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Abstract

Gridded precipitation datasets from ERA5 and ERA5-Land reanalysis, as well as Integrated

Multi-satellite Retrievals for GPM (IMERG) satellite-based precipitation estimates were com-

pared with station observations in Brazil and Germany. Because there are notable differences

between grid cell and station elevations in areas with complex terrain, there is an elevation-

dependent bias. To adjust the gridded precipitation to the station elevation, two models were

built from ERA5 and ERA5-Land using the elevation-precipitation relationship found in the

model data, in the study area Germany. One model is based on a linear regression, the other

model takes into account the model cloud base height. Because values averaged above space

and time are used it is desirable to modify the approach to a more physically based one. In the

Brazilian study area, it was not possible to find a relationship between model precipitation and

model elevation. The correction of altitude differences led to a reduced bias overall, but the ef-

fect depends strongly on the individual station, therefore altitude correction can also increase

the bias. It is therefore difficult to make general statements about the bias. The altitude ad-

justment influences performance measures for binary events not notable. However, for higher

rainfall intensities and stations with a pronounced elevation difference the adjustment affects

single measure. Generally, the reanalyses performed better in the German study area than in

the Brazilian study area, and IMERG-F showed better results in the Brazilian study area than

in the German study area. Moreover, IMERG-F produced better results during summer than

during winter, which is opposite to the reanalyses.
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Zusammenfassung

Tägliche Niederschläge aus den Reanalysen ERA5- und ERA-Land sowie IMERG Nieder-

schläge, die auf Satellitenmessungen beruhenden wurden in dieser Arbeit mit Stationsmes-

sungen in Deutschland und einem Untersuchungsgebiet in Brasilien verglichen. Da Rasterda-

ten im Allgemeinen eher räumliche Mittel als Punktinformation wiedergeben und in Gebieten

mit komplexer Topographie zudem deutliche Höhenunterschiede zwischen Modellorographie

and Stationshöhe auftreten können wurden die Niederschlagswerte höhenkorrigiert. Hierzu

wurden zwei Korrekturansätze aus langjährig gemittelten Niederschlagswerten und der ERA5

bzw. ERA5-Land Orographie erstellt. Eine Höhenkorrektur der IMERG Niederschläge war auf

Grund der Messmethode nicht möglich. Außerdem wurde keine Höhenabhängigkeit bzw. kei-

ne Zunahme des Niederschlags mit der Höhe in dem Brasilianischen Untersuchungsgebiet

gefunden. Die Berücksichtigung und Korrektur von Höhenunterschieden zwischen Modell und

Station führt generell zu einem verringerten Bias. Allerdings sind allgemeingültige Aussagen

schwierig, da es stark von der einzelnen Station abhängt ob die Höhenkorrektur einen posi-

tiven oder negativen Effekt hat. Aus diesem Grund besteht auch Bedarf den Korrekturansatz

so anzupassen, dass unter Verwendung weiterer Variablen räumlich und zeitlich begrenzte

Verhältnisse berücksichtigt werden. Ereignisbezogene Messgrößen wie der Heidke Skill Sco-

re werden nur gering durch die Höhenkorrektur beeinflusst, Hit Rate und False Alarm Rate

werden hingegen an Stationen mit deutlichem Höhenunterschied und bei Niederschlagser-

eignisse mit höheren Intensitäten merkbar beeinflusst. Generell hat sich gezeigt, dass die Re-

analysen in dem Deutschen Untersuchungsgebiet bessere Ergebnisse liefern als die IMERG

Niederschläge. In dem Brasilianischen Untersuchungsgebiet waren die IMERG Niederschlä-

ge näher an den Stationsmessungen als die beiden Reanalyseprodukte. Unabhängig vom

Untersuchungsgebiet waren die Ergebnisse der Reanalysen im Winter besser als im Sommer

und andersherum waren die Ergebnisse der IMERG Niederschläge im Sommer besser als im

Winter.
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1 Introduction

Information about the spatial distribution of precipitation is of great interest for many sectors

because the presence or absence of precipitation and rain influences humanity both directly

and indirectly. Precipitation can affect the potential withdrawal of cooling water for power plants

or the production of electricity from reservoir dams (Silva et al., 2007; Coelho et al., 2016b).

Agriculture is especially affected by rainfall since both droughts and heavy rainfall can lead

to crop shortfall and crop damage (Coelho et al., 2016a; Marengo et al., 2008; McGregor

and Nieuwolt, 1998). Thus, it is not surprising that the World Meteorological Organization

has classified precipitation as the most important climate variable because of its impacts on

humanity (WMO, 2019). However, precipitation is highly variable in space and time and is

therefore difficult to model (Arvor et al., 2014; Roy and Avissar, 2002; Seth et al., 2004). The

spatial distribution of precipitation is influenced by several factors. Some of these factors such

as topography are static, while others such as land use may vary over a certain period of time.

The effect of land use change on precipitation has been extensively investigated, especially in

the context of climate scenarios (Werth and Avissar, 2002; Nobre et al., 2009; Khanna et al.,

2017; Huntingford et al., 2013). Studies have often focused on areas where the potential of

land use change is high, such as in the Amazon. However, in remote areas there is often a

lack of high-density precipitation observation networks (Huffman et al., 2010), which makes

rainfall analysis difficult. Today, there is gridded precipitation data from different sources for

the past decades, often with global or virtually global coverage. These gridded datasets may

originate from point observations, from spaceborne estimates, or as climate reanalysis from

numerical weather prediction (NWP) models. The spatial resolution of these datasets has

increased continuously, reaching a horizontal resolution with the dimension of 101 km.

Recently, the European Centre for Medium-Range Weather Forecasts (ECMWF) released

two new climate reanalysis products, namely the ERA5 and ERA5-Land climate reanalysis

datasets. Likewise, a backward extension of IMERG has been released, along with a version

update. These three datasets are the most recent gridded datasets that provide precipitation

data with virtually global coverage. Gridded data is often evaluated against station observa-

tion, because there is no dataset with a spatial truth. This results in some difficulty in compar-

ing model output, which should be interpreted as area average rather than as point information

with point measurements. It is obvious that the modelled precipitation has a bias which comes

from many sources including sub-grid scale processes and insufficient representation of the

topography, which affect processes such as topographically induced precipitation and wind-

ward and leeward effects. But the elevation likewise affects the amount of precipitation due to

evaporation of precipitation, and it is the issue this thesis is concerned with.

The consideration of evaporation as one influencing factor seems appropriate since it is

known that ERA5 has an insufficient representation of evaporation, resulting in too much light

rain reaching the surface (cf. Sec. 2.2). Such an altitude adjustment by a lapse rate is

commonly known and applied to the temperature, often using the environmental lapse rate
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1 Introduction

of 0.65 °/100m, even though substantial spatial and seasonal differences exist (Minder et al.,

2010; Whiteman, 2000). Nevertheless, any kind of altitude adjustment for precipitation is

unusual, probably because of its small-scale variability and rather low physically robust rela-

tionship. This thesis demonstrates that such a concept does not work in all environments and

would need some improvements to be ubiquitously applicable.

Thus, followed by an evaluation of the named datasets, a concept is presented that takes

into account differences in altitude between the model orography and a target orography. The

latter can either be the orography from another grid or station altitude. The general idea of

the concept is to take into account the presumable evaporation that would occur averaged

over space and time for a certain elevation difference in ERA5 or ERA5-Land. The supposed

evaporation is not calculated using the evaporation parameterisation in the model because

it is difficult or even impossible to meet all the assumptions and values that would be nec-

essary. Instead, the evaporation is estimated using either a linear or non-linear statistical

model. Moreover, this theoretically allows application to models with other precipitation pa-

rameterisation schemes. However, this approach does not necessarily reduce the model bias

compared to stations observations; it aims to correct the bias by the amount resulting from

the altitude differences. The non-linear model was developed during two research projects

– ’Waldproduktivität-Kohlenstoffspeicherung-Klimawandel’ WP-KS-KW and ’Carbon seques-

tration, biodiversity and social structures in Southern Amazonia’ CarBioCial – which are

briefly introduced at the end of this section.

The evaluation of the precipitation products is done in Germany and a large part of Brazil

to obtain results from different environmental conditions. In Germany the weather is influenced

by the westerlies. In contrast the Brazilian area considered is dominated by a tropical climate,

with the southern part of the area demonstrating a strong seasonality in rainfall. This thesis

aims to answer the following questions:

a) Are the differences between the performance of satellite-based precipitation and climate

reanalysis found in the literature still persistent in the most recent precipitation datasets,

and does the quality dependent on the elevation (as often stated) or on elevation differ-

ences, when using station observation?

b) How does the concept of adjusting elevation differences between model orography and

target orography influence the bias and performance measures of modelled P?

Broadly speaking this thesis is structured as follows: first, a short section about the two

aforementioned research projects is presented. In Sec. 2, the most recent gridded precipi-

tation datasets are introduced, and their benefits and disadvantages are addressed. This is

followed by descriptions of the two study areas in Section 3. Section 4 describes the diffi-

culties with the used datasets and the necessary preparations. Likewise, the method for the

altitude adjustment of precipitation is presented. The results are given in Section 5, followed

by a discussion of the same in Section 6.
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Project Overview

The Carbon sequestration, biodiversity and social structures in Southern Amazonia (CarBioCial)

project was a joint research project between several universities in the context of sustainable

land use funded by the German Federal Ministry of Education and Research. More specif-

ically, it was about carbon-optimised land management strategies for southern Amazonia,

mainly focusing on the area around the Highway BR-163. Along this highway there is a dis-

tinct land use gradient characterised by agricultural expansion proceeding northward (Gerold

et al., 2018). Data from different climate models were used for crop and land use modelling.

The project Waldproduktivität-Kohlenstoffspeicherung-Klimawandel (WP-KS-KW) was a

cooperative project between different forest research units and the University of Hamburg and

was funded by the German Federal Ministry of Food and Agriculture. In this project, the focus

was on how the forest would be affected by climate change. Therefore, simulations from

different climate models were used and processed.

3



2 State of the Research

2 State of the Research

Today, there are many gridded datasets for different variables that often provide virtually global

coverage. Additionally, various datasets are connected with each other, or one incorporates

another. The drawbacks and benefits resulting from the various types of gridded precipitation

data are discussed in this section with a focus on ERA5, ERA5-Land, and IMERG.

In general, global gridded datasets based on observation from meteorological (met.) sta-

tions are of coarse spatial or temporal resolution (Schneider et al., 2014; Schamm et al.,

2014; Harris et al., 2014), but high-resolution precipitation data of this type only exists for

certain regions. While such datasets exist for Germany (Rauthe et al., 2013) and South

America (Xavier et al., 2015), the quality differs considerably because of the input stations.

Problems with Brazilian or South American stations are discussed in Section 4. Both types

– met. station observations and modelled precipitation – benefit from each other. Either

station observations are used to correct modelled data, or modelled precipitation is used to

close the gaps of observation. In this respect, WorldClim version 2, a global dataset primary

based on station observation that provides among other variables gridded precipitation clima-

tologies, incorporates satellite-based precipitation estimates to handle the problem of partly

sparse observations (Fick and Hijmans, 2017). Likewise, Global Precipitation Climatology

Project (GPCP) data combines met. station observations and precipitation estimates from

satellites (Adler et al., 2003). Depending on the version, CPC Merged Analysis of Precipita-

tion (CMAP) also combines met. stations, satellite estimates and forecasts from NWP models

(Xie and Arkin, 1997). On the other hand, Climatologies at High resolution for the Earth’s

Land Surface Areas (CHELSA) uses climate reanalyses and Global Precipitation Climatology

Centre (GPCC) data for its monthly precipitation data (Karger et al., 2017). Before observa-

tions from space became available as they are today, the need for a consistent global climate

dataset arose and was addressed in the 1980s by Bengtsson and Shukla (1988).

2.1 Climate Reanalysis

The reason that climate reanalyses (hereafter reanalyses) are quite beneficial for climate anal-

ysis is that they provide many variables in a physically consistent manner and can be used for

multiple purposes, such as to investigate the current climate and its variability including mon-

soon systems or the El Niño Southern Oscillation (ENSO) (Trenberth et al., 2008). Trenberth

and Olson (1988) have described the benefits of an internally consistent dataset, because at

the time of their research, reanalysis was only available as a by-product, of the initial condi-

tions for NWP. This by-product suffered inconsistencies due to model changes. Moreover a

significant number of meteorological bulletins were not included in the analysis because of

shortcomings in the global telecommunication system (Bengtsson and Shukla, 1988). Gen-

erally, a reanalysis is a system that includes available observations and uses these with a

NWP model, usually in a hindcast mode. Nevertheless, virtually all reanalyses have some
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inconsistencies. These inconsistencies can emerge due to new observations or observation

systems that are included to produce the initial condition. Because of this, reanalysis has

never been intended to be a long-term homogeneous time series but rather the best possible

analysis for each time step (Thorne and Vose, 2010). A comprehensive summary of the phys-

ical processes, parameterisation, and difficulties of NWP can be found in Bauer et al. (2015),

for instance.

Today, several meteorological institutions provide climate reanalysis as, either global or

regional datasets. Reanalyses with global coverage include the Modern-Era Retrospective

analysis for Research and Applications (MERRA)-2 from the National Aeronautics and Space

Administration (NASA), which begins in 1980 with a latitudinal resolution of roughly 50 km and

replaced the first MERRA because of an increasing number of available satellite observations

(Rienecker et al., 2011; Gelaro et al., 2017). Likewise, Version 2 of the National Centers

for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) re-

analysis project begins with the availability of satellite observation (Kanamitsu et al., 2002;

National Centers for Environmental Information (NCEI), n.d.). Both version 1 and 2 of the

NCEP/NCAR reanalysis are available in 2.5° (horizontal resolution). The Japanese 55-year

Reanalysis (JRA-55) begins with the global availability of radiosonde observation and covers

the time period from 1958 to present in roughly 55 km (Ebita et al., 2011; Kobayashi et al.,

2015). The ECMWF provided several climate reanalyses, beginning with First Global Atmo-

spheric Research Program Global Experiment (FGGE) and followed by ERA-15, ERA-40,

and ERA-Interim; recently the fifth generation ERA5 was released, providing 1-hourly data in

0.25° followed by ERA5-Land which provides surface and near-surface variables in 0.1°. Next,

a ERA5 near real time (NRT) product is announced, with only a one-week delay. Both the

ERA5 and ERA5-Land are addressed below. Because this thesis focuses on datasets with

virtually global coverage, regional reanalysis products are not mentioned here, though they

can provide a higher horizontal resolution.

2.2 The ERA5 Climate Reanalyses

As previously mentioned, ERA5 is the most recent climate reanalysis and the fifth genera-

tion of the ECMWF reanalyses. Two versions of ERA5 exist, namely ERA5-HRES, the high-

resolution realisation (0.25°), and ERA5-EDA, a 10-member ensemble with reduced horizon-

tal resolution (0.5625°), where the latter intents to account for uncertainties (ECMWF, n.d.a).

Hereafter, if not otherwise stated, ERA5 refers to ERA5-HRES.

The ERA5 model has 137 model levels that are interpolated to 37 pressure levels; the top

model level reaches up to 0.1 hPa (ECMWF, n.d.a). The ERA5 time series is not processed

sequentially but by several parallel experiments. As a result, discontinuities can exist at the

transition periods. In the troposphere, these discontinuities are smaller than the ensemble

spread, and they are also smaller than the discontinuities in ERA-Interim (Hersbach and Dee,

2016; ECMWF, 2018). Major changes from the ERA5 predecessor ERA-Interim to ERA5 are
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2 State of the Research

summarised in Table 1. Additionally, the assimilation scheme of ERA5 incorporates more

observations than that of ERA-Interim (Hersbach and Dee, 2016; ECMWF, 2019b).

ERA5 is based on the ECMWF Integrated Forecast System (IFS), which is coupled with a

soil model, an ocean wave model, and the four-dimensional variational data assimilation sys-

tem data assimilation system (CY41r2). Data assimilation is the key component and is used

to estimate the state of the atmosphere as accurately as possible, incorporating observations

and a previous forecast, which is a background (Kleist et al., 2009). Although precipitation is

assimilated in the assimilation system, it is not directly connected to the modelled precipita-

tion values; instead, it is used to gain information on backscatter signals that influence satellite

wind speed measurements (ECMWF, 2016a).

The precipitation consists of short forecasts, initialised twice per day at 06 and 18 coordinated

universal time (UTC) ECMWF (n.d.a); moreover, for precipitation the variables total precipita-

tion (TP) and convective precipitation (CP) are available and are later used to distinguish the

proportion of convective and large-scale precipitation. However, precipitation in the IFS model

also underlies evaporation below the cloud. For convective precipitation, the parameterisa-

tion scheme follows Kessler (1969). The default evaporation parameterisation for large-scale

precipitation follows Abel and Boutle (2012) nonetheless there is likewise a scheme that fol-

lows Kessler (1969). In the convective scheme precipitation below the cloud base esubcld

begins evaporating when the relative humidity (rH) is below 90% over water bodies and below

70% over land. The evaporation rate is assumed to proportionally on the saturation deficit

(rHcr ¯qsat − q̄) and on the rain density ρrain.

esubcld = α1(rHq̄sat − q̄)ρ
13/20
rain (1)

with α1 = 0 if q̄ > rHq̄sat, else α1 = 5.44 × 10−4s−1.

The density of rain is not part of the convective scheme but can be indirectly calculated

from the precipitation flux (ECMWF, 2016b, p. 85). The evaporation at a certain level can be

expressed as follows:

esubcld = Cconvα1(RHq̄sat − q)

[√
p/psurf
α2

P

Cconv

]α3

(2)

with α2 = 5.09 × 10−3, α3 = 0.5777, and constant Cconv = 0.05. Cconv describes the fraction

of the cell with convective precipitation (ECMWF, 2016b, p. 85).

Looking at the non-default large-scale precipitation scheme based on Kessler (1969), the

micro-physical constants α1 to α3 remain unchanged. Additionally, here evaporation begins

in the clear air and the fraction of precipitation in a grid cell, and the sub-grid heterogeneity
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decreases in proportion to the evaporation.

Sevap = aclrp α1(qsat − qenvv )

[√
p/p0
α2

pclr

aclrp

]α3

(3)

In both schemes, the altitude is considered in terms of p/p0. The calculation of the critical

rH value for evaporation in the large-scale scheme depends on the fraction covered by clouds

(ECMWF, 2016b). Evaporation of raindrops is generally higher for light rain, which is often

formed from drizzling clouds (ECMWF, 2016b).

Topographic effects such as topographic barriers and rain shadow effects are underesti-

mated in ERA5 due to the coarse horizontal resolution. Nevertheless, because of the higher

resolution of ERA5-HRES compared to ERA5-EDA, the HRES dataset represents these ef-

fects better than the ensemble data. Another issue is the over-production of light rain and

drizzle in stratocumulus together with insufficient evaporation, which results in too much light

rain reaching the surface. The over-production of light rain and drizzle can become problem-

atic when, due to incorrect modelling of the boundary layer, low clouds are over-persistent.

Finally, although the effect should be rather small because of the coarse resolution, there is

potential for miss-assignment of rain reaching the surfaces due to incorrect downwind drift of

the rain (ECMWF, n.d.b).

2.3 The ERA5-Land Climate Reanalysis

Currently, ERA5-Land is a single simulation producing data at a 9 km horizontal resolution,

forced by ERA5’s low atmospheric fields, but it is coupled with neither the atmospheric module

of the IFS nor the ocean module. Additionally, no data assimilation takes place, which makes

it computationally affordable for updates, such as at the land surface model. ERA5-Land

uses the tiled ECMWF scheme for surface exchanges over land incorporating land surface

hydrology, which uses version CY45R1 of the IFS. At present, uncertainty information from

ERA5 are used; in the future an ERA5-Land ensemble run might also be possible (Muñoz

Sabater, 2019; ECMWF, 2019a).

2.4 Satellite-based Precipitation

Satellite-based estimates of precipitation became more common in the 1980s (Huffman et al.,

2010). Today, there are several satellite precipitation products that can help to close the gaps

of measurements. To estimate precipitation from space, infrared (IR) as well as active and

passive microwave (MW) sensors are used. Because IR sensors measure the cloud-top tem-

perature, they are particularly useful for tropical convective regimes given that cold cloud-top

temperatures are usually connected with rain. However, IR rainfall estimates fail on cold con-

vective clouds and on low-reaching ones. Additionally, IR sensors have the advantage of a

high sampling frequency of approximately 15 to 30minutes. However, so far they have only
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Table 1: Major differences between ERA-Interim, ERA5 and ERA5-Land. Source: Muñoz
Sabater (2019); ECMWF (2019b).

ERA-Interim ERA5 ERA5-Land

Time Period 1979 to present (1950)/1979 to present (1950)/1979 - present

Spatial Resolution
79 km (0.75°)

60 levels
31 km (0.25°)

137 levels
9 km (0.1°)

single level (near) surface

Temporal Resolution 3 or 6 hourly 1 hourly 1 hourly

Model version IFS (+TESSEL) IFS (+HTESSEL)
HTESSEL

IFS Cycle 45r1

Assimilation System IFS Cycle 31r2 IFS Cycle 41r2

been installed on geostationary satellites. Because MW measurements are more directly con-

nected to the size of hydrometeors, they are better at distinguishing different hydrometeors.

Though, due to the revolving orbit of satellites with MW sensors they have a lower sampling

frequency. Therefore, the common aim is to combine estimates of these two sensor types

(Joyce et al., 2004; Ashouri et al., 2015; Hou et al., 2014).

As previously mentioned, some datasets incorporate satellite-based rainfall estimates.

Those estimates in turn merge different sources and sensors. For example, CICS High-

Resolution Optimally Interpolated Microwave Precipitation from Satellites (CHOMPS) uses

data from different satellites and different passive MW sensors (Joseph et al., 2009). The CPC

MORPHing technique (CMORPH) combines the propagation of motion from geosynchronous

IR estimates with passive MW measurements to estimate precipitation (Joyce et al., 2004),

and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Net-

works (PERSIANN) utilises IR and MW measurements with artificial neural networks (ANNs)

to estimate daily precipitation. Additionally, PERSIANN incorporates GPCP data (Ashouri

et al., 2015). The most recent dataset, that uses some of the aforementioned techniques is

generated from the Global Precipitation Measurement (GPM) mission. Like the other prod-

ucts, it combines different sources, sensors, and algorithms into one dataset (Huffman et al.,

2010). The following section describes the GPM IMERG product in more detail.

2.5 Integrated Multi-Satellite Retrievals for GPM

The predecessor of IMERG is the Tropical Rainfall Measuring Mission Multi-Satellite Precipi-

tation Analysis (TMPA) of the Tropical Rainfall Measuring Mission (TRMM) which began in the

spring of 1998; GPM was then launched in 2014 . Because TRMM sensors were specially

designed to measure moderate to heavy rain in the tropics and sub-tropics, only the area

between 37°N/S was covered. The Global Precipitation Measurement extends the spatial

coverage to 68°N/S and extends the measurement range to light rain and snow, which con-

tributes for a relevant proportion of precipitation in middle and high latitudes. The mission is a
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joint project between NASA and the Japan Aerospace Exploration Agency (JAXA), which fur-

thermore involves a multinational cooperation with other countries and agencies. The aim of

the mission is to more accurately measure precipitation distribution and frequency on a global

scale and to provide information about the vertical structure of clouds. It is also intended to

provide a calibration standard to enable the unification of measurements.

The core satellite of the mission has a non-sun-synchronous circular orbit at a 65° incli-

nation approximately 407 km above the earth. It is equipped with a dual-frequency phased

precipitation radar (DPR) and a conical scanning multi-channel microwave imager named

GPM microwave imager (GMI). The measurements of the core satellite are used to build

a database with the microphysical properties of precipitation particles over different environ-

mental conditions and climates. This database is then used as a common reference to unify

measurements before, during, and after the lifetime of the GPM core satellite. A lifetime of

three years with sufficient fuel for five years was planned for the core satellite. In addition to

the core observatory, several satellites from other countries and institutions with either a DPR

or microwave imager aboard are affiliated. The orbit of the core satellite enables coincident

measurements with these affiliated constellation satellites, which allows inter-sensor calibra-

tion over 90% of the surface of the earth JAXA (2016); Hou et al. (2014); Huffman et al. (2010,

2007). A schematic view of the core satellite is shown in Figure 1.

The DPR operates a Ka-band and a Ku-band of 35.5GHz and 13.6GHz, respectively.

Both bands provide a 5 km co-aligned footprint on the surface with swath widths of 125 km

and 245 km for the Ka-band and Ku-band, respectively. In the inner swath of 120 km, data

from both bands are acquired almost simultaneously with a vertical resolution of 250m. The

GPM Ku-band has higher precision than the TRMM precipitation radar (PR) and Ka-band be-

cause the Ku-band extends the sensitivity down to approximately 0.2mm/hr. Because of the

two different frequencies, the DPR is able to measure the three-dimensional (3D) structure of

precipitation. Moreover, because the attenuation of the echoes from both bands are depen-

dent on frequency and raindrop size, the simultaneous measurements enable the calculation

of the raindrop size distribution. However, while the Ka-band aims to detect weak rainfall as

well as snowfall, this cannot be measured by the Ku-band, which detects heavier precipitation.

The time lag between DPR and the GMI is approximately 67 seconds due to geometry and

spacecraft motion (Hou et al., 2014).

The GMI has 13 channels with frequencies optimised for different rain frequencies. The

following list provides a short overview of the channels taken directly taken from Hou et al.

(2014, p.708):

• 10-GHz channel optimal for sensing of liquid precipitation

• 19- and 37-GHz channels for sensing moderate to light precipitation over ocean

• 21-GHz channel for correcting emission by water vapour

• 89-GHz channel for the detection ice particles for precipitation over ocean and land

• 166-GHz channel for sensing light precipitation (typical outside the tropics)
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Figure 1: Schematic illustration of the GPM core observatory with swath widths and resolution
of installed sensors. Source:Hou et al. (2014, p. 707).

• 183-GHz channel for detecting scattering signals due to small ice particles and estimat-

ing light rainfall and snowfall over snow-covered land

The IMERG combines the different measurements, and depending on the processing

level, three products, so-called runs with different time delays and data quality are available.

The early run or NRT is processed within 4 hours, the late run is available within 12 hours,

and the final run or research product can be used following a 2.5-month delay. The different

measurements are processed to different levels. Level 0 data consists of unprocessed sensor

data at full resolution, calibrated DPR power, GMI brightness temperature, and inter-calibrated

brightness temperature from other radiometers. Level 2 data are geolocated, geophysical data

and DPR reflectivity. Level 3 data are statistically, spatially, and temporally processed gridded

data with time and space coordinates from core and partner satellites. Additionally, a Level 4

product is planed to be composed from remotely sensed values and global NWP model output

(Hou et al., 2014; Huffman et al., 2018a).

Level 3 IMERG data combines different algorithms, and at the beginning brightness tem-

peratures from different passive MW sensors are intercalibrated with the core instruments. In-
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frared measurements are used to generate motion vectors with the methods from the CMORPH

scheme (Joyce et al., 2004) and to the PERSIANN - Cloud Classification Scheme (Hong et al.,

2004). The merging of these data generates the Uncal field. After bias correction with monthly

GPCC data, the PrecipitationCal field is obtained. The precipitation phase separation is based

on pressure, temperature, and humidity. The systems that process the final run support re-

processing; thus, updated versions are possible for the final run. To improve precipitation es-

timates, the inclusion of daily-observed precipitation fields is planned for the future (Huffman

et al., 2018a; Kummerow et al., 2001). The described process is illustrated in greater detail

in Figure 2. At latitudes higher than 60°N/S the spatial coverage of IMERG is incomplete,

because no IR estimates form geosynchronous satellites are available and MW estimates are

only available when satellites overpassed. Nevertheless, the field precipitationCal exists up

to 90°N/S latitude. The different fields provided by IMERG are listed below (Huffman et al.,

2019a).

• HQprecipitation – daily accumulated high-quality precipitation from all available MW

sources

• HQprecipitation cnt – count of valid half-hourly HQprecipitation retrievals for the day

• precipitationCal – daily accumulated precipitation (combined microwave-IR) estimates

• precipitationCal cnt – count of valid half-hourly precipitationCal retrievals for the day

• randomError – daily total error of precipitation estimates

• randomError cnt – count of valid half-hourly random error retrievals for the day

The highest temporal resolution for IMERG data is half-hourly. For half-hourly and monthly

data, improvements on the weights of gauge analysis are included in addition to the data

(Huffman et al., 2018b). One of the major changes between IMERG v05 and v06 is the switch

in input data to calculate the motion or displacement vectors. In v05, IR measurements were

used, while in v06, MERRA-2 and ’Goddard Earth Observing System Forward Processing’

data are used (Huffman et al., 2019b). Subsequently -E, -L, and -F indicate the early, late,

and final (or research) runs of the IMERG data.

2.6 Quality of Gridded Precipitation

Since the methods of satellite-based precipitation estimates (hereafter satellite precipitation)

and climate reanalyses differ fundamentally, it is interesting to see if one method or the other

produces better results, and under which circumstances. Because all three datasets used

here are relatively new, so far there are only a few studies regarding these products. This is

especially true for ERA5-Land and IMERG-F v06 data, because these datasets were released

in the summer of 2019. Additionally, the backward extension of ERA5 was recently released.

Nevertheless, to answer the question of whether the general differences found in predecessor

datasets still prevail in the actual datasets, it is necessary to review the general findings from

older datasets.
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Figure 2: Data flow of major modules in IMERG. The colours illustrate the different institutions
from which IMERG uses algorithms to build the integrated system. Source: modified from
Huffman et al. (2018a, p. 9).

Since many sources of precipitation data exist and some sources have already been com-

bined, Beck et al. (2017) have argued that global precipitation datasets could be better, if more

of the available resources would be combined. Thus, Beck et al. developed a dataset called

Multi-Source Weighted-Ensemble Precipitation (MSWEP), which incorporates seven different

precipitation products from gridded gauge-only and, over satellite-only, to reanalysis datasets.

Beck et al. (2018) then compared 26 precipitation datasets against radar precipitation in the

continental USA. Uncorrected precipitation from reanalyses provided better results than un-

corrected satellite estimates in terms of correlation coefficients and event identification. The

correlation coefficient of MSWEP is higher than 0.8, IMERG and ERA5-HRES have r values

between 0.6 and 0.8, and those of ERA5-EDA are slightly higher. Regarding the gauge-

corrected IMERG-F and TMPA 3B42 products, IMERG-F showed improvements in the corre-

lation coefficient and in the variability ratio. From the uncorrected datasets, ERA5-HRES and

IMERG-E half-hourly V05 followed by ERA5-EDA had the best results. ERA5-EDA demon-

strated a lower variability than ERA5-HRES, probably due to ensemble averaging. IMERG-E

with half-hourly precipitation performed better than the JAXA algorithm Global Satellite Map-

ping of Precipitation (GSMaP) Version 6. It was also found that climate reanalysis underesti-

mates the variability of rainfall with a tendency to overestimate rainfall frequency. Additionally,

the more complex the terrain, the lower the performance of all uncorrected datasets. Concern-

ing ERA5-HRES and IMERG half-hourly V05, ERA5-HRES provided better results in complex

terrain, and IMERG did better in convective regimes. Over all the analysed datasets, MSWEP

V2.2 represented precipitation best, followed by daily IMERG-F with a small negative bias.
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Beck et al. have noted that the results emphasise the importance of daily gauge-based cor-

rection and knowledge about the gauge retrieval times, which is addressed again in Section

4.

Beginning with the few studies that deal with ERA5, Albergel et al. (2018) coupled ERA5

with a land surface model and found the hydrological cycle much better represented than

when using ERA-Interim for coupling. Additionally, two other studies, albeit not particularly

focused on hydrological variables record a better performance for ERA5 than for older reanal-

yses. Urraca et al. (2018) have found the radiation in ERA5 to be improved compared to

ERA-Interim, especially in areas with low cloudiness, and focusing on wind power modelling,

Olauson (2018) have found ERA5 to perform better than MERRA-2. Betts et al. (2019) have

examined the precipitation and other variables of ERA5 in Canada. For the cold season with

predominantly large-scale precipitation, ERA5 produced approximately the same monthly val-

ues as ERA-Interim, but during the warm season, ERA5 produced approximately +14% pre-

cipitation compared to ERA-Interim. During the warm season, the bias of ERA5 at the five

stations in the province of Saskatchewan is between 11% and 18% depending on whether

the original observations or a corrected observation dataset are used. During winter, the bias

of ERA5 was −22%, which was probably due to a too-high snow correction in the corrected

observation data. However, because of the spatial variability of rainfall and the uncertainty

of station observations, Betts et al. (2019) were unable to declare whether or not ERA5 is

biased.

However, looking to older reanalyses, namely ERA15, ERA40, and the NCEP reanalysis,

a general underestimation of heavy rainfall was found across Europe, and higher correlation

coefficients during winter (Zolina et al., 2004). Likewise, Kidd et al. (2012) found that numerical

models performed better during winter, because the convective representation during summer

was poor. Regarding satellite-based precipitation, Kidd et al. detected a poorer performance

during winter with respect to correlation, bias and false alarm rate, across Northwest Europe.

This was partly attributed to the inability of satellite precipitation to detect low rain rates. Sun

et al. (2018) have compared different reanalyses and satellite precipitation products, including

IMERG, from a global perspective. They have found that all products underestimate rainfall

almost year-round in Northwest Europe. Only during summer precipitation is overestimated in

Germany. On the other hand, satellite precipitation was found to overestimate heavy precipi-

tation events in southern Brazil as well as in Iran, where Sharifi et al. (2016) have compared

IMERG, ERA-Interim, and TMPA precipitation and found that the three datasets tend to un-

derestimate the amount of rainfall. Nonetheless, IMERGF-F had the highest correlation and

the best performance in terms of probability of detection (POD), false alarm ratio (FAR) and

critical success index (CSI). Though, ERA-Interim had a lower RMSE compared to the other

datasets.

Focusing on the improvements from TMPA to IMERG, Tang et al. (2016) have stated

that especially on sub-daily values, the improvement of IMERG-F over TMPA becomes clear.

Moreover, IMERG performs better than TMPA in high latitudes and regions characterised
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by a dry climate. However, the overall performance of IMERG-F is better in low to middle

latitudes. In contrast to most other studies, Yuan et al. (2017) found no significant improvement

of IMERG-F over TMPA 3B42 V7. Instead, they found the opposite and stated that TMPA

provides better results than IMERG-F on daily and monthly bases. The correlations found

by Yuan et al. at five stations in Myanmar for rain >10mm/day lie between -0.09 and 0.21.

For what they classified as light rain, namely 0.1 to 10.0mm/day, the correlation coefficients

were slightly negative at all five stations. An underestimation of heavy rainfall was likewise

prevalent in this study and more distinct in IMERG-F than in TMPA. Using gridded rainfall

data for India, Beria et al. (2017) found IMERG-F to perform better than TMPA 3B42, but

the overlapping time period of one year was rather short. In terms of hit rate (H) and false

alarm rate (F), IMERG-F produced better results for low to high rainfall intensities. In many

catchments, correlation coefficients above 0.8 and sometimes even around 0.9 were found in

2019. The most distinct improvements occurred at low rain rates. This is probably due to the

limitation of a minimum detectable rain rate of ≤ 0.5mm/h by TRMM that is lower in GPM

sensors, as already mentioned in Section 2.5. Prakash et al. (2018) and Khodadoust Siuki

et al. (2017) have also found this better representation of low rain rates. Even though Chen

et al. (2018) have also stated a higher performance for IMERG-F v05 compared to TMPA

3B42 v7 in the Hauihe River basin, the Pearson correlation coefficients they found of 0.41 for

IMERG-F daily data and 0.36 for TMPA were much lower than the high correlation between

IMERG-F and gridded rainfall in India found by Beria et al. (2017). While the relative bias was

approximately -0.17, the POD depended strongly on the rainfall threshold. For rain rates up

to 2mm/day, the POD lies between 0.6 and 0.7, and for a rainfall threshold of 100mm/day,

the POD decreased to 0.2. Consistent with this light rain between 0mm and 0.5mm as well

as heavy rainfall (>25mm) was underestimated by IMERG-F, while rainfall between 0.5mm

and 25mm was overestimated. Moreover, Beria et al. (2017) found that the performance

decreased with elevation.

Similarly, Chen et al. (2016) found a lower quality of IMERG-F and TMPA 3B42 data in

mountainous regions. In addition, frozen precipitation was found to be unreliable in IMERG-F.

Even though the general skill depended strongly on the region, they also found better skills for

IMERG-F than for TMPA. Asong et al. (2017) also found a performance decrease in moun-

tainous areas for half-hourly IMERG-F v03 data in southern Canada, where the quality of

IMERG-F was generally better during summer than during winter. Regarding heavy precip-

itation, a tendency towards overestimation was found. Additionally, others studies have dis-

covered an elevation-depended bias. A decreasing performance in mountainous regions has

been found by various other authors e.g. (Kim et al., 2017; Prakash et al., 2018; Hirpa et al.,

2010; Guo et al., 2017). The often stated lower performance of satellite precipitation in com-

plex terrain can be attributed to warm orographic rain, which is problematic for IR sensors as

well as for passive MW, since scattering from ice is reduced, which results in an underes-

timation of surface rain (Dinku et al., 2007). Therefore, Shige et al. (2013) have developed

an orographic/non-orographic precipitation classification for the Japanese Kii peninsula to im-
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prove GSMaP, which is the JAXA counterpart of NASA’s IMERG product. Depending on

the vertical wind component and surface moisture convergence, the algorithm distinguishes

between different look-up tables of vertical orographic/non-orographic precipitation profiles.

During summertime, the classification system improved the GSMaP rainfall, but during winter-

time it was not able to achieve any improvements. Yamamoto and Shige (2015) have noted,

that the approach of Shige et al. (2013) was developed in warm maritime air and cannot work

under exceptionally conditions such as many solid hydrometeors in the atmosphere. There-

fore, Yamamoto et al. (2017) have further improved the approach, taking into account low-level

wind speed and the accompanying delay until rain reaches the surface.

The results of the studies cited above can also be found when focusing more on the

two study areas in this thesis. Ramsauer et al. (2018) have also discovered the repeatedly

mentioned overestimation of precipitation by IMERG-F for Germany, especially during the

winter season. Spatially averaged IMERG-F precipitation was virtually always above the radar

based precipitation estimates. During winter, IMERG-F produced a plus of 76% compared to

the radar precipitation. In keeping with this, during winter the number of wet days was higher

in IMERG-F than in the radar based precipitation data, and the spatial correlation was lowest

during wintertime. Moreover, IMERG-F missed some topographically induced rainfall events

in mountainous regions.

Rozante et al. (2018) have examined TMPA, IMERG-F, and GSMaP on a daily basis

remapped to the TMPA grid (0.25°). They divided Brazil into five regions, with Region 2 be-

ing approximately the Brazilian study area of this thesis. While TMPA and IMERG-F tend to

mainly overestimate rainfall during summer, the gauge-corrected GSMaP product is closer to

the observations, probably because the correction based on daily gauge values in the GSMaP

works better than the monthly correction with GPCC data in IMERG-F. The mean error and the

RMSE were 0.59mm/day and 0.73mm/day for IMERGF-F, 0.52mm/day and 0.68mm/day for

TMPA and −0.06mm/day and 0.26mm/day forGSMaP, which therefore had the lowest mean

error and RMSE. Additionally, in northern Brazil, IMERG-F had a mean error of 1.01mm/day

and a RMSE of 1.31mm/day.

In the region of Manaus, Oliveira et al. (2016) validated sub-daily IMERG data and the

Goddard Profiling Algorithm (GPROF), which is part of IMERG with ground-based radar pre-

cipitation. The question of interest was if GPROF and IMERG are able to reproduce the

diurnal cycle of rainfall in the examined region. A periodical overestimation of the frequency

of heavy rainfall by GPROF was found. It was argued that this is probably due to a poor cali-

bration over water bodies such as the Amazon River. Rainfall above 20mm/h was classified

as heavy rainfall and predominantly occurs during the drier months, while rainfall between 5

and 10mm/h occurs mostly during the wetter months. During the wetter months the volume

frequency of moderate and heavy precipitation is overestimated, while it is underestimated

during the dry season. However, during the dry season the underestimation is compensated

by an overestimation of light rain in the range of 1 to 10mm/h, though IMERG-F does not

detect light rain between 0.2 and 0.4mm/h as good as the radar does. Finally, Oliveira et al.
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have noted a positive (negative) bias during wetter (drier) months, for IMERG-F.

The findings of Betts et al. (2019) regarding the influence of observation on the evaluation

of gridded precipitation has already been mentioned above. To assess how much station

network density affects the measured performance of gridded rainfall data, Tang et al. (2018)

generated 500 artificially sparse station networks from a high-density network in a flat basin

in southern China. Examining different sub-daily temporal aggregations, Tang et al. found

that sparse networks generally underestimated the performance of IMERG-L precipitation and

that the results for most evaluation metrics improved with increasing spatial and temporal

aggregation. Similarly, O et al. (2017) used a very high station network to analyse two grid

cells of IMERG-E, -L, and -F in Austria. For the two cells, 39 and 40 gauge stations were

accessible. Over a two-year period between April and October of 2014 and 2015, all IMERG

estimates produced higher mean, maximum, and SD values compared to the gridded gauge

measurement. Additionally, the percentage of no rain is slightly higher in IMERG. On a

daily basis, IMERG tends to overestimate heavy precipitation. Interestingly, also tested the

ability of IMERG to model the correct time of a precipitation event on a sub-daily scale. The

final run met the time of peak rainfall during a precipitation event better than the other runs;

nevertheless, there is a temporal shift between IMERG-F and the observation network. Bases

on the IR estimates, this seems to be caused by the backward/forward propagation of clouds

(O et al., 2017).
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3 Study Areas

In this thesis, two study areas – Germany and a large part of Brazil – are used for two rea-

sons. First, these are the study areas of the two aforementioned research projects, CarBioCial

and WP-KS-KW, and second, using two study areas allows different environmental conditions

to be considered. Both study areas are described below, and Figure 3 shows the orography

of both study areas with the boundaries that were used for the gridded data, which are:

• 5°E to 16°E and 47°N to 55.5°N for Germany and

• 60°W to 40°W and 0° to 20°S for the Brazilian study area.

Figure 3: Orography of the German (a) and Brazilian (b) study area in 0.01° based on SRTM
data (Jarvis et al., 2008). For visibility, altitudes in (a) are limited to 3000m.

3.1 Study Area – Germany

Germany is characterised in the North by the North German Plain and southward the Central

German Uplands have elevations of up to 1500m. The highest point is the Zugspitze in the

German Alps, which is almost 3000m above sea level (a.s.l). In general, more than half of

German land is used by agriculture while forestry uses approximately one third of the land

area. Human settlement, transportation infrastructure, industrial land, recreational areas, and

cemeteries take up approximately 14% of the area (BfN, n.d.).

The location of Germany between 47°N and 55°N on the western part of Europe results

in a temperate climate. Basically, the climate in Europe is characterised by air masses from

different origins, whereby the North Atlantic Subtropical High (Azores High) and the Icelandic

Low, representing the major pressure gradient, mainly influence the origin of the incoming

air. The Gulf Stream contributes substantially to the relatively warm climate of Western Eu-

rope; thus, in more continental areas, where the effect of the Gulf Stream decreases, the

intra-annual temperature variability increases. There are four seasons in Western Europe,

namely a moderately warm summer, mild winters, and two broad transition periods. During

the winter season, a cold high-pressure zone over Scandinavia and Eastern Europe together

with the Azores High and the Icelandic Low influence the weather over Central Europe. The
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pressure differences are low or even reversed when the polar jet stream meanders strongly

and the often rain-bringing cyclones are routed by the jet stream and its location (Weischet

and Endlicher, 2000; Müller-Westermeier, 2006).

Because of the westerlies, predominantly maritime air reaches Germany, but the distance

to the ocean and mountains located in the main wind direction increase the continental ef-

fects. Precipitation in Europe is subject to seasonality: during winter, the entire eastern part of

Central Europe is dryer compared to the western part, which is due to the frequent influence

of high-pressure systems. On the other hand, during summer, rain-bringing thunderstorms

diminish the west-east gradient, making summer the wetter season in Southern and South-

eastern Europe. South of the Danube River, there is twice as much summer rainfall as there is

winter precipitation. Focusing on Germany, the uplands are often characterised by many days

of fog when located in moisture-bringing winds, which indicates that the uplands are located

around the condensation level. A windward-leeward effect can be observed with more clouds

on the windward side and cloud dissolution on the leeward side. Additionally, there is an in-

crease in precipitation with elevations, up to 3000 or 3500m observed (Müller-Westermeier,

2006; Weischet and Endlicher, 2000). The north face of the Alps, the Black Forest, and

Vosges Mountains receive approximately 2000mm/yr of precipitation, while other uplands re-

ceive approximately 1000 to 1500mm/year. In the northwest German lowlands, precipitation

from 600 to 800mm/year occurs, and northeast Germany reeives 500 to 600mm/year (Müller-

Westermeier, 2006; Weischet and Endlicher, 2000). Figure 4 shows annual and seasonal

average precipitation values for the three datasets used in this thesis, the differences and

similarities of which are discussed in Section 5.

3.2 Study Area – Brazil

The environmental conditions in Brazil are quite different from those in Germany. The Brazilian

study area covers the area between 0° and 20°S and 40°W and 60°W. While the northern

part is rather flat, in the south-east the Brazilian uplands reach up to 1500m. The area is

characterised by a historical land use gradient and northward expansion of agriculture (Gerold

et al., 2018). Nevertheless, the Amazon rainforest holds one third of the earth’s tropical forest

and is the largest river basin. Hence, it is one of the most important components of the global

carbon cycle (Yoon and Zeng, 2010; Nepstad et al., 2014), and the climate in Amazonian also

affects the climate of more distant regions (McGregor and Nieuwolt, 1998).

The general circulation in the area east of the Andes is controlled by the intertropical

convergence zone (ITCZ). It is characterised by relatively low surface pressure, high tem-

peratures, high rainfall, trade wind convergence and confluence, and thus rising air masses.

The zone of low pressure, maximum surface temperature, and surface wind confluence is

separated from the zone of maximum cloudiness and rainfall (McGregor and Nieuwolt, 1998).

Because of the course of the ITCZ, it is contentiously wet near the equator, but there is a

dry season further south. In the continuously wet area, rainfall is favoured by the vegetation,
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Figure 4: Average precipitation in mm/day for ERA5 (1981-2010), ERA5-Land (2001-2010)
and IMERG-F (2001-2010), given in the raw model resolution. Annual average values are
listed in the the upper row, winter in the middle row, and summer in the lower row. The scales
for annual average and winter are the same, while the scale for summer is different.

which generates huge amounts of water vapour. Likewise, local convection at the coastline

and orographic lifting near the Andes foothills produces large amounts of precipitation. The

season of maximum rainfall corresponds to the sun position, usually with a delay of one or

two months. South of the equator, the dry season is roughly between March and October

when southeasterly winds prevail that have lost their moisture along the southeast coast of

Brazil and have not yet passed the Amazon Basin. During the rest of the year, northerly

winds prevail that have already passed the Amazonia when they reach the south. Although

the Amazon Basin, southern Brazil, and parts of northeast Brazil are controlled by the same
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driver of rainfall, patterns of intra- and inter-annual rainfall anomalies can be different, meaning

that wet anomalies in southern Brazil can correspond to dry anomalies in the Amazon Basin

(McGregor and Nieuwolt, 1998). Furthermore, the precipitation in this region is influenced

by several mechanisms, such as ENSO, Oscillation, the Madden-Julian Oscillation and the

South American monsoon system (Marengo et al., 2016; Shimizu et al., 2017; Alvarez et al.,

2016; Liebmann and Mechoso, 2011). The precipitation distribution in the study area for the

three datasets used in this thesis is shown in Figure 5. A northwest to southeast gradient

exists with 2000mm/yr in the northwestern part of the study area and, occasionally more

than 2500mm/yr. In the southeastern part of the study area, annual rainfall is approximately

1300mm, and in the western part it is roughly 1000mm/yr.

Land use change is an important issue, especially in Amazonia and the adjacent regions,

because the change, mainly in forms of deforestation, changes the local circulation. Results

from different studies indicate that the impact of deforestation depends on various effects.

Using numerical models, Werth and Avissar (2002) have demonstrated that deforestation re-

duces evaporation, cloudiness, and precipitation in the corresponding areas. Nobre et al.

(2009) have utilised numerical simulation and found that fractional and spatial continuity of

deforested areas are important for modulating the local circulation. To evaluate the impact

of the size of the deforested patches, Khanna et al. (2017) have used satellite images and

numerical simulations. Deforested areas have been found to increase cloudiness and rain-

fall under limited conditions, because small-scale deforestation triggers thermal meso-scale

circulation between pasture and forest. When the deforested patches increase beyond ap-

proximately 20 km, the thermally triggered circulation weakens and a redistribution of clouds

and precipitation takes place.

Kilian (2017) has implemented land use changes in a regional climate model and found a

high spatial variability in the temperature and precipitation response to the land use change.

Generally, temperature increased and precipitation decreased thus, the hydrological cycle was

weakened. Moreover, Kilian (2017) has found that the trend from induced by land use change

is contrary to the trend from climate change and that the effect of the latter is considerably

higher. One beneficial characteristic of both satellite precipitation and climate reanalyses is

the indirect consideration of such land use change effects because satellite precipitation is

based on measured cloud properties and hydrometeors, and reanalyses utilise observations

in the data assimilation.
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Figure 5: Average precipitation in mm/day for ERA5 (1981-2010), ERA5-Land (2001-2010)
and IMERG-F (2001-2010), given in the raw model resolution. Annual average values are
listed in the the upper row, austral winter in the middle row, and austral summer in the lower
row. The scales for the annual average and austral winter season are the same, while the
scale is different for austral summer.

21



4 Data and Methods

4 Data and Methods

The following section deals with the data used in this thesis, which includes a short remark

about the gridded data sets and a more detailed section about station observations. As afore-

mentioned this thesis used ERA5 (Copernicus CCS, 2017), ERA5-Land (Copernicus Climate

Change Service (C3S), 2019), and IMERG data (Huffman et al., 2019a). Concerning IMERG-

F a data gap of 22 days (2002-01-10 to 2002-01-31) exists in both study areas because of an

insufficient data control during data processing for this study.

4.1 Preparation of Station Observations

For the evaluation and model building, daily as well as long-term mean (LTM) daily precipita-

tion values were used. Therefore, two subsets were necessary; one with daily observations

that does not necessarily require continuous time series, and LTM values. Finally, those sta-

tions were used that were part of both the daily and the LTM subset. The spatial distribution

of the 1504 stations used in in Germany and the 407 stations used in the Brazilian study area

is shown in Figure A.1 in the appendix. One can see that the number of stations in Mato

Grosso and Pará is rather low, but moving eastward in the direction of more populated areas,

the number of stations increases.

The use of German station observations does not require much effort. The national Ger-

man weather service Deutscher Wetterdienst (DWD) provides free access to numerous sta-

tions after a law amendment in 2017. In particular, the precipitation network has a high density

and measurements are already quality controlled. The level of quality control depends on the

classification as recent or historical. Data classified as historical has undergone more intense

quality control than the recent observations; thus, this thesis only uses historical observa-

tions. Moreover, precipitation data is contained in two different collectives – the KL and the

more_precip collective – . The DWD indicates that if stations are contained in both collec-

tives, the quality of the KL collective is better. However, because the more_precip collective

contains distinctly more stations and because a formal quality control is applied in any case,

the more_precip collective was used here. The DWD automatically checks the data for con-

sistency and for gross errors, but it does not apply systematic correction or homogenisation

procedures (DWD, 2018). More information on the quality control can be found in Spengler

(2002) and Kaspar et al. (2013). Detailed station metadata and information on relocation are

likewise available. The LTM data was obtained from DWD (n.d.).

In Brazil, different agencies theoretically provide met. station data, including the Brazil-

ian national meteorological service Instituto Nacional de Meteorologia (INMET), the national

water agency Agencia Nacional De Aguas (ANA), and Instituto Nacional de Pesquisas Espa-

ciais (INPE)/Centro de Previsão do Tempo e Estudos Climáticos (CPTEC). The number of

actually usable sources and thus the number of stations is certainly smaller. Considering the

access to data, the Lei de acesso à informação (Access to Information Act) has made access
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to more stations possible, but unrestricted and easy access is still not possible. For instance,

the Brazilian institutions provide no bulk download. However, the R package inmetr Tatsch

(2019) allows easy download of INMET data. Nonetheless, an authorisation is still necessary.

To download station observation from the ANA hidroweb interface does not require an autho-

risation, but a bulk download is neither possible. However, ANA provides observations from

different sources including stations from the INMET network as well as stations from differ-

ent energy companies, municipalities, and public and local authorities (Agência Nacional de

Águas, 2019).

Even though a high number of stations can be obtained from the aforementioned sources,

most of the data is unusable if longer time series are needed, because measurement periods

are often just a few days or weeks. Furthermore, there are some major problems with the

Brazilian stations. As Liebmann and Allured (2005) have stated, a test of quality can be

difficult for South American precipitation observations because it is impossible to distinguish

if a reported 0mm event represents a missing value or if a missing value is actually a 0mm

rainfall value. Another issue is the occurrence of unexpected and implausibly high values,

which is the reason why data from INPE/CPTEC was not used in this study. After a long

series of reports of 0mm precipitation, very high values appeared at irregular intervals, which

are presumably hidden accumulated values. The often used Global Summary of the Day was

not used because of long series of 0mm rainfall. The accumulation to annual sums resulted

in values that do not nearly meet value that could be considered correct. This is a known

issue (Funk et al., 2015). Another problem is that there is hardly any information about the

time of measurement (e.g., UTC or local time). Moreover, a rainfall event reported for 12:00

UTC might mean that the measured amount was either reported on the day the data was read

or on the previous day, suggesting that the majority of rain occurred on the previous day. All

these issues have caused difficulties in former studies (Liebmann and Allured, 2005; Arvor

et al., 2014; Xavier et al., 2015; Alvares et al., 2013).

Nevertheless, some constraints were applied to the observations in this study. Generally,

from the ANA collective, only those stations are considered that the ANA has marked as

consistent. Nonetheless the sum of 0mm reports and missing values is often almost 100%,

which can cause errors in the later event-based analysis. The application of a threshold

to this problem seems difficult because of seasonality and spatial variability of precipitation

in the Brazilian study area. Additionally, following Liebmann and Allured (2005) and Xavier

et al. (2015), rainfall values above 450mm/day were removed. Information about station

relocation and other metadata were not available. Furthermore, the precision of coordinates

varies from two to four decimals, which would make a test for duplicated stations difficult, as

is also discussed in Liebmann and Allured and Xavier et al.. For some stations from the ANA

altitude information were missing and were thus added from a 0.0083° SRTM-based digital

elevation model (DEM) (Jarvis et al., 2008).

In addition to the aforementioned constraints, the following restrictions were used to build

a selection of stations that can provide daily values as well as LTM daily precipitation for
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the period 1981 to 2010. As previously mentioned, the first constraint was the consistency;

additionally only those months, and the days in the respective month were considered where

information about the number of rainy days were already provided in the raw data, because

otherwise it was assumed that some information in the respective entries had to be wrong.

A further restriction was the requirement of at least 10 years of measurements. These daily

ANA stations were also used to build the LTM subset. Instead of using daily INMET stations

for the LTM subset, monthly values directly obtained from INMET could be used. Again,

months without information regarding the number of rainy days were removed, and only those

stations that had at least 10 entries for each of the 12 calender months were considered. For

the subset of daily values, the same constraints as for the ANA stations were applied.

4.2 Altitude Adjustment for Precipitation

Several studies named in Section 2 have demonstrated that the quality of gridded precipitation

data in complex terrain is regularly lower than in flat terrain, which is often accompanied by an

elevation-dependent bias. This dependency affects the results when datasets from different

grid systems are compared or when met. stations are used for the validation. The effects of

topography and elevation have been known for a long time, so Sawyer (1956) found increased

rainfall on elevated areas and windward sides. Brunsdon et al. (2001) have stated that many

studies have found that linear models fit well for middle latitudes and relatively small areas. In

consulting older studies, they found different slopes between 1.5mm/100m and 4.5mm/100m

in Great Britain based on met. stations. Additionally, Brunsdon et al. have noted that their find-

ings are highly influenced by the distribution of stations and local effects. Moreover, they have

suggested that it is advantageous to use area average elevation and precipitation instead of

actual stations´ elevation to build models. Additionally, Ceccherini et al. (2015); Goovaerts

(2000) and Berndt and Haberlandt (2018) have used elevation as covariate to predict pre-

cipitation. Daly et al. (1994) have found that a linear relationship between precipitation and

elevation is often assumed, because it is easy to use and an acceptable approximation even

though under certain conditions the relationship is better described by a log-normal or expo-

nential relationship. Moreover, Daly et al. have argued that orographic effects estimated from

relatively coarse DEMs (2 to 15 km) are often more highly correlated to local precipitation than

point-based orographic features are.

Here it is argued that precipitation evaporates to some extent while it is falling; therefore,

elevation differences are also differences in precipitation evaporation. Additionally, as men-

tioned in Section 2.2, it is known that the evaporation in ERA5 is insufficiently represented

(ECMWF, n.d.b). Thus, considering the elevation-dependent bias in gridded precipitation data

and the elevation dependency of precipitation, this thesis attempts to correct precipitation in

terms of the effect of elevation. The direction of the correction or the adjustment towards any

given elevation is possible.

As illustrated in Figure 7, the classification of elevation data and the average precipitation
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in these classes, for both the gridded datasets and the met. stations in Germany have quite

similar pattern. Moreover, the differences between annual, summer, and winter data are small.

Beginning from the altitude class of approximately 1000 to 1100m the relationship ceases and

there is no longer any characterisable change of precipitation with altitude. Additionally, the

seasonal differences become more pronounced. The altitude where the relationship ceases

roughly corresponds to the average cloud base height (CBH) of ERA5. On the one hand there

are two things that relativise this match. First, the CBH is given in metres above the model

orography and thus the average CBH above sea level (a.s.l) is roughly 1400m, and second,

above the 1000m class, the number of grid cells per class decreases below 10. On the other

hand observations and ERA5-Land show the same elevation-precipitation pattern and ERA5-

Land has more than 30 grid cell per class up to 1500m and still 23 grid cells in the class 1500

to 1600m. The average CBH values are only averaged from wet-days.

Regarding the Brazilian study area, as shown in Figure 8, no increase of rainfall with

elevation was found. Furthermore, stations located lower recorded higher rainfall values. This

might be due to grid cells in the northern part of the study area where elevation is low and

annual precipitation is high, while elevated areas further south receive less rainfall. Moreover,

rainfall in the tropics is often convective with limited spatial extent. Thus, one could argue that

the examined area in Brazil is too large but the pattern from Figure 8 does not change notably

when only a limited area between 13°S and 20°S and 40°W and 50°W is considered which is

roughly the area of Goías and Minas Gerais. In this area, there are elevation differences in

a region of more or less the same seasonality. However, Ragette and Wotawa (1998) have

found low evaporation in tropical regions and the IFS documentation mentions that that there

is less evaporation in high-intensity rain events compared to events of low intensity (ECMWF,

2016b). Nevertheless, in the Brazil study area, the modelled and observed values are close

together. Seasonal differences are more pronounced than in Germany and become clearly

visible at approximately 600m. In agreement with this, areas with such elevation are in the

southeast of the study area where a pronounced seasonality exist.

The proportion of CP in ERA5 in the Brazilian study area is almost always high, roughly 2%

of the precipitation events in 2001 and 2002 had a CP proportion of less than 25%, and only

around 15% of the events had a CP proportion of less than 75%. In Germany, the variability

is higher, roughly 30% of the precipitation events had a CP proportion of less than 25%, and

roughly 65% of the events had a CP proportion of less than 75%. Thus, a differentiation

of the convection fraction was only done for the German study area, resulting in a convective

proportion of more than 75% or less than 25%. Somewhat unexpectedly, there were no distinct

differences in the altitude precipitation patterns of the two subsets, as shown in Figure 6

(b), which also demonstrated the cumulative percentage of CP proportion for wet days in

the Germany and Brazilian study area. Because of the similar pattern in Figure 6 (b), no

further differentiation was made between the precipitation types. However, the differentiation

of precipitation depends on the ERA5 parameterisation.

The patterns found for Germany and Brazil are also prevalent in the IMERG-F data (cf.
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Figure 6: Cumulative distribution of the CP to TP ratio for the 2001-2002 period for both
study areas (left) and average daily precipitation for altitude classes for precipitation with a
proportion of CP > 75% or CP < 25%, averaged for 1981 to 2010.
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Figure 7: Distribution of altitude and average daily precipitation for met. stations, ERA5, and
ERA5-Land in Germany for summer, winter, and the annual average.

Fig. A.2) when plotting the precipitation values against a DEM remapped to the IMERG grid.

However, since elevation is not part of the IMERG data and has no influence in the IMERG

algorithm, elevation cannot be used for an altitude adjustment. To a certain extent, the cor-

rection with GPCC data in the final run product incorporates some elevation information, but

the effort to infer corresponding altitude information would be very elaborative and it is unclear

if this would be expedient. Therefore, IMERG-F was not considered further for the altitude
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●● ●

●● ●

●● ●

●● ●

●● ●

●● ●

●● ●

●● ●

●● ●

●● ●

●● ●

●● ●

●● ●

●● ●

●● ●

[−100,0)
[0,100)

[100,200)
[200,300)
[300,400)
[400,500)
[500,600)
[600,700)
[700,800)
[800,900)

[900,1000)
[1000,1100)
[1100,1200)
[1200,1300)
[1300,1400)
[1400,1500)
[1500,1600)
[1600,1700)

0.0 2.5 5.0 7.5 10.0 12.5
precipitation [mm/day]

A
lti

tu
de

 c
la

ss
Data set

●

ERA5

ERA5−Land

Obs

Season

●

●

●

DJF

JJA

year

Figure 8: Distribution of altitude and average daily precipitation for met. stations, ERA5, and
ERA5-Land in Brazil for summer, winter, and the annual average.

adjustment.

Since it would be impossible to reproduce the evaporation rates calculated in ERA5 be-

cause not all of the necessary variables are part of the accessible output, (e.g., precipitation

flux at CBH) and furthermore, other values based on several dependencies could not be re-

produced, the idea is to account for the effect of altitude statistically. It is argued that due to

averaging several grid cells into one altitude class, in any case underestimated topographic

effects such as windward and leeward effects are even more balanced. First, a linear regres-

sion with the LTM precipitation data of ERA5 (1981 - 2010) and ERA5-Land (2001 - 2010)

was used to find the slope of how much precipitation increases per altitude. The results from

the linear model are listed in Table 2. ERA5 has altitudes that are approximately between

0m and 1800m, in the Germany study area, and the minimum number of cells per altitude

class in this range is three whereby for classes up to 1000m there is no class with less than

10 grid cells per class. The slope of the linear regression reveals a precipitation increase of

0.15mm/100m. Using ERA5-Land and likewise limiting the altitude classes to 1800m shows

a similar slope, though the coefficient of determination increases from 0.82 (ERA5) to 0.89

(ERA5-Land), referred to as ERA5-Land (a) in Table 2. The better values probably result from

the higher number of grid cells in ERA5-Land, (e.g., the minimum number of grid cells in any

altitude class is 23). When altitude classes of ERA5-Land are not limited but the only condition

is more than three grid cells per class, the highest class reaches 2500m, and is referred to as

ERA5-Land (b) in Table 2. For this setting, the linear model shows a decreased R2 of 0.79

and a lower slope of 0.11mm/100m. The lower slope and lower R2 can be explained by the

ceasing of the relationship between altitude and precipitation from approximately 1000m.
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Table 2: Results from linear and non-linear models for long-term average precipitation and
altitude. *** indicates p-values < 0.001.

Model
Slope

mm/100m
R2 Sign.

ERA5-Land (a) 0.16 0.89 ***
Linear Model ERA5-Land (b) 0.11 0.79 ***

ERA5 0.15 0.82 ***

Non-Linear Model ERA5 0.83 ***

All of the regression results were statistically significant and the explained variance is quite

high. Thus it seems reasonable to use a linear model to account for altitude differences. The

model to adjust a given precipitation value, here daily LTM precipitation p̄model at model height

zmodel to a target altitude ztarget with model slope Sl in mm/m is:

p̄lm = p̄model + (ztarget − zmodel) ∗ Sl (4)

The adjustment is only done for ztarget values below the ERA5 CBH. If the target altitude

is above the condensation level, unadjusted model precipitation was used just to be consistent

in the evaluation. An estimation of precipitation variation in and above the condensation level

was not possible. To receive daily values, the model could be directly applied to daily values

since the slope is estimated on average daily precipitation, but because the model was fitted

to LTM data, daily anomalies were used to generated daily altitude-adjusted values for day i,

where p̄ is the LTM ERA5 or ERA5-Land precipitation and p̄lm is the corresponding altitude-

adjusted LTM value.

plm,i =
pmodel,i
p̄model

∗ p̄lm

=
pmodel,i
p̄model

∗ p̄model + (Htarget −Hmodel) ∗ Sl
(5)

In the two research projects mentioned in this thesis a model was developed to distinguish

areas below and above the condensation level to take different evaporation rates into account.

The original version of the non-linear model (NLM) assumed a slight reduction of precipitation

per increasing distance above the CBH, which was assumed to be the condensation level.

However, in this study ERA5 data was used to fit the NLM, and no grid cell was above the av-

erage CBH, which is why the model was only fitted for the part below CBH. The ratio between

model or target elevation and CBH is used to account for elevation differences embedded in

a compound factor. First, p̄model is divided by the denominator of Equation 6 to reduce p̄model
to the sea level elevation. Second, p̄model at sea level is multiplied by the numerator to adjust
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the precipitation to the target elevation.

p̄nonlm = p̄model ∗
1 + F ∗ (ztarget/CBHtarget)

Uk

1 + F ∗ (zmodel/CBHmodel)Uk
(6)

When other or better information about the CBH exist, they could be used in the numerator

of eq. 6. In this study ERA5 CBH is used in the numerator and the denominator. The factors

F and Uk were fitted to the LTM data using non-linear least-square estimates, which resulted

in F = 1.4375 and Uk = 0.8619. For the mean CBH only days with precipitation were

considered. The results of the model fit are listed in Table 2, which shows that the relationship

between altitude and precipitation in ERA5 is already well explained by a linear model, and

the NLM does not add much to the explained variance. In contrast to the linear model, the

NLM is applied directly to daily values (Eq. 7), suggesting that daily CBH is highly variable.

When on a certain day with precipitation the corresponding CBH was below ztarget instead of

applying the NLM, the original value was used.

pnonlm,i = pmodel,i ∗
1 + F ∗ (ztarget/CBHtarget,i)

Uk

1 + F ∗ (zmodel/CBHmodel,i)Uk
(7)

At least from two different points of view, the adjustment is not linear. First, the adjusted

precipitation is the product of modelled precipitation and the adjustment factors and therefore

depends on the modelled precipitation itself. This means that for otherwise constant values,

higher precipitation rates receive a higher adjustment. This contradicts the assumption of less

evaporation on high precipitation intensities. Second, the fit to the LTM data results in a higher

rate of change near CBH compared to further from the same. Additionally, adjusting towards

the CBH results in a larger change than away from CBH because the larger ztarget/CBHtarget

the stronger the effect of exponent Uk. While precipitation theoretically never disappears or

evaporates completely in the NLM because reduction is based on a quotient it does evaporate

completely in the linear model (LM). However, in the evaluation all precipitation values below

0.1mm/day are set to 0, and using daily anomalies for the daily LM adjustment likewise results

in an incomplete evaporation.

Taking another look at the CBH and its effect on precipitation in Germany, one can admit

that the average CBH is closer to the model topography in elevated areas, such as over the

Eifel, Hessisches Bergland, Erzgebirge, or the Alps. In these areas, which are also regions of

increased precipitation (cf. Fig. 4), the average CBH is roughly 500 to 1000m above the model

orography. In the remaining area CBH is notably higher than 1000m above model orography.

A spatial visualisation of the average CBH above model orography can be found in Figure A.3.

For three stations in Germany – Hamburg-Fuhlsbüttel in the north Germany plain; Brocken,

a centrally located mountain of roughly 1100m; and the 3000m summit Zugspitze the highest

mountain in Germany located in the south – precipitation is compared to the CBH on wet days
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in Figure 9. Only CBH classes with more than 30 events were considered in that figure that

likewise shows three Brazilian stations – Altamira, which is near the equator in central Pará;

Sinop, approximately 350m a.s.l, south of Amazonia in central Mato Grosso; and Alto Paraíso

de Goiás in northern Goías, which is roughly 1000m a.s.l. For all stations except Hamburg

a strong decrease of precipitation with increasing CBH was found. Additionally, in Hamburg,

precipitation decreases with higher CBH on an annual basis. Looking at the Brazilian stations,

it is apparent that two southern stations there is only a little rainfall during austral summer

with elevated CBH and no clear pattern. Although there is a general pattern without further

analysis it is impossible to say how much of this effect should be attributed to evaporation and

how much to the fact that a higher CBH is cooler and has a lower ability to hold precipitable

water. Additionally, the decrease at all stations is rather steep and would result in a much

steeper slope than estimated by the linear regression against the altitude.
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Figure 9: Averaged daily mean precipitation from 2001 to 2010 for classes of cloud base
heights. The upper row shows three stations in Germany and the lower row three stations in
the Brazilian study area for summer, winter, and the annual averages.
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4.3 Verification Measures for Binary Events

In addition to verification measures for continuous variables, some verification measures for

binary events were used and are briefly introduced below. Not all of the mentioned indices

are used in the evaluation, but they partly depend on each other, so they are mentioned for

reasons of completeness. Hits or true positives are tp, false alarms or false positives are

fp, misses or false negatives are fn, correct rejections or true negatives are tn, and the

sample size is n. The base rate or event probability s produces the unconditional probability

of the observed occurrence of the event, here precipitation, and is thus not a measure of the

performance.

s =
tp+ fn

n
(8)

The probability of modelled rainfall is expressed by the probability of occurrence PO:

PO =
tp+ fp

n
(9)

and can also be written as PO = (1 − s)F + s ∗ H where H is the hit rate, sometimes

also called POD, which indicates the proportion of correctly forecasted events (O et al., 2017;

Mason, 2003).

H =
tp

tp+ fn
(10)

The false alarm rate (F), sometimes also called probability of false detection, is the ratio

of incorrectly modelled non-occurrence of events.

F =
fp

fp+ tn
(11)

F is different from the false alarm ratio (FAR), which is the proportion of modelled occur-

rences that do not correspond with an actual event. Because FAR can vary between 0 and

1 − S, it does not necessarily carry any information about skill (Mason, 2003).

FAR =
fp

tp+ fp
(12)

The frequency bias frequency bias (FB) is the ratio between modelled and observed rain-
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fall events:

FB =
tp+ fp

tp+ fn
(13)

Alternatively, FB can be expressed as FB = 1−s
s F + H . A perfect model would have

values of FB = 1, H = 1 and F = 0, while a model with no skill to reproduce event

occurrences would have H = F with FB = H/s or FB = F/S.

A further measure is the proportion correct (PC), which is

PC =
tp+ tn

n
(14)

or PC = (1 − s)(1 − F ) + s ∗H .

Additionally, the Heidke Skill Score (HSS) and CSI are frequently used. Heidke Skill Score

takes into account the proportion of forecasts that would have been correct by chance and

adjusts the PC by this effect.

HSS =
PC − E

1 − E
(15)

with

PC =
tp+ tn

n
(16)

or PC = (1 − s)(1 − F ) + s ∗H and

E =
tp+ fn

n

tp+ fp

n
+
fp+ tn

n

fn+ tn

n
(17)

The CSI is expressed as follows:

CSI =
tp

tp+ fp+ fn
(18)

(Mason, 2003). It can also be written as CSI = H/(1 + (F (1 − s))/s with a perfect skill of

CSI = 1, when H = 1 and F = 0, the minimum value for CSI is 0. However, the zero skill

can lie between 0 (H = F = 0) and S(H = F = 1) (Mason, 2003). Because the CSI is

not affected by tn (the same is true for H, FAR, and POD), it has often been used to measure

the performance when event occurrence is low. However, it depends strongly on s. Dealing

with rare events can be problematic because the frequency of tn can be much larger than the

other three elements when every non occurrence of a rare event is correctly forecasted. On the

other hand, when non-occurrence is rare, the model should be rewarded for correct rejections,

which is for instance not the case for CSI (Mason, 2003). Ferro and Stephenson (2011) have
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criticised the existing verification measures as deficient for rare events and introduced two

extremal dependency indices that are independent from the base rate. Nevertheless, HSS

(and CSI) are still frequently used also in studies with seasonal precipitation patter and thus

the HSS is used in this thesis.
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Before the results are discussed in detail, it should once again be noted that the altitude

adjustment was not applied in the Brazilian study area, and it was not applied to IMERG-F

data. Moreover, the comparison of the LTM values is based on the period 2001 to 2010 for

IMERG-F and ERA5-Land and 1981 to 2010 for ERA5. For the evaluation of daily values, the

period 2001 to 2010 was used for all datasets.

5.1 General Results for Germany

The spatial distribution of annual and seasonal precipitation in Germany is quite similar in

ERA5 and ERA5-Land, but some marked differences exist in IMERG-F (c.f. Fig. 4). During

winter, IMERG-F is generally wetter, which is likewise visible for the annual values. Moreover,

the spatial distribution seems rather smooth and does not have any features, which stands

in contrast to the ERA reanalyses. Figure 10 shows a temporal comparison of weekly accu-

mulated precipitation at the Hamburg-Fuhlsbüttel and Brocken stations. During some weeks,

larger differences occurred, such as, in Hamburg around Week 33 in 2006, and at Brocken in

Week 47 of 2010 at Brocken. Moreover, especially for Hamburg, many weeks in ERA5-Land

had lower precipitation values than in IMERG-F, which becomes clearly visible if one looks at

the winter weeks 46 through 51. Moreover, there is a small data gap at the beginning of 2002,

as already mentioned.
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Figure 10: Temporal comparison of weekly aggregated IMERG-F and ERA5-Land precipita-
tion [mm/week] for the Brocken and Hamburg-Fuhlsbüttel stations in Germany.

Focusing on the comparison with LTM met. station data, the three gridded precipitation

products had higher daily precipitation values than at the 1504 stations used in Germany. The

overestimation was higher in IMERG-F than in the ERA reanalyses. Because the majority of
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stations are located in terrain with low elevations virtually no effect of the altitude adjustment

is visible from the average values. Looking at the 14 stations above 1000m, a negative bias

occurred for all datasets, with the highest (negative) bias for IMERG-F. The altitude adjustment

had a positive effect on both ERA reanalyses and reduced the bias. Because station elevation

itself does no say anything about elevation differences between model and station elevation,

it is distinguished between stations above the model orography, called Type 1 stations, and

stations below model orography, called Type 2 stations. If not otherwise stated model orogra-

phy refers to the ERA5 elevation and Type 1 (2) stations have a difference of at least 250m.

The rather high difference was chosen to have distinct elevation differences, presuming more

differentiated differences between Type 1 and Type 2 stations.

For Type 1 (2) stations the bias was negative (positive) over all datasets other than IMERG-

F for Type 2 stations, which were also slightly negative. The adjustment of ERA5 to the

elevation of ERA5-Land did not approximate the biases because these were quite similar

before, and the altitude adjustment led to a larger spread. Nevertheless, for both station types

the adjustment to station elevation reduced the overall bias. Unfortunately, the number of

stations with notable elevation differences from model orography is rather low at 26 (22) Type

1 (2) stations. Table 3 lists the described values with the elevation difference. The part in

parentheses in Table 3 indicates the LM or the NLM and an adjustment to the ERA5-Land

(ERA5-L) or station (Stn.) elevation.

Table 3: Long-term average daily precipitation values and the corresponding biases for dif-
ferent subsets in Germany where elevation differences between model orography and station
elevations are at least 250m. ERA5-L refers to ERA5-Land.

All Stations
Stations

above 1000m
Type 1

Stations
Type 2

Stations

average P

Observation 2.3 4.5 3.8 4.0

bias

IMERGF-F 0.4 -1.3 -0.9 -0.5
ERA5-Land 0.2 -0.6 -0.6 0.3
ERA5 0.2 -0.6 -0.6 0.6
ERA5 (LM, ERA5-L) 0.2 -0.3 -0.4 0.4
ERA5 (LM, Stn.) 0.2 0.0 0.0 0.1
ERA5-L (LM, Stn.) 0.2 -0.3 -0.4 0.1
ERA5 (NLM, ERA5-L) 0.2 -0.3 -0.4 0.3
ERA5 (NLM, Stn.) 0.2 0.1 0.1 -0.1

Investigating daily values in Germany generally led to the same pattern and improvement.

In Table 4, P.1 (precipitation) and bias.1 denote values that consider the entire times series, in-

cluding observed dry days where the model produced precipitation, (i.e. false positive events).

For bias.2 and MAE.2, only those days are considered where the observed precipitation was

above a given threshold while P.2 was calculated separately for the observations and modelled
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data when the given threshold was exceeded. If not otherwise stated, bias refers to bias.1.

For P ≥ 0.1mm over all stations the modelled average daily precipitation (P.1) was higher than

observed at the stations, and P.2 for both ERA reanalyses was lower than the observed P.2.

In both cases, IMERG-F had higher P values than the observation and than the reanalyses.

The higher bias.1 compared to bias.2 for P ≥ 0.1mm, indicates more modelled than observed

wet days and a good agreement of observed and modelled P for the days where P actually

occurred. For higher rainfall intensities of P ≥ 10.0mm) (roughly the 90th percentile over all

daily observation), which are listed in the upper right side in Table 4, reanalysis precipita-

tion had a strong negative bias. Likewise, the bias of IMERG-F became negative, but not as

strongly as that of ERA5 and ERA5-Land. Furthermore, when only days with P ≥ 10.0mm

are considered for each of the respective datasets, IMERG-F still overestimates the average

rainfall, and ERA5 and ERA5-Land show lower average precipitation.

Taking into account elevation and elevation differences, (lower row of Tab. 4), there is a

general underestimation of modelled precipitation for stations above 1000m. Likewise, Type

1 stations underestimated average daily P, while Type 2 stations overestimated the same.

In all three elevation-considering cases, IMERG-F had the highest bias. The bias of ERA5-

Land was slightly below the bias of ERA5, and the altitude adjustment for the ERA reanalyses

reduced the bias in all cases. For stations above 1000m and ERA5 and LM adjustments

to station elevation, the bias became 0, which mainly represents the adjustment of the LM.

The bias of ERA-Land remained slightly negative after the altitude adjustment, and adjusting

ERA5 to the elevation of ERA5-Land did not result in a more comparable bias. Correcting

the elevation bias of the gridded precipitation by the LM took the model bias, both bias.1 and

bias.2, closer to 0 than the NLM, though at Type 2 stations the effect of the NLM was greater,

which turned the positive bias into a slightly negative one. The MAE.2 was not notably affected

by the altitude adjustment. The reason for the resemblance between stations above 1000m

and the Type 1 stations partly result from 11 stations that are part of both subsets, but no Type

2 station is located above 1000m.
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Table 4: Mean daily precipitation, biases and MAE, for different subsets in Germany. Mean daily precipitation p.1 and bias.1 include dry days in averaging,
p.2 and bias.2 include only those days, when the precipitation threshold is met for observations.

All Stations,
P ≥0.1mm

All Stations,
P ≥10.0mm

P.1 bias.1 P.2 bias.2 MAE.2 P.1 bias.1 P.2 bias.2 MAE.2

Met. Stn. Observation 2.3 4.6 16.6
IMERG- F 2.7 0.4 5.1 0.3 4.1 19.1 -2.7 10.0
ERA5-Land 2.5 0.2 3.6 0.0 3.0 14.9 -5.7 7.4
ERA5 2.5 0.2 3.6 0.0 3.0 14.9 -5.7 7.4
ERA5 (LM, ERA5-L) 2.5 0.2 3.6 0.0 3.0 14.9 -5.7 7.4
ERA5 (LM, Stn.) 2.5 0.2 3.6 0.0 3.0 14.9 -5.8 7.4
ERA5-L (LM, Stn.) 2.5 0.2 3.6 0.0 3.0 14.9 -5.8 7.4
ERA5 (NLM, ERA5-L) 2.5 0.2 3.6 0.0 3.0 14.9 -5.8 7.4
ERA5 (NLM, Stn.) 2.5 0.2 3.5 -0.1 3.0 14.8 -6.0 7.5

Stations above 1000m
P ≥0.1mm (n=14)

Type 1 stations
P ≥0.1mm (n=26)

Type 2 stations
P ≥0.1mm (n=22)

P.1 bias.1 P.2 bias.2 MAE.2 P.1 bias.1 P.2 bias.2 MAE.2 P.1 bias.1 P.2 bias.2 MAE.2

Met. Stn. Observation 4.6 8.2 3.9 6.8 3.9 7.4
IMERG- F 3.2 -1.4 5.7 -3.0 6.4 2.9 -1.0 5.4 -2.1 5.4 3.5 -0.4 6.0 -1.4 5.8
ERA5-Land 4.0 -0.5 5.5 -1.4 5.1 3.3 -0.6 4.5 -1.4 4.2 4.4 0.5 6.0 0.3 4.7
ERA5 3.9 -0.7 5.4 -1.7 5.1 3.2 -0.7 4.4 -1.6 4.2 4.5 0.6 6.2 0.5 4.9
ERA5 (LM, ERA5-L) 4.2 -0.4 5.7 -1.2 5.1 3.4 -0.5 4.7 -1.1 4.2 4.3 0.4 5.9 0.1 4.7
ERA5 (LM, Stn.) 4.5 0.0 6.2 -0.6 5.2 3.8 -0.1 5.2 -0.5 4.3 4.0 0.1 5.5 -0.3 4.6
ERA5-L (LM, Stn.) 4.3 -0.3 5.9 -1.0 5.1 3.5 -0.3 4.9 -0.9 4.2 4.1 0.3 5.7 -0.1 4.6
ERA5 (NLM, ERA5-L) 4.2 -0.4 5.7 -1.2 5.1 3.4 -0.5 4.7 -1.1 4.2 4.2 0.3 5.7 -0.1 4.6
ERA5 (NLM, Stn.) 4.2 -0.4 5.7 -1.3 5.1 3.5 -0.4 4.8 -1.0 4.3 3.8 -0.1 5.2 -0.8 4.5
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Regarding the seasonality in the ERA data, a close to 0 but slightly positive bias.2 was

found for the winter season (DJF), and a slightly negative bias.2 was found for summer (JJA).

IMERG-F had a strong positive bias in the winter season that was reduced to a slightly positive

bias during summer; hence, it had the same seasonal tendency as the reanalyses. Further-

more, the known pattern in the correlation coefficient (r) (Pearson correlation coefficient) was

found. Although the variations are small, ERA5 and ERA5-Land had a higher correlation with

the observation during winter (r = 0.7) than during summer (r = 0.5), and it was the other way

around for IMERG-F with r = 0.5 during winter and (r = 0.6) for the summer season.

The previous results already suggest that the number of wet days is overestimated in the

gridded precipitation data, and thus it is not surprising that the FB of both reanalyses is notable

above 1, which indicates an overestimation of wet days, while the FB of IMERG-F is rather

low (c.f. Tab. 5). There is a low seasonality with the average FB being slightly higher during

summer (≈ +0.1) than during winter (≈ −0.1) for all datasets. The HSS was approximately

+(−)0.1 during winter (summer), compared to the annual values; for the ERA reanalyses and

IMERG-F the signs were reversed but the rate of change was the same with a higher HSS

during summer. The annual values of CSI are comparable with those of the winter season,

while during summer IMERG-F had a higher CSI of ≈ +0.1 and the reanalyses had lower

values of ≈ −0.1. The altitude adjustment did not cause any changes. For a threshold of P

≥10.0mm the FB for ERA5 and ERA5-Land is close to 0, but it is higher for IMERG-F with

a value of 1.7. Moreover, CSI and HSS were notably reduced to approximately 0.3 and 0.5,

respectively. The differences between Type 1 and Type 2 stations are small, with a FB for

Type 2 stations that is comparable to the annual values over all stations and a lower FB at

Type 1 stations (≈ −0.1). Additionally, IMERG-F had a FB of 1.0 (1.1) for Type 1 (2) stations.

Noteworthy differences in CSI or HSS do not exist for any of the gridded datasets.

Table 5: Performance measures for binary events for Germany and Brazil, including all used
stations, with P ≥0.1mm.

Germany Brazil

FB CSI HSS FB CSI HSS

IMERGF-F 1.05 0.61 0.68 2.53 0.37 0.24
ERA5-Land 1.41 0.66 0.88 3.45 0.37 0.17
ERA5 1.40 0.66 0.50 3.44 0.37 0.17

5.2 Results for Selected Stations in Germany

In addition to the average value over various stations, a specific look at single stations seemed

necessary to obtain more insight into the results. Therefore, nine stations were selected; three

Type 2 stations, two stations with rather low elevation differences between station altitude

and ERA5 orography, and four Type 1 stations. An overview including the locations of these

stations can be found in Figure A.1 and Table B.1. All of the following figures show the station

38



5.2 Results for Selected Stations in Germany

in a sorted manner, from Type 2 to Type 1 stations.

Therefore, looking to the biases of the nine stations in Figure 11, an alternate picture

was found. It seems that ERA5 overestimated P at the Type 2 stations, at least as long as

the elevation difference was large enough. At the Type 1 stations there might be a tendency

towards underestimation in the results from all stations, but Figure 11 also shows that there

are stations that are distinct above the ERA5 orography where the bias of the reanalyses is

approximately 0. Furthermore, the effect of the altitude adjustment depends on the individual

station. At Marktschellenberg (Type 2), for instance, the already existing underestimation of P

from ERA5 became more pronounced after the altitude adjustment. Moreover, the finding from

the previous section that the effect of the NLM seemed to be greater than that of the LM at Type

2 stations was clearly visible again at the selected stations. This is a results from the effect of

the exponent Uk and the fraction z/CBH . However, the issue of higher biases is certainly not

limited to Type 2 stations but also occurred at Type 1 stations such as Feldberg/Schwarzwald.

At stations with distinct underestimations of P like Kahler Asten or Brocken, bias was reduced

after altitude adjustment. At Brocken, two other effects were clearly visible. The difference

between the ERA5-Land orography and station altitude is roughly 350m smaller than for the

ERA5 orography. Additionally, to the smaller difference, there is a lower slope in the LM

for ERA5-Land. Because the original bias was quite similar, both factors together resulted

in smaller bias for ERA5 after the altitude adjustment. It is interesting to note that the bias

at Wendelstein was very small even though the station altitude is roughly 1000m above the

ERA5 orography. Moreover, while seasonality does not change the sign of the bias for most

stations, at least not when the value is not too small, the stations Feldberg/Schwarzwald and

Wendelstein in particular demonstrate a distinct seasonality where the sign changes between

summer (positive bias) and winter (negative bias).

Regarding r, RMSE, and SD, shown in Figure 12, ERA5-Land are very close together,

and the correlation of the two with the observations is higher than for IMERG-F at all selected

stations, while the RMSE is lower. The correlation of the nine stations does not vary much and

is r avlous of approximately 0.6 in line with the r found for all stations. The correlation between

IMERG-F and the observation is somewhat more variable. Furthermore, the SD of IMERG-F

is higher than the original SD of the reanalyses at all nine stations. The altitude adjustment

reduced the SD at Type 2 stations while increasing the SD at Type 1 stations. In the same

way, RMSE is reduced and increased but the RMSE of both reanalyses is somewhat lower

than for IMERG-F. However, for Marktschellenberg and for Brocken, the SD is distinctly below

the observed values. The Taylor diagrams show also the larger effect of the NLM at Type 2

stations compared to the LM, while it is the other way around at Type 1 stations.

Next to seasonal differences in the bias, disparities with respect to the rain rates exist.

The quantile-quantile plots in Figure 13 show that precipitation events with low intensities

were overestimated in all datasets. The number of events with higher precipitation values

was mostly underestimated in ERA5 and ERA5-Land. The underestimation became more

pronounced for higher P intensities. At Garmisch-Partenkirchen (Type 2), for instance, the
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Figure 11: Biases of the three raw precipitation datasets and the altitude adjusted ERA5 and
ERA5-Land data for nine example stations in Germany annually summarised as well as for
summer and winter season.

bias was positive and altitude adjustment reduced the daily precipitation which led to a smaller

bias, but the reduction of already underestimated occurrence (of high precipitation values)

led to a even higher spread in the quantile-quantile (Q-Q) plots. For Type 1 station, e.g.

Wendelstein, the already overestimated occurrence of low daily precipitation was increased

due to the altitude adjustment, while the occurrence of high daily P intensities was increased

and approximated the diagonal.

Finally, a brief look at event identification for different P thresholds, P ≥0.1mm (the detec-

tion limit in the met. stations and IMERG-F), P ≥1.0mm (approximately the 25% quantile (Q25)

over all German stations), P ≥ 10mm (the 75% quantile over all stations) and, P ≥30mm for

extreme precipitation events. As expected, for most of the nine stations the FB was above
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Figure 12: Taylor Diagrams with SD, r, and RMSE for the nine selected stations in Germany.

1 without noteworthy changes between P ≥0.1mm and P ≥1.0mm. At Bad Harzburg and

Hamburg-Fuhlsbüttel, the two stations with only small elevation differences, FB was markedly

higher than at the other stations. However, whether the altitude adjustment leads to a higher

or lower FB depends more on the individual station than on the elevation difference. Looking

at H or POD, one sees lower values for IMERG-F than for the reanalyses. Figure 11 shows

that the influence of altitude adjustment on H became notable for higher daily precipitation.

This effect corresponds to the findings regarding the Q-Q plots. However, H was reduced

for Type 2 stations, and increased for Type 1 stations. In the same way, FAR was increased

(reduced) for Type 1 (2) stations after the altitude adjustment. The generally decreased H and

increased FAR values for higher P thresholds suggest a low ability of the models to detect

the actual events. The very low H and high FAR for both reanalyses in Hamburg-Fuhlsbüttel

for P ≥30mm should mainly result from only 18 such extreme precipitation events. As a con-

sequence, the HSS for ERA5 and ERA5-Land in Hamburg-Fuhlbüttel is very low considering
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5 Results

Figure 13: Quantile-quantile plots for the nine German stations.

precipitation events with P >= 30mm/day. For the lower P intensities, the HSS of the grid-

ded datasets is relatively similar, although IMERG-F has somewhat lower values, which also

remained for higher P intensities, but HSS generally decreased with higher P intensities. The

effect of altitude adjustment on HSS was rather small, because the increase and decrease of

H and FAR due to the adjustment levelled each other out. However, the higher impact of the

NLM on Type 2 stations and the higher effect of the LM on Type 1 stations are again visible.

5.3 General Results for Brazil

The spatial patterns of the three gridded precipitation products are in good agreement in the

Brazilian study area. One interesting feature of higher rainfall in IMERG-F, which does not

appear in the reanalyses can be seen in austral summer at approximately 5°S and 50°W

(c.f. Fig. 5). When comparing the gridded data with the 472 stations used in the Brazilian

study area, a positive bias (bias.1) prevails for IMERG-F, while bias.1 for ERA5 and ERA5-
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5.3 General Results for Brazil

Land is slightly negative. Considering only the days where the threshold was met at the

met. stations, bias.2 is clearly negative for all three datasets with a more distinct bias for the

reanalyses. This pattern of biases remains for P ≥30mm/day, whereby bias.2 is, according

to the threshold, relatively large. Considering elevation and elevation differences, as shown

in Table 6, a positive bias for stations above 1000m can be found. Likewise, the distinction

between Type 1 and Type 2 stations shows the known pattern from Germany with a negative

bias.1 for the reanalyses and a strong positive bias for IMERG-F. In contrast to Germany the

bias for the reanalyses remained negative for the Type 1 stations, albeit less distinct. Though

close to 0, the bias.1 for IMERG-F remained positive. While P values in Germany were higher

at Type 2 stations, in the Brazilian study area P were higher at Type 1 stations. However,

bias.2 is negative for all datasets and for the three height-dependent distinctions, but bias.2 is

higher for Type 2 than for Type 1 stations. Additionally, in the Brazilian study area, no station

above 1000m is a Type 1 station. Moreover, the number of stations was low, which makes a

general statement difficult.
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Table 6: Mean daily precipitation, biases and MAE, for different subsets in Germany. Mean daily precipitation p.1 and bias.1 include dry days in averaging,
p.2 and bias.2 include only those days, when the precipitation threshold is met for observations.

All Stations,
P ≥0.1mm (n=472)

All Stations,
P ≥30.0mm, (n=472)

P.1 bias.1 P.2 bias.2 MAE.2 P.1 bias.1 P.2 bias.2 MAE.2

Met. Stn. Observation 4.0 11.7 47.3
IMERG- F 4.3 0.28 7.1 -3.7 10.0 46.4 -27.0 31.3
ERA5-Land 3.9 -0.09 4.9 -5.3 9.8 43.5 -35.5 36.4
ERA5 3.9 -0.09 4.9 -5.3 9.8 43.6 -35.5 36.4

Stations above 1000m
(n=15)

Type 1 stations
P ≥0.1mm (n=11)

Type 2 stations
P ≥0.1mm (n=3)

P.1 bias.1 P.2 bias.2 MAE.2 P.1 bias.1 P.2 bias.2 MAE.2 P.1 bias.1 P.2 bias.2 MAE.2

Met. Stn. Observation 3.8 9.7 4.6 10.1 2.8 10.0
IMERG- F 3.8 0.01 6.8 -3.0 8.2 5.4 0.71 7.8 -2.3 8.9 2.8 0.06 6.3 -3.5 8.4
ERA5-Land 3.9 0.11 5.1 -2.9 8.2 4.4 -0.28 5.3 -3.8 8.5 2.7 -0.1 3.5 -4.5 8.0
ERA5 3.9 0.08 5.1 -3.0 8.2 4.4 -0.28 5.3 -3.8 8.5 2.8 -0.03 3.6 -4.4 8.1
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5.4 Results for Selected Stations in Brazil

Although it is not representative, at least averaged over the available stations in both study

areas, the FB is much higher in the Brazilian study area for both reanalyses datasets and for

IMERG-F (c.f. Tab.5). Furthermore, in the Brazilian study area, the FB is approximately +1.0

during austral summer compared to the annual value, while it is roughly −1.0 during austral

winter. Even though the seasonal change is much greater than in Germany, the pattern is the

same. Another coincidence is the lower FB for Type 1 compared to Type 2 stations, though

the number of stations is low at 3 and 11, respectively. The performance measures CSI

and HSS are generally lower in the Brazilian study area, and seasonal differences are more

pronounced with lower values in austral winter. However, one should keep in mind that several

uncertainties exist in the Brazilian observations, such as long series of 0mm reports.

5.4 Results for Selected Stations in Brazil

In addition to those in Germany, nine stations were selected in the Brazilian study area with

the same distinction between Type 1 and Type 2 stations, but the elevation differences are

generally not as pronounced as in Germany, and they are likewise less marked at the selected

station. An overview of the location as well as some meta data can be found in Figure A.1 and

Table B.1.

The station Belterra, has a high positive bias (c.f. Fig. 14), which might have resulted from

erroneous measurements. While no clear pattern regarding the bias between Type 1 and Type

2 stations is visible, the biases at the northern stations Itaituba and Belterra are continuously

positive. During austral winter, the bias is virtually 0 at all stations except for Belterra, where

the high positive bias is at least reduced during austral winter. During austral summer, the

biases are correspondingly higher. Moreover, at virtually all stations IMERG-F better agrees

with the number of events of observed events than ERA5 or ERA5-Land does.

The diagrams in Figure 15 show that IMERG-F differs explicitly from the reanalyses and

has more comparable values with the observations not only regarding the bias but also often

in terms of SD and r. While the RMSE is higher than at the German stations for the three

datasets, r is clearly lower, with values approximately between 0.3 and 0.6. Furthermore,

while at most of the nine stations r is comparable among the datasets, at Itaituba and Belterra

IMERG-F has distinctly better values. These are the northern stations previously mentioned

in the context of the positive biases. Additionally, at these two stations the RMSE is somewhat

higher than at the remaining stations; moreover, both reanalyses effectively have SDs below

the observed values and below IMERG-F.

The previously explained tendency that IMERG-F rainfall better represents the rainfall in

the Brazilian study is additionally reflected in the Q-Q diagrams shown in Figure 16. The

diagrams indicate that the reanalyses underestimated the occurrence of higher daily rainfall

intensities at all stations except Belterra, while IMERG-F was in better agreement with the

observations. Like in Germany at most os the selected stations in the Brazilian study area

IMERG-F had a higher occurrence of high amount rainfall events than ERA5 and ERA5-Land.
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Figure 14: Bias for the selected Stations in the Brazilian study area summarised as annual,
summer and winter precipitation.

Both reanalyses datasets produced very similar results, though at some stations such as Porto

Gilandia the differences between the two reanalysis products became notable with higher

rainfall intensity.

To measure the ability of the gridded datasets to meet the occurrence of rainfall events with

different intensities at the selected stations, P thresholds of P ≥0.1mm (the detection limit

of IMERG-F and the observations), P ≥3.0mm (approximately Q25 of all Brazilian stations

used), and P ≥30.0mm (approximately Q90) over all observations are used. Unsurprisingly,

the FB got smaller for higher thresholds, and for P ≥3.0mm the FB was approximately 1 apart

from the northern stations Itaituba and Belterra where the number of wet days is still notably

overestimated by the reanalyses. For P ≥30.0mm the reanalyses include fewer events than

observed at the stations (except for Belterra), and the FB of IMERG-F is distinctly smaller.

Looking at H and FAR it can be noted that for lower rainfall intensities the reanalyses have

higher H as well as higher FAR values. For P ≥30.0mm there was a drastic decrease in H

for all three datasets. Nonetheless, H is higher for IMERG-F for the high rainfall intensities.

The higher FAR values for the reanalyses remain for the high rain intensity, as shown in

Figure A.5. In line with this the HSS is lower for high rain intensities, whereby the HSS is

higher for IMERG-F compared to the reanalyses. Interestingly, at Belterra the HSS is quite

low for the lower thresholds. In Itaituba the HSS is also very low for the reanalyses but not for

IMERG-F. The low performance of ERA5 and ERA5-Land at these two stations results from

the correction of tp and tn by chance, which is the term E in the HSS. However, IMERG-F

generally produced higher and thus better HSS values over all three precipitation thresholds.

In addition, the choice of performance measure has some impact on the evaluation results. For

instance, while the HSSs in Itaituba for IMERG-F and ERA5 are 0.49 and 0.03, respectively,

46



5.4 Results for Selected Stations in Brazil

standard deviation

st
an

da
rd

 d
ev

ia
tio

n

5

10

15

0

centred

RMS error

5

centred

RMS error

10

centred

RMS error

15

centred

RMS error0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.8

0.9

0.95

0.99

correlation

●
observed

●

●

●●

Unai 

5 10 15

0

centred

RMS error

5

centred

RMS error

10

centred

RMS error

15

centred

RMS error0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.8

0.9

0.95

0.99

correlation

●
observed

●

●

●●

Porto Gilandia 

0

centred

RMS error

5

centred

RMS error

10

centred

RMS error

15

centred

RMS error0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.8

0.9

0.95

0.99

correlation

●
observed

●

●

●●

Alto Parnaiba 

0

centred

RMS error

5

centred

RMS error

10

centred

RMS error

15

centred

RMS error0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.8

0.9

0.95

0.99

correlation

●
observed

●

●

●●

Cuiaba 

0

centred

RMS error

5

centred

RMS error

10

centred

RMS error

15

centred

RMS error0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.8

0.9

0.95

0.99

correlation

●
observed

●

●

●●

Itaituba 

5

10

15

0

centred

RMS error

5

centred

RMS error

10

centred

RMS error

15

centred

RMS error0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.8

0.9

0.95

0.99

correlation

●
observed

●

●●
●

Belterra 

5

10

15

5 10 15
0

centred

RMS error

5

centred

RMS error

10

centred

RMS error

15

centred

RMS error0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.8

0.9

0.95

0.99

correlation

●
observed

●

●

●●

Catalao 

0

centred

RMS error

5

centred

RMS error

10

centred

RMS error

15

centred

RMS error0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.8

0.9

0.95

0.99

correlation

●
observed

●

●●
●

Diamantina 

5 10 15
0

centred

RMS error

5

centred

RMS error

10

centred

RMS error

15

centred

RMS error0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.8

0.9

0.95

0.99

correlation

●
observed

●

●
●●

Tupaciguara 

Dataset 

●
●

●
●

Station 
IMERG−F 

ERA5−Land 
ERA5 

Figure 15: Taylor Diagrams with SD, r, and RMSE for the nine selected stations in Brazilian
study area.

the extremal dependency index is 0.22 and 0.57 for P ≥ 0.1mm and thus draws another

picture of the performance in this special case.
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Figure 16: Quantile-quantile plots for the nine selected stations in the Brazilian study area.
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6 Discussion and Conclusion

From the results above, one can see that on the one hand the reanalyses provide better re-

sults in the German study area in relation to the satellite-based IMERG-F estimates, while

on the other hand IMERG-F is better in the tropics. This is true applies for both the continu-

ous measures and the verification measures for binary events. Thus, most of the findings of

this thesis are in good agreement with earlier studies that used older reanalyses and satellite

precipitation, or IMERG-F data. For example, there is the underestimation of heavy rainfall in

Brazil by Sun et al. (2018), which was also found here for most stations, and the overestima-

tion of summer rainfall in Brazil for IMERG-F found by Rozante et al. (2018), which is likewise

still prevalent in the actual IMERG-F v06, even though the bias during austral summer is only

slightly positive at 0.1mm/day. The seasonal performance differences for reanalyses and

satellite precipitation with worse (better) performance during summer for reanalyses (satellite

precipitation) were likewise found for other areas (e.g. Asong et al. 2017).However, as also

became evident, results from an evaluation with met. stations strongly depend on the stations

themselves, because of the strong spatial and temporal variability of precipitation. Therefore,

the comparison of specific results as the underestimation of precipitation by IMERG-F across

Northwest Europe found by Sun et al. (2018) can not be affirmed without limitations. While

the average bias across all 1504 stations in Germany is slightly positive, at six out of the nine

selected stations, the annual bias is negative. Because when averaged over all station the

overestimation also appears during summer, the summer overestimation found by Sun et al.

was also found here. Although the findings from Zolina et al. (2004) are somewhat older, the

higher correlation of reanalyses and observations during winter compared to summer is still

prevalent in the ERA5 and ERA5-Land in both study areas. Moreover, the underestimation of

high-precipitation events was found at most of the selected stations in both study area. The

high r values of roughly 0.9, that have been found by (de Leeuw et al., 2015) for ERA-Interim

in England and Wales were not reached in this study. The strong overestimation of winter

precipitation in IMERG-F compared to radar-based precipitation estimates in Germany (Ram-

sauer et al., 2018) is still prevalent in IMERG-F v06, where the average daily P during winter

is 2.9mm compared to the observed 2.1mm. The positive (negative) bias during summer

(winter) found by Betts et al. (2019) for Canada was also found for Germany when the bias

was calculated for observed wet days. Considering all days, the bias was slightly positive in

both seasons in Germany.

The non-presence of an altitude-precipitation relationship that was found for satellite-

based precipitation estimates in both research areas in this study was also partly found by

Arakawa and Kitoh (2011). They found a lower relationship for satellite precipitation merged

with observation than for gridded observation-based datasets in low and middle latitudes,

though they found a comparable relationship between those to types of datasets in high lat-

itudes. However, the use of IMERG-F and ERA5 still offers some scope for more detailed

investigations.

49
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Because this thesis aimed to compare the best available data, the quality index that is

part of the IMERG-F was not considered, but it would be interesting to look at differences with

respect to the quality index and the incorporated sensor data (e.g. IR and MW). Moreover,

because monthly GPCC data is used to correct IMERG-F precipitation, it could be examined

if the performance of IMERG-F depends on the quality of the GPCC data. This point is espe-

cially strengthened since the GSMaP product from JAXA with daily correction outperformed

IMERG-F in northern Brazil (Rozante et al., 2018). For ERA5, it would be interesting to use

the ensemble data to see if the error lies within the ensemble spread, for example.

The results of this study indicate that an elevation-dependent bias or performance differ-

ence exists, as has often been stated (Kim et al., 2017; Prakash et al., 2018; Chen et al.,

2016; Asong et al., 2017; Hirpa et al., 2010; Guo et al., 2017), but more precisely, bias and

performance rather depend on the elevation difference between the station and the model.

In both study areas the average bias was negative (positive) for Type 1 (2) stations, whereby

IMERG-F shows the same direction of change between Type 1 and 2 stations, but does not

necessarily have the same sign as ERA5 and ERA-Land. However, the findings from Section

4.2 and the station type-dependent bias were reasons to try to estimate the model bias cor-

rected for the elevation difference. Overall, the effect of the altitude adjustment was positive,

although notably different within each station subset. Though the averaged bias after altitude

adjustment was smaller, it does not necessarily have to be; for instance, at stations with a

high bias but a low elevation difference, the bias was higher after the adjustment. The altitude

adjustment only marginally affected the measure for binary events and approximately levelled

itself out, because increased daily precipitation resulted in a higher number of both hits and

false alarms.

Considering the method of altitude adjustment and Brunsdon et al. (2001), who found a

steep increase of precipitation with altitude in Great Britain and who furthermore argued that

this was related to a lower number of stations and the distributions of the same, as well as

Daly et al. (1994), who have suggested estimating topographic effects from a rather coarser

resolution, the attempt to use model output to assess the effects of elevation seems justi-

fied. Nevertheless, limiting the LM to certain altitudes or limited regions altered the slope

by a considerable amount. This suggests the need for a method that considers the local

conditions. This could also help to apply the altitude adjustment in the tropics. Regarding

the Brazilian study area the convective proportion of TP was continuously high and no rela-

tion could be found between altitude and rainfall, there was no substantial difference in the

precipitation-elevation relationship for high or low convective proportions in Germany. Thus,

the differentiation of types and proportions based on ERA5 might be insufficient. Additionally,

other studies have confirmed the limited relationship between CP and elevation. For instance,

Sokol and Bližňák (2009) have differentiated between convective and non-convective rainfall

on the rainfall duration during summer in the Czech Republic and have not found a relation-

ship between convective rainfall and elevation. In keeping with this, Ragette and Wotawa

(1998) have ascribed low evaporation in the tropics to the high humidity. However, de Leeuw
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et al. (2015) differentiated ERA-Interim CP and large-scale precipitation in Great Britain and

found no significant differences between modelled and observed precipitation based on the

precipitation type.

Because the approach of estimating evaporation from model output was deficient in the

tropics and because its impact in Germany varied spatially, meaning from station to station, it

seems advisable to bring the method to a more physically based approach. This could be done

by incorporating temperature and humidity profiles, for instance, since in ERA5 or the IFS the

evaporation depends on the saturation deficit. Another benefit of incorporating other variables

would be that one could attempt to estimate the evaporation for single events instead of using

long-term average values. This is in keeping with Shige and Kummerow (2016) and Shige

et al. (2013), who have tried to distinguish wind-induced rainfall and used different rainfall

profiles. Damseaux et al. (2019) have tried to tackle the problem of poor topographically

representation in regional climate models by different DEM generalisation methods, with only

slight success for rain shadow effect in Patagonia.

The step from trying to achieve better evaporation estimates to considering other topo-

graphic effect is not large and has been made by Funk et al. (2003), for instance. Although,

other studies (e.g. Gerlitz et al. 2015 and Karger et al. 2017) used topographic indices, such

as the Wind Exposition Index (Böhner and Antonić, 2009), its impact on precipitation at the

(coarse) resolution of ERA5 and ERA5-Land is hard to estimate; indeed, using linear regres-

sion a negative relationship was found for the German study area in this study. Thus, to

determine the effect of such topographic indices, other datasets and other methods than the

ones used here would be necessary.

If more topographic effects are considered, the improvement of the horizontal resolution

of modelled precipitation or the improved representation of modelled precipitation at the sta-

tion location is often aimed for. The incorporation of topographic effects in such a statistical

downscaling remains difficult, because the estimation of the effect remains difficult since high-

density networks would be necessary. On the other hand, such effects may explain some of

the variations within the subsets of Type 1 or Type 2 stations. Nonetheless, the problem of

too many wet days is not solved by solely incorporating more topographic effects. Instead the

deviating distributions would need to be corrected like in Volosciuk et al. (2017). However,

only a certain fraction of the precipitation variability can be explained by the topography and

in areas without complex topography the opportunities to improve gridded precipitation data in

a statistical manner are probably very limited. Nonetheless, since there has already been an

attempt to use machine learning to resolve moist convection Gentine et al. (2018), there are

new possibilities to improve modelled rainfall.

Based on this thesis, it can be concluded that the performance of reanalyses and satellite-

based precipitation estimates prevalent in earlier datasets still can be found in the most recent

datasets, namely IMERG-F v06, ERA5, and ERA5-Land. Moreover, the assumption of an

elevation-dependent bias due to elevation differences can be verified using met. stations in
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6 Discussion and Conclusion

Germany. In general, the bias was reduced when elevation differences and a bias existed at

the same time. It would be good to shift the altitude adjustment to a more physically based

approach for two reasons. First, event-based and local differences could be considered, and

second, the method could also be applied in the tropics where the evaporation of precipitation

is rather low. However, because the altitude adjustment does not aim to correct for other

topographical effects than elevation, it is not useful to reduce the bias and the frequency bias

of gridded precipitation at certain station locations.
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Figure A.1: Stations considered in this work (black dots) and 9 selected stations for Germany
(left) and the Brazilian study area (right), respectively.
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Figure A.2: Distribution of altitude and average daily precipitation from IMERG-F in Germany
and Brazil.
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Figure A.3: Average ERA5 CBH (1981-2010) above model topography in Germany.
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Figure A.4: Hit Rate or POD, FAR and HSS for different precipitation thresholds (0.1, 1.0, 10.0 and 30.0mm/day) for the the nine selected German stations.
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Figure A.5: Hit Rate or POD, FAR and HSS for different precipitation thresholds (0.1, 3.0, and
30.0mm/day) for the the nine selected in the Brazilian study are.
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Table B.1: Metadata for the selected stations in Germany and Brazil. The bracketed elevation value is taken from 250m SRTM data.

Name Altitude Lat. Lon.
Altitude

ERA5 Topo.
Altitude

ERA5-L Topo.
Difference

Altitude-ERA5 Topo.
Missing [%]

Garmisch-Partenkirchen 719 47.48 11.06 1157 1130 -438 0.2
Oberstdorf 806 47.40 10.28 1182 1235 -376 0
Marktschellenberg 501 47.71 13.04 835 865 -334 2.5
Harzburg,Bad 201 51.90 10.57 255 307 -54 58.3
Hamburg-Fuhlsbüttel 14 53.63 9.99 26 15 -12 0
KahlerAsten 839 51.18 8.49 462 644 377 0
Brocken 1134 51.80 10.62 354 684 780 0
Feldberg/Schwarzwald 149 47.88 8.00 681 974 809 0
Wendelstein 1832 47.70 12.01 814 1061 1018 0

Unaí 460 -16.37 -46.55 834 814 -374 0.1
Porto Gilandia 220 -10.76 -47.77 410 374 -190 40.2
AltoParnaíba 285 -9.10 -45.93 418 349 -132.95 0
Cuiabá 151 -15.55 -56.12 246 184 -94.66 12.3
Itaituba 45 -4.28 -56.00 66 32 -21 0
Belterra 176 -2.63 -54.95 65 114 110.74 0
Catalão 840 -18.18 -47.95 724 805 116.47 0.1
Diamantina 1296 -18.25 -43.60 1065 1171 231.12 1
Tupaciguara (905) -18.60 -48.69 665 862 240 37.5
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