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Abstract

�ality assurance in 4D radiotherapy is an essential process to verify that the dose
delivered to a patient is su�cient to achieve pre-treatment de�ned goals, which are
typically the total tumor eradication and optimal sparing of healthy tissue and organs.
However, there are currently no appropriate tools available to account for the dynamical
nature of free patient breathing in combination with complex dose delivery techniques.
�e focus of the present thesis lies therefore within a speci�c clinical context application:
the development of a framework for retrospective quality assurance in 4D radiotherapy of
lung and liver metastases treated by volumetric modulated arc therapy (VMAT). Achieving
this requires following key steps to be taken:

(1) Development of a patient-speci�c image- and model-based 4D (3D + time) dose
accumulation framework for the highly dynamic VMAT dose delivery technique.

(2) Application of respective framework to real patient data in order to investigate
the correlation of during-treatment motion, its interplay with VMAT dose delivery
dynamics and observed local recurrence of lung/liver metastases after treatment.

(3) Investigation of simulation robustness, accuracy and potential uncertainty sources
and implementation of uncertainty propagation.

�e basis of step (1) is combining the modeling of the dynamic VMAT dose delivery,
which employs the variation of gantry speed, dose rate and collimator leaf positions,
and the patient-speci�c internal structure motion. However, internal structure motion
information is routinely not acquired during dose delivery. �us, a dedicated modeling
approach has to be utilized to estimate the internal patient motion, enabling the simulation
of motion-a�ected dose distributions. For step (2), the patient-speci�c 4D-simulated dose
distributions are computed and compared to pre-treatment planned (reference-)dose
distributions. �e estimated deviations (underdosages) are analyzed and correlated to
information about the clinical outcome. A potential linkage is found, which to some
extent demonstrate the dose simulation to be reliable. Despite this result, dose simulation
uncertainties and impacting parameters as well as the general accuracy are extensively
investigated in step (3). Limitations encountered during phantom-based veri�cation
measurements motivated to further improve the 4D dose simulation framework by
introducing an uncertainty propagation scheme and re-implementing the actual dose
calculation utilizing gold standard Monte Carlo dose simulations. It is concluded that the
consideration of individual patient motion variability during dose delivery in combination
with VMAT dose accumulation for quality assurance in 4D radiotherapy is feasible.
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Kurzfassung

Die �alitätssicherung (QS) in der 4D-Strahlentherapie stellt sicher, dass vor der Patien-
tenbehandlung de�nierte Ziele, d. h. typischerweise die irreparable Tumorschädigung
und die optimale Schonung von gesundem Gewebe und Organen, erreichbar sind. Eine
Berücksichtigung der freien Patientenatmungsdynamik während einer Behandlung mit
komplexer Bestrahlungstechnik im Sinne einer QS ist jedoch mit zurzeit verfügbaren Me-
thoden nicht möglich. Der Schwerpunkt dieser Arbeit liegt daher auf einer spezi�schen
klinischen Anwendung: die Entwicklung eines Frameworks für die retrospektive QS in der
4D-Strahlentherapie von Lungen- und Lebermetastasen, behandelt durch volumetrisch
modulierte Bogenbestrahlung (VMAT). Folgende Arbeitsschritte sind nötig:

(1) Entwicklung eines patientenspezi�schen bild- und modellbasierten 4D (3D + Zeit)-
Dosisakkumulationsframeworks für die dynamische VMAT-Bestrahlungstechnik.

(2) Anwendung des entsprechenden Frameworks auf reale Patientendaten sowie die
Untersuchung der Korrelation zwischen Bewegung während der Behandlung, ihr
Zusammenspiel mit der VMAT-Bestrahlungsdynamik und das lokale Wiederauftre-
ten von Lungen-/Lebermetastasen nach der Behandlung.

(3) Analyse von Simulationsrobustheit, -genauigkeit und potenziellen Unsicherheits-
quellen sowie Implementierung einer Unsicherheitsfortp�anzung.

Die Grundlage von Schritt (1) ist die Kombination aus der Modellierung der dynamischen
VMAT-Technik (variierende Gantry-Geschwindigkeit, Dosisleistung und Kollimatorla-
mellenposition) und Informationen über die patientenspezi�sche interne Bewegung.
Allerdings wird diese während der Dosisapplikation routinemäßig nicht erfasst. Ein
spezieller Modellierungsansatz ist daher für die interne Schätzung der Bewegung nötig,
um eine Simulation von bewegungsbeein�ussten Dosisverteilungen zu ermöglichen. Für
Schritt (2) werden die patientenspezi�schen 4D-simulierten Dosisverteilungen mit den
vor der Behandlung geplanten (Referenz-)Dosisverteilungen verglichen. Die resultie-
renden Abweichungen werden analysiert und mit Informationen über den klinischen
Ausgang korreliert. Die festgestellte Korrelation demonstriert zumindest zum Teil die
Zuverlässigkeit der Dosissimulation. Trotz dieses Ergebnisses werden in Schritt (3) die
Unsicherheiten der Dosissimulation und mögliche Ein�ussgrößen sowie die allgemei-
ne Simulationsgenauigkeit untersucht. Bei phantombasierten Veri�kationsmessungen
identi�zierte Limitierungen motivierten, das 4D-Dosissimulationframework durch die Ein-
führung einer Unsicherheitsfortp�anzung und die Implementierung einer eigenständigen
Dosisberechnung (Goldstandard Monte Carlo-Simulation) zu verbessern. Die Resultate
belegen die prinzipielle Möglichkeit der Berücksichtigung von der individuellen Bewe-
gungsvariabilität in einer VMAT-Dosisakkumulation zur QS in der 4D-Strahlentherapie.
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Chapter 1

Introduction

In 2018, cancer was among the globally leading causes of death, as reported by the World
Health Organization; latest studies even suggest that cancer actually is the leading cause
of death in high-income countries [1, 2]. According to recent publications, incidences
and mortality of cancer are rapidly growing, re�ecting the higher life expectancy and
exponential population growth [3–5]. Over the whole year 2018, there were approxi-
mately 18 million new cancer cases with approximately 8.5 million deaths. Of all cancer
cases, lung and liver cancer show worldwide high incidence rates with 11.6% and 4.7%,
respectively. Further, corresponding mortality rates of 18.4% (lung cancer) and 8.2% (liver
cancer) are substantial. �is substantiates that especially lung and liver cancer are among
the most di�cult treatable cancer types [4].

About 80% of all lung tumor cases are nowadays treated interdisciplinary by a combi-
nation of surgery, chemo- and radiotherapy or solely radiotherapy [6]. For liver tumor
patients, the most common treatment option is surgery. However, in the last years the
advances in technology turned radiotherapy into an equally adequate treatment option,
with relatively high local control rates and the advantage of providing a noninvasive
procedure [7].

�e basic idea of radiotherapy is to use ionizing radiation to deposit a speci�c amount
of energy inside a target volume to irreparably damage and, as a consequence, destroy
the malignant cancer cells. At the same time, radiation-based side e�ects in surround-
ing healthy tissue and organs should be minimized. �erefore, a perfect radiotherapy
treatment would essentially solely irradiate the identi�ed target volume, applying the
prescribed dose homogeneously, while no energy is deposited around it. In reality, this is
physically hardly possible. However, new external beam radiotherapy treatment tech-
niques, e. g. intensity modulated radiation therapy (IMRT) and especially volumetric
modulated arc therapy (VMAT), allow for minimized margins around the target volume
and optimized sparing of healthy tissue and organs [8, 9].

A standard radiotherapy procedure consists of three major processes, independent
of the utilized treatment technique: CT imaging, treatment planning and treatment
delivery, as sketched and described in more detail in Fig. 1.1. Note that the described
work�ow is based on the treatment of lung and liver cancer patients at the University
Medical Center Hamburg-Eppendorf (UKE). Prior to the actual radiotherapy processes,
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1. Introduction

the individual patient diagnosis is conducted by dedicated imaging techniques by the
radiology department. After cancer diagnosis by appropriate imaging methods, e. g.
magnetic resonance imaging (MRI) and positron emission tomography (PET), computed
tomography (CT) images are acquired to correctly represent the patient anatomy. �ese
images are subsequently used for treatment planning, i. e. contouring of healthy organs
as well as target volumes and for computing a dose distribution that ful�lls given dose
constraints. Eventually, the planned dose distribution is applied to the patient using one
of the available radiotherapy treatment technique according to clinical guidelines.

Unfortunately, acquired CT images, which are the basis of all following treatment
steps, only represent the patient geometry at a speci�c point in time (3D CT) or at best at
consecutive points in time (time resolved 3D CT, i. e. 4D CT) during image acquisition.
Additionally, they are usually acquired days or even weeks before the actual treatment.
�us, patient motion, setup errors and physiological processes like respiration and cardiac
pulsation introduce uncertainties that directly lead to localization and shape deviations
in the patient geometry during treatment compared to the planning CT patient geometry
[10]. To account for these types of deviations and uncertainties during treatment, the
International Commission on Radiation Units and Measurements (ICRU) established
guidelines that de�ne general radiotherapy treatment standards. Within those guidelines,
uncertainties in localization and shape of radiotherapy-relevant structures are consid-
ered by introducing appropriately sized safety margins around corresponding treatment
volumes. De�nitions of primary volumes as established in the latest ICRU report [11] are
brie�y summarized in Table 1.1.

Within the planning CT image, the visible tumor volume can directly be identi�ed and
segmented. �is macroscopic tumor volume is called gross tumor volume (GTV) and is
the basis of further target volume contouring steps. CT image-based uncertainties, for
instance blurring of tumor edges caused by patient motion and the possibility of existing
microscopic spread around the GTV that is not necessarily apparent in CT images, have
to be considered. �erefore, the clinical target volume (CTV) is de�ned, which aims
to include subclinical target tissue besides the GTV. Applying the prescribed dose to
this volume is the primary goal of a radiotherapy treatment process. At the same time,
however, healthy organs and tissue, so-called organs at risk (OAR), have to be contoured
and speci�c dose constraints1 have to be considered during treatment planning.

For the treatment of tumors that can be subject to motion caused by e. g. patient
respiration as seen in lung and liver cancer patients, the individual tumor motion has

1Dose constraints di�er from organ to organ and are speci�ed in corresponding literature and radiotherapy
guidelines. For example, not more than 10%/33% of a healthy lung/liver should receive a dose above
20 Gy/15 Gy [12, 13].
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Step I: CT imaging

Step II: Treatment planning

Step III: Treatment

Diagnosis (pre-radiotherapy)
• diagnosis using CT imaging
• additional imaging (MRI, PET, etc.)

Choose treatment-speci�c scan protocol:
• 4D abdomen, 4D thorax

Patient setup:
• patient on CT couch
• accurate positioning of external markers

using laser system

Acquire topogram scans:
• check patient position in sagittal and

coronal topogram scans
• is patient positioning acceptable?

Prepare/acquire 4D CT:
• de�ne 4D CT scan range on topograms
• start breathing curve acquisition

(external signal)
• 4D CT scan (typical duration ≈ 100 s)
• is scan protocol == 4D abdomen?

Acquire contrast medium (CM) enhanced
CT:
• same scan range as in 4D CT acquisition
• inject contrast medium
• 3D CM CT scan (typical duration ≈ 2 s)

Reconstruct CT data:
• phase/amplitude-based binning of

acquired 4D CT raw data using recorded
patient breathing signal

• 4D CT/(CM CT) reconstruction
• generate average CT (AvCT, i. e.

reconstruction over all acquired 4D CT
projections yields a motion blurred 3D
CT, the AvCT)

Post-processing and data transfer:
• split 4D CT in 10 3D phase volumes
• transfer 4D CT, AvCT, (CM CT) to

treatment planning system

Contouring:
• rigid registration of additional image

data (MRI/CM CT/PET) to 4D CT
reference phase

• contouring of tumor in axial view of
each 4D CT phase (GTV) → merging
GTV results into ITV

• contouring of OAR on axial views of
AvCT

Treatment planning:
• AvCT with contoured OAR and ITV
• start treatment planning on AvCT,

considering given dose constraints

Patient setup:
• patient on linac couch
• accurate positioning using CB CT

imaging

Dose application:
• start breathing curve acquisition

(external signal)
• apply optimized treatment dose

No

No

Yes

Yes

Figure 1.1.: 4D radiotherapy treatment process (with focus on technical aspects) of lung and liver cancer
patients as executed at the UKE. After pre-radiotherapy conducted diagnosis, 4D CT image
acquisition (step I), treatment planning (step II) and treatment delivery (step III) is performed.
Uncertainties in patient positioning and breathing variability (step I and III) as well as delineation
of the target volume and OAR (step II) directly impacts the treatment success.
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1. Introduction

to be considered while treatment. �is is emphasized by tumor motion amplitudes of
up to several centimeters [14]. A standard approach is to use acquired time resolved
4D CT data (cf. Fig. 1.1) to segment the tumor volume, i. e. the GTV, in each 4D CT
breathing phase and compute an union over all phase speci�c GTV to generate a motion
encompassing safety margin. �is so-called internal margin is added to the CTV, and the
total volume referred to as internal target volume (ITV). Eventually, an usually uniform
margin of a few millimeters is applied to the ITV to account for patient setup errors
in each treatment fraction and de�nes the planning target volume (PTV). �is volume
assures that the prescribed dose is correctly and su�ciently delivered to the target volume.
A substantial reduction of this margin and setup uncertainties, respectively, is possible
by acquiring a static cone beam CT (CBCT) image before treatment and matching CBCT
and planning CT reference image [15]. More sophisticated radiotherapy techniques even
predict and track the tumor motion during treatment [16] and can therefore further
reduce especially the internal margin. Overall high costs and long treatment duration,
however, are disadvantages and reasons why tumor tracking is rarely applied. �erefore,
in this thesis the approach of tumor tracking is not considered. Instead, the focus is on
the widely used standard radiotherapy approach, i. e. no real-time motion compensation
during radiotherapy treatment.

Nowadays, complex and fast treatment techniques are frequently used. �e popular
VMAT treatment employs rotation of the beam source around the patient and simultane-
ously modulates the �eld form as well as particle �uence (i. e. the number of particles
incident on a sphere of cross sectional area) to allow for fast and high precision radiother-
apy treatment [17]. Treatment parameters for this kind of approach are usually manually
pre-de�ned and afterwards, under consideration of dose constraints, inversely optimized
by the treatment planning system (TPS). For dose application, the principle of so-called
stereotactic ablative radiotherapy (SABR) or stereotactic body radiation therapy (SBRT)
is commonly utilized. Both approaches are following the concept of applying high doses
with high precision and accuracy in a small number of fractions (1 to 5 fractions, i. e.
hypofractionation) [18, 19] to exploit radiobiology e�ects (α /β ratio2) inside the target
volume [21]. However, when treating tumors that are subject to breathing induced mo-
tion, e. g. lung and liver tumors, the accuracy of such radiotherapy treatment techniques
is potentially reduced due to uncertainties introduced by intra- (during a treatment frac-
tion) and interfractional (between treatment fractions) patient breathing variability. �e
patient breathing irregularity during the actual radiotherapy treatment fractions can

2�e α /β ratio is a tissue/organ-dependent measure for the curvature of a cell survival curve de�ned by
the linear-quadratic formula [20]. For higher α /β ratios the tissue/organ is less susceptible to the e�ect
of the fractionation scheme, i. e. the hazard of long-term damages due to fractionation of the total dose
is reduced.
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Table 1.1.: Primary ICRU treatment volumes as de�ned in ICRU report 91 [11].

RT treatment volumes ICRU-de�nition

Gross Tumor Volume (GTV) the gross demonstrable extent and location of
the “tumor”

Clinical Target Volume (CTV) a volume of tissue that contains a demonstrable
GTV and/or subclinical target tissue at a proba-
bility considered relevant for therapy

Internal Target Volume (ITV) CTV plus an “internal margin”, taking into
account motion-related uncertainties in size,
shape, and position of the CTV within the pa-
tient

Planning Target Volume (PTV) surrounds the CTV typically with a margin,
which takes into account both the internal and
the setup (external) uncertainties

Organs At Risk (OAR) organs that, when irradiated, could result in sig-
ni�cant morbidity, and thus in�uence treatment
planning

therefore be, to some extent, the cause for uncertainties in dose application and thus
negatively impact the treatment success. To emphasize this, an example of breathing
variability of four real patient cases is given in Fig. 1.2. Here, the recorded breathing curve
during 4D CT imaging can be interpreted as reference breathing information, as it is the
basis of planning 4D CT reconstruction. �e comparison between reference respiration
signal and respiration during treatment illustrates the level of intra- and interfractional
patient breathing variability. Despite the high complexity of the patient respiration, the
signal is usually recorded as simple one-dimensional breathing information, representing
solely the anterior-posterior (AP) motion amplitude alterations of the chest wall.

To reduce the impact of patient respiration, treatment methods that use common
motion management strategies can be employed. �ese strategies are either based on
completely stopping the tumor motion by guiding the patient breathing or irradiating
the motion encompassing target volume. A straightforward approach to stop the tumor
motion is to instruct the patients to hold their breath in a speci�c respiratory phase, e. g.
maximal inhalation. �e treatment plan is generated on this speci�c 4D CT phase image
and therefore the radiation should perfectly hit the target if the tumor position can be
reproduced during breath hold at treatment. �is so-called deep inspiration breath hold
(DIBH) approach has the advantage of reduced dose inside OAR but requires optimal
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1. Introduction

patient collaboration, compliance, su�cient pulmonary reserve and longer treatment
times [22]. If DIBH is not applicable, e. g. the patient has no su�cient pulmonary reserve,
the spontaneous breathing gating is an alternative. Here, the patient breathing is recorded
during treatment and at a speci�c time window, where the tumor position is known, the
radiation is applied. Similar to DIBH, the inspiration phase is favorable. Advantages are
again reduced dose in the OAR3, but patient collaboration, regular breathing patterns
and longer treatment times are needed [22]. When none of the mentioned techniques is
applicable, a common treatment approach is to let the patient breath freely and irradiate
the motion encompassing target volume (ITV + setup error margin, i. e. PTV), with the
advantage of fast treatment times and less requirements on patient breathing. However,
exposure of healthy tissue and organs is higher and unfavorable interactions between
patient respiration variability and treatment technique are possible. As described above,
beam parameters during VMAT treatment are dynamically changed to allow for best
possible application of dose distributions. �is means, the total homogeneous dose
distribution inside the target volume is generated by adding up all heterogeneous dose
distributions per beam position. �e general concept of planning the corresponding
dose delivery process (treatment planning) is usually performed on a motion-blurred
3D CT volume reconstructed from all acquired 4D CT projections, i. e. the so-called
average CT (AvCT), in combination with the generated ITV. �at is, the motion dynamics
are not explicitly considered during the planning process. However, as the CTV is
assumed to move inside the ITV, a homogeneous dose distribution would su�ciently hit
the tumor with the prescribed dose. Unfortunately, this assumption is not valid at all
times and underdosages in the target volume are possible that can impact the treatment
success. Mainly, two di�erent motion-related e�ects are responsible for dose deviations
if the treatment is performed under free patient breathing. Firstly, patient respiration
amplitudes can be larger during treatment than during CT imaging. �is results in
possibly larger tumor motion amplitudes. �us the CT-based ITV is to small to ensure
su�cient irradiation of the target volume. Secondly, an unfavorable interplay between
tumor motion and dynamically changing beam parameters, the so-called interplay e�ect,
can occur. Here, the tumor moves inside the ITV, but due to continuously modulation of
�eld openings, the tumor can be partly, or in total, in low dose areas. In this case, solely
healthy tissue and not the target receives the described dose. �us, the target is potentially
receiving less dose than planned [19, 23]. Over the course of many fractions, this e�ect
is likely to average out [24], but the current trend to use extremely hypofractionated
treatment schemes (up to a single fraction) potentially increases the impact of this e�ect

3Typically the lung and cardiac dose is reduced due to lung expansion and smaller PTV [22].
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1.1. �ality assurance in 4D radiotherapy
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Figure 1.2.: Illustration of chest wall AP-amplitude variability during radiotherapy treatment using box
plots for four selected in-house patient data sets. �e reference respiration signal recorded
during CT imaging (large box) is compared to the breathing signal acquisitions during the
individual treatment fraction (small boxes). A fraction consists of two (a, b and d) or three (c)
VMAT arcs. Figure (a) and (b) show good accordance between reference and treatment signal.
In (c), the amplitude signal during treatment is constant after fraction 1 but of about factor two
smaller than the reference signal, and (d) shows high interfractional respiratory variability and
large di�erences compared to the reference signal.

on treatment success [19, 25]. To account for and address the interplay e�ect, appropriate
quality assurance approaches for 4D radiotherapy have to be implemented.

For stationary target volumes, i. e. for 3D radiotherapy, quality assurance is in general
straightforward, as solely setup errors and changes in target shape and size have to be
considered. However, understanding motion-induced di�erences between planned and
delivered dose over the course of a 4D radiotherapy treatment requires a combination of
patient-speci�c motion data and information about the dose delivery process.

1.1. �ality assurance in 4D radiotherapy

In general, quality assurance in radiotherapy is a tool to quantify and monitor uncer-
tainties and errors introduced by, for instance, treatment planning, treatment device
performances and dose application [26]. �is directly aims at increasing the probability
of identifying deviations, i. e. underdosages, and possible accidents before they actually
occur. Further, identi�cation of errors in dose application after each treatment fraction
by adequate quality assurance-based dose accumulation could be helpful to allow for an
appropriate response, e. g. adapting the treatment plan of the next fraction or treatment
of possible radiation-based side e�ects [27]. Applicable tools are commonly referred to
as 4D dose accumulation, simulation, calculation or reconstruction.
�e basic principle of 4D dose accumulation schemes is usually a weighted sum-

mation over simulated dose distributions based on di�erent (breathing) states of the
time-dependent patient geometry [28]. Here, the extraction of motion information from
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1. Introduction

the planning 4D CT by application of deformable image registration (DIR) between one
reference phase and all other phases is often used to acquire necessary information about
dynamics of the internal patient geometry. �e deformable registration between 4D CT
phases yields motion �elds that can be applied to subsequently deform corresponding and
originally planned 3D dose distributions. �is mapping of dose distributions into the pa-
tient geometry of the reference image allows combining the deformed doses by weighted
summation [29–31]. However, these methods neglect information about dynamics of dose
delivery and actual patient breathing during treatment as only pre-treatment acquired
information (e. g. 4D CT and planned 3D dose) are used to predict the applied dose. More
advanced approaches suggest therefore to not only assign the 3D dose distribution but
individual dose segments or even monitor units (MU) to the phases of the planning 4D
CT [31, 32]. To further address inter-fractional motion di�erences, pre-treatment fraction
acquired 4D CBCT images can be utilized to update the motion information extracted
from the corresponding 4D CT data sets [33, 34]. Unfortunately, all these approaches are
solely based on internal patient motion information about single respiratory cycles as
represented by the available 4D images. Information about the patients’ actual breathing
pattern during dose delivery, i. e. intrafractional respiratory variability, and their interplay
with the dynamical dose delivery process have so far not been taken into account.

1.2. Aims and contributions of this work

Current standards in radiotherapy outline the problematic of 4D radiotherapy treatment
of moving targets treated by complex techniques that make use of high radiation doses and
hypofractionation. �ese techniques are nevertheless popular, mainly because treatment
times are short, requirements to the patients are low and, most importantly, local control
rates are comparable, or even higher, in contrast to 3D conformal radiotherapy approaches
[35–39]. Standard quality assurance in 4D radiotherapy by applying tools developed
for 3D radiotherapy is, however, hardly possible. �erefore, the general aim of the
present thesis is to develop and implement a 4D dose simulation framework that allows
for retrospective 4D quality assurance of real patient treatments under consideration
of in�uencing parameters during the 4D radiotherapy process with focus on technical
aspects delineated in Fig. 1.1. Such a framework directly depends on uncertainties in
utilized patient data and evaluation/computation tools applied. Hence, the framework
should include some sort of uncertainty propagation mechanism. �is means, a systematic
analysis of error sources and uncertainties during 4D imaging and the in�uence on
subsequent processes has to be performed. To allow for a quanti�cation and veri�cation
of such uncertainties, appropriate measurement setups are developed and used to generate
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1.2. Aims and contributions of this work

phantom-based image data. In doing so, error chains resulting from, e. g., image artifacts
need to be understood and veri�ed by suitable simulation approaches and conception of
metrological methods. Achieved insights ideally enable an estimation and assessment of
potential error sources and their dosimetrical impact on resulting dose distributions in
4D radiotherapy. Note that the focus of this thesis is on investigating the uncertainties of
technical aspects of the dose delivery process. Consideration of uncertainties introduced
by human interaction, e. g. contouring of radiotherapy relevant structures by radiologists
or patient positioning before treatment, is beyond the scope of this thesis.

�e contemplated methodological procedure can be characterized as a highly interdis-
ciplinary work, where the disciplines of physics and computer science within a medical
application context are represented. In the following, the individual contributions to this
work are listed.

Physics contribution: �e basis of this thesis are the physical principles of photon-matter
interactions and corresponding simulation approaches like e. g. Monte Carlo simu-
lations for estimation of delivered doses. In particular, X-ray imaging by computed
tomography and dose delivery methods utilized in radiotherapy are fundamental
components of this thesis. Identi�cation and evaluation of uncertainties within
those processes is mandatory to allow for an analysis of the proposed dose accumu-
lation scheme with regard to its accuracy and parameters a�ecting it. �e obtained
knowledge is applied to design appropriate experimental measurement setups for
e. g. dose measurement and image data acquisition. Reasonable interpretations and
analysis of achieved results are performed, speci�cally under consideration of an
uncertainty propagation through the dose accumulation pipeline.

Computer science contribution: �e implementation of the 4D dose simulation frame-
work is one of the main contributions to this discipline. More speci�cally, this
includes the application and modi�cation of existing tools like image registra-
tion frameworks and correspondence modeling tools. Further, the pre- and post-
processing steps performed on medical image data are primary procedures in
computer science. In addition, the utilization of deep learning to allow for an imple-
mentation of a CNN-based DIR algorithm and the application of Monte Carlo-based
dose computation algorithms can also be associated to this contribution.

Medicine contribution: �e development and implementation of the proposed dose ac-
cumulation scheme within a medical application context, i. e. as a quality assurance
tool in 4D radiotherapy, is one of the main medical contributions. �is includes the
identi�cation of potential patient-speci�c motion-related causes of local metastasis
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1. Introduction

recurrence. Further, the developed dose accumulation scheme is retrospectively
applied on real patient data sets. A novel concept of using corresponding clinical
endpoints to allow for a proof-of-principle investigation is employed.

�is thesis represents, to the best of my knowledge, the �rst attempt to identify motion
management and treatment failure by a respective patient-speci�c 4D dose accumulation
including information about the clinical outcome. In turn, a critical assessment of the
robustness of the dose accumulation framework is necessary. �is includes analyzing the
in�uence of uncertainties of its main building blocks, the correspondence model and the
underlying non-linear registration approach.

1.3. �esis structure

�e structure of the thesis is as follows. In Chapter 2, physical fundamentals regarding
photon beam radiotherapy as well as particle transport by applying Monte Carlo simula-
tions are presented. In addition, the principle of photon beam generation, modulation
and application using a medical linear accelerator is introduced. �ereafter, the principle
of the primarily utilized image modality, i. e. the CT, and general image processing in
radiotherapy in combination with deep learning is described in Chapter 3. Based upon
the physical and imaging related theoretical background, Chapter 4 introduces methods
developed and applied in this thesis that are essential for a 4D quality assurance frame-
work, focusing on correspondence-model based 4D dose accumulation as well as deep
learning-based image registration. Further, the utilized patient data sets are introduced.
Afterwards, results of the performed experiments and simulations using the developed
methodological approaches are presented. Basis of this chapter are the results published
in peer-reviewed journals/proceedings, as detailed in subsequent section. Eventually,
achieved results are discussed and put in context of current literature, an outlook to
further possible research is given and the thesis is concluded.

Publications:

Results of this thesis are mostly published in peer-reviewed journals/proceedings and
written in the form of a cumulative thesis. �at is, each section in Chapter 5 (except Sec-
tion 5.7) is based on one publication. Its structure follows the guidelines of the University
of Hamburg MIN-doctoral degree regulations for a cumulative/interdisciplinary disserta-
tion. Bylaws for safeguarding good scienti�c practice and avoiding scienti�c misconduct
provided by the Deutsche Forschungsgemeinschaft and the University of Hamburg have
been followed. �e composition of manuscripts was led by corresponding �rst author(s)
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of each article. Prior to publication, all authors approved on the manuscript to be submit-
ted. Additional contributions of each author to the research study are indicated by the
following notation:
1 conception and supervision of research study
2 experiments and data acquisition
3 theoretical calculations and simulations
4 data analysis
5 data interpretation
6 writing the manuscript

Section 5.1: T. Sothmann1,2,3,4,5,6, T. Gauer2,5, M. Wilms3,5, R. Werner1,3,5,6. Correspon-
dence model-based 4D VMAT dose simulation for analysis of local metastasis recur-
rence after extracranial SBRT. Phys Med Biol, 62(23):9001–9017, 2017.

Section 5.2: N. Mogadas2,3,4,5,6, T. Sothmann1,2,3,4,5,6 (shared �rst authorship), T. Knopp1,
T. Gauer1,5, C. Petersen1, R. Werner1,5,6. In�uence of deformable image registration
on 4D dose simulation for extracranial SBRT: A multi-registration framework study.
Radiother Oncol, 127(2):225–232, 2018.

Section 5.3: T. Sothmann1,2,3,4,5,6, T. Gauer2,5, R. Werner1,3,5. In�uence of 4D CT motion
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10576, 105760F. International Society for Optics and Photonics, SPIE, 2018.
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volumetric arc therapy: Accuracy and a�ecting parameters. PLoS One, 12(2):e0172810,
2017.
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Medical Imaging: Image-Guided Procedures, Robotic Interventions, and Modeling) and
Springer (proceeding: Medical Image Computing and Computer-Assisted Intervention). �e
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Chapter 2

Physical principles of radiotherapy

�e fundamental physical principles of radiotherapy are presented in this chapter. First,
to understand how and why energy is deposited in a medium, interactions of photons
with matter are brie�y explained. Subsequently, the quanti�cation of energy deposition
caused by scatter and collision e�ects, i. e. dosimetry, is explained for photon beams. �e
estimation of such e�ects without performing dose measurements using Monte Carlo
simulations to predict the particle transport is described in the following section. Finally,
beam generation and modulation of a medical linear accelerator is explained.

2.1. Interactions of photons with matter

Photon beams with small wavelengths and therefore higher energies have a very high
and material-dependent potential to penetrate matter. However, while traveling through
matter, the number of photons decreases exponentially along the incident direction due
to absorption and scatter e�ects. �e theoretical background of the following sections is
based on the textbooks of T. Buzug [40], W. Demtröder [41, 42] and H. Reich [43].

Assuming a monochromatic photon beam penetrates a homogeneous medium, i. e. the
linear attenuation coe�cient µ(κ) = µ is constant along κ, the change in photon beam
intensity I can be described as a homogeneous and ordinary linear, �rst order di�erential
equation with constant coe�cients

dI
I (κ)
= −µ dκ . (2.1)

After integration of both sides ∫ dI
I (κ)
= −µ

∫
dκ (2.2)

and using
∫ dI

I (κ) = ln I (κ)
ln I (κ) = −µκ +C (2.3)

we get
I (κ) = exp(−µκ +C) = exp(−µκ) · exp(C). (2.4)
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2.1. Interactions of photons with matter
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Figure 2.1.: Schematic illustration of photon-matter interactions, which primarily occur in radiotherapy

processes. (a) Photoelectric e�ect. (b) Inelastic Compton scattering. (c) Pair production. Figure
inspired by [40].

For the initial condition I (0) = I0, the special solution for Eq. (2.4) is obtained as

I (κ) = I0 · exp(−µκ), (2.5)

which is known as Lambert-Beer’s law. Major physical mechanisms that lead to attenu-
ation of photon beams with energy ranges used in radiotherapy are the photoelectric
e�ect, Compton scattering, pair production and Rayleigh scattering. �e total linear
attenuation coe�cient µ for photon beams in matter can be divided into three fundamen-
tal attenuation coe�cients de�ned by the individual cross sections σ of the interaction
processes, i. e. into the cross section for the photoelectric e�ect σpe, the total scattering
e�ects σs,tot and the pair production σpp,

µ =
(
σpe + σs,tot + σpp

)
· NA/M (2.6)

multiplied by the ratio of Avogadro constant NA and molar mass M . �e cross section
σs,tot can further be expressed by a coherent scattering term (i. e. Rayleigh scattering) σrs
and incoherent scattering term (i. e. Compton scattering) σcs, leading to

µ =
(
σpe + σrs + σcs + σpp

)
· NA/M. (2.7)

Physical processes contributing to Eq. (2.7) are described subsequently and the in�u-
ence of individual attenuation coe�cients regarding the total attenuation is illustrated.
Eventually, the local energy deposition to matter is described.

2.1.1. Photoelectric e�ect

�e photoelectric e�ect describes the interaction of a photon with an atom where as a
result an electron near the core is ejected and the atom ionized, as visualized in Fig. 2.1 (a).
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2. Physical principles of radiotherapy

�is e�ect is the dominating interaction process of materials/compounds with low atomic
numbers Z and low-energy photons (photon energies < 30 keV) [43]. �e kinetic energy
of the emitted electronTe is the energy di�erence between the photon hν and the binding
energy Eb of the electron

Te = hν − Eb, (2.8)

where h is the Planck constant and ν the frequency of the incident photon. As the atom is
afterwards ionized, characteristic X-rays or shell electrons, so-called Auger electrons, are
emitted during transition into its basic state. Highest photoelectric e�ect cross sections
σpe are achieved for K-electrons in matter with high density, resulting in a proportionality
to the fourth or �fth power of Z and an inverse proportionality to the third power of the
incident photon energy Eγ

σpe ∝ ρ
Zn

A
· E−3γ . (2.9)

For tissue-equivalent matter and in the dominant section of the photoelectric e�ect, index
n is in the range of 4 to 4.6. For high photon energies, i. e. Eγ � Eb(K), the photoelectric
e�ect is proportional to Z 5

/Eγ .

2.1.2. Compton scattering

�e inelastic scattering between a photon and a weakly bound, i. e. quasi-free, electron,
e. g. a valence electron in the outer shell of an atom, is called Compton scattering and
illustrated in Fig. 2.1 (b). �e incident photon is scattered from its initial trajectory by
an angle ϕ due to the collision with the electron. In this process, in contrast to the
photoelectric e�ect, the photon loses parts of its kinetic energy (inelastic scattering),
which is passed to the electron. �e electron leaves the atom under an angle θ . Using the
law of conservation of energy

Te = hν − hν
′ = E − E′ (2.10)

and conservation of momentum p along the incident direction

hν =
E

c
=

E′ cosϕ
c

+ p cosθ (2.11)

or perpendicular to it
E′ cosϕ

c
= p sinϕ (2.12)

the photon energy
hν ′ = hν ·

1
1 + ε · (1 − cosϕ) (2.13)
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2.1. Interactions of photons with matter

and wavelength variation
∆λ =

h

mec
· (1 − cosϕ) (2.14)

can be determined by means of the relativistic kinematics, where ε = hν/mec2, me is the
mass of the electron and c is the speed of light. Coherence between scattering angle of
the photon and the electron is de�ned as

cotϕ = (1 + ε) · tan(θ/2). (2.15)

For small ε , the scattering angle θ can be in a range of −π to +π . However, the probability
of forward and backward scattering is equal and at the same time two times higher than
sideways scattering. At higher photon energies, photons and electrons scatter primarily
in forward direction. Compton scattering is the dominant interaction between photons
and electrons for an incident photon energy range of 0.2 MeV to 10 MeV and matter with
atomic numbers smaller than ten. �e cross section σcs of the Compton e�ect is de�ned
by the Klein-Nishina formula [44] and reads for very high energies (Eγ �mec

2)

σcs = π · r
2
e · Z ·

me
Eγ

[
ln

( 2Eγ
mec2

)
+
1
2

]
∝

Z

Eγ
.

(2.16)

2.1.3. Pair production

For photon energies Eγ > 2mec
2 the pair production is besides the photoelectric e�ect

an additional possible absorption process. Here, the photon annihilates to an electron-
positron pair in the coulomb �eld of the core of an atom, as shown in Fig. 2.1 (c). Both the
electron and the positron have a rest mass ofme and a rest energy ofmec

2 = 0.511MeV.
�e remaining energy is divided between positron (E+) and electron (E−)

hν − 2mec
2 = E+ + E−. (2.17)

�e positron is subject to the same particle-matter interactions as the electron, however,
after collision with an electron, both particles annihilate and the energy of E = 2mec

2 (if
both particles come together at rest) is released in form of (most of the time) two photons
with same energy E = mec

2 and opposing direction. �e cross section σpp for the pair
production

σpp ∝ Z 2 · lnEγ (2.18)
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2. Physical principles of radiotherapy

�rst increases logarithmically with the photon energy Eγ , before it becomes constant for
photon energies of Eγ �mec

2.

2.1.4. Rayleigh scattering

Coherent scattering or Rayleigh scattering mainly occurs for incident photon energies
hν < Eb. �e incident photons excite the electrons of atoms in matter to forced oscillations
(so-called dipole antenna or Hertzian dipole), which then emit photons with the same
frequency ν as the incident photons. No energy is lost by the photon as it only transfers
momentum to the atom and is afterwards scattered. �e cross section σrs for Rayleigh
scattering is proportional to ν4. As long as the wavelength of the photon is large compared
to the diameter of the atom, the elastically scattered parts of the incident photon beam
can be added up coherently. Magnitude of the scattered wave is then proportional to Z

and the intensity proportional to Z 2.

2.1.5. Total mass attenuation

More fundamental than the total linear attenuation coe�cient de�ned in Eq. (2.7) is the
mass attenuation coe�cient as it is independent of the actual mass density as well as
physical state of the absorber. �e total mass attenuation reads

µ

ρ
=

1
ρ
(σpe + σrs + σcs + σpp) · NA/M, (2.19)

with ρ being the density of the absorber material.
Figure 2.2 shows the functional behaviour of the mass attenuation coe�cients regarding

the attenuation in water for beforehand described photon matter interactions as a function
of photon energy; associated data is being obtained from the XCOM database [45]. In a
wide photon energy range from 30 keV to 30 MeV, Compton scattering is the dominant
interaction between photons and matter and has the largest contribution to the total mass
attenuation. For smaller (< 30 keV) and for higher photon energies (> 30MeV), other
interaction processes like the photoelectric e�ect and the pair production, respectively, are
the prevailing e�ects. Rayleigh scattering plays only a secondary role in comparison to the
other interaction processes. �e total mass attenuation depends, as described previously,
directly on the considered material. �us, for materials with higherZ , Compton scattering,
the in water over a wide range dominant e�ect, is limited to a much smaller energy
interval. �is is mainly caused by the strong dependence of the pair production on
the atomic number and its onset at energies above 2mec

2 = 1.02MeV. However, in
radiotherapy absorber with low Z (e. g. tissue with Z < 10) are common, indicating that
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Figure 2.2.: Total mass attenuation coe�cient as well as individual attenuation coe�cients for Rayleigh
scattering, Compton scattering, photoelectric e�ect and pair production in water as a function
of the incident photon energy and normalized to corresponding absorber density ρ. Data is
obtained from the XCOM database [45].

the Compton scattering is one of the most important interactions of photon beams and
tissue in radiotherapy.

For photon beam dosimetry, it is of particular interest of how much energy is transferred
to kinetic energy of secondary electrons (cf. Section 2.1.6). To this end, the mass energy
transfer µtr coe�cient can be de�ned as

µtr
ρ
=
µ〈T 〉

ρhν
(2.20)

with 〈T 〉 being the expectation value of the energy converted to kinetic energy of sec-
ondary electrons in an interaction. Further, a mass energy absorption coe�cient can be
de�ned that describes the energy loss of electrons to secondary photons

µen
ρ
= (1 − д)µtr

ρ
(2.21)

where д is the fraction of the kinetic energy lost to photons during the complete slowing
down of secondary electrons.

2.1.6. Energy deposition in matter

�e local energy deposition of a photon beam that traverses through matter is primarily
executed by emitted electrons resulting from photon-matter interactions. Here, the kinetic
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2. Physical principles of radiotherapy

energy of the emitted electrons is gradually transferred to electrons of the tissue mainly
by inelastic scattering with orbital electrons, i. e. ionization and excitation of atoms.
During their path trough matter, the emitted electrons can further create δ -electrons that,
again, have an considerable range of their own. Further, generation of bremsstrahlung in
the electromagnetic �eld of the atom core as well as orbital electrons contribute to the
energy transfer. Elastic scattering in the �eld of the core and inelastic scattering with the
atomic core have only a minor impact on the energy loss of electrons. To characterize the
kinetic energy loss dT of electrons as they travel distance dx in a medium, the stopping
power quantity S = dT/dx is normally employed. More commonly, however, is to express
the distance with respect to the mass per unit area of the material with density ρ

S

ρ
=

dT
ρdx . (2.22)

�e stopping power combines the energy loss due to ionization and excitation of atoms,
i. e. the collision stopping power Scol, and the generation of bremsstrahlung, i. e. the
radiation stopping power Srad

S

ρ
=
Scol

ρ
+
Srad

ρ
. (2.23)

Here, the energy of the incident electrons directly de�ne the relative proportion of both
interaction processes onto the total energy loss. Scol of a material is described by the
Bethe-Bloch equation, modi�ed to be applicable for electrons

Scol

ρ
= 2πr 2eNe

mec
2

β2

[
ln
T 2
e (Te + 2mec

2)

2mec2I 2
+

T 2
e/8 − (2Te +mec

2)mec
2 ln 2

(Te +mec2)2
+ 1 − β2 − δ

]
(2.24)

where re is the classical radius of the electron, Ne = NA(Z/Ar)with NA being the Avogadro
constant and Ar the atomic weight of the material, β = ve/c with ve as the speed of the
electron and δ the density correction term. An approximation for Srad is given by the
ICRU report 37 [46] as

Srad

ρ
= σ0

NA
Ar

Z 2(Te +mec
2)〈B〉, (2.25)

where σ0 = (1/137)
(
e2/mec2

)2 and B = B(hν/Te) is a slowly varying function with an average
for Te �mec

2 of 〈B〉 = 16/3.

2.2. Photon beam dosimetry

Dosimetry in radiotherapy is an important tool to allow quantifying the energy that
radiation emits due to the above described photon-matter interactions when traversing
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through matter and generation of secondary particles, mainly electrons. �e alterations
in physical and chemical properties of the irradiated medium are measurable and often
proportional to the absorbed dose and can be used to quantify the applied dose. As
biological e�ects directly depend on the absorbed dose, estimation and measurement
of dose distributions are important in radiotherapy. �e following section therefore
concentrate on brie�y explaining the general concepts of dosimetry and is based on the
textbooks of P. Mayles [47], H. Reich [43] and the International Atomic Energy Agency
(IAEA) [48].

2.2.1. Energy imparted, absorbed dose and KERMA

In general, the dose can be seen as a quantity with respect to a point that is spatially and
temporally derivable. Further, the point dose is related to a mass element of the irradiated
material. �at is, for the experimental determination of that dose, the mass element has
to be su�ciently dimensioned, as otherwise the absorbed energy will be a stochastic
variable1. With regard to this, a quantity of stochastic nature, the energy imparted ε in a
reference volume, is de�ned. �e de�nition reads

ε = Rin − Rout +
∑

Q (2.26)

withRin being the sum of energies of all charged and uncharged ionizing particles entering
the volume, Rout, similar to Rin, only considers particles that leave the volume and

∑
Q

gives the sum of changes of the rest mass energy of nuclei and elementary particles in any
nuclear transformations that occur in the volume. In Rin and Rout, rest mass energies are
excluded. �e expectation value of ε , the mean imparted energy 〈ε〉 is a non-stochastic
quantity.

Under a biological perspective, the central quantity in radiotherapy is the speci�c
energy e, de�ned as quotient of local imparted energy and the mass m of the absorbing
volume

e =
ε

m
. (2.27)

�e reason for this is that the microscopic scale in the area of cells or even smaller parts
of cells make it necessary to consider the stochastic nature of the energy absorption;
this is only adequately possible by applying the speci�c energy e. Biological e�ects Ebiol
are therefore directly dependent on e, i. e. Ebiol = Ebiol(e). In radiotherapy, however,
radiation e�ects are commonly speci�ed by the macroscopic and measurable quantity of

1Dose as a stochastic quantity, i. e. with spatial, temporal and spectral aspects of the stochastic nature
of the energy deposition processes, is generally dealt with under the heading of microdosimetry, cf.
[49, 50].
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the absorbed dose, D. Correlation between e and D and the impact on biological e�ects
can be given as

Ebiol(D) =

∫
Ebiol(e)f (e,D) de (2.28)

where f (e,D) is the spatial distribution of the dose. �at is, biological e�ects are not only
dependent on the dose but also on the distribution pattern of the microscopic energy
deposition.
�e absorbed dose with unit Gray (Gy, 1Gy = 1 Jkg−1) can be derived from the mean

of the speci�c energy

〈e〉 =

∫ ∞

0
e · f (e) de (2.29)

as its boundary value of the mean energy absorption in a small mass element

D = lim
m→0
〈e〉. (2.30)

However it is more common to de�ne D as the quotient of the mean energy imparted 〈ε〉
delivered to matter with mass dm

D =
d〈ε〉
dm =

d〈ε〉
ρdV . (2.31)

In radiotherapy, the absorbed dose is one of the most important quantities because it
directly represents the energy per unit mass that remains in matter to produce any e�ects
attributable to the radiation. Additionally, it is relevant to directly or indirectly ionizing
radiation as well as to ionizing radiation sources distributed within the absorbing medium.
However, as the absorbed dose is being deposited by secondary charged particles, it is
not possible to relate the absorbed dose directly to the particle �uence or energy �uence

Φ =
dN
da , Ψ =

dR
da , (2.32)

respectively, of a �eld of indirectly ionizing radiation. Here, dN denotes the number of
particles and dR the energy incident on a sphere of cross sectional area da.

�anti�cation of radiation �elds is usually done by the kinetic energy released per unit
mass (KERMA). KERMA describes the �rst order of energy transfer for indirect ionizing
radiation and is de�ned as

K =
dEtr
dm =

dEtr
ρdV (2.33)

with dEtr as the sum of the initial kinetic energies of all the charged ionizing particles
released by uncharged ionizing particles. Similar to the total stopping power de�ned in
Eq. (2.23), KERMA can be divided into a collision and a radiation part, i. e. K = Kcol +Krad.
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2.3. Monte Carlo simulation of particle transport

Computation of KERMA in a speci�c medium at a point in space with �uence Φ of
photons with energy hν is possible by using the relationship de�ned in Eq. (2.20)

K =

(
µtr
ρ

)
hνΦ =

(
µtr
ρ

)
Ψ. (2.34)

As a direct measurement of the absorbed dose is usually not possible, the correlation
to the measurable KERMA quantity is exploited. Under the so-called charged particle
equilibrium (CPE), i. e. the extent of the measurement device is greater than the maximum
range of the secondary electrons generated in the detector medium, it follows that ε = Etr

and thus the absorbed dose in a medium Dmed is equal to Kcol,med. Using the relationship

Kcol,med =

(
µen
ρ

)
Ψ (2.35)

it follows for monoenergetic energies and CPE at a depths of interest d that

Dmed,d =

(
µen
ρ

)
med

Ψmed,d . (2.36)

2.3. Monte Carlo simulation of particle transport

�e basic principle in radiotherapy is to plan a dose distribution that is going to be
applied to a patient to hit and destroy a previously identi�ed target volume, as described
in Chapter 1. For given irradiation conditions, e. g. particle type, �eld sizes and forms,
energy and beam directions, a transport equation has to be solved under consideration of
corresponding boundary conditions. Usually, coupled integro-di�erential equations2 that
describe the electromagnetic shower are applied. However, they are only analytically
solvable by approximation under simplifying assumptions. �us, results of currently
employed dose calculation methods in radiotherapy contain uncertainties of about 3% to
4%. For speci�c irradiation conditions, like dose calculation near tissue inhomogeneities
or the usage of complex and small �eld forms, uncertainties can be even larger [51, 52].
�is motivates application of the Monte Carlo method in radiotherapy treatment planning,
as this is the only known method that can be applied for any energy range of interest.
Such simulations achieve planned dose distributions with highest possible accuracy by
employing fundamental physical principles of particle transport, i. e. interaction processes
as described in Section 2.1. Remaining uncertainties are statistical �uctuations, as a Monte
Carlo simulation with no uncertainty would take an in�nite amount of time. A trade-

2In integro-di�erential equations, integrals and derivatives of a function are involved.
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o� between an acceptable simulation uncertainty and the respective computational
simulation duration has to be made [53, 54].

�us, when boundary conditions are su�ciently known, the transport equation is
solvable with arbitrary accuracy by applying Monte Carlo simulations. Each particle track
in a geometry of interest is simulated. �at is, an incident electron or photon, with all
its interactions with matter and resulting generation of secondary particles, is described
from its entry into the geometry until the incident particle exits the geometry or is
completely absorbed. �erefore, interaction probabilities de�ned by corresponding cross
sections have to be known and estimated by accordingly distributed random variables.

Assuming that x is such a random variable in interval [a,b] with a probability density
function, i. e. cross section, and f (x) with f (x) ≥ 0 describing the distribution, then the
distribution function is de�ned as

F (x) =

∫ x

a
f (x′) dx′ (2.37)

with a ≤ x ≤ b and F (b) = 1. F (x) is monotonically growing in interval [0,1], i. e. an ordi-
nary generator of random variables would generate uncorrelated uniformly distributed
variables ξ in that interval. For ξ = F (x) or x = F−1(ξ ), where F−1 is the inverse function
of F , x is distributed according to f (x). �us, arbitrary distributed random variables x
can be generated out of uniformly distributed random variables ξ .

For a photon, the distance to an interaction can then be estimated by the Monte Carlo
method as

s = −
1
µ
ln(1 − ξ ), (2.38)

where µ is the attenuation coe�cient for photons with a given energy, as de�ned in
Eq. (2.7). �is estimation can be directly derived by the probability distribution function
for interaction distances, i. e.

f (s) = µ exp (−µs) (2.39)

where 0 ≤ s ≤ ∞. Generation of secondary particles can afterwards be estimated by
corresponding di�erential cross sections and resulting particle trajectories are further
traced. In each volume element (voxel), the deposited energy is computed and accumu-
lated. �e number of simulated particle histories N de�nes the statistical accuracy of the
simulation. A particle history, also referred to as case or shower, describes the transport
of one initial particle, its interaction processes and during this procedure potentially
produced secondary particles until all particles are absorbed or leave the geometry under
consideration. Depending on the desired statistical accuracy, which usually decreases
with N −0.5, long computation times may be necessary [53, 55].
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2.3. Monte Carlo simulation of particle transport

As described in Section 2.1, there are four primarily important photon-matter in-
teraction processes that have to be considered in Monte Carlo simulations by using
corresponding cross sections. �e energy loss of electrons, as they traverse matter, can be
described by two basic processes. First, the at high electron energies dominant mechanism
of bremsstrahlung radiation transfers energy back to photons, leading to a coupling of the
electron and photon radiation �elds. Secondly, for low energies, the inelastic collisions
with atomic electrons are dominant. �is leads to excitation and ionization of the atoms
along the paths of the particles. Further, elastic collisions occur at a high rate and cause a
frequent change in electron direction.

For the estimation of electron trajectories and interactions, it is nearly impossible to
use the same Monte Carlo simulation approach as for photons. �e reason for this is that
photons in an energy range of 10 keV ≤ Eγ ≤ 40MeV have a relatively large mean free
path of about 20 cm in radiotherapy-relevant low Z materials and hence only experience a
few interactions [47]. Fast electrons or charged particles in general, however, are subject
to a high number of collisions of about 103 to 104 in the process of slowing down [55, 56];
an event-by-event simulation of the electron transport is computationally not feasible.
An approach to circumvent this di�culty is the condensed history technique. �e main
idea of this method is to condense large numbers of subsequent transport and collision
processes to one single step [57]. More speci�cally, in each step, the cumulative e�ect
of the individual interactions is considered. �is is achieved by sampling the change
of the particle’s direction of motion, energy and position at the end of the step from
appropriate multiple scattering distributions. �e condensed history technique is based
on and justi�ed by the observation that solely a few of all electron interactions cause a
considerable directional change or energy loss. �e commonly utilized so-called class II
implementation of the condensed history method di�erentiates between events with
low energy loss and catastrophic collision events. Here, a catastrophic event can be an
inelastic collision or a bremsstrahlung process with high energy transfer. Between two
catastrophic events exactly one condensed history step with multiple scattering occurs.

For the electron transport in heterogeneous geometries, the interfaces between di�erent
materials have to be taken into account. �e simulation of an electron close to an interface
with another material requires to consider the curved electron trajectory. �at is, parts of
the electron trajectory may be in this di�erent material and thus di�ers from the actual
simulated trajectory, as schematically visualized in Fig. 2.3. �e common approach to
address this problem is to utilize a boundary crossing algorithm. Whenever an electron
comes closer to a boundary than a de�ned minimum distance, the Monte Carlo simulation
is not longer using the condensed history technique but simulates single elastic scattering
e�ects. �us, a potential boundary crossing can be correctly estimated.
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Figure 2.3.: Problem of electron transport in heterogeneous geometries when applying the condensed
history technique. �e electron transport is simulated between A and B (dashed line, both
points in material 1). For the indicated electron trajectory C in material 1, no problems occur.
However, parts of the electron trajectory indicated by line D may be in material 2. �us, the
entire particle history is potentially a�ected. Figure modi�ed from [58].

�e e�ciency of Monte Carlo simulations can generally be improved by the application
of variance reduction techniques. �at is, instead of increasing the number of simulated
histories, N , the variance σ is reduced by constructing a new Monte Carlo problem
with the same answer as the original one but with a lower σ . Typical and in this thesis
applied variance reduction techniques regarding the particle transport in a medical linear
accelerator are range rejection, bremsstrahlung splitting and Russian Roulette.

Range rejection �e electron range is checked against the distance to the nearest bound-
ary on every step. Whenever the estimated range is shorter than the distance to
the boundary, the electron is terminated and its energy deposited in the current
region. As the electron could emit a bremsstrahlung photon, which potentially is
able to leave the region, this technique is only executed if the electron’s energy is
below an energy threshold.

Bremsstrahlung splitting �is technique employs the splitting of bremsstrahlung in-
teractions, i. e. each bremsstrahlung event creates an arbitrary number of brems-
strahlung photons with their weight suitably reduced. �e energy of the electron
creating this event is decreased by the energy given o� by one of the generated
photons. Even if this is in violation of conservation of energy on an individual
interaction basis the resulting �uctuations in energy loss for electrons and expec-
tation values for photon energy and angular distributions are correct. �e gain
in simulation e�ciency is high as simulating the photon transport is fast and this
technique makes optimal use of each electron track.

Russian Roulette Particles generated in a class of events that are of little interest for the
general simulation result as they, for instance, would never reach the geometry
of interest, motivate the application of the Russian Roulette technique; with a
given probability the low-interest particles are eliminated. Increasing the weight
of the surviving particles by the inverse of that probability ensures that the result
is unbiased.
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2.4. Linear accelerators in radiotherapy: Beam generation

and modulation

Generation of external beam radiation applied in radiotherapy is generally conducted by
employing medical linear accelerators, where electrons are accelerated by an synchro-
nized electromagnetic �eld. Typically, the high-frequency �eld oscillates at a vibration
frequency of 2856 MHz or 2998 MHz (S-band), which corresponds to a wavelength of
0.15 m and 0.1 m in vacuum, respectively. �e electrons to be accelerated are produced
by an electron gun and synchronized with the pulsed electromagnetic wave injected into
a waveguide. If the accelerator operates in photon-mode, the accelerated electrons will
be focused onto a thick target, having a high atomic number (e. g. tungsten). In doing so,
bremsstrahlung radiation is produced, which subsequently is focused onto the isocenter.3

Subsequently, the radiation �eld is formed by dedicated collimators.
In the following, functionality of primary components of a medical linear accelerator

are explained in detail. �is section builds on theoretical basics given in books of the
IAEA [48], P. Mayles [47] and W. Schlegel [59].

2.4.1. Microwave power sources

Generation of microwave pulses needed for electron acceleration is realized by mag-
netrons (low and medium energy machines) or klystrons (high energy machines). �e
magnetron is a radiofrequency (RF) self oscillator. It has a cylindrical structure with a
centrally placed cathode. �ermionic electrons that are emitted from the cathode are
attracted toward the surrounding concentric anode by the positive anode potential. �e
anode itself is comprised of an array of cylindrical cavities. A static magnetic �eld is
applied parallel to the cathode axis that leads to a complex cycloidal electron trajectory
around the cathode. Interaction of electrons with the RF cavities and in�uences of space
charge forces yields rotating bunches of electrons. �is process creates an oscillating elec-
tric �eld in the resonant cavities that reduces the kinetic energy of the moving electrons.
�e energy is transferred to the oscillating cavities and RF power can be extracted.

In contrast to the magnetron, the klystron is not a RF oscillator but a RF ampli�er. An
electron gun is used to generate an electron beam that is passed to the RF cavities. In the
�rst cavity, the buncher cavity, electrons are bunched by an applied RF signal (velocity
modulation). In the following, similarly designed, resonator cavity, the bunched electrons
induce RF oscillations. Repeating this process, the RF power is build up, i. e. electron

3If the linear accelerator operates in electron-mode, the bremsstrahlung radiation target is moved out
of the beam path. As in this thesis only the more commonly applied photon-mode is employed, this
chapter focuses on the description of a medical linear accelerator operating in photon-mode.
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energy of the initial beam is further reduced and transferred to the RF power. Eventually,
the RF power can be extracted in the last cavity and propagated to the accelerating
waveguide.

2.4.2. Accelerating waveguide

�e accelerating waveguide is a metallic (copper) pipe, separated into cylindrical cavities
by irises. Injected RF waves are used to generate strong magnetic and electric �elds in
each cavity by induction currents in the surface of the cavity walls. �us, electrons are
accelerated by induced �elds along the guide axis. Two distinct types of guides exist, the
travelling waveguide, where the RF wave is propagated along the guide axis, and the
standing waveguide, where the wave is stationary.
�e �rst part of the travelling waveguide is a buncher unit that synchronizes space,

phase and velocity of the injected electrons as they acquire energy from the electromag-
netic �eld. At resonance, the charge distribution in a travelling waveguide changes in
sync with the microwave frequency. Electron bunches that move in the same direction
as the microwave propagation are accelerated, where energy gain of electrons results in
a relativistic mass increase.

In a standing waveguide, microwaves are re�ected with a π/2-phase change back into
the waveguide. �e superposition of re�ected and injected microwave build up a standing
wave. In every second pipe segment, an oscillation antinode is generated, in intermediate
segments oscillation nodes occur. Electrons can only be accelerated in segments with
oscillation nodes. However, simultaneously to the electrons passing through the node,
maximum negative electromagnetic �eld intensity has to be present.

2.4.3. Beam steering and focusing

In Fig. 2.4, the beam steering and focusing in a medical linear accelerator is schematically
illustrated. �e electron beam coming from the accelerating waveguide is not directly
applicable for radiotherapy treatment. In general, the waveguide of a medical linear
accelerator is not vertically arranged, i. e. the beam is not yet pointing to the isocenter.
�us, inside the linear accelerator head, the beam has to be bent. In modern therapy
devices, a magnetic bending system is used to bend the beam by 270◦. �e magnetic �eld
strength increases for larger electron orbits, i. e. electrons with higher energy experience
higher magnetic �elds. �us, the inhomogeneous magnetic �eld acts like an achromatic
lens. �e electrons, independent of their energy, hit the same focal spot with minimum
spatial extent after passing through the bending system.
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For a linear accelerator operating in photon beam mode, the now narrow focused
beam of electrons has to be converted to a photon beam. �is is achieved by shooting
the electrons onto a thick target with high atomic number (usually tungsten) to generate
ultrahard bremsstrahlung radiation. Afterwards, a �rst beam collimation is performed
by a static primary collimator. �e bremsstrahlung radiation has higher intensities in
the direction of the initial electron beam as on the �eld edges. �us, a �attening �lter is
inserted in the beam to homogenize the photon energies, i. e. compensate for the lack of
scatter at the edge of the �eld. �e �attening �lter is circularly symmetric with a pro�le
with decreasing thickness towards the edges.

An important device placed beneath the �attening �lter is the monitoring system,
consisting of a thin layer of ionization chambers. Here, the total beam pro�le is measured
to monitor the beam intensity. Further, beam homogeneity and symmetry are controlled
by employing an appropriate sectioning of chambers. Subsequently, the lower part of
the accelerator head4 begins with secondary collimators or so-called jaws. �ese are
utilized to de�ne the maximum �eld size. In modern medical linear accelerators, the jaws
are automatically controlled and moved during dose application, providing an optimal
beam shielding. �e actual �eld forming, i. e. adapting the spatial extent of the beam, is
afterwards done by a more �exible collimator type, a multileaf collimator (MLC). As the
name suggests, a MLC consists of a variety of thin (1.6 mm to 3 mm) tungsten leaves that
are arranged opposing each other pairwise. During treatment, each leaf is independently
computer-controlled allowing the MLC to form almost arbitrary radiation �elds. �is
beam modulation is the basis of complex treatment techniques like e. g., the VMAT
technique that is mainly applied in this thesis. A more detailed explanation of VMAT is
therefore given subsequently.

2.4.4. Beam modulation and dose application by VMAT

�e VMAT treatment technique is a highly dynamical dose delivery approach that employs
a continuous target irradiation while the gantry rotates around the patient. As VMAT is
an operating mode, conventional medical linear accelerators with standard MLC are able
to use this technique. During VMAT, the dynamical modulation of gantry rotation speed,
dose rate and MLC leaf positions is employed to achieve optimal dose distributions. �e
continuous irradiation during the VMAT treatment allows to deliver the dose in arcs
and thus in a short period of time (in the order of minutes) [60]. �e dynamic source
motion, i. e. the gantry rotation around the target, is de�ned by a �nite number of static
beams or so-called control points (CP, the smallest segment of a VMAT arc). For each

4A more detailed illustration of the lower part of the accelerator head can be found in Fig. 4.4.
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Figure 2.4.: Illustration of beam steering and focusing in a medical linear accelerator.

CP, the source position and instantaneous MLC con�guration is given. Before treatment,
a dedicated TPS is used to optimize the planned dose by randomly and simultaneously
varying the MLC shapes, the dose rate and the gantry rotation speed for every CP. During
dose delivery, MLC leaves and the gantry move linearly in between each CP. Physical
restrictions of machine components have to be considered during treatment optimization.
More speci�cally, a gantry rotation speed restriction to a maximum of 4.8◦ s−1 limits the
duration of a full arc to a minimum of 75 s [61]. Further, collimator leaves in individual
MLC rows must be able to �nish their transition from the previous CP to the next CP
(maximum leaf speed of 2.5 cm s−1) and a maximum dose rate of 600 MU min−1 has to
be taken into account. As the in one CP delivered number of MU is variable, the gantry
will move at maximum speed and apply the dose with a reduced dose rate when less
than 2.08 MU are going to be delivered per degree. When the dose rate is at maximum,
the gantry will slow down when a larger amount of MU is to be delivered. Note that
these numbers di�er from manufacturer to manufacturer and refer to the medical linear
accelerator applied in this thesis.

Depending on the TPS, the dose to be delivered can be computed in total, i. e. for the
total VMAT arc, or individually for subbeams of speci�c angular size (summation over
all subbeam doses results in the total VMAT arc dose). �e minimum angular size of a
subbeam is de�ned by the TPS (for the TPS applied in this thesis a minimum angular size
of δα ≥ 2.3◦ is allowed), where a subbeam contains of at least two CP to consider MLC
and gantry motion during dose calculation.
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Chapter 3

Imaging and image processing in 4D
radiotherapy

�e basis of radiotherapy treatment planning and quality assurance is medical imaging
and image processing. For dose calculation, solely CT data sets provide necessary infor-
mation about the voxel-wise electron density in a medium. �erefore, this chapter gives
an overview of the principle of CT imaging, followed by an outline of image processing
in the context of radiotherapy treatment planning images, with the focus lying on the
concepts of image registration and deep learning.

3.1. Principle of computed tomography

Modern CT scanner employ a rotating X-ray source with fan beam geometry and a
detector opposing to the beam source to produce cross sectional images of an object,
as schematically shown in Fig. 3.1 (a). Material-speci�c attenuation of the X-ray beam
intensity that is measured by the detector after traversing through the considered slice
of the object can be established with Eq. (2.5) by integration along the considered X-ray
beam direction

I = I0 · exp
(
−

∫
s
µ(κ) dκ

)
, (3.1)

with the integral being a line integral along the beam direction s . As CT imaging is
performed via a rotating X-ray source/detector, a variety of intensity values is measured
from di�erent angles. By applying the corresponding projection integral

− ln
(
I

I0

)
=

∫
µ(κ) dκ (3.2)

CT imaging aims at reconstructing the spatial distribution of the attenuation coe�cients
of a considered slice based on projection data. For this task di�erent reconstruction
algorithms are available. A commonly utilized method is the �ltered backprojection [40].

As the detector is composed of four up to 128 rows of detector elements (depending
on the CT manufacturer and type), it is generally possible to acquire more than one
image slice of the investigated object for each CT table position. In general, however,
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Figure 3.1.: Schematic of the principle of modern CT scanner. (a) For acquisition of a cross sectional image,
the X-ray source with fan beam geometry and the detector rotate around an object. (b) �e
acquisition of larger volumes is generally realized by applying a spiral CT scan. Here, the same
rotation of the source/detector as in (a) is utilized, but at the same time a continuous table feed
through the CT tube is necessary, to yield the spiral trajectory in the patient coordinate system.
Figure based on [62].

the reconstructed CT image has a slice thickness, i. e. image spacing in z-direction, of
0.6 mm to 3 mm. �e straightforward method to acquire even larger volumes would be to
move the CT table in z-direction after each acquisition until the total �eld of view to be
investigated is imaged (step & shoot CT scanning). �is, however, takes a relatively long
time and e. g. patient motion while imaging could lead to artifacts between stacks of slices
in the reconstructed volume. �erefore, a commonly applied method is the so-called
spiral CT scan, where the CT table continuously but slowly moves in z-direction through
the CT tube while at the same time cross sectional images are obtained; see Fig. 3.1 (b)
for a visualization of the approach.

To obtain a gray scale image after image reconstruction, the 3-dimensional distribution
of µ is converted to a dimensionless scale in relation to the attenuation coe�cient of
water

CT-value (µ) =
µ − µH2O
µH2O

· 1000. (3.3)

In medical practice, the so-called Houns�eld scale, named after G. Houns�eld, uses
212 = 4096 possible Houns�eld (HU) values in the range of −1024 to +3071. According
to the HU de�nition, HU values for water and lung are 0 and −1000, respectively. For
soft tissue, HU values are primarily in the range of −100 to +100 and HU values above
+700 are representing bones. Visual inspection of obtained images is usually done by
applying the windowing technique. Here, high contrast is achieved by selecting the HU
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value range of interest, characterized in terms of a window center C as well as a window
widthW and visualized by a gray level scale with 256 values. Values below the chosen
window are shown in black, values above in white. In this work, applied windows are
with (C = −600,W = 1500) for lung and (C = 50,W = 400) for liver/tissue.

3.1.1. CT with temporal resolution – 4D CT

3D CT imaging of moving objects, e. g. internal patient geometry that moves due to patient
respiration, is inevitably subject to motion artifacts due to discrepancies in the acquired
projection data. �ose deviations directly in�uence the reconstruction process and thus
the resulting 3D CT image of the patient. Depending on utilized imaging parameters
and internal motion magnitudes as well as direction of internal motion, di�erent artifact
types (double structures, motion blurring of contour edges, etc.) with varying severity
can occur.

In 4D radiotherapy, as explained in the introduction of this thesis, a common approach
to tackle this issue is to consider the temporal dimension while imaging, i. e. to acquire
3D + t (4D) CT data sets. �e basis of 4D CT imaging is to record the external breathing
signal of the patient during CT scanning by applying for instance an infrared camera
mounted on the wall of the treatment room in combination with an infrared re�ecting
marker block that is placed on the patients’ chest wall. Synchronization between CT
acquisition and breathing signal allows to assign breathing phases to corresponding
CT projections. As the acquisition time of a 4D CT (≈ 100 s) is usually much larger
then an average patient breathing cycle (≈ 4 s), the reconstruction process in 4D CT
imaging makes use of combining projection data of equal breathing phases of di�erent
breathing cycles. �us, a 4D CT does not describe the internal patient motion for the
whole acquisition process, but solely the internal patient motion for one average breathing
cycle during 4D CT imaging. �is means, dividing each patient breathing signal cycle
into nph phases yields a 4D CT data set consisting of nph 3D CT volumes where each
volume is reconstructed using only a fraction of all available projections. Motivated by
the compromise of su�ciently covering the average breathing cycle and at the same time
providing enough projections per phase image to provide an adequate image quality after
reconstruction, a commonly chosen value for nph is ten. Positioning of phases, so-called
binning, is usually done by a phase- or amplitude-based approach. �e phase-based
binning divides each breathing cycle into temporal equidistantly spaced bins, as shown
in Fig. 3.2 (a). In Fig. 3.2 (b), the amplitude-based binning is illustrated. Here, bins are
equidistantly spaced in amplitude, i. e. for the shown example at 0%, 20%, 40%, 60%, 80%
and 100% of the amplitude of one breathing cycle for in- and expiration. Deviations of
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Figure 3.2.: Comparison of binning methods in 4D CT reconstruction for nph = 10. �e bin width is de�ned
in utilized CT protocol and directly dependent on the table feed during scanning. (a) �e
phase-based binning divides each breathing cycle into temporal equidistantly spaced bins. For
breathing cycles with large breathing periods, e. g. cycle c = 1, bins cover the total cycle but
are placed in areas with small or even no change in breathing amplitudes. (b) Division of
each breathing cycle into nph bins using amplitude-based binning, where bins are equidistantly
spaced in amplitude. For this approach, binning in cycle c = 1 cover areas with change in
amplitude but projections acquired small or even no change in breathing amplitude are not
used in CT reconstruction.

phase-based binning and amplitude-based binning becomes clear for breathing cycle
c = 1. Due to the equidistant spacing in time, when applying phase-based binning, areas
with small or even no change in breathing amplitude are sampled and combined with bins
in other breathing cycles. However, for the amplitude-based binning, areas with change in
breathing amplitude are correctly covered but projections acquired during small or even
no change in breathing amplitude are discarded and not used in CT reconstruction. For
both approaches, image artifacts may be present after reconstruction. Hence, commonly
occurring artifact types are discussed in following section.

3.1.2. Image artifacts in 4D CT data

Typical image artifacts that occur in 4D CT data sets are illustrated in Fig. 3.3. �e
so-called double structure artifacts (cf. left part of Fig. 3.3) are caused by a faulty bin
sorting during image reconstruction. If phase-based binning is used, the example in
Fig. 3.2 (a) could directly lead to this kind of artifacts, as bins for z-positions for c = 1
are not correctly re�ecting the internal patient geometry as seen in remaining breathing
cycles (c = 0 and c = 2). �us, slices are reconstructed that do not match the physiological
state represented by neighbouring axial slices. However, double structure artifacts can
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Figure 3.3.: Typical image artifacts in 4D CT data sets. Double structure artifacts (left) caused by a faulty
bin sorting while image reconstruction, caused by e. g. an irregular patient breathing during
imaging. Interpolation artifacts (right) occur when information between slices is missing and
missing information is then compensated while image reconstruction by interpolation between
adjacent z-slices.

also occur for amplitude-based binning. Here, a high variability in patient breathing
amplitude leads to a erroneous correspondence between internal and external motion
and in consequence to a combination of bins representing di�erent physiological states.

Amplitude-based binning as shown in Fig. 3.2 (b) can further cause so-called interpola-
tion artifacts (cf. right part of Fig. 3.3), as the CT scan does not stop during the illustrated
breathing pause in cycle c = 1 and therefore projection data for, e. g., inspiration phases
is missing for the investigated z-positions. Missing information is compensated during
reconstruction by interpolation between z-slices that were successfully reconstructed.
Such artifacts can also occur for phase-based binning when the spacing between bins, i. e.
the breathing period of the patient, is too large.

Generally, amplitude-based binning is more robust than phase-based binning, as in-
vestigated and shown in e. g. [63, 64]. �erefore, in-house acquired image data is solely
reconstructed by applying standard amplitude-based binning. More advanced CT imaging
and reconstruction methods currently developed, i. e. an intelligent 4D CT sequence scan-
ning approach [65] or an optimized projection binning algorithm [66], are unfortunately
not yet available for present clinical CT scanners.

3.2. Biomedical image processing

In medical imaging in a broader sense, the general aim of image processing is to support
the patient therapy or diagnosis by computer-based identi�cation, distinction, analyses
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and visualization of image objects of interest. For this kind of tasks, image processing
encompasses a variety of di�erent methods and algorithms, applied individually or in
combination. Especially algorithms for e. g. image registration, segmentation, pattern de-
tection and recognition as well as classi�cation are important methods that are commonly
utilized. Nowadays, complex image analysis tasks are often solved by machine learning
methods, as such methods are fast and achieve similar or even better results compared to
standard algorithmic approaches. In the last years, especially deep learning, a sub�eld of
machine learning, has come to high popularity in (biomedical) image analysis. �e advan-
tage of deep learning is that high-level, abstract features from raw data are considered
by learning and introducing task-speci�c representations that are expressed in terms of
other, simpler representations, i. e. complex concepts are represented by a combination of
simpler concepts. Deep learning in biomedical image processing is, however, commonly
utilized for image segmentation and classi�cation tasks. �e application in non-linear
image registration problems can only be rarely found.

In this thesis, non-linear image registration is of particular interest, because it is one of
the fundamental image processing tasks to extract necessary patient motion information
out of 4D CT image data sets. To understand the idea of non-linear image registration,
a more detailed description is given in the subsequent section. �ereafter, the concept
of deep learning is introduced, as a new methodological approach to allow for a deep
learning-based DIR is proposed in this thesis (cf. Section 4.3 and Section 5.4).

3.2.1. Non-linear image registration

Image registration is a fundamental �eld of research in medical image processing to
allow for analyses of, for instance, patient images of di�erent imaging modalities. To
do so, images usually located in di�erent coordinate spaces have to be transformed into
one joint coordinate space to enable a direct comparison and visualization of images
(cf. for example mentioned registration between imaging modalities in Fig. 1.1). Further,
image registration can be applied to image data that uses the same coordinate space.
However, di�erences between images exist also, e. g., in 4D CT data sets due to patient
respiration. Here, characterization and extraction of internal patient motion information
using computed transformations are of interest. �e theory of this section is based on
the books of H. Handels [67], J. Modersitzki [68] and R. Werner [62].
�e registration process itself is based on an image pair, a reference image R and

a template image T with R,T : Ω ⊂ �d → �, and aims at �nding transformation
φ : �d → �d so that similarity between transformed template image T ◦ φ and the
reference image becomes highest under consideration of a desired smoothness of φ. �e
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application of an appropriate distance measure D used as image dissimilarity measure
allows to express the registration problem as a minimization problem of a joint functional
J

J[φ] := D[R,T ,φ] + αS[φ]
φ
−−→ min, (3.4)

with α ∈ �+ denoting a positive weighting factor that controls registration smoothness S.
�e regularizer S is utilized to penalize unrealistic transformations that can occur in the
ill-posed1 registration problem and further aims at generating a smooth transformation.
�us, the type of S directly in�uences the registration result and has to be selected
according to the registration task and prior knowledge. �e sought transformation
φ is generally split into identity function id as trivial part and a displacement u, i. e.
φ = id + u. After successful registration, the transformation φ projects corresponding
image information in template T and reference image R onto each other. �e obtained
displacement �eld u is then a d-dimensional vector �eld that entirely describes the
transformation φ.

To solve the non-linear optimization problem de�ned in Eq. (3.4), numerical optimiza-
tion approaches, i. e. iterative approximations, have to be applied. A common choice is
the method of gradient descent. However, various di�erent strategies to solve optimizing
problems exist and are also applicable to the registration problem2. All optimizers use a
similar approach where a series of guesses from an initial starting position is taken and
the sought solution iteratively approached. Here, it is important that the starting position
is su�ciently close for the algorithm to converge to the correct answer. �e registration
algorithm can then compute the similarity between both images for the starting point
using the pre-de�ned distance measure D. Afterwards, the registration process proceeds
by applying a small transformation to the template image and again computes the cost
function between both images. Progression towards an optimal registration is then
achieved by seeking transformations that decrease the distance measure until a minimum
is found. Usually, stop criteria are de�ned, i. e. the registration process stops if a desired
image similarity is achieved or the change of the computed distance measure over some
iterations is negligible.

Distance measures primarily employed in the registration algorithms used in this thesis
are the sum of squared di�erences (SSD) and the normalized cross correlation (NCC).
�e sum of squared di�erences of intensity values of template and reference image is a
standard similarity measure in monomodal image registration. Especially for registration

1A problem is well-posed if it has a solution, the solution is unique and depends continuously on the data.
If not, the problem is ill-posed [68].

2Other approaches are e. g. the �nite di�erence method, Newton’s method, the �asi-Newton method,
the Gauss–Newton algorithm and the Levenberg–Marquardt algorithm.
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3. Imaging and image processing in 4D radiotherapy

of images that are acquired with the same scanner, registration using SSD as distance
measure is a good choice, because image intensities are directly comparable. �e SSD
distance measure is de�ned as

DSSD[R,T ,φ] =
1
2

∫
Ω

(
R(x) − (T ◦ φ) (x)

)2
dx . (3.5)

However, for registration of multimodal images, i. e. CBCT and CT images of the same
patient as seen in radiotherapy treatment planning, the SSD distance measure is not
suitable due to its direct dependency on comparable image intensities. �e NCC measure
that only assumes a linear correlation between reference and template image

DNCC[R,T ,φ] = 1 − 〈R,T ◦ φ〉2

‖R‖2 ‖T ◦ φ‖2
(3.6)

with the applied norm being the Euclidean norm (L2 norm) is a better approach for this
speci�c task. Similarity between images with di�erent intensity ranges can be expressed.
�e NCC distance measure is also applicable for monomodal image registration.

Solely minimizing the distance functional D is an ill-posed problem. �us, a regular-
ization functional S is added that depends convexly on derivatives of the transformation.
Implausible transformations like containing singularities, surjective mappings or non-
physiological behaviour can, as a consequence, be penalized. �e common elastic regu-
larizer Selas is based on the application of the linear-elastic model onto the displacement
�eld u. More descriptively, the elastic regularizer is motivated by the assumption that
the objects being imaged deform elastically. �at is, deforming one object by an external
force, to maximize the similarity to a second object, is counteracted by an internal force
given by the linear-elastic model. �e linear-elastic regularization functional is de�ned as

Selas[u] =

∫
Ω

η

4

d∑
i,k=1

(
∂uk
∂xi
+
∂ui
∂xk

)2
+
λ

2 (∇u)
2 dx, (3.7)

with the Lamé parameters λ ∈ � and η ∈ � describing the elasticity properties of the
partial derivatives of the displacement function u. Depending on the registration task,
Lamé parameters have to be adequately chosen. Another regularization approach is
followed by the di�usive regularization functional Sdi� . Here, the aim is to prevent
strong variations in the sought displacement �eld by integrating over the quadratic
gradient of the displacement �eld in each dimension, i. e.

Sdi�[u] =
1
2

d∑
l=1

∫
Ω
‖∇ul (x)‖

2 dx . (3.8)
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Large deviations between neighbouring vector components are therefore suppressed
during registration and a component-wise smoothing of the displacement �eld is achieved.
A closely related and commonly employed regularization approach is the Gaussian
regularization, i. e. a component-wise Gaussian smoothing of the displacement �eld.

3.2.2. Deep learning

In (biomedical) image analysis, deep learning, a sub-�eld of machine learning, is nowadays
often applied. �e reason for the currently high popularity of deep learning is diverse.
Most important are, however, the increasing amount of training data available and the
improvements in computer hardware and software as well as the resulting high accuracy
in solving increasingly complicated tasks. �is section is mainly based on the books of
Goodfellow et al. [69] and Zhou et al. [70].
�e basis of deep learning is the application of neural networks, a family of models

that try to mimic the learning process in human brains but are generally not designed
to be realistic models of biological function. In its simplest form, a feed-forward neural
network3 consists of an input {vi}Di=1, trainable weights {wi}

D
i=1, a bias b and an output

y. For a given observation v ∈ �D and an activation function f (·), y results from the
weighted sum of the inputs

y(v ;Θ) = f

(
D∑
i=1

viwi + b

)
= f

(
wTv + b

)
. (3.9)

Here, Θ = {w,b} is a parameter set and w a connection weight vector. �e non-linear
activation function f (·) is in general chosen to be a function that is applied element-wise.
A typical choice and in modern neural networks the default setting is the recti�ed linear
unit (ReLU) or variants of it. Using a pre-activation variable x that is determined by the
weighted sum of the inputs, i. e. wTv + b, ReLU activation is de�ned as

fReLU(x) = max{0, x}. (3.10)

If more than one output is desired, i. e. in a multi-output task, the model de�ned in
Eq. (3.9) can be extended to

yk(v ;Θ) = f

(
D∑
i=1

viWk,i + bk

)
= f

(
wT

kv + bk

)
, (3.11)

3Feed-forward networks are the quintessential deep learning models and the basic concept of most
network architectures. If feedback connections are included in feed-forward networks, they are
generally referred to as recurrent neural networks, which are often applied for speech recognition.
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3. Imaging and image processing in 4D radiotherapy

where {yk}Kk=1 de�nes multiple outputs, Wk,i is the corresponding connection weight
between vi and yk and Θ =

{
W ∈ �D×K ,b ∈ �K

}
. Both introduced network con�gu-

rations are, however, single-layer neural networks, as solely one layer, i. e. the output
layer, exists besides the visible input layer. �e output of such single-layer networks is
limited to linear combinations of the input, even if a non-linear activation function is
used. To overcome this limitation, any number of hidden layers, i. e. layer between input
and output layer, can be added to make the network deeper4. For instance, a two layer
network with M hidden units can be written as

yk(v ;Θ) = f (2)

(
M∑
j=1

[(
W (2)

k,j
+ b(2)

k

)
f (1)

(
D∑
i=1

(
W (1)j,i vi + b

(1)
j

))])
(3.12)

with the superscript being the layer index and

Θ =
{
W (1) ∈ �D×M,W (2) ∈ �M×K ,b(1) ∈ �M,b(2) ∈ �K

}
. (3.13)

Depending on the task, the architecture of the neural network has to be designed. �is
includes not only choosing the number of layers that the network should contain but also
the number of units in each layer and how the layers are connected to each other. To train
such a network, the optimizer, the loss function and the form of the output units have to
be de�ned and gradients of complicated functions computed. �us, a brief overview of
the more complex convolutional neural networks that are generally more suitable for
medical image data applications is given subsequently before the actual network training
utilizing backpropagation is introduced. Eventually, regularization approaches for deep
learning are explained.

Deep convolutional neural networks

In (biomedical) image analysis tasks, spatial information about neighboring pixels or
voxels is often necessary to achieve the desired output. Feed-forward networks, as
introduced in previous section, need an input in vector form, i. e. spatial information is lost
when applied for input data with dimensionality greater than one. Convolutional neural
networks (CNNs), however, that, as already suggested by its name, contain convolutional
layers, are designed for processing data with grid-like topology. �at is, image features
are extracted by convolutional operations performed in the hidden layers of a network.

A convolutional layer uses trainable kernels to detect image features in the input
feature maps at di�erent spatial positions. For instance, the kernelK (l)i,j de�nes connection

4�is justi�es the name deep learning.
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weights between feature maps i and j at layers l − 1 and l , respectively. More speci�cally,
the activation A(l)j solely depends on a contiguous subset of units in the following layer
feature maps A(l−1)j , i. e.

A(l)j = f
©«
Ml−1∑
i=1

A(l−1)i ∗K (l)i,j + b
(l)
j

ª®¬ , (3.14)

where the convolutional operation is denoted by ∗. Usually, the spatial extend of the
applied kernel K is chosen to be smaller than the input. For instance, a kernel K ∈ �3×3

is able to extract meaningful features, e. g. edges, of an input image using only nine
parameters. �us, fewer parameters have to be stored reducing the memory requirements,
improving statistical e�ciency and the overall computational time is decreased.

After a convolutional layer, the feature maps are in general further modi�ed by ap-
plying pooling layers to reduce the spatial size. A pooling layer can more speci�cally
be seen as a summary over the responses over a whole neighborhood. For instance, the
max/average pooling operation reports the maximum/average output within a rectangu-
lar neighborhood. However, pooling layers not only reduce spatial size but also achieve
translation invariance over small spatial shifts in the input.

Backpropagation and network training

Assume a set of observations vi and corresponding targets or labels yi , i. e. the data
set can be denoted as {vi,yi}Ni=1, for neural network training. A loss function L(yi, ỹi)
must be de�ned that compares the predicted output ỹi and the given target yi using a
metric. For image-to-image transformation tasks, image intensity-based loss functions
are commonly used. A typically choice for neural network training is, similar to the SSD
de�ned in Eq. (3.5), the mean of the squared error (MSE) loss function

L(yi, ỹi) =
1
N
| |yi − ỹi | |

2
2 = E. (3.15)

Here, N denotes the number of available samples and E the discrepancy or error. A
gradient descent-based optimization is usually performed to minimize the given error
function by updating parameters of the network iteratively. �e computation of the
corresponding gradient, i. e. ∇E, has to be performed in an algorithmic and e�cient
way for millions of parameters in a neural network. For instance, the recently proposed
E�cientNet, which achieves much better accuracy and e�ciency than other state of
the art networks, contains up to 66 millions of parameters [71]. �e common and best
performing choice is to calculate the gradient by means of error backpropagation [72].
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3. Imaging and image processing in 4D radiotherapy

Error backpropagation makes use of the chain rule that allows to propagate the errors
in the output layer computed by the loss function back to the input layer. �at is, the
derivative of error E regarding the parameters for the lth layer, i. e. W (l), in a L-layer
neural network can be denoted as

∂E

∂W (l)
=
∂E

∂a(L)
∂a(L)

∂a(L−1)
· · ·
∂a(l+2)

∂a(l+1)
∂a(l+1)

∂a(l)
∂a(l)

∂z(l)
∂z(l)

∂W (l)
. (3.16)

Here, activation and pre-activation vectors of layer l are denoted by a(l) and z(l), respec-
tively. As a(L) = ỹ, the partial derivative of E, ∂E

∂a(L)
, directly corresponds to the error

computed by the loss function. �e gradient estimation of a given loss function regarding
the parameterW (l) is performed by using the back-propagated error from the output
layer. �at is, ∂a(k+1)

∂a(k )
for k = l, l + 1, . . . , L − 1 and ∂al

∂zl
∂zl

∂W l is applied where ∂a(k+1)
∂a(k )

can be
computed by

∂a(k+1)

∂a(k)
=
∂a(l+1)

∂z(l+1)
∂z(l+1)

∂a(l)
. (3.17)

Doing this for all layers of the neural network allows to update the network parameter
setW and thus to train the network.

Regularization approaches

�e performance of a neural network, trained and tested on a speci�c data set, when
applied to a new, previously unseen data set, is often reduced compared to the initially
achieved performance during testing. Methods that improve generalizability of the
network are commonly referred to as regularization approaches. A fundamental method
applied in deep learning is data set augmentation [73].

Data set augmentation is an e�ective technique, which can be described as a way
to create additional data for network training achieved by applying geometrical and
value transformations to the input data. More speci�cally, for high dimensional image
data with an enormous variety of factors of variation as input data, even a small rigid
translation of a few pixels can introduce a high level of generalizability. Commonly used
transformations, applied individually or in combination, are �ipping, rotating, random
cropping, zooming, injecting synthetic noise and image intensity modi�cations. For a
supervised image-to-image transformation task it is mandatory to apply the geometrical
transformations used to augment the training data to corresponding ground truth data
during network training.

Another simple and helpful technique is the dropout method [74]. �e underlying idea
is to randomly drop non-output neurons with a speci�ed probability during network
training, as visualized in Fig. 3.4. �at is, only a randomly chosen subset of neurons is
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Figure 3.4.: Schematic visualization of the dropout method. (a) Initial network with fully connected layers.
(b) Application of dropout randomly selects non-output neurons to be dropped during a training
iteration. �e number of connections is reduced.

trained during one network training iteration. In particular over�tting5 to the training
data during model training, especially for a limited training data set, is reduced. Further,
dropout greatly improves the generalizability for large neural networks.

In the initially introduced form of the dropout approach, dropout was solely performed
during training. However, Yang et al. [75] and references therein proposed that a de-
terministic CNN architecture is easily modi�ed to be probabilistic by using dropout.
More speci�cally, dropout that were active during training is also enabled during model
prediction to obtain a probabilistic network output by a Bayesian approximation [76].

5A network is over�tted when it is closely �tted to the input data. More speci�cally, the network performs
extremely well on the input data but poor on previously unseen inputs, i. e. the generalizability is lost.
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Chapter 4

Methods and materials

In this chapter, utilized materials and applied methods are explained. �e �rst three
sections focus on describing individually developed/applied and combined methods to
predict internal patient motion, using this information for 4D dose accumulation, and
�nally on how to apply deep learning in the context of image registration to allow for an
uncertainty estimation in 4D dose simulation. Eventually, patient data sets used for the
evaluation of the di�erent approaches are brie�y introduced. Corresponding results are
given in the following chapter.

4.1. Prediction of internal patient motion

During radiotherapy treatment, internal patient motion is usually not acquired by during-
treatment imaging1. However, for a retrospective analysis of, e. g., the applied dose,
the internal patient motion information during treatment is one of the main sources
of uncertainty and of particular importance and interest (cf. Chapter 1). Usually, only
limited information in the form of external breathing signals are acquired during dose
delivery (here: an external breathing signal that represents motion of the patient surface).
An approach to estimate the internal patient motion during treatment is to employ a
pre-treatment trained correspondence model. �e general concept of correspondence
modeling is to establish a functional relationship between external breathing signal
measurements and the internal structure motion as represented by, e. g., 4D CT data sets
(cf. Section 3.1.1). More speci�cally, correspondence modeling can be understood as a
regression task that makes use of during-treatment acquired external breathing signals
to predict the internal patient motion. In this thesis, the correspondence model approach
of Wilms et al. [77] was used as the basis for internal motion prediction and further
extended/adapted to the speci�c problem at hand. �e general approach is visualized in
Fig. 4.1 and subsequently described.

1Tumor tracking during radiotherapy is possible and performed by specialized radiotherapy systems. Such
systems rely on X-ray acquisitions of the patient during treatment to update/check a pre-treatment built
patient-speci�c correspondence model, i. e. an internal patient motion signal in form of a time series
of X-ray images is available. As described in Chapter 1, disadvantages like e. g. high costs, increased
imaging dose and long treatment duration times are reasons why this technologies are rarely applied.
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4.1. Prediction of internal patient motion

For each patient, an individual correspondence model is built. �e patient 4D treatment
planning CT is a series of 3D CT images. Each image represents a di�erent breathing
phase of the patient, i. e.

(Ii)i∈{1,...,nph}, Ii : Ω ⊂ �
3 → �. (4.1)

Here, i ∈
{
1, . . . ,nph

}
is a breathing phase andnph the total number of 3D CT images in the

4D CT data set. In agreement with all data sets employed in this thesis (later introduced in
Section 4.4), a typical choice for nph is 10. During 4D CT imaging, an external respiratory
motion signal of the patients’ chest wall is acquired and utilized for reconstruction.
�e breathing signal values, assigned to the phase images for reconstruction purposes,
analogously read

(ζi)i∈{1,...,nph}, ζi ∈ �
nind (4.2)

with nind being the dimensionality of the breathing (indicator) signal. In addition to the
external motion information, internal motion information has to be available to establish
the sought correspondence model. �e extraction of internal motion information is
therefore performed by computing DIR-based motion �elds that represent the respiratory
motion of the internal structures of the patient. Assuming an arbitrary breathing phase
i0 ∈ {1, . . . ,nph} being selected as reference phase, and the corresponding CT image
Ii0 as reference image during registration, the registration process results in a series of
transformations

(φi)i∈{1,...,nph},φi : Ω → Ω. (4.3)

In this thesis, the selected reference phase is a mid-expiration phase (i. e. i0 = 3) to allow
a more robust extrapolation in both in- and exhalation direction for the during treatment
external motion acquisitions beyond the range of the 4D CT-related regressor signals
and respective model-based motion �eld estimation.

Analogously to the splitting of transformations into an identity function (trivial part)
and a displacement as described in Section 3.2.1, motion �elds with regard to Eq. (4.3)
read

(ui)i∈{1,...,nph},ui : Ω → �
3, (4.4)

with ui = φi − id . �e breathing signal information (ζi)i∈{1,...,nph} in combination with the
respective motion �elds (ui)i∈{1,...,nph} can now be correlated to allow for correspondence
model training. In the following, measurements of the breathing signal and computed
motion �elds are interpreted as multivariate random variables.

�e random variable for the motion �elds, now denoted as Ui , combines the vector
components of the �eld ui for all n1n2n3 voxel in Ω to one column vector of length
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Figure 4.1.: Concept of correspondence modeling. Left: �e functional relationship between external
breathing signal measurements and internal motion information is established by multivariate
regression-based correlation of breathing signal information (mean AP breathing cycle and
its temporal derivative) and corresponding motion vector �elds obtained by DIR with respect
to the mid-expiration phase P3. Right: Illustration of the relationship between motion vector
SI components of the voxel highlighted in the middle column and the breathing signal values
for the patient’s 10-phase 4D planning CT. Di�erences between inspiration and expiration
(hysteresis) highlight the need to incorporate additional information (here: temporal derivative
of breathing signal). Figure based on [78].

m = 3n1n2n3, i. e.Ui ∈ �
m. �e correspondingly de�ned random variable of the breathing

signal measurements is denoted as Zi . �e random variables of the motion �elds are
combined to a mean-centered observation or regressand as

U =
(
U1 − 〈U 〉, . . . ,Unph − 〈U 〉

)
∈ �m×nph (4.5)

with 〈U 〉 = 1/nph
∑nph

i=1Ui being the mean motion �eld. Analogously, the breathing signal
measurements are combined and form the regressor, i. e.

Z =
(
Z1 − 〈Z 〉, . . . ,Znph − 〈Z 〉

)
∈ �nind×nph, (4.6)

with 〈Z 〉 = 1/nph
∑nph

i=1Zi being the mean breathing signal. �e aim of a multivariate
regression is now to estimate the correlation between regressor and regressand by

U = B · Z , (4.7)

where the model parameters are represented by the system matrix B ∈ �m×nind . Ap-
plication of an ordinary least-squares regression approach yields an estimation of B
as

B = argmin tr
B′

[
(U − B′Z ) (U − B′Z )T

]
= UZ+, (4.8)

where Z+ = ZT
(
ZZT

)−1 is the Moore-Penrose pseudoinverse of Z .
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4.2. 4D dose accumulation

Assuming a suitable data set, the training of the correlation between breathing motion
signal and motion �elds allows for determination of the system matrix or estimator B.
For an additional measurement of the breathing signal, i. e. ζ̂i = Ẑ ∈ �nind , corresponding
motion �elds û and associated Û can be predicted by the sought correspondence model
– i. e. the assumed relationship between breathing signal measurements and internal
motion �elds – as

Û = 〈U 〉 + B
(
Ẑ − 〈Z 〉

)
. (4.9)

In this thesis, the available breathing signal measurements of in-house acquired patient
data sets are recorded by the Real-time Position Management (RPM) system of the
treatment device manufacturer (Varian). �is system uses an infrared camera mounted
on the wall of the treatment room in combination with an infrared re�ecting marker
block that is placed on the patients’ chest wall. �e acquired signal is usually one-
dimensional, i. e. only the AP motion component of the marker block is recorded. However,
to allow for modeling of hysteresis behaviour (cf. right part of Fig. 4.1) typically induced
by physiological di�erences between expiration and inspiration phases, the respective
temporal derivative of ζi , i. e. ∂tzi is additionally employed. �us, the regressor is two-
dimensional.

4.2. 4D dose accumulation

�e term dose accumulation, as brie�y described in Chapter 1, refers to computational
approaches that incorporate information about the patient-speci�c breathing dynamics
into the dose calculation process during treatment planning. More speci�cally, a motion-
a�ected representation of the dose distribution to be delivered to the patient is sought
and estimated by the simulation approach. �e simulation itself can be understood
as weighted summation of dose distributions that correspond to di�erent breathing
states of the time-dependent patient geometry [28]. Retrospective quality assurance in
form of dose accumulation in radiotherapy of moving tumors is of particular interest
to assure that a su�cient dose is applied to the target. As stated in Chapter 1, this is
necessary to enable an appropriate response like an adaptation of the treatment plan,
if underdosages occurred. However, the estimation of the actually applied dose does
not only depend on the utilized treatment technique, i. e. the dose delivery process, but
also on the patient-speci�c, respiration-induced motion and deformation of internal
structures. In the previous section, an approach to estimate the internal patient motion
during radiotherapy treatment by application of solely an external motion signal was
introduced. �is information can now be utilized in 4D dose accumulation algorithms to
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subbeam

α

cpcpcp

target

Figure 4.2.: Principle of VMAT dose accumulation. �e medical linear accelerator rotates around the target,
which is usually located in the isocenter. During rotation, the �eld form and �uence is adapted
so that the target receives the prescribed dose and, at the same time, OAR are spared as good as
possible. �e VMAT arc can be divided by the TPS into segments of size α = 2.3◦, whereas each
segment contains 2 to 5 CP that de�ne necessary information about �eld form, rotation speed
and dose rate. For dose accumulation without re-calculation of the dose distribution, the dose
of each subbeam segment computed by the TPS is exported and subsequently used. �e more
advanced approach, utilizing dose re-calculation by application of Monte Carlo simulations,
extracts the dose delivery information of all CP of the patient treatment plan, which are then
used for dose calculation and simulation.

compute the dose delivered to the patient. In this thesis, in-house treated patients were
exclusively irradiated by VMAT. �us, the dose accumulation scheme proposed in this
thesis is primarily developed and optimized for this technique. However, it can be easily
modi�ed to allow dose accumulation for the nowadays, especially for moving targets,
scarcer used IMRT or conformal radiotherapy treatment (CRT) techniques.

Whereas for IMRT and CRT the treatment plan is composed of a speci�c number of
irradiation �elds with di�erent but small number of manually (in general by a medical
physicist) selected directions, angles and �eld forms to achieve an optimal dose distri-
bution, the VMAT treatment is a more dynamic process and therefore more complex
to model. More speci�cally, the VMAT technique employs continuous rotation around
the target geometry, while simultaneously �eld form and �uence is dynamically modu-
lated, as described and illustrated in Section 2.4.4 and Fig. 4.2. To simplify modeling of
the dose delivery process and consequently the dose accumulation approach, one can
assume that the dynamic process is in general a series of static irradiation �elds with
changing parameter settings. �us, dividing a VMAT arc into angular segments with
corresponding pre-computed dose segments is the straightforward approach to allow for
a �rst implementation of the here proposed 4D dose accumulation scheme. Eventually,
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4.2. 4D dose accumulation

the scheme is enhanced by introducing a Monte Carlo-based simulation approach. Both
approaches are visualized and compared in Fig. 4.3 and subsequently in detail described.

Analogously to the previous section, a patient 3D planning CT image Ii0 : Ω → � out
of the 4D CT series

(
I1, . . . , Inph

)
= (Ii)i∈{1,...,nph} is assumed to be the basis of the dose

accumulation. Further, let φ : Ω × T → �3 be the position φ(x, t) of a voxel x ∈ Ω of the
planning CT image Ii0 at time t ∈ T = [0,T ) ⊂ �. In a very general notation, the dose
rate of one treatment fraction reads

ÛD : Ω × T ⊂ �→ �+. (4.10)

�en, the interplay of patient motion and the dynamical dose delivery process can be
expressed as

D4D (x) =

∫
T

ÛD (φ (x, t) , t) dt

≈
∑
t∈T̃

ÛD (φ (x, t) , t) ∆t

=
∑
t∈T̃

Dt (φ (x, t)) (4.11)

with D4D : Ω → �+ being the sought dose distribution. In Eq. (4.11), an equidistant sam-
pling is indicated by the numerically required temporal discretization. Here, a sampling
period of ∆t and sampling points of t ∈ T̃ = {1/2∆t, 3/2∆t, . . . }, T̃ ⊂ T are assumed.
�e integral dose delivered in the time interval [t − 1/2∆t, t + 1/2∆t) is thus Dt : Ω → �+.

Information about internal patient motion during radiotherapy treatment is usually
not available, i. e. the time-dependent position φ (x, t) of the inner voxels and structures
is unknown. �e straightforward and simple approach of common dose accumulation
approaches is therefore to ignore the actual dynamics during dose delivery. Instead,
the DIR estimated motion �elds, resulting from the registration process between one
reference CT phase and all remaining 4D CT phases, are applied to warp the dose. �en,
Eq. (4.11) can be modi�ed to

D4D CT Sim(x) =
1
nph

nph∑
i=1

D(φi(x)) (4.12)

with the initially planned 3D dose distribution D : Ω → �+.

However, as described in the previous section, a breathing signal measurement of the
external patient motion is continuously acquired during dose delivery. �erefore, the
assumption that the planned dose delivery process can be appropriately discretized in time
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Figure 4.3.: General concepts of proposed dose accumulation schemes. Left: For each during-treatment
breathing signal measurement ζ̂t , a motion �eld φ̂ is derived model-based. Middle: For the
initial dose accumulation scheme, φ̂ is used to deform the temporally corresponding planned
VMAT (TPS-based) dose segment Dα , resulting in a motion-a�ected dose segment. Weighted
summation of all motion-a�ected dose segments results in the sought dose D4D. Right: For the
Monte Carlo-based dose accumulation scheme, the inverse of φ̂ is computed and used to warp
the reference image Ii0 to yield the virtual moving image Î . Dose calculation is then performed
by Monte Carlo simulation with respect to corresponding beam parameters Θ. Note that the
individual Monte Carlo-simulated dose segment DαMC has to be warped back into the reference
frame by applying φ̂ before the summation over all dose segments can be conducted.

allows to correlate each individual breathing signal to a planned dose segment delivered
at the time of measurement. In addition, the correspondence model can be applied to
derive internal motion �elds that correspond to the external signal measurement. �at
is, the integration of the correspondence model formation and the acquired breathing
signal into Eq. (4.11) is possible. By application of ζ̂ : T̃ → �2 and φ̂ = id + û, the
correspondence model-based 4D dose simulation for a single fraction can be written as

D4D (x) ≈
∑
t∈T̃

Dt

(
φ̂

(
x, ζ̂t

))
=

∑
t∈T̃

Dt

(
x + û

(
x, ζ̂t

))
, (4.13)

with ζ̂t = ζ̂ (t). As a radiotherapy patient treatment in general comprises multiple
treatment fractions, Eq. (4.13) can be extended to

Dtotal
4D (x) =

∑
fx

Dfx
4D (x) =

∑
fx

∑
t∈T̃fx

Dt

(
x + û

(
x, ζ̂t

))
, (4.14)

with the irradiation fraction index denoted by fx and the temporal sampling points
used to compute the sought integral fraction dose distribution as T̃fx ⊂ �. In common
radiotherapy treatment processes, a plan adaption between fractions to account for e. g.
changes in patient geometry is only sparsely conducted. �is means, T̃fx is equal to T̃
for all treatment fractions. In consequence, the only impact on deviations between the
individual fraction dose distributions Dfx

4D is due to the individual patient motion patterns
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4.2. 4D dose accumulation

for each fraction. More precisely, di�erences in the fraction-wise dose accumulation are
solely attributable to the observations ζ̂t .
�e proposed dose accumulation scheme in Eq. (4.14) is in its current form valid for

arbitrary dose delivery techniques. However, the goal is to simulate the dose delivery
of VMAT treatments. �us, VMAT-speci�c characteristics, especially the dose delivery
during continuous gantry rotation around the patient and �eld form modulation as
visualized in Fig. 4.2, have to be considered. Further, the dose delivery in one fraction is
normally conducted by applying a small number of VMAT arcs (e. g. for a fraction divided
into two arcs, the gantry would rotate in arc one from start to end position and in arc
two vice versa). For simpli�cation of this process, the temporal discretization of the dose
delivery process introduced in Eq. (4.13) can be re-parameterized. Here, it is bene�cial and
equivalent to replace t for each planned arc by the gantry rotation angle α ∈ [0◦, 360◦).
Similar to T̃ , the sampling points of the gantry angle range Aax ⊂ [0◦, 360◦) of the
respective VMAT arc then read Ãax = {1/2∆α, 3/2∆α, . . . } with ax denoting the arc index.
Following Eq. (4.13) and applying introduced re-parametrization yields

D4D (x) ≈
∑
ax

∑
α∈Ãax

Dα

(
x + û

(
x, ζ̂α

))
. (4.15)

Here, the voxel x of the reference CT image Ii0 in the angle range [α − 1/2∆α,α +
1/2∆α) receives a dose of Dα

(
x + û

(
x, ζ̂α

))
. �e position of voxel x is determined by the

correspondence model estimation using the breathing signal measurement ζ̂α . It follows
the predicted location of x as x + û

(
x, ζ̂α

)
.

Compared to the minimum achievable degree of VMAT arc discretization of 2.3◦ and
the maximum gantry rotation speed of 4.8◦s−1 (see Section 2.4.4 for details), the breathing
signal acquisition rate with 25 Hz is relatively high. To account for this, each dose segment
is weighted by T̃ −1α , the inverse of the breathing signal measurement duration during
dose delivery at gantry angle α . �e implemented single fraction accumulation scheme
then reads

D4D (x) ≈
∑
ax

∑
α∈Ãax

1
|T̃α |

∑
t∈T̃α

Dα

(
x + û

(
x, ζ̂t

))
=

∑
ax

∑
α∈Ãax

1
|T̃α |

∑
t∈T̃α

(Dα ◦ φ̂)
(
x, ζ̂t

)
. (4.16)

Eventually, summing up the 4D-simulated dose distributions of the individual treatment
fractions results in the total 4D dose distribution:

Dtotal
4D (x) =

∑
fx

Dfx
4D (x) =

∑
fx

∑
ax

∑
α∈Ãax

1
|T̃α |

∑
t∈T̃α

(Dα ◦ φ̂)
(
x, ζ̂t

)
. (4.17)
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4.2.1. Monte Carlo-based 4D dose accumulation

In the previous section, an algorithm to retrospectively compute a motion-a�ected
VMAT dose distribution based on a correspondence model estimated patient breathing-
induced internal motion during dose delivery was introduced. However, this approach
still relies on the pre-treatment, TPS-based planned dose distribution, optimized on
the reference CT image Ii0 . Angular dose segments are extracted from the planned
3D dose and correspondingly warped by application of estimated transformations φ̂.
�at is, density changes within the internal patient geometry induced by respiratory
motion are not considered during dose simulation. Further, as stated before, the angular
resolution is limited to 2.3◦, which approximately, depending on the gantry rotation
speed2, corresponds to a typical temporal spacing between adjacent segments of 0.5 s to
2 s (see Section 2.4.4 for details). Moreover, the extracted dose segments are computed
based on dose calculation algorithms integrated into the TPS, which rely on analytically
solving a transport equation under simplifying assumptions and therefore introduce dose
uncertainties of 3% to 4% (cf. Section 2.3). An improvement of the algorithm proposed
in Eq. (4.16) is therefore possible by improving the accuracy of the computed dose Dα

and, at the same time, reducing the size of each angular segment. More speci�cally,
the patient-speci�c treatment plan RTplan, generated on the corresponding reference
phase Ii0 of the 4D CT series, is divided into its smallest possible segments, i. e. CP (cf.
Section 2.4.4). For a speci�c time point tCP, the beam parameters Θ (e. g. gantry angle, leaf
positions, beam energy etc.) that are mandatory for the radiotherapy treatment machine
can be extracted:

RTplan(tCP) : tCP 7→ Θ. (4.18)

Furthermore, the information available in Θ about the treatment beam for each CP can
be directly employed to allow for a CP-based Monte Carlo dose simulation. However, to
consider density changes due to internal patient motion during treatment, the Monte
Carlo dose simulation has to be conducted on the virtual moving image Î (tCP). More
speci�cally, the estimated transformation φ̂ for a breathing signal measurement ζ̂ at
time point tCP de�nes the mapping of Î (tCP) to Ii0 , where Î (tCP) is assumed to represent
the patient geometry at tCP. �is means, utilizing the inverse of φ̂, i. e. φ̂−1, to warp Ii0

2�e maximum gantry rotation speed is 4.8◦s−1, which is only rarely reached. �e reason is the dose
de�ned in the treatment plan that has to be delivered in a speci�c angular segment. How fast this is
achieved is directly limited by the maximum possible dose application rate. For instance, for a number
of 5 MU to be delivered in a 1◦ segment with a dose rate of 600 MU min−1, i. e. 10 MU s−1, the gantry
rotation speed has to be reduced to 2◦s−1.
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4.2. 4D dose accumulation

results into the sought virtual moving image Î . Employing this strategy, the Monte Carlo
simulation DαMC reads

DαMC(x) =
[ (
Ii0 ◦ φ̂

−1) (
x, ζ̂t

)
;Θ

]
MC

(4.19)

Here, the Monte Carlo simulation [·]MC is executed on the virtual moving image Î =

Ii0 ◦ φ̂
−1 with respect to corresponding beam parameters Θ. Using the dose accumulation

approach formalized in Eq. (4.17), the total 4D Monte Carlo dose simulation scheme can
be expressed as

Dtotal
4D (x) =

∑
fx

∑
ax

∑
α∈Ãax

1
|T̃α |

∑
t∈T̃α

(
DαMC ◦ φ̂

) (
x, ζ̂t

)
. (4.20)

As illustrated and described in Fig. 4.2 and Section 2.4.4, an angular segment of size
2.3◦ consists of 2 CP to 5 CP. Consequently, the temporal resolution of the proposed
Monte Carlo-based dose accumulation scheme is about 2 to 5 times higher compared to
the initially introduced approach, resulting in a temporal spacing between adjacent CP
of 0.1 s to 1 s. Further, exploiting the warped reference CT image allows for Monte Carlo
dose computation on the patient geometry as it was actually irradiated during treatment
– and thereby explicitly accounts for density changes during treatment resulting from
patient breathing motion.

Monte Carlo simulations

Monte Carlo simulations were conducted using the EGSnrc/DOSXYZnrc user code [55].
To allow for an accurate Monte Carlo simulation, the geometry of the treatment machine
originally employed for dose delivery has to be modelled as precise as possible. In this
thesis, all patients considered for dose accumulation were treated by SBRT with the same
linear accelerator (Varian TrueBeam linear accelerator) at the UKE. Information about
the beam geometry and materials are directly available in the corresponding manual,
provided by the machine manufacturer. Additionally, phase space �les that describe
type, energy, position and direction of particles at a given plane in the beam geometry
were available and used for initialization of the treatment beam above the dynamically
changeable accelerator geometry. �is corresponds to the EGSnrc/DOSXYZnrc source 20,
i. e. a phase space source through a dynamically library with multiple variable geometry
settings3. In consequence, solely the lower part of the accelerator head (cf. Section 2.4.3)
had to be modelled. An illustration of the modelled components is given in Fig. 4.4.

3�e phase space �le was provided by the linear accelerator manufacturer (Varian).
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Figure 4.4.: Schematic of accelerator head geometry modeled in EGSnrc. As the corresponding phase
space, located at z = 0 cm and de�ned by the linear accelerator manufacturer, is available, the
upper part of the accelerator head, e. g. bending magnets, exit window, primary collimators
and �attening �lter, does not have to be modeled. As shown in the �gure for yz (left part of
�gure) and xz-axis (right part of �gure) the components that have to be considered during
Monte Carlo simulation are the y and x-jaws, the base plate and eventually the �eld forming
device, the MLC.

�e dose distribution for one CP is Monte Carlo-simulated using 5 × 105 histories and
a 2 mm isotropic dose grid size. As each treatment plan consisted of 300 to 400 CP, the
total number of simulated particles ranged between 2 × 108 and 3 × 108 per treatment
fraction. Corresponding simulation uncertainties, which directly depend on the number
of simulated histories, were below 1% for all simulations. For the explicit modeling of
MLC leaf motion, leaf positions for a CP are, similar to the real dose delivery process,
linearly interpolated between CP speci�c leaf starting and ending position.

Absolute dose calibration

In general, the output of a Monte Carlo dose simulation consists solely of a relative
dose distribution with a given dose uncertainty for each voxel. For the utilized EGSnrc/-
DOSXYZnrc user code the output is normalized by an estimate of the number of particles
incident from the original, non-phase space source. Consequently, an absolute dose
calibration has to be applied to allow for a quanti�cation of dose deviations between
4D-simulated, 3D-planned and 2D-measured dose distributions. An absolute dose cali-
bration requires actual dose measurements under standard conditions of the respective
treatment machine. Here, the dose is measured in di�erent depths along the central axis
(z-direction) inside a water phantom using a dedicated and calibrated ionization chamber
to determine the sought calibration factor. �e same setup geometry is reproduced and
simulated utilizing the implemented Monte Carlo method. �is allows for a correlation of
measured absolute dose at a speci�c z-position Dz,chamber, delivered by a de�ned number
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4.2. 4D dose accumulation

of MU, and simulated relative dose at the same z-position Dz,MC. Standard de�nition
for calibration measurements is that 100 MU ≡ 100 cGy at dose maximum applies. �e
relationship between simulation and measurement can then be exploited to calibrate the
simulation, i. e. the simulated absolute dose at (x,y, z)-position, Dxyz , is de�ned as

Dxyz =
Dz,MC

Dz,chamber
·
1 cGy
1MU ·MUtot, (4.21)

with MUtot being the total number of applied MU during treatment. �e calibration factor,
however, is solely valid for the beam energy used for the measurements, i. e. calibration
has to be performed independently for each beam energy.

4.2.2. Evaluation of dose deviations

�e evaluation of dose deviations between a reference and a dose distribution to be
evaluated, Dr and De, respectively, can be performed by a variety of metrics. For visual-
ization purposes, an often in this thesis applied and trivial approach is to simply compute
and show a dose di�erence distribution, i. e. ∆D = De − Dr. In areas with small dose
gradients, this evaluation strategy is reasonable; for large dose gradients, however, high
dose di�erences can occur that are not necessarily relevant. Here, the usage of dose
volume/area histogram illustrations for speci�c structures of interest is preferable, as
the spatial distribution of dose values is not considered. �at is, the dose di�erence for
a speci�c amount of volume/area, e. g. 98%, can be determined. �is metric is mainly
applied in this thesis. �e general concept is visualized in Fig. 4.5 (a). Another method
to evaluate the similarity between dose distributions is to compute the spatial distance
between a reference rr and the nearest point in the dose distribution to be evaluated re

with exactly the same dose value. Here, however, areas with small dose gradients can be
problematic. A combination of both, dose di�erence and spatial distance, is more bene�-
cial. �is concept is established by the Gamma index evaluation method (cf. Fig. 4.5 (b))
[79] and applied in this work. Criteria for a maximum allowed dose di�erence ∆D and the
spatial distance ∆d are user selected (chosen criteria are mainly optimized on the given
analysis and de�ned by radiotherapy guidelines [80]) and used to de�ne an ellipsoid
around rr given by

1 =
√

r 2 (r , rr)

∆d2
+
δ 2 (r , rr)

∆D2 , (4.22)

where δ (r , rr) and r (r , rr) are the dose di�erence and spatial distance between reference
and an arbitrary position, respectively. �e Gamma criterion can now be de�ned using
the right side of Eq. (4.22)

γ (rr) = min {Γ (re, rr)} ∀ {re} (4.23)
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Figure 4.5.: Dose di�erence evaluation metrics. (a) Visualization of ∆D98 for exemplary dose volume

histograms. �e dose in Gray applied to 98% of the volume of interest is evaluated for the
reference dose distribution (D98,r) as well as for the dose to be evaluated (D98,e). Subtracting
D98,e from D98,r yields ∆D98. (b) Geometrical illustration of the Gamma index. �e combination
of dose di�erence ∆D and spatial distance ∆d forms an ellipsoid around the reference position
Dr (rr), where the surface of the ellipsoid de�nes the acceptance criterion. δ (re, rr) and r (re, rr)
are the dose di�erence and spatial distance between reference and the value to be evaluated,
respectively. If the Euclidean distance Γ (re, rr) is with respect to chosen values for ∆D and ∆d
less or equal than 1, the Gamma evaluation passes.

where

Γ (re, rr) =

√
r 2 (re, rr)

∆d2
+
δ 2 (re, rr)

∆D2 . (4.24)

Here, δ (re, rr) and r (re, rr) are the dose di�erence and spatial distance between the
reference and the value to be evaluated, respectively. If the resulting value for γ (rr) is
less or equal than 1, the computation passes, otherwise not. After evaluation of every
value, a total γ -passing rate, i. e. how many percent of all dose points pass the evaluation,
can be calculated. Here, higher total γ -passing rates mean higher similarity between dose
distributions. Typical values for quality assurance in radiotherapy for ∆D and ∆d criteria
are 3% of the dose of the reference point and 3 mm spatial distance, respectively.

4.3. Deep learning-based image registration

�e traditional approach of DIR algorithms, as described in Section 3.2.1, is to �nd a
transformation that maximizes the similarity of reference and transformed template
image. Strategies for estimation of an optimal transformation are in general based on
iterative optimization schemes, hence standard DIR is typically time consuming and a risk
of getting stuck in local minima exists. �e computation time further directly depends
on the desired registration accuracy, i. e. user de�ned stopping conditions and parameter
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4.3. Deep learning-based image registration

settings, and can therefore also be relatively fast. Typical computation times (using default
registration parameter settings) for frameworks applied in this thesis are approximately
15 min for the registration of two images. Time-critical applications like intra-operative
registration for e. g. patient setup control during radiotherapy treatment, is due to the
long run-times of current DIR frameworks not feasible; a response time of a few seconds
is desirable. �us, there exist a strong e�ort in related research community to reduce
the computational time of DIR by improving registration techniques. �e application of
deep learning, allowing an e�cient and general CNN-based implementation of DIR, is an
option to accelerate the registration task [75].

Again and similar to previous sections, assume a patient’s 4D CT series (Ii)i∈{1,...,nph}
with corresponding reference image Ii0 given. �e computation of motion vector �elds
(φi)i∈{1,...,nph} between reference image Ii0 ≡ IR and all remaining phase images of the 4D
CT data set as template images Ii ≡ IT is in a traditional DIR setting, as formalized in
Eq. (3.4), achieved by

φi = arg min
φ∗i ∈C

2[Ω]
J

[
IR, IT;φ∗i

]
. (4.25)

Implementation of the traditional DIR approach into a standard CNN-based DIR scheme
is not directly possible, as supervised training of a neural network requires some sort
of training tuples as input (cf. Section 3.2.2). In the �eld of CNN-based DIR of thoracic
and abdominal 4D CT data, a su�ciently large number of patient data sets applicable
for network training have to be present to allow for a general deployment of the model
after training. Assuming a database consisting of real patient 4D CT data sets, i. e. npat
4D CT data sets, each set can be denoted as training tuple

(
I
p
i , I

p
j ,φ

p
ij

)
, i, j ∈ {1, . . . ,nph},

p ∈ {1, . . . ,npat}. �e transformation φpij = id + u
p
ij is yielded by deformable registration

of the phase images Ii and Ij of patient p. �e applied network should then learn the
correlation between the input images

(
I
p
i , I

p
j

)
and the vector �eld u

p
ij during network

training. However, the number of voxels in a typical 4D CT phase image is about
512 · 512 · 159 ≈ 41.7 · 106, i. e. in combination with the corresponding vector �eld it is
currently computationally not feasible to directly feed the described training tuple into
a CNN or GPU memory [81]. Nevertheless, a standard approach to allow for network
training is to utilize only parts of the input image. For instance, patch-based approaches
that divide the input into smaller 3-dimensional volumes, are commonly applied in CNN-
based classi�cation and segmentation tasks. However, in Fig. 4.6, the disadvantage of this
method for estimating a vector �eld is visualized. Image intensity information in patches
can be sparse, especially when extracted from the lung. A correct matching between
patches for registration is consequently hardly possible and the predicted motion vector
�eld lacks accuracy. �erefore, a slab-based approach is proposed, exploiting the main
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Figure 4.6.: Example of missing image intensity and structure information in patches extracted from a lung
CT. Left: CT image slice with pixel spacing of 1 × 1mm2. �e patch (red square) with size
15 × 15 pixel2 (i. e. 15 × 15mm2) contains almost no structure information. Right: �e same
image as on the left but resampled to a pixel spacing of 4 × 4mm2. Even for larger patches
(same patch center point as on the left) with size 15 × 15 pixel2 (i. e. 60 × 60mm2) structure
information is not su�ciently present for CNN-based DIR.

internal patient motion direction in 4D CT image data sets, i. e. SI and AP direction,
as well as to some extent anatomical context in the lateral plane. More speci�cally, a
reformulation of the above mentioned training tuple to a slab-based training sample is
introduced. Expressing the sagittal slice of I at x-position x̂ by the restriction of image I to
Ωx̂ = {(x,y, z) ∈ Ω | x = x̂} yields I |x̂ := I |Ωx̂ . An image slab can then be seen as multiple
neighbouring sagittal slices adjacent to sagittal slice I |x̂ . �is means, the restriction of I
to Ω[x̂1,x̂2] = {(x,y, z) ∈ Ω | x̂1 ≤ x ≤ x̂2}, denoted as I |[x̂1,x̂2], is an image slab consisting
of sagittal slices x̂1, . . . , x̂2 of I . �e reformulation of the initially mentioned training
tuple reads then (

I
p
i |[x−2,x+2], I

p
j |[x−2,x+2],u

p
ij |x

)
, x ∈ {xmin, . . . , xmax}, (4.26)

where the whole set of sagittal slices of I are covered and two adjacent slices in ±x-
direction around I |x̂ are employed to provide contextual information.

Before the actual network training using the proposed slab-based approach, image
intensities were rescaled to [0, 1] to enable a faster and better network convergence.
In addition, the resolution was resampled to an isotropic resolution of 2 mm to reduce
the general image size. Cropping or zero-padding was used to achieve identical image
dimensions and thus simplify image processing. Further, application of Otsu thresholding
[82] allowed to compute individual patient background masks that were applied to mask,
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Figure 4.7.: Applied CNN architecture for deep learning-based DIR. Moving and �xed input slabs are
encoded and subsequently fed into the modi�ed Inception-ResNet-v2. Skip connections from
the input to the decoder part of the network are used in order to facilitate information �ow, i. e.
reconstructing image contours. From publication [83].

i. e. set to zero, the non-patient background intensity values. Unintended suppression of
small displacements during CNN training is avoided by a voxel-level z-transformation of
x-, y- and z-displacement components, i. e. the network learns normalized 3D-vectors for
the individual voxels of sagittal slices. After pre-processing, the training tuples for npat
read (Ĩpi |[x−2,x+2], Ĩ

p
j |[x−2,x+2], ũ

p
ij |x ). Before training, all slabs were shu�ed to eliminate

unintended bias between slabs of same patient 4D CT data sets. Training and testing
of the network (85%/15% train/test split, respectively) was conducted using 69 in-house
acquired abdominal and thoracic 4D CT data sets. A more detailed description of the
patient data is given in Section 4.4.4. Corresponding pseudo ground truth4 motion vector
�elds are computed by three open source DIR frameworks utilizing default parameter
settings and are applied in a plug-and-play manner. More speci�cally, three di�erent
versions of the network corresponding to each DIR algorithm were trained. �e accuracy
of each variant was evaluated by the target registration error (TRE), computed by means
of the landmarks publicly available for the DIRLAB (cf. Section 4.4.1) and CREATIS
Section 4.4.2) data.
�e chosen network architecture, as illustrated in Fig. 4.7, was a modi�ed Inception-

ResNet-v2 [84], which was found to be more robust for the given registration task
compared to a standard U-Net [85] architecture. To allow for a deeper network structure
the encoder part of a pre-trained CT autoencoder was used to reduce the image slab
dimensions by 60%. An autoencoder is a neural network that learns e�cient data repre-
sentations (encoding). �at is, an autoencoder is trained by attempting to output its input.
Smaller hidden layers, i. e. layers with less parameters than the input/output layer, force
the autoencoder to use dimensional reduction to eliminate noise and reconstruct the
inputs. Using such an encoding for CT data is reasonable as air surrounding the patient

4Ground truth information for DIR of clinical data sets is not existing, i. e. estimated motion vector �elds
are approximate and rely on visible features and applied registration framework/approach. �us, the
term pseudo ground truth is used.
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or air inside the lung can be e�ciently encoded. Probabilistic dropout, as introduced
in Section 3.2.2, in deeper network layers leads to an intrinsic DIR representation. At
the same time, over�tting during training is prevented. Applying the trained network
iteratively, i. e. the trained network is cascaded, results in an improved coverage of large
motion patterns. Repeating the motion prediction with enabled dropout during testing
allowed to compute the sought motion �eld as the mean of the sampled predicted �elds.
Additionally, corresponding voxel-wise variances can be interpreted as local registration
uncertainty estimates. �e applied loss function was the MSE loss, cf. Eq. (3.15). ReLu, as
introduced in Eq. (3.10), was used as activation function.

4.4. Data sets

In this work, 4D data sets of four di�erent facilities were used. �e open source 4D
CT lung data sets described in Section 4.4.1 and Section 4.4.2, DIRLAB and CREATIS,
respectively, were included as they contain landmarks (prominent anatomical points like
vasculature bifurcations, manually selected by medical experts) that are necessary to
allow for a quantitative evaluation of registration results. Further, an open source 4D MRI
liver data set, as described in Section 4.4.3, was utilized to enable a similar analyses in low
contrast areas. Finally, in-house acquired lung and liver 4D CT data sets (cf. Section 4.4.4)
were used for 4D dose accumulation and model training for CNN-based DIR. Details of
primarily employed 4D CT data sets are given in Table 4.1 and Table 4.2.

4.4.1. DIRLAB 4D CT data

�e open source DIRLAB repository consists of ten 4D CT lung data sets and is provided
by the University of Texas M.D. Anderson Cancer Centers (Houston, USA); cf. https:
//www.dir-lab.com. Each data set is comprised of 10 3D CT phase images, de�ning the
internal motion during CT imaging for one average breathing cycle. Further, a variety
of corresponding anatomical landmark positions inside the lung for the �rst �ve phase
images of each 4D CT were de�ned and provided by a thoracic imaging expert. �at is,
the DIRLAB data set can not only be employed to quantify DIR results (comparison of
landmark positions in reference and deformed template image by application of predicted
transformation) but also to analyze the accuracy of estimated motion �elds by e. g.
correspondence model based motion prediction (cf. Section 4.1). For further details about
the 4D CT data of the DIRLAB data set see Table 4.1 and [86].
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4.4. Data sets

Table 4.1.: 4D CT lung data sets of open data repositories DIRLAB [86] and CREATIS [87]. �e displacement
is de�ned as mean Euclidean distance of all available landmarks (nLM) of each individual 4D CT
data set between end inspiration and end expiration.

Data Pat. Size (voxel) Spacing (mm3) nLM Displacement (mm)
D
IR
LA

B

lu
ng

01 256 × 256 × 94 0.97 × 0.97 × 2.5 300 4.01 ± 2.91
02 256 × 256 × 112 1.16 × 1.16 × 2.5 300 4.65 ± 4.09
03 256 × 256 × 104 1.15 × 1.15 × 2.5 300 6.73 ± 4.21
04 256 × 256 × 99 1.13 × 1.13 × 2.5 300 9.42 ± 4.81
05 256 × 256 × 106 1.10 × 1.10 × 2.5 300 7.10 ± 5.14
06 512 × 512 × 128 0.97 × 0.97 × 2.5 300 11.10 ± 6.98
07 512 × 512 × 136 0.97 × 0.97 × 2.5 300 11.59 ± 7.87
08 512 × 512 × 128 0.97 × 0.97 × 2.5 300 15.16 ± 9.11
09 512 × 512 × 128 0.97 × 0.97 × 2.5 300 7.82 ± 3.99
10 512 × 512 × 120 0.97 × 0.97 × 2.5 300 7.63 ± 6.54

C
RE

A
T
IS

lu
ng

01 512 × 512 × 141 0.97 × 0.97 × 2.0 100 6.34 ± 2.94
02 512 × 512 × 169 0.97 × 0.97 × 2.0 100 14.00 ± 7.17
03 512 × 512 × 170 0.88 × 0.88 × 2.0 100 7.67 ± 5.03
04 512 × 512 × 187 0.78 × 0.78 × 2.0 100 7.33 ± 4.86
05 512 × 512 × 139 1.17 × 1.17 × 2.0 100 7.09 ± 5.08
06 512 × 512 × 161 1.17 × 1.17 × 2.0 100 6.68 ± 3.67

4.4.2. CREATIS 4D CT data

Similar to the DIRLAB data set, the CREATIS data is an open source repository that
provides 4D CT data as well as corresponding anatomical landmarks in the inhale and
exhale frame. �e data is made available by the Léon Bérard Cancer Center & CREATIS
Laboratory of the University of Lyon (France); cf. https://www.creatis.insa-lyon.
fr/rio/popi-model. Here, six lung 4D CT patient data sets are available. Further details
are described in Table 4.1 and [87].

4.4.3. 4D MRI

Landmarks to quantify image registration accuracy in lung CT data, as provided in
the DIRLAB and CREATIS repositories, are generally not available in the low-to-no
contrast CT areas of tissue, especially the liver. MR images, however, contain high
contrast in tissue and liver but have usually no temporal resolution, i. e. are only available
in 3D5. Fortunately, one open source 10-phase 4D MRI data set is provided at https:
//www.vision.ee.ethz.ch/~organmot/ and described in [89]. To allow for a similar
evaluation of registration accuracy for liver registration compared to the DIRLAB and

5Currently there is no 4D-MRI technique available for clinical application. �e present generation of
scanners is constrained by the limited frequency at which full 3D volumes can be acquired [88].
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4. Methods and materials

CREATIS data, an adaption of the data set had to be implemented. Inside the liver of the
4D MRI data set that represents one breathing cycle(

IMRI
i

)
i∈{1,...,10}

, IMRI : ΩMRI ⊂ �3 → �, (4.27)

with clearly visible inner-liver structures, 20 corresponding landmarks (i. e. prominent
anatomical points like vasculature bifurcations) were selected by an expert in each
individual MRI phase image. By reducing the structure-to-background contrast inside the
liver a series of masked 4D MRI sets were generated to mimic the real challenge of liver
registration in 4D CT images. Application of manually segmented liver masks, denoted
by (

MMRI
i

)
i∈{1,...,10}

,MMRI : ΩMRI → � (4.28)

with the median value MMRI
i (x) of liver voxels in IMRI

i and zero elsewhere, allowed to
combine mask and original MRI data(

IMRI,α
i

)
i∈{1,...,10}

,MMRI,α : ΩMRI → � (4.29)

with

IMRI,α
i (x) =

{
(1 − α)IMRI

i (x) + α
[
MMRI

i (x) + n (x)
]

if MMRI
i (x) , 0

IMRI
i (x) else

(4.30)

and form test data sets. Here, n(x) denotes Gaussian noise with an expectation value
of zero and a variance based on common liver voxel intensity distributions in 4D CT
data re-scaled to MRI data intensity ranges. �us, a CT-like noise distribution inside the
liver of the IMRI,α

i data is generated. Variation of α in Eq. (4.30) led to MRI data sets with
di�erent noise levels that were subsequently used for evaluation of image registration
accuracy by application of ground truth landmarks. In Fig. 4.8 the MRI-liver is exemplary
shown for α = 0% and α = 90% and compared to a CT-liver.

4.4.4. In-house acquired 4D CT data

In total, 69 in-house acquired liver and lung 4D CT data sets were utilized in this thesis.
Patient data sets that contained planning 4D CT, breathing signal data for all treatment
fractions, VMAT treatment plan, planned dose distribution and information about clinical
outcome (local metastasis recurrence: yes/no), were selected for the dose accumulation
studies (see Section 4.2); the eventually chosen �ve lung and �ve liver patients (cf.
Table 4.2) had six and nine treated metastases, respectively, with two cases of local
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Figure 4.8.: MRI-liver with di�erent α-level compared to a CT-liver. Left: Visibility of liver structures in
the original MRI data. Middle: MRI-liver with α-level of 90%. Right: CT phase image of a 4D
CT image sequence for comparison. Structures inside the liver are hardly detectable for the
MRI data with α = 90% and the CT data. From publication [90].

Table 4.2.: In-house acquired 4D CT data sets of liver and lung cancer patients. Parameters 〈Span〉 and
〈Period〉 denote the mean peak-to peak amplitude and the mean period of the respiratory signal
recorded during 4D CT acquisition, respectively.

Data Pat. Size (voxel) Spacing (mm3) 〈Span〉 (mm) 〈Period〉 (s)

In
-h
ou

se

liv
er

01 512 × 512 × 117 0.98 × 0.98 × 2.0 5.5 ± 2.7 5.3 ± 1.8
02 512 × 512 × 159 0.98 × 0.98 × 2.0 8.3 ± 1.6 5.2 ± 0.5
03 512 × 512 × 159 0.98 × 0.98 × 2.0 15.4 ± 1.4 2.9 ± 0.3
04 512 × 512 × 159 0.98 × 0.98 × 2.0 15.3 ± 1.9 6.6 ± 1.1
05 512 × 512 × 150 0.98 × 0.98 × 2.0 4.6 ± 0.5 3.6 ± 0.5

lu
ng

06 512 × 512 × 159 0.98 × 0.98 × 2.0 6.5 ± 3.5 5.5 ± 1.8
07 512 × 512 × 159 0.98 × 0.98 × 2.0 8.4 ± 0.8 5.7 ± 0.4
08 512 × 512 × 159 0.98 × 0.98 × 2.0 14.7 ± 4.0 5.7 ± 0.9
09 512 × 512 × 159 0.98 × 0.98 × 2.0 7.0 ± 1.1 2.4 ± 0.2
10 512 × 512 × 159 0.98 × 0.98 × 2.0 6.7 ± 2.4 3.3 ± 0.8

metastasis recurrence each. For the development of the deep learning based image
registration framework (cf. Section 4.3), all 69 patient cases were used. Here, the patient
4D CT data was utilized to train and test the proposed neural network.

All 4D CT are recorded by the same scanner (Siemens Somatom AS Open CT) in
standard spiral 4D CT scanning mode in a period of time of about 18 months (March
2014 to September 2015). 4D CT image reconstruction of acquired projection data was
done by amplitude-based binning, as described in Section 3.1.1.
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Chapter 5

Results

Chapters 2 to 4 outlined the physical principles and medical imaging-related fundamentals
in 4D radiotherapy relevant for this thesis. In this chapter, the results obtained by applying
the introduced materials and methods (cf. Chapter 4) are presented. As the results have
been published in peer-reviewed journals in respective �elds of research, each section
(except Section 5.7) is based on one publication and a preceding summary of the article.
In Section 5.7, additional and not yet published results are presented. A brief overview of
the corresponding sections is given in the following.

Section 5.1: Correspondence model-based 4D dose simulation [PMB 2017]
In this section, the focus is on illustrating the combination of internal patient
motion prediction and dose accumulation to allow for implementation of a 4D dose
accumulation algorithm for complex radiotherapy treatments.

Section 5.2: Image registration in 4D dose simulation [R&O 2018]
Correspondence modeling as utilized in the previous section requires the extraction
of internal patient motion out of 4D CT data sets using DIR (cf. Section 4.1). �e
assumption that the applied registration algorithm and respective uncertainties
therein highly impacts the dose accumulation output is investigated in this section.

Section 5.3: Dose simulation in the presence of image artifacts [SPIE 2018]
4D CT planning data is the basis of all following dose accumulation steps. Often
occurring image artifacts in 4D CT data sets are assumed to be an uncertainty
source as they might impact the registration and, as a result, the dose accumulation
accuracy. �is is analyzed in this section.

Section 5.4: Deep learning-based deformable image registration [MICCAI 2018]
A new registration tool based on deep learning is developed and introduced. �e
framework allows to estimate the DIR uncertainty, which opens up the possibility
to compute voxel-wise dose con�dence intervals.

Section 5.5: Accuracy of 4D dose simulation [PLOS 2017]
�e validation and veri�cation of the proposed 4D dose accumulation approach by
comparing dose simulations and dose measurements is presented. Here, a�ecting
parameters and limitations of the dose simulation scheme are demonstrated.
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Section 5.6: Monte Carlo-based 4D dose simulation [SPIE 2019]
To achieve best possible dose accumulation accuracy, i. e. further reduce deviations
between measurements and simulations, the accumulation scheme is enhanced by
re-implementing the algorithm to allow for actual dose re-calculation using Monte
Carlo simulations.

Section 5.7: Error propagation in 4D dose simulation [Not yet published]
�e estimation of dose con�dence intervals by registration uncertainty propagation
is performed.

5.1. Correspondence model-based 4D dose simulation

Dose accumulation algorithms are important tools for quality assurance in 4D radio-
therapy, as mentioned in Chapter 1. Current approaches, i. e. standard 4D CT-only dose
accumulation schemes, are, however, not able to account for individual internal patient
motion during dose delivery. �us, interplay e�ects due to unfavourable interaction of
dynamic and complex dose delivery techniques and respiration-induced tumor motion
can not be quanti�ed and further evaluated. In this section, a �rst approach to allow
for an accurate estimation of such e�ects is proposed. Further, predicted underdosages
were correlated to corresponding clinical outcome information (i. e. was the treatment
successful). �e results are based on the following publication:

T. Sothmann, T. Gauer, M. Wilms, R. Werner. Correspondence model-based 4D VMAT
dose simulation for analysis of local metastasis recurrence after extracranial SBRT. Phys
Med Biol, 62(23):9001–9017, 2017.

In the respective study, correspondence modeling, i. e. the correlation of external
and internal patient motion information as described in Section 4.1, was utilized. �e
representation of intrafractional patient motion variability by breathing signal-steered
interpolation and extrapolating of the DIR motion �elds was combined with 4D dose
simulation (cf. Section 4.2 for the general simulation approach). Further, the proposed
correspondence model-based dose accumulation method was applied to clinical patient
data to 1) retrospectively simulate the delivered dose for a population of 10 real patient
treatments and 2) correlate computed underdosages (dose di�erences between planned
and 4D-simulated doses) to known clinical endpoints, i. e. occurrence of local metastasis
recurrence or successful treatment (no occurrence). For each patient in the investigated
patient cohort (see Table 1 [PMB 2017]1 and Table 4.2 for additional patient treatment,

1For readability/identi�cation purposes, references to tables, �gures and equations of included publications
comprise information about corresponding journal and year of publication in square brackets.
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motion and data set information), an individual correspondence model was built using
the corresponding planning 4D CT and the simultaneously acquired surrogate breathing
curve. Here, DIR between one reference 4D CT phase and all remaining phases yielded
the necessary motion vector �elds that were correlated by multivariate regression to the
external breathing signal and its temporal derivative, forming the basis of a regression
based correspondence model training. During dose delivery, the external patient breathing
signal has been recorded by the same technical device used during 4D CT imaging.
Discretization of the dose delivery process allowed correlating a speci�c breathing signal
measurement to the corresponding planned dose segment. Applying the beforehand
built correspondence model, an internal motion �eld that corresponds to each external
signal measurement was derived. Deforming all dose segments with the estimated
motion �elds and weighted summation over all deformed dose segments yielded the
sought motion-a�ected dose distribution for one treatment fraction (summation over
all fractions yielded the total motion-a�ected dose distribution). Further, to illustrate
advantages regarding dose estimation accuracy, a standard 4D CT-only dose accumulation
scheme was implemented and compared to the proposed approach.

Results of the proposed and the standard 4D dose accumulation approach are summa-
rized in Table 2 [PMB 2017]. Target, i. e. GTV, dose coverage was quanti�ed by di�erences
∆D98 of D98,Sim and D98,Plan, whereas D98 is the dose that is received by 98% of the target
volume. It was noticeable that for patients with local metastasis recurrence the proposed
4D dose simulation approach estimated larger negative total and fraction-wise ∆D98

values compared to metastases without recurrence. Respective results for the standard
4D CT-based simulation scheme showed a potential underestimation of motion e�ects,
i. e. only small ∆D98 values. �is was somehow expected as information about motion
variability was in this approach not taken into account. Further, a fraction-wise inves-
tigation of dose deviations was not possible for the standard approach. In conclusion,
the introduced correspondence model-based 4D dose accumulation method illustrates
the possibility of linking estimated underdosages to local metastasis recurrence, and
thus o�ers the potential to explain motion-related errors during treatment planning
and dose delivery. Implementation into the clinical work�ow of this tool for quality
assurance purposes after treatment planning and/or after the individual treatment session
is desirably. A possible application would be a treatment plan adaption after the �rst
treatment session if respiration-induced underdosages of target volumes are identi�ed.
However, feasibility, dose simulation accuracy and uncertainties of the proposed scheme
have to be further investigated before a clinical application can be considered.

In terms of shortcomings apart from the small patient cohort size that was available
for the current feasibility study, it has to be noted that the correspondence modeling used
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for 4D dose simulation was based on only pre-treatment 4D CT image data. Further, the
extraction of internal patient motion out of the available 4D CT data sets was performed
using an open source non-linear registration framework, optimized for 4D CT lung
registration. Performance in low-to-no contrast areas, e. g. the liver, remains to be
evaluated. �is directly motivated the investigation of the in�uence of di�erent DIR
algorithms on the 4D dose simulation accuracy, as extensively analyzed in Section 5.2.
Also, often occurring 4D CT image artifacts, as described in Section 3.1.2, are uncertainties
that explicitly in�uence registration and with that dose simulation accuracy, i. e. the
impact of typical 4D CT artifacts had to be and was therefore analyzed in Section 5.3.
�e limited VMAT arc discretization level, as introduced by the treatment planning
system, restricts the temporal resolution, and was consequently evaluated in Section 5.5,
including veri�cation measurements. Nevertheless and despite those uncertainties, the
here presented results highlight the potential of correspondence model-based 4D VMAT
dose simulation.
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Abstract. The purpose of this study is to introduce a novel approach
to incorporate patient-specific breathing variability information into 4D
dose simulation of volumetric arc therapy (VMAT)-based stereotactic body
radiotherapy (SBRT) of extracranial metastases. Feasibility of the approach is
illustrated by application to treatment planning and motion data of lung and
liver metastasis patients.

The novel 4D dose simulation approach makes use of a regression-based
correspondence model that allows representing patient motion variability by
breathing signal-steered interpolation and extrapolation of deformable image
registration motion fields. To predict the internal patient motion during treatment
with only external breathing signal measurements being available, the patients’
internal motion information and external breathing signals acquired during 4D CT
imaging were correlated. Combining the correspondence model, patient-specific
breathing signal measurements during treatment and time-resolved information
about dose delivery, reconstruction of a motion variability-affected dose becomes
possible.

As a proof of concept, the proposed approach is illustrated by retrospective 4D
simulation of VMAT-based SBRT treatment of ten patients with 15 treated lung
and liver metastases and known clinical endpoints for the individual metastases
(local metastasis recurrence yes/no). Resulting 4D-simulated dose distributions
were compared to motion-affected dose distributions estimated by standard 4D
CT-only dose accumulation and the originally (i. e. statically) planned dose
distributions by means of GTV D98 indices (dose to 98% of the GTV volume).
A potential linkage of metastasis-specific endpoints to differences between GTV
D98 indices of planned and 4D-simulated dose distributions was analyzed.

Keywords: Respiratory Motion, 4D Dose Simulation, Dose Accumulation,
Correspondence Model
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1. Introduction

Extracranial radiotherapy of metastatic disease is nowadays commonly treated
by stereotactic body radiotherapy (SBRT), exploiting highly conformal treatment
planning to achieve equivalent biologically effective doses (BED) in only a few fractions
compared to former standard 3D conformal RT fractionation (hypofractionation with
1-10 fractions vs. 20-40 fractions) (Lartigau 2011, Sahgal et al 2012, Katz et al 2007).
Despite reported local control (LC) rates of 55% to 100% at 2-3 years (Timmerman
et al 2010, Alongi et al 2012, Rieber et al 2016, Høyer et al 2012, Chang et al
2011, Andratschke et al 2016), especially SBRT of lung and liver metastases is still

considered challenging due to e. g. respiration-induced target volume deformation and
tumor motion amplitudes up to several centimeters (Keall et al 2006). Further, intra-
and inter-fractional breathing variability as well as the use of only a single planning
(4D) computed tomography (CT) image without treatment plan adaption before the
individual treatment fractions (Korreman 2012, Ge et al 2013) leads to uncertainties
and differences between planned and actually delivered SBRT dose distributions. The
assumption underlying our study is that a better understanding of the uncertainties
and differences could potentially allow us to explain (a fraction of) the up to 40%
missing LC rates.

Understanding motion-induced differences between planned and delivered dose
over the course of treatment requires combining patient-specific motion data and
information about the dose delivery process. Related tools are referred to as 4D dose
calculation, simulation or reconstruction. Generally speaking, 4D dose simulation
can be understood as a weighted summation of dose distributions that correspond to
different (breathing) states of the time-dependent patient geometry (Milz et al 2014).
In the most common form, the 3D CT phase images of the patient’s planning 4D CT
are considered representative for the patient geometry during treatment. Deformable
image registration (DIR) is applied between a reference breathing phase image and
the other 4D CT phase images. The resulting motion fields are directly applied to
deform the originally planned 3D dose distribution. The deformed dose distributions
represent the dose corresponding to the different breathing phases, but mapped into
the patient geometry of the reference image. They are finally combined by weighted
summation (Sarrut 2006, Werner et al 2012, Velec et al 2011).

Deforming the entire 3D dose distribution as computed by the treatment planning
system, however, neglects the dynamics of dose delivery. It has therefore also been
suggested to assign individual dose segments of the treatment plan (for intensity-
modulated radiotherapy) or even the individual monitor units to the phases of the
planning 4D CT (Ehrbar et al 2016, Werner et al 2012). This allows studying
so-called interplay effects between respiratory and dose delivery dynamics, but still
ignores intra- and inter-fractional respiratory variability. Especially addressing inter-
fraction motion differences, some groups further proposed taking into account 4D
cone beam CT (CBCT) data acquired prior to the individual treatment: For each
fraction, the inhale CT of the planning 4D CT was registered to the inhale image
of the pre-fraction 4D CBCT to account for, e. g., inter-fraction setup variations,
followed by registration of the inhale 4D CBCT phase to other 4D CBCT phase
images to represent fraction-specific motion patterns (Velec et al 2012, Samavati et al
2016). However, the resulting motion fields were again directly applied to warp the

planned dose distribution. Information about the patient’s actual breathing patterns
during dose delivery was not taken into account; intra-fraction motion variability and
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interplay thereof with dose delivery dynamics were still neglected.
On the contrary, correspondence modeling, i. e. to correlate the patient’s internal

motion information and external breathing signals acquired during 4D imaging, has
attracted great interest over the past years. Related studies primarily aimed at
estimating internal patient motion during treatment, with only external breathing
signal measurements being available (Wilms et al 2014, Fassi et al 2014, McClelland et
al 2013). Thus, compared to motion representation by only a series of motion fields as
obtained by DIR in a 4D image sequence, correspondence modeling allows representing
intra-fractional patient motion variability by breathing signal-steered interpolation
and extrapolating of the DIR motion fields with high accuracy (Wilms et al 2014).

From our perspective, combining correspondence modeling and 4D dose
simulation appears to be a natural next step. The present study describes three
main and novel contributions in that direction:
• We present a first correspondence model-based approach to 4D-simulate the

delivered dose of SBRT treatments. The proposed scheme explicitly models the
interplay of intra-fraction patient motion and the dynamics of volumetric arc
therapy (VMAT) dose delivery.

• The approach is applied to clinical patient data and VMAT treatment plans,
using real patient-specific breathing signal measurements observed during dose
delivery.

• For all patients and metastases, clinical endpoints were known (local metastasis
recurrence: yes/no). Trying to identify potential patient-specific motion-
related causes of local metastasis recurrence, clinical outcome information and
differences between 4D-simulated and the planned gross tumor volume (GTV)
dose distributions were evaluated.
The study builds on and combines established and well-evaluated methodological

approaches: For correspondence modeling, we apply our linear regression approach
detailed in (Wilms et al 2014) and our open-source DIR framework evaluated in
(Werner et al 2014). Technical feasibility of the conducted temporal discretization of
the VMAT dose delivery process was further analyzed in a motion phantom pre-study
described in (Sothmann et al 2017). For ease of readability, related methodical aspects
are nevertheless briefly introduced in the subsequent Sec. 2, before describing our
materials and experiments and corresponding results (Sec. 3-4). Despite or precisely
because of its novelty, our correspondence model-based 4D dose simulation approach
is still prone to different sources of uncertainties. These are detailed in Sec. 5,
accompanied by identification of next steps to reduce them.

2. Methods: Correspondence model-based 4D dose simulation

The concept of correspondence model-based 4D dose simulation is illustrated in Fig. 1,
with the individual parts being subsequently explained. Nomenclature and used
symbols are based on (Wilms et al 2014, Werner et al 2014, Sothmann et al 2017)
and the technique for correspondence modeling upon standard approaches from the
literature as reviewed in (McClelland et al 2013).
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2.1. Correspondence modeling: correlating internal and external motion information

For each patient, the 4D treatment planning CT represents a series of 3D CT phase
images, i. e.

(Ii)i∈{1,...,nph} , Ii : Ω ⊂ R3 → R

Here, i ∈ {1, . . . , nph} indicates the breathing phase of a 3D CT image and nph the
total number of breathing phases of the 4D CT. Analogously, corresponding external
breathing signal measurements that are assigned to the images read

(ζi)i∈{1,...,nph} , ζi ∈ Rd

with the most common choice being d = 2 and specifically

(ζi)i∈{1,...,nph} , ζi = (zi, ∂tzi)T ∈ R2;

cf. (Low et al 2005, Wilms et al 2014). Now, given the breathing phase-
specific images Ii and the breathing signal measurements ζi for i ∈ {1, . . . , nph},
correspondence modeling aims at representing a patient-specific functional relationship
between the breathing signal measurements and respiratory motion of the internal
structures (target volumes, organs at risk). In contrast to the low-dimensional
breathing signals, the internal motion is usually represented by dense vector fields,
i. e. by breathing-induced voxel-wise displacement vectors with respect to a reference
breathing phase / voxel position. These displacement fields are to be estimated by
non-linear registration. Thus, assume an arbitrary breathing phase i0 ∈ {1, . . . , nph}
to be selected as reference phase (here: i0 = 3, denoting mid-expiration) and the
corresponding CT image Ii0 as fixed image during registration. Then, the registration
process results in a series of transformations

(ϕi)i∈{1,...,nph} , ϕi : Ω→ Ω

with ϕi0 = identity map (id) and corresponding motion fields

(ui)i∈{1,...,nph} , ui : Ω→ R3

with ui = ϕi − id (i. e. ui0 = (0; 0; 0)T ).
In combination with the breathing signal measurements (ζi)i∈{1,...,nph}, these

motion fields (ui)i∈{1,...,nph} form the basis of a regression-based correspondence model
training; see Fig. 1, top-left. For ease of readability, let therefore the breathing signal
measurements and motion fields be interpreted as random variables Zi (≡ ζi) and
Ui ∈ R3m with m denoting the number of voxels of the reference phase image Ii0 .

Then, the assumed relationship between breathing signal measurements and
internal motion fields – i. e. the correspondence model – is defined as a multivariate
linear relationship, i. e. by

Û = U + B
(

Ẑ− Z
)

(1)

Ẑ ∈ R2 represents a breathing signal observation and Û ∈ R3m the corresponding
and sought motion field (U = 1/nph

∑nph
i Ui and analogously Z = 1/nph

∑nph
i Zi).

The coefficient matrix B ∈ R3m×2 is computed in an ordinary least-squares regression
approach, i. e.

B = arg min tr
B′

[
(U−B′Z) (U−B′Z)T

]
= UZ+ (2)
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1Figure 1. Concept of correspondence model-based 4D dose simulation.
Top: To establish a functional relationship between external breathing signal
measurements and internal motion patterns, breathing signal information (left; in
our case the anterior-posterior (AP) component of the Varian Real-Time Position
Management (RPM) system and its temporal derivative) corresponding to the
RT planning 4D CT phase images were correlated (by multivariate regression)
to motion fields obtained by DIR with respect to the mid-expiration phase P3.
Top-right: relationship between motion vector superior-inferior (SI) components
of the voxel highlighted in the middle column and the breathing signal values
for the patient’s 10-phase 4D planning CT. Differences between inspiration and
expiration (hysteresis) highlight the need to incorporate additional information
(here: temporal derivative of breathing signal). Bottom: For each breathing signal
measurement, a motion field is computed by means of the correspondence model.
This field is used to deform the temporally corresponding planned VMAT dose
segment, resulting in a motion-affected dose segment. Summing up all motion-
affected dose segments for, e. g., the individual treatment fractions affords the
opportunity to compare the planned and the estimate of the actually delivered
treatment fraction dose distributions, taking into account the observed patient-
specific breathing and related irregularity information.

with

Z =
(
Z1 − Z, . . . ,Znph − Z

)

U =
(
U1 −U, . . . ,Unph −U

)
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as mean-centered observations and

Z+ = ZT
(
ZZT

)−1

as Moore-Penrose pseudoinverse. Subsequently, Û and the motion field û : Ω×R2 →
R3 that results by application of Eq. (1) for a given Ẑ and ζ̂, respectively, are used as
equivalent terms.

2.2. Combining correspondence modeling and 4D VMAT dose simulation

Having established a patient-specific functional relationship between external and
internal motion data, retrospective correspondence model-based 4D dose simulation
is conceptually straightforward (Fig. 1, bottom):

Throughout the course of treatment, a breathing signal has to be recorded (using
the same technical device exploited during model formation; otherwise, applicability
of the trained correspondence model is questionable) in parallel to the dose delivery
process, and the respective temporal information has to be correlated. Assuming
that the planned dose delivery process can be appropriately discretized in time, the
latter means that each individual breathing signal measurement can be correlated
to a planned dose segment delivered at the time of measurement. In addition, the
correspondence model allows deriving internal motion fields that correspond to the
external signal measurement. Thus, deforming the planned dose segment by means of
the motion fields yields an estimate of the dose actually delivered, taking into account
the patient’s state of breathing at the time of measurement.

Mathematically speaking, let Ḋ : Ω × T ⊂ R → R+ be the time-dependent dose
rate during a single treatment fraction. Then, generally speaking, the dynamical dose
delivery process, its interplay with patient motion and the resulting dose distribution
D4D : Ω→ R+ can be expressed as

D4D (x) =
∫

T
Ḋ (ϕ (x, t) , t) dt

≈
∑

t∈T̃
Ḋ (ϕ (x, t) , t) ∆t

=
∑

t∈T̃
Dt (ϕ (x, t)) (3)

with ϕ : Ω×T → R3 as the position ϕ (x, t) of voxel x ∈ Ω of the reference phase CT
Ii0 at time t ∈ T = [0;T ) ⊂ R (i. e. the representation of the respiratory-induced inner
structure motion during dose delivery of length T ). The numerically required temporal
discretization in Eq. (3) indicates an equidistant sampling of the dose delivery process,
with the sampling points t ∈ T̃ = {1/2 ∆t; 3/2 ∆t; . . . }, T̃ ⊂ T , and a sampling period
of ∆t. Consequently, Dt : Ω→ R+ denotes the dose applied during the time interval
[t− 1/2 ∆t; t+ 1/2 ∆t).

As described in the introduction, for common dose accumulation approaches,
the actual dynamics of the dose delivery process are ignored and the DIR-estimated
motion fields directly applied for dose warping,

D4D CT sim (x) = 1
nph

nph∑

i=1
D (ϕi (x)) (4)
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with D : Ω→ R+ as the planned 3D dose distribution (Werner et al 2012).
Now, to not only account for dose delivery dynamics but also the during

treatment-acquired patient-specific breathing signal information about breathing
variability, the breathing signal and the established correspondence model from Eq. (1)
are integrated into Eq. (3). With ϕ̂ = id+ û and ζ̂ : T → R2, correspondence model-
based 4D dose simulation for a single fraction finally reads

D4D (x) ≈
∑

t∈T̃
Dt

(
ϕ̂
(
x, ζ̂t

))
=
∑

t∈T̃
Dt

(
x+ û

(
x, ζ̂t

))
(5)

where ζ̂t = ζ̂ (t). To cover multiple treatment fractions, Eq. (5) directly extends to

Dtotal
4D (x) =

∑

fx
Dfx

4D (x) =
∑

fx

∑

t∈T̃fx

Dt

(
x+ û

(
x, ζ̂t

))

with the outer summation accumulating the individual fraction dose distributions and
T̃fx ⊂ R being the sampling points of dose delivery during the respective fraction.
Note that without treatment plan adaptation it can be assumed that T̃fx = T̃ for all
treatment fractions. Thus, in the general case, differences between the Dfx

4D result
from patient motion variability and differences of the ζ̂t observed during dose delivery.

2.2.1. Temporal discretization of VMAT dose delivery Equation (5) is valid for
arbitrary dose delivery techniques. Aiming at 4D dose simulation for VMAT dose
delivery, VMAT-specific characteristics have to be accounted for. As illustrated in
Fig. 2, the dose is delivered during continuous gantry rotation around the patients,
covering a relatively wide range of gantry angles and a small number of arcs. From the
perspective of discretization of the dose delivery process, this means that without loss
of generality Eq. (5) can be equivalently re-parameterized by replacing the temporal
variable t for each planned arc by the gantry rotation angle α ∈ [0◦; 360◦):

D4D (x) ≈
∑

ax

∑

α∈Ãax

Dα

(
x+ û

(
x, ζ̂α

))
(6)

with Ãax = {1/2 ∆α; 3/2 ∆α; . . . } as a discretized version of the gantry angle range
Aax ⊂ [0◦; 360◦) of the respective VMAT arc (Sothmann et al 2017). Thus,
similar to the afore-mentioned explanations, Dα

(
x+ û

(
x, ζ̂α

))
represents the dose

applied during the angle range [α − 1/2∆α;α + 1/2∆α)] to voxel x of the reference
CT image Ii0 , which, according to the respiratory signal measurement ζ̂α and the
correspondence model, is located at x+û

(
x, ζ̂α

)
. Further assuming that the breathing

signal acquisition rate is usually very high compared to gantry rotation time and
achievable degree of VMAT arc discretization, the finally implemented single fraction
accumulation scheme was

D4D (x) ≈
∑

ax

∑

α∈Ãax

1
|T̃α|

∑

t∈T̃α

Dα

(
x+ û

(
x, ζ̂t

))

=
∑

ax

∑

α∈Ãax

1
|T̃α|

∑

t∈T̃α

(Dα ◦ ϕ̂)
(
x, ζ̂t

)
(7)
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PTV

A

R
C

1Figure 2. VMAT dose delivery. Illustration of VMAT dose delivery and
temporal discretization of the delivery process: During VMAT treatment, the
gantry rotates continuously around the patient, with dose rate, gantry speed and
multi-leaf collimator leaf positions varying to simultaneously maximize organs at
risk sparing and target dose coverage (shown: planning target volume, PTV). For
4D dose simulation, these so-called VMAT arcs were discretized into small arc
segments (indicated by the yellow dashes) and the dose planned to be delivered
for each segment was used for dose accumulation.

with T̃α denoting the breathing signal measurements during dose delivery at gantry
angle α and the respective dose segment. The total 4D-simulated dose after all
treatment fractions was computed by summing up the 4D-simulated dose distributions
of the individual fractions.

3. Materials and Experiments

3.1. Patient cohort and treatment planning

To include a patient into this retrospective study, planning 4D CT, breathing
signal data for all treatment fractions and information about clinical outcome (local
metastasis recurrence: yes/no) after SBRT had to be present. Further, we aimed for
a patient cohort with homogeneous BED of more than 75 Gy; lower BED was, besides
inappropriate motion management, concluded to cause worse LC rates for extracranial
metastasis and especially lung and liver SBRT (Van den Begin et al 2014).

In total, five liver patients with nine treated metastases and five lung patients with
six treated metastases were selected. All patients were treated by VMAT (RapidArc,
Varian, USA). 3D CBCT image-guided patient setup correction was applied before
each treatment fraction. The dose was delivered in “safety gating” mode: During
treatment, a breathing signal (using the Real-Time Position Management (RPM)
system, Varian, USA) was acquired and the linac beam was switched off if the online
signal exceeded amplitude thresholds defined beforehand by means of the 4D CT
breathing signal records.

Antecedent VMAT treatment planning was based on a ten-phase 4D CT (image
spatial resolution: 0.98×0.98× 2 mm; Siemens Definition AS+, Siemens, Germany;
breathing signal acquisition: RPM system, Varian, USA) and an internal target
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volume (ITV) concept (GTV delineation on each phase; union of phase GTVs = ITV;
ITV + 4 mm isotropic safety margin = PTV; treatment planning system: Eclipse 13,
Varian); segmentation of organs at risk and dose optimization (AAA/Acuros) was
performed on a temporal average CT derived from the ten-phase 4D CT. Primary
planning goal was to describe a minimum dose of 90% of the planned dose to the
PTV while considering normal tissue constraints. Further detailed information on
treatment planning as well as patient-specific information on metastasis motion and
recurrence as observed in the 4D CT planning data are summarized in Table 1.

3.2. Design of our proof-of-concept study

3.2.1. Data preparation and correspondence modeling 4D CT data used for RT
treatment planning in our clinic are reconstructed using local amplitude-based binning
(LAB) of the CT projection data: The individual breathing cycles of the breathing
signal, i. e. the AP component of the RPM system, acquired during CT scanning
are extracted and the breathing cycle-specific minimum and maximum signal values
determined. These values define the local, i. e. the breathing cycle-specific 0 % and
100 % amplitude values, which are assigned as phase information to the respective CT
projection data. Separately for inspiration and expiration, but again based on only
the breathing cycle-specific signal values, phase values between 0 % and 100 % are
assigned to projection data acquired in between. Finally, based on the assigned phase
information, the CT images at the desired breathing phases are reconstructed. As a
consequence, the phase values (0 %, 20 % inspiration, . . . ) of the reconstructed images
do not refer to a single breathing signal value but a series of values (in detail: as many
values as breathing cycles existing in the recorded breathing signal). To obtain the
1-to-1 relationship between breathing signal value and the reconstructed CT images
required for correspondence model formation, we re-parameterized the image phase
information. The re-parameterization process consisted of the following steps:
(i) extraction of the individual breathing cycles (similar to LAB),
(ii) normalization of all breathing cycles to a median cycle length, and

(iii) computation of median signal values for each temporal sampling point of the time
interval defined by (ii).

The original percentage amplitude values assigned to the images were then replaced
by the respective signal values of the median breathing cycle, which are referred to
as zi (i ∈ {1, . . . , nph}). Together with the temporal derivative values ∂tzi at the zi
positions of the median breathing cycle, they form the breathing signal measurements
ζi = (zi, ∂tzi)T that are used as two-dimensional regressors to build the sought
correspondence model.

To compute the corresponding regressands ui, the open source insight toolkit
variational registration framework (Werner et al 2014) was applied for DIR of the
4D CT phase images (distance measure: active normalized sum-of-squared differences
forces; diffusion regularization; non-diffeomorphic setting; number of levels of multi-
resolution scheme = 4; maximum number of iterations per level = 800; registration
time step 1.0; regularization weighting factor = 0.5). These settings resulted in
subvoxel registration accuracy (Werner et al 2014), which was assumed to be a
sufficient basis for regression-based correspondence model training. As DIR reference
phase, we selected a mid-expiration phase to allow more robust extrapolation in both
in- and exhalation direction for the during treatment-RPM measurements beyond the
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range of the 4D CT-related RPM regressor signals and respective model-based motion
field estimation.

3.2.2. 4D dose simulation For each patient, two different 4D dose simulation
approaches were pursued: a standard 4D CT-based dose simulation and a 4D
simulation using the proposed correspondence model-based approach.

Standard 4D CT-based simulation refers to Eq. (4), with the dose D being the
planned 3D VMAT dose as computed and optimized by means of the temporal average
CT of the ten-phase planning 4D CT. The transformations ϕi and respective motion
fields were computed by non-linear registration between the individual phase images
and the reference phase as described above.

For correspondence model-based 4D dose simulation, the planned 3D VMAT
dose distribution was divided into dose segments of the minimal size that could be
achieved by our treatment planning system (Eclipse 13). Thus, the resulting dose
segments Dα still referred to the dose computed by means of the average CT and
covered 2.3◦ angular intervals each. Depending on gantry speed, this corresponded
to ∆tDose-values between 1 s and 2.5 s. The breathing signal acquisition (using the
Varian RPM system) had a frequency of 25 Hz, i. e. ∆tRPM = 0.04 s. With respect to
Eq. (7), this means that for each individual treatment fraction, the originally planned
dose segments Dα were deformed by the 25-63 correspondence model-based estimated
motion fields derived using the RPM signal measurements acquired during the actual
delivery of Dα. The deformed dose segments were then accumulated by weighted
summation, resulting in the sought estimation of motion-affected dose distributions
for the individual treatment fractions and the overall dose.

3.2.3. Experiments and analysis of 4D-simulated dose distributions Given the pilot
and proof-of-concept character of the present study, its design was chosen as simple
as possible. 4D dose simulation was performed for all ten patients as described above.
Resulting dose distributions were compared to the original, i. e. the statically planned
dose distributions, with the focus being GTV dose coverage. In agreement with
previous studies on motion-related dose effects during VMAT treatment (Stambaugh
et al 2013), deviations of D98 (dose to 98% of the GTV volume) of 4D-simulated and
planned dose distributions were analyzed per fraction (only correspondence model-
based 4D dose simulation) and in total (both standard and correspondence model-
based 4D dose simulation); the values were linked to the known clinical endpoints
of the individual metastases (local recurrence: yes/no). Accounting for the small
population size, the results are presented in a descriptive way.

4. Results

The differences ∆D98 between D98 of the retrospectively simulated 4D dose
distributions, D98,Sim, and the originally planned dose indices D98,Plan for the
individual treatment fractions (only correspondence model-based 4D dose simulation)
and for the total dose (i. e. dose after all treatment fractions) are summarized in
Table 2. Bold entries underline maximum underdosages per fraction and metastasis
when comparing D98,Sim estimated by correspondence model-based 4D dose simulation
to the originally planned D98,Plan. Differences between the ∆D98 values for the
individual treatment fractions as well as differences between the sum of the single
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fraction values and the total dose ∆D98 values are due to patient-specific inter-fraction
motion differences and motion variability; its consideration during 4D dose simulation
is the major strength of the proposed correspondence model-based approach. Standard
4D CT-based dose accumulation (last column of Table 2) does not allow integrating
information about motion variability; a fraction-by-fraction 4D dose simulation and
analysis of motion variability-induced effects is not feasible.

From a clinical perspective, it is noteworthy that for correspondence model-based
4D dose simulation, metastases with local recurrence show higher negative total dose
∆D98 compared to metastases without recurrence (see especially the liver metastases 1
and 3.3). Furthermore, the fraction-wise ∆D98 values are consistently negative for all
treatment fractions in the case of metastasis recurrence, but vary between the fractions
(see again metastasis 1). Again, respective insight can not be achieved by standard
4D CT-based dose accumulation. Moreover, potential underdosages as estimated
by 4D CT-based dose accumulation for metastases with local recurrence are much
smaller than underdosages computed by the correspondence model-based 4D dose
simulation, suggesting a potential underestimation of the motion effects. In contrast,
at least for most metastases without recurrence, motion variability and breathing
signal-steered 4D dose simulation led to fraction-wise ∆D98 values fluctuating around
zero for correspondence model-based 4D dose simulation and similar total dose values
for both 4D dose simulation approaches applied.

Table 2. GTV dose coverage of treatment plan and retrospectively 4D-
simulated dose distribution. GTV dose coverage is quantified by differences
∆D98 of D98,Sim and D98,Plan. For the proposed correspondence model-based
4D dose simulation, the data is shown separately for each patient treatment
plan fraction and for the accumulated fraction dose distributions (= total dose).
Standard 4D CT-based dose accumulation (last column) does not allow for
estimation of fraction-specific effects; the shown data refers to the estimated total
dose. For metastasis 1, i. e. the only treatment plan with 8 treatment fractions,
results for fraction 6, 7 and 8 are shown in a separate line (indicated by the
notation ‘Frac. 1/6’ etc.). Gray row = local metastasis recurrence.

Met. ∆D98 = D98,Sim − D98,Plan (Gy)

Frac.
1/6

Frac.
2/7

Frac.
3/8 Frac. 4 Frac. 5 Total 4D CT

sim

L
iv

er

1 − 0.13 − 0.21 − 0.18 − 0.49 − 0.18
− 0.16 − 0.15 − 0.14 − 1.49 − 0.13

2.1 + 0.05 − 0.04 − 0.27 − 0.07 − 0.15 − 0.25 + 0.07
2.2 − 0.02 − 0.06 − 0.07 + 0.04 − 0.06 + 0.29 + 0.07
2.3 − 0.12 + 0.04 + 0.15 − 0.06 + 0.01 + 0.33 + 0.07
3.1 − 0.02 + 0.01 + 0.04 + 0.02 + 0.01 + 0.10 + 0.06
3.2 + 0.03 + 0.02 + 0.01 + 0.01 + 0.03 + 0.10 + 0.02
3.3 − 1.58 − 3.11 − 2.85 − 2.78 − 2.91 − 13.28 − 0.92
4 − 0.25 − 0.11 − 0.13 − 0.07 − 0.13 − 0.18 + 0.06
5 − 0.24 − 0.11 − 0.25 − 0.12 − 0.11 − 0.71 + 0.11

L
un

g

6 − 0.01 + 0.06 + 0.07 + 0.09 + 0.05 + 0.50 + 0.07
7.1 + 0.03 − 0.08 + 0.01 − 0.16 + 0.02 − 0.08 + 0.05
7.2 − 0.02 − 0.07 − 0.11 − 0.06 − 0.06 − 0.21 + 0.01
8 − 0.03 − 0.34 + 0.02 − 0.01 + 0.14 + 0.44 − 0.01
9 − 0.26 − 0.03 − 0.12 − 0.02 − 0.20 − 0.47 + 0.10

10 − 0.01 − 0.01 − 0.01 − 0.01 − 0.02 − 0.03 + 0.01
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1Figure 3. Correspondence model-based 4D dose simulation for
metastasis 3.3. Planned (left) and retrospectively 4D-simulated (middle) dose
distributions and corresponding dose difference distribution (right) for fraction 2
of metastasis 3.3.
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1Figure 4. 4D-simulated total dose comparison for metastasis 3.3.
Comparison of total dose distributions computed by standard 4D CT-based (left)
and correspondence model-based 4D dose simulation (middle) and the difference
thereof (right).

Aiming at a more detailed understanding of especially the given numbers for
metastasis 3.3, Fig. 3 visualizes the deviations between planned and correspondence
model-based 4D-simulated dose distributions in and around the GTV. The dose
difference in Fig. 3, right, illustrates a GTV underdosage of up to 4 Gy in the
superior part of the metastasis, i. e. the entire planned dose distribution was primarily
shifted in inferior direction due to unfavorable internal patient motion. The analysis
of the patient breathing signals acquired during the treatment fractions revealed a
mean peak-to-peak RPM amplitude during treatment of only about half the 4D CT
amplitude (cf. supplementary data table), with the signal values further being close to
the lower CT-based safety gating limit. Thus, compared to the planning situation, the
GTV probability of presence during treatment was significantly larger in the inferior
ITV part than planned. In addition, the GTV-to-ITV safety margin for this specific
metastasis appeared slightly too tight, which aggravates the aforementioned effects.
However, estimated effects of the seemingly too small GTV-to-ITV margin were much
smaller when using a standard 4D CT-based dose accumulation and, consequently,
neglecting motion variability. For illustration, Fig. 4 shows the total dose distributions
as obtained by correspondence model-based and standard 4D CT-based 4D dose
simulation and the difference thereof.
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1Figure 5. Correspondence model-based 4D dose simulation for
metastasis 8. Planned dose distribution for metastasis 8 (left) and dose
difference between retrospectively 4D-simulated and planned dose distributions
for fractions 2 (middle) and 5 (right).

As another example to illustrate the influence of inter-fraction motion variability
as well as the capability of correspondence model-based 4D dose simulation to reflect
it, in Fig. 5, differences between planned and retrospective dose simulation results
are shown for metastasis 8 and fractions 2 and 5. While no underdosage could be
observed for fraction 5 (see also Table 2: ∆D98 = + 0.14 Gy), the difference image
reveals voxel-wise underdosage of up to 0.8 Gy inside the GTV for fraction 2 (∆D98 =
− 0.34 Gy). In total, differences observed for the individual fractions not only average
out over the course of treatment but result in a slightly positive total dose ∆D98 value.

5. Discussion and Conclusion

In this paper, we introduced a novel correspondence model-based 4D dose simulation
approach to include breathing signal information acquired during treatment into
retrospective 4D dose reconstruction. In contrast to common DIR-based dose
accumulation methods like (Samavati et al 2016, Velec et al 2012, Werner et al 2012),
the proposed approach allows consideration of patient-specific breathing variability
by correlating observed internal and external breathing information. This, in turn,
promises to yield a more realistic estimation of the dose actually delivered to the
patient during, e. g., individual treatment sessions.

Having modeled the interplay of breathing-induced patient-specific target motion
and the dynamics of the VMAT dose delivery process, we retrospectively simulated
delivered motion-affected dose distributions for ten patients with 15 liver and lung
metastases to analyze the effect of motion variability on hypofractionated SBRT
treatment. Interestingly, metastasis recurrence seemed to be linked to negative
deviations of the correspondence model-based 4D-simulated and originally, i. e.
statically planned VMAT dose distributions that indicated motion-affected GTV
underdosage. In addition, respective 4D dose simulation indicated inappropriate
dimensioning of the ITV and breathing variability-related GTV underdosage for one
of the metastases. Comparison of correspondence model-based 4D dose simulation
to standard DIR- and 4D CT-based dose accumulation reveals that for the liver
metastases the aforementioned linkage between the estimated deviations between
planned and 4D-simulated dose distributions and the clinical endpoints is much weaker
for standard dose accumulation; for the lung metastases, it is no longer observable.

Thus, although based on a small number of patients, our proof of concept study on
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correspondence model-based 4D VMAT dose simulation and the correlation of motion-
affected dose indices (here: D98) to clinical endpoints illustrates the potential of the
approach to possibly explain motion-related errors during treatment planning and dose
delivery. This motivates further testing of the accuracy of the correspondence model-
based simulation and integrating it as a quality assurance tool after treatment planning
and/or after the individual treatment sessions. In addition, early identification of
respiration-induced underdosage of target areas after the first treatment fraction(s)
could be utilized to modify the treatment plan for the remaining fractions, e. g. by
safety margin adaptation and introduction of local boosts. Thus, besides being used
as a quality assurance tool, correspondence model-based 4D dose simulation could also
provide valuable information for adaptive SBRT schemes of extracranial metastases.

However, before aiming at clinical application of correspondence model-based 4D
dose simulation, remaining uncertainties and their impact on the dose simulation
accuracy have to be analyzed. To begin with, our proof-of-concept study and
correspondence modeling was based on only pre-treatment 4D CT image data. Thus,
inter-fraction variations of the relationship between the external surrogate signal
and internal motion (McClelland et al 2011) have not been accounted for so far.
Acquisition of pre-fraction 4D CBCT instead of 3D CBCT images and a related pre-
treatment updating of the correspondence model could solve this problem. Similarly,
this would help to reduce uncertainties that are due to limited reproducibility of, in
our case, the patient-specific positioning of the RPM marker block during the different
treatment fractions. Due to the large amount of streaking artifacts in current clinical
4D CBCT data, DIR of CBCT phase images is, nevertheless, a challenge by itself and
requires implementation of sophisticated solutions (Brehm et al 2013). Moreover,
it should be noted that current 4D CT and 4D CBCT images represent so-called
retrospectively sorted image data. This means that the actual raw data (i. e. the
projection data) is acquired during a period that covers multiple breathing cycles of
the patient. Image reconstruction then implicitly assumes that no motion variability
(precisely: no inter-cycle variability, see definition in (McClelland et al 2013))
existed during data acquisition. In turn, motion variability during data acquisition
leads to motion artifacts in the reconstructed images (Werner et al 2017); strictly
speaking, no 1-to-1 matching between the reconstructed 3D images and breathing
signal values exists (cf. Sec. 3.2.1). Although this limitation does not only apply to
the present study but to the majority of existing studies on correspondence modeling,
it leads to uncertainties during correspondence modeling; related motion artifacts
affect, for instance, motion fields estimation by DIR in the 4D CT data, which
compromises correspondence modeling accuracy. A further source of uncertainty is the
correspondence model-based extrapolation of motion fields that is applied for modeling
inter-cycle motion variability for surrogate measurements beyond the surrogate data
used for model calibration. Extrapolation capabilities of the model are currently
evaluated for only limited scenarios (Wilms et al 2014); extrapolation for surrogate
data further beyond the model calibration data could lead to unrealistic motion fields.
As future work and with increasing availability of related image data and algorithms, it
would therefore be interesting to quantify and reduce these uncertainties using sorting-
and artifact-free 4D image data (Thomas et al 2014) or techniques for correspondence
modeling directly on unsorted/raw data (McClelland et al 2017).

Refining the VMAT arc discretization level (currently not possible due to
treatment planning system restrictions) would further increase simulation accuracy;
however and as shown in our motion phantom-based pre-study (Sothmann et al 2017),
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the effects can be expected to be rather small. Analogously, the pursued approach of
computing the dose for all angular VMAT segments based on the patient’s average
CT (instead of, e. g., simulated breathing signal measurement-specific CT images)
introduces uncertainties, but these were already shown to be small (Milz et al 2014).
Furthermore, the applied open-source non-linear registration framework has only been
extensively evaluated for (4D CT) lung registration (Werner et al 2014) and (magnetic
resonance) brain normalization (Ehrhardt et al 2015). For both applications it
achieved high accuracy; nevertheless, its accuracy and behavior when applied to
motion estimation of low to no-contrast organs such as the liver remains to be analyzed.

Finally and from a clinical perspective, the size of the currently small
patient collection considered in the present study has to be significantly increased
to verify our initial observations. Furthermore, refining information about the
location of metastasis recurrence (this study: textual description whether metastasis
recurrence occurred or not) would provide more detailed insight. Ideally, follow-up
image information and voxel-wise recurrence delineation in, e. g., positron-emission
tomography images (Van den Begin et al 2014) would be registered to the planning
CT data and correlated on a voxel level to the 4D-simulated dose distributions.

Nevertheless and despite all necessary future work especially from the perspective
of clinical application, the focus of the current study was and still is to present
a correspondence model-based approach for 4D VMAT simulation that allows
integrating breathing signal information about motion variability and to illustrate
its feasibility and potential by correlating 4D-simulated dose distributions to clinical
endpoint data. In our opinion, the results of our proof of concept study highlight that
correspondence model-based 4D VMAT dose simulation offers the prospect of gaining
further insight into respiratory motion and motion variability-related error sources in
VMAT-based SBRT of extracranial metastases.
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5. Results

5.2. Image registration in 4D dose simulation

As motivated and illustrated in the previous section, the registration process in the
introduced 4D dose accumulation scheme is crucial. �e natural next step, after imple-
mentation of the general simulation framework, was therefore to investigate the impact
of di�erent registration algorithms on correspondence model building and subsequently
using the generated models for correspondence model-based 4D dose accumulation.
Results of this evaluation were published in the following journal article:

N. Mogadas†, T. Sothmann†, T. Knopp, R. Werner. In�uence of deformable image registra-
tion on 4D dose simulation for extracranial SBRT: A multi-registration framework study.
Radiother Oncol, 127(2):225–232, 2018.

To investigate the in�uence of di�erent DIR algorithms, a set of registration algorithms
had to be chosen. Properties of those algorithms were de�ned as 1) open source availability
and 2) high-ranked in the initial EMPIRE10 challenge2 or 3) described to have been applied
in exactly the given context. In the end, six common DIR frameworks, as introduced in
Table 1 [R&O 2018], were considered to be applied for correspondence model-based 4D
dose simulation. Additionally, correspondence model accuracy and image registration
accuracy were evaluated using a widely accepted benchmark image data base, i. e. DIRLAB,
and a 4D MRI data set (see Section 4.4.1 and Section 4.4.3 for information about the utilized
4D image data). Parameterization of DIR algorithms was selected as published by the
corresponding developers during the initial EMPIRE10 challenge. Distance measures
primarily applied were the SSD as de�ned in Eq. (3.5) or subforms of it and subforms of
the NCC, cf. Eq. (3.6). Mainly used regularization approaches were elastic and di�usive
regularization as de�ned in Eq. (3.7) and Eq. (3.8), respectively, as well as Gaussian
regularization (see Section 3.2.1 for more details).

In the �rst experimental part of this study, the DIR accuracy inside the lung and the
liver was evaluated using the DIRLAB data base and the 4D MRI data set, respectively.
Here, anatomical landmarks inside the 4D CT images were utilized to compute the TRE.
�e TRE is de�ned as the mean Euclidean distance between the reference landmark
positions (i. e. landmarks in the �xed image) and landmark positions in the deformed
image (i. e. landmarks in the moving image after applying achieved registration result).
�is was analyzed for the registration of end-inspiration to end-expiration phase images
and vice versa (phase 00↔ phase 50). Further, registration accuracy between phase 20
(reference phase for correspondence model building) and all other phase images was eval-

†Shared �rst authorship.
2�e EMPIRE10 challenge is a comprehensive inter-institutional evaluation study for registration algo-

rithms [91].
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5.2. Image registration in 4D dose simulation

uated using the same principle. Vector �eld smoothness (analysis of the transformation
Jacobian determinant3) and intensity-based similarity before and after registration were
determined. As second part, a leave-one-out (LOO) evaluation was applied to analyze the
accuracy of the trained correspondence model (cf. Fig. 5.1 for the applied LOO approach).
As third part, correspondence model-based 4D dose simulation for the in-house patient
data (cf. Section 4.4.4) was performed. Results of this study showed that three (VarReg,
ANTS, Elastix) out of the six evaluated DIR frameworks achieved similarly high accu-
racy for lung registration, as shown in the upper part of Table 2 [R&O 2018]. For liver
registration using the MRI data set, VarReg, Elastix and NiftyReg performed best (see
Table E.5 [R&O 2018 supp. materials]). As VarReg was already used for internal motion
extraction in Section 5.1 and was, for both anatomical cases, among the most accurate
DIR approaches, an additional analysis of the in�uence of the degree of regularization
was performed that, however, did not noticeably in�uenced DIR accuracy in the liver (cf.
Table E.6 [R&O 2018 supp. materials]).

�e LOO evaluation of correspondence model-based prediction of vector �elds showed
that higher registration accuracy leads to higher correspondence model accuracy, as
supported by values in Table D.4 [R&O 2018 supp. materials] (intensity-based similarity
measures) and lower part of Table 2 [R&O 2018], with again best performance in terms
of lowest errors of VarReg, ANTS and Elastix.

In Table 3 [R&O 2018], results for the third experiment are summarized. �e in�uence
of DIR on the subsequent dose accumulation is clearly visible for the investigated liver
cases by means of deviations between computed ∆D95 values. Deviations between ∆D95

values for lung cancer patients are smaller but nevertheless existing.
�e achieved results suggest that, especially for the lung cases, accuracy of DIR algo-

rithms directly impact correspondence modeling accuracy, but in the same time did not
necessarily lead to relevant di�erences of 4D-simulated dose distributions and related
dose indices. In contrast, results for the liver metastasis cases showed that the chosen DIR
framework highly impacts the correspondence model-based dose accumulation output
due to application of purely intensity-driven DIR in low-to-no contrast areas. Having
a closer look at the liver metastases results, it can, for instance, be seen that computed
vector �elds of ANTS and VarReg are in well agreement, while results of the other reg-
istration approaches somewhat di�er. �e cause remains unclear. However, due to the

3In general, a smaller standard deviation of the transformation Jacobian determinant value, i. e. a smoother
vector �eld, is for a comparable registration accuracy physiological more plausible. However, this
depends on the registration task. For instance, sliding motion on lung borders should be considered
by the registration algorithm to achieve highest registration accuracy. Homogeneous smoothing of
the vector �eld will, however, result in locally reduced registration accuracy in these regions as the
estimated motion is physiological implausible [92].
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LOO 00 20 7→ 00 20 7→ 10 20 7→ 30 20 7→ 40 20 7→ 50

LOO 10 20 7→ 00 20 7→ 10 20 7→ 30 20 7→ 40 20 7→ 50

LOO 30 20 7→ 00 20 7→ 10 20 7→ 30 20 7→ 40 20 7→ 50

LOO 40 20 7→ 00 20 7→ 10 20 7→ 30 20 7→ 40 20 7→ 50

LOO 50 20 7→ 00 20 7→ 10 20 7→ 30 20 7→ 40 20 7→ 50

Total number of motion vector �elds

train

test

Figure 5.1.: Visualization of performed leave-one-out (LOO) evaluation. Correspondence models were
trained with the motion vector �elds and corresponding breathing signal information for a
phase n ∈ {00, 10, . . . , 50} left out (indicated as gray cell) and the predicted �eld for the left-out
phase was evaluated. Note that phase 20 is the reference phase and thus cannot be left out.

absence of ground truth data and the small sample size, it also remains unclear, which
simulation reveals reality best. For further evaluation of 4D-simulated dose distributions,
additional information of e. g. follow-up imaging could provide helpful information to
allow for correlation of voxel-wise recurrence delineation and subsequent 4D dose simu-
lation results. Unfortunately, respective information is currently not routinely available.
�us, computed dose deviations for the investigated liver cases leave an impression of
unpredictability. �e unknown impact of 4D CT image artifacts on DIR ampli�es this
impression. A �rst investigation of an image artifact in one of the patients 4D CT data
sets near the target volume suggests that the in�uence can be under certain circumstances
severe (cf. Figure F.3 [R&O 2018 supp. materials]). �erefore, in the following section,
the general in�uence of typical 4D CT image artifacts on the proposed dose accumulation
scheme is analyzed. Afterwards an approach to quantify DIR uncertainties is presented
(Section 5.4).
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Abstract

Background and Purpose: To evaluate the influence of deformable image registration approaches on correspondence
model-based 4D dose simulation in extracranial SBRT by means of open source deformable image registration (DIR)
frameworks.
Material and Methods: Established DIR algorithms of six different open source DIR frameworks were consid-
ered and registration accuracy evaluated using freely available 4D image data. Furthermore, correspondence models
(regression-based correlation of external breathing signal measurements and internal structure motion field) were built
and model accuracy evaluated. Finally, the DIR algorithms were applied for motion field estimation in radiotherapy
planning 4D CT data of five lung and five liver lesion patients, correspondence model formation, and model-based 4D
dose simulation. Deviations between the original, statically planned and the 4D-simulated VMAT dose distributions
were analyzed and correlated to DIR accuracy differences.
Results: Registration errors varied among the DIR approaches, with lower DIR accuracy translating into lower cor-
respondence modeling accuracy. Yet, for lung metastases, indices of 4D-simulated dose distributions widely agreed,
irrespective of DIR accuracy differences. In contrast, liver metastases 4D dose simulation results strongly vary for the
different DIR approaches.
Conclusions: Especially in treatment areas with low image contrast (e. g. the liver), DIR-based 4D dose simulation
results strongly depend on the applied DIR algorithm, drawing resulting dose simulations and indices questionable.

Keywords: Deformable Image Registration, 4D Dose Simulation, Dose Accumulation, Correspondence Modeling

Introduction

Stereotactic body radiotherapy (SBRT) provides an effective and widely used treatment option for lung or liver
cancer patients [1, 2, 3]. However, respiration-induced motion of target structures and organs at risk (OAR) of up to
several centimeters [4] and additional structure deformation [5] pose challenges and have to be accounted for during
treatment planning. In current clinical 4D radiation therapy (RT) workflows, a respiration-correlated CT (4D CT) is
usually acquired before therapy; the 4D CT and derived data like tMIP (temporal maximum intensity projection) or
average CT images are then mainly used to define the internal target volume (ITV) [6]. In addition, target and OAR
dynamics represented by the planning 4D CT have frequently been described to be incorporated into dose distribution
computation and optimization, i. e. to explicitly account for motion effects by means of 4D dose simulations or dose
accumulations [7, 8].

The standard approach to extract target and OAR dynamics from the 4D CT is to apply deformable image registra-
tion (DIR). The resulting motion fields between a pre-selected reference phase CT and the other 4D CT phase images
are then – either directly or indirectly, making additional use of motion modeling – used to deform the planned dose

∗Equal contribution
Email address: t.sothmann@uke.de (Thilo Sothmann)

Preprint submitted to Radiotherapy and Oncology February 17, 2020



Influence of deformable image registration on 4D dose simulation

Table 1: Overview of the considered deformable image registration frameworks and algorithms. CC = cross correlation, (N)SSD = (normalized)
sum of squared differences, NMI = normalised mutual information, NC = normalized correlation, MSD = mean squared differences. Computation
times refer to DIR of two liver-4D CT phase images (image size: 512 × 512 × 159 voxel; CPU: Intel Xeon e5-1630, 3.50 GHz; 32 GB RAM).

DIR framework Version DIR details Similarity measure Computation time

ANTS [26] 2.2 symmetric B-spline-based reg. CC ≈ 300 min
VarReg [27] 4.11 non-parametric demons-type reg. NSSD ≈ 180 min
DIRART [24] 1.0 Horn-Schunck optical flow SSD ≈ 15 min
NiftyReg [28] master B-spline-based registration NMI ≈ 30 min
Elastix [29, 30] 4.8 B-spline-based registration NC ≈ 120 min
Plastimatch [31] 1.6.4 B-spline-based registration MSD ≈ 60 min

or dose segments to obtain the sought 4D dose distribution [9, 10]; dose accumulation accuracy therefore depends
on the DIR-based motion estimation accuracy. Evaluation studies of DIR accuracy in 4D CT data can meanwhile be
found for a series of registration algorithms, frameworks and commercial programs, such as Morpheus [11, 12, 13],
MIM Software [9, 10], Pinnacle3 [14, 15], Elastix [16] or ITK-based registration approaches [17, 18, 19]. Compre-
hensive inter-institutional evaluation studies like EMPIRE10 [20] and MIDRAS [21] as well as open data repositories
for evaluation purposes (e. g. DIRLAB data [22, 23]) also exist. However, most evaluation studies are focused on
lung registration only; transferability of respective accuracy statements to registration in low contrast image areas like
liver or other soft tissues remains unclear. Moreover, similar registration accuracy values are not necessarily related
to similar properties of computed transformations [19]; the influence of different transformation models on and a
propagation of potential errors into 4D dose simulation is widely neglected.

From our perspective, joint investigation of DIR performance and DIR influence on 4D dose simulation is essential
to obtain a better understanding of related uncertainties; and (for the best of our knowledge), the present study is the
first to present such data in a multi-framework setting. Six DIR algorithms of different common open source DIR
frameworks that were either high-ranked in the initial EMPIRE10 challenge or described to be applied in exactly the
given context were considered. Using 4D CT data and treatment plans of ten patients with lung and liver metastases,
all registration algorithms were applied for correspondence model-based 4D dose simulation. Furthermore, image
registration accuracy as well as DIR-based correspondence modeling accuracy were evaluated by means of freely
available 4D image data. The DIR-dependent 4D dose distributions were compared to analyze the influence of the
different DIR algorithms, and DIR-related dose differences were correlated to DIR accuracy measures.

Material and Methods

This section first describes the DIR algorithms, the patient collective, treatment planning and the principles of
correspondence model-based 4D dose simulation. The description is followed by explanation of the performed exper-
iments and the strategy to evaluate DIR and correspondence modeling accuracy.

DIR algorithms

In total, six different open source DIR frameworks were considered for this study. Five of the frameworks are
wide-spread general purpose DIR frameworks; the choice of the specific DIR algorithms and their parameterization
was, however, motivated by high ranks in the initial EMPIRE10 challenge [20]. The sixth framework was chosen
as it has been described to be specifically designed for RT applications [24] and has, e. g., already been applied for
a phantom-based experimental dose warping evaluation study [25]. The specific algorithm in the present study was
the best performing one according to [25]. Methodical details like transformation models and distance measures
significantly vary among the DIR algorithms. A brief overview is given in Table 1. For reproducibility purposes,
example registration scripts used for the present study can be found as part of the supplemental materials.

Patient collective and treatment planning

Ten cancer patients treated by volumetric arc therapy (VMAT) were included into this retrospective study: five
patients with six lung metastases and five patients with nine liver metastases. For each patient, a ten-phase 4D CT

2



Influence of deformable image registration on 4D dose simulation

Simultaneously acquired

4D CT
Data

Displacement
vector
fields

100 80 60 40 20 0

8

4

0

4

8

Ex
pir

at
ion

In
sp

ira
tio

n

Ext. AP-Signal (%)

In
t. 

SI
-S

ig
na

l (
m

m
)

Respiration Correspondence model

Figure 1: Process of correspondence modeling. A ten-phase 4D CT data and external breathing signal measurements are simultaneously acquired.
Internal structure motion information is extracted using DIR between a reference 4D CT phase and the remaining nine phases, yielding individual
displacement vector fields (DVFs). Multivariate linear regression of DVFs and corresponding breathing signal information establishes a functional
relationship between internal motion and external breathing measurements. In the present study, both the AP component of the RPM system and
the respective temporal derivative are combined to a two-dimensional regressor to allow for modeling of hysteresis behavior (illustrated for an
individual voxel and the superior-inferior (SI) component of the DFVs). Adapted from [32].

with spatial resolution of 0.98 × 0.98 × 2 mm was acquired (Siemens Definition AS Open CT; RPM system, Varian
Medical Systems). VMAT treatment planning was based on an ITV concept: gross tumor volume (GTV) delineation
on each 4D CT phase image; combination of all phase GTVs = ITV; ITV + 4 mm safety margin = planning target
volume (PTV); dose calculation and optimization on average CT (Eclipse 13, Varian Medical Systems; prescribed
minimum dose surrounding the PTV ranged from 48 and 55 Gy). For each metastasis, clinical outcome information
(local metastasis recurrence: yes/no) was available.

Principles of correspondence model-based 4D dose simulation

Standard 4D dose simulation consists of three main steps: estimation of the motion fields between a reference
CT data set of the patient and the individual (in our case ten) 3D phase CTs of the patient’s planning 4D CT by
DIR; deformation of the planned 3D dose distribution(s) according to the DIR-estimated motion fields; weighted
accumulation of the resulting deformed dose distributions to obtain the sought 4D dose distribution.

Solely based on the planning 4D CT image information, this approach neglects patient-specific breathing irreg-
ularity during treatment and related effects on the 4D-simulated dose. To mitigate this issue, current work on cor-
respondence modeling and dose accumulation were combined. Here, correspondence modeling refers to correlating
respiratory breathing signal measurements to DIR-estimated motion fields in order to derive a functional relationship
between an easy-to-acquire breathing signal and internal structure motion. In the present study, the relationship be-
tween RPM measurements and internal motion fields were modeled by multivariate linear regression. To establish
the model, DIR was performed between a mid-expiration phase CT (= reference image) and the other phases of the
patient’s planning 4D CT. To simulate direct “plug-and-play” application of the open source DIR frameworks and
algorithms, unmasked DIR was used. The resulting motion fields were considered the regressands; corresponding
RPM measurements performed during 4D CT data acquisitions served as regressors. A schematic illustration of the
correspondence modeling process is given in Figure 1.

After establishing the model, correspondence model-based VMAT 4D dose simulation is a conceptually straight-
forward extension of standard dose accumulation. The applied approach is based on [33]. VMAT dose delivery takes
place during continuous gantry rotation, with varying gantry speed, dose rate and multileaf collimator (MLC) posi-
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tioning. For 4D dose simulation, each so called VMAT arc is divided into small angular segments (2.3◦ to 3◦). In
addition, RPM signals were acquired during dose delivery for all patients. Thus, briefly speaking, the during-treatment
RPM measurements were temporally correlated to the respective VMAT dose segments. For each individual breathing
signal measurement, corresponding internal motion fields (displacement vector fields, DVFs) were computed using
the patient-specifically trained correspondence model and applied to deform the temporally related dose segment.
The sought 4D simulated VMAT dose distribution results as a weighted summation over all deformed dose segments
(weighting factor = 1/[number of breathing signal measurements during dose delivery]).

Making use of the underlying concepts and nomenclature of [33, 19, 34], a detailed description of correspondence
model-based dose simulation can be found in the supplemental materials, Suppl. A.

Experiments and evaluation strategy

Experiments were divided into two main parts: (1) evaluation of DIR and correspondence modeling accuracy for
the different DIR algorithms; (2) correspondence model-based 4D dose simulation and subsequent analysis of dose
parameters to quantify motion effects on the dose distribution.

Part (1) was based on freely available 4D image data. First, ten 4D CT data sets provided by the DIRLAB [22, 23]
were used. The 4D CT sets consist of ten phase images (denoted by phases 00, 10, . . . , 90). Further, corresponding
anatomical landmarks inside the lungs were defined by a thoracic imaging expert in the phase images 00, 10, . . . ,
50. By means of the landmarks, DIR accuracy is quantified by the target registration error (TRE). The TRE is de-
fined as mean Euclidean distance between the registration target image landmark positions and the positions of the
warped landmarks of the registration reference image. In agreement with literature on DIR accuracy evaluation [19],
the TRE for end-inspiration to end-expiration DIR and vice versa (00 ↔ 50) was determined. As, however, phase
20 served as reference phase during corresponding modeling, the TRE of DIR with the phase 20 image as registra-
tion reference image was also evaluated for all remaining phases with existing landmarks (i.e. phases 00, 10, and
30-50) serving as target images. In addition and to provide a more comprehensive picture of accuracy and proper-
ties of the computed transformations, common intensity-based similarity measures (mean squared differences, MSD;
normalized cross correlation, NCC; normalized mutual information, NMI) before and after DIR and transformation
plausibility/smoothness measures were evaluated. To avoid bias due to DIR algorithm design, all similarity measures
contained in Table 1 were considered. Transformation plausibility and smoothness evaluation was based on analysis
of the transformation Jacobian determinant. Further explanations are given in the supplemental materials, Suppl. B.

The DIRLAB data, however, do not allow evaluating registration accuracy in the liver due to low image contrast
and hardly visible inner-liver structures in 4D CT data. To, nevertheless, obtain an understanding of the inner-liver
DIR performance and the ability of the algorithms to provide plausible liver motion fields, a separate test scenario
was designed using a publicly available liver 4D-MRI data set with clearly visible liver structures [35] (see also www.

vision.ethz.ch/4dmri) that allowed for identification of inner-liver landmarks and computation of TRE values for
liver DIR. To mimic a 4D CT-like low contrast situation, the contrast inside the liver was synthetically reduced and
the influence of the reduced contrast on DIR accuracy and transformation properties evaluated. Details can be found
in the supplemental materials, Suppl. E.

Eventually, for each DIRLAB data set, correspondence models were built by means of the DVFs (all ten phases
registered to phase 20) of the different DIR algorithms. External breathing signal measurements are, however, not
available for the DIRLAB data. Following Wilms et al., simulated thorax-belt data was extracted from the 4D CT
image data and a leave-one phase-out (LOO) evaluation performed [34]: Correspondence models were trained with
the DVF and breathing signal information for a phase n ∈ {00, 10, . . . , 90} left out and the predicted field for the left-out
phase evaluated. Due to the absence of landmarks for the inspiration phases n ∈ {60, . . . , 90}, TRE values were only
determined for the predicted expiration DVFs. To also capture accuracy for inspiration DVF prediction, the intensity-
based similarity measures introduced before were additionally evaluated for all LOO phases n ∈ {00, 10, . . . , 90}.

Part (2) refers to correspondence model-based 4D dose simulation for the described patient collective. For each
patient and DIR algorithm, a correspondence model was built and applied for 4D dose simulation. Simulated 4D dose
distributions (i. e. dose distributions that are assumed to account for patient-specific motion effects) were compared
to the original dose distribution as planned and optimized by means of the average CT. Dose distribution differences
were quantified by ∆D95, defined as the difference of D95,4D-sim and D95,plan with D95 as the dose received by 95% of
the GTV. For patients with > 1 metastases, differences were evaluated for the individual metastases.
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Table 2: DIR and correspondence model accuracy for the different DIR algorithms, evaluated by means of the DIRLAB data. All data is given as
mean ± standard deviation of the ten DIRLAB data sets. For extreme phase registration (00 ↔ 50), DIR was performed with both phase 00 and
phase 50 as reference image; results were averaged. ∅n denotes average values over the 20 7→ n experiments. Bold numbers highlight best results
in each category.

Algorithm TRE, registration (mm)

00↔ 50 20 7→ 00 20 7→ 10 20 7→ 30 20 7→ 40 20 7→ 50

ANTS 2.4 ± 1.3 1.5 ± 0.4 1.6 ± 0.3 1.6 ± 0.4 1.7 ± 0.5 1.9 ± 0.6
VarReg 2.5 ± 1.3 1.3 ± 0.3 1.5 ± 0.3 1.5 ± 0.4 1.7 ± 0.4 1.9 ± 0.4
DIRART 5.1 ± 2.0 3.1 ± 1.0 2.6 ± 0.9 2.2 ± 0.7 3.0 ± 1.1 3.7 ± 1.5
NiftyReg 4.6 ± 2.9 2.6 ± 1.1 2.3 ± 0.8 2.0 ± 0.7 2.6 ± 1.3 3.0 ± 1.5
Elastix 2.6 ± 1.2 1.7 ± 0.7 1.7 ± 0.5 1.6 ± 0.5 1.9 ± 0.7 2.2 ± 1.0
Plastimatch 3.8 ± 1.9 2.1 ± 0.7 2.1 ± 0.6 2.2 ± 0.9 2.2 ± 0.9 2.5 ± 1.1

w/o reg. 8.5 ± 3.3 4.4 ± 1.4 3.2 ± 1.1 2.5 ± 1.1 3.9 ± 1.8 4.9 ± 2.4

TRE, LOO model-based prediction of DVF 20 7→ n (mm)

∅n n = 00 n = 10 n = 30 n = 40 n = 50

ANTS 2.1 ± 0.3 2.1 ± 0.9 2.0 ± 0.5 1.9 ± 0.6 2.1 ± 0.8 2.3 ± 0.7
VarReg 2.0 ± 0.3 2.0 ± 0.9 2.0 ± 0.5 1.9 ± 0.6 2.1 ± 0.8 2.2 ± 0.7
DIRART 3.0 ± 0.8 3.4 ± 1.2 2.6 ± 0.8 2.2 ± 0.8 3.1 ± 1.2 3.7 ± 1.5
NiftyReg 2.7 ± 0.6 2.9 ± 1.3 2.5 ± 0.9 2.2 ± 0.8 2.8 ± 1.3 3.3 ± 1.6
Elastix 2.2 ± 0.4 2.2 ± 1.1 2.2 ± 0.6 1.9 ± 0.7 2.2 ± 1.0 2.4 ± 1.0
Plastimatch 2.4 ± 0.4 2.5 ± 1.1 2.3 ± 0.7 2.0 ± 0.7 2.5 ± 1.0 2.8 ± 1.1

Results

DIR and correspondence model accuracy

The results of the lung landmark-based DIR accuracy evaluation by means of the DIRLAB data are summarized
in Table 2. For extreme phase registration 00↔ 50 (left column of Table 2), ANTS [mean TRE = (2.4 ± 1.3) mm],
VarReg [TRE = (2.5 ± 1.3) mm], and Elastix [TRE = (2.6 ± 1.2) mm] show similar accuracy; accuracy of the other DIR
algorithms was lower. Comparable observations hold true for registration with reference phase 20 (i.e. estimation of
DVFs 20 7→ n with n ∈ {00, 10, 30, 40, 50}). Due to smaller landmark distances before registration, the TRE values and
differences between the DIR algorithms are, however, smaller than for 00↔ 50 registration. The TRE-based split of
the DIR algorithms into two groups – ANTS, VarReg, and Elastix as more accurate compared to the other algorithms
– is further supported by the evaluation of the intensity-based similarity measures after registration (supplemental
materials Suppl. C and Table C.1). Consideration of the mean Jacobian determinant as transformation plausibility
measure did not allow further insight into the DIR algorithm performance. It can, however, be seen that high DIR
accuracy of VarReg is associated with lowest smoothness across all tested DIR algorithms. Yet, as a similar statement
is not applicable for ANTS, a more general statement about the relationship between DIR accuracy and smoothness
cannot be made (supplemental materials Suppl. C and Table C.2 and C.3).

The results of the investigation of the behavior of the DIR algorithms in image areas with low image contrast,
like the liver in 4D CT data, and the respective 4D MRI experiments are summarized in the supplemental materials,
Suppl. E. Overall, extreme phase registration TRE values for the 4D MRI experiments were lowest for VarReg,
Elastix and NiftyReg (landmark distances before registration: 14.7 mm; after DIR in MRI data with synthetically
reduced, CT-like inner-liver contrast: < 3.0 mm; after DIR in original MRI: between 2.0 mm and 2.6 mm). ANTS
and Plastimatch show an approximately 1.5 mm higher TRE; DIRART with the chosen parameterization failed for
the liver registration (TRE > 9.0 mm for MRI data with CT-like inner-liver contrast). Similar to the DIRLAB data
evaluation, TRE observations are supported by the intensity-based similarity measures. Statements regarding the
transformation Jacobian determinant evaluation agree with respective observations for the DIRLAB data. Focusing
on VarReg (among the most accurate DIR approach for both DIRLAB and MRI data, plus the DIR approach our group
has most experience with [19]), the MRI data DIR results also illustrate that varying the degree of regularization did
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Table 3: Differences in GTV dose coverage of the planned and retrospectively 4D simulated dose distribution, separately quantified by differences
∆D95 between D95,4D-sim and D95,plan for the individual metastases (met.). Confirmed local metastasis recurrence is indicated by an asterisk.
Negative values of ∆D95 mean that D95,plan was larger than D95,4D-sim, indicating deterioration of GTV coverage when accounting for the patient-
specific motion information. Bold values indicate smallest and largest ∆D95 values per metastasis.

Met. ∆D95 = D95,4D-sim − D95,Plan (Gy)

ANTS VarReg DIRART NiftyReg Elastix Plastimatch
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.p

at
ie

nt
s 1 + 0.47 + 0.45 + 0.37 + 0.45 + 0.44 + 0.28

2.1 − 0.13 − 0.12 − 0.12 − 0.12 + 0.02 − 0.12
2.2* − 0.28 − 0.30 − 0.13 − 0.12 − 0.02 − 0.05

3 + 0.35 + 0.39 − 7.85 + 0.47 + 0.26 + 0.25
4* − 0.51 − 0.52 − 0.40 − 0.50 − 0.56 − 0.50
5 − 0.09 − 0.06 − 0.05 − 0.05 − 0.09 − 0.12

L
iv
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.p
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ie

nt
s

6* − 2.73 − 2.65 − 0.32 − 0.19 − 8.40 − 6.96
7.1 − 0.49 − 0.47 − 0.30 − 0.39 − 1.57 − 1.78
7.2 + 0.17 + 0.17 + 0.18 + 0.19 − 3.40 − 15.65
7.3 + 0.26 + 0.32 + 0.19 + 0.24 + 0.24 + 0.23
8.1 + 0.14 + 0.12 + 0.10 + 0.13 + 0.13 + 0.13
8.2 + 0.17 + 0.11 + 0.07 + 0.09 + 0.20 + 0.12
8.3* − 12.21 − 13.17 − 4.73 − 9.10 − 26.49 − 29.09

9 − 0.43 − 0.30 − 0.16 − 0.09 − 1.48 − 0.34
10 − 0.69 − 0.85 − 0.40 − 0.17 − 0.96 − 0.96

* = local metastasis recurrence confirmed

not noticeably influence DIR accuracy for the different contrast levels, suggesting robustness of respective liver-CT
DIR results.

The lower part of Table 2 contains the accuracy evaluation results of the different leave-one phase-out correspon-
dence models performed by means of the DIRLAB data. Similar to the DIRLAB 4D CT DIR evaluation, lowest TRE
values were obtained for VarReg, Elastix and ANTS, indicating that higher DIR accuracy leads to higher correspon-
dence model accuracy – and, vice versa, low(er) DIR accuracy to inaccurate correspondence models. Consideration
of the intensity-based similarity measures for additional accuracy evaluation (supplemental materials Suppl. D) again
supports the TRE-related observations for the predicted expiration phase DVFs; similar similarity measure values for
prediction of inspiration and expiration DVFs further reveals the potential of the models to capture potential motion
differences between inspiration and expiration.

Correspondence model-based 4D dose simulation

Separately for each metastasis, the results of the DIR-specific correspondence model-based 4D dose simulation
and DIR-specific ∆D95 values, respectively, are summarized in Table 3.

For lung metastases (upper half of the table), ∆D95 for the different DIR algorithms show high accordance. How-
ever, for metastasis 3, the DIRART ∆D95 clearly differs from the other values (DIRART: ∆D95 = − 7.85 Gy; range
of ∆D95 values for other DIR algorithms: + 0.25 Gy to + 0.47 Gy). To better understand the causes, registrations
between the extreme phases 00 and 50 of the respective 4D CT data set were re-run for all algorithms. The resulting
DVFs were used to warp the GTV of the phase 50 image (GTV50). Ideally, the warped GTV (GTVwarp

50 ) would be
identical to the 00 phase GTV (GTV00). The overlap between GTVwarp

50 and GTV00 is evaluated by Dice coefficient,

Dice =
2 ·
∣∣∣GTVwarp

50 ∩ GTV00
∣∣∣

∣∣∣GTVwarp
50

∣∣∣ + |GTV00|
and the results are visualized in Figure 2. While ANTS, VarReg, NiftyReg and Elastix showed high Dice values
≥ 70%, DIRART led to zero overlap; the corresponding ∆D95 value was due to registration failure (here: during
registration matching of the metastasis border to the diaphragm border). However, the also imperfect Plastimatch
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Figure 2: Visualization of extreme phase registration results for metastasis 3: The phase 50 GTV was warped by the respective DVF (black structure
in ITV = warped GTV50) and compared to the reference GTV in phase 00 (yellow structure in ITV = reference GTV00). Ideally, the warped GTV50
should cover the entire yellow GTV00; the given numbers are the Dice overlap coefficients of the two structures.

registration (Dice coefficient of 59%) did, in the current case, not influence ∆D95 when compared to the more accurate
DIR algorithms.

Compared to the lung cases, ∆D95 values for the liver metastases are more diverging. For instance, Elastix and
Plastimatch show much higher negative ∆D95 values for cases 6, 7.1, 7.2 and 8.3 than the other DIR algorithms (cf.
lower half of Table 3). Again to better understand this behavior, DIR-DVFs between phases 20 and 50 as well as 4D
simulated dose distributions for metastasis 6 are illustrated in Figure 3. The location of the GTV is also visualized.
It can be seen that the magnitude of the DVFs as well as the lateral motion direction strongly differ between the DIR
algorithms. While, for instance, NiftyReg estimates almost no GTV motion and, consequently, ∆D95 is close to zero,
Elastix and Plastimatch lead to large motion vectors and high negative ∆D95 values. Respective effects can also be
seen by means of the 4D simulated dose distribution: Elastix and Plastimatch lead to lower dose areas in the superior
part of the GTV after 4D dose simulation; for NiftyReg, the GTV appears to be enclosed by a high isodose.

Similar observations can be made for the other liver cases with large ∆D95 differences between the DIR algorithms.
Yet, judgement of the DIR-specific dosimetric motion effects and their plausibility based on, e.g., the aforementioned
liver DIR accuracy results appears not feasible: With respect to the 4D MRI experiments, Elastix, NiftyReg, as well as
VarReg (metastasis 6 motion amplitudes somewhere between Elastix and NiftyReg) were all among the most accurate
DIR approaches. Having a deeper look, the small NiftyReg-estimated motion amplitudes inside the liver appear,
however, not realistic and can potentially be associated to an interpolation artifact in the GTV area that distracted the
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Figure 3: Visualization (coronal views) of the estimated motion field between phases 50 and 20 and DIR-specific 4D simulated dose distributions
(one fraction) for metastasis 6. Magnitude and direction (superior-inferior and left-right) of motion field are illustrated by arrow length and angle.8
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algorithm (see Suppl. E, Fig. E.3). Further, the very high ∆D95 values for Elastix appear questionable; such values
would have likely led to local metastasis recurrence – which was not observed for this patient. But even such in-depth
analysis does not always help; with certainty, it can only be stated that the DIR algorithm has a significant impact on
the correspondence model-based dose accumulation process, especially for liver tumours.

Discussion

The present study addressed the influence of DIR techniques on 4D dose simulation for extracranial (here: lung and
liver) SBRT and potential interrelation of 4D dose simulation results and DIR accuracy. To the best of our knowledge,
this is the first study that explicitly addresses the pipeline character of current 4D dose simulation solutions and
comprehensively investigated the role of DIR algorithms and respective uncertainties therein. To foster reproducibility,
only common open source DIR frameworks and freely available, established algorithms for motion field estimation in
4D CT data were used; corresponding registration scripts are provided as supplemental materials.

The study builds on correspondence model-based 4D dose simulation [8]. Most 4D dose simulation approaches
directly and solely utilize DVFs extracted from the patient’s planning 4D CT [9, 10], in some studies enriched with
4D cone beam CT information acquired prior to the individual SBRT fractions [13], for dose mapping purposes. In
contrast, correspondence model-based 4D dose simulation allows integrating (external) breathing signal information
about breathing irregularity during treatment into the dose accumulation process. In terms of the aforementioned
pipeline character, it, however, introduces an additional step between DIR and dose accumulation; therefore, the
correlation between registration and correspondence model accuracy was also analyzed.

The experiments for the lung metastasis cases illustrated

• that, in the sense of an error propagation, low(er) DIR accuracy in terms of high(er) TRE values directly trans-
lates into low(er) correspondence modeling accuracy,

• that, however, quantitative differences in DIR and correspondence model accuracy of the algorithms (as deter-
mined using the DIRLAB benchmark data) do not necessarily lead to relevant differences of 4D-simulated dose
distributions and related dose indices, and

• that the 4D-simulated dose distributions and dose indices widely agree among the DIR approaches, rendering
the results somehow trustworthy.

Still, the outlier described in the results section (DIRART-computed dose for metastasis 3) is associated to the DIR
algorithm with highest TRE values for the DIRLAB data. General conclusions regarding the interrelation between
robustness (frequency of total registration failure) and benchmark data-derived TRE values can, however, not be drawn
yet, due to the small sample size of the present study.

In contrast, the results for the liver metastasis cases, respective 4D dose simulation and related large differences
of the ∆D95 values clearly illustrate issues regarding dose accumulation for tumors in low contrast image areas like
the liver by means of (like in the current study) purely intensity-driven DIR. Focusing on the ∆D95 values, ANTS
and VarReg seem to be in well agreement, while results of the other registration approaches somewhat differ. The
cause remains unclear: While VarReg was among the most accurate approaches for the 4D MRI-based low contrast
structure registration test scenario, ANTS was not. In addition, any attempts to correlate differences in ∆D95 with
specific characteristics of the considered DIR algorithms also failed: Neither similar transformation models (cf. the
B-spline-based DIR algorithms ANTS and Elastix) nor similar DIR similarity measures led to similar DIR accuracy
and/or ∆D95 values.

In view of the divergence of the estimated liver motion patterns, further consideration of additional DIR types and
especially the class of biophysical and finite element modeling-based registration approaches appears promising [36,
37]. Such DIR approaches have already been shown to outperform purely intensity-based DIR for liver registration in
the MIDRAS study [21]; in contrast to the DIR algorithms applied in the current study, they are, however, usually not
available as open source and ”plug-and-play” tools.

Yet, even when incorporating potentially more reliable FEM-based DIR approaches for liver motion estimation,
assessment of 4D dose simulation reliability still suffers from the lack of a detailed ground truth to compare the esti-
mated dosimetric effects to. The known outcome (local metastasis recurrence: yes/no) exploited in the current study

9
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only allowed for plausibility considerations for individual cases. At this, analysis of follow-up image information
like voxel-wise recurrence delineation in, e. g., positron-emission tomography images [38] and subsequent correla-
tion to 4D-simulated dose distributions could provide helpful information to evaluate the 4D dose simulation results.
Such information is, however, at the moment not routinely available; therefore, aforementioned differences for liver
cases leave (from our perspective) an impression of uncertainty. Continuing with remaining sources of uncertainty,
it should also be noted that the applied 4D dose simulation allowed for incorporation of information about patient-
specific breathing irregularity acquired during treatment; due to the absence of online imaging, potential changes of
the relationship between the used external breathing signal and the actual internal structure dynamics [39, 40] were,
however, neither known nor accounted for.

Thus, taken together: The reported observations raise doubts regarding reliability of CT-based liver tumor 4D dose
simulations. In our opinion and more general for tumors in low contrast areas, current open source DIR frameworks
should not be considered ready for ”plug-and-play” use for 4D dose accumulation; respective application of DIR by
inexperienced users is questionable.
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Suppl. A. Correspondence model-based 4D dose simulation

While the methods part of the main manuscript primarily aimed at a brief, comprehensible description of corre-
spondence model-based 4D VMAT dose simulation, this supplementary information provides an in-depth description
thereof that allows reimplementing the applied approach. Nomenclature and symbols are based on [1, 2, 3, 4].
For each patient, the 4D treatment planning CT is a series of 3D CT images, with each image representing a different
breathing phase of the patient, i. e.

(Ii)i∈{1,...,nph} , Ii : Ω ⊂ R3 → R
with i ∈ {1, . . . , nph} as the breathing phase and nph as the total number of 3D CT images in the 4D CT data set.
Analogously, the breathing signal values that are assigned to the images for reconstruction purposes read

(ζi)i∈{1,...,nph} , ζi ∈ Rd

with d as dimensionality of the breathing signal. In the current study, the image data consisted of nph = 10 phases,
and ζi was two-dimensional with ζi = (zi, ∂tzi)T and zi ∈ R as the anterior-posterior (AP) component measurements
of the Varian RPM system, which is routinely used for 4D CT reconstruction and safety gating purposes at our clinic.
Further, ∂tzi ∈ R denotes the temporal derivative of the RPM AP values, evaluated at zi.

Suppl. A.1. Correspondence model formation
Image registration. The first step to establish the sought correspondence model is to compute the motion fields that
represent the respiratory motion of the internal structures of interest (organs at risk, target volumes). Therefore,
assume an arbitrary breathing phase i0 ∈ {1, . . . , nph} to be selected as reference phase (here: i0 = 3, denoting mid-
expiration) and the corresponding CT image Ii0 as fixed image during registration. Then, the registration process
results in a series of transformations

(ϕi)i∈{1,...,nph} , ϕi : Ω→ Ω

and respective motion fields
(ui)i∈{1,...,nph} , ui : Ω→ R3

with ui = ϕi − id. The motion fields (ui)i∈{1,...,nph} and the respective breathing signals (ζi)i∈{1,...,nph} form the basis of
subsequent linear regression-based correspondence model training.

Multivariate regression. For ease of readability and similar to [1], breathing signal measurements and motion fields
are in the following interpreted as random variables Zi (≡ ζi) and Ui ∈ R3m with m denoting the number of voxels
of the reference phase image Ii0 . Then, the sought correspondence model – i. e. the assumed relationship between
breathing signal measurements and internal motion fields – is defined by

Û = U + B
(
Ẑ − Z

)
(A.1)

with Û ∈ R3m the motion field for a breathing signal observation Ẑ ∈ R2. U = 1/nph
∑nph

i Ui and Z = 1/nph
∑nph

i Zi

denote the mean motion field and breathing signal, respectively.
Using an ordinary least-squares regression approach, the coefficient matrix B ∈ R3m×2 can be computed by

B = arg min tr
B′

[(
U − B′Z

) (
U − B′Z

)T
]

= UZ+ (A.2)
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with

Z =
(
Z1 − Z, . . . ,Znph − Z

)

U =
(
U1 − U, . . . ,Unph − U

)

as mean-centered observations and
Z+ = ZT

(
ZZT

)−1

as Moore-Penrose pseudoinverse. Subsequently, Û and the motion field û : Ω × R2 → R3 that results by application
of (A.1) for a given Ẑ and ζ̂, respectively, are used as equivalent terms.

Suppl. A.2. Correspondence model-based 4D dose simulation

The time-dependent dose rate of a treatment fraction, Ḋ : Ω × T ⊂ R → R+, can be used to express the dynamical
dose delivery process, its interplay with patient motion and the resulting dose distribution D4D : Ω→ R+ via

D4D (x) =

∫

T
Ḋ (ϕ (x, t) , t) dt

≈
∑

t∈T̃
Ḋ (ϕ (x, t) , t) ∆t

=
∑

t∈T̃
Dt (ϕ (x, t)) (A.3)

with ϕ : Ω × T → R3 representing the position ϕ (x, t) of voxel x ∈ Ω of the reference phase CT image Ii0 at time
t ∈ T = [0; T ) ⊂ R. The numerically required temporal discretization in (A.3) indicates an equidistant sampling of
the dose delivery process, with the sampling points t ∈ T̃ = {1/2 ∆t; 3/2 ∆t; . . . }, T̃ ⊂ T , and a sampling period of ∆t.
Thus, Dt : Ω→ R+ is the integral dose delivered during the time interval [t − 1/2 ∆t; t + 1/2 ∆t).
The time-dependent position ϕ (x, t) of the inner voxels and structures is unknown during dose delivery; however,
during gated treatment, a breathing signal is continuously acquired. This signal and the established correspondence
model (A.1) are now integrated into (A.3). With ϕ̂ = id + û and ζ̂ : T → R2, correspondence model-based 4D dose
simulation for a single fraction finally reads

D4D (x) ≈
∑

t∈T̃
Dt

(
ϕ̂
(
x, ζ̂t

))
=

∑

t∈T̃
Dt

(
x + û

(
x, ζ̂t

))
(A.4)

where ζ̂t = ζ̂ (t). Multiple treatment fractions are covered by directly extending (A.4) to

Dtotal
4D (x) =

∑

fx

Dfx
4D (x) =

∑

fx

∑

t∈T̃fx

Dt

(
x + û

(
x, ζ̂t

))
.

Here, fx is the fraction index and T̃fx ⊂ R are the temporal sampling points used to compute the sought integral fraction
dose distribution. Without plan adaptation between the individual treatment fractions, one can assume T̃fx = T̃ for
all treatment fractions. Consequently, differences between the individual fraction dose distributions Dfx

4D are solely
attributable to differences of the patient’s motion patterns (more precisely: of the observations ζ̂t) during the treatment
fractions.
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Suppl. B. DIR algorithm evaluation: similarity and transformation plausibility/smoothness measures

In addition to the landmark-based target registration error (TRE, see Material and Methods part of the main manuscript),
the following measures were evaluated:

Intensity-based similarity measures, to be optimized during registration. All measures were evaluated using respec-
tive subclasses of the ImageToImage class of the open source toolkit Insight Segmentation and Registration Toolkit
(ITK, see https://itk.org).

• Mean squared intensity differences (MSD); should be as small as possible and ideally zero.
• Normalized cross correlation (NCC); in particular, (−1)*NCC is minimized, i.e. −1 is the smallest possible and

ideal value.
• Normalized mutual information (NMI); similar to NCC, −1 is the smallest possible and ideal value.

Transformation plausibility/smoothness measures, also implemented using ITK.

• Plausibility / Change of volume: Computed as mean Jacobian determinant |∇ϕ| = 1/|Ω|∑x∈Ω ∇ϕ (x). Evaluated
for a specific structure (here: lung or liver), |∇ϕ| should resemble the ratio of the structure volumes in the images
to be registered.
• Smoothness: Computed as standard deviation of the Jacobian determinant of the voxels inside the structure of

interest (here: lung or liver).

Suppl. C. Additional results: DIRLAB data

The results of the evaluation of the intensity-based similarity measures before and after registration of the DIRLAB
data can be found in Table C.1. The results of the evaluation of transformation plausibility and smoothness are
summarized in Table C.2 and Table C.3. All measures are evaluated only in the lungs (= the structure of interest in
the DIRLAB data).

Table C.2. Transformation plausibility, assessed by means of the mean Jacobian determinant inside the corresponding lung mask and DIR-computed
transformations. The respective ratio of the volume of the lung masks of the phase images serves as ground truth. All data is given as mean ±
standard deviation of the ten DIRLAB data sets.

Algorithm Mean Jacobian

00↔ 50 20 7→ 00 20 7→ 10 20 7→ 30 20 7→ 40 20 7→ 50

ANTS 0.88 ± 0.04 1.06 ± 0.02 1.04 ± 0.01 0.97 ± 0.01 0.94 ± 0.02 0.93 ± 0.03

VarReg 0.86 ± 0.05 1.07 ± 0.02 1.05 ± 0.02 0.97 ± 0.01 0.94 ± 0.03 0.92 ± 0.03

DIRART 0.86 ± 0.05 1.07 ± 0.02 1.05 ± 0.02 0.96 ± 0.01 0.94 ± 0.03 0.92 ± 0.03

NiftyReg 0.89 ± 0.03 1.05 ± 0.01 1.04 ± 0.01 0.97 ± 0.01 0.95 ± 0.01 0.90 ± 0.02

Elastix 0.86 ± 0.05 1.07 ± 0.02 1.05 ± 0.02 0.97 ± 0.01 0.94 ± 0.03 0.92 ± 0.03

Plastimatch 0.87 ± 0.04 1.07 ± 0.02 1.04 ± 0.01 0.97 ± 0.01 0.94 ± 0.02 0.93 ± 0.03

Mask volume ratio 0.87 ± 0.05 1.07 ± 0.02 1.05 ± 0.01 0.97 ± 0.02 0.94 ± 0.03 0.92 ± 0.04
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Table C.1. Accuracy of the different DIR algorithms, evaluated by means of the DIRLAB data. Similarity of reference image and warped moving
image is evaluated using MSD, NCC and NMI inside the lungs. All data is given as mean ± standard deviation of the ten DIRLAB data sets.

Algorithm MSD

00↔ 50 20 7→ 00 20 7→ 10 20 7→ 30 20 7→ 40 20 7→ 50

ANTS 9660 ± 5790 4147 ± 1967 3470 ± 1386 3187 ± 1753 4292 ± 2493 5082 ± 3279

VarReg 4903 ± 3220 2824 ± 1778 2550 ± 874 2211 ± 1011 2635 ± 1230 2966 ± 1564

DIRART 13423 ± 5906 7910 ± 3145 5652 ± 2421 4938 ± 2347 7306 ± 3414 8615 ± 4442

NiftyReg 19014 ± 15609 9310 ± 5194 6958 ± 3484 5983 ± 4136 9177 ± 7213 10729 ± 8849

Elastix 6936 ± 4333 4420 ± 2375 3645 ± 1729 3129 ± 1682 4156 ± 2643 4816 ± 3253

Plastimatch 13943 ± 6920 7263 ± 2871 5671 ± 2147 5043 ± 2824 6781 ± 3538 8040 ± 4623

w/o reg. 87808 ± 29415 22518 ± 7890 14107 ± 6457 17232 ± 9753 33586 ± 15985 43276 ± 21098

Algorithm NCC

00↔ 50 20 7→ 00 20 7→ 10 20 7→ 30 20 7→ 40 20 7→ 50

ANTS −0.967 ± 0.018 −0.983 ± 0.007 −0.985 ± 0.006 −0.987 ± 0.006 −0.984 ± 0.008 −0.982 ± 0.009

VarReg −0.979 ± 0.010 −0.988 ± 0.004 −0.989 ± 0.004 −0.991 ± 0.004 −0.989 ± 0.005 −0.988 ± 0.005

DIRART −0.944 ± 0.018 −0.967 ± 0.011 −0.976 ± 0.011 −0.976 ± 0.011 −0.970 ± 0.011 −0.966 ± 0.013

NiftyReg −0.940 ± 0.040 −0.961 ± 0.021 −0.970 ± 0.015 −0.977 ± 0.014 −0.966 ± 0.027 −0.964 ± 0.027

Elastix −0.973 ± 0.013 −0.981 ± 0.010 −0.984 ± 0.008 −0.987 ± 0.007 −0.984 ± 0.010 −0.982 ± 0.011

Plastimatch −0.949 ± 0.023 −0.969 ± 0.013 −0.975 ± 0.011 −0.980 ± 0.010 −0.974 ± 0.013 −0.970 ± 0.016

w/o reg. −0.807 ± 0.057 −0.899 ± 0.045 −0.937 ± 0.039 −0.939 ± 0.038 −0.898 ± 0.047 −0.881 ± 0.051

Algorithm NMI

00↔ 50 20 7→ 00 20 7→ 10 20 7→ 30 20 7→ 40 20 7→ 50

ANTS −0.20 ± 0.04 −0.27 ± 0.03 −0.29 ± 0.03 −0.30 ± 0.04 −0.27 ± 0.04 −0.26 ± 0.05

VarReg −0.25 ± 0.04 −0.31 ± 0.03 −0.32 ± 0.03 −0.33 ± 0.04 −0.31 ± 0.04 −0.30 ± 0.04

DIRART −0.13 ± 0.03 −0.19 ± 0.04 −0.23 ± 0.04 −0.24 ± 0.04 −0.20 ± 0.04 −0.18 ± 0.04

NiftyReg −0.14 ± 0.06 −0.19 ± 0.05 −0.21 ± 0.04 −0.25 ± 0.06 −0.21 ± 0.07 −0.20 ± 0.07

Elastix −0.21 ± 0.04 −0.26 ± 0.04 −0.27 ± 0.03 −0.29 ± 0.04 −0.26 ± 0.04 −0.25 ± 0.04

Plastimatch −0.15 ± 0.03 −0.21 ± 0.04 −0.23 ± 0.04 −0.26 ± 0.04 −0.22 ± 0.04 −0.21 ± 0.04

w/o reg. −0.04 ± 0.02 −0.09 ± 0.04 −0.14 ± 0.05 −0.17 ± 0.04 −0.10 ± 0.04 −0.08 ± 0.04

Table C.3. Transformation smoothness, evaluated by means of the DIRLAB data. The vector field smoothness inside the lung is calculated as
the standard deviation of the transformation Jacobian determinant of the lung voxels. All data is given as mean ± standard deviation of the ten
DIRLAB data sets.

Algorithm Std Jacobian

00↔ 50 20 7→ 00 20 7→ 10 20 7→ 30 20 7→ 40 20 7→ 50

ANTS 0.10 ± 0.02 0.10 ± 0.03 0.09 ± 0.02 0.07 ± 0.02 0.08 ± 0.02 0.08 ± 0.02

VarReg 0.37 ± 0.09 0.28 ± 0.05 0.24 ± 0.03 0.20 ± 0.04 0.24 ± 0.04 0.26 ± 0.05

DIRART 0.22 ± 0.06 0.12 ± 0.03 0.09 ± 0.02 0.09 ± 0.03 0.13 ± 0.04 0.15 ± 0.05

NiftyReg 0.11 ± 0.03 0.06 ± 0.02 0.04 ± 0.01 0.04 ± 0.02 0.05 ± 0.02 0.06 ± 0.02

Elastix 0.16 ± 0.04 0.14 ± 0.02 0.12 ± 0.03 0.10 ± 0.03 0.11 ± 0.02 0.12 ± 0.03

Plastimatch 0.10 ± 0.03 0.07 ± 0.02 0.05 ± 0.01 0.04 ± 0.02 0.05 ± 0.02 0.06 ± 0.02
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Suppl. D. Additional results: DIRLAB data-based correspondence model

Table D.4. Intensity similarity measure-based evaluation of the accuracy of the leave-one-phase-out (LOO) correspondence models, evaluated
using the DIRLAB data. Similarity of the left-out phase image that was warped by the DIR-specific model-based predicted motion field and the
phase 20 image is evaluated using MSD, NCC and NMI inside the lungs. All data given as mean ± standard deviation of the ten DIRLAB data sets.
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Figure E.1. Visibility of liver structures in the original MRI data (left), with an α-level of 90% (middle) and in a CT phase image of a 4D CT image
sequence. By eye, structures inside the liver are hardly detectable for MRI data with α = 90% and CT data.

Suppl. E. 4D MRI-based evaluation of inner-liver DIR performance

Assessment of the accuracy of DIR algorithms in low contrast areas like the liver in 4D CT data is, compared to high
contrast areas like the lungs, hardly feasible due to the lack of structures that could be used to visibly or quantitatively
judge registration success. We, therefore, adapted a 4D MRI data with clearly visible inner liver structures to allow
for indirect liver DIR accuracy evaluation, using the same evaluation criteria applied for the DIRLAB data sets (TRE,
similarity measures, transformation plausibility and smoothness).

Suppl. E.1. MRI data description
Original MRI data. Based on the data provided at http://www.vision.ethz.ch/4dmri (see also [5]), a ten-phase
4D MRI data set (representing one breathing cycle)

(
IMRI
i

)
i∈{1,...,10} , I

MRI : ΩMRI ⊂ R3 → R

was selected for analysis of DIR accuracy and plausibility inside the liver. The MRI phase images exhibit clearly
visible inner-liver structures, as illustrated in Fig. E.1 (left). To allow for TRE computation during DIR evaluation, an
expert selected 20 corresponding inner-liver landmarks (prominent anatomical points like vasculature bifurcations) in
the individual 4D MRI phase image.

(Partially) Masked MRI data. To mimic the challenges of liver registration in 4D CT images, we generated a series
of 4D MRI with synthetically reduced structure-to-background contrast inside the liver. First, an expert manually
segmented the liver in all phase images in the original 10-phase MRI data set. Let these images be denoted by

(
MMRI

i

)
i∈{1,...,10} ,M

MRI : ΩMRI → R

with MMRI
i (x) being the median value of the liver voxels in IMRI

i and zero elsewhere.
Mask and original MRI data were combined to form test data sets

(
IMRI,α
i

)
i∈{1,...,10} , I

MRI,α : ΩMRI → R (E.1)

with

IMRI,α
i (x) =


(1 − α)IMRI

i (x) + α
[
MMRI

i (x) + n (x)
]

if MMRI
i (x) , 0

IMRI
i (x) else

The additive term n (x) represents Gaussian noise with µ = 0 and σ2 derived by analysis of the liver voxel intensity
value distribution in the 4D CT data, but rescaled to the intensity dynamic range of the MRI data to yield CT-like
noise characteristics inside the liver of the IMRI,α

i image data.
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Suppl. E.2. 4D MRI-based experiments and DIR evaluation

In total, image sequences
(
IMRI,α
i

)
i∈{1,...,10} with α-levels of 0%, 80%, 85%, 90%, 95%, and 100% (with IMRI,0%

i = IMRI
i )

were computed. For each α-level, all DIR algorithms were applied for extreme phase registration (00 ↔ 50) of the
ten-phase 4D MRI data. DIR parameters were the same as applied for 4D CT registration. DIR accuracy for the
different α-levels was evaluated using the landmarks identified in the original (i.e. the α = 0%) images.
It can be assumed that the transformation properties and DIR accuracy in low contrast areas strongly depend on the
DIR regularization weight. To better understand especially the relationship between regularization weight and DIR
accuracy for different contrast levels, we repeated the said evaluation using VarReg [2].
Aforementioned experiments were finally complemented using the entire set of evaluation metrics described and
applied for DIR of the DIRLAB data sets. For reasons of clarity and comprehensibility, we restricted the evaluation
to the images of an α-level of 90%, which visibly appeared to be most similar to the clinical 4D CT data in terms of
inner liver structure visibility (cf. Fig. E.1).

Suppl. E.3. 4D MRI-based DIR evaluation: Results

Suppl. E.3.1. TRE for different α-levels
The TRE values for DIR in the 4D MRI data with different α-levels are summarized in Table E.5. Mean landmark
distance before registration was 14.1 mm. High TRE values for DIRART are noticeable and therefore visualized
and compared to VarReg results in Figure E.2. Liver borders are well-aligned after DIRART registration; however,
missing contrast inside the liver obviously led to less accurate results compared to VarReg for all α-levels ≥ 80%. It
should, however, be mentioned that even for DIR of the original MRI data, DIRART results in by far highest TRE
values, indicating that the chosen DIRART parameters are not ideally suited for 4D MRI registration. For the other
DIR algorithms, the α = 0% TRE values are at least in a similar order compared to the DIRLAB data and taking into
account the relatively large landmark distances between registration. Focusing on the selected reference noise level of
90%, VarReg, NiftyReg and Elastix achieve best TRE results. ANTS and Plastimatch registration yield up to 1.5 mm
higher values.

Table E.6 further illustrates the influence of varying regularization strength on VarReg DIR accuracy. A regular-
ization of around σ2 = 2 mm results in lowest TRE for almost all noise levels (chosen σ2 during DIRLAB registration:
2 mm). However, the influence of the regularization strength (except for σ2 ≤ 1) on the registration accuracy is small
even for larger α-values and lower inner-liver contrast, respectively.

Suppl. E.3.2. Additional DIR evaluation criteria
Results for the transformation plausibility and smoothness evaluation by means of the transformation Jacobian de-
terminant are summarized in Table E.7 and Table E.8, respectively. The values of the different similarity measures
evaluated by comparison of warped and reference image (mean squared differences, normalized cross correlation and
normalized mutual information) are shown in Table E.9.

Table E.5. DIR accuracy for the different DIR algorithms for extreme phase registration (00↔ 50), evaluated by means of the MRI data sets with
different α-levels. TRE without registration is 14.1 mm

α-level Mean TRE of 5 7→ 0 registration of MRI data set (mm)

ANTS VarReg DIRART NiftyReg Elastix Plastimatch

100% 6.96 ± 3.14 7.68 ± 2.90 8.97 ± 2.22 3.20 ± 1.57 3.61 ± 1.81 5.70 ± 2.29

95% 4.86 ± 3.74 5.94 ± 3.80 9.14 ± 2.25 3.10 ± 1.48 3.16 ± 1.92 4.27 ± 1.96

90% 4.41 ± 3.74 2.93 ± 2.02 9.17 ± 2.25 2.93 ± 1.38 2.68 ± 1.84 3.79 ± 1.84

85% 4.22 ± 3.62 2.47 ± 1.52 9.19 ± 2.26 2.78 ± 1.36 2.33 ± 1.61 3.44 ± 1.59

80% 3.97 ± 3.46 1.90 ± 1.23 9.07 ± 2.24 2.56 ± 1.37 1.93 ± 1.35 2.97 ± 1.68

0% 3.58 ± 3.33 2.02 ± 1.31 5.99 ± 2.39 2.31 ± 1.39 2.58 ± 2.02 2.26 ± 1.34
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Figure E.2. Visualization of vector fields inside the liver for DIRART (left) and VarReg (right) resulting of phase 5 7→ 0 registration.

Table E.6. DIR accuracy for VarReg for extreme phase registration (00↔ 50), evaluated by means of the MRI data sets with different α-levels added.
The influence of the regularization strength is investigated by varying σ2 (Gaussian regularization) of the algorithm. TRE without registration is
14.1 mm

α-level Mean TRE of 5 7→ 0 registration of MRI data set (mm)

σ2 0.5 1 1.5 2 2.5 3 3.5 4

100% 12.60 ± 4.31 8.74 ± 3.21 7.73 ± 2.87 7.68 ± 2.90 7.60 ± 2.83 7.74 ± 2.77 7.63 ± 2.72 7.61 ± 2.65

95% 10.23 ± 5.21 7.21 ± 4.12 6.66 ± 4.08 5.94 ± 3.80 5.80 ± 3.69 5.67 ± 3.64 5.57 ± 3.36 5.46 ± 3.29
90% 8.97 ± 5.86 5.50 ± 4.27 3.10 ± 2.20 2.93 ± 2.02 3.17 ± 2.29 3.21 ± 2.27 3.40 ± 2.39 3.39 ± 2.39

85% 4.65 ± 4.16 2.52 ± 1.85 2.60 ± 1.87 2.47 ± 1.52 2.61 ± 1.89 2.66 ± 1.91 2.71 ± 1.96 2.76 ± 2.00

80% 1.90 ± 1.23 1.89 ± 1.09 1.83 ± 1.13 1.90 ± 1.23 2.07 ± 1.35 2.16 ± 1.40 2.16 ± 1.40 2.29 ± 1.53

0% 2.46 ± 1.73 2.08 ± 1.34 2.04 ± 1.29 2.02 ± 1.31 2.06 ± 1.39 2.07 ± 1.37 2.08 ± 1.36 2.08 ± 1.35

Table E.7. Accuracy of the different DIR algorithms, evaluated by means of the MRI data set with α-level of 90%: Mean transformation Jacobian
determinant inside the liver. The respective liver volume ratio as based on the manual liver segmentation data of the phase images refers as ground
truth.

Noise Mean Jacobian

00↔ 50 20 7→ 00 20 7→ 10 20 7→ 30 20 7→ 40 20 7→ 50

ANTS 1.02 0.99 0.99 1.01 1.01 1.01

VarReg 1.00 0.98 0.98 0.99 1.00 1.00

DIRART 1.03 0.98 0.98 1.01 1.02 1.02

NiftyReg 0.99 0.97 0.99 1.00 1.00 1.00

Elastix 0.99 0.98 0.98 0.99 1.00 0.99

Plastimatch 1.03 0.98 0.99 1.00 1.01 1.02

Mask volume ratio 1.01 0.99 0.99 1.01 1.02 1.02



5. Results

5.3. Dose simulation in the presence of image artifacts

Typical image artifacts in 4D CT data sets, as introduced in Section 3.1.2, can, as brie�y
evaluated in the last section, have an unfavourable impact on subsequent steps like image
registration or 4D dose accumulation. In this section, this impact is further analyzed
by manipulating artifact-free rated 4D CT data to contain typical artifact types and,
subsequently, use the artifact-containing data for mentioned processing steps. �e
described methods and results are based on the publication below:

T. Sothmann, T. Gauer, R. Werner. In�uence of 4D CT motion artifacts on correspondence
model-based 4D dose accumulation. In: Proc SPIE, Vol. 10576, 105760F. International
Society for Optics and Photonics, SPIE, 2018.

Out of the in-house patient cohort (cf. Section 4.4.4), six 4D CT data sets visually rated
as artifact-free were selected for this study. To examine the in�uence of artifacts in 4D
CT image data on correspondence modeling and 4D dose simulation, the corresponding
4D CT raw data of the selected six data sets were retrospectively manipulated to induce
typical image artifacts near the target volume. Each z-slice in an already reconstructed
4D CT phase corresponds to a speci�c time point in the acquisition process, that is,
the position of the GTV, delineated in the artifact-free 4D CT data, can be related to
an interval between two time points in the simultaneously recorded external patient
breathing signal (see upper part of Figure 1 [SPIE 2018]). As the patient respiration during
CT imaging is utilized for reconstruction, i. e. binning of acquired 4D CT projections as
described in detail in Section 3.1.1, manipulation of the breathing cycle in pre-de�ned
temporal interval impacts the reconstruction result. Steep breathing gradients lead to
faulty bin assignments and thus to a duplication of structures (double structure artifact).
Removing the breathing cycle leads to missing information and thus an interpolation
between slices (interpolation artifact, see lower part of Figure 1 [SPIE 2018] and Fig. 3.3
for both types of artifacts). �ese two artifact types were investigated for all six patient
data sets and compared to the artifact-free data set by evaluating the subsequently built
correspondence model using mean motion magnitudes inside the ITV as well as motion
vectors in (x,y, z)-direction. Further, 4D-simulated dose distributions were compared.

Results for evaluation of correspondence models and dose simulations are summarized
in Table 1 [SPIE 2018]. Correspondence models built using 4D CT data a�ected with
double structure artifacts seem to underestimate the motion inside the ITV, but the
in�uence on subsequent dose simulation is only minor. For the interpolation artifact-
a�ected data, however, predicted motion vector �elds are for some cases even �ipped (e. g.
z-motion for case 5) and thus resulting 4D-simulated dose distribution show noticeable
deviations compared to the reference dose distribution. �ose �ndings suggest that the
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in reality considerably more often occurring interpolation artifact has to be considered as
relevant source of uncertainty in subsequent dose simulation processing steps. Further,
the in�uence of interpolation artifacts on e. g. radiotherapy-relevant structure delineation4

should be investigated. For dose simulation, an estimation of registration uncertainties in
artifact-a�ected image data is desired to allow for error propagation and thus computing,
for instance, a con�dence interval for resulting dose distributions. �is is, however,
not trivial for standard DIR approaches. In the following section, therefore, a new
deep learning-based DIR framework for CT data is proposed that is able to estimate
corresponding registration uncertainties.

4As delineation in radiotherapy is conducted in axial planes, the interpolation artifacts, which are mainly
visible in coronal and sagittal planes are not considered.
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ABSTRACT

In radiotherapy (RT) of moving targets, motion artifacts in 4D CT planning data can be hypothesized to influence
accuracy of RT treatment planning steps. Especially results of deformable image registration (DIR) of 4D CT
phase images and DIR-based dose accumulation/4D dose simulation can be assumed to be directly affected. In
this study, the influence of typical 4D CT “double structure” and “interpolation” artifacts on correspondence
model-based 4D dose simulation is investigated. The correspondence model correlates patient-specific DIR-based
internal motion information and external breathing signals, which allows for integration of respiratory variability
into 4D dose simulation. Artifact-free 4D CT data of 6 lung and liver cancer patients were manipulated to
contain mentioned artifacts. Correspondence model-based dose accumulation was performed in both artifact-
free and artifact-affected data sets. Overall, the effect of “double structure” artifacts was negligible, whereas
“interpolation” artifacts noticeably influenced dose accumulation accuracy.

Keywords: 4D CT, motion artifacts, deformable image registration, correspondence modeling, 4D dose accu-
mulation

1. INTRODUCTION

Stereotactic body radiation therapy (SBRT) is an effective method to treat lung and liver tumors.1 However,
one of the biggest challenges is still the consideration of tumor motion and deformation while treatment plan-
ning.2 In current clinical practice, a time resolved CT (3D+t, 4D CT) is used to define the tumor motion space,
the so called internal target volume (ITV). Subsequently, the ITV is the basis of treatment planning and dose
application. Patient-specific intra- and inter-fractional respiratory variability, can nevertheless lead to deviations
between actual delivered and planned dose distributions. Thus, the representation of target volume dynamics by
the planning 4D CT is further incorporated into dose distribution computation and optimization. This allows
for precise 4D (3D+t) dose simulation and accumulation in RT to offer an understanding of motion-induced
differences between planned and actual delivered dose and its potential interrelation with clinical outcome. The
respective combination of patient-specific motion data and information about the dynamic dose delivery process
often relies on motion information extracted by DIR from patient-specific 4D CT RT treatment planning image
data.3,4 However, clinical 4D CT data often suffer from motion artifacts (cf. Figure 1 for typical artifacts),
which in turn can be hypothesized to affect the accuracy of subsequent DIR and dose accumulation.
This hypothesis motivates investigating the actual influence of typical 4D CT artifact types, e. g. “double struc-
tures” and “interpolation” artifacts, on following processing steps. Here, we retrospectively manipulated breath-
ing curves of 6 lung and liver patients that were acquired for 4D CT reconstruction purposes at predetermined
time points to induce incorrect 4D CT reconstruction (Figure 1). Based on a 4D dose accumulation approach for
volumetric arc therapy (VMAT)5,6 in combination with a well-evaluated correspondence modeling7 and an open-
source DIR framework,8 we analyzed the artifact influence on DIR, correspondence modeling and correspondence
model-based 4D dose accumulation results.
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2. METHOD(S)

This section first introduces the concept of correspondence model-based 4D dose accumulation. Second, the
patient collective and the performed simulations are described.

2.1 Concept of Correspondence Model-based 4D Dose Accumulation

A correspondence model represents a patient-specific functional relationship between external breathing signal
measurements and respiratory motion of internal structures (target volumes, organs at risk). Here, multivariate
regression-based correspondence modeling is applied that, briefly speaking, consists of the following steps:7

Input 4D treatment planning CT patient data sets consist of a series of 3D CT images, i. e.

(Ii)i∈{1,...,nph} , Ii : Ω ⊂ R3 → R (1)

with i ∈ {1, . . . , nph} as the breathing phase of a 3D CT image and nph the total number of breathing
phases (here: nph = 10). Analogously, the normally one-dimensional breathing signal measurements
acquired during 4D CT imaging that are assigned to the images read

(ζi)i∈{1,...,nph} , ζi = (zi, ∂tzi)
T ∈ R2. (2)

Here, zi and ∂zi are the anterior-posterior (AP) component of the Varian real-time position management
(RPM)-system and its time derivative. The functional relationship between external breathing signal
measurement (ζi)i∈{1,...,nph} and internal breathing phase-specific images Ii is represented by the sought

correspondence model. Representation of internal motion is achieved by displacement vector fields (DVF)
estimated by non-linear registration.

Estimate motion fields Let reference phase (here: i0 = 3, mid expiration phase) and the corresponding CT
image Ii0 as fixed image during DIR8 be given. The registration process results in a series of transformations

(ϕi)i∈{1,...,nph} , ϕi : Ω→ Ω (3)

with ϕi0 = id and corresponding motion fields

(ui)i∈{1,...,nph} , ui : Ω→ R3 (4)

with ui = ϕi − id (i. e. ui0 = 0). The breathing signal measurements (ζi)i∈{1,...,nph} and motion fields

(ui)i∈{1,...,nph} are the basis for and correlated during correspondence model training using a multivariate
regression approach.

Multivariate regression Breathing signal measurements and motion fields are interpreted as random variables
Zi (≡ ζi) and Ui ∈ R3m with m denoting the number of voxels of the reference phase image Ii0 . The
correspondence model is finally defined by

Û = U + B
(
Ẑ− Z

)
. (5)

At this, Ẑ ∈ R2 represents a breathing signal observation and Û ∈ R3m the corresponding and sought
internal motion field. The coefficient matrix B ∈ R3m×2 is, based on the above mentioned tuples (Ui,Zi),
computed in an ordinary least-squares regression approach.

Using the patient-specific functional relationship between external and internal motion data, correspondence
model-based 4D dose simulation is conceptually straightforward:
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4D dose simulation With the time-dependent dose rate during a single treatment fraction, Ḋ : Ω × T ⊂
R → R+, the dynamical dose delivery process, its interplay with patient motion and the resulting dose
distribution D4D : Ω→ R+ can be expressed as

D4D (x) =
∑
t∈T̃

Dt (ϕ (x, t))

with ϕ : Ω × T → R3 as the position ϕ (x, t) of voxel x ∈ Ω of the reference phase CT Ii0 at time

t ∈ T = [0;T ) ⊂ R. With ϕ̂ = id+ û and ζ̂ : T → R2 as ζ̂ as the patient breathing signal acquired during
dose delivery, correspondence model-based 4D dose simulation for a single fraction reads

D4D (x) =
∑
t∈T̃

Dt

(
x+ û

(
x, ζ̂t

))
(6)

where ζ̂t = ζ̂ (t).

In the current study, all patients were treated with VMAT (here: RapidArc, Varian). In contrast to
standard static field intensity modulated RT techniques, VMAT techniques utilize dose rate and gantry
speed variation as well as leaf modulation to optimize the planned dose distribution characteristics. By
replacing the temporal variable for each planned arc by the gantry rotation angle, Equation (6) can be
re-parametrized to

D4D (x) ≈
∑
ax

∑
α∈Ãax

Dα

(
x+ û

(
x, ζ̂α

))
(7)

with Ãax = {1/2 ∆α; 3/2 ∆α; . . . } as a discretized version of the gantry angle range Aax ⊂ [0◦; 360◦) of the
respective VMAT arc.5

Using the treatment planning system Eclipse 13 (Varian Medical Systems), the minimum achievable angle
segment size was ∆α = 2.3◦, which, depending on the respective gantry speed, corresponds to ∆tDose-values
between 1 s and 2.5 s. In contrast, the breathing signal acquisition (using the Varian RPM system) had a
frequency of 25 Hz, i. e. ∆tRPM = 0.04 s. Taking into account this imbalance and aiming at dose simulation
accuracy as high as possible, the finally implemented single fraction accumulation scheme was

D4D (x) ≈
∑
ax

∑
α∈Ãax

∑
t∈T̃α

Dα

(
x+ û

(
x, ζ̂t

))
=
∑
ax

∑
α∈Ãax

∑
t∈T̃α

(Dα ◦ ϕ̂)
(
x, ζ̂t

)
(8)

with T̃α denoting the RPM measurements during dose delivery at gantry angle α and the respective dose
segment.

Effects arising from the limited VMAT arc discretization due to the treatment planning system capabilities
were subject to extensive motion phantom studies performed as a pre-study to the current work and (for
the chosen minimum angle range of 2.3◦) shown to be small. Respective results and further discussion of
additional technical factors that could mitigate the accuracy of the applied 4D VMAT dose simulation can
be found in Sothmann et al 2017.5

2.2 Patient Collective and Simulations

In total, six visually rated as artifact-free 4D CT data sets and corresponding treatment plans of previously at
our hospital treated cancer patients (three liver and three lung metastases) were selected for this study. The
tumor volume was delineated in each phase of the ten-phase 4D CT yielding 10 gross tumor volume (GTV)
per patient. The union of all GTV results in the motion encompassing internal target volume (ITV), and the
ITV plus predefined safety margin in the planning target volume (PTV), which is the basis of patient treatment
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planning. All data sets were evaluated using the workflow described in Section 2.1, yielding a reference 4D dose
distribution.
Further, retrospective manipulation of the actual reconstruction CT breathing curves at predetermined time
points, corresponding to z-positions of the GTV delineated in reference phase 3 (cf. Figure 1), was performed to
induce 4D CT artifacts (“double structure” and “interpolation”) during reconstruction. The artifact-containing
image data sets were again processed using the workflow described in Section 2.1, resulting in one “double
structure” and one “interpolation” artifact-affected correspondence model and 4D dose distribution per patient.
The effects of the artifacts on correspondence modeling and 4D dose accumulation were analyzed. Effects on the
correspondence models were evaluated by predicted motion field statistics, i. e. mean motion magnitudes inside
the ITV as well as motion vectors in x, y, z-direction. Comparison of artifact-free and artifact-containing 4D
dose distributions were performed by ∆D98, i. e. the difference between D98 of the artifact-free and D98 of the
artifact-containing dose distribution with D98 as the dose to 98% of the GTV.
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Figure 1. Manipulation of reconstruction CT breathing curve and resulting 4D CT motion artifacts. The top figure
shows an actual patient breathing curve acquired during 4D CT scanning for subsequent 4D CT reconstruction. The
retrospectively calculated z-position of the GTV is illustrated. Without breathing curve manipulation, an artifact-free
CT image is generated, see bottom left figure. “Sorting artifacts (double structure)” (bottom middle) and “interpolation
(missing data) artifacts” (bottom right) occur when the reconstruction curve is manipulated as shown.

3. RESULTS

Artifact-induced differences in D98 are summarized in Table 1. Further, mean magnitudes inside the ITV of DVF
resulting from registering 4D CT phase 6 to 3 are presented. Detailed motion information (x, y, z-direction) is
given in brackets beneath. Results for “double structure” artifacts show only minor differences between artifact-
free and artifact-contained dose distribution with a range of ∆D98 from −0.23 Gy to +0.26 Gy. Apparently,
computed deviations of mean motion magnitudes inside the ITV have no considerable influence on resulting
dose distributions, although it has to be considered that motion magnitudes are only evaluated for one phase
registration (6 7→3).
Dose simulations for induced “interpolation” artifacts show for four out of six patients similar to “double struc-
ture” artifacts no considerable deviations (∆D98 range of −0.12 Gy to −0.01 Gy). Dose distributions of patient
1 and 5, however, are subject to dose differences of −2.52 Gy and −1.87 Gy compared to the artifact-free dose,
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respectively. Motion magnitudes can again not necessarily be correlated to mentioned deviations but a large
negative z-motion component compared to a large positive z-motion component of the artifact-free DVF for
patient 5 motivates further investigation. Thus, a visualization of the results of patient 5 is given in Figure 2.
The artifact influence on the DVF is clearly visible for both artifact cases. However, the “interpolation” ar-
tifact actually flips the motion field in z-direction and has therefore a bigger impact on subsequent 4D dose
accumulation, as seen in the bottom row of Figure 2.

Table 1. GTV dose coverage of artifact-free and artifact-contained dose distributions. Coverage is quantified by differences
of D98,Artifact and D98,Artifact-free. Further, motion magnitudes (mean ± std) inside the ITV for artifact-free/artifact-
contained 4D CT phase registration (phase 6 to 3) as well as mean motion vectors (x, y, z-direction) are shown.

Pat. D98,Artifact − D98,Artifact-free (Gy) Mean 6 7→3 motion magnitude in ITV (mm)

Double
structure

Interpolation Artifact-free
Double

structure
Interpolation

L
iv

e
r

1 + 0.26 − 2.52 9.33 ± 2.20
(0.42, 2.92, 8.76)

4.27 ± 2.16
(0.25, 1.25, 3.94)

8.83 ± 2.53
(0.66, 0.62, 8.59)

2 + 0.06 − 0.12 9.99 ± 2.36
(−0.36, 2.29, 9.51)

5.23 ± 1.68
(−0.42, 0.72, 5.05)

4.61 ± 1.71
(−0.83, 2.48, 3.58)

3 + 0.09 − 0.04 7.02 ± 1.46
(2.09, 2.02, 6.24)

4.95 ± 1.83
(1.11, 1.40, 4.53)

5.75 ± 1.42
(1.48, 1.47, 5.28)

L
u

n
g

4 + 0.04 − 0.11 3.51 ± 0.41
(−0.54, −0.48, 3.37)

2.35 ± 0.57
(−0.43, −0.21, 2.25)

3.33 ± 1.15
(2.77, −1.40, 0.67)

5 − 0.23 − 1.87 5.93 ± 1.42
(0.67, −1.82, 4.90)

0.98 ± 0.63
(0.45, 0.17, −0.24)

6.26 ± 1.08
(−1.30, 0.22, −6.08)

6 + 0.01 − 0.01 3.32 ± 0.43
(−0.41, 1.39, 2.94)

2.67 ± 0.33
(−0.52, 1.41, 2.16)

2.82 ± 0.62
(−0.27, 1.39, 2.14)
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Figure 2. Illustration of results for patient 5. Top row: Comparison of DVF resulting from artifact-free/artifact-contained
4D CT phase registration (phase 6 to 3). Bottom row: Artifact-free reference dose (left) and dose difference between
retrospectively simulated and reference dose distributions for “double structure” (middle) and “interpolation” (right)
artifacts.
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A following test of the correspondence model inside the ITV reveals a by factor 2.5 higher mean Euclidean
distance between “interpolation” artifact and artifact-free correspondence model prediction for a ROI around the
GTV compared to the mean Euclidean distance between “double structure” artifact and artifact-free prediction,
as shown in Figure 3 for patient 5.
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Figure 3. Test of correspondence model. Left: Joint histogram of motion and velocity of CT reconstruction curve (patient
5) spans the motion space in which the correspondence model prediction is evaluated. Middle and right: Mean Euclidean
distance between artifact-containing and artifact-free correspondence model prediction inside the defined motion space.
Please note that shown color maps have different maximum values.

4. CONCLUSIONS

As expected and illustrated in Section 3, the results of our study show that 4D CT motion artifacts have an
impact on correspondence modeling and 4D dose accumulation. However, “double structure” artifacts in liver
cancer data sets are shown to have only a minor influence on subsequent dose accumulation, which was somewhat
expected. The same applies for lung patients, as the artifact often only occur in two or three 4D CT phases and,
thus, are mainly averaged out during the correspondence model training process. In our case, “interpolation”
artifacts occur in all 4D CT phases and, therefore, can have a bigger influence, as seen in Table 1 for patient 1
and 5. Evaluated motion magnitudes of one phase registration (phase 6 7→ 3) can not necessarily be correlated
to computed dose deviations between artifact and artifact-free D98 values.
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5. Results

5.4. Deep learning-based deformable image registration

Directly motivated by �ndings of the previous two sections, implementation of a DIR
framework that is able to estimate registration uncertainties seemed to be necessary for
further evaluation of the proposed 4D dose simulation algorithm and its uncertainties
and limitations. Traditional DIR algorithms, as analyzed regarding their performance in
lung and liver registration in Section 5.2, are commonly used and optimized for speci�c
registration tasks but have the risk of getting stuck in local minima during optimization
and are time consuming. �erefore, the idea was to develop a deep learning-based DIR
framework for fast registration of clinical thoracic and abdominal 4D CT data, which is
presented in the following publication:

T. Sentker†, F. Madesta† and R. Werner. GDL-FIRE4D: Deep Learning-based Fast 4D CT
Image Registration. In: Lect Notes Comput Sc, 765–773. Springer, 2018.

�e aim of this study was to 1) propose a general and e�cient CNN-based framework,
2) evaluate the proposed method by means of 4D CT benchmark data bases, i. e. DIRLAB
and CREATIS (cf. Section 4.4.1 and Section 4.4.2, respectively, as well as Table 4.1),
and 3) illustrate and analyze �rst dropout-generated registration uncertainty maps. To
understand the basic principle of deep learning-based image registration, an introduction
has been given in Section 4.3. �e utilized CNN architecture for the presented approach
is shown in Fig. 1 [MICCAI 2018]. �e application of pre-trained autoencoders allowed
for a deeper network structure. Dropouts in deeper layers extended the network to
be probabilistic and further aimed at an intrinsic and generalized DIR representation.
Utilizing dropouts during prediction and repeated motion estimations enabled computing
the sought motion �eld as the mean of the sampled predicted �elds. Additionally, voxel-
wise variances can be interpreted as local registration uncertainty estimates. Training and
testing of proposed CNN was done by in-house acquired 4D CT data sets of 69 ten-phase
4D CT data sets (cf. Section 4.4.4), split into 85% and 15% train and test, respectively.
Pseudo ground truth data was generated using traditional open source DIR frameworks
(NiftyReg, Plastimatch, VarReg) in a plug-and-play manner to register phase images of
4D CT data sets, i. e. the CNN was trained to learn the relationship between the moving
image IM and �xed image IF with given registration transformation φ. For each DIR
algorithm, respective probabilistic CNN variants were built and cascaded up to four times.
Evaluation of the output was again conducted using the TRE computed by means of
the landmarks publicly available for the DIRLAB and CREATIS data. Note that 4D CT
data of those image data bases was solely used for veri�cation purposes, not for model
training or testing. Further, registration output, i. e. motion vector �elds, were analyzed
†Shared �rst authorship.
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5.4. Deep learning-based deformable image registration

regarding their smoothness in terms of the standard deviation of the transformation
Jacobian determinant values of the lung voxels.

Resulting TRE and transformation smoothness values are summarized in Table 1
[MICCAI 2018]. Interestingly, the mean registration accuracy for the DIRLAB data is
higher for the speci�c CNN variants compared to the accuracy achieved by application of
the original DIR algorithms. For the CREATIS data, TRE values of CNN-based registrations
are similar to standard DIR. �e transformation smoothness, however, is for all CNN
variants lower in contrast to the smoothness of vector �elds computed by original DIR
frameworks. Estimated uncertainty maps, as illustrated in Fig. 2 [MICCAI 2018], di�er
in magnitude between individual CNN variants, but highlight that uncertainties occur
in the same spatial region. �e overall registration run-time for DIR of two 3D phase
images was reduced from approximately 900 s of traditional DIR frameworks to 15 s of
CNN-based DIR (60-fold speed-up).

In conclusion, all three aims of the proposed study were successfully implemented in a
new deep learning-based registration framework. Using the registration and uncertainty
output in subsequent dose accumulation processing steps directly allows for an error
propagation implementation. However, beforehand the general functionality of the
simulation approach has to be validated. �erefore, the next section focuses on verifying
the general dose simulation approach by comparing measured dose distributions and
dose simulation results. �e planned uncertainty propagation is afterwards implemented
in the Monte Carlo-based 4D dose accumulation scheme (cf. Sections 5.6 and 5.7).
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Abstract. Deformable image registration (DIR) in thoracic 4D CT im-
age data is integral for, e.g., radiotherapy treatment planning, but time
consuming. Deep learning (DL)-based DIR promises speed-up, but pre-
sent solutions are limited to small image sizes. In this paper, we propose
a General Deep Learning-based Fast Image Registration framework suit-
able for application to clinical 4D CT data (GDL-FIRE4D). Open source
DIR frameworks are selected to build GDL-FIRE4D variants. In-house-
acquired 4D CT images serve as training and open 4D CT data repos-
itories as external evaluation cohorts. Taking up current attempts to
DIR uncertainty estimation, dropout-based uncertainty maps for GDL-
FIRE4D variants are analyzed. We show that (1) registration accuracy
of GDL-FIRE4D and standard DIR are in the same order; (2) computa-
tion time is reduced to a few seconds (here: 60-fold speed-up); and (3)
dropout-based uncertainty maps do not correlate to across-DIR vector
field differences, raising doubts about applicability in the given context.

Keywords: Non-linear Image Registration · Registration Uncertainty
· 4D CT · Deep Learning

1 Introduction

Acquisition of 4D image data (3D+t images, respiration-correlated data) is an
integral part of current radiation therapy (RT) workflows for RT planning and
treatment of thoracic and abdominal tumors. Especially 4D CT imaging is mean-
while widespread and currently estimated to be routinely applied in approxi-
mately 70% of the RT facilities in the United States [1]. Typical clinical use cases
of 4D CT data are (semi-)automated target volume and organ at risk contour
propagation; assessment of motion effects on dose distributions (4D RT quality
assurance, dose warping) [2]; and 4D CT-based lung ventilation estimation and
its incorporation into RT treatment planning [1].

At this, a key step is the application of deformable image registration (DIR)
to the phase images of the 4D CT data. Traditional DIR approaches tackle the

? equal contribution
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underlying task of finding an optimal transformation mapping two phase images
by minimization of a dissimilarity measure that controls local correspondences
of voxel intensities [3]. Yet, the algorithms are time consuming and there exists
the risk of getting stuck in local minima during optimization.

Motivated by the exceptional success of deep learning (DL) and especially
convolutional neural networks (CNNs) for image segmentation and classification
tasks, meanwhile a number of approaches has been proposed to also solve image
registration tasks by CNNs – first in the context of optical flow estimation in
computer vision [4], and later similarly for medical image registration [3, 5–7].
Yang et al. further extended a CNN-based DIR architecture to a probabilistic
framework using dropouts [5], resulting in DIR uncertainty maps that could be
of great value for RT treatment planning [8].

However, Uzunova et al. noted that “dense 3D registration with CNNs is
currently computationally infeasible” [6], and focused on 2D (brain and cardiac)
DIR only. To overcome this issue, patch-based approaches have been proposed
for, e.g., 3D brain DIR [5], with the side effect that global information about the
transformation to learn might be missing [3].In turn, Rohé et al. indeed proposed
using a fully convolutional architecture; with a size of 64× 64× 16 voxel, their
cardiac MR images were, however, not even close to typical sizes of 4D CT
images (in the order of 512× 512× 150 voxel per phase image).

This paper is therefore dedicated to CNN-based registration suitable for ap-
plication to fast DIR in clinical thoracic 4D CT data. Taking up the aforemen-
tioned challenges and trends in current DL-based DIR,

C1 we propose a general and efficient CNN-based framework for deep learning
of dense motion fields in clinical thoracic 4D CT, called GDL-FIRE4D,

C2 build variants of GDL-FIRE4D using common open source DIR frameworks,
C3 perform a first comprehensive evaluation thereof using publicly available 4D

CT data repositories (thereby presenting first respective benchmark baseline
results for DL-based DIR in 4D CT data), and

C4 compare and discuss dropout-generated registration uncertainty maps for
the different GDL-FIRE4D variants.

To the best of our knowledge, all aspects C1-C4 are novel contributions in the
given application context.

The remainder of the paper is structured as follows: In Sec. 2, the problem
formulation and the concept of GDL-FIRE4D are detailed. Applied data sets and
performed experiments are described in Sec. 3 and respective results given and
discussed in Sec. 4. The paper closes with concluding remarks in Sec. 5.

2 Methods: DL-based Deformable Image Registration

A 4D CT image is a series (Ii)i∈{1,...,nph} of 3D CT images Ii : Ω → R, Ω ⊂ R3,
representing the patient geometry at different breathing phases i with nph as
number of available images and breathing phases, respectively. The phases i
sample the patient’s breathing cycle in time and are usually denoted by cycle
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fractions, i.e. {1, . . . , nph} ≡ {0%, . . . , 50%, . . . } with 0% as end inspiration and
50% as end expiration phase. Deformable registration in 4D CT data then aims
to estimate a corresponding series of transformations (ϕi)i∈{1,...,nph} between the
Ii and a reference image Iref, with ϕi : Ω → Ω. For the applications outlined in
Sec. 1, Iref usually represents one of the phase images Ii and the transformation
ϕi and vector fields ui : Ω → R3, ui = ϕi− id (id: identity map) the respiration-
induced motion of the image structures between phase i and the reference phase.

2.1 Traditional Deformable Image Registration (DIR) Formulation

In a traditional 4D CT DIR setting, the reference image is considered the fixed
image, Iref ≡ IF, and the phase images as moving images, Ii ≡ IM, which are
sequentially registered to IF by ϕi = arg minϕ∗

i∈C2[Ω] J [IF, IM;ϕ∗i ] to compute
the sought transformations (ϕi)i∈{1,...,nph}. The exact functional J , i.e. dissim-
ilarity measure, applied regularization approach and considered transformation
model, and the optimization strategy vary in the community; see [9] for details.

2.2 Convolutional Neural Networks (CNNs) for DIR

Different to traditional DIR, we now assume a database of npat training tuples(
Ipi , I

p
j , ϕ

p
ij

)
, i, j ∈ {1, . . . , nph}, p ∈ {1, . . . , npat} to be given; ϕpij = id + upij

represents a DIR result of the phase images Ii ≡ IF and Ij of patient p. The
goal is to learn the relationship between the input data

(
Ipi , I

p
j

)
and upij by a

convolutional neural network.
As noted by Uzunova et al. [6], it is currently computationally not feasible to

directly feed the entire images and vector fields into a CNN or GPU memory. In-
stead, we propose a slab-based approach: Let I|x̂ := I|Ωx̂

the restriction of image
I to Ωx̂ = {(x, y, z) ∈ Ω | x = x̂}, i.e. the sagittal slice of I at x-position x̂. Sim-
ilarly, let I|[x̂1,x̂2] the restriction of I to Ω[x̂1,x̂2] = {(x, y, z) ∈ Ω | x̂1 ≤ x ≤ x̂2},
i.e. an image slab comprising the sagittal slices x̂1, . . . , x̂2 of I. Using this nota-
tion, the aforementioned training tuples were converted to slab-based training
samples

(
Ipi |[x−2,x+2], I

p
j |[x−2,x+2], u

p
ij |x

)
with x ∈ {xmin, . . . , xmax} covering all

sagittal slices of I. The rationale was to represent maximum information along
main motion directions inferior-superior and anterior-posterior for each training
sample, but also to provide some anatomical context in lateral direction.

Furthermore, the image dynamics were rescaled to [0, 1], the slabs resam-
pled to isotropic resolution of 2 mm and cropped/zero-padded to identical size,
and the non-patient background intensity set to zero. Similar pre-processing
was applied to the displacement fields (resampling and -sizing of sagittal slices,
background set to zero). In addition, x-, y- and z-displacement components
were z-transformed on a voxel-level to avoid unintended suppression of small
displacements during CNN training. Thus, the CNN aimed to learn normalized
3D-vectors for the individual voxels of sagittal slices, which are back-transformed
to actual motion fields during final reconstruction of the fields. The pre-processed
slab-based samples (Ĩpi |[x−2,x+2], Ĩ

p
j |[x−2,x+2], ũ

p
ij |x) with x ∈ {xmin, . . . , xmax} of

the npat patients were finally shuffled and used for CNN training.
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Fig. 1. CNN architecture implemented for DL-based DIR.

We tested different CNN architectures, including the classical U-Net [10]. Due
to an observed increased robustness for DL-based DIR compared to the U-Net,
we finally used an iterative CNN architecture with an Inception-ResNet-v2 [11]
embedded in the encoder part of a pre-trained CT autoencoder, see Fig. 1, with
MSE (mean squared error) loss function and NADAM optimizer (implemented
in Tensorflow). Iterative means that we cascaded copies of the trained networks
for improved coverage of large motion patterns.

2.3 Probabilistic CNN-based DIR

As detailed by Yang et al. [5] and references therein, deterministic CNN archi-
tectures can be extended to probabilistic using dropouts [12]. Briefly speaking,
the dropout layers incorporated into the CNN architecture to prevent overfitting
during model training remain enabled during motion prediction. Repeated mo-
tion prediction with respectively sampled connections to be dropped eventually
enable computing the sought motion field as the mean of the sampled predicted
fields; further, corresponding voxel-wise variances can be interpreted as local
registration uncertainty estimates [5].

3 Materials and Study Design

All experiments were run on a desktop computer with Intel Xeon CPU E5-
1620 and Nvidia Titan Xp GPU. Models and scripts required can be found at
github.com/IPMI-ICNS-UKE/gdl-fire-4d.

3.1 Training and Testing 4D CT Data Cohorts

For CNN training and model optimization, a cohort of 69 in-house acquired
RT treatment planning ten-phase 4D CT data sets of patients with small lung
and liver tumors was used (image size: 512 × 512 × 159 voxel) and a 85%/15%
split into training and testing data performed. The 4D CT images of the open
data repositories DIRLAB [13] and CREATIS [14] (see also www.creatis.insa-
lyon.fr/rio/popi-model) served as external evaluation cohort of the trained CNNs
(i.e. no model optimization performed by means of the external 4D CT cohorts).
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1Fig. 2. Motion fields estimated by the original DIR algorithms (left column); GDL-
FIRE4D with only a single iteration (2nd column); GDL-FIRE4D n iterations (3rd
column); and GDL-FIRE4D variant-specific registration uncertainty maps (right col-
umn). Data set: DIRLAB case 08, DIR of 0% and 50% phase images.

3.2 Applied DIR Frameworks and Algorithms

To provide motion field training data, the in-house 4D CT data were registered
using three common open source DIR frameworks: PlastiMatch [15], NiftyReg
[16], and VarReg [17]. All approaches have been proven suitable for 4D CT
registration [9]; the applied parameters were similar to respective EMPIRE10
parameters [9]. However, the algorithms are applied in a plug-and-play manner
(no data pre-processing or pre-registration, no masks used). For each DIR algo-
rithm, motion fields were provided between the 20% phase image (served as IF)
and all other phase images.

3.3 Experiments and Evaluation Measures

For each DIR algorithm, a respective probabilistic GDL-FIRE4D variant was
built (up to 4 cascaded CNNs, 20% dropouts). DIR accuracy was evaluated by
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the target registration error (TRE), computed by means of the landmarks pub-
licly available for the DIRLAB and CREATIS data. In addition, the smoothness
of transformations of the different DIR approaches and GDL-FIRE4D variants
was analyzed in terms of the standard deviation of transformation Jacobian
determinant values of the lung voxels of the evaluation data.

4 Results and Discussion

Motion fields estimated by the original DIR algorithms and respective GDL-
FIRE4D variants as well as corresponding registration uncertainty maps are
shown in Fig. 2 for DIRLAB case 08 (DIRLAB case with maximum motion
amplitude) and phase 50% to phase 0% DIR. The similarity of the original and
the GDL-FIRE4D predicted fields is striking, i.e. the CNN obviously learned the
DIR-specific transformation properties. This includes that the NiftyReg GDL-
FIRE4D variant has (similar to the original DIR) problems to directly cover
larger motion amplitudes – and thereby motivates cascading several trained
models for iterative CNN-based DIR. The success can be seen in Table 1, where
the NiftyReg GDL-FIRE4D outperforms the original NiftyReg DIR in terms of
accuracy especially for cases with larger motion.

Still, GDL-FIRE4D DIR accuracy as well as transformation properties for
the other DIR approaches also resemble respective values of the traditional reg-
istration algorithm – but GDL-FIRE4D offers a reduction of the runtime from
approx. 15 min to a few seconds (speedup of approx. 60-fold).

Finally, it can be seen that the computed DIR uncertainty maps differ strongly
between the GDL-FIRE4D variants. In Fig. 3, a dataset of our internal testing
cohort is shown that exhibits an artifact in the liver. This artifact led to very dif-
ferent motion patterns estimated by the NiftyReg and the VarReg GDL-FIRE4D

variant, but almost no measurable uncertainty for both DIR approaches. Being
a direct consequence of the concept of probabilistic CNN-based DIR, this does,
however, not match our understanding of DIR uncertainty and raises doubts re-
garding its applicability for RT planning and estimation of uncertainties therein.
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Fig. 3. From left to right: CT image serving as reference image with artifact in liver; dif-
ference of motion amplitudes estimated by the NiftyReg and the VarReg GDL-FIRE4D

variants, illustrating large across-DIR approach differences; NiftyReg and VarReg GDL-
FIRE4D uncertainty maps, showing negligible uncertainties for both variants.
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Table 1. TRE values (in mm) and transformation smoothness (measured by stan-
dard deviation of lung voxel Jacobian determinant values), listed for the DIRLAB and
CREATIS data, the individual DIR algorithms, and respective GDL-FIRE4D variants
(PM: PlastiMatch; NR: NiftyReg; VR: VarReg). Landmark distance before registra-
tion: (8.46 ± 6.58) mm for the DIRLAB and (8.11 ± 4.76) mm for the CREATIS data.

Original DIR algorithms GDL-FIRE4D

PM [16] NR [15] VR [17] PM NR VR

D
IR

L
A
B

4
D
C
T

01 1.54 ± 0.98 1.46 ± 0.92 1.13 ± 0.54 1.69 ± 0.92 1.58 ± 0.80 1.20 ± 0.60
02 1.74 ± 1.76 1.55 ± 1.06 1.17 ± 0.83 1.58 ± 1.07 1.65 ± 1.15 1.19 ± 0.63
03 2.78 ± 2.20 2.53 ± 2.41 1.33 ± 0.69 2.39 ± 1.76 2.68 ± 1.78 1.67 ± 0.90
04 2.70 ± 2.27 3.01 ± 2.45 3.08 ± 3.83 2.72 ± 1.97 2.48 ± 1.68 2.53 ± 2.01
05 3.30 ± 3.06 3.21 ± 2.77 1.57 ± 1.33 2.83 ± 2.21 3.09 ± 2.50 2.06 ± 1.56
06 3.80 ± 3.03 5.40 ± 3.94 5.23 ± 4.67 3.01 ± 1.97 2.73 ± 1.63 2.90 ± 1.70
07 5.62 ± 5.32 8.36 ± 6.59 4.64 ± 3.91 4.48 ± 4.83 4.12 ± 4.21 3.60 ± 2.99
08 7.65 ± 7.45 11.45±9.08 4.58 ± 5.95 7.44 ± 6.87 8.26 ± 6.47 5.29 ± 5.52
09 3.74 ± 2.60 5.66 ± 3.24 2.66 ± 2.46 3.56 ± 2.35 3.26 ± 1.90 2.38 ± 1.46
10 3.15 ± 2.99 4.39 ± 4.21 2.14 ± 2.42 2.48 ± 1.99 2.55 ± 2.01 2.13 ± 1.88

∅ TRE 3.60 ± 1.83 4.70 ± 3.17 2.75 ± 1.57 3.22 ± 1.71 3.24 ± 1.81 2.50 ± 1.16
∅ σ|∇ϕ| 0.10 ± 0.02 0.11 ± 0.03 0.39 ± 0.08 0.30 ± 0.13 0.24 ± 0.09 0.39 ± 0.14

C
R
E
A
T
IS

01 1.13 ± 0.78 1.79 ± 1.26 0.90 ± 0.39 1.49 ± 0.83 1.73 ± 0.97 1.34 ± 0.74
02 3.29 ± 3.10 4.29 ± 4.33 1.95 ± 2.87 3.59 ± 2.92 4.25 ± 3.47 2.98 ± 2.38
03 1.95 ± 2.14 2.39 ± 2.60 1.14 ± 1.37 1.83 ± 1.42 2.05 ± 1.26 1.57 ± 1.01
04 2.32 ± 2.95 2.51 ± 2.87 1.28 ± 2.13 1.79 ± 1.79 1.92 ± 1.73 1.64 ± 1.62
05 1.88 ± 1.84 2.51 ± 2.73 1.17 ± 1.17 2.10 ± 1.78 2.18 ± 1.67 1.62 ± 1.09
06 1.13 ± 0.78 1.52 ± 1.38 0.97 ± 0.72 1.60 ± 1.07 1.63 ± 1.11 1.26 ± 0.73

∅ TRE 2.01 ± 0.68 2.50 ± 0.88 1.24 ± 0.34 2.07 ± 0.78 2.29 ± 0.89 1.74 ± 0.57
∅ σ|∇ϕ| 0.09 ± 0.02 0.11 ± 0.05 0.28 ± 0.05 0.31 ± 0.12 0.26 ± 0.08 0.30 ± 0.10

5 Conclusions

The presented GDL-FIRE4D framework illustrates feasibility and potential of
deep learning of dense vector fields for motion estimation in clinical thoracic 4D
CT image data (TRE values of CNN-based DIR were in the same order than for
the underlying DIR algorithms, accompanied by a speed-up factor of approxi-
mately 60), and thereby motivates continuing optimization of the framework.
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5.5. Accuracy of 4D dose simulation

High simulation accuracy of 4D dose accumulation in the context of VMAT quality assur-
ance is mandatory to allow for interpretable results and further usage of estimated dose
distributions for e. g. treatment plan adaption. As the dose simulation scheme requires
instantiation of various input parameters that in�uence estimated dose distributions, the
reliability of the simulation results is mitigated. �us, the here presented study aims at
analyzing the impact of 4D dose simulation parameters on the simulation accuracy. Note
that uncertainties introduced by target deformation and non-linear registration were
explicitly refrained from analyzing. Identi�cation of the most in�uencing factors and
assessment of the overall appropriateness of 4D VMAT dose simulation is conducted by
comparing VMAT-based SBRT treatment simulations and motion phantom-based dose
measurements, as presented in following publication:

T. Sothmann†, T. Gauer† and R. Werner. 4D dose simulation in volumetric arc therapy:
Accuracy and a�ecting parameters. PLoS One, 12(2):e0172810, 2017.

Dose measurements were executed using an ionization chamber-based detector array
with high spatial resolution mounted on a dedicated motion platform to allow for simulat-
ing patient and synthetic motion patterns. Further, a lung phantom add-on consisting of
solid water, tumor, lung and bone inserts was placed on top of the detector, as illustrated
in Fig. 1 (left) [PLOS 2017]. A VMAT treatment plan comprising of two arcs was planned
on the corresponding 3D CT image of the experimental setup, with the achieved dose
distribution shown in Fig. 1 (right) [PLOS 2017]. In Table 1 [PLOS 2017], the simulated
motion patterns consisting of synthetic sine motion and regular, as well as irregular,
patient motion trajectories are listed. By applying those trajectories, the treatment plan
was delivered and the dose measured by the detector individually for each VMAT arc
resulting in a motion-a�ected dose distribution. Similarly, reference dose distributions
were acquired by irradiating the detector while no motion trajectory was applied to the
phantom (static measurement). For the dose simulation, the described approach was
used, with the di�erence that, in this study, no internal motion prediction, i. e. no appli-
cation of correspondence models, was necessary as the phantom motion patterns were
known. Considered and investigated as most in�uencing parameters on the accuracy of
the 4D dose simulation were 1) accuracy of target structure and organs at risk motion
representation, 2) degree of temporal discretization of technical dose delivery process
and 3) accuracy of static dose calculation. To investigate these parameters, di�erent
experiments were performed. For 1), as no correspondence modeling and therefore no
uncertainty of the predicted motion was included, 4D dose simulation had been repeated
†Shared �rst authorship.
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with systematically varied starting phase. Using four di�erent discretization levels, i. e.
discretization of the continuous VMAT dose delivery process by splitting the total arc
into sub-arcs of 2.3◦, 5◦, 10◦ and 150◦, where 2.3◦ is the �nest possible discretization and
150◦ represents the total arc (cf. Section 2.4.4 for VMAT discretization details), allowed to
investigate parameter 2). Analysis of parameter 3) was done by computing the original
treatment plan on the AvCT, on a single phase of the 4D CT and �nally by exploiting the
entire set of breathing phases represented by the 4D CT. Simulated and measured dose dis-
tributions were primarily evaluated and compared by a γ -evaluation (cf. Section 4.2.2) for
the total dose and clinical relevant target structures (CTV, ITV). To do so, corresponding
coronal 2D plane out of the simulated 3D volume dose was chosen for comparison to the
measured 2D dose plane. �e principle evaluation strategy is visualized in Fig. 3 [PLOS
2017]. As the focus of the simulation scheme was to illustrate possible motion-induced
deviations between static and motion-a�ected dose distributions, the comparison was
done by analyzing γ -maps representing the dose di�erences of static and motion a�ected
measurements and simulations, i. e. as shown in the bottom row of Fig. 3 [PLOS 2017]. In
Fig. 4 [PLOS 2017], achieved 2D γ -maps for di�erent motion patterns and discretization
level are illustrated. Repeated dose measurements (identical dose measurement series at a
di�erent day) were conducted to consider potential dose measurement uncertainties and
are additionally shown; with the visual agreement of repeat measurements being high.
For the dose simulation of irregular motion patterns the 2.3◦ level performed noticeably
better, i. e. agreement between simulated and measured maps is higher, compared to the
150◦ level, indicating a more reliable computational simulation of the VMAT-delivered
motion-a�ected dose. To further analyze this, in Tables 2-5 [PLOS 2017], corresponding
values are given for all conducted measurements and simulations. Especially for smaller
structures, i. e. CTV and ITV, highest simulation accuracy was achieved by the 2.3◦ level
simulations. Results for varying starting phases are shown in Fig. 5 [PLOS 2017]. Here,
both the �nest and lowest discretization level were investigated for two motion patterns
(synthetic sine and regular patient motion) by systematically changing the temporal
starting point t = 0 s of respective curves by adding o�sets ∆t ∈ [0 s, 10 s]. As expected
and visible on the left part of the �gure, varying the starting phase for a periodic motion
returns a periodic evaluation metric value with T = Tbreathing cycle. For the regular patient
motion (cf. right part of �gure) the variation of the starting phase for the simulation level
with beforehand proven highest simulation accuracy, i. e. the 2.3◦ level, highly impacts
computed metric values. On the contrary, numbers for the 150◦ level simulation suggest
only a minor impact of the starting phase.

In conclusion, the proposed 4D dose simulation approach achieved high accuracy by
applying lowest possible discretization and can therefore be used to accurately predict
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motion e�ects on dose distributions. However, as correspondence modeling was not
needed, the in�uence of estimated patient motion and its accuracy remains to be investi-
gated. Limitations of simulation accuracy in�uencing parameters 2) and 3), meaning the
maximum temporal resolution of the treatment planning system de�ned by the angular
dose segment size and the dependency on pre-calculated static dose distributions, were
consequences of the utilized dose simulation algorithm. In the next section, therefore, the
re-implementation of the current framework in a Monte Carlo-based simulation approach
to allow for even higher simulation accuracy is presented.
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Abstract
Radiotherapy of lung and liver lesions has changed from normofractioned 3D-CRT to ste-

reotactic treatment in a single or few fractions, often employing volumetric arc therapy

(VMAT)-based techniques. Potential unintended interference of respiratory target motion

and dynamically changing beam parameters during VMAT dose delivery motivates estab-

lishing 4D quality assurance (4D QA) procedures to assess appropriateness of generated

VMAT treatment plans when taking into account patient-specific motion characteristics. Cur-

rent approaches are motion phantom-based 4D QA and image-based 4D VMAT dose simu-

lation. Whereas phantom-based 4D QA is usually restricted to a small number of

measurements, the computational approaches allow simulating many motion scenarios.

However, 4D VMAT dose simulation depends on various input parameters, influencing esti-

mated doses along with mitigating simulation reliability. Thus, aiming at routine use of simu-

lation-based 4D VMAT QA, the impact of such parameters as well as the overall accuracy of

the 4D VMAT dose simulation has to be studied in detail–which is the topic of the present

work. In detail, we introduce the principles of 4D VMAT dose simulation, identify influencing

parameters and assess their impact on 4D dose simulation accuracy by comparison of sim-

ulated motion-affected dose distributions to corresponding dosimetric motion phantom mea-

surements. Exploiting an ITV-based treatment planning approach, VMAT treatment plans

were generated for a motion phantom and different motion scenarios (sinusoidal motion of

different period/direction; regular/irregular motion). 4D VMAT dose simulation results and

dose measurements were compared by local 3% / 3 mm γ-evaluation, with the measured

dose distributions serving as ground truth. Overall γ-passing rates of simulations and

dynamic measurements ranged from 97% to 100% (mean across all motion scenarios: 98%

± 1%); corresponding values for comparison of different day repeat measurements were

between 98% and 100%. Parameters of major influence on 4D VMAT dose simulation accu-

racy were the degree of temporal discretization of the dose delivery process (the higher, the

better) and correct alignment of the assumed breathing phases at the beginning of the dose

measurements and simulations. Given the high γ-passing rates between simulated motion-

affected doses and dynamic measurements, we consider the simulations to provide a reli-

able basis for assessment of VMAT motion effects that–in the sense of 4D QA of VMAT

treatment plans–allows to verify target coverage in hypofractioned VMAT-based

PLOS ONE | DOI:10.1371/journal.pone.0172810 February 23, 2017 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Sothmann T, Gauer T, Werner R (2017)

4D dose simulation in volumetric arc therapy:

Accuracy and affecting parameters. PLoS ONE 12

(2): e0172810. doi:10.1371/journal.pone.0172810

Editor: Qinghui Zhang, North Shore Long Island

Jewish Health System, UNITED STATES

Received: November 18, 2016

Accepted: February 9, 2017

Published: February 23, 2017

Copyright: © 2017 Sothmann et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by

Forschungsförderungsfond of the Medical Faculty

of the University of Hamburg (to RW; URL: https://

www.uke.de/english/research/funding-

opportunities/faculty-of-medicine/index.html).

Competing interests: The authors have declared

that no competing interests exist.



radiotherapy of moving targets. Remaining differences between measurements and simula-

tions motivate, however, further detailed studies.

Introduction

Radiation therapy of lung and liver lesions has fundamentally changed from conventional 3D

conformal radiation therapy (3D-CRT) to hypofractioned and even ablative-type treatment

schemes such as stereotactic body radiation therapy (SBRT) or stereotactic ablative radiother-

apy (SABR) [1, 2]. Treatment plans are often delivered by intensity modulated radiation ther-

apy (IMRT)-type techniques like volumetric modulated arc therapy (VMAT) [3]. Lung and

liver lesions are, however, subject to respiratory motion with well-studied motion amplitudes

of up to several centimetres [4, 5]. For IMRT-type dose delivery, the target motion may lead to

a risk of so-called interplay effects, i. e. the unintended interference of target motion and

dynamically changing beam parameters such as gantry position and MLC segments’ shape [6].

Some years ago, this has been an oft-reported reason to avoid IMRT techniques for lung and

liver treatment even for conventional fractionation schemes [7]–although planning studies

highlighted superior dose distribution characteristics compared to 3D-CRT [8, 9] and related

interplay effects were shown to average out over the course of treatment [10].

Nowadays, lung and liver patients are treated in a few or even a single fraction [11], with

high target doses delivered by VMAT techniques (sometimes even by means of only a single

arc [12]) and employing treatment units with high dose rates, e. g. using flattening filter free

beams [13, 14]. Thus, the risk associated to single fraction interplay effects appears to be

increased. This, on the one hand, highlights the importance of studies on interplay effects in

the context of VMAT and hypofractionation [6, 14–21]. On the other hand and from a clinical

perspective, it also motivates establishing 4D quality assurances (4D QA) to assess the potential

risk of motion and interplay effects for generated treatment plans when accounting for

patient-specific breathing patterns before dose delivery. Related studies, including the afore-

mentioned references, can be divided into computational 4D dose simulation-based and

motion phantom, i. e. measurement-based approaches. A drawback of motion phantom-based

4D QA is that it is restricted to a small(er) number of measurements and variations of the

patient-specific motion patterns. In contrast, computational approaches allow simulating

almost every conceivable scenario and have the potential to provide a more comprehensive

picture of motion effects and their impact on, e. g., target coverage. They, however, require

instantiation of various input parameters that influence estimated dose distributions–and

which therefore mitigate reliability of the simulation results.

Being placed in the in the context of the discussion about appropriate VMAT 4D QA, the

present study aims to analyze the impact of 4D VMAT dose simulation parameters on the sim-

ulation accuracy, to identify the most influencing factors, and finally to assess the overall

appropriateness of 4D VMAT dose simulation to assess motion-induced dose alterations for

VMAT-based SBRT treatment when compared to motion phantom-based measurements. To

do so, we built on a computational 4D dose simulation scheme originally introduced for the

analysis of interplay effects in step-and-shoot IMRT [7], extended it to VMAT dose delivery,

and studied different physiological as well as technical parameters that likely affect 4D VMAT

dose simulation accuracy.
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Materials and methods

This section is structured as follows: First, the concept of VMAT dose delivery is introduced,

the fundamentals of the applied 4D dose simulation scheme are described and parameters are

identified that potentially influence 4D VMAT dose simulation accuracy. Finally, the study

design, i. e. strategies to address these parameters, and the performed experiments are detailed.

Principles of and uncertainties in 4D VMAT dose simulation

Volumetric arc therapy exploits dose rate and gantry speed variation as well as leaf modulation

to maximize benefits of classic (e. g. static field) IMRT techniques [22]. Briefly speaking, the

dose is delivered during continuous gantry rotation around the patient, usually covering a

wide range of gantry angles and often using a (small) number of so-called arcs as indicated in

Fig 1.

Due to leaf modulation, each gantry angle is further associated with a multileaf collimator

(MLC)-formed treatment field of specific shape and dose; cf. Fig 1 (left).

Computer-based simulation of VMAT dose delivery requires discretization of the continu-

ous process. Let _D : O � R3 � T � R! Rþ be the time-dependent dose rate of the dose

delivery process and D : O! Rþ the resulting dose distribution; then, the discretization

mathematically translates into

D xð Þ ¼
Z

T

_D x; tð Þdt �
X

t2 ~T

_D x; tð ÞDt ¼
X

t2 ~T

DtðxÞ ð1Þ

with T ¼ ð0;T� being the period of dose delivery and ~T ¼ fDt; 2Dt; . . . ;Tg a sampled ver-

sion of T . In other words: DtðxÞ≔ _Dðx; tÞDt represents an approximation of the dose delivered

during the interval ðt � Dt; t� � T , and the sum of all Dt(x)–the accumulated or simulated

(4D) dose [7]–approximates the entire dose D to the voxel at spatial position x 2 O.

Focusing on single arc VMAT dose delivery, the time variable t can be replaced by the gan-

try rotation angle α, and Eq (1) reads

D xð Þ �
X

a2 ~A

_D x; að ÞDa ¼
X

a2 ~A

DaðxÞ ð2Þ

with ~A � A being a discretized version of the gantry angle range A of the considered arc. As

Fig 1. Experimental setup. Left: Measurement setup: 4D motion platform with detector array and lung phantom, consisting of bone, lung and tissue

equivalent materials. Right: Average CT of setup, planned VMAT dose distribution, and target structures/organs at risk.

doi:10.1371/journal.pone.0172810.g001
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before, DaðxÞ≔ _Dðx; aÞDa is an approximation of the dose delivered to x during the gantry

interval (α − Δα, α]. Thus, for Δα! 0, the distributions Dα can be interpreted as the dose

delivered for the individual MLC-formed fields illustrated in Fig 1 (left).

So far, Eqs (1) and (2) represent a discretization of single arc VMAT dose delivery to a static
geometry. Including (here: breathing-induced) motion means to additionally account for a

time dependence of the spatial voxel position during dose delivery. This leads to a common

modification of Eq (2) [23]:

Ddyn xð Þ �
X

a2 ~A

X

t2 ~T a

Da φt xð Þ
� �

¼
X

a2 ~A

X

t2 ~T a

Da � φt

� �
ðxÞ: ð3Þ

Here, ~T a represents a sampled version of the time interval corresponding to dose delivery

for the gantry angle interval (α − Δα, α] and φt(x) 2 O the position of the voxel originally

positioned at x at time point t 2 ~T a. The other way around, φt : O! R3 can also be read as

a transformation that maps the dose delivered to the correspondingly moved geometry φt(O)

to the original (= reference) coordinate space and geometry O, with the latter being usually

defined by a pre-selected phase of a planning 4D CT or a derived image like a temporal aver-

age CT. Consequently, the resulting dose distribution Ddyn : O! R3 represents an estima-

tion of the dose delivered during the considered VMAT arc and accounting for the

geometry (= patient, phantom) motion represented by the set of transformations φt repre-

senting all t 2 ~T a and a 2 ~A. Note that the nested summation in Eq (3) is only necessary if

the temporal resolution of the target motion information is higher than the resolution of the

dose delivery process; otherwise, the 4D dose simulation can be formulated by a single

summation.

Extending single arc 4D dose simulation, i. e. Eq (3), to an entire treatment course would

finally lead to an extended nested summation,

Dtotal
dyn ðxÞ ¼

Xnfx

i¼1

Xnarc

j¼1

X

a2 ~A j

X

t2 ~T a

ðDi;j;a � φi;j;tÞðxÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
angle interval dose

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
single arc dose

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
treatment fraction dose

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
total treatment dose

: ð4Þ

Assuming more or less periodic motion patterns, the fractionation effect (outermost summa-

tion) on the delivered dose distribution can be simulated by repeating treatment fraction dose

computation with randomly varied breathing phases associated to the beginning of the dose

delivery of the individual fractions (i. e. randomly shifting the voxel trajectories in time) and

summing up the dose distributions [7]. This averages out single fraction motion and interplay

effects, depending on the number of fractions nfx. Principle and dosimetric consequences have

already been well-explained for classic IMRT techniques [10], and related conclusions can be

transferred to VMAT. Similar observations can also be made for the summation over different

arcs [21].

As our study aims to analyze factors that systematically (i. e. in a deterministic way) influ-

ence 4D dose simulation accuracy, we refrain from considering the randomness and averaging

effects induced by fractionation and multi-arc dose delivery. Instead, we focus on single arc

4D dose simulation as given by the innermost summation and Eq (3), respectively.
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Further neglecting implementation details such as the exact type of dose interpolation in Eq

(3) and potential effects of, e. g., ignoring mass effects by not applying energy transformation

models (previously proven to be small for small voxel sizes [23]), the following parameters are

considered as potentially most affecting 4D VMAT dose simulation accuracy and are studied:

P1 Accuracy of target structure and organs at risk motion representation Correct representa-

tion of target structure and organs at risk motion, i. e. the estimation of the transforma-

tions φi,j,α, is a prerequisite for accurate 4D dose simulation and assessment of motion/

interplay effects. In real patient-scenarios, the φi,j,α are usually computed by non-linear

registration in planning 4D CT data–with the problem of being confined by a limited

temporal resolution of the data and uncertainties associated to the applied registration

approach; see Ref. [24, 25] for recent overviews on non-linear registration accuracy in 4D

CT image sequences. Phantom studies, however, usually allow applying known motion

patterns, which reduces these uncertainties to a minimum. Imperfect synchronization of

the phantom breathing phase at measurement beginning and the assumed starting phase

used for simulation purposes remains nevertheless as source of error especially for com-

parison of measurements and simulations.

P2 Degree of temporal discretization of technical dose delivery process Discretization of the

continuous VMAT dose delivery process, i. e. Eqs (2) and (3), means to ignore potential

interplay effects that are due to gantry or MLC leaf movements during the considered

intervals of size Δt and Δα. Thus, interplay effects on a times scale of Δt (Δα) will not be

represented by the simulated 4D dose.

P3 Accuracy of static dose calculation Like for any RT treatment planning, 4D dose simula-

tion accuracy also depends on the dose calculation algorithm and dose grid size (has to be

small for interpolation-based 4D dose simulation schemes) applied for computation of

the individual Di,j,α. In addition and especially for lung SBRT, the choice of appropriate

CT images and density distributions considered for Di,j,α computation further remains an

open issue and a potentially influencing parameter when comparing 4D dose simulation

results to measurements.

Study design and experiments

Following the previous section, our study aimed at analyzing the influence of the above-men-

tioned aspects on single fraction single arc 4D dose simulation accuracy by comparison of

motion phantom dose measurements and corresponding simulated dose distributions; the

measurements were considered as ground truth to be resembled by the simulations as closely

as possible. The motion phantom setup has already been shown in Fig 1 and is–together with

the applied dose measurement equipment, treatment planning aspects, motion scenarios, the

performed experiments and our evaluation strategy–detailed in the following.

Motion phantom and dose measurement setup. The motion phantom consisted of a

lung phantom add-on compiled by solid-water, lung, tumor and bone inserts, and the Octavius

1000 SRS detector array (PTW Freiburg, Germany). The detector provided high spatial resolu-

tion dose measurements by means of 977 liquid filled ionization chambers, distributed over an

area of 11×11 cm, with a 2.5 mm chamber spacing in the inner 5.5×5.5 cm and 5 mm spacing in

the outer detector area [26]. The add-on was mounted on a computer-controlled motion plat-

form with three spatial degrees of freedom (Euromechanics, Germany). According to Ref. [27],

the phantom-based regular breathing pattern simulation accuracy is higher than 0.5 mm.

Motion scenarios and treatment planning. The characteristics of the motion patterns

programmed to the phantom are listed in Table 1. Five sinusoidal curves with varying motion

4D dose simulation in volumetric arc therapy: Accuracy and affecting parameters
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period and directions as well as two real-patient tumor motion paths extracted from Cyber-

Knife lung SBRT treatment logfiles were considered. The (ir)regularity of the real-patient

curves differed significantly (Fig 2); the two scenarios are subsequently denoted as ‘regular’

and ‘irregular’.

With the tumor insert of the lung phantom defining an 2×2×2 cm clinical target volume

(CTV), the internal target volume (ITV) being chosen sufficiently large to compensate for sim-

ulated motion patterns, and the lungs surrounding the ITV as organ at risk, dual-arc VMAT

(RapidArc, Varian Medical Systems, USA) plans with standard MLC modulation were created

using Eclipse 13 (Varian Medical Systems). Taking into account an angular dependency of the

Octavius 1000 SRS detector array as reported in [28] (larger differences between measured

dose and the dose calculated by the treatment planning system for dose delivery to the rear of

the detector), we restricted the utilized gantry angle interval to 285˚ to 75˚ and vice versa, cf.

Fig 1. Thus, beam incidence is always on the front of the detector (the angle perpendicular to

the detector front plane is 360˚/0˚). ITV dose coverage was optimized based on the average CT

corresponding to a 10-phase 4D CT of the moving phantom [motion pattern 1b of Table 1; CT

scanner: Siemens Definition AS+ (Siemens Healthcare, Germany) with Real-Time Position

Table 1. Motion characteristics: maximum and mean peak-to-peak amplitudes, mean breathing cycle

lengths.

Case Variability max. Amplitude (mm) ø Amplitude (mm) ø Period (s)

SI AP LR SI AP LR

1 a none (sine) 20 10 0 20 10 0 3.1

b 20 10 0 20 10 0 4.5

c 20 10 0 20 10 0 5.8

d 20 0 0 20 0 0 4.5

e 20 10 10 20 10 10 4.5

2 a regular 16.3 11.8 N/A 12.8 ± 3.3 9.4 ± 3.3 N/A 4.8 ± 0.8

b irregular 22.5 23.9 N/A 13.0 ± 5.2 13.6 ± 5.5 N/A 4.4 ± 1.0

SI: superior-inferior; AP: anterior-posterior; LR: left-right.

doi:10.1371/journal.pone.0172810.t001

Fig 2. Patient motion scenarios. SI motion amplitudes of applied regular and irregular tumor trajectories.

doi:10.1371/journal.pone.0172810.g002
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Management system (Varian Medical Systems)]. For 6 Gy prescribed dose, a nominal 600

MU/min dose rate and an energy of 6 MV, the ‘beam on’ time per arc was 50 s, corresponding

to a mean arc velocity of 3˚/s.

Experiments I: dose measurements. The treatment plans were delivered without (static

measurement) and with phantom motion (dynamic measurement) by a TrueBeam linear

accelerator (Varian Medical Systems, USA). The delivered dose was separately measured for

the individual arcs, and two measurement series were acquired at different days for each

motion scenario to estimate related dose measurement uncertainties. The motion phantom

position for static measurements corresponded to mid-respiration states of the individual

motion scenarios. This position also represented the starting position and breathing phase for

the dynamic measurements (synchronized with ‘beam on’ signal of the treatment unit).

Experiments II: 4D VMAT dose simulation. As the motion phantom was limited to

rigid movements and to be able to separately analyze the impact of parameters P2 and P3, we

explicitly refrained from using image-based obtained motion trajectories φi,j,t. Instead, the tra-

jectories programmed to the phantom and used throughout the measurements were applied as

φi,j,t in Eq (4). With a resolution of 0.04 s, uncertainties arising from temporal motion trajec-

tory discretization were assumed to be negligible. To further illustrate the influence of inaccu-

racies regarding the synchronization of the breathing phases at motion phantom

measurement and simulation beginning (P1), 4D dose simulation has been repeated with sys-

tematically varied starting phase. This part of the experiments was also intended to demon-

strate potential advantages of a simulation-based approach in comparison to measurement

studies.

With the motion trajectories being assumed to agree between dose measurements and sim-

ulation, the influence of the temporal discretization of the dose delivery process (P2) was stud-

ied by varying the angle interval size Δα. Four discretization levels were applied: 2.3˚

(corresponds to 65 segments per arc), 5˚ (30 segments), 10˚ (15 segments), and 150˚ (1 seg-

ment). The corresponding angle interval dose segments Dα were determined using the arc

splitting option implemented in Eclipse for verification purposes. The smallest possible angle

interval size in Eclipse was 2.3˚, which explains the aforementioned choice for the finest discre-

tization level. The last discretization choice actually means that the planned arc is not split into

segments. This, in turn, represents the situation that effects of dynamically changing beam

parameters are not accounted for during 4D dose simulation; the geometry is moved inside

the originally planned ‘dose cloud’ and interplay effects are neglected. The hypothesis was that,

if interplay effects influenced the measurements, the agreement between measurement and

simulation should increase with finer discretization.

For studying the influence of differences with respect to calculation of the static dose distri-

butions Di,j,α, 4D dose simulation was repeated with the arc segment dose distributions being

computed based on the intensity distribution of the average CT, based on a single phase CT of

the acquired 4D CTs, and exploiting the entire set of breathing phases represented by the 4D

CTs. In the latter case, a dose distribution Di,j,α was assumed to correspond to the dose distri-

bution computed by means of the CT with the breathing phase closest to the actual phase rep-

resented by φi,j,t. In addition, the outputs of the dose calculation algorithms applied to lung

SBRT in our facility–the analytical anisotropic algorithm (AAA) and Acuros XB–were exem-

plarily compared.

Evaluation and comparison of measured and simulated dose distributions. Measured

and simulated dose distributions were primarily compared by 2D-γ-evaluation [29], with γ-

value maps and γ-passing rates analyzed for the CTV, ITV and the entire measurement area

determined by the flat panel detector [30]. The coronal slice of the simulated 3D dose distribu-

tions that was selected for comparison to the measured dose distributions corresponded to the
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slice of the planning average CT that, in terms of visual inspection, most closely corresponded

to the central plane of the detector (cf. Fig 1). During plan generation, the center of the detec-

tor plane visible in the coronal CT slice was further marked by a reference point. Centered in

this point, a 2D-region of interest (ROI) of similar size as the detector area was extracted from

the coronal dose slice, resampled to the spatial resolution of the measurement dose distribu-

tion, and remaining small spatial shifts caused by imperfect phantom setup were manually cor-

rected. In agreement with standard QA parameters, a local γ-criterion of 3%/3 mm was

applied and only pixels with dose values� 20% of the maximum dose value were considered.

Software packages used for evaluation were Verisoft 6.0 (PTW Freiburg, Germany) and Matlab

R2015a (MathWorks, USA). All measured and simulated 2D dose ROIs underlying subsequent

result tables and figures are provided as supporting information (S1 File) to allow interested

readers to reproduce the data.

Results

Fig 3 illustrates the concept underlying our study design and evaluation strategy: Focusing on

a single VMAT arc of a dual-arc treatment plan, the left column of the figure shows the

planned dose distribution (‘simulated dose without motion’; top), the accumulated dose repre-

senting the simulated motion effects (‘simulated dose with motion’; middle), and the γ-map

demonstrating differences between the two distributions, i. e. the simulated motion effects (γ-

criterion 3%/3 mm; bottom). The middle column represents the same information for the

measurements (from top to bottom: static measurement, measurement with motion, γ-map

for comparison of static and moved measurement).

Focussing on the question of the appropriateness of simulation-only based 4D VMAT QA

and therefore being primarily interested in an assessment of the 4D VMAT dose simulation

accuracy and parameters affecting it, the motion effects represented in the left and middle γ-

maps were only of secondary interest; instead, it was the agreement of the two γ-maps as well

as the similarity of underlying simulated and measured motion affected dose distributions that

was to appraise. The motivation for choosing the given arc and its inhomogeneous dose distri-

bution within the ITV as a showcase was in line with this argument: the inhomogeneous dose

distribution simplified visual assessment of motion effects and respective differences in com-

parison to homogeneous high ITV doses that would result for single arc treatment planning.

Direct comparison of simulated and measured motion-affected dose distributions by

means of the corresponding γ-map is finally illustrated in the middle of the right column. For

ideal agreement, the γ-map would correspond to an 100% γ-passing rate. This ideal scenario

is, however, not realistic due to unavoidable uncertainties influencing the comparison. The fig-

ure represents two such sources. In the right top corner, the planned dose and the static mea-

surement were compared. The γ-map corresponds to a total γ-passing rate of 97%; related

uncertainties, of course, also affect a comparison of dynamic simulated and measured doses.

In addition, the right bottom corner provides differences between repeat dynamic measure-

ments; the γ-passing rate was 98%. These reference values have to be taken into account for

discussion of γ-passing rates between measured and simulated motion-affected dose distribu-

tions. Nevertheless, for the shown case, the γ-passing rate between dynamic measurement and

motion-affected simulation was still 98%.

Influence of VMAT arc discretization on 4D VMAT dose simulation

accuracy

The influence of the degree of temporal discretization of the technical dose delivery process on

the 4D VMAT dose simulation results is illustrated in Fig 4, again using the first arc of the

4D dose simulation in volumetric arc therapy: Accuracy and affecting parameters
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Fig 3. Study design and evaluation strategy. Illustration of performed experiments for the SI-only sinusoidal motion with 4.5 s

period (i. e. case 1d); for details see text. Left column: planned dose distribution (top), simulated motion-affected dose (middle;

arc discretization of 2.3˚), γ-map for comparison of the two (bottom). Middle column: measured static dose (top), measured

dynamic dose (middle), γ-comparison (bottom). Right column: γ-comparison of planned and measured static dose (top), γ-
comparison of simulated motion-affected and corresponding measured dose (middle), γ-comparison of repeat dynamic

measurements (bottom).

doi:10.1371/journal.pone.0172810.g003
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Fig 4. Influence of arc discretization. Illustration of the influence of arc discretization on simulated motion

effects. 3rd row: γ-comparison to planned dose for finest possible arc discretization; 4th row: no discretization.

Results have to be compared to γ-maps between static and motion-affected measurements in 1st and 2nd row.

Differences between the simulation γ-maps and the measurement γ-maps should be as small as possible.

doi:10.1371/journal.pone.0172810.g004
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respective dual-arc VMAT plans. The figure shows γ-maps obtained by comparison of static

and dynamic measurements (first two rows) and γ-maps for comparison of the statically

planned and simulated motion-affected dose distributions (last two rows); the columns repre-

sent different motion scenarios. The γ-maps therefore represent measured and simulated

motion effects. Consequently, a simulation is superior to another when its γ-map more closely

resembles the γ-map of the measurement.

For the regular motion patterns, the γ-maps obtained for both Δα = 2.3˚ and Δα = 150˚ sim-

ulations appear to well agree with the γ-maps for the measurements–especially, when consid-

ering between-measurement differences (comparison of rows 1 and 2). Deviations between

measurement and simulation increased, however, for the irregular motion pattern (see right

column), with the agreement between the Δα = 150˚ γ-map and the measurements being

noticeably smaller than for Δα = 2.3˚. This already indicated that taking into account the inter-

play between the dynamic dose delivery process and target structure motion on a fine-scale

temporal resolution allows for a more reliable computational simulation of the VMAT-deliv-

ered motion-affected dose.

The aforementioned impression was further supported by the quantitative evaluation of the

γ-maps summarized in Tables 2–5. The visual agreement between measurement- and

Table 2. Total γ-passing rates for comparison of dynamic dose measurements of day 1 (Ddyn,day1) and dynamic day 2 dose measurements and sim-

ulated 4D dose distributions (Ddyn,�) with respect to the impact of the arc discretization on the simulation accuracy.

Ddyn,day1 vs. Ddyn,� [%] γ [%]

1a 1b 1c 1d 1e 2a 2b

Day 2 measurement 99 98 98 98 99 99 100 99 ± 1

4D VMAT simulation: 65 seg. (2.3˚) 99 98 98 98 98 100 97 98 ± 1

4D VMAT simulation: 30 seg. (5˚) 98 97 96 97 96 99 94 97 ± 1

4D VMAT simulation: 15 seg. (10˚) 99 94 91 94 95 96 91 94 ± 3

4D VMAT simulation: 1 seg. (150˚) 99 96 93 95 95 97 82 94 ± 5

�g represents the mean gamma passing rates, averaged over all motion scenarios. The closer the numbers to 100%, the better. Ideally, γ-passing rates

between day 1 measurements and 4D VMAT simulations are in the same order than those for comparison of day 1 and day 2 measurements.

doi:10.1371/journal.pone.0172810.t002

Table 3. Total γ-passing rates for comparison of static dose measurements to dynamic measurements (lines ‘Day 1’ and ‘Day 2’) and γ-passing

rates for comparison of the statically planned dose and the dose distributions containing simulated motion effects.

Dsta,� vs. Ddyn,� [%] Δg [%]

1a 1b 1c 1d 1e 2a 2b

Day 1 measurement 65 67 64 68 62 86 68 –

Day 2 measurement 59 62 61 62 60 79 68 4.1 ± 2.4

4D VMAT simulation: 65 seg. (2.3˚) 61 60 57 63 60 86 69 3.7 ± 2.6

4D VMAT simulation: 30 seg. (5˚) 61 60 56 62 61 85 68 3.9 ± 3.0

4D VMAT simulation: 15 seg. (10˚) 61 58 54 59 59 87 67 5.3 ± 3.7

4D VMAT simulation: 1 seg. (150˚) 60 59 60 60 60 89 74 5.1 ± 2.2

Cf. Table 2 for symbols and indices. Comparing static to dynamic measurements / simulations, the simulations should now (different to Table 2) resemble

the numbers of the measurements as closely as possible. Consequently, the absolute difference �Dg between the γ-passing rates obtained by the

simulations and the γ-passing rates of the day 1 measurements should be (averaged over all motion scenarios) as low as possible and in the same order as

the differences between day 1 and day 2 measurements.

doi:10.1371/journal.pone.0172810.t003
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simulation-based γ-maps for regular motion, independent of the degree of arc discretization,

is mirrored by high γ-passing rates when directly comparing the simulated motion-affected

dose distributions and the dynamic measurements; cf. Table 2. In turn, the visual differences

for scenario 2b (3rd column of Fig 4) translated into a drop of the γ-passing rate from 97%

(Δα = 2.3˚) to 82% (Δα = 150˚).

A similar tendency could be observed when directly studying the γ-passing rates obtained

by comparison of, on the one hand, static and dynamic measurements, and, on the other

hand, γ-passing rates for comparison of statically planned and simulated motion-affected dose

distributions (i. e. γ-passing rates corresponding to, for instance, the γ-maps of Fig 4). As these

γ-passing rates directly quantify measured and simulated motion effects, the simulation values

should be as close as possible to the measurement values. In turn, related differences were

assumed to indicate simulation uncertainties. Table 3 already reflects that the average differ-

ences of simulation to measurement γ-rates are smallest for the finest discretization level Δα =

2.3˚. The differences become, however, more pronounced when switching from total to struc-

ture-based γ-rates (i. e. when focusing on higher dose areas) shown in Tables 4 and 5. In this

case, Δα = 2.3˚ not only resulted in lowest �Dg values but also (more or less on a par with Δα =

5˚) γ-passing rates differences to the day 1 measurement that were in the order of the day 2-to-

day 1 measurement differences for, e. g., the CTV.

Observations for the other arcs of the treatment plans were similar.

Table 4. CTV γ-passing rates for comparison of static dose distributions and dynamic dose measurements/simulations.

CTV: Dsta,� vs. Ddyn,� [%] Δg [%]

1a 1b 1c 1d 1e 2a 2b

Day 1 measurement 45 73 59 73 73 59 80 –

Day 2 32 59 41 55 71 71 82 11.3 ± 6.3

4D VMAT simulation: 65 seg. (2.3˚) 66 68 57 68 82 71 93 9.6 ± 6.0

4D VMAT simulation: 30 seg. (5˚) 70 66 45 64 77 68 86 10.6 ± 6.6

4D VMAT simulation: 15 seg. (10˚) 63 54 27 41 68 88 79 19.4 ± 11.7

4D VMAT simulation: 1 seg. (150˚) 59 57 59 48 86 93 82 14.9 ± 11.1

Cf. Table 2 for symbols and indices. Similar to Table 3, a simulation result is considered superior to another if its γ-passing rate values are closer to

corresponding measurement values.

doi:10.1371/journal.pone.0172810.t004

Table 5. ITV γ-passing rates for comparison of static dose distributions and dynamic dose measurements/simulations.

ITV: Dsta,� vs. Ddyn,� [%] Δg [%]

1a 1b 1c 1d 1e 2a 2b

Day 1 measurement 48 57 47 58 50 72 52 –

Day 2 measurement 38 48 41 46 48 61 49 7.6 ± 3.7

4D VMAT simulation: 65 seg. (2.3˚) 43 41 33 42 44 72 60 9.3 ± 5.7

4D VMAT simulation: 30 seg. (5˚) 43 41 29 40 46 71 56 9.4 ± 7.0

4D VMAT simulation: 15 seg. (10˚) 42 35 26 32 41 76 53 12.7 ± 9.3

4D VMAT simulation: 1 seg. (150˚) 39 38 39 35 48 79 56 10.3 ± 7.2

Cf. Table 2 for symbols and indices and Table 4 for further explanations.

doi:10.1371/journal.pone.0172810.t005
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Influence of starting phase/synchronization uncertainties

So far, perfect agreement between the initial breathing phase of the motion phantom at dose

delivery beginning and the breathing phase applied to t = 0 s of the simulations was assumed.

As signal latencies potentially led to phase shifts between measurement and simulation, in the

next step, the breathing phase at t = 0 s of the simulations was systematically varied. The effect

on the ITV γ-passing rates between statically planned and simulated motion-affected dose on

the one hand and absolute pixel-wise squared dose differences (SDD) between dynamic mea-

surement and simulation on the other hand are shown in Fig 5 for synthetic (case 1b) and real

(case 2a) motion scenarios. For both Δα = 2.3˚ and Δα = 150˚, it can be seen that the SDD val-

ues were close to minimum for Δt = 0 s, with the actual SDD minima, however, being slightly

shifted in time (in negative direction for case 1b, in positive direction for case 2a).

In addition to the illustration of uncertainties due to mismatches of measurement and sim-

ulation starting phases, the figure also demonstrates the dependence of predicted VMAT inter-

play effects on the assumed starting phase (in terms of γ-passing rates between static planned

and simulated motion-affected dose distributions) by varying Δt over a longer period (here:

10 s). It becomes obvious that the Δα = 2.3˚ simulations (beforehand proven to be the most

accurate ones) predicted a substantial impact of the starting phase on the γ-passing rate and

amount of interplay effects, respectively–whereas such details were not reflected by the Δα =

150˚ simulations.

Fig 5. Starting phase influence. Influence of breathing phase at dose delivery beginning. Left, top: In accordance with the measurements, all previous

results were computed with the simulations starting at the breathing phase at t = 0 s of the curve (here: case 1b). Now, this starting phase was systematically

varied by adding offsets Dt 2 ½0 s; 10 s�. Left, bottom: The ITV γ-passing rates for comparison of planned static and motion-affected simulated dose

distributions are shown as red lines (solid lines: Δα = 2.3˚; dashed: Δα = 150˚); the black lines visualize the dependence of the difference between dynamic

measurement and simulated motion-affected dose on the starting phase. Right: similar information but for the regular real tumor trajectory (case 2a).

doi:10.1371/journal.pone.0172810.g005
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Static dose calculation uncertainties

In agreement with Ref. [23, 31], uncertainties related to static dose calculation approaches

proved subordinate to the temporal discretization and the assumed breathing phase at the

beginning of dose delivery. 3%/3 mm γ-comparison of simulated motion-affected dose distri-

butions with the doses Di,j,α computed based on the closest neighbored phase CT, a fixed single

phase CT or the average CT resulted in total γ-passing rates between 98% and 100% for all

motion scenarios. Uncertainties due to AAA or Acuros XB dose calculation were in the order

of ±3%.

Discussion and conclusions

Being placed in the context of the current discussion of appropriate VMAT 4D quality assur-

ance approaches, the present study aimed at assessing 4D VMAT dose simulation accuracy

and associated influencing parameters by comparing simulated motion-affected dose distribu-

tions to corresponding ground truth dynamic measurements–and so study potential limita-

tions of computational simulation-only 4D VMAT QA to assess appropriateness of a VMAT

treatment plan when taking into account patient-specific breathing and motion

characteristics.

We identified and illustrated the temporal discretization of the dose delivery process as

major technical factor and the breathing phase at dose delivery beginning as most relevant

physiology/breathing curve-related parameter. Applying the highest VMAT arc discretization

of 2.3˚ achievable by the treatment planning system, high total γ-passing rates of on average

98% between simulations and dynamic measurements [cf. Table 2] rise, from our perspective,

the question whether measurement-based assessment of VMAT motion effects still remains

necessary or if it can be replaced by 4D VMAT dose simulations–with our opinion being the

latter.

As 4D VMAT dose simulation accuracy has been shown to decrease for arc discretization

levels larger than 2.3˚, remaining small differences to the measurements may be in parts due to

the mentioned software limitations (i. e.,< 2.3˚ discretization not possible). However, uncer-

tainties such as existence of a potential shift between breathing phases at dose measurement

and simulation beginning, uncertainties of the applied dose calculation algorithm (although

illustrated to be small), and, e. g., the angular and dose rate dependence of the detector array

(although also reported to be small for the gantry angles and dose rates exploited in our study,

cf. [28] for respective details) are likely to also affect the numbers. This superposition of uncer-

tainties motivates further detailed studies.

In terms of limitations of our study, we would again emphasize that we explicitly refrained

from analyzing uncertainties introduced by registration errors associated to, e. g., motion esti-

mation in clinical 4D CT data. This has been in parts due to the motion phantom design (only

rigidly moving phantom); we, however, also believe that uncertainty estimation and quantifi-

cation of deformable image registration represents an issue that has yet not been solved in its

entirety. We consider this topic to be beyond the scope of this study but to represent an impor-

tant aspect of our future work.

As a consequence of the aforementioned limitation, the impact of potential breathing-

induced deformation on, e. g., the interplay effect, target coverage and the numbers presented

in Tables 3 to 5 remains unclear. This aspect could be of interest in terms of future work as

(although not being the primary focus of our QA-oriented study) our results indeed demon-

strate interplay effects and clinically relevant low CTV γ-passing rates for at least our single-

arc scenarios; and even for the full dual-arc plans and simulations, low CTV γ-passing rates

< 60% could be observed for irregular and longer breathing period motion, despite the well-
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reported averaging effect for multiple arcs [10, 23]. However, these results are obtained using

only rigid motion patterns. In addition, the interplay effects are shown to depend on the

breathing phase at dose delivery beginning, and we would also like to note that only a standard

dose rate of 600 MU/min was used in the current study. Higher dose rates, e. g. provided by

flattening filter-free (FFF) dose delivery, are likely to result in a further increased risk of

VMAT interplay effects [32]. A detailed discussion of such aspects and related questions (How

to account for potentially different breathing phases at the beginning of VMAT dose delivery

during 4D QA? How to account for breathing variability during 4D QA? How to stabilize 4D

VMAT treatment planning in terms of a robust target dose coverage even in the presence of

motion variability?) would again be beyond the scope of this paper but motivates additional

studies.

Supporting information

S1 File. File containing dose distributions underlying the manuscript figures and numbers.

The zip-file contains the simulated 4D VMAT dose distributions and the the dose measure-

ments (serving as ground truth data) that are underlying the figures and numbers presented in

the manuscript. For further details see the Readme.md file contained in the zip-file.
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5. Results

5.6. Monte Carlo-based 4D dose simulation

In the previous section, the accuracy and a�ecting parameters of the currently imple-
mented dose simulation scheme were evaluated. Corresponding �ndings suggest that the
simulation accuracy can be further improved by decreasing dose segment angular spacing,
which is, however, limited by the TPS. Moreover, as the method introduced before is
based on pre-calculated dose distributions extracted out of the original treatment plan,
density e�ects in dose distributions due to internal patient motion are not considered.
�erefore, the idea was to re-implement the current approach into a Monte Carlo-based
method that enables highest possible discretization level and, at the same time, takes
density changes into account by computing the dose for each time dependent patient
geometry. �e proposed scheme is based on following publication:
T. Sentker, F. Madesta and R. Werner. Patient-speci�c 4D Monte Carlo dose accumulation
using correspondence model-based motion prediction. In: Proc SPIE, Vol. 10951, 1095109.
International Society for Optics and Photonics, SPIE, 2019.

In line with previous sections, prediction of internal patient motion was conducted by
a patient-speci�c correspondence model trained on the 4D CT data set of the patient. �e
dose simulation, however, was completely re-implemented to allow for dose calculation
utilizing a Monte Carlo-based algorithm. Basics of Monte Carlo-based dose calculation
and accumulation are detailed in Section 4.2.1. Necessary information for the 4D Monte
Carlo dose simulation was directly extracted from the original patient treatment plan.
Here, the smallest possible segments are control points that de�ne for each time point
gantry angle/position, MLC leaf positions de�ning the �eld opening and MU to be
delivered. �e temporal resolution of control points is depending on the gantry rotation
speed and approximately 0.1 s to 1 s. At each time point, the inverse of the predicted
motion vector �eld was used to transform the reference 3D CT image to match the patient
geometry according to the corresponding breathing state. On this virtual moving image,
the Monte Carlo-estimated dose was computed using corresponding beam parameters.
After dose calculation, the predicted motion vector �eld was applied to transform the dose
image back to the reference frame and yield the sought motion-a�ected dose distribution.
Summation over all simulated motion-a�ected doses yielded the total motion a�ected
patient dose. Afterwards, an absolute dose calibration was necessary for the Monte Carlo-
based dose calculation to allow for an absolute dose comparison between 4D-simulated
dose and planned dose distribution. Calibration was accomplished by correlating dose
measurements under reference conditions and corresponding simulation. Applying the
proposed simulation scheme to the in-house acquired patient data sets (cf. Section 4.4.4)
allowed to compare the new and initial 4D dose simulation approach. Not yet published
results for dose simulation accuracy of the new approach, evaluated using the dose
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Table 5.1.: Additional γ -passing rates for analysis of 4D dose accumulation accuracy gain achieved by
using new Monte Carlo-based dose simulation scheme. �e mean absolute di�erence 〈∆γ 〉
between the γ -passing rates obtained by the simulations and the γ -passing rates of the day 1
measurements should be (averaged over all motion scenarios) as low as possible.

γ , Dsta,· vs. Ddyn,· (%) 〈∆γ〉 (%)
1a 1b 1c 1d 1e 2a 2b

To
ta
l Day 1 measurement 65 67 64 68 62 86 68 –

4D MC sim.: 194 seg. (≈ 0.8◦) 69 65 62 64 57 88 67 2.9 ± 1.5
4D VMAT sim.: 65 seg. (2.3◦) 61 60 57 63 60 86 69 3.7 ± 2.6

C
T
V Day 1 measurement 45 73 59 73 73 59 80 –

4D MC sim.: 194 seg. (≈ 0.8◦) 44 66 59 63 72 68 90 5.4 ± 4.2
4D VMAT sim.: 65 seg. (2.3◦) 66 68 57 68 82 71 93 9.6 ± 6.0

IT
V

Day 1 measurement 48 57 47 58 50 72 52 –
4D MC sim.: 194 seg. (≈ 0.8◦) 51 49 49 48 45 74 61 5.6 ± 3.2
4D VMAT sim.: 65 seg. (2.3◦) 43 41 33 42 44 72 60 9.3 ± 5.7

measurements presented in the previous section, are additionally described and put into
context to the initial dose simulation accuracy.

Results of the comparison of initial and new dose simulation approach are summarized
in Table 1 [SPIE 2019]. For the liver cases, predicted dose di�erences are similar but
underdosages for patients with local metastasis recurrence are more pronounced for
the new Monte Carlo-based simulation approach. Deviations for the lung cases are less
prominent for the investigated metastases. However, for metastases with local recurrence,
estimated underdosages are still more pronounced when using the Monte Carlo-based
simulation scheme. Further and similar to the liver cases, some metastases without local
recurrence exhibit noticeable overdosages. �e assumption that the higher temporal
resolution in combination with consideration of density changes of the internal patient
geometry during dose simulation improves the general simulation accuracy is, however,
not yet demonstrated. �us, the accuracy of the �nest temporal resolution of the initial
approach (≈ 0.5 s to 2 s) is directly compared to the proposed simulation scheme (temporal
resolution of≈ 0.1 s to 1 s) by ground truth dose measurements as conducted in Section 5.5.
And indeed, due to higher temporal resolution and an actual dose recalculation, and thus
consideration of density changes in the patient geometry, the new approach achieves a
higher dose simulation accuracy, as numbers in Table 5.1 indicate. In particular values
for smaller and highly radiotherapy-relevant structures (CTV, ITV) are improved and in
better agreement to measurements. Consequently, the proposed 4D Monte Carlo dose
simulation scheme for quality assurance in 4D radiotherapy has the potential to replace
measurement-based assessment of VMAT motion e�ects.
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ABSTRACT

Quality assurance in current 4D radiotherapy workflows is of great importance to assure a positive treatment
outcome, i.e. total tumor eradication. Especially for the treatment of lung and liver tumors, which are subject
to high motion magnitudes due to patient breathing, it is crucial to verify the applied dose to the target volume.
In this study, we present a new 4D Monte Carlo dose accumulation approach that accounts for internal patient
motion during treatment and is therefore able to predict the actual 3D dose distribution delivered to the patient
for quality assurance purposes. Monte Carlo simulations are conducted using the EGSnrc software toolkit, which
models the propagation of photons, electrons and positrons. However, to consider dynamic beam parameters and
the movement of internal patient geometry, we developed a method to compute the dose for each control point of
the actual VMAT patient treatment plan to account for breathing induced internal patient motion. The internal
motion during treatment is predicted using correspondence modeling, which correlates patient-specific DIR-based
internal motion information and external breathing signals and is trained on 4D CT data of the patient. For each
VMAT control point, a corresponding motion vector field is predicted and applied to the original patient CT to
allow for dose computation on the patient geometry as it was irradiated during treatment. Thus, density changes
while treatment due to patient breathing motion are taken into account during computation of the resulting dose
distribution.

Keywords: Monte Carlo simulation, 4D dose accumulation, correspondence modeling, deformable image regis-
tration

1. INTRODUCTION

In extracranial stereotactic radiation therapy (SBRT), a high radiation dose is delivered in a few fractions
to the target volume while simultaneously sparing organs at risk. Thus, for SBRT of lung and liver tumors,
which are subject to high motion magnitudes due to patient breathing,1 the consideration of tumor motion and
deformation while treatment is crucial. To do so, a time resolved CT (3D+t, 4D CT) is acquired pre-treatment
and used for defining the tumor motion space (so called internal target volume, ITV) in the treatment planning
process. By using an ITV-based treatment planning it is usually assumed that the target volume is sufficiently
irradiated during dose application even if the patient is breathing freely. However, the combination of dynamically
changing beam parameters (gantry angle, field form, dose rate and fluence) and patient-specific intra- and inter-
fractional respiratory variability can nevertheless lead to deviations between actual delivered and planned dose
distributions.2,3 Therefore, retrospective quality assurance in current 4D radiotherapy workflows is of great
importance to assure a positive treatment outcome, i.e. the total tumor eradication. This directly motivates the
development of an algorithm that is capable of computing the actual to the patient delivered dose. Our existing
correspondence model-based 4D dose accumulation approach4–6 provides a first retrospective estimation of this
applied dose. However, in its current form, the algorithm lacks some important features: 1) density changes
of the patient geometry due to internal motion are not considered during 4D dose accumulation, as the dose is
not actually re-calculated, and 2) the temporal resolution is with 2.3 s relatively low.3 Therefore, we decided
to enhance our algorithm by implementing an actual dose simulation algorithm using the EGSnrc/DOSXYZnrc
user code.7
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Medical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling,
edited by Baowei Fei, Cristian A. Linte, Proc. of SPIE Vol. 10951, 1095109 · © 2019 SPIE

CCC code: 1605-7422/19/$18 · doi: 10.1117/12.2512423

Proc. of SPIE Vol. 10951  1095109-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 11 Mar 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



In line with our previous work, the internal patient motion during treatment is predicted using correspon-
dence modeling, which correlates patient-specific deformable image registration (DIR)-based internal motion
information and external breathing signals and is trained on 4D CT data. For each VMAT control point, a cor-
responding motion vector field is predicted and applied to the original patient CT to allow for dose computation
on the patient geometry as it was irradiated during treatment. This allows for consideration of density changes
during treatment due to patient breathing motion and increases the temporal resolution to 0.2 s to 0.8 s, which
is defined by by control point sampling.

In this manuscript, we present our new approach and show first preliminary results for lung and liver tumor
patients treated at our hospital.

2. METHOD(S)

In this section, first, the basic correspondence model-based dose accumulation approach is briefly explained
before the integration of this method into a 4D Monte Carlo dose simulation scheme is described. Further,
absolute dose calibration and treatment plans of our patient collective used for retrospective dose simulation are
introduced.

2.1 Concept of Correspondence Model-based 4D Dose Accumulation

The mathematical background of correspondence model-based 4D dose accumulation is detailed in our previous
publications.4–6 For comprehensibility, however, a brief summary of the approach is given in this section.

The main idea of correspondence modeling is to train a model that is able to predict the internal patient
motion during radiation therapy treatment using only an external breathing signal measurement. Training of the
model is conducted using a pre-treatment acquired 4D CT that consists of a series of, in our case, 10 3D CT phase
images. During CT imaging, the usually one-dimensional external breathing signal of the patient is recorded
and subsequently used for CT reconstruction as well as correspondence modeling. The functional relationship
between external breathing signal measurements and internal breathing phase-specific images is represented
by the sought linear correspondence model. Distinction between patient in- and exhalation is accomplished
by using not only the amplitude signal of recorded patient breathing but additionally the computed velocity
information. Representation of internal motion is achieved by displacement vector fields (DVF) estimated by
non-linear registration.

2.2 4D Monte Carlo Dose Simulation

For each patient, the corresponding treatment plan

RT plan(tcp) : tcp 7→ {beam parameters} (1)

is divided into control points (cp) that define the beam parameters (e.g. gantry angle, leaf positions defining the
field, beam energy etc.) for a specific time point tcp. Here, the time resolution of following dose accumulation
is directly determined by the temporal spacing of consecutive tcp, ranging from 0.2 s to 0.8 s. At every tcp, a

transformation T Iref
Î(tcp)

∈ T can be predicted using the patient specific correspondence model MC and respective

external patient motion information zi(tcp) and ∂tzi(tcp)

MC(zi, ∂tzi) : R2 → T , (zi, ∂tzi)> 7→ T Iref
Î(tcp)

, Iref, Î : Ω ⊂ R3 → R. (2)

Here, T Iref
Î(tcp)

is the transformation of the hypothetical moving image Î(tcp) to the pre-defined reference image

Iref.

Correspondence model-based 4D Monte Carlo dose simulation is then conceptually straightforward:

dtcp = DMC

Iref ◦
(
T Iref
Î(tcp)

)−1
︸ ︷︷ ︸

Î(tcp)

, {beam parameters}

 ◦ T Iref
Î(tcp)

. (3)
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The Monte Carlo dose simulation DMC : Ω → R+ is executed on the hypothetical moving image Î resulting by

warping the reference image Iref with the predicted inverse transformation
(
T Iref
Î(tcp)

)−1
and applying correspond-

ing beam parameters. Warping the Monte Carlo simulated dose back using T Iref
Î(tcp)

yields sought motion affected

dose distribution dtcp . Finally, summation over all fractions fx and tcp results in the total 4D dose distribution

D4D =
∑
fx

∑
tcp

dtcp . (4)

2.2.1 Absolute Dose Calibration

Absolute dosimetric comparison between applied 4D simulated dose and planned 3D dose distribution requires
an absolute dose calibration of Monte Carlo simulated doses. Typically, a dose measurement inside a water
phantom using an ionization chamber in different depths along the central axis (z-direction) under standard
conditions is necessary to determine sought calibration factor. To calibrate the simulated dose, the same setup
used for dose measurement is simulated utilizing the implemented Monte Carlo method.

General output of the Monte Carlo simulation is a dose that is normalized by an estimate of the number
of particles incident from the original, non-phase space source. This means the simulated dose at a specific
z-position, Dz,MC, can be correlated to the measured absolute dose at the same position, Dz,chamber, generated
by a defined number of delivered monitor units (MU). For calibration measurements, 100 MU ≡ 1 Gy at dose
maximum applies. Finally, for any simulation result at any x, y, z-position, Dxyz, absolute dose calibration can
be performed using following equation

Dxyz =
Dz,MC

Dz,chamber
× 1 cGY

1 MU
×MUtot, (5)

with MUtot being the total number of applied MU during treatment.

Note that calibration has to be performed for each beam energy independently.

2.3 Patient Collective and Simulations

In total, 10 4D CT data sets and corresponding SBRT treatment plans of cancer patients previously treated at
our hospital (five liver patients with in total nine metastases and five lung patients with in total six metastases)
were selected for 4D dose accumulation. Treatment plans were directly used for the workflow described in Section
2.2. Number of control points per treatment plan were in the range of 400 to 600 and the Monte Carlo simulation
of one control point dose took approximately 1000 s to 3000 s when simulating 5× 105 histories. Therefore, total
number of particles ranged between 2 × 108 and 3 × 108 per treatment fraction. As a computation cluster
of about 100 CPU cores were available, the total 4D dose accumulation for one patient treatment fraction
took about 1.5 h to 3 h. The phase space file provided by the linear accelerator manufacturer was used for
initialization of the treatment beam above the dynamically changeable accelerator geometry (jaws, multi leaf
collimator). Beam parameters for each control point simulation input file were directly extracted from the specific
patient treatment plan. Corresponding 4D CT data was utilized to build the required correspondence model
for predicting internal patient motion during treatment by applying the provided external patient breathing
information. Possible simulated underdosages (3D vs. 4D dose simulation) were correlated to known clinical
endpoints (local recurrence yes/no) for each metastases.

3. RESULTS

Evaluation of results are conducted by comparison of static and motion affected dose distributions and correlation
of underdosages to known clinical endpoints. Dose differences are expressed by deviations of D98 (dose to 98% of
the GTV volume) of 4D and 3D simulated dose distributions. In Table 1, the results of all investigated metastases
are summarized for each individual treatment fraction and in total. Further, 4D total dose differences simulated
based on our previous dose accumulation approach (cf. Sothmann et al.4) are shown for comparison.
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Table 1. GTV dose coverage of treatment plan and retrospectively 4D Monte Carlo simulated dose distribution. GTV dose
coverage is quantified by differences ∆D98 of D98,4D-MC and D98,3D-MC. For the proposed correspondence model-based 4D
dose simulation, the data is shown separately for each patient treatment plan fraction and for the accumulated fraction
dose distributions (= total dose). 4D dose accumulation based on our previous approach refers to the estimated total
dose (last column). Additional information about dose difference values in each fraction can be found in corresponding
publication.4 For metastasis 1, i. e. the only treatment plan with 8 treatment fractions, results for fraction 6, 7 and 8 are
shown in a separate line (indicated by the notation ‘Frac. 1/6’ etc.). Gray row = local metastasis recurrence.

Met. ∆D98 = D98,4D-MC − D98,3D-MC (Gy)

Frac.
1/6

Frac.
2/7

Frac.
3/8

Frac.
4

Frac.
5

Total Old

L
iv

e
r

1 −0.38 −0.50 −0.40 −0.94 −0.40
−0.42 −0.37 −0.46 −3.52 −1.49

2.1 +0.03 +0.04 −0.22 −0.02 −0.08 −0.14 −0.25
2.2 +0.09 +0.03 +0.01 +0.04 +0.05 +0.35 +0.29
2.3 −0.11 −0.05 +0.10 −0.04 −0.13 −0.04 +0.33
3.1 +0.16 +0.14 +0.19 +0.17 +0.17 +0.86 +0.10
3.2 +0.12 +0.16 +0.17 +0.13 +0.17 +0.76 +0.10
3.3 −3.56 −5.26 −5.07 −5.04 −5.20 −24.13 −13.28
4 +0.02 −0.06 −0.09 −0.12 −0.03 +0.33 −0.18
5 −0.29 −0.03 −0.29 −0.15 −0.16 −0.68 −0.71

L
u

n
g

6 +0.02 +0.06 +0.10 +0.28 +0.12 +0.79 +0.50
7.1 +0.12 −0.22 +0.10 −0.13 −0.07 −0.20 −0.08
7.2 −0.07 −0.37 −0.11 −0.30 −0.09 −0.88 −0.21
8 +0.29 +0.11 +0.48 +0.41 +0.52 +2.22 +0.44
9 −0.51 −0.20 +0.01 +0.07 −0.30 −0.71 −0.47
10 +0.11 −0.06 −0.05 +0.02 −0.06 +0.16 −0.03
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Figure 1. Comparison of static 3D (left) and motion affected 4D (middle) dose distribution for patient data set 1 (liver),
simulated using our new Monte Carlo dose accumulation scheme. The effect of breathing induced internal motion is
clearly visible on the resulting dose difference (right), especially at the upper border of the superimposed shape of the
gross target volume (GTV).
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4D Monte Carlo dose accumulation inside the liver shows larger negative dose differences for metastases with
local recurrence (i.e. case 1 and 3.3) compared to our old approach. Simulated 3D and 4D Monte Carlo doses
and corresponding dose differences for case 1 are shown in Figure 1. Computed underdosages mainly occurred
at the upper border of the target volume. For, e.g., cases 3.1 and 4, the Monte Carlo based simulation predicts
higher positive differences, as also illustrated for case 4 in Figure 2. High dose differences of ±8 Gy are visible,
as also noticeable in Figure 1, but because of an apparently sufficiently dimensioned ITV located outside the
target volume.
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Figure 2. Comparison of static 3D (left) and motion affected 4D (middle) dose distribution for patient data set 4 (liver),
simulated using our new Monte Carlo dose accumulation scheme. Again, breathing induced internal motion has a clearly
visible effect on the resulting dose difference (right). However, an apparently sufficiently dimensioned ITV prevents
occurrence of underdosages inside the GTV.

The comparison between new and old 4D dose accumulation results show lesser distinctions for the investi-
gated lung metastases. However, underdosages for metastases with local recurrence are still more pronounced
when using the Monte Carlo based approach (cf. case 7.2 and 9). For illustration, simulated dose distributions
and difference for case 9 are shown in Figure 3. The effect of breathing induced internal motion is visible but
not as distinctive as for the liver cases.

Similar to the liver cases, some metastases without local recurrence exhibit high positive dose differences (cf.
case 6 and 8) as illustrated in Figure 4 for case 8. Again, breathing induced internal motion is only slightly
visible in direct comparison of 3D and 4D dose distributions. The dose difference, however, shows overdosages
inside and around the target volume of up to 5 Gy.

4. CONCLUSIONS

The submitted work presents, to our knowledge, the first approach that incorporates internal patient motion
information while radiotherapy treatment into a 4D Monte Carlo dose simulation scheme. Thus, density changes
of internal patient geometry structures as well as displacements due to breathing motion are considered in the
course of the 4D dose accumulation. Further, high temporal resolution is achieved by splitting the patient treat-
ment plan into its smallest possible segments. These advantages over our previously utilized dose accumulation
method offer optimal features for a retrospective quality assurance tool in 4D radiotherapy of moving tumors.
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Figure 3. Comparison of static 3D (left) and motion affected 4D (middle) dose distribution for patient data set 9 (lung),
simulated using our new Monte Carlo dose accumulation scheme. The effect of breathing induced internal motion is
slightly visible on resulting dose difference (right), but inside the GTV underdosages are small.
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Figure 4. Comparison of static 3D (left) and motion affected 4D (middle) dose distribution for patient data set 6 (lung),
simulated using our new Monte Carlo dose accumulation scheme. The effect of breathing induced internal motion is
slightly visible on resulting dose difference (right).

REFERENCES

[1] Keall, P. J., Mageras, G. S., Balter, J. M., Emery, R. S., Forster, K. M., Jiang, S. B., Kapatoes, J. M., Low,
D. A., Murphy, M. J., Murray, B. R., Ramsey, C. R., Van Herk, M. B., Vedam, S. S., Wong, J. W., and
Yorke, E., “The management of respiratory motion in radiation oncology report of AAPM Task Group 76,”
Med Phys 33, 3874–3900 (2006).

[2] Gauer, T., Sothmann, T., Blanck, O., Petersen, C., and Werner, R., “Under-reported dosimetry errors
due to interplay effects during VMAT dose delivery in extreme hypofractionated stereotactic radiotherapy.,”
Strahlenther Onkol 194, 570–579 (June 2018).

[3] Sothmann, T., Gauer, T., and Werner, R., “4D dose simulation in volumetric arc therapy: Accuracy and
affecting parameters,” PLoS One 12, e0172810 (2017).

[4] Sothmann, T., Gauer, T., Wilms, M., and Werner, R., “Correspondence model-based 4D VMAT dose sim-
ulation for analysis of local metastasis recurrence after extracranial SBRT,” Phys Med Biol 62, 9001–9017
(2017).

Proc. of SPIE Vol. 10951  1095109-6
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 11 Mar 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



[5] Sothmann, T., Gauer, T., and Werner, R., “Influence of 4D CT motion artifacts on correspondence model-
based 4D dose accumulation,” in [Medical Imaging 2018: Image-Guided Procedures, Robotic Interventions,
and Modeling ], 10576, 105760F, International Society for Optics and Photonics (2018).

[6] Mogadas, N., Sothmann, T., Knopp, T., Gauer, T., Petersen, C., and Werner, R., “Influence of deformable
image registration on 4D dose simulation for extracranial SBRT: A multi-registration framework study,”
Radiother Oncol 127(2), 225–232 (2018).

[7] Kawrakow, I., “The egsnrc code system, monte carlo simulation of electron and photon transport,” NRCC
Report Pirs-701 (2001).

Proc. of SPIE Vol. 10951  1095109-7
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 11 Mar 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



5. Results

5.7. Error propagation in 4D dose simulation

�e results presented in this section are based on a �rst implementation of uncertainty
propagation into the previously described 4D Monte Carlo dose accumulation scheme.
Uncertainties regarding the registration process, as estimated by the registration frame-
work proposed in Section 5.4, are considered. �e application of the probabilistic, i. e.
dropout-based, registration approach allows comparing multiple motion vector �elds for
one reference/template image pair. �us, registration between all phase images of the
patient-speci�c 4D data sets can be repeated. For each repetition, i. e. new registration
result, an individual correspondence model can be built. �e application of each model for
motion prediction during 4D dose accumulation propagates the registration uncertainties
through motion estimation by correspondence modeling into resulting 4D-simulated
dose distributions. �at is, (voxel-wise) con�dence intervals to estimate the reliability
of calculated dose distributions can be computed. Preliminary results are obtained by
building and applying ten independent motion models with above described proceeding
for each in-house patient data set (cf. Table 4.2). 4D Monte Carlo dose simulation is
subsequently performed for each correspondence model and the �rst treatment fraction
of all patients (ten 4D dose simulations per patient/fraction, i. e. in total 100 simulations).
Obtained results are again evaluated by means of ∆D98 and compared to the in previous
section presented dose simulation results (i. e. results of 4D Monte Carlo dose simulation
using the by traditional DIR algorithm estimated motion vector �elds and thus solely
one unique motion model per patient data set). Corresponding results are summarized in
Table 5.2.

For the liver cases, ∆D98 values of the initial simulation and the mean over the individual
motion model-based 4D-simulated doses 〈∆D98〉 values of the uncertainty propagation
simulation are similar. In particular for the two metastasis with local recurrence, i. e. case
1 and 3.3, the con�dence intervals, i. e. the uncertainty, is in comparison to the other
cases with an absolute interval size of 0.18 Gy and 0.36 Gy, respectively, relatively high.
Similar but not as pronounced are the �ndings for the uncertainty estimations for the
lung cases. Case 7.2 and 9, i. e. cases with local metastasis recurrence, show highest dose
uncertainty interval sizes of 0.16 Gy and 0.08 Gy, respectively. Values of ∆D98 for case 7.2
noticeable di�er between initial and uncertainty propagation scheme. �e new simulation
scheme estimates higher underdosages. For illustration purposes, the achieved results
for metastasis 1 and 7.2 are visualized in Fig. 5.2, where dose volume histograms for the
Monte Carlo initial 4D dose and the Monte Carlo uncertainty propagation mean 4D-
simulated dose with corresponding 95%-con�dence interval (CI95%)-values are compared
to the static, i. e. reference, dose. �e initially 4D-simulated dose volume histogram for
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5.7. Error propagation in 4D dose simulation

Table 5.2.: Comparison of ∆D98 numbers obtained by 4D Monte Carlo simulation using the initial (i. e.
traditional DIR for motion modeling, no uncertainty propagation) and the uncertainty prop-
agation scheme (i. e. probabilistic DIR for motion modeling, ten models per patient data set).
Simulation is performed for the �rst fraction of the in-house patient data set. For the uncertainty
propagation scheme, mean of ∆D98 and corresponding 95%-con�dence interval (CI95%) are given.
∗ is denoting local metastasis recurrence.

Met. MC initial MC uncertainty prop.

∆D98 (Gy) 〈∆D98〉 (Gy) CI95% (Gy)

Li
ve
r

1∗ −0.38 −0.34 [−0.43,−0.25]
2.1 +0.03 −0.12 [−0.20,−0.04]
2.2 +0.09 −0.06 [−0.08,−0.04]
2.3 −0.11 −0.14 [−0.15,−0.13]
3.1 +0.16 +0.12 [+0.11,+0.13]
3.2 +0.12 +0.16 [+0.15,+0.17]
3.3∗ −3.56 −2.97 [−3.15,−2.79]
4 +0.02 −0.05 [−0.07,−0.03]
5 −0.29 −0.18 [−0.20,−0.16]

Lu
ng

6 +0.02 −0.23 [−0.25,−0.21]
7.1 +0.12 −0.13 [−0.16,−0.10]
7.2∗ −0.07 −0.43 [−0.51,−0.35]
8 +0.29 +0.38 [+0.37,+0.39]
9∗ −0.51 −0.61 [−0.65,−0.57]
10 +0.11 +0.11 [+0.10,+0.12]

metastasis 1 lies inside the 95%-con�dence interval of the estimated dose simulated by
the Monte Carlo uncertainty propagation scheme. Small di�erences to the mean 4D dose
volume histogram are, however, present. �e consideration of patient motion during 4D
dose simulation leads to a dose blurring and thus deviations to the static dose volume
histogram occur. Regarding dose volume histograms for metastasis 7.2, the initially
Monte Carlo simulated dose shows only minor deviations to the static dose. �e new
Monte Carlo scheme, however, estimates higher underdosages. A potential reason for
this is the application of the developed and applied deep learning-based DIR framework
that obviously predicted large motion vector �elds inside the lung. For metastasis 1
the total 4D-simulated dose, i. e. the dose summed up over all treatment fractions, is
additionally computed for two selected and individual motion models. A comparison
between resulting dose distributions is illustrated in Fig. 5.3. �e impact of the selected
motion model onto the simulation results is clearly visible, in particular in the dose
di�erence distribution where ∆D-values of ±3Gy occur.
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Figure 5.2.: Exemplary visualization of ∆D98 numbers obtained by 4D Monte Carlo simulation for metastasis
1 and 7.2. Dose volume histograms of the CTV for the Monte Carlo initially simulated doses
and the Monte Carlo uncertainty propagation mean 4D-simulated doses with corresponding
CI95%-numbers are shown and compared to the static, i. e. reference, doses. Left: Dose volume
histograms of initial and uncertainty Monte Carlo dose simulation scheme for metastasis 1 show
good agreement. Motion-induced deviations compared to the static dose volume histogram
are visible. Right: �e initial Monte Carlo scheme estimates only small underdosages for
metastasis 7.2, thus the dose volume histogram is similar to the static dose volume histogram.
�e uncertainty propagation simulation scheme estimated underdosages are more pronounced.

GTV

0 40 80 120 1600

40

80

120

160

200

right – left (mm)

in
fe

rio
r–

su
pe

rio
r(

m
m

)

dose Dmi

GTV

0 40 80 120 160
right – left (mm)

dose Dmj

0

13

26

39

52

65

do
se

(G
y)

GTV

0 40 80 120 160
right – left (mm)

∆D = Dmj − Dmi

−3

0

3

do
se

di
�e

re
nc

e
(G

y)

Figure 5.3.: Comparison of total 4D-simulated dose distributions for metastasis 1. Di�erent motion models
(model mi and mj ) were applied for dose simulation of doses Dmi (left) and Dmj (middle). �e
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Chapter 6

Discussion

In this chapter, results presented in this thesis and the proposed methodological ap-
proaches to retrospective quality assurance in 4D radiotherapy are discussed and set
into context to corresponding literature. First, a detailed interpretation of the corre-
spondence model-based 4D dose simulation algorithm and related uncertainties, i. e. the
in�uence of 4D CT image artifacts and choice of registration algorithm onto proposed
dose accumulation scheme, is given. �e potential of uncertainty estimation during
the registration process is further discussed, followed by an analysis of parameters that
impact the accuracy of the proposed dose accumulation scheme. An evaluation of in
this process encountered limitations, their consideration in a Monte Carlo-based re-
implementation of the proposed dose accumulation scheme and eventually the possibility
of an uncertainty propagation to yield dose con�dence intervals, follows. Furthermore,
remaining questions and challenges as well as future research direction in the �eld of
quality assurance in 4D radiotherapy are identi�ed.

6.1. Interpretation of results

Correspondence model-based 4D dose simulation

One of the main goals of this thesis was to develop a 4D dose simulation approach that
takes internal patient motion during treatment into account. Hence, a retrospective
quality assurance of the dose delivery during patient treatment could be performed. �e
general approach to achieve this goal was to integrate an external, and thus commonly
clinically acquired, breathing signal information during dose delivery into a retrospective
4D dose simulation scheme for VMAT by correspondence modeling, i. e. the correlation
of internal and external motion signal. Similar to 4D dose accumulation approaches
proposed by Velec et al. [33], Werner et al. [31], Ehrbar et al. [32], Samavati et al. [34] or
Freislederer et al. [93]1, patient 4D CT image data is the basis of the simulation approach.
In contrast to these approaches, however, the patient-speci�c breathing variability during

1Freislederer et al. [93] actually state that in their work�ow the patient breathing trajectory acquired
during treatment is incorporated for 4D Monte Carlo dose calculations. However, as an acquired
external breathing signal measurement is solely correlated to the corresponding 4D CT phase image,
an explicit consideration of patient motion variability during treatment is not given.
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6. Discussion

treatment is explicitly taken into account and thus a more realistic dose estimate is
yielded. Correlating the results, achieved by applying the developed dose accumulation
algorithm to actual patient data sets, to corresponding clinical endpoints, i. e. whether
the patient treatment was successful or not by means of local metastasis recurrence,
indicated a possible linkage between estimated underdosages and metastasis recurrence.
Following these results, the interplay e�ect, i. e. the unfavourable interaction between
patient motion, its variability and highly dynamic dose delivery technique, seems to
impact the treatment at least for some patient cases. �is is further supported by phantom-
based dose measurements and corresponding results as presented in Section 5.5. Yet, the
in�uence of the interplay e�ect is still controversial discussed in the literature, where
e. g. Ong et al. [94] state that interplay e�ects are unlikely to be clinically signi�cant
(at least for more than two treatment fractions). Gauer et al. [19], on the contrary, �nd
proof of considerable in�uence of interplay e�ects. Nevertheless, the results obtained
by applying the proposed correspondence model-based 4D dose simulation potentially
allow to explain patient motion-related dose uncertainties. �e information about the
actually delivered dose can further be used to modify the patient treatment plan between
fractions, for instance by safety margin reduction or expansion as, to some extent, already
performed in MR guided radiotherapy treatments [95, 96]. �erefore, aiming for a clinical
application of the proposed scheme directly motivated to investigate the dose simulation
accuracy and, more importantly, remaining uncertainties in the utilized pipeline and
their general impact on the estimated dose distributions.

Uncertainties of 4D dose simulation

�e basis of the developed scheme is the individual patient 4D CT data set, which
is utilized to extract internal patient motion information to allow for correspondence
model training and subsequent prediction. �e motion extraction by the mostly image
intensity-based DIR algorithms is prone to uncertainties, especially in image areas like
the abdomen with low-to-no image contrast information available [97]. Further, the 4D
CT is based on retrospectively sorted projection data, i. e. solely one mean respiratory
cycle is represented and inter-cycle motion variability neglected. More speci�cally, there
exists no 1-to-1 matching between the reconstructed 3D images and breathing signal
values, and thus artifacts as introduced in Section 3.1.2 can occur due to patient motion
variability. In 2013, Yamamoto et al. [98] concluded that such artifacts impact not only
the image quality but consequently also the accuracy of DIR-estimated motion vector
�elds. �at is, using motion vector �elds estimated by DIR of artifact-a�ected 4D CT
data sets is assumed to highly in�uence the accuracy of correspondence modeling and in
consequence 4D dose accumulation.
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A �rst step to examine the general in�uence of registration algorithms onto resulting
motion vector �elds was to utilize di�erent open source available DIR frameworks for the
task of motion extraction out of 4D CT data sets. �e impact of estimated motion vector
�elds on subsequent steps of the proposed dose simulation pipeline were additionally
analyzed. Interestingly, results of this evaluation showed that for the lung cases indeed
a correlation between DIR and correspondence modeling accuracy exists, which is in
line with the hypothesis of Liu et al. [99] that motion model accuracy is comparable
to DIR accuracy. �e impact on simulated dose distributions was however rather low.
Consequently, predicted dose deviations for radiotherapy treatments in the lung seemed
to be partly trustworthy. In contrast, predicted dose deviations for the liver tumor patients
strongly di�ered. Even the MRI test case scenario (cf. Section 4.4.3) did not lead to a
correlation between DIR characteristics and registration accuracy. However, some of
the investigated frameworks showed, despite the low contrast in the abdomen, good
registration performance, which consequently leads to an accurate motion model, and
to some extent, to a more reliable dose estimation. �e performed extensive analysis
of DIR algorithms, with a strong focus on their accuracy and thus on estimated motion
vector �elds, further showed that especially image artifacts in 4D CT data strongly impact
the registration result and correspondence model formation, as previously assumed.
�erefore, a systematic analysis of typical 4D CT artifacts and their impact on the proposed
dose simulation seemed necessary, especially since Yamamoto et al. [100] already stated
in 2008 that 90% of abdominal/thoracic 4D CT data sets are artifact-a�ected. And this
has not signi�cantly changed, as proven in recent publications [63, 101].

In this thesis, the novel and most optimal idea was to choose (mostly) artifact-free 4D
CT patient data sets and retrospectively manipulate the corresponding CT reconstruction
breathing curve to induce typical artifacts after reconstruction to allow for a comparable
analysis of artifact-free and artifact-containing image data and their impact on the dose
simulation pipeline. Corresponding results showed that especially interpolation artifacts,
i. e. missing projection data for some CT image slices, strongly impact the registration
process. Additionally, subsequent steps like correspondence modeling, motion prediction
and dose simulation are a�ected. �is strongly motivates e�orts to reduce or even prevent
respective artifact type. Especially technological solutions are desired and investigated by
related research community. Promising approaches are utilizing training periods to learn
features of the breathing signal before the actual 4D CT acquisition and subsequently use
this information to adapt to the patient breathing during CT scanning. Martin et al. [101],
for instance, prospectively gate the CT scans based on the detection of irregular patient
breathing. An even more advanced approach is the recently proposed intelligent 4D CT
scanning technique by Werner et al. [65]. Here, a sequence scanning mode is applied,
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guided by the online acquired respiratory signal. Additionally, if projection data is miss-
ing, a rapid breathing record analysis will allow to trigger potential local re-scannings.
Unfortunately, these methods were clinically not available when the patient image data
sets employed in this thesis were acquired. �e other typical 4D CT artifact type, i. e. dou-
ble structure artifacts, is in general more challenging regarding its complete prevention,
but in novel CT reconstruction techniques the usage of advanced protocols can to some
extent reduce their occurrence [66]. �e impact of this artifact type on proposed pipeline,
however, tends to be much smaller, as illustrated in Fig. 3 [SPIE 2018]. Nevertheless,
obtained results showed that a consideration of artifacts is not only mandatory for treat-
ment planning but also for the proposed 4D dose simulation scheme. Furthermore, in the
speci�c task of 4D CT motion extraction using DIR, image quality and imaged anatomy
(e. g. thoracic/abdominal with high/low image contrast, respectively) highly in�uence
the registration result. Following this argumentation, and the fact that DIR is the basis
of the proposed dose simulation scheme, directly motivated to develop a registration
approach that allows estimating registration uncertainty maps. Inspired by the approach
of Yang et al. [75], a probabilistic registration framework based on a CNN with integrated
dropout layers was developed for registration of 4D CT image data. Training the network
with an in-house acquired 4D CT data base, with corresponding pseudo ground truth
vector �elds estimated by standard DIR algorithms, allowed to analyze the DIR accuracy
by means of additional external data bases. �at is, no bias towards the external image
data regarding the scanner type, reconstruction method or image dimensionality was
introduced during training. Strikingly, the registration accuracy of proposed model
variants (depending on the DIR algorithm used for ground truth generation) were similar
or even higher compared to standard DIR accuracy. Further, a 60-fold run time reduction
was achieved. However, extending the deterministic network to be probabilistic using
dropouts, and in consequence allowing for an uncertainty estimation, was only partly
successful. More speci�cally, computation of registration uncertainty maps was possible,
yet, the applicability of such information for e. g. radiotherapy treatment planning and
estimation of uncertainties therein, as proposed by Amir-Khalili et al. [102], remains
unclear. Nevertheless, a consideration of predicted uncertainties in the proposed dose
simulation pipeline was investigated. Beforehand, however, the general accuracy of the
dose simulation scheme was metrologically determined to identify in�uencing parameters
and potential improvements.

Accuracy assessment and simulation improvements

Similar to the approach of Sothmann et al. [16] in the context of a comparison of real-time
tracking systems, dynamically dose measurements were acquired using a measurement
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setup consisting of a detector array mounted on a programmable motion platform that al-
lows to simulate arbitrary motion patterns with high accuracy (accuracy of the simulated
motion paths are speci�ed to be within ≈ 0.5mm) [103]. Comparing simulated motion-
a�ected and dynamically measured dose distributions made the assessment of parameters
in�uencing the 4D dose simulation possible. Corresponding results demonstrated a major
impact of the arc disrectization on simulation accuracy, which was at least to some extent
anticipated. As the highest possible level of disrectization also yields highest similarity be-
tween measurement and simulation, one could expect an even higher similarity when the
angular resolution is further increased. Yet, this was not possible as the arc disrectization
is TPS-dependent and limited to 2.3◦. Overall, however, the interplay e�ect-induced dose
di�erences between static and motion-a�ected dose distributions were reproducible with
high similarity (at least by means of utilized metric, i. e. the Gamma index, with a mean
over all motion scenarios 〈∆γ 〉 of 3.7± 2.6 when comparing simulation to initial measure-
ment2). �at is, a purely simulation-based evaluation of in�uencing parameters was due
to a reliable simulation approach feasible. Here, the impact of the intrafractional patient
motion variability on estimated dose distributions was of particular interest. Repeated
simulations for equidistantly shifted motion starting phases were therefore performed.
And indeed, a substantial impact on obtained motion-a�ected dose distributions was
observed, suggesting a high correlation between individual patient breathing and amount
of occurring interplay e�ects. However, especially the limited arc discretization, not
taking into account the TPS-based “black-box” dose computation and density changes in
the patient geometry during dose simulation (i. e. the dose is computed on the AvCT of
the 4D CT data set), motivated a re-implementation of proposed dose simulation scheme.

Monte Carlo simulations for dose calculations in radiotherapy are considered to pro-
vide reference dose distributions, i. e. achieve highest dose calculation accuracy as stated
by the American Association of Physicists in Medicine task group report 105 [104]. It was,
therefore, the obvious choice with regard to simulation accuracy to utilize a Monte Carlo
dose calculation approach for the proposed dose simulation scheme. In line with the
initially implemented dose simulation approach, correspondence modeling was applied
to predict internal patient motion during treatment. �e Monte Carlo simulation was
however not performed on the AvCT but on the inversely warped reference phase of
the 4D CT data set, as described in Section 4.2.1. �is directly made the consideration of
breathing-induced density changes in the patient geometry feasible. Further, smallest
segments (here: control points; beforehand: arc segments of size 2.3◦ consisting of 2 to 5
control points) de�ning the dynamical dose delivery process were employed to achieve

2Comparing repeated measurements to initial measurements resulted in a 〈∆γ 〉 of 4.1 ± 2.4, i. e. the
simulation lies in the range of the measurement uncertainties.
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highest possible temporal resolution. Application of the new Monte Carlo based simula-
tion scheme to the ten already investigated patient cases showed, compared to the initial
approach, larger negative dose di�erences for metastases with local recurrence. �is
results did not imply a gain in simulation accuracy as ground truth dose information was
missing; yet, the feasibility of the new approach was illustrated. However, the assumption
that simulation accuracy improves when the angular resolution is further increased was
examined by means of beforehand already utilized dose measurements. And indeed, the
Monte Carlo simulated dose distributions showed higher similarity to measurements
compared to the initially simulated distributions with �nest arc discretization. �erefore,
it was assumed that remaining uncertainties of the dose simulation approach are primar-
ily caused by DIR-based 4D CT motion extraction, subsequent correspondence model
formation and related motion prediction. Dose calculation uncertainties are estimated to
be small as Monte Carlo simulations are generally considered to be extremely accurate
regarding the simulation of photon beams generated by electron accelerators [105].

A �rst step to consider the DIR uncertainty was achieved by utilizing the aforemen-
tioned CNN-based DIR approach for 4D CT registration. �e concept of repeatedly
predicting vector �elds with enabled dropout was previously exploited to compute the
sought motion �eld as the mean of the sampled predicted �elds and the registration
uncertainty as the voxel-wise variances. Now, instead of computing the mean prediction,
each individual prediction was used to build individual correspondene models and simu-
late corresponding dose distributions by the 4D Monte Carlo approach. In doing so, a
number of dose distributions was estimated, allowing for an uncertainty propagation
by evaluating voxel-wise dose variances. �e results were interpreted as con�dence
intervals, i. e. how certain is the 4D dose simulation about dose delivered to a voxel, solely
a�ected by the CNN-based DIR uncertainty and its propagation through the simulation
pipeline. In general, for all patient cases the mean over the simulated dose distributions
is similar to the initial dose accumulation approach. Results for the lung cases illus-
trated that corresponding uncertainties are small, mainly because the performance of
intensity-based DIR inside the lung is due to the available contrast information good.
Dose uncertainties for the liver cases are higher, at least for the two cases with local
metastasis recurrence. However, the CNN-based registration lead to relatively small
motion vector �elds3. Consequently the uncertainty i. e. the range of estimated dose
distributions, is potentially underestimated. �at is, the simulated dose distributions are
only sparsely impacted.

3�e cause for that remains unclear. A reason, however, could be the not explicitly performed regulariza-
tion during CNN-based registration.
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6.2. Challenges, limitations and outlook

In the last section, the main results of this thesis were brie�y summarized, discussed and,
if possible, contextualized. Remaining challenges and limitations and how to potentially
tackle them in future research were, however, not directly referred to, which is therefore
conducted in the following.

4D CT imaging

Not only for the discussed dose simulation but also for actual 4D radiotherapy patient
treatments, the quality of pre-treatment acquired 4D CT image data is one of the most
impacting parameters. Especially the previously discussed and investigated 4D CT artifact
types greatly reduce the reliability of contained image information. In consequence,
all following processing steps, for instance the DIR-based motion extraction or the
more clinically relevant delineation of radiotherapy important structures (GTV and/or
OAR), are a�ected. As brie�y mentioned before, this is the reason why a strong e�ort
exists in the related research community to develop and implement approaches that
counter the in�uence of unfavourable patient motion during CT acquisition. Performance-
wise, the recently proposed intelligent 4D CT protocol seems to be the most promising
approach [65]. Combination of initial learning of patient motion information before
imaging and online evaluation of the motion trajectory during CT acquisition allows for
sequence scanning, where imaging is solely conducted in corresponding z-position when
an acceptable breathing cycle is detected. �at is, missing projection data due to too
long patient breathing cycles with regard to the employed z-table feed (cf. Section 3.1.2)
can no longer occur. As missing projection data is the reason for interpolation artifacts,
this type of artifact is completely eliminated. Furthermore, exclusion criteria for an
acceptable breathing cycle is its amplitude irregularity. �us, the occurrence of double
structure artifacts is reduced. However, some motion artifacts still remain, especially
since cardiac or bowel motion is not considered during CT imaging. Further, presented
results are only simulation-based, i. e. phantom and real patient measurements have to
be performed and analyzed before a clinical application is possible. Until then, a more
advanced reconstruction [66], compared to the standard phase- and amplitude-based
reconstruction, is a �rst step to improve 4D CT image quality.

Deformable image registration

�e accuracy of intensity-based deformable registration in medical image data still
remains one of the biggest challenge in 4D dose simulation, especially for image areas with
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low-to-no contrast information available. Registration approaches based on biophysical
and �nite element modeling (FEM), as for instance analyzed by Velec et al. [106], appear
promising. An evaluation of DIR accuracy in the liver performed in the MIDRAS study
[107] showed that such approaches can to some extent outperform purely intensity-based
DIR in the liver. However, FEM-based DIR frameworks are usually not available as open
source and similar to standard DIR equally dependent on a su�cient image quality. �e
CNN-based DIR algorithm developed in this thesis can therefore be speci�cally utilized to
not only estimate the registration result but also a corresponding uncertainty distribution.
For the lung registration, feasibility was illustrated. However, some limitations of the
proposed framework prevented even higher registration accuracy, especially in low
contrast image areas:

Supervised learning: For supervised training of a network, ground truth information
has to be available. For the proposed network, which is trained to solve a reg-
istration task, traditional DIR algorithms were applied for pseudo ground truth
generation that is subsequently used in the training process. More speci�cally,
solely an estimate, i. e. pseudo ground truth information, and no real ground truth
information, was available for training.

Slab-based approach: Due to the large image size of 4D CT data sets, a slab-based model
was implemented, where main motion directions in the patient anatomy were
considered. However, the model never “sees” the whole image while training; hence,
important context information is to some extent not available during training and
prediction. Further, to allow for a deeper network structure, the image input size
was reduced by a pre-trained autoencoder so that the network was trainable with
the available GPU memory. �at is, in-plane image information was to some extent
lost.

MSE loss between vector �elds: Traditional DIR algorithms are typically optimized by
a similarity measure between reference and template image that is maximized
during the registration process. For the proposed CNN-based approach, similarity
between (pseudo) ground truth and predicted vector �eld was evaluated by means
of a MSE loss function. �us, the model does not learn the direct relationship
between template and reference image.

Cascaded network: To achieve higher registration accuracy, the network was applied
iteratively. �is was possible as registration duration was greatly reduced. However,
the stopping condition, i. e. which iteration yields highest registration accuracy,
was chosen arbitrarily.
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Uncertainty estimation: Available image contrast information in thoracic 4D CT data
leads to reliable image registration results. �us, the model estimates solely minor
uncertainties while registration. For abdominal image data, however, the regis-
tration result shows potentially unrealistically small motion predictions in low
contrast areas, mainly because the regularization functional as utilized in tradi-
tional DIR is missing. Consequently, the voxel-wise variance, i. e. registration
uncertainty, is estimated as being low. �us, the obtained uncertainty estimation
remains questionable.

For future work, especially the approach of reinforcement learning in combination with
deep learning seems promising to highly improve the CNN-based image registration
accuracy of thoracic and abdominal CT image data sets. Similar to traditional DIR,
this allows for a loss function that is directly computed between reference and warped
template image. �at is, the model will “see” whole images, maximize similarity between
both and be independent of a (pseudo) ground truth motion vector �eld. Further, a speci�c
smoothness of resulting motion vector �eld, i. e. some sort of regularization, as well as
stopping criteria while registration can be de�ned.

Correspondence modeling

In its current form, the utilized correspondence model is solely based on computed vector
�elds between one reference and all remaining phases of one pre-treatment acquired
patient 4D CT image data set and corresponding external breathing motion information.
�us, no inter-cycle variability as de�ned by McClelland et al. [108] is considered during
model training4. Further, variations of external surrogate signal and internal motion
before �rst treatment fraction as well as between treatment fractions, which are apparent
according to McClelland et al. [109], are not accounted for. Minimizing these uncertainties
is potentially possible by using for instance pre-treatment acquired CBCT data. In clinical
practice, 3D CBCT imaging is performed to verify, and if necessary adapt, the patient
positioning before dose delivery. However, the 3D CBCT raw-data in combination with a
simultaneously recorded external breathing signal can be utilized to reconstruct a (sparse-
view) time-resolved CBCT, i. e. a 4D CBCT, as recently exploited by Madesta et al. [110].
�e reconstructed 4D CBCT image data is, due to the only sparsely available projection
data, extremely a�ected by sparse-view streaking artifacts. Yet, the implementation
of sophisticated solutions, e. g. cyclic registration approaches as applied by Brehm et

4�e inter-cycle variability is de�ned as the motion between breathing cycles. �at is, the motion during
one breathing cycle is di�erent to that during another breathing cycle. Inter-cycle variability is in
the applied approach of correspondence modeling not considered as the 4D CT only represents one
average patient breathing cycle.
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al. [111] or even deep learning based boosting as shown by Madesta et al. [110], achieve
high image quality improvements. �erefore, an update or simply a veri�cation of 4D CT-
based correspondence model could be possible by application of corresponding patient
4D CBCT data sets.

4D dose simulation

�e actual 4D dose simulation concept itself, i. e. not considering uncertainties/limitations
introduced by previous motion estimation techniques, is in general an elaborated frame-
work with in principle no limitations or shortcomings. Especially after re-implementation
of the proposed scheme as a Monte Carlo-based dose accumulation framework, previously
identi�ed limitations, like e. g. not considering density changes in patient geometry or
the dependency on pre-treatment computed dose distributions, are for the most parts
eliminated or at least their impact strongly reduced. However, some challenges and
limitations remain, as described in the following:

Measurement-based dose simulation veri�cation: �e simulation approach was veri-
�ed by arti�cial motion patterns and dose measurements conducted by a 2D detector
array mounted on a programmable motion platform. �is was possible as the dose
measurements were assumed to contain ground truth information. However, as
already shown in corresponding publication (cf. Section 5.5), dose measurements
are for numerous reasons (e. g. statistical �uctuations, accelerator performance,
detector resolution, angular dependence of detector, motion platform accuracy)
not completely reproducible, i. e. to some extent day 1 and day 2 measurements
di�er. However, the simulation accuracy can solely reliably assessed to the point
where it is in the range of the measurement uncertainties.

Patient cohort-based dose simulation veri�cation: �e veri�cation of retrospective 4D-
simulated dose distributions for real patient treatments is not as trivial as the
above described phantom and dose measurement-based approach, as ground truth
information is missing. In this thesis, additional information about the treatment
outcome (local metastasis recurrence yes/no) was available and used to allow for a
�rst dose simulation feasibility estimation. �at is, a linkage between predicted
underdosages and metastasis recurrence was found. However, this correlation
is rather a plausibility consideration for individual cases than a real validation
for the simulated dose distribution. An idea to improve this proceeding is to use
re�ning information about the location of metastasis recurrence. For instance,
Van den Begin et al. [112] used CT and PET follow-up images to delineate the
contour of the recurrent tumor volume to examine the correlation between initially
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planned dose distribution and local recurrence. A similar approach could be used
to correlate the location of the metastasis recurrence on a voxel level, registered
onto the planning CT image, and predicted underdosages by 4D dose simulation.
However, such follow-up image data with contoured recurrence volumes is at the
moment not routinely available. Bypassing this issue is potentially possible by
utilizing the routinely, after radiotherapy treatment, acquired MRI data. As shown
in a recent study, DIR between planning CT image and post-treatment acquired
MRI scan allows to assess the dose delivery accuracy by means of conformity
measures regarding MRI dose imprint and treatment-relevant structures [113]. �e
shorter the time span between treatment end and MRI acquisition the deeper is
corresponding dose imprint. Applying this approach in the context of 4D dose
simulation, i. e. correlating the dose imprint to an iso-dose line estimated by the
simulation approach, could be used as veri�cation tool. �at is, the patient cohort
could be extensively increased and at the same time the estimated iso-doses veri�ed
by the measurable dose imprints.

Patient cohort �e number of patient eligible for 4D dose simulation and subsequent
veri�cation, i. e. treated by VMAT and necessary data for dose simulation available,
was (ten cases) relatively small and only su�cient to allow for a proof of principle
investigation. Further veri�cation of achieved results will be only possible if the
patient cohort size is signi�cantly increased. However, obtaining information about
the clinical outcome is a long and time consuming process and thus the information
is often not available in patient data sets.

Uncertainty propagation In its current form, the proposed registration uncertainty prop-
agation through the dose simulation pipeline is a �rst proof of concept of its appli-
cability. In a next step, remaining technical uncertainties, as for instance introduced
by extra- and interpolation of the correspondence model-based motion estimation,
has to be included. Further, and aiming at an application of the proposed scheme as
a clinical quality assurance tool, is the consideration of human errors. An example
of a highly in�uencing error introduced by humans is the contouring process of
radiotherapy-relevant structures, performed by radiologists. Louie et al. [114]
analyzed the intra- and inter-observer variability for lung cancer target volume
delineation in 4D CT data and found that the variability in especially the target
volume delineation is a major source of error in lung 4D CT treatment planning.
�e consideration of such errors in the proposed dose accumulation pipeline is,
however, complex and needs beforehand an extensive evaluation of the intra- and
inter-observer variability.
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Interpretation and consideration of estimated underdosages Even if the 4D dose sim-
ulation approach would be extensively validated and found su�ciently accurate/re-
liable, the question how to employ predicted dose distributions remains. �is means,
the application of the algorithm with corresponding delivered dose information
as a patient speci�c and retrospective quality assurance tool is desirable, but how
to use, for instance, estimated underdosages to improve the patient treatment and
thus the treatment success is unclear. Daily treatment plan adaption, as for example
proposed by Palacios et al. [95], is possible, however, it is currently solely performed
to adapt treatment plan margins to inter-fractional organ changes. Reacting to
early identi�ed underdosages in the target area by safety margin adaptation and,
for instance, introduction of local dose boosts can in this form not yet be found in
the literature. Nevertheless, the proposed dose accumulation framework provides
valuable information for adaptive SBRT schemes of extracranial metastases.
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Conclusion

�e aim of this thesis was to develop and analyze a 4D dose accumulation approach
applicable for retrospective quality assurance in 4D radiotherapy. It was shown that
correspondence modeling to consider individual patient motion variability during dose
delivery in combination with VMAT dose accumulation is feasible. A potential linkage of
estimated tumor underdosages to the treatment success was found. Based on the funda-
mental correspondence model-based 4D dose accumulation implementation, in�uencing
parameters regarding the dose simulation accuracy were identi�ed and further analyzed.
In this process, it became clear that especially 4D CT image data, typical 4D CT artifacts
and the DIR-based motion extraction for subsequent correspondence model training and
prediction were most in�uencing parameters. Further, the comparison of dose simulation
and corresponding phantom-based dose measurements illustrated potential limitations
of the 4D dose accumulation algorithm. Aiming at a highest possible simulation accuracy
to enable an application of the framework as a quality assurance tool in the clinical
work�ow of 4D radiotherapy, improvements and thus modi�cations of the proposed
pipeline were investigated and established.

Based on the main �ndings of this thesis, it can be concluded that the proposed 4D dose
accumulation scheme, modi�ed to actually re-compute dose distributions by Monte Carlo
simulations, is in principle able to be integrated in the clinical 4D radiotherapy work�ow
for quality assurance purposes. Remaining uncertainties in the pipeline can to some
extent be propagated and thus considered in the �nal 4D-simulated dose, as exemplary
shown for registration uncertainties. Application of the 4D dose accumulation scheme to
actual patient data sets highlighted its feasibility. �e prospect of further insight into
respiratory motion and motion variability-related error sources in VMAT-based SBRT
of extracranial metastases is provided. �e hypofractionated VMAT treatment that is
due to its high complexity and less probable averaging out e�ect mainly a�ected by
motion variability-related error sources and thus by the interplay e�ect should further
be investigated regarding its general accuracy and limitations.

However, before a clinical implementation and utilization of the 4D dose accumulation
framework is possible, remaining uncertainties have to be analyzed and ruled out. �is
does not only improve the dose accumulation accuracy but also the general radiotherapy
treatment process. �e basis of both, treatment planning and dose accumulation, is a
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patient speci�c 4D CT data set. �at is, a reduction or complete elimination of typical
4D CT image artifacts by novel scanning techniques will highly increase image quality
and consequently bene�t all subsequent and dependent processing steps like e. g. de-
lineation of OAR/GTV (treatment planning) and internal motion extraction using DIR
(dose accumulation). In a recent study (2019) by Sentker et al. [115], the correlation of
artifact severeness and treatment success was statistically analyzed. �e �ndings showed
a signi�cant association between presence and severity of image artifacts in 4D CT data
and local metastasis control (i. e. negative treatment outcome) after SBRT treatment. In
consequence, using less artifact-a�ected 4D CT data for treatment planning has a high
potential to improve the general treatment success rate.

Even if image artifacts in 4D CT data can be highly reduced, the for correspondence
model building required internal motion extraction by DIR would still be prone to uncer-
tainties in low-to-no contrast areas. Investigations performed in this thesis of current
open source available DIR frameworks illustrated their shortcomings. Such frameworks
cannot be considered ready for “plug-and-play”, and the application of DIR by inexpe-
rienced users is questionable. In addition, the application of DIR for target delineation
in the liver, commonly applied for CT and MRI data set registration to simplify the
delineation process by additional MRI information inside the liver, has a direct impact on
the radiotherapy treatment. �e introduction of a deep learning-based registration frame-
work with the potential to estimate registration uncertainties is a �rst and important step
to consider such DIR-based shortcomings in subsequent processing steps. Improving
the existing framework in future work is therefore highly encouraged. For instance, the
application of deep reinforcement learning, i. e. having a neural network as the policy of
an agent, is an approach that should be further prosecuted.
�e dose measurement-based veri�cation of the general simulation accuracy allows

to conclude that a reliable basis for assessment of VMAT motion e�ects is now given.
Nevertheless, more advanced and patient realistic measurement setups are desirable.
�at is, an acquisition of 3D dose distributions (in this thesis: measurement of 2D
dose distributions) would be bene�cial. Even more advanced non-rigid, i. e. deformable,
phantom setups for measuring a motion-a�ected dose are unfortunately not yet available.
For future work, however, the development of appropriate measurement-based methods
to verify the general 4D dose accumulation scheme is important when aiming at a clinical
implementation of proposed quality assurance framework.

In summary, the development, application and evaluation of a novel framework for post-
treatment 4D dose simulation of highly complex treatments techniques that combines
current developments in the �elds of dose accumulation, correspondence modeling and
DIR was successfully accomplished.
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