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Abstract

Covariant Lyapunov vectors (CLVs) are intrinsic modes that describe long-term
linear perturbations of solutions of dynamical systems. Similar to eigenmode de-
compositions for steady states, they form a basis of the tangent space that links
growth rates to directions invariant under the linearized flow along a given reference
trajectory. In this sense CLVs play the role of eigenvectors for Lyapunov exponents.

Due to an increased interest in applications, several algorithms were developed to
compute CLVs. The Ginelli algorithm is among the most commonly used. Although
several properties of the algorithm have been analyzed, mathematical results are
quite rare. This thesis combines first mathematically rigorous convergence results
in an analysis of Ginelli’s algorithm.

An important factor of our analysis is the multiplicative ergodic theorem, which
provides existence of CLVs. We restrict our analysis to two different versions of
the theorem, one for finite-dimensional and one for infinite-dimensional random dy-
namical systems. While the former assumes a fully invertible system, meaning that
the base flow and the linear propagator are invertible, the latter only requires a
semi-invertible setting in which the linear propagator may not be invertible. Using
different approaches, we prove convergence of Ginelli’s algorithm in these settings.
The proof for finite dimensions links CLVs to singular vectors of the linear propa-
gator and investigates so-called admissible input vectors. Through careful measure
estimates of the set of admissible input vectors, we are able to prove convergence.
Since estimates with respect to Lebesgue measure are not possible in infinite dimen-
sions, we require different techniques to proof convergence. Among others, we derive
an auxiliary result about the existence and the genericity of common complements
for families of countably many subspaces.

The precise notion of convergence differs between discrete and continuous time.
Namely, the discrete-time version of Ginelli’s algorithm converges for almost every
input, whereas the continuous-time version only converges in measure. Here, “al-
most everywhere” should be understood with respect to Lebesgue measure in finite
dimensions and with respect to prevalence in infinite dimensions. In addition to the
pure convergence statements, our theorems link the speed of convergence to Lya-
punov exponents. It turns out that Ginelli’s algorithm converges exponentially fast
with a rate given by the spectral gap between Lyapunov exponents.
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Zusammenfassung

Kovariante Lyapunov Vektoren (KLVs) sind intrinsische Modi, die das Langzeitver-
halten von Störungen entlang von Lösungen dynamischer Systeme beschreiben.
Ähnlich wie Eigenvektoren für stationären Lösungen formen KLVs eine Basis des
Tangentialraums, welche den Wachstumsraten von Störungen Richtungen zuordnet,
die invariant unter dem linearisierten Fluss entlang der Referenzlösung sind. In
diesem Sinne kann man KLVs als eine Art von Eigenvektoren für Lyapunov Expo-
nenten auffassen.

Aufgrund des hohen Interesses an KLVs bei Anwendern wurden mehrere Algo-
rithmen zur Berechnung von KLVs entwickelt. Einer der meistgenutzten ist Ginellis
Algorithmus. Obwohl einige Eigenschaften des Algorithmus bereits untersucht wor-
den sind, sind mathematische Ergebnisse selten. Diese Dissertation verbindet erste
mathematisch rigorose Ergebnisse zu einer Analyse von Ginellis Algorithmus.

Ein wichtiger Bestandteil der Analyse ist der Multiplikative Ergodensatz, der
die Existenz von KLVs liefert. Wir beschränken unsere Analyse auf zwei Versio-
nen des Satzes, eine für endlichdimensionale und eine für unendlichdimensionale
dynamische Systeme mit Zufallsvariable. Während die erste Version annimmt, dass
der grundlegende Fluss und der lineare Propagator invertierbar sind, kommt die
zweite Version ohne die Annahme über Invertierbarkeit des linearen Propagators
aus. Wir beweisen die Konvergenz von Ginellis Algorithmus in diesen Fällen mit-
tels verschiedener Ansätze. Der Beweis im Endlichdimensionalen verbindet KLVs
mit Singulärvektoren des linearen Propagators und untersucht sogenannte zulässige
Inputvektoren. Durch vorsichtige Abschätzungen des Lebesgue-Maßes der Menge
von zulässigen Vektoren sind wir in der Lage, die Konvergenz zu beweisen. Da
solche Abschätzungen im Unendlichdimensionalen nicht möglich sind, brauchen wir
für diesen Fall andere Mittel, um die Konvergenz zu zeigen. Unter anderem leiten
wir ein Hilfsresultat über die Existenz und die Generizität von Unterräumen her, die
komplementär zu einer Familie von abzählbar vielen gegebenen Unterräumen sind.

Die genau Form der Konvergenz unterscheidet sich im Falle diskreter und stetiger
Zeit. Nämlich konvergiert die Version von Ginellis Algorithmus mit diskreter Zeit
für fast jeden Input, während die Version mit stetiger Zeit nur im Maße konvergiert.
Der Ausdruck “fast jeden” im Endlichdimensionalen ist im Sinne des Lebesgue-
Maßes zu verstehen und im Unendlichdimensionalen im Sinne der Prävalenz. Zusätz-
lich zu den reinen Konvergenzaussagen verbinden unsere Resultate die Konvergenz-
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ZUSAMMENFASSUNG

geschwindigkeit mit den Lyapunov Exponenten. Es stellt sich heraus, dass Ginellis
Algorithmus exponentiell schnell konvergiert mir einer Rate, die durch den spek-
tralen Abstand zwischen Lyapunov Exponenten gegeben ist.

8



Contents

Abstract 5

Zusammenfassung 7

1 Introduction 11
1.1 Stability theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Covariant Lyapunov vectors . . . . . . . . . . . . . . . . . . . . . . . 15
1.3 Ginelli’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4 This thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Multiplicative Ergodic Theorem 21
2.1 Random dynamical systems . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 METs on Rd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Deterministic MET . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.3 METs for random dynamical systems . . . . . . . . . . . . . . 29

2.3 Semi-invertible MET on separable Banach spaces . . . . . . . . . . . 31

3 Ginelli’s Algorithm 35
3.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Convergence of Ginelli’s Algorithm on Rd 45
4.1 Lyapunov index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Grassmannians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Admissible tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Convergence results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.1 Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.2 Link between MET and SVD . . . . . . . . . . . . . . . . . . 63
4.4.3 Forward-time estimates . . . . . . . . . . . . . . . . . . . . . . 65
4.4.4 Backward-time estimates . . . . . . . . . . . . . . . . . . . . . 67
4.4.5 Proof of theorems . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 72

9



5 Convergence of Ginelli’s Algorithm on Hilbert Spaces 75
5.1 Grassmannians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Well-separating common complements . . . . . . . . . . . . . . . . . 77

5.2.1 Common complements for finitely many hyperplanes . . . . . 78
5.2.2 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.3 Genericity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Convergence results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.1 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.2 Forward-time estimates . . . . . . . . . . . . . . . . . . . . . . 94
5.3.3 Backward-time estimates . . . . . . . . . . . . . . . . . . . . . 98
5.3.4 Proof of theorem . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Conclusions 105

A Derivation of Uniform Bounds 109
A.1 Bounds for Oseledets filtration . . . . . . . . . . . . . . . . . . . . . . 109
A.2 Bounds for Oseledets splitting . . . . . . . . . . . . . . . . . . . . . . 112

B Sample Code 115

Bibliography 125

List of Figures 129

List of Acronyms 131

Index 133

10



1

Introduction

“Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?”
– Edward Norton Lorenz, 1972

During a conference in 1972 Lorenz argued that the atmosphere may be unstable,
that is, the tiniest change, like the flap of a butterfly’s wings, can drastically change
the weather at a later point in time [41]. He came to this conclusion after two runs of
the same weather simulation yielded completely different outcomes. The computed
weathers coincided initially, but after two month there was seemingly no correlation
anymore. While at first Lorenz suspected a problem with his computer, he soon
discovered that the problem originated from the initial conditions. He had started
the second run with round-off values instead of the precise initial conditions from
the first run. This small perturbation caused an error that steadily doubled in size
every few days of the simulation and ultimately resulted in two completely different
weather forecasts [42] (see Fig. 1.1).

Such a behavior is not unique to Lorenz’s model but can be found in various
scenarios. A famous example is the double-rod pendulum [59, 60]. It consists of
two pendulums such that the second pendulum is attached to the weight of the
first. While the movement of a single pendulum is highly predictable, the double
pendulum exhibits chaotic behavior. Even though the double pendulum moves
according to a deterministic law, it is nearly impossible to predict its trajectory
in experiments, as there is always a slight change in the initial position of the
pendulum during the setup. Similar to Lorenz’s model, the error caused by the
initial perturbation grows exponentially until there is no visible correlation between
the trajectories initiated with and without the perturbation. Even if we had a
means to predict the future trajectory based on a given initial condition perfectly, a
marginal input error would result in an entirely different trajectory than observed.
Especially for long-term simulations it is imperative to understand how unavoidable
input errors, e.g., due to the limiting accuracy of measurements, evolve in time and
how to reduce them.
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1. INTRODUCTION

(a) t = 0..10 (b) t = 20..25

(c) t = 45..50 (d) t = 60..65

Figure 1.1: Two solutions of the Lorenz 63 model (ẋ1 = σ(x2 − x1), ẋ2 = x1(ρ −
x3) − x2, ẋ3 = x1x2 − βx3; σ = 10, β = 8/3, ρ = 28), a simplified model for
cellular convection, with slightly perturbed initial conditions computed in Maple
2016. The orange trajectory starts at x(0) = (15,−15, 8) and the blue trajectory at
x(0) = (15.5,−15, 8). Both solutions were integrated until t = 65. While they are
close initially, as it can be seen in (a), they eventually separate and visit different
parts of the Lorenz attractor. Their full computed trajectories (t = 0..65) are
displayed on the title page.

From a mathematical perspective the evolution of objects, such as the double
pendulum, is described by differential equations. They relate the change in time of
an object to the current state via an equation of the form

ẋ = f(t, x).

A solution x(t) describing the state of an object at time t implicitly depends on
states at other times via the above equation. In particular, under certain conditions
on f , the evolution of an object is completely determined by its state at one point
in time, just as the trajectory of a pendulum is determined the moment it is set into
motion. We call such a state (t0, x0) initial condition. The corresponding solution
should satisfy x(t0) = x0. To study in which way small perturbations of x0 affect
the solution we need the concept of stability.

1.1 Stability theory
Let us fix a reference trajectory x(t) with respect to which we want to investigate
stability and let x(t)+v(t) be a perturbed solution with small error v(t). We perform
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1.1. STABILITY THEORY

a first order approximation by linearizing f along x:

ẋ+ v̇ = f(t, x+ v) ≈ f(t, x) + (Dxf)(t,x) v.

The perturbation v(t) approximately satisfies the tangent linear equation

v̇ = (Dxf)(t,x) v.

By studying this equation we aim to understand more about the local behavior
around our reference trajectory. For a fixed reference trajectory, the equation is a
matrix differential equation of the form v̇ = A(t)v.

If our reference trajectory is a steady state, meaning that it does not change in
time, then solutions of the tangent linear equation are of the form v(t) = exp(tA)v0.
By analyzing eigenvalues and (generalized) eigenspaces of A, we can characterize the
tangent linear dynamics (see Fig. 1.2). The eigenspaces form invariant subspaces
for the linearized flow, and perturbations inside them grow or decay exponentially
in size according to the real parts of the associated eigenvalues. In other words, we
have

lim
t→∞

1
t

log ‖v(t)‖ = λ

for a solution v(t), where v(0) = v0 is a (generalized) eigenvector of A corresponding
to some eigenvalue with real part λ. The linearized system v̇ = Av is called (asymp-
totically) stable if all eigenvalues have negative real parts. By the above observation,
all solutions of a stable system decay exponentially fast and converge to the origin
for t → ∞. Contrariwise, if at least one eigenvalue has a positive real part, we
call the system unstable. In this case almost every solution diverges from the origin
for t → ∞. Under rather general assumptions, stability properties of the tangent
linear equation may be transferred to the original system according to the Hartman-
Grobman theorem. It conjugates the dynamics via a local homeomorphism mapping
the origin of the linear system to the steady state.

If our reference trajectory is periodic with period T , meaning that T > 0 is
minimal with x(t + T ) = x(t) for all t, and if f does not depend on t explicitly,
then A(t) is T -periodic. According to Floquet theory, general solutions are of the
form v(t) = P (t) exp(tB)v0, where P (t) is invertible and T -periodic and B is a
constant matrix. Since ‖P (t)‖ and ‖P (t)−1‖ are bounded by constants, we may
reduce the stability analysis to the (possibly complex) autonomous system u̇ = Bu.
Notice that, unlike for steady states, the tangent vectors along the periodic reference
trajectory are non-trivial and, hence, define a T -periodic solution of the tangent
linear equation. In particular, B has at least one purely complex eigenvalue. Aside
from this exception, we may deduce stability properties for the reference trajectory
as in the case for steady states by looking at real parts of the eigenvalues of B.
The corresponding eigenspaces lift to invariant bundles and define flow-invariant
manifolds along the reference trajectory.

In general, the different rates of exponential growth or decay of linear perturba-
tions are characterized by Lyapunov exponents (LEs). If our reference solution is
a steady state, they coincide with the real parts of the eigenvalues of A, while for
periodic solutions they coincide with the real parts of the eigenvalues of B. Through
LEs we hope to derive stability properties of the reference trajectory in the original
system. However, note that it is a misconception that a negative largest LE indi-
cates stability or that a positive largest LE indicates instability for general solutions

13



1. INTRODUCTION

(a) A =
(
−3 −1
0 −1

)
(b) A =

(
1 −1
0 −1

)

(c) A =
(

3 −1
1 1

)
(d) A(t) periodic

Figure 1.2: A few examples depicting the linear stability of steady states and of
periodic orbits. Images (a)-(c) show the flow of linear systems v̇ = Av. Blue
lines indicate eigenspaces of negative eigenvalues, whereas orange lines stand for
eigenspaces of positive eigenvalues. Only system (a) is stable. Systems (b) and (c)
are unstable. Moreover, 2 is a double eigenvalue for (c). Its generalized eigenspace is
the whole tangent space. (d) is a conceptual image of the tangent linear dynamics of
a periodic solution. We see three bundles along the periodic orbit that are linearly
independent at each point. The black bundle consists of tangent vectors of the
trajectory.

of non-autonomous systems (see the Perron effect [38]). Nevertheless, for classes of
random dynamical systems, which appear when the defining differential equation
depends on an additional stochastic parameter, there is a local stability theory as
for steady states and periodic orbits with probability 1. Indeed, for each LE, we
find invariant bundles of the tangent linear flow that can be related to invariant
manifolds via a stochastic version of the Hartman-Grobman theorem. A thorough
treatment can be found in Arnold’s book “Random Dynamical Systems” [1].
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1.2. COVARIANT LYAPUNOV VECTORS

1.2 Covariant Lyapunov vectors
Along almost every trajectory of a random dynamical system, the bundles corre-
sponding to different LEs constitute a splitting of the tangent space. We call this
splitting Oseledets splitting and the associated spaces Oseledets spaces (see Fig. 1.3).
Furthermore, we call a choice of normalized and covariant basis vectors subject to
the splitting covariant Lyapunov vectors (CLVs). Covariance means that CLVs are
mapped to other CLVs by the linear propagator along trajectories up to normalizing
factors. These factors grow or decay exponentially according to the corresponding
LEs. Thus, CLVs generalize the concept of eigenmode decompositions of steady
states to possibly chaotic trajectories and form an intrinsic basis of the tangent
space that characterizes sensitivity to initial conditions.

Figure 1.3: A conceptual picture of the tangent linear dynamics of a general trajec-
tory. As in the case for periodic solutions, we imagine that the tangent space along
the trajectory is split into invariant bundles consisting of different Oseledets spaces.

Due to their natural properties, CLVs have received strong resonance in applica-
tions during the last years. They have been described as the “physically relevant”
modes in dissipative systems [61] and have been used to detect coherent structures,
i.e., slow mixing sets, via the Perron-Frobenius operator [22, 23, 28], the dual of the
Koopman operator. Recent research on coherent structures includes the analysis of
large-scale features of the ocean and atmosphere relevant for climate [28, chapter
6]. Apart from techniques involving transfer operators, CLVs have been used di-
rectly to analyze instabilities in coupled models. Two examples are the assessment
of long-term predictability in ocean-atmosphere models [15, 57, 66] and the decou-
pling of instabilities into modes associated to different timescales to analyze mixing
in a two-scale Lorenz 96 model [12]. Other applications are the analysis of Navier-
Stokes turbulence [32] and hard-disk systems [8, 9, 46, 64]. Furthermore, the angle
between stable and unstable CLVs has been interpreted as a degree of hyperbolicity
[13, 56, 68, 69] and has been used as an indicator for critical transitions in long-term
behavior of solutions [4, 58].

On the theoretical side, the existence of CLVs and Oseledets spaces is ensured
by the multiplicative ergodic theorem (MET). While the original MET from 1968
is due to Oseledets [52], various versions emerged until today. They differ in their
settings and proof techniques. Several versions follow Raghunathan’s approach [54],
which uses a singular value decomposition (SVD) of the linear propagator and relates
finite-time optimal growth rates given by singular values to LEs and singular vectors
to CLVs. In [1] Arnold applies this approach to derive multiple METs. In particular,
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1. INTRODUCTION

he proves an invertible and a non-invertible version of the theorem. The invertible
version requires an invertible base flow and an invertible linear propagator. On the
other hand, the non-invertible version requires neither of those. Though, this comes
at a disadvantage. Instead of an Oseledets splitting, the non-invertible version only
yields an Oseledets filtration. Consequently, there is no natural notion of CLVs.

Most METs can be categorized into invertible and non-invertible versions. How-
ever, recently there emerged a new kind of semi-invertible MET to adjust to the
settings of transfer operators. It requires an invertible base flow while the linear
propagator is allowed to be non-invertible. Semi-invertible METs still provide Ose-
ledets splittings and, hence, also CLVs. The first semi-invertible MET was published
by Froyland, Lloyd and Quas for finite-dimensional systems [22]. Semi-invertible
versions for infinite-dimensional systems followed by Froyland, Lloyd, Quas and
González-Tokman [23, 29, 30]. Since their METs are formulated on Banach spaces,
they require new techniques that do not involve the use of SVDs. Instead, some
form of compactness is assumed as in the first MET on Hilbert spaces by Ruelle [55]
and in the first MET on Banach spaces by Mañé [44].

Aside from the mentioned METs, there are a lot more versions that developed
since Oseledets’ MET in 1968. We refer to two quite extensive historical overviews
found in the introduction of [1, chapter 3] and in [28, section 4.2].

1.3 Ginelli’s algorithm
In 1980 Benettin and others published an effective algorithm to compute LEs [5,
6]. The algorithm tracks the evolution of a set of randomly chosen initial pertur-
bations by subsequently applying the linear propagator and an orthonormalization
procedure. Orthonormalizing the propagated perturbations prevents that all vectors
collapse onto the fastest growing direction and lets us compute growth rates of vol-
umes of different dimensions. In particular, the ith LE (counted with multiplicities)
can be obtained as the difference between expansion rates of generic i-dimensional
and (i− 1)-dimensional volumes.

The propagated vectors in Benettin’s algorithm converge to an orthonormal ver-
sion of CLVs. Those vectors are sometimes referred to as forward or as backward
Lyapunov vectors depending on which part of the trajectory is used to compute
them. Since they encode either only the past or only the future of a trajectory, they
lack critical information about the geometrical structure of the local flow. Contrary
to CLVs, they are not covariant and depend on the chosen norm. Thus, CLVs form a
much more natural basis of the local dynamics and are better suited for an extension
of the linear stability theory of steady states and periodic orbits.

Effective algorithms to compute CLVs only appeared during the last years, e.g.,
in form of Ginelli’s algorithm [26, 27], the algorithm by Wolfe and Samelson [67],
the algorithm by Kuptsov and Parlitz [36], and others in [24]. Most algorithms
either use a dynamical approach that combines propagation with some kind of or-
thonormalization procedure or rely on a SVD of the linear propagator, its inverse,
or its adjoint if the linear propagator is not invertible. Additionally, the algorithm
by Wolfe and Samelson computes CLVs as vectors lying in intersections of subspaces
encoding past and future dynamics of the reference trajectory [67]. Moreover, CLV-
algorithms differ in their choice of orthonormalization procedure. For example, the
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1.3. GINELLI’S ALGORITHM

algorithm by Kuptsov and Parlitz uses an LU -factorization, whereas Ginelli’s algo-
rithm relies on a QR-decomposition.

Here, we focus on Ginelli’s algorithm, which follows the dynamical approach.
First, it propagates a set of randomly chosen vectors from the far past of a trajec-
tory to the present while performing intermittent orthonormalizations. This part
of the algorithm is not really different from the method by Benettin and others.
We get approximations of LEs and of backward Lyapunov vectors. Next, the same
procedure is continued to approximate backward Lyapunov vectors along the future
part of the trajectory. Since the span of the first i backward Lyapunov vectors
coincides with the span of the first i CLVs, we have an approximation of the span
of the first i CLVs. Finally, the algorithm uses backward propagation from the far
future to the present to extract the ith CLV. Vectors for backward propagation are
initialized inside spans of forward propagated vectors. Thus, backward propagation
is restricted to approximately the span of the first i CLVs, which makes it possible to
apply Ginelli’s algorithm even in semi-invertible settings. Since the fastest growing
direction in backward-time is the slowest growing direction in forward-time, that is,
the ith CLV, we have a means to compute CLVs. At least on a theoretical level, this
is the basic idea behind Ginelli’s algorithm.

Numerically, there are more subtleties to Ginelli’s algorithm. For example,
backward propagation is performed inside a coefficient space associated to forward-
propagated vectors, and linear propagators on coefficient spaces are given by inverses
of R-matrices from QR-decompositions obtained during the forward propagation.
Other numerical features along with the original algorithm by Ginelli can be found
in [26]. Another group of researchers around Froyland suggested an improvement of
Ginelli’s algorithm by choosing better suited initial vectors and compared different
CLV-algorithms [24]. They showed that Ginelli’s algorithm performs quite well for
long time series and requires less memory than other compared algorithms during
the three test cases in [24].

Despite their frequent use in applications, CLV-algorithms have received little
attention from a viewpoint of rigorous mathematical analysis. First steps in this
direction were done in [27]. Ginelli and others attempted a convergence proof of
their algorithm by invoking a result of Ershov and Potapov [20], which handles
convergence to backward Lyapunov vectors during the forward propagation of the
algorithm. Ershov and Potapov performed their convergence analysis with respect
to singular vectors of the linear propagator between the present and the far future
and shifted their result to the propagator between the far past and the present. As
runtime varies, the derived requirements on vectors initiated in the far past also
vary. This plays an important role for the precise notion of convergence and has
not been regarded in [20] and [27]. Moreover, the convergence proof in [27] assumes
perfect convergence to backward Lyapunov vectors during the forward propagation
when proving convergence of the backward propagation. Due to this, errors arising
during the forward propagation do not carry over to the backward propagation.
Those neglected errors come from projections of forward propagated vectors onto
CLVs of higher order and form the fastest growing directions in backward-time.
Hence, they have a potentially high influence on the speed of convergence. Indeed,
[27] predicts an exponential speed of convergence to the ith CLV proportional to
the difference between the (i − 1)th and ith LEs. However, including errors from
the forward propagation, it turns out that the exponential speed of convergence is
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1. INTRODUCTION

actually proportional the spectral gap between the ith LE and neighboring exponents
[48]. In particular, it also depends on the (i+ 1)th LE.

1.4 This thesis
This thesis provides a rigorous mathematical analysis of Ginelli’s algorithm in terms
of convergence. We correct and expand upon the existing approach from [20, 27]
to derive convergence theorems for Ginelli’s algorithm in a wider class of systems.
This includes theorems for finite-dimensional and a theorem for infinite-dimensional
dynamical systems. While the former rely on a SVD of the propagator, as it appears
in the MET from [1], the latter uses a different technique based on the semi-invertible
MET from [29]. We try to be as general as possible so that the derived tools can be
applied to other MET-settings as well.

Unlike in the previous attempt to prove convergence, our proofs are formulated
for even degenerate Lyapunov spectra, which allow for higher multiplicities of LEs.
Degeneracies naturally occur in, e.g., equivariant systems and result in internal
dynamics of Oseledets spaces. Due to the internal dynamics, single outputs of the
algorithm might not converge. Instead, one needs to regard convergence with respect
to subspaces spanned by multiple output vectors.

Here, we give precise notions of convergence and relate the speed of convergence
to the Lyapunov spectrum. As already predicted and observed in applications [20,
24, 27, 66], the algorithm convergences exponentially fast with a rate given by the
spectral gap between LEs. We attribute different time-parameters to the past and
future parts of the trajectory that are used in the algorithm. Thus, we allow for
different amounts of past and future data during the convergence analysis. This
might be helpful for future studies, when an optimal relation between past and
future data in terms of convergence is sought. Such a relation clearly depends on
the particular system and is not part of our general analysis here.

Three articles [48–50] were merged to create this thesis. [48] derives a projector-
based convergence proof of Ginelli’s algorithm for finite-dimensional dynamical sys-
tems, while the other two form a convergence proof on Hilbert spaces. Since both
proofs require the definition of Ginelli’s algorithm and heavily rely on versions of the
MET, we devote the next two chapters to combine and compare relevant content
from the aforementioned articles.

Chapter 2 introduces the class of random dynamical systems for which we state
different versions of the MET. On the one hand, we present METs from [1] for
finite-dimensional systems, on the other, we state the semi-invertible MET from
[29], which treats systems on separable Banach spaces. In addition to the properties
of the MET from [29], we need uniform bounds for growth rates of perturbations
inside Oseledets spaces and inside spaces of the Oseledets filtration. Although such
bounds are used in [29] and hints for their derivation are given, the actual proof
is not carried out. We make up for the missing details by executing the suggested
ideas in Appendix A.

Chapter 3 presents Ginelli’s algorithm with special focus on its analytical kernel.
A short discussion on the implementation and an application to the Lorenz 63 model
is provided. Associated sample code can be found in Appendix B.

Chapters 4 and 5 contain the convergence analysis. In Chapter 4 we repeat
the projector-based convergence proof from [48] for invertible finite-dimensional dy-
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namical systems. It requires several tools. First, we introduce the Lyapunov index
notation and define the space of subspaces, the Grassmannian of Rd. Notions of dis-
tances and angles between subspaces in terms of projection operators are defined.
Next, we emphasize on what we call admissible tuples. Those tuples represent spe-
cial families of subspaces assuring that input vectors for Ginelli’s algorithm stay
close to singular vectors of the linear propagator. Singular vectors define directions
of optimal growth or decay for finite time. Thus, they are linked with CLVs through
a limit of finite-time scenarios. This link is described by the proof of the MET in
[1] and plays a major role in our convergence analysis. We check alignment of prop-
agated vectors with singular vectors in Ginelli’s algorithm and derive estimates for
forward and for backward propagation in terms of LEs. Ultimately, different parts
of the algorithm are combined to form our convergence proof. It turns out that the
precise notion of convergence differs between discrete and continuous time. Namely,
the discrete-time version of Ginelli’s algorithm converges for almost every input,
whereas the continuous-time version only converges in measure - a slight difference
that does not play a role in applications, but is important for a deeper understanding
of the algorithm.

Chapter 5 presents the convergence proof from [49] for semi-invertible infinite-
dimensional dynamical systems. The fundamental differences to the finite-
dimensional versions are that estimates in terms of Lebesgue measure are no
longer possible as there is no natural notion of Lebesgue measure for general
Banach or Hilbert spaces, we do not have a SVD connected to the MET, and the
linear propagator is not assumed to be invertible. In particular, we cannot simply
obtain backward-time estimates via forward-time estimates of the time-reversed
system. Moreover, the Lyapunov spectrum may consist of only a few, at most
countably many exceptional LEs until a possibly non-discrete part of the spectrum
is reached. This restricts our analysis to CLVs of the exceptional LEs.

As Chapter 4, we start Chapter 5 by introducing Grassmannians, this time for
Banach spaces. We concentrate on closed complemented subspaces whose dimension
or codimension is finite. Instead of input vectors for Ginelli’s algorithm that stay
close to singular vectors, we seek input vectors that stay far from spaces of the
Oseledets filtration. To this end, we introduce the notion of well-separating common
complements. Those are common complements for families of subspaces of finite
codimension such that the degree of transversality, which describes the separation
between complementary subspaces, decays at most subexponentially. In our proof
the family of subspaces is given by spaces of the Oseledets filtration for different
initial times. Following [50], we show that well-separating common complements
are prevalent in Hilbert spaces. Prevalence is a generalized concept of “Lebesgue
almost everywhere” for infinite-dimensional vectors spaces. Even though we may
not be able to perform direct measure estimates, we use the concept of prevalence
to prove convergence of Ginelli’s algorithm for almost every choice of input vectors.
The analysis is split into estimates for forward- and for backward-time. Finally, we
assemble the derived estimates to form our convergence proof.

Chapter 6 summarizes the most important findings and discusses their implica-
tions.
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2

Multiplicative Ergodic Theorem

The multiplicative ergodic theorem (MET) describes the asymptotic nature of linear
perturbations along trajectories of dynamical systems. Its main contribution is the
existence of a filtration or a splitting of the tangent space that relates directions
to asymptotic growth rates via Lyapunov exponents (LEs). Noninvertible versions
of the MET prove existence of Oseledets filtrations, whereas invertible and more
recent semi-invertible versions yield Oseledets splittings and covariant Lyapunov
vectors (CLVs).

As already mentioned in Section 1.2, there has been much development concern-
ing METs since Oseledets’ original version from 1968 [52]. The main objective of
this chapter is to introduce different scenarios under which the MET guarantees an
Oseledets splitting and CLVs. We mainly follow the book of Arnold on random
dynamical systems [1], which gives a comprehensive treatment of METs and asso-
ciated constructions on Rd, and an article by González-Tokman and Quas deriving
a semi-invertible MET on separable Banach spaces [29]. Both require the notion of
random dynamical systems.

2.1 Random dynamical systems
Most METs are formulated in the context of random dynamical systems. Those
systems arise from ordinary differential equations (ODEs) that depend on an addi-
tional stochastic parameter. Here, we take a purely dynamical approach. A more
in-depth analysis of the relation between random differential equations and random
dynamical systems can be found in Arnold’s book [1].

We consider different cases of time for random dynamical systems: discrete
one- and two-sided time T ∈ {N0,Z} and continuous one- and two-sided time
T ∈ {R≥0,R}. In [1] Arnold derives versions of the MET for all of these cases.
In particular, he derives an Oseledets filtration for one-sided time and an Oseledets
splitting for two-sided time. Since we want to compute Oseledets spaces, the ana-
lysis in Chapter 4 will be restricted to two-sided time. The MET on Banach spaces
from [29] and our analysis in Chapter 5 require two-sided discrete time.
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2. MULTIPLICATIVE ERGODIC THEOREM

Definition 2.1.1 ([1])
A measurable dynamical system consists of a probability space (Ω,F ,P) with Ω 6=
{0} and a family of transformations (σt)t∈T on Ω such that

1. (t, ω) 7→ σtω is measurable, where T×Ω is endowed with the product σ-algebra
B(T)×F ,

2. σ0 = idΩ, and

3. σs+t = σs ◦ σt for all s, t ∈ T ((semi-)flow property).

If additionally σ preserves probabilities, i.e., P(σ−1
t A) = P(A) for A ∈ F and

t ∈ T, then (Ω,F ,P, (σt)t∈T) is called metric dynamical system. Furthermore, such
a system is called ergodic if all measurable, flow-invariant subsets of Ω have either
probability 0 or 1.

If we assume two-sided time, the flow property implies that transformations are
invertible with σ−1

t = σ−t. Moreover, in the discrete case the flow is generated by
its time-one-map σ := σ1. It holds σn = σn for every n ∈ Z. Consequently, we may
interchange the family (σn)n∈Z with its generator σ while requiring measurability of
σ and σ−1.

A very useful result when constructing metric dynamical systems on compact
metric spaces is the famous theorem by Kryloff and Bogoliouboff [35], which ensures
the existence of a probability measure invariant under a given continuous group
action of a family (σt)t∈T on Ω. In particular, smooth autonomous ODEs of the
general form ω̇ = f(ω) on compact manifolds induce metric dynamical systems.

To analyze local dynamics near solutions of ODEs one usually studies lineariza-
tions. The evolution of linear perturbations is described by the tangent linear equa-
tion. Solving the tangent equation along a fixed reference trajectory, we get a family
of linear operators L(t)

ω : Rd → Rd (also called linear propagators) evolving linear
perturbations. These operators satisfy the cocycle property, which we define more
abstractly using the notion of random dynamical systems:

Definition 2.1.2 ([1])
Let (Ω,F ,P, (σt)t∈T) be a metric dynamical system. A (linear) cocycle (over σ) is a
measurable map

L : T× Ω× Rd → Rd

(t, ω, x) 7→ L(t)
ω x,

such that L(t)
ω : Rd → Rd is linear, L(·)

ω : T× Rd → Rd is continuous and L satisfies
the cocycle property:

1. L(0)
ω = I,

2. L(s+t)
ω = L(s)

σtω ◦ L
(t)
ω for all s, t ∈ T.

We call (Ω,F ,P, (σt)t∈T,L) a (linear) random dynamical system with time T. Sim-
ilarly, we may define a cocycle for one-sided time by restricting the cocycle property.
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•
ω

•x

•
σtω

•L(t)
ω x

•
σs+tω

•L(s+t)
ω x

L(t)
ω L(s)

σtω

L(s+t)
ω

Ω

{ω} × Rd

{σtω} × Rd

{σs+tω} × Rd

Figure 2.1: A random dynamical system can be seen as an action on the bundle
Ω× Rd.

The special case of one-sided random dynamical systems defined over a two-sided
base σ is sometimes referred to as semi-invertible (first occurrence of the term in
[23]). The term semi-invertible is due to σ being invertible, while the action of the
cocycle via L(t)

ω may not be invertible. On the other hand, if we have a two-sided
random dynamical system, the cocycle property implies that L(t)

ω is invertible with
(L(t)

ω )−1 = L(−t)
σtω .

In a discrete-time setting the cocycle is generated by Lω := L(1)
ω via L(n)

ω =
Lσn−1ω ◦ · · · ◦ Lω. Vice versa, each measurable map L : Ω → Rd×d generates a
one-sided cocycle. If Lω is invertible for every ω such that L−1

ω depends measurably
on ω, then we get a two-sided cocycle by the above observation. Thus, we may
interchange cocycles with their generators.

There are several constructions to obtain new cocycles. The most important
for us is the time-reversed cocycle, which we get in fully invertible settings. Via
L−,(t)ω := L(−t)

ω , we get a new cocycle over σ−t := σ−t describing the evolution in
reversed time. Later on, we will use the associated time-reversed random dynamical
system to obtain estimates for backward-time via estimates for forward-time. Other
important constructions include cocycles for exterior powers ∧kL, restrictions to
subbundles, and cocycles on quotient spaces. Moreover, there are cocycles for mani-
folds and for groups [1, chapters 4-6]. In the second chapter of his book, Arnold even
derives random dynamical systems from pathwise random differential equations of
the form ẋ = f(σtω, x) and, vice versa, he constructs random differential equations
via f(ω, x) := d/dt(L(t)

ω x)|t=0 given differentiability of the cocycle.
Random dynamical systems on Banach spaces can be constructed similarly to

random dynamical systems on Rd. We require the same cocycle properties as in
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2. MULTIPLICATIVE ERGODIC THEOREM

Definition 2.1.2, but we need additional assumptions for the semi-invertible MET
from [29]. Since the analysis on Banach spaces is only for discrete time, we exchange
base and cocycle with their generators.

Definition 2.1.3 ([39])
Let (Ω,F ,P, σ) be a metric dynamical system. A tuple (Ω,F ,P, σ,X,L) with a
separable Banach space X and a strongly measurable generator L : Ω → L(X) is
called separable strongly measurable random dynamical system. We say a map
L : Ω→ L(X) is strongly measurable1 if it is measurable with respect to the strong
σ-algebra S on L(X). S is generated by sets of the form Wx,U := {T | Tx ∈ U} for
U ⊂ X open.

In [29, appendix A] it is shown that the strong σ-algebra is the Borel σ-algebra
of the strong operator topology of X. In particular, it is a subset of the Borel σ-
algebra BX induced by the norm topology. Thus, being strongly measurable is a
weaker requirement than being measurable. On the other hand, X being separable
is a strong restriction.

2.2 METs on Rd

The METs from [1] rely on a SVD of the cocycle. While Arnold connects singular
values to LEs, he derives an Oseledets filtration as a limit of spaces spanned by
singular vectors. His first MET is a deterministic version in which he assumes
restrictions on growth rates of perturbations along the reference trajectory. Then,
Arnold proceeds to show that the assumptions of the deterministic MET are satisfies
for almost every trajectory of random dynamical systems with a certain integrability
condition leading him to a MET for one-sided time. By applying the one-sided
MET to the reversed cocycle, he obtains a second Oseledets filtration, which, when
intersected with the first, yields an Oseledets slitting resulting in a MET for two-
sided time. In this section we present these METs. For completeness’ sake, let us
also mention the semi-invertible MET on Rd [22], which yields an Oseledets filtration
even for non-invertible linear propagators.

Later on, it will be convenient to group indices of tuples according to degeneracies
of the Lyapunov spectrum. Let us assume degeneracies di ≥ 1 with d1 + · · ·+dp = d.
The case p = d is called nondegenerate. We denote a d-tuple of vectors of Rd by

(x) :=
(
x11 , x12 , . . . , x1d1

, x21 , . . . , x2d2
, . . . , xpdp

)
.

The usual index is related to our new notation via xij = xd1+···+di−1+j. To further
shorten notation, we write (Ax) for the d-tuple of vectors we get by applying a linear
map A to each vector of (x).

Before stating the deterministic MET, we recall a few preliminary facts about
SVDs.

1Equivalently, we could require that L(.)x : Ω→ X is (F ,BX)-measurable for every x ∈ X [29,
appendix A].
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2.2.1 SVD
Definition 2.2.1
Let A ∈ Rd×d. The singular value decomposition (SVD) of A is given by

A = UΣV T ,

where Σ = diag(δ11 , . . . , δpdp ) is the diagonal matrix of singular values δij ≥ 0 and
U, V ∈ O(d,R) are orthogonal matrices. The columns (u) := (Ue) of U are called
left singular vectors and the columns (v) := (V e) of V are called right singular
vectors. Here, (e) denotes the standard basis of Rd.

A connection between left and right singular vectors is established via

Avij = δijuij .

In general the SVD is not unique. Given a linear map A we settle for a descending
ordering of singular values:

δ11 ≥ · · · ≥ δpdp ≥ 0. (2.1)

When applied to cocycles, each group of singular values approximates a different
LE. Hence, if the approximations are good enough, the inequalities between δidi and
δ(i+1)1 are strict. In this case the spaces spanned by singular vectors of one group,
i.e., span(ui1 , . . . , uidi ) and span(vi1 , . . . , vidi ), are uniquely determined independent
of our choice of SVD with Eq. (2.1).

A SVD ÛΣ̂V̂ T for the inverse of some invertible linear map A is obtained by
inverting A = UΣV T and, heeding Eq. (2.1), reversing the order of singular values
and of singular vectors. In other words, a SVD for the inverse is given by (δ̂) =
(1/δ)r, û = (v)r, and v̂ = (u)r with (·)r being the tuple in reversed order.

For convenience sake, we denote the smallest and the largest singular values in
each group by

δmin
i := min

j=1,...,di
δij and δmax

i := max
j=1,...,di

δij .

2.2.2 Deterministic MET
Fix ω ∈ Ω. The deterministic MET from [1] only requires a sequence of matrices
generating a cocycle. Here, we directly substitute the sequence of matrices by the
generator on the positive part of the discrete orbit of ω. Hence, we may regard the
assumptions on the sequence of matrices as assumptions on ω. In a nutshell, the
deterministic MET assumes that changes during a single timestep do not matter on
an exponential scale and that expansion rates of different volumes are well-defined
and do not exceed exponential scales.

Proposition 2.2.2 (Deterministic MET for T = N0 [1])
Assume that the cocycle along the positive part of the discrete orbit of ω satisfies

lim sup
n→∞

1
n

log ‖Lσnω‖ ≤ 0

and that the limit
lim
n→∞

1
n

log ‖ ∧k L(n)
ω ‖ ∈ R ∪ {−∞}
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2. MULTIPLICATIVE ERGODIC THEOREM

exists for all orders of the wedge product of L(n)
ω .

Then, there exists a Lyapunov spectrum with a corresponding filtration of sub-
spaces capturing different asymptotic growth rates:

1. The Lyapunov spectrum consists of Lyapunov exponents (LEs)

∞ > λ1 > · · · > λp ≥ −∞,

which are the distinct limits of singular values, together with degeneracies
d1 + · · ·+ dp = d:

∀ij : lim
n→∞

1
n

log δij
(
L(n)
ω

)
= λi.

2. There is a filtration

Rd = V1 ⊃ · · · ⊃ Vp ⊃ Vp+1 := {0}

called Oseledets filtration given by subspaces

Vi :=
{
x ∈ Rd

∣∣∣∣ lim
n→∞

1
n

log ‖L(n)
ω x‖ ≤ λi

}
.

Limits in the definition of Vi exist for all x ∈ Rd and take values in
{λ1, . . . , λp}. Moreover, it holds

dim Vi − dim Vi+1 = di.

The proof shows that Ψ := limn→∞((L(n)
ω )TL(n)

ω )1/2n exists. Its eigenvalues are
of the form eλi and its eigenspaces Ui form the Oseledets filtration via Vi = Up ⊕
· · ·⊕Ui. In particular, the spaces spanned by right singular vectors of L(n)

ω converge
to the eigenspaces of Ψ. The convergence is exponentially fast with a rate given by
the distance between associated LEs. A more technical view on the link between
MET and SVD will be given in Section 4.4.2, when proving convergence of Ginelli’s
algorithm on Rd.

The eigenvectors of Ψ are sometimes referred to as forward Lyapunov vectors,
since they encode information about the forward part of the trajectory. As Ψ is
symmetric, forward Lyapunov vectors corresponding to different LEs are orthogonal.
Our analysis in Chapter 4 shows that these vectors can be obtained by pushing back
and orthonormalizing a set of randomly chosen basis vectors. Similarly, one gets the
so-called backward Lyapunov vectors via to the time-reversed cocycle. In particular,
backward Lyapunov vectors are associated to push-forwards of vectors along the
past of the trajectory. This plays an important role in Ginelli’s algorithm.

Let us remark that, while Ψ, Ui, and forward and backward Lyapunov vectors
depend on the chosen scalar product and norm, the LEs and the Oseledets filtra-
tion are independent of the norm. Indeed, every norm on Rd is equivalent. Hence,
changing the norm contributes an at most constant factor that vanishes in asymp-
totics on exponential scales. Since LEs and the Oseledets filtration have asymptotic
characterizations, they remain the same when changing the norm. Thus, without
loss of generality, we will settle for the euclidean norm in Chapter 4.

Adding two more assumptions to Proposition 2.2.2, namely invertibility and an
extension of the first assumption, we get a version of the deterministic MET for
one-sided continuous time:
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Corollary 2.2.3 (Deterministic MET for T = R≥0 [1])
Assume that the action of the one-sided continuous cocycle is invertible, satisfies

lim sup
n→∞

1
n

sup
s∈[0,1]

log ‖(L(s)
σnω)±1‖ ≤ 0,

and that limits of the wedge product of L(t)
ω exist as in Proposition 2.2.2.

Then, the Lyapunov spectrum and the Oseledets filtration exist and their asymp-
totic characterizations hold with continuous instead of discrete time.

Proof. This statement is part of the proof of the MET for one-sided time in [1].
The additional assumptions and the cocycle property ensure that nothing happens
in-between discrete timesteps.

Without many additional assumptions we can extend the results to the whole
trajectory:

Corollary 2.2.4
In the setting of Proposition 2.2.2 for cocycles with invertible action, the Lyapunov
spectrum and the Oseledets filtration exist along the whole trajectory. Furthermore,
p(ω), λi(ω) and di(ω) are invariant under σ, and the Oseledets filtration changes in
an equivariant way:

L(t)
ω Vi(ω) = Vi(σtω).

Similar statements hold for continuous time in the setting of Corollary 2.2.3 if
we additionally require that

∀ v ∈ R≥0 : sup
s∈[0,1]

‖(L(s)
σvω)±1‖ <∞. (2.2)

Proof. The first assumption of Proposition 2.2.2 is trivially satisfied if we replace
ω by σuω. To prove existence of limits of wedge products, we use the following
properties:

1. ‖ ∧k A‖ = δ1 . . . δk,

2. ∧kI = I, and

3. ∧k(AB) = (∧kA)(∧kB)

for A,B ∈ Rd×d. Now, the existence of

lim
n→∞

1
n

log ‖ ∧k L(n)
σuω‖ <∞

follows due to the cocycle property:(
n+ u

n

)( 1
n+ u

log ‖ ∧k L(n+u)
ω ‖

)
− 1
n

log ‖ ∧k L(u)
ω ‖

≤ 1
n

log ‖ ∧k L(n)
σuω‖

≤
(
n+ u

n

)( 1
n+ u

log ‖ ∧k L(n+u)
ω ‖

)
+ 1
n

log ‖(∧kL(u)
ω )−1‖.

27
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Thus, applying the proposition, we get existence of the Lyapunov spectrum and
of the Oseledets filtration at σuω. In particular, the above shows that the limits
of singular values for ω and for σuω coincide on exponential scales. Hence, LEs
and their multiplicities are the same for all states along the orbit of ω. Finally,
equivariance of the Oseledets filtration follows from its asymptotic characterization.

The extra condition of Corollary 2.2.3 can be derived from

L(s)
σn+uω = L(u)

σs+nω ◦ L
(s)
σnω ◦

(
L(u)
σnω

)−1

by using Eq. (2.2) and similar inequalities as for the wedge product above. The rest
follows as in the discrete case.

Assuming two-sided time, similar statements can be derived for the time-reversed
cocycle L− over σ−. We denote its Lyapunov spectrum by (λ−i , d−i )i=1,...,p− and the
corresponding filtration spaces by V −i (ω).

In order to define an equivariant splitting of the tangent space that captures
asymptotic growth rates in both forward- and backward-time, we require additional
assumptions on the Lyapunov spectra and on the associated filtrations of L and L−:

1. p = p−, d−i = dp+1−i, λ−i = −λp+1−i, and

2. Vi+1(ω) ∩ V −p+1−i(ω) = {0}.

A direct consequence is the finiteness of LEs. We set λ0 :=∞ and λp+1 := −∞ for
convenience sake.

Proposition 2.2.5 (Deterministic MET for two-sided time [1])
Assuming the above relations between the Lyapunov spectra and the Oseledets filtra-
tions of L and L−, there exists a splitting Rd = Y1(ω)⊕· · ·⊕Yp(ω), called Oseledets
splitting, of the tangent space into so-called Oseledets spaces

Yi(ω) := Vi(ω) ∩ V −p+1−i(ω). (2.3)

Oseledets spaces can be characterized via

y ∈ Yi(ω) \ {0} ⇐⇒ lim
t→±∞

1
|t|

log ‖L(t)
ω y‖ = ±λi, (2.4)

where convergence is uniform with respect to y in the unit sphere of Yi(ω). Further-
more, they are equivariant:

L(t)
ω Yi(ω) = Yi(σtω),

and satisfy dim Yi(ω) = di.

Proof. The proof is purely algebraic and can be found along the lines of the proof
of the MET for two-sided time in [1].

The Oseledets filtrations of L and L− can be reconstructed from the Oseledets
splitting via

Vi(ω) =
p⊕
j=i

Yj(ω) and V −p+1−i(ω) =
i⊕

j=1
Yj(ω).
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σtω
∼ etλ1

∼ etλ2

Y2

Y1

ω

Figure 2.2: Linear asymptotics of a diagonal cocycle in dimension 2.

For random dynamical systems satisfying a certain integrability condition, the
cocycle along almost every trajectory of the system admits an Oseledets splitting.
We state the corresponding METs in the next subsection. Moreover, in an ergodic
setting the Lyapunov spectrum is constant P-almost everywhere. Therefore, in
applications it is often assumed that the underlying system is ergodic at least near
an interesting structure.2 Via CLVs one hopes to better understand the local flow
near such a structure.

Definition 2.2.6
Normalized basis vectors, which are covariant and chosen subject to the Oseledets
splitting, are called covariant Lyapunov vectors (CLVs). We call a family of unit
vectors u : Ω → Rd covariant if L(t)

ω u(ω) and u(σtω) coincide up to normalization
for almost every ω and for all t ∈ T.

By Eq. (2.4) CLVs form a basis that describes different asymptotic rates of
growth or decay. This is a direct consequence of them being chosen subject to the
Oseledets splitting. Moreover, since Oseledets filtrations and thus also Oseledets
splittings are norm-independent, changing the norm does not change the directions
of CLVs. Thus, unlike the orthogonal forward and backward Lyapunov vectors,
CLVs are norm-independent and not necessarily orthogonal.

2.2.3 METs for random dynamical systems
In Chapter 4 we will show convergence of Ginelli’s algorithm to compute CLVs,
or more generally Oseledets spaces, in the deterministic setting. Our proof only
requires a sequence of matrices with the restrictions of Proposition 2.2.5 which
ensures existence and uniqueness of Oseledets spaces. However, for the sake of
completeness we now state the main METs from [1].

Assuming an integrability condition on the generator, the MET for random dy-
namical systems provides a Lyapunov spectrum and an Oseledets filtration for al-
most every trajectory:

2See the concept of SRB-measures for attractors [10].
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Theorem 2.2.7 (MET for one-sided time [1])
Let (Ω,F ,P, (σt)t∈T≥0 ,L) be a random dynamical system. The following statements
hold:

(A) Non-invertible case T = N0: If the generator L : Ω→ Rd×d satisfies

log+ ‖L‖ ∈ L1(Ω,F ,P),

where log+(·) := max(log(·), 0), then a Lyapunov spectrum and an Oseledets
filtration as in Proposition 2.2.2 exist on a σ-invariant set of full P-measure.
They depend measurably on ω. Moreover, the Lyapunov spectrum is invariant
under σ and the Oseledets filtration is equivariant, i.e., it satisfies LωVi(ω) ⊂
Vi(σω).
If the underlying metric dynamical system is ergodic, then the Lyapunov spec-
trum is constant P-almost everywhere.

(B) Invertible case T = N0: If the generator L : Ω→ Gl(d,R) satisfies

log+ ‖L±1‖ ∈ L1(Ω,F ,P),

then, in addition to (A), the smallest LE is real and equivariance of the
filtration holds with equality: LωVi(ω) = Vi(σω).

(C) Invertible case T = R≥0: Let L(t)
ω ∈ Gl(d,R). Assume that

sup
s∈[0,1]

log+ ‖(L(s)
ω )±1‖ ∈ L1(Ω,F ,P).

Then, all statements of (B) hold with N0 replaced by R≥0.

The following two-sided MET gives us existence of an Oseledets splitting for
almost every trajectory. Remember that actions of cocycles over two-sided time are
invertible automatically.

Theorem 2.2.8 (MET for two-sided time [1])
Let (Ω,F ,P, (σt)t∈T,L) be a random dynamical system. The following statements
hold:

(A) T = Z: If the generator satisfies

log+ ‖L±1‖ ∈ L1(Ω,F ,P),

then there is a σ-invariant set of full P-measure on which (B) of Theo-
rem 2.2.7 holds and on which an Oseledets splitting as in Proposition 2.2.5
exists. Moreover, the Oseledets splitting depends measurably on ω.

(B) T = R: Assume that

sup
s∈[0,1]

log+ ‖(L(s)
ω )±1‖ ∈ L1(Ω,F ,P).

Then, all statements of (A) hold with Z replaced by R.

In [1] Arnold also derives versions of the MET for various constructions of co-
cycles. Those include time-reversed and adjoint cocycles, exterior powers, tensor
products, linear subbundles, quotient spaces, and manifolds.
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2.3 Semi-invertible MET on separable Banach
spaces

The first MET on Hilbert spaces was published by Ruelle in 1982 [55]. One year later,
Mañé’s paper generalized the MET to Banach spaces [44]. Extending Thieullen’s
work [62], the first infinite-dimensional semi-invertible MET for quasi-compact op-
erators on Banach spaces followed by Froyland, Lloyd and Quas in 2013 [23]. In this
section, we present the semi-invertible MET by González-Tokman and Quas from
2014 [29]. The proof of their MET inspired some ideas for our convergence proof on
Hilbert spaces. Especially their technique of pushing forward so-called good comple-
ments of the Oseledets filtration from the past to the present in order to obtain the
Oseledets splitting shows promising potential in the analysis of Ginelli’s algorithm.

The MET from [29] is formulated for strongly measurable random dynamical sys-
tems on separable Banach spaces with discrete two-sided time as in Definition 2.1.3.
Compared to the finite-dimensional case, systems on Banach spaces exhibit Lya-
punov spectra with possibly non-discrete parts. In fact, an Oseledets filtration and
an Oseledets splitting exist only for the first, at most countably many exceptional
LEs that are isolated from the rest of the spectrum. To discern the exceptional LEs,
we need the notion of quasi-compactness.

Let (X, ‖.‖) be a Banach space. Write B ⊂ X for the unit ball and S ⊂ X for
the unit sphere in X. Given a bounded linear operator A ∈ L(X) on X, we define
the index of compactness of A as

‖A‖ic(X) := inf{r > 0 | A(B) can be covered by finitely many balls of radius r}.

The index gives us a measure of how close A is to being a compact operator. In
fact, the index of compact operators, such as operators on Rd or operators with
finite range, is always zero. The following result extends the index of compactness
to cocycles:

Proposition 2.3.1 ([29])
Let R = (Ω,F ,P, σ,X,L) be a separable strongly measurable random dynamical
system such that log+ ‖L‖ ∈ L1(Ω,F ,P).

For P-almost every ω ∈ Ω, the maximal Lyapunov exponent

λ(ω) := lim
n→∞

1
n

log ‖L(n)
ω ‖

and the index of compactness of the cocycle [62]

κ(ω) := lim
n→∞

1
n

log ‖L(n)
ω ‖ic(X)

exist. Furthermore, λ and κ are measurable and σ-invariant.
If σ is ergodic, then λ and κ are constant P-almost everywhere. Denote these

constants by λ∗ and κ∗. It holds κ∗ ≤ λ∗ <∞.

The next theorem states that there are only exceptional LEs between κ∗ and λ∗
and that Oseledets spaces exist for all of these exponents. Since cocycles consisting
of compact operators fulfill κ∗ = −∞, their Lyapunov spectrum has only excep-
tional LEs and possibly −∞. Under additional assumptions, such cocycles have
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been analyzed in Hilbert spaces with respect to stability of LEs and of Oseledets
spaces [21]. In the context of stability, let us also mention a recent positive result by
Crimmins, who proved stability for a class of semi-invertible random dynamical sys-
tems on separable Banach spaces and takes into account numerical representations
of the linear operators [14].

We call a separable strongly measurable random dynamical system with ergodic
base quasi compact if κ∗ < λ∗. For such a system, Doan derives the existence of
an Oseledets filtration [17] as a corollary of the two-sided MET by Lian and Lu
[39]. With the additional assumption that the base is invertible, [29] proves a semi-
invertible MET with a splitting that is similar to the Oseledets splitting obtained
in fully invertible METs:

Theorem 2.3.2 (Semi-invertible MET [29])
Let R = (Ω,F ,P, σ,X,L) be a separable strongly measurable random dynamical
system over an ergodic invertible base such that log+ ‖L(ω)‖ ∈ L1(Ω,F ,P). Fur-
thermore, assume that R is quasi-compact.

There exist 1 ≤ p ≤ ∞ exceptional Lyapunov exponents λ∗ = λ1 > · · · > λp > κ∗

(or if p =∞: λ1 > λ2 > · · · > κ∗ and limi→∞ λi = κ∗), multiplicities d1, . . . , dp ∈ N,
and a unique measurable splitting of X into closed subspaces

X =
p⊕
i=1

Yi(ω)⊕ V (ω)

defined on a σ-invariant subset Ω′ ⊂ Ω of full P-measure such that the following
hold for ω ∈ Ω′:

1. the splitting is equivariant, i.e., L(ω)V (ω) ⊂ V (σω) and L(ω)Yi(ω) =
Yi(σω),

2. dim Yi(ω) = di,

3. limn→∞(1/n) log ‖L(n)
ω y‖ = λi for y ∈ Yi(ω) \ {0},

4. lim supn→∞(1/n) log ‖L(n)
ω v‖ ≤ κ∗ for v ∈ V (ω),

5. the norms of the projections associated to the splitting are tempered
with respect to σ, where a function f : Ω → R is called tempered if
limn→±∞(1/n) log |f(σnω)| = 0 for P-almost every ω.

We call the above splitting Oseledets splitting and the spaces Yi(ω) Oseledets
spaces. The Oseledets filtration X = V1(ω) ⊃ · · · ⊃ Vp(ω) ⊃ Vp+1(ω) from Doan’s
theorem can be reconstructed via Vp+1(ω) = V (ω) and

Vi(ω) =
p⊕
j=i

Yj(ω)⊕ V (ω) (2.5)

for 1 ≤ i ≤ p.
Note that, contrary to the fully invertible finite-dimensional cases, the above

Oseledets splitting has no asymptotic characterization for reversed time. This is
due to the semi-invertible setting in which the cocycle is not necessarily injective.
Nonetheless, its properties assure that the new Oseledets splitting coincides with
the old one when applied to random dynamical systems on Rd.
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In Section 3.1 we generalize the concept of Ginelli’s algorithm to compute Ose-
ledets spaces in Hilbert spaces for a fixed ω ∈ Ω′. So far, the restriction to Hilbert
spaces is of a technical nature and may be lifted in the future. Our convergence
analysis in Chapter 5 requires cocycle data along the trajectory of ω and basic
asymptotic properties that appear, e.g., in the METs from [17] and [29]. That is, we
need uniform upper bounds for asymptotics of the Oseledets filtration and uniform
lower bounds for asymptotics of the Oseledets splitting. A detailed derivation can
be found in Appendix A. While bounds for the Oseledets filtration are recovered
from Doan’s work [17]:

lim
n→∞

1
n

log ‖L(n)
ω |Vi(ω)‖ = λi (2.6)

for 1 ≤ i ≤ p and
lim sup
n→∞

1
n

log ‖L(n)
ω |V (ω)‖ ≤ κ∗, (2.7)

bounds for the Oseledets splitting are due to [29]. By choosing a suitable basis,
González-Tokman and Quas reduce the cocycle along Yi(ω) to a cocycle of matrices
(similar to [23, lemma 19]) for which uniform estimates are known. By applying the
same arguments to the sum of Oseledets spaces Y1(ω)⊕ · · · ⊕ Yi(ω), we get uniform
lower bounds of growth rates inside sums of Oseledets spaces:

lim inf
n→∞

inf
y∈Y1(ω)⊕···⊕Yi(ω)∩S

1
n

log ‖L(n)
ω y‖ = λi. (2.8)

In addition to the bounds for L(n)
ω , we need similar bounds for L(n)

σ−nω. These can
be obtained via [22, lemma 8.2]. We get

lim
n→∞

1
n

log ‖L(n)
σ−nω|Vi(σ−nω)‖ = λi (2.9)

for 1 ≤ i ≤ p and
lim sup
n→∞

1
n

log ‖L(n)
σ−nω|V (σ−nω)‖ ≤ κ∗ (2.10)

for P-almost every ω. Uniform lower bounds for the Oseledets splitting are again
obtained from reduced systems via matrix cocycles. We have

lim inf
n→∞

inf
y∈Y1(σ−nω)⊕···⊕Yi(σ−nω)∩S

1
n

log ‖L(n)
σ−nωy‖ = λi. (2.11)

The uniform estimates for L(n)
ω and for L(n)

σ−nω are then used in [29] to prove tem-
peredness of projections as stated in Theorem 2.3.2.

Observe that kerL(n)
ω ⊂ V (ω) and kerL(n)

σ−nω ⊂ V (σ−nω) for every n ∈ N. Indeed,
kerL(n)

ω ⊂ V (ω) follows from the different growth rates of vectors inside the Oseledets
spaces. Since kerL(n)

ω ⊂ V (ω) holds on a σ-invariant subset of Ω, we get kerL(n)
σ−nω ⊂

V (σ−nω).
Besides the uniform estimates, our convergence proof only needs the properties

stated in Theorem 2.3.2. We remark that these properties are present in most semi-
invertible and invertible versions of the MET. Hence, by adjusting the notation,
Chapter 5 can be generalized to various MET-scenarios.
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3

Ginelli’s Algorithm

In this chapter we present a method to compute CLVs, or more generally Oseledets
spaces, that arise in the MET. Due to newly developed algorithms, CLVs were made
available and have gained increased interest in applications during the last years, see
Sections 1.2 and 1.3. Among the most famous algorithms is the Ginelli algorithm
[26], which uses a dynamical approach to approximate CLVs. Other algorithms,
like the one by Wolfe and Samelson [67], combine the use of dynamical techniques
with SVDs of the cocycle, its adjoint, or its inverse. Here, we focus on a purely
dynamical approach since convergence of singular values and vectors is already well-
described by the proof of the MET (at least in finite dimensions). By combining
our techniques from Chapter 4 with the proof of Proposition 2.2.2 one may extend
convergence results to other algorithms besides the one by Ginelli.

We start by describing the concept of Ginelli’s algorithm on an analytical level.
A precise mathematical formulation is derived for Hilbert spaces. As an example,
we implement the algorithm in MATLAB R2019a and apply it to compute CLVs
along a trajectory of the Lorenz attractor.

3.1 Concept
Ginelli’s algorithm requires cocycle data along a given trajectory for which Ose-
ledets spaces exist. The cocycle may be part of a random dynamical system or
simply a sequence of matrices as in Proposition 2.2.2. Independent of the setting
the fundamental idea behind Ginelli’s algorithm is that almost every vector has a
non-vanishing projection (subject to the Oseledets splitting) onto the first Oseledets
space. Since vectors inside the first Oseledets space have the highest exponential
growth rate, almost every vector will align with the first Oseledets space asymp-
totically in forward-time. Similarly, we expect the linear span of k = d1 + · · · + di
randomly chosen vectors to align with the fastest expanding k-dimensional subspace,
the sum of the first i Oseledets spaces, in forward-time. Reversing time, the fastest
growing direction inside Y1⊕· · ·⊕Yi is the slowest growing direction in forward-time,
that is, Yi. Thus, we have a means to compute Oseledets spaces.
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L L

L−1

σ−t1ω ω σt2ω

W L(t1)
σ−t1ω

W L(t1+t2)
σ−t1ω

W

W̃

(
L(t2)
ω |L(t1)

σ−t1ω
W

)−1
W̃

Figure 3.1: Ginelli’s algorithm at the level of Grassmannians.

At a more abstract level, Ginelli’s algorithm starts with a randomly chosen sub-
space W ⊂ X of dimension d1 + · · · + di, which is propagated from the far past
to the present via L(t1)

σ−t1ω
to get an approximation of Y1(ω) ⊕ · · · ⊕ Yi(ω) for large

t1. Then, L(t1)
σ−t1ω

W is propagated further via L(t2)
ω to approximate Y1 ⊕ · · · ⊕ Yi in

the far future. Next, the algorithm randomly chooses a subspace W̃ ⊂ L(t1+t2)
σ−t1ω

W

of dimension di. This subspace is propagated backwards to approximate Yi(ω) for
large t1, t2. (see Fig. 3.1)

In practice we express W in terms of a basis (x1, . . . , xk). By propagating these
vectors, we can track the evolution of W . Similarly, we express W̃ in terms of a
basis. The corresponding vectors can be described as coefficients of the propagated
vectors of W . Hence, the backward propagation can be done completely inside a
finite-dimensional coefficient space.

Let X = H be a Hilbert space. To avoid that all vectors x1, . . . , xk collapse
onto the first Oseledets space, which renders them numerically indistinguishable,
Ginelli and others suggest to orthonormalize them between smaller propagation
steps. While this procedure does not change the outcome of Ginelli’s algorithm
analytically, as the involved spaces remain the same, it helps with numerical stabi-
lity. In particular, they use a QR-decomposition to store orthonormalized vectors
in a matrix Q and the cocycle on coefficient space in a matrix R for each pro-
pagation step. The upper triangular R-matrices can easily be inverted to perform
the backward propagation in coefficient space. Using the identification between
vectors and coefficients, we substitute initial vectors for the backward propagation
by an upper triangular matrix representing their coefficients. For more details on
the implementation see Section 3.2, Appendix B, or [26, 27].

Definition 3.1.1
Taking the above into account, we define (the analytical kernel1 of) Ginelli’s algo-
rithm on Hilbert spaces as

Gt1,t2
ω,k : Hk × Rk×k

ru → Hk,

1We leave out numerical details of the implementation since they do not affect the output of
Ginelli’s algorithm analytically.
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where ω ∈ Ω defines the trajectory, k ∈ N is the number of CLVs we wish to
compute, t1 ∈ T≥0 is the amount of past data, t2 ∈ T≥0 is the amount of future
data, and Rk×k

ru denotes the set of upper triangular k × k-matrices. Gt1,t2
ω,k operates

on ((x1, . . . , xk), (rij)ki,j=1) via the following steps:

1. forward propagation from σ−t1ω to ω:(
x1

1, . . . , x
1
k

)
:=
(
L(t1)
σ−t1ω

x1, . . . ,L(t1)
σ−t1ω

xk
)
.

2. forward propagation from ω to σt2ω:(
x2

1, . . . , x
2
k

)
:=
(
L(t2)
ω x1

1, . . . ,L(t2)
ω x1

k

)
.

3. orthonormalization2: (
x3

1, . . . , x
3
k

)
:= orth

(
x2

1, . . . , x
2
k

)
.

4. initialization of vectors for backward propagation:

(
y1

1, y
1
2, . . . , y

1
k

)
:=
r11x

3
1, r12x

3
1 + r22x

3
2, . . . ,

k∑
j=1

rjkx
3
j

.
5. backward propagation from σt2ω to ω:

(
y2

1, . . . , y
2
k

)
:=
((
L(t2)
ω |W 1

)−1
y1

1, . . . ,
(
L(t2)
ω |W 1

)−1
y1
k

)
,

where W 1 := span(x1
1, . . . , x

1
k).

6. normalization: (
y3

1, . . . , y
3
k

)
:=
(
y2

1
‖y2

1‖
, . . . ,

y2
k

‖y2
k‖

)
.

We set Gt1,t2
ω,k ((x1, . . . , xk), (rij)ki,j=1) := (y3

1, . . . , y
3
k) as our approximation of the first

k CLVs at ω.

Ginelli’s algorithm requires two types of inputs: a tuple of vectors (x1, . . . , xk) as
initial vectors for forward propagation and a coefficient matrix (rij)ki,j=1 to initialize
vectors for backward propagation. We denote new vectors obtained during the
different propagation steps by x and y with corresponding indices. In the above
definition, x-vectors are used during forward propagation and y-vectors are used
during backward propagation.

Let us remark that whenever Gt1,t2
ω,k+1 ((x1, . . . , xk+1), (rij)k+1

i,j=1) is well-defined, its
first k components coincide with Gt1,t2

ω,k ((x1, . . . , xk), (rij)ki,j=1). Thus, it suffices to
assume k = d1 + · · ·+ di for our convergence analysis in Chapters 4 and 5. In fact,
we will set k = d (or equivalently i = p) when investigating the finite-dimensional
case H = Rd.

2Any orthonormalization procedure respecting the order of the tuple is feasible. For example,
this includes the QR-decomposition and the Gram-Schmidt procedure.
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The asymptotic expansion rate λ1 + · · · + λi of Y1 ⊕ · · · ⊕ Yi can be computed
as a byproduct of the forward phase of the algorithm by looking at renormalization
factors, e.g., in case of QR-decompositions these are products of diagonal elements
of R-matrices. Thus, we can derive the involved LEs.3

In Chapters 4 and 5 we provide convergence proofs of the algorithm as
min(t1, t2) → ∞. The speed of convergence turns out to be exponential in relation
to the minimal distance between LEs. Furthermore, the kind of convergence
differs between discrete and continuous time. The discrete version with t1, t2 ∈ N0
converges for almost every initial tuple, whereas the continuous version with
t1, t2 ∈ R≥0 only converges in measure. Details on convergence will be discussed in
the respective chapters.

3.2 Implementation
Before beginning the convergence analysis in the next chapter, we implement
Ginelli’s algorithm and apply it to the Lorenz 63 model [40] given by

ẋ1 = σ(x2 − x1)
ẋ2 = x1(ρ− x3)− x2

ẋ3 = x1x2 − βx3,

where σ = 10, β = 8/3, and ρ = 28 are the classical parameter values. The
model has three fixed points: the origin, which is a saddle, and two unstable spirals
(±
√
β(ρ− 1),±

√
β(ρ− 1), ρ− 1). Moreover, the equations admit a strange attrac-

tor called Lorenz attractor . With strange attractor we mean an invariant set, which
is neither a steady state nor a periodic orbit, towards which almost every solution of
the system is evolving and which has sensitive dependence on initial conditions (a
positive first LE). The Lorenz attractor is robust, i.e., it persists for small perturba-
tions of the parameters, and admits a unique SRB-measure4 [45, 65]. The measure
is invariant under the flow and its support coincides with the attractor. In particu-
lar, LEs and Oseledets spaces exist for almost every point of the Lorenz attractor.
Due to ergodicity5 the LEs are constant almost everywhere. Here, “almost every”
is understood with respect to the SRB-measure.

Even though the MET gives us existence of CLVs on a set of full measure with
respect to the SRB-measure, it is potentially a set of Lebesgue measure zero. When
applying Ginelli’s algorithm, we hope that the chosen trajectory will be close enough
to the attractor, so that we may approximate LEs and CLVs of the attractor. Note
that this is only a heuristic argument since Theorem 2.2.8 only ensures measurable
dependence of LEs and CLVs on the system state. In fact, due to the asymptotic
nature of Oseledets spaces, stability properties are nontrivial [21, 31, 51].

3This concept was already used in 1980 by Benettin [5, 6] to compute the Lyapunov spectrum.
4The defining properties of an SRB-measure µ are invariance under the flow and equal-

ity of time and space averages for Lebesgue almost every point in the basin of attraction:
limn→∞(1/n)

∑n−1
i=0 ϕ(σnx) =

∫
ϕ(x)dµ, where σ denotes the flow and ϕ is a continuous observable

defined on the basin of attraction.
5The SRB-measure µ of the Lorenz attractor even has the mixing property, which is stronger

than ergodicity: limn→∞ µ(σn(A) ∩ B) = µ(A)µ(B), where A,B are µ-measurable subsets of the
basin of attraction [43].
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In our implementation the Lorenz system is combined with its linearization and
integrated using a fourth order Runge-Kutta method with fixed timestep starting
at an arbitrarily chosen initial state (Fig. 3.2a). We obtain a nonlinear background
trajectory and the cocycle along the trajectory. After half of the integration time we
fix the corresponding point on the background trajectory and separate the cocycle
into two parts, one for past and one for future data (Fig. 3.2b). Then, Ginelli’s
algorithm with intermittent QR-decompositions is applied to the data. We obtain
an approximation of LEs and of CLVs at the specific point (Fig. 3.2c). Moreover, we
compare the computed CLVs with CLVs obtained using less integration time. The
rate of convergence of each CLV is related to the distance between computed LEs
(Figs. 3.2d to 3.2f). Associated figures can be found at the end of this subsection
and the full implementation is given in Appendix B.

We observe that with increasingly higher integration time the computed CLVs
seem to converge to the reference CLVs. Moreover, the convergence is exponentially
fast with a rate given by the spectral gap between associated LEs (at least with
respect to the reference LEs). In particular, the convergence rate of the third CLV
does not depend on the first LE. Since |λ2 − λ3| is larger than |λ1 − λ2|, the third
CLV reaches system accuracy much faster than the other two CLVs. The small
fluctuations on subexponential scales that can be seen in Figs. 3.2d to 3.2f are
due to the nonlinearity of the underlying system, numerical errors, and different
randomly chosen initial conditions for each run of the algorithm.

Without much computational effort we may compute CLVs at other states along
the trajectory. Indeed, by covariance it is enough to push CLVs forwards and back-
wards with the linear propagator. If there is long enough transient time for past
and future data, the approximations on a fixed time interval around the chosen state
will still be good. In particular, by topological transitivity6 of the Lorenz attractor
[65], one may compute CLVs for finitely many points covering a large portion of the
attractor to get properties of the whole attractor. However, this is only a heuristic
argument as CLVs depend measurably on the system state. Without further sta-
bility analysis we cannot rigorously derive CLVs at other points of the attractor by
this argument.

We remark that our implementation does not compute CLVs at a given state
of the system, but at the half way mark of a trajectory initiated at a given state.
Due to the chaotic nature of the Lorenz attractor, we cannot predetermine this
half way mark. Moreover, backward integration should be considered carefully as
the attractor would become a repellor, which causes numerical errors to blow up
very quickly. Without knowing an analytical solution we have to rely on heuristic
arguments as above to get CLVs at a desired point on the attractor.

6A σ-invariant subset is called topologically transitive if for every two non-empty open subsets
U, V there is n ∈ N with σn(U) ∩ V 6= ∅.
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--- Input data ---

System:
Lorenz 63 (rho = 28, sigma = 10, beta = 8/3)

Number of timesteps for past data:
100000

Number of timesteps for future data:
100000

Stepsize:
0.001

Number of LEs to compute:
3

Initial state of past data orbit:
[ 1.73000 3.23000 8.01000 ]

(a) input

Figure 3.2: Ginelli’s algorithm applied to the Lorenz attractor. We integrated the
Lorenz 63 model with classical parameter values in MATLAB R2019a and applied
Ginelli’s algorithm to the cocycle (see Appendix B for the code). The highlighted
system state in Fig. 3.2b is the half way mark of the computed trajectory. Using
the full computed trajectory and cocycle, we approximated LEs and CLVs. The
rounded output is displayed in Fig. 3.2c. For Figs. 3.2d to 3.2f, we computed CLVs
with less of the trajectory and cocycle data centered around the highlighted system
state in Fig. 3.2b and compared the result to the CLVs from Fig. 3.2c computed
with the full cocycle data. Red dots in Figs. 3.2d to 3.2f represent the logarithmic
errors between CLVs in Fig. 3.2c and CLVs of the same system state computed with
integration time t for both the past and the future parts of the trajectory. Missing
dots indicate a numerical error identical to zero, which corresponds to a logarithmic
error of −∞.
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(b) trajectory

--- Output data ---

Lyapunov exponents:
0.90545
0.00048586
-14.573

Covariant Lyapunov vectors:
[ -0.42991 -0.66370 0.61211 ]
[ 0.48058 0.87246 0.08861 ]
[ -0.70515 0.66447 -0.24746 ]

System state:
[ -4.06992 -7.07230 12.86971 ]

(c) output

Figure 3.2: Ginelli’s algorithm applied to the Lorenz attractor (cont.).
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Figure 3.2: Ginelli’s algorithm applied to the Lorenz attractor (cont.).
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(f) convergence rate of third CLV

Figure 3.2: Ginelli’s algorithm applied to the Lorenz attractor (cont.).
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4

Convergence of Ginelli’s Algorithm on Rd

This chapter follows [48]. We investigate convergence of Ginelli’s algorithm in a
deterministic setting on Rd as given by Section 2.2.2. Although there already has
been an attempt to prove convergence [20, 27], it harbors conceptual difficulties
and is only valid for nondegenerate Lyapunov spectra, see Section 1.3. Here, we
provide a mathematically rigorous convergence proof that even applies to degene-
rate Lyapunov spectra. Contrary to the previous approach, we use more compact
projector-based techniques to capture evolution of subspaces rather than single vec-
tors. It turns out that this is the right framework when including degeneracies.
Moreover, we point out the subtle differences between convergence for continuous
and for discrete time and relate the speed of convergence to LEs.

We start by introducing the Lyapunov index notation. On the one hand, the
notation helps us to get familiar with exponential scales, on the other, it shortens
the analysis of our convergence proof. The proof itself focuses on the evolution of
subspaces. Hence, we derive notions of distances and angles between subspaces in
terms of projection operators in Section 4.2. Section 4.3 introduces the concept of
admissibility. A tuple of vectors is called admissible with respect to another tuple
if their corresponding filtrations are close enough. We use this concept to describe
how tuples of vectors evolve compared to singular vectors, which are connected to
CLVs via the proof of the MET. In fact, they provide directions of optimal growth
for finite-time, whereas CLVs describe the asymptotic limit. The link between finite-
time scenarios and asymptotics plays a major role in the proof of the MET from
[1] and is substantial to our convergence analysis in Section 4.4. After stating the
convergence theorems we devote the rest of Section 4.4 to their proofs. Next to
the link between MET and SVD, we derive estimates for forward and for backward
propagation and combine them to form the convergence proofs. The analysis heavily
depends on our concept of admissibility, which turns out to be the right choice to
describe initial vectors for Ginelli’s algorithm. In particular, to get the correct notion
of convergence we require Lebesgue measure estimates of the set of admissible tuples.
It turns out that the precise notion of convergence for discrete and for continuous
time differs. Namely, the discrete version converges for almost every input, whereas
the continuous version only converges in measure.
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4.1 Lyapunov index
When analyzing an algorithm, one of the main aspects to consider is the speed of
convergence. It is defined as the rate of change of the distance between a current
and a sough-after state as a parameter, such as time, is increased. In our case time
can be either discrete (T = Z) or continuous (T = R). Moreover, the nature of the
problem or features of the algorithm might already prescribe certain timescales. In
fact, LEs and CLVs describe properties on exponential scales, which can be captured
by the Lyapunov index notation.

Definition 4.1.1 ([1])
The Lyapunov index λ(f) ∈ R ∪ {±∞} of a function f : T≥0 → R≥0 is defined as
the limit

λ(f) := lim sup
t→∞

1
t

log f(t).

Roughly speaking, the function f behaves similar to etλ(f) on exponential scales.
For example, a negative Lyapunov index implies exponential decay. However, one
should note that variations on smaller scales are not included in this notation1,
but very well may be of importance for limited-time scenarios such as numerical
computations.

Next, we list some useful properties of the Lyapunov index, which can be found
in Arnold’s book and are easily verified:

Proposition 4.1.2 ([1])
Let f, g : T≥0 → R≥0. The following are true:

1. λ(0) = −∞,

2. λ(c) = 0 for c > 0 constant,

3. λ(αf) = λ(f) for α > 0,

4. λ(fα) = αλ(f) for α > 0,

5. f ≤ g =⇒ λ(f) ≤ λ(g),

6. λ(f + g) ≤ max(λ(f), λ(g)), and

7. λ(f · g) ≤ λ(f) + λ(g) (if the right-hand side makes sense).

As the Ginelli algorithm consists of two subsequent phases, a forward and a back-
ward phase, the Lyapunov index is not enough to discuss the algorithm. Each phase
has its own runtime that influences the resulting approximation. For a good appro-
ximation, both runtimes need to be increased. Certainly, there are circumstances
and rules that prescribe a favoring relation between those runtimes. However, we
will not discuss them here. Instead, we settle for a formulation that allows two
different runtimes. For this purpose, we extend the notion of the Lyapunov index
to a formulation depending on two parameters:

1For example, e−t and sin(t)t2e−t have the same Lyapunov index.

46



4.1. LYAPUNOV INDEX

Definition 4.1.3
The extended Lyapunov index λ(f) ∈ R∪{±∞} of a function f : T≥0×T≥0 → R≥0
is defined as the limit

λ(f) := lim sup
T→∞

sup
t1,t2≥T

1
min(t1, t2) log f(t1, t2).

In contrast to the standard Lyapunov index, the new quantity describes behavior
on exponential scales as min(t1, t2) is increased. Especially, when fixing a certain
relation between both parameters, an upper bound of the speed of convergence is
given by the extended Lyapunov index.2 In fact, the extended version exhibits
properties similar to the usual Lyapunov index:

Proposition 4.1.4
Rules 1-7 of Proposition 4.1.2 hold true with λ replaced by λ. Furthermore, if we
extend a function f : T≥0 → R≥0 to f : T≥0×T≥0 → R≥0 by setting f(t1, t2) := f(t1),
then

8. λ(f) < 0 =⇒ λ(f) = λ(f).

Proof. Rules 1,2,4,5 and 7 follow directly from the definition. To show rule 3, we
have f ≤ αf for α ≥ 1, and hence

λ(f) ≤ λ(αf) ≤ λ(α) + λ(f) = λ(f).

The case 0 < α < 1 follows by looking at β := 1/α and g := αf . Moreover, it is
easily verified that

λ(f + g) ≤ λ(2 max(f, g)) = λ(max(f, g)) = max(λ(f), λ(g)).

Now, let f be the extension of some function f : T≥0 → R≥0 as above. The relation
λ(f) ≤ λ(f) is always satisfied. To show equality, we remark that λ(f) < 0 implies
the existence of some T > 0 with log f(t) < 0 for all t ≥ T . In particular, it holds

sup
t1,t2≥t

1
min(t1, t2) log f(t1) ≤ sup

t1≥t

1
t1

log f(t1)

with a right-hand side converging to λ(f) for t→∞.

We demonstrate two exceptional cases where the function is either growing
subexponentially or decaying superexponentially:

Example 4.1.5
Let f(t1, t2) := dmin(t1, t2)2e and g(t1, t2) := α2f(t1,t2)−1 for 0 < α < 1. We compute

0 = λ(1) ≤ λ(f) ≤ λ(min(t1, t2)2 + 1) ≤ max(2λ(min(t1, t2)), 0) = 0

and
λ(g) = λ

( 1
α

(
αf
)2
)

= 2λ
(
αf
)
≤ 2λ

(
αmin(t1,t2)2) = −∞.

2For example, given the relation t1 = 2t2 we have λ(f(2t, t)) ≤ λ(f).
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4.2 Grassmannians
The Grassmannian G(Rd) is the space of all subspaces of Rd. A more general
definition for Banach spaces will be given in Section 5.1. Here, we have the advantage
that all subspaces are of finite dimension and finite codimension. Moreover, the
euclidean metric allows us to associate subspaces with their orthogonal projections.
We denote the orthogonal projection onto a subspaceM ⊂ Rd by PM . Through this
identification we can define distances and angles between subspaces, or even speak of
converging sequences of subspaces. In this context we present some essential results
from [34, chapter 1.6], [25], and [16].

Since our analysis focuses on the euclidean norm ‖.‖2, let us drop the subscript
and simply write ‖.‖ during this chapter. In fact, since all norms on Rd are equiva-
lent, quantities that are defined on exponential scales remain the same. This includes
LEs and CLVs as well as our estimates of the speed of convergence in Section 4.4.1.

Definition 4.2.1
The distance between two subspaces M,N ⊂ Rd is defined as

d(M,N) := ‖PM − PN‖.

We state a collection of handy properties mostly from [25]:

Proposition 4.2.2 ([25])
The distance d is a metric on the set of subspaces. Moreover, the following holds
for all subspaces M,N ⊂ Rd:

1. 0 ≤ d(M,N) ≤ 1,

2. d(M,N) = d(M⊥, N⊥), and

3. d(M,N) < 1 =⇒ dim(M) = dim(N).

In case that dim(M) = dim(N) we have:

4. d(M,N) = ‖PMPN⊥‖, and

5. d(M,N) = 1 ⇐⇒ M ∩N⊥ 6= {0}.

If V ∈ O(d,R) is an orthogonal transformation, then

6. d(V (M), V (N)) = d(M,N).

Every invertible linear map induces a Lipschitz-continuous transformation of the
set of subspaces:

Corollary 4.2.3
For each A ∈ Gl(d,R) and all subspaces M,N ⊂ Rd, we have

d(A(M), A(N)) ≤ ‖A‖ ‖A−1‖ d(M,N).
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Proof. Fix an invertible linear map A. For subspaces of different dimension, the
inequality is trivially satisfied. So, let M and N be of the same dimension. We
compute

d(A(M), A(N)) = ‖PA(M)P(A(N))⊥‖
= ‖PA(M)P(AT )−1N⊥‖

= max
x∈M\{0}, y∈N⊥\{0}

|〈Ax, (AT )−1y〉|
‖Ax‖ ‖(AT )−1y‖

= max
x∈M\{0}, y∈N⊥\{0}

|〈x, y〉|
‖x‖ ‖y‖

‖A−1(Ax)‖
‖Ax‖

‖AT ((AT )−1y)‖
‖(AT )−1y‖

≤ max
x∈M\{0}, y∈N⊥\{0}

|〈x, y〉|
‖x‖ ‖y‖

‖A−1‖ ‖AT‖

= ‖A‖ ‖A−1‖ ‖PMPN⊥‖
= ‖A‖ ‖A−1‖ d(M,N).

The next concept needed is the (minimal) angle between two subspaces. A lot
on this topic can be found in [16].

Definition 4.2.4 ([16])
The cosine of the angle between M and N is given by

c(M,N) := max
{
|〈x, y〉|
‖x‖ ‖y‖

: x ∈M ∩ (M ∩N)⊥, y ∈ N ∩ (M ∩N)⊥, x, y 6= 0
}

and the cosine of the minimal angle between M and N is defined as

c0(M,N) := max
{
|〈x, y〉|
‖x‖ ‖y‖

: x ∈M, y ∈ N, x, y 6= 0
}
,

where we set max(∅) := 0.

Both definitions agree if M ∩ N = {0}. However, they are different in general.
We state a few important properties in order to work with these quantities:

Proposition 4.2.5 ([16])
The following statements are true for all subspaces M,N ⊂ Rd:

1. 0 ≤ c(M,N) ≤ c0(M,N) ≤ 1,

2. c(M,N) < 1,

3. c0(M,N) < 1 ⇐⇒ M ∩N = {0},

4. c(M,N) = c(N,M) and c0(M,N) = c0(N,M),

5. c(M,N) = c(M⊥, N⊥),

6. c0(M,N) = ‖PMPN‖, and

7. c(M,N) = ‖PMPN − PM∩N‖.
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One can easily check that PMPN is the orthogonal projection onto M ∩ N if,
and only if, PM and PN commute. Nevertheless, if they do not commute, it is
still possible to describe PM∩N via PM and PN through the method of alternating
projections, which is due to von Neumann [47]:
Theorem 4.2.6 ([47])
For each two subspaces M and N , the method of alternating projections converges:

lim
k→∞
‖(PMPN)k − PM∩N‖ = 0.

A discussion on the speed of convergence can be found in [16]. The following
estimate will be enough for our purposes:
Proposition 4.2.7 ([16])
For each two subspaces M and N , it holds

∀k : ‖(PMPN)k − PM∩N‖ ≤ c(M,N)2k−1.

Utilizing the method of alternating projections, we can relate the distance of two
intersections to the distance of intersecting subspaces:
Proposition 4.2.8
Let M,N ⊂ Rd be two subspaces, and set δ := c0(M⊥, N⊥).

For all subspaces M ′, N ′ ⊂ Rd with

d(M ′,M) + d(N ′, N) ≤ 1− δ
2 ,

we have

d(M ′ ∩N ′,M ∩N) ≤ δ2k−1 +
(

1 + δ

2

)2k−1

+ k (d(M ′,M) + d(N ′, N))

with arbitrary k ∈ N.
Proof. Assume M,N , δ and M ′, N ′ as above. Using the method of alternating
projections, we estimate for arbitrary k ∈ N:

‖PM ′∩N ′ − PM∩N‖ ≤ ‖PM ′∩N ′ − (PM ′PN ′)k‖+ ‖(PM ′PN ′)k − (PMPN)k‖
+ ‖(PMPN)k − PM∩N‖
≤ c(M ′, N ′)2k−1 + ‖(PM ′PN ′)k − (PMPN)k‖

+ c(M,N)2k−1.

Since the minimal angle depends continuously on its subspaces, we have
c(M ′, N ′) = c

(
(M ′)⊥, (N ′)⊥

)
≤ c0

(
(M ′)⊥, (N ′)⊥

)
= ‖P(M ′)⊥P(N ′)⊥‖
≤ ‖P(M ′)⊥P(N ′)⊥ − PM⊥P(N ′)⊥‖+ ‖PM⊥P(N ′)⊥ − PM⊥PN⊥‖

+ ‖PM⊥PN⊥‖
≤ ‖P(M ′)⊥ − PM⊥‖+ ‖P(N ′)⊥ − PN⊥‖+ ‖PM⊥PN⊥‖
= ‖PM ′ − PM‖+ ‖PN ′ − PN‖+ δ

≤ 1 + δ

2 .
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For the middle summand in the estimate of ‖PM ′∩N ′ − PM∩N‖, we deduce

‖(PM ′PN ′)k − (PMPN)k‖

≤
k−1∑
l=0
‖(PMPN)l(PM ′PN ′)k−l − (PMPN)lPMPN ′(PM ′PN ′)k−(l+1)‖

+ ‖(PMPN)lPMPN ′(PM ′PN ′)k−(l+1) − (PMPN)l+1(PM ′PN ′)k−(l+1)‖

≤
k−1∑
l=0
‖PM ′ − PM‖+ ‖PN ′ − PN‖

= k (‖PM ′ − PM‖+ ‖PN ′ − PN‖).

For the last summand, we remark

c(M,N) = c(M⊥, N⊥) ≤ c0(M⊥, N⊥) = δ.

Combining the above yields the desired estimate.

Now, assume we are given two converging sequences of subspaces (Mt)t∈T≥0
and

(Nt)t∈T≥0
with transversal3 limitsM and N . As an immediate consequence of Propo-

sition 4.2.8 with the right choice of k = k(t), we see that the sequence of intersections
(Mt ∩Nt)t∈T≥0

converges to the intersection of the limitsM∩N . Moreover, we show
that the speed of convergence on exponential scales can be preserved in a uniform
manner:

Corollary 4.2.9
Let M,N ⊂ Rd be two transversal subspaces. Moreover, assume (Mt)t∈T≥0

and
(Nt)t∈T≥0

are two sequences of collections of subspaces that converge to M , resp. N ,
exponentially fast:

λM := λ

(
sup

M ′∈Mt

d(M ′,M)
)
< 0 and λN := λ

(
sup
N ′∈Nt

d(N ′, N)
)
< 0.

Then,

λ

(
sup

M ′∈Mt1

sup
N ′∈Nt2

d(M ′ ∩N ′,M ∩N)
)
≤ max(λM , λN).

Proof. Let δ := c0(M⊥, N⊥) < 1. Since we have λM , λN < 0 (exponential decay of
distances), there is T > 0 with

sup
M ′∈Mt1

sup
N ′∈Nt2

d(M ′,M) + d(N ′, N) ≤ 1− δ
2

for all t1, t2 ≥ T . Invoking Proposition 4.2.8, we get

sup
M ′∈Mt1

sup
N ′∈Nt2

d(M ′ ∩N ′,M ∩N)

≤ δ2k−1 +
(

1 + δ

2

)2k−1

+ k

(
sup

M ′∈Mt1

d(M ′,M) + sup
N ′∈Nt2

d(N ′, N)
)

3Two subspaces M and N are called transversal if M +N = Rd. Since (M +N)⊥ = M⊥ ∩N⊥,
transversality is equivalent to c0(M⊥, N⊥) < 1.
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for arbitrary k ∈ N. With k = k(t1, t2) := dmin(t1, t2)2e and by means of Proposi-
tion 4.1.4 and of Example 4.1.5 we compute

λ

(
sup

M ′∈Mt1

sup
N ′∈Nt2

d(M ′ ∩N ′,M ∩N)
)

≤ max
λ(δ2k(t1,t2)−1

)
, λ

(1 + δ

2

)2k(t1,t2)−1
,

λ(k(t1, t2)) + max
(
λ

(
sup

M ′∈Mt1

d(M ′,M)
)
, λ

(
sup

N ′∈Nt2
d(N ′, N)

))
= max(λM , λN).

Corollary 4.2.9 helps us to combine the forward with the backward phase of
Ginelli’s algorithm. Indeed, linear spans of forward propagated vectors (past to
present) approximate the Oseledets filtration of the reversed cocycle, whereas spans
of backward propagated vectors (future to present) give us approximations of the
Oseledets filtration of the cocycle. Since intersections of filtration spaces for the
cocycle and for the reversed cocycle yield Oseledets spaces (see Eq. (2.3)), we can
combine estimates for forward and for backward propagation to get estimates for
our approximations of Oseledets spaces. Later on, the setsMt1 and Nt2 will contain
subspaces spanned by admissible tuples of input vectors that ensure convergence of
Ginelli’s algorithm.

4.3 Admissible tuples
Ultimately, the MET provides an asymptotic link between singular vectors (resp.
singular values) and Oseledets spaces (resp. LEs). Hence, in order to investigate
how a tuple of vectors evolves under subsequent applications of linear maps and
of orthonormalizations, we relate the tuple to singular vectors. The relation is
represented by a single parameter α. It describes how strong the corresponding
filtrations are correlated. A value of 0 means no correlation and a value of 1 implies
equality. Thus, we call tuples that have a positive value of α admissible. A special
task will be to understand how many tuples fulfill a certain level of admissibility.
For this purpose, we denote by µ the Lebesgue measure of the respective dimension.

To shorten our notation we set

U
(b)
i := span

(
bi1 , . . . , bidi

)
for a given d-tuple (b) and for degeneracies given by LEs. The filtration correspond-
ing to (b) is given by {0} ⊂ U

(b)
1 ⊂ · · · ⊂ U

(b)
p = Rd, where

U
(b)
i :=

i⊕
j=1

U
(b)
j = span

(
b11 , . . . , bidi

)
.

We denote the associated orthogonal projections by

P
(b)
i := P

U
(b)
i

and P
(b)
i := P

U
(b)
i
.
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Note that P (b)
i is defined differently in [48]. However, the notation is only used for

orthogonal tuples for which both definitions coincide. Moreover, if (b) is orthogonal,
it holds

P
(b)
i =

i∑
j=1

P
(b)
j .

Definition 4.3.1
Let 0 < α ≤ 1 and a basis (c) of Rd be given. A d-tuple (b) is called α-admissible
with respect to (c) if it is linearly independent and

∀ i < p : d
(
U

(b)
i , U

(c)
i

)2
≤ 1− α2.

We denote the set of all α-admissible tuples by Ad(c)(α) and the set of all tuples that
are admissible for some α > 0 by Ad(c).

As admissibility is described by distances of filtration spaces, we are allowed to
interchange the involved tuples with orthonormalized versions. So, let us assume
that (c) is an orthonormal basis from now on. Moreover, the invariance of dis-
tances under orthogonal transformations implies that α-admissibility of (b) w.r.t.
(c) is equivalent to α-admissibility of (Ab) w.r.t. (Ac) for all A ∈ O(d,R). Hence,
Ad
(
Ad(c)(α)

)
and Ad(Ac)(α) coincide.

Next, let us proceed with an alternative characterization of admissibility:

Lemma 4.3.2
A basis (b) is α-admissible w.r.t. (c) if, and only if, for all i < p and x ∈ U (b)

i with
‖x‖ = 1, we have

i∑
j=1

∑
k

|〈x, cjk〉|2 ≥ α2.

Proof. We reformulate the distance between filtration spaces as follows:
∥∥∥∥(I − P (c)

i

)
P

(b)
i

∥∥∥∥2
= max

x∈S

∥∥∥∥(I − P (c)
i

)
P

(b)
i x

∥∥∥∥2

= max
x∈U(b)

i ∩S

∥∥∥∥(I − P (c)
i

)
x

∥∥∥∥2

= 1− min
x∈U(b)

i ∩S

∥∥∥∥P (c)
i x

∥∥∥∥2

= 1− min
x∈U(b)

i ∩S

i∑
j=1

∑
k

|〈x, cjk〉|2,

where S ⊂ Rd denotes the unit sphere.

Now, we are able to relate the evolution of a tuple under a linear map to singular
vectors. As it turns out, the relation is sensitive to the admissibility parameter. In
fact, being able to control the following estimate was a major reason to introduce
the concept of admissibility.
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Proposition 4.3.3
Let A = UΣV T be the SVD of an invertible matrix and 0 < α ≤ 1. For all
(b) ∈ Ad(v)(α), it holds

∀i : d
(
U

(Ab)
i , U

(u)
i

)
≤ 1
α

δmax
i+1
δmin
i

,

where (u), (v) are the singular vectors corresponding to singular values (δ).

Proof. First, express x ∈ Rd using right singular vectors:

x =
∑
jk

〈x, vjk〉vjk .

Applying the linear map A = UΣV T , we get

Ax =
∑
jk

〈x, vjk〉δjkujk =⇒ ‖Ax‖2 =
∑
jk

|〈x, vjk〉|2δ2
jk
.

For x ∈ U (b)
i with ‖x‖ = 1, this means

‖Ax‖2 ≥
i∑

j=1

∑
k

|〈x, vjk〉|2δ2
jk
≥
(
δmin
i

)2 i∑
j=1

∑
k

|〈x, vjk〉|2 ≥ α2
(
δmin
i

)2

by admissibility of (b). Moreover, the following holds for x ∈ Rd with ‖x‖ = 1:∥∥∥∥(I − P (u)
i

)
Ax
∥∥∥∥2

=
∑
j>i

∑
k

|〈x, vjk〉|2δ2
jk
≤
(
δmax
i+1

)2
.

Now, we compute

d
(
U

(Ab)
i , U

(u)
i

)
=
∥∥∥∥(I − P (u)

i

)
P

(Ab)
i

∥∥∥∥
= max

y∈U(Ab)
i \{0}

∥∥∥∥(I − P (u)
i

)
y
∥∥∥∥

‖y‖

= max
x∈U(b)

i \{0}

∥∥∥∥(I − P (u)
i

)
Ax
∥∥∥∥

‖Ax‖

= max
x∈U(b)

i ∩S

∥∥∥∥(I − P (u)
i

)
Ax

∥∥∥∥
‖Ax‖

≤ 1
α

δmax
i+1
δmin
i

.

The above proposition only describes behavior of admissible tuples. However,
it turns out that almost every tuple is admissible. Indeed, for admissibility to be
generic, the complement of the open set

Ad(c) =
{

(b) basis
∣∣∣∣ ∀i : d

(
U

(b)
i , U

(c)
i

)
< 1

}
⊂
(
Rd
)d
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must be a set of measure zero. Using Proposition 4.2.2, we can rewrite the condition
as follows:

d
(
U

(b)
i , U

(c)
i

)
< 1 ⇐⇒ U

(b)
i ⊕

(
U

(c)
i

)⊥
= Rd.

Since (c) is an orthonormal basis, we yet have another equivalent formulation on the
level of basis vectors:

d
(
U

(b)
i , U

(c)
i

)
< 1 ⇐⇒ det

(
b11 , . . . , bidi , c(i+1)1 , . . . , cpdp

)
6= 0.

This form easily reveals the following:
Proposition 4.3.4
The set of nonadmissible tuples

(
Rd
)d
\ Ad(c) has Lebesgue measure zero.

Proof. In the above expression write vectors of (b) as coefficients in terms of (c).
Now, the claim is a direct consequence of the fact that det−1(0) ⊂ Rk×k is a subset
of measure zero for each k ≥ 1.

Restricted to a domain of finite measure, the last proposition tells us that the
measure of non-α-admissible tuples converges to zero as α goes to zero:
Corollary 4.3.5
For each subset F ⊂

(
Rd
)d

of finite Lebesgue measure, it holds

lim
α↘0

µ
(
F \ Ad(c)(α)

)
= 0.

Proof. This is a direct consequence of the previous result and of the continuity of
the Lebesgue measure:

lim
α↘0

µ
(
F \ Ad(c)(α)

)
= µ

 ⋂
0<α≤1

F \ Ad(c)(α)
 = µ

(
F \ Ad(c)

)
= 0.

We now have a better understanding of how most tuples of vectors evolve com-
pared to singular vectors. In particular, Proposition 4.3.3 can be used to describe
forward and backward propagation. However, backward propagation requires addi-
tional treatment since it depends on the forward phase. Vectors for the backward
phase are initiated inside spaces spanned by forward propagated vectors. Thus,
there is a restriction on the domain of initial vectors for backward propagation.

In the following we extend the concept of admissibility to adjust to the above
situation. Let (b) be a linearly independent d-tuple such that

bi1 , . . . , bidi ∈ span
(
ci1 , . . . , cpdp

)
= U

(c)
i ⊕ · · · ⊕ U (c)

p

for each i. Instead of admissibility, it will be enough that bi1 , . . . , bidi can be extended
to an admissible tuple of the form(

∗, . . . , ∗, bi1 , . . . , bidi , ∗, . . . , ∗
)
∈ Ad(c)(α).

The set of all (b) satisfying this extension property will be denoted by Ad(c)
ext(α). We

write Ad(c)
ext for the union of these sets over 0 < α ≤ 1.

As before, one readily checks that Ad(Ad(c)
ext(α)) = Ad(Ac)

ext (α) for A ∈ O(d,R).
Moreover, we again conclude that almost every tuple satisfies extended admissibility:
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Proposition 4.3.6
The set((

U
(c)
1 ⊕ · · · ⊕ U (c)

p

)d1 ×
(
U

(c)
2 ⊕ · · · ⊕ U (c)

p

)d2 × · · · ×
(
U (c)
p

)dp) \ Ad(c)
ext

has Lebesgue measure zero.

Proof. For each i, we show that the set of tuples
(
bi1 , . . . , bidi

)
∈
(
U

(c)
i ⊕ · · · ⊕ U (c)

p

)di
not satisfying the extension property has Lebesgue measure zero.

The idea is to apply Proposition 4.3.4 to a reduced setting for fixed i. To this
end, look at Rd′ with degeneracies d′ = d′1 + · · · + d′p′ given by d′j := di−1+j for all
j = 1, . . . , p′ := p+ 1− i, and let (e′) be its standard basis. We get

µ
((

Rd′
)d′
\ Ad(e′)

)
= 0.

In particular, this implies

µ
((

Rd′
)d′1 \ {(b′11 , . . . , b

′
1d′1

)
has admissible extension

})
= 0.

Now, we transfer the result from Rd′ to U (c)
i ⊕ · · · ⊕ U (c)

p by identifying (e′) with
(ci1 , . . . , cpdp ). As an identification between orthonormal bases, Lebesgue measure,
distance between subspaces, and admissibility are preserved. Hence, for almost
every given tuple (bi1 , . . . , bidi ) ∈ (U (c)

i ⊕ · · · ⊕ U (c)
p )di , we find 0 < α ≤ 1 and

g(i+1)1 , . . . , gpdp ∈ U
(c)
i ⊕ · · · ⊕ U (c)

p such that

d
(
span

(
bi1 , . . . , bidi

)
, U

(c)
i

)2
≤ 1− α2

and

∀ j > i : d
(
span

(
bi1 , . . . , bidi , g(i+1)1 , . . . , gjdj

)
, U

(c)
i ⊕ · · · ⊕ U

(c)
j

)2
≤ 1− α2.

We can extend such a tuple(
bi1 , . . . , bidi , g(i+1)1 , . . . , gpdp

)
to an α-admissible tuple (g) by setting gjk := cjk for j < i. This concludes the
proof.

As a consequence, we get the following corollary:

Corollary 4.3.7
Given a subset F ⊂ (U (c)

1 ⊕ · · · ⊕U (c)
p )d1 × · · · × (U (c)

p )dp of finite Lebesgue measure,
it holds

lim
α↘0

µ
(
F \ Ad(c)

ext(α)
)

= 0.
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In the discrete-time convergence proof of Ginelli’s algorithm, a more precise
measure-estimate of non-α-admissible tuples will be necessary. However, it will be
sufficient to know the case, where F is a products of balls. The rest of Section 4.3
is devoted to a rather technical derivation of explicit estimates needed only for the
proof of Theorem 4.4.4.
Proposition 4.3.8
Let d > 1. There is a constant η = η(d,M) > 0 such that

µ
(
Bd(0,M)d \ Ad(c)(α)

)
≤ ηα

1
d−1 ,

where Bd(0,M) denotes the ball of radius M in (Rd, ‖.‖2) centered at the origin.
Two lemmata on how to construct admissible tuples will guide us to the above

proposition. Since admissible tuples for the nondegenerate case are admissible for
all possible degenerate cases, it is enough to find an estimate for the nondegenerate
case.
Lemma 4.3.9
Let (f) be an orthonormal basis of Rd. Fix 1 < i < d and 0 < α1, α2 ≤ 1. If∥∥∥Pspan(f1,...,fi−1,ci+1,...,cd)fi

∥∥∥2
≤ 1− α2

1 and
∥∥∥∥P (f)

i−1

(
I − P (c)

i

)∥∥∥∥2
≤ 1− α2

2,

then
d
(
U

(f)
i , U

(c)
i

)2
≤ 1− (α1α2)2.

Proof. First, we reduce the problem to the case i = 2 and d = 3: There are unit
vectors f ′1 ∈ span(f1, . . . , fi−1) and c′3 ∈ span(ci+1, . . . , cd) such that∥∥∥∥P (f)

i

(
I − P (c)

i

)∥∥∥∥2
=
∥∥∥∥P (f)

i c′3

∥∥∥∥2
=
∥∥∥∥P (f)

i−1c
′
3

∥∥∥∥2
+ |〈fi, c′3〉|2 = |〈f ′1, c′3〉|2 + |〈f ′2, c′3〉|2

with f ′2 := fi. Furthermore, the assumptions yield∥∥∥Pspan(f ′1,c′3)f
′
2

∥∥∥2
≤
∥∥∥Pspan(f1,...,fi−1,ci+1,...,cd)fi

∥∥∥2
≤ 1− α2

1

and
|〈f ′1, c′3〉|2 ≤

∥∥∥∥P (f)
i−1c

′
3

∥∥∥∥2
≤
∥∥∥∥P (f)

i−1

(
I − P (c)

i

)∥∥∥∥2
≤ 1− α2

2.

In particular, f ′1, f ′2 and c′3 are linearly independent. Thus, the problem reduces to
finding the right estimate of

d
(
U

(f ′)
2 , U

(c′)
2

)2
=
∥∥∥∥P (f ′)

2 c′3

∥∥∥∥2
= |〈f ′1, c′3〉|2 + |〈f ′2, c′3〉|2

inside span(f ′1, f ′2, c′3) ∼= R3, where (f ′) and (c′) are some orthonormal bases of
span(f ′1, f ′2, c′3) extending (f ′1, f ′2) and c′3.

The case i = 2 and d = 3 can be shown by a short calculation. It holds∥∥∥Pspan(f ′1,c′3)f
′
2

∥∥∥2
= |〈f ′1, f ′2〉|2 +

∣∣∣∣∣
〈
c′3 − 〈f ′1, c′3〉f ′1
‖c′3 − 〈f ′1, c′3〉f ′1‖

, f ′2

〉∣∣∣∣∣
2

= |〈c′3, f ′2〉|2

‖c′3 − 〈f ′1, c′3〉f ′1‖2

= |〈c′3, f ′2〉|2

1− |〈f ′1, c′3〉|2
.
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Thus, by our assumptions:

|〈f ′2, c′3〉|2 =
∥∥∥Pspan(f ′1,c′3)f

′
2

∥∥∥2
(1− |〈f ′1, c′3〉|2) ≤ (1− α2

1)(1− |〈f ′1, c′3〉|2).

We estimate

|〈f ′1, c′3〉|2 + |〈f ′2, c′3〉|2 ≤ |〈f ′1, c′3〉|2 + (1− α2
1)(1− |〈f ′1, c′3〉|2)

= 1− α2
1 + α2

1 |〈f ′1, c′3〉|2

≤ 1− α2
1 + α2

1(1− α2
2)

= 1− (α1α2)2.

The previous lemma can be used to give a sufficient condition for a tuple to be
α-admissible:

Lemma 4.3.10
If a basis (b) satisfies

∀ i < d :
∥∥∥Pspan(f1,...,fi−1,ci+1,...,cd)fi

∥∥∥2
≤ 1−

(
α

1
d−1
)2
,

where (f) := orth(b), then (b) is α-admissible.

Proof. We prove the result by induction over i showing that

d
(
U

(b)
i , U

(c)
i

)2
= d

(
U

(f)
i , U

(c)
i

)2
≤ 1−

(
α

i
d−1
)2
≤ 1− α2.

For i = 1, we have

d
(
U

(f)
1 , U

(c)
1

)2
=
∥∥∥∥(I − P (c)

1

)
f1

∥∥∥∥2
=
∥∥∥Pspan(c2,...,cd)f1

∥∥∥2
≤ 1−

(
α

1
d−1
)2
.

Let 1 < i < d and assume the induction hypothesis is true for i − 1, which implies
that∥∥∥∥P (f)

i−1

(
I − P (c)

i

)∥∥∥∥2
≤
∥∥∥∥P (f)

i−1

(
I − P (c)

i−1

)∥∥∥∥2
= d

(
U

(f)
i−1, U

(c)
i−1

)2
≤ 1−

(
α
i−1
d−1
)2
.

Simply apply Lemma 4.3.9 to close the induction step.

Proof of Proposition 4.3.8. Set α̃ := α
1
d−1 and let

N :=
{

(b) ∈ Bd(0,M)d
∣∣∣ ∃i : det(b1, . . . , bi, ci+1, . . . , cd) = 0

}
be the set of all nonadmissible tuples inside Bd(0,M)d. From Proposition 4.3.4 we
know that N has measure zero. On its complement we define a continuous mapping
into the d-fold product of spheres:

w : Bd(0,M)d \ N → Sd

with components wi(b1, . . . , bd) := orthd(b1, . . . , bi−1, ci+1, . . . , cd, ci), where orthd is
the last component of an orthonormalization procedure respecting the order of the
tuple (e.g., use the Gram-Schmidt procedure). By construction wi = wi(b1, . . . , bd)

58



4.3. ADMISSIBLE TUPLES

is the up to sign unique unit vector orthogonal to span(b1, . . . , bi−1, ci+1, . . . , cd),
and only depends on the first i− 1 vectors of (b). w will help us to measure sets of
admissible vectors.

The tuple (f) = orth(b) is constructed by setting fi := b′i/‖b′i‖ with b′i := (I −
P

(b)
i−1)bi. Assuming |〈wi, bi〉| ≥Mα̃, we get∥∥∥Pspan(f1,...,fi−1,ci+1,...,cd)fi

∥∥∥2
=
∥∥∥Pspan(b1,...,bi−1,ci+1,...,cd)fi

∥∥∥2

= 1− |〈wi, fi〉|2

= 1− |〈wi, b
′
i〉|2

‖b′i‖2

= 1− |〈wi, bi〉|
2

‖b′i‖2

≤ 1− |〈wi, bi〉|
2

‖bi‖2

≤ 1− |〈wi, bi〉|
2

M2

≤ 1− α̃2.

Hence, if (b) ∈ Bd(0,M)d \ N satisfies

∀ i < d : |〈wi, bi〉| ≥Mα̃,

then (b) is α-admissible by Lemma 4.3.10. In particular, the subset of all non-α-
admissible tuples is contained in the subset of all (b), which either do not fulfill the
above condition or which are elements of the set of measure zero N . Therefore, a
measure-estimate on tuples not fulfilling the condition is enough for the claim:

µ
(
Bd(0,M)d \ Ad(c)(α)

)
≤ µ

({
(b) ∈ Bd(0,M)d \ N

∣∣∣ ∃ i < d : |〈wi, bi〉| < Mα̃
})

≤
∑
i<d

µ
({

(b) ∈ Bd(0,M)d \ N : |〈wi, bi〉| < Mα̃
})

=
∑
i<d

µ
({

(b) ∈ Bd(0,M)d
∣∣∣ det(b1, . . . , bi−1, ci, . . . , cd) 6= 0 and |〈wi, bi〉| < Mα̃

})
=
∑
i<d

(µ(Bd(0,M)))d−i
∫
{ (b1,...,bi−1)∈Bd(0,M)i−1 | det(b1,...,bi−1,ci,...,cd)6=0}∫

{bi∈Bd(0,M) : |〈wi,bi〉|<Mα̃}
1 dbi d(b1, . . . , bi−1)

=
(?)

∑
i<d

(µ(Bd(0,M)))d−i
∫
{ (b1,...,bi−1)∈Bd(0,M)i−1 | det(b1,...,bi−1,ci,...,cd)6=0}∫

{bi∈Bd(0,M) : |〈e1,bi〉|<Mα̃}
1 dbi d(b1, . . . , bi−1)

=
∑
i<d

(µ(Bd(0,M)))d−1µ
(
Bd(0,M) ∩

(
(−Mα̃,Mα̃)× Rd−1

))
≤ (d− 1)(µ(Bd(0,M)))d−1(2M)dα̃.

We used Fubini’s theorem to measure components separately. In (?) we rotated
wi to the first vector of the standard basis. Afterwards, we enlarged Bd(0,M) ∩
((−Mα̃,Mα̃)× Rd−1) to (−Mα̃,Mα̃)× (−M,M)d−1 for a simpler estimate.
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Now, setting η := (d−1)(µ(Bd(0,M)))d−1(2M)d yields the desired estimate.

A similar estimate will be necessary for non-α-admissible tuples with respect to
extended admissibility.

Proposition 4.3.11
Let d > 1. There is a constant η = η(d,M) > 0 such that

µ
(
B(M) \ Ad(c)

ext(α)
)
≤ ηα

1
d−1 ,

where B(M) is given by a product of balls of radius M inside the special domain:

B(M) := Bd(0,M)d1 × · · · ×Bdp(0,M)dp ⊂
(
U

(c)
1 ⊕ · · · ⊕ U (c)

p

)d1 × · · · ×
(
U (c)
p

)dp
.

Proof. The proof is similar to the one of Proposition 4.3.6. Again, it is enough to
find such a bound for the set of all tuples in

Bdi+···+dp(0,M)di ⊂
(
U

(c)
i ⊕ · · · ⊕ U (c)

p

)di
that cannot be extended to an α-admissible tuple.

Using the same identification as before, we reduce the problem to finding such
an estimate for the set

Bd′(0,M)d′1 \
{(
b′11 , . . . , b

′
1d′1

)
has an α-admissible extension

}
.

Proposition 4.3.8 yields η′ only depending on d′ and M with

µ
(
Bd′(0,M)d

′
\ Ad(e′)(α)

)
≤ η′α

1
d′−1 .

This implies

µ
(
Bd′(0,M)d′1 \

{(
b′11 , . . . , b

′
1d′1

)
has an α-admissible extension

})

≤
(

1
vol(Bd′(0,M))

)d′−d′1
η′α

1
d′−1 .

Finally, an estimate η only depending on M and d is achieved by taking the maxi-
mum over estimates for all possible combinations of degeneracies.

4.4 Convergence results
Finally, we have gathered enough background knowledge to state and to prove our
convergence results for Ginelli’s algorithm on Rd. However, before stating the con-
vergence theorems we motivate our results via two simple examples.

Example 4.4.1 (diagonal cocycle)
Assume Ω = {ω} with trivial flow σtω = ω. For given λ1 > · · · > λp, let Lω :=
diag(eλ1 , . . . , eλp). The generator defines a cocycle whose CLVs (at ω) coincide with
the standard basis (e) of Rd.
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Now, fix a vector b1 ∈ Rd with |〈b1, e1〉| > 0. We have

〈L(t)
ω b1, ei〉 = 〈b1, ei〉etλi .

Thus, we compute∣∣∣∣∣
〈
L(t)
ω b1

‖L(t)
ω b1‖

, ei

〉∣∣∣∣∣
2

= |〈b1, ei〉|2e2tλi∑
j |〈b1, ej〉|2e2tλj

= |〈b1, ei〉|2e−2t|λ1−λi|∑
j |〈b1, ej〉|2e−2t|λ1−λj |

.

The last nominator takes values between |〈b1, e1〉|2 and ‖b1‖2. In particular, it can
be treated as a positive constant for the Lyapunov index notation:

λ
(
d
(
U

(L(t)
ω b)

1 , U
(e)
1

))
= 1

2 λ
(∥∥∥∥(I − P (e)

1

)
P

(L(t)
ω b)

1

∥∥∥∥2)

= 1
2 λ

∑
i 6=1

∣∣∣∣∣
〈
L(t)
ω b1

‖L(t)
ω b1‖

, ei

〉∣∣∣∣∣
2

≤ max
i 6=1

1
2 λ

∣∣∣∣∣
〈
L(t)
ω b1

‖L(t)
ω b1‖

, ei

〉∣∣∣∣∣
2

≤ max
i 6=1
−|λ1 − λi|

= −|λ1 − λ2|.

In general, the upcoming convergence analysis will show that

λ
(
d
(
U

(L(t)
ω b)

i , U
(e)
i

))
≤ −|λi − λi+1|

for all tuples (b) that are admissible w.r.t. (e).

Ginelli’s algorithm starts with a random choice of initial vectors to prevent non-
admissible configurations. One such configuration would be the unlikely case where
the first vector lies in the second Oseledets space. As Oseledets spaces are equivari-
ant, the first vector would stay inside the second Oseledets space when propagated.4
Consequently, it would not be a good approximation of a CLV from the first Ose-
ledets space. The next example shows that this problems might occur for every tuple
when initiated at a wrong time in the continuous version of Ginelli’s algorithm.

Example 4.4.2 (rotating Oseledets spaces)
Let Ω := S1 ∼= R/Z be a periodic trajectory with homogeneous flow σtω := ω + t.
Furthermore, let R : R→ SO(2) be the parameterization of SO(2) by 2× 2 rotation
matrices

R(ω) :=
(

cos(2πω) − sin(2πω)
sin(2πω) cos(2πω)

)
,

so that R(0) = R(1) = I and R(s + t) = R(s)R(t). Moreover, we set D :=
diag(eλ1 , eλ2) for some λ1 > λ2, and define the cocycle to be

L(t)
ω := R(σtω)DtR(−ω).

4This statement is true analytically. Numerically, errors would kick the propagated vector out
of the second Oseledets space.
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One readily checks that L indeed is a cocycle over σ.
Next, we use the characterization of Oseledets spaces via asymptotic growth rates:

lim
t→±∞

1
t

log
∥∥∥∥∥L(t)

ω R(ω)
(
x1
x2

)∥∥∥∥∥ =
λ1 x1 6= 0 and x2 = 0
λ2 x1 = 0 and x2 6= 0

to see that

Y1(ω) = span
(
R(ω)

(
1
0

))
and Y2(ω) = span

(
R(ω)

(
0
1

))
.

In particular, both Oseledets spaces are rotating uniformly with ω. Hence, for every
fixed vector b1 ∈ R2 and T > 0, we find t1 ∈ R>0 bigger than T with b1 ∈ Y2(σ−t1ω).
This implies that, for all fixed choices of b1, the continuous version of Ginelli’s
algorithm does not converge. Instead, it is shown later that the continuous version
converges in measure, i.e., if b1 is chosen randomly.

In the discrete case, however, the set ⋃t1∈N Y2(σ−t1ω) has Lebesgue measure zero
indicating that the above problem occurs only on a set of measure zero. In fact, we
will show convergence for almost every initial tuple in the discrete-time case.

SettingD = diag(eλ1 , eλ1) in the previous example yields a trivial Oseledets space
Y1(ω) = R2 with inner rotation. In general, Oseledets spaces can have complicated
internal dynamics that prevent single propagated vectors from converging. Addi-
tionally, CLVs are not unique in the presence of degeneracies. Therefore, objects
of interest should not be the propagated vectors themselves, but rather the spaces
spanned by them subject to degeneracies.5

4.4.1 Theorems

We now present convergence theorems for Ginelli’s algorithm in terms of the map
Gt1,t2
ω,k from Definition 3.1.1. Our convergence results are formulated for the case

k = d, i.e., when all CLVs are computed, but can easily be adjusted if less CLVs are
needed. As seen in the above examples, we cannot expect convergence for almost
every input in a continuous-time setting. However, a weaker form of convergence
holds:

Theorem 4.4.3 (Convergence in measure of Ginelli’s algorithm on Rd)
Assume the setting of Proposition 2.2.5, so that LEs and Oseledets spaces are well-
defined. Moreover, set λ0 :=∞ and λp+1 := −∞.

For each compact set of inputs K ⊂ (Rd)d ×Rd×d
ru and ε > 0, Ginelli’s algorithm

converges in measure exponentially fast:6

5In practice, degeneracies can be derived from growth rates of propagated vectors during the
forward phase of Ginelli’s algorithm. Moreover, they might be forced by symmetries (e.g., in
equivariant systems), whereas for some classes of systems degenerate scenarios are the exception
[2].

6We remind the reader of the index notation ij introduced in the beginning of Section 2.2,
which counts indices with respect to degeneracies of the Lyapunov spectrum.
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lim
T→∞

sup
t1,t2≥T

µ
(
K \

{
((b), R)

∣∣∣∣ (b) linearly independent and ∀i :

1
min(t1, t2) log d

(
span

{(
Gt1,t2
ω,d ((b), R)

)
ij

∣∣∣∣ j = 1, . . . , di
}
, Yi(ω)

)
≤ −min(|λi − λi−1|, |λi − λi+1|) + ε

})
= 0.

A stronger form of convergence holds for discrete time:
Theorem 4.4.4 (Convergence a.e. of Ginelli’s algorithm on Rd with T = Z)
Assume the setting of Proposition 2.2.5 and set λ0 :=∞ and λp+1 := −∞.

For Lebesgue almost every input ((b), R) ∈ (Rd)d × Rd×d
ru , Ginelli’s algorithm

converges exponentially fast:

lim sup
N→∞

sup
n1,n2≥N

1
min(n1, n2) log d

(
span

{(
Gn1,n2
ω,d ((b), R)

)
ij

∣∣∣∣ j = 1, . . . , di
}
, Yi(ω)

)
≤ −min(|λi − λi−1|, |λi − λi+1|).

The theorems tell us that the output vectors of Ginelli’s algorithm span subspaces
which approximate Oseledets spaces. Since CLVs are normalized basis vectors sub-
ject to the Oseledets splitting, the output vectors approximate CLVs. In particular,
the convergence is exponentially fast with a rate given by the gap between associated
LEs. Hence, the total speed of convergence for computing all CLVs can be bounded
from above (up to subexponential prefactors) by exp(−min(n1, n2) mini |λi−λi−1|).

In applications one usually wants to compute CLVs at more than just one point
along the trajectory. In fact, we can push forward and backward computed vectors to
approximate CLVs near ω along the trajectory, i.e., on a set of the form {σtω | t ∈
[a, b]}. Since Oseledets spaces are equivariant and since applying the propagator
for this time interval only yields a constant factor that vanishes on exponential
scales (see Corollary 4.2.3), similar statements about convergence hold uniformly on
bounded time intervals. Thus, it is enough to run the algorithm once to compute
nearby CLVs along the trajectory.

Our convergence results apply to almost every trajectory in random dynamical
systems. Indeed, since the deterministic MET holds P-almost everywhere in the
setting of Theorem 2.2.8, our results apply to almost every trajectory. Though, it
is much harder to predict how the choice of the background trajectory affects the
speed of convergence. A more detailed sensitivity analysis would require stability
results for LEs and for Oseledets spaces.

In the following three subsections we prove Theorem 4.4.3 and Theorem 4.4.4.
Since most arguments hold for discrete and for continuous time, we do not distin-
guish between both cases until after we have shown convergence in measure. Most
statements are formulated using the Lyapunov index notation, thus, providing us
with a direct link to the speed of convergence on exponential scales.

4.4.2 Link between MET and SVD
Let L(t)

ω = U(t)Σ(t)(V (t))T be a SVD of the cocycle for t ≥ 0, where singular values
are ordered as in Eq. (2.1). Using right singular vectors, Arnold shows that the
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filtration V1(t) ⊃ · · · ⊃ Vp(t) given by

Vi(t) :=
(
U

(v(t))
i−1

)⊥
converges exponentially fast to the Oseledets filtration V1(ω) ⊃ · · · ⊃ Vp(ω) [1,
proof of prop. 3.4.2]. Distances between filtrations are measured in a special metric.
Unraveling the notation, we end up with

∀ i 6= j : λ
(∥∥∥P (v(t))

i Pj
∥∥∥) ≤ −|λi − λj|,

where Pp + · · ·+ Pi is the orthogonal projection onto Vi(ω) for each i.

Lemma 4.4.5
It holds

∀i : λ
(
d
(
U

(v(t))
i , (Vi+1(ω))⊥

))
≤ −|λi − λi+1|.

Proof. We compute

λ
(
d
(
U

(v(t))
i , (Vi+1(ω))⊥

))
= λ

(∥∥∥∥P (v(t))
i PVi+1(ω)

∥∥∥∥)

≤ λ

 ∑
k,j

k≤i<j

∥∥∥P (v(t))
k Pj

∥∥∥


≤ max
k,j

k≤i<j

−|λk − λj|

= −|λi − λi+1|.

A similar result holds for the time-reversed cocycle L−,(t)ω = L(−t)
ω over σ−(t) =

σ−t with SVD U−(t)Σ−(t)(V −(t))T for t ≥ 0, where singular values are ordered as in
Eq. (2.1). Note that, for the time-reversed cocycle, we need to consider degeneracies
in reversed order: d−1 = dp, . . . , d

−
p = d1. To distinguish between both types of

degeneracies we equip the notation introduced in the beginning of Section 4.3 with
a minus sign following the subindex whenever we count with respect to reversed
degeneracies.

Lemma 4.4.6
It holds

∀i : λ
(
d
(
U

(v−(t))
i,− ,

(
V −i+1(ω)

)⊥))
≤ −|λ−i − λ−i+1|.

Ginelli’s algorithm starts by propagating vectors from past to present via L(t)
σ−tω =

(L(−t)
ω )−1, and ends with propagating vectors from future to present via L(−t)

σtω =
(L(t)

ω )−1. Thus, it is important to keep track of singular vectors for inverted actions
of cocycles as well. We use the same notation as in Section 2.2.1 to denote singular
values and singular vectors of inverted maps.

Lemma 4.4.7
It holds

∀i : λ
(
d
(
U

(û(t))
i,− , Vp+1−i(ω)

))
≤ −|λp−i − λp+1−i|.
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Proof. This is a consequence of Lemma 4.4.5, since

d
(
U

(û(t))
i,− , Vp+1−i(ω)

)
= d

(
U

(v(t))r
i,− , Vp+1−i(ω)

)
= d

((
U

(v(t))
p−i

)⊥
, Vp+1−i(ω)

)

= d
(
U

(v(t))
p−i , (Vp+1−i(ω))⊥

)
,

where (.)r denotes the tuple in reversed order. Here, we used the identity

U
(c)r
i,− =

(
U

(c)
p−i

)⊥
,

which is true for all orthonormal bases (c).

Again, we derive a similar result for reversed time:

Lemma 4.4.8
It holds

∀i : λ
(
d
(
U

(û−(t))
i , V −p+1−i(ω)

))
≤ −|λi − λi+1|.

4.4.3 Forward-time estimates

The first step of Ginelli’s algorithm in Definition 3.1.1 propagates vectors from
past to present. It turns out that admissible tuples yield good approximations of
V −p+1−i(ω) = Y1(ω)⊕ · · · ⊕ Yi(ω). Moreover, changes of the admissibility parameter
on subexponential scales do not influence the exponential speed of convergence of
the algorithm:

Lemma 4.4.9
Let 0 < α(t) < 1 be a sequence with λ(1/α) = 0. We have

λ

 sup
(b)∈Ad(v̂−(t))(α(t))

d

U
(
L(t)
σ−tωb

)
i , V −p+1−i(ω)

 ≤ −|λi − λi+1|.

Proof. First use the triangle inequality, then apply Proposition 4.3.3 to the map
A = (L(−t)

ω )−1, and finally use Lemma 4.4.8 to obtain

λ

 sup
(b)∈Ad(v̂−(t))(α(t))

d

U
(
L(t)
σ−tωb

)
i , V −p+1−i(ω)


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≤ max
λ
 sup

(b)∈Ad(v̂−(t))(α(t))
d

U
(
L(t)
σ−tωb

)
i , U

(û−(t))
i

,
λ
(
d
(
U

(û−(t))
i , V −p+1−i(ω)

))
≤ max

λ
 1
α(t)

(
δ̂−i+1(t)

)max

(
δ̂−i (t)

)min

,−|λi − λi+1|


≤ max

λ

(
δ−p+1−i(t)

)max

(
δ−p−i(t)

)min

,−|λi − λi+1|


= −|λi − λi+1|.

To continue using our tools in the second step of Definition 3.1.1 we need to
retain admissibility for tuples propagated in the first step.

Lemma 4.4.10
Let 0 < α(t) < 1 with λ(1/α) = 0. There are 0 < ε < 1 and T > 0 such that
admissible tuples in step 1 get mapped to admissible tuples for step 2, i.e., it holds(

L(t1)
σ−t1ω

)d(
Ad(v̂−(t1))(α(t1))

)
⊂ Ad(v(t2))(ε)

for all t1, t2 ≥ T .

Proof. Choose 0 < ε < 1 with

d
(
V −p+1−i(ω), (Vi+1(ω))⊥

)
≤
√

1− ε2 − 2ε.

This is possible due to Proposition 4.2.2, since we assumed V −p+1−i(ω)∩Vi+1(ω) = {0}.
Now, Lemma 4.4.9 gives us the existence of T1 > 0 such that

d

U
(
L(t1)
σ−t1ω

b

)
i , V −p+1−i(ω)

 ≤ ε

for all t1 ≥ T1 and all (b) ∈ Ad(v̂−(t1))(α(t1)). Moreover, Lemma 4.4.5 yields T2 > 0
with

d
(

(Vi+1(ω))⊥, U (v(t2))
i

)
≤ ε

for all t2 ≥ T2. Set T := max(T1, T2) and combine the previous three estimates to
get

d

U
(
L(t1)
σ−t1ω

b

)
i , U

(v(t2))
i

 ≤ d

U
(
L(t1)
σ−t1ω

b

)
i , V −p+1−i(ω)


+ d

(
V −p+1−i(ω), (Vi+1(ω))⊥

)
+ d

(
(Vi+1(ω))⊥, U (v(t2))

i

)
≤
√

1− ε2.

This concludes the proof.
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The following lemma combines steps 1 and 2 of Ginelli’s algorithm into a char-
acterization of the forward phase:

Lemma 4.4.11
Let 0 < α(t) < 1 with λ(1/α) = 0. There is T > 0 such that

λ

sup
t1≥T

sup
(b)∈Ad(v̂−(t1))(α(t1))

d

U
(
L(t1+t2)
σ−t1ω

b

)
i , U

(u(t2))
i

 ≤ −|λi − λi+1|

holds, where the limit of the Lyapunov index is taken with respect to t2.

Proof. Write
L(t1+t2)
σ−t1ω

= L(t2)
ω ◦ L(t1)

σ−t1ω
.

By Lemma 4.4.10 we find T > 0 and 0 < ε < 1 such that for all t1, t2 ≥ T and
(b) ∈ Ad(v̂−(t1))(α(t1)) the tuple (L(t1)

σ−t1ω
b) is ε-admissible w.r.t. v(t2). Now, apply

Proposition 4.3.3 with A = L(t2)
ω to see that

d

U
(
L(t1+t2)
σ−t1ω

b

)
i , U

(u(t2))
i

 ≤ 1
ε

δmax
i+1 (t2)
δmin
i (t2) .

Since the estimate is independent of t1 ≥ T and singular values converge to LEs,
the claim is proved.

4.4.4 Backward-time estimates
Initial tuples for the backward propagation are obtained from spaces spanned by vec-
tors of the forward phase. Thus, it appears more practical to describe admissibility
in terms of forward propagated vectors instead of (v̂(t2)).

Lemma 4.4.12
Let 0 < α(t) < 1/

√
2 with λ(1/α) = 0 be given. There is T > 0 such that for all

t1, t2 ≥ T and all (b) ∈ Ad(v̂−(t1))(α(t1)) we have

Ad(f)r
−

(√
2α(t2)

)
⊂ Ad(v̂(t2))

− (α(t2)),

where (f) := orth(L(t1+t2)
σ−t1ω

b) and admissibility holds with respect to reversed degene-
racies.

Proof. Let (f) := orth(L(t1+t2)
σ−t1ω

b) for (b) ∈ Ad(v̂−(t1))(α(t1)) be given, and let (g) ∈
Ad(f)r
− (
√

2α(t2)) be an admissible tuple. We estimate

d
(
U

(g)
i,−, U

(v̂(t2))
i,−

)
≤ d

(
U

(g)
i,−, U

(f)r
i,−

)
+ d

(
U

(f)r
i,− , U

(v̂(t2))
i,−

)
≤
√

1− 2α(t2)2 + d

((
U

(f)
p−i

)⊥
,
(
U

(u(t2))
p−i

)⊥)

=
√

1− 2α(t2)2 + d

U
(
L(t1+t2)
σ−t1ω

b

)
p−i , U

(u(t2))
p−i

.
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The last summand is bounded by

d(t2) := sup
t1≥T

sup
(b)∈Ad(v̂−(t1))(α(t1))

d

U
(
L(t1+t2)
σ−t1ω

b

)
p−i , U

(u(t2))
p−i


for t2 ≥ T with T as in Lemma 4.4.11. In particular, it holds λ(d(t2)) < 0. Now,
for (g) to be α(t2)-admissible w.r.t. (v̂(t2)), it suffices to show that√

1− 2α(t2)2 + d(t2) ≤
√

1− α(t2)2

for t2 large enough, which in turn is equivalent to

1− 2α(t2)2 + 2
√

1− 2α(t2)2d(t2) + d(t2)2 ≤ 1− α(t2)2

and to
d(t2)

(
2
√

1− 2α(t2)2 + d(t2)
)

α(t2)2 ≤ 1.

The latter is true for t2 large enough since we have

λ

d(t2)
(
2
√

1− 2α(t2)2 + d(t2)
)

α(t2)2

 ≤ λ

(
d(t2)(2 + d(t2))

α(t2)2

)
< 0.

Next, we combine our characterization of the forward phase with backward pro-
pagation. During the backward phase, it is enough to restrict ourselves to tuples
that have admissible extensions. A few tools from the forward phase can be applied
to the time-reversed cocycle.

Lemma 4.4.13
Let 0 < α(t) < 1/

√
2 with λ(1/α) = 0 be given. It holds

λ

 sup
(b)∈Ad(v̂−(t1))(α(t1))

sup
(b′)∈

(
Ad(f)r

ext−(√2α(t2))
)r d

U
(
L(−t2)
σt2ω

b′
)

i , Yi(ω)



≤ −min(|λi − λi−1|, |λi − λi+1|),

where (f) := orth(L(t1+t2)
σ−t1ω

b). Here, (.)r applied to a set means that the order of every
tuple in the set is reversed.

Proof. Applying Lemma 4.4.9 to L and to L−, we get

λ

 sup
(b)∈Ad(v̂−(t))(α(t))

d

U
(
L(t)
σ−tωb

)
i , V −p+1−i(ω)

 ≤ −|λi − λi+1|

and

λ

 sup
(g)∈Ad(v̂(t))

− (α(t))
d

U
(
L(−t)
σtω

g

)
i,− , Vp+1−i(ω)


 ≤ −|λ−i − λ−i+1|.
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By switching indices we can rewrite the latter as

λ

 sup
(g)∈Ad(v̂(t))

− (α(t))
d

U
(
L(−t)
σtω

g

)
(p+1−i),−, Vi(ω)


 ≤ −|λi − λi−1|.

In short, we have exponentially fast converging approximations of V −p+1−i(ω) and of
Vi(ω), which are transversal subspaces with intersection Yi(ω) (see Eq. (2.3)). Thus,
we can apply Corollary 4.2.9 with

Mt :=
U

(
L(t)
σ−tωb

)
i

∣∣∣∣∣∣ (b) ∈ Ad(v̂−(t))(α(t))


and

Nt :=
U

(
L(−t)
σtω

g

)
(p+1−i),−

∣∣∣∣∣∣ (g) ∈ Ad(v̂(t))
− (α(t))


to get an estimate of the rate of convergence of intersections:

λ

 sup
(b)∈Ad(v̂−(t1))(α(t1))

sup
(g)∈Ad(v̂(t2))

− (α(t2))
d

U
(
L(t1)
σ−t1ω

b

)
i ∩ U

(
L(−t2)
σt2ω

g

)
(p+1−i),− , Yi(ω)


≤ −min(|λi − λi−1|, |λi − λi+1|).

By Lemma 4.4.12 we can take the supremum over
(g) ∈ Ad(f)r

−

(√
2α(t2)

)
instead, while maintaining the estimate. In particular, this is true for all admissible
extensions (g) of

(b′)r ∈ Ad(f)r
ext−

(√
2α(t2)

)
.

Now, to prove the lemma it suffices to show that each admissible extension (g) of(
(b′)r(p+1−i)1 , . . . , (b

′)r(p+1−i)
d−
p+1−i

)
=
(
b′idi

, . . . , b′i1

)
satisfies

U

(
L(−t2)
σt2ω

b′
)

i = U

(
L(t1)
σ−t1ω

b

)
i ∩ U

(
L(−t2)
σt2ω

g

)
(p+1−i),− .

We clearly have
U

(b′)
i = U

(b′)r
(p+1−i),− = U

(g)
(p+1−i),− ⊂ U

(g)
(p+1−i),−

and hence

U

(
L(−t2)
σt2ω

b′
)

i ⊂ U

(
L(−t2)
σt2ω

g

)
(p+1−i),−

for an admissible extension (g). Moreover, the definition of extended admissibility
requires that

(b′)r(p+1−i)1 , . . . , (b
′)r(p+1−i)

d−
p+1−i

∈ U (f)r
(p+1−i),− ⊕ · · · ⊕ U

(f)r
p−,−

= U
(f)
i ⊕ · · · ⊕ U

(f)
1

= U

(
L(t1+t2)
σ−t1ω

b

)
i

= L(t2)
ω U

(
L(t1)
σ−t1ω

b

)
i ,
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or equivalently, it holds

U

(
L(−t2)
σt2ω

b′
)

i ⊂ U

(
L(t1)
σ−t1ω

b

)
i .

Thus, we have

U

(
L(−t2)
σt2ω

b′
)

i ⊂ U

(
L(t1)
σ−t1ω

b

)
i ∩ U

(
L(−t2)
σt2ω

g

)
(p+1−i),− .

Since admissible tuples are linearly independent, the left-hand side has dimension di.
The right-hand side must have the same dimension for t1, t2 large enough, because
the intersection converges to Yi(ω). Hence, we have equality of subspaces, which
concludes the proof.

Let us remark that the proof of Lemma 4.4.13 also works if we regard extended
admissibility with respect to a nondegenerate spectrum, i.e., if we set p = p− = d
in the definition of extended admissibility. In fact, this detail is necessary for our
convergence proof since we require upper triangular coefficient matrices in Defini-
tion 3.1.1. The original proof in [48] does not make this assumption. It allows for
upper triangular coefficient matrices with block-diagonal structure.

4.4.5 Proof of theorems
Lemma 4.4.13 describes how admissible tuples fare in Ginelli’s algorithm. The re-
maining work lies in connecting the lemma to measurement results from Section 4.3.

Proof of Theorem 4.4.3. Fix ε > 0. We identify Rd×d
ru with R×R2×· · ·×Rd column

by column. Write
B′(M) := B1(0,M)× · · · ×Bd(0,M)

for the subset consisting of product of balls of radius M . By compactness of K we
find some M > 0 with K ⊂ Bd(0,M)d ×B′(M). It is enough to prove the claim for
the product of balls instead of K.

We set α(t) := 1/max(t, 2
√

2), so that λ(1/α) = 0. Now, use α in Lemma 4.4.13
to obtain

1
min(t1, t2) log d

U
(
L(−t2)
σt2ω

b′
)

i , Yi(ω)
 ≤ −min(|λi − λi−1|, |λi − λi+1|) + ε

for all (b) ∈ Ad(v̂−(t1))(α(t1)) and (b′) ∈ (Ad(f)r
ext−(
√

2α(t2)))r with t1 and t2 large
enough. Here, we assume extended admissibility with respect to the nondegenerate
case. Since Ginelli’s algorithm uses coefficient matrices instead of initial vectors
for the backward phase, we relate both through forward propagated vectors as it
is done in step 4 of Definition 3.1.1. A matrix of coefficients R with columns (r)
gets mapped to a tuple of vectors (b′) by the orthogonal transformation A sending
(e) to (f). Via this identification, we can shift results for backward initial tuples to
the coefficient space, which is independent of runtimes and of inputs. Hence, in the
above convergence estimate we may exchange (b′) for (Ar) with

(r) ∈
(
A−1

)d(
Ad(f)r

ext−

(√
2α(t2)

))r
=
(
Ad(e)r

ext−

(√
2α(t2)

))r
.
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Now, we show that the set of tuples ((b), (r)) in Bd(0,M)d × B′(M) such that
(b) or (r) is nonadmissible has measure zero for min(t1, t2)→∞:

µ
((
Bd(0,M)d ×B′(M)

)
\
(
Ad(v̂−(t1))(α(t1))×

(
Ad(e)r

ext−

(√
2α(t2)

))r))
≤ µ

(
Bd(0,M)d \ Ad(v̂−(t1))(α(t1))

)
µ(B′(M))

+ µ
(
Bd(0,M)d

)
µ
(
B′(M) \

(
Ad(e)r

ext−

(√
2α(t2)

))r)
= µ

(
Bd(0,M)d \ Ad(e)(α(t1))

)
µ(B′(M))

+ µ
(
Bd(0,M)d

)
µ
(
(B′(M))r \ Ad(e)r

ext−

(√
2α(t2)

))
,

Here, we used invariance under orthogonal transformations of Bd(0,M) to switch
from (v̂−(t1)) to (e). By Corollary 4.3.5 and Corollary 4.3.7 the final estimate
converges to zero as min(t1, t2) is increased. Hence, we get the desired convergence
result.

The discrete-time version can be proved in a similar fashion.

Proof of Theorem 4.4.4. Assume discrete time T = Z and d > 1. We define αε(n) :=
(ε/(
√

2n2))d−1 as our admissibility parameter satisfying λ(1/αε) = 0 for each 0 <
ε < 1. Using αε, we invoke Lemma 4.4.13 to find that

λ

d
U

(
L(−n2)
σn2ω

b′
)

i , Yi(ω)
 ≤ −min(|λi − λi−1|, |λi − λi+1|)

for (b′) = (Ar) with A as in the last proof, whenever

((b), (r)) ∈
⋂

n1,n2∈N
Ad(v̂−(n1))(αε(n1))×

(
Ad(e)r

ext−

(√
2αε(n2)

))r
.

This is true independent of our choice of ε. Hence, it suffices to show that the
complement of

⋃
0<ε<1

⋂
n1,n2∈N

Ad(v̂−(n1))(αε(n1))×
(
Ad(e)r

ext−

(√
2αε(n2)

))r
(4.1)

has measure zero7, which can be proved by exhausting the domain of ((b), (r)) with
products of balls:

7Note that the statement is not true in general for continuous time. In fact, in Example 4.4.2
no tuple (b) is admissible w.r.t. (v̂−(t1)) for all t1 ∈ R>0 simultaneously. Hence, in this case the
set in Eq. (4.1) would be empty.
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Let B(M) := (B′(M))r. It holds

µ

(Bd(0,M)d ×B′(M)
)
\

⋃
0<ε<1

⋂
n1,n2∈N

Ad(v̂−(n1))(αε(n1))×
(
Ad(e)r

ext−

(√
2αε(n2)

))r
≤ inf

0<ε<1

 ∑
n1∈N

µ
(
Bd(0,M)d \ Ad(e)(αε(n1))

)
µ(B′(M))

+
∑
n2∈N

µ
(
Bd(0,M)d

)
µ
(
B(M) \ Ad(e)r

ext−

(√
2αε(n2)

))
≤ inf

0<ε<1

∑
n1∈N

η1(αε(n1))
1
d−1µ(B′(M)) +

∑
n2∈N

µ
(
Bd(0,M)d

)
η2
(√

2αε(n2)
) 1
d−1



= inf
0<ε<1

∑
n∈N

η1µ(B′(M)) + η2
√

2
1
d−1µ

(
Bd(0,M)d

)
√

2n2

ε
= 0

for all M > 0. Here, it was crucial to use Proposition 4.3.8 and Proposition 4.3.11
to get more precise measure estimates on nonadmissible tuples.

4.5 Summary and discussion
We analyzed convergence of Ginelli’s algorithm to compute CLVs, or more gener-
ally Oseledets spaces, for cocycles with invertible actions in finite dimensions. The
existence of CLVs was provided by a deterministic version of the MET from [1].
Moreover, the proof of the theorem handed us an interface able to link CLVs with a
limit of finite-time scenarios in which Ginelli’s algorithm is applied to initial vectors.
It turned out that certain tuples of initial vectors perform better than others given
the same runtime, whereas in some cases the algorithm would not even converge
- a problem that did not receive enough attention in previous attempts to prove
convergence.

As a measure to tackle this problem, we introduced the concept of admissibility.
A tuple of initial vectors is called admissible if it is not too far from the right
singular vectors of the propagator. The term “not too far” was made more precise
by a parameter α. In our formulation, values of α close to 1 imply a good correlation,
whereas values of α close to 0 stand for greater distances between initial vectors and
right singular vectors.

In [20] it is shown that tuples with positive α will align with left singular vectors
when propagated from present to future. While the admissibility condition depends
on the chosen runtime, according to the MET right singular vectors defining admis-
sibility at the present state converge. In the limit it is possible to show that almost
every initial tuple will yield a good approximation of left singular vectors when
propagated long enough from the present state. However, in Ginelli’s algorithm
vectors are initiated at past states. Thus, the admissibility condition varies with
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the runtime and the set of admissible vectors generally does not converge, which
was not regarded in [20] and motivates our new analysis. In fact, we presented an
example where no fixed initial tuple is admissible for all past states simultaneously.
Consequently, the continuous-time version of Ginelli’s algorithm cannot be expected
to converge for fixed initial tuples in general. Instead, we have shown convergence in
measure of the continuous-time version by connecting admissibility and finite-time
estimates before deriving asymptotic estimates via the proof of the MET. Moreover,
due to suitable measure estimates of sets of admissible vectors, we were able to prove
convergence for almost every initial tuple in the discrete-time case. In the presence
of degeneracies of the Lyapunov spectrum convergence holds with respect to spaces
spanned by propagated vectors rather than the vectors themselves. Indeed, internal
dynamics of Oseledets spaces might prevent single output vectors from converging.

The convergence results for both cases of time relate the speed of convergence
to LEs. Using the Lyapunov index notation, we were able to prove that Ginelli’s
algorithm converges exponentially fast with a rate given by the minimum distance
between LEs. However, the Lyapunov index notation neglects system-dependent
prefactors of the speed of convergence on subexponential timescales, which may
very well be of importance for limited-time scenarios. Yet, if enough data is avail-
able, subexponential factors, e.g., from choosing different initial tuples, can be ig-
nored. Moreover, nonadmissible initial tuples will in general turn admissible due
to numerical noise. Hence, the concept of admissibility and the different notions of
convergence do not play a noticeable role in practice. They can be seen rather as
tools or as products of a precise mathematical proof.

Finally, let us mention that the tools obtained during the proof can be used
to investigate other algorithms, such as Wolfe-Samelson’s algorithm [67], as well.
Indeed, the connection between dynamical features and the SVD of the cocycle
enables the analysis of many constructions in the context of CLV-algorithms.
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5

Convergence of Ginelli’s Algorithm on Hilbert Spaces

This chapter follows [49, 50]. We analyze convergence of Ginelli’s algorithm in a
semi-invertible setting on Hilbert spaces as in Section 2.3. While our final con-
vergence theorem looks similar to that from the last chapter, i.e., convergence for
almost every input, the involved techniques are quite different. Jumping from fi-
nite to infinite dimensions, we cannot perform estimates with respect to Lebesgue
measure and we do not have a SVD of the cocycle in general. Instead of admissi-
bility, we introduce well-separating common complements that play a similar role
during our convergence proof. It turns out that vectors spanning well-separating
common complements are the right choice of input vectors for exponentially fast
convergence of Ginelli’s algorithm. Using the concept of prevalence, we show that
almost every tuple of input vectors spans well-separating common complements to
get a convergence theorem similar to Theorem 4.4.4.

As in the previous chapter, we regard convergence with respect to subspaces
rather than isolated vectors. To this end, we generalize the concept of Grassmanni-
ans to Banach spaces in Section 5.1. Our focus lies on classes of subspaces of finite
dimension or of finite codimension. They contain spaces of the Oseledets splitting
and of the Oseledets filtration. Again, we define notions of distances and angles
between subspaces. In Section 5.2 we treat well-separating common complements.
We show that these special kind of subspaces are prevalent for Hilbert spaces. Fi-
nally, in Section 5.3 we derive a convergence theorem by investigating the evolution
of well-separating common complements in Ginelli’s algorithm for forward- and for
backward-time. Note that, due to the semi-invertible setting, backward propaga-
tion can only be done restricted to subspaces on which the action of the cocycle is
invertible.

In our convergence analysis we try to be as general as possible, so that the
derived results may potentially be transferred to other settings as well. Our analysis
is not tailored to the proof of the particular semi-invertible MET. In fact, we only
require asymptotic characterizations of LEs and of Oseledets spaces as stated in
most versions of the MET. Moreover, since many of our arguments do not need
Hilbert spaces, we formulate them at the level of Banach spaces.
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5.1 Grassmannians
Definition 5.1.1
Let (X, ‖.‖) be a Banach space. The Grassmannian G(X) is the set of closed com-
plemented subspaces of X, i.e., closed subspaces V ⊂ X such that there is a closed
subspace W ⊂ X with X = V ⊕W . It contains Gk(X), the set of k-dimensional
subspaces, and Gk(X), the set of closed subspaces of codimension k.

The Grassmannian G(X) can be equipped with a metric dG(V,W ) via the Haus-
dorff distance between V ∩ B and W ∩ B, where B denotes the closed unit ball in
X [29, appendix B]:

dG(V,W ) := dH(V ∩B,W ∩B)

= max
(

sup
v∈V ∩B

d(v,W ∩B), sup
w∈W∩B

d(w, V ∩B)
)

= max
(

sup
v∈V ∩B

inf
w∈W∩B

‖v − w‖, sup
w∈W∩B

inf
v∈V ∩B

‖w − v‖
)

for V,W ∈ G(X). Another metric d̂G is given by exchanging B with the unit sphere
S in the above definition. In fact, Kato shows that G(X) equipped with d̂G is a
complete metric space [34, chapter IV, §2.1]. Moreover, he relates d̂G to the gap
between subspaces, which is defined as

δ̂(V,W ) := max
(

sup
v∈V ∩S

d(v,W ), sup
w∈W∩S

d(w, V )
)
.

In general the gap is not a metric. However, if X is a Hilbert space, it coincides
with the metric defined in Section 4.2: δ̂(V,W ) = ‖PV − PW‖. All three concepts
of distances on G(X) are related via δ̂ ≤ dG ≤ d̂G ≤ 2δ̂. This follows from

sup
v∈V ∩S

d(v,W ) ≤ sup
v∈V ∩B

d(v,W ∩B) ≤ sup
v∈V ∩S

d(v,W ∩S) ≤ 2 sup
v∈V ∩S

d(v,W ), (5.1)

see [34]. In particular, dG and d̂G induce the same topology. Hence, G(X) is complete
with respect to dG.

The symmetry of dG is an immediate consequence of its definition. We
cannot reduce the definition to only one term since supv∈V ∩B d(v,W ∩ B) and
supw∈W∩B d(w, V ∩ B) are different in general. However, if one term is small, then
so is the other [29, lemma B.7]:

Lemma 5.1.2 ([29])
If V,W ∈ Gk(X) are subspaces of dimension k, then

sup
v∈V ∩B

d(v,W ∩B) =: r < 3−k/4 =⇒ dG(V,W ) < 4 · 3kr.

If V,W ∈ Gk(X) are closed subspaces of codimension k, then

sup
v∈V ∩B

d(v,W ∩B) =: r < 3−k/8 =⇒ dG(V,W ) < 8 · 3kr.
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Thus, when investigating convergence inside Gk(X) or Gk(X), it is enough to
estimate only one of the two terms in the definition of dG.

Ultimately, we want to approximate Oseledets spaces, which are finite-
dimensional complements to spaces of the Oseledets filtration. Hence, we will
be working with tuples of the set

Compk(X) :=
{

(C, V ) ∈ Gk(X)× Gk(X)
∣∣∣ X = C ⊕ V

}
for k ∈ N. Given such a tuple, each x ∈ X can be written uniquely as x = c + v
according to the associated splitting. In particular, we get two projections ΠC||V :
X → C and ΠV ||C : X → V , which are bounded linear operators by the closed graph
theorem. It can be shown that they are stable with respect to perturbations of the
tuple (C, V ) [29, lemma B.18]:

Lemma 5.1.3 ([29])
The mapping Compk(X) → L(X) given by (C, V ) 7→ ΠC||V is continuous, where
Compk(X) has the product topology induced by G(X) and where the space L(X) of
bounded linear operators on X is equipped with the norm topology.

As in the finite-dimensional case, we need to keep track of angles between sub-
spaces.

Definition 5.1.4
Let C, V ⊂ X be two subspaces. The sine of the minimal angle from C to V is
defined as infc∈C∩S d(c, V ).

The new notion of minimal angle generalizes the one from Definition 4.2.4. In-
deed, let C and V be two subspaces of (Rd, ‖.‖2). By Proposition 4.2.5 we have

c0(C, V )2 = ‖PV PC‖2 = sup
c∈C∩S

‖PV c‖2 = 1− inf
c∈C∩S

‖PV ⊥c‖2 = 1− inf
c∈C∩S

d(c, V )2.

If θ1 ∈ [0, π/2] denotes the old minimal angle and θ2 ∈ [0, π/2] the new one, then

cos(θ1)2 = 1− sin(θ2)2 = cos(θ2)2.

Thus, θ1 and θ2 coincide. However, note that the new minimal does not retain
all properties of the old one if X deviates from the standard euclidean space. For
example, the new minimal angle from C to V is generally not the same as the
minimal angle from V to C.

Usually, we will have (C, V ) ∈ Compk(X), i.e., C will be a complement to V . In
this case, we call the sine of the minimal angle degree of transversality. It is equal to
1/‖ΠC||V ‖ [7] and describes the quality of the splitting X = C ⊕ V . The degree of
complementing subspaces is always positive, since infc∈C∩S d(c, V ) = 0 would imply
that C ∩ V 6= {0}. On the other hand, if X is a Hilbert space, a degree of 1 implies
C = V ⊥. Thus, we prefer complements with a high degree of transversality (close
to 1) as they are better separated.

5.2 Well-separating common complements
In the convergence proof for finite dimensions we used the concept of admissibility to
measure distances between initial vectors and singular vectors of the cocycle. More
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precisely, admissibility compared the associated filtration spaces. The concept was
applied to find tuples whose filtration spaces stay close to those of singular vectors.
By the proof of the MET for finite dimensions, the filtration spaces of singular
vectors at ω converge to sums of the first Oseledets spaces which complement the
Oseledets filtration. In this sense, we sought tuples of initial vectors with a filtration
that is well-separated from the Oseledets filtration. Section 4.4 applied this idea to
different phases of Ginelli’s algorithm by letting the admissibility condition depend
on the initial time. We required an admissibility parameter decaying to zero at
a subexponential speed, so that it did not influence other factors of convergence.
Then, we proved for discrete time that almost every tuple satisfies this criterion of
separation from the Oseledets filtration at different initial times.

Here, we take a similar approach. We look for subspaces such that the degree of
transversality to spaces of the Oseledets filtration at different initial times decays at
most subexponentially. More abstractly, given a sequence of subspaces (Vn)n∈N ⊂
Gk(X), we ask for common complements, i.e., subspaces C ⊂ X with (C, Vn) ∈
Compk(X) for all n, such that the degree of transversality of (C, Vn) decays at most
subexponentially with n:

Definition 5.2.1
Let (Vn)n∈N ⊂ Gk(X) be given. A common complement C ∈ Gk(X) for (Vn)n∈N is
called well-separating with respect to (Vn)n∈N if

lim
n→∞

1
n

log inf
c∈C∩S

d(c, Vn) = 0.

Well-separating common complements can be used without interfering on expo-
nential scales that are important for our convergence proof. Natural questions are
the existence and the genericity of well-separating common complements. While
the existence of common complements for two subspaces has already been studied
in various scenarios [18, 19, 37], results on the genericity of common complements
are rare. There is one result for finite dimensions saying that any countable family
of subspaces of the same codimension has uncountable many common complements
[63]. However, as far as the author knows, there is no similar statement for well-
separating common complements yet.

After a short discussion on common complements for finitely many hyperplanes,
we turn towards well-separating common complements. In particular, we investigate
existence and genericity of well-separating common complements. It turns out that
existence is guaranteed for Hilbert spaces. Moreover, we show that existence of one
well-separating common complement already implies that they are generic.

5.2.1 Common complements for finitely many hyperplanes
Using simple geometric tools, we find common complements for finitely many hyper-
planes when X = Rd or when X is an arbitrary Banach space. Those complements
have dimension 1 and can be identified with an up to sign unique unit vector. The
distance between this vector and the hyperplanes determines the quality of the com-
plement. Besides the existence of common complements, we investigate their quality
and motivate why subexponential decay of the degree of transversality is a natural
assumption for common complements for families of countably many subspaces.

We start with a geometric tool for the existence of common complements in Rd:
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Lemma 5.2.2
Let Q ⊂ (Rd, ‖.‖2) be a compact, convex d-polytope with faces (Fi)mi=1 and normals
(fi)mi=1. Moreover, let V ⊂ Rd be a hyperplane with normal v.

The volume of the orthogonal projection of Q onto V satisfies

vold−1(PVQ) = 1
2

m∑
i=1

vold−1(Fi)|〈fi, v〉|.

Proof. This is a known result (e.g., see [11]). The basic ideas are that PVQ = PV ∂Q
and that the interior of PV ∂Q is covered twice by the projection of the hull ∂Q. Now,
one only needs to check that vold−1(PV Fi) = vold−1(Fi)|〈fi, v〉| for each face.

Corollary 5.2.3
Let (Vn)Nn=1 be hyperplanes of (Rd, ‖.‖2). There exists a unit vector x ∈ Rd with
d(x, Vn) ≥ 1/(2Nd) for all n.

Proof. Let Q = [−1, 1]d and let vn be the normal of Vn. We have

vold−1(PVnQ) = 2d−1
d∑
i=1
|〈ei, vn〉| = 2d−1‖vn‖1 ≤ 2d−1

√
d ‖vn‖2 = 2d−1

√
d.

Now, let δ := 1/(2N
√
d). Using the Lebesgue measure µ on Rd, we estimate

µ({y ∈ Q | ∃n : |〈y, vn〉| ≤ δ}) ≤
N∑
n=1

µ({y ∈ Q : |〈y, vn〉| ≤ δ})

≤ 2δ
N∑
n=1

vold−1(PVnQ)

≤ 2δN2d−1
√
d

= 2d−1.

Since vol(Q) = 2d, there must be an element y ∈ Q with |〈y, vn〉| ≥ δ for all n.
Writing x := y/‖y‖2 yields d(x, Vn) = |〈x, vn〉| ≥ δ/‖y‖2 ≥ 1/(2Nd).

A lower bound better than 1/(2Nd) for arbitrary hyperplanes is possible by
looking at intersections of the unit ball and hyperplanes instead of polytopes and
hyperplanes. In the case Vn = {(x1, . . . , xd) | xn = 0} with N = d the best possible
lower bound is 1/

√
N , which corresponds to unit vectors lying in diagonal lines

{(±t, . . . ,±t) | t ∈ R}.
The next theorem is a well-known result in the context of the Banach-Mazur

compactum. As a consequence of John’s theorem [33] about ellipsoids, the (multi-
plicative) distance of any Banach space of dimension d to the standard euclidean
space (Rd, ‖.‖2) is at most

√
d:

Theorem 5.2.4
Let X be a Banach space of dimension d. There exists an isomorphism
T : (X, ‖.‖)→ (Rd, ‖.‖2) such that ‖T‖‖T−1‖ ≤

√
d.

By scaling such an isomorphism with a positive constant, we can assure that
either ‖T‖ = 1 or ‖T−1‖ = 1 holds additionally.
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Corollary 5.2.5
Let (Vn)Nn=1 be hyperplanes of a Banach space X. There exists a unit vector x ∈ X
such that d(x, Vn) ≥ 1/(4N 5

2 ) for all n.

Proof. Set V := V1 ∩ · · · ∩ VN and Y := X/V . As a quotient space, Y is a Ba-
nach space of dimension d ≤ N . The quotient map π : X → Y sends (Vn)Nn=1
to hyperplanes of Y . Now, by Theorem 5.2.4 there is an isomorphism T mapping
(Y, ‖.‖Y ) to (Rd, ‖.‖2) such that ‖T‖ ≤

√
d and ‖T−1‖ ≤ 1. By Corollary 5.2.3 we

find z ∈ Rd with ‖z‖2 = 1 and d(z, TπVn) ≥ 1/(2Nd) for all n. Let y := T−1z. It
holds ‖y‖Y ≤ 1 and

1
2Nd ≤ inf

vn∈Vn
‖z − Tπvn‖2 ≤ inf

vn∈Vn
‖T‖‖y − πvn‖Y ≤

√
d d(y, πVn).

Take x′ ∈ X with πx′ = y. Since infv∈V ‖x′ − v‖ = ‖y‖Y ≤ 1, we find v′ ∈ V with
‖x′ − v′‖ ≤ 2. Set x := (x′ − v′)/‖x′ − v′‖. One readily checks that d(y, πVn) =
d(x′, Vn) = ‖x′ − v′‖ d(x, Vn). The claim follows.

Given N hyperplanes of a Banach space, Corollary 5.2.5 implies that there exists
a common complement such that the degree of transversality between each pair is
bounded from below by 1/(4N 5

2 ). On the other hand, there are cases where 1/
√
N

is the best that can be archived. Hence, as the number of hyperplanes is increased
to infinity, we cannot hope for a common complement with a degree of transversality
bounded away from zero in general. Instead, we ask for complements such that the
degree of transversality decays at most subexponentially.

5.2.2 Existence
In this subsection we prove the existence of well-separating common complements in
Hilbert spaces. So far, an existence result for Banch spaces has not been archived.
The only remaining hurdle for a similar result as Theorem 5.2.6 would be to gener-
alize Lemma 5.2.8 to Banach spaces.1

Theorem 5.2.6
Let H be a Hilbert space and let (Vn)n∈N ⊂ Gk(H). There exists a well-separating
common complement C ∈ Gk(H) for (Vn)n∈N.

If dimH < ∞, the claim of Theorem 5.2.6 for k = 1 follows from Proposi-
tion 5.2.10. For the case dimH =∞, we need the following two lemmata:

Lemma 5.2.7
Let (vn)dn=1 ⊂ (Rd, ‖.‖2) be unit vectors such that vn ∈ Rn × {0}. There are an
absolute constant c > 0 and x = (x1, . . . , xd) ∈ Rd with |xi| ≤ 1/i2 and |〈x, vn〉| ≥
c/n5.

1If X is separable, then the problem reduces to solving Lemma 5.2.8 for X = l1. Indeed, every
separable Banach space is isomorphic to a quotient of l1. Now, let π : l1 → l1/A be a quotient
map. Then, π induces a map G1(l1/A) → G1(l1) by V 7→ π−1V . It holds d(x, π−1V ) = d(πx, V )
for x ∈ l1. Hence, well-separating common complements in l1 project onto well-separating common
complements in l1/A.
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Proof. Let Q = ∏d
i=1[−i−2, i−2] and let Vn be the hyperplane orthogonal to vn. By

Lemma 5.2.2 we have

vold−1(PVnQ) =
d∑
i=1

 d∏
j=1,j 6=i

2j−2

|〈ei, vn〉|
= 1

2vold(Q)
d∑
i=1

i2|〈ei, vn〉|

= 1
2vold(Q)

n∑
i=1

i2|〈ei, vn〉|

≤ 1
2vold(Q)n3.

Now, let δn := 3/(π2n5). We estimate

µ({y ∈ Q | ∃n : |〈y, vn〉| ≤ δn}) ≤
d∑

n=1
µ({y ∈ Q : |〈y, vn〉| ≤ δn})

≤
d∑

n=1
2δnvold−1(PVnQ)

≤ vold(Q)
d∑

n=1
δnn

3

≤ vold(Q) 3
π2

∞∑
n=1

1
n2

= 1
2vold(Q).

Thus, there must be an element y ∈ Q with |〈y, vn〉| ≥ δn for all n. Since ‖y‖2
2 ≤∑∞

n=1 1/n4 = π4/90, writing x := y/‖y‖2 yields |〈x, vn〉| ≥ δn/‖y‖2 ≥ c/n5 with
c := 3

√
90/π4.

Lemma 5.2.8
Let H be a Hilbert space of infinite dimension and let (ϕn)n∈N ⊂ H ′ be a sequence
of bounded linear functionals of norm 1. There exist a sequence (δn)n∈N ⊂ R>0 and
a unit vector x ∈ H such that

lim
n→∞

1
n

log δn = 0

and
|ϕn(x)| ≥ δn

for all n.

Proof. By Riesz’s representation theorem, we can write ϕn = 〈vn, ·〉 for unit vectors
vn ∈ H. Now, take an orthonormal set (cn)n∈N ⊂ H with vn ∈ span(c1, . . . , cn). We
get maps πn : H → Rn defined through

πn(x) :=


〈x, c1〉

...
〈x, cn〉

.
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By construction (πn(vi))ni=1 ⊂ Rn are unit vectors such that πn(vi) ∈ Ri × {0}. In
particular, Lemma 5.2.7 gives us the existence of an element α ∈ ∏n

k=1[−k−2, k−2]
with |〈α, πn(vi)〉| ≥ c/i5 =: δ̃i. Let An be the set of all such α:

An :=
α ∈

n∏
k=1

[−k−2, k−2]
∣∣∣∣∣∣ ∀ i ≤ n :

∣∣∣∣∣
n∑
k=1

αk〈vi, ck〉
∣∣∣∣∣ ≥ δ̃i

.
We know that An is a nonempty, closed subset of Rn. For α ∈ An, we can define
y := ∑n

k=1 αkck. Since ‖y‖2 ≤ ∑∞k=1 1/k4 = π4/90, it holds

|ϕi(x)| = ‖y‖−1|〈vi, y〉| = ‖y‖−1
∣∣∣∣∣
n∑
k=1

αk〈vi, ck〉
∣∣∣∣∣ ≥ √90π−2δ̃i =: δi

for i ≤ n, where x := y/‖y‖. Thus, every α ∈ An induces an element x ∈ H fulfilling
the claim for ϕ1, . . . , ϕn. The remainder of this proof treats the transition n→∞.

By Tychonoff’s theorem the space B := ∏∞
k=1[−k−2, k−2] equipped with the pro-

duct topology is compact. Since the product topology is the coarsest topology such
that the canonical projections prk : B → [−k−2, k−2] are continuous, we find that
Bn := (pr1 × · · · × prn)−1An are nonempty, closed subsets of B. The sets Bn can be
written as

Bn =
α ∈ B

∣∣∣∣∣∣ ∀ i ≤ n :
∣∣∣∣∣
∞∑
k=1

αk〈vi, ck〉
∣∣∣∣∣ ≥ δ̃i

.
From this form is becomes obvious that B1 ⊃ B2 ⊃ . . . is a decreasing sequence
of nonempty, closed subsets of B. In particular, (Bn)n∈N has the finite intersection
property, i.e., finite intersection are nonempty. As B is compact, the intersection of
all Bn must be nonempty. Thus, we find some α in

∞⋂
n=1

Bn =
α ∈ B

∣∣∣∣∣∣ ∀i ∈ N :
∣∣∣∣∣
∞∑
k=1

αk〈vi, ck〉
∣∣∣∣∣ ≥ δ̃i

.
Similar to above, we set y := ∑∞

k=1 αkck. Again, it holds ‖y‖2 ≤ π4/90. Defining
x := y/‖y‖, we get

|ϕn(x)| = ‖y‖−1|〈vn, y〉| = ‖y‖−1
∣∣∣∣∣
∞∑
k=1

αk〈vn, ck〉
∣∣∣∣∣ ≥ √90π−2δ̃n = δn.

for n ∈ N.

The proof shows that δn can be chosen as c/n5 for some constant c > 0. Improve-
ments of the exponent of n are possible. For instance, one may use 1/n1+ε instead
of 1/n2 to define the polytope in Lemma 5.2.7. However, since our goal is only to
find an at most polynomially decaying lower bound, we aimed for better readability
at the cost of a worse estimate.

So far it is not known to the author if Lemma 5.2.8 is true for Banach spaces
instead of Hilbert spaces. However, the remainder of this section holds for arbitrary
Banach spaces (X, ‖.‖).

proof of Theorem 5.2.6 for k = 1. By Hahn-Banach there are bounded linear func-
tionals (ϕn)n∈N ⊂ X ′ of norm 1 such that kerϕn = Vn. Assume that we find (δn)n∈N
and x ∈ X as described by Lemma 5.2.8. Since |ϕn(x)| = d(x, Vn), the subspace
spanned by x is a δ-well-separating common complement for (Vn)n∈N.
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To prove Theorem 5.2.6 for arbitrary k we need the following lemma:

Lemma 5.2.9
Let (X, ‖.‖) be a Banach space. Furthermore, assume x1, x2 ∈ BX(0, 1) are vectors
with ‖x1‖ ≥ µ1 and d(x2, span(x1)) ≥ µ2 for some numbers 0 < µ1, µ2 ≤ 1.

It holds
inf
t∈R
‖tx1 + (1− t)x2‖ ≥

1
2
√

5
µ1µ2.

Proof. The argument can be restricted to span(x1, x2). Thus, assume that dimX =
2. First, we look at X = R2 equipped with ‖.‖2. After a rotation we may assume
x1 = (α1, 0) with α1 ≥ µ1. Now, the assumption on x2 implies that its second
coordinate has at least size µ2. Let L be the line passing through x1 and x2 (see
Fig. 5.1). We want to estimate the distance between L and the origin. Clearly, the
distance becomes smallest if L intersects the unit circle at (−

√
1− µ2

2,±µ2). Hence,
the task reduces to finding δ in Fig. 5.2. After applying Pythagoras’ theorem to find
the diagonal d of the big triangle and comparing ratios between catheti opposite to
α and the hypotenuses, we get

δ = µ1µ2

d
= µ1µ2√

µ2
2 +

(√
1− µ2

2 + µ1

)2
≥ 1√

5
µ1µ2.

Thus, the claim holds for the euclidean case.
Now, let X be any 2-dimensional Banach space. By Theorem 5.2.4 there exists

an isomorphism T from (X, ‖.‖) to (R2, ‖.‖2) with ‖T‖ ≤ 1 and ‖T−1‖ ≤
√

2. Let
x1, x2 ∈ X be as in the claim. It holds Tx1, Tx2 ∈ B2(0, 1), ‖Tx1‖2 ≥ µ1/

√
2 and

d(Tx2, span(Tx1)) ≥ µ2/
√

2. From the euclidean case we get

inf
t∈R
‖tx1 + (1− t)x2‖ ≥ inf

t∈R
‖tTx1 + (1− t)Tx2‖2 ≥

1
2
√

5
µ1µ2.

proof of Theorem 5.2.6 for arbitrary k. The proof is done by induction over k. As-
sume that the claim holds for k ≥ 1. Let (Vn)n∈N ⊂ Gk+1(X) be as in the claim
and define πn : X → X/Vn to be the associated quotient maps. We embed (Vn)n∈N
into two different sequences of closed complemented subspaces of X, one having
codimension k and the other having codimension 1. Summing their well-separating
common complements will yield a well-separating common complement for our ini-
tial sequence.

First, take any (V 1
n )n∈N ⊂ Gk(X) with V 1

n ⊃ Vn. According to the codimension
k case we find a δ1-well-separating common complement C1 ∈ Gk(X) for (V 1

n )n∈N.
It holds ‖πnx1‖ ≥ d(x1, V

1
n ) ≥ δ1

n for all x1 ∈ C1 of norm 1.
Next, let V 2

n := Vn ⊕ C1. Then, (V 2
n )n∈N ⊂ G1(X) is a sequence of closed,

complemented subspaces of codimension 1. Hence, we find a δ2-well-separating
common complement C2 ∈ G1(X). Let x2 be one of the two unit vectors of C2. We
have d(±πnx2, πnC

1) ≥ δ2
n.
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Figure 5.1: The simplified planar case from the proof of Lemma 5.2.9

Figure 5.2: The triangle reduction from the proof of Lemma 5.2.9

Let C := C1⊕C2. To check if C is well-separating, we need to find a lower bound
of ‖πnx‖ with x ∈ C of norm 1. We scale x so that it intersects with an element of
the boundary of the double cone

∆ :=
{
c ∈ C

∣∣∣ c = tx1 + (1− t)(±x2), t ∈ [0, 1], x1 ∈ BC1(0, 1)
}
,

which is contained in BC(0, 1) (see Fig. 5.3). The boundary ∂∆ is made up of line
segments connecting unit vectors x1 ∈ C1 with one of the two apexes ±x2 ∈ C2. By
Lemma 5.2.9 the image of each line segment under πn is far enough from the origin,
i.e., we have

inf
t∈[0,1]

‖tπnx1 + (1− t)(±πnx2)‖ ≥ 1
2
√

5
δ1
nδ

2
n =: δn.
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Figure 5.3: The double cone from the proof of Theorem 5.2.6

Since every x ∈ C of norm 1 can be written as x = λc for some λ ≥ 1 and c ∈ ∂∆,
it holds d(x, Vn) = ‖πnx‖ = λ‖πnc‖ ≥ λδn ≥ δn. Thus, C is a δ-well-separating
common complement for (Vn)n∈N.

5.2.3 Genericity
In finite dimensions it is a simple task to show that almost every vector spans a well-
separating common complement for a given family of countably many hyperplanes:

Proposition 5.2.10
Let X be a Banach space of finite dimension and let (Vn)n∈N ⊂ G1(X) be hyperplanes.
Almost every x ∈ X spans a well-separating common complement for (Vn)n∈N.

Proof. Since well-separating common complements are retained when changing to
an equivalent norm, we may assume (X, ‖.‖) = (Rd, ‖.‖2). Furthermore, we can
restrict ourselves to x ∈ Bd(0, 1). Define δεn := ε/n2 for ε > 0. We estimate

µ({x ∈ Bd(0, 1) | ∃n : d(x, Vn) ≤ δεn}) ≤
∞∑
n=1

µ({x ∈ Bd(0, 1) | d(x, Vn) ≤ δεn})

≤
∞∑
n=1

2δεnvold−1(Bd−1(0, 1))

= ε
π2

3 vold−1(Bd−1(0, 1))

−→
ε→0

0.

Hence, for almost every x ∈ Bd(0, 1), there is an ε > 0 such that span(x) is a
δε-well-separating common complement for (Vn)n∈N (see Fig. 5.4 for a conceptual
representation of the proof).
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Figure 5.4: A common complement for ten randomly chosen hyperplanes of R3.
The hyperplanes are represented by unit circles resulting from intersecting the hy-
perplanes with the unit sphere. Each circle on the unit sphere is equipped with a
neighborhoods of size ε/n2, where n = 1, . . . , 10 is the number of the corresponding
hyperplane. In the proof of Proposition 5.2.10 we seek common complements, here
plotted as an orange line, which do not intersect the blue set for some ε > 0. Since
the blue set becomes arbitrary small for ε→ 0, almost every 1-dimensional subspace
fulfills this assumption.

Since there is no equivalent of the Lebesgue measure for arbitrary Banach or
Hilbert spaces, the proof of Proposition 5.2.10 does not generalize to infinite dimen-
sions. Even the notion of “almost every” in the claim is not clear a priori. Instead
of “Lebesgue almost every” we will use the concept of prevalence:

Definition 5.2.11 ([53])
A Borel subset E ⊂ X of a Banach space is called prevalent if there exists a Borel
measure µ on X such that

1. 0 < µ(C) <∞ for some compact set C ⊂ X, and

2. E + x has full µ-measure for all x ∈ X.

A general subset F ⊂ X is called prevalent if it contains a prevalent Borel set. We
say that almost every element x ∈ X lies in F .

Prevalence satisfies the following genericity axioms:

Proposition 5.2.12 ([53])
The following are true:

1. F prevalent =⇒ F dense in X,

2. L ⊃ G, G prevalent =⇒ L prevalent,
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3. countable intersections of prevalent sets are prevalent,

4. translations of prevalent sets are prevalent, and

5. G ⊂ Rd is prevalent if, and only if, G has full Lebesgue measure, i.e., its
complement has Lebesgue measure zero.

The last point implies that the notions of “almost every” in the sense of Lebesgue
and in the sense of prevalence coincide in finite-dimensional Banach spaces.

To identify prevalent sets in infinite-dimensional spaces it is convenient to use
probe spaces. A probe is a finite-dimensional subspace P ⊂ X of a Banach space.
By identification with the standard euclidean space we can equip P with a Borel
measure λP . This measure induces a Borel measure µP on X by µP (A) := λP (A∩P )
for Borel sets A ⊂ X. Using µP in Definition 5.2.11 yields the following definition:
Definition 5.2.13 ([53])
A finite-dimensional subspace P ⊂ X is called a probe for F ⊂ X if there exists a
Borel set E ⊂ F such that E + x has full µP -measure for every x ∈ X.
Proposition 5.2.14 ([53])
The existence of a probe for F ⊂ X implies that F is prevalent.

With the additional terminology we are ready to state a result about the gene-
ricity of well-separating common complements in Hilbert spaces:
Theorem 5.2.15
Let H be a Hilbert space and let (Vn)n∈N ⊂ Gk(H). The set of all (x1, . . . , xk) ∈ Hk,
such that span(x1, . . . , xk) is a well-separating common complement for (Vn)n∈N, is
prevalent.

We show that the existence of one well-separating common complement already
implies that they are prevalent. In particular, this proves Theorem 5.2.15. However,
before beginning with the proof we need a few elementary and technical lemmata.
Lemma 5.2.16
Let X be a Banach space and U ⊂ X an open subset. If f : U × (Rk \ {0})→ R is
continuous, then the mapping g : U → R defined by

g(x) := min
‖α‖2=1

f(x, α)

is continuous as well.
Proof. Let ε > 0 be given. For each (x, α) ∈ U × (Rk \ {0}), we find δ(x,α) > 0 such
that

‖(x, α)− (y, β)‖ < δ(x,α) =⇒ |f(x, α)− f(y, β)| < ε

for (y, β) ∈ U × (Rk \ {0}). Fix x ∈ U . Since the set {x} × {‖α‖2 = 1} is compact,
it is covered by finitely many balls of radius δ(x,α) with α from {‖α‖2 = 1}. Thus,
we find δx > 0 such that

‖(x, α)− (y, β)‖ < δx =⇒ |f(x, α)− f(y, β)| < ε

for (y, β) ∈ U × (Rk \ {0}) with ‖α‖2 = 1. Now, if ‖x− y‖ < δx, then

g(x) ≤ min
‖α‖2=1

(f(y, α) + |f(x, α)− f(y, α)|) ≤ g(y) + ε.
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Lemma 5.2.17
The set of all tuples spanning well-separating common complements for (Vn)n∈N is
a Borel subset of Xk.

Proof. First, define the map s : Xk → R by

s(c) := min
‖α‖2=1

∥∥∥∥∥
k∑
i=1

αici

∥∥∥∥∥.
With the help of Lemma 5.2.16 it is easily seen that s is continuous. In particular,
the set U := s−1(0,∞) of all linearly independent tuples is open in Xk. Next, let
πn : X → X/Vn be the quotient map associated to Vn. We apply Lemma 5.2.16
again to see that the maps gn : U → R given by

gn(c) := min
‖α‖2=1

‖∑k
i=1 αiπnci‖

‖∑k
i=1 αici‖

are continuous. Slightly rewriting gn reveals that

gn(c) = inf
x∈span(c1,...,ck)∩S

d(x, Vn)

has the form as in Definition 5.2.1. In particular, span(c1, . . . , ck) is a well-separating
common complement if, and only if, c ∈ U , gn(c) > 0, and

lim
n→∞

1
n

log gn(c) = 0.

Let fn : Un → R be given by fn(c) := (1/n) log gn(c), where Un := g−1
n (0,∞) ⊂

Xk is open. Then, fn is continuous and bounded from above by zero (since gn(c)
is bounded from above by 1). Finally, the set of tuples spanning well-separating
common complements can be expressed as

⋂
l>0

⋃
N∈N

⋂
n≥N

{
c ∈ Un

∣∣∣∣∣ fn(c) > −1
l

}
,

which is a Borel set.

Lemma 5.2.18
Let (An)n∈N ⊂ Rk×k be a sequence of matrices. For almost every A ∈ Rk×k, there
exists ε > 0 such that

∀n ∈ N : | det(A+ An)| ≥ ε

n2 .

Proof. Let M > 0 and Ãn := (1/M)An. Assume the claim holds for almost every
Ã ∈ B(0, 1)k with respect to the sequence (Ãn)n∈N, where B(0, 1)k ⊂ Rk×k is a
product of unit balls in (Rk, ‖.‖2) each representing a column. Setting A := MÃ for
any such Ã yields

| det(A+ An)| = Mk| det(Ã+ Ãn)| ≥Mk ε̃

n2

for some ε̃ > 0. In particular, almost every A ∈ B(0,M)k fulfills the required
estimate with respect to (An)n∈N. Exhausting Rk×k with B(0,M)k for M → ∞
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implies that the claim holds for almost every A ∈ Rk×k. Thus, it remains to prove
that the claim holds for almost every A ∈ B(0, 1)k.

For A = (a1, . . . , ak), it holds

| detA| =
∣∣∣det

(
a1, Pspan(a1)⊥a2, . . . , Pspan(a1,...,ak−1)⊥ak

)∣∣∣
= volk

(
Q
(
a1, Pspan(a1)⊥a2, . . . , Pspan(a1,...,ak−1)⊥ak

))
= ‖a1‖2 ‖Pspan(a1)⊥a2‖2 . . . ‖Pspan(a1,...,ak−1)⊥ak‖2,

where Q(v1, . . . , vk) ⊂ Rk denotes the parallelepiped spanned by vectors v1, . . . , vk ∈
Rk. Using this representation, we will derive an estimate of the form

µ
({
A ∈ B(0, 1)k : | det(A+ Ã)| ≤ η

})
≤ cη (5.2)

for all η > 0 independent of Ã, where c > 0 is a constant only depending on k.
To this end fix Ã = (ã1, . . . , ãk) and define

ti(a1, . . . , ai) := ‖a1 + ã1‖2 ‖Pspan(a1+ã1)⊥(a2 + ã2)‖2

. . . ‖Pspan(a1+ã1,...,ai−1+ãi−1)⊥(ai + ãi)‖2

for i = 1, . . . , k. Set t0 := 1. To arrive at an estimate as in Eq. (5.2) we split the
integral ∫

B(0,1)k
χ{A : | det(A+Ã)|≤η}(A) dA

using Fubini’s theorem column by column. The inner integral becomes

I :=
∫
B(0,1)

χ{ak : ‖Pspan(a1+ã1,...,ak−1+ãk−1)⊥ (ak+ãk)‖2≤ηt−1
k−1}

(ak) dak,

where t−1
k−1 depends on a1, . . . , ak−1 and might be ∞. If it is ∞, then the inner

integral is volk(B(0, 1)). In the other case a1 + ã1, . . . , ak−1 + ãk−1 must be linearly
independent. Hence, their linear span is of dimension k − 1 and we find an ortho-
gonal transformation T that maps e1, . . . , ek−1 into their span and maps ek into the
orthogonal complement. After applying the transformation to I, we have

I =
∫
B(0,1)

χ{bk : ‖Pspan(a1+ã1,...,ak−1+ãk−1)⊥ (Tbk+ãk)‖2≤ηt−1
k−1}

(bk) dbk.

Writing bk = (β1k, . . . , βkk)T and b̃k = (β̃1k, . . . , β̃kk)T for b̃k := T−1ãk, we get

I =
∫
B(0,1)

χ{bk : |βkk+β̃kk|≤ηt−1
k−1}

(bk) dbk

≤ 2k−1
∫ 1

−1
χ{βkk : |βkk+β̃kk|≤ηt−1

k−1}
(βkk) dβkk

≤ 2k−1
∫ 1

−1
χ{βkk : |βkk|≤ηt−1

k−1}
(βkk) dβkk

= 2k min(1, ηt−1
k−1)

≤ 2kηt−1
k−1.

For the first inequality, we embedded B(0, 1) into [−1, 1]k. Now, we have an estimate
of I depending on a1, . . . , ak−1 that also holds when t−1

k−1 =∞. In the following we
show that ∫

B(0,1)k−1
t−1
k−1 d(a1, . . . , ak−1) ≤ c′ (5.3)
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for some constant c′ by proving that∫
B(0,1)

t−1
k−i dak−i ≤ c′it

−1
k−(i+1) (5.4)

for some constants c′i for i = 1, . . . , k − 1. Ultimately, it follows that we can set
c′ := c′1 . . . c

′
k−1 and c := 2kc′ to reach the desired estimate in Eq. (5.2).

So, let us prove the above inductive formula Eq. (5.4). We write∫
B(0,1)

t−1
k−i dak−i

= t−1
k−(i+1)

∫
B(0,1)

‖Pspan(a1+ã1,...,ak−(i+1)+ãk−(i+1))⊥(ak−i + ãk−i)‖−1
2 dak−i.

As before, we distinguish between the cases t−1
k−(i+1) = ∞ and t−1

k−(i+1) < ∞. In the
first case, the inductive formula Eq. (5.4) is obviously satisfied. In the second case,
we again apply a transformation T which rotates the first k − (i+ 1) vectors of the
standard basis to span(a1+ã1, . . . , ak−(i+1)+ãk−(i+1)) and the remaining basis vectors
to its orthogonal complement. Similar to before, writing bk−i = (β1(k−i), . . . , βk(k−i))T
and b̃k−i = (β̃1(k−i), . . . , β̃k(k−i))T for b̃k−i := T−1ãk−i, we get∫

B(0,1)
‖Pspan(a1+ã1,...,ak−(i+1)+ãk−(i+1))⊥(ak−i + ãk−i)‖−1

2 dak−i

=
∫
B(0,1)

‖Pspan(a1+ã1,...,ak−(i+1)+ãk−(i+1))⊥(Tbk−i + ãk−i)‖−1
2 dbk−i

=
∫
B(0,1)

‖(β(k−i)(k−i) + β̃(k−i)(k−i), . . . , βk(k−i) + β̃k(k−i))T‖−1
2 dbk−i.

Let βk−i := (β(k−i)(k−i), . . . , βk(k−i))T and β̃k−i := (β̃(k−i)(k−i), . . . , β̃k(k−i))T . Embed-
ding B(0, 1) ⊂ Rk into [−1, 1]k−(i+1) × B(0, 1) ⊂ Rk−(i+1) × Ri+1 shows that the
above integral can be estimated by

2k−(i+1)
∫
B(0,1)

‖βk−i + β̃k−i‖−1
2 dβk−i ≤ 2k−(i+1)

∫
B(0,1)

‖βk−i‖−1
2 dβk−i =: c′i <∞.

Tracing back the steps, this concludes the proof of Eq. (5.4), which in turn gives us
Eq. (5.3) and Eq. (5.2). Having Eq. (5.2), we set η := ε/n2 and Ã := An. It holds

µ
({
A ∈ B(0, 1)k | ∃n : | det(A+ An)| ≤ εn−2

})
≤
∞∑
n=1

µ
({
A ∈ B(0, 1)k : | det(A+ An)| ≤ εn−2

})
≤
∞∑
n=1

cεn−2

= ε
cπ2

6
−→
ε→0

0.

Hence, for almost every A ∈ B(0, 1)k, there is ε > 0 such that we have | det(A +
An)| ≥ ε/n2 for all n ∈ N.
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Lemma 5.2.19
Let (An)n∈N ⊂ Rk×k be a sequence of matrices such that ‖An‖2 ≤ 1/δn with 0 <
δn ≤ 1. For almost every A ∈ Rk×k, there is ε > 0 with

∀n ∈ N : ‖(A+ An)−1‖−1
2 ≥ εn−2δk−1

n .

Proof. Let A be as in Lemma 5.2.18. Using the adjugate, we write

(A+ An)−1 = det(A+ An)−1(A+ An)ad.

Hence, we have

‖(A+ An)−1‖−1
2 = | det(A+ An)| ‖(A+ An)ad‖−1

2 .

According to Lemma 5.2.18 the determinant part can be estimated from below
by ε̃/n2. For the adjugate part, we remark that the spectral norm and the max
norm on Rk×k are equivalent. Thus, there are constants c1, c2 > 0 with c1‖.‖max ≤
‖.‖2 ≤ c2‖.‖max. Moreover, the entries of the adjugate consist of determinants of
(k − 1) × (k − 1)-matrices with entries from A + An. As a simple corollary of
Hadamard’s inequality, we can estimate these determinants using the max norm to
obtain

‖(A+ An)ad‖2 ≤ c2‖(A+ An)ad‖max

≤ c2‖A+ An‖k−1
max(k − 1) k−1

2

≤ c2(k − 1) k−1
2 c
−(k−1)
1 ‖A+ An‖k−1

2

≤ c2(k − 1) k−1
2 c
−(k−1)
1 (‖A‖2 + ‖An‖2)k−1

≤ c2(k − 1) k−1
2 c
−(k−1)
1 (‖A‖2 + δ−1

n )k−1

≤ c2(k − 1) k−1
2 c
−(k−1)
1 (‖A‖2 + 1)k−1δ−(k−1)

n

=: cδ−(k−1)
n .

Now, we set ε := ε̃/c to obtain the result.

Proposition 5.2.20
Let X be a Banach space. Assume there exists a well-separating common com-
plement for (Vn)n∈N ⊂ Gk(X). Then, the set of all (x1, . . . , xk) ∈ Xk, such that
span(x1, . . . , xk) is a well-separating common complement for (Vn)n∈N, is prevalent.

Proof. Let C be a δ-well-separating common complement for (Vn)n∈N. To prove
prevalence, we show that the set{

(c1, . . . , ck) ∈ Ck
∣∣∣ span(c1 + x1, . . . , ck + xk)

is a well-separating common complement for (Vn)n∈N
}

has full Lebesgue measure in the probe space Ck for every translation by (x1, . . . , xk)
in Xk. To get a notion of Lebesgue measure on Ck we identify a basis (b1, . . . , bk)
of C with the standard basis (e1, . . . , ek) of Rk. Let us denote this isomorphism by
I : C → Rk. We naturally get an isomorphism Ik : Ck → Rk×k mapping elements
of Ck to matrices column by column. Thus, we need to check for the measure of all
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coefficient matrices yielding well-separating common complements. At this point,
let us note that the norm on Xk is given by ‖(x1, . . . , xk)‖Xk := ‖x1‖+ · · ·+ ‖xk‖.

Fix a translation (x1, . . . , xk). For each n ∈ N, we can write xi = c′i,n + v′i,n
according to the splitting X = C⊕Vn. The translation contributed by (c′1,n, . . . , c′k,n)
boils down to a translation on Rk×k by An := Ik(c′1,n, . . . , c′k,n). We are interested
in the extend of this translation with increasing n. To find an upper bound of the
norm of An, we first assume that ‖c′i,n‖ > 0. It holds

‖xi‖
‖c′i,n‖

=
∥∥∥∥∥ c′i,n
‖c′i,n‖

+
v′i,n
‖c′i,n‖

∥∥∥∥∥ ≥ d

(
c′i,n
‖c′i,n‖

, Vn

)
≥ δn.

Thus, we have ‖c′i,n‖ ≤ (1/δn) maxi ‖xi‖ even if ‖c′i,n‖ = 0. Switching to the coeffi-
cient space, we get ‖An‖2 ≤ ‖Ik‖k (1/δn) maxi ‖xi‖, which can be estimated further
by 1/δ̃n := max

(
1, ‖Ik‖k (1/δn) maxi ‖xi‖

)
.

Now, let A be as in Lemma 5.2.19 with respect to the sequence (An)n∈N. We
will show that A induces a well-separating common complement. Let (c1, . . . , ck) :=
(Ik)−1A and let c ∈ span(c1 + x1, . . . , ck + xk) with ‖c‖ = 1. We express c in terms
of coefficients

c =
k∑
i=1

γi(ci + xi) =
k∑
i=1

γi
k∑
j=1

(αji + αji,n)bj +
k∑
i=1

γiv
′
i,n, (5.5)

where A = (αij)ij and An = (αij,n)ij. Since A + An is invertible by Lemma 5.2.19
and (b1, . . . , bk) is a basis, the vectors ∑k

j=1(αji + αji,n)bj for i = 1, . . . , k form a
basis of C. In particular, the double sum in Eq. (5.5) does not vanish. Using the
fact that C is δ-well-separating, we compute

d(c, Vn) = d

∑
i,j

γi(αji + αji,n)bj, Vn


=
∥∥∥∥∑
i,j

γi(αji + αji,n)bj
∥∥∥∥ d
 ∑

i,j γi(αji + αji,n)bj∥∥∥∑i,j γi(αji + αji,n)bj
∥∥∥ , Vn


≥
∥∥∥∥∑
i,j

γi(αji + αji,n)bj
∥∥∥∥δn.

We transfer further norm estimates onto the coefficient space. It holds∥∥∥∥∑
i,j

γi(αji + αji,n)ej
∥∥∥∥

2
≤ ‖I‖

∥∥∥∥∑
i,j

γi(αji + αji,n)bj
∥∥∥∥.

Let γ := (γ1, . . . , γk)T . Using the identity γ = (A+ An)−1(A+ An)γ, we get∥∥∥∥∑
i,j

γi(αji + αji,n)ej
∥∥∥∥

2
= ‖(A+ An)γ‖2

≥ ‖(A+ An)−1‖−1
2 ‖γ‖2

≥ εn−2δ̃k−1
n ‖γ‖2

with ε > 0 from Lemma 5.2.19. As (ci + xi)ki=1 are linearly independent, the norm
of γ such that ‖∑k

i=1 γi(ci + xi)‖ = 1 for fixed ci and xi is bounded from below by
a positive constant η > 0.
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Let δ′n := εn−2δ̃k−1
n η‖I‖−1δn. Putting everything together, we have shown that

inf
c∈span(c1+x1,...,ck+xk)∩S

d(c, Vn) ≥ δ′n

for all n ∈ N, which tells us that span(c1+x1, . . . , ck+xk) is a δ′-well-separating com-
mon complement for (Vn)n∈N. Hence, given an arbitrary translation by (x1, . . . , xk) ∈
Xk, almost every A ∈ Rk×k induces a well-separating common complement.

Tracking δ′ in the Hilbert space setting reveals that almost every tuple yields a
common complement such that the degree of transversality decays at most polyno-
mially with c/n5k2+2 for some c > 0 depending on the tuple. A better general rate
of decay can be obtained by carefully refining the proofs.

5.3 Convergence results
We now derive a convergence theorem for Ginelli’s algorithm in the setting of The-
orem 2.3.2. The main statement is similar to the one for finite dimensions: expo-
nentially fast convergence of the algorithm for almost every input. This time, how-
ever, convergence is analyzed using well-separating common complements instead
of admissibility. Since we know about existence and prevalence of well-separating
common complements in Hilbert spaces and since we used an orthonormalization
procedure in the definition of Ginelli’s algorithm2, the upcoming convergence theo-
rem is only for Hilbert spaces.

5.3.1 Theorem
Let us state the main result of this chapter:

Theorem 5.3.1 (Convergence a.e. of Ginelli’s algorithm on Hilbert spaces with
T = Z)
Let R = (Ω,F ,P, σ,H, L) satisfy the assumptions of Theorem 2.3.2 and let k =
d1 + · · ·+ dl for some finite l ≤ p. Moreover, set λ0 :=∞ and λp+1 := κ∗.

On a subset Ω′ ⊂ Ω of full P-measure, Ginelli’s algorithm converges for almost
every input. That is, fixing ω ∈ Ω′, for almost every tuple (x1, . . . , xk) ∈ Hk, for
almost every R ∈ Rk×k

ru , and for all i ≤ l, it holds3

lim sup
N→∞

sup
n1,n2≥N

1
min(n1, n2) log dG

(
span

{(
Gn1,n2
ω,k

)
ij

∣∣∣∣ j = 1, . . . , di
}
, Yi(ω)

)
≤ −min(|λi − λi−1|, |λi − λi+1|) (5.6)

at ((x1, . . . , xk), R).

There are three concepts of “almost every” in the statement of the theorem.
Firstly, the algorithm fixes ω from a set of full P-measure to determine the trajec-
tory along which Ginelli’s algorithm is applied. Secondly and thirdly, the algorithm

2On an abstract level, Ginelli’s algorithm can be defined for Grassmannians (see Section 3.1)
and does not require an orthonormalization procedure.

3We remind the reader of the index notation ij introduced in the beginning of Section 2.2,
which counts indices with respect to degeneracies of the Lyapunov spectrum.
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requires a tuple (x1, . . . , xk) ∈ Hk and an upper triangular matrix R ∈ Rk×k
ru as in-

puts. “Almost every” with respect to the tuple is understood in terms of prevalence,
whereas “almost every” with respect to the matrix is meant in the usual Lebesgue
sense. If H is finite-dimensional, the two previous notions coincide and we get the
same statement as in Chapter 4 for discrete time.

Similar to the finite-dimensional case Theorem 5.3.1 tells us that, generically,
output vectors of Ginelli’s algorithm span subspaces that are exponentially close
to the Oseledets spaces. Hence, the algorithm approximates CLVs. To get a good
approximation, it is necessary to increase both n1 and n2. In other words, the
algorithm needs sufficient data along the past and the future of the trajectory.
Moreover, Theorem 5.3.1 reveals that the speed of convergence to the ith Oseledets
space Yi(ω) is at least exponentially fast in proportion to the spectral gap between
λi and neighboring LEs.

5.3.2 Forward-time estimates
The forward- and backward-time estimates are proved for general Banach spaces
(X, ‖.‖). Our first result investigates how certain subspaces evolve in the presence
of an equivariant splitting under a given map. The estimates consist of terms that
are well-understood when the splitting is the Oseledets splitting. As before, we write
B ⊂ X for the unit ball and S ⊂ X for the unit sphere in X.

Lemma 5.3.2
Let (Y, V ), (Y ′, V ′) ∈ Compk(X) be two pairs of closed complemented subspaces.
Assume we have a bounded linear map L ∈ L(X) respecting the splittings, i.e.,
LY ⊂ Y ′ and LV ⊂ V ′, such that kerL ⊂ V .

IfW ∈ Gk(X) is a complement to V such that the degree of transversality satisfies

inf
w∈W∩S

d(w, V ) ≥ 2‖ΠV ||Y ‖
‖L|V ‖

infy∈Y ∩S ‖Ly‖
, (5.7)

then
sup

w′∈LW∩B
d(w′, Y ′ ∩B) ≤ 4 ‖ΠV ||Y ‖

infw∈W∩S d(w, V )
‖L|V ‖

infy∈Y ∩S ‖Ly‖
. (5.8)

Proof. If L|V = 0, then kerL = V . Thus, L restricts to an isomorphism between
any complement W to V and Y ′. In this case the claim is trivially satisfies.

Now, assume L|V 6= 0. Let W be a complement as in the claim. For w ∈ W ∩S,
it holds

‖LΠV ||Yw‖ ≤ ‖L|V ‖ ‖ΠV ||Y ‖

and

‖LΠY ||Vw‖ ≥ inf
y∈Y ∩S

‖Ly‖ ‖ΠY ||Vw‖

= inf
y∈Y ∩S

‖Ly‖ ‖w − ΠV ||Yw‖

≥ inf
y∈Y ∩S

‖Ly‖ d(w, V )

≥ 2‖ΠV ||Y ‖ ‖L|V ‖ > 0.
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Combining both estimates, we get

‖LΠV ||Yw‖
‖LΠY ||Vw‖

≤ 1
2 . (5.9)

To derive Eq. (5.8) it is enough to estimate d(Lw/‖Lw‖, Y ′ ∩ B) for w ∈ W ∩ S.
Write w = y + v according to the decomposition X = Y ⊕ V . We have

d

(
Lw
‖Lw‖

, Y ′ ∩B
)
≤
∥∥∥∥∥ Lw‖Lw‖ − Ly

‖Ly‖

∥∥∥∥∥
=
∥∥∥∥∥ Lv‖Lw‖ −

(
1
‖Ly‖

− 1
‖Lw‖

)
Ly
∥∥∥∥∥

≤ ‖Lv‖
‖Lw‖

+
∣∣∣∣∣1− ‖Ly‖‖Lw‖

∣∣∣∣∣.
Since y 6= 0 and by Eq. (5.9), we estimate the first term as follows:

‖Lv‖
‖Lw‖

≤ ‖Lv‖
‖Ly‖ − ‖Lv‖

= ‖Lv‖
‖Ly‖

(
1− ‖Lv‖
‖Ly‖

)−1

≤ 2‖Lv‖
‖Ly‖

.

For the other term, we distinguish between two cases. If ‖Ly‖/‖Lw‖ ≤ 1, then

1− ‖Ly‖
‖Lw‖

≤ 1− ‖Ly‖
‖Ly‖+ ‖Lv‖ = ‖Lv‖

‖Ly‖+ ‖Lv‖ ≤
‖Lv‖
‖Ly‖

.

If ‖Ly‖/‖Lw‖ ≥ 1, then

‖Ly‖
‖Lw‖

− 1 = ‖Ly‖ − ‖Lw‖
‖Lw‖

≤ ‖Lv‖
‖Lw‖

≤ 2‖Lv‖
‖Ly‖

.

In total we get

d

(
Lw
‖Lw‖

, Y ′ ∩B
)
≤ 4‖Lv‖
‖Ly‖

.

Since v = ΠV ||Yw and y = ΠY ||Vw, the claim follows from the estimates in the
beginning.

Corollary 5.3.3
In the setting of Lemma 5.3.2 it holds

‖ΠV ′||Y ′ |LW‖ ≤ 2 ‖ΠV ||Y ‖
infw∈W∩S d(w, V )

‖L|V ‖
infy∈Y ∩S ‖Ly‖

.

Proof. The corollary follows from

‖ΠV ′||Y ′|LW‖ = sup
w∈W∩S

∥∥∥∥∥ΠV ′||Y ′
Lw
‖Lw‖

∥∥∥∥∥ = sup
w∈W∩S

‖LΠV ||Yw‖
‖Lw‖

and from the estimate of ‖Lv‖/‖Lw‖ in the proof of Lemma 5.3.2.

Next, we derive two lemmata that handle sequences of maps acting on equivariant
splittings with different asymptotic growth rates. The first lemma is concerned with
propagation from present to future, whereas the second lemma treats propagation
from past to present.
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Lemma 5.3.4
Let (Y, V ) ∈ Compk(X) and (Y (n), V (n)) ∈ Compk(X) for n ∈ N. Assume we have
bounded linear maps L(n) ∈ L(X) respecting the splittings, i.e., L(n)Y ⊂ Y (n) and
L(n)V ⊂ V (n), such that kerL(n) ⊂ V . Furthermore, assume there are numbers
∞ > λY > λV ≥ −∞ such that

lim sup
n→∞

1
n

log ‖L(n)|V ‖ ≤ λV

and
lim inf
n→∞

inf
y∈Y ∩S

1
n

log ‖L(n)y‖ ≥ λY .

Then, we have

lim sup
n→∞

1
n

log dG(L(n)W,Y (n)) ≤ −|λY − λV |

for any complement W to V .

Proof. According to the assumptions we have

lim sup
n→∞

1
n

log ‖L(n)|V ‖
infy∈Y ∩S ‖L(n)y‖ ≤ −|λY − λV | < 0,

i.e., the quotient ‖L(n)|V ‖/(infy∈Y ∩S ‖L(n)y‖) decays exponentially fast with n.
Thus, for any complementW to V , there isN > 0 such that Eq. (5.7) of Lemma 5.3.2
is satisfied for all n ≥ N . Applying the lemma, we get

lim sup
n→∞

1
n

log sup
w′∈L(n)W∩B

d(w′, Y (n) ∩B) ≤ −|λY − λV |.

The claim follows from Lemma 5.1.2.

Lemma 5.3.4 implies that complements to spaces of the Oseledets filtration will
align with Oseledets spaces asymptotically (at an exponential speed). Moreover, the
lemma tells us that any two complements to V will align asymptotically if they have
a uniformly higher growth rate than V . Interestingly, we do not need the existence
of an Oseledets splitting. In fact, the lemma may be applied to systems with a
possibly non-invertible base (e.g, see [3, theorem 2] or [7]).

Lemma 5.3.5
Let (Y, V ) ∈ Compk(X) and (Y (−n), V (−n)) ∈ Compk(X) for n ∈ N. As-
sume we have bounded linear maps L(−n) ∈ L(X) respecting the splittings,
i.e., L(−n)Y (−n) ⊂ Y and L(−n)V (−n) ⊂ V , such that kerL(−n) ⊂ V (−n).
Furthermore, assume that

lim
n→∞

1
n

log ‖ΠV (−n)||Y (−n)‖ = 0

and that there are numbers ∞ > λY > λV ≥ −∞ such that

lim sup
n→∞

1
n

log ‖L(−n)|V (−n)‖ ≤ λV
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and
lim inf
n→∞

inf
y∈Y (−n)∩S

1
n

log ‖L(−n)y‖ ≥ λY .

Then, we have

lim sup
n→∞

1
n

log dG(L(−n)W,Y ) ≤ −|λY − λV |

for any well-separating common complement W for (V (−n))n∈N.

Proof. As in Lemma 5.3.4, we see that

lim sup
n→∞

1
n

log ‖L(−n)|V (−n)‖
infy∈Y (−n)∩S ‖L(−n)y‖ ≤ −|λY − λV |.

By our assumption on the associated projections we get

lim sup
n→∞

1
n

log
(

2‖ΠV (−n)||Y (−n)‖
‖L(−n)|V (−n)‖

infy∈Y (−n)∩S ‖L(−n)y‖

)
≤ −|λY − λV | < 0.

In particular, by Definition 5.2.1 any well-separating common complement for
(V (−n))n∈N fulfills Eq. (5.7) for n large enough as the degree of transversality
decays only subexponentially. The claim may be derived as in the proof of
Lemma 5.3.4.

Corollary 5.3.6
In the setting of Lemma 5.3.5, we have

lim sup
n→∞

1
n

log ‖ΠV ||Y |L(−n)W‖ ≤ −|λY − λV |

for any well-separating common complement W for (V (−n))n∈N.

Proof. Since Lemma 5.3.2 and Corollary 5.3.3 give the same estimate up to a factor
of 2, the proof of Corollary 5.3.6 is the same as for Lemma 5.3.5.

The following theorem gives us convergence of certain subspaces of Banach spaces
to the sum of the first Oseledets spaces in forward-time:

Theorem 5.3.7
Let R be as in Theorem 2.3.2 and ω ∈ Ω such that the Oseledets splitting exists.
Write λp+1 := κ∗ and fix some finite i ≤ p.

If Eqs. (2.6) to (2.8) hold4, then

lim sup
n→∞

1
n

log dG
(
L(n)
ω W,Y1(σnω)⊕ · · · ⊕ Yi(σnω)

)
≤ −|λi − λi+1|

for any complement W to Vi+1(ω).
If Eqs. (2.9) to (2.11) hold, then

lim sup
n→∞

1
n

log dG
(
L(n)
σ−nωW,Y1(ω)⊕ · · · ⊕ Yi(ω)

)
≤ −|λi − λi+1|

for any well-separating common complement W for (Vi+1(σ−nω))n∈N.
4We remark that Eqs. (2.6) to (2.8) and Eqs. (2.9) to (2.11) hold for P-almost every ω ∈ Ω.
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Proof. The proof is a direct application of Lemma 5.3.4 and Lemma 5.3.5 to the
splittings (Y, V ) = (Y1(ω)⊕ · · · ⊕ Yi(ω), Vi+1(ω)), (Y (n), V (n)) := (Y1(σnω)⊕ · · · ⊕
Yi(σnω), Vi+1(σnω)) for n ∈ Z, and to the maps L(n) := L(n)

ω and L(−n) := L(n)
σ−nω

for n ∈ N.

In view of Theorem 5.2.15, Theorem 5.3.7 for Hilbert spaces implies that we can
compute the sum of the first Oseledets spaces Y1 ⊕ · · · ⊕ Yi at ω or asymptotically
by pushing forwards a set of d1 + · · ·+di randomly chosen vectors. The convergence
is exponentially fast with a rate given by the spectral gap between the consecutive
LEs λi and λi+1.

5.3.3 Backward-time estimates
In this subsection we investigate backward propagation of certain subspaces. Since
we did not assume a cocycle with invertible action, we cannot simply apply our
results about forward propagation to a time-reversed system as it is done in the pre-
vious chapter. Instead, we derive new estimates for forward propagation to deduce
properties for backward propagation.

Lemma 5.3.8
Let (Y1, V1) ∈ Compk1(X) and (Y2, V2) ∈ Compk2(V1), so that X = Y1 ⊕ V1 and
V1 = Y2 ⊕ V2. Moreover, let Wi be a complement to Vi in X for i = 1, 2 such that
W1 ⊂ W2. Assume we have a map L ∈ L(X) with kerL ⊂ V2.

If W̃ ∈ Gk2(W2) is a complement to W1 in W2 and if w̃ ∈ W̃ ∩ S satisfies

d(w̃, Y2) ≥ (2‖ΠV1||W1‖+ ‖ΠV1||Y1‖ ‖ΠW1||V1‖)
‖L|V1‖

infy∈Y1∩S ‖Ly‖
+ ‖ΠV2||Y1⊕Y2|W2‖,

(5.10)
then

d

(
Lw̃
‖Lw̃‖

,LW1

)

≤
2‖L|V1‖ ‖ΠV1||W1‖

(infy∈Y1∩S ‖Ly‖)
(
d(w̃, Y2)− ‖ΠV2||Y1⊕Y2|W2‖

)
− ‖L|V1‖ ‖ΠV1||Y1‖ ‖ΠW1||V1‖

.

(5.11)

Proof. Since V1 = Y2 ⊕ V2 is a splitting with Y2 6= {0} and kerL ⊂ V2, it holds
L|V1 6= 0.

Let w̃ ∈ W̃ ∩ S be as in the claim, so that Eq. (5.10) is satisfied. We estimate

‖LΠV1||W1w̃‖ ≤ ‖L|V1‖ ‖ΠV1||W1‖

and

‖LΠW1||V1w̃‖ = ‖L(ΠY1||V1 + ΠV1||Y1)ΠW1||V1w̃‖
≥ ‖LΠY1||V1ΠW1||V1w̃‖ − ‖LΠV1||Y1ΠW1||V1w̃‖

≥
(

inf
y∈Y1∩S

‖Ly‖
)
‖ΠY1||V1ΠW1||V1w̃‖ − ‖L|V1‖ ‖ΠV1||Y1‖ ‖ΠW1||V1‖.
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The term with two consecutive projections applied to w̃ can be estimates further
via

‖ΠY1||V1ΠW1||V1w̃‖ = ‖ΠW1||V1w̃ − ΠV1||Y1ΠW1||V1w̃‖
= ‖w̃ − ΠV1||W1w̃ − ΠV1||Y1ΠW1||V1w̃‖
= ‖w̃ − ΠV1||Y1(ΠV1||W1 + ΠW1||V1)w̃‖
= ‖w̃ − ΠV1||Y1w̃‖
= ‖w̃ − ΠY2||V2ΠV1||Y1w̃ − ΠV2||Y2ΠV1||Y1w̃‖
≥ ‖w̃ − ΠY2||V2ΠV1||Y1w̃‖ − ‖ΠV2||Y2ΠV1||Y1w̃‖
≥ d(w̃, Y2)− ‖ΠV2||Y2ΠV1||Y1w̃‖
= d(w̃, Y2)− ‖ΠV2||Y1⊕Y2w̃‖
≥ d(w̃, Y2)− ‖ΠV2||Y1⊕Y2 |W2‖.

Note that ΠV2||Y2 and ΠY2||V2 are projections defined on V1. By Eq. (5.10) we have

‖ΠY1||V1ΠW1||V1w̃‖ ≥ (2‖ΠV1||W1‖+ ‖ΠV1||Y1‖ ‖ΠW1||V1‖)
‖L|V1‖

infy∈Y1∩S ‖Ly‖
.

Hence, we get
‖LΠW1||V1w̃‖ ≥ 2‖ΠV1||W1‖ ‖L|V1‖ > 0

and
‖LΠV1||W1w̃‖
‖LΠW1||V1w̃‖

≤ 1
2 .

Finally, it holds

d

(
Lw̃
‖Lw̃‖

,LW1

)
≤
∥∥∥∥∥ Lw̃‖Lw̃‖ − LΠW1||V1w̃

‖Lw̃‖

∥∥∥∥∥
= ‖LΠV1||W1w̃‖

‖Lw̃‖

≤
‖LΠV1||W1w̃‖

‖LΠW1||V1w̃‖ − ‖LΠV1||W1w̃‖

= ‖LΠV1||W1w̃‖
‖LΠW1||V1w̃‖

(
1− ‖LΠV1||W1w̃‖
‖LΠW1||V1w̃‖

)−1

≤ 2‖LΠV1||W1w̃‖
‖LΠW1||V1w̃‖

.

Estimating the numerator and the denominator as in the beginning of the proof, we
arrive at Eq. (5.11).
Corollary 5.3.9
Let Yi, Vi,Wi for i = 1, 2 and L be as in Lemma 5.3.8.

If W̃ ⊂ W2 is a complement to W1 in W2 satisfying

inf
w̃′∈LW̃∩S

d(w̃′,LW1) ≥ δ

for some 0 < δ ≤ 1, then
sup

w̃∈W̃∩B
d(w̃, Y2 ∩B)

≤ 2
(2
δ
‖ΠV1||W1‖+ ‖ΠV1||Y1‖ ‖ΠW1||V1‖

) ‖L|V1‖
infy∈Y1∩S ‖Ly‖

+ 2‖ΠV2||Y1⊕Y2|W2‖.
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Proof. Assume w̃ ∈ W̃ ∩ S fulfills

d(w̃, Y2) >
(2
δ
‖ΠV1||W1‖+ ‖ΠV1||Y1‖ ‖ΠW1||V1‖

) ‖L|V1‖
infy∈Y1∩S ‖Ly‖

+ ‖ΠV2||Y1⊕Y2|W2‖,

then by Lemma 5.3.8

δ ≤ d

(
Lw̃
‖Lw̃‖

,LW1

)

≤
2‖L|V1‖ ‖ΠV1||W1‖

(infy∈Y1∩S ‖Ly‖)
(
d(w̃, Y2)− ‖ΠV2||Y1⊕Y2|W2‖

)
− ‖L|V1‖ ‖ΠV1||Y1‖ ‖ΠW1||V1‖

.

However, the former would be strictly smaller than δ by our assumption on d(w̃, Y2).
Thus, we must have

sup
w̃∈W̃∩S

d(w̃, Y2)

≤
(2
δ
‖ΠV1||W1‖+ ‖ΠV1||Y1‖ ‖ΠW1||V1‖

) ‖L|V1‖
infy∈Y1∩S ‖Ly‖

+ ‖ΠV2||Y1⊕Y2|W2‖.

The claim follows from Eq. (5.1).

From Corollary 5.3.9 we can derive an upper bound of the distance between W̃
and Y2 from a lower bound of the degree of transversality of (LW̃ ,LW1) in LW2.
Hence, the corollary describes backward propagation.

Next, we use the spaces W1,W2 to connect estimates from Section 5.3.2 to back-
ward propagation, ultimately giving us an understanding of Ginelli’s algorithm at
the level of maps:

Lemma 5.3.10
Let (Y1, V1) ∈ Compk1(X), (Y2, V2) ∈ Compk2(V1), and ∞ > λY1 > λV1 = λY2 >
λV2 ≥ −∞.

For the past data, let (Y1(−n), V1(−n)) ∈ Compk1(X) and (Y2(−n), V2(−n))
∈ Compk2(V1(−n)) for n ∈ N. Assume we have bounded linear maps L(−n) ∈ L(X)
respecting the splittings, i.e., L(−n)Yi(−n) ⊂ Yi for i = 1, 2 and L(−n) V2(−n) ⊂
V2, such that kerL(−n) ⊂ V2(−n) for n ∈ N. Moreover, assume that

1. limn→∞(1/n) log ‖ΠV1(−n)||Y1(−n)‖ = 0,

2. limn→∞(1/n) log ‖ΠV2(−n)||Y1(−n)⊕Y2(−n)‖ = 0,

3. lim supn→∞(1/n) log ‖L(−n)|Vi(−n)‖ ≤ λVi for i = 1, 2,

4. lim infn→∞ infy∈Y1(−n)∩S (1/n) log ‖L(−n)y‖ ≥ λY1, and

5. lim infn→∞ infy∈Y1(−n)⊕Y2(−n)∩S (1/n) log ‖L(−n)y‖ ≥ λY2.

For the future data, let (Y1(n), V1(n)) ∈ Compk1(X) and (Y2(n), V2(n)) ∈
Compk2(V1(n)) for n ∈ N. Assume we have bounded linear maps L(n) ∈ L(X)
respecting the splittings, i.e., L(n)Yi ⊂ Yi(n) for i = 1, 2 and L(n)V2 ⊂ V2(n), such
that kerL(n) ⊂ V2 for n ∈ N. Moreover, assume that

6. lim supn→∞(1/n) log ‖L(n)|V1‖ ≤ λV1 and
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7. lim infn→∞ infy∈Y1∩S (1/n) log ‖L(n)y‖ ≥ λY1.

Let Wi be a well-separating common complement for (Vi(−n))n∈N for i = 1, 2
such that W1 ⊂ W2. If (W̃ (n1, n2))n1,n2∈N is a family of subspaces such that
L(n2)L(−n1)W1 ⊕ W̃ (n1, n2) = L(n2)L(−n1)W2, and if

inf
w̃∈W̃ (n1,n2)∩S

d(w̃,L(n2)L(−n1)W1) ≥ δ (5.12)

for some constant 0 < δ ≤ 1, then

lim sup
N→∞

sup
n1,n2≥N

1
min(n1, n2) log dG

((
L(n2)|L(−n1)W2

)−1
W̃ (n1, n2), Y2

)
≤ −min(|λY2 − λY1|, |λY2 − λV2|). (5.13)

Proof. LetW1 andW2 be as in the claim. We apply Lemma 5.3.5 to (Y, V ) = (Y1, V1)
for W = W1 and to (Y, V ) = (Y1 ⊕ Y2, V2) for W = W2 with their respective spaces
and mappings at −n. It follows that

lim sup
n→∞

1
n

log dG(L(−n)W1, Y1) ≤ −|λY1 − λV1|

and
lim sup
n→∞

1
n

log dG(L(−n)W2, Y1 ⊕ Y2) ≤ −|λY2 − λV2|.

Thus, we have good approximations of Y1 and Y1⊕Y2 from the past data. Moreover,
by Corollary 5.3.6 we have

lim sup
n→∞

1
n

log ‖ΠV2||Y1⊕Y2|L(−n)W2‖ ≤ −|λY2 − λV2|.

Since L(−n)W1 converges to Y1, the projections ΠL(−n)W1||V1 converge to ΠY1||V1 by
Lemma 5.1.3. In particular, ‖ΠL(−n)W1||V1‖ and ‖ΠV1||L(−n)W1‖ are bounded from
above by a constant independent of n.

The growth rate assumptions on future data imply

lim sup
n→∞

1
n

log ‖L(n)|V1‖
infy∈Y1∩S ‖L(n)y‖ ≤ −|λY1 − λV1|.

Now, apply Corollary 5.3.9 to (Y1, V1), (Y2, V2), the two complements L(−n1)W1 to
V1 and L(−n1)W2 to V2, L = L(n2), and W̃ =

(
L(n2)|L(−n1)W2

)−1
W̃ (n1, n2). We

get

sup
w̃∈(L(n2)|L(−n1)W2)−1

W̃ (n1,n2)∩B
d(w̃, Y2 ∩B)

≤ 2
(2
δ
‖ΠV1||L(−n1)W1‖+ ‖ΠV1||Y1‖ ‖ΠL(−n1)W1||V1‖

) ‖L(n2)|V1‖
infy∈Y1∩S ‖L(n2)y‖

+ 2‖ΠV2||Y1⊕Y2|L(−n1)W2‖. (5.14)

In view of Lemma 5.1.2, all that remains to prove Eq. (5.13) is to insert respective
asymptotics into the terms of Eq. (5.14). Indeed, the terms inside the large bracket
are bounded from above by a constant, and the other terms can be estimated as
above. Now, Eq. (5.13) is an easy application of Proposition 4.1.4.
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Lemma 5.3.10 provides an appropriate tool to study convergence of Ginelli’s
algorithm in infinite dimensions. Since the algorithm initiates vectors for backward
propagation inside spaces from the forward propagation, which vary with the chosen
runtime, the domain for initial vectors is not constant. Hence, W̃ varies with n1
and n2. This poses a problem when talking about convergence with respect to
initial conditions. One way to solve this problem is to express initial vectors of
the backward propagation in terms of runtime-independent coefficients. If X = H
is a Hilbert space, then we may identify an orthonormal basis of L(n1)L(−n2)W2
with the standard basis of (Rk1+k2 , ‖.‖2) as it is done in our definition of Ginelli’s
algorithm on Hilbert spaces (see Definition 3.1.1). The identification defines an
isometry leaving distances and angles invariant. In particular, we may represent W̃
in terms of runtime-independent coefficients and check Eq. (5.12) on the coefficient
space.

5.3.4 Proof of theorem
We now combine our tools to prove Theorem 5.3.1:

proof of Theorem 5.3.1. Fix an element ω of the subset Ω′ ⊂ Ω of full P-measure on
which the Oseledets splitting is defined and on which Eqs. (2.6) to (2.11) hold. We
show convergence of Ginelli’s algorithm at ω for almost every input.

Let Fi ⊂ Hd1+···+di be the subset of all tuples inducing well-separating common
complements for (Vi+1(σ−nω))n∈N for i = 1, . . . , l. Then, the set

F :=
(
F1 ×Hd2+···+dl

)
∩
(
F2 ×Hd3+···+dl

)
∩ · · · ∩ Fl ⊂ Hk

consists of tuples (x11 , . . . , xldl ) such that span(x11 , . . . , xidi ) is a well-separating
common complement for (Vi+1(σ−nω))n∈N for each i = 1, . . . , l. In particular, since
products and intersections of prevalent sets are prevalent, Theorem 5.2.15 implies
that F is prevalent. We use elements of F as initial vectors for the forward phase
of Ginelli’s algorithm.

Let B ⊂ Rk×k
ru be the subset of upper triangular matrices with non-zero diagonal

elements, i.e., the subset of invertible upper triangular matrices. B has full Lebesgue
measure and is used in our proof for initial vectors for the backward phase of Ginelli’s
algorithm.

Now, let ((x1, . . . , xk), R) ∈ F × B be an input for Ginelli’s algorithm. Ac-
cording to Theorem 5.3.7 the first set of vectors (x11 , . . . , x1d1

) gives an approxi-
mation of Y1(ω) via the first step of Ginelli’s algorithm. The remaining steps of
Ginelli’s algorithm do not change this approximation. In fact, the first set of out-
put vectors (Gn1,n2

ω,k )1j for j = 1, . . . , d1 at ((x1, . . . , xk), R) spans the same space as(
L(n1)
σ−n1ω

x11 , . . . ,L(n1)
σ−n1ω

x1d1

)
. Thus, we have

lim sup
N→∞

sup
n1,n2≥N

1
min(n1, n2) log dG

(
span

{(
Gn1,n2
ω,k

)
1j

∣∣∣∣ j = 1, . . . , d1

}
, Y1(ω)

)
≤ −|λ1 − λ2|
= −min(|λ1 − λ0|, |λ1 − λ2|)

at ((x1, . . . , xk), R).
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Convergence of the remaining spaces is due to Lemma 5.3.10. Fix some 1 < i ≤ l.
We set Y1 = Y1(ω) ⊕ · · · ⊕ Yi−1(ω), V1 = Vi(ω), Y2 = Yi(ω), V2 = Vi+1(ω),
L(−n) = L(n)

σ−nω, L(n) = L(n)
ω , and spaces Yj(±n) and Vj(±n) for j = 1, 2 ac-

cordingly. The growth rates in Lemma 5.3.10 are given by uniform bounds obtained
from Theorem 2.3.2 and its proof. Furthermore, let W1 = span(x11 , . . . , x(i−1)di−1

)
and W2 = span(x11 , . . . , xidi ) be the well-separating common complements, which
approximate Y1 and Y2 in the first step of Ginelli’s algorithm. The family of spaces
(W̃ (n1, n2))n1,n2∈N is given by span(y1

i1 , . . . , y
1
idi

) via vectors of the fourth step of the
algorithm. Indeed, the ith1 to ithdi column

[ri1| . . . |ridi ] :=



∗ · · · ∗
... ...
∗ · · · ∗

ri1,i1 · · · ri1,idi. . . ...
0 ridi ,idi
0 · · · 0
... ...
0 · · · 0


of R give us coefficients with which we may express y1

i1 , . . . , y
1
idi

in terms of the
orthonormalized vectors

orth(L(n2)L(−n1)x11 , . . . ,L(n2)L(−n1)xidi ) = orth
(
L(n1+n2)
σ−n1ω

x11 , . . . ,L(n1+n2)
σ−n1ω

xidi

)
,

that emerge in the third step of Ginelli’s algorithm. By means of this orthogonal
transformation between coefficients and initial vectors, Eq. (5.12) may be checked
on coefficient space. Since L(n2)L(−n1)W1 is mapped to Rd1+···+di−1 × {0} ⊂ Rk

and L(n2)L(−n1)W2 to Rd1+···+di × {0} ⊂ Rk, we need to check that

inf
r∈span

(
ri1 ,...,ridi

)
∩S
‖prir‖2 > 0,

where pri : Rk → {0} × Rdi × {0} is the projection onto the ith1 to ithdi coordinates.
This is easily verified, since R is an upper triangular matrix with non-zero elements
on the diagonal. Thus, we may apply Lemma 5.3.10 to see that the linear span of
the ith1 to ithdi vectors from the fifth step of Ginelli’s algorithm approximates Yi(ω) at
the desired speed. This concludes the proof.5

5.4 Summary and discussion
With the emergence of semi-invertible METs, the concept of CLVs has been opened
up to new settings. In particular, various infinite-dimensional versions of the MET
have been proved. In this chapter we analyzed convergence of Ginelli’s algorithm to

5The last step of Ginelli’s algorithm only normalizes computed vectors. It does not change
their linear span and, thus, plays no role in Eq. (5.6). However, the step is a necessary part of the
algorithm, since CLVs are defined as normalized basis vectors of Yi(ω).
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compute CLVs in the setting of the semi-invertible MET from [29]. Our main result
is a convergence proof of the algorithm in the context of Hilbert spaces. The proof
not only generalizes the analysis of the last chapter to an infinite-dimensional setting,
but also treats the case of non-invertible linear propagators. We formulated most
arguments for maps on Banach spaces before connecting them to basic asymptotic
properties of the Oseledets splitting. Since those properties appear in most versions
of the MET, our convergence proof can be translated to other settings as well.

A major part of our convergence proof was the analysis of so-called well-
separating common complements. Those are subspaces that stay well-separated
from a given sequence of subspaces. In particular, we applied this concept to
the case where the sequence of subspaces was given by the Oseledets filtration at
different initial times. Then, we used vectors subject to the obtained well-separating
common complements as input vectors for Ginelli’s algorithm. Since almost every
tuple of input vectors spans a well-separating common complement, describing
convergence with respect to such complements is sufficient in Hilbert spaces.

The actual convergence proof was split into estimates for forward and for back-
ward propagation. During forward propagation, almost every complement to spaces
of the Oseledets filtration asymptotically aligns with the sum of the first Oseledets
spaces. The fact that complements generically align in forward-time even holds if
we only have an Oseledets filtration. For backward propagation, we had to restrict
the propagator to certain subspaces, since it may not be globally invertible in a
semi-invertible setting. Last but not least, we combined our estimates to form the
convergence proof.

Throughout the proof, we connected estimates to the LEs. Thus, we were able to
relate LEs to the speed of convergence. As for the finite-dimensional case, Ginelli’s
algorithm converges exponentially fast with a rate given by the spectral gap between
associated LEs.

While we successfully generalized and proved Ginelli’s algorithm for infinite di-
mensions, it is primarily an analytical tool. The numerical computation of CLVs
brings its own set of challenges. Indeed, our results may be seen as a help to un-
derstand limit cases of applications of Ginelli’s algorithm for systems of increasingly
higher resolutions. The transition between finite and infinite dimensions is still an
open question and leads to the concept of stability of CLVs. Additionally, numerical
inaccuracies in computing the linear propagator can result in a different output of
Ginelli’s algorithm. We stress again that CLVs may depend only measurably on the
trajectory.

Despite the remaining challenges, we made a big step towards computing CLVs in
infinite dimensions. Through the connection to semi-invertible METs, our research
applies to recent developments in the context of CLVs and paves the way for new
advancements of both analytical and numerical aspects of CLV-algorithms.
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6

Conclusions

During the last years covariant Lyapunov vectors (CLVs) received increased atten-
tion in applications. They constitute modes that describe long-term linear pertur-
bations along a given nonlinear background trajectory of a dynamical system. Even
though their existence has been known since 1968 due to the celebratedmultiplicative
ergodic theorem (MET) by Oseledets, the interest in applications for CLVs sparkled
only recently due to new efficient algorithms to compute CLVs. Among the most
famous is Ginelli’s algorithm, which uses a purely dynamical approach to compute
CLVs. While there are numerous applications of the algorithm, mathematical results
are quite rare. In this thesis we performed a mathematically rigorous convergence
analysis of Ginelli’s algorithm. Our main contributions are convergence theorems
for finite and for infinite dimensions.

Since we require at least existence of CLVs to compute them, we restricted our
analysis to settings of the MET. On the one hand, we stated different versions of
the MET for finite-dimensional random dynamical systems (including a fully inver-
tible deterministic version), on the other, we presented a semi-invertible version for
random dynamical systems acting on separable Banach spaces. The semi-invertible
and fully-invertible versions yield Oseledets splittings consisting of Oseledets spaces
with respect to which the CLVs are defined. In finite dimensions there is a direct
link between CLVs and singular vectors of the propagator, whereas the MET on
Banach spaces requires different tools to derive the existence of CLVs.

Using the asymptotic characterization of CLVs (or Oseledets spaces) via Lya-
punov exponents (LEs) as given by the MET, we explained the basic idea behind
Ginelli’s algorithm. The algorithm propagates two sets of initial perturbations along
the trajectory to approximate CLVs at the present state. The first set of pertur-
bations is initiated in the far past and propagated along the whole trajectory to
get an approximation of the linear span of the first CLVs in forward-time. The se-
cond set of perturbations is expressed in terms of coefficients of forward propagated
vectors of the first set and is propagated backwards from the far future to give an
approximation of CLVs at the present state.

Prior to the convergence analysis we implemented Ginelli’s algorithm and com-
puted CLVs for the Lorenz attractor of the Lorenz 63 model. The computed vectors
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appeared to converge when the amount of past and future data was increased. Fur-
thermore, the speed of convergence seemed to be exponential with a rate given by
the spectral gap between associated LEs. However, since we do not have analytic
results for CLVs of the Lorenz attractor, these observations are merely a motivation
for the mathematical convergence analysis.

The analysis was split into two parts. The first investigated convergence in a
fully-invertible finite-dimensional setting, whereas the second was concerned with
convergence in a semi-invertible setting on Hilbert spaces. Both approaches used
projection operators to adhere for possibly degenerate Lyapunov spectra. Thus, con-
vergence was analyzed with respect to subspaces rather than single output vectors.
Indeed, in the presence of degeneracies isolated output vectors might not converge
due to internal dynamics of the Oseledets spaces. Therefore, we proved convergence
at the level of subspaces using different notions of distances and angles for finite and
for infinite dimensions.

An important part of the analysis for finite dimensions was the link between CLVs
and singular vectors of the propagator. Singular vectors are orthogonal directions
of optimal growth for finite time. To describe the relation between input vectors
and singular vectors, we derived the notion of admissibility. A tuple of vectors
is said to be admissible with respect to another tuple if the associated filtration
spaces are close enough. By letting the admissibility parameter depend on time, we
were able to tell if a tuple of initial vectors would align with singular vectors (in
terms of filtrations) when propagated long enough. Since tuples of input vectors are
generically admissible, it was sufficient to analyze convergence of Ginelli’s algorithm
in terms of admissible tuples.

Ultimately, we proved convergence of Ginelli’s algorithm in measure for con-
tinuous time and convergence for almost every input for discrete time. A distinc-
tion between both cases of time was necessary since there are examples where the
continuous-time version diverges for every fixed choice of initial vectors. However,
since initial vectors are usually chosen anew when increasing the runtime, the dif-
ference between both notions of convergence is negligible for applications.

Our convergence analysis for infinite dimensions required different techniques.
Instead of admissibility we used so-called well-separating common complements to
find subspaces which stay far enough from the spaces of the Oseledets filtration at
different initial times. We proved that almost every tuple of vectors of a Hilbert
space spans such a complement. Here, “almost every” is understood in the sense
of prevalence which generalizes the notion of “Lebesgue almost every” to infinite-
dimensional vector spaces. In our convergence analysis we connected properties of
well-separating common complements to estimates for forward and for backward
propagation. Finally, the obtained tools were combined to arrive at a convergence
theorem of Ginelli’s algorithm similar to the finite-dimensional version with discrete
time: convergence for almost every input.

In addition to the pure convergence statements, we gave an upper bound of the
speed of convergence. We proved that Ginelli’s algorithm converges at an exponen-
tial rate given by the spectral gap between associated LEs. Factors on subexpo-
nential scales, e.g., coming from the nonlinearity of the background trajectory or
from choosing different inputs do not matter asymptotically. Hence, they did not
play a role in our convergence analysis. Nevertheless, they may be important for
applications where only limited amounts of past and future data is available. The

106



proportion in which past and future data are needed depends on the specific system
and background trajectory. We allowed for different proportions by incorporating
two separate runtime variables for past and future data into our analysis. Both need
to be increased to reach convergence.

In conclusion we analyzed multiple aspects of convergence such as the difference
between continuous and discrete time, invertible and semi-invertible settings, the
connection to singular vectors, a version of Ginelli’s algorithm on Hilbert spaces,
and the speed of convergence. Even though there are still some open questions,
e.g., concerning the generalization to Banach spaces and the transition from finite
to infinite dimensions, we managed to derive a wide range of tools that help to
understand the fundamental ideas behind Ginelli’s algorithm and can potentially be
applied to other algorithms or scenarios as well. Ultimately, our analysis provides
new mathematical insight into CLV-algorithms which are important instruments for
finding structure in the chaos of dynamical systems.
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APPENDIX A

Derivation of Uniform Bounds

In this chapter we derive uniform bounds for asymptotics of the Oseledets filtration
and of the Oseledets splitting which appear in Section 2.3. We need those bounds
for our convergence proof in Chapter 5. Since [29] provides hints for their derivation
and uses them in the proof of Theorem 2.3.2, we think this is a good opportunity
to provide the necessary details.

While uniform bounds for systems on Rd follow from properties of the SVD,
systems on Banach spaces require different approaches. We first derive bounds for
the Oseledets filtration by invoking [17] and [39]. Then, we extract bounds for the
Oseledets splitting via [22] and [29].

A.1 Bounds for Oseledets filtration
In his dissertation Doan proves the existence of an Oseledets filtration for one-sided
random dynamical systems on separable Banach spaces by embedding systems into
larger systems that have injective cocycles [17]. For those enlarged systems, the
MET by Lian and Lu provides existence of an Oseledets filtration with uniform
bounds [39]. We state the necessary arguments to derive uniform bounds for the
Oseledets filtration of Doan’s MET from the MET by Lian and Lu and refer to the
selected references for full statements of the results and techniques.

Theorem A.1.1 (MET by Lian and Lu [39])
Let R = (Ω,F ,P, σ,X,L) be a separable strongly measurable random dynamical sys-
tem over an ergodic invertible base such that log+ ‖L‖ ∈ L1(Ω,F ,P). Furthermore,
assume that L : Ω→ L(X) is injective P-almost everywhere and R is quasi-compact.

There exist 1 ≤ p ≤ ∞ exceptional LEs λ∗ = λ1 > · · · > λp > κ∗ (or if p = ∞:
λ1 > λ2 > · · · > κ∗ and limi→∞ λi = κ∗), multiplicities d1, . . . , dp ∈ N, and a unique
measurable filtration of X into closed subspaces

X = V1(ω) ⊃ · · · ⊃ Vp(ω) ⊃ V (ω) ⊃ {0}

defined on a σ-invariant subset Ω′ ⊂ Ω of full P-measure such that the following
hold for ω ∈ Ω′:
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1. the splitting is equivariant, i.e., L(ω)Vi(ω) ⊂ Vi(σω) and L(ω)V (ω) ⊂
V (σω),

2. codimVi+1(ω) = d1 + · · ·+ di,

3. limn→∞(1/n) log ‖L(n)
ω v‖ = λi for v ∈ Vi(ω) \ Vi+1(ω),

4. limn→∞(1/n) log ‖L(n)
ω |Vi(ω)‖ = λi, and

5. lim supn→∞(1/n) log ‖L(n)
ω |V (ω)‖ ≤ κ∗,

where we set Vp+1(ω) := V (ω).

The full MET by Lian and Lu even provides an Oseledets splitting that is related
to the Oseledets filtration via Eq. (2.5). For our purposes the filtration is enough.

Now, Doan’s theorem states that the above is still true if we drop the assumption
of L being injective P-almost everywhere. To be precise, in Doan’s formulation the
fourth and fifth properties about uniform bounds are left out. Since we need these
properties, we derive them as products of Doan’s proof.

Given γ > 0, Doan enlarges the separable Banach space X to the space of
sequences of elements of X:

Xγ :=
{
x := (xn)n∈N0

∣∣∣∣ lim
n→∞

e−γnxn exists
}
.

He shows that Xγ equipped with the norm

‖x‖γ := sup
n∈N0

e−γn‖xn‖

is a separable Banach space. On this Banach space an extended cocycle can be
defined using the generator

L̃ωx := (Lωx0, α0x0, α1x1, . . . ),

where (αn)n∈N0 is a descending sequence of positive scalars satisfying certain growth
conditions. As Doan suggests, we set αn = e−(2n+1). The generated cocycle has the
form

L̃(n)
ω x =

(
L(n)
ω x0, α0L(n−1)

ω x0, . . . , αn−1 . . . α0x0, αn . . . α1x1, . . .
)
.

If the original system R is strongly measurable, has an ergodic invertible base,
satisfies log+ ‖L‖ ∈ L1, and is quasi compact, then the enlarged random dynamical
system R̃ fulfills the assumptions of Theorem A.1.1. Thus, we have LEs λ1 > · · · >
λp > κ∗ and an Oseledets filtration Xγ = Ṽ1(ω) ⊃ · · · ⊃ Ṽp(ω) ⊃ Ṽ (ω) ⊃ {0} of
R̃. Doan proves that πx = x0 projects the Oseledets filtration of R̃ onto a filtration
of R via Vi(ω) = πṼi(ω) with almost the same properties (all except 4. and 5. of
Theorem A.1.1). Hence, we call the projected filtration Oseledets filtration. The
exceptional LEs of the original and of the enlarged system coincide. We now argue
why properties 4. and 5. still hold for the projected filtration:

Lemma A.1.2
In Doan’s MET [17] for one-sided random dynamical systems on Banach spaces
Eqs. (2.6) and (2.7) hold for P-almost every ω, i.e., we have

lim
n→∞

1
n

log ‖L(n)
ω |Vi(ω)‖ = λi
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for 1 ≤ i ≤ p and
lim sup
n→∞

1
n

log ‖L(n)
ω |V (ω)‖ ≤ κ∗.

In particular, these bounds hold in the setting of Theorem 2.3.2.

Proof. Since the third property of Theorem A.1.1 also holds in Doan’s MET, we get
λi as a lower bound of the limit in Eq. (2.6). It remains to prove that λi is an upper
bound.

The main idea is to use the uniform bound coming from the enlarged system.
For x ∈ Ṽi(ω) and x0 = πx, we have

‖L(n)
ω x0‖ = ‖L(n)

ω πx‖ = ‖πL̃(n)
ω x‖ ≤ ‖π‖ ‖L̃(n)

ω |Ṽi(ω)‖ ‖x‖γ.

Since ‖π‖ is a constant factor, it vanishes on exponential scales. The second factor
on the right can be bounded according to the MET by Lian and Lu. To get rid of
the last factor, we show that ιVi(ω) ⊂ Ṽi(ω), where ιx0 = (x0, 0, 0, . . . ). If this is
true, then Vi(ω) = πιVi(ω) and

‖L(n)
ω |Vi(ω)‖ ≤ sup

x0∈Vi(ω)∩B
‖L(n)

ω x0‖ ≤ ‖π‖ ‖L̃(n)
ω |Ṽi(ω)‖

since ‖ιx0‖γ = ‖x0‖. In particular, this would prove the claim.1
Let x ∈ Ṽi(ω). To show that ιx0 ∈ Ṽi(ω), it suffices to investigate its growth

rate, since Ṽi(ω) is the set of all elements whose exponential growth rate is at most
λi. Thus, if ιx0 does not have a faster growth rate than x, it is an element of Ṽi(ω).
We have

‖L̃(n)
ω x‖γ = max

max
0≤k≤n

e−γk‖L(n−k)
ω x0‖

k−1∏
j=0

αj, sup
k∈N

e−γ(n+k)‖xk‖
k+n−1∏
j=k

αj

.
The second part decays superexponentially fast:

− log
k+n−1∏
j=k

αj = (2k + 1) + (2k + 1 + 2) + · · ·+ (2k + 1 + 2(n− 1)) = 2kn+ n2

and

1
n

log
sup
k∈N

e−γ(n+k)‖xk‖
k+n−1∏
j=k

αj

 ≤ 1
n

log
(

sup
k∈N0

e−γk‖xk‖e−γne−2kn−n2
)

≤ log ‖x‖γ
n

− γ − n→ −∞.

Hence, the exponential growth rate only depends on x0. We get ιVi(ω) ⊂ Ṽi(ω).

The uniform estimates for backward-time, i.e., Eqs. (2.9) and (2.10), follow from
a result by Froyland and others:

Lemma A.1.3 ([22])
Let (Ω,F ,P, σ) be an ergodic metric dynamical system over Z. If (fn)n∈N is a
subadditive sequence of functions Ω→ R∪{±∞}, i.e., fm+n(ω) ≤ fm(σnω)+fn(ω)
for every n,m ∈ N and ω ∈ Ω, and f+

1 ∈ L1, then there is a constant c ∈ R∪{−∞}
such that fn(ω)/n→ c and fn(σ−nω)/n→ c.

1The bound for V (ω) follows analogously.
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Lemma A.1.4
In the setting of Theorem 2.3.2 Eqs. (2.9) and (2.10) hold for P-almost every ω, i.e.,
we have

lim
n→∞

1
n

log ‖L(n)
σ−nω|Vi(σ−nω)‖ = λi

for 1 ≤ i ≤ p and
lim sup
n→∞

1
n

log ‖L(n)
σ−nω|V (σ−nω)‖ ≤ κ∗.

Proof. We apply Lemma A.1.3 to the sequences fn := log ‖L(n)
ω |Vi(ω)‖ and gn :=

log ‖L(n)
ω |V (ω)‖. Indeed, subadditivity follows from the cocycle property and from

equivariance of the Oseledets filtration. f+
1 , g

+
1 can both be bounded by the inte-

grable function log+ ‖L‖. Now, according to Lemma A.1.3 it holds fn(ω)/n → cf ,
fn(σ−nω)/n → cf , gn(ω)/n → cg, and gn(σ−nω)/n → cg for P-almost every ω. By
Lemma A.1.2 we must have cf = λi and cg ≤ κ∗. This proves the claim.

A.2 Bounds for Oseledets splitting
In their proof of the MET in [29] Gonzàlez-Tokman and Quas require uniform lower
bounds of growth rates inside Oseledets spaces. Even though they argue why those
bounds hold for forward-time [29, lemma 2.14], the details are left for the reader to
complete. Here, we provide the missing details. Moreover, we show that uniform
lower bounds hold for the sum of the first Oseledets spaces instead of single Oseledets
spaces. The main idea is to find a basis of the first Oseledets spaces in which we
reduce the cocycle to a cocycle on Rd. Then, the finite-dimensional theory applies
and gives us uniform bounds via the SVD.

Lemma A.2.1
Let X be a separable Banach space and Y (ω) ⊂ X a measurable subspaces of dimen-
sion k. There is a measurable map A : Ω×Rk → X such that A(ω) : Rk → Y (ω) is
a linear isomorphism with

1
2k+1 − 2‖a‖2 ≤ ‖A(ω)a‖ ≤

√
k‖a‖2

for every a ∈ Rk.

We prove the lemma by finding an ε-nice basis of Y (ω). Using this basis, we may
identify Y (ω) with Rk.

Definition A.2.2 ([29])
Let Y be a Banach space of dimension k. A basis (y1, . . . , yk) is called ε-nice if
1− ε < ‖yi‖ < 1 + ε and d(yi, span(y1, . . . , yi−1)) > 1− ε for each i > 1.

We need [29, lemma B.4] for the proof of Lemma A.2.1:

Lemma A.2.3 ([29])
If (y1, . . . , yk) is an ε-nice basis with ε < 2−k−2, then∥∥∥∥∥

k∑
i=1

aiyi

∥∥∥∥∥ ≤ 1 =⇒ |ai| ≤ 2k+1−i for each i.
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proof of Lemma A.2.1. We inductively prove existence of a measurable ε-nice basis
(y1(ω), . . . , yk(ω)) of Y (ω) with ε < 2−k−2. Additionally, we assume that ‖yi‖ = 1.
Fix a countable dense subset (xj)j∈N of the unit sphere S ⊂ X. Assume we already
have the first i− 1 basis vectors for some i = 1, . . . , k. We show existence of the ith
vector. Define

r1(ω) := min
{
j ∈ N

∣∣∣∣ d(xj, span(y1(ω), . . . , yi−1(ω))) > 1− ε

2 and d(xj, Y (ω)) < ε

2

}
and inductively set

rs(ω) := min
{
j ∈ N

∣∣∣∣ d(xj, xrs−1(ω)) <
ε

2s and d(xj, Y (ω)) < ε

2s
}
.

The sequence of measurable functions (xrs(ω))s∈N converges pointwise to a measur-
able function yi(ω), which satisfies the required properties.

Now, let A(ω)a := ∑
aiyi(ω). We have

‖A(ω)a‖ ≤
k∑
i=1
|ai| ‖yi(ω)‖ = ‖a‖1 ≤

√
k‖a‖2

and by Lemma A.2.3∥∥∥a
c

∥∥∥
2

2k+1 − 2 ≤

∥∥∥a
c

∥∥∥
1

2k+1 − 2 ≤
∑k
i=1 2k+1−i

2k+1 − 2 = 1 =
∥∥∥∥A(ω)a

c

∥∥∥∥,
where c := ‖A(ω)a‖. Since c is a scalar, the above chain of (in-)equalities can be
scaled to eliminate c. The claim follows.

Let R be a random dynamical system as in Theorem 2.3.2. Using Lemma A.2.1,
we get an identification of the sum of the first Oseledets spaces Y1(ω)⊕ · · · ⊕ Yi(ω)
with Rk, where k = d1 + · · · + di. Moreover, the identification provides a new one-
sided cocycle on Rk via L̃(n)

ω := A(ω)−1L(n)
ω A(ω). Here, A(ω) should be understood

as an isomorphism Rk → Y1(ω)⊕ · · · ⊕ Yi(ω).
By [29, lemma A.5] the composition of strongly measurable maps is again

strongly measurable. However, the section on strong measurability in [29] is only
formulated for operators acting on a single separable Banach space X. To show
that L̃ is strongly measurable one needs to generalize the whole section to operators
between potentially different separable Banach spaces. We leave this to the reader.
Special care should be given to A(ω)−1. In fact, it suffices to show strong measur-
ability of A(ω)−1ΠY1(ω)⊕···⊕Yi(ω)||Vi+1(ω), which is a well-defined map Ω × X → Rk.
This can be done in a similar fashion to the proof of Lemma A.2.1. Fix a countable
dense subset (bj)j∈N of Rk. For x ∈ X and s ∈ N, define

rs(ω) := min
{
j ∈ N : ‖A(ω)bj − ΠY1(ω)⊕···⊕Yi(ω)||Vi+1(ω)x‖ <

1
s

}
.

Writing y = ΠY1(ω)⊕···⊕Yi(ω)||Vi+1(ω)x, Lemma A.2.1 implies that

1
s
> ‖A(ω)brs(ω) − y‖ = ‖A(ω)(brs(ω) − A(ω)−1y)‖ ≥ ‖brs(ω) − A(ω)−1y‖2

2k+1 − 2 .

In particular, brs(ω) → A(ω)−1y pointwise in ω for s→∞. Since the projection onto
the sum of the first Oseledets spaces is measurable, we have strong measurability
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of A(ω)−1ΠY1(ω)⊕···⊕Yi(ω)||Vi+1(ω). Thus, L̃ is strongly measurable. Finally, the word
“strongly” can be omitted, because the strong operator topology and the norm
topology on Rk×k coincide.

Besides the measurability of L̃, the other cocycle properties are inherited from
the original cocycle. Moreover, the norm estimates in Lemma A.2.1 imply that
‖L(n)

ω |Y1(ω)⊕···⊕Yi(ω)‖ and ‖L̃(n)
ω ‖ differ by at most a positive constant depending only

on k. In particular, log+ ‖L̃‖ ∈ L1 is integrable and we may apply case (A) of
Theorem 2.2.7. The LEs of the reduced cocycle coincide with the first i exceptional
LEs of the original cocycle. Hence, the lowest singular value δmin

i = δmin
i (ω) of the

reduced cocycle grows exponentially with a rate given by λi. Since ‖L̃(n)
ω a‖2 ≥ δmin

i

for all ‖a‖2 = 1, we get a uniform lower bound which can be transferred back to the
original cocycle.

Lemma A.2.4
In the setting of Theorem 2.3.2 Eq. (2.8) holds for P-almost every ω, i.e., we have

lim inf
n→∞

inf
y∈Y1(ω)⊕···⊕Yi(ω)∩S

1
n

log ‖L(n)
ω y‖ = λi

for 1 ≤ i ≤ p.

The last uniform bound needed in Chapter 5 follows immediately from [22, lemma
8.3] which relates singular values of L̃(n)

σ−nω to those of L̃(n)
ω :

Lemma A.2.5 ([22])
Let R = (Ω,F ,P, σ,L) be an ergodic semi-invertible random dynamical system on
Rk with log+ ‖L‖ ∈ L1. By Theorem 2.2.7 the system admits a Lyapunov spectrum
with exponents λi. The singular values of L(n)

σ−nω (sorted in decaying order) grow
exponentially according to the LEs:

∀ij : lim
n→∞

1
n

log δij
(
L(n)
σ−nω

)
= λi.

Lemma A.2.6
In the setting of Theorem 2.3.2 Eq. (2.11) holds for P-almost every ω, i.e., we have

lim inf
n→∞

inf
y∈Y1(σ−nω)⊕···⊕Yi(σ−nω)∩S

1
n

log ‖L(n)
σ−nωy‖ = λi

for 1 ≤ i ≤ p.
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Sample Code

We list the code used for computing CLVs in the Lorenz 63 model with MATLAB
R2019a. Ginelli’s algorithm is implemented in a quite general form, so that it can
be adjusted to settings other than the Lorenz model.

Listing B.1: Lorenz63CLVs.m
1 close all;

2 clc;

3
4
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 % input

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8
9 system_name = 'Lorenz 63 (rho = 28, sigma = 10, beta = 8/3)';

10 system_nonlinear_filename = 'Lorenz63';

11 system_linear_filename = 'Lorenz63_linear';

12
13 dim = 3;

14 x0_past = [−1.01;3.01;2.01]; % initial state of trajectory

15 tau = 0.0005; % size of one timestep

16 N = 100000;

17 N_past = N; % number of timesteps for past cocycle

18 N_future = N; % number of timesteps for future cocycle

19 numLEsToCompute = dim; % number of LEs/CLVs to compute

20
21 % figure for input data

22 figure_input = figure;

23 str_input = sprintf(...

24 [...

25 '−−− Input data −−−\n'...
26 '\n'...

27 'System:\n'...

28 '%s\n'...
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29 '\n'...

30 'Number of timesteps for past data:\n'...

31 '%d\n'...

32 '\n'...

33 'Number of timesteps for future data:\n'...

34 '%d\n'...

35 '\n'...

36 'Stepsize:\n'...

37 '%g\n'...

38 '\n'...

39 'Number of LEs to compute:\n'...

40 '%d\n'...

41 ],...

42 system_name,N_past,N_future,tau,numLEsToCompute);

43 str1 = sprintf([...

44 '\n'...

45 'Initial state of past data orbit:\n'...

46 '[ '

47 ]);

48 str2 = sprintf('%.5f ',x0_past);

49 str3 = sprintf(']\n');

50 str_input = [str_input str1 str2 str3];

51 annotation('textbox', [0, 0, 1, 1], 'String', str_input);

52
53
54 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

55 % computation of LEs and CLVs

56 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

57
58 % combine nonlinear with linear system

59 system_nonlinear = str2func(system_nonlinear_filename);

60 system_linear = str2func(system_linear_filename);

61 system_combined = combineNonlinearLinear(system_nonlinear,system_linear,dim)

;

62
63 % prepare plot of trajectory

64 figure_orbit = figure;

65 hold on

66
67 % compute cocycle and plot trajectory

68 [x0_present,cocycle_past] = ODEtoCocycle(system_combined,x0_past,N_past,tau)

;

69 [~,cocycle_future] = ODEtoCocycle(system_combined,x0_present,N_future,tau);

70
71 % finish plot of trajectory

72 xlabel('x1−axis')
73 ylabel('x2−axis')
74 zlabel('x3−axis')
75 plot3(x0_present(1),x0_present(2),x0_present(3),'ok','linewidth',3);

76 legend('past data','future data','present state','Location','southwest')

77 figure_orbit.CurrentAxes.View = [50 20];
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78 hold off

79
80 % compute LEs and CLVs from cocycle data

81 [LEs,CLVs] = Ginelli(cocycle_past,cocycle_future,numLEsToCompute,tau);

82
83 % figure for output data

84 figure_output = figure;

85 str_output = sprintf(...

86 [...

87 '−−− Output data −−−\n'...
88 '\n'...

89 'Lyapunov exponents:\n'...

90 ]);

91 str1 = sprintf('%.5g\n',LEs);

92 str2 = sprintf(...

93 [...

94 '\n'...

95 'Covariant Lyapunov vectors:\n'...

96 ]);

97 str3 = '';

98 for i = 1:numLEsToCompute

99 str3a = sprintf('[ ');

100 str3b = sprintf('%.5f ',CLVs(:,i));

101 str3c = sprintf(']\n');

102 str3 = [str3 str3a str3b str3c];

103 end

104 str_output = [str_output str1 str2 str3];

105 str1 = sprintf([...

106 '\n'...

107 'System state:\n'...

108 '[ '

109 ]);

110 str2 = sprintf('%.5f ',x0_present);

111 str3 = sprintf(']\n');

112 str_output = [str_output str1 str2 str3];

113 annotation('textbox', [0, 0, 1, 1], 'String', str_output);

114
115
116 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

117 % error evolution of CLVs (for N_past = N_future)

118 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

119
120 % number of tests (test i uses i/m times the number of timesteps, which were

used to compute the reference CLVs)

121 m = 100;

122 CLVs_reference = CLVs;

123
124 % test runs of Ginelli's algorithm with error computation

125 CLV_error = zeros(numLEsToCompute,m);

126 for i = 1:m

127 n = max(floor(N*(i/m)),1);
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128
129 [~,CLVs] = Ginelli(cocycle_past(N−n+1:N,1),cocycle_future(1:n,1),

numLEsToCompute,tau);

130
131 for j = 1:numLEsToCompute

132 CLV_error(j,i) = min(norm(CLVs(:,j)−CLVs_reference(:,j)),norm(CLVs
(:,j)+CLVs_reference(:,j)));

133 end

134 end

135
136 % figures for CLV errors

137 figure_errors = cell(numLEsToCompute,1);

138 x = (1:m)'*max(floor(N*(1/m)),1)*tau;

139 for i = 1:numLEsToCompute

140 figure_errors{i,1} = figure;

141 hold on;

142
143 xlabel('t−axis')
144 ylabel('y−axis')
145 ylim([−50 10])

146
147 error = log(CLV_error(i,:));

148 plot(x,error,'−.or');
149 str_error = sprintf('y = log ||CLV%d(t) − CLV%d_r||_2',i,i);

150
151 if i == 1

152 if i == numLEsToCompute

153 legend(str_error,'Location','southwest');

154 else

155 y = −abs(LEs(1)−LEs(2))*x;
156 plot(x,y);

157 str_estimate = 'y = −t * |LE1_r − LE2_r|';

158 legend(str_error,str_estimate,'Location','southwest');

159 end

160 else

161 if i == numLEsToCompute

162 if numLEsToCompute == dim

163 y = −abs(LEs(dim−1)−LEs(dim))*x;
164 plot(x,y);

165 str_estimate = sprintf('y = −t * |LE%d_r − LE%d_r|',dim,dim

−1);
166 legend(str_error,str_estimate,'Location','southwest');

167 else

168 legend(str_error,'Location','southwest');

169 end

170 else

171 y = −min(abs(LEs(i)−LEs(i−1)),abs(LEs(i)−LEs(i+1)))*x;
172 str_estimate = sprintf(['y = −t * min(|LE%d_r − LE%d_r|, |LE%d_r

− LE%d_r|)'],i,i−1,i,i+1);
173 plot(x,y);

174 legend(str_error,str_estimate,'Location','southwest');
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175 end

176 end

177
178 hold off;

179 end

Listing B.2: Lorenz63.m
1 function [ dx ] = Lorenz63( ~, x )

2 %LORENZ63 Returns vector field of Lorenz 63 system at x.

3
4 rho = 28;

5 sigma = 10;

6 beta = 8/3;

7
8 dx = [sigma*(x(2)−x(1));...
9 x(1)*(rho−x(3))−x(2);...

10 x(1)*x(2)−beta*x(3)];
11
12 end

Listing B.3: Lorenz63_linear.m
1 function [ A ] = Lorenz63_linear( ~, x )

2 %LORENZ63_LINEAR Returns linearization of Lorenz 63 system at x.

3
4 rho = 28;

5 sigma = 10;

6 beta = 8/3;

7
8 A = [−sigma, sigma, 0;...

9 rho−x(3), −1, −x(1);...
10 x(2), x(1), −beta];
11
12 end

Listing B.4: combineNonlinearLinear.m
1 function [ system_combined ] = combineNonlinearLinear( system_nonlinear,

system_linear, dim )

2 %COMBINENONLINEARLINEAR Combines nonlinear and linear autonomous

3 %systems of dimension dim.

4
5 function [ dz ] = f( ~, z )

6
7 x = z(1:dim);

8 dx = system_nonlinear(1,x);

9
10 y = z(dim+1:end);

11 for i = 1:dim

12 dy(1+(i−1)*dim:i*dim,1) = system_linear(1,x)*y(1+(i−1)*dim:i*dim
);
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13 end

14
15 dz = [dx;dy];

16 end

17
18 system_combined = @f;

19 end

Listing B.5: ODEtoCocycle.m
1 function [ x1, cocycle ] = ODEtoCocycle( system_combined, x0, n, tau )

2 %ODETOCOCYCLE Produces cocycle from combined system.

3 %

4 % The nonlinear system is integrated from x0 for n timesteps of

5 % length tau, and the linear propagator is computed for each

6 % timestep. Moreover, the trajectory is plotted to the current

7 % plot.

8 %

9 % input:

10 %

11 % system − function handle for an ODE combined with its

12 % linearization

13 % x0 − initial state for the ODE as column vector

14 % n − number of timesteps

15 % tau − size of one timestep

16 %

17 % output:

18 %

19 % x1 − final state after n timesteps of size tau from x0

20 % cocycle − cell array of size [n,1], where cocycle{i,1} is the

21 % linear propagator on tangent space between timesteps

22 %

23
24
25 [dim,~] = size(x0);

26
27 z_plot = zeros(dim,n+1);

28 z_plot(:,1) = x0;

29
30 cocycle = cell(n,1);

31 I = eye(dim);

32 I_vector = I(:);

33 x1 = x0;

34
35 for i = 1:n

36 z0 = [x1;I_vector];

37 [~,z1] = rk4(system_combined,0,z0,tau);

38 x1 = z1(1:dim);

39 y1 = z1(1+dim:end,1);

40
41 z_plot(:,i+1) = x1;

42
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43 cocycle{i,1} = reshape(y1,[dim,dim]);

44 end

45
46 plot3(z_plot(1,:),z_plot(2,:),z_plot(3,:));

47
48 end

Listing B.6: rk4.m
1 function [ t1, z1 ] = rk4( f, t0, z0, h )

2 %RK4 One step of Runge−Kutta 4th order method.

3
4 t1 = t0 + h;

5
6 h2 = h/2;

7 h6 = h/6;

8
9 k1 = f(t0,z0);

10 k2 = f(t0+h2,z0+h2*k1);

11 k3 = f(t0+h2,z0+h2*k2);

12 k4 = f(t1,z0+h*k3);

13
14 z1 = z0+h6*(k1+2*k2+2*k3+k4);

15
16 end

Listing B.7: Ginelli.m
1 function [ LEs, CLVs ] = Ginelli( cocycle_past, cocycle_future,

numLEsToCompute, tau )

2 %GINELLI Computes LEs and CLVs from cocycle data with size of

3 %timestep tau.

4
5 [dim,~] = size(cocycle_past{1,1});

6
7 % forward propagation: past to present

8 V = rand([dim,numLEsToCompute]); % initial vectors for the forward phase of

Ginelli's algorithm

9 [~,V,~] = forward_propagation(cocycle_past,V,tau,0,0);

10
11 % forward propagation: present to future

12 [LEs,~,R] = forward_propagation(cocycle_future,V,tau,1,1);

13
14 % backward propagation: future to present

15 W = triu(rand(numLEsToCompute)); % initial coefficients for the backward

phase of Ginelli's algorithm

16 CLVs = backward_propagation(V,R,W);

17
18 end
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Listing B.8: forward_propagation.m
1 function [ LEs, V, R ] = forward_propagation( cocycle, V, tau, compute_LEs,

store_R )

2 %FORWARD_PROPAGATION Forward propagation and reorthonormalization

3 %of initial vectors given by the columns of V.

4 %

5 % The initial vectors given by the columns of V are propagated

6 % using the cocycle. After every timestep of length tau the

7 % propagated vectors are orthonormalized using a QR−decomposition.
8 % The R matrices can be stored for output. The final propagated

9 % vectors are returned as V.

10 %

11 % input:

12 %

13 % cocycle − cell array containing the propagation matrices

14 % V − invertible matrix whose columns are initial vectors for

15 % the propagation

16 % tau − size of one timestep

17 % compute_LEs − enables computation of Lyapunov exponents if

18 % set to 1

19 % store_R − stores R matrices from QR−decompositions if set to

20 % 1

21 %

22 % output:

23 %

24 % LEs − column vector of Lyapunov exponents (set to NaN if

25 % compute_LEs is set to 0)

26 % V − matrix of orthonormal final propagated vectors

27 % R − cell array with upper triangular matrices from

28 % QR−decompositions (set to NaN if store_R is set to 0)

29 %

30
31 [n,~] = size(cocycle);

32 [~,numLEsToCompute] = size(V);

33
34 LEs = NaN;

35 if compute_LEs == 1

36 LE_sums = zeros(numLEsToCompute,1);

37 end

38
39 R = NaN;

40 if store_R == 1

41 R = cell(n,1);

42 end

43
44 for i = 1:n

45 [V,S] = qr(cocycle{i,1}*V);

46 V = V(:,1:numLEsToCompute);

47
48 if store_R == 1

49 R{i,1} = S(1:numLEsToCompute,:);
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50 end

51
52 if compute_LEs == 1

53 D = diag(S);

54 for j = 1:numLEsToCompute

55 r = prod(D(1:j));

56 LE_sums(j) = LE_sums(j)*((i−1)/i) + (1/tau*log(abs(r)))/i;

57 end

58 end

59 end

60
61 if compute_LEs == 1

62 LEs = LE_sums(1:numLEsToCompute) − [0;LE_sums(1:numLEsToCompute−1)];
63 end

64
65 end

Listing B.9: backward_propagation.m
1 function [ CLVs ] = backward_propagation( V, R, W )

2 %BACKWARD_PROPAGATION Backward propagation and renormalization of

3 %coefficient vectors given by columns of W.

4 %

5 % The coefficient vectors given by the columns of W are propagated

6 % backwards using R. After every step the propagated vectors are

7 % renormalized to have euclidean norm 1. The final propagated

8 % vectors are expressed in terms of columns of V.

9 %

10 % input:

11 %

12 % V − matrix in whose columns to express the final propagated

13 % coefficient vectors

14 % R − cell array of upper triangular transition matrices with

15 % respect to which the coefficient vectors will be

16 % propagated backwards; inverses of transition matrices

17 % are used in reversed order for propagation

18 % W − upper triangular matrix containing initial coefficients

19 %

20 % output:

21 %

22 % CLVs − matrix of final propagated vectors expressed in terms

23 % of V

24 %

25
26 [n,~] = size(R);

27 [~,numLEsToCompute] = size(V);

28
29 for i = 1:n

30 W = R{n+1−i,1}\W;
31 for j = 1:numLEsToCompute

32 W(:,j) = W(:,j)/norm(W(:,j));

33 end
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34 end

35
36 CLVs = V*W;

37
38 end
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