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In this work we investigate the influence of magnetic fields on the localization
and the density of states of fermions in some low-dimensional disordered systems.

The first part is concerned with the localization of electrons in thick, disor-
dered wires in the presence of a constant magnetic field. The second part deals
with some properties of Composite Fermions in the Fractional Quantum Hall Ef-
fect and with the related problem of free fermions moving in a 2D static, random
magnetic field.

In part 1 we investigate the averaged localization length of fermions in a quasi
1D system as a function of a magnetic field applied perpendicular to the wire. We
show that the localization length increases with the magnetic field by calculat-
ing the autocorrelation function of spectral determinants. For strong fields, the
localization length saturates at twice its value without magnetic field, in agree-
ment with previous analytical and numerical work. The crossover behaviour of
the localization length is shown to be governed by the magnetic phase shifting
rate. We derive this quantity analytically in a general, closed form. We compare
our results with recent experimental work.

In part 2, chapter 5, we investigate the spin polarization of the FQHE ground
states at fixed filling factors within a model of spinful, non-interacting Composite
Fermions. We show that transitions between differently polarized ground states
as a function of the magnetic field occur, in agreement with recent experiments.
We also investigate the effect of temperature, disorder and spin-orbit scattering
on the transitions.

In chapter 6 we consider the problem of a fermion subject to a static random
magnetic field with large mean. This problem is also important for the Composite
Fermion description of the Fractional Quantum Hall Effect. We investigate the
properties of the localized states which determine the spectrum in the tails of the
density of states. We calculate the Density of States in the tails as a function of
the energy and the mean value of the RMF within the framework of the Optimum
Fluctuation Method. We show that, near the centres of Landau bands, the DOS
is a Gaussian function of the energy, whereas the energy dependence of the DOS
is non-analytic near the band edge.



In dieser Arbeit untersuchen wir den Einflul von Magnetfeldern auf das
Lokalisierungsverhalten und die Zustandsdichte von Fermionen in niedrigdimen-
sionalen Systemen.

Der erste Teil beschaftigt sich mit der Lokalisierung von Elektronen in dicken,
ungeordneten Dréahten in einem konstanten Magnetfeld. Der zweite Teil handelt
von einigen Eigenschaften von Composite Fermions im Fraktionalen Quanten-
halleffekt(FQHE) und dem zugehérigen Problem von sich in einem statischen,
zweidimensionalen Zufallsmagnetfeld bewegenden, freien Fermionen.

In Teil 1 untersuchen wir die gemittelte Lokalisierunglange von Fermionen
in einem quasi-eindimensionalen System als Funktion des senkrecht zum Draht
angelegten Magnetfeldes. Wir berechen die Autokorrelationsfunktion der Spek-
traldeterminanten und zeigen, dass die Lokalisierungslange mit dem Magnetfeld
ansteigt. Fiir starke Felder sattigt die Lokalisierungslidnge beim zweifachen ihres
Wertes im Fall ohne Magnetfeld, in Ubereinstimmung zu bestehenden analytis-
chen und numerischen Arbeiten. Es wird gezeigt, dass das Ubergangsverhalten
von der magnetischen Phasenverschiebung bestimmt wird. Wir leiten dies ana-
lytisch in allgemeiner, geschlossener Form her, und vergleichen unsere Ergebnisse
mit jiingsten experimentellen Arbeiten.

In Teil 2, Kapitel 5 untersuchen wir die Spinpolarisation des FQHE Grundzu-
stands bei festen Fiillfaktor in einem Modell von nicht-wechselwirkenden, spinbe-
hafteten Composite Fermions. Wir zeigen in Ubereinstimmung mit jiingsten Ex-
perimenten, dass Ubergange zwischen verschieden polarisierten Grundzustanden
als Funktion des Magnetfeldes auftreten. Wir untersuchen ebenfalls den Einfluf}
der Temperatur, Unordnung und Spinbahnwechselwirkung auf die Ubergange.

In Kapitel 6 behandeln wir das Problem eines Fermions in einem statischen
Zufallsmagnetfeld mit grossen Mittelwert. Dieses Problem ist ebenfalls wichtig
fiir die Composite Fermion-Beschreibung des FQHE. Wir untersuchen die Eigen-
schaften der lokalisierten Zustinde, welche das Spektrum in den Schwénzen der
Zustandsdichte bestimmen. Wir berechnen die Zustandsdichte in den Schwénzen
als Funktion der Energie und des mittleren Wertes des Zufallsmagnetfelds im
Rahmen der Optimum Fluctuation Methode. Wir zeigen, dass nahe dem Zen-
trum der Landaubander die Zustandsdichte eine Gauflfunktion der Energie ist,
wohingegen die Energieabhangigkeit der Zustandsdichte an den Bandrandern
nicht mehr analytisch ist.
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Introduction

The physics of disordered systems with reduced dimensionality has been the sub-
ject of intense theoretical and experimental research in the past 30 years.

Until recently, disorder was always assumed to be of electrostatic nature and
connected with the presence of impurities and imperfections in the crystal.
Quantum interference effects in a disordered electrostatic potential drastically af-
fect the properties of the electronic wavefunctions. According to the celebrated
scaling theory of localization, disordered, non-interacting one-dimensional (1D)
and two-dimensional (2D) systems at the absolute zero of temperature are in-
sulators since all the one-particle wave functions are localized, no matter how
weak the disorder is. The exponential localization of all the eigenstates has been
proven rigorously for 1D and quasi 1D systems. The 2D case is more difficult to
tackle since it lies at the edge between metallic and insulating. On the contrary,
three-dimensional systems exhibit a disorder induced metal-insulator transition
(MIT). In the 2D and 3D case, the only available rigorous results concern the
exponential localization of electrons in the tails of quantum-mechanically allowed
energy bands.

The application of a magnetic field induces changes in the phase of the wave
functions and thus affects interference effects. Roughly speaking, such effects
are reduced due to the breaking of time reversal symmetry. As a consequence,
in the presence of a strong magnetic field, the localization length of electrons in
quasi 1D systems is doubled. As far as 2D systems are concerned, the interplay
of disorder and high magnetic fields is responsible for the Integer Quantum Hall
Effect. In this regime, Landau levels are broadened into bands and states are
localized in the tails of the bands. Near the centres of Landau bands, there
are singularities in the localization length as a function of the energy and thus
localization-delocalization transitions induced by the magnetic field occur.

In the above scenario, electron-electron interactions enter only at non zero
temperature as a dephasing source which upsets quantum interference and lo-
calization. However, their effects can be more dramatic. For instance, it is well
known that Coulomb interactions alone can induce a MIT, the so called Mott-
Hubbard transition. An understanding of many experimentally observed MITs,
especially in highly doped semiconductors, is not possible without taking both
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disorder and interactions into account.

As regards 2D systems in a strong magnetic field, the interplay of Coulomb
interactions and disorder leads to the Fractional Quantum Hall Effect. In this
regime, due to interactions and high magnetic fields, electrons form new, col-
lective ground states. Until recently, much of our understanding of this effect
was based only on the study of trial ground state wavefunctions and not on any
systematic perturbative approach.

Recently, a new theory of the FQHE has been developed, the so called Com-
posite Fermion theory. Within the framework of this theory, a new object, the
Composite Fermion (CF), made out of one electron and an even number of flux
quanta attached to it, is introduced. It turns out that CFs behave in many re-
spects like weakly correlated fermions with strongly renormalized quasiparticle
effective parameters due to CF-CF interactions. At the noninteracting CF quasi-
particle level, the FQHE of electrons is mapped onto the IQHE of CFs. Many
important features of the FQHE can be addressed at this level.

Due to their composite nature, CF's experience a fictitious random magnetic

field (RMF) in addition to the external one and to the scalar disorder poten-
tial due to impurities. Owing to its relevance in this effective description of the
FQHE, the problem of a fermion moving in a 2D RMF has attracted considerable
interest recently. Furthermore, stochastically inhomogeneous magnetic fields can
now be experimentally realized in various ways.
This problem is directly amenable to the theory of noninteracting particles and
it has been shown that a 2D electron gas in a static RMF belongs to the con-
ventional unitary universality class. Therefore, all the states are expected to be
localized in such systems when the RMF has zero mean value and the Quantum
Hall Effect ought to occur when the average value of the RMF is large.

In this thesis we investigate the localization of electrons in quasi 1D wires in
the presence of a magnetic field and the localization of fermions in 2D subjected
to a random magnetic field with large mean value in the tails of Landau bands.
We calculate the leading exponential factor of the density of states in these tails.
We also study the spin polarization of the FQHE ground states in terms of non
interacting spinful CFs.

In chapter 1, we give an introduction to some of the most successful approaches
to localization in disordered systems. After discussing the weak localization
corrections to the transport properties of such systems, we turn to the scaling
theory of localization and then to a field-theoretic approach, the supersymmetric
non-linear o-model.

In chapter 2 we investigate the influence of a magnetic field on the localization
properties of electrons in quasi 1D systems by means of a spectral correlation
function, the autocorrelation of spectral determinant. The averaged localization
length is derived as the crossover length scale from correlated to uncorrelated
energy level statistics. This approach enables us to calculate the localization
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length in the crossover region between the orthogonal ensemble (no magnetic
field) and the unitary ensemble (moderately strong magnetic field). We derive
the magnetic phase shifting rate analytically in a very general, closed form. This
quantity is shown to govern the crossover behaviour of the localization length.
For strong fields, we show that the localization length saturates at twice its
value without magnetic field, in agreement with previous analytical work. Direct
quantitative comparison with recent experiments is given.

In chapter 3 we discuss the general theory of the IQHE and the FQHE while
in chapter 4 we introduce the theory of spinless Composite Fermions. In the
latter chapter we also calculate explicitly the correlator of the random magnetic
field experienced by CFs.

In chapter 5 we investigate the spin polarization of the FQHE ground states
at fixed filling factors within a model of spinful, non-interacting Composite
Fermions. We show that transitions between differently polarized ground states
as a function of the magnetic field occur, in agreement with recent experiments.
The effect of the fictitious, static RMF on the spin polarization transitions is
also investigated, as well as the effect of temperature and spin-orbit scattering.

In chapter 6 we consider a fermion (electron or Composite Fermion) in 2D
subject to a static RMF with large mean value and we investigate the properties
of the localized states which determine the spectrum in the tails of the density
of states. This analysis enables us to calculate the dependence of the Density
of States on the energy and the mean value of the RMF in the tails within
the framework of the Optimum Fluctuation Method. We show that, near the
centres of Landau bands, the DOS is a Gaussian function of the energy, whereas
the energy dependence of the DOS is non-analytic near the band edge.






Chapter 1

Localization in Disordered
Systems

In this chapter we address the quantum-mechanical motion of a particle in a
random, static potential. Due to quantum interference processes, disorder lo-
calizes all the electronic wavefunctions in one-dimensional and two-dimensional
systems. In three dimensions, a transition from metallic to insulating behaviour
occurs by changing the strength of disorder.

We start this chapter by discussing the first quantum corrections to the clas-
sical behaviour of disordered systems, the weak localization corrections. Then
the suppression of this effect due to a magnetic field is discussed, as well as the
effect of spin-orbit scattering and spin-flip scattering.

Finally, we focus on more sophisticated, non-perturbative theories of quantum
localization. After presenting the scaling theory of localization, we briefly discuss
the supersymmetric non-linear o-model, which has led to significant advances in
the study of this problem.

1.1 Weak Localization

In this section we will consider a gas of noninteracting electrons which experience
a scalar potential V' (r) created by a random distribution of static impurities. The
Hamiltonian p?/2m,+V (r) is time-reversal invariant (TRI). We will assume that
the impurities are dilute, i.e. both the Fermi wavelength A\r and the range a of
the impurity potential are much smaller than the mean free path | = vp7., where
vp is the Fermi velocity and 7y, is the transport time, defined as the characteristic
time an electron can travel before the direction of its velocity is randomized (for a
0-correlated random potential 7, coincides with the momentum relaxation time
T, see subsection 1.1.1).

Semiclassically, the stochastic motion of electrons in a disordered metal at T =
0 is described by the Boltzmann equation [1]. In transport theory of mesoscopic
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systems, the large-distance and long-time behaviour of the particle (compared
to | and 7, respectively) is of interest: in this limit the Boltzmann equation
simplifies drastically, yielding the diffusion equation

(% - Dv2> n(r,t) = 0. (1.1)

The classical transport of disordered metals is thereby characterized by the diffu-
sion constant D, which is related to the conductivity o by the Einstein relation
o = 2e%pD, where —e is the electron charge and p the density of states. In
this picture, quantum mechanics only determines the scattering cross section for
electron-impurity scattering in the Boltzmann equation.

It was realized in [2, 3] that fundamental quantum interference effects yield
corrections to the classical conductivity. These effects can be qualitatively un-
derstood by considering the return probability of a particle, i.e. the probability
p¢ for an electron which started at a point r at time 0 to arrive at the same point
at time ¢. According to Feynman, this quantity is the modulus squared of the
integral over all paths which start at r at 0 and end at r at ¢:

De = |ZAW|2 = Z‘AW‘Z+ZAUA7*]” (1.2)
n n

n#n’

where A,, the amplitude for the path 7, is:

Ay = expf /O dr(1/2mei(7) + V (r, (7))} (1.3)

When A\p < [, only classical paths have to be included. Hence, the first term
in equation 1.2 is the classical return probability and the second represents the
interference of various amplitudes. For most paths the interference is not essential
since their phases differ strongly and, therefore, the interference terms also differ
strongly. Hence, the average value of the interference term will vanish when
summing over all paths [2, 4]. However, owing to the TRI of our model, the
amplitudes of time-reversed trajectories are equal and, therefore, the interference
between them cannot be neglected. As a result, the contribution to p; of two
time-reversed paths is

|[Agl* + Ay ” + 2ReA A", = 4|4, P, (1.4)

i.e. twice its classical value. In correspondence to this enhancement of localiza-
tion of electrons, there is a decrease in conductivity.

Let’s now estimate the magnitude of this correction. Since the quantum me-
chanical width of an electron path is ~ Ag, the volume covered by a path in an
interval dt is given by A% 'vpdt. On the other hand, an electron spreads over
a volume (Dt)%? after a time interval t. Therefore, the probability P for a ray
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Figure 1.1: Geometry of a self-intersecting path.

tube of width ~ Ar to intersect itself is the ratio of these two volumes integrated

over all times (see fig.1.1):
L?/D A1y
P~ dt7E T 1.5
L (1:5)
The lower limit of integration is 7 since the diffusion equation makes sense only
for times t > 7. As regards the upper limit, it’s the time it takes for an electron

to spread over the whole sample (assuming that L is the linear dimension of the
sample). Hence, the weak localization corrections to o are [4]

962 (L=1)/m d=1
do ~ —oP = % In(L/1)/7? d=2 (1.6)
(' =LY/x® d=3
At T > 0, inelastic scattering processes (e~ — e~ and e —phonon interac-

tions) tend to destroy the coherence of time-reversed paths. If we introduce
a phenomenological, T-dependent phase coherence time 74(7") which accounts
for all the phase breaking processes, a phase coherence length can be defined as
Ly(T) = \/D1,. When Ly(T) is smaller than the actual dimension of the sample
L , L must be replaced by L4(T) in formulas 1.5 and 1.6 (see section 1.1.3).

We want to stress here again that formula 1.6 is valid provided that A\p < [
or, equivalently, kgl > 1 (kr Fermi wave vector). Moreover, in one and two
dimensions, it fails at sufficiently large length scales because the reduction in
conductivity grows as L increases. This behaviour strongly supports the scaling
theory of localization, which predicts that all the wavefunctions are localized in
1d and 2d systems due to disorder [2, 5] (see section 1.2.1).
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1.1.1 Diagrammatic analysis

The quantum corrections to the conductivity and the return probability due to
interference can be calculated in a more rigorous way by the use of diagrammatic
techniques. We will consider the noninteracting Hamiltonian

p2

2me

H =

+ V(r), (1.7)

where m, is the electron effective mass and V(r) is the random electrostatic
potential. We will assume that V' (r) is Gaussian and d-correlated and that its
mean is zero:

ViE)y=0 VE)VE)=WkE—1)=nV>*r -1, (1.8)

where n; is the impurity concentration. The distribution function of the disor-
der potential is P(V) x exp[—(mi|V[?)"! [ drV(r)?] and the disorder average is
defined as (...)y = [dV (r)P[V]... .

In the limit of weak disorder, A\p < [, the electronic self-energy 3 can be ade-
quately estimated in the self-consistent Born approximation SCBA (see fig.1.2).
In the region close to the Fermi energy, |E — Fr| < Ep, the imaginary part of ¥
is given by [6]:

h
Im(E,p) = — = 2mm|V|?pr, (1.9)
T

where pp is the Density of States at the Fermi energy and 7 is the momentum
relaxation time at the Fermi energy. For d-correlated potentials, 7 is identical to
the transport time 7i,. The real part of 3, though divergent, can be absorbed
into an irrelevant renormalization of the energy.
It can be shown that, if \p < [, diagrams where impurity lines cross can be
neglected (for the self energy) [6].

Therefore, for large energies £ ~ Ey, the averaged retarded and advanced
Green’s functions G®A) are given by

1

" Vp.B) = pop ih/27’ (1.10)
P

where E, = p?/2m,. Fourier tarnsforming Eq. (1.10), we get

[r—r]

GR(A)(I_ . I‘I; E) — GOR(A)(I' _ I";E)e_ A (111)

where GOR(A) is the free electron retarded (resp. advanced) Green’s function.
G decays on length scales of the order of [ due to elastic impurity scattering
randomizing the phase of the electronic wavefunction amplitude ¥(r,¢). The
Green’s function G cannot thus grasp the quantum effects described in section
1.1, which occur at larger length scales. To describe the physics on length scales
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p,E pLE D E

Figure 1.2: The electronic self-energy in the SCBA. The thick internal line represents the exact
fermionic Green’s function and the dashed line represents the impurity correlator W(r —r').

L > [ (or, equivalently, on time scales ¢ > 7 = [/vr), one needs to consider
quantities containing higher moments of (G, such as the disorder average of the
electron density n(r,t) = (|¥(r,t)|?) or the averaged conductivity o. In the
following, we will consider the averaged electron density.

Since

U(r,t) = /dr'GR(r, t;r, )W (r!, ) (1.12)
(where ¢t > t'), the averaged density can be written as
n(r,t) = /dr'dr"F(r, tr e ) (e ) (e, 1), (1.13)
where
L(r,t;r' x",¢') = (GR(r, t; 1’ )G (2", t'; 1, 1)). (1.14)

Diagrammatically, this average is given by the sum of two classes of diagrams:
a class where the two particle lines are not connected by impurity lines, yielding
the product of the impurity-averaged propagators and a class where they are
connected. The second class contains the interesting physics.

Classical diffusion (1.14) is ”contained” in the quantum correlator (1.14).
Since classically the evolution of the amplitude ¥(r,¢) and its conjugate ampli-
tude U*(r, t) along the diffusion path are not independent, the classical diffusion
is described by the ladder diagrams shown in fig 1.3. In these diagrams the
impurity lines correlate the evolution of ¥ and U* at equal positions and equal
times. The contribution of the generic ladder diagram with n impurity lines can
be written as

¢"(q,w), (1.15)
where

¢(a,w)=m|V[* Y GMp', )G (p, E)
q
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Figure 1.3: The Diffuson ladder diagrams.
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Figure 1.4: The Cooperon crossed diagrams.

=1+irw—7Dg* (1.16)

and p’ = p+q, F' = F+w. Summing up the geometric series of ladder diagrams
(the so called Diffuson), we get

1/7

D = 1.17
(@) = 5 (1.17)
which is indeed the Fourier transform of the propagator of the diffusion equation
(1.1):

H(t _ tl) (r—r')2

(4rD(t — t'))4/? e 1Pe= (1.18)

What about interference effects? If we twist the ladder diagrams of fig.1.3
and then exploit the time-reversal invariance of our system, we get the so called
maximally crossed diagrams depicted in fig.1.4 . These diagrams clearly describe
the correlation of time reversed paths and are thus responsible for the weak
localization corrections to the return probability. The sum of maximally crossed
diagrams is called a Cooperon and is given by C(p,p’,w) = D(p + p’,w) [4, 6].
We can now take a Gaussian wave packet of width a peaked at the origin at time
t = 0 and calculate the temporal evolution of the averaged density n(r,t). If we
include both ladder diagrams and crossed diagrams in Eq. (1.13), we get

D(r,t;7',t') =

1 -2 »2

n(r,t) = W(e_wt + e 2a2)0(1), (1.19)
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where 6(t) is the step function. It follows from (1.19) that the averaged density
at r = 0 is twice as large as expected from the diffusion equation due to the
Cooperon, in agreement with the qualitative considerations of section 1.1.

1.1.2 The role of magnetic fields

Classically, the transport properties of electrons in a metal are only weakly af-
fected by a constant magnetic field B, as long as the inequality w.7 < 1 (where
we. = eB/mc is the cyclotron frequency) holds [1]. For larger B (such that
wT > 1), the bending of classical trajectories on the scale of the mean free path
[ is quite dramatic and interesting phenomena occur.

Quantum mechanically, a weak magnetic field can strongly affect the WL-
corrections to o since it breaks the time reversal symmetry [7, 8]. The amplitudes
of two time-reversed, self-intersecting paths n and —n acquire additional phase

factors:
e 7mBS
A, — Apexp <7,%£A.dr) = A, exp (2 B, )

B
Ay — Ajexp (—z'” S) , (1.20)

where ®; is the quantum of magnetic flux and ® is the magnetic flux through

the loop n. The phase difference between two time-reversed paths is definite,
A¢p = 21D /Py, but varies considerably for different loops. Therefore, the weak
localization term acquires a random phase depending on the loop size. The
randomness of the phase ultimately leads to the suppression of Cooperons and
thus to the destruction of the quantum interference effects responsible for WL:
the magnetic field acts as an effective dephasing source. The weak localization
corrections to o are now:

BID e g
(50/0N/ dt(Dt)d/Q(e’ o0, (1.21)

where (. ..) indicates an average over all closed, diffusive paths. Upon averaging,
we get (exp(iA¢(t))) = exp(—t/75), where 75 is an effective dephasing time
due to B. The latter quantity can be estimated by arguing that interference is

destroyed when the magnetic flux through a diffusive loop of size (D7p)Y/? is of
the order of ®:
BD1p ~ ®y = 15 ~ I3/D. (1.22)
It is now straightforward to estimate the magnetoconductivity:
2 [ neBE =2
o(B) — op=g ~ + { \/% i—3 (1.23)
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The increase of o as a function of B (negative magnetoresistance) has been ob-
served for a long time. At T > 0, L must be replaced by L4 and the characteristic
magnetic fields are determined by the condition [g ~ Ly, i.e., B ~ hc/ eLi. This
condition is equivalent to w.T ~ h/Tsep < h/Tep. In our model i/Tep < 1 and
thereby the characteristic fields are so weak that the conventional magnetoresis-
tance is practically zero.

For wires with diffusive width W > [, the magnetic rate varies quadratically
with the magnetic field, 1/7,(B) = Dg—zSBQ/KD, where S is the cross section of
the wire, and the constant Ky depends on the geometry of the wire, the direction
of the magnetic field and the scattering mechanisms [9]. For example, for a 2-
dimensional wire of diffusive cross section in a perpendicular magnetic field, it
yields Kp = 3.

For a wire with ballistic cross section, W < [, and a magnetic field perpendic-
ular to its cross section, the magnetic field dependence of the weak localization
correction to the conductivity is weakened by flux cancellation effects due to
boundary scattering [10]. If the magnetic field is so small that less than one
flux quantum @y = hc/e is penetrating an area W1, the effective dephasing rate
1/74(B) is quadratically increasing as for diffusive cross sections. However, its
slope is smaller by at least a factor W/, as a consequence of the flux cancellation
effect of edge to edge skipping orbits [10, 11].

When BWI1>> ¢y, the effective dephasing rate 1/74(B) was found by a semi-
classical method to increase only linearly with the magnetic field B [10, 11].

To conclude, a weak magnetic field cancels the leading order WL corrections
to the diffusion constant and the conductivity. However, higher order contribu-
tions from the diffusion modes alone lead to a renormalization of the diffusion
constant even in the unitary ensembles. It is difficult to evaluate higher order
contributions diagrammatically, since the junctions between diffuson ladder di-
agrams (so called ”Hikami boxes”) need to be dressed by a number of impurity
lines. The problem is even harder to tackle within semiclassical schemes. In
section 1.2.2 we will introduce a field theoretic approach which turns out to be
ideal for solving problems which go beyond low order perturbative corrections.
Moreover, we will see that higher order, subtle quantum interference effects do
lead to localization of all eigenstates in low-dimensional systems, even in the
presence of a magnetic field.

1.1.3 Dephasing

At nonzero low temperatures, the interaction of the electron with the environ-
ment partially destroys the weak localization effects. Energy exchange between
the electron and the environment upsets the constructive interference between
time-reversed paths, thus suppressing the Cooperon modes.

At very low temperatures, quasi elastic electron-electron scattering is the dom-
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inant dephasing mechanism and 7, is given by 77, where v = 2/3 for a 1-d wire
and v =1 for a 2-d film [12, 13].

Due to electron-phonon scattering, the exponent crosses over to v = 4 at
higher, but not too high, temperatures, fulfilling the inequality kg7 < (h?/Ter)Sp,
where Qp is the optical Debye phonon frequency [14]. This power can be smaller,
due to the confinement, in quantum wires. At even higher temperatures, there
is a crossover to v = 3 (in some amorphous metals, to v = 2) which is also due
to electron-phonon interactions [14].

Phase coherence is also weakened by impurities with internal degrees of free-
dom, such as magnetic impurities. We will briefly discuss magnetic impurities in
the next section.

In 1D and 2D systems, the phenomenological definition of 7, given in section
1.1.3 is not applicable at extremely low temperatures, when the phase coherence
length Ly becomes comparable to the localization length L. of electronic wave-
functions. If the system size L is also larger than L., the perturbative treatment
of disorder outlined in the previous sections breaks down and a non perturbative
theory is called for.

1.1.4 Magnetic impurities and spin-orbit scattering

In the presence of magnetic impurities, quantum interference is partially de-
stroyed since the electronic path is partially kept track of, due to the flipped
impurity spins revealing the visit of an electron. A phenomenological magnetic
scattering rate 7¢ can be introduced to account for this new scattering mecha-
nism.

The interaction energy of an electron with a short-range magnetic impurity
located at R; can be written as Hs = V55-S;0(r —R;), where §and S; denote the
electron and impurity spin, respectively, and Vs is the strength of the impurity-
electron magnetic interaction. Assuming that the magnetic impurities are dilute
(i.e. 7 < 75), the scattering rate /75 takes the form [15]:

h
o 2 pr (i | Vs [*(S3%)), (1.24)

where nny,; is the magnetic impurity concentration and {...) denotes an average
over the (assumed) random directions of the impurity spins. If 75 > 7,4(T’), there
is no temperature dependence of the conductivity.

Spin-orbit scattering, in contrast to magnetic-impurity scattering, does not vi-
olate time-reversal symmetry. However, its effect on the conductivity is non triv-
ial since it reverses the sign of the quantum correction and reduces the strength
by a factor of two [15]. The conductivity is then larger than classically expected.

We will now provide a physical picture for the spin-orbit effects following
reference [16]. The scattering amplitude for the spin-orbit interaction is (again
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assuming a range of the impurity potential < 1):
V+iVsolk xk')-§=V(1+iK-3), (1.25)

where K = V50/V (k x k'), k and k" are the electron momenta before and after
scattering. This operation yields a rotation of s’ by angles K; around the spin axis.
When a particle is scattered from state |k)|5) to state | —k)|3"), the accumulative
effects on the spin add up to a finite rotation R such that |§') = R|3). The matrix
of the spin rotation is:

_ ( cos(6/2)e®+9)/2 jsin(0/2)e (292 )

isin(60/2)e"® 92 cos(0/2)e UP+4)/2 (1.26)

where ®,0 and ¢ are Euler angles (see [17]). For the time-reversed scattering
process, the final state is | — k)|5 "), where |§ ") = R7'|3). Therefore, the
interference term will contain an additional factor (3"|5') = (5| R?|5). Assuming
that |5) = | 4+ 1/2), the latter matrix element becomes

(8"]3") = —sin®(0/2) + cos?(0/2) exp(i® + igh). (1.27)

If there is no spin flip, then all angles are zero and the matrix element is 1: we
have the regular weak localization correction. If the spin-orbit coupling is strong,
the spin state diffuses on the unit sphere and the orientations of the final spin
states are statistical. Therefore the average of (1.27) yields the factor —1/2 (of
course, this result does not depend on the initial state |3)).

As discussed above, an external magnetic field destroys time reversal invari-
ance and acts as an effective dephasing force. Hence, in the case of systems with
strong spin-orbit scattering, the conductivity should decrease when the magnetic
field is turned on [13]. This prediction has been confirmed experimentally [16].

1.2 Strong Localization

1.2.1 Single Parameter Scaling

The dimensionless conductance of a d-dimensional macroscopically homogeneous
hypercube of linear dimension L is defined as
G(L)

L) = .
g(l) = - T

(1.28)

where G(L) = oL% 2. According to the one-parameter scaling theory of lo-
calization [2, 5], at T = 0 the transport properties of a disordered system are
determined by g(L) alone. More specifically, if we consider a hypercube of linear
dimension NL and divide it into N? identical hypercubes of length L, then the
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conductance of the large cube depends only on N and the conductance of each
block:

9(NL) = f(N,g(L)) (1.29)
For a continuous variation of the linear dimension of the system, we get by
differentiating equation (1.29) [2, 5, 6]:
dlng _Ldg(NL) 1dg(NL) _1df(N,g)
dinL, ¢ dL g dN g dN

B(g)- (1.30)

Therefore, the logarithmic derivative of g is solely a function of g itself. This
argument is of course valid only if L is larger than any other microscopic length
scale of the system (\g,l).

If B(g) > 0, the conductance increases with the size of the sample, and vicev-
ersa for negative . Therefore, the scaling function S specifies the transport
properties for a system in the thermodynamic limit. The limiting behaviour for
the S-function can be easily obtained: in the limit of weak disorder, i.e. for g > 1,
the system should show metallic behaviour and the conductance is described by
classical transport theory: G(L) = L% 2. Hence 3(g) = d — 2 depends only on
the dimensionality of the system. In the limit of strong disorder (¢ < 1), the
conductance has the form g(L) o exp(—L/&), where £ is the localization length,
and the S-function depends logarithmically on g,

Blg)=Ing+ec (1.31)

It is thereby negative in any dimension for small g.

It is now reasonable to assume that the scaling function is a continuous,
monotonically increasing function of g and to draw it by interpolating from the
asymptotic behaviour at large and small g (see fig.1.5). This assumption is cor-
roborated by the theory of weak localization, which predicts negative corrections
to the classical conductance in any dimension. For instance, from formula (1.6)
we obtain for the asymptotic scaling function in the two-dimensional case:

1
5(9) =~ (1.32)
The first result of the scaling theory is that in 3D there is a fixed point , defined
by 5(g.) = 0, which corresponds to the metal-insulator transition described by
Anderson. If we start with a system with conductance larger than g., upon
increasing the size of the sample the conductance increases and the system flows
to the metallic regime. On the contrary, if the conductance of our sample is
smaller than g., the system becomes an insulator in the limit L. — oo. In the
1D and 2D case, 3 is always negative and therefore an insulating regime should
always be reached in the thermodynamic limit, no matter how weak the disorder

1S.
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Figure 1.5: The scaling function $(g) as a function of In g.

Shortly after the works on the scaling theory of localization, a field theoretical
approach was developed in order to give a formal justification to the assumptions
made in [2, 5]. The next section will de devoted to this approach.

1.2.2 The Non-Linear c-Model

As we discussed in section 1.1.1, the average of the product G®(E + w)GA(E)

contains information on interference effects and thus quantum localization. In the

diagrammatic or semiclassical theory of weak localization, that product can be

calculated only perturbatively (in the parameter 1/kgl). In the Supersymmetric

nonlinear o-model approach, the average (GRG% ) is carried out exactly by

expressing it as a functional integral over classical and Grassmannian fields [18].
Let’s recall the standard integrals

N

/Hd 2, exp(— Zz*A”z] Tt A’ (1.33)

N

N
2 * *Az A~ 1 1.
/kl:[ld 2k 212y, exp(— Zz ii%5) = % tA( im, (1.34)

where d?z;, = dRezdImz = dz*dz/2i and A must have a positive, real part for
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convergence. If we take A = i(E + in — H), the second integral yields

N ..

[ dzidzzmzg exo(i S 2 (E +in — Hy)z) = —i(im)" Gonn 1.35
idnzmz, exp(i ) 2 (B +in 94 = G =ty

k=1 ij 7 Y

where n > 0.

Since the impurity potential enters the left-hand side of (1.35) only via the
exponential function, it is easy to take the average of the integral for Gaussian
disorder. However, performing this average does not yield the average of the
electronic Green’s function, since the right-hand side of (1.35) also contains the
determinant of A. To get rid of this awkward determinant, Efetov et al. [19,
20] introduced anticommuting Grassmann variables. It can be shown that the
Grassmann analogues of the Gaussian ”bosonic” integral (1.33,1.34) give

1..N
/ H dxrdxr exp(— Z X;[Ainj) = det A. (1.36)
k ij
1..N
/ H AXrAXEX1 X, €XP(— Z X1 Aijx;) = (A™Y) i det A. (1.37)
k ij

Therefore, by introducing a supersymmetric Gaussian integral over a set of sym-
metric and antisymmetric fields, one can eliminate the unwanted determinant.

Analogously, one can define the average of the product of two Green’s func-
tion in terms of a more complicated functional integral of two sets (related to
the G® and G* respectively) of Grassmann and bosonic fields, composing an
eight-component supersymmetric field vector (so called superfield) . After av-
eraging, one obtains an interacting 1*-theory, where the interaction strength is
proportional to the variance of the random potential (n;|V|? for the potential
(1.8)). The functional integral defining (GRG?) is invariant under a group of
transformations 1) — T; the matrices 7' define a symmetric space and consists
of two blocks of 4 x 4 matrices related to the compact and non compact sector of
the parameter space respectively. The off-diagonal blocks are parametrized by
Grassmann variables.

The interaction term can be decoupled via a Hubbard-Stratonovich transfor-
mation by introducing a new Gaussian integral over 8 x 8 () matrices. The new
field must capture the full symmetry of the functional integral in order to suc-
ceed in describing quantum localization effects. Therefore, the field () must live
in the symmetric space defined by the matrices 7" and is thus composed of both
commuting and anticommuting fields.

After integrating out the field 1, the action of the supermatrices ) becomes

7h

S[Q]ZE

dr Str Q*(r) + %/dr (r|StrIn G7' (%, p)|r), (1.38)
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where the propagator G is given by

P s R (139

grp)=[-5 2 o

and A = 277n;|V |?/k is the mean level spacing. Az is a 8 x 8 diagonal superma-
trix, whose upper and lower 4 x 4 diagonal blocks are I and —I respectively. A
small imaginary part i (§ > 0) is added to w to assure the convergence of the
integrals.

Since in the semiclassical limit A\p < [ interference effects occur at length
scales much larger than [, the physics of localization is governed by long wave-
length modes of ). The effective action of these modes (1.38) can then be
obtained by expanding around the homogeneous saddle point solution of (1.38),
which satisfies for w =0

: -2

7 p . h -1

Q= - 0l(E = o +i5Q) ), (1.40)
A solution of this equation is Qo = As, which corresponds to the SCBA (1.9)
for the electronic self-energy. For w = 0, the rotations U which leave () in
the symmetric space yield the complete manifold of saddle point solutions as
@@ = UA3U. The rotations which leave A3 invariant can be factorized out, leaving
the saddle point solutions () to be elements of a semisimple supersymmetric
space.

Moreover, for A\ < [ there are massive longitudinal modes which only change
the short distance physics (at length scales of the order of !) and can thus be
integrated out. Therefore, only transverse modes play an important role in the
physics of localization. These modes preserve the non-linear constraint Q?(r) =
1.

If one expands the action S[Q)] around the saddle point solution, one gets

Tpr
8
This action describes the slow spatial fluctuations of () at finite frequency w.
These modes are just the diffusion modes, the Diffusons and the Cooperons,
which we discussed in section 1.1.1. Their existence is the consequence of the
spontaneous breaking of the supersymmetry. The frequency w plays the role
of an external field. The field theory described by the action (1.41) and the
constraint Q@ = UA3U, Q?(r) = 1 (where U is an arbitrary unitary supermatrix)
belongs to the class of nonlinear o-models. At w = 0, S[Q] is invariant with

respect to the transformation

S[Q] = / drStr[D(VQ)? + 2i(w + i6) A3 Q). (1.41)

Q—UQU. (1.42)

A constant magnetic field can be taken into account by making the replace-
ment p — P + (e/¢)73A(t) in formula (1.39). The diagonal Pauli matrix 73
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has to be introduced since each supervector contains both normal and complex
conjugate variables (see [18]). If the field is very weak, | < [p, its effect can be
considered as a small perturbation and a new effective action for the slow modes
of () can be obtained by making an expansion in both V() and A around the
saddle point solution of the action (1.38). This expansion yields:

S[Q] = % / dr Str [D(VQ + i%A[Q,Tg])Q 4 2i(w+i6)AsQ).  (1.43)
According to this result, the degrees of freedom of () that commute with 73 re-
main unperturbed by a magnetic field, while those degrees of freedom which do
not commute acquire a mass. The former denote the diffusion modes whereas the
latter represent the field sensitive Cooperon modes. Therefore, if the field B is
strong enough (but still satisfies | < [g), the influence of the Cooperons become
negligible and can be neglected, in agreement with the discussion presented in
section 1.1.2. In this limit the system can be effectively described by 4 x 4 matri-
ces. The saddle point solutions are then elements of a different symmetric space,
since the term containing the vector potential in (1.43) breaks the symmetry
(1.42). This effect is ultimately due to the field B breaking the time-reversal
symmetry of the Hamiltonian (unitary ensemble).

When [ becomes comparable to [, the influence of orbital effects becomes
significant. In this case we enter the quantum Hall regime, which is not correctly
described by the action (1.43). We will discuss this regime in chapter 3.

If one wants to study spin interactions (magnetic impurities and spin-orbit
interaction), one has to introduce two eight-components superfields, correspond-
ing to spin-up and spin-down particles. Therefore, the matrices () must have
16 x 16 components. In the presence of magnetic impurities, the symmetry of
@ is the same as in the presence of a magnetic field (though the dimension of
the matrices is higher), whereas a system with spin-orbit interactions (and no
magnetic impurities) belongs to a new symmetry class, the symplectic class, in
which the time-reversal symmetry of H is preserved but the central symmetry is
broken.

It is possible to show that, in the limit where the deviations of the matrix @
from the saddle point solution A3 are small, a perturbative expansion of (1.41)
yields the quantum corrections to the conductivity discussed in previous sections.

It has been proven that the supersymmetric nonlinear o-model (NLo- model)
is renormalizable. Moreover, it has been shown that a renormalization group
treatment of (1.41) in (2 + €) dimensions yields the scaling function conjectured
by Abrahams et al. in [2]. However, it is not clear yet whether the NLo model
and the one parameter scaling theory do correctly describe the metal-insulator
transition in disordered metals. Since the statistical distribution of the conduc-
tance g does not fulfil the central limit theorem, one could guess that the average
conductance alone cannot be representative of the statistical ensemble and higher
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moments of the distribution of g should be taken into account. This important
issue is currently the subject of intense research.

In the case of quasi-1D systems with diffusive width W > [, the action (1.41)
can be simplified by taking into account only the zero transversal space harmonics
of the supermatrix @):

siq) =T / da Str [D(T2)? + 2i(0 +18)A,Q). (1.44)

The above approximation is valid provided that the number N, of transversal
channels of the wire is large. It turns out that the quasi-1D NLo-model can
be solved exactly by using the transfer-matrix method. The basic idea behind
this method is to reduce the functional integral over the supermatrices @) to a
differential equation. This is completely analogous to deriving a Schrodinger
equation from the corresponding quantum-mechanical Feynman path integral.
In the present case, the role of the particle coordinate is played by the matrix
(2, while the role of the time is played by the coordinate z along the wire. We
will discuss this method more extensively in the following chapter.

In [21], the localization length L. of quasi-1D diffusive wires was obtained
from the spatial decay of the density correlation function, which was calculated
by the above method. The result was:

L. = BrhpSD, (1.45)

where S is the wire cross section. In (1.45), 8 = 1,2, 4 corresponds to no magnetic
field (orthogonal ensemble), finite magnetic field (unitary ensemble) and strong
spin-orbit scattering (symplectic ensemble) or magnetic impurities, respectively.
In the next chapter, we will derive formula (1.45) (up to a numerical coefficient)
by calculating a spectral correlation function.



Chapter 2

Magnetolocalization in
Disordered Quantum Wires

In this chapter we consider the magnetic field dependent localization in a disor-
dered quantum wire in a nonperturbative fashion.

We introduce a correlation function, the autocorrelation function of spectal
determinants (ASD), which differs from those introduced in the previous chapter
in that it does not necessitate the use of the full supersymmetric method, but
still provides information on quantum localization.

We find a continuous increase of the localization length with the magnetic
field, saturating at twice its value without magnetic field. The crossover behavior
is shown to be governed both in the weak and strong localization regime by the
magnetic phase shifting rate 75'. This quantity is derived analytically in closed
form as a function of the ratio of the mean free path [, the wire thickness W and
the magnetic length 5. Both parabolic wires and wires with specular boundary
conditions are considered. Our results generalize previous derivations of 75 for
disordered wires.

Finally, we discuss the applicability of the analytical formulas to resistance
measurements in the strong localization regime and we compare our results with
recent experimental work by Gershenson et al. [22]. A comparison with recent
numerical work is also made.

The results presented in this chapter have been published in [23].

2.1 The autocorrelation function of spectral determinants

In the previous chapter, we have seen that the study of strong electron localiza-
tion in a disordered potential necessitates a nonperturbative averaging of prod-
ucts of Green’s functions. This can be achieved by means of the super-symmetry
method, whereby the product of Green’s functions is written as a functional
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integral[18]. Thus, the average over the random potential can be done right at
the beginning as a Gaussian integral, exactly.

Here we present the derivation of a simpler correlation function, which can
be expressed as a functional integral over Grassmann variables only and does
contain some information on the localization length of wavefunctions, as shown
recently [24, 25].

The statistics of discrete energy levels of a finite coherent, disordered metal
particle is an efficient way to characterize its properties [18]. It is well known
that the Poisson statistics is related to a spectrum of uncorrelated, localized
states [26, 27, 28, 29, 30], whereas the Wigner-Dyson statistics corresponds to
a spectrum of extended states [31]. The spectral properties of a mesoscopic
system can be studied by calculating a disorder averaged autocorrelation function
between two energies at a distance w in the energy level spectrum.

The autocorrelation function of spectral determinants (ASD) is the simplest
such spectral correlation function. It is defined by C(w) = C(w)/C(0), where

C(w) = (det(E + w/2 — H)det(E — w/2 — H)), (2.1)

and F is a central energy. The behaviour of C'(w) can be easily figured out
in two extreme cases: the ASD of an equally spaced spectrum is a periodic
function of w, C(w) = cos mw, whereas a Poissonian spectrum of Ny localized
states decays to zero on a scale proportional to v/N;. In general, C(w) is an
oscillatory function whose amplitude decays with a power law, when the energy
levels in the vicinity of the central energy E are extended, while a Gaussian
decay is a strong indication that all states are localized.

The ASD is a product of two spectral determinants: since we know from
section 1.2.2 that a spectral determinant can be written as a Gaussian functional
integral over Grassmann variables v, 1* (see formula 1.36), one does need at
least a 2-component Grassman field, one for each spectral determinant.

To get the functional integral representation of the ASD, Grassmann fields
with one-half the number of components of the corresponding superfields intro-
duced in chapter 1 are in general needed. Hence, 4-components fields must be
introduced when the Hamiltonian is independent of the spin of the electrons and
each level is doubly spin degenerate. There is one pair of Grassman fields for each
determinant in the ASD and each pair is composed of a Grassman field and its
time reversed one, as obtained by complex conjugation. Eight-components fields
have to be considered when the Hamiltonian does depend on spin, as for the
case with moderately strong magnetic impurity or spin- orbit scattering. This
necessitates the use of a vector of a spinor and the corresponding time reversed
one.

In the following, we will consider the Hamiltonian of disordered noninteracting
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electrons is

H =
2me

(p+eA) + V(r) + obg(x) + ocuso X p, (2.2)

where —e is the electron charge (in this chapter we choose units in which ¢ =
1). In (2.2), we have approximated the true electronic dispersion €(p + eA) by
(p + eA)® /(2m,), but higher moments are sometimes needed to regularize the
correlation functions calculated below. V' (x) is taken to be a Gaussian distributed
random function described by (1.8).

The vector potential is used in the Landau gauge A = (—By,0,0), where z is
the coordinate along the wire of length L, y the one in the direction perpendicular
both to the wire and the magnetic field B, which is directed perpendicular to the
wire. o is the electronic spin operator, and bg(x) is a random magnetic impurity
field. ugo is the local electrostatic field of impurities with large atomic number
Z, which do give a stronger spin orbit coupling to the conduction electrons.

The starting point is the representation of the ASD as a Gaussian functional
integral over Grassmann variables. It can be easily derived from (1.36). In the
spinless case, it is given by

Clw) = /dq/)(r) exp {—% /dmz(r) [E + %wAg, .y~ V(r)] ¢(r)} . (2.3)

where 1,1 are vectors of anticommuting variables

£
vid = | S8 | 06 = (€60 €m0 —n00) (2)
(%)
and
o = (b + emsA )2 25)

(see section 1.2.2). To summarize the notation, here and in the following A; are
the Pauli matrices in the subbasis of the left and right spectral determinant (A
is therefore a 4 x 4 matrix, whereas in the supersymmetric NLo-model of section
1.2.2 it was an 8 x 8 matrix), 7; the ones in the subbasis spanned by time reversal
and o; the ones in the subbasis spanned by the spinor, for i = 1,2, 3.

Note that 1) = (C1))T, where the matrix C, which interchanges the Grassmann
fields with their conjugate one, has the form

0 10 0
1 0 0 0

=10 0 0 -1 (2:6)
00 1 0
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A global transformation of the Grassmann vectors ¢ = ¥ = Aty leaves the
functional integral for w = 0 invariant, as long as ATA =1 and A™'C = CA.

The derivation of the corresponding matrix field theory is completely anal-
ogous to the derivation of the supersymmetric theory outlined in section 1.2.2.
The only (albeit very important) difference is that the matrix field @) introduced
to decouple the 9* interaction does not have Grassmannian components, since
has only anticommuting components. After integrating out the Grassmann field,
the action of the matrices @ is given by (1.38), providing that the supertrace Str
is replaced by the conventional trace.

The matrix @) is an element of the full symmetric space, including rotations
between the subspace corresponding to the left and the right spectral determi-
nant. Therefore, the long wavelength modes of ) do contain the nonperturbative
information on the diffuson and Cooperon modes.

The saddle point solution of the action satisfies for w = 0,

1 ~ Ry
Q= (e~ H+i5Q) ). (27)
Again, this equation is found to be solved by Qg = A3 .

Since () are conventional matrices, they do not belong to the same spaces
as the supersymmetric matrices defined in the previous chapter. For spin-
independent Hamiltonians and B = 0, at w = 0, they satisfy QTC = CQ,
thereby belonging to the symplectic symmetric space. The rotations U, which
leave () in that space, yield the complete manifold of saddle point solutions as
Q = UAsU, where UU = 1. The modes which leave As invariant are elements
of Sp(1) x Sp(1) and can be factorized out, leaving the saddle point solutions to
be elements of the semisimple symmetric space Sp(2)/(Sp(1) x Sp(1))[32].

For a moderately strong magnetic field and spin degenerate levels, the time re-
versal symmetry is fully broken and the ()-matrices are in the unitary symmetric
space U(2)/(U(1) x U(1)).

For spin-dependent Hamiltonians the matrix C is, due to the time reversal of
the spinor, substituted by ioy7; [19]. Both magnetic impurities and spin-orbit
scattering reduce the () matrix to unity in spin space. Thus, C' has effectively
the form 7;. The condition QTC = CQ leads therefore to a new symmetry class,
when the spin symmetry is broken but the time reversal symmetry remains intact.
This is the case for moderately strong spin-orbit scattering. Then, ) are 4 x 4-
matrices on the orthogonal symmetric space O(4)/(0O(2) x O(2)) [33], which
is the nonperturbative consequence of the sign change of a spinor component
under time reversal operation, which leads to the positive quantum correction
to the conductivity in perturbation theory discussed in section 1.1.4. Note that
the ASD of systems belonging to the orthogonal ensemble is described by a
functional integral over compact symplectic matrices ) and vice versa. This
is due to the Grassmann variables changing sign under time reversal. With
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magnetic impurities both the spin and time reversal symmetry is broken, and
the Q- matrices again belong to the space U(2)/(U(1) x U(1)).

One could extend this approach to other compact symmetric spaces with
physical realizations, see Ref. [34, 35] for a complete classification. Very recently,
the problem of localization in quasi 1D systems belonging to non conventional
symmetry classes has been addressed within the supersymmetric approach by
Lamacraft et al. [36].

For wires with a large number of transversal channels, N, > 1, the massive
longitudinal modes with @? # 1 can be integrated out [18], and the ASD thus
reduces to a functional integral over the transverse modes U with Q% = 1. The
action at finite frequencies w and spatial fluctuations of ) around the saddle
point solution can now be found by expanding the action S, Eq.(1.38). Inserting
Q = UA3U into Eq. (1.38), and performing the cyclic permutation of U under
the trace Tr, yields,

5= _% / dx (x| Tr In(G; " — U[Ho, U] + wUAT) %), (2.8)
where 7
Ggl=FE — Hy+ ;—TA3. (2.9)

Expanding up to first order in the energy difference w and up to second order
in the commutator U[Hy, U] yields,

FlU]= —%w / dx(x|Tr GopUA3U |x)
+%/dX<X‘TI‘ GopU[Hy, U]|x)
+i/dx(x|Tr (GogU[Hy, U))?|x), (2.10)

where

12 - R hi
(v20) - L (vi)v + &

2Mme Me 1MeC

[Ho, U] = — (3AVU — UT3AV).  (2.11)

The first order term in U[Hy, U] vanishes for Gaussian white noise isotropic
scattering.

In general, in order to account for the ballistic motion of electrons in ballistic
wires, or to account for different sources of randomness, a directional dependence
of the matric U = U(x.n), where n = p/|p|, has to be considered[37, 38|.
However, for the geometries considered in this chapter, we found that the form
of the action derived below remains valid for ballistic cross sections, when the
vector fields S as introduced in Refs. [37, 38|, are integrated out.
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Then, one can keep second order terms in VU and A, which turns out to
be valid for the regime of weak disorder, [ > 1/kr and for any magnetic field,
Ip > kp. Thus, one gets, using the saddle point equation, Eq. (2.7),

S[U] = ———/—Tr AQ +
h2

4 /dX<X|TI" (GOEU( e (VO)(V + %eATg) +

+E[rg,, UAV)))?|x). (2.12)

Next, one can separate the physics on different length scales, noting that the
physics of diffusion and localization is governed by spatial variations of U on
length scales larger than the mean free path /. The smaller length scale physics,
is then included in the correlation function of Green’s functions, being related to
the conductivity by the Kubo-Greenwood formula,

h e? ,
Oap(w) = ~SLm? Z<P|(Pa + e4,)Giy[p') X
¢ p,p/
< |(pﬂ + eAﬁ)G(I;lE+w|p>: (213)

where p = 2V. The remaining averaged correlators, involve products G GE.,
and G G{g.., and are therefore by a factor 1/ (TE) smaller than the conductiv-
ity, and can be disregarded for small disorder /i/T < E. Here we are interested
in the weak magnetic field limit, where w.7 < 1, with the cyclotron frequency
we = qB/me. In this limit the nondiagonal Hall conductivity and the explicit
magnetic field dependence of the longitudinal conductivity can be disregarded.
In order to insert the Kubo-Greenwood formula in the saddle point expansion
of the nonlinear sigma model, it is convenient to rewrite the propagator in the
free energy as Gop = 3G (1 + A3) + 1Gp(1 — A3). Then, we can use that

Tr )Y (14 sA)U(VoU) (1 — sA3)U(VoU)] = —Tr[(VQ)?], (2.14)
and
Tr [> (14 sAs)U[rs, Ul)(1 — sA3)U[rs, U] = =Tr [[r3, QI’]- (2.15)

Thereby we can rewrite Eq. (2.12) as

dx

Fll=-5% [ om0 - ! / dxTr [(VQ(x))?] X
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B2 72 i
(x|G0E2 (V + heA)Gg‘E2 (V + ﬁeA)|x) +

eh
- (m> /der (73, QO] (x| GE AV GA, AV [x) + c.c. (2.16)

For wires of thickness W not exceeding the length scale Loy = Le(8 = 2) =
2mhpS Dy, the variations of the field ) can be neglected in the transverse direc-
tion, and the action reduces to the one of a one- dimensional nonlinear sigma
model. Using the Kubo formula, Eq. (2.13), this functional of @ thus simplifies,
for w.t < 1, to,

F= %ZQJ (w=0) W/ dx [Tr V.Q(z))* — (A, 0 A )};Tr (73, Q(z)]*| +
Tw ["dx

where the prefactor of the time reversal symmetry breaking term, the correlation
function

((x|GE,AVG),AV|x) + c.c.)
<X|G0E(v + EGA)GS‘E(V + ﬁeA)‘ X)
=BXyey), (2.18)

(Az @ Ay)

increases with the magnetic field B, suppressing modes with [@, 73] # 0, the
Cooperon modes, arising from the self interference of closed diffusion paths (see
sections 1.1.1 and 1.2.2). Accordingly, the symmetry of the Q- fields is broken
from Sp(2)/(Sp(1) x Sp(1)) to U(2)/(U(1) x U(1)).

In the next section it is shown that this prefactor is related to the magnetic
phase shifting rate and is evaluated for a disordered quantum wire.

2.2 The magnetic phase shifting rate

It can be seen that the prefactor of the symmetry breaking term in Eq. (2.17)
is proportional to the effective phase shifting rate 1/75, governing the weak
localization suppression by a magnetic field. To this end, one can use the super-
symmetric version of the above nonlinear sigma model introduced in chapter 1,
and calculate the weak localization corrections to the conductivity as outlined in
[18], by an expansion of ) around the classical saddle point Q. = A3. Thus, the
magnetic phase shifting rate 1/7p can be identified as

2
e
1/t = 4Dﬁ(Aw e Ay, (2.19)
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where the Einstein relation o = 2e2pD has been used. In the following we
evaluate 75 ! for a wire with specular boundary conditions and for a parabolic
wire.

2.2.1 Wires with specular boundary conditions

The general expression for the correlation function (y e y) is found by inserting
the momentum eigenstates of the wire and summing the correlation functions
of Green’s functions for [z > W in Eq. (2.18). For a two dimensional wire of
width W in momentum representation, it is given by,

o)=Y ko(Giip(ks, ky)Gap(ka, ky) + c.c)[(kylylky) 1/
ko ky ki,

/D7 (ke + £ AV GE (ka, k) G (ke ). (2.20)
ko ky
Here, Gog’ (kuy ky) = (B — B2(k2 + k2)/(2me) + i/ (27).
For a clean wire with hard wall boundaries, the transversal eigenmodes are
for —W/2 <y < W/2, (ky|y) = coskyy for k, = ms/W, s being an odd integer,
and (k,|y) = sin kyy for k, = ms/W, s being an even integer. Hence one obtains

1 1 1 2
iy i e R 221
when k, = 7s/W, and k, = 7s'/W, s being even, and s’ odd, or vice versa.
The sum over &, in Eq. (2.20) can be performed by use of the Matsubara trick,
for s even and odd integers, separately. The remaining sum over kg, k, can be
transformed as 1/(WL)>Z, = [ dep(e) [ déy/Qu, noting that the unit vector
ér can point only in discrete directions. Thus, while in 2 dimensions

/dek /2“ o _ 4 / dyl/(1— )2, (2.22)

for a finite number of transverse channels N = kgpW /7 > 1 the sum

[{kylyl k)| =

dék 2 211
il 1 N?)1/2 2.23
Qp 7TN /( s°/N7) ( )

holds. Thus, k, = 7s/W = kgs/N and kw = kp(1—s?/N?)1/2. Performing finally
for E > /T the integral over €, one arrives at

w2 [ 1 1 X o AN al
(o= KO{EKl_Q—w?KQ_WZ e e\
[ s 2 N s2 2 s
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Figure 2.1: The dependence of the correlation function (y @ y)/W? on the dimensionless mean
free path A = kgl for N = 100 channels. For comparison, the line corresponding to a disorder
independent phase shifting rate, approximately valid for N < A < N2, is shown.

where
N N
2 52 2 52
K,= — 1— 2 K=Y 41— —
0 WNSE_; N2> wN; N2’
N N
2 1 52 2 52
Ko=—-3S _—4/1— K= —_ .
2 WNZ;S? N2 B WNSX_; 2 N2

The dependence of (2.24) on the mean free path parameter A\ = kgl is shown in
Fig. 2.1.

Note that, although N > 1 and I > [, W are required for the validity of the
NLo-model (2.17), the equation (2.24) is valid for arbitrary ratios of the width
of the wire W and the mean free path [, since the motion remains diffusive along
the wire axis on large length scales, even if [ > W. The above derivation is
therefore more general than previous works on the magnetic phase shifting rate
[10, 11, 13].

For diffusive wire cross sections, [ < W, (y e y) — y2 = W?/12 which re-
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sults exactly in the known result for the magnetic phase shifting rate 1/75 =
ADSy?B? [11, 13].

For ballistic wire cross sections, [ > W, Eq. (2.24) shows that the effect of
the magnetic field becomes weaker, as W/ decreases. This is a result of the flux
cancellation effect, discussed in the limit of weak localization in section 1.1.2:
the matrix element of the vector potential (k|A|k’) vanishes for k = k', since
A = (—By,0,0) is antisymmetric in the coordinate perpendicular to the wire,
y. Thus, elastic impurity scattering is needed to mix different momentum states
and contribute finite matrix elements of the magnetic vector potential.

One can check that Eq. (2.24) is valid also in the weak disorder limit, by
Taylor expanding the correlation function in 1/(kpl), giving (yey) = VY—J(N?’/)\Z),
showing that it vanishes for A > N?, corresponding to i/7 < 72h%/(2m.W?),
when the disorder does not mix transversal modes, like 1/)\?, as seen in Fig. 2.1.

In the intermediate regime, N < J, it had been argued in Ref. [10, 11], that
1/7p should be reduced by a factor linear in N/\ resulting for a 2 dimensional
wire with perpendicular magnetic field in a disorder independent expression
1 1 W3UF

— 543 , (2.25)
where Ip = (h/eB)'/? is the magnetic length. For specular boundary condition,
as considered in this chapter, it was found numerically that C' = 9.5[11]. Corre-
spondingly, the function (y e y)/W? should approach (y e y)/W? — (7/2C)N/X
or for N = 100, (y e y)/W? — 16.5/X. The result Eq. (2.19) agrees indeed
with this behaviour, in a regime N < A < N?, although the best fit gives a
different prefactor 14.5, corresponding to C' = 10.8. The analytical result shows,
furthermore, that this behaviour is only an approximation and that there is a
crossover to the perturbative regime, discussed above, where (y e y)/WW? decays

like ~ 1/)?, see Fig. 2.1. Note that this result is accurate up to corrections of
order 1/N.

2.2.2 Parabolic Wire

As long as the elastic scattering rate exceeds the cyclotron frequency, 1/7 > w,
or correspondingly, | < lcy., where Iy = krl% is the cyclotron path determining
the length scale on which ballistic paths start to bend due to the Lorentz force,
the magnetic field dependence of the classical diffusion constant and the density
of states can be neglected, being for a 2- dimensional wire D = 7v3/2 and
p(E) = me/(2nh?), respectively.

However, the cyclotron length can be small compared to the width of the wire,
loye < W, while exceeding the elastic mean free path /¢y, > [, when the cross
section of the wire is diffusive, [ < W. Thus, the localization length can depend
sensitively on the ratio of these length scales, even in the weak magnetic field
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limit, where the density of states and classical conductivity are insensitive to
the magnetic field. In order to study the crossover as a function of the magnetic
field, the dependence of the eigenfunctions on the magnetic field have to be taken
into account, therefore. This regime is most conveniently studied for a parabolic
wire, having a harmonic confinement,

H():

1
5 (p+eA)’ + imew§y2. (2.26)
(<]

The spectrum of the above Hamiltonian is

Eng=(n+ 1)hw + s (2.27)
nk = I 2 eff Zmeff’ .
where the effective mass is mes = mew’g/wi, and the effective frequency is
Weft = (w? + w2)'/2. The corresponding wavefunctions are
1 W,
r) = ——eM —hk—1% ), 2.28
ni0) = =, (3= W2 (2.29)

where logg = /hi/(Mewes) is the renormalized magnetic length and y, are the
solutions of the one-dimensional oscillator. Hence, the spatial center of the elec-
tron eigenstates are shifted by the guiding center y, = hk(w./wer)l%s. Thus,
at constant Fermi energy Fr the width of the wire is dependent on the mag-
netic field B. Defining the width of the wire W at fixed Fermi energy as
W? = max((n, k|y*|n, k)) with E, ) = Er, one finds for the parabolic wire:

W?(B) = [%;max |2 2y ‘*’—3+ (n+1/2)(1 - ‘*’—3) . (2.29)
¢ et Wi Wi

For large magnetic field, w. > wy, this approaches exactly twice the value at
zero magnetic field, and thus,

W (we > wo) = V2W(0) = lo(2Er/ (o)) />, (2.30)

Thus, the wire width is a slowly vaying function of the parameter w./wy =
W(B = 0)/leye-

The presence of impurities smoothens this function further, and we can thus
assume the width to be practically magnetic field independent:

1 [2F
W= —4/—". (2.31)
Wo Mefr

This allows us to study the various regimes of interest as a function of the
wire width W, the magnetic length [ and the average mean free path [ =
(2E /me)'/?7.
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Naturally, the classical conductivity in such a wire is anisotropic. We find

that
14 wit? nee’r

1+ w2 me ’

and )
1 Ne€°T

w1y wT? me (2:33)
where n, = (2/37)(mes E/h%w,) is the average electron density in the wire, which
is taken to be approximately independent of the magnetic field. Since we con-
sider magnetic fields where w.7 < 1, the classical conductivity is magnetic field
independent, 0., = e*Tne/me, and oy = 04,/ (1 + wit?).

Thus, the condition that the localization is governed by the one-dimensional
nonlinear sigma model is changed to Loy /(1 + wiat?) > W. With wer = /W
follows that the one dimensional localization condition requires, | < 2NW, in
the weak disorder regime, krl > 1.

Rederiving the nonlinear sigm model in the representation of a clean parabolic
wire, using the definition of the correlation fucntion, Eq. (2.20), where the sum
over transverse momenta is substituted by the sum over the band index, n,
ky, — n, we find the result,

2 1 w? 2 1 w?
e 3 ) =W —uw— +3—|. 2.34
(o) =5 (1+w&2+'a%) 5 (1+Pﬂv2+ @W> (2.34)

Note that, since w2r? = [?/(W?), the ballistic cross section limit | > W,
coincides for the parabolic wire with the clean wire limit, where transversal
modes are not mixed by the disorder ii/7 < Ffiwy. Thus the flux cancellation
effect leads in the parabolic wire to a supppression of the phase shifting rate by
a factor W2/I? as found for the wire with specular boundaries in the previous
subsection.

Thus, it is not surprising that the behaviour of the magnetic phase shifting
rate, as known from weak localization corrections for a wire with ballistic cross
section, W > [, and hard wall boundary conditions, is not reproduced when
considering a parabolic wire. In the former case, there is a regime, W2 < [4 <
W, implying lg < [, where the magnetic phase shifting rate is given by

2 3
LW W (2.35)
B 02’7' l% C l4B
where Cy = 24/5. This is smaller than expected from Eq. (2.25), and is not
obtained for the parabolic wire.

Instead, we find that there is a regime, where the magnetic field sensitivity of
localization becomes stronger, when the cyclotron length [.,., becomes compara-
ble to the width of the wire W. When [ < I, < W the magnetic phase shifting
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rate is found to increase with the magnetic field like B*,
— ="D_B*—. (2.36)

When the magnetic field becomes so strong that the cyclotron length /.y,
becomes comparable or smaller than the mean free path [, or w.r > 1, the
diffusion constant and the density of states become functions of the magnetic
field. Then, the spatial modes of the nonlinear sigma model perpendicular to
the wire can become soft and contribute to the functional integral, and thus, the
nonlinear sigma model becomes effectively two dimensional.

In this limit, the approach used in this chapter does yield qualitative infor-
mation on the location and size of localized states in a quantum Hall system
(39].

2.3 Magnetolocalization

As mentioned in chapter 1, the localization length of a diffusive wire depends on
the global symmetry of the system [21]: L. = Bnh¢SD, where 5 = 1,2, 4, corre-
spond to no magnetic field, finite magnetic field, and strong spin-orbit scattering
or magnetic impurities, respectively.

Here, we will obtain the localization length as a function of the magnetic
field by exploiting the properties of the ASD discussed briefly in section 2.1.
Since the ASD shows a crossover from an oscillating behaviour decaying with
a power law[40, 41], typical for Wigner- Dyson energy level statistics[42], to a
gaussian decaying function, when the length of the wire is increased beyond
the localization length[24], the crossover length can be identified as the average
localization length of electrons. A similar behaviour has been seen in other
measures of correlations in the discrete energy level spectrum of a phase coherent
disordered electron system[18, 27, 28, 29, 30].

We take the representation of the ASD derived in the first section,

Cw) = [ T1dQe exp(~FIQ)), (237)

where the action Eq. (2.17) can be rewritten conveniently as

FlQ)=egstes [ s (9,00 — prl@mp] +
- 16 CcU o T 4L2B s 13
Lq
+ia§% : %TrA?,Q(:v). (2.38)

In the above equation Lg = /D7p is the typical diffusion length of an electron
in time 75 and Loy = Le(8 = 2) = 2nhpSDy is the localization length in the
wire in a moderately strong magnetic field [21].
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In the limit when Lp < L., a moderately strong magnetic field, @) is reduced
to a 2 X 2- matrix by the broken time reversal symmetry. In this limit ) belongs
to the symmetric space U(2)/(U(1) x U(1)).

For w/A < Lgy/L, corresponding to w < E., where E, = 2rD/L? is the
Thouless energy scale of classically free diffusion through the wire of length L,
the spatial variation of () can be neglected and one retains the same ASD as for
random matrices of orthogonal or unitary symmetry, respectively [40, 41].

Increasing the length of the wire L, a crossover in the autocorrelation function
can be seen as the wire exceeds the length scale L. [24].

In order to study quantum localization along the wire, the function C(w)
should be thus considered as a function of the finite length L of the wire and
spatial variations of () along the wire have to be considered, as described by the
one dimensional nonlinear sigma model derived above.

The impurity averaged ASD can to this end be written as a partition func-
tion [25]

C(w) = Trexp(—LH [Q)]), (2.39)

where H is an effective Hamiltonian of matrices QQ on a compact manifold, deter-
mined by the symmetries of the Hamiltonian H of disordered electrons. Thus, the
problem reduces to the one of finding the spectrum of the effective Hamiltonian
H.

We can derive the corresponding Hamiltonian H by means of the transfer
matrix method, reducing the one-dimensional integral over matrix field ), Eq.
(2.38), to a single functional integral. Thus, the ASD is obtained in the simple
form of Eq. (2.39), with the effective Hamiltonian

1 1

Hw=0)= oLon (—4A% - EX2TrQ[Q, 73]%). (2.40)

Ag is that part of the Laplacian on the symmetric space, which does not commute
with Tr[A3Q]. The time reversal symmetry breaking due to the external magnetic
field is governed by the parameter X = aLcy/(2Lg).

The problem is now equivalent to a particle with “mass” («/8) Loy (F) moving
on the symmetric space of ) in a harmonic potential with “frequency” 1/(2Lp),
and in an external field ia(7/4)w/(LA), in “time” z, the coordinate along the
wire. To find the ASD as a function of w and the length of the wire L, one can
do a Fourier analysis in terms of the spectrum and eigenfunctions of the effective
Hamiltonian at zero frequency, H(w = 0) [43].

There is a finite gap Fg between the ground state energy and the energy of the
next excited state of H(w = 0). For a long wire, LEg > 1, the ASD becomes,
C(w) = exp(—const.Lw?/Eg), where both const.w? = | < 0 |H(w)—H(0)| 1)?,
and the gap between the ground state and the first excited state, Eg = E; — Ej,
do depend on the symmetry of the Hamiltonian H. This exponential decay
with Lw? is typical for a a spectrum of localized states [25]. In the other limit
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LEs < 1, all modes of H do contribute to the trace in the partition function
Eq. (2.39) with equal weight, yielding the correlation function of a spectrum of
extended states [24]. Thus, the crossover length is entirely determined by the
gap Eg, through £ = 1/FE, and can be identified with an averaged localization
length.

In order to derive the eigenvalues of the effective Hamiltonian at zero fre-
quency, H(w = 0), we need to introduce a representation of the matrix @ and
evaluate the Laplacian in its parameters. This is done in Appendix A.

Without magnetic field, B = 0, the Laplacian is obtained to be

2

A
Ca)\c 2 a/\D(1 - )‘2D)a/\Da (241)
C

1—
Ag = a)\c( /\C)a/\c + 2 Ao

where A¢p € [—1,1]. Its ground state is 1 and the first excited state is AcAp.
Thus, the gap is

For moderate magnetic field, with the condition Ly ((y @ y))'/2B > ¢y = h/q,
all degrees of freedom arising from time reversal invariance are frozen out, due
to the term Trg[Q, 73]* = 16(A\4 — 1) which fixes A2, = 1. Then, the Laplacian
reduces to

A =05,(1 = A})0x,- (2.43)

Its eigenfunctions are the Legendre polynomials. There is a gap above the
isotropic ground state of magnitude

Ee(X > 1) =8/Ley. (2.44)

For moderate magnetic impurity scattering, exceeding the local level spacing,
1/7s > A, a = 2, and the Laplacian is given by Eq. (2.43).

Thus, due to o = 2, the gap is reduced to Eg(1/7s > A.) = 4/L¢cy. For
moderately strong spin- orbit scattering 1/750 > A, the Laplace operator is

AS = Z 8)\1 )‘l 8)\1’ (245)

=1,2

where A; 5 € [—1,1]. The ground state is 9o = 1, the first excited state is doubly
degenerate, V11 = A1, Y12 = Xo. Thus, the gap is the same as for magnetic
impurities,

E(;(l/’rso > AC) = 4/LCU- (246)

An external magnetic field lifts this degeneracy but does not change the gap.
Thus, using the crossover in energy level statistics as the definition of a local-
ization length as above, we get in a quasi- 1 -dim. wire,

£ =1/Eq(B) = (1/16)BLcv, (2.47)
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where 8 = 1, 2,4 corresponding to no magnetic field, finite magnetic field, and
strong spin- orbit scattering or magnetic impurities, respectively. The results are
summarized in Table 2.1.

Comparing with the known equation for the localization length, L., we find
that the dependence of the ratios S on the symmetry is in perfect agreement with
the results obtained from the spatial decay of the density- density- correlation
function [21], while it differs by the overall constant 1/8.

This relation can be proven directly. The ASD at zero frequency C(0)y, of the
wire of length L, becomes, when the wire is divided into two parts, C (0)2 /2" For
L — oo, we find that the relative difference is:

C(0)7
o)y,

exponentially decaying with the length L. Here p is the degeneracy of the first
excited state of H(w = 0). f(L) can be estimated, following an argument by
Mott [44]: When the two halves of the wire get connected, see Fig. 2.2, the
eigenstates of the two separate halves become hybridized and the eigenenergy of
a state 1, is changed by +A.exp(—2z,/L.). z, is random, depending on the
position of an eigenstate with closest energy in the other half of the wire. Thus,
averaging over z,, gives:

1 =2pexp(—LEg/2), (2.48)

F(L) ~ +exp(—4L/L).

Comparison with Eq. (2.48) yields indeed 1/L. = 8Eg.

It is thus a remarkable fact that this length scale, defined as the crossover
length of the spectral autocorrelation function, and related to the excitation
gap of the compact nonlinear sigma model, has exactly the same symmetry de-
pendence as the localization length, defined through the exponential decay of
the spatial density correlation function, found in Ref. [21]. This is especially
surprising, since the nonperturbative derivation of the disorder average of the
density-density correlation function, (p(r,t)p(r’,t')) — (p(r)?), necessitates the
use of the supersymmetry method, resulting in a nonlinear sigma model of su-
permatrices, having in addition to a compact sector, the one considered here, a

(2.49)

Symmetry Symmetric Space Cartan class | Gap Eg
TR SR Sp(2)/(Sp(1) x Sp(1)) CII 16/Lcoy
no TR SR U(2)/(U(1) x U(1)) (Sphere) AIlT 8/Lcu
TR |noSR 0(4)/(0(2) x 0(2)) BDI 4/Lcy
nn TR |noSR U2)/(UQ) xU(1)) ATIT 4/Leu

Table 2.1: Relation between the symmetry of the Hamiltonian and the gap of the quasi-1D
NLoM (TR="time reversal”, SR="spin reversal”). The third column refers to the classification
of symmetric spaces carried out by Cartan in 1926-1927.
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Figure 2.2: Schematic visualization of the energy level spectrum of localized states in a) a
disordered quantum wire of length L, when divided into two parts, b) for the same wire when
both parts are connected and the eigenstates are hybridized.
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non compact sector, where the matrix is parametrized on a semi infinite interval.
The full supersymmetry allows furthermore rotations between this compact and
noncompact sector which are parametrized by Grassmann numbers £, having the
property €2 = 0. Apart from this increase of the manifold of the matrix fields
(@ to the supersymmetric space, the structure of the theory is equivalent. Espe-
cially, the free energy of the supersymmetric nonlinear sigma model has exactly
the same form as Eq. (2.38), replacing ) by supermatrices and the Trace over
Q by the supertrace STr [18].

Studying localization in a wire with this supersymmetric nonlinear sigma
model, the transfer matrix method yields an effective Hamiltonian of super-
matrices ), of the same form as Eq. (2.40), where the Laplacian is now defined
on the respective supersymmetric manifold. In full analogy, the spectrum of H
determines accordingly the properties of a disordered quantum wire, and has
been derived in Ref. [43] for the pure ensembles. The partition function Z =
STrexp(—LH) is a generating function of spectral correlation functions[29, 45].
In order to derive spatial correlation functions like the density correlation func-
tion, in addition, the eigenfunctions of the respective diffusion equation on the
supersymmetric manifold,

(=0: + H(Q))¢(z;Q) =0, (2.50)
have to be found [21]. In that way, a formula for the conductance of a finite
disordered wire attached to two leads at a distance L, has been derived [43], see
also Ref [18]. In the limit of a wire which is perfectly coupled to the leads, that
formula for the average conductance simplifies to

(9) = %/dﬂ(li)E(li) exp [—%E(li)] , (2.51)

where E(I;) are the eigenvalues of the supersymmetric Hamiltonian H(w = 0)
and du(l;) the corresponding integration measures of the discrete and continous
eigenvalues of the angular momentum operator on the compact and noncompact
sector, respectively. They were found to be given for B = 0 by [43]

E(l)) =0, 4/Lou2(e + 1), 4/Ley (P + € + 5 + 1), (2.52)

where [ = 3,5,...,and € > 0,¢; > 0,69 > 0.
For time reversal symmetry broken wires X > 1 the eigenvalues were found
to be,

E(l;)=0 (I + €%, (2.53)

’ aLCU)
where [ = 1,3,5, ..., and € > 0.

If spin symmetry is broken, but time reversal symmetry conserved, in the
presence of spin orbit scattering, the eigenvalues were found to be,

4
——(2(1 — 1)?

E(l;) =0 (B+15+e 1), (2.54)

" 2Lcy
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where [ = 3,5,..., [; =1,3,5,..,i=1,2 and € > 0.

In that case it can be seen that for a distance between the leads much ex-
ceeding the localizaion length, L > L¢y, the conductance decays exponentiallly,
and that this is entirely determined by the compact gap Eg between the lowest
angular momentum eigenstates of the compact sector. The integration over the
continous eigenvalues of the noncompact sector leads only to a prefactor which
decays as a power of the length, ~ 1/L3/2. Indeed, the gap between the ground
state value ' = 0 and the first excited state is seen from Eqgs. (2.52, 2.53, 2.54)
to be Eg = 8/Lcy for B =0, Eq= 4/Leoy for X > 1, Fg = 2/L¢y for magnetic
impurity scattering, a = 2, and Eg=2 /Lcy for moderate spin- orbit scattering,
coinciding with the symmetry dependence of the compact gap derived above.
However, that coincidence might appear as mere chance, since in fact, the Lapla-
cian of the supersymmetric matrix ¢) cannot be written as a sum of the one of
the respective compact nonlinear o-model, Eqs. (2.41, 2.43, 2.45), because the
metric tensor § on the supersymmetric space contains mixed factors of compact
and noncompact parameters. Therefore, the discrete eigenvalues of —Ag, are
not the eigenvalues of the square of the angular momentum on a compact sphere
[43]. Only in the limit of infinite, noncompact parameters does one recover the
respective Laplacian on the compact symmetric space, Eqs. (2.41, 2.43, 2.45).

Thus, having shown that the ASD yields the correct symmetry dependence
of the localization length, we can now use this approach to get an analytical
solution for the crossover behaviour of the localization length and the local level
spacing as a magnetic field is turned on and there is no spin-orbit scattering.

A self consistent approach [46], a semiclassical analysis [47] and numerical
studies [48, 49] all showed a continous increase of the localization length.

The effective Hamiltonian for moderate magnetic fields is found, without spin
dependent scattering, o = 1, using Tr[Q, 73]* = 16(1 — \%), to be given by:

H= LL(—mg +X7(1=22), (2.55)
cu
where the Laplacian is given by Eq. (2.41) and X = Loy /(2Lg).

In the limit X — 0 the lowest level and the first excited level approach 1
and AcAp, respectively. In the limit X > 1, A% becomes fixed to 1. Thus, the
Ansatz y(A¢c) ~ exp(ApX?(1—22%)) and ¢1 (A, Ap) ~ AcAp exp(A; X?(1—-)\%)),
where Ay < 0,A; < 0 are negative constants, solves Hiy = E1 to first order
in z = X?(1 — A%). One finds that the two lowest magnetic field dependent
eigenvalues are Ey = 4/Loy(—5++v25 + X?), and By = 4/ Loy (—3+v49 + X?),
and the eigenfunctions are given as above with A4y = —LcyEy/(16X?), and
A; = (1 — LoyE1/16)/X?, yielding the right limits for X — 0 and X > 1,
respectively. Thus, there is a magnetic field dependent gap Eg = E; — Ey of
magnitude:

Eg(X) =42+ V49 + X2 — /25 + X?)/Ley. (2.56)



2.4 Resistance of quasi-1D wires 44

This solution is valid in both the limits X < 1 and X > 1, interpolating the
region X = 1.

With the magnetic diffusion length Lz = (D7g)'/?, and the magnetic phase
shifting rate, as given by Eq. (2.19), we obtain:

X = Lou/(2L) = LCU§\/<y «y)B, (2.57)

which is y/(y @ y)/W times the number of flux quanta penetrating a localization
area LoyW. From Eq. (2.56) follows that the magnetic change of the localization
length is 6 L.(B) ~ B? for small and ~ 1/B at large magnetic fields, which agrees
with the result of the self-consistent method as obtained by Bouchaud[46].

2.4 Resistance of quasi-1D wires

In the limit of zero temperature, T" = 0, the resistivity of a disordered quantum
wire, having only localized states at the Fermi energy, is infinite. For finite tem-
perature, 7" > 0, in the strong localization regime kgl < A., the mechanism of
conduction is hopping of electrons between localized states. Then, the resistiv-
ity increases exponentially with temperature. According to the resistor network
model [50, 51], each pair of localized states ¢ and j is linked by a resistance R;;:

27“1']' Eij

= 2.
R;; exp(LC +kBT> (2.58)

where 7;; = |r; — ;| and €;; = (e — p| + |e; — p| + |e;i — €;])/2kgT (r; and ¢;
are the position and energy of the state i, u being the Fermi energy). Because
of the exponential dependence of R on r;; and ¢;;, percolation theory methods
can be applied [52, 53, 54]. In 2-D and 3-D systems, the dependence of R on
temperature 7" shows a crossover from an activated behaviour to the variable
range hopping (VRH) regime. In this regime the temperature is so low that the
typical resistances between neighbouring states are large because of the second
term in Eq. (2.58). Therefore electrons tunnel to distant states whose energies
are close to the Fermi level. If we neglect electron-electron interactions the
resistivity is described by Mott’s law [52, 55]:

R(T) = Ry exp|(yTy/T)Y @] (2.59)

where d is the dimensionality of the system, v a numerical coefficient which
depends on d, Ty = 1/pL% and p, is the dimension dependent density of states.
However, in the quasi-1-D case and for sufficiently long wires the variable range
hopping result, Eq. (2.59), cannot used due to the presence of exponentially
rare segments inside which all the localized states have energies far from the
Fermi level [56, 57, 58]. These large resistance segments (LRS) do not affect
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the resistivity of 2-D and 3-D systems because they can be circumvented by the
current lines. In 1-D this is not possible and the total resistance of a wire is given
by the sum of the resistances of all the LRS’s. This sum yields an activated type
dependence of R on T [57] for infinite wires:

L (T, 3 To
— Ry (22 ~0 9.
R ROLC (T) exp (2T) , (2.60)

where kpTy = 1/pL. = A. coincides with the local level spacing, and L is the
length of the wire. Eq. (2.60) is valid provided that the number of optimal LRS’s
(i.e. those LRS’s which give the largest contribution to R [57]) in the system
is large. For a finite wire length this condition fails to be fulfilled at very low
temperature 7', and the resistance of the chain is determined by smaller LRS’s;
in this regime Eq. (2.60) is replaced by [56, 57

R~R 220 10g | L (L %1 (L (2.61)
~ Ryexp T log o \T, og L. , .
which is valid at temperatures below
Ty
Th= ———. 2.62
"7 2In(L/L.) (2:62)

So far, electron-electron interactions have not been taken into account. This
approximation is valid if the Coulomb interaction is screened over distances of
the order of the hopping length, as by a metal gate electrode deposited on top
of the wires at a distance smaller than the typical hopping lengths. When this
is not the case, long range electron-electron interactions affect both the density
of states and the resistance of the samples [59, 60].

2.5 Symmetry dependence of Localization in Disordered
Wires: Experimental Analysis

The magnetic field dependent activation energy was measured recently in trans-
port experiments of Si 6-doped GaAs quantum wires [22]. As an example, we
discuss here the sample 5 of Ref. [22], with a width W = 0.2um, a localization
length Loo = 0.61um, a length L = 40pum and N = 30 channels.

The activation energy coincides with the local level spacing kgTy = A, =
1/(pW L) and is estimated for sample 5 to be Ty = 0.34K.

Thus, according to the theory outlined in the previous section, there is an
activated resistance in an order of magnitude temperature range 77 = 0.04K <
T < Ty = 0.34K, allowing in good approximation the direct measurement of the
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magnetic field dependent activation energy A.(B) and thus the magnetic field
dependence of the localization length L.(B).

The ratio of the cyclotron frequency and the elastic scattering rate, w.m =
I/(kpl%) < 1, is small in the whole range of magnetic fields considered there,
so that the classical conductance would be magnetic field independent, o =
ne€’T/Me(1 + w2r?) ™! & nee’r/me.

The mean free path | ~ 2 - 10 2um is small compared to the width of the
sample W = 0.2um. The magnetic length is [z = 0.026pum(B/T)~/? and thus,
while w.7 < 1, the magnetic length becomes smaller than the width of the
sample at magnetic fields B > 1.65 - 10727

The experimental magnetic field dependence of the ratio of activation energies

is shown in Fig. 2.3 together with the theoretical curve for the ratio of local en-
ergy level spacings A.(B)/A¢(0) = Eq(B)/E;(0), as derived above, Eq. (2.56),
using for the magnetic phase shifting rate the results for a wire with specular
boundary conditions, Eq. (2.24), and, for comparison, the one derived for a
parabolic wire, Eq. (2.34).
There is a quantitative discrepancy between the best fit X = 0.036 B/G, and X =
2md/do, ¢ = poHLcy(y?)/?, when using the analytical formula Eq. (2.24).
With the experimental parameters o = 1, Lco = 0.61pum, width W = 0.2um of
sample 5 in Ref. [22] and y? = W?2/12 for a wire with specular boundary condi-
tions, it yields rather X = 107?B/G. We note that smooth confinement can give
y2 > W? /12. A similar discrepancy was observed between W as obtained from
the sample resistance and estimated from the analysis of the weak localization
magnetoresistance, which also depends on 32 [61].

We note that, when using the experimental parameters, the agreement for the
parabolic wire is better. The cyclotron length l.,. = krl% = 0.32/(B/T)um, is
found to be larger than the mean free path [ for B < 157 and larger than the
wire width for B < 1.5T. We find for the parabolic wire: X = 2.4-1072(0.99 +
1.33 10~%(B/G)?)*?B/G. The enhancement of the magnetic phase shifting rate
in a parabolic wire, Eq. (2.34), is thus too weak to be seen at the magnetic fields
used in the experiment, B < 0.27', as shown in Fig. 2.3, and seems thus not to
be the origin of the increase in the decay of the activation gap at about 0.17" .

An extension of the derivation given in section 2.2 to include a dependence
of the eigenfunctions on the magnetic field also for a 2-dimensional wire with
specular boundary conditions has to be done, in order to make the comparison
with the experiment more quantitative, and draw conclusions from the magne-
tolocalization on the form of the confinement potential in these Si-d-doped Ga
As quantum wires. However our results may indicate that the harmonic confine-
ment model of the parabolic wire is a better description of the wires in sample
5.
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Figure 2.3: The activation gap ratio To(H)/To(0) as a function of the magnetic field B in G
of sample 5 measured at temperature T' = 0.3K as reported in Ref. [22], together with the
theoretical curves for a parabolic wire, using the parameters of sample 5. and a 2D wire with
specular boundary conditions for a best fit value X = 0.036B/G, and the value obtained from
the experimental parameters, X = 0.010B/G.






Chapter 3

The Quantum Hall Effects

”dai diamanti non nasce niente
dal letame nascono i fior”
F. De Andre’, Via del Campo

In this chapter we present a short introduction to the theory of the Integer
and the Fractional Quantum Hall Effect.

We start by considering the integer case. After recalling the basic experi-
mental facts, we present a qualitative description of metal-insulator transitions
driven by disorder in a strong magnetic field, which are believed to underlie this
effect. Then we study the density of states of electrons subject to a magnetic
field and an impurity potential. Finally, we briefly introduce the percolation
model, which provides a nice, semiclassical picture of the effect and the field
theoretical approach, which aims to explain the transitions by a generalization
of the supersymmetric method introduced in Chapter 1.

In the fractional case, Coulomb interactions play a fundamental role. Due
to interactions, electrons form a quantum, incompressible liquid state, which
is believed to underlie the fractional effect. After discussing the properties of
wavefunctions in the lowest Landau level, we introduce the novel wavefunction
invented by Laughlin to describe this special condensed state. Finally, we discuss
some remarkable properties of the elementary charged excitations of the system.

3.1 The Integer Quantum Hall Effect: basics facts

According to the Drude theory, the longitudinal and transversal resistivities of
a two dimensional electron gas subjected to a perpendicular, constant magnetic
field B are [1]

m

pww = 2
Ne€2T
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B

vy = . 3.1
p Y Ne€C ( )

The magnetic field does not affect the diagonal component of p, the magnetore-
sistivity, whereas the Hall resistance p,, is proportional to B. In 1980, K. von
Klitzing [62] observed dramatic deviations from the classical picture: at very low
temperatures and for large magnetic fields, the Hall resistance showed plateaux
around quantized values, .

ve?’

where v is an integer. Moreover, the magnetoresistivity was nearly vanishing
in the regions where p,, is constant. This effect was called Integer Quantum
Hall Effect (IQHE). It turned out that the quantization of the Hall resistance is
universal and independent on the microscopic details of the sample: in particular,
it is not affected by impurities (provided that the the amount of disorder is not
too large).

In 1982, Tsui, Stoermer and Gossard [63] observed quantized plateaux at
filling factor » = 1/3 in very clean devices (the Fractional Quantum Hall Effect,
FQHE). Subsequently, many more fractions were observed (see Fig. 3.1), most
of them belonging to the principal series

v=p/(2mp+1) (3.3)

(p and m nonnegative integers) or to families obtained by adding integers to
(3.3). Until recently, the only exceptions were the even denominator fractions
v =>5/2 and v = 7/2. Last year Pan et al. [64] observed plateaux at v = 4/11
and v = 5/13, which do not fit into the standard series (3.3).

The FQHE is also universal but very pure samples are needed in order to observe
it (extremely pure in the case of non standard fractions).

It is not difficult to show that the QHE could not occur in a device free from
imperfections: as a consequence of Lorentz covariance, the Hall resistance of a
translationally invariant system would be given by (3.1), no matter whether the
system is classical or quantum (of course, the magnetoresistance would be zero,
as in the QHE). Disorder is responsible for the exactness of the quantization of
Pay!

yThe 2x2 resistivity tensor of Quantum Hall systems can be easily inverted:
the diagonal components of the conductivity matrix are also zero. Hence, QH
devices are perfect insulators and yet they are perfect conductors due to the
current running perpendicular to the voltage.
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Figure 3.1: The Hall resistance Ry = pgy and the diagonal resistance R = p;, as functions of
the magnetic field. Many plateaux in Ry and associated dips in R are visible, both at Integer
and Fractional filling factors v. The numbers indicate the values of v at which plateaux occur.
After Ref. ([65]).
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3.2 The Role of Disorder: Localization-Delocalization
Transitions

In this section we will focus on the IQHE at 7' = 0. Since Coulomb interactions
seem not to play an important role in this phenomenon, we will neglect them
altogether.

Let’s consider for a moment the noninteracting Hamiltonian for N electrons
without disorder:

N
1 e 2
H = ( 4+ —A(r; ) , 3.4
> g (P AR (3.4
where m, is the electron effective mass and A(r) is the vector potential related
to B. It is well known that the spectrum of (3.4) is discrete:

1
E,=(n+ E)hwc, (3.5)
where w, = eB/mec is the cyclotron frequency. For a macroscopic 2D sample of
area S, the discrete levels, named Landau Levels (LLs), are hugely degenerate:
the total number of states in a LL is
S )

P2 __ " =N 3.6
s, By ® (3.6)

where [p = y/hic/eB is the magnetic length, ® = SB and Ns is the number
of flux quanta penetrating the sample. Therefore there is one state per Landau
level per flux quantum.

The filling factor v is the ratio between the number of electrons and the LL
degeneracy: v = N/Ng = nd,/B.

When an integer number of levels are completely filled at T' = 0, the diagonal
conductivity is zero due to the energy gap. Furthermore, the Hall conductivity
is correctly quantized, being given by

04y = Neec/B = vec/®y = ve®/h. (3.7)

However, this argument is quite deceptive: actually, it cannot explain the plateaux
at all. In experiments, the density or the field B can be varied. When a LL is
filled completely, the Fermi energy jumps discontinuously to the next LL and
therefore 0,, must be an increasing function of the density. Formula (3.7) sim-
ply states that oy, is a linear function of v/!

Static disorder is expected to broaden Landau levels into bands, thus lifting
the LL degeneracy, and to create localized states between LLs, which do not
contribute to transport. In the presence of extra localized states in the gap, the
Fermi energy has to progress through them when the density (or the magnetic



3.3 The Density of States: perturbative and nonperturbative calculations 53

field) is varied and o, does not change in this region, i.e. a plateaux can form.
Moreover, o,, ought to be zero when the Fermi energy pins to localized states.

We have seen in chapter 1 that, for d = 2 and in the absence of magnetic fields
and spin-orbit scattering, all the states of a disordered system are localized. In
the QH case there must be some extended states, since there is a non-vanishing
ozy- It is believed that, in the presence of a strong B, the states close to the center
of the LLs are extended (i.e. their localization radius is larger than the system
size) and that the localization length diverges exactly at the center. Moreover,
there are convincing indications that the critical exponent which govern the
disorder-driven localization-delocalization transition is universal.

In order to get the correct quantized values (3.2) of p,,, the amount of current
which is lost when a localized state is formed must be compensated by the
remaining extended states: it was shown by Prange in [66] that this is indeed
the case. Later on, Laughlin [67] and Halperin [68] argued that the accuracy of
the effect is a consequence of gauge invariance.

The localization problem in the presence of a strong B has not been fully
solved yet: a promising and partially successful (but not complete yet) effective
field theory has been developed in [69] and subsequent papers. Its derivation
follows the steps outlined when introducing the non-linear sigma model (see
chapter 1). Moreover, much light can be shed on this problem in the semiclassical
limit where Iz is much smaller than the correlation radius of the potential r.
by studying a classical percolation model. We will discuss both approaches in
section 3.4 but first we will focus on the Density of States of impure Landau
Hamiltonians.

3.3 The Density of States: perturbative and nonpertur-
bative calculations

In this and the following section we will assume that 7" = 0 and thus completely
neglect the interaction of electrons with phonons. As we discussed in the previous
section, disorder broadens Landau levels by creating localized states in the gap
between LLs. The most relevant source of disorder in a real 2DEG is the elec-
trostatic potential created by randomly distributed fixed impurities. Again, we
assume that the potential V' (r) is a Gaussian, stochastic quantity with zero mean
and correlator W (r — ') = n;|V|?6(r — r') (n; is the impurity concentration).
The single-particle Hamiltonian is

H =

o (o+ EA(K))2 +V (), (3.8)
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and we choose the Landau gauge A = (0, Bz, 0). In this gauge, the eigenfunctions
of the clean single particle Hamiltonian are:

2
¢n,k(r) — %;ezkan(y + le
T 2”72'\/77’[3 ZB
where n is the Landau index and the quantum number k£ is the (canonical)
momentum along the ¢ direction. The states with the same number n are de-

generate.
The exact impurity averaged DOS is given by:

p(E) = /DV(r) exp{=S[V(r)[}p(E, [V (r)]), (3.10)

where p(E, [V (r)]) is the DOS of the given realization of the Hamiltonian H[V (r)] =
(p+e/cA)?+ V(r) and

SV(E)] = —— / V2(r)dr (3.11)

2|V |2

_l%(y_i_leB)Z eika:
B =
2m

Je dni(z), (3.9)

is the action of the potential.

In the following, we will calculate the broadening of LLs due to V(r) per-
turbatively; then, we will briefly discuss more sophisticated, non-perturbative
methods.

We exploit the well-known relation between the averaged electronic Green’s func-
tion and the DOS p(E):

o(E) = %ImG(z). (3.12)

Since V(r) is rotationally invariant with respect to the z-axis, G(z) is diagonal
in the Landau model and its diagonal elements depend only on n:
1

z2—E, —Y,(2)

The self-energy can be decomposed into its real and imaginary parts: ¥,(F) =

In the self-consistent Born approximation,
Trn!
Yu(E) = Gt (E) = ik , 3.14
() ;T (E) ZE—En,_zn,(E) (3.14)

n'

Gn(z) = (3.13)

where
rows = [ dadpW ()] K9 ) (3.15)

If the field B is so strong that the inequality [', < Aw. holds, Landau level
mixing can be neglected and formula (3.14) reduces to an algebraic equation:
(3.16)

Tn

=)= p B, —s.@y
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where r,, = r,,,. The solution of 3.16 is
En(E) = An(E) + 4T (E), (3.17)

where

_1
2
The DOS (3.12) is given by:

A(E)= (B~ E.),  Tu(E)= 3v/ir, — (B~ E)P) (3.18)

1 1 u(E) _ 1 [n(E)
pLE) = ol 2 7(E—E,— A (E))2 412 2xl3 Xn: TTn (3:19)

n

Hence, p(E) consists of semiellipses centered around the LLs E,,, with a width

T, = 2\/Tn-

We can now calculate r,, for a d-correlated V (r):
=V [ dadp(n, KieS . p) P
VP [ dadpd(p g+ 4] [ dngns(e)e™ 60, (o)

2 0 15¢*, b — i (k+p)i% |2
=n|V|" [ dq|Ly(—5—)e” " e 2" 5]

2
”i|V|2 oo 0 2 — ”i|V|2
— delL § — . 2
s [ Pt =5 (3.20)
Since 5
27TTLZ'|V|2pB:0 = —, (321)
T

where 7 is the electronic relaxation time due to V(r) at B = 0 in the Born
approximation and pp—o = m/(27h?) is the density of states of free electrons, I';,
can be written as [71, 72]

2hw. h

I, = —. 3.22
T T ( )

T, does not depend on n and scales as vB. In general, in the case of non
o-correlated potentials, I',, will show a dependence on n.

The cusps of p(E) are due to the approximations involved in our derivation and
more sophisticated approaches are needed in order to get rid of them. Actually,
for the case of B — oo (i.e., no LL mixing) and a d-correlated V, the DOS for
the lowest LL has been calculated exactly by Wegner in [73]. In this remarkable
paper, Wegner succeeded in summing up all the diagrams contributing to pp—o(F)
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by mapping the system onto a zero-dimensional, ¢* field theory. The exact DOS
for the lowest LL is

1 d 2 (2mlZ AE? n;|V|2)1/2 ,
neo(F) = —— —tan ! | — " 2
p 70( ) 271'[23 dE an \/7?/0‘ € T] ) (3 3)

where AE = E — Ey = E — 1/2hw.. Near the band centre of the lowest LL, the
approximate, self-consistent DOS (3.19) is surprisingly good: in the very centre
E = E,, (3.19) differs only 0.3 per cent from the exact value (3.23). However,
far from the band centre, the Landau band shows tails which are beyond a
perturbative treatment.

The non perturbative tails of an arbitrary Landau band attracted considerable
interest both prior to and after the publication of [73] and different approaches
were employed to study them. For instance, the Lifshitz’s Optimum Fluctua-
tion Method (OFM) [74] and the supersymmetric method [75] were successfully
applied to the study of the tails near the band centre

T, < |E - B,| < hwe (3.24)

to yield a Gaussian DOS. This result agrees with Wegner’s result: in the limit
(3.24) for n = 0, Eq. (3.23) becomes

1 77}/2‘V| 21} AE?
E)— —tan ! | ——————e mVP
PE) = 5ol dE <\/27rlBAE

22l AE?2 _27rl2AE2
\/;72—;;‘3e v (3.25)
n;

The OFM employed by Larkin et al. [74] relies on the following idea, which is due
to Lishitz: in the tails of the DOS, states are localized around strong fluctuations
of the random potential V'(r), the probability of which is exponentially small.
Therefore, the average (3.10) over all configurations yielding states of energy E,
is dominated by the most probable realization of V' (r) and the functional integral
(3.10) can be evaluated in the saddle point approximation. We will dwell on this
method more thoroughly in chapter 6, where we will apply it to systems subject
to Random Magnetic Fields.

As expected (see chapter 1), the exact DOS (3.23) does not provide informa-
tion on localization; again, more complicated objects (i.e. products of Green’s
functions) are needed to obtain informations about localization-delocalization
transitions in the Landau problem.
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3.4 Localization in a strong magnetic field

3.4.1 Field theoretic approach

The conventional o-model (1.43) leads to the localization of all states in two
dimensions; it cannot thus predict the Hall quantization. It was realized by
Levine et al. [69] that something was missing in (1.43) and that a more careful
expansion of the logarithm in (1.38) yielded a new topological term in the action,
which turned out to be responsible for the QHE. In [69] a J-correlated potential
was considered but it should be possible to generalize their method to random
potentials with arbitrary correlation length (see [37]).
The new action can be written as [69, 70]

1 .
5l = o / drStr{o%, (VQ)? — 0% Q[V.Q, V,Q] + dmivwAQ},  (3.26)
where the parameters 02, and ogy are the longitudinal and Hall conductivities
in SCBA expressed in units of €?/h. The second term in (3.26) is topological in
nature and cannot be obtained in any order of perturbation theory in the Diffu-
sons and the Cooperons. It can be rewritten in this form (using the constraint

Q* = 1):

0

Siop = —% dr Str(QV,QV,Q). (3.27)

To see the topological origin of Si,,, one can substitute the representation @ =
UAU (see section 1.2.2) into 3.27; then, one gets

0
Siop = —% dr V x Str(AUVU)

0
- ?{ Str(ATVU) - dl, (3.28)
C

where C is a contour encircling the sample. It can be shown that, for a homo-
geneous Hall conductance, S;,, can take only purely imaginary discrete values,

Siop = 2mi0g, s, (3.29)

where s is an integer.

In order to establish a renormalization group approach to this complicated
field theory, both ¢% and agy must be taken as scaling parameters (unlike the
one parameter scaling theory valid at B = (). There is an infinite number
of topologically distinct solutions (with different quantum numbers n) of the
saddle point equation 6S = 0. By summing over all these instanton solutions
and integrating out slow spatial fluctuations around them, one finds that o2,
is renormalized to smaller values and thus flows towards localization. However,
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at half-integer values of the non diagonal conductance, agy = (n + 1/2), the
renormalization flow is slowed down. Indeed, it has been proven that the theory
is critical at these values of o, and a two-parameter scaling theory has finally
been established.

So far, it has not been possible to calculate the critical exponents of the metal-
insulator transitions, since the critical points are located in the strong-coupling
limit of the theory. Recently, however, the non linear o-model for short-ranged
disorder at o9, = (n+1/2) has been mapped onto the Hamiltonian of a quantum
superspin chain [76]. Since the latter problem is closely related to the Chalker-
Coddington model (which mimicks a QH system with long-range disorder in
the high-field limit), the mapping of [76] confirms the notion of universality of
the QHE. Moreover, starting from this mapping, supersymmetric conformal field
theories have been introduced, which should yield the critical exponents of the
transitions [77].

3.4.2 Other approaches

For smooth disorder potentials with large correlation length r. and strong mag-
netic fields, the inequality lg < 7. is fulfilled. When this is the case, the electronic
wavefunctions live on equipotential lines, since the kinetic energy is quenched.
They have a width perpendicular to these lines which is of the order of Ip.

In the limit B — oo this confinement to lines of constant potential becomes
exact for any disorder potential (provided that . is finite) and a good deal of light
can be shed on the quantum mechanical problem of localization by investigating
a classical percolation problem.

In the percolation model, low-energy states lie along closed contours in deep
valleys of the potential landscape, while high-energy states live on lines encircling
potential hills. At intermediate energies, the states take more complex shapes
and have thus larger localization radii. For an infinite system, it can be proven
that there is exactly one percolating path, i.e. one extended state, at a critical
energy E. in the intermediate region.

Within this classical picture, the critical exponents describing the localization-
delocalization transition can be computed numerically. In particular, the expo-
nent v, which determines the singular behaviour of the localization length & near
the Landau energies E, = (n + 1/2)hw,

6 = é-n‘E - En‘_ua (330)

is given by vy = 4/3 [78].

However, tunneling between percolating paths close to each other plays an
important role for states with energies close to the percolation threshold, no
matter how large B is. Tunneling enhances the localization length of these
states, thus affecting the exponent v. An argument by Mil’'nikov and Sokolov
[79] which takes into account this effect yields v = 7/3.
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Since a complete theory of the QH transition has not been established yet, a
variety of numerical methods have been used to estimate the critical parameters.
The results strongly confirm the conjecture of universality of the transitions.
According to most numerical estimates, v ~ 2.3 £ 0.1, independent on the LL
(80, 81]; this value is in good agreement with the estimate of Mil’nikov and
Sokolov [79].

3.5 The Fractional Quantum Hall Effect

3.5.1 Properties of wavefunctions in the LL level

In this and the following two sections we will neglect disorder and focus on the
theory developed by Laughlin to describe a system of interacting electrons at
fractional filling factors [82, 83, 84]. In the Coulomb gauge

1
A= —51' X B, (331)

the rotational symmetry of Hall systems is preserved and the angular momentum
is a good quantum number. For very large B, the cyclotron energy is the largest
energy scale and we can thus consider the lowest LL only. Moreover, in this limit
the Zeeman splitting is larger than the typical Coulomb energy e?/(elg) and we
can assume that the electron system is fully spin polarized. The lowest level
solutions of the one particle Schrodinger equation with angular momentum Am,
m > 0, are given by

1 2 \m _Z_I;

2) = ———=(+—)"e “B, 3.32
where z = (z+14y). All the basis states being degenerate, any linear combination
of them is also a solution of the Hamiltonian with energy fw./2. Hence, in the
thermodynamic limit, any function of the form

U(2) = f(2)e 5, (3.33)
is an eigenstate in the LL level if and only if f(2) is analytic. In particular,
arbitrary polynomials of any degree N

N

@) =1]¢-2%) (3.34)

i=1
are allowed, defined by the locations of their N zeros.
Arbitrary many-body wavefunctions will have the form

AP

\Il(Zl,...,ZN) =F(z1,...,zN)e Y 5 (335)
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where F' is analytic and antisymmetric; hence, if we fix the positions of all the
particles except one, z; for instance, then F', as a function of z; only, has at least
one zero at the positions zg,..., zy.

Due to analiticity, the zeros of F' behave like vortices and the phase accumu-
lated by our test particle moving adiabatically around an area S is exp(27iNV,),
where N, is the number of zeros of F' enclosed in the loop. This quantity must
be equal to exp(2mi®/®) (where & = BS), the Aharonov-Bohm phase accu-
mulated by the particle while moving around the loop. Hence, for any lowest
Landau level function ¥, the number of zeros inside an arbitrary area S must be
equal to the number of flux quanta crossing S.

We can now write down the wavefunction for a fully filled Landau level: for N
particles, F is given by the Slater determinant of the polynomials 1, 2, ..., 2V =%
It is not difficult to show that this determinant can be rewritten as a Vander-

monde polynomial,
[ = =) (3.36)
i<j

Therefore, the ground state for v =1 is:

NN
wVﬂ(zl,...,zN):H(%)He ag il (3.37)

1<J j=1

3.5.2 The Laughlin state

In his seminal paper [82], Laughlin wrote down a wavefunction for N particles
at filling factors v = 1/(2m + 1) (m integer) which looks similar to the v =1
wavefunction:

N L — . N L 1,2
o (o) = [[C 2 e ag il (3.38)

i i<j B j=1
As we showed in the previous section, the number of zeros of arbitrary wavefunc-
tions at ¥ = 1/(2m + 1) must be (2m + 1) N. The Laughlin state (3.38) clearly
fulfils this condition because it has a (2m + 1)-fold zero at the position of each
particle. The attachment of the largest possible number of zeros to each particle
helps to reduce the probability for two or more particles to approach each other
and hence to minimize the expectation value of the Coulomb energy.

As we saw in the previous sections, an excitation gap is essential to the exis-
tence of the QHE (together with disorder). Indeed, it turns out that the Laugh-
lin state is an incompressible fluid, separated from elementary excitations (both
neutral and charged) by an energy gap which scales as the Coulomb interaction
e?/(elp) (where ¢ is the dielectric constant).
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Numerical studies showed that the overlap between the true ground state and
the Laughlin state is very good for Coulomb interactions [85]; furthermore, (3.38)
is the exact ground state for hard-core interactions [86].

By mapping this problem onto a classical statistical mechanics problem, Laugh-
lin managed to shed much light on the properties of the ground state and its
charged elementary excitations. The norm of the wavefunction (3.38)

ZE/dzzl.../d2zN|\1;V_2_1+1(21,...,zN)|2 (3.39)

can be thought of as the partition function of a statistical mechanics problem
with weight |¥|? = exp[—2U/(2m + 1)], where

2 1
Ulzr,ron) = @m+ 123~z — ) + = ST 2 (3.40)
k

2
i<j 4y

The quantity U is the potential energy of N particles of fake charge (2m + 1) in-
teracting via Coulomb forces in a negative, jellium background. The first term is
the Coulomb energy of interaction among the particles in a two dimensional space
(under the assumption that all the field lines are confined to the 2D space) and
the second term is the interaction energy between the particles and a constant,
negative charge density distribution ng = —(271%) ! = B/®,.

Due to the long range Coulomb forces, this system must be everywhere locally
neutral in order to minimize the potential energy. Therefore, the density n; of
fake particles of charge (2m + 1) must be constant:

np . 1 1
om+1  2m+ 1273

ny = (3.41)

This means that the probability distribution |¥|?> assumes large values for con-

figurations in which the density of electrons is equal to n; almost everywhere

(again, we get the correct filling factor v = 1/(2m + 1)); configurations with

significant deviations from n; on long length scales have very small probabilities.
The Laughlin state can be rewritten as:

. —a w6l
\I/U:2m1+1(21,...,ZN)OC Hf\ij(z;AEzz )H-;VZIE 412AB ] . (3 42)
— 1052 )
I (P I e

where AB = n.®y and b = 2mn,®,. The first factor is the wavefunction for a
filled Landau level » = 1 and the second factor is a bosonic Laughlin state (i.e.
symmetric under particle interchange) at filling fraction v = 1/(2m). We can
think of the latter factor as the binding of 2m zeros to each electron. Hence,
the Laughlin state can be thought of as the v = 1 wavefunction for a composite
object made out of one electron and 2m vortices. This idea is due to Jain [87]:
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it was developed into a powerful theory, the theory of Composite Fermions, by
Jain himself and others. We will dwell extensively on Composite Fermions in the
next chapter.

3.5.3 Charged Excitations: Fractional Charges and Fractional Statis-
tics

To create a density fluctuation in the Laughlin state, we can introduce a zero
(i.e. a vortex) at position Z:

N 2 — 2
VP (21, an) = [[(() 9,

i=1

(Zl, ey ZN). (343)

__ 1
~2m+1

The vortex suppresses the amplitude of the wavefunction in the vicinity of Z,
thus creating a quasi-hole at Z. The corresponding quasi-electron involves 0/0z;,
the projection of the operator z; onto the LL level:

N

_ 20,, — Z*
V) (21, o) = [[(F—)0, - o (21, 20). (3.44)

lp V=am1

By exploiting the plasma analogy, Laughlin showed that these quasiparticles
carry a fractional charge. Even more remarkably, it was shown by Halperin [88]
that they obey fractional statistics too.

We will now present Laughlin’s analysis and prove that the quasihole (3.43)
has charge e/(2m + 1) (we will skip the proof that quasielectrons have opposite
charge due to (3.44) being much harder to work with). The modulus squared of
(3.43) can be written as:

W2 = e mm (UHY) (3.45)

where U is given by (3.40) and

V:—(2m+1)i1n\2i—Z|- (3.46)

=1

The potential energy V represents the interaction of the fake particles with an
impurity having positive, unit charge located at Z. To maintain charge neutral-
ity, the fake particles will be repelled from Z and the net reduction of particles
around Z will be equal to 1/(2m + 1) (because our fake objects have charge
(2m + 1)). Hence, the quasihole must have fractional charge ¢ = e/(2m + 1).
Since Laughlin quasiparticles are charged objects, they can be excited only
in pairs, resulting in a charge excitation gap A = A, + A_, where A, (A_)
is the quasielectron (quasihole) excitation energy. The gap A was estimated
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both analytically and numerically and it was experimentally determined from
transport measurements. As expected, it scales as the Coulomb energy but its
typical values are only a few percent of €?/(elg) [89)-

3.5.4 What about Disorder?

As was pointed out in section 3.1, disorder is needed to have a quantized Hall
plateau of finite width. In the FQHE, the fractionally charged excitations play
the role of charge carriers; therefore, the Hall resistance will not change with the
filling factor if the excess Laughlin quasiparticles are localized by disorder, in
analogy with the IQHE.

Typically, the excitation gap of the Laughlin state A o e?/(elp) is smaller
than the cyclotron energy and the FQHE will not be observable when the disorder
induced broadening of the levels is larger than A: that’s the reason why the
FQHE is observed only in very clean samples.

If the density of charged excitations becomes very high, they tend to delocalize
and eventually condense into a Laughlin state of their own. This gives rise to
the hierarchical family of Hall states at filling p/(2mp + 1) (see [88, 90]).

As we shall see in the next chapter, the theory of Composite Fermions can
account for the principal sequence in a very easy way. Moreover, it provides an
explanation for the new Hall states observed by Pan et al. [64].






Chapter 4

Composite Fermions

In this chapter the Composite Fermion (CF) model of the Fractional Quantum
Hall Effect is discussed.

In the first section, we introduce the Chern-Simons transformation and the
Hamiltonian of CFs. Then we present the mean-field approximation, which com-
pletely neglects Coulomb interaction and gauge field fluctuations, and we show
that non trivial results are obtained in this approximation: in particular, the
fractional Hall effect of electrons is mapped onto the integer effect of Composite
Fermions at the mean field level. Then we calculate the electromagnetic response
function of CFs in the more sophisticated random phase approximation (RPA).
Finally we consider the role of disorder and we show that a random potential
produces static fluctuations of the Chern-Simons magnetic field, which affect the
transport properties of CFs. We explicitly calculate the correlator of the ran-
dom magnetic field experienced by CFs at the RPA level, in the limit when CFs
completely fill an integer number of Landau levels.

4.1 The Chern-Simons transformation: a singular Gauge
transformation

In this section we will introduce Composite Fermions via the Chern-Simons (CS)
transformation [70, 84, 91, 92]. This approach is not completely equivalent to
Jain’s approach, which was very briefly discussed in the previous chapter. How-
ever, they both provide the same answers to many relevant questions concerning
the FQHE. For a discussion about the differences in the two approaches see [84].

In the following, we will assume that the magnetic field B is so large that the
many-electron ground state is completely polarized. The starting point is the
Hamiltonian of N interacting electrons in a constant field B:

H= Zi (b + AED) + 3V —1), (4.1)

1<j
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where m, is the effective mass of an electron. Given an eigenstate ¥, of (4.1),
the Chern-Simons transformation is defined as

D(ry,...,rN) = [H o= i#0(Ti=T;)

1<j

\Ife(l'l,...,I'N), (42)

where 0(r; — r;) is the angle between r; — r; and the z axis and ¢ = 2m (m is
an arbitrary integer, not to be confused with the electron mass me). It is easy
to see that, for this choice of ¢, ® obeys fermionic statistics.

The new wavefunction ® is an eigenstate of

1
Hcs=zi:2m <p+ A(rz)——arz) +;V r, —Ij), (4.3)
where the Chern-Simons vector potential a(r) related to the transformation (4.2),

(bq)()zve . _¢(I>()Z,2X(I'—I'j)’ (44)

.2
o 27 i Ir — 1

has a singularity at the position of each electron due to the non-single-valuedness
of . Owing to that, the "fictitious” magnetic field related to a is not everywhere
zero (in contrast to ordinary gauge transformations):

b(r) = 2¢®, Z 5(r — 1) = 2¢Don(r). (4.5)

(5}

According to the latter formula, the effect of the CS transformation is to attach
2m fictitious flux quanta to the position of each electron. These new composite
objects, called Composite Fermions (CFs), are different from Jain’s quasiparticles
(which are formed by attaching some of the already present flux quanta to the
particles, see section 3.5.2), though closely related to them. From (4.2) it is
obvious that the densities of electrons and CF's coincide.

The fictitious field (4.5) doesn’t have any effect on the spectrum and the
statistics of the system. If we had chosen odd (non integer, respectively) values
of ¢, the resulting Hamiltonian would have described bosons (resp. anyons, i.e.
particles with fractional statistics).

It is clear from (4.5) that the CS potential does not lead to classical forces
among the particles. However, if one looks at the Hamiltonian (4.3), one could
argue that this cannot be the case: since (4.4) depends on the particle positions,
it varies in time and there ought to be electric fields depending on the positions
of the particles and thus forces among them.

The reason why there are not classical forces is the nonlocality of a(r) as
a function of the particle positions (see (4.4)): if one derives the equations of
motion of (4.3), there will be additional terms due to non locality which do not
appear in the usual equations for particles interacting with an external vector
potential and which will account for the absence of classical forces.
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4.2 The mean field approximation

As we said in the previous chapter, nonperturbative techniques are needed to
study the electron Hamiltonian (4.1) at fractional filling factors. Although the
CS Hamiltonian looks even more complicated than (4.1), approximate methods
can be successfully applied to it.

The simplest approach is the mean field approximation, which consists of
assuming a uniform particle density n, (we neglect disorder in this section) and
thus a uniform fictitious field b = 2m®gn,. The total magnetic field experienced
by CFs is then:

AB = B —2m®yne = B(1 — 2mv). (4.6)

Moreover, for uniform densities the Coulomb term is just an irrelevant constant.
Hence, at the mean field level CFs are free fermions in a constant field AB. If
we define a CF filling factor as

ne@0
=" 4.7
we can straightforwardly derive an appealing relation between p and v:
p
=—\ 4.8
T omp 1 (48)

At the mean field level, the FQHE of electrons is mapped onto the IQHE of CFs!
If v > 1/(2m), the total field AB is negative and we get the sequence

p

== 4.
v 2mp — 1 (4.9)

Though intriguing, the mean field description is inaccurate: in this approxima-
tion both the Hall resistivity p,, and the energy gap are not correctly obtained.
As regards pyy, if the FQHE at filling (4.8) were simply an integer state p of CFs,
the Hall resistivity would be p,, = h/(pe?) rather than p,, = (2mp + 1)h/(pe?).
As far as the energy gap is concerned, this approximation completely neglects
Coulomb correlations which are ultimately responsible for the fractional Hall gap.
However, since the mean field ground state is nondegenerate, perturbative meth-
ods can be applied to it. Indeed, the correct conductivity and energy scale for the
gap have been obtained by considering the residual interactions (Coulomb and
gauge field mediated interactions) of CFs beyond mean field (see next section).

If fractional filling factors of CFs are considered, new electronic fillings v
are obtained, which do not belong to the sequences 4.8 and 4.9). The recently
observed plateaux at ¥ = 4/11 and v = 5/13 [64] correspond to CF filling factors
p =4/3 and p = 5/3 respectively. It is believed that these FQHEs for CFs are
due to their residual interactions, which are completely neglected in the mean-
field approximation.
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From equation (4.6) follows that, when v = 1/(2m), the total effective field
AB is zero. Thus, for those filling factors, the ground state of the system is just
a Fermi sea of Composite Fermions (at the mean field level) and the radius of
the Fermi sphere is kr = \/4mne = 1/(lg\/m).

Indeed, experimentally the even denominator states have not shown QHE so far
(except for the v = 5/2 and v = 7/2 states, which are believed to be condensates
of CFs in the uppermost, half filled LL); see, for example, fig. 3.1.

When v is slighty different from 1/(2m), CFs experience a weak magnetic

field AB and they should then move along cyclotron orbits of radius

thF
eAB’

This new length scale was observed in a beautiful experiment carried out by
Smet et al. [93].

Again, the mean field approximation is not very satisfactory: its most spec-
tacular shortcoming is the prediction that the Hall conductivity of the system
is zero (since AB = 0). Nonetheless, it has proven to be a very good starting
point for more sophisticated approaches which take into account the residual
interaction among CFs at the Random Phase Approximation (RPA) level and
beyond (see, among others, [94]).

R. = (4.10)

4.3 The Random Phase Approximation: conductivity and
electromagnetic response function

In this section we will calculate the electromagnetic response function of CF's in
the random phase approximation. We will assume that an integer number p of
CF LLs are filled. To calculate the response function is useful in many respects:
not only it yields information about the linear response of the system to an
external perturbation but its poles are also related to the energies of collective
excitations and to the energy gap. The RPA response function at AB = 0 was
first calculated by Halperin, Lee and Read[94]. The case AB # 0 was addressed
in earlier works on anyon superconductivity [95, 96]; later on, their calculations
were extended by Lopez and Fradkin [91] and Simon and Halperin [97] to include
an external magnetic field and Coulomb interactions, which play a major role
in CF physics. Moreover, in [97] a Fermi-liquid theory approach was used to go
beyond RPA and take into account the renormalization of the CF mass.

Before embarking on these calculations, we want to show that, at the RPA
level, the Hall resistivity of CF's at integer filling factors p is correctly quantized.
Since, when moving, a CF carries 2m flux quanta, a CF current j induces a
Chern-Simons electric field e given by

2
e =&z x j= —p°5, (4.11)
ec
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where o
m 0 1
Pcs = o2 ( ~1 0 > . (4.12)

We want to stress here that this electric field is fictitious, i.e. it is not measurable
experimentally. It originates from the fact that, in formula (4.11), j is the mean
value of the quantum-mechanical current. The Chern-Simons field does not
produce classical forces among the particles (remember section 4.1).

CF's respond both to the external field E and to the self-consistent field e:

where e is related to j through formula (4.11). Hence, the true resistivity tensor
p (defined by E = pj) is the sum p = por + pcs. In the RPA, the CF resistivity
is replaced by its mean field value p,,;. The resistivity is thus:

h 1 0 1
P—me+pcs—g(2m+]—9) ( 10 ) , (4.14)
which is the correct value observed in the FQHE at fillings v == Qm’ﬁ.

Let’s now focus on the response function. The vector potential related to the
effective constant field AB = B—¢®ne will be a,,,y = AB/2Zxr, in the Coulomb
gauge. We will treat the system of free CFs subjected to AB as the reference
system and regard the rest of the Hamiltonian as an interaction term, which we
will treat perturbatively. In second quantized notation, the perturbation is

Hy= / d2r2; ol(r) [QZ(p + Zamf)(a —ams) + i—j(a — apy)]¥(r)

(5]

+/d2r' d’r" (n(x') = n )V (r' — ") (n(r") — ne). (4.15)

More explicitly, the contribution to the interaction from the fluctuations of the
CS field (the first term of H;) can be written as a sum H; + H,. Hy is given by

= _ 9% 2y 2r"r-7ZAX(I‘_IJ)TLr—n
=gt [ e i) I ) a9
where 1

i(0) = )P + “an]U() (4.17)

e

is the mean field current operator. The second term H, can be written as

(¢Poe)?

(27¢)%me

A, Zx(r—r)

/ d’r d*c’ d*r"n(r)[ (n(r') — ne)]

r —r'|2
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Zx(r—r")

< () =) (4.18)

=0, [ e e xS ) — n) e - ),

|I' _ I‘"2|I‘ _ I.11‘2

where Cy = (¢®ge)?/(2mc)*me. We will now replace the first density operator in
(4.18) by its average and thus neglect the third order fluctuations in the density,
which would lead to three particle interactions. In this approximation, (4.18)
becomes

Hy, = —27Cyn, / d’r’ d*r"(n(x') — ne) In v’ — x| (n(x") — ne), (4.19)

which represents an effective two-dimensional Coulomb interaction.
The electromagnetic response function K, determines the linear response of
the interacting system to an external perturbing field A®:

€ X
Ju(q7 UJ) = EKMU(qa W)Ag t(qa U)), (420)

where the greek indices represent both spatial and temporal coordinates and ju
is the mean value (not to be confused with the mean field current j,!) of the
true density-current operator of CF's; its spatial components are

3(r) = - U()[p + “alm)] ¥ (4.21)
(5]
and its temporal part is Jy = jy = In(r) = n(r) — ne.

K, is a 3 x 3 matrix by definition; however, if we choose the convention that
q is parallel to the z-axis, the current conservation equation yields qj, = wjo
and j, is determined once we know jy. If we further choose the Coulomb gauge,
A'q, + AP¥q, = 0, then A$™ must be zero since ¢, = 0 and we can treat K,
as a 2 x 2 matrix with indices taking the values 0 (time components) and 1
(y-components).

Since the interaction W contains long-range terms, we expect that the random
phase approximation provides the leading contribution to the response function
of the interacting CF gas at long wavelengths.

To calculate K, in the RPA we need first to evaluate the response function
Kgy of non interacting CFs. This quantity is given by K° = D°+ E, where (from
now on, we consider h =c=e = 1)

Dﬂy(rl, t1; 19, ta) = —i(to|ju(r1, t1) 70 (T2, t2)|th0) (4.22)

is the free particle correlator of the mean field current (1), is the noninteracting
ground state) and E is the diamagnetic term

E:"—<8 2) (4.23)

Me
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In the RPA, the interactions are treated by separating out the Hartree part of
both the Coulomb interaction and the Chern-Simons interaction; CFs are then
treated as noninteracting objects which respond to both the external field and
the self-consistent induced Hartree fields. Thus, at the RPA level the response
function K, reads

K=K +w, (4.24)

where the interaction matrix W = C + V is the sum of the Coulomb term
_ ([ v(g) O
V(q) = ( 0 0 ) (4.25)

(where v(q) = 2me?/(eq)) and the Chern-Simons term

i
Clq) = ( (im 0 ) (4.26)

q

C, is related to (4.16) via
1
= / r 1’ j,(r)Cu (r, ), (). (4.27)

The calculation of K° for integer p is carried out in Appendix B. It is given by:

2 .
0 D Q> —iqAw:Y
K@) = 21 Aw, ( iAWY Aw?(¥g +1) ) ’ (428)

where Aw. = eAB/(mec) = AB/me,.
After some algebra, we get from (4.28), (4.25), (4.26) and (4.24):

L%y g2
K(q) = 2 (A“C o ) (4.29)

T 20\ g2 Awe(Sp+1) — BE(S + 50)V(q)
where
2,9 pq°
O=1+2¢pY; — ¢*p*(So + 2) — %A%EOV(q),

= qbp(E + 20) - 21, (430)

Within the RPA the particle mass is not renormalized by interactions and
the response function (4.29) satisfies Kohn’s theorem and the f-sum rule, which
state respectively that the ¢ — 0 behaviour (for any fixed w # 0) and the
w — oo behaviour of an interacting system are determined by the band mass.
Simon and Halperin [97] considered a ”modified” RPA and showed that the mass
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renormalization can be incorporated in a calculation of the response function in
a way that does not violate Kohn’s theorem and the f-sum rule.

It is possible to extract the FQH energy gap from K. In the large wave-vector
limit, the lowest poles of K describe the excitation of a well separated quasihole-
quasiparticle pair. Therefore, they occur at a frequency which equals the FQH
energy gap [94, 97]. In [97] the poles of the response function in the RPA and
the modified RPA were studied numerically and it was shown there that the gap
scales as the Coulomb energy €?/elp.

Alternatively, the energy gap can be extracted from the poles of the CF single
particle Green’s function: this was accomplished by Stern and Halperin [98] in
the large p limit.

If we average over a frequency interval which is much larger than Aw,, then
the diagonal matrix elements of the unperturbed response function (4.28) are well
approximated by the corresponding matrix elements of the response function in
zero effective magnetic field, i.e. at v = 1/2, providing that glap is much larger
than one. The necessary conditions to approximate the RPA response function
(4.29) by its value at AB = 0 are more complicated [94].

In the next section we will need the density response Ko in the opposite limit
qglap < 1 and w = 0. Expanding the numerator and denominator of Ky to
second order in ¢ and reintroducing #,c and e for clarity, we get from (4.30) and
(B.17):

pg?

2me2pq/e + 2mhAw(dp +1)2°

For strong magnetic fields B, the cyclotron energy is larger than the Coulomb
energy, E. = e?/elp < hw.. Therefore, since Aw(dp + 1) = w,, for large B the
first term in the denominator of (4.31) is smaller than the second term and can
thus be neglected. Hence, (4.31) reduces to

Koo(g,w =0) ~ (4.31)

pq? vg?

K - Y = .
0(g,w =0) 2rhwe(¢pp+1) 271l

(4.32)

4.4 The role of disorder: real random electric fields and
fictitious random magnetic fields

We have repeatedly stated that disorder is an essential ingredient of the QHE
but we have not considered the role of randomness in Chern Simons theories so
far. We will now address this issue.

A random electrostatic potential induces modulations in the density of CFs.
Since the fictitious magnetic field b(r) is proportional to the density, the impurity
potential will ultimately produce static fluctuations in b(r). In the following, for
notational convenience, we will denote with b(r) the RMF related to the small
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deviations of the density dn(r) = n(r) — n. from the mean value n,:

b(r) = ¢Byon(r) (6 = 2m). (4.33)

The random quantity b(r) is thus a perturbation to the constant effective field
AB = B — ¢Pgn.. In the presence of impurities or imperfections, CFs always
experience a random magnetic field (RMF) given by (4.33) in addition to AB.

Of course, the fictitious, static RMF (4.33) and the electrostatic potential
which induces the fluctuations of the density are not independent random quan-
tities. To put it another way, although the impurities create a scalar potential
only, this field gets renormalized and acquires also a vector component due to
the screening by particles and mixing with the CS field.

In general, the correlation length r. of the fictitious RMFs can be long (i.e.
re > lg) or short (r. < lg), depending on the source of the disorder electro-
static potential. Typically, in GaAs-AlGaAs heterostructures, the most impor-
tant source of randomness are ionized donor impurities distributed in a thin layer
separated from the electron gas by an undoped spacer. In this case each impurity
produces a bare potential Vy(r) = (e/€)(r? 4+ d?) /2 (where d is the width of the
spacer). If we assume that the impurities are randomly distributed in the layer
with a sheet density ng, the correlator of the total external potential

2 .
=3 Volr-r) & V=3 T Serer (43

i

i.e. the sum of the individual impurity potentials, is

(V(@)V(=q)) = no|Vo(aq)|* =

2meng o2d
— .

4.35
o (435)

The induced fluctuations of the density dn(q) can be calculated within the frame-
work of linear response theory:

on(a) = eV (a)Koo(aq,w = 0), (4.36)

where Ky is the density-density component of the response function, defined in
the previous section. Since the inequality d > [ap typically holds, we can take
the low-g limit (4.32) of K.

In this limit, assuming again that q is perpendicular to the ¢ axis and using
the Coulomb gauge, the vector potential related to the RMF can be written as

)
aa(q) = 0 =D PN g, (4.37)
The correlator of the RMF in the g-space is

(b(a)b(—a)) = no <¢f7§:e> ¢le 2 (4.38)
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Hence .
2

(Br(0)) = 27 ("5‘1’0”62)2 (-2 [+ ] - aa

ehw,

For an ideal modulation-doped sample, the number of charged impurities in the
doping layer is equal to the number of electrons, ny = ne.

Note that (4.38) and (4.39) are valid for ¢ < d" ! even in the case E. > hw,, as
long as €?/(ed) < hwe.

Since the range d of the potential (4.34) is typically larger than the average
distance between the impurities, n(l)/ °d > 1, it is reasonable to assume that the
random magnetic field is Gaussian.

RMFs have been the subject of intense research over the past ten years or
so, mainly due to their relevance in the framework of the theory of CFs. So
far, most of the work was concerned with RMFs with zero or small mean value,
which effectively describe a 2DEG near filling factor v = 1/2. Since AB = 0
in this case, the function (4.29) must be replaced by the response function of
CFs experiencing no magnetic field , K3P=°. It was shown in [94] that, at the
RPA level, K58=" is dominated by the Coulomb interaction at small ¢, ¢ < kp,
(where kp is the CF Fermi momentum): K§3Z=° ~ eq/(2me?). Therefore, at
v = 1/2 the distribution of impurities described above gives rise to a RMF with
vector potential

ay(q) = Z ?eiq'”eqd. (4.40)
7

The correlator of the field is thus
(b(@)b(—a)) = no (2m®o9)” e, (4.41)

Fourier transforming, we obtain

3
2

(b(x)b(0)) = o (2”23’”)2 [1 ; 47“—d2] - (4.42)

In [37, 99] a supersymmetric NLo-model describing fermions in a RMF with
short correlation length was derived: it was shown there that this model belongs
to the conventional unitary symmetry class and has thus the same critical be-
haviour as a system of fermions subjected to a random scalar potential and a
constant magnetic field. Hence, all the states are expected to be localized when
the RMF has zero mean value and a localization-delocalization transition occurs
when the mean value of the RMF is sufficiently large. These results show that
the approximate model of weakly interacting CF's subject to a fictitious, static
RMF (in addition to the external disorder potential) is at least consistent with
experiments.

Evers et al. [100, 101] studied the semiclassical motion of fermions in a long-
range RMF. They showed that the nature of the transport depends crucially on
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both the strength of the fluctuations of the field (b*(r)) and the mean value of
the total field AB. For AB = 0 there is a crossover from a chaotic, Drude-like
diffusion to a percolating kinetics with increasing amplitude of the fluctuations.
In the latter case, most classical trajectories are cyclotron orbits drifting along the
closed lines of constant b(r) and the transport is determined by a small fraction
of delocalized paths, so called ”snake states”, which meander around the lines
of zero b. In this regime the conductivity falls off as a power-law function of the
strength of b.

For large AB, all the classical paths are circular orbits drifting along the lines
of constant magnetic field and there is only one path percolating throughout the
system in the thermodynamic limit: since in this case the mixing of the orbits
occurs due to nonadiabatic scattering, the conductivity falls off exponentially
with AB.

In the limit AB — oo the particles are confined to lines of costant b(r). This
percolation picture strongly resembles the semiclassical motion of particles in
a constant magnetic field and a long range electrostatic potential discussed in
section 3.4.2. As in this latter system, the inclusion of quantum mechanical tun-
neling between classical percolating trajectories enhances the localization length
but does not delocalize the states. Hence, when approaching the center of Lan-
dau bands, a localization-delocalization transition should occur also in the case
of long-range RMFs.

In chapter 6 we will study the localization of states in the tails of the DOS
of fermions in a RMF with large mean value. We will consider both short-range
and long-range RMF's.






Chapter 5

Composite Fermions with spin

In this chapter the spin polarization of the FQHE ground states at fixed filling
factors is analyzed within a model of Composite Fermions with spin. We show
that several cross-overs between differently polarized ground states as a function
of the perpendicular magnetic field occur, in agreement with recent experimental
investigations by Kukushkin et al. [102]. The magnetic field and temperature
scalings of the polarization, as well as the magnetic field dependence of the spin-
flip gap, are studied. The effect of disorder and spin-orbit scattering on the spin
polarization transitions is also discussed.

Part of the results presented in this chapter is published in [103].

5.1 Experiments on spin polarization in the FQHE

In the previous chapters, it has been assumed that the Zeeman splitting is suf-
ficiently large such that the spins of all electrons in a Landau band are com-
pletely polarized [82]. However, due to the small electronic effective mass me
(me = 0.067mg, where my is the bare electron mass) and the small g-factor
(9 = —0.44), in GaAs the Zeeman term FE, is about 70 times smaller than the
cyclotron energy hw, (for GaAs, in Kelvin, hw, ~ 20B[T|K and E, ~ 0.29B[T|K,
with B in Tesla) [104].

Recently, the improved quality of samples has allowed to observe FQH struc-
tures down to few Tesla, where the Coulomb energy scale can easily mix the
different spin channels. Thus, spin effects have to be taken into account in order
to describe the properties of these structures.

Indeed, partly spin-polarized ground states (GS) have been proposed at various
filling factors v by Halperin [104]. An example is the state at v = 2/5 that
has also been studied numerically. For this, the GS has been shown to be non-
polarized [105] without Zeeman splitting. Exact diagonalization confirmed the
Halperin wave function to be an excellent approximation of the true GS [106].
A possible way to change the spin polarization of the 2DEG is to tune the



5.1 Experiments on spin polarization in the FQHE 78

Zeeman energy and the cyclotron energy independently by tilting the magnetic
field with respect to the direction orthogonal to the 2DEG. The cyclotron gap
is only sensitive to the orthogonal component of B since it is related to the
motion of the particles in the plane, whereas F, is sensitive to the total field B.
Tilted-field experiments at ¥ = 8/5 (the particle-hole conjugate of 2/5) yielded
reentrant behaviour of the activation gap associated with the transition from an
unpolarized GS for small B to a spin-polarized one at large B [107].

A similar behaviour has been found for v = 2/3, without tilting the field, via
back-gate modulation of the 2D electron density [108].

Recently, direct measurements [102] of the spin polarization v, of the GS as
a function of a purely perpendicular magnetic field B have been performed via
radiative recombination of the 2D electrons with holes bound to a d-doping of
acceptors. In these experiments, the filling factors of the Quantum Hall systems
were kept constant by a simultaneous back-gate modulation. The data, extrap-
olated to zero temperature, unambiguously showed the expected cross-overs for
several v’s of the principal series v = p/(2p &+ 1) (p integer) as a function of
B (see figure 5.1). With increasing B (v fixed), .(B) showed wide plateaux
corresponding to given spin polarizations. At certain magnetic fields, crossovers
between successive plateaux were observed.

Especially, two interesting features came out of this experiment: (i) the spin
polarization cross-overs were smooth at 77 = 0 and (ii) small plateaux occured
within each cross-over region.

More recently, the temperature scaling of the polarization has been measured
with different experimental techniques [109, 110, 111].

In this chapter, we aim at analyzing the experiments within a picture of Com-
posite Fermions (CF) with spin. We explicitly address point (i) considering both
the influence of disorder and of spin-orbit scattering near the spin polarization
transition. The temperature scaling of the polarization is considered, as well as
the magnetic field dependence of the spin-flip gap. A possible explanation for
feature (ii) can be found in [112].

In the following, we consider the simplest, albeit non-trivial, model with
only one adjustable parameter, namely the prefactor « in the CF effective mass
m*(B) = meav/B. We find that the model fits a large number of experimental
data quantitatively. This strongly indicates that quasi-free CF with spin are a
good starting point for the theory of the FQHE, though a complete microscopic
justification of the model is still lacking.
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Figure 5.1: The degree of spin polarization v, of a GaAs-AlGaAs sample as a function of the
(perpendicular) magnetic field B for some fixed filling factors v belonging to the principal
sequence. The curves show wide plateaux with constant 7, separated by smooth crossover
regions. Note the formation of additional shoulders in the crossover regions, corresponding to
polarizations midway between the values of v, in the wide plateaux.
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5.2 Polarization transitions and crossings of CFs Landau
levels

In chapter 4 CF's were introduced via a singular Chern-Simons gauge transforma-
tion of the many-electron wavefunction. Since we considered the polarized limit,
the transformation depended only on the positions of the electrons. For the non-
fully spin-polarized states it has been noted that interacting spin-1/2 electrons
in two dimensions (2D) in a perpendicular magnetic field can be described as a
U(1) ® U(1) gauge invariant liquid of spin-up and down electrons that interact
with a doublet of Chern-Simons gauge fields [113, 114]. Then, the number of
flux quanta associated with spin-up or down fermions can be different. However,
one can show that for the principal sequence the effective magnetic field is the
same for both species. This generates the states at v = (p+ +p;)/2[(p+ +p,) £ 1],
where py/, are the numbers of filled spin-up/down CFLL. At mean field we have
equal cyclotron gaps RAwe = hAwe, = fw?. In the following, we focus on the
principal sequence with p = p, +p, (p integer).

The mean field assumption has the problem of generating the energy gaps
scaling incorrectly (see section 4.2). The dimensional analysis of the spinless
case by Halperin, Lee and Read [94] yields an activation cyclotron gap at fixed

p,
1 €2

p+lelp’

since the Coulomb energy e?/elp (~ 51K./B[T]) is the only energy scale for
electrons in the first LL, with the dielectric constant ¢ (=~ 12.8 for GaAs) and
Ip = (®o/27B)"* the magnetic length. Equation (5.1) can be obtained by
assuming an effective CF mass m* o< v/B. As discussed in section 4.3, Eq. (5.1)
can be derived from the study of the CF density response function or the CF
single particle Green’s function (see [97, 98]).

The activation gap is interpreted as the smallest energy needed to excite a CF
from the GS into the first unoccupied CFLL without spin-flips. The scaling law
(5.1) has been confirmed by numerical diagonalization of small 2D systems on a
sphere [115].

A logarithmic divergence of m* has been predicted in a very narrow region
near v = 1/2 [98]. However, clear experimental evidence for this behaviour is
still missing.

When spin is taken into account, a different energy gap can be introduced,
associated with the reversal of the spin of a CF in the uppermost CFLL. In
connection to this process, a new effective mass — the “polarization mass” —
can be introduced [116, 117]. Both the activation and the polarization masses
scale as v/B but with different prefactors, due to their different physical origin.

Estimates for the magnitudes of these gaps have been obtained without taking

fuww; o

(5.1)
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into account disorder, finite thickness of the sample and LL-mixing. Thus, in
experiments typically smaller energy gaps than the theoretically predicted ones
are observed [89)].
In order to discuss the results of the recent experiments, we consider in the
following m*/mg = aV/B. Such a dependence of m* on B has been recently
observed in experiments [118]. We use « as a fitting parameter that incorporates
the mentioned corrections. We will show that the experimental results for all of
the different filling factors can be described with an accuracy of about 10% by a
unique choice of a.

The above considerations suggest the following form of the CF cyclotron gap

he VB

e (p, B) = o S =)

c (5.2)
These gaps are consistent with recent numerical investigations [119], especially
for p > 2. The Zeeman term can be easily included since it is not affected by the
Chern-Simons transformation. It depends only on B. Thus,

1
—) et (p, B) + 5918 B (5.3)

Enps (B) = (ns + 9

are the energies of spin-up/down (s = 1) CFLLs.

We see from (5.2) that, in contrast with the IQHE, in the fractional case
crossings of quasiparticle LLs with opposite spin at a given filling can occur as
a function of B without any in-plane field, i.e. in a naturally isotropic phase.

In order to find the ground state at 7" = 0 at a certain B we have to oc-
cupy the lowest p CFLLs. At T = 0 the chemical potential lies in the middle
between two CFLLs. Since the LL degeneracy is the same for all of them, the
corresponding spin polarization is v.(B) = [pt(B) — py(B)]/p. The transitions
between differently polarized GS are then given by the crossings between CFLL
with different spins at the Fermi energy. For example, the critical magnetic field
Bt at which the transition to the completely spin-up polarized GS takes place
is obtained as the crossing point between the n_ = 0 and the n, = p—1 CFLL,

2(p—1) )r_

gla(pT1 (5:4)

Bcrit(p) = [
We recover the v = 1/2-limit for p — oc.
The allowed values of polarization for the incompressible states with CF filling
p indicated in Table 5.1 do coincide with the experimentally observed ones in
the large plateaux.
The comparison of (5.4) with experimental data [102] leads to a first inter-
esting result, namely a linear relation between |g|aw and v which is consistent
with all the experimentally investigated filling factors v: |glao = —0.075+0.787v
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(Fig. 5.2). From this we can determine the g-factor for a given effective mass
(given by ). A similar relationship has been observed [120] for fractions be-
longing to the principal sequence of FQHE states around v = 3/2, but in these
experiments the crossings were produced by tilting the magnetic field at a con-
stant electron density.

0.45

lgle
0.4

0.4 0.45 0.5 0.55 0.6 0.65
124

Figure 5.2: Experimental values [102] for |g|a extracted from (5.4). Best fit |gla = —0.075 +
0.787v.

Another interesting feature is related to the B dependence of E,, ,,(B) near
the crossings. If we define the "slope” S, ,s(B) = 0pEn,ps(B) it is easy to check
that

Syt (By.nt) = Snypt (Buy ny)| = |9] 15, (5.5)

where Bnml is the magnetic field where the two levels F, ,» and E”ip | CTOSs.
Therefore the relative slopes of the two CFLL at the crossing is the same for
all the possible crossings at a given filling factor. This means that any charac-
teristic energy scale involved in processes close to the LL crossings will produce
quantitatively similar effects independently on the chosen crossing point.

p Ve
1 1
2 0,1
3 1/3,1
410,1/2,1

Table 5.1: Allowed values of the spin polarization v, for the Quantum Hall states belonging to
the principal sequence v = p/(2p + 1).
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5.3 Smoothening of the transitions: disorder and spin-
orbit effects

So far, at T' = 0, the model predicts step-like transitions of .(B) at the magnetic
fields for which the Fermi energy is at a crossing point between two spin-up/down
CFLL. On the other hand, the experimental data, extrapolated to 1" = 0, show
smooth cross-overs. In the following, we suggest different origins for such a
behaviour.

5.3.1 The role of fictitious, inhomogeneous magnetic fields: semiclas-
sical theory

A first contribution to the smoothening at 7" = 0 is the disorder-induced broad-
ening of the CFLL. If the density of states (DOS) of the crossing CFLLs are
broad, within a single particle picture it is easy to see that the Fermi energy lies
in their overlap for the magnetic fields around the transition. The relative pop-
ulation of the two spin modes is then a continuous function of B even at T = 0,
producing the observed smooth zero temperature spin polarization transition.
It is therefore important to investigate the DOS of the CFLL in presence of a
disorder field.

At the filling factors considered, an important source of randomness is the
fluctuating magnetic field associated with the distribution of the fluxes connected
to the screening charge density (see section 4.4). The fictitious RMF does depend
on the Fermi energy of the 2DEG. In the experiments, the fractional filling factor
of electrons is kept fixed and thus the number of exactly filled CFLLs is also fixed.
Therefore, we consider the correlator introduced in section 4.4 with fixed v,

2
Bla-a) =no (2220 e 2 5.6
EWe

and we use the semiclassical formula (6.20) in section 6.2. In formula (5.6) we
have chosen natural units A =c=e = 1.

We use a semiclassical method since diagrammatic evaluations of the single par-
ticle Green’s function of fermions in a RMF are plagued by infrared divergencies,
as discussed in chapter 6.

In our system the mean magnetic field is relatively strong (only few Landau lev-
els are filled) and the semiclassical approximation is not fully justified but we
believe that the following expression (5.8) yields a reasonable order-of-magnitude

estimate of the broadening in this regime as well.
According to Egs. (6.20) and (6.22), the semiclassical width of LLs due to
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the field (5.6) is

orgv\°  3wE? 35 2F
ng o1 5,53 o
ewe ) 2m*2wrd 272 mrw2d?
where w? is the renormalized cyclotron frequency of CFs defined in the previous
section and m* is the effective mass of the CF around the magnetic fields of

interest for the spin polarization transition. The width of the n-th CFLL is then
given by

In =T((n+1/2)w)
_ [no (27r¢)1/>2 3r(n+1/2)? P, (g 5 4 _2(n+ 1/2)>]1/2' (5.8)

EWe 2m*2d* 2277 mrwid?

1/2
, (5.7)

[(E) =

The width of LLs (5.8) shows weak magnetic field dependence. This result is in
partial agreement with the experiments, since the ZTS region in [102] seems to
be roughly independent on the different spin polarization transitions at a given
filling fraction.

Let’s now focus on the v = 2/3 state for a comparison of formula (5.7) with the
experiments. Assuming that B ~ 27 (around which the first polarization transi-
tion occurs) we get from (5.8), for the 0-th LL, I'y &~ 0.12 K (with the parameters
of the GaAs-AlGaAs heterostructures used in [102]). From the experimentally
measured ZTS [102], we can deduce the typical energy scale involved to be of
the order of 0.3 K.

In order to describe more closely the experiments, a deeper analysis of the DOS
in the quantum limit, where E' ~ hw}, is needed. Moreover, since the CF density
response function Ky is affected by disorder, this quantity and the broadening
of LLs due to the random fields should be determined self-consistently.

5.3.2 Spin-orbit effects

The disorder-induced broadening of the CFLLs is not the only origin of the ZTS.
One can also obtain it by anticrossing of the CFLL near the critical fields. In
analogy with the IQHE [121], anticrossing could be driven by spin-orbit coupling.
In order to obtain the effective spin-orbit Hamiltonian for the CFLL involved in
the transition, let’s start with the single particle 2D Bychkov-Rashba term

he(E,) . ., =
Ve b = a >z-3><1_[. (5.9)

4m3c?
Here (E,) is the average electric field built into the heterojunction along the

growth direction z. By writing the kinetic momentum I1 in terms of the interLL
operators a, a! (with af|n, k) = v/n +1|n + 1,k) where |n, k) describes the state
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of the n-th LL with internal momentum k): II, = ilag/v/2h(a! — a) and 11, =
Iag/V/2k(a’ +a) and the Pauli matrices s, s, in terms of the rising and lowering

spin operators sy = S, * 45, we obtain the effective Hamiltonian for two close
CFLL with opposite spins

+(Vso ¢, 146n,, +hc)) (5.10)
with Vso = v2h%e(E,) /4m2c®Iap and c,, , the destruction operator for a particle

in the state |ng, k) and spin s. By diagonalizing (5.10) we get the resulting single
particle split eigenmodes ¥ as linear combinations of the CFLL eigenfunctions

Ungs
oo (32 /32) 1 )]

where A(B) = E, 41p4(B) — Ey, 1 (B) and NV is a normalization factor. The
new eigenenergies are

es(B) = Do) 2 BoipilB) | \/ (*P) v e

It can be seen how the eigenmodes (5.11) have expectation values of the spin
that change smoothly from, say, | to + when B moves from the left to the
right of By y1,,. By evaluating with these states 7.(B) at T = 0 we obtain
the cross-over behaviour shown in Fig. (5.3) for v = 2/5 (dashed line). The
width of the crossover region in B is a function of V5o, which also represents the
smallest energy separation (the gap) between the eigenmodes. The typical spin-
orbit-induced splitting in GaAs heterostructures is of the order of 0.2-0.3 K. We
obtain the right energy scale needed to produce the observed ZTS. Similar results
can be obtained for the other v’s considered in [102]. In a real experiment both
the disorder induced broadening of the CFLL and the spin-orbit anticrossing
contribute to the ZTS.

5.4 Temperature scaling of the polarization and the
spin-flip gap
Our model allows the direct analysis of the temperature scaling of the polar-

ization for the gapped and gap-less states at fixed v. Considering the thermal
population of the CFLL (neglecting level splitting, for simplicity) we obtain

1
%, B, T) =~ s-F(ns,p,s,B,T) (5.13)
p

Ns,S
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Figure 5.3: Spin polarization of the GS at T'= 0 for v = 2/5 as a function of B (in Tesla), for
a = 0.2. Full line: with level crossing. Dashed line: with anti-crossing (Vso = 0.1 K, see text).

with F(ns,p, s, B,T) the Fermi occupation of the energy level E,_,, at magnetic
field B and temperature 7". The Fermi distribution depends on the chemical
potential y,(B,T), which must be determined self-consistently as a function of
temperature by imposing that the sum of the spin up and spin down CF is equal
to their total number. Results for v.(p, B,T) for various p’s and B’s are shown
in Fig. 5.4.

Comparing with experiment, one observes that the data [102, 109, 110, 111]
can be described within 10% by choosing « independently on the filling factor.
The data obtained from the sample of Ref. [102, 109, 110] are reasonably well
described by choosing o = 0.2 (see Fig.5.4a,b) while the measurements in Ref.
[111] are better fitted by @ = 0.6. An analysis of the data of Ref. [111] is
presented also in Ref. [117].

In order to improve the fit, in Fig. 5.4c we have plotted the lowest five modes
with @ = 0.24 and the remaining four with @ = 0.16 . The slightly better
agreement obtained in this way could reveal a slight dependence of o on B.

The CF model also allows the calculation of the spin-flip gap Ag as a function
of B at fixed p. Ay is experimentally determined by fitting ~.(7") for small
temperatures as exp(—Ag/2kgT), for the states whose polarization vanishes at
T =0, or as 1 — exp(—A4/2kgT), for states with v.(7') — 1 for T — 0. From
the temperature scaling of the polarization described above, we extracted the
dependence of Ay on B, depicted in Fig. 5.5 for v = 2/3 and 4/7. Similar
results are obtained for the other fractions.

In all these predicted gaps we observe reentrant behaviour for which clear
minima are expected. This is consistent with several experiments [107, 108, 110]
performed with both tilted magnetic fields (tuning the Zeeman splitting indepen-
dently of the Coulomb energy) and with purely perpendicular fields at v = 2/3,
8/5 and 4/3. The recent measurements [110] show the expected reentrant be-
haviour but the shape of the minimum is affected by the simultaneous formation
of the state responsible for the above-mentioned shoulders [112] in the polariza-
tion. We predict that the multiple minima in Ay for fractions v = p/(2p £+ 1)
with large p (p > 4) could be observed in spectroscopy experiments at very low
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Figure 5.4: Temperature dependence (T in Kelvin) of . for fixed filling factors and magnetic
fields. (a) v = 1/3 B = 2.75,5.51,8.9 T (bottom to top); (b) v = 1/2 B = 3.3,9.3,12 T
(bottom to top); (¢) v = 2/3 B = 1.05,1.2,1.4,1.8,2.1,2.3,2.4,2.5,3.0 T (bottom to top).
Results (a) and (b) are obtained with a = 0.2, while in (¢) @ = 0.24 for B < 2.1 T and

a =0.16 for B > 2.1 T. Experimental data (bullets, data from [110]) are obtained at the same
B as the theoretical curves.

T on very pure samples.
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Figure 5.5: Spin-flip gap (in Kelvin) as a function of the magnetic field B (in Tesla) for fixed
filling factors (o = 0.2). (a) v =2/3, Vso = 0.1 K; (b) v = 4/7. In (b) level repulsion has not
been included in order to emphasize the formation of the multiple minima.



Chapter 6

Density of States of Fermions in
a Random Magnetic Field

In this chapter we study the density of states of particles subjected to an inhomo-
geneous magnetic field with large mean value and weak fluctuations. We consider
both short-range and long-range fields. Due to the random field, Landau levels
are broadened into narrow bands.

We start this chapter by discussing the diagrammatic approach to the prob-
lem. We show that this approach is plagued by infrared divergencies due to
the long-ranged nature of the vector potential correlations. Moreover, it is not
gauge-invariant. Then we briefly discuss the semiclassical method, which pro-
vides valuable information on the width of the bands corresponding to large
Landau numbers.

In the second part of the chapter, we focus on the tails of the Landau bands.
In these regions gauge-invariant, non-perturbative methods can be applied. We
investigate the properties of the localized eigenstates in the tails and we calculate
the dependence of the density of states on the energy and the mean value of the
magnetic field near the centre of the bands and near the band edge (at E=0).

Part of the results presented in this chapter will be published in [122].

6.1 Failure of naive perturbative techniques

As mentioned in section 4.4, the problem of a charged quantum particle con-
strained to move in a static RMF has recently attracted a lot of theoretical and
experimental interest. Apart from its relevance in the theory of CFs, this model
is supposed to describe states with spin-charge separation in high-7; supercon-
ductors [123]. Besides, a static RMF in 2D semiconductors can be experimen-
tally realized in several ways. One possibility of creating a RMF is to use a
type II disordered superconductor with randomly pinned Abrikosov flux lines in
an external magnetic field as the substrate for the 2DEG [124]. Alternatively,



6.1 Failure of naive perturbative techniques 90

a magnetically active substrate such as a demagnetized ferromagnet with ran-
domly oriented magnetic domains may be used [125]. Recently, static RMF's in
2DEGs were created by applying strong magnetic fields parallel to GaAs Hallbars
decorated with randomly patterned magnetic films [126].

The standard way to estimate the Density of States (DOS) of fermions in a
disordered potential is to calculate perturbatively the imaginary part of the self-
energy of the single-particle Green’s function by conventional diagrammatic tech-
niques . In the case of a RMF, this approach is questionable since the two-point
Green’s function G(r,t;r',t') is not a gauge invariant quantity. Moreover, the
calculation of the self-energy is plagued by infrared divergencies [127, 128, 129,
130, 131] which are due to the long range nature of the correlator of the vector
potentials (even in the case of d-correlated RMFs). According to some authors,
these divergencies are unphysical, being related to the non-gauge-invariance of
the Green’s function, but the question is still controversial [129, 131].

We will now calculate the broadening of Landau levels due to a Random Mag-
netic Field in the self-consistent Born approximation and show which diagrams
diverge and why. We consider non interacting Fermions in 2D subjected to a
strong, constant magnetic field B and a Gaussian, d-correlated RMF with zero
mean and correlator

(b(r)b(r")) = Bod(r — 1'). (6.1)
The corresponding vector potential correlator is (in the momentum space):
B
(aa(@)as(q)) = 50asd(a+ q). (6.2)

As in the case of electrostatics potentials discussed in chapter 3, the Green’s
function is diagonal in the Landau basis and the diagonal elements depend only
on the LL index n, owing to the rotational invariance of the averaged random

field: .
Gn(z) = 6.3
(2) z—E% —%,(2) (63)
Let’s assume naively that Im¥ < Aw, and neglect Landau level mixing (as we
did in section 2.3, when dealing with scalar potentials): the self-energy of the

n-th Landau level in the SCBA is:
Yn(E)

T'n

T E—FE,-%.(E)

(6.4)

where (in the Landau gauge)

d e? .
= [ oSS ki o, ) (6:5)
uw

(2m)2 m2c?

where II, = p, + (e/c)A, and |n, p) indicates the intermediate state of LL index
n and internal momentum p. Again, the DOS consists of semiellipses having a
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width ', &~ 2,/7, (see section 2.3). Remembering that II, = ifi/v/2l5(a’ — a)
and II, = /i/v/2lp(a’ + a) (where a! and a are inter-Landau level creation and
annihilation operators and [ is the magnetic length related to B), it can be
immediately shown that the matrix element (n, k|{Il,e’?"}|n, p) vanishes for ¢ =
0 and there are no infrared divergencies.

The calculation of the matrix element and the integration over p can be carried
out straightforwardly to give

dq 1

12271152 2 T PENY
Tn = /(2 )2 Vo€ (L( qu)+Ln—1(2qu )
: UO/dg Ly (&) + Ly (9))% (6.6)

2 12

where the characteristic velocity of the problem vy = ev/3y/2mc has been intro-
duced and L. (z) is the n-th Laguerre polinomial. Exploiting the relations

Z LO(&) = LL(¢ (6.7)

and

| e @i =o (68)
we finally obtain

1 1

Tp = ;mevohw (2n + 5)
The broadening of Landau levels is finite and dependent on n (remember that
in section 2.3 we proved that, for d-correlated scalar potential, the width of LLs
does not depend on n). Moreover, the LL widths have the same dependence
on B, 5y and n as formula (6.16) in section 6.2 (after making the substitution
E ~ (n+1/2)hw. in (6.16)).

Unfortunately, that’s not the whole story: if we take Landau level mixing into
account, singular terms appear due to matrix elements between neighbouring
LLs, (n, k|{I1,e"9"}|n + 1, p), which do not vanish in the ¢ — 0 limit [132]. As
in the B = 0 case [127, 128, 129], those terms diverge logarithmically for ¢ — 0.

LL mixing must be always taken into account when the perturbing term is a
magnetic field b(r), no matter how weak it is. Let’s suppose that the perturbing
field is a very small, constant field § B: clearly, the Hilbert space spanning the
n-th LL with energy fie(B-+JB)/(mec) and degeneracy (B+9dB)S/®, cannot be
obtained from perturbation theory by taking into account only the eigenstates in
the unperturbed n-th LL, since the degeneracy of the old LL is smaller, BS/®,.

In conclusion, divergent terms plague the calculation of the one particle Green’s
function of fermions subject to a d-correlated RMF with large mean B. Of course,

(6.9)
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the infrared singularities would be even stronger and more difficult to cure for
long-range RMF's. The divergencies are ultimately due to the anomalously strong
low-angle (forward) scattering, which can be traced to the contribution of the
fluctuations of a(q) in the limit ¢ — 0. Note, however, that the transport relax-
ation time 7y, entering the Drude formula is finite [99], since the contribution of
forward scattering is reduced by the weighting term.

6.2 Semiclassical results

In order to circumvent the difficulties described in the previous section, E. Alt-
shuler et al. [129, 133] calculated the DOS of electrons in a RMF in the semiclas-
sical approximation, assuming that the energy E of the particle is much larger
than the cyclotron energy and I', where I' is the width of LLs due to the RMF'. If
these conditions are fulfilled, the DOS p(E) (proportional to the imaginary part
of G) is given by the disorder averaged path integral over the closed classical
trajectories zg(t)

p(E) =0 [1 + Re < 7{ Drp(t) exp <%S[mE(t)]) >] . (6.10)

The action on one particular path is

S = f/dr (B + b(r)) (6.11)

Cc
s

where s is the area enclosed by the trajectory. Assuming that the RMF is a
small perturbation to the mean field B (fiw, > mevZ, where v = €28,/4m?2c?),
the classical trajectories are not affected by the RMF and are thus circles with
cyclotron radius R, = v/w, = \/2E/mew? (v and E are respectively the velocity
and the energy of the particle); more precisely, every circle gives rise to infinitely
many trajectories labelled by their winding number. For the disorder average
over a Gaussian RMF the following equality holds:

<eXp (i< / dr b(r))> —exp (- 26—; /dr /dr’ (b()b)))- (6.12)

S

Hence, after averaging, the total, effective action on a classical trajectory is the

sum of two terms: )

(&
- 2—62603n0ra (613)

where s, and sy, the oriented and non-oriented areas enclosed by the trajectory
respectively, are given by

1
sorZE]{drxr,

. .€
1Sy = 1—Sor B
c
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1
Suor = ?{ ?{ drdr’ In(|r — 1'|) (6.14)

(we recall that the non-oriented area enclosed by n-windings of a trajectory is
the geometrical area multiplied by n?). The first term of (6.13) describes the
phase acquired by the particle due to the flux of B and the second term appears
due to averaging over the random field b(r).

Carrying out the sum over the circles with different winding number [129], a
Gaussian DOS is obtained

p(E) = #;\/%T(f) exp (— {E — hwe(N + %)] TQ;E)) (6.15)

and the width of the levels is

[(E) = [%Emevg] v : (6.16)

We consider now the broadening of LLs due to the RMFs with the following
correlators:

(b(q)b(—q)) = Big*e > (6.17)
and
(b(a)b(—q)) = Bie >, (6.18)

which correspond to the correlators (4.38) and (4.41) introduced in chapter 4,
when we considered the fictitious Chern-Simons fields experienced by CFs. How-
ever, in this section we will assume that B? and B3 are arbitrary constants.

For weak RMF's such that w.r, > 1 (i, is the transport time related to the
RMF), the DOS is again given by (6.10) and the averaged, effective action S,y
on a classical orbit can be generally written as

1
iSay = 150eB — 5152<5§F>, (6.19)

where Sgr = $a-dr = [b(r)d?r is the contribution to the action induced by
the random fields along a cyclotron orbit of winding number & = 1 (we assume
h=e = c =1 to simplify the formulas). From (6.17), we get

/ dre™"ar

— B(27R,)? / dae24 [ ], (qR.)]?
373 Re* (3 5 Rg)

2

(Ste) =87 [ e

_ 12
=B hily% ¢ (6.20)
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where o F7 is the hypergeometric function. For very large energies, R, > d and
Eq. (6.20) yields

R,
d 7
since o F1(3/2,5/2,3, —x) — 16273/ /(3x) for z — co. The sum over the classical
trajectories can be easily carried out and the semiclassical DOS is a superposition
of Gaussian functions peaked at the Landau energies, like (6.15). The width of
the peaks is given by

(S2p) ~ Bi4n? (6.21)

2
We

r(E) = 5255k " (6.22)

In the limit R, > d, T'(E) is thus proportional to E'/* and proportional to v/B:

2., 1/2
I'(E) = (\/%28; ) (6.23)

In the case (6.18), we obtain
(8}2{F):B§/d2q6_2qd /dre‘iqr

=B, (2 Re)’ / dq q e [Ji(qRe))

2

11 R?
:B%47T3Rz |:]. - 2F1 (5, 5, ,_ﬁ>:| y (624)
For large energies, R. > d, we get
(S3) ~ BoAm3 R2. (6.25)
Therefore, in this limit I'(E) is proportional to v/E and independent on B:
4 2E 1/2
T(E) = (2rw?B2R2)"? = (ﬂ> . (6.26)
Me

6.3 Landau Level tails

From now on, we will focus on the DOS in the tails of the broadened Landau
Levels (LLs). As we discussed in section 3.3, in these regions the Optimum
Fluctuation Method (OFM) can be applied. This method has the advantage of
being non-perturbative.

The averaged DOS is:

p(E) = / Db(x) P[b(x)|ol E: b)), (6.27)
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where P[b(r)] is the probability of the realization b(r). Here we will consider
fermions subject to a constant B and a Gaussian RMF with zero mean value
and correlation function:

(b(r)b(r')) = B(x — ). (6.28)

We assume that 3(r — ') — 0 as |r — r'| — oo. The system is thus ergodic, i.e.
the correlations between different regions decay to zero with increasing distance
between the regions. We will also assume that S(r — r') is solely a function of
Ir —r'|.

In the following we will study both RMFs with correlation length r. < lg (we
will call them short-range fields) and fields with 7. > Ip (long-range RMFs). The
probability of the realization b(r) of the RMF with correlator (6.28) is

P[b(r)] = N exp {—/b(r),@_l(r — r')b(r')drdr'} = Nexp{-S[b(r)]}, (6.29)
where N is a normalization constant and
/dr',@_l(r —)B(r' — ") =4(r —1"). (6.30)

For ¢-correlated RMF's with correlation function (6.1), formula (6.29) reduces to

Plb(r)] ~ exp{—i / b2(r)dr}. (6.31)
Bo

We can obtain asymptotically exact expressions for the DOS in the fluctuation
region of the spectrum (i.e. in the tails of Landau bands) since we are able to
figure out the nature of the typical quantum states which determine the spectrum
in those regions. Intuitively, since the DOS in the tails is exponentially small,
we expect that states are localized around low probability fluctuations of b(r)
(74, 134, 135, 136, 137, 138].

The OFM allows one to determine the structure and the shape of the localized
states in the tails and to determine the shape of the corresponding configurations
of the magnetic field, as well as to find the leading terms in the asymptotic
expansion of the exponent of the DOS in the tails,

p(E) ~ e ), (6.32)

It is well known that, for an ergodic random field, the DOS is a self-averaging
quantity, i.e. the ensemble average of the DOS (6.27) coincides with its spatial
average for a given typical realization of the RMF.

Let’s focus for simplicity on the left tail of the first Landau Level and consider
a typical realization of b(r): since in this tail the energies are significantly smaller
than fiw./2, in the system there must be a finite density of fluctuations in which
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the field b(r) assumes large (compared to its typical values 3(0)'/?), negative
values. In these magnetic wells, the total field B + b(r) is significantly smaller
than B (compared to the typical fluctuations of B + b(r)). However, due to the
macroscopic homogeneity of the RMF, these wells must lie very far from each
other; more precisely, the average distance between two neighbouring fluctuations
must be much larger than the typical size of a well.

Hence, we can divide our system into many subsystems containing exactly
one large fluctuation of b(r) and consider the contribution to the DOS of each
subsystem, independently of the others. Since we are interested in the leading
term of the logarithm of the DOS only, we can disregard the boundary effects
due to the partitioning of the system into such subsystems. The DOS in the tail
thus reads v

p(E) ~ Y17 palE), (6:33)
o
where V,, and p,(E) are, respectively, the volume and the DOS of the subsystem
a and V is the total volume of the system.

Since the wells which determine the spectrum in the tail have very small
probabilities, only those wells in which the lowest level E, is equal to £ must
be taken into account, since a configuration in which the energy E corresponds
to an excited level is much less probable. Therefore, we have

1
pa(E) ~ Vd(E — Epa). (6.34)

Furthermore, since the DOS is a self-averaging quantity, we can rewrite (6.33),
where p,(F) is given by (6.34), as an ensemble average,

p(E) ~ %/Db(r) exp{—=S[b(r)]}6(E — Eo[b(r)]), (6.35)

where V is the characteristic volume of an optimal fluctuation of the RMF and
Ey[b(r)] is the lowest level in the realization b(r) of the field. As we said, the
probabilities of the fluctuations which contribute to the DOS in the tail are expo-
nentially small, i.e. they correspond to very large values of the functional S[b(r)];
therefore, the integral (6.35) is dominated by the most probable configurations
and it can thus be calculated in the saddle point approximation [138]:

~ Inp(E) = min S{b(r)] | gofo(ry)=r- (6.36)

This formula will be the starting point for many of the subsequent arguments
and calculations.

For very weak RMFs, 3(0)'/?2 < B, the width Iy of the first Landau band is
much smaller than Aw.. In this case, the fluctuation region of the spectrum is
not exhausted by the neighbourhood of the boundary of the spectrum at £ =0
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and the saddle point approximation (6.36) can be used to evaluate the left tail of
the Landau band even at energies E close to the centre of the band [74], as long
as (1/2hw. — E) > I'y and the DOS is ezponentially small there (the definition
of this region will be made more precise in the following section). Therefore, in
section 6.3.2 we will derive a variational equation from (6.36) which will enable
us to calculate the exponent of the DOS in the left tail both near the boundary
and near the centre of the LL. That method can also be generalized to deal with
higher LLs.

As far as the right tail of the first LL and the tails of higher LLs are concerned,
the picture is in general very complicated. However, it becomes simpler when
B(0)'/2 < B and energies near the band centres are considered.

In the case of very weak RMFs, for a given Landau level n, the density of
states is peaked at the Landau energy (n + 1/2)fiw. and is exponentially small
elsewhere. Again, the width of the level I',, is much smaller than the cyclotron
energy. Therefore, there are regions near the band centres where the inequalities
I, € AE, = |[E—(n+1/2)hw.| < hw, are fulfilled and the Optimum Fluctuation
Method can be safely applied, since the DOS is exponentially small there.

The fluctuations of b(r) which determine the spectrum near the centre of the
bands are small compared to B but very large compared to its typical values
ﬁ(O)l/ 2. they are expected to look like shallow wells in the left tails and low
humps in the right ones.

Let’s concentrate on the right tail of a Landau level n. The spectrum of a
particle which experiences an optimal fluctuation of b(r) in addition to B differs
only slightly from the unperturbed Landau spectrum: the magnetic perturbation
breaks the degeneracy of LLs and the DOS consists of bands of discrete energy
levels lying in small right neighbourhoods of the corresponding LL. The total
width of the band n of this system is given by 0E, = E, mes — (0 + 1/2) R,
where E,, 4, is the highest energy level in the band.

If we now calculate the DOS of the disordered system at energy shift AFE,
in the right tail of the n-th LL, it is clear that only those fluctuations in which
0F, = AF, must be considered, since a fluctuation in which 0FE, > AFE, is
definitely stronger and thus less probable. The calculation of the DOS in the left
tails is completely analogous but 0 E,, is now given by 6 E,, = (n+1/2)iwe.—Ey, min-

Hence, in the tails close to the center of the n-th Landau band, the leading
term in the expansion of the exponent of the DOS is

—1In p(E) = minb(r)S[b(r)] |6En[b(r)]:AEn- (6.37)

This picture is not valid in the regions between Landau bands near the en-
ergies E ~ nhw,, since more complicated configurations of b(r) are expected to
determine the DOS at these energies.

For very large n, the DOS in a weak RMF can be obtained by the semiclassical
method introduced in the previous section.
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p(E) 4

Figure 6.1: Density of states p(E) for the lowest Landau band of an electron subject to a
constant magnetic field B and a weak RMF, $(0)'/? « B. The band is peaked at the energy
€0 = 1/2hw.. In region 1 and region 3 the DOS is exponentially small and the inequality
AEy < hw, holds (where AEg = |E — €]). The exponent of the DOS is proportional to AE?
in those regions. In region 2 the exponent of p(E) is inversely proportional to E.

6.3.1 Qualitative picture: Lifshitz argument

In the following, we will focus mainly on the left tail of the first Landau band.
The generalization of our arguments to higher bands is not difficult and we will
thus discuss it only very briefly.

In the case of weakly correlated RMFs, it is reasonable to assume that an
optimal configuration near the band centre (which corresponds to region 1 in
Fig. 6.1) looks like a magnetic circular well with very steep walls and depth
Ab < B (we will prove in the next subsection that this assumption is not too
bad). If R is the radius of the well, then its action is given by S ~ Ab2R?/f,.

The Ground State energy Ej of a fermion subjected to a constant magnetic
field B plus an additional circular magnetic well can be easily evaluated. In the
following we will evaluate Ej as a function of the radius R for fixed S. The
Hamiltonian is:

H =

€ €
5 (p+ CA S 23)2’ (6.38)

where, in the Coulomb gauge, A = 1/2BZ X r,

(6.39)

o —1/2Abz xr r<R
T | —4%ixr r>R

2m 12



6.3 Landau Level tails 99

and A® = AbrRZ.

The angular momentum is a good quantum number:
1 )
U(r) = —€e™R(r 6.40
(1) = =" R() (6.40)

and the radial wave function R(r) satisfies the equation:

h? <82R 10R [i? ) (hwc~ Mew?r?
+ +

“am \a trar T2 T AT s
where
We = { z(BB/T:LeZb)/mec : i g (6.42)
and
[‘:{ Z—A@/(I)O ;ig (6.43)

Now we can solve equation (6.41) inside the well and outside the well and match
the solutions at » = R. The general solution of Eq. (6.41) for constant w,. and fi
is:

RE) = e S HIDCU-CH S0+ A1+ B+ (649

FOB(=C+ (14| ), 1+, )] (6.45)

where ® and U are confluent hypergeometric functions, £ = mew.r?/2h and
¢ = E/hw. — jif2.

The coefficient C'; must be set equal to 0 inside the well because U diverges
at r = 0; as regards the region r > R, we set Cy = 0 because ® diverges
exponentially for large R (unless —C + (1 + |f]) is a negative, integer number;
however, this condition does not yield a continuous eigenfunction on (0, c0) if
Ab #0).

To calculate the eigenvalues, we must impose the requirements that the wave-
function and its derivative be continuous at » = R. For a magnetic circular well
the angular momentum g of the ground state is u = 0 and the lowest level is
thus a solution of the following, implicit equation for E:

12 1 O(—¢ + 3,2, R? /212, 1 ||l
G R To o Lsia 1 L A
Igi | 2 O(—G + 3,1, R?/2l3,) 2 R
—Co +1/2(1 + |o]) U(=Go + 53 + |hol), 2 + o, B?/215,) _
1+ [fio| U(—=Co+ 5(1+ [fio]), 1 + |fao], R2/21%,)

(6.46)
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Figure 6.2: Diagram of AEy = Eg — 1/2hw, as a function of the radius R of the magnetic well
for fixed action S (AEg and R in units of hw. and lp respectively).

where the indexes ”i” and ”0” indicate the regions inside and outside the well

respectively and |fi,| = A®/Py.

This equation has been solved numerically: the energy shift AFEj as a function
of the radius of the well for fixed S is shown in fig. 6.2. The minimum in the
ground state energy (i.e., the minimum of AE,) corresponds to the optimal
fluctuation with radius Rop, and depth Abgp.

Then we have solved Eq. (6.46) for different values of B and S. We have
found that, for shallow wells Ab < B, R, is proportional to lp (see fig. 6.3)
and AEy(lopt) is proportional to Abyy and does not depend on B:

Ryt o lg x B7Y/2, AEy  Abgy. 6.47)
P P

Therefore, for given energy E, the action of the optimum fluctuation in which
Ey=Fis:

R2 . Ab 12,AE2
S(AFEg) ~ $ = K,-Z o ¢ (6.48)
ZAE?
= p(E) ~exp | —K; %, (6.49)

(where K; = a(mec/he)? and « is a numerical factor) and the variance of the
distribution is proportional to B. Therefore, our simple arguments are expected
to be valid when (8y/K1%)"/? < AEy < fw.

A completely analogous argument holds for the right tail of the first LL, near
the band centre (region 3 in Fig. 6.1). In this case the optimal fluctuations are
magnetic circular humps with height Ab < B and the system is described by the
Hamiltonian (6.41), provided that the replacements Ab — —Aband A® — —AP
are made in formulas (6.42) and (6.43) respectively. It is not difficult to show
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Figure 6.3: Diagram of Rop as a function of B (arbitrary units).

that the angular momentum of the highest energy state E ;45 in the first band of
the new energy spectrum is o = 0. Therefore Ey 4, is the lowest level satisfying
Eq. (6.46) and the leading exponential term of the DOS in the right tail shows
the same dependence on the energy shift and B as Eq. (6.49).

In the case of long-range RMF's, the analysis of the DOS near the band centre
is simpler: the localization radius of a typical optimum state (of the order of
Ip) is much shorter than the radius of an optimal potential well (of the order
of the correlation length r.), and the energy E of this state is thus given to
a very good approximation by the first LL energy in the field B — Ab: E =
fie(B—Ab)/(mec). Therefore, the energy shift is proportional to Ab and the RMF
acts as an effective random electrostatic potential. Since for long-range RMF's
the radius of the well is the largest length scale, the probability distribution
(6.29) can be approximately rewritten as

Ab?
P[Ab] ~exp |— .
Hence, ,
~np(B) ~ 220, (651)
B

with €5 = fie3(0)*/2 /mec, and the exponent of the DOS does not depend on B, as
long as the inequality (g < 7 is fulfilled. Eq. (6.51) is valid if e < AE) < fiw,.

The above analysis is valid both for electrons in a real, static RMF and for
non-interacting CFs in a fictitious RMF. If we focus on CFs subjected to the
Gaussian RMF described by the correlator (5.6) and we assume that d > I (as
is usually the case in GaAs-AlGaAs heterostructures), we can use formula (6.50).
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From the correlator (4.38) we get

2
B(0) ~ % (Lfg:f) : (6.52)

where ¢ is an even integer and v = 1/(¢ + 1), since we are considering the 0-th
CFLL. For ¢ = 2, the 0-th CFLL corresponds to the filling factor » = 1/3. We
obtain from (6.50)

(BAE,)?
Ko

p(E) ~ exp , (6.53)

where Ky does not depend on B. Therefore, in the case of CFs, the exponent
of the DOS is proportional to B2, since the static Chern-Simons correlator (5.6)
does depend on B.

Note that the fluctuations of the screened electrostatic potential due to donor
impurities should also be taken into account when calculating the DOS of CFs in
the tails. Since the probability distribution of a long-range, Gaussian stochastic
potential is given by

(6.54)

PIAV] ~ exp [— AVQ}

Wi

(where W7 = W(0) and W(r) is the potential correlator) and AFE; ~ AV,
we obtain again a AEj-dependence of the exponent of the DOS near the band
center (assuming that the potential is weak). Clearly, these arguments are valid
if Wi < AEjy. The exponent is independent on B, provided that the correlation
radius of V(r) is much larger than [p.

Considerations similar to those presented above do yield a AFE2-dependence
of the exponent of the DOS also in the tails of higher Landau bands, in the
regions where I';, < AFE, < hw,, In these regions of the spectrum, the DOS
of non-interacting fermions in a RMF thus resembles the DOS of independent
fermions in a Gaussian electrostatic potential, see section 3.3 and Refs. [74, 75].

As far as the prefactors in the exponent and the preexponential factors are
concerned, more powerful approaches are needed to evaluate them. We will
briefly discuss this point in the next subsection.

Near the band edge at E ~ 0 (corresponding to region 2 in Fig. 6.1), the
energy dependence of the DOS is completely different. Let’s consider first short-
range RMF's: in this case states with arbitrarily small energies are expected to
be localized in very large regions of area A, inside which b ~ 0 and outside which
b~ B. The action of these fluctuations is S ~ exp(—AB?/;). Since these wells
are very large, the ground state energy should depend weakly on the conditions
on the boundary 0A. Hence, we can assume that the wave function vanishes
at the boundary 0A. In this case, for a given energy E, the regions with the
smallest area A (and thus the highest probability) for which the ground state
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Figure 6.4: Diagram of the ground state energy Egg in a magnetic well with B = 0 inside
as a function of R=2, where R is the radius of the well (Egs and R in units of hw,. and Ig
respectively).

energy coincides with E are 2D balls (by virtue of the isoperimetric inequality).
The ground state wavefunction of a particle confined into a circular region of
radius R is Jy(y/er), where € = 2m.E/h?, and its energy is E ~ cohi?/(2m.R?),
with ¢y ~ 5.78. Therefore R o< E'/? and the DOS is a non-analytic function of
E:

p(E) ~ exp (-Kgﬁlj—;) , (6.55)

with K3 = ¢ymh?/2m,. The above argument is analogous to the argument used
by Lifshitz to estimate the tail of the DOS of a particle subject to a Poissonian
random potential generated by short-range, repulsive impurities in zero magnetic
field [136, 138, 139].

One could argue that imposing that the wavefunction vanishes at 0A is too
crude an approximation for a magnetic well, even for large R. Therefore we
calculated the exact ground state energy of the system as a function of the radius
of the well: the results, plotted in fig. 6.4, show clearly that Egg is inversely
proportional to RZ2.

Let’s now consider RMF's with correlation length r. > lg: intuitively, for any
correlation length 7., there is a right neighbourhood of E = 0 such that, for each
energy belonging to this interval, the optimum well has a radius much larger than
the correlation length, R >> r, or, equivalently, E < k?/(mer?) . The larger the
correlation length, the closer to the band edge the energies of the optimal states
must be in order to fulfil that inequality. In this region, the action of b(r) can be
written as (6.55), where 3y = [ 3(£)d*¢, and the DOS is given by (6.55). Hence,
in the limit £ — 0, the length scale r. becomes irrelevant and the behaviour of
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the tail is ”universal”.

In the case of CFs, the picture is more complicated far from the center of
the band, since CF's experience a stochastic electrostatic potential in addition to
the RMF. Furthermore, the scalar potential and the RMF are not independent
random quantities (see section 4.4).

Note the difference with respect to the tails of the DOS in a Gaussian random
potential V(r). In that case, the band edge is —oo and the behaviour of the
tail is universal in the limit £ — —oo. In contrast to the RMF case, states are
localized inside deep, narrow wells in the region of large, negative energies and
the radius of the wave function is thus the smallest length scale of the problem
(unless V (r) is assumed to be d-correlated, an unphysical approximation in this
region). At extremely negative energies, E — —oo, the kinetic energy becomes
irrelevant and the tail is dominated by the potential energy, i.e. it is purely
classical:

Inp(E) ~ —E*/2W(0), (6.56)

where W (r) is the potential correlator (see for instance [138, 140]).

6.3.2 Derivation of the saddle point equation

In this section we will derive the variational equations which determine the actual
shape of the optimal fluctuations, following an approach which was originally
developed by Houghton and Schéfer [137] in order to study the tails of the density
of states in a random, electrostatic potential. Their approach is equivalent to
Zittartz-Langer approach [135]. We will show that the qualitative conclusions
of the previous section concerning the energy dependence of the DOS in the
fluctuation region of Landau bands are correct.

Saddle point methods have already been used to study the DOS of fermions
subject to some kind of magnetic disorder. In [141], the formal technique de-
veloped by Friedberg and Luttinger [136] was applied to a system of randomly
distributed flux tubes of fixed strength. In the band edge near ' = 0, they found
an exponential DOS with exponent inversely proportional to the energy, as in
(6.55). In [128], a field theoretical approach was used to calculate the DOS in a
RMF with zero mean value near £ = 0 but no definite conclusions were drawn
about the actual shape of the tail. Furthermore, there are now many numerical
studies of the spectrum of fermions in RMFs with different r. and B [142].

Recently this subject has attracted the interest of the community of math-
ematical physicists [143, 144]. In particular, in the paper of Ueki [143], the
upper and lower bounds for the logarithm of the integrated DOS of some simple
Gaussian RMFs with zero mean have been evaluated.

As far as we know, nobody has tackled the problem of the tails of the DOS
in a RMF with large B analytically so far.
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In the following we will focus on the left tail of the first L. According to
formula (6.36), we must search for the maximum of the probability distribu-
tion (6.29) under the constraint Ey = E. For the moment we choose a weaker
constraint

det{H|[b(r)] — E} =0, (6.57)
or, equivalently, F,, = E for some energy level E,, and we take the limit £ — E
later. Due to the constraint, the optimum fluctuation b(r) of the RMF must
satisfy the following variational equation:

- ddet{H[b(r)| - FE
/ﬂl(s —s)b(s")ds' + i et Hb(r)] 1 - 0, (6.58)
6[)(5) b=b
where g is a Lagrange multiplier. Exploiting the relation
det{H[b(r) — E} = exp(tr In{H[b(r)] — E}), (6.59)
the functional derivative can be evaluated and equation (6.58) becomes:
N - 1 6E,[b(r)]
1 —
/ﬁ @—dwwmd+u@HHWﬂ}Jﬂ%:&_E | =o
~ (6.60)

If we write det{H — E} as the product of its eigenvalues [ ° ((E, — E) and we
assume that the ground state energy Ey[b(r)] is equal to E, E — Ey, we find

/ﬁl(s —s')b(s")ds' + NH(E,L — E)%(bs()r)] =0. (6.61)

If we choose the Coulomb gauge, we can write the Hamiltonian explicitly as a
function of b(r). In this gauge, the vector potential related to b(r) is given by

a(r) = — / EX =) g (6.62)

T o r —r'|2

and the operator equality p - a(f) = a(f) - p holds. For small deviations éb(r)
from the optimal configuration, b = b 4 0b, we have, using perturbation theory,

Eob + 6b] — Eo[b] ~ —— (W11 - 6a|Wy), (6.63)

MeC

where IT = p + (e/c)A(r) + (e/c)a(r). Here ¥, and a are the ground state wave
function and the vector potential related to b respectively and da is the vector
potential related to §b (in the Coulomb gauge).

The functional derivative 6 Ey/db(s) can now be calculated easily:

dEq
db(s)

= ec<\110|1'1 -ag(r —s)|¥y)

b=b e
e

== /jo -ag(r —s)d’r, (6.64)
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where
1 z2x(r—s)

P (6.65)

ag(r —s) =
is the vector potential of a singular flux tube of unit strength located at s and
jo = Y§IIV,/2m, is the current flowing in the ground state. The variational
equation (6.61) becomes:

B(s) / 2/ B(s — §') / dr §o - ag(r — §), (6.66)

where 1/(E) = u T[22, (B, - B).
If (s — §') is a function of the distance |s — s’| only, then it is natural to

assume that the optimum fluctuation is rotationally invariant and that the an-
gular momentum of the ground state is zero (i.e. the eigenstate is real); then eq.
(6.66) simplifies to

e2

b(s) = —1/(E)

/ P25'B(s — §)(Wo|(A + 2) - as(F — §)|Tg).  (6.67)

MeC>
In the d-correlated case (6.1), Eq. (6.67) can be written as:

b(s) = — ' (E)Boe®/ (mec®) (¥g|(A + a) - ag(F — s)|Tg). (6.68)
Equation (6.67), together with the Schrédinger equation
1

1V, = EV,, (6.69)

e
determines the optimal b(r) and Uy(r). For zero angular momentum states,
(6.69) reduces to

1 [, € 9
T P+ E(A(r) +a(r))’| ¥y = EV,. (6.70)

If we consider the left tail (the right tail, respectively) of the n-th Landau
band at energies close to the band center, we must take the limit £ — E,
(resp. E — Ej mqg) in (6.60) (see formula (6.37)). Therefore, the two coupled
equations which determine the optimal fluctuations are given again by (6.66)
and (6.69), provided that the ground state wavefunction Wy is replaced with the
state Wy, ;i corresponding to Ep, min (resp. Eymaz) in (6.66) and (6.69).

As far as the right tail of the first LL is concerned, we expect that the angular
momentum of Wy ., is zero (see the previous subsection). Hence, the optimal
b(r) and Ug ., satisfy (6.67) and (6.70). Furthermore, Wg .., is the lowest
energy state of the Hamiltonian (6.70), since the excited states of (6.70) are
related to higher LLs.
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So far we have not considered the fluctuations of the magnetic field around the
saddle point configuration satisfying (6.66). Those fluctuations must be taken
into account in order to determine the pre-exponential factor in the DOS. It turns
out that this problem is much more difficult to solve than the analogous problem
for electrostatic randomness, which was solved in [74, 75] near the centre of
Landau bands. At the moment we are working on it. However, only the leading
exponential term in the DOS can be extracted from experiments and this term
can be fully determined within the Optimum Fluctuation Method.

6.3.3 Discussion of the results

We have solved equations (6.67) and (6.69) iteratively both in the limit r. < Ip
and in the limit 7. < lp (short-range and long-range RMF's, respectively).

For each value of E, a rectangular magnetic well was first used in eq. (6.69);
then the value of ¥j so obtained and the same rectangular well were substituted
in (6.67). The value of p' was varied until the ground state energy in the new
magnetic well b(s) coming out of (6.67) was equal to E. The new ¥, obtained
from (6.69) and the ”old” b(s) were then substituted in (6.67) and so on. Near the
band center, this iteration process converges very rapidly, while the convergence
of the process is much slower near the band edge.

To simplify the calculations, we have considered RMFs with Gaussian corre-

lators: ) '
Br—rv)= L exp (- r = r ) . (6.71)

2mr? 2r2
C

C

In the short-range case, the optimal fluctuations near the band center are shallow
wells (compared to B) with steep walls. A typical optimum well is plotted in fig.
6.5 for r. = 0.11p: it corresponds to an energy shift AE/0.5 hw, ~ 3.6 - 1072, In
fig. 6.6 the ground state wavefunction in this fluctuation is shown. In fig. 6.7
we have plotted the action of the optimum fluctuation as a function of the energy
shift AE (for 7. = 0.1lp): the dependence of S on AFE? is linear, in agreement
with our predictions in section 6.3.1.

In the case of long-range fields, the optimal fluctuations near the band centre
are shallow wells as in Fig. 6.8 (for . = 10lg). The radius of the ground state is
much smaller than the size of the well, see fig. 6.9. The parabolic dependence
of the action of the optimum well on the energy shift AE was checked in the
long-range case too.

As far as the region near the band edge is concerned, three typical optimal
wells for short-range RMFs are shown in fig. 6.10. The energies of the ground
states in these configurations are about 1-2 hundredths of the first LL energy
1/2hw.. Inside the wells, the total field B + b is zero. In fig. 6.11, the
optimal wells corresponding to a short-range (rS® = 0.1/g) and a long-range
field (rX® = 10l3) are plotted. The ground state energy in both wells is about
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Figure 6.5: Plot of the optimum magnetic well and the trial rectangular well for AE = 3.6 -
10~2Aw.. Magnetic fields are in units of B (r. = 0.1p).
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Figure 6.6: Plot of the ground state wavefunction in the optimum well depicted in Fig. 6.5
(correlation length r. = 0.1lp).
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Figure 6.7: Plot of the action S of the optimum fluctuation as a function of AE?. The energy
shifts AE are in units of fiw, (ro = 0.1lp).
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Figure 6.8: Plot of the optimum magnetic well for a long-range RMF (r. = 10l5) near the
band centre. The energy shift is AE = 2.6 - 10~ 2hw .
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Figure 6.9: Plot of the ground state wavefunction in the optimum well plotted in Fig. 6.8
(correlation length r. = 10Ig).
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Figure 6.10: Plot of three optimal magnetic wells with different ground state energies E. E
and b(R) are given in units of fiw, and B respectively (r. = 0.1lp).
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Figure 6.11: Plot of the optimal magnetic wells for short-range (r. = 0.1lp) and long-range
(r = 10l5) RMFs at energy E ~ 7 - 103 hw.. Magnetic fields are in units of B.
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Figure 6.12: Plot of the ground states of the optimal wells depicted in Fig. 6.11. The energy
of the states is approximately E ~ 5 - 1073 hw.
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Figure 6.13: Plot of the action S of the optimum fluctuation as a function of 1/E near the
band edge. FE is given in units of hw, (ro = 0.1lp).

5-1073hw,. The walls of the fluctuation corresponding to the short-range RMF
are steeper than the walls of the ”long-range” fluctuation but the radii of the
wells are already larger than rZf. For smaller energies the radius of the typical
well would become much larger than r“® and the length scales r® and r3f
would become totally irrelevant. In fig. 6.13 a plot of the action of the optimum
fluctuation near the band edge as a function of the inverse of the energy E is
shown (for . = 0.1l): the dependence of S on 1/F is linear, again in agreement
with our qualitative arguments in section 6.3.1.



Chapter 7

Conclusions

”De paz y de piedad
era la ciencia perfecta”
Juan de la Cruz

In this thesis we analyzed some topics concerning the properties of disordered
low-dimensional systems in a magnetic field.

In part 1 we studied the averaged localization length of fermions in a quasi 1D
system as a function of a magnetic field applied perpendicular to the wire. For
this purpose, we considered a spectral correlation function, the autocorrelation
function of spectral determinants (ASD), which is easier to study than the aver-
aged two-terminal conductance since it does not necessitates the use of the full
supersymmetric method. The localization length was derived as the crossover
length scale from correlated to uncorrelated energy level statistics, as studied
with the ASD. It was shown that its symmetry dependence coincides exactly
with the localization length as defined by the exponential decay of the averaged
two-terminal conductance.

Then, the ASD was used to get analytical information on the localization
length in the crossover region, which was shown to be governed by the magnetic
phase shifting rate, and thus strongly dependent on the geometry of the wire
and the ratios of the elastic mean free path, the wire width, and the magnetic
length.

In the future we would like to use the ASD as a tool to address the problem
of localization in the recently discovered novel symmetry classes of disordered
systems. Very recently, intriguing results on this topic have been obtained within
the supersymmetric approach by Lamacraft, Simons and Zirnbauer [36] and it
would be interesting to compare such results with those coming out of the ASD.

In the second part we turned to Composite Fermions. In chapter 5 we showed
that a simple model of non-interacting spinful CFs with renormalized mass and
g-factor yields a number of spin-polarization transitions of Quantum Hall systems
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at fixed, fractional filling factor as a function of the external magnetic field. The
results were shown to agree with recent experimental measurements.

Finally, in chapter 6 we studied the density of states of fermions in a random
magnetic field with large mean value. After showing that conventional diagram-
matic techniques become questionable in the presence of a RMF, we focused on
the tails of broadened Landau bands. In these regions states are deeply localized
inside low probability fluctuations of the RMF. This property of the eigenstates
enabled us to calculate the leading exponential factor of the density of states
in the tails by means of a saddle point method, the Houghton-Schafer method,
which is equivalent to the Optimum Fluctuation Method.

In the future, we plan to take into account fluctuations around the saddle
point solution in order to calculate the preexponential factor in the DOS.



Appendix A

Evaluation of the eigenvalues of
the Laplace-Beltrami Operator

The general definition of the Laplace-Beltrami Operator in an arbitrary parametriza-
tion of the matrix field @ is

1 )
Ao =—7=D g™ Vib;, (A.1)
%
where the matrix ¢ is the metric tensor, being defined by the quadratic form
ds? = 1/4TrdQ? of the representation
ds® = dx” gdx, (A.2)

where x is the vector of parameters of the representation.
For B # 0, @ is an element of U(2)/(U(1) x U(1)), obtained by enforcing
the conditions Q*> = 1, QTC = CQ, and Q* = Q, [Q,73] = 0. It can be

parameterized as

0= (e Cems ) (A3
where 6 € [0, 7] and x € [0,2x]. Thus,
ds® = df” + sin® Odx>. (A.4)
and
9= ( 0 sin0 ) ' (A-5)

From Egs. (A.1) and (A.5) follows:

AQ = a)\D(l - /\QD)a)\D + dXQa (A6)

-2
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where Ap = cos(#).

Note that the autocorrelation function depends on the energy difference w
through the coupling TrAQ) = 2 * 2\p, so that only the part of the Laplacian
which does not commute with TrAQ),

AR = 0, (1 = \2)05,. (A7)

enters in the frequency dependence of the autocorrelation function of spectral
determinants, Eq. (2.39). Since U(2)/(U(1) x U(1)) = Sa, the two sphere, this
is equivalent to a the treatment of spherically symmetric potentials, and the
Laplacian can be identified with the square of the angular momentum, —Ag =
L% L, =10,/(1 — \}) commutes with the Hamiltonian,

H=—-1/m)L? +ia~2 2, (A.8)
4 A
since z = cosfp commutes with L,. Therefore, w # 0 does not break the
azimuthal symmetry of rotations around the z-axis.
For B = 0, Q is an element of the symplectic symmetric space, Sp(2)/(Sp(1) x

Sp(1)), obtained by enforcing the conditions Q% = 1, QTC = CQ, and Q™ = Q.

Thus A
cl
with
a b
(o). 10

where |a |> + | b |2 +c* = 1.
A matrix Q with the above symmetries can be represented as

Q=U71Q, (A.11)
where o
@ = isimtrr Zeomi ) (12
and
U = VeUp. (A.13)
In Eq. (A.13) Up is given by
Up =V, ' TpVp, (A.14)
and
o= (23809 0 s

o [ cosbp/2 isinfp/2
Ih = ( isinfp/2 cosbp/2 |- (A.16)
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Ti, 4 = 1,2, 3 are the Pauli matrices. Such a representation was first given by Alt-
land, lida and Efetov [145] to study the crossover between the spectral statistics
of Gaussian distributed random matrices as the time reversal symmetry is bro-
ken, within the supersymmetric nonlinear sigma model. Here, in order to study
the ASD, we need to consider only the compact block of the representation given
there. We find that

ds® = Tr dQ?/4 = dO} + cos® 0cdb3, + sin® 0o dg + cos® O sin® Opde7,  (A.17)

and thereby the part of the Laplace operator which does not commute with
TrAQ = 4\cAp is given by Eq. (2.41),

1— 2%
Ac

1
+ /\—23,\1)(1 — AD)0rp, (A.18)
C

AG = 01— A)0h +2 Ore

where \; = cosb;,i = C, D.

For moderately strong spin-orbit scattering 1/7¢0 > Ag, in the functional
integral representation of the spectral determinants by Grassman vectors the a
spin degree of freedom a = 2 is introduced and the matrix C' is substituted by
i0971[19], due to the time reversal of the spinor. The spin-orbit scattering reduces
the Q matrix to unity in spin space. Thus, the matrix C has effectively the form
71. The condition QTC = CQ leads therefore to a new symmetry class, where the
spin symmetry is broken but the time reversal symmetry remains intact. Then,
@ are 4 x 4- matrices on the orthogonal symmetric space O(4)/(0(2) x O(2))
(33].

A matrix ) with the above symmetries can be represented as,

Q=V"'Q,V, (A.19)
with .
QE:) _ cF)sQ s1n9A ’ (A.20)
sinf —cosf
where
0 = ( Z; Zi ) : (A.21)
with 6; € [0,7],i = 1,2, and
_("n 0
= (52). )

where
Vi = exp(ix:iT3), (A.23)
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with x; € [0, 27],i =1, 2.
Hence,
ds® =Tr Q*/4 =) df} + dx" gyx, (A.24)

i=1,2
where

) 22 _ ain? in2
. ( sin® 0y + sin” 6 sin” 01 + sin” 6, > (A.25)

Ix =\ _sin26, +sin26, sin26, +sin2 6,

The part of the Laplace operator which does not commute with Tr AQ = 41\,
is thus given by Eq. (2.45),

AE =" 0501 = Aoy, (A.26)

1=1,2

where \; = cosf;,1 =1, 2.



Appendix B

Non-interacting response
function of CFs subject to a
costant B

In this appendix we will calculate the response function K° of a system of CFs
with p completely filled Landau levels following [96]. We will work in the Landau
gauge A = (—ABy,0,0).

From (4.22) follows that the components of D, are:

Dy, (x4, 11579, 15) = —i{tho|UT(r1,41) 3, ¥ (r1, 81) T (ra, 5) 5, U (x2, £)[ o),  (B.1)

where 1)y is the noninteracting ground state,with p filled LLs.

We will now focus on the density-density component of D°. Expressing the
fermion operators in (B.1) in terms of Landau functions (3.9), the Fourier trans-
form of DJ, can be written as:

Dip(a,w)=Y / dyd(ky, 1|69 |k, 1a) (R, male™ 9T [y, my)

xD%(ny,ng, w), (B.2)
where
D(ny, my) = / 4 G2 (o — w)G2, (). (B.3)

In (B.3), G%(w) is the non-interacting Green’s functions of fermions subjected
to AB in the Landau representation. Assuming that q = (¢,0) (as we did in
section 4.3), we have

o0

p—1
Diop(a,w) =Y Y Cuyns / dr1drodk, dkyeiTHh—k2)@2—21)

n1=0n2=p
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. 2 N S 2 2
< [ Hay (B 108 ) 7, O
4 IaB
1=1,2
Yi + kalA g —o—(wi+hal3 5)?
X H, ——— e 'AB
H n?( ZAB )
1 1
W— (Wn, — Wny) +6 w+ (Wyy — wp,) — i€

j=1,2
x(

where Cy, n, = (4722"ny! 2™2n,! 13 5) 7! The integration over z; and z, yields
d(¢ + k1 — ko). In order to calculate the remaining integrals, it is useful to
introduce new integration variables:

)s (B.4)

i k ko)l k1 — ko)l
g= Y Bitk)ag g = i k)las (B.5)
IaB 2 2
Then
6_@(yi+klleB)26_@(yi_FkZIZAB)z _ e_(53+"2) (B6)
and
Yi + k112 Yi + kol
Ho (=28 = Hy (&4 1), Hoy(F——2B)=H,(&—n).  (B.Y)
ZAB lAB
Moreover
/dkldkgdyldyg = ZAB/dfldggdnd(kl + k‘g) (B8)

and 0(q + k1 — ko) = (Iap/2)d(n + lapq/2). Carrying out the integration over
(k1 + ko), we get

o0
Diy(@e)= S 3" BpCorn [ desgadnerteisciean)

n1=0n2=p

XHm (gl - 77)Hn1 (62 - n)Hﬂ&(é-l + n)an (52 + 77)

y ( O(n+lang/2) _ _ 0(=n+lapa/2) ) (B.9)
W— (Wny — Wny )+ W+ (Wny — wpy) — 1€

Finally, exploiting the identity
+o0 )
/ e ¥ Hy, (x4 y)Hpy(z + 2) = 22 /mlapl2™ ™ML ™ (=2yz),  (B.10)
where ny > ny, we obtain

p—1 oo

P 2Aweny!(ng — ny)e Yyme—m
Dyo(g, w Ly
00(d ) = 273 5 T;)T; no!we — Awe(ng — ny)?] L]
1
= %o, (B.11)
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where Y = [2 3¢?/2 and

Z Z m!(nQ—nl)e_ Y- [Lzzfm(y)]z_ (B12)

no![(w/Awe)? — (n2 —ny)?]" ™

Similar (albeit slightly more complicated) calculations yield:

ipq
Diy(a,w) ==Day (g w) = 5% (B.13)
Aw,
asi=s -~
T
where
1 p—1 oo nl!(nQ _ nl)e—YYnz_nl_l
E = — Ln2—n12An,n’Y
1 pm—o;"ﬂ[(wmwcv (g =y T A2 Y
1 p_1 &) nl!(n2 - nl)e*YY'annl,l
Yo =— LZZ_"12An,n,Y2
2 pnl:w;:pnzl[(w/ch)z_(nZ_nl)z][ 272 [A (), ng, V)]
(B.15)
and

ni—1

—np LM N Y) + YL MY,

1
A(ny,mg,Y) = 5[YLM—"1+1(Y)(1 — bno) — (M + D)L Y) +

Since the diamagnetic term E is

ene (0 0 pAw. {0 0
s2x(30)-22(30).

the total non-interacting response function K° = D® + E is given by (4.28).

It is easy to calculate the small ¢, w limit of 3;: since Y o ¢2, in this limit
the sums in (B.12) and (B.15) are restricted to a limited range of n; and ns:
ng —ny = 1,2 and ny; < p, ny > p. Hence, to lowest order in ¢ and w

Yo~ —1— (w/Awe)? + (3/8)pla5d’,
Sy~ —1 = (w/Awe)? + (3/4)plA s, (B-17)
N~ =1 — (w/Awe)? + pla pg*.
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