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1. Introduction

Game theory is a rather young branch of mathematics that provides a toolbox to analyse
the strategic behaviour of interacting agents in contexts where the individual outcomes
are influenced by the decisions of each individual agent. It became an independent field
of research with the publication of “Theory of Games and Economic Behaviour” by Von
Neumann and Morgenstern (1953). Since then many developments in game theory itself,
but also in applications of this theory have been made. These applications include all
fields of social sciences. In economics the applications range from bargaining, auction
models, oligopolies and mechanism design to network formation and general equilibrium
theory.

In game theory the interaction of many agents in an intertemporal context is of particular
interest. However, models of the interaction of many agents over a certain time horizon
are difficult and often intractable. Therefore, several simplifying assumptions have been
introduced, which are satisfactory only for small classes of examples: In general equilib-
rium theory one uses the reasonable assumption that “prices mediate all interactions”,
but this is not possible for many other effects like externalities or public goods (Guéant
et al., 2011, p.209). In the case of growth models one often relies on representative
agents models, where it is assumed that all agents are identical and then the decision
of a representative agent is analysed. However, for several problems, like the effect of
income inequality, the differences among agents are essential and cannot be captured in
a representative agent model (Gomes et al., 2015, p.5).

Mean field games, which have been introduced by Lasry and Lions (2007) and Huang
et al. (2006), use a different simplification that relies on the idea of mean field approxi-
mation from particle physics: One assumes that the agents do not observe the behaviour
of the other agents individually, but only the distribution of the other agents’ behaviour.
This is sensible in view of the applications since it is reasonable to assume that from the
eyes of an individual player the behaviour of the other agents gets “lost in the crowd”
when the number of players increases (Guéant et al., 2011, p.208). Moreover, it over-
comes the previously mentioned tractability problems since the agents can no longer
implement complex inter-individual strategies.

Although mean field game theory relies on the idea of mean field approximation, it is
not a model from econophysics that describes an economic phenomenon using physi-
cal models. Instead, it works inside the “classical economic paradigm” (Guéant et al.,
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2011, p.208). Indeed, mean field games are differential games satisfying four hypothesis,
namely rational expectations, continuum of agents, anonymous agents and interactions
of the mean field type, of which the first three are common in game theory (Guéant,
2009a,b). The first hypothesis states that the “agents’ predictions [...] are not system-
atically wrong” in equilibrium (Gomes et al., 2015, p.2). The second hypothesis, intro-
duced by Aumann (1964), is a well-accepted approximation of “many” agents, which
often yields through the use of analysis to tractable models. Moreover, it is, as Aumann
(1964) argued, the mathematical appropriate way to formalize “negligibility of agents”
in perfect competition. The third hypothesis states that the agents are indistinguishable.
More precisely, it states that permuting the agents does not change the outcome of the
game. The forth hypothesis is specific to mean field games and states that an agent can-
not take into account the behaviour of each individual agent, but that he will consider
summary statistics of this behaviour. We remark that under some continuity conditions
a game with a large number of anonymous agents automatically has interactions of the
mean field type in the limit. More precisely, Guéant (2009a, Appendix 1) shows that
symmetrical functions of N variables converge to functions of measures under suitable
continuity assumptions.

In general, we can describe a mean field game as follows: Every individual agent controls
his state variable that is given by a controlled stochastic dynamic system where the
dynamics might depend on the current population distribution. The preferences of the
individual agent depend on his own state and action as well as the current population
distribution. Thus, an agent plays a game not against all individuals but against the
population as a whole. Therefore, also the equilibrium notion is different to classical
differential games. Namely, we say that a strategy is a mean field equilibrium, if when
all players adopt this strategy an individual agent has no incentive to deviate from
playing this strategy. In other words, the equilibrium strategy is indeed a best response
to the entire population playing the equilibrium strategy.

In the first mean field game models that have been analysed, the players controlled a
diffusion and optimized their expected reward over a finite time horizon. Then, in order
to find a mean field equilibrium, we have to solve an individual control problem, namely,
given any flow of population distributions what is the optimal strategy for an individual
agent, as well as a fixed point problem, namely, find a flow of population distributions
such that the dynamic of an agent using the optimal strategy equals the flow of popu-
lation distributions. Under some conditions one can show that an equilibrium is given
by a solution of a system of a Hamilton-Jacobi-Bellman equation, accounting for the
individual control problem, coupled with a Fokker-Planck-equation, accounting for the
fixed point problem. We remark that the system is half forward and half backward,
which is non-standard. In the literature in particular existence and uniqueness of so-
lutions, numerical methods for the forward-backward systems as well as approximation
of N -player-games through mean field games (which in turn justifies the continuum of
agents hypothesis) are discussed.
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In general there are two approaches to mean field games, namely an analytic one dating
back to Lasry and Lions (2007) and a probabilistic one dating back to Huang et al.
(2006) (Basna et al. (2014)). The first approach indeed yields the system of a Hamilton-
Jacobi-Bellman equation coupled with a Fokker-Planck-equation and the second ap-
proach yields to forward-backward stochastic differential equations. As we will also see
in this thesis, for some problems one approach is more suitable than the other. For a
detailed introduction to diffusion-based mean field games consider Carmona and Delarue
(2018a,b) and Bensoussan et al. (2013), who mainly utilize the probabilistic approach,
and Cardaliaguet (2013), who mainly utilizes the analytic approach. Furthermore, sev-
eral economic applications have been considered, for an overview consider Guéant et al.
(2011), Caines et al. (2017) as well as the references therein. These applications in par-
ticular include growth models (Gomes et al., 2015; Guéant, 2009a) and Bertrand and
Cournot competition (Chan and Sircar, 2015).

There is also a growing body of literature regarding models with different underlying
stochastic dynamic systems as well as application of those: These include mean field
games of timing with applications to bank run and R&D completion (Carmona et al.,
2017; Nutz, 2018; Nutz and Zhang, 2019), static mean field games with applications to
ranking effects for asset managers (Guéant, 2009a) as well as mean field games with
a finite state space, where a large number of applications has been considered. These
include the spread of corruption (Kolokoltsov and Malafeyev, 2017), botnet defence
models (Kolokoltsov and Bensoussan, 2016), inspection games (Kolokoltsov and Yang,
2015), labour market models (Guéant, 2009a), paradigm shift models (Besancenot and
Dogguy, 2015; Gomes et al., 2014b) and consumer choice models (Gomes et al., 2014b).

Most of the theoretical results for finite state models presented so far (see next section
for an overview) rely on the assumption that there is a unique optimizer of the Hamil-
tonian. This assumption is satisfied for the applications that exhibit fully controllable
transition rates (for example Kolokoltsov and Yang (2015) and Gomes et al. (2014b)).
However, this assumption will in general not be satisfied for models with finite action
spaces like Kolokoltsov and Bensoussan (2016) and Kolokoltsov and Malafeyev (2017).
Indeed, the assumption will only hold true if one action is the optimizer of the Hamil-
tonian irrespective of the other parameters (in particular irrespective of the population
distribution), which means that we consider a setting without a real strategic choice.
However, the effect of strategic interaction is the main interest when analysing such
models. Nonetheless, finite action spaces are reasonable in many settings since agents
will often face finitely many choice options (stick to one’s behaviour or change it, choose
among finitely many providers). Thus, theoretical models capturing finite action spaces
are desirable.

In this thesis, we therefore analyse a theoretical model relevant for economic applications
with finite state and action space. More precisely, we investigate the existence, the
computation, the stability and the explanatory power of stationary equilibria in mean
field games with finite state and action space. We focus on stationary equilibria in

3



the sense that the individual player maximizes the expected discounted reward. We
remark that this formulation is mostly analogous to stationary (ergodic) equilibria in
the sense that the individual player maximizes the expected average reward, which
are often considered in particular in the literature regarding diffusion-based mean field
game models (Kolokoltsov and Bensoussan, 2016; Kolokoltsov and Malafeyev, 2017).
The reasons for our focus on stationary equilibria are diverse: First, because these are
the main interest in economic applications. Second, in light of the limited tractability
also of mean field games, this is the most promising approach to obtain results with
respect to equilibrium computation. Third, since one can often establish convergence
of dynamic equilibria to stationary equilibria (see Gomes et al. (2013) for a theoretical
result, Guéant (2009a) as well as Besancenot and Dogguy (2015) for such a result in
an economic example) or find a learning procedure converging towards a stationary
equilibrium (Mouzouni (2018) in the setting of a diffusion-based model).

The remaining part of the introduction is organized as follows: Section 1.1 describes
the contributions of the thesis. Section 1.2 describes the related literature on mean field
games with finite state space and Section 1.3 discusses related economic equilibrium
concepts. Finally, Section 1.4 contains an outline of the thesis.

1.1. Contributions of the Thesis

This thesis contributes to the theory of mean field games with finite state and action
space in two fields. First, we investigate the existence, the computation and stability of
stationary mean field equilibria. Second, we investigate in how far stationary mean field
equilibria describe dynamic behaviour of partially rational agents in the corresponding
games. As a byproduct, some contributions to the theory of nonlinear Markov chains
are made. This section describes the contributions of the thesis in detail.

We work inside the model of Doncel et al. (2016a), although we present a new proba-
bilistic formulation of that model. At several points in the thesis, in particular in the
first part, this allows us to obtain results that could not be easily obtained in the orig-
inal analytic formulation. The agents control a continuous time Markov chain, which
transition rates depend on the current population distribution, and the agents maximize
the expected discounted reward on an infinite time horizon. The instantaneous reward
depends on the current state, the current action and the current population distribu-
tion. We are interested in dynamic as well as stationary equilibria, which in our setting
are described by the (flow of) population distribution(s) as well as a strategy such that
the strategy is optimal given the (flow of) population distribution(s) and, moreover, the
(flow of) population distribution(s) is indeed the distribution of the individual agent
using this strategy.
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First, we will look at the existence of dynamic as well as stationary mean field equilibria.
In the dynamic case, Doncel et al. (2016a) formulated an existence result for mixed
strategy equilibria under a continuity assumption. We fill all the missing (measure-
theoretical and topological) details in their sketch of the proof, where the main idea
is to consider a best-response map in population distributions and not in strategies
because this yields an upper semi-continuous best-response correspondence. Thereafter,
we modify this approach to prove existence of stationary equilibria in mixed strategies
under the same conditions. This is a rather strong result compared to the setting of
Gomes et al. (2013), where existence of stationary (ergodic) equilibria could only be
established under additional assumptions. It turns out that our proof relies heavily on
the probabilistic formulation of the model since we use the characterization of optimal
strategies that we will derive in context of equilibrium computation as well as other
results regarding stationary points of continuous time Markov chains.

As a second step, we will look at the computation of stationary equilibria. As in diffusion-
based models, computing mean field equilibria means to solve for each possible popu-
lation distribution an individual control problem and look for each optimal strategy
whether it induces a fixed point for which the strategy is again optimal. With respect
to the individual control problem, we prove that the decision problem is equivalent to
a continuous time Markov decision process with infinite time horizon and expected dis-
counted reward criterion. This allows us to show that a stationary strategy is optimal
if and only if it is a convex combination of optimal deterministic stationary strategies,
which are in turn those that maximize the right-hand-side of the optimality equation of
the equivalent Markov decision process. In order to tackle the fixed point problem for
general dynamics we provide a cut criterion to reduce the set of candidates for being a
fixed point given some optimal strategy. This cut criterion is basically a reformulation
of the balance equation. However, it yields in many examples to a strategy-free condi-
tion every fixed point has to satisfy since often agents cannot influence the transitions
between one set of the states to the rest of states. Moreover, we obtain in the case of
irreducible dynamics an explicit representation of the stationary points given the contin-
uous time Markov chain for a fixed strategy and a fixed population distribution. Using
this we prove that all mean field equilibria have a distribution that is a fixed point of
the set-valued map that maps every population distribution to the convex hull of the
stationary points given those deterministic strategies that are optimal for that point.
This yields that it is sufficient to find all fixed points of this map and thereafter solve
a linear equation to determine the corresponding equilibrium strategy. In the case of
constant dynamics we even obtain, after solving the individual control problem for each
population distribution, a closed form expression of all distributions of stationary mean
field equilibria. We illustrate the described techniques for three toy examples, for which
we can now compute all stationary equilibria.

Up to the knowledge of the author, the literature covers only the computation of sta-
tionary equilibria with deterministic equilibrium strategies in particular examples (for
example Kolokoltsov and Bensoussan (2016), Kolokoltsov and Malafeyev (2017)). This
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thesis presents the first general results regarding the computation of stationary equilibria
of mean field games with finite state and action space as well as the first examples for
which all equilibria have been computed.

As a next step, we enter into the question under which conditions stationary mean field
equilibria are stable against slight perturbations of the model. This is a classical question
in game theory since in many settings the exact model parameters are estimated and,
thus, they are erroneous (see Chapter 7 for more details). For this we will generalize
the notions of essential and strongly stable equilibria for mean field games with finite
state and action space. For the analysis we again have to consider the two subproblems,
the individual control problem and the fixed point problem, at first individually and
thereafter combine the results. The question whether a strategy stays optimal/non-
optimal under slight model perturbations can be easily answered with “yes” in most
cases. However, the question which fixed points of the dynamics are stable against
slight model perturbations, which we will call essential stationary points, does not have
a simple answer. This is not surprising due to the close connection to essential fixed
points, for which also no full characterization results for spaces other than [0, 1] are
known (Del Prete et al., 1999). Nonetheless, we obtain, analogously to the results for
essential fixed points, that a unique stationary point of the dynamics is automatically
essential and that the set of all those transition rate matrix functions for which only
essential stationary points exist is (topologically) generic. Moreover, we illustrate that
strong stability cannot be expected in general and analyse the effects of changes in the
class of all dynamics with constant transition rate matrix functions.

Putting the results for the two subproblems together we obtain the following positive
and negative results regarding the question whether a stationary mean field equilibrium
is essential: First, we obtain that a stationary mean field equilibrium is essential when-
ever the equilibrium distribution is an essential stationary point of the dynamics and
the equilibrium strategy is a deterministic strategy and, moreover, the unique optimal
stationary strategy at the equilibrium distribution. Second, we obtain that stationary
mean field equilibria with a randomized equilibrium strategy that randomizes over more
than two deterministic stationary strategies are in general not essential. Third, given
constant irreducible dynamics, a stationary mean field equilibrium that randomizes over
exactly two deterministic stationary strategies is essential whenever for each of the two
deterministic stationary strategies over which the strategy randomizes there are popula-
tion distributions arbitrarily close to the equilibrium distribution such that this strategy
is the unique optimal stationary strategy. In the end we show that also the set of
all games with only essential stationary mean field equilibria is (topologically) generic,
which means that “many” games have only essential equilibria. Up to the knowledge of
the author, these stability considerations have not been undertaken for mean field games
so far.

In the second part of the thesis, we focus on the question to what extend stationary
equilibria explain dynamic behaviour in the mean field game model since we cannot

6



assume that agents are able to compute dynamic equilibria: Indeed, in our setting
with infinite time horizon we cannot expect an agent to compute a dynamic mean
field equilibrium since the individual control problem is in general not tractable. More
precisely, there are no results regarding the computation of optimal policies for Markov
decision processes with infinite time horizon and non-stationary transition rates and
rewards. Also in the case of finite time horizons we cannot expect that agents can
indeed compute dynamic mean field equilibria. Namely, the results by Belak et al. (2019)
yield that dynamic equilibria are given by a system of ordinary differential equations
partially running forward, partially running backwards in time. However, these systems
are non-standard and often only numerical computation of solutions is possible.

The observation that agents cannot compute equilibria is also true for classical Nash
equilibria. However, it is observed in experiments as well as in practice that (at least
after playing a game for several rounds) agents “learn” to play equilibrium strategies.
This led to the “learning theory” in games, where decision mechanisms for partially
rational agents are introduced and then their convergence or non-convergence towards
Nash equilibria is studied. We introduce such a learning procedure for our mean field
game model, namely a myopic adjustment process, and justify that it is indeed a sen-
sible way of describing partially rational decision making in our model. The process
we introduce will be the solution of a differential inclusion and we prove that for any
initial condition trajectories of this process exist. Thereafter, we study the convergence
behaviour locally as well as globally. More precisely, we show that we have local conver-
gence towards stationary mean field equilibria with a deterministic equilibrium strategy
that is the unique optimal strategy at the equilibrium distribution whenever we face
constant irreducible dynamics or whenever the Jacobian matrix has a certain eigenvalue
structure. In the first case we derive explicitly the radius of convergence, in the second
case we only obtain an implicit characterization. Moreover, given additional assump-
tions we can even show (almost) global convergence towards stationary equilibria. To
be more precise, we prove that the trajectories either converge towards a determinis-
tic mean field equilibrium or remain inside a set of all those points for which at least
two strategies are simultaneously optimal. The assumptions include that the underlying
nonlinear Markov chains are converging towards a stationary distribution in the limit,
that the sets of points for which a particular deterministic strategy is optimal are simple
and that the trajectories given the different deterministic strategies are in some sense
consistent. We illustrate that these convergence results can be applied in examples.
We emphasize that the convergence results increase the predictive power of stationary
mean field equilibria since they show that stationary equilibria will not only emerge if
the population distribution equals the equilibrium distribution, but that under certain
conditions they will naturally arise in the interaction of partially rational agents.

In the context of mean field games two learning procedures have been studied previously.
On the one hand, fictitious play for repeated games with finite time horizon has been
analysed for diffusion-based models (Cardaliaguet and Hadikhanloo, 2017; Hadikhanloo,
2017; Briani and Cardaliaguet, 2018) as well as discrete time finite state space models
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(Hadikhanloo, 2018). On the other hand, Mouzouni (2018) introduced a learning proce-
dure similar to our myopic adjustment process for diffusion-based mean field games with
finite time horizon. He studies existence in a general setting as well as local convergence
given a quadratic Hamiltonian and the Lasry-Lions monotonicity condition. However,
the convergence result is only local and requires strong assumptions, moreover, the mod-
els and, thus, the used methods differ substantially.

Additionally, nonlinear continuous time Markov chains are considered. These are pro-
cesses in which the transition probabilities do not only depend on the current state,
but also on the current distribution of the process. We prove that given a Lipschitz
continuous transition rate matrix function we can always define a nonlinear Markov
process whose nonlinear generator is the transition rate matrix function. Thereafter, we
investigate the limit behaviour of these processes. More precisely, we provide several
examples that the limit behaviour of nonlinear Markov chains is more complex than
for classical time-homogeneous Markov chains. In particular, we illustrate that we can
face cycles and that it might happen that a nonlinear Markov chain with irreducible
nonlinear generator is not strongly ergodic, but convergence towards several stationary
points happens. Furthermore, we provide a sufficient criterion for a nonlinear Markov
chain to have a unique stationary point as well as a sufficient criterion for a nonlinear
Markov chain with two or three states to be strongly ergodic. Up to the knowledge of the
author, nonlinear Markov chains with finite action space and continuous time has been
introduced in Kolokoltsov (2010) and no further investigations have been made. The
closest contributions in the literature are ergodicity results for discrete time nonlinear
Markov chains, which can be found in Butkovsky (2012), Butkovsky (2014) and Saburov
(2016).

1.2. Literature Review: Finite State Mean Field

Game Models

This section reviews the previous research on mean field games with finite state space.
We restrict our attention to models in continuous time although the study of finite state
models started with the discrete time model of Gomes et al. (2010). We will start by
reviewing the models as well as results obtained for them. Thereafter, we will discuss
their relation to the model discussed in this thesis.

There are several finite state mean field game models and they mainly differ with re-
spect to the underlying controlled stochastic dynamic system. The first models have
been introduced with fully controllable transition rates (Gomes et al., 2013) and fully
controllable transition rates with the restriction that the players cannot reach from a
given state all other states (Guéant, 2011, 2015). Thereafter, more general stochastic
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dynamic systems have been considered: Carmona and Delarue (2018a, Section 7.2) con-
sider a finite state mean field game model where the dynamics are given by a continuous
time Markov chain with transition rates depending on the current action and the cur-
rent population distribution. Cecchin and Fischer (2018) consider a finite state mean
field game model where the individual dynamics are given by a stochastic differential
equation driven by a stationary Poisson random measure where the coefficients again
might depend on the current action and the current population distribution. Carmona
and Wang (2018) consider an extended mean field game model with finite state space
where the dynamics are given by a continuous time Markov chain with a generator that
might depend on the current action and the current distribution of states as well as
actions. Doncel et al. (2016a, 2019) consider a mean field game model with finite action
spaces where the individual dynamics are given by a differential equation specifying the
transition rates, which might depend on the current action and the current population
distribution. Belak et al. (2019) again consider a mean field game model where the
dynamics are given by a continuous time Markov chain with a generator that depends
on the current action and the current distribution of states. Moreover, they include
common noise, which are random events that influence the distribution of all players
simultaneously.

With respect to these models several questions have been discussed: In all models con-
ditions that ensure the existence of a mean field equilibrium are proposed. These condi-
tions usually include that there is a unique maximizer of the Hamiltonian. Only Cecchin
and Fischer (2018), Doncel et al. (2016a, 2019) and Belak et al. (2019) prove existence
(possibly in mixed strategies) under weaker assumptions. Moreover, except for some
approximation results (see Cecchin and Fischer (2018) and Doncel et al. (2016a)) and
the derivation of a forward-backward system (see Belak et al. (2019)) the assumption
that there is a unique maximizer of the Hamiltonian is crucial for all other results.

The question of uniqueness of equilibria has also been considered for several models and
as for diffusion-based models two uniqueness regimes have been identified, namely, a
small time horizon (for example Gomes et al. (2013) and Cecchin and Fischer (2018))
and the Lasry-Lions monotonicity condition (for example Gomes et al. (2013), Carmona
and Delarue (2018a, Section 7.2) and Carmona and Wang (2018)). Additionally, in sev-
eral settings (Gomes et al. (2013), Guéant (2011, 2015), Carmona and Delarue (2018a,
Section 7.2) as well as Belak et al. (2019)) a forward-backward system of ordinary dif-
ferential equations is derived, which describes the dynamic mean field equilibria of the
game. We emphasize that the derivation in Belak et al. (2019) does not require that
there is a unique maximizer of the Hamiltonian.

For many models the relation to N -player games has been considered, where two ques-
tions are of central interest (see Cecchin and Fischer (2018)): The first question, which
is more commonly analysed, is the question whether mean field equilibria approximate
Nash equilibria in N -player games such that the approximation error is arbitrarily small
when N increases. The second question is whether a sequence of Nash equilibria of the
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corresponding N -player games converges towards a mean field equilibrium as N tends
to infinity. With respect to approximation Carmona and Wang (2018), Cecchin and
Fischer (2018) and Doncel et al. (2016a, 2019) constructed εN -Nash equilibria for the
corresponding N -player games from the optimal strategy of the mean field equilibrium,
where the last two results do not rely on the assumption that a unique optimizer of the
Hamiltonian exists. The first result in the convergence direction has been proposed in
Gomes et al. (2013), but only for a small time horizon. Recently, Bayraktar and Cohen
(2018) as well as Cecchin and Pelino (2019) proved for arbitrary time horizons con-
vergence under the assumption that the associated master equation admits a (unique)
regular solution and that there is a unique equilibrium for the N -player system. How-
ever, the assumptions necessary to ensure the existence of a (unique) regular solution of
the master equation in particular imply uniqueness of the mean field equilibrium, which
is rather restrictive. Cecchin et al. (2019) analyse a first example in which there are
three mean field equilibria, but still a unique Nash equilibrium for the N -player game,
and convergence is observed towards one of the three mean field equilibria. Also Doncel
et al. (2016a,b, 2019) considers the convergence question, but in their setting the prelimit
N -player games are formulated in discrete time. They prove that convergence holds if
the equilibria for the N -player games are local strategies (which only depend on the
current state and time) and provide an example illustrating that convergence does not
hold if one considers Markov strategies (which also depend on the current distribution
of all players). The intuitive reason for this is that the “tit-for-tat”-principle cannot
be applied for a continuum of (negligible) players (see Doncel et al. (2016b) for more
details).

Another branch of research is whether a trend towards stationary equilibria exists. More
precisely, one is interested under which conditions a dynamic equilibrium converges
towards some stationary equilibrium. Gomes et al. (2013) proved convergence towards
stationary (ergodic) equilibria under the Lasry-Lions monotonicity condition as well
as a contractivity assumption regarding the Hamiltonian. Later, Ferreira and Gomes
(2014) proved convergence towards stationary (ergodic) equilibria for potential games,
a class of mean field games with additional structural properties that often allows for
deeper results. More precisely, in these games the costs split into two additive term, one
depending on the current state and current population distribution being, moreover, the
gradient of a convex function, the other one depending only on the current state and
action).

Finally, we remark that several attempts have been made to make the forward-backward
systems that describe dynamic mean field equilibria at least numerically tractable. In
Gomes et al. (2014b) a method that relies on the prelimit games with finitely many play-
ers is proposed for two state mean field games. In Gomes et al. (2014a) several equivalent
formulations of mean field equilibria for two state mean field games are introduced and
several numerical methods for these equivalent formulations are compared. Gomes and
Saúde (2018) proposed for games satisfying the Lasry-Lions monotonicity condition a
numerical method relying on a monotone operator that is furthermore a contraction.
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We conclude by discussing the relation of the models with the model used in this thesis:
Most models and results rely, as we have discussed, on the assumption that a unique
optimizer of the Hamiltonian exists. However, as stated before, this assumption is
not satisfied for finite action spaces. Thus, only the models introduced without this
assumption are related to our model for mean field games with finite state and action
space. More precisely, the models by Cecchin and Fischer (2018) and Belak et al. (2019)
cover a version of the model discussed in this thesis where the time horizon is now finite
and yield existence, approximation results as well as a characterization via a system of
ordinary differential equations. The model of Doncel et al. (2016a, 2019) is the model
used in this thesis, however, we will work with a probabilistic reformulation to utilize
the corresponding theory.

1.3. Literature Review: Related Equilibrium

Concepts

This section reviews related theoretical economic models with a continuum of anonymous
agents as well as the related notion of oblivious equilibria in discrete time dynamic
stochastic games with a large (but finite) number of players.

The research regarding games with a continuum of anonymous agents started with Au-
mann’s contribution on perfect competition (Aumann, 1964). Thereafter, general static
games with a continuum of players and dynamic games in discrete time have been dis-
cussed: Schmeidler (1973) introduced general static non-cooperative games in normal
form with a continuum of players and provided, using measure-theoretic arguments,
sufficient criteria for the existence of equilibria in mixed as well as in pure strategies.
Mas-Colell (1984) reformulated the games in Schmeidler (1973) in terms of distribu-
tions and obtained sufficient conditions for the existence of general as well as symmetric
equilibria in pure strategies.

The first dynamic (discrete time) games with a continuum of anonymous players have
been introduced in Jovanovic and Rosenthal (1988) under the name sequential anony-
mous games. They prove existence of dynamic as well as stationary equilibria under the
same conditions. In particular, in the dynamic case it is shown that the equilibrium is
characterized by a system of equations that exhibit a forward-backward structure. Bergin
and Bernhardt (1992) extend this model by adding aggregated uncertainty, which is in
the mathematical literature for mean field games often called common noise, and prove
existence of dynamic equilibria in this more complex setting. Bergin and Bernhardt
(1995) extend the model to capture aggregated uncertainty described by continuous
state spaces. Furthermore, they prove existence of equilibria in Markov strategies for
stationary models where the evolution of the aggregated uncertainty is described by a
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Markov process. Moreover, the papers describe several possible economic applications
of sequential games. However, none of the papers provides any computational tools.

For discrete time dynamic games with a large, but finite number of players an equilib-
rium concept closely related to our notion of stationary mean field equilibria has been
introduced. Namely, Weintraub et al. (2008) introduced the notion of oblivious equilib-
ria in the context of a dynamic model of imperfect competition with a large, but finite
number of firms. A central motivation for the introduction of oblivious equilibria was to
overcome the following two problems of the standard solution concept Markov perfect
equilibria for dynamic stochastic games (see Fudenberg and Tirole (1991, Chapter 13)
for an overview): First, in large player settings Markov perfect equilibria become in-
tractable. Second, it is not reasonable to assume in large player settings that an individ-
ual player keeps track of all other agents’ states individually. An oblivious equilibrium
is an equilibrium in oblivious strategies, which take only the current individual state
and the long-run average population distribution into account. The intuition behind
this equilibrium concept is that in large player settings simultaneous state changes av-
erage out and, thus, it is reasonable to assume that the aggregated distribution remains
roughly constant over time. Indeed, it is proven that oblivious equilibria are a good
approximation to Markov perfect equilibria in their context whenever the equilibrium
distribution satisfies a light-tail condition.

Thereafter, Adlakha et al. (2015) discuss oblivious equilibria for more general games.
They provide under suitable assumptions, which in particular include a finite action
space or the existence of a unique optimizer of the Hamiltonian, general existence re-
sults and prove that stationary equilibria approximate Markov perfect equilibria. Light
and Weintraub (2018) again consider games under more general assumptions, in partic-
ular capturing unbounded state spaces. They obtain an existence and uniqueness result
as well as a comparative statics result for a parameter such that the transition proba-
bility kernel increases in this parameter. However, also here all results are established
relying on the assumption that there is a unique maximizer of the Hamiltonian. Fur-
thermore, Adlakha and Johari (2013) consider games with strategic complementarities,
which means that the payoffs and transition probabilities satisfy certain monotonicity
conditions. Relying on the monotonicity properties, they prove existence of equilibria
and obtain a comparative static result for a parameter that influences the payoffs and
transition rates in a monotone fashion. Moreover, they consider two learning procedures
that converge towards the smallest/largest equilibrium. More precisely, they consider a
best response dynamic, where in each step the individual agent computes the best re-
sponse to the stationary distribution induced by the strategies used by the other agents
in the preceding period, and a myopic adjustment process, where the agents compute
the best response to the current population distribution.
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The definition of oblivious equilibria in their setting is similar to the definition of station-
ary mean field games in our setting. However, the underlying models differ substantially,
namely they consider a finite number of players, whereas we consider a continuum of
players, and they consider discrete time, whereas we consider continuous time. In par-
ticular, the discrete decision points can be criticized since for a large group of players
it is unreasonable to assume that they all take their decisions at the same time and do
not exploit possible benefits for a deviation of this scheme. In addition, we remark that
they cover for the setting with a finite state and action space only an existence result,
but no structural results regarding computational tools, comparative statics or learning
procedures.

1.4. Outline of the Thesis

In Chapter 2 we introduce time-inhomogeneous continuous time Markov chains as well
as Markov decision processes, which are the main building blocks of our model. In
Chapter 3 we introduce and discuss the mean field game model with finite state and
action space that we consider in this thesis. In Chapter 4 we present rigorous existence
proofs for dynamic as well as stationary mean field equilibria.

Chapters 5-7 cover the analysis of stationary mean field equilibria: In Chapter 5 we
provide several results that help to find stationary mean field equilibria with arbitrary
dynamics as well as sharper results for games satisfying an irreducibility assumption. In
Chapter 6 three toy models are introduced and the application of the tools introduced
in the preceding chapter is illustrated. In Chapter 7 we analyse under which conditions
stationary equilibria are stable against slight model perturbations and we prove that
stability is a (topological) generic property.

Chapters 8-9 are concerned with the question in how far stationary mean field equilibria
explain dynamic behaviour of partially rational agents. In Chapter 8 we motivate and
introduce a learning procedure, namely a myopic adjustment process, as a reasonable
form of decision making of partially rational agents in the mean field games we consider.
Moreover, we prove existence of trajectories as well as local convergence towards deter-
ministic equilibria under certain conditions. In Chapter 9 we prove a global convergence
result for the myopic adjustment process under several assumptions and illustrate the
application of this theorem in the examples of Chapter 6. Additionally, we introduce in
Chapter 9 nonlinear Markov chains and investigate their limit behaviour.

Finally, we list some further directions of research in Chapter 10. Appendix A contains
several technical lemmata as well as an introduction to Caratheodory solutions, which
arise at several points of the thesis.
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2. Preliminaries

In this chapter we lay the foundations to introduce and analyse our model. In Section
2.1 we will introduce the notion of time-inhomogeneous continuous time Markov chains.
Thereafter, we will introduce in Section 2.2 the notion of Markov decision processes with
expected discounted reward criterion and infinite time horizon in continuous as well as
discrete time. In the end of the chapter we will then prove the first central result of the
thesis, namely, that the set of all optimal stationary strategies for a Markov decision
process is the convex hull of all those deterministic stationary strategies that choose
actions that maximize the right-hand side of the optimality equation.

2.1. Time-Inhomogeneous Continuous Time Markov

Chains

In this section we will summarize without proofs the relevant material on time-inhomo-
geneous continuous time Markov chains (hereafter time-inhomogeneous CTMC) follow-
ing the presentation in Guo and Hernández-Lerma (2009, Appendices B+C). The pur-
pose of this is twofold: First, we describe the dynamics of the individual agents by time-
inhomogeneous Markov chains. Second, the notion of time-inhomogeneous CTMCs is
necessary for the discussion of Markov decision processes in Section 2.2.

A stochastic process (Xt)t≥0 with values in a countable set S, which we will call state
space, is called a time-inhomogeneous continuous time Markov chain if for any finite
sequence 0 ≤ t1 < t2 < . . . < tn < tn+1 and choice of states i1, . . . , in−1, i, j ∈ S we
have

P(Xtn+1 = j|Xt1 = i1, Xt2 = i2, . . . , Xtn−1 = in−1, Xtn = i) = P(Xtn+1 = j|Xtn = i)

whenever P(Xt1 = i1, Xt2 = i2, . . . , Xtn−1 = in−1, Xtn = i) > 0. Intuitively, this condi-
tion, called Markov property, means that the future path of the process depends on the
past only through the current state.

The probabilities p(s, i, t, j) := P(Xt = j|Xs = i) (i, j ∈ S, 0 ≤ s ≤ t) are called
transition (probability) function and satisfy for all i, j ∈ S, t ≥ s ≥ 0
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(a) p(s, i, t, j) ≥ 0 and
∑

j∈S p(s, i, t, j) ≤ 1

(b) p(s, i, s, j) = δij

(c) and the Chapman-Kolmogorov equation

p(s, i, t, j) =
∑
k∈S

p(s, i, v, k)p(v, k, t, j)

for all s ≤ v ≤ t.

The simple time-homogeneous case arises if for all i, j ∈ S, t ≥ s ≥ 0 we have

P(Xt = j|Xs = i) = P(Xt+u = j|Xs+u = i)

for all u ≥ 0. In this case we call pij(t) := p(0, i, t, j) the stationary transition function
and we can apply the standard theory, which is described in Asmussen (2003). For the
rest of the section we will focus on the time-inhomogeneous case.

A function p(s, i, t, j) defined for t ≥ s ≥ 0 and i, j ∈ S is called transition function if
it satisfies the properties (a) − (c). It is called standard, if it further satisfies that the
right-sided limit limt↓s p(s, i, t, j) = δij uniformly in j ∈ S for each fixed i ∈ S, s ≥ 0.
A standard transition function is called regular if

∑
j∈S p(s, i, t, j) = 1 for all i ∈ S and

t ≥ s ≥ 0.

One can show that for a standard transition function p(s, i, tj) the right-sided limit

lim
t↓s

p(s, i, t, j)− δij
t− s

exists in [−∞, 0] if i = j and in [0,∞) if i 6= j. We refer to these limits as transition
rates and denote them by Qij(s). We say that a transition function is stable if −Qii(s)
is finite for every i ∈ S, s ≥ 0.

Given a stable standard transition function p(s, i, t, j) we find a corresponding Markov
chain (Xt)t≥0 that has p(s, i, t, j) as transition functions and is a right process, which
means that it is right-continuous and has finite left-hand limits at every t.

In the time-homogeneous setting a CTMC is most of the time described by specifying
the infinitesimal generator, often also called transition rate matrix, which collects the
transition rates Qij from state i to state j and satisfies for all i ∈ S that

Qii ≤ 0, Qij ≥ 0 ∀j 6= i and
∑
j∈S

Qij = 0.

This matrix is the corner stone of analysis because it enables to compute the transition
probability function and to derive several qualitative properties of the CTMC itself. The
time-inhomogeneous analogue is the Q(t)-matrix:
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For all i, j ∈ S let Qij(·) be a real-valued function defined on [0,∞). The function
Q(·) := ((Qij(·))i,j∈S)t≥0 is said to be a inhomogeneous Q(t)-matrix if for every i ∈ S
and t ≥ 0 it holds that

(i) Qij(t) ≥ 0 for all j 6= i and −∞ < Qii(t) ≤ 0

(ii) and
∑

j∈S Qij(t) ≤ 0.

If in addition
∑

j∈S Qij(t) = 0 for all i ∈ S, t ≥ 0 we say that Q(·) is conservative.

Let ((Qij(·))i,j∈S)t≥0 be Q(t)-matrix that satisfies that Qij(t) is Borel measurable in
t ≥ 0 for each i, j ∈ S and that Qii(t) is Lebesgue integrable over any finite interval
in [0,∞). A Q(t)-function is a transition function p(s, i, t, j) such that for all i, j ∈ S,

t ≥ 0 and for almost every s ∈ [0, t] the partial derivatives ∂p(s,i,t,j)
∂s

exist and for which,
moreover, the right-sided limits

lim
t↓s

p(s, i, t, j)− δij
t− s

exist and equal Qij(s).

Given any Q(t)-matrix that satisfies the previously stated measurability and integrability
conditions we can construct a transition function p(s, i, t, j) that is a standard and
stable Q(t)-function. It furthermore satisfies the Kolmogorov forward and backward
equations

∂p(s, i, t, j)

∂t
=
∑
k∈S

p(s, i, t, k)Qkj(t) (2.1)

∂p(s, i, t, j)

∂s
= −

∑
k∈S

Qik(s)p(s, k, t, j)

for all i, j ∈ S and almost all t ≥ s ≥ 0.

If additionally the Q(t)-matrix is conservative and we find constants L1, L2 > 0 as well
as a non-negative real-valued function w(·) on S such that∑

j∈S

w(j)Qij(t) ≤ L1w(i) and −Qii(t) ≤ L2w(i) for all i ∈ S and t ≥ 0, (2.2)

then the Q(t)-function is unique and regular.
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2.2. Infinite Horizon Markov Decision Processes

In the context of our mean field game model, Markov decision processes are of par-
ticular importance. The reason is that given a stationary population distribution the
optimization problem faced by the individual player is equivalent to a continuous time
infinite horizon Markov decision process with the expected discounted reward criterion
(see Section 5.1). In order to establish this result and to utilize the existing theory some
standard facts on continuous time Markov decision processes, which can be found in Guo
and Hernández-Lerma (2009), are reviewed in Subsection 2.2.1. For further analysis, we
moreover present the concept of uniformization presented in Kakumanu (1977) and re-
view in Subsection 2.2.2 selected results on discrete time Markov decision processes, for
which Puterman (1994) is a standard reference. In Subsection 2.2.3 we then derive the
first central result of the thesis. Namely, that the set of all optimal stationary strategies
is given as the set of all optimal stationary deterministic strategies, which in turn are
exactly those that choose actions that maximize the right hand side of the optimality
equation.

2.2.1. Continuous Time Markov Decision Processes

The continuous time control model presented in Guo and Hernández-Lerma (2009) is a
five-tuple

{S,A, (A(i))i∈S , Qija, ria}

consisting of a denumerable state space S, an action space A being a Borel subset of a
complete, separable metric space with Borel-σ-algebra B(A), a family of sets A(i) ⊆ A,
which contain all those actions that can be chosen when the system is in state i, as well
as transition rates Qija and reward functions ria. Let

K := {(i, a)|i ∈ S, a ∈ A(i)}

be the set of all feasible state-action pairs. The transition rates Qija are measurable in
a ∈ A(i) for each fixed i, j ∈ S and satisfy Qija ≥ 0 for all (i, a) ∈ K and j 6= i. We
furthermore assume that they are conservative, which means that

∑
j∈S Qija = 0 for all

(i, a) ∈ K, and that they are stable, which means that supa∈A(i)−Qiia <∞ for all i ∈ S.
The reward function ria is a real-valued function that is measurable in a ∈ A(i) for each
fixed i ∈ S and which can, despite its name, also admit negative values. We restrict our
attention to models with a uniformly bounded reward function, that is we assume that
we find an M ∈ R such that |ria| ≤M for all i ∈ S and a ∈ A.

The controller can choose his actions according to a randomized Markov strategy, which
is a real valued function (i, C, t) 7→ πiC(t) that satisfies the following conditions:
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(i) For all i ∈ S and C ∈ B(A(i)) the mapping t 7→ πiC(t) is measurable on [0,∞).

(ii) For all i ∈ S, t ≥ 0 the function C 7→ πiC(t) is a probability measure on B(A),
where πiC(t) denotes the probability that an action in C is taken when the system’s
state at time t is i. Furthermore the function satisfies that πiA(i)(t) = 1, which
states that only admissible actions are selected in such a strategy.

We say that such a randomized Markov strategy πiC(t) is stationary if πiC(t) = πiC for
all t ∈ [0,∞). A deterministic stationary strategy is a function d : S → A such that
d(i) ∈ A(i) for all i ∈ S, which can be identified by a randomized stationary strategy
via πiC = δd(i)(C), with δd(i)(·) being the Dirac measure for the action d(i).

Informally, we can describe the system’s behaviour as follows: Suppose that the system
is at time t ≥ 0 in state i and that the controller chooses the action a ∈ A(i). Then over
the interval [t, t + dt] the decision maker will receive an infinitesimal reward riadt and
a transition will occur to state j 6= i with probability Qijadt + o(dt) or the system will
remain in state i with probability 1 +Qiiadt+ o(dt).

To model the system’s behaviour formally we define for any Markovian strategy π the
associated transition rate matrix as

Qπ
ij(t) :=

∫
A(i)

Qijaπida(t) for i, j ∈ S and t ≥ 0,

where we integrate with respect to a. If the transition rates are uniformly bounded (i.e.
||Q|| := supi∈S,a∈A−Qiia < ∞) and the state space S is finite, then for any Markov
strategy we obtain by the results discussed in Section 2.1 a Markov process with regular
transition function pπ(s, i, t, j), which satisfies for all i, j ∈ S and all 0 ≤ s ≤ t the
Kolmogorov forward and backward equations

∂pπ(s, i, t, j)

∂t
=
∑
k∈S

pπ(s, i, t, k)Qπ
kj(t)

∂pπ(s, i, t, j)

∂s
= −

∑
k∈S

Qπ
ik(s)p

π(s, k, t, j).

Given 0 < β < 1 the controller aims to maximize the expected discounted reward, where
the expected discounted reward of a strategy π given that the initial state is i ∈ S is
defined as

V π
i :=

∫ ∞
0

e−βt
∑
j∈S

rπj (t)pπ(0, i, t, j)dt, (2.3)

where

rπi (t) :=

∫
A(i)

riaπida(t).
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The optimal discounted reward function is given by

V ∗i := sup
π
V π
i

for every initial state i ∈ S. A strategy π∗ is said to be discounted reward optimal if
V π∗
i = V ∗i for all i ∈ S.

For the rest of this subsection we restrict our attention to finite state and action spaces.
However, many of the following results also hold given suitable compactness and conti-
nuity assumptions. As a first step, we state the following result summarizing the main
findings for continuous time Markov decision processes (see Guo and Hernández-Lerma
(2009, Lemma 4.4, Remark 4.9, Theorem 4.10) and Kakumanu (1971, Theorem 3.3)):

Lemma 2.1. The expected discounted reward of any discounted reward optimal strategy
is given by the unique solution of the optimality equation

βV ∗i = max
a∈A(i)

{
ria +

∑
j∈S

QijaV
∗
j

}
.

Moreover, there is a deterministic discounted reward optimal stationary strategy.

In Kakumanu (1971) (Theorem 2.4) we furthermore find that the value given a certain
stationary deterministic strategy d can be characterized as the unique solution of a
certain linear equation:

Lemma 2.2. Let d be a stationary deterministic strategy. The expected discounted
reward of this strategy is the unique solution g of

βg = rd +Qdg,

where rd is the reward vector given the strategy d and Qd the transition rate matrix given
the strategy d, i.e. rd = (rid(i))i∈S and Qd = (Qijd(i))i,j∈S .

Remark 2.3. As some methods for discrete time models are better developed than those
for continuous time models, the following tool known as uniformization is very helpful:
Since the transition rates are bounded in our setting, we can transform our continuous
time Markov decision process into an equivalent discrete time Markov decision process
by setting

α :=
||Q||

β + ||Q||
, r̄ia :=

ria
β + ||Q||

and P̄ija :=
Qija

||Q||
+ δij

for all i, j ∈ S and a ∈ A(i), where ||Q|| := supi∈S supa∈A(i)−Qiia (Guo and Hernández-
Lerma, 2009, Remark 6.1). In Kakumanu (1977) it is shown that without adjusting the
rewards (i.e. r̄ia = ria) the expected discounted reward of a certain stationary strategy
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in the continuous time model and the discrete time model are proportional. In our
case with the adjusted rewards we obtain, relying on the same proof, that the expected
discounted reward given a certain stationary strategy in the continuous time Markov
decision process and the corresponding discrete time Markov decision process are the
same. Thus, we obtain that a stationary strategy is optimal for the discrete time model
if and only if it is optimal for the continuous time model. 4

2.2.2. Discrete Time Markov Decision Processes

In Puterman (1994) the collection of objects

{T,S, (A(i))i∈S , Pija, ria}

is called a discrete time Markov decision process. It consists of a set of decision epochs,
a state space, action sets, transition probabilities and reward functions. The set T is
the set of decision epochs and will be N for our purpose, S is the state space, which we
here assume to be finite, and A(i) is the set of possible actions when the system is in
state i. By A :=

⋃
i∈S A(i) we denote the set of all possible actions and by P(A(i)) we

denote the collection of probability distributions on (Borel) subsets of A(i). Agents are
again allowed to randomize over actions, which corresponds to selecting a probability
distribution in the probability simplex P(A(i)).

The transition rates are functions Pija ranging from S × S × A to [0, 1] such that∑
j∈S Pija = 1 for all i ∈ S and a ∈ A(i). The reward functions ria range from S ×A to

R and we assume in the following that the rewards are uniformly bounded, that is we
assume that we find an M ∈ R such that |ria| ≤M for all i ∈ S and a ∈ A.

Puterman (1994) allows in his investigations for more general strategies than Guo and
Hernández-Lerma (2009), namely he allows for history-dependent strategies π. These
are defined as measurable functions that take all states up to time n and all actions
up to time n− 1 into account when deciding for a probability distribution over A(i) to
be chosen at time n being in state i. He introduces (Markovian) strategies in a similar
fashion as Guo and Hernández-Lerma (2009) as measurable functions π : S×N→ P(A),
which should satisfy

∑
a∈A(i) πia(n) = 1 for all i ∈ S, n ∈ N. Since we are only interested

in Markovian strategies, we often write strategies instead on Markovian strategies. We
define stationary strategies and deterministic strategies as in the continuous time case.

Informally, we can now describe the behaviour of the system as follows: As a result of
choosing an action a ∈ A(i) in state i at decision epoch n, the decision maker receives
a reward ria and the system is in state j at time n + 1 with probability Pija. A formal
description of the system’s behaviour can be obtained in a similar fashion as in Subsection
2.2.1, for details we refer to Section 2.1.6 in Puterman (1994).
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The agent again maximizes the expected discounted reward with discount factor 0 <
α < 1, which for a strategy π is given by

V π
i = Eπi

[
∞∑
n=1

αn−1rXnYn

]
,

where Xn is the system’s state at time n and Yn is the action chosen at time n. If π
is a stationary strategy, then an alternative representation of the expected discounted
reward is given by

V π =
∞∑
n=1

αn−1(P π)n−1rπ,

with
rπi =

∑
a∈A(i)

πiaria and P π
ij =

∑
a∈A(i)

πiaPija. (2.4)

This second representation of the expected total discounted reward criterion gives rise
to a powerful tool to compute the expected discounted reward for a stationary strategy
(Puterman, 1994, Theorem 6.1.1), namely the policy evaluation equation:

Lemma 2.4. For any stationary strategy π the expected total discounted reward function
V π is the unique solution in RS of

v = rπ + αP πv. (2.5)

Furthermore, (I − αP π) is invertible and we obtain

V π = (I − αP π)−1rπ.

The optimal discounted reward function, often called value function, is given by

V ∗i = sup
π
V π
i ,

where the supremum is taken over all history dependent strategies π. We say that a
strategy π∗ is discounted reward optimal whenever V π∗

i ≥ V π
i for all i ∈ S and all

history-dependent strategies π.

The optimality equation

V ∗i = sup
a∈A(i)

{
ria +

∑
j∈S

αPijaV
∗
j

}

is the most important tool in theoretical investigations of optimal stationary strategies.
One can show that there is at most one solution of this equation which is moreover the
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value function (Puterman (1994, Theorem 6.2.2)) and that a solution exists in case of
bounded rewards and discrete state spaces (Puterman (1994, Theorem 6.2.5)). Further-
more, a history-dependent strategy is optimal if and only if V π satisfies the optimality
equation, which allows to easily verify whether a given strategy is optimal (Puterman,
1994, Theorem 6.2.6). Moreover, by Puterman (1994, Theorem 6.2.10) an optimal de-
terministic stationary strategy exists when S is discrete and A(i) is finite for all i ∈ S,
ensuring existence of a deterministic stationary strategies in the cases we are interested
in. Again, similar results can be obtained given suitable compactness and continuity
assumptions for more general action spaces.

2.2.3. A Characterization of the Optimal Stationary Strategies
of a Markov Decision Process

We prove in this section that in case of a finite state and action space (that is S =
{1, . . . , S} and A = {1, . . . , A}) the set of all optimal stationary strategies for a Markov
decision process in discrete as well as continuous time is the convex hull of all optimal
deterministic stationary strategies.

We start with the preliminary observation that every randomized stationary strategy can
be written as a (not necessarily unique) convex combination of deterministic stationary
strategies. Additionally, we provide one way to compute some set of coefficients in such
a convex combination, which will prove to be helpful in characterizing the set of all
stationary mean field equilibria in Chapter 5. We denote by Πs the set of all stationary
strategies and by Ds the set of all deterministic stationary strategies.

Lemma 2.5. Every randomized stationary strategy π ∈ Πs can be represented as a
convex combination of deterministic stationary strategies.

The proof of this result is an application of Minkowski’s Theorem (Theorem 5.10 in
Brøndsted (1983)) which characterizes a compact convex set C in terms of its extreme
points. A point x is an extreme point if C \ {x} is again a convex set and the set of all
extreme points is denoted by ext(C).

Lemma 2.6 (Minkowski’s Theorem). Let C be a compact and convex set in Rd, then

C = conv(ext(C)),

that is C is the convex hull of the extreme points of C.

Proof of Lemma 2.5. We start the proof by observing that deterministic strategies are
indeed extreme points of Πs: Let d be a deterministic strategy and let π1, π2 ∈ Πs \ {d}
be arbitrary strategies and let λ ∈ [0, 1]. We show that λπ1 + (1 − λ)π2 again lies in
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Πs \{d}. As Πs is itself convex, it is clear that λπ1 + (1−λ)π2 ∈ Πs. It remains to show
that it is not d itself. This statement is trivial for λ ∈ {0, 1}. For λ ∈ (0, 1) we note
that for at least one state i it holds that π1

i· 6= di·, which particularly means that for the
action a that strategy d chooses, π1 assigns a probability less than one. Now we have

λπ1
ia + (1− λ)π2

ia ≤ λπ1
ia + (1− λ) < λ+ (1− λ) = 1.

Thus, the convex combination indeed does not equal d.

Next, we show that non-deterministic strategies are indeed no extreme points: Let
π be any non-deterministic strategy, then there exists a state i for which there are
two distinct actions a1, a2 such that πia1 > 0 and πia2 > 0. We choose δ such that
min{πia1 , πia2} > δ > 0 and min{1− πia1 , 1− πia2} > δ > 0. Then π1 = π− δ1ia1 + δ1ia2

and π2 = π + δ1ia1 − δ1ia2 are again randomized strategies, but

1

2
π1 +

1

2
π2 = π /∈ Πs \ {π}.

By Minkowski’s Theorem (Lemma 2.6) we obtain that every randomized strategy can
be written as a convex combination of deterministic strategies.

We remark that there are strategies which can be represented by several convex com-
binations of deterministic strategies, for example the strategy π with π1a1 = π1a2 =
π2a1 = π2a2 = 1

2
can be written as convex combination of d1(1) = a1, d

1(2) = a1 and
d2(1) = a2, d

2(2) = a2 with equal weights each as well as a convex combination of
d3(1) = a1, d

3(2) = a2 and d4(1) = a2, d
4(2) = a1 again with equal weights.

For later use, we provide a way to obtain directly some set of coefficients for the convex
combination:

Lemma 2.7. Let π ∈ Πs be any stationary randomized strategy. Then

π =
∑
d∈Ds

λdd with λd = π1d(1) · . . . · πSd(S),

where d(i) is the action chosen under d with certainty.

Proof. We start by enumerating all deterministic strategies by tuples from AS with
d(a1,...,aS) being the strategy that chooses action ai when being in state i, i.e. d

(a1,...,aS)
i =

ai. We have to show that for all a ∈ A and i ∈ S we have

πia =
∑

(a1,...,aS)∈AS
λd(a1,...,aS)d

(a1,...,aS)
ia :
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As a first step, we note that

d
(a1,...,aS)
ia =

{
1 if ai = a

0 else
.

Thus, we have∑
(a1,...,aS)∈AS

λ(a1,...,aS)d
(a1,...,aS)
ia

=
∑

(a1,...,ai−1,ai+1,...,aS)∈AS−1

λ(a1,...,ai−1,a,ai+1,...,aS)

=
∑
a1∈A

. . .
∑

ai−1∈A

∑
ai+1∈A

. . . ·
∑
aS∈A

π1a1 . . . πi−1,ai−1
πiaπi+1,ai+1

. . . πSaS

= πia
∑
a1∈A

π1a1 · . . .

 ∑
ai−1∈A

πi−1,ai−1
·

 ∑
ai+1∈A

πi+1,ai+1
· . . . ·

(∑
aS∈A

πSaS

)
= πia,

where the last line follows inductively from the previous line as
∑

aj∈A πjaj = 1 for all
j ∈ S.

We are now equipped with all preparations necessary to prove the announced result.
Since the uniformization procedure is applicable (see Remark 2.3) and, thus, the sets of
optimal stationary strategies for both processes coincide, the main task is to prove the
result for discrete time Markov decision process. It states that all optimal stationary
strategies are a convex combination of the optimal deterministic stationary strategies,
which in turn can be characterized as those strategies that choose the actions in state i
that achieve the maximum in the optimality equation’s i-line.

Theorem 2.8. Let
{N,S, (A(i))i∈S , Pija, ria}

be a discrete time Markov decision process with the expected discounted reward criterion
such that the state space S and the action space A =

⋃
i∈S A(i) are finite. Furthermore,

let
D = {d : S → A : d(i) ∈ Oi}

with

Oi = argmaxa∈A(i)

{
ria +

∑
j∈S

αPijaV
∗
i

}
.

Then a stationary strategy is optimal if and only if it is a convex combination of strategies
from D.
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Proof. We first note that by Puterman (1994, Corollary 6.2.8) any deterministic strategy
in our set D is indeed optimal. Enumerate D = {d1, . . . , dn} and let π ∈ Πs be a convex
combination of strategies in D, that is

π =
n∑

m=1

λmdm with λm ≥ 0 ∀m ∈ {1, . . . , n} and
n∑

m=1

λm = 1.

Since rπ and P π are linear in π (see equation (2.4)), we can write the policy evaluation
equation (2.5) as

V π = rπ + αP πV π =
n∑

m=1

λm(rdm + αP dmV π).

Since for all m ∈ {1, . . . , n} the strategy dm is optimal, it follows that V π = V ∗ is the
unique solution of the policy evaluation equation (2.5):

rπ + αP πV ∗ =
n∑

m=1

λm(rdm + αP dmV ∗) =
n∑

m=1

λmV
∗ = V ∗.

By Puterman (1994, Theorem 6.2.5), which states that in our setting the unique solution
of the optimality equation is V ∗, and by Puterman (1994, Theorem 6.2.6), which states
that a strategy is optimal if and only if the expected discounted reward given this strategy
is a solution of the optimality equation, we obtain that the strategy π is optimal.

To show the converse implication we assume that π is not a convex combination of
deterministic strategies from D. Lemma 2.5 states that there is nonetheless a convex
combination of (not necessarily optimal) deterministic strategies representing π. How-
ever, by assumption any convex combination of deterministic strategies representing the
strategy π has a summand d /∈ D with positive weight, which means that for the strategy
d there is an action i ∈ S and an action ã ∈ A(i) \ Oi such that d(i) = ã. This implies
that also the strategy π chooses that action ã in state i with positive probability, that
is πiã > 0. By the policy evaluation equation (2.5) the i-th component of the strategy
value satisfies

V π
i = rπi +

∑
j∈S

α(P π)ijV
π
j

=
∑
a∈A(i)

πia

(
ria +

∑
j∈S

αPijaV
π
j

)

≤
∑
a∈A(i)

πia

(
ria +

∑
j∈S

αPijaV
∗
j

)
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<
∑
a∈A(i)

πia max
a′∈A(i)

{
ria′ +

∑
j∈S

αPija′V
∗
j

}

= max
a′∈A(i)

{
ria′ +

∑
j∈S

αPija′V
∗
j

}
= V ∗i ,

where the second lines follows from V π ≤ V ∗ and the third line follows from the fact
that ã /∈ Oi is chosen with positive probability πiã. Since V π

i < V ∗i and since, by the
finiteness of S and A, an optimal strategy achieving value V ∗ exists, we obtain that π
is not optimal.

For continuous time Markov decision processes we obtain the following statement as a
corollary:

Corollary 2.9. Let
{S,A, (A(i))i∈S , Qija, ria}

be a continuous time Markov decision process with the expected discounted reward crite-
rion, where the state space S as well as the action space A are finite. Let D = {d : S →
A : d(i) ∈ Oi} with

Oi = argmaxa∈A(i)

{
ria +

∑
j∈S

QijaV
∗
j

}
.

Then a stationary strategy is optimal if and only if it is a convex combination of strategies
from D.

Proof. We note that the set of optimal strategies of the continuous time Markov decision
process and the discrete time Markov decision process obtained through uniformization
are the same (Remark 2.3). Thus, we have, by Theorem 2.8, that the statement holds
with Oi defined as

Oi = argmaxa∈A(i)

{
r̄ia +

∑
j∈S

αP̄ijaṼ
∗
j

}
,

with Ṽ ∗ being the value function of the discrete time Markov decision process and

α =
||Q||

β + ||Q||
, r̄ia =

ria
β + ||Q||

, P̄ija =
Qija

||Q||
+ δij.

Noting that V ∗ is the value function for the continuous time Markov decision process
as well as the corresponding uniformized discrete time Markov decision process (see
Remark 2.3), we obtain the following relation between the optimality equations:
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V ∗i = max
a∈A(i)

{
r̄ia +

∑
j∈S

αP̄ijaV
∗
j

}

= max
a∈A(i)

{
ria

β + ||Q||
+
∑
j∈S

||Q||
β + ||Q||

(
Qija

||Q||
+ δij

)
V ∗j

}

= max
a∈A(i)

{
1

β + ||Q||

(
ria +

∑
j∈S

QijaV
∗
j

)
+
||Q||

β + ||Q||
V ∗i

}

⇔ β

β + ||Q||
V ∗i = max

a∈A(i)

{
1

β + ||Q||

(
ria +

∑
j∈S

QijaV
∗
j

)}

⇔ βV ∗i = max
a∈A(i)

{
ria +

∑
j∈S

QijaV
∗
j

}
.

This implies that we can characterize the sets Oi as those achieving the maximum in
the right-hand side of the optimality equation (for the continuous time Markov decision
process), which means

Oi = argmaxa∈A(i)

{
ria +

∑
j∈S

QijaV
∗
j

}
.

Remark 2.10. We remark that in order to compute Oi it is necessary to determine the
value function V ∗. But also in case that this is not possible the theorem/corollary has
an important implication: The set of all optimal strategies can always be characterized
by a set A1× . . .×AS with Ai being the optimal actions in state i, such that the set of all
optimal strategies is a convex combination from {d ∈ Ds : d(i) ∈ Ai for all i ∈ S}. 4
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3. The Model

In this chapter we introduce the mean-field game model we are working with in this
thesis. It is equivalent to the model introduced in Doncel et al. (2016a). However, we
introduce it in a probabilistic way, which is crucial at several points in the thesis, in
particular in Chapter 5. In Section 3.1 we formally introduce the model and illustrate
the abstract definitions by formulating a simplified version of the corruption model of
Kolokoltsov and Malafeyev (2017), which we will analyse later, in terms of our model.
In Section 3.2 we thereafter discuss the model.

3.1. Formal Description of the Model

Let S = {1, . . . , S} (S > 1) be the set of possible states of each player and let A =
{1, . . . , A} be the set of possible actions. With P(S) we denote the probability simplex
over S and with P(A) the probability simplex overA. A (mixed) strategy is a measurable
function π : S × [0,∞)→ P(A), (i, t) 7→ (πia(t))a∈A with the interpretation that πia(t)
is the probability that at time t and in state i the player chooses action a. We say that
a strategy π = d : S × [0,∞)→ P(A) is deterministic if it satisfies for all t ≥ 0 and for
all i ∈ S that there is an a ∈ A such that dia(t) = 1 and dia′ = 0 for all a′ ∈ A \ {a}.
Throughout the presentation we often use the following equivalent representation, which
is to represent a deterministic strategy as a function d : S × [0,∞) → A, (i, t) 7→ di(t)
with the interpretation that di(t) = a states that at time t in state i action a is chosen.
With Π we denote the set of all (mixed) strategies and with D the set of all deterministic
strategies.

The individual dynamics of each player given a Lipschitz continuous flow of population
distributions m : [0,∞) → P(S) and a strategy π : S × [0,∞) → P(A) are given as
a Markov process Xπ(m) with given initial distribution x0 ∈ P(S) and infinitesimal
generator given by the Q(t)-matrix

(Qπ(m(t), t))ij =
∑
a∈A

Qija(m(t))πia(t),

where for all a ∈ A and m ∈ P(S) the matrices (Q··a(m))a∈A are conservative generators,
that is Qija(m) ≥ 0 for all i, j ∈ S with i 6= j and

∑
j∈S Qija(m) = 0 for all i ∈ S.

29



We remark that under the standing assumption A1 any flow of population distributions
m : [0,∞) → P(S), which emerges from the population jointly using the strategy π,
is Lipschitz continuous (see Lemma 4.2). Thus, the requirement that m is Lipschitz
continuous does not impose an additional restriction on the considered model.

Given the initial condition x0 ∈ P(S), the goal of each player is to maximize his expected
discounted reward, which is given by

Vx0(π0,m) =

∫ ∞
0

(∑
i∈S

∑
a∈A

xπ
0

i (t)ria(m(t))π0
ia(t)

)
e−βtdt, (3.1)

where r : S×A×P(S)→ R is a real-valued function, β ∈ (0, 1) is the discount rate and
xπ

0

i (t) is the probability that the individual player using strategy π0 is in state i at time t,
which is given as the marginal of the time-inhomogeneous Markov chain with generator
matrix Qπ0

(t,m(t)) and initial condition x0. That is, for a fixed flow of population
distributions m : [0,∞) 7→ P(S) we face a Markov decision process with expected
discounted reward criterion and time-inhomogeneous reward functions and transition
rates.

We will work under the following continuity assumption, which will ensure that there
is indeed a Markov process with inhomogeneous Q(t)-matrix Qπ(m(t), t) in the sense of
Section 2.1 (see Lemma A.4 for details):

Assumption A1. For all i, j ∈ S and all a ∈ A the function m 7→ Qija(m) mapping
from P(S) to R is Lipschitz-continuous in m . For all i ∈ S and all a ∈ A the function
m 7→ ria(m) mapping from P(S) to R is continuous in m.

With these preparations we define dynamic mean field equilibria:

Definition 3.1. Given an initial distribution m0 a mean field equilibrium is a flow
of population distributions m : [0,∞) → P(S) with m(0) = m0 and a strategy π :
S × [0,∞)→ P(A) such that

• for all t ≥ 0 the marginal distribution of the process Xπ(m) at time t is given by
m(t)

• it holds that Vm0(π,m) ≥ Vm0(π′,m) for all π′ ∈ Π.

As in standard game theory, our concept of mean field equilibrium captures the intuitive
idea that no player wants to deviate: Given that all players play according to strategy
π, the population’s distribution will be m. If an individual player evaluates whether he
wants to deviate from playing π, he asks whether there is a strategy that yields a higher
payoff given m. However, due to the second condition, this is not possible. Therefore,
we indeed face an equilibrium in the classical economic sense.
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Remark 3.2. Using the Kolmogorov forward equation (Guo and Hernández-Lerma, 2009,
Proposition C.4) we see that the first condition implies the analytic condition used in
Doncel et al. (2016a) to characterize mean field equilibria, which states that m is solution
(in the sense of Caratheodory) of

ṁj(t) =
∑
i∈S

mi(t)Q
π
ij(m(t), t) ∀j ∈ S (3.2)

with initial condition m(0) = m0. A proof of this equivalence as well as a short discussion
of Caratheodory solutions can be found in the Appendix A. 4

In order to define stationary mean field equilibria, we first introduce, analogous to Section
2.2, the notion of stationary strategies: A stationary strategy is a map π : S × [0,∞)→
P(A) such that πia(t) = πia for all t ≥ 0. We denote by Πs the set of all stationary
strategies and by Ds the set of all deterministic stationary strategies.

Definition 3.3. A stationary mean field equilibrium is given by a stationary strategy
π ∈ Πs and a vector m ∈ P(S) such that

• for all t ≥ 0 the marginal distribution of the process Xπ(m) with initial condition
x0 = m at time t is given by m

• for any initial distribution x0 ∈ P(S) we have Vx0(π,m) ≥ Vx0(π′,m) for all π′ ∈ Π.

This notion is a sensible formalization of stationary equilibria: If m(0) = m and the
strategy is π, then the population’s distribution will be m for all time points. An
individual agent at a given time point can be in any state, however, if he evaluates
whether he wants to deviate from playing π, the second condition ensures that this is not
beneficial for him. Thus, he has no incentive to deviate from the equilibrium strategy
π, which means that the population will indeed remain in the stationary equilibrium
regime of playing π.

Remark 3.4. We remark that the matrix Qπ
ij(m, t) does not depend on t in this context.

Therefore, we write Qπ
ij(m) := Qπ

ij(m, t). Using this, we obtain that the first condition
is equivalent to

0 =
∑
i∈S

miQ
π
ij(m) ∀j ∈ S.

Furthermore, we point out, that the second condition seems stricter than it actually
is: We require that there is a stationary strategy that achieves the highest possible
value among all (also non-stationary) strategies for all initial conditions simultaneously.
However, we will prove in Section 5.1 that any stationary strategy that is optimal for
an associated Markov decision process satisfies this. 4
Remark 3.5. In contrast to standard models, where the assumptions always imply that
a unique optimal best response exists, the mean field equilibria we consider are not
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fully specified by the distribution because it might happen that several actions are
simultaneously optimal and induce the same distribution. However, a dynamic mean
field equilibrium is fully specified by describing the equilibrium strategy because we can
show using standard techniques (Walter, 1998, Theorem 10.XX) that there is at most one
Caratheodory solution to the differential equation (3.2) (see Lemma A.6 for details). For
a stationary mean field equilibrium this again does not hold true as it might happen that
given a strategy there are multiple stationary distributions. For this reason, we define
mean field equilibria always as pairs of the equilibrium distribution and the equilibrium
strategy. 4
Remark 3.6. We are now in the position to explain why for non-trivial models (in the
sense that there is not one action that maximizes the Hamiltonian for every population
distribution) we always obtain population distributions at which several actions maxi-
mize the Hamiltonian: Since Q(·) and r(·) are continuous in m, also the Hamiltonian is
continuous in m. Therefore, if we fix the costate variables, the sets of population distri-
butions in which a particular action is a maximizer of the Hamiltonian are closed. Since
the action space is finite and the set of all population distribution vectors is connected,
we obtain that if there is more than one action that maximizes the Hamiltonian for some
population distribution, then the set of population distributions where several actions
simultaneously maximize the Hamiltonian is non-empty. This implies that for the case
of finite action spaces the assumption that a unique maximizer of the Hamiltonian exists
is violated in all interesting cases. Thus, new methods for the analysis of these models
are necessary. 4
Example. In Section 6.2 we analyse a simplified version of the corruption model in
Kolokoltsov and Malafeyev (2017), which aims to analyse the effects of social pressure
onto the spread of corruption in a society. In this model, a player can be in one of
the three states honest (H), corrupt (C) and reserved (R). The corrupt players get
the highest wage, the honest players a medium wage and the reserved players no wage.
The players can choose, given that they are not reserved, whether they want to stay
corrupt/honest or whether they want to change behaviour. Formally, the state space is
given by S = {C,H,R} and the action space is given by A = {change, stay}.

The dynamics of the individual player are influenced by two major sources: First, the
individual decision to change states, in which case this happens with rate b, and second,
the peer pressure, which works through two channels. On the one hand the more players
are corrupt the higher is the rate that honest players become corrupt. On the other
hand the more players are honest the higher is the risk of being convicted. Additionally,
agents recover from state R with a constant rate r.

Formally, the transition rates of an individual player are as follows: In state C the player
moves to state R (that is becomes convicted of being corrupt) with rate qsocmH , which
increases in the share mH of players in state H. The player moves from state C to state
H with rate 0 if he chooses action stay and with rate b if he chooses action change. In
state H the player becomes corrupt (that is moves to state C) with rate qinfmC if he
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chooses the action stay and with rate qinfmH +b if he chooses the action change. In state
R the player moves to state H with rate r. Other transitions are not directly possible,
that is the corresponding transition rates are zero. In total, this description yields to
the following transition rate matrices

Q··change =

−(b+ qsocmH) b qsocmH

b+ qinfmC −(b+ qinfmC) 0
0 r −r


Q··stay =

−qsocmH 0 qsocmH

qinfmC −qinfmC 0
0 r −r

 .

The individual player can then choose any measurable mapping π : S × [0,∞)→ P(A)
as strategy, for example for any T ≥ 0 he could choose

(i, t) 7→ πi(t) =

{
(e−t, 1− e−t) if i = C, t ≤ T

(0, 1) else
.

Given this strategy the agent chooses the action stay whenever the agent is not corrupt or
the time is larger than T . If the agent is in corrupt and the time is given by t ≤ T , then
the agent randomizes over the actions. More precisely, he chooses the action change
with probability e−t and the action stay with probability 1 − e−t. An example of a
deterministic strategy would be

(i, t) 7→ πi(t) =

{
(1, 0) if i = C, t ≤ T

(0, 1) else

and an example of a deterministic stationary strategy would be

(i, t) 7→ πi(t) =

{
(1, 0) if i = C

(0, 1) else
.

The reward functions are given by

rC,stay(m) = rC,change(m) = 10,

rH,stay(m) = rH,change(m) = 5,

rR,stay(m) = rR,change(m) = 0.

We summarize the model description in a transition graph as in Figure 3.1.
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C:10P H:5P

R:0P

b/0

b+ qinfmC/qinfmC

qsocmH λ

Figure 3.1.: Representation of the corruption model. The transition rates in black are
action independent, the blue transition rates are those associated to choos-
ing the action change and the red transition rates are those associated to
choosing the action stay .

The individual control problem is now given as follows: Given a Lipschitz continuous
function m : [0,∞) → P(S), a player searches for a measurable strategy π such that
(3.1) is maximized, where his individual dynamics are given by the time-inhomogeneous
Markov chain with initial distribution x0 and generator

Qπ(m(t), t) =

−(bπCchange(t) + qsocmH(t)) bπCchange(t) qsocmH(t)
πHchange(t)b+ qinfmC(t) −(bπHchange(t) + qinfmC(t)) 0

0 r −r

 .

4

3.2. Discussion of the Model

This section discusses why we set certain assumptions in our model and in how far it is
possible to modify them.

The central goal of the model introduced here is to twofold: We wish for a model that is
closely related to the classical diffusion-based models, but at the same time we want to
analyse non-trivial models with finite action spaces. We first note that in finite action
space settings it is not easily possible to utilize differential calculus. The main reasons
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are that we do not face a unique maximizer of the Hamiltonian and that we now in
general have to consider set-valued best-response maps that are not continuous. Thus,
we restrict our attention to discrete state spaces. We cannot even assume that the state
space is countable since the whole theory presented here crucially depends on the finite
state space. In particular, the results on the computation of stationary equilibria in
Chapter 5 require a finite state space.

We assume that the individual dynamics are given by a time-inhomogeneous Markov
chain since we again wish that the individual dynamics are given by a Markov process.
Moreover, we directly assume that the action space is finite. This assumption implies
certain properties, like the existence of optimal strategies or the continuity of maxima
over the finitely many deterministic stationary strategy. If we would drop the assumption
that the action space is finite, it would still be possible to obtain some of the results, but
we would need to set up additional assumptions to obtain the properties mentioned above
and this would add technical difficulties. However, we can only characterize stationary
equilibria in the case of finite action space models since, else, we would have to solve
infinitely many (possibly completely different) fixed point problems. For these reasons
we directly restrict to the case of finite action spaces here.

The infinite time horizon is mainly motivated by the fact that in economic applications
the central interest are stationary solutions, in the sense that one considers equilibria
that have a stationary equilibrium strategy and a stationary population distribution
given this strategy, in which setting a finite time horizon would be artificial.

That we maximize the expected discounted reward is motivated by the fact that this is
the central optimization criterion in most economic applications. However, we expect
that it is possible to choose other optimization criteria. In particular for the expected
average reward criterion it should be possible to obtain similar results since also for this
optimality criterion the results in the literature indicate that a similar characterization
of optimal strategies as presented in Subsection 2.2.3 is, under certain assumptions,
possible (see Guo and Hernández-Lerma (2009, Section 5) and Puterman (1994, Section
8.4)).

The strategies, which we allow for, are rather simple. More precisely, we do not con-
sider history-dependent strategies, but only Markovian strategies for several reasons.
First, these strategies are sensible from an economic perspective (see Maskin and Tirole
(2001)): They are simple, yet they capture rational decision making. Moreover, they are
closely related to subgame perfection since these strategies yield that the past choices
of the players influence the future play of the players only through the current state of
the system. Second, this assumption is often made in the context of finite state mean
field games also for practical reasons since then the individual dynamics given a certain
strategy are given by a Markov process and not by a general marked point process,
which yields that several technical details do not have to be considered (see Carmona
and Delarue (2018a, Section 7.2)). Third, the restriction to a smaller strategy space
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always reduces the complexity of the necessary computations. This is particularly de-
sirable in the context of mean field games where it is rarely possible to compute explicit
solutions.

Another question that occurs with respect to the choice of strategies is the following:
Why is the state variable on which the player bases his decision only his own state and
not the state of the population? The answer to this question is given in Caines et al.
(2017) for general mean field games and it is also valid in our setting: In equilibrium all
players adopt the same strategy, thus knowing the strategy and the initial population
distribution, the population distribution at all future times becomes predictable (see
Lemma A.6). Since an equilibrium is characterized by the fact that no single player
wants to deviate from the equilibrium strategy, a player has to find his optimal response
given a certain strategy used by all other players. If the player could condition his actions
on the (current) population distribution, deviations from the equilibrium strategy could
directly be punished, which would yield to a problematic equilibrium notion since we
would face non-credible threats as in the theory of sequential games.

Finally, let us remark that the stationary mixed strategy equilibria we obtain here do
not allow for the classical criticism of mixed strategy equilibria for Nash equilibria. The
notion of mixed strategies in classical games is criticised because in experiments it is
not observed that player are indeed able to randomize as long as they are not experts
in the game played (Walker and Wooders, 2008). This criticism is not applicable in
our setting. Indeed, we obtain that a stationary strategy is optimal if and only if it
is a convex combination of optimal deterministic stationary strategies (see Subsection
2.2.3). Thus, we can assume that in a stationary mean field equilibrium with a mixed
equilibrium strategy the players are partitioned into different groups each playing a
different optimal deterministic stationary strategy such that the aggregated behaviour
is the mixed equilibrium strategy.
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4. Existence Results

In this chapter we will establish existence of dynamic as well as stationary mean field
equilibria in mixed strategies under Assumption A1 introduced in Chapter 3. In contrast
to the finite state model presented in Gomes et al. (2013), we do not need any additional
assumptions compared to the dynamic case to ensure existence of stationary equilibria.

The existence proofs will both rely on the standard idea to search for fixed points of the
best-response correspondence (which is a set-valued map). This map usually maps to any
strategy π those strategies that achieve the highest value given π. The problem in our
setting is that we cannot ensure continuity/semi-continuity of this map. For this reason,
Doncel et al. (2016a) sketched a proof of the dynamic existence result, where dynamic
mean field equilibria were linked to fixed points of a best-response correspondence φ(·)
in flows of population distributions. More precisely, they considered a best-response
map that maps to any flow of population distributions m those flows of population
distributions induced by optimal strategies. Recently, a more detailed version of the
proof has been published in Doncel et al. (2019).

In Section 4.1, we prove the dynamic existence result. We rely on the ideas sketched
in Doncel et al. (2016a), but provide the complete proof including the topological and
measure-theoretical details. In Section 4.2, we then develop based on the same ideas an
existence proof for stationary equilibria. This proof heavily relies on the probabilistic
formulation of our problem. In particular it relies on the investigations of the opti-
mal stationary strategies started in Section 2.2.3 as well as classical results regarding
stationary distribution of time-homogeneous Markov chains.

4.1. Existence of Dynamic Equilibria

This section is devoted to proving the following theorem:

Theorem 4.1. Any mean field game that satisfies Assumption A1 has a mean field
equilibrium.

The proof of this theorem relies on the analytic characterization of mean field equilibria,
which states that a mean field equilibrium is a pair (m,π) satisfying
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• Vm0(π,m) ≥ Vm0(π0,m) for all π0 ∈ Π,

• m satisfies

ṁj(t) =
∑
i∈S

mi(t)Q
π
ij(m(t), t) =

∑
i∈S

mi(t)
∑
a∈A

Qija(m(t))πia(t), ∀j ∈ S (4.1)

for almost all t ≥ 0 with initial condition m(0) = m0.

More precisely, the proof consists of the following steps: First, we prove that the flow of
population distributions of any mean field equilibrium has to lie in the setM consisting
of all functions m : [0,∞)→ P(S) that are Lipschitz continuous with Lipschitz constant
L, which is the constant that uniformly bounds Qija(m) for all i, j ∈ S, a ∈ A and
m ∈ P(S). With this observation, we then characterize the set of all mean field equilibria
as the set of all fixed points of a best-response correspondence φ :M→M that maps
a flow of population distributions to the distribution(s) induced by optimal strategies.
For this map φ(·) we then want to apply a generalized version of Kakutani’s fixed point
theorem. Therefore, we verify that the necessary conditions are satisfied. More precisely,
we show that the set M is a compact and convex subset of a locally convex space and
that the function φ(·) has non-empty, compact and convex values and is moreover upper
semi-continuous. This then allows us to prove the desired existence result.

We start with the observation that any population distribution of a mean field equilib-
rium has to lie in the set M:

Lemma 4.2. All solutions of the dynamics equation (4.1) are Lipschitz continuous with
Lipschitz constant L, where L is the constant that uniformly bounds Qija(m) for all
i, j ∈ S, a ∈ A and m ∈ P(S).

Proof. We have
∑

i∈S mi(t) = 1 for almost all t ≥ 0, because (Qija(m))i,j∈S is conserva-
tive for all m ∈ P(S) and all a ∈ A and therefore

∑
i∈S ṁi(t) = 0. Using this we obtain

that

|ṁj(t)| =

∣∣∣∣∣∑
i∈S

∑
a∈A

mi(t)Qija(m(t))πia(t)

∣∣∣∣∣
≤
∑
i∈S

∑
a∈A

mi(t)|Qija(t)|πia(t)

≤ L
∑
i∈S

∑
a∈A

mi(t)πia(t) = L.

The fundamental theorem of calculus for the Lebesgue integral (see Walter (1998, p.122))
yields that m(·) is a Caratheodory solution of (4.1) on [s, t] if and only if∑

i∈S

∑
a∈A

mi(u)Qija(m(u))πia(u)
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is integrable over [s, t] (which is satisfied since the function is uniformly bounded by L)
and

m(t) = m(s) +

∫ t

s

∑
i∈S

∑
a∈A

mi(u)Qi·a(m(u))πia(u)du,

where the integral is componentwise.

Thus, for s ≤ t we obtain

|(m(t)−m(s))j| =

∣∣∣∣∣
∫ t

s

∑
i∈S

∑
a∈A

mi(u)Qija(m(u))πia(u)du

∣∣∣∣∣
≤
∫ t

s

∣∣∣∣∣∑
i∈S

∑
a∈A

mi(u)Qija(m(u))πia(u)

∣∣∣∣∣ du ≤
∫ t

s

Ldu = L(t− s),

which implies that

||m(t)−m(s)||∞ = max
j∈S
|m(t)−m(s)| ≤ L(t− s).

With these preparations we define the best-response correspondence: We say that given
population distributions m,x ∈ M there exists a feasible strategy π0 for (m,x) if it
solves the individual dynamics equation

ẋj(t) =
∑
i∈S

xi(t)
∑
a∈A

Qija(m(t))π0
ia(t) for all j ∈ S, x(0) = m0. (4.2)

We then define

Y (m,x) = sup
π0 feasible for (m,x)

∫ ∞
0

(∑
i∈S

∑
a∈A

xi(t)π
0
ia(t)ria(m(t))e−βt

)
dt, (4.3)

which is the best possible payoff under (m,x) an individual can obtain. We set Y (m,x) =
−∞ if no feasible π0 exists. We note that this definition is also valid if m does not satisfy
the dynamics equation (4.1) for any π. The best-response correspondence φ :M→ 2M

is given by
m 7→ φ(m) := argmaxx∈MY (m,x).

In order to show that this set-valued map indeed has a fixed point we apply Theorem
7.8.6 (p.169) of Granas and Dugundji (2003). For this we first need some definitions:

Let X and Y be subsets of topological vector space and let F : X → 2Y be a set-
valued map (correspondence), where 2Y is a short-hand notation for the power set of
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Y . A set-valued map is called upper semicontinuous if for all x ∈ X and all open sets
V ⊇ F (x) there exists an open set U such that x ∈ U and for all x′ ∈ U it holds that
F (x′) ⊆ V . If Y is convex, then F (·) is called a Kakutani map provided that F (·) is
upper semicontinuous with non-empty, compact and convex values.

Lemma 4.3. Let C be a compact and convex subset of a locally convex space X, and
let F : C → 2C be a Kakutani-map. Then F (·) has a fixed point, that is there exists an
x ∈ C such that x ∈ F (x).

We first verify that M satisfies the conditions of the fixed point theorem. As a first
step, we show that M is compact with respect to the topology of uniform convergence
on compact sets. For this we use a version of the Arzela-Ascoli theorem presented in
Kelley (1955) (Theorem 7.17, pp.233-234):

Lemma 4.4. Let C(X, Y ) be the family of all continuous functions from a regular lo-
cally compact topological space X to a Hausdorff uniform space Y , and let C(X, Y ) be
equipped with the topology of uniform convergence on compact sets. Then a subfamily F
of C(X, Y ) is compact if and only if

(a) F is closed in C(X, Y ),

(b) F [x] := {f(x) : f ∈ F} has a compact closure for all x ∈ X, and

(c) the family F is equicontinuous.

In order to prove that the set M is compact, we note that the topology of uniform
convergence on compact sets is induced by a norm, which implies that our space M
is metrizable and a normed space. The proof of this statement is classical and can be
found in Appendix A.3.

Lemma 4.5. Consider the space C([0,∞),P(S)) equipped with the topology of uniform
convergence on compact sets. The space is metrizable and the metric is induced by the
norm

||m|| = sup
t≥0,i∈S

|mi(t)|e−βt,

that is the corresponding metric is given by

d(m,m′) = sup
i∈S,t≥0

|mi(t)−m′i(t)|e−βt.

With these preparations we prove that M is indeed a compact space:

Lemma 4.6. The set M is compact in the topology of uniform convergence on compact
sets.
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Proof. The set M is a subset of C([0,∞),P(S)) with P(S) ⊆ Rn. We note that both
spaces, [0,∞) and P(S), are equipped with the subspace topology induced by the stan-
dard topology on R and Rn, respectively. Since both spaces are metric spaces, they
are regular as well as Hausdorff (von Querenburg, 2001, p.84). Moreover, every metric
space admits a uniform structure, whose topology equals the topology induced by the
metric (von Querenburg, 2001, Example 11.6.a). Furthermore in von Querenburg (2001,
Example 8.17) we find that Rn is locally compact and that the intersection of an open
subset and a closed subset of a locally compact set is again locally compact. Thus, the
set [0,∞), which is closed, is locally compact.

Therefore, in order to prove that the setM is compact, it remains to check whether the
three conditions (a) to (c) from Lemma 4.4 are satisfied:

(a) We have to prove thatM is closed in C([0,∞),P(S)). Since we consider a metric
space, it is sufficient to show that for all m ∈ C([0,∞),P(S)) \ M there exists
an ε > 0 such that for all m′ ∈ C([0,∞),P(S)) with d(m,m′) < ε it follows that
m′ ∈ C([0,∞),P(S)) \M.

Since m ∈ C([0,∞),P(S)) \ M, there exists a pair s, t ≥ 0 such that ||m(s) −
m(t)||∞ > L|s− t|. Choose

0 < ε <
1

2
(||m(s)−m(t)||∞ − L|s− t|) eβmin{s,t}.

This implies that for all m′ ∈ C([0,∞),P(S)) with d(m,m′) < ε we have

||m(s)−m′(s)||∞ + ||m(t)−m′(t)||∞ < ||m(s)−m(t)||∞ − L|s− t|,

thus

||m′(s)−m′(t)||∞ = ||m′(s)−m(s) +m(s)−m(t) +m(t)−m′(t)||∞
≥
∣∣||m(s)−m(t)||∞ − ||m′(s)−m(s) +m(t)−m′(t)||∞

∣∣.
We note that

||m′(s)−m(s) +m(t)−m′(t)||∞ ≤ ||m′(s)−m(s)||∞ + ||m(t)−m′(t)||∞
< ||m(s)−m(t)||∞ − L|s− t|,

which implies that

||m′(s)−m′(t)||∞ ≥ ||m(s)−m(t)||∞ − ||m′(s)−m(s) +m(t)−m′(t)||∞
> ||m(s)−m(t)||∞ − (||m(s)−m(t)||∞ − L|s− t|)
= L|s− t|.

This in turn implies that m′(·) is also not Lipschitz continuous with Lipschitz
constant L. Thus, we obtain m′ ∈ C([0,∞),P(S)) \M.

41



(b) Since P(S) is compact (it homeomorphic to the closed unit ball (Schubert, 1964,
p.166)) and the closure of any set is closed, the set M[t] is, as a closed subset of
a compact set, also compact.

(c) M is equicontinuous since a family of functions with a common Lipschitz constant
is equicontinuous (von Querenburg, 2001, Example 14.18.a).

We start the consideration of φ(·) by proving that φ(m) is non-empty for all m ∈M and
that for all elements in φ(m) a feasible strategy that achieves the maximum value exists.
In a second step we prove convexity of φ(m). Afterwards we will prove the auxiliary
statement that the graph of φ(·) is closed in order to deduce that φ(m) is compact for
all m ∈M and that φ(·) is upper semicontinuous.

Before we start with the investigations of the properties of φ(·) itself, we show that the
set of all feasible tuples (m,x, π) is compact in the space M×M× L̂2, where

L̂2 = L2([0,∞)× S ×A, λ̂× µS × µA)

with λ̂(dt) = e−
1
2
βtdt and µS as well as µA being the counting measures on S and A,

respectively. The space M is again equipped with the topology of uniform convergence
on compact sets and the space L2 is equipped with the topology of weak convergence.
By the Eberlein-Shmulyan Theorem (Werner, 2011, Theorem VIII.6.1), compactness
with respect to the weak topology and weak sequential compactness, which means that
every sequence in the set has a weakly converging subsequence with limit in the set,
are equivalent on the Banach space L2. We remind ourselves that a sequence fn ∈ L2

converges weakly to f if for all g ∈ L2 we have

lim
n→∞

∫
fng d

(
λ̂× µS × µA

)
=

∫
fg d

(
λ̂× µS × µA

)
(Elstrodt, 2011, p.263-267). This allows us to infer something about the limit behaviour
of the right-hand-side of the dynamics equation (4.2), in particular it allows us to obtain
the desired compactness statement.

Lemma 4.7. The set of all tuples (m,x, π) that are feasible is compact.

Proof. We note that M×M is a metric space and that by Lemma VIII.6.2 in Werner
(2011) the weak topology on any weakly compact subset is metrizable. Thus, by Lemma
A.7 a set is compact inM×M× L̂2 if and only if it is sequentially compact. Therefore,
it remains to prove that an arbitrary sequence (mn, xn, πn) of feasible tuples has a
converging subsequence, whose limit is again feasible.
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Since by Lemma 4.6 the space M is a compact metric space, we find a converging
subsequence (mn1

l )l∈N with limit m ∈M. Since the sequence (xn
1
l )l∈N also lies inM, we

find a converging subsequence (xn
2
l )l∈N with limit x ∈M.

Also the sequence (πn
2
l )l∈N ∈ (L̂2)N has a weakly converging subsequence: Indeed, we

note that the sequence (e−
1
2
βtπn

2
l )l∈N lies in L2 and is bounded by e−

1
2
βt · 1. Thus, by

Theorem III.3.7 in Werner (2011), we find a weakly converging subsequence (e−
1
2
βtπn

3
l )l∈N

with limit e−
1
2
βtπ. It remains to check whether the limit π is again a strategy, that is

a Borel measurable function that satisfies
∑

a∈A πia(t) = 1. For this we note that
the set of all rescaled strategies is convex. It is furthermore closed because it is the
preimage of the one-point-set containing the function (i, t) → e−

1
2
βt · 1 under the map

f 7→ ((i, t) 7→
∑

a∈A fia(t)). Thus, by Theorem III.3.8 in Werner (2011) the limit is
again a strategy of the desired form.

As a last step we verify that the tuple (m,x, π) is feasible. For this we integrate (4.2)
and obtain for all l ∈ N

x
n3
l
j (t) =

∫ t

0

∑
i∈S

∑
a∈A

x
n3
l
i (s)Qija(m

n3
l (s))π

n3
l

ia (s)ds.

Moreover, we have∣∣∣∣∣
∫ t

0

∑
i∈S

∑
a∈A

xi(s)Qija(m(s))πia(s)ds− xj(t)

∣∣∣∣∣
≤

∣∣∣∣∣
∫ t

0

∑
i∈S

∑
a∈A

xi(s)Qija(m(s))πia(s)ds−
∫ t

0

∑
i∈S

∑
a∈A

xi(s)Qija(m(s))π
n3
l

ia (s)ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ t

0

∑
i∈S

∑
a∈A

xi(s)Qija(m(s))π
n3
l

ia (s)ds−
∫ t

0

∑
i∈S

∑
a∈A

x
n3
l
i (s)Qija(m

n3
l (s))π

n3
l

ia (s)ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ t

0

∑
i∈S

∑
a∈A

x
n3
l
i (s)Qija(m

n3
l (s))π

n3
l

ia (s)ds− xj(t)

∣∣∣∣∣
=

∣∣∣∣∣
∫ t

0

∑
i∈S

∑
a∈A

xi(s)Qija(m(s))πia(s)ds−
∫ t

0

∑
i∈S

∑
a∈A

xi(s)Qija(m(s))π
n3
l

ia (s)ds

∣∣∣∣∣
+

∫ t

0

∑
i∈S

∑
a∈A

∣∣∣xi(s)Qija(m(s))− xn
3
l
i (s)Qija(m

n3
l (s))

∣∣∣ πn3
l

ia (s)ds

+
∣∣∣xn3

l
j (t)− xj(t)

∣∣∣ .
By construction of the sequence (mn3

l , xn
3
l , πn

3
l )l∈N every summand converges to zero:

The first summand converges to zero since πn
3
l converges weakly to π in L̂2. The second

summand converges to zero because, first, xn
3
l (·) converges uniformly on [0, t] to x(·)
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and mn3
l (·) converges uniformly on [0, t] to m(·) and, second, Qija(·) is continuous. The

third summand converges to zero again because xn
3
l (·) converges uniformly on [0, t] to

x(·). Thus, we obtain that

xj(t) =

∫ t

0

∑
i∈S

∑
a∈A

xi(s)Qija(m(s))πia(s)ds,

which proves the desired claim.

Lemma 4.8. For all m ∈M the set φ(m) is non-empty. Furthermore, for all x ∈ φ(m)
there exists a strategy π0 ∈ Π such that π0 is feasible for (m,x) and this strategy achieves
the maximum value in Y (m,x).

Proof. We first of all note that given m ∈ M there exists an x ∈ M together with a
strategy π ∈ Π that solve equation (4.2) and for which the cost integral is finite: Choosing
πia(t) = δa′(a) for an arbitrary a′ ∈ A ensures that (B(t))ij =

∑
a∈AQija(m(t))πia(t)

is a matrix of Lipschitz continuous functions. Thus, for any initial condition x(0) =
x0 ∈ P(S), Theorem 10.VI in Walter (1998) guarantees that the system ẋ(t) = B(t)x(t)
admits a solution x, which is equivalent to the statement that (m,x, π) is a feasible
tuple. Furthermore, we note that∫ ∞

0

(∑
i∈S

∑
a∈A

xi(t)π
0
ia(t)ria(m(t))e−βt

)
dt

is finite for all strategies π0 ∈ Π since ria(m) is uniformly bounded for all i ∈ S,
a ∈ A,m ∈ P(S) because ria(·) is a continuous function on the compact space P(S) and
S as well as A are finite. This yields that the integrand is dominated by Ce−βt for some
constant C ∈ (0,∞), which yields that the integral itself is finite. This in total yields
that Y (m,x) is finite.

By compactness of the set of all feasible tuples (m,x, π) it follows that the supremum
in the definition of Y (m,x) is indeed a maximum and that we find an π0 such that
Vm0(π0,m) = supx∈M Y (m,x).

Lemma 4.9. For all m ∈M the set φ(m) is convex.

Proof. A straight-forward computation yields the following equivalent description of the
problem: Let x ∈M be arbitrary and replace the quantity xi(t)π

0
ia(t) by zia(t) in (4.3),

that is we can rewrite Y (m,x) as

Y (m,x) = max
z

∫ ∞
0

(∑
i∈S

∑
a∈A

zia(t)ria(t)(m(t))e−βt

)
dt,
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where z satisfies for all t ≥ 0
∑

a∈A zja(t) = xj(t) ∀j ∈ S
zja(t) ≥ 0 ∀j ∈ S, a ∈ A
ẋj(t) =

∑
i∈S
∑

a∈A zia(t)Qija(m(t)) ∀j ∈ S
.

Let x1, x2 ∈ φ(m) and let x3 = λx1+(1−λ)x2 for some λ ∈ (0, 1). By the previous obser-
vation, we find z1 and z2 that minimize our modified problem for x1 and x2, respectively,
while satisfying the constraints. Since the constraints as well as the objective function
are linear in z and x, it is immediate that also z3 = λz1 + (1 − λ)z2 satisfies the same
constraints and minimizes the objective functional. Thus, we obtain x3 ∈ φ(m).

Lemma 4.10. The graph of m 7→ φ(m) is closed, that is for any sequences (mn)n∈N ∈
MN and xn ∈ φ(mn), n ∈ N, such that limn→∞m

n = m and limn→∞ x
n = x, we have

x ∈ φ(m).

Proof. Define Ỹ :M×M× L̂2 →M× R via

(m,x, π) 7→

(
m,

∫ ∞
0

∑
i∈S

∑
a∈A

xi(t)πia(t)ria(m(t))e−βtdt

)
.

We note that the functionals f 7→
∫
fgdµ with g ∈ L2 are exactly those functionals that

are continuous with respect to the weak topology (Corollary VIII.3.4 in Werner (2011)
and Lemma VII.3.1 in Elstrodt (2011)). This and the observation that

(m,x) 7→
(
t 7→ xi(t)ria(m(t)e−

1
2
βt
)

is a continuous function that maps the pair (m,x) to a function in L2 yields that Ỹ (·, ·, ·)
is continuous. Furthermore, by Lemma 4.7 and Lemma A.8, the function

m 7→ V (m) := max
(m,x,π)feasible

∫ ∞
0

∑
i∈S

∑
a∈A

xi(t)πia(t)ria(m(t))e−βtdt

is continuous. Thus, we obtain that ΓV := {(m, v) ∈ M × R : V (m) = v} is closed.
This implies that Ỹ −1(ΓV ) is closed. It furthermore holds that

Γφ = {(m,x) ∈M×M : x ∈ φ(m)}
= {(m,x) ∈M×M : ∃π ∈ L̂2 : (m,x, π) ∈ G},

with
G = Ỹ −1(ΓV ) ∩ {(m,x, π) ∈M×M× L̂2 : (m,x, π) is feasible}.

Using this we obtain that Γφ is closed: Indeed, let (mn, xn)n∈N ∈ (Γφ)N be a converging
sequence with limit (m,x). Then, by Lemma 4.8, we find strategies πn ∈ Π (n ∈ N) such
that (mn, xn, πn) ∈ G. As in the proof of Lemma 4.7, Lemma VIII.6.2 in Werner (2011),
the compactness of G and Lemma A.7 imply that the sequence (mn, xn, πn)n∈N has a
converging subsequence whose limit is (m,x, π) for some π ∈ Π and which moreover lies
in G. Thus, also (m,x) lies in Γφ.
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Lemma 4.11. For all m ∈M the set φ(m) is compact.

Proof. SinceM is a compact space, it is sufficient to prove that φ(m) is closed in order
to show that it is compact. Since M is furthermore a metric space, it is sufficient to
show that every limit of a sequence in φ(m) again lies in φ(m). This follows from Lemma
4.10 if we consider the sequence mn = m for all n ∈ N.

In order to prove upper semicontinuity we use Theorem 231.2 of Heuser (2008):

Lemma 4.12. Let X, Y be metric spaces. The compact-valued set-valued map F : X →
2Y is upper semicontinuous if and only if for every convergent sequence (xn)n∈N with
limit x and each sequence (yn)n∈N satisfying yn ∈ F (xn) for all n ∈ N there exists a
convergent subsequence of (yn)n∈N whose limit lies in F (x).

Lemma 4.13. The set-valued map m 7→ φ(m) is upper semicontinuous.

Proof. We show that the sequence characterization for upper semicontinuity presented
in Lemma 4.12 is satisfied. For this we first note that by Lemma 4.11 our set-valued
map is compact-valued. Let (mn)n∈N be a sequence with limit m and choose (xn)n∈N
such that xn ∈ φ(mn) for all n ∈ N. Since M is compact and a metric space, the
sequence (xn)n∈N has a convergent subsequence (xnk)k∈N with limit x. Now we apply
Lemma 4.10 and obtain that x ∈ φ(m). Thus, by Lemma 4.12 we obtain that φ(·) is
upper semicontinuous.

Proof of Theorem 4.1. In order to prove the existence of a fixed point we have to check
that we can indeed apply the fixed point theorem presented in Lemma 4.3:

For this we first have to check that our spaceM is indeed compact, convex and a subset
of a locally convex space. The compactness has been proved in Lemma 4.6. Moreover,
we note that M is convex since it is the set of all Lipschitz continuous functions with
Lipschitz constant L and convex combinations of two such functions are again Lipschitz
continuous with Lipschitz constant L. Since M ⊆ C([0,∞),P(S)) and C([0,∞),P(S))
is locally convex given the topology of uniform convergence on compact sets (Werner
(2011, pp.398-399)), also the third condition regarding M is satisfied.

As a second step we have to check that φ(·) is a Kakutani-map: For this we note that
by Lemma 4.13 our map φ(·) is upper semicontinuous, by Lemma 4.8 the values of φ(·)
are non-empty, by Lemma 4.9 the values are convex and by Lemma 4.11 the values are
compact. Thus, we indeed satisfy the conditions of Lemma 4.3 and find a fixed point of
the map φ(·). This fixed point is indeed a mean field equilibrium: By definition of φ(·)
and Y (·, ·) as well as Lemma 4.8 we have that (m,π) satisfies the dynamics equation
(4.1) (since (m,m, π) is feasible) and that π is a maximizer of Vm0(·,m).
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4.2. Existence of Stationary Equilibria

In Section 5.1 we prove (independent of this section) two results regarding the individual
control problem that are crucial for the following proof. Namely, we show that

(a) For any m ∈ P(S) there is a deterministic stationary strategy that maximizes
Vx0(·,m) for all x0 ∈ P(S) among all (also time-dependent) strategies.

(b) A stationary strategy is optimal for m ∈ P(S) if and only if it is a convex combi-
nation from D(m), which is the set of all deterministic stationary strategies that
are optimal.

Using this, we will prove that whenever the Assumption A1 holds there exists a station-
ary mean field equilibrium. For this we will adapt the idea used in the dynamic existence
proof, namely to prove the existence of a fixed point of an associated best response map
in the dynamics. The map we consider here maps to each point m ∈ P(S) all stationary
points of Qπ(m) given that π ∈ Πs is an optimal strategy for m. In contrast to the
proof of the existence of dynamic equilibria presented in Doncel et al. (2016a) we do
not only rely on standard calculus arguments, instead the proof crucially relies on our
probabilistic representation of the problem. In particular, the insights regarding the
structure of optimal strategies discussed in Section 5.1 rely on this representation.

We define the best response map φ : P(S)→ 2P(S) by setting

φ(m) := {x ∈ P(S)|∃π ∈ conv(D(m)) : 0 = xTQπ(m)}.

We will show that this map has a fixed point and that each fixed point of this map
induces a stationary mean field equilibrium. More precisely, we prove:

Theorem 4.14. Any continuous time mean field game with discounted costs that satisfies
Assumption A1 has a stationary mean field equilibrium.

As in the case of dynamic mean field equilibria the main tool is Kakutani’s fixed point
theorem, which can be found in Heuser (2008, Theorem 232.1):

Lemma 4.15 (Kakutani’s fixed point theorem). Let C be a non-empty, convex and
compact subset of a normed space X and let the set-valued map F : C → 2C be with non-
empty, convex values and have a closed graph (that is for any sequence (xn)n∈N ∈ CN and
yn ∈ F (xn), n ∈ N, such that limn→∞ x

n = x and limn→∞ y
n = y, we have y ∈ F (x)).

Then F (·) has at least one fixed point.

Proof of Theorem 4.14. Since P(S) is convex, compact and a subset of the normed space
Rn, we satisfy all assumptions regarding the domain and range of the set-valued map.
Therefore, it remains to check whether the map φ(·) satisfies the desired properties.
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We first note that φ(m) is non-empty for all m ∈ P(S). By fact (a) the set D(m) is
non-empty. Since any continuous time Markov chain with finite state space has at least
one stationary distribution, there exists an x ∈ P(S) such that 0 = xTQπ(m), which
yields that x ∈ φ(m).

Furthermore, for each m ∈ P(S) the set φ(m) is convex : Let x1, x2 ∈ φ(m) be two
distinct points. Then, by definition of φ(·), we find two strategies π1, π2 ∈ conv(D(m))
such that

0 =
∑
i∈S

∑
a∈A

x1
iQija(m)π1

ia and 0 =
∑
i∈S

∑
a∈A

x2
iQija(m)π2

ia.

Define z1
ia := x1

iπ
1
ia and z2

ia = x2
iπ

2
ia, which satisfy

0 =
∑
i∈S

∑
a∈A

Qija(m)z1
ia and 0 =

∑
i∈S

∑
a∈A

Qija(m)z2
ia.

Now let α ∈ [0, 1] be arbitrary and define x3 = αx1+(1−α)x2. Then z3 = αz1+(1−α)z2

satisfies
0 =

∑
i∈S

∑
a∈A

Qija(m)z3
ia,

which means that

π3
ia :=

{
0 if x3

i = 0

z3
ia/x

3
i if x3

i > 0

satisfies 0 = (x3)TQπ3
(m). It remains to verify that π3 ∈ conv(D(m)). For this we

note that π3
ia > 0 if and only if z3

ia > 0, which in turn is equivalent to the requirement
that z1

ia > 0 or z2
ia > 0. This can only happen if π1

ia > 0 or π2
ia > 0. Thus, since

π1, π2 ∈ conv(D(m)), also π3 ∈ conv(D(m)).

We now verify that φ has a closed graph, that is that for any sequence (mn)n∈N ∈ P(S)N

and xn ∈ φ(mn) for all n ∈ N with limn→∞m
n = m and limn→∞ x

n = x we indeed
have x ∈ φ(m): Let (mn, xn)n∈N be a converging sequence satisfying xn ∈ φ(mn) for all
n ∈ N and denote its limit by (m,x). By definition of φ(·), we find a sequence πn ∈
conv(D(mn)) such that 0 = xnQπn(mn). By compactness of Πs, we find a converging
subsequence (πnk)k∈N with limit π ∈ Πs.

For any k ∈ N let Ak1 × . . . × AkS ⊆ AS be such that πnkia > 0 for all i ∈ S, a ∈ Aki
and πia = 0 for all i ∈ S, a /∈ Aki . Since AS is finite, we find a set A1 × . . . × AS that
occurs infinitely often in the sequence (Ak1 × . . . × AkS)k∈N. From this we obtain that
πia = 0 for all i ∈ S and a /∈ Ai. Moreover, since πn ∈ conv(D(mn)) we obtain that
for all l ∈ N such that A1 × . . . × AS = Al1 × . . . × AlS we have V d(mnl) = V ∗(mnl) for
all deterministic strategies satisfying d(i) ∈ Ai for all i ∈ S. By continuity of V d(·) and
V ∗(·) (see Lemma 5.3), we obtain V d(m) = V ∗(m). Thus, π ∈ conv(D(m)).
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Furthermore, by continuity of Q(·), we obtain that

0 =
∑
i∈A

∑
a∈A

xnki Qija(m
nk)πnkia ←

∑
i∈A

∑
a∈A

xiQija(m)πia,

which shows that x ∈ φ(m).

Now Kakutani’s fixed point theorem (Lemma 4.15) yields a fixed point m ∈ φ(m), which
induces a stationary mean field equilibrium. Indeed, for any fixed point m we find a
strategy π ∈ conv(D(m)) such that 0 = mTQπ(m). Since, by the facts (a) and (b), we
moreover have that Vx0(π,m) ≥ Vx0(π′,m) for all x0 ∈ P(S) and all π′ ∈ Π, the pair
(m,π) constitutes a stationary mean field equilibrium.
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5. A Toolbox for Finding Stationary
Mean Field Equilibria

This chapter presents several tools for finding stationary mean field equilibria. The task
of finding mean field equilibria consists, as in the classical theory for diffusion-based
models, of an individual control problem (Given a fixed population distribution which
strategies are optimal?) and a fixed point problem (Is m a stationary point of Qπ(·) with
π being optimal for m?). In our model formulation the central problem is that a priori
there are infinitely many different strategies that might be optimal and, even worse,
that each yields to a fixed point problem that is in general not related to the others.
For this reason in the applications considered in the literature (for example Kolokoltsov
and Bensoussan (2016) and Kolokoltsov and Malafeyev (2017)) the authors restricted
themselves to equilibria in deterministic strategies.

In this chapter we will present several tools to reduce the complexity of the two problems,
which in turn allows also to compute equilibria in mixed strategies: First, we show that
a stationary strategy is optimal if and only if it is a convex combination of optimal
deterministic stationary strategies. These optimal deterministic stationary strategies
can moreover be determined as those maximizing the right-hand side the optimality
equation of the associated Markov decision process. Second, we derive a simple, yet
powerful reformulation of the equations describing the fixed point, the so-called cut
criterion, which is based on the observation that in many models agents cannot influence
the transitions between two subsets of states.

Furthermore, we will derive under the assumption that Qd(m) is irreducible for all
deterministic strategies d ∈ Ds and all population distributions m ∈ P(S) an explicit
characterization of the stationary point given Qπ(m). Using this we obtain the following
programme, consisting of three steps, to compute all stationary mean field equilibria:
First we have to find the optimal deterministic stationary strategies for each population
distribution m ∈ P(S), then we have to find all fixed points of a suitably defined
set-valued map and, finally, we have to solve for each fixed point a linear equation.
Additionally, we provide, under the irreducibility assumption, a criterion to verify when
there is a unique stationary point given Qπ(·).

In Section 5.1 we investigate the individual control problem and in Section 5.2 we derive
the cut criterion. In Section 5.3 we derive that under an irreducibility assumption there
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is a set-valued map whose fixed points yield all stationary mean field equilibria. In
Section 5.4 we derive a sufficient criterion for the uniqueness of the stationary point
given Qπ(·). Section 5.5 concludes the chapter with a short discussion why we cannot
expect sensible uniqueness criteria in our setting.

5.1. The Individual Optimal Control Problem

In this section, we show that the individual’s control problem is equivalent to a continu-
ous time Markov decision process with the expected discounted reward criterion. Using
the equivalence, we then characterize the set of all optimal strategies as the convex hull
of all optimal deterministic strategies, which are given as those maximizing the right-
hand side of the optimality equation of the associated Markov decision process. This
insights, which were announced in Section 4.2, conclude the proof that a stationary mean
field equilibrium exists whenever Assumption A1 holds. We will conclude the section
with a formal argument that in all non-trivial games there will be points for which more
than one deterministic stationary strategy, and thus infinitely many stationary (mixed)
strategies, are optimal. This fact means that in all non-trivial games we have to consider
a priori infinitely many fixed point problems.

The following lemma states that the individual’s optimization problem is equivalent to a
continuous time Markov decision process with expected discounted reward criterion.

Lemma 5.1. Let m ∈ P(S) be a population distribution. A Markovian randomized
strategy π0 ∈ Π is optimal in our model given m for all initial conditions x0 ∈ P(S), i.e.
achieves the maximum value of Vx0(·,m), if and only if it is discounted reward optimal
for the continuous time Markov decision process with rates Qija(m) and rewards ria(m).

Proof. We remind ourselves that Assumption A1 ensures that ria(·) is uniformly bounded
as it is a continuous function on a compact space. Therefore, the value function is
finite for every population distribution function, every individual strategy and every
initial distribution. Thus, we can rewrite the value function using the representation
xπ

0

i (t) =
∑

k∈S x
0
k · pπ

0
(0, k, t, i) as well as the definition (2.3) of the value function of a

continuous time Markov decision process to obtain:

Vx0(π0,m) =

∫ ∞
0

∑
i∈S

∑
a∈A

xπ
0

i (t)ria(m)π0
ia(t)e

−βtdt

=

∫ ∞
0

∑
i∈S

∑
a∈A

∑
k∈S

x0
kp
π0

(0, k, t, i)ria(m)π0
ia(t)e

−βtdt
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=
∑
k∈S

x0
k

∫ ∞
0

e−βt
∑
i∈S

∑
a∈A

ria(m)π0
ia(t)p

π0

(0, k, t, i)dt

=
∑
k∈S

x0
kV

π0

k (m).

Let π0 ∈ Π be a strategy that maximizes Vx0(·,m) for all x0 ∈ P(S) and assume that it is
not discounted reward optimal for the MDP. Then, since there is at least one discounted
reward optimal strategy, there exists a strategy π for which V π

i (m) ≥ V π0

i (m) for all
i ∈ S, where the inequality is strict for at least one i. Thus, for any initial distribution
x0 such that x0

k > 0 for all k ∈ S we would arrive at

Vx0(π,m) =
∑
k∈S

x0
kV

π
k (m) >

∑
k∈S

x0
kV

π0

k (m) = Vx0(π0,m),

which is contradiction to the fact that π0 maximizes Vx0(·,m).

Similarly if we are given a strategy π0 that is discounted reward optimal for the MDP
and assume that it does not maximize Vx0(·,m) for some x0 ∈ P(S), then there exists a
strategy π, which achieves a larger value, which means that

Vx0(π,m) =
∑
k∈S

x0
kV

π
k (m) >

∑
k∈S

x0
kV

π0

k (m) = Vx0(π0,m).

However, at the same time, as π0 is discounted reward optimal, we have V π
k (m) ≤ V π0

k (m)
for all k ∈ S, which is again a contradiction.

This result together with Corollary 2.9 immediately allows us to characterize the set of
all stationary strategies as the convex hull of all deterministic optimal strategies:

Theorem 5.2. Let m ∈ P(S) be a population distribution. Furthermore, define

Oi(m) = argmaxa∈A

{
ria(m) +

∑
j∈S

Qija(m)V ∗j (m)

}

with V ∗j (m) being the solution of the optimality equation for the Markov decision process
with transition rates Qija(m) and rewards ria(m). Then the set of all optimal determin-
istic stationary strategies is given by

D(m) := {d : S → A|d(i) ∈ Oi(m)}

and a randomized stationary strategy is optimal if and only if it is a convex combination
of strategies from D(m). In particular, there is an optimal deterministic stationary
strategy.
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This theorem yields that we can partition P(S) into finitely many sets Opt(A1×. . .×AS),
which consist of all those m ∈ P(S) for which the set of all optimal deterministic
strategies is {d ∈ Ds : d(i) ∈ Ai for all i ∈ S} and then consider the fixed point problem
for each of these sets separately.

The sets Opt(A1× . . .×AS) are computed as follows: First determine the unique value
function V (m) by solving the optimality equation

βVi(m) = max
a∈A

{
ria(m) +

∑
j∈S

Qija(m)Vj(m)

}
, i ∈ S (5.1)

for each m. Then determine the optimal actions, which are those actions that achieve
the maximum on the right hand side of the equation.

To address the question why games without a unique optimal strategy for each m ∈ P(S)
yield to infinitely many fixed point problems and for future qualitative considerations
the following lemma is of principal significance. However, the result is in general not
sensible for computing the optimality sets since the computational effort is often much
higher than in the approach using the optimality equation.

Lemma 5.3. The value function of the associated Markov decision problem V : P(S)→
RS can be represented as follows

V (m) = max
d∈Ds

V d(m)

with V d(m) being the discounted reward given the deterministic stationary strategy d.
Furthermore, for each d ∈ Ds the matrix (βI −Qd(m)) is invertible and

V d(m) = (βI −Qd(m))−1rd(m),

with Qd(m) = (Qijd(i)(m))i,j∈S and rd(m) = (rid(i))i∈S . Moreover, the value function
V (·) is continuous.

Proof. The first part of the statement directly follows from the existence of a determin-
istic stationary optimal strategy for Markov decision processes (Lemma 2.1).

To compute the discounted reward given a deterministic strategy d one can rely on
Lemma 2.2, which states that the discounted reward is the unique solution of

βg = rd(m) +Qd(m)g i.e. (βI −Qd(m))g = rd(m).

Thus, in order to prove the statement we have to show that βI−Qd is indeed invertible.
For this we again rely on uniformization (Remark 2.3): Namely, applying Qd(m) =
||Q(m)||(P̄ d(m)− I) we obtain
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βI −Qd(m) = βI − ||Q(m)||(P̄ d(m)− I)

= (β + ||Q(m)||)I − ||Q(m)||P̄ d(m)

= (β + ||Q(m)||)
(
I − ||Q(m)||

β + ||Q(m)||
P̄ d(m)

)
.

Noting that the spectral radius of ||Q(m)||
β+||Q(m)|| P̄

d(m) is less than 1 (Asmussen, 2003, Propo-

sition I.6.2), Corollary C.4 in Puterman (1994) yields that the matrix is invertible. This
proves the representation for V d(m).

It remains to show that V is indeed continuous: For this note that Qd(·) and rd(·) are
continuous functions in m for all d ∈ Ds. Since the matrix inversion is continuous,
it follows that V d(·) is continuous. Since the maximum over finitely many continuous
functions is continuous, we obtain the desired result.

Remark 5.4. This lemma allows to show that a game that is not trivial in the sense that
there are two different population distributions such that different strategies are optimal
for each of them, has a closed, non-empty set of points where infinitely many strategies
are optimal. Thus, we indeed have to consider infinitely many (potentially different)
fixed point problems in order to compute all stationary mean field equilibria.

Indeed, the set of all m ∈ P(S) for which d ∈ Ds is one (but possibly not the only)
optimal stationary strategy are closed: Since V d(·) and V (·) are continuous, also the
map

∑
i∈S
(
V d
i (m)− Vi(m)

)
is continuous. The pre-image of [0,∞) yields all points for

which d, possibly together with some other strategies, is optimal. By continuity, this set
is closed. Now let d1, d2 ∈ Ds be two distinct strategies such that there are two points
m1,m2 ∈ P(S) such that d1 is optimal for m1 and d2 is optimal for m2. Since P(S) is
connected, we obtain that there is a closed non-empty set for which several strategies
are optimal simultaneously. 4

5.2. A Cut Criterion to Find Fixed Points of the

Dynamics

To solve the fixed point problem one has to solve the nonlinear equation mTQπ(m) = 0
for all strategies π that are optimal for some population distribution and then one has
to check whether π is indeed optimal for these solutions. In many settings (for example
in the corruption model introduced in Section 3.1 and analysed in Section 6.2) this task
is not simple. However, often a cut criterion similar to the one used for Markov chains
is useful, although it is just a reformulation of the balance equation mTQπ(m) = 0
(see Kelly (1979, Lemma 1.4) and Hübner (2009, Theorem 7.3) for a description of the
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criterion for standard continuous time Markov chains). The criterion states that if we
partition the state space of the Markov chain into two sets, then the probability flow
from one set to the other has to be equal the probability flow from this other set to
the first. The particular use of the criterion is that in most models that have been
considered so far there has always been a set of states for which the dynamics to and
from this set is independent of the chosen strategy. This means that any mean field
equilibrium irrespective of the chosen strategy has to satisfy certain equations coming
from the cut criterion, which could be obtained from the standard balance equations
mTQπ(m) = 0 only by sensible rearrangements. In Chapter 6 we will show that the
criterion indeed simplifies the search for fixed points in the examples.

Theorem 5.5. Let π be a stationary strategy and let T ⊆ S. Then any stationary
population distribution satisfies∑

j∈T

∑
i∈S\T

miQ
π
ij(m) =

∑
j∈T

∑
i∈S\T

mjQ
π
ji(m).

Proof. The stationarity condition reads for all j ∈ S

0 =
∑
i∈S

miQ
π
ij(m).

Furthermore, since Qπ(m) is conservative, we have for all j ∈ S

mj

∑
i∈S

Qπ
ji(m) = 0.

This yields for all j ∈ S ∑
i∈S

miQ
π
ij(m) = mj

∑
i∈S

Qπ
ji(m).

Summing this identity over all j ∈ T yields∑
j∈T

∑
i∈S

miQ
π
ij(m) =

∑
j∈T

∑
i∈S

mjQ
π
ji(m).

Subtracting the identity ∑
j∈T

∑
i∈T

miQ
π
ij(m) =

∑
j∈T

∑
i∈T

mjQ
π
ji(m)

yields the desired result.
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5.3. A Characterization of φ(·) Purely Relying on

Deterministic Strategies

This section is devoted to proving the main theorem of the chapter. This theorem states
that under an irreducibility assumption the set φ(m), which has been introduced in
Section 4.2, has an explicit characterization. More precisely, we obtain that φ(m) is the
set of all convex combinations of xd(m), which denotes the unique stationary point given
Qd(m), for all those deterministic stationary strategies d that are optimal for m. This
result yields to the following programme to obtain all mean field equilibria:

1. Determine for all m ∈ P(S) the set of optimal deterministic stationary strategies
D(m).

2. Determine all fixed points of m 7→ φ(m) := {xd(m) : d ∈ D(m)}.

3. Solve for each fixed point m of φ(·) the linear equation 0 = Qπ(m)m for solutions
π ∈ Πs such that π is a convex combination of D(m). Any solution of this system
yields a stationary mean field equilibrium (m,π).

For the rest of the section we assume irreducibility of Qπ(m) for all strategies π ∈ Πs as
this yields to a unique stationary point given Qπ(m) (see Asmussen (2003, Section II.4))
and, moreover, to an explicit representation of it. We note that it is sufficient to verify
irreducibility for all deterministic strategies d ∈ Ds since any stationary strategy π is
a convex combination of deterministic strategies and thus Qπ(m) =

∑
d∈Ds λdQ

d(m) is
also irreducible. With this observation we formulate the main theorem, which is proven
in the rest of the section:

Theorem 5.6. Let m ∈ P(S) such that Qd(m) is irreducible for all d ∈ Ds. Further-
more, let {d1, . . . , dn} be the set of all optimal strategies for m. Then

φ(m) = conv(xd
1

(m), . . . , xd
n

(m)),

with xd
k
(m) being the unique solution x of 0 =

∑
i∈S
∑

a∈A xiQija(m)dkia.

The proof of this theorem relies on the idea to characterize the stationary distribution
xπ(m) of the CTMC with irreducible generator Qπ(m) by a closed form expression and to
show thereafter that xπ(m) is a convex combination of (xd(m))d∈Ds . In order to follow
this programme, we have to investigate several properties of the generator matrix Q.
We start with the following lemma regarding the structural properties of an irreducible,
conservative generator Q ∈ RS×S, more precisely, regarding the minor Q′SS, which arises
from Q by deleting the last row and column:
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Lemma 5.7. Let Q ∈ RS×S be an irreducible, conservative generator matrix. Then all
eigenvalues of the minor Q′SS have negative real part. Consequently Q′SS has full rank
and

sign(det(Q′SS)) = (−1)S+1.

For the proof we rely on the results presented in Berman and Plemmons (1979, Chapter
6) on M -matrices, which are matrices of the form A = sI − B with B being a non-
negative matrix (that is Bij ≥ 0 for all i, j ∈ S) and s being greater or equal the
spectral radius of B. Given that a matrix A is from the set

ZS×S = {A ∈ RS×S : Aij ≤ 0 for all i 6= j}

the authors provide 50 criteria that are equivalent to A being a non-singular M -matrix
(Berman and Plemmons, 1979, Theorem 6.2.3). For our purpose the following two are
relevant:

I28 There exists a vector y ≥ 0 with yi > 0 for at least one i ∈ S such that Ay > 0,
where the inequality signs hold pointwise.

G20 A is positive stable, that is, the real part of each eigenvalue of A is positive.

The technical proof of Lemma 5.7, which can be found in Appendix A.4, basically
consists of the following arguments: We first note that −Q′SS is indeed a matrix fitting
in the framework of Berman and Plemmons (1979), then we propose a method to find
a vector y such that I28 is satisfied, from this we conclude that G20 is satisfied and
thereafter deduce the desired statement.

The previous lemma has a simple consequence, which follows from the observation that
the columns of the generator are linearly dependent (the last column is the negative sum
of the other columns):

Corollary 5.8. Let Q ∈ RS×S be an irreducible, conservative generator matrix. Then
the rank of Q is S − 1.

Using these results we can explicitly characterize the stationary distribution given a
stationary strategy π and a population distribution m:

Lemma 5.9. Let π ∈ Πs be a stationary strategy and let m ∈ P(S) such that Qπ(m)
is irreducible. Let Q̃π(m) be the matrix (Qπ(m))T where the last row is replaced by
(1, . . . , 1). Then Q̃π(m) is invertible and we have that the unique stationary distribution
xπ(m) is given by

xπ(m) = (Q̃π(m))−1 · (0, . . . , 0, 1)T . (5.2)
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Proof. The unique stationary distribution of our process is uniquely determined by

0 =
∑
i∈S

xπi (m)Qπ
ij(m) for all j ∈ S and

∑
i∈S

xπi (m) = 1 (5.3)

(Asmussen, 2003, Theorem II.4.2). Since the last equation of the system 0 = xπ(m)TQπ(m)
is the negative sum of all other equations, we can replace the last column of Q by the
one vector and obtain that the system (5.3) is equivalent to

0
...
0
1

 =

Qπ
11(m) . . . Qπ

1,S−1(m) 1
...

...
...

Qπ
S,1(m) Qπ

S,S−1(m) 1


T

xπ(m),

which by definition is (0, . . . , 0, 1)T = Q̃π(m)xπ(m).

We now show that the rank of the matrix Q̃π(m) is S because in this case we can invert
the matrix: As in Resnick (1992, p.137-139) we rely on the existence of the stationary
distribution given Qπ(m). In order to show that Q̃π(m) has full rank, we show that
yT Q̃π(m) = 0 implies that y = 0. For the stationary distribution xπ(m) given Qπ(m)
we have

0 =
(
yT Q̃π(m)

)
xπ(m) = yT

(
Q̃π(m)xπ(m)

)
= yT (0, . . . , 1)T = yS.

Thus,

0 = yT Q̃π(m) = yT


Qπ

11(m) . . . Qπ
S1(m)

... . . .
...

Qπ
1,S−1(m) . . . Qπ

S,S−1(m)
1 . . . 1


implies that

0 = (y1, . . . , yS−1)(Qπ(m))′SS.

Since by Lemma 5.7 the matrix (Qπ(m))′SS has full rank, we obtain that y1 = . . . =
yS−1 = 0, which proves that Q̃π(m) has full rank.

Remark 5.10. We conclude from the previous lemma that given any stationary strategy
π ∈ Πs the function m 7→ xπ(m) is continuous: Since by Cramer’s rule the matrix inver-
sion can be rewritten as a quotient of polynomials with non-vanishing denominator, the
matrix inversion is a continous function. Thus, the function xπ(m) is, as a concatenation
of continuous functions, also continuous. 4

From the representation in Lemma 5.9 we now deduce a formula which is simpler in terms
of computational effort: It simply follows from Cramer’s rule, which allows to compute
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the inverse of a matrix in terms of the determinants of the (S − 1) × (S − 1)-minors.
More precisely the inverse of a matrix A = (aij)i,j∈S is given by

(A−1)ij =
1

det(A)
(−1)i+j det(A′ji),

with A′ji being the matrix A where we deleted the j-th row and the i-th column. In our
case we obtain:

Theorem 5.11. Let π ∈ Πs be a stationary strategy and let m ∈ P(S) be a population
distribution such that Qπ(m) is irreducible. Let Q̃π(m) be the matrix defined in Lemma
5.9. Then

xπ(m)i =
1

det(Q̃π(m))
(−1)S+i det(Qπ(m))′iS,

with

det(Q̃π(m)) =
S∑
k=1

(−1)S+k det((Qπ(m))′kS.

Proof. The statement follows from Cramer’s rule together with the Laplace expansion
of det(Q̃π(m)) along the last line

det(Q̃π(m)) =
S∑
k=1

(−1)S+k · 1 · det((Q̃π(m))′Sk)

as well as the observation that

det((Q̃π(m))′Sk) = det(((Qπ(m))T )′Sk) = det((Qπ(m))′kS),

as Q̃π(m) differs from Qπ(m)T only in the S-th row.

In order to establish the desired result on further characterizing the convex set φ(m) one
final preparation has to be made, which is to show that the determinant of Q̃π(m) has
uniform sign over all π ∈ Πs: Write d(a1,...,aS) for the deterministic strategy satisfying
d(i) = ai for all i ∈ S. Then it holds that

Q̃π(m) =
∑

(a1,...,aS)∈AS

(
S∏
i=1

πiai

)
Q̃d(a1,...,aS)

(m).

Now a simple application of the intermediate value theorem yields the desired result.

Lemma 5.12. Let m ∈ P(S) be a population distribution such that Qd(m) is irreducible
for all d ∈ Ds. Then det(Q̃π(m)) has uniform sign over Πs.
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Proof. We note that the map π 7→ Q̃π(m), which ranges from Πs to RS×S, is continuous.
Since the determinant is also a continuous function, we obtain that π 7→ det(Q̃π(m))
is a continuous function. By Lemma 5.9 we have that det(Q̃π(m)) 6= 0 for all π ∈ Πs.
If there would be a strategy π1 and a strategy π2 such that det(Q̃π1(m)) < 0 and
det(Q̃π2(m)) > 0, then, by the intermediate value theorem, there would be a π ∈ Πs

such that det(Q̃π(m)) = 0, which would be a contradiction.

With all these preparations we prove the characterization result stated in the beginning
of the section:

Proof of Theorem 5.6. For readability we suppress the dependence of Q and x on m.

Let π =
∑

(a1,...,an)∈AS λ(a1,...,an)d
(a1,...,an). We note that by Theorem 5.2 the factors

λ(a1,...,aS) are zero for all non-optimal strategies. With Q̂ being the matrix QT without

the last row, we write Q̃π as follows:

Q̃π =

(∑
a1∈A π1a1Q̂1,·,a1 . . .

∑
aS∈A πSaSQ̂S,·,aS

1 . . . 1

)
.

As the determinant is linear in columns and we have
∑

ai∈A πiai = 1 for all i ∈ S we
obtain

det(Q̃π) =
∑
a1∈A

π1a1 det

(
Q̂1,·,a1

∑
a2∈A π2a2Q̂2,·,a2 . . .

∑
aS∈A πSaSQ̂S,·,aS

1 1 . . . 1

)
= . . .

=
∑

(a1,...,aS)∈AS
π1a1 . . . πSaS det

(
Q̂1,·,a1 . . . Q̂S,·,aS

1 . . . 1

)
=

∑
(a1,...,aS)∈AS

π1a1 . . . πSaS det(Q̃d(a1,...,aS)

) (5.4)

Similarly, we obtain for any ai ∈ A that

det(Q̃π)′Si =
∑

(a1,...,ai−1,ai+1,...,aS)∈AS−1

π1a1 · . . . · πi−1,ai−1
πi+1ai+1

· . . . · πSaS det(Q̃d(a1,...,aS)

)′Si.

This implies

(xπ)i

=
1

det Q̃π
(−1)S+i det((Q̃π)′Si) =

(−1)S+i

det Q̃π

∑
ai∈A

πiai det((Q̃π)′Si)

=
(−1)S+i

det Q̃π

∑
(a1,...,aS)∈AS

πia · π1a1 · . . . · πi−1,ai−1
πi+1ai+1

· . . . · πSaS det(Q̃d(a1,...,aS)

)′Si
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=
1

det Q̃π

∑
(a1,...,aS)∈AS

π1a1 · . . . · πSaS(−1)S+i det(Q̃d(a1,...,aS)

)′Si

=
∑

(a1,...,aS)∈AS

π1a1 · . . . · πSaS det(Q̃da1,...,aS )

det(Q̃π)
· xd(a1,...,aS)

.

Thus, xπ is a linear combination of xd
(a1,...,aS)

for any stationary strategy π and further-
more the coefficients are given by

λ(a1,...,aS) =
π1a1 · . . . · πSaS det(Q̃d(a1,...,aS)

)

det(Q̃π)
.

From (5.4) we obtain that ∑
(a1,...,aS)∈AS

λ(a1,...,aS) = 1.

Furthermore, from Lemma 5.12 we note that the signs of the determinants Q̃π and
Q̃π′ are the same for any two strategies π, π′. Thus, we obtain, as πia ≥ 0 for all
i ∈ S, a ∈ A, that λ(a1,...,aS) ≥ 0 for all (a1, . . . , aS) ∈ AS. Therefore, every point in φ(m)
is a convex combination of xd1 , . . . , xdn where D(m) = {d1, . . . , dn}. Similarly, every
convex combination of xd1 , . . . , xdn is a stationary point given a strategy π ∈ conv(D(m)),
which proves the desired result.

This result yields that the following programme is sufficient to compute all mean field
equilibria: Determine for every m ∈ P(S) all optimal deterministic stationary strategies,
compute all fixed points of the set-valued map φ(m) = conv(xd

1
(m), . . . , xd

k
(m)) with

xd
i
(m) being the feasible point for di with d1, . . . , dk being the optimal strategies for

m and thereafter solve for every fixed point m the linear equation 0 = Q̃π(m)m for
strategies π ∈ conv(D(m)).

Formally, we can describe this as follows: By FP (f) we denote the set of all fixed points
of the set-valued map f . Moreover, let, as introduced on page 54, the set Opt(A1× . . .×
AS) contain all points m ∈ P(S) for which D(m) = {d ∈ Ds : d(i) ∈ Ai}.

Theorem 5.13. Assume that there is a set T ⊆ P(S) such that for all m ∈ T and
all π ∈ Πs the matrix Qπ(m) is irreducible. Then the set of all distributions lying in T
induced by some stationary mean field equilibrium is given by⋃
A1×...×AS⊆AS

FP (conv{x(a1,...,aS)(·) : (a1, . . . , as) ∈ A1×. . .×AS})∩Opt(A1×. . .×AS)∩T .

Proof. We first note that (m,π) is a stationary mean field equilibrium if and only if m
is a fixed point of φ(·) and π is a strategy such that π ∈ conv(D(m)) and 0 = mTQπ(m).
Theorem 5.6 then yields the desired result.
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Remark 5.14. In order to find the fixed points of the set-valued maps

conv{x(a1,...,aS)(m) : (a1, . . . , as) ∈ A1 × . . .× AS}

that lie in the set Opt(A1 × . . . × AS) it is often helpful to work with the explicit
characterization of xπ(m) derived in Theorem 5.11 given by

xπ(m)i =
1∑S

i=1(−1)S+i det((Qπ(m))′iS)
(−1)S+i det(Qπ(m)′iS).

If the optimality sets are characterized by a specific relation among the mi (which is
often the case) then if x(·)i does not preserve this relation for all m in an optimality
set, we cannot face a fixed point in this optimality set. This type of arguement often
reduces the set of candidates immensely (see for example Section 6.3). 4

In case of constant dynamics (that is Qija(m) = Qija for all m ∈ P(S)) the fixed point
problem is trivial since the maps xd(·) are constant with value (Q̃d)−1 · (0, . . . , 0, 1)T .
Thus, we can characterize the set of all mean field equilibria as explicitly by only com-
puting the optimality sets and the stationary points given Qd as follows:

Corollary 5.15. Let the dynamics be constant, that is Qija(m) = Qija for all m ∈
P(S), and let the generators Qd given any deterministic stationary strategy d ∈ Ds

be irreducible. Then the set of all distributions induced by some stationary mean field
equilibrium is given by⋃

A1×...×As⊆AS

(
Opt(A1 × . . .× AS)∩

conv{(Q̃(a1,...,aS))−1 · (0, . . . , 0, 1)T : (a1, . . . , as) ∈ A1 × . . .× AS}
)
.

5.4. A Sufficient Criterion for the Uniqueness of the

Fixed Point of xπ(·)

In this section we propose, relying on Brouwer degree theory, a sufficient condition for
xπ(·) having a unique fixed point.

Theorem 5.16. Let π ∈ Πs be a stationary strategy. Assume that Qπ(m) is irreducible
for all m ∈ P(S), that fπ(m) := xπ(m) −m is continuously differentiable and that the
matrix

Mπ(m) :=


∂fπ1 (m)

∂m1
. . .

∂fπ1 (m)

∂mS−1

...
. . .

...
∂fπS−1(m)

∂m1
. . .

∂fπS−1(m)

∂mS−1

−


∂fπ1 (m)

∂mS
. . .

∂fπ1 (m)

∂mS
...

. . .
...

∂fπS−1(m)

∂mS
. . .

∂fπS−1(m)

∂mS


is non-singular for all m ∈ P(S). Then the mapping xπ(·) has a unique fixed point.
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The proof idea is to show that m 7→ xπ(m) − m and the shifted antipodal map m 7→
c−m are homotopic and then use standard facts regarding the Brouwer degree to show
uniqueness of the fixed point of xπ(·). This programme is inspired by Chenault (1986),
where sufficient criteria for the uniqueness of Nash equilibria are discussed. Before we
start with the proof we review the necessary results on the Brouwer degree, for which
Deimling (1985, Chapter 1) is a reference:

In Section 1.1 and 1.2 in Deimling (1985) it is shown that there is a unique mapping
deg(·) that maps to every tuple (f,Ω, y) consisting of an open bounded set Ω ⊆ Rn, a
continuous function f : Ω → Rn and a value y ∈ Rn \ f(∂Ω) an integer such that the
following properties are satisfied:

(d1) deg(id,Ω, y) = 1 for y ∈ Ω

(d2) deg(f,Ω, y) = deg(f,Ω1, y) + deg(f,Ω2, y) whenever Ω1, Ω2 are disjoint open sub-
sets of Ω such that y /∈ f(Ω̄ \ (Ω1 ∪ Ω2))

(d3) deg(h(t, ·),Ω, y(t)) is independent of t ∈ [0, 1] whenever h : [0, 1] × Ω̄ → Rn is
continuous, y : [0, 1]→ Rn is continuous and y(t) /∈ h(t, ∂Ω) for all t ∈ [0, 1].

If Ω is an open, bounded set, f is continuous on Ω̄ as well as continuously differentiable
on Ω, and y /∈ f(∂Ω) is a non-critical value, that is the determinant of the Jacobian for
all x ∈ f−1({y}) is non-vanishing, then we can compute the degree by

deg(f,Ω, y) =
∑

x∈f−1({y})

sgn det

(
∂

∂x
f(x)

)
, (5.5)

with the standard convention that
∑
∅ = 0 (see Section 1.2 in Deimling (1985)).

In order to prove the theorem we cannot directly apply the results presented so far to
our setting since P(S) has an empty interior if we consider it as a subset of RS. Since
mS = 1−

∑S−1
i=1 mi we have that P(S) is homeomorphic to

Ω′ =

{
m ∈ RS−1 : mi ≥ 0 ∀i ∈ {1, . . . , S − 1} and

S−1∑
i=1

mi ≤ 1

}
,

which satisfies Ω′ = Ω for

Ω =

{
m ∈ RS−1 : mi > 0 ∀i ∈ {1, . . . , S − 1} and

S−1∑
i=1

mi < 1

}
,

which is the setting necessary to apply the previously presented results. With these
preparations we prove the theorem:
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Proof of Theorem 5.16. We first note that fixed points of xπ(·) cannot lie on the bound-
ary of P(S): Indeed, the boundary consists of all those points for which at least one
component is zero, but by Asmussen (2003, Theorem II.4.2) all points xπ(m) have only
non-zero components. Thus, we can restrict our attention to ensuring uniqueness of a
fixed point in int(P(S)).

We note that m ∈ P(S) is a fixed point of xπ(m) if and only if it is a zero of the map
fπ(m) = xπ(m)−m, which is, by Remark 5.10, continuous on P(S). Let us define

φ : Ω̄→ P(S), (m1, . . . ,mS−1) 7→

(
m1, . . . ,mS−1, 1−

S−1∑
i=1

mi

)

and
ψ : RS → RS−1, (m1, . . . ,mS−1,mS) 7→ (m1, . . . ,mS−1).

Let us furthermore define f̄π : Ω̄→ RS−1 by m 7→ ψ(fπ(φ(m))).

First, we verify that 0 is a non-critical value. By the chain rule we obtain

∂f̄π

∂m
(m) =

∂ψ

∂m
(fπ(φ(m))) · ∂f

π

∂m
(φ(m)) · ∂φ

∂m
(m)

=


1 0 . . . 0 0

0 1
. . .

...
...

...
. . . . . . 0 0

0 . . . 0 1 0


︸ ︷︷ ︸

∈R(S−1)×S

·


∂fπ1 (m)

∂m1
. . .

∂fπ1 (m)

∂mS
...

. . .
...

∂fπS (m)

∂m1
. . .

∂fπS (m)

∂mS

 ·


1 0 . . . 0

0 1
. . .

...
...

. . . . . . 0
0 . . . 0 1
−1 −1 . . . −1



=


∂fπ1 (m)

∂m1
. . .

∂fπ1 (m)

∂mS−1

...
...

...
∂fπS−1(m)

∂m1
. . .

∂fπS−1(m)

∂mS−1

−


∂fπ1 (m)

∂mS
. . .

∂fπ1 (m)

∂mS
...

. . .
...

∂fπS−1(m)

∂mS
. . .

∂fπS−1(m)

∂mS

 = Mπ(m),

which by assumption is non-singular for all m ∈ P(S). This in particular implies that
Mπ(m) is non-singular for all m ∈ (f̄π)−1(0). Furthermore, it yields that

det

(
∂f̄π(m)

∂m

)
6= 0

for all m ∈ Ω. Indeed, since φ(·), ψ(·), det(·) and xπ(·) are continuous (see Remark 5.10),

we note that det
(
∂f̄π(·)
∂m

)
: Ω→ R is continuous. Thus, the intermediate value theorem

yields that det
(
∂f̄π(m)
∂m

)
has uniform sign over Ω.
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We apply (d3) in order to show that the degree at the regular value 0 of the shifted
antipodal map S−1

S
(1, . . . , 1)T −m and our map f̄π are the same. For this let

h̄(t,m) = t · f̄π(m) + (1− t) ·
(

(S − 1)

S
(1, . . . , 1)T −m

)
= t · ψ(xπ(φ(m))) + (1− t) · S − 1

S
(1, . . . , 1)T −m,

which is continuous as a product of continuous functions. Let y(t) ≡ 0, which is also
a continuous function. Thus, it remains to show that y(t) /∈ h̄(t, ∂Ω): Assume that
m ∈ ∂Ω. Then either there is some i ∈ {1, . . . , S − 1} such that mi = 0 or we have∑S−1

i=1 mi = 1. By Asmussen (2003, Theorem II.4.2) the vector xπ(m) satisfies xπj (m) > 0
for all j ∈ {1, . . . , S}. In the first case, we have that h̄i(t,m) > 0 since xπi (m) > 0 and
S−1
S

> 0. In the second case, we have that by the previous observation the sum of
all components of ψ(xπ(φ(m))) is less than one and also the sum of all components of
S−1
S

(1, . . . , S)T is less than one, thus the sum of all components of tψ̇(xπ(φ(m))) + (1−
t) · S−1

S
(1, . . . , S)T is less than one. However, we assumed that the sum of all entries of

−m is exactly −1, so in total we obtain that the sum of all entries of h̄(t,m) has to be
less than zero, which especially implies that h̄(t,m) 6= 0.

Thus, (d3) yields that

deg

(
S − 1

S
(1, . . . , 1)T −m,Ω, 0

)
= deg(f̄π,Ω, 0).

From equation (5.5) we then concludes that deg(S−1
S

(1, . . . , 1)T − m,Ω, 0) = (−1)S−1

and thus we have

(−1)S−1 = deg(f̄π) =
∑

m∈(f̄π)−1({0})

sgn det

(
∂

∂m
f̄π(m)

)
.

Since the sign of the determinant is uniform over Ω ⊇ (f̄π)−1(0), we obtain that
(f̄π)−1({0}) consists of one element. Thus, we have a unique fixed point.

In the case of constant dynamics, i.e. Qπ
ija(m) = Qπ

ija, the assumption regarding the
matrix Mπ(m) can be verified directly, indeed, the matrix equals −I. For other cases
the representation presented in Theorem 5.11 gives rise to a rather direct representa-
tion of the partial derivatives of xπ(·). More precisely, by deriving the determinants of
the minors (Qπ(m))′iS as well as their partial derivatives we can compute the partial
derivatives of xπ(·):
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Lemma 5.17. Let π ∈ Πs be a stationary strategy and assume that Qπ(m) is irreducible
for all m ∈ P(S). Assume furthermore, that Qπ

ija(m) is continuously differentiable for
all m ∈ P(S) and all i, j ∈ S. Then

∂xπj (m)

∂mi

=
(−1)S+j

det(Q̃π(m))2

(
S∑
k=1

(−1)S+k

((
∂

∂mi

det(Qπ(m))′jS

)
det(Qπ(m))′kS

− det(Qπ(m))′jS

(
∂

∂mi

det(Qπ(m))′kS

)))
,

with

det(Q̃π(m)) =
S∑
k=1

(−1)S+k det((Qπ(m))′kS).

Proof. Applying the quotient rule on the explicit characterization of xπ(m) derived in
Theorem 5.11, we obtain

∂xj(m)

∂mi

=
(−1)S+j

(det(Q̃π(m)))2

[(
∂

∂mi

det(Qπ(m))′jS

)
det(Q̃π(m))

− det(Qπ(m))′jS

(
∂

∂mi

det(Q̃π(m))

)]
(5.6)

=
(−1)S+j

(det(Q̃π(m)))2

[(
∂

∂mi

det(Qπ(m))′jS

)( S∑
k=1

(−1)S+k det(Qπ(m))′kS

)

− det(Qπ(m))′jS

(
∂

∂mi

(
S∑
k=1

(−1)S+k det(Qπ(m))′kS

))]

=
(−1)S+j

(det(Q̃π(m)))2

[
S∑
k=1

(−1)S+k

((
∂

∂mi

det(Qπ(m))′jS

)
det(Qπ(m))′kS

− det(Qπ(m))′jS

(
∂

∂mi

det(Qπ(m))′kS

))]
. (5.7)

Remark 5.18. A helpful tool to decide whether a matrix is non-singular is presented
in Horn and Johnson (2013, Theorem 6.1.10 and 6.1.11). It states that a matrix A is
non-singular whenever it is either strictly diagonal dominant, which means that for all
i = 1, . . . , S we have

|aii| >
∑
j 6=i

|aij|,

or whenever it satisfies that all diagonal entries are non-zero, for all i = 1, . . . , S we have

|aii| ≥
∑
j 6=i

|aij|

and the inequality is strict for at least S − 1 values i ∈ {1, . . . , S}. 4
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5.5. Uniqueness of Equilibria

In classical mean field game theory for diffusion-based models, uniqueness criteria have
only been introduced for two small sets of mean field games and it is conjectured in
Guéant et al. (2011) that these are the only general uniqueness regimes. More precisely,
one either needs a small time horizon or the so called Lasry-Lion monotonicity condi-
tions. This condition requires that the cost function is monotonic in a certain sense
and furthermore that the dynamics of an individual do not depend on the population
distribution (see Guéant et al. (2011), Carmona and Delarue (2018a, Section 3.4)). Both
of these approaches have also been successfully applied to finite state models with con-
tinuous action space: In Cecchin and Fischer (2018) as well as Gomes et al. (2013)
uniqueness for small time horizons is shown and Gomes et al. (2013) provide a suitable
monotonicity condition that ensures uniqueness of dynamic equilibria. We remark that
in order to prove uniqueness of stationary equilibria Gomes et al. (2013) additionally
assumes contractivity, which requires a certain relation between the Hamiltonian and
the value function.

In our setting the methods used previously are not applicable. In the case of stationary
solutions, it is not possible to consider a small time horizon, so these approaches cannot
be applied. Also the approach using monotonicity conditions cannot be replicated in
our setting as these approaches rely on the existence of a unique optimal control for the
individual player.

In order to ensure that there is a unique mean field equilibrium in our setting we would
have to ensure that there is only one point such that it lies in Opt(A1 × . . .× AS) and
that it is simultaneously a fixed point of exactly one strategy that randomizes over the
actions from A1× . . .×AS. Since stationary points given deterministic and randomized
strategies do not relate in general dynamics models, also in our case it would only be
possible to come up with uniqueness criteria for constant dynamics. However, also in the
case of constant dynamics we will not obtain any satisfactory criteria. The main reason
is that in order to describe whether the stationary points given certain dynamics lie in
a specific optimality set or not we have to compute both optimality sets and stationary
points, which means that we have (almost) computed the equilibria themselves.
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6. Examples

This chapter presents three examples fitting into our model and illustrates the applica-
tion of the techniques presented before. The first two examples have been considered in
similar version (and with different purposes) in the literature before (see Gomes et al.
(2014b) and Kolokoltsov and Malafeyev (2017)). The first example covers consumer
choice in the mobile phone sector, where the utility increases in the share of individuals
with the same provider, and has been used as an illustration for numerical methods
for dynamic equilibria. The second example models the spread of corruption with peer
pressure and for this model all deterministic stationary equilibria have been computed.
The third model has not been considered so far and describes consumer choice with
congestion effects, namely, the more individuals share the same provider the higher is
the risk of losing the service for some time.

As we have seen in Chapter 5 we first have to solve the optimal control problem of the
individual agent. For this we will follow in all three examples the same approach: First,
we will investigate the optimality equation to eliminate never optimal strategies. Then
we will derive the expected discounted reward of the remaining strategies. Thereafter,
we will verify that they indeed solve the optimality equation.

The second step, namely, the analysis of the fixed point problem, is solved differently in
all three examples. The consumer choice model of Section 6.1 is a model with constant
dynamics, which means that Corollary 5.15 directly yields the distributions induced
by the existing stationary mean field equilibria. The corruption model of Section 6.2
has non-irreducible dynamics, thus the fixed point problem is solved relying on the cut
criterion presented in Theorem 5.5 as well as sensible rearrangements of the balance
equations. The consumer choice model with congestion effects in Section 6.3 has irre-
ducible dynamics, which means that we can apply Theorem 5.13. However, due to the
non-constant dynamics we cannot directly compute the fixed points of xπ(·). Instead, we
restrict the set of candidates by using the cut criterion and prove thereafter using Theo-
rem 5.16 that a unique fixed point exists. Using this we then derive which points can be
stationary points given a mixed strategy. Moreover, we show using the explicit repre-
sentation of xd(·) that there is at most one equilibrium with a deterministic equilibrium
strategy. Putting all the observations together, we then obtain a full characterization of
all stationary mean field equilibria in the third example.
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6.1. An Example with Constant Dynamics:

Consumer Choice

The first example we present is a model with constant dynamics, which means that the
dynamics do not depend on the current population distribution. The model is similar
to the model introduced by Gomes et al. (2014b) as a toy example on which the authors
demonstrated numerical methods for a specific class of finite state mean field games,
namely those yielding systems of hyperbolic partial differential equations. However,
the action space in their model as well as the possible strategies of each player differ
systematically from the model considered here.

We model consumer choice in the mobile phone sector. The utility of using a certain
provider is increasing in the share of consumers using it, whereas the costs are constant.
We assume that the utility coming from the other customers sharing the same provider
i ∈ {1, 2} is given by the isoelastic utility function ln(mi) + si, with si ≥ 0. Since ln(mi)
is always negative for our choice of mi, one cannot interpret si as costs directly, but one
rather has to think of si consisting of two components: the costs themselves and some
base utility from service provision. The players choose in our model whether to stick
to their provider i or whether to switch to the other provider, in this case the player
additionally faces a time-unit switching cost c ≥ 0. For technical reasons it is important
that the player always faces, independent of the chosen strategy, a small risk of going to
the other provider (we can think of this risk as the possibility of another family member
changing the provider although one does not want to).

The choice options substantially differ from the model in Gomes et al. (2014b), where
the players could continuously control the rates at which they switch to the other state
and were facing costs corresponding to the square of the rate. From an applied point
of view it is questionable, in particular when agents are not experts in the game at
hand, that players indeed understand what it means to control the transition rates of a
Markov chain. Indeed, economic experiments show that most people cannot understand
the true effect of random devices even in simple settings (Walker and Wooders, 2008).
Furthermore, even if the players understand these control options, it is unreasonable
that such a precise control can be put into practise.

The formal description of the model is given as follows: The state space is S = {1, 2},
the action space is given by A = {change, stay}. For technical reasons (mainly because
ln(0) is not defined) we define for δ > 0 the function fδ : R→ R given by

y 7→

{
1
4δ
y2 + 1

2
y + 1

4
δ if y ≤ δ

y if y ≥ δ

and we note that fδ(·) is continuously differentiable and strictly increasing on (−δ,∞).
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Using fδ(·) we can properly define the transition rates and reward functions by

Q··change =

(
−b b
b −b

)
Q··stay =

(
−ε ε
ε −ε

)
r·change =

(
ln(fδ(m1)) + s1 − c
ln(fδ(m2)) + s2 − c

)
r·stay =

(
ln(fδ(m1)) + s1

ln(fδ(m2)) + s2

)
,

where 0 < ε < b, s1, s2, c > 0 and δ > 0 is small. We remark that the model, by
definition of fδ(·) exhibits a utility function that is almost isoelastic, only for very small
values of m1 and m2, i.e. m1 < δ or m2 < δ this is not the case.

In order to analyse the model we first consider the optimality equation (5.1), which in
our setting reads

βV1(m) = max{ln(fδ(m1)) + s1 − c− bV1(m) + bV2(m),

ln(fδ(m1)) + s1 − εV1(m) + εV2(m)}
βV2(m) = max{ln(fδ(m2)) + s2 − c+ bV1(m)− bV2(m),

ln(fδ(m2)) + s2 + εV1(m)− εV2(m)}.

It yields that it is optimal to change in state 1 if and only if V1(m) − V2(m) ≤ − c
b−ε

and that it is optimal to change in state 2 if and only if V1(m) − V2(m) ≥ c
b−ε . Thus,

choosing the action change in both states simultaneously is never optimal. Therefore,
we focus on the three potentially optimal strategies {change}× {stay}, {stay}× {stay}
and {stay} × {change}. By Lemma 5.3 the expected discounted reward given these
strategies is

V {change}×{stay}(m)

=
(
βI −Q{change}×{stay}(m)

)−1
r{change}×{stay}(m)

=

(
β + b −b
−ε β + ε

)−1(
ln(fδ(m1)) + s1 − c

ln(fδ(m2)) + s2

)
=

1

β(β + b+ ε)

(
β + ε b
ε β + b

)(
ln(fδ(m1)) + s1 − c

ln(fδ(m2)) + s2

)
=

1

β(β + b+ ε)

(
(ln(fδ(m1)) + s1) · (β + ε)− c · (β + ε) + (ln(fδ(m2)) + s2) · b

(ln(fδ(m1)) + s1) · ε− c · ε+ (ln(fδ(m2)) + s2) · (β + b)

)
V {stay}×{stay}(m)

=

(
β + ε −ε
−ε β + ε

)−1(
ln(fδ(m1)) + s1

ln(fδ(m2)) + s2

)
=

1

β2 + 2βε

(
(ln(fδ(m1)) + s1) · (β + ε) + (ln(fδ(m2)) + s2) · ε
(ln(fδ(m1)) + s1) · ε+ (ln(fδ(m2)) + s2) · (β + ε)

)
V {stay}×{change}(m)

=

(
β + ε −ε
−b β + b

)−1(
ln(fδ(m1)) + s1

ln(fδ(m2)) + s2 − c

)
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=
1

β(β + b+ ε)

(
(ln(fδ(m1)) + s1) · (β + b)− c · ε+ (ln(fδ(m2)) + s2) · ε

(ln(fδ(m1)) + s1) · b− c · (β + ε) + (ln(fδ(m2)) + s2) · (β + ε)

)
.

In order to understand which strategy is optimal, we compute the differences V d
1 (m)−

V d
2 (m):

V
{change}×{stay}

1 (m)− V {change}×{stay}2 (m)

=
1

β + b+ ε
(−c+ ln(fδ(m1))− ln(fδ(m2)) + s1 − s2)

V
{stay}×{stay}

1 (m)− V {stay}×{stay}2 (m)

=
1

β + 2ε
(ln(fδ(m1))− ln(fδ(m2)) + s1 − s2)

V
{stay}×{change}

1 (m)− V {stay}×{change}2 (m)

=
1

β + b+ ε
(c+ ln(fδ(m1))− ln(fδ(m2)) + s1 − s2) .

Let us write

k1 =
exp

(
−c(β+2ε)

b−ε − s1 + s2

)
1 + exp

(
−c(β+2ε)

b−ε − s1 + s2

) and k2 =
exp

(
c(β+2ε)
b−ε − s1 + s2

)
1 + exp

(
c(β+2ε)
b−ε − s1 + s2

)
and note that k1 < k2. Now choose δ > 0 to be small enough (i.e. δ � min{k1, 1− k2}).
Then we obtain using m1 = 1−m2 and that fδ(·) is strictly increasing

V
{change}×{stay}

1 (m)− V {change}×{stay}2 (m) ≤ − c

b− ε

⇔ −c+ ln(fδ(m1))− ln(fδ(m2)) + s1 − s2 ≤
−c(β + b+ ε)

b− ε

⇔ ln

(
fδ(m1)

fδ(1−m1)

)
≤ −c(β + 2ε)

b− ε
− s1 + s2

⇔ ln

(
m1

1−m1

)
≤ −c(β + 2ε)

b− ε
− s1 + s2

⇔ m1 ≤
exp

(
−c(β+2ε)

b−ε − s1 + s2

)
1 + exp

(
−c(β+2ε)

b−ε − s1 + s2

) , (6.1)

which yields that V {change}×{stay}(·) is the unique solution of (5.1) if and only if (6.1)
holds.

Analogously, we obtain

−c
b− ε

≤ V
{stay}×{stay}

1 (m)− V {stay}×{stay}2 (m) ≤ c

b− ε
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⇔
exp

(
−c(β+2ε)

b−ε − s1 + s2

)
1 + exp

(
−c(β+2ε)

b−ε − s1 + s2

) ≤ m1 ≤
exp

(
c(β+2ε)
b−ε − s1 + s2

)
1 + exp

(
c(β+2ε)
b−ε − s1 + s2

)
as well as

c

b− ε
≤ V

{stay}×{change}
1 (m)− V {stay}×{change}2 (m)

⇔
exp

(
c(β+2ε)
b−ε − s1 + s2

)
1 + exp

(
c(β+2ε)
b−ε − s1 + s2

) ≤ m1.

By the previous investigations we have the following non-empty optimality sets

Opt({change} × {stay}) = {m ∈ P(S) : m1 < k1}
Opt({change, stay} × {stay}) = {(k1, 1− k1)}

Opt({stay} × {stay}) = {m ∈ P(S) : m1 ∈ (k1, k2)}
Opt({change} × {change, stay}) = {(k2, 1− k2)}

Opt({stay} × {change}) = {m ∈ P(S) : m1 > k2}

As a next step we compute the fixed points given the three strategies {change}×{stay},
{stay} × {stay} and {stay} × {change}. We remark that we do not need to consider
the fixed point given {change} × {change} because it is never optimal to randomize in
both states. Since we face standard continuous time Markov chains, this task is simple
and we obtain for each strategy a unique stationary point:

x{change}×{stay} =

(
ε
b+ε
b
b+ε

)
, x{stay}×{stay} =

(
1
2
1
2

)
, x{stay}×{change} =

(
b
b+ε
ε
b+ε

)
.

Finally, we obtain the exact number and position of equilibria by coefficient comparison.
The strategies that are used in mixed strategy equilibria are then obtained by solving
for each distribution m of a stationary mean field equilibrium the system mTQπ(m) = 0
for strategies π ∈ conv(D(m)).

(i) If k1 <
ε
b+ε

and k2 <
1
2
, then x{stay}×{change} together with the deterministic strategy

{stay} × {change} is the unique stationary mean field equilibrium.

(ii) If k1 <
ε
b+ε

and 1
2
≤ k2 ≤ b

b+ε
, then x{stay}×{stay} together with the deterministic

strategy {stay}× {stay} and x{stay}×{change} together with the deterministic strat-
egy {stay} × {change} are the deterministic equilibria. Furthermore, there is one
mixed strategy equilibrium with m1 = k2 that randomizes over stay and change in
the second state. If k2 ∈ {1

2
, b
b+ε
}, then the mixed strategy equilibrium coincides

with the pure strategy equilibrium with the same population distribution.
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(iii) If k1 < ε
b+ε

and b
b+ε

< k2, then the only equilibrium is given by x{stay}×{stay}

together with the deterministic strategy {stay} × {stay}.

(iv) If ε
b+ε
≤ k1 ≤ 1

2
and k2 <

1
2
, then x{stay}×{change} together with the deterministic

strategy {stay} × {change} and x{change}×{stay} together with the deterministic
strategy {change}× {stay} are the deterministic equilibria. Furthermore, there is
a mixed strategy equilibrium at the point with m1 = k1 that randomizes over stay
and change in the first state. If k1 = ε

b+ε
, then the mixed strategy equilibrium

coincides with the pure strategy equilibrium with the same population distribution.

(v) If ε
b+ε
≤ k1 ≤ 1

2
and 1

2
≤ k2 ≤ b

b+ε
, then x{stay}×{change} together with the deter-

ministic strategy {stay} × {change}, x{stay}×{stay} together with the deterministic
strategy {stay}× {stay} and x{change}×{stay} together with the deterministic strat-
egy {change} × {stay} are the deterministic equilibria. Furthermore, there is one
mixed strategy equilibrium with m1 = k1 that randomizes over stay and change in
the first state and one mixed strategy equilibrium with m1 = k2 that randomizes
over stay and change in the second state. If k1 ∈ { ε

b+ε
, 1

2
} or k2 ∈ {1

2
, b
b+ε
}, then

the mixed strategy equilibrium coincides with the pure strategy equilibrium with
the same population distribution.

(vi) If ε
b+ε
≤ k1 ≤ 1

2
and b

b+ε
< k2, then x{stay}×{stay} together with the deterministic

strategy {stay}× {stay} and x{change}×{stay} together with the deterministic strat-
egy {change} × {stay} are the deterministic equilibria. Furthermore, there is one
mixed strategy equilibrium with m1 = k1 that randomizes over stay and change
in the first state. If k1 ∈ { ε

b+ε
, 1

2
}, then the mixed strategy equilibrium coincides

with the pure strategy equilibrium with the same population distribution.

(vii) If 1
2
< k1 and 1

2
< k2 ≤ b

b+ε
, then x{stay}×{change} together with the deterministic

strategy {stay} × {change} and x{change}×{stay} together with the deterministic
strategy {change}× {stay} are the deterministic equilibria. Furthermore, there is
a mixed strategy equilibrium at the point with m1 = k2 that randomizes over stay
and change in the second state. If k2 = b

b+ε
, then the mixed strategy equilibrium

coincides with the pure strategy equilibrium with the same population distribution.

(viii) If 1
2
< k1 and b

b+ε
< k2, then then x{change}×{stay} together with the deterministic

strategy {change} × {stay} is the unique stationary mean field equilibrium.
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6.2. A First Example with Non-Constant Dynamics:

A Simplified Corruption Model

We now consider a simplified version of the corruption model presented in Kolokoltsov
and Malafeyev (2017), which has been introduced in Section 3.1 and which goal is to
capture the effect of social pressure on the spread of corruption in a society. For conve-
nience we shortly review the model: A player can be in one of the three states honest
(H), corrupt (C) and reserved (R) and he can choose, given that he is not reserved,
whether he wants to stay corrupt/honest or whether he wants to switch behaviour. The
social pressure acts in two ways: First, the more players are corrupt the higher is the
pressure (one cannot escape) to also become corrupt. Second, the more players are
honest the higher is the rate to become convicted to be corrupt.

The formal characterization is given by S = {C,H,R} and A = {change, stay} together
with

Q··change =

−(b+ qsocmH) b qsocmH

b+ qinfmC −(b+ qinfmC) 0
0 λ −λ


Q··stay =

−qsocmH 0 qsocmH

qinfmC −qinfmC 0
0 λ −λ


and r·change = r·stay = (10, 5, 0)T , where all parameters b, qinf, qsoc and λ are strictly
positive.

We remark that there are two significant simplifications compared to the model of
Kolokoltsov and Malafeyev (2017): First, there is no principal agent that convicts
players. Second, in their model the wages are not fixed, but arbitrary with values
wC > wH > wR.

We start with computing the value function for given m ∈ P(S) as the unique solution
of

βVC(m) = max{10− (b+ qsocmH)VC(m) + bVH(m) + qsocmHVR(m),

10− qsocmHVC(m) + qsocmHVR(m)}
βVH(m) = max{5 + (b+ qinfmC)VC(m)− (b+ qinfmC)VH(m),

5 + qinfmCVC(m)− qinfmCVH(m)}
βVR(m) = λVH(m)− λVR(m).

We obtain that the agent should choose the action change in state C if VC(m) ≤ VH(m)
and the action stay in state C if VC(m) ≥ VH(m). Analogously, we obtain that the
agent should chose the action change in state H if VC(m) ≥ VH(m) and the action stay
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in state H if VC(m) ≤ VH(m). A straightforward calculation as in Section 6.1 yields
that the optimality sets are given by

Opt({stay} × {change}) =

{
m ∈ P(S) : mH <

λ+ β

qsoc

}
Opt({change} × {stay}) =

{
m ∈ P(S) : mH >

λ+ β

qsoc

}
Opt({stay , change} × {stay , change}) =

{
m ∈ P(S) : mH =

λ+ β

qsoc

}
.

Thus, depending on the choice of parameters the quantity λ+β
qsoc

is greater than one,
exactly one or less than one, which means that there are one, two or three non-empty-
optimality sets. In the first case only Opt({stay}×{change}) is non-empty, in the second
case Opt({stay} × {change}) and Opt({stay , change} × {stay , change}) are non-empty
and in the third case all optimality sets are non-empty.

As a second step we use the cut criterion from Theorem 5.5 for the set T = {R}, which
yields the equation qsocmHmC = λmR for all stationary strategies. Together with the
equation 1 = mR +mH +mC we obtain

qsocmHmC = λ(1−mH −mC), i.e. mH(qsocmC + λ) = λ(1−mC),

i.e. mH =
λ(1−mC)

qsocmC + λ

or equivalently mC = λ(1 −mH)/(qsocmH + λ). This representation implies that mC ∈
[0, 1] if and only if mH ∈ [0, 1]. Furthermore, we obtain that the sum of mC and mH

is always less than one. Thus, any mean field equilibrium is uniquely characterized by
describing mC . More precisely, any stationary mean field equilibrium has a distribution
of the form (

mC ,
λ− λmC

qsocmC + λ
,
qsoc − qsocm

2
C

qsocmC + λ

)
. (6.2)

It remains to consider the fixed point problems given the possible optimal strategies:
We start by noting that stationary points of the dynamics given the strategy {stay} ×
{change} exists whenever (6.2) and

−qsocmCmH + qinfmCmH + bmH = 0, i.e. mH(mC(qsoc − qinf)− b) = 0

is satisfied, which is true if mH = 0 or mC = b/(qsoc − qinf). Thus, whenever these
points lie in Opt({stay} × {change}) or Opt({stay, change} × {stay, change}) we have
a deterministic mean field equilibrium given the strategy {stay} × {change}.

Similarly, stationary points of the dynamics given the strategy {change} × {stay} have
to satisfy (6.2) and

−bmC − qsocmHmC + qinfmCmH = 0, i.e. mC(mH(qinf − qsoc)− b) = 0,
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which is true if either mC = 0 or mH = b/(qinf− qsoc). Thus whenever these points lie in
Opt({change}×{stay}) or Opt({stay, change}×{stay, change}) we have a deterministic
mean field equilibrium given the strategy {change} × {stay}.

When searching for stationary points given the dynamics of mixed strategies, which
might be equilibria, we can restrict to those that lie inside the set Opt({stay, change}×
{stay, change}). In this set all equilibria have to satisfy mH = λ+β

qsoc
, that is

λ+ β

qsoc

=
λ(1−mC)

qsocmC + λ
⇔ mC =

λ(qsoc − λ− β)

(2λ+ β)qsoc

.

It remains to check whether there is a strategy such that the point(
λ(qsoc − λ− β)

(2λ+ β)qsoc

,
λ+ β

qsoc

,
(λ+ β)(qsoc − λ− β)

(2λ+ β)qsoc

)
(6.3)

is indeed a fixed point for the individual dynamics equation given strategy π, which
means that we have to find constants π1,change and π2,change that satisfy for this point

(−π1,changeb− qsocmH)mC + π2,changebmH + qinfmCmH = 0.

As in the previous example, we would need to perform a case analysis to obtain the exact
set of mean field equilibria for all possible equilibrium constellations. Additionally, we
would need to solve the balance equations mTQπ(m) = 0 for π for the point m given by
(6.3), which is the only candidate for a randomized equilibrium. Both tasks are simple,
but tedious, and we omit them here.

6.3. A Second Example with Non-Constant

Dynamics: Consumer Choice Again

The second example with non-constant dynamics we consider consists of two “good”
states, where a positive reward is earned, and one “bad” state, where no reward is
earned. The agents in the “good” state face congestion effects, namely there is a risk,
increasing in the share of individuals in that state, to go to the “bad” state. The control
options are to switch between the two good states. One can interpret this model as
a stylized version to model the choice between two mobile phone providers, where the
utility to be customer of one of these providers differs and one has the additional risk of
a breakdown in connection. More precisely, the more people share the same provider,
the higher is the risk of an eventual failure of the service associated with a loss of utility.
For simplicity, we assume that agents in the “bad” state have no choice option, but
recover into each of the two states with equal probability.
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1:1P 2:cP

3:0P

b/0

b/0

em2 + ε

λem1 + ε

λ

Figure 6.1.: Representation of the consumer choice model discussed in Section 6.3. The
transition rates in black are action independent, the blue transition rates
are those associated to choosing the action change and the red transition
rates are those associated to choosing the action stay .

The formal characterization is given by S = {1, 2, 3} and A = {change, stay} together
with

Q··change =

−(b+ em1 + ε) b em1 + ε
b −(b+ em2 + ε) em2 + ε
λ λ −2λ


Q··stay =

−(em1 + ε) 0 em1 + ε
0 −(em2 + ε) em2 + ε
λ λ −2λ


and r·stay = r·change = (1, c, 0), where all constants are strictly positive and additionally
c ≤ 1. A visualization of the model is given in Figure 6.3.

We again start by analysing the optimality equation

βV1(m) = max {1− (b+ em1 + ε)V1(m) + bV2(m) + (em1 + ε)V3(m),

1− (em1 + ε)V1(m) + (em1 + ε)V3(m)}
βV2(m) = max {c+ bV1(m)− (b+ em2 + ε)V2(m) + (em2 + ε)V3(m),

c− (em2 + ε)V2(m) + (em2 + ε)V3(m)}
βV3(m) = λV1(m) + λV2(m)− 2λV3(m).
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We directly see that the optimal action in state 1 is change if V1(m) ≤ V2(m) and stay
if V1(m) ≥ V2(m). Similarly, the optimal action in state 2 is change if V1(m) ≥ V2(m)
and stay if V1(m) ≤ V2(m).

This implies that at least one of the strategies {change}×{stay} and {stay}×{change}
is optimal. As in the previous examples, we compute using Lemma 5.3 the expected
discounted reward given these strategies and investigate thereafter for which parameters
these rewards are indeed solutions of the optimality equation. This yields to the following
non-empty optimality sets:

Opt({stay} × {change}) =

{
m ∈ P(S) :

1

c
m2 +

1− c
ce

(β + ε+ 2λ) > m1

}
Opt({change} × {stay}) =

{
m ∈ P(S) :

1

c
m2 +

1− c
ce

(β + ε+ 2λ) < m1

}
Opt({stay , change} × {stay , change}) =

{
m ∈ P(S) :

1

c
m2 +

1− c
ce

(β + ε+ 2λ) = m1

}
.

We remark that in the symmetric case c = 1 we indeed obtain that

Opt({stay} × {change}) = {m ∈ P(S) : m2 > m1}
Opt({change} × {stay}) = {m ∈ P(S) : m2 < m1}

Opt({stay , change} × {stay , change}) = {m ∈ P(S) : m2 = m1} .

To obtain the stationary points of the dynamics for the strategies of interest we start the
analysis of the fixed point problem by applying the cut criterion for T = {1, 2}, which
yields

λm3 + λm3 = (em1 + ε) ·m1 + (em2 + ε) ·m2. (6.4)

Combing this equation with 1 = m1 +m2 +m3 we obtain

λ− (2λ+ ε)m1 − em2
1 = em2

2 + (2λ+ ε)m2 − λ. (6.5)

This means that the set of all remaining candidates lies on the curve implicitly defined by
the previous equation with the additional conditions that m1,m2 ∈ [0, 1] and m1 +m2 ≤
1.

An alternative equivalent description of all these points is that we considerm1,m2 ∈ [0, 1]
that satisfy f(m1) = −f(m2) and m1 +m2 ≤ 1 where

f(y) = ey2 + (2λ+ ε)y − λ. (6.6)

The parabola given by f(·) is upward-sloping with vertex (−2λ+ε
2e
,−4λe+(2λ+ε)2

4e
) and

roots

y1 = −2λ+ ε

2e
+

√
(2λ+ ε)2 + 4λe

4e2
and y2 = −2λ+ ε

2e
−
√

(2λ+ ε)2 + 4λe

4e2
. (6.7)
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Additionally we note that

• f is increasing on [0,∞) (because the vertex has x-coordinate less than 0)

• y2 < 0 and y1 ∈ (0, 1
2
) as f(0) = −λ < 0 and f(1

2
) = 1

4
e+ 1

2
ε > 0.

Therefore, any point (m1,m2) that is a stationary point of an equilibrium satisfies
min{m1,m2} ∈ [0, y1]. Furthermore, since f is strictly increasing on [0, 1], we have
f(max{m1,m2}) ≤ λ, which implies that max{m1,m2} ≤ ȳ for ȳ > 0 such that f(ȳ) = λ.
We note that ȳ < 1 since f(1) = e + 2λ + ε − λ > λ . Thus, any value m1 ∈ [0, ȳ]
yields a candidate for a stationary point of the dynamics via f(m1) = −f(m2) and
1 = m1 +m2 +m3. Moreover, this way yields all points which could be stationary points
of the dynamics given any strategy π.

As a next step, we show that there is a unique stationary point given the deterministic
strategies {change} × {stay} and {stay} × {change}. With this result, we then char-
acterize all points that are stationary points given randomized strategies as well as the
strategies for which this happens. Thereafter we combine all results and characterize
the set of all stationary equilibria.

From now on we will work under the following assumptions:

• λ > e: The rate with which agents are pressed out of a good state is smaller than
the rate of discovery.

• b > e: The rate with which the individual decision is implemented is larger than
the rate of contagion effects.

We remark that both assumptions are reasonable and that these conditions are not
necessary but yield easier computations, which is sufficient for the purpose of this chapter
of illustrating the use of the tools presented in Chapter 5.

Lemma 6.1. Given the deterministic strategies {change}×{stay} and {stay}×{change}
we find exactly one stationary point of the dynamics given this strategy.

Proof. We present the argument for the strategy {change} × {stay}. This suffices to
prove the claim because the dynamics given the strategy {change} × {stay} are the
dynamics given the strategy {stay} × {change} if we interchange the states 1 and 2.

Since ε > 0, the matrix Q{change}×{stay}(m) is irreducible for all m ∈ P(S). Thus, by
Lemma 5.9 we obtain an explicit characterization of the unique stationary distribution
given Q{change}×{stay}(m), which is, as before, denoted by x{change}×{stay}(m). Moreover,
by Remark 5.10, the function x{change}×{stay} : P(S) → P(S) is continuous. Therefore,
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the Brouwer fixed point theorem yields that there is at least one fixed point of the
mapping x{change}×{stay}(·). It remains to prove that the fixed point is unique. For
this we will, for the sake of readability, write for the rest of the proof x(m) instead of
x{change}×{stay}(m) as well as Q(m) instead of Q{change}×{stay}(m).

We will apply Theorem 5.16. Since Q(m) and hence x(m) are continuously differentiable,
we have to verify that the determinant of the matrix

M{change}×{stay}(m) =

(
∂x1(m)
∂m1

− 1 ∂x1(m)
∂m2

∂x2(m)
∂m1

∂x2(m)
∂m2

− 1

)
−

(
∂x1(m)
∂m3

∂x1(m)
∂m3

∂x2(m)
∂m3

∂x2(m)
∂m3

)

is non-zero for all m ∈ P(S).

In order to compute the Jacobian we will rely on Lemma 5.17, that is we compute

∂xj(m)

∂mi

=
(−1)S+j

det(Q̃(m))2

(
S∑
k=1

(−1)S+k

((
∂

∂mi

det(Q(m))′jS

)
det(Q(m))′kS

− det(Q(m))′jS

(
∂

∂mi

det(Q(m))′kS

)))
.

For this we first make the following preliminary observations

det(Q(m))′1S = λem2 + λε

det(Q(m))′2S = −2bλ− λem1 − λε
det(Q(m))′3S = bem2 + bε+ e2m1m2 + em1ε+ em2ε+ ε2

det(Q̃(m)) =
S∑
k=1

(−1)S+k det(Q(m))′kS

= e2m1m2 + λem1 + em1ε+ λem2 + bem2 + em2ε+ 2λε+ 2λb+ bε+ ε2,

which yield

∂

∂m1

det(Q(m))′1S = 0
∂

∂m2

det(Q(m))′1S = λe

∂

∂m1

det(Q(m))′2S = −λe ∂

∂m2

det(Q(m))′2S = 0

∂

∂m1

det(Q(m))′3S = e2m2 + eε
∂

∂m2

det(Q(m))′3S = be+ eε+ e2m1

and
∂

∂m3

det(Q(m))′1S =
∂

∂m3

det(Q(m))′2S =
∂

∂m3

det(Q(m))′3S = 0,
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as well as

∂

∂m1

det(Q̃(m)) = e2m2 + λe+ eε

∂

∂m2

det(Q̃(m)) = e2m1 + λe+ be+ eε.

With these preparations we compute the partial derivatives of x(m):

∂x1(m)

∂m1

=
(−1)3+1

(det(Q̃(m)))2

(
(−1)3+1 · 0 + (−1)3+2(0− (λem2 + λε) · (−λe))

+(−1)3+3(0− (λem2 + λε) · (eε+ e2m2))
)

=
−1

(det(Q̃(m))2

(
(λem2 + λε)(λe+ eε+ e2m2)

)
∂x1(m)

∂m2

=
(−1)3+1

(det(Q̃(m)))2

(
(−1)3+1 · 0 + (−1)3+2(λe · (−2bλ− λem1 − λε)− 0)

+ (−1)3+3(λe · (bem2 + bε+ e2m1m2 + em1ε+ em2ε+ ε2)

−(λem2 + λε) · (be+ eε+ e2m1))
)

=
1

det(Q̃(m)))2

(
2λ2eb+ λ2e2m1 + λ2eε

)
∂x2(m)

∂m1

=
(−1)3+2

(det(Q̃(m))2)

(
(−1)3+1(−λe · (λem2 + λε)− 0) + (−1)3+2 · 0

+ (−1)3+3(−λe · (bem2 + bε+ e2m1m2 + em1ε+ em2ε+ ε2)

−(−2bλ− λem1 − λε) · (eε+ e2m2))
)

=
1

det(Q̃(m))2

(
(λ− b)(λe2m2 + λeε)

)
∂x2(m)

∂m2

=
(−1)3+2

(det(Q̃(m)))2

(
(−1)3+1(0− (−2bλ− λem1 − λε)λe) + (−1)3+2 · 0

+(−1)3+3(0− (−2bλ− λem1 − λε)(be+ eε+ e2m1)
)

=
−1

(det Q̃(m))2

(
(2λb+ λem1 + λε)(λe+ be+ eε+ e2m1

)
and

∂x1(m)

∂m3

=
∂x2(m)

∂m3

=
∂x3(m)

∂m3

= 0.

In order to apply Theorem 5.16 it is sufficient to prove that the matrix(
∂x1(m)
∂m1

− 1 ∂x1(m)
∂m2

∂x2(m)
∂m1

∂x2(m)
∂m2

− 1

)
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is non-singular for all m ∈ P(S). To verify this, we prove that our matrix is strictly
diagonal dominant, which means that we prove that∣∣∣∣∂x1(m)

∂m1

− 1

∣∣∣∣ > ∣∣∣∣∂x1(m)

∂m2

∣∣∣∣ and

∣∣∣∣∂x2(m)

∂m2

− 1

∣∣∣∣ > ∣∣∣∣∂x2(m)

∂m1

∣∣∣∣ ,
i.e.

∣∣∣∣∂x1(m)

∂m1

− 1

∣∣∣∣− ∣∣∣∣∂x1(m)

∂m2

∣∣∣∣ > 0 and

∣∣∣∣∂x2(m)

∂m2

− 1

∣∣∣∣− ∣∣∣∣∂x2(m)

∂m1

∣∣∣∣ > 0

holds. Indeed, we have(∣∣∣∣∂x1(m)

∂m1

− 1

∣∣∣∣− ∣∣∣∣∂x1(m)

∂m2

∣∣∣∣) · det(Q̃(m))2

=
(

(λem2 + λε)(λe+ eε+ e2m2) + det(Q̃(m))2 − (2λ2eb+ λ2e2m1 + λ2eε)
)

︸ ︷︷ ︸
=:g1(m1,m2)

.

And analogously, since

g1(0, 0) = λε(λe+ eε) + (2λε+ 2λb+ bε+ ε2)2 − 2λ2eb− λ2eε

= λeε2 + (2λε+ 2λb+ bε+ ε2)2 − 2λe2b

> 2(λb)2 − 2λe2b ≥ 0

and

∂g1(m1,m2)

∂m1

=

(
∂

∂m1

det
(
Q̃(m)

))
· 2 · det

(
Q̃(m)

)
− λ2e2

= (e2m2 + λe+ eε) · 2 · det
(
Q̃(m)

)
− λ2e2

> λe · 2 · 2λb− λ2e2 ≥ 0

∂g1(m1,m2)

∂m2

= λe(λe+ eε+ e2m2) + e2(λem2 + λε)

+

(
∂

∂m2

det
(
Q̃(m)

))
· 2 · det

(
Q̃(m)

)
> 0

for all m1,m2 ≥ 0, we obtain that g1(m1,m2) > 0 for all m1,m2 ≥ 0.

Similarly, we have(∣∣∣∣∂x2(m)

∂m2

− 1

∣∣∣∣− ∣∣∣∣∂x1(m)

m2

∣∣∣∣) · det(Q̃(m))2

=
(

(2λb+ λem1 + λε)(λe+ be+ eε+ e2m1) + det(Q̃(m))2 − |λ− b|(λe2m2 + λeε)
)

︸ ︷︷ ︸
=:g2(m1,m2)

.
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Since

g2(0, 0) = (2λb+ λε)(λe+ be+ eε) + (2λε+ 2λb+ bε+ ε2)2 − |λ− b|λeε
> 2λbeε+ λ2eε− |λ− b|λeε ≥ 0

and

∂g2(m1,m2)

∂m1

= λe(λe+ be+ eε+ e2m1) + e2(2λb+ λem1 + λε)

+

(
∂

∂m1

det
(
Q̃(m)

))
· 2 det

(
Q̃(m)

)
> 0

∂g2(m1,m2)

∂m2

=

(
∂

∂m2

det
(
Q̃(m)

))
· 2 · det

(
Q̃(m)

)
− |λ− b|λe2

= (e2m1 + λe+ be+ eε) · 2 · det
(
Q̃(m)

)
− |λ− b|λe2

> (λe+ be) · 2 · 2λb− |λ− b|λe2

= 4λ2be+ 4b2λe− |λ− b|λe2 ≥ 0

for all m1,m2 ≥ 0, we obtain that g2(m1,m2) > 0 for all m1,m2 ≥ 0. This shows that
the matrix M(m) is indeed strictly diagonal dominant, which by Remark 5.18 yields
that the matrix M(m) is non-singular. Thus, Theorem 5.16 yields that there is a unique
stationary point given Q{change}×{stay}(·).

We now characterize all stationary points given randomized strategies. For this we will
write, for the sake of readability, cs instead of {change} × {stay} and sc instead of
{stay} × {change}. By the previously discussed result, we have that there is a unique
stationary point msc given the strategy sc and a unique stationary point mcs given the
strategy cs. These satisfy that (mcs

1 ,m
cs
2 ,m

cs
3 ) = (msc

2 ,m
sc
1 ,m

sc
3 ) because mTQsc(m) = 0

is the same equation as mTQcs(m) = 0 with the roles of m1 and m2 interchanged.
Furthermore, we have msc

1 > msc
2 = mcs

1 since

bmsc
2 + (emsc

2 + ε)msc
2 = λmsc

3 ⇔(emsc
2 + ε)msc

2 = λmsc
3 − bmsc

2

(emsc
1 + ε)msc

1 = λmsc
3 + bmsc

2 .

With these preparations we can fully characterize the stationary points given randomized
strategies:

Lemma 6.2. Let (m1,m2,m3) be a solution of (6.4) and 1 = m1 +m2 +m3.

• If m1 ∈ (mcs
1 ,m

sc
1 ), then (m1,m2,m3) is a stationary point given Qπ(·) if and only

if

π1,change = g(m1,m2) + π2,change
m2

m1

(6.8)
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π2,change ∈
[
max

{
0,−g(m1,m2)m1

m2

}
,min

{
1,

(1− g(m1,m2))m1

m2

}]
(6.9)

with

g(m1,m2) =
1

2b

(
(em2 + ε)m2

m1

− (em1 + ε)

)
.

In particular, there are always infinitely many such strategies.

• If m1 = msc
1 or m1 = mcs

1 , respectively, then (m1,m2,m3) is a stationary point
given Qπ(·) if and only if π = {stay} × {change} or π = {change} × {stay},
respectively.

• If m1 /∈ [mcs
1 ,m

sc
1 ], then there is no strategy π ∈ Πs such that (m1,m2,m3) is a

stationary point given Qπ(·).

Proof. Assume that m satisfies (6.4) and 1 = m1 + m2 + m3. Then any strategy that
satisfies the balance equation mTQπ(m) = 0 satisfies{

(em1 + ε)m1 + π1,changebm1 = λm3 + π2,changebm2

(em2 + ε)m2 + π2,changebm2 = λm3 + π1,changebm1

,

which by the cut criterion (6.4) is equivalent to{
π1,changebm1 = 1

2
((em2 + ε)m2 − (em1 + ε)m1) + π2,changebm2

π2,changebm2 = 1
2
((em1 + ε)m1 − (em2 + ε)m2) + π1,changebm1

. (6.10)

Thus, π1,change and π2,change must satisfy

π1,change =
1

2b

(
(em2 + ε)m2

m1

− (em1 + ε)

)
︸ ︷︷ ︸

=g(m1,m2)

+π2,change
m2

m1

. (6.11)

Let us first collect some basic properties of g(·, ·): It holds that g(msc
1 ,m

sc
2 ) = −msc2

msc1
< 0

since

0 = g(msc
1 ,m

sc
2 ) +

msc
2

msc
1

and that g(mcs
1 ,m

cs
2 ) = 1 since

1 = g(mcs
1 ,m

cs
2 ) + 0 · m

cs
2

mcs
1

.

Furthermore, we directly see that g : (0,∞) × (0,∞) → R is strictly increasing in m2

and strictly decreasing in m1. This and g(m1,m1) = 0 for all m1 ∈ (0, 1] further implies
that g(m1,m2) < 0 yields that m2 < m1 and that g(m1,m2) > 0 yields that m2 > m1.
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Let us now assume that m1 ∈ (mcs
1 ,m

sc
1 ). We show that π1,change and π2,change defined

by (6.8) and (6.9) indeed lie in [0, 1]: If g(m1,m2) ≤ 0 we have that m1 ≤ m2 and thus

π2,change ∈
[
−g(m1,m2)m1

m2

, 1

]
⊆ [0, 1].

Moreover,

π1,change ≤ g(m1,m2) +
m2

m1

≤ 1

since we have that m1 < msc
1 and by (6.4) also m2 > msc

2 , which yields that

−m2

m1

< −m
sc
2

msc
1

= g(msc
1 ,m

sc
2 ) < g(m1,m2).

And additionally,

π1,change ≥ g(m1,m2) +
−g(m1,m2)m1

m2

· m2

m1

= 0,

which yields that for all strategies π given by (6.8) and (6.9) the point (m1,m2,m3) is
a stationary point given Qπ(·). Since

−g(m1,m2)m1

m2

<
msc

2

msc
1

m1

m2

< 1

by previous observations and since m1 < msc
1 and m2 > msc

2 , we see that there are
infinitely many possible choices for π2,change , which shows that there are infinitely many
strategies π such that (m1,m2,m3) is a stationary point given Qπ(·).

Similarly, if g(m1,m2) ≥ 0 we see that

π2,change ∈
[
0,

(1− g(m1,m2))m1

m2

]
⊆ [0, 1]

with (1− g(m1,m2))m1/m2 > 0 since g(m1,m2) < 1 and m2 > m1 by previous observa-
tions. Thus,

π1,change ≤ g(m1,m2) +
(1− g(m1,m2))m1

m2

· m2

m1

= 1

and
π1,change ≥ g(m1,m2) ≥ 0.

Furthermore, for m1 ∈ [mcs
1 ,m

sc
1 ] and for any strategy π that is not defined by (6.8) and

(6.9) the point m is no stationary point given Qπ(·): If g(m1,m2) ≤ 0, then

π2,change < −g(m1,m2)
m1

m2

(6.11)⇒ π1,change < 0
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and if g(m1,m2) ≥ 0, then

π2,change >
(1− g(m1,m2))m1

m2

(6.11)⇒ π1,change > 1.

If m1 > msc
1 , then by (6.4) it holds that m2 < msc

2 , which yields

π1,change
(6.11)
= g(m1,m2) + π2,change

m2

m1

< g(msc
1 ,m

sc
2 ) + π2,change

msc
2

msc
1

≤ 0,

which implies that we cannot find any strategy, which yields that m is a stationary point
given Qπ(·). Similarly, if m1 < mcs

1 , then m2 > mcs
2 , which yields that

π1,change
(6.11)
= g(m1,m2) + π2,change

m2

m1

> g(mcs
1 ,m

cs
2 ) + π2,change

mcs
2

mcs
1

≥ 1,

which implies that we cannot find any strategy, which yields that m is a stationary point
given Qπ(·).

As a final preparation we prove the following lemma:

Lemma 6.3. There is no stationary mean field equilibrium in Opt({change}× {stay}).

Proof. All points in the optimality set Opt({change} × {stay}) satisfy

1

c
m2 +

1− c
ce

(β + ε+ 2λ) < m1,

which especially means that m2 < m1. However, by Theorem 5.11 the stationary point
x{change}×{stay}(m) of Q{change}×{stay}(m) is the normalized vector λem2 + λε

λem1 + 2bλ+ λε
ebm2 + e2m1m2 + bε+ em1ε+ em2ε+ ε2

 ,

which especially satisfies that m1 > m2 implies x
{change}×{stay}
1 (m) < x

{change}×{stay}
2 (m).

Thus, there is no fixed point of x{change}×{stay}(·) in Opt({change} × {stay}).

With this lemma we completely characterize the set of all mean field equilibria: For this it
is central to investigate at which points the linear function m2 7→ m1 := 1

c
m2 + 1−c

c
β+ε+2λ

e

and the implicit curve defined by

{(m1,m2) ∈ [0, ȳ]2 : f(m1) = −f(m2)}, (6.12)
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where f : R→ R is defined by (6.6), intersect. Since f(·) is increasing on [0, 1], the curve
is decreasing in m2 on [0, 1]. Since at the same time the linear function is increasing in
m2, the curve and the linear function intersect at most once in [0, 1].

Furthermore, we obtain that the point of intersection z = (z1, z2) satisfies z2 ≤ y1, with
y1 being defined as the positive root of f(·) (see equation (6.7)). Indeed, the function
c 7→ 1

c
m2 + 1−c

c
β+ε+2λ

e
is decreasing in c on (0, 1] because

∂

∂c

(
1

c
m2 +

1− c
c

β + ε+ 2λ

e

)
= − 1

c2

(
m2 +

β + ε+ 2λ

e

)
< 0.

Therefore, the linear functions m2 7→ 1
c
m2 + 1−c

c
β+ε+2λ

e
, c ∈ (0, 1), dominate m2 7→ m2.

Thus, z2 ≤ y1 and z1 ≥ y1 > mcs
1 .

If z1 < msc
1 , then by Lemma 6.2 there are infinitely many randomized equilibria and msc

is not an equilibrium. Indeed, z2 > msc
2 by (6.5) and this yields

msc
1 > z1 =

1

c
z2 +

1− c
c

β + ε+ 2λ

e
>

1

c
msc

2 +
1− c
c

β + ε+ 2λ

e
,

which shows that msc does not lie in Opt({stay} × {change}). If z1 ≥ msc
1 , then msc ∈

Opt({stay} × {change}) is by Lemma 6.2 the only mean field equilibrium.

Let us illustrate this method for four different parameter sets that cover all cases that
are structurally different. For this we plot the necessary functions in the Figures 6.2 -
6.5 as follows: The implicit curve defined by (6.12) is plotted in red. The implicit curve
describing the third equation that a stationary point given the strategy {change}×{stay}
has to satisfy besides 1 = m1 +m2 +m3 and the equation derived from the cut criterion
is given by (6.11) with π1,change = 1 and π2,change = 0 and is plotted in green. Similarly,
the implicit curve given by the third equation that a stationary point given the strategy
{stay}×{change} has to satisfy besides 1 = m1+m2+m3 and the equation derived from
the cut criterion is given by (6.11) with π1,change = 0 and π2,change = 1 and is plotted in
blue. The black line collects all those points for which both strategies {change}×{stay}
and {stay} × {change} are optimal, which is given by m1 = 1

c
m2 + (1−c)

ce
(β + ε+ 2λ).

From the previous discussion, we note that we are in the first place interested whether
the m1-value of the intersection of the black line and the red curve lie before or after
the m1-value of the intersection of the red and the blue curve because this yields the
number and position of the equilibria.

Consider the following numerical example: Let λ = 0.5, e = 0.4, b = 0.7, β = 0.8 and
ε = 0.01. We will vary c in order to obtain all the cases that can occur. First, let
c = 0.80 and consider the plot in Figure 6.2. The black line does not intersect [0, 1]2,
which yields that there is no mean field equilibrium with a mixed equilibrium strategy,
instead we obtain that (msc, {stay}×{change}) is the unique mean field equilibrium.
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Second, let c = 0.84 and consider the plot in Figure 6.3. Here we obtain that the black
line intersects [0, 1]2, but does not intersect the red curve, which again yields that there
is no mean field equilibrium with a mixed equilibrium strategy, instead we obtain that
(msc, {stay} × {change}) is the unique mean field equilibrium.

Third, let c = 0.88, the plot in Figure 6.4 reveals that there is an intersection of the red
and the black line in [0, 1]2 and that the point of intersection satisfies z1 < msc

1 , where
the latter coordinate is given by the intersection of the blue curve and the black line.
Thus, we again obtain that there is a unique stationary mean field equilibrium with
equilibrium distribution mcs and equilibrium strategy {stay} × {change}.

Finally, let c = 0.92, we see in the plot in Figure 6.5 that there is an intersection of
the red and the black line in [0, 1]2 and that the point of intersection satisfies z1 > msc

1 ,
where the latter coordinate is again given by the intersection of the blue curve and the
black line. Thus, we obtain that there are infinitely many stationary equilibria with
equilibrium distribution (z1, z2), where the equilibrium strategies are given by (6.8) and
(6.9).

Figure 6.2.: The plot for the case c = 0.80.
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Figure 6.3.: The plot for the case c = 0.84.

Figure 6.4.: The plot for the case c = 0.88.
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Figure 6.5.: The plot for the case c = 0.92.
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7. Stability with Respect to Model
Perturbations

In this chapter we study whether stationary mean field equilibria are stable against slight
perturbations of the model. This is a classical question in the context of normal form
games (van Damme (1991)) and has recently been discussed also for Markov perfect
equilibria of dynamic stochastic games (Doraszelski and Escobar (2010)). However, up
to the knowledge of the author, such investigations have not been performed for mean
field games. The closest stability discussions for diffusion-based models are presented in
Guéant (2009b) where perturbations of the initial and terminal conditions are considered.
For other stability considerations we can only cite Adlakha and Johari (2013) and Light
and Weintraub (2018) where comparative statics results for oblivious equilibria for a
parameter for which the transition probabilities (and payoffs) are monotonic have been
considered.

We will first define the concept of essential equilibria for mean field games in a way
similar to the definitions for Nash equilibria of normal form games (Wen-Tsün and Jia-
He, 1962) and for Markov perfect equilibria of dynamic stochastic games (Doraszelski and
Escobar, 2010). Furthermore, we introduce the notion of strongly stable equilibria in a
similar fashion as Kojima et al. (1985). As we have seen in Chapter 5, finding stationary
mean field equilibria consists of two steps, namely the optimal control problem and
the fixed point problem. Thus, we will also first analyse the two problems individually
and, thereafter, draw the conclusions regarding the stability of stationary mean field
equilibria.

The main results are the following: We will see that there is a close relation of the
stability of stationary points of the dynamics and essential fixed points. Since there are
only partial characterization results for essential fixed points, it is clear that we do not
obtain a simple full characterization of all those dynamics with only essential stationary
points. However, we still obtain several characterization results similar to those for
essential fixed points. With respect to the stability of equilibria, we obtain that equilibria
are not stable whenever we randomize over more than two deterministic strategies or
whenever the deterministic equilibrium strategy is not the unique optimal strategy for
the equilibrium distribution. If the deterministic equilibrium strategy is the unique
optimal strategy and if the distribution is an essential stationary point of the dynamics,
then the equilibrium is essential. For equilibria that have an equilibrium strategy that
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is a convex combination of two deterministic strategies we show that they are essential
if we face constant irreducible dynamics and furthermore in any neighbourhood of the
equilibrium distribution we find two points such that each of the two deterministic
strategies is the unique optimal strategies for one of them point. Strong stability is only
possible if we restrict our attention to the class of games with constant dynamics, which
means that we allow only for perturbed games with constant dynamics. Furthermore,
we will show that the set of all games of which all stationary equilibria are essential is
a residual subset of the set of all games. This means that essentiality is a (topological)
generic property.

In Section 7.1 we will set up the notation and introduce the relevant notions. Thereafter,
in Section 7.2 we will first analyse the stability of the stationary points of the dynamics
and in Section 7.3 we will discuss how optimality sets change under small perturbations.
In Section 7.4 we will then put the results together and derive the statements regarding
essential and strongly stable equilibria. Finally, in Section 7.5 we discuss to what extend
essentiality is a generic property.

7.1. Definitions and Notation

The notion of essential equilibria has been introduced in Wen-Tsün and Jia-He (1962).
It originally addresses the question whether an equilibrium is stable to slight payoff
perturbations by calling an equilibrium φ of a game G essential if any game that is
near G (with respect to some metric) has an equilibrium near φ (with respect to some
metric). As mentioned in Doraszelski and Escobar (2010) this question is becoming
more and more important as nowadays many models are estimated using econometric
techniques and, thus, the estimated game characteristics will be erroneous. Therefore,
it is central to understand whether equilibria “vanish” under small perturbations.

In van Damme (1991) the case of normal form games is discussed. For given fixed action
sets the game is then identified by a vector in Rn·m collecting the payoffs of all n player
given each of the m action profiles. Similarly, equilibria can be identified as vectors in∏n

i=1P(Ai) with Ai being the action sets of all players. To make the notion of closeness
precise we equip Rn·m and Rm, respectively, with the standard topology. Also in the
context of Markov perfect equilibria in stochastic dynamic games the games and the
equilibria are identified by vectors in Rn (Doraszelski and Escobar, 2010). The only
difference is that the vectors describing the game now collect rewards, discount factors
(which might differ among individuals in their model) and transition rates. In both
settings, an equilibrium φ of a game G is essential if for any ε > 0 there exists a δ > 0
such that all games G′ in the δ-neighbourhood Nδ(G) of G have an equilibrium in the
ε-neighbourhood Nε(φ) of φ.
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The concept of essential equilibria has been refined by Kojima et al. (1985) and has also
been formulated for Markov perfect equilibria in stochastic dynamic games in Doraszelski
and Escobar (2010). Instead of just requiring that an equilibrium does not vanish under
a small perturbation it is now required that the equilibrium “changes continuously and
uniquely for any small perturbation to payoff functions of players” (Kojima et al., 1985,
p.650). This equilibrium concept is motivated from the desire not only to know that
an equilibrium will be sustained given small perturbations, but also to know whether
bifurcation happens or not. Moreover, for strongly stable equilibria we can understand
the effects of small parameter changes on the equilibria, which allows for comparative
statics analysis. Formally an equilibrium φ of a normal form game G is strongly stable
if there exist neighbourhoods U of G and V of φ such that

• for all G′ ∈ U exactly one equilibrium of G′ lies in the set V ,

• the mapping s : U → V that maps to each game G′ the unique equilibrium in V
is continuous.

In our setting given fixed sets of states and actions, the game is described not only by
the rewards, but also by the transition rate matrices. Thus, there are two sources for
perturbations: Both transition rate matrices and reward functions can be inaccurate.
From the economic motivation that essential equilibria should be stable against slight
errors in model set-up/estimation, we allow simultaneous perturbations of both, the
transition rate matrices and the rewards. A difficulty compared to the case of normal
form games/Markov perfect equilibria, is that instead of reward vectors, the transition
rate matrices and the rewards are functions. Formally, we define essential and strongly
stable equilibria as follows:

Fix S, A and β for the rest of the chapter. We remark that we could also allow for
perturbations in β and the results could also be formulated in this setting, but this
would increase the complexity of the considered problem without yielding any additional
insights.

Let G be the set of all games described in Chapter 3 and denote a particular game as a
pair (Q, r). These games satisfy, as described in Chapter 3, thatQ(·) = ((Qija(·))i,j∈S)a∈A
is a Lipschitz continuous family of functions that satisfy for all a ∈ A and m ∈ P(S),
that the matrix Q··a(m) is a generator and r(·) is a function in C(P(S),RS×A). We equip
G with the following metric

d((Q, r), (Q′, r′)) = sup
i,j∈S,a∈A,m∈P(S)

|Qija(m)−Q′ija(m)|+ sup
i∈S,a∈A,m∈P(S)

|ria(m)− r′ia(m)|,

although other choices might be possible (and do not necessarily yield to equivalent
results). Our choice simplifies computations at some steps due to its close relation to
the maximum norm. Moreover, it is sensible in the light of quantifying errors in model
prediction. We emphasize that we denote by d the distance of two games as well as
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a deterministic strategy. However, it will always be clear from the context what d
represents at that point.

Any stationary equilibrium (m,π) lies in the candidate set P(S) × P(A)S, which is a
subset of RS(1+A) and which we equip with the maximum norm. Furthermore, we define
the map SMFE : G → 2P(S)×P(A)S as the map that maps every game (Q, r) to the set of
all stationary mean field equilibria.

In order to define and analyse essential and strongly stable equilibria, we introduce the
following general notation for an arbitrary metric space (X, d): For A ⊆ X, ε > 0 we
define the set

Nε(A) = {x ∈ X|∃y ∈ A : d(x, y) < ε},

consisting of all points x ∈ X that have a distance less than ε from some point in A.
Moreover, for A,B ⊆ X we define the Hausdorff metric

H(A,B) := inf{ε > 0 : A ⊆ Nε(B) and B ⊆ Nε(A)}

on the space 2X . With these preparations we are able to define the central notions of
this chapter:

Definition 7.1. Let (m,π) be a stationary mean field equilibrium of the game (Q, r).
We say that (m,π) is essential if for every ε > 0 there exists a δ > 0 such that for all
games (Q′, r′) ∈ Nδ(Q, r) we have (m,π) ∈ Nε(SMFE(Q′, r′)), which means that there
is a stationary mean field equilibrium of (Q′, r′) that lies in Nε(m,π).

Definition 7.2. We say that a stationary mean field equilibrium (m,π) of a game (Q, r)
is strongly stable if there is a neighbourhood U of (Q, r) and a neighbourhood V of (m,π)
such that

• |SMFE(Q′, r′) ∩ V | = 1 for all (Q′, r′) ∈ U ,

• the mapping s : U → V defined by {s(Q′, r′)} = SMFE(Q′, r′) ∩ V is continuous.

We remark that, as in the theory of normal form games (Corollary 2.4.5 in van Damme
(1991)), a strongly stable equilibrium is automatically essential.

In economic applications there might be some knowledge regarding the considered mod-
els, for example one might know that one faces constant dynamics or that the recurrence
classes are fixed. In this case we sometimes consider the question whether equilibria of
games (Q, r) in some set G̃ ⊆ G are essential (strongly stable) with respect to changes
(Q′, r′) ∈ Nδ(Q, r)∩ G̃. In this case we say that an equilibrium (m,π) of (Q, r) is essen-
tial (strongly stable) in G̃. In particular, we will consider the set of games where Q(·) is
constant in m and, moreover, irreducible for all d ∈ Ds, which we will denote by Gci.
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7.2. Essential Stationary Points of the Dynamics

In this section we analyse what happens to stationary points given a transition rate
matrix function Q(·), which are exactly the solutions of 0 = mTQ(m), under small
perturbations. In order to simplify notation, we introduce the space TR of all standard
transition rate matrix functions, which are all those functions Q : P(S) → RS×S such
that Q(m) is a generator matrix for all m ∈ P(S) and Qij(·) is Lipschitz continuous for
all i, j ∈ S. Moreover, we equip the space TR with the metric

d̂(Q,Q′) = sup
i,j∈S,m∈P(S)

|Qij(m)−Q′ij(m)|.

We can characterize stationary points given Q(·) equivalently as the fixed points of the
map x(·) : P(S) → 2P(S) that maps to every m the set of all stationary points of the
dynamics given Q(m), which are the solutions of 0 = xTQ(m). By Iosifescu (1980,
Theorem 5.3) this map has non-empty and convex values, and by continuity of Qij(·) it
has a closed graph. Thus, by Kakutani’s fixed point theorem (Lemma 4.15) such a map
has a fixed point, which is in turn a stationary point of the dynamics given Q(·).

Let m be a stationary point given Q(·). We say that m is an essential stationary point
of the dynamics Q(·) if for all ε > 0 there is a δ > 0 such that for all Q′ ∈ Nδ(Q) there
is a stationary point given Q′(·) in Nε(m). We say that m is a strongly stable stationary
point of the dynamics Q(·) if the map STAT : TR → 2P(S), which maps Q(·) ∈ TR to
the set of stationary points given Q(·), satisfies for a neighbourhood U of Q(·) and a
neighbourhood V of m that

• |STAT(Q′) ∩ V | = 1 for all Q′ ∈ U ,

• the function s : U → V given by {s(Q′)} = STAT (Q′) ∩ V is continuous.

In general, we cannot hope for a full characterization of all those maps of which all
or some of the stationary points of the dynamics are essential. The reason is that
finding stationary points of the dynamics is closely linked to finding essential fixed
points and that characterizing essential fixed points is hard. Indeed, Del Prete et al.
(1999) characterize essential fixed points and maps on the space [0, 1]. However, similar
characterizations for more complex spaces like [0, 1]n, n > 1 are, up to the knowledge
of the author, still open. Thus, also this section only collects partial results. More
precisely, we will obtain the following:

We will first assume that Q(m) is irreducible for all m ∈ P(S) and show that whenever
the map x(·) has an essential fixed point m in the sense of Fort (1950), then this point
is also an essential point of the dynamics given Q(·). We use this to apply the known
characterizations of essential fixed points to obtain criteria for essential stationary points
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given irreducible dynamics. We obtain that the unique stationary point given a transi-
tion rate matrix function that satisfies the irreducibility assumption and has only one
stationary point is essential. Moreover, we obtain that at least one stationary point
given a transition rate matrix function that satisfies the irreducibility assumption and
has a totally disconnected set of stationary points is essential.

As a second step we will show for general dynamics that the set of all transition rate
matrices for which all stationary points are essential is residual in TR. This shows that
there are “many” transition rate matrix functions with only essential stationary points.
Moreover, we obtain that any transition rate matrix function can be approximated
arbitrarily close by a transition rate matrix function with only essential stationary points.
Furthermore, we obtain as corollary of the proof that the stationary point given any (also
reducible) transition rate matrix function with exactly one stationary point is essential.

The third part of the section is devoted to analysing constant transition rates: We first
show that any stationary point of the dynamics given a constant transition rate matrix
with more than one recurrence class is not essential. However, if the perturbations yield
the same recurrence classes, then the stationary points will again be essential. Finally,
we prove that if the transition rate matrix is irreducible then the stationary point of
the dynamics is even strongly stable in the class of all constant transition rate matrices.
Moreover, we provide an example showing that this does not hold for the class of all
transition rate matrix functions.

7.2.1. Relation to Essential Fixed Points

In this subsection we assume that Q(m) is irreducible for all m ∈ P(S) and prove that
essential fixed points of x(·) are indeed essential stationary points of the dynamics Q(·).
Afterwards we establish easy to verify criteria for essential stationary points.

The notion of essential fixed points has been introduced in Fort (1950): Let (X, d)
be a compact metric space such that every continuous mapping from X into X has a
fixed point. Equip the set C(X,X) of all continuous functions from X into X with the
metric

ρ(f, g) = sup
x∈X

d(f(x), g(x)).

We say that x is an essential fixed point of f if for each neighbourhood U of x there is
an δ > 0 such that any g ∈ C(X,X) satisfying ρ(f, g) < δ has a fixed point in U .

With these definitions we formulate the desired result:

Theorem 7.3. Let Q(·) ∈ TR. Assume that Q(m) is irreducible for all m ∈ P(S)
and assume that m is an essential fixed point of the map x(·), then m is an essential
stationary point of the dynamics Q(·).
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We want to prove that given any ε > 0 there is a δ > 0 such that for all Q′ ∈ Nδ(Q)
there is a stationary point given Q′(·) in Nε(m). Since m itself is an essential fixed point
of x(·), there is some δ̃ > 0 such that whenever ρ(x, x′) < δ̃ a fixed point of x′(·) lies
in Nε(m). Thus, we aim to find a δ > 0 such that Q′ ∈ Nδ(Q) implies ρ(x, x′) < δ̃.
The proof of this statement relies on the fact that whenever Q(m) is irreducible for all
m ∈ P(S) then we can compute the stationary distribution given Q(m) as the unique
solution of

Q̃(m)x(m) = (0, . . . , 0, 1)T

with Q̃(m) being the matrix Q(m)T , where the last row is replaced by (1, . . . , 1) (see
Lemma 5.9). This and the following theorem from numerical linear algebra found in
Wendland (2018, Theorem 2.43) then yields the desired result:

Lemma 7.4. Denote by || · || the maximum norm on Rn as well as the associated matrix
norm, which is the row sum norm. Let A ∈ Rn×n be an invertible matrix, ∆A ∈ Rn×n

be a perturbation matrix that satisfies ||A−1||||∆A|| < 1 and let b,∆b ∈ Rn be vectors
with b 6= 0. Then the estimate

||∆x||
||x||

≤ κ(A)

(
1− κ(A)

||∆A||
||A||

)−1( ||∆b||
||b||

+
||∆A||
||A||

)
holds, where κ(A) := ||A|| · ||A−1|| is the conditioning number of the matrix A.

Proof of Theorem 7.3 . As explained before we have to find for any δ̃ > 0 an δ > 0 such
that Q′ ∈ Nδ(Q) implies ρ(x, x′) < δ̃.

We start with some preliminary observations:

• Sd̂(Q,Q′) ≥ ||Q(m)−Q′(m)|| for all m ∈ P(S) since

d̂(Q,Q′) = sup
m∈P(S)

max
i,j∈S
|Qij(m)−Q′ij(m)| ≥ sup

m∈P(S),i∈S

1

S

S∑
j=1

|Qij(m)−Q′ij(m)|

= sup
m∈P(S)

1

S
||Q(m)−Q′(m)||.

• infm∈P(S) ||Q̃(m)|| =: L1 > 0 as Q̃(m) is an invertible matrix for all m ∈ P(S) (see
Lemma 5.9) and the set P(S) is compact.

• ||x(m)|| ≤ 1 for all m ∈ P(S) as x(m) ∈ P(S).

• supm∈P(S) κ(Q̃(m)) =: L2 <∞ since

sup
m∈P(S)

κ(Q̃(m)) ≤ sup
m∈P(S)

||Q̃(m)|| · sup
m∈P(S)

||(Q̃(m))−1|| =: L2,
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where the finiteness of L2 follows from the fact that P(S) is compact, || · || as well
as (·)−1 are continuous functions and Q̃(m) is invertible for all m ∈ P(S) (see
Lemma 5.9).

Let

0 < δ < min

{
1

2S||(Q̃(m))−1||
,
δ̃L1

2SL2

}
(7.1)

and choose Q′ ∈ Nδ(Q), then(
1− κ(Q̃(m))

||Q̃(m)− (Q̃′)(m)||
||Q̃(m)||

)−1

=
(

1− ||(Q̃(m))−1|| · ||Q̃(m)− Q̃′(m)||
)−1

<

(
1− ||(Q̃(m))−1|| · 1

2||(Q̃(m))−1||

)−1

=

(
1− 1

2

)−1

= 2.

Furthermore, since x(m) is the unique solution of

Q̃(m)x(m) = (0, . . . , 0, 1)T ,

and δ < 1
2S||(Q̃(m))−1|| holds, we can compute the difference between x(·) and x′(·) by

using Lemma 7.4:

||x(m)− x′(m)|| ≤ ||x(m)||κ(Q̃(m))

(
1− κ(Q̃(m))

||Q̃(m)− Q̃′(m)||
||Q̃(m)||

)−1

· ||Q̃(m)− Q̃′(m)||
||Q̃(m)||

≤ 1 · L2 · 2 ·
Sd̂(Q,Q′)

L1

=
2SL2

L1

d̂(Q,Q′) ≤ δ̃.

Fort (1950) provides some results to characterize essential fixed points, which by the
previous result carry over to our setting: Namely, Theorem 2 in Fort (1950) states that
for any map with a single fixed point this point is essential. Theorem 3 in Fort (1950)
states that for any space X that is additionally an n-dimensional manifold either with or
without a boundary and any function f whose set of fixed points is totally disconnected
(that is the connected components are one-point sets) has at least one essential fixed
point. In our case, this together with the fact that if m is a fixed point of x(·) then m
is a stationary point given Q(·) yields the following corollaries:
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Corollary 7.5. Let Q(·) ∈ TR. Assume that Q(m) is irreducible for any m ∈ P(S) and
assume further that there is only one stationary point given the dynamics Q(·). Then
this point is an essential stationary point.

Corollary 7.6. Let Q(·) ∈ TR. Assume that Q(m) is irreducible for any m ∈ P(S)
and assume further that the set of stationary points of dynamics is totally disconnected.
Then at least one stationary point of the dynamics is an essential stationary point.

Example. In the two examples with irreducible dynamics presented in Chapter 6 we
directly obtain that several stationary points are essential: In the consumer choice model
of Section 6.1 we obtain that the stationary point given any transition rate Qπ is essential
since given constant dynamics with an irreducible transition rate matrix we always have
a unique fixed point. In the consumer choice model of Section 6.3 we obtain that the
unique stationary points given the strategies {stay} × {change} and {change} × {stay}
are essential. Furthermore, we can show that given any other strategy π any equilibrium
candidates has to be a zero of a fourth order polynomial, which means that the set of
all stationary points is totally disconnected. Thus, there is an essential stationary point
given Qπ(·). 4
Remark 7.7. The notion of essential fixed points has also been introduced for set-valued
maps (see Jia-He (1962)), where the the metric ρ is replaced with

ρ(f, g) = sup
x∈X

H(f(x), g(x)).

We remark that it is no longer possible to consider the set of all upper semi-continuous
set-valued maps with non-empty, compact values on a compact space X because not all
maps in this set have a fixed point. Thus, one restricts to the set C̃ of all maps with at
least one fixed point and defines essential fixed points as those points x for which any
perturbation in C̃ has a fixed point close to m.

However, we cannot directly prove that any essential fixed point of x(·) is also an essential
stationary point of the dynamics since it is no longer true that for any δ̃ > 0 there is a
δ > 0 such that if d̂(Q,Q′) < δ then ρ(x, x′) < δ̃: Assume that Q is a generator with
two recurrence classes, and let i be an element of the first recurrence class and j be an
element of the second recurrence class. Then Q′ = Q+A with A being the matrix with
the following non-zero entries Aii = Ajj = −δ and Aij = Aji = δ is a slight perturbation
of Q and has a unique stationary point. As Q itself has infinitely many stationary points
that form a convex set, the maximum distance of stationary points given Q and Q′ will
be uniformly (in δ) bounded from below. Thus, for small enough δ̃ > 0 the statement
will not be true.

Nonetheless, a result similar to Theorem 7.3 would not be helpful in any case. Indeed,
the only characterization result for essential fixed points of set-valued maps is that a
unique fixed point is an essential fixed point. However, this is a corollary of the main
theorem of the next subsection. 4
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7.2.2. Having Essential Stationary Points of the Dynamics is a
Generic Property

Although finding essential stationary points of the dynamics is difficult and we cannot
characterize many of them, we will prove that having only essential stationary points of
the dynamics is a generic property in the topological sense. More precisely, we prove that
the set of all Q(·) ∈ TR having only essential stationary points is a residual set, which
is a countable intersection of sets with a dense interior. Moreover, we obtain that the
set is dense, which means that for any transition rate matrix function we find arbitrarily
close transition rate matrix functions with only essential stationary points. The proof
moreover yields as a corollary that every unique stationary point is essential.

Theorem 7.8. The set of all transition rate matrices Q(·) for which all stationary points
of the dynamics given Q(·) are essential is a residual set in the set of all transition rate
matrix functions TR. In particular, this set lies dense in the set of all transition rate
matrix functions TR.

The statement is similar to Theorem 1 in Fort (1950), which states that the set of
functions with only essential fixed points is dense in C(X,X), and to Theorem 1 in Jia-
He (1962), which states that the set of set-valued maps with only essential stationary
points is dense in C̃. However, we cannot apply these result to prove our statement
directly since we cannot establish a sensible relation between x(·) and Q(·). We will
rather rely on similar ideas as used in Fort (1950). More precisely, our proof will work
as follows: Let STAT : TR → 2P(S) be the map that maps Q(·) to the stationary
points of the dynamics (which in turn are the fixed points of x(·)). Then, we show that
STAT(·) is upper semi-continuous (in a similar fashion to Wehausen (1945)) and that
each stationary point of Q(·) is essential if and only if Q(·) is a point of continuity (with
respect to the metric H(·, ·)) of STAT(·). Thereafter, we apply a theorem found in Fort
(1949), which states the set of all points of continuity indeed forms a Gδ-residual set,
which is a countable intersection of dense open sets. By Baire’s Theorem (Kelley, 1955,
p.200-201) this set is dense.

Proof of Theorem 7.8. We will follow the previously sketched programme by first show-
ing that the function STAT(·) is upper semi-continuous: Let Q(·) ∈ TR and ε > 0. We
want to find a δ > 0 such that for all Q′(·) ∈ TR that satisfy d̂(Q,Q′) < δ we have
STAT(Q′) ⊆ Nε(STAT(Q)).

Assume by way of contradiction that such a δ > 0 does not exist. In this case we find
sequences (Qn)n∈N and (mn)n∈N such that for all n ∈ N

• d̂(Qn, Q) < 1
n
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• mn ∈ STAT(Qn) because there is a fixed point of xn(·) by Kakutani’s fixed point
theorem (Lemma 4.15) (the map xn(·) is a set-valued map with non-empty, com-
pact and convex values and a closed graph),

• mn /∈ Nε(STAT(Q)).

Since (mn)n∈N is a sequence in the compact space P(S), it has a converging subsequence
(mnk)k∈N. Denote its limit by m. As Qn(·) converges uniformly to Q(·) we obtain that∑

i∈S

Qnk
ij (mnk)mnk

i = 0 ∀j ∈ S, k ∈ N⇒
∑
i∈S

Qij(m)mi = 0 ∀j ∈ S, (7.2)

which yields that m ∈ STAT(Q). At the same time m /∈ Nε(STAT(Q)) because it is
the limit of a subsequence of (mnk) that, by construction, completely lies in the closed
set P(S) \ Nε(STAT(Q)), a contraction. Thus, the set-valued map STAT(·) is upper
semi-continuous.

As a second step we show that each stationary point given Q(·) ∈ TR is essential if
and only if Q(·) is a point of continuity of STAT(·) with respect to the metric H(·, ·):
Assume that each stationary point given Q(·) is essential. Let ε > 0. Since all fixed
points are essential, we find for each m ∈ STAT(Q) a neighbourhood Vm of Q(·) such
that all Q′(·) ∈ Vm have a stationary point in the ε

2
neighbourhood of m.

We note that STAT(Q) is compact: Indeed, let (mn)n∈N be a sequence in STAT(Q) ⊆
P(S). Since P(S) is compact, we find a converging subsequence (mnk)k∈N with limit
m ∈ P(S). By continuity of Q(·) we obtain that

0 =
∑
i∈S

Qij(m
nk)mnk

i →
∑
i∈S

Qij(m)mi for all j ∈ S,

which yields that m ∈ STAT(Q). Thus, by compactness, there exists a finite set of
points {m1, . . . ,mn} ⊆ STAT(Q) such that each point in STAT(Q) lies within the ε

2

neighbourhood of one of the mk.

Let V =
⋂n
k=1 Vmk . Then Q′(·) ∈ V implies that STAT(Q) ⊆ Nε(STAT(Q′)). Indeed,

because Q′(·) has a stationary point at most ε
2

away from each of {m1, . . . ,mn} and
these points are at most ε

2
away from any other point in STAT(Q), we obtain by the

triangle inequality that each stationary point of the dynamics given Q(·) lies at most ε
away from some stationary point of the dynamics given Q′(·). Together with the first
part of the proof this implies that STAT(·) is continuous at Q(·).

Assume that STAT(·) is continuous at Q(·). Let m ∈ STAT(Q) and let ε > 0. We show
that there is a δ > 0 such that for all Q′ ∈ Nδ(Q) there is a stationary point of Q′(·) in
Nε(m). Since STAT(·) is continuous, we can choose δ > 0 such that d̂(Q,Q′) < δ implies
that H(STAT(Q), STAT(Q′)) < ε. This implies for all Q′ ∈ TR satisfying d̂(Q,Q′) < δ

103



that STAT(Q) ⊆ Nε(STAT(Q′)). Thus, there is a stationary point of the dynamics given
Q′(·) that lies in Nε(m), which means that m is essential.

The theorem found in Fort (1950, Section 7) states that the points of continuity of
any upper semi-continuous function F (·) ranging from a topological space to the power
set of a separable metric space equipped with metric H(·, ·) is a Gδ-residual set in the
topological space. This theorem yields that the set of all Q(·) for which all stationary
points of the dynamics are essential is a Gδ-residual set. Since TR is a closed subset
of a complete metric space (see Munkres (2014, §43)), we obtain by Baire’s Theorem
(Kelley, 1955, p.200) that this set is dense in TR.

The continuity properties of the map STAT(·) allow us, as in Fort (1950) and Jia-He
(1962), to generalize Corollary 7.5 for arbitrary (also reducible) transition rate matrix
functions Q(·) ∈ TR:

Lemma 7.9. Let Q(·) ∈ TR be such that there is exactly one stationary point given the
dynamics Q(·). Then this point is essential.

Proof. Let ε > 0. Since STAT(·) is upper semi-continuous we find a δ > 0 such that for
any Q′(·) ∈ Nδ(Q) we have STAT(Q′) ⊆ Nε(STAT(Q)). Since STAT(Q) is a singleton
and by Theorem 4.14 the set STAT(Q′) is non-empty, we obtain that STAT(Q) ⊆
Nε(STAT(Q′)). Thus, STAT(·) is continuous at Q(·), which in turn implies that the
unique stationary point given Q(·) is essential.

7.2.3. Essential Stationary Points in the Case of Constant
Dynamics

If we consider constant transition rate matrices the investigation of essential and strongly
stable stationary points in this class of games becomes simpler by using results for clas-
sical Markov chains. More precisely, we show that the stationary points given any
non-irreducible generator matrix are not essential even in the class of all games with
constant dynamics. If we only allow for perturbations that again yield constant dynam-
ics with the same recurrence classes, then we establish that all stationary points are
essential. Such restrictions might be sensible if we know the context of our model. The
stationary points given irreducible generator matrices are, as we have seen, essential.
Now, we furthermore prove that if we restrict the perturbations to those that yield an-
other constant dynamics generator matrix then these stationary points are even strongly
stable.

We start with the discussion of constant dynamics given by non-irreducible generator
matrices: Let Q be a transition rate matrix with r recurrence classes R1, . . . , Rr. Then
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by Iosifescu (1980, Theorem 5.3) any stationary distribution is a convex combination
of the unique stationary distributions given each recurrence class. Let us denote the
stationary distribution given recurrence class Ri by xRi . We remark that xRil is positive
if and only if l ∈ Ri. With these preparations we obtain:

Lemma 7.10. Let Q be any non-irreducible generator matrix. Then for any stationary
point x there is an ε > 0 such that for any δ > 0 there is a generator matrix Q′ such
that d(Q,Q′) < δ and for any stationary point x′ of Q′ we have d̂(x, x′) > ε.

Proof. Since Q is non-irreducible there are at least two recurrence classes R1 and R2.
Assume without loss of generality that there is some k ∈ R1 such that xk > 0. Let
i ∈ R1 and j ∈ R2 and consider Q′ = Q + A with A ∈ RS×S having the following non-
zero entries Aij = 1

2
δ and Aii = −1

2
δ. Then it holds that d̂(Q,Q′) = 1

2
δ. Furthermore,

any stationary distribution given Q′ assigns zero mass to any state from R1 since these
states are transient given Q′. Thus, the distance of any stationary point given Q′ and
x is at least maxk∈R1 xk, thus for ε = 1

2
maxk∈R1 xk we find a perturbation Q′ ∈ Nδ(Q)

such that there is no stationary point given Q′ that lies in Nε(x).

If we know that our model has constant dynamics with certain fixed recurrence classes,
that is we are only uncertain about the size of the non-zero transition rates, then we
obtain a positive result:

Lemma 7.11. Let Q be a non-irreducible generator matrix and let x be a stationary
point given Q. Then for any ε > 0 we find a δ > 0 such that any generator matrix Q′,
which has the same recurrence classes as Q and furthermore satisfies d̂(Q,Q′) < δ has
a stationary point in Nε(x).

Proof. Let R1, . . . , Rr be the recurrence classes of Q. Since the recurrence classes of Q′

are still R1, . . . , Rr, we obtain that any stationary point given Q′ is a convex combination
of the unique stationary points (x′)Ri for the distinct recurrence classesR1, . . . , Rr. These
stationary points are uniquely determined through the restriction of Q′ to Ri, which we
will denote by (Q′)Ri . Since by Corollary 7.5 the points xRi (i = 1, . . . , r) are essential,
we obtain that given ε > 0 there is a δi > 0 such that if (Q′)Ri ∈ Nδi(Q

Ri) then
(x′)Ri ∈ Nε(x

Ri). We set δ = mini=1,...,r δi and let Q′ ∈ Nδ(Q). Thus, we have that
(Q′)Ri ∈ Nδ(Q

Ri) ⊆ Nδi(Q
Ri).

We remind ourselves that the stationary point x can be written as x =
∑r

i=1 λix
Ri with

λi ≥ 0 for all i = 1, . . . , r and
∑r

i=1 λi = 1. Thus, we obtain for x′ =
∑r

i=1 λi(x
′)Ri that

d(x, x′) =

∣∣∣∣∣
∣∣∣∣∣
r∑
i=1

λix
Ri −

r∑
i=1

λi(x
′)Ri

∣∣∣∣∣
∣∣∣∣∣
∞

≤ max
k∈S

r∑
i=1

∣∣λi(xRik − (x′)Rik
∣∣
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=
r∑
i=1

λi max
k∈S

∣∣xRik − (x′)Rik
∣∣ < r∑

i=1

λiε = ε,

which yields that x′ ∈ Nε(x).

For irreducible constant dynamics we directly infer from Corollary 7.5 that the stationary
point of the dynamics is essential even in the larger class TR consisting of all standard
nonlinear generators. Moreover, we show that whenever we restrict our attention to
perturbations which again yield constant dynamics this point is indeed strongly stable:

Lemma 7.12. Let TRci be the set of all transition rate matrices that are irreducible.
Then the map STAT : TRci → P(S) which maps every irreducible transition rate matrix
Q to the unique stationary point given Q is continuous.

The proof relies on arguments presented in Heidergott et al. (2010a,b) to show that
if transition rate matrices depend continuously on a single real parameter then the
stationary distributions are also a continuous function of this parameter. The main tool
for the proof is an update formula, which allows to compute the stationary distribution
given an irreducible and positive recurrent generator matrix Q′ from the irreducible
and positive recurrent generator matrix Q as well as its stationary distribution x and
the deviation matrix D. We remark that in the case of finite state spaces, which we
consider here, any irreducible generator matrix is automatically positive recurrent. More
precisely, we have

X ′ = X +X ′(Q′ −Q)D (7.3)

with X and X ′ being the ergodic matrices given Q and Q′, respectively, which are the
matrices whose rows equal the unique stationary distribution. The matrix D is the
deviation matrix defined by

Dij =

∫ ∞
0

(pij(t)− xj)dt, i, j ∈ S

and it exists for finite state spaces (see Section 4 of Heidergott et al. (2010a)).

Proof. It suffices to prove that for any sequence of irreducible generator matrices (Qn)n∈N
converging to Q we also have that the stationary distributions xn given Qn converge to
the stationary distribution x given Q. Without loss of generality assume that

|Qn
ij −Qij| <

1

n
,

else we chose a suitable subsequence.

The update formula (7.3) can be rewritten as

Xn −X = Xn(Qn −Q)D = X(Qn −Q)D + (Xn −X)(Qn −Q)D.
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We show that the right-hand side converges to zero, which implies that the stationary
distributions also converge. More precisely, we show that the norm of the summands
converges to zero: We note that

|((Qn −Q)D)ij| ≤
∑
k∈S

|Qn
ik −Qik| · |Dkj| =

1

n

∑
k∈S

|Dkj| → 0,

which implies that |(X(Qn−Q)D)ij| → 0. This yields that ||X(Qn−Q)D|| → 0, which
in turn implies that X(Qn −Q)D → 0.

Similarly, we obtain that

|((Xn −X)(Qn −Q)D)ij| ≤ |(Xn(Qn −Q)D)ij|+ |(X(Qn −Q)D)ij|

≤
∑
l,k∈S

Xn
il · |Qn

lk −Qlk| · |Dkj|+
∑
l,k∈S

Xil · |Qn
lk −Qn

lk| · |Dkj|

=
1

n
Sxni

∑
k∈S

|Dkj|+
1

n
Sxi

∑
k∈S

|Dkj| ≤
2

n
S
∑
k∈S

|Dkj| → 0,

which also implies that (Xn−X)(Qn−Q)D converges to the zero matrix, which yields
the desired result.

Remark 7.13. In general it does not hold that stationary points given constant generators
are strongly stable in the class TR. This in particular means that strong stability is
indeed a stricter notion than essentiality. Indeed, the statement is intuitive if we remind
ourselves of the degrees of freedom we have for choosing the dynamics – we can basically
bend the dynamics as we like. To illustrate this consider

Q =

(
−1 1
1 −1

)
,

which yields that the unique stationary point given Q is (1
2
, 1

2
). When we perturb the

dynamics close to this point by a(m1) as follows

Q(m) =

(
−(1 + a(m1))2 (1 + a(m1))2

1 −1

)
,

the stationary point x(m) given m is given by(
1

1 + (1 + a(m1))2
,

(1 + a(m1))2

1 + (1 + a(m1)2)

)
.

If the stationary point given Q would be strongly stable then for some neighbourhood
Nδ(Q) of Q and some neighbourhood Nε(m) of m any function a(m1) such that Q′(·)
lies in Nδ(Q) should yield to a unique stationary point in Nε(m). However, it always
possible to construct perturbations that violate this:
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Figure 7.1.: A possible choice of x1(m1) that yields more than one stationary point of
the dynamics: The green circle depicts the ε-neighbourhood of m, the grey
vertical lines depict the corridor in which we can choose x(m). The red line
is one possible choice for x(m) and any intersection of this line with the
identity map is a stationary point of the dynamics. Whenever there is more
than one intersection in Nε(m) strong stability is violated.

Let δ, ε > 0 and choose δ̃ ∈ (0, 0.5) such that δ > 2δ̃
1
2
−δ̃ . Then choose a function x1(m1) as

in Figure 7.1. This function describes the unique stationary point given the transition
rate matrix function Q(m1) of the previously defined type with

a(m1) =

√
1

x1(m1)
− 1− 1.

However, the perturbed matrix Q′(·) is by choice of δ̃ at most δ > 0 away from Q and at
the same time there are three stationary points given Q′(·) in Nε(m). This shows that(

1
2
, 1

2

)
is not a strongly stable stationary point of Q. 4
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7.3. Changes of Optimality Sets given Slight

Perturbations

In this section, we analyse in how far the optimality of strategies changes under small
perturbations. We are mainly interested in two questions: First, under which conditions
can we ensure that a strategy d that is optimal for m is also optimal for m in a slightly
perturbed game (Q′, r′)? Second, under which conditions can we infer from the fact
that a strategy d is not optimal for m in the game (Q, r) that d is also not optimal for
the slightly perturbed game (Q′, r′)? We will provide general conditions such that the
desired properties hold and demonstrate why these conditions are indeed necessary for
such a result to hold.

The main tool for our investigations is the following lemma regarding the distance of the
expected discounted reward given the original game and the slightly perturbed game.
The proof relies on the fact that the expected discounted reward given a deterministic
stationary strategy d ∈ Ds and a population distribution m ∈ P(S) is the unique
solution V d(m) of

(βI −Qd(m))V d(m) = rd(m),

which allows us to use Lemma 7.4.

Lemma 7.14. Let (Q, r) ∈ G be a game and let γ > 0. Then there exists a δ > 0 such
that for all (Q′, r′) ∈ Nδ(Q, r) and all deterministic stationary strategies d ∈ Ds the
distance of the expected discounted reward given d at any point m ∈ P(S) in the game
(Q, r) and in the perturbed game (Q′, r′) is at most γ.

Proof. We assume without loss of generality that all reward vectors are positive: Assume
that this is not the case and consider new reward vectors r̄ia(m) = ria(m) + c, with

c =

(
− inf

m∈P(S),i∈S,a∈A
ria(m) + 1

)
.

Then the expected discounted reward for any deterministic stationary strategy d ∈ Ds

given (r̄ia(·))i∈S,a∈A is V d(·) + V̄ with V̄ = 1
β
c(1, . . . , 1)T . Indeed, since Qd(m) has row

sum zero and V̄ is a constant vector, we have

(βI −Qd(m))(V d(m) + V̄ ) = rd(m) + (βI −Qd(m))V̄

= rd(m) + c · (1, . . . , 1)T = r̄d(m),

which yields by Lemma 2.2 that V d(·) + V̄ is the expected discounted reward given
strategy d. Thus, the optimal strategies in the original game and the modified game
with rewards r̄ia(·) coincide. Therefore, also the games (Q, r) and (Q, r̄) have exactly
the same mean field equilibria.

109



Throughout this proof we denote by || · || the maximum norm on RS as well as the
associated matrix norm, which is the row sum norm.

Similar to the proof of Theorem 7.3 we have

||Qd(m)− (Q′)d(m)|| ≤ S · d((Q, r), (Q′, r′))

for all m ∈ P(S) since

d((Q, r), (Q′, r′)) ≥ sup
m∈P(S)

max
i,j∈S,a∈A

|Qija(m)−Q′ija(m)|

≥ sup
m∈P(S),d∈Ds

max
i∈S

1

S

S∑
j=1

|Qd
ij(m)− (Q′)dij(m)|

= sup
m∈P(S)

max
d∈Ds

1

S
||Qd(m)− (Q′)d(m)||.

Furthermore, we make the following preliminary observations:

• By Lemma 5.3 the matrix βI − Qd(m) is invertible for any m ∈ P(S), d ∈ Ds,
Qd(·) ∈ TR and β ∈ (0, 1). Thus, it holds that

||βI −Qd(m)|| > 0 and ||(βI −Qd(m)))−1|| > 0

for all d ∈ Ds, Qd(·) ∈ TR, m ∈ P(S) and β ∈ (0, 1). Since the norm is a
continuous mapping and P(S) is compact, we note that there are uniform (in
m ∈ P(S)) upper and lower bounds for both of these terms and that the lower
bounds are strictly positive. Since the set of deterministic strategies is finite, we
note that there are also uniform upper/lower bounds in m ∈ P(S) and d ∈ Ds

simultaneously, where again the lower bounds are strictly positive. For future use
let us write

L1 := inf
m∈P(S),d∈Ds

||βI −Qd(m)|| > 0.

• Using that there are uniform upper bounds (in m and d) for ||βI − Qd(m)|| and
||(βI −Qd(m))−1|| we obtain for the conditioning number:

sup
m∈P(S),d∈Ds

κ(βI −Qd(m))

= sup
m∈P(S),d∈Ds

||βI −Qd(m)|| · ||(βI −Qd(m))−1||

≤

(
sup

m∈P(S),d∈Ds
||βI −Qd(m)||

)
·

(
sup

m∈P(S),d∈Ds
||(βI −Qd(m))−1||

)
=: L2 <∞.
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• Since rd(m) > 0 for all m ∈ P(S) and d ∈ Ds there is a strictly positive uniform
lower bound of ||rd(m)||, which we will call L3.

• Moreover, since for all d ∈ Ds the function V d(·) is continuous with compact
domain (see Lemma 5.3) and || · || is also a continuous mapping, we obtain from
(3.1) that ||V d(m)|| has a finite uniform upper and lower bounds in m ∈ P(S) and
d ∈ Ds. Since rd(m) > 0 for all m ∈ P(S) we obtain by (3.1) that V d(m) > 0 for
all m ∈ P(S) and d ∈ Ds, which in total implies that

L4 := sup
m∈P(S),d∈Ds

||V d(m)|| > 0.

Let

0 < δ < min
d∈Ds

{
1

2S||(βI −Qd(m))−1||
,

γL1L3

2L2L4(SL3 + L1)

}
and let (Q′, r′) ∈ Nδ(Q, r). Then we obtain the following estimate(

1− κ(βI −Qd(m))
||Qd(m)− (Q′)d(m)||
||βI −Qd(m)||

)−1

=
(
1− ||βI −Qd(m))−1|| · ||Qd(m)− (Q′)d(m)||

)−1

≤
(

1− ||(βI −Qd(m))−1|| · 1

2||(βI −Qd(m))−1||

)−1

=

(
1− 1

2

)−1

= 2.

Using this and Lemma 7.4, we obtain for any d ∈ Ds and any m ∈ P(S) that the
distance of the expected discounted reward given d for the game (Q, r) (denoted by
V d(m)) and the expected discounted reward given d for the game (Q′, r′) (denoted by
(V ′)d(m)) satisfies:

||(V ′)d(m)− V d(m)||

≤ ||V d(m)||κ(βI −Qd(m))

(
1− κ(βI −Qd(m))

||(Q′)d(m)−Qd(m)||
||βI −Qd(m)||

)−1

·
(
||(Q′)d(m)−Qd(m)||
||βI −Qd(m)||

+
||(r′)d(m)− rd(m)||

||rd(m)||

)
≤ L4 · L2 · 2 ·

(
||(Q′)d(m)−Qd(m)||

L1

+
||(r′)d(m)− rd(m)||

L3

)
≤ L4 · L2 · 2 ·

(
Sd((Q, r), (Q′, r′))

L1

+
d((Q, r), (Q′, r′))

L3

)
= d((Q, r), (Q′, r′)) · 2L2L4(SL3 + L1)

L1 · L3

≤ γ.
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Now we are able to answer the questions raised in the beginning of the section. We start
with a lemma stating under which conditions we can ensure that a strategy d that is
optimal for m given game (Q, r) is also optimal for m in any slightly perturbed game.
The condition that d is the unique optimal strategy for the point m is necessary for the
general statement to hold, as we will illustrate in an example after the proof. Under
this condition, we can even prove that d is the unique optimal strategy in any slightly
perturbed game for a neighbourhood of m.

Lemma 7.15. Let (Q, r) ∈ G be a game. Assume that d ∈ Ds is the unique optimal
deterministic strategy for m, that is D(m) = {d}. Then there is an ε > 0 such that for
all m′ ∈ Nε(m) we have D(m′) = {d}. Furthermore, for any such ε there is a δ > 0
such that for all (Q′, r′) ∈ Nδ(Q, r) and all m′ ∈ Nε(m) we have D′(m′) = {d}.

Proof. Since D(m) = {d} we have that V d(m) > V d̂(m) pointwise for all d̂ ∈ Ds \ {d}.
By continuity of V d(·) and V d̂(·) we furthermore find an ε > 0 such that

V d(m′) > V d̂(m′)

pointwise for all m′ ∈ Nε(m) and all d̂ ∈ Ds \ {d}. Since Nε(m) is compact, we have
that

inf
m′∈Nε(m)

||V d(m′)− V d̂(m′)|| = γ > 0.

By Lemma 7.14 we choose δ > 0 such that for all games (Q′, r′) ∈ Nδ(Q, r), all strategies
d̂ ∈ Ds and all m′ ∈ P(S) we have

||V d̂(m′)− (V ′)d̂(m′)|| < γ

3
.

With this it holds pointwise for d̂ ∈ Ds \ {d} and m′ ∈ Nε(m) that

(V ′)d(m′)− (V ′)d̂(m′) > V d(m′)− γ

3
1− V d̂(m′)− γ

3
1 = V d(m′)− V d̂(m′)− 2γ

3
> 0,

which yields that d is the only optimal strategy in the perturbed game for m′.

Remark 7.16. The assumption that d is the unique optimal strategy is necessary because
otherwise we cannot ensure that d is optimal under a small perturbation: Let us consider
two strategies d1 and d2 such that d1 is optimal for all points and d2 is optimal at exactly
one point m. For instance choose a game with Qd1

(·) = Qd2
(·) and rd

1
(·) to be constant

and rd
2
(·) such that its global maximum is attained at m and equals rd

1
(·). Then if we

would consider rd
2
(·)− δ instead of rd

2
(·), this would be a small perturbation such that

d2 is not optimal at m and, moreover, d2 is not optimal for any point close to m. 4

For the case that d is not optimal given m, we obtain a similar result. However, we do
not need to require any extra conditions. It suffices that d is not optimal at m to ensure
that it is not optimal in a neighbourhood of m for any slightly perturbed game.
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Lemma 7.17. Let (Q, r) ∈ G be a game. Assume that d ∈ Ds is not optimal for m, that
is d /∈ D(m). Then there is an ε > 0 such that for all m′ ∈ Nε(m) we have d /∈ D(m′).
Furthermore, for any such ε there is a δ > 0 such that for all (Q′, r′) ∈ Nδ(Q, r) and all
m′ ∈ Nε(m) we have d /∈ D′(m′).

Proof. Since d /∈ D(m) we have that V d(m) < V ∗(m) pointwise. By continuity of V d(·)
and V ∗(·) we furthermore find an ε > 0 such that

V d(m′) < V ∗(m′)

pointwise for all m′ ∈ Nε(m). Since Nε(m) is compact, we have that

inf
m′∈Nε(m)

||V d(m′)− V ∗(m′)|| = γ > 0.

By Lemma 7.14 we choose δ > 0 such that for all games (Q′, r′) ∈ Nδ(Q, r), all d̂ ∈ Ds

and all m′ ∈ P(S) we have

||V d̂(m′)− (V ′)d̂(m′)|| < γ

3
.

With this it holds pointwise for all games (Q′, r′) ∈ Nδ(Q, r), all strategies d̂ ∈ Ds and
all m′ ∈ Nε(m) that

(V ′)∗(m′)− (V ′)d(m′) > V ∗(m′)− γ

3
1− V d(m′)− γ

3
1 = V ∗(m′)− V d(m′)− 2γ

3
> 0,

which yields that d is not optimal in the perturbed game for m′.

7.4. Which Equilibria are Essential? Which

Equilibria are Strongly Stable?

This section discusses in detail for which classes of mean field games we can expect
essentiality and strong stability and provides examples and intuitions, why this is not
possible to obtain this for other classes. The main results are as follows: Deterministic
stationary mean field equilibria such that the equilibrium strategy is the unique optimal
strategy are essential if the equilibrium point is an essential stationary point of the
dynamics. They are moreover strongly stable in the class of all games with constant
dynamics if the generator is irreducible. Randomized mean field equilibria, where the
randomization happens only for two actions, and where the dynamics are given by
a constant irreducible generator are essential in the class of all games with constant
dynamics. For all other cases we provide counterexamples and intuitions that in general
it cannot be obtained that an equilibrium is essential or strongly stable.
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7.4.1. Equilibria with a Deterministic Equilibrium Strategy

We start with the positive result for equilibria with deterministic equilibrium strategy
and general dynamics:

Theorem 7.18. Let (Q, r) ∈ G be a game and let (m, d) be an equilibrium of (Q, r) such
that d ∈ Ds is the unique optimal deterministic strategy given m (that is D(m) = {d})
and m is an essential stationary point given Q(·). Then (m, d) is essential.

Proof. Since d is the unique optimal strategy given m there is an ε̄ such that for all
m′ ∈ Nε̄(m) we have D(m′) = {d}. Let ε ∈ (0, ε̄). By Lemma 7.15, we find a δ1 > 0
such that for any game (Q′, r′) ∈ Nδ1(m) and all m′ ∈ Nε(m) we have D(m′) = {d}.

Since m is an essential stationary point of the dynamics, there is a δ2 > 0 such that
for any (Q′, r′) ∈ Nδ2(Q, r) there is a stationary point of the dynamics given (Q′)d(·) in
Nε(m).

Choosing δ = min{δ1, δ2} yields that the strategy d is optimal in Nε(m) and furthermore
in this set lies a stationary point given (Q′)d(·), which is, by construction, a stationary
equilibrium given (Q′, r′).

Remark 7.19. It is important to assume that m is an essential stationary point of the dy-
namics given Q(·) since otherwise we can construct counterexamples (a counterexample
in the case of constant reducible dynamics can be found in Subsection 7.2.3). However,
also the condition that d is the unique optimal strategy is necessary. Indeed, we cannot
ensure without this assumption that the strategy d remains optimal (see also Section
7.3): Consider the consumer choice model presented in Section 6.1 with parameters such
that k1 < ε/(b + ε) and k2 = b/(b + ε). The point m = (b/(b + ε), ε/(b + ε)) together
with the strategy {stay}×{change} is an equilibrium, but the strategy {stay}×{stay}
is also optimal at the point m. If we increase s2 slightly by δ > 0, then we obtain
that k2 >

b
b+ε

, which yields that only the point (1/2, 1/2) together with the strategy
{stay} × {stay} is an mean field equilibrium. However, it is not “close” to the original
equilibrium (b/(b+ ε), ε/(b+ ε)). 4

The previous result together with Lemma 7.11 yields the following corollary character-
izing essential equilibria in the class of all games with Qd(·) being constant and with the
same set of recurrence classes:

Corollary 7.20. Let (Q, r) ∈ G. Let (m, d) be a stationary mean field equilibrium such
that d is the unique optimal deterministic strategy given m (that is D(m) = {d}) and
assume that Qd(·) is constant over P(S). Then for any ε > 0 there is an δ > 0 such that
any game (Q′, r′) ∈ Nδ(Q, r) such that (Q′)d is also constant and the recurrence classes
of Q and Q′ coincide has an equilibrium with distribution in Nε(m) and equilibrium
strategy d.

114



From Theorem 7.18 it furthermore follows using Lemma 7.12 that if we restrict our
attention to constant irreducible dynamics we obtain that equilibria are even strongly
stable in the set of all games with constant irreducible dynamics:

Corollary 7.21. Let (Q, r) ∈ Gci. Let (m, d) be a stationary mean field equilibrium such
that d is the unique optimal deterministic strategy given m (that is D(m) = {d}), then
(m, d) is strongly stable in Gci.

7.4.2. Equilibria with a Randomized Equilibrium Strategy

In general, randomized equilibria will not be essential: Consider an equilibrium (m,π)
where randomization happens over at least three state-action pairs, that is there are
three distinct pairs (i, a) such that πi,a ∈ (0, 1). We note that this covers both the
case that in one state randomization happens over three actions and the case that for
two states randomization happens over at least two actions. In this situation, it is not
clear whether all actions that have positive weight in the equilibrium strategy are again
simultaneously optimal for a point close to m under a small perturbation. If this does not
happen the equilibrium is not essential since for ε < min(i,a) s.t. πia∈(0,1) πia the distance
between the equilibrium strategies of the original game and the perturbed game will be
too large.

This is not only a theoretical possibility but happens under perturbations that are
reasonable from a practical viewpoint: Let us consider a slightly modified version of the
consumer choice model in Section 6.1, namely, assume that c1 = c2 = 0 and s1 = s2.
Then only the strategies {stay} × {change} and {change} × {stay} will be strategies
that are unique optimal strategies for some m and that the first strategy is optimal
whenever m1 ≥ m2 and the second strategy is optimal whenever m1 ≤ m2. Thus,
(1/2, 1/2) is an equilibrium point for all strategies that satisfy π1,change = π2,change . If we
consider the slightly perturbed game c1 = c2 = δ, the we will obtain that (1/2, 1/2) is an
equilibrium point only given the pure strategy {stay} × {stay}, which is not “close” to
most randomized equilibrium strategies of the original game. We remark that although
in our example the equilibrium distributions are close, this does not have to hold in
general.

If there are only two state-action pairs (i, a) satisfying πia ∈ (0, 1) it cannot happen
that the strategies will not be simultaneously optimal for some point close to m under
suitable assumptions due to the intermediate value theorem. However, there are more
obstacles: It is no longer sufficient to require that m is an essential stationary point of
the dynamics Qπ(·). Indeed, it might happen that the equilibrium strategy π changes, in
which case we would search for stationary points given a different randomized strategy
π̃. In the case of general dynamics we do not know how the stationary points under
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the perturbation and the new strategy relate to those given Qπ(·). Thus, we cannot
formulate an essentiality result for general dynamics.

However, this problem does not occur in the constant dynamics setting, where the
relation of the fixed points of Qπ(·) are clear. Thus, we formulate the following positive
result in this setting:

Theorem 7.22. Let (Q, r) ∈ Gci be a game with constant irreducible dynamics and
assume that (m,π) is an equilibrium. Moreover, assume that D(m) = {d1, d2} such that
for m1 being the stationary point given Qd1 and m2 being the stationary point given Qd2

there is an λ ∈ (0, 1) such that m = λm1 + (1 − λ)m2. Further assume that β1, β2 > 0
are such that

• the strategy d1 and not the strategy d2 is optimal for m1(λ ∓ y) + m2(1 − λ ± y)
for all y ∈ (0, β1)

• the strategy d2 and not the strategy d1 is optimal for m1(λ ± y) + m2(1 − λ ∓ y)
for all y ∈ (0, β2).

Then the equilibrium (m,π) is essential in Gci.

The condition that requires that d1 is optimal on one side and that d2 is optimal on the
other side of our equilibrium value is necessary. Without this condition the construction
in Remark 7.16 would yield a counterexample.

The following proof combines the ideas presented in the previous two sections. Since it
involves several steps, Figure 7.2 illustrates the situation of the proof.

Proof. Without loss of generality we assume that

• the strategy d1 and not the strategy d2 is optimal for m1(λ− y) + m2(1− λ + y)
for all y ∈ (0, β1)

• the strategy d2 and not the strategy d1 is optimal for m1(λ + y) + m2(1− λ− y)
for all y ∈ (0, β2).

It suffices to prove the statement for all ε ∈ (0, ε̄) with ε̄ > 0 such that

• for all m′ ∈ Nε̄(m) we have D(m′) ⊆ {d1, d2} (this is possible since at m only the
strategies d1 and d2 as well as convex combinations thereof are optimal).

• ε̄ ≤ min{β1, β2}.
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Figure 7.2.: The situation in the proof of Theorem 7.22. The black curved line through
m represents the points where both d1 and d2 are optimal in the game (Q, r).
The black curved line through m̃ represents the points where both d1 and
d2 are optimal in the game (Q′, r′). The black straight lines are the lines on
which all relevant stationary points given Qπ and (Q′)π, respectively, with
π ∈ conv(d1, d2) lie.

Let ε ∈ (0, ε̄) be given and choose

m̂1 ∈ {m1(λ− y) +m2(1− λ+ y) : y ∈ (0, ε)}
m̂2 ∈ {m1(λ+ y) +m2(1− λ− y) : y ∈ (0, ε)}

Since d1 is the unique optimal strategy for m̂1 and d2 is the unique optimal strategy
for m̂2, there are ε1, ε2 > 0 such that in Nε1(m̂1) only the strategy d1 is optimal and in
Nε2(m̂2) only the strategy d2 is optimal. By Lemma 7.17 there is a δ1 > 0 such that for
all perturbed games (Q′, r′) ∈ Nδ1(Q, r) all strategies d ∈ Ds \ {d1, d2} are not optimal
in Nε(m). Furthermore, by Lemma 7.15 there are a δ2,i > 0 (i = 1, 2) such that for all
perturbed games (Q′, r′) ∈ Nδ2,i(Q, r) the strategy di is the unique optimal strategy in
Nεi(m̂i).

Since m̂i is the unique stationary point given the dynamics of the constant irreducible
generator matrix Qπ̂i for some strategy π̂i ∈ conv{d1, d2} it is an essential stationary
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point of the dynamics. Thus, for some δ3,i > 0 we have that the stationary point m̂′i
given strategy π̂i in any perturbed game (Q′, r′) ∈ Nδ3,i(Q, r) ∩ Gci lies in Nεi(m̂i).

Thus for δ = min{δ1, δ2,1, δ2,2, δ3,1, δ3,2} we obtain that for all perturbed games (Q′, r′) ∈
Nδ(Q, r) ∩ Gci

• all strategies d ∈ Ds \ {d1, d2} are not optimal in Nε(m)

• in Nε1(m̂1) only the strategy d1 is optimal

• in Nε2(m̂2) only the strategy d2 is optimal

• m̂′1 ∈ Nε1(m̂1) and m̂′2 ∈ Nε2(m̂2).

Since
f(λ) = (V ′)d1(λm̂′1 + (1− λ)m̂′2)− (V ′)d2(λm̂′1 + (1− λ)m̂′2)

is continuous in λ ∈ [0, 1] and satisfies that f(0) < 0 and f(1) > 0, there is a λ′ ∈ (0, 1)
for which both strategies are simultaneously optimal. Denote by m′ some point at which
(V ′)d1(m′) and (V ′)d2(m′) coincide. Since Nε(m) is convex, we have that m′ ∈ Nε(m).
Since we are in the constant dynamics setting this point is the stationary point given a
randomized strategy π′ that lies between π̂1 and π̂2. By construction, the distance of π′

to π itself is at most ε, which proves the claim.

Remark 7.23. In the case of randomized mean field equilibria, strong stability cannot
be obtained since we can again bend the boundary between the two optimality sets as
we like, in particular, we could obtain a situation as in Remark 7.13.

7.5. Is Essentiality a Generic Property?

We have seen that there are games that have equilibria, which are not essential. However,
for most equilibrium concepts this happens only in “exceptional cases” and one can often
prove that for a large (”generic”) set of games all equilibria are essential (see van Damme
(1991); Doraszelski and Escobar (2010)). The question, which properties are generic for
certain classes of games, is a classical one: The first investigations were carried out in
settings, where games are described by vectors in Rn, in which case a generic property
is a property that holds for a set with full Lebesgue measure. This genericity notion
captures well the intuitive idea that a randomly chosen game exhibits the property.
Genericity considerations of that type have been discussed for normal form games in
Harsanyi (1973) and for Markov perfect equilibria in Doraszelski and Escobar (2010) as
well as Haller and Lagunoff (2000).
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For more complex spaces like function spaces there is no direct analogue of Lebesgue
almost every that has similar properties, which include that a measure zero set has
no interior and that translates of measure zero sets have zero measure. A partially
satisfactory notion is the topological genericity notion, where a set is generic if it is open
and dense or, in case of complete spaces, if it is residual. A genericity result of that type
for games with convex compact polyhedra as strategy spaces can be found in Dubey
(1986).

However, the topological genericity notion is less sharp than the measure theoretic notion
since in Rn there are open dense sets with arbitrarily small measure (Mas-Colell, 1985).
Hunt et al. (1992) then proposed a measure theoretic genericity notion for complete
metric spaces, called prevalence, which is sharper and exhibits the desired properties.
See also Ott and Yorke (2005) for more details and examples. Anderson and Zame (2001)
extend this notion to convex subsets of vector spaces, which is the case of interest
in economics, and provide several economic genericity statements. These include the
statement that in static games with strategy spaces being compact polyhedra the set of
games with finitely many pure strategy equilibria is prevalent.

In our case it is not clear a priori if inessential equilibria are “exceptional”: Inessential
equilibria (m, d) with a deterministic equilibrium strategy either have to satisfy that d
is not the unique optimal strategy given m or that m is not an essential stationary point
of the dynamics Qd(·). These properties are indeed somewhat uncommon (see Theorem
7.8). For inessential equilibria (m,π) with a randomized strategy the case is not clear
since we do not understand why inessentiality occurs in detail. In particular, we cannot
relate for general dynamics stationary points of Qd1

(·) and Qd2
(·) with those of Qπ(·)

with π being a convex combination of d1 and d2. Fortunately, we can nonetheless prove
topological genericity relying on the proof idea of Fort (1950), which has also been used
in Subsection 7.2.2:

Theorem 7.24. The set of all games for which all equilibrium points are essential is
residual in the set of all games G. Moreover, this set is also dense in G, which means
that we approximate any game arbitrarily close by a game with only essential equilibria.

Proof. The proof follows the same line of argument as the proof of Theorem 7.8: Let us
consider the map SMFE : G → 2P(S)×P(A)S that maps any game (Q, r) to the set of all
mean field equilibria. We want to utilize the results of Section 7 in Fort (1949), which
states that the points of continuity of any upper semi-continuous function F (·) ranging
from a topological space to the power set of a separable metric space equipped with
metric H(·, ·) is a Gδ-residual set in the topological space. For this we have to prove
that SMFE(·) is upper-semicontinuous and that (Q, r) is a point of continuity if and
only if all equilibria are essential. Since the proof of the characterization of the points of
continuity applies mutatis mutandis, we only prove here that the map SMFE(·) is upper
semi-continuous:
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Let (Q, r) ∈ G be a game and let ε > 0. We want to find a δ > 0 such that any game
(Q′, r′) satisfying d((Q, r), (Q′, r′)) < δ satisfies SMFE(Q′, r′) ⊆ Nε(SMFE(Q, r)).

Assume by way of contradiction that such a δ > 0 does not exist. Then we find sequences
(Qn, rn)n∈N and (mn, πn)n∈N such that

• d((Qn, rn), (Q, r)) < 1
n

• (mn, πn) ∈ SMFE(Qn, rn) for all n ∈ N since any game has a stationary mean field
equilibrium by Theorem 4.14,

• (mn, πn) /∈ Nε(SMFE(Q, r)).

Since P(S) × P(A)S is compact we find a converging subsequence (mn1
k , πn

1
k)k∈N of

(mn, πn)n∈N. Let (m,π) be its limit. Let Ak1 × . . . × AkS be such that πkia > 0 for all
i ∈ S, a ∈ Aki and πia = 0 for all i ∈ S, a /∈ Aki . Since A is finite we find a set A1×. . .×AS
that occurs infinitely often. Moreover, the subsequence (mn2

l , πn
2
l )l∈N that runs through

all indices n1
k such that A

n1
k

1 × . . .× A
n1
k
S = A1 × . . .× AS converges towards (m,π). As

a next step we note that for all d ∈ Ds such that d(i) ∈ Ai for all i ∈ S it holds that
V d(mnl) = V ∗(mnl). By continuity of V d(·) and V ∗(·), this implies that V d(m) = V ∗(m).
Since πnlia = 0 for all i ∈ S, a /∈ Ai and l ∈ N, we have πia = 0. Thus, the previous
observations yield together with Theorem 5.2 that π is optimal for m.

Furthermore, by uniform convergence, we have that∑
i∈S

∑
a∈A

Qija(m)miπia ←
∑
i∈S

∑
a∈A

Qnl
ij (mnl)mnl

i π
nl
ia = 0.

Thus, m is a stationary point givenQπ(·), which in total yields that (m,π) ∈ SMFE(Q, r).
However, mn /∈ Nε(SMFE(Q, r)) implies m /∈ Nε(SMFE(Q, r)), a contradiction.

It would be desirable by the discussion in the beginning of the section to obtain also
a measure-theoretic genericity result. However, the previous proof crucially relies on
the close link of essentiality and the topological notion of continuity. Thus, in order to
obtain a measure-theoretic genericity result it is necessary to come up with a completely
new proof idea. However, up to the knowledge of the author, not even for maps with
only essential fixed points any measure-theoretic genericity results are known. Since in
the case of arbitrary dynamics fixed point problems are a part of the solution, prevalence
for this problem should be considered first before considering prevalence of the set of
games with only essential equilibria.

For constant dynamics, we have that if the dynamics are given by irreducible generators
the equilibria are essential whenever the deterministic equilibrium strategy is unique
or whenever we consider a truly randomizing equilibrium strategy that satisfies the
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condition of Theorem 7.22. Since the set of all irreducible generator matrices lies dense
in the set of all generator matrices it is only necessary to obtain the desired properties of
equilibria for irreducible transition rate matrices. One approach, relying on the previous
results would be the following: Ensure for a prevalent set that

1. the unique stationary point xd given the strategy d ∈ Ds satisfies that if d is
optimal for xd, then d is the unique optimal stationary strategy at xd;

2. for any point xπ that is a stationary point given a stationary strategy π that
randomizes over three or more deterministic stationary strategies not all of these
strategies are optimal at xπ;

3. for any point xπ that is a stationary point given a stationary strategy π such
that there are two deterministic stationary strategies d1 and d2 satisfying π =
λd1 + (1− λ)d2 and such that d1 and d2 are both optimal at xπ (which implies by
the first point that λ ∈ (0, 1)) we have that there are β1, β2 > 0 such that for all
points (λ+ y)d1 + (1− β− y)d2 with y ∈ (0, β1) one of the strategies is the unique
optimal strategy and for all points (λ − y)d1 + (1 − β + y)d2 with y ∈ (0, β2) the
other strategy is optimal.

Since by Ott and Yorke (2005, Section 3) a countable intersection of prevalent sets is
again prevalent we basically have to show that the following three sets are prevalent:

• First, fix two distinct strategies d1, d2 ∈ Ds and consider the set of reward functions
(ria(·))i∈S,a∈A such that for any point x̃π = πxd

1
+ (1− π)xd

2
satisfying V d1

(x̃π) =
V d2

(x̃π) we have that closely before x̃π the functions satisfy V d1
< V d2

and closely
after x̃π the functions satisfy V d2

< V d1
(or with the roles interchanged). It should

be possible to prove that these sets are prevalent using the same techniques that
have been used to establish Proposition 3 in Hunt et al. (1992).

• As a next step we would have to show that the set of reward functions (ria(·))i∈S,a∈A
such that inside conv(xd

1
, xd

2
, xd

3
) never all three strategies d1, d2 and d3 are

optimal simultaneously, is prevalent. For this we would have to construct a probe
ourselves.

• As a final step we would have to show that the set of reward functions (ria(·))i∈S,a∈A
such that at xd the function V d(·) does not equal any other function V d̂(·) with
d̂ ∈ Ds \ {d} is prevalent. For this we would again have to find a probe ourselves.
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8. A Myopic Adjustment Process:
Definition, Existence and Local
Convergence to Stationary
Equilibria

In the next two chapters, we will discuss a different decision mechanism in the context of
our mean field game model that is closely related to the literature on learning in classical
game theory. The main motivation lies in the fact, that it is not clear that agents are
able to compute dynamic equilibria. More precisely, in the case of an infinite time
horizon the individual control problem given a fixed flow of population distribution is a
Markov decision process with non-stationary transition rates and rewards and there are
no general results on how to compute optimal strategies. Although in the case of a finite
time horizon dynamic equilibria can be characterized through a set of forward-backward
systems of ordinary differential equations (see Belak et al. (2019)), it is again not clear
whether agents can compute equilibria since the forward-backward systems are non-
standard and it is often only possible to compute solutions of these systems numerically.
Therefore, instead of assuming that the agents are fully rational and able to compute the
equilibria, we introduce “myopic” decision making of the agents. We assume that the
agents believe that the population distribution stays constant and, thus, choose their
optimal best response given the current distribution. If the population distribution
changes the agents re-evaluate their decision.

We will show that for any initial condition such a process exists and discuss local and
global convergence of this process: In this chapter, we will show that we have local con-
vergence towards equilibria (m, d) with a deterministic equilibrium strategy d such that
d is the unique optimal strategy for the equilibrium distribution for two regimes. For the
first regime, where the dynamics are constant and irreducible, we can explicitly describe
a neighbourhood in which convergence holds. For the second regime, where the Jaco-
bian ∂

∂m
(Qd(m))Tm has a certain structure, we can only characterize the neighbourhood

implicitly. In Chapter 9, we will then prove under a set of assumptions that we even
obtain (almost) global convergence of the myopic adjustment process. As in the classical
learning theory for normal form games, the convergence results reinforce the predictive
power of stationary mean field equilibria because they yield that stationary equilibria

123



are indeed emerging through agents’ behaviour although the current distribution is not
the equilibrium distribution.

In this chapter we will first review in Section 8.1 the related literature on learning in
standard game theory and learning in mean field game theory. Thereafter we will define
and discuss in Section 8.2 our myopic adjustment process. In Section 8.3 we prove
existence of a trajectory of this process for any initial condition. Section 8.4 contains
the results on local convergence towards stationary mean field equilibria with a unique
deterministic equilibrium strategy. Section 8.5 concludes with the application of these
results to the examples of Chapter 6.

8.1. Literature Review

The theory of learning in games originates in the early beginnings of game theory in
the work of Cournot (Nachbar, 2009). Nowadays it is a rather large branch of modern
game theory, for an overview consider the survey by Nachbar (2009) or the monograph
by Fudenberg and Levine (1998). It is mainly concerned with the question why the
behaviour of agents in games constitutes an (Nash) equilibrium, although in many situ-
ations we cannot assume this behaviour arises from “introspection and calculation” for
several conceptual and empirical reasons (Fudenberg and Levine, 2016, p.153): First, in
complex games we cannot assume that agents are indeed able to compute the equilibria.
Second, if multiple equilibria arise, it is not clear how agents coordinate on one of them.
Third, in laboratory experiments of repeated static games it is usually observed that in
early rounds of the game, the choices of the agents do not constitute Nash equilibria.
However, if the agents receive feedback then the choices of the agents will converge in
later rounds towards a Nash equilibrium.

The theory of learning yields an alternative explanation that in the long run agents
play equilibrium strategies by providing processes in which agents are partially rational
and which converge towards an equilibrium. Most of the literature in classical learning
theory is focussed on infinitely repeated static games with perfect monitoring and large
populations where players are matched randomly in each round (Nachbar, 2009). We
remark that in this setting agents cannot alter their opponents choice by using a certain
strategy. Thus, their only goal is to maximize their payoff. In this context the following
three processes have received the most attention: In fictitious play the players choose
their best response given the historical frequencies of actions. In partial best-response
dynamics at each period a fixed (randomly chosen) share of the population readjust
their action towards the best response given the previous period’s frequencies of actions.
In the replicator dynamics the share of players using a strategy grows proportional to
the strategy’s current payoff, yielding that strategies with a high current payoff are used
more often, whereas strategies with a low current payoff are used less often. However,
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also more sophisticated learning rules that detect simple cycles, which clever agents
would exploit, and stochastic versions of the processes, which overcome the problem
that a small change in beliefs yields to a large discontinuous change in strategies, have
been considered. See the monograph of Fudenberg and Levine (1998) for details and
results.

In the context of mean field games two different types of learning rules have been con-
sidered. Cardaliaguet and Hadikhanloo (2017) introduce fictitious play for classical
diffusion-based mean field games with time horizon [0, T ], which are repeated as follows:
All players start with a common smooth initial belief of the distribution of the agents
over the time horizon [0, T ] and play the corresponding optimal control to that belief.
In all subsequent rounds, the players play the same game and choose the optimal strat-
egy given the average of the observations of the previous rounds. They prove that in
potential games fictitious play converges towards stationary mean field equilibria. More-
over, in Hadikhanloo (2017) convergence of fictitious play given the classical Lasry-Lion
monotonicity assumption is proven and in Briani and Cardaliaguet (2018) it is shown
that for potential games any stable equilibrium is a local attractor for fictitious play.
Additionally, in Hadikhanloo (2018) fictitious play for mean field games with finite dis-
crete time horizon and finite state space as in Gomes et al. (2010) is introduced and
convergence for monotone games is proved.

Besides fictitious play in repeated mean field games, Mouzouni (2018) considers a com-
pletely different approach in the classical diffusion-based mean field games model, which
is connected to our approach. At each time the agents assume that their environment is
not changing and play their unique best response given this environment. Whenever the
environment changes, they do not anticipate this, but just readjust their decision. It is
then shown that there always exists a unique solution of the forward-forward system de-
scribing the process, that the mean field system is indeed the limit of the corresponding
N -player system and that given the monotonicity condition and a quadratic Hamilto-
nian the process converges locally towards stationary mean field equilibria. We remark,
that the underlying mean field model differs substantially and thus also the emerging
mathematical theory is completely different.

Finally, we mention Adlakha and Johari (2013), where in a discrete time many player
game with complements also a myopic adjustment process has been defined by stating
that in each time step the individual agent computes his best response given the current
population distribution. However, the proof exploits the monotonicity of the game and
therefore again the emerging mathematical theory differs substantially.
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8.2. Definition and Discussion

In this section we present the precise definition of the myopic adjustment process as well
as its economic justification.

As we consider an infinite time horizon, we cannot assume that the game is played
repeatedly, but instead we assume, as in Mouzouni (2018), that the agents adjust their
choices at any time reacting to the current situation of the game. We assume that the
agent only observes the population distributions m(t) and not the actions of the other
players. Moreover, we remind ourselves that the influence of the player onto the game
characteristics and in consequence on the play of the others is negligible in mean field
games. Thus, it is reasonable that we assume that an agent does not try to influence
the other players’ actions by his choices, but that he only optimizes his own payoff.

Furthermore, we assume that each agent chooses stationary strategies because most of
the time the system’s state will change immediately after the decision and thus only the
instantaneously chosen action is relevant for the dynamics of the population distribution.
Moreover, we assume that the players choose Markovian strategies that only depend
on the current population distribution. The reasons for this are the same as in the
justification of the notion of Markov perfect equilibria in Maskin and Tirole (2001):
First, stationary Markovian strategies are the simplest form of strategies that capture
rational decision making. Second, stationary Markovian strategies are closely related to
subgame perfection, namely with this choice of strategies we achieve that any two games
that have equivalent preferences and action spaces are played in the same way. Third,
the choice of stationary Markovian strategies reduces the large number of possible best
responses and thus increases predictive power.

As a next step, we have to answer the following questions: What is a good prediction
of the population distribution of the agents on [0,∞)? What is a corresponding best-
response? Surprisingly, without a deep investigations of the particular example it is
m0 and some action from D(m0): For this we first note that solving a Markov decision
process with infinite time horizon and non-stationary rewards and transition rates is a
very difficult problem, which cannot explicitly be handled. This means that agents with
a “sophisticated” belief of the other players’ distribution cannot profit from that belief.
Second and related to the first reason, it is not clear how partially rational agents should
come up with a sophisticated belief if they cannot compute best responses for arbitrary
flows of population distributions.

This discussion leads to the following formal definition of the myopic adjustment process:
For each m ∈ P(S), which is the current population distribution, the individual agent
computes the set of optimal stationary Markovian strategies. By Theorem 5.2 the set
of all optimal stationary Markovian strategies is the set of all convex combinations
of the set D(m) containing all optimal deterministic stationary Markovian strategies.
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Thus, the instantaneous change of the population distribution is a convex combination
of
(∑

i∈S miQ
d
ij(m)

)
d∈D(m)

, which means that

ṁ ∈ F (m) := conv


(∑
i∈S

∑
a∈A

miQija(m)dia

)
j∈S

: d ∈ D(m)

 . (8.1)

Since not all patterns of changes are reasonable, we require them to be mildly consistent.
More precisely, we require the agents to choose their instantaneous best responses such
that the myopic adjustment process is the solution of the set-valued differential equation
in the sense of Deimling (1992) (see the next section for definitions)

ṁ(t) ∈ F (m(t)) for almost all t ≥ 0, m(0) = m0. (8.2)

This restriction, which is mostly technically motivated, can be justified by stating that
the agent should follow a path of instantaneous best responses that is continuous when-
ever possible.

Remark 8.1. By definition, a point is a stationary point of (8.1) and (8.2) if and only if it
is the distribution of a stationary mean field equilibrium. Thus, if the process converges,
then the limit is a stationary mean field equilibrium, which gives rise to a heuristic
solution method. We note that it is a priori not clear whether this process converges.
We are now interested in conditions ensuring convergence, mainly not to use them as
solution methods, but to increase the explanatory power of the equilibrium concept.

8.3. Existence

The first natural question that occurs is whether such an adjustment process exists for
every game and every initial distribution. For this we rely on the theory of differential
inclusions as presented in Deimling (1992):

Given a closed set D ⊆ RS, a set-valued map F : D → 2RS \ {∅} and m0 ∈ D, we search
for an absolutely continuous function m : [0,∞)→ D such that

ṁ(t) ∈ F (m(t)) for almost all t ∈ [0,∞), m(0) = m0. (8.3)

The main tool to discuss existence of solutions that stay in a closed setD is the Bouligand
tangent cone

TD(m) =

{
y ∈ RS : lim inf

h↓0

d(m+ hy,D)

h
= 0

}
,

where lim infh↓0 is the right-sided limes inferior and d(x,A) := infy∈A d(x, y) for d(·, ·)
being induced by some norm on RS.
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In general it holds that 0 ∈ TD(m) for all m ∈ D and that if m ∈ int(D) then TD(m) =
RS (Deimling, 1992, Proposition 4.1). We are particularly interested in the tangent cone
of P(S), for which we obtain the following characterization:

Lemma 8.2. Let I(m) := {i ∈ S : mi = 0}. Then for all m ∈ P(S) we have y ∈
TP(S)(m) if and only if yi ≥ 0 for all i ∈ I(m) and

∑
i∈S yi = 0. In particular, the set

TP(S)(m) is convex.

Proof. By Deimling (1992, Proposition 4.1) we obtain that for any convex set D it holds
that

TD(m) = {h(y −m) : h ≥ 0, y ∈ D}

and that TD(m) is convex. By Aubin and Cellina (1984, Proposition 5.1.7) we then
obtain the desired characterization.

The existence result suitable for our setting can be found in Deimling (1992, Lemma
5.1):

Lemma 8.3. Let D ⊆ RS be a closed set and let F : D → 2RS \{∅} satisfy the following
properties

(i) F (·) is upper semi-continuous,

(ii) for all m ∈ D the set F (m) is closed and convex,

(iii) there is a constant c > 0 such that for all m ∈ D it holds that

||F (m)|| := sup{||y|| : y ∈ F (m)} ≤ c(1 + ||m||),

(iv) for all m ∈ D we have F (m) ∩ TD(m) 6= ∅.

Then for every m0 ∈ D the system (8.3) has a solution m : [0,∞)→ D.

With these preparations we prove that there exists a population distribution function
emerging from the myopic adjustment process described in Section 8.2:

Theorem 8.4. The differential inclusion defined by (8.1) and (8.2) admits a solution
m : [0,∞)→ P(S).

Proof. We show that the conditions of Lemma 8.3 are satisfied because this directly
proves the desired claim. We note that P(S) is closed.
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We first show that F is upper semi-continuous, which means that condition (i) is satisfied:
Let m ∈ P(S) and let N ⊆ RS be an open set such that F (m) ⊆ N . Since 2RS is a
metric space given H(·, ·) we find an ε > 0 such that Nε(F (m)) ⊆ N . We now want to
find a δ > 0 such that for all m̃ ∈ Nδ(m) we have F (m̃) ∈ Nε(F (m)).

The setD(m) consists of all strategies d ∈ Ds that satisfy V d(m) = V ∗(m). Thus, for any
d′ ∈ Ds\D(m) we find a constant cd′ > 0 such that V d′(m) < V ∗(m)−cd′ . In particular,
since Ds is finite, the constant c := mind′∈Ds\D(m) cd′ satisfies V d′(m) < V ∗(m)− c for all
d′ ∈ Ds \ D(m). Since for any d ∈ Ds the function V d : P(S) → RS is continuous, we
find a δd > 0 such that for all m̃ ∈ Nδd(m) we have |V d(m̃)− V d(m)| < c

3
. In particular

for δ1 = mind∈Ds δd we have for all m̃ ∈ Nδ1(m) and all strategies d′ ∈ Ds \ D(m) that

V ∗(m̃)− V d′(m̃) ≥ (V ∗(m̃)− V ∗(m)) + (V ∗(m)− V d′(m)) + V d′(m)− V d′(m̃))

> − c
3

+ c− c

3
=
c

3
> 0

holds pointwise. This implies that d′ /∈ D(m̃), which proves that D(m̃) ⊆ D(m).

For each d ∈ D(m) we furthermore note that

F d : P(S)→ RS,m 7→

(∑
i∈S

∑
a∈A

miQija(m)dia

)
j∈S

is continuous. Thus, there is a δ2,d > 0 such that all m̃ ∈ Nδ2,d(m) satisfy |F d(m̃) −
F d(m)| < ε. Therefore, the choice δ = min{δ1,mind∈D(m) δ2,d} has the desired properties.

Since for all m ∈ P(S) the set F (m) is a convex polytope, the set F (m) is closed
and convex for all m ∈ P(S) (Brøndsted, 1983, Corollary 2.9). Thus, condition (ii) is
satisfied.

Next, we check that condition (iii) is satisfied, that is we check that ||F (m)|| is indeed
bounded by c(1 + ||m||) for some c > 0: Since Qija(m) is uniformly bounded by L for
all i, j ∈ S, a ∈ A and m ∈ P(S) we have that

||F d(m)||1 =
∑
j∈S

∣∣∣∣∣∑
i∈S

∑
a∈A

miQija(m)dia

∣∣∣∣∣ ≤∑
j∈S

∑
i∈S

∑
a∈A

miLdia = SL,

which yields that c = SL is a suitable choice.

Finally, we show that the tangency condition (iv) is satisfied, that is for any m ∈ P(S)
we have F (m)∩ TP(S)(m) 6= ∅. For this we utilize the characterization of TP(S)(m) from
Lemma 8.2: We first note that for all points m ∈ int(P(S)) we have TP(S) = Rn as well as
F (m) 6= ∅ because D(m) 6= ∅ by Theorem 5.2. Thus, it suffices to consider the boundary
points of P(S). Let m ∈ P(S) be a boundary point. Then there is at least one j ∈ S such
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that mj = 0. Thus, for any strategy d ∈ Ds the vector
(∑

i∈S
∑

a∈AmiQija(m)dia
)
j∈S

will have non-negative entries at each j ∈ S for which mj = 0 because the only non-
positive column entry of Q·ja(m)d·a in row j will get weight mj = 0. Furthermore, since
Q(m) is conservative we obtain that

∑
j∈S

∑
i∈S

∑
a∈A

miQija(m)dia =
∑
i∈S

∑
a∈A

mi

(∑
j∈S

Qija(m)

)
︸ ︷︷ ︸

=0

dia = 0.

Thus, we have shown that all those points of which we build the convex combinations
indeed lie in TP(S)(m). Since TP(S)(m) is convex itself, this proves the claim.

8.4. Local Convergence towards Deterministic

Stationary Equilibria

This section discusses the question, whether the myopic adjustment process converges
locally to a stationary mean field equilibrium, which means that whenever we start the
process “close” to a certain stationary equilibrium it will converge towards this equi-
librium. This question is of interest because it justifies the consideration of stationary
mean field equilibria: Indeed, such a local convergence result yields that stationary mean
field equilibria are not only a good prediction of behaviour whenever the population dis-
tribution is exactly the stationary distribution in the equilibrium, but also for a whole
neighbourhood of that equilibrium.

Local convergence of the myopic adjustment process will in general not happen if the
equilibrium lies on the boundary of the optimality set. Indeed, in this case there are
points arbitrary close to the equilibrium at which a different strategy is optimal and
for which we cannot tell anything about the behaviour of the trajectories given this
strategy – it might happen that we are pushed away from the equilibrium. The same
argument also yields that we cannot expect convergence towards randomized equilibria
in general because also in this case several strategies are optimal in an arbitrarily small
neighbourhood of the equilibrium. Again several trajectories which might push the
processes away from the equilibrium are possible.

Thus, it remains to verify whether we have local convergence towards a stationary deter-
ministic mean field equilibrium (m̄, d) where d is the unique optimal strategy at m̄. Since
d is the unique optimal strategy given m̄, there is an ε > 0 such that for all m̃ ∈ Nε(m̄) we
have D(m̃) = {d}. This yields that for all m̃ ∈ Nε(m̄) we have F (m̃) = {(Qd(m̃))T m̃}.
Thus, it suffices to investigate whether there is a δ > 0 such that for all m0 ∈ P(S)
satisfying |m0 − m̄| < δ we have that the solution of ṁ(t) = (Qd(m(t)))Tm(t) lies in
Nε(m̄) for all t ≥ 0 and converges towards m̄.

130



This question is closely linked to the notion of asymptotically stable solutions of au-
tonomous ordinary differential equations ẋ = f(x) (see §29 in Walter (1998) for defini-
tions and classical results). However, our notion is indeed weaker since we do not allow
arbitrary starting points m0 ∈ RS, but only starting points that lie in P(S). More-
over, our ordinary differential equations are not of a type that allow to apply classical
theorems from the theory of ordinary equations. Indeed, our differential equation only
admits solutions that stay in the set P(S), which in particular implies that the Jacobian
always has a zero eigenvalue. For this reason we have to derive our own methods to
prove that there is a δ > 0 such that for any starting value m0 ∈ P(S) ∩ Nδ(m̄) the
solution of ṁ(t) = (Qd(m(t)))Tm(t) stays in Nε(m̄) for all t ≥ 0 and converges towards
m̄.

In case of constant dynamics, we prove a first result relying on the explicit characteri-
zation of solutions of homogeneous differential equations with constant coefficients.

Theorem 8.5. Assume that m̄ is a stationary deterministic mean field equilibrium with
equilibrium strategy d such that d is the unique optimal strategy at m̄ (that is D(m̄) =
{d}). Furthermore, assume that Qd is a constant irreducible generator matrix. Then
there is a δ > 0 such that any solution of the myopic adjustment process ṁ(t) ∈ F (m(t))
with initial condition m0 ∈ Nδ(m̄)∩P(S) converges exponentially fast to m̄, which means
that we find constants C1, C2 > 0 such that

||m(t)− m̄|| ≤ C1e
−C2t for all t ≥ 0.

More precisely, let λ1, . . . , λn be the eigenvalues of (Qd)T with λ1 = 0 being a simple

eigenvalue with eigenvector m̄ and for all i ∈ {2, . . . , n} let (v0
i , . . . , v

m(λi)−1
i ) be a basis

of the generalized eigenspace Eig(λi) := ker((Qd)T − λiI)m(λi), where m(λi) denotes the
algebraic multiplicity of the eigenvalue λi. Define

Ck
i :=

m(λi)−1∑
l=0

e−l
ll

l!(−Re(λi))l
||(Qd)T − λiI)lvki ||

and let ε > 0 be such that for all m̃ ∈ Nε(m̄) it holds that D(m̃) = {d}, then we have
that

δ =
ε/2 mini,k ||vki ||

maxi,k Ck
i

is a suitable choice.

We note that the ordinary differential equation ṁ = (Qd)Tm,m(0) = m0 is an au-
tonomous homogeneous differential equation with constant coefficients, for which the
solution is given by t 7→ exp((Qd)T · t) ·m0. By Logemann and Ryan (2014, Theorem
2.11) we furthermore have that if λ is an eigenvector of (Qd)T with algebraic multiplicity
m(λ) and m0 lies in generalized eigenspace Eig(λ), then the solution is given by

x(t) = exp((Qd)T · t)m0 = eλt
m(λ)−1∑
l=0

tl

l!
((Qd)T − λI)lm0.
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With these preparations we prove the theorem:

Proof of Theorem 8.5. Let ε > 0 be such that for all m̃ ∈ Nε(m) we have D(m̃) = {d}.

Since the generator matrix (Qd)T is irreducible it has zero as simple eigenvalue with
corresponding eigenvalue m̄ and all other eigenvalues have strictly negative real parts
(Asmussen, 2003, Corollary II.4.9). Let λ1, λ2, . . . , λn be the distinct eigenvalues of (Qd)T

with λ1 = 0 and Re(λi) < 0 for all i ≥ 2. For each i ≥ 2 let v0
i , . . . , v

m(λi)−1
i be a basis of

Eig(λi). Then (m̄, v0
2, . . . , v

m(λ2)−1
2 , . . . , v0

n, . . . , v
m(λn)−1
n ) is a basis of RS. Thus, for each

initial condition m0 ∈ RS we find a unique representation

m0 = α1m̄+
n∑
i=2

m(λi)−1∑
k=0

αki v
k
i .

By the previously stated explicit representation of the solution of the ordinary differential
equation, we obtain that

m(t) = e(Qd)T ·tm0 = α1e
(Qd)T ·tm̄+

n∑
i=2

m(λi)−1∑
k=0

αki e
(Qd)T ·tvki

= α1m̄+
n∑
i=2

eλit
m(λi)−1∑
k=0

αki

m(λi)−1∑
l=0

tl

l!
((Qd)T − λiI)lvki ,

where the last line follows from the fact that m̄ is the eigenvector for the eigenvalue
0. Since the continuous time Markov chain with generator Qd is ergodic, we have that
m(t)→ m̄. Thus, it holds that α1 = 1.

Using this we obtain that

||m(t)− m̄|| =

∣∣∣∣∣∣
∣∣∣∣∣∣
n∑
i=2

eλit
m(λi)−1∑
k=0

αki

m(λi)−1∑
l=0

tl

l!
((Qd)T − λiI)lvki

∣∣∣∣∣∣
∣∣∣∣∣∣

≤
n∑
i=2

m(λi)−1∑
k=0

|αki |

m(λi)−1∑
l=0

eRe(λi)t
tl

l!
||
(
(Qd)T − λiI

)l
vki ||

 . (8.4)

Since for fixed l ∈ N the function t 7→ eRe(λi)t t
l

l!
has a unique global maximum point in

[0,∞) at t = −l/Re(λi) and the maximal value is given by e−l ll

l!(−Re(λi))l
, we obtain that

||m(t)− m̄|| ≤
n∑
i=2

m(λi)−1∑
k=0

|αki |Ck
i
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with

Ck
i =

m(λi)−1∑
l=0

e−l
ll

l!(−Re(λi))l
||(Qd)T − λiI)lvki ||,

which does not depend on t anymore. Now whenever the constants αki are such that

n∑
i=2

m(λi)−1∑
k=0

|αki |Ck
i < ε,

then m(t) will stay in Nε(m̄) for all t ≥ 0. This condition is especially satisfied if

||m0 − m̄|| =
n∑
i=2

m(λi)−1∑
k=0

|αki |||vki || <
εmini,k ||vki ||

maxi,k Ck
i

=: δ.

The exponential convergence follows from (8.4).

In the case of more general dynamics it is necessary to require that Qd(·) is defined on
an open set O ⊇ P(S) in order to utilize differential calculus. Moreover, the necessary
eigenvalue structure does not directly follow from the irreducibility of Q(m), but we
have to require it.

Theorem 8.6. Let (m̄, d) be a stationary deterministic mean field equilibrium with equi-
librium strategy d such that d is the unique optimal strategy at m̄ (that is D(m̄) = {d}).
Let O ⊇ P(S) be an open set such that Qd : O → RS×S is componentwise Lipschitz con-
tinuous, the matrix Qd(m) is a transition rate matrix for all m ∈ P(S) and the function
fd : O → RS,m 7→ (Qd(m))Tm is continuously differentiable in m. Assume further that
the Jacobian ∂

∂m
fd(m) has a zero eigenvalue with eigenvector m̄ and all other eigenval-

ues have strictly negative real part. Then there is an δ > 0 such that any solution of the
myopic adjustment process with m0 ∈ Nδ(m̄) ∩ P(S) converges exponentially fast to m̄,
which means that we find constants C1, C2 > 0 such that

||m(t)− m̄|| ≤ C1e
−C2t for all t ≥ 0.

Remark 8.7. This result covers the previous result for case of constant dynamics. How-
ever, the proof of this result is non-constructive. In particular, we cannot explicitly
compute δ, which has been possible in the constant dynamics setting. 4

As in the discussion of nonlinear sinks in Hirsch and Smale (1974, Section 9.1) we define a
suitable inner product 〈·, ·〉B on RS and bound 〈fd(m),m〉B in order to bound ∂

∂t
||m(t)||B

by −c||m(t)||B, which then allows to prove exponential convergence. In order to follow
this programme we first remind ourselves that we can describe an inner product 〈·, ·〉B
on RS by specifying a basis B = (b1, . . . , bn) as well as 〈bi, bj〉B for all 1 ≤ i ≤ j ≤ S.
The following lemma found in Hirsch and Smale (1974, Chapter 7) is a main tool to
prove the theorem:
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Lemma 8.8. Let A ∈ RS×S and let the Jordan normal form of A consist of blocks
A1, . . . , AJ where λi is the eigenvalue of block Ai. Then there is a basis

B = (b0
1, . . . , b

m(λ1)−1
1 , . . . , b0

J , . . . , b
m(λJ )−1
J )

and an inner product 〈·, ·〉B such that

(i) for all i ∈ {1, . . . , J} the family (b0
i , . . . , b

m(λi)−1
i ) is a basis of the generalized

eigenspace Eig(λi),

(ii) 〈bli, bkj 〉B = 0 whenever i 6= j or l 6= k as well as 〈bli, bli〉B = 1 for all i ∈ {1, . . . , J},
l ∈ {0, . . . ,m(λi)− 1}, and

(iii) for all i ∈ {1, . . . , J} and x ∈ span(b0
i , . . . , b

m(λi)−1
i ) and all β > Re(λi) we have

〈Ax, x〉B ≤ β||x||2B.

Proof of Theorem 8.6. Denote by A := ∂
∂m
fd(m̄) the Jacobian matrix of fd(·) at the

point m̄. Let λ1, λ2, . . . , λJ be the eigenvalues of A and let λ1 = 0; by assumption
Re(λi) < 0 for all i ∈ {2, . . . , J}. Thus, there are constants b, c > 0 such that Re(λi) <
−b < −c for all i ∈ {2, . . . , J}.

The Jordan normal form of A has a block A1 for the eigenvalue 0 with multiplicity 1 and
eigenvector m̄ and blocks Ai (i = 2, . . . , J) with eigenvalue λi satisfying Re(λi) < −b.
Then by Lemma 8.8 we find a basis B = (b0

1, b
0
2, . . . , b

m(λ2)−1
2 , . . . , b0

J , . . . , b
m(λJ )−1
J ) with

b0
1 = m̄ such that

• (b0
i , . . . , b

m(λi)−1
i ) is a basis of the generalized eigenspace Eig(λi) for all i ∈ {2, . . . , J},

• 〈bli, bkj 〉B = 0 whenever i 6= j or l 6= k as well as 〈bli, bli〉B = 1 for all i ∈ {1, . . . , J},
l ∈ {0, . . . ,m(λi)− 1}, and

• for all vectors x = 0 · m̄+
∑J

i=2

∑m(λi)−1
l=0 αlib

l
i we have

〈Ax, x〉B ≤ −b||x||2B,

since

〈Ax, x〉B =

〈
A ·

 J∑
i=2

m(λi)−1∑
l=0

αlib
l
i

 ,

J∑
i=2

m(λi)−1∑
l=0

αlib
l
i

〉
B

=
J∑
i=2

〈
A

m(λi)−1∑
l=0

αlib
l
i

 ,

m(λi)−1∑
l=0

αlib
l
i

〉
B
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+
J∑
i=2

J∑
j=2,j 6=i

〈
m(λi)−1∑
l=0

αliAb
l
i,

m(λj)−1∑
k=0

αkj b
k
j

〉
B

≤ −b
J∑
i=2

∣∣∣∣∣∣
∣∣∣∣∣∣
m(λi)−1∑

l=0

αlib
l
i

∣∣∣∣∣∣
∣∣∣∣∣∣
2

B

+ 0

= −b
J∑
i=2

〈
m(λi)−1∑
l=0

αlib
l
i,

m(λi)−1∑
l=0

αlib
l
i

〉
B

= −b

〈
J∑
i=2

m(λi)−1∑
l=0

αlib
l
i,

J∑
i=2

m(λi)−1∑
l=0

αlib
l
i

〉
B

= −

∣∣∣∣∣∣
∣∣∣∣∣∣
J∑
i=2

m(λi)−1∑
l=0

αlib
l
i

∣∣∣∣∣∣
∣∣∣∣∣∣
2

B

.

We remark that the first inequality follows from property (iii) of the basis B as
well as the fact that Abji ∈ Eig(λi) together with property (ii) of the basis. The
penultimate equality follows again from property (ii) of the basis.

Let x = α0
1m̄+

∑J
i=2

∑m(λi)−1
l=0 αlib

l
i ∈ (P(S)− m̄) := {x ∈ RS : ∃m ∈ P(S) : x = m−m̄},

then we have

〈Ax, x〉B =

〈
A

α0
1m̄+

J∑
i=2

m(λi)−1∑
l=0

αlib
l
i

 , α0
1m̄+

J∑
i=2

m(λi)−1∑
l=0

αlib
l
i

〉
B

= (α0
1)2〈Am̄, m̄〉B +

〈
α0

1Am̄,
J∑
i=2

m(λi)−1∑
l=0

αlib
l
i

〉
B

+

〈
J∑
i=2

m(λi)−1∑
l=0

αliAb
l
i, α

1
0m̄

〉
B

+

〈
A ·

J∑
i=2

m(λi)−1∑
l=0

αlib
l
i,

J∑
i=2

m(λi)−1∑
l=0

αlib
l
i

〉
B

= 0 + 0 + 0 +

〈
A ·

J∑
i=2

m(λi)−1∑
l=0

αlib
l
i,

J∑
i=2

m(λi)−1∑
l=0

αlib
l
i

〉
B

≤ −b ·

∣∣∣∣∣∣
∣∣∣∣∣∣
J∑
i=2

m(λi)−1∑
l=0

αlib
l
i

∣∣∣∣∣∣
∣∣∣∣∣∣
2

B

= −b ·

∣∣∣∣∣∣∑J
i=2

∑m(λi)−1
l=0 αlib

l
i

∣∣∣∣∣∣2
B∣∣∣∣∣∣α0

1m̄+
∑J

i=2

∑m(λi)−1
l=0 αlib

l
i

∣∣∣∣∣∣2
B︸ ︷︷ ︸

=:D(α)>0

·

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣α
0
1m̄+

J∑
i=2

m(λi)−1∑
l=0

αlib
l
i︸ ︷︷ ︸

=x

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2

B

.
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We remark that the third equality follows from Am̄ = 0 and since Abli ∈ Eig(λi), which
by property (iii) yields that

〈
A · bli, m̄

〉
B

= 0. Furthermore, we note that D(α) > 0 holds
because m̄ /∈ P(S)− m̄.

In total, we obtain that for any x = α0
1m̄+

∑J
i=2

∑m(λi)−1
l=0 αlib

l
i ∈ P(S)− m̄ it holds that

〈Ax, x〉B ≤ −b ·D(α) · ||x||2B.

Since P(S)− m̄ is compact and

α 7→ α0
1m̄+

J∑
i=2

m(λi)−1∑
l=0

αlib
l
i

is a homeomorphism, also

P :=
{
α = (α0

1, α
0
2, . . . , α

m(λ2)−1
2 , . . . , α0

J , . . . , α
m(λJ )−1
J ) ∈ RS :

α0
1m̄+

J∑
i=2

m(λi)−1∑
l=0

αlib
l
i ∈ P(S)− m̄

}
is compact. This implies that

〈Ax, x〉B ≤ −b
(

min
α∈P

D(α)

)
︸ ︷︷ ︸

=:D>0

||x||2B.

As a final preparation, we note that P(S) is flow invariant for ṁ(t) = fd(m(t)) (that
is any trajectory with m0 ∈ P(S) will stay in P(S) for all t ≥ 0). This follows from
the classical flow invariance theorem for ordinary differential equations (see Subsection
9.1.1) and the characterization of the tangent cone for P(S) presented in the proof of
Theorem 8.4.

With these preparations we prove the theorem: We give RS new coordinates via the
transformation x = m − m̄, which in particular means that we now consider f̃d(x) =
fd(x + m̄). By definition of the derivative, which in particular yields that ||f̃d(x) −
Ax||B ∈ o(||x||B) in a neighbourhood of 0, and Cauchy’s inequality we have

0 = lim
x→0

||f̃d(x)− Ax||B
||x||B

= lim
x→0

||f̃d(x)− Ax||B · ||x||B
||x||2B

≥ lim
x→0

〈f̃d(x)− Ax, x〉B
||x||2B

= 0.

If x ∈ (P(S)− m̄), then 〈Ax, x〉B ≤ −b ·D · ||x||2B < 0. This and Lemma 7.15 now imply
that there is an δ > 0 such that for all x ∈ Nδ(0) ∩ (P(S)− m̄) we have

〈f̃d(x), x〉B ≤ −c ·D · ||x||2B and D(m̄+ x) = {d}.
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Now assume that x0 ∈ Nδ(0) ∩ (P(S)− m̄). By Peano’s existence theorem (Theorem
10.IX in Walter (1998)) there is a solution of the initial value problem ẋ(t) = f̃d(x(t)),
x(0) = x0. Moreover, any solution can be extend onto [0,∞).

Let x : [0, t0] → RS be a solution curve of the differential equation ẋ(t) = f̃d(x(t)) in
Nδ(0) and assume that x(t) 6= 0 for all 0 ≤ t ≤ t0. (If x(t̃) = 0 for some t̃ ≥ 0, then
x(t) = 0 for all t ≥ t̃.)

Since there is a symmetric, positive definite matrix C ∈ RS×S such that 〈x, y〉B = xTCy,
the product rule

∂

∂t
〈g(t), h(t)〉B = 〈 ∂

∂t
g(t), h(t)〉B + 〈g(t),

∂

∂t
h(t)〉B

holds, which yields that

∂

∂t
||x(t)||B =

∂

∂t

√
〈x(t), x(t)〉B =

1

||x(t)||B
〈ẋ(t), x(t)〉B.

Since ẋ(t) = f̃d(x(t)) and P(S) − m̄ is flow invariant for ẋ(t) = f̃d(x(t)), we have that
x(t) ∈ P(S)− m̄ and we obtain

∂

∂t
||x(t)||B =

1

||x(t)||B
〈fd(x(t)), x(t)〉B ≤ −c ·D · ||x(t)||B. (8.5)

This shows that ||x(t)||B is strictly decreasing on [0, t0], which implies that x(t) ∈ Nδ(0)
for all t ∈ [t0, t0 + ε]. Repeating this argument, we obtain by Hirsch and Smale (1974,
Section 8.5) x(t) ∈ Nδ(0) for all t ≥ 0. Furthermore, the estimate (8.5) yields that

||x(t)||B ≤ e−cDt||x(0)||B,

which yields the desired exponential convergence.

8.5. Application of the Results in the Examples of

Chapter 6

For the consumer choice model with constant dynamics presented in Section 6.1 local
convergence towards deterministic stationary equilibria is directly implied by Theorem
8.5, as long as the equilibrium point does not coincide with (d1, 1 − d1) or (d2, 1 − d2)
because in the other case there would be an equilibrium point at which more than one
strategy is optimal.
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For the two models with non-constant dynamics, we have to check whether the Jacobian
matrix ∂

∂m
(Qd(m))Tm given the equilibrium strategy d at the equilibrium point m has

a simple 0 eigenvalue and all other eigenvalues have negative real part.

For the corruption model presented in Section 6.2 we obtain for the two candidate
strategies {change} × {stay} and {stay} × {change} the following Jacobian matrices

∂

∂m
f {change}×{stay}(m) =

−b− qsocmH + qinfmH −qsocmC + qinfmC 0
b− qinfmH −qinfmC λ
qsocmH qsocmC −λ


∂

∂m
f {stay}×{change}(m) =

−qsocmH + qinfmH b− qsocmC + qinfmC 0
−qinfmH −b− qinfmC λ
qsocmH qsocmC −λ

 .

However, the eigenvalue structure is highly parameter dependent, we find parameters
such that it is as desired and we find parameters such that it is not as desired. This
behaviour is reasonable since at least the extreme stationary points (0, 1, 0) and (1, 0, 0)
will not be sinks of the system.

For the consumer choice model presented in Section 6.3 there is the unique candidate
equilibrium strategy of a stationary mean field equilibrium with a deterministic equi-
librium strategy, namely {stay} × {change}. For this strategy we obtain the following
Jacobian matrix

∂

∂m
f {stay}×{change}(m) =

−2em1 − ε b λ
0 −b− 2em2 − ε λ

2em1 + ε 2em2 + ε −2λ

 .

This matrix is a transition rate matrix and has by Asmussen (2003, Corollary II.4.9)
the desired eigenvalue structure. Thus, as long as the stationary mean field equilibrium
is such that the strategy {stay} × {change} is the unique optimal strategy for the
equilibrium distribution we indeed obtain that the myopic adjustment process converges
locally towards the equilibrium.

Remark 8.9. In several examples (in particular with similar congestion effects) it will be
the case that the Jacobian is a transition rate matrix, which will then always guarantee
local convergence. 4
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9. Global Convergence of the
Myopic Adjustment Process
towards Stationary Equilibria

In this chapter we prove that under certain conditions the myopic adjustment pro-
cess converges (almost) globally towards some stationary mean field equilibrium, which
means that irrespective of the initial population distribution the myopic adjustment
process converges towards some mean field equilibrium. The general result will just
state conditions that ensure that the process converges towards deterministic mean field
equilibria or that the process will stay in a set (which usually is small) in which several
strategies are optimal simultaneously. In these sets we can then often prove manually
that also convergence towards stationary equilibria with a mixed equilibrium strategy
hold. Additionally, nonlinear Markov chains with finite state space, which naturally
arise in the investigations of global convergence, are discussed. More precisely, we prove
that a Lipschitz-continuous nonlinear generator describes such a process, we illustrate
through examples that the limit behaviour is more complex than in the case of standard
time-homogeneous continuous time Markov chains and we provide a sufficient criterion
for strong ergodicity of nonlinear Markov chains with small state spaces.

In Section 9.1 we introduce the necessary tools for the chapter. Namely, in Subsection
9.1.1 we review classical and alternative results to characterize flow invariance for ordi-
nary differential equations and in Subsection 9.1.2 we discuss uniqueness as well as an
explicit representation of all solutions to a particular type of differential inclusions. In
Section 9.2 we introduce nonlinear Markov chains and consider their limit behaviour.
Section 9.3 introduces the necessary assumptions as well as the main result of the chapter
and Section 9.4 contains the proof of the theorem. Section 9.5 discusses in how far one
of the assumptions, which is for some examples not fully satisfied, can be weakened. In
Section 9.6 we propose an algorithm to verify the consistency condition of the theorem.
Section 9.7 concludes the Chapter with the application of the results to the examples of
Chapter 6.
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9.1. Preliminaries

In this chapter we will extensively make use of the notion of flow invariance for au-
tonomous differential equations and differential inclusions. A set D is flow invariant
for an autonomous ordinary differential equation ẋ = f(x) or an autonomous differen-
tial inclusion ẋ ∈ F (x) if any trajectory that meets the set D stays in D afterwards.
The first subsection 9.1.1 considers flow invariance for ordinary differential equations.
More precisely, we review classical theorems and introduce, inspired by Fernandes and
Zanolin (1987) and Blanchini and Miani (2015), a class of sets for which we obtain easy
to handle conditions. In Subsection 9.1.2 we introduce a specific type of differential
inclusions, which will occur in the discussion of the myopic adjustment process, and we
review existence and uniqueness results as well as the explicit characterization of the
solutions.

9.1.1. An Explicit Criterion to Check Flow Invariance

In Redheffer (1972) the classical theorems on flow invariance can be found in a unified
framework. For ease of presentation we restrict ourselves to the setting of autonomous
ordinary differential equations in RS: Let RS be equipped with the dot product, let
O ⊆ RS be an open, connected set, let f : O → RS be a continuous function and
consider the ordinary differential equation ẋ = f(x) with initial condition x(0) = x0.
We say that a closed set D ⊆ O is flow invariant if x(t0) ∈ D implies x(t) ∈ D for all
t0 ≤ t < t1, where [0, t1) is the maximal interval of existence. If f is Lipschitz continuous,
there are two classical sufficient conditions for flow invariance, which in our setting are
even equivalent (Redheffer, 1972; Crandall, 1972):

Lemma 9.1. Let D be a closed set, let f be a Lipschitz continuous function and assume
that furthermore one of the following conditions is satisfied:

(i) For any x ∈ D and any outer normal vector n(x) to x, which is a vector such that
N|n(x)|(x+ n(x)) ∩D = ∅, we have 〈n(x), f(x)〉 ≤ 0.

(ii) For any x ∈ D we have f(x) ∈ TD(x), with TD(x) being the tangent cone defined
in Section 8.3.

Then D is flow invariant for the ordinary differential equation ẋ = f(x).

However, these conditions are not helpful in all settings since the characterization of
tangent cones or outer normal vectors, respectively, is complex in general. In order to
achieve our goal of easy to handle conditions, we restrict our attention to sets that can
be described as all those points that simultaneously satisfy several inequalities. Flow
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invariance for sets of a similar structure has been studied in the literature before, see
Fernandes and Zanolin (1987) and Blanchini and Miani (2015). Formally, we consider
sets

M := {x ∈ O : gi(x) ≤ 0 for all i ∈ {1, . . . , k}}

with O ⊆ RS being an open set, gi : O → R (i ∈ {1, . . . , k}) being continuously
differentiable functions such that

(i) for all x ∈ ∂M there is an i ∈ {1, . . . , k} such that gi(x) = 0

(ii) for all i ∈ {1, . . . , k} and x ∈ {y ∈ O : gi(y) = 0} ∩M we have ∇gi(x) 6= 0.

For these sets we provide a much simpler sufficient condition for flow invariance:

Lemma 9.2. Let f : O → RS be a Lipschitz continuous function and assume that for
each x ∈ ∂M and each i ∈ {1, . . . , k} such that gi(x) = 0 we have

〈f(x),∇gi(x)〉 ≤ 0,

then the set M is flow invariant with respect to the ordinary differential equation ẋ =
f(x).

Proof. Let x0 ∈M and let x(t) be the unique solution of ẋ = f(x) that exists on [0,∞)
(Walter, 1998, Theorem 10.VI). Assume that there is a t̃ > 0 such that x(t) ∈ M for
all 0 ≤ t ≤ t̃ and x(t) /∈ M for all t ∈ (t̃, t̃ + ε1) for some ε1 > 0. By definition of M
and continuity of the functions gi (i ∈ {1, . . . , k}) we find an ε2 > 0 such that for some
j ∈ {1, . . . , k} we have gj(x(t̃ + s)) > 0 for all s ∈ (0, ε2). By definition of M it holds
that gj(x(t̃)) ≤ 0. Moreover, the continuity of gj(·) implies that gj(x(t̃)) = 0. Therefore,
the left derivative satisfies

0 <
∂

∂t
gi(x(t̃)) = 〈f(x(t̃)),∇gi(x(t̃))〉.

This is a contradiction to the condition that 〈f(x),∇gi(x)〉 ≤ 0 for all x ∈ ∂M and
i ∈ {1, . . . , k} such that gi(x) = 0.

Furthermore, we can also provide a criterion that yields a sufficient condition for the
flow invariance of the interior of the set M :

Lemma 9.3. Let f : O → RS be a Lipschitz continuous function and assume that for
each x ∈ ∂M and each i ∈ {1, . . . , k} such that gi(x) = 0 we have

〈f(x),∇gi(x)〉 < 0,

then the set int(M) is flow invariant with respect to the ordinary differential equation
ẋ = f(x).

141



Proof. We note that x ∈ int(M) if and only if gi(x) < 0 for all i ∈ {1, . . . , k}. We first
show that x ∈ int(M) implies gi(x) < 0 for all i ∈ {1, . . . , k}: Assume that this is false,
then there is a point x ∈ int(M) such that gi(x) = 0 for some i ∈ {1, . . . , k}. Since
int(M) is open, we find some ε > 0 such that Nε(x) ⊆ int(M) ⊆ M . Therefore, by
definition of M , it holds for all x̃ ∈ Nε(x) that gi(x̃) ≤ 0. Thus, x is a local maximum
of gi(·). However, this contradicts condition (ii) stating ∇gi(x) 6= 0. The converse
implication directly follows from condition (i).

Let x0 ∈ int(M) and let x(t) be the unique solution of ẋ = f(x) that exists on [0,∞)
(Walter, 1998, Theorem 10.VI). Assume that there is a t̃ > 0 such that x(t) ∈ int(M)
for all 0 ≤ t < t̃ and x(t̃) ∈ ∂M . By condition (i) we find an i ∈ {1, . . . , k} such
that gi(x(t̃)) = 0 and by the previous observation regarding the interior we find that
gi(x(t)) < 0 for all 0 ≤ t < t̃, thus the left derivative satisfies

0 <
∂

∂t
gi(x(t̃)) = 〈f(x(t̃)),∇gi(x(t̃))〉,

which contradicts the condition 〈f(x),∇gi(x)〉 < 0.

9.1.2. A Deeper Characterization of the Solutions of Particular
Differential Inclusions

In this section we review selected results for a particular type of differential inclusions.
This type of differential inclusions has been introduced in Filippov (1988, Chapter 2) in
order to study discontinuous ordinary differential equations. In our case, the results will
be helpful in two ways: First, they will enable us to prove flow invariance of the differen-
tial inclusion describing our myopic adjustment process in our setting. Second, they will
prove helpful in the application of the main theorem by providing an explicit charac-
terization of the solutions that stay in a set where several strategies are simultaneously
optimal (see Section 9.7).

Let an open set G ⊆ RS be separated into two sets G− and G+ by T ⊆ RS being
the set consisting of all points such that φ(x) = 0 with φ(·) being a twice continuously
differentiable function such that for all x ∈ T the gradient is non-vanishing. Furthermore,
let f+ : G+ → RS and f− : G− → RS be continuous such that for each point x∗ ∈ ∂G+

and x∗ ∈ ∂G−, respectively, the limits limx→x∗,x∈G+ f+(x) and limx→x∗,x∈G− f
−(x) exists.

The differential inclusion of interest is given by

ẋ ∈ F (x) =


{f−(x)} if x ∈ G−

{f+(x)} if x ∈ G+

conv{f−(x), f+(x)} if x ∈ T
.
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For this differential inclusion a solution exists (Filippov, 1988, Lemma 6.3, Theorem
7.1 and 7.2). Additionally, we obtain the following uniqueness theorem (Filippov, 1988,
Theorem 10.2):

Lemma 9.4. If at each x ∈ T one of the following inequalities holds (possibly different
inequalities for different points x ∈ T )

〈f−(x),∇φ(x)〉 > 0, 〈f+(x),∇φ(x)〉 < 0, (9.1)

then for any x0 ∈ G any two solutions of x(t) ∈ F (x(t)) satisfying x(0) = x0 coincide
on each interval on which they both exist and lie in the domain.

Furthermore, we can provide a deeper characterization, if we assume that the terms in
(9.1) have uniform sign over T (Filippov, 1988, §4):

• 〈f−(x),∇φ(x)〉 > 0 and 〈f+(x),∇φ(x)〉 > 0: In this case a solution satisfying
x(t) ∈ T for some t ≥ 0 will remain in G+ thereafter.

• 〈f−(x),∇φ(x)〉 < 0 and 〈f+(x),∇φ(x)〉 < 0: In this case a solution satisfying
x(t) ∈ T for some t ≥ 0 will remain in G− thereafter.

• 〈f−(x),∇φ(x)〉 > 0 and 〈f+(x),∇φ(x)〉 < 0: In this case a solution satisfying
x(t) ∈ T for some t ≥ 0 will remain in T afterwards. More precisely, the solution
will satisfy for all t̃ ≥ t the following ordinary differential equation

ẋ =
〈f−(x),∇φ(x)〉

〈f−(x)− f+(x),∇φ(x)〉︸ ︷︷ ︸
>0

f+(x) +
−〈f+(x),∇φ(x)〉

〈f−(x)− f+(x),∇φ(x)〉︸ ︷︷ ︸
>0

f−(x).

9.2. Nonlinear Markov Chains

This section introduces nonlinear continuous time Markov chains with finite state spaces
in the spirit of Kolokoltsov (2010). The characteristic property of these processes is that
the transition probabilities do not only depend on the state, but also on the distribution
of the process. After the definition we will derive that given a Lipschitz continuous gen-
erator matrix there exists such a process by utilizing the standard theory for ordinary
differential equations. Thereafter, we will discuss the limit behaviour of these processes.
This has not been considered in the literature so far, the closest results have been
obtained in Butkovsky (2014), Butkovsky (2012) and Saburov (2016), which discuss er-
godicity criteria for discrete time nonlinear Markov processes relying on a generalization
of Dobrushin ergodicity coefficient.
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9.2.1. Definition and Characterization via Nonlinear
Generators

In Kolokoltsov (2010, Section 1.1) nonlinear Markov chains with finite state space
in continuous time have been introduced: For this let (Φt(·))t≥0 be a semigroup of
continuous transformations of P(S) and call it a nonlinear Markov semigroup. Let
P (t,m) = (Pij(t,m))i,j∈S be a continuous family of stochastic matrices depending con-
tinuously on t ≥ 0 and m ∈ P(S) such that the nonlinear Chapman-Kolmogorov equa-
tion ∑

i∈S

miPij(t+ s,m) =
∑
i,k∈S

miPik(t,m)Pkj

(
s,
∑
l∈S

mlPl·(t,m)

)
is satisfied. We will call P (t,m) a continuous family of nonlinear transition probabilities
with the interpretation that if the distribution of the process at time 0 is m, then the
probability of being in state j if the initial state was i is given by Pij(t,m). Given a
nonlinear Markov semigroup (Φt(·))t≥0 we say that the family P (t,m) is a stochastic
representation of the semigroup (Φt)t≥0 if for all m ∈ P(S) and all t ≥ 0 we have

Φt
j(m) =

∑
i∈S

miPij(t,m). (9.2)

Given a nonlinear Markov semigroup and its stochastic representation we then define the
nonlinear Markov chain with initial distribution m0 as the time-inhomogeneous Markov
chain (in the sense of Section 2.1) with transition probabilities

p(s, i, t, j) = Pij(t− s,Φs(m0)).

We remark that it is sufficient to define a nonlinear Markov chain by specifying a non-
linear Markov semigroup (Φt(·))t≥0 of continuous transformations of P(S) since we can
always construct a continuous family of nonlinear transition probabilities satisfying (9.2)
from such a semigroup for example by setting Pij(t,m) = Φt

j(m). Moreover, we remark
that given a semigroup there might be several continuous families of nonlinear transition
probabilities satisfying (9.2).

As in the theory of standard continuous time Markov chains the infinitesimal generator
will be the cornerstone of the definition and analysis of such processes: Let Φt(m) be
differentiable in t = 0 for all m ∈ P(S), then the (nonlinear) infinitesimal generator
of the semigroup (Φt(·))t≥0 is given by a transition rate matrix function Q(·) such that
for

f(m) :=
∂

∂t
Φt(m)

∣∣
t=0

we have
fj(m) =

∑
i∈S

miQij(m)
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for all m ∈ P(S). We remark that one can show that any differentiable nonlinear Markov
semigroup has a nonlinear infinitesimal generator (Kolokoltsov, 2010, p.5).

However, in practice one is mainly interested in the converse problem: Given a transition
rate matrix function (that is a function Q : P(S) → RS×S mapping every vector m to
a transition rate matrix Q(m)) is there a nonlinear Markov semigroup (and thus a
continuous family of nonlinear transition probabilities specifying a nonlinear Markov
chain) such that Q(·) is the nonlinear infinitesimal generator of this process. Relying
on the semigroup identity Φt+s = ΦtΦs this question can be rephrased as the following
Cauchy problem: Is there for any m0 ∈ P(S) a solution (Φt(m0))t≥0 of

∂

∂t
Φt(m0) = Φt(m0)Q(Φt(m0)), Φ0(m0) = m0, (9.3)

such that additionally Φt(m0) ∈ P(S) for all t ≥ 0 and for any fixed t ≥ 0 the function
Φt(·) is continuous?

This question can be answered in case of transition rate matrix functions Q(·) such that
for all i, j ∈ S the function Qij(·) is Lipschitz continuous. The proof of this relies on the
classical theory for ordinary differential equations (Theorem 10.VI and Theorem 12.VII
in Walter (1998), Lemma 9.1):

Theorem 9.5. Let Q : P(S)→ RS×S and assume that Qij(·) is a Lipschitz continuous
function for all i, j ∈ S and that Q(m) is a transition rate matrix for all m ∈ P(S).
Then there is a unique Markov semigroup (Φt(·))t≥0 such that Q(·) is the infinitesimal
generator for (Φt(·))t≥0.

Proof. We first note that f(m) :=
(∑

i∈S miQij(m)
)
j∈S is Lipschitz continuous on P(S).

Indeed, let M be a Lipschitz constant for all functions Qij(·) (i, j ∈ S) and L be the
constant that uniformly bounds Qij(m) for all m ∈ P(S) and i, j ∈ S, then we obtain
that

|f(m1)− f(m2)|1 =
∑
j∈S

∣∣∣∣∣∑
i∈S

(
m1
iQij(m

1)−m2
iQij(m

2)
)∣∣∣∣∣

≤
∑
j∈S

∑
i∈S

(
|m1

iQij(m
1)−m1

iQij(m
2)|+ |m1

iQij(m
2)−m2

iQij(m
2)|
)

=
∑
j∈S

∑
i∈S

(
m1
i |Qij(m

1)−Qij(m
2)|+ |Qij(m

2)| · |m1
i −m2

i |
)

≤
∑
j∈S

(∑
i∈S

m1
iM |m1 −m2|1 +

∑
i∈S

L|m1
i −m2

i |

)
=
∑
j∈S

(
M |m1 −m2|1 + L|m1 −m2|1

)
= (M + L) · S|m1 −m2|1.
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By Corollary 1 of McShane (1934) we find a Lipschitz continuous extension f̃(·) of f(·),
which means that f̃ : RS → RS is Lipschitz continuous and satisfies f̃(m) = f(m) for
all m ∈ P(S).

Thus, by the classical existence and uniqueness theorem for ordinary differential equa-
tions (Walter, 1998, Theorem 10.VI), we obtain that a unique solution of ∂

∂t
Φt(m0) =

f̃(Φt(m0)), Φ0(m0) = m0 on [0,∞) exists. Utilizing that the vectors f(m) lie in TP(S)(m)
for all m ∈ P(S) (see the proof of Theorem 8.4) we obtain by Lemma 9.1 that the tra-
jectory lies in P(S). Thus, m is also a solution of ∂

∂t
Φt(m0) = f(Φt(m0)), Φ0(m0) = m0.

The continuity of Φt(·) for any fixed t ≥ 0 follow from a standard dependence theorem
(Walter, 1998, Theorem 12.VII).

9.2.2. Limit Behaviour: First Examples

We are particularly interested in the limit behaviour of these processes, especially in the
following two notions: We say that a nonlinear Markov chain with semigroup (Φt(·))t≥0

is strongly ergodic if there exists an m̄ ∈ P(S) such that for all m0 ∈ P(S) we have
limt→∞ ||Φt(m0)− m̄|| = 0. For constant dynamics, that is Q(m) = Q for all m ∈ P(S),
this notion coincides with the classical notion of strong ergodicity, for which irreducibility
is a sufficient criterion. Furthermore, we say that the nonlinear Markov chain converges
in the limit to some stationary distribution, if for each m0 ∈ P(S) there is a stationary
point m̄(m0) of Q(·) such that limt→∞ ||Φt(m0) − m̄(m0)|| = 0. We remark that this
notion includes strong ergodicity, but covers many more cases, in particular, any Markov
chain with constant dynamics (also if the generator matrix is reducible) converges in the
limit to some stationary distribution.

The limit behaviour for non-constant nonlinear continuous time Markov chains cannot
be simply characterized as in the case of standard continuous time Markov chains. In
particular, we observe more complex phenomena for general nonlinear continuous time
Markov chains, as we will discuss in the following examples: It is now possible that
trajectories do not converge at all but that the ordinary equation describing the marginal
distributions admits periodic solutions. Furthermore, it might happen that although
Q(m) is irreducible for all m ∈ P(S) there are several stationary distributions and that
the marginal distributions converge for all initial distributions but not towards the same
stationary distribution. Nonetheless, it is still possible to formulate a sufficient condition
for ergodicity in the case of small state spaces, which we will present in the Subsection
9.2.3 together with a discussion of whether we can utilize the classical approaches for
continuous time Markov chains to prove ergodicity.
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Let us start the discussion of the limit behaviour of nonlinear Markov chains with an
example of a generator matrix such that the ordinary differential equation describing the
marginal distributions admits periodic solutions: Namely, we define a generator matrix
on

B = P({1, 2, 3}) ∩
{
m ∈ R3 : min{m1,m2,m3} ≥ 1

10

}
by

Q(m) =


−Q{

m2≤
1
3

}(m) 0 Q{
m2≤

1
3

}(m)

0 −Q{
m1≥

1
3

}(m) Q{
m1≥

1
3

}(m)

Q{
m2≥

1
3

}(m) Q{
m1≤

1
3

}(m) −Q{
m2≥

1
3

}(m)−Q{
m1≤

1
3

}(m)

 (9.4)

with

Q{
m1≤

1
3

}(m) =

{
1
m3

(
1
3
−m1

)
if m1 ≤ 1

3

0 else

Q{
m1≥

1
3

}(m) =

{
1
m1

(
m1 − 1

3

)
if m1 ≥ 1

3

0 else

Q{
m2≤

1
3

}(m) =

{
1
m2

(
1
3
−m2

)
if m2 ≤ 1

3

0 else

Q{
m2≥

1
3

}(m) =

{
1
m3

(
m2 − 1

3

)
if m2 ≥ 1

3

0 else
.

We note that all transition rates are bounded Lipschitz continuous functions, which
furthermore satisfy Q{ij}(m) ≥ 0 for all m ∈ B and i 6= j. Thus, we easily find an
extension of Qij(·) for all i, j ∈ S with i 6= j such that Qij(·) is Lipschitz continuous and
satisfies Qij(·) ≥ 0. We remark that this technique can be applied for all bounded and
Lipschitz continuous functions defined on a closed subset of P(S) by a generalization of
Tietze’s extension theorem found in McShane (1934), which states that we can extend an
Lipschitz continuous function defined on a subset of a metric space onto the whole space
such that it remains Lipschitz continuous and such that the bounds are preserved.

The generator matrix has been chosen in such a way that in a neighbourhood U ⊆ B of
(1

3
, 1

3
, 1

3
) the first two components of the marginals will behave as the classical harmonic

oscillator, more precisely the ordinary differential equation characterizing the marginals
reads

ṁ1 =

m1 ·
(
− 1
m1

(
1
3
−m2

))
if m2 ≤ 1

3

m3 ·
(

1
m3

(
m2 − 1

3

))
if m2 ≥ 1

3

147



= m2 −
1

3

ṁ2 =

m2 ·
(
− 1
m2

(
m1 − 1

3

))
if m1 ≥ 1

3

m3 ·
(

1
m3

(
1
3
−m1

))
if m1 ≤ 1

3

=
1

3
−m1

and by symmetry
ṁ3 = m1 −m2.

This ordinary differential equation yields periodic solutions, for example for m0 =
(0.2, 0.4, 0.4) we obtain the trajectory depicted in Figure 9.1.

Figure 9.1.: The marginal distributions of the nonlinear continuous time Markov chain
with generator (9.4) and initial distribution (0.2, 0.4, 0.4).

The second example we consider is an example where for each m ∈ P(S) the matrix
Q(m) is irreducible, but still we do not observe strong ergodicity. Instead there are three
stationary points and some of them are attracting, some are not:

Consider

Q(m) =

(
−
(

29
3
m2

1 − 16m1 + 22
3

)
29
3
m2

1 − 16m1 + 22
3

m2
1 +m1 + 1 −(m2

1 +m1 + 1)

)
, (9.5)
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which is irreducible for all m ∈ P({1, 2}) since m2
1 +m1 + 1 ≥ 1 for all m1 ≥ 0 and since

the minimum of the function 29
3
m2

1 − 16m1 + 22
3

lies at m1 = 24
29

and the value at this
point is 62

87
> 0. The dynamics are given by

ṁ1 = m1 ·
(
−
(

29

3
m2

1 − 16m1 +
22

3

))
+ (1−m1)

(
m2

1 +m1 + 1
)

= −32

3
m3

1 + 16m2
1 −

22

3
m1 + 1︸ ︷︷ ︸

=:f(m1)

. (9.6)

We remark that this fully describes the dynamics because by symmetry ṁ2 = −ṁ1.

Figure 9.2.: A plot of the right-hand-side of (9.6).

In Figure 9.2 we see that there are three stationary points given Q(m) at m1 = 1
4
, m1 = 1

2

and m1 = 3
4
. Furthermore, the plot reveals the stationary behaviour of the solutions:

• Since the function f(·) is strictly positive on [0, 0.25), the trajectories will for all
initial conditions (m0)1 ∈ [0, 0.25) converge towards m1 = 0.25.

• Since the function f(·) is strictly negative on (0.25, 0.5), the trajectories will for
all initial conditions (m0)1 ∈ (0.25, 0.5) converge towards m1 = 0.25.

• Since the function f(·) is strictly positive on (0.5, 0.75), the trajectories will for all
initial conditions (m0)1 ∈ (0.5, 0.75) converge towards m1 = 0.75.
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• Since the function f(·) is strictly negative on (0.75, 1], the trajectories will for all
initial conditions (m0)1 ∈ (0.75, 1] converge towards m1 = 0.75.

In total we obtain that for all initial conditions (m0)1 ∈ [0, 0.5) the trajectories converge
towards m1 = 0.25 and for all initial conditions (m0)1 ∈ (0.5, 1] the trajectories converge
towards m1 = 0.75. For (m0)1 = 0.5 the trajectory stays at the stationary point m1 =
0.5. This means that although Q(m) is irreducible for all m ∈ P(S) we do not observe
strong ergodicity, but only convergence towards some stationary distribution. This limit
behaviour is depicted in Figure 9.3. It is an open and interesting question whether
irreducibility implies at least convergence towards some stationary distribution or not
(see Chapter 10).

Figure 9.3.: The trajectories of the nonlinear Markov chain with generator Q(m) given
by (9.5) for several initial conditions.

9.2.3. Limit Behaviour: A Sufficient Condition for Strong
Ergodicity

To the best of the author’s knowledge, strong ergodicity as well as the convergence of
the trajectories towards some stationary point for nonlinear continuous time Markov
chains has not been investigated in the literature so far. The closest contributions in
the literature are sufficient criteria for discrete time nonlinear Markov chains based
on a generalization of Dobrushin’s ergodicity coefficient: More precisely, Saburov (2016)
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considers nonlinear Markov chains where the Markov operator is polynomial and proves a
condition for strong ergodicity relying on the notion of hypermatrices. Butkovsky (2014)
proves a strong ergodicity criterion for general Markov operators and his proof relies on
sensible estimates of the total variation distance between P (m1) ·m1 and P (m2) ·m2.
In Butkovsky (2012) a proof of the same result relying on a modification of the coupling
procedure introduced in Butkovsky and Veretennikov (2013) is sketched. However, it will
not be possible to extend any of the previously discussed approaches to our setting since
they all crucially rely on the sequential nature of the problem. More precisely, the first
two proofs rely on the fact that we obtain the n-th distribution vector via P (mn−1)mn−1

and in the third proof the coupling is constructed in a sequential fashion.

Thus, we need to search for methods that take the continuous time into account. How-
ever, although we defined our process as a time-inhomogeneous continuous time Markov
chain, we cannot apply the ergodicity results known for these type of processes. The
reason is that the transition probabilities depend on the initial distribution m0, which we
vary when investigating strong ergodicity. Moreover, also the approaches proving strong
ergodicity of classical continuous time Markov chains cannot easily be adapted:

The method of discrete skeletons relying on Kingman’s Lemma (Kingman, 1963), which
yields that irreducible recurrent Markov chains that admit a stationary distribution are
strongly (even exponentially) ergodic, requires to compute the transition probabilities
for small time steps h. However, because of the nonlinear dynamics we cannot compute
small-step transition probabilities and it is also not possible to rely on an approximation
of this quantity since the approximation error is propagated in each of the small time
steps.

The approach of Anderson (1991, §6.3) heavily relies on the notion of accessibility and
yields convergence of the transition probabilities Pij(t) if and only if for one j ∈ S
(and thus for all states) the supremum over all i ∈ S \ {j} of the expected value of
the first hitting time given X0 = i is finite. Zeifman (1989) extends this approach
to time-inhomogeneous continuous time Markov chains relying on a generalization of
accessibility as well as sensible estimates of the transition probabilities. However, it is
not clear how to introduce the notion of accessibility for nonlinear Markov chains since it
might happen that Pij(t,m

1) 6= 0 and Pij(t,m
2) = 0 (consider for example the dynamics

of the corruption model in Section 6.2).

Another alternative approach is the use of the coupling method, which is presented in
Griffeath (1975) also for time-inhomogeneous continuous time Markov chains. With this
method, it is possible to prove ergodicity given that Dobrushin’s ergodicity coefficient is
well behaved. However, it is not clear how to extend the coupling procedure to nonlinear
Markov chains.
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Johnson and Isaacson (1988) obtain ergodicity criteria (also for time-inhomogeneous
Markov chains) directly linked to the time-dependent generator matrix utilizing the
representation formula

P (s, t) = I +

∫ t

s

Q(u)P (u, t) du

found in Iosifescu (1980, Section 8.9), the Chapman-Kolmogorov equation as well as
simple facts from linear algebra regarding the Dobrushin’s ergodicity coefficient. Since
we do not obtain any formula similar to the representation formula, we cannot reapply
their methods.

We will follow a different approach. Namely, we directly consider the long-term be-
haviour of the nonlinear system (9.3) describing the marginal distributions. However,
the global behaviour of nonlinear systems is complex. In R2 the Jordan curve theorem
holds, which states that every Jordan curve (which is the image of the unit circle S1

under a continuous injective map) dissects the plane R2 in two connected regions. Using
this statement one obtains the Poincaré-Bendixson Theorem, which yields a description
of the long-term behaviour of nonlinear systems in the plane. For higher dimension, i.e.
Rn, n ≥ 3, this is no longer possible and indeed strange behaviour of nonlinear systems
occurs. A famous example is the Lorenz equation (see Section 8.2 in Teschl (2012)).
Therefore, we restrict our attention to deriving criteria for small state spaces. More
precisely, we restrict on the cases S = 2 and S = 3 where we can apply, due to the flow
invariance of P(S), the results for scalar and planar nonlinear systems.

For the case of two states, strong ergodicity simply follows from the existence of a unique
stationary point as well as a continuity assumption:

Theorem 9.6. Let S = 2 and assume that f : [0, 1]→ R defined via

f(m1) := m1 ·Q11(m1, 1−m1) + (1−m1) ·Q21(m1, 1−m1)

is continuous. Furthermore, assume that (m̄, 1− m̄) is the unique stationary point given
Q. Then, the nonlinear Markov chain is strongly ergodic.

Proof. We start with some preliminary facts regarding f(·): An equilibrium point is
characterized by the property that ṁ = 0, which by flow invariance of P(S) (see Theorem
9.5) is equivalent to the fact that ṁ1 = 0 (because ṁ1 +ṁ2 = 0). Since we have a unique
equilibrium point, we obtain that f(m̄) = 0 and f(m1) 6= 0 for all m1 6= m̄. Since f(·)
is continuous, we obtain that f(·) is non-vanishing on [0, m̄) and (m̄, 1] and has uniform
sign on each of these sets. Since Q(·) is a conservative generator we moreover obtain
that f(0) ≥ 0 and f(1) ≤ 0. Thus, we obtain that f(m1) > 0 for all m1 ∈ [0, m̄)
and f(m1) < 0 for all m1 ∈ (m̄, 1]. This in turn yields that [0, 1] is flow invariant for
ṁ1 = f(m1).

Now we can prove that the systems ṁ = Q(m)Tm and ṁ1 = f(m1) are equivalent: Let
m(·) = (m1(·),m2(·)) be a solution of ṁ = Q(m)Tm with initial condition m(0) = m0 ∈
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P(S). By flow invariance of P(S) (see Theorem 9.5), we have m2(t) = 1−m1(t) for all
t ≥ 0. Thus, ṁ = Q(m)Tm is equivalent to{

ṁ1 = m1 · (Q11(m1, 1−m1)) + (1−m1) ·Q21(m1, 1−m1)

−ṁ1 = m1 · (−Q12(m1, 1−m1)) + (1−m1) ·Q22(m1, 1−m1).
(9.7)

Therefore, m1(·) is indeed a solution of ṁ1 = f(m1). For the converse implication we first
note that in (9.7) the last equation is the first equation multiplied by (−1) because Q(m)
is conservative for all m ∈ P(S). If m1(·) satisfies ṁ1 = f(m1), m1(0) = (m0)1 ∈ [0, 1],
then, by flow invariance, m1(t) ∈ [0, 1] for all t ≥ 0. Thus, the function (m1(·), 1−m1(·))
satisfies ṁ = Q(m)Tm.

Since f(m1) > 0 for all m1 ∈ [0, m̄) and f(m1) < 0 for all m1 ∈ (m̄, 1], we obtain the
desired convergence statement.

Remark 9.7. In this two state setting we also obtain a sufficient criterion for convergence
in the limit towards some stationary distribution. Indeed, requiring that the function f(·)
is continuous is sufficient. The proof is analogous. More precisely, we again obtain that
between two equilibrium points the function f(·) we be non-vanishing and of uniform
sign. If f(m0) > 0, then we observe convergence to the next equilibrium point right of
m0, and if f(m0) < 0, then we observe convergence to the next equilibrium point left of
m0. 4

Similarly, we obtain for systems with three states that given m0 ∈ P(S) the function
m(·) = (m1(·),m2(·),m3(·)) is a solution of ṁ = Q(m)Tm, m(0) = m0 if and only of
(m1(·),m2(·)) is a solution of(

ṁ1

ṁ2

)
= f

(
m1

m2

)
,

(
m1(0)
m2(0)

)
=

(
(m0)1

(m0)2

)
,

where

f

(
m1

m2

)
=

(
Q31(m̂) + (Q11(m̂)−Q31(m̂))m1 + (Q21(m̂)−Q31(m̂))m2

Q32(m̂) + (Q12(m̂)−Q32(m̂))m1 + (Q22(m̂)−Q32(m̂))m2

)
(9.8)

and m̂ = (m1,m2, 1−m1−m2). Indeed, the proof is analogous to the proof for the two
state case, the only step that has to be modified is the proof of the flow invariance of
{(m1,m2) ∈ [0,∞) : m1 + m2 ≤ 1} for (ṁ1, ṁ2)T = f(m1,m2). Nonetheless, that fact
that Q(·) is a conservative generator and a simple application of Lemma 9.2 yield the
desired statement.

Using this equivalence we obtain, relying on the Poincaré-Bendixson Theorem, a suffi-
cient criterion for strong ergodicity. By slight abuse of notation, we will write in the
following m for the three dimensional vector from P(S) as well as the two-dimensional
vector (m1,m2)T .
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Theorem 9.8. Let O ⊇ {(m1,m2) ∈ [0,∞)2 : m1 + m2 ≤ 1} be a simply connected
and bounded region such that there is a continuously differentiable function f : O → R2

satisfying (9.8) on P(S). Let m̄ be the unique stationary point given Q(·). Furthermore,
assume that

(a) ∂f1

∂m1
(m) + ∂f2

∂m2
(m) is non-vanishing for all m ∈ O and has uniform sign on O,

(b) it holds that
∂f1

∂m1

(m̄) · ∂f2

∂m2

(m̄)− ∂f1

∂m2

(m̄) · ∂f2

∂m1

(m̄) > 0

or it holds that(
∂f1

∂m1

(m̄) +
∂f2

∂m2

(m̄)

)2

− 4

(
∂f1

∂m1

(m̄) · ∂f2

∂m2

(m̄)− ∂f1

∂m2

(m̄) · ∂f2

∂m1

(m̄)

)
< 0.

Then, the nonlinear Markov chain is strongly ergodic.

In order to prove the theorem, we have to review the Poincaré-Bendixson Theorem as
well as some related notions and results, for which Teschl (2012, Section 6.3 and Section
7.3) is a reference.

Let O ⊆ RS be open, let f : O → RS be continuously differentiable and consider the
initial value problem

ẋ = f(x), x(0) = x0. (9.9)

Let y ∈ O be arbitrary and denote by (T−(y), T+(y)) the maximal interval of existence of
a solution of (9.9) with initial condition x(0) = y and let t 7→ φ(t, y) be the corresponding
solution. The orbit of y is given by

γ(y) = {φ(t, y) : t ∈ (T−(y), T+(y))}.

We remark that if z ∈ γ(y), then γ(y) = γ(z) and that different orbits are disjoint.
Additionally, we define the forward orbit of y by

γ+(y) = {φ(t, y) : t ∈ (0, T+(y))}

and the backward orbit by

γ−(y) = {φ(t, y) : t ∈ (T−(y), 0)}.

We say that y is a fixed point if γ(y) = {y}. We say that y ∈ O is a periodic point if
there is some T > 0 such that φ(T, x) = x and call the infimum of such T the period.
With these definitions we classify the orbits of ẋ = f(x) as follows:
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• fixed orbits (these correspond to a periodic point with period zero)

• regular periodic obits (these correspond to a periodic point with positive period)

• non-closed orbits (these do not correspond to periodic points).

Non-closed orbits γ(y) that join a fixed point x to itself, formally, limt→±∞ φ(t, y) = x,
are often called homoclinic paths. For planar autonomous systems they can only exist
if the fixed point is a saddle point, which means that the Jacobian for the fixed point
has to satisfy that there are two real eigenvalues with opposite sign (Jordan and Smith,
2005, Section 3.6). Writing (

a b
c d

)
for the Jacobian, this condition is equivalent to the requirement that ad − bc < 0 and
simultaneously (a+ d)2 − 4(ad− bc) > 0.

In order to analyse the long-term behaviour of solutions, the following sets that describe
all those points where an orbit accumulates of particular interest: Let y ∈ O, then the
ω±-limit set is given by

ω±(y) = {z ∈ O|∃(tn)n∈N : tn → ±∞∧ φ(tn, y)→ z}.

We remark that if ŷ ∈ γ(y) then ω±(y) = ω±(ŷ). In other words, the set ω±(y) depends
only on the orbit γ(y).

We are now in the position to collect the relevant results regarding the ω±-limit sets,
which are Lemma 6.6, Lemma 6.7 and Theorem 7.16 in Teschl (2012) and Theorem 3.5
in Jordan and Smith (2005).

Lemma 9.9. Let σ ∈ {+,−}. If γσ(y) is contained in a compact set, then ωσ(x) is
non-empty, compact and connected.

Lemma 9.10 (generalized Poincaré-Bendixson Theorem). Let O ⊆ R2 be open and let
f : O → R2 be continuously differentiable. Fix y ∈ O and σ ∈ {+,−}. Assume that
ωσ(y) is non-empty, compact, connected and contains only finitely many fixed points.
Then one of the following cases holds:

(i) ωσ(y) is a fixed orbit

(ii) ωσ(y) is a regular periodic orbit

(iii) ωσ(y) consists of (finitely many) fixed points x1, . . . , xk and non-closed orbits γ(z)
such that ω±(z) ∈ {x1, . . . , xk}.
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Lemma 9.11 (Bendixson’s Criterion). Let O ⊆ R2 be open and let f : O → R2 be
continuously differentiable. Let U ⊆ O be a simply connected region and assume that
∂f1

∂x1
(x) + ∂f2

∂x2
(x) does not vanish for x ∈ U and has uniform sign on U . Then there are

no regular periodic orbits contained (entirely) inside U .

Lemma 9.12. Let σ ∈ {+,−}. If γσ(y) is contained in a compact set, then

lim
t→σ∞

d(φ(t, y), ωσ(y)) = 0.

With all these preparations we can prove the theorem:

Proof of Theorem 9.8. Since the set

{(m1,m2) ∈ R2 : m1,m2 ≥ 0 ∧m1 +m2 ≤ 1}

is flow invariant for (m1,m2)T = f(m1,m2), we obtain, by Lemma 9.9, that ω+(m0)
is non-empty, compact and connected. Since there is only one stationary point, we
can apply the Poincaré-Bendixson Theorem (Lemma 9.10). Thus, we are in one of the
following cases:

(i) ω+(m0) is a fixed orbit

(ii) ω+(m0) is a regular periodic orbit

(iii) ω+(m0) consists of (finitely many) fixed points x1, . . . , xk and non-closed orbits
γ(z) such that ω±(z) ∈ {x1, . . . , xk}.

By condition (a) and Bendixson’s criterion (Lemma 9.11), we obtain that case (ii) is
not possible. Furthermore, we observe that m̄ is the only fixed point and that it is,
by condition (b), not a saddle point. Thus, also case (iii) is not possible. Therefore,
ω+(m0) is a fixed orbit. Since m̄ is the only fixed point, this implies that ω+(m0) = {m̄}.
Lemma 9.12 now yields the desired result.

Remark 9.13. We remark that the proof of the theorem crucially relies on the fact that
there is a unique stationary point since otherwise it is indeed possible that non-closed
orbits joining distinct fixed points exists. Thus, we cannot easily obtain a criterion for
convergence towards some stationary distribution. 4
Example. Let us consider the nonlinear Markov chain induced by the strategy {stay} ×
{change} in the consumer choice example with non-constant dynamics presented in
Section 6.3. In this setting we have that

f
(
m1,m2

)
=

(
λ− em2

1 − εm1 − λm1 + bm2 − λm2

λ− λm1 − bm2 − em2
2 − εm2 − λm2

)
.
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The Jacobian matrix is given by

∂f

∂m
(m) =

(
−2em1 − ε− λ b− λ

−λ −b− 2em2 − ε− λ

)
and it satisfies

∂f1

∂m1

(m) +
∂f2

∂m2

(m) = −2em1 − ε− λ− b− 2em2 − ε− λ < 0

for all m ∈ Nε([0, 1]2) as well as

∂f1

∂m1

(m) · ∂f2

∂m2

(m)− ∂f1

∂m2

(m) · ∂f2

∂m1

(m)

= (−2em1 − ε− λ)(−b− 2em2 − ε− λ)− (b− λ)(−λ)

= (2em1 + ε)(2em2 + ε) + (2em1 + ε)(b+ λ) + λ(2em2 + ε) + λ(b+ λ) + λ(b− λ)

= (2em1 + ε)(2em2 + ε) + (2em1 + ε)(b+ λ) + λ(2em2 + ε) + 2λb > 0

for all m ∈ [0, 1]2 and, therefore, in particular for m̄. Thus, Theorem 9.8 implies
strong ergodicity of the nonlinear Markov chain with transition rate matrix function
Q{stay}×{change}(m). 4

9.3. The Global Convergence Theorem

This section introduces the relevant notions and the convergence result. First, we in-
troduce several assumptions that are motivated by the fact that we have to derive that
several sets are flow invariant for the differential inclusion ẋ ∈ F (x). More precisely, we
will assume that the process is defined on a larger set in order to allow for the appli-
cation of differential calculus. Moreover, we will set up some assumptions requiring a
simple description of those points for which a certain deterministic strategy is optimal in
order to apply the characterization of flow invariance derived in Subsection 9.1.1. The
conditions of the theorem itself are then those that are intuitively motivated and which
we expect to be in some sense necessary to obtain global convergence.

The first additional assumption we set covers the necessary extension of the myopic
adjustment process in order to utilize differential calculus (in particular the theorems on
flow invariance presented in Section 9.1). This assumption itself is not restrictive since
by classical extension theorems (see McShane (1934)) we always find such an open set
and such an extension (see the proof of Theorem 9.5). However, in combination with
the other assumptions it is restrictive since then not every extension is suitable.

Assumption A2. The set O is open and satisfies P(S) ⊆ O. For all i, j ∈ S and
a ∈ A the function Qija : O → R is Lipschitz continuous and for all i ∈ S and a ∈ A
the function ria : O → R is continuous. Furthermore, the matrix Q··a(m) is a generator
matrix for all a ∈ A and m ∈ O.
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In this setting we define the extension of the myopic adjustment process as follows: For
each m ∈ O let D(m) be the set of all optimal deterministic stationary strategies for
the continuous time Markov decision process with transition rates Qija(m) and reward

functions ria(m) and define F : O → 2RS by

F (m) := conv


(∑
i∈S

∑
a∈A

miQija(m)dia

)
j∈S

: d ∈ D(m)

 .

Since we want to apply the characterization of flow invariance derived in Subsection
9.1.1, we set-up additional requirements for the following sets: The set Optunique(d)
collects all m ∈ O such that d is the unique optimal strategy for m. The set Optsome(d)
collects all m ∈ O such that d is some optimal strategy for m.

Assumption A3. Let U be the set of strategies d ∈ Ds such that there exists an m ∈ O
satisfying D(m) = {d}. We assume that for each m ∈ O there is a strategy d ∈ U such
that d ∈ D(m).

Furthermore, for each strategy d ∈ U we assume that there exists a twice continuously
differentiable function gd : O → R such that

Optunique(d) = {m ∈ O : gd(m) < 0}
Optsome(d) = {m ∈ O : gd(m) ≤ 0}.

Moreover, we assume that for all d ∈ U and m ∈ Optsome(d) ∩ {m ∈ O : gd(m) = 0} we
have ∇gd(m) 6= 0.

This assumption is satisfied in the case of two non-empty optimality sets Optunique(d)
whenever the transition rates and the rewards are twice continuously differentiable and
the gradient of a function describing the sets Optunique(d) is non-vanishing whenever both
strategies are simultaneously optimal (see the discussion of the case of two non-empty
optimality sets Optunique(d) in the end of this section). For more than two non-empty
optimality sets Optunique(d) the case is not that clear, but we expect that economically
motivated examples usually satisfy this.

The following assumption is used for two crucial steps of the proof: First, in order to
prove flow invariance of P(S) and uniqueness of solutions for the differential inclusion
for which we will utilize the explicit characterization results of Subsection 9.1.2. Second,
in order to apply the results of Subsection 9.1.1 on the set of all points where a specific
set of deterministic strategies is optimal.

Assumption A4. For any point m ∈ P(S) there are at most two strategies d ∈ U such
that m ∈ Optsome(d).
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This assumption is always satisfied for two non-empty optimality sets Optunique(d). How-
ever, for more than two non-empty optimality sets Optunique(d) this assumption is re-
strictive. Nonetheless, we expect that it is possible to weaken this assumption at the
cost of several technicalities (see Remark 9.22 and the discussion in the outlook (Chapter
10)).

In order to systematically investigate flow invariance of the trajectories of the myopic
adjustment process we will introduce a family of digraphs that will be helpful to char-
acterize desirable properties of the trajectories of the population dynamics given the
deterministic stationary strategies. In order to do this we first review the relevant defi-
nitions and results regarding digraphs (a standard reference for this is Bang-Jensen and
Gutin (2010)):

A digraph or directed graph D = (V,A) consists of a non-empty and finite set V of
vertices and a set A of ordered pairs of distinct vertices from V , which are called arcs.
We will often write x→ y for an arc (x, y). When we work with more than one digraph,
we write V (D) for the vertex set of D and A(D) for the arc set of D.

A path is a sequence x1 . . . xk of pairwise distinct vertices such that for all i ∈ {1, . . . , k−
1} the arc xi → xi+1 lies in D. A cycle is a sequence x1 . . . xk such that xi → xi+1 ∈ D
for all i ∈ {1, . . . , k− 1}, the vertices x1, . . . , xk−1 are pairwise distinct and x1 = xk. We
say that a digraph D is acyclic if it has no cycle.

A classical way to characterize acyclic digraphs relies on the notion of acyclic orderings:
Formally, we say that an ordering ≤ of the vertices of a digraph D is an acyclic ordering
if for any arc i → j ∈ A(D) we have i < j. This allows us to formulate the following
result, which can be found in Bang-Jensen and Gutin (2010, Proposition 2.1.3):

Lemma 9.14. Every acyclic digraph has an acyclic ordering of its vertices.

In order to define the family of digraphs we have to introduce one additional assumption.
It basically states that the behaviour of the trajectories given any deterministic strategy
is consistent within the sets Optsome(d1) ∩Optsome(d2).

Assumption A5. For all deterministic stationary strategies d, d1, d2 ∈ U with d1 6= d2

and Optsome(d1) ∩Optsome(d2) 6= ∅ the term

〈(Qd(m))Tm,∇gd1(m)〉

is non-vanishing for all m ∈ Optsome(d1) ∩ Optsome(d2) and has uniform sign on the set
Optsome(d1) ∩Optsome(d2).

Also this assumption is rather restrictive, for example the consumer choice model with
non-constant dynamics presented in Section 6.3 only satisfies this assumption for some
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choices of parameters. We can weaken the assumption slightly by allowing that under
certain conditions 〈(Qd(m))Tm,∇gd1(m)〉 takes values in [0,∞) or (−∞, 0], but it again
yields to several technicalities (see Section 9.5).

We define for each d ∈ U a digraph D(d) with vertex set U and arc set defined as follows:
For any two distinct deterministic strategies d1, d2 ∈ U it holds that d1 → d2 ∈ A(D(d))
if and only if Optsome(d1) ∩Optsome(d2) 6= ∅ and

〈(Qd(m))Tm,∇gd1(m)〉 > 0 for all m ∈ Optsome(d1) ∩Optsome(d2).

With these preparations we state the convergence result:

Theorem 9.15. Let Assumptions A1, A2, A3, A4 and A5 hold and assume that:

(i) For all d ∈ U the nonlinear Markov chain with transition rate matrix function
Qd(·) converges in the limit to some stationary distribution.

(ii) For all d ∈ U the digraph D(d) is acyclic.

(iii) There exists an ordering d1, d2, . . . , du of U such that for each i ∈ {1, . . . , u} there
exists an acyclic ordering ≤D(di) of D(di) such that

di ≤D(di) d
j for all j ≥ i.

(iv) If any ordering that satisfies the conditions of (iii) has the same final vertex d̂,
then for any d ∈ U \ {d̂} either d→ d̂ ∈ D(d̂) or Optsome(d) ∩Optsome(d̂) = ∅.

Then for any initial condition m0 ∈ P(S) the myopic adjustment has a unique trajectory
and the process either converges towards the distribution m̄ of some deterministic mean
field equilibrium (m̄, d) or there is a T > 0 and a strategy d ∈ U such that the trajectory
stays in

P(S) ∩
(
Optsome(d) \Optunique(d)

)
for all t ≥ T .

This statement is a rather deep result. For any starting point m0 ∈ P(S) we can describe
the limit behaviour of the myopic adjustment process: Either it will converge towards
some stationary mean field equilibrium or it will stay in a connected component of the
set

P(S) ∩
(
Optsome(d) \Optunique(d)

)
,

which is often small and for which we can often characterize the behaviour of the myopic
adjustment process even further by utilizing the results presented in Subsection 9.1.2

160



(see Subsection 9.7.2 for an example). We remark that although the conditions (iii) and
(iv) seem rather complex there is a simple (and polynomial time) algorithm to verify
them (see Section 9.6).

The conditions can be intuitively justified as follows: Condition (i) guarantees that
whenever we stay inside an optimality set Optunique(d) for all subsequent times then
we converge towards a deterministic stationary mean field equilibrium. Condition (ii)
ensures that the trajectories given di have a suitable limit behaviour, in particular, that
they do not behave like a spiral that moves through a sequence of optimality sets again
and again. Condition (iii) then requires that the digraphs for individual deterministic
stationary strategies are consistent such that we can describe the limit behaviour of
the process. In order to ensure convergence we however need to require more, namely
condition (iv) ensures that for the final vertex of the acyclic ordering we will never jump
from Optunique(d) to Optsome(d) \Optunique(d) and back infinitely often.

Remark 9.16. We remark that besides assumption A4 also the assumption A5 can be
weakened. Indeed, in order to establish the flow invariance of P(S) for the differen-
tial inclusion we apply the characterization result of Subsection 9.1.2 and this requires
strictly positive scalar products only for all points on the boundary of P(S). For the
flow invariance of the other sets (except for the vertex satisfying condition (iv)) it would
actually be sufficient to require that the scalar product 〈(Qd(m))Tm,∇gd1(m)〉 is either
non-positive or non-negative on the set Optsome(d1)∩Optsome(d2). However, in this case
the definition of the digraph, which is crucial in formalizing the relation of the trajecto-
ries given the optimal deterministic strategies, would become much more complex since
it might happen that 〈(Qd(m))Tm,∇gd1(m)〉 = 0 on the whole set

Optsome(d1) ∩Optsome(d2).

Thus, we would not obtain conditions as simple as in Theorem 9.15. Section 9.5 discusses
how Assumption A5 can be weakened in one case of particular interest, more precisely
the case that Assumption A5 is not satisfied for points m ∈ P(S) with mi < 0 for some
i ∈ S. Furthermore, in Subsection 9.7.2 we discuss how to weaken the assumption for a
particular example. 4

We conclude the section by reformulating the theorem for the simple case that there
are only two strategies that are the unique optimal strategy for some m ∈ O: Let
Assumption A1 and A2 hold and assume that U = {d1, d2}. Define

g(m) :=
(
V d2

(m)− V d1

(m)
)
· (1, . . . , 1)T

=
(

(βI −Qd2

(m))−1 · rd2

(m)− (βI −Qd1

(m))−1 · rd1

(m)
)
· (1, . . . , 1)T

and assume that g(·) is twice continuously differentiable, i.e. assume that Qija(·) and
r(·) are twice continuously differentiable. Then

Optunique(d1) = {m ∈ O : g(m) < 0}
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Optsome(d1) = {m ∈ O : g(m) ≤ 0}
Optunique(d2) = {m ∈ O : −g(m) < 0}
Optsome(d2) = {m ∈ O : −g(m) ≤ 0}.

Moreover, we can rewrite the conditions (ii), (iii) and (iv) in terms of requirements for
〈mTQd(m),∇g(m)〉:

Corollary 9.17. Let for all m ∈ O with g(m) = 0 the gradient satisfy ∇g(m) 6= 0.
Furthermore, assume that:

• The nonlinear Markov chains with transition rate matrix functions Qd1
(m) and

Qd2
(m) converge in the limit towards some stationary distribution.

• One of the following statements holds true:

(a) For all m ∈ Optsome(d1) ∩Optsome(d2) it holds that

〈(Qd1

(m))Tm,∇g(m)〉 > 0 and 〈(Qd2

(m))Tm,∇(−g)(m)〉 < 0

(b) For all m ∈ Optsome(d1) ∩Optsome(d2) it holds that

〈(Qd1

(m))Tm,∇g(m)〉 < 0 and 〈(Qd2

(m))Tm,∇(−g)(m)〉 > 0

(c) For all m ∈ Optsome(d1) ∩Optsome(d2) it holds that

〈(Qd1

(m))Tm,∇g(m)〉 > 0 and 〈(Qd2

(m))Tm,∇(−g)(m)〉 > 0.

Then for any initial condition m0 ∈ P(S) the myopic adjustment process either converges
towards a deterministic stationary mean field equilibrium or there is a T > 0 such that
it remains in the set Optsome(d1) ∩Optsome(d2) for all t > T .

Proof. It is only necessary to check whether the conditions (ii) to (iv) are satisfied:

(a) In this case, by definition of the digraphs D(d), the digraph D(d1) contains the
arc d1 → d2 and the digraph D(d2) contains the arc d1 → d2, which yields that
condition (ii) is satisfied. Moreover, d1 ≤ d2 is the unique ordering satisfying the
consistency condition (iii) since d1 ≤D(d1) d

2 and for d2 nothing has to be checked.
By assumption, we furthermore have that (iv) holds.

(b) When we exchange the roles of d1 and d2 we see that this case is symmetric to case
(a), thus all conditions are satisfied and the ordering satisfying the consistency
condition is d2 ≤ d1.
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(c) In this case, by definition of the digraphs D(d), the digraph D(d1) contains the
arc d1 → d2 and the digraph D(d2) contains the arc d2 → d1, which yields that
condition (ii) is satisfied. We moreover obtain that d1 ≤ d2 as well as d2 ≤ d1

are orderings satisfying the consistency condition, which yields that also condition
(iv) is satisfied.

9.4. Proof of the Global Convergence Theorem

In this section we will prove Theorem 9.15. For this purpose we assume throughout the
whole section that Assumptions A1, A2, A3, A4 and A5 as well as the conditions (i)-(iv)
of the theorem hold.

The proof relies heavily on the notion of flow invariance. More precisely, we prove that
for any ordering d1, . . . , du of the deterministic stationary strategies U that satisfy the
condition (iii) and any k < u the set O ∩

(⋃
i≥k Optsome(di)

)
is flow invariant for the

differential inclusion ṁ = F (m). Since proving flow invariance for differential inclusions
is much more involved than proving flow invariance for ordinary differential equations,
we will prove the statement indirectly. More precisely, we first prove a similar statement
for acyclic orderings for D(d) with respect to the ordinary differential equation ṁ =
(Qd(m))Tm. Thereafter, we will prove a technical lemma that relates flow invariance
of the ordinary differential equation ẋ = f(x) with the flow invariance of a differential
inclusion, where F (x) = {f(x)} for some set A . Using this lemma, we then derive the
desired flow invariance result, which in combination with another technical lemma then
allows us to prove Theorem 9.15.

The first lemma yields the desired statement on flow invariance for the ordinary differen-
tial equations ṁ = (Qd(m))Tm. We note that the proof crucially relies on the structural
assumptions regarding Optsome(d) and Optunique(d) and in particular on the Assumption
A4, which requires that at most two strategies from U are simultaneously optimal.

Lemma 9.18. Let d ∈ U be a deterministic stationary strategy, let ≤D(d) be an acyclic
ordering of the digraph D(d) and enumerate the deterministic stationary strategies such
that d1 <D(d) d

2 <D(d) . . . <D(d) d
u. Furthermore, let 1 < k ≤ u. Then the set

O ∩

(⋃
l≥k

Optsome(dl)

)

is flow invariant for ṁ = (Qd(m))Tm.
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Proof. We start with some observations regarding the boundary of the set

Sk := O ∩

(⋃
l≥k

Optsome(dl)

)
.

As a first step we note that Sk = {m ∈ O : gdk(m) · . . . · gdu(m) ≤ 0}. Indeed, let m ∈⋃
l≥k Optsome(dl), then there is at least one l ≥ k such that gdl(m) ≤ 0. If gdl(m) = 0,

we directly have gdk(m) · . . . gdu(m) = 0. If gdl(m) < 0 then m ∈ Optunique(dl). This
implies that gdj(m) > 0 for all j 6= l, thus gdk(m) · . . . gdu(m) < 0.

Now let gdk(m)·. . .·gdu(m) ≤ 0. If gdk(m)·. . . gdu(m) = 0, then there is at least one l ≥ k
such that gl(m) = 0, which implies that m ∈ Optsome(dl). If gdk(m) · . . . · gdu(m) < 0,
then there is at least one l ≥ k such that gl(m) < 0, which implies that m ∈ Optunique(d).

Since f(m) := gdk(m) · . . . · gdu(m) is continuous and f−1((−∞, 0)) ⊆ Sk as well as
Sk = f−1((−∞, 0]) we obtain that

f−1((−∞, 0)) ⊆ int(Sk) and Sk = Sk = f−1((−∞, 0]).

Since additionally

gdk(m) · . . . · gdu(m) = 0⇔ gdl(m) = 0 for some l ≥ k,

we obtain that the boundary of the set Sk is a subset of

{m ∈ O : gdl(m) = 0 for some l ≥ k}.

As a next step, we show that the boundary is indeed a subset of⋃
l≥k,j<k

{m ∈ O : gdl(m) = 0 and gdj(m) = 0} :

Indeed, let m ∈ O be such that gdl(m) = 0 for some l ≥ k. Since by Assumption A3 the
gradient ∇gdl(m) is non-vanishing, we obtain that m is not a local maximum of gdl(·).
This yields that there is a sequence mn → m such that gdl(mn) > 0 for all n ∈ N, which
in particular implies that mn /∈ Optsome(dl). Since by Theorem 5.2 there is an optimal
deterministic stationary strategy dj(n) for mn, we have gdj(n)(mn) ≤ 0 for all n ∈ N.
Since the set of all deterministic strategies is finite, we obtain that there is an index
j̄ occurring infinitely often in j(n). Thus, there is a subsequence (mnk)k∈N such that
gdj̄(mnk) ≤ 0. By continuity of gdj̄(·), we obtain that gdj̄(m) ≤ 0. Since m ∈ Optsome(dl),
we obtain that gdj̄(m) = 0.

Thus, it remains to show that there is an index j < k such that gj(m) = 0. Assume that
this is not the case. Then by Assumption A3 we obtain that gdj(m) > 0 for all j < k.
By continuity of gdj(·), we then find an ε > 0 such that for all m̃ ∈ Nε(m) and j < k we
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have gdj(m̃) > 0, which in particular implies that m̃ /∈ Optsome(dj). Since for each point
m̃ ∈ Nε(m) we find, by Theorem 5.2, an optimal deterministic strategy dl (l ≥ k), we
obtain that

Nε(m) ⊆
⋃
l≥k

Optsome(dl).

However, this contradicts the assumption that m is a boundary point of
⋃
l≥k Optsome(dl).

With these preparations we prove the statement: For this we note that any boundary
point lies in some set Optsome(dj) ∩ Optsome(dl) with j < k ≤ l. By definition of the
digraph D(d) we have that there is no arc from l to j, which by Assumption A5 yields
that

〈(Qd(m))Tm,∇gdl(m)〉 < 0

for all m ∈ Optsome(dj) ∩ Optsome(dl). By Assumption A4 we have gdn(m) = 0 if and
only if n ∈ {j, l}. Thus, it follows by the product rule that

∇gdk(m) · . . . · gdu(m) =
u∑

n=k

(gdk(m) · . . . gdn−1(m) · gdn+1(m) · . . . gdu(m)) · ∇gdn(m)

= (gdk(m) · . . . gdl−1(m) · gdl+1(m) · . . . · gdu(m))︸ ︷︷ ︸
>0

·∇gdl(m),

which implies 〈
(Qd(m))Tm,∇ (gdk(m) · . . . · gdu(m))

〉
< 0.

Thus, Lemma 9.2 yields that Sk is flow invariant for ṁ = (Qd(m))Tm.

Corollary 9.19. Let d ∈ U be a deterministic stationary strategy, let ≤D(d) be an acyclic
ordering of the digraph D(d) and enumerate the deterministic stationary strategies such
that d1 <D(d) d

2 <D(d) . . . <D(d) d
u. Furthermore, let 1 ≤ k ≤ u. Then the set

P(S) ∩

(⋃
l≥k

Optsome(dl)

)
is flow invariant for ṁ = (Qd(m))Tm.

Proof. By Lemma 9.1 it suffices to check that (Qd(m))Tm ∈ TP(S)(m) in order to show
that P(S) is flow invariant for ṁ = (Qd(m))Tm. This has been done in the proof of
Theorem 8.4. Thus, by Assumption A3 the statement holds for k = 1. For k > 1 note
that

P(S) ∩

(⋃
l≥k

Optsome(dl)

)
= P(S) ∩

(
O ∩

(⋃
l≥k

Optsome(dl)

))
.

By Lemma 9.18, the set O ∩
(⋃

l≥k Optsome(dl)
)

is flow invariant. Since P(S) is flow
invariant as well, the intersection of the two sets is again flow invariant for ṁ =
(Qd(m))Tm.
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The next lemma yields the desired link between the flow invariance for the ordinary
differential equation ṁ = (Qd(m))T and the differential inclusion ṁ ∈ F (m):

Lemma 9.20. Let O ⊆ RS be an open set and let F : O → 2RS be a set-valued map.
Let A,B,C be subsets of O and assume that B is closed. Let f : O → RS be a Lipschitz
continuous function such that F (x) = {f(x)} for all x ∈ A \ B. Furthermore, assume
that A∪B is flow invariant for ẋ ∈ F (x) and that B ∪C is flow invariant for ẋ = f(x).
Then B is flow invariant for ẋ ∈ F (x).

Proof. Assume that there is a solution x(·) of ẋ ∈ F (x) such that there are times 0 ≤
t0 < t1 such that x(t0) ∈ B and x(t) /∈ B for all t0 < t < t1. Since A∪B is flow invariant
for ẋ ∈ F (x), we obtain that x(t) ∈ A \B for all t0 < t < t1. Thus, the solution x(t) on
[t0, t1) satisfies that x(t0) ∈ B and ẋ(t) = f(x(t)) for almost every t ∈ [t0, t1). Therefore,
x(·) is a Caratheodory solution of the differential equation ẋ = f(x). By Walter (1998,
Theorem 10.XVIII) there is a unique Caratheodory solution. Since ẋ = f(x) has a
unique classical solution, the unique classical solution and the unique Caratheodory
solution coincide. Since the set B ∪ C is flow invariant for the ordinary differential
equation ẋ = f(x), we obtain a contradiction because x(·) would be a trajectory that
leaves B ∪ C.

As a next step, we show that P(S) is flow invariant for the differential inclusion:

Lemma 9.21. The set P(S) is flow invariant for ṁ ∈ F (m).

Proof. Assume that P(S) is not flow invariant for ṁ ∈ F (m), then there are t̃2 > t̃1 ≥ 0
such that m(t̃1) ∈ P(S) and m(t) /∈ P(S) for all t̃1 < t < t̃2. By Assumption A4
there are at most two strategies d1, d2 such that gd1(m(t̃1)) ≤ 0 and gd2(m(t̃1)) ≤ 0. In
particular, there is an ε > 0 such that gd(m̃) > 0 for all d 6= d1, d2 and m̃ ∈ Nε(m(t̃1)).

Thus the differential inclusion restricted onto Nε(m(t̃1)) is of the type discussed in
Section 9.1.2, where φ = gd1 = −gd2 . In particular, Assumption A5 and the con-
sistency condition (iii) yield that one of the following three cases will hold for all
m ∈ Optsome(d1) ∩Optsome(d2) simultaneously

• 〈(Qd1
(m))Tm,∇φ(m)〉 > 0 and 〈(Qd2

(m))Tm,∇− φ(m)〉 < 0

• 〈(Qd1
(m))Tm,∇φ(m)〉 < 0 and 〈(Qd2

(m))Tm,∇− φ(m)〉 > 0

• 〈(Qd1
(m))Tm,∇φ(m)〉 > 0 and 〈(Qd2

(m))Tm,∇− φ(m)〉 > 0.

In particular, the results presented in Subsection 9.1.2 yield that the solution inNε(m(t̃1))
is the solution of a classical ordinary differential equation ṁ = (Q̃(m))Tm with Q̃(m)
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being Qd1
(m) in the first case, Qd2

(m) in the second case and

〈(Qd1
(m))Tm,∇φ(m)〉

〈(Qd1(m))Tm,∇φ(m)〉+ (−〈(Qd2(m))Tm,∇φ(m)〉)
Qd1

(m)

+
−〈(Qd2

(m))Tm,∇φ(m)〉
〈(Qd1(m))Tm,∇φ(m)〉+ (−〈(Qd2(m))Tm,∇φ(m)〉)

Qd2

(m)

in the third case. In all three cases we obtain that Q̃(·) is Lipschitz continuous. This
implies, as in the proof of Lemma 9.19, that the set P(S) is flow invariant for these type
of differential equations, which is the desired contradiction.

Remark 9.22. In order to prove flow invariance it would be sufficient to require that for all
points m ∈ P(S) satisfying mi = 0 for some i ∈ S there are at most two strategies d1 and
d2 such that gd1(m) ≤ 0 and gd2(m) ≤ 0: Indeed, we note that {m ∈ RS :

∑
i∈S mi = 1}

is flow invariant for F since
∑

i∈S ṁi(t) = 0 holds almost surely because all transition
rate matrices are conservative. This implies that at time t̃1 where the solution leaves the
set P(S) a component mi(t̃1) has to be zero, for which we can then provide the same
argument as before. 4

The argument that due to Assumption A4 the solution is locally the solution of a dif-
ferential inclusion of the type investigated in Subsection 9.1.2 also yields using Lemma
9.4 uniqueness of trajectories:

Lemma 9.23. For any m0 ∈ P(S) there is a unique solution of ṁ(t) ∈ F (m(t)).

With all these preparations we prove the desired flow invariance theorem for the differ-
ential inclusion:

Lemma 9.24. Let ≤ be an ordering of U satisfying (iii) and enumerate the deterministic
stationary strategies such that d1 < d2 < . . . < du. Furthermore, let 1 ≤ k ≤ u. Then
the set

P(S) ∩

(⋃
l≥k

Optsome(dl)

)
is flow invariant for F .

Proof. We proceed by induction on k. For k = 1 we note that the set P(S) is flow
invariant for F by Lemma 9.21.

Now let u ≥ k > 1 and assume that we have proven that

P(S) ∩

( ⋃
l≥k−1

Optsome(di)

)
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is flow invariant. By definition of the ordering ≤, we obtain that there is an acyclic
ordering ≤D(dk) for D(dk) such that dk ≤D(dk) d

j for all j > k. Setting T≤ := {d ∈ U :
d ≤D(dk) d

k} we obtain that⋃
d/∈T≤

Optsome(d) ⊇
⋃
i≥k

Optsome(di).

By Corollary 9.19, we then obtain that

P(S) ∩

 ⋃
d/∈T≤

Optsome(d)


is flow invariant for ṁ = (Qdk(m))Tm.

As a final preparation we note that f(m) :=
∑

i∈S miQ
d
ij(m) is Lipschitz continuous on

Nε(P(S)) with constant (M(1 + ε) + L) · S, where M is a Lipschitz constant for all
function Qij(·) (i, j ∈ S) and L is the constant that uniformly bounds Qij(m) for all
m ∈ P(S) and i, j ∈ S:

|f(m1)− f(m2)|1 =
∑
j∈S

∣∣∣∣∣∑
i∈S

(
m1
iQij(m

1)−m2
iQij(m

2)
)∣∣∣∣∣

≤
∑
j∈S

∑
i∈S

|m1
iQij(m

1)−m1
iQij(m

2)|+ |m1
iQij(m

2)−m2
iQij(m

2)|

=
∑
j∈S

∑
i∈S

(
|m1

i ||Qij(m
1)−Qij(m

2)|+ |Qij(m
2)||m1

i −m2
i |
)

≤
∑
j∈S

(∑
i∈S

|m1
i |M |m1 −m2|1 +

∑
i∈S

L|m1
i −m2

i |

)
=
∑
j∈S

(
M(1 + ε)|m1 −m2|1 + L|m1 −m2|1

)
= (M(1 + ε) + L) · S|m1 −m2|1.

Thus, we apply Lemma 9.20 with

A = Optsome(dk) ∩ P(S)

B = P(S) ∩

( ⋃
l≥k+1

Optsome(dl)

)
= P(S) ∩ {m ∈ O : gdk+1(m) · . . . · gdu(m) ≤ 0}

C = P(S) ∩

 ⋃
l<k s.t. dl /∈T≤

Optsome(dl)


to obtain the desired claim.
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The following technical lemma deals with the special case of a vertex d ∈ U that is the
final vertex of any acyclic ordering:

Lemma 9.25. Let d ∈ U be a deterministic stationary strategy such that for any other
strategy d̂ ∈ U \ {d} we either have d̂→ d or Optsome(d) ∩Optsome(d̂) = ∅, then P(S) ∩
Optunique(d) is flow invariant for F .

Proof. By the argument presented in the proof of Lemma 9.18 we have

∂Optunique(d) ⊆
⋃

d∈U\{d}

(
Optsome(d) ∩Optsome(d̂)

)
.

By assumption we satisfy for all m ∈ Optsome(d), that 〈(Qd(m))Tm,∇gd(m)〉 < 0, which,
by Lemma 9.3, yields the flow invariance of Optunique(d). By Lemma 9.21 the set P(S)
is flow invariant for ṁ ∈ F (m). Combining the two results yields the desired claim.

With these preparations we prove the main theorem:

Proof of Theorem 9.15. By Lemma 9.23, there is a unique solution of the differential
inclusion for any initial condition, and by Lemma 9.24 the set P(S) is flow invariant for
the differential inclusion. Furthermore, we note that if a trajectory stays inside a set
Optunique(d) for all t > T , then by condition (i) the trajectory will converge towards the
stationary point given Qd(·).

Let d1, . . . , du be a ordering that satisfies (iii) and assume that i is maximal such that
m(0) ∈ P(S) ∩

(⋃
k≥i Optsome(dk)

)
, then m(0) ∈ Optsome(di). If the trajectory does

not leave the set P(S) ∩Optunique(di) we have by the previous observation convergence
towards a deterministic stationary mean field equilibrium. Else, there is a t0 ≥ 0 such
that the trajectory will stay in

P(S) ∩
(
Optsome(di) \Optunique(di)

)
for all t ≥ t0 or there is a t1 > 0 such that m(t1) /∈ P(S) ∩ Optsome(di). Then we find
an î > i such that m(t1) ∈ P(S) ∩

(⋃
k≥î Optsome(dk)

)
and we can reapply the previous

argument.

If we reach the final vertex d of an ordering that satisfies (iii) and there is another
strategy d̂ that is also the final vertex of an ordering, then we obtain that both P(S) ∩
Optsome(d) and P(S) ∩ Optsome(d̂) are flow invariant, which in particular yields that
P(S)∩Optsome(d)∩Optsome(d̂) is flow invariant, which yields that whenever a trajectory
leaves P(S) ∩Optunique(d), then it will remain in

P(S) ∩Optsome(d) ∩Optsome(d̂) ⊆ P(S) ∩Optsome(d) \Optunique(d)

for all times, which proves the claim.
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If there is a unique final vertex d then we obtain, by Lemma 9.25, that Optunique(d) is
flow invariant. Thus, if the trajectory leaves the set Optsome(d) \ Optunique(d), then we
have convergence towards a deterministic stationary mean field equilibrium.

9.5. An Alternative Formulation of the Global

Convergence Theorem

It is often a problem that for mi < 0 Assumption A5 does not longer hold true, an
example is the case c = 1 of the consumer choice model presented in Section 6.3 (see
Subsection 9.7.2). However, it is easily possible to prove the result given slightly different
assumptions that circumvent the problem:

• Strengthen Assumption A2 by requiring that Q(·) and r(·) are defined on an open
set O ⊇ [0,∞)S and weaken Assumption A5, by requiring that

〈(Qd(m))Tm,∇gd1(m)〉

is non-vanishing over and has uniform over the set

[0,∞)S ∩Optsome(d1) ∩Optsome(d2)

instead of Optsome(d1) ∩Optsome(d2) for all d, d1, d2 ∈ U .

• Furthermore, additionally require in condition (iv) that

〈Qd̂(m)Tm, ei〉 < 0

for all m ∈ Optsome(d̂) ∩ [0,∞)S and all i ∈ S.

With this assumptions we can prove Theorem 9.15 with a minor adaptation, namely we
have to readjust Lemma 9.18, by proving that

O ∩ [0,∞)S ∩

(⋃
l≥k

Optsome(dl)

)

is flow invariant for ṁ = (Qd(m))Tm. This is possible by the same techniques since the
set can be described by

S̃k = {m ∈ O : gdk(m) · . . . · gdu(m) ≤ 0 ∧ −mi ≤ 0 for all i ∈ S}

and the boundary of this set is a subset of [0,∞)S since the set itself is a subset of the
closed set [0,∞)S. Thus, by the same arguments as before the boundary is a subset of⋃

l≥k,j<k

{m ∈ [0,∞)S : gdl(m) = 0 and gdj(m) = 0} ∪ {mi = 0 for some i ∈ S}.
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Since any boundary point lies in [0,∞)S we obtain for all points satisfying gdk(m) · . . . ·
gdu(m) = 0 that

〈(Qd(m))Tm,∇gdk(m) · . . . · gdu(m)〉 < 0

by the same arguments as in the proof of Lemma 9.18. For all points satisfying mi = 0
for some i ∈ S we obtain, as in the proof of Theorem 8.4, that 〈(Qd(m))Tm, ei〉 ≤ 0.
Thus, in total we can again apply Lemma 9.2, which yields the desired claim. Similarly,
we can prove the accordingly modified version of Lemma 9.25 since we required that
〈(Qd(m))Tm, ei〉 < 0 for all relevant points. All other lemmata can be proven in the
same way since they do not rely on the fact that Assumption A5 holds for some open
superset of P(S).

9.6. An Algorithm to Verify whether the

Consistency Condition Holds

The question whether an ordering satisfying (iii) exists or not seems to be complex at
first sight. One would have to check for all possible permutations whether the ordering
satisfies the condition. However, due to the close connection to the notion of acyclic
orderings, we can provide a polynomial algorithm that determines whether such an
ordering exists or not. Moreover, relying on backtracking it is even possible, as for acyclic
orderings, to provide an algorithm that yields all orderings satisfying the consistency
condition (iii).

Our algorithm will be a generalization of the following simple algorithm to determine
an acyclic ordering if it exists: It relies on the fact that in any acyclic digraph there
is a vertex with indegree 0 and that if we remove a vertex from an acyclic graph, then
it remains acyclic. More precisely, in each step we pick a vertex with indegree 0, add
it to the tail of the acyclic ordering obtained so far and delete in from the digraph
(Bang-Jensen and Gutin, 2010, Section 2.1), formally this yields to algorithm 1.

In our case we want to construct an ordering {d1, . . . , dS} such that {di+1, . . . , dS} lies
behind di in an acyclic ordering of D(di) for each strategy di ∈ U . The central modi-
fication of the algorithm is that we do not only delete arcs from the digraphs, but we
also add arcs as well in order to ensure that an acyclic ordering of D(d) \ {d1, . . . , di}
is also an acyclic ordering of D(d). More precisely, if we add d to the ordering since
it had indegree 0 in D(d), then we add the arcs d1 → d2 to the graphs D(d̂) for all
d̂ ∈ V̂ whenever d1 → d and d→ d2 are both arcs in D(d̂). This yields that two vertices
d1, d2 ∈ V̂ are connected in the modified digraph if and only if they are connected in the
original graph D(d̂).
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Algorithm 1: An Algorithm to Find an Acyclic Ordering (if it exists)

Data: A digraph D = (V,A)
Result: An acyclic ordering (x1, . . . , xn) or ∅ (if no such ordering exists)

1 V̂ ←− V
2 I ←− set of all vertices of D with indegree 0
3 O ←− an empty list
4 while I non-empty do
5 remove a vertex x from I

6 remove x from V̂
7 add x to the tail of O
8 for a = (x, y) ∈ A do
9 remove a from A

10 if y has no incomming arcs in D then
11 add y to I

12 if V̂ is non-empty then
13 return ∅
14 else
15 return O

The following algorithm formally describes this graph modification:

Algorithm 2: GraphModification

Data: A digraph D = (V,A) and a vertex x
Result: A new digraph D̂ = (V̂ , Â) such that V̂ = V \ {x} and for all

x1, x2 ∈ V̂ there is a path from x1 to x2 in D if and only if there is a
path from x1 to x2 in D̂

1 V̂ ←− V \ {x}
2 Â←− A
3 for x1 such that x1 → x ∈ A do
4 for x2 such that x→ x2 ∈ A do

5 add x1 → x2 to Â

6 delete all arcs containing x from Â

The next two results state that the graph modification has the desired properties:

Lemma 9.26. Let D be an arbitrary digraph, let x be a vertex of D, let D̂ = (V̂ , Â)
be the digraph resulting from the algorithm GraphModification and let x1, x2 ∈ V̂ be two
arbitrary vertices. Then there is a path from x1 to x2 in D if and only if there is a path
from x1 to x2 in D̂.
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Proof. Let x̃1, . . . , x̃l be a path from x1 to x2 in D (that is x̃1 = x1 and x̃l = x2). If
x /∈ {x̃1, . . . , x̃l} then x̃1, . . . , x̃l is a path in D̂ since we only deleted arcs that have x as
starting point or as an end point. If x ∈ {x̃1, . . . , x̃l} let x̃i = x then, by construction
of D̂, the arc x̃i−1 → xi+1 lies in D̂, which yields that x̃1, . . . , x̃i−1, x̃i+1, . . . x̃l is a path
joining x1 and x2 in D̂.

Now let x̂1, . . . , x̂l be a path from x1 to x2 in D̂ (that is x̂1 = x1 and x̂l = x2). If the
arcs x̂i → x̂i+1 (i ∈ {1, . . . , l − 1}) all lie in D then x̂1, . . . , x̂l is a path in D from x1 to
x2. Else let i1 be the smallest index such that x̂i1 → x̂i1+1 /∈ D and im be the largest
index such that x̂im → x̂im+1 /∈ D. Since any arc xj1 → xj2 that lies in D̂ but not in D
has been constructed because x̂j1 → x and x→ x̂j2 are arcs in D, we have that

x̂1, . . . , x̂i1 , x, x̂im , . . . , x̂l

is a path from x1 to x2 in D.

Corollary 9.27. Let D be an acyclic graph.

(i) Let ≤D̂ be an acyclic ordering of D̂, then there is an acyclic ordering of D such

that x1 ≤ x2 ⇔ x1 ≤D̂ x2 for all x1, x2 ∈ V̂ .

(ii) Let ≤D be an acyclic ordering of D, then there is an acyclic ordering of D̂ such
that x1 ≤ x2 ⇔ x1 ≤D̂ x2 for all x1, x2 ∈ V̂ .

Proof. We start with a preliminary observation: If ≤D is an acyclic ordering of D,
x1, x2 ∈ V (D̂) and there is a path x̂1, . . . , x̂l from x1 to x2 in D̂ (that is x̂1 = x1 and
x̂l = x2), then x̂i ≤D̂ x̂i+1 for all i ∈ {1, . . . , l−1}. By transitivity of the acyclic ordering
we obtain that x1 = x̂1 ≤D̂ x̂l = x2.

Let ≤D̂ be an acyclic ordering, enumerate the vertices of D̂ such that x1 ≤D̂ x2 ≤D̂
. . . ≤D̂ xu−1. Let ≤D be a partial ordering of V (D) such that x1 ≤D x2 ≤D . . . ≤D xu−1:
Assume that ≤D cannot be extended to an acyclic ordering. Then, by definition of
acyclic orderings, there is an arc xj → xi with 1 ≤ i < j ≤ u− 1. By Lemma 9.26, this
implies that there is a path from xj to xi in D̂, which would yield by the preliminary
observation that xj ≤D̂ xi, which is a contradiction and thus proves (i). The proof of
(ii) is analogous.
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With these preparations we formulate our algorithm:

Algorithm 3: An Algorithm to Find an Acyclic Ordering (if it exists)

Data: A family of digraphs (D(d))d∈U
Result: An ordering (d1, . . . , du) of U satisfying (iii) or ∅ (if no such ordering

exists)
1 V̂ ←− U
2 I ←− set of all d ∈ U with indegree 0 in D(d)
3 O ←− am empty list
4 while I non-empty do
5 remove an element d from I

6 remove d from V̂
7 add d to the tail of O

8 for d̂ ∈ V̂ do

9 D(d̂)← GraphModification(D(d̂), d))

10 if d̂ has no incoming arcs in D(d̂) then

11 add d̂ to I

12 if V̂ is non-empty then
13 return ∅
14 else
15 return O

Theorem 9.28. The algorithm is correct, that is whenever an ordering exists the algo-
rithm finds one and if no ordering exists the algorithm returns ∅.

Proof. We have to prove two things. First, that if the algorithm returns an ordering O
then it satisfies condition (iii). Second, that if there is an ordering that satisfies (iii)
then the algorithm will not return ∅.

If the algorithm returns an ordering O = (d1, . . . , du), then in each step we find a strategy
di such that di has indegree 0 in the digraph

D̂(di) = GraphModification(. . .GraphModification(D(di), d1), . . . , di−1).

Since di has indegree 0, we obtain using Algorithm 1 an acyclic ordering of D̂(di) such
that di ≤ dj for all j > i. By Corollary 9.27, we then also obtain an acyclic ordering of
D(di) such that di ≤ dj for all j ≥ i. This proves the first claim.

Now assume that (d1, . . . , du) satisfies (iii). Then for each i ∈ S we find an acyclic
ordering of D(di) such that di ≤ dj for all j > i. In particular, Corollary 9.27 yields
that there is an acyclic ordering ≤D̂(di) of

D̂(di) = GraphModification(. . .GraphModification(D(di), d1), . . . , di−1)
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such that di ≤D̂(di) d
j for all j > i. However, this yields, by definition, that there is no

incoming arc into di in D̂(di), which in particular yields that in step i the vertex di lies
in I. Thus, choosing di in step i for all 1 ≤ i ≤ n yields that the algorithm outputs
(d1, . . . , du), which proves the second claim.

As in the case of acyclic orderings, we can obtain all orderings satisfying the consistency
condition by applying the algorithm for each possible choice of a vertex from the set
I in every step. From an algorithmic viewpoint, it is important to find an efficient
way to maintain the necessary information for every sub-problem. In the context of
acyclic orderings such a procedure has been introduced in Knuth and Szwarcfiter (1974).
A similar procedure can also be formulated for our case. However, in our case this
would become even more complex due to the graph adjustments. Since the examples we
consider here are small enough such that efficiency concerns do not matter so much, we
omit the description of such an algorithm that outputs all acyclic orderings here.

9.7. Application of the Global Convergence

Theorem in the Examples of Chapter 6

In this section we apply the global convergence theorem for the two consumer choice ex-
amples presented in Chapter 6. The theorem cannot be applied to the corruption model
of Section 6.2 since the underlying nonlinear Markov chain has a reducible generator
Q(m) for some m ∈ P(S) and thus the convergence behaviour cannot be classified using
the results from Section 9.2. In the consumer choice model with constant dynamics, we
can explicitly compute all solutions of the myopic adjustment process. Moreover, we
obtain that in some cases the theorem yields convergence towards the unique stationary
mean field equilibrium. In other cases (with at least one mixed strategy equilibrium),
the conditions of the theorem are violated and we indeed observe non-convergence. In
the consumer choice model with non-constant dynamics, we can no longer solve the dif-
ferential inclusion describing the myopic adjustment process explicitly, but we can again
apply the convergence result for some cases. We thereafter analyse the special case c = 1
and show that we can still obtain convergence although the assumptions of the theorem
are violated. Furthermore, we establish manually convergence towards the distribution
of the infinitely many stationary equilibria.

9.7.1. The Consumer Choice Model of Section 6.1

We start our investigations with the consumer choice model of Section 6.1. In this
setting, we can explicitly solve the differential inclusion describing the myopic adjustment
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process. Thus, we can discuss the limit behaviour also without applying Theorem 9.15.
This discussion in particular illustrates the necessity of the consistency condition (iii).
We will start by verifying that we are in the setting of this chapter by verifying that
assumption A2, A3, A4 and A5 are satisfied. Then we discuss for which parameters the
conditions of the theorem are satisfied and discuss the limit behaviour with and without
the help of Theorem 9.15.

As a first step, we need to formulate a suitable extension of the rewards onto an open
subset containing P(S) such that we satisfy Assumption A2. Let δ > 0 be small enough
(i.e. δ � min{k1, 1− k2}) and define Oδ := (−δ, 1 + δ)2 and set

Q··change : (−δ, 1 + δ)2 → R2×2,m 7→
(
−b b
b −b

)
Q··stay : (−δ, 1 + δ)2 → R2×2,m 7→

(
−ε ε
ε −ε

)
r·change : (−δ, 1 + δ)2 → R2,m 7→

(
ln(fδ(m1)) + s1 − c

ln(fδ(1−m1)) + s2 − c

)
r·stay : (−δ, 1 + δ)2 → R2,m 7→

(
ln(fδ(m1)) + s1

ln(fδ(1−m1)) + s2

)
,

which on P(S) coincides with the model introduced in Section 6.1 since m2 = 1 −m1.
As in the discussion of optimal strategies in Section 6.1, we obtain that it is optimal to
play strategy {change} × {stay} if and only if

fδ(m1)

fδ(1−m1)
≤ exp

(
c(β + 2ε)

b− ε
− s1 + s2

)
.

Since fδ(·) is increasing and δ > 0 is small enough,this yields that it is optimal to play
{change}×{stay} if and only if m1 ≤ k1. For the other two strategies {stay}×{stay} and
{stay}×{change} we obtain analogously that for small δ > 0 the strategy {stay}×{stay}
is optimal if and only if k1 ≤ m1 ≤ k2 and the strategy {stay} × {change} is optimal if
and only if m1 ≥ k2.

With these observations, we characterize the optimality sets as follows

g{change}×{stay}(m) = m1 − k1

g{stay}×{stay}(m) = −(m1 − k1) · (k2 −m1)

g{stay}×{change}(m) = k2 −m1,

We remark that this is indeed a sensible characterization because−(m1−k1)(k2−m1) ≤ 0
if and only if m1 ≥ k1 and m1 ≤ k2 or if m1 ≤ k1 and m1 ≥ k2 and the second case is
not possible because k1 < k2.

As a next step we have to check whether the gradients are non-vanishing for all points
where more than one strategy is optimal. In our case this has to be verified for the point
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(k1,m2) for the strategies {change}×{stay} and {stay}×{stay} as well as for the point
(k2,m2) for the strategies {stay} × {stay} and {stay} × {change}:

∇g{change}×{stay}(m) =

(
1
0

)
⇒ ∇g{change}×{stay}(k1,m2) 6= 0

∇g{change}×{stay}(m) =

(
k2 + k1 − 2m1

0

)
⇒ ∇g{stay}×{stay}(k1,m2) 6= 0

and ∇g{stay}×{stay}(k2,m2) 6= 0

∇g{stay}×{change}(m) =

(
−1
0

)
⇒ ∇g{stay}×{change}(k1,m2) 6= 0,

where we again use for the second case that k1 < k2. This, in total, shows that As-
sumption A3 is satisfied. Assumption A4 is also satisfied since the three strategies
{change} × {stay}, {stay} × stay} and {stay} × {change} are never simultaneously
optimal.

In order to verify that Assumption A5 is satisfied it suffices by the structure of the
gradients to verify that the first component of (Qd(m))Tm is non-vanishing. The first
component of the term is vanishing for the strategy {change}×{stay} if m is a multiply
of
(

ε
b+ε
, b
b+ε

)
. Similarly, it vanishes for the strategy {stay} × {stay} if m is a multiply

of
(

1
2
, 1

2

)
and for the strategy {stay} × {change} if m is a multiply of

(
b
b+ε
, ε
b+ε

)
. If k1

does not coincide with ε
b+ε

and with 1
2

and if k2 does not coincide with 1
2

and with b
b+ε

,
then there is an open set P(S) ⊆ O ⊆ Oδ that does not contain a point (k1,m2) =

λ
(

ε
b+ε
, b
b+ε

)T
or a point (k1,m2) = λ

(
1
2
, 1

2

)T
or a point (k2,m2) = λ

(
1
2
, 1

2

)T
or a point

(k2,m2) = λ
(

b
b+ε
, ε
b+ε

)T
for some λ ∈ R. Thus, also Assumption A5 is satisfied for a

suitable chosen open set O whenever k1 /∈
{

ε
b+ε
, 1

2

}
and k2 /∈

{
1
2
, b
b+ε

}
.

Condition (i) of Theorem 9.15 is trivially satisfied since we consider a standard contin-
uous time Markov chain with irreducible generator. In order to verify condition (ii) we
note that we can explicitly solve the differential equation ṁ(t) = (Qd(m))Tm: Namely
for the strategy {change} × {stay} we obtain that a solution for an arbitrary initial
condition m0 = ((m0)1, (m0)2) ∈ O is

m(t) = ((m0)1 + (m0)2) ·
(

ε
b+ε
b
b+ε

)
+ e−(b+ε)t

(
ε

b+ ε
(m0)2 −

b

b+ ε
(m0)1

)(
−1
1

)
.

With this observation we obtain that given any initial condition the trajectory of ṁ =
(Qd(m))Tm convergences towards ((m0)1 + (m0)2) · ( ε

b+ε
, b
b+ε

)T and that moreover the
trajectories are monotone in both components (increasing in one and decreasing in the
other). For the other two strategies we obtain similar characterizations of the differential
equations and the same qualitative monotonicity behaviour. Thus, condition (ii) is
satisfied.
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Condition (iii) holds only for certain parameter choices: Indeed, in the case (i) we
obtain

{change} × {stay} ≤ {stay} × {stay} ≤ {stay} × {change}

as the only ordering that satisfies the consistency condition, in case (iii) we obtain

{change} × {stay} ≤ {stay} × {change} ≤ {stay} × {stay}

as the only ordering that satisfies the consistency condition and in case (viii) we obtain

{stay} × {change} ≤ {stay} × {stay} ≤ {change} × {stay}

as the only ordering that satisfies the consistency condition. In all other cases it is not
possible to find an ordering satisfying the consistency condition, in the cases (ii) an (vi)
the algorithm presented in Section 9.6 cannot find a second strategy, in the cases (vi),(v)
and (vii) the algorithm cannot even find a first strategy.

In the cases where the consistency condition is satisfied also condition (iv) is directly
satisfied. Thus, Theorem 9.15 yields that the process converges towards the unique
mean field equilibrium or stays inside some set Optsome(d)\Optunique(d). However, these
sets Optsome(d) \ Optunique(d) consist only of one point and in the three cases we are
considering both strategies that are optimal for these one-point sets push the trajectory
in the same direction away from that point. Thus, it is not possible to stay at such
a point. Therefore, we indeed have global convergence towards the unique stationary

equilibrium, which in case (i) is
(

b
b+ε
, ε
b+ε

)T
with equilibrium strategy {stay}×{change},

in case (ii) it is
(

1
2
, 1

2

)T
with equilibrium strategy {stay} × {stay} and in case (viii) it

is
(

ε
b+ε
, b
b+ε

)T
with equilibrium strategy {change} × {stay}. In Figure 9.4 we illustrate

how the trajectories converge towards the stationary equilibrium for some parameter set
belonging to case (viii).

In the cases were the consistency condition is not satisfied we obtain that for at least one
of the intersections of two optimality sets Optsome(d), which is either the point (k1, 1−k1)
or the point (k2, 1 − k2), the trajectories given the two optimal strategies point away
from each other. In this case we obtain that the solution of the differential equation is no
longer unique and that we therefore cannot tell for the point k1 or k2, respectively, what
happens in the limit. For illustration, let us consider case (v). In this case k1 ∈

(
ε
b+ε
, 1

2

)
and k2 ∈

(
1
2
, b
b+ε

)
.

Given the initial condition m0 = (k1, 1− k1) and any T ≥ 0 the trajectory given by

t 7→



(
k1

1− k1

)
if t ≤ T(

ε
b+ε
b
b+ε

)
+
(

ε
b+ε
− k1

)
e−(b+ε)(t−T )

(
−1

1

)
if t ≥ T
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Figure 9.4.: The trajectories for different initial values (m0)1 of the myopic adjustment
process for some parameter set belonging to case (viii), for which global
convergence is obtained. Additionally, the red vertical lines depict the sta-
tionary points given the strategies {change} × {stay}, {stay} × {stay} and
{stay}×{change} (for bottom to top) and the blue vertical lines depict the
crucial thresholds k1 and k2.
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and the trajectory given by

t 7→



(
k1

1− k1

)
if t ≤ T(

1
2
1
2

)
+
(

1
2
− k1

)
e−2ε(t−T )

(
−1

1

)
if t ≥ T

are solutions of the myopic adjustment process

ṁ(t) ∈



(
−bm1(t) + εm2(t)

bm1(t)− εm2(t)

)
if m1(t) < k1

conv

{(
−bm1(t) + εm2(t)

bm1(t)− εm2(t)

)
,

(
−εm1(t) + εm2(t)

εm1(t)− εm2(t)

)}
if m1(t) = k1(

−εm1(t) + εm2(t)

εm1(t)− εm2(t)

)
if k1 < m1(t) < k2

conv

{(
−εm1(t) + εm2(t)

εm1(t)− εm2(t)

)
,

(
−εm1(t) + bm2(t)

εm1(t)− bm2(t)

)}
if m1(t) = k2(

−εm1(t) + bm2(t)

εm1(t)− bm2(t)

)
if m1(t) > k2

.

Similarly, given the initial condition (k2, 1 − k2) and some T ≥ 0 the trajectory given
by

t 7→



(
k2

1− k2

)
if t ≤ T(

1
2
1
2

)
+
(

1
2
− k2

)
e−2ε(t−T )

(
−1

1

)
if t ≥ T

and the trajectory given by

t 7→



(
k2

1− k2

)
if t ≤ T(

b
b+ε
ε
b+ε

)
+
(

b
b+ε
− k2

)
e−(b+ε)(t−T )

(
−1

1

)
if t ≥ T

are solutions of the myopic adjustment process. Some of these infinitely many possible
trajectories given these particular initial conditions are depicted in Figure 9.5.

These observations yield that for the initial conditions m0 = (k1, 1 − k1)T and m0 =
(k2, 1 − k2)T we cannot clearly specify the limiting behaviour of the trajectory: For
m0 = (k1, 1 − k1)T the trajectories can converge towards three equilibria, the pure
strategy equilibria with equilibrium distributions ( ε

b+ε
, b
b+ε

)T and (1
2
, 1

2
)T , as well as the
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Figure 9.5.: Some of the infinitely many possible solutions with initial condition (m0)1 =
k1 and (m0)1 = k2. Additionally, the red vertical lines depict the stationary
points given the strategies {change}×{stay}, {stay}×{stay} and {stay}×
{change} (for bottom to top) and the blue vertical lines depict the crucial
thresholds k1 and k2.

mixed strategy equilibrium with equilibrium distribution (k1, 1 − k1)T and for m0 =
(k2, 1−k2) the trajectories can either converge towards the pure strategy equilibria with
equilibrium distributions (1

2
, 1

2
)T and ( b

b+ε
, ε
b+ε

)T as well as the mixed strategy equilibrium

with equilibrium distribution (k2, 1−k2)T . For the economic application this means that
we cannot make any predictions about long-term behaviour of partially rational agents
in our model.

Remark 9.29. In the considered example the violated consistency condition yields non-
uniqueness of trajectories, but trajectories still converge towards stationary mean field
equilibria. This cannot be expected in general especially if there are more optimality
sets of which some might additionally be nested in each other. Indeed, a violation of
the consistency condition will most likely yield to trajectories for which we cannot make
any predictions about the limit behaviour of the myopic adjustment process. 4
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9.7.2. The Consumer Choice Model of Section 6.3

In the second consumer choice example, we will again see that Theorem 9.15 can only be
applied for some parameter sets. Furthermore, we will discuss the knife-edge case c = 1,
where we only obtain that 〈(Qsc(m))Tm,∇g(m)〉 is nonnegative and not that it is strictly
positive. However, we can circumvent this problem and still obtain the same conclusions
as Theorem 9.15 that is we obtain that after some time T the trajectory will stay in the
set, where both strategies are simultaneously optimal. Using this fact, we then derive
that we indeed obtain convergence towards the distribution of the stationary mixed
strategy equilibria using the explicit characterization presented in Subsection 9.1.2.

We start by checking whether the assumptions of this chapter are satisfied: Assumption
A2 is satisfied for any open subset of

(
− ε
b
,∞
)
×
(
− ε
b
,∞
)
×R. Assumption A3 is satisfied

since
U = {{change} × {stay}, {stay} × {change}}

with g(·) = g{stay}×{change}(·) = −g{change}×{stay}(·) given by

g(m) = m1 −
1

c
m2 −

1− c
ce

(β + ε+ 2λ)

and the gradient is ∇g(m) =
(
1,−1

c
, 0
)T 6= 0. Assumption A4 is trivially satisfied since

U contains only two elements.

It remains to check whether

〈(Qcs(m))Tm,∇− g(m)〉 and 〈(Qsc(m))Tm,∇g(m)〉

have uniform sign over {m ∈ O : g(m) = 0}, where we again write cs for the strategy
{change} × {stay} and sc for the strategy {stay} × {change}: We note that

〈(Qcs(m))Tm,∇− g(m)〉

=
(
−bm1 − εm1 − em2

1 + λm3)
)
· (−1) +

(
bm1 − em2

2 − εm2 + λm3

)
· 1

c
+ . . . · 0

=

(
b+ ε+

b

c

)
m1 + em2

1 + λ
1− c
c

m3 −
e

c
m2

2 −
ε

c
m2

=

(
b+ ε+

b

c

)
·
(

1

c
m2 +

1− c
ce

(β + ε+ 2λ)

)
+ e

(
1

c
m2 +

1− c
ce

(β + ε+ 2λ)

)2

+ λ
1− c
c

m3 −
e

c
m2

2 −
ε

c
m2

=

(
b

c
+
ε

c
+

b

c2

)
m2 +

(1− c)
ce

(β + ε+ 2λ)

(
b+ ε+

b

c

)
+
e

c2
m2

2 + 2
1− c
c2

(β + ε+ 2λ)m2 +
(1− c)2

c2e
(β + ε+ 2λ)2
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+ λ
1− c
c

m3 −
e

c
m2

2 −
ε

c
m2

=
e(1− c)
c2

m2
2 +

(
b

c
+

b

c2
+ 2

1− c
c2

(β + ε+ 2λ)

)
m2

+
1− c
ce

[
(β + ε+ 2λ)

(
b+ ε+

b

c

)
+

1− c
c

(β + ε+ 2λ)2

]
+ λ

1− c
c2

m3.

If c < 1 yields then 〈(Qcs(m))Tm,∇− g(m)〉 given a fixed m3 ∈ O is a upwards opening
parabola with a minimum at the point m̄2 given by

2
e(1− c)
c2

m̄2 = −
(
b

c

1 + c

c
+ 2

1− c
c2

(β + ε+ 2λ)

)
,

i.e. m̄2 = − b

2e

1 + c

1− c
− 1

e
(β + ε+ 2λ) < 0.

Thus, since the value given m2 = 0 is strictly positive, then also all values in (−δ,∞),
with δ > 0 being small enough are positive since the parabola is increasing on the right
of the maximum. Thus, in any case we obtain that

〈mTQcs(m),∇− g(m)〉 > 0.

For the second scalar product the case is not that clear:

〈(Qsc(m))Tm,∇g(m)〉

=
(
−em2

1 − εm1 + bm2 + λm3

)
· 1 +

(
−bm2 − em2

2 − εm2 + λm3

)
·
(
−1

c

)
+ . . . · 0

= −em2
1 − εm1 +

e

c
m2

2 +

(
b+

b

c
+
ε

c

)
m2 − λ

1− c
c

m3

= −e
(

1

c
m2 +

1− c
ce

(β + ε+ 2λ)

)2

− ε
(

1

c
m2 +

1− c
ce

(β + ε+ 2λ)

)
+
e

c
m2

2 +

(
b+

b

c
+
ε

c

)
m2 − λ

1− c
c

m3

= − e

c2
m2

2 − 2
1− c
c2

(β + ε+ 2λ)m2 −
(1− c)2

c2e
(β + ε+ 2λ)2 − ε

c
m2

− ε1− c
ce

(β + ε+ 2λ) +
e

c
m2

2 +

(
b+

b

c
+
ε

c

)
m2 − λ

1− c
c

m3

= −e(1− c)
c2

m2
2 +

(
b+

b

c
− 2

1− c
c2

(β + ε+ 2λ)

)
m2 −

(1− c)2

c2e
(β + ε+ 2λ)2

− ε1− c
ce

(β + ε+ 2λ)− λ1− c
c

m3.

If m2 is small enough this quantity will be negative and if b + b
c

is large enough it will
become positive for some values m2 ∈ [0, 1]. If this does not happen, that is if the
quantity is non-zero for all m2 ∈ [0, 1], then it is possible to apply Theorem 9.15.
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Condition (i) is met by Theorem 9.8 (see Subsection 9.2.3). Condition (ii), (iii) and (iv)
hold if and only if

〈(Qsc(m))Tm,∇g(m)〉

has uniform sign over the set {m ∈ O : g(m) = 0}.

For the first parameter sets considered in Section 6.3 we obtain that

〈(Qsc(m))Tm,∇g(m)〉 ≈ −0.1250m2
2 + 0.4438m2 − 0.5232− 0.1250m3 < 0

for all m2,m3 ∈ Optsome({stay} × {change}) ∩ Optsome({change} × {stay}) with δ >
0 being small enough. In this case, we thus obtain by Theorem 9.15 that we have
convergence towards a deterministic mean field equilibrium or that we stay inside

Optsome({stay} × {change}) ∩Optsome({change} × {stay}).

However, by the observations made in Subsection 9.1.2 we obtain that any trajec-
tory of the myopic adjustment process will immediately leave this intersection. Thus,
we indeed obtain convergence towards the unique deterministic mean field equilibrium
(mcs, {change} × {stay}).

In the other cases we obtain that the sign of 〈(Qsc(m))Tm,∇g(m)〉 is not uniform on
[0,∞)S ∩ Optsome({stay} × {change}) ∩ Optsome({change} × {stay}). Thus, we cannot
apply Theorem 9.15. However, it would be interesting to understand how the system
behaves in this case.

Let us conclude with the case c = 1: In this case we obtain from the previous calculations
that

〈(Qcs(m))Tm,∇− g(m)〉 = 2bm2 ≥ 0 and 〈(Qsc(m))Tm,∇g(m)〉 = 2bm2 ≥ 0.

However, even if we aim to use the modification of Section 9.5 we run into a problem,
namely

〈(Qcs(m))T ,∇g(m)〉 = 0 and 〈(Qsc(m))T ,∇g(m)〉 = 0

for all m ∈ [0,∞)S with m2 = 0. In general, this is problematic since to digraph, which
formalized the consistent behaviour of the trajectories, has to be redefined such that
it still captures the relevant relations and for some preliminary results (Lemma 9.21,
Lemma 9.23 and Lemma 9.25) it is even necessary that these scalar products are non-
vanishing. However, in this particular setting we can workaround the aforementioned
problems: We note that we do not need Lemma 9.25. Moreover, the formulation of
the digraph is not problematic since alongside the intersection of the two optimality
sets Optsome(cs) ∩ Optsome(sc) the scalar product is non-zero for some values. Thus, it
suffices to prove the flow invariance of P(S) as well as the uniqueness of trajectories for
ṁ ∈ F (m) .
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As in the standard case, we prove the flow invariance and remark that the uniqueness
directly follows from Lemma 9.4. We note that, by Remark 9.22, the set {m ∈ RS :∑

i∈S mi = 1} is flow invariant for F . Assume that there are time 0 ≤ t̃1 < t̃2 such that
m(t̃1) ∈ P(S) and m(t) /∈ P(S) for all t̃1 < t < t̃2. If m(t̃1) 6= (0, 0, 1), then we can
employ the proof technique used in the classical proof of Lemma 9.21. If m(t̃1) = (0, 0, 1),
then

(Qcs(m))Tm = (Qsc(m))Tm =

 1
1
−2

 ,

which by continuity of Qcs(m) and Qsc(m) implies for t̃1 < t < t̃1 + δ that

F (m) ⊆ N 1
2

 1
1
−2

 .

However, this implies that m1(t) and m2(t) are increasing almost surely, which in par-
ticular yields that m(t) ∈ P(S) for t̃1 < t < t̃1 + δ, a contradiction.

Thus, we obtain the same conclusion as with Theorem 9.15. In particular, we obtain
that also in this case the trajectory will stay in

Optsome({stay} × {change}) ∩Optsome({change} × {stay})

or that it will converge towards a deterministic stationary mean field equilibrium. We
first note that the convergence towards a stationary mean field equilibrium is not possible
since for both strategies d ∈ {cs, sc} the nonlinear Markov chain with nonlinear generator
Qd(·) is strongly ergodic and the stationary point given Qd(·) lies outside Optsome(d).
Thus, we will indeed stay for all t ≥ T in the set of all points where the two strategies
are simultaneously optimal.

This insight can be used even further to characterize the long-term behaviour of the
myopic adjustment process: By definition of the myopic adjustment process the unique
solution m(·) has to satisfy ṁ(t) ∈ F (m(t)), which in our case means that for almost all
t ≥ T and some π1,change(t), π2,change(t) ∈ [0, 1] we have

ṁ1(t) = −(π1,change(t)b+ em1(t) + ε)m1(t) + π2,change(t)bm2(t) + λm3(t)

ṁ2(t) = π1,changebm1(t)− (π2,change(t)b+ em2(t) + ε)m2(t) + λm3(t).

We remark that we omit the equation for ṁ3(t) because the fact that Qd(·) (d ∈ {cs, sc})
is conservative implies ṁ1(t) + ṁ2(t) + ṁ3(t) = 0.

Since m1(t) = m2(t) for all t ≥ T by definition of Optsome({stay} × {change}) ∩
Optsome({change} × {stay}), we obtain, using that also ṁ1(t) = ṁ2(t) has to hold
for almost all t ≥ T , that

− π1,change(t)bm1(t)− em1(t)2 − εm1(t) + π2,change(t)bm1(t) + λm3(t)
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= π1,change(t)bm1(t)− π2,change(t)bm1(t)− em1(t)2 − εm1(t) + λm3(t),

i.e. − π1,change(t)bm1(t) + π2,change(t)bm1(t) = 0.

This yields that for almost all t ≥ T the trajectory of the myopic adjustment process
has to satisfy

ṁ1(t) = −em1(t)2 − (ε+ 2λ)m1(t) + λ,

which is a Riccati equation. Since the set [0, 1] is flow invariant for the differential equa-
tion, we obtain that the right-hand side is Lipschitz continuous. Thus, by Theorem A.3
there is a unique Caratheodory solution. Since there is also a unique classical solution for
any initial condition m0 ∈ [0, 1], this solution coincides with the Caratheodory solution.
Thus, we can rely on the results regarding classical solutions of the Riccati equation
stated above. However, the only known results regarding the long-term behaviour of
solutions are that the solution is bounded in our setting (see Bahk et al. (2008)) and
there are no general results on conditions that ensure that the solution approaches a cer-
tain limit. Nonetheless, numerical simulations indicate that in our setting with initial
conditions m0 ∈ (0, 1) convergence towards the stationary point is likely.
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10. Outlook

This chapter collects some ideas for future research for the discussed model. Additionally,
several model extensions are possible directions for future research. Examples for such
model extensions that have previously been discussed in examples are lump-sum state
transition costs (see the corruption model of Kolokoltsov and Malafeyev (2017)), the
introduction of a major player (see the inspection game of Kolokoltsov and Yang (2015))
or multi-class agent models (see the the labour market model of Guéant (2009a) and the
paradigm shift model of Besancenot and Dogguy (2015)).

Numerical Methods to Obtain Stationary Mean Field
Equilibria

A first central field for further research are numerical methods for finding stationary
mean field equilibria. The related problem, the computation of Nash equilibria in normal
form games as well as in symmetric games, is well studied: It has been shown that both
problems lie in the class PPAD, which consists of all problems that can be represented
by a digraph with a specific structure (which size might grow exponentially fast in the
input data) and where the solutions are given by the sinks and non-standard sources of
the graph (Papadimitriou, 1994, 2007). However, the problems are also PPAD-complete,
which, as NP-completeness for decision problems, hints that the problem is intractable
(Papadimitriou, 2007; Brandt et al., 2009). We remark, that as in the case of NP-
complete problems, it might hold true that P=PPAD or even P=NP, which would in
the end imply tractability.

For our problem at hand we first note that finding stationary mean field equilibria differs
substantially from finding Nash equilibria: The problem is not mainly combinatorial,
but of analytical nature. Thus, we expect that we can only find algorithms to obtain
approximate stationary mean field equilibria. These are pairs (m,π) such that the
distribution m lies close to the distribution of a stationary mean field equilibrium and
the chosen strategy π of the individual agent is ε-optimal.

Many problems related to finding stationary mean field equilibria, like finding Nash
equilibria, finding fixed points or finding competitive equilibria, also lie in PPAD (Pa-
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padimitriou, 1994, 2007). Thus, a first natural approach would be to check whether
the problem itself lies in PPAD. Moreover, we expect that the problem is also PPAD-
complete, which means that as a second step we would need to reduce one of the other
problems onto finding stationary mean field equilibria. This is a promising approach
since for arbitrary dynamics solving fixed point problems is an integral part of finding a
stationary mean field equilibrium.

For constant irreducible dynamics another approach might yield a sensible algorithm,
whose complexity additionally depends on certain bounds for transition rates and re-
wards: More precisely, the algorithm would consist of three steps. First, we compute the
stationary points given each deterministic strategy, which is by Lemma 5.9 possible in
polynomial time. Thereafter, we have to check for any set {d1, . . . , dk} ⊆ Ds for which
of the points in conv(xd

1
, . . . , xd

k
) all strategies {d1, . . . , dk} are simultaneously optimal.

Finally, for all points m obtained in the previous step we then have to solve the corre-
sponding linear equation (Qπ(m))Tm = 0 for π, which is again possible in polynomial
time. Thus, it suffices to find an sensible algorithm for the second step. A possible
approach would be to define a suitable grid and use the bounds of the value function
similar obtained in Section 7.3 to obtain nearly optimal strategies.

A Related Static Game

Another field of future research is the question which properties are generic, where
both the topological as well as the measure-theoretic notion of genericity are of interest.
Besides further investigations or generic essentiality (see Section 7.5) also the question
whether the number of equilibria is generically finite is of interest. This question is most
of the time answered positively in standard game theory (see Harsanyi (1973) for the
case of normal form games, Haller and Lagunoff (2000) and Doraszelski and Escobar
(2010) for the case of Markov perfect equilibria and Dubey (1986) as well as Anderson
and Zame (2001) for the case of static games with compact, convex polyhedra as action
spaces). For stationary mean field equilibria we also expect that having finitely many
equilibria is a generic property.

Besides the programme sketched in Section 7.5, the following auxiliary three player static
game with compact and convex action spaces leads to a promising approach for proving
generic finiteness:

Player one chooses an action m ∈ P(S) in order to maximize his utility −(m − x)2,
player two chooses π ∈ P(Ds) such that the strategy is optimal for the Markov decision
process with transition rates Q(m) and rewards r(m), that is to maximize∑

d∈Ds
πd(I − βQd(m))−1rd(m) · 1.
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Player 3 chooses x ∈ P(S) such that

−
∑
j∈S

(∑
i∈S

xi
∑
d∈Ds

Qd
ij(m)πd

)2

is maximized. It holds that (m,π, x) is an equilibrium of this static game if and only
if (m,π) is a stationary mean field equilibrium. Thus, we could follow the general pro-
gramme presented in Dubey (1986) as well as Anderson and Zame (2001) to prove generic
finiteness. We only have to find a different way to show that the Jacobian matrices are
“generically” non-vanishing since Thom’s transversality theorem is no longer directly
applicable as the Jacobian matrices have a certain structure.

Global Convergence of the Myopic Adjustment Process under
Weaker Assumptions

As we have seen in Section 9.5 as well as in the discussion of the examples in Section 9.7
some of the assumptions can be weakened in such a way that the theorem still holds true.
In particular, we have seen that Assumption A5 can be weakened and a more general
statement regarding models where 〈(Qd(m))Tm,∇gd̂(m)〉 = 0 for some points would be
desirable. However, two central difficulties occur: First, we need to sensibly readjust the
definition of the underlying digraphs in order to still allow them to capture the relevant
information regarding the consistency of the different trajectories given the deterministic
strategies. Second, we need to find new proofs for the uniqueness of trajectories and for
the flow invariance of P(S) for F (·) since these proofs at the moment crucially rely on
the fact that 〈(Qd(m))Tm,∇gd̂(m)〉 is non-vanishing.

Furthermore, it would be desirable to discuss what happens if Assumption A4 is vio-
lated. In the current proof of the theorem, this assumption has a crucial role since if it is
violated we cannot derive in the proof of Lemma 9.18 that the conditions are met to use
the sufficient criterion for flow invariance presented in Lemma 9.2, which then yields that
the whole proof breaks down. A first situation to investigate would be the case where
two planes divide the space of population distributions into four optimality sets. This
is a natural starting point for such investigations since this situation is simple, linear
conditions regarding optimality naturally arose in all application and, furthermore, all
other conditions except A4 are met because the distance to a convex set is continuously
differentiable. In this setting, it is still possible to derive flow invariance statements for
the sets where one strategy is optimal or for the unions of optimality sets that lie on
one side of a plane. Due to the consistency condition we obtain for the myopic adjust-
ment process itself even flow invariance statements for other, more general, optimality
sets. The main task would be to systematically understand whether the conditions are
sufficient by going through all the possible digraph configurations.
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Is there a Trend towards Stationary Equilibria?

Another classical way of justifying the consideration of stationary equilibria is to prove
that dynamic equilibria converge towards stationary equilibria. Similar investigations
have been carried out for finite state mean field games having a unique optimizer of the
Hamiltonian under strong structural assumptions (see Gomes et al. (2013) and Ferreira
and Gomes (2014)). The recent preprint of Belak et al. (2019) now yields a characteriza-
tion of dynamic mean field equilibria a finite time horizon version of the model discussed
in this thesis. In this context it would be interesting to understand in how far stationary
equilibria introduced in this thesis and dynamic equilibria in their model relate when
the time horizon tends to infinity. However, for any non-trivial game with finite action
spaces there will be infinitely many systems potentially describing dynamic equilibria
and it is a priori not clear how they relate to each other. Thus, a first step would be to
carry out such investigations for simple examples.

Limit Behaviour of Nonlinear Markov Chains

Up to the best knowledge of the author, the limit behaviour of continuous time non-
linear Markov chains has not been considered so far. In Section 9.2 we have seen that
irreducibility does no longer imply strong ergodicity of the Markov chain, but it might
happen that we only face convergence in the limit to some stationary distribution. In
this context, we raised the question whether irreducibility implies convergence in the
limit to some stationary distribution. A formal proof (or counterexample) for this state-
ment, but also the investigation of the converse statement are of theoretical interest.
However, as we have discussed in Section 9.2 classical tools from the theory of Markov
chains cannot be directly applied, so one would need to find new methods. Moreover,
further ergodicity conditions (in particular for larger state spaces) are desirable.
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mean field games. Journal de Mathématiques Pures et Appliquées, 93(3):308–328,
2010. doi: 10.1016/j.matpur.2009.10.010.

Diogo A. Gomes, Joana Mohr, and Rafael Rigão Souza. Continuous Time Finite State
Mean Field Games. Applied Mathematics & Optimization, 68(1):99–143, 2013. doi:
10.1007/s00245-013-9202-8.

Diogo A. Gomes, Levon Nurbekyan, and Edgard A. Pimentel. Economic Models and
Mean-field Games Theory. 2015. ISBN 978-85-244-0404-7. URL https://impa.br/

wp-content/uploads/2017/04/30CBM_04.pdf.

Andrzej Granas and James Dugundji. Fixed Point Theory. Springer Monographs in
Mathematics. Springer-Verlag, New York, 2003. ISBN 978-0-387-00173-9.

195

https://impa.br/wp-content/uploads/2017/04/30CBM_04.pdf
https://impa.br/wp-content/uploads/2017/04/30CBM_04.pdf


David Griffeath. Uniform Coupling of Non-Homogeneous Markov Chains. Journal of
Applied Probability, 12(4):753–762, 1975. doi: 10.2307/3212726.
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List of Symbols

The following list collects several symbols that have been used in this thesis. In the case
that the notation is explained in the text the corresponding text reference is given.

2A power set of A

A the closure of the set A

〈·, ·〉B scalar product with respect to the basis B

|| · ||B norm induced by the scalar product 〈·, ·〉B

a a generic action

A number of actions in A

A action space

argmaxx∈Xf(x) the point(s) y that satisfy f(y) = maxx∈X f(x)

β discount factor

conv(A) the convex hull of the set A

C(A,B) the set of all continuous functions from A to B

d a (stationary) deterministic strategy, p. 29

di,a(t) the probability to choose action a in state i and time t under strat-
egy d, p. 29

di(t) the action chosen by the deterministic strategy d in state i at time
t, p. 29

d(a1,...,aS) the stationary deterministic strategy satisfying d(i) = ai for all
i ∈ S, p. 58

D the set of all deterministic strategies, p. 29

Ds the set of all deterministic stationary strategies, p. 23
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D the set of all optimal deterministic stationary strategies for a Markov
decision process, p. 25

D(m) the set of all optimal deterministic stationary strategies given m,
p. 51

D(d) auxiliary digraph defined for the strategy d ∈ U , p. 157

d(x, y) distance of x and y with respect to metric d

d(x,A) distance of x and the set A with respect to the metric d, that is
d(x,A) = infy∈Ad(x, y)

d((Q, r), (Q′, r′)) distance of the two games (Q, r) and (Q′, r′), p. 93

d̂(Q,Q′) distance of the two nonlinear generators Q and Q′, p. 95

det(A) the determinant of the matrix A

δij Kronecker delta, that is δij = 1{i=j}

Eig(λ) generalized eigenspace for the eigenvector λ, p. 129

ext(C) the set of extreme points of the closed and convex set C, p. 23

FP(f) the set of all fixed points of the (set-valued) map f , p. 60

gd(·) function describing Optsome(d) and Optunique(d), p. 156

G the set of all games, p. 93

Gci the set of all games where Q(·) is constant in m and irreducible for
all d ∈ Ds, p. 94

H(A,B) metric on the power set of the metric space (X, d) based on the
metric d, p. 94

i a generic state

I the identity matrix

int(A) the interior of the set A

m population distribution

m0 initial population distribution

ṁ time derivative of m

M the set of all Lipschitz continuous functions ranging from [0,∞) to
P(S) with Lipschitz constant L, p. 38

204



Nε(x) ε-neighbourhood of x

Nε(A) ε-neighbourhood of the set A, p. 94

∇f gradient of f

Oi the set of all actions maximizing the right hand side of the optimal-
ity equation of an Markov decision process for state i, p. 25

Oi(m) the set of all actions that maximize the right hand side of the opti-
mality equation given m, p. 51

Opt(A1 × . . .× AS) the set of points m ∈ P(S) such that Oi(m) = Ai for all i ∈ S,
p. 52

Optsome(d) the set of all those points m ∈ O such that d ∈ D(m), p. 156

Optunique(d) the set of all those points m ∈ O such that D(m) = {d}, p. 156

p(s, i, t, j) the transition probability function of a time-inhomogeneous CTMC,
p. 15

π a (stationary) randomized strategy, p. 29

πi,a(t) the probability to choose action a in state i and time t under strat-
egy π, p. 29

Π the set of all strategies, p. 29

Πs the set of all stationary strategies, p. 23

P(A) the probability simplex over the set A

∂A the boundary of the set A

∂
∂x
f(x, y) Jacobian of f with respect to x

φ(·) best response correspondence in terms of dynamics, p. 39

Q(t) transition rate matrix function for a time-inhomogeneous CTMC,
p. 17

Qija(m) transition rate from state i to state j using action a, when the
population distribution is m, p. 29

Qd transition rate matrix of a continuous time Markov decision process
given the deterministic stationary strategy d, p. 20

Qπ(m, t) generator for the dynamics of the individual player playing strategy
π given population distribution m at time t, p. 29
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Qπ(m) generator for the dynamics of the individual player playing the sta-
tionary strategy π given the stationary population distribution m,
p. 31

Q̃π(m) the matrix (Qπ(m))T , where the last row is replaced by (1, . . . , 1),
p. 56

QT the transpose of the matrix Q

Q′ij the matrix Q, where the i-th row and j-th column is deleted

||Q|| uniform bound of −Qiia, p. 19

(Q, r) tuple describing a game with transition rate matrices (Q··a)a∈A and
rewards (r·a)a∈A, p. 93

ria(m) instantaneous reward in state i, when action a is used, p. 30

rπ reward given the strategy π, p. 19

Re(a) real part of a

ρ(f, g) distance of the functions f and g, p. 96

S number of states in S

S state space

sgn(·) sign function

SMFE(·) maps every game (Q, r) ∈ G to the set of stationary mean field
equilibria (m,π), p. 94

TR the set of all transition rate matrix functions such that Qij(·) is
Lipschitz continuous for all i, j ∈ S, p. 95

U the set of all strategies d such that there is an m ∈ O such that
{d} = D(m), p. 156

V π expected discounted reward of the strategy π in a Markov decision
process, p. 19

V ∗ the optimal discounted reward function for an Markov decision pro-
cess, p. 20

Vx0(π0,m) discounted reward given initial distribution x0, flow of population
distributions m and individual strategy π0, p. 30

xπ(m) the stationary points given Qπ(m), p. 56
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Y (m,x) best possible payoff an individual can obtain given population dis-
tribution m and individual dynamics x, p. 39
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A. Technical Appendix

This appendix contains a short introduction to Caratheodory solutions of ordinary dif-
ferential equations and the proofs of the technical lemmata sorted by the chapters they
are used in.

A.1. Caratheodory Solutions

We briefly review Caratheodory solutions of ordinary differential equations, for which
Walter (1998, pp.121-125) and Filippov (1988, §1) are references.

Definition A.1. Let I × D ⊆ RS+1 be open and let f : I × D → RS be a function
such that for every fixed t ∈ I the function x 7→ f(t, x) is continuous and for every fixed
x ∈ D the function t 7→ f(t, x) is measurable.

A function x : I → RS is a Caratheodory solution of the initial value problem

ẋ(t) = f(t, x(t)), x(0) = x0 (A.1)

if x(t) is absolutely continuous and satisfies (A.1) for almost every t ∈ I.

We remark that classical solutions of the initial value problem (A.1) are particular
Caratheodory solutions. However, not all Caratheodory solutions are also classical so-
lutions of the initial value problem.

A classical existence theorem (Theorem 10.XX in Walter (1998)) is the following:

Lemma A.2. Let I×D ⊆ RS+1 be open and let f(t, x) : D → RS be a function such that
for every fixed t ∈ I the function x 7→ f(t, x) is continuous and for every fixed x ∈ D
the function t 7→ f(t, x) is measurable. Assume that for every set J ×K ⊆ I×D, where
J ⊆ I is a finite interval and K ⊆ D is a closed ball, it holds that there is a function
h(t) integrable over J such that |f(t, x)| ≤ h(t) for all (t, x) ∈ J ×K.

Then for any initial condition (t, x0) ∈ D there is at least one Caratheodory solution of
(A.1). Moreover, it can be extended to the left and right to the boundary of D.
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A classical uniqueness result is presented in Filippov (1988, Theorem 1.2):

Lemma A.3. Let I × D ⊆ RS+1 be open and let f(t, x) : D → RS be a function such
that for every fixed t ∈ I the function x 7→ f(t, x) is continuous and for every fixed
x ∈ D the function t 7→ f(t, x) is measurable. Let (t0, x0) ∈ D and let l : R → R be
integrable over any finite interval such that for any points (t, x), (t, y) ∈ D

||f(t, x)− f(t, y)|| ≤ l(t)||x− y||.

Then there exists at most one Caratheodory solution of (A.1) in D.

A.2. Appendix to Chapter 3

Lemma A.4. Given a strategy π ∈ Π and a Lipschitz continuous function m : [0,∞)→
P(S) there is a unique transition function p(s, i, t, j) (and thus a corresponding time-
inhomogeneous continuous time Markov chain) with transition rates Q(t) = Qπ(m(t), t).

Proof. We show that Qij(t) = Qπ
ij(m(t), t) satisfies the conditions from Section 2.1 that

guarantee the existence of a unique, standard, stable and regular transition function
(and thus the existence of a time-inhomogeneous continuous time Markov chain) with
transition rates Qπ(m(t), t).

Since the family (Q··a(m))a∈A consists of conservative generators, the conditions (i) and
(ii) are clearly satisfied and Qπ(m(t), t) is conservative. Because the function Qija(m(t))
is a composition of Lipschitz continuous functions, it is continuous and Borel measurable.
Therefore, the function Qij(t) is Borel measurable because it is a sum of products of
Borel measurable functions (π(·) is measurable by definition of the strategy space).
Since Qija(m(t)) is uniformly bounded by some constant L, Qij(t) is bounded the same
constant and, thus, Qij(·) is integrable over any finite interval.

It remains to show that condition (2.2) is satisfied. For this we choose w ≡ 1, L1 = L2 =
L and obtain, since Qija(m) is uniformly bounded by L, that for all i ∈ S and t ≥ 0

∑
j∈S

Qij(t) =
∑
a∈A

(∑
j∈S

Qija(m(t))

)
︸ ︷︷ ︸

=0 as Qija(m) is conservative

πia(t) = 0 ≤ L and −Qii(t) ≤ L = L · 1.

Therefore, by the results stated in Section 2.1, we have a unique, standard, stable and
regular transition function p(s, i, t, j) (as well as a Markov process) with transition rates
Qij(t).
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Lemma A.5. The marginal distributions x(t) of the Markov process with initial distri-
bution x0 and infinitesimal generator Qπ(m(t), t) satisfies

ẋj(t) =
∑
i∈S

xi(t)Q
π
ij(m(t), t), ∀j ∈ S

for almost all t ≥ 0.

Proof. Let us write (x0
k)k∈S for the initial distribution of the Markov process. Then we

have
xj(t) =

∑
k∈S

x0
k · p(0, k, t, j).

Using the Kolmogorov forward equation (2.1) we obtain the desired characterization for
almost all t ≥ 0:

ẋj(t) =
∑
k∈S

x0
k

∂p(0, k, t, j)

∂t
=
∑
k∈S

x0
k

∑
i∈S

p(0, k, t, i)Qπ
ij(m(t), t)

=
∑
i∈S

(∑
k∈S

x0
kp(0, k, t, i)

)
Qπ
ij(m(t), t) =

∑
i∈S

xi(t)Q
π
ij(m(t), t)

Lemma A.6. Given m0 ∈ P(S) and π ∈ Π there is at most one Caratheodory solution
of the dynamics equation (3.2).

Proof. We apply Lemma A.3. Let M be a Lipschitz constant for all functions Qija(·)
(i, j ∈ S) with respect to the 1-norm and let L be the constant that uniformly bounds
Qija(m) for all i, j ∈ S, a ∈ A and m ∈ P(S). We prove that

||f(t,m1)− f(t,m2)|| ≤ (M + L) · S

holds on P(S), where f(t,m) =
∑

i∈S
∑

a∈AQija(m)πia(t)mi:

||f(t,m1)− f(t,m2)||1

=
∑
j∈S

∣∣∣∣∣
(∑
i∈S

∑
a∈A

Qija(m
1)πia(t)m

1
i

)
−

(∑
i∈S

∑
a∈A

Qija(m
2)πia(t)m

2
i

)∣∣∣∣∣
=
∑
j∈S

∣∣∣∣∣∑
i∈S

∑
a∈A

(
Qija(m

1)m1
i −Qija(m

2)m2
i

)
πia(t)

∣∣∣∣∣
≤
∑
j∈S

∑
i∈S

∑
a∈A

πia(t)
∣∣Qija(m

1)m1
i −Qija(m

2)m1
i +Qija(m

2)m1
i −Qija(m

2)m2
i

∣∣
≤
∑
j∈S

∑
i∈S

∑
a∈A

πia(t)
∣∣Qija(m

1)m1
i −Qija(m

2)m1
i

∣∣+
∣∣Qija(m

2)m1
i −Qija(m

2)m2
i

∣∣
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=
∑
j∈S

∑
i∈S

∑
a∈A

πia(t)
(
|Qija(m

1)−Qija(m
2)|m1

i + |Qija(m
2)| · |m1

i −m2
i |
)

=
∑
j∈S

∑
i∈S

∑
a∈A

πia(t)
(
M ||m1 −m2||1m1

i + L|m1
i −m2

i |
)

=
∑
j∈S

∑
i∈S

(
M ||m1 −m2||1m1

i + L|m1
i −m2

i |
)

=
∑
j∈S

(∑
i∈S

M ||m1 −m2||1m1
i +

∑
i∈S

L|m1
i −m2

i |

)
=
∑
j∈S

(
M ||m1 −m2||1 + L||m1 −m2||1

)
= (M + L) · S · ||m1 −m2||1.

By Corollary 1 of McShane (1934) we find a Lipschitz continuous extension f̃ : RS → RS

of f(·). This in turn implies that at most one Caratheodory solution of (3.2) exists.

A.3. Appendix to Chapter 4

Proof of Lemma 4.5. We set Kn = [0, n] for all n ∈ N. These sets are compact and
furthermore we have K1 ⊆ K2 ⊆ K3 ⊆ . . . as well as

⋃
n∈NKn = [0,∞). Since every

compact set K is bounded we find some n ∈ N such that K ⊆ Kn. Since the space P(S)
is compact, the function y 7→ ||y||∞ := maxi∈S |yi| is a bounded. Let us denote its upper
bound by M .

We now prove that the topology of uniform convergence on compacta TC is equivalent
to the topology Td induced by the metric d. For this we have to show for all m ∈
C([0,∞),P(S)) and all basis elements B of one topology that there is a basis element
B′ of the other topology such that m ∈ B′ ⊆ B (Munkres, 2014, Lemma 13.3).

In Munkres (2014, p. 279-284) we find a suitable basis of the topology TC of uniform
convergence on compacta: We consider for all compact sets K ⊆ [0,∞), all functions
m ∈ C([0,∞),P(S)) and all ε > 0 the sets

BK(m, ε) =

{
m′ ∈ C([0,∞),P(S)) : sup

t∈K
||m(t)−m′(t)||∞ < ε

}
.

A basis of Td is given by

Bε(m) = {m′ ∈ C([0,∞),P(S)) : d(m,m′) < ε}

for all ε > 0 and all functions m ∈ C([0,∞),P(S)).
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We first show that TC ⊆ Td by proving that every basis element in TC contains a basis
element of Td: Let m ∈ C([0,∞),P(S)) and ε > 0 and choose n ∈ N such that Kn ⊇ K:{

m′ ∈ C([0,∞),P(S)) : sup
t∈K
||m(t)−m′(t)||∞ < ε

}
⊇
{
m′ ∈ C([0,∞),P(S)) : sup

t∈Kn,i∈S
|mi(t)−m′i(t)| < ε

}
⊇
{
m′ ∈ C([0,∞),P(S)) : sup

t∈Kn,i∈S
e−βt|mi(t)−m′i(t)| < e−βnε

}
⊇
{
m′ ∈ C([0,∞),P(S)) : sup

t≥0,i∈S
e−βt|mi(t)−m′i(t)| < e−βnε

}
=
{
m′ ∈ C([0,∞),P(S)) : d(m,m′) < e−βnε

}
.

Now we show Td ⊆ TC : We are given an ε-ball in Td and choose n ∈ N such that
Me−βn < ε. This implies{

m′ ∈ C([0,∞),P(S)) : sup
t≥0,i∈S

e−βt|mi(t)−m′i(t)| < ε

}
=

{
m′ ∈ C([0,∞),P(S)) : sup

t∈Kn,i∈S
e−βt|mi(t)−m′i(t)| < ε

∧ sup
t≥n,i∈S

e−βt|mi(t)−m′i(t)| < ε

}
⊇
{
m′ ∈ C([0,∞),P(S)) : sup

t∈Kn
e−βt||m(t)−m′(t)||∞ < ε

∧ sup
t≥n

e−βn||m(t)−m′(t)||∞ < ε

}
=

{
m′ ∈ C([0,∞),P(S)) : sup

t∈Kn
e−βt||m(t)−m′(t)||∞ < ε

}
⊇
{
m′ ∈ C([0,∞),P(S)) : sup

t∈Kn
||m(t)−m′(t)||∞ < ε

}
.

Lemma A.7. Assume that X is a topological space such that any set A ⊆ X is compact if
and only if it is sequentially compact and, analogously, that Y is a topological space such
that any set B ⊆ Y is compact if and only if it is sequentially compact. Furthermore,
assume that for each compact set A ⊆ X and B ⊆ Y , respectively, the topology on A and
B, respectively, is metrizable. Then the space X × Y equipped with the product topology
also satisfies that a set C ⊆ X × Y is compact if and only if it is sequentially compact.

Proof. Assume that C ⊆ X×Y is sequentially compact, that is any sequence (xn, yn)n∈N
has a converging subsequence with limit (x, y) ∈ C. Let (xn)n∈N be an arbitrary sequence
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in πX(C), where πX : X × Y → X is the projection onto X, and choose for all n ∈ N
an element yn ∈ πY (C) such that (xn, yn) ∈ C. Then the sequence has a converging
subsequence with limit (x, y), which especially yields that (xn)n∈N has a converging
subsequence with limit x ∈ πX(C). Thus, the sets πX(C) (and analogously πY (C)) are
sequentially compact, which by assumption means that πX(C) and πY (C) are compact.

Let (Oi)i∈I be an open cover of C. Then for each (x, y) ∈ C there is an index i(x, y)
such that (x, y) ∈ Oi(x,y). Since Oi(x,y) is open, we furthermore find Ui(x,y) ⊆ X and
Vi(x,y) ⊆ Y such that

(x, y) ∈ Ui(x,y) × Vi(x,y) ⊆ Oi(x,y).

Now fix x. Then (Vi(x,y))y∈πY (C) is an open cover of πY (C). Since πY (C) is compact,
we find a finite subcover (Vi(x,yk(x)))

n
k=1. Since the sets Ux =

⋂n
k=1 Ui(x,yk(x)) are finite

intersections of open sets, they are in turn open and hence (Ux)x∈πX(C) is an open
cover of πX(C). Since πX(C) is compact, we find a finite subcover (Uxj)

m
j=1. Now(

Ui(xj ,yk(xj)) × Vi(xj ,yk(xj))

)n,m
k=1,j=1

is a finite subcover of C and so is(
Oi(xj ,yk(xj))

)n,m
k=1,j=1

,

which proves that C is compact.

Now assume that C ⊆ X × Y is compact. Then πX(C) and πY (C) are compact as they
are the image of a compact set under a continuous map. By assumption πX(C) and
πY (C) are metrizable, thus also πX(C) × πY (C) is metrizable. Since for metric space
compactness and sequential compactness coincides and C ⊆ πX(C)× πY (C), we obtain
the desired claim.

Lemma A.8. Let X and Y be compact metric spaces. Assume that f : X × Y → R
is a continuous function, then g : X → R such that x 7→ g(x) := supy∈Y f(x, y) is
continuous.

Proof. By compactness of Y the function g(·) is well-defined. In order to prove continuity
we note that it is sufficient to check that g−1((−∞, a)) and g−1((b,∞)) are open since

{(−∞, a)) : a ∈ R} ∪ {(b,∞) : b ∈ R}

forms a subbasis of B(R) (von Querenburg, 2001, Theorem 2.21).

We again write πY : X × Y → Y, (x, y) 7→ y for the projection onto Y . Using this we
obtain that g−1((b,∞)) = πY ◦ f−1((b,∞)) because g(x) > b holds whenever there is
some y ∈ Y such that f(x, y) > b. Since f(·, ·) is continuous and πY (·) is open, we then
obtain that g−1((b,∞)) is open.

To prove that g−1((−∞, a)) is open, we prove that for each x ∈ g−1((−∞, a)) there is an
ε-neighbourhood such that Nε(x) ⊆ g−1((−∞, a)): Indeed, if x ∈ g−1((−∞, a)), then, by
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definition of the supremum, we have that {x}×Y ⊆ f−1((−∞, a)). Since f−1((−∞, a))
is open, we obtain that for each point y ∈ Y there are ε1(x, y) and ε2(x, y) such that

Nε1(x,y)(x)×Nε2(x,y)(y) ⊆ f−1((−∞, a)).

Since Y is compact we furthermore have that there is a finite subcover of {x} × Y , let
this be

n⋃
i=1

(
Nε1(x,yi)(x)×Nε2(x,yi)(yi)

)
⊇ {x} × Y.

The set
n⋃
i=1

((
n⋂
i=1

Nε1(x,yi)(x)

)
×Nε2(x,yi)(yi)

)
is again a subcover of {x} × Y , furthermore the set is open and satisfies

n⋃
i=1

((
n⋂
i=1

Nε1(x,yi)(x)

)
×Nε2(x,yi)(yi)

)
⊆ f−1((−∞, a)).

This in total implies that
⋂n
i=1Nε1(x,yi)(x) ∈ g−1((−∞, a)), which proves the desired

claim.

A.4. Appendix to Chapter 5

Proof of Lemma 5.7. Since we face a conservative generator, we have, by definition,
that Qij ≥ 0 for all i 6= j and that

∑
j∈S Qij = 0 for all i ∈ S. Thus, all off-diagonal

entries of Q are non-negative and the row sum is always zero. Furthermore, by requiring
irreducibility we do not have a row of zeros, thus the diagonal entries are strictly negative.

The matrix Q′SS again has non-negative off-diagonal entries, strictly negative diagonal
entries and the row sums are less or equal zero. Furthermore, the irreducibility of Q
implies that QiS is non-zero for at least one i ∈ {1, . . . , S − 1}. Thus, the row sum for
at least one i is strictly negative. With this preliminary observations we show that I28

is satisfied.

For this we first note that for all k ∈ {1, . . . , S − 1} and all y ∈ RS−1

(−Q′SSy)k =
S−1∑
l=1

(−Q′SS)kl · yl =
S−1∑
l=1

(−Q)kl · yl

=
∑

l∈{1,...,S−1}\{k}

−Qkl · yl + ·(−Q)kk · yk
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=
∑

l∈{1,...,S−1}\{k}

−Qkl · yl +
∑

l∈S\{k}

Qkl · yk

=
∑

l∈{1,...,S−1}\{k}

Qkl · (yk − yl) +QkS · yk,

from which we obtain that (−Q′SSy)k is increasing in yk and decreasing in yl since Qkl > 0
for all l 6= k.

Define for all y ∈ [0,∞)S−1 the set

T (y) = {k ∈ {1, . . . , S − 1} : (−Q′SSy)k > 0}

as the set of all indices such that the k-th component of −Q′SSy is greater than zero. We
will inductively define a sequence (yn)n∈N of vectors such that for some ñ ∈ N we have
T (yñ) = {1, . . . , S− 1}. We will start with the vector y0 with a one at every component
and construct yn in such a way that T (yn−1) ( T (yn) for all n ∈ N and yni > 0 for all
i ∈ {1, . . . , S − 1} and all n ∈ N0.

Starting with y0 being the vector of ones, we have that T (y0) 6= ∅ because we have
previously seen that the row sum, which is (−Q′SSy0)i, is positive for some index i ∈
{1, . . . , S − 1}.

In the n-th step (n ∈ N) we check whether T (yn−1) = {1, . . . , S − 1}. If this is the case
we have shown that I28 indeed holds, else there is an index j ∈ {1, . . . , S− 1} \ T (yn−1).
In this case, let i ∈ T (yn−1). Since the generator matrix is irreducible, the underlying
transition graph is strongly connected. Thus, there is a path from j to i. Let k̃ be the
first node on this path that lies in T (yn−1) and let k be its predecessor. We note that
by definition of the transition graph Qkk̃ > 0. Now let yn be as follows ynl = yn−1

l for all
l ∈ {1, . . . , S − 1} \ {k̃} and yn

k̃
such that

0 < yn
k̃
< yn−1

k̃
and (−Q′SSyn)k̃ > 0.

This is possible as yn−1

k̃
> 0 and (−Q′SSyn−1)k̃ > 0 and (−Q′SSy)k̃ is continuous as well

as increasing in yk̃.

It is immediate that ynl > 0 for all l ∈ {1, . . . , S−1}. It remains to show that p ∈ T (yn−1)
implies p ∈ T (yn) and to show that k ∈ T (yn) because this proves that T (yn−1) ( T (yn).

Since (−Q′SSyn)k̃ > 0, we have by construction that k̃ ∈ T (yn). For p 6= k̃ we see again
as (−Q′SSy)p is decreasing in yk̃ and ynp = yn−1

p that

(−Q′SSyn)p =
∑

l∈{1,...,S−1}\{p}

Qpl · (ynp − ynl ) +QpS · ynp

≥
∑

l∈{1,...,S−1}\{p}

Qpl · (yn−1
p − yn−1

l ) +QpS · yn−1
p = (Q′SSy

n−1)p.
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Thus, if p ∈ T (yn−1), then p ∈ T (yn).

For p = k we have a strict inequality as (ynk − ynk̃ )Qkk̃ > (yn−1
k − yn−1

k̃
)Qkk̃ since Qkk̃ > 0

and yn
k̃
< yn−1

k̃
. Thus, we have (Q′SSy

n)k > (Q′SSy
n−1)k = 0, which implies k ∈ T (yn).

In total we proved that T (yn−1) ( T (yn).

Since I28 is satisfied and −Q′SS lies in Zn×n, we conclude that it is a non-singular M -
matrix and that G20 holds. This implies that all eigenvalues of the matrix −Q′SS have
positive real part and that in turn all eigenvalues of Q′SS have negative real part.

Since the matrix Q′SS is real, all complex eigenvalues appear in pairs of complex conju-
gates. Since the product of a complex number and its complex conjugate is non-negative,
we obtain that the sign of the determinant, which can be computed as the product of
all eigenvalues, depends only on the number of real eigenvalues or more specifically the
parity of this number. As the parity of the number of real eigenvalues always equals the
parity of S − 1, we conclude that the sign pattern of the determinant is as claimed.
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B. Addenda required by §7 of the
doctoral degree regulations of
the MIN Faculty

B.1. Abstract

This thesis deals with mean field games theory, a game theoretic model for dynamic
games with a continuum of players. The main feature of these games is that agents
do not observe the behaviour of all other agents individually, but only the distribution
thereof. This simplification makes models of intertemporal interactions of many players
more tractable, which leads to several economic applications. In particular, examples
with finite state and action space have been considered in the literature. However, there
are, except for the existence of dynamic mean field equilibria, no general results for
these types of models. This thesis investigates existence, computation, stability and
explanatory power of stationary equilibria in mean field games with finite state and
action space. We work in the model introduced in Doncel et al. (2016a), but consider
a new (and instructive) probabilistic formulation. More precisely, the individual agents
control a Markov chain with transition rates that depend on the population distribution
and maximize their expected discounted reward over an infinite time horizon.

In the first part of the thesis we analyse stationary mean field equilibria: We start by
proving existence of stationary equilibria in mixed strategies under a continuity assump-
tion. Thereafter, we present several tools in order to compute all stationary mean field
equilibria. We show that optimal stationary strategies are convex combinations of de-
terministic stationary strategies choosing an action that maximizes the right-hand side
of the optimality equation of an associated Markov decision process. We provide a cut
criterion to reduce the set of possible stationary points of the dynamics. Moreover, under
an irreducibility assumption we can reduce the problem of finding all stationary mean
field equilibria to finding all fixed points of a set-valued map. We also illustrate the
application of the results in three toy examples. Concluding the analysis of stationary
equilibria, we investigate under which conditions stationary equilibria are stable against
slight model perturbations and under which conditions this is not the case. This is a
classical question in game theory and has not been considered for mean field games so
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far. Since this question is closely related to the question whether fixed points are es-
sential, we do not obtain full characterizations, but similar results as for essential fixed
points. In particular, we show that the set of all games with only essential stationary
equilibria is (topologically) generic.

In the second part of the thesis we consider the question in how far stationary equilibria
explain dynamic behaviour of agents in our mean field game model. Indeed, the compu-
tation of dynamic mean field equilibria is for infinite time horizon not clear and for finite
time horizon rather involved and, moreover, most of the time only numerically tractable.
Thus, it is questionable that agents can perform these computations. Therefore, we fol-
low the lines of learning theory in games and introduce a sensible decision mechanism
for partially rational agents that under suitable conditions converges towards stationary
equilibria. More precisely, we introduce a myopic adjustment process in which agents
assume that the population distribution will stay constant over time and choose their
best response to it, if the population distribution changes the agents re-evaluate their
decision. We prove that the process converges locally to stationary equilibria with a de-
terministic equilibrium strategy that is the unique optimal strategy for the equilibrium
distribution under certain conditions regarding the population dynamics. Furthermore,
we provide a set of assumptions that ensures that the process converges (almost) glob-
ally towards stationary mean field equilibria. More precisely, we show that the process
converges towards a stationary equilibrium with a deterministic equilibrium strategy or
that it stays in a set, where several stationary strategies are simultaneously optimal
and for which we can often prove convergence towards stationary equilibria in mixed
strategies.

Additionally, this thesis contributes to the theory of continuous time nonlinear Markov
chains with finite state space. We prove existence of such a process given a Lipschitz con-
tinuous nonlinear generator and provide examples illustrating that the limit behaviour
is more complex than for standard time-homogeneous Markov chains. Furthermore, we
provide a sufficient criterion for the existence of a unique stationary distribution and we
provide for small state spaces a sufficient criterion for strong ergodicity of the process.
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B.2. Zusammenfassung

Diese Arbeit beschäftigt sich mit Mean Field Games, einem spieltheoretischen Modell
für zeitdynamische Spiele mit einem Kontinuum an Agenten. Das zentrale Charakteris-
tikum dieser Spiele besteht darin, dass Agenten nicht das individuelle Verhalten der an-
deren Agenten beobachten können, sondern nur dessen Verteilung. Diese Vereinfachung
führt dazu, dass Modelle intertemporaler Interaktionen vieler Agenten handhabbar wer-
den, was sie für ökonomische Anwendungen nutzbar macht. Insbesondere wurden hierfür
Modelle mit endlichem Zustands- und Aktionsraum genutzt. Jedoch gibt es (fast) keine
allgemeinen Resultate für solche Modelle. Diese Arbeit untersucht stationäre Gleichge-
wichte von Mean Field Games mit endlichem Zustands- und Aktionsraum. Dabei werden
folgende vier Einzelfaktoren näher betrachtet: Existenz, Berechnung, Stabilität sowie das
Potential stationärer Gleichgewichte das dynamische Verhalten von Agenten zu erklären.
Wir arbeiten mit dem in Doncel et al. (2016a) eingeführten Modell in einer neuen (und
aufschlussreichen) probabilistischen Formulierung. In diesem Modell kontrollieren die
Agenten jeweils eine Markov-Kette mit Übergangsraten, die von der Populationsvertei-
lung abhängen, und maximieren ihren erwarteten abdiskontierten Gesamtgewinn über
einen unendlichen Zeithorizont.

Im ersten Teil der Arbeit analysieren wir stationäre Mean Field Gleichgewichte: Zuerst
zeigen wir die Existenz von stationären Gleichgewichten in gemischten Strategien unter
einer Stetigkeitsannahme. Danach stellen wir mehrere Werkzeuge vor, um alle stati-
onären Gleichgewichte zu berechnen. Wir zeigen dabei dass alle optimalen stationären
Strategien Konvexkombinationen deterministischer stationärer Strategien sind, die ei-
ne Aktion wählen, welche die rechte Seite der Optimalitätsgleichung eines zugehörigen
Markov-Entscheidungsprozesses maximiert. Außerdem leiten wir ein Schnittkriterium
zur Reduktion der Menge der möglichen stationären Punkte der Dynamik her. Des
Weiteren können wir unter einer Irreduzibilitätsannahme die Aufgabe, alle stationären
Gleichgewichte zu finden, auf das Bestimmen aller Fixpunkte einer mengenwertigen Ab-
bildung reduzieren. Im Anschluss veranschaulichen wir die Anwendung der Resultate in
drei Beispielen. Danach untersuchen wir, unter welchen Bedingungen stationäre Gleich-
gewichte bezüglich leichter Modellstörungen stabil sind. Dies ist eine klassische Frage
in der Spieltheorie, die für Mean Field Games noch nicht betrachtet wurde. Da diese
Frage eng mit der Frage, ob Fixpunkte essentiell sind, verbunden ist, erhalten wir keine
vollständigen Charakterisierungen, sondern ähnliche Resultate wie in jenem Fall. Insbe-
sondere zeigen wir dass die Menge aller Spiele mit ausschließlich essentiellen stationären
Gleichgewichten (topologisch) generisch ist.

Im zweiten Teil der Arbeit beschäftigen wir uns mit der Frage, inwiefern stationäre
Gleichgewichte das dynamische Verhalten von Agenten in unserem Mean Field Game
erklären. Dieses ist dadurch motiviert dass die Berechnung von dynamischen Gleichge-
wichten schwierig ist und es daher fraglich ist ob ein Agent dynamische Gleichgewichte
berechnen kann. Analog zur der Theorie des Lernens in Spielen führen wir sodann einen
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realitätsnahen Entscheidungsmechanismus für partiell rationale Agenten ein, der unter
geeigneten Bedingungen gegen stationäre Gleichgewichte konvergiert. Im Detail betrach-
ten wir einen myopischen Anpassungsprozess, in dem die Agenten davon ausgehen, dass
sich die Verteilung der anderen Agenten nicht ändert und daher immer die für diese
Situation beste Antwort als Strategie wählen. Ändert sich die Verteilung der anderen
Agenten, passen sie ihre Strategie an. Wir beweisen, unter bestimmten Voraussetzun-
gen, dass der Prozess lokal gegen stationäre Gleichgewichte mit einer deterministischen
Gleichgewichtsstrategie, die ferner die einzige optimale Strategie für die Gleichgewichts-
verteilung ist, konvergiert. Darüber hinaus zeigen wir, dass der Prozess unter bestimmten
Annahmen (fast) global gegen stationäre Gleichgewichte konvergiert. Genauer zeigen
wir, dass der Prozess gegen ein stationäres Gleichgewicht mit einer deterministischen
Gleichgewichtsstrategie konvergiert oder er in einer Menge bleibt, in der mehrere stati-
onären Strategien gleichzeitig optimal sind und in der wir oft die Konvergenz gegen ein
stationäres Gleichgewicht mit einer gemischten Gleichgewichtsstrategie zeigen können.

Ergänzend trägt die Arbeit zur Theorie der zeitstetigen nichtlinearen Markov-Ketten mit
endlichem Zustandsraum bei. Im Detail zeigen wir die Existenz eines solchen Prozesses
gegeben eines Lipschitz-stetigen nichtlinearen Generators und präsentieren Beispiele,
die illustrieren, dass das Grenzverhalten komplexer ist als bei klassischen zeithomoge-
nen Markov-Ketten. Ferner beweisen wir ein hinreichendes Kriterium für die Existenz
einer eindeutigen stationären Verteilung sowie ein hinreichendes Kriterium für starke
Ergodizität bei kleinem Zustandsraum.
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B.3. Publications Derived from the Thesis up to

now

• Berenice Anne Neumann. Stationary Equilibria of Mean Field Games with Finite
State and Action Space. Preprint, available on ArXiv https://arxiv.org/abs/

1901.08803, 2019.

This paper contains the stationary existence result presented in Section 4.2, the re-
sults for equilibrium computation presented in Sections 5.1, 5.2 and 5.3 as well as the
equilibrium computation in the examples presented in Sections 6.1 and 6.2.

In January 2020 this preprint was published with minor revision in Dynamic Games and
Applications:

• Berenice Anne Neumann. Stationary Equilibria of Mean Field Games with Finite
State and Action Space, Dynamic Games and Applications, 2020, doi: 10.1007/
s13235-019-00345-9.

B.4. Declarations on my Contributions

According to §7(3) of the doctoral degree regulations, I declare that this dissertation
was written without co-authors and is therefore my own work.

B.5. Eidesstattliche Versicherung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationsschrift selbst
verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.
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