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2 Abstract

Significant developments over the past decades in creating ultrashort laser pulses on the sub-

picosecond time scale have paved the way for nonequilibrium many-body dynamics to become

an active research field in condensed matter physics. A central goal of ultrafast material science

is the engineering of material properties by precisely tailored laser excitations on their intrinsic

microscopic time- and energy scales. Providing and applying a comprehensive set of numerical

tools for the simulation of the ultrafast control over the electronic, magnetic, and topological

degrees of freedom in different kinds of quantum materials is the central topic of this thesis. In

the following, this kind of control is demonstrated for three different materials.

The ordered phase of correlated materials can be characterised by an order parameter which

fundamentally impacts the material properties. Theoretical investigations of the 227 pyrochlore

iridates showed a rich variety of equilibrium phases in dependence of a magnetic order parameter,

which can be tuned by the electronic correlations. By a combination of time-dependent ab

initio calculations and magnetic mean-field model simulations, we show how an ultrafast laser-

induced modification of the effective Hubbard U can transiently induce a topologically nontrivial

Weyl phase. By probing the emerging Weyl points with time- and angle-resolved photoemission

spectroscopy in our simulations, we provide an experimentally relevant nonequilibrium pathway

towards the stabilisation and measurement of Weyl fermions in pyrochlore iridates.

One-dimensional indium wires are the second investigated compound. At a critical tem-

perature this system passes a thermal critical point towards a charge-density wave phase. The

transition is accompanied by the opening of an energy gap at the Fermi surface. It can be tracked

by angle-resolved photoemission spectroscopy. Laser-mediated photo-doping offers the possibility

to dynamically drive the system through the insulator-to-metal transition. This was shown in an

experiment with femtosecond mid-infrared sub-gap excitations. Within a model simulation, we

identify multi-photon absorption as the dominant driving process for the transition.

As last material, twisted bilayer graphene is investigated. In 2019, an ultrafast transport

experiment showed a light-induced anomalous Hall effect in graphene. An intriguing new aspect

is that the measured Hall conductivity might in part be a non-intrinsic Berry curvature effect

of the 2D electronic system, originating from a transient breaking of time-reversal symmetry.

Motivated by these findings, we investigate the topological properties of the equilibrium and

Floquet-dressed band structure of twisted bilayer graphene in the intermediate-angle regime. We

show that chiral laser light can induce a phase transition to a topologically nontrivial state with

an effective winding number analogous to a Chern insulator. Furthermore, we show that this

transition can be controlled by an applied backgate voltage.

Our theoretical findings underline the outstanding role of ultrafast material science as a

platform for the tailored engineering of material properties on demand.
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3 Zusammenfassung

Wesentliche Entwicklungen in den letzten Jahrzehnten bezüglich der Erzeugung ultraschneller La-

serpulse im Subpikosekundenbereich machen Vielteilchen-Nichtgleichgewichtsdynamik heute zu

einem wichtigen Bereich der Festkörperphysik. Eine zentrale Aufgabe der ultraschnellen Materi-

alwissenschaften ist die Manipulation von Materialeigenschaften durch präzise angepasste Laser-

anregung auf den zugrunde liegenden mikroskopischen Zeit- und Energieskalen. Die Bereitstel-

lung und Anwendung einer umfassenden numerischen Toolbox zur Simulation der ultraschnellen

Kontrolle von elektronischen, magnetischen und topologischen Freiheitsgraden in verschiedenen

Quantenmaterialien ist das zentrale Thema dieser Arbeit. Dies wird im Nachfolgenden anhand

drei verschiedener Materialien demonstriert.

In korrelierten Materialien kann eine geordnete Phase oftmals durch einen Ordnungsparameter,

der die Materialeigenschaften maßgeblich beeinflußt, beschrieben werden. Theoretische Untersu-

chungen an 227-Pyrochloriridate zeigen eine Vielzahl von Gleichgewichtsphasen in Abhängigkeit

eines magnetischen Ordnungsparameters, welcher durch Manipulation der elektronischen Korre-

lationen kontrolliert werden kann. Wir zeigen anhand einer Kombination von zeitabhängigen ab-

initio Rechnungen und magnetischen Modellsimulationen, dass eine ultraschneller laserinduzierte

Modifikation der effektiven Hubbard-Wechselwirkung U vorübergehend eine Weyl-Phase indu-

zieren kann. Durch zeit- und winkelaufgelöste Photoelektronenspektroskopie, weisen wir Weyl-

Fermionen in unseren Simulationen nach. Dadurch demonstrieren wir einen experimentell relevan-

ten Nichtgleichgewichtsansatz zur Erzeugung und Messung von topologischen Weyl-Fermionen

in Pyrochloriridaten.

Als zweites Material werden eindimensionale Indiumketten untersucht. Bei einer kritischen

Temperatur durchlaufen diese einen Phasenübergang in eine symmetriegebrochene Phase mit La-

dungsdichtewelle. Der Phasenübergang, welcher mit der Öffnung einer Bandlücke an der Fermio-

berfläche einhergeht, kann durch winkelabhängige Photoelektronenspektroskopie nachgewiesen

werde. Laserinduzierte Elektronenanregung bietet eine Möglichkeit, einen ultraschnellen Isolator-

Metall-Übergang im Material zu erzwingen. Selbiger wurde kürzlich experimentell anhand von

subresonanter Starkfeldanregung nachgewiesen. Mithilfe einer Modellrechnung identifizieren wir

Mehrphotonenabsorption als den dominanten Prozess für den Phasenübergang.

Als letztes Material wird zweilagiges Graphen untersucht. Im Jahr 2019 wurde in einem Trans-

portexperiment ein anormaler lichtinduzierter Halleffekt in Graphen nachgewiesen. Interessant ist

daran, dass die gemessene Hall-Leitfähigkeit zum Teil das Resultat einer nicht-intrinsischen Ber-

rykrümmung innerhalb des zweidimensionalen elektronischen Systems ist, welche aus einer ge-

brochenen Zeitumkehrinvarianz resultiert. Dadurch motiviert, untersuchen wir die topologischen

Eigenschaften der elektronischen Bandstruktur von verdrehten, zweilagigen Graphenschichten, im

Gleichgewicht und im Floquet-getriebenen Fall. Wir zeigen, dass chirales Laserlicht einen Pha-



6

senübergang zu einer topologisch nicht-trivialen Phase mit einer effektiven Windungszahl analog

zu einem Chern-Isolator erzeugen kann. Weiterhin demonstrieren wir, dass dieser Phasenübergang

durch eine angelegte Gatespannung kontrolliert werden kann.

Die präsentierten Ergebnisse verdeutlichen die wichtige Rolle der ultraschnellen Materialwis-

senschaften, um die Eigenschaften von Materialien nach Bedarf anzupassen.
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4 Introduction

The ultrafast control of material properties requires the availability of intense ultrashort laser

pulses which act on the intrinsic time scales of the investigated system. Over the past decades

huge efforts have been made in creating such laser sources which are able to generate laser pulses

down to the femto- and even attosecond time scale over a broad frequency spectrum. These

developments paved the way for a plethora of ultrafast theoretical and experimental investigations,

which aim for the dynamical control over certain physical properties in various kinds of materials.

Important examples are the ultrafast light control of internal couplings [4–6], measured features

of light-induced superconductivity [7, 8] and the ultrafast switching between collective phases of

matter [9–11]. The theoretical description of the optical control over different phases of matter

with intense laser fields is the central topic of this thesis. In the context of this work, a tool box

of numerical methods is provided. This tool box allows a nonequilibrium description of different

kinds of driven phase transitions in various kinds of materials.

In order to control a phase transition, a tuning knob which allows the manipulation of its

involved dominant energy scales has to be identified. The ordered macroscopic phases of a

correlated material can be characterised by an order parameter. This order parameter has a

strong impact on the Hamilton operator and its spectrum. Its control enables the manipulation

of the macroscopic properties of a system. The magnetic phase transition from a paramagnetic

metallic to an ordered antiferromagnetic insulating phase of the Hubbard model is an important

and intensively studied example. Here, the magnetisation defines a local order parameter. It

can be tuned by the local electronic interaction U . In a driven system far from equilibrium such

transitions take place as a real time process, which can be tracked by a time-dependent order

parameter. Naturally, thermalisation and dissipation-induced relaxation processes set a finite time

window for the detection of such dynamically induced transitions. The dominant time scale of the

order parameter dynamics tend to significantly increase in close proximity to critical points [12].

Due to this critical behaviour, light-induced new states of matter are potentially able to outlive

the pump duration. This finite lifetime is important for the experimental detection of transiently

induced nonequilibrium features, as it increases the time-window for probing the transient state.

In the last decade a consolidation between condensed matter physics and the more mathe-

matical field of topology have lead to the experimental realisation and theoretical classification

of various quantum materials which come along with a great number of novel striking physical

phenomena. These phenomena range from the anomalous Hall effect [13–15] to momentum-spin

locking [16] and possible realisations of chiral superconductivity in topological insulators [17–19].

Topological phase transitions might come along with changes of e.g. electronic or magnetic

properties. Nevertheless, they are conceptually very different from conventional Landau phase

transitions, which can be characterised by a local order parameter. Certain classes of topological
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systems can be classified by one or more topological invariants, which do not change under adi-

abatic deformation. For topological insulators this is known as the Z2-invariant which originates

from a combination of time-reversal symmetry and inversion symmetry. Topological phase tran-

sitions are always discrete. This manifests by the integer nature of their associated invariants.

The great advantage of the topological aspect is generally twofold. First, the topology of the

system and its associated properties are protected by symmetry. This makes it robust against lo-

cal perturbations which preserve this particular symmetry. Second, all systems and corresponding

Hamiltonians which are adiabatically connected, necessarily exhibit the same physical features.

Pump-probe spectroscopy offers the experimental tool to dynamically control and gain time-

resolved information about nonequilibrium states of matter. The general idea of pump-probe

spectroscopy is that an excitation is followed by a probe of the resulting excited-state response.

By adjusting the time delay between pump and probe, the time evolution after the excitation can

be tracked. Time-resolved pump-probe spectroscopy offers the possibility to disentangle processes

in time which might be tedious to separate regarding their energy scale. From a computational

perspective, the simulation of pump-probe measurements is the most natural way of extracting

time-resolved information about a nonequilibrium state of matter. That way, the intertwining of

time- and energy scales, which is an inherent feature of every real time-dependent measurement,

is naturally incorporated. Time- and angle-resolved photoemission spectroscopy (tr-ARPES) is an

established and widely used pump-probe method to investigate the electronic system. Typically,

after the electrons were pumped via a high-intensity low-energy laser pulse, a high-energy probe

pulse photoemmits the excited charge carriers. By measuring the exit angle and the velocity of

the emitted electrons, their momentum and energy can be calculated. This provides dynamical

information about the occupied parts of the electronic bands of a quantum material. While the

temporal resolution is set by the time delay between the pulses, the energy resolution is set by

the duration of the probe pulse.

Laser heating is an important issue for all optical experiments. In the newly emerging field

of cavity materials [20–23], a small number or even zero photons might be sufficient to induce

a measurable change within the system’s energy landscape due to strong light-matter couplings.

However, in common pump-probe setups, much higher field intensities are necessary in order

to induce a measurable response of the excited matter system. These high intensities allow a

classical treatment of the pump field. However, the pump-induced energy flow from the laser

field into the probe material can result in strong heating effects, which reach from washed-out

electronic characteristics to the complete destruction of a probe material. A reduction of the

effective interaction time by using short pulses can scale down the amount of transferred energy.

Furthermore, ultrashort laser pulses allow the manipulation of material properties on time scales

that are much shorter than the typical time scales on that a system typically thermalises. For

short probe delays the nonthermal excited-states can be measured. Moreover, the electronic
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heating can be reduced by tuning the laser frequency off-resonant to the internal energy degrees

of freedom. As was demonstrated by Sato and colleagues [24] for the light-induced anomalous

Hall effect in graphene, a resonant population transfer often generates a strong response of the

coupled matter system. This response can dominate other potentially interesting effects, like in

the mentioned work, a topological contribution to the Hall conductivity. Avoiding such strong

laser-induced heating effects is an important task of all projects which are presented within this

thesis.

In the following, three important materials, for which collective material properties can be

controlled by intense time-dependent external fields, are introduced.

4.1 Topological Weyl fermions in pyrochlore iridates

A certain class of materials that has raised considerable attention within the last years are systems

which host Weyl fermions in their bulk band structure. From a theoretical point of view, a pair

of Weyl fermions can be constructed from a degenerate pair of Dirac points by either breaking

inversion symmetry or time-reversal symmetry. Weyl fermions are a special mass-less solution of

the Dirac equation for relativistic electrons, originally postulated by Hermann Weyl in 1929 [25].

In a Weyl material [26–29], Weyl fermions appear as low energy excitations of the bulk band

structure, which can be effectively described by the Weyl equation. The two Weyl quasiparticles,

which are separated in momentum space have opposite handedness. A pair of Weyl points can

be interpreted as a realisation of magnetic point charges with opposite sign. This chiral anomaly

gives rise to interesting optical and transport phenomena, like a negative magneto-resistance

[30]. As a result of the bulk-boundary correspondence, the two Weyl points are connected by

conducting surface states, so-called Fermi arcs. Weyl fermions were first experimentally observed

in TaAs in 2015 [27] by angle-resolved photoemission spectroscopy both directly in the bulk as

Weyl cones and indirectly by their Fermi arcs. In this material, inversion symmetry is intrinsically

broken while time-reversal symmetry is preserved.

As a potential host of a time-reversal symmetry-broken Weyl semimetallic (WSM) phase the

R2Ir2O7 (R is yttrium or a rare-earth element) pyrochlore iridate family with spontaneous magnetic

order raised a lot of interest. In these correlated materials the extended nature of the 5d atomic

orbitals yields a spin-orbit coupling comparable to the local Coulomb repulsion. Together with the

emerging band topology this leads to a rich equilibrium phase diagram, as shown by DFT+U+SO

(density functional theory + Hubbard U + spin-orbit coupling) calculations by Wan et al. [26]. For

these correlation-driven phases, they showed that by controlling the effective electronic interaction

(local Hubbard U), the magnetic order of the system could be manipulated. For systems with

a nonmagnetic R-site, the magnetic properties are dominated by the Ir atoms [31–33], which

build corner-sharing tetrahedra on a fcc Bravais lattice. A reduction of the Coulomb repulsion

within the iridium 5d orbitals results in a transition from an antiferromagnetic insulating phase to
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a topological Weyl phase and finally to a paramagnetic metallic phase. The emerging magnetic

phases energetically favour an inversion-symmetry preserving all-in/all-out (AIAO) spin order.

The appearance of these ordered magnetic phases was independently reproduced by CDMFT

(cluster dynamical mean field theory) simulations performed by Go et al. [34] and more recently

by the group of A. Millis [33]. These calculations went beyond the mean-field single-particle

picture. Though direct proof is still lacking, most experimental results point towards a magnetic

ground state [35–39], with recent evidence for magnetic AIAO order [40–43]. In their work [32],

Witczak-Krempa and collaborators investigated the equilibrium phase diagram of a prototypical

tight-binding model Hamiltonian with spin-orbit coupling. In this work, the local electronic

interactions were included as a mean-field Hubbard term, which gave rise to a magnetic order

parameter. In agreement with the DFT and CDMFT simulations, they found stable magnetic

groundstates with AIAO order by tuning the Hubbard U . For intermediate values of U they

identified a magnetic Weyl phase by the appearance of Weyl cones in the equilibrium band

structure. However, this topological Weyl phase appeared to be quite unstable against melting

at finite temperatures and required fine-tuning of the magnetic order parameter.

All these theoretical investigations suggest that in a hypothetical experiment in which one

could adiabatically tune the electronic correlations, the control over the magnetic order parameter

would allow one to switch the system to a topological Weyl phase with broken time-reversal

symmetry. It is known that the effective Hubbard interaction is strongly affected by screening

effects [33]. It was shown that the electronic screening can be dynamically modified by the

interaction with an intense external laser field [44]. Via self-consistent time-dependent DFT+U

calculations , N. Tancogne-Dejean and collaborators showed for the strongly correlated insulator

NiO that by an off-resonant femtosecond excitation the effective electronic interactions can be

manipulated on the ultrafast time scale of the laser pulse [6]. In this material the band structure

crucially depends on the strength of the electronic correlations. The suppressed screening and

the resulting ultrafast reduction of U was explained by the delocalised nature of the excited-

state subset of the Hilbert space. The TDDFT+U (time-dependent density functional theory

+ Hubbard U) calculations for pyrochlore iridates, which are presented in this thesis, are based

on this very idea. They motivated the subsequent magnetic mean-field model calculations, as

discussed in more detail in Sec. 6.1, and gave rise to the idea of light-induced non-trivial topology

in pyrochlore iridates [1].

4.2 Metal-to-insulator transition in one-dimensional indium wires

In condensed matter physics, low-dimensional electronic systems are of special interest. Their

reduced spatial degrees of freedom give rise to a number of interesting physical effects that

are not present in higher-dimensional systems. Important features are the appearance of non-

Fermi-liquid behaviour [45], spin ordering [46, 47], and the instability towards the formation of
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charge-density waves (CDW). In the latter case, at low temperatures, the response of the low-

dimensional electron gas becomes unstable towards external perturbations fulfilling the nesting

condition q = 2kF, where kF is the Fermi momentum. This instability results in an electronic

phase transition to a low-symmetry phase with a spatial variation of the electronic density. In

the case that strong electron-phonon coupling is the dominant energy scale, the transition is

coined ”Peierls transition”. The CDW is accompanied by a periodic modulation of the crystal

lattice which reduces the crystal symmetry. This lattice distortion is the result of a softening

of the associated phonon mode, driven by a Kohn anomaly [48]. The phase transition can be

characterised by a complex order parameter. Its time- and space-dependent modulation defines

the amplitude and phase mode of the symmetry-broken CDW phase, respectively. On the other

hand, the metal-to-insulator transition can be of purely electronic nature in which case it is driven

by electronic correlations. Importantly, the transition from the metallic phase to the CDW phase

is accompanied by the opening of an energy gap at the Fermi surface in the electronic band

structure. The condensation energy is defined as the difference between energies of the normal

and the insulating phase, Econd = Enorm − ECDW.

In 1999, one-dimensional indium wires, self-assembled on a Si(111) surface, were found to

exhibit a CDW phase below a critical temperature of 100 K [49]. In the metallic phase each

indium wire consists of parallel pairs of zigzag chains of indium atoms. As discussed in this in-

fluential work, the metal-insulator transition can be tracked by different experimental indicators.

The periodic modulation of the charge carriers can be directly measured in an scanning tunnel-

ing microscopy (STM) experiment. By reflection high-energy electron diffraction (RHEED) the

structural changes of the atomic lattice can be probed. Moreover, by ARPES measurements,

changes of the electronic band structure at the Fermi surface can be detected. While a structural

transition from the two indium chains with a (4×1) unit cell to a hexagonal (8×2) cell is well

established, its microscopic origin is still under debate. Suggestions range from the Peierls picture

[49–52], over an order-disorder transition [53, 54], to many-body correlation effects [55]. Based

on DFT simulations [56], an atomistic picture with bond breaking and subsequent new bond

formation was favoured against a nesting-induced Peierls dimerisation. Starting from a DFT-

fitted Su-Schrieffer-Heeger (SSH) model, a study by Jeckelmann et al. proposed a first-order

grand canonical Peierls transition in which the Si-substrate acts as a particle reservoir [57]. Their

theoretical investigations were underpinned by Raman spectroscopy that showed partial phonon

softening of certain shear and rotary modes when the critical temperature was approached from

below. Due to their strong coupling to the electronic CDW, these modes are believed to play an

important role for the transition.

In a time- and angle-resolved photoemission experiment Chávez-Cervantes and collaborators

investigated the electronic structural dynamics of an optically driven insulator-to-metal transition

in indium wires [58]. The key motivation for this nonequilibrium study of the transition was to
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gain a deeper understanding of the microscopic processes involved. This was done by an analysis

of the time scales that were involved in the CDW melting process. By photo-doping above the

CDW band gap via an ultraviolet femtosecond pump pulse, they found the quasi-particle band gap

to close on a sub-picosecond time scale that is slightly above one quarter of the oscillation period

of the dominantly involved phonons (≈ 660 fs). From this time scale a Peierls-like transition

was inferred. Because of the measurement of a long-lived electronic response, which is absent

in the pumped metallic phase, a trapping in a meta-stable (4×1) phase was suggested. The

existence of such a meta-stable normal phase was already claimed in [59, 60], based on time-

resolved REHHD experiments. In a follow-up experiment Chávez-Cervantes et al. investigated

the ultrafast CDW melting by femtosecond sub-gap excitations [2]. The theoretical analysis of

the microscopic mechanism behind the light-induced metal-to-insulator transition is the second

important part of this thesis.

4.3 Floquet engineering of twisted bilayer graphene

In electronic systems, light-induced phenomena can lead to transport properties which differ

from equilibrium intuition. Particular examples are the above discussed suppression of electronic

correlations by a strong laser field [1, 6], the sub-resonant melting of electronic order [2] and

light-induced superconductivity [8]. Manipulating matter with time-periodic perturbations holds

great promise for designing material properties on demand. In a significant theoretical work

[13], Oka and Aoki showed that Floquet engineering offers a platform to control the topological

landscape of Dirac materials. Within the context of Floquet theory they showed for graphene

that, in analogy to Haldane’s model [61], the breaking of time-reversal symmetry via circularly

polarised light can induce a topologically nontrivial Chern-insulating phase. In contrast to the

above described collectively ordered phases, this topological transition is characterised by an

integer (Chern number), which can only change due to nonadiabatic deformation. Together with

the application of a dc source-drain electric field, the light-engineered Berry curvature results

in a finite anomalous Hall conductance. Motivated by these theoretical investigations, James

McIver and collaborators built an ultrafast transport experiment in order to measure this light-

induced anomalous Hall effect [15]. The sub-picosecond Hall current signal was tracked in a

time-dependent fashion by a photo-conductive switch. In their setup, the Hall conductivity can

be measured as a function of the chemical potential, which can be adjusted by a backgate voltage.

By comparison with the Floquet-dressed band structure, they interpreted the measured anomalous

Hall conductivity as a nonequilibrium Berry curvature effect. In a theoretical follow-up work [24],

Sato et al. analyzed this light-induced anomalous Hall effect in graphene by investigation of an

effective Dirac model with dissipative real-time dynamics. They found that the anomalous Hall

conductance is predominantly caused by an imbalance of the resonantly excited charge carriers,

while they only found a small contribution from the nonequilibrium Berry curvature of the natural
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orbital states for realistic driving field strengths. Ultimately, these findings gave rise to two

important questions. First, is it possible to reduce the electronic heating in order to minimize

population imbalance effects in favor of topological Berry transport? Second, can one think of

an experimental tuning knob to control this topological phase transition? For about ten years

it has been a known fact that stacking two layers of graphene and introducing a relative twist

angle between both layers offers a platform for tuning the electronic degrees of freedom [62–

64]. The resulting Moiré atomic structure with regions of Bernal AA-stacking and AB-stacking

yields a periodic modulation of the effective interlayer coupling on length scales up to several

nanometers. Depending on the twist angle this results in a strong localisation of the charge

carriers in the AA regions that is accompanied by a renormalisation of the electronic bandwidth

and the Fermi velocity. At a discrete set of twist angles, coined magic angles, this leads to a

vanishing Fermi velocity at the Dirac points and an electronic bandwidth of the lowest energy

manifold of several meV. A seminal experimental investigation by the group of P. Jarillo-Herrero

in 2018 [65, 66], which proved the existence of presumably unconventional superconductivity

in close proximity to a correlated insulating phase in magic-angle graphene, generated a burst

of attention for this material. As will be shown in this work, focusing on the intermediate-

angle regime, twisted bilayer graphene offers a perfect platform to perform Floquet topological

engineering with additional control knobs compared to single-layer graphene.
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6 Numerical details and results

For each project, this section provides an analysis of the most important numerical tools and how

these tools are applied to the particular problem. The corresponding code is largely written in C++,

parts are written in Python. The implementations of the basic mathematical functions, which

are used for all projects, are listed in Appendix A. Important functions of the different projects

are listed in a reduced and commented version in Appendix B. The motivation for discussing

the numerical implementations, which were used to solve the addressed physical problems, is

generally twofold. First, providing the code should help the reader to gain a deeper understanding

of the numerical approaches. Second, it should be understood as a technical guidance for other

researchers, who have to tackle similar problems.

6.1 Publication I

All-optical nonequilibrium pathway to stabilising magnetic Weyl semimetals in py-

rochlore iridates In this project, the stabilisation of a transient Weyl semimetallic phase in

pyrochlore iridates, controlled by a laser-reduced magnetization, is investigated. The details of

the numerical approach, which led to the model results, presented in publication I (Ref. [1]), are

analyzed in the following. The referred functions are listed in Appendix B.1. A complete version

of the code can be accessed at https://github.com/Fizztopp/Pyrochlore.git.

For the model calculations, a prototypical pyrochlore iridates tight-binding Hamiltonian (Eq. 1

of Ref. [1]) in a global pseudospin basis, as introduced by Witczak-Krempa et al. [32], is used.

In case of a nonmagnetic R-site, which is the focus here, the magnetic properties of the R2Ir2O7

(R-227) family are dominated by the 5d electrons of the iridium atoms [26, 31–34]. These build

corner-sharing tetrahedra on a face-centered cubic (fcc) Bravais lattice. Crystal-field splitting

together with strong spin-orbit coupling allow an effective description by energetically well sep-

arated Jeff = 1/2 Kramers doublets. Ultimately, this yields an effective eight-band description.

The first term of the Hamiltonian describes the kinetic part, including nearest-neighbour hopping

(NN), both direct and oxygen-mediated, and next-nearest neighbour hopping (NNN) (see Eq. 9

of Ref. [1]). It has only nonvanishing terms in the single-particle sector. Due to its bilinear form

it can be represented by a quadratic matrix. This matrix can be diagonalised in order to obtain its

eigenvalues. These eigenvalues correspond to the eigenenergies of the kinetic Hamiltonian. This

kind of finite interaction generally induces electronic correlations. In the real space representation

it is defined as

HU = U
∑
i

c†i↑ci↑c
†
i↓ci↓.

This two-body operator, despite its simple structure, complicates the problem tremendously as it

does not commute with the kinetic term. It is not possible to find a mutual eigenbasis and the

https://github.com/Fizztopp/Pyrochlore.git
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problem can per se not be reduced to a problem of independent particles for finite interactions.

The resulting exponential scaling of the Hilbert space with the system dimension is a well-

known problem of many-particle physics. This problem has been studied intensively over the last

decades, e.g. by the Hubbard model and various numerical approximation techniques have been

investigated. A numerically efficient approximation, which is used here, is to perform a mean-field

decoupling of the two-body operator. The general idea is to mimic the electronic interactions by

coupling each particle to a background potential which is generated by an averaged contribution

of all particles themselves. That way the second term reduces to a single-particle operator.

For the chosen magnetic decoupling, this yields an approximated energy contribution (see Eq. 2

Ref. [1])

HU → −U
∑
ka

(2〈ja〉 · ja(k)− 〈ja〉2).

The obtained Hamiltonian well reproduces the magnetic phase diagram found in LSDA+U (local

spin density approximation + Hubbard U) calculations [26] and the crucial AIAO magnetic order

which is supported by most experimental evidence [40–43]. Moreover, it agrees with the magnetic

phases found in non-local CDMFT calculations [33, 34]. In this light the used mean-field Hamil-

tonian is assumed to correctly reproduce the crucial properties of the investigated bulk magnetic

material.

The creation of the Hamiltonian matrix is implemented by the function 1, listed in Appendix

B.1. The trivial energetic shift which is induced by the quadratic term 〈ja〉2 has no effect on

the magnetic order parameter m (see Eq. 10 of Ref. [1]) but adds up to the total energy. This

term is important in order to make valid predictions about the equilibrium total energy. The

mean-field expectation values of the pseudospin operators at the four sites define the magnetic

order parameter (see Ref. [1])

m =
1

4

∑
a

√
〈jxa 〉2 + 〈jya〉2 + 〈jza〉2,

where the expectation values are calculated by

〈jia〉 = 1/N
∑
k

Tr
{
ρ(k)jia(k)

}
.

Translational symmetry regarding the Bravais lattice allows an effective block-diagonal description

in the k-dependent orbital basis. In the continuous picture of an infinitely sized crystal lattice,

the mean-field observables are calculated by a k-dependent integration over the reciprocal unit

cell. This integration is practically approximated by a summation over a finite set of grid points.

Convergence is ensured by the choice of the grid spacing. As the low-energy magnetic phases

under consideration preserve inversion symmetry, r = −r↔ k = −k, a reduced zone of half the

size is employed. In the calculation of the mean-field average, the contributions are weighted
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by an integer number that indicates the number of equivalent copies of a certain k-point. For

the computation of the k-point grid the Python-package spglib is used. The calculation of the

mean-field pseudospin vectors is implemented by method 2 of Appendix B.1.

The first step in order to perform a meaningful time-propagation is to identify the initial state.

The system is chosen to start in (quasi-)thermal equilibrium which, by satisfying the condition[
ρ(k), H(k)

]
= 0 ∀k, is a steady state of the initial Hamiltonian. It is fully determined by

the single-particle density operator, which is calculated self-consistently. The procedure is as

follows: one starts with an initial assumption for the mean-field pseudospin vectors 〈ja〉. For

a fixed set of hopping parameters and a fixed Hubbard interaction U this fully describes the

single-particle Hamiltonian. By diagonalisation of the Hamiltonian matrix, its eigenenergies εaσk

are calculated. By an initially guessed chemical potential µ and a fixed temperature T the

density operator can be determined. In the energy eigenbasis it is a diagonal matrix with the

Fermi functions fk(εaσk , µ, T ) appearing as diagonal entries. The total particle number can now

be calculated by the trace Ntot =
∑

kaσ fk(εaσk , µ, T ). In the next step, the chemical potential

is adjusted by µ = µ − δ · (Ntot − Ntarget), where Ntarget defines the desired particle number

and δ = 10−5 eV a small correction factor. Here, Ntarget is chosen such that it provides a half-

filled system (Ntarget = 4 · (number of k-points)). Afterwards, the density matrix is transformed

back to the k-dependent orbital basis in order to calculate the new pseudospin vectors. Via the

new vectors an updated Hamiltonian can be defined. This loop is repeated until the intended

convergence of the magnetic order parameter |mnew − mold| < 10−15 is reached. The self-

consistent procedure is implement as function 3 of Appendix B.1.

In the following, the equilibrium phases in dependence of the Hubbard U are investigated

for a fixed hopping. For large interactions U , the system is found in an antiferromagnetic insu-

lating phase with an all-in/all-out pseudo-spin structure. Importantly, this symmetry of all four

pseudospins of the unit cell pointing towards or opposite to the zone center preserves inversion

symmetry. This is imperative for the potential emergence of a time-reversal symmetry-broken

Weyl phase. In thermal equilibrium, the two microscopic parameters tσ and U adjust the magnetic

order parameter and thus the overall electronic and magnetic phase of the system, respectively

(see Fig. 1a of Ref. [1]). Starting from strong correlations, a decreasing U yields a reduction of

the magnetisation that is accompanied by a phase transition from the antiferromagnetic insulating

(AFI) to an antiferromagnetic WSM phase. This topological Weyl phase is indicated by a closing

of the energy gap at the L-point via the emergence of a pair of Weyl cones. The order of the

phase transition depends on the σ-hopping integral tσ. For the chosen parameter subspace it is of

first order (Fig. 1b of Ref. [1]). Driven by a further reduction of the the magnetisation by reduced

interactions, the Weyl points move towards the Γ-point, where, by their mutual annihilation, the

system exhibits a second order phase transition to a topologically trivial, paramagnetic metallic

(PMM) phase. This transition is generally indicated by a Kramer’s degeneracy of the bands and
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a quadratic band-touching at Γ.

With the aim to dynamically induce a phase transition from the experimentally favoured

AFI ground state to the topologically interesting Weyl semimetallic phase, an initial state with

strong interactions is chosen. It is indicated by a red square in the AFI sector of Fig. 1a of

Ref. [1]. Proceeding from this value, the interaction parameter is instantaneously quenched to

three different smaller values which are indicated by colored arrows in Fig. 2b (Ref. [1]). The

corresponding thermal equilibrium states for these interaction energies lie both within the WSM

for the first and within the PMM phase for the lower two values. These interaction quenches

are motivated by the TDDFT+U calculations presented in Fig. 2a and Fig. 2b of Ref. [1]. It

is shown that the self-consistently calculated effective interaction Ueff(t) and the magnetisation

m(t) decrease on the ultrafast time scale of a high-intensity sub-gap femtosecond laser pulse.

The change in Ueff(t) increases with the intensity of the light pulse. In the model, the effect of

a strong pulsed driving is included as an instantaneous quench, which due to the extremely short

time scale (≈ 15 fs) is an adequate approximation.

Numerically, a quench of the effective Hubbard interaction U results in a new energy eigenbasis

of the Hamiltonian. This gives rise to a nontrivial time evolution of the initial density operator

ρ, which does not commute with the Hamiltonian matrix anymore. The change of the density

operator is associated with a change of the magnetic order parameter, which becomes time-

dependent (m → m(t),). The dynamics of the total density operator are described by the

von-Neumann equation, the matrix equivalent of the time-dependent Schroedinger equation.

The non-unitary dynamics of a reduced system, which is coupled to a fermionic bath, can be

described by a Lindblad master equation [67]. By definition, its time-propagation preserves

trace, hermiticity and positivity of the reduced system density matrix. Here, an instantaneous

eigenbasis approximation (see Ref. [68]) is used in which the coupling to the bath is defined in

the instantaneous energy eigenbasis of the time-dependent Hamiltonian. By allowing energy and

particle exchange with the reservoir, the dissipative term of Eq. 13 (Ref. [1]), induces decoherence

and relaxation of the system on a timescale of the inverse coupling, 1/Γ0. The total energy, Etot,

is not a conserved quantity after the quench. The computation of the temporal change of the

reduced density matrix, ∂tρt(k), is implemented by function 4 (see Appendix B.1). In the first

part the temporal change due to unitary dynamics is calculated. The second part calculates the

non-unitary change of the density matrix, which is induced by the system-bath coupling.

The time-dependent differential equation is numerically solved by a linear multi-step Adams-

Bashforth predictor-corrector method, shown in Eq. 11-12 of Ref. [1]. The great advantage of

this method is that already calculated steps are used for the computation of the subsequent

time step. This reduces the overall computational costs. As the density matrix for a subsequent

time step, ρt+1(k) is calculated with help of the last two steps ρt−1(k) and ρt(k), the density

matrix has to be stored in memory only for these three steps at the same time. Time-dependent
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observables 〈
Ô
〉
t

=
∑
k

Tr
{
ρt(k)Ô

}
are calculated on the fly in order to minimize the memory costs. After every time step, the

pointers to each of the three matrices are exchanged in a cyclic way and are subsequently refined

by the method. In order to avoid nonphysical particle currents, the chemical potential of the

bath-correlation functions is dynamically adjusted by µBath
t+1 = µBath

t · Nt/Nt+1. That way, the

total particle number N of the reduced system is kept constant. The propagation scheme is

implemented as function 5, listed in Appendix B.1.

In Fig. 2c (Ref. [1]) the quench-induced dynamics of the magnetic order parameter are shown.

As expected for the interaction with a high intensity laser pulse, the system is found in an excited

state with an excited amplitude mode of the magnetic order parameter (dashed lines). In case

of a finite system-bath coupling (solid lines) this oscillation is strongly damped by electronic

relaxation.

The low-temperature heat bath has two major effects. First, by the dissipation of energy

into the bath it enables the quench-heated system to relax. Second, by particle transfer in and

out of the reservoirs the electrons have the possibility to thermally redistribute. In the long-time

limit (which is not calculated here) the density matrix would again reach a thermal ensemble

with the magnetisation and energy corresponding to the respective U equilibrium state. As

a first important result, a reduced but finite magnetisation m(t) is found shortly after all three

quenches. By comparing the total energy of the quenched states with the temperature-dependent

total energies, obtained from the same U values in equilibrium, effective temperatures for the

nonequilibrium states can be extracted. As shown in Fig. 2d of Ref. [1], these extracted effective

temperatures lie, for the two stronger quenches, above the limit for a finite magnetisation in

equilibrium. This indicates a nonthermal character of the corresponding transient nonequilibrium

states, which is the second important result of this work. This nonthermality has two important

consequences. First, Weyl fermions emerge for higher effective temperatures than in thermal

equilibrium. This is expected to reduce the amount of necessary fine tuning in the experiment.

Second, as discussed later in more detail, delayed thermalisation increases the lifetime of the

transient Weyl states, which provides an increased time window for their potential detection.

The time-dependent bulk band structure is probed by time- and angle resolved photo emission

spectroscopy. The single-particle removal spectrum is encoded in the two-times lesser Greens

function, which is, due to the non-unitary real-time evolution, calculated in an approximate way

after the actual time-propagation of the reduced density matrix. The L-Γ high-symmetry path on

which the Weyl points appear is sampled by a finite set of k-points. With knowledge about the

time-dependent magnetisation and thus the time-dependent Hamiltonian, the density matrices

for this small set can be propagated via the multi-step method. The initial density matrix is
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again defined by Fermi-weighted occupations in the initial energy eigenbasis. The k-dependent

two-times lesser Greens function is then approximated by a unitary propagation (see Eq. 17 of

Ref. [1]), of the density matrix from each point in time in both time direction t and t′, as outlined

by Eq. 16 (Ref. [1]). The number of time steps used for the unitary propagation is reduced by one

order compared to the original propagation. Despite their unitary character, the information about

the dissipative bath is still encoded in the propagators by the dependency of the Hamiltonian on

the time-dependent order parameter, m(t). For the calculation of the photocurrent (last Eq. of

Ref. [1]), the trace of the lesser Greens function is required. The trace for each pair of time

coordinates t and t′ of the lesser Greens function is implemented as function 6 (see Appendix

B.1).

The momentum- and frequency-dependent photocurrent can be calculated from the lesser

Greens function by a double-time integration with a Gaussian shaped filter function. This filter

function represents the time-envelope of the probe pulse. In the code, it is implemented by

function 7. As the Greens function can be computed independently for different momenta and

energies, a parallel calculation using MPI (message passing interface) is straightforward. As

shown in Fig. 3b-d (Ref. [1]), the system is found in a nonequilibrium Weyl semimetallic phase

for all three quenches. This topologically nontrivial phase is indicated by the appearing of Weyl

cones in the bulk band structure between L and Γ. This emergence of nonthermal WSM order

by ultrafast optical control of the magnetic order parameter is the central result of this work.

In the last part of this work the minimum lifetime of the photoinduced Weyl fermions is

investigated. In a real experiment the pump-induced reduction of the effective electronic inter-

action U and thus of the magnetic order is, due to relaxation processes, only a transient effect.

In particular, the coupling of the electronic subsystem to the environment (substrate, phonons,

etc.) provides an important dissipative channel in real materials. Therefore, a continuously time-

dependent Hubbard parameter U → U(t) is assumed. It starts at the original value in the AFI

phase, decreases to a minimum of the strongest quench value, and finally relaxes back to its initial

value (see Fig. 4a of Ref. [1]). This way a dissipative case is realised, where the renormalisation

of U(t) instantaneously follows a hypothetical femtosecond pump envelope. The magnetisation

dynamics are depicted in Fig. 4b (Ref. [1]). The magnetisation m(t) reaches the initial value

about 50 fs later than the time-dependent interaction U(t). This persistence of time-dependent

effects beyond the driving time scale is the final important finding of this project. This effect

is considered in more detail by calculating time-resolved ARPES measurements at various times

before, during and after the temporal change of U(t). The probe at tp = 150 fs clearly demon-

strates this delay-effect (see Fig. 4g of Ref. [1])) by the persistence of the Weyl cone and thus

the nonequilibrium WSM phase outside the FWHM (full width at half maximum) of U(t). This

increased lifetime of the transient WSM phase beyond the driving-timescale is governed by the

nonthermal character of the nonequilibrium states, which hinders the system to thermalise rapidly.
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In summary, it is shown by a combination of TDDFT+U and mean-field magnetic model

calculations that by strong laser-induced quenches of the local electronic interactions a transient

Weyl semimetallic phase can be induced in pyrochlore iridates. The nonthermal character of the

transient phase allows the stabilisation of Weyl fermions in a wide region of effective temperatures

and beyond the time scale of the pump duration.

6.2 Publication II

Charge density wave melting in one-dimensional wires with femtosecond subgap ex-

citation This project is a theoretical investigation of the experimental results presented in

publication II (Ref. [2]). Within the experiment, the laser-induced melting of a CDW phase by

a mid-IR (mid-infrared) driving pulse in one-dimensional indium wires is probed. The details of

the numerical approach, which led to the presented model results (Ref. [2]), are analyzed. The

referred functions are listed in Appendix B.2. A complete version of the code can be accessed at

https://github.com/Fizztopp/InSi.git.

In the experiment, the laser-induced phase transition is tracked by tr-ARPES measurements

of the time-dependent band structure before, during, and after the pump pulse (see Fig. 2a-e of

Ref. [2]). The melting dynamics are analysed by an investigation of the spectroscopic data, which

is presented in Fig. 3a-d (Ref. [2]). At a critical field strength of 0.9 MV/cm a time-dependent

shift of spectral weight into the CDW gap on a time scale of less then 300 fs indicates an

ultrafast laser-induced transition by photo-doping of charge carriers above the energy gap. The

theoretical investigations, which are presented in the following, explore these dynamics within a

model simulation.

For the nonequilibrium model calculations, an effective DFT-fitted tight-binding Hamiltonian,

as originally introduced in the work of Jeckelmann et al. [57], is used. The real space Hamilto-

nian includes local on-site potentials and the nearest-neighbour hopping within and between two

inner and two outer Indium chains that build the wire. For each In-atom one Wannier orbital is

considered. Generally, by an appropriate choice of the hopping parameters, the single-particle elec-

tronic properties of both the high-symmetry metallic phase and the broken-symmetry CDW phase

can be described. In agreement with the experiment, the starting point is the low-temperature

insulating phase. Here, an increased 4×2 unit cell has to be employed in order to restore trans-

lational symmetry. Its eight-atom basis is defined by the vectors b1 = (0, 0), b2 = (1/2,
√

3/2),

b3 = (1,
√

3), b4 = (3/2, 3
√

3/2), b5 = (5/2, 3
√

3/2), b6 = (2,
√

3), b7 = (3/2,
√

3/2),

and b8 = (1, 0). The basis vectors are defined in units of the lattice constant of the uniform

phase, a0 = 3.84 Å. The unit cell together with the electronic hopping is depicted in Fig. 7 (see

supplement material of Ref. [2]).

As stated in the manuscript, slightly adjusted electronic parameters are used in order to

reproduce the experimentally measured equilibrium low-temperature ARPES bands, in particular

https://github.com/Fizztopp/InSi.git
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the reported 300 meV band gap at the boundaries of the reduced zone. Periodic Born-von

Karman boundary conditions within the x-direction yield an one-dimensional reciprocal unit cell

[−π/2a, π/2a), which is sampled by a grid of 1024 k-points. The mid-infrared laser pulse is

implemented via a time-dependent external gauge field, A(t) = Amaxpσp(t) sin(Ωt)ex, via Peierls

substitution. Here, the femtosecond pulse is included by a Gaussian envelope pσp(t) = exp(−(t−
t0)2/(2σ2

p)). The parameters of the external driving field are adjusted to the laser field at the

sample. The electronic Hamiltonian is implemented as function 8 (see Appendix B.2). In the

first part, the diagonal elements, which correspond to the local potentials, are set. In the second

part the hopping elements are set. These include intracell and intercell hopping processes. By

diagonalisation of the Hamiltonian matrix, the band structure shown in Fig. 8 (see supplemental

material of Ref. [2]) is calculated.

Since for the estimation of the total absorbed energy a closed system is considered, the

propagation of the system density operator is unitary. As the Hamiltonian does generally not

commute with itself at different points in time, a correct time-ordering has to be considered.

This is achieved by a discretisation of the real-time axis and a consecutive multiplication of

the evolution time-step operators. Using the Euler mid-point rule, the unitary propagator for

one time step δt is given by Uk(t+ δt, t) = exp[−iHk(t+ δt/2)δt]. The initial density operator

is set in the eigenbasis of the initial Hamiltonian. The Fermi functions define the diagonal

matrix elements. In agreement with the experimental parameters the initial temperature is set

to T = 40 K. The time-dependent density matrix at each time step is calculated by ρ(k, t +

δt) = Uk(t + δt, t)ρ(k, t)U †k(t + δt, t) in the k-dependent orbital basis. The time-propagation

of the density matrix is implemented as function 9 (see Appendix B.2). From the propagated

density matrix, the time-dependent total energy of the system per unit cell can be calculated by

Ecell(t) = 2/N
∑

k Tr {ρ(k, t)H(k, t)}. The factor of two includes the spin degeneracy, which is

crucial for a comparison of the absorbed energy with the condensation energy, reported by DFT

investigations [69].

The time-dependent total energy is depicted in Fig. 4a of Ref. [2] for different driving ampli-

tudes. In the code, the vector potential is implemented in units of 1/a0 of the inverse lattice con-

stant of the 4× 1 unit cell. The peak electric field strength can be calculated by Emax = ΩAmax.

In this simplified model, the amount of absorbed energy is approximated by the difference be-

tween the final total energy and the initial total energy, ∆E = Ef − Ei. A log-log plot of the

absorbed energy as a function of the peak driving intensity shows a quadratic dependency in a

region close to the condensation energy, Econd = 32 meV (Fig. 4b of Ref. [2]). This quadratic

dependence indicates two-photon absorption as the dominant absorption process. This agrees

with the Keldysh parameter (γ = 1.6), which is calculated from the experimental parameters.

The Keldysh parameter is defined by the square root of the ratio of the energy gap and the

ponderomotive energy (γ =
√
Egap/Up). This ratio gives an estimated distinction between the
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multi-photon absorption regime (γ < 1) and the tunneling-ionisation regime (γ > 1). The peak

electric field amplitude of Emax ≈ 1 MV/cm that is necessary to reach the condensation en-

ergy and thus induce a melting of the charge-density-wave order is in good agreement with the

experimentally found threshold of Emax ≈ 0.9 MV/cm.

The key-finding of the experiment is the identification of multi-photon absorption as dominant

process for the CDW melting. Supporting this interpretation, by identifying two-photon absorption

as dominant melting process, is the central result of this theoretical investigation.

6.3 Publication III

Topological Floquet engineering of twisted bilayer graphene After having explored the

interaction-controlled topology in pyrochlore iridates with magnetic mean-field model simula-

tions (Ref. [1]), in this project the light-induced topological properties of weakly-interacting

intermediate-angle twisted bilayer graphene are investigated on basis of the Floquet formalism.

The details of the numerical approach that led to the results, presented in publication III (Ref. [3]),

are analyzed. The referred functions are listed in Appendix B.3. A complete version of the code

can be accessed at https://github.com/Fizztopp/TBG FLOQUET.git.

The employed tight-binding model Hamiltonian (Eq. 1 of Ref. [3]) describes the local poten-

tials and the electronic hopping between the carbon atoms, which define the crystal lattice. The

computation of the atomic positions within the angle-dependent real-space supercell is the first

critical task in this project. The original Fortan90 code for the calculation of the atomic positions

within the bilayer graphene supercell was provided by Lede Xian. Here, a reformulated Python

version is used. A commensurate supercell can be represented by the integer tuple (n,m), which

defines the two commensurate supercell vectors t = na1 +ma2 and t′ = −ma1 + (n+m)a2 of

the two layers. The vectors a1, a2 define the two-atom single-layer basis. The supercell has a

total number of sites, N = 4(n2 +nm+m2). More details about the crystal lattice can be found

in the works of Laissardière et al. [62, 63]. If not explicitly stated otherwise, a supercell with the

indices (n, n + 1) = (4, 5) is used. This supercell consists of total number of N = 244 atoms

with an intermediate twist angle of Θ ≈ 7.34◦. Here, ’intermediate’ means that the twist angle

lies above the highest magic angle (1.05◦) and below 30◦. The calculation of the atomic posi-

tions is implemented by function 10 (see Appendix B.3). The resulting atomic Moiré superlattice

structure is shown in Fig. 1a of Ref. [3].

After the computation of the atomic positions within the supercell, the electronic Hamilto-

nian can be constructed. An effective Hamiltonian is employed, which only takes account of

the electrons in the pz-orbitals. These lie energetically close to the Fermi surface and are well

separated from the other orbitals [62]. In contrast to the magic-angle regime, for intermediate

twist angles the kinetic energy of the charge carriers, which is directly connected to the elec-

tronic bandwidth, is the dominant energy scale [70]. As correlation effects are in this regime

https://github.com/Fizztopp/TBG_FLOQUET.git
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of minor importance [70–72], electronic interactions are neglected here. The resulting noninter-

acting Hamiltonian is bilinear and can be represented by a quadratic matrix. Again, using the

translational symmetry of the Bravais lattice and introducing periodic Born-von-Karman bound-

ary conditions, the Hamiltonian is transformed to the momentum-dependent orbital basis. An

external time-dependent gauge field A(t) is introduced by Peierls substitution. This field adds

time-dependent phase factors to the hopping matrix elements (see Eq. B1 of Ref. [3]). The com-

ponents of the time-dependent gauge potential are implemented as functions 11 (see Appendix

B.3). The field amplitudes Ax/Ay/Az peierls and the driving frequency w peierls are defined

separately by global constants. Via the gauge field, the Hamilton operator becomes explicitly

time dependent. The Hamiltonian matrix is generated by function 12 of Appendix B.3. The first

and second part of the function set the bottom and top layer matrix elements. The values for

the backgate voltage VV and the sublattice potential dgap are defined by globally set constants.

The pz-orbitals within the same plane are coupled by Vppπ-hopping only. The last part describes

the interlayer hopping, which also includes Vppσ-hopping elements. By running the loops over the

indices m and n, the hopping to the eight next-neighbour unit cells is considered via translational

shifts by the Bravais lattice vectors.

In order to investigate the electronic groundstate properties of the zero-field Hamiltonian,

the momentum-dependent eigenenergies along the Γ-K-M high-symmetry path through the Bril-

louin zone are investigated. The relative twist angle between the two sublattices results in a

geometrically alternating arrangement of AA-stacked and AB-stacked regions [62, 63]. As in the

AA-regions the atoms are stacked exactly on top of each other, the effective interlayer hopping is

much stronger than in the AB regions. This periodic modulation of the effective coupling strength

locally confines the electronic density of states close to the Fermi level within the AA-regions.

This results in an angle-dependent reduction of the bandwidth that is accompanied by a renor-

malisation of the Fermi velocity [62, 63]. In Fig. 2b of Ref. [3], which compares the equilibrium

band structures of monolayer and intermediate-angle twisted bilayer graphene (Θ − 7.34◦), the

reduction of the electronic bandwidth and the Fermi velocity is shown. In Fig.2c (Ref. [3]) the

angle-dependent renormalisation of the bandwidth is depicted.

In order to investigate the topological properties of the initial Hamiltonian, the momentum-

local band Berry curvature is calculated. The Berry curvature at a discrete point in momentum

space can be defined by the accumulated phase along the eigenstates of an infinitesimally small

loop around that point [73]. This phase defines the Berry phase. Divided by the enclosed area,

this yields the momentum-local Berry curvature. A discretised formula for the Berry curvature is

defined by Eqs. C1 and C2 (Ref. [3]). The details of the discretised loop are shown in Fig. 8 of

Ref. [3]. The numerical computation of the Berry curvature is implemented by function 13 (see

Appendix B.3). The starting point of the loop through momentum space is defined by k0. After

the calculation of the eigenvectors along the loop, the Berry phase for each band is calculated
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and divided by the enclosed area in momentum space.

In the spirit of the Haldane model [61], the equilibrium Berry curvature of the two valence

bands in close proximity to the Dirac points is investigated. The local Berry curvature for different

choices of inversion-symmetry breaking local potentials is depicted in Fig.2 of Ref. [3]. The

curvature has a strong peak at the Dirac points. The integrated valence band Berry curvature

close to the Dirac points vanishes independently of the chosen potential. In analogy to monolayer

graphene the system is a topologically trivial insulator with an Chern number C = 0. Importantly,

by changing the symmetry and amplitude of the local potentials, the Berry curvature of the valence

bands can be switched between a finite value and zero within one valley. The topologically

trivial nature of the equilibrium system for twist angles above the magic-angle regime is the first

important result of this work.

In the following, the effect of a time-periodic external gauge field on the electronic states is

investigated. The vector potential and thus the electric field imprints its periodicity onto the solu-

tions of the time-dependent Schrödinger equation. Exploiting this discrete translational symmetry

by one time-period T = 2π/Ω, where Ω is the frequency of the drive, the time-dependent Hamil-

tonian can be mapped onto an effective and time-independent Floquet Hamiltonian [13, 74–76],

as described by Eqn. B2 and B3 in the published work [3]. By diagonalisation of the truncated

Floquet matrix, the photon-dressed eigenstates and their corresponding Floquet eigenenergies

can be computed. The calculation of the Floquet matrix is implemented as function 14 (see

Appendix B.3). The Floquet matrix has a block-structure, where the indices m and n define the

photon sector and the indices i and j identify the atomic sites. Following Eq. B2 of Appendix

B in [3] the integration over one time period T is performed. Afterwards, the eigenvectors and

eigenenergies of the Floquet matrix are computed. By diagonalisation of the original Hamilto-

nian, its eigenvectors are computed. Finally, the squared overlap of the Floquet states with the

original eigenstates is computed. The overlap for each band and quasimomentum lies within the

real interval [0,1]. It offers the possibility to identify photon-dressed states that emerge from the

undressed (’bare’) original bands. The Floquet band structure for a circularly polarised driving

field with a frequency tuned to the bandwidth of the low-energy manifold at the Γ point is de-

picted for different choices of on-site potentials (see Fig. 3a of Ref. [3]). The major effect of the

chiral driving field is the breaking of time-reversal symmetry. This opens an energy band gap at

the Dirac points. Additionally, smaller band gaps open at quasi-momentum points different from

K and K’. These side gaps result from the resonant coupling of lower and higher lying bands

through the driving field.

The topological properties of the Floquet Hamiltonian and thus of the light-dressed states

are investigated in the same way as for the equilibrium Hamiltonian. For the calculation of

the Berry phase the eigenstates of the original Hamiltonian have to be replaced by the Floquet

eigenstates. The local Berry curvature of the Floquet bands in close proximity to the Dirac points
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is depicted in Fig. 4 of Ref. [3]. The major effect of the external driving field is an exchange

of Berry curvature between the valence and conduction bands of one Dirac point. This results

in a finite integrated Berry curvature of the valence bands close to the Fermi energy, which

corresponds to an effective winding number analogous to a Chern insulator with Chern number,

C = 4. The closing and subsequent reopening of the Dirac-point energy gap upon varying the

circular driving field amplitude, which is accompanied by a topological phase transition into a

Chern-like phase, is the central result of this work. The phase transition can be controlled by the

backgate voltage. For a finite backgate voltage, a critical field strength is necessary to reach the

topologically nontrivial phase. The tunability of the phase transition becomes more obvious in

Fig. 5c and d (Ref. [3]) in which the Floquet topological phase is depicted as a function of the

driving amplitude and the local potential. In Fig. 4a (Ref. [3]), the field-induced gap is plotted as

a function of the driving amplitude. For single-layer graphene, the high-frequency expansion of

the Floquet Hamiltonian shows a quadratic dependency of the topological gap at the Dirac points

on the Fermi velocity, as shown by Aoka et al. [13]. Interestingly, here almost the same scaling

with the bare Fermi velocity is found for the intermediate angle of 7.34◦. In Fig. 4b it is shown

that for smaller twist angles the size of the gap lies in-between the values expected from the bare

monolayer Fermi velocity and the value which is naively calculated from the angle-dependent

renormalised velocity. This intermediate scaling can be understood by the in-plane polarisation

of the driving field, which is only weakly affected by the size of the effective interlayer coupling.

This is the final important result of this work.

In conclusion, the presented work highlights laser-light as a viable tool for the effective en-

gineering of the topological properties of intermediate-angle twisted bilayer graphene. Starting

from topologically trivial equilibrium, it is shown that the breaking of time-reversal symmetry by

a circularly polarized laser-field offers an ultrafast pathway to a topological phase with a nonva-

nishing valley Berry curvature close to the Fermi energy. The closing and subsequent reopening

of the gap is tracked by the Floquet-band structure. Furthermore, it is shown that the critical

field strength, which is necessary to induce a topologically nontrivial phase, can be tuned to finite

values by a backgate voltage. As a final result it is shown that the size of the field-induces energy

gap is higher than the naive expectation from the renormalised Fermi velocity.
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7 Comprehensive discussion

In the work at hand, three published projects are presented that analyse different aspects of

ultrafast laser-induced control over nonequilibrium phases of matter in different materials, namely

pyrochlore iridates, indium wires, and twisted bilayer graphene. For these materials, tailored

pathways are provided, how to dynamically manipulate their intrinsic microscopic properties in

order to engineer their macroscopic response.

Pyrochlore iridates are correlated materials. In this kind of materials particle interactions set

the dominant energy scale. The presented TDDFT simulations show that this energy scale can

be accessed by the laser-control of the dynamical electronic screening. In the presented model

calculations, the ultrafast manipulation of the effective Hubbard repulsion offers a tuning knob

to dynamically change the magnetic order parameter, and to ultimately induce a topological

Weyl semimetallic phase. As an instantaneous quench is a maximally nonadiabatic process, it

is intrinsically accompanied by strong heating effects. The extracted effective temperatures of

the nonequilibrium states clearly indicate the nonthermal character of the transient Weyl phase.

While this property of nonthermality is not imperative for the shown emergence of Weyl fermions,

it holds important implications for a potential experimental realisation of the presented pathway.

First, it is found that Weyl fermions can be stabilised in a wide region of effective temperatures

and interactions. This indicates that, in the proposed nonequilibrium experiment, precise fine-

tuning of the pump-field might not be necessary. This facilitates the search for sweet spots of

minimal absorption. Moreover, heating effects seem to be less destructive for a nonequilibrium

Weyl phase than in thermal equilibrium. Second, as discussed within the manuscript, the trapping

in a nonthermal state can lead to delayed thermalisation of the order parameter. Therefore, the

time window for a potential detection of Weyl fermions by e.g. tr-ARPES measurements is

ultimately limited by relaxation effects, which are induced by the coupling to the environment.

The laser-induced reduction of the electronic correlations takes place on a time scale of tens of

femtoseconds. Assuming phononic decay as a dominant dissipative channel, the relaxation of

the correlations can be estimated to take place on a time scale of hundreds of femtoseconds up

to picoseconds. This increased life time of the transient WSM phase allows the utilisation of

very short pump pulses. This way pump-induced heating can be significantly reduced. This is an

important advantage compared to Floquet-induced phase changes in weakly interacting materials,

where all field-induced effects vanish with the pump field. The presented findings of this project

emphasise the important role of the ultrafast control of electronic interactions as a novel and

promising route towards the engineering of topological properties in correlated materials. As

discussed by Berke et al. [77], the main limitation of the employed Hartree-Fock Hamiltonian is

the omission of fluctuations. While in the 3D materials fluctuations are often of minor importance,

it would be interesting to investigate their impact on the nonequilibrium stabilisation of Weyl
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fermions by methods beyond the employed mean-field ansatz and in nonequilibrium experiments.

A major difficulty regarding the experimental realisation of the proposed experiment is the material

structure of pyrochlore iridates. The quality of ARPES measurements crucially depends on the

availability of a well-cleaved surface. Apparently this is very challenging to realize experimentally

in these materials. Particularly, in a nonequilibrium setup, due to naturally finite time windows,

the quality of the probe material might be important.

In a recent investigation of the two-dimensional transition metal dichalcogenide Td MoTe2, a

crucial role of local Coulomb interaction for the topological properties of the material was shown.

By a combination of SX-ARPES (soft x-ray ARPES) measurements and DFT+U simulations a

correlation-driven novel hybrid Weyl semimetallic phase was proposed for this material. Signatures

of a pump-induced Lifshitz transition were experimentally found via tr-ARPES measurements by

Crepaldi et al. [78]. These works support the important role of interactions within the field of

topological control.

For the Peierls transition of one-dimensional indium-wires electronic interactions are expected

to be of minor importance. In equilibrium, the condensation energy Econd defines the dominant

energy scale for the metal-to-insulator transition here. It is a measure for the amount of energy

which is saved due to the transition to the low-symmetry CDW phase. In a simplified picture, this

transition can be reversed by photodoping of quasi-particles above the energy band gap, as the

amount of saved energy in the electronic system is reduced. Within the presented simulations,

the condensation energy is compared to the time-dependent change of total electronic energy

due to a sub-resonant external driving field. This comparison yields an approximate threshold for

the driving amplitude that is necessary to melt the CDW order. Moreover, the relation between

the change in energy and the field intensity allows a qualitative interpretation of two-photon

absorption as the dominant process. While the good agreement with the experimental findings

generally validate this ansatz, the used approximation neglects several effects. These effects

might have an impact on the quantitative details of the final result. Generally, the observed

ultrafast phase transition is a collective response of the total system, including electronic and

nuclear degrees of freedom. Changes in the nuclear degrees of freedom are neglected in the

dynamical calculations of the presented work. Moreover, the condensation energy as well as

the CDW gap generally depend on the electronic density which is a time-dependent object in

the multiband simulations performed here. As the external driving field results in an increased

effective electronic temperature, the CDW gap and the condensation energy are expected to

decrease during the pump. In this view a slightly reduced threshold for the peak electrical

field can be expected. These issues are investigated in more detail in a subsequent project via

an optically driven Su-Schrieffer-Heeger model with Ehrenfest dynamics of the nuclear system.

Within this approach the lattice order is tracked via the atomic displacement which impacts the

electronic energy landscape similarly to the magnetic order parameter in the pyrochlore model.
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Further details and preliminary results are presented in Sec. 8.1.

Twisted bilayer graphene is the third material under investigation. In this material the internal

energy landscape crucially depends on the twist angle. In the magic-angle regime the electronic

bandwidth is reduced to a few meV and the Fermi velocity drops to zero. In this regime of

strongly reduced kinetic energy the electronic interaction becomes a dominant energy scale. This

was demonstrated by the measurement of superconductivity in close proximity to a strongly-

correlated insulating phase at a very low temperature [65, 66].

While the electronic and topological properties at these tiny angles are still heavily debated,

the investigations in this thesis focus on the intermediate angle regime at twist angles larger than

the highest magic angle. In this regime the kinetic energy dominate over correlation effects. For

this reason, the electronic and topological properties of the system are well described in terms of

noninteracting Bloch states. The kinetic energy scale can be controlled by the twist angle. This

offers the opportunity to tailor the electronic band structure in order to reduce unintended heating

effects. At least for intermediate twist angles there exists no simple tuning knob to adjust the

topological properties in equilibrium. In the presented work it is demonstrated that a circularly

polarised laser field allows direct access to the topological properties of twisted bilayer graphene.

By breaking time-reversal symmetry, a controllable nonequilibrium phase transition towards a

topologically nontrivial phase is realised. From the Berry curvature of the Floquet-dressed states

a winding number analogous to a Chern (C=4) insulator is found close to the Dirac points. Within

an ultrafast Hall-current experiment this presumably allows the measurement of a more-or-less

quantised Hall conductivity. However, as discussed before, the Chern number is an integrated

object of the Berry curvature of the occupied bands. Thus, only in the case of vanishing time-

dependent fields and resonant electronic excitations, the system strictly corresponds to a Chern

insulator. Despite the possibility of tuning the electronic energy scales, population effects can

in reality never be entirely avoided. This is not taken into account by the employed Floquet

description, since only the effect of the field on the electronic states but not their occupations is

incorporated here. In the static Floquet picture this would mean that the Berry curvature of the

smaller side band gaps, which result from the resonantly coupled states, might obtain a nonzero

weight for the computation of the Chern number. This issue of electronic heating and topology

is investigated by means of a dissipative real-time calculation in a follow-up project, introduced

in Sec. 8.2. Finally, the scaling of the light-induced topological gap with the driving amplitude

might be interesting for envisioned nonequilibrium experiments at the magic angle. In this set-up,

despite a vanishing Fermi velocity, a finite gap might be expected.

In a subsequent work, the Floquet-band topology of twisted-bilayer graphene in the magic-

angle regime was investigated [79]. Within that work, the predictions about the topology of

the high-frequency circularly driven system confirm the results of the work at hand. Moreover,

very recently the Floquet-engineering of nontrivial flat bands near the magic-angle regime was
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discussed by Katz et al. [80]. These works highlight the viability of Floquet-engineering for the

nonequilibrium control of quantum materials.

Taken together, the here presented work supports the outstanding role of ultrafast experiments

as a platform for the tailored engineering of material properties on demand. It is shown that pulsed

laser light provides a precise tuning knob to dynamically access the intrinsic energy scales of a

material, to manipulate them, and thus to ultimately gain control over the macroscopic properties

of matter. Moreover, the nonequilibrium aspect of dynamically induced phase transitions can

lead to new states of matter with transient properties which can not be deduced from equilibrium

intuition.

Apart from purely scientific insights, the ultrafast control of material properties has an increas-

ing applied importance which is fostered by the rapid technical progress in nanoscale electronics

and quantum computation circuits. For example, laser-controlled optoelectronic switches might

in the near future complement conventional transistors that are naturally limited by the time

scales of their macroscopic current dynamics. The presented insight of this work provide an

important contribution for fostering a fundamental understanding about the prerequisites for

ultrafast control of existing and future quantum materials.
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8 Subsequent projects

In this section selected followup projects are introduced and first results are discussed. As this is

work in progress, the shown data is not revised via a peer-review process and should generally be

understood as preliminary.

8.1 SP II: Ehrenfest dynamics of the optically driven Su-Schrieffer-

Heeger model

This project is a continuation of the work presented in publication II (Ref. [2]). In this follow-up

project the time-dependent interplay between electronic and nuclear order as well as its impact

on the melting dynamics is investigated. A complete version of the latest version of the code can

be accessed at https://github.com/Fizztopp/SSH.git. We use units where e = ~ = c = 1.

Starting point is the Su-Schrieffer-Heeger Hamiltonian, which was originally introduced for the

exploration of soliton excitations in polyacetylene [81]. Assuming a perfectly uniform dimerisation,

the tight-binding Hamiltonian is of the general form

ĤSSH = −2
∑
n

[t0 + 2α(−1)nu] (ĉ†n+1ĉn + ĉ†nĉn+1) + 2NKu2 +
N

2M
p2.

For a vanishing coupling between the electronic and the nuclear subsystem, α = 0, the electronic

energy is described by a nearest-neighbor hopping term with a bare hopping parameter, t0.

The nuclear degrees are described by a set of N classical harmonic oscillators with a spring

energy, Ku2, and a kinetic energy, p2/(2M), per oscillator. The variable u defines the nuclear

dimerisation, p the nuclear momentum. For a finite coupling α 6= 0, a finite dimerisation results in

a π-periodic change of the electronic hopping. This can be interpreted as a periodic modulation

of the bond order. The concomitant breaking of translational symmetry can be incorporated by

doubling the size of the unit cell from one to two atoms. Assuming periodic boundary conditions,

this yields a reduced Brillouin zone ZB = [−π/(2a0), π/(2a0)], where a0 = 3.84 Å defines the

approximate distance between to In-atoms along the x-direction. According to Su et al. [81], the

electronic Hamiltonian can then be written in the form

Ĥel[u] =
∑

k∈ZB,s

(
ĉv†k

ĉc†k

)T(
−εk ∆k[u]

∆k[u] εk

)(
ĉvk

ĉck

)
,

where εk = 2J0 cos(ka) and ∆k[u] = 4αu sin(ka). The operators ĉ
v/c
k refer to the valence (v)

and conduction (c) band. The ∆k[u] term induces transitions between the two bands which are

strongest at the reduced-zone boundaries. The spin index s results in a trivial factor of 2 in the

following. The initial value for the dimerisation u and thus for the initial state can be determined

https://github.com/Fizztopp/SSH.git
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Figure 1: Equilibrium band structure of the SSH model Hamiltonian for parameters t0 = 0.4 eV, α = 0.28

eV/Å, K = 0.55 eV/Å
2
, and Ω0 = 28 cm−1.

by a self-consistent minimisation

∂E(u)

∂u
=

〈
∂Ĥel[u]

∂u

〉
eq

+ 4KNu
!

= 0

⇔ u = − 1

2KN

∑
k∈ZB

〈(
ĉv†k

ĉc†k

)T(
0 4α sin(ka)

4α sin(ka) 0

)(
ĉvk

ĉck

)〉
eq

.

The self-consistent nature arises from the fact that the expectation value in the above equation

is calculated on the basis of the density matrix which itself depends on u. This self-consistent

calculation is implemented by the function 15 (see Appendix B.4). Referring to a system of indium

wires, for all following calculations microscopic parameters, as suggested within the supplementary

material of Ref. [82], are used for the model: t0 = 0.4 eV, α = 0.28 eV/Å, K = 0.55 eV/Å
2
. In a

simplified picture of an one-dimensional Peierls distortion, the bare (q=0)-phonon (q=π in original

zone) frequency is set to Ω0 = 28 cm−1 (≈ 3.5 meV) which corresponds to the experimentally

found energy of the shear mode in indium wires [69]. The band structure of the corresponding

zero-temperature equilibrium Hamiltonian is shown in Fig. 1. The found dimerisation of u = 0.12

Å opens a gap of size ∆E = 8αu ≈ 270 meV at the zone boundaries. This value is in good

agreement with the experimentally found energy gap for indium wires [56, 83]. As the size of the

Peierls gap is proportional to the dimerisation, u can be identified as order parameter of both the

nuclear and the electronic order.

Having identified the initial state, the next step is to add dynamics to the system in order
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to induce the melting. In accordance to the simulations presented in project II (Ref. [2]), this

is done via a linearly polarised gauge potential A(t) = Amaxpσp(t) sin(Ωt)ex with a Gaussian

envelope pσp(t) = exp(−(t−t0)2/(2σ2
p)). This time-dependent external potential is coupled to the

electronic system by Peierls substitution. This introduces a time-dependent gauge shift Ĥk
el[u]→

Ĥ
k+A(t)
el [u]. While the closed electronic quantum dynamics are described by the Schrödinger

equation (here the von-Neumann equation is solved in view of a future implementation of open

dynamics) the nuclear dynamics are treated classically (Ehrenfest dynamics). In the classical

equations of motion for the nuclear harmonic oscillators the electronic system appears as an

additional potential. The nuclear dynamics are defined by the equations

u̇(t) =
p(t)

M
,

ṗ(t) = − 1

N

〈
∂ĤSSH[u(t)]

∂u(t)

〉
t

− 4Ku(t).

The nuclear dynamics act back on the electronic subsystem by adding an additional time-

dependency Ĥ
k+A(t)
el [u] → Ĥ

k+A(t)
el [u(t)]. For the solution of the electronic and the nuclear

equations of motion the two-step Adams-Bashforth method is used. The propagation scheme is

implemented as 16 (see Appendix B.4). An example for the resulting dynamics from a driving

pulse with an energy of ω = 190 meV, a peak amplitude of Amax = 0.08 a−1
0 and a FWHM of

the intensity profile of 300 fs is plotted in Fig. 2. These parameters are chosen in reference to the

weak-driving scenario of the indium-wires experiment. The time-dependent field induces an in-

crease in the electronic energy, Eel. Since the field energy is chosen sub-resonant, this absorption

is, in agreement with the former calculations [2], presumably governed by two-photon absorption.

By the finite coupling to the nuclear subsystem, this excitation induces a finite force on the

nuclei. This is indicated by an increasing nuclear momentum p. The change in p is followed by a

π/2-phase shifted response of the displacement u which acts back on the electronic subsystem.

After the driving pulse has vanished, the system oscillates with a renormalised frequency Ω > Ω0.

In the next step the driving-dependent melting of the nuclear order u and thus of the Peierls

gap is investigated. In Fig. 3 the minimum of the time-dependent oscillation u(t) divided by the

initial displacement u0 is shown as a function of the peak driving amplitude. The data clearly

indicates a phase transition at a critical electrical field Emax = 0.5 MV/cm. Approaching this

driving amplitude from below, the time-dependent order u(t) drops to zero and changes its sign.

In order to further investigate this critical point, in Fig. 4 the change of the oscillation frequency

of the nuclear system is investigated. At the same point shortly before Emax = 0.5 MV/cm

there is a strong softening of the (q=0)-phonon mode. This confirms the interpretation of a

nonequilibrium phase-transition taking place. The softening can be understood by the change

of the overall energy potential of the whole system from a double-well potential to a quadratic

potential with one minimum. At the transition point the effective free energy becomes flat. In an
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Figure 2: Dynamics of the electronically driven system for driving parameters ω = 190 meV, Amax = 0.08 a−1
0 ,

and a FWHM of 300 fs of the intensity profile. (a) Time-dependent driving field. (b) Time-dependent electronic

energy per unit cell. (c) Time-dependent nuclear displacement. (d) Time-dependent nuclear momentum.
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Figure 3: Change of nuclear displacement as function of driving amplitude (upper horizontal axis indicates

amplitude of the vector potential, lower axis of the corresponding peak electrical field) for driving energy ω = 190

meV, and a FWHM of 300 fs of the intensity profile. The critical field is indicated by a dashed line.

Figure 4: Softening of (q=0)-phonon mode as function of driving amplitude (upper horizontal axis indicates

amplitude of the vector potential, lower axis of the corresponding peak electrical field) for driving energy ω = 190

meV, and a FWHM of 300 fs of the intensity profile. The critical field is indicated by a dashed line.
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approximated static picture this results in a critical slowing down of the amplitude mode which is

proportional to the dynamics of u. The subsequent hardening of the frequency can be explained

in a similar way. The additional amount of energy that is pumped into the system increases the

steepness of the free energy potential, which results in a faster oscillation of the order parameter.

A quantitative comparison with the results from the driven indium-wires eight-band model is,

due to the employed simplifications, not possible. Nevertheless, the reduced threshold, compared

to the numerical findings of the second project [2], of the critical amplitude from Emax = 1.0

MV/cm to Emax = 0.5 MV/cm agrees with the intuition about a dynamically reduced Peierls

gap. As already mentioned, an advancement would be to investigate relaxation and dissipation

effects. The implementation of Lindblad-type open dynamics, as used for the pyrochlore model,

would be straightforward. Another potential approach includes the consideration of both electron-

phonon and electron-electron interactions. Finally, by a multitrajectory Ehrenfest approach [84],

the impact of nuclear fluctuations on the melting process could be taken into account.

Taken together, the inclusion of time-dependent nuclear effects via Ehrenfest dynamics pro-

vides a more realistic theoretical description of the ultrafast melting of a CDW order in one-

dimensional indium wires. Presumably, the actual impact of the nuclear dynamics on the quan-

titative results will crucially depend on the model details, e.g the time and energy scales of the

driving field. This has to be carefully investigated by additional studies.

Declaration of contrinution G. E. Topp wrote the C++ code, ran the simulations and created

the presented figures. The results were discussed by G. E. Topp, M. A. Sentef, and A. Rubio.

8.2 SP III: Dissipative real-time calculations for laser-driven twisted

bilayer graphene

This project is a continuation of the work presented in publication III, (Ref. [3]). In order

to provide a realistic theoretical description of laser-driven systems, electronic relaxation and

dissipation processes have to be included. These processes naturally compete with the laser-

induced heating and have direct impact on the resulting dynamics. As discussed by Sato et al. in

[24] for graphene, population effects play an important role regarding the anomalous Hall response

under a circularly polarised driving field. These effects originate from resonant heating of the

electronic system via the coupled laser mode. In this subsequent project Sato’s work is taken into

consideration and the anomalous Hall conductivity in twisted bilayer graphene is investigated by

means of dissipative real-time simulations. The numerical approach and first preliminary results of

this currently ongoing project are discussed in the following. A complete and up-to-date version

of the code can be accessed at https://github.com/Fizztopp/TBG REALTIME.git.

The numerical challenge regarding the dynamical propagation of the full electronic density

operator for twisted bilayer graphene is the mere size of the atomic supercell. For small twist

https://github.com/Fizztopp/TBG_REALTIME.git


40 8.2 SP III: Dissipative real-time calculations for laser-driven twisted bilayer graphene

Figure 5: Low-energy equilibrium band structure of twisted bilayer graphene for a twist angle of Θ = 2.13◦.

The symmetry path through the Brillouin zone is taken along the two Dirac points K1 and K2. The electronic

bandwidth at Γ and M is indicated by colored arrows.

angles the unit cell has a size of several thousand atoms. Small angles around 2◦ and below

are of peculiar interest for ultrafast transport measurements under mid-IR laser driving, since

in this regime the electronic bandwidth is of the order of hundreds to several tens of meV. A

real-time study of this regime by the investigation of ultrafast laser-induced current dynamics is

the ultimate goal of this project. The electronic equilibrium band structure for a twist angle of

Θ = 2.13◦ together with the associated energy scales is presented in Fig. 5. As the envisioned

time-dependent current simulations additionally require a fine sampling of the reciprocal unit cell,

an appropriate approximation of the high-dimensional Hamiltonian has to be employed. In the

following, such an approximated approach is presented. For this purpose, the system dimension

is effectively reduced via a Taylor expansion for small external fields and a subsequent band

truncation of the Hamiltonian. Importantly, this approach is not restricted to the presented

model but can generally be exploited for other high-dimensional tight-binding models, whose

dynamics are induced by a time-dependent gauge field. Here, an in-plane polarization of the

external field is assumed A(t) = (Ax(t), Ay(t)).

We use units where e = ~ = c = 1. The starting point is the tight-binding Hamiltonian that

describes the pz-orbitals of the bilayer-graphene supercell. This Hamiltonian was already intro-

duced and discussed in Sec. 6.3. The first step is a Taylor expansion of the Peierls-substituted

Hamiltonian Hk[A] in the momentum-dependent orbital basis at vanishing field amplitudes,

A0 ≡ (0, 0)T . This Taylor expansion is defined as

T {Hk[A],A0} ≡
∞∑
n=0

1

n!
((A−A0) · ∇A)nHk[A0].
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This infinite series is in practice approximated by a truncation after a finite order and convergence

in the cutoff is checked for each calculation. In the following, terms up to the order n = 3 are

considered. The Taylor-expanded Hamiltonian is of the explicit form

T {Hk[A],A0} = Hk[A0]

+ Ax
∂Hk

∂Ax
[A0] + Ay

∂Hk

∂Ay
[A0]

+
1

2

[
A2
x

∂2Hk

∂A2
x

[A0] + 2AxAy
∂2Hk

∂AxAy
[A0] + A2

y

∂2Hk

∂A2
y

[A0]

]
+

1

6

[
A3
x

∂3Hk

∂A3
x

[A0] + 3A2
xAy

∂3Hk

∂A2
xAy

[A0]

+3AxA
2
y

∂3Hk

∂AxA2
y

[A0] + A3
y

∂3Hk

∂A3
y

[A0]

]
≡ HTaylor

k .

The matrix derivatives appearing in the above equation are set by the implemented function 17

(see Appendix B.5).

In order to reduce the dimension of the Hamiltonian, a truncation in the energy eigenbasis of

the unperturbed Hamiltonian is performed. Therefore, an appropriate energy-window ∆E for the

truncation of the matrices has to be set. This window is chosen symmetrically around the Fermi

energy. The size of the energy window is ultimately governed by the driving amplitude and driving

frequency and has to be chosen such that the dynamics of the system are well approximated.

Therefore, the unperturbed Hamiltonian, Hk[A0], is transformed to the initial energy eigenbasis.

This basis is defined by the eigenequation Hk[A0] |k, α〉 = εkα |k, α〉 (with quasimomentum k

and a band index α). Afterwards, the index-positions of the ordered energy eigenvalues for the

lower and upper energy boundary are identified. This is implemented by function 18 (see Appendix

B.5). The energy cutoff is set by a globally defined constant lim. The limits are set in units of

the driving frequency which defines the dominant energy scale of the dynamical calculations.

Having identified the window for the energy cutoff, all Taylor expansion matrices are trans-

formed to the initial band basis of the unperturbed Hamiltonian. Afterwards, the transformed

matrices are truncated according to the previously calculated energy window. This truncation pro-

cedure is implemented by function 19 (see Appendix B.5). The corresponding time-dependent

Hamiltonian is set by function 20 (see Appendix B.5). Here, the gauge potential appears via

the time-dependent prefactors AX and AY which are multiplied by the expansion matrices in the

truncated initial band basis.

The initial density operator is defined in the truncated band basis with the temperature-

dependent Fermi functions appearing as diagonal entries. The energy arguments of the Fermi

distributions correspond to the energy eigenvalues within the chosen window. For the time

propagation the Adams-Bashforth multistep procedure, which was already introduced in Sec. 6.1,
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Figure 6: Equilibrium band structure of twisted bilayer graphene for a twist angle of Θ = 7.34◦. The symmetry

path through the Brillouin zone is taken along the two Dirac points K1 and K2. The horizontal dotted lines indicate

the chosen window for the energy cutoff (0.6 eV). The remaining band energies of the truncated Hamiltonian are

indicated by red color. The vertical dotted lines indicate the corresponding area of the reciprocal unit cell, which

are sampled for the dynamical simulations within a circle of radius |K1−K2|/4 around the Dirac points.

is used. The full propagation is performed in the initial truncated band basis. The time-dependent

current operators are defined by the derivatives of the Taylor-expanded Hamiltonian by the spatial

components of the time-dependent gauge potential

Ĵk
x (t) = −∂Ĥ

Taylor
k (t)

∂Ax(t)
, Ĵk

y (t) = −∂Ĥ
Taylor
k (t)

∂Ay(t)
.

The current operators are implemented by the functions 21 and 22 (see Appendix B.5). As the

total Hamiltonian is block-diagonal regarding the quasi-momentum k, a MPI-parallel calculation

of the above discussed procedure for the different points of the Brillouin zone is straightforward.

This is inevitable due to the slow convergence of the Hall current with respect to the k-grid.

In the following, simulations of a time-dependent Hall current as result of a small longitudinal

source-drain field in x-direction and a circularly polarized mid-IR (ω = 190 meV) in-plane field are

presented. For this first proof of principle, an intermediate angle Θ = 7.34 (in accordance with

project III, Ref. [3]) is chosen. The equilibrium band structure along the Dirac-points is presented

in Fig. 6. The horizontal lines indicate the chosen energy window ∆E = 0.6 eV. The red lines

indicate the remaining subset of energy states, which is considered for the following simulations

of the the dynamical response of the system. For weak fields and the chosen pulse energy, the

electronic dynamics are well approximated by this choice (convergence has been checked).

For the source-drain field in x-direction the following time-profile is employed (in accordance
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to Ref. [14])

ESD = ESDexf(t),

where the switch-on function f(t) is defined as

f(x) =


1, 1 < t

3t2 − 2t3, 0 < t ≤ 1

0, otherwise.

The circular light pulse is implemented by

A(t) = Amax

[
sin

(
πt

Tcirc

)]2

[τcircex sin(ωt) + ey cos(ωt)] .

Here, Tcirc is the full duration of the pulse, ex and ey are the spatial basis vectors, and τcirc = ±1

defines the chirality of the pulse.

The peak electrical amplitude for the source-drain field is set to ESD = 0.01 MV/m. The

amplitude of the circular electrical field is set to Emax = 5 MV/m (related to Amax in units of

the inverse monolayer lattice constant a−1
0 = 1/2.445 Å

−1
by Emax = ωAmax). A total pump

duration Tcirc = 300 fs is employed. For the system-bath coupling, the longitudinal relaxation

time is set to T1 = 100 fs, the transverse relaxation time is set to T2 = 20 fs (for details see

Ref. [14]). The reciprocal unit cell is sampled within a circle of radius |K1−K2|/4 around the

Dirac points with a total number of 39586 sampling points. As the reciprocal cell is not periodic

in this setup, a time-dependent correction has to be added to the currents. This correction

subtracts the instantaneous equilibrium current from the total time-dependent current (for details

see Ref. [14]).

The calculated current dynamics are shown in Fig. 7. In Fig. 7a the time profiles of the

source-drain field and the circular pump field are depicted. Fig. 7b shows the corrected current

signal in x-direction. The sign-flip between the two chiralities in the x-component of the driving

field is imprinted onto the current signal. Fig. 7c shows the time-dependent current in y-direction,

in transverse direction to the source-drain field. The anomalous Hall current is defined by the

difference between the currents in y-direction that are generated by the right and left circularly

polarized field

JHall(t) =
1

2

[
JR

y (t)− JL
y (t)

]
.

The time-dependent Hall current is presented in Fig. 7d. The red and black line indicate the

Hall currents for an opposite choice of the source-drain field. The expected sign flip of the Hall

current, which originates from the symmetry of the system, is reproduced. Compared to the

peak position of the circular driving field, the Hall current shows a delayed increase. This delay is
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Figure 7: Light-induced Hall current (a) The black solid line indicates the source-drain field in x-direction. The

grey shaded area shows the time-envelope of the circular pump pulse. (b) Time-dependent current in x-direction

for left (τcirc = 1) and right (τcirc = −1) polarization. (c) Time-dependent current in y-direction (transverse to

source-drain field) for left (τcirc = 1) and right (τcirc = −1) polarization. (d) Time-dependent Hall current (black

line indicates reversed source-drain field).
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assumed to have its origin in the ratio between the pump duration Tcirc and the relaxation time

scales T1 and T2.

The finding of an anomalous light-induced Hall current in intermediate-angle twisted bilayer

graphene is the first central result of this ongoing project. By the ratio of the peak field amplitudes

and the source-drain field amplitude, an anomalous Hall conductivity σxy = JHall/ESD can be

defined. The next step for this project is to investigate this Hall conductivity as a function of

the chemical potential (for the shown results charge neutrality was employed) and for different

circular field amplitudes. Moreover, the impact of the twist angle on the Hall conductivity will be

investigated. Therefore, as discussed above, smaller twist angles might be of particular interest.

Declaration of contribution L. Xian provided a Fortan90 code, containing a DFT-fitted

implementation of the original twisted bilayer graphene equilibrium Hamiltonian and a method

for the generation of the crystal lattice. G. E. Topp translated this code to Python and C++.

G. E. Topp extended the code by the truncation, and propagation methods. G. E. Topp

performed the presented simulations, analyzed the data, and created the presented plots. The

results were discussed by G. E. Topp, M. A. Sentef, S. Sato, L. Xian, G. Jotz, J. McIver and A.

Rubio.
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70. Y. Xie, B. Lian, B. Jäck, X. Liu, C.-L. Chiu, K. Watanabe, T. Taniguchi, B. A. Bernevig, and

A. Yazdani. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer

graphene. Nature, 572(7767):101–105, 2019. URL https://www.nature.com/articles/

s41586-019-1422-x.

71. Y. Choi, J. Kemmer, Y. Peng, Al. Thomson, H. Arora, R. Polski, Y. Zhang, H. Ren, J. Alicea,

G. Refael, F. von Oppen, K. Watanabe, T. Taniguchi, and S. Nadj-Perge. Electronic corre-

lations in twisted bilayer graphene near the magic angle. Nature Physics, 15(11):1174–1180,

Nov 2019. URL https://www.nature.com/articles/s41567-019-0606-5.

72. A. Kerelsky, L. J. McGilly, D. M. Kennes, L. Xian, M. Yankowitz, S. Chen, K. Watanabe,

T. Taniguchi, J. Hone, C. Dean, A. Rubio, and A. N. Pasupathy. Maximized electron

interactions at the magic angle in twisted bilayer graphene. Nature, 572(7767):95–100, Aug

2019. URL https://www.nature.com/articles/s41586-019-1431-9.

73. R. Resta and D. Vanderbilt. Theory of Polarization: A Modern Approach. In Physics

of Ferroelectrics, volume 105, pages 31–68. Springer Berlin Heidelberg, Berlin, Heidelberg,

2007. ISBN 978-3-540-34590-9. URL http://link.springer.com/10.1007/978-3-540-

34591-6 2.

74. H. Sambe. Steady States and Quasienergies of a Quantum-Mechanical System in an Oscil-

lating Field. Phys. Rev. A, 7(6):2203–2213, Jun 1973. URL https://link.aps.org/doi/

10.1103/PhysRevA.7.2203.

75. M. A. Sentef, M. Claassen, A. F. Kemper, B. Moritz, T. Oka, J. K. Freericks, and T. P.

Devereaux. Theory of Floquet band formation and local pseudospin textures in pump-probe

photoemission of graphene. Nature Communications, 6:7047, May 2015. URL https:

//www.nature.com/articles/ncomms8047.
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Appendices

A Implementation of basic mathematical operations

This section briefly introduces the basic mathematical operation which are used for most parts

of the code. The programming language is C++.

• Type definitions

// Complex numbers

typedef complex<double> cdouble;

// Vectors of real double values

typedef vector<double> dvec;

// Vectors of complex double values

typedef vector<cdouble> cvec;

// Complex i

cdouble II(0,1);

• Matrix diagonalisation

This function is imported from the LAPACK library. A more detailed documentation can

be found on http://www.netlib.org/lapack/explore-3.1.1-html/zheev.f.html

extern "C" {

/**

* Computes the eigenvalues and, optionally, the eigenvectors for a

Hermitian matrices H

*/

void zheev_(char* jobz, char* uplo, int* N, cdouble* H, int* LDA,

double* W, cdouble* work, int* lwork, double* rwork, int *info);

}

//’N’,’V’: Compute eigenvalues only, and eigenvectors

char jobz = ’V’;

//’U’,’L’: Upper, Lower triangle of H is stored

char uplo = ’U’;

// The order of the matrix H. DIM >= 0

int matsize = DIM;

// The leading dimension of the array H. lda >= max(1,DIM)

int lda = DIM;

// The length of the array work. lwork >= max(1,2*DIM-1)

int lwork = 2*DIM-1;

http://www.netlib.org/lapack/explore-3.1.1-html/zheev.f.html
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// Dimension (max(1, 3*DIM-2))

double rwork[3*DIM-2];

// dDimension (MAX(1,LWORK))

cdouble work[2*DIM-1];

// Info

int info;

void diagonalize(cvec &Hk, dvec &evals)

{

/**

* Diagonalisation of matrix Hk. Stores eigenvalues in real vector evals

and eigenvectors in complex vector Hk

*/

zheev_(&jobz, &uplo, &matsize, &Hk[0], &lda, &evals[0], &work[0],

&lwork, &rwork[0], &info);

assert(!info);

}

• Wrapper function for two dimensional array indices

inline int fq(int i, int j, int N)

/**

* MAT[i,j] = Vec[fq(i,j,N)] with row index i and column index j

*/

{

return i*N+j;

}

• Wrapper function for block structured Hamiltonian (Pyrochlore)

inline int fq(int a, int b, int i, int j)

/**

* MAT[a, b, i, j] = Vec[fq(a,b,i,j)] element; a,b in {0,1,2,3} chooses

site; i,j in {0,1} chooses spin coordinate,

*/

{

return 8*a + b + 32*i + 4*j;

}

• Wrapper function for Floquet Hamiltonian
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inline int f_FL(int m, int n, int i, int j)

/**

* Wrapper for Floquet matrix MAT[m, n, i, j],

(2*m_max+1)x(2*n_max+1)xNATOM*NATOM block matrix element where i,j in

{0,..,NATOM-1}, m in {-m,...,0,...+m}, n in {-n,...,0,...+n}

*/

{

return (2*n_max+1)*NATOM*NATOM*m + NATOM*n + (2*n_max+1)*NATOM*i + j;

}

• Delta function

inline double delta(int a, int b)

{

if (a==b)

return 1.;

else

return 0.;

}

• Matrix product of quadratic matrices: C = A ·B

template <class Vec>

void times(Vec &A, Vec &B, Vec &C)

{

int dim = sqrt(A.size());

Vec TEMP(dim*dim);

// Transposition gives speed up due to avoided line break

for(int i=0; i<dim; i++) {

for(int j=0; j<dim; j++) {

TEMP[fq(j,i,dim)] = B[fq(i,j,dim)];

}

}

#ifndef NO_OMP

#pragma omp parallel for

#endif

for(int i=0; i<dim; ++i)

{

for(int j=0; j<dim; ++j)
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{

C[fq(i,j,dim)] = 0.;

for(int k=0; k<dim; ++k)

{

C[fq(i,j,dim)] += A[fq(i,k,dim)]*TEMP[fq(j,k,dim)];

}

}

}

}

• Matrix product with Hermitian conjugation of first factor: C = A† ·B

template <class Vec>

void times_dn(Vec &A, Vec &B, Vec &C)

{

int dim = sqrt(A.size());

Vec TEMP1(dim*dim);

Vec TEMP2(dim*dim);

// Transposition gives speed up due to avoided line break

for(int i=0; i<dim; i++) {

for(int j=0; j<dim; j++) {

TEMP1[fq(j,i,dim)] = A[fq(i,j,dim)];

TEMP2[fq(j,i,dim)] = B[fq(i,j,dim)];

}

}

#ifndef NO_OMP

#pragma omp parallel for

#endif

for(int i=0; i<dim; ++i)

{

for(int j=0; j<dim; ++j)

{

C[fq(i,j,dim)] = 0.;

for(int k=0; k<dim; ++k)

{

C[fq(i,j,dim)] += conj(TEMP1[fq(i,k,dim)])*TEMP2[fq(j,k,dim)];

}

}

}

}



60

• Matrix product with Hermitian conjugation of second factor: C = A ·B†

template <class Vec>

void times_nd(Vec &A, Vec &B, Vec &C)

{

int dim = sqrt(A.size());

#ifndef NO_OMP

#pragma omp parallel for

#endif

for(int i=0; i<dim; ++i)

{

for(int j=0; j<dim; ++j)

{

C[fq(i,j,dim)] = 0.;

for(int k=0; k<dim; ++k)

{

C[fq(i,j,dim)] += A[fq(i,k,dim)]*conj(B[fq(j,k,dim)]);

}

}

}

}

B Implementation of important functions

B.1 Publication I

Listing 1: Hamiltonian in k-dependent orbital basis

void set_Hk(dvec &kvec, dvec &M, cvec &Hk, dvec &MAT_BASIS, double time)

/**

* Set k-dependent Hamiltonian

* -kvec: Real vector of the 3d irreducible Brilluoin zone

* -M: Real[12] vector contains the 4 mean-field 3d pseudpspin vectors

* -Hk: Complex vector[64] to store Hamiltonian

* -MAT_BASIS: Basis vectors in array of dim[12]

* -time: Real time coordinate

*/

{

// Microscopicly motivated hopping parameters
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double tp = -2.*ts/3.;

double tss = ts*0.08;

double tps = tp*0.08;

double t1 = 0.53 + 0.27*ts;

double t2 = 0.12 + 0.17*ts;

double t1s = 233./2916.*tss - 407./2187.*tps;

double t2s = 1./1458.*tss + 220./2187.*tps;

double t3s = 25./1458.*tss + 460./2187.*tps;

for(int i=0; i<64; i++)

{

Hk[i] = 0.;

}

for(int a=0; a<4; a++)

{

// Spin up-up

Hk[fb(a,a,0,0)] += -U_ramp(time)*( M[fq(2,a,4)] -

(M[fq(0,a,4)]*M[fq(0,a,4)] + M[fq(1,a,4)]*M[fq(1,a,4)] +

M[fq(2,a,4)]*M[fq(2,a,4)]));

// Spin up-down

Hk[fb(a,a,0,1)] += -U_ramp(time)*( M[fq(0,a,4)] - II*M[fq(1,a,4)]);

// Spin down-up

Hk[fb(a,a,1,0)] += -U_ramp(time)*( M[fq(0,a,4)] + II*M[fq(1,a,4)]);

// Spin down-down

Hk[fb(a,a,1,1)] += -U_ramp(time)*(-M[fq(2,a,4)] -

(M[fq(0,a,4)]*M[fq(0,a,4)] + M[fq(1,a,4)]*M[fq(1,a,4)] +

M[fq(2,a,4)]*M[fq(2,a,4)]));

for(int b=0; b<4; b++)

{

// Nearest-neighbour hopping

HNN
ab(k)

for(int c=0; c<4; c++)

{

// Next-nearest-neighbour hopping

HNNN
abc (k)

}

}

}
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}.

Listing 2: Mean-field pseudospin vectors

void M_MF(int num_kpoints_BZ, double num_kpoints_BZ_full, vector<cvec> &RHO_0,

dvec &M, vector<dvec> &kweights, int &numprocs, int &myrank)

/**

* Calculation of mean-field pseudospin vectors

* -num_kpoints_BZ: # of k-points in BZ_IRR

* -num_kpoints_BZ_full: # of k-points of full BZ

* -RHO_0: Vector of complex vectors[64] for intital desity matrix

* -M: Real[12] vector contains the 4 mean-field 3d pseudospin vectors

* -kweights: Weights of k-points

* -numprocs: # of processes

* -myrank: Rank of process

*/

{

for(int i=0; i<12; i++)

M[i] = 0.;

for(int k=myrank; k<num_kpoints_BZ; k+=numprocs)

{

for(int a=0; a<NORB; a++)

{

// j^x

M[fq(0,a,4)] += real(1./(num_kpoints_BZ_full*2.)*(RHO_0[k][fb(a, a, 0,

1)]+RHO_0[k][fb(a, a, 1, 0)]))*(kweights[k][0]);

// j^y

M[fq(1,a,4)] += real(1./(num_kpoints_BZ_full*2.)*(-II)*(RHO_0[k][fb(a,

a,1, 0)]-RHO_0[k][fb(a, a, 0, 1)]))*(kweights[k][0]);

// j^z

M[fq(2,a,4)] += real(1./(num_kpoints_BZ_full*2.)*(RHO_0[k][fb(a, a, 0,

0)]-RHO_0[k][fb(a, a, 1, 1)]))*(kweights[k][0]);

}

}

}

Listing 3: Self-consistency loop

void groundstate(vector<dvec> &kweights, vector<cvec> &RHO_0, dvec &M, cvec &Hk,



B.1 Publication I 63

dvec &evals, vector<dvec> &BZ_IRR, dvec &MAT_BASIS, double &mu, int

&numprocs, int &myrank)

/**

* Computes the initial pseudospin vectors and density matrix in a

self-consistent loop

* -kweights: Real vector containing weights of k-points (in case reduced cell

is used unequal 1)

* -RHO_0: Vector of complex vectors[64] for intital desity matrix

* -M: Real[12] vector contains the 4 mean-field 3d pseudospin vectors

* -Hk: Complex vector[64] to store Hamiltonian

* -evals: Real vector[8] of eigenvalues

* -BZ_IRR: k-points of reduced reciprocal cell

* -MAT_BASIS: Vector of real vectors containing basis vectors

* -mu: Chemical potential

* -numprocs: Total number of processes (MPI)

* -myrank: Rank of process (MPI)

*/

{

// # of k-vectors from sampling of irreducible BZ

int num_kpoints_BZ = BZ_IRR.size();

// k-oints of full Brillouin zone

double num_kpoints_BZ_full = 0.;

for(int k=0; k<kweights.size(); k++)

num_kpoints_BZ_full += kweights[k][0];

int count = 0;

double m = 0.0;

double m_old;

double deviation = 1.0;

double N_tot, E_tot;

cvec TEMP(64,0.);

// Set chemical potential to initial value

mu = mu_init;

while(deviation > dev)

{

count++;

m_old = m;
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N_tot = 0.;

E_tot = 0.;

// Calculate particle number per k-point

for(int k=myrank; k<num_kpoints_BZ; k+=numprocs)

{

// Set Hamiltonian matrix

set_Hk(BZ_IRR[k], M, Hk, MAT_BASIS, 0.0);

// Diagonalize Hamiltonian matrix

diagonalize(Hk, evals);

// Set density matrix in eigenenergy basis and calculate total particel

number

for(int i=0; i<8; i++){

for(int j=0; j<8; j++)

{

RHO_0[k][fq(i,j,8)] = fermi(evals[i], mu)*delta(i,j);

N_tot += fermi(evals[i], mu)*delta(i,j)*kweights[k][0];

E_tot += N_tot*evals[i];

}

}

times(RHO_0[k], Hk, TEMP);

times_dn(Hk, TEMP, RHO_0[k]);

}

// Calculation of mean-field pseudospin vectors

M_MF(num_kpoints_BZ, num_kpoints_BZ_full, RHO_0, M, kweights, numprocs,

myrank);

#ifndef NO_MPI

MPI_Allreduce(MPI_IN_PLACE, &N_tot, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);

MPI_Allreduce(MPI_IN_PLACE, &E_tot, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);

MPI_Allreduce(MPI_IN_PLACE, &M[0], 12, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);

#endif

// Adjust chemical potential

mu += -DELTA*(N_tot-num_kpoints_BZ_full*filling);

// Calculation of magnetic order parameter

m = 0.;

for(int a=0; a<4; a++)

{
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m += 0.25*sqrt(M[fq(0,a,4)]*M[fq(0,a,4)] + M[fq(1,a,4)]*M[fq(1,a,4)] +

M[fq(2,a,4)]*M[fq(2,a,4)]);

}

// Deviation from former loop -> exit condition

deviation = abs(m-m_old);

}

Listing 4: Time derivative of density matrix

void set_dRHOdt(cvec &TEMP1, cvec &TEMP2, cvec &RHO_t_tk, cvec &dRHO_dt, cvec

&Hk, dvec &evals, double &mu, double time)

/*

* Calculation of the time-derivative of the density matrix

* -TEMP1, TEMP2: Complex helper matrix

* -RHO_t_tk:Complex vector[64] of k- and time-dependent density matrix

* -dRHO_dt: Complex vector[64] of temporal change of density matrix

* -Hk: Complex vector[64] to store Hamiltonian

* -evals: Real vector[8] of eigenvalues

* -mu: chemical potential

* -time: double real time coordinate

*/

{

// Unitary part

times(Hk, RHO_t_tk, TEMP1);

times(RHO_t_tk, Hk, TEMP2);

for(int i=0; i<64; i++)

{

dRHO_dt[i] = -II*(TEMP1[i]-TEMP2[i]);

}

// Non-unitary part

#ifndef NO_DISS

diagonalize(Hk, evals);

for(int i=0; i<64; i++)

TEMP1[i] = RHO_t_tk[i];

// Transform Rho(k): orbital basis -> instantaneous energy eigenbasis

times_nd(TEMP1, Hk, TEMP2);

times(Hk, TEMP2, TEMP1);
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// Calculate dRho

for(int a=0; a<8; a++)

{

for(int b=0; b<8; b++)

{

TEMP2[fq(a,b,8)] = -2.*J0*(TEMP1[fq(a,b,8)]-fermi_bath(evals[a],

mu))*delta(a,b) - 2.*J0*TEMP1[fq(a,b,8)]*(1.-delta(a,b));

}

}

// Transform dRho(k): instantaneous energy eigenbasis -> orbital basis

times(TEMP2, Hk, TEMP1);

times_dn(Hk, TEMP1, TEMP2);

for(int i=0; i<64; i++)

{

dRHO_dt[i] += TEMP2[i];

}

#endif

}

Listing 5: Two-step Adams-Bashforth propagator

void AB2_propatation(dvec &mu_t, dvec &evals, vector<dvec> &kweights,

vector<cvec> &RHO_0, vector<cvec> &dRHO_dt0, vector<cvec> &dRHO_dt1, dvec &M,

cvec &Hk, vector<dvec> &BZ_IRR, dvec &MAT_BASIS, vector<cvec*> RHO_t,

vector<dvec*> M_t, double &mu, int &numprocs, int &myrank)

/**

* Two-step Adams-Bashforth linear multistep propagator:

* -mu_t: Real vector to store t.-d. chemical potential

* -E_TOT: Vector[timesteps] of real vectors[3] to store t.-d. energies

* -evals: Real vector[8] of eigenvalues

* -kweights: Real vector containing weights of k-points (in case reduced cell

is used unequal 1)*

* -RHO_0: Vector of complex vectors[64] for intital desity matrix

* -dRHO_dt0, dRHO_dt1: Vector of complex vectors[64] to store change of density

matrix

* -M: Real[12] vector contains the 4 mean-field 3d pseudospin vectors

* -Hk: Complex vector[64] to store Hamiltonian

* -BZ_IRR: k-points of reduced reciprocal cell
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* -MAT_BASIS: Real vector[12] of basis vectors

* -RHO_t_tk: Vector[3] of complex vector pointers[64] to store density matrix

at 3 subsequent time steps

* -mu: Chemical potential

* -numprocs: Total number of processes (MPI)

* -myrank: Rank of process (MPI)

*/

{

// # of k-vectors from sampling of irreducible BZ

int num_kpoints_BZ = BZ_IRR.size();

// k-oints of full Brillouin zone

int num_kpoints_BZ_full = 0;

for(int k=0; k<kweights.size(); k++)

num_kpoints_BZ_full += kweights[k][0];

// Temporary variables

cvec DENSt(16,0.);

cvec TEMP1(64,0.);

cvec TEMP2(64,0.);

cvec TEMP3(64,0.);

double n_tot;

dvec N_TOT(timesteps);

// Pointers for multistep method

cvec *temp0, *temp1, *temp2;

// Stepsize

double h = (endtime-starttime)/timesteps;

// Initial magnetisation

for(int i=0; i<12; i++)

{

(*M_t[0])[i] = M[i];

}

// Read in initial density matrix

for(int k=0; k<num_kpoints_BZ; k++)

{

for(int i=0; i<64; i++)

(*RHO_t[fq(0, k, num_kpoints_BZ)])[i] = RHO_0[k][i];

}
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// Set initial chemical potential

mu_t[0] = mu;

N_TOT[0] = filling;

double time;

// Propagation

for(int t=0; t<timesteps-1; t++)

{

for(int i=0; i<3; i++)

E[i] = 0.0;

// 1st Euler step: y_{n+1} = y_n + hf(t_{n},y_{n})

if(t==0)

{

for(int k=myrank; k<num_kpoints_BZ; k+=numprocs)

{

set_Hk(BZ_IRR[k], M, Hk, MAT_BASIS, 0.0);

set_dRHOdt(TEMP1, TEMP2, RHO_t[fq(0,k,num_kpoints_BZ)][0],

dRHO_dt0[k], Hk, evals, mu_t[0], 0.0);

for(int i=0; i<64; i++)

{

(*RHO_t[fq(1,k,num_kpoints_BZ)])[i] =

(*RHO_t[fq(0,k,num_kpoints_BZ)])[i] + h*dRHO_dt0[k][i];

RHO_0[k][i] = (*RHO_t[fq(1,k,num_kpoints_BZ)])[i];

}

}

M_MF(num_kpoints_BZ, num_kpoints_BZ_full, RHO_0, M, kweights, numprocs,

myrank);

Dens_MF(num_kpoints_BZ, num_kpoints_BZ_full, RHO_0, DENSt, kweights,

numprocs, myrank);

#ifndef NO_MPI

MPI_Allreduce(MPI_IN_PLACE, &M[0], 12, MPI_DOUBLE, MPI_SUM,

MPI_COMM_WORLD);

MPI_Allreduce(MPI_IN_PLACE, &DENSt[0], 16, MPI_DOUBLE_COMPLEX, MPI_SUM,

MPI_COMM_WORLD);

#endif

for(int i=0; i<12; i++)

{

(*M_t[1])[i] = M[i];

}

n_tot = 0.0;
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for(int a=0; a<4; a++)

{

n_tot += real(DENSt[fq(a,0,4)]+DENSt[fq(a,3,4)]);

}

N_TOT[t+1] = n_tot;

mu_t[t+1] = mu_t[t]*(N_TOT[0]/N_TOT[t+1]);

}

// Two-step Adams-Bashforth method

else

{ // 2-step Adams predictor

for(int k=myrank; k<num_kpoints_BZ; k+=numprocs)

{

set_Hk(BZ_IRR[k], M_t[t-1][0], Hk, MAT_BASIS, h*double(t-1));

set_dRHOdt(TEMP1, TEMP2, RHO_t[fq(0,k,num_kpoints_BZ)][0],

dRHO_dt0[k], Hk, evals, mu_t[t-1], h*double(t-1));

set_Hk(BZ_IRR[k], M_t[t][0], Hk, MAT_BASIS, h*double(t));

set_dRHOdt(TEMP1, TEMP2, RHO_t[fq(1,k,num_kpoints_BZ)][0],

dRHO_dt1[k], Hk, evals, mu_t[t], h*double(t));

// P_{n+1} = y_{n} + 3/2*h*f(t_{n},y_{n}) - 0.5*h*f(t_{n-1},y_{n-1})

for(int i=0; i<64; i++)

{

(*RHO_t[fq(2,k,num_kpoints_BZ)])[i] =

(*RHO_t[fq(1,k,num_kpoints_BZ)])[i] + h*(3./2.*dRHO_dt1[k][i] -

0.5*dRHO_dt0[k][i]);

RHO_0[k][i] = (*RHO_t[fq(2,k,num_kpoints_BZ)])[i];

}

}

M_MF(num_kpoints_BZ, num_kpoints_BZ_full, RHO_0, M, kweights, numprocs,

myrank);

#ifndef NO_MPI

MPI_Allreduce(MPI_IN_PLACE, &M[0], 12, MPI_DOUBLE, MPI_SUM,

MPI_COMM_WORLD);

#endif

// 2-step Moulton corrector

for(int k=myrank; k<num_kpoints_BZ; k+=numprocs)

{

set_Hk(BZ_IRR[k], M, Hk, MAT_BASIS, h*double(t+1));

set_dRHOdt(TEMP1, TEMP2, RHO_t[fq(2,k,num_kpoints_BZ)][0],

dRHO_dt0[k], Hk, evals, mu_t[t], h*double(t+1));

// y_{n+1} = y_{n} + 1/2*h*(f(t_{n+1},P_{n+1}) + f(t_{n},y_{n}))
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for(int i=0; i<64; i++)

{

(*RHO_t[fq(2,k,num_kpoints_BZ)])[i] =

(*RHO_t[fq(1,k,num_kpoints_BZ)])[i] + 0.5*h*(dRHO_dt0[k][i] +

dRHO_dt1[k][i]);

RHO_0[k][i] = (*RHO_t[fq(2,k,num_kpoints_BZ)])[i];

}

// Cyclic exchange of pointers

temp0 = RHO_t[fq(0,k,num_kpoints_BZ)];

temp1 = RHO_t[fq(1,k,num_kpoints_BZ)];

temp2 = RHO_t[fq(2,k,num_kpoints_BZ)];

RHO_t[fq(0,k,num_kpoints_BZ)] = temp1;

RHO_t[fq(1,k,num_kpoints_BZ)] = temp2;

RHO_t[fq(2,k,num_kpoints_BZ)] = temp0;

}

M_MF(num_kpoints_BZ, num_kpoints_BZ_full, RHO_0, M, kweights, numprocs,

myrank);

Dens_MF(num_kpoints_BZ, num_kpoints_BZ_full, RHO_0, DENSt, kweights,

numprocs, myrank);

#ifndef NO_MPI

MPI_Allreduce(MPI_IN_PLACE, &M[0], 12, MPI_DOUBLE, MPI_SUM,

MPI_COMM_WORLD);

MPI_Allreduce(MPI_IN_PLACE, &DENSt[0], 16, MPI_DOUBLE_COMPLEX, MPI_SUM,

MPI_COMM_WORLD);

#endif

n_tot = 0.0;

for(int a=0; a<4; a++)

{

n_tot += real(DENSt[fq(a,0,4)]+DENSt[fq(a,3,4)]);

}

N_TOT[t+1] = n_tot;

}

// Adjust chemical potential in order to preserve particle number

mu_t[t+1] = mu_t[t]*(N_TOT[0]/N_TOT[t+1]);

}

}

Listing 6: Lesser Green’s function
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void Tr_Gless(int k, dvec &mu_t, cvec &Hk, dvec &evals, vector<cvec> &UMATRIX,

dvec &MAT_BASIS, double &mu, vector<dvec> &K_PATH, vector<cvec> &G_HELP, cvec

&G_Tr, vector<cvec*> RHO_PATH_t, int &myrank)

/**

* Calculates the trace of the lesser Grrens funtion Tr{G<(k,t,t’)}

* -k: Integer picks k-point from K_PATH

* -mu_t: Real vector to store t.-d. chemical potential

* -Hk: Complex vector[64] to store Hamiltonian

* -evals: Real vector[8] of eigenvalues

* -UMATRIX: Vector of complex matrices to store unitary mid-point Euler

propagators

* -MAT_BASIS: Basis vectors in array of dimension [4][3]

* -mu: Chemical potential of initial state

* -K_PATH: vector of high-symmetry path vectors

* -G_HELP: Vector of complex vectors[64] needed in computation process

* -G_Tr: Complex vector[TIMESTEPS*TIMESTEPS] to store traco of Glesser

function

* -RHO_PATH_t: Vector of complex vector pointers containing propagated

density matrices of K_PATH

* -myrank: Rank of process (MPI)

*/

{

dvec M0(12,0.);

cvec TEMP1(64);

cvec TEMP2(64);

vector<dvec> M_t(timesteps, dvec(12));

// Load time-dependent magnetic order from prior calculation

ifstream in("M_t.txt");

if (!in)

{

cout << "Cannot open file.\n";

return;

}

for(int t=0; t<timesteps-1; t++)

{

for(int i=0; i<12; i++)

{

in >> M_t[t][i];

}
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}

in.close();

in.clear();

// Load time-dependent chemical potential

in.open("mu_t.txt");

if (!in)

{

cout << "Cannot open file.\n";

return;

}

for(int t=0; t<timesteps-1; t++)

{

in >> mu_t[t];

}

in.close();

in.clear();

// Propagation of density matrix

PROP_PATH(k, evals, Hk, K_PATH, MAT_BASIS, M_t, RHO_PATH_t, mu_t);

// Stepsize for reduced number timesteps

double h = (endtime-starttime)/TIMESTEPS;

int time_fac = timesteps/TIMESTEPS;

// Set unitary mid-point Euler propagators in k-dependent orbital basis:

for(int t=0; t<TIMESTEPS-1; t++)

{

set_Hk(K_PATH[k], M_t[t*time_fac], TEMP1, MAT_BASIS, h*double(t));

set_Hk(K_PATH[k], M_t[(t+1)*time_fac], TEMP2, MAT_BASIS, h*double(t+1));

for(int i=0; i<64; i++)

Hk[i] = 0.5*(TEMP1[i]+TEMP2[i]);

diagonalize(Hk, evals);

for(int i=0; i<8; i++)

{

for(int j=0; j<8; j++)

{

TEMP1[fq(i,j,8)] = exp(+II*evals[i]*h)*delta(i,j);

}

}
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// Back-transformation to original k-orbital basis

times(TEMP1, Hk, TEMP2);

times_dn(Hk, TEMP2, UMATRIX[t]);

}

// Clear memeory

for(int tt=0; tt<TIMESTEPS*TIMESTEPS; tt++)

G_Tr[tt] = 0.0;

// Set G<(k,t,tp)

for(int td=0; td<TIMESTEPS-1; td++)

{

// Set diagonal (t==t") value of Greens function: G<(t,t’) = i*rho(t)

for(int i=0; i<64; i++)

{

G_HELP[td][i] = II*(*RHO_PATH_t[td*time_fac])[i];

}

// Calculate trace

G_Tr[fq(td, td, TIMESTEPS)] = 0.0;

for(int i=0; i<8; i++)

G_Tr[fq(td, td, TIMESTEPS)] += G_HELP[td][fq(i,i,8)];

// Propagation in t direction

for(int t=0; t<TIMESTEPS-td-1; t++)

{

times(G_HELP[td+t], UMATRIX[td+t], G_HELP[td+t+1]);

G_Tr[fq(td+t+1, td, TIMESTEPS)] = 0.0;

for(int i=0; i<8; i++)

G_Tr[fq(td+t+1, td, TIMESTEPS)] += G_HELP[td+t+1][fq(i,i,8)];

}

// Propagation in t’ direction

for(int tp=0; tp<TIMESTEPS-td-1; tp++)

{

times_dn(UMATRIX[td+tp], G_HELP[td+tp], G_HELP[td+tp+1]);

G_Tr[fq(td, td+tp+1, TIMESTEPS)] = 0.0;

for(int i=0; i<8; i++)

G_Tr[fq(td, td+tp+1, TIMESTEPS)] += G_HELP[td+tp+1][fq(i,i,8)];

}

}

}
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Listing 7: Energy-resolved photocurrent

double Iphoto(double omega, cvec &G_Tr)

/**

* Calculate Photo current from Tr_Gless()

* -omega: probing frequency

* -G_Tr: Complex vector[TIMESTEPS x TIMESTEPS] to store traco of Glesser

function

*/

{

double h = (endtime-starttime)/TIMESTEPS;

double Iph;

dvec TEMP(TIMESTEPS);

for(int tp=0; tp<TIMESTEPS; tp++)

{

TEMP[tp] = 0.0;

for(int t=0; t<TIMESTEPS-1; t++)

{

if(gauss(double(t)*h, T_PROBE, SIGMA_PROBE)*gauss(double(tp)*h,

T_PROBE,SIGMA_PROBE)*(2.*PI*pow(SIGMA_PROBE, 2))<weightcutoff)

continue;

TEMP[tp] += 0.5*h*imag( gauss(double(t)*h, T_PROBE,

SIGMA_PROBE)*gauss(double(tp)*h, T_PROBE, SIGMA_PROBE)

*exp(-II*omega*double(t-tp)*h)*G_Tr[fq(t, tp, TIMESTEPS)]

+gauss(double(t+1)*h, T_PROBE,

SIGMA_PROBE)*gauss(double(tp)*h, T_PROBE, SIGMA_PROBE)

*exp(-II*omega*double(t+1-tp)*h)*G_Tr[fq(t+1, tp,

TIMESTEPS)]);

}

}

Iph = 0.0;

for(int tp=0; tp<TIMESTEPS-1; tp++)

{

Iph += 0.5*h*(TEMP[tp]+TEMP[tp+1]);

}

return Iph;

}
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Listing 8: Hamiltonian in k-dependent orbital basis

void set_Hk(double k, cvec &Hk, double time)

/**

* Set time-dependent Hamiltonian matrix with Peierls field

* -k: Real vector of the reciprocal space

* -Hk: Complex vector[NATOM*NATOM] to store Hamiltonian

* -time: time variable

*/

{

for(int i=0; i<8; ++i)

for(int j=0; j<8; ++j)

Hk[fq(i,j,8)] = 0.;

// Diagonal elements

Hk[fq(0,0,8)] = eO;

Hk[fq(1,1,8)] = eI;

Hk[fq(2,2,8)] = eI;

Hk[fq(3,3,8)] = eO;

Hk[fq(4,4,8)] = eO;

Hk[fq(5,5,8)] = eI;

Hk[fq(6,6,8)] = eI;

Hk[fq(7,7,8)] = eO;

// Hopping elements

// Lower triagonal

Hk[fq(7,0,8)] += -tOd*exp(-II*Ax_t(time))*exp(+II*k);

Hk[fq(1,0,8)] +=

-tIO*exp(+II*(-Ax_t(time)-sqrt(3.)*Ay_t(time))/2.)*exp(+II*k/2.);

Hk[fq(7,1,8)] +=

-tIO*exp(+II*(-Ax_t(time)+sqrt(3.)*Ay_t(time))/2.)*exp(+II*k/2.);

Hk[fq(6,1,8)] += -tI2*exp(-II*Ax_t(time))*exp(+II*k);

Hk[fq(2,1,8)] +=

-tI1*exp(+II*(-Ax_t(time)-sqrt(3.)*Ay_t(time))/2.)*exp(+II*k/2.);

Hk[fq(6,2,8)] +=

-tI1d*exp(+II*(-Ax_t(time)+sqrt(3.)*Ay_t(time))/2.)*exp(+II*k/2.);

Hk[fq(5,2,8)] += -tI2*exp(-II*Ax_t(time))*exp(+II*k);
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Hk[fq(3,2,8)] +=

-tIO*exp(+II*(-Ax_t(time)-sqrt(3.)*Ay_t(time))/2.)*exp(+II*k/2.);

Hk[fq(5,3,8)] +=

-tIO*exp(+II*(-Ax_t(time)+sqrt(3.)*Ay_t(time))/2.)*exp(+II*k/2.);

Hk[fq(4,3,8)] += -tOd*exp(-II*Ax_t(time))*exp(+II*k);

Hk[fq(5,4,8)] +=

-tIO*exp(+II*(+Ax_t(time)+sqrt(3.)*Ay_t(time))/2.)*exp(-II*k/2.);

Hk[fq(6,5,8)] +=

-tI1*exp(+II*(+Ax_t(time)+sqrt(3.)*Ay_t(time))/2.)*exp(-II*k/2.);

Hk[fq(7,6,8)] +=

-tIO*exp(+II*(+Ax_t(time)+sqrt(3.)*Ay_t(time))/2.)*exp(-II*k/2.);

Hk[fq(4,3,8)] += -tO*exp(+II*Ax_t(time))*exp(-II*1.*k);

Hk[fq(4,2,8)] +=

-tIO*exp(-II*(-Ax_t(time)+sqrt(3.)*Ay_t(time))/2.)*exp(-II*k/2.);

Hk[fq(5,2,8)] += -tI2*exp(+II*Ax_t(time))*exp(-II*1.*k);

Hk[fq(5,1,8)] +=

-tI1d*exp(-II*(-Ax_t(time)+sqrt(3.)*Ay_t(time))/2.)*exp(-II*k/2.);

Hk[fq(6,1,8)] += -tI2*exp(+II*Ax_t(time))*exp(-II*1.*k);

Hk[fq(6,0,8)] +=

-tIO*exp(-II*(-Ax_t(time)+sqrt(3.)*Ay_t(time))/2.)*exp(-II*k/2.);

Hk[fq(7,0,8)] += -tO*exp(+II*Ax_t(time))*exp(-II*1.*k);

// Upper triagonal

(...Hk[fq(j,i,8)]=conj(Hk[fq(i,j,8)]...)

}

Listing 9: Mid-point Euler propagator

void Propagation(cvec &Hk, dvec &evals, vector<cvec> &UMATRIX, double &mu,

dvec &BZ, vector<cvec> &RHO_t, dvec ETOT_t, int &numprocs, int &myrank)

/**

* Mid-point Euler propagation scheme for density matrix:

* -Hk: Complex vector[64] to store Hamiltonian

* -evals: Real vector[8] of eigenvalues

* -UMATRIX: Vector[TIMESTPES] of complex vectors[64] to store propagators

* -mu: chemical potential

* -BZ: k-points of reduced 1d reciprocal cell

* -RHO_t: Vector[TIMESTPES] of complex vector[64] to store t.-d. density matrix

* -ETOT_t: Real vector[TIMESTEPS] to store total t.-d. total energy

* -numprocs: Total number of processes (MPI)
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* -myrank: Rank of process (MPI)

*/

{

double h = (endtime-starttime)/TIMESTEPS;

cvec TEMP1(64);

cvec TEMP2(64);

for(int t=0; t<TIMESTEPS; t++)

ETOT_t[t] = 0.0;

// Calculation of mid-point Euler propagators U(t+dt,t)

for(int k=myrank; k<NN; k+=numprocs)

{

if(myrank==0) cout << "k = " << k << endl;

for(int t=0; t<TIMESTEPS-1; t++)

{

set_Hk(BZ[k], TEMP1, h*double(t));

set_Hk(BZ[k], TEMP2, h*double(t+1));

for(int i=0; i<64; i++)

Hk[i] = 0.5*(TEMP1[i]+TEMP2[i]);

diagonalize(Hk, evals);

for(int i=0; i<8; i++)

{

for(int j=0; j<8; j++)

{

TEMP1[fq(i,j,8)] = exp(+II*evals[i]*h)*delta(i,j);

}

}

times(TEMP1, Hk, TEMP2);

times_dn(Hk, TEMP2, UMATRIX[t]);

}

// Set initial Density in k-orbital basis

set_Hk(BZ[k], Hk, starttime);

diagonalize(Hk, evals);

for(int i=0; i<8; i++)

{

for(int j=0; j<8; j++)

{

RHO_t[0][fq(i,j,8)] = fermi(evals[i], mu)*delta(i,j);
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}

}

times(RHO_t[0], Hk, TEMP1);

times_dn(Hk, TEMP1, RHO_t[0]);

// Stepwise propagation of initial density operator by unitary midpoint

propagators

for(int t=0; t<TIMESTEPS-1; t++)

{

times(RHO_t[t], UMATRIX[t], TEMP1);

times_dn(UMATRIX[t], TEMP1, RHO_t[t+1]);

set_Hk(BZ[k], Hk, h*double(t));

times(RHO_t[t], Hk, TEMP1);

for(int i=0; i<8; i++)

{

ETOT_t[t] += real(TEMP1[fq(i,i,8)])/double(NN);

}

}

ETOT_t[TIMESTEPS-1] = ETOT_t[TIMESTEPS-2];

}

MPI_Allreduce(MPI_IN_PLACE, &ETOT_t[0], TIMESTEPS, MPI_DOUBLE, MPI_SUM,

MPI_COMM_WORLD);

}

B.3 Publication III

Listing 10: Creation of Moiré lattice

// Cell index

ii = 6

N = 4*(ii**2+(ii+1)*ii+(ii+1)**2)

// Lattice constant in Angstroem

lconst = 2.445

// Interlayer distance in Angstroem

dis = 3.364

a = ii+1

b = ii
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angle1 = np.arctan2((b*np.sqrt(3.)/2.),(a+b/2.))

angle2 = angle1 + np.pi/3.

d = np.sqrt(b**2*3./4.+(a+b/2.)**2)

ep2x = a+b/2.+d*np.sin(np.pi/6.-angle1)

ep2y = b*np.sqrt(3.)/2.+d*np.cos(np.pi/6.-angle1)

slope = ep2y/ep2x

// Bravais superlattice vectors

lvec = np.zeros((2,2))

lvec[0,0] = d*np.cos(angle1)

lvec[0,1] = d*np.sin(angle1)

lvec[1,0] = d*np.sin(np.pi/6.-angle1)

lvec[1,1] = d*np.cos(np.pi/6.-angle1)

c1 = int(np.round(ep2x)) + 1

c2 = int(np.round(ep2y/np.sqrt(3.))) + 1

// Array to store atomic positions (x,y,z) and sublattice index (0,1)

MAT_CELL = np.zeros((N,4))

pp=1 # number of set sites-1

// Generate atomic sites

// Generation of lower lattice

for i in range(1,c1+1):

for j in range(1,c2+1):

ax=i-1.

ay=(j-1.)*np.sqrt(3.)

e1=np.arctan2(ay,ax)

e2=np.arctan2((ep2y-ay),(ep2x-ax))

if(e1>angle1 and e1<angle2 and e2<angle2 and e2>angle1 and ax-ep2x<0.0):

MAT_CELL[pp,:] = np.array([ax,ay,0.0,0.0])

pp=pp+1

ax=i-1.

ay=(j-1.)*np.sqrt(3.)+np.sqrt(3.)/3.

e1=np.arctan2(ay,ax);

e2=np.arctan2((ep2y-ay),(ep2x-ax))

if(e1>angle1 and e1<angle2 and e2<angle2 and e2>angle1 and ax-ep2x<0.0):

MAT_CELL[pp,:] = np.array([ax,ay,0.0,1.0])

pp=pp+1
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ax=i-1.+0.5

ay=(j-1.)*np.sqrt(3.)+np.sqrt(3.)/3.*1.5

if (ep2x-ax==0.):

e2=1.

else:

e1=np.arctan2(ay,ax)

e2=np.arctan2((ep2y-ay),(ep2x-ax))

if(e1>angle1 and e1<angle2 and e2<angle2 and e2>angle1 and ax-ep2x<0.0):

MAT_CELL[pp,:] = np.array([ax,ay,0.0,0.0])

pp=pp+1

ax=i-1.+0.5

ay=(j-1.)*np.sqrt(3.)+np.sqrt(3.)/3.*2.5

e1=np.arctan2(ay,ax);

e2=np.arctan2((ep2y-ay),(ep2x-ax))

if(e1>angle1 and e1<angle2 and e2<angle2 and e2>angle1 and ax-ep2x<0.0):

MAT_CELL[pp,:] = np.array([ax,ay,0.0, 1.0])

pp=pp+1

// Generation of upper lattice

for i in range(pp,N):

ax=MAT_CELL[i-pp,0]*(1.-slope**2.)/(1.+slope**2.)

+MAT_CELL[i-pp,1]*2.*slope/(1.+slope**2.)

ay=MAT_CELL[i-pp,0]*2.*slope/(1.+slope**2)

+MAT_CELL[i-pp,1]*(slope**2.-1.)/(1.+slope**2.)

az=dis/lconst

sli=MAT_CELL[i-pp,3]

MAT_CELL[i,:] = np.array([ax,ay,az,sli])

Listing 11: Peierls field

inline double Ax/Ay/Az_t(double time)

{

/**

* Peierls field for electrons in Ax/Ay/Az-direction:

* -time: Real time coordinate

*/

return Ax/Ay/Az_peierls*sin(w_peierls*time);

}

Listing 12: Set Hamiltonian in k-dependent orbital basis
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void set_Hk(dvec &kvec, cvec &Hk, const dvec &lvec, vector<dvec> &UNIT_CELL,

double time)

/**

* Set time-dependent Hamiltonian matrix with Peierls field

* -kvec: Real vector of the reciprocal space

* -Hk: Complex vector[NATOM*NATOM] to store Hamiltonian

* -lvec: Real vector[4] of superlattice Bravais translational vectors (in

lconst*Angstroem)

* -UNIT_CELL: Vector[NATOM] of real vectors[4] containing atomic positions and

sublattice info

* -time: time variable

*/

{

const double lcell = lconst*sqrt(pow(lvec[0],2.)+pow(lvec[1],2.));

const double qq2 = qq1*aa2/aa1 ;

const double kx = kvec[0];

const double ky = kvec[1];

// Bottom layer

#ifndef NO_OMP

#pragma omp parallel

{

#endif

double d, rx, ry, rz;

#ifndef NO_OMP

#pragma omp for

#endif

for(int m=0; m<NATOM*NATOM; m++){

Hk[m] = 0.0;

}

#ifndef NO_OMP

#pragma omp for

#endif

for(int i=0; i<NATOM/2; ++i)

{

// Backgate voltage

Hk[fq(i,i,NATOM)] = VV/2.;

// Sublattice potential

if (UNIT_CELL[i][3] < 0.9){
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Hk[fq(i,i,NATOM)] += -dgap/2.;

}

else{

Hk[fq(i,i,NATOM)] += dgap/2.;

}

for(int j=i+1; j<NATOM/2; ++j)

{

for(int m=0; m<3; ++m)

{

for(int n=0; n<3; ++n)

{

rx = UNIT_CELL[i][0]-UNIT_CELL[j][0]+double(m-1)

*lvec[0]+double(n-1)*lvec[2];

ry = double(m-1)*lvec[1]+UNIT_CELL[i][1]

-UNIT_CELL[j][1]+double(n-1)*lvec[3];

rz = UNIT_CELL[i][2]-UNIT_CELL[j][2];

d = lconst*sqrt(pow(rx,2.)+pow(ry,2.)+pow(rz,2.));

// Vpp_pi term

Hk[fq(i,j,NATOM)] += t1/RG*exp(qq1*(1.-(d/aa1)))

*exp(II*(kx*lconst*rx+ky*lconst*ry))

*exp(-II*(Ax_t(time)*rx+Ay_t(time)*ry));

}

}

Hk[fq(j,i,NATOM)] = conj(Hk[fq(i,j,NATOM)]);

}

}

// Top layer

#ifndef NO_OMP

#pragma omp for

#endif

for(int i=NATOM/2; i<NATOM; ++i)

{

// Top-gate voltage

Hk[fq(i,i,NATOM)] = -VV/2.;

// Sublattice potential

if (UNIT_CELL[i][3] < 0.9){

Hk[fq(i,i,NATOM)] += -dgap/2.;

}

else{

Hk[fq(i,i,NATOM)] += dgap/2.;
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}

for(int j=i+1; j<NATOM; ++j)

{

for(int m=0; m<3; ++m)

{

for(int n=0; n<3; ++n)

{

rx = UNIT_CELL[i][0]-UNIT_CELL[j][0]+double(m-1)

*lvec[0]+double(n-1)*lvec[2];

ry = double(m-1)*lvec[1]+UNIT_CELL[i][1]

-UNIT_CELL[j][1]+double(n-1)*lvec[3];

rz = UNIT_CELL[i][2]-UNIT_CELL[j][2]; ;

d = lconst*sqrt(pow(rx,2.)+pow(ry,2.)+pow(rz,2.));

// Vpp_pi term

Hk[fq(i,j,NATOM)] += t1/RG*exp(qq1*(1.-(d/aa1)))

*exp(II*(kx*lconst*rx+ky*lconst*ry))

*exp(-II*(Ax_t(time)*rx+Ay_t(time)*ry));

}

}

Hk[fq(j,i,NATOM)] = conj(Hk[fq(i,j,NATOM)]);

}

}

// Inter-layer terms

#ifndef NO_IC

#ifndef NO_OMP

#pragma omp for

#endif

for(int i=0; i<NATOM/2; ++i)

{

for(int j=NATOM/2; j<NATOM; ++j)

{

for(int m=0; m<3; ++m)

{

for(int n=0; n<3; ++n)

{

rx = UNIT_CELL[i][0]-UNIT_CELL[j][0]+double(m-1)

*lvec[0]+double(n-1)*lvec[2];

ry = double(m-1)*lvec[1]+UNIT_CELL[i][1]

-UNIT_CELL[j][1]+double(n-1)*lvec[3];

rz = UNIT_CELL[i][2]-UNIT_CELL[j][2];
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d = lconst*sqrt(pow(rx,2.)+pow(ry,2.)+pow(rz,2.));

// Vpp_pi term

Hk[fq(i,j,NATOM)] += (1.-pow(aa2/d,2.))*t1/RG*exp(qq1*(1.-(d/aa1)))

*exp(II*(kx*lconst*rx+ky*lconst*ry))

*exp(-II*(Ax_t(time)*rx+Ay_t(time)*ry+Az_t(time)*rz));

// Vpp_sigma term

Hk[fq(i,j,NATOM)] += pow(aa2/d,2.)*t2*exp(qq2*(1.-(d/aa2)))

*exp(II*(kx*lconst*rx+ky*lconst*ry))

*exp(-II*(Ax_t(time)*rx+Ay_t(time)*ry+Az_t(time)*rz));

}

}

Hk[fq(j,i,NATOM)] = conj(Hk[fq(i,j,NATOM)]);

}

}

#endif

#ifndef NO_OMP

}

#endif

}

Listing 13: Equilibrium Berry curvature

void EQ_BC_LOOP(dvec kvec, double kmin, double kmax, int Nk, cvec &Hk, const

dvec &lvec, vector<dvec> &UNIT_CELL, dvec &evals, dvec &bands_BCs)

/**

* Calculate local Berry curvature in equlibrium for single k-point by phase

along loop around point divided by area

* -kvec: Real vector of the reciprocal space

* -kmin: Double to set loop around kvec

* -kmax: Double to set loop around kvec

* -Nk: Nk-1 defines number of used plaquettes (usually 2 --> 1 plaquette)

* -Hk: Complex vector[NATOM x NATOM] to store Hamiltonian

* -lvec: Real vector[4] of superlattice Bravais translational vectors (in

lconst*Angstroem)

* -UNIT_CELL: Vector[NATOM] of real vectors[4] containing atomic positions and

sublattice info

* -evals: Real vector[NATOM] to store eigenvalues

* -bands_BCs: Real vector[NATOM] to store band Berry curvature

*/

{
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double dk = (kmax-kmin)/double(Nk-1);

cdouble temp1, temp2, temp3, temp4;

dvec k0(2);

vector<cvec*> S_ARRAY(Nk*Nk);

for(int n=0; n<Nk*Nk; n++)

S_ARRAY[n] = new cvec(NATOM*NATOM);

// Set k-point of lower right corner of loop

k0[0] = kvec[0]-0.5*(kmax-kmin);

k0[1] = kvec[1]-0.5*(kmax-kmin);

// Calculate eigenvectors of Hamiltonian at grid points along loop

for(int i=0; i<Nk; i++)

{

kvec[0] = k0[0]+i*dk;

for(int j=0; j<Nk; j++)

{

kvec[1] = k0[1]+j*dk;

set_Hk0(kvec, S_ARRAY[fq(i,j,Nk)][0], lvec, UNIT_CELL);

diagonalize(S_ARRAY[fq(i,j,Nk)][0], evals);

}

}

// Calculate Berry phase around loop

// Loop over bands

for(int n=0; n<NATOM; n++)

{

bands_BCs[n] = 0.;

// Loops over bands point of momentum loop

for(int i=0; i<Nk-1; i++)

{

for(int j=0; j<Nk-1; j++)

{

temp1 = 0.;

temp2 = 0.; https://www.overleaf.com/project/5d4aa39a3598c93ff9455df5

temp3 = 0.;

temp4 = 0.;

// Calculation of Berry phase

for(int a=0; a<NATOM; ++a)

{

temp1 += conj((*S_ARRAY[fq(i,j,Nk)])[fq(n,a,NATOM)])



86 B.3 Publication III

*(*S_ARRAY[fq(i+1,j,Nk)])[fq(n,a,NATOM)];

temp2 += conj((*S_ARRAY[fq(i+1,j,Nk)])[fq(n,a,NATOM)])

*(*S_ARRAY[fq(i+1,j+1,Nk)])[fq(n,a,NATOM)];

temp3 += conj((*S_ARRAY[fq(i+1,j+1,Nk)])[fq(n,a,NATOM)])

*(*S_ARRAY[fq(i,j+1,Nk)])[fq(n,a,NATOM)];

temp4 += conj((*S_ARRAY[fq(i,j+1,Nk)])[fq(n,a,NATOM)])

*(*S_ARRAY[fq(i,j,Nk)])[fq(n,a,NATOM)];

}

bands_BCs[n] += imag(log(temp1*temp2*temp3*temp4))/pow(kmax-kmin,2.);

}

}

}

for(int n=0; n<Nk*Nk; n++)

{

delete S_ARRAY[n];

}

}

Listing 14: Calculation of Floquet eigenstates

void Hk_bands_Floquet(dvec &BANDS_FLOQUET, dvec &OVERLAP_FLOQUET, cvec

&Hk_FLOQUET, dvec &evals_FLOQUET, vector<dvec> &K_PATH, vector<dvec>

&UNIT_CELL, const dvec &lvec, int &numprocs, int &myrank)

/**

* Calculate Floquet bands by truncated expansion in Floquet eigenfunctions

* -BANDS_FLOQUET: Real vector to store Floquet eigenvalues of all k-points

* -OVERLAP_FLOQUET: Real vector[num_kpoints_PATHxNATOMx(2*n_max+1)] to store

overlap ov Flquet bands with equilibrium bands

* -Hk_FLOQUET: Complex vector[(2*m_max+1)x(2*n_max+1)xNATOMxNATOM] to store

Flqoeut Hamiltonian matrix

* -evals_FLOQUET: Real vector[(M_max+1) x NATOM] to store Floquet eigenvalues

* -K_PATH: vector of high-symmetry path vectors

* -UNIT_CELL: Vector[NATOM] of real vectors[4] containing atomic positions and

sublattice info

* -lvec: Real vector[4] of superlattice bravis translational vectors (in

lconst*Angstroem)

* -numprocs: Total number of processes (MPI)

* -myrank: Rank of process (MPI)

*/

{
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const int num_kpoints_path = K_PATH.size();

const double T = 2.*M_PI/w_peierls;

const double dt = T/double(timesteps_F-1);

cvec *TEMP1 = new cvec(NATOM*NATOM);

cvec *TEMP2 = new cvec(NATOM*NATOM);

double temp;

cvec H0(NATOM*NATOM);

dvec evals(NATOM);

cdouble tempc;

for(int k=myrank; k<num_kpoints_path; k+=numprocs)

{

#ifndef NO_OMP

#pragma omp parallel for collapse(4)

#endif

// Empty momory

for(int m=-m_max; m<m_max+1; m++)

{

for(int n=-n_max; n<n_max+1; n++)

{

for(int i=0; i<NATOM; i++)

{

for(int j=0; j<NATOM; j++)

{

Hk_FLOQUET[f_FL(m+m_max, n+n_max, i, j)] = 0.0;

}

}

}

}

if(myrank==0) cout << endl;

if(myrank==0) cout << "k = " << k << endl;

// Perform integration over one period T

for(double t=0; t<T-dt/2.; t+=dt)

{

if(myrank==0) cout << "time step: " << t/dt << endl;

set_Hk(K_PATH[k], TEMP1[0], lvec, UNIT_CELL, t);

set_Hk(K_PATH[k], TEMP2[0], lvec, UNIT_CELL, t+dt);
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for(int m=-m_max; m<m_max+1; m++)

{

for(int n=-n_max; n<n_max+1; n++)

{

#ifndef NO_OMP

#pragma omp parallel for

#endif

for(int i=0; i<NATOM; i++)

{

for(int j=0; j<NATOM; j++)

{

Hk_FLOQUET[f_FL(m+m_max, n+n_max, i, j)] +=

0.5/T*(exp(II*w_peierls*double(m-n)*t)*(*TEMP1)[fq(i,j,NATOM)]

+

exp(II*w_peierls*double(m-n)*(t+dt))*(*TEMP2)[fq(i,j,NATOM)])*dt

+

double(m)*w_peierls*delta(i,j)*delta(m,n)/double(timesteps_F-1);

}

}

}

}

}

// Diagonalize Floquet Hamiltonian --> eigenvalues and eigenvectors

diagonalize_F(Hk_FLOQUET, evals_FLOQUET);

for(int jj=0; jj<NATOM*(2*n_max+1); jj++)

{

BANDS_FLOQUET[fq(k,jj,NATOM*(2*n_max+1))] = evals_FLOQUET[jj];

}

// Calculate squared overlap with equilibrium states

set_Hk0(K_PATH[k], H0, lvec, UNIT_CELL);

diagonalize(H0, evals);

for(int i=0; i<NATOM*(2*n_max+1); ++i)

{

temp = 0.;

for(int w=0; w<NATOM; ++w)

{

tempc = 0.;

for(int j=0; j<NATOM; ++j)

{

tempc += Hk_FLOQUET[fq(i,NATOM*n_max-1+j,NATOM*(2*n_max+1))]
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*conj(H0[fq(w,j,NATOM)]);

}

temp += real(tempc*conj(tempc));

}

OVERLAP_FLOQUET[fq(k,i,NATOM*(2*n_max+1))] = temp;

}

}

delete TEMP1, TEMP2;

#ifndef NO_MPI

MPI_Allreduce(MPI_IN_PLACE, &BANDS_FLOQUET[0],

NATOM*(2*n_max+1)*num_kpoints_path, MPI_DOUBLE, MPI_SUM,

MPI_COMM_WORLD);

MPI_Allreduce(MPI_IN_PLACE, &OVERLAP_FLOQUET[0],

NATOM*(2*n_max+1)*num_kpoints_path, MPI_DOUBLE, MPI_SUM,

MPI_COMM_WORLD);

#endif

B.4 SP II

Listing 15: Self-consistent calculation of initial state

void groundstate(double &u, double &p, dvec &evals, cvec &Hk, dvec &BZ,

vector<cvec> &RHO_0, vector<dvec> &E_TOT, int &numprocs, int &myrank)

/**

* Calculate initial displacement u0

* -u: nuclear displacement

* -p: nuclear momentum

* -evals: Real vector[2] of eigenvalues

* -Hk: Complex vector[4] to store Hamiltonian

* -BZ: Real vector[NN/2] of 1d reduced Brilluoin zone

* -RHO_0: Vector[num_k] of real vectors[4] to store density matrix

* -numprocs: Total number of processes (MPI)

* -myrank: Rank of process (MPI)

*/

{

int count = 0; // count # of

loops of self-consistency

u = u_init;
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double N_tot;

double u_old;

double deviation = 1.0;

double E_tot;

double E_nuc;

cvec TEMP(4);

while(deviation > dev)

{

count++;

u_old = u;

N_tot = 0.;

E_tot = 0.;

// Calculation of density-matrix in orbital basis

set_Rhok(u, evals, Hk, BZ, RHO_0, numprocs, myrank);

// Calculation of deimerisation u from density matrix

SET_u0(u, Hk, BZ, RHO_0, numprocs, myrank);

deviation = abs(u-u_old);

for(int k=myrank; k<NN/2; k+=numprocs)

{

// Calculation of total electronic energy per unit cell (1 electron per

unit cell)

set_Hk0(BZ[k], u, Hk);

times(RHO_0[k], Hk, TEMP);

E_tot += real(TEMP[fq(0,0,2)]+TEMP[fq(1,1,2)])/(double(NN)/2.);

N_tot += real(RHO_0[k][fq(0,0,2)]+RHO_0[k][fq(1,1,2)])/(double(NN)/2.);

}

#ifndef NO_MPI

MPI_Allreduce(MPI_IN_PLACE, &E_tot, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);

MPI_Allreduce(MPI_IN_PLACE, &N_tot, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);

#endif

// Energy of nuclear system per unit cell (2 atoms per unit cell)

E_nuc = 2.*2.*K*u*u;

}

E_TOT[0][0] = E_tot;
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E_TOT[0][1] = E_nuc;

p=0.0;

}

Listing 16: Ehrenfest propagation with Two-step Adams-Bashforth method

void set_dRHOdt(cvec &TEMP1, cvec &TEMP2, cvec &RHO_t_tk, cvec &dRHO_dt, cvec

&Hk)

/**

* Calculation of the time-derivative of the density matrix

* -TEMP1, TEMP2: Complex helper matrix

* -RHO_t_tk: Complex vector[4] of k- and time-dependent density matrix

* -dRHO_dt: Complex vector[4] of temporal change of density matrix

* -Hk: Complex vector[4] to store Hamiltonian matrix

*/

{

// COHERENT PART

times(Hk, RHO_t_tk, TEMP1);

times(RHO_t_tk, Hk, TEMP2);

for(int i=0; i<4; i++)

{

dRHO_dt[i] = -II*(TEMP1[i]-TEMP2[i]);

}

// HERE OPEN DYNAMICS CAN BE ADDED

}

%----------------------------------------------------------------------

void set_dudp(double &u, double &p, double &du, double &dp, cvec &TEMP, cvec

&RHO_t_tk, cvec &dHkdu)

/**

* Calculate t.d. change of nuclear displacement u and momentum p

* -TEMP1, TEMP2: Complex helper matrix

* -RHO_t_tk: Complex vector[4] of k- and time-dependent density matrix

* -dRHO_dt: Complex vector[4] of temporal change of density matrix

* -Hk: Complex vector[4] to store Hamiltonian matrix

*/

{

du = p/(4.*K/pow(w0,2.));

times(RHO_t_tk, dHkdu, TEMP);

dp += -2./double(NN)*real(TEMP[fq(0,0,2)]+TEMP[fq(1,1,2)]) -

4.*K*u/(double(NN)/2.);
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}

%----------------------------------------------------------------------

void AB2_propatation(vector<dvec> &E_TOT, dvec &evals, vector<cvec> &RHO_0,

vector<cvec> &dRHO_dt0, vector<cvec> &dRHO_dt1, double &u, double &p, cvec

&Hk, dvec &BZ, vector<cvec*> RHO_t, vector<dvec> &ORDER_t, int &numprocs, int

&myrank)

/**

* Two-step Adams-Bashforth prdictor corrector method for propagation of full

(el+nuc) system

* -E_TOT: Vector[timesteps] of real vectors[2] to store enrgies

* -evals: Real vector[2] of eigenvalues

* -RHO_0: Vector[num_k] of real vectors[4] to store density matrix

* -dRHO_dt0, dRHO_dt1: Vector of complex vectors[64] to store change of density

matrix

* -u: nuclear displacement

* -p: nuclear momentum

* -Hk: Complex vector[4] to store Hamiltonian

* -BZ: Real vector[NN/2] of 1d reduced Brilluoin zone

* -RHO_t_tk: Vector[4] ofcomplex vector pointers to store t.-d. density matrix

* -ORDER_t: Vector[timesteps] of real vectors[2] to store t.-d. u(t) and p(t)

* -numprocs: Total number of processes (MPI)

* -myrank: Rank of process (MPI)

*/

{

double du0, du1, dp0, dp1, uu, E_tot, E_nuc, time, h;

cvec *temp0, *temp1, *temp2;

h = (endtime-starttime)/timesteps;

cvec TEMP1(4,0.);

cvec TEMP2(4,0.);

//p=10.;

// Initial Order

ORDER_t[0][0] = u;

ORDER_t[0][1] = p;

for(int k=myrank; k<NN/2; k+=numprocs)

{

for(int i=0; i<4; i++)
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{

(*RHO_t[fq(0, k, NN/2)])[i] = RHO_0[k][i];

}

}

// Propagation

for(int t=0; t<timesteps-1; t++)

{

// 1st Euler step

if(t==0)

{

dp0 = 0.;

for(int k=myrank; k<NN/2; k+=numprocs)

{

set_dHkdu(BZ[k], ORDER_t[0][0], Hk, h*double(t));

set_dudp(ORDER_t[0][0], ORDER_t[0][1], du0, dp0, TEMP1, RHO_t[fq(0,

k, NN/2)][0], Hk);

set_Hk(BZ[k], ORDER_t[0][0], Hk, h*double(t));

set_dRHOdt(TEMP1, TEMP2, RHO_t[fq(0,k,NN/2)][0], dRHO_dt0[k], Hk);

for(int i=0; i<4; i++)

{

(*RHO_t[fq(1,k,NN/2)])[i] = (*RHO_t[fq(0,k,NN/2)])[i] +

h*dRHO_dt0[k][i];

RHO_0[k][i] = (*RHO_t[fq(1,k,NN/2)])[i];

}

}

#ifndef NO_MPI

MPI_Allreduce(MPI_IN_PLACE, &dp0, 1, MPI_DOUBLE, MPI_SUM,

MPI_COMM_WORLD);

#endif

//cout << "dp0: " << dp0 << endl;

ORDER_t[t+1][0] = ORDER_t[t][0] + h*du0*SWITCH_OFF;

ORDER_t[t+1][1] = ORDER_t[t][1] + h*dp0*SWITCH_OFF;

E_tot = 0.0;

for(int k=myrank; k<NN/2; k+=numprocs)

{

// Calculation of total electronic energy per unit cell

set_Hk(BZ[k], ORDER_t[t+1][0], Hk, h*double(t+1));
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times(RHO_0[k], Hk, TEMP1);

for(int i=0; i<2; i++)

{

E_tot += real(TEMP1[fq(i,i,2)])/(double(NN)/2.);

}

}

MPI_Allreduce(MPI_IN_PLACE, &E_tot, 1, MPI_DOUBLE, MPI_SUM,

MPI_COMM_WORLD);

E_nuc = 2.*(2.*K*pow(ORDER_t[t][0],2.)+

pow(ORDER_t[t][2],2)/(2.*4.*K/pow(w0,2.)));

E_TOT[t+1][0] = E_tot;

E_TOT[t+1][1] = E_nuc;

}

else

{ // 2-step Adams predictor

dp0 = 0.;

dp1 = 0.;

for(int k=myrank; k<NN/2; k+=numprocs)

{

set_dHkdu(BZ[k], ORDER_t[0][0], Hk, h*double(t-1));

set_dudp(ORDER_t[t-1][0], ORDER_t[t-1][1], du0, dp0, TEMP1,

RHO_t[fq(0, k, NN/2)][0], Hk);

set_dHkdu(BZ[k], ORDER_t[0][0], Hk, h*double(t));

set_dudp(ORDER_t[t][0], ORDER_t[t][1], du1, dp1, TEMP1, RHO_t[fq(1,

k, NN/2)][0], Hk);

set_Hk(BZ[k], ORDER_t[t-1][0], Hk, h*double(t-1));

set_dRHOdt(TEMP1, TEMP2, RHO_t[fq(0,k,NN/2)][0], dRHO_dt0[k], Hk);

set_Hk(BZ[k], ORDER_t[t][0], Hk, h*double(t));

set_dRHOdt(TEMP1, TEMP2, RHO_t[fq(1,k,NN/2)][0], dRHO_dt1[k], Hk);

for(int i=0; i<4; i++)

{

// P_{n+1} = y_{n} + 3/2*h*f(t_{n},y_{n}) -

0.5*h*f(t_{n-1},y_{n-1})

(*RHO_t[fq(2,k,NN/2)])[i] = (*RHO_t[fq(1,k,NN/2)])[i] +

h*(3./2.*dRHO_dt1[k][i] - 0.5*dRHO_dt0[k][i]);

RHO_0[k][i] = (*RHO_t[fq(2,k,NN/2)])[i];

}

}
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#ifndef NO_MPI

MPI_Allreduce(MPI_IN_PLACE, &dp0, 1, MPI_DOUBLE, MPI_SUM,

MPI_COMM_WORLD);

MPI_Allreduce(MPI_IN_PLACE, &dp1, 1, MPI_DOUBLE, MPI_SUM,

MPI_COMM_WORLD);

#endif

ORDER_t[t+1][0] = ORDER_t[t][0] + h*(3./2.*du1 - 0.5*du0)*SWITCH_OFF;

ORDER_t[t+1][1] = ORDER_t[t][1] + h*(3./2.*dp1 - 0.5*dp0)*SWITCH_OFF;

// 2-step Moulton corrector

dp0 = 0.;

for(int k=myrank; k<NN/2; k+=numprocs)

{

set_dHkdu(BZ[k], ORDER_t[0][0], Hk, h*double(t));

set_dudp(ORDER_t[t+1][0], ORDER_t[t+1][1], du0, dp0, TEMP1,

RHO_t[fq(2, k, NN/2)][0], Hk);

set_Hk(BZ[k], ORDER_t[t+1][0], Hk, h*double(t+1));

set_dRHOdt(TEMP1, TEMP2, RHO_t[fq(2,k,NN/2)][0], dRHO_dt0[k], Hk);

for(int i=0; i<4; i++)

{

// y_{n+1} = y_{n} + 1/2*h*(f(t_{n+1},P_{n+1}) + f(t_{n},y_{n}))

(*RHO_t[fq(2,k,NN/2)])[i] = (*RHO_t[fq(1,k,NN/2)])[i] +

0.5*h*(dRHO_dt0[k][i] + dRHO_dt1[k][i]);

RHO_0[k][i] = (*RHO_t[fq(2,k,NN/2)])[i];

}

// Cyclic exchange of pointers

temp0 = RHO_t[fq(0,k,NN/2)];

temp1 = RHO_t[fq(1,k,NN/2)];

temp2 = RHO_t[fq(2,k,NN/2)];

RHO_t[fq(0,k,NN/2)] = temp1;

RHO_t[fq(1,k,NN/2)] = temp2;

RHO_t[fq(2,k,NN/2)] = temp0;

}

#ifndef NO_MPI

MPI_Allreduce(MPI_IN_PLACE, &dp0, 1, MPI_DOUBLE, MPI_SUM,

MPI_COMM_WORLD);

#endif
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ORDER_t[t+1][0] = ORDER_t[t][0] + 0.5*h*(du0 + du1)*SWITCH_OFF;

ORDER_t[t+1][1] = ORDER_t[t][1] + 0.5*h*(dp0 + dp1)*SWITCH_OFF;

E_tot = 0.0;

for(int k=myrank; k<NN/2; k+=numprocs)

{

// Calculation of total electronic energy per unit cell

set_Hk(BZ[k], ORDER_t[t+1][0], Hk, h*double(t+1));

times(RHO_0[k], Hk, TEMP1);

for(int i=0; i<2; i++)

{

E_tot += real(TEMP1[fq(i,i,2)])/(double(NN)/2.);

}

}

MPI_Allreduce(MPI_IN_PLACE, &E_tot, 1, MPI_DOUBLE, MPI_SUM,

MPI_COMM_WORLD);

E_nuc = 2.*(2.*K*pow(ORDER_t[t][0],2.)+

pow(ORDER_t[t][2],2)/(2.*4.*K/pow(w0,2.)));

E_TOT[t+1][0] = E_tot;

E_TOT[t+1][1] = E_nuc;

}

}

}

B.5 SP III

Listing 17: Taylor-expanded Hamiltonian in k-orbital basis

void set_Hk_Taylor(dvec &kvec, vector<cvec*> Hk_Taylor, const dvec &lvec,

vector<dvec> &UNIT_CELL)

/**

* Sets matrizes of Taylor expansion of Hk in k-orbital basis for small fields

A(t)-->0

* -kvec: Real vector of the reciprocal space

* -Hk_Taylor: Vector of complex matrices[10][NATOM*NATOM] to store Taylor

matrices

* -lvec: Real vector[4] of superlattice bravis translational vectors (in

lconst*Angstroem)
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* -UNIT_CELL: Vector[NATOM] of real vectors[4] containing atomic positions and

sublattice info

*/

{

const double lcell = lconst*sqrt(pow(lvec[0],2.)+pow(lvec[1],2.));

const double qq2 = qq1*aa2/aa1 ;

const double kx = kvec[0];

const double ky = kvec[1];

// bottom layer

#ifndef NO_OMP

#pragma omp parallel

{

#endif

double d, rx, ry, rz;

#ifndef NO_OMP

#pragma omp for

#endif

for(int m=0; m<NATOM*NATOM; m++){

for(int n=0; n<10; n++) {

(*Hk_Taylor[n])[m] = 0.0;

}

}

#ifndef NO_OMP

#pragma omp for

#endif

for(int i=0; i<NATOM/2; ++i)

{

// Backgate voltage

(*Hk_Taylor[0])[fq(i,i,NATOM)] = VV/2.;

// Sublattice potential

if (UNIT_CELL[i][3] < 0.9){

(*Hk_Taylor[0])[fq(i,i,NATOM)] += -dgap/2.;

}

else{

(*Hk_Taylor[0])[fq(i,i,NATOM)] += dgap/2.;

}

for(int j=i+1; j<NATOM/2; ++j)

{

for(int m=0; m<3; ++m)
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{

for(int n=0; n<3; ++n)

{

rx = UNIT_CELL[i][0]-UNIT_CELL[j][0]+double(m-1)*lvec[0]

+double(n-1)*lvec[2];

ry = double(m-1)*lvec[1]+UNIT_CELL[i][1]-UNIT_CELL[j][1]

+double(n-1)*lvec[3];

rz = UNIT_CELL[i][2]-UNIT_CELL[j][2];

d = lconst*sqrt(pow(rx,2.)+pow(ry,2.)+pow(rz,2.));

// 0th order

(*Hk_Taylor[0])[fq(i,j,NATOM)] +=

t1/RG*exp(qq1*(1.-(d/aa1)))*exp(II*(kx*lconst*rx+ky*lconst*ry));

// 1st order

(*Hk_Taylor[1])[fq(i,j,NATOM)] +=

t1/RG*exp(qq1*(1.-(d/aa1)))*exp(II*(kx*lconst*rx+ky*lconst*ry))

*(-II*rx*lconst);

(*Hk_Taylor[2])[fq(i,j,NATOM)] +=

t1/RG*exp(qq1*(1.-(d/aa1)))*exp(II*(kx*lconst*rx+ky*lconst*ry))

*(-II*ry*lconst);

// 2nd order

(*Hk_Taylor[3])[fq(i,j,NATOM)] +=

t1/RG*exp(qq1*(1.-(d/aa1)))*exp(II*(kx*lconst*rx+ky*lconst*ry))

*(-rx*rx*lconst*lconst);

(*Hk_Taylor[4])[fq(i,j,NATOM)] +=

t1/RG*exp(qq1*(1.-(d/aa1)))*exp(II*(kx*lconst*rx+ky*lconst*ry))

*(-rx*ry*lconst*lconst);

(*Hk_Taylor[5])[fq(i,j,NATOM)] +=

t1/RG*exp(qq1*(1.-(d/aa1)))*exp(II*(kx*lconst*rx+ky*lconst*ry))

*(-ry*ry*lconst*lconst);

// 3rd order

(*Hk_Taylor[6])[fq(i,j,NATOM)] +=

t1/RG*exp(qq1*(1.-(d/aa1)))*exp(II*(kx*lconst*rx+ky*lconst*ry))

*(II*rx*rx*rx*lconst*lconst*lconst);

(*Hk_Taylor[7])[fq(i,j,NATOM)] +=

t1/RG*exp(qq1*(1.-(d/aa1)))*exp(II*(kx*lconst*rx+ky*lconst*ry))

*(II*rx*rx*ry*lconst*lconst*lconst);

(*Hk_Taylor[8])[fq(i,j,NATOM)] +=

t1/RG*exp(qq1*(1.-(d/aa1)))*exp(II*(kx*lconst*rx+ky*lconst*ry))

*(II*rx*ry*ry*lconst*lconst*lconst);
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(*Hk_Taylor[9])[fq(i,j,NATOM)] +=

t1/RG*exp(qq1*(1.-(d/aa1)))*exp(II*(kx*lconst*rx+ky*lconst*ry))

*(II*ry*ry*ry*lconst*lconst*lconst);

}

}

for(int nn=0; nn<10; nn++) {

(*Hk_Taylor[nn])[fq(j,i,NATOM)]=

conj((*Hk_Taylor[nn])[fq(i,j,NATOM)]);

}

}

}

// Top layer

#ifndef NO_OMP

#pragma omp for

#endif

for(int i=NATOM/2; i<NATOM; ++i)

{

// Top-gate voltage

(*Hk_Taylor[0])[fq(i,i,NATOM)] = -VV/2.;

// Sublattice potential

if (UNIT_CELL[i][3] < 0.9){

(*Hk_Taylor[0])[fq(i,i,NATOM)] += -dgap/2.;

}

else{

(*Hk_Taylor[0])[fq(i,i,NATOM)] += dgap/2.;

}

for(int j=i+1; j<NATOM; ++j)

{

for(int m=0; m<3; ++m)

{

for(int n=0; n<3; ++n)

{

rx = UNIT_CELL[i][0]-UNIT_CELL[j][0]+double(m-1)*lvec[0]

+double(n-1)*lvec[2];

ry = double(m-1)*lvec[1]+UNIT_CELL[i][1]-UNIT_CELL[j][1]

+double(n-1)*lvec[3];

rz = UNIT_CELL[i][2]-UNIT_CELL[j][2];

d = lconst*sqrt(pow(rx,2.)+pow(ry,2.)+pow(rz,2.));

// 0th order
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(*Hk_Taylor[0])[fq(i,j,NATOM)] +=

t1/RG*exp(qq1*(1.-(d/aa1)))*exp(II*(kx*lconst*rx+ky*lconst*ry));

// 1st order

(*Hk_Taylor[1])[fq(i,j,NATOM)] +=

t1/RG*exp(qq1*(1.-(d/aa1)))*exp(II*(kx*lconst*rx+ky*lconst*ry))

*(-II*rx*lconst);

(*Hk_Taylor[2])[fq(i,j,NATOM)] +=

t1/RG*exp(qq1*(1.-(d/aa1)))*exp(II*(kx*lconst*rx+ky*lconst*ry))

*(-II*ry*lconst);

// 2nd order

(*Hk_Taylor[3])[fq(i,j,NATOM)] +=

t1/RG*exp(qq1*(1.-(d/aa1)))*exp(II*(kx*lconst*rx+ky*lconst*ry))

*(-rx*rx*lconst*lconst);

(*Hk_Taylor[4])[fq(i,j,NATOM)] +=

t1/RG*exp(qq1*(1.-(d/aa1)))*exp(II*(kx*lconst*rx+ky*lconst*ry))

*(-rx*ry*lconst*lconst);

(*Hk_Taylor[5])[fq(i,j,NATOM)] +=

t1/RG*exp(qq1*(1.-(d/aa1)))*exp(II*(kx*lconst*rx+ky*lconst*ry))

*(-ry*ry*lconst*lconst);

// 3rd order

(*Hk_Taylor[6])[fq(i,j,NATOM)] +=

t1/RG*exp(qq1*(1.-(d/aa1)))*exp(II*(kx*lconst*rx+ky*lconst*ry))

*(II*rx*rx*rx*lconst*lconst*lconst);

(*Hk_Taylor[7])[fq(i,j,NATOM)] +=

t1/RG*exp(qq1*(1.-(d/aa1)))*exp(II*(kx*lconst*rx+ky*lconst*ry))

*(II*rx*rx*ry*lconst*lconst*lconst);

(*Hk_Taylor[8])[fq(i,j,NATOM)] +=

t1/RG*exp(qq1*(1.-(d/aa1)))*exp(II*(kx*lconst*rx+ky*lconst*ry))

*(II*rx*ry*ry*lconst*lconst*lconst);

(*Hk_Taylor[9])[fq(i,j,NATOM)] +=

t1/RG*exp(qq1*(1.-(d/aa1)))*exp(II*(kx*lconst*rx+ky*lconst*ry))

*(II*ry*ry*ry*lconst*lconst*lconst);

}

}

for(int nn=0; nn<10; nn++) {

(*Hk_Taylor[nn])[fq(j,i,NATOM)]=

conj((*Hk_Taylor[nn])[fq(i,j,NATOM)]);

}

}

}
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// Inter-layer terms

#ifndef NO_IC

#ifndef NO_OMP

#pragma omp for

#endif

for(int i=0; i<NATOM/2; ++i)

{

for(int j=NATOM/2; j<NATOM; ++j)

{

for(int m=0; m<3; ++m)

{

for(int n=0; n<3; ++n)

{

rx = UNIT_CELL[i][0]-UNIT_CELL[j][0]+double(m-1)*lvec[0]

+double(n-1)*lvec[2];

ry = double(m-1)*lvec[1]+UNIT_CELL[i][1]-UNIT_CELL[j][1]

+double(n-1)*lvec[3];

rz = UNIT_CELL[i][2]-UNIT_CELL[j][2];

d = lconst*sqrt(pow(rx,2.)+pow(ry,2.)+pow(rz,2.));

// 0th order

(*Hk_Taylor[0])[fq(i,j,NATOM)] +=

(1.-pow(aa2/d,2.))*t1/RG*exp(qq1*(1.-(d/aa1)))

*exp(II*(kx*lconst*rx+ky*lconst*ry));

(*Hk_Taylor[0])[fq(i,j,NATOM)] +=

pow(aa2/d,2.)*t2*exp(qq2*(1.-(d/aa2)))

*exp(II*(kx*lconst*rx+ky*lconst*ry));

// 1st order

(*Hk_Taylor[1])[fq(i,j,NATOM)] +=

(1.-pow(aa2/d,2.))*t1/RG*exp(qq1*(1.-(d/aa1)))

*exp(II*(kx*lconst*rx+ky*lconst*ry))*(-II*rx*lconst);

(*Hk_Taylor[1])[fq(i,j,NATOM)] +=

pow(aa2/d,2.)*t2*exp(qq2*(1.-(d/aa2)))

*exp(II*(kx*lconst*rx+ky*lconst*ry))*(-II*rx*lconst);

(*Hk_Taylor[2])[fq(i,j,NATOM)] +=

(1.-pow(aa2/d,2.))*t1/RG*exp(qq1*(1.-(d/aa1)))

*exp(II*(kx*lconst*rx+ky*lconst*ry))*(-II*ry*lconst);

(*Hk_Taylor[2])[fq(i,j,NATOM)] +=

pow(aa2/d,2.)*t2*exp(qq2*(1.-(d/aa2)))

*exp(II*(kx*lconst*rx+ky*lconst*ry))*(-II*ry*lconst);
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// 2nd order

(*Hk_Taylor[3])[fq(i,j,NATOM)] +=

(1.-pow(aa2/d,2.))*t1/RG*exp(qq1*(1.-(d/aa1)))

*exp(II*(kx*lconst*rx+ky*lconst*ry))*(-rx*rx*lconst*lconst);

(*Hk_Taylor[3])[fq(i,j,NATOM)] +=

pow(aa2/d,2.)*t2*exp(qq2*(1.-(d/aa2)))

*exp(II*(kx*lconst*rx+ky*lconst*ry))*(-rx*rx*lconst*lconst);

(*Hk_Taylor[4])[fq(i,j,NATOM)] +=

(1.-pow(aa2/d,2.))*t1/RG*exp(qq1*(1.-(d/aa1)))

*exp(II*(kx*lconst*rx+ky*lconst*ry))*(-rx*ry*lconst*lconst);

(*Hk_Taylor[4])[fq(i,j,NATOM)] +=

pow(aa2/d,2.)*t2*exp(qq2*(1.-(d/aa2)))

*exp(II*(kx*lconst*rx+ky*lconst*ry))*(-rx*ry*lconst*lconst);

(*Hk_Taylor[5])[fq(i,j,NATOM)] +=

(1.-pow(aa2/d,2.))*t1/RG*exp(qq1*(1.-(d/aa1)))

*exp(II*(kx*lconst*rx+ky*lconst*ry))*(-ry*ry*lconst*lconst);

(*Hk_Taylor[5])[fq(i,j,NATOM)] +=

pow(aa2/d,2.)*t2*exp(qq2*(1.-(d/aa2)))

*exp(II*(kx*lconst*rx+ky*lconst*ry))*(-ry*ry*lconst*lconst);

// 3rd order

(*Hk_Taylor[6])[fq(i,j,NATOM)] +=

(1.-pow(aa2/d,2.))*t1/RG*exp(qq1*(1.-(d/aa1)))

*exp(II*(kx*lconst*rx+ky*lconst*ry))*(II*rx*rx*rx*lconst*lconst*lconst);

(*Hk_Taylor[6])[fq(i,j,NATOM)] +=

pow(aa2/d,2.)*t2*exp(qq2*(1.-(d/aa2)))

*exp(II*(kx*lconst*rx+ky*lconst*ry))*(II*rx*rx*rx*lconst*lconst*lconst);

(*Hk_Taylor[7])[fq(i,j,NATOM)] +=

(1.-pow(aa2/d,2.))*t1/RG*exp(qq1*(1.-(d/aa1)))

*exp(II*(kx*lconst*rx+ky*lconst*ry))

*(II*rx*rx*ry*lconst*lconst*lconst);

(*Hk_Taylor[7])[fq(i,j,NATOM)] +=

pow(aa2/d,2.)*t2*exp(qq2*(1.-(d/aa2)))

*exp(II*(kx*lconst*rx+ky*lconst*ry))

*(II*rx*rx*ry*lconst*lconst*lconst);

(*Hk_Taylor[8])[fq(i,j,NATOM)] +=

(1.-pow(aa2/d,2.))*t1/RG*exp(qq1*(1.-(d/aa1)))
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*exp(II*(kx*lconst*rx+ky*lconst*ry))

*(II*rx*ry*ry*lconst*lconst*lconst);

(*Hk_Taylor[8])[fq(i,j,NATOM)] +=

pow(aa2/d,2.)*t2*exp(qq2*(1.-(d/aa2)))

*exp(II*(kx*lconst*rx+ky*lconst*ry))

*(II*rx*ry*ry*lconst*lconst*lconst);

(*Hk_Taylor[9])[fq(i,j,NATOM)] +=

(1.-pow(aa2/d,2.))*t1/RG*exp(qq1*(1.-(d/aa1)))

*exp(II*(kx*lconst*rx+ky*lconst*ry))

*(II*ry*ry*ry*lconst*lconst*lconst);

(*Hk_Taylor[9])[fq(i,j,NATOM)] +=

pow(aa2/d,2.)*t2*exp(qq2*(1.-(d/aa2)))

*exp(II*(kx*lconst*rx+ky*lconst*ry))

*(II*ry*ry*ry*lconst*lconst*lconst);

}

}

for(int nn=0; nn<10; nn++) {

(*Hk_Taylor[nn])[fq(j,i,NATOM)]=

conj((*Hk_Taylor[nn])[fq(i,j,NATOM)]);

}

}

}

#endif

#ifndef NO_OMP

}

#endif

}

Listing 18: Set window for energy cut-off

void find_dim_DOWN(int &dim_new, vector<int> &limits, double &mu, dvec &evals,

cvec &Hk, dvec &kvec, const dvec &lvec, vector<dvec> &UNIT_CELL, int &myrank)

/**

* Find dimension dim_new of downfolded Hamiltonian

* -dim_new: integer value of reduced leading order of Hamiltonian

* -limits: integer vector[2] to store upper/lower limit regarding energy

cut-off [-w_peierls*lim,w_peierls*lim)

* -mu: Chemical potential

* -evals: Real vector[NATOM] to store eigenvalues
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* -Hk: Complex vector[NATOM*NATOM] to store Hamiltonian

* -kvec: quasi momentum

* -lvec: superlattice bravis translational vectors (in lconst*Angstroem)

* -UNIT_CELL: Vector[NATOM] of real vectors[4] containing atomic positions and

sublattice info

* -myrank: Rank of process (MPI)

*/

{

set_Hk0(kvec, Hk, lvec, UNIT_CELL);

diagonalize(Hk, evals);

// Find indices of appropriate window for energies:

int lower, upper;

for(int i=0; i<NATOM; ++i)

if(evals[i]-mu>-lim*w_peierls)

{

lower = i;

break;

}

for(int i=0; i<NATOM; ++i)

if(evals[i]-mu>lim*w_peierls)

{

upper = i;

break;

}

if(lim*w_peierls>evals[NATOM-1]-mu)

upper = NATOM-1;

dim_new = upper-lower;

limits[0] = lower;

limits[1] = upper;

}

Listing 19: Set truncated Taylor matrices in original band basis

void set_Hk_DOWN_LIST(int &dim_new, vector<int> &limits, dvec &kvec, dvec

&evals, vector<cvec*> Hk_Taylor, vector<cvec*> Hk_DOWN_LIST, const dvec

&lvec, vector<dvec> &UNIT_CELL, int &myrank)

/**

* Calculates truncated Taylor matrices in intital band basis

* -dim_new: integer value of reduced leading order of Hamiltonian
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* -limits: integer vector[2] to store upper/lower limit regarding energy

cut-off [-w_peierls*lim,w_peierls*lim)

* -kvec: quasi momentum

* -evals: Real vector[NATOM] to store eigenvalues

* -Hk_Taylor: Vector of complex matrices[10][NATOM*NATOM] to store Taylor

matrices

* -Hk_DOWN_LIST: Vector of complex matrices[10][dim_new*dim_new] to store

truncated Taylor matrices in initial band basis

* -lvec: superlattice bravis translational vectors (in lconst*Angstroem)

* -UNIT_CELL: Vector[NATOM] of real vectors[4] containing atomic positions and

sublattice info

* -myrank: Rank of process (MPI)

*/

{

int dimH = NATOM*NATOM;

cvec *TEMP = new cvec(dimH);

cvec *SMAT = new cvec(dimH);

double dtime1, dtime11;

int lower = limits[0];

int upper = limits[1];

set_Hk0(kvec, SMAT[0], lvec, UNIT_CELL);

diagonalize(SMAT[0], evals);

// Transform Tylor matrices to intital band basis

for(int n=0; n<10; n++) {

dtime1 = omp_get_wtime();

const clock_t begin_time1 = clock();

times_nd(Hk_Taylor[n][0], SMAT[0], TEMP[0]);

dtime1 = omp_get_wtime() - dtime1;

dtime11 = omp_get_wtime();

const clock_t begin_time11 = clock();

times(SMAT[0], TEMP[0], Hk_Taylor[n][0]);

dtime11 = omp_get_wtime() - dtime11;

}

delete TEMP, SMAT;

// Store truncated matrices
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#ifndef NO_OMP

#pragma omp parallel for

#endif

for(int i=lower; i<upper; ++i)

{

for(int j=lower; j<upper; ++j)

{

for(int n=0; n<10; n++) {

(*Hk_DOWN_LIST[n])[fq(i-lower,j-lower,dim_new)] =

(*Hk_Taylor[n])[fq(i,j,NATOM)];

}

}

}

}

Listing 20: Set t.-d. Hamiltonian in original band basis

void set_Hk_DOWN(int &dim_new, cvec &Hk_DOWN, vector<cvec*> Hk_DOWN_LIST, dvec

&ASD, double &Pol, double time)

/**

* Set downfolded td Hamiltonian

* -dim_new: integer value of reduced leading order of Hamiltonian

* -Hk_DOWN: Complex vector[dim_new x dim_new] to store Hamiltonian matrix

* -Hk_DOWN_LIST: Vector of complex matrices[10][dim_new x dim_new] to store

truncated Taylor matrices in initial band basis

* -ASD: Gauge field of source-drain field

* -Pol: double to set chirality

* -time: tiome variable

*/

{

double AX = Ax_t(Pol,time,ASD)/lconst;

double AY = Ay_t(time)/lconst;

for(int i=0; i<dim_new*dim_new; ++i){

Hk_DOWN[i] = (*Hk_DOWN_LIST[0])[i] + FIRST*((*Hk_DOWN_LIST[1])[i]*AX +

(*Hk_DOWN_LIST[2])[i]*AY) + SECOND*1./2.*((*Hk_DOWN_LIST[3])[i]*AX*AX +

2.*(*Hk_DOWN_LIST[4])[i]*AX*AY + (*Hk_DOWN_LIST[5])[i]*AY*AY) +

THIRD*1./6.*((*Hk_DOWN_LIST[6])[i]*AX*AX*AX +

3.*(*Hk_DOWN_LIST[7])[i]*AX*AX*AY + 3.*(*Hk_DOWN_LIST[8])[i]*AX*AY*AY +

(*Hk_DOWN_LIST[9])[i]*AY*AY*AY);
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}

}

Listing 21: Set t.-d. derivative of Hamiltonian by Ax in original band basis

void set_dHkdAx_DOWN(int &dim_new, cvec &Hk_DOWN, vector<cvec*> Hk_DOWN_LIST,

dvec &ASD, double &Pol, double time)

/**

* Set downfolded t.-d. derivative by Ax of Hamiltonian

* -dim_new: integer value of reduced leading order of Hamiltonian

* -Hk_DOWN: Complex vector[dim_new x dim_new] to store Hamiltonian matrix

* -Hk_DOWN_LIST: Vector of complex matrices[10][dim_new x dim_new] to store

truncated Taylor matrices in initial band basis

* -ASD: Gauge field of source-drain field

* -Pol: double to set chirality

* -time: tiome variable

*/

{

double AX = Ax_t(Pol,time,ASD)/lconst;

double AY = Ay_t(time)/lconst;

for(int i=0; i<dim_new*dim_new; ++i){

Hk_DOWN[i] = FIRST*(*Hk_DOWN_LIST[1])[i] +

SECOND*1./2.*(2.*(*Hk_DOWN_LIST[3])[i]*AX +

2.*(*Hk_DOWN_LIST[4])[i]*AY) +

THIRD*1./6.*(3.*(*Hk_DOWN_LIST[6])[i]*AX*AX +

2.*3.*(*Hk_DOWN_LIST[7])[i]*AX*AY + 3.*(*Hk_DOWN_LIST[8])[i]*AY*AY);

}

}

Listing 22: Set t.-d. derivative of Hamiltonian by Ay in original band baisis

void set_dHkdAy_DOWN(int &dim_new, cvec &Hk_DOWN, vector<cvec*> Hk_DOWN_LIST,

dvec &ASD, double &Pol, double time)

/**

* Set downfolded t.-d. derivative by Ay of Hamiltonian

* -dim_new: integer value of reduced leading order of Hamiltonian

* -Hk_DOWN: Complex vector[dim_new x dim_new] to store Hamiltonian matrix

* -Hk_DOWN_LIST: Vector of complex matrices[10][dim_new x dim_new] to store

truncated Taylor matrices in initial band basis
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* -ASD: Gauge field of source-drain field

* -Pol: double to set chirality

* -time: tiome variable

*/

{

double AX = Ax_t(Pol,time,ASD)/lconst;

double AY = Ay_t(time)/lconst;

for(int i=0; i<dim_new*dim_new; ++i){

Hk_DOWN[i] = FIRST*(*Hk_DOWN_LIST[2])[i] +

SECOND*1./2.*(2.*(*Hk_DOWN_LIST[4])[i]*AX +

2.*(*Hk_DOWN_LIST[5])[i]*AY) +

THIRD*1./6.*(3.*(*Hk_DOWN_LIST[7])[i]*AX*AX +

2.*3.*(*Hk_DOWN_LIST[8])[i]*AX*AY + 3.*(*Hk_DOWN_LIST[9])[i]*AY*AY);

}

}
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C Side-project: A TDDFT approach towards laser-tuned

superconductivity in magnesium diboride

While this project clearly falls under the topic of laser-mediate control it is not directly connected

to the projects that are discussed in the main part of this thesis but a small unfinished stand-alone

project.

In 2001, by a combination of magnetic susceptibility and electrical resistivity measurements,

magnesium diboride (MgB2) was experimentally identified as a BCS-type superconductor with

one of the highest known critical temperatures, Tc = 39 K [85]. This material is a three-

dimensional hexagonal system (space group P6/mmm). A measured boron-isotope effect [86]

suggests a BCS-type origin of superconductivity, dominated by strong electron-phonon coupling.

Subsequent experimental (neutron scattering) and theoretical ab initio investigations [87] iden-

tified four distinct optical phonon modes at the zone center: E1u, E2g, A2u, and B1g. Among

these modes the E2g-boron mode was identified as dominant for the BCS transition. Due to its

in-plane stretching character, it couples strongly to the boron-px/y orbitals which build covalent

σ-bonds within the boron plane. Moreover, it moderately couples to the metallic π-bonds of the

out-of-plane pz-orbitals. As discussed in [88], this leads to a two-gap superconducting state with

associated pairing gaps of energy ∆σ = 6.8 meV and ∆π = 1.8 meV. This two-gap mechanism

finds expression in a step-like quasi-particle density-of-states. Reportedly, the strong coupling

of the E2g-mode to the electronic system leads, compared to the other modes, to a strong an-

harmonicity of its effective potential [87]. The key idea behind this project was to employ the

strong nonadiabatic electron-phonon coupling in order to manipulate the phonon frequency by a

low-energy excitation of the electronic subsystem via a short laser pulses. This control over the

energy scale of the phonon would allow to tune the superconducting mechanism in an ultrafast

optical setup. Moreover, TDDFT+U simulations might allow to track the emergence of an effec-

tively attractive electronic interaction of the driven system. This might lead to an enhancement

of the superconductive condensation.

All presented results are calculated by use of the (TD)DFT code octopus. All calculations are

done within the LDA approximation using the exchange-correlation potential hgh lda. The shown

data is not revised by a peer-review process and should generally be understood as preliminary.

The project, including all input files, is available on https://github.com/Fizztopp/MgB2.git.

In a first step, the DFT-groundstate is calculated. The unit cell consists of two boron atoms

and one magnesium atom. For the lattice constants the parameters a = 3.0391 Å and c = 3.4866

Å [89] are employed. The used inp-file is of the form 23 (see page 113). After the calculation of

the groundstate the electronic band structure is calculated. The inp-file is of the form 24 (see

page 114). A plot of the corresponding band structure is shown in Fig. 8.

https://github.com/Fizztopp/MgB2.git
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Figure 8: Electronic LDA-band structure of MgB2.

The calculated energy bands are in good agreement with comparison data from other literature

[90].

In a next step, the phonon frequency of the E2g-mode is calculated. This is done by two

different approaches. First, the static frozen-phonon calculations are used. Therefore, the two

boron nuclei are displaced from their equilibrium positions according to the stretching mode. For

every displacement u the total energy Etot[u] is calculated by calling and performing 25 (see page

115). Approximating the nuclei by harmonic oscillators, the potential energy can be written as

[91]

∆Etot[u] ≈ Ω2

2

∑
Mku

2
k = Eharm(u 6= 0)− Eharm(u = 0).

From the evaluation of the second derivative of the potential energy at the origin, the harmonic

frequency can be extracted. In the above equation, Mk indicates the mass and uk the displace-

ment of the k-th nucleus that is involved in the displacive process. For each Boron nucleus an

atomic mass of MB = 10.811 amu is assumed. The change in the DFT-calculated total nuclear

energy together with a quadratic fit is shown in Fig.9.
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Figure 9: Frozen-phonon calculation for the E2g-mode of MgB2. The total energy of the system is plotted as

a function of the boron displacement. The inset shows the change of energy for very small displacements. The

dashed black line indicated a quadratic fit by which the phonon frequency is calculated.

The frozen-phonon approach yields a phonon frequency of ~Ωstat
E2g

= 78.4 meV. Within the

second approach, the phonon frequency is calculated in a time-dependent context. Therefore, the

initial state of the nuclear system is set with finite velocity vectors for the boron atoms, pointing

in opposite direction according to the stretching mode. The actual propagation is done by a

Lanczos method. The time-dependency of the nuclear degrees of freedom are implemented on

the basis of Ehrenfest-dynamics. The corresponding inp-file is of the form 26 (see page 117).

The resulting dynamics of the two boron nuclei are presented in Fig. 10 for for three different

initial velocities. Their direction is chosen according to the E2g-mode.
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Figure 10: Time-dependent E2g-mode boron displacement of the two boron atoms (B1 and B2) for three

different initial velocities, v0 = 0.5 · 10−5 a.u. (dotted line), 1.0 · 10−5 a.u. (dashed line), 2.0 · 10−5 a.u. (solid

line). The vertical lines indicate the maxima/minima of the oscillation.

The linear increase of the oscillation amplitudes with the initial velocities as well as the con-

stant oscillation period clearly indicate that the system is probed in the linear response regime.

From the nuclear trajectory an oscillation period of T = 42.3 fs can be extracted. This corre-

sponds to a phonon frequency of ~Ωdyn
E2g

= 97.9 meV. This value is about 20% higher than the

result from the frozen-phonon calculation. The discrepancy between the results, calculated by

the two different approaches, does per se not imply that the results are wrong. In the dynamical

approach the nuclear dynamics are calculated with consideration of a time-dependent polarisa-

tion. Thus different results can generally be expected. Likewise, the reported values for the

E2g-energy in the literature strongly depend on the employed method and the used parameters.

While the value obtained by the static approach lies within the reported interval of 58-82 meV

[90], the dynamically calculated value does not. The true origin as well as the validity of the

found dynamical hardening of the E2g-mode has to be further investigated by additional studies.

Declaration of contribution G. E. Topp set up the inp-files with the help of N. Tancogne-

Dejean. G. E. Topp analysed the (TD)DFT data and created the presented figures. The results

were discussed by G. E. Topp, M. A. Sentef, and A. Rubio.
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Listing 23: DFT groundstate

CalculationMode = gs

FromScratch = yes

ExperimentalFeatures = yes

PeriodicDimensions = 3

Spacing = 0.30

BoxShape = parallelepiped

aCell = 3.0391*Angstrom

cCell = 3.4866*Angstrom

%LatticeParameters

aCell | aCell | cCell

%

%LatticeVectors

0.5 | -sqrt(3)/2 | 0.

0.5 | sqrt(3)/2 | 0.

0. | 0. | 1.

%

%ReducedCoordinates

’B’ | 2/3 | 1/3 | 0.50

’B’ | 1/3 | 2/3 | 0.50

’Mg’ | 0.0 | 0.0 | 0.00

%

PseudopotentialSet=hgh_lda

LCAOStart=lcao_states

%KPointsGrid

12 | 12 | 12

%

KPointsUseSymmetries = no

ParDomains = no
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ParKPoints = auto

ExtraStates = 2

ConvRelDens = 1.e-7

SmearingFunction = fermi_dirac

Smearing = 0.001*eV

Output = geometry

OutputFormat = xcrysden

Listing 24: Electronic band structure

aCell = 3.0391*Angstrom

cCell = 3.4866*Angstrom

%LatticeParameters

aCell | aCell | cCell

%

%LatticeVectors

0.5 | -sqrt(3)/2 | 0.

0.5 | sqrt(3)/2 | 0.

0. | 0. | 1.

%

%ReducedCoordinates

’B’ | 2/3 | 1/3 | 0.50

’B’ | 1/3 | 2/3 | 0.50

’Mg’ | 0.0 | 0.0 | 0.00

%

PseudopotentialSet=hgh_lda

LCAOStart=lcao_states

%KPointsPath

100 | 50 | 100 | 50 | 100

0.0 | 0.0 | 0.0 #Gamma point
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0.5 | -0.5 | 0.0 # M point

2/3 | -1/3 | 0.0 # K point

0.0 | 0.0 | 0.0 # Gamma point

0.0 | 0.0 | 0.5 # A point

0.5 | -0.5 | 0.5 # L point

%

ParDomains = no

ParKPoints = auto

%RestartOptions

restart_gs | "../GS/restart"

%

ExtraStatesToConverge = 5

ExtraStates = 10

ConvRelDens = 1e-7

SmearingFunction = fermi_dirac

Smearing = 0.001*eV

Output = geometry + dos

OutputFormat = xcrysden

Listing 25: Frozen-phonon calculation

uu=0.0

CalculationMode = gs

FromScratch = yes

ExperimentalFeatures = yes

PeriodicDimensions = 3

Spacing = 0.25

BoxShape = parallelepiped

aCell = 3.0391*Angstrom

cCell = 3.4866*Angstrom
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%LatticeParameters

aCell | aCell | cCell

%

%LatticeVectors

0.5 | -sqrt(3)/2 | 0.

0.5 | sqrt(3)/2 | 0.

0. | 0. | 1.

%

%ReducedCoordinates

’B’ | 2/3+uu | 1/3-uu | 0.50

’B’ | 1/3-uu | 2/3+uu | 0.50

’Mg’ | 0.0 | 0.0 | 0.0

%

PseudopotentialSet=hgh_lda

LCAOStart=lcao_states

%KPointsGrid

12 | 12 | 12

%

KPointsUseSymmetries = yes

ParDomains = no

ParKPoints = auto

ExtraStates = 2

ConvRelDens = 1.e-7

ConvForce = 1e-8

SmearingFunction = fermi_dirac

Smearing = 0.001*eV

Output = geometry

OutputFormat = xcrysden
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Listing 26: Dynamcal calcuation of phonon frequency

# Calculation mode

#------------------------------------------------------------------------------

CalculationMode = td

FromScratch = yes

ExperimentalFeatures = yes

KPointsUseSymmetries = no

ParKpoints = auto

ParDomains = no

PseudopotentialSet=hgh_lda

LCAOStart=lcao_states

ExtraStates = 2

RestartFixedOccupations = yes

# Structure

#------------------------------------------------------------------------------

PeriodicDimensions = 3

Spacing = 0.30

BoxShape = parallelepiped

aCell = 3.0391*Angstrom

cCell = 3.4866*Angstrom

%LatticeParameters

aCell | aCell | cCell

%

%LatticeVectors

0.5 | -sqrt(3)/2 | 0.

0.5 | sqrt(3)/2 | 0.

0. | 0. | 1.

%



118

%ReducedCoordinates

’B’ | 2/3 | 1/3 | 0.50

’B’ | 1/3 | 2/3 | 0.50

’Mg’ | 0.0 | 0.0 | 0.00

%

%KPointsGrid

12 | 12 | 12

%

%RestartOptions

restart_gs | "../restart"

%

# Time Propagation

#------------------------------------------------------------------------------

au2fs = 2.418884 * 1e-2

T_propagation = 100 #fs

T_step = 0.0075 #fs

TDPropagationTime = T_propagation / au2fs

TDTimeStep = T_step / au2fs

RestartWriteInterval = 100

TDExponentialMethod = lanczos

TDExpOrder = 16

TDPropagator = aetrs

# Initial Velocities

#------------------------------------------------------------------------------

vv = 1.0e-5

%Velocities

’B’ | 0.0 | vv | 0.0

’B’ | 0.0 | -vv | 0.0

’Mg’ | 0.0 | 0.0 | 0.0

%

# TD Output

#------------------------------------------------------------------------------

MoveIons = yes

TdOutput = energy + geometry
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