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Abstract
In the present thesis we consider systems which are modeled by partial differential
equations taking the form of evolution equations. Observation and control of the state
x typically occur at the boundary of the spatial domain where the state evolves in.
From technical and practical considerations, the inputs u and outputs y of the system
are assumed to be finite-dimensional, which means that the system has a finite amount
of actuators.
The aim of this thesis is to design adaptive controllers for such systems in order to
track a prescribed reference signal yref . In fact, one could attempt to use the high-gain
controller u = −k(y − yref) for k > 0. However, the performance of this controller
strongly depends on the gain k. To solve this problem, we will make use of the funnel
controller, where one defines a time-varying gain k(·), so that only large values of
k(t) are used when required. Moreover, the funnel controller takes into account the
transient behavior of the error e := y − yref : for a specified performance funnel ψ, it
can be guaranteed that ‖e(t)‖ < ψ(t).
As a motivating example, we consider a linearized model of a water tank, for which we
control the force of the motor and observe the absolute distance from the origin to the
tank. Inspired by this example, we also study a large class of systems with infinite-
dimensional internal dynamics. By using the existing theory on the funnel controller,
we are able to show that the controller is feasible for both the model and this class.
However, it is known that the results about funnel control are not always applicable,
in particular when dealing with systems modeled by partial differential equations. The
evolution equations that one often encounters resemble ẋ = Ax, where A is a differ-
ential operator acting on a spatial domain Ω. Moreover, the observation and control
interactions are often modeled by two additional operators which include evaluations
of the state x at the boundary of Ω. The inputs and outputs of the system can be
represented as u = Bx and y = Cx, respectively. We want to study the applicability of
the funnel controller to boundary control systems of the form described above. These
systems enclose both parabolic and hyperbolic equations. In order to capture this fea-
ture arising from the infinite-dimensionality of the problem, the controller needs to be
slightly modified. These systems usually come from physical models and have a rich
underlying structure that can be exploited. We make use of nonlinear, m-dissipative
operator theory to show that the funnel controller is feasible for the system class.
Moreover, we are able to take advantage of the parabolic structure of the problem to
show more regularity of the solution. On top of that, we demonstrate the application of
these results with some examples. By using the funnel controller one could for instance
control heat transfer, diffusion processes, voltage of electric circuits or the bending of
beams.
Finally, we consider a nonlinear parabolic system which is often used to model the
electric current in heart cells. We study the applicability of the funnel controller not
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only in the boundary control scenario, but also in the distributed one, that is, the
control takes place in the spatial domain Ω. This controller could be used to develop
heart pacemakers, where the reference signal yref represents the natural heart rhythm.
We prove the feasibility of the funnel controller for this system and use again the
parabolicity of the problem to show more regularity of the solution.
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Zusammenfassung
In der vorliegenden Dissertation werden Systeme betrachtet, die durch partielle Diffe-
rentialgleichungen modelliert werden. Beobachtung und Steuerung des Zustandes x ge-
schehen typischerweise am Rand des Gebiets, in dem sich der Zustand entwickelt. Aus
technischen und praktischen Erwägungen wird angenommen, dass die Systemeingänge
u und Systemausgänge y endlich dimensional sind, was bedeutet, dass das System eine
endliche Menge Aktuatoren besitzt.
Das Ziel dieser Dissertation ist es, adaptive Regler für solche Systeme zu entwerfen,
um ein vorgeschriebenes Referenzsignal yref zu verfolgen. Natürlich könnte man ver-
suchen, den Hochverstärkungsregler u = −k(y − yref) für k > 0 zu benutzen. Die
Leistung dieses Reglers hängt jedoch stark von der Hochverstärkungskonstante k ab.
Um dieses Problem zu lösen, werden wir den Trichter-Regler (Funnel controller) an-
wenden. Bei Deisem benutzt man einen zeitabhängigen Hochverstärkungsfaktor k(·),
sodass nur große Werte k(t) angenommen werden, wenn sie nötig sind. Darüber hinaus
fließt das transiente Verhalten des Fehlers e := y − yref durch den Trichter-Regler in
das Reglermodell ein: für einen gewählten Performanz-Trichter ψ kann gewährleistet
werden, dass ‖e(t)‖ < ψ(t).
Als motivierendes Beispiel betrachten wir ein linearisiertes Modell eines Wassertanks,
dessen Motorkraft wir regulieren und dessen absolute Distanz vom Ursprung zum Tank
wir beobachten. Durch dieses Beispiel inspiriert, studieren wir zusätztlich eine breite
Klasse von Systemen mit endlich dimensionaler interner Dynamik. Die Anwendung
existenter Theorie über den Trichter-Regler ermöglicht uns zu zeigen, dass der Regler
für sowohl das Modell als auch die Systemklasse im gewünschten Sinne funktioniert.
Die bisherigen Resultate über Trichter-Regelung schließen interessante Anwendungs-
beispiele nicht mit ein, insbesondere durch partielle Differentialgleichungen modellierte
Systeme. Die Evolutionsgleichungen, welchen man oft begegnet, können durch ẋ = Ax

beschrieben werden, wobei A ein Differentialoperator ist, der im Gebiet Ω agiert.
Zusätztlich werden die Interaktionen von Beobachtung und Steuerung oft durch zwei
Operatoren modelliert. Klassischerweise sind Diese Auswertungen des Zustandes x
am Rand von Ω. Die Ein- und Ausgänge des Systems können jeweils als u = Bx und
y = Cx dargestellt werden. Wir wollen den Trichter-Regler auf Randsteuerungssysteme
anwenden, die die beschriebene Form besitzen. Diese Systeme enthalten sowohl para-
bolische als auch hyperbolische Gleichungen. Um diese Besonderheit einzufangen, die
aus der unendlichen Dimensionalität des Problems entsteht, muss der Regler leicht
modifiziert werden. Normalerweise ergeben sich diese Systeme aus physikalischen Mo-
dellen und besitzen eine spezielle Struktur, welche man ausnutzen kann. Wir werden
Theorie über nichtlineare, m-dissipative Operatoren benutzen, um zu beweisen, dass
der Trichter-Regler für diese Systemklasse funktioniert. Außerdem sind wir imstande,
die parabolische Struktur des Problems auszunutzen, um eine höhere Regularität der
Lösung zu beweisen. Zusätzlich dazu veranschaulichen wir die Anwendung dieser
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Ergebnisse mit einigen Beispielen. Durch die Trichter-Regelung könnten beispielswei-
se Wärmeleitung, Diffusionsprozesse, elektrische Spannungen von Schaltkreisen oder
Krümmungen von Balken geregelt werden.
Zum Scluss betrachten wir ein nichtlineares parabolisches System, welches oft benutzt
wird, um die elektrische Spannung in Herzzellen zu modellieren. Wir studieren die An-
wendbarkeit des Trichter-Reglers nicht nur im Randsteuerungsszenario, sondern auch
mit verteilter Steuerung, das heißt, die Reglung geschieht innerhalb des Gebiets Ω.
Diese Regelung könnte benutzt werden, um Herzschrittmacher zu entwickeln, bei denen
das Referenzsignal yref der natürlichen Herzfrequenz entspricht. Wir beweisen, dass der
Trichter-Regler auf dieses System anwendbar ist und wir nutzen die Parabolizität des
Problems aus, um eine höhere Regularität der Lösung zu zeigen.
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gràcies als meus companys de la Univeristat Autònoma de Barcelona per la seva ajuda
al llarg dels primers anys i en particular a les dues persones que em van introduir a les
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Introduction
Since the late XVIIIth century with the contribution of Joseph-Louise Lagrange and
the Lagrangian formalism of mechanics, the modeling of time-continuous dependent
systems has become quite straightforward. With the reformulation of the classical
mechanics due to William R. Hamilton in the early XIXth century, an energy-based
approach arouse by simply applying a Legendre transformation of the Lagrangian with
the generalized coordinates q and momenta p, which gave rise to the Hamiltonian
formalism. This lead to the well-known equations of motion

q̇ = ∂H

∂p
,

ṗ = −∂H
∂q

,

where H is the Hamiltonian, which in many cases coincides with the total energy of
the system [38]. By using the Hamilton’s Principle or the Principle of Minimal Action
and this abstract formalism, one can additionally incorporate the dependence of q and
p with respect to the position. One of the most well-known examples of such a system
is the wave equation, which describes the vertical displacement of a string on a segment
of length L over the time. For t ∈ (0,∞) and ζ ∈ (0, L), this is commonly given as

ρwtt(t, ζ) = Twζζ(t, ζ),
w(0, ζ) = w0(ζ),
wt(0, ζ) = v0(ζ),

(0.1)

where T is the Young modulus, ρ is the linear mass density, w0 is the initial elongation of
the string and v0 its initial speed. Since the function w is implicitly given by its partial
derivatives, the wave equation is a Partial Differential Equation (PDE). This is in fact
one of the so-called equations of the mathematical physics, which also comprehend
the heat and the Laplace equations [120]. All of them are linear PDEs of second order
which are representative for one of the most common form of classification: hyperbolic,
parabolic and elliptic, respectively.
Hyperbolic and parabolic PDEs play an important role in the modeling of physical
systems which have time and position dependence. In the hyperbolic scenario one has
most of equations of theoretical physics such as the Schrödinger, Klein-Gordon or the
Dirac equations [86, 104]. Parabolic equations are typically used to model diffusive
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systems like fluids or thermal propagation. This kind of PDEs can be viewed in such a
way that for each time, one needs to find a function, which represents the current state,
in contrast to the usual Cauchy problem where at each time one has a point in Rn. This
is why we will often use the terminology infinite-dimensional to refer to problems like
(0.1), while we will use finite-dimensional for Ordinary Differential Equation (ODE).
In several applications, these models include inputs and outputs, that is, one can some-
how influence the system and measure something from it. For instance, one could
control the force per unit length applied to (0.1) at the boundary, namely,

Twζ(t, L) = u1(t), −Twζ(t, 0) = u2(t),

and u = (u1, u2)> are the controls, which are prescribed. One could also measure the
speed at the boundary, that is,

y1(t) = wt(t, L), y2(t) = wt(t, 0),

and y = (y1, y2)> is the output of the system, which is observed. The energy of the
system is the sum of the kinetic and potential energy and is given by the expression

E(t) = 1
2

∫ L

0
ρwt(t, ζ)2 + Twζ(t, ζ)2 dζ .

Note that by using integration by parts and (0.1), the power is then given by

d
dtE(t) = u2(t)y2(t) + u1(t)y1(t), (0.2)

that is, the power equals the product of the force and velocity.
The variable which is described by the PDE is usually called state of the system or
state variable, and it is important to bear in mind how it relates to the inputs and
outputs of the system. Often one wants to achieve that the output y of a system
behaves in a specific, desired way. The several approaches to this issue are known as
control theory, and among them, we will use adaptive control. Roughly speaking, one
couples u and y in such a way that the resulting closed-loop system has a solution for
which the output behaves as a prescribed reference trajectory yref . The simplest case
is the stabilization of the system, where yref ≡ 0. In the example of the wave equation,
this can be achieved by using the high-gain controller u = −ky, with k > 0.
The aim of this work is to develop an adaptive controller for a large class of systems
whose state will be mostly described by a linear partial differential equation where the
control and observation of the system occur at the boundary of the spatial domain of
the state variable.
Adaptive control of infinite-dimensional systems has been addressed over the past years
by several authors, [10, 19, 55, 68, 71–74, 77–79]. Needless to say, the fact of dealing
with PDEs makes it of course challenging and the approaches used strongly lay on
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the particular cases which are investigated. In these works, the problems investigated
often distinguish between parabolic and hyperbolic PDEs and many of them only deal
with systems with one spatial dimension. Moreover, their controller design specifically
uses parameters or estimations of the parameters of the model, which could jeopardize
the robustness of the controller. Importantly, none of them deals with the problem of
tracking a prescribed reference signal which is a measurement of the system.

The funnel controller
Ideally, one would like to only make structural assumptions on the system such as the
energy dissipation (0.2) in order to design a controller so that for a given reference
signal yref , the error e := y − yref can be controlled.
By comparing to the finite-dimensional case, one realizes that two major problems
quickly arise. For instance, for the linear prototype

ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t)

the input affects the state directly, which does not seem to be a realistic assumption
when dealing with PDEs, since it is unlikely that one can influence the whole spatial
domain. Hence, one needs to think more carefully about the meaning of the operator B.
Moreover, A will be a differential operator, so the space on which it acts and where it is
defined plays a crucial role. Secondly, the design of the controller strongly depends on
the structure of the transfer function, which is a rational function describing the input-
output behavior of the system in the frequency domain. In the infinite-dimensional
case, this function is no longer rational, so the usual techniques involving concepts
such as the relative degree may not be applicable.
However, the finite-dimensional setting already provides a large amount of possible
controllers one could attempt to use or extend to the infinite-dimensional scenario. The
simplest one might possibly be the high-gain controller, that is, a feed-back relation of
the form

u(t) = −k(y(t)− yref(t)),
where k > 0 is the gain. A more sophisticated alternative can be realized by designing
an adaptive gain k. More precisely, k should grow when required and remain small
when the output is close to the reference signal. To do so without increasing the
mathematical complexity excessively, this k should not add any extra dynamics —
differential equations— to the system. Furthermore, the controller should be easy to
implement. Taking all of this into consideration, we choose the funnel controller (FC),
first introduced by [60] and developed in [61], which satisfies all the requirements
with the additional property, that one can control the error e(t) during the transient
behavior.
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The FC is a model-free output-error feedback of high-gain type. Therefore, it is in-
herently robust and of striking simplicity. The main idea of the controller is to make
the gain k adaptive in such a way that if the error e comes closer to a time depending
boundary, the gain grows so that the error decreases due to the internal dynamics (ID)
of the state. In its simplest form the controller looks like

u(t) = − k0

1− ϕ(t)2e(t)2 e(t),

and ϕ−1 serves as the aforementioned boundary. Note that if ϕ tends asymptotically
to a value λ, then the error will be asymptotically bounded by λ−1. By choosing a
specific function ϕ, one obtains that the error is enclosed in a concrete region usually
denoted by Fϕ, which is defined by

Fϕ := {(t, e) ∈ [0,∞)× R | ϕ(t)|e| < 1}.

In fact, this region resembles a funnel when depicted, see Fig. 0.1, and Fϕ is called
performance funnel.

t

±ϕ(t )−1

±λ−1

e(t )

(0,e(0))

Figure 0.1: Error evolution in a funnel Fϕ with boundary ϕ(t)−1.

In [60] the feasibility of the funnel controller for a class of functional differential equa-
tions has been shown. These encompass infinite-dimensional systems with very restrict-
ive assumptions on the operators involved, a special class of nonlinear finite-dimensional
systems and nonlinear delay systems. In fact, finite-dimensional linear prototype sys-
tems with relative degree one are treated therein. The relative degree is a well-known
magnitude for finite-dimensional systems and can roughly be understood as the number
of times one needs to differentiate y so that u appears in the equation. This quantity
turned out to be relevant when considering the funnel controller and has been used to
generalize the results of [60]. For instance, in [57], the funnel controller was proved to
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be applicable for systems with known but arbitrary relative degree. The problem is
that the ansatz used therein requires very large powers of the gain factor k(t). This
problem has been overcome in [11] by introducing a funnel controller which involves
derivatives of the output and reference signal, and feasibility of this controller in the
case of nonlinear finite-dimensional systems with strict relative degree having stable
internal dynamics has been proven. For a survey regarding the first steps of the FC
and high-gain adaptive control we refer to [58].
Moreover, the FC has been successfully applied e.g. in temperature control of chem-
ical reactor models [64], control of industrial servo-systems [49] and underactuated
multibody systems [12], speed control of wind turbine systems [46,48,49], current con-
trol for synchronous machines [47, 49], DC-link power flow control [105], voltage and
current control of electrical circuits [16], oxygenation control during artificial ventilation
therapy [96], control of peak inspiratory pressure [97] and adaptive cruise control [15].
For infinite-dimensional systems the FC has so far only attracted attention in special
configurations [13, 63, 101]. The recent article [13] deals with a linearized model of
a moving water tank by showing that this system belongs to the class being treated
in [11]. On the other hand, not even every linear, infinite-dimensional system has a
well-defined and integer-valued relative degree, in which case the results as in [11, 61]
cannot be applied. Instead, the feasibility of funnel control has to be investigated
directly for the (nonlinear) closed-loop system, see [101] for a boundary controlled heat
equation and [99] for a general class of boundary control systems. In [63], a class of
infinite-dimensional systems has been considered that allows to prove feasibility of the
funnel controller in a similar way as for finite-dimensional systems. More precisely, this
class consists of systems which possess a so-called Byrnes-Isidori form via bounded and
boundedly invertible state space transformation. The existence of such a form however
requires that the control and observation operators fulfill very strong boundedness
conditions, which in particular exclude boundary control and observation. Funnel
control of a heat equation with Neumann boundary control and co-located Dirichlet
output has been treated in [101]. The proof of feasibility of funnel control uses the
spectral properties of the Laplacian, whence this technique is hardly transferable to
further classes of boundary control systems.

Content overview
The dissertation contains a mathematical introduction, four major projects and conclu-
sions. The chapters corresponding to the respective projects are organized in increasing
complexity. In Chapter 1 we provide the basic notation and develop the mathematical
essentials for the subsequent parts. In Chapter 2 we deal with a practical example
to which we aim to apply the FC, which already motivates to develop a theory for
the FC when the dynamics of the system are given by a PDE. There we consider a
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linerized model of a linear water tank, where we control the force acting on the system
(for instance the one provided by the motor of a truck) and observe the position. In
order to show feasibility of the FC we make use of the existing theory for the FC. The
content presented in this chapter corresponds to the results given in [13].
In Chapter 3 we work with an abstract setting which resembles the one seen in Chapter
2 and it has been presented in [14]. Nevertheless, we make no particular assumptions
in how the operators look like, or what they model. With the appropriate structure it
is quite straightforward to show that the FC is feasible for this system class by using
the existing theory regarding the applicability of the FC.
Noting that in Chapter 2 we have treated systems with boundary control and obser-
vation and that the internal dynamics of Chapter 2 could describe boundary control
systems, we move into Chapter 4 bearing in mind what it has been discussed exemplary
with Equation (0.1). This chapter could be seen as the core of this work. There we
introduce a class of boundary control systems (BCS) and consider from the very be-
ginning the closed-loop system induced by the feedback law of the FC, which requires
some minor modifications in order to deal with the system class in the most general
way. The results presented in this chapter will make use of nonlinear analysis, in par-
ticular nonlinear, m-dissipative operators. We will provide a set of assumptions that
the operators describing the BCS need to satisfy in order to apply the FC successfully.
We illustrate the main result by applying it to three different classes of systems which
fit in the framework. This is an extended version of [99]. It is worth mentioning, that
the results presented in Chapter 4 can not be proved in general with the existing funnel
theory as we did in Chapter 2 & 3.
With some of the techniques and knowledge acquired in Chapter 4, we approach in
Chapter 5 a fully nonlinear parabolic PDE, which represents a reaction diffusion equa-
tion that models defibrillation processes of the human heart. From the application, it
is possible to use both distributed and boundary control, that is, the control can be
performed in some cells of the spatial domain or at its boundary. In order to make the
whole setting as complete and compact as possible, we consider a co-located control
and observation scenario with arbitrary operators that will cover these two options,
which is achieved by introducing abstract Sobolev spaces.
Finally we conclude with Chapter 6, where we gather some thoughts and conclusions
from the previous chapters.
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1 Mathematical background
In the present chapter we give the notation that will be used in this thesis, which
happens to be quite standard. Later on we move to defining and giving known results
in functional analysis that will be used afterwards. N is the set of the natural numbers
and N0 := N ∪ {0}, whereas Z is the set of integers. Q, R and C are the fields of
rations, real and complex numbers, respectively. We will use K for K = R or K = C
indistinguishably. The imaginary unit will be denoted by i. For a complex number
z ∈ C, we denote by Re z the real part, by Im z the imaginary part, by z the complex
conjugate and the absolute value by |z|. For α ∈ R, we define Cα := {z ∈ C | Re z > α}.
For n,m ∈ N, the sets Rn and Cn denote the vector spaces of n-tuples of real and
complex numbers, respectively. In the same way, Rn×m and Cn×m denote the sets of
real and complex n×m-matrices. The set of real and complex invertible n×n-matrices
is abbreviated by Gln(R) and Gln(C), respectively. A> denotes the transpose and A∗
the Hermitian of A ∈ Cn×m. The identity matrix in Rn×n or Cn×n is In.

1.1 Normed vector spaces
For a normed space X, the norm is denoted by ‖ · ‖X , and for an inner product space
X, the scalar product by 〈·, ·〉X . For normed spaces X1, . . . , Xn the product space

X :=
n⊗
i=1

Xi = X1 × · · · ×Xn

is made a normed space via ‖(x1, . . . , xn)‖2X :=
∑n
i=1 ‖xi‖2Xi . Note that one may

define equivalent norms in the product space, see [2, Theorem 1.22]. In the case that
the normed or inner product spaces are complete, we shall call them Banach or Hilbert
spaces as it is common. From the parallelogram law —see [103, pp. 307]—, speaking
of an inner product space X and saying that it has norm ‖·‖X , implicitly defines the
scalar product 〈·, ·〉X . For a subset S ⊂ X we denote its topological closure by S and
interior by int S. We say that S is dense in X if S = X. It is known that every normed
space X can be densely embedded into a Banach space which is called the completion
of X. Similarly, it holds that the completion of an inner product space is a Hilbert
space. Banach spaces which posses a countable and dense subset are called separable.
For X and Y arbitrary normed spaces, L (X,Y ) denotes the vector space of bounded
linear operators from X to Y . It is known that, if at least Y is a Banach space,
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L (X,Y ) is also a Banach space with the operator norm

‖T‖L (X,Y ) := sup
x∈X
‖x‖X≤1

‖Tx‖Y .

We simply write L (X) := L (X,X). As in the matrix case, the identity operator will
be denoted by IX ∈ L (X) or simply I.
We briefly introduce the dual space. For a normed vector space X over K, the to-
pological dual X ′ consists of all x′ ∈ L (X,K). The elements of X ′ are called linear
functionals and with the usual operator norm, X ′ is known to be a Banach space. Fur-
ther, for x′ ∈ X ′ we denote 〈x′, x〉 := x′(x). If X is a Hilbert space, one can bijectively
embedded X into X ′ with a mapping JX : X ′ → X by using the [37, 1.7.18 Riesz
Representation Theorem], so that 〈x′, x〉 = 〈JXx′, x〉X for all x ∈ X.

1.2 Weak and weak? convergence
We now briefly introduce the weak and weak? convergence. A sequence (xn)n∈N in a
normed linear space X is said to be weakly convergent if

lim
n→∞

〈x′, xn〉

exists and it is finite for each x′ ∈ X ′. (xn)n∈N is said to be weakly convergent to
x∞ ∈ X if

lim
n→∞

〈x′, xn〉 = 〈x′, x∞〉

for all x′ ∈ X. In the latter case, x∞ is uniquely determined in virtue of the Hahn-
Banach Theorem, see [127, Chapter IV.6, Corollary 2 of Theorem 1]. We shall write

w − lim
n→∞

xn = x∞

or, in short xn → x∞ weakly.
X is said to be sequentially weakly complete if every weakly convergent sequence of
X converges weakly to an element of X. It is well-known that Banach spaces are
sequentially weakly complete — [127, Chapter V.1, Theorem 7]— and that a weakly
convergent sequence (xn)n∈N is strongly bounded and, in particular, if

w − lim
n→∞

xn = x∞,

then (‖xn‖X)n∈N is bounded and

‖x∞‖X ≤ lim inf
n→∞

‖xn‖X ,

see [127, Chapter V.1 Theorem 1]. Moreover, if X is a reflexive Banach space and
(xn)n∈N is an arbitrary sequence in X which is norm bounded, then we can choose
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a subsequence (xnk)nk∈I , with I ⊂ N, which converges weakly to an element of X
— [127, Chapter V.2, Theorem 1].
A sequence (x′n)n∈N in the dual space X ′ of a normed vector space X is said to be
weakly? convergent if

lim
n→∞

〈x′n, x〉

exists and it is finite for each x ∈ X. (x′n)n∈N is said to converge weakly? to x′∞ ∈ X ′
if

lim
n→∞

〈x′n, x〉 = 〈x′∞, x〉

for all x ∈ X. In the latter case, we write

w? − lim
n→∞

x′n = x′∞

or, in short x′n → x′∞ weakly? or weak?. If X is a Banach space, then a weakly?
convergent sequence (x′n)n∈N converges weakly? to an element x′∞ ∈ X ′ and

‖x′∞‖X′ ≤ lim inf
n→∞

‖x′n‖X′ ,

see [127, Chapter V.1, Theorem 9].

1.3 Unbounded operators
Let X,Y be normed spaces and T be a linear operator defined in a subset of X, D(T ),
and with range in a subspace of Y , R(T ). The kernel of T , that is, the elements
x ∈ D(T ) such that Tx = 0 is denoted by kerT . The set G(T ) := {(x, Tx) | x ∈ D(T )}
is called the graph of T and since T is linear, G(T ) is a subspace of X × Y . If G(T ) is
closed in X × Y , then T is said to be closed in X. Note that T is closed if, and only
if, for all (xn)n∈N ⊂ D(T ) with xn → x in X, Txn → y in Y for some y ∈ Y , imply
x ∈ D(T ) and Tx = y, see [37, Chapter 2]. If D(T ) is dense in X, then T is called
densely defined.
If X is complete, then T is closed if, and only if, D(T ) associated with the graph norm
‖·‖D(T ), where ‖x‖2D(T ) := ‖x‖2X + ‖Tx‖2Y for x ∈ D(T ), is a Banach space. If X is
a Hilbert space and Y an inner product space, D(T ) is even a Hilbert space with the
graph norm. Moreover, the kernel of closed operators is closed in X.
For vector spaces X,Y and a linear operator T : D(T ) ⊂ X → Y , we denote the
restriction of T in U ⊂ X by T |U . Another operator S : D(S) ⊂ X → Y is called
a restriction of T to D(S), denoted by T |D(S), if D(S) ⊂ D(T ) and Tx = Sx for all
x ∈ D(S). Moreover, S is called an extension of T if T is a restriction of S.
For two Banach spaces X,Y and T : D(T ) ⊂ X → Y densely defined, the dual operator
T ′ : D(T ′) ⊂ Y ′ → X ′ is defined on the domain

D(T ′) := {y′ ∈ Y ′ | ∃x′ ∈ X ′ : 〈y′, Tx〉 = 〈x′, x〉 ∀ x ∈ D(T )}.
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For x′, y′ according to the definition of D(T ′), we define T ′y′ = x′. In the case where
X and Y are Hilbert spaces, the adjoint operator T ∗ : D(T ∗) ⊂ Y → X is defined on

D(T ∗) := {y∗ ∈ Y | ∃x∗ ∈ X : 〈y∗, Tx〉Y = 〈x∗, x〉X ∀ x ∈ D(T )}.

Similarly we define T ∗y∗ = x∗. Note that by using the Riesz isomorphisms one has
T ∗ = JXT

′J−1
Y . An operator T ∈ L (X) is called left-invertible if there exists S ∈

L (X) such that ST = I. It can be seen that an operator T ∈ L (X) is left-invertible
if there exists m > 0 for which

‖Tz‖X ≥ m‖z‖X , ∀z ∈ X,

i.e., the kernel of T is trivial, kerT = {0}. It is called right-invertible if there exists an
operator R ∈ L (X) such that TR = I. It can be also easily seen that this is equivalent
to R(T ) = X, that is, T is onto.
For the sake of simplicity, we only introduce the following concepts when X is an
infinite-dimensional Hilbert space instead of a Banach space, but the theory can be
also done in the Banach context. If T : D(T ) ⊂ X → X densely defined, then the
resolvent set of T , denoted by ρ(T ), is the set of those points s ∈ C for which the
operator sI − T : D(T ) → X is invertible and (sI − T )−1 ∈ L (X) is called resolvent
operator of T , or simply resolvent of T . The spectrum of T , denoted by σ(T ), is the
complement of ρ(T ) in C. Note that if ρ(T ) is not empty, then T is closed. Further for
α, β ∈ ρ(T ) we have the resolvent identity

(αI − T )−1 − (βI − T )−1 = (β − α)(αI − T )−1(βI − T )−1.

A value λ ∈ C is called an eigenvalue of T if there exists a zλ ∈ D(T ), zλ 6= 0, such
that Tzλ = λzλ. In this case, zλ is called an eigenvector of T corresponding to λ. The
set of all the eigenvalues of T is called the point spectrum of T and it is denoted by
σp(T ). For n ∈ N, we define the space D(Tn) recursively:

D(Tn) := {z ∈ D(T ) | Tz ∈ D(Tn−1)}.

The powers of T , Tn : D(Tn)→ X are defined in the obvious way. Further,

D(T∞) :=
⋂
n∈N
D(Tn).

For every β ∈ ρ(T ), the space D(T ) with the norm

‖z‖X1 = ‖(βI − T )z‖X , z ∈ D(T )

is a Hilbert space, denoted by X1. The norms generated as above for different β ∈
ρ(T ) are equivalent to the graph norm. The embedding X1 ⊂ X is continuous. If
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L ∈ L (X) is such that LD(T ) ⊆ D(T ), then L ∈ L (X1). One can define the spaces
Xn recursively, that is, Xn = D(Tn) and

‖x‖Xn := ‖(βI − T )nx‖X ,

so that it becomes a Banach space [110, Section 3.6].
We denote by X−1 the completion of X with respect to the norm

‖z‖X−1 := ‖(βI − T )−1z‖X , z ∈ X.

Then the norms generated as before for different β ∈ ρ(T ) are equivalent (in particular,
X−1 is independent of the choice of β). Moreover, X−1 is the dual of Xd

1 with respect
to the pivot space, where Xd

1 the corresponding X1 space for the operator T ∗. If
L ∈ L (X) is such that L∗D(T ∗) ⊆ D(T ∗), then L has a unique extension to an
operator L̃ ∈ L (X−1). T ∈ L (X1, X) and has a unique extension T̃ ∈ L (X,X−1).
Moreover,

(βI − T )−1 ∈ L (X,X1), (βI − T̃ )−1 ∈ L (X−1, X),

and these two operators are unitary. We often denote T̃ by T . Using a similar con-
struction we can define the spaces X−n for n ∈ N, see [110, Section 3.6].
The operator T : D(T )→ X is called dissipative if

Re 〈Tz, z〉X ≤ 0, ∀z ∈ D(T ).

From [115, Proposition 3.1.2], the operator T : D(T )→ X is dissipative if, and only if,

‖(λI − T )z‖X ≥ λ‖z‖X , ∀z ∈ D(T ), λ ∈ (0,∞)

which is further equivalent to

‖(sI − T )z‖X ≥ Re s‖z‖X , ∀z ∈ D(T ), s ∈ C0.

In [115, Theorem 3.1.7] one finds the usual characterization of the so-called m-dissi-
pative operators in Hilbert space. Let T : D(T )→ X be dissipative. Then the following
statements are equivalent:

(i) R(sI − T ) = X for some s ∈ C0;

(ii) R(sI − T ) = X for all s ∈ C0;

(iii) D(T ) is dense and if T̃ is a dissipative extension of T , then T̃ = T .

Such an operator is called maximal dissipative or m-dissipative.
Let T : D(T ) ⊂ X → X with D(T ) dense in X. Then T is called symmetric if

〈Tw, v〉X = 〈w, Tv〉X , ∀v, w ∈ D(T ).
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It is called self-adjoint if T = T ∗, meaning that D(T ) = D(T ∗) and Tx = T ∗x for
all x ∈ D(T ). It is well-known that if T is self-adjoint, then σ(T ) ⊂ R —see [115,
Proposition 3.2.6]. T is called skew-symmetric if

〈Tw, v〉X = −〈w, Tv〉X , ∀v, w ∈ D(T ).

In this context, one can see that iT is a symmetric operator. It is also clear that T is
dissipative. T is called skew-adjoint if T = −T ∗. Clearly, the latter is equivalent to iT
being self-adjoint and with σ(T ) ⊂ iR.

1.4 Function spaces
In this section we present the Sobolev spaces W s,p(Ω), gather some embedding results
and define the traces of functions. Thereafter we introduce the concept of Bochner
integral for functions f which are defined on a measurable set of R and take values
in a Banach space B and in particular we introduce the Bochner spaces. The (k-th)

derivative of a function f of one variable t will be denoted by df
dt

(
dkf
dtk

)
or ḟ

(
f (k)).

The (k-th) partial derivative of a function f of several variables with respect to the

variable ζ will be denoted by ∂f
∂ζ

(
∂kf
∂ζk

)
, ∂ζf

(
∂kζ f or ∂

ζ
(k)
···ζ
f

)
or fζ

(
f
ζ

(k)
···ζ

)
.

We will follow the lines of [2], but most of the books in PDEs include excellent introduct-
ory chapters about Sobolev and Bochner spaces, see for instance [21,31,44,51,87,94].

1.4.1 Sobolev spaces

If α = (α1, . . . , αn) is an n-tuple of nonnegative integers, we call α a multi-index with
degree |α| :=

∑n
k=1 αk. If Dk = ∂/∂xk for k = 1, . . . , n, then

Dα = Dα1
1 · · ·Dαn

n

denotes the differential operator of order |α|. D(0,...,0)u = u. We will also use the
operator ∇ to indicate the gradient of a scalar function f , ∇f , or the divergence of a
vector field F , ∇ · F .
Let Ω ⊂ Rn be an open and connected domain. For k ∈ N0 let Ck(Ω) be the vec-
tor space consisting of all functions φ which, together with their partial derivatives
Dαφ of order |α| ≤ k, are continuous on Ω. We abbreviate C0(Ω) ≡ C(Ω). Let
C∞(Ω) :=

⋂∞
k=0 C

k(Ω). The space C∞0 (Ω) consists of all functions in C∞(Ω) with
compact support. If φ ∈ Ck(Ω) is bounded and uniformly continuous on Ω, then it
possesses a unique, bounded, continuous extension to the closure of Ω, Ω. Accordingly,
we define the vector space Ck(Ω) to consist of all those functions φ ∈ Ck(Ω) for which
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Dαφ is bounded and uniformly continuous on Ω for |α| ≤ k. It is well-known that
Ck(Ω) is a Banach space with norm given by

‖φ‖Ck := max
|α|≤k

sup
ζ∈Ω
|Dαφ(ζ)|.

For 0 < λ ≤ 1, we define Ck,λ(Ω) to be the subspace of Ck(Ω) consisting of those
functions φ for which, for |α| < k, Dαφ satisfies in Ω a Hölder condition of exponent
λ. This means that there exists a constant K ≥ 0 such that

|Dαφ(ζ2)−Dαφ(ζ1)| ≤ K|ζ2 − ζ1|λ, ζ1, ζ2 ∈ Ω.

Ck,λ(Ω) is a Banach space with norm given by

‖φ‖Ck,λ := ‖φ‖Ck + max
|α|≤k

sup
ζ1,ζ2∈Ω
ζ1 6=ζ2

|Dαφ(ζ2)−Dαφ(ζ1)|
|ζ2 − ζ1|λ

.

It should be noted that for 0 < ν < λ ≤ 1,

Ck,λ(Ω) ⊂ Ck,ν(Ω) ⊂ Ck(Ω)

and Ck,1(Ω) * Ck+1(Ω). We formulate the result that connects Ck,λ(Ω), Ck,ν(Ω) and
Ck+1(Ω). We briefly recall the concept of a compact operator . Let X and Y be Banach
spaces, U the open unit ball in X and T ∈ L (X,Y ). T is said to be compact if T (U)
is compact in Y . It is well-known —see for instance [103, p. 103]— that an operator
T ∈ L (X,Y ) is compact if, and only if, every bounded sequence (xn)n∈N in X contains
a subsequence (xnk) such that Txnk converges to a point in Y .

Theorem 1.4.1. Let k ∈ N0 and 0 < ν < λ ≤ 1. Then the following embeddings exist:

Ck+1(Ω) ↪→ Ck(Ω), (1.1)
Ck,λ(Ω) ↪→ Ck(Ω), (1.2)
Ck,λ(Ω) ↪→ Ck,ν(Ω). (1.3)

If Ω is bounded, then embeddings (1.2) and (1.3) are compact. If Ω is convex we further
have the embeddings

Ck+1(Ω) ↪→ Ck,1(Ω), (1.4)
Ck+1(Ω) ↪→ Ck,ν(Ω). (1.5)

If Ω is convex and bounded, then embeddings (1.1) and (1.5) are compact.

Proof. This is [2, Theorem 1.31].
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In the following we will recover some results concerning Sobolev spaces. We assume
the reader to be familiar with the concepts of Lebesgue measure and integration over
domains of Rn. By a measure µ on a σ-algebra Σ, we mean a function on Σ taking values
in either R ∪ {∞} or C which is countably additive. For a more detailed discussion of
the Lebesgue theory we refer to [91].
For a measurable set Ω ⊂ Rn, we say that the set has measure zero if |Ω| = µ(Ω) = 0.
We say that a property happens almost everywhere if it holds except, possibly, in a set
of measure zero. We abbreviate it by a.e.. We denote by L1(Ω) the class of integrable
functions on Ω, that is, the set of integrable functions on Ω which coincide a.e. in Ω.
It is well-known that L1(Ω) is a Banach space with the norm

‖f‖L1 :=
∫

Ω
|f |dµ .

For p ∈ [1,∞) one can hence define the Lp-spaces

Lp(Ω) :=
{
f : Ω→ K

∣∣∣∣f is measurable and
∫

Ω
|f |p dλ <∞

}
with the norm

‖f‖Lp :=
(∫

Ω
|f |p dλ

)1/p
,

which are also Banach spaces. Moreover, one can define L∞(Ω) as the set of measurable
functions on Ω which are essentially bounded with the norm

‖f‖L∞ := ess supζ∈Ω |f(ζ)|,

which is a Banach space as well, see [2, Theorem 2.10]. For p ∈ [1,∞] we define the
Hölder conjugate q to be such that

1
p

+ 1
q

= 1,

where for p = 1 we set q =∞ and for p =∞ we set q = 1. For an arbitrary p ∈ [1,∞]
and its Hölder conjugate q, f ∈ Lp(Ω) and g ∈ Lq(Ω) we have that fg ∈ L1(Ω) and
Hölder’s inequality — [21, Theorem 4.6]— holds∫

Ω
|fg|dλ ≤ ‖f‖Lp‖g‖Lq .

Another useful relation is Young’s inequality for products, namely,∫
Ω
|fg|dλ ≤ 1

p
‖f‖pLp + 1

q
‖g‖qLq ,

for p ∈ (1,∞) and its Hölder conjugate q, [127, Lemma I.3.1].
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For the particular case p = 2, one has that L2(Ω) is a Hilbert space with the inner
product

〈f, g〉L2 =
∫

Ω
fg dλ .

Hölder’s inequality becomes the well-known Cauchy-Schwarz inequality

| 〈f, g〉L2 | ≤ ‖f‖L2‖g‖L2 .

It is also well-known that C∞0 (Ω) —set of C∞ functions whose support is a compact
subset of Ω for all derivatives— is dense in Lp for all p ∈ [1,∞) and that Lp is separable
also for p ∈ [1,∞) but not for L∞.
By the Riesz-Representation [2, Theorem 2.33 and Theorem 2.34], for p ∈ [1,∞), the
topological dual space of Lp(Ω), (Lp(Ω))′, can be identified with Lq(Ω), where q is the
Hölder conjugate of p. Moreover, for p ∈ (1,∞), Lp(Ω) is reflexive but L∞ is not. We
will always make use of these facts.
Before we move on to the Sobolev spaces, we briefly define the `p spaces of sequences
for p ∈ [1,∞]. For p ≥ 1 and a sequence x := (xn)n∈N ⊂ K we define

‖x‖`p :=
( ∞∑
i=1
|xi|p

)1/p

and
`p := {x ∈ KN | ‖x‖`p <∞}.

In the case p =∞ we set
‖x‖`∞ := sup

i∈N
|xi|

and
`∞ := {x ∈ KN | ‖x‖`∞ <∞}.

As the discrete analogue of the Lp spaces, the `p spaces are Banach spaces and `2 is a
Hilbert space, as it can be checked in [76, Chapters 1 & 2].
Now we present the Sobolev spaces, which in the literature appear with different no-
menclature. We shall use W k,p(Ω). There are two possible ways of defining these
spaces. First, the one we will use, which is the set of functions in Lp whose derivatives
of order |α| ≤ k are again in Lp —in the sense of distributions— or, alternatively, as
the completion of Ck(Ω) with the W k,p-norm that will be defined next. Both of them
happen to be equivalent due to [88]. For p ∈ [1,∞] and k ∈ N0 we define the Sobolev
spaces to be

W k,p(Ω) := {f ∈ Lp(Ω) | Dαf ∈ Lp(Ω) ∀|α| ≤ k}.

With the norm

‖f‖Wk,p :=

∑
|α|≤k

‖Dαf‖pLp

1/p
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if p <∞ and
‖f‖Wk,∞ := max

|α|≤k
‖Dαf‖L∞ .

The Sobolev spaces are Banach spaces [2, Theorem 3.2]. Moreover, for p ∈ [1,∞) they
are separable and for p = 2 are Hilbert spaces [2, Theorem 3.5] with the inner product

〈f, g〉Wk,p :=
∑
|α|≤k

〈Dαf,Dαg〉L2 ,

where
〈f, g〉L2 =

∫
Ω
fg dλ .

For the geometrical properties of domains Ω and boundaries Γ := ∂Ω we refer to [2,
Chapter IV] and use the notation therein. We note that for k ≥ 1, the following holds

uniform Ck-regularity property⇒ strong local Lipschitz property
⇒ uniform cone property
⇒ segment property.

Recall that if Ω is convex, then Γ is Lipschitz, see for instance [44, Corollary 1.2.2.3].
Sometimes we will say that the boundary Γ is Ck,1 to refer to the uniform Ck-regularity
property, as in [44, Section 1.3.3].
We define the following spaces, which will appear when considering Sobolev embedding
theorems. Let

BCk(Ω) := {f ∈ Ck(Ω) | Dαf is bounded on Ω for |α| ≤ k}

with norm
‖f‖CBk := max

|α|≤k
sup
ζ∈Ω
|Dαf(ζ)|.

BCk(Ω) is a Banach space which is larger than Ck(Ω).

Theorem 1.4.2 (The Sobolev Embedding Theorem). Let Ω ⊂ Rn be bounded. Let
j, k ∈ N0 and p ∈ [1,∞). If Ω has the cone property, then there exist the following
embeddings:

(a) Suppose kp < n. Then

W j+k,p(Ω) ↪→W j,q(Ω), p ≤ q ≤ np

n− kp
.

(b) Suppose kp = n. Then

W j+k,p(Ω) ↪→W j,q(Ω), p ≤ q ≤ ∞.

Moreover, if p = 1 so that k = n,

W j+n,p(Ω) ↪→ BCj(Ω), p ≤ q ≤ ∞.



1.4. FUNCTION SPACES 17

(c) Suppose kp > n. Then
W j+k,p(Ω) ↪→ BCj(Ω).

Proof. This is contained in [2, Theorem 5.4, Part I].

Another important result regarding the Sobolev embeddings is the case in which the
embeddings are compacts. This plays an important role in the spectral decomposition
of self-adjoint operators.

Theorem 1.4.3 (The Rellich-Kondrachov Theorem). Let Ω be a domain in Rn and
Ω0 a bounded subdomain of Ω. Let k ∈ N, j ∈ N0 and p ∈ [1,∞).

(a) If Ω has the cone property and kp ≤ n, then the following embeddings are compact

W j+k,p(Ω) ↪→W j,q(Ω0), kp < n, 1 ≤ q < np/(n− kp),

and
W j+k,p(Ω) ↪→W j,q(Ω0), kp = n, 1 ≤ q <∞.

(b) If Ω has the cone property and kp > n, then the following embeddings are compact

W j+k,p(Ω) ↪→ BCj(Ω).

Proof. This is contained in [2, Theorem 6.2].

The Sobolev spaces can also be defined in the case that k is not an nonnegative integer.
For the fractional Sobolev spaces, we consider domains Ω which are Rn, a half-space
of Rn or a domain in Rn which is uniformly C1-regular and has a bounded boundary.
In this case, if s = k + σ, where σ ∈ (0, 1) and k ∈ N0, the Sobolev spaces are defined
as interpolation spaces [2, Chapter VII] in an abstract way for p ∈ [1,∞]. However,
there are natural norms for them, namely,

‖f‖W s,p :=

‖f‖p
Wk,p +

∑
|α|=k

∫
Ω

∫
Ω

|Dαf(ζ1)−Dαg(ζ2)|p

|ζ1 − ζ2|n+σp dζ1 dζ2

1/p

for p ∈ [1,∞) and

‖f‖W s,∞ := max

‖f‖Wk,∞ , max
|α|=k

sup
ζ1,ζ2∈Ω
ζ1 6=ζ2

|Dαf(ζ1)−Dαg(ζ2)|
|ζ1 − ζ2|σ

 .

Under some regularity conditions, C∞0 (Rn) restricted to a domain Ω ⊂ Rn is dense in
W s,p(Ω).
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Using a similar definition as for W k,p(Ω), we note that the Sobolev spaces can also be
defined on the boundary of Ω, Γ := ∂Ω, when this is regular enough. In fact, if Ω is a
domain in Rn having the Ck-regularity property, kp < n and p ≤ q ≤ (n−1)p/(n−kp),
then the trace operator γ0f = f |Γ is well-defined and bounded from W k,p(Ω) to Lq(Γ).
If kp = n then also for p ≤ q < ∞, see [2, Theorem 5.22]. In fact, if Ω is a domain
in Rn having the Ck-regularity property, one can also define the spaces W s,p(Γ) for
s ≥ 0 and p ∈ (1,∞), see for instance [83, pp. 58]. It can also be checked that C∞(Γ)
is dense in W s,p(Γ). With the fractional Sobolev spaces defined, we now generalize
the concept of trace operator. Let f ∈ C∞(Rn) —recall that the restriction to such
functions in Ω is dense in W s,p(Ω)— and let γ denote the linear mapping

f 7→ γf := (γ0f, . . . , γk−1f); γjf = ∂jf

∂nj

∣∣∣∣
Γ
, (1.6)

where ∂j/∂nj denotes the j-th directional derivative in the direction of the inward
normal vector to Γ. By [2, Theorem 7.53], for p ∈ (1,∞) the mapping given by (1.6)
extends by continuity to an isomorphism and homeomorphism of W k,p(Ω)/ ker γ onto

k−1⊗
j=0

W k−j−1/p,p(Γ).

We now define W k,p
0 (Ω) as the functions f ∈W k,p(Ω) such that γf = 0, and this coin-

cides with the alternative definition of W k,p
0 (Ω), namely, the closure of C∞0 (Ω) in the

space W k,p(Ω). For the case Ω = Rn we have W k,p
0 (Rn) = W k,p(Rn), that is, the func-

tions in W k,p(Rn) vanish at infinity, see [2, Corollary 3.19]. In fact, with enough regu-
larity at the boundary, the same result holds for γ : W s,p(Ω)→

⊗k−1
j=0 W

s−j−1/p,p(Γ),
see [44, Theorem 1.5.1.2 & Corollary 1.5.1.6].
We now define the Sobolev spaces with negative exponents s asW s,p(Ω) := (W−s,q0 (Ω))′
and W s,p(Γ) := (W−s,q(Γ))′, for s < 0 —see [83, Proposition 2.10]. Moreover, as in the
non-negative integer case, for p ∈ [1,∞] and s ≥ 0, W s,p(Ω) and W s,p(Γ) are Banach
spaces, for p 6= ∞ they are separable and in the case p = 2 they are Hilbert spaces.
For an accurate description see [51, Section 4.5].
We identify spaces of Kn-valued functions with the Cartesian product of spaces of
scalar-valued functions, such as, for instance (W k,p(Ω))n ∼= W k,p(Ω;Kn). Similarly
with the other spaces defined in the section.
The statement regarding γ can be generalized when considering a more general version
of differential operators than the powers of ∂/∂ν. We introduce here a result that we
will need later on.

Lemma 1.4.4. Let Ω be a bounded subset of Rn having the uniform C1-regularity
property. Let a ∈ C∞(Ω;Km×m) be noncharacteristic on Γ, that is, aν is nontangential
or in other words

〈ν(ζ), a(ζ)ν(ζ)〉Km 6= 0
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for a.e. ζ ∈ Γ. Then γa : W 2,2(Ω) → W 3/2,2(Γ) × W 1/2,2(Γ) defined by γaf =
(γ0f, γ0(ν · a∇f)) is onto.

Proof. This follows from [44, Theorem 1.6.1.3].

We conclude this part with a generalized Poincaré inequality, which can be shown
by using [128, Corollary 4.4.7]. However, we provide a proof of our own since the
techniques used therein are not presented in this work.

Lemma 1.4.5. Let Ω be a bounded domain in Rn having the uniform C1-regularity
property. Let f ∈W 1,2(Ω) then there exists a constant K > 0 such that

‖f‖2L2 ≤ K

(
‖∇f‖2L2 +

(∫
Γ
γ0f dσ

)2
)
.

Proof. We prove it by contradiction. Assume that there exists fn ∈W 1,2(Ω) such that

‖fn‖2L2 > n

(
‖∇fn‖2L2 +

(∫
Γ
γ0fn dσ

)2
)
.

Let TΓ : W 1,2(Ω)→ R be the bounded, linear operator

TΓg :=
∫

Γ
γ0g dσ .

The latter implies that ‖fn‖L2 > 0 for all n ∈ N and hence, gn := fn/‖fn‖L2 satisfies

‖∇gn‖2L2 + (TΓgn)2 <
1
n
.

Thus, ∇gn → 0 in L2(Ω). Since vn is bounded in W 1,2(Ω), by [127, Theorem V.2.1]
we have that there exists a subsequnce for which gnk → g weakly in W 1,2(Ω), which
implies that ∇gnk → ∇g with ∇g = 0, so that g = c ∈ R. By the 1.4.3 we have
that there exists a subsequence gnl that converges strongly to g = c in L2(Ω). This
yields 1 = ‖gn‖L2 → ‖c‖L2 = 1, so that c 6= 0. Moreover, since TΓ is continuous,
(TΓgn)2 → (TΓc)2 = c2|Γ| 6= 0, but

(TΓgn)2 <
1
n
,

which is a contradiction.

1.4.2 Bochner spaces
Here we follow [2, Chapter VII]. For a more complete and systematic discussion on the
topic we refer to [127, Section V.5].
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Let B be a Banach space. Let {A1, . . . , Am} be a finite collection of mutually disjoint,
(Lebesgue) measurable subsets of R, each having finite measure. Let {b1, . . . , bm} be a
corresponding collection of points in B. The function f : R→ B defined by

f(t) =
m∑
j=1

χAj (t)bj ,

χA being the characteristic function of A, is called a simple function. For simple
functions, as in the Lebesgue measure scenario, we define∫

R
f(t) dt :=

m∑
j=1

µ(Aj)bj ,

where µ(A) denotes the Lebesgue measure of A. Let A ⊂ R be a measurable set and
f : A → B defined a.e. on A. The function f is called (strongly) measurable on A if
there exists a sequence (fn)n∈N of simple functions with supports in A such that

lim
n→∞

‖fn(t)− f(t)‖B = 0, a.e. in A.

Suppose that a sequence of simple functions satisfying the former limit can be chosen
in such a way that

lim
n→∞

∫
R
‖fn(t)− f(t)‖B dt = 0.

Then f is called Bochner integrable on A and we define∫
A

f(t) dt = lim
n→∞

∫
R
fn(t) dt .

A measurable function f is Bochner integrable on A if, and only if, ‖f(·)‖B is Lebesgue
integrable on A. In fact, ∥∥∥∥∫

A

f(t) dt
∥∥∥∥
B

≤
∫
A

‖f(t)‖B dt .

For an interval J ⊂ R, a separable Banach space B and p ∈ [1,∞]. We denote by
Lp(J ;B) the vector space of equivalence classes of functions f strongly measurable
on J into B such that ‖f(·)‖B ∈ Lp(J). The space Lp(J ;B) is a Banach space with
respect to the norm

‖f‖Lp(J;B) :=
{(∫

J
‖f(t)‖pB

)1/p if p ∈ [1,∞),
ess supt∈J ‖f(t)‖B if p =∞.

If J has finite measure, for p ∈ [1,∞), (Lp(J ;B))′ can be isometrically identified with
Lq(J ;B′). In fact, if B is a Hilbert space, L2(J ;B) is a Hilbert space with the natural
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inner product, see [54, Theorem 1.31]. For k ∈ N0, Ck(J ;B) is defined as the space of
k-times continuously differentiable functions on J . The space of k-times continuously
differentiable functions with bounded derivatives is denoted by BCk(J ;B) and it is
endowed with the usual norm to be a Banach space. The space of bounded and
uniformly continuous functions will be denoted by BUC(J ;B). The Banach space of
Hölder continuous functions C0,α(J ;B) with α ∈ (0, 1) is given by

C0,α(J ;B) :=
{
f ∈ BC(J ;X)

∣∣∣∣[f ]α := sup
t,s∈J,s<t

‖f(t)− f(s)‖
(t− s)α <∞

}
,

‖f‖α := ‖f‖∞ + [f ]α,

see [84, Chapter 0]. One could also define Ck,α(J ;B) for α ∈ (0, 1) and k ∈ N, but we
will only need C0,α(J ;B).
In the following we refer to [54, Section 1.3.2.2] and [31, Section 5.9.2]. For p ∈ [1,∞]
we set

W 1,p
loc (J ;B) := {f ∈ Lp(J ;B) | ḟ ∈ Lp(J ;B), j = 0, . . . , k},

which is to be understood in the Bochner sense. By [31, Theorem 5.9.2.2], for f ∈
W 1,p(J ;B) it holds that f ∈ C(J ;B) and for s, t ∈ J , s ≤ t, we have

f(t) = f(s) +
∫ t

s

ḟ(r) dr .

The spaces Lploc(J ;B) and W 1,p
loc (J ;B) consist of all those functions f whose restric-

tion to any compact interval K ⊂ J are in Lp(K;B) and W 1,p(K;B), respectively.
We defined one particular class of weighted spaces. For ω ∈ R we set L2

ω(J ;B) :={
eω·f(·)

∣∣ f ∈ L2(J ;B)
}

with norm ‖eω·f‖L2
ω

:= ‖f‖L2 .
The next result guarantees the convergence of subsequences in Bochner spaces. This
is mainly a consequence of the characterization of sequentially weak and weak? com-
pactness provided by the Banach-Alaoglu Theorem [103, Theorem 3.15].

Lemma 1.4.6. Let T > 0 and Z be a reflexive and separable Banach space. Then

(i) every bounded sequence (wn)n∈N in L∞([0, T ];Z) has a weak? convergent sub-
sequence and the limit is again in L∞([0, T ];Z);

(ii) every bounded sequence (wn)n∈N in L2([0, T ];Z) has a weakly convergent sub-
sequence and the limit is again in L2([0, T ];Z).

Proof. Let p ∈ [1,∞). Then W := Lp([0, T ];Z ′) is a separable Banach space, see [28,
Chapter IV]. Since Z is reflexive, by [28, Corollary III.4] it has the Radon-Nikodým
property. Then by [28, Theorem IV.1], W ′ = Lq([0, T ];Z) is the dual of W , where
q is such that p−1 + q−1 = 1 and q = ∞, if p = 1. For p = 1 so that q = ∞,
assertion (i) follows from [103, Theorem 3.17]. For p = 2 so that q = 2, W is reflexive
and assertion (ii) is a direct consequence of [127, Theorem V.2.1].
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1.5 Diagonalizable operators
Now that we have presented the unbounded operators and the Sobolev spaces, we
introduce in the following the concepts of diagonal operators and Riesz basis. Consider
the Hilbert space `2 and let the sequence (ek) be the standard orthonormal basis in `2.
Thus, ek has a 1 in the kth position and zero everywhere else. Clearly 〈ei, ej〉 = δij .
A sequence (φk) in a Hilbert space X is called a Riesz basis in X if there exists an
invertible operator Q ∈ L (X, l2) such that Qφk = ek for all k ∈ N. In this case, the
sequence (φ̃k) defined by

φ̃k = Q∗Qφk,

is called the biorthogonal sequence to (φk). Then every z ∈ X can be expressed as

z =
∑
k∈N

〈
φ̃k, z

〉
X
φk.

Moreover, denoting m = ‖Q−1‖−1 and M = ‖Q‖, we have

m2‖z‖2X ≤
∑
k∈N
|
〈
φ̃k, z

〉
X
|n ≤M2‖z‖2X , ∀z ∈ X.

Note that if φ is orthonormal, then Q is unitary and m = M = 1. Further, the converse
of the statement also holds true —see [115, Proposition 2.5.2 and Proposition 2.5.3].
Let T : D(T ) ⊂ X → X. T is called diagonalizable if ρ(T ) 6= ∅ and there exists a Riesz
basis (φk) in X consisting of eigenvectors of T . In virtue of [115, Proposition 2.6.2],
one can construct diagonalizable operators as follows. Let (φk) be a Riesz basis in X

and let (φ̃k) be the biorthogonal sequence to (φk). Let (λk) be a sequence in C which
is not dense in C. Define an operator T̃ : D(T̃ )→ X by

D(T̃ ) =
{
z ∈ X

∣∣∣∣∣ ∑
k∈N

(1 + |λk|2)|
〈
φ̃k, z

〉
X
|2 <∞

}
,

T̃ z =
∑
k∈N

λk
〈
φ̃k, z

〉
X
φk, z ∈ D(T̃ ).

Then T̃ is diagonalizable, we have σp(T̃ ) = {λk | k ∈ N}, σ(T̃ ) is the closure of σp(T̃ )
and for every s ∈ ρ(Ã) we have

(sI − T̃ )−1 =
∑
k∈N

1
s− λk

〈
φ̃k, z

〉
X
φk, ∀z ∈ X.

By [115, Proposition 2.6.3] the converse holds also true, that is, let T : D(T ) ⊂ X → X

be diagonalizable. Let (φk) be a Riesz basis consisting of eigenvectors of T . Let (φ̃k)
be the biorthogonal sequence to (φk) and denote the eigenvalue corresponding to the
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eigenvector φk by λk. Then

D(T ) =
{
z ∈ X

∣∣∣∣∣ ∑
k∈N

(1 + |λk|2)|
〈
φ̃k, z

〉
X
|2 <∞

}
,

T z =
∑
k∈N

λk
〈
φ̃k, z

〉
X
φk, z ∈ D(T ).

If T : D(T ) ⊂ X → X is self-adjoint and diagonalizable, then there exists in X an
orthonormal basis (ϕk)k∈I of eigenvectors of T (here, I ⊆ Z). Denoting the eigenvalue
corresponding to φk by λk, we have for λk ∈ R,

D(T ) =
{
z ∈ X

∣∣∣∣∣ ∑
k∈I

(1 + |λk|2)| 〈φk, z〉X |
2 <∞

}
,

T z =
∑
k∈I

λk 〈φk, z〉X φk.

The following result gives a sufficient condition for a self-adjoint operator to be diag-
onalizable.

Proposition 1.5.1. Let X be an infinite-dimensional Hilbert space and let T : D(T ) ⊂
X → X be a self-adjoint operator with compact resolvents. Then T is diagonalizable
with an orthonormal basis (φk)k∈I of eigenvectors, where I ⊆ Z, and the corresponding
family of real eigenvalues (λk)k∈I satisfies limk→∞ |λk| =∞.

Proof. This is [115, Proposition 3.2.12].

1.6 Strongly continuous semigroups
In this section we will follow the lines of [115]. However, the literature regarding
strongly continuous semigroups is vast, and one can find appropriate references in
[30,40,53,94,127].
Even though the construction can be done in Banach spaces, we will consider only
the Hilbert space scenario, so that X will be an infinite-dimensional Hilbert space. A
family T = (Tt)t≥0 of operators in L (X) is a strongly continuous semigroup or in short
C0-semigroup on X if

(i) T0 = I;

(ii) Tt+s = TtTs for every t, s ≥ 0;

(iii) limt→0,t>0 Ttz = z for all z ∈ X.
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The growth bound of a strongly continuous semigroup T is the number ω0(T) defined
by

ω0(T) = inf
t∈(0,∞)

1
t

log ‖Tt‖.

Clearly ω0(T) ∈ [−∞,∞). The name is justified by the fact that

(i) ω0(T) = limt→∞ t−1 log ‖Tt‖;

(ii) for any ω > ω0(T) there exists an Mω ∈ [1,∞) such that

‖Tt‖ ≤Mωeωt, ∀t ∈ [0,∞);

(iii) the function ϕ : R≥0 ×X → X defined by ϕ(t, z) = Ttz is continuous;

as it can be checked in [115, Proposition 2.1.2]. We call a C0-semigroup (Tt)t≥0 expo-
nentially stable if ω0(T) < 0.
The linear operator A : D(A) ⊂ X → X defined by

D(A) =
{
z ∈ X

∣∣∣∣ lim
t→0,t>0

Ttz − z
t

exists
}
,

Az = lim
t→0,t>0

Ttz − z
t

, ∀z ∈ D(A),

is called the infinitesimal generator or simply generator of the semigroup T. It is
well-known that D(A) is dense in X —see [115, Corollary 2.1.8].
We begin now to hatch what we have presented about closed operators with the semig-
roup theory. For a strongly continuous semigroup T on X with generator A and for
every s ∈ C with Re s > ω0(T) we have s ∈ ρ(A), and hence A is closed. Moreover

(sI −A)−1z =
∫ ∞

0
e−stTtz dt , ∀z ∈ X

andD(A∞) is dense inX —check [115, Proposition 2.3.1 and Proposition 2.3.6]. In fact,
the resolvent of the semigroup generator is the Laplace transform of the semigroup.
Further, for z0 ∈ D(A), the function z : [0,∞) → D(A) defined by z(t) := Ttz0 is
continuous if we consider in D(A) the graph norm and C1([0,∞);X). Actually, z is
the unique solution of the abstract Cauchy problem (ACP)

ż = Az, z(0) = z0.

From [115, Proposition 2.6.5] it follows that a diagonalizable operator A is the generator
of a C0-semigroup T on X if, and only if,

sup
k∈N

Reλk <∞.
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If this is the case, then
sup
k∈N

Reλk = ω0(T)

and for every t ≥ 0,
Ttz =

∑
k∈N

eλkt
〈
φ̃k, z

〉
X
φk, ∀z ∈ X.

Such a semigroup is called diagonalizable.
By having a closer look at a diagonal semigroup, it is clear that if eigenvalues of A are,
for instance, purely imaginary, one could extend the semigroup for t < 0, so that we
end up having a group. In the following we define such a concept.
Let T be a C0-semigroup on X. T is called left-invertible (respectively, right-invertible)
if for some t > 0, Tt is left-invertible (respectively, right-invertible). The semigroup is
called invertible if it is both left-invertible and right-invertible.
A family T = (Tt)t∈R of operators in L (X) is a strongly continuous group in short
C0-group on X if

(i) T0 = I;

(ii) Tt+s = TtTs for every t, s ∈ R;

(iii) limt→0 Ttz = z for all z ∈ X.

The generator of such a group is defined in the same way as for semigroups. Note
that given a C0-semigroup T, if for some τ > 0 the operator Tτ is invertible, then Tt
is invertible for all t > 0 and T can be extended to a group by setting T−t = T−1

t

—see [115, Proposition 2.7.4]. Moreover, from [115, Proposition 2.7.8], if A generates
a C0-semigroup T and −A a C0-semigroup S, then we can extend the family of T to
all of R by putting T−t = St and T is a C0-group.
From [115, Proposition 2.8.5] we have that for a C0-semigroup T the family of operators
T∗ = (T∗t )t≥0 is also a C0-semigroup and its generator is A∗. It is an immediate con-
sequence that if A : D(A) ⊂ X → X is a diagonalizable operator, (φk) is a Riesz basis
consisting of eigenvectors of A, (φ̃k) the biorthogonal sequence to (φk) and we denote
the eigenvalue corresponding to the eigenvector φk by λk. Then A∗ is diagonalizable
operator with eigenvectors φ̃k and eigenvalues λk, see [115, Proposition 2.8.6].
Assuming that A generates a C0-semigroup T on X, consider the spaces X1 and X−1.
Then the restriction of Tt to X1 is the image of Tt ∈ L (X) through the unitary
operator (βI −A)−1 ∈ L (X,X1). Therefore, these operators form a C0-semigroup on
X1, whose generator is the restriction of A to D(A2). The operator T̃t ∈ L (X−1) is the
image of Tt ∈ L (X) though the unitary operator (βI − Ã) ∈ L (X,X−1). Therefore,
these operators form a C0-semigroup on T̃ = (T̃t)t≥0 on X−1, whose generator is Ã,
see [115, Proposition 2.10.4]. We will often refer to this extensions as ((T|−1)t)t≥0.
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Before we conclude this section, we define an important class of semigroups. A C0-
semigroup T on X is called contractive, semigroup of contractions or contraction semig-
roup if for all t > 0 it holds ‖Tt‖ ≤ 1. Further, these semigroups have a well-known
characterisation, namely, for any A : D(A) ⊂ X → X the following statements are
equivalent:

(i) A is the generator of a contraction semigroup on X.

(ii) A is m-dissipative.

This is in fact [115, Theorem 3.8.4]. The particular case in which the norm of the
semigroup is exactly one, goes via the following definition. An operator U ∈ L (X) is
called unitary if UU∗ = U∗U = I. A strongly continuous semigroup T on X is called
unitary if Tt is unitary for every t > 0. It is clear that a unitary semigroup can be
extended to a group, which is then called a unitary group. From [115, Theorem 3.8.6],
for any A : D(A) ⊂ X → X the following statements are equivalent:

(i) A is the generator of a unitary group on X.

(ii) A is skew-adjoint.

1.6.1 Analytic semigroups and fractional powers
Here we briefly present the concept of analytic C0-semigroup, which plays a role when
solving PDEs of parabolic type, whose solutions enjoy of some extra smoothness prop-
erties. For this part we refer to [110, Section 3.10] and present only the case where X
is a Hilbert space, even though it can be done in the case of a Banach space.
Let 0 < δ ≤ π/2, and let ∆δ be the open sector

∆δ := {t ∈ C | t 6= 0, | arg t| < δ}.

The family of operators Tt ∈ L (X), t ∈ ∆δ, is an analytic C0-semigroup (with uni-
formly bounded growth bound ω) in ∆δ if the following conditions hold:

(i) t 7→ Tt is analytic in ∆δ;

(ii) T0 = I and TsTt = Ts+t for all s, t ∈ ∆δ;

(iii) there exist constants M ≥ 1 and ω ∈ R such that

‖Tt‖ ≤Meωt, t ∈ ∆δ;

(iv) for all x ∈ X, lim t→0
t∈∆δ

Ttx = x.
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This leads us to the concept of sectorial operator . For each γ ∈ R and π/2 < θ < π,
let Σθ,γ be the open sector

Σθ,γ = {λ ∈ C | λ 6= γ, | arg(λ− γ)| < θ}.

A closed, densely defined linear operator A : D(A) ⊂ X → X is sectorial on Σθ,γ if the
resolvent set of A contains Σθ,γ and if

‖(λI −A)−1‖ ≤ C

|λ− γ|
λ ∈ Σθ,γ ,

for some C ≥ 1. The operator A is sectorial if it is sectorial on some sector Σθ,γ .
Let A : D(A) ⊂ X → X be a closed, linear operator and γ ∈ R. Then the following
are equivalent:

(i) A is the generator of an analytic semigroup (Tt)t≥0 with uniformly bounded
growth bound γ on a sector ∆δ, δ > 0;

(ii) every λ ∈ Cγ belongs to the resolvent set of A and there exists a constant C such
that

‖(λI −A)−1‖ ≤ C

|λ− γ|
Reλ > γ;

(iii) A is sectorial on some sector Σθ,γ with π/2 < θ < π;

(iv) A is the generator of a semigroup (Tt)t≥0 which is differentiable on (0,∞), and
there exist non-negative constants M0,M1 such that

‖Tt‖ ≤M0eγt, ‖(γI −A)Tt‖ ≤M1t
−1eγt, t > 0,

see [110, Theorem 3.10.6].
This last part of the section is devoted to introduce an recall some basic facts about
the fractional powers Xα, for α ∈ R induced by the semigroup generator A and the
space X. This construction can be done in the general Banach setting, but we will
consider only the Hilbert space scenario. For a more detailed discussion on the topic
we refer to [110, Section 3.9].
Let A be the generator of a C0-semigroup T := (Tt)t≥0 on the Hilbert space X with
growth bound ω0 ∈ R. For each γ ∈ Cω0 and α ≥ 0 we define (γI −A)α as follows

(γI −A)0 = I,

(γI −A)−αx = 1
Γ(α)

∫ ∞
0

tα−1e−γtTtx dt , α > 0, x ∈ X,

where Γ is the Euler Gamma function. These operators are bounded and linear on X,
injective and α → (γI − A)−α defines a semigroup, see [110, Lemma 3.9.5]. Now we
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define (γI−A)α for α > 0 to be the inverse of (γI−A)−α, with domain D((γI−A)α) =
R((γI −A)−α).
Having the powers of γI − A at our disposal, we can construct a scale of spaces Xα,
for α ∈ R, as in the same fashion we constructed the spaces Xn, n ∈ Z. For α > 0, we
set

Xα := R((γI −A)−α) = (γI −A)−αX.

with norm
‖x‖Xα := ‖(γI −A)αx‖X .

For α < 0, we let Xα be the completion of X with the weaker norm

‖x‖X−α := ‖(γI −A)−αx‖X , α > 0.

Different choices of γ ∈ Cω0 yield identical spaces with equivalent norms. The spaces
Xα are interpreted as interpolation spaces of Xn for n ∈ Z, see [84, Chapters 1 & 2].
We conclude this section with an auxiliary result that will be used later on. This
delivers an estimate for the norm of Tt in L (X,Xα) when the semigroup is analytic.

Lemma 1.6.1. Let A be the generator of an exponentially stable analytic semigroup
(Tt)t≥0. Let Xα be the interpolation spaces defined as above associated to A. Then for
all k ∈ N and α ∈ [0, 1) there exist constants M := M(k, α) and ω > 0 such that

‖Tt‖L (X,Xk+α) ≤M(1 + t−k−α)e−ωt, t > 0.

Hence, there exists K := K(k, α) such that

sup
t∈[0,∞)

tk+α‖Tt‖L (X,Xk+α) ≤ K.

Proof. For the cases in which α = 0 and k ∈ N, this is [110, Corollary 3.10.8]. For
k = 0 and α ∈ (0, 1), this follows from [110, Lemma 3.10.9] and using the exponential
stability of (Tt)t≥0. For k > 1 and α ∈ (0, 1) the result follows by induction using the
former an interpolating between k, k + 1 with [110, Lemma 3.9.8].

1.6.2 The abstract Cauchy problem
Throughout this section T is a C0-semigroup on X with generator A and growth
bound ω0(T). As we have already seen, the semigroup fully characterizes the solutions
to the abstract Cauchy problem. This part of the section is dedicated to present a
nonhomogeneous abstract Cauchy problem, in order to motivate the theory of abstract
linear systems, where one also has inputs and outputs.
Consider the differential equation

ż(t) = Az(t) + f(t),
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where f ∈ L1
loc([0,∞);X−1). A solution of the problem in X−1 is a function

z ∈ L1
loc([0,∞);X) ∩ C([0,∞);X−1)

which satisfies the following equation in X−1:

z(t)− z(0) =
∫ t

0
[Az(s) + f(s)] ds , ∀t ≥ 0.

Suppose that z is a solution of the differential equation in X−1 and denote z0 = z(0).
Then z is given by

z(t) = Ttz0 +
∫ t

0
Tt−sf(s) ds .

In particular, for every z0 ∈ X there exists at most one solution in X−1 which satisfies
the initial condition z(0) = z0. We call this a mild solution —see [115, Propostion
4.1.4]. Further, from [115, Theorem 4.1.6], if z0 ∈ X and f ∈ W 1,2

loc ([0,∞);X−1), then
the differential equation has a unique solution in X−1, denoted by z, that satisfies
z(0) = z0. Moreover,

z ∈ C([0,∞);X) ∩ C1([0,∞);X−1)

1.7 Well-posed linear systems
In this section we introduce the concept of abstract linear systems or, more precisely,
well-posed linear systems, which has been intensively studied in [110, 115] and [111,
112, 122]. Let p ∈ [1,∞). For any Hilbert space W and any τ ≥ 0, Sτ will denote
the operator of the right shift by τ on Lp([0,∞);W ). Pτ will denote the projection
of Lp([0,∞);W ) onto Lp([0, τ ];W ) by truncation, the latter space being regarded as
a subspace of the former. For u, v ∈ Lp([0,∞);W ), the τ -concatenation of u and v,
denoted by u 3

τ
v, is defined by

u 3
τ
v = Pτu+ Sτv.

In other words,
(
u 3
τ
v
)
(t) = u(t) for t ∈ [0, τ), while

(
u 3
τ
v
)
(t) = v(t− τ) for t ≥ τ .

The shift and projection operators and the operation of concatenation have natural
extensions to Lploc([0,∞);W ), and we denote these extensions using the same symbols.
We regard Lploc([0,∞);W ) as a Fréchet space, with the topology given by the family
of seminorms pn(u) = ‖Pnu‖Lp , so that Lp([0,∞);W ) is dense in Lploc([0,∞);W ).
Let U , X and Y be Hilbert spaces, U := Lp([0,∞);U) and Y := Lp([0,∞);Y ). A
well-posed linear system on U , X and Y is a quadruple Σ = (T,Φ,Ψ,F), where

(i) T = (Tt)t≥0 is a C0-semigroup on X with generator A;
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(ii) Φ = (Φt)t≥0 is a family of bounded linear operators from U to X such that

Φτ+t(u 3
τ
v) = TtΦτu+ Φtv,

for any u, v ∈ U and any t, τ ≥ 0.

(iii) Ψ = (Ψt)t≥0 is a family of bounded linear operators from X to Y such that

Ψτ+tx = Ψτx 3
τ

ΨtTτx,

for any x ∈ X and any t, τ ≥ 0, and Ψ0 = 0.

(iv) F = (Ft)t≥0 is a family of bounded linear operators from U to Y such that

Fτ+t(u 3
τ
v) = Fτu 3

τ
(ΨtΦτu+ Ftv),

for any u, v ∈ U and any t, τ ≥ 0, and F0 = 0.

U is the input space, X the state space and Y the output space (all of them referring to
Σ). The operators Φt are called input maps. The operators Ψt are called output maps.
The operators Ft are called input-output maps.
Recall that T|−1 is the semigroup extended to X−1. There is a unique B ∈ L (U,X−1),
called the control operator of Σ, such that for any t ≥ 0

Φtu =
∫ t

0
(T|−1)t−sBu(s) ds .

B is called bounded if it belongs to L (U,X), and unbounded otherwise.
For any x0 ∈ X and u ∈ Lploc([0,∞);U) the function x : [0,∞) → X defined by
x(t) = Ttx0 + Φtu is called state trajectory. It follows that x is a strong solution in
X−1 of

ẋ(t) = Ax(t) +Bu(t).

We shall often need the Fréchet spaces

Ũ = Lploc([0,∞);U), Ỹ = Lploc([0,∞);Y ).

The operators Ft have natural continuous extensions to Ũ . If we regard the operators
Ψt as elements of L (X, Ỹ) and the operators Ft as elements of L (Ũ , Ỹ), then these
operator families have strong limits as t→∞, denoted Ψ∞ and F∞. Hence,

Ψt = PtΨ∞, Ft = PtF∞.

One usually defines the output of the system to be

y = Ψ∞x0 + F∞u.
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There is a unique C ∈ L (X1, Y ), called the observation operator of Σ, such that for
x0 ∈ X1 and t ≥ 0

(Ψ∞x0)(t) = CTtx0.

C is called bounded if it can be extended continuously to X and unbounded otherwise.
A useful consequence is that for any x0 ∈ X∫ t

0
(Ψ∞x0)(s) ds = C

∫ t

0
Tsx0 ds .

The Lebesgue extension of C is defined by

CLx0 = lim
t→0

C
1
t

∫ t

0
Tsx0 ds ,

which a domain D(CL) defined where the former expression exists, and it satisfies
X1 ⊂ D(CL) ⊂ X. For any x0 ∈ X we have that Ttx0 ∈ D(CL) for almost every t ≥ 0
and

(Ψ∞x0)(t) = CLTtx0

almost everywhere.
For any v ∈ U , the function

yv = F∞(χu)

is the step response of Σ corresponding to v, where χ is the constant function on [0,∞)
equal to 1 everywhere.
Σ is called regular if for any v ∈ U the corresponding step response yv has a Lebesgue
point at 0, i.e., the following limit exists in Y :

Dv = lim
t→0

1
t

∫ t

0
yv(s) ds .

In that case, the operator D ∈ L (U, Y ) is called feed-through operator of Σ.
For operators A ∈ L (X1, X), B ∈ L (U,X−1), C ∈ L (X1, Y ) and D ∈ L (U, Y ) we
call

ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t)

an abstract linear system.
Let U,X, Y be Hilbert spaces and A : D(A) ⊆ X → X be the generator of a
C0-semigroup (Tt)t≥0. The notion of admissible operators is well-known in infinite-
dimensional linear systems theory with unbounded control and observation operat-
ors, as present in boundary control, see e.g. [116], and is motivated by interpreting a
PDE on a larger space in order to define solutions. Let p ∈ [1,∞]. We recall that
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B ∈ L (U,X−1) is an Lp-admissible control operator (for (Tt)t≥0), if for all t ≥ 0 and
all u ∈ Lp([0, t];U) we have

Φtu :=
∫ t

0
(T|−1)t−sBu(s) ds ∈ X.

By a closed graph theorem argument this property implies that, for any t ≥ 0, the
operator Φt is bounded from Lp([0, t];U) to X. We call B infinite-time Lp-admissible,
if

sup
t>0
‖Φt‖ <∞.

An operator C ∈ L (D(A), Y ) is called Lp-admissible observation operator for the
semigroup (Tt)t≥0, if for some (and hence all) t ≥ 0 the mapping

Ψt : D(A)→ Lp([0, t];Y ), x 7→ CTtx

can be extended to a bounded operator from X to Lp([0, t];Y ) — this extension will
again be denoted by Ψt. We call C infinite-time Lp-admissible, if

sup
t>0
‖Ψt‖ <∞.

Both admissibility notions are combined in the stronger concept of well-posedness. Let
(A,B,C) represent an abstract linear system where A generates a C0-semigroup T, B
is an L2-admissible control operator and C is an L2-admissible observation operator in
the sense described above. If there exists a function G : Cω → L (U, Y ), ω > ω0(T),
which satisfies

G(β)−G(γ) = C((βI −A)−1 − (γI −A)−1)B (1.7)

for all β, γ ∈ Cω and G is proper, i.e., sups∈Cω ‖G(s)‖ < ∞, then we say that
(A,B,C) —implicitly meaning the corresponding tuple (T,Ψ,Φ,F), where F is the
inverse Laplace transform of G— is well-posed. Note that G is uniquely determined up
to a constant. This definition of well-posedness for the tuple (A,B,C) is equivalent to
the one presented at the beginning of this section, see [115, Proposition 4.9] and [110].
If limRe s→∞G(s)v exists for any v ∈ U , then the system (A,B,C) is called regular .
We call G the transfer function of the system.

1.8 Nonlinear functional analysis
This section is devoted to present a specific class of nonlinear operators, which extend
the notion of semigroup generators to the nonlinear case. The tools developed at the
end of the section will be used to prove one of our main results. In this setting, the
notion of contractive nonlinear operator appears naturally, and so does the fixed point
theorem.
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1.8.1 Fixed point theorem
We begin by briefly recalling a fixed point result.

Proposition 1.8.1. Let K be a closed nonempty subset of a Banach space V and let
T : K → K be a strict contraction, that is,

‖T (x)− T (x)‖ ≤ ρ‖x− y‖, x, y ∈ K,

where 0 ≤ ρ < 1. Then T has a unique fixed point, an z ∈ K such that T (z) = z.

Proof. This is [106, Proposition I.2.3].

Corollary 1.8.2. Let K and V as above and T : K → K. Assume that Tn is a strict
contraction for some integer n ≥ 1. Then T has a unique fixed point in K.

Proof. This is [106, Corollary I.2.5].

1.8.2 Nonlinear m-dissipative operators on Hilbert spaces
In this section we present the basic theory of nonlinear analysis to deal in the Hilbert
space case with m-dissipative operators and we refer to [69, 90, 106]. For another
construction of evolution operators one could also check [93]. We consider a real or
complex valued Hilbert space X and an operator A with domain and range in X and
for simplicity single-valued. As usual, we denote the domain by D(A), the range by
R(A) and the graph by G(A). We denote by Ax or A(x) the image of a point x ∈ D(A)
under the operator A.
The concept of dissipativity can be extended in the nonlinear case. An operator A :
D(A) ⊂ X → X is called dissipative if for each x, y ∈ D(A), we have

Re 〈A(x)−A(y), x− y〉 ≤ 0.

If further for one λ > 0 —and hence for all λ > 0, see [90, Lemma 2.13]— it holds
that R(I−λA) = X, then we call A m-dissipative. The concept of maximal dissipative
appears often in the literature in contrast to the one of m-dissipative. In fact, a maximal
dissipative operator is a dissipative operator for which all extensions in X coincide with
it. In the Hilbert space scenario, the concepts are equivalent, see [90, Lemma 2.12 (iii)
and Corollary 2.27]. A counterexample in the more general Banach space case is given
in [90, Example 2.6].
For an m-dissipative operator A one can define the nonlinear version of the resolvent
operator , namely, for λ > 0

Jλ := (I − λA)−1,

which is a single-valued operator such thatD(Jλ) = R(I−λA) = X andR(Jλ) = D(A).
Further, Jλ satisfies

‖Jλx− Jλy‖ ≤ ‖x− y‖
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for all x, y ∈ X, that is, Jλ is Lipschitz with Lipschitz constant L = 1, see [90, Corollary
2.10]. As in the linear case, this makes possible to define the Yosida approximation of
A, that is,

Aλ := λ−1(Jλ − I).

Moreover,

(i) Aλx = AJλx, for x ∈ X;

(ii) ‖Aλx‖ ≤ ‖Ax‖ for x ∈ D(A);

(iii) if 0 < µ ≤ λ and x ∈ X, then ‖Aλx‖ ≤ ‖Aµx‖;

which is contained in [90, Lemma 2.11].
As in the linear case, A is called a closed operator if xn ∈ D(A), x′n = Axn with
limn→∞ xn = x, and limn→∞ x′n = x′ imply that x ∈ D(A) and x′ = Ax, that
is, the graph G(A) of A is closed in X × X. A is called demiclosed if xn ∈ D(A),
x′n = Axn, limn→∞ xn = x, and w − limn→∞ x′n = x′ imply that x ∈ D(A) and
x′ = Ax. From [90, Lemma 2.16 and Lemma 2.17 (ii)] it follows that an m-dissipative
operator is closed and demiclosed.

Lemma 1.8.3. Let A : D(A) ⊂ X → X be m-dissipative and λ > 0. Then

(i) for all x, y ∈ X it holds that Re 〈Aλx−Aλy, x− y〉 ≤ 0;

(ii) for all x, y ∈ X it holds that Re 〈Aλx−Aλy, Jλx− Jλy〉 ≤ 0;

(iii) Aλ is Lipschitz with constant λ−1.

Proof.

(i) Let u = Jλx, v = Jλy ∈ D(A). Then x = u − λAu and y = v − λAv. Further,
using the definition of Aλ we have that

Re〈Aλx−Aλy, x− y〉 = λ−1 Re 〈Jλx− x− Jλy + y, x− y〉
= λ−1 Re 〈u− (u− λAu)− v + (v − λAv), u− λAu− v + λAv〉
= Re 〈Au−Av, u− λAu− v + λAv〉
= −λ‖Au−Av‖2 + Re 〈Au−Av, u− v〉
≤ 0,

since A is dissipative.

(ii) As in (i), let u = Jλx, v = Jλy ∈ D(A). Then x = u − λAu and y = v − λAv.
Further, using the definition of Aλ we have that

Re 〈Aλx−Aλy, Jλx− Jλy〉 = λ−1 Re 〈Jλx− x− Jλy + y, Jλx− Jλy〉
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= λ−1 Re 〈u− (u− λAu)− v + (v − λAv), u− v〉
= Re 〈Au−Av, u− v〉
≤ 0.

(iii) It suffices to use that x = Jλx− λAλx for all x ∈ X to obtain

Re 〈Aλx−Aλy, y − x〉 = −Re 〈Aλx−Aλy, Jλx− Jλy〉+ λ‖Aλx−Aλy‖2

≥ λ‖Aλx−Aλy‖2.

Using now the Cauchy-Schwarz inequality delivers the result.

It follows from Lemma 1.8.3 (i) that the Yosida approximation of an m-dissipative
operator is also dissipative.

Lemma 1.8.4. Let x, y ∈ X. Then Re 〈x, y〉 ≤ 0 if, and only if, ‖x‖ ≤ ‖x − αy‖ for
all α > 0.

Proof. Follows from [127, Lemma XIV.6.1].

Lemma 1.8.5. Let A : D(A) ⊂ X → X be an m-dissipative operator.

(i) If (xn)n∈N ⊂ D(A), xn → x ∈ X, and if (‖Axn‖)n∈N is bounded, then x ∈ D(A)
and Axn → Ax weakly;

(ii) If (xn)n∈N ⊂ D(A), xn → x ∈ X and if (‖A1/nxn‖)n∈N is bounded, then x ∈
D(A) and A1/nxn → Ax weakly;

(iii) For all x ∈ D(A) it holds that A1/nx→ Ax.

Proof.

(i) [90, Lemma 2.18] already gives that x ∈ D(A). Moreover, for any y ∈ D(A) we
have

Re 〈Ay −Axn, y − xn〉 ≤ 0.

Since X is a Hilbert space, a bounded sequence has a subsequence that converges
weakly, that is, (‖Axn‖)n∈N is bounded, then Axnk → w ∈ X weakly. By xn → x

and continuity we obtain that Re 〈Ay − w, y − x〉 ≤ 0. Now using Lemma 1.8.4
with α = λ we have

‖y − x‖ ≤ ‖y − x− λ(Ay − w)‖.

By setting y = Jλ(x− λw) so that y ∈ D(A) and y− λAy = x− λw, we see that
‖y − x‖ ≤ 0, hence x = y and Ax = w. Thus Axnk → w = Ax weakly. Since
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we could have started with any subsequence of (xn) instead of (xnk), the result
obtained shows that Axn → Ax weakly.

(ii) Set yn = J1/nxn ∈ D(A). Then Ayn = A1/nxn and the ‖Ayn‖ are bounded. Also
yn−xn = J1/nxn−xn = n−1A1/nxn → 0 so that yn → x. Thus (i) is applicable,
with the result that x ∈ D(A) and A1/nxn = Ayn → Ax weakly.

(iii) This is a direct consequence of [90, Lemma 2.22].

The following result clearly differs from the linear case, since the domain of a linear
m-dissipative operator in a Hilbert space is dense. In the nonlinear case one can only
show in general that the closure of the domain is convex.

Proposition 1.8.6. If A : D(A) ⊂ X → X is m-dissipative, then D(A) is a convex
set.

Proof. This is [90, Theorem 2.20 (ii)].

Lemma 1.8.7. Let X be a Hilbert space, A : D(A) ⊂ X → X a single-valued, m-
dissipative, possibly non-linear operator and B : D(A) ⊆ D(B) ⊆ X → X continuous.
Then if A+B is a dissipative operator, then A+B is m-dissipative.

Proof. This is [90, Corollary 6.19 (a)].

Remark 1.8.8. If A : D(A) ⊂ X → X is m-dissipative, then for all f ∈ X and λ > 0
there exists some z ∈ D(A) with λz−A(z) = f . The element z is indeed unique, since
for any x ∈ D(A) with λx−A(x) = f , we obtain by taking the difference that

λ(x− z)− (A(x)−A(z)) = 0

and taking the inner product with x− z gives

λ‖x− z‖2 = Re 〈A(x)−A(z), x− z〉 .

Dissipativity of A leads to non-positivity of the latter expression, whence x = z.

In the following we recall some concepts about differentiability of functionals and in-
troduce the concept of subdifferential. It will be very convenient to define R∞ :=
(−∞,+∞].

Definition 1.8.9. Let H be a Hilbert space and let Ψ : H → R∞ be a single-valued
functional with Ψ 6=∞, that is, {x ∈ H | Ψ(x) <∞} 6= ∅. We define the subdifferential
∂Ψ of Ψ as follows

∂Ψ(x) := {y ∈ H | Ψ(u)−Ψ(x) ≥ Re 〈y, u− x〉 ,∀u ∈ H},
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for x ∈ D(∂Ψ), which means that the set on the right-hand side of the above equation
is not empty.

If Ψ is such that {x ∈ H | Ψ(x) < ∞} 6= ∅, we say that Ψ is proper and its effective
domain is D(Ψ) := {x ∈ H | Ψ(x) <∞}. Moreover, we say that Ψ is convex if

Ψ(tu+ (1− t)v) ≤ tΨ(u) + (1− t)Ψ(v), u, v ∈ D(Ψ), t ∈ [0, 1].

Lemma 1.8.10. With the notation of the former definition, the operator −∂Ψ is
dissipative. Assume further that the functional Ψ is convex and lower-semi-continuous.
Then −∂Ψ is m-dissipative.

Proof. This is [90, Example 2.2].

Lemma 1.8.11. Let H be a real Hilbert space, Ψ : H → R∞ be proper, convex and
lower-semi-continuous on the real Hilbert space H. Denote the subgradient by ∂Ψ. If
u, u̇ ∈ L2([0, T ];H) and if there exists a g ∈ L2([0, T ];H), with g ∈ ∂Ψ(u) a.e. on
[0, T ], then the functional Ψ ◦ u is absolutely continuous on [0, T ] and

d
dtΨ(u(t)) =

〈
h(t), d

dtu(t)
〉
, a.e. t ∈ [0, T ],

for any function h with h ∈ ∂Ψ(u) a.e. on [0, T ].

Proof. This is [106, Lemma IV.4.3].

The notion of subdifferential is closely related with the concept of G-differential or
Gateaux differential. Given a real Hilbert space H and Ψ : H → R∞, the directional
derivative of Ψ at u ∈ D(Ψ) in the direction v is the one-sided limit

Ψ′(u, v) := lim
t→0+

Ψ(u+ tv)−Ψ(u)
t

where it exists. If Ψ is convex, then the limit exists in [−∞,∞]. The G-differential
of Ψ : H → R∞ at u ∈ D(Ψ) is an f ∈ H ′ for which f(v) = Ψ′(u, v) for all v ∈ H.
Such an f is unique, it is denoted by Ψ′(u) and we say that Ψ is G-differentiable at
u, see [106, pp. 80]. The following result relates the notion of G-differentiability and
subgradient.

Proposition 1.8.12. Let H be a real Hilbert space and Ψ : H → R∞ be convex and
proper. If Ψ is G-differentiable at u ∈ int(D(Ψ)), then ∂Ψ(u) = {Ψ′(u, ·)}. If Ψ is
somewhere continuous and ∂Ψ(u) is a singleton, then Ψ is G-differentiable at u.

Proof. This is [106, Proposition II.7.6].
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1.8.3 The nonlinear abstract Cauchy problem
The following results can be performed when starting at t0 ∈ R with z(t0) = z0, but
for the sake simplicity we will set t0 = 0. One of the cornerstones of our results resides
in the fact of being able to show that the equation

ż(t) = A(z(t)) + ω(t)z(t) + f(t),
z(0) = z0

has a solution in some sense, where A is m-dissipative, nonlinear operator in a Hilbert
space and ω and f are regular enough. In [90, Theorem 6.20] it has been shown that
there exists a unique solution when the domain of A is closed, which in general will not
be the case in this thesis, since we will deal with differential operators. For the real
valued case, one could attempt to use the notion of nonlinear evolution operator in [75]
to obtain existence and uniqueness. Also in the real valued scenario, the result has been
shown when ω(t) is independent of t in [106, Theorem IV.4.1], which already follows
from [39]. The original result in [106] is due to T. Kato. Following this thread, with
the results given in [69, Section 3], one can indeed show that the abstract nonlinear
Cauchy problem (ANCP) has a unique solution. To this end, one defines A(t)z :=
A(z) + ω(t)z + f(t). Clearly, D(A(t)) = D(A) is independent of t. Further, if ω
and f are Lipschitz, then A(t) it is uniformly Lipschitz in t. In order to apply the
main theorems in [69], it is also required A(t) to be m-dissipative, which is not the
case. However, in the remarks subsequent to Theorem 3, in particular Remark 5., this
condition can be weakened to the fact that for some λ > 0, A(t)− λI is m-dissipative,
and then we can apply the results there for our particular case. However, in Remark
5. one can read the following:

It should be noted that this is not a trivial generalization. If A(t) were
linear, the transformation x(t) = e−λtz(t) would change

ż(t) = A(t)z(t)

into
ẋ(t) = (A(t)− λI)x(t).

But the same transformation does not always work in the nonlinear case,
for the transformed equation involves the operator e−λt(A(t) − λI)eλt, the
domain of which may depend on t when D(A(t)) does not.

No further comments are given about the reason why this holds true or the way to prove
it, even though it is clear when having a closer look at the proof, namely, by modifying
the fixed point argument. For the sake of self-containment, we provide here a detailed
version of the proof following the lines of [106, Theorem IV.4.1] and [69]. Nevertheless,
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the proof of Theorem IV.4.1 is not well-structured and some steps are incomplete, so
this requires more effort than only adapting the steps to the time dependence of ω.
The next result will be often used in the proof, so we introduce it here. This is a
Grönwall-type inequality.

Lemma 1.8.13. Let a, b ∈ L1([0, T ];R) with b ≥ 0 a.e. and let the absolutely continu-
ous function v : [0, T ]→ (0,∞) satisfy

(1− ρ)v′(t) ≤ a(t)v(t) + b(t)v(t)ρ, a.e. t ∈ [0, T ],

where 0 ≤ ρ < 1. Then

v(t)1−ρ ≤ v(0)1−ρ exp
(∫ t

0
a(s) ds

)
+
∫ t

0
exp

(∫ t

s

a(r) dr
)
b(s) ds , t ∈ [0, T ].

Proof. This is [106, Lemma IV.4.1].

Theorem 1.8.14. Let T > 0, X be a Hilbert space and A : D(A) ⊂ X → X be
m-dissipative in X with 0 ∈ D(A) and A(0) = 0.
Then for each z0 ∈ D(A), ω ∈ W 1,∞([0, T ];R) and f ∈ W 1,∞([0, T ];X) there exists a
unique Lipschitz continuous z : [0, T ]→ X, such that

1. z(t) ∈ D(A) at every t ∈ [0, T ];

2. for a.e. t ∈ [0, T ] it holds that

ż(t) = A(z(t)) + ω(t)z(t) + f(t),
z(0) = z0

(1.8)

3. ż and A(z) are continuous except at a countable number of values in [0, T ].

Proof. The proof is divided in three parts: uniqueness, existence and smoothness of z.
Step 1. Uniqueness
For any two solutions z1, z2 of (1.8) we have

1
2

d
dt‖z1(t)− z2(t)‖2 ≤ ω(t)‖z1(t)− z2(t)‖2, t ≥ 0,

since A is dissipative. From Lemma 1.8.13 with ρ = 1/2 it follows that

‖z1(t)− z2(t)‖ ≤ ‖z1(0)− z2(0)‖eΩ(t,0), t ≥ 0,

where
Ω(t, s) :=

∫ t

s

ω(r) dr .

Uniqueness is now immediate from the initial condition.
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Step 2. Existence
To obtain existence, for α > 0 we consider the Yosida approximation of the operator
A in (1.8), which is given by Aα := α−1(Jα − I), Jα := (I − αA)−1. This leads to

żα(t) = α−1(Jα − I)(zα(t)) + ω(t)zα(t) + f(t), t ∈ [0, T ], (1.9)

with zα(0) = z0. Multiplying the former equation by e−t/α and integrating we obtain

zα(t) = e−t/αz0 +
∫ t

0
e−(t−s)/α(α−1Jα(zα(s)) + ω(s)zα(s) + f(s)) ds , 0 ≤ t ≤ T.

(1.10)
Let us solve (1.10) in the Banach space C([0, T ];X) by a fixed point theorem. Consider
the closed, convex set K = {z ∈ C([0, T ];X) | z(t) ∈ X ∀t ∈ [0, T ]}, and define

T(z)(t) := e−t/αz0 +
∫ t

0
e−(t−s)/α(α−1Jα(z(s)) + ω(s)z(s) + f(s)) ds , 0 ≤ t ≤ T,

for z ∈ K. Then T(z(·)) ∈ C([0, T ];X) and the indicated convex combination satisfies

T(z)(t) = e−t/αz0 + (1− e−t/α)z1(t) ∈ X, t > 0,

where

z1(t) = α−1
∫ t

0
e−(t−s)/α(α−1Jα(z(s)) + ω(s)z(s) + f(s)) ds

(∫ t

0
e−(t−s)/α ds

)−1

,

for t > 0.
Thus T maps K into itself. For any pair z1, z2 ∈ K we have

‖T(z1)(t)− T(z2)(t)‖ ≤ (α−1 + ‖ω‖L∞)
∫ t

0
e−(t−s)/α‖z1(s)− z2(s)‖ ds ,

since Jα is Lipschitz with constant 1. This shows that

‖T(z1)(t)− T(z2)(t)‖ ≤ (α−1 + ‖ω‖L∞)t‖z1 − z2‖C([0,T ];X), 0 ≤ t ≤ T.

Assume that for an integer k ≥ 1 arbitrary but fixed

‖Tk(z1)(t)− Tk(z2)(t)‖ ≤ (α−1 + ‖ω‖L∞)ktk

k! ‖z1 − z2‖C([0,T ];X), 0 ≤ t ≤ T.

Then, for k + 1 we have

‖Tk+1(z1)(t)− Tk+1(z2)(t)‖ = ‖T(Tk(z1))(t)− T(Tk(z2))(t)‖

≤ (α−1 + ‖ω‖L∞)
∫ t

0
e−(t−s)/α‖Tk(z1)− Tk(z2)‖C([0,T ];X) ds
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≤ (α−1 + ‖ω‖L∞)
∫ t

0

(α−1 + ‖ω‖L∞)ktk

k! ‖z1 − z2‖C([0,T ];X) ds

= (α−1 + ‖ω‖L∞)k+1tk+1

(k + 1)! ‖z1 − z2‖C([0,T ];X), 0 ≤ t ≤ T.

Thus, using induction,

‖Tk(z1)(t)− Tk(z2)(t)‖ ≤ (α−1 + ‖ω‖L∞)ktk

k! ‖z1 − z2‖C([0,T ];X), 0 ≤ t ≤ T,

which implies that

‖Tk(z1)− Tk(z2)‖C([0,T ];X) ≤
(α−1 + ‖ω‖L∞)kT k

k! ‖z1 − z2‖C([0,T ];X),

and hence Tk is a strict contraction for k sufficiently large, so (1.10) has a unique
solution in K.
Now let zα be the unique solution for each α > 0 of (1.10) with zα(0) = z0. Since by
assumption A(0) = 0, it follows that Aα(0) = 0. Hence, we obtain the inequality

1
2

d
dt‖zα(t)‖2 ≤ ω(t)‖zα(t)‖2 + ‖f(t)‖‖zα(t)‖.

Applying Lemma 1.8.13 with ρ = 1/2 yields

‖zα(t)‖ ≤ ‖z0‖eΩ(t,0) +
∫ t

0
eΩ(t,s)‖f(s)‖ ds . (1.11)

We now estimate żα using a similar technique. If h > 0, it follows that

1
2

d
dt‖zα(t+ h)− zα(t)‖2 ≤Re 〈ω(t+ h)zα(t+ h)− ω(t)zα(t), zα(t+ h)− zα(t)〉

+ Re 〈f(t+ h)− f(t), zα(t+ h)− zα(t)〉
= ω(t+ h)‖zα(t+ h)− zα(t)‖2

+ (ω(t+ h)− ω(t)) Re 〈zα(t), zα(t+ h)− zα(t)〉
+ Re 〈f(t+ h)− f(t), zα(t+ h)− zα(t)〉
≤ ω(t+ h)‖zα(t+ h)− zα(t)‖2

+ |ω(t+ h)− ω(t)|‖zα(t)‖‖zα(t+ h)− zα(t)‖
+ ‖f(t+ h)− f(t)‖‖zα(t+ h)− zα(t)‖.

Hence, applying Lemma 1.8.13 with ρ = 1/2, dividing by h and letting h→ 0 gives

‖żα(t)‖ ≤ ‖żα(0)‖eΩ(t,0) +
∫ t

0
eΩ(t,s)b(s) ds

= ‖Aα(z0) + ω(0)z0 + f(0)‖eΩ(t,0) +
∫ t

0
eΩ(t,s)b(s) ds ,

(1.12)
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where b(t) := ‖ḟ(s)‖+ |ω̇(s)|‖zα(s)‖. Since ‖Aα(z0)‖ ≤ ‖A(z0)‖, it follows that żα, zα
and Aα(zα) are bounded in C([0, T ];X).
Let α, β > 0 be given, then

1
2

d
dt‖zα(t)− zβ(t)‖2 = ω(t)‖zα(t)− zβ(t)‖2

+ Re 〈Aα(zα(t))−Aβ(zβ(t)), zα(t)− zβ(t)〉 .

Write zα = Jαzα − αAαzα and likewise for zβ to get

Re 〈Aα(zα)−Aβ(zβ), zα − zβ〉 =− Re 〈Aα(zα)−Aβ(zβ), αAα(zα)− βAβ(zβ)〉
+ Re 〈Aα(zα)−Aβ(zβ), Jα(zα)− Jβ(zβ)〉

For the first term in the right-hand side we have

− Re 〈Aα(zα)−Aβ(zβ), αAα(zα)− βAβ(zβ)〉
= −α‖Aα(zα)‖2 − β‖Aβ(zβ)‖2 + (α+ β) Re 〈Aα(zα), Aβ(zβ)〉
≤ −α‖Aα(zα)‖2 − β‖Aβ(zβ)‖2

+ α

(
‖Aα(zα)‖2 + 1

4‖Aβ(zβ)‖2
)

+ β

(
‖Aβ(zβ)‖2 + 1

4‖Aα(zα)‖2
)

≤ α+ β

4 K2.

where K := supt∈[0,T ]{‖Aα(zα(t))‖ | α > 0}. For the second one, using that Aα =
α−1(Jα − I) and the same with β we obtain

Re 〈Aα(zα)−Aβ(zβ), Jα(zα)− Jβ(zβ)〉
= Re

〈
α−1(Jα(zα)− zα)− β−1(Jβ(zβ)− zβ), Jα(zα)− Jβ(zβ)

〉
.

Setting Jα(zα) = uα and Jβ(zβ) = uβ together with zα = uα − αA(uα) and likewise
for zβ yield

Re
〈
α−1(uα − (uα − αA(uα)))− β−1(uβ − (uβ − βA(uβ))), uα − uβ

〉
= Re 〈A(uα)−A(uβ), uα − uβ〉 ≤ 0,

since A is dissipative. Hence

1
2

d
dt‖zα(t)− zβ(t)‖2 ≤ ω(t)‖zα(t)− zβ(t)‖2 + α+ β

4 K2.

Thus we have

‖zα(t)− zβ(t)‖2 ≤ α+ β

2 K2
∫ t

0
e2Ω(t,s) ds , 0 ≤ t ≤ T.
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In particular (z1/n)n∈N is Cauchy in C([0, T ];X) and define z ∈ C([0, T ];X) as its
limit.
Step 3. Smoothness of z
Since z1/n is Lipschitz continuous uniformly in t and n by (1.12), it follows that z is
also Lipschitz continuous uniformly in t with z(0) = z0 and ż ∈ L∞([0, T ];X).
Moreover, for each t we have z1/n(t)→ z(t) and there exists K > 0 independent of t and
n such that ‖A1/nz1/n(t)‖ ≤ K. It follows from Lemma 1.8.5 ((ii)) that z(t) ∈ D(A)
for all t and A1/nz1/n(t) → Az(t) weakly. Thus, ‖Az(t)‖ ≤ K as well. Moreover, for
a sequence tk → t, we have by Lemma 1.8.5 (i) that Az(tk) → Az(t) weakly, which
shows that t 7→ Az(t) is weakly continuous.
Since z1/n satisfies (1.9), for every θ ∈ X we have that

〈
z1/nk(t), θ

〉
= 〈z0, θ〉+

∫ t

0

〈
A1/nk(z1/nk(s)) + ω(s)z1/nk(s) + f(s), θ

〉
ds .

Moreover, z1/n(t)→ z(t), A1/nz1/n(t)→ Az(t) weakly and |
〈
A1/nz1/n(t), θ

〉
| ≤ K‖θ‖,

we obtain
〈z(t), θ〉 =

∫ t

0
〈A(z(s)) + ω(s)z(s) + f(s), θ〉 ds

by bounded convergence [28, Theorem II.4.1]. Given that the integrand is continuous
in s, 〈z(t), θ〉 is continuously differentiable on [0, T ] with

d
dt 〈z(t), θ〉 = 〈A(z(t)) + ω(t)z(t) + f(t), θ〉 .

Further since A(z(t)) is weakly continuous it follows that it is strongly measurable.
Together with the fact of being bounded, it follows that it is Bochner integrable. Then
the former shows that

z(t) = z0 +
∫ t

0
A(z(s)) + ω(s)z(s) + f(s) ds ,

and thus ż is continuous except possibly in a set of measure zero. If we consider (1.8)
in [s, T ] with the initial value z(s), the solution must coincide with our z(t) on [s, T ]
owing this to the uniqueness of the solution. As we have obtained (1.11), for r ∈ [s, t]
with t ≤ T , we have

e−Ω(r,0)‖z(r)‖ ≤ ‖z0‖+ ‖f‖∞r.

In a similar way as we have computed (1.12), using the former we obtain

‖ż(t)‖e−Ω(t,0) − ‖ż(s)‖e−Ω(s,0) ≤ ‖ω̇‖∞
∫ t

s

e−Ω(r,0)‖z(r)‖ dr + ‖ḟ‖∞
∫ t

s

e−Ω(r,0) dr

≤ ‖ω̇‖∞‖z0‖(t− s) + ‖ω̇‖∞‖f‖∞2 (t2 − s2)
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+ ‖ḟ‖∞
‖ω‖∞

(e‖ω‖∞t − e‖ω‖∞s).

Thus, defining c1, c2, c3, c4 > 0 according to the former inequality, the function t 7→
‖ż(t)‖e−Ω(t,0) − c1t− c2t2 − c3ec4t is monotonically decreasing and it is therefore con-
tinuous except possibly at a countable number of points. Since t 7→ ‖ż(t)‖ is weakly
continuous, it follows that it is strongly continuous at each point t where t 7→ ‖ż(t)‖
is continuous. Hence, since t 7→ ż(t) is strongly continuous except possibly at a count-
able number of points and since t 7→ ω(t)z(t) + f(t) is continuous, t 7→ A(z(t)) is also
continuous except possibly at a countable number of points.

1.9 Funnel control and solution concepts
The last section of this chapter is devoted to clarify the relation between the uncon-
trolled and funnel controlled systems by using the appropriate solution concepts. As
we will see in the following chapters, when dealing with PDEs, there is something that
plays an important role that does not come up in the finite-dimensional scenario, which
is the initial value of the system. This is then strictly related with the kind of funnel
controller that we use.
Assume that we have reflexive Banach spaces U,X, Y and a system Σ in the triple
(U,X, Y ) with input u(t) ∈ U , state x(t) ∈ X and output y(t) ∈ Y for a.e. t ∈ [0, T ]
for T > 0 and x(0) = x0 ∈ X0 ⊂ X given, where X0 is a dense subspace of X. Let
us assume that on the system Σ one defines a solution concept (SC), that is, (u, x, y)
satisfy certain properties —for instance, in the case of the linear infinite-dimensional
prototype one could think about well-posedness. Of course, if we introduce a feed-back
law as the FC,

u(t) = − k0

1− ϕ(t)2‖y(t)− yref(t)‖2Rm
(y(t)− yref(t)),

one wishes that the resulting solution of the closed-loop system, if it exists, satisfies that
(u, x, y) is also a solution as defined in SC. Note that we have chosen finite-dimensional
input and output spaces and in particular, we will work in the case in which they have
the same dimension, that is U = Y = Rm for some m ∈ N, which will be a general
assumption.
As an example, assume that the system Σ is L2-well-posed on (Rm, X,Rm) for some
m ∈ N, so that Σ = (T,Φ,Ψ,F). Then we investigate the problem

x(t) = Ttx0 + Φtu,
y(t) = Ψtx0 + Ftu,

u(t) = − k0

1− ϕ(t)2‖y(t)− yref(t)‖2Rm
(y(t)− yref(t)),

(ΣCL)
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for some appropriate and regular ϕ, yref . Assuming that the closed-loop system (ΣCL)
has a solution according to our SC, this would imply that u, y ∈ L2([0, T ];Rm) and
further we have that the state x ∈ C([0, T ];X). However, this does not provide enough
information about the regularity of (u, x, y) or whether the funnel controller is perform-
ing as desired, that is, the error y − yref is bounded away from the funnel boundary
ϕ−1. In general, these two things are the ones that take most effort to prove, together
with showing existence of a solution of (ΣCL).
In the following chapters we will study different cases to which we will apply the FC.
In Chapters 2 & 3 we consider systems that fit within the existing theory of the FC,
so even though we deal with infinite-dimensional systems, we reduce the problem to a
functional differential equation, for which the solution concept is clear. On the other
hand, in Chapter 4 we start from the very beginning with a system class for which one
can not always guarantee that there is a solution —we do not assume the system to
be well-posed. In fact, we consider the fully nonlinear problem induced by the closed-
loop system and on top of that we define a solution concept for the resulting system.
Finally, in Chapter 5 we deal with a nonlinear, parabolic PDE for which one can define
a solution concept by means of the weak formulation using sesquilinear forms. Since all
the cases are different and the FC needs to be slightly modified in the various scenarios,
we will recall and introduce in each chapter the basics related to funnel control and
explicitly define what the control objective is.
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2 Adaptive control for a moving water
tank

When a liquid-filled containment is subject to movement, the motion of the fluid may
have a significant effect on the dynamics of the overall system and is known as sloshing.
The latter phenomenon can be understood as internal dynamics of the system and
it is of great importance in a range of applications such as aeronautics and control
of containers and vehicles, and has been studied in engineering for a long time, see
e.g. [23, 32,42,45,118,126].
The standard model for the one-dimensional movement of a fluid is given by the Saint-
Venant equations, which is a system of nonlinear hyperbolic partial differential equa-
tions (PDEs). Models of a moving water tank involving these equations without friction
have been studied in various articles. The first approach appears in [29] where a flat
output for the linearized model is constructed (see e.g. [34] for the flatness approach).
Several additional control problems related to this model are studied in [95] and it is
proved that the linearization is steady-state controllable. Even more so, the seminal
work [26] shows that the (nonlinear) model is locally controllable around any steady
state. However, as an interesting addition, in [25] it is shown that the two-dimensional
version is not locally controllable under some generic condition, where the control acts
on the boundary and only depends on time. Different stabilization approaches by state
and output feedback using Lyapunov functions are studied in [98]. In [8] observers are
designed to estimate the horizontal currents by exploiting the symmetries in the Saint-
Venant equations. Convergence of the estimates to the actual states is studied for the
linearized model. In [23] a port-Hamiltonian formulation of the system is provided as
a mixed finite-infinite-dimensional port-Hamiltonian system. For a recent numerical
treatment of a truck with a fluid basin see [35].
In the present chapter we consider output trajectory tracking for moving water tank
systems by funnel control. The moving water tank system that we consider in the
present chapter contains a non-vanishing friction term as modeled in the Saint-Venant
equations e.g. in [9]. It is our aim to show that the funnel controller introduced in [11]
is feasible for these systems. While a very large class of functional differential equations
with higher relative degree is considered in [11] and funnel control is shown to work
for those systems (cf. also Section 2.2), it is not clear exactly which systems containing
PDEs are encompassed by this class. It is our main result that the linearized model of
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the moving water tank, where the above mentioned effect of sloshing appears, belongs
to the aforementioned system class.

2.1 Mathematical model
In the present chapter we investigate the (frictionless) horizontal movement of a water
tank as depicted in Fig. 2.1.

u(t)

y(t)

gh(t, ζ)
ζ0 1

v(t, ζ)

Figure 2.1: Horizontal movement of a water tank.

We assume that there is an external force acting on the water tank, which we denote
by u(t) as this will be the control input of the resulting system. The measurement
output is the horizontal position y(t) of the water tank, and the mass of the empty
tank is denoted by mT . The dynamics of the water under gravity g are described by
the Saint-Venant equations (also called one-dimensional shallow water equations)

∂th+ ∂ζ(hv) = 0,

∂tv + ∂ζ

(
v2

2 + gh

)
+ hS

( v
h

)
= −ÿ

(2.1)

with boundary conditions v(t, 0) = v(t, 1) = 0. Here h : [0,∞) × [0, 1] → R denotes
the height profile and v : [0,∞) × [0, 1] → R the (relative) horizontal velocity profile.
The first equation in (2.1) is the so called continuity equation and describes the con-
servation of water volume in the tank. The second equation in (2.1) is the so called
momentum equation and describes the balance between forces and momentum change
rate. The boundary conditions require a zero velocity profile at the boundaries so that
the movement is restricted to the container, the length of which is normalized to 1.
The friction term S : R → R is typically modeled by a high velocity coefficient of the
form CSv

2/h2 and another one which plays the role of a viscous drag of the form CDv/h

for some positive constants CS , CD. In the present chapter, we do not specify S, but we
do assume that S(0) = 0 and S′(0) > 0. The condition S(0) = 0 means that, whenever
the velocity is zero, then there is no friction. The condition S′(0) > 0 indicates the
viscous drag does not vanish and hence the friction term is not conservative; this is the
case in most real-world non-ideal situations. However, we stress that in the literature
the friction term is usually assumed to be conservative, see e.g. [9, Sec. 1.4].
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For a derivation of the Saint-Venant equations (2.1) of a moving water tank we refer
to [23,95], see also the references therein. The friction term in the model is the general
version of that used in [9, Sec. 1.4]. Let us emphasize that in our framework the input
is the force acting on the water tank, which can be manipulated using an engine for
instance. In contrast to this, in [26, 95] the acceleration of the tank is used as input,
but this can usually not be influenced directly. Note that — in the presence of sloshing
— the applied force does not equal the product of the tanks’s mass and acceleration.
We also stress that, if the acceleration is used as input, then the input-output relation
is given by the simple double integrator ÿ = u, and the Saint-Venant equations (2.1)
do not affect this relation. Of course, in [26, 95] controllability of the complete state
including the Saint-Venant equations is considered, but here we study output tracking,
which does not require to influence the complete state.
As shown in [29, 95], the linearization of the Saint-Venant equations is relevant in the
context of control since it provides a model which is much simpler to solve (both analyt-
ically and numerically) and it can be an insightful approximation for motion planning
purposes. Therefore, we restrict ourselves to the linearization of (2.1). In order to
derive the linearization we first consider the general operator differential equation

∂tx(t)− F
(
x(t)

)
= f(t), (2.2)

where F : D(F ) ⊆ X → Y , f : [0,∞)→ Y , X,Y are suitable Hilbert spaces and D(F )
is the domain of the operator F . Different notions of a solution of (2.2) may be used,
such as classical, mild or weak solution, see e.g. [67]. We call a point x∗ ∈ D(F ) an
equilibrium or steady-state of (2.2), if F (x∗) = 0. In this case, t 7→ x∗ is a solution (in
any sense) of the homogeneous part ∂tx(t)−F

(
x(t)

)
= 0. If F is Fréchet differentiable

in x∗ with Fréchet derivative A := Dx∗F : X → Y (A is linear and bounded), then the
linearization of (2.2) around the steady-state x∗ is given by

∂tx(t)− Ax(t) = f(t). (2.3)

In the setting of the Saint-Venant equations (2.1) we have X = W 1,2([0, 1];R2), Y =
L2([0, 1];R2), f(t) =

( 0
−ÿ(t)

)
and the operator

F (x1, x2) = −
(

∂ζ(x1x2)
∂ζ
( 1

2x
2
2 + gx1

)
+ x1S

(
x2
x1

)) (2.4)

with
D(F ) =

{
(x1, x2) ∈ X

∣∣∣∣ x2(0) = x2(1) = 0,
∀ ζ ∈ [0, 1] : x1(ζ) > 0

}
. (2.5)

A steady-state x∗ = (H,V ) ∈ D(F ) is a solution of the boundary-value problem

∂ζ(HV ) = 0,
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V ∂ζV + g∂ζH +HS

(
V

H

)
= 0, V (0) = V (1) = 0.

In order to be able to deal with the aforementioned linearization we give the following
result.

Lemma 2.1.1. Consider the operator F : D(F ) ⊆ X → Y given by (2.4), where
X = W 1,2([0, 1];R2), Y = L2([0, 1];R2), and D(F ) is as in (2.5). Then F is Fréchet
differentiable in any point x = (x1, x2) ∈ D(F ) with Fréchet derivative

DxFh =
(

h1∂ζx2+x1∂ζh2+x2∂ζh1+h2∂ζx1

h2∂ζx2+x2∂ζh2+g∂ζh1+h1S
(
x2
x1

)
+h2S

′
(
x2
x1

)
−h1

x2
x1
S′
(
x2
x1

))

for h = (h1, h2) ∈ X. In particular, DxF : X → Y is bounded.

Proof. It is straightforward to check that DxF as defined above is the Gateaux deriv-
ative of F in x. It remains to show that F is Fréchet differentiable in x. Define the
auxiliary function

S̄ : D → R, (x1, x2) 7→ x1S

(
x2

x1

)
,

where
D =

{
(x1, x2) ∈ R2 ∣∣ x1 6= 0

}
.

Then S̄ is differentiable in D with

S̄′(x1, x2) =
[
S

(
x2

x1

)
− x2

x1
S′
(
x2

x1

)
, S′
(
x2

x1

)]
.

Now we compute that

‖F (x+ h)− F (x)−DxFh‖2Y
= ‖h1∂ζh2 + h2∂ζh1‖2L2 + ‖h2∂ζh2‖2L2

+
∥∥S̄(x1 + h1, x2 + h2)− S̄(x1, x2)− S̄′(x1, x2)

(
h1
h2

)∥∥2
L2

≤ 2‖h1‖2L2‖∂ζh2‖2L2 + 2‖h2‖2L2‖∂ζh1‖2L2 + ‖h2‖2L2‖∂ζh2‖2L2

+ ‖R(x+ h)‖2L2 ‖h‖2Y
≤ 5‖h‖4X + ‖R(x+ h)‖2L2‖h‖2X ,

where R : R2 → R, which depends on x(ζ), is such that limz→x(ζ)R(z) = 0 for all
ζ ∈ [0, 1]. Therefore, limh→0,h∈X ‖R(x+ h)‖L2 = 0 and hence we find that

lim
h→0

‖F (x+ h)− F (x)−DxFh‖Y
‖h‖X

= 0.
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Finally, boundedness of DxF : X → Y follows from

DxFh =
[

∂ζx2 ∂ζx1

S
(
x2
x1

)
− x2

x1
S′
(
x2
x1

)
∂ζx2 + S′

(
x2
x1

)]h+
[
x2 x1
g x2

]
∂ζh.

Since S(0) = 0 and H(ζ) > 0 for all ζ ∈ [0, 1], we may infer that V ≡ 0 and H ≡ h0 > 0.
It follows from Lemma 2.1.1 that F is Fréchet differentiable in x∗ = (h0, 0) ∈ D(F )
with Fréchet derivative A := Dx∗F : X → Y given by

Az = −
(

h0∂ζz2
g∂ζz1 + S′(0)z2

)
, z ∈ X.

Note that A : X → Y is bounded, but A : (X, ‖ · ‖Y ) ⊆ Y → Y will be unbounded
since a weaker norm is used.
Define µ := 1

2S
′(0) and

P1 :=
[

0 −1
−1 0

]
, H :=

[
g 0
0 h0

]
, P0 :=

[
0 0
0 2

]
, b :=

(
0
−1

)
.

Then the linearization of the Saint-Venant equations (2.1) is given by the system

∂tz = Az + bÿ = P1∂ζ(Hz)− µP0z + bÿ (2.6)

with boundary conditions
z2(t, 0) = z2(t, 1) = 0. (2.7)

For the convenience of the reader let us also restate (2.6) line by line:

∂tz1 + h0∂ζz2 = 0,
∂tz2 + g∂ζz1 + 2µz2 = −ÿ.

Note that by the first equation (conservation of mass) we have

∂t

∫ 1

0
z1(t, ζ) dζ = −h0

∫ 1

0
∂ζz2(t, ζ) dζ = −h0

(
z2(t, 1)− z2(t, 0)

) (2.7)= 0,

hence
∫ 1

0 z1(t, ζ) dζ = const for all t. Furthermore, if (z1, z2) is a solution of (2.6) (in
any sense), then also (z1, z2) + (c, 0) is a solution of (2.6) for all c ∈ R. Hence, without
loss of generality we may restrict ourselves to solutions which satisfy

∫ 1
0 z1(t, ζ) dζ = 0

for all t ≥ 0. This justifies to choose

X̂ =
{

(f1, f2) ∈ L2([0, 1];R2)
∣∣∣∣ ∫ 1

0
f1(ζ) dζ = 0

}
(2.8)
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as new state space and to consider the operator A : D(A) ⊆ X̂ → Y , where Az = Az,
for z ∈ D(A) and

D(A) =
{

(z1, z2) ∈ X̂
∣∣∣∣ z1, z2 ∈W 1,2([0, 1];R),
z2(0) = z2(1) = 0

}
. (2.9)

Note that for any z ∈ D(A) we have
∫ 1

0 ∂ζz2(ζ) dζ = 0, hence Az ∈ X̂. Therefore,
A : D(A) ⊆ X̂ → X̂ and we like to stress that A may be unbounded. From now on,
with some abuse of notation, we write X instead of X̂.
In order to complete the model, we introduce the momentum

p(t) := mT ẏ(t) +
∫ 1

0

(
z1(t, ζ) + h0

)(
z2(t, ζ) + ẏ(t)

)
dζ ,

and consider the balance law ṗ(t) = u(t). Using (2.6) we calculate

ṗ(t) = mT ÿ(t) +
∫ 1

0
∂tz1(t, ζ)(z2(t, ζ) + ẏ(t)) dζ

+
∫ 1

0

(
z1(t, ζ) + h0

)
(∂tz2(t, ζ) + ÿ(t)) dζ

= mT ÿ(t)−
∫ 1

0
h0∂ζz2(t, ζ)(z2(t, ζ) + ẏ(t)) dζ

−
∫ 1

0

(
z1(t, ζ) + h0

)
(g∂ζz1(t, ζ) + 2µz2(t, ζ)) dζ

= mT ÿ(t)− g2
(
z1(t, 1)2−z1(t, 0)2)−h0g

(
z1(t, 1)−z1(t, 0)

)
− 2µ

∫ 1

0

(
z1(t, ζ) + h0

)
z2(t, ζ) dζ .

Altogether the model that we consider in the present chapter is described by the fol-
lowing nonlinear equations,

∂tz = P1∂ζ(Hz)− µP0z + bÿ,

ÿ(t) = g

2mT
(z1(t, 1)− z1(t, 0))

(
2h0 + z1(t, 1) + z1(t, 0)

)
+ 2µh0

mT

∫ 1

0
z2(t, ζ) dζ + 2µ

mT

∫ 1

0
z1(t, ζ)z2(t, ζ) dζ

+ u(t)
mT

,

z2(t, 0) = z2(t, 1) = 0

(2.10)

on the state space X, with input u, state z and output y.
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2.2 Funnel control
The objective is to design an output error feedback u(t) = F

(
t, e(t), ė(t)

)
, where

yref ∈ W 2,∞(0,∞;R) is a reference signal, which applied to (2.10) results in a closed-
loop system where the tracking error e(t) = y(t) − yref(t) evolves within a prescribed
performance funnel

Fϕ := { (t, e) ∈ [0,∞)× R | ϕ(t)|e| < 1 } , (2.11)

which is determined by a function ϕ belonging to

Φ:=

 ϕ ∈ C1([0,∞);R)

∣∣∣∣∣∣
ϕ, ϕ̇ are bounded,
ϕ(τ) > 0 for all τ > 0,
and lim infτ→∞ ϕ(τ) > 0

 .

Furthermore, all signals u, e, ė should remain bounded.
The funnel boundary is given by the reciprocal of ϕ, see Fig. 2.2. The case ϕ(0) = 0
is explicitly allowed and puts no restriction on the initial value since ϕ(0)|e(0)| < 1; in
this case the funnel boundary 1/ϕ has a pole at t = 0.

t

±ϕ(t )−1

±λ−1

e(t )

(0,e(0))

Figure 2.2: Error evolution in a funnel Fϕ with boundary ϕ(t)−1.

An important property is that each performance funnel Fϕ with ϕ ∈ Φ is bounded away
from zero, i.e., boundedness of ϕ implies that there exists λ > 0 such that 1/ϕ(t) ≥ λ

for all t > 0. The funnel boundary is not necessarily monotonically decreasing, while in
most situations it is convenient to choose a monotone funnel. However, there are situ-
ations where widening the funnel over some later time interval might be beneficial, for
instance in the presence of periodic disturbances or strongly varying reference signals.
For typical choices of funnel boundaries see e.g. [56, Section 3.2].
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It was shown in [11] that the funnel controller

u(t) = −k1(t)
(
ė(t) + k0(t)e(t)

)
,

k0(t) = 1
1− ϕ0(t)2‖e(t)‖2 ,

k1(t) = 1
1− ϕ1(t)2‖ė(t) + k0(t)e(t)‖2 ,

(2.12)

where ϕ0, ϕ1 ∈ Φ, achieves the above described control objective for a large class of
nonlinear systems with relative degree two. In the present chapter we aim to extend this
result and show feasibility of (2.12) for the (linearized) moving water tank described
by (2.10).
In Section 2.2 we recall a recent result in funnel control from [11]. We show that in order
to achieve the control objective it suffices to show that a certain operator is causal,
locally Lipschitz continuous and maps bounded functions to bounded functions. To
this end, we consider the linearized Saint-Venant equations in an abstract framework
in Section 2.3 and show that the homogeneous part is an operator which generates
a contraction semigroup. This then allows to study admissibility of certain control
and observation operators for the system and, finally, to show that the inverse Laplace
transform of the transfer function corresponding to these systems defines a measure
with bounded total variation. In Section 2.4 we exploit this result to show that the
operator associated with the internal dynamics of (2.10) is well-defined and has the
properties mentioned above. Some conclusions are given in Section 2.5.
In this section we formulate how the funnel controller (2.12) described above achieves
the control objective for system (2.10) — this is the main result of this chapter. The
initial conditions for (2.10) are(

z1(0, ·), z2(0, ·)
)

=
(
h̃0(·), v0(·)

)
∈ D(A),(

y(0), ẏ(0)
)

=
(
y0, y1) ∈ R2,

(2.13)

since the initial value for z needs to belong to the domain of the operator A in (2.9).
In [11] the controller (2.12) is shown to be feasible for a large class of nonlinear systems
of the form

ÿ(t) = f
(
d(t),S(y, ẏ)(t)

)
+ Γu(t)(

y(0), ẏ(0)
)

=
(
y0, y1) ∈ R2 (2.14)

where

(N1) the disturbance satisfies d ∈ L∞([0,∞);Rp), p ∈ N;

(N2) f ∈ C(Rp × Rq;R), q ∈ N,

(N3) the high-frequency gain satisfies Γ > 0,
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(N4) S : C([0,∞);R2)→ L∞loc(0,∞;Rq) is an operator with the following properties:
a) S maps bounded trajectories to bounded trajectories, i.e, for all c1 > 0,

there exists c2 > 0 such that for all ζ ∈ BC([0,∞);R2) we have S(ζ) ∈
L∞([0,∞);Rq) and

‖ζ‖∞ ≤ c1 ⇒ ‖S(ζ)‖∞ ≤ c2,

b) S is causal, i.e, for all t ≥ 0 and all ζ, ξ ∈ C([0,∞);R2),

ζ|[0,t) = ξ|[0,t) ⇒ S(ζ)|[0,t)
a.e.= S(ξ)|[0,t).

c) S is locally Lipschitz continuous in the following sense: for all t ≥ 0 and all
ξ ∈ C([0, t];R2) there exist τ, δ, c > 0 such that, for all ζ1, ζ2 ∈ C([0,∞);R2)
with ζi|[0,t] = ξ and ‖ζi(s) − ξ(t)‖ < δ for all s ∈ [t, t + τ ] and i = 1, 2, we
have ∥∥(S(ζ1)− S(ζ2)) |[t,t+τ ]

∥∥
∞ ≤ c

∥∥(ζ1 − ζ2)|[t,t+τ ]
∥∥
∞ .

In [50, 59, 61, 62] it is shown that the class of systems (2.14) encompasses linear and
nonlinear finite-dimensional systems with strict relative degree two and input-to-state
stable internal dynamics. The operator S allows for infinite-dimensional (linear) sys-
tems, systems with hysteretic effects or (when a slightly more general version of (2.14)
with a memory component is considered) nonlinear delay elements, and combinations
thereof. The linear infinite-dimensional systems that are considered in [61, 62] are in
a special Byrnes-Isidori form that is discussed in detail in [63]. While the internal dy-
namics in these systems is allowed to correspond to a strongly continuous semigroup,
all other operators are assumed to be bounded. In contrast to this, the equation (2.10)
that we consider here is nonlinear and involves unbounded operators.
In [11], the existence of solutions of the initial value problem resulting from the applic-
ation of the funnel controller (2.12) to a system (2.14) is investigated. By a solution
of (2.12), (2.14) on [0, ω) we mean a function y ∈ C1([0, ω);R), ω ∈ (0,∞], such that
ẏ is weakly differentiable and satisfies (2.14) with u defined in (2.12) for almost all
t ∈ [0, ω); y is called maximal, if it has no right extension that is also a solution. Ex-
istence of solutions of functional differential equations has been investigated in [61] for
instance.
The following result is from [11]. Note that in [11] a slightly stronger version of condi-
tion (N4) c) is used. However, the existence part of the proof there relies on a result
from [59] where the version from the present chapter is used.

Theorem 2.2.1. Consider a system (2.14) with properties (N1)–(N4). Let yref ∈
W 2,∞([0,∞);R), ϕ0, ϕ1 ∈ Φ and (y0, y1) ∈ R2 be initial conditions such that

ϕ0(0)|y0 − yref(0)| < 1
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and ϕ1(0)|y1 − ẏref(0) + k0(0)
(
y0 − yref(0)

)
| < 1.

Then the funnel controller (2.12) applied to (2.14) yields an initial-value problem which
has a solution, and every solution can be extended to a maximal solution y : [0, ω)→ R,
ω ∈ (0,∞], which has the following properties:

1. The solution is global (i.e., ω =∞).

2. The input u : [0,∞) → R, the gain functions k0, k1 : [0,∞) → R and y, ẏ :
[0,∞)→ R are bounded.

3. The tracking error e = y−yref is uniformly bounded away from the funnel bound-
ary in the following sense:

∃ ε > 0 ∀ t > 0 : |e(t)| ≤ ϕ0(t)−1 − ε. (2.15)

In order to show that the funnel controller (2.12) is feasible for (2.10), (2.13), we will
show that (2.10), (2.13) belongs to the class of systems (2.14). Then feasibility is a
consequence of the above Theorem 2.2.1.
Using the change of variables x(t) = z(t) − bη(t) where we use the notation η(t) :=
ẏ(t)− ẏ(0), system (2.10) can be rewritten as

ÿ(t) = S(y, ẏ)(t) + u(t)
mT

, (2.16)

where S : C([0,∞);R2)→ L∞loc([0,∞);R) is given by

S(y1, y2) := T (y2 − y2(0)) (2.17)

for the operator T : C0([0,∞);R)→ L∞loc([0,∞);R), where

C0([0,∞);R) := {f ∈ C([0,∞);R) | f(0) = 0},

defined by

T (η)(t) := g

2mT
(x1(t, 1)− x1(t, 0))

(
2h0 + x1(t, 1) + x1(t, 0)

)
+ 2µh0

mT

∫ 1

0
x2(t, ζ) dζ + 2µ

mT

∫ 1

0
x1(t, ζ)x2(t, ζ) dζ

− 2µh0

mT
η(t), (2.18)

ẋ(t) = Ax(t) +Abη(t), x(0) = x0 = (h̃0, v0). (2.19)

Note that T depends on x = x(t, ζ) which in turn is given through η and x0 as the
solution of the linear PDE (2.19) that is a one-dimensional wave equation. We like to
point out that the operator S essentially models the internal dynamics of system (2.10).
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Theorem 2.2.2. For µ > 0 the system consisting of (2.10), (2.13) belongs to the
class of systems (2.14). More precisely, the operator S from (N4) is given by (2.17).
Therefore, the assertions of Theorem 2.2.1 hold for the considered system.

Proof. First observe that for equation (2.16) conditions (N1)–(N3) are obviously sat-
isfied, so it remains to show the properties of the operator S as required in (N4). By
Proposition 2.4.1 the operator T given by (2.18), (2.19) is well-defined, locally Lipschitz
continuous and maps bounded functions to bounded functions. As it can be seen that S
is causal it thus follows that it satisfies (N4).

Remark 2.2.3. In the case µ = 0 the statement of Theorem 2.2.2 is false in general,
because the operator S does not satisfy condition a) in (N4). To be more precise
we need to consider the later results derived in Sections 2.3 and 2.4. If µ = 0, then
h = L−1(G) derived in Lemma 2.3.4 does not have bounded total variation and thus
an inspection of the proof of Proposition 2.4.1 reveals that T does not map bounded
functions to bounded functions. For instance, T (sin)(·) is unbounded.

Here we illustrate the application of the funnel controller (2.12) to the linearized moving
water tank system (2.10). In the following we present the numerical method used to
simulate the corresponding closed-loop system. Using the change of variables

z(ζ, t) = Qη(ζ, t), where Q :=
[

1 1
g

c
−g
c

]
,

we may rewrite (2.10) as

∂tη1(t, ζ) + c∂ζη1(t, ζ) = µ(η2(t, ζ)− η1(t, ζ))− c

2g ÿ(t),

∂tη2(t, ζ)− c∂ζη2(t, ζ) = µ(η1(t, ζ)− η2(t, ζ)) + c

2g ÿ(t),

ÿ(t)− u(t)
mT

= 2µc
mT

∫ 1

0
η1(t, ζ)− η2(t, ζ) dζ

+ 2c2

mT
(η1(t, 1)− η1(t, 0))

+ 2g
mT

(η1(t, 1)2 − η1(t, 0)2)

+ 2µg
mT c

∫ 1

0
η1(t, ζ)2 − η2(t, ζ)2 dζ ,

η1(t, 0) = η2(t, 0),
η1(t, 1) = η2(t, 1).

Using an implicit method for the PDE corresponding to η1 and an explicit method for
the PDE corresponding to η2 we can easily solve the closed-loop system numerically
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using finite differences. For the simulation we have used the parameters

mT = 1kg, h0 = 0.5m, g = 9.8ms−2, µ = 0.1s−1

and the reference signal
yref(t) = A tanh2(ωt),

where A = 1m and ω = 2πf with f =
√
h0/g. The initial values (2.13) are chosen as

(h̃0(ζ), v0(ζ)) = (0m, 0.1 sin2(4πζ)ms−1),

and
(y0, y1) = (0m, 0ms−1).

For the controller (2.12) we chose the funnel functions

ϕ0(t) = ϕ1(t) = 100 tanh(ωt).

Clearly, the initial errors lie within the funnel boundaries as required in Theorem 2.2.1.
For the finite differences we have used a grid in t with M = 4000 points for the
interval [0, 2τ ] with τ = f−1, and a grid in ζ with N = bML/(4cτ)c points, where for
r ∈ [0,∞), brc := max{n ∈ N | n ≤ r}. Furthermore, we have used a tolerance of 10−6.
The method has been implemented in Python and the simulation results are shown in
Figs. 2.3 & 2.4.
It can be seen that even in the presence of sloshing effects a prescribed performance of
the tracking error can be achieved with the funnel controller (2.12), while at the same
time the generated input is bounded and shows an acceptable performance.
The remainder of the chapter is concerned with the proof of Proposition 2.4.1, for
which the crucial preliminaries are developed in the following section.

2.3 Linearized model – abstract framework
In this section we derive preliminary results concerning the operator associated with
the linearized Saint-Venant equations (2.6). Furthermore, for later use we consider ad-
missibility with respect to a certain control operator and compute the transfer functions
with respect to certain observation operators. Finally, we show that the inverse Laplace
transform of these transfer functions defines measures with bounded total variation.
We consider the complexification of the state space from (2.8) given by

X =
{

(f1, f2) ∈ L2([0, 1];C2)
∣∣∣∣ ∫ 1

0
f1(ζ) dζ = 0

}
= L2([0, 1];C2)	 [( 1

0 )]
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Figure 2.3: Output y and reference signal yref and corresponding first and second de-
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and the linear operators Aµ : D(Aµ) ⊆ X → X given by

Aµz := P1∂ζ(Hz)− µP0z

with domain D(Aµ) = D(A) as the complexification of (2.9). Here

L2([0, 1];C2)	 [( 1
0 )]

refers to the orthogonal complement of the span of the function ( 1
0 ) in L2([0, 1];C2).

The equation (2.6) motivates to consider energy-based norms given through the Hamilto-
nian H, i.e., for z1, z2 ∈ X let

〈z1, z2〉X = 1
2

∫ 1

0
z1(ζ)H z2(ζ) dζ .

Clearly, the solution of the linear damped wave equation ż = Aµz with z(0) = z0 can
be derived by a Fourier ansatz. More general, the solution theory for linear PDEs can
be derived in the framework of semigroup theory which corresponds to well-posedness
in the sense of Hadamard.
The proof of the following result is a standard argument; we include a proof in the
semigroup context.

Proposition 2.3.1. Let c :=
√
gh0 and assume that µ ∈ [0, πc). The operator Aµ

generates a contraction semigroup (Tµt )t≥0 in X. The spectrum of Aµ consists of the
eigenvalues

θ±n = −µ± iφn,

where
φn =

√
σ2
n − µ2, σn = nπc, n ∈ N. (2.20)

If µ ∈ (0, πc), then (Tµt )t≥0 is exponentially stable and ω0(Tµ) = −µ. Furthermore,
for µ = 0 we have that for all z ∈ X and t ≥ 0,

Ttz := T0
t z =

∑
n∈Z\{0}

znψneiσnt,

where
ψn(ζ) :=

√
2
g

(
cos (πnζ)

−ich−1
0 sin(πnζ)

)
(2.21)

and zn = 〈ψn, z〉X for n ∈ Z.

Proof. Let us denote by AX0
µ the operator A := A0 considered on the larger space

X0 = L2([0, 1];C2), where

D(AX0
µ ) =

{
z ∈ X0

∣∣ z ∈W 1,2([0, 1];C2), z2(0) = z2(1) = 0
}
.



2.3. LINEARIZED MODEL – ABSTRACT FRAMEWORK 61

It is well-known that AX0 generates a unitary group TX0 . This can e.g. be argued by
general results on port-Hamiltonian systems; in particular it suffices to show that AX0

and −AX0 are dissipative, see [67, Ch. 7], which easily follows from the fact that P1 =
P ∗1 and integration by parts and the boundary conditions incorporated in the domain.
Hence, AX0 = −(AX0)∗ by Stone’s theorem and since AX0 has compact resolvent (due
to a Sobolev embedding argument, see Theorem 1.4.3) the spectrum of AX0 consists
only of countably many eigenvalues tending to ∞ with corresponding eigenvectors
(ψn)n∈Z forming an orthonormal basis, see Proposition 1.5.1. By a standard calculation
one can compute both the eigenvalues λn = iσn and the eigenfunctions ψn, n ∈ Z, as
defined in (2.21).
Since AX0

µ is a bounded, dissipative perturbation1 of AX0 , AX0
µ generates a contraction

semigroup as well and has compact resolvent. Computing the eigenvalues of AX0
µ in a

similar fashion yields the above values for θ±n , n ∈ N.
The part2 of AX0 in X = X0	[( 1

0 )] equals A and since the eigenfunction corresponding
to the eigenvalue 0 of AX0

µ is ψ0 =
√

2
g ( 1

0 ), it follows that Aµ generates a contraction
semigroup. This also yields the representation of T0

t z. If µ ∈ (0, πc), then it is obvious
from the representation of the eigenvalues that (Tµt )t≥0 is exponentially stable with
ω0(Tµ) = −µ.

In order to complete the proof of Theorem 2.2.1 we study the PDE (2.19) in combin-
ation with two observation operators which appear in the definition of the operator T
in (2.18), that is we investigate the input-output behaviour of the linear systems

ẋ = Aµx+Aµbη,

vi = Cix := 1
2(x1(1) + (−1)ix1(0))

(Σi)

for i = 1, 2, where Ci : D(A) → C. This kind of systems is sometimes called distrib-
uted/boundary control system, see [110, Definition 5.2.14 & Theorem 5.2.16] for the
respective representations. Whereas it is essential to show that the associated input-
output map u 7→ vi is bounded with respect to L∞-norms, we first restrict ourselves to
the classical case of boundedness with respect to L2-norms. In Lemma 2.3.3 below we
prove that (Σi) is regular and well-posed. This then implies by definition, cf. [110,115],
that the input-output map

Fi :W 1,∞
0 ([0,∞);C) ∩ L2

ω([0,∞);C)→ L2
ω(0,∞;C),

η 7→
(
t 7→ Ci

∫ t

0
(Tµ)−1(t− s)Bη(s) ds

)
,

(2.22)

1We say that A is a bounded perturbation of B, if A = B + C for a bounded operator C.
2The part of an operator B : D(B) ⊆ Y → Y in Z ⊆ Y is B|Z : D(B|Z) ⊆ Z → Z with

D(B|Z) = { z ∈ D(B) ∩ Z | Bz ∈ Z }.
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where
W 1,∞

0 ([0,∞);K) =
{
f ∈W 1,∞([0,∞);K)

∣∣ f(0) = 0
}
,

is well-defined for all ω > ω0(Tµ) = −µ and can be continuously extended to the space
L2
ω([0,∞);C) (here, we identify Ci with a suitable extension, see [115, Section 5] for

details). Therefore, the transfer function of (Σi) can be defined by representing Fi in
terms of the Laplace transform L(·), that is

L(vi)(s) = L(Fiη)(s) = Gi(s)L(η)(s), (2.23)

where Gi : Cω → C, i = 1, 2.
In the following two lemmas, we prove admissibility and well-posedness of system (Σi)
for i = 1, 2 as well as a representation of the transfer functions. The subsequent result
can be shown in several standard ways; for the convenience of the reader we include
the proof.

Lemma 2.3.2. Let µ ∈ [0, πc). Consider Aµ and (Tµt )t≥0 from Proposition 2.3.1, and
let b =

( 0
−1
)
. Then we have that

1. B = Aµb ∈ L (C, X−1) is an Lp-admissible control operator for all p ∈ [2,∞];

2. Ci ∈ L (D(A),C) defined in (Σi) are L2-admissible observation operators for
i = 1, 2.

For µ ∈ (0, πc), the operators B, C1 and C2 are even infinite-time admissible.

Proof. First note that Tµt is boundedly invertible for any t ≥ 0. Therefore, to show
L2-admissibility of B, by [116, Theorem 5.2.2] it suffices to show that

sup
Reλ=α

‖(λI −Aµ)−1B‖X <∞

for some α > ω0(Tµ) = −µ. As Aµ and B = Aµb are bounded perturbations of A0 and
A0b, resp., it moreover suffices to consider the case µ = 0; cf. e.g. [116, Rem. 2.11.3.]
and note that any bounded operator is L2-admissible. By the resolvent identity

(λI −A0)−1A0b = −b+ λ(λI −A0)−1b,

and as ω0(T0) = 0 we may restrict ourselves to showing that ‖λ(λI − A0)−1b‖ is
uniformly bounded for Reλ = 1. This is equivalent to show that the solution z = zλ of
the ordinary differential equation (λI −Aµ)z = b satisfies that supReλ=1 ‖λzλ‖X <∞,
which can be shown by an elementary calculation. Thus, B is L2-admissible for (Tµt )t≥0
and hence Lp-admissible for all p ∈ [2,∞] by the nesting property of Lp spaces. For
µ > 0, the semigroup is exponentially stable by Proposition 2.3.1, and in this case
admissibility and infinite-time admissibility coincide, see e.g. [66, Lemma 2.9].
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To show that Ck is L2-admissible for k = 1, 2, it suffices to consider µ = 0 and show L2-
admissibility of C̃k : D(A)→ C2 defined by C̃kx = x(k − 1) for (T0

t )t≥0 — in fact this
is well-known for the one-dimensional wave equation. For completeness we provide a
short argument for C̃2; the assertion for C̃1 follows analogously. Let x ∈ X1 and write,
in virtue of Proposition 2.3.1, x =

∑
n∈Z x

nψn. Then, using C̃2ψn =
√

2
g

( (−1)n
0

)
and

again Proposition 2.3.1, we obtain that∫ t

0
|C̃2T0

tx|2 dt ≤ 2
√

2
g

∫ t

0

∣∣∣∣∣∑
n∈N

eiσ2ntx2n

∣∣∣∣∣
2

+

∣∣∣∣∣∑
n∈N

eiσ2n+1tx2n+1

∣∣∣∣∣
2

dt.

Choosing t = 2/c and recalling that σn = nπc we infer, using Parseval’s identity, that∫ t

0
|C̃2T0

tx|2 dt ≤ K‖x‖2X

for some K > 0. Thus C̃k is admissible for (T0
t )t≥0 and since C1 and C2 are projection

of the sum of two admissible operators, they are admissible as well. Since admissibility
is preserved under bounded perturbations of the generator, it follows that Ck is also
L2-admissible for (Tµt )≥0.

Lemma 2.3.3. Let µ ∈ [0, πc) and ω > −µ. Consider (Aµ, B,Ci) with Aµ, B =
Aµb, Ci, i = 1, 2, as in Lemma 2.3.2. Then the following assertions hold.

1. (Aµ, B,Ci) is well-posed and regular for i = 1, 2.

2. The transfer functions Gi : Cω → C of (Σi), i = 1, 2, are given by, for λ ∈ Cω,

G(λ) := G1(λ) = −2

√
h0

g

√
λ

λ+ 2µ tanh
(√

λ(λ+ 2µ)
2c

)
(2.24)

and
G2(λ) = 0.

Proof. To show that the system is well-posed we construct functions G̃i : Cω → C
which satisfy

G̃i(λ1)− G̃i(λ2) = Ci((λ1I −Aµ)−1 − (λ2I −Aµ)−1)B

for all λ1, λ2 ∈ Cω. To this end, using B = Aµb we compute

x := (λI −Aµ)−1Bη = −b+ λ(λI −Aµ)−1bη.

Thus it remains to solve the linear ordinary differential equation λz = Aµz + b, the
solution z(ζ) of which is given by

z(ζ) = h0

θ

cosh
(
θ
c2

)
− 1

sinh
(
θ
c2

)
 cosh

(
θζ
c2

)
−λgθ sinh

(
θζ
c2

)+

 − sinh
(
θζ
c2

)
λg
θ

(
cosh

(
θζ
c2

)
− 1
) ,
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where θ = c
√
λ(λ+ 2µ). Therefore, x = −b + λz and computing x1(1) + (−1)ix1(0)

gives that G̃i can be chosen as Gi defined in the statement of the Lemma. Since Gi are
proper and the limits limReλ→∞Gi(λ) exist, the systems (Aµ, B,Ci) are well-posed
and regular. This also implies that (2.23) holds, which shows that Gi is the transfer
function of the system.

In the next step we obtain a series representation for G(λ) and its inverse Laplace
transform, which is a sum of an integrable function and a measure of bounded total
variation. The latter set is denoted by M([0,∞)) and the total variation by ‖f‖M([0,∞))
for f ∈ M([0,∞)); we refer to the textbook [41] for more details.

Lemma 2.3.4. Let µ ∈ (0, πc), ω > −µ and σn = nπc as in (2.20). The transfer
function G : Cω → C defined in (2.24) can be represented as

G(λ) = −8h0
∑
n∈N

Gn(λ) = −8h0
∑

n∈2N0+1

λ

λ2 + 2µλ+ σ2
n

,

is bounded and analytic with inverse Laplace transform h = L−1(G) given by a measure
of bounded total variation ‖h‖M([0,∞)). Moreover,

h = hL1 + 1
4chδ,

where

hL1(t) := e−µt(t2f2(t) + tf1(t) + f0(t)), t ≥ 0,

hδ := δ0 − 2e−µ/cδ1/c + 2
∑
k∈N

(
e−2kµ/cδ2k/c − e−(2k+1)µ/cδ(2k+1)/c

)
,

for some f0, f1, f2 ∈ L∞([0,∞);R), and δt denotes the Dirac delta distribution at t ∈ R.

Proof. By Lemma 2.3.3, G is bounded and analytic on Cω. Let us first show the series
representation of G. Recall that

tanh(z) = 8z
∞∑
k=1

1
π2(2k − 1)2 + 4z2 , z /∈ iπ(1 + 2Z),

(which can be obtained from the representation of cosh as an infinite product and
differentiation of the composition log ◦ cosh). Using this in (2.24) gives the desired
formula for G.
We now study the inverse Laplace transform of G; in particular, Gn(λ) = 0 for n ∈ 2N0.
It is not difficult to see that G is also continuous on C0 and that the series converges
locally uniformly along the imaginary axis. This implies that the partial sums converge
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to α 7→ G(iα) in the distributional sense when considered as tempered distributions on
iR. By continuity of the Fourier transform F(·), this gives that the series

−8h0
∑
n∈N
F−1(Gn(i·)) = −8h0

∑
n∈N
L−1(Gn)

converges to h = F−1(G(i·)) = L−1(G) in the distributional sense3. It remains to
study L−1(Gn) and the limit of the corresponding sum. By well-known rules for the
Laplace transform we have

L−1(Gn)(t) = e−µtgn(t), t ≥ 0,

where
gn(t) = cos(φnt)− µφ−1

n sin(φnt), n ∈ 2N0 + 1.

The idea of the proof is to use well-known Fourier series that are related to the fre-
quencies σn in contrast to the ‘perturbed’ harmonics sinφn and cosφn. We write

gn(t) = [cos(φnt)− cos(σnt)] + µ

φn
[sin(σnt)− sin(φnt)] + cos(σnt) + µ

φn
sin(σnt)

In the following we will use the identity σ2
n − φ2

n = µ2 from (2.20) several times. By
the mean value theorem there exist αn, βn ∈ [φn, σn] and ωn ∈ [αn, σn] such that

cos(φnt)− cos(σnt) = t(σn − φn) sin(αnt) = µ2t sin(αnt)
σn + φn

,

sin(αnt) = t(αn − σn) cos(ωnt) + sin(σnt),

sin(σnt)− sin(φnt) = t(σn − φn) cos(βnt) = µ2t cos(βnt)
σn + φn

.

Hence,

gn(t) = t2
µ2(αn − σn)
σn + φn

cos(ωnt) + µ3t

φn(σn + φn) cos(βnt) + cos(σnt)

+
[
t(σn − φn) + µ

φn

]
sin(σnt)

The coefficient sequences of the first two terms in the sum,

an := µ2αn − σn
σn + φn

, bn := µ3

φn(σn + φn) ,

are absolutely summable sequences since

0 > an > µ2φn − σn
σn + φn

= −µ4

(σn + φn)2 .

3Here we identify functions on [0,∞) with their trivial extension to R and use the relation between
Fourier and Laplace transform.
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Let us further rewrite the coefficient of the last term, recalling that σ2
n − φ2

n = µ2

implies that 1
σn+φn −

1
2σn = µ2

2σn(σn+φn)2 , and hence

t(σn − φn) = µ2t

σn + φn
= µ4t

2σn(σn + φn)2 + µ2t

2σn
,

µ

φn
= µ

φn
+ µ

σn
− µ

σn
= µ

σn
+ µ3

σnφn(σn + φn) .

Thus, with cn = µ4

2σn(σn+φn)2 and dn = µ3

σnφn(σn+φn) , which define absolutely summable
sequences, we have

gn(t) = t2an cos(ωnt) + tbn cos(βnt) + [tcn + dn] sin(σnt) + cos(σnt)

+ (µt+ 2) µ

2σn
sin(σnt).

Let us study the last two terms of the sum
∑
n∈2N0+1 gn(t) in more detail: Since

σn = nπc, we have by basic facts on Fourier series that 4c
∑
n∈2N0+1 σ

−1
n sin(σnt)

converges to

H0(t) =
{

1, t ∈ [2k/c, (2k + 1)/c), k ∈ N0
−1, t ∈ [(2k + 1)/c, (2k + 2)/c), k ∈ N0

for almost all t ≥ 0. Therefore, for almost all t ≥ 0 we have∑
n∈2N0+1

µ

2σn
sin(σnt) = µ

8cH0(t).

Since the coefficients µ
σn

are square summable, the series even converges in L2 on any
bounded interval and thus particularly in the distributional sense on [0,∞).
Finally, note — by well-known facts on the Fourier series of Dirac delta distributions —
that 4c

∑
n∈2N0+1 cos(σn·) converges to the 2c−1-periodic extension of (δ0−2δ1/c+δ2/c)

in the distributional sense as we have

lim
N→∞

〈
4c

N∑
n=1,n odd

cos(σn·), ψ
〉

= lim
N→∞

∫ 2
c

0
4c

N∑
n=1,n odd

cos(σns)ψ(s) ds

= 〈δ0 − 2δ1/c + δ2/c, ψ〉

for any function ψ ∈ C∞([0, 2
c ];R). Altogether, since multiplying with e−µt preserves

the distributional convergence, this yields that∑
n∈2N0+1

L−1(Gn)(·) =
∑

n∈2N0+1
e−µ·gn(·) = hL1(·) + 1

4chδ

with hL1 , hδ as in the assertion and where the functions

f2(t) :=
∑

n∈2N0+1
an cos(ωnt)
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f1(t) := µ2

8cH0(t) +
∑

n∈2N0+1
bn cos(βnt) + cn sin(σnt),

f0(t) := µ

4cH0(t) +
∑
n∈N

dn sin(σnt), t ≥ 0,

are bounded since an, bn, cn, dn are absolutely summable sequences. By this represent-
ation, hL1 ∈ L1([0,∞);R) and can thus be identified with an element in M([0,∞)),
while obviously hδ ∈ M([0,∞)) as the total variation ‖hδ‖M([0,∞)) = 1+2

∑
k∈N e−µk/c

is finite.

Remark 2.3.5. The assumption µ ∈ (0, πc) is not a loss of generality, but it simplifies
the computations. For arbitrary µ > 0, there exists N ∈ N such that σn < µ for all
n ≤ N and the spectrum of Aµ consists of the eigenvalues

θ±n := −µ±
√
µ2 − σ2

n, n ≤ N

and
θ±n := −µ± iφn, n > N.

Note that Re θ±n < 0 for all n ∈ N, and hence the semigroup is still exponentially stable.
However, the calculations in the previous results become more involved.

In order to provide some intuition about the former calculations, we show in Fig 2.5
how the impulse-response looks like.

2.4 The operator T
We show next some properties of the operator T .

Proposition 2.4.1. Let x0 ∈ D(A) as defined in (2.9). Then the operator T given
by (2.18), (2.19) is well-defined from W 1,∞

0 ([0,∞);R) to L∞([0,∞);R) and there exist
k1, k2, k3, k4 > 0 such that for every η ∈W 1,∞

0 ([0,∞);R) we have

‖T (η)‖∞ ≤ k1(‖x0‖X + ‖Aµx0‖X + ‖η‖∞)
+ k2(‖x0‖X + ‖η‖∞)2 + k3(‖x0‖2X + ‖Aµx0‖2X)
+ k4‖Aµx0‖X‖η‖∞.

Moreover, T can be extended to an operator defined from the space C0([0,∞);R) to
L∞loc([0,∞);R), which is locally Lipschitz continuous in the sense of condition (N4) c)
and the above estimate extends to η ∈ C0([0,∞);R) ∩ L∞([0,∞);R).

Proof. Recall that the (mild) solution to the PDE (2.19) is given by

x(t) = Tµt x0 +
∫ t

0
(Tµ|−1)t−sAµbη(s) ds , t ≥ 0. (2.25)
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Figure 2.5: Approximation of the distributional part of the impulse-response and the
remaining non-distributional part.

By Lemma 2.3.2, B = Aµb ∈ L (C, X−1) is infinite-time L∞-admissibile, hence x ∈
C([0,∞);X) and there exists k̃ > 0 such that

‖x(t)‖X ≤ k̃(‖x0‖X + ‖η‖L∞(0,t;R))

for all t ≥ 0, any x0 ∈ X and η ∈ C0([0,∞);R). Furthermore, since x0(·) and η(·) are
real-valued we have that x, as a function in time and space, is real-valued as well.
Let Ci ∈ L (D(A),C) denote the operators from (Σi) and define the operators

M : X → R, x 7→ 2µh0

mT

∫ 1

0
x2(ζ) dζ ,

N : X → R, x 7→ 2µ
mT

∫ 1

0
x1(ζ)x2(ζ) dζ .

Then T defined in (2.18) can be written as

T = T1 + T2

where, for η ∈ C0([0,∞);R),

T1(η)(t) = g

2mT

(
C1(x(t))

)(
2h0 + C2(x(t))

)
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T2(η)(t) =M(x(t)) +N (x(t))− 2µh0

mT
η(t), t ≥ 0,

and x is given by (2.25). While it is obvious that T2 is well-defined on C0([0,∞);R),
this is not yet clear for T1.
In order to estimate ‖T (η)‖∞, we first study the operator T2. From the definition of
M and N we readily get for x ∈ X that

|M(x)| ≤ 2µh0

mT
‖x‖X and |N (x)| ≤ µ

mT
‖x‖2X .

Hence, for η ∈ C0([0,∞);R) ∩ L∞([0,∞);R) we obtain

‖T2(η)‖∞ ≤
2µh0

mT
k̃(‖x0‖X + ‖η‖∞) + µ

mT
k̃2(‖x0‖X + ‖η‖∞)2.

In the remainder of the proof we consider T1. Let η ∈W 1,∞
0 ([0,∞);R)∩L2([0,∞);R)

in the following. First note that C2(x(·)) only depends on x0 and is hence constant as
a function of η. In fact, by Lemma 2.3.3 we have that g2(λ) = 0 which implies that

C2(x(·)) = C2Tµ(·)x0,

which is well-defined since x0 ∈ D(Aµ) and moreover bounded, i.e.,

|C2(x(t))| ≤ ‖C2‖L (D(A),R)‖Tµt Aµx0‖X ≤ ‖C2‖L (D(A),R)M‖Aµx0‖X

with M = supt≥0 ‖T
µ
t ‖. Analogously, C1Tµ(·)x0 is bounded by

‖C1‖L (D(A),R)M‖Aµx0‖X .

Using the input-output map F1 defined in (2.22) we may infer from the variation of
constants formula that

C1(x(·)) = C1Tµ(·)x0 + F1(η)(·).

It remains to investigate whether the real-valued extension of F1 to L2, which we again
denote by F1, that is the map

F1 :W 1,∞
0 ([0,∞);R) ∩ L2([0,∞);R)→ L2([0,∞);R),

η 7→
(
t 7→ C1

∫ t

0
(Tµ|−1)t−sBη(s) ds

)
,

is bounded in the L∞-norms. By Lemma 2.3.3, the transfer function G is an element
of H∞(C+;C) and thus

L(F1(η))(λ) = H(λ) · L(η)(λ), λ ∈ C+.
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Therefore, there exists a tempered distribution h = L−1(G) such that

F1(η) = h ∗ η (2.26)

for Schwartz-class functions η with support in [0,∞) — here and in the following we
extend functions defined on [0,∞) to R by zero. By Lemma 2.3.4, h can be identified
with a Radon measure on [0,∞) with bounded total variation ‖h‖M([0,∞)). Hence, by
a variant of Young’s integral inequality, F1(η) ∈ L∞([0,∞);R) and

‖F1(η)‖∞ ≤ ‖h‖M([0,∞)) ‖η‖∞ (2.27)

for all Schwartz functions η supported in [0,∞); we refer to [41, Section 2.5.4] for
details on convolution operators with h ∈ M([0,∞)). Thus, F1 (and hence also T1
and T ) can, in the form (2.26), be extended to C0([0,∞);R) and we find that for
η ∈ C0([0,∞);R) ∩ L∞([0,∞);R)

‖T1(η)‖∞ ≤
g

2mT
(‖C1Tµ(·)x0‖∞ + ‖h‖M(R≥0) ‖η‖∞)(2h0 + ‖C2Tµ(·)x0‖∞)

≤ k3‖Aµx0‖2X + k4(‖Aµx0‖X + 1)‖η‖∞ + k5‖Aµx0‖X

for some k3, k4, k5 > 0. Finally, it remains to show that T satisfies condition (N4) c).
To this end, first observe that T (η)−N (x), where x is as in (2.25), is linear in η and
hence trivially locally Lipschitz. To show (N4) c) for N (x) fix t ≥ 0 and ξ ∈ C([0, t];R)
as well as ηi ∈ C0([0,∞);R) with ηi|[0,t] = ξ and |ηi(s)− ξ(t)| < 1 for all s ∈ [t, t+ 1]
and i = 1, 2. Let xi denote the mild solution as in (2.25) corresponding to η = ηi for
i = 1, 2. Then, for s ∈ [t, t+ 1], we have

x1
1(s)x1

2(s)− x2
1(s)x2

2(s) =
(
x1

1(s)− x2
1(s)

)
x2

2(s) + x1
1(s)

(
x1

2(s)− x2
2(s)

)
and hence

|N (x1)(s)−N (x2)(s)| ≤ µ

mT
‖x1(s)− x2(s)‖X

(
‖x1(s)‖X + ‖x2(s)‖X

)
≤ µ

mT
k̃2‖η1 − η2‖∞

(
2‖x0‖X + ‖η1|[0,t+1]‖∞ + ‖η2|[0,t+1]‖∞

)
.

Clearly, ‖ηi|[0,t+1]‖∞ ≤ ‖ξ‖∞ + 1 and thus the assertion is true for τ = δ = 1 and

c = 2µ
mT

k̃2 (‖x0‖X + ‖ξ‖∞ + 1) .

Remark 2.4.2. Although BIBO stability for linear systems is a well-known topic, it
may be involved to check this property, see e.g. [1]. An inspection of the proof of Pro-
position 2.4.1 reveals that it required a lot of effort to show that the linear system (Σi)
is BIBO stable, that is, (essentially) bounded inputs are taken to (essentially) bounded
outputs, and moreover, that the bound is uniform in time. The reason is that it is
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difficult to determine whether a function which is bounded and analytic in the open
right half-plane is the Laplace transform of a measure with bounded total variation.
However, we like to remark that the (closure of the) space of measures consisting of
the L1-induced measures and the Dirac measures is also well-known in the literature,
see [27].

2.5 Outlook
In the present chapter we have shown that the funnel controller (2.12) is feasible for the
moving water tank system (2.10) which includes the linearized Saint-Venant equations.
We stress that the system (2.10) is nonlinear and the operators involved in it are
unbounded. Even in the linearized case the motion of the fluid affects the dynamics
of the overall system which leads to the effect of sloshing. That such impulses at
discrete time points indeed appear can be seen by the part hδ of the inverse Laplace
transform of the transfer function derived in Lemma 2.3.4, which is an exponentially
decaying infinite sum of Dirac delta distributions. A careful inspection of the proof
of Proposition 2.4.1 then reveals that the convolution of this sum with η, i.e., hδ ∗ η,
explicitly appears in ÿ; the decaying impulses can be seen in Fig. 2.3. Overall, the
funnel controller is able to handle sloshing as shown in Theorems 2.2.1 and 2.2.2.
We also like to point out that the controller (2.12) requires that the derivative of the
output is available for control. This may not be true in practice, and it may even
be hard to obtain suitable estimates of the output derivative. This drawback may be
resolved by combining the controller (2.12) with a funnel pre-compensator as developed
in [17,18], which results in a pure output feedback.
Several extensions of the moving water tank system (2.10) may be considered in future
research, such as a slope at the bottom of the tank, the interconnection of the tank with
a truck as in [35] and, of course, the general nonlinear Saint-Venant equations (2.1) as
well as the two-dimensional case.
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3 Adaptive control in the presence of
infinite-dimensional internal
dynamics

We study output trajectory tracking for uncertain nonlinear systems by funnel control.
As a crucial assumption, we require that the internal dynamics of the system, typic-
ally arising from a PDE in our framework, are bounded-input, bounded-output (BIBO)
stable.
The present chapter is devoted to systems which have a relative degree, but in the
presence of internal dynamics that are modeled by a PDE system. We generalize the
findings from [13] and develop a general system class containing PDE models for which
funnel control is feasible; this result is presented in Section 3.3. As an example, we
consider a system internally driven by a transport equation, and illustrate the funnel
controller by a simulation. Some conclusions are given in Section 3.4.

3.1 System class
In the remainder of the present chapter we consider abstract differential equations of
the form

y(r)(t) = f
(
d(t), T (y, ẏ, . . . , y(r−1))(t)

)
+ Γ

(
d(t), T (y, ẏ, . . . , y(r−1))(t)

)
u(t)

y|[−h,0] = y0 ∈W r−1,∞(−h, 0;Rm),
(3.1)

where h > 0 is the “memory” of the system, r ∈ N is the relative degree. This
differential equation typically comes by differentiating the output of a system until the
input u does not vanish from the equation. In fact, the number of times that one needs
to differentiate the output so that this happens, goes by the name aforementioned, that
is, relative degree. Moreover, we assume

(N1) the disturbance satisfies d ∈ L∞([0,∞);Rp), p ∈ N;

(N2) f ∈ C(Rp × Rq;Rm), q ∈ N;

(N3) the high-frequency gain matrix function Γ ∈ C(Rp×Rq;Rm×m) satisfies Γ(d, η)+
Γ(d, η)> > 0 for all (d, η) ∈ Rp × Rq;
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(N4) T : C([−h,∞);Rrm) → L∞loc([0,∞);Rq) is an operator with the following prop-
erties:
a) T maps bounded trajectories to bounded trajectories, i.e, for all c1 > 0, there

exists c2 > 0 such that for all ζ ∈ C([−h,∞);Rrm),

sup
t∈[−h,∞)

‖ζ(t)‖ ≤ c1 ⇒ sup
t≥0
‖T (ζ)(t)‖ ≤ c2,

b) T is causal, i.e, for all t ≥ 0 and all ζ, ξ ∈ C([−h,∞);Rrm),

ζ|[−h,t) = ξ|[−h,t) ⇒ T (ζ)|[0,t)
a.e.= T (ξ)|[0,t).

c) T is locally Lipschitz continuous in the following sense: for all t ≥ 0 and
all ξ ∈ C([−h, t];Rrm) there exist τ, δ, c > 0 such that, for all ζ1, ζ2 ∈
C([−h,∞);Rrm) with ζi|[−h,t] = ξ and ‖ζi(s)− ξ(t)‖ < δ for all s ∈ [t, t+ τ ]
and i = 1, 2, we have∥∥(T (ζ1)− T (ζ2)) |[t,t+τ ]

∥∥
∞ ≤ c

∥∥(ζ1 − ζ2)|[t,t+τ ]
∥∥
∞ .

In [11, 50, 59, 61, 62] it is shown that the class of systems (3.1) encompasses linear
and nonlinear systems with strict relative degree r and BIBO stable internal dynamics.
The operator T allows for infinite-dimensional (linear) systems, systems with hysteretic
effects or nonlinear delay elements, and combinations thereof. Note that T is typically
the solution operator corresponding to a (partial) differential equation which describes
the internal dynamics of the system. The linear infinite-dimensional systems that are
considered in [61, 62] are in a special Byrnes-Isidori form that is discussed in detail
in [63]. While the internal dynamics in these systems is allowed to correspond to a
strongly continuous semigroup, all other operators are assumed to be bounded and to
satisfy additional restrictive conditions. In contrast to this, in the present chapter we
consider nonlinear equations which, in particular, involve unbounded operators. This
complements and generalizes the findings in [13].

3.2 Funnel control
The objective is to design an output error feedback

u(t) = F
(
t, e(t), ė(t), . . . , e(r−1)(t)

)
,

where yref ∈ W r,∞([0,∞);Rm) is a reference signal, which applied to (3.1) results in
a closed-loop system where the tracking error e(t) := y(t) − yref(t) evolves within a
prescribed performance funnel

Fϕ := { (t, e) ∈ [0,∞)× Rm | ϕ(t)‖e‖ < 1 } , (3.2)
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which is determined by a function ϕ belonging to

Φr :=

ϕ ∈ Cr([0,∞);R)

∣∣∣∣∣∣
ϕ, ϕ̇, . . . , ϕ(r) are bounded,
ϕ(τ) > 0 for all τ > 0,
and lim infτ→∞ ϕ(τ) > 0

 .

Furthermore, all signals u, e, ė, . . . , e(r−1) should remain bounded.
The funnel boundary is given by 1/ϕ. The case ϕ(0) = 0 is explicitly allowed and puts
no restriction on the initial value since ϕ(0)‖e(0)‖ < 1; in this case the funnel boundary
1/ϕ has a pole at t = 0.
An important property is that each performance funnel Fϕ with ϕ ∈ Φr is bounded
away from zero, because boundedness of ϕ implies existence of λ > 0 such that
1/ϕ(t) ≥ λ for all t > 0. The funnel boundary is not necessarily monotonically decreas-
ing, while in most situations it is convenient to choose a monotone funnel. However,
there are situations where widening the funnel over some later time interval might
be beneficial, for instance in the presence of periodic disturbances or strongly varying
reference signals. For typical choices of funnel boundaries see also [56, Section 3.2].
It was shown in [11] that the funnel controller

u(t) = −k1(t)
(
ė(t) + k0(t)e(t)

)
,

e0(t) = e(t) = y(t)− yref(t),
e1(t) = ė0(t) + k0(t) e0(t),
e2(t) = ė1(t) + k1(t) e1(t),

...

er−1(t) = ėr−2(t) + kr−2(t) er−2(t),

ki(t) = 1
1− ϕi(t)2‖ei(t)‖2

, i = 0, . . . , r − 1,

(3.3)

where
ϕ0 ∈ Φr, ϕ1 ∈ Φr−1, . . . , ϕr−1 ∈ Φ1, (3.4)

achieves the control objective described above for any system which belongs to the
class (3.1). We stress that while the derivatives ė0, . . . , ėr−2 appear in (3.3), they only
serve as short-hand notations and may be resolved in terms of the tracking error, the
funnel functions and their derivatives, cf. [11, Remark 2.1].
The existence of solutions of the initial value problem resulting from the application of
the funnel controller (3.3) to a system (3.1) must be treated carefully. By a solution
of (3.3), (3.1) on [−h, ω) we mean a function y ∈ Cr−1([−h, ω);Rm), ω ∈ (0,∞], with
y|[−h,0] = y0 such that y(r−1)|[0,ω) is weakly differentiable and satisfies the differential
equation in (3.1) with u defined in (3.3) for almost all t ∈ [0, ω); y is called maximal,
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if it has no right extension that is also a solution. Existence of solutions of functional
differential equations has been investigated in [61] for instance.
The following result is from [11]. Note that in [11] a slightly stronger version of con-
ditions (N3) and (N4) c) is used. However, the proof does not change; in particular,
regarding (N4) c), the existence part of the proof in [11] relies on a result from [59]
where the version from the present chapter is used.

Theorem 3.2.1. Consider a system (3.1) with properties (N1)–(N4) for some r ∈
N and h > 0. Let yref ∈ W r,∞([0,∞);Rm), ϕ0, . . . , ϕr−1 as in (3.4) and y0 ∈
W r−1,∞([−h, 0];Rm) be an initial condition such that e0, . . . , er−1 defined in (3.3) sat-
isfy

ϕi(0)‖ei(0)‖ < 1 for i = 0, . . . , r − 1.

Then the funnel controller (3.3) applied to (3.1) yields an initial-value problem which
has a solution, and every solution can be extended to a maximal solution y : [−h, ω)→
Rm, ω ∈ (0,∞], which has the following properties:

1. The solution is global, i.e., ω =∞.

2. The input u : [0,∞) → Rm, the gain functions k0, . . . , kr−1 : [0,∞) → R and
y, ẏ, . . . , y(r−1) : [0,∞)→ Rm are bounded.

3. The functions e0, . . . , er−1 : [0,∞) → Rm evolve in their respective performance
funnels and are uniformly bounded away from the funnel boundaries in the sense

∀ i = 0, . . . , r − 1 ∃ εi > 0 ∀ t > 0 : ‖ei(t)‖ ≤ ϕi(t)−1 − εi.

3.3 A class of operators for funnel control
While the class of functional differential equations (3.1) appears to be rather general
and funnel control is feasible for these systems by Theorem 3.2.1, it is not clear exactly
which kind of systems that contain PDEs are encompassed by the class (3.1). In
this section we develop a description for a class of operators T which include certain
BIBO stable linear PDEs and satisfy condition (N4). The aforementioned PDEs may
either be coupled with a nonlinear observation operator which is polynomially bounded,
or with a linear observation operator which is possibly unbounded, but with respect
to which the system is regular well-posed and the inverse Laplace transform of the
corresponding transfer function defines a measure of bounded total variation. This
structure is illustrated in Fig. 3.1.
We give a precise definition of the operator class in the following.
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ẋ(t) = Ax(t) +Bζ(t), x(0) = x0

T̃ S C

F (z1, z2, z3)

ζ

T̃ (ζ) = z1

x
x

S(x) = z2 Cx = z3

T (ζ)

Figure 3.1: Structure of an operator T ∈ T `,qh .

Definition 3.3.1. Let h ≥ 0 and `, q ∈ N. Then T `,qh is defined as the set of all
operators

T : C([−h,∞);R`)→ L∞loc([0,∞);Rq)

which, for any ζ ∈ C([−h,∞);R`), are given by

T (ζ)(t) = F
(
T̃ (ζ)(t), S(x)(t), (Cx)(t)

)
, t ≥ 0,

where x, for some x0 ∈ D(A), is the mild solution of the PDE

ẋ(t) = Ax(t) +Bζ(t), x(0) = x0, (3.5)

and

(P1) A : D(A) ⊆ X → X is the generator of a bounded C0-semigroup in X, X a real
Hilbert space, and B ∈ L (R`, X−1) is an L2-admissible control operator such
that ẋ(t) = Ax(t)+Bζ(t) is BIBO stable, i.e., there exists γ ∈ C1([0,∞);R) such
that for all ζ ∈ C([−h,∞);R`) the mild solution of (3.5) satisfies

∀ t ≥ 0 : ‖x(t)‖X ≤ γ(‖ζ|[−h,t]‖∞);

(P2) F ∈ C1(Rq1 × Rq2 × Rq3 ;Rq);

(P3) T̃ : C([−h,∞);R`) → L∞loc([0,∞);Rq1) satisfies condition (N4) in Section 3.1
with ` = rm;

(P4) S : X → Rq2 is a Fréchet differentiable operator with continuous Fréchet deriv-
ative and satisfies

∀x ∈ X : ‖S(x)‖ ≤ p(‖x‖X)
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for some polynomial p(s);

(P5) C ∈ L (D(A),Rq3) is an L2-admissible observation operator such that the system

ẋ(t) = Ax(t) +Bζ(t),
ν(t) = Cx(t)

is well-posed, i.e., for some ω ∈ R the transfer function G : Cω → Cq3×`, which
is uniquely determined (up to a constant) by

1
t− s

(G(s)−G(t)) = C
(
(sI −A)−1(tI −A)−1)B

for all s, t ∈ Cω, s 6= t, exists and is proper, that is sups∈Cω ‖G(s)‖ < ∞.
Furthermore, we require that the system is regular, i.e., limRe s→∞G(s)v exists
for all v ∈ C`, and we require that G satisfies that the inverse Laplace transform
of its components hij = L−1(Gij) is a real-valued measure with bounded total
variation for all i = 1, . . . , q3 and j = 1, . . . , `.

Remark 3.3.2.

1. We note that the notion of admissible operators is well-known in infinite-dimen-
sional linear systems theory with unbounded control and observation operators,
see e.g. [116], and is motivated by interpreting a PDE on a larger space in order
to define solutions. Further, note that any operator T as given in Definition 3.3.1
with the properties (P1)–(P5) is indeed well-defined from C([−h,∞);R`) to
L∞loc([0,∞);Rq).

2. We emphasize that the assumption of BIBO stability of (3.5) as in (P1) is quite
weak. A sufficient condition for this is input-to-state stability, which has been
introduced by Sontag [108]. This concept was studied extensively for nonlinear
systems, see [109], and for systems containing PDEs it is investigated in [66,89].
However, the state of an input-to-state stable system converges to zero whenever
the input is zero, which is not required for BIBO stable systems considered here.

In the following main result we show that any operator which belongs to the class T `,qh

satisfies the condition (N4) in Section 3.1.

Theorem 3.3.3. Any T ∈ T `,qh satisfies condition (N4) in Section 3.1.

Proof. Step 1 : We show property (N4) a). To this end, observe that by continuity of F
it suffices to show this for the maps ζ 7→ T̃ (ζ), ζ 7→ S(x) and ζ 7→ Cx. By (P3), T̃
satisfies (N4) a) and by (P2) together with (P1) we have

‖S(x)(t)‖ ≤ p
(
‖x(t)‖X

)
≤ p (γ(‖ζ‖∞))
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for all bounded ζ ∈ C([−h,∞);R`). It remains to show that Cx is bounded. From
(P5) the system (A,B,C) is regular well-posed, from which it follows by the variation
of constants formula that, see [115] for instance,

Cx(·) = CTA(·)x0 + (h ∗ ζ)(·),

where (TAt )t≥0 is the C0-semigroup generated by A and h = (hij)i=1,...,q3;j=1,...,` is the
inverse Laplace transform of the transfer function G. By assumption we have that
h ∈ M([0,∞);Rq3×`). Thus, for all t ≥ 0,

‖Cx(t)‖ ≤ ‖CTAt x0‖+ ‖(h ∗ ζ)(t)‖
≤ ‖C‖L (D(A),Rq3 )‖ATAt x0‖+ ‖h‖M([0,∞))‖ζ‖∞
= ‖C‖L (D(A),Rq3 )‖TAt Ax0‖+ ‖h‖M([0,∞))‖ζ‖∞
≤ ‖C‖L (D(A),Rq3 )‖TAt ‖L (X)‖Ax0‖X + ‖h‖M([0,∞))‖ζ‖∞
≤ M‖C‖L (D(A),Rq3 )‖Ax0‖X + ‖h‖M([0,∞))‖ζ‖∞,

where we have used that x0 ∈ D(A) and (TAt )t≥0 is bounded, that is, ‖TAt ‖L (X) ≤M
for some M ≥ 1 and all t ≥ 0. Thus,

‖Cx(·)‖∞ ≤M‖C‖L (D(A),Rq3 )‖Ax0‖X + ‖h‖M([0,∞))‖ζ‖∞.

Step 2 : We show property (N4) b). This is a straightforward consequence of the
definition of T̃ .
Step 3 : We show property (N4) c). Fix t ≥ 0 and ξ ∈ C([−h, t];R`). Let τ̃ , δ̃, c̃ be
the constants given by property (N4) c) of T̃ . Set τ := τ̃ and δ := δ̃. Further let
ζi ∈ C([−h,∞);R`) with ζi|[−h,t] = ξ and ‖ζi(s) − ξ(t)‖ < δ for all s ∈ [t, t + τ ] and
i = 1, 2. Let xi denote the mild solution of (3.5) corresponding to ζi for i = 1, 2. Then,
by linearity, x1 − x2 is the mild solution corresponding to ζ1 − ζ2. Since S is Fréchet
differentiable with continuous Fréchet derivative DS : X → L (X,Rq2) by (P4), the
mean value theorem implies that it is locally Lipschitz continuous. Therefore, we find
that for all s ∈ [t, t+ τ ]

‖S(x1(s))− S(x2(s))‖ ≤ L1‖
(
x1 − x2

)
(s)‖

≤ L1γ(‖
(
ζ1 − ζ2

)
|[−h,s]‖∞)

≤ L1L2‖
(
ζ1 − ζ2

)
|[t,t+τ ]‖∞,

where, with x̃ denoting the mild solution of (3.5) corresponding to ξ̃ for ξ̃|[−h,t] = ξ and
ξ̃|[t,∞) ≡ ξ(t), we have ‖xi(s)− x̃(t)‖X ≤ γ(‖ζi|[t,s]− ξ(t)‖∞) < γ(δ), which justifies to
set

L1 := sup
‖x−x̃(t)‖X≤γ(δ)

‖DS(x)‖L (X,Rq2 ),
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L2 := sup
s∈[0,2δ]

|γ′(s)|.

Furthermore, by linearity and (P5) we have

‖Cx1(s)− Cx2(s)‖ = ‖(h ∗ (ζ1 − ζ2))(s)‖
≤ L3‖

(
ζ1 − ζ2

)
|[t,t+τ ]‖∞

for all s ∈ [t, t+ τ ] and L3 := ‖h‖M([0,∞)). Now define ĉ := c̃+ L1L2 + L3 and

L4 := sup

 ‖F ′(z)‖
∣∣∣∣∣∣
∥∥∥∥∥∥z −

T̃ (ξ̃)(t)
S(x̃)(t)
Cx̃(t)

∥∥∥∥∥∥ ≤ ĉδ


and set
c := ĉL4.

Then we have
‖T̃ (ζ1)(s)− T̃ (ζ2)(s)‖ ≤ c‖

(
ζ1 − ζ2

)
|[t,t+τ ]‖∞

for all s ∈ [t, t+ τ ] and this finishes the proof of the theorem.

It is shown in [13] that the operator associated with the internal dynamics of a linearized
model of a moving water tank system belongs to the class T `,qh . In the subsequent
section we consider another example which contains a transport equation.

Example: The transport equation

We illustrate our results by considering the following system whose internal dynamics
are described by a transport equation, that is

ẏ(t) = T (y)(t) + γu(t)
T (y)(t) = z(t, 0)
∂z

∂t
(t, ξ) = c

∂z

∂ξ
(t, ξ) + h(ξ)y(t),

z(0, ξ) = 0,

(3.6)

for (t, ξ) ∈ (0,∞) × [0,∞), where c, γ > 0 and h ∈ M([0,∞)) is a Borel measure of
bounded total variation. It is well-known that the third and fourth equations in (3.6)
constitute a regular well-posed linear system (A,B,C) on X = L2([0,∞);R), the
so-called shift-realization of the Laplace transform L(h), see e.g. [52, 124, 125]. More
precisely, the PDE is then understood on an abstract Sobolev space X−1 to make sense
of the term h(ξ)y(t) and the solutions are mild solutions in general. Also note that the
generated (left-)shift-semigroup is not exponentially stable. In particular, the Laplace
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transform L(h) of the measure h is defined on the closed right half-plane and bounded
analytic on this domain. Moreover, the impulse response of the PDE equals h. More
precisely, for sufficiently smooth y we have the representation

T (y)(t) = z(t, 0) = (h ∗ y)(t) =
∫ t

0
y(t− s) dh(s).

As h is of bounded total variation, it follows that T is a bounded operator from
BC([0,∞);R) to L∞([0,∞);R) and hence T ∈ T 1,1

0 . Therefore, the first equation
in (3.6) formally reads

ẏ(t) = (h ∗ y)(t) + γu,

which is a differential-integral Volterra equation. Also note that for the following simple
cases

• h = δ0, we obtain a finite-dimensional linear system:

ẏ(t) = y(t) + γu(t);

• h = δt0 , t0 > 0, we obtain a delay differential equation:

ẏ(t) =
{
y(t− t0) + γu(t), t ≥ t0,
γu(t), 0 ≤ t < t0.

• h(t) = f(t)dt with f ∈ L1([0,∞);R), i.e. h is represented by its L1-density with
respect to the Lebesgue measure. If additionally f ∈ L2([0,∞);R), then the
input operator B is bounded.

For the simulation we have chosen h(ξ) = e−ξ/
√
ξ, which is integrable but not square

integrable on [0,∞). Furthermore, we use the parameters c = γ = 1 and the reference
signal

yref(t) = cos t, t ≥ 0.

The initial value is chosen as y(0) = 0 and for the controller (3.3) we chose the funnel
function

ϕ(t) =
(
2e−2t + 0.1

)−1
, t ≥ 0.

Clearly, the initial error lies within the funnel boundaries as required in Theorem 3.2.1.
Furthermore, by Theorem 3.3.3 the operator T satisfies (N4) and hence funnel control
is feasible.
The PDE is solved using explicit finite differences with a grid in t with M = 1000
points for the interval [0, T ], where T = 15, and a grid in ξ with N = bM(b−a)/(αT )c
points for α = 0.4 and a = 0, b = 10. The method has been implemented in Python
and the simulation results are shown in Fig. 3.2.
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Figure 3.2: Simulation of the funnel controller (3.3) for the system (3.6).
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It can be seen that even in the presence of infinite-dimensional internal dynamics
which are not exponentially stable a prescribed performance of the tracking error can
be achieved with the funnel controller (3.3). At the same time the input generated by
the controller is bounded with a satisfactory performance.

3.4 Outlook
In the present chapter we considered the question which classes of systems with infinite-
dimensional internal dynamics are encompassed by the abstract system class (3.1) for
which funnel control is feasible by Theorem 3.2.1. We have defined a class of oper-
ators T `,qh , which model the internal dynamics of the system, that encompass BIBO
stable linear PDEs. These PDEs may either be coupled with a nonlinear, but poly-
nomially bounded observation operator, or with a linear observation operator which
may be unbounded. For the latter we additionally assumed that the resulting system
is regular well-posed such that the inverse Laplace transform of its transfer function
defines a measure with bounded total variation. In Theorem 3.3.3 we have proved that
any operator belonging to T `,qh satisfies the conditions of the system class (3.1).
Several extensions of the operator class T `,qh and Theorem 3.2.1 may be investigated in
future research. In particular, extensions to nonlinear PDE systems with unbounded
observation operators are of interest as well as systems with infinite-dimensional input
and output spaces which do not have an integer-valued relative degree.
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4 Adaptive control for boundary
control systems

Here we consider a class of boundary control systems (BCS) of the form

ẋ(t) = Ax(t), t > 0, x(0) = x0,

u(t) = Bx(t),
y(t) = Cx(t),

where A, B, C are linear operators. The function u is interpreted as the input, y as the
measured output and x is called the state of the system. Typically, A is a differential
operator on the state space X and B,C are evaluation operators of the state at the
boundary of the spatial domain, that is, the domain of the functions lying in X.
The aim of this chapter is to develop an adaptive controller for boundary control
systems which, roughly speaking, achieves the following goal:

For any prescribed reference signal yref ∈ W 2,∞(0,∞), the output y of
the system tracks yref in the sense that the transient behavior of the error
e(t) := y(t)− yref(t) is controlled.

Shortly, we will elaborate on the class of possible reference signals and the meaning of
“controlling the transient behavior” in more detail. The goal will be achieved by using
a funnel controller, which, in the simplest case, has the form

u(t) = − 1
1− ϕ(t)2‖e(t)‖2 e(t)

for some positive function ϕ. Under this feedback, the error is supposed to evolve in
the performance funnel

Fϕ := {(t, e) ∈ [0,∞)× Cm | ϕ(t)‖e‖ < 1}

and would hence satisfy

‖e(t)‖ ≤ ϕ(t)−1, for all t ≥ 0.

In fact, if ϕ tends asymptotically to a large value λ, then the error remains at some
point bounded by λ−1, see Fig. 4.1.
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Figure 4.1: Error evolution in a funnel Fϕ with boundary ϕ(t)−1.

We consider a class of boundary control systems which satisfy a certain energy balance
[9, 67]. The feedback law of the funnel controller naturally induces a nonlinear closed-
loop system. For the corresponding solution theory, the concept of (nonlinear) m-
dissipative operators in a Hilbert space will play an important role. For an appropriate
introduction to this classical topic we refer to [69,90,106]. For the sake of completeness
we have provided the basics on the topic in Chapter 1 Sections 1.8.2 & 1.8.3.
The chapter is organized as follows. In Section 4.1 we introduce the system class that is
subject of our results. In Section 4.2 we present the details about the controller and as
well as the main results which refer to the applicability of the funnel controller to the
considered system class. In Section 4.3 we present some examples of partial differential
equations for which the funnel controller is applicable and accompany them by showing
some numerical simulations. Section 4.4 contains the proof of the main results together
with some preliminary auxiliary results. We conclude the chapter with an overlook in
Section 4.5

4.1 System class

In the following we introduce our system class, define our controller and discuss the
solution concept to the resulting nonlinear feedback system.

Definition 4.1.1 (System class). Let X be a complex Hilbert space and let m ∈ N be
given. Let A : D(A) ⊂ X → X be a closed linear operator, B,C : D(A) ⊂ X → Cm be
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linear operators to which we associate the system

ẋ(t) = Ax(t), x(0) = x0,

u(t) = Bx(t),
y(t) = Cx(t).

(4.1)

We will refer to (4.1) by (A,B,C) and call it a boundary control system (BCS).

In the sequel we specify the system class.

Assumption 4.1.2. Let a BCS (A,B,C) be given.

(i) The system is (generalized) impedance passive, i.e., there exists α ∈ R such that

Re 〈Ax, x〉X ≤ Re 〈Bx,Cx〉Cm + α‖x‖2X for all x ∈ D(A). (4.2)

(ii) A|kerB (the restriction of A to kerB) generates a strongly continuous semigroup
on X.

(iii) The operator [
B

C

]
: D(A)→ C2m (4.3)

is onto, kerB ∩ kerC ⊂ X is dense and C : D(A|kerB) → Cm is continuous with
respect to the graph norm ‖x‖D(A) = (‖x‖2X + ‖Ax‖2X)1/2.

Remark 4.1.3.

a) By setting u = 0, the above assumptions imply that the semigroup T(·) : [0,∞)→
L (X) generated by A|kerB fulfills ‖Tt‖ ≤ eαt. In particular, the semigroup is
contractive, if α ≤ 0.

b) The Lumer–Phillips theorem [30, Theorem 3.15] implies that A|kerB generates
a strongly continuous semigroup (Tt)t≥0 on X with ‖Tt‖ ≤ eαt for all t > 0 if,
and only if, R(A|kerB − λI) = X for some (and hence any) λ ≥ α, together with
Re 〈Ax, x〉X ≤ α‖x‖2X for all x ∈ D(A). As a consequence, Assumption 4.1.1(ii)
can be replaced by the condition that R(A|kerB − λI) = X for some (and hence
any) λ ≥ α.

c) The operator (4.3) is onto if, and only if, there exist P,Q : L (Cm,D(A)) with[
B

C

] [
P Q

]
=
[
Im 0
0 Im

]
(4.4)
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d) We are dealing with complex spaces in this chapter for sake of simplicity. A com-
ment on real systems can be found in Remark 4.2.5e).

e) An oftentimes considered class in infinite-dimensional linear systems theory is
that of well-posed linear systems, see e.g. [110]. That is, the controllability map,
observability map and input-output map are bounded operators. Note that we
do not impose such a well-posedness assumption throughout this chapter. The
well-posed case has been for instance studied in [24] and [116, Section 10].

Example 4.1.4. There are several systems which fit in our description. A class of
examples of hyperbolic type is given by so-called port-Hamiltonian systems such as the
lossy transmission line

Vζ(ζ, t) = −LIt(ζ, t)−RI(ζ, t),
Iζ(ζ, t) = −CVt(ζ, t)−GV (ζ, t),

u(t) =
(
V (a, t)
V (b, t)

)
,

y(t) =
(
I(a, t)
−I(b, t)

)
,

where V and I are the voltage and the electric current at a point ζ of a segment
(a, b) over the time t. A precise definition of port-Hamiltonian systems will be given
in Section 4.3.1.
In Section 4.3.3 we will also apply the theoretical results to parabolic systems given
through a general second-order elliptic operator on a regular domain Ω. A particular
case is the heat equation,

∂tx(t, ζ) = ∆x(t, ζ),
ν · ∇x(t, ζ)|∂Ω = u(t),∫
∂Ω
x(t, ζ) dζ = y(t),

where the control variable is the heat flux at the boundary and the observation is the
total temperature along the boundary.

4.2 Funnel control
The following definition presents the cornerstone of our controller, the class of admiss-
ible funnel boundaries.

Definition 4.2.1. Let

Φ :=
{
ϕ ∈W 2,∞([0,∞);R)

∣∣∣∣ ∀δ > 0, inf
t≥δ

ϕ(t) > 0
}
.
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With ϕ ∈ Φ we associate the performance funnel

Fϕ := {(t, e) ∈ [0,∞)× Cm | ϕ(t)‖e‖ < 1}.

In this context we refer to 1/ϕ(·) as funnel boundary, see also Fig. 4.1.

Now we define our controller, which is a slight modification of the original controller
introduced in [60]. For x0 ∈ D(A), we define the funnel controller as

u(t) =
(
u0 + 1

1− ϕ2
0‖e0‖2

e0

)
p(t)− 1

1− ϕ(t)2‖e(t)‖2 e(t), (4.5)

where ϕ0 = ϕ(0), e0 := Cx0 − yref(0), u0 := Bx0, and p is a function with compact
support and p(0) = 1. In the following we collect assumptions on the functions involved
in the funnel controller and the initial value of the BCS (A,B,C). Particularly, this
includes that the expressions Cx0, yref(0), Bx0 and p(0) are well-defined.

Assumption 4.2.2 (Reference signal, performance funnel, initial value). The initial
value x0 of the BCS (A,B,C) and the functions in the controller (4.5) fulfill

(i) yref ∈W 2,∞([0,∞);Cm);

(ii) p ∈W 2,∞([0,∞);R) with compact support and p(0) = 1;

(iii) x0 ∈ D(A) and ϕ ∈ Φ with ϕ(0)‖Cx0 − yref(0)‖ < 1 and ϕ(0) > 0.

Remark 4.2.3. Apart from regularity of the reference signal and performance funnel,
the assumptions on the controller basically include two points:

a) The initial value is “smooth”, i.e., x0 ∈ D(A). The reason is that - especially
for hyperbolic systems - the initialization with x0 ∈ X \ D(A) might result in
a discontinuous output. This effect typically occurs when the semigroup gener-
ated by A|kerB is not analytical, such as, for instance, when a wave equation is
considered.

b) The output of the system at t = 0 is already in the performance funnel and
ϕ−1 ∈ L∞([0,∞);R) since ϕ(0) > 0, so that inft≥0 ϕ > 0.

The funnel controller (4.5) differs from the classical one in [60] by the addition of the
term (

u0 + 1
1− ϕ2

0‖e0‖2
e0

)
p(t)

for some (arbitrary) smooth function with p(0) = 1 and compact support. This ensures
that the controller is consistent with the initial value, that is, u in (4.5) satisfies

u(0) =
(
u0 + 1

1− ϕ2
0‖e0‖2

e0

)
p(0)− 1

1− ϕ(0)2‖e(0)‖2 e(0) = u0 = Bx0 = Bx(0).
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The funnel controller therefore requires the knowledge of the “initial value of the input”
u0 = Bx0. This means that, loosely speaking, the “actuator position” has to be known
at the initial time, which is —by the opinion of the authors— no restriction from a
practical point of view.
We would like to emphasize that the application of the funnel controller does not need
any further “internal information” on the system, such as system parameters or the
full knowledge of the initial state.

The funnel controller (4.5) applied to a BCS (A,B,C) results in the closed-loop system

ẋ(t) = Ax(t), x(0) = x0,

Bx(t) = u(t),
Cx(t) = y(t),
e(t) = y(t)− yref(t), e0 = Cx0 − yref(0), ϕ0 = ϕ(0),
u(t) = (Bx0 + ψ(ϕ0, e0))p(t)− ψ(ϕ(t), e(t)),

(4.6a)

where
ψ(ϕ, e) := 1

1− ϕ2‖e‖2
e,

D(ψ) := {(ϕ, e) ∈ (0,∞)× Cm | ϕ‖e‖ < 1}.
(4.6b)

We see immediately that the closed-loop system is nonlinear and time-variant. In the
sequel we present our main results which state that the funnel controller is functioning
in a certain sense. Note that this result includes the specification of the solution concept
with which we are working. First we show that the funnel controller applied to any
system fulfilling Assumption 4.1.2 has a solution. Such a solution however might not
be bounded on the infinite time horizon. Thereafter, we show that boundedness on
[0,∞) is guaranteed, if the constant α in the energy balance (4.2) is negative. The
proofs of these results can be found in Section 4.4.

Theorem 4.2.4 (Feasibility of funnel controller, arbitrary α). Let a BCS (A,B,C)
be given which satisfies Assumption 4.1.2 and assume that the initial value x0 and the
functions yref , p, ϕ fulfill Assumption 4.2.2. Then, for all T > 0 the closed-loop system
(4.6) has a unique solution x ∈W 1,∞([0, T ];X) in the following sense:

(i) ẋ is continuous except possibly at a countable number of points in [0, T ], and

(ii) for all t ∈ [0, T ] holds x(t) ∈ D(A) and (4.6).

Remark 4.2.5.

a) The solution concept which is subject of Theorem 4.2.4 is strong in the sense that
the weak derivative of x is evolving in the space X and not in some larger space
as used e.g. in [116].
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b) The property x ∈ W 1,∞([0, T ];X) of a solution implies Ax = ẋ ∈ L∞([0, T ];X),
whence x ∈ L∞([0, T ];D(A)). As a consequence, for u = Bx and y = Cx

holds that u, y ∈ L∞([0, T ];Cm). By the same argumentation, we see that the
continuity of ẋ except possibly in a countable set in [0, T ] implies that u and y

are continuous except possibly in a countable set of [0, T ].

c) For T1 < T2 consider solutions x1 and x2 of the closed-loop system (4.6) on [0, T1]
and [0, T2], respectively. Uniqueness of the solution implies that x1 = x2|[0,T1].
As a consequence, there exists a unique x ∈ W 1,∞

loc ([0,∞);X) with the property
that for all T > 0 holds that x|[0,T ] is a solution of (4.6). Accordingly, the input
satisfies u ∈ L∞loc([0,∞);Cm). Note that, by the fact that the output evolves in
the funnel, we have that y is essentially bounded, that is y ∈ L∞([0,∞);Cm).

d) The properties u, y, yref ∈ L∞([0, T ];Cm) imply that the error e = y − yref is
uniformly bounded away from the funnel boundary. That is, there exists some
ε > 0 such that

ϕ(t)‖e(t)‖ < 1− ε for almost all t ∈ [0, T ].

e) The typical situation is that the system is real in the sense that the input, output
and state evolve in the real spaces Rm and X. By using a complexification
X + iX, the results presented in this chapter can be applied to such systems
yielding that a (not yet necessarily real) solution x ∈ W 1,∞([0, T ];X + iX) the
closed-loop system (4.6) exists which is moreover unique. A closer look yields that
the pointwise complex conjugate x̄ is as well a solution of (4.6), and uniqueness
gives x = x̄, whence x has to be real in this case.

Though bounded on each bounded interval, the solution x of the closed-loop system
(4.6) might satisfy

lim sup
t→∞

‖x(t)‖ =∞, lim sup
t→∞

‖u(t)‖ =∞

In the following we show that this unboundedness does not occur when the constant α
in (4.2) in Assumption 4.1.2 is negative.

Theorem 4.2.6. Let a BCS (A,B,C) be given which satisfies Assumption 4.1.2 such
that Assumption 4.1.2(i) holds with α < 0. Assume that the initial value x0 and the
functions yref , p, ϕ fulfill Assumption 4.2.2. Then the solution x : [0,∞) → X of the
closed-loop system (4.6) (which exists by Theorem 4.2.4) fulfills

x ∈W 1,∞([0,∞);X) and u = Bx ∈ L∞([0,∞);Cm).
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Remark 4.2.7. In particular when the input and output of a system have different
physical dimensions, it might be essential that the funnel controller is dilated by some
constant k0 > 0. More precisely, one might consider the controller

u(t) =
(
u0 + k0

1− ϕ2
0‖e0‖2

e0

)
p(t)− k0

1− ϕ(t)2‖e(t)‖2 e(t). (4.7)

The feasibility of this controller is indeed covered by Theorems 4.2.4 & 4.2.6, which can
be seen by the following argumentation: Consider the BCS (A,B,C) with transformed
input ũ = k−1

0 u. That is, a system S = (A, k−1
0 B,C). Providing X with the equivalent

inner product 〈·, ·〉new := k−1
0 〈·, ·〉X , we obtain

Re 〈Ax, x〉new ≤ Re
〈
k−1

0 Bx,Cx
〉
Cm + α‖x‖2new for all x ∈ D(A).

Consequently, by Theorem 4.2.4, the funnel controller

ũ(t) =
(

ũ0︸︷︷︸
=k−1

0 u0

+ 1
1− ϕ2

0‖e0‖2
e0

)
p(t)− 1

1− ϕ(t)2‖e(t)‖2 e(t)

results in feasibility of the closed-loop. Now resolving ũ = k−1
0 u in the previous formula,

we obtain exactly the controller (4.7). Further note that, by the same argumentation
together with Theorem 4.2.6, we obtain that all the trajectories are bounded in the
case where α < 0.

4.2.1 Unbounded funnel boundary at the origin
The assumption that for ϕ ∈ Φ we have inft≥0 ϕ(t) > 0 is quite technical. It has to do
with the fact that we need ϕ−1 ∈ L∞([0,∞);R) in order to show existence of solutions
to (4.6). However, under suitable assumptions this can be generalized. In the following
we discuss the case in which we allow an unbounded funnel boundary at the origin
under the assumption that the BCS is well-posed. In the following assumption, we
replace Assumption 4.2.2(iii) so that the case ϕ(0) = 0 is not excluded.

Assumption 4.2.8. Let a BCS (A,B,C) be given. In addition to Assumption 4.1.2
and Assumption 4.2.2(i) & (ii) assume that the initial state x0 and the function ϕ in
the controller (4.5) fulfill that x0 ∈ D(A) and ϕ ∈ Φ with ϕ(0)‖Cx0 − yref(0)‖Cm < 1.
Assume further that

(i) the BCS system is L2-well-posed and given by Σ = (T,Φ,Ψ,F);

(ii) for all f ∈W 1,2
loc ([0,∞);Cm) there exists δ > 0 and e ∈W 1,2

loc ([0, δ];Cm) such that

e(t) = f(t) + (F∞ (ψ(ϕ(0), e(0))p− ψ(ϕ, e))) (t), (4.8)

and ϕ(t)‖e(t)‖Cm < 1 for all t ∈ [0, δ].
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Remark 4.2.9.

a) As we will see in the proof of Theorem 4.2.12, Assumption 4.2.8(ii) delivers the
existence of a solution to the closed-loop system. In fact, this assumption is not
so restrictive. In the case where A|kerB generates an analytic semigroup, one
typically has that there exists h ∈ L1

loc([0,∞);Rm×m) such that

(Fv)(t) = (h ∗ v)(t), v ∈ L2
loc([0,∞);Rm),

see for instance [110, Theorem 5.7.3]. If that is the case, by means of a standard
fixed point argument and slightly modifying [43, Theorem XIII.3.3 & XIII.3.3],
one obtains that the nonlinear Volterra equation (4.8) has a solution with the
desired properties on [0, Tmax) for some Tmax > 0. It suffices then to choose
δ := Tmax/2 for instance.

b) Since the system is well-posed v := ψ(ϕ(0), e(0))p−ψ(ϕ, e) is in W 1,2([0, δ];Cm)
with v(0) = 0, [116, Proposition 4.2.10] implies that x ∈ C([0, δ];D(A)) so that
(F∞v)(0) = 0 and e(0) = f(0).

c) BCS (A,B,C) being well-posed and making use of operators P,Q ∈ L (Cm,D(A))
from Remark 4.1.3c) we can easily compute that

ẋ(t) = A|kerBx(t) +Bu(t),

where B ∈ L (Cm, X−1) is given by B = AP − A|kerBP , see for instance [116,
Theorem 5.2.13(iii)].

Of course, the main problem is to guarantee the existence and uniqueness of a solution
in a small interval [0, δ], since for t ≥ δ, we can apply Theorems 4.2.4 & 4.2.6 with a
time shift so that we start with x0 = x(δ). Before we prove the main theorem of this
section, we need an auxiliary result.

Lemma 4.2.10. Let a BCS (A,B,C) be L2-well-posed and given by Σ = (T,Φ,Ψ,F).
Let the initial value x0 ∈ D(A) and p ∈ W 2,∞([0,∞);R) with p(0) = 1 be given. Let
u0 := Bx0 and set u = u0p+v, for v ∈ L2

loc([0,∞);Cm). Then g := Ψ∞x0+F∞(u0p) ∈
W 1,2

loc ([0,∞);Cm) and it holds that

y = g + F∞v

with g(0) = Cx0.

Proof. Since by BCS (A,B,C) is well-posed, we can write it as

x(t) = Ttx0 + Φtu,
y = Ψ∞x0 + F∞u.
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Thus,
Φtu = Φt(u0p) + Φtv.

Making use of Remark 4.2.9c) it follows that B = AP − A|kerBP . Hence,

Φt(u0p) =
∫ t

0
Tt−s(AP − A|kerBP )u0p(s) ds .

Since p is at least once weakly differentiable, integration by parts leads to

Φt(u0p) = −TtPu0 + Pu0p(t) +
∫ t

0
Tt−sAPu0p(s) ds −

∫ t

0
Tt−sPu0ṗ(s) ds ,

since p(0) = 1, so that we can define f(t) := Φt(u0p) which is continuous in X. If the
semigroup (Tt)t≥0 is exponentially stable, then by direct calculation one can show that
f is bounded in [0,∞) with values in X. Using y = Cx leads to

y = g + F∞v,

where

g(t) := CTt(x0 − Pu0) + C

∫ t

0
Tt−sAPu0p(s) ds − C

∫ t

0
Tt−sPu0ṗ(s) ds ,

since CP = 0 so that CPu0p(t) = 0.
Note that x0 −Pu0 ∈ D(A|kerB), since B(x0 −Pu0) = Bx0 − u0 = 0 by construction.
By considering the auxiliary problems

ẇ1(t) = A|kerBw1(t) + APu0p(t), w1(0) = 0,

and
ẇ2(t) = A|kerBw2(t) + Pu0ṗ(t), w2(0) = 0,

it is not difficult to see that since AP, P ∈ L (Cm, X), we get w1, w2 ∈ C([0,∞);D(A)),
see for instance [116, Proposition 4.2.10]. This implies that g is continuous and we have
that g(0) = C(x0 − Pu0) = Cx0, which holds by CP = 0.
Since the system is well-posed and A|kerB(x0 − Pu0) ∈ X we further have that

t 7→ CTtA|kerB(x0 − Pu0) ∈ L2
loc([0,∞);Cm).

By considering the control operators b1 := APu0 and b2 := Pu0 and the observation
operator C, we have that the systems (A|kerB, bi,C), i = 1, 2, are thus well-posed in
(R, X,Cm). If we consider the respective inputs (u1, u2) = (p, ṗ) ∈ W 1,∞([0,∞);R)×
W 1,∞([0,∞);R), by [110, Theorem 4.6.5] it follows that

t 7→ C

∫ t

0
Tt−sAPu0p(s) ds − C

∫ t

0
Tt−sPu0ṗ(s) ds ∈W 1,2

loc ([0,∞);Rm).

Hence g ∈W 1,2
loc ([0,∞);Cm).
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Remark 4.2.11. Note that Lemma 4.2.10 does not make use of the Assumption 4.2.8.

We now present the main result of this section, which shows existence and uniqueness
of a solution in a small interval [0, δ]. In fact, the following result extends naturally
the solution concept which is subject to Theorem 4.2.4.

Theorem 4.2.12. Let a BCS (A,B,C), the initial value x0 and the functions yref ,
p, ϕ be given which satisfy Assumption 4.2.8. Then, there exists a δ > 0 such that
the closed-loop system (4.6) has a unique solution x ∈W 1,∞([0, δ];X) in the following
sense:

(i) ẋ ∈ C([0, δ];X), and

(ii) for all t ∈ [0, δ] holds x(t) ∈ D(A) and (4.6).

Proof. We construct a solution on an interval [0, Tmax) for some Tmax > 0 and then
choose δ := Tmax/2. We need to solve (4.6). Note that we can rewrite u as

u(t) = u0p(t) + ψ(ϕ0, e0)p(t)− ψ(ϕ(t), e(t)),

where e0 = e(0) and ϕ0 = ϕ(0). We thus consider the equation

y(t) = g(t) + (F∞v)(t)

with
v(t) := ψ(ϕ0, e0)p(t)− ψ(ϕ(t), e(t))

and g from Lemma 4.2.10 such that y(0) = Cx0 = g(0). Subtracting yref on both sides
and setting e := y − yref leads to

e(t) = f(t) + (F∞v)(t)

with f := g − yref . If we find a solution to the former, then by Lemma 4.2.10, u is
well-defined and satisfies

y = Ψ∞x0 + F∞u.

However, this is guaranteed by Assumption 4.2.8(ii), since f ∈ W 1,2
loc ([0,∞);Cm) and

thus, there exists δ > 0 and e ∈W 1,2
loc ([0, δ];Cm) with ϕ(t)‖e(t)‖Cm < 1 for all t ∈ [0, δ]

such that
e(t) = f(t) + (F∞ (ψ(ϕ0, e0)p(t)− ψ(ϕ(t), e(t)))) (t)

Since in particular e is continuous and ϕ(t)‖e(t)‖Rm < 1 for t ∈ [0, δ], so that

1
1− ϕ2‖e‖2Cm

∈ BC([0, δ];Rm)



96
CHAPTER 4. ADAPTIVE CONTROL FOR

BOUNDARY CONTROL SYSTEMS

and thus u ∈W 1,2
loc ([0, δ];Cm). With this choice of u, combining [110, Theorem 4.6.5 &

Theorem 5.2.13] it follows that there exists a unique x ∈ C1([0, δ];X)∩C([0, δ];D(A))
such that

ẋ(t) = x(t), x(0) = x0,

Bx(t) = u(t),

so that x is a solution on [0, δ].
Now we show the uniqueness. Assuming that there exist two solutions of the Volterra
equation e1, e2 with respective u1, u2, we obtain x1, x2. Let z := x1−x2 and note that
z(0) = 0. Hence, using Lemma 4.4.4 it follows that

1
2

d
dt‖z(t)‖

2
X = Re 〈z(t),Az(t)〉X ≤ Re 〈Bz(t),Cz(t)〉Rm + α‖z(t)‖2X

= Re 〈u1 − u2, y1 − y2〉Rm + α‖z(t)‖2X
= −Re 〈ψ(ϕ(t), e1(t))− ψ(ϕ(t), e2(t)), y1 − y2〉Rm + α‖z(t)‖2X
= −Re 〈ψ(ϕ(t), e1(t))− ψ(ϕ(t), e2(t)), e1 − e2〉Rm + α‖z(t)‖2X
≤ α‖z(t)‖2X .

Thus, by Lemma 1.8.13 we have

‖z(t)‖X ≤ ‖z(0)‖Xeαt = 0

which implies x1 = x2 in [0, δ] and this concludes the proof.

4.2.2 Analytic semigroups and regularity
Throughout this section we will assume that A|kerB generates an analytic semigroup
on X. As we have already seen in Remark 4.2.9c), the BCS (A,B,C) can be brought
to the form

ẋ(t) = A|kerBx(t) +Bu(t), x(0) = x0,

y(t) = Cx(t).
(4.9)

We call B the abstract control operator associated to (A,B,C). We will next show,
that if the operator B ∈ L (Cm, X−1) is more regular, then we obtain more time
regularity of the solution described in Theorem 4.2.4. For r ∈ R we denote by Xr the
interpolation spaces associated to A|kerB as introduced in Section 1.6.1.
In the next result we show that the solution of Theorem 4.2.4 enjoys of a certain
regularity if the semigroup generated by A|kerB is analytic and the abstract control
operator associated to (A,B,C) is regular enough.

Theorem 4.2.13. Let a BCS (A,B,C) be given which satisfies Assumption 4.1.2 and
assume that the initial value x0 and the functions yref , p, ϕ fulfill Assumption 4.2.2.
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Assume that there exists r ∈ (0, 1/2) such that the abstract control operator satisfies
B ∈ L (Cm, X−r) and further C ∈ L (Xs,Cm) for some s ∈ (0, 1/2). For T > 0 let x ∈
W 1,∞([0, T ];X) be the unique solution of closed-loop system (4.6) from Theorem 4.2.4
with input u := Bx and output y := Cx. Then

u ∈ C0,1−r−s([0, T ];Cm), y ∈ C0,1−r−s([0, T ];Cm).

Moreover, if Assumption 4.1.2(i) holds with α < 0, we have that

u ∈ C0,1−r−s([0,∞);Cm), y ∈ C0,1−r−s([0,∞);Cm).

Proof. With this choice of B and C, we have that r+s < 1. Hence, [110, Theorem 5.7.3]
implies that the system (A,B,C) is L2-well-posed on (Cm, X,Cm) with operators Σ =
(T,Ψ,Φ,F) and that there exists h ∈ L1

loc([0,∞);Cm×m)∩C([0,∞);Cm×m) such that

(F∞u)(t) = (h ∗ u)(t)

for all u ∈ Lploc([0,∞);Cm). In particular, (Tt)t≥0 is the semigroup generated by
A|kerB.
Theorem 4.2.4 implies that there exists a unique solution x ∈W 1,∞([0, T ];X) such that
u := Bx ∈ L∞([0, T ];Cm) and y ∈ L∞([0, T ];Cm) are continuous except, possibly, in
a countable number of point.
Let z := x − Pu0p, where P ∈ L (Cm,D(A)) is from Remark 4.1.3c), that is CP = 0,
BP = I. Clearly, z has the same properties as x by construction and z0 := z(0) =
x0 − Pu0. Further, y = Cx = C(z + Pu0p) = Cz. Moreover, since

ẋ(t) = A|kerBx(t) +Bu(t)

it follows that

ż(t) = A|kerBz(t) + A|kerBPu0p(t)− Pu0ṗ(t) +Bu(t).

Using the definition of u we have that

u = u0p+ v,

where
v := ψ(ϕ0, e0)p− ψ(ϕ, e)

and e := y − yref as usual. Note that v ∈ L∞([0, T ];Cm) and has the same properties
as u. With that and using that B = AP − A|kerBP we have that

ż(t) = A|kerBz(t) + APu0p(t)− Pu0ṗ(t) +Bv(t).

Set f := APu0p− Pu0ṗ ∈W 1,∞([0,∞);X). Thus,

z(t) = Ttz0 +
∫ t

0
Tt−τf(τ) dτ +

∫ t

0
(T|−r)t−τBv(τ) dτ .
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By [84, Proposition 4.2.1] it follows that

t 7→
∫ t

0
Tt−τf(τ) dτ ∈ C0,1−r([0, T ];X) ∩ C0,1−r−s([0, T ];Xs).

Let

zv(t) :=
∫ t

0
(T|−r)t−τBv(τ) dτ .

By using Lemma 1.6.1 it follows that there exists K > 0 such that for all t1, t2 ∈ [0, T ],
t1 < t2, it holds that

‖zv(t2)− zv(t1)‖Xs ≤ K‖Bv‖L∞([0,T ];X−r)(t2 − t1)1−r−s.

Further, since by construction z0 ∈ D(A|kerB), we have t 7→ Ttz0 ∈ BC1([0, T ];X),
and thus, it follows that it has (at least) the same regularity as zv. Hence, z ∈
C0,1−r−s([0, T ];Xs). Since C ∈ L (Xs,Cm) and y = Cz, the former yields y ∈
C0,1−r−s([0, T ];Cm). By the closed-loop it follows that u has the same regularity
as y.
If α < 0, then it follows that (Tt)t≥0 is exponentially stable. Theorem 4.2.6 implies
that u, y ∈ L∞([0,∞);Cm), so that zv ∈ C1−r−s([0,∞);Xs). Moreover, [84, Proposi-
tion 4.4.1 (i)] implies that

t 7→
∫ t

0
Tt−τf(τ) dτ ∈ C0,1−r([0,∞);X) ∩ C0,1−r−s([0,∞);Xs),

so that z ∈ C1−r−s([0,∞);Xs) and the result follows by continuity of C ∈ L (Xs,Cm)
and the closed-loop.

4.3 Some PDE examples
We now present three different system classes for which we can apply the previously
presented results. The first two have state variables which are described by hyperbolic
PDEs and the third one by a parabolic PDE.

4.3.1 Port-Hamiltonian systems in one spatial variable
The systems considered in this chapter enclose a class of port-Hamiltonian hyperbolic
system in one spatial dimension with boundary control and observation, which has
been treated in [5–7, 9, 67] and is subject of the subsequent definition. Typically they
are considered in a bounded interval [a, b] ⊂ R. We may consider I := [a, b] = [0, 1]
without loss of generality.
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Definition 4.3.1 (Port-Hamiltonian hyperbolic BCS in one spatial variable). Let
N, d ∈ N and for k = 0, . . . , N consider Pk ∈ Cd×d. We assume that Pk = (−1)k+1P ∗k
for k 6= 0 with PN invertible and P0 + P ∗0 ≤ 0. Further let WB ,WC ∈ CNd×2Nd such
that the matrix

W :=
[
WB

WC

]
∈ C2Nd×2Nd

is invertible.

a) Let H ∈ L∞
(
[0, 1];Cd×d

)
with H(ζ) = H(ζ)∗ for almost every ζ ∈ [0, 1] and

assume that there exist m,M > 0 such that mId ≤ H(ζ) ≤MId for almost every
ζ ∈ [0, 1]. We consider X := L2([0, 1];Cd) equipped with the scalar product
induced by H,

〈y, x〉X := 〈y,Hx〉L2 =
∫ 1

0
y(ζ)∗H(ζ)x(ζ) dζ , x, y ∈ L2([0, 1];Cd). (4.10)

The port-Hamiltonian operator A : D(A) ⊂ X → X is given by

Ax =
N∑
k=0

Pk
∂k

∂ζk
(Hx), x ∈ D(A), (4.11a)

with domain
D(A) =

{
x ∈ X | Hx ∈WN,2([0, 1];Cd)

}
(4.11b)

b) Denote the spatial derivative of f by f ′. For a port-Hamiltonian operator A

and x ∈ D(A) we define the boundary flow f∂,Hx ∈ CNd and boundary effort
e∂,Hx ∈ CNd by

(
f∂,Hx
e∂,Hx

)
:= R0



(Hx)(1)
(Hx)′(1)

...

(Hx)(N−1)(1)
(Hx)(0)
(Hx)′(0)

...

(Hx)(N−1)(0)


, (4.12)

where the matrix R0 ∈ C2Nd×2Nd is defined by

R0 := 1√
2

[
Λ −Λ
INd INd

]
, (4.13)
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with

Λ :=


P1 P2 · · · · · · PN
−P2 −P3 · · · −PN 0
...

...
...

...
...

(−1)N−1PN 0 · · · 0 0

 .
c) For a port-Hamiltonian operator A we define the input map B : D(A) ⊂ X →

CNd and the output map C : D(A) ⊂ X → CNd as

Bx := WB

(
f∂,Hx
e∂,Hx

)
, (4.14)

Cx := WC

(
f∂,Hx
e∂,Hx

)
. (4.15)

We call (A,B,C) a port-Hamiltonian hyperbolic BCS in one spatial variable to
which we associate the boundary control and observation problem

ẋ(t) = Ax(t), x(0) = x0,

u(t) = Bx(t),
y(t) = Cx(t)

(4.16)

with a state x(t) := x(t, ·) ∈ X and t ≥ 0.

From the former definition we have the following result.

Lemma 4.3.2. With operators A, B and C as in Definition 4.3.1, there exist P,Q ∈
L (C2Nd,D(A)) with

BP = INd, BQ = 0,
CP = 0, CQ = INd.

Consequently, AP,AQ ∈ L (CNd, X).

Proof. Consider the trace operator T : WN,2([0, 1];Cd)→ C2Nd as the linear map

T z =



z(1)
z′(1)
...

z(N−1)(1)
z(0)
z′(0)
...

z(N−1)(0)


,
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so that [
Bx

Cx

]
= WR0T Hx, where W =

[
WB

WC

]
.

Consider the standard orthogonal basis {ej}2Ndj=1 in C2Nd and for j = 1, . . . , 2Nd choose
some fj ∈ WN,2([0, 1];Cd) with T (fj) = ej . Since W,R0 are invertible, we can define
Mp,Mq ∈ C2Nd×Nd by

Mp = R−1
0 W−1

[
INd

0

]
, Mq = R−1

0 W−1
[

0
INd

]
.

Let Mp,Mq be decomposed as

Mp =

 Mp,1
...

Mp,2Nd

 , Mq =

 Mq,1
...

Mq,2Nd

 ,
with Mp,j ,Mq,j ∈ C1×Nd for j = 1, . . . , 2Nd. Now set for almost every ζ ∈ [0, 1],

(Pu)(ζ) := H−1(ζ)
2Nd∑
j=1

Mp,jufj(ζ), ∀u ∈ CNd,

(Qy)(ζ) := H−1(ζ)
2Nd∑
j=1

Mq,jyfj(ζ), ∀y ∈ CNd.

By construction P,Q have the desired properties.

Remark 4.3.3. Note that for a port-Hamiltonian hyperbolic BCS (A,B,C) in one
spatial variable holds that C∞0 ([0, 1];Cd) ⊂ kerB ∩ kerC is a dense subspace of X.
With an appropriate choice of WB and WC , integration by parts gives

Re 〈Ax, x〉X ≤ Re 〈Bx,Cx〉CNd + Re 〈P0Hx,Hx〉 for all x ∈ D(A). (4.17)

Since P0 + P ∗0 ≤ 0, it follows that the BCS fulfills Assumption 4.1.2(i) with α = 0.

The class of impedance passive port-Hamiltonian systems meets the requirements of
Assumption 4.1.2. We summarize it in the following statement.

Theorem 4.3.4. Any port-Hamiltonian hyperbolic BCS (A,B,C) with one spatial
variable satisfies Assumption 4.1.2. If, moreover, there exists some µ > 0 such that
P0 + P ∗0 + µI is pointwise negative definite, then Assumption 4.1.2(i) holds for some
α < 0.

Proof. It is stated in Remark 4.3.3 that (A,B,C) satisfies Assumption 4.1.2(i) with
α ≤ 0. Further, A|kerB generates a (contractive) semigroup by [7, Theorem 2.3],
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whence (A,B,C) satisfies Assumption 4.1.2(ii). We can further infer from Remark 4.3.3
that kerB∩kerC is dense in X, and Lemma 4.3.2 guarantees the existence of P,Q such
that (4.4) holds. This implies that the condition in Assumption 4.1.2(4.3) is fulfilled
by (A,B,C).
If, moreover, P0 + P ∗0 + µI is negative definite for some µ > 0, then we can conclude
from (4.17) that Assumption 4.1.2(i) holds with α := −µm/(2M), where m,M > 0 are
given in Definition 4.3.1.

Theorem 4.3.4 allows to directly apply Theorems 4.2.4 & 4.2.6. Namely, if the initial
value x0 and the functions yref , p, ϕ fulfill Assumption 4.2.2, the application of the
funnel controller (4.5) results in a unique global solution x ∈ W 1,∞

loc ([0,∞);X) in the
sense of Theorem 4.2.4. If, moreover, P0 +P ∗0 +µI is negative definite for some µ > 0,
then x, ẋ and u are moreover essentially bounded by Theorem 4.2.6.

Lossy transmission line

Here we consider the dissipative version of the Telegrapher’s Equation with constant
coefficients given by

Vζ(ζ, t) = −LIt(ζ, t)−RI(ζ, t),
Iζ(ζ, t) = −CVt(ζ, t)−GV (ζ, t),

u(t) =
(
V (a, t)
V (b, t)

)
,

y(t) =
(
I(a, t)
−I(b, t)

)
.

R is the resistance, C the capacitance, L the inductance and G the conductance —all
of them per unit length.
The system can be written in port-Hamiltonian form as

∂tx(ζ, t) = P1∂ζ(H(ζ)x(ζ, t)) + P0H(ζ)x(ζ, t),

u(t) = WBR0

(
(Hx)(b, t)
(Hx)(a, t)

)
,

y(t) = WCR0

(
(Hx)(b, t)
(Hx)(a, t)

)
,

(4.18a)
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Figure 4.2: Left: Norm of the error within the funnel boundary followed by the two
reference signals and the respective outputs. Right: Inputs obtained from
the feedback law.

where

x(ζ, t) :=
(
LI(ζ, t)
CV (ζ, t)

)
, P1 :=

[
0 −1
−1 0

]
, P0 :=

[
−R 0
0 −G

]
,H(ζ) :=

[
L−1 0

0 C−1

]
,

WB := 1√
2

[
1 0 0 1
−1 0 0 1

]
,WC := 1√

2

[
0 1 1 0
0 1 −1 0

]
.

(4.18b)
We have chosen the reference signals and funnel boundary of the following form

yref(t) =
(
A1 sin(ω1t) sin(ω2t)

A2 sin(ω3t)

)
,

ϕ(t) = ϕ0ε
−2 tanh(ωt+ ε).

In this case the system is impedance passive and P0 + P ∗0 ≤ −2 min{R,G}I2 and
Theorem 4.3.4 implies that u, y ∈ L∞([0,∞);R2). The simulated system is shown in
Fig. 4.2.
The parameter values are ζ ∈ (a, b) with a = 0 m, b = 1 m,

R = 463.59Ωm−1, L = 0.5062 mH m−1,

G = 29.111 µS m−1, C = 51.57 nF m−1.
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Further, set c0 = (LC)−1/2, f = 1 MHz, ω = 2πf , ϕ0 = 1 A−1, ε = 0.1 and amplitudes
A1 = −0.3 A, A2 = 0.4 A. The other angular frequencies are ω1 = ω, ω2 = 16ω
and ω3 = ω/2. For the time interval we have defined T0 = f−1 and t ∈ [0, T ], where
T = 2T0. We have used semi-explicit finite differences with a tolerance of 10−3. The
mesh in ζ has M = 1000 points and the mesh in t has

N =
⌊
b− a
2c0T

M

⌋
points. We further assume that the initial state is zero, i.e., x0 = 0 and we apply the
controller (4.7) from Remark 4.2.7 with k0 = 1 Ω.

4.3.2 Hyperbolic systems in several spatial variables
The following setting is presented in [119, Section 8.2]. We give a summary of the
main results. For the particular case of the higher dimensional wave equation we refer
to [116].

Definition 4.3.5. Let d ∈ N and matrices Pj ∈ Rn×n for j = 0, . . . , d such that
P>j = Pj for all j 6= 0 and P>0 = −P0. Let Ω be a bounded open subset of Rd with
smooth boundary Γ and outward unit normal vector field η. We define the first order
differential operator

Ax := P0x+
d∑
j=1

Pj
∂x

∂ζj
, x ∈ D(A),

D(A) := {x ∈ L2(Ω;Rn) | Ax ∈ L2(Ω;Rn)}.

(4.19)

We also define the symmetric operator Qη :=
∑d
j=1 ηjPj : Γ→ Rn×n.

Remark 4.3.6. Note that D(A) in (4.19) is the maximal domain of definition of
the operator A. This is further a Hilbert space when endowed with the graph norm,
see [100].

Assumption 4.3.7.

(i) Γ is characteristic with constant multiplicity, that is, for all ζ ∈ Γ we have that

dim kerQη(ζ) = n− 2r ⇔ rank Qη(ζ) = 2r

where n > 2r ∈ N is constant.

(ii) The spectrum of Qη(ζ), ζ ∈ Γ, is symmetric with respect to the imaginary axis
and the sign of its eigenvalues is independent of ζ ∈ Γ, that is, there exist r
positive eigenvalues.
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Under Assumption 4.3.7, there exists a unitary operator U ∈ L (L2(Γ;Rn)) and a
diagonal matrix Λ such that Qη = UΛU∗ with U∗U = IL2(Γ;Rn) and

Λ =

Λ1 0 0
0 −Λ1 0
0 0 0

 ,
see [119]. Here Λ1 ∈ L (L2(Γ;Rr)) contains the positive eigenvalues of Qη. Further we
have the following decomposition

Λ =
[
R∗0ΣR0 0

0 0

]
, (4.20)

where

R0 := 1√
2

[
Λ1 −Λ1
I I

]
∈ L (L2(Γ;R2r)), Σ :=

[
0 I

I 0

]
∈ L (L2(Γ;R2r)).

According to (4.20) we partition the unitary operator U ∈ L (L2(Γ)n) as follows

U∗ =
[
R∗

S∗

]
: L2(Γ;Rn)→ L2(Γ;R2r)× L2(Γ;Rn−2r).

Definition 4.3.8. Let r ∈ N be given as in Assumption 4.3.7 and T0 : W 1,2(Ω;Rn)→
L2(Γ;Rn) be the trace operator of order zero, i.e., T0x = x|Γ for x ∈ W 1,2(Ω;Rn).
Then the boundary port-variables associated with the differential operator A are the
operators e∂ , f∂ ∈ L (W 1,2(Ω;Rn), L2(Γ;Rr)) defined by[

f∂x

e∂x

]
:= R0R

∗T0x, x ∈W 1,2(Ω;Rn).

We make the following assumption as in [119], which is a natural extension of the
integration by parts formula for this systems. Recall that W 1/2,2(Γ;Rr) equals the
range of trace operator on W 1,2(Ω;Rr).

Assumption 4.3.9. Assume that the mapping[
f∂
e∂

]
: W 1,2(Ω;Rn)→ L2(Γ;Rr)× L2(Γ;Rr)

can be continuously extended to a linear mapping[
f∂
e∂

]
: D(A)→W 1/2,2(Γ;Rr)×W−1/2,2(Γ;Rr).

Furthermore assume that Green’s identity holds for all x, z ∈ D(A), that is

〈Ax, z〉L2 + 〈x,Az〉L2 = 〈e∂x, f∂z〉W−1/2,2,W 1/2,2 + 〈e∂z, f∂x〉W−1/2,2,W 1/2,2 .
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Definition 4.3.10. Let A0 := A with D(A0) := {x ∈ D(A) | ∃b ∈ Rr : e∂x = b}. To
the operator A0 we associate the (BCS) S = (A0,B,C) with

Bx = e∂x, x ∈ D(A0)

and
Cx =

∫
Γ
f∂x dσ , x ∈ D(A0).

For our purposes, we make the following assumption, which is for instance satisfied by
the wave equation.

Remark 4.3.11. Note that if we restrict
[
f∂
e∂

]
to W 1,2(Ω;Rn), we obtain that

[
f∂
e∂

]
(W 1,2(Ω;Rn)) = W 1/2,2(Γ;R2r),

see [119, pp. 212]. Since R2r ⊂ W 1/2,2(Γ;R2r), the former implies that there exist
p, q : W 1,2(Ω) ⊂ D(A0)→ Rr such that[

f∂
e∂

] [
q p

]
=
[
Ir 0
0 Ir

]
.

Thus, by setting P := p and Q := |Γ|−1q we have that[
B

C

] [
P Q

]
=
[
Ir 0
0 Ir

]
.

Theorem 4.3.12. Under Assumptions 4.3.7 & 4.3.9 and the notation of Defini-
tions 4.3.8 & 4.3.10, it follows that

Re 〈A0x, x〉L2 = Re 〈Bx,Cx〉Rr ∀x ∈ D(A0)

and that the operator A0|kerB is skew-adjoint and generates a unitary C0-semigroup.

Proof. This is [119, Theorem 8.18].

We show that the class belongs to that which is subject of Section 4.1, which con-
sequences that the funnel controller is applicable.

Theorem 4.3.13. Let S = (A0,B,C) be as in Definition 4.3.10 and let Assumptions
4.3.7 & 4.3.9 be satisfied. Then S = (A0,B,C) satisfies Assumption 4.1.2.

Proof. The result follows immediately from Theorem 4.3.12 and Remark 4.3.11 together

with the fact that C∞0 (Ω;Rn) ⊂ ker
[
f∂
e∂

]
is a dense subspace.
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Example 4.3.14. Consider the 2-dimensional wave equation with boundary control
in an open bounded domain Ω with smooth boundary Γ, namely,

∂ttw(t, ζ) = ∆w(t, ζ),

u(t) = ∂w(t, ζ)
∂η

∣∣∣∣
Γ
,

y(t) =
∫

Γ
∂tw(t, ζ)|Γ dσ ,

(4.21)

and w(0, ·) = a(·) ∈ W 2,2(Ω) with ∂ηa(·)|Γ = 0, wt(0, ·) = v(·) ∈ W 1,2(Ω). Then the
funnel controller is applicable for (4.21) for every finite time-horizon.

Proof. The wave equation can be transformed into a port-Hamiltonian system of the
form (4.19), c.f. [119, Example 8.12] with P0 = 0 and

P1 =

0 1 0
1 0 0
0 0 0

 , P2 =

0 0 1
0 0 0
1 0 0

 ,
and state variable

x =

 pq1
q2

 =

 ∂tw∂ζ1w

∂ζ2w

 .
Further [

e∂x

f∂x

]
=
[
η · q|Γ
p|Γ

]
,

where η is the normal unit vector. The domain of the operator A0 is given by

D(A0) :=


 pq1
q2

 ∈ L2(Ω;R3) | p ∈W 1,2(Ω), q ∈ Hdiv(Ω),∃b ∈ R : η · q|Γ = b

 ,

where
Hdiv(Ω) := {x ∈ L2(Ω) | ∇ · x ∈ L2(Ω)}.

It is clear that x0 ∈ D(A0). From [36, Theorem 1.3] the range of f∂ is precisely
W 1/2,2(Γ) and e∂ from Hdiv(Ω) is surjective onto W−1/2,2(Γ), see [36, Theorem 2.2]
and [36, Corollary 2.4].
In this case P,Q are explicitly given by

(Pu)(ζ) =

 0
η1(ζ)
η2(ζ)

u, (Qy)(ζ) = 1
|Γ|

1
0
0

 y, u, y ∈ R.

Further C∞0 (Ω) ⊂ kerB ∩ kerC is dense. Hence, Theorem 4.3.13 gives the result.
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Wave equation in two spatial dimensions

Here we consider the situation described in Example 4.3.14, given by the system in
polar coordinates on the unit disc

∂ttw(t, r, θ) = ∂rrw(t, r, θ) + r−1∂rw(t, r, θ) + r−2∂θθw(t, r, θ),
u(t) = (∂rw(t, r, θ))|r=1,

y(t) =
∫ 2π

0
∂tw(t, 1, θ) dθ ,

and use again a funnel boundary of the form ϕ(t) = ϕ0ε
−2 tanh(ωt+ε) and a reference

signal of the form yref(t) = A tanh(ωt) + B sin(ωt). The results are given in Fig. 4.3.
Note that by setting the speed of propagation to 1, the units of t coincide with the
ones of r.
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0.000

0.001

e

e

0.0

0.5

1.0

y

yref

y

0 1 2 3 4
t (m)

−1

0

1

u

u

Figure 4.3: Performance funnel with the error, reference signal with the output of the
closed-loop system and input of the closed-loop.

The parameter values are r ∈ (a, b) with a = 0 m, b = 1 m, θ ∈ (0, 2π), f = 1 m−1,
ω = 2πf , ε = 10−2, ϕ0 = 1. The amplitudes are A = 1 and B = 0.1. We define
T0 = f−1 and T = 4T0. The initial state of the system is

w(0, r, θ) = 0 m, wt(0, r, θ) = 0,
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which leads to a problem with radial symmetry, so the partial derivatives with respect
to θ vanish and we use explicit finite differences in r with M = 2000 points and in
t ∈ [0, T ] with N points, where

N =
⌊
b− a
2T

⌋
M.

4.3.3 A parabolic system
A particular case of the boundary controlled heat equation was already discussed in
[101], with a slightly different funnel controller. Here we present a parabolic problem
and refer to [44] for more details on second order elliptic operators.

Definition 4.3.15. Let n ∈ N, Ω ⊂ Rn be a bounded domain with C2 boundary Γ
and outward normal unit vector ν. Assume that a ∈ C∞(Ω;Cn×n) is self-adjoint and
satisfies the ellipticity condition

∃α > 0 : ∀v ∈ Cn Re
n∑

i,j=1
aij(ζ)viv∗j ≥ α‖v‖2Cn .

Let κ ≥ 0 and consider the BCS (A,B,C) defined by

Ax := ∇ · (a∇x)− κx, x ∈ D(A),
D(A) :=

{
x ∈W 1,2(Ω) | ∇ · a∇x ∈ L2(Ω) and ∃b ∈ C : γ0(ν · a∇x) = b

}
Bx := γ0(ν · a∇x),

Cx :=
∫

Γ
γ0xdσ ,

(4.22)

where γ0 : W 1,2(Ω)→W 1/2,2(Γ) denotes trace operator, γ0x = x|Γ.

Remark 4.3.16. We have the following comments on the former definition.

1. The operator γ0 : W 1,2(Ω)→W 1/2,2(Γ) is onto;

2. it is well-known that the realization of A in kerB with κ = 0 corresponds to
the Neumann elliptic problem, e.g. [44, Theorem 2.2.2.5], and A|kerB generates
a contractive semigroup for κ ≥ 0.

3. for x ∈ D(A)
Re 〈Ax, x〉L2 ≤ Re 〈Bx,Cx〉C − κ‖x‖

2
L2 .

Lemma 4.3.17. There are operators P,Q : D(A)→ C such that[
B

C

] [
P Q

]
=
[
1 0
0 1

]
.

In fact, Q = |Γ|−1 is constant.
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Proof. Let γ0x := x|Γ and γνx := γ0(ν · a∇x). From Lemma 1.4.4 the combined trace
operator [

γνx

γ0x

]
: W 2,2(Ω)→W 1/2,2(Γ)×W 3/2,2(Γ)

is onto. Hence, there exist pν , q0 such that

ν · a∇pν |Γ = 1, ν · a∇q0|Γ = 0,
pν |Γ = 0, q0|Γ = 1.

Note that q0 = 1 is a solution. Considering pν , q0 as operators from C to W 2,2(Ω) ⊂
D(A) yields that P := pν and Q := |Γ|−1q0 have the desired properties.

Next we show that this class satisfies the preliminaries of Theorem 4.2.6.

Theorem 4.3.18. For any BCS (A,B,C) as introduced in Definition 4.3.15 with,
additionally, κ > 0, satisfies Assumption 4.1.2 with α < 0.

Proof. It follows immediately from the conditions and previous considerations, together
with C∞0 (Ω) ⊂ kerB ∩ kerC being a dense subspace and Theorem 4.2.6.

Surprisingly, for the parabolic case the requirement κ > 0 can be relaxed to κ ≥ 0. This
has to do with the fact that the operator A in this case satisfies the extra inequality

〈Ax, x〉L2(Ω) ≤ −θ‖x‖
2
L2(Ω) + ν(Cx)2 + Bx · Cx,

so that the system is high-gain stabilizable and the state is in L∞([0,∞);L2(Ω)). The
essential difference is that here one can show that u ∈ L∞([0,∞);R) without showing
that ẋ ∈ L∞([0,∞);X).
Before proving the general result, we need the following lemma. Similar results can
be found in [106, Example IV.2.E, Example IV.2.F, Example V.5.A] and the case in
which φ is defined in the whole space can be found in [44, Section 3.2.2].

Lemma 4.3.19. Let Ω ⊂ Rn be a bounded domain with C2 boundary Γ and normal
outward unit vector ν. Let a ∈ C∞(Ω;Rn×n) and C as in Definition 4.3.15 and a :
H1(Ω)×H1(Ω)→ R be the symmetric, positive form

a(x1, x2) :=
∫

Ω
〈∇x1, a∇x2〉Rn dλ .

Let Ψ : X → R∞ be given by

Ψ(x) := 1
2

{
a(x, x) + Ψ0(Cx), x ∈ D(Ψ)
∞, otherwise,
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where
Ψ0(e) := log

(
1

1− e2

)
, e ∈ (−1, 1),

and
D(Ψ) := {x ∈W 1,2(Ω) | |Cx| < 1}

Then Ψ defines a proper, convex and lower-semi-continuous functional with ∂Ψ = −A,
where

A(x) := ∇ · a∇x, x ∈ D(A)
D(A) := {x ∈W 1,2(Ω) | ∇ · a∇x ∈ L2(Ω), |Cx| < 1,Bx+ φ(Cx) = 0}.

Further, for all x1 ∈ D(Ψ), x2 ∈W 1,2(Ω) it holds that

〈∂Ψ(x1), x2〉 = a(x1, x2) + k0
Cx1Cx2

1− (Cx1)2 .

Proof. Observe that C∞0 (Ω) ⊂ D(Ψ), so that Ψ is proper. The convexity follows from
the convexity of the respective functions as well as their lower-semi-continuity together
with the supper-additivity of lim inf.
To compute the subgradient, note that the functional Ψ is G-differentiable, and from
Proposition 1.8.12 the subdifferential is a singelton ∂Ψ(x) = {Ψ′(x)} for x ∈ D(Ψ),
where Ψ′(x) is the G-derivative of Ψ at x ∈ D(Ψ). It is a straightforward exercise to
compute it and for x1 ∈ D(Ψ) and x2 ∈W 1,2(Ω) it holds

〈∂Ψ(x1), x2〉L2 =
∫

Ω
〈∇x1, a∇x2〉Rn dλ + Cx1Cx2

1− (Cx1)2

=
∫

Ω
(∇x1)>a∇x2 dλ +

∫
Γ

Cx1

1− (Cx1)2x2 dσ .

For x2 ∈ C∞0 (Ω) we have that

∂Ψ(x1) = −∇ · a∇x1

in the distributional sense.
If ∂Ψ(x1) ∈ L2(Ω) and noting that

Cx1

1− (Cx1)2 ∈ R

we have the abstract Green’s Theorem — [106, Proposition II.5.3]—∫
Ω
〈∇x1, a∇x2〉Rn dλ +

∫
Ω
x2∇ · a∇x1 dλ = 〈Bx1,Cx2〉R ,
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where the right hand side generalizes the normal derivative at the boundary. Putting
both expressions together we obtain the boundary condition

Bx = −(∂Ψ0)(x) = − Cx

1− (Cx)2 .

Now we have that D(∂Ψ) ⊆ D(−A) and the converse is clear.

Remark 4.3.20. If we use the controller described in (4.7), the functional Ψ0 needs
to be modified as

Ψ0(e) := k0 log
(

1
1− e2

)
, e ∈ (−1, 1),

Theorem 4.3.21. For any BCS (A,B,C) as introduced in Definition 4.3.15 over the
real numbers, with κ = 0, we have that the solution of the closed-loop system (4.6a)
from Theorem 4.2.4 satisfies x ∈ L∞([0,∞);L2(Ω)) and y, u ∈ L∞([0,∞);R).

Proof. Theorem 4.3.18 guarantees the existence of a unique solution x. If we now
perform the usual change of variables

x(t) = ϕ(t)−1z(t) +Qyref(t) + P (u0 + ψ(ϕ0, e0))p(t),

we obtain
ż = A(z) + ωz + f,

z(0) = z0,
(4.23)

where A is given in Lemma 4.3.19, ω, f, z0 are given in (4.32) and z0 ∈ D(A), see
Lemma 4.4.7. Note that A coincides with (4.30). From Kato’s Theorem 1.8.14 there
exists a unique solution z of (4.23) with z(0) = z0 such that z(t) ∈ D(A) for all t ≥ 0
and ż is continuous except possibly in a countable number of points.
By showing that |Cz(t)| remains uniformly bounded away from 1 in t, when we undo
the change of variables, we will have that the error e remains uniformly bounded away
from the funnel boundary. For that we will need that z ∈ L∞([0,∞);L2(Ω)). Define

ên := Czn =
∫

Γ
zn dσ .

Taking the scalar product of (4.23) with z(t) we obtain the following energy balance

1
2

d
dt‖z(t)‖

2 = −a(z, z)− ê2

1− ê2 + ω(t)‖z(t)‖2 + 〈z(t), f(t)〉 (4.24)

where a is given in Lemma 4.3.19.
Using the positivity of a and the Poincaré-type inequality in Lemma 1.4.5 we have that
there exist positive constants α, ν, θ such that

−a(z, z) ≤ −α‖∇z‖2 ≤ ν
(∫

Γ
z dσ

)2
− θ‖z‖2 = νê2 − θ‖z‖2 ≤ ν − θ‖z‖2,
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since ê2 < 1. Using that

〈z(t), f(t)〉 ≤ ‖f(t)‖2

2θ + θ

2‖z(t)‖
2,

we can estimate the energy balance by

d
dt‖z(t)‖

2 ≤ −θ‖z(t)‖2 + 2ω(t)‖z(t)‖2 + 2ν + ‖f(t)‖2

θ
. (4.25)

We integrate (4.25) using Lemma 1.8.13 and obtain

‖z(t)‖2 ≤ ϕ−2
0 ‖z0‖2e−θtϕ(t)2 + ϕ(t)2C

where
C := 2ν‖ϕ−2‖∞ + ‖ϕ

−1f‖2∞
θ

.

This implies that z ∈ L∞([0,∞);L2(Ω)).
Next we derive a weak formulation type equation to show that |ê| is uniformly bounded
away from 1. Taking the scalar product of the differential equation with ż(t) leads to

‖ż(t)‖2 − 〈A(z(t)), ż(t)〉 = ω(t) 〈z(t), ż(t)〉+ 〈f(t), ż(t)〉 .

By Lemma 4.3.19 we have that ∂Ψ = −A, so that the latter becomes

‖ż(t)‖2 − 〈∂Ψ(z(t)), ż(t)〉 = ω(t) 〈z(t), ż(t)〉+ 〈f(t), ż(t)〉 .

Using now Lemma 1.8.11 leads to

‖ż(t)‖2 + d
dtΨ(z(t)) = ω(t) 〈z(t), ż(t)〉+ 〈f(t), ż(t)〉 .

We can now make use of

〈f(t), z(t)〉 ≤ ‖f(t)‖2 + 1
4‖ż(t)‖

2

and
ω(t) 〈z(t), ż(t)〉 ≤ ‖ω‖2∞‖z(t)‖2 + 1

4‖ż(t)‖
2

to obtain
‖ż(t)‖2 + 2 d

dtΨ(z(t)) = K, (4.26)

where
K = 2(‖f‖2∞ + ‖ω‖2∞‖z‖2∞).

Adding and subtracting
1
2

d
dt‖z‖

2
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in (4.26) we obtain

‖ż‖2 + 2 d
dtΨ(z) ≤ 1

2
d
dt‖z‖

2 − 1
2

d
dt‖z‖

2 +K.

Since ‖ż‖2 ≥ 0 the former implies

2 d
dtΨ(z) ≤ 1

2
d
dt‖z‖

2 +K − 1
2

d
dt‖z‖

2.

Using now (4.24) and the definition of Ψ yields

d
dt (a(z, z)− log(1− ê2)) ≤ 1

2
d
dt‖z‖

2 +K − 1
2

d
dt‖z‖

2

≤ −a(z, z)− ê2

1− ê2 + ω‖z‖2 + 〈f, z〉+K − 1
2

d
dt‖z‖

2

≤ −a(z, z)− 1
1− ê2 −

1
2

d
dt‖z‖

2 +D,

where we have used that
ê2

1− ê2 = 1
1− ê2 − 1

and
D := 1 +K + ‖ω‖∞‖z‖2∞ + ‖f‖∞‖z‖∞.

If we define
ρ := a(z, z)− log(1− ê2)

then we have

ρ̇ ≤ −ρ−
(

1
1− ê2 − log

(
1

1− ê2

))
− 1

2
d
dt‖z‖

2 +D ≤ −ρ− 1
2

d
dt‖z‖

2 +D,

since
1

1− ζ2 ≥ log
(

1
1− ζ2

)
for all ζ ∈ (−1, 1). Using the integrating factor et we have

ρ(t) ≤ ρ(0)e−t + E ≤ ρ(0) + E

where E > 0 is independent of t and ρ(0) = a(z0, z0)−log(1−ê2
0). Hence, ρ is uniformly

bounded in t, which implies that there exists F > 0 such that

1
1− ê(t)2 ≤ F, ∀t ≥ 0.

This shows that ê is uniformly bounded away from 1. Inverting the change concludes
the proof.
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Heat equation

Here we consider the following boundary controlled 2D heat equation on the unit disc
given by

∂tx(t, r, θ) = α(∂rrx(t, r, θ) + r−1∂rx(t, r, θ) + r−2∂θθx(t, r, θ)),
u(t) = α(∂rx(t, r, θ))|r=1,

y(t) =
∫ 2π

0
x(t, 1, θ) dθ ,

where α > 0 is the thermal diffusivity.
In this case, making use of Theorem 4.3.18, we choose a funnel boundary of the form
ϕ(t) = ϕ0ε

−2 tanh(ωt+ ε). The reference signal is given by yref(t) = A sin(ωt) and the
simulated system is shown in Fig. 4.4. In Fig. 4.5 we show the evolution of the plate
at four different times.
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Figure 4.4: Performance funnel with the error, reference signal with the output of the
closed-loop system and input of the closed-loop.

The parameter values are α = 1 m2s−1, r ∈ (r0, r1), with r0 = 0 m and r1 = 1 m, and
θ ∈ (0, 2π). The amplitude values are A = 1 J, ϕ0 = 0.1 J and ε = 10−1. We have
set T0 = 1 s, ω = 2πT−1

0 and T = 5T0. We have used explicit finite differences with a
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Figure 4.5: From left to right, top to bottom, the temperature of the plate for different
increasing times.

partition in r and θ of N = 25 points for each variable and in t ∈ [0, T ] of

M =
⌊

10T
(

N2

(r1 − r0)2 + N

r1 − r0
+ N2

4π2

)⌋
points. The initial state of the system is

x(0, r, θ) = x0(r1 − r)2 sin(θ),

where x0 = 0.5 Jm−2. We apply the controller (4.7) from Remark 4.2.7 with k0 = 1 s−2.
Note that Theorem 4.3.21 implies that the output u ∈ L∞([0,∞);R).

4.4 Proof of the Main Theorems
We develop some auxiliary results to conclude with the proof of the main results.
A part of following Lemma has been shown in [24] under the additional assumption of
well-posedness, cf. Remark 4.1.3e).

Lemma 4.4.1. Assume that (A,B,C) satisfies Assumption 4.1.2 with α ∈ R. For all
β > α, u ∈ Cm and f ∈ X there exist unique x ∈ D(A) and y ∈ Cm with

(βI − A)x = f,

u = Bx,

y = Cx.

(4.27)
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Furthermore, there exist bounded operators H(β) ∈ L (X), J(β) ∈ L (Cm, X), F (β) ∈
L (X,Cm) and G(β) ∈ L (Cm) = Cm×m which connect the solution of (4.27) via

x = H(β)f + J(β)u,
y = F (β)f +G(β)u.

(4.28)

Thereby, the matrix G(β) + G(β)∗ is positive definite, and G(β) is invertible with
positive definite G(β)−1 + (G(β)∗)−1.

Proof. Step 1: We show uniqueness of the solution of (4.27). To this end, we have
to show that the choice f = 0 and u = 0 leads to x = 0 and y = 0. Assuming that
x ∈ D(A), y ∈ Cm fulfills (4.27) with f = 0 and u = 0, we obtain from (4.2) in
Assumption 4.1.2(i) that

β‖x‖2X = Re 〈Ax, x〉X ≤ Re 〈Bx,Cx〉Cm + α‖x‖2X ,

and thus (β − α)‖x‖2 ≤ 0. Invoking β > α, we obtain x = 0 and, consequently,
y = Cx = 0.
Step 2: We show the existence of bounded operators H(β), J(β), F (β) and G(β) such
that the solutions of (4.27) fulfill (4.28): By Remark 4.1.3b), Assumption 4.1.2(i)&(ii)
imply that βI−A|kerB is bijective. Further, invoking Remark 4.1.3c), Assumption 4.1.2
(iii) leads to the existence of P,Q ∈ L (Cm,D(A)), such that (4.4) holds. Considering

x = (βI − A|kerB)−1︸ ︷︷ ︸
=:H(β)

f + ((βI − A|kerB)−1(AP − βP ) + P )︸ ︷︷ ︸
=:J(β)

u,

y = C(βI − A|kerB)−1︸ ︷︷ ︸
=:F (β)

f + C(βI − A|kerB)−1(AP − βP )︸ ︷︷ ︸
=:G(β)

u,

a straightforward calculation shows that (4.27) holds. Further, the operators H(β),
J(β), F (β) and G(β) are bounded as they are compositions of bounded operators.
Step 3: We show that G(β) + G(β)∗ is positive definite, and G(β) is invertible with
positive definite G(β)−1 + (G(β)∗)−1: Considering (4.27) with f = 0 and taking the
real part of inner product in X, we obtain

Reβ‖x‖2 = Re 〈Ax, x〉 ≤ Re 〈u, y〉Cm + α‖x‖2 =
〈
u,

1
2(G(β) +G(β)∗)u

〉
Cm

+ α‖x‖2,

whence
(β − α)‖x‖2 ≤

〈
u,

1
2(G(β) +G(β)∗)u

〉
Cm

,

so that G(β) +G(β)∗ is positive semidefinite. If for u ∈ Cm holds〈
u,

1
2(G(β) +G(β)∗)u

〉
Cm

= 0,
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then (β − α)‖x‖2X ≤ 0 which implies x = 0 and thus u = Bx = 0. This implies the
positive definiteness of G(β) + G(β)∗, and we can immediately conclude that G(β) is
invertible with positive definite G(β)−1 + (G(β)∗)−1.

Example 4.4.2. Here we show how to compute the transfer function of the two sys-
tems presented in Example 4.1.4. We could bring the lossy transmition line in port-
Hamiltonian form as in (4.18), but the original form of the system is more convenient
for our purposes. Let β ≥ 0. The firs step is to solve

Vζ(ζ) = −LβI(ζ)−RI(ζ),
Iζ(ζ) = −CβV (ζ)−GV (ζ),
V (a) = u1,

V (b) = u2.

One can easily compute the exponential matrix of the system and obtain(
V (ζ)
I(ζ)

)
=
[

cosh(γ(ζ − a)) −τ−1 sinh(γ(ζ − a))
−τ sinh(γ(ζ − a)) cosh(γ(ζ − a))

](
V (a)
I(a)

)
,

where γ :=
√

(Lβ +R)(Cβ +G) and τ :=
√

(Cβ +G)/(Lβ +R). The condition
V (a) = u1 gives

V (ζ) = cosh(γ(ζ − a))u1 − τ−1 sinh(γ(ζ − a))I(a),
I(ζ) = cosh(γ(ζ − a))I(a)− τ sinh(γ(ζ − a))u1.

If we use V (b) = u2, we can find I(a) so that

I(a) = τ cosh(γ(b− a))
sinh(γ(b− a)) u1 −

τ

sinh(γ(b− a))u2.

Now,

y1 = I(a),
y2 = −I(b),

which leads to
y1 = τ coth(γ(b− a))u1 −

τ

sinh(γ(b− a))u2,

and
y2 = τ coth(γ(b− a))u2 −

τ

sinh(γ(b− a))u1.

Hence

G(β) = τ(β)

 coth(γ(β)L) − 1
sinh(γ(β)L)

− 1
sinh(γ(β)L) coth(γ(β)L)

 ,
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where L := b− a.
For the boundary controlled heat equation, we consider the problem in 1D and 2D.
Let k2 := β > 0 be given. For the 1D case we need to solve

k2x(ζ) = xζζ(ζ),
xζ(1) = u,

xζ(0) = −u,
y = x(1) + x(0).

By simply integrating the equation we have

x(ζ) = A cosh(kζ) +B sinh(kζ)

Using xζ(1) = u and xζ(0) = −u leads to

A = 1 + cosh(k)
sinh(k)

u

k
,

B = −u
k
.

Computing now y yields

y = A(cosh(k) + 1) +B sinh(k) = 2 coth(k/2)
k

u,

so that
G(β) = 2√

β
coth

(√
β

2

)
.

For the 2D case, we need to solve

k2x(r, θ) = xrr(r, θ) + r−1xr(r, θ) + r−2xθθ(r, θ),
u = xr(1, θ),

y =
∫ 2π

0
x(1, θ) dθ .

It seems that things are more involved as in the 1D case. However, since we are
prescribing a constant u for all θ ∈ [0, 2π) by using a separation of variables ansatz,
namely x(r, θ) = R(r)Θ(θ), we obtain that Θ(θ) = c ∈ R \ {0}. Without loss of
generality we can set c ≡ 1. Thus, we have to solve

k2R(r) = Rrr(r) + r−1Rr(r),
u = Rr(1),
y = 2πR(1).
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We complete the system by assuming that Rr(0) = 0. With that, the solution can be
given by using Bessel functions of first kind

R(r) = iJ0(ikr)
J1(ik) u.

Hence,
y = 2π iJ0(ik)

J1(ik) u.

By using the definition of the Bessel functions J0, J1 we obtain that

G(β) = 2π 2√
β

∞∑
l=0

1
(l!)2

(√
β

2

)2l

∞∑
l=0

1
(l!)2(l + 1)

(√
β

2

)2l .

Note that both transfer functions for the parabolic PDE resemble one another in spite
of the spatial dimension.

Proposition 4.4.3. Let φ : D(φ) ⊂ Cm → Cm be defined by

φ(y) := 1
1− ‖y‖2 y,

D(φ) := {y ∈ Cm | ‖y‖ < 1}.
(4.29)

Then −φ is m-dissipative.

Proof. Step 1: We prove that −φ is dissipative. We first like to note that the function
g : [0, 1) → R with r 7→ r

1−r2 is monotonically increasing on [0, 1), which follows
by nonnegativity of its derivative. As a consequence (g(a) − g(b))(a − b) ≥ 0 for all
a, b ∈ [0, 1). Using this, we obtain that for w, y ∈ D(φ) holds

Re 〈φ(w)− φ(y), w − y〉 = Re 〈φ(w), w〉+ Re 〈φ(y), y〉 − Re 〈φ(y), w〉 − Re 〈φ(w), y〉

=
(
‖w‖2

1− ‖w‖2 + ‖y‖2

1− ‖y‖2 −
Re 〈w, y〉
1− ‖y‖2 −

Re 〈y, w〉
1− ‖w‖2

)
≥
(
‖w‖2

1− ‖w‖2 + ‖y‖2

1− ‖y‖2 −
‖w‖‖y‖
1− ‖y‖2 −

‖y‖‖w‖
1− ‖w‖2

)
=
(
‖w‖

1− ‖w‖2 −
‖y‖

1− ‖y‖2

)
(‖w‖ − ‖y‖)

= (g(‖w‖)− g(‖y‖)) · (‖w‖ − ‖y‖) ≥ 0.

Step 2: We show that λI+φ(·) is surjective for all λ > 0. Consider f ∈ Cm and λ > 0.
Since λI + φ(·) maps zero to zero, it suffices to prove that any f 6= 0 is in the range of
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λI + φ(·). To this end, consider the real polynomial p with

p(ρ) = λρ3 − ‖f‖ρ2 − (λ+ 1)ρ+ ‖f‖.

We observe that p(0) = ‖f‖ > 0 and p(1) = −1 < 0, whence there exists some ρ̃ ∈ (0, 1)
with p(ρ̃) = 0. Now choosing y = ρ̃

‖f‖f , we obtain by simple arithmetics that

λy + φ(y) = f

(1− ρ̃2)‖f‖ ·
(
−λρ̃3 + (λ+ 1)ρ̃

)
p(ρ̃)=0= f

(1− ρ̃2)‖f‖ ·
(
−‖f‖ · ρ̃2 + ‖f‖

)
= f,

which shows that λI + φ(·) is surjective.

We also record a similar result but only regarding the dissipativity of the function.
Since the result is used for both the real and complex valued cases, we use K = R or
K = C.

Lemma 4.4.4. Let ϕ ∈ [0,∞) and a ∈ Km be given. Define

ψ(y) = − 1
1− ϕ2‖y − a‖2

(y − a), y ∈ D(ψ),

where
D(ψ) :=

{
y ∈ Km

∣∣ ϕ2‖y − a‖2 < 1
}
.

Then, for all y1, y2 ∈ D(ψ) we have that

Re 〈ψ(y1)− ψ(y2), y1 − y2〉 ≥ 0.

Proof. The case ϕ = 0 is clear, so let ϕ > 0. We first like to note that the function
g : [0, ϕ−1) → R, r 7→ r

1−ϕ2r2 is strictly monotonically increasing, which follows
from positivity of its derivative. As a consequence (g(a) − g(b))(a − b) ≥ 0 for all
a, b ∈ [0, ϕ−1). Using this, define ei := yi − a for i = 1, 2 so that it holds

Re〈ψ(y1)− ψ(y2), y1 − y2〉
= Re 〈ψ(y1), e1〉+ Re 〈ψ(y2), e2〉 − Re 〈ψ(y1), e2〉 − Re 〈ψ(y2), e1〉

=
(

‖e1‖2

1− ϕ2‖e1‖2
+ ‖e2‖2

1− ϕ2‖e2‖2
− Re 〈e1, e2〉

1− ϕ2‖e1‖2
− Re 〈e2, e1〉

1− ϕ2‖e2‖2

)
≥
(

‖e1‖2

1− ϕ2‖e1‖2
+ ‖e2‖2

1− ϕ2‖e2‖2
− ‖e1‖‖e2‖

1− ϕ2‖e1‖2
− ‖e1‖‖e2‖

1− ϕ2‖e2‖2

)
=
(

‖e1‖
1− ϕ2‖e1‖2

− ‖e2‖
1− ϕ2‖e2‖2

)
(‖e1‖ − ‖e2‖)

= (g(‖e1‖)− g(‖e2‖)) · (‖e1‖ − ‖e2‖) ≥ 0.
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The next result is a modification of [5, Theorem 4.3] in which the function φ is defined
on the whole space Cm instead of a domain D(φ) as in our situation.

Lemma 4.4.5. Let (A,B,C) be a BCS and let Assumption 4.1.2 be satisfied with
α ∈ R. Let φ : D(φ) ⊂ Cm → Cm be given by (4.29). Then the nonlinear operator
A : D(A) ⊂ X → X with

A(z) := (A− αI)|D(A)z,

D(A) := {z ∈ D(A) | ‖Cz‖ < 1,Bz + φ(Cz) = 0}
(4.30)

is m-dissipative and D(A) = X.

Proof. Step 1: Note that D(A) is not empty, since 0 ∈ D(A) with A(0) = 0. We show
that A is a densely defined: For given (v, e) ∈ Cm ×D(φ) with v = −φ(e) we can find
z0 ∈ D(A) such that (

Bz0
Cz0

)
=
(
v

e

)
,

e.g., by setting z0 = Pv + Qe, where P,Q are chosen as in Remark 4.1.3c). It follows
that z0 + kerB ∩ kerC ⊂ D(A) is a dense subset of X by Assumption 4.1.2.
Step 2: For given λ > 0, we show that λI −A is surjective:
Let f ∈ X. Our aim is to find some z ∈ D(A) with (λI −A)(z) = f , that is,

((λ+ α)I − A)z = f

Bz = −φ(Cz).
(4.31)

Set β := λ + α > α and consider the operators H(λ) ∈ L (X), J(λ) ∈ L (Cm, X),
F (λ) ∈ L (X,Cm) and G(λ) ∈ L (Cm) = Cm×m from Lemma 4.4.1. Since the matrix
G(β)−1 + (G(β)∗)−1 is positive definite by Lemma 4.4.1, there exists some δ > 0 such
that G(β)−1 + (G(β)∗)−1 − 2δI is positive definite. The function −φ is m-dissipative
by Proposition 4.4.3, whence

Ψ(·) := −φ(·)−G(β)−1 + δI

is dissipative. Then Lemma 1.8.7 gives rise to m-dissipativity of Ψ. In particular,
Ψ(·) − δI = −φ(·) − G(β)−1 : D(φ) → Cm is bijective, whence there exists some
e ∈ D(φ) with

Ψ(e)− δe = G(β)−1F (β)f,

which is equivalent to

−φ(e) = G(β)−1e−G(β)−1F (β)f,

and thus
e = F (β)f +G(β)(−φ(e)).
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Then Lemma 4.4.1 implies that z = H(β)f + J(β)(−φ(e)) indeed fulfills (4.31).
Step 3: We show that A is dissipative: Let z1, z2 ∈ D(A), then

Re〈A(z1)−A(z2), z1 − z2〉X
Assumption=

4.1.2(i)
Re
〈
(A− αI)|D(A)z1 − (A− αI)|D(A)z2, z1 − z2

〉
X

≤ −Re 〈φ(Cz1)− φ(Cz2),Cz1 − Cz2〉Cn
Proposition
≤

4.4.3
0.

Remark 4.4.6. Note that the statement concerning the density of D(A) is not trivial.
In the linear case, it is always so, but in the nonlinear setting it does not need to hold,
see Proposition 1.8.6.

An intrinsic technical problem when investigating solvability of (4.6) is that the feed-
back is varying in time, i.e. it depends on t explicitly. To circumvent this problem,
we perform a change of variables leading to an evolution equation with a constant
operator. This is subject of the subsequent auxiliary result.

Lemma 4.4.7. Let a BCS (A,B,C) be given which satisfies Assumption 4.1.2 and
assume that the initial value x0 and the functions yref , p, ϕ fulfill Assumption 4.2.2.
Then for ϕ0 = ϕ(0), e0 = Cx0 − yref(0), u0 = Bx0, operators P,Q ∈ L (Cm,D(A))
with (4.4), and the nonlinear m-dissipative operator A given in (4.30) and

ω = ϕ̇

ϕ
,

f =ϕ ·
(
AQyref −Qẏref + AP (u0 + ψ(ϕ0, e0))p− P (u0 + ψ(ϕ0, e0))ṗ(t)

)
z0 =ϕ0 ·

(
x0 −Qyref(0)− P (u0 + ψ(ϕ0, e0))

)
.

(4.32)

holds ω ∈ W 1,∞([0,∞);R), f ∈ W 1,∞([0,∞);X) and z0 ∈ D(A). Furthermore, the
following holds for T > 0:

a) If x ∈ W 1,∞([0, T ];X) and for almost every t ∈ [0, T ] holds that ẋ is continuous
at t, x(t) ∈ D(A) for all t ∈ [0, T ] and (4.6), then for

z(t) = ϕ(t)
(
x(t)−Qyref(t)− P (Bx0 + ψ(ϕ0, e0))p(t)

)
, (4.33)

holds z ∈W 1,∞([0, T ];X) and for almost every t ∈ [0, T ] holds that ż is continu-
ous at t, z(t) ∈ D(A) for all t ∈ [0, T ] and

ż(t) = A(z(t)) + (ω(t) + α)z(t) + f(t),
z(0) = z0

(4.34)
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b) Conversely, if z ∈W 1,∞([0, T ];X) and for almost every t ∈ [0, T ] holds that ż is
continuous at t, z(t) ∈ D(A) for all t ∈ [0, T ] and (4.34), then for

x(t) = ϕ(t)−1z(t) +Qyref(t) + P (Bx0 + ψ(ϕ0, e0))p(t), (4.35)

x ∈W 1,∞([0, T ];X) and for almost every t ∈ [0, T ] holds that ẋ is continuous at
t, x(t) ∈ D(A) for all t ∈ [0, T ] and (4.6).

c) If z ∈W 1,∞([0,∞);X), then x as in (4.35) fulfills x ∈W 1,∞([0,∞);X).

Proof. The statements ω ∈ W 1,∞([0,∞);R), f ∈ W 1,∞([0,∞);X) follow from the
product rule for weak derivatives [3, p. 124]. Since P maps to D(A), we have z0 ∈ D(A).
Further, by using BP = I, BQ = 0, CP = 0 and CQ = I, we obtain

φ(Cz0) = ϕ0 · e0

1− ϕ2
0‖e0‖2

= −Bz0,

whence z0 ∈ D(A).
To prove statement a), assume that x ∈ W 1,∞([0, T ];X) has a derivative which is
continuous almost everywhere and in the domain of A for all t ∈ [0, T ]. First note that
the twice weak differentiability of p and ϕ together with the fact that P and Q map to
D(A) implies that z ∈ W 1,∞([0, T ];X) with z(t) being in D(A) for all t ∈ [0, T ]. By
further using that (4.6) holds for all t ∈ [0, T ], we obtain —analogously to the above
computations for z0— that

φ(Cz(t)) = ϕ(t)e(t)
1− ϕ(t)2‖e(t)‖2 = −Bz(t),

which implies that z(t) ∈ D(A) for all t ∈ [0, T ]. Further, a straightforward calculation
shows that (4.6) implies that z(t) fulfills (4.34).
Statement b) follows by an argumentation straightforward to that in the proof of
a). Statement c) is a simple consequence of inft≥0 ϕ(t) > 0, ϕ, p ∈ W 2,∞([0,∞);R),
yref ∈W 2,∞([0,∞);Cm) and the product rule for weak derivatives.

The previous lemma is indeed the key step to prove Theorems 4.2.4 & 4.2.6 on the feas-
ibility of the funnel controller. By using the state transformation (4.33) with inversion
(4.35), the analysis of feasibility of the funnel controller reduces to the proof of existence
of a solution to the nonlinear evolution equation (4.34) in which the time-dependence
is now extracted to the inhomogeneity.

Proof of Theorem 4.2.4. Let T > 0, and consider the nonlinear operator A as in (4.30)
and ω ∈ W 1,∞([0,∞);R), f ∈ W 1,∞([0,∞);X) and z0 ∈ D(A) as in (4.32). Then
Theorem 1.8.14 implies that the nonlinear evolution equation (4.34) has a unique solu-
tion z ∈ W 1,∞([0, T ];X) in the sense that for all t ∈ [0, T ] holds z(t) ∈ D(A), ż
is continuous at except at a countable number of points in [0, T ], and (4.34). Then
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Lemma 4.4.7b) yields that x ∈W 1,∞([0, T ];X) as in (4.35) has the desired properties.
It remains to show uniqueness: Assume that xi ∈W 1,∞([0, T ];X) are solutions of the
closed-loop system (4.6) for i = 1, 2. Then

zi(t) = ϕ(t)
(
xi(t)−Qyref(t)− P (Bx0 + ψ(ϕ0, e0))p(t)

)
, (4.36)

fulfills żi(t) = A(zi(t)) + (ω(t) + α)z(t) + f(t) with zi(0) = z0, and the uniqueness
statement in Theorem 1.8.14 gives z1 = z2. Now resolving (4.36) for xi and invoking
z1 = z2 gives x1 = x2.

It remains to prove Theorem 4.2.6 which states that the global solution and its deriv-
ative are bounded in case of negativity of the constant α in Assumption 4.1.2 (i).

Proof of Theorem 4.2.6. Let α < 0, let A be the nonlinear operator in (4.30) and
ω ∈W 1,∞([0,∞);R), f ∈W 1,∞([0,∞);X) and z0 ∈ D(A) as in (4.32).
Step 1: We show that the solution z ∈ W 1,∞

loc ([0,∞);X) of (4.34) (which exists by
Theorem 1.8.14) is bounded:
Then we obtain that for almost all t ≥ 0 holds

1
2

d
dt‖z(t)‖X = Re 〈z(t), ż(t)〉X

= Re 〈z(t),Az(t) + (ω(t) + α)z(t) + f(t)〉X
≤ Re 〈z(t),Az(t)〉X + (ω(t) + α)‖z(t)‖2X + ‖z(t)‖X‖f(t)‖X

(4.30)= Re 〈z(t),Az(t)〉X + ω(t)‖z(t)‖2X + ‖z(t)‖X‖f(t)‖X
(4.2)
≤ Re 〈Bz(t),Cz(t)〉Cn + α‖z(t)‖2X + ω(t)‖z(t)‖2X‖z(t)‖2X + ‖z(t)‖X‖f(t)‖X

(4.30)= − ‖Cz(t)‖2

1− ‖Cz(t)‖2 + α‖z(t)‖2X + ω(t)‖z(t)‖2X + ‖z(t)‖X‖f(t)‖X

≤α‖z(t)‖2X + ω(t)‖z(t)‖2X + ‖z(t)‖X‖f(t)‖X .

Now applying Lemma 1.8.13 with ρ = 1/2, using that the definition of ω in (4.32) leads
to ω = d

dt log(ϕ), we obtain that for almost all t ≥ 0 holds

‖z(t)‖X ≤ ϕ−1
0 ‖z0‖Xϕ(t)eαt + ϕ(t)eαt

∫ t

0
ϕ(s)−1e−αs‖f(s)‖X ds .

The definition of f in (4.32) leads to the existence of c0, c1 > 0 such that for almost
all t ≥ 0 holds ‖f(t)‖X ≤ ϕ(t)(c0 + c1‖yref‖W 1,∞). Thus,

‖z(t)‖X ≤ ϕ−1
0 ‖z0‖Xϕ(t)eαt − α−1ϕ(t)(c0 + c1‖yref‖W 1,∞)(1− eαt),

whence z ∈ L∞([0,∞);X).
Step 2: We show that ż ∈ L∞([0,∞);X):
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To this end, let h > 0 and, by using the dissipativity of A, consider

1
2

d
dt‖z(t+ h)− z(t)‖2X ≤ α‖z(t+ h)− z(t)‖2X + ω(t+ h)‖z(t+ h)− z(t)‖2X

+ |ω(t+ h)− ω(t)|‖z(t)‖X‖z(t+ h)− z(t)‖X
+ ‖f(t+ h)− f(t)‖X‖z(t+ h)− z(t)‖X ,

Again applying the Grönwall type inequality from Lemma 1.8.13 with ρ = 1/2, dividing
by h and letting h→ 0 yields

‖ż(t)‖X ≤ ϕ−1
0 ‖ż(0)‖Xϕ(t)eαt + ϕ(t)eαt

∫ t

0
e−αsϕ(s)−1(‖z‖L∞ |ω̇(s)|+ ‖ḟ(s)‖X) ds

≤ ϕ−1
0 ‖A(z0) + ω(0)z0 + f(0)‖X‖ϕ‖L∞

+ ‖ϕ‖L∞
∥∥ϕ−1∥∥

L∞
(‖z‖L∞‖ω̇‖L∞ + d0 + d1‖yref‖W 2,∞)

for some d0, d1 > 0. Hence, ż(t) ∈ L∞([0,∞);X).
Step 3: We conclude that the solution x in (4.6) (which exists by Theorem 4.2.4) fulfills
x ∈W 1,∞([0,∞);X):
We know from the first two steps that z ∈ W 1,∞([0,∞);X). Then Lemma 4.4.7c)
leads to x ∈W 1,∞([0,∞);X).
Step 4: We finally show that u = Bx fulfills u ∈ L∞([0,∞);Cm):
We know from the third step, we know that x ∈ W 1,∞([0,∞);X). Since we have
x(t) ∈ D(A) with ẋ(t) = Ax(t) for almost all t ≥ 0, we can conclude that Ax ∈
L∞([0,∞);X), and thus x ∈ L∞([0,∞);D(A)). Then B ∈ L (D(A),Cm) gives u =
Bx ∈ L∞([0,∞);Cm).

4.5 Outlook
In this chapter we have shown that the funnel controller (4.5) is feasible for BCS of
the form (A,B,C). Even though the mathematical tools used happened to be non-
standard, the resulting theory is very reach as it has been shown by applying our main
results, Theorems 4.2.4 & 4.2.6, to different system classes, whose state variable is
described by both hyperbolic and parabolic partial differential equations. Moreover,
Assumption 4.1.2 provides a recipe to check whether one can apply the funnel controller
to a particular system.
It is worth mentioning that the methodology used here differs from the other results
regarding the funnel controller, since from the beginning on we have considered the
closed-loop system, while in the literature, the open-loop problem is first considered.
The results of this chapter have been mostly gathered in [99]. Nevertheless, some
things have been added. For didactic purposes we have included Example 4.4.2. We
have also given enough conditions for which one can apply the funnel controller with an
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infinitely open funnel boundary at t = 0 in Section 4.2.1. Moreover, we have included
Section 4.2.2 to show that if the semigroup generated by A|kerB is analytic, the input
and output are Hölder continuous. Following the intuition from the finite-dimensional
case, in particular the notion of high-gain stabilizability, and the fact that in [101] it has
been shown that a funnel controller can be feasible for the boundary controller heat
equation, we have proved Theorem 4.3.21. This requires of special techniques which tie
the notion of nonlinear m-dissipative operators and subdifferentials together. In order
to build bridges between the finite-dimensional scenario and the infinite-dimensional
case at hand, we have also included the following part, which attempts to explain the
intuition behind the applicability of the funnel controller.

4.5.1 The zero dynamics
In the existing literature about the funnel controller, both finite and infinite-dimen-
sional, the concept of zero dynamics plays an important role. Roughly speaking, the
zero dynamics consists of all pairs of state and input trajectories (x, u) for which the
output vanishes, that is, y = 0.
Here we elucidate by means of two examples what the zero dynamics in this infinite-
dimensional setting is. As we will see in the examples, the systems we have considered
are flat, this means that there is an equation which relates the input and output without
having any derivatives involved. This corresponds in the finite-dimensional literature
to the case of relative degree 0. This concept is defined by using the transfer function,
which in the finite-dimensional case is a rational function or a matrix whose entries
are rational functions. As seen in Example 4.4.2, the transfer function of infinite-
dimensional systems is no longer a rational function. In fact, for the port-Hamiltonian
example of the lossy transmission line, the relative degree is 0 and for the heat equation,
the relative degree is 1/2.
First, consider (A,B,C) to be a port-Hamiltonian system with N = 1, that is,

Ax = P1
∂

∂ζ
Hx+ P0Hx, x ∈ D(A),

and

Bx := WB

(
f∂,Hx
e∂,Hx

)
,

Cx := WC

(
f∂,Hx
e∂,Hx

)
,

as in Definition 4.3.1, so that WB ,WC have full row rank and
[
WB

WC

]
is invertible. We

further assume that P1H(ζ) can be written as

P1H(ζ) = S−1(ζ)∆(ζ)S(ζ),
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where S,∆ are continuously differentiable matrix-valued functions and ∆ is diagonal.
It follows from [67, Theorem 13.2.2] that (A,B,C) is an L2 well-posed linear system,
that is,

x(t) = TBt x0 + ΦBt u,
y = ΨB

∞x0 + FB∞u,
(ΣB)

where TB := (TBt )t≥0 is the C0-semigroup generated by A|kerB. The properties of the
other operators are given in Section 1.7. Note that this system satisfies

Re 〈Ax, x〉X ≤ 〈Bx,Cx〉Cm , x ∈ D(A),

so that u and y are interchangeable, because A|kerC generates also a C0-semigroup
—combine [5, Proposition 3.2.15] and [67, Theorem 7.2.4]— and [67, Theorem 13.2.2]
holds as well. This means that the system (A,B,C) is invertible as a well-posed linear
system and

x(t) = TCt x0 + ΦCt y,
u = ΨC

∞x0 + FC∞y,
(ΣC)

where TC := (TCt )t≥0 is the C0-semigroup generated by A|kerC. The operators from
(ΣB) and (ΣC) are related by certain transformations, see [112, Section 5],

TCt x0 = [TBt − ΦBt (FB∞)−1ΨB
∞]x0,

ΦCt y = ΨB
t (FB∞)−1y,

ΨC
∞x0 = −(FB∞)−1ΨB

∞x0,

FC∞y = (FB∞)−1y.

Moreover, the transfer functions of (ΣB) and (ΣC) are inverse of one another, GB(β) =
GC(β)−1, [112, Corollary 5.2 ]. Hence, the zero dynamics which is given by

ẋ(t) = Ax(t),
u = Bx(t),
0 = Cx(t),

can be obtained by simply setting y = 0 in (ΣC),

x(t) = TCt x0,

u = ΨC
∞x0.

From an heuristic viewpoint, if we want the zero dynamics to be asymptotically stable,
that is, (x, u) go to zero (in some sense) as t→∞, then the norm semigroup TC needs
to decay as t grows after some transient period. Since the port-Hamiltonian systems
are described by hyperbolic PDEs, the spectrum of A|kerC, σ(A|kerC), is contained
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in an imaginary line with real part α, which depends on P0. For the zero dynamics
to be asymptotically stable it is necessary that α < 0, so that the semigroup TC is
exponentially stable. From the dissipativity equation, this implies that TB is also
exponentially stable.
For the second example, let us consider the BCS (A,B,C) described in Definition 4.3.15
with a = In and κ = 0. This system is also well-posed, see for instance [22, Corollary
1]. Nevertheless, it is not invertible, so that the characterization of (x, u) such that the
following holds

ẋ(t) = ∆x(t),
u(t) = γ0(ν · a∇x(t)),

0 =
∫

Γ
γ0x(t) dσ ,

requires some extra work. However, by using the form a, it can be inferred that

〈∆x, x〉 ≤ −θ‖x‖2 + νy2 + uy. (4.37)

Thus, by considering ∆|kerB∩kerC as in [102, Section 5] it can be shown that the zero
dynamics are asymptotically stable.
As we have shown in Theorems 4.3.4 & 4.3.21, the funnel controller is feasible in the
sense that u ∈ L∞(0,∞;Rm), and in both cases the zero dynamics were stable. Hence,
this notion plays also an underlying role in the feasibility of the funnel controller in
infinite-dimension.

4.5.2 Open questions
In the lines of the former comments regarding the zero dynamics, even though it seems
to provide a good intuition regarding the class of systems for which the funnel controller
may be feasible, it is still unclear how to exploit this stability in general with the
methodology presented in this chapter. In fact, the characterization of operators A

satisfying an inequality of the form (4.37) together with the generalized impedance
passivity inequality (4.2) seems to be not known. Perhaps it is not possible by using
only the inequalities, since the amount of information lost may be very relevant, as
in the example with the Laplace operator, where one uses the form a. Moreover,
conditions resembling the ones given in Theorem 4.3.21 so that we can show u ∈
L∞([0,∞);Rm) without needing to prove that ẋ ∈ L∞([0,∞);X) are also unknown at
the present time. However, it does seem to be a strong connection between this fact
and (4.37), as seen by using the subdifferential presented in Lemma 4.3.19.
One of the drawbacks of working with BCS is that we do not distinguish between
hyperbolic and parabolic PDEs. In particular, parabolic problems enjoy of smoothing
properties of the solution which we have not fully exploited. For instance, following
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the lines of [101], one could modify the FC 4.5 with a funnel boundary which infinitely
open for a small period of time so that the solution becomes smooth. This would allow
for arbitrary initialization of the system, that is, x0 ∈ X instead of x0 ∈ D(A). Hence,
the factor associated to the function p could be dropped. This will be in fact illustrated
in the next chapter.
It seems to be also possible to consider infinite-dimensional inputs and outputs, by
slightly modifying the proofs of the results given in Section 4.4. This can be for
instance achieved by assuming that B : D(A) ⊂ X → U and C : D(A) ⊂ X → Y with
U, Y infinite-dimensional reflexive spaces and U ′ = Y , so that one can form the duality
〈u, y〉U×Y . However, for some of the systems considered as examples, the joint operator[
B
C

]
may not be surjective when considering the infinite-dimensional versions of B and

C, for instance when considering the Maxwell’s Equations in the form of Section 4.3.2
and Bx = e∂x and Cx = f∂x, see for instance [36, 114]. Hence, the natural question
arises, whether this can be somehow circumvented.
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5 Adaptive control for a nonlinear
parabolic problem

We study output trajectory tracking for a class of nonlinear reaction diffusion equations
such that a prescribed performance of the tracking error is achieved. To this end, we
utilize the method of funnel control.
The reaction diffusion equation that we consider in the present chapter is known as the
monodomain model and represents defibrillation processes of the human heart [117].
The monodomain equations are a reasonable simplification of the well accepted bido-
main equations, which arise in cardiac electrophysiology [113]. In the monodomain
model the dynamics are governed by a parabolic reaction diffusion equation which is
coupled with a linear ordinary differential equation that models the ionic current.
The present chapter is organized as follows. In Section 5.2 we introduce the mathem-
atical model that will be considered and the general framework where we will work,
in Section 5.3 we define the controller present the funnel controller that will be used
to achieve the control objective and give our main result, Theorem 5.3.3. After we
move on to Section 5.4 where we provide the necessary tools for the proof of the main
theorem and in Section 5.6 we give the respective proof.

5.1 Neumann elliptic operators
Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary ∂Ω. Denote the scalar
product in L2(Ω;Rd) by 〈·, ·〉 and the norm in L2(Ω) by ‖ · ‖. Further, let D ∈
L∞(Ω;Rd×d) be symmetric-valued and satisfying the ellipticity condition

for a.e. ζ ∈ Ω ∀ ξ ∈ Rd : ξ>D(ζ)ξ =
d∑

i,j=1
Dij(ζ)ξiξj ≥ δ‖ξ‖2Rd (5.1)

for some δ > 0. Consider the sesquilinear form a : W 1,2(Ω)×W 1,2(Ω)→ R with

a(z1, z2) = 〈∇z1, D∇z2〉 . (5.2)

We can associate a linear operator to the above sequilinear form.
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Proposition 5.1.1. Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary and
let D ∈ L∞(Ω;Rd×d) be symmetric-valued and satisfying the ellipticity condition (5.1).
Then there exists exactly one operator A : D(A) ⊂ L2(Ω)→ L2(Ω) with

D(A) =
{
z2 ∈W 1,2(Ω)

∣∣ ∃y2 ∈ L2(Ω) : a(z1, z2) = −〈z1, y2〉 ∀x ∈W 1,2(Ω)
}
,

and
a(z1, z2) = −〈z1,Az2〉 ∀z1 ∈W 1,2(Ω), z2 ∈ D(A).

We call A the Neumann elliptic operator on Ω associated to D. The operator A is
closed, self-adjoint, and D(A) is dense in W 1,2(Ω).

Proof. Existence, uniqueness and closedness of A as well as the density of D(A) in
W 1,2(Ω) follow from Kato’s First Representation Theorem [70, Section VI.2, The-
orem 2.1], whereas self-adjointness is an immediate consequence of the property

a(z1, z2) = a(z2, z1)

for all z1, z2 ∈W 1,2(Ω).

Note that above operator does not require any further smoothness of ∂Ω. In particular,
the classical definition of the Neumann boundary trace, i.e., the derivative of a function
in the direction of the outward normal unit vector ν : ∂Ω→ Rd does not need to exist.
If however ∂Ω and the coefficient matrix D are sufficiently smooth, we have

Az = divD∇z, z ∈ D(A) :=
{
z ∈W 2,2(Ω)

∣∣ (ν> ·D∇z)|Γ = 0
}
,

see [44, Theorem 2.2.2.5]. This justifies that we call A a Neumann elliptic operator.

5.2 The FitzHugh-Nagumo model
Let d ≤ 3 and Ω ⊂ Rd be a bounded domain with Lipschitz boundary. We consider a
model for the interaction of the electric current in a cell, namely

d
dtv(t) = Av(t) + p3(v(t))− u(t) + Is,i(t) + BIs,e(t), v(0) = v0

d
dtu(t) = c5v(t)− c4u(t), u(0) = u0

y(t) = B′v(t),

(5.3)

where
p3(v) := −c1v + c2v

2 − c3v3,

with constants ci > 0 for i = 1, . . . , 5, initial values v0, u0 ∈ L2(Ω), the Neumann
elliptic operator A : D(A) ⊆ L2(Ω) → L2(Ω) associated to D ∈ L∞(Ω) and control
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operator B ∈ L (Rm, (W 1,2(Ω))′). The output operator B′, i.e., the adjoint of B, is
consequently in L (W 1,2(Ω),Rm).
System (5.3) is known as the FitzHugh-Nagumo model for the ionic current [33], where

Iion(u, v) = p3(v)− u.

The functions Is,i ∈ L2
loc([0, T );L2(Ω)), Is,i ∈ L2

loc([0, T );Rm) are the intracellular and
extracellular stimulation currents, respectively. In particular, Is,i is the control of the
system, whereas y is the output.
Next we introduce the solution concept.

Definition 5.2.1. Assume that d ≤ 3 and Ω ⊂ Rd is a bounded Lipschitz domain, let
D ∈ L∞(Ω;Rd×d) be symmetric-valued and satisfying the ellipticity condition (5.1).
Let A be a Neumann elliptic operator on Ω associated to D (see Proposition 5.1.1), let
B ∈ L (Rm, (W 1,2(Ω))′), and let u0, v0 ∈ L2(Ω) be given. Further, let T ∈ (0,∞] and
Is,i ∈ L2

loc([0, T );L2(Ω)), Is,e ∈ L2
loc([0, T );Rm). A triple of functions (u, v, y) is called

solution of (5.3) in [0, T ), if

(i) v ∈ L2([0, T );W 1,2(Ω)) ∩ C([0, T );L2(Ω))) with v(0) = v0;

(ii) u ∈ C([0, T );L2(Ω)) with u(0) = u0;

(iii) for all χ ∈ L2(Ω), θ ∈ W 1,2(Ω), the scalar functions t 7→ 〈u(t), χ〉, t 7→ 〈v(t), θ〉
are weakly differentiable on [0, T ], and it holds that, for almost all t ∈ (0, T ),

d
dt 〈v(t), θ〉 = −a(v(t), θ) + 〈p3(v(t))− u(t) + Is,i(t), θ〉+ 〈Is,e(t),B′θ〉Rm ,

d
dt 〈u(t), χ〉 = 〈c5v(t)− c4u(t), χ〉 ,

y(t) = B′v(t),
(5.4)

where a : W 1,2(Ω)×W 1,2(Ω)→ R is the sesquilinear form (5.2).

Remark 5.2.2.

a) Weak differentiability of t 7→ 〈u(t), χ〉, t 7→ 〈v(t), θ〉 for all χ ∈ L2(Ω), θ ∈
W 1,2(Ω) on (0, T ) further leads to

v ∈W 1,2([0, T ]; (W 1,2(Ω))′) and u ∈W 1,2([0, T ];L2(Ω)).

b) The Sobolev Embedding Theorem [2, Theorem 5.4] implies that the inclusion map
W 1,2(Ω) ↪→ L6(Ω) is bounded. This guarantees that p3(v) ∈ L2([0, T ];L2(Ω)),
whence the first equation in (5.4) is well-defined.
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c) Let w ∈ L2(Ω). An input operator of the form Bu = u · w corresponds to
distributed input, and we have B ∈ L (R, L2(Ω)). In this case, the output is
given by

y(t) =
∫

Ω
w(ξ) · (v(t))(ξ)dξ.

A typical situation is that z is an indicator function on a subset of Ω; such choices
have been considered in [81] for instance.

d) Let w ∈ L2(∂Ω). An input operator with

B′z =
∫

Γ
w(ξ) · z(ξ)dσ (5.5)

corresponds to a Neumann boundary control

ν(ξ)> · (∇v(t))(ξ) = w(ξ) · Is,e(t).

In this case, the output is given by a weighted integral of the Dirichlet boundary
values. More precisely

y(t) =
∫

Γ
w(ξ) · (v(t))(ξ)dσ.

Note that B′ is the composition of the trace operator

tr : z 7→ z|∂Ω

with taking the inner product in L2(∂Ω) with w. The trace operator fulfills for
all ε > 0 that tr ∈ L (W 1/2+ε,2(Ω), L2(∂Ω)) by the Trace Theorem [123, The-
orem 1.39]. In particular, tr ∈ L (W 1,2(Ω), L2(∂Ω)), thus B′ ∈ L (W 1,2(Ω),R)
and B ∈ L (R, (W 1,2(Ω))′).

e) The case T =∞ is to be understood in the following sense. The triple (u, v, y) is
a solution of (5.3) in [0,∞) if for all T > 0 the restrictions (u|[0,T ), v|[0,T ), y|[0,T ))
are solutions of (5.3).

5.3 Funnel control
The objective is that the output y of the system (5.3) tracks a given reference signal
which is yref ∈ W 1,∞([0,∞);Rm) with a prescribed performance of the tracking error
e := y − yref , that is e evolves within the performance funnel

Fϕ := { (t, e) ∈ [0,∞)× Rm | ϕ(t)‖e‖Rm < 1 }
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defined by a function ϕ belonging to

Φγ :=
{
ϕ ∈W 1,∞([0,∞);R)

∣∣∣∣ ϕ|[0,γ] ≡ 0, ∀δ > 0 : inf
t>γ+δ

ϕ(t) > 0
}
,

for some γ > 0. The situation is illustrated in Fig. 5.1. The funnel boundary given
by 1/ϕ is unbounded in a small interval [0, γ] to allow for an arbitrary initial tracking
error. Since ϕ is bounded there exists λ > 0 such that 1/ϕ(t) ≥ λ for all t > 0.
Thus, we seek practical tracking with arbitrary small accuracy λ > 0, but asymptotic
tracking is not required in general.

t

±ϕ(t )−1

γ

±λ−1

e(t )

Figure 5.1: Error evolution in a funnel Fϕ with boundary ϕ(t)−1.

The funnel boundary is not necessarily monotonically decreasing, while in most situ-
ations it is convenient to choose a monotone funnel. Sometimes, widening the funnel
over some later time interval might be beneficial, for instance in the presence of peri-
odic disturbances or strongly varying reference signals. For typical choices of funnel
boundaries see e.g. [56, Section 3.2].
A controller which achieves the above described control objective is the funnel control-
ler. In the present chapter it suffices to use the simple version developed in [61], which
is the feedback law

Is,e(t) = − k0

1− ϕ(t)2‖B′v(t)− yref(t)‖2Rm
(B′v(t)− yref(t)), (5.6)

where k0 > 0 is some constant used for scaling and agreement of physical units. Note
that for t ≤ γ, the controller is merely

Is,e(t) = −k0(B′v(t)− yref(t)),

since ϕ|[0,γ] ≡ 0.



136
CHAPTER 5. ADAPTIVE CONTROL FOR A NONLINEAR PARABOLIC

PROBLEM

The application of the controller (5.6) results in the nonlinear and time-varying PDE
system
We are interested in considering solutions of (5.7), which leads to the following weak
solution framework.

Definition 5.3.1. Assume that d ≤ 3 and Ω ⊂ Rd be a bounded domain with Lipschitz
boundary, let D ∈ L∞(Ω;Rd×d) be symmetric-valued and satisfying the ellipticity
condition (5.1). Let T ∈ (0,∞] andA be the Neumann elliptic operator on Ω associated
to D (see Proposition 5.1.1), let B ∈ L (Rm, (W 1,2(Ω))′), and let u0, v0 ∈ L2(Ω) as well
as Is,i ∈ L2

loc([0,∞);L2(Ω)) be given. Further, let k0 > 0, yref ∈ W 1,∞([0,∞);Rm),
γ > 0 and ϕ ∈ Φγ . A triple of functions (u, v, y) is called solution of the system (5.3)
with feedback (5.7) in [0, T ), if (u, v, y) is a solution of (5.3) in [0, T ) with (5.6) for all
t ∈ [0, T ).

Remark 5.3.2.

a) Plugging the feedback law (5.6) into the system (5.3), we obtain

d
dtv(t) = Av(t) + p3(v)(t)− u(t) + Is,i(t)−

k0B(B′v(t)− yref(t))
1− ϕ(t)2‖B′v(t)− yref(t)‖2Rm

,

d
dtu(t) = c5v(t)− c4u(t),

(5.7)
Consequently, (u, v, y) is a solution of system (5.3) with feedback (5.7), if, and
only if

(i) v ∈ L2([0, T );W 1,2(Ω)) ∩ C([0, T );L2(Ω))) with v(0) = v0;
(ii) u ∈ C([0, T );L2(Ω)) with u(0) = u0;
(iii) for all χ ∈ L2(Ω), θ ∈ W 1,2(Ω), the scalar functions t 7→ 〈u(t), χ〉, t 7→

〈v(t), θ〉 are weakly differentiable on [0, T ], and it holds that, for almost all
t ∈ (0, T ),

d
dt 〈v(t), θ〉 = −a(v(t), θ) + 〈p3(v(t))− u(t) + Is,i(t), θ〉

−
k0 〈B′v(t)− yref(t),B′θ〉Rm

1− ϕ(t)2‖B′v(t)− yref(t)‖2Rm
,

d
dt 〈u(t), χ〉 = 〈c5v(t)− c4u(t), χ〉 ,

y(t) = B′v(t),

(5.8)

The system is a nonlinear and non-autonomous PDE and any solution needs to
satisfy that the tracking error evolves in the prescribed performance funnel Fϕ.
Therefore, existence and uniqueness of solutions is a nontrivial problem and even
if a solution exists on a finite time interval [0, T ), it is not clear that it can be
extended to a global solution.
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b) For global solutions it is desirable that Is,e ∈ L∞([δ,∞);Rm) for all δ > 0. Note
that this is equivalent to

lim sup
t→∞

ϕ(t)2‖B′v(t)− yref(t)‖2Rm < 1.

It is as well desirable that y and Is,e have a certain smoothness.

In the following we state the main theorem of this chapter. We will show that the
closed-loop system (5.7) has a unique global solution so that all signals remain bounded.
Furthermore, the tracking error stays uniformly away from the funnel boundary. We
further show that we gain more regularity, if B ∈ L (Rm, (W r,2(Ω))′) for some r ∈ [0, 1).

Theorem 5.3.3. Assume that d ≤ 3 and Ω ⊂ Rd is a bounded domain with Lipschitz
boundary, let D ∈ L∞(Ω;Rd×d) be symmetric-valued and satisfying the ellipticity con-
dition (5.1). Let A be the Neumann elliptic operator on Ω associated to D (see Proposi-
tion 5.1.1), let B ∈ L (Rm, (W 1,2(Ω))′) with kerB = {0}, and let u0, v0 ∈ L2(Ω) as well
as Is,i ∈ L∞([0,∞);L2(Ω)) be given. Further, let k0 > 0, yref ∈ W 1,∞([0,∞);Rm),
γ > 0 and ϕ ∈ Φγ . Then, for all T > 0, there exists a unique solution of (5.7) in
[0, T ). The solution is thus global and

(i) u, u̇, v ∈ BC([0,∞);L2(Ω));

(ii) for all δ > 0 holds

v ∈ C0,1/2([δ,∞);L2(Ω)),
y, Is,e ∈ BUC([δ,∞);Rm),

and

(iii) there exists some ε0 > 0 such that for all δ > 0

∀ t ≥ δ : ϕ(t)2‖B′v(t)− yref(t)‖2Rm ≤ 1− ε0.

a) If, further, B ∈ L (Rm, (W r,2(Ω))′) for some r ∈ (0, 1), then for all δ > 0

v ∈ C0,1−r/2([δ,∞);L2(Ω)),
y, Is,e ∈ C0,1−r([δ,∞);Rm),

b) If B ∈ L (Rm, L2(Ω)), then for all δ > 0 and for all λ ∈ (0, 1)

v ∈ C0,λ([δ,∞);L2(Ω)),
y, Is,e ∈ C0,λ([δ,∞);Rm),

c) If B ∈ L (Rm,W 1,2(Ω)), then for all δ > 0 holds y, Is,e ∈ C0,1([δ,∞);Rm).
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If in particular, v0 ∈ D(A), then the former hold with δ = 0.

Remark 5.3.4.

a) The condition kerB = {0} is equivalent to imB′ being dense in Rm. The latter
is equivalent to imB′ = Rm by the finite-dimensionality of Rm.
Note that surjectivity of B′ is evident for tracking control, since any reference
signal yref ∈W 1,∞([0,∞);Rm) has to be tracked by the output y = B′v.

b) If the input operator corresponds to Neumann boundary control, i.e. B is as
in (5.5) for some w ∈ L2(∂Ω), then r ∈ (1/2, 1), see Remark 5.2.2d). Con-
sequently, for all ε > 0, we have v ∈ C0,3/4−ε([δ,∞);L2(Ω)) and y, Is,e ∈
C0,1/2−ε([δ,∞);Rm) in this case.

c) If the input operator corresponds to distributed control, i.e. Bu = uw for some
w ∈ L2(Ω), see Remark 5.2.2c), then for all ε > 0 holds v ∈ C0,1−ε([δ,∞);L2(Ω))
and y, Is,e ∈ C0,1−ε([δ,∞);Rm).

Before we begin to develop the necessary results to prove Theorem 5.3.3, we show the
simulated system (5.7).

A numerical example

In this section, we illustrate the practical applicability of the funnel controller for a
numerical example. The setup chosen here is a standard test example for termina-
tion of reentry waves and has been considered similarly in, e.g., [20, 80]. All simu-
lations are generated on an AMD Ryzen 7 1800X @ 3.68 GHz x 16, 64 GB RAM,
MATLAB R© Version 9.2.0.538062 (R2017a). The solutions of the ODE systems are ob-
tained by the MATLAB R© routine ode23. The parameters for the FitzHugh-Nagumo
model (5.3) used here are as follows:

Ω = (0, 1)2, D =
(

0.015 0
0 0.015

)
,


c1
c2
c3
c4
c5

 ≈


1.614
0.1403
0.012

0.00015
0.015

 .

The spatially discrete system of ODEs corresponds to a finite element discretization
with piecewise linear finite elements on a uniform 64× 64 mesh. The uncontrolled sys-
tem is stimulated such that reentry phenomena occur, see Figure 5.2. Let us emphasize
that the associated dynamics are obtained from (5.3) with Is,i = 0 = Is,e.
For the control interaction, we assume that B ∈ L (R4, (W 1,2(Ω))′) where the Neumann
control operator is defined such that

B∗z =
(∫

Γ1
z(ξ) dσ,

∫
Γ2
z(ξ) dσ,

∫
Γ3
z(ξ) dσ,

∫
Γ4
z(ξ) dσ

)>
,



5.3. FUNNEL CONTROL 139

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 5.2: Snapshots of reentry waves for t = 100 (left) and t = 200 (right).

Γ1 = {1} × [0, 1], Γ2 = [0, 1]× {1}, Γ3 = {0} × [0, 1], Γ = [0, 1]× {0}.

Note that this scenario is the one described in Remark 5.2.2 d), so Theorem 5.3.3 and
Remark 5.3.4 b) imply that the solution y, Is,e ∈ C0,1/2−ε([δ,∞);Rm) for all ε > 0.
The function ϕ characterizing the performance funnel (see Figure 5.3) is chosen as

ϕ(t) =
{

0, t ∈ [0, 0.05],
tanh( t

100 ), t > 0.05.

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

t

1
ϕ(t)

‖e(t)‖Rm

Figure 5.3: Error dynamics and funnel boundary.

The simulations correspond to a finite element discretization of (5.3) with piecewise
linear finite elements.
For replication of a natural (desired) heart rhythm, the funnel reference signal is ob-
tained by a periodic excitation wave spreading out from the stimulation point in the
center of the domain. The smoothness of the signal is guaranteed by convoluting the
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original signal with a triangular function. Figure 5.4 show the results of the closed-loop
system obtained with the control law

Is,e(t) = − 0.75
1− ϕ(t)2‖B′v(t)− yref(t)‖2Rm

(B′v(t)− yref(t)),

which is visualized in Figure 5.5. The initial condition is taken as a snapshot of the
reentry wave which without control will not terminate. Let us note that the sudden
changes in the feedback law are due to the jump discontinuities of the intracellular
stimulation current Is,i used for simulating a regular heart beat.
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Figure 5.4: Reference signals and outputs of the funnel controlled system.

It is seen from Figure 5.4 that the controlled system faithfully reproduces the desired
reference signal except for the very beginning where the control is not active yet. Figure
5.5 further shows that this is achieved with a comparably small control effort.

5.4 Preparations for the proof of the Main Theorem -
Part I

We now collect some results on Neumann elliptic operators and interpolation spaces
which are necessary for the proof of Theorem 5.3.3.



5.4. PREPARATIONS FOR THE PROOF OF THE MAIN THEOREM
- PART I 141

0 200 400

−4

−2

0

2

4

t

I1,s,e

0 200 400

−4

−2

0

2

4

t

I2,s,e

0 200 400

−4

−2

0

2

4

t

I3,s,e

0 200 400

−4

−2

0

2

4

t

I4,s,e

Figure 5.5: Funnel control laws.

Proposition 5.4.1. Let d ≤ 3 and Ω ⊂ Rd be a bounded domain with Lipschitz
boundary, and let D ∈ L∞(Ω;Rd×d) be symmetric-valued and satisfying the ellipticity
condition (5.1). Then the Neumann elliptic operator A on Ω associated to D has the
following properties:

a) there exists some ν > 0 such that D(A) ⊂ C0,ν(Ω);

b) A has compact resolvent;

c) there exists a real-valued and monotonically increasing sequence (αj)j∈N0 such
that

(i) α0 = 0, α1 > 0 and limj→∞ αj =∞, and

(ii) the spectrum of A reads σ(A) = {−αj | j ∈ N0}

and an orthonormal basis (θj)j∈N0 of L2(Ω), such that

∀x ∈ D(A) : Ax = −
∞∑
j=0

αj 〈x, θj〉 θj , (5.9)
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and the domain of A reads

D(A) =


∞∑
j=0

λj · θj

∣∣∣∣∣∣ (λj)j∈N0 with
∞∑
j=1

α2
j |λj |2 <∞

 . (5.10)

Proof. Statement a) follows from [92, Proposition 3.6].
To prove b), we first use that the ellipticity condition (5.1) implies

δ‖z‖+ ‖Az‖ ≥ ‖z‖W 1,2 . (5.11)

Since ∂Ω is Lipschitz, Ω has the cone property [2, p. 66], and we can apply the Rellich-
Kondrachov Theorem [2, Theorem 6.3], which states that W 1,2(Ω) is compactly em-
bedded in L2(Ω). Combining this with (5.11), we obtain that A has compact resolvent.
We finally prove c) about the spectral properties of A: Since A has compact resolvent
and is self-adjoint by Proposition 5.1.1, we obtain from [116, Proposition 3.2.9 & 3.2.12]
that there exists a real valued sequence (αj)j∈N0 with limj→∞ |αj | =∞ and (5.9), and
the domain of A has the representation (5.10). Further taking into account that

〈z,Az〉 = −a(z, z) ≤ 0 ∀z ∈ D(A),

we obtain that αj ≥ 0 for all j ∈ N0. Consequently, it is no loss of generality to assume
that (αj)j∈N0 is monotonically increasing. It remains to prove that α0 = 0, α1 > 0: On
the one hand, we have that the constant function 1Ω ∈ L2(Ω) fulfills A1Ω = 0, since

〈z,A1Ω〉 = a(z, 1Ω) = 〈∇z1, D∇1Ω〉 = 0 ∀z ∈W 1,2(Ω).

On the other hand, if z ∈ kerA, we have

0 = 〈z,Az〉 = a(z, z) = 〈∇z,D∇z〉 ,

and the pointwise positive definiteness of D implies ∇z = 0, whence z is a constant
function. This altogether gives dim kerA = 1, which leads to α0 = 0 and α1 > 0.

We further need interpolation spaces to introduce our considerations. For general
interpolation theory, we refer to [85]. This complements and connects the results given
in Section 1.6.1 and yields a characterization of the fractional power spaces in terms of
Sobolev spaces of fractional order.

Definition 5.4.2. Let X,Y be Hilbert spaces and let α ∈ [0, 1]. Consider the function
K : (0,∞)× (X + Y )→ R with

K(t, x) = inf
x=a+b, a∈X,b∈Y

‖a‖X + t‖b‖Y .
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The interpolation space (X,Y )α is defined by

(X,Y )α :=
{
x ∈ X + Y

∣∣ t 7→ t−αK(t, x) ∈ L2(0,∞)
}
,

and it is a Hilbert space provided with the norm

‖x‖(X,Y )α = ‖t 7→ t−αK(t, x)‖L2 .

Note that interpolation can be performed in a more general fashion for Banach spaces
X, Y : Namely, an Lp-norm with general p ∈ [1,∞) can be taken from t 7→ t−θK(t, x)
instead of the L2-norm in the above definition. Note that this however does not lead
to Hilbert spaces even when X and Y are Hilbert spaces.
For a self-adjoint operator A : D(A) ⊂ X → X and n ∈ N, we can define the space
Xn := D(An), i.e., by X0 = X and Xn+1 := { x ∈ Xn | Ax ∈ Xn }. This becomes a
Hilbert space with norm ‖z‖Xn+1 = ‖ − λz + Az‖Xn , where λ ∈ C is in the resolvent
set of A. Likewise, we introduce X−n by the completion of X with the norm ‖z‖X−n =
‖(−λI + A)−nz‖. Note that X−n is the dual of Xn with respect to the pivot space
X [116, Section 2.10]. By using interpolation theory, we can further introduce Xα for
non-integer α ∈ R:

Definition 5.4.3. Let A : D(A) ⊂ X → X be self-adjoint and let α ∈ R. Further, let
n ∈ Z with α ∈ [n, n+ 1). The space Xα is given by the interpolation space

Xα = (Xn, Xn+1)α−n.

The Reiteration Theorem [85, Corollary 1.24] together with [85, Proposition 3.8] yields

(Xα1 , Xα2)α = Xα1+α(α2−α1).

Our special interest is in the interpolation spaces of the Neumann elliptic operator A.
Next we characterize these spaces.

Proposition 5.4.4. Let d ≤ 3 and Ω ⊂ Rd be a bounded domain with Lipschitz bound-
ary, let D ∈ L∞(Ω;Rd×d) be symmetric-valued and satisfying the ellipticity condition
(5.1), let A be the corresponding Neumann elliptic operator on Ω associated to D, and
let Xα be the corresponding interpolation spaces with, in particular, X = X0 = L2(Ω).
Then

Xr/2 = W r,2(Ω) for all r ∈ [0, 1/2];

Proof. The equation X1/2 = W 1,2(Ω) in an immediate consequence of Kato’s Second
Representation Theorem [70, Section VI.2, Theorem 2.23]. For general r ∈ [0, 1/2], we
can use the Reiteration Theorem [85, Corollary 1.24], which implies

Xr/2 = (X1, X0)r/2 = (X1/2, X0)r.
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Now using that X0 = L2(Ω) by definition, and, as already stated, X1/2 = W 1,2(Ω), we
can use [123, Theorem 1.35] to obtain

(W 1,2(Ω), L2(Ω))r = W r,2(Ω),

and thus Xr/2 = W r,2(Ω).

Remark 5.4.5. In terms of the spectral decomposition (5.9), the space Xα can be
represented by

Xα =


∞∑
j=0

λj · θj

∣∣∣∣∣∣ (λj)j∈N0 with
∞∑
j=1

α2α
j |λj |2 <∞

 . (5.12)

This follows by a combination of [85, Theorem 4.33] with [85, Theorem 4.36].

5.5 Preparations for the proof of the Main Theorem -
Part II

We consider mild solutions of certain abstract Cauchy problems and the concept of
admissible control operators. This notion is well-known in infinite-dimensional linear
systems theory with unbounded control and observation operators and we refer to [116]
for further details.
If X is a Hilbert space and A : D(A) ⊂ X → X is self-adjoint with 〈x,Ax〉 ≤ 0 for
all x ∈ D(A), then it generates a contractive, analytic semigroup (Tt)t≥0 on X [4,
Theorem 4.2]. It can be further concluded that, if some ω0 > 0 exists such that
〈x,Ax〉 ≤ −ω0‖x‖2 for all x ∈ D(A), then the semigroup (Tt)t≥0 generated by A is
exponentially stable with ‖Tt‖ ≤ e−ω0t for all t ≥ 0. We can further conclude from [94,
Theorem 6.13(b)] that, for all α ∈ R, (Tt)t≥0 restricts (resp. extends) to an analytic
semigroup ((T|α)t)t≥0 on Xα with same growth bound as (Tt)t≥0. Furthermore, we
have imTt ⊂ Xr for all t > 0 and r ∈ R [94, Theorem 6.13(a)].
Next we consider the abstract Cauchy problem with source term. Note that the fol-
lowing results also hold when considering some t0 ∈ R, T ∈ (t0,∞] and

ẋ(t) = Ax(t) + f(t) +Bu(t), x(t0) = x0

by doing the necessary modifications, c.f. [110, Section 3.8]. For the sake of simplicity
we set t0 = 0.

Definition 5.5.1. Let X be a Hilbert space, A : D(A) ⊂ X → X be self-adjoint
with 〈x,Ax〉 ≤ 0 for all x ∈ D(A), T ∈ (0,∞], and α ∈ [0, 1]. Let (Tt)t≥0 be the
semigroup on X generated by A, and let B ∈ L (Rm, X−α). For x0 ∈ X, p ∈ [1,∞],
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f ∈ Lploc([0, T );X) and u ∈ Lploc([0, T );Rm), we call x : [0, T )→ X a mild solution of

ẋ(t) = Ax(t) + f(t) +Bu(t), x(0) = x0 (5.13)

on [0, T ) the function obtain by using the variation of constants formula

∀ t ∈ [0, T ) : x(t) = Ttx0 +
∫ t

0
Tt−sf(s) ds +

∫ t

0
(T|−α)t−sBu(s) ds , (5.14)

where ((T|−α)t)t≥0 is the extension of (Tt)t≥0 to X−α.
We further call x : [0, T )→ X a strong solution of (5.13) on [0, T ), if x in (5.14) further
satisfies x ∈ C([0, T );X) ∩W 1,p

loc ([0, T );X−1).

The above definition includes that the integral
∫ t

0 (T|−α)t−sBu(s) ds is in X, whilst
die integrand is not necessarily in X.
In the following we show that the mild solution of the abstract Cauchy problem is
indeed a strong solution.

Lemma 5.5.2. Let X be a Hilbert space, A : D(A) ⊂ X → X be self-adjoint with
〈x,Ax〉 ≤ 0 for all x ∈ D(A), T ∈ (0,∞], α ∈ [0, 1/2] and let B ∈ L (Rm, X−α).
Let (Tt)t≥0 be the analytic semigroup generated by A. Then for all p ∈ [2,∞] B is
Lp-admissible for (Tt)t≥0.
Further, for all x0 ∈ X, f ∈ Lploc([0, T );X) and u ∈ Lploc([0, T );Rm), the function x in
(5.14) is a strong solution of (5.13).

Proof. For p > 2, set f̃ := f + Bu and apply [110, Theorem 3.10.10] with f̃ ∈
L∞loc([0, T );X−α).
For the case p = 2, there exists a unique strong solution in X−1 —that is, replacing
X by X−1 and X−1 by X−2— given by (5.14) and at most one strong solution in X,
see for instance [110, Theorem 3.8.2 (i) & (ii)], so we only need to check that all the
elements are in the correct spaces. Since A is self-adjoint, the semigroup that generates
is also self-adjoint, that is, Tt = T∗t for all t ≥ 0. Further, by [116, Proposition 5.1.3],
B∗ is an L2-admissible observation operator for the semigroup (Tt)t≥0 for α = 1/2, so
it follows that it is an L2-admissible control operator for all α ∈ (0, 1/2]. By the duality
of observation and control admissibility (see for instance [116, Theorem 4.4.3]) we have
that B is an L2-admissible control operator for (Tt)t≥0. By the nesting property
of Lp, B is an Lp-admissible control operator for (Tt)t≥0 all p ∈ [2,∞]. Moreover,
by [116, Proposition 4.2.5] we have that

t 7→ Ttx0 +
∫ t

0
Tt−sBu(s) ds ∈ C([0, T ];X) ∩W 1,2

loc (0, T ;X−1).

From [110, Theorem 3.8.2 (iv)],

t 7→
∫ t

0
Tt−sf(s) ds ∈ C([0, T );X) ∩W 1,2

loc ([0, T );X−1),
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so x ∈ C([0, T );X) ∩W 1,2
loc ([0, T );X−1).

Observe that if x is the unique solution of (5.13) under the conditions of Lemma 5.5.2
and A is the operator associated to a form a : X1/2 ×X1/2 → R, then this is also the
unique solution of the weak formulation

d
dt 〈x(t), θ〉 = −a(x(t), θ) + 〈f(t), θ〉+ 〈u(t), B∗θ〉 , ∀θ ∈ X1/2,

which can be easily seen by adapting [54, Theorem 1.33] and [27, Theorem 3.1.7] to
our setting.
In the proof of the next result, we will implicitly use for a, b ≥ 0 and p ∈ (0, 1) the
inequality (a+ b)p ≤ ap + bp, see for instance [103, §1.47].

Proposition 5.5.3. Let d ≤ 3 and Ω ⊂ Rd be a bounded domain with Lipschitz
boundary, let D ∈ L∞(Ω;Rd×d) be symmetric-valued and satisfying the ellipticity con-
dition (5.1). Let A be the corresponding Neumann elliptic operator on Ω associated
to D, and let T ∈ (0,∞] and c > 0. Let X = X0 = L2(Ω) and let Xr be the in-
terpolation space constructed by A. Define A0 := A − cI with D(A0) = D(A) and
consider B ∈ L (Rm, X−α) for α ∈ [0, 1/2], u ∈ L2

loc([0, T );Rm) ∩ L∞([δ, T );Rm) and
f ∈ L2

loc([0, T );X) ∩ L∞([δ, T );X) for all δ > 0. Then for all x0 ∈ X and all δ > 0
the mild solution (5.14) of (5.13) on [0, T ) satisfies

(i) if α = 0, then for all λ ∈ (0, 1)

x ∈ BC([0, T );X) ∩ C0,λ([δ, T );X);

(ii) if α ∈ (0, 1/2), then

x ∈ BC([0, T );X) ∩ C0,1−α([δ, T );X) ∩ C0,1−2α([δ, T );Xα);

(iii) if α = 1/2, then

x ∈ BC([0, T );X) ∩ C0,1/2([δ, T );X) ∩BUC([δ, T );X1/2).

Moreover, if u ∈ L∞([0,∞);Rm), f ∈ L∞([0,∞);X) and x0 ∈ X1, the former hold
with δ = 0.

Proof. Note that for all T > 0 the continuity of x from Lemma 5.5.2 guarantees its
boundedness, so we only need to explicitly check it for the case T = ∞. Moreover,
the Hölder regularity respectively bounded and uniform continuity will be clear for all
T > 0, so we will focus on the case T =∞.
Consider the form ã(·, ·) = a(·, ·) + c 〈·, ·〉, which is coercive, hence the operator associ-
ated to ã is A0 and generates an analytic, contractive semigroup denoted by (Tt)t≥0.
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Moreover, since A0 is strictly dissipative, the semigroup (Tt)t≥0 is exponentially stable
and, in particular, satisfies ‖Ttx‖ ≤ e−ct‖x‖ for all t ≥ 0 and all x ∈ X.
Define, for t ≥ 0, the functions

xh(t) := Ttx0, xf (t) :=
∫ t

0
Tt−sf(s) ds , xu(t) :=

∫ t

0
(T|−α)t−sBu(s) ds ,

so that x = xh + xf + xu. By Lemma 5.5.2, x ∈ C([0,∞);X) ∩ W 1,2
loc (0,∞;X−1).

Since (Tt)t≥0 is exponentially stable, it follows that B is also infinite-time Lp-admissible
for p ∈ [2,∞], see [66, Lemma 2.9 (i)], which implies that xu ∈ BC([0,∞);X).
A direct calculation using the exponential stability of (Tt)t≥0 shows that xh, xf ∈
BC([0,∞);X).
We study the three different cases: α = 0, α ∈ (0, 1/2) and α = 1/2. Let α = 0. Then,
we can define f̃ := f +Bu ∈ L2

loc(0,∞;X) ∩ L∞(δ,∞;X) for all δ > 0. We thus have
from [84, Proposition 4.2.3 & Proposition 4.4.1 (i)] that for all λ ∈ (0, 1) it holds that

x ∈ C0,λ([δ,∞);X) ∩BC([0,∞);X).

Consider now α ∈ (0, 1/2). Since x0 ∈ X and f ∈ L∞([δ,∞);X), we may infer
from [84, Proposition 4.2.3 & Proposition 4.4.1 (i)] that

xh + xf ∈ C0,1−2α([δ,∞);Xα) ∩ C0,1−α([δ,∞);X) ∩BC([0,∞);X).

By using Lemma 1.6.1 it can be easily computed that there exists Kα > 0 such that
for all t ≥ s ≥ δ we have that

‖xu(t)− xu(s)‖Xα ≤ Kα‖Bu‖L∞([δ,∞);X−α)(t− s)1−2α,

so that xu ∈ C0,1−2α([δ,∞);Xα). Similarly,

‖xu(t)− xu(s)‖X ≤ Gα‖Bu‖L∞([δ,∞);X−α)(t− s)1−α,

for some Gα > 0, so that xu ∈ C0,1−α([δ,∞);X).
The case α = 1/2 needs a special treatment, because the previous calculations are not
feasible in this case. We obtain from Proposition 5.4.1c) that A0 has an eigendecom-
position of type (5.9) with eigenvalues (−βj)j∈N0 , βj := αj + c, and eigenfunctions
(θj)j∈N0 . Moreover, there exist bi ∈ X−1/2 for i = 1, . . . ,m such that Bξ =

∑m
i=1 bi · ξi

for all ξ ∈ Rm. Therefore,

xu(t) =
∫ t

0

∞∑
j=0

e−βj(t−τ)θj

m∑
i=1
〈bi · ui(τ), θj〉 dτ

=
∫ t

0

∞∑
j=0

e−βj(t−τ)θj

m∑
i=1

ui(τ) 〈bi, θj〉 dτ ,
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where the last equality holds since ui(τ) ∈ R and can be treated as a constant in X.
By considering each of the factors in the sum over i = 1, . . . ,m, we can assume without
loss of generality that m = 1 and b := b1, so that

xu(t) =
∫ t

0

∞∑
j=0

e−βj(t−τ)u(τ) 〈b, θj〉 θj dτ .

Define bj := 〈b, θj〉 for j ∈ N0. We show that xu ∈ BUC([δ,∞);X1/2). For that we
use the diagonal representation as in Remark 5.4.5. In particular, since b ∈ X−1/2 we
have that

S :=
∞∑
j=0

(bj)2

βj
<∞. (5.15)

Now let t > s > δ and σ > 0 such that t − s < σ. By dominated convergence [28,
Theorem II.2.3], summation and integration can be interchanged, so that

‖xu(t)− xu(s)‖2X1/2

≤ ‖u‖2L∞([δ,∞);Rm)

∞∑
j=0

βj(bj)2
(∫ s

δ

e−βj(s−τ) − e−βj(t−τ) dτ +
∫ t

s

e−βj(t−τ) dτ
)2

≤ 4‖u‖2L∞([δ,∞);Rm)

∞∑
j=0

(bj)2

βj

(
1− e−βj(t−s)

)2

≤ 4‖u‖2L∞([δ,∞);Rm)

∞∑
j=0

(bj)2

βj

(
1− e−βjσ

)2
.

We can conclude from (5.15) that the series F : (0,∞)→ (0, S) with

F (σ) :=
∞∑
j=0

(bj)2

βj
(1− e−βjσ)2

converges uniformly to a strictly monotone, continuous and surjective function. There-
fore, F has an inverse. The function xu is thus uniformly continuous on [δ,∞) and by
exponential stability of (Tt)t≥0 we obtain boundedness, i.e., xu ∈ BUC([δ,∞);X1/2).
By using similar estimates and the exponential stability of (Tt)t≥0, it is straightforward
to see that xh, xf ∈ C0,1/2([δ,∞);X1/2) ∩ C0,1/2([δ,∞);X) by applying [84, Proposi-
tion 4.2.3 & Proposition 4.4.1 (i)], which further implies xh, xf ∈ BUC([δ,∞);X1/2).
To see that also xu ∈ C0,1/2([δ,∞);X), we proceed as we did before. Let t > s > δ

and observe that

‖xu(t)− xu(s)‖2X

≤ ‖u‖2L∞([δ,∞);Rm)

∞∑
j=0

(bj)2
(∫ s

0
e−βj(s−τ) − e−βj(t−τ) dτ +

∫ t

s

e−βj(t−τ) dτ
)2
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≤ 4‖u‖2L∞([δ,∞);Rm)

∞∑
j=0

(bj)2

β2
j

(
1− e−βj(t−s)

)2
.

Hence,

‖xu(t)− xu(s)‖2X
t− s

≤ 4‖u‖2L∞([δ,∞);Rm)

∞∑
j=0

(bj)2

β2
j

(
1− e−βj(t−s)

)2
t− s

.

By the mean value theorem, there exists ξ ∈ (0, t− s) such that

‖xu(t)− xu(s)‖2X
t− s

≤ 8‖u‖2L∞([δ,∞);Rm)

∞∑
j=0

(bj)2

βj

(
1− e−βjξ

)
≤ 8‖u‖2L∞([δ,∞);Rm)

∞∑
j=0

(bj)2

βj

= 8‖u‖2L∞([δ,∞);Rm)S.

Hence,
‖xu(t)− xu(s)‖X ≤

√
8S‖u‖L∞([δ,∞);Rm)

√
t− s,

and xu ∈ C0,1/2([δ,∞);X).
Since δ > 0 is arbitrary, the result follows. In order to show that the case δ → 0 is
consistent, note that in the estimates involving xu, we can set δ = 0, and everything
holds. For xf , this follows from [84, Proposition 4.2.1], so that we only need to check
xh. Since x0 ∈ X1, it follows that x0 ∈ Xλ for all λ ∈ (0, 1). Thus, for λ ∈ (0, 1),
α ∈ [0, 1/2) and t, s ∈ [0,∞) with s < t we have from Lemma 1.6.1 that there exist
K1,K2 > 0 such that

‖xh(t)− xh(s)‖X ≤ K1‖x0‖Xλ(t− s)λ

and
‖xh(t)− xh(s)‖Xα ≤ K2‖x0‖X1−α(t− s)1−2α

Thus the case α ∈ [0, 1/2) is clear. For the case α = 1/2 using Lemma 1.6.1 leads to

‖xh(t)− xh(s)‖X1/2 ≤ K3‖x0‖X1(t− s)1/2,

for some K3 > 0, so that xh ∈ BUC([0,∞);X1/2), which concludes the proof.

Remark 5.5.4. Note that in the latter results, when T ∈ (0,∞] is finite, the solutions
are defined in the compact [0, T ] instead of [0, T ) or [δ, T ] instead of [δ, T ).
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5.6 Proof of the Main Theorem
The proof is inspired by [65], which uses arguments from [82] for the convergence of
certain subsequences. We divide the proof in two major parts. First, we show that
there exists a unique solution for t ∈ [0, γ]. Secondly we show that the solution also
exists for t ∈ (γ,∞) and is continuous at t = γ and has the desired properties.

5.6.1 Solution for t ∈ [0, γ]
Assuming that t ∈ [0, γ], we have that ϕ(t) ≡ 0 so that we need to show existence of a
solution of

d
dt 〈vn(t), θ〉 = −a(vn(t), θ) + 〈p3(vn(t))− un(t) + Is,i(t), θ〉+

〈
Ins,e(t),B′θ

〉
Rm ,

d
dt 〈un(t), χ〉 = 〈c5vn(t)− c4un(t), χ〉 ,

Ins,e(t) = −k0(B′vn(t)− yref(t)).
(5.16)

Step 1. Existence and uniqueness
Let (θi)i∈N0 be the eigenfunctions of −A and let αi be the corresponding eigenvalues,
with αi ≥ 0 for all i ∈ N0. Recall that (θi)i∈N0 form an orthonormal basis of L2(Ω) by
Proposition 5.4.1c). Hence, with ai := 〈v0, θi〉 and bi := 〈u0, θi〉 for i ∈ N0 and

vn0 :=
n∑
i=0

aiθi, un0 :=
n∑
i=0

biθi, n ∈ N,

we have that vn0 → v0 and un0 → u0 strongly in L2(Ω).
Let γi := B′θi for i = 0, . . . , n. Consider

µ̇j(t) = −αjµj(t)− νj(t)−
〈
k0

(
n∑
i=0

γiµi(t)− yref(t)
)
, γj

〉
Rm

+ 〈Is,i(t), θj〉

+
〈
p3

(
n∑
i=0

µi(t)θi

)
, θj

〉
,

ν̇j(t) = −c4νj(t) + c5µj(t),

whit µj(0) = aj and νj(0) = bj defined on D := [0,∞)×R2(n+1). Since the functions on
the right hand side of the differential equations are continuous, the set D is relatively
open in [0,∞)× R2(n+1) and the initial condition is in D it follows from ODE theory,
see e.g. [121, § 10, Theorem XX], that there exists a weakly differentiable solution
(µ, ν) = (µ0, . . . , µn, ν0, . . . , νn) : [0, Tn) → R2(n+1) such that Tn ∈ (0, γ] is maximal.
Furthermore, the closure of the graph of (µ, ν) is not a compact subset of D.
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Consequently, let vn(t) =
∑n
i=0 µn(t)θi and un(t) =

∑n
i=0 νn(t)θi. By using the func-

tions θj we have that for j = 1, . . . , n the former ODE system is equivalent to the
truncated weak formulation

〈v̇n(t), θj〉 = −a(vn(t), θj)− 〈un(t), θj〉+ 〈p3(vn(t)), θj〉+ 〈Is,i(t), θj〉
− 〈k0(B′vn(t)− yref(t)),B′θj〉Rm ,

(5.17a)

〈u̇n(t), θj〉 = −c4 〈un(t), θj〉+ c5 〈vn(t), θj〉 . (5.17b)

Consider the Lyapunov function candidate

V : L2(Ω)× L2(Ω) → R,

(v, u) 7→ 1
2(c5‖v‖2 + ‖u‖2).

(5.18)

Observing that, since (θi)i∈N0 are orthonormal, we have ‖vn‖2 =
∑n
j=0 µ

2
j and ‖un‖2 =∑n

j=0 ν
2
j and hence we find that, for all t ∈ [0, Tn),

d
dtV (vn(t), un(t)) =c5

n∑
j=0

µj(t)µ̇j(t) +
n∑
j=0

νj(t)ν̇j(t)

=− c5
n∑
j=0

αjµj(t)2 − c4
n∑
j=0

νj(t)2

− c5

〈
k0

(
n∑
i=0

γiµi(t)− yref(t)
)
,

n∑
i=0

γiµi(t)
〉

Rm

+ c5

〈
p3

(
n∑
i=0

µi(t)θi

)
,
n∑
i=0

µi(t)θi

〉
+ c5 〈Is,i(t), vn〉

hence, omitting the argument t for brevity in the following,

d
dtV (vn, un) =− c5a(vn, vn)− c4‖un‖2 + c5 〈Is,i(t), vn〉

− c5k0‖en‖2Rm + c5k0 〈en, yref〉Rm + c5 〈p3(vn), vn〉 ,
(5.19)

where

en(t) :=
n∑
i=0

γiµi(t)− yref(t)

First recall Young’s inequality for products, i.e., for a, b ≥ 0 and p, q ≥ 1 such that
1/p+ 1/q = 1 we have that

ab ≤ ap

p
+ bq

q
,

which we will frequently use in the following. Note that

〈p3(vn), vn〉 = −c1‖vn‖2 + c2
〈
v2
n, vn

〉
− c3‖v4

n‖L4
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and

c2|
〈
v2
n, vn

〉
| = |

〈
εv3
n, ε
−1c2

〉
| ≤ 3ε4/3

4 ‖v‖4L4 + c42
4ε4 |Ω|.

By choosing ε such that 3ε4/3 = 2c3 we have that

〈p3(vn), vn〉 ≤
c42
4ε4 |Ω| − c1‖v‖

2 − c3
2 ‖vn‖

4
L4 .

Moreover,
〈en, yref〉Rm ≤

1
2‖e‖

2
Rm + 1

2‖yref(t)‖2Rm

and
〈Is,i(t), vn〉 ≤

c1
2 ‖vn‖

2 + 1
2c1
‖Is,i(t)‖2

so that (5.19) becomes

d
dtV (vn, un) ≤− c5a(vn, vn)− c1c5

2 ‖vn‖
2 − c5k0

2 ‖e‖
2
Rm −

c3
2 ‖vn‖

4
L4

+ k0c5
2 ‖yref(t)‖2Rm + 1

2c1
‖Is,i(t)‖2 + c42

4ε4 |Ω|

≤ c5a(vn, vn)− c3
2 ‖vn‖

4
L4 + 1

2c1
‖Is,i(t)‖2 + k0c5

2 ‖yref(t)‖2Rm + c42
4ε4 |Ω|

Set
C∞ := k0c5

2 ‖yref‖2∞ + 1
2c1
‖Is,i‖2∞ + c42

4ε4 |Ω|

to obtain that

V (vn(t), un(t))− V (vn0 , un0 ) + c5

∫ t

0
a(vn(s), vn(s)) ds + c3

2

∫ t

0
‖vn(s)‖4L4 ds ≤ C∞γ.

Since (u0
n, v

0
n)→ (u0, v0) strongly in L2(Ω) and for any p ∈ L2(Ω) we have∥∥∥∥∥
n∑
i=0
〈p, θi〉 θi

∥∥∥∥∥
2

=
n∑
i=0
〈p, θi〉2 ≤

∞∑
i=0
〈p, θi〉2 =

∥∥∥∥∥
∞∑
i=1
〈p, θi〉 θi

∥∥∥∥∥
2

= ‖p‖2,

we have that

c5‖vn(t)‖2 + ‖un(t)‖2 + c5

∫ t

0
a(vn(s), vn(s)) ds + c5k0

2

∫ t

0
‖en(s)‖2Rm ds

+ c3
2

∫ t

0
‖vn(s)‖4L4 ds ≤ C∞γ + c5‖u0‖2 + ‖v0‖2.

(5.20)
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In particular, Tn = γ, since otherwise we would have a contradiction and hence the
solution is defined for all t ∈ [0, γ]. Moreover

‖vn(t)‖2 ≤ c−1
5 C∞γ, ‖un(t)‖2 ≤ C∞γ (5.21)

and there exist constants C1, C2 > 0 such that

‖vn‖4L4(Qγ) ≤ C1, ‖vn‖L2(0,γ;W 1,2(Ω)) ≤ C2, (5.22)

where Qγ := (0, γ)× Ω. Note that (5.22) directly implies that

‖v2
n‖2L2(Qγ) ≤ C1, (5.23)

and using Hölder’s inequality, there exists a C̃1 such that

‖v3
n‖L4/3(Qγ) ≤ C̃1 (5.24)

Equations (5.17b) and (5.21) imply that there exists C3 > 0 such that

‖u‖W 1,2([0,γ];L2(Ω)) ≤ C3.

Let Pn be the projection of L2(Ω) onto the subspace generated by θi, i = 1, . . . , n with
the norm

‖v‖W 1,2 =
(

n∑
i=0
| 〈v, θi〉 |2 +

n∑
i=1

αi| 〈v, θi〉 |2
)1/2

,

on W 1,2(Ω) as by Proposition 5.4.4 and Remark 5.4.5. By the duality, we have that

‖v‖(W 1,2)′ =
(
| 〈v, θ0〉 |2 +

n∑
i=1

(1 + αi)−1| 〈v, θi〉 |2
)1/2

,

is a norm on (W 1,2(Ω))′, c.f. [116, Proposition 3.4.8]. Each Pn is a bounded linear
functional from (W 1,2(Ω))′ to (W 1,2(Ω))′ with norm 1 independent of n. From the
weak formulation (5.17) we have that

v̇n = PnAvn + Pnp3(vn)− Pnun + PnIs,i − PnBk0(B′vn(t)− yref(t)).

Since vn ∈ L2([0, γ];W 1,2(Ω)),be the Sobolev embedding, vn ∈ L2([0, γ];Lp(Ω)) for all
2 ≤ p ≤ 6 and thus p3(vn) ∈ L2([0, γ];L2(Ω)). Moreover, Av ∈ L2([0, γ]; (W 1,2(Ω))′)
so that there exists a constant C4 > 0 such that

‖v̇n‖L2([0,γ];(W 1,2(Ω))′) ≤ C4.
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Now, by Lemma 1.4.6 we have that there exists a subsequence for which

un → u ∈W 1,2([0, γ];L2(Ω)) weakly,
un → u ∈W 1,∞([0, γ];L2(Ω)) weak?,
vn → v ∈ L2([0, γ];W 1,2(Ω)) weakly,
vn → v ∈ L∞([0, γ];L2(Ω)) weak?,
vn → v ∈ L4(Qγ) weakly,
v̇n → v̇ ∈ L2([0, γ];W 1,2(Ω)′) weakly.

(5.25)

Moreover, let p0 = p1 = 2 and X = W 1,2(Ω), Y = L2(Ω), Z = W 1,2(Ω)′. Then, [82,
Chapitre 1, Théorème 5.1] implies that

W := { u ∈ Lp0([0, γ];X) | u̇ ∈ Lp1([0, γ];Z) }

with norm ‖u‖Lp0 ([0,γ];X) + ‖u̇‖Lp1 ([0,γ];Y ) has a compact injection into Lp0([0, γ];Y ),
so the weakly convergent sequence vn → v ∈W converges strongly in L2([0, γ];L2(Ω))
by [54, Lem. 1.6].
Further, (u(0), v(0)) = (u0, v0) and by v ∈ W 1,2([0, γ];L2(Ω)), v ∈ L2([0, γ];W 1,2(Ω))
and v̇ ∈ L2([0, γ]; (W 1,2(Ω))′) it follows that u, v ∈ C([0, γ];L2(Ω)), see for instance [54,
Theorem 1.32]. Note that B′v−yref ∈ L2([0, γ];Rm) as well. Hence, (u, v) is a solution
of (5.7) in [0, γ] and

v̇(t) = Av(t) + p3(v(t))− u(t) + Is,i(t)− Bk0(B′v(t)− yref(t)) (5.26)

holds in (W 1,2(Ω))′. Moreover, from (5.23) & (5.24), by [82, Chapitre 1, Lemme 1.3]
and vn → v in L4(Qγ) we have that v3

n → v3 weakly in L4/3(Qγ) and v2
n → v2 weakly

in L2(Qγ).
To show uniqueness, assume now that there exist two solutions (u1, v1) and (u2, v2) of
the former. Define

Σ(t, ζ) := c2
c3

+ |v1(t, ζ)|+ |v2(t, ζ)|,

and let
QΛ := {(t, ζ) ∈ Qγ | Σ(t, ζ) ≥ Λ}.

Since v1, v2 ∈ L4(Qγ), we can choose Λ such that∫
Qγ\QΛ

Σ4 < ε.

Let Vi := vi − Λ for i = 1, 2, V := V2 − V2 = v2 − v1 and U := u2 − u1. By [54,
Theorem 1.32], we have that

1
2

d
dt‖V (t)‖2 =

〈
V̇ (t), V (t)

〉
,

1
2

d
dt‖U(t)‖2 =

〈
U̇(t), U(t)

〉



5.6. PROOF OF THE MAIN THEOREM 155

holds for all t ∈ (0, γ). Using Lemma 4.4.4, it can be computed that

c5
2

d
dt‖V (t)‖2 + 1

2
d
dt‖U(t)‖2 ≤ 〈p3(v2)− p3(v1), V2 − V1〉 ,

so that
c5
2 ‖V (t)‖2 + 1

2‖U(t)‖2 ≤
∫
QΛ

(p3(v2)− p3(v1))(V2 − V1)

+
∫
Qγ\QΛ

(p3(v2)− p3(v1))(V2 − V1).

However,

(p3(v2)− p3(v1))(V2 − V1) = (p3(V2 + Λ)− p3(V1 + Λ))(V2 − V1)
=− c1V 2 − (3c3Λ− c2)V 2(V1 + V2)− (3c3Λ− 2c2)ΛV 2

− c3V 2(V 2
2 + V1V2 + V 2

1 )

which is non-positive on QΛ. Hence,
c5
2 ‖V (t)‖2 + 1

2‖U(t)‖2 < 2ε,

which yields u2 = u1 and v2 = v1.
Step 2. For all ε ∈ (0, γ), v(t) ∈W 1,2(Ω) for t ∈ [ε, γ].
We will next show that for all ε > 0, v ∈ BUC([ε, γ];W 1,2(Ω)). Consider again the
approximation of the weak formulation (5.17). Multiplying (5.17a) by µ̇j and adding
over j = 0, . . . , n we have

‖v̇n‖2 = −1
2

d
dta(vn, vn)− 〈un, v̇n〉+ 〈p3(vn(t)), v̇n〉+ 〈Is,i(t), v̇n〉

− k0 〈B′vn(t)− yref(t),B′v̇n〉Rm

= −1
2

d
dta(vn, vn)− 〈un, v̇n〉+ 〈p3(vn(t)), v̇n〉+ 〈Is,i(t), v̇n〉

− k0 〈B′vn(t)− yref(t),B′v̇n − ẏref(t)〉Rm + k0 〈B′vn(t)− yref(t), ẏref(t)〉Rm

By using (5.21) and Young’s inequality, it can be computed that there exist constants
Q1, Q2 > 0 independent of n such that

‖v̇n‖2 =− 1
2

d
dta(vn, vn)− c3

4
d
dt‖vn‖

4
L4 −

k0

2
d
dt‖B

′vn − yref‖2Rm + 1
2‖v̇n‖

2

+Q1‖vn‖4L4 +Q2 + k0

2 ‖B
′vn − yref‖2Rm .

Thus,
‖v̇n‖2 + d

dt

(
a(vn, vn) + c3

2 ‖vn‖
4
L4 + k0‖B′vn − yref‖2Rm

)
= 2Q1‖vn‖4L4 + 2Q2 + k0‖B′vn − yref‖2Rm .

(5.27)
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Multiplying the former by t, using the chain rule and the fact that t ≤ γ for t ∈ [0, γ]
leads to

t‖v̇n(t)‖2 + d
dt

(
ta(vn(t), vn(t)) + c3t

2 ‖vn(t)‖4L4 + k0t‖B′vn(t)− yref(t)‖2Rm
)

=
(

2Q1γ + c3
2

)
‖vn(t)‖4L4 + a(vn(t), vn(t))

+ 2Q2γ + k0(γ + 1)‖B′vn(t)− yref(t)‖2Rm .

Since t‖v̇n(t)‖2 ≥ 0 for all t ∈ [0, γ], we further have that

d
dt

(
ta(vn(t), vn(t)) + c3t

2 ‖vn(t)‖4L4 + k0t‖B′vn(t)− yref(t)‖2Rm
)

=
(

2Q1γ + c3
2

)
‖vn(t)‖4L4 + a(vn(t), vn(t))

+ 2Q2γ + k0(γ + 1)‖B′vn(t)− yref(t)‖2Rm .

Integrating the former and using (5.20), there exist P1, P2 > 0 independent of n such
that for t ∈ [0, γ] we have

ta(vn(t), vn(t)) + c3t

2 ‖vn(t)‖4L4 + k0t‖B′vn(t)− yref(t)‖2Rm = P1 + P2t.

Thus, there exist constants C5, C6 > 0 independent of n such that for all t ∈ [0, γ]

ta(vn(t), vn(t)) ≤ C5, t‖B′vn(t)− yref(t)‖Rm ≤ C6.

Hence, for all ε ∈ (0, γ), vn ∈ L∞([ε, γ];W 1,2(Ω)) and B′vn − yref ∈ L∞([ε, γ];Rm), so
that in addition to (5.25), by using Lemma 1.4.6 we further have that there exists a
subsequence such that

vn → v ∈ L∞([ε, γ];W 1,2(Ω))

and B′v ∈ L∞([ε, γ];Rm) for all ε ∈ (0, γ), so Is,e ∈ L2([0, γ];Rm) ∩ L∞([ε, γ];Rm).
By the Sobolev embedding W 1,2(Ω) ↪→ Lp(Ω) for 2 ≤ p ≤ 6 we have that p3(v) ∈
L∞([ε, γ];L2(Ω)). Moreover, since (5.26) holds, we can rewrite it as

v̇(t) = (A− c1I)v(t) + Ir(t) + BIs,e(t),

where Ir := c2v
2−c3v3−u+Is,i ∈ L2([0, γ];L2(Ω))∩L∞([ε, γ];L2(Ω)) and Proposition

5.5.3 with c = c1 implies that the solution v ∈ BUC([ε, γ];W 1,2(Ω)). Hence, for all
ε ∈ (0, γ), v(t) ∈W 1,2(Ω) for t ∈ [ε, γ], so that in particular v(γ) ∈W 1,2(Ω).
Note that if v0 ∈ D(A), then it follows that v0 ∈ W 1,2(Ω) and the former can be
carried out for ε = 0. Since v0 ∈ W 1,2(Ω) so that by the Sobolev embedding it
holds v0 ∈ L4(Ω). We can integrate (5.27) and use (5.20) so that there exist P̃1, P̃2
independent of n such that

a(vn(t), vn(t)) + c3
2 ‖vn(t)‖4L4 + k0‖B′vn(t)− yref(t)‖2Rm = P̃1 + P̃2t.



5.6. PROOF OF THE MAIN THEOREM 157

Thus, there exist constants C̃5, C̃6 > 0 independent of n such that for all t ∈ [0, γ]

a(vn(t), vn(t)) ≤ C̃5, ‖B′vn(t)− yref(t)‖Rm ≤ C̃6.

Analogously, by using Lemma 1.4.6 we further have that there exists a subsequence
such that

vn → v ∈ L∞([0, γ];W 1,2(Ω)).

In fact,
v ∈ L∞([0, γ];W 1,2(Ω)),
Is,e ∈ L∞([0, γ];Rm).

(5.28)

5.6.2 Solution for t ∈ (γ,∞)
The crucial step in the proof is to show that the error remains uniformly bounded away
from the funnel boundary while v ∈ L∞([γ,∞);W 1,2(Ω)). The proof is divided into
several steps.
Step 1. We show existence of an approximate solution by means of a time-varying
state-space transformation.
Once more, let (θi)i∈N0 be the eigenfunctions of −A and let αi be the corresponding
eigenvalues, with αi ≥ 0 for all i ∈ N0. Recall that (θi)i∈N0 form an orthonormal
basis of L2(Ω) by Proposition 5.4.1c). Let (uγ , vγ) := (u(γ), v(γ)), ai := 〈vγ , θi〉 and
bi := 〈uγ , θi〉 for i ∈ N0 and

vnγ :=
n∑
i=0

aiθi, unγ :=
n∑
i=0

biθi, n ∈ N,

we have that vnγ → vγ strongly in W 1,2(Ω) and unγ → uγ strongly in L2(Ω).
We have stated in Remark 5.3.4a) that kerB = {0} implies B′D(A) = Rm. As a con-
sequence, there exist q1, . . . , qm ∈ D(A) such that B′qk = ek for k = 1, . . . ,m. By
Proposition 5.4.1a), we further have qk ∈ C0,ν(Ω) for some ν > 0.
Note that U :=

⋃
n∈N span{θi}ni=0 satisfies U = W 1,2(Ω) with the respective norm.

Moreover, B′U = Rm. Since Rm is complete and finite dimensional and B′ is linear
and continuous it follows that B′U = Rm. By the surjectivity of B′ we have that
for all k ∈ {1, . . . ,m} there exist nk ∈ N and qk ∈ Unk such that B′qk = ek, where
UN =

⋃N
n=1 span{θi}ni=0 = span{θi}Ni=0 for N ∈ N. Thus, there exists n0 ∈ N such

that qk ∈ Un0 for all k = {1, . . . ,m}, so the qk are a (finite) linear combination of θi.
Define q ∈W 1,2(Ω;Rm) ∩ C0,ν(Ω;Rm) by q(ζ) =

(
q1(ζ), . . . , qm(ζ)

)> and q · yref by

(q · yref)(t, ζ) :=
m∑
k=1

qk(ζ)yref,k(t), ζ ∈ Ω, t ≥ 0.
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Analogously for q · ẏref . Note that we have (q · yref) ∈ BC([0,∞)× Ω), because

| 〈q, yref〉Rm (t, ζ)| ≤
m∑
k=1
‖qk‖∞ ‖yref,k‖∞

for all ζ ∈ Ω and t ≥ 0, where we write ‖ · ‖∞ for the supremum norm. We denote
by qk,j := 〈qk, θj〉 for k = 1, . . . ,m, j ∈ N0 and qnk :=

∑n
j=0 qk,j for n ∈ N. Similarly,

qn := (qn1 , . . . , qnm)> for n ∈ N, so that qn → q strongly in W 1,2(Ω).
Since B′ : W r,2(Ω)→ Rm is continuous with r ∈ [0, 1], it follows that for all θ ∈W r,2(Ω)
there exists a unique Γr > 0 such that

‖B′θ‖Rm ≤ Γr‖θ‖W r,2 .

For n ∈ N0, let
κn := 1

n+ 1
1

Γr
1

1 + ‖vnγ − qn · yref(γ)‖2W r,2
.

Note that for vγ ∈ W 1,2(Ω) it holds that κn > 0 for all n ∈ N0, (κn)n∈N0 is bounded
by Γ−1

r (and monotonically decreasing) and κn → 0 as n→∞ and by construction

κn‖B′(vnγ − qn · yref(γ))‖Rm < 1, ∀n ∈ N.

Consider a modification of ϕ induced by κn, namely, for n ∈ N0

ϕn := ϕ+ κn.

It is clear that for each n ∈ N0 it holds ϕn ∈ W 1,∞([γ,∞);R), ‖ϕn‖∞ ≤ ‖ϕ‖∞ +
Γ−1
r and ‖ϕ̇n‖∞ = ‖ϕ̇‖∞ are independent of n and ϕn → ϕ ∈ Φγ uniformly in
BC([γ,∞);R). Moreover,inft>γ ϕn(t) > 0.
Fix n ∈ N. For t ≥ γ, define

φ(e) := k0

1− ‖e‖2Rm
e, e ∈ Rm, ‖e‖Rm < 1,

ω0(t) := ϕ̇n(t)ϕn(t)−1,

F (t, z) := ϕn(t)f−1(t) + ϕn(t)f0(t) + f1(t)z + ϕn(t)−1f2(t)z2 − c3ϕn(t)−2z3,

f−1(t) := Is,i(t) +
m∑
k=1

yref,k(t)Aqk,

f0(t) := −q · (ẏref(t) + c1yref(t)) + c2(q · yref(t))2 − c3(q · yref(t))3,

f1(t) := (q · yref(t))(2c2 − 3c3(q · yref(t))),
f2(t) := c2 − 3c3(q · yref(t)),
g(t) := c5(q · yref(t)).
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We have that f−1 ∈ L∞([0,∞);L2(Ω)), since

‖f−1‖2,∞ := ess supt≥0

(∫
Ω
f−1(ζ, t)2 dλ

)1/2

≤ ‖Is,i‖L2 +
m∑
k=1
‖yref,k‖∞ ‖Aqk‖L2 <∞.

Furthermore, we have that f0 ∈ L∞([0,∞)× Ω), because

|f0(ζ, t)| ≤ (‖ẏref‖∞ + c1‖yref‖∞)
m∑
k=1
‖qk‖∞ + c2‖yref‖2∞

(
m∑
k=1
‖qk‖∞

)2

+ c3‖yref‖3∞

(
m∑
k=1
‖qk‖∞

)3

for all ζ ∈ Ω and t ≥ 0. Hence

‖f0‖∞,∞ := ess sup(t,ζ)∈[t,∞)×Ω |f0(ζ, t)| <∞.

Moreover, f1, f2, g ∈ BC([0,∞) × Ω), so that ‖f1‖∞,∞ < ∞, ‖f2‖∞,∞ < ∞ and
‖g‖∞,∞ <∞.
Consider the system of 2(n+ 1) ODEs

µ̇j(t) = −αjµj(t)− (c1 − ω0(t))µj(t)− νj(t)−
〈
φ

(
n∑
i=0

γiµi(t)
)
, γj

〉
Rm

+
〈
F

(
t,

n∑
i=0

µi(t)θi

)
, θj

〉
,

ν̇j(t) = −(c4 − ω0(t))νj(t) + c5µj(t) + ϕn(t) 〈g(t), θj〉 ,

(5.29)

defined on

D :=
{

(t, µ0, . . . , µn, ν0, . . . , νn) ∈ [γ,∞)× R2(n+1)

∣∣∣∣∣
∥∥∥∥∥
n∑
i=0

γiµi

∥∥∥∥∥
Rm

< 1
}
,

with initial value

µj(γ) = κn

(
aj −

m∑
k=1

qk,jyref,k(γ)
)
, νj(γ) = κnbj , j ∈ N0.

Since the functions on the right hand side of the differential equations are continuous,
the set D is relatively open in [γ,∞)× R2(n+1) and by construction

(γ, µ0(γ), . . . , µn(γ), ν0(γ), . . . , νn(γ)) ∈ D
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it follows from ODE theory, see e.g. [121, § 10, Theorem XX], that there exists a weakly
differentiable solution

(µ, ν) = (µ0, . . . , µn, ν0, . . . , νn) : [γ, Tn)→ R2(n+1)

such that Tn ∈ (γ,∞] is maximal. Furthermore, the closure of the graph of (µ, ν) is
not a compact subset of D.
With that, we can define

zn(t) :=
n∑
i=0

µi(t)θi, wn(t) :=
n∑
i=0

νi(t)θi, en(t) :=
n∑
i=0

γiµi(t)

and note that

znγ := zn(γ) = κn(vnγ − qn · yref(γ)), wnγ := wn(γ) = κnu
n
γ .

From the orthonormality of the θi we have that

〈żn(t), θj〉 = −a(zn(t), θj)− (c1 − ω0(t)) 〈zn(t), θj〉 − 〈wn(t), θj〉
− 〈φ (B′zn(t)) ,B′θj〉Rm + 〈F (t, zn(t)) , θj〉 ,

(5.30a)

〈ẇn(t), θj〉 = −(c4 − ω0(t)) 〈wn(t), θj〉+ c5 〈zn(t), θj〉+ ϕn 〈g(t), θj〉 . (5.30b)

Define now
vn(t) := ϕn(t)−1zn(t) + qn · yref(t),
un(t) := ϕn(t)−1wn(t).

(5.31)

and let vn(t) =
∑n
i=0 µ̃n(t)θi and un(t) =

∑n
i=0 ν̃n(t)θi. The transformation (5.31) is

bijective for all n ∈ N. In fact, there exists a relation between µi, νi and µ̃i, ν̃i, namely,

µi(t) = ϕn(t)
(
µ̃i(t)−

m∑
k=1

qk,iyref,k(t)
)
,

νi(t) = ϕn(t)ν̃i(t).

With this transformation we obtain the truncated equation
d
dt 〈vn(t), θ〉 =− a(vn(t), θ) + 〈p3(vn(t) + (q − qn) · yref(t))− un(t), θ〉

+
〈
Is,i(t)− (q − qn) · ẏref(t) +

m∑
k=1

yref,k(t)A(qk − qnk ), θ
〉

+
〈
Ins,e(t),B′θ

〉
Rm ,

d
dt 〈un(t), χ〉 = 〈c5(vn(t) + (q − qn) · yref(t))− c4un(t), χ〉 ,

Ins,e(t) =− k0

1− ϕn(t)2‖B′(vn(t)− qn · yref(t))‖2Rm
(B′(vn(t)− qn · yref(t))),

(5.32)
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with (un(γ), vn(γ)) = (uγ , vγ). Since there exists n0 ∈ N for which qn0 = q, we have
that for n ≥ n0 the following holds

d
dt 〈vn(t), θ〉 =− a(vn(t), θ) + 〈p3(vn(t))− un(t), θ〉+ 〈Is,i(t), θ〉+

〈
Ins,e(t),B′θ

〉
Rm ,

d
dt 〈un(t), χ〉 = 〈c5vn(t)− c4un(t), χ〉 ,

Ins,e(t) =− k0

1− ϕn(t)2‖B′vn(t)− yref(t)‖2Rm
(B′vn(t)− yref(t)),

Step 2. We show boundedness of (zn, wn) in terms of ϕn.
Consider again the Lyapunov function (5.18). We find that, for all t ∈ [0, Tn),

d
dtV (zn(t), wn(t)) = c5

n∑
j=0

µj(t)µ̇j(t) +
n∑
j=0

νj(t)ν̇j(t)

= −c5
n∑
j=0

αjµj(t)2 − c5(c1 − ω0(t))
n∑
j=0

µj(t)2

− (c4 − ω0(t))
n∑
j=0

νj(t)2 − c5 〈φ(en(t)), en(t)〉Rm

+ ϕn(t)
〈
g(t),

n∑
i=0

νi(t)θi

〉

+ c5

〈
F

(
t,

n∑
i=0

µi(t)θi

)
,

n∑
i=0

µi(t)θi

〉
,

hence, omitting the argument t for brevity in the following,
d
dtV (zn, wn) =− c5a(zn, zn)− c5(c1 − ω0)‖zn‖2 − (c4 − ω0)‖wn‖2

− c5
k0‖en‖2Rm

1− ‖en‖2Rm
+ c5 〈F (t, zn), zn〉+ ϕn 〈g, wn〉 .

(5.33)

Next we use some Young and Hölder inequalities to estimate the term involving F (t, zn),
that is

〈F (t, zn), zn〉 = ϕn(t) 〈f−1(t), zn〉︸ ︷︷ ︸
I−1

+ϕn(t) 〈f0(t), zn〉︸ ︷︷ ︸
I0

+ 〈f1(t)zn, zn〉︸ ︷︷ ︸
I1

+ ϕn(t)−1 〈f2(t)z2
n, zn

〉︸ ︷︷ ︸
I2

−c3ϕn(t)−2 〈z3
n, zn

〉︸ ︷︷ ︸
=‖zn‖4

L4

.

For the first term we derive using Young’s inequality with p = 4/3 and q = 4 that

I−1 ≤

〈
21/2ϕ

3/2
n |Is,i|
c
1/4
3

,
c
1/4
3 |zn|

21/2ϕ
1/2
n

〉
+

m∑
k=1

〈
(4m)1/4ϕ

3/2
n ‖yref‖∞|Aqk|
c
1/4
3

,
c
1/4
3 |zn|

(4m)1/4ϕ
1/2
n

〉
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≤
22/33ϕ2

n‖Is,i‖
4/3
2,∞|Ω|1/3

4c1/33
+

m∑
k=1

3(4m)1/3ϕ2
n‖yref‖4/3∞ ‖Aqk‖4/3|Ω|1/3

4c1/33
+
c3‖zn‖4L4

8ϕ2
n

.

and with the same choice we obtain for the second term

I0 ≤

〈
21/4ϕ

3/2
n ‖f0‖∞,∞
c
1/4
3

,
c
1/4
3 |zn|

21/4ϕ
1/2
n

〉
≤ 21/33ϕ2

n‖f0‖4/3∞,∞|Ω|
4c1/33

+
c3‖zn‖4L4

8ϕ2
n

.

Using p = q = 2 we find that the third term satisfies

I1 ≤
〈

2ϕn‖f1‖∞,∞√
c3

,

√
c3|zn|2

2ϕn

〉
≤

2ϕ2
n‖f1‖2∞,∞|Ω|

c3
+
c3‖zn‖4L4

8ϕ2
n

,

and finally, with p = 4 and q = 4/3,

I2 ≤
〈
ϕ−1
n ‖f2‖∞,∞, |zn|3

〉
=
〈

33/2ϕ
1/2
n ‖f2‖∞,∞
c
3/4
3

,

∣∣∣∣∣ c1/43 zn

ϕ
1/2
n

√
3

∣∣∣∣∣
3〉

≤
93ϕ2

n‖f2‖4∞,∞|Ω|
4c33

+ c3
12ϕ2

n

‖zn‖4L4 .

Summarizing, we have shown that

〈F (t, zn), zn〉 ≤ K0ϕ
2
n −

13c3
24ϕ2

n

‖zn‖4L4 ≤ K0ϕ
2
n −

c3
2ϕ2

n

‖zn‖4L4 ,

where

K0 :=
22/33‖Is,i‖4/32,∞|Ω|1/3

4c1/33
+

m∑
k=1

3(4m)1/3‖yref‖4/3∞ ‖Aqk‖4/3|Ω|1/3

4c1/33

+ 21/33‖f0‖4/3∞,∞|Ω|
4c1/33

+
2‖f1‖2∞,∞|Ω|

c3
+

93‖f2‖4∞,∞|Ω|
4c33

.

Finally, using Young’s inequality with p = q = 2, we estimate the last term in (5.33)
as follows

ϕn 〈g, wn〉 ≤
ϕ2
n‖g‖2∞,∞|Ω|

2c4
+ c4

2 ‖wn‖
2.

We have thus obtained the estimate
d
dtV (zn, wn) ≤− (σ − 2ω0)V (zn, wn)

− c5a(zn, zn)− c5
k0‖en‖2Rm

1− ‖en‖2Rm
− c3c5

2ϕ2
n

‖zn‖4L4 + ϕ2
nK1,

(5.34)

where

σ := 2 min{c1, c4}, K1 := c5K0 +
‖g‖2∞,∞|Ω|

2c4
.
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In particular, we have the conservative estimate

d
dtV (zn, wn) ≤ −(σ − 2ω0)V (zn, wn) + ϕ2

nK1

on [γ, Tn), which implies that

V (zn(t), wn(t)) ≤ e−K(t,γ)V (zn(γ), wn(γ)) +
∫ t

γ

e−K(t,s)ϕn(s)2K1 ds ,

where

K(t, s) =
∫ t

s

σ − 2ω0(τ) dτ = σ(t− s)− 2 lnϕn(t) + 2 lnϕn(s), γ ≤ s ≤ t < Tn.

Therefore, invoking ϕn(γ) = κn, for all t ∈ [γ, Tn) we have

V (zn(t), wn(t)) ≤ e−σ(t−γ)ϕn(t)2

κ2
n

V (zn(γ), wn(γ)) + K1

σ
ϕn(t)2

= ϕn(t)2

2

(
(c5‖vnγ − qn · yref(γ)‖2 + ‖unγ‖2)e−σ(t−γ) + 2K1σ

−1
)

≤ ϕn(t)2

2

(
(c5‖vγ − q · yref(γ)‖2 + ‖uγ‖2)e−σ(t−γ) + 2K1σ

−1
)
.

Hence

c5‖zn(t)‖2 + ‖wn(t)‖2 ≤ ϕn(t)2(c5‖vγ − q · yref(γ)‖2 + ‖uγ‖2 + 2K1σ
−1)

for all t ∈ [γ, Tn). Thus there exist M,N > 0 which are independent of n and t such
that

∀ t ∈ [γ, Tn) : ‖zn(t)‖2 ≤Mϕn(t)2 and ‖wn(t)‖2 ≤ Nϕn(t)2. (5.35)

Hence
∀ t ∈ [γ, Tn) : ‖vn(t)− qn · yref(t)‖2 ≤M and ‖un(t)‖2 ≤ N. (5.36)

Step 3. We show Tn =∞ and that en is uniformly bounded away from 1 on [γ,∞).
Step 3a. We derive some estimates for d

dt‖zn‖
2 and for an integral involving ‖zn(s)‖4L4 .

In a similar way in which we have derived (5.34) we can obtain the estimate

1
2

d
dt‖zn‖

2 ≤− a(zn, zn)− (c1 − ω0)‖zn‖2 + ‖zn‖‖wn‖

− k0‖en‖2Rm
1− ‖en‖2Rm

− c3
2ϕ2

n

‖zn‖4L4 +K0ϕ
2
n.

(5.37)

Using (5.35) and −c1‖zn‖2 ≤ 0 leads to

1
2

d
dt‖zn‖

2 ≤− a(zn, zn)− k0‖en‖2Rm
1− ‖en‖2Rm

− c3
2ϕ2

n

‖zn‖4L4
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+ ‖ϕ̇‖∞Mϕn + (K0 +
√
MN)ϕ2

n.

Hence,

1
2

d
dt‖zn‖

2 ≤− a(zn, zn)− k0‖en‖2Rm
1− ‖en‖2Rm

− c3
2ϕ2

n

‖zn‖4L4 +K1ϕn +K2ϕ
2
n (5.38)

on [γ, Tn), where K1 := M‖ϕ̇‖∞ and K2 := K0 +
√
MN . Observe that

c3
2 ϕ
−3
n ‖zn‖4L4 ≤ −

ϕ−1
n

2
d
dt‖zn‖

2 +K3,

where K3 := K1 +K2‖ϕ‖∞. Therefore,

c3
2

∫ t

γ

esϕn(s)−3‖zn(s)‖4L4 ds

≤ K3(et − eγ)− 1
2

∫ t

γ

esϕn(s)−1 d
dt‖zn(s)‖2 ds

= K3(et − eγ)− 1
2

(
etϕn(t)−1‖zn(t)‖2 −

‖znγ ‖2

κn
eγ
)

+ 1
2

∫ t

γ

esϕn(s)−2(ϕn(s)− ϕ̇n(s))‖zn(s)‖2 ds

≤ et

2 (2K3 + (‖ϕ‖∞ + Γ−1
r + ‖ϕ̇‖∞)M) + κneγ(‖vγ‖2 + ‖q · yref(γ)‖2),

and hence there exist D0, D1 > 0 independent of n and t such that

∀ t ∈ [γ, Tn) :
∫ t

γ

esϕn(s)−3‖zn(s)‖4L4 ds ≤ D1et + κnD0. (5.39)

Step 3b. We derive an estimate for ‖żn‖2. Multiplying (5.30a) by µ̇j and summing up
over j ∈ {0, . . . , n} we obtain

‖żn‖2 =− 1
2

d
dta(zn, zn)− c1

2
d
dt‖zn‖

2 + k0

2
d
dt ln(1− ‖en‖2Rm)

+ 〈ω0zn + F (t, zn)− wn, żn〉 .

We can estimate the last term above by

〈ω0zn, żn〉 ≤
7
2‖ϕ̇‖

2
∞ϕ
−2
n ‖zn‖2 + 1

14‖żn‖
2

(5.35)
≤ 7

2‖ϕ̇‖
2
∞M + 1

14‖żn‖
2,

〈−wn, żn〉 ≤
7
2‖wn‖

2 + 1
14‖żn‖

2,

〈F (t, zn) , żn〉 ≤
7
2ϕ

2
n

(
m

m∑
k=1
‖yref,k‖2∞‖Aqk‖2 + ‖Is,i‖22,∞ + ‖f0‖2∞,∞|Ω|

)
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+ 7
2‖f1‖2∞,∞‖zn‖2 + 7

2ϕ
−2
n ‖f2‖2∞,∞‖zn‖4L4

+ 5
14‖żn‖

2 − c3
4ϕ2

n

d
dt‖zn‖

4
L4 .

Inserting these inequalities, substracting 1
2‖żn‖

2 and then multiplying by 2 gives

‖żn‖2 =− d
dta(zn, zn)− c1

d
dt‖zn‖

2 + k0
d
dt ln(1− ‖en‖2Rm)− c3

2ϕ2
n

d
dt‖zn‖

4
L4

+ 7ϕ2
n

(
m

m∑
k=1
‖yref,k‖2∞‖Aqk‖2 + ‖Is,i‖22,∞+ ‖f0‖2∞,∞|Ω|+ ‖f1‖2∞,∞M+N

)
+ 7‖ϕ̇‖2∞M + 7ϕ−2

n ‖f2‖2∞,∞‖zn‖4L4 .

Now we add and subtract 1
2

d
dt‖zn‖

2, thus we obtain

‖żn‖2 ≤ −
d
dta(zn, zn)−

(
c1 + 1

2

)
d
dt‖zn‖

2 + k0
d
dt ln(1− ‖en‖2Rm)− c3

2ϕ2
n

d
dt‖zn‖

4
L4

+ 7(‖ϕ‖∞ + Γ−1
r )2

×

(
m

m∑
k=1
‖yref,k‖2∞‖Aqk‖2 + ‖Is,i‖22,∞ + ‖f0‖2∞,∞|Ω|+ ‖f1‖2∞,∞M

)

+ 7(N(‖ϕ‖∞ + Γ−1
r )2 + ‖ϕ̇‖2∞M) + 7ϕ−2

n ‖f2‖2∞,∞‖zn‖4L4 + 1
2

d
dt‖zn‖

2

By the product rule

− c3
2ϕ2

n

d
dt‖zn‖

4
L4 = − d

dt

(
c3

2ϕ2
n

‖zn‖4L4

)
− c3ϕ−3

n ϕ̇n‖zn‖4L4

we find that

‖żn‖2 + d
dta(zn, zn)− k0

d
dt ln(1− ‖en‖2Rm) + d

dt

(
c3

2ϕ2
n

‖zn‖4L4

)
≤−

(
c1 + 1

2

)
d
dt‖zn‖

2 + E1 + E2ϕ
−3
n ‖zn‖4L4 + 1

2
d
dt‖zn‖

2,

(5.40)

where

E1 := 7(‖ϕ‖∞ + Γ−1
r )2

×

(
m

m∑
k=1
‖yref,k‖2∞‖Aqk‖2 + ‖Is,i‖22,∞ + ‖f0‖2∞,∞|Ω|+ ‖f1‖2∞,∞M

)
+ 7(N(‖ϕ‖∞ + Γ−1

r )2 + ‖ϕ̇‖2∞M),
E2 := 7‖f2‖2∞,∞(‖ϕ‖∞ + Γ−1

r ) + c3‖ϕ̇‖∞
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are independent of n and t.
Step 3c. We show uniform boundedness of en. Using (5.38) in (5.40) we obtain

‖żn‖2 + ρ̇n ≤−
(
c1 + 1

2

)
d
dt‖zn‖

2 + E1 + E2ϕ
−3
n ‖zn‖4L4

− a(zn, zn)− k0‖en‖2Rm
1− ‖en‖2Rm

− c3
2ϕ2

n

‖zn‖4L4 +K1ϕn +K2ϕ
2
n

=−
(
c1 + 1

2

)
d
dt‖zn‖

2 + E2ϕ
−3
n ‖zn‖4L4

− a(zn, zn)− k0

1− ‖en‖2Rm
− c3

2ϕ2
n

‖zn‖4L4 + Λ

where

ρn := a(zn, zn)− k0 ln(1− ‖en‖2Rm) + c3
2ϕ2

n

‖zn‖4L4 ,

Λ := E1 +K1(‖ϕ‖∞ + Γ−1
r ) +K2(‖ϕ‖∞ + Γ−1

r )2 + k0,

and we have used the equality

‖en‖2Rm
1− ‖en‖2Rm

= −1 + 1
1− ‖en‖2Rm

.

Adding and subtracting k0 ln(1− ‖en‖2Rm) leads to

‖żn‖2 + ρ̇n ≤− ρn −
(
c1 + 1

2

)
d
dt‖zn‖

2 + E2ϕ
−3
n ‖zn‖4L4

− k0

(
1

1− ‖en‖2Rm
+ ln(1− ‖en‖2Rm)

)
+ Λ

≤− ρn −
(
c1 + 1

2

)
d
dt‖zn‖

2 + E2ϕ
−3
n ‖zn‖4L4 + Λ, (5.41)

where for the last inequality we have used that

∀ p ∈ (−1, 1) : 1
1− p2 ≥ ln

(
1

1− p2

)
= − ln(1− p2).

We may now use the integrating factor et to obtain

d
dt
(
etρn

)
= et(ρn + ρ̇n) ≤ −et

(
c1 + 1

2

)
d
dt‖zn‖

2 + E2etϕ−3
n ‖zn‖4L4 + Λet−et‖żn‖2︸ ︷︷ ︸

≤0

Integrating and using (5.39) yields that for all t ∈ [γ, Tn) we have

etρn(t)− ρn(γ)eγ ≤ (E2D1 + Λ)et + κnE2D0 −
∫ t

γ

es
(
c1 + 1

2

)
d
dt‖zn(s)‖2 ds
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≤ (E2D1 + Λ)et + κnE2D0 +
(
c1 + 1

2

)
‖znγ ‖2eγ

+
(
c1 + 1

2

)∫ t

γ

es‖zn(s)‖2 ds

(5.35)
≤ (E2D1 + Λ)et + κnE2D0 +

(
c1 + 1

2

)
κ2
neγ(‖vγ − q · yref(γ)‖2)

+
(
c1 + 1

2

)
(‖ϕ‖∞ + Γ−1

r )2Met.

Thus, there exist Ξ1,Ξ2,Ξ3 > 0 which are independent of n and t such that

ρn(t) ≤ ρn(γ)e−(t−γ) + Ξ1 + κn(Ξ2 + κnΞ3)e−(t−γ).

Invoking the definition of ρn and that e−(t−γ) ≤ 1 for t ≥ γ we find that

∀ t ∈ [γ, Tn) : ρn(t) ≤ ρ0
n + Ξ1 + κnΞ2 + κ2

nΞ3, (5.42)

where

ρ0
n := κ2

na(vnγ−qn · yref(γ), vnγ−qn · yref(γ))−k0 ln(1−κ2
n‖B′(vnγ−qn · yref(γ))‖2Rm)

+ κ2
n‖vnγ − qn · yref(γ)‖4L4 = ρn(γ).

Note that by construction of κn and the Sobolev embedding, (ρ0
n)n∈N is bounded,

ρ0
n → 0 as n→∞, so that ρ0

n can be bounded independently of n.
Again using the definition of ρn and (5.42) we find that

k0 ln
(

1
1− ‖en‖2Rm

)
= ρn − a(zn, zn)− c3

2ϕ2
n

‖zn‖4L4 ≤ ρ0
n + Ξ1 + κnΞ2 + κ2

nΞ3,

and hence
1

1− ‖en‖2Rm
≤ exp

(
1
k0

(
ρ0
n + Ξ1 + κnΞ2 + κ2

nΞ3
))

=: ε(n).

We may thus conclude that

∀ t ∈ [γ, Tn) : ‖en(t)‖2Rm ≤ 1− ε(n). (5.43)

This means that

∀ t ∈ [γ, Tn) : ϕn(t)2‖B′(vn(t)− qn · yref(t))‖2Rm ≤ 1− ε(n). (5.44)

Moreover,

∀ t ∈ [γ, Tn) : δϕn(t)2‖∇(vn(t)− qn · yref(t))‖2 + ϕn(t)2‖vn(t)− qn · yref(t)‖4L4

≤ ρ0
n + Ξ1 + κnΞ2 + κ2

nΞ3,
(5.45)
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which implies that for all t > 0 it holds vn(t) ∈W 1,2(Ω).
Step 3d. We show that Tn =∞. Assuming Tn <∞ it follows from (5.43) that the graph
of the solution (µ, ν) from Step 2 would be a compact subset of D, a contradiction.
Therefore, we have Tn =∞.
Step 4. We show convergence of the approximate solution, uniqueness and regularity of
the solution in [γ,∞)× Ω.
Step 4a. Some inequalities. From (5.42) we have that

ϕ−2
n ‖zn‖4L4 ≤ ρ0

n + Ξ1 + κnΞ2 + κ2
nΞ3.

Using a similar procedure as in (5.39) we can derive the following estimate∫ t

γ

ϕn(s)−3‖zn(s)‖4L4 ds ≤ κnd0 + d1t, (5.46)

for d0, d1 > 0 independent of n and t. Further, we can integrate (5.41) on the interval
[0, t] to obtain, invoking ρn(t) ≥ 0 and (5.46),∫ t

γ

‖żn(s)‖2 ds ≤ ρ0
n +

(
c1 + 1

2

)
κ2
n(‖vγ − q · yref(γ)‖2) + E2(κnd0 + d1t) + Λt

for all t ≥ γ. Hence, there exist S0, S1, S2 > 0 which are independent of n and t such
that

∀ t ≥ γ :
∫ t

γ

‖żn(s)‖2 ds ≤ ρ0
n + S0κn + S1κ

2
n + S2t. (5.47)

Hence, there exist S3, S4 > 0 such that

∀ t ≥ γ :
∫ t

γ

∥∥∥∥ d
dt (ϕnvn)

∥∥∥∥2
ds ≤ ρ0

n + S0κn + S1κ
2
n + S3t+ S4. (5.48)

Using (5.37) we can slightly improve (5.46), since

1
2

d
dt‖zn‖

2 ≤− a(zn, zn)− (c1 − ω0)‖zn‖2 + ‖zn‖‖wn‖

− k0‖en‖2Rm
1− ‖en‖2Rm

− c3
2ϕ2

n

‖zn‖4L4 +K0ϕ
2
n

≤ ω0‖zn‖2 −
c3

2ϕ2
n

‖zn‖4L4 + (K0 +
√
NM)ϕ2

n

− a(zn, zn)− k0‖en‖2Rm
1− ‖en‖2Rm

= ω0‖zn‖2 −
c3

2ϕ2
n

‖zn‖4L4 +K2ϕ
2
n

− a(zn, zn)− k0‖en‖2Rm
1− ‖en‖2Rm
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The former is equivalent to

d
dtϕ

−2
n ‖zn‖2 ≤ 2K2 − c3ϕ−4

n ‖zn‖4L4 − 2ϕ−2
n a(zn, zn)− 2k0ϕ

−2
n ‖en‖2Rm

1− ‖en‖2Rm
.

This implies that ∀ t ≥ γ

c3

∫ t

γ

ϕn(s)−4‖zn(s)‖4L4 + 2ϕn(s)−2a(zn(s), zn(s))− 2k0ϕn(s)−2‖en(s)‖2Rm
1− ‖en(s)‖2Rm

ds

≤ 2K2t+ ‖vγ − q · yref(γ)‖2,
(5.49)

which is bounded independently of n. This shows that ∀ t ≥ γ it holds

c3

∫ t

γ

‖vn(s)− qn · yref(s)‖4L4 ds +
∫ t

γ

2a(vn(s)− qn · yref(s), vn(s)− qn · yref(s)) ds

+
∫ t

γ

2k0‖B′(vn(s)− qn · yref(s))‖2Rm
1− ϕn(s)2‖B′(vn(s)− qn · yref(s))‖2Rm

ds ≤ 2K2t+ ‖vγ − q · yref(γ)‖2.

(5.50)
We require a last calculation to prove that ‖ẇn‖2 is bounded independently of n and
t. To this end multiply (5.30b) by ν̇j and sum over j to obtain

‖ẇn‖2 = −(c4 − ω0) 〈wn, ẇn〉+ c5 〈zn, ẇn〉+ ϕn 〈g, ẇn〉 .

Using (ω0 − c4)wn = (ϕ̇n − c4ϕn)ϕ−1
n wn and the inequalities

−(c4 − ω0) 〈wn, ẇn〉 ≤
3
2‖ϕ̇− c4ϕ‖

2
∞ϕ
−2
n ‖wn‖2 + ‖ẇn‖

2

6

≤ 3
2(‖ϕ̇‖∞ + c4(‖ϕ‖∞ + Γ−1

r ))2N + ‖ẇn‖
2

6 ,

c5 〈zn, ẇn〉 ≤
3c25
2 ‖zn‖

2 + 1
6‖ẇn‖

2

≤ 3c25M
2 (‖ϕ‖∞ + Γ−1

r )2 + 1
6‖ẇn‖

2,

ϕn 〈g, ẇn〉 ≤
3
2(‖ϕ‖∞ + Γ−1

r )2‖g‖2∞,∞|Ω|+
1
6‖ẇn‖

2.

It follows now that for all t ≥ γ it holds

‖ẇn(t)‖2 ≤ 3‖(‖ϕ̇‖∞ + c4(‖ϕ‖∞ + Γ−1
r ))2N + 3c25M(‖ϕ‖∞ + Γ−1

r )2

+ 3(‖ϕ‖∞ + Γ−1
r )2‖g‖2∞,∞|Ω|,

(5.51)

which is bounded independently of n and t. Multiplying (5.30b) by ϕ−1
n and θi and

adding over i ∈ {0, . . . , n} leads to

d
dt (ϕ

−1
n wn) = −ϕ−2ϕ̇nwn + ϕ−1

n ẇn = −c4ϕ−1
n wn + c5ϕ

−1
n zn + gn,
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where

gn :=
n∑
i=0
〈g, θi〉 θi.

If we now take the norm of the latter we have that∥∥∥∥ d
dt (ϕ

−1
n wn)

∥∥∥∥ ≤ c4ϕ−1
n ‖wn‖+ c5ϕ

−1
n ‖zn‖+ ‖gn‖

≤ c4N + c5M + ‖g‖∞,∞.

Thus,
∀ t ≥ γ : ‖u̇n(t)‖ ≤ c4N + c5M + ‖g‖∞,∞. (5.52)

Step 4b. Weak convergence of the solution.
Let T > γ be given. As in Section 5.6.1, we have vn ∈ L4((γ, T ) × Ω), vn ∈
L2([γ, T ];W 1,2(Ω)), v̇n ∈ L2([γ, T ]; (W 1,2(Ω))′), since (5.50) together with (5.44) im-
plies that Ins,e ∈ L2([γ, T ];Rm) and vn ∈ L2([γ, T ];W 1,2(Ω)).
Analogously to Section 5.6.1 we have that there exist subsequences such that

un → u ∈W 1,2([γ, T ];L2(Ω)) weakly,
vn → v ∈ L2([γ, T ];W 1,2(Ω)) weakly,
v̇n → v̇ ∈ L2([γ, T ]; (W 1,2(Ω))′) weakly,

so that u, v ∈ C([γ, T ];L2(Ω)). Also v2
n → v2 weakly in L2((γ, T ) × Ω) and v3

n → v3

weakly in L4/3((γ, T )× Ω).
We have further properties of u and v. By (5.36), (5.45), (5.48) & (5.52) we have
that un, u̇n are in a bounded set of L∞([γ, T ];L2(Ω)) and that vn is in a bounded set
of L∞([γ, T ];L2(Ω)) and the bound is independent of T . Moreover, d

dt (ϕnvn) is in
L2([γ, T ];L2(Ω)). Using Lemma 1.4.6, we have subsequences such that

un → u ∈ L∞([γ, T ];L2(Ω)) weak?,
u̇n → u̇ ∈ L∞([γ, T ];L2(Ω)) weak?,
vn → v ∈ L∞([γ, T ];L2(Ω)) weak?,

ϕnvn → ϕv ∈ L∞([γ, T ];W 1,2(Ω)) weak?,
v̇n → v̇ ∈ L2([γ, T ]; (W 1,2(Ω))′) weakly,

ϕnv̇n → ϕv̇ ∈ L2([γ, T ];L2(Ω)) weakly,

since ϕn → ϕ in BC([γ, T ];R). Moreover, by inft>γ ϕ(t) > 0, we also have that
v ∈ L∞([γ + δ, T ];W 1,2(Ω)) and v̇ ∈ L2([γ + δ, T ];L2(Ω)) for all δ > 0.
Further, κn, ρ0

n → 0 and
ε(n)→ ε0 := exp

(
−k−1

0 Ξ1
)

as n→∞.
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Thus, by (5.36), (5.44), (5.45) & (5.50) we have v ∈ L4((γ, T )×Ω) and for a.e. t ∈ [γ, T )
the following estimates hold:

‖v(t)− q · yref(t)‖ ≤
√
M,

‖u(t)‖ ≤
√
N,

ϕ(t)2‖B′v(t)− yref(t)‖2Rm ≤ 1− ε0,

δϕ(t)2‖∇(v(t)− q · yref(t))‖2 + ϕ(t)2‖v(t)− q · yref(t)‖4L4 ≤ Ξ1,∫ t

γ

‖v(s)− q · yref(s)‖4L4 ds ≤ 2K2t+ ‖vγ − q · yref(γ)‖2.

(5.53)

Moreover, as in Section 5.6.1, vn → v strongly in L2(γ, T ;L2(Ω)). Further, u, v ∈
C([γ, T );L2(Ω)) and (u(γ), v(γ)) = (uγ , vγ).
Hence, for χ ∈ L2(Ω) and θ ∈ W 1,2(Ω) we have that (un, vn) fulfill the integrated
version of (5.32), so we obtain that for t ∈ (γ, T ) it holds

〈v(t), θ〉 = 〈vγ , θ〉+
∫ t

γ

−a(v(s), θ) + 〈p3(v(s))− u(s) + Is,i(s), θ〉 ds ,

+
∫ T

γ

〈Is,e(s),B′θ〉Rm ds ,

〈u(t), χ〉 = 〈uγ , χ〉+
∫ t

γ

〈c5v(s)− c4u(s), χ〉 ds ,

Is,e(t) = − k0

1− ϕ(t)2‖B′v(t)− yref(t)‖2Rm
(B′v(t)− yref(t))

by bounded convergence [28, Theorem II.4.1]. Thus, (u, v) is a solution of (5.7) in
(γ, T ). Moreover, (5.26) also holds in (W 1,2(Ω))′ for t ≥ γ, that is

v̇(t) = Av(t) + p3(v(t)) + BIs,e(t)− u(t) + Is,i(t). (5.54)

Step 4c. Uniqueness of the solution and regularity.
By using a similar argumentation as in Section 5.6.1 it can be seen that the solution
(u, v) is unique on (γ, T ) and this holds for all T > γ by invoking Lemma 4.4.4 and
using a similar construction of a region QΛ. Hence, we can choose T =∞ and define the
solution for all t > γ as the restriction on subintervals (γ, t). By (5.53) we further have
that u, v ∈ BC([γ,∞);L2(Ω)) with Is,e ∈ L∞([γ,∞);Rm), v ∈ L∞([γ+δ,∞);W 1,2(Ω))
for all δ > 0. Hence, by the continuity, (u, v) is the unique solution of 5.7 in [0,∞).
In order to show the regularity of the solution, note that for all δ > 0 we have that

v ∈ L2
loc([γ,∞);W 1,2(Ω)) ∩ L∞([γ + δ,∞);W 1,2(Ω)),

so that Ir := Is,i+c2v2−c3v3−u ∈ L2
loc([γ,∞);L2(Ω))∩L∞([γ+δ,∞);L2(Ω)), and the

application of Proposition 5.5.3 yields v ∈ BC([γ,∞);L2(Ω))∩BUC((γ,∞);W 1,2(Ω)).
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By the uniform continuity of v and the completeness of W 1,2(Ω), v has a limit at t = γ,
see for instance [107, Theorem II.13.D]. Thus, v ∈ L∞([γ,∞);W 1,2(Ω)). From Section
5.6.1 and the latter we have that v ∈ L2

loc([0,∞);W 1,2(Ω)) ∩ L∞([δ,∞);W 1,2(Ω)) for
all δ > 0, so we have

Is,e ∈ L2
loc([0,∞);Rm) ∩ L∞([δ,∞);Rm),

v ∈ L2
loc([0,∞);W 1,2(Ω)) ∩ L∞([δ,∞);W 1,2(Ω)),

so that Ir := Is,i + c2v
2 − c3v3 − u ∈ L2

loc([0,∞);L2(Ω)) ∩ L∞([δ,∞);L2(Ω)).
Iterating Proposition 5.5.3, for all δ > 0, we have that the unique solution of (5.54)
satisfies

v ∈ BC([δ,∞);L2(Ω)) ∩ C0,λ([δ,∞);L2(Ω)) (5.55a)

for r = 0 and all λ ∈ (0, 1);

v ∈ BC([δ,∞);L2(Ω)) ∩ C0,1−r/2([δ,∞);L2(Ω)) ∩ C0,1−r([δ,∞);W r,2(Ω)) (5.55b)

for r ∈ (0, 1); and

v ∈ BC([δ,∞);L2(Ω)) ∩ C0,1/2([δ,∞);L2(Ω)) ∩BUC([δ,∞);W 1,2(Ω)) (5.55c)

for r = 1/2. Since u, v ∈ BC([0,∞);L2(Ω)) and u̇ = c4v − c5u, we have as well
u̇ ∈ BC([0,∞), L2(Ω)).
From (5.55) and B′ ∈ L (W r,2(Ω),Rm) for r ∈ [0, 1] it holds that

• for r = 0 and λ ∈ (0, 1)

y = B′v ∈ C0,λ([δ,∞);Rm);

• for r ∈ (0, 1)
y = B′v ∈ C0,1−r([δ,∞);Rm);

• for r = 1
y = B′v ∈ BUC([δ,∞);Rm).

If we further have that B ∈ L (Rm,W 1,2(Ω)), there exist b1, . . . , bm ∈ W 1,2(Ω) such
that (B′x)i = 〈x, bi〉 for all i = 1, . . . ,m and x ∈ L2(Ω). By using the bi in the weak
formulation for i = 1, . . . ,m, we have

d
dt 〈v(t), bi〉 = −a(v(t), bi) + 〈p3(v(t))− u(t) + Is,i(t), bi〉+ 〈Is,e(t),B′bi〉Rm .

Since (B′v(t))i = 〈v(t), bi〉, this leads to

d
dt (B

′v(t)i) = −a(v(t), bi) + 〈p3(v(t))− u(t) + Is,i(t), bi〉+ 〈Is,e(t),B′bi〉Rm .
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Taking the absolute value and using the Cauchy-Schwarz inequality yields∣∣∣∣ d
dt (B

′v(t))i
∣∣∣∣ ≤ ‖D‖L∞‖v(t)‖W 1,2‖bi‖W 1,2 + ‖p3(v(t))− u(t) + Is,i(t)‖L2‖bi‖L2

+ ‖Is,e(t)‖Rm‖B′bi‖Rm ,

and therefore ∥∥∥∥ d
dt (B

′v)i
∥∥∥∥
L∞(δ,∞;Rm)

<∞. ∀ δ > 0. (5.56)

Further, from (5.53) we have

ϕ(t)2‖B′v(t)− yref(t)‖2Rm ≤ 1− ε0 ∀ t ≥ δ.

Hence, Is,e ∈ L∞([δ,∞);Rm) has the same regularity as y, since we have that ϕ ∈ Φγ
and yref ∈W 1,∞([0,∞);Rm).
Last but not least, if v0 ∈ D(A), it follows from (5.28) that v ∈ L∞([0,∞);W 1,2(Ω))
and Is,e ∈ L∞([0,∞);Rm), so that Ir := Is,i + c2v

2 − c3v3 − u ∈ L∞([0,∞);L2(Ω)).
Proposition 5.5.3 implies that (5.55) holds as well with δ = 0. The continuity of B′
together with the closed loop yield now the regularity of y, Is,e at δ = 0. In particular,
(5.56) also holds with δ = 0. �

5.7 Outlook
Under minimal assumptions, we have been able to successfully show the feasibility of
the system described by 5.3, which includes distributed and boundary control in a
multiple-input-multiple-output setting. Moreover, we did not restrict the operator A
to be the Neumann Laplacian, but considered a general symmetric, Neumann elliptic
operator, which under enough regularity of the diffusion matrix D and the boundary
Γ, corresponds to the diffusion operator

Az = divD∇z, (ν ·D∇z)|Γ = 0.

Moreover, we have been able to show Hölder regularity of the solution, input and
outputs depending on the observation operator.
Having a look at Lemma 5.5.2, one could think of approaching the problem in a dif-
ferent fashion by trying to solve the equation by means of a fixed point argument. Of
course two problems quickly arise. On the one hand, because of the feedback law, the
domain in which the solution lays becomes time-dependent. Secondly, it is not clear
how to exploit the positivity encountered when considering the weak formulation of
the system, which guarantees the uniform boundedness of the error. However, this
procedure could hasten the process of obtaining a solution of the equation so that the
proof of Theorem 5.3.3 becomes shorter or more elegant. From both a mathematical
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and practical viewpoint, it would be also interesting to see if the funnel controller used
in [101] can be also applied in this context, since it has been proved to be feasible for
the heat equation in a similar setting.
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6 Conclusions

For the drawing of the conclusions we first wish to highlight the problems encountered
in the different chapters. A common denominator in all of them is that the funnel
controller is a nonlinear, non-autonomous feedback relation, so that we end up dealing
with a nonlinear, non-autonomous PDE, independently of the fact whether the initial
open-loop system was linear or not. Since there is no general theory of PDEs, this
already represents a major difficulty in dealing with this setting. Moreover, most
of the existing theory on nonlinear PDEs consider the initial value problem (IVP)
on a compact time interval [0, T ], that is, finite time horizon, which somehow seems
inappropriate given the nature of the problem, since one wants to show that the funnel
controller is feasible for all t ∈ [0,∞) and the error remains uniformly bounded away
from the funnel boundary.
Whereas in Chapters 2 & 3 it has been sufficient to show that the dynamics of the
system fit within the framework of the existing theory on the funnel controller given
in [11], Chapters 4 & 5 have required much more work, but at the same time, they
deliver general results for a broad class of systems.
Even though Chapter 2 serves as an example to motivate the FC with internal dynamics
involving PDEs, it becomes clear that the important relation to study is the input-
output behavior, so that the PDE goes into a second plane. Trying to distill the key
arguments, we show in Chapter 3 when the FC is feasible for a specific class of systems
whose internal dynamics is described by an infinite-dimensional system. Since these
systems have unbounded observation and control operators, which usually come from a
boundary-control-like system, the natural step is to study such structures. Since BCS
can be both hyperbolic and parabolic systems, the well-posedness approach does not
seem to be the best one, since these systems exhibit complete different properties, and
hence, we consider from the very beginning the closed-loop system.
In fact, focusing on Chapter 4, the literature does not specifically tackle the problem
at hand. The key idea resides in the transformation carried out to remove the time-
dependence from the funnel controller, which leads to an abstract nonlinear Cauchy
problem of the form (1.8). The nonlinearity is hidden in the domain of an operator,
which happens to be nonlinear and m-dissipative. The price of obtaining an autonom-
ous operator is a time-varying linear perturbation and an inhomogeneity. Dealing with
the closed-loop system from the beginning has several advantages. First, there are
no assumptions on the open-loop system, in particular no well-posedness assumptions
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—in any sense— are made. Secondly, the construction of a solution on a compact
interval already shows feasibility of the FC in all intervals with finite horizon. Under
extra dissipativity assumptions it is then easy to show that the error remains uniformly
bounded away from the funnel boundary. Intrinsically, the methods used to prove the
main results lay on the theory of nonlinear, m-dissipative operators, which enjoy of a
certain mathematical elegance. Moreover, in the parabolic scenario, one can exploit the
structure of the problem to obtain a better result than in the general case. This brings
to light that the FC seems to be feasible for systems having stable internal dynamics
also in the infinite-dimensional scenario.
Following this train of thought and the techniques learned in Chapter 4, in Chapter 5,
we have been able to show that the FC is feasible for a particular nonlinear parabolic
system, which involves the so-called FitzHugh-Nagumo potential. The length of the
proof does not completely represent its complexity, since most of it is devoted to obtain
the necessary inequalities to argue convergence of subsequences in weak and weak?
topologies. The main difficulty is indeed the step in which one guarantees that the
error remains uniformly bounded away from the funnel boundary while showing that
the state satisfies some regularity properties. Hence, nonlinearities or non-autonomous
systems do not seem to be an inconvenient, as long as the structure of the problem is
reach enough.
As of today, the content presented in this dissertation represents the major work in-
volving the funnel controller for systems whose state is described by a PDE with
unbounded control and observation operators. It brings the applicability of the con-
troller to a completely new world and pushes it way beyond by utterly leaving the
finite-dimensional constellation. It lies the fundamental pillars to further explore the
feasibility of the FC in the infinite-dimensional scenario and also to consider infinite-
dimensional observation and control, even though from a practical viewpoint this may
not be of interest. Moreover, it provides the main tools for extending the topic into
nonlinear or non-autonomous systems. If one considers that the principal aim of the
funnel controller is to track a reference signal with prescribed transient behavior, this
project generalizes in some sense the one and only similar result in this direction given
in [101].

6.1 Open questions
While the current problems in Chapter 2 have to do with the modeling of the system,
that is, whether we work with the fully nonlinear equations or we use higher spatial
dimensions, the other chapters present more challenging issues. The natural step in
Chapter 3 would be to consider nonlinear internal dynamics and bounded control and
observation operators. A reasonable assumption to generalize the linear case could
be input-to-state stability (ISS) [109], and from there start studying the input-output
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behavior.
As already mentioned in Chapter 4, it is not clear yet how to exploit the structure of
the problem when the internal dynamics of the system are stable. Ideally, one should
aim to find a characterization between the stability of the internal dynamics and the
uniform boundedness of u as well as finding out when it is possible to show boundedness
of u without needing boundedness of ẋ.
A second problem has to do with the nature of the system treated in Chapter 5. It
is well-known —see for instance [94, Section 8.2]— that one can find a solution to
the nonlinear parabolic problem related to the FitzHugh-Nagumo model by means of
the mild solution and a fixed point argument. However, there are two aspects of this
method which are not directly transferable to our setting. The first one has of course to
do with the non-autonomous feedback, since the set on which one would apply the fixed
point argument becomes time-dependent. Secondly, in order to obtain a global solution
of the system together with having a uniformly bounded input, one requires the weak
formulation of the system and the positivity of some operators, like the form associated
to the elliptic operator. For that, it is not sufficient to have an integrated equation
which corresponds to the mild solution, since this positivity cannot be exploited.
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List of notations

Acronyms
ACP abstract Cauchy problem – p. 24
ANCP abstract nonlinear Cauchy problem – p. 38

BCS boundary control system – p. 6
BIBO bounded-input, bounded-output – p. 73

FC funnel controller – p. 3

ID internal dynamics – p. 4
ISS input-to-state stability – p. 176
IVP initial value problem – p. 175

ODE Ordinary Differential Equation – p. 2

PDE Partial Differential Equation – p. 1

SC solution concept – p. 44

General numbers, sets and spaces⊗n
i=1Xi product space, often denoted by X1 × · · · ×Xn – p. 7

X ′ topological dual space of X, that is, X ′ = L (X,K) –
p. 8

〈x′, x〉 duality pairing, that is, x′(x) for x ∈ X and x′ ∈ X ′ –
p. 8

S closure of a set S – p. 7
int S interior of a set S – p. 7
brc truncation of r ∈ [0,∞) – p. 58
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C set of complex numbers – p. 7
Cα set of complex numbers whose real part is larger than

α ∈ R – p. 7
Cn space of comples n-dimensional vectors – p. 7
Cn×m space of comples n×m-matrices – p. 7

D(T ) domain of the operator T : D(T ) ⊂ X → Y – p. 9

Gln(C) set of invertible n× n-matrices – p. 7
Gln(R) set of invertible n× n-matrices – p. 7
G(T ) graph of the operator T : D(T ) ⊂ X → Y – p. 9

i imaginary unit – p. 7

K either R or C – p. 7
kerT kernel of the operator T : D(T ) ⊂ X → Y – p. 9

L (X,Y ) space of bounded linear operators mapping from X to
Y – p. 7

L (X) space of bounded linear operators mapping from X to
X – p. 8

N set of natural numbers – p. 7
N0 set of natural numbers including 0 – p. 7

Q set of rational numbers – p. 7

R set of real numbers – p. 7
R∞ set of real numbers including +∞ – p. 36
Rn space of real n-dimensional vectors – p. 7
Rn×m space of real n×m-matrices – p. 7
R(T ) range of the operator T : D(T ) ⊂ X → Y – p. 9
ρ(T ) resolvent set of the operator T – p. 10

σ(T ) spectrum of the operator T – p. 10
σp(T ) point spectrum of the operator T – p. 10
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Z set of integers – p. 7

General operators and functions
‖·‖X norm in the space X – p. 7
‖·‖D(T ) graph norm – p. 9
〈·, ·〉X scalar or inner product in the space X – p. 7
z complex conjugate of z ∈ C – p. 7
|z| absolute value of z ∈ C – p. 7
Im z imaginary part of z ∈ C – p. 7
Re z real part of z ∈ C – p. 7

A∗ Hermitian of a matrix – p. 7
A> transposed of a matrix – p. 7

In identity matrix, sometimes just I – p. 7
IX identity operator from X to X, sometimes just I – p. 8

T ∗ adjoint of an operator T – p. 10
T ′ dual of an operator T – p. 9
T |U restriction of the operator T to the space U – p. 9

Function spaces
BCk(Ω) space of k-times continuously differentiable functions

with bounded derivatives up to order k – p. 16
BCk(J ;B) space of k-times continuously differentiable Banach-

valued functions with bounded derivatives up to order
k – p. 21

BUC(J ;B) space of bounded and uniformly continuous Banach-
valued functions – p. 21

C(Ω) set of continuous functions φ : Ω→ K – p. 12
Ck(Ω) set of k-times continuously differentiable functions φ :

Ω→ K. C0(Ω) := C(Ω) – p. 12
Ck(J ;B) set of k-times continuously differentiable Banach-

valued functions f : J → B – p. 21



192 GLOSSARY

C∞(Ω) set of infinite times continuously differentiable func-
tions φ : Ω→ K – p. 12

C∞0 (Ω) set of infinite times continuously differentiable func-
tions φ : Ω→ K with compact support – p. 12

Ck,λ(Ω) set of Hölder k-times continuously differentiable func-
tions φ : Ω→ K of order λ – p. 13

C0,α(J ;B) set of Hölder continuous Banach-valued functions of
order α – p. 21

`∞ space of sequences which are bounded – p. 15
`p space of sequences which the p-th power of the absolute

value is sumable – p. 15

L∞(Ω) space of equivalence classes of measurable functions on
Ω which are essentially bounded – p. 14

Lp(Ω) space of equivalence classes of functions for which the
p-th power of the absolute value is Lebesgue integrable
– p. 14

Lp(J ;B) space of equivalence classes of functions f strongly
measurable on J into B such that ‖f(·)‖B ∈ Lp(J)
– p. 20

L2
ω(J ;B) exponentially weighted L2(J ;B) space – p. 21

Lploc(J ;B) space of functions which are locally in Lp(J ;B) – p. 21

W k,p(Ω) Sobolev space of integer order k – p. 15
W 1,p

loc (J ;B) space of functions which are locally in W 1,p(J ;B) –
p. 21

W 1,p
loc (J ;B) space of functions which are locally in W 1,p(J ;B) –

p. 21
W s,p(Ω) Sobolev space of real order s – p. 17

Special notations
u 3
τ
v τ -concatenation of u and v – p. 29

∂Ψ subdifferential of the functional Ψ – p. 36
Ψ′(u, v) directional derivative of Ψ at u in the direction v –

p. 37
Ψ′(u) G-derivative of Ψ at u – p. 37



GLOSSARY 193

e∂,Hx usually denotes the boundary effort of a port-
Hamiltonian system. For higher spatial dimensional
port-Hamiltonian systems, Hx is omitted – p. 99

f∂,Hx usually denotes the boundary flow of a port-
Hamiltonian system. For higher spatial dimensional
port-Hamiltonian systems, Hx is omitted – p. 99

C0([0,∞);R) set of continuous functions f : [0,∞)→ R with f(0) =
0 – p. 56

δt Dirac delta distribution at t ∈ R – p. 64
df
dt

(
dkf
dtk

)
derivative of the funtion of one variable f – p. 12

∂f
∂ζ

(
∂kf
∂ζk

)
derivative of the function of several variables f with
respect to the variable ζ – p. 12

Dk differential operator ∂
∂xk

– p. 12
Dα differential operator of order |α| – p. 12

e usually denotes the error between output and reference
signal, y − yref – p. 3

F(·) Fourier transform – p. 65
A usually the linear differential operator of a BCS – p. 85
B usually the linear control operator a BCS – p. 85
C usually the linear observation operator a BCS – p. 85
(A,B,C) the tuple denotes a BCS – p. 87
Fϕ performance funnel with funnel boundary 1/ϕ – p. 4

G usually denotes the transfer function of a linear system
– p. 32

H usually denotes Hamiltonian density matrix of a port-
Hamiltonian system – p. 99

F = (Ft)t≥0 input to output map – p. 30
Φ = (Φt)t≥0 input to state map – p. 30
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L(·) Laplace transform – p. 62
Pτ right shift operator – p. 29

M([0,∞)) set of measures of bounded total variation – p. 64

∇ differential operator (∂x1 · · · ∂xn)> – p. 12
∇ · F divergence of a vector field F – p. 12
∇f gradient of a scalar function f – p. 12

ϕ usually denotes the reciprocal function of the funnel
boundary in the funnel controller – p. 4

Φ usually denotes the class of admissible funnel bound-
aries – p. 53

Φr usually denotes the class of admissible funnel bound-
aries which are r times continuously differentiable –
p. 75

Pk usually denotes the matrices of the port-Hamiltonian
differential operator – p. 98

Sτ right shift operator – p. 29

T = (Tt)t≥0 C0-semigroup – p. 23
T = (Tt)t∈R C0-group – p. 25
ω0(T) growth bound of the C0-semigroup T – p. 24
Σ usually a well-posed linear system – p. 29
Ψ = (Ψt)t≥0 state to output map – p. 30

U usually the input space – p. 29
u usually the input of a system – p. 30

W 1,∞
0 ([0,∞);K) functions f in W 1,∞(0,∞;K) with f(0) = 0 – p. 61

WB ,WC usually denotes the input and output matrices of a
port-Hamiltonian system – p. 99

X usually the state space – p. 29
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x usually the state of a system – p. 30
x0 usually the initial state of a system, sometimes also x0

– p. 30
X1 completion of a space X with the graph norm of βI−T ,

T a semigroup generator, β ∈ ρ(T ) – p. 10
X−1 completion of a space X with the graph norm of (βI−

T )−1, T a semigroup generator, β ∈ ρ(T ) – p. 11
Xα abstract Sobolev space of order α ∈ R. – p. 27

Y usually the output space – p. 29
y usually the output of a system – p. 30
yref reference signal aimed to track – p. 2
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Index

C0-group, 25
C0-semigroup, 23
G-differential, 37
Lp-admisisble control operator, 32
Lp-admissible observation operator, 32
Lp-spaces, 14
τ -concatenation, 29

abstract Cauchy problem, 24
abstract linear systems, 31
adjoint operator, 10
admissible, 31
almost everywhere, 14
analytic C0-semigroup, 26

biorthogonal sequence, 22
Bochner integrable, 20
Bochner integral, 12
boundary control systems, 6, 85

Cauchy-Schwarz inequality, 15
closed linear operator, 9
closed operator, 34
compact operator, 13
contractive semigroup, 26
control operator, 30
convex, 37

demiclosed, 34
diagonalizable, 22
diagonalizable semigroup, 25
directional derivative, 37
dissipative, 11, 33
dual operator, 9

eigenvalue, 10
eigenvector, 10
exponentially stable, 24

feed-through operator, 31
fixed point, 33

Gateaux differential, 37
generalized impedance passive, 87
graph norm, 9
growth bound, 24

Hölder conjugate, 14
Hölder’s inequality, 14

infinite-time Lp-admissible, 32
infinitesimal generator, 24
input maps, 30
input space, 30
input-output maps, 30
internal dynamics, 4
interpolation spaces, 28
invertible, 25

Lebesgue extension, 31
left-invertible, 10, 25
linear functionals, 8

m-dissipative, 11, 33
maximal dissipative, 11, 33
measure, 14
mild solution, 29

nonhomogeneous abstract Cauchy
problem, 28
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nonlinear evolution operator, 38

observation operator, 31
onto, 10
output maps, 30
output space, 30

point spectrum, 10
port-Hamiltonian, 98
product space, 7
proper, 37

regular, 31, 32
resolvent identity, 10
resolvent operator, 10, 33
resolvent set, 10
right shift operator, 29
right-invertible, 10, 25

sectorial operator, 27
sequantialy weakly complete, 8
skew-adjoint, 12
skew-symmetric, 12
Sobolev spaces, 12, 14
spectrum, 10

state space, 30
state trajectory, 30
step response, 31
strongly continuous group, 25
strongly continuous semigroup, 23
strongly measurable, 20
subdifferential, 36
symmetric, 11

topological dual space, 8
trace operator, 18
transfer function, 32

unitary, 26
unitary group, 26
unitary semigroup, 26

weak convergence, 8
weak? convergence, 8
well-posed linear systems, 29

Yosida approximation, 34
Young’s inequality for products, 14

zero dynamics, 127
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