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Abstract

The study of ultrafast electron dynamics has drawn much attention in the
past few years with the advent of advanced experimental techniques to ac-
cess physical observables at the femtoseconds timescale. Many applications
in physics, chemistry and biology are based on electron dynamics and un-
derstanding and controlling the flow of electrons would not only answer
fundamental questions about physical processes, but further technologi-
cal advances. While, in principle, solving the nonrelativistic Schrodinger
equation would completely determine any physical phenomenon, an arbi-
trarily accurate resolution is essentially impossible for any case other than
Hydrogen-like systems. For this reason, great effort has been put in the
resolution of the many-electron problem, but many questions still go unan-
swered due to the highly complex nature of electronic correlations and the
lack of computationally efficient methods.

In this thesis, a study of the role of electron correlations is carried
out, with focus on the description of ultrafast electron dynamics in finite
systems. To this extent, a first-principle non-equilibrium Green’s function
(NEGF) approach based on the Generalized Kadanoff-Baym Ansatz (GKBA)
for the study of ultrafast electron dynamics is put forward. The method is
built upon approximations aimed at increasing the efficiency of the oth-
erwise computationally cumbersome NEGF equations, while correctly de-
scribing physical phenomena. By trimming down on the complexity of the
calculation of the correlation self-energy one can analyze the ultrafast dy-
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namics of systems with up to tens of electrons, otherwise inaccessible with
standard methods, which lack the required efficiency or accuracy. To com-
plement this study, an analysis of correlation has been carried out in the
context of Time-Dependent Density-Functional Theory. A construction for
the exchange correlation potential, encoding electronic correlations and
memory effects, is developed, to study transport in nanoscale devices.

In conclusion, this thesis aims to deepen our understanding of non-
equilibrium electron dynamics by providing the methodology to study
never-before simulated phenomena and gain insight into the role of cor-
relations in electron-electron interaction.



Zusammenfassung

Die Untersuchung ultraschneller Elektronendynamik hat in den letzten Jah-
ren viel Aufmerksamkeit erregt, insbesondere durch die Entwicklung fort-
schrittlicher experimenteller Techniken, welche physikalische Beobachtun-
gen im Zeitraum von Femtosekunden ermdglichen. Viele Anwendungen
in Physik, Chemie und Biologie basieren auf der Dynamik der Elektronen,
und das Verstindnis und die Kontrolle des Elektronenflusses wiirde nicht
nur grundlegende Fragen zu physikalischen Prozessen beantworten, son-
dern auch technologischen Fortschritt ermoglichen. Wahrend die Losung
der nicht-relativistischen Schrodingergleichung prinzipiell jedes physikalis-
che Phanomen vollstandig bestimmt, ist eine beliebig genaue Losung in der
Praxis, fiir alles auler wasserstoffahnliche Systeme, unmoglich. Deshalb
sind groRe Anstrengungen unternommen worden, um das Vielteilchen-
problem wechselwirkender Elektronen zu 16sen, aber viele Fragen bleiben
aufgrund der hohen Komplexitit elektronischer Korrelationen und des Feh-
lens effizienter numerischer Methoden unbeantwortet.

Im Rahmen dieser Arbeit wird eine Studie {iber die Rolle der Korrelatio-
nen von Elektronen durchgefiihrt, mit Schwerpunkt auf der Beschreibung
ultraschneller Elektronendynamik in endlichen Systemen. Im Speziellen
wird eine first-principle, non-equilibrium Green’s Function (NEGF) Meth-
ode, basierend auf der Grundlage des Generalized Kadanoff-Baym Ansatzes
(GKBA), zur Untersuchung ultraschneller Elektronendynamik vorgeschla-
gen. Das Verfahren basiert auf Ndherungen, welche darauf abzielen die nu-
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merische Effizienz der Losung der rechenintensiven NEGF-Gleichungen zu
erhohen, und gleichzeitig physikalische Phdnomene korrekt zu beschreiben.
Durch Reduzierung der Komplexitdt der Berechnung der Korrelations-
Selbstenergie kann ultraschnelle Dynamik von Systemen mit zehn oder
mehr Elektronen analysiert werden, was mit Standardmethoden, welche
nicht iiber die erforderliche Effizienz oder Genauigkeit verfiigen, bisher
nicht moglich ist. Zur Ergédnzung dieser Studie wird eine Analyse der
Beschreibung von Korrelation im Rahmen der zeitabhdngigen Dichtefunk-
tionaltheorie durchgefiihrt. Dazu wird eine Ndherungen fiir das sogenan-
ntes Austauschkorrelationspotenzial konstruiert, welche elektronische Kor-
relationen und Retardationseffekte beschreibt, um Elektronentransport
durch Schaltkreisen im Nanobereich zu untersuchen.

Das Hauptziel dieser Arbeit ist es unser Verstdndnis von Nichtgleichge-
wichtsprozessen und Dynamik von Elektronen zu vertiefen, indem Metho-
den entwickelt und zur Verfiigung gestellt werden, um nie zuvor simulierte
Phidnomene zu untersuchen und Einblicke in die Rolle von Korrelationen in
der Elektronenwechselwirkung zu gewinnen.



List of Publications

Publication I

Real-time dynamics of Auger wave packets and decays in ultrafast
charge migration processes

Fabio Covito, Enrico Perfetto, Angel Rubio and Gianluca Stefanucci, Physi-
cal Review A, 97 (6), 061401 (2018).

Publication II

Benchmarking nonequilibrium Green’s functions against configuration
interaction for time-dependent Auger decay processes

Fabio Covito, Enrico Perfetto, Angel Rubio and Gianluca Stefanucci, The
European Physical Journal B, 91 (10), 216 (2018).

Publication III

Efficient computation of the second-Born self-energy using tensor-
contraction operations

Riku Tuovinen, Fabio Covito, Michael A. Sentef, Journal of Chemical Phy-
sics, 97, 174110 (2019).

ix



LIST OF PUBLICATIONS X

Publication IV

Laser-assisted ionisation of adenine as a protection mechanism against
radiation damage

Erik P. Mansson, Simone Latini, Fabio Covito, Vincent Wanie, Mara Galli,
Enrico Perfetto, Gianluca Stefanucci, Hannes Hiibener, Umberto De Gio-
vannini, Mattea C. Castrovilli, Andrea Trabattoni, Fabio Frassetto, Luca Po-
letto, Jason B. Greenwood, Frangis Légaré, Mauro Nisoli, Angel Rubio and
Francesca Calegari, Submitted to Nature Physics.

Publication V

Transient charge and energy flow in the wide-band limit

Fabio Covito, Florian G. Eich, Riku Tuovinen, Michael A. Sentef and Angel
Rubio, Journal of Chemical Theory and Computation, 14, pp 2495-2504
(2018).

Publication VI

Non-adiabatic electron dynamics in tunneling junctions: lattice
Exchange-Correlation potential

Fabio Covito, Angel Rubio and Florian G. Eich, Journal of Chemical Theory
and Computation, accepted, (2019), DOI: 10.1021/acs.jctc.9b00893.



Contents

Preface i
Abstract \
Zusammenfassung vii
List of Publications ix
Contents xi
1 Introduction 1
2 Introduction to NEGF 7
2.1 Quantum mechanical theory and connection to experiment . 7
2.2 Keldysh-Green’s function . . . . .. ... ... ........ 8
2.3 The Kadanoff-Baym equations . . . . .. ... ........ 9
2.4 The embedding self-energy . . ... ... ... ... .... 15
2.5 The Generalized Kadanoff-Baym Ansatz . . ... ... ... 22
Publication I 25
Publication II 41
Publication III 51

xi



CONTENTS xii

Publication IV 61
3 Introduction to TDDFT 101
3.1 Basics of (TD)DFT . . . . . . v v v v v e e e e e 101
3.2 Adiabatic functionals . . . . . . . . .. ... 106
3.3 Transport within TDDFT . . . . .. .. ... ... ...... 107
Publication V 111
Publication VI 125
4 Conclusion 137

Bibliography 145



Chapter 1

Introduction

Almost a century has gone by since the introduction of the Schrédinger
equation [1] and the numerous attempts to its resolution have given access
to the understanding of the quantum mechanical world beyond any imagi-
nation. Nonetheless, even after years of extensive study of its implications,
its appeal has nowadays all but dimmed. The Schrodinger equation can be
cast in a time-independent framework, and its resolution allows the study
of static properties of quantum systems, such as: states of matter in equilib-
rium, formation energies, crystal geometries, electronic density, and so on.
The time-dependent counterpart extends this understanding to the time
domain, giving insight also into the out-of-equilibrium situations and its
resolution still represents a challenge for scientific progress. Particular in-
terest in non-equilibrium quantum mechanics has arisen with the advent of
more sophisticated tools for observing and influencing physical processes
at the microscopic level, e.g. laser light, magnetic fields, etc. This is of
crucial importance to science and technology in the fields of physics, chem-
istry and biology. Light and its interaction with matter, electron dynamics,
transport in nanoscale circuitry, analysis and control of chemical reactions,
transport of bio-signals and change in the structure of biological systems,
are just a few examples of out-of-equilibrium quantum phenomena. In this
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realm, a central role is played by electrons,whose dynamical properties can
change even on the femto- to attosecond timescale due to their mutual in-
teraction as weel as the interaction with other degrees of freedom. How on
a microscopical level electron dynamics influences these processes, though,
is an ongoing matter of investigation in the scientific world.

One of the most successful means of influencing and probing physical
processes is undoubtedly the laser. Since its invention in 1960 [2, 3], the
characteristics of available lasers have drastically improved thanks to ad-
vances in the technologies used for their production as well as their theoret-
ical modeling, paving the way for new research areas, such as: cold atoms
in optical traps, nanoscale transport, molecular transport, nonequilibrium
phase transitions, etc. We have nowadays pushed the intensity, focus size,
peak energy and duration of lasers to a point where we can manipulate and
track electron dynamics down to the attosecond timescale, giving birth to
a branch of science referred to as “attosecond physics” [4]. The challenges
in this field are diverse, spacing from the manufacture of lasers of high
enough quality to the theoretical understanding of the processes induced
and observed. Theory has the role of closing the gap between the measured
physical observables and microscopic variables. As stated before, electrons
are of central importance at these length- and timescales, and their proper-
ties are affected by their mutual interaction, their interaction with light and
their coupling to nuclear motion. A schematic depiction of the timescales
in question can be found in Fig. 1.1. In general, shorter timescales are
associated with electronic motion, but less energetic electronic processes
can easily overlap with nuclear dynamics. Moreover, collective phenomena
happen at longer timescales compared to processes involving single elec-
trons or nuclei, e.g. collective fermionic or bosonic excitations in solids,
formation of new states of matter due to hybridization with light, and so
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Figure 1.1: Characteristic energy and timescales of the microscopic world in the
domain of interest of this work. Processes associated with nuclear motion are in
green, the ones associated with electron dynamics are in light blue and in orange
more complex processes involving both nuclear and electronic motion.

on. All the mechanisms mentioned in Fig. 1.1 are important in the descrip-
tion of the technological processes mentioned earlier.

Although all the above-mentioned effects are described within the
Schrodinger equation, its exact solution cannot be practically calculated
even for small molecules, as the computational power required to solve
such a problem can easily exceed the processing capability of any comput-
ing unit by many orders of magnitude. For this reason, simplifications to
the Schrédinger equation have to be employed to study the quantum me-
chanical behavior of matter. A common simplification regarding nuclear
motion is the so-called Born-Oppenheimer approximation [5], which con-
siders the electronic motion to be decoupled from the motion of nuclei,
given the large difference in the masses (and in turn, velocities) of the two.
In other words the electron dynamics relax before the nuclear motion takes
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place. In the case of light-matter interaction, the simplest and most widely
used simplification is the so-called dipole approximation [6, 7], which con-
siders the electric field associated with light to have no spatial dependence.
This is justified if its wavelength is much larger than the system; it is in
fact also referred to as long wavelength approximation. In this work, the
focus is on the description of electronic interaction. The complication here
is represented by the many-body nature of the problem, as the mutual in-
teraction among electrons induces their correlation and makes the descrip-
tion of the many-body electronic wavefunction highly non-trivial. The sim-
plest approach to a many-body problem is to consider each particle to feel
the effective collective potential due to the rest of the particles, hence the
name mean-field approximation. Various approaches have been developed
over the years to go beyond this theory, such as: Many-Body Perturbation
Theory, Configuration Interaction [8], Density-Functional Theory [9, 10],
Green’s Function based methods, Coupled Cluster [11], Quantum Monte
Carlo [12], Dynamical Mean-Field Theory [13] and many more. Different
approaches approximate one or more particular aspects of the many-body
problem, trying to best describe a certain process or class of processes.
What these methods have in common is a recurring difficulty in the prac-
tical resolution of the equations involved when, e.g. the system size grows
larger and/or a more accurate description of the electron-electron interac-
tion is sought — there is always, in fact, a balance between these two as-
pects. The focus of this work is to present advances in the Non-Equilibrium
Green’s Function (NEGF) [14, 15] approach for the description of ultra-
fast electron dynamics and discuss thermo-electric transport in nanoscale
devices within TDDFT.

The equilibrium Green’s function formalism had been proposed in the
late 50’s and early 60’s as a reformulation of the many-body problem [15-



17], found by applying ideas of quantum field theory to statistical mechan-
ics. The construction of its non-equilibrium extension has been pioneered
by Keldysh [18], who introduced a particular time-contour named after
him, which spans over real and imaginary time, and extended the defini-
tion of Green’s function on it. The concept of imaginary time, although
not concrete, allows for a general description of in and out-of-equilibrium
phenomena. The system of equations resulting from this theory are the
so called (Keldish-)Kadanoff-Baym equations (KBE). The KBE are an exact
reformulation of the many-body problem, and although the first attempt
to their numerical solution was proposed almost 50 years ago [19], more
accurate approximations allowing for a better description of quantum phe-
nomena are, to this day, still a matter of investigation. In the next chapter
a more exhaustive discussion on the matter is presented, together with the
contribution to the state of the art brought by this work.

As the system’s size grows larger, solving of the KBE becomes unpracti-
cal. In fact, the computational time associated with their resolution scales
rather unfavourably with the simulation time and the size of the system.
A more cost-effective and widely used method for the study of quantum
phenomena at the microscopical level, up to systems of the picometer size,
is Time-Dependent Density-Functional Theory [20]. Like its static counter-
part, this method exploits the one-to-one correspondence between the ex-
ternal potential and the electron density. The many-body problem is then
recast in terms of this quantity, which is found through the use of a ficti-
tious system of non-interacting particles in an effective potential, giving the
same density as the interacting one. Although this is an exact reformula-
tion of the time-dependent Schrodinger equation, the form of this effective
potential remains unknown. In fact, approximations to this quantity have
to be found for the practical solution to this problem and since there is no
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systematic way of determining better approximations, this task is rather
complex and represents a line of research on its own. The second part of
this work is devoted to the use of TDDFT for the study of electric transport
through nanoscale devices and the development of an approximation to the
effective potential used to describe the system.

This thesis is divided in two sections. The first part gives a more thor-
ough introduction to the non-equilibrium Green’s function approach and
highlights the contributions to the state of the art achieved within this
work. The second part is devoted to the study of transport within TDDFT
and, in the same way, emphasis is put on the advances accomplished in
the field. At the end of each part, the corresponding publications stem-
ming from the work will be discussed. To further clarify some aspects and
complete the presentation, each publication will be preceded by a brief in-
troduction highlighting the implications of the work and the questions that
remain open, followed by general comments and details of relevance, not
explicitly discussed in the publications, in an effort to share with future
readers the knowledge acquired through experience.



Chapter 2

Introduction to NEGF

This chapter is devoted to an introduction to the non-equilibrium Green’s
function formalism together with a more complete motivation to this work.
Starting from the basic concepts of NEGF we will introduce the main equa-
tions necessary for the understanding of the progress in the field achieved
by this work, presented in the papers at the end of this chapter. For a more
complete discussion on NEGF, refer to [14,21].

2.1 Quantum mechanical theory and connection to
experiment

In quantum mechanics, physical systems are completely described by their
state |¥). How they behave and evolve in time is dictated by the Hamilto-
nian operator I though the Schrédinger equation:

i— |U(F,0,t)) = H(t)|U(7,0,t)) , 2.1)

where 7 and o are the spatial and spin coordinates. In the previous equa-
tion we have set 4 = 1 and we use atomic notation throughout the thesis,
unless otherwise specified. Although this equation is exhaustive and de-

7
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scribes all the physical properties of any system once the Hamiltonian is
defined, its exact resolution is unpractical for essentially any system with
more than a few interacting particles. The information carried by the state
|¥) is enormous as the number of particles can be large and their degrees of
freedom can span over large spaces. Fortunately, most quantities measured
in experiments can be expressed in terms of certain physical observables
which only depend on a restricted number of degrees of freedom. Exam-
ples of this class of observables are: electronic density, electronic currents,
photoionization yield, and so on. We can therefore trim down the amount
of information needed and solve the equations of motion of the operators
associated with these observables instead of solving the Schrédinger equa-
tion. This approach though, only shifts the problem, as the equation of
motion of the reduced quantities still represent a computational challenge.
The advantage of these equation lies in the possibility of better using phys-
ical intuition to find suitable and sensible approximations to practically
resolve them. We will expand on this in the next sections.

2.2 Keldysh-Green’s function

The class of operators our formalism focuses on is field operator correlators
and, in particular, their statistical averages, the Keldysh-Green’s function
(GF). We will focus on the one-body Keldysh-Greens’ function, defined as:

G(1;2) = —i T |57 {br () (2)}] - (2.2)

Here 1 and 2 represent two collective indices for the position-spin coordi-
nates and time, i.e. 1 = (x1,t) = (r1,01,t), p is the density operator, T
is the time-ordering operator and %Tq(l) and 1 (2) are the electron cre-
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ation and annihilation operators in the Heisenberg picture. Although the
one-body Green’s function is the lowest order correlator of this kind, many
physical observables relevant to experiment can be calculated from it, since

7 lim G(l; 2) = Fl(a:l;mg,tl) s (23)
to—t
with T’y (z1; z2) the one-body density matrix, and the expectation value of
any one-body operator O(t) can be computed from it, according to

O(t) = /dxldl‘QO(:El,Iz,t)rl(l‘l,l‘g,t) . (24)

The two-times one-body GF can be further used to calculate the total energy
of the system, which is not an obvious task, as the total energy contains two
body operators, which in principle would require the two-body GF.

2.3 The Kadanoff-Baym equations

We consider a general Hamiltonian in second quantization:

H :/d:]:da:’h(:v,x’,t)zﬁ(w)qﬁ(m’)
(2.5)
4y [ dade's(a, 2y @) )0 ).

where h(z,2’,t) and v(z,2’) represent the one particle Hamiltonian and
the electron-electron interaction, respectively. The single-body part of the
Hamiltonian can include the effect of external (classical) fields, relativistic
effects like the spin-orbit coupling, etc. With this Hamiltonian, the equa-
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tions of motion for the one-body Green’s function are:

[id - h(l)] G(1;2) =6(1;2) — z’/d3 v(1;3)G2(1,3;2,37),  (2.6a)

dt,
]
G(1;2) [_idtg - h(2)] =6(1;2) —z‘/d3 0(2;3)G2(1,37;2,3) . (2.6b)

Here we drop the double space-spin dependence of the single-particle
Hamiltonian for simplicity, without loss of generality. As we can see from
the previous equations, the time evolution of the one-body Green’s func-
tion depends on the two-body GF G2(1,2;1’,2). Accordingly, the equation
of motion for the two-body Green’s function will depend on the three-body
one and so on. This system of co-dependent equation is referred to as the
Martin-Schwinger hierarchy [16]. A truncation of the hierarchy is needed
in order to be able to practically find a solution. Before presenting any ap-
proximation, we introduce the so-called self-energy defined by the equiva-
lence:

/d3 $(1;3)G(3;2) = —z’/d3 v(1;3)Ga(1,3;2,37) . (2.7)

This quantity describes the effect of interaction on the time evolution of the
system. It is non-local in space and time, meaning it cannot be interpreted
as a conventional potential, but it is able to take into account memory ef-
fects, which are of vital importance for the description of non-equilibrium.
By substituting the definition of the self-energy into equations (2.6) they
can be rewritten as:

{z'djfl - h(l)} G(1;2) = 6(1;2) + /dS 2(1,3)G(3,2) (2.82)
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—

G(1;2) [—z’di - h(2)] _5(1:2)+ /d3 G:3)N(3:2),  (2.8b)

where the arrow pointing left on the time derivative indicates that it acts
on the object on its left side. The relative order of the two times ¢; and ¢
defines different “components” of the Green’s function. Without going into
too much detail, we focus on the lesser/greater components Gg(tl, ta) of
the GF, for which ¢; < ¢,. The equations of motion (2.8) for G5(t1,t,) are
the so-called Kadanoff-Baym equations (KBE). The physical interpretation
of the lesser/greater GF is easily comprehensible from their definition. For
the lesser component we have

G<(1,2) = Tr [} (2)du (1)

0> o (Wi Dy (2) (1) [0 2.9)
k

A generic term of this sum can be rewritten, using the definition of the field
operators in the Heisenberg picture, as

(Uk| ] (20 (1) W) = (W] Ulto, t2) P (w2) U (2, 11) (1)U (1, t0) [ W)

(2.10)

with U (t, ') the evolution operator from time from #' to t and ¢, the initial

time. This term is then the probability amplitude of evolving the state

|Wy) from ¢y to ¢1, removing a particle at position-spin 1, letting this state

evolve to time ¢» and finding the same state as evolving (U} | from ¢ to t2
and removing a particle at position-spin xs.

With the KBE we have an exact reformulation of the many-body prob-
lem in terms of the Green’s Function. Although this quantity holds less
information than the full many-body wavefunction, the practical resolution



2 INTRODUCTION TO NEGF 12

HF
————

e, 3 o

e

———

2B

Figure 2.1: Self-energy diagrams up to second order in the bare Coulomb interac-
tion. Solid thick lines represent the Green’s function while wiggly lines depict the
Coulomb interaction.

of the KBE still represents a formidable task. However, from the definition
of the self-energy, by direct comparison with the expansion of the two-
body Green’s function in terms of one-body GF and using the Wick’s theo-
rem [22], one can find an expression of the self-energy in terms of Feyn-
man diagrams. This formulation is a powerful approach to the description
of electronic interaction, as it gives a systematic way of producing approxi-
mations. Moreover, each self-energy diagram has a direct physical interpre-
tation in terms of the process it describes. In the following, we focus on the
first two orders of the expansion of the electronic self-energy in terms of
the bare Coulomb interaction, giving rise to the the Hartree-Fock (HF) and
the second-Born (2B) approximations. Although, in principle, including
higher orders is formally simple, the computational load associated with
higher order self-energies is much more considerable. The diagrams asso-
ciated to these terms of the expansion can be found in Fig 2.1. In the first
diagram of Fig 2.1, called “tadpole” diagram, the electron “feels” (through
the bare interaction) an effective potential that depends on the position of
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all other electrons (closed loop). Even though there is only a single loop
in this diagram, one has to take into account that the self-energy results
from the sum of all possible such diagrams. The second term, the “first-
order exchange”, describes the same process, but taking into account the
statistics of electrons, which require the wavefunction to be antisymmetric.
What these two diagrams embody is the mean-field effect of the Coulomb
interaction, as each electron feels the effective potential of all other elec-
trons. The sum of these first two diagrams represents the Hartree-Fock
approximation. The other two diagrams are second order in the bare inter-
action and start taking into account particle scattering. The first of the two,
the so-called “bubble” diagram, describes processes where an electron scat-
ters with a second electron which leaves a hole behind and this electron-
hole pair evolves before scattering with the initial electron, recombining
— these are polarization effects. The last diagram, the “second-order ex-
change” term, again, takes into account symmetry properties of electrons
in the bubble diagram. The sum of all four diagrams is the second-Born
approximation, which has been successfully employed to describe a wealth
of correlated phenomena [23-29]. Choosing a self-energy approximation
closes the Kadanoff-Baym equations onto the GF itself and a solution can
be found. Finally, we observe that the HF self-energy, being the mean-field
contribution to interaction, is as an effective potential acting on electrons.
This means that the HF potential Vi r(t) can be added to the one-body
Hamiltonian. The effects beyond the HF approximation are referred to as
“electronic correlations” and need to be accounted for through the so-called
correlation self-energy ¥.(1;2).

The calculation of the correlation self-energy is itself a formidable task,
even at the lowest levels of approximation, due to the summing over all
internal degrees of freedom. With the exception of a few special cases, a
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calculation of the self-energy in real space and time is prohibitive and so is
the solution to the KBE. We must therefore expand the field operators, and
in turn all other quantities, over some finite discrete (therefore incomplete)
basis. In the basis, the GF and self-energy are represented by matrices,
and the Coulomb interaction v(x, z’) by a four-dimensional tensor; but the
equations of motion stay unchanged for the new objects. A general 2B
self-energy matrix element, in a single-particle basis, reads

Sij(tt) =2 Virpnmgsi Gum (t, ) Gar (', 1) Gpg(t, 1)
mn
pq

i / , / (2.11)
— Z VirpnUmagsjCng(t, 1) Gar(t', 1) Gpm (£, 1) .

mn
7e

Even though the summation runs over six indices, the computation of this
expression scales like N°, where N is the size of the basis. This is because
the contraction of the Coulomb integrals tensor with a Green’s function ap-
pears twice, but only needs to be computed once, effectively getting rid
of one sum. Although still computationally demanding, eq. (2.11) can be
evaluated for realistic systems. More technical details for the efficient com-
putation of the 2B self-energy can be found in Publication III.

In a single particle basis, the Coulomb interaction tensor might have
negligible elements, e.g. the coulomb integral tends to zero for states with
vanishing overlap. This means that not all of the elements contribute to
the sum in eq. (2.11). In particular cases, it might be even possible to
identify a certain class of Coulomb integrals which contribute to specific
physical processes more than others, which in turn could be discarded.
These two approximations are discussed in the publications I and II, where
their validity is assessed for the description of Auger decay in the ultrafast
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electron dynamics of atoms and molecule.

2.4 The embedding self-energy

Up until now the class of systems considered has not been thoroughly spec-
ified, if not for the decomposition of their Hamiltonian in a single particle
part and a two-body interaction. Before we further specify the Hamiltonian,
we make the observation that completely isolated systems are a fictitious
theoretical tool. In fact, all systems are in principle connected to the en-
vironment surrounding them - they are “open” in contrast to isolated or
“closed” systems. The environment may not be of particular interest to us,
but its interaction with the system of interest, when strong enough, can
influence it or even alter its properties. An example is the coupling of a
quantum device to macroscopic electric contacts: we might not be inter-
ested in the electron dynamics in the contacts, but electrons in the device
can escape through the leads under the action of an electric field. A simi-
lar example is the continuum: the uncountable infinity of unbound states
describing free particles. Its description and its coupling to the bound elec-
trons of a molecule are of vital importance to characterize any ionization
process. The photo-electrons themselves might not be important to the pro-
cess we want to describe, but the hole dynamics they trigger in the parent
molecule are crucial to the description of electron dynamics. Exactly these
two examples are important for this work and are discussed in more detail
later. For the reasons aforementioned, the inclusion of the environment
and its coupling to the system is in order for a more complete description
of quantum systems. Taking into account these considerations, we write
the Hamiltonian as

H=Hy+ Hyy . (2.12)
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The non-interacting part Hy reads

IjIO = Z Tmana’a?;rngczna’

mnoo’ (2 13)
+ Z EkéLo-éko + Z (mGd;rngéka + Vkméladma) )
ko mok

where the first line is the single-particle Hamiltonian of our system of inter-
est, from now on simply referred to as “the system” or “impurity”, and the
second line models the environment and its hybridization with the system.
Regarding the system part, djng(cfma) is creation (annihilation) operator for
a particle in the system with generic quantum number m and spin o and
Trono' 1S @ generic matrix element of the single particle Hamiltonian. For
the environment, éza(éka) is the creation (annihilation) operator for a par-
ticle of quantum number k and spin ¢ in the environment with associated
energy e;. Finally, V,,; and Vi, are the generic matrix elements for the
coupling between the system and the environment. We model the envi-
ronment as a single reservoir coupled to the system, but the formalism is
general and can account for any number of reservoirs for the description of
the environment. The interacting part of the Hamiltonian H;y; is

~ 1

Hiy = 5 Z Uijmndjgd\;glczmo’dna ) (2.14)

ijmnoo’

where vy, is the generic matrix element of the Coulomb interaction. Here
the sum is restricted to indices in the system, which means that the reser-
voirs are non-interacting. This approximation is taken on the basis of what
discussed before: we want to include the environment and its interaction
with the system, but we are not interested in its dynamics. Clearly, this
approximation affects the overall dynamics, therefore it must be treated



17 2.4 THE EMBEDDING SELF-ENERGY

with care, not to introduce artificial effects into our description. An explicit
time-dependence of the Hamiltonian has not been specified, but it can be
accounted for by using time-dependent matrix elements, e.g. T,,ono —
Tinone (t) for including varying electromagnetic fields, V,,,r, — Vi, (t) for a
time-dependent contacting of the system to the reservoirs, etc. The formal-
ism we are presenting, though, is general and is not affected by this: the
time-independent notation will be kept throughout.

Since we are now treating both system and environment, it is advan-
tageous to write the non-interacting Hamiltonian and the Green’s function
matrices in a block form:

H, — Hs Hgp Gt 1) = Gs(t,t')  Ggsg(t,t) . (2.15)
Hps Hpg Grs(t,t')  Gg(t,t')

where the subscript ‘S’ stands for “system” and ‘R’ for “reservoir” and the
bold font is used to represent matrices. Here each element is a matrix itself,
spanning over the indices of the corresponding space, e.g. Hg is the block
of the matrix Hy spanning over the system’s degrees of freedom only, i.e.
the matrix T of eq. (2.13). Correspondingly, Hsrp = H;—‘es is the system-
reservoir coupling matrix V. The interaction is taken care of through the
use of the self-energy. This also takes on a matrix form

S(t,t) = (20(é’t/) 3) . (2.16)

This trivial form stems from the fact that the interacting Hamiltonian is
non-zero only in the system’s sector. The subscript ‘¢’ stands for “correla-
tion”. Note the double dependence of the self-energy on time, reflecting
its dependence on the Green’s function. The equations of motion for the
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different blocks of the Green’s function, according to eq. (2.8), read’

., d n_
[zlsdt —Hs} Gs(t,t) =

(2.17a)
156(t,t") + HsrGrs(t, t') + /df S.(t,1)Ggs(t, 1),
., d / /
[Zlet—HR:| Grs(t,t) :HRsGS(t,t> , (2.17b)
., d / /
|:Zlet—HR] gr(t,t') =1gd(t,t'), (2.17¢)

where gg(t,t') is the non-interacting GF of the uncontacted reservoir, 1 is
the identity in the subspace indicated by the corresponding subscript and
matrix multiplication operations are implied. Eq. (2.17c) is the homoge-
neous equation associated with eq. (2.17b). Hence, the solution of the
latter reads

Grs(t,t') = /dt‘gR(t,ﬂHRSGS(E, ). (2.18)

Substituting this solution into the equation of motion for the system’s GF,
we have

[i 1g % - HS] Gg(t,t') =158(t,t') + / dt (Ec(t, 1) + Bem(t, 1)) Gs(t, 1),
(2.19)
where we define the embedding self-energy

Yem(t,t') = Hsrgr(t,t')Hpgs . (2.20)

The role of the embedding self-energy is clear from its definition and from
how it appears in the equation of motion for the system’s GF: it accounts for

!The same exact derivation can be carried out for the adjoint equations.
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the possibility of particles to hop into the reservoirs, propagate there and
re-enter the system. For non-interacting reservoirs, the embedding self-
energy at all times is known once the equilibrium Hamiltonian is specified.
An interesting feature of open systems is the presence of time non-local
effects, buried into the memory kernel X, (¢,t') of eq. (2.19), even for
non-interacting systems, i.e. 3.(¢,t') = 0. The derivation presented here is
quite general and applies to all non-interacting reservoirs linearly coupled
to the system’s electronic degrees of freedom.

In this work, we use this approach in two different cases: to include the
coupling of quantum devices to electric contacts in the study of transport
through nanojunctions and to describe ionization by a laser pulse in the
case of the study of ultrafast electron dynamics in atoms and molecules.

In the first case, the electric contacts are modeled as non-interacting
metallic wires, where electrons coming from the impurity can freely prop-
agate. The associated self-energy can be computed from eq. (2.20) and is,
in general, a complicated object with two time arguments. Although the
introduction of the embedding self-energy makes the inclusion of macro-
scopic elements into the description of quantum systems computationally
feasible, it is appealing to further speed-up calculations, to study larger
and larger devices. Let us assume that the leads are time-independent,
apart from a possible potential quench at the initial time. In this case the
Green’s function of the leads only depends on time differences. This means
we can Fourier transform to a single energy argument, obtaining

Vv, VT —
Semb(2) =~ “‘S(Z%ea), (2.21)
« o

where z is a complex energy, « labels the leads, V,, is the coupling ampli-
tude, 4t,, is the bandwidth of the lead, ¢, is the center of the lead’s band and
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S(z) = (2 — vz — 1y/z + 1). Even with this simplification, memory effects
are still included in the description of transport. While this is a desirable
feature, it does not always have great impact onto the dynamics. An addi-
tional simplification is brought by considering the form of the self-energy
in energy space. If we expand the function S(z) around z = 0, the zeroth
order expansion is purely imaginary and the self-energy from eq. (2.21)

reads
V., VI
itaVa

EA/R(Z) ~ + " ,

emb

(2.22)

where we only write out the advanced/retarded components of the self-
energy. Transforming back to the time domain we have

T
(t,t") = ii%é(t -t (2.23)

«

A/R

emb

3

meaning that the memory effects are lost. This is known as Wide-Band
Limit Approximation (WBLA) and is broadly used in the study of electronic
transport. This approximation is justified when the expansion (2.22) is ac-
curate, i.e. the argument of the function S in (2.21) tends to zero. This is
achieved if the leads’ bandwidths (x t,) are much larger than any energy
scale in the system and than the applied bias or, equivalently, if the cou-
pling constants are much smaller than the bandwidths |t,| > [|[V4|;;. In
Publication V an analysis of the implications of the WBLA in the study of
thermo-electric transport is presented.

The second instance of an embedding scheme in this work is in the de-
scription of ionization of isolated systems. The absorption of photons in
atoms and molecules promotes an electron to a different state. This can
be an excited state bound to the molecule or not, depending on its energy.
The choice of the basis used for calculations is therefore crucial to the de-
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scription of the dynamics, i.e. if unbound states are not included in the
basis, ionization cannot be described. On the other hand, unbound states
are infinite as all energies are allowed. Hence, the representation of the
continuum of unbound states is not feasible as it would require an equally
infinite amount of resources for the simulations. In a practical calculation
we select a subset of quantized unbound states that describes the contin-
uum in the class of experiments we are simulating. This subset is chosen on
physical grounds: the relevant energy window of interest is known a priori
from the system’s bound states and the laser energies and, for a defined
simulation box, the number of unbound states that fall in that window is
given. We consider the case of dipole coupling of the electric field, we
can therefore write the corresponding ionization (embedding) self-energy,
according to eq. (2.20) as

Sion(t, V) = (E(t)dsc)GL(t, ) (E(t)dcs) , (2.24)

where the subscript ‘C’ indicates the continuum subspace, E(t) is the elec-
tric field, d is the dipole matrix in the sector of the corresponding sub-
scripts, and G%(t, t') is the continuum Green’s function [30]. Note that the
latter will be diagonal in the approximation of non-interacting continuum
states. This is the case in publications I, IT and IV. While ionization itself is
faithfully described within the dipole approximation under the conditions
considered here?, imposing the continuum states to be non-interacting, of
course, prevents us to describe certain physical processes, such as streaking,
multiphoton processes, photoemission satellites and so on. In the afore-
mentioned publications, though, we only focus on simulations of experi-

2Although the dipole approximation is valid in the case studied here, going beyond this
approximation would be necessary in other circumstances, e.g. core level time-dependent
spectroscopy, strong light-matter phenomena, and so on.
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ments where these effects are not important or negligible.

2.5 The Generalized Kadanoff-Baym Ansatz

In the previous sections we presented the Kadanoff-Baym equations for
the description of isolated or open quantum systems. Once the system
is specified and the approximation for the self-energy chosen, dynamical
properties, in form of one-body observables, can be calculated from the
time-dependent single-particle Green’s function G(t,t'). This framework
is more advantageous than solving the Schrodinger equation, allowing for
the study of atomic systems and small molecules (possibly connected to
reservoirs) for propagation times of few femtoseconds. This approach is,
however, still limited by computational complexity. In fact, the scaling of
the equation of motion with respect to systems size and simulation time is
not particularly favorable. The Green’s function itself is a N x N matrix,
where N is the basis size, with two time arguments. The time-propagation
of this object involves an additional integral over time, giving an overall
computational cost that scales with 733, where Ty, is the total simulation
time. Finally, we recall that the calculation of the second-Born self-energy
matrix scales like the fifth power of the size of the basis set used for com-
putation, if no other approximations are used.

Previously we stated that the expectation value of any single particle
observable can be calculated from the one-body density matrix I'; (x1, 2, t)
according to eq. (2.4). This means the full two-time structure of the Green’s
function is redundant to compute this class of observables. It is therefore
tempting to write the equation of motion for G=<(¢,t*) = i p(t), where
p(t) is the time-dependent one-body reduced density matrix in a general
single particle basis, since this has a single time argument. To arrive at
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this equation, we subtract the second equation (2.8) from the first, in the
case of t; < to, ensuring we consider the lesser component of the Green’s
function:

d d
i (dt + dt,) G<(t,t) —hypr(t)G<(t,t') + G<(t,tYhyp(t') =

(=< .G+ 2. G- G< .24 -GE. =] (1,1,

(2.25)

where matrix multiplication is implicit, hypr(t) = h(t) + Vgr(t), A and R
indicate the advanced and retarded components of self-energy and Green’s
function and the symbol - is used to indicate the integration operation, i.e.
(=< GA] (t,¢') = [ dT £<(t,1)G“(%,'). Note that the self-energy includes
both correlation and embedding effects , i.e. ¥ = X o1y + Zem. Taking the
limit ¢ — t/, eq. (2.25) becomes

%p(t) L ifhgp(t), pt)] = [E5 -G — £<.G>] (t,6) + HC., (2.26)

where H.C. stand for Hermitian Conjugate of the object in the square
brackets, referred to as collision integral. The retarded/advanced compo-
nents turned into lesser/greater because of the limit ¢ — ¢. As we can see,
the equation of motion for p(¢) is not a closed equation as it still requires
the knowledge of the off-diagonal (in time) of different Green’s function
components, also appearing in the self-energy. In 1986 Lipavsky et al. [31]
proposed the so-called Generalized Kadanoff-Baym Ansatz (GKBA) to solve
this problem. This ansatz for the lesser/greater component of the GF in
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terms of the density matrix reads
G<(t,t") = iGEt, )G=<(!',t') — iG=(t,t)GA(t, 1)
= _GR(t7 t/)p(t/) + p(t)GA(t, t/) )
G (t,t") = GE(t,t)p(t)) — p(t)GA(t, '), (2.27b)

(2.27a)

with p(t) = 1 — p(t). Although this approximation gets rid of the two-times
lesser/greater GF, it does not simplify the problem, since the retarded and
advanced GF still appear, and the computational effort associated with the
resolution of their equations of motion still scales with 732 . This problem is
bypassed if we provide a retarded/advanced GF, whose calculation scales
faster than 773 . The simplest approximation of this kind is to use the
Hartree-Fock retarded/advanced Green’s function, i.e.

GE(t,t) = —ib(t — )T {e*iff' d hHF@} : (2.28a)

GA(t, ) = +if(t —t)’T{eiftt, dthHF@} . (2.28b)

This choice allows us to close equation (2.26) onto the density matrix only,

reducing its computational scaling to 7.2, . This scheme is referred to as

-
HF-GKBA. The validity of this approximation has been extensively tested
in the past years [21,25,27,32-38]. This level of approximation for the
GKBA has the interesting characteristic of being exact in the Hartree-Fock
approximation in isolated systems, i.e. 3 = 0; this can be seen directly by

plugging the HF-GKBA in eq. (2.26).
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Real-time dynamics of Auger wave packets and decays in ultra-
fast charge migration processes

Fabio Covito, Enrico Perfetto, Angel Rubio and Gianluca Stefanucci, Physical Re-
view A, 97 (6), 061401 (2018).

The Auger decay is a non-radiative relaxation mechanism for excited or ionized
atoms and molecules with an inner-shell vacancy. In this process the hole is filled
by a bound electron and the energy gained is transferred to a second electron,
named Auger electron, which is expelled from the atom, see Fig. 2.2 for a pictorial
representation of the mechanism. Auger spectra and linewidths have been exten-
sively studied in the long time limit [39-41], but less is known about the dynamics
of this process. The Auger decay is an energy-dissipation mechanism happening
at the femtosecond timescale, making its understanding vital for the description
of ultrafast dynamics of targets hit by radiation capable of exciting core vacancies.
The inclusion of this decay channel in ab-initio methods is a complex task and of-
ten disregarded altogether because of this. Its complexity stems from the need of
an accurate description of electronic correlation in order to catch this effect. While
wavefunction-based method have, in principle, this capability, practical computa-
tions are presently prohibitive, as discussed previously. On the other hand, com-
putationally more efficient approaches like TDDFT lack suitable approximations
for the exchange and correlation functionals that can reproduce the Auger decay.
This would, in fact, require non-adiabatic functionals-which include memory ef-
fects such as the Auger decay—-whose development still represents a challenge. In
this publication a first-principles approach based on NEGF for the study of real-
time Auger scattering in atoms and molecules with up to tens of active electrons
is put forward. The method is based on an approximation to the 2B self-energy

25
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Figure 2.2: Schematic two-step depiction of the Auger recombination in an atom.
Once a core hole is created by an external perturbation (left panel), the recom-
bination can take place in an associated characteristic time 7 (right panel). The
core hole is filled by a valence electron and the excess energy (red wiggly line) is
transferred to a second valence electron, which is then expelled from the atom.
The inset shows the energetics of the two-step process.

which considers only a subset of all possible scatterings included in the dynamics.
In particular, all internal dynamics are preserved and only the Auger-like scatter-
ings towards the continuum are considered. To validate the applicability of this
approach, we compare the results with accurate grid calculations in 1-dimensional
model systems. We find the Auger scattering to be faithfully described by the pro-
posed method, while gaining a considerable computational speed-up. Moreover,
we predict a highly asymmetric profile of the Auger wavepacket, with a wavefront
depending on the perturbation creating the initial hole and a long tail showing
ripples whose temporal spacing depends on the inverse of the energy of the Auger
electron.

The proposed method is applicable to finite systems, but can, in principle,
be extended to deal with periodic systems: this would represent an interesting
possibility to explore in the future. Another possible path to investigate would
be an extension of the method to include the effect of valence-valence repulsion,
which is known to play an important role in the Auger decay, without giving up
on computational efficiency.
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In the following, I add a few remarks, which are not explicitly addressed in
the published manuscript, but complement the discussion of the work.

Thermalization. For time-dependent simulations, a crucial role is played by
the initial state of the system, and this can greatly affect results. In our results,
an adiabatic preparation of the correlated initial state has been performed, i.e.
the system is prepared in the HF initial state and correlations are adiabatically
switched on. The switch-on time has to be converged to ensure the system ends
up in the (stable) correlated initial state. This is not visible in the results presented
in the paper, as all quantities are shown starting from the thermalized initial state.

Ionization. The inclusion of ionization processes is quite different between
the NEGF@grid and coupled NEGF calculations. While in the former the dipole
coupling between all states is used and all states are fully interacting, in the latter
an embedding scheme is used, which also means that states in the continuum are
non interacting. To overcome these differences, the laser intensity has to be tuned
to yield the same ionization in the two cases. The differences visible in the results
presented in the paper, then, do not only arise from the approximations imposed
on the self-energy and Green’s function of the continuum, but also on the different
transitions induced by the coupling with the electric field.

Auger wave-packet. Although the Auger wave-packet has intrinsic character-
istic features, like its asymmetric profile and spatial ripples, other properties, like
the amplitude of the ripples or the wavefront shape depend on the perturbation.
This difference stems from the temporal profile of the hole creation and on how the
pump ionizes the system. In particular, for the same core hole induced, a shorter
pump will give rise to a steeper wavefront compared to a more gradual, longer
pump, and different valence populations will give different ripples amplitude.
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The Auger decay is a relevant recombination channel during the first few femtoseconds of molecular targets
impinged by attosecond XUV or soft x-ray pulses. Including this mechanism in time-dependent simulations
of charge-migration processes is a difficult task, and Auger scatterings are often ignored altogether. In this
work we present an advance of the current state-of-the-art by putting forward a real-time approach based
on nonequilibrium Green’s functions suitable for first-principles calculations of molecules with tens of active
electrons. To demonstrate the accuracy of the method we report comparisons against accurate grid simulations
of one-dimensional systems. We also predict a highly asymmetric profile of the Auger wave packet, with a long
tail exhibiting ripples temporally spaced by the inverse of the Auger energy.

DOI: 10.1103/PhysRevA.97.061401

The subfemtosecond dynamics of the hole density created
by anionizing attosecond XUV or soft x-ray pulse precedes any
nuclear rearrangement and dictates the relaxation pathways
of the underlying molecular structure [1,2]. This ultrafast
charge oscillation, also referred to as ultrafast charge migration
(UCM), is driven exclusively by electronic correlations up to
a few femtoseconds [3—7]. At these time scales the Auger
scattering is the only possible energy-dissipation mechanism
and, in addition to shake-up and polarization effects [§8], a
relevant recombination channel.

Recent advances in pump-probe spectroscopy have made it
possible to follow the Auger decay in atomic targets [2,9-12].
Accurate measurements have been performed and successfully
interpreted in terms of transitions between excited cationic
states. The theory behind these experiments shows that the
Auger electron is a “courier” of the complex dynamics occur-
ring in the parent cation [13—15]. Unfortunately, ab initio anal-
ysis relying on many-electron eigenfunctions and eigenvalues
are possible for single atoms but soon become prohibitive for
larger systems. In fact, first-principles approaches that include
Auger scatterings in the UCM dynamics of molecules have not
yet been developed.

Time-dependent density functional theory [16-18]
(TDDFT) is the method of choice for large-scale simulations.
However, the vast majority of TDDFT calculations are
performed using an adiabatic exchange-correlation (xc)
potential, i.e., a functional of the instantaneous density. As
shown in Ref. [19], adiabatic approximations are unable
to capture the Auger effect [20]. Learning how to include
memory effects in the xc functional is a major line of research
to which the present work could provide new insights.

In this Rapid Communication we present a first-principles
real-time nonequilibrium Green’s function [21,22] (NEGF)

2469-9926/2018/97(6)/061401(5)
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approach which incorporates Auger scatterings in the UCM
dynamics of molecules hit by attosecond pulses. In analogy
with the NEGF formulation of quantum transport where the
dynamics of electrons in the junction is simulated without
dealing explicitly with the electrons in the leads [23-25], we
close the NEGF equations on the molecule and deal only
partially with the degrees of freedom of the Auger electrons.
The computational effort changes slightly with respect to
previous NEGF implementations [26-28], thereby making it
possible to simulate the UCM of molecules with tens of active
electrons.

We demonstrate that the approach well captures qualita-
tive and quantitative aspects of the Auger physics through
comparisons against real-time simulations of one-dimensional
(1D) atoms on a grid. The Auger wave packet can, in prin-
ciple, be reconstructed from NEGF through a postprocess-
ing procedure. For three-dimensional (3D) molecules such
procedure is numerically (too) demanding but for the con-
sidered 1D atom the calculation is doable and the agree-
ment with the full-grid results is again satisfactory. Inter-
estingly, we highlight a universal feature of the asymmet-
ric Auger wave packet, namely, a long tail with superim-
posed ripples temporally spaced by the inverse of the Auger
energy.

Method. We consider a finite system (an atom or molecule)
with single-particle Hartree-Fock (HF) basis ¢;(r) for bound
electrons and ¢, (r) for electrons in the continuum (for sim-
plicity we work with spin-degenerate systems). Let ¢;5 (C.0)
be the annihilation operator for an electron on ¢; (¢,) with
spin o. In the absence of external fields the total Hamiltonian

I:qu = I:Ibound + FIAuger + I:Icom (1)

©2018 American Physical Society
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FIG. 1. (a) Schematic illustration of intramolecular (left) and
Auger (right) scattering. (b) Correlation self-energy in the 2B ap-
proximation (top) and ionization self-energy (bottom).

is the sum of the bound-electrons Hamiltonian Hyoung =

le hl] IJC]U +3 lemn vljrﬂnc[gcjo-’crﬂﬂ/cno, the Auger in-
O'O'

teraction Hyger = Y ijmu v;jmﬂ(émcjc,cm,,féw +H.c.),anda
oo’

free-continuum part Heone = > o eﬂéjm Cuo- Here h;; are the

one-electron integrals, €, are the continuum single-particle

energies, and v;ju, (v, im ﬂ) are the four-index Coulomb inte-

grals responsible for intramolecular (Auger) scatterings [see

Fig. 1(a)].

The system is perturbed either by the sudden removal of
a bound electron or by an external laser field. In the dipole
approximation the laser-system interaction reads

A%t = AE .0 + AL @), 2

where H, Ou“d(t) =E@)-) d,-jéjaé_,»g describes intramolec-

o

ular transitions, whereas HE (1) = E(t) - Zm(dméjﬂéw +

ion

o

H.c.) is responsible for ionization. The vector d;; (d;,,) is the
matrix element of the dipole operator between states ¢; and
¢; (¢.). In Egs. (1) and (2) we are discarding the off-diagonal
elements A;,, h;,, and d,,- as well as all Coulomb integrals
with two or more indices in the continuum. We anticipate that
this simplification only marginally affects the results presented
below.

The electron dynamics is simulated using NEGF. With-
out Auger scatterings the equation of motion for the one-
particle density matrix p;;(t) = (6}0(1)6,-(,(1)) (with indices
in the bound sector) has been derived elsewhere [26] and
reads p = —i[hurlpl,p] — Zlp] — Z'[p]. Here the HF Hamil-
tonian hpp(t) = h + Vyr(t) + E(¢) - d is a functional of p
through the HF potential Vigg;j(t) = Y, Pum()Wimnj, With
Wimnj = 2Vimnj — Vimjn- Dynamical correlation and ionization
processes are described by the generalized collision integral

I(z):/ di[Z7(t,0)G=(f,t) — Z=(t,H)G”(,1)], (3)
0

where £S5 = %5 + Elin is the sum of the lesser or greater cor-
relation (X.) and ionization ( X;o, ) self-energies. Both are time-
nonlocal functionals of p through the generalized Kadanoff-
Baym ansatz [29] (GKBA) [see Supplemental Material (SM)
for details [30]]. Figure 1(b) illustrates the diagrammatic
representation of ¥ in the second-Born (2B) approximation
and X;,,. The computational cost of these NEGF calculations
scales like N,2 N,found where N, is the number of time steps,
Npound 1 the number of HF bound states, and the power 3 <
p < 5 depends on how sparse v, is. Real-time simulations
of, e.g., organic or biologically relevant molecules can easily
be carried out up to 30—40 fs [28].

The inclusion of Auger scattering processes leads to a
coupling between the density matrix p(z) and the occupations
Su() = cT (D)o (1)) of the continuum states. For these
quantities We have derived (see SM) the following coupled
system of NEGF equations of motion:

6 = —ilhurlpl,pl — Zip, f1=T'Ip, f1,
fu==Tulp. f1- Tlp. 1. @)

The generalized collision integral Z[p, f] is defined as in
Eq. (3) but X[p] = Z[p] + Zaugerlp, f]. The Auger self-
energy is calculated from the second-order (in v*) diagrams,
in accordance with Refs. [31,32], and reads

<
2:/?uger,ij(l"f) = Z Zcrﬁn(l‘ t)

mnpq p

x [GE(, t)G< E0(v] A wh

+ VWit

Vigmp M"Pl igum Cnupj

—+ G> (t, t)G<(t t)v””;m mmj] )

where we neglected the off-diagonal elements of the continuum

Green’s function, i.e., G%, = 5,“)G§. As we shall demon-
strate, this approximation is remarkably accurate. Through
the GKBA, X g is a time-nonlocal functional of p and f,.
Finally, the collision integral 7, reads

Tu(0) = / KD fED + Ko, 6D 20l (©)
0
where the kernel

S 7 . A A
B = —
v(l‘,[) =1 E Vyrpm Wagsy

mn pq sr

X G> (t, Z)G (1‘ tjG (t t)efte,,(r 1) @

mn

is a time-nonlocal functional of p only. Equations (4), to-
gether with the definitions that follow it, constitute the first
(methodological) result of this Rapid Communication. The
implementation of Egs. (4) does not alter the quadratic scaling
with N,. The scaling with the number of basis functions
changes from N,found to max[Ngjound,N,foundem] where Neon
is the number of continuum states and 2 < q < 4. Therefore,
the proposed equations can be used to simulate a large class of
molecules of current interest.

Assessment of NEGF approach. To demonstrate the re-
liability of the coupled NEGF Eqgs. (4) we consider a 1D
atom with soft Coulomb interactions. On the grid points x,, =
na with |n| < Ngiq/2, the single-particle Hamiltonian reads
h(Xy,Xm) = 8p,m[2k + Vi(xp)] — 8ju—m|,1k, where the nuclear
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» coupled NEGF

—30 30 10 50 60 70 80

t(a.u.)

FIG. 2. Variation of the TD occupations (per spin) n.(t) [core,
increasing blue (dark-gray) and orange (light-gray) curves] and n,(¢)
[valence, decreasing green (light-gray) and red (dark-gray) curves]
calculated using NEGF@grid and coupled NEGF Eqgs. (4) for the
sudden creation of a core hole (top) and the action of a laser pulse
(bottom). The inset shows a magnification of n.(¢) and n,(z) after the
end of the pulse. Vertical axes have been scaled up by a factor 10%.

potential Vi (x) = Uep/v/x2 + a? for |x| < R and Vy(x) =0
otherwise. Electrons interact only in a box of length 2R cen-
tered around zero through v(x,x") = ZUe/v/(x — x')* + a2.
The coupling to an external laser pulse is accounted for by
adding &, x, E(t) to h(x,,X).

We take Ngig =400 and (henceforth all quantities are
expressed in atomic units) a = 0.5, k =2, Z =4, Uy, =2,
Uee = Uen/2, and R = 10a. With four electrons the HF spec-
trum has Ny = 5 bound states (per spin) and Neont = Ngria —
Njys continuum states. The occupied levels have energy €. =
—4.33 (core) and €, = —1.65 (valence). The HF states are
used to construct the Hamiltonian in Egs. (1) and (2). The
results obtained by solving the coupled NEGF Egs. (4) (where
pis a Ngys x Ngys matrix and fis a Neon-dimensional vector)
are benchmarked against NEGF calculations on the full grid
(NEGF@grid). NEGF@grid simulations are performed by
solving the original equation [26] p = —i[hurlp]l.] — Z[p] —
IT[p] where all quantities are Ngrg X Ngrig matrices in the
x, basis and 7 is given by Eq. (3) with ¥ = ¥ (see SM
for details). By construction, NEGF @grid simulations include
the off-diagonal elements h;,,h,, .d,, and all Coulomb
integrals with two or more indices in the continuum. Notice
that NEGF @grid scales cubically with N oy and it is therefore
not exportable to large systems.

In Fig. 2 we show the time-dependent (TD) occupation (per
spin) of the core, n., and valence, n,, levels. In the top panel
we suddenly remove 4% of charge from the core, hence p.. —
Pec — np wWith n, = 0.04, and let the system evolve without
external fields. In the bottom panel the equilibrium system is
driven by the external pulse

E(t) = Epsin’ (”Tt) sin(Qt) ®)

with central frequency € = 6.2, active from ¢t = 0 until t =
T = 20. The frequency is large enough for the energy of the

0.8 NEGF@Qgrid

0.8 coupled NEGF

€, (a.)

FIG. 3. Time-dependent occupations f,(t) of the continuum
states versus their energy ¢, after the sudden creation of a core
hole. The results are obtained from the solution of the NEGF @grid
equation (top) and coupled NEGF Eqgs. (4) (bottom). In both cases the
maximum occurs at €, = €auger. Vertical axes have been scaled up by
a factor 102,

photoelectron not to overlap with the energy of the Auger
electron. The intensity has been chosen to have the same
amount of expelled charge as in the case of the sudden
removal: Ey = 2.0 for NEGF@grid and Ey = 1.5 for the
coupled NEGF Eqgs. (4)—the difference in the value of Ej,
is due to the neglect of the dipole elements d,,,» in Eq. (2).
The results perfectly agree in the top panel, whereas only a
minor discrepancy is observed in the bottom panel. In both
type of simulations the Auger decay slightly depends on
how the core hole is created. In fact, the laser pulse is also
responsible for expelling charge from the valence level, thereby
hindering the refilling of the core. The core-hole lifetime
agrees well with the inverse linewidth function I'(€auger) =
21 Zu \vmwlzé(eAuger —€,) 102 in all cases. It is worth
emphasizing that no time-local approximation of X ayger Would
yield the behavior n.(t) = 1 — n,e~"". We performed TD HF
simulations both in the grid basis and by solving Eqgs. (4)
with 7, = X¢ = Xauger = 0, and found that n.(¢) remains
essentially constant (not shown). This is consistent with similar
findings obtained in TDDFT using adiabatic xc potentials [19].

After the sudden creation of a core hole the electronic
density populates the continuum states ¢,,. In Fig. 3 we show
the corresponding time-dependent occupations f,(f) versus
their energy €,,. Again simulations have been performed using
NEGF @grid (top panel) and the coupled NEGF Egs. (4) (bot-
tom panel). As time passes the total expelled charge increases
and f},(t) gets peaked at the Auger energy €ayger = 2€, — €,
1. The final profile of the peak has a width I' = I'(€auger),
independently of how the core hole is created (suddenly or
due to a laser pulse). On the contrary, the photoelectron
peak attains a width ~27/T immediately after the end of
the pulse (see animation continuum_occupations.mp4 in the
SM). We also observe that the exact energy of the Auger
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electron ei’,‘j‘ge‘r = 2€, — €, — Uyypy 1 not within reach of the
second-order approximation in Eq. (5): the shift v,,,, (due
to the valence-valence repulsion) would require a 7-matrix
treatment [33,34]. However, such shift has only a minor impact
on the internal dynamics of 3D systems like, e.g., organic
molecules, since the repulsion between two valence holes is
typically less than 1 eV.

Auger wave-packet reconstruction. We now use the cou-
pled NEGF Egs. (4) to study the 1D atom on larger boxes
(hence one- and two-electron integrals are calculated from
HF states that spread over a large number of grid points).
The output has been postprocessed to reconstruct the den-
sity of the Auger wave packet according 0 nauger(x,t) =
3 O fu (D@ (x), Where £ (1) = (&, (6,0 (1)) is the
off-diagonal density matrix in the continuum sector. The latter
is obtained by integrating the NEGF equation of motion (see
SM for the derivation)

fuv:_i(ﬂm_51»)f;w_j/w[/o,f]_Jt,i[p?f]v ©)
where J ,,, is given by the right-hand side of Eq. (6) after the
replacement Kfu(t,z")f,?(t") — K,%,(t,t")fv% ().

InFig. 4 we display the Auger wave packet for Ngig = 1600
grid points. In the top panel the core hole is suddenly created
(see also animation Auger_wavepacket.mp4 in the SM),
whereas in the middle panel the atom is driven by the
ionizing laser of Eq. (8). The first observation is that the
wave front depends on the perturbation (sudden creation
or laser), being steeper the shorter it takes to create the
hole. The wave packet moves rightward at the expected
speed v =0€/dp >~ 2, /K€auger = 2.2 and its length is
approximately v/ I" far away from the nucleus. Interestingly,
the tail of the wave packet exhibits spatial ripples that
tend to accumulate nearby the origin. The amplitude of
the ripples depends on the perturbation (sudden creation or
laser), whereas their spacing is an intrinsic feature. In the
bottom panel of Fig. 4 we show the period 7, of the ripples,
i.e., the elapsing time between two consecutive maxima of
NAuger(X0,1), at the interface xo = 30a, versus the number
of periods. We present results for three different values of
range and strengths of the Coulomb force (R,Uep,Uee) =
(10a,2,1), (100a,2.6,2.08), and (10a,2.7,2.025)  yielding
Auger energies €pyger = 1.02, 1.76, and 2.66, respectively. In
all cases we find that 7, attains a finite limit given by

T, = 2”/6Augcr- (10)

The occurrence of ripples and the intrinsic period 7, is
not an artifact of the self-energy approximation. These
features as well as the overall shape of the Auger wave
packet are indeed confirmed by Configuration Interaction (CI)
calculations. Starting at time ¢t =0 with the photoexcited
state |Dy) = éjTEZ lE'IT|0) and evolving with the Hamilto-
nian in Eq. (1) one finds nayger(x,f) = |<,0Auger()c,t)|2 with
(pAuger(xat) = le au(’)‘pu(x) and

el En—€nuger+il /20 _ |

€1 — €Auger + ll—‘/2 ’

ay(t) 2 —ve e B (11)

The CI Auger wave packet is in excellent agreement with
NEGEF (see the SM). In the SM we further show that the ripples

0
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FIG. 4. Snapshots of the density of the Auger wave packet after
the sudden creation of a core hole (top) and the action of a laser
pulse (middle). The bottom panel shows the period of the ripples at
an interface versus the number of periods for three different values
of range and strengths of the Coulomb force (see main text) yielding
Auger energies €auger = 1.02 [red (dark-gray)], 1.76 [yellow (gray)],
and 2.66 [green (light-gray)].

occur even in two or three dimensions and, therefore, they are
a fingerprint of the Auger electron.

To summarize, we have included Auger decays in a first-
principles NEGF approach to simulate the UCM dynamics
of molecules driven by attosecond pulses. The computational
effort is comparable to that of previous NEGF implementations
[26-28], thereby allowing for studying systems with tens of
active electrons up to tens of femtoseconds. Benchmarks in
1D atoms demonstrate that both qualitative and quantitative
aspects are well captured. We also predict a highly asymmetric
profile of the Auger wave packet with a spatial extension of
the order v/ I" and superimposed ripples with temporal period
T, = 27T/EAugeP

Although the fundamental equations have been derived for
finite systems, the proposed NEGF approach can be extended
to deal with periodic systems too. In this context the equation
of motion for the single-particle density matrix opens the
possibility to develop current-density functional theories that
include dissipation and thermalization.
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To distinguish the labels of equations and figures in
the Supplemental Material from those of the main text
we add “-I” to the latter.

I. DERIVATION OF NEGF EQUATIONS IN HF
BASIS

The starting point is the equation of motion for the
Green’s function G(z,z’) with times z, 2’ on the Keldysh
contour. For the Hamiltonian in Egs. (1-I) and (2-I) it is
convenient to write G and the correlation self-energy X
in a block form

n_ [ Za(z,72) alz2)
E(Z,Z ) = (Ei(z,z’) Ec(z,z’) ) ) (2)

where G is a matrix with indices in the bound sector,
C' is a matrix with indices in the continuum sector and
A, A are the off-diagonal blocks. The blocks of the
self-energy have the same structure. For the self-energy
we make the following approximation

(i) All self-energy diagrams containing A or A propa-
gators are set to zero (see below for the justification).

From the approximation (i) it follows that $x = Xa =
0 and that the Hartree-Fock (HF) potential has indices
only in the bound sector since the Coulomb integrals in
H*®Y have at most one index in the continuum. The ex-
plicit form of the HF potential is

VHFJ‘]’ (Z) =—i Z Gnm (Z7 Z+)wimnj7 (3)

mn

where Winnj = 2Vimnj — Vimjn-

The equations of motion for the different blocks of G
then read (in matrix form)

[z%—hm |6t - (B @A)

zz +/

{i% - g} Az, 2) — (B(2) - d) G(z, )

=6(z,2") + /di Yeol(z,2)A(z, 7)) (5)

[zd—i - 5} C(z,2)=6(z,2") + / dz Yo(z,2)C(z,2') (6)

where in Eq. (4) we have defined the nonequilibrium
single-particle HF Hamiltonian

and in the last two equations we have defined the matrix
Euv = duv€,. The blocks of the dipole matrix are un-
ambiguously determined by the contractions and we do
therefore use the same symbol for all four blocks. Notice
that no coupling with the electric field appears in Eq. (6)
since we set d,,,» = 0 in Eq. (2-I).

Next we observe that if the energy-window of the
photoelectron does not overlap with that of the Auger
electron then we can make the approximation:

(i) Te(z, 2)A(z, 2') ~ 0.

With the approximation (ii) we easily integrate Eq. (5)
and obtain

Al =3 / 47 CO(2,2) (B(2) - dyn) Gy (7, 2),
! (8)



where C? is the solution of Eq. (6) with ¢ = 0. Since
£ is diagonal so is C°.
Inserting Eq. (8) into Eq. (4) we get

[idii - h,HF(z)] Gz 2) = 8(2, )

+ / dz[2¢(z,2) + Sion(z,2)] G(7,2'), 9)
where we have defined the ionization self-energy

Eion,ij(zv 2) = Z (E(Z) : di;L) 02(27 2) (E(Z) : duj) .
n

(10)
The diagrammatic representation of the ionization self-
energy is displayed in the bottom diagram of Fig. 1(b)-I
where, to avoid a proliferation of different symbols, we
used G instead of CY (in the main text we also used
G instead of C,,). Notice that Yio, vanishes for times
at which the external pulse is zero.

‘We now have to specify the approximation for the cor-
relation self-energy. For weakly interacting closed sys-
tems (no continuum states) the self-consistent second-
Born approximation (2B) has been shown to be accu-
rate in several nonequilibrium situations [1-10]. The
very same approximation describes Auger scatterings
provided that we also consider interaction lines with one
index in the continuum [11, 12]. We therefore approx-
imate Y and X as the sum of the 2B diagrams. It
is easy to show that for a G initially block diagonal (no
electrons in the continuum in the ground state) the off-
diagonal blocks remain zero for all times in the 2B ap-
proximation. This justifies the approximation (i).

The 2B diagrams for X can be split into diagrams
with interaction lines having all indices in the bound sec-
tor (v) and diagrams with interaction lines having one
index in the continuum sector (v4):

EG = Ec + EAugep (11)

Using the Feynman rules, see top and middle panel of
Fig. 1, one finds

Yeij(z,2') =

§ VirpmWngqsj

mn,pq,sr

X Gmn(z,2)Gpg(2,2")Gsr (2, 2), (12)
and

EAuge;-,ij(Z, Z,) = Z Z Gmn(z7 Z’)
mnpq p
x [C‘u"(27 Z/)GM(Z/7 Z) (v{?ﬂ"#wfnpj + U{?I;tmw;?um)
+ GP(I(Z7 Z/)CMU(Z,, Z)UA ’LUA ] . (13)

ivpm Ynquj
The correlation self-energy ¥ is also given in the top
diagram of Fig. 1(b)-I.

The 2B diagrams for ¢ do instead contain only v*
interaction lines since both indices of ¥ are in the con-
tinuum sector. From the bottom diagram of Fig. 1 one

v v v
o= . o+ .
C,2J i j ? J
v
A
EAuger,ij = 4 j t J
UA
A
EC,MV = I v + w v
’UA

FIG. 1: Self-energy diagrams with indices in the bound sec-
tor for intramolecular scattering (top) and Auger scattering
(middle). Self-energy diagrams for Auger electrons (bottom).

finds

§ A A
v,urpmwnqsu

mn,pq,sr

X G"LH(Z) Z’)qu(zv Z,)Gsr(zlu Z) (14)

EC,;LV (Zv Z/) =

For a short and weak laser pulse the off-diagonal
matrix elements of C' are small. We therefore make the
approximation

(i) Cup = 6,0 Cpu i S pgor

Implementing (iii) in Eq. (13) and extracting the
lesser /greater component we get precisely the self-energy
in Eq. (5-I).

To summarize, with the approximations (i-iii) the
equations of motion become

{i— - hHF(z)} G(z,7)=6(z,2") + /d? $(2,2)G(z,7)
(15)

[Zdilz - 5} C(z,2) =0d(z,2") + /dé Yo(z,2)C(3,2)
(16)
where in Eq. (15) we have defined
Y =3¢ + Zion + LAuger- (17)

Taking the adjoint of Egs. (15,16), summing the re-
sulting equations to Egs. (15,16) and evaluating the re-
sult in z = 27 = t we get the equation of motion for



the density matrices p;;(t) = —iGsj(2,27) and fu(t) =
—iCy (2, 21):
p=—ilhur,p) - T - T, (18)

f;w:_Z‘(Eu_ﬁ/)f;w_j;w_jiw (19)

where

I(t) = /Otdf[2>(t.,ﬂG<(ﬂ t) = S, HG” (L, t)], (20)

j(t):/Otdi[zg(t,ﬂcﬂﬂt)—Zg(t,ﬂc>(ﬂt)]. (21)

Equations (18,19) do not close on p and f since the
right hand side depends on G and C' calculated at differ-
ent times. To close the equations we make the General-
ized Kadanoff-Baym Ansatz [13] (GKBA). According to
the GKBA we can replace all GS and C'S appearing in
7 and J with

G(t.D) = F [GR(E )5 (W) - SOEAE)], (22)

CE(1,8) = F [CR(L ) 5() - FEOC (1)), (23)

where p< = p, p” =1 — p and similarly f< = f, [~ =
1 — f. For the retarded/advanced Green’s function we
consider the HF approximation according to which

GR(1, ) = [GM(Y, ] = —ib(t — ¢)T [e7 S dthmr®]
(24)

CR (t,t') = [CB, (¢, )] = —i8,,0(t—t')e (=1 (25)
Since hgr is a functional of p we see that Eqs. (18,19)
become nonlinear integro-differential equations for p;;(t)
and f,,(t). Notice also that in the equation for p the
dependence on f is only through the diagonal elements
fu = fuu appearing in X ager, due to the approximation
(iii). If we set p = v in Eq. (19) then for the right
hand side to depend only on f, we have to make the
approximation

(iv) fur =0 fuin J

which is consistent with the approximation (iii).

It is easy to show that in this way the equation for p
becomes the first of Egs. (4-I) and that the equation for
fuw becomes Eq. (9-I), which for g = v reduces to the
second of Egs. (4-1).

II. NEGFQGRID VERSUS COUPLED NEGF
CALCULATIONS

To assess the accuracy of the approximations made at
the level of the Hamiltonian with Eqs. (1-1,2-1) and at the
level of NEGF with (i-iv), we considered a 1D atom on
a grid. In the grid basis the total Hamiltonian in second
quantization reads

H(t) = Zd};(xrn)h(xm’xn)wa(xn)

S )l ol 20 (0 ()

mn
oo

+ B mt] (@m) o (m). (26)

m
o

where the one-particle Hamiltonian h(z,z’) and the in-
teraction v(x,z’) are defined in the main text. The
equation of motion for the density matrix in grid basis
2T, Tnyt) = G(Tm, 2320, 27) in the 2B approximation

1S
p.(fvmv T, t) =—1 Z [hHF(xwu Tp, t)p(l”p, T, t)
P

7/)(-737717 Tp, f)hHF (~Tp7 Tn, f)]
—Zy(@pm, Tp,t) — I;(J:n,a:m,t). (27)

In Eq. (27) we have the HF Hamiltonian in grid basis
hur (T, Tp, t) = h(Tm, Tp) +VEF (Tm, Tps t) F0mp E () T,

(28)
with HF potential

VHF(-’L‘m.y Tp, t) = 26n7n Z 7)(-737717 -’L‘q)/)(m(p Zg, t)
q

- U(Innl‘p)p(zm’l‘p’tx (29)

and the collision integral in grid basis

t

Zy(Tp, Tp,yt) = Z/o AE[S7 (@m, t; 2, )G (2, T Ty, 1)
P

5 (@, 6 2, )G (2, 1 Ty, )]

(30)

with the 2B self-energy

E?(mm, tiap,t) = Z (T, Tp)0(Tp, Ts)

X [2G§(xm,t;:Ep,f)Gg(z,v,t;xs,ﬂGz(xs,f; Ty, t)
— G5 (T, t; 24, DGR (24, T; xT7t)G§(xr,t;xp,i)] . (31)
The NEGF@grid results have been obtained by solving

Eq. (27) with lesser/greater Green’s function evaluated at
the GKBA level. Except that for the 2B approximation



to X4, no other approximation has been made. For a
system with Ng.iq points this require to propagate and
store matrices Ngriq X Ngrid-

In order to apply the coupled NEGF scheme based on
Eqgs. (4-I) we first solve the self-consistent HF problem
and extract the equilibrium bound eigenfunctions ¢;(z,,)
and continuum eigenfunctions ¢, (z,) of energy €; and
€, respectively. The HF eigenfunctions are then used to
calculate the matrix elements in the bound sector of the
one-particle Hamiltonian

hij = Z o7 (@m)h(

mn

Imyxn)@j(xm)» (32)
the dipole operator
dij = Z @7 (@) Tm; (Tm), (33)
m
and the Coulomb repulsion

= 01 (@m) @} () V(T Tn)2p () g (Tm).

mn
(34)
The continuum HF eigenfunctions are used to calculate
the bound-continuum matrix elements of the dipole op-
erator

Vijpq

dipy = P} (Tm) T (Tm), (35)

m

and the Coulomb repulsion responsible for Auger scat-
terings

Ljpp Z@z 1m)99] (@) V(T T0)0p(T0) P (Tm)-

mn
(36)
With this information we approximate the original
Hamiltonian in Eq. (26) in accordance with Egs. (1-1,2-I),
ie.,

_E ot oo L e ol At a4
= hijéi, o + by VijpqCioCjo Cpa’ Cqo
ij ijpq
g oo’

+ § Eltc;wqw + E Uljpu ( Cio ]o’pI)U'C#” +h.C.)

UP#
oo’

Z dijél 0 + E() Y (dmé;faéw + h.c.) ,(37)

i
(o8

where ¢, (¢,,) are annihilation operators for an electron
in the HF orbital ¢; (¢,) with spin . Of course, had we
included in Eq. (37) the off-diagonal one-electron terms
containing h;,, h,,s and d,, and the interaction terms
containing v;j,u, Vipuu and vy, we would have got
the same Hamiltonian as in Eq. (26) but in the HF basis.

With the approximate Hamiltonian in Eq. (37) we
solve the coupled NEGF equations (4-I) which, we em-
phasize again, have been derived by making the addi-
tional approximations (i-iv) of the previous section. The

agreement between the full-grid simulations and the sim-
ulations based on Egs. (4-I) indicate that the latter are
enough to capture qualitatively and quantitatively the
physics of the Auger decay.

We observe that in the grid simulations the self-energy
X, contains all possible scatterings, including those con-
tained in the self-energies X, and X ayger of the coupled
NEGF scheme. Furthermore, in the grid simulations no
ionization self-energy appears since the photoionization
is accounted for by explicitly including all grid points
(even those far away from the nucleus). In other words,
all elements p(zp,,Tn,t) are coupled and propagated in
time.

III. CI VERSUS COUPLED NEGF
CALCULATIONS

To further check the quality of the NEGF Egs. (4-I)
we have also solved the time-dependent problem using a
Configuration Interaction (CI) expansion.

The neutral 1D atom described in the main text of the
paper has four electrons, two in the core and two in the
valence levels. We are interested in suddenly removing a
core electron of, say, spin down, and in studying how the
system evolves with the Hamiltonian in Eq. (37). For the
CI expansion we use the following three-body states

|®,) = eliel el o), (38)
|@g) = éliel el o), (39)
|B) = élel elio), (40)

describing the initially photoionized state (®,), the
cationic ground state (®,) and the Auger states (®,).
We expand the state of the system at time ¢ according to

(W (t) = az(t)|[ @) + ag(t)|Rg) + > au(t)| @), (41)

and impose the initial condition a;(0) = 1 and a4(0) =
a,(0) = 0. Using the fact that in the HF basis hup is
diagonal, it is easy to show that the cationic ground state
decouples and the dynamics is governed by the equations
below

id:): = E.'Ea’.'t + Z Vepvv s (42)
m

iy = Vepwwas + Epay. (43)

The three-body energies are

E, = 2¢, +e.—
E, = €, +2¢—

4'Ucuvc + 2vcvcv — Uyvou, (44)
4veppe + 2vcvcua (45)

Vecee —
Vecee —
where the HF energies of the core and valence levels are
given by

€C = hCC + UCCCC + 2’UC’U’UC - UC’UC’U? (46)
h’U’U + U’U’UU’U + 2/UT.)CC'U - U'UCUC' (47)

€v



T Auger

— n.(t)aCl —— n,(t)aNEGF
Ny(t)GCT —— n,(£)ANEGF

Ang,

FIG. 2: Auger wavepacket (top) and variation of the occu-
pations of the core and valence levels (bottom) in CI and in
coupled NEGF. Same parameters as in top panel of Fig. 4-1.

The energy €auger = €u, of the Auger electron is de-
termined by the condition F,,, = E, which yields

€Auger = 2€y — €c — Vyovw (48)

as it should. The red-shift vy, is due to the repul-
sion of the two holes in the final state. In order to cap-
ture this red-shift using Many-Body Perturbation The-
ory (MBPT) one should go beyond the 2B approxima-
tion for the self-energy and consider the T-matrix ap-
proximation in the particle-particle sector [14, 15]. We
observe, however, that for weakly correlated molecules,
like organic molecules and biomolecules, the magnitude
of the valence-valence repulsion is typically less than 1
eV; hence, neglecting this repulsion does not substan-
tially affect the dynamics during the first ten of fem-
toseconds or so.

For the 1D atom the valence-valence repulsion is
mainly responsible for reducing the speed of the Auger
electron. The form of the Auger wavepacket as well as the
time-dependent behavior of the refilling of the core-hole
are not altered if we set vy = 0 in Eq. (44). For a fair
comparison with the coupled NEGF Egs. (4-1) we there-
fore solve Eqs. (42,43) using EJZEB = E, + Vypoe in place
of E,. In Fig. 2 we compare the Auger wavepacket (top
panel) and the occupation of the core and valence lev-
els (bottom panels) calculated using CI and the coupled
NEGF equations (4-I). Also in this case the agreement is
rather satisfactory.

The analytic calculation can be carried on further if
we assume that the broadening

F(w) =2m Z ‘Uupvv‘Qé(w - 6#) (49)
n

is a weakly dependent function of w for w ~ epuger. In
this case it is straightforward to show that the amplitudes

1.0 nAuger 1 D

0.6

0.4f

0.2}

0.0

10p nAuger 3D

0.8

0.6

0.4r

0.2

0.0 : : ’ :
20 40 60 80

FIG. 3: Auger wavepacket (in arbitrary units) for I' = 0.05
and €Auger = 1 after a time ¢ = 50 from the sudden removal of
a core electron. Top: nauger(r,t) in 1D. Middle: rnauger(r,t)
in 2D. Bottom: 7*nauger(r,t) in 3D.

a,, are given by
i€y —€Auger+i[/2)t _ 1

€ — €Auger + 7/F/2

iB.t €

(50)

[m (t) = 7’Ucuvve_

which coincides with Eq. (11-I). The occurrence of rip-
ples on the tail of the Auger wavepacket stems from the
structure of the a,,’s. In fact, the ripples are independent
of the dimension of the system and of the details of the
continuum states in the vicinity of the nucleus. As an
example, let 4 = p be the momentum in D dimension
and let us use planewaves ¢, (r) = ¢p(r) = €’PT for the
continuum states. We further consider a free dispersion
€ = €p = p?/2 and, for simplicity, an Auger interac-
tion veupy = Vepyy independent of p so that a, = a,
depends only on the modulus p = |p| of the momentum,



see Eq. (50). Then, the Auger wavepacket is spherically
symmetric and its density is given by

2

NAuger(7,1) = ‘/ %ap(t)eip’r (51)

In Fig. 3 we show nauger(r,t) for I' = 0.05 and an
Auger energy epuger = 1 after a time ¢t = 50 from the
sudden removal of the core electron. The figure shows
NAuger (7, 1) in 1D (top), mnauger(r,t) in 2D (middle) and
rznAuger(r, t) in 3D (bottom). In all cases we appreci-
ate the occurrence of ripples although they tend to get
smeared out as the dimension increases.

IV. DESCRIPTION OF ANIMATIONS

The animation continuum_occupations.mp4 shows the
evolution of the occupations f, of the continuum HF
states for the 1D atom driven by the external laser pulse
of Eq. (8-I). Same parameters as in the bottom panel of
Fig. (2-1).

The animation Auger_wavepacket.mp4 shows the evo-
lution of the Auger wavepacket as obtained by solving
first Egs.(4-I) and then Eq. (9-I). Same parameters as in
the top panel of Fig. 4-1.
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Publication II

Benchmarking nonequilibrium Green’s functions against config-
uration interaction for time-dependent Auger decay processes

Fabio Covito, Enrico Perfetto, Angel Rubio and Gianluca Stefanucci, The European
Physical Journal B, 91 (10), 216 (2018).

This work is dedicated to a comparison of the coupled NEGF approach with a trun-
cated Configuration Interaction (CI) calculation. A first assessment of the coupled
NEGF method has been done in Publication I, where the comparison has been
carried out with full grid NEGF calculations. A more thorough benchmark with
an external method, though, gives us insight into the advantages and limitations
of the method, independent of the underlying possible restrictions of the NEGF
approach. In fact, the implications of using the approximations at the base of the
proposed method method within the GKBA have to be assessed. Our compari-
son, carried out in a 1-dimensional model system, shows consistency between the
two approaches and the differences are explained as known limitations of the 2B
approximation of the self-energy, which means that they are independent of the
additional approximations made to derive the coupled NEGF equations. These dif-
ferences, originating from the neglect of valence-valence repulsion within the 2B
approximation for the self-energy, are expected to be negligible in realistic atoms
and molecules. Importantly, the asymmetric profile of the Auger wavepacket is
confirmed by the CI calculations and its intrinsic properties remain consistent.
This work represents a further assessment of the coupled NEGF approach for
the description of the Auger decay, confirming the predicted behavior and prop-
erties. Future applications of the method could shine some light on the study of
ultrafast electron dynamics following ionization in molecular systems, where cor-
relation, and in turn the Auger decay, play a central role and where state-of-the-art

41
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methods either fail to describe the physics or are computationally too involved.

In the following, I add a remark, which is not explicitly addressed in the pub-
lished manuscript, but complements the discussion of the work.

Numerical solution of CI equations. Although it is a standard technique, it is
worth mentioning how the numerical solution of the system of equations derived
in the CI approach was performed. In fact, a stable solution could only be found
by using a predictor corrector scheme. In particular, I used an approach based on
Euler’s method with the trapezoidal rule, yielding, for a general equation of the
kind ¢ = f(t,y), the time-stepping

1 -
Yitrl = Yi + éAt (f(tisyi) + f(tiv1, Git1)) (2.29)

with At the time-step and §;11 = y; + Atf(t;,y;) the initial guess (found through
Euler’s method).
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Abstract. We have recently proposed a nonequilibrium Green’s function (NEGF) approach to include
Auger decay processes in the ultrafast charge dynamics of photoionized molecules. Within the so-called
generalized Kadanoff-Baym ansatz the fundamental unknowns of the NEGF equations are the reduced one-
particle density matrix of bound electrons and the occupations of the continuum states. Both unknowns
are one-time functions like the density in time-dependent functional theory (TDDFT). In this work, we
assess the accuracy of the approach against configuration interaction (CI) calculations in one-dimensional
model systems. Our results show that NEGF correctly captures qualitative and quantitative features of
the relaxation dynamics provided that the energy of the Auger electron is much larger than the Coulomb
repulsion between two holes in the valence shells. For the accuracy of the results dynamical electron-
electron correlations or, equivalently, memory effects play a pivotal role. The combination of our NEGF
approach with the Sham—Schliiter equation may provide useful insights for the development of TDDFT

exchange-correlation potentials with a history dependence.

1 Introduction

Photo-ionized many-body systems relax to lower energy
states through nuclear rearrangement and charge redis-
tribution. Nuclear dynamics does typically play a role on
longer time scales, although there are situations where
electron—nuclear and electron—electron interactions com-
pete on the same timescale, e.g., in the vicinity of a
conical intersection. At the (sub)femtosecond timescale,
however, the most relevant relaxation channel of core-
ionized molecules is the Auger decay which is exclusively
driven by the Coulomb interaction [1].

Recent advances in pump-probe experiments made it
possible to follow the attosecond dynamics of atoms after
the sudden expulsion of a core electron [2-6]. Theoretical

* Contribution to the Topical Issue “Special issue in honor
of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira,
A. Rubio, and M.A.L. Marques.

* e-mail: gianluca.stefanucci@roma2.infn.it

frameworks describing the Auger decay have been pro-
posed, the more accurate being the ones based on many-
body wavefunctions, see also reference [7]. Although these
methods are in principle applicable to atoms as well as
molecules, they quickly become prohibitive for systems
with more than a few active electrons. For instance, Auger
decays in ionized small molecules or molecules of biological
interest are extremely difficult to cope with wavefunction
approaches due to the large number of states involved in
the process. Still, Auger decays contribute to the relax-
ation dynamics of these more complex systems, which
are currently attracting an increasing interest and atten-
tion [8-12]. It is therefore crucial to develop first-principles
approaches capable of capturing the (sub)femtosecond
relaxation mechanisms induced by electronic correlations
and applicable to atoms as well as molecules.

The most widely used method for large scale real-time
simulations is time-dependent density functional the-
ory [13-15] (TDDFT), which gives an adequate and com-
putationally affordable tool for the description of systems
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consisting of up to thousands of atoms. The most efficient
and extensively used functionals for TDDFT calculations
are the space-time local exchange-correlation (xc) func-
tionals. It has been shown numerically in reference [16]
that these approximate functionals fail in capturing Auger
decays, the fundamental reason being that they lack mem-
ory effects — the xc potential depends on the instantaneous
density only.

We have recently proposed a first-principles nonequi-
librium Green’s function (NEGF) approach [17], which
overcomes the limitation of adiabatic functionals and that
may inspire new ideas for the inclusion of memory effects
in the TDDFT functionals. The method is applicable to
molecules with up to tens of atoms and at its core there
is an equation to simulate the electron dynamics in the
parent cation without dealing explicitly with the Auger
electrons. The idea is similar in spirit to the embed-
ding scheme in time-dependent quantum transport where
the electron dynamics in the molecular junction is simu-
lated without dealing explicitly with the electrons in the
leads [18-22]. However, whereas in quantum transport the
integration out of electrons in the leads gives an embed-
ding self-energy which is independent of the density in the
junction, the integration out of the Auger electrons gives
an Auger self-energy which is a functional of the density
in the molecule.

In order to assess the quality of the NEGF approach
in this work, we use the time-dependent charge distri-
bution of the bound electrons to reconstruct the Auger
wavepacket in free space, and then benchmark the results
against exact configuration interaction (CI) calculations.
We perform NEGF and CI simulations in a model one-
dimensional (1D) system and study the real space-time
shape of the Auger wavepacket as well as the Auger spec-
trum. The main outcome of this investigation is that the
results of the NEGF approach are in excellent agreement
with those from CI provided that the repulsion between
the valence holes is much smaller than the energy of the
Auger electron.

2 Description of the system and theory

Let us consider a 1D finite system described by the one-
particle Hartree-Fock (HF) basis {;, ¢, }, where roman
indices run over bound states and greek indices run over
continuum states. The equilibrium Hamiltonian can be
conveniently written as the sum of three terms

IA{cq = IA{bound + HAuger + Hconta (1)
where I:Ibound is the bound electrons Hamiltonian, H Auger

is the Auger interaction and Hoyt is the free-continuum
part. In our basis, these are written as

Hyound = Z h”clc] 3 Z U”mnETCTémén, (2a)
ijmn
HAuger Z Z ( 7,]m,u, 2 é'méu + HC) ) (2b)

igm
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IA{cont = ZGHéLé;u (QC)
“w

where CI (¢;) is the creation (annihilation) operator for the
state ¢; (the same convention applies to the continuum
index ), h;; the one-electron integrals, e,i the continuum
single-particle HF energies and v;j,n (v} Smy) are the two-
electron Coulomb integrals responsible for intra-molecular
(Auger) scatterings. The one- and two-electron integrals
are defined as

i = [ dogt(a)l-5 V2 + Va@)es(o),

Vijmn = /dl’dl’/ip:(l’)

(3a)

@5 (@ )Ve(@, 2" )pm () on(x), (3b)

with V,(z) and V,(z, z’) the nuclear and electron— clcctron
potential. Note that the Auger Coulomb integrals Ummu
are defined according to equations (3b) with n = p. In
equation (1) we discard all the off-diagonal contribution
Nips hyw as well as all Coulomb integrals with more
than one index in the continuum. This approximation
does not affect the physical description of the dynamics
as demonstated by comparisons against full grid calcu-
lations in reference [17]. In fact, in the HF basis both
hiy and hy, are much smaller than h;; and ¢, whereas
Coulomb integrals with two or more indices in the contin-
uum are responsible for scattering process that are highly
suppressed by phase-space arguments if the photoelec-
tron energy is much larger than the kinetic energy of the
Auger electron. Henceforth, this condition is assumed to
be fulfilled.

The explicit simulation of the ionization process with
a laser field does not represent a complication for the
NEGF method. In fact, the general framework presented
in reference [17] accounts for the coupling of exter-
nal fields with the bound-bound and bound-continuum
dipole matrix elements. Instead, the framework discards
the coupling of external fields with the continuum—
continuum dipole matrix elements and, therefore, light-
field streaking experiments relevant to, e.g., attosecond
metrology [23], or multiphoton ionization processes are
left out.

In this work, we focus on the dynamics induced by
the sudden removal of a core electron, thus the ioniza-
tion process is not simulated. An additional simplification
used for the simulations below (which is however not
essential for the approach) consists in keeping only inte-
grals of the form vZ,, , ., where c labels the state of
the suddenly crcatecit core hole, v; and vy label two
valence states and p an arbitrary continuum state. We
also observe that the HF wavefunctions are real since
the Hamiltonian is invariant under time-reversal. This
implies that the Coulomb integrals have the following
symmetries

Vijmn = Vjinm = Vimjn = Unjmi, (4)

and the like with n — p.
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2.1 NEGF equations

The derivation of the NEGF equations within the so called
generalized Kadanoff-Baym ansatz (GKBA) [24] has been
presented elsewhere [17]; here we only describe the struc-
ture of these equations without entering into the complex
mathematical and numerical details.

Let p be the one-particle reduced density matrix in the
bound sector and f,, be the occupations of the continuum
states. Then the NEGF equations read

p = —ilhurlpl, o — Zlp, f1 — Z'[p, f]

f}l:_j#[pvf]_j;[p7f]7

(®)

where the single-particle HF Hamiltonian is defined
according to

hur,ij = hij + Z(vimnj — Vimjn)Prm- (6)

The matrix 7 and the scalar J, at time ¢ are explicit
functionals of p and f at all previous times. They are
evaluated using the so-called second-Born (2B) approxi-
mation which has been shown to contain the fundamental
scattering of the Auger process [25,26]. The dependence
on p and f occurs through the lesser and greater GKBA
Green’s functions [24]

GE(t1) = 7 |G ()5 () - PP (OGA )], (7)

and the like for GS with indices in the continuum. Here,
the retarded (G®) and advanced (G*) Green’s functions
are evaluated in the HF approximation (and hence they
are functionals of p and f too). The functional Z (7 ,)
is linear in GS with indices in the continuum and quar-
tic (cubic) in GS with indices in the bound sector. Their
calculation requires to perform an integral from some ini-
tial time, say ¢t = 0, up to time ¢. The implementation of
equation (5) does therefore scale quadratically with the
number of time steps. Notice that by setting Z =7, =0
is equivalent to perform time-dependent HF simulations.
Like the adiabatic approximations in TDDFT, HF is local
in time and therefore it is unable to describe Auger decays.

The scaling of the calculation of Z and J,
with the number of basis functions is max[(Npound)®,
(Nbound ) Neont], where Npouna is the number of bound
states, Neont the number of continuum states and the
exponents 3 < p <5, 2 < q <4 depend on the number
of nonvanishing Coulomb integrals [17]. Currently, both Z
and J, are implemented in the CHEERS code [27] which,
for J, = 0, has been recently used to study the charge
transfer dynamics in a donor-Cgo model dyad [28] and the
ultrafast charge migration in the phenylalanine aminoacid
upto 40fs [29]. Since the calculation of .7, is not heavier
than the calculation of Z, the NEGF approach can be used
to study time-dependent Auger processes driven by XUV
or X-ray pulses in molecules with up to tens of atoms.
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2.2 CI calculation

Let us consider the simplest possible case of a system with
one occupied core state, one occupied valence state and a
continuum of empty states. We are interested in describing
the evolution of the system starting from the initial state

|62) = clyel el 10), (8)

representing a core-hole of down spin. The evolution oper-
ator defined by the Hamiltonian in equation (1) mixes |@)
with (we recall that only Coulomb integrals of the form
Veuwo and the like related by symmetries are nonvanishing,
see Sect. 2)

[pg) = CZ?"ZU/’IT 0) (9a)
|6u) = clyel ey 10), (9b)

where |¢g) is the “intermediate” state with the filled core,
i.e., the ground state of the parent cation, and |¢,,) is the
state describing the dication with an Auger electron in the
continuum state p. Carrying out the calculations it is easy
to show that these states are coupled by the Hamitonian
as follows

H* |62) = Bz |62) + T10g) + D Vultw),  (10a)
He |¢g> =E, |¢g> +T |¢7> ) (10b)
f{eq |¢u> = Eu|¢;t> + VH |¢z> ’ (10C)

where the energies F,, Fy, E,, T and V,, are given by

Ey = hee + 2hyy + 20Vcpve + Voovw — Vevews (11a)
Ey = 2hee + Ry + 2Vcove + Vocee — Vevews (11b)
B, = 2hee + €4 + Vecces (11c)
T = hey + Vecve + Vevwos (11d)
Vi = Vppep- (11e)

The simplification brought about by the HF basis
is now evident. The HF Hamiltonian hpr; = hij +

ZCC(Qvikkj — Vi) is diagonal in the HF basis, therefore

0= hHF,c'u :hc'u + (zvcccv - vcc'uc) + (2vcvvv - vcvm})
=hcy + Vecev + Vevow =T
(12)

Thus the “intermediate” state |¢4) decouples from the
dynamics.
We write the three-body wave function at time ¢ as

(1) = as(t) [6a) + > au(t) [6) . (13)

with initial condition [1(0)) = |¢,). Taking into account
equations (10), the time-dependent Schrédinger equation
yields a set of coupled equations for the coefficients of the
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expansion

{idz(t) = Epas(t) + 0, Vaayu(t) (1)

i, (t) = Viag(t) + Epau(t),

to be solved with boundary conditions a;(0) = 1 and
ar(0) = 0.

From the definitions in equations (11) it follows that for
the continuum three-body state to have the same energy
of the initial state, i.e., E, = E,, the energy ¢, of the
Auger electron has to be

— CI HF HF
€ = €Auger — 261} — € — Uyvou, (15)
where
HF
€ = hee + Veeee + 2Vevve = Vevews (16&)
HF
€ = hov + Vyvow + 2Vsccv + Vocves (16b)

are the core and valence HF energies, respectively. It is
therefore reasonable to expect a peak in the continuum
occupations f,, for the p corresponding to an energy close
to the value in equation (15).

In the next section we solve numerically equations (14).
However, in order to get some physical insight into the
solution we here make a “wide-band-limit approxima-
tion” (WBLA) and carry on the analytic treatment a bit
further. Integrating the second equation (14) we have

t
an(t) = —i / e By A ), (1)
0

which correctly satisfies the boundary conditions
a,(0) = 0. Substituing this result into the first equation
(14) we get

ia,(t) = Epag(t) + (/OOo dt' K (t —t")ag(t'), (18)

where

K(t—t)=—if(t—t) Y V2e Bult=t)
m

= [z law) - gre) . o)

27

and

Vi

Aw) - %F(w) => T (20)

The real function A is connected to I' through a Hilbert
transform, i.e.,

Alw) = / o’ T() (21)

2 w—w'’
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and from equations (20) it is easy to show that

I(w)=2r Zu V25(w — E,). (22)
For systems in a box of lenght L the continuum wave-
functions are proportional to 1/ VL and hence VN2 scales
like 1/L, see definition in equation (3b). In the limit
L — oo the discrete sum in equation (22) becomes an inte-
gral and I'(w) becomes a smooth function of w. Assuming
that E, is a few times larger than I'(E,) and that I'(w) is
a slowly varying function for w ~ F,, we can then neglect
the frequency dependence in I
I'w) ~I'(E) =7, (23)
which implies, see equation (21), that we can approximate
A ~ 0, see equation (21). This is the so called WBLA,
according to which the kernel K in equations (19) can be
approximated as

Kt—-t)= —%'yé(t —t). (24)

Substituing this result into equation (18) and then using
equation (17) it is straighforward to find the following
analytic solution
ay(t) = e 3,
e~ (Bx—37)t _ p—iBut

Euwa+%'y

(25a)

a,(t) =-V, (25Db)

From equations (25) we infer that the occupation of the
continuum states is peaked at E,, = E, or, equivalently,
at €, = eg{lger, in agreement with the discussion above
equation (15). We emphasize that this conclusion is based
on the WBLA. The exact solution contains a small cor-
rection which is proportional to the Hilbert transform of
I'(w) at frequency w ~ FE,.

2.3 Comparing NEGF with CI

In the NEGF approach at the 2B level of approximation
two holes, in addition to feel an average (HF) potential
generated by all other electrons, scatter directly once.
However, for a strong enough repulsion vy, it is nec-
essary to include multiple valence-valence scatterings to
predict the correct energy of the Auger electron. In fact,
the red shift v,y in equation (15) can be captured
only by summing multiple scatterings to infinite order
(T-matrix approximation) [30,31]. Since the 2B approx-
imation includes just a single scattering, the predicted
Auger energy is

2B _ HF HF
6Aug;elr - 2617 — € - (26)

In 3D molecules the neglect of vy, has only a minor
impact on the internal (bound-electrons) dynamics since
Uppoo 18 typically less than 1eV and I'(w) varies rather
slowly on this energy scales. In this work, however,
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we are also interested in the description of the Auger
wavepacket. Taking into account that the repulsion vy,
in 1D systems is larger than in 3D ones, a sizable differ-
ence between the CI and 2B results has to be expected.
To demonstrate that such a difference does not affect
the overall physical picture nor the details of the Auger
wavepacket but only the speed at which the Auger electron
is expelled, we isolate the effects of multiple valence—
valence scatterings from the CI formulation. Let us express
the energy E, defined in equations (16a) in terms of
HF energies

HF HF
E, =2¢, +€ — Vecce = YVucev + 2Vueve = Vowwo- (27)

The HF energy EEF is blue shifted by wvyype, see
equations (16), an effect captured by the 2B approxima-
tion. The effect of multiple scatterings manifests in the
red shift given by the last term of equation (27). In the
next section, we show that solving equations (14) using for
E, the value in equation (27) with vy, = 0 one recovers
the NEGF results (notice that this is not equivalent to set
Uyypy = 0 in the Hamiltonian since this Coulomb integral
renormalizes the HF energy €/I''). We will refer to this CI
approximation as CI2B.

3 Results

We consider a 1D atom with soft Coulomb interac-
tions. This particular example is a severe test for the
NEGF method since the continuum spectrum has a strong
frequency dependence and the valence-valence repulsion
energy is of the same order of magnitude of the Auger
energy.

The 1D atom is defined on the points z,, = na of a
1D grid, with |n| < Ngria/2. In our model, the Coulomb
interaction is different from zero only in a box of radius R
centered around the nucleus. The one-body Hamiltonian
on the grid reads

h(xny Im) = 67z,m [2l€ + V'n(z'n)} - 5\n—m\71"'€7 (28)
with V;,(2) = Uen/Va? + a? the nuclear potential and
the hopping integral between neighbouring points. Elec-
trons interact through v(x,2') = ZUee/+/(x — 2')? + a?.
We analyze the system using Ngiq = 1601 grid-points
and choose the parameters according to (atomic units
are used throughout): a = 0.5, Kk =2, Z =4, U, = 2,
Uee = Uen/2 and R = 10a. With four electrons the HF
spectrum has five bound states (per spin), the lowest
two of which are occupied. The energies of the occu-
pied levels are € = —4.33 and ¥ = —1.65 for the
core and valence, respectively, yielding a 2B Auger energy
ei%ger = 1.02. We work in the sudden creation approxi-
mation, according to which the system is perturbed by
suddenly removing a core electron. In the NEGF approach
this is simulated by subtracting to the equilibrium density
matrix p;’_;‘ an infinitesimal amount of charge from the
core, hence p;;(0) = pqu — 0ic0jcnp. In the results below
the hole density n;, = 0.04.
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Fig. 1. Snapshots of the density of the Auger wavepacket leav-
ing the atom (nucleus is situated in z = 0) calculated using
CI (top), NEGF approach (middle) and CI2B (bottom). The
vertical axes have been rescaled by a factor 10* for all curves.

Subsequently to the creation of the core hole the Auger
process takes place, triggering an internal electron dynam-
ics (refilling of the core state) and the expulsion of charge
toward the continuum states. The time-dependent occu-
pation of the core state n.(t) is predicted in both CI and
2B calculations to have the following behavior n.(t) =
1 —npe It where ny, is the core hole created and I is the
inverse lifetime of the Auger decay. Due to the neglect of
multiple scatterings, the Auger decay is faster in 2B and
the corresponding I is overestimated by a factor 1.5. As
already pointed out, this discrepancy is expected to be
much smaller in 3D molecules since the valence—valence
repulsion is not as large.

In Figure 1, we display snapshots at different times
of the real-space density of the Auger wavepacket as
obtained by performing CI (top), NEGF (middle) and
CI2B calculations (bottom). The results in the NEGF
approach closely resemble the ones in the CI2B treat-
ment, in agreement with the discussion in Section 2.3. The
CI calculation, as expected, shows a slower wavepacket.
However, the overall shape, i.e., asymmetric packet with
superimposed accumulating ripples on the tail, is common
to all methods. We mention that the amplitude of the rip-
ples as well as the wavefront of the Auger wavepacket
change if, instead of the sudden creation of a core-hole,
we would have simulated the ionization process using an
external laser pulse. In fact, these features are not uni-
versal and depend on the intensity and duration of the
perturbing field [17]. On the other hand, the time 7. elaps-
ing between two consecutive maxima at any fixed position
is an intrinsic feature of the Auger decay, following
the law

2w

€Auger
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Fig. 2. The top panel shows the time-dependent density of
the Auger wavepacket at a fixed distance xo = 30 from the
nucleus for NEGF, CI and CI2B. The bottom panel displays
the period of the ripples at xp versus the number of elapsing
periods for the three calculations of the top panel and for two
more NEGF calculations, see main text.

In the top panel of Figure 2, we show the time-dependent
density nauger(o,t) of the Auger wavepacket at a certain
distance xy from the nucleus. The densities exhibit rip-
ples of different frequency since the energy of the Auger
electron is different in CI, NEGF and CI2B. The small dis-
crepancy between NEGF and CI2B is due to the fact that
the solution in equations (25) is valid only in the WBLA.
Taking into account the frequency dependence of I" one
would find a small correction to E,, — E, proportional to
the Hilbert transform of I". From the top panel of Figure 2
we see that this correction is rather small and therefore
the WBLA is an excellent approximation in this case.

In the bottom panel of Figure 2, we show the value
of the time 7, elapsing between two consecutive max-
ima of the wavepacket versus the number of maxima
(counted starting from the left most maximum in the top
panel). In the figure T, is rescaled by the Auger energy.
In all cases, after a short transient phase, T, attains the
value 27. In addition to the values of T). corresponding to
the three curves of the top panel, in the bottom panel
we also report the trend of T, calculated in reference
[17] for two more NEGF simulations. More specifically,
we considered two different combinations of range and
strengths of the Coulomb interactions (R,Uen,Uece) =
(100a, 2.6,2.08), (10a,2.7,2.025) yielding Auger electrons
at energies eiuger = 1.76, 2.66, respectively. As we can
see, the quantity T;. X €pyger Temains independent of the
system.

Finally, in Figure 3 we display the snapshots of the time-
dependent occupations f,(t) of the continuum states ¢,,.
After the creation of the core-hole, occurring at ¢t = 0,
the continuum states start to get populated and, as time
passes, gradually get peaked around the Auger energy
eg{lger ~ 0.51 for the CI calculation and efﬁger ~ 1 for the
NEGF and CI2B calculation — the small deviation between
these two calculations has been discussed previously.
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Fig. 3. Snapshots of the occupations f, of the continuum
states versus their energy €, for CI (blue), CI2B (green) and
NEGF (orange). The times of the snapshots (from light to
dark) are given by the color bars.

4 Conclusions

To summarize, we have benchmarked a recently pro-
posed NEGF approach [17] against CI calculations in
a simple 1D model atom. With the exception of the
quantitative discrepancies due to the neglect of multi-
ple valence—valence scatterings, good agreement is found
for the qualitative features of the Auger process. In fact,
NEGF correctly predicts an exponential law for the core-
hole refilling and an asymmetric shape of the Auger
wavepacket characterized by a long tail with superim-
posed ripples of period T, = 27/€ayger- The quantitative
difference is only related to the red shift of the energy
of the Auger electron, as demonstrated by the agree-
ment between NEGF and CI2B results. We point out
that for the systems that we are interested to study in
the future, i.e., organic molecules and molecules of bio-
logical interest, the valence—valence repulsion is less than
1eV; therefore, the neglect of multiple scatterings for the
description of the internal dynamics is expected to be
less relevant.

The NEGF equation (5) are equations of motion for
the one-particle density matrix in the bound sector and
for the occupations of the continuum states, not for the
Green’s function. Both quantities are one-time functions
like the charge density of TDDFT n(r,t¢). In particular,
in a real space basis p(r,r,t) = n(r,t). Given the tight
relation between p and n it would be interesting to use
the explicit form of the functionals Z[p, f] and J,[p, f]
as a guide to generate approximate xc TDDFT potentials
with memory. One possibility would be to combine the lin-
earized Sham—Schliiter equation [32,33] with NEGF using
the GKBA [24].
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174110 (2019).

One attractive aspect of NEGF is the ability to account for correlation-induced ef-
fects at a much reduced computational cost in respect to, for example, wavefunc-
tion based methods. In spite of this, NEGF simulations are still limited to systems
of relatively reduced size (small molecules). One of the heaviest computational
tasks to perform is the calculation of the self-energy. Especially in the case of the
2B approximation used in conjunction to the GKBA, this calculation can take up
to 90-95% of the CPU time, becoming the main computational bottleneck of the
simulations. This is due to the unfavourable scaling of the computation of the self-
energy with the size of the system, like explained in the previous chapter. For this
reason, any gain in efficiency of this calculation directly translates into a compu-
tational advantage that could open the way to the study of larger systems and/or
longer timescales. In this publication we propose an efficient scheme for the cal-
culation of the 2B self-energy based on tensor contractions. The basic idea is to
rewrite the expression of self-energy as a series of (multidimensional) matrix and
entrywise multiplications. Using commonly available optimized linear algebra nu-
merical libraries, we demonstrate a speed-up in the computation time associated
with the calculation of the self-energy. The evaluation of the original expression
is associated with a computation time that is proportional to the fifth power of
the size of the basis used to perform the calculations. Instead, we demonstrate
a scaling of ~ 4.3 for the proposed method. This reduced scaling is related to
the optimization of matrix and tensor multiplication routines. An example is the
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Strassen algorithm [42] for the calculation of matrix multiplications, which in con-
trast to the standard calculation, has an associated computational complexity that
scales with the power N'°827 instead of N3, with NV being the size of the matrices.
The additional advantage of the proposed method is the possibility to profit, at no
cost, from any advance in the implementation of external linear algebra libraries.

The idea behind this work is quite simple and general. In fact, the concept of
contracting loops into tensor operations is not new and has become more inter-
esting with the advent of GPU computing, where these operations are particularly
favourable. The general idea is not restricted to the calculation of the 2B self-
energy and can be used, in principle, for any computation involving looping over
many indices. One could even think of ways of further contracting the collision
integral, since it involves an additional matrix multiplication and a time integral.
An interesting use of this method could be in combination with the dissection
algorithm [43] for exploiting the possible sparsity of the Coulomb integrals tensor.
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for the Green’s function. The present day numerical time-propagation algorithms for the Green’s function are able to tackle first principles
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the internal summations into functions of external low-level linear algebra libraries. We discuss the achieved computational speed-up in
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1. INTRODUCTION

A state-of-the-art computational method for
out-of-equilibrium many-body physics is the nonequilibrium
Green’s function (NEGF) approach.® Mostly due to the lack
of computational capabilities, the nonlinear integrodifferential
Kadanoff-Baym equations (KBE) for the NEGF from the 1960s
remained fairly elusive until their first numerical solutions were
presented in 1984 by Danielewicz’ and further numerical imple-
mentations at the turn of the century.”'"” During the past 20 years,
a considerable amount of progress has been achieved in various
fields of physics employing the NEGF approach: from subatomic
nuclear reactions'"""” to atomic and molecular scales,”” ** further to
condensed phase” " and mesoscopic systems,”" and even to the
descriptions of high-energy particle physics in cosmology."’

However, combining the KBE with ab initio descriptions of
realistic materials still remains a computational challenge. This chal-
lenge results from the double-time structure of the KBE, making
the method very expensive for both computing time and storing the
objects in RAM. The Generalized Kadanoff-Baym Ansatz (GKBA)
offers a simplification by reducing the two-time-propagation of the
Green’s function to the time-propagation of a time-local density

matrix.”’” The computational complexity of the time-propagation of
the GKBA equations scales as the number of time steps squared
instead of the cubic scaling in the double-time KBE.” When a
simulation to reach longer time scales is desired, this difference in
computational speed becomes immense. However, this speed-up in
computational scaling is only possible for the correlation self-energy
approximation at the second-Born (2B) level. The 2B approximation
goes beyond the mean-field description at the Hartree-Fock (HF)
level, but it includes the bare interaction only up to second order, i.e.,
higher order correlations and screening effects are neglected, like in
the higher order T-matrix or GW approximations.””*" However, the
viability of the 2B approximation has been assessed for a large set of
systems with up to moderate interaction strength."”**

Even though the above implementations of the NEGF method
have been successfully applied in many contexts, the computation of
the self-energy still remains a numerical bottleneck. For larger sys-
tems to be studied, the scaling with respect to the basis size in the
self-energy diagrams may be very unfavorable, making first prin-
ciples simulations numerically expensive, at least in naive imple-
mentations when looping over the full basis. Recently, a dissection
algorithm has been proposed and implemented””’ for identify-
ing and utilizing the sparsity of many-body interactions. In this
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paper, we propose to transform the summation expressions in the
self-energy diagrams using tensor-contraction operations and to fur-
ther employ external linear algebra libraries (e.g., low-level C or
Fortran) taking into account, e.g., memory availability, communica-
tion costs, loop fusion, and ordering.”' ~*’ [Here, we consider tensors
simply as multidimensional objects without deeper (differential-)
geometric interpretation.] With benchmark simulations in selected
molecular systems, we present an efficient way to compute the 2B
self-energy applicable either in full time-propagation of the KBE or
in the numerically less expensive GKBA variant.

Il. MODEL AND METHOD

We consider a finite and quantum-correlated electronic system
described by a time-dependent Hamiltonian

H(t) = Zhij(t)c G+ Z v (£)&] 3, [ (1)
i

1]kl

where i, j, k, I label a complete set of one-particle states {¢(r)}
and &7 are the annihilation (creation) operators for electrons
from (to) these states. Although we assume, for simplicity, spin-
compensated electrons and invariance under spin rotations, the
whole consideration could easily be generalized to include also
spin degrees of freedom."””" " The objects henceforth described
will be diagonal in spin space. The one-body contribution to the
Hamiltonian,

hy(t) = [ drgi (n)h(r)g,(r), @

may have an explicit time dependence, describing, e.g., pump-
probe spectroscopies or voltage pulses. These would enter in
h(r,t) = =1V* +w(r,t) - pas external fields w. We also introduced
the chemical potential 4 and we absorbed it into the equilibrium
description of the one-body part of the Hamiltonian. Atomic units,
h=m =e=1, are used throughout. The two-body part accounts for
interactions between the electrons with the standard two-electron
Coulomb integrals

Vi = f drf dr 97 (N (Fer(r’ )‘Pl(") (3)

[r—r']

Even though the Coulomb interaction itself is instantaneous, in
Eq. (1), we allow the strength of the two-body part to be time-
dependent to describe, e.g., interaction quenches or adiabatic
switching. For real-valued basis functions ¢, the Coulomb integrals
in Eq. (3) follow 8-point permutation symmetry

Vijkl = Vjilk = Vkiij = Vlkji = Vikjl = Vljki = Vkilj = Ujlik> (4)

which can be verified by permuting dummy integration variables
and by complex conjugation. The following discussion is not lim-
ited to this choice, however, and also, complex and spin-dependent
basis functions could be used.

To calculate time-dependent nonequilibrium quantities, we use
the equations of motion for the one-particle Green’s function on the
Keldysh contour y."° This object is defined as

Gi(z.2) = -i(Ty[&(2)E] (2)]), 5)
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where T) is the contour ordering operator and the variables z,
Z' specify the location of the Heisenberg-picture operators ¢ on
the Keldysh contour. The contour has a forward and a backward
branch on the real-time axis, [fg, oo[, and also a vertical branch
on the imaginary axis, [fo, to — if], with inverse temperature .
The Green’s function includes detailed information about parti-
cle propagation, and important physical quantities such as elec-
tric currents or photoemission spectra can be extracted from it.
The Green’s function G satisfies the integrodifferential equations of
motion’

[10: - h(2)]G(2.2) = 8(2,2) + [ E3(22)6(7),  (6)
Y

G(z,z')[fi 5 7h(z')]:6(z,z')+ [&6e256), 0
y

where all objects are matrices with respect to the basis of one-
particle states {¢(r)}. The self-energy > accounts for the electronic
interactions. While some two-particle quantities, such as interaction
energies and double occupancies, can also be computed from this
picture,”™” the introduction of the self-energy transforms the many-
body problem to an effective quasiparticle picture, and higher order
correlations, such as the pair distribution function, are not directly
accessible.””"' Depending on the arguments z, z’, the Green’s func-
tion, G(z, z’), and the self-energy, 3(z, z'), defined on the time con-
tour have components lesser (<), greater (>), retarded (R), advanced
(A), left ([ ), right (]), and Matsubara (M).” Typically, one concen-
trates on the particle and hole propagation in terms of G*(f, t') and
G”(t, '), where the time arguments ¢ and t' refer to the (real) times
when a particle is added or removed from the system. Furthermore,
the one-particle reduced density matrix (IRDM) is p(f) = -iG*(t, t)
from which one could compute the expectation value of any one-
body operator. Taking the equal-time limit (¢ — ¢*), one obtains
from Egs. (6) and (7),

L6 w0 - O+ B (0.6 w010, ®

where we defined the collision integral

1(t) = ftqtd?[zi(t,?)G<(f,t) XD (1)
+G (LD (L) - G (LD (B1)]. )

In addition, in Eq. (8), we separated the time-local and time-non-
local contributions to the self-energy as ~ = Zpp + 2, the for-
mer being referred to as the Hartree-Fock (HF) self-energy and
the latter the correlation self-energy; see Fig. 1. This allows for the
extraction of a time-local effective single-particle Hamiltonian, h(t)
+ Zur(t). The collision integrals therefore incorporate only the cor-
relation self-energies .. Importantly, the self-energies depend on
the Green’s functions themselves, 2[G], and therefore, the equation
of motion needs to be solved self-consistently. The correlation self-
energies are typically obtained by a diagrammatic expansion, where
terms can be systematically summed up to infinite order. In this
work, we concentrate on the second-Born self-energy, 2. = 35z (see
Fig. 1), but the consideration can be extended to other (higher order)
diagrams as well.
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FIG. 1. Diagrammatic representations of the Hartree-Fock (a) and the second-Born
(b) correlation self-energies. The straight lines denote electronic Green'’s functions,
whereas the wiggly lines denote the electronic interactions. The internal indices are
summed over. Each diagram comes with a prefactor (—1)Me» iV, where Nioop is

the number of loops and Niy is the number of interaction lines.” The direct terms
with a loop furthermore take an overall spin-degeneracy factor &, which in this case
is &= 29062

Although we reduced the considered information to the
description of a single-time object p, the double-time nature of the
full equations of motion is still present in the collision integral,
which requires the double-time history of 5 and G* to be stored.
In order to obtain a closed equation for p, it is customary to use the
GKBA,"

GS(Lt') ~ i[GR(t, G 1) - G (LG (1, t’)], (10)

and an approximation to the double-time propagators GX* at the
HE level,”

GMA(L 1)~ FiO[x(t - )] Te o D2 ®] gy

where T is the chronological time-ordering operator.” The HF self-
energy, being time-local, can be evaluated from the 1RDM as (see
Fig. 1)

(Zup)i(1) = " (2vm; — vig) pi (8). (12)
d

The lesser Green’s function or the IRDM can then be solved from
Eq. (8) by a numerical time-stepping algorithm and using the sym-
metry property G (, t) = =i + G~(t, ).

In principle, the collision integral on the vertical branch of the
Keldysh contour, I°(t) = 711(5 drz/ (t,7)Gl (1,1), should also be
taken into consideration. However, using the GKBA, the initial cor-
relations collision integral, I, is usually neglected due to the lack of
a GKBA-like expression for the mixed components G M and ZCH.
The correlated initial state therefore needs to be prepared by start-
ing with an uncorrelated (or HF) system and slowly switching on
the interaction (the adiabatic switching procedure).”"*”**" How-
ever, the inclusion of the initial correlations has been shown to be
possible also within GKBA."*

11l. SECOND-BORN SELF-ENERGY

For the time-propagation of Eq. (8), we are only concerned
with the lesser and greater components of the Green’s function and
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self-energy. For the sake of notational simplicity, we then write
G=Gtt), G=G(t,t),and X = Zf(t, t'). In the second-Born
approximation (2B), the correlation self-energy takes the form*™
(see Fig. 1)

Z:ij =2 Z Ulrpnvmqucnmcerp