
Predictive Dependency Parsing
Dissertation an der Universität Hamburg

Arne Köhn

2019

Fakultät für Mathematik, Informatik und Naturwissenschaften,
Fachbereich Informatik

I want to thank first and foremost Christine Köhn, who not only tolerates me every day
but who also read drafts of this thesis and made many detailed and extremely helpful
comments. This thesis improved a lot from this. My parents always unconditionally
supported my desire to be and work in academia. This thesis would probably not exist
without that support. Christopher Habel and Wolfgang Menzel gave me the possibility
to work freely on interesting topics. Wolfgang Menzel also gave me helpful feedback on
my work and this thesis. Chris Biemann and Timo Baumann provided helpful remarks on
drafts.

Gutachter: Wolfgang Menzel, Chris Biemann
Datum der letzten mündlichen Prüfung: 18.05.2020

This work is licensed under a Creative Commons Attribution 4.0 International License.
Supplementary material is available under https://arne.chark.eu/phd.

https://arne.chark.eu/phd

Abstracts

This dissertation is concerned with analyzing the syntactic structure of dynamically evolv-
ing sentences before the sentences are complete. Human processing of both written and
spoken language is inherently incremental, but most computational language processing
happens under the assumption that all relevant data is available before processing begins.
I discuss different approaches to build incremental processors and how to evaluate them.

I introduce two different approaches to incremental parsing. One performs restart-
incremental parsing, obtaining very high accuracies. The other uses a novel transition
system combined with a discriminative component; while it parses with lower accuracy, it
can be trained on arbitrary dependency treebanks without any pre-processing and parses
sentences at speeds of 3ms per word. Both approaches can be trained on existing treebanks
and are language independent. Also, both try to provide as much information as possible
by also predicting structure containing stand-ins for words not yet seen. To show that
these structural predictions do provide non-trivial information, I demonstrate that n-gram
language models benefit from incorporating these predictions, which is only possible if
the predictions encode long-spanning information about the sentence structure.

Diese Dissertation befasst sich mit der Analyse syntaktischer Strukturen von noch un-
vollständigen Sätzen. Menschliche Sprachverarbeitung sowohl des geschriebenen als auch
gesprochenen Wortes is inhärent inkrementell, während bei maschineller Verarbeitung
meist davon ausgegangen wird, dass alle relevanten Informationen bereits zugreifbar sind
bevor die Verarbeitung beginnt. Ich bespreche verschiedene Ansätze um inkrementelle
Prozessoren zu bauen und diese zu evaluieren.

Ich stelle zwei verschiedene Ansätze für inkrementelles Parsing vor, die beide versuchen
so viel Information wie möglich zu generieren indem sie Struktur vorhersagen die Platzhal-
ter for noch nicht gesehene Worte enthält. Beide können auf existierenden Baumbanken
trainiert werden und sind sprachunabhängig. Ein Ansatz ist restart-inkrementell, wodurch
er sehr hohe Genauigkeiten erzielt. Der andere nutzt ein neuartiges Transitionssystem
kombiniert mit einer diskriminativen Komponente; er parst mit geringerer Genauigkeit,
kann aber ohne Vorverarbeitung auf beliebigen Dependenzbaumbanken trainiert werden
und kann Sätze mit einer Geschwindigkeit von 3ms pro Wort parsen. Um zu zeigen, dass

3

die strukturellen Vorhersagen tatsächlich nicht-triviale Information enthalten, zeige ich,
dass n-gram-Sprachmodelle von diesen Informationen profitieren; dies ist nur möglich, da
die Vorhersagen Informationen über die Satzstruktur kodieren, die über den begrenzenten
Horizont der n-gram-Sprachmodelle hinausgehen.

4

Contents

1. Introduction 9
1.1. Psycholinguistic Evidence for Incremental Processing 10
1.2. Differentiation to Other Meanings of Incrementality 11
1.3. Incremental Processors in Natural Language Processing 11
1.4. Plan of this Dissertation . 14

2. Incremental Processing in NLP 15
2.1. A Typology for Incremental Problems . 15

2.1.1. Data Types for Input and Output 15
2.1.2. The Processing Granularity . 17
2.1.3. Grounding . 18
2.1.4. Monotonicity . 18
2.1.5. Timeliness . 19
2.1.6. Trade-off Between Properties . 19

2.2. Incremental Processors . 20
2.2.1. Speech Recognition . 20
2.2.2. Machine Translation . 21
2.2.3. Natural Language Generation . 23

2.3. Evaluating Incremental Systems . 24
2.3.1. Measuring Timeliness . 25
2.3.2. Measuring Incremental Quality 26
2.3.3. Measuring the Degree of Non-monotonicity 27

2.4. Combining Multiple Incremental Processors 27
2.5. Summary and Discussion . 28

3. Representations for Incremental Syntactic Structure 31
3.1. Incremental Phrase Structure Annotations 31

3.1.1. Incremental Parsing with Probabilistic Context-Free Grammars . 34
3.1.2. Tree-Adjoining Grammar Approaches 35

3.2. Incremental Dependency Structure Annotations 37
3.3. Modeling Uncertainty . 41

5

Contents

4. Gold Standards and Evaluation for Predictive Parsing 43
4.1. Mapping Prediction Nodes to Words in Full-sentence Annotations 44
4.2. Evaluating Predictive Parses Against Full-sentence Annotations 49

4.2.1. Computing Incremental Accuracy 49
4.2.2. Subdividing Accuracy With Respect To Predictions 50
4.2.3. Stability Measures . 51

4.3. Creating Gold-standard Annotations for Sentence Prefixes 52
4.4. Evaluating Prediction Nodes . 56
4.5. Evaluating Non-predictive Incremental Parsers 57
4.6. Labeled Versus Unlabeled Evaluation . 58
4.7. Tying It All Together . 58

5. Training Predictive Dependency Parsers 59
5.1. Transition-based Parsing for Incremental Structure Generation 59

5.1.1. The arc-standard transition system 60
5.1.2. The arc-eager transition system 61

5.2. Graph-based Incremental Parsing . 63
5.3. Incremental Graph-based Parsing with Dual Decomposition 64

5.3.1. Performing predictive parsing with ILPs 66
5.3.2. Deciding on fixed sets of prediction nodes 67
5.3.3. Incrementalizing TurboParser . 67
5.3.4. Training incTP . 68
5.3.5. Evaluation . 72

5.4. Discussion . 74

6. Transition-based Predictive Parsing 75
6.1. A Transition System for Predictive Parsing 75

6.1.1. Overall Structure of the Transition Parser 77
6.1.2. The Transition System . 78
6.1.3. Extending the Transition System to Perform Top-down Prediction 80
6.1.4. Optimizations . 81

6.2. Scoring Predictive Dependency Structures 82
6.2.1. incTP-based Scoring . 82
6.2.2. NN-based Scoring . 83

6.3. Training PreTra . 85
6.3.1. Performing Updates Against Complete Sentence Annotations . . 85

6.4. Experimental Results . 86
6.4.1. Impact of Hyper-parameter Selection 89

6

Contents

6.4.2. Evaluating PreTra . 89
6.4.3. Search Errors Due To Beam Search 90

6.5. Summary and Discussion . 91

7. Incremental Parsing for Language Modeling 93
7.1. Language Modeling . 93
7.2. Syntax-based Language Models . 95
7.3. Data Preparation . 96
7.4. A First Language Model with Prediction Nodes 97

7.4.1. Examples for the Effect of Prediction Integration 98
7.4.2. Evaluation of the Basic Split Model 100
7.4.3. Exemplary Comparison of Split and Standard Model Probabilities 102
7.4.4. Overall Differences Between Split and Standard Model 103

7.5. Beyond the Basic Split Model . 103
7.5.1. Interpolating N-gram Models . 104
7.5.2. Adding Syntax Predictions to Maximum Entropy Models 105

7.6. Summary and Discussion . 107

8. Conclusions 109

A. Publications 129

B. Parsing evaluation results 135

C. Predictability sets 159

7

Chapter 1.

Introduction

Natural language is ubiquitous in our lives. Humans use natural language to interact with
each other, but interaction with computers is also often performed using natural language.
Be it searching for information on the Internet, using voice commands to operate technical
devices such as smartphones or (somewhat) smart speakers, or when a computer handles
requests on telephone hotlines. These interactions can be speech or text-based, and the
machine can be an agent engaging in dialogue – e. g. when performing as a digital assistant
(Comerford et al. 2001) – or augment an interaction between humans – e. g. by translating
between languages (Wahlster 2000) or by listening to a discussion and providing helpful
information using different modalities (Milde, Wacker, et al. 2016). This type of interactive
augmentation can also take place without a dialogue, when language is only produced
and not perceived – e. g.auto-completion, spelling correction, or other suggestions when
writing a text.

All interactions described above extend over the time axis: speech is both produced and
consumed over time, and text is both read and written in a piece-wise fashion. I did not
write this thesis in one step, and my readers have usually only read a few sentences of
this thesis up to this point. Nonetheless, a partial understanding of this thesis’s content
has hopefully already emerged, which will extend until the end of the thesis is reached.
Not only does the understanding happen incrementally, but prediction also takes place as
well. Readers of scientific literature have an expectation about the forthcoming structure,
and I invite you to guess the title of the last chapter. You will probably not be far off. This
incrementality of language can be observed on many levels, where parts are composed of
smaller parts: words are built from phonemes or morphemes, sentences are built from
words, texts are built from sentences. Humans make use of this property in many ways,
often without realizing it (see Section 1.1). Incremental processing goes hand in hand
with prediction: an incomplete sentence can be completed by another speaker to indicate
turn-taking (Lerner 2002), showing that the listener not only tried to understand but also
can predict the continuation of the speaker’s utterance. For syntactic parsing, processing
a determiner includes predicting that a noun will follow to which the determiner will be

9

Chapter 1. Introduction

attached to,1 and processing a verb leads to a prediction of what objects this verb takes.
Especially for structured problems such as syntactic and semantic parsing, natural

language processing systems often assume that all relevant data is already available before
starting to process input and ignore the inherent incrementality. This assumption has
consequences for where a non-incremental component may be employed. In interactive
scenarios such as human-computer interaction, non-incremental components cannot be
used without sacrificing interactivity: spelling corrections would only be shown after
a text has been written, an utterance would only start to be translated after it has been
completely spoken. Incremental processing exploits the incrementality of language by
starting to compute and produce output before all input is available, allowing a system to
already act on partial input.

1.1. Psycholinguistic Evidence for Incremental Processing
Humans still pose the gold standard for language processing, especially if the processing
does not happen on a large scale but in an interactive setting. When speaking, they perform
several tasks incrementally and in parallel, from conceptualization to articulation (Levelt
1989). Machines mimicking human behavior need to be able to perform similar computa-
tions as humans do in such settings to pose as a competent partner, and psycholinguistic
research gives insight into the processes that humans perform.

Interestingly, psycholinguistic research not only examines whether incremental pro-
cessing takes place but it is often carried out by timing experiments, i. e. psycholinguistic
experiments make use of the incremental processing by humans to gain insights into
linguistic processes, mostly by eye-tracking (Tanenhaus et al. 1995; Sturt and Lombardo
2005; Malsburg and Vasishth 2011, inter alia), but also by timing self-paced word-by-word
reading of sentences (e. g. Gibson and Warren 2004).

Language is perceived incrementally and this incremental processing is influenced by
other modalities even while speech is perceived. Tanenhaus et al. (1995) show that subjects
in their experiments used visual information to disambiguate spoken utterances while the
utterances were still ongoing and that eye movement was guided by that utterance. Sturt
and Lombardo (2005) explored whether humans build structure for sentences incrementally
by performing eye-tracking for verb-phrase coordination. They show that participants of
the study experienced processing disruptions when a sentence continued differently than
expected and that these processing disruptions occurred earlier than can be explained by
bottom-up parsing procedures. Their experimental setting consists of sentences where
stereotypical male or female nouns such as “pilot” or “nurse” co-occur with reflexive

1Try to read the following: I will not continue the

10

1.2. Differentiation to Other Meanings of Incrementality

pronouns of the opposite gender. The reflexive pronoun is embedded in such a way that
upon reading it, it is not connected to the noun when performing bottom-up parsing and
therefore would not result in a disruption if humans only performed bottom-up parsing.
Therefore, some kind of connecting structure has to be built while reading the sentences.
These findings form the psycholinguistic motivations for researching how to generate
connected dependency structures.

While text is usually consumed sequentially, eye-tracking also shows that unexpected
continuations of a sentence can lead to re-analysis for which the reader performs different
strategies, such as re-reading parts of the sentence, or even restarting from the beginning
(Malsburg and Vasishth 2011). These two strategies (reading sequentially and restarting)
will re-occur throughout this thesis.

1.2. Differentiation to Other Meanings of Incrementality
The term “incrementality” is used to describe different properties in the literature. In
contrast to the meaning described above (and in the remainder of this thesis), sometimes
systems that work on a complete input but generate output layer by layer, e.g. shallow to
deep syntax, are also called incremental, e.g. by Aït-Mokhtar, Chanod, and Roux (2002).

Anytime algorithms (Dean and Boddy 1988) are incremental in the sense that they
iteratively improve their output for a fixed input, given more and more processing time.
Anytime algorithms can play an essential role in incremental systems as they allow to
perform a trade-off between processing time – ı.e., system responsiveness – and quality
(Köhn and Menzel 2013). The computation of a result can continue until it is needed,
making sure that it is the best that could be computed in a given time without requiring
other components to wait for a result. Anytime algorithms optimize the time spent
between inputs, e. g.while waiting for the continuation of an utterance. In general, the
question of whether to use anytime algorithms does not affect the other challenges posed
by incremental processing.

1.3. Incremental Processors in Natural Language
Processing

In an incremental system, all processors need to work incrementally. A prime example
is the Verbmobil project, which set out to develop a portable simultaneous interpreter
(Kay, Gawron, and Norvig 1994). Verbmobil was a project spanning eight years and
several sub-projects. The Verbmobil system consists of several processors interacting
with each other: speech recognition and synthesis components, syntactic and semantic

11

Chapter 1. Introduction

parsers, self-correction detection, natural language generation, dialogue modeling, and, of
course, machine translation. This list shows that incrementality is an aspect that touches
many topics of natural language processing. The project also exemplifies that building
incremental systems is not easy, even with massive funding2: Only one of the many
components ended up being incremental,3 and the final report makes no mention of
simultaneous interpretation anymore (Wahlster 2000).

As human-computer interaction is often carried out using speech, much research on
incremental processing has been carried out on speech-based systems such as dialogue
systems. These systems deal with comparatively simple utterances – at least in contrast to
newspaper texts, the predominant genre in treebanks – and therefore often get by with a
rather superficial treatment of text. The reason for this is two-fold: first, the setting in
some experiments invites short and focused utterances, and second, each speech-based
system needs to perform automatic speech recognition (ASR). As vocabulary size and
sentence complexity correlate with the number of errors speech recognition produces,
complex utterances can only be reasonably processed with high-quality speech recognition.
For example, Sagae et al. (2009) perform incremental natural language understanding of
spoken utterances. Their ASR recognized the utterance “we are prepared to give you guys
generators for electricity downtown” as “we up apparently give you guys generators for a
letter city don town”, which is hardly meaning preserving and the NLU quality therefore
degrades in comparison to a theoretical gold-standard ASR.

I want to exemplify the limiting impact of ASR on the complexity of incremental dia-
logue systems using several examples. DeVault, Sagae, and Traum (2009) extend the work
by Sagae et al. (2009) to better deal with recognition errors by building a predictor that
computes the probability that the NLU component has correctly captured the relevant in-
formation from a (still ongoing) sentence. Once the probability reaches a certain threshold,
the system tries to complete the utterance. Utterance completion is often used by humans
to take a turn in dialogue (Hansen, Novick, and Sutton 1996; Lerner 2002). The relatively
simple approach by DeVault, Sagae, and Traum (2009) is based on a maximum entropy
classifier. It mainly works because the domain is limited – military personnel talking
with village elders in some unnamed country. The restricted domain can be observed in
an example: The system e. g. correctly completes the utterance “I have orders” to “I have
orders to move you and this clinic”. This completion is only possible because not only the
domain is known and extremely restricted, but also very similar utterances have are in
the training data, with little abstraction from specific word forms.

2Verbmobil had a funding of 116 million DM (about 60 million €, or 78 million € when adjusted for inflation),
with significant additional funding from industry

3One of the several machine translation systems developed as part of the project is incremental.

12

1.3. Incremental Processors in Natural Language Processing

Paetzel, Manuvinakurike, and DeVault (2015) train actor policies for rapid task-based
dialogue, where a user describes a target image out of several images. The system has to
find the correct image as quickly as possible. The work focuses on the interaction effects,
the incremental processing architecture, and policy optimization. The understanding
component is again a maximum entropy N-gram based classifier, which is sufficient
because the utterances are short descriptions of images. Stoness et al. (2005) experiment
with multi-modal interaction between incremental parsing of spoken input and a visual
context, which is used to disambiguate the spoken input. This research uses a more in-
depth understanding system consisting of a syntactic parser and a knowledge base but
imitates the ASR using a manual transcription of the audio signal. Schlangen, Baumann,
and Atterer (2009) also used manual transcription in a similar-setup – a visual world
combined with ongoing utterances – to examine strategies for incremental reference
resolution.

Research into incremental repair detection (Hough and Purver 2014; Honnibal and
Johnson 2014), i. e. detecting when a user misspeaks and corrects themselves, is essential
for interactive systems because without explicit modeling of repairs a user’s intention
cannot be modeled correctly. This problem only appears in spoken interaction, as written
interaction does not exhibit the same type of correction. But still, both Hough and Purver
(2014) and Honnibal and Johnson (2014) perform detection on text only, i. e. both assume
that perfect automatic speech recognition has been performed.

These examples are not meant to diminish the research produced. They exemplify that
due to the recognition errors by ASR, research has either been performed on real interaction
with a system based on utterances with limited coverage, or resorted to simulating the
ASR when dealing with more complex interactions.

When using speech-based systems, it is the speech recognition quality that imposes a
limit for the linguistic complexity that users can employ. With more advanced recognizers,
more complex utterances can be recognized by the system, and more complex processing
than e. g. keyword spotting needs to take place. Since the findings discussed above, ASR
has drastically improved. However, recognition is still error-prone: Milde and Köhn (2018)
show that even with extensive training data and a state of the art model for German,
sentences read from Wikipedia articles are only recognized with a word error rate of 14%.
On the other hand, recognition of less complex utterances is already possible, with word
error rates between 5% and 9%, especially for the best-resourced language, English (Han
et al. 2018).

But not all interaction relies on speech: In addition to speech-based systems, text-based
interactive systems such as web search or grammatical error detection could (and in some
cases already do) make use of incremental processing, e. g. for search-as-you-type or
instantaneous error detection.

13

Chapter 1. Introduction

1.4. Plan of this Dissertation
First, this thesis gives an overview about incremental processing (Chapter 2, then explores
how syntax parsing (as an example for structured prediction problems) can be extended to
be incremental – i. e. to produce output for incomplete input – by examining the structures
that a parser should be able to produce (Chapter 3), how this ability can be evaluated using
suitable gold standards (Chapter 4) The next two chapters introduce different algorithms to
produce such structures: Restart-incremental (Chapter 5) and transition-based (Chapter 6).
The merit of creating such structures is shown in Chapter 7, where language models are
augmented with information from incremental structures. Chapter 8 concludes the thesis.

14

Chapter 2.

Incremental Processing in NLP

Incrementality is not only of interest for syntactic parsers but also for other processors
of natural language, which have different characteristics. To gain a better understand-
ing of how predictive parsing fits into this landscape, I will give an overview of such
processors. Even though these may perform completely different tasks, the strategies to
“incrementalize” them can be quite similar. I will first lay out a typology for incremental
processors using properties based on the data the processors consume and produce, as
well as the relation between the input and output data. Then, I will describe how speech
recognition and machine translation, as relatively well-researched incremental processors,
fall into these categories and which algorithms and strategies are employed to optimize
and measure their incremental behavior.

2.1. A Typology for Incremental Problems
An incremental processor can be characterized by the kind of data it consumes as input,
as well as the kind of data it produces. It also exhibits a specific incremental behavior by
posing requirements on subsequent inputs it consumes and giving guarantees about the
relations between subsequent outputs it creates. I will discuss these properties in the next
section and show how different NLP processors align with them in Section 2.2. Of course,
I am neither the only nor the first person to develop a categorization for incremental
processors; Chapter 5 of Guhe (2007) discusses properties mostly complementary to the
ones discussed here.

2.1.1. Data Types for Input and Output
Data can be structured (e. g. syntactic or semantic structures) or sequential (e. g. text,
label sequences, or audio). Sequential data can be discrete (e. g. words) or continuous
(e. g. speech signals) along the time axis. Structured data is always discrete on the time
axis because as long as the structure is finite, it can not be meaningfully subdivided into

15

Chapter 2. Incremental Processing in NLP

Processor Data Data / alignment properties

Peter bought [noun] structured, including prediction
Parsing vertices partially, edges not grounded

Peter bought flour discrete, sequential
MT reordering, fuzzy mapping

Peter hat Mehl gekauft discrete, sequential
ASR order-preserving, clear mapping

continuous

Figure 2.1.: Different types of data, groundings, and processors. Note that for parsing
only the sentence prefix “Peter bought” is processed to exemplify intermediate
structure generated for incomplete input. Incremental systems can take many
forms, and this example aims to illustrate the common principles of incremtal
processing, not a specific task. ASR: Automatic Speech Recognition; MT:
Machine Translation

16

2.1. A Typology for Incremental Problems

infinitely many parts along the time axis. Data that is discrete along the time axis can, of
course, include continuous data such as word embeddings.

A processor can take one type of data as an input and create another one as output;
some examples are depicted in Figure 2.1, and I will come back to the properties depicted
in the figure throughout this section. Sequential data can usually be subdivided along a
time axis, i. e. there exists a total ordering between the elements of the input (or output
respectively), see the input and output for the ASR and MT processor in Figure 2.1. On the
input side, this tells us in which order the input becomes consumable. On the output side,
it tells us in which order (and possibly also at which point in time) the output should be
generated. Structured data does not necessarily exhibit this property: Given, for example,
the dependency tree produced by parsing in Figure 2.1, the words are ordered, but the
dependencies between the words cannot be uniquely attributed to a word: they could be
attributed to the head or the dependent.

2.1.2. The Processing Granularity
The granularity a processor uses describes the size into which the input and output is
subdivided; it is the (temporal) size of the basic units of incremental data. In contrast to the
previously discussed properties, granularity can not be deduced from data itself: the same
audio stream might be processed in chunks of 10ms or 2s, depending on the processor.
Granularity can be either used to describe how a processor consumes and produces data
or to describe a sequence of subsequent incremental data (which is, however, usually
produced by a processor). A processor can only work incrementally if the input it has to
process is composed of several basic units. When considering a larger incremental system,
a processor usually seen as non-incremental might be incremental enough: a processor is
incremental enough if the size of the units it consumes and produces is not larger than
required by the overall system (i. e. due to design criteria). Assuming a coarse enough
desired granularity, every system can be seen as incremental enough: A normal syntax
parser clearly works non-incremental if parsing a single sentence, but incrementally if
it is processing a paragraph and the basic units are sentences. A grapheme to phoneme
transformation usually converts input word by word1 and is incremental enough for
a language generation system that works on the level of words and does not need the
grapheme to phoneme conversion to be able to process sub-word input. On the other
hand, if input typed by a user should be vocalized, sub-word granularity might be needed.

The granularity of a pipeline is determined by its most coarse-grained component. The
granularity needed can vary by use case. In general, fine-grained processing is harder

1This of course depends on the language as e. g. for French the phonemization depends on the surrounding
words – for example, the s in “les” is only spoken if the next word starts with a vowel.

17

Chapter 2. Incremental Processing in NLP

than coarse-grained processing; a system can always process data fine-grained internally
while having coarse-grained interfaces, whereas the opposite is not possible.

2.1.3. Grounding
Grounding describes the alignment from the generated output to the elements of the input
that yielded evidence for this output (Schlangen and Skantze 2009). Grounding allows
to reason about which part of the output can be reasonably generated given only partial
input. In some cases, this alignment is explicit in both test and training data, e. g. in
sequence labeling tasks where each element of the input is assigned a label. In other
cases, such as machine translation, there is no gold-standard word alignment,2 and even
a human-generated alignment would not create a one-to-one mapping between input
and output. Especially for structured output, some parts may lack grounding altogether,
such as the edges and the prediction in the dependency tree in Figure 2.1. Also, the
alignments may or may not be order-preserving: A tagging task preserves the ordering,
whereas in translation, reordering takes place (cmp. “hat Mehl gekauft”→ “bought flour”
in Figure 2.1).

2.1.4. Monotonicity
A system is non-monotonic if it is allowed to retract output it has previously produced.
For example, an incremental sequence labeler that is free to re-assign labels can change
its mind about every element of a sentence once the sentence is complete. A monotonic
system, on the other hand, is required to only extend previously generated output without
retracting information. Some components are inherently monotonic as their output is not
fed to another processor of the system, but to the outside world. E. g., a speech synthesizer
is inherently monotonic as it cannot retract sound waves realized through a loudspeaker.

Monotonicity limits the quality a component can produce as it can not revert a decision
that turns out to be wrong later on in light of additional available input. In contrast, a
non-monotonic component can always achieve the same non-incremental output as a
non-incremental component by merely replacing all intermediate output with the output
of the non-incremental component once all input is available.

The precise meaning of monotonicity needs to be defined for each component. For
sequential output, the most common definition is to only allow appending to the output.
For structured output, the structure of an increment could be required to be a super-set of
its predecessor.

2At least not on the word level, but alignments can be generated automatically, see e. g. Och and Ney (2003)

18

2.1. A Typology for Incremental Problems

Non-monotonic output can only be generated sensibly if the consumers of the output can
deal with non-monotonic input. Otherwise, these consumers might ignore the revisions
made to previous output and end up with an inconsistent input or have to restart their
computation in light of new input.

2.1.5. Timeliness
Given a specific input, each NLP processor has to optimize what output to produce. An
incremental system also needs to decide when to provide output. While discrete input
provides specific anchors for this decision, continuous input does not, and new output can
be generated continuously.3 Such decisions also need to be made by human interpreters
while performing simultaneous translation; they need to buffer input until they can
produce additional output. The characteristics of this (human) process vary by language,
e. g. the delay is relatively long when translating from German to English because the
verb in the input tends to occur later than it needs to be produced for the English target
sentence (Goldman-Eisler 1972).

Processors may have a fixed or variable delay, which for some processors can be pre-
scribed and for others can only be observed. With all else being equal, a more timely
processor is usually preferable.

2.1.6. Trade-off Between Properties
Incremental components have to make a trade-off between timeliness (i. e. the amount
of delay introduced between input and output), output quality, and the amount of non-
monotonicity (Beuck, Köhn, and Menzel 2011a; Baumann, Atterer, and Schlangen 2009).
High-quality, monotonic output can be obtained by delaying output. Taking this strategy
to the extreme results in a non-incremental system that produces the complete output at
once after all input becomes available. Allowing non-monotonicity via output revisions
reduces the delay, as well as compromises concerning the quality of the output. Gradual
trade-offs can also be made: allowing infrequent revisions and mild delays can lessen the
negative impact on accuracy. These trade-offs are universal to all incremental processors;
examples for performing such trade-offs will be shown in the next section.

3While continuous input is made discrete before reaching a processor, the discretization is usually in the
order of milliseconds and can be seen as continuous for all practical purposes.

19

Chapter 2. Incremental Processing in NLP

2.2. Incremental Processors
This section discusses two tasks with existing incremental processors to exemplify strate-
gies to “incrementalize” a processor: The first, incremental speech recognition, is a con-
tinuous sequence labeling problem usually implemented as a non-monotonic processor.
The second one is incremental machine translation, which is a sequence to sequence
task with reordering, usually implemented monotonically. Parsing, the task this thesis is
about, is a sequence-to-structure task, which can be implemented both monotonically and
non-monotonically.

2.2.1. Speech Recognition
Speech recognition lends itself to incremental processing because the decoding happens
incrementally even for non-incremental use-cases. Speech recognizers such as Sphinx 4
(Walker et al. 2004) use the token passing algorithm (Young, Russell, and Thornton 1989),
which keeps a set of currently possible states (the tokens) at each point in time and moves
these tokens forward through the search space as more audio input becomes available,
i. e.every few milliseconds. It is, therefore, possible to look into a speech recognizer to
obtain the most probable hypothesis at each point in time and use that as output without
modifying the recognizer. As the speech recognizer is still the same as the one with a
non-incremental interface, the only optimization point is when to let new output through,
i. e. to implement a gatekeeper. Without a gatekeeper, the output would be too frequent,
forcing subsequent processors either to perform gatekeeping themselves or to process
extremely high amounts of data.

The gatekeeper’s policy can be guided by observing the time that a hypothesis survived
as the most probable one without being discarded (Baumann, Atterer, and Schlangen 2009)
and producing output once the most probable hypothesis has been stable longer than
a fixed threshold. Alternatively, it can be based on the internal state of the recognizer
(Selfridge et al. 2011). McGraw and Gruenstein (2012) show that even sophisticated stability
estimation based on the internal data only slightly improves upon the simple age-based
estimation proposed by Baumann, Atterer, and Schlangen (2009). Given that the speech
recognizer is the same for the incremental case as for the non-incremental one, there is
no trade-off against accuracy. Some states of the decoder can also be used to trigger a
new output reliably: Selfridge et al. (2011) noted that if during decoding, all beams in the
beam search pass through the same state, the prefix up to that state can be declared stable
because future decoding will not change the most probable path up to that state. This
observation essentially makes use of the Markov property and is primarily useful when
performing grammar-based recognition.

20

2.2. Incremental Processors

2.2.2. Machine Translation
Machine translation is the second topic for which incrementality has been studied. While
it can be performed using batch processing (e. g.for websites), it has obvious use cases
in interactive systems, e. g.for simultaneous translation for speeches or dialogues. To
successfully facilitate human-human interaction, it needs to work incrementally.

Modern approaches to machine translation, i. e. neural machine translation, employ a
sequence to sequence model where the input sequence is encoded into a representation
and then decoded again. One approach uses recurrent networks, which represent the input
as a single fixed-length vector and optionally use attention to the input when generating
the output sequence (Bahdanau, Cho, and Bengio 2014). It is also possible to not employ
a recurrent network, using only attention to model the influences of the input sequence
to the generation of the output sequence (Vaswani et al. 2017). In all these cases, the
complete input is consumed before translation happens, i. e. the translation is inherently
non-incremental.

Incremental Neural Machine Translation (NMT) by Using a Gatekeeper

Machine translation is a task with sequential input and output where the output ordering
does not conform to the input ordering, and the ground truth for the grounding is often
missing. As the incremental machine translation systems found in the literature are
monotonic, the systems need to decide at which point they have enough information from
the input to generate the next output token with high confidence. That is, they also need
to implement a gatekeeper, but in contrast to the gatekeeper used for speech recognition,
it will influence the final result due to the processor being monotonic.

Gu et al. (2017) propose a system where an NMT processor repeatedly proposes an
output token based on the currently available input and the already generated output to a
gatekeeper. The gatekeeper either accepts this output, resulting in a write operation to the
output, or rejects it, resulting in a read operation on the input. The underlying NMT model
is trained on complete sentences and therefore not adapted to incremental processing.
The gatekeeper can use different policies, yielding different trade-offs between timeliness
and quality. Rejecting all output until the input is complete means falling back to a non-
incremental behavior; performing alternating read and write actions eliminates delay but
results in bad translations. Gu et al. (2017) train the policy using reinforcement learning
with the reward based on the resulting BLEU score and the delay incurred; weighting them
differently results in different trade-offs. Humans have different preferences regarding
this trade-off, depending on whether the output is speech or subtitles (Mieno et al. 2015).
An example of an incremental translation can be seen in Figure 2.2, where the translation

21

Chapter 2. Incremental Processing in NLP

Figure 2.2.: Left: Incremental NMT with attention, from Gu et al. (2017). Y-axis: input,
X-axis: output. Blue arrows: read operations, red arrows: write operations.
Colors denote the attention given to each input token when generating an
output token. Note the delay induced by the reordering for “serviert” (served)
and “gestorben” (died). Right: visualizing trade-off decisions between delay
(x-axis, measured in words translated at once) and accuracy (y-axis, measured
in BLEU), from He, Grissom II, et al. (2015).

process is depicted using arrows for read and write operations. The system first reads the
input up to “Bier” (beer), then generates three tokens, reads “serviert” (served), generates
the verb “served”, and so on.

Reordering Output

Reordering phenomena constitute a significant hindrance to timely translation, as ex-
emplified in Figure 2.2. Grissom II et al. (2014) deal with this by training a classifier to
predict verbs needed for the output but not yet seen in the input, allowing the MT system
to produce a verb without having seen its counterpart on the input. The MT system is
enhanced by a transition system (similar to the gatekeeper in Gu et al. (2017)), which reads
more words, predicts a verb, predicts the next word, or commits to the currently generated
translation. Again, the underlying MT system is unchanged, and a policy for the actions
is trained using reinforcement learning.

Instead of predicting the verb, He, Grissom II, et al. (2015) propose to edit the gold-
standard translations to better fit the source ordering for training the MT system by
trying to imitate the transformations a human translator would perform. This approach
tackles the problem that the training data available is only composed of translations that

22

2.2. Incremental Processors

were performed non-incrementally, which is not optimal for simultaneous translations.
Human simultaneous translators produce sentences that systematically deviate from the
“normal” target language, but such data is not readily available for training (He, Boyd-
Graber, and Daumé III 2016). The training data is adapted by generating phrase-structure
trees for the target sentences and applying (manually written) syntax-based reordering
rules. The system then checks whether the reordering has reduced the delay based on
an automatically computed alignment and, if so, uses the reordered version instead of
the original one. As in the approach by Gu et al. (2017), the average delay induced by
the system can be tuned, see Figure 2.2. Because the processor was not trained on gold-
standard data, it might yield sub-optimal results on gold-standard test data. He, Grissom II,
et al. (2015) evaluate their system on both gold-standard and transformed data and show
that it, in fact, performs better on both targets.

2.2.3. Natural Language Generation
In contrast to the processors already discussed (speech recognition and machine transla-
tion) as well as the processor this thesis is about (parsing), natural language generation is
often not trained but modeled by hand. This allows changing the processor in ways not
easily achievable in other processors. Natural language generation often sits near the end
of a pipeline as a means to make information available to the user. It, therefore, has to
deal with all delays induced by previous processors.

Skantze and Hjalmarsson (2013) compare a non-incremental dialogue system and an
incremental one, with which language learners interact to buy items at a flea market.
The speech recognition component was simulated, i. e. a human manually transcribed
the speech. As the manual transcription takes time, the system response is noticeably
delayed in a non-incremental system where the dialogue system only starts to plan its
response once the transcription is complete. In contrast, the incremental system constructs
a response as soon as possible, based on partial input. The response is recomputed on
changed input, which can have three effects: 1) If the update is consistent with what has
been said already, the continuation of what to say is changed (a covert change). 2) If the
system has to retract information already uttered, an explicit repair has to be produced
(an overt change). 3) Fillers are inserted to avoid silence when information to produce
a complete utterance is currently missing. The system is faster (as it starts earlier) and
preferred by users, although it has to correct itself explicitly, resulting in longer responses.
Despite its output being monotonic – as it cannot erase information from the hearer’s
ears – its explicit repairs enable the system to act with low delay (a similar strategy to
the one employed by human speakers (Levelt 1989, Chapter 12)). As the natural language
generation component is rule-based, it is not constrained by the (non-)availability of data

23

Chapter 2. Incremental Processing in NLP

non-monotonic (1) non-monotonic (2) delayed (3) erroneous (4)
input: a a/y a/y a/y

b a/x b/y a/y b/y a/x b/y a/y b/y
c a/x b/y c/z a/x b/y c/z a/x b/y c/z a/y b/y c/z

inc_acc(i) 2: 1/1; 1: 2/2; 0: 2/3 2: 1/1; 1: 1/2 ; 0: 2/3 2: 1/1; 1: 2/2 ; 0: 2/3 2: 0/1; 1: 1/2 ; 0: 2/3
EO 1/4 1/2 0 0

accuracy 3/3 3/3 3/3 2/3

Table 2.1.: Examples for characteristics of incremental output that need to be captured for
evaluation, using a sequence labeling task. Correct output: a/x b/y c/z. (1), (2):
output for a changed; (3): output for a held back until input “b” is available; (4):
incorrect assignment to “a” stays in output. inc_acc: incremental accuracy, see
Section 2.3.2; EO: edit overhead, see Section 2.3.3; accuracy: ratio of correct
labels in the complete output. Dashed line exemplifies which output is used to
compute inc_acc.

suitable for learning incremental language generation.

2.3. Evaluating Incremental Systems
An incremental system can be evaluated just like a non-incremental one. Evaluation
schemata exist for all established tasks such as speech recognition (quality measured in
word error rate), PoS tagging (measured in accuracy), phrase structure parsing (measured
in precision/recall), or machine translation (e. g. BLEU). Additional evaluation techniques
allow examining the behavior more closely, such as compiling error confusion matrices.
These schemata enable a comparison between components in a standardized way. As
evaluating (incremental) dependency parsers is discussed in detail in Chapter 4, this section
focuses on the evaluation of other systems.

The drawback of using non-incremental evaluation measures is the lack of insight into
incremental properties. When building incremental systems, not only the final output
but also the intermediate behavior is of importance; using evaluations tailored to non-
incremental systems fails to give insight into their incremental properties.

Table 2.1 shows abstract input/output patterns for a sequence labeling task, where the
correspondence between input and output is given, and no reordering effects take place. A

24

2.3. Evaluating Incremental Systems

standard accuracy-based evaluation on the complete output would yield a perfect score for
the first three systems, although their behavior over time is quite different: In addition to
the non-incremental evaluation for the complete output, the non-monotonicity in (1) and
(2), as well as the delay in (3), need to be considered. It is impossible to express all these
differences with a single number. I will, therefore, discuss specific metrics for timeliness,
monotonicity, and quality.

2.3.1. Measuring Timeliness
Cho and Esipova (2016) propose to measure timeliness by counting for each output element
t of an output sequence Y how many input elements from the input sequence X have
been consumed before its production (s(t)). τ(X,Y) then computes the translation delay:

0 < τ(X,Y) =
1

|X||Y |

|Y |∑︂
t=1

s(t) ≤ 1

This computation is helpful when there is no gold-standard alignment between output
and input that can be used to obtain the output timing that could have been achieved
under optimal conditions. τ = 0 means all output was made without consuming input,
τ = 1 means all input was read before generating output.

Grissom II et al. (2014) introduce latency-BLEU, a metric that averages the BLEU scores
of the outputs corresponding to each input prefix. The complete translation is weighed
higher than all other partial translations to penalize incorrect translation. If the resulting
translation is the same for two processors, the processor with less delay than the other
will obtain a higher score. Due to the averaging, the sentence-initial output has more
influence on the score than output created near the end of a sequence. It is also not
possible to completely distinguish between the quality and the timeliness because quality
and timeliness are measured in a single metric. In the MT system by He, Grissom II,
et al. (2015), the timeliness can be (indirectly) tuned by adjusting a threshold at which to
translate all yet untranslated words. Figure 2.2 (right) shows a plot of the resulting BLEU
score against the average number of words translated at once, i. e. the delay. This way,
potential users can see the trade-offs that can be made using a system (RW+GD is the
proposed architecture, beating the other approaches at each trade-off point).

If an explicit alignment exists between the input and the output – such as in speech
recognition – the difference between when a specific output is made (i. e. which amount of
input data has been consumed) and the timing of the corresponding input can be measured
to obtain an anchored timeliness measure (Baumann, Buß, and Schlangen 2011). Both the

25

Chapter 2. Incremental Processing in NLP

relation to the first occurrence of an output (FO) and the relation to the last change of
an output (final decision, FD) can be measured. E. g. if a word ends at 2.5 seconds of the
input audio, was first recognized after consuming 3 seconds and was part of all outputs
produced after consuming 4 seconds, its FO would be 0.5 seconds, and its FD would be 1.5
seconds. To separate timeliness from quality, these measures can be computed against the
final output of the system instead of the gold standard. However, then a reliable alignment
between the input and the generated output is needed. The advantage over other methods
is its interpretability: A FO of 100ms for a speech recognizer means that it produces, on
average, an output 100ms after it has consumed input that carries evidence for this output.
FO and FD only differ for non-monotonic processors; FD measures the average delay that
is necessary to obtain a reliable output from the processor.

2.3.2. Measuring Incremental Quality
When dealing with monotonic output, the incremental quality can be assessed using the
non-incremental quality metrics as the processor cannot revoke previously made output.
If a processor can be tuned to provide more or less timely output, the quality can be plotted
against delay, as in Figure 2.2.

If a system is non-monotonic, it makes sense to measure the accuracy not only based
on the final output but also based on the intermediate output. Averaging the quality for
each increment has two disadvantages: Output for early input is weighed more than that
for later input, and it is unclear how non-monotonicity affects the quality.

If the input for a processor is a discrete sequence and for each input token a quality
measure based on the output produced can be computed, a quality measure with respect
to the age of the input can be used (Beuck, Köhn, and Menzel 2011b): The age can be
computed with regards to the frontier:

Definition 1. The frontier of a sequence is its newest element. For a sentence prefix
containing n words, the frontier is the nth word.

For every element of each input, we can compute whether the corresponding output
is correct. Then, the accuracy for the n-th element to the left of the frontier in every
generated output is computed, with n starting at zero (measuring the accuracy on the
newest elements for all outputs) up to some predefined number. This way, an accuracy
curve relative to the age of the input is generated. Table 2.1 contains incremental accuracy
(inc_acc) measures relative to the age of the input; examples (1) and (2) yield different
incremental accuracies even though their non-incremental accuracy is the same. This
measurement only makes sense if the processors’ output is non-monotonic as otherwise,

26

2.4. Combining Multiple Incremental Processors

the incremental accuracies would all be the same.This approachwill also be used to evaluate
the predictive dependency parsers in this thesis (see Chapter 4).

2.3.3. Measuring the Degree of Non-monotonicity
Evaluating non-monotonicity can be viewed from two (similar) standpoints: first, how
much intermediate output will later be retracted again? Second: how sure can we be that
a particular output is reliable, i. e. will also be part of the final output of a processor?

Baumann, Atterer, and Schlangen (2009) and Baumann (2013) tackle the first question by
defining the edit overhead generated by a non-monotonic processor producing sequential
output. They define three edit operations on an output sequence: add (append an element
to the output), revoke (remove the last element from the output), and substitute (revoke
and then append). The difference diff(oi, oj) between two outputs oi and oj is the minimal
number of edits needed to change oi into oj . Note that 2(n− 1)+1 operations are needed
to change the first element of an output of length n, whereas changing the last element
yields a difference of only one. This notation allows us to compute the edit overhead: We
compute the number of edits necessary to obtain the final outputNoptimal and the number
of edit operations actually performed Nactual as follows:

Noptimal = |diff(o0, otmax)| (2.1)

Nactual =

tmax∑︂
t=1

diff(ot−1, ot) (2.2)

The edit overhead is the proportion of unnecessary edits produced by the processor:

EO = (Nactual −Noptimal)/Nactual (2.3)

Table 2.1 shows that EO can distinguish between different levels of non-monotonicity.
The edit operations can be adapted to the problem at hand, e. g. if structured output is
produced or edits at the start of the sequence should not be penalized more than edits at
the end.

2.4. Combining Multiple Incremental Processors
An NLP system usually consists of several processors. In a non-incremental system, all
processors can form a pipeline with each processor working on the output of the previous
one. Building such a pipeline is non-trivial in an incremental system because, for a given

27

Chapter 2. Incremental Processing in NLP

input, each processor may produce several outputs, which may even be contradictory
due to non-monotonicity. Therefore, a system either needs to use restart-incrementality
(i. e.completely restarting the computation on each new input without relying on previous
computations) throughout the pipeline or track changes to perform partial recomputation.
Wirén (1992, ch. 5) introduces the notion of dependencies to track which parts of the
input a particular output is based on in a chart parser. Only parts of the chart need to
be recomputed given a non-monotonic change because we know which chart items are
affected by this change. Schlangen and Skantze (2009) extend this notion to a general
computation model in which multiple processors work on data organized in incremental
units (IU). An IU stands for a minimal unit of information, such as a recognized word. IUs
are grounded in other IUs from a previous level and linked to other IUs on the same level,
e. g. to describe a sequential relationship. Processors create new IUs based on their input
and may revoke IUs already generated. A processor can commit to an IU to signify that if
will never revoke this IU so that other processors can rely on it.

2.5. Summary and Discussion
Building incremental processors poses problems that are similar regardless of the specific
task. Decisions have to be made regarding the acceptable amount of delay, whether non-
monotonic output is acceptable for downstream processors, and if so, to what extent. For all
these decisions, the relation between input and output is essential: Is there a precise map-
ping between input and output, maybe even a one-to-one mapping, and does reordering
happen? Several techniques have been discussed for implementing incremental processors:
Training a gatekeeper to either perform a trade-off between non-monotonicity and delay
(Section 2.2.1) or – for monotonic processors – between delay and quality (Section 2.2.2). In
Chapter 5, two additional strategies will be discussed in depth: Beam search4 to create non-
monotonic output with monotonic extension, and restart incrementality for unrestricted
non-monotonicity. To evaluate an incremental system, ideally, three characteristics should
be measured: timeliness (Section 2.3.1), quality (Section 2.3.2), and non-monotonicity
(Section 2.3.3). If a system can be tuned with respect to these characteristics, different
trade-off points between these properties can be measured (Section 2.1.6).

When combining several incremental processors into a larger one, the strategies of the
processors have to be compatible. With the rise of end-to-end neural NLP systems, one
might assume that combination becomes unnecessary. However, neural systems have
shown to actually benefit from structured features provided by other NLP systems. For
example, neural machine translation can profit from syntactic structure generated by

4A variation of the token-pass algorithm used by most speech recognizers

28

2.5. Summary and Discussion

a parser, both for dependency structures (Zhang, Li, et al. 2019) and phrase structures
(Saunders et al. 2018); this benefit is more pronounced with limited training data (Currey
and Heafield 2019).

The likelihood of an output being stable could be attached to the output to bridge the
gap between certainty (monotonic output) and uncertainty (non-monotonic output); see
Selfridge et al. (2011) Section 5. Modern NLP processors heavily rely on sub-symbolic
representation and use attention mechanisms to obtain relevant information. With this
approach, an explicit grounding for partial recomputation as discussed in Section 2.4 –
where each part of the output only depends on a specific part of the input – does not work
anymore and would need to be replaced with some notion of soft grounding.

29

Chapter 3.

Representations for Incremental
Syntactic Structure

Syntactic structure can be represented using different formalisms, which can be classi-
fied into two groups: dependency structures and phrase structures. In a dependency
structure, used e. g. by the Prague Dependency Treebank (Hajič, Hladká, and Pajas 2001),
the Universal Dependency Treebanks (McDonald, Nivre, et al. 2013) and the Hamburg
Dependency Treebank (Foth, Köhn, et al. 2014), the words of a sentence are the nodes
of a tree with directed edges, the edges denote syntactic relations between them and
carry a dependency label to signify the type of relation. Phrase structure recursively
divides a sentence into typed phrases and sub-phrases, the most prominent example for a
treebank using this annotation scheme is the Penn Treebank (Marcus et al. 1994). Both
types of annotations are used to represent syntax. Phrase structure annotation can only
represent projective structures directly because the phrases have to be nested. In contrast,
dependency annotations have no such restriction and can encode arbitrary tree structures
over sentences without a need to extend the annotation format. Examples of dependency
annotations and phrase-structure annotations are shown in Figure 3.1.

For both representation formats, it is not immediately clear how to annotate a sentence
prefix; this chapter discusses different possible approaches. As the structure and the algo-
rithm for its creation are often intertwined, algorithms for parsing with phrase structure
will also be briefly addressed in this chapter, while the incremental syntax generation of
dependency structures will be discussed in Chapter 5 and Chapter 6 in more detail.

3.1. Incremental Phrase Structure Annotations
If only a part of a sentence is available, its phrases can be divided into three categories:
The ones wholly contained in the prefix, the ones entirely outside the prefix, and the ones
partially inside and partially outside the prefix. The approaches to incremental phrase
structure parsing differ concerning which of these classes can be part of the output when

31

Chapter 3. Representations for Incremental Syntactic Structure

S

Konkursgerüchte drücken Kurs der Amazon-Aktie

SUB
J OBJA

DE
T

GMOD

bancruptcy-rumors beat-down price of-the amazon-stock

S

NP

Konkursgerüchte

VP

VBD

drücken

NP

Kurs NP

der Amazon-Aktie

Figure 3.1.: A dependency structure from the Hamburg Dependency Treebank and a cor-
responding phrase structure.

parsing a sentence prefix.
The conservative approach is to only include complete phrases in the incremental

syntactic structure. It leads to disconnected structures, as shown in Figure 3.2: incomplete
phrases containing phrases that reside entirely inside the prefix are not generated, leaving
their already complete sub-phrases disconnected to each other. This approach is closely
tied to bottom-up parsing of phrase structure and does not need to add specific constructs
for incremental structure as it does not attempt to predict any possible continuations of
the sentence.

The connecting approach adds all incomplete phrases that are needed to obtain a con-
nected structure. As the incomplete phrases contain either words or other phrases not in
the prefix, filler phrases denoting the expectations have to be used as stand-ins for these
words and phrases, or they have to be left out. In this case, phrases in the output are not
guaranteed to be complete.

One can go one step further and include empty phrases into the structure that denote
the expectation of upcoming words filling these phrases. For example, a transitive verb
might lead to the prediction of a noun phrase filling the object role. Parsers producing
such structures are predictive.

32

3.1. Incremental Phrase Structure Annotations

NP

Peter

VBD

bought

S

NP

Peter

VP

VBD

bought

S

NP

Peter

VP

VBD

bought

NP

Figure 3.2.: Different approaches to parse the sentence prefix “Peter bought”: Conservative
(left) produces a disconnected structure, connecting (middle) also creates the
phrases up to the S (sentence) phrase, predictive (right) adds an expected –
currently empty – NP.

S

NP

Peter

VP

VBD

bought

NP

bananas

S†

S

NP

Peter

S-NP

VP

VBD

bought

VP-VBD

NP

bananas

VP-VBD,NP

ϵ

S-NP,VP

ϵ

S-S†

ϵ

S†

S

NP

Peter

S-NP

VP

VBD

bought

VP-VBD

S-NP,VP

S-S†

Figure 3.3.: A phrase structure (left) and its binarized counterpart (middle), as used by the
Roark parser. Right: Derivation for the prefix “Peter bought”.

33

Chapter 3. Representations for Incremental Syntactic Structure

3.1.1. Incremental Parsing with Probabilistic Context-Free Grammars
One of the parsers creating connected structures is the top-down parser by Roark (2001)
based on probabilistic context-free grammars (PCFGs). When parsing with PCFGs, the
phrase structure tree is created from the derivation process – a rule derivation creates
subordinate structures. Roark’s parser works on binary trees (i. e., all nodes have either
exactly two children or a single terminal or ϵ as a child). To achieve this, the grammar is
right-binarized (Roark and Johnson 1999).1 This procedure splits longer rules into binary
ones with the first non-terminal being the next element to be matched and the second one
recursively representing the rest of all rules having that same prefix. Using the example
from Roark and Johnson (1999), the rule NP→ DT JJ NN would be decomposed into four
rules:

NP→ DT NP-DT (3.1)
NP-DT→ JJ NP-DT,JJ (3.2)

NP-DT,JJ→ NN NP-DT,JJ,NN (3.3)
NP-DT,JJ,NN→ ϵ (3.4)

NP-DT,JJ can then be seen as a partially filled NP, which already has a DT and a JJ
sub-phrase. All original rules sharing the same prefix on their derivation side now share
the same binarized rules; therefore, the parser can decide at a later point in time which of
these rules to choose. For example, NP→ DT JJ NN and NP→ DT NN share the same
prefix. However, without binarization, the parser would already need to decide on whether
an adjective follows when consuming the determiner. With binarized rules, this decision
can be postponed.

Figure 3.3 shows an example of output for a complete sentence and a sentence prefix.
The binarized and non-binarized trees are equivalent, and one can be reconstructed from
the other. Each phrase is open for additional content until it is closed by an ϵ transition.
Even though the incremental output looks like a predictive one because of the nodes S-S†,
S-NP, and VP VP-VBD, it is actually not. These nodes are not representing a phrase but
merely enable the parser to potentially add more material to an already existing phrase (S†,
S, and VP, respectively). These nodes can be deleted at any time by replacing them with
ϵ to denote that they contain no material at all – de-binarizing the tree deletes ϵ nodes.
Therefore, the parser does not predict; it only keeps all possibilities open. For the prefix

1A binarized grammar may look similar to a Chomsky Normal Form, but in contrast to a CNF, the binarized
grammar may have rules with ϵ on the right-hand side when the left-hand side is not the start symbol.

34

3.1. Incremental Phrase Structure Annotations

tree in Figure 3.3, the following rules are used:

S† → S S-S† (3.5)
S→ NP S-NP (3.6)

NP→ Peter (3.7)
S-NP→ VP S-NP,VP (3.8)
VP→ VBD VP-VBD (3.9)

VBD→ bought (3.10)

3.1.2. Tree-Adjoining Grammar Approaches
Tree-Adjoining Grammar (TAG) is a formalism introduced by Joshi, Levy, and Takahashi
(1975).2 The previously described parser used a context-free grammar, and the syntax tree
is encoded in the derivation tree obtained by recording the rule applications. In contrast,
tree-adjoining grammars are context-sensitive, and the grammar explicitly creates the
resulting phrase structure tree.3 Rules in TAG are trees that either have nodes marked for
a later substitution or they have a node of the same type as their root node and are used
for adjoining. Figure 3.4 shows an example of adjoining. From an incremental perspective,
the nodes marked for substitution are predictions of upcoming structures – phrases in the
tree that may not yet be grounded in the prefix.

Tree-adjoining grammars are not necessarily suitable for incremental processing in
their original form. Rules can require an out-of-order application in which a word later in
the sentence has to be included into a structure before an earlier word can be included –
Figure 3.4 shows such an example. The sentence is constructed by first selecting a partial
tree for “loved”, and the word “has” can only be included into the phrase structure after
“loved” because the adjoin operation needs to work on the VP introduced by the partial
tree from “loved”. The processing ordering is different from a top-down application of
a PCFG where the ordering of rule applications is free due to the context-free nature of
the formalism. Note, however, that in contrast to the PCFG approaches, the partial result
encodes an explicit prediction of an upcoming noun phrase, denoted by the NP0 ↓, which
is to be substituted by a noun phrase later on.

TAG can be extended to perform incremental processing in different ways. Shen and
Joshi (2005) use a variant of TAG – LTAG-spinal – that allows the system to attach treelets

2Joshi and Schabes (1997) provide a more recent overview, which was also used for the following description
of TAG.

3Koller and Kuhlmann (2011) describe a framework with which CFGs can be converted to a formalism that
also explicitly creates the tree structure.

35

Chapter 3. Representations for Incremental Syntactic Structure

S

NP0 ↓ VP

V

loved

NP0 ↓
+

VP

V

has

VP*
→

S

NP0 ↓ VP

V

has

VP

V

loved

NP0 ↓

Figure 3.4.: Adjoining operation for TAG.The structure for “has” is adjoined to the structure
for “loved”, extending the VP. Adapted from Joshi and Schabes (1997).

to a phrase without the need for a substitution node and employ a shift-reduce algorithm
over the derivation possibilities. As the shift-reduce algorithm is inherently working on
the input from left to right, it is incremental but does not generate connected intermediate
structures. Some approaches do produce connected intermediate structures based on
TAG: The DVTAG formalism (short for Dynamic Version of TAG) (Mazzei, Lombardo,
and Sturt 2007) uses an extended operation schema from plain TAG to enable post-hoc
modifications of partial trees. This formalism can model a range of linguistic phenomena
(such as adjoining adjectives to a predicted noun). Because DVTAG produces structure
earlier in the derivation process than LTAG, its coverage is lower – LTAG can generate
93.5% of the sentence structures in the Penn Treebank test set, DVTAG can only generate
87.1% (Mazzei and Lombardo 2007). To my knowledge, the coverage and accuracy of
DVTAG has not been evaluated using a parsing system, where the coverage might be
significantly lower than the theoretical optimum due to search errors.

An approach for generating connected structures with TAG that was empirically eval-
uated is PLTAG, a psycholinguistically motivated version of TAG (Demberg and Keller
2008; Demberg, Keller, and Koller 2013). In contrast to DVTAG, predictions are derived up
to the root of the sentence structure, i. e. the complete embedding of the words processed
is determined, see the left operation in Figure 3.5. These predictions of structure (denoted
by XX↓) are created via treelets without lexical nodes. All predicted structures need to be

36

3.2. Incremental Dependency Structure Annotations

NP

N

Rudie
+

S↓

NP↓ VP↓

→

S↓

NP

N

Rudie

VP↓

+

S

NP VP

V

runs

→

S↓

NP

N

Rudie

VP

V

runs

Figure 3.5.: Prediction and verification in PLTAG. The initial tree for “Rudie” is combined
with a prediction tree (containing no lexical items). The predictions are then
verified by matching the initial tree for “runs” with the tree, resulting the the
complete structure.

validated using verification: predictions stemming from prediction trees (trees without
lexical nodes) need to be verified by trees with lexical nodes. If a complete structure
contains a node that has not been verified, the structure is ill-formed and disregarded.
Figure 3.5 shows an example of verification in the right operation. The system needs to
predict the correct number of phrases to be able to build the correct structure. Because it
is not clear which predictions are needed when starting to parse a sentence incrementally,
beam search needs to be employed.

The implementation of PLTAG discussed in Demberg, Keller, and Koller (2013) has been
evaluated on the Wall-Street Journal part of the Penn Treebank (Marcus et al. 1994), with
an automatically extracted lexicon for the elementary, auxiliary, and prediction trees, and
conditional probability distributions for the actions (substitution, adjoining, verification).
Parsing is performed via beam-search, using supertagging (Bangalore and Joshi 1999) to
filter tree candidates. Overall, this system has worse accuracy than its non-incremental
counterparts, with an F-score of 78.65 in comparison to 86.7 obtained by Chiang (2000).

3.2. Incremental Dependency Structure Annotations
As this thesis focuses primarily on dependency structures, a definition for incremental
structures is needed. The main ideas expressed in this section are the same as in Beuck,
Köhn, and Menzel (2011b), Beuck, Köhn, and Menzel (2013), and Köhn and Menzel (2014)

37

Chapter 3. Representations for Incremental Syntactic Structure

but the naming is adapted,4 and the formalization is new.
In contrast to phrase structure trees, every part of a dependency structure is anchored

in a word – there a no non-terminals in the structure. Figure 3.1 shows an example. A
dependency structure consists of words, edges between words, and labels for edges. In
data structures, the edges are usually defined using the word’s positions. Each annotation
scheme has a fixed set of dependency labels that we call L. 0 is the special root node to
which a token might be attached to but which is neither attached itself nor contains any
other syntactic information.

Definition 2. A dependency structure for a sentence is a tuple ⟨W,π, l⟩, where W is the
list of tokens of the sentence, π : W →W ∪ {0} the set of directed edges, and l : W → L
the labeling function for the edges.

An unlabeled dependency structure is a corresponding two-tuple ⟨W,π, ⟩

Defining the edges as a function over the tokens enforces the single-head property of
dependency structures; each token is mapped to its head, forming a dependent-head pair.
Because each token is the dependent of exactly one such relation, the labeling function
can be defined over the tokens instead of over edges. The edges of a dependency structure
for a complete sentence typically form a tree, i. e. the dependency structure is connected.

Definition 3. A dependency structure is connected iff there is a path between each pair
of words of the structure (ignoring edge direction), and one word is attached to the root
node.

This property can not trivially be maintained for a structure of a sentence prefix, as
the word needed for attachment might not be part of the prefix. To deal with this, we
have several options: a) wait until all words needed to create a tree are part of a prefix
before creating the output, b) lift the connectedness requirement (and leave some words
unattached), or c) introduce new nodes into the tree to establish a connection.

Option a) may sound straightforward at first. However, the consequence would be a
possibly massive delay of the output: if the root of a sentence is the last word, the output
of a parser would degenerate to a non-incremental one as the parser could produce no
incremental output at all. Option b) would enable us to define a structure for every sentence
prefix. However, the information in this structure would still be less than actually inferable:
consider the sentence prefix “She”. It is highly likely that “She” will be attached to a verb
in the complete sentence structure, and therefore a parser should be encouraged to make
this kind of prediction. This leads us to Option c): introducing new nodes. Implementing

4Essentially, this thesis uses the term “prediction node” instead of “virtual node” as the latter term seemed
to be confusing in discussions.

38

3.2. Incremental Dependency Structure Annotations

S

Im Januar hatte die Aktie erreicht

PP

PN
DE
T

SUBJ

noch einen Höchststand von 24,50 Euro

ADV

DE
T

OBJA

PP

AT
TR

PN

AUX

Figure 3.6.: A full dependency structure cut after the word “die” to show how an incre-
mental gold standard is derived. Literally: In January had the share still a peak
of 24.50 Euro reached “In January, the share still reached a peak of 24.50 Euro.”

Option c) is a central part of this dissertation. Options a) and b) are conservative approaches
while c) is predictive, similar to the different possibilities when using phrase-structure
annotations. A conservative approach only creates connections between words of the
prefix. Because the correct head of a word in the prefix might be out of the prefix, π and l
become partial functions, leaving such words unattached.

To exemplify the different aspects that need to be covered in the predictive approach,
we can “cut” a sentence prefix out of a complete sentence and its corresponding syntactic
structure. Four different cases can occur for the dependency edges; Figure 3.6 depicts
them:

a) edges with both words in the prefix (words “im” to “hatte”)

b) edges where the head lies outside the prefix (the determiner “die”)

c) edges where the dependent is outside the prefix (“Aktie”, “erreicht”)

d) edges where both head and dependent are outside the prefix (all greyed-out words)

Point (b) is the most important case to consider for obtaining a connected dependency
structure for the sentence prefix. While edges of the category (a) can remain unchanged,

39

Chapter 3. Representations for Incremental Syntactic Structure

S

Im Januar hatte die [pred] [pred]

PP

PN
DE
T

SUBJ
AUX

Figure 3.7.: A predictive dependency structure for the prefix shown in Figure 3.6

and (c) and (d) can be omitted, heads outside the prefix need to be replaced somehow for
words inside the prefix.

Additional nodes have to be inserted as stand-ins for upcoming words to obtain con-
nected analyses of prefixes. Otherwise, connectedness could only be achieved by incor-
rectly assigning the head inside the prefix. We will call these additional nodes prediction
nodes.

Definition 4. A node serving as a stand-in for a word outside the current prefix is a
prediction node. It represents a single anticipated upcoming word and is included into a
dependency structure the same way as a word of the prefix. It can carry morpho-syntactic
information and is usually not lexicalized.

Using prediction nodes allows a parser to create structures for sentence prefixes that
resemble the structure of complete sentences. In addition to the information they deliver,
these structures can be fed to other components expecting “normal” dependency trees,
and those components do not need to know anything about prediction nodes – they can
be handled just as normal words.

Definition 5. A predictive dependency structure for a sentence prefix is a tuple ⟨W,P, π, l⟩,
where W is the list of tokens of the prefix, P a set of prediction nodes, π : W ∪ P →
W ∪ P ∪ {0} the set of directed edges, and l : W ∪ P → L the labeling function for the
edges. An unlabeled predictive dependency structure is the corresponding three-tuple
⟨W,P, π⟩.

To ease notation, W s will refer to the words of a predictive dependency structure s, P s,
πs, and ls will refer to the other elements of the tuple, respectively.

Figure 3.7 shows a predictive dependency structure containing two prediction nodes:
[noun] and [verb]. Note that only one of them (the noun) is needed to ensure connectedness,

40

3.3. Modeling Uncertainty

but prediction nodes may be present without being on a path from a word in W to the
root.

While the words W are ordered, the prediction nodes P are not; they form a set. As
this work is mainly concerned with the syntactic structure and not the prediction of a
word sequence, no ordering is given to the prediction nodes other than they are located
outside the current sentence prefix. The figures in this dissertation order them for the sake
of visualization without asserting that the ordering is encoded in the predictive structure.

For both regular and predictive dependency structures the tokens have a lexicalization
and may carry additional morpho-syntactic information such as part of speech or case.
While the type of a phrase in incremental phrase structure parsing can often be reasonably
well predicted, a word’s identity is predictable only in particular circumstances. Therefore,
while the prediction nodes may carry morphosyntactic information as well, they are
usually not lexicalized because the identity of the word a prediction node stands for can,
in most cases, not be predicted.

If additional nodes are not provided by a parser and words are left unattached – i. e.
choosing option b – there are two possible interpretations for unattached words: First,
simply nothing is known and they could well be attached to a word in the prefix later on.
This is the least informative interpretation. Second, all words not attached inside the prefix
should actually be attached to an upcoming word outside the prefix. Which interpretation
is applicable depends on the guarantees provided by the parser that generated the structure.

3.3. Modeling Uncertainty
A system automatically creating structures for complete sentences usually strives to re-
create these gold-standard annotations. However, even for domain experts, it is often
hard to predict the correct continuation for incomplete input and, therefore, the correct
annotation of the prefix. In these cases, it might be beneficial to explicitly model this
uncertainty. Different approaches discussed in this chapter already perform some uncer-
tainty modeling: PLTAG uses substitution nodes to denote expected structure; e. g., a noun
phrase might be predicted without specifying how the noun phrase looks like. Similarly,
predictive dependency structures add under-specified nodes as stand-ins for upcoming
words.

There is another possibility of modeling uncertainty orthogonal to the one just described:
A processor may create several alternative structures, which are ordered or even assigned
a probability distribution. Producing several ordered alternatives is easily attainable with
some approaches (and will be discussed in Chapter 6). Parsers based on PCFG work
on probability distributions anyway; an incremental PCFG parser such as the one by

41

Chapter 3. Representations for Incremental Syntactic Structure

Roark (2001) can be queried for a probability distribution over syntactic structures for a
prefix. This property is used e. g. for language modeling, and I will discuss this aspect
in Chapter 7. It is next to impossible to carry out an evaluation in a standardized way
when using multiple ranked outputs; evaluating incremental structures is already tricky,
objectively determining which probability distribution over a broad set of structures is the
better one is infeasible. The only way to gauge the merit of multiple outputs is by using
them as a part of a larger system that can be meaningfully evaluated – an example for
such an integrated evaluation will be discussed in Chapter 7.

42

Chapter 4.

Gold Standards and Evaluation for
Predictive Parsing

Every evaluation of a supervised processor needs a gold standard to compare against.
Several treebanks are used to evaluate the parsers in this thesis, which form two groups:
treebanks with function-head annotation (where function words are the heads of content
words) and treebanks with content-head annotation (where function words are attached to
content words). The treebanks in the first category are the Hamburg Dependency Treebank
(HDT, German) (Foth, Köhn, et al. 2014), the Penn Treebank converted to dependency
structure using the LTH converter (Johansson and Nugues 2007) (PTB, English), and
the French Treebank (FTB) (Abeillé, Clément, and Toussenel 2003). The content-head
annotated treebanks used in this thesis all use a universal dependencies schema. They are:
The HDT converted to UD v2 (Hennig and Köhn 2017; Borges Völker et al. 2019) (UD-HDT),
the PTB converted to UD v1 using the Stanford converter (Schuster andManning 2016) (UD-
PTB), and the FTB converted to UD v2 (Seddah et al. 2018) (UD-FTB). In addition to these
paired treebanks, the UD-English-EWT treebank (Silveira et al. 2014) for a UDv2 corpus
of English and UD-Szeged (Hungarian; a UDv2 conversion of the treebank introduced by
Vincze et al. (2010)) are used.

For parsers that are trained, these treebanks also provide the training data. Generally
speaking, a parser can be viewed as a function that maps a sentence input to a tree-structure
output. This function can be learned and evaluated on treebanks because they contain
the same type of data: sentences and their corresponding trees. These pairs of input and
output are also needed in an incremental setting. However, there are no pairs of sentence
prefixes and their desired corresponding incremental syntactic structures readily available.
Based on the findings in Chapter 3, this chapter discusses how to tackle this problem both
by automatically creating incremental gold standards and by performing training and
evaluation against complete sentence annotations. We will first look at gold standards
under the aspect of evaluation and discuss training in Chapter 5.

As the evaluation compares two different structures, the structures will be distinguished

43

Chapter 4. Gold Standards and Evaluation for Predictive Parsing

by a subscript: s for the system output and g for the gold standard. When several sentences
are considered, their structures are distinguished with a superscript.

Non-incremental dependency parsers are evaluated using an accuracy score: For each
token w in a given test set we just compare the head of w in the system output – denoted
as πs(w) – to the head in the gold standard annotation πg(w). The percentage of correct
attachments is the unlabeled attachment score (UAS). As the edges of dependency trees
also have labels attached, the labeled attachment score (LAS) represents the fraction of
tokens for which both the head and the label agree with the gold standard (ls(w) = lg(w)).

Definition 6. The unlabeled and labeled attachment scores (UAS/LAS) for a set of sen-
tences T are defined as follows:

UAS(T) =

∑︁
t∈T

∑︁
w∈W t I(πt

s(w) = πt
g(w))∑︁

t∈T
∑︁

w∈W t 1

LAS(T) =

∑︁
t∈T

∑︁
w∈W t I(πt

s(w) = πt
g(w) ∧ lts(w) = l

t(w)
g)∑︁

t∈T
∑︁

w∈W t 1

Punctuation is handled in two ways for evaluation in the literature: including punc-
tuation and excluding punctuation. Sometimes non-word tokens (i. e. punctuation) are
excluded during evaluation (e. g. in Nivre et al. (2007)) and including non-word tokens
into a dependency structure can actually be adverse to parsing accuracy (Ma, Zhang, and
Zhu 2014). Some dependency treebanks (e. g. the Hamburg Dependency Treebank) do
not include the punctuation into the dependency structure but attach them all to the root
node. As predicting these attachments is trivial, parsers usually obtain perfect accuracy
for punctuation on such treebanks. On the other hand, punctuation is annotated in the
majority of the treebanks and in most of the literature, all tokens are included into the
evaluation; this is especially needed if the distinction between word versus non-word
tokens has to be made by the parser – in that case, excluding the non-word tokens from
evaluation would fail to measure that distinction. The evaluations in this paper will include
punctuation.

4.1. Mapping Prediction Nodes to Words in Full-sentence
Annotations

One approach to evaluating incremental parsers is to use the full-sentence annotations from
the non-incremental gold standard as reference (Beuck, Köhn, and Menzel 2011b). Using
them allows us to use already existing annotations without modification but requires to
reason about the prediction nodes in the system output. When computing the attachment

44

4.1. Mapping Prediction Nodes to Words in Full-sentence Annotations

score for a predictive dependency structure, the same four different cases with regards to
the dependency edges as in Section 3.2 have to be distinguished for determining whether
a node n is correctly attached (compare also Figure 3.6). Namely, whether the dependent
and head are part of the prefix or are prediction nodes.

If both n and πs(n) are part of the prefix, it is easy to decide whether that attachment
is correct as we only check whether the same attachment is part of the full-sentence
annotation, i. e. whether πs(n) = πg(n). The other three cases require to reason about
what a prediction node represents. As each prediction node stands for the expectation of
an upcoming word, an attachment of n to a prediction node p should be deemed correct
iff p represents the head of n in the full-sentence annotation. Therefore, a mapping from
prediction nodes to words outside the prefix is needed. Given a full-sentence annotation
and a predictive dependency structure of a prefix, several prediction nodes in the system
output might need to be mapped to several out-of-prefix candidate words in the gold
standard. The set of prediction nodes to be mapped is Ps, and the set of out-of-prefix
words of the gold standard is Og = Wg −Ws.

Formally, we need to select a partial function mp : Ps → Og matching the prediction
nodes that adheres to two properties: the function should be an injection, and it should
minimize the number of attachment errors. The first property reflects the assumption
that a prediction node stands for a specific upcoming word, and therefore two different
predictions may not be mapped to the same word. The second property might sound like
tailoring the evaluation to the intended results, but consider the example in Figure 4.1:
By selecting the matching that minimizes the errors, we measure the potential of the
prediction being replaced correctly by a word later on. A matching not minimizing this
error would not measure this potential.

To make the following definitions simpler and to avoid having to distinguish between
words in the prefix and prediction nodes everywhere, we will extend the matching mp

to a full matching m that also maps all in-prefix words to the corresponding word in the
full-sentence annotation. With π denoting the “head of” function to obtain the head of a
node, the desired mapping is defined as follows:

Definition 7. The best mapping between two annotations is the one that maximizes the
agreement between the edges of the annotations:

φ = argmax
m∈M

∑︂
n∈Ws∪Ps

I(πg(m(n)) = m(πs(n))) (4.1)

Based on this best mapping, we define a word or prediction n as correctly attached
(ignoring the label) iff φ(πs(n)) = πg(φ(n)). I. e. we check whether two words in the
gold standard are the same:

45

Chapter 4. Gold Standards and Evaluation for Predictive Parsing

S

Im Januar hatte die Aktie noch einen Höchststand von 24,50 Euro erreicht

PP

PN
DE
T

SUBJ

ADV

DE
T

OBJA

PP

AT
TR

PN

AUX

S

Im Januar hatte die [pred] [pred]

PP

PN
DET

SUB
J

AUX

Figure 4.1.: A full-sentence annotation (top) and a predictive dependency structure (bot-
tom). For evaluation, the prediction nodes have to be mapped to the words
outside the prefix; lines visualize all possible matches. The mappings maximiz-
ing the number of correct attachments during evaluation are highlighted in
bold.

46

4.1. Mapping Prediction Nodes to Words in Full-sentence Annotations

The cat eats because it makes noise

DE
T

SU
BJ

KON
J
SU
BJ

NEB

OBJA

The cat eats [pred] [pred]

DET

SUBJ

SUBJ

KONJ

Figure 4.2.: A predictive structure with incorrect predictions. One (green) would be
counted as correct by Beuck, Köhn, and Menzel (2011b) because their mapping
does not enforce grounding in the prefix.

1. the word we obtain by taking the head of n (πs(n)), and mapping it to a word in
the gold standard (φ(·))

2. The word we obtain by mapping n to a word in the gold standard (φ(n)), and
obtaining its head (πg(·))

Up to now, this is the approach described in Beuck, Köhn, and Menzel (2011b). However,
this approach has one problem: since prediction nodes can be mapped to any word outside
the current prefix, a structure consisting of several prediction nodes may fit quite well
just because this kind of structure often exists somewhere in an annotation. For example,
many sentences will have two sibling nodes attached to a head somewhere. A mapping
generated as described above would often contain mappings for prediction nodes that
have no valid connection to the prefix (i. e. the edges connecting the prediction nodes
to the prefix are incorrect), as depicted in Figure 4.2. A metric based on this type of
mapping would over-estimate the prediction capabilities of a parser. Mappings can be
constructed to contain only prediction nodes that are directly or indirectly licensed by
the prefix to mitigate this effect: We create the mapping iteratively over the prediction
nodes. A prediction node n may only be mapped if the head or the dependent is either
a word of the prefix (the prefix directly licenses mapping n) or a prediction node that

47

Chapter 4. Gold Standards and Evaluation for Predictive Parsing

is already mapped (the prefix indirectly licenses mapping n). Algorithm 1 shows a non-
deterministic algorithm that generates mappings that adhere to these constraints. All
mappings restricted to licensed node mappings are generated by traversing through all
possible paths of the non-deterministic algorithm.

The algorithm iteratively extends a mapping, starting with the mapping only containing
the in-prefix words (Line 2). It then chooses a yet unmatched prediction node n and an
unmatched word of the gold standard w. If their heads are matched (Line 6) to each other
or dependents of w and n are already matched (Line 7), (n,w) is added to the matching,
and the next set of candidates is selected. Otherwise, the algorithm terminates and returns
the mapping generated so far.

Algorithm 1: Non-deterministic restricted mapping generation
Data: s: predictive structure to be mapped, g: dependency structure mapped

against
Result: m ⊆Ws ∪ Ps ×Wg

1 begin
2 m← {(w,w) : w ∈Ws} // all words in the prefix mapped
3 whilem was changed in the last iteration do
4 Choose n ∈ Ps − {e : (e, _) ∈ m}
5 Choose w ∈Wg − {e : (_, e) ∈ m}
6 if (πs(n), πg(w)) ∈ m || // licensed by head
7 ∃(n′, w′) ∈ m. πs(n

′) = n ∧ πg(w
′) = w // licensed by dependent

8 then
9 m← m ∪ {(n,w)}

All mapped nodes are connected to the prefix with a chain of correct attachments: a
mapping to a word outside the prefix is only made when resulting in a correct attachment
from or to a word in the prefix or an already mapped prediction node. Note that this does
not mean that all attachments are correct. From all the possible mappings generated by
the non-deterministic algorithm, a best one still has to be selected by counting the number
of correct attachments as defined in Equation 4.1.

48

4.2. Evaluating Predictive Parses Against Full-sentence Annotations

4.2. Evaluating Predictive Parses Against Full-sentence
Annotations

The quality of a non-incremental dependency parser can be described using a single
metric, namely the attachment accuracy (see Definition 6). We count the number of
correct attachments and divide it by the number of words. For incremental output, this
single metric is not sufficient as it disregards all dynamics over time. Section 2.3 already
described evaluation metrics that capture properties of incremental processors, mainly
for processors other than parsers. This section introduces an evaluation schema for
incremental dependency parsers based on the ones proposed in Beuck, Köhn, and Menzel
(2011b) and Beuck and Menzel 2013.

An accuracy score for incremental output could be computed by summing over the
attachments for all words in all prefixes. Because words in the prefix can be attached to
prediction nodes, mappings would still need to be computed. There are three problems
with this approach: First, words early in a sentence are counted more often than words
later in the sentence, leading to an artificially increased weight of sentence-initial words.
Second, the accuracy score largely disregards the prediction nodes: Whether predicting
them is correct and whether they are correctly attached. Third, the metric does not give
any insight into the process’ behavior over time, e. g. whether the parser is monotonic, or
how the accuracy correlates with how recent a word is.

4.2.1. Computing Incremental Accuracy
Because the evaluation should address several aspects, more than a single metric is needed
to capture these aspects, as described in Section 2.3 for other processors. To capture the
accuracy without the weight shift towards sentence-initial words and at the same time
include information about the dynamics of the accuracy over time, we can compute the
accuracy relative to the position of the frontier, as introduced in Section 2.3.2.

Let S∫ be all structures generated by the system to be evaluated based on a non-
incremental gold-standard S}. To ease the notation, let τ t(n) = W t

s(|W t
s | − n) be the

n-newest word of a prefix t ∈ S . We can then define the incremental accuracy for
predictive dependency parses as follows, with I being the indicator function:

inc_acc(n) =

∑︁
t∈S∫

I(πt
g(φ

t(τ t(n))) = φt(πt
s(τ

t(n))))∑︁
t∈S}

max(|W t
g | − n, 0)

(4.2)

That is, we compute how many times the n-newest word of a prefix was attached

49

Chapter 4. Gold Standards and Evaluation for Predictive Parsing

correctly and divide it by the number of prefixes that actually had an n-newest word. This
yields the attachment accuracy at a specific position relative to the newest word of a prefix.

Reporting inc_acc(n) for several values for n gives an insight into the dynamics of a
system. For a monotonic system, the accuracy never increases with increasing n, i. e. when
more of the context to the right becomes available. In contrast, non-monotonic systems
can improve the accuracy with increasing n. Performing an additional measurement
of the accuracy of full-sentence annotations allows comparing incremental parsers to
non-incremental ones.

4.2.2. Subdividing Accuracy With Respect To Predictions
Attachments to prediction nodes behave differently than in-prefix attachments: Because
of the way the matching from prediction nodes to the gold standards are generated, an
attachment involving a prediction can be counted as correct even though this prediction
will be filled with an incorrect word later on. Therefore, the incremental accuracy mea-
surement can be divided into more fine-grained groups than just “correct” and “wrong”:
an attachment of a word w can be classified into four cases:

correct πg(φ(w)) = φ(πs(w)), πs(w) ∈Ws

correct prediction πg(φ(w)) = φ(πs(w)), πs(w) ∈ Ps

wrong prediction πg(φ(w)) ̸= φ(π(w)), πs(w) ∈ Ps ∧ πg(w) ∈ Pg

wrong πg(φ(w)) ̸= φ(πs(w)), πs(w) ∈Ws ∨ πg(w) ∈Wg

Both correct and wrong attachments are divided into whether they attach to a word
outside the prefix or not. An attachment of a word is correct if it is correctly attached
in-prefix. The attachment is a correct prediction if the head is a prediction node that is
mapped to a prediction node that is also the head in the gold standard. An attachment is
a wrong prediction if the parser correctly guessed that the word should be attached out
of the prefix, but the head is not mapped to the word’s head in the gold standard. In all
other cases, the attachment is wrong. For a monotonic parser, the “correct” attachments
will stay correct, whereas the “correct prediction” attachments might become incorrect
later on due to the parser incorrectly filling the prediction. Classifying the attachment
of a word w as a wrong prediction means that while the parser correctly assumes that w
needs to be attached outside the prefix, it is attached to a prediction node not mapped
to the correct word in the gold standard. This class can be seen as “less wrong” than
wrong attachments because a different mapping might have resulted in classifying the

50

4.2. Evaluating Predictive Parses Against Full-sentence Annotations

20%

40%

60%

80%

100%

0 1 2 3 4 5 comp.
dist. from newest word

ac
cu

ra
cy

20%

40%

60%

80%

100%

0 1 2 3 4 5
dist. from newest word

st
ab

ili
ty

Figure 4.3.: Visualization of incremental parser performance. Left: accuracy, right: stability.
Correct: , correct prediction: , wrong prediction: , wrong:
X-axis: accuracy of the tokens N left of the newest one; comp: accuracy
measured on complete sentences.

attachments as correct.1 When comparing a non-predictive parser to a predictive one, the
wrong prediction category should be folded into correct prediction as the non-predictive
parser does not specify the target of a connection into the future. Therefore, the predictive
parser should not be penalized for trying to make these predictions.

As all these metrics sum to a quite high amount of numbers, they can be visualized to
illustrate the overall performance of a parser better. Figure 4.3 shows an example for a
visualization: Bar charts depict the incremental accuracies with the complete-sentence
accuracy on the right serving as a comparison.

4.2.3. Stability Measures
In addition to the accuracy, the stability of the output is of interest (c.f. Section 2.3.3). A
stability measure can be obtained by computing inc_acc(n) against the system output
for the complete sentence instead of the gold-standard annotation. An attachment is
then considered stable if it is consistent with the final output. Note that this notion of
stability is different from the one proposed by Baumann, Buß, and Schlangen 2011, which
also requires that all outputs between the current one and the last one generated by the

1These definitions of wrong prediction and wrong differ from the definitions in Beuck, Köhn, and Menzel
(2013), who consider an attachment to be an “wrong prediction” also if the parser creates an attachment
to a prediction node but the word should be attached in-prefix.

51

Chapter 4. Gold Standards and Evaluation for Predictive Parsing

processor are consistent with the complete output. In other words, Baumann et al.’s
stability measures the probability that an output will not change anymore. In contrast,
our stability measures the probability of a specific output also being in the final output.

4.3. Creating Gold-standard Annotations for Sentence
Prefixes

We now have the methods to evaluate predictive dependency parsers, but still, lack the
incremental gold standards to compare against. While these could be manually annotated,
doing so is prohibitively costly because the number of increments is a multitude of the
number of sentences in the corpus. Therefore, the evaluation will be performed against
incremental gold standards that are automatically derived from the non-incremental
ones. Beuck and Menzel (2013) propose an approach to automatically generate predictive
dependency annotations from the annotation of full sentences. Their method tries to
generate upper bounds for predictability, which nonetheless over-generate predictions as
little as possible. Therefore, not everything that is deemed predictable by the algorithm is
predictable in reality, but everything that is predictable should be deemed as predictable.
Beuck and Menzel (2013) primarily use these predictive annotations derived from full-
sentence annotations to investigate what kind of predictions a parser should be able to
make, e. g. howmany nouns a parser should be able to predict. However, these annotations
can also be used to evaluate parsers (and to train them, see Chapter 5).

To compute a predictive dependency annotation for a prefix of length n from a gold-
standard dependency structure t = ⟨W,π, l⟩, we simulate annotating the wordsW t(1 . . . n)
with a structure containing predictions, and reason about which words of W t(n+ 1 . . .)
are predictable. The reasoning about predictability primarily relies on the dependency
labels of t. To compute the predictive dependency structure for a specific prefix, let
Vi = W t(1 . . . n) be the tokens in that prefix and Vo = W t(n+ 1 . . .) all tokens that are
outside the prefix. The task is to come up with a set Pr ⊆ Vo of words that are deemed
predictable based on the words of the prefix (Vi), using the dependency structure as guiding
information. The predictive dependency structure is then generated by removing all non-
predictable words outside the prefix and delexicalizing the predictable words. Algorithm 2
shows the pseudo-code of the approach proposed by Beuck and Menzel (2013) to determine
the set of predictable words.2 It iteratively adds tokens to the set of predictable tokens (Pr)
until no further changes have been made in an iteration. The algorithm makes use of two
language-specific pre-defined sets of dependency labels: lex_predictable are syntactic roles

2The original implementation for German is by Niels Beuck, structuring the algorithm as shown to abstract
from a single annotation schema and adaptation to English was done by me.

52

4.3. Creating Gold-standard Annotations for Sentence Prefixes

deemed predictable if the head of the word is known, i. e. part of the prefix. An example
of this category is the obj label because once a verb is observed, we assume to know the
valency of that verb and can therefore predict how many objects it takes. Predictable are
those roles that also can be predicted if the head of the word is merely predicted. An
example would be the subj label because a word filling that role can be predicted even if
the identity of its governing verb is not known.

Algorithm 2: Determine which words are predictable
Data: ⟨W,π, l⟩: A dependency structure, n: number of words in the prefix
Result: Pr ⊆W

1 begin
2 Vi ←W (1 . . . n)
3 Vo ←W (n+ 1 . . .)
4 Pr ← ∅
5 while Pr was changed in the last iteration do
6 for w ∈ Vo do
7 if ∃d ∈ Pr ∪ Vi. (d,w) ∈ π then
8 Pr ← Pr ∪ {w} // predict connection to the root

9 if l(w) ∈ lex_predictable ∧ π(w) ∈ Vi then
10 Pr ← Pr ∪ {w} // predict dependents of known words

11 if l(w) ∈ predictable ∧ π(w) ∈ Vi ∪ Pr then
12 Pr ← Pr ∪ {w} // predict obligatory dependents

A word w ∈ Vo is assumed to be predictable (and therefore added to Pr) if one of the
following three criteria is met:

bottom-up prediction There is another word w′ so that w is the head of that word
(w = π(w′)), and w′ is already known to become part of the predictive dependency
structure, either because that word is in the prefix (w′ ∈ Vi) or if it is already
identified as being predictable(w′ ∈ Pr). Lines 7 and 8 cover this aspect, and it is
needed to create connected structures.

lexical top-down prediction The head of w is in the prefix (π(w) ∈ Vi) and w fills a
syntactic role – encoded by its dependency label – that is assumed to be required by
an already observed word, e. g. the object role: If π(w) is a verb for which we know
the identity (because it is in Vi) and w is its object, w is assumed to be predictable

53

Chapter 4. Gold Standards and Evaluation for Predictive Parsing

because it fills a valency of the verb. In the algorithm, the set of these labels is called
lex_predictable and this aspect is covered in lines 9 and 10.

top-down prediction The head of w will be in the partial dependency analysis (π(w) ∈
Vi ∪Pr) and w fills a syntactic role that is deemed to be always needed, irrespective
of the head’s lexical identity. That means w can also be predicted if π(w) is outside
the prefix and its lexical identity is not known (π(w) ∈ Pr). An example of this is
the subject label: If π(w) is in Pr andw is its subject, w is assumed to be predictable.
(lines 11 and 12)

Note that this approach highly depends on the annotation schema: The sets lex_pre-
dictable and predictable have to be determined for each annotation schema independently.
Determining them requires detailed knowledge of the annotation schema because one has
to decide for every single relation whether words attached with this relation should be
deemed predictable and, if so, to which of the two groups it should belong.

The label sets lex_predictable and predictable for German have been adopted from (Beuck
and Menzel 2013), while the sets for English have been obtained by manually analyzing
the Penn Treebank for predictability. The sets for Universal dependencies were created
from the descriptions of the labels in the UDv2 documentation.3 The relevant sets are
listed in Appendix C.

For words marked as predictable, their existence and word class, but not their lexical-
ization and position, can be predicted. Therefore, the lexical items are substituted with
a placeholder, and the part-of-speech tags are generalized to more coarse-grained ones,
only differentiating whether the word behaves more like a verb or more like a noun. We
will call the set of gold-standard prefix annotations generated this way TG.

While this procedure is language-independent, some annotation-specific transforma-
tions must be applied nonetheless, which are not shown in the pseudo-code. The correct
length of right-branching chains such as coordinations or conjunctions can not be pre-
dicted, only that there needs to be at least one. However, in both annotation schemata,
such chains are sequences of one label, terminated by a different label on the right-most
side. In these cases, the intermediate chain is removed from the prediction, and only
the right-most part containing the closing label is kept. In addition to this problem with
top-down prediction, there is a similar issue for the HDT annotation: Some structures
can not reasonably be predicted by a parser (or a human) because the sub-structure to
be predicted consists of several words, even though a single word could also reasonably
complete the prefix. Figure 4.4 shows such an example: The continuation of the sentence
contains several verbs, which form an auxiliary chain. The different dependents in the

3https://universaldependencies.org

54

https://universaldependencies.org

4.3. Creating Gold-standard Annotations for Sentence Prefixes

Dass er ihn [pred] [pred] [pred]

KONJ

SUBJ

OBJA

AUX

AU
X

⇒

Dass er ihn [pred]

KONJ
SUBJ

OB
JA

Figure 4.4.: Example for folding: When generating a predictive dependency structure for
the first three words of the clause “dass er ihn gesehen haben soll” (literally:
“that he him seen has should” meaning: “that he is supposed to have seen
him”) . All three verbs would be kept for connectedness, but are then folded
into a single predicted verb, which is consistent with the possible single verb
continuation “dass er ihn sah” (lit. that he him saw).

prefix are attached to different words of this chain, but the sentence could also just have
continued with a single verb, in which case all dependents would be attached to the same
prediction node. In these cases, Beuck and Menzel (2013) perform folding, i. e. multiple
prediction nodes generated by the algorithm are merged into a single prediction node.
Using folding results in a non-monotonic incremental gold standard: tokens attached
to the same prediction node in one increment are supposed to be attached to different
tokens in a later increment. A parser producing correct output under these circumstances
has to be non-monotonic. This mismatch between the (reasonable) prediction of a single
word and realization as several nodes is an artifact of the annotation schema, and its
consequences will be discussed in Section 6.4. In a content-head annotation, the auxiliary
verbs would be attached to the content-bearing verb as well as the words of the prefix.
Therefore, the prediction needed would be the same with a single verb and a verb chain,
leading to a more consistent annotation with regards to the predictable structure.

55

Chapter 4. Gold Standards and Evaluation for Predictive Parsing

4.4. Evaluating Prediction Nodes
Up to now, prediction nodes have not been the target of evaluation. In Section 4.2,
incremental accuracy was introduced to measure the quality of an incremental parser.
However, only in-prefix words are captured by this metric, and prediction nodes are
only indirectly included as they are needed as heads for in-prefix words. The attachment
accuracy of out of prefix nodes is not counted, and prediction nodes that have no child in
the prefix are completely disregarded. Also, a parser evaluated under this scheme does
not benefit from producing top-down predictions as these are not evaluated at all.

Accuracy can not be computed for the prediction nodes because the number of pre-
dictions made by a parser is not predetermined. Instead, precision and recall have to
be measured (similar to evaluation of phrase-structure parses, in which the number of
phrases is not fixed). The precision is simply the number of correctly attached prediction
nodes divided by the number of prediction nodes.

The prediction precision can be computed using set of generated structures Ss, and, for
each structure t of Ss, the set of prediction nodes P t

s of the predicted and gold-standard
head of functions πt

s and πt
g , and themapping from predicted structure to the corresponding

(non-incremental) gold structure φt as follows:

corr_pred =
∑︂
t∈Ss

∑︂
p∈P t

s

πt
g(φ

t(p)) = φt(πt
s(p)) (4.3)

pred_prec =
corr_pred∑︁

t∈Ss
|P t

s |
(4.4)

pred_prec is structurally very similar to inc_acc (Equation (4.2)), instead of counting
the accuracy at a specified point relative to the frontier, the correct attachments of the
prediction nodes are counted.

Computing precision is only a first step to assessing the quality of predictions, but still,
a parser will not be rewarded for producing additional predictions. However, recall can
not sensibly be computed against whole-sentence annotations: It would pose the complete
remaining sentence as a target to be predicted. On the other hand, the incremental
gold standards developed in Section 4.3 provide a more reasonable upper bound for
predictability.

The parser’s output can be mapped against the incremental gold standard in the same
way as it is mapped against the non-incremental one, according to the definition in
Equation (4.1). Using this mapping, inc_acc and pred_prec can also still be computed as
before. Also, the prediction recall can be computed by dividing the number of correctly

56

4.5. Evaluating Non-predictive Incremental Parsers

attached prediction nodes by the number of prediction nodes in the gold standard prefixes,
essentially substituting Sg for Ss in the denominator:

pred_recall =
corr_pred∑︁

t∈Sg
|P t

s |
(4.5)

Without referring to incremental gold standards, only the number of predictions can be
compared between different approaches – a number which is much less informative and
interpretable.

4.5. Evaluating Non-predictive Incremental Parsers
Some parsers can work incrementally but do not use prediction nodes; words that should
be attached to a word outside the current prefix are simply left unattached. Examples
are parsers based on a shift-reduce formalism such as the one that will be introduced in
Section 5.1.

It might sometimes be desirable to compare parsers performing prediction with pre-
diction nodes to incremental parsers that only produce dependencies between in-prefix
tokens and which leave words that should have a head outside of the prefix unattached.
The definition of correctness has to be adapted to be applicable for both cases to carry out
such a comparison. We assume that a parser will attach currently unattached words to
a word currently outside of the prefix once that word becomes available. Therefore, an
attachment of a word is deemed correct if it is correctly attached in-prefix or if the correct
attachment is outside of the prefix, and the word is either unattached (for non-connecting
parsers) or attached to a prediction node (without performing any matching; for predictive
parsers).

An output that includes prediction nodes can be interpreted in a compatible way by
relaxing the correctness requirements: Instead of matching the prediction nodes to the
gold standard, attaching a word to a prediction node is considered correct if that word is
attached out of prefix in the gold standard.

This method of evaluation is strictly less informative than evaluating with prediction
node matching because all information about prediction is discarded. Also, the accuracies
measured are higher than the ones obtained when requiring a match of the prediction
nodes. Therefore, this type of evaluation should only be used to compare a predictive
processor to a non-predictive one. To compare two predictive parsers, themore informative
approach with matching should be used.

57

Chapter 4. Gold Standards and Evaluation for Predictive Parsing

4.6. Labeled Versus Unlabeled Evaluation
Even though most parsers generate labeled dependency structures, this thesis will only
evaluate unlabeled dependency structures. Edges are often labeled using only the single
edge itself as information. Several parsers use first-order labelers, e. g., TurboParser and
RBGParser, and already perform reasonably well, even though higher-order features
yield slightly higher labeling accuracies (Köhn, Lao, et al. 2014). In this setting, the edge
labeling only slightly reduces the accuracy of all edges but has no impact on the degree
of non-monotonicity. If the labeling is optimized globally, e. g. as proposed by Shen, Lei,
and Barzilay (2016), this introduces additional non-monotonicity and requires reasoning
about different kinds of non-monotonicity: what is the difference between a change of
attachment, a change of labeling and a change of both? As this question is out of the scope
of this thesis, only unlabeled attachments will be evaluated.

4.7. Tying It All Together
In this chapter, several quality metrics have been discussed that cover aspects of incremen-
tal parses. The non-incremental accuracy based on complete-sentence output shows how
good the output is after consuming all input and whether a degradation in comparison
to non-incremental parsers takes place. The incremental accuracy describes how fast the
parser can make high-quality decisions. The incremental stability shows how dependable
the output is with respect to its age. Prediction precision and recall measure the quality
and quantity of forward-looking structure.

58

Chapter 5.

Training Predictive Dependency Parsers

In Section 3.2, we already examined how the structures that an incremental parser cre-
ates should look like, and we discussed approaches to evaluate parsers producing such
structures (Chapter 4). All that remains to be done is developing a parser that performs
incremental parsing, and this chapter will introduce such parsers. There are two main
approaches to syntax parsing: transition-based parsing and graph-based parsing. As
transition-based parsers are already incremental in a weak sense, I will discuss them (and
their shortcomings for incremental processing) first.

5.1. Transition-based Parsing for Incremental Structure
Generation

Using a transition system to build dependency parsers is very popular and has produced
state-of-the-art parsers over a relatively long period while keeping the same basic idea
(Nivre 2003; Nivre 2007; Nivre 2008; Huang and Sagae 2010; Gómez-Rodríguez and Nivre
2010; Goldberg and Nivre 2013; Rodriguez, Sartorio, and Satta 2014; Honnibal and Johnson
2014; Dyer et al. 2015; Kiperwasser and Goldberg 2016, inter alia).

A transition-based parser employs a shift-reduce automaton to generate a dependency
structure for a sentence. The automaton has a defined starting configuration (based on the
sentence to parse), a fixed set of possible actions that transform one configuration into
another one and stopping criteria. Following the notation by Nivre (2008), the quadruple
< C, T, cs, Ct >defines a transition system, where

• C is the set of configurations (or states),

• T the set of transitions (partial functions of the type C → C),

• cs a function mapping an input sentence to a configuration, and

• Ct ⊂ C the set of terminal configurations.

59

Chapter 5. Training Predictive Dependency Parsers

Ideally, the set of actions is modeled in a way that each sequence of legal actions leads to
a configuration in Ct.

The transition system defines a search space with a given initial state (Cs) and a set
of goal states (Ct). Of these goal states, only some represent the correct dependency
structure, and a parser’s job is to find one of these goal states by preferring them to the
ones representing an incorrect structure. These preferences are encoded in scores for
the transitions between states; the parser learns a scoring function s : C × T → R and
the score for a state is the sum of scores of the transitions leading to that state. Early
transition-based parsers used greedy decoding for trying to find the best goal state, i. e.,
from the current state, they use the transition with the highest score and repeat this until
reaching a goal state. A parser working like this can get trapped in a wrong path because s
needs to assign the highest score to the correct transition from each state for the parser to
reach a correct terminal configuration, a rather strict requirement for s. This requirement
can be relaxed by using beam search (compare sections 2.2.1 and 6.3) as performed by
Huang and Sagae (2010), Andor et al. (2016) and many others.

5.1.1. The arc-standard transition system
There is a variety of definitions for configurations and actions in the literature (such as
the arc-eager and arc-standard variants (Nivre 2008) or the two-stack variant (Gómez-
Rodríguez and Nivre 2010)) that alter the automaton, e. g. to be able to produce non-
projective structures.1 An overview and categorization of such transition systems was
compiled by Bohnet, McDonald, et al. (2016), but for this thesis it suffices to discuss two
of the structurally simplest ones, the arc-standard transition system (Nivre 2004), and
the arc-eager transition system. A configuration of an arc-standard transition system
consists of a stack S, an input buffer I , and a set of generated edges O, yielding a triple
< S, I,O >. The initialization function cs maps a sentence s = (w0 . . . wn) to the
configuration < ⊥, s,∅ >. The set of terminal configurations are the ones with empty
input and one element on the stack. The set of transitions T for arc-standard are2:

shift < S,w|I,O >→< S|w, I,O >; Moves the leftmost element from the input to the
top of the stack.

left-arc < S|d, h|I,O >→< S, h|I,O ∪ {(d, h)} >; Attaches the topmost element of
the stack to the leftmost of the input and removes the dependent from the input.

1Projective structures are the ones where for each dependency relation of two words d and h, the words
occuring between d and h in the sentences are children of either d or h (either directly or transitively).

2There are different but functionally equivalent descriptions of the arc-standard transition system in the
literature. This one follows Nivre (2008).

60

5.1. Transition-based Parsing for Incremental Structure Generation

right-arc < S|h, d|I,O >→< S, h|I,O ∪ {(d, h)} >; Attaches the top element of the
stack to the leftmost element of the input and removes the dependent from the stack.

If s only uses information from a fixed set of words of the input buffer I , the parser
can be used incrementally by performing transitions until a word from I is queried that
is not yet available. The parser then yields the current best state as incremental output
and waits for the next word. A greedy parser will create monotonic output. In contrast,
a parser employing beam-search3 might create non-monotonic output because the best
scoring state might not be a successor of the previously best scoring state.

When restricting the information obtained from I to only the leftmost word of I , the
parser can be seen as sufficiently incremental; it can incorporate all the words currently
available. However, what kind of structure does a transition-based parser generate in
the intermediate states? The arc-standard transition system has a property that limits
structure generation to be bottom-up: Once a word w has been attached to another word,
no word can be attached to w anymore. This property is enforced by removing w from
the stack upon creating an arc with w as the dependent (see definitions of left-arc and
right-arc above). This property makes transition-based parsers based on the arc-standard
or a similar transition system create structures from bottom to top; attaching a word to
its head needs to be delayed until all its dependents have been seen. This effect is most
visible for the main verbs: They form the root of the dependency structure and can occur
rather early in a sentence but can only be marked to be the root (by being attached to 0)
after processing the complete sentence. Bottom-up parsing leads to fragmented output
where different parts of the prefix are not connected to each other because either the
common head is still missing or a word needs to stay unattached so that other words
can be attached to it. Using the intermediate states of a transition-based parser with
the two-planar transition system (a transition system that can produce non-projective
structures) leads to output containing 2.45 unconnected partial trees on average(Beuck,
Köhn, and Menzel 2013).

5.1.2. The arc-eager transition system
The arc-eager transition system is similar to the arc-standard one, but creates right arcs
(where the head is on the left of the dependent) in a top-down manner.

3Beam-search keeps track of a fixed number n of alternatives, generates all possible followup states from
these states and chooses the bestn configurations again. At the end, it takes the best of then configurations
as output. This way, it can select a path through the search space that is not the highest-rated one at every
point in time.

61

Chapter 5. Training Predictive Dependency Parsers

shift < S,w|I,O >→< S|w, I,O >; Moves the leftmost element of the input to the top
of the stack.

left-arc < S|d, h|I,O >→< S, h|I,O ∪ {(d, h)} >; Attaches the topmost element of
the stack to the leftmost of the input and removes the dependent from the stack.

right-arc < S|h, d|I,O >→< S|h|d, I,O ∪ {(d, h)} >; Attaches the topmost element
of the stack to the leftmost of the input and pushes the dependent from the input to
the stack.

reduce < S|d, I,O >→< S, I,O > if (d, _) ∈ O; Removes the top element from the
stack if that element already has a head.

The shift and left-arc transitions are the same as in the arc-standard system, but the
right-arc transition can now be applied as soon as both head and dependent are available
because the dependent is not removed from the stack. To remove an element from the
stack once no more words should be attached, the arc-eager system introduces the reduce
action. With this transition system, a shift-reduce parser is as incremental as it can be: it
generates edges as soon as both head and dependent are available. However, all words
with heads outside the current prefix are left unattached.

The number of words necessarily left unattached when parsing with the arc-eager
transition system depends on the language and the annotation scheme (see Table 5.1):
Parsing the Universal Dependencies treebanks incrementally with the arc-eager transition
system results in a high amount of unattached words due to the annotation scheme. For
example, the annotation of content verbs as heads instead of the auxiliary verbs induces
additional unattached nodes for UD-HDT when looking at sentence prefixes as the content
verb appears often at the end of the sentence. Even treebanks with comparably low
numbers of unattached words would still be parsed with nearly one word unattached in
each prefix on average, with outliers of three or more words without a head in the prefix.

We can see that the arc-eager approach produces edges earlier but still leaves a consider-
able amount of words unattached. This problem is more severe when parsing UD treebanks,
as the annotation guidelines result in more edges going to the right. These frameworks
generate no predictions at all. While the information obtainable from a transition-based
parser is incomplete, that output can still be used as an additional input signal to a parser
creating more complete incremental structure as shown in Köhn and Menzel (2013).

62

5.2. Graph-based Incremental Parsing

HDT HDT-UD FTB FTB-UD PTB-CoNLL PTB-UD
mean 1.07 1.77 0.77 1.31 0.78 1.26

median 1 1 0 1 0 1
95%-quant. 4 5 3 4 3 4

Table 5.1.: Distribution of words left unattached when performing arc-eager parsing. Num-
bers obtained on the training set of each treebank by counting tokens attached
out of prefix.

5.2. Graph-based Incremental Parsing
The other main school of dependency parsers I experiment with are graph-based parsers.
These do not optimize an action sequence but learn some function f that maps a depen-
dency tree to a score. MST parser (McDonald, Pereira, et al. 2005) uses a function that
decomposes over the edges of the tree, i. e., the score of a tree is the sum of scores of the
edges. With y being the set of the edges and s(d, h) a scoring function over a single edge,
the function to be maximized is

f(y) =
∑︂

(d,h)∈y

s(d, h) (5.1)

A maximum spanning tree algorithm can be applied to obtain the dependency structure
maximizing f using this decomposition. In contrast to transition-based parsers, an MST
parser does not impose any restrictions, such as projectivity, on the dependency structure.
Based on this idea, other variants of MST parser use functions that do not decompose
over the edges but also score edge pairs and triplets. Exact non-projective decoding with
such a function is NP-hard (McDonald and Satta 2007). Therefore, these parsers are either
confined to producing structures with specific properties (the parser of Koo and Collins
(2010) can only create projective structures) or to inexact decoding, i. e., the tree produced
is not necessarily the one maximizing f (e. g.Martins, Smith, and Xing (2009) or Koo,
Rush, et al. (2010)). Despite being restricted to approximating the optimum, these parsers
perform better than the ones performing exact decoding over decomposable objective
functions.

There is a graph-based parsing framework performing inexact decoding for which
different approaches for incremental parsing have been implemented in the past: the

63

Chapter 5. Training Predictive Dependency Parsers

Weighted Constraints Dependency Grammar (WCDG) parser formalism (Foth, Daum, and
Menzel (2004), Schröder (2002), and Foth, Menzel, and Schröder (2000)). In contrast to the
parsers referenced before, it uses a manually created grammar of constraints assigning
weights to parts of a tree; the optimal dependency tree, according to the grammar, is
searched by repeatedly modifying an initial tree. There have been several extensions to
WCDG for producing incremental structures. Foth, Menzel, Pop, et al. (2000) produced
incomplete, unconnected structures for sentence prefixes. Daum (2004) introduced a
special node as a stand-in for all upcoming material. Beuck, Köhn, and Menzel (2011b)
and Beuck, Köhn, and Menzel (2013) developed an extension to WCDG for producing
incremental dependency structures with prediction nodes as described in Section 3.2;
this extension is implemented in the jwcdg parser. jwcdg will serve as a comparison
to the parsers developed as part of this thesis.4 The WCDG approach has two major
disadvantages: First, it can only create dependency structures for German using a specific
annotation scheme (the HDT annotation scheme (Foth 2006)). Adapting it to a different
language or annotation scheme would be expensive as a new grammar needs to be written.
Second, the parser is very slow. Even with optimizations and guidance from a second
parser, the parsing speed is measured in seconds per word (Köhn and Menzel 2013) – too
slow for interactive use.

5.3. Incremental Graph-based Parsing with Dual
Decomposition

I will now introduce the first incremental parser developed for this thesis, incTP. It uses
TurboParser (Martins, Almeida, and Smith 2013) as a basis. I adapted TurboParser for
incremental parsing because, in contrast to most other approaches, TurboParser does not
impose structural constraints on the dependency trees it generates in its core algorithm.
It enforces these constraints using (modifiable) hard constraints in the linear program it
generates for each parsing problem.

TurboParser is a graph-based parser that formulates the problem of finding the correct
dependency structure as an integer linear program (ILP) (see Chapter 29 of Cormen et al.
(2001) for an introduction to linear programming). Each possible edge is represented by a
binary variable, and the ILP is formulated in such a way that every valid solution to it is
interpretable as a dependency tree. Because every variable represents one (directed) edge
between two words, a variable assignment can be converted into a graph by selecting

4jwcdg can make use of several predictors to enhance its performance, but not when parsing incrementally.
Therefore, the accuracies reported here cannot be compared to the ones published for non-incremental
WCDG parsing performance.

64

5.3. Incremental Graph-based Parsing with Dual Decomposition

precisely the edges that have a value of one.
An ILP consists of two parts – the objective function to be optimized (f) and a set of

auxiliary conditions ensuring the well-formedness of the results. Martins, Smith, and
Xing (2009) managed to formulate auxiliary conditions that make sure that every valid
result of the ILP corresponds to a tree structure using only a polynomial number of helper
variables and conditions with respect to the input length. Previous formulations required
an exponential number, making parsing with ILPs much less practical (Riedel and Clarke
2006). While the objective function does not decompose over single edges, f can be
decomposed into a sum of components, each scoring on one to three connected edges.
Using factors containing more edges makes the ILP harder to optimize (Riedel and Clarke
2006).

As solving an ILP is NP-hard, TurboParser approximates the result by relaxing the
problem into a (non-integer) linear program using a technique called dual decomposition.
The dual decomposition method represents the ILP to be solved as factor graphs. These
are bipartite graphs that have variable nodes on one side and factor nodes connecting to
variable nodes on the other side.5 The factors correspond to the parts of f and the hard
constraints imposed by the ILP. The set of possible assignments to the factor graphs (for
variables and factors) is Y . We can define a probability distribution over Y (and therefore
over all possible trees for a given input) by defining

Pθ(y) =
1

Z(θ)
exp(θ ∗ y) (5.2)

with θ being the weights of the model and Z(θ) being a normalization factor. The task
is to find the most probable y (corresponding to a dependency tree) given the parser model
θ using maximum-a-posteriori (MAP) decoding. As the denominator Z(θ) is constant,
it can be dropped to find the maximizing argument. The optimization criterion f used
by TurboParser is decomposable into smaller parts, each containing a subset of the ILP
variables. Each part corresponds to a weight in θ.

TurboParser performs MAP decoding by alternating directions dual decomposition (Mar-
tins, Smith, Figueiredo, et al. 2011): For each part of f , a sub-problem is created using
new variables so that each sub-problem can be easily optimized. Variables of different sub-
problems corresponding to the same variable in f are linked by an agreement constraint.
For example, if a variable µi of f is present in the parts α and β, this variable is copied as
µα
i in α and as µβ

i in β. Now the parts are iteratively optimized, with each variable, e. g.
µα
i , being penalized for deviating from the average of all variables it is linked to (in this

5This description is following the notation by Martins (2012), which goes into much more detail.

65

Chapter 5. Training Predictive Dependency Parsers

S

John drives a [pred] [unused]

SB
J

DE
T

OBJ

Figure 5.1.: A dependency structure with an unused node to denote that [pred] is not part
of the analysis.

example, µα
i and µβ

i should not deviate from 0.5(µα
i +µβ

i)). As the process runs iteratively,
the average from the previous iteration can be used for the quadratic penalizing term.

5.3.1. Performing predictive parsing with ILPs
Extending a dependency parser to incremental parsing with prediction nodes introduces
a significant shift in the problem to be solved: While originally the problem was where
to attach each word to (1), in the incremental case the additional problem arises which
prediction nodes to include into the analysis (2). Problem (2), however, depends on the
syntactic structure of the sentence prefix (i. e. on problem (1)). Therefore, it is not possible
to determine the prediction nodes that should be included in the structure before parsing
commences, but the decision has to be made while parsing; both problems have to be
solved at the same time. As the set of nodes needs to stay fixed during parsing,6 incTP
varies the number of prediction nodes by an enhanced optimization problem that can
mark nodes for deletion. These nodes are removed after the optimization step has finished.
Prediction nodes are dynamically excluded by providing the parser with an additional
node, named unused. It is always attached to the special node 0 (the root node of every
analysis), and it can only dominate prediction nodes. unused and every prediction node it
dominates is not considered part of the analysis and is removed from the parsers’ output.
The problem of whether a prediction node should be added to the analysis is reduced to
the problem of where to attach that prediction node; Figure 5.1 shows an example.

6The nodes are encoded into the optimization problem, which stays fixed during parsing as parsing is exactly
solving this problem.

66

5.3. Incremental Graph-based Parsing with Dual Decomposition

5.3.2. Deciding on fixed sets of prediction nodes
To enable the parser to include prediction nodes into the syntactic structure it generates,
a set of prediction nodes has to be provided. While this set could include any number
of prediction nodes, we only include a set that covers most cases of prediction since
rare prediction nodes have a very low a priori probability of being included. Additional
prediction nodes make the parsing problem more complex. This set is sensitive to the
annotation schema and has to be determined in advance; it can be obtained by generating
incremental gold standards from a treebank as described in Section 4.3 and counting the
occurrences of prediction nodes in them. Different possible sets can then be probed for the
coverage they yield for the generated gold standards, i. e. the percentage of prefixes in the
incremental gold standards using a subset of the prediction node set under consideration.
The experiments in this chapter are carried out with language-dependent sets of prediction
nodes that are a super-set for a large enough percentage (> 90%) of the prediction nodes
in the generated gold standards. Extending this coverage requires a significantly higher
number of prediction nodes (cf. Beuck and Menzel (2013)).

The following experiments use the incremental gold standards for German and English
as described in Section 4.3, both for training and evaluation. The prediction nodes are
delexicalized in the following way: Their lexical identity is replaced with the string
“[virtual]”7; the part-of-speech tag is generalized to a more coarse grained one – either to a
tag representing noun-like words or a tag representing verb-like words (See Appendix C).

5.3.3. Incrementalizing TurboParser
Since in the TurboParser framework well-formedness is enforced by auxiliary constraints
of the ILP, additional constraints on the shape of analyses can be imposed without changing
the core algorithm of the parser. Each ILP is constructed over the in-prefix words, the
maximum number of includable prediction nodes and the unused node. incTP uses
three additional restrictions with respect to prediction nodes to enable the parser to add
prediction nodes to an analysis selectively:

1. A prediction node that is attached to unused may not have any dependents. Oth-
erwise, a prediction node with in-prefix dependents might be removed from the
structure resulting in an ill-formed structure.

2. A prediction node may not be attached to 0 if it has no dependents. This especially
prevents the prediction of isolated verbs that might otherwise happen because verbal
prediction nodes are often attached to 0 in the training data.

7This is a reminiscence to the old name for prediction nodes — “virtual nodes” – used in previous literature.

67

Chapter 5. Training Predictive Dependency Parsers

3. Only prediction nodes may be attached to the unused node. This prevents in-prefix
words from being removed from the dependency structure.

These constraints are enforced by adding factors to the factor graph of the ILP. Using the
notation introduced in Section 3.2, for a dependency structure ⟨W,P, π, l⟩ with the unused
node u being part of P and z⟨h,d⟩ representing the binary variable for the edge between
a head h and a dependent d, the restrictions translate to these linear constraints with I
being the indicator function8:

Using propositional logic, the three restrictions can be written as follows:

¬(z⟨p,j⟩ ∧ z⟨u,p⟩), p ∈ P \ {u}, j ∈W ∪ P (5.3)⋀︂
j∈W∪P
¬z⟨p,j⟩ ⇒ ¬z⟨0,p⟩, p ∈ P \ {u} (5.4)

¬z⟨u,i⟩, i ∈W (5.5)

Equations 5.3, 5.4, and 5.5 can be transformed into ILP constraints by formulating them
as inequalities over integer variables:

I(z⟨p,j⟩) + I(z⟨u,p⟩) ≤ 1, p ∈ P \ {u}, j ∈W ∪ P (5.6)

I(z⟨0,p⟩) ≤
∑︂

j∈W∪P
I(z⟨p,j⟩), p ∈ P \ {u} (5.7)

I(z⟨u,i⟩) = 0, i ∈W (5.8)

Besides adding these hard constraints to the ILP formulation, the algorithm of Tur-
boParser does not need to be changed as incTP is run in a restart-incremental mode, i. e.
each sentence prefix is translated into a new ILP to be solved without making use of
previous results.

5.3.4. Training incTP
High-quality incremental parsing results can not be expected from models trained on
whole-sentence annotations only. If incTP is trained on gold-standard incremental de-
pendency structures (generated as described in Section 4.3), it includes every prediction
node into every analysis because the training data does not include any non-attached
prediction nodes. Therefore, the training data has to be augmented to contain non-included
prediction nodes. The data can be augmented by adding prediction nodes to the generated

8That means I(z⟨h,d⟩) is 1 if π(d) = h and 0 otherwise.

68

5.3. Incremental Graph-based Parsing with Dual Decomposition

EN-EWT DE (UD-HDT) DE (HDT) DE (jwcdg)

acc. stab. acc. stab. acc. stab. acc. stab.
precision 79.7% 80.6% 86.0% 86.9% 65.7% 65.4% 29.7% 29.8%

avg. #pred 1.0 1.5 1.4 1.5

Table 5.2.: Percentage of prediction nodes that could be mapped to the gold standard
(precision, unlabeled) both with respect to the gold standard (acc.) and with
respect to the complete output of the parser (stab.). avg. #pred: average
number of predicted prediction nodes per increment. EN-EWT: UD English
EWT Treebank (Silveira et al. 2014) German: HDT with gold-standard part-of-
speech tags. German (jwcdg): with predicted tags.

predictive dependency structures until they contain at least the set of prediction nodes
later used during parsing; the unused node is always added to the training structures.
For instance, for parsing the Hamburg Dependency Treebank incrementally, a set of two
noun prediction nodes and one verb prediction node is used. Therefore, in each training
increment that contains fewer than two noun prediction nodes, additional nodes attached
to the unused node are introduced. If the increment contains no verb prediction, a verb
prediction node is added and attached to the unused node. A predictive structure used
for training looks like the structure shown in Figure 5.1. This approach ensures that the
distribution of prediction nodes being attached to unused in the training data is similar to
the probability they will have to be attached to unused in the test data. This way, incTP
can learn the a priori probability that a prediction node of that type should be added to
a dependency structure by the parser while parsing. incTP is trained on these extended
predictive dependency structures, and no adaptation of the training algorithm is needed;
the incrementality is transparent to the parser itself.

The training data is heavily skewed as words at the beginning of the sentences are
more prevalent than the ones at the end. One might argue that this disproportion could
deteriorate the parsing performance. However, a comparison with a version trained on
non-incremental data shows that this has no noticeable effect on the parsing quality of
complete sentences.

69

Chapter 5. Training Predictive Dependency Parsers

20%

40%

60%

80%

100%

0 1 2 3 4 5 comp.
dist. from newest word

ac
cu

ra
cy

(a) Accuracy on UD-Szeged (Hungarian)

20%

40%

60%

80%

100%

0 1 2 3 4 5
dist. from newest word

st
ab

ili
ty

(b) Stability on UD-Szeged (Hungarian)

20%

40%

60%

80%

100%

0 1 2 3 4 5 comp.
dist. from newest word

ac
cu

ra
cy

(c) Accuracy on UD-EWT (English)

20%

40%

60%

80%

100%

0 1 2 3 4 5
dist. from newest word

st
ab

ili
ty

(d) Stability on UD-EWT (English)

20%

40%

60%

80%

100%

0 1 2 3 4 5 comp.
dist. from newest word

ac
cu

ra
cy

(e) Accuracy on UD-PTB (English)

20%

40%

60%

80%

100%

0 1 2 3 4 5
dist. from newest word

st
ab

ili
ty

(f) Stability on UD-PTB (English)

Figure 5.2.: Results on non-German treebanks (unlabeled).
Correct: , correct prediction: , wrong prediction: , wrong:
X-axis: accuracy of the tokens N left of the newest one; comp: accuracy
measured on complete sentences.

70

5.3. Incremental Graph-based Parsing with Dual Decomposition

20%

40%

60%

80%

100%

0 1 2 3 4 5 comp.
dist. from newest word

ac
cu

ra
cy

(a) Accuracy for incTP

20%

40%

60%

80%

100%

0 1 2 3 4 5
dist. from newest word

st
ab

ili
ty

(b) Stability for incTP

20%

40%

60%

80%

100%

0 1 2 3 4 5 comp.
dist. from newest word

ac
cu

ra
cy

(c) Accuracy for jwcdg

20%

40%

60%

80%

100%

0 1 2 3 4 5
dist. from newest word

st
ab

ili
ty

(d) Stability for jwcdg

Figure 5.3.: Unlabeled results on the German HDT for incTP (with gold PoS) and jwcdg
(with predicted tags).
Correct: , correct prediction: , wrong prediction: , wrong:

71

Chapter 5. Training Predictive Dependency Parsers

5.3.5. Evaluation
In this section, incTP will show its strengths using the metrics to evaluate predictive
dependency parsers introduced in Chapter 4. We will see

• that it produces accurate structures for sentence prefixes including high-quality
predictions.

• that the structures produced for complete sentences are as accurate as the ones by
the original TurboParser (in contrast to other predictive parsing approaches, see
Section 3.1.2).

• that it is fast enough for interactive use.

From all corpora, predictive dependency structures padded with unused prediction
nodes have been created for training. The evaluation was performed using one prediction
noun and one prediction verb for English and two prediction nouns and one prediction
verb for German because these sets cover about 90% of the prefixes in both training sets.
The UD treebanks were evaluated with a verb and a noun prediction node.

The only other parser implementing predictive dependency parsing as described in this
thesis is jwcdg (Beuck, Köhn, and Menzel 2011b; Beuck, Köhn, and Menzel 2013), which
will also be evaluated for comparison. jwcdg differs from most other parsers in that it does
not act on pre-tagged data but runs an external tagger itself in a multi-tag mode (Foth and
Menzel 2006).9 A comparison between using gold-standard tags and predicted tags for
incTP has shown that the output differs very little (Köhn and Menzel 2014). Therefore,
even though a parser with gold-standard tags is compared with one using an automatic
PoS tagger, the overall picture stays valid.

Incremental accuracy Figure 5.2 shows the evaluation results for parsing different
treebanks using incTP. Figure 5.3 shows the results for parsing the German HDT with
incTP and jwcdg. For all languages and treebanks except UD-Szeged, the attachment
accuracy rises with the amount of context available. For UD-Szeged, which has the lowest
overall accuracy, the correct attachments to a prediction node can not always be converted
into a correct attachment in the prefix. Therefore the overall number of correct attachments
drops slightly with increasing distance from the newest word.

The word five elements left of the newest word gets attached with an accuracy that is
nearly as high as the accuracy for the whole sentence (comp) in all experiments. As can

9jwcdg can make use of additional predictors but they are not enabled in the experiments reported in this
thesis as most of them do not work in the incremental parsing mode.

72

5.3. Incremental Graph-based Parsing with Dual Decomposition

be seen for English, the accuracy is not only a function of the language but also depends
on the corpus: these two differ in size, genre, and annotation scheme. When comparing
jwcdg with incTP on the HDT, we can see that incTP performs significantly better than
jwcdg. 89.9% of the newest words are attached correctly (unlabeled), whereas jwcdg only
correctly attaches 68.5%. For complete sentences, the difference in accuracy is smaller but
still about ten percentage points (incTP: 95.2%, jwcdg: 85.4%).

Prediction node precision and recall Regarding the prediction nodes, for both Ger-
man and English, the unlabeled precision reaches more than 70% (see Table 5.2) for the UD
treebanks. incTP has a lower prediction precision on the HDT schema, probably because
the schema requires prediction chains not predictable by the parser.10 Even the correct
dependency label of upcoming words can be predicted with reasonably high precision.
Interestingly, incTP not only has much higher precision than jwcdg, but it also achieves
this while producing a similar amount of prediction nodes overall (see avg. #pred in Table
5.2).

Comparison to non-incremental parsing Training incTP on sentence prefixes could
deteriorate the accuracy of the parser for complete-sentence analyses due to the over-
emphasis on the beginning of each sentence. However, this is not the case, and incTP
achieves about the same accuracy for full sentences as the non-incremental TurboParser
(Köhn and Menzel 2014). This also shows that the additional mechanism of prediction
nodes has no adverse effects on the overall parsing accuracy.

Stability Figure 5.2 and Figure 5.3 show evaluation results with respect to the full-
sentence output of each parser as a measure of stability. As the accuracy is approximately
a lower bound for the stability of a parser,11 it is not surprising that the experiments
yielding the highest accuracy also yield the highest stability. incTP’s stability turns out
to be much higher than jwcdg’s: it has a stability of 90% versus only 71% for the newest
word. While the attachments of the newest words are already quite stable with about 90%,
the stability for positions with more words as context to the right is even higher, with
96 to 97 percent. These high stability numbers are not that surprising because a parser
with high accuracy inherently can not create unstable output – some part of that unstable
output would have to be incorrect.

10see the discussion of folding in Section 4.3.
11If a parser has a stability of x, all the 1− x changes can at most be from correct to incorrect or vice-versa

and will counted as incorrect somewhere.

73

Chapter 5. Training Predictive Dependency Parsers

Speed incTP parses an increment in about 0.015 seconds, which is much faster than
jwcdg where about eight seconds per word are needed to achieve a good accuracy12 (Köhn
and Menzel 2013).

5.4. Discussion
incTP shows that enhancing a processor producing structured output to be able to work
incrementally is feasible with relatively little changes to the core of the processor if the
task can be reformulated. This reformulation involves creating artificial gold standards
for incremental input, which is unsatisfactory as it relies on linguistic intuition rather
than on actual empirical data; phenomena on a lexical level can only be modeled to
a limited extent. However, this fairly simple approach to incremental gold standard
creation allows extending it to new languages in relatively little time. Adapting the rules
to a new annotation standard (usually for a new language) takes about a day with the
current framework already in place. The result is a restart-incremental processor – while
performing a restart on every new word is not psycholinguistically plausible, restarts do
happen in human sentence processing (Malsburg and Vasishth 2011).

Nonetheless, incTP analyzes sentences incrementally, produces connected dependency
analyses at every point in time, and the intermediate structures produced are highly
informative, including predictions for properties and structural embeddings of upcoming
words. In contrast to previous approaches, incTP achieves state-of-the-art accuracy for
whole sentences by abandoning strong monotonicity and aim at high stability instead,
allowing the parser to improve intermediate results in light of new evidence.

12The speed of incTP and jwcdg was measured on a 48-core machine with four AMD Opteron 6168 processors.
incTP used a single thread, jwcdg was run multi-threaded.

74

Chapter 6.

Transition-based Predictive Parsing

The previous chapter showed that it is possible to learn predictive parsers from automati-
cally generated incremental gold standards. That approach, however, has two shortcom-
ings: First, creating incremental gold standards requires domain knowledge (i. e., about
the language and the annotation scheme). Second, even with this knowledge, the hand-
written rules might be insufficient to capture all intricacies of predictability – the rules
introduced in Section 4 largely ignore word identities and mainly rely on the dependency
labels. Therefore, they are unable to model distributional properties of predictions such as
determining whether an object should be predicted based on which verb it is governed
by. Second, incTP works in a restart-incremental fashion and makes no use of previous
computations. This is unsatisfactory from both a psycholinguistic point of view (as humans
do not entirely reinterpret text they are reading all the time) and from an engineering
point of view. Computation time is spent on re-computing structures that were thrown
away instead of re-using the structure from previous increments. Additionally, a parser
performing monotonic expansions has the potential to be used in experiments that force
the parser to commit to a specific structure, a property useful for exploring garden-path
phenomena.

This chapter introduces a parser (PreTra) without these two shortcomings: it does not
need incremental gold standards as it can be trained on non-incremental ones, and it
monotonically re-uses previous structures. Although PreTra uses a transition system, it
produces predictive and connected structures – in contrast to standard shift-reduce based
parsers (see Section 5.1).

6.1. A Transition System for Predictive Parsing
Transition-based dependency parsers in the line of Nivre (2003) combine a transition
system with a fixed set of transitions with a classifier that rates this fixed set in a specific
configuration. All such shift-reduce parsers generate edges in a more or less delayed

75

Chapter 6. Transition-based Predictive Parsing

S

Peter sleeps a [pred]

SBJ

DET

OBJS

Peter sleeps

SBJ

S

Peter [pred]

SBJ
S

[pred]

attach replace predict
head

Figure 6.1.: A sequence of consecutive predictive annotations. The transitions – denoted
as labels on the arrows between the annotations – are a subset of the ones
described in Section 6.1.2.

fashion.1 In contrast, a predictive parser should never delay an edge creation.
A shift-reduce parser usually employs a classifier to decide which action to take. To

obtain a predictive parser working with a similar model, the generation of predictive
structures would need to be reduced to a sequence of actions from a fixed action set.
However, since the incremental structures determine both starting and end points for
transition sequences (see Figure 6.1), such a fixed set of actions is hard to define. Whenever
a new word is introduced, it can be attached to an existing node in the structure (where
there is a varying number of candidates, see the first transition) it can replace one of the
existing prediction nodes (of which there is a varying number, see the second transition), or
it can require adding a new prediction node and include it somewhere (see third transition).

A shift-reduce parser does not score a tree directly. It instead generates the score via
the transition sequence that created the tree. Several sequences might lead to the same
tree (yielding different scores for the same structure), and training a parser should treat all
possible paths leading to correct output as correct, see Goldberg and Nivre (2013)).

There is one piece of work that attempted to directly score (parts of) the dependency
structure instead of only the actions: Bohnet and Kuhn (2012) augmented a transition-
based parser with a graph-based completion model, which re-scores the structures in
a beam2 using features similar to the ones of TurboParser. This approach needs book-
keeping about what parts of the sentence are already completely parsed and scored and in
which parts new edges may be introduced later on. This approach improves upon only
using a transition system and has an accuracy similar to graph-based parsers such as

1See Section 5.1.
2See definition in Section 6.1.1.

76

6.1. A Transition System for Predictive Parsing

Martins, Smith, Xing, et al. (2010).
When designing a predictive parser, the intermediate states are tree structures. Therefore,

it is possible to score the trees themselves instead of the actions without tracking partial
structures. Once the actions are not scored at all anymore, the number of transitions can
vary depending on the current state and allow a wide range of attachments, enabling
to cover a wide range of structures. If several transition sequences yield the same tree
structures, these structures by design have the same score and can be unified into a single
output (as the transition sequence is of no interest).

In other words, when designing an incremental predictive parser, it is possible to use
a transition system in which only the resulting dependency structures are scored, and
not the transitions themselves. Without the need to classify the transitions, the set of
transitions does not need to be fixed anymore; tree scoring can be completely decoupled
from the transition system.

6.1.1. Overall Structure of the Transition Parser
PreTra employs beam-search between states. Starting from an initial state, it repeatedly
creates new states using a transition function and performs a cut-off to obtain a beam:

Definition 8. A beam Bi is the list of the top N predictive structures according to a scoring
function f for a given sentence prefix w1 . . . wi.

The parser always starts from a beam for the empty sentence prefix B0, which only
contains a single structure consisting of a single prediction node attached to root (see
Figure 6.1). For each following prefix w1 . . . wi, the parser produces a corresponding set
of unlabeled predictive dependency structures3 Si ⊂ ⟨w1 . . . wi, P, π⟩ based on the beam
entries Bi−1 for w1 . . . wi−1 by applying a transition function t to the new word wi and
every element of the beam:

Definition 9. A transition function t takes a predictive structure for the wordsw1 . . . wi−1

and a word wi to include into that structure. It produces a set of followup structures
containing that word:

t : ⟨w1 . . . wi−1, P, π⟩, wi → P(⟨w1 . . . wi, P ’, π’⟩) (6.1)

π′ is an extension of π, i. e. the head of a node is only changed if the previous head was a
prediction node that was replaced by wi. In that case, the new head is wi.

3See Definition 5 on page 40, but we will omit the labeling for now.

77

Chapter 6. Transition-based Predictive Parsing

The followup states of a beam Bi−1 given a new wordwi is simply Si = ∪b∈Bi−1
t(b, wi).

The new beam is then formed by obtaining a score for every element of Si using a
scoring function f and the top N entries form the beam Bi:

Definition 10. A scoring function f assigns a score to a predictive dependency structure:

f : ⟨W,P, π⟩ → R (6.2)

Scoring functions may be compositions of other scoring functions, e. g. by summing them
(f(s) = f1(s) + f2(s)) or by chaining them: f(s) = f1(s, f2(s))

All that is needed to have a complete parser is a concrete transition function t and a
scorer f .

6.1.2. The Transition System
A transition system in this framework has to provide a predictive structure for the empty
input and a transition function t. As an initial state, we will use ⟨∅, ([pred]), {1 : 0}⟩, i. e.
a state containing no words and one prediction node that is attached to the root. This is a
valid prediction as every dependency structure needs to have at least one element that is a
root.

t should have a high coverage, i. e. the gold standard dependency tree for a sentence
w1 . . . wn needs to be derivable by n applications of t starting from the initial state for
(nearly) every sentence. Without a high coverage, a parser using t will inherently not be
able to produce accurate output. At the same time, the cardinality of the output should
be reasonably small for efficiency reasons. The transition system I propose is built from
parameterizable functions each mapping an input structure s = ⟨w1 . . . wi−1, P, π⟩, the
new word wi, and additional parameters to an output structure. These functions are the
following, with parameters in parentheses:

attachs
wi

(h) Attaches the new word wi+1 to an already existing word or prediction
node h ∈W ∪ P :

⟨w1 . . . wi, P, π⟩, wi+1, h ↦→ ⟨w1 . . . wiw,P, π ∪ {wi+1 : h}⟩

This is the simplest operation, e. g. for attaching an object to a verb in the prefix or an
adjective to a predicted noun.

78

6.1. A Transition System for Predictive Parsing

predictHeads
wi

(h) Creates a new prediction node p , attaches the new word wi+1 to p
and attaches p to an already existing word or prediction node h ∈W ∪ P :

⟨w1 . . . wi, P, π⟩, wi+1, h ↦→ ⟨w1 . . . wi+1, P ∪ {p}, π ∪ {wi+1 : p, (p, h)}⟩

This operation is needed if e. g. wi is a determiner and the noun to this determiner needs
to be predicted.

predictTwoHeadsswi
(h) Creates two new prediction nodes p1 and p2 , attaches the new

word wi+1 to p1, p1 to p2 and p2 to h ∈W ∪ P :

⟨w1 . . . wi, P, π⟩, wi+1, h ↦→ ⟨w1 . . . wi+1, P ∪{p1, p2}, π∪{wi+1 : p1; p1 : p2; p2 : h}⟩

This operation is needed for starting subordinate structures that are deeply nested.

replacePredictions
wi

(p) substitutes prediction node pwith the new wordwi, inheriting
all dependency relations:

⟨w1 . . . wi−1, P, π⟩, wi, p ↦→ ⟨w1 . . . wi,

P \ {p},
π \{(p, h) : (p, h) ∈ π}
\{(d, p) : (d, p) ∈ π}
∪{(wi, h) : (p, h) ∈ π}
∪{(d,wi) : (d, p) ∈ π}⟩

When evaluating these functions with all possible values for their parameters, we
obtain a set of successor structures (dependency structures for w1 . . . wi) from a single
dependency structure for w1 . . . wi−1:

attachswi
={attachswi

(h) : h ∈W ∪ P}
predictHeadswi

={predictHeadswi
(h) : h ∈W ∪ P}

predictTwoHeadsswi
={predictTwoHeadsswi

(h) :h ∈W ∪ P}
replacePredictionswi

={replacePredictionswi
(p) : p ∈ P}

We can now define the set of successor structures succ(s, w) given a current structure
s and a word w to be included as follows:

79

Chapter 6. Transition-based Predictive Parsing

succ(s, w) = attachsw ∪ predictHeadsw ∪ predictTwoHeadssw ∪ replacePredictionsw

Using these functions, a predictive dependency structure can both be represented as a
tuple ⟨W,P, π⟩ and as a sequence of applied transitions. For example, the last structure
depicted in Figure 6.1 can be both represented as the tuple

⟨(Peter, sleeps, a), ([pred]), {1 : 2, 2 : 0, 3 : 4, 4 : 2}⟩

and as a sequence representation:

predictHead(replacePrediction(attach(emptyState, 1, Peter), 0, sleeps), 2, a)

This duality will be used for an optimization in Section 6.1.4
With the definition of succ, we have a transition function that can be used by PreTra

to generate successor structures from on a predictive dependency structure and a word
to be integrated into that structure. All generated structures are connected and contain
prediction nodes if they are needed for connectedness. However, when using succ in
a parser, this parser can not perform pure top-down prediction, i. e. it can only create
prediction nodes that have a word from the prefix as (transitive) child.

6.1.3. Extending the Transition System to Perform Top-down
Prediction

An enhancement to succ is needed to add the ability to perform top-down predictions, for
which we will use an additional parametrizable function.

predicts(h) creates a new prediction node p and attaches it to an already existing word
or prediction node h ∈W ∪ P :

⟨w1 . . . wi, P, π⟩, h ↦→ ⟨w1 . . . wi, P ∪ {p}, π ∪ {(p, h)}⟩

In contrast to the functions defined in the previous section, predict does not introduce
a new word; the input structure and the resulting structure are structures for the same
sentence prefix. Again, we define the set of all possible resulting structures:

predicts = {predicts(h) : h ∈W ∪ P}

This function can be extended to work on sets of structures S instead of single structures:

predictmulti(S) =
⋃︂
s∈S

predicts

80

6.1. A Transition System for Predictive Parsing

Depending on the current sentence prefix, different numbers of top-down predictions
might be reasonable. Therefore, it is necessary to apply top-down prediction repeatedly. On
the other hand, the set of predictive dependency structures needs to stay finite, requiring
an upper bound for the number of prediction nodes. We will therefore define a function
succp that repeatedly performs top-down prediction on predictive structures up to a
fixed number n of prediction nodes and evaluates to all the structures generated by this
procedure, including the intermediate ones.

With⃝nf(x) being the n times repeated application of f on x (and⃝0f(x) = x), succ
can be augmented to include top-down prediction by adding zero to n prediction nodes to
each structure generated by succ:

succp(s, w) = {x : x ∈
n⋃︂

i=0

⃝ipredictmulti(succ(s, w)) . ||P x|| ≤ n}

The additional requirement ||P x|| ≤ n ensures that the number of prediction nodes in the
resulting structures does not exceed n.

This transition function can produce structures similar to the ones produced by incTP
(Section 5.3) and will be used throughout this chapter. A (predictive) structure can be
represented in two ways in this framework: either by its dependency tree or by the
sequence of actions that lead to the current structure.

6.1.4. Optimizations
While the definition of succp is sufficient from a theoretical point of view, the speed of
the parser can be increased by slightly changing aspects of the transition system. These
extensions do not alter the overall system but allow the parser to work with fewer trees
while still obtaining the same overall accuracy.

PoS-based filtering succp potentially generates a very high number of successor states
as every new word can be attached anywhere in the prefix either directly (using attach),
with a new head (using predictHead) or even two predicted heads (using predictTwoHeads).
Most of these attachments could be easily classified as incorrect, based only on the part
of speech of the new word. For example, a determiner in German or English will never
be attached to an adjective or another determiner. Following Bohnet and Kuhn (2012),4
PreTra performs PoS-based filtering of edges. A word can only be attached to another
word if the combination of head-PoS and modifier-PoS with the same direction has been

4Who attribute this optimization to Johansson and Nugues (2008), who, however, do not describe this
approach in their paper.

81

Chapter 6. Transition-based Predictive Parsing

observed at least once in the training data. A word may only be attached to a prediction
node if some word with the same PoS was attached at least once to a word to the right of
it. This filtering reduces the number of trees that have to be scored drastically while being
very conservative in the pruning strategy: It is highly unlikely that a correct attachment
is filtered this way, given enough training data.

Ephemeral top-down predictions The top-down predictions limit the probability of
deriving a correct tree as an incorrect prediction of a prediction node can never be undone
in subsequent analyses. The only way to recover from an incorrect prediction is to rely on
beam search and hope that the version without this prediction is in the beam as well. If
this alternative is not in the beam, it is advisable for the parser to not perform top-down
prediction as the potential negative impact is much higher than the potential positive one.
To not discourage top-down prediction, they are interpreted as being ephemeral, i. e., they
are removed again before continuing parsing with the next word. This is achieved by using
the sequence of actions that led to the tree structure and removing all top-down actions at
the end of the sequence. As top-down predictions are always performed last, this results
in a state where all top down predictions are removed to which no in-prefix words were
attached. As succp generates new top-down predictions for the newly generated structures,
the top-down predictions just removed are reintroduced in some of the generated structures
to be scored.

6.2. Scoring Predictive Dependency Structures
With a transition function defined, all that is missing for a working parser is a scoring
function to sort the resulting states. Because the scoring function is only used after the
dependency trees have already been created, the function does not need to be decomposable.
I will discuss two approaches to scoring: One essentially re-uses the scoring of incTP,
making it possible to compare the restart-incremental approach to the transition-based
one while keeping the scoring component as similar as possible. The other employs a
neural-network-based scoring and shows that scoring composition is trivial using this
approach of separating the transition system from the scoring component.

6.2.1. incTP-based Scoring
incTP introduced in Section 5.3 already has a well-defined scoring system composed of a
sum of subgraph scores. This scoring mechanism was also used in other parsers, such as
RBGParser (Zhang, Lei, et al. 2014), whose implementation is re-used for the experiments

82

6.2. Scoring Predictive Dependency Structures

in this section to extract feature vectors. The scorer uses a hash kernel (Bohnet 2010) to
map each feature (i. e., a specific combination of edges) to an index up to a fixed upper
bound. This defines a feature mapping:

Definition 11. A feature mapping φ(s) maps a predictive dependency structure s to a
fixed-length feature vector {0, 1}n, where each dimension stands for a specific feature
and the value of that dimension is 1 iff that feature is present in s.

To obtain a score for a dependency structure, its feature vector is multiplied with a
learned weight vector w⃗ ∈ Rn. The resulting scoring function fTP is simply the following:

fTP (s) = φ(s) ∗ w⃗ (6.3)

While the feature extraction and score lookup are reasonably fast, computing the feature
vector and multiplying it with w⃗ still takes the majority of computing time of parsing. This
score computation is sped up by caching the feature indices and corresponding weights
for sub-graphs and reusing them when scoring other trees in the beam containing the
same sub-graph. Such a cache can be re-used across different beam entries for the same
beam as well as across structures for subsequent prefixes.5

6.2.2. NN-based Scoring
Other scoring functions can be used as well, and these do not need to be decomposable.
However, non-decomposable scoring functions still need to be fast enough; initial exper-
iments with child-sum tree-LSTMs (Tai, Socher, and Manning 2015) for scoring beam
entries were promising but too slow for performing large-scale experiments with a speed
of about six seconds per word. Instead, the second scoring evaluated here follows the
BiLSTM-approach by Kiperwasser and Goldberg (2016).

Feature extraction Feature extraction is performed by LSTMs (Hochreiter and Schmid-
huber 1997) with input gates and forget gates coupled (Cho, Merriënboer, et al. 2014) and
peephole connections, which has shown to work well despite reduced complexity (Greff
et al. 2017). The LSTMs maps a sequence of input vectors i1 . . . in to a sequence of output
vectors of the same length o1 . . . on. Due to the recurrent nature of the LSTM, an output
oj contains information about the inputs i1 . . . ij . A BiLSTM employs two such encoders:
one encoding the sentence prefix from left to right and one from right to left. The final

5The second optimization is not possible during training as the scores change between prefixes.

83

Chapter 6. Transition-based Predictive Parsing

representation of the BiLSTM for the token at position j is the concatenation (◦) of both
BiLSTM outputs at position j, encoding both the left and the right context.

The inputs to the BiLSTM have to be vectors as well; these are pre-trained word embed-
dings ew for the words Wi concatenated with learned PoS embeddings ep:

ij = ew(Wj) ◦ ep(pos(Wj)) (6.4)

Prediction nodes are not part of the prefix sequence and are not sequentially ordered.
Therefore, they are not fed into the BiLSTM. Instead, a fixed representation with the same
dimensionality as the output of the BiLSTM is learned and used for prediction nodes.

The forward LSTM can be reused from prefix to prefix, but the backward LSTM has to
be recomputed for every prefix. Therefore, computing scores with this scoring function
becomes proportionally more expensive with longer prefixes even when the computations
for the previous prefix can be reused.

Tree scoring An edge with the head index being h and the dependent one d is scored
by a simple multi-layer perceptron, with W 0, W 1, W 2 and b being the learned weights6:

edgescore(d, h) = W 0 · tanh(BiLSTM(h) ·W 1 + BiLSTM(d) ·W 2 + b) (6.5)

The scoring function is the sum of all edge scores:

fNN (s) =
∑︂

d∈W∪P
edgescore(d, π(d)) (6.6)

The parameters to be optimized when training PreTra with fNN are W 0, W 1, W 2, b,
and the BiLSTM parameters.

The BiLSTM-based scoring consists of the sum of first-order edge scores, as in McDonald,
Pereira, et al. (2005). The scorer is implemented using DyNet (Neubig et al. 2017). Similar to
the incTP-based scoring, a caching mechanism makes sure that the results of overlapping
computations between elements of the beam are reused. However, due to the infinite
context introduced by the BiLSTMs, no sharing is possible between increments.

To evaluate whether this mode of scoring is also beneficial to predictive parsing, the
PTB-based treebanks were parsed using the best-performing word embeddings from the

6The edge score might look unfamiliar, but this is only an optimization from the standard (BiLSTM(h) ◦
BiLSTM(d)) ·W : rewriting the formula to BiLSTM(h) ·W 1+BiLSTM(d) ·W 2 allows to reuse both parts
of the sum between different edge score computations. This optimzation was taken from Kiperwasser and
Goldberg (2016).

84

6.3. Training PreTra

parser evaluation in Köhn (2016). These are dependency based7 word embeddings (Levy
and Goldberg 2014) trained on a Wikipedia corpus (Al-Rfou’, Perozzi, and Skiena 2013).
It turned out that the fNN scorer performs worse than the fTP one. The results will be
discussed in Section 6.4.1 after first describing how to train PreTra.

6.3. Training PreTra
To train a parser, model updates have to be carried out. In non-incremental parsing, these
training updates are performed against the gold-standard. incTP is trained on incremental
gold standards; we, however, want to train an incremental parser without the need for an
incremental gold standard. This section will introduce a method to select suitable trees to
perform training updates against.

Because PreTra runs on a transition system, not all possible structures for a given
sentence prefix can be constructed. Even if an incremental gold standard would be
available, it still could happen that the gold-standard structure is not part of the generated
trees. In this case, the structure with the least amount of errors with respect to the gold
standard should be ranked highest by f . Therefore, all structures s ∈ S generated by the
transition system need to be matched against the incremental gold standard to obtain the
number of attachment errors (see Sections 4.1 and 4.4). However, as even with incremental
gold standards, a matching is needed, we can make use of the matching mechanism to
train PreTra on non-incremental gold standards and get rid of the need for incremental
gold standards altogether with only minor adjustments.

6.3.1. Performing Updates Against Complete Sentence Annotations
Incremental gold standards have two drawbacks: The rules for them have to be manually
created, and the structure they encode is not necessarily optimal (see the beginning of
this chapter). By updating against complete sentence annotations, both problems go away.
With the decoupling between candidate creation and scoring, this becomes possible with
only minor adaptations of the parser.

Instead of mapping against an incremental gold standard to obtain the set of structures
with the least amount of errors, this mapping is performed against the complete sentence
structure, just as for evaluating predictive parsers (see Section 4.1). During training, each
generated structure s ∈ S is not only scored, but also the number of mismatches to the

7“dependency based” onlymeans that depdency structures are used to create the embeddings; the embeddings
behave just as others when using them.

85

Chapter 6. Transition-based Predictive Parsing

gold standard e(s) is recorded.8 Using a passive-aggressive update schedule (Crammer
et al. 2006), the model is only updated if the highest-scoring tree is incorrect. In this
case, the model is updated using loss-augmented inference (Taskar et al. 2005): instead of
performing a training update from a least-error structure against the best-scoring structure,
the update is performed using a large-margin objective: the score of a structure should
decrease with the number of errors. Therefore, the number of errors are factored into the
decision about the structure the update should be based upon. The update is performed
against s′ = argmaxs∈S f(s) + e(s). As the large margin objective gives preference
to structures with many errors with respect to the target structure, weight updates are
performed more often compared to using the structure with the highest score as a target.
This approach proved to be beneficial to the training procedure of PreTra, leading to higher
overall accuracy.

As there is no incremental gold standard to compare against, one of the structures with
the least number of errors l = argmins∈S e(s) out of the current beam is used as training
objective instead.

The model is then updated by increasing the weights of features in l but not in s′ and
decreasing the weights of features in s′ but not in l. That means, for fTP , an update for
w⃗ is performed to increase (φ(l) − φ(s′)) ∗ w⃗ and for fNN , the weights are updated to
increase fNN (l)− fNN (s′). After such a training update, l is forced to stay in the beam
to prevent updates based on spurious followup errors due to the inability to continue
structure building from a good previous state.

6.4. Experimental Results
PreTra is evaluated on the same set of treebanks as incTP; all results can also be found in
a more detailed form in Appendix B. This selection allows us to inspect several properties:
the performance of a restart-incremental parser (incTP) can be compared to a parser bound
by a transition system (PreTra). Treebanks that are annotated with several annotation
schemas enable us to assess which of these schemas is better suited for parsing with the
proposed transition system – this mainly concerns content-head versus function-head
annotation.

8Mismatches of prediction nodes are counted with a factor of 0.3 (chosen ad-hoc) to make them less severe
than incorrect attachments in the prefix because prediction node attachment also depends on the mapping
chosen.

86

6.4. Experimental Results

20%

40%

60%

80%

100%

0 1 2 3 4 5 comp.
dist. from newest word

ac
cu

ra
cy

(a) Accuracy on the HDT (German)

20%

40%

60%

80%

100%

0 1 2 3 4 5
dist. from newest word

st
ab

ili
ty

(b) Stability on the HDT (German)

20%

40%

60%

80%

100%

0 1 2 3 4 5 comp.
dist. from newest word

ac
cu

ra
cy

(c) Accuracy on the UD-HDT (German)

20%

40%

60%

80%

100%

0 1 2 3 4 5
dist. from newest word

st
ab

ili
ty

(d) Stability on the UD-HDT (German)

20%

40%

60%

80%

100%

0 1 2 3 4 5 comp.
dist. from newest word

ac
cu

ra
cy

(e) Accuracy on the FTB (French)

20%

40%

60%

80%

100%

0 1 2 3 4 5
dist. from newest word

st
ab

ili
ty

(f) Stability on the FTB (French)

20%

40%

60%

80%

100%

0 1 2 3 4 5 comp.
dist. from newest word

ac
cu

ra
cy

(g) Accuracy on the UD-FTB (French)

20%

40%

60%

80%

100%

0 1 2 3 4 5
dist. from newest word

st
ab

ili
ty

(h) Stability on the UD-FTB (French)

Figure 6.2.: Results of PreTra German and French treebanks.
Correct: , correct prediction: , wrong prediction: , wrong:

87

Chapter 6. Transition-based Predictive Parsing

20%

40%

60%

80%

100%

0 1 2 3 4 5 comp.
dist. from newest word

ac
cu

ra
cy

(a) Accuracy on the PTB (English)

20%

40%

60%

80%

100%

0 1 2 3 4 5
dist. from newest word

st
ab

ili
ty

(b) Stability on the PTB (English)

20%

40%

60%

80%

100%

0 1 2 3 4 5 comp.
dist. from newest word

ac
cu

ra
cy

(c) Accuracy on the UD-PTB (English)

20%

40%

60%

80%

100%

0 1 2 3 4 5
dist. from newest word

st
ab

ili
ty

(d) Stability on the UD-PTB (English)

20%

40%

60%

80%

100%

0 1 2 3 4 5 comp.
dist. from newest word

ac
cu

ra
cy

(e) Accuracy on the UD-English-EWT

20%

40%

60%

80%

100%

0 1 2 3 4 5
dist. from newest word

st
ab

ili
ty

(f) Stability on the UD-English-EWT

20%

40%

60%

80%

100%

0 1 2 3 4 5 comp.
dist. from newest word

ac
cu

ra
cy

(g) Accuracy on the UD-Szeged (Hungarian)

20%

40%

60%

80%

100%

0 1 2 3 4 5
dist. from newest word

st
ab

ili
ty

(h) Stability on the UD-Szeged (Hungarian)

Figure 6.3.: Results of PreTra on English and Hungarian treebanks.
Correct: , correct prediction: , wrong prediction: , wrong:

88

6.4. Experimental Results

6.4.1. Impact of Hyper-parameter Selection
There are several hyper-parameters that can be tuned: the scorer can use different sets
of features, the beam size can be adjusted, the neural net scorer can be used to augment
the fTP and the parser can either be forced to keep top-down restrictions or not (see
Section 6.1.4).

Exploring all possible combinations of hyper-parameters would lead to a combinatorial
explosion, I therefore restricted the comparisons to the effects of single hyper-parameters.
Using a reduced feature set9 instead of the full one leads to a reduction of 0.5 to 1 percentage
points in accuracy. Loss-augmented selection of the structure to perform an update against
(as described above) increases the accuracy by at least 0.5 percentage points – the detailed
results are shown in Appendix B. Interestingly, the beam size does not influence the parser
accuracy much, a beam size of 10 yields similar results as a beam size of 50 does.

The NN-based parser achieves lower accuracies than fTP , probably because it cannot
distinguish between different edge combinations consisting only of prediction nodes. It
achieves a full-sentence accuracy of 65.59% on UD-PTB and 71.98% on the PTB, whereas
the TurboParser-inspired scoring achieves accuracies of 74.31% and 82.06%, respectively.
Therefore, all other evaluations are performed using fTP as a scorer.

6.4.2. Evaluating PreTra
Because PreTra does not rely on incremental gold standards, it can be evaluated on more
treebanks than incTP; the results of PreTra can be seen in Figure 6.2 and Figure 6.3. While
PreTra does not reach the accuracy of incTP, it still manages to parse with moderately
high accuracy and high stability. Interestingly, the accuracy on the HDT is (in comparison
to incTP) much lower than on the other treebanks: with a full-sentence accuracy of only
86.0% (incTP: 95.3%). In contrast, the difference on the UD annotated version of the
HDT is smaller, with the accuracy of PreTra being higher (86.2%) and the accuracy of
incTP being lower (95.0%) than on the original HDT annotations. Possible reasons will be
discussed in the next section.

In contrast to incTP, the incremental accuracy does not rise but stays similar across
the distances to the newest word for most treebanks. This indicates a reduced ability to
recover from errors due to the beam search.

PreTra is quite fast with about 3ms processing time per word,10 which is several times
faster than incTP. The speed can be attributed to the parallelizable architecture and the

9The reduced feature set is not using great-grandparent, parent-sibling-child, and global feature templates.
10measured on an Intel Xeon E5-2630 v3 @ 2.40GHz

89

Chapter 6. Transition-based Predictive Parsing

ability to re-use computation results both between elements in the beam and from previous
increments. This speed enables the use in interactive systems without noticeable delay.

6.4.3. Search Errors Due To Beam Search
It is not surprising that PreTra is unable to match the performance of incTP as it is bound
by the beam search and can not arbitrarily correct itself. The errors made by the parser
can be due to three different reasons:

1. A correct structure is in the beam, but the scoring function rated a different one
higher.

2. The transition system is unable to build the correct structure.

3. The transition system could have built the correct structure in principle, but a
preceding structure to the one currently needed fell off the beam.

To see the impact of the third point, we can force the structure with the least amount
of errors with regards to the gold standard to stay in the beam. This way, the parser is
only limited by the quality of the scoring function and the coverage of the transition
system. Evaluation results for this setting are shown in Figure 6.4. Unsurprisingly, the
accuracy increases in this setting. More interesting is that this increase strongly depends
on the treebank: While PreTra obtains a very high full-sentence accuracy on the FTB
and PTB treebanks (FTB: 98.6%, UD-FTB 98.0, PTB: 97.6%, UD-PTB: 96.9%), the full-
sentence accuracy on the HDT – 94.6% – is much lower and even lower than the results
obtained by incTP (which does not have any guidance by the gold structure). As the
scoring component of incTP and PreTra are very similar, this indicates that errors were
introduced because the transition system is unable to generate the correct structures and
that the annotation scheme by the HDT is not a good match for monotonic expansions
of dependency structures. This mismatch can be observed in practice: for example, the
HDT schema annotates verb chains in subordinate clauses such as “promoviert haben
können hätte” (to-do-a-Phd have could have) as a chain with each verb being the child
of the verb directly to the right of it. The subject of the verb chain is attached to the
topmost element of the chain, whereas an object preceding the verb chain is attached to
the lowest element of that chain. Therefore, a predictive parser only performing monotonic
extensions (such as PreTra) would have to predict the exact number of verbs in the verb
chain to create a correct and complete parse. This non-predictability is the reason why
folding is employed when generating a gold standard for the HDT, as discussed in Section
4.3). The UD annotation does not have the same problem because the content bearing verb
is the head and subject, objects, and all auxiliary verbs are attached to that verb.

90

6.5. Summary and Discussion

The high accuracies on the French and English treebanks show that the transition system
can cover nearly all of the syntactic phenomena in those languages: high accuracies can
only be achieved if the transition system creates fitting structures most of the time.

While forcing correct structures to stay in the beam is helpful to evaluate both the fit of
the transition system and whether the scorer can pick the correct structures, the results
should not be interpreted as the accuracy of PreTra with an infinite beam size. The very
high accuracy (compared to incTP) stems from the fact that PreTra only has to select
among a relatively small number of candidate structures for each increment.

6.5. Summary and Discussion
In this chapter, I introduced a transition-based predictive parser, which, to my knowledge,
is the first that is fully language-independent, can parse all input, provide accurate output,
and uses little computation time at the same time.

As the scoring function learned is independent of the transition system, it could, in
principle, also be used to find structures by performing sampling techniques similar to the
ones described by Zhang, Lei, et al. (2014). In that scenario, the transition system would be
used during training to provide a restricted set of candidates, enabling matching to a non-
incremental gold standard. As this matching is not needed when parsing, an unrestricted
restart-incremental sampling could be used. From a psycholinguistic standpoint, this can
be seen as reanalysis due to a comprehension failure (see Section 1.1). The reanalysis
could also be triggered by an external critic to switch between transition-based and restart-
incremental parsing. Preliminary experiments show that the accuracy of sampling-based
parsing leads to low accuracy as it creates sub-structures not allowed by the transition
system (e. g., multiple roots or having adjectives as roots) because theywere never penalized
when training with the transition system. Thus, the sampling needs to be restricted to
structures similar to those the transition system can generate, or the scorer needs to be
trained on sampled structures as well.

91

Chapter 6. Transition-based Predictive Parsing

20%

40%

60%

80%

100%

0 1 2 3 4 5 comp.
dist. from newest word

ac
cu

ra
cy

(a) Accuracy on the UD-Szeged (Hungarian)

20%

40%

60%

80%

100%

0 1 2 3 4 5 comp.
dist. from newest word

ac
cu

ra
cy

(b) Accuracy on the UD-EWT (English)

20%

40%

60%

80%

100%

0 1 2 3 4 5 comp.
dist. from newest word

ac
cu

ra
cy

(c) Accuracy on the PTB (English)

20%

40%

60%

80%

100%

0 1 2 3 4 5 comp.
dist. from newest word

ac
cu

ra
cy

(d) Accuracy on the UD-PTB (English)

20%

40%

60%

80%

100%

0 1 2 3 4 5 comp.
dist. from newest word

ac
cu

ra
cy

(e) Accuracy on the FTB (French)

20%

40%

60%

80%

100%

0 1 2 3 4 5 comp.
dist. from newest word

ac
cu

ra
cy

(f) Accuracy on the UD-FTB (French)

20%

40%

60%

80%

100%

0 1 2 3 4 5 comp.
dist. from newest word

ac
cu

ra
cy

(g) Accuracy on the HDT (German)

20%

40%

60%

80%

100%

0 1 2 3 4 5 comp.
dist. from newest word

ac
cu

ra
cy

(h) Accuracy on the UD-HDT (German)

Figure 6.4.: Results of PreTra when forcing a structure with least errors to stay in the beam.

92

Chapter 7.

Incremental Parsing for Language
Modeling

The previous two chapters evaluated predictive parsers with respect to other predictive
parsers. This chapter shows that predictive parses – and especially the prediction nodes
– can be useful for other processors. Language modeling will be used as a downstream
process, a task in which (in most scenarios) the probability distribution of the next word
given a prefix should be computed. Integrating the parser’s predictions into N-gram
language models also shows that the prediction nodes contain long-range information
exceeding the restricted N-gram history.

Consider an incremental natural language understanding system with speech as input
and a dependency parser somewhere in the understanding pipeline, for example, as part of
a larger dialogue system. It will consist of a speech recognizer that generates hypotheses
of what is said, followed by a text-based understanding system. Speech recognizers use
language models to decode audio into text. Even though neural language models provide
superior perplexity to n-gram language models, they are only used for post-hoc rescoring
because they are computationally too expensive. While decoding takes place, n-gram
models are still used because their speed is superior.1

7.1. Language Modeling
Language models define a probability distribution over sequences P (w1 . . . wn). As this
combined distribution can not easily be approximated from text, the decomposition based
on the chain rule is used:

P (w1 . . . wn) = Πn
i=1P (wi|w1 . . . wi−1)

1It is hard to find a source to show that something is not done – the current mainstream speech recognition
toolkit kaldi (Povey et al. 2011), which is the basis for ample ASR research, uses n-grams for on-line
decoding exclusively, with neural network language models only as post-hoc step.

93

Chapter 7. Incremental Parsing for Language Modeling

The conditional probability P (wi|w1 . . . wi−1) can be obtained from text (the training
data) by counting the number of occurrences of w1 . . . wi and w1 . . . wi−1 and dividing
the first by the second. Here we can already see similarities to predictive parsing, which
also has w1 . . . wi−1 as input but yields a syntactic structure as output.

Given a language model as described above, most words will be assigned a probability
of zero in a given context as they were never seen in that context in the training data (i. e.
w1 . . . wi was never seen). In addition, most contexts themselves (i. e. w1 . . . wi−1) do not
occur at all in the training data, yielding no usable probability distribution. Therefore, the N-
gram approximation based on the Markov assumption is often used: (P (wi|w1 . . . wi−1) ≈
P (wi|wi−N . . . wi−1)). Interestingly, this approach, coupled with smoothing techniques
such as modified Kneser-Ney-Smoothing (Chen and Goodman 1996), has been state of
the art for a long time for large data sets. Only recently, LSTM-based approaches were
published that outperform N-gram language models on large datasets as the Billion Word
Corpus (BWC; Chelba, Mikolov, et al. (2013)) such as Józefowicz et al. (2016). Before
that, neural approaches to language modeling were only evaluated on much smaller
datasets such as the Penn Treebank (see Merity, Keskar, and Socher (2017) for a list of such
publications).

Interestingly, N-gram models perform well despite relying on a fairly limited context.
Increasing the context size does not increase the performance as the contexts are only
very rarely seen even when creating the language model from huge datasets – the usual
data sparsity problem. Nonetheless, sometimes, the context not modeled by N-grams
influences on the possible continuations of a sequence. For example, the following two
sentence prefixes share the same 4-gram context but have different possible continuations:

(7.1) The world that we are changing

(7.2) There is evidence that we are changing

Whereas the word “is” is a plausible continuation of Sentence 7.1 (e.g. “is turning for
the better”), it is implausible for Sentence 7.2. In fact, Sentence 7.2 can not be continued
the same as Sentence 7.1:

(7.3) * There is evidence that we are changing is turning for the better

In this example, an N-gram model fails to capture the long-distance dependencies,
namely the information that Sentence 7.1 is still missing the verbal phrase but contains
a complete noun phrase. In contrast, Sentence 7.2 already contains a verbal phrase, but
its nested noun phrase is possibly incomplete – it could e. g. be continued by “There is
evidence that we are changing the world”. While I will focus on syntax in this chapter, it

94

7.2. Syntax-based Language Models

is important to note that other types of long-distance dependencies also play an important
role in predicting the continuation of a text such as pragmatics or semantics.

As already discussed in Section 1.1, humans can predict upcoming words quite well and
distinguish between words that match a predicted structure and words that do not. In this
chapter, I will lay out an approach to augment N-gram language models with syntactic
information in a cost-efficient way.

7.2. Syntax-based Language Models
Syntactic structure of prefixes provides information about possible continuations. Com-
bined with a probability model, they can be used to compute a probability distribution of
the next word. In contrast to N-gram models, these models can make use of long-spanning
context information due to the possibly long-ranging information in syntactic structures.
Syntactic structures have, however, not been widely used for language modeling. The
approaches proposed in the literature can be roughly divided into three clusters:

post-hoc re-ranking modifies the probabilities of sequences once they are complete

probability distributions over tree structures replaces n-gram probabilities with prob-
ability distributions over syntax trees

incorporating syntactic predictions extracts information from syntax structures and
incorporates them into N-gram models as an additional information source

Recent work on incorporating syntactic information into language models has focused
on re-ranking, based on scores for the syntax trees for the different possible sentences
(Filimonov and Harper 2009; Charniak 2001; Tan et al. 2012), or by training a discriminative
model (Collins, Roark, and Saraclar 2005). For interactive systems, re-scoring only complete
output is unsatisfactory as the intermediate computations can not benefit. Also, re-ranking
for language modeling is largely performed using neural language models today. These
neural languagemodels are both less complex than the syntax-based re-ranking approaches
and seem to yield superior perplexity – even though the results reported are hard to
compare due to the differences in the data and evaluation schema used for evaluation (see
Merity, Keskar, and Socher (2017) for an overview of language model perplexities using
different neural network architectures).

A special case of re-ranking is the task of sentence completion, where one word of a
sentence is missing, and the correct word out of five possibilities needs to be selected to
fill the gap (Zweig and Burges 2011). For evaluation purposes, the possible words are
explicitly selected to have a similar probability under a plain N-gram model. Zhang, Lu,

95

Chapter 7. Incremental Parsing for Language Modeling

and Lapata (2016) propose a generative LSTM that produces sentences via dependency
structures instead of linearly – as a standard LSTM language model would do. They
obtain state-of-the-art results for the sentence completion challenge by computing the
probabilities of sentences obtained by filling the blank with all alternatives and choosing
the most probable one. However, these models are not designed to predict the next word
of a sentence. Hence, they can only be applied non-incrementally in a rescoring fashion,
e. g., to improve ASR or parsing results after a first pass over the input data. Thus, they
are not applicable to interactive use-cases that require incremental processing.

Parsers that define a probability distribution over the (partial) parse trees they derive
can be used for language modeling, e. g. using a limited-domain hand-written PCFG with
learned rule-weights (Jurafsky et al. 1995), or by learning structure using a hierarchical
HMM (Schwartz et al. 2011). Using a trained parser for language modeling, Roark (2001)
(see Section 3.1.1) estimates the probability of a word wi following the current sentence
prefix w1 . . . wi−1 by measuring the probability of all parse trees (within a beam) that are
derivable for the prefix including that word (i. e., all parse trees over w1 . . . wi) divided by
the probability of all parse trees for w1 . . . wi−1. To obtain a probability distribution over
the possible upcoming words wi, all parses for all possible w1 . . . wi must be computed,
which is computationally expensive. When obtaining a probability distribution for the
next word, the cost grows with the vocabulary size.

There is one syntax-based language model that only creates syntactic structures for
the context – excluding the word to be queried – and is therefore less impacted by large
vocabulary sizes: Chelba and Jelinek (1998) use a tree adjoining grammar to parse the
sentence prefix up to (but not including) the queried word, and the parser state (specifically,
the top two elements of the stack) is used to condition a probability distribution for both
the syntactic structure and the upcoming word. Because the probability distribution
the parser learns is a joint distribution for the sentence and a syntax tree, the syntactic
structure has to be summed out if only the probability of the next word irrespective of
the intended syntactic structure is of interest. Therefore, the joint probability is summed
over all possible trees for the prefix and again many parses are required for a single query,
resulting in a high complexity.

7.3. Data Preparation
The following experiments use incTP, trained on the Penn Treebank transformed to
dependencies using the LTH converter (Johansson and Nugues 2007). By design of the
incremental training data, the parser predicts up to one upcoming verb and one upcoming
noun, which results in a good coverage/precision trade-off for English. The parser and

96

7.4. A First Language Model with Prediction Nodes

verb predicted

no yes sum
noun predicted no 41.6 22.7 64.3

yes 18.7 17.0 35.7
sum 60.3 39.7

Table 7.1.: Distribution (in percent) of prediction nodes in the syntactic structures gener-
ated by incTP for sentence prefixes in the Billion Word Corpus.

tagger models are the same as described in Chapter 5.2 and, as such, are not tuned for
language modeling nor for the corpus used for estimating the LM.

All of the one billion sentence prefixes of the billion word corpus were parsed with
incTP, so for each sentence prefix to be queried the corresponding dependency structure
is available. The distribution of predictions made by the parser can be seen in Table 7.1.
Throughout this chapter, the prediction nodes (a verb and a noun) will be shortened by
vn. If in a specific syntactic structure, a verb or noun was predicted, it will be denoted by
+
v and +

n, respectively. If a verb or noun was not predicted, this is indicated by −
v and −

n.
As can be seen in Table 7.1, both v and n split the prefixes into four parts of similar size,

yielding an information of 1.90 bit due to the imbalances of the classes. All experiments in
this chapter use only these two binary parts of information from the syntactic structure;
the remaining structure is disregarded. The prediction nodes seemed to contain the most
complementary and compact pieces of information, and language modeling already has to
deal with severe data sparsity. All additional information used from syntactic structure
only makes this problem worse. The configuration of prediction nodes the parser produced
for a given input w1 . . . wi will be called pi in this chapter.

7.4. A First Language Model with Prediction Nodes
It could very well be that the predictions vn made by the parser only contain information
also found in the N-gram context. In this case, the information about prediction nodes
would inherently not be able to improve upon N-gram language models. A first simple
experiment can gauge whether the prediction nodes encode additional information at all:
The N-grams extracted from the text and forming the basis of the language model are split
based on the parser prediction of their histories (i. e., the prediction nodes generated by the

97

Chapter 7. Incremental Parsing for Language Modeling

parser when parsing the sentence prefix up to but not including the newest word of the
N-gram) and four different N-gram models are trained based on this split. When querying
the probability distribution P (wi|w1 . . . wi−1), the parser’s output for w1 . . . wi−1 (i. e.
pi−1) is used to determine which of the four language models to query.2 The entropy of
this model can be compared to one where the N-grams are put into four bins randomly
with the same overall distribution. If the parser-based model has a lower entropy than the
randomly shuffled one, there is useful information in the parser predictions.

It might be surprising that the parser-based model is not compared to a standard N-gram
model. The reasoning behind this design is that splitting the source N-grams into four
models makes each of the models performworse due to increased data sparsity. Comparing
the parser-based split model to a standard N-gram model would therefore also measure
the effect of the additional data sparsity induced. Performing the split also on the baseline
model results in only measuring the effect of the parser predictions as the data sparsity is
the same for both models.

This model splitting approach is computationally effective: for a given query, the parser
only needs to parse the context once (as the information we use from the parser does
not depend on the word being queried) and after determining which of the sub language
models to query, that model can not only be queried for the probability of a single word, but
also for the complete probability distribution of possible continuations, which is especially
useful in speech recognition scenarios.

N-gram models are generated with SRILM (Stolcke et al. 2011) using standard settings
(modified Kneser-Ney smoothing (Chen and Goodman 1996) and interpolation, a limited
vocabulary of 100,000 words, and dropping singleton N-grams for N>2).3

7.4.1. Examples for the Effect of Prediction Integration
The non-locality of parsing predictions for the examples 7.1 and 7.2 is exemplified in
Figure 7.1 (the example is restricted to just the verb prediction v). In the two sentences
given in the figure, the local N-gram context is identical for either sentence prefix, a
N-gram model even with N=5 would therefore produce the same probability distribution
for both sentence continuations. The cause for the parser predictions lies further in the
past than the N-gram model is able to integrate; the span from cause to effect could be

2It might be tempting to include the parser prediction directly into the N-gram context as an additional
context word (using the N-grams (wi−N . . . wi−1pi−1wi)), but that would break the count-of-count
assumptions for Kneser-Ney smoothing.

3SRILM allows to manipulate N-gram counts and is still able to compute correct backoff values unlike e. g.
KenLM (Heafield 2011), which, however, would allow to include singleton N-grams due to its superior
memory efficiency. Data sparsity (see below) would be less severe if singletons were included.

98

7.4. A First Language Model with Prediction Nodes

The world that we are changing

[verb]

v+

v−

NMOD
SBJ

NMOD

SBJ

SUB
VC

There is evidence

SBJ PRD
NMOD

SBJ

SUB

VC

. . .a)
b)

continuation log10prob difference
between +

v /−v model

has/hasn +1.18 / +1.12
will +1.10
is/isn +1.08 / +0.97

and +0.05
in −0.06

worlds −0.34
it −1.28
a/an −1.41 / −1.35
our −1.69
lives −2.52

Figure 7.1.: Predictive parses for two sentence beginnings (left). While the parser predicts
a verb to be neccessary to complete (a), it does not predict a verb for (b). The
differences in the sentences (that cause the different parses) lie outside of the
local N-gram context (dashed box). Possible continuations and the relative
differences in assigned probabilities depending on +

v/−v context are shown in
tabular form (right).

even larger if e. g. “we” would be replaced by a long noun phrase. Querying the two
language models split by whether the parser predicted an upcoming verb and computing
the differences shows that the augmented language model is able to distinguish between
the contexts: The table on the right of Figure 7.1 shows the log10 probability differences
for some continuations. Words that can only reasonably follow prefix (a) have a higher
probability under the +

v model whereas words only fitting for prefix (b) have a higher
probability under the −

v model. Words such as “and” and “in”, which can appear in both
contexts, have a similar probability.

The effect of parser prediction can also be seen on four-way splits (i. e. splitting according
to the parser predictions vn). For this, we will look at 3-gram models with the 2-gram
context being the world. The probabilities for the continuations of “the world” as well as
the relative change to the standard model are shown in Table 7.2. Numbers of interest are
in bold. Starting from the top, the suffix ’s is assigned a high probability by the models
where the parser is still expecting a noun, especially by the −

v
+
n model. Structurally, a noun

is unlikely to follow directly but it can fill a valency of a verb for which the world is a bad

99

Chapter 7. Incremental Parsing for Language Modeling

probabilities relative change

tri-gram avg +

v
+

n
+

v
−
n

−
v

−
n

−
v

+

n
+

v
+

n
+

v
−
n

−
v

−
n

−
v

+

n

the world ’s .33 .41 .37 .28 .81 ×1.2 ×1.1 ÷1.2 ×2.5
the world . .14 .02 .03 .19 .01 ÷7.0 ÷4.9 ×1.4 ÷13
the world , .10 .17 .07 .11 .02 ×1.6 ÷1.5 ×1.1 ÷4.9
the world and .02 .01 .01 .03 .004 ÷2.2 ÷2.2 ×1.3 ÷5.3
the world everything else .41 .39 .52 .39 .16 ÷1.1 ×1.3 ÷1.1 ÷2.6

Table 7.2.: Example tri-grams and their probabilities in the full corpus (avg) vs. split by
parser prediction. everything else is the sum of all other probabilities. Relative
change: change of the split model probability with respect to the probability of
the non-split (avg) model.

fit lexically. The connection ’s makes the world a possessive modificator of the expected
noun. The continuation . has the highest probabilty under the model not predicting any
upcoming structure. This makes sense as a full stop usually denotes the end of a sentence,
which means that the current prefix should form a complete sentence with a complete
syntax structure. The comma is more likely when both a verb and a noun are predicted,
presumably because this constellation dominates at the end of introductory prepositional
phrases. Lastly, and is most likely under the −

v
−
n model, similarly to the full stop, as it often

connects material to an already complete structure.
These observations show two points: first, at least some of the probability shifts are

linguistically plausible (evaluating the whole language model for plausibility is a futile
endeavor), and second, probability shifts based on the parser prediction do happen, i. e.
there actually is some information in the parser predictions.

7.4.2. Evaluation of the Basic Split Model
As already briefly noted above, the approach of splitting the N-grams into four different
models increases the data sparsity noticeably. This evaluation examines split N-gram
models for N between 2 and 5; the entropy of 6-gram models is similar to the one of 5-gram
models on “small” datasets such as the billion word corpus due to data sparsity. For each
N, a four-way split model (vn), a model only split based on the predicted verbs (v), and a
model only split based on the predicted nouns (n), the corresponding random split models
and a standard model without splitting was created.

100

7.4. A First Language Model with Prediction Nodes

syntax pred. random splits standard syntax gain splitting loss
A: B: C: B-A: B-C:

2-grams vn 7.819 7.968 7.881 0.149 0.087
v 7.837 7.918 0.081 0.037
n 7.861 7.917 0.057 0.036

3-grams vn 6.988 7.209 6.938 0.221 0.271
v 6.969 7.071 0.102 0.133
n 6.959 7.067 0.108 0.129

4-grams vn 6.735 7.025 6.633 0.290 0.392
v 6.703 6.839 0.136 0.206
n 6.671 6.830 0.159 0.197

5-grams vn 6.685 6.994 6.566 0.309 0.428

Table 7.3.: Cross-entropies (in bit; lower is better) obtained by splitting the training data
according to the parser’s prediction (verb, noun, or both), vs. random splitting
and comparison to standard models.

Table 7.3 shows the cross-entropies obtained by the different models as well as the gain
of the model with splits based on parser prediction over the model with random splits
and the increase of entropy induced by splitting the data (comparing random splits to
the standard model). While the syntax gain is higher than the loss incurred from the
data sparsity due to splitting the data for N=2, for higher-order language models the data
sparsity is much more severe and cancels out the gain of using syntax information, even
though that gain is also rising. The high syntax gain even for 5-grams shows that the
parser predictions actually encode long-range information not encoded in the 4-word
context. Both noun and verb predictions yield similar results and seem to provide similar
(and additive) benefits.

Note that the entropies reported for this experiment are higher than the ones that
will be reported in Section 7.5.1 because these models are not order-interpolated,4 and
the sentence ends were excluded from the perplexity computations. These changes are
unlikely to change the overall picture of this experiment.

4Order-interpolated languge models interpolate N-gram probabilities with lower-order probabilities to
obtain more robust probability distributions.

101

Chapter 7. Incremental Parsing for Language Modeling

1e-05

0.0001

0.001

0.01

0.1

1

12
v+n+

-

,
v+n+

-

millions
v+n+

2-2

more
v+n−

3-3

than
v+n−

3-2

turn
v+n−

3-3

on
v+n−

3-2

a
v+n+

3-3

World
v+n+

3-3

Series
v+n−

4-3

game
v+n−

-4

.
v+n−

-2

1e-05

0.0001

0.001

0.01

0.1

1

At
v+n+

-

its
v−n+

-

North
v+n−

2-2

American
v+n+

3-3

stores
v+n+

4-2

,
v+n+

3-2

like-for-like
v+n+

3-3

 sales
v+n−

4-4

were
v+n−

4-4

down
v+n−

-

10
v−n−

4-4

%
v−n+

-

.
v−n−

4-4

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

Initial
v+n+

-

reaction
v+n+

-

from
v+n−

-

Lavrov
v+n+

2-1

and
v+n+

2-2

Serdyukov
v+n+

3-2

,
v+n+

2-2

though
v+n−

2-2

,
v+n+

3-3

was
v+n−

4-4

less
v+n−

-3

gracious
v−n−

2-2

.
v−n−

2-2

1e-06

1e-05

0.0001

0.001

0.01

0.1

A
v+n+

-

kafir
v+n+

-

by
v+n+

-

definition
v+n+

3-3

is
v+n−

3-3

an
v+n−

4-3

Atheist
v+n−

2-2

.
v−n+

3-1

standard
split

Figure 7.2.: Sentences with their per-word probabilities under standard and split models.
Each word is annotated with the syntax prediction of its context and the the
N-gram order the standard and split model had to back off to respectively, if
backoff is needed.

7.4.3. Exemplary Comparison of Split and Standard Model Probabilities
We have now seen that the syntax-based split model contains useful information (compared
to the random splits) but is unable to outperform standard N-gram models (probably due
to data sparsity). We looked at probability assignments of the standard 5-gram model
and compared those to the probabilities assigned by the syntax-split 5-gram model. We
computed the probability differences on 500 short test sentences from the corpus and
selected sentences exposing large differences. We found some patterns that are illustrated
by the four example sentences in Figure 7.2. Each of the four plots shows the words on
the x-axis, which of the split models was queried to obtain the probability for that word
(i. e., the predictions of the parser for the prefix not including that word), and to which
N-gram order the standard and the split model had to back off to. The logarithmic y-axis
shows the probability that the standard and split models assign.

All sentence-initial words are assigned the same probability by both language models
as long as the N-gram being queried spans back to the start of the sentence because the
syntactic information can not contain additional information about the context outside
the N-gram.

102

7.5. Beyond the Basic Split Model

If both models can use the same order of N-grams (i. e. the split model does not have
to back off more than the standard model), both models assign similar probabilities with
the split model occasionally assigning a higher probability. The first three sentences also
have data points where the split model assigns a higher probability even though it has to
back off further than the standard model due to data sparsity. In the first sentence, the full
stop is assigned a low probability by the split model because the parser is still expecting
a verb, which is in fact missing from the sentence, and this sentence seems to be both
ungrammatical and unfinished.

The split model fails under circumstances where the word to be predicted is only
probable given a longer N-gram context than the split model is able to use. For example,
the probability of “stores” is high given the context “North American”, but much less likely
given only the context “American” (see the second sentence). Similarly, “Serdyukov” is
only probable if “Lavrov” is in the context: Anatoly Serdyukov was the Defense Minister of
Russia from 2007 to 2012, Sergey Lavrov is the ForeignMinister since 2004. The syntax-split
model has to back off to bigram probabilities, which removes “Lavrov” from the context
and makes a continuation with another Russian politician highly improbable. Further
analysis of this last example shows that there are two occurrences of the trigram in the
training data, which fall into two different prediction states (+v+

n and −
v

+
n). As singleton

N-grams are ignored, both occurrences of the trigram are lost and not used in the split
model.

7.4.4. Overall Differences Between Split and Standard Model
Up to now, we only looked at examples qualitatively. Figure 7.3 (left) shows a histogram of
log10 probability differences between the two models. The majority of the differences are
positive (55 %), but differences with high magnitude only occur in favor of the standard
model, resulting in an overall disadvantage of the split model.

7.5. Beyond the Basic Split Model
As we have seen, the parser predictions provide helpful information, but the basic split
approach introduced in the previous section is hindered by the data sparsity induced.
In this section, approaches that yield a net gain when including parser predictions will
be introduced. Experiments on two different kinds of language models are performed:
N-gram language models using SRILM and maximum Entropy N-gram models (Rosenfeld
1994) using faster-rnnlm.5

5github.com/yandex/faster-rnnlm

103

https://github.com/yandex/faster-rnnlm

Chapter 7. Incremental Parsing for Language Modeling

 1

 10

 100

 1000

 10000

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Figure 7.3.: Left: Histogram over log10prob differences between the split and the standard
model. Right: Differences between the interpolated and standard model (see
Section 7.5.1). Notice the logarithmic y-axis. The boxplots below show 25/75%
(box) and 5/95% (whiskers) intervals and median.

7.5.1. Interpolating N-gram Models
To reduce the magnitude of the negative outliers due to data sparsity, the split model can be
interpolated with a standard model. Building the average between two models to obtain a
model superior to both parts seems counter-intuitive, but it actually works because entropy
is computed by multiplying probabilities from the language model, and averaging two
models with the same entropy can yield a model with lower entropy, as I will demonstrate
with an example: Given a two-element binary task x1, x2 with observations x1 = 1 and
x2 = 1 and two probability distributions a and b as well as the averaged distribution ab
assigning

Pa(x1 = 1) = 0.1

Pa(x2 = 1) = 0.8

Pab(x1 = 1) = 0.45

Pb(x1 = 1) = 0.8

Pb(x2 = 1) = 0.1

Pab(x2 = 1) = 0.45

yields a cross-entropy of (−log2(0.8)+ log2(0.1))/2 = 1.82 bits for models a and b, but a
much lower entropy of (−log2(0.45) + log2(0.45))/2 = 1.15 bits for the averaged model
ab.

The effect of averaging can be seen on the right side of Figure 7.3: No probability of
the interpolated model can be less than half of the standard model, removing the long
tail of low probabilities from the left side of the figure. In other words, no log10prob
difference is smaller than log10(0.5) ≈ −0.3. Although the magnitude of improvements

104

7.5. Beyond the Basic Split Model

is also reduced, that effect is smaller, and the difference to the standard model turns from
negative to positive.

There are, of course, several language models that can be combined in different ways;
the results of different experiments are shown in Table 7.4; note that these models are
– in contrast to the ones described in Section 7.4 – order-interpolated, resulting in a
slightly lower entropy. Interpolating a model based on a split along the v predictions and
a model based on n predictions improves performance over the four-way split (1a). This
improvement is not surprising as each estimation is now roughly based on three quarters
of the data (half from the v split and half from the n split, with an overlap) instead of
only one quarter. The interpolation can also take place on the N-gram level instead of
the resulting probability distributions (1b): A four-way split model can be constructed
where each of the bins is assigned all the N-grams where the v prediction matches and
the N-grams where the n prediction matches. For example, the +

v
+
n sub-model receives

all N-grams for which either a verb or a noun were predicted; N-grams for which both a
verb and a noun was predicted are counted twice as they are included once through both
predictions.

The interpolation with the standard model can not only be performed with the four-
way splitting model (2a) but also with the better count-based approach (2b). Using the
count-based interpolation yields a gain of 0.08 bits cross-entropy. While sounding quite
small, this is a perplexity improvement of 6 % (from 76.3 down to 72.0) while still having
smaller models than unpruned N-grammodels and retaining the speed of N-gram language
models.

7.5.2. Adding Syntax Predictions to Maximum Entropy Models
To test whether the performance increase is only due to the peculiarities of one language
model system, I extended a hash-based Maximum Entropy language model (the base
implementation being from faster-rnnlm) to make use of parser predictions. A Maximum
Entropy language model (MaxEnt-lm) computes the probability for a word given its context
by learning scores s(N-gram) for N-grams and performing a softmax over the alternative
words in the same context:

p(wi|wi−N . . . wi−1) =
exp(s(wi−N , . . . wi−1, wi))∑︁

w’∈W exp(s(wi−N , . . . wi−1, w′))
(7.4)

N-grams never seen in the training data pose a similar problem as for N-gram language
models. TheMaxEnt-LMs are robust against this data sparsity because the scoring function

105

Chapter 7. Incremental Parsing for Language Modeling

model type setting standard syntax gain

5-grams 0. plain splitting 6.253 6.374 −0.12
1a. interp. from v×n 6.254 −0.001
1b. joint counts 6.187 0.07
2a. vn interp. w/ std 6.234 0.02
2b. joint counts interp. w/ std 6.170 0.08

MaxEnt 2-grams 8.41 8.31 0.10
3-grams 7.86 7.78 0.08
4-grams 7.88 7.87 0.01
4-grams (large GPU) 7.55 7.49 0.06

Table 7.4.: Cross-entropies (in bit; lower is better) of the experiments presented in Sec-
tion 7.5, for 5-grams and MaxEnt models, as discussed in the respective sub-
sections, with the standard model, syntax-enhanced model, and gain (or loss)
between the two. As can be seen, the baseline standardmodels are outperformed
for all model types.

is a sum over lower-order scores:

s(wi . . . wi−N) =

N∑︂
j=0

f(wi . . . wi−j) (7.5)

Note that this order-interpolation makes no additional assumptions about the structure of
the context. It is therefore possible to augment the scoring function with the parser state
as follows:

p(wi|wi−1 . . . wi−N , pi−1) =
exp(s(wi, wi−1 . . . wi−N , pi−1))∑︁

w’∈W exp(s(w’, wi−1 . . . wi−N , pi−1))
(7.6)

s(wi . . . wi−N , pi−1) =

N∑︂
j=0

f(wi . . . wi−j , pi−1) + f(wi . . . wi−j) (7.7)

This approach is not possible with interpolated N-gram models because the interpolations
are built on the assumption that a lower-order (N-1)-gram has the same count as all
N-grams with that N-gram as context.

In the faster-rnnlm implementation, f hashes the N-gram (as well as lower-order N-
grams) into a fixed-size table. It is therefore possible that two different N-grams share

106

7.6. Summary and Discussion

weights, but this step is necessary to limit the memory consumption of the model. The
experiment used a hash table with 400M elements, the maximum for the GPU card used.

Results are presented in Table 7.4, showing averages of several runs (to account for
random initialization). The vn-enhanced models perform significantly better than the
standard ones,6 but the difference for 4-grams is small. This is likely due to an increased
number of hash collisions; evaluating the MaxEnt-lm using a GPU with more memory and
a hash table with 1,600M elements yields an improvement of the prediction-augmented
model again.

7.6. Summary and Discussion
This chapter showed that predictive parsing can reduce the entropy of N-gram models
without a need to create parses for the words queried. Moreover, the parser used is in no
way optimized for language modeling and can be trained on a corpus different from the
one used for training the language model. The information extracted from the parser is
simple, encodable in two bits, and using it incurs no additional computational cost if a
predictive parser is run in the same overall system as the language model anyway.

6Wilcoxon rank sum test based on multiple runs of each experiment condition, p < .01.

107

Chapter 8.

Conclusions

This thesis set out to investigate how incremental and predictive parsing can be performed.
A significant problem for incremental parsing (and other types of incremental processing,
see Chapter 2) is the lack of a gold standard for each input. While the complete input does
have a gold standard, a partial one does not. This thesis dealt with this problem in two ways.
First, by creating incremental gold standards out of the non-incremental ones (see Chapter
3), which enabled the training of a restart-incremental predictive parser (Chapter 5). This
parser has high accuracy, but heuristics are needed to create the gold standard. These
heuristics limit the data sets the parser can be trained on and are only approximations of
what a good gold standard should look like. The second approach to incremental predictive
parsing (Chapter 6) mitigates the need for an incremental gold standard by rephrasing the
parsing problem as a ranking problem of (not too many) candidate structures that can all
be compared to the non-incremental gold standard. The structure created by the parser
that fits the non-incremental gold standard best is used as the target for training. To create
these candidate structures, a transition system is employed that has a high coverage but
still generates few enough structures for the resulting parser to be several times faster
than the restart-incremental one, trading accuracy for speed.

In contrast to previous work on predictive parsing (targeting, e. g., psycholinguistic
adequacy (Demberg, Keller, and Koller 2013) or language modeling (Jurafsky et al. 1995)),
incTP and PreTra are not optimized for any task except parsing. Still, their output proves
to be of merit for other tasks such as language modeling (see Chapter 7).

As for every work, there are still plenty of open questions, problems and opportunities
for further research left. A description of some of these forms the end of this thesis.

Psycholinguistic plausibility It remains to be seen whether incTP and PreTra exhibit
similar effects concerning psycholinguistic adequacy, e. g. if the non-monotonic changes in
their output are good predictors of surprisal or reading times. A good correlation of those
changes with reading times would explain away some of the stated linguistic plausibility
of other approaches (such as PLTAG) because psycholinguistic implausible parsers (e. g.

109

Chapter 8. Conclusions

incTP) exhibit similar effects.

Mixing transition systems with reanalysis The two parsers presented – incTP and
PreTra – work complementary: incTP performs restart-incrementality whereas PreTra
only performs monotonic extensions.1 As psycholinguistic research has shown that
neither approach alone models human processing well (Malsburg and Vasishth 2011), a
combination of both would be desirable. I. e., a parser that can switch from extension to
reanalysis whenever the probability of a misunderstanding of the sentence is high. This
combined approach could lead to a faster parser than incTP is (which currently recomputes
too much) and higher accuracy than the one of PreTra (which can currently not recover
from errors made in all entries of the beam).

Training without incremental gold standards In contrast to PreTra, incTP needs pre-
generated incremental gold standards. It may be possible to use the structures generated
while training PreTra as a basis for training incTP or a similar restart-incremental parser.
In that case, the transition system would primarily be used to constrain the automatic
generation of gold-standard data, but the resulting parser would not need to use it.

Qualitative Analyses Non-incremental parsers can be evaluated qualitatively by look-
ing at the kind of errors they make. This type of evaluation would undoubtedly be useful
for incremental parsers as well but is more complicated due to the new dimension the
incremental processing introduces. In addition to e. g. asking whether a prepositional
phrase is correctly attached, one needs to reason about when they are attached where. As
this additional complexity makes drawing valid conclusions from qualitative analyses even
harder, they were omitted from this thesis. Performing this analysis might nonetheless
be fruitful, especially when compared to the kind of constructions where humans exhibit
reading difficulties.

Incremental parsing in multi-modal settings The architecture of PreTra especially
lends itself into experiments on multi-modal processing. The scoring of structures is
distinct from the structure generation and can therefore be easily augmented with priming
from e. g. a visual modality. This would allow modeling parsing effects in a visual world
similar to the effects reported by Tanenhaus et al. (1995).

Syntax annotations motivated by incremental parsing Regarding parsing effects,
the experiments with PreTra have also shown that the choice of annotation schema has

1PreTra still produces non-monotonic output whenever the best hypothesis in the beam changes.

110

an impact on the accuracy that could theoretically be achieved by a transition-based
predictive parser. Especially the low attachment of arguments to verb chains – as done in
the HDT annotation – results in the need for reanalysis. This insight could be a motivation
for annotations that are better-suited for incremental parsing, such as the UD annotations.
However, even with a function-head annotation, attaching arguments to verb chains high
rather than low would enable better incremental parsing accuracy.

Incremental non-syntax structured prediction tasks I hope that the findings can
carry over to other structured prediction tasks. For example, the general approach of
performing transition-based beam search and updating against an element of the beam
instead of a gold standard seems to be more widely applicable, e. g. for incremental
semantic parsing for which some preliminary work is already available (Konstas et al.
2014; Sayeed and Demberg 2012). However, the grounding of the output is even less clear
than for syntax parsing that makes it even harder to attribute parts of the output to parts
of the input.

Making use of predictive parsers in incremental systems While the task of predic-
tive parsing is interesting in itself and can be a tool to understand the dynamic processes of
language better, predictive parsers could also be used in applications, as briefly discussed
in Chapter 7. Some applications that used to include syntax parsers for feature extraction
have switched to use neural network based extractions on the input sequences instead.
However, even for those applications, recent work has shown that making use of syntactic
structure provides benefits. Incremental systems, for which incremental parsers were
not readily available to be used, can now employ the parsers presented in this thesis,
and non-incremental systems relying on syntactic structure have one obstacle less to be
incrementalized.

111

Bibliography

Abeillé, Anne, Lionel Clément, and François Toussenel (2003). “Building a Treebank for
French”. In: Treebanks. Ed. by Anne Abeillé. Dordrecht: Kluwer (cit. on p. 43).

Aït-Mokhtar, S., J.-P. Chanod, and C. Roux (2002). “Robustness beyond shallowness:
incremental deep parsing”. In: Natural Language Engineering 8.2-3, pp. 121–144 (cit. on
p. 11).

Aly, Rami, Shantanu Acharya, Alexander Ossa, Arne Köhn, Chris Biemann, and Alexan-
der Panchenko (2019). “Every Child Should Have Parents: A Taxonomy Refinement
Algorithm Based on Hyperbolic Term Embeddings”. In: Proceedings of the 57th Confer-
ence of the Association for Computational Linguistics. Florence, Italy: Association for
Computational Linguistics, pp. 4811–4817 (cit. on p. 133).

Andor, Daniel, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman
Ganchev, Slav Petrov, and Michael Collins (2016). “Globally Normalized Transition-
Based Neural Networks”. In: Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). Berlin, Germany: Association for
Computational Linguistics, pp. 2442–2452 (cit. on p. 60).

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2014). “Neural Machine Trans-
lation by Jointly Learning to Align and Translate”. In: CoRR abs/1409.0473. arXiv:
1409.0473 (cit. on p. 21).

Bangalore, Srinivas and Aravind K. Joshi (1999). “Supertagging: An Approach to Almost
Parsing”. In: Computational Linguistics 25.2 (cit. on p. 37).

Baumann, Timo (2013). “Incremental Spoken Dialogue Processing: Architecture and
Lower-level Components”. PhD thesis. Universität Bielefeld, Germany (cit. on p. 27).

Baumann, Timo, Michaela Atterer, and David Schlangen (2009). “Assessing and Improving
the Performance of Speech Recognition for Incremental Systems”. In: Proceedings
of Human Language Technologies: The 2009 Annual Conference of the North American
Chapter of the Association for Computational Linguistics. Boulder, Colorado: Association
for Computational Linguistics, pp. 380–388 (cit. on pp. 19, 20, 27).

Baumann, Timo, Okko Buß, and David Schlangen (2011). “Evaluation and Optimisation
of Incremental Processors”. In: Dialogue & Discourse 2.1. Special Issue on Incremental
Processing in Dialogue, pp. 113–141. issn: 2152-9620 (cit. on pp. 25, 51).

113

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
http://aclweb.org/anthology/J99-2004
http://aclweb.org/anthology/J99-2004

Bibliography

Baumann, Timo, Arne Köhn, and Felix Hennig (2018). “The Spoken Wikipedia Corpus
collection: Harvesting, alignment and an application to hyperlistening”. In: Language
Resources and Evaluation. issn: 1574-0218 (cit. on p. 132).

Beuck, Niels, Arne Köhn, and Wolfgang Menzel (2011a). “Decision Strategies for Incre-
mental POS Tagging”. In: Proceedings of the 18th Nordic Conference of Computational
Linguistics NODALIDA 2011. Ed. by Bolette Sandford Pedersen, Gunta Nešpore, and
Inguna Skadina. Vol. 11. NEALT Proceedings. Northern European Association for
Language Technology (NEALT), pp. 26–33 (cit. on pp. 19, 134).

– (2011b). “Incremental parsing and the evaluation of partial dependency analyses”. In:
Proceedings of the 1st International Conference on Dependency Linguistics. Depling 2011
(cit. on pp. 26, 37, 44, 47, 49, 64, 72, 134).

– (2013). “Predictive Incremental Parsing and its Evaluation”. In: Computational Depen-
dency Theory. Ed. by Kim Gerdes, Eva Hajičová, and Leo Wanner. Vol. 258. Frontiers in
Artificial Intelligence and Applications. IOS press, pp. 186–206 (cit. on pp. 37, 51, 61, 64,
72, 129).

Beuck, Niels and Wolfgang Menzel (2013). “Structural Prediction in Incremental Depen-
dency Parsing”. In: Computational Linguistics and Intelligent Text Processing. Ed. by
Alexander Gelbukh. Vol. 7816. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, pp. 245–257. isbn: 978-3-642-37246-9 (cit. on pp. 49, 52, 54, 55, 67, 159).

Bohnet, Bernd (2010). “Top Accuracy and Fast Dependency Parsing is not a Contradiction”.
In: Proceedings of the 23rd International Conference on Computational Linguistics (Coling
2010). Beijing, China, pp. 89–97 (cit. on p. 83).

Bohnet, Bernd and Jonas Kuhn (2012). “The Best of Both Worlds – A Graph-based Com-
pletion Model for Transition-based Parsers”. In: Proceedings of the 13th Conference of
the European Chapter of the Association for Computational Linguistics. Avignon, France:
Association for Computational Linguistics, pp. 77–87 (cit. on pp. 76, 81).

Bohnet, Bernd, Ryan McDonald, Emily Pitler, and Ji Ma (2016). “Generalized Transition-
based Dependency Parsing via Control Parameters”. In: Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Berlin,
Germany: Association for Computational Linguistics, pp. 150–160 (cit. on p. 60).

Borges Völker, Emanual, Maximilan Wendt, Felix Hennig, and Arne Köhn (2019). “HDT-
UD: A very large Universal Dependencies treebank for German”. In: Proceedings of the
Universal Dependencies Workshop at SyntaxFest 2019 (cit. on pp. 43, 133).

Charniak, Eugene (2001). “Immediate-Head Parsing for Language Models”. In: Proceedings
of 39th Annual Meeting of the Association for Computational Linguistics. Toulouse, France:
Association for Computational Linguistics, pp. 124–131 (cit. on p. 95).

Chelba, Ciprian and Frederick Jelinek (1998). “Exploiting Syntactic Structure for Language
Modeling”. In: Proceedings of the 36th Annual Meeting of the Association for Computational

114

https://doi.org/10.1007/s10579-017-9410-y
https://doi.org/10.1007/s10579-017-9410-y

Bibliography

Linguistics and 17th Int. Conf. on Computational Linguistics. Vol. 1. Montréal, Canada:
ACL, pp. 225–231 (cit. on p. 96).

Chelba, Ciprian, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, and Phillipp
Koehn (2013). “One Billion Word Benchmark for Measuring Progress in Statistical
Language Modeling”. In: CoRR abs/1312.3005 (cit. on p. 94).

Chen, Stanley F. and Joshua Goodman (1996). “An Empirical Study of Smoothing Tech-
niques for Language Modeling”. In: Proceedings of the 34th Annual Meeting of the
Association for Computational Linguistics. Santa Cruz, California, USA: Association for
Computational Linguistics, pp. 310–318 (cit. on pp. 94, 98).

Chiang, David (2000). “Statistical Parsing with an Automatically-Extracted Tree Adjoining
Grammar”. In: Proceedings of the 38th AnnualMeeting of the Association for Computational
Linguistics. Hong Kong: Association for Computational Linguistics, pp. 456–463 (cit. on
p. 37).

Cho, Kyunghyun and Masha Esipova (2016). “Can neural machine translation do simulta-
neous translation?” In: CoRR abs/1606.02012. arXiv: 1606.02012 (cit. on p. 25).

Cho, Kyunghyun, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio (2014). “Learning Phrase Representa-
tions using RNN Encoder–Decoder for Statistical Machine Translation”. In: Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP).
Doha, Qatar: Association for Computational Linguistics, pp. 1724–1734 (cit. on p. 83).

Collins, Michael, Brian Roark, and Murat Saraclar (2005). “Discriminative Syntactic
Language Modeling for Speech Recognition”. In: Proceedings of the 43rd Annual Meeting
of the Association for Computational Linguistics. Ann Arbor, USA: ACL, pp. 507–514
(cit. on p. 95).

Comerford, Liam, David Frank, Ponani S. Gopalakrishnan, Ramesh A. Gopinath, and Jan
Sedivý (2001). “The IBM Personal Speech Assistant”. In: ICASSP (cit. on p. 9).

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein (2001).
introduction to algorithms (second edition). The MIT Press (cit. on p. 64).

Crammer, Koby, Ofer Dekel, Joseph Keshet, and Shai Shalev-Shwartz andYoram Singer
(2006). “Online Passive-Aggressive Algorithms”. In: Journal of Machine Learning Research
7, pp. 551–585 (cit. on p. 86).

Currey, Anna and Kenneth Heafield (2019). “Incorporating Source Syntax into Transformer-
Based Neural Machine Translation”. In: Proceedings of the Fourth Conference on Machine
Translation (Volume 1: Research Papers). Florence, Italy: Association for Computational
Linguistics, pp. 24–33 (cit. on p. 29).

Daum, Michael (2004). “Dynamic Dependency Parsing”. In: Proceedings of the Workshop
on Incremental Parsing: Bringing Engineering and Cognition Together (cit. on p. 64).

115

http://arxiv.org/abs/1312.3005
http://arxiv.org/abs/1312.3005
http://arxiv.org/abs/1606.02012
http://arxiv.org/abs/1606.02012
https://arxiv.org/abs/1606.02012

Bibliography

Dean, Thomas and Mark Boddy (1988). “An Analysis of Time-Dependent Planning”. In:
Proceedings of the Seventh National Conference on Artificial Intelligence, pp. 49–54 (cit. on
p. 11).

Demberg, Vera and Frank Keller (2008). “A Psycholinguistically Motivated Version of
TAG”. In: Proceedings of the Ninth International Workshop on Tree Adjoining Grammar
and Related Frameworks (TAG+9). Tübingen, Germany, pp. 25–32 (cit. on p. 36).

Demberg, Vera, Frank Keller, and Alexander Koller (2013). “Incremental, Predictive Parsing
with Psycholinguistically Motivated Tree-Adjoining Grammar”. In: Computational
Linguistics 39.4, pp. 1025–1066 (cit. on pp. 36, 37, 109).

DeVault, David, Kenji Sagae, and David Traum (2009). “Can I Finish? Learning When to
Respond to Incremental Interpretation Results in Interactive Dialogue”. In: Proceedings
of the SIGDIAL 2009 Conference. London, UK: Association for Computational Linguistics,
pp. 11–20 (cit. on p. 12).

Dyer, Chris, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A. Smith (2015).
“Transition-Based Dependency Parsing with Stack Long Short-Term Memory”. In:
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers). Beijing, China: Association for Computational Linguistics, pp. 334–343
(cit. on p. 59).

Filimonov, Denis and Mary Harper (2009). “A Joint Language Model With Fine-grain
Syntactic Tags”. In: Proceedings of the 2009 Conference on Empirical Methods in Natural
Language Processing. Singapore: Association for Computational Linguistics, pp. 1114–
1123 (cit. on p. 95).

Foth, Kilian A. (2006). Eine umfassende Constraint-Dependenz-Grammatik des Deutschen.
ger (cit. on p. 64).

Foth, Kilian A., Michael Daum, and Wolfgang Menzel (2004). “Interactive grammar de-
velopment with WCDG”. In: The Companion Volume to the Proceedings of 42st Annual
Meeting of the Association for Computational Linguistics. Barcelona, Spain, pp. 122–125
(cit. on p. 64).

Foth, Kilian A., Arne Köhn, Niels Beuck, and Wolfgang Menzel (2014). “Because Size
Does Matter: The Hamburg Dependency Treebank”. In: Proceedings of the Language
Resources and Evaluation Conference 2014. Ed. by Nicoletta Calzolari (Conference Chair),
Khalid Choukri, Thierry Declerck, Hrafn Loftsson, Bente Maegaard, Joseph Mariani,
Asuncion Moreno, Jan Odijk, and Stelios Piperidis. LREC. Reykjavik, Iceland: European
Language Resources Association (ELRA), pp. 2326–2333 (cit. on pp. 31, 43, 130).

Foth, Kilian A. and Wolfgang Menzel (2006). “Hybrid Parsing: Using Probabilistic Models
as Predictors for a Symbolic Parser”. In: Proceedings of the 21st International Conference

116

http://www.aclweb.org/anthology/J/J13/J13-4008.pdf
http://www.aclweb.org/anthology/J/J13/J13-4008.pdf
http://nbn-resolving.de/urn:nbn:de:gbv:18-228-7-2048

Bibliography

on Computational Linguistics and 44th Annual Meeting of the ACL. Sydney, Australia:
Association for Computational Linguistics, pp. 321–328 (cit. on p. 72).

Foth, Kilian A., Wolfgang Menzel, Horia F. Pop, and Ingo Schroder (2000). “An Experiment
On Incremental Analysis Using Robust Parsing Techniques”. In: COLING 2000 Volume 2:
The 18th International Conference on Computational Linguistics (cit. on p. 64).

Foth, Kilian A., WolfgangMenzel, and Ingo Schröder (2000). “A Transformation-based Pars-
ing Technique with Anytime Properties”. In: 4th Int. Workshop on Parsing Technologies,
IWPT-2000. Trento, Italy, pp. 89–100 (cit. on p. 64).

Friedrich, Max, Arne Köhn, Gregor Wiedemann, and Chris Biemann (2019). “Adversarial
Learning of Privacy-Preserving Text Representations for De-Identification of Medical
Records”. In: Proceedings of the 57th Conference of the Association for Computational
Linguistics. Florence, Italy: Association for Computational Linguistics, pp. 5829–5839
(cit. on p. 133).

Gibson, Edward and Tessa Warren (2004). “Reading-Time Evidence for Intermediate
Linguistic Structure in Long-Distance Dependencies”. In: Syntax 7.1, pp. 55–78. issn:
1467-9612 (cit. on p. 10).

Goldberg, Yoav and Joakim Nivre (2013). “Training Deterministic Parsers with Non-
Deterministic Oracles”. In: Transactions of the Association for Computational Linguistics
(cit. on pp. 59, 76).

Goldman-Eisler, Frieda (1972). “Segmentation of input in simultaneous translation”. In:
Journal of Psycholinguistic Research 1.2, pp. 127–140. issn: 1573-6555 (cit. on p. 19).

Gómez-Rodríguez, Carlos and Joakim Nivre (2010). “A Transition-Based Parser for 2-Planar
Dependency Structures”. In: Proceedings of the 48th Annual Meeting of the Association
for Computational Linguistics. Uppsala, Sweden, pp. 1492–1501 (cit. on pp. 59, 60).

Greff, K., R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber (2017). “LSTM:
A Search Space Odyssey”. In: IEEE Transactions on Neural Networks and Learning Systems
28.10, pp. 2222–2232. issn: 2162-237X (cit. on p. 83).

Grissom II, Alvin, He He, Jordan Boyd-Graber, John Morgan, and Hal Daumé III (2014).
“Dont́ Until the Final Verb Wait: Reinforcement Learning for Simultaneous Machine
Translation”. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Doha, Qatar: Association for Computational Linguistics,
pp. 1342–1352 (cit. on pp. 22, 25).

Gu, Jiatao, Graham Neubig, Kyunghyun Cho, and Victor O.K. Li (2017). “Learning to
Translate in Real-time with Neural Machine Translation”. In: Proceedings of the 15th
Conference of the European Chapter of the Association for Computational Linguistics:
Volume 1, Long Papers. Valencia, Spain: Association for Computational Linguistics,
pp. 1053–1062 (cit. on pp. 21–23).

117

http://dx.doi.org/10.1111/j.1368-0005.2004.00065.x
http://dx.doi.org/10.1111/j.1368-0005.2004.00065.x
https://doi.org/10.1007/BF01068102
https://arxiv.org/abs/1503.04069
https://arxiv.org/abs/1503.04069

Bibliography

Guhe, Markus (2007). Incremental Conceptualization for Language Production. Lawrence
Erlbaum Associates, Inc. isbn: 0-8058-5624-2 (cit. on p. 15).

Hajič, Jan, Barbora Vidová Hladká, and Petr Pajas (2001). “The Prague Dependency
Treebank: Annotation Structure and Support”. In: Proceedings of the IRCS Workshop
on Linguistic Databases. University of Pennsylvania, Philadelphia, USA, pp. 105–114
(cit. on p. 31).

Han, Kyu J., Akshay Chandrashekaran, Jungsuk Kim, and Ian R. Lane (2018). “The CAPIO
2017 Conversational Speech Recognition System”. In: CoRR abs/1801.00059. arXiv:
1801.00059 (cit. on p. 13).

Hansen, Brian, David G. Novick, and Stephen Sutton (1996). “Prevention and repair of
breakdowns in a simple task domain”. In: Proceedings of the AAAI-96 Workshop on
Detecting, Repairing, and Preventing Human-Machine Miscommunication, pp. 5–12 (cit.
on p. 12).

He, He, Jordan Boyd-Graber, and Hal Daumé III (2016). “Interpretese vs. Translationese:
The Uniqueness of Human Strategies in Simultaneous Interpretation”. In: Proceedings
of the 2016 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies. San Diego, California: Association for
Computational Linguistics, pp. 971–976 (cit. on p. 23).

He, He, Alvin Grissom II, John Morgan, Jordan Boyd-Graber, and Hal Daumé III (2015).
“Syntax-based Rewriting for Simultaneous Machine Translation”. In: Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing. Lisbon, Portugal:
Association for Computational Linguistics, pp. 55–64 (cit. on pp. 22, 23, 25).

Heafield, Kenneth (2011). “KenLM: Faster and Smaller Language Model Queries”. In: Pro-
ceedings of the EMNLP 2011 SixthWorkshop on Statistical Machine Translation. Edinburgh,
Scotland, United Kingdom, pp. 187–197 (cit. on p. 98).

Hennig, Felix and Arne Köhn (2017). “Dependency Tree Transformation with Tree Trans-
ducers”. In: Proceedings of the NoDaLiDa 2017 Workshop on Universal Dependencies (UDW
2017). Gothenburg, Sweden: Association for Computational Linguistics, pp. 58–66 (cit.
on pp. 43, 131).

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long Short-Term Memory”. In: Neural
Computation 9.8, pp. 1735–1780. eprint: https://doi.org/10.1162/neco.1997.9.
8.1735 (cit. on p. 83).

Honnibal, Matthew and Mark Johnson (2014). “Joint Incremental Disfluency Detection and
Dependency Parsing”. In: Transactions of the Association for Computational Linguistics 2
(cit. on pp. 13, 59).

Hough, Julian and Matthew Purver (2014). “Strongly Incremental Repair Detection”. In:
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing

118

http://arxiv.org/abs/1801.00059
http://arxiv.org/abs/1801.00059
https://arxiv.org/abs/1801.00059
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

Bibliography

(EMNLP). Doha, Qatar: Association for Computational Linguistics, pp. 78–89 (cit. on
p. 13).

Huang, Liang and Kenji Sagae (2010). “Dynamic Programming for Linear-Time Incremental
Parsing”. In: Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics. Uppsala, Sweden, pp. 1077–1086 (cit. on pp. 59, 60).

Johansson, Richard and Pierre Nugues (2007). “Extended Constituent-to-Dependency
Conversion for English”. In: Proceedings of the 16th Nordic Conference of Computational
Linguistics NODALIDA-2007. Ed. by Kadri Muischnek Joakim Nivre Heiki-Jaan Kaalep
and Mare Koit. University of Tartu, Tartu, pp. 105–112 (cit. on pp. 43, 96).

– (2008). “Dependency-based Syntactic–Semantic Analysis with PropBank and NomBank”.
In: CoNLL 2008: Proceedings of the Twelfth Conference on Computational Natural Language
Learning. Manchester, England: Coling 2008 Organizing Committee, pp. 183–187 (cit. on
pp. 81, 159).

Joshi, Aravind K., Leon S. Levy, and Masako Takahashi (1975). “Tree adjunct grammars”.
In: Journal of Computer and System Sciences 10.1, pp. 136–163. issn: 0022-0000 (cit. on
p. 35).

Joshi, Aravind K. and Yves Schabes (1997). “Tree-Adjoining Grammars”. In: Handbook of
Formal Languages: Volume 3 BeyondWords. Ed. by Grzegorz Rozenberg and Arto Salomaa.
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 69–123. isbn: 978-3-642-59126-6
(cit. on pp. 35, 36).

Józefowicz, Rafal, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu (2016).
“Exploring the Limits of Language Modeling”. In: CoRR abs/1602.02410. arXiv: 1602.
02410 (cit. on p. 94).

Jurafsky, Daniel, Chuck Wooters, Jonathan Segal, Andreas Stolcke, Eric Fosler, Gary
Tajchaman, and Nelson Morgan (1995). “Using a stochastic context-free grammar as
a language model for speech recognition”. In: Acoustics, Speech, and Signal Processing.
ICASSP-95., International Conference on. Vol. 1. Detroit, USA: IEEE, pp. 189–192 (cit. on
pp. 96, 109).

Kay, Martin, Jean Mark Gawron, and Peter Norvig (1994). Verbmobil: a translation system
for face-to-face dialog. CSLI lecture notes 33. CSLI (cit. on p. 11).

Kiperwasser, Eliyahu and Yoav Goldberg (2016). “Simple and Accurate Dependency Parsing
Using Bidirectional LSTM Feature Representations”. In: Transactions of the Association
for Computational Linguistics 4, pp. 313–327. issn: 2307-387X (cit. on pp. 59, 83, 84).

Köhn, Arne (2015). “What´s in an Embedding? Analyzing Word Embeddings through
Multilingual Evaluation”. In: Proceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing. Lisbon, Portugal: Association for Computational
Linguistics, pp. 2067–2073 (cit. on p. 130).

119

http://www.sciencedirect.com/science/article/pii/S0022000075800195
http://arxiv.org/abs/1602.02410
https://arxiv.org/abs/1602.02410
https://arxiv.org/abs/1602.02410
https://transacl.org/ojs/index.php/tacl/article/view/885
https://transacl.org/ojs/index.php/tacl/article/view/885

Bibliography

Köhn, Arne (2016). “Evaluating Embeddings using Syntax-based Classification Tasks as
a Proxy for Parser Performance”. In: Proceedings of the 1st Workshop on Evaluating
Vector-Space Representations for NLP. Berlin: Association for Computational Linguistics,
pp. 67–71 (cit. on pp. 85, 130).

– (2018). “Incremental Natural Language Processing: Challenges, Strategies, and Evalua-
tion”. In: Proceedings of the 27th International Conference on Computational Linguistics.
Santa Fe, New Mexico, USA: Association for Computational Linguistics, pp. 2990–3003
(cit. on p. 132).

Köhn, Arne and Timo Baumann (2016). “Predictive Incremental Parsing Helps Language
Modeling”. In: Proceedings of COLING 2016, the 26th International Conference on Com-
putational Linguistics: Technical Papers. Osaka, Japan: The COLING 2016 Organizing
Committee, pp. 268–277 (cit. on p. 131).

Köhn, Arne, Timo Baumann, and Oskar Dörfler (2018). “An Empirical Analysis of the
Correlation of Syntax and Prosody”. In: Proceedings of Interspeech 2018, pp. 2157–2161
(cit. on p. 132).

Köhn, Arne, U Chun Lao, AmirAli B Zadeh, and Kenji Sagae (2014). “Parsing Morpho-
logically Rich Languages with (Mostly) Off-The-Shelf Software and Word Vectors”. In:
Proceedings of the 2014 Shared Task of the COLING Workshop on Statistical Parsing of
Morphologically Rich Languages (cit. on pp. 58, 130).

Köhn, Arne andWolfgang Menzel (2013). “Incremental and Predictive Dependency Parsing
under Real-Time Conditions”. In: Proceedings of the International Conference Recent
Advances in Natural Language Processing RANLP 2013. Hissar, Bulgaria: INCOMA Ltd.
Shoumen, BULGARIA, pp. 373–381 (cit. on pp. 11, 62, 64, 74, 129).

– (2014). “Incremental Predictive Parsing with TurboParser”. In: Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers).
Baltimore, Maryland: Association for Computational Linguistics, pp. 803–808 (cit. on
pp. 37, 72, 73, 129).

Köhn, Arne, Florian Stegen, and Timo Baumann (2016). “Mining the Spoken Wikipedia
for Speech Data and Beyond”. In: Proceedings of the Tenth International Conference on
Language Resources and Evaluation (LREC’16). Portorož, Slovenia: European Language
Resources Association (ELRA), pp. 4644–4647 (cit. on p. 131).

Köhn, Christine and Arne Köhn (2018). “An Annotated Corpus of Picture Stories Retold
by Language Learners”. In: Proceedings of the Joint Workshop on Linguistic Annotation,
Multiword Expressions and Constructions (LAW-MWE-CxG-2018). Santa Fe, New Mexico,
USA: Association for Computational Linguistics, pp. 121–132 (cit. on p. 132).

Köhn, Christine, Tobias Staron, and Arne Köhn (2016). “Parsing Free-Form Language
Learner Data: Current State and Error Analysis”. In: Proceedings of KONVENS 2016.
Bochum (cit. on p. 131).

120

Bibliography

Koller, Alexander, Timo Baumann, and Arne Köhn (2018). “DialogOS: Simple and extensible
dialog modeling”. In: Proceedings of Interspeech, pp. 167–168 (cit. on p. 132).

Koller, Alexander and Marco Kuhlmann (2011). “A generalized view on parsing and
translation”. In: Proceedings of the 12th International Conference on Parsing Technologies
(IWPT). Dublin (cit. on p. 35).

Konstas, Ioannis, Frank Keller, Vera Demberg, and Mirella Lapata (2014). “Incremental
Semantic Role Labeling with Tree Adjoining Grammar”. In: Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar:
Association for Computational Linguistics, pp. 301–312 (cit. on p. 111).

Koo, Terry and Michael Collins (2010). “Efficient third-order dependency parsers”. In:
Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics.
ACL ’10. Uppsala, Sweden: Association for Computational Linguistics, pp. 1–11 (cit. on
p. 63).

Koo, Terry, Alexander M. Rush, Michael Collins, Tommi Jaakkola, and David Sontag (2010).
“Dual decomposition for parsing with non-projective head automata”. In: Proceedings of
the 2010 Conference on Empirical Methods in Natural Language Processing. EMNLP ’10.
Cambridge, Massachusetts: Association for Computational Linguistics, pp. 1288–1298
(cit. on p. 63).

Lerner, Gene H. (2002). “Turn-Sharing: The Choral Co-Production Of Talk In Interaction”.
In: The Language of Turn and Sequence. Ed. by Cecilia E. Ford, Barbara A. Fox, and
Sandra A. Thompson. Oxford University Press, pp. 225–256 (cit. on pp. 9, 12).

Levelt, Wilem J. M. (1989). Speaking: From Intention to Articulation. The MIT Press (cit. on
pp. 10, 23).

Levy, Omer and Yoav Goldberg (2014). “Dependency-Based Word Embeddings”. In:
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers). Baltimore,Maryland: Association for Computational Linguistics,
pp. 302–308 (cit. on p. 85).

Ma, Ji, Yue Zhang, and Jingbo Zhu (2014). “Punctuation Processing for Projective De-
pendency Parsing”. In: Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers). Baltimore, Maryland: Association
for Computational Linguistics, pp. 791–796 (cit. on p. 44).

Malsburg, Titus von der and Shravan Vasishth (2011). “What is the scanpath signature
of syntactic reanalysis?” In: Journal of Memory and Language 65.2, pp. 109–127. issn:
0749-596X (cit. on pp. 10, 11, 74, 110).

Marcus, Mitchell, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann Bies, Mark
Ferguson, Karen Katz, and Britta Schasberger (1994). “The Penn Treebank: Annotating
Predicate Argument Structure”. In: Proceedings of the Workshop on Human Language

121

http://www.sciencedirect.com/science/article/pii/S0749596X11000179
http://www.sciencedirect.com/science/article/pii/S0749596X11000179

Bibliography

Technology. HLT ’94. Plainsboro, NJ: Association for Computational Linguistics, pp. 114–
119. isbn: 1-55860-357-3 (cit. on pp. 31, 37).

Martins, André Filipe Torres (2012). “The Geometry of Constrained Structured Prediction:
Applications to Inference and Learning of Natural Language Syntax”. PhD thesis.
UNIVERSIDADE TÉCNICA DE LISBOA (cit. on p. 65).

Martins, André Filipe Torres, Miguel Almeida, and Noah A. Smith (2013). “Turning on
the Turbo: Fast Third-Order Non-Projective Turbo Parsers”. In: Proceedings of the 51st
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers).
Sofia, Bulgaria, pp. 617–622 (cit. on p. 64).

Martins, André Filipe Torres, Noah A. Smith, Mario Figueiredo, and Pedro Aguiar (2011).
“Dual Decomposition with Many Overlapping Components”. In: Proceedings of the 2011
Conference on Empirical Methods in Natural Language Processing. Edinburgh, Scotland,
UK.: Association for Computational Linguistics, pp. 238–249 (cit. on p. 65).

Martins, André Filipe Torres, Noah A. Smith, and Eric P. Xing (2009). “Concise Integer
Linear Programming Formulations for Dependency Parsing”. In: Proceedings of the
Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the AFNLP. Suntec, Singapore, pp. 342–350
(cit. on pp. 63, 65).

Martins, André Filipe Torres, Noah A. Smith, Eric P. Xing, Pedro M. Q. Aguiar, and
Mário A. T. Figueiredo (2010). “Turbo parsers: dependency parsing by approximate
variational inference”. In: Proceedings of the 2010 Conference on Empirical Methods in
Natural Language Processing. EMNLP ’10. Cambridge, Massachusetts: Association for
Computational Linguistics, pp. 34–44 (cit. on p. 77).

Mazzei, Alessandro and Vincenzo Lombardo (2007). “BUILDING A WIDE COVERAGE
DYNAMIC GRAMMAR”. In: Applied Artificial Intelligence 21.4-5, pp. 281–296. eprint:
https://doi.org/10.1080/08839510701252346 (cit. on p. 36).

Mazzei, Alessandro, Vincenzo Lombardo, and Patrick Sturt (2007). “Dynamic TAG and
Lexical Dependencies”. In: Research on Language and Computation 5.3, pp. 309–332.
issn: 1572-8706 (cit. on p. 36).

McDonald, Ryan, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg, Dipanjan
Das, Kuzman Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar Täckström, Claudia
Bedini, Núria Bertomeu Castelló, and Jungmee Lee (2013). “Universal Dependency
Annotation for Multilingual Parsing”. In: Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers). Sofia, Bulgaria:
Association for Computational Linguistics, pp. 92–97 (cit. on p. 31).

McDonald, Ryan, Fernando Pereira, Kiril Ribarov, and Jan Hajič (2005). “Non-projective
Dependency Parsing Using Spanning Tree Algorithms”. In: Proceedings of the Conference
on Human Language Technology and Empirical Methods in Natural Language Process-

122

https://doi.org/10.1080/08839510701252346
https://doi.org/10.1080/08839510701252346
https://doi.org/10.1080/08839510701252346
https://doi.org/10.1007/s11168-007-9032-4
https://doi.org/10.1007/s11168-007-9032-4

Bibliography

ing. HLT ’05. Vancouver, British Columbia, Canada: Association for Computational
Linguistics, pp. 523–530 (cit. on pp. 63, 84).

McDonald, Ryan and Giorgio Satta (2007). “On the Complexity of Non-Projective Data-
Driven Dependency Parsing”. In: Proceedings of the Tenth International Conference on
Parsing Technologies. Prague, Czech Republic: Association for Computational Linguistics,
pp. 121–132 (cit. on p. 63).

McGraw, Ian and Alexander Gruenstein (2012). “Estimating Word-Stability During Incre-
mental Speech Recognition”. In: Interspeech (cit. on p. 20).

Merity, Stephen, Nitish Shirish Keskar, and Richard Socher (2017). “Regularizing and
Optimizing LSTM Language Models”. In: CoRR abs/1708.02182. arXiv: 1708.02182v1
(cit. on pp. 94, 95).

Mieno, Takashi, Graham Neubig, Sakriani Sakti, Tomoki Toda, and Satoshi Nakamura
(2015). “Speed or Accuracy? A Study in Evaluation of Simultaneous Speech Transla-
tion”. In: 16th Annual Conference of the International Speech Communication Association
(InterSpeech 2015). Dresden, Germany (cit. on p. 21).

Milde, Benjamin and Arne Köhn (2018). “Open Source Automatic Speech Recognition for
German”. In: Proceedings of the 13th ITG conference on Speech Communication (cit. on
pp. 13, 131).

Milde, Benjamin, Jonas Wacker, Stefan Radomski, Max Mühlhäuser, and Chris Biemann
(2016). “Ambient Search: A Document Retrieval System for Speech Streams”. In: Pro-
ceedings of COLING 2016, the 26th International Conference on Computational Linguistics:
Technical Papers. Osaka, Japan:The COLING 2016 Organizing Committee, pp. 2082–2091
(cit. on p. 9).

Neubig, Graham, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar, Antonios
Anastasopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux, Trevor Cohn,
Kevin Duh, Manaal Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng Kong,
Adhiguna Kuncoro, Gaurav Kumar, Chaitanya Malaviya, Paul Michel, Yusuke Oda,
Matthew Richardson, Naomi Saphra, Swabha Swayamdipta, and Pengcheng Yin (2017).
“DyNet: The Dynamic Neural Network Toolkit”. In: arXiv preprint arXiv:1701.03980
(cit. on p. 84).

Nivre, Joakim (2003). “An Efficient Algorithm for Projective Dependency Parsing”. In:
Proceedings of IWPT 03 (cit. on pp. 59, 75).

– (2004). “Incrementality in Deterministic Dependency Parsing”. In: Proceedings of the
ACL Workshop Incremental Parsing: Bringing Engineering and Cognition Together. Ed. by
Frank Keller, Stephen Clark, Matthew Crocker, and Mark Steedman. Barcelona, Spain:
Association for Computational Linguistics, pp. 50–57 (cit. on p. 60).

– (2007). “Incremental Non-Projective Dependency Parsing”. In: Human Language Tech-
nologies 2007: The Conference of the North American Chapter of the Association for Compu-

123

http://arxiv.org/abs/1708.02182
http://arxiv.org/abs/1708.02182
https://arxiv.org/abs/1708.02182v1
https://arxiv.org/abs/1701.03980

Bibliography

tational Linguistics; Proceedings of the Main Conference. Rochester, New York: Association
for Computational Linguistics, pp. 396–403 (cit. on p. 59).

Nivre, Joakim (2008). “Algorithms for Deterministic Incremental Dependency Parsing”.
In: Computational Linguistics 34.4, pp. 513–553. eprint: https://doi.org/10.1162/
coli.07-056-R1-07-027 (cit. on pp. 59, 60).

Nivre, Joakim, Johan Hall, Sandra Kübler, Ryan McDonald, Jens Nilsson, Sebastian Riedel,
and Deniz Yuret (2007). “The CoNLL 2007 Shared Task on Dependency Parsing”. In:
Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL 2007, pp. 915–932 (cit. on
p. 44).

Och, Franz Josef and Hermann Ney (2003). “A Systematic Comparison of Various Statistical
Alignment Models”. In: Computational Linguistics 29.1, pp. 19–51 (cit. on p. 18).

Paetzel, Maike, Ramesh Manuvinakurike, and David DeVault (2015). “”So, which one is
it?” The effect of alternative incremental architectures in a high-performance game-
playing agent”. In: Proceedings of the 16th Annual Meeting of the Special Interest Group
on Discourse and Dialogue. Prague, Czech Republic: Association for Computational
Linguistics, pp. 77–86 (cit. on p. 13).

Povey, Daniel, Arnab Ghoshal, Gilles Boulianne, Lukáš Burget, Ondřej Glembek, K. Nagen-
dra Goel, Mirko Hannemann, Petr Motlíček, Yanmin Qian, Petr Schwarz, Jan Silovský,
Georg Stemmer, and Karel Veselý (2011). “The Kaldi Speech Recognition Toolkit”. In:
Proceedings of ASRU 2011. Hilton Waikoloa Village Resort, Hawaii, US: IEEE Signal
Processing Society, pp. 1–4. isbn: 978-1-4673-0366-8 (cit. on p. 93).

Al-Rfou’, Rami, Bryan Perozzi, and Steven Skiena (2013). “Polyglot: Distributed Word
Representations for Multilingual NLP”. In: Proceedings of the Seventeenth Conference on
Computational Natural Language Learning. Sofia, Bulgaria: Association for Computa-
tional Linguistics, pp. 183–192 (cit. on p. 85).

Riedel, Sebastian and James Clarke (2006). “Incremental Integer Linear Programming
for Non-projective Dependency Parsing”. In: Proceedings of the 2006 Conference on
Empirical Methods in Natural Language Processing. Sydney, Australia: Association for
Computational Linguistics, pp. 129–137 (cit. on p. 65).

Roark, Brian (2001). “Probabilistic Top-Down Parsing and Language Modeling”. In:
Computational Linguistics 27.2, pp. 249–276. eprint: https://doi.org/10.1162/
089120101750300526 (cit. on pp. 34, 42, 96).

Roark, Brian and Mark Johnson (1999). “Efficient probabilistic top-down and left-corner
parsing”. In: Proceedings of the 37th Annual Meeting of the Association for Computational
Linguistics. College Park, Maryland, USA: Association for Computational Linguistics,
pp. 421–428 (cit. on p. 34).

Rodriguez, Carlos Gomez, Francesco Sartorio, and Giorgio Satta (2014). “A Polynomial-
Time Dynamic Oracle for Non-Projective Dependency Parsing”. In: Proc. of the 2014

124

https://doi.org/10.1162/coli.07-056-R1-07-027
https://doi.org/10.1162/coli.07-056-R1-07-027
https://doi.org/10.1162/coli.07-056-R1-07-027
http://www.aclweb.org/anthology/J/J03/J03-1009.pdf
http://www.aclweb.org/anthology/J/J03/J03-1009.pdf
https://doi.org/10.1162/089120101750300526
https://doi.org/10.1162/089120101750300526
https://doi.org/10.1162/089120101750300526

Bibliography

Conference on Empirical Methods in Natural Language Processing (EMNLP 2014) (cit. on
p. 59).

Rosenfeld, Ronald (1994). “Adaptive Statistical Language Modeling: A Maximum Entropy
Approach”. PhD thesis. Pittsburgh, USA: Carnegie Mellon University (cit. on p. 103).

Sagae, Kenji, Gwen Christian, David DeVault, and David Traum (2009). “Towards Natural
Language Understanding of Partial Speech Recognition Results in Dialogue Systems”.
In: Proceedings of Human Language Technologies: The 2009 Annual Conference of the
North American Chapter of the Association for Computational Linguistics, Companion
Volume: Short Papers. Boulder, Colorado: Association for Computational Linguistics,
pp. 53–56 (cit. on p. 12).

Saunders, Danielle, Felix Stahlberg, Adrià de Gispert, and Bill Byrne (2018). “Multi-
representation ensembles and delayed SGD updates improve syntax-based NMT”. In:
Proceedings of the 56th Annual Meeting of the Association for Computational Linguis-
tics (Volume 2: Short Papers). Melbourne, Australia: Association for Computational
Linguistics, pp. 319–325 (cit. on p. 29).

Sayeed, Asad and Vera Demberg (2012). “Incremental Neo-Davidsonian semantic con-
struction for TAG”. In: Proceedings of the 11th International Workshop on Tree Adjoining
Grammars and Related Formalisms (TAG+11). Paris, France, pp. 64–72 (cit. on p. 111).

Schlangen, David, Timo Baumann, and Michaela Atterer (2009). “Incremental Reference
Resolution: The Task, Metrics for Evaluation, and a Bayesian Filtering Model that is
Sensitive to Disfluencies”. In: Proceedings of SigDial 2009. London, UK (cit. on p. 13).

Schlangen, David and Gabriel Skantze (2009). “A General, Abstract Model of Incremental
Dialogue Processing”. In: Proceedings of the 12th Conference of the European Chapter
of the ACL (EACL 2009). Athens, Greece: Association for Computational Linguistics,
pp. 710–718 (cit. on pp. 18, 28).

Schröder, Ingo (2002). “Natural Language Parsing with Graded Constraints”. PhD thesis.
Universität Hamburg (cit. on p. 64).

Schuster, Sebastian and Christopher D. Manning (2016). “Enhanced English Universal De-
pendencies: An Improved Representation for Natural Language Understanding Tasks”.
In: Proceedings of the Tenth International Conference on Language Resources and Eval-
uation (LREC 2016). Ed. by Nicoletta Calzolari (Conference Chair), Khalid Choukri,
Thierry Declerck, Sara Goggi, Marko Grobelnik, Bente Maegaard, Joseph Mariani, He-
lene Mazo, Asuncion Moreno, Jan Odijk, and Stelios Piperidis. Portorož, Slovenia:
European Language Resources Association (ELRA). isbn: 978-2-9517408-9-1 (cit. on
p. 43).

Schwartz, Lane, Chris Callison-Burch, William Schuler, and Stephen Wu (2011). “Incre-
mental Syntactic Language Models for Phrase-based Translation”. In: Proceedings of the

125

Bibliography

49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies. Portland, USA: ACL, pp. 620–631 (cit. on p. 96).

Seddah, Djamé, Eric De La Clergerie, Benoı̂t Sagot, Héctor Martıńez Alonso, and Marie
Candito (2018). “Cheating a Parser to Death: Data-driven Cross-Treebank Annotation
Transfer”. In: Proceedings of the 11th Language Resources and Evaluation Conference.
Miyazaki, Japan: European Language Resource Association (cit. on p. 43).

Selfridge, Ethan, Iker Arizmendi, Peter Heeman, and Jason Williams (2011). “Stability
and Accuracy in Incremental Speech Recognition”. In: Proceedings of the SIGDIAL 2011
Conference. Portland, Oregon: Association for Computational Linguistics, pp. 110–119
(cit. on pp. 20, 29).

Shen, Libin and Aravind K. Joshi (2005). “Incremental LTAG Parsing”. In: Proceedings of
Human Language Technology Conference and Conference on Empirical Methods in Natural
Language Processing (cit. on p. 35).

Shen, Tianxiao, Tao Lei, and Regina Barzilay (2016). “Making Dependency Labeling Simple,
Fast and Accurate”. In: Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies. San
Diego, California: Association for Computational Linguistics, pp. 1089–1094 (cit. on
p. 58).

Silveira, Natalia, Timothy Dozat, Marie-Catherine de Marneffe, Samuel Bowman, Miriam
Connor, John Bauer, and Christopher D. Manning (2014). “A Gold Standard Dependency
Corpus for English”. In: Proceedings of the Ninth International Conference on Language
Resources and Evaluation (LREC-2014) (cit. on pp. 43, 69).

Skantze, Gabriel and Anna Hjalmarsson (2013). “Towards incremental speech generation
in conversational systems”. In: Computer Speech & Language 27.1. Special issue on
Paralinguistics in Naturalistic Speech and Language, pp. 243–262. issn: 0885-2308
(cit. on p. 23).

Stolcke, Andreas, Jing Zheng, Wen Wang, and Victor Abrash (2011). “SRILM at sixteen:
Update and outlook”. In: Automatic Speech Recognition and Understanding (ASRU), 2011
IEEE Workshop on. Waikoloa, USA: IEEE (cit. on p. 98).

Stoness, Scott C., James Allen, Greg Aist, and Mary Swift (2005). “Using real-world
reference to improve spoken language understanding”. In: AAAI Workshop on Spoken
Language Understanding, pp. 38–45 (cit. on p. 13).

Sturt, Patrick and Vincenzo Lombardo (2005). “Processing coordinated structures: Incre-
mentality and connectedness”. In: Cognitive Science 29, pp. 291–305 (cit. on p. 10).

Tai, Kai Sheng, Richard Socher, and Christopher D. Manning (2015). “Improved Seman-
tic Representations From Tree-Structured Long Short-Term Memory Networks”. In:
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Volume 1:

126

http://www.sciencedirect.com/science/article/pii/S0885230812000411
http://www.sciencedirect.com/science/article/pii/S0885230812000411

Bibliography

Long Papers). Beijing, China: Association for Computational Linguistics, pp. 1556–1566
(cit. on p. 83).

Tan, Ming, Wenli Zhou, Lei Zheng, and Shaojun Wang (2012). “A scalable distributed
syntactic, semantic, and lexical language model”. In: Computational Linguistics 38.3,
pp. 631–671. eprint: https://doi.org/10.1162/COLI_a_00107 (cit. on p. 95).

Tanenhaus, MK, MJ Spivey-Knowlton, KM Eberhard, and JC Sedivy (1995). “Integration
of visual and linguistic information in spoken language comprehension”. In: Science
268.5217, pp. 1632–1634. issn: 0036-8075. eprint: http://science.sciencemag.
org/content/268/5217/1632.full.pdf (cit. on pp. 10, 110).

Taskar, Ben, Vassil Chatalbashev, Daphne Koller, and Carlos Guestrin (2005). “Learning
Structured Prediction Models: A Large Margin Approach”. In: Proceedings of the 22Nd
International Conference on Machine Learning. ICML ’05. Bonn, Germany: ACM, pp. 896–
903. isbn: 1-59593-180-5 (cit. on p. 86).

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin (2017). “Attention is All you Need”. In:
Advances in Neural Information Processing Systems 30. Ed. by I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Curran Associates,
Inc., pp. 6000–6010 (cit. on p. 21).

Vincze, Veronika, Dóra Szauter, Attila Almási, György Móra, Zoltán Alexin, and János
Csirik (2010). “Hungarian Dependency Treebank”. In: Proceedings of LREC. Valletta,
Malta (cit. on p. 43).

Wahlster, Wolfgang, ed. (2000). Verbmobil: Foundations of Speech-to-Speech Translation.
Springer-Verlag Berlin Heidelberg. isbn: 978-3-540-67783-3 (cit. on pp. 9, 12).

Walker, Willie, Paul Lamere, Philip Kwok, Bhiksha Raj, Rita Singh, Evandro Gouvea, Peter
Wolf, and Joe Woelfel (2004). Sphinx-4: A flexible open source framework for speech
recognition. Tech. rep. SMLI TR-2004-139. Menlo Park, CA, USA: Sun Microsystems,
Inc. (cit. on p. 20).

Wirén, Mats (1992). “Studies in Incremental Natural-Language Analysis”. Ph.D. thesis.
Linköping University (cit. on p. 28).

Young, Stephen John, NH Russell, and JHS Thornton (1989). Token passing: a simple
conceptual model for connected speech recognition systems. Tech. rep. Cambridge, UK:
University of Cambridge: Department of Engineering (cit. on p. 20).

Zhang, Meishan, Zhenghua Li, Guohong Fu, and Min Zhang (2019). “Syntax-Enhanced
Neural Machine Translation with Syntax-Aware Word Representations”. In: Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).
Minneapolis, Minnesota: Association for Computational Linguistics, pp. 1151–1161
(cit. on p. 29).

127

https://doi.org/10.1162/COLI_a_00107
https://doi.org/10.1162/COLI_a_00107
https://doi.org/10.1162/COLI_a_00107
http://science.sciencemag.org/content/268/5217/1632
http://science.sciencemag.org/content/268/5217/1632
http://science.sciencemag.org/content/268/5217/1632.full.pdf
http://science.sciencemag.org/content/268/5217/1632.full.pdf

Bibliography

Zhang, Xingxing, Liang Lu, and Mirella Lapata (2016). “Top-down Tree Long Short-Term
Memory Networks”. In: Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies. San
Diego, USA: ACL, pp. 310–320 (cit. on p. 95).

Zhang, Yuan, Tao Lei, Regina Barzilay, Tommi Jaakkola, and Amir Globerson (2014).
“Steps to Excellence: Simple Inference with Refined Scoring of Dependency Trees”. In:
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Baltimore, Maryland: Association for Computational Linguistics,
pp. 197–207 (cit. on pp. 82, 91).

Zweig, Geoffrey and Christopher J.C. Burges (2011). The Microsoft Research Sentence
Completion Challenge. Tech. rep. MSR-TR-2011-129. Redmond, USA: Microsoft Research
(cit. on p. 95).

128

https://www.microsoft.com/en-us/research/publication/the-microsoft-research-sentence-completion-challenge/
https://www.microsoft.com/en-us/research/publication/the-microsoft-research-sentence-completion-challenge/

Appendix A.

Publications

These are the publications I (co-)authored while working on this dissertation. If I only
contributed to a part of the findings of a paper, my part is explicitly described.

Arne Köhn and Wolfgang Menzel (2013). “Incremental and Predictive Dependency
Parsing under Real-Time Conditions”. In: Proceedings of the International Conference
Recent Advances in Natural Language Processing RANLP 2013. Hissar, Bulgaria: INCOMA
Ltd. Shoumen, BULGARIA, pp. 373–381
Content An investigation into the real-time ability of predictive parsing with jwcdg.

Niels Beuck, Arne Köhn, and Wolfgang Menzel (2013). “Predictive Incremental Parsing
and its Evaluation”. In: Computational Dependency Theory. Ed. by Kim Gerdes, Eva
Hajičová, and Leo Wanner. Vol. 258. Frontiers in Artificial Intelligence and Applications.
IOS press, pp. 186–206
Content Introduces jwcdg as a predictive parser and a method to evaluate predictive
parsers.
Contribution Co-developed jwcdg, a translation of WCDG to Java, co-developed the
evaluation schema. The extension of the WCDG formalism for predictive parsing was
exclusively done by Niels Beuck.

Arne Köhn and Wolfgang Menzel (2014). “Incremental Predictive Parsing with Tur-
boParser”. In: Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). Baltimore, Maryland: Association for Computational
Linguistics, pp. 803–808
Content Introduced incTP, the restart-incremental predictive parser discussed in Chap-
ter 5.

129

Appendix A. Publications

Arne Köhn, U Chun Lao, AmirAli B Zadeh, and Kenji Sagae (2014). “Parsing Mor-
phologically Rich Languages with (Mostly) Off-The-Shelf Software and Word Vectors”.
In: Proceedings of the 2014 Shared Task of the COLING Workshop on Statistical Parsing of
Morphologically Rich Languages
Content An investigation into how well a single parser system can parse morphological
rich languages and an approach to perform word segmentation using parsing.
Contribution I performed the experiments for the first part, the idea for segmentation
was by me, but implemented and evaluated by U Chun Lao.

Kilian A. Foth, Arne Köhn, Niels Beuck, andWolfgangMenzel (2014). “Because Size Does
Matter: The Hamburg Dependency Treebank”. In: Proceedings of the Language Resources
and Evaluation Conference 2014. Ed. by Nicoletta Calzolari (Conference Chair), Khalid
Choukri, Thierry Declerck, Hrafn Loftsson, Bente Maegaard, Joseph Mariani, Asuncion
Moreno, Jan Odijk, and Stelios Piperidis. LREC. Reykjavik, Iceland: European Language
Resources Association (ELRA), pp. 2326–2333
Content The Hamburg Dependency Treebank, which is used for evaluation in this
thesis.
Contribution I performed extensive cleanup and corrections to the HDT to bring it in a
publishable state; the parser evaluations were also done by me.

Arne Köhn (2015). “What´s in an Embedding? Analyzing Word Embeddings through
Multilingual Evaluation”. In: Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing. Lisbon, Portugal: Association for Computational Linguistics,
pp. 2067–2073
Content Evaluates what information is encoded in static word embeddings; used to
select embeddings for the experiment in Chapter 6.

Arne Köhn (2016). “Evaluating Embeddings using Syntax-based Classification Tasks
as a Proxy for Parser Performance”. In: Proceedings of the 1st Workshop on Evaluating
Vector-Space Representations for NLP. Berlin: Association for Computational Linguistics,
pp. 67–71
Content Extends the previous evaluation to gauge whether the evaluation results carry
over to dependency parsing.

130

Christine Köhn, Tobias Staron, and Arne Köhn (2016). “Parsing Free-Form Language
Learner Data: Current State and Error Analysis”. In: Proceedings of KONVENS 2016.
Bochum
Content An evaluation of how well dependency parsers work on language learner text
and what specific problems they face
Contribution I contributed to parts of the gold standard and extended jwcdg to work in
the joint model that was evaluated.

Arne Köhn and Timo Baumann (2016). “Predictive Incremental Parsing Helps Lan-
guage Modeling”. In: Proceedings of COLING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers. Osaka, Japan: The COLING 2016 Organizing
Committee, pp. 268–277
Content Shows that the predictions in predictive parsing contain relevant information
not found in simple n-gram models and that these predictions can be used to enhance
n-gram language models. All experiments of Chapter 7 are published here.
Contribution Joint work with Timo Baumann.

Arne Köhn, Florian Stegen, and Timo Baumann (2016). “Mining the Spoken Wikipedia
for Speech Data and Beyond”. In: Proceedings of the Tenth International Conference on
Language Resources and Evaluation (LREC’16). Portorož, Slovenia: European Language
Resources Association (ELRA), pp. 4644–4647
Content The first version of the Spoken Wikipedia Corpora.
Contribution I generated the corpora using code mainly written by the other authors,
extracted the statistics for the paper and wrote large parts of the paper.

Felix Hennig and Arne Köhn (2017). “Dependency Tree Transformation with Tree
Transducers”. In: Proceedings of the NoDaLiDa 2017 Workshop on Universal Dependencies
(UDW 2017). Gothenburg, Sweden: Association for Computational Linguistics, pp. 58–66
Content First steps of converting the HDT to Universal Dependencies.
Contribution Based on the Bachelor’s thesis by Felix Hennig, which I supervised.

Benjamin Milde and Arne Köhn (2018). “Open Source Automatic Speech Recognition
for German”. In: Proceedings of the 13th ITG conference on Speech Communication
Content A libre state of the art speech recognition system for German.
Contribution The pipeline to use the Spoken Wikipedia Corpora as training data for
kaldi.

131

Appendix A. Publications

Timo Baumann, Arne Köhn, and Felix Hennig (2018). “The Spoken Wikipedia Corpus
collection: Harvesting, alignment and an application to hyperlistening”. In: Language
Resources and Evaluation. issn: 1574-0218
Content The Spoken Wikipedia Corpora, extended version.
Contribution For this extension, we completely revamped the annotation schema col-
laboratively, Felix Hennig re-worked relevant parts of the software, which Timo Baumnan
and I supervised.

Alexander Koller, Timo Baumann, and Arne Köhn (2018). “DialogOS: Simple and
extensible dialog modeling”. In: Proceedings of Interspeech, pp. 167–168
Content A libre system to build dialogue systems.
Contribution I supervised a group of students to make DialogOS free software, replacing
all proprietary components and modernizing the code base.

Arne Köhn, Timo Baumann, and Oskar Dörfler (2018). “An Empirical Analysis of the
Correlation of Syntax and Prosody”. In: Proceedings of Interspeech 2018, pp. 2157–2161
Content An investigation into how syntax correlates with prosodic features.
Contribution The underlying data was generated by Oskar Dörfler as part of his Bache-
lor’s thesis, which I supervised. The evaluation is new and was performed by me.

Arne Köhn (2018). “Incremental Natural Language Processing: Challenges, Strategies,
and Evaluation”. In: Proceedings of the 27th International Conference on Computational
Linguistics. Santa Fe, New Mexico, USA: Association for Computational Linguistics,
pp. 2990–3003
Content A review over existing approaches to incremental NLP. It forms the basis of
Chapter 2.

Christine Köhn and Arne Köhn (2018). “An Annotated Corpus of Picture Stories Retold
by Language Learners”. In: Proceedings of the Joint Workshop on Linguistic Annotation,
Multiword Expressions and Constructions (LAW-MWE-CxG-2018). Santa Fe, New Mexico,
USA: Association for Computational Linguistics, pp. 121–132
Content A corpus of annotated learner data.
Contribution Nearly all work was done by Christine Köhn. I contributed statistics
about the corpus as well as a computation and discussion of the inter-annotator agreement.

132

https://doi.org/10.1007/s10579-017-9410-y
https://doi.org/10.1007/s10579-017-9410-y

Rami Aly, Shantanu Acharya, Alexander Ossa, Arne Köhn, Chris Biemann, and Alexan-
der Panchenko (2019). “Every Child Should Have Parents: A Taxonomy Refinement
Algorithm Based on Hyperbolic Term Embeddings”. In: Proceedings of the 57th Confer-
ence of the Association for Computational Linguistics. Florence, Italy: Association for
Computational Linguistics, pp. 4811–4817
Content Improving unsupervised taxonomy induction. In large parts a result of a
bachelor’s project I taught.
Contribution Provided ideas and wrote parts of the paper.

Max Friedrich, Arne Köhn, Gregor Wiedemann, and Chris Biemann (2019). “Adversarial
Learning of Privacy-Preserving Text Representations for De-Identification of Medical
Records”. In: Proceedings of the 57th Conference of the Association for Computational
Linguistics. Florence, Italy: Association for Computational Linguistics, pp. 5829–5839
Content How to make training data shareable if the underlying text contains sensitive
information?
Contribution The result of a master’s thesis I advised.

Emanual Borges Völker, Maximilan Wendt, Felix Hennig, and Arne Köhn (2019). “HDT-
UD: A very large Universal Dependencies treebank for German”. In: Proceedings of the
Universal Dependencies Workshop at SyntaxFest 2019
Content The conversion of the HDT to Universal Dependencies.
Contribution I supervised this work.

133

Appendix A. Publications

These publications were published before the official start of my dissertation, but contain
research relevant the the dissertation:

Niels Beuck, Arne Köhn, and Wolfgang Menzel (2011a). “Decision Strategies for In-
cremental POS Tagging”. In: Proceedings of the 18th Nordic Conference of Computational
Linguistics NODALIDA 2011. Ed. by Bolette Sandford Pedersen, Gunta Nešpore, and Inguna
Skadina. Vol. 11. NEALT Proceedings. Northern European Association for Language
Technology (NEALT), pp. 26–33
Content A discussion about incremental processing using PoS tagging as an example.
Contribution I programmed the software and performed the evaluation.

Niels Beuck, Arne Köhn, and Wolfgang Menzel (2011b). “Incremental parsing and
the evaluation of partial dependency analyses”. In: Proceedings of the 1st International
Conference on Dependency Linguistics. Depling 2011
Content Predictive parsing using the WCDG approach
Contribution I performed the evaluations.

134

Appendix B.

Parsing evaluation results

Legend:

dist distance to newest word

compl measurements for complete sentences

cip correct in prefix

cpred correct prediction

wip wrong in prefix

wpred wrong prediction

Hyperparameters:

beam beam size during training and decoding for PreTra

standard feature set (PreTra) disables the following features from the RBGParser scor-
ing: great-great-grandparent, parent-sibling-child and global features

no morph. features (incTP) input does not contain gold-standard morphological fea-
tures (same as PreTra)

gold morph. features (incTP) input contains gold-standard morphological features

standard feature set (incTP) uses arc-factored, consecutive sibling, grandparent

full feature set (incTP) uses artitrary sibling, head bigram, grand-sibling, tri-sibling
features in addition to standard.

135

Appendix B. Parsing evaluation results

Measurements are reported as distribution over the different (non-)error categories for
the given distance (or complete sentence). Accuracy measured against the non-incremental
gold standard as described in Section 4.2. Stability measured against the parser’s complete
output as described in Section 4.2.3.

FTB
PreTra, gold forced in beam

accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 67.37 25.13 1.48 6.01 67.04 25.16 1.52 6.28
1 85.97 9.34 0.3 4.39 85.73 9.35 0.3 4.62
2 90.29 6.24 0.05 3.42 90.07 6.24 0.05 3.64
3 92.62 4.31 0.03 3.04 92.5 4.3 0.03 3.17
4 94.01 3.49 0.01 2.49 93.85 3.49 0.02 2.65
5 94.92 2.96 0.01 2.12 94.76 2.96 0.01 2.28

compl 98.58 0.0 0.0 1.42

PreTra, beam=10, no cost-augmented training, standard feature set
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 53.57 22.17 2.5 21.77 71.11 26.51 0.86 1.53
1 70.72 7.04 0.66 21.58 89.28 9.87 0.16 0.7
2 74.03 4.05 0.33 21.6 93.19 6.33 0.04 0.44
3 75.21 2.66 0.13 22.0 95.23 4.5 0.02 0.25
4 75.67 2.11 0.08 22.15 96.03 3.82 0.0 0.14
5 75.98 1.79 0.05 22.18 96.58 3.32 0.0 0.1

compl 77.67 0.0 0.0 22.33

136

PreTra, beam=10
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 54.96 22.49 2.54 20.02 70.73 26.77 0.95 1.55
1 72.1 7.1 0.79 20.01 89.25 9.85 0.29 0.61
2 75.43 4.11 0.34 20.12 93.24 6.35 0.05 0.36
3 76.69 2.67 0.15 20.49 95.19 4.55 0.04 0.23
4 77.19 2.11 0.1 20.6 95.97 3.88 0.02 0.14
5 77.47 1.79 0.07 20.67 96.51 3.37 0.02 0.1

compl 79.34 0.0 0.0 20.66

PreTra, beam=50
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 53.8 21.8 2.74 21.66 69.27 25.78 1.34 3.6
1 71.84 6.93 0.81 20.43 88.42 9.5 0.32 1.75
2 75.58 4.22 0.29 19.91 92.93 6.33 0.05 0.69
3 76.88 2.75 0.11 20.26 95.03 4.5 0.03 0.44
4 77.38 2.18 0.07 20.37 95.89 3.84 0.01 0.27
5 77.66 1.87 0.06 20.41 96.43 3.37 0.01 0.19

compl 79.71 0.0 0.0 20.29

PreTra, beam=10, no cost-augmented training
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 51.67 19.7 5.87 22.76 66.82 29.38 1.72 2.07
1 68.67 6.68 1.87 22.77 85.36 13.02 0.63 0.98
2 72.31 3.9 1.09 22.71 89.91 9.26 0.26 0.56
3 73.66 2.67 0.5 23.17 92.35 7.17 0.1 0.38
4 74.26 2.08 0.37 23.28 93.48 6.22 0.04 0.26
5 74.62 1.74 0.3 23.34 94.37 5.43 0.03 0.18

compl 76.35 0.0 0.0 23.65

137

Appendix B. Parsing evaluation results

UD-FTB
PreTra, gold forced in beam

accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 47.34 43.32 2.63 6.71 47.12 43.21 2.69 6.97
1 72.27 22.26 0.67 4.8 71.97 22.19 0.7 5.14
2 84.74 11.02 0.13 4.11 84.24 10.94 0.14 4.69
3 89.36 7.19 0.05 3.41 88.9 7.17 0.05 3.89
4 91.73 5.38 0.02 2.87 91.3 5.38 0.02 3.3
5 93.36 4.32 0.02 2.31 92.86 4.3 0.02 2.82

compl 97.92 0.0 0.0 2.08

PreTra, beam=50
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 33.57 36.93 6.19 23.31 48.63 45.23 2.35 3.79
1 56.79 18.57 1.99 22.65 73.48 24.22 0.41 1.89
2 68.74 8.37 0.56 22.32 86.49 12.42 0.07 1.01
3 71.72 5.32 0.22 22.74 90.6 8.79 0.02 0.59
4 73.09 3.79 0.12 23.0 92.72 6.92 0.01 0.35
5 73.67 3.1 0.07 23.16 93.87 5.92 0.01 0.2

compl 75.84 0.0 0.0 24.16

PreTra, beam=10
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 34.59 39.2 4.23 21.97 50.91 46.71 1.0 1.38
1 57.01 18.93 1.49 22.57 75.05 24.06 0.16 0.74
2 68.71 8.31 0.52 22.46 87.57 11.97 0.03 0.42
3 71.43 5.31 0.23 23.03 91.29 8.45 0.01 0.25
4 72.69 3.8 0.12 23.39 93.24 6.62 0.0 0.14
5 73.28 3.12 0.07 23.53 94.3 5.63 0.0 0.07

compl 75.48 0.0 0.0 24.52

138

PreTra, beam=10, no cost-augmented training
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 31.27 35.77 8.65 24.31 47.43 49.33 1.6 1.64
1 54.14 17.36 3.64 24.87 71.9 26.64 0.43 1.02
2 66.03 7.79 1.18 25.0 85.18 14.08 0.11 0.63
3 68.99 5.04 0.47 25.5 89.56 10.0 0.04 0.39
4 70.21 3.62 0.26 25.92 91.75 8.01 0.01 0.22
5 70.82 2.98 0.16 26.05 92.9 6.94 0.0 0.16

compl 72.44 0.0 0.0 27.56

PreTra, beam=10, no cost-augmented training, standard feature set
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 33.4 36.11 4.14 26.35 54.25 42.93 0.99 1.83
1 54.01 17.4 1.39 27.21 76.8 22.02 0.17 1.01
2 64.49 7.73 0.46 27.31 88.2 11.16 0.03 0.61
3 67.16 4.92 0.17 27.75 91.87 7.77 0.01 0.35
4 68.42 3.53 0.08 27.97 93.82 5.97 0.0 0.21
5 68.91 2.88 0.05 28.16 94.85 5.04 0.0 0.11

compl 71.11 0.0 0.0 28.89

incTP full feature set, no morph. features
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 39.51 42.98 1.76 15.74 45.48 43.66 2.35 8.51
1 62.84 20.75 0.69 15.72 71.31 21.37 0.95 6.37
2 74.98 9.31 0.28 15.44 84.31 9.71 0.34 5.64
3 78.64 5.83 0.14 15.4 88.79 6.22 0.16 4.82
4 80.33 4.13 0.07 15.47 91.1 4.45 0.08 4.38
5 81.14 3.27 0.05 15.55 92.42 3.49 0.05 4.03

compl 84.04 0.0 0.0 15.96

139

Appendix B. Parsing evaluation results

incTP standard feature set, no morph. features
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 39.49 42.87 1.88 15.76 45.12 43.23 2.45 9.2
1 62.83 20.73 0.7 15.74 70.92 21.21 0.98 6.89
2 74.87 9.43 0.28 15.42 83.75 9.74 0.35 6.16
3 78.46 5.94 0.13 15.48 88.3 6.27 0.15 5.28
4 80.28 4.23 0.08 15.41 90.7 4.48 0.09 4.73
5 81.08 3.37 0.05 15.5 92.1 3.52 0.06 4.32

compl 84.15 0.0 0.0 15.85

incTP standard feature set, gold morph. features
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 40.79 43.15 1.85 14.21 46.0 43.29 2.39 8.32
1 64.3 20.97 0.71 14.02 71.58 21.36 0.93 6.13
2 76.41 9.54 0.31 13.74 84.23 9.92 0.37 5.48
3 80.14 6.08 0.17 13.61 88.7 6.44 0.18 4.68
4 81.89 4.37 0.1 13.63 91.19 4.65 0.12 4.05
5 82.8 3.49 0.06 13.66 92.48 3.67 0.07 3.78

compl 86.22 0.0 0.0 13.78

140

HDT
PreTra, gold forced in beam

accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 55.02 34.7 2.66 7.62 54.99 33.49 3.83 7.7
1 74.45 17.08 0.85 7.63 74.92 16.98 1.61 6.48
2 80.44 13.19 0.54 5.83 80.87 13.18 1.14 4.8
3 83.08 11.15 0.4 5.37 83.67 11.33 0.82 4.19
4 85.54 9.58 0.33 4.56 86.04 9.74 0.68 3.55
5 87.34 8.31 0.25 4.1 88.01 8.42 0.54 3.03

compl 94.55 0.0 0.0 5.45

PreTra, beam=10
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 52.67 29.7 7.19 10.44 57.45 39.37 1.05 2.13
1 69.75 13.91 3.26 13.08 76.13 22.54 0.42 0.91
2 73.9 10.29 2.48 13.33 80.88 18.41 0.2 0.52
3 75.66 8.69 1.92 13.72 83.34 16.16 0.11 0.39
4 76.78 7.51 1.59 14.12 85.14 14.55 0.07 0.25
5 78.01 6.51 1.28 14.2 86.9 12.89 0.05 0.16

compl 85.41 0.0 0.0 14.59

PreTra, beam=50
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 51.24 29.52 6.84 12.4 55.76 37.36 2.08 4.8
1 69.29 14.0 2.81 13.9 75.21 21.44 0.47 2.88
2 74.47 10.6 1.99 12.94 81.17 17.42 0.17 1.25
3 76.43 8.98 1.56 13.03 83.87 15.35 0.1 0.68
4 77.91 7.78 1.29 13.02 85.82 13.68 0.08 0.43
5 79.08 6.71 1.04 13.16 87.5 12.15 0.03 0.33

compl 86.0 0.0 0.0 14.0

141

Appendix B. Parsing evaluation results

PreTra, beam=10, no cost-augmented training
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 53.03 28.85 7.29 10.83 59.07 37.28 1.51 2.13
1 70.1 13.35 3.09 13.45 77.95 20.91 0.28 0.87
2 74.32 9.88 2.29 13.5 82.53 16.91 0.11 0.45
3 75.89 8.42 1.79 13.9 84.8 14.82 0.09 0.29
4 77.09 7.3 1.47 14.14 86.43 13.33 0.04 0.2
5 78.06 6.32 1.21 14.41 87.93 11.91 0.02 0.14

compl 84.96 0.0 0.0 15.04

PreTra, beam=10, no cost-augmented training, standard feature set
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 52.37 29.26 7.01 11.35 58.15 38.26 1.29 2.31
1 69.34 13.47 3.28 13.9 76.99 21.69 0.29 1.03
2 73.54 9.88 2.46 14.12 81.7 17.57 0.14 0.59
3 75.02 8.33 1.92 14.73 83.9 15.63 0.06 0.41
4 76.17 7.14 1.66 15.03 85.65 14.07 0.02 0.25
5 77.04 6.14 1.4 15.43 87.12 12.69 0.02 0.17

compl 83.95 0.0 0.0 16.05

incTP full feature set, no morph. features
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 57.15 32.7 5.4 4.74 58.59 32.71 5.64 3.06
1 77.07 14.51 3.16 5.26 79.69 14.73 3.32 2.27
2 81.93 10.61 2.56 4.91 84.58 10.73 2.66 2.03
3 83.88 8.96 2.04 5.12 87.01 9.0 2.2 1.79
4 85.51 7.58 1.78 5.13 88.85 7.65 1.89 1.61
5 86.86 6.52 1.56 5.07 90.35 6.58 1.63 1.44

compl 95.26 0.0 0.0 4.74

142

incTP full feature set, gold morph. features
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 57.85 33.01 5.69 3.45 59.19 32.84 6.07 1.9
1 77.6 14.69 3.34 4.36 80.01 14.83 3.54 1.63
2 82.32 10.68 2.76 4.24 84.82 10.75 2.94 1.49
3 84.31 9.09 2.2 4.4 87.19 9.08 2.38 1.35
4 85.98 7.68 1.98 4.36 88.98 7.68 2.14 1.19
5 87.3 6.59 1.72 4.38 90.49 6.6 1.84 1.06

compl 95.72 0.0 0.0 4.28

incTP standard feature set, no morph. features
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 57.07 32.63 5.36 4.93 58.56 32.6 5.65 3.19
1 76.98 14.44 3.2 5.38 79.59 14.67 3.3 2.44
2 81.83 10.51 2.62 5.04 84.47 10.68 2.69 2.16
3 83.75 8.88 2.07 5.3 86.87 8.93 2.21 1.99
4 85.37 7.54 1.81 5.28 88.78 7.67 1.89 1.67
5 86.64 6.47 1.57 5.32 90.21 6.59 1.61 1.59

compl 94.99 0.0 0.0 5.01

incTP standard feature set, gold morph. features
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 57.76 32.94 5.71 3.59 59.19 32.81 6.08 1.92
1 77.49 14.62 3.36 4.53 79.97 14.78 3.55 1.71
2 82.23 10.65 2.77 4.35 84.73 10.74 2.9 1.62
3 84.25 9.02 2.22 4.52 87.2 9.03 2.37 1.41
4 85.83 7.65 1.97 4.55 88.97 7.68 2.11 1.24
5 87.18 6.55 1.74 4.53 90.45 6.61 1.81 1.12

compl 95.58 0.0 0.0 4.42

143

Appendix B. Parsing evaluation results

UD-German-HDT
PreTra, gold forced in beam

accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 37.76 49.95 4.48 7.8 38.67 49.19 4.95 7.19
1 64.78 28.41 0.67 6.14 65.7 28.22 0.87 5.21
2 74.49 20.48 0.25 4.79 75.3 20.24 0.34 4.12
3 78.69 17.17 0.11 4.02 79.44 16.96 0.15 3.45
4 81.34 15.17 0.06 3.43 82.0 14.97 0.09 2.94
5 83.53 13.41 0.05 3.01 84.2 13.24 0.07 2.49

compl 96.42 0.0 0.0 3.58

PreTra, beam=50
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 33.86 45.85 6.82 13.47 40.85 50.91 3.89 4.35
1 59.12 25.69 1.96 13.23 67.29 29.98 0.62 2.11
2 68.3 18.31 0.88 12.5 76.98 21.95 0.12 0.95
3 71.71 15.33 0.5 12.46 80.79 18.68 0.04 0.5
4 73.54 13.51 0.35 12.61 83.07 16.62 0.02 0.29
5 75.06 11.92 0.29 12.74 84.94 14.87 0.01 0.18

compl 86.2 0.0 0.0 13.8

144

incTP full feature set, no morph. features
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 39.71 53.32 1.4 5.57 41.53 53.42 1.68 3.38
1 65.14 28.36 0.68 5.82 67.86 28.82 0.64 2.68
2 74.01 19.88 0.38 5.73 76.88 20.28 0.36 2.47
3 77.52 16.65 0.22 5.61 80.46 16.98 0.24 2.32
4 79.74 14.62 0.15 5.49 82.77 14.87 0.15 2.21
5 81.61 12.85 0.12 5.42 84.71 13.07 0.12 2.1

compl 94.98 0.0 0.0 5.02

incTP standard feature set, no morph. features
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 39.54 53.09 1.59 5.78 41.45 53.25 1.85 3.46
1 64.88 28.22 0.75 6.16 67.77 28.73 0.72 2.77
2 73.77 19.8 0.41 6.02 76.82 20.27 0.39 2.53
3 77.25 16.6 0.24 5.91 80.4 16.97 0.26 2.38
4 79.44 14.56 0.17 5.83 82.71 14.86 0.17 2.26
5 81.31 12.84 0.12 5.73 84.65 13.08 0.13 2.14

compl 94.6 0.0 0.0 5.4

145

Appendix B. Parsing evaluation results

PTB
PreTra, gold forced in beam

accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 57.89 31.09 2.53 8.49 58.0 30.53 2.86 8.6
1 80.19 12.35 0.59 6.87 80.16 12.25 0.66 6.94
2 88.02 6.57 0.2 5.21 88.02 6.5 0.22 5.25
3 91.23 4.32 0.1 4.35 91.37 4.29 0.1 4.24
4 93.21 3.13 0.06 3.6 93.33 3.13 0.06 3.48
5 94.46 2.51 0.03 3.0 94.54 2.52 0.04 2.9

compl 97.57 0.0 0.0 2.43

PreTra-NN-scorer
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 46.67 22.17 5.85 25.32 63.9 27.92 3.41 4.76
1 61.97 8.19 1.8 28.04 82.2 14.26 1.06 2.48
2 66.73 3.8 0.67 28.8 89.24 8.76 0.37 1.63
3 68.25 2.49 0.26 29.0 91.98 6.75 0.18 1.09
4 68.92 1.85 0.14 29.1 93.46 5.59 0.13 0.83
5 69.66 1.53 0.09 28.72 94.37 4.96 0.06 0.6

compl 71.98 0.0 0.0 28.02

PreTra, beam=50
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 51.0 24.77 6.06 18.17 63.14 30.62 2.25 3.98
1 71.31 9.09 1.7 17.9 84.47 12.98 0.51 2.04
2 77.31 4.51 0.56 17.62 91.75 7.33 0.08 0.84
3 79.04 2.76 0.26 17.95 94.47 5.01 0.06 0.46
4 79.66 2.0 0.17 18.18 95.73 3.95 0.03 0.28
5 80.26 1.65 0.1 17.98 96.42 3.37 0.02 0.19

compl 82.06 0.0 0.0 17.94

146

PreTra, beam=10
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 52.01 26.7 5.11 16.18 64.45 32.45 1.45 1.64
1 71.85 9.42 1.52 17.21 85.59 13.41 0.34 0.66
2 77.14 4.49 0.58 17.78 92.17 7.34 0.09 0.4
3 78.61 2.66 0.29 18.44 94.74 5.01 0.02 0.22
4 79.22 1.9 0.17 18.7 95.92 3.93 0.01 0.14
5 79.87 1.54 0.11 18.49 96.63 3.28 0.0 0.09

compl 81.7 0.0 0.0 18.3

PreTra, beam=10, no cost-augmented training
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 49.09 21.54 9.83 19.54 63.01 33.04 1.87 2.09
1 68.28 7.7 3.06 20.96 83.38 14.88 0.47 1.27
2 73.76 3.86 1.08 21.3 90.2 8.99 0.11 0.7
3 75.28 2.38 0.5 21.84 92.88 6.63 0.03 0.47
4 75.87 1.78 0.28 22.07 94.27 5.4 0.02 0.32
5 76.39 1.47 0.19 21.95 95.03 4.75 0.02 0.21

compl 77.76 0.0 0.0 22.24

incTP full feature set, no morph. features
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 52.37 0.0 34.08 13.55 57.16 0.0 33.55 9.29
1 74.66 0.0 11.47 13.87 81.61 0.0 11.32 7.07
2 80.8 0.0 5.36 13.84 89.28 0.0 5.2 5.52
3 82.87 0.0 3.15 13.98 92.5 0.0 2.97 4.53
4 83.94 0.0 2.16 13.9 94.06 0.0 2.04 3.9
5 84.57 0.0 1.69 13.74 94.84 0.0 1.6 3.56

compl 86.79 0.0 0.0 13.21

147

Appendix B. Parsing evaluation results

incTP standard feature set, no morph. features
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 52.15 0.0 33.99 13.86 56.85 0.0 33.5 9.65
1 74.42 0.0 11.49 14.09 81.17 0.0 11.43 7.4
2 80.62 0.0 5.35 14.03 88.75 0.0 5.23 6.03
3 82.69 0.0 3.11 14.2 92.17 0.0 2.97 4.86
4 83.75 0.0 2.16 14.09 93.85 0.0 2.04 4.11
5 84.35 0.0 1.71 13.95 94.64 0.0 1.62 3.74

compl 86.41 0.0 0.0 13.59

UD-PTB
PreTra, gold forced in beam

accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 37.48 47.33 4.75 10.44 38.11 46.83 5.2 9.87
1 65.18 25.0 1.56 8.27 65.49 25.03 1.74 7.73
2 78.99 13.74 0.66 6.6 78.81 13.81 0.72 6.66
3 85.66 8.18 0.29 5.87 85.68 8.34 0.33 5.66
4 89.55 5.5 0.15 4.8 89.52 5.55 0.18 4.75
5 91.88 4.12 0.1 3.9 91.82 4.23 0.11 3.85

compl 96.89 0.0 0.0 3.11

148

PreTra-NN-scorer
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 27.0 36.7 9.58 26.72 44.25 43.57 7.11 5.07
1 46.01 18.32 3.66 32.02 66.22 27.85 2.49 3.44
2 56.92 8.87 1.53 32.67 79.17 17.1 0.94 2.78
3 60.94 4.72 0.6 33.74 86.01 11.49 0.41 2.09
4 62.39 2.92 0.3 34.4 89.72 8.6 0.18 1.5
5 63.21 2.1 0.16 34.53 91.77 6.84 0.14 1.25

compl 65.59 0.0 0.0 34.41

PreTra, beam=50
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 29.28 36.92 12.83 20.97 42.16 50.15 3.69 4.01
1 52.91 19.01 5.1 22.99 67.15 29.45 1.15 2.24
2 65.33 9.9 2.33 22.45 80.11 18.4 0.33 1.16
3 69.34 5.41 1.1 24.15 86.41 12.71 0.15 0.74
4 71.19 3.44 0.61 24.76 89.6 9.8 0.08 0.52
5 72.07 2.57 0.38 24.97 91.59 8.06 0.04 0.32

compl 74.31 0.0 0.0 25.69

PreTra, beam=10
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 30.14 36.87 13.76 19.23 43.77 52.56 2.19 1.48
1 54.34 18.14 5.62 21.89 69.28 29.46 0.53 0.72
2 65.83 9.27 2.57 22.34 81.44 17.9 0.18 0.48
3 69.4 5.03 1.19 24.38 87.18 12.49 0.06 0.27
4 71.11 3.29 0.61 24.99 90.06 9.78 0.02 0.14
5 71.91 2.45 0.38 25.26 91.66 8.25 0.02 0.08

compl 74.21 0.0 0.0 25.79

149

Appendix B. Parsing evaluation results

PreTra, beam=10, no cost-augmented training
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 30.85 39.16 9.74 20.25 46.8 48.64 2.65 1.92
1 53.96 18.95 3.89 23.2 71.28 26.95 0.67 1.11
2 65.31 9.38 1.76 23.56 83.57 15.56 0.17 0.69
3 68.92 4.84 0.81 25.42 89.61 9.93 0.06 0.41
4 70.5 3.04 0.38 26.08 92.5 7.24 0.02 0.24
5 71.25 2.2 0.19 26.37 94.05 5.82 0.0 0.13

compl 73.96 0.0 0.0 26.04

incTP full feature set, no morph. features
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 36.98 49.34 2.22 11.46 39.92 49.03 2.63 8.42
1 64.13 24.11 0.75 11.0 68.4 24.3 0.83 6.46
2 77.14 12.44 0.42 10.01 81.64 12.49 0.46 5.41
3 83.29 6.97 0.23 9.51 88.53 6.96 0.25 4.26
4 86.06 4.55 0.11 9.28 91.9 4.49 0.14 3.46
5 87.54 3.31 0.08 9.07 93.61 3.29 0.09 3.01

compl 91.43 0.0 0.0 8.57

incTP standard feature set, no morph. features
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 35.94 48.73 2.68 12.65 39.38 48.42 3.12 9.08
1 63.09 23.98 0.91 12.01 67.75 24.22 1.06 6.98
2 76.32 12.39 0.51 10.78 81.09 12.48 0.58 5.85
3 82.35 6.97 0.23 10.45 88.0 7.0 0.27 4.74
4 85.16 4.57 0.14 10.13 91.37 4.54 0.16 3.93
5 86.58 3.36 0.11 9.96 93.19 3.35 0.12 3.33

compl 90.55 0.0 0.0 9.45

150

incTP standard feature set, gold morph. features
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 36.89 49.34 2.37 11.39 39.84 49.06 2.81 8.3
1 63.99 24.21 0.84 10.97 68.03 24.49 0.94 6.54
2 77.02 12.55 0.44 9.99 81.25 12.71 0.48 5.57
3 83.01 7.11 0.22 9.65 88.18 7.15 0.26 4.4
4 85.74 4.66 0.12 9.48 91.58 4.64 0.13 3.65
5 87.23 3.43 0.1 9.24 93.47 3.38 0.12 3.03

compl 91.34 0.0 0.0 8.66

UD-English-EWT
PreTra, gold forced in beam

accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 41.48 42.61 4.39 11.52 42.35 43.01 4.69 9.96
1 67.88 23.68 0.79 7.65 68.81 23.83 0.86 6.5
2 81.82 12.55 0.21 5.41 81.88 12.4 0.23 5.48
3 88.24 6.84 0.07 4.85 88.56 6.86 0.08 4.51
4 91.84 4.26 0.03 3.86 91.95 4.26 0.06 3.73
5 93.68 3.07 0.01 3.24 93.6 3.16 0.01 3.22

compl 94.11 0.0 0.0 5.89

151

Appendix B. Parsing evaluation results

PreTra, beam=50
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 32.56 37.42 7.38 22.64 44.83 44.18 4.69 6.29
1 55.92 19.83 2.02 22.23 70.65 25.35 0.71 3.28
2 69.23 9.86 0.75 20.15 84.67 13.74 0.11 1.49
3 73.44 4.82 0.35 21.39 91.08 8.1 0.04 0.79
4 75.33 2.69 0.17 21.81 94.05 5.53 0.01 0.42
5 76.32 1.76 0.11 21.82 95.44 4.29 0.0 0.27

compl 76.63 0.0 0.0 23.37

PreTra, beam=10
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 34.91 41.35 4.05 19.69 48.75 46.37 1.97 2.91
1 57.27 20.74 1.0 20.99 73.81 25.2 0.14 0.85
2 69.17 9.76 0.44 20.63 86.79 12.73 0.03 0.45
3 73.49 4.59 0.21 21.72 92.9 6.84 0.01 0.24
4 75.52 2.41 0.09 21.98 95.69 4.17 0.0 0.14
5 76.31 1.49 0.06 22.14 97.03 2.89 0.0 0.08

compl 77.37 0.0 0.0 22.63

PreTra, beam=10, no cost-augmented training
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 32.17 34.88 10.85 22.09 45.56 46.42 4.2 3.82
1 53.27 17.79 4.11 24.83 69.75 27.43 0.89 1.93
2 65.28 8.85 1.63 24.24 82.22 16.45 0.19 1.14
3 69.23 4.5 0.69 25.58 88.69 10.64 0.04 0.64
4 71.13 2.57 0.35 25.95 92.11 7.59 0.02 0.28
5 71.84 1.7 0.28 26.18 93.71 6.09 0.01 0.19

compl 72.91 0.0 0.0 27.09

152

PreTra, beam=10, no cost-augmented training, standard feature set
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 32.64 37.17 9.14 21.04 44.84 47.51 4.23 3.42
1 53.8 18.79 3.29 24.12 69.32 27.54 1.22 1.93
2 65.99 9.27 1.31 23.43 82.33 16.23 0.3 1.14
3 69.91 4.71 0.53 24.85 88.9 10.33 0.08 0.68
4 72.16 2.68 0.28 24.88 91.96 7.59 0.02 0.42
5 73.16 1.82 0.16 24.86 93.83 5.93 0.02 0.22

compl 73.89 0.0 0.0 26.11

incTP full feature set, no morph. features
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 39.91 42.6 2.22 15.28 45.1 42.39 2.6 9.91
1 62.95 20.87 0.94 15.23 70.0 21.0 1.05 7.95
2 75.65 10.02 0.41 13.92 82.77 10.03 0.48 6.72
3 80.72 5.07 0.14 14.07 89.53 4.97 0.18 5.31
4 83.28 2.88 0.11 13.73 92.69 2.87 0.1 4.34
5 84.41 1.95 0.05 13.58 94.48 1.75 0.09 3.68

compl 86.74 0.0 0.0 13.26

incTP full feature set, gold morph. features
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 39.33 42.23 2.43 16.01 45.1 41.95 2.81 10.14
1 62.24 20.83 0.96 15.98 69.96 20.98 1.11 7.94
2 74.71 9.85 0.41 15.03 82.76 9.83 0.54 6.86
3 80.16 4.9 0.11 14.82 89.62 4.67 0.3 5.42
4 82.86 2.73 0.09 14.33 92.79 2.57 0.15 4.48
5 83.86 1.9 0.02 14.21 94.41 1.6 0.13 3.86

compl 85.94 0.0 0.0 14.06

153

Appendix B. Parsing evaluation results

incTP standard feature set, no morph. features
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 40.0 42.52 2.17 15.31 45.48 42.49 2.41 9.62
1 62.76 20.82 0.91 15.51 70.17 21.13 0.99 7.71
2 75.03 9.99 0.41 14.58 82.69 10.11 0.44 6.75
3 80.2 5.0 0.15 14.65 89.46 4.93 0.24 5.37
4 82.95 2.87 0.09 14.09 92.7 2.86 0.11 4.33
5 83.99 1.92 0.07 14.01 94.33 1.74 0.09 3.84

compl 86.46 0.0 0.0 13.54

incTP standard feature set, gold morph. features
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 39.31 42.13 2.43 16.14 45.0 42.04 2.55 10.41
1 62.28 20.62 0.98 16.12 69.95 20.79 1.11 8.16
2 74.72 9.95 0.37 14.97 82.68 9.92 0.54 6.86
3 79.94 4.97 0.15 14.94 89.51 4.85 0.26 5.38
4 82.54 2.84 0.08 14.54 92.68 2.75 0.13 4.44
5 83.62 1.96 0.06 14.36 94.24 1.67 0.12 3.96

compl 86.16 0.0 0.0 13.84

154

UD-Hungarian-Szeged
PreTra, gold forced in beam

accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 32.86 50.94 2.78 13.43 35.46 48.46 4.05 12.03
1 60.3 27.14 0.74 11.82 61.45 26.35 1.38 10.82
2 71.21 17.61 0.41 10.77 72.34 17.2 0.71 9.74
3 76.32 13.12 0.3 10.26 77.57 12.86 0.45 9.12
4 81.01 9.95 0.24 8.8 81.91 9.76 0.3 8.03
5 83.94 7.97 0.15 7.94 84.77 7.77 0.23 7.22

compl 91.89 0.0 0.0 8.11

PreTra, beam=50
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 25.15 36.31 7.83 30.7 47.29 43.48 3.03 6.19
1 45.52 15.83 3.38 35.26 70.15 24.99 0.81 4.05
2 52.42 8.76 2.02 36.8 81.06 16.22 0.32 2.4
3 54.56 5.44 1.38 38.62 86.91 11.44 0.13 1.52
4 56.18 3.72 0.98 39.12 90.2 8.6 0.07 1.13
5 56.32 2.52 0.65 40.51 92.65 6.59 0.02 0.73

compl 60.0 0.0 0.0 40.0

155

Appendix B. Parsing evaluation results

PreTra, beam=10
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 26.42 34.48 7.95 31.15 52.57 41.96 2.34 3.12
1 46.01 14.56 2.81 36.61 74.96 22.57 0.21 2.26
2 51.75 7.72 1.54 38.99 84.89 13.53 0.12 1.46
3 53.41 5.18 0.74 40.67 89.76 9.17 0.02 1.06
4 54.85 3.21 0.62 41.31 92.63 6.7 0.0 0.67
5 54.93 2.16 0.37 42.54 94.46 5.08 0.0 0.46

compl 58.52 0.0 0.0 41.48

incTP full feature set, no morph. features
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 29.16 45.75 8.18 16.9 33.66 45.71 9.12 11.5
1 57.54 20.74 3.72 18.0 64.27 22.87 3.59 9.27
2 66.48 13.27 1.91 18.34 74.06 14.96 1.81 9.17
3 68.73 10.0 1.06 20.21 79.12 11.2 1.18 8.51
4 71.14 7.11 0.68 21.07 83.19 7.99 0.68 8.14
5 72.65 5.21 0.44 21.7 85.75 5.88 0.34 8.03

compl 79.12 0.0 0.0 20.88

incTP full feature set, gold morph. features
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 29.54 46.84 7.87 15.75 33.36 47.08 8.47 11.09
1 58.39 21.51 3.64 16.46 63.85 23.38 3.68 9.09
2 67.43 13.86 1.88 16.83 73.8 14.76 2.35 9.09
3 70.56 10.35 1.01 18.08 78.88 11.03 1.52 8.57
4 73.26 7.27 0.79 18.68 82.93 7.85 0.89 8.33
5 74.83 5.25 0.52 19.4 86.07 5.82 0.49 7.61

compl 81.15 0.0 0.0 18.85

156

incTP standard feature set, no morph. features
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 29.01 45.72 8.08 17.19 33.49 45.66 8.91 11.94
1 56.75 20.33 4.03 18.89 63.53 22.85 3.72 9.9
2 65.77 13.15 1.95 19.14 73.44 14.85 1.99 9.71
3 68.04 9.73 1.09 21.15 78.54 10.91 1.37 9.18
4 70.28 7.06 0.68 21.97 82.45 8.05 0.86 8.65
5 71.98 5.34 0.37 22.32 85.45 6.01 0.44 8.1

compl 78.14 0.0 0.0 21.86

incTP standard feature set, gold morph. features
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 29.32 46.92 7.63 16.14 32.92 47.03 8.39 11.65
1 57.69 21.16 3.96 17.19 62.84 23.33 4.05 9.78
2 66.92 13.73 1.95 17.4 72.92 15.14 2.38 9.56
3 69.78 10.33 1.09 18.8 77.94 11.3 1.58 9.18
4 72.51 7.17 0.8 19.52 82.27 7.8 1.06 8.87
5 74.21 5.36 0.5 19.93 85.47 5.98 0.54 8.02

compl 80.0 0.0 0.0 20.0

jwcdg
accuracy stability

dist cip cpred wpred wip cip cpred wpred wip

0 49.81 18.71 10.65 20.84 52.96 18.43 10.07 18.54
1 67.99 6.25 5.24 20.52 73.71 5.9 4.89 15.5
2 72.59 3.81 4.45 19.15 79.61 3.54 4.11 12.74
3 74.83 3.2 3.59 18.38 81.95 2.94 3.36 11.76
4 76.37 2.73 3.05 17.85 83.9 2.42 2.9 10.78
5 77.63 2.39 2.62 17.35 85.66 2.13 2.42 9.79

compl 85.35 0.0 0.0 14.65

157

Appendix C.

Predictability sets

These are the dependency relations marked as predictable and lex_predictable for the
incremental gold standard generation algorithm in Section 4.3.

HDT
These sets were taken from Beuck and Menzel (2013) and not modified further to ensure
compatibility of results.

predictable : SUBJ, SUBJC, PN, CJ

lex_predictable : OBJA, OBJD, OBJC, PRED, OBJP, AUX, PART, S

PoS : noun-like: NN and NE, verb-like: VVFIN, VAFIN. All other PoS are not modified.

EN-LTH
Conversion of the Penn Dependency Treebank with the LTH converter (Johansson and
Nugues 2008).

predictable : SBJ

lex_predictable : PMOD, ROOT, VC, CONJ, IM, PRD, SUB, OPRD, PRT, LGS, LOC-PRD,
EXTR, DTV, PUT, PRD-PRP, PRD-TMP, LOC-OPRD

Noun-like PoS : NN, NNS, NNP, NNPS, PRP, $, CD, JJ, IN, RP, TO

Verb-like PoS : VBD, VBP, VBZ, VB, MD, VBN

159

Appendix C. Predictability sets

UD
predictable : nsubj, nsubj:pass, csubj, csubj:pass, root

lex_predictable : obj, aux, aux:pass,ccomp, xcomp, compound:prt,cop, expl,expl:pv,
expl:pass, expl:impers, iobj, obl, obl:npmod, obl:tmod, orphan, fixed, case, goeswith

PoS : No distinction was made between noun-like and verb-like PoS.

160

Eidesstattliche Versicherung Hiermit erkläre ich an Eides statt, dass ich die vor-
liegende Dissertationsschrift selbst verfasst und keine anderen als die angegebenenQuellen
und Hilfsmittel benutzt habe.

Hamburg, den Unterschrift

	Introduction
	Psycholinguistic Evidence for Incremental Processing
	Differentiation to Other Meanings of Incrementality
	Incremental Processors in Natural Language Processing
	Plan of this Dissertation

	Incremental Processing in NLP
	A Typology for Incremental Problems
	Data Types for Input and Output
	The Processing Granularity
	Grounding
	Monotonicity
	Timeliness
	Trade-off Between Properties

	Incremental Processors
	Speech Recognition
	Machine Translation
	Natural Language Generation

	Evaluating Incremental Systems
	Measuring Timeliness
	Measuring Incremental Quality
	Measuring the Degree of Non-monotonicity

	Combining Multiple Incremental Processors
	Summary and Discussion

	Representations for Incremental Syntactic Structure
	Incremental Phrase Structure Annotations
	Incremental Parsing with Probabilistic Context-Free Grammars
	Tree-Adjoining Grammar Approaches

	Incremental Dependency Structure Annotations
	Modeling Uncertainty

	Gold Standards and Evaluation for Predictive Parsing
	Mapping Prediction Nodes to Words in Full-sentence Annotations
	Evaluating Predictive Parses Against Full-sentence Annotations
	Computing Incremental Accuracy
	Subdividing Accuracy With Respect To Predictions
	Stability Measures

	Creating Gold-standard Annotations for Sentence Prefixes
	Evaluating Prediction Nodes
	Evaluating Non-predictive Incremental Parsers
	Labeled Versus Unlabeled Evaluation
	Tying It All Together

	Training Predictive Dependency Parsers
	Transition-based Parsing for Incremental Structure Generation
	The arc-standard transition system
	The arc-eager transition system

	Graph-based Incremental Parsing
	Incremental Graph-based Parsing with Dual Decomposition
	Performing predictive parsing with ILPs
	Deciding on fixed sets of prediction nodes
	Incrementalizing TurboParser
	Training incTP
	Evaluation

	Discussion

	Transition-based Predictive Parsing
	A Transition System for Predictive Parsing
	Overall Structure of the Transition Parser
	The Transition System
	Extending the Transition System to Perform Top-down Prediction
	Optimizations

	Scoring Predictive Dependency Structures
	incTP-based Scoring
	NN-based Scoring

	Training PreTra
	Performing Updates Against Complete Sentence Annotations

	Experimental Results
	Impact of Hyper-parameter Selection
	Evaluating PreTra
	Search Errors Due To Beam Search

	Summary and Discussion

	Incremental Parsing for Language Modeling
	Language Modeling
	Syntax-based Language Models
	Data Preparation
	A First Language Model with Prediction Nodes
	Examples for the Effect of Prediction Integration
	Evaluation of the Basic Split Model
	Exemplary Comparison of Split and Standard Model Probabilities
	Overall Differences Between Split and Standard Model

	Beyond the Basic Split Model
	Interpolating N-gram Models
	Adding Syntax Predictions to Maximum Entropy Models

	Summary and Discussion

	Conclusions
	Publications
	Parsing evaluation results
	Predictability sets

