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Abstract

Seismic inversion requires various physically reasonable processing steps, including building
of the starting velocity model, identification and separation of the wave modes. The most
intuitive and fruitful physical interpretation of seismic waves is given by the high-frequency
theory, which operates with the notions of rays and wavefronts. In this work, I concen-
trate on the fundamental properties of the wavefront curvatures in order to formulate the
important steps necessary for the effective seismic inversion.
I formulate building of macro-velocity models as dynamic ray focusing of normal-incidence-

point-waves and diffractions. It minimizes reverse-time propagated geometrical spreading
at focusing time. The wavefront curvatures and the slowness vector serve as the initial
conditions for the time-reversal kinematic and dynamic extrapolation. When compared to
the conventional wavefront tomography, where data are fitted on the registration surface,
the new objective functional contains a single physical quantity and depends only on the ve-
locity model. This significantly decreases the size of the inversion matrix and improves the
data/unknowns ratio leading to a well-conditioned and stable inversion with fully relaxed
regularization. The gradient of objective functional is computed using the ray perturbation
theory, in terms of Fréchet derivatives or alternatively in terms of the adjoint dynamic ray
tracing operator. Anticipating potential of ray focusing tomography in anisotropic media,
I develop a reduced ray perturbation theory in the wavefront-orthonormal coordinates.
Besides the velocity model building, I aim at identification of edge and point diffractions

to separate them for a subsequent dedicated processing. Edge diffractions are produced
by geological structures such as faults, highly curved folds, cracks, and stratigraphic traps.
Small-scale inhomogeneities and tips produce point diffractions. I complement the wavefront
curvature based classification of wave phenomena by formulating a missing criterion for
diffraction from an arbitrarily oriented and possibly curved edge. Additionally, I propose a
new method, also based on the wavefront curvatures, for sorting seismic traces into specific
groups in order to get ray focusing of edge diffractions during back propagation. This is a
premise for including edge diffractions in ray focusing tomography.
Extracting the wavefront curvatures from recorded data is also of great importance. The

conventional common-reflection-surface (CRS) method exploits an amplitude-coherency
analysis of the vertical component. However, all three vector components of the elastic
wavefield are often recorded during seafloor or land surveys. To account for this data re-
dundancy, I generalize the conventional method. The new multicomponent CRS performs
a vector-semblance optimization. The component weights are determined with a local po-
larization approximation. The proposed approach not only results in enhancing the data
by a more physically accurate stacking, but it also enables to automatically pick the central
polarization and polarization derivatives in offset and midpoint directions. These new po-
larization attributes turn out to be closely related to the wavefront curvatures. They have
many potential applications, including building of the local velocity model at the receiver
side, which can subsequently be used for constraining the global velocity model building.
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Zusammenfassung

Seismische Inversion erfordert eine Reihe an physikalisch sinnvollen Verarbeitungsschrit-
ten, darin eingeschlossen die Verwendung eines guten anfänglichen Geschwindigkeitsmodells
und die Identifikation und Trennung der Wellenmoden. Die intuitivste und am meisten
gewinnbringende Interpretation seismischer Wellen, in Hinsicht auf ihre physikalische Ei-
genschaften, ist durch die Hochfrequenzapproximation gegeben, welche durch das Konzept
von Strahlen und Wellenfronten geprägt ist. In dieser Arbeit konzentriere ich mich auf die
grundlegenden Eigenschaften der Wellenfrontkrümmungen, um die wichtigen Schritte zu
formulieren, die zu einer effektiven seismischen Inversion führen.
Ich fasse die Bildung von Makro-Geschwindigkeitsmodellen als dynamische strahlenbasier-

te Fokussierung von Normal-Incidence-Point Wellen und Diffraktionen auf. Das minimiert
die sich in umgekehrter Zeit ausbreitende geometrische Streuung bei der Fokussierungszeit.
Die Krümmungen von Wellenfronten und der Langsamkeitsvektor dienen als feste Anfangs-
bedingungen für die kinematische und dynamische Extrapolation in Rückwärtsrichtung. Im
Vergleich zur konventionellen Wellenfronttomographie, bei der die Anpassung der model-
lierten Daten an die seismischen Daten an der Registrierungsoberfläche stattfindet, wird
das neue Zielfunktional durch eine einzige physikalische Größe parametrisiert und hängt
demzufolge nur vom Geschwindigkeitsmodell ab. Dies verringert signifikant die Größe der
Inversionsmatrix und verbessert das Verhältnis zwischen Messdaten und Unbekannten, was
zu einer gut konditionierten und stabilen Inversion ohne Anwendung von üblichen Regula-
risierungsverfahren führt. Der Gradient der Zielfunktion wird mit Hilfe der Strahlstörungs-
theorie berechnet, im Hinblick auf die Fréchet Ableitungen, oder alternativ mit Hilfe des
adjungierten Operators der dynamischen Strahlverfolgung. Das Potenzial von Strahlfokus-
sierungstomographie in anisotropen Medien betrachtend, entwickle ich einen Ansatz für
eine sogenannte reduzierte Störungstheorie der Strahlverfolgung, wobei ich das wellenfront-
orthonormale Koordinatensystem benutze.
Neben der Bildung von Geschwindigkeitsmodellen befasse ich mich mit der Identifizierung

und Trennung von Punkt- und Kantendiffraktionen, um eine speziell auf sie zugeordnete
Bearbeitung zu ermöglichen. Kantendiffraktionen werden durch geologische Strukturen wie
Verwerfungen, hochgebogene Falten, Risse und stratigraphische Fallen erzeugt. Kleinskalige
Inhomogenitäten und Spitzen erzeugen Punktdiffraktionen. Ich ergänze die, auf der Wellen-
frontkrümmung basierte, Klassifikation der Wellenkomponenten durch ein neues Kriterium
für Diffraktionen entstehend durch willkürlich ausgerichtete und gekrümmte Kanten. Zu-
sätzlich schlage ich ein neues Verfahren vor, welches ebenfalls auf den Krümmungen von
Wellenfronten basiert, um seismische Spuren in bestimmte Gruppen einzuordnen. Dadurch
wird eine Strahlenfokussierung von Kantendiffraktionen während der Backpropagation mög-
lich. Dies ist eine Voraussetzung für die Benutzung von Kantendiffraktionen in der Strahl-
fokussierungstomographie.
Das Extrahieren der Wellenfrontkrümmungen aus seismischen Daten ist ebenfalls von

großer Bedeutung. Das konventionelle Common-Reflection-Surface (CRS) -Verfahren nutzt
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dafür eine Kohärenzanalyse. Üblicherweise werden dabei nur die Amplituden der verti-
kalen Komponente der aufgezeichneten Verschiebung berücksichtigt. Oft werden bei See-
und Landseismik allerdings alle drei Komponenten des Verschiebungsvektors der elastischen
Welle aufgezeichnet. Ich verallgemeinere daher die herkömmliche Kohärenzanalyse im CRS-
Verfahren, um alle Komponenten des Verschiebungsvektors zu berücksichtigen. Das neue
mehrkomponenten CRS-Verfahren führt eine vektorielle Semblance-Optimierung durch. Die
Gewichte der Komponenten werden durch eine lokale Näherung der Polarisation bestimmt.
Der vorgeschlagene Ansatz führt nicht nur dazu, dass die seismischen Spuren genauer und
physikalisch korrekter gestapelt werden, sondern ermöglicht auch eine automatische Aus-
wahl von Polarisation und räumlichen Polarisationsableitungen in Offset- und Mittelpunkt-
richtung. Es zeigt sich, dass die neuen Polarisationsattribute in einem engen Zusammenhang
mit denWellenfrontkrümmungen stehen. Diese Attribute haben viele potenzielle Anwendun-
gen, einschließlich der Bildung lokaler Geschwindigkeitsmodelle auf Empfängerseite. Dies
kann anschließend als Einschränkung beim Erstellen des globalen Geschwindigkeitsmodells
verwendet werden.
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1 Introduction

Seismic waves is the main source of information about the Earth interior. Contemporary
technologies allow one to register and store broadband seismic signals. At first glance, to
utilize them at a time seems tempting and promising. How wonderful it could be, to create
a magic box converting the recorded data to detailed and geologically plausible subsurface
models. Many work has been done on this way towards inversion of the full waveforms
(for a comprehensive review see the paper by Virieux and Operto (2009)). However, it still
remains a very subtle ill-posed and ill-conditioned problem. Primarily, the full-waveform
inversion is very sensitive to the quality of the initial models. For successful convergence,
it may be necessary to start from a seismic velocity model, which is already accurate up
to the wavelength. Secondly, different wave modes, e.g., the reflected and diffracted com-
ponent of the wavefield, exhibit different propagation properties, such as diverse intensity
and illumination. This results in different sensitivity of the wavefield constituents to sub-
surface parameters (e.g., Dell et al., 2019), which needs to be compensated by a waveform
separation. 𝑥0 

𝐾𝑁 

𝛼0 

(a)

𝐾𝑁𝐼𝑃 𝑥0 

𝛼0 

(b)

Figure 1.1: Two hypothetical eigenwaves: N-wave (a) is triggered by exploding reflector. NIP-wave
(b) is excited by a point source at the normal-incidence-point (NIP) on the reflector.
Curvature of the eigenfronts, KN and KNIP , is extracted from seismic data.

Multiparameter and multidimensional stacking techniques routinely serve for precondi-
tioning of zero-offset stacks (Mann et al., 1999; Jäger et al., 2001; Landa et al., 2010; Fomel
and Kazinnik, 2013) and pre-stack data (Baykulov and Gajewski, 2009; Hoecht et al., 2009),
i.e., for trace regularization and signal-to-noise ratio (S/N) enhancement. In addition to
that, stacking framework produces physically meaningful wavefront attributes. In other
words, the wavefront attributes are extracted from unmigrated seismic data. In this thesis,
I mainly concentrate on the zero-offset wavefront attributes. To give them exact meaning,
we first need to discuss two eigenwaves, hypothetical wavefronts defined by Hubral (1983).
“N-wave” is a fictitious wave that is triggered by the exploding reflector element (Figure

1



1 Introduction

1.1a). Another fictitious wave induced by a source placed at the normal-incidence-point
(NIP) on the reflector is called NIP-wave (Figure 1.1b). These imaginary waves are eigen-
waves in a sense that they are sufficient to describe local behavior of the actual two-way
reflected wave, including its traveltime and geometrical spreading. The zero-offset wave-
front attributes in the 3D case are eight quantities. Two of them are horizontal components
of the zero-offset slowness vector, which is common for both N- and NIP-wave. Other
six quantities represent the second-order derivatives of the eigenwave traveltimes. Since
matrices composed of the second-order derivatives can be transformed into the wavefront
curvature matrices, I often use the term “wavefront curvature matrix” for both matrices.
Since the wavefront attributes locally characterize the wavefronts, they can be utilized for
various steps in seismic processing, among others true-amplitude migration (Hubral, 1983),
velocity model building (Duveneck, 2004; Dell et al., 2014; Bauer et al., 2017; Diekmann
et al., 2019), and diffraction separation (Dell and Gajewski, 2011; Berkovitch et al., 2009;
Asgedom et al., 2013; Rad et al., 2018).

data fitting 

Minimizing of data misfit 

Forward propagation 

Excitation of source 

(a)

focusing 

Fixed data 

Reverse time propagation 

Optimization at source 

(b)

Figure 1.2: Two approaches in the velocity model building: conventional – fitting in the data
domain (a); new – focusing in the depth domain (b).

1.1 Wavefront curvatures for velocity model building
A reliable and fast tomographic workflow for building smooth velocity models is of great
importance for full-waveform inversion and depth migration. It is, however, usually ill-
conditioned and requires regularization (Hansen, 1998; Costa et al., 2008; Chavent, 2010).
Applying regularization reduces resolution of the resulting velocity models. A smaller size
of the inversion matrix would relax the regularization. Furthermore, a rule of thumb for the
least-squares optimization states that the amount of data points should significantly exceed
the amount of unknowns.
I categorize the velocity model building methods into two major classes: methods fitting

data on the registration surface and methods that optimize a quantity in depth, which is
computed with extrapolation of measurements into the subsurface (see Figure 1.2). Let us
briefly outline the milestones in both directions.
Bishop et al. (1985) formulated reflection tomography as a nonlinear least-squares prob-

lem of minimizing misfits between modeled and measured traveltimes with respect to veloci-
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1.2 Wavefront curvatures for diffraction classification

ties and depth coordinates of continuous reflectors. Stereotomography proposed by Billette
and Lambaré (1998) introduced spatial positions and dips of reflector elements as inde-
pendent unknowns corresponding to the source-receiver pairs. In addition to times, the
objective functional was complemented with misfits of emergence coordinates and slopes.
To incorporate the wavefront attributes as an extra input, Duveneck (2004) extended the
objective functional by adding misfits of the wavefront curvatures. The space of unknowns,
inherited from stereotomography, consisted of the velocity model and the independent re-
flector elements. Note in this method, the wavefront attributes are modeled with upward
kinematic and dynamic ray tracing from the reflector elements to the registration surface
(Figure 1.2a).
The methods optimizing an objective functional in depth are formulated mostly in the

image domain. It has been recognized that flattening of migrated reflections with respect
to the source-receiver offsets indicates a velocity model which is consistent with data. First,
Al-Yahya (1989) introduced this idea for the common receiver gathers after shot migration.
Stork (1992) developed a migration velocity analysis in common image gathers, produced
by independent imaging of common offset gathers. Chauris et al. (2002) and Nguyen et al.
(2008) later described the curved events in common image gathers as being composed of
locally coherent ones with dips to be minimized.
Comparing to the standard tomographic methods in the data domain, migration velocity

analysis has an advantage since the velocity model plays the role of the single unknown
during the inversion. Redundant and pick-dependent coordinates and dips of the scatter-
ing elements are not present in the set of unknowns. On the other hand, data-domain
tomographic methods don’t require multiple runs of depth migration, which still may be
computationally costly. Moreover, picking in the migrated domain for geologies with com-
plex internal stratigraphy, including high velocity contrasts, folds, and multiple faulting
such as salt rollers, is a challenging task.
Accordingly, this thesis regards velocity model building by means of wave focusing in

depth (Figure 1.2b) rather than fitting data on the registration surface (Figure 1.2a). In-
version based on the wave focusing optimizes a measure of focusing in the subsurface. A
focusing measure is computed with reverse time extrapolation of data. In the process of
focusing, the observed data are not predicted but serve as the boundary conditions for the
back propagation of rays. This is very efficient if compared to the multiple runs of depth
migration.

1.2 Wavefront curvatures for diffraction classification

The second application of the wavefront curvatures, which I am concentrated on, is wave
type classification. Under classification, I assume data-driven automatic identification of
wave modes in the seismic sections. Generally speaking, body waves can be categorized
according to dimensionality of scatterers. In the 3D formulation, commonly used specular
reflections are scattered by 2D boundaries between the geological formations. Intermediate
1D objects, present in such geological structures as faults, highly curved folds, cracks, or
pinch-outs, response as edge diffractions. Finally, Null-D small-scale inhomogeneities or
tips produce point diffractions. I aim to distinguish not only between the diffracted and
reflected components, but also between diffractions of different kinds. This would pave a
way to advanced waveform and attribute separation and subsequent dedicated processing.
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1 Introduction

(a) (b)

Figure 1.3: Edge diffractors: (a) scetch of a 3D acquisition, where the 2D criterion is fulfilled; (b)
topography of the salt body with edge diffractors in the SEG/EAGE model.

The criterion for identifying point diffraction in 3D media by fronts of the NIP- and
N-wave considers that both matrices of wavefront curvatures fully coincide. This follows
from the fact of full coincidence of the eigenfronts in this case. The same criterion holds for
2D diffraction, where the matrices of wavefront curvatures reduce to the scalar curvatures.
Dell and Gajewski (2011); Rad et al. (2018) applied this equality condition to identify and
separate diffractions from reflections using a binary reflection filter. Berkovitch et al. (2009);
Asgedom et al. (2013) used the coherent summation along diffraction traveltimes to enhance
diffracted events. This implies the reflected amplitudes to be incoherently summed up along
the stacking operator, which is parametrized in terms of the single wavefront curvature.
Schwarz (2019) proposed an adaptive filter exploiting the coherent data summation and
subtraction based on the wavefront attributes. All the methods, either based on coherent
summation and subtraction or on binary filtering, allow for discriminating diffracted waves,
for separating them from the reflected ones, and for a dedicated diffraction processing (see
e.g., in Alonaizi et al., 2013; Bauer et al., 2017; Dell et al., 2018; Keydar and Landa, 2019;
Yin and Nakata, 2019).
Moreover, both a point and an edge diffractor produce kinematically equivalent responses

in the 2D case (see e.g., in Dell et al., 2018). This means the wavefront curvatures are equal
independently of the type of the diffracting object and the same separation criterion can
be used to isolate both point and edge diffraction. In the 3D case, however, response of
an edge diffractor differs from response of a point diffractor. The 2D criterion holds only
for particular edge types and acquisition symmetry. For instance, an orthogonal to the
edge acquisition line is illustrated in Figure 1.3a. However, if we look at the topography of
the realistic geological body, as in Figure 1.3b, we clearly see the pronounced inclined and
curved edge structures. This is the top of salt in the famous synthetic SEG/EAGE model.
These edge diffractors definitely scatter large amount of seismic energy, which naturally
needs special processing.
In this work, arbitrarily oriented curved edges are considered. I give a criterion to identify

them formulating in terms of the eigenwave curvature matrices. I assume edge diffractors
to be embedded in a 3D anisotropic and heterogeneous medium. To justify the criterion, I

4



1.2 Wavefront curvatures for diffraction classification

perform numerical tests, correspondingly, in a heterogeneous and in an anisotropic environ-
ment. Additionally, I verify the method using realistic wavefront attributes extracted from
the SEG/EAGE dataset.
I also develop a technique for including the edge diffractions in tomography based on the

focusing principle. Kinematic focusing in reverse time implies minimizing distances between
endpoints of back propagated rays. For point diffractions, this method requires tagging
of individual diffractions (Bauer et al., 2019). For edge diffractions, it is not sufficient.
Additionally, it requires grouping of receivers in a special way that they are back projected
to single points on the edge. I formulate the method of grouping using the wavefront
curvatures. The fundamentals of this approach are closely related to the edge diffraction
identification criterion.

Structure of the thesis

The thesis is composed of four papers prepared for publication in top rank scientific journals.
Accordingly, they follow the introductory Chapter 1, which outlines basic concepts of the
subject, using wavefront curvatures in applied seismics.
Chapter 2 – the paper “Velocity model building by dynamic ray focusing”. In this

paper, I formulate a new approach of macro-velocity model building using the zero-offset
wavefront attributes for time-reversal dynamic ray tracing and for minimizing of geometrical
spreading.
Chapter 3 – the paper “Ray perturbation theory in wavefront-orthonormal coordinates:

generally anisotropic 3D elastic solids”. This auxiliary work establishes and examines an
alternative formulation of the ray perturbation theory in anisotropic media. The ray per-
turbation theory serves for Fréchet derivatives computing in velocity model building.
Chapter 4 – the paper “Identification and focusing of edge diffractions with wavefront

attributes”. It gives a new criterion based on wavefront curvatures allowing to distinguish
seismic events between point diffractions, edge diffractions, and reflections. Additionally,
an original approach for edge diffraction focusing is formulated.
Chapter 5 – the paper “Polarization-consistent stacking of multicomponent seismic

data”. This paper generalizes the conventional common-reflection-surface method in or-
der to incorporate the multicomponent seismic data using vector coherency analysis and
new polarization attributes related to the wavefront curvatures.
In Chapter 6, results of the thesis are summarized and major conclusions are given.

Finally, I outlook future potential benefits and the road ahead in Chapter 7. For conve-
nience of a reader, appendices of the papers comprising many technical details are given at
the end of the thesis in the corresponding order.

Contributions of co-authors

Direct content comprising the prepared papers was generated mostly by myself. However,
the papers appeared as a result of intensive collaboration of all co-authors. Prof. Dr.
Dirk Gajewski usually outlines broad picture of the problem and shares his vision based on
physical intuition motivating other members of the group. When a result is achieved, he
participates in continuous and critical discussions supervising the work. When a significant
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result is achieved, he makes tremendous efforts improving structure and readability of my
texts to emphasize the added value. Prof. Dr. Boris Kashtan usually enjoys theory and
makes significant contributions to mathematical aspects of the problem. Having a strong
background in wave physics, he always tries to make initially vague ideas sufficiently rigorous
and clear. Dr. Sergius Dell, in addition to the continuous discussions and proofreading of
papers, makes a contribution to testing of the developed methods by modeling and data
processing.
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2 Velocity model building
by dynamic ray focusing

Abstract

We formulate and examine a method of tomography by dynamic ray focusing of normal-
incidence-point-waves and diffractions. Dynamic ray focusing minimizes reverse time prop-
agated geometrical spreading of individual rays at focusing time. Slopes and wavefront
curvatures serve as fixed initial conditions for the time-reversal kinematic and dynamic ex-
trapolation. The method is essentially local, i.e., it requires only short offsets. The new
objective functional contains a single physical quantity and depends only on the velocity
model. When compared to conventional methods fitting data on the registration surface,
this significantly decreases the size of the inversion matrix and improves the data/unknowns
ratio. Moreover, there is no need to balance different physical quantities. Thus, the pro-
posed method includes advantages of the image domain tomographies but is formulated in
the data domain. We provide expressions for computing the gradient of the objective func-
tional in terms of Fréchet derivatives of the geometrical spreading and also in terms of the
adjoint dynamic ray tracing operator. We successfully apply the approach, combined with
a quasi-Newton solver, to synthetic data containing a salt body. We also tested it on a field
data example which includes complex salt tectonics. The reverse time migration reveals
well-focused salt rollers and dipping events. In all provided examples, no regularization was
required, which confirms that the new method is well-conditioned and stable.

2.1 Introduction

A reliable and fast tomographic workflow for building smooth velocity models is of great im-
portance for subsequent depth migration or full-waveform inversion, which benefits from ge-
ologically reasonable initial velocity models. Seismic tomography, however, is ill-conditioned.
Stable inversion usually requires regularization, which reduces resolution of the velocity
models (Hansen, 1998; Costa et al., 2008; Chavent, 2010). A smaller size of the inversion
matrix leads to a better conditioning and stability of the algorithm. Moreover, a stable and
unique inversion usually requires an amount of data that significantly exceeds the amount
of unknowns.
With respect to formulation of the inversion problem, we categorize the methods into two

major classes: methods fitting data on the registration surface and methods that optimize a
quantity in depth, which is computed with extrapolation of measurements to the subsurface.
Bishop et al. (1985) formulated reflection tomography as a nonlinear least-squares prob-

lem of minimizing misfits between modeled and measured traveltimes with respect to veloc-
ities and depth coordinates of continuous reflectors. Stereotomography proposed by Billette
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2 Velocity model building by dynamic ray focusing

and Lambaré (1998) introduced spatial positions and dips of reflector elements as indepen-
dent unknowns corresponding to source-receiver pairs. In addition to times, the objective
functional was complemented with misfits of emergence coordinates and slopes.
Duveneck (2004) extended the objective functional of stereotomography by adding extra

misfits of the wavefront curvatures. This wavefront tomography uses kinematics of the one-
way normal-incidence-point (NIP) waves, which are triggered by point sources located at the
normal-incidence-points on a reflector. The space of unknowns, inherited from stereotomog-
raphy, consists of the velocity model and independent reflector elements. Individual rays
are traced from the reflector elements, which is followed by computing the wavefront cur-
vatures with dynamic ray tracing. In the domain of time-migrated reflections, additional
wavefront curvatures of vertically arriving image-rays can be picked and also utilized for
the depth velocity model building (Dell et al., 2014). The wavefront attributes including
slopes and curvatures of NIP-waves can be extracted, e.g., by the zero-offset hyperbolic or
non-hyperbolic common-reflection-surface (CRS) stack (Jäger et al., 2001; Dell et al., 2012;
Fomel and Kazinnik, 2013).
Stereotomography undoubtedly has an advantage over wavefront tomography with re-

spect to illumination by rays since it is formulated for broader, finite-offset, data (see, e.g.,
a detailed comparison of the two methods in Dümmong et al., 2008). However, for point
diffractions, the total ray coverage doesn’t depend on available source-receiver offsets (Bauer
et al., 2016). Because of the back scattering, any ray of the diffracted event is a zero-offset
ray and the moveout is preserved in the stacking process. Using the wavefront attributes of
diffractions complementary to reflections, thus, has the potential to increase illumination.
Due to this fact, the interest in using diffractions in inversion and velocity model building
for challenging geological areas increased (Bauer et al., 2017).
For the methods, which optimize an objective functional formulated in depth, we first

refer to the work by Sword (1986). He suggested utilizing data domain slopes as fixed initial
conditions for subsurface ray extrapolation. In his implementation, the objective functional
measures lateral distance between source- and receiver-rays at depth corresponding to the
two-way traveltime. However, further approaches have been developed mostly in the image
domain. It has been recognized that flattening of migrated reflections with respect to the
source-receiver offsets indicates a velocity model which is consistent with data. First, Al-
Yahya (1989) introduced this idea for the common receiver gathers after shot migration.
Stork (1992) developed migration velocity analysis in common image gathers produced by
independent imaging of common offset gathers. Chauris et al. (2002) and Nguyen et al.
(2008) later described the curved events in common image gathers as being composed of
locally coherent ones with dips to be minimized. They also introduced picking of slopes,
required for the stereotomography, in the image domain.
Comparing to the standard tomographic methods in the data domain, migration velocity

analysis has an advantage since the velocity model plays the role of the single unknown
during the inversion. Redundant and pick-dependent coordinates and dips of the scatter-
ing elements are not present in the set of unknowns. On the other hand, data-domain
tomographic methods don’t require multiple runs of depth migration, which still may be
computationally costly. Moreover, picking in the migrated domain for geologies with com-
plex internal stratigraphy, including high velocity contrasts, folds, and multiple faulting
such as salt rollers, is a challenging task.
This motivated us to study velocity model building by means of wave focusing in depth
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rather than fitting data on the registration surface. Under focusing, we assume a process
that optimizes a focusing measure in the subsurface. This measure is computed with reverse
time extrapolation of data. In the process of focusing, the observed data are not predicted
but serve as boundary conditions for the back propagation of rays which is very efficient
if compared to multiple runs of depth migration. Lellouch and Landa (2018) also applied
a time-reversal focusing criterion for velocity model building but with full waveforms. It
was implemented for a crosswell acquisition with a priori known positions of the sources. A
global optimization was based on the time symmetry of focusing. Another kind of inverse
problem reformulation to reduce the number of unknowns was recently presented by Sam-
bolian et al. (2019). The authors revised the slope tomography to parametrize it with the
velocity model as the only unknown. They used the fact that for a given trial velocity model
the reflecting elements can be determined and therefore depend on the velocity model. For
the wavefront tomography, both concepts were previously formulated by Znak et al. (2017,
2018).
The adjoint-state method efficiently computes the gradient of the objective functional

(Plessix, 2006). Initially introduced to applied seismics in the context of full-waveform
inversion (Virieux and Operto, 2009), the adjoint-state approach has found its path to many
other techniques including transmission and reflection tomographies (Leung and Qian, 2006;
Tavakoli et al., 2017).
In this paper, we present a ray tomography based on the physical principle of focusing

with dynamic ray tracing. As the measure of focusing, we use geometrical spreading propa-
gated back in time to the scatterers in depth. The method utilizes traveltimes, slopes, and
wavefront curvatures as input. During the inversion, they remain fixed at the acquisition
surface and serve as initial conditions for kinematic and dynamic time-reversal ray tracing.
Minimization of spreading is equivalent to shrinking the wavefront or maximizing the am-
plitude. Therefore, the new method lies in-between kinematics and dynamics: using the
dynamic objective functional but picking the necessary data from wavefront curvatures and
not from amplitudes. The inverse problem turns out to be naturally parametrized by the ve-
locity model as the only unknown similarly to the method of Sword (1986). It significantly
decreases the inversion matrix dimension and considerably improves the data/unknowns
ratio if compared to the conventional wavefront tomography. The proposed formulation
of the objective functional is shortened and exhibits a straightforward computing of gra-
dient with the adjoint-state method. We successfully apply it, in a combination with the
quasi-Newton L-BFGS-B iterative optimization (Byrd et al., 1995), to the inversion of a
synthetic salt body model and also to a challenging field data example comprising complex
salt neotectonics. The new approach does not require weight balancing of different physical
quantities in the objective functional since velocity is the sole inversion parameter. More-
over, it allows an inversion without extra regularizing terms. Both features are crucial for
getting reproducible results.

2.2 Theory and method

We formulate velocity model building as dynamic ray focusing. This implies a reverse time
extrapolation of dynamic characteristics along the rays to the subsurface and minimization
of geometrical spreading at scattering locations. This is equivalent to maximizing focusing
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2 Velocity model building by dynamic ray focusing

amplitude and forcing a wavefront to shrink to a point. Focusing is relevant for diffractions
and reflections. According to the NIP-wave theorem (Chernjak and Gritsenko, 1979; Fomel
and Grechka, 2001), reflection moveout can locally be associated with diffraction moveout.
In this sense, we can think of a reflector as being composed of point diffractors, each of
which backscatters in a narrow sector orthogonal to the reflector. These virtual diffractions
are called NIP-waves (Hubral, 1983).
The proposed tomographic method relies on well determined wavefront attributes. These

are the zero-offset one-way traveltimes, the zero-offset slopes and curvatures of the wave
fronts. The attributes are determined from multiparameter stacking operators. In het-
erogeneous media it is essential to apply the operators locally, i.e., with small offsets and
midpoint displacements. Under these conditions, wavefront attributes can be reliably de-
termined even in the case of strong heterogeneity (Xie and Gajewski, 2019). We employ the
zero-offset CRS stacking techniques to automatically extract characteristics of the wavefront
from seismic records.

2.2.1 Unsupervised determination of wavefront attributes

Common-reflection-surface (CRS) stacking improves the signal-to-noise ratio by utilizing the
inherent redundancy of seismic data. However, this multiparameter and multidimensional
method works also as a convenient tool for an automatic extraction of kinematic wave-
field characteristics. In 2D, the CRS stacking domain is spanned by the scalar half-offset,
h = 1

2 (xr − xs), and the scalar midpoint displacement, 4xm = xm − x0, xm = 1
2 (xr + xs).

Here, xs and xr stand for the lateral coordinates of the source and receiver, and x0 denotes
the coordinate of the central midpoint. A local traveltime approximation is used to de-
tect coherent events in the data domain and to determine their wavefront attributes. For
instance, the hyperbolic CRS approximation (Jäger et al., 2001) centered at midpoint x0
reads

t2(4xm, h) = (t0 + 2 px4xm)2 + 2 t0
(
M

(x)
NIP h

2 +M
(x)
N 4x

2
m

)
, (2.1)

where t0 is two-way traveltime along the central ray, and px stands for horizontal slow-
ness of the central ray (slope). Interpretation of two other parameters, M (x)

NIP and M
(x)
N ,

relies on two imaginary experiments. The NIP-wave is a hypothetical wave that is gen-
erated by a point source at the NIP location. The N-wave is the second hypothetical
wave that is triggered by exploding the CRS (the reflector segment). Respectively, second
traveltime derivatives of these waves with respect to the lateral coordinate are denoted as
M

(x)
NIP and M

(x)
N . Wavefront attributes, px, M (x)

NIP , and M
(x)
N , are determined during the

coherency analysis for every time sample and midpoint location. Picked automatically using
a coherency criterion, they comprise the input of wavefront tomography and dynamic ray
focusing.
N-wavefront curvatures are not required for the velocity model building in the current

paper. However, they can be used for the diffraction separation. If a 2D diffraction is
considered, the wavefront attributes describe the actual wavefront withM (x)

NIP = M
(x)
N . This

allows the independent treatment of diffractions and reflections during the tomographic
inversion (Dell and Gajewski, 2011; Bauer et al., 2017, 2019). It is important to note
that diffractions should be properly considered already in preprocessing, i.e., prestack data
enhancement and denoising, trace regularization, and interpolation should acknowledge
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steep dips (Xie and Gajewski, 2017).
To formulate the inversion in a concise way, we express the second-derivative attribute

M
(x)
NIP w.r.t. the ray-centered coordinate system and get the dynamic ray tracing quantity

MNIP (e.g., Červený, 2001). It is linearly related to the wavefront curvature through the
surface velocity: KNIP = vMNIP . For the sake of readability, we often refer to MNIP

as to wavefront curvature. If the surface velocity is assumed to be locally homogeneous,
then it is sufficient to have a value of the emergence angle α to determine MNIP : M (x)

NIP =
cos2αMNIP (e.g., Duveneck, 2004). The cosine is obtained from the slope attribute and
the value of the surface velocity (px = sinα/v).
Further throughout the paper, we will omit the subscripts “NIP ” and “0” and assume

a discrete data set of Ndata picks {xi, ti, pxi,Mi}Ndatai=1 for the inversion, where for the i-th
pick, xi is the central midpoint coordinate, pxi and Mi are the slope and NIP-curvature
attributes, and ti is one-way traveltime from the corresponding scattering point (normal-
incidence-point or diffractor) to the central midpoint with the coordinate xi.

data fitting 

Minimizing of data misfit 

Forward propagation 

Excitation of source 

focusing 

Fixed data 

Reverse time propagation 

Optimization at source 

Figure 2.1: The concept of focusing used for formulating the inverse problem. Instead of fitting
in the data domain, a quantity controlling focusing is minimized in the depth domain.
It is computed in a trial velocity model by reverse time propagation while keeping the
data input fixed and used as boundary (initial) conditions.

2.2.2 Dynamic ray focusing

Dynamic ray focusing represents a novel variant of the currently used wavefront tomography
(Duveneck, 2004; Dell et al., 2014; Bauer et al., 2017). Our goal is to achieve a natural
formulation of the inverse problem with an optimization conducted solely in the velocity
model parameter space. This means, we aim at deriving an objective functional which
depends on the data vector and the velocity only, in order to remove redundant unknowns
describing the scatterer positions and scattering angles. Such functional would increase
stability and reliability of the inversion.
We understand the general concept of focusing as minimizing a measure of focusing in

depth. For a trial subsurface model, the focusing quantity is computed with reverse time
propagation. The data input serves as initial (boundary) conditions for the back propaga-
tion, i.e., it is not predicted in each iteration step. Focusing is illustrated in comparison to
the standard data fitting formulation in Figure 4.4.
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Both, the auxiliary NIP-waves and the 2D diffractions are kinematically equivalent to
waves triggered by the corresponding point sources in the subsurface. Therefore, in a veloc-
ity model consistent with the data, their geometrical spreading vanishes when propagated
back in time up to the excitation. We simultaneously minimize the geometrical spreading
of all NIP- and/or diffracted waves picked in the data domain. This implies fixing the wave-
front attributes pxi, Mi and using them as initial conditions for the kinematic and dynamic
time-reversal ray tracing from the midpoint location xi until the time interval ti is reached.
Each attribute pick of the data set {xi, ti, pxi,Mi}Ndatai=1 is considered independently, cor-
responding to an individual ray. Because of the time translation invariance, we consider
all rays being triggered in the subsurface at the same reference time t = 0 and arriving at
the registration surface with coordinates xi, slope pxi, and curvature Mi at time ti. The
ray tracing is performed for the i-th pick starting from the time ti at the surface until the
reference time t = 0 is reached in the subsurface, where the focusing occurs (Figure 2.2).

xi,pi,Mi 

t = ti 

t = 0 
Qi 0 = 0 

𝜃i 
xi
𝑑 , zi𝑑  

Figure 2.2: The principle of the dynamic ray focusing. The reverse time propagated geometrical
spreading Q vanishes at the reference time t = 0 for each pick. The wavefront attributes
pxi andMi are fixed during the optimization and serve as initial conditions for the time-
reversal kinematic and dynamic ray tracing from the midpoint with coordinate xi at
time t = ti to the scatterer (NIP or diffractor) at time t = 0.

Reverse time kinematic ray tracing provides a ray x(t) and its corresponding slowness
p(t). Dynamic ray tracing along the ray is formulated as a solution of a linear homogeneous
system of ordinary differential equations (e.g., Červený, 2001)

d

dt

(
Q
P

)
= S

(
Q
P

)
, S =

(
0 v2

−vqq
v 0

)
(2.2)

with respect to the geometrical spreading of rays Q =
(
∂x
∂γ , eq

)
and the geometrical spread-

ing of slowness P =
(
∂p
∂γ , eq

)
, where γ is a ray coordinate complementary to time t, eq is

a basis vector of the ray-centered coordinate system, v and vqq stand for the velocity and
its second-derivative with respect to the ray-centered coordinate. Geometrical spreading
is related to the Jacobian of the mapping from the ray coordinates to the Cartesian coor-
dinates, J = ∂(x1,x2)

∂ (t , γ) = vQ, and affects amplitude and phase of the zero-order ray series
approximation by the factor 1√

J
.
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We now specify the initial conditions for the dynamic ray tracing. Q and P on a ray are de-
fined up to the multiplication with a constant that depends on the ray-fan parametrization,
specifying the ray-coordinate γ. If we choose a common parametrization with a shooting
angle around the source in depth, the corresponding dynamic ray tracing quantities Qdi (ti)
and P di (ti) (“d” for the parametrization in depth) of the one-way upgoing wave do not
appear in the set of wavefront attributes. However, the wavefront curvature attribute is
related to them since Mi = P di (ti)/Qdi (ti). Although tracing of the M -quantity is theoreti-
cally possible by solving the Riccati equation (e.g., Červený, 2001), it is challenging due to
the unlimited growth in the vicinity of the point sources and caustics. Therefore, we will
nevertheless use system 2.2 but apply parametrization scaling to cope with this difficulty.
With the help of the determined wavefront curvature, we are able to extrapolate geometrical
spreading that is normalized at the acquisition line with initial conditions

Qi(ti) = 1, Pi(ti) = MiQi(ti) = Mi (2.3)

for each pick. The acquisition-normalized geometrical spreading corresponds to the ray-fan
parametrization with length of the emerging wavefront.
For the time-reversal extrapolation, we use a propagator matrix of the dynamic ray

tracing system that is computed backwards in time (t < ti) to the subsurface

Πi(t, ti) =
(
Q

(1)
i (t, ti) Q(2)

i (t, ti)
P

(1)
i (t, ti) P (2)

i (t, ti)

)
, Πi(ti, ti) = I, (2.4)

where I stands for the identity matrix. Correspondingly, the time reverse propagated
acquisition-normalized dynamic quantities are expressed as follows:(

Qi(t)
Pi(t)

)
= Πi(t, ti)

(
1
Mi

)
. (2.5)

To avoid a confusion, we consider elements of the propagator Q(1) and P (2) to have no units,
which results in the following units for the remaining elements: [P (1)] = [M ], [Q(2)] = [1/M ].
If we now look at the propagator representation for the dynamic quantities Qdi and P di , we
immediately conclude that they are proportional to the acquisition-normalized pair Qi and
Pi: (

Qdi (t)
P di (t)

)
= Πi(t, ti)

(
Qdi (ti)
P di (ti)

)
= Qdi (ti)

(
Qi(t)
Pi(t)

)
. (2.6)

The quotient equals the value of the depth-parametrized spreading at the registration line.
Regardless of ray-fan parametrization, geometrical spreading has to vanish at the source

time for a velocity model consistent with the data. Accordingly, we introduce an objec-
tive functional as a sum over all data picks of squared acquisition-normalized geometrical
spreading that is reverse time propagated:

J [v] = 1
2

Ndata∑
i=1

Q2
i (0), Qi(0) = Q

(1)
i (0, ti) +Q

(2)
i (0, ti)Mi. (2.7)

We refer to minimization of this functional with respect to the velocity model as dynamic
ray focusing. During the convergence of velocity model, reflector elements and diffractors
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are localized as well. The simplest example of the cost functional, in the homogeneous
medium, is illustrated in Appendix A.1.
Following Duveneck (2004), we describe the velocity model by B-spline functions of 4-th

order distributed on the rectangular Nz ×Nx grid of nodes:

v =
Nz∑
j=1

Nx∑
k=1

vjkβj(z)βk(x). (2.8)

The extent of the basis functions is directly related to the grid spacing since the sequences
of grid coordinates (lateral and in-depth) are used as nodes to define the B-splines. Addi-
tionally, we extrapolate the grid out of the model by relating the outer node values with
node values at the boundary of the model. This makes the velocity model homogeneous
in the case of equal coefficients vjk, having no decay at the boundaries. The order of the
B-splines is chosen to achieve continuity of the 3rd derivative in the Cauchy problem for
the dynamic ray tracing perturbations.
Since we describe the model in terms of rather smooth B-splines and optimize only in the

velocity space, we could avoid any additional smoothing by regularization terms (e.g., Costa
et al., 2008) for all examples presented in this paper. Scaling the mesh from coarse to fine
plays a role of regularization by model parametrization (Chavent, 2010). If we make the
grid even more denser, inversion would naturally require a regularizing functional, which
would decrease the expected resolution. When we reduce the number of grid nodes, we
automatically extend the basis functions and introduce an additional smoothing of the
model.
To stabilize inversion and avoid local minima of the objective functional, it can be aug-

mented with an additional term based on a priory information constraining the velocity
model for certain regions, such as the earth surface or water column. We apply optimiza-
tion by the L-BFGS-B algorithm (Byrd et al., 1995), which is a quasi-Newton method, i.e.,
it uses values of the gradient to approximate the Hessian of the objective functional.

2.2.3 Comparing the focusing and the data fitting tomography

The wavefront tomography (Duveneck, 2004) is formulated as a higher-order extension of
a sequence of tomographic data-domain fitting approaches, such as traveltime tomogra-
phy (Bishop et al., 1985) and stereotomography (Lambaré, 2008). It utilizes zero-offset
curvatures instead of times and slopes. An objective functional

J(m) =
Ndata∑
i=1

(xi−xi(mi))2 +
Ndata∑
i=1

(ti−ti(mi))2 +
Ndata∑
i=1

(pxi−pxi(mi))2 +
Ndata∑
i=1

(Mi−Mi(mi))2

(2.9)
illustrates this method. Implementations may vary depending on the considered set

of attributes, emergence angle α instead of slowness px, second-derivative of traveltime in
Cartesian coordinatesM (x) instead ofM in ray-centered coordinates. However with respect
to the settings of the inverse problem, the functional remains a sum of squared attribute
misfits over Ndata wavefront attribute picks. Thus, it is a data fitting method (Figure
4.4). Also, dimension calibration of physically different quantities is necessary as well as
additional constraints. A vector of unknowns m comprises coordinates xdi , zdi of scatterers
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2.2 Theory and method

(reflector elements and diffractors) and zero-offset ray scattering angles θi for each pick (see
Figure 2.2) together with the velocity model as described in equation 2.8. For the i-th pick,
predicted attributes depend on a reduced vector mi = (xdi , zdi , θdi ,v), where v is used to
denote a set of model defining coefficients vjk.
This implies 4Ndata data quantities and 3Ndata +NzNx unknowns. A block of the wave-

front tomography inversion matrix for one pick with number i

∂ti

∂xdi

∂ti

∂zdi

∂ti
∂θi

∂ti
∂v11

∂ti
∂v21

· · · ∂ti
∂vNzNx

∂xi

∂xdi

∂xi

∂zdi

∂xi
∂θi

∂xi
∂v11

∂xi
∂v21

· · · ∂xi
∂vNzNx

∂pxi
∂xdi

∂pxi
∂zdi

∂pxi
∂θi

∂pxi
∂v11

∂pxi
∂v21

· · · ∂pxi
∂vNzNx

∂Mi

∂xdi

∂Mi

∂zdi

∂Mi

∂θi

∂Mi

∂v11

∂Mi

∂v21
· · · ∂Mi

∂vNzNx


(2.10)

is significantly larger than a block of the dynamic ray focusing inversion matrix correspond-
ing to the same pick (

∂Qi
∂v11

∂Qi
∂v21

· · · ∂Qi
∂vNzNx

)
. (2.11)

The dynamic ray focusing is an inversion with Ndata data-vector dimension and the Nz×Nx

- dimensional space of unknown velocity coefficients. Reducing dimensions of the inversion
matrix is crucial for conditioning the problem.
Moreover, in the wavefront tomography, the number of unknowns directly depends on the

number of data picks. Adding a pick to the data set automatically appends three additional
unknowns describing position and angle of scattering. In the best case, when the number
of data picks Ndata significantly exceeds the number of velocity grid nodes, Nz × Nx, it
leads to a ratio of the number of data points and the number of unknowns equal to 4

3 .
When a higher velocity sampling is considered, it leads to even smaller ratios close to one.
Usually, least-squares problems should be highly overdetermined. The more independent
data values are present, the higher is the ratio of the number of data points and the number
of unknowns, the more stable is the inversion. This is not achievable with the currently used
variant of wavefront tomography. However, with dynamic ray focusing we can choose any
grid node spacing for a given data amount, naturally adjusting the acceptable resolution.
Optimization in the focusing approach is naturally performed on parameters sharing

the same physical dimension. When regularization is applied, it concerns all the present
unknowns. Additionally, the new approach doesn’t need adjustments by weights controlling
the misfits of different physical quantities. Such a reduction of adjustable parameters leads
to easily reproducible results.

2.2.4 Fréchet derivatives of geometrical spreading
and adjoint-state method

Fréchet derivative of the objective functional 2.7 can be expressed through Fréchet deriva-
tives of the reverse time propagated geometrical spreading as

4J =
Ndata∑
i=1

Qi(0)4Qi(0). (2.12)

15



2 Velocity model building by dynamic ray focusing

To calculate perturbations of the dynamic quantities, we apply the linear differential equa-
tions system given by Farra and Madariaga (1987) for the ray-centered description of rays
that are paraxial to the rays in the perturbed medium:

d

dt

(
4Q
4P

)
= S

(
4Q
4P

)
+4S

(
Q
P

)
, 4S = Sq,p + S4v,

Sq,p =
(

2vvqp 2vvqq(
3
v2 vqvqq − 1

vvqqq
)
q −2vvqp

)
, S4v =

 0 v4v
−
(
4v
v

)
qq

+ vqq
v2 4v 0

 , (2.13)

where q(t) and p(t) are the ray-centered coordinate and slowness of the perturbed ray, cor-
respondingly. They are evaluated by means of another linear differential equations system
with the same matrix S:

d

dt

(
q
p

)
= S

(
q
p

)
+
(

0
vq
v24v − 1

v (4v)q

)
. (2.14)

The perturbations 4Qi and 4Pi have zero initial conditions because the downward prop-
agator is the identity matrix at t = ti regardless of a velocity model and because Mi is a
fixed number determined from the data (see equation 5.1). The reverse ray starting point
is fixed at the receiver and qi(ti) = 0. If the surface velocity remains unchanged, pi(ti)
approaches zero as well, pi(ti) = 0. In principle, we can relax this constraint and use an
initial condition (see Appendix A.2)

pi(ti) = 1
v(xi, 0)

pxi√
1− v2(xi, 0)pxi2

4v(xi, 0). (2.15)

The inhomogeneous system 2.13 is solved with the propagator of the homogeneous one
(see, e.g, Gilbert and Backus, 1966), which results in an expression for computing the
Fréchet derivative of the geometrical spreading:

4Qi(0) =
(
Q

(1)
i (0, ti)

Q
(2)
i (0, ti)

)T 0∫
ti

Π−1
i (t, ti)4Si(t)

(
Qi(t)
Pi(t)

)
dt. (2.16)

Due to symplecticity, the inverse of the propagator matrix is computed as follows (e.g.,
Červený, 2001):

Π−1
i (t, ti) =

(
P

(2)
i (t, ti) −Q(2)

i (t, ti)
−P (1)

i (t, ti) Q
(1)
i (t, ti)

)
. (2.17)

If we now combine equations 2.12 and 2.16 bringing the multipliers to the integrand, we
obtain the derivative of the objective functional in the form of the adjoint-state method
(e.g., Plessix, 2006; Chavent, 2010):

4J =
Ndata∑
i=1

0∫
ti

(
λQi λPi

)
4Si

(
Qi
Pi

)
dt, (2.18)
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where the adjoint-state variables are computed as
(
λQi (t)
λPi (t)

)
= Qi(0)Π−1T (t, ti)

(
Q

(1)
i (0, ti)

Q
(2)
i (0, ti)

)
. (2.19)

With initial conditions λQi (0) = Qi(0) and λPi (0) = 0, they represent a solution of a linear
system of differential equations

d

dt

(
λQ
λP

)
= −ST

(
λQ
λP

)
. (2.20)

This system is adjoint to the dynamic ray tracing system 2.2. In focusing, state variable is
a reverse time propagated quantity, from receivers to the subsurface, whereas the adjoint
“field" turns out to be a result of forward propagation. See Appendix A.3 for more details
on adjoint dynamic ray tracing and a standard derivation of these equations.
Fréchet derivative 2.18 for a fixed reference velocity model is a linear functional with

respect to the velocity perturbation. Perturbing a single node value in the model (see
equation 2.8), we express the components of the gradient of the objective functional as the
Fréchet derivative applied to the corresponding 2D basis function:

∂J

∂vjk
= 4J [βj(z)βk(x)]. (2.21)

2.2.5 Ray focusing of diffractions in 3D

In 2D, traveltime responses of point and edge diffractions are equivalent. However in 3D, we
should distinguish and treat them differently to account carefully for such objects as faults,
highly curved folds, fractures, and pinch-outs. Particularly, this is crucial for velocity model
building by ray focusing. Diffractions can be focused in reverse time not only with the
dynamic ray focusing, but also kinematically by minimizing distances between endpoints
of rays belonging to the same subsurface locations (Bauer et al., 2019). In the latter case,
no curvature information is needed. For point diffractions, this method requires tagging of
individual diffractions. For edge diffractions, it is necessary to group receivers in a special
way that they are back projected to single points on the edge.
Normal-wave attributes are available even in case of absent source-receiver offsets, for

instance, in p-cable data acquired with limited length streamers or in ground penetrating
radar data. In contrast to point diffractions, a matrix representing the N-front curvature
of edge diffractions essentially differs from the one representing the NIP-front. The initial
conditions for upward dynamic ray tracing differ depending on the type of fictitious wave.
Moreover, in case of a smoothly bent edge, the initial conditions contain unknown values
of curvature and torsion of the edge as a space curve. This complicates application of the
conventional wavefront tomography to the N-wave attributes of edge diffractions. Fortu-
nately, geometrical spreading vanishes on the edge both for the NIP- and for the N-wave as
the ray tube collapses. This makes the dynamic ray focusing suitable for inversion of the
N-wave attributes of point and edge diffractions in 3D.
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2 Velocity model building by dynamic ray focusing

2.3 Synthetic data example
An acoustic land streamer data set of primary reflections was modeled by the Seismic Unix
Gaussian beam routine for a salt body velocity model shown in Figure 2.6b. We used a
40 Hz zero-phase Ricker wavelet as a source function. Gaussian noise with SNR = 20 was
added to the traces. A total number of 641 midpoints is considered by positioning sources
and receivers with a 50 m spacing. First, we performed CRS processing to determine the
wavefront attributes with a maximum offset aperture of 2 km, which implies a maximum
CMP fold of 21. Figure 2.3a shows the stack section. Horizontal slowness and wavefront
curvature were picked from the resulting attribute sections (Figure 2.4) with a criterion
of coherence threshold. The coherence section is given in Figure 2.3b. Small rhombuses
indicate pick locations serving as input for the inversion.
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Figure 2.3: Common-reflection-surface stack of synthetic data (a) and corresponding coherence
section overlaid with picks (black diamonds) used for the inversion (b).

1166 picks were utilized for dynamic ray focusing using an 21 × 21 grid of 4-th order
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Figure 2.4: Wavefront attributes: horizontal slowness (a) and wavefront curvature (b) sections
determined from the synthetic data using the CRS processing.

B-spline nodes with 800 m lateral and 175 m vertical spacing. The initial model was a
constant gradient velocity growing from 2.2 km/s at the surface to 4.4 km/s for the base
of salt. This velocity interval was also used to define bounds for the L-BFGS-B algorithm.
We point-wise constrained the surface velocity by adding a misfit term to the objective
functional and its gradient. No regularizing terms were added. This was possible due to
the significant reduction of the inversion matrix in the dynamic ray focusing approach (see
matrices 2.10 and 2.11). Quantitatively, the ratio between dimension of the data vector and
dimension of the unknown vector was approximately 2.6 for the dynamic ray focusing and
1.3 for the conventional formulation. We stopped the inversion process after 55 iterations.
Convergence can be tracked in Figure 2.5 that shows the decreasing functional and its
gradient maximum norm. Figure 2.6a illustrates the final velocity model. Eventually, ray
tracing in the retrieved tomographic model localized the reflector elements at the normal-
incidence-point locations.
We observe high correlation of the smooth model with the synthetic one, except the last

poorly illuminated layer of the salt body. The reflector elements also reliably reproduce
the original structure. We superimposed them onto the original layered velocity model (see
Figure 2.6b) to control the quality. Due to the B-spline smoothing of the strong impedance
contrast at the top of the salt body, we can see slight deviations of the reflector locations.

2.4 Field data example

In this section, we apply the new tomographic scheme to a marine field data set. We first
briefly describe the acquisition area and the complexity of its geological regime. Then we
discuss the inversion process and show the final velocity model. At the end of the section, we
provide depth images produced by reverse time migration, to demonstrate the performance
of the proposed velocity model building.
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Figure 2.5: Descent of the objective functional (a) and its gradient maximum norm (b) during the
dynamic ray focusing of the synthetic data.

2.4.1 Acquisition area and wavefront attributes

The marine data were acquired in the central Levant Basin, located in the Eastern Mediter-
ranean, which is bounded to the South by the Egyptian and to the East by the Levant coast
and reaches to the Cyprus Arc and the Eratosthenes Seamount in the North and West, re-
spectively. The data cover the so-called Messinian Evaporites, which are relatively young
salt formations. They precipitated during the Messinian Salinity Crisis when the interac-
tion of plate tectonics and eustatic sea level fall led to the closure of the gateway between
the Mediterranean and the Atlantic (see e.g., Netzeband et al., 2006; Cartwright and Jack-
son, 2008). In the Levant Basin, the evaporite sequence reaches a maximum thickness of
about 2 km and shows a complex internal stratigraphy including folds and salt rollers. The
presence of salt rollers complicates building of the velocity model. Particularly, picking
of the residual-curvatures needed for the migration velocity analysis does not provide full-
populated curvatures in the offset direction (deterioration of the signal due to migration
stretch). In Figure 2.7, we provide a stacked section to illustrate the complexity of the
recorded wavefield. This section was obtained by applying the n-CRS operator (Fomel and
Kazinnik, 2013). We observe a lot of diffracted events, which occur along the top of salt
indicating its fractured structure and masking the faults.

While the wavefront attributes are automatically extracted from prestack data for every
time sample and central midpoint location, automatic event picking is a subtle procedure
of crucial importance for tomography. Choosing the predetermined coherence value quite
high reduces the number of events, particularly sub-salt events may not properly be pre-
sented in the input data for inversion, while the usage of lower values increases the risk
to pick unreliable events with poorly determined wavefront attributes (Xie and Gajewski,
2019). Keeping this in mind and for comparison with previous results, we used the picks of
Bauer et al. (2017). These authors utilized the picks for velocity model building with the
conventional method.
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Figure 2.6: Tomographic (a) and synthetic (b) models with retrieved reflector elements (black
dots).

2.4.2 Velocity model building

Based on published works on the geological setting in this part of the Levant Basin, we
assume the lowest velocity in the sediments to be about 1.7 km/s and the highest velocity
in the sediments under the salt to be about 3.6 km/s. This velocity information is used to
create an initial velocity model with a constant gradient below the seabed (marked with
a white line) as shown in Figure 2.8. The initial velocity linearly increases from 1.7 km/s
at the seabed on the right side to 3.6 km/s at the lower boundary of the model. The
constraints for the L-BFGS-B algorithm were the following: the node values above the
seabed were fixed to the water velocity, lower and upper bounds for the node values below
the seabed are determined by the a priori geological limits of 1.7 km/s for sediments and
4.3 km/s for the salt.

5525 diffraction picks in addition to 6430 reflection picks were considered by dynamic
ray focusing using a 17 × 31 grid of 4-th order B-spline nodes with 900 m spacing in the

21



2 Velocity model building by dynamic ray focusing

140 145 150 155 160
     Lateral distance [km]

1

1.5

2

2.5

3

3.5

4

   
D

ep
th

 [k
m

]

Figure 2.7: Common-reflection-surface stack of the marine field data.

horizontal direction and 218.75 m spacing in the vertical direction. This grid is marked with
green dots in Figure 2.8. As in the synthetic example, we didn’t use any regularization terms
in the objective functional and its gradient. Again, this was possible due to the significant
reduction of the inversion matrix (see matrices 2.10 and 2.11). The ratio between dimension
of the data vector and dimension of the unknown vector in this example was approximately
22.7 against 1.3 of the conventional formulation. Figure 2.9 describes the convergence
process, which was less smooth and slower than in the synthetic case (Figure 2.5). The
result of the inversion is presented in Figure 2.10. The diffractors and normal-incidence-
points were finally traced to their positions and superimposed on the retrieved tomographic
model.
The high velocity evaporite unit of 1 km thickness is retrieved on the left side of the model.

It is sandwiched between the reflector elements indicating the top and the bottom of the
salt. The top of this body is in a good agreement with the previous studies by Bauer et al.
(2017). Due to the significant velocity contrast between the sediments and the salt and also
due to the complex stratigraphy it is usually a challenge to reconstruct a detailed velocity
distribution by any type of tomography without using well logs. Moreover, there are very
few reliable data picks beneath the salt, i.e., there is a poor illumination of the salt bottom
by upgoing waves in a very complex region. This leads to velocity uncertainties, especially
in the domain from 150 km to 160 km with complex salt roller structures. Nevertheless,
we were able to retrieve two high velocity anomalies at 153 km and at 157 km, which
clearly correspond to the salt rollers being in agreement with the depth migration image
(Figure 2.11) and previous studies by Dümmong et al. (2008). From geological perspective,
we know that these anomalies represent salt. Therefore, the velocity is underestimated in
these highly heterogeneous regions. This occurs not only due to the lack of illumination
but also due to the fact that characteristic size of the salt rollers is comparable to the
node spacing (Figure 2.8). We observe an analogous phenomenon in the right part of the
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Figure 2.8: Initial model for the marine data inversion comprising a homogeneous water column
and a constant gradient below the seabed (the seabed is marked with a white curve).
A 17 × 31 4-th order B-spline node grid for the inversion (green dots) is used, with a
spacing of 900 m in the horizontal and 218.75 m in the vertical direction.

section, where there is a barely visible stripe with slightly increased velocities. It goes up
and right from the salt roller anomaly. It corresponds to a thin layer of strongly crushed
salt comprising many diffractors (see Figure 2.7 and 2.11).

2.4.3 Depth imaging

Usually, tomographic velocity model building is followed by migration velocity analysis for
refinement of the velocity model. Here we skip this process to judge the quality of the
depth image from the dynamic ray focusing. Prestack reverse time migration produced
the migrated section shown together with the corresponding velocity model in Figure 2.11.
We observe a horst and graben along with step faulting. Disturbing shallow level strata
caused by faulting can also be interpreted. Furthermore, it is validated by the presence of
many diffractions in the shallow part of the seismic unmigrated section. Figure 2.12 shows
a close up of the migrated section at the most complex part with salt rollers (green frame in
Figure 2.11). In general, the top of salt is very well imaged. We can also claim that small
thickness undulations of the evaporite unit between 156 and 158 km indeed represent faults
and are not apparent velocity pull-ups/-downs. Since almost no picks below the evaporite
were available, we could not justify if the base of salt is correctly imaged over the whole
section. Moreover, at some places it replicates the top of salt, e.g., between 151 and 153
km.

2.5 Discussion

The presented method relies on wavefront attributes which are determined from operators
which perform best if a short spread is considered. The tomography in combination with
the method to determine its input, i.e., the wavefront attributes, is especially efficient
for velocity model building with diffractions. The reason for this is the ray coverage. For
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Figure 2.9: Descent of the objective functional (a) and its gradient maximum norm (b) during the
dynamic ray focusing of the field data.

diffractions, illumination does not benefit from larger offsets in the case of a point diffraction
and benefits less in the case of edge diffraction. Because of the decomposition principle of
diffractions (Bauer et al., 2016) only zero-offset traces are sufficient to achieve the full
ray coverage. Stability and reproducibility of the inversion, however, may be significantly
improved by reformulating the problem for a fewer number of unknowns, as it was suggested
in this work.
Another promising technology is simultaneous microseismic localization and velocity

model building since the moveout of a passive seismic point source is equivalent to the
moveout of a point diffractor at the location of the passive seismic source. A workflow of
passive seismic data enhancement provides a set of wavefront attributes (Schwarz et al.,
2016) similar to the reflection or diffraction case. Therefore, passive seismic wavefront to-
mography allows a simultaneous location and velocity model building with the additional
challenge to determine the unknown source time (Diekmann et al., 2019). Close analogy
between the passive event and the point diffraction allows adapting tools originally devised
for diffractions.
Seismic anisotropy in the subsurface of the Earth is a well documented fact. If a near-

surface model is available, we can extract the same input for the dynamic ray focusing
from the wavefront attributes in the most general anisotropic case (Vanelle et al., 2018).
Moreover, the objective functional derived in this paper, as well as the methodology to
compute the gradient, can be used to conceive inversion for anisotropic models. However,
kinematic and dynamic ray tracing will require an adjustment. Additionally, the perturbed
matrix of dynamic ray tracing needs to be reformulated in terms of perturbations of the
anisotropic parameters.
The reduction of unknowns in dynamic ray focusing was one of the major benefits of the

proposed approach if compared to the conventional wavefront tomography. The consider-
ably higher ratio of data picks to unknowns (22.7 against 1.3 for the field data example)
allowed to perform the inversion without any regularization terms. An alternative ap-
proach to reduce the number of unknowns may also be addressed in a different way during
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Figure 2.10: Retrieved tomographic model and localized reflector elements and diffractors (black
dots) for the field data set from the Levant Basin.

forward-data fitting (Znak et al., 2017, 2018). An alternative functional formulated solely
with respect to the velocity model comprises wavefront curvatures:

J [v] =
Ndata∑
i=1

(Mi −Mi[xdi [v], zdi [v], θi[v]; v])2, (2.22)

where x, t, and px inputs are fixed during optimization. Indeed, scattering coordinates and
angles are determined with the velocity model by time-reversal ray tracing as soon as the
values of x, t, and px are given. M turns out to be a composition of time-reversal kinematic
ray tracing and upward dynamic ray tracing. A full Fréchet derivative of functional (2.22)
can be obtained with the chain rule. We found this cumbersome and adhere to the one-way
formulation in terms of focusing, but it may have differing features of the inverse problem.
For complex geologies, we need to use as much data as possible. Particularly, utilizing

wavefront attributes of reflections from larger offsets might be essential for a detailed in-
version. In this work, reformulation of the inverse problem with dynamic ray focusing was
possible due to the unique property of the zero-offset ray. The ratio between the traveltimes
of the incident and emergent branch is one in this case. In the finite-offset case, this ratio is
usually not known as we extract only a sum over two branches from the data. Therefore, we
can’t match geometrical spreading at the ray endpoints in full analogy to the dynamic ray
focusing. However, the approach of Sword (1986) or an approach using an eikonal solver
may help. As demonstrated by Sambolian et al. (2019) with slope tomography, having
source and receiver traveltime fields defined on a grid allows to find a velocity dependent
reflecting element on the isochrone.

2.6 Conclusions
We developed a well-conditioned and stable approach for macro-velocity model building
using wavefront attributes of zero-offset rays. It consists of time-reversal kinematic and
dynamic ray tracing and minimizing geometrical spreading of normal-incidence-point-waves
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Figure 2.11: Depth migrated section superimposed on the retrieved tomographic model. The green
frame highlights the most complex part with salt rollers (Figure 2.12).

and diffractions. We focus waves reversely in time simultaneously updating the scatterer
positions and the velocity model. The input for the inversion are traveltime and wavefront
attributes of zero-offset rays, i.e., horizontal slowness and wavefront curvature. They are
retrieved from the data using multiparameter stacking techniques. These methods provide
best results if applied with short spreads to achieve a local description of the wavefront
without smearing lateral velocity changes.
If compared to the conventional wavefront tomography based on data fitting, the new

objective functional contains a single physical quantity and depends only on the velocity
model. This reformulation with its considerably smaller inversion matrix leads to favorable
properties of the inverse problem such as relaxing regularization. Additionally, a reduced
amount of tuning parameters in the objective functional allows to easier obtain reproducible
results. This concerns, e.g., the weighting of different physical parameters since the proposed
functional comprises only the focusing measure. We also provided the Fréchet derivatives
and the adjoint-state formulas for computing the gradient.
We used the L-BFGS-B method as an optimization engine. The proposed tomographic

inversion was first tested on the synthetic data comprising a salt body. The retrieved
tomographic image highly correlates with the synthetic model, the end-points of normal-
incidence-rays propagated into the final model constitute the layer boundaries. We further
applied our approach to complex marine data. The inverted model was used in a common-
shot depth migration. In the migrated section, we observed a clean and continuous image
of top of salt and well focused steep faults. The tomographic results were also consistent
with previous studies. In both synthetic and field data examples, we did not use any
regularization terms, which confirmed the well-conditioned behavior of the new formulation.
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Figure 2.12: Depth migrated section: close up at the most complex part with salt rollers (Figure
2.11).
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3 Ray perturbation theory in
wavefront-orthonormal coordinates:
generally anisotropic 3D elastic solids

Abstract
We focus on the first-order ray perturbation theory formulated in the wavefront-orthonormal
coordinates for 3D generally anisotropic inhomogeneous elastic media. We consider two
possible options – perturbation by the ray tracing initial conditions and perturbation by
the anisotropic model. We use a technique that doesn’t require expansion of the ray-
centered Hamiltonian. It is based on projecting the differential equations formulated in
Cartesian coordinates to the wavefront-orthonormal basis and on relating the projections
to the wavefront-orthonormal coordinates. Thus, we consider two ways for describing the
perturbations – using wavefront-orthonormal projections of the equal-time perturbations
and using perturbations in the wavefront-orthonormal coordinates. For both points of view,
we derive first-order linear systems of differential equations with dimensionality reduced
in comparison to the Cartesian formulation. 4 × 4 wave propagator formalism can be
utilized instead of the 6× 6 one. The systems formulated using the wavefront-orthonormal
coordinates exhibit a simplified formulation, compared to the systems for the wavefront-
orthonormal projections, due to contraction of the source term. We test the equations
solving them numerically in an inhomogeneous VTI model.

3.1 Introduction
Seismic inversion, which in most cases represents a process of local optimization in a func-
tional space, is based on one or another perturbation theory since they commonly provide a
way of computing the Fréchet derivatives (e. g., Tarantola, 1987; Plessix, 2006). Depending
on the order, the Fréchet derivative operator allows for computing gradient or Hessian of
the discretized objective function with respect to the unknown model parameters.
Perturbation theory plays important role in seismic modelling significantly extending

scope of the analytical methods. It helps to develop the numerical modelling methods
as well by formulating them for complex environments as perturbations of well established
methods in corresponding relatively simple media (e. g., Nowack and Pšenčík, 1991; Mensch
and Farra, 1999; Soukina et al., 2003; Waheed et al., 2015).
The first systematic study of the ray method for inhomogeneous generally anisotropic

lossless elastic solids was carried out by Babich (1961, 1994). The Hamiltonian system of
first-order differential equations for the characteristics of the anisotropic eikonal equation,
we refer to it as the kinematic ray tracing system, found a huge number of applications in
exploration and global seismology.
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3 Ray perturbation theory in wavefront-orthonormal coordinates

Červený (1972) derived the 6× 6 system of first-order linear differential equations for the
dynamic ray tracing in Cartesian coordinates. This system allowed for effective computing
of the geometical spreading, which determines the wave amplitude and the phase shift.
Therefore, it lead to seismic modelling in generally anisotropic 3D elastic media (Gajewski
and Pšenčik, 1990).
The dynamic ray tracing in ray-centered coordinates was suggested by Popov and Pšenčík

(1978) for isotropic media. It allows computing of the geometrical spreading with a reduced
number of equations (4× 4 wave propagator formalism instead of the 6× 6 one in 3D). The
first extension of this idea to the anisotropic case in non-orthogonal ray-centered coordinates
was given by Hanyga (1982). An alternative formulation that naturally uses a local non-
degenerate orthogonal coordinate system related to the wavefront (wavefront-orthonormal
coordinates) was developed by Kashtan and Petrashen (1983) and by Bakker (1996). They
introduced the natural wavefront-orthonormal basis (Petrashen and Kashtan, 1984), which
has to be computed in 3D with an additional 3 × 3 system of linear first-order differential
equations. A comprehensive review and comparison of different ray-centered coordinate
systems for the dynamic ray tracing is given in the paper by Červený (2007). The author
draws a conclusion that the corresponding systems of differential equations are equiva-
lent, but formulation of the dynamic ray tracing in the wavefront-orthonormal coordinates
is slightly simpler. The wavefront-orthonormal coordinates do not require distinguishing
between the covariant and contravariant basis vectors and computing the dual basis.
The 6×6 Cartesian and 4×4 wavefront-orthonormal approaches to the dynamic ray trac-

ing are equivalent alternatives. The 6× 6 Cartesian formulation doesn’t require additional
basis computing, while 4 × 4 formulation has a reduced number of equations and directly
expresses the wavefront curvature matrix (Červený, 2001). The corresponding propagators
are related and can be transformed into each other using the wavefront-orthonormal basis
at the initial and end points of the ray (Červený, 2007; Cervenỳ and Jan Moser, 2007).
Farra and Madariaga (1987) applied the perturbation theory methods to the kinematic ray

tracing in isotropic media. Similarly to the paraxial ray tracing of Popov and Pšenčík (1978),
they employed expansion of the Hamiltonian formulated in the ray-centered coordinates and
derived the reduced 4×4 inhomogeneous system for the case of perturbation by the velocity
model.
Previous work on the anisotropic ray perturbation theory, to our knowledge, has focused

on the global Cartesian 6 × 6 formulation. The first-order perturbation of the kinematic
ray tracing in anisotropic media was formulated by Jech and Pšenčík (1989) and by Farra
(1989). It is significantly simplified in the case of weak anisotropy since the necessary
polarization vector derivatives can be explicitly formulated in this case (Pšenčík and Farra,
2005).
In this work, we fill the gap and derive an anisotropic analogue of equations by Farra and

Madariaga (1987). We formulate the ray perturbation theory in the wavefront-orthonormal
coordinates for generally anisotropic 3D elastic solids. We study both, perturbation by
the ray tracing initial conditions and by the anisotropic model. Instead of expanding the
wavefront-tangent ray-centered Hamiltonian, which was utilized in the original paper by
Farra and Madariaga (1987), we use a technique based on projecting the equal-time per-
turbations to the wavefront-orthonormal basis and further relating these projections to the
wavefront-orthonormal coordinates. The paper reveals a difference between two ways of de-
scribing the perturbations – the equal-time perturbation projection and perturbation in the
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3.2 Kinematic and dynamic ray tracing in anisotropic media

wavefront-orthonormal coordinates. The latter point of view simplifies the resulting differ-
ential equations. We explicitly express the differential equations in terms of the secondary
Christoffel equation eigenvalues and eigenvectors. No S-wave degeneration is addressed.
The paper is divided into four technical sections. The first one recalls the kinematic

and dynamic ray tracing. Next two sections correspond to different possible origins of
the ray perturbation – initial conditions and elastic moduli. In these sections, the global
Cartesian approach is given first. Then, it is followed by the formulation for the equal-
time perturbation projections, which is reduced further to the formulation in wavefront-
orthonormal coordinates. The last section illustrates the proposed method numerically in
an inhomogeneous VTI model.
In the first appendix, we give formulas for the polarization derivatives with respect to

Cartesian coordinates, slowness vector components, and elastic moduli, expressed through
the secondary Christoffel equation eigenvalues and eigenvectors. In the second appendix,
we derive initial conditions for the wavefront-orthonormal coordinates in the case when the
initial ray point and two slowness vector components are fixed, which is motivated by our
practice of seismic inversion.

3.2 Kinematic and dynamic ray tracing in anisotropic media

3.2.1 Kinematic ray tracing

In a 3D generally anisotropic inhomogeneous medium with smooth density ρ(x) and smooth
elastic moduli cijkl(x), a ray x = x(t) and the corresponding slowness vector p = p(t) satisfy
the kinematic ray tracing system (Červený, 2001; Babich and Kiselev, 2018):

dxi
dt

= aijklgjgkpl, (3.1)

dpi
dt

= −1
2
∂ajklm
∂xi

gkglpjpm, i = 1, 2, 3, (3.2)

where the tensor components aijkl(x) = cijkl(x)
ρ(x) are the density normalized elastic moduli.

The Einstein’s rule for summation over repeated indices is used throughout the paper.
For a given space point x and wavefront normal n = p

|p| , components of the normalized
polarization vector gi(x,n) follows from the Christoffel eigenvalues and eigenvectors problem

aijklnjnkgl = v2gi, i = 1, 2, 3, (3.3)

where the squared phase velocity eigenvalue v2 is selected in accordance to the wave mode
under consideration, the qP-wave or one of the two qS-waves. Phase velocity depends on the
space coordinates and the components of the wavefront normal: v(x,n) = √aijklgjgkninl.
The right-hand side of the first three equations (3.1) represents components ui = ∂v

∂ni
=

aijklgjgkpl of the ray velocity vector u, which is related to the energy flux. The right-hand
side of the last three equations (3.2) may be rewritten in a way to formally coincide with
the corresponding right-hand side in the isotropic case:

dpi
dt

= −1
v

∂v

∂xi
, i = 1, 2, 3. (3.4)
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3 Ray perturbation theory in wavefront-orthonormal coordinates

The kinematic ray tracing system (eqs 3.1-3.2) represents first-order ordinary differential
equations for characteristics of the nonlinear first-order partial differential equation

aijklgjgkpipl = 1, (3.5)

called the eikonal equation.

3.2.2 Dynamic ray tracing in Cartesian and wavefront-orthonormal
coordinates

Introducing two complimentary to time ray coordinates γ1 and γ2, e. g., as initial spherical
angles of the wavefront normal, leads to spanning the space with the ray fan and to the
transformations from the ray coordinates to the Cartesian coordinates and to the slowness
vector components:

xi = xi(γ1, γ2, t), pi = pi(γ1, γ2, t), i = 1, 2, 3. (3.6)

Dynamic ray tracing in global Cartesian coordinates is formulated, then, by differentiating
the kinematic ray tracing system (3.1-3.2) with respect to the auxiliary ray coordinates:

d

dt

 ∂x
∂γα

∂p
∂γα

 = S(6)

 ∂x
∂γα

∂p
∂γα

 , S(6) =

 Φ̂ + ŴBV̂ T Ψ̂ + ŴBŴ T

−Ŷ − V̂BV̂ T −Φ̂T − V̂BŴ T

 , α = 1, 2.

(3.7)
We introduce here 3 × 3 matrices to explicitly formulate the dynamic ray tracing using
the secondary to g eigenvectors g(1), g(2) and the corresponding secondary eigenvalues v(1),
v(2):

Φ̂ij = ∂aiklm
∂xj

gkglpm, Ψ̂ij = Ψ̂ji = aikljgkgl, Ŷij = Ŷji = 1
2
∂2aklmn
∂xi∂xj

glgmpkpn,

Ŵij = (aijkl + aikjl)gkpl, V̂ij = ∂ajklm
∂xi

pkplgm, Bij = Bji = v2
2∑

α=1

g
(α)
i g

(α)
j

v2 − (v(α))2 ,

i, j = 1, 2, 3. (3.8)

This is done by evaluating derivatives of the polarization vector with respect to the Cartesian
coordinates and to the slowness vector components (see Appendix D.1):

∂gi
∂xj

=
(
BV̂ T

)
ij
,

∂gi
∂pj

=
(
BŴ T

)
ij
, i, j = 1, 2, 3. (3.9)

Throughout the paper, we assume no S-wave degeneration, which means all the eigenvalues
are isolated. For both sets of derivatives, for ∂x

∂γ1
, ∂p
∂γ1

and for ∂x
∂γ2

, ∂p
∂γ2

, the same system
(3.7) holds. It is linear in contrast to the kinematic ray tracing system (3.1-3.2) and can be
solved with the 6× 6 propagator formalism (e. g., Červený, 2001).
The wavefront-orthonormal coordinates q1, q2, n are defined in a local Cartesian system

spanned by the wavefront-orthonormal basis. The wavefront-orthonormal basis e1, e2, en
comprises the normal to the wavefront, en = n = vp, and two mutually orthogonal, tangent
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3.2 Kinematic and dynamic ray tracing in anisotropic media

to the wavefront, unit vectors defined with the following differential equations (Kashtan and
Petrashen, 1983; Bakker, 1996):

deα
dt

= (∇xv, eα)en = vαen, α = 1, 2. (3.10)

Cartesian components of the basis vectors will be denoted correspondingly with to indices,
e. g., (e1)1 = e11. We use subscript notations for the fixed normal derivatives of the
phase velocity and of the normalized moduli with respect to the wavefront-orthonormal
coordinates:

vα = ∂v

∂qα
= (∇xv, eα) = 1

2vaα,ijklgjgkpipl, α = 1, 2, (3.11)

vn = ∂v

∂n
= (∇xv, en) = 1

2van,ijklgjgkpipl, (3.12)

aα,ijkl = ∂aijkl
∂qα

= (∇xaijkl, eα), α = 1, 2, (3.13)

an,ijkl = ∂aijkl
∂n

= (∇xaijkl, en), i, j, k, l = 1, 2, 3. (3.14)

For the time derivative of the entire basis, an antisymmetric relation exists:

d

dt

e1
e2
en

 =

 0 0 v1
0 0 v2
−v1 −v2 0

e1
e2
en

 . (3.15)

There is no need to trace the normal basis vector. It is determined during the ray tracing.
The expression for its time derivative, however, is necessary for understanding the following
sections.
Introducing 2 × 2 matrices of the dynamic quantity projections onto the wavefront-

orthonormal basis,

Qαβ =
(

eα,
∂x
∂γβ

)
, Pαβ =

(
eα,

∂p
∂γβ

)
, α, β = 1, 2, (3.16)

allows for a reduced dimension formulation of the dynamic ray tracing with the 4 × 4
propagator formalism (e. g., Červený, 2001):

d

dt

(
Q

P

)
= S(4)

(
Q

P

)
. (3.17)

2× 2 blocks of the 4× 4 dynamic ray tracing matrix S(4)

(
S

(4)
11

)
αβ

= Φαβ +WαiBijV
T
jβ −

uqαvβ
v

,
(
S

(4)
12

)
αβ

= Ψαβ +WαiBijW
T
jβ − uqαu

q
β,(

S
(4)
21

)
αβ

= −Yαβ − VαiBijV T
jβ + vαvβ

v2 ,
(
S

(4)
22

)
αβ

= −ΦT
αβ − VαiBijW T

jβ +
vαu

q
β

v
,
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3 Ray perturbation theory in wavefront-orthonormal coordinates

α, β = 1, 2, (3.18)

comprise the reduced matrices

Φαβ = (eα, Φ̂eβ) = aβ,ijklgjgkeαipl,

Ψαβ = Ψβα = (eα, Ψ̂eβ) = aijklgjgkeαieβl,

Yαβ = Yβα = (eα, Ŷ eβ) = 1
2
∂2aijkl
∂xm∂xn

gjgkpipleαmeβn, α, β = 1, 2,

Wαi = (eα)jŴji = (ajikl + ajkil)gkpleαj ,
Vαi = (eα)j V̂ji = aα,ijklpjpkgl, α = 1, 2, i = 1, 2, 3, (3.19)

and the projected ray velocity vector uqα = (u, eα), α = 1, 2. Eq. (3.17) is derived by differ-
entiating projections (3.16), substituting eqs. (3.7), and accounting for the time derivatives
of the basis vectors (3.10). Additionally, an expression for the remaining projection of the
slowness vector derivative is used:(

en,
∂p
∂γα

)
= −vβ

v2Qβα −
uqβ
v
Pβα, α = 1, 2. (3.20)

In the isotropic limit, the last term in this expression becomes zero due to vanishing of the
wavefront-orthonormal projections of the ray velocity vector. The projection (3.20) is fully
determined with the matrix Q in this case.
Dynamic ray tracing, i. e., solving equations (3.7) or (3.17), allows computing the Jaco-

bian of the mapping from the ray coordinates to the Cartesian coordinates, J = ∂(x1,x2,x3)
∂(γ1,γ2, t) =(

∂x
∂t ,
[
∂x
∂γ1

, ∂x
∂γ2

])
= v detQ, and, therefore, amplitude and phase shift of the zero-order ray

series approximation by the factor of 1√
ρJ
.

3.3 Perturbation by the initial conditions
In this section, the anisotropic model is kept fixed. Perturbations of the kinematic quantities
are caused by a variation in the initial conditions for the ray tracing.

3.3.1 Global Cartesian coordinates

We consider equal-time kinematic perturbations 4x(t) = x(1)(t) − x(0)(t) and 4p(t) =
p(1)(t)− p(0)(t). Equal-time perturbation implies a difference computed for the same time
along the reference and along the perturbed ray. In order to distinguish with perturbations
of the dynamic ray tracing quantities from eq. (3.7) or (3.17), we use the term “kinematic
perturbations” for the perturbations of ray and slowness vector. A perturbed ray, x(1)(t),
and the slowness vector, p(1)(t), are fully determined by conditions at the initial time t0:

x(1)(t0) = x(0)(t0) +4x(t0), p(1)(t0) = p(0)(t0) +4p(t0). (3.21)

We assume stability, when small initial perturbations 4x(t0) and 4p(t0) cause small per-
turbations 4x(t) and 4p(t) for t 6= t0. If it is clear from the context and we don’t aim to
emphasize the distinction, we will omit the superscripts (0) denoting the unperturbed quan-
tities. Perturbation of the initial ray point is related to perturbation of the initial slowness
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3.3 Perturbation by the initial conditions

vector. Moreover, a relation exists for the kinematic perturbations, 4x(t) and 4p(t), at
any traveltime (Farra, 1989):

(u,4p) =
(
−∇xv

v
,4x

)
. (3.22)

This is a consequence of the first-order perturbation of the eikonal equation (3.5).
The first-order expansion of the ray tracing system (3.1-3.2) considered for the perturbed

ray yields a homogeneous linear system with respect to the ray and slowness vector pertur-
bations:

d

dt

(
4x
4p

)
= S(6)

(
4x
4p

)
(3.23)

It comprises the dynamic ray tracing matrix in Cartesian coordinates, S(6) (see eq. 3.7).

3.3.2 Projections of the equal-time perturbations

Due to eq. (3.22), five scalars 4xq1,4x
q
2, 4p

q
1,4p

q
2, and 4n are sufficient for describing the

kinematic perturbations. In fact, we will derive a system with respect to the four indepen-
dent quantities 4xq1,4x

q
2, 4p

q
1,4p

q
2 only. In the case of perturbation by the anisotropic

model, the fifth one, 4n, will be formulated separately with a simple integration. We in-
troduce them as projections of the equal-time kinematic perturbations to the unperturbed
wavefront-orthonormal basis:

4x = 4xqα eα +4n en, (3.24)

4p = 4p qα eα −
1
v2 (vα4xqα + v uqα4p qα + vn4n) en. (3.25)

The projection (4p, en) depends on the other projections, similarly to the dynamic ray
tracing projection (3.20). It also comprises a 4p-term, which vanishes in the isotropic case.
Differential equations for 4xq1,4x

q
2, 4p

q
1,4p

q
2, and 4n follow from eqs. (3.23), repre-

sentations (3.24, 3.25), and expressions for the time derivatives of the basis vectors (3.15).
Namely, five equations for the projections are

d

dt
4xqα =

(
S

(4)
11

)
αβ
4xqβ +

(
S

(4)
12

)
αβ
4pqβ +4n

((
Φ̂ + ŴBV̂ T

)
ij
eαienj −

vn
v
uqα + vα

)
,

d

dt
4pqα =

(
S

(4)
21

)
αβ
4xqβ +

(
S

(4)
22

)
αβ
4pqβ +4n

((
Ŷ + V̂ BV̂ T

)
ij
eαienj + vn

v
vα

)
, α = 1, 2,

d

dt
4n = vn4n. (3.26)

The last equation is homogeneous and independent. Differentiating v2 = (pipi)−1 shows
that dv

dt = vvn. Therefore, 4n(t) = 4n(t0)
v(t0) v(t) satisfies the independent equation, and the

initial condition as well. Note in the first order, a time lag

4t = 4n(t)
v(t) = 4n(t0)

v(t0) (3.27)
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𝐱 0 𝑡  

𝐱 1 𝑡  

𝐱 1 𝑡 −△ 𝑡  

𝐩 0 𝑡  

𝐩 1 𝑡 −△ 𝑡  

𝐩 1 𝑡  

△ 𝐱 𝑡  

△ 𝑡 > 0 

a  

𝐱 0 𝑡  

𝐱 1 𝑡  

𝐱 1 𝑡 −△ 𝑡  

𝐩 0 𝑡  

𝐩 1 𝑡 −△ 𝑡  

𝐩 1 𝑡  △ 𝐱 𝑡  

b  

△ 𝑡 < 0 

Figure 3.1: The wavefront-orthonormal ray-centered perturbations q, pq and the equal-time per-
turbation 4x (2D illustration). The point on the perturbed ray, x(1)(t), outruns the
ray point defined with the ray-centered approach, x(1)(t−4t), when 4t > 0 (a), and
vice versa when 4t < 0 (b).

stays constant for the perturbation by the initial conditions. Meaning of this time lag will
be explained in the next subsection. Placing this solution 4n(t) to the source term of
system (3.26) closes it with respect to the projections 4xq1,4x

q
2 and 4pq1,4p

q
2:

d

dt
4xqα =

(
S

(4)
11

)
αβ
4xqβ +

(
S

(4)
12

)
αβ
4pqβ +4t

(
v
(
Φ̂ + ŴBV̂ T

)
ij
eαienj − vnuqα + vvα

)
,

d

dt
4pqα =

(
S

(4)
21

)
αβ
4xqβ +

(
S

(4)
22

)
αβ
4pqβ +4t

(
v
(
Ŷ + V̂ BV̂ T

)
ij
eαienj + vnvα

)
, α = 1, 2.

(3.28)

The projections of equal-time kinematic perturbations satisfy the inhomogeneous dynamic
ray tracing system in wavefront-orthonormal coordinates.

3.3.3 Perturbations in wavefront-orthonormal coordinates

Up to now, we have considered the kinematic perturbations 4x(t) and 4p(t) describing
them as projections 4xq1(t),4xq2(t) and 4pq1(t),4pq2(t) onto the unperturbed wavefront-
orthonormal basis. By doing this, we imply that the perturbed ray and slowness vector,
x(1)(t) and p(1)(t), correspond to the same traveltime t computed along the perturbed
ray as for the reference one. Thus, we have considered the equal-time perturbations and
their projections. However, another point of view exists. Originally introduced by Babich
and Buldyrev (1972), the concept of ray-centered coordinates was used in isotropic media
by Popov and Pšenčík (1978) for the paraxial and dynamic ray tracing. Further, it was
applied by Farra and Madariaga (1987) for the ray perturbation by velocity model. In the
isotropic case, the ray-centered coordinates are naturally defined in a plane orthogonal to
the reference ray. In the case of anisotropy, however, there is a freedom in choosing such
coordinates since orthogonality to a ray doesn’t mean tangency to the wavefront. For a
detailed discussion on various ray-centered coordinate systems, we refer a reader to the
paper by Klimeš (2006).
Wavefront-orthonormal coordinates are ray-centered coordinates in wavefront-tangent

plane centered at the reference ray and describing the perturbed ray (see Fig. 3.1). In
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3.3 Perturbation by the initial conditions

accordance to the wavefront-orthonormal basis on the reference ray, at any time t mea-
sured along this reference ray, two local coordinates of the perturbed ray q1(t), q2(t) exist
in the plane tangent to the unperturbed wavefront. The wavefront-orthonormal perturba-
tions pq1(t), pq2(t) are wavefront-orthonormal projections of the perturbed slowness vector.
This perturbed slowness vector, wherein, is considered at the point on the perturbed ray
corresponding to the ray-centered coordinates q1(t), q2(t). This is the point where the
wavefront-tangent plane intersects the perturbed ray (see Fig. 3.1).
We emphasize that the ray-centered coordinates approach doesn’t describe the equal-time

perturbations. The point of intersection of the wavefront-tangent plane by the perturbed ray
corresponds to the traveltime computed along the perturbed ray, which is generally different
from the traveltime t computed along the reference ray. If the vector of perturbation
4x(t) doesn’t belong to the plane tangent to the unperturbed wavefront, the ray-centered
values q1(t), q2(t) correspond to a point on the perturbed ray at slightly shifted traveltime,
x(1)(t−4t). We will show further that up to the first-order this time lag is exactly the time
lag introduced in the previous subsection. Similarly, the ray-centered values pq1(t), pq2(t)
correspond to the time shifted slowness vector of the perturbed ray, p(1)(t − 4t). The
following relations hold:

x(0)(t) + qα(t) eα(t) = x(1)(t−4t), pα(t) =
(
p(1)(t−4t), eα(t)

)
, α = 1, 2. (3.29)

When 4t > 0 (4t < 0), the equal-time point, x(1)(t), outruns (is delayed with respect to)
the point defined by the ray-centered approach, x(1)(t−4t) (see Fig. 3.1).
Let us expand the first identity in eq. 3.29 assuming the time lag 4t to be small:

4x(t) = qα(t) eα(t) + dx
dt

(1)
(t)4t = qα(t) eα(t) + u(1)(t)4t. (3.30)

Neglecting the higher-order terms, we get:

4x(t) = qα(t) eα(t) + u(0)(t)4t. (3.31)

Projecting this equation to the direction of wavefront normal confirms that the time lag is
determined up to the first-order with the normal projection 4n: 4t = 4n

v . As previously
mentioned, it is constant when no model perturbation is present. Next, we relate the equal-
time perturbation projections4xq1,4x

q
2 and the wavefront-orthonormal perturbations q1, q2

by projecting eq. (3.31) to the wavefront-orthonormal basis:

4xqα = qα +4t uqα α = 1, 2. (3.32)

Analogously, we expand the second identity in eq. 3.29, neglect the higher-order terms, and
relate the quantities describing perturbation of the slowness vector:

pqα(t) =
(
p(1)(t−4t), eα(t)

)
=
(

p(1)(t)− dp
dt

(1)
(t)4t, eα(t)

)
=

(4p(t), eα(t)) +4t
(∇xv

v
, eα(t)

)
, α = 1, 2, (3.33)

4pqα = pqα +4t
(
−vα
v

)
, α = 1, 2. (3.34)
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3 Ray perturbation theory in wavefront-orthonormal coordinates

We observe a discrepancy between the equal-time perturbation projections and the wavefront-
orthonormal perturbations when ray perturbation is caused by initial conditions with4n(t0)
6= 0. As will be shown later, this discrepancy takes place also for the ray perturbation caused
by anisotropic model. In the isotropic limit, relation (3.32) turns to identity 4xqα = qα.
Let us now look at the wavefront-orthonormal perturbations from a different perspective.

Due to linearity and homogeneity of the system (3.23), a general problem with initial
conditions

4x(t0) = 4xqα(t0) eα(t0) +4n(t0) en(t0), (3.35)

4p(t0) = 4pqα(t0) eα(t0)− 1
v2(t0) (vα(t0)4xqα(t0) + v(t0)uqα(t0)4pqα(t0) + vn(t0)4n(t0)) en(t0)

is splitted into two specific problems. The ray-tangent problem (Červený, 2001) with initial
conditions

4xI(t0) =4t uα(t0)eα(t0) +4n(t0) en(t0) = 4tu(t0), (3.36)

4pI(t0) =4t
(
−∇xv

v
(t0), eα(t0)

)
eα(t0)− vn

v2 (t0)4n(t0) en(t0) = 4t
(
−∇xv

v

)
(t0),

and the initial point of the ray perturbed along the reference ray and the slowness vector
perturbation taken accordingly to follow the reference ray, doesn’t require additional com-
puting. It is easy to see that the right-hand side of the kinematic ray tracing system (3.1,
3.2) satisfies the dynamic ray tracing system (3.7) itself. Therefore,(

4xI

4pI

)
(t) = 4t

(
u
−∇xv

v

)
(t) (3.37)

The time lag 4t = 4n(t)
v(t) is a constant coefficient between the infinitesimal ray-tangent

perturbation and the ray velocity vector. Note, this is only valid for the perturbation by
initial conditions. A remaining part of solution of the general problem:

4xII(t) = (4xqα −4t uqα) eα, (3.38)

4pII(t) =
(
4pqα −4t

(
−vα
v

))
eα +

(
−vα
v24x

q
α −

uqα
v
4pqα

)
en.

4x for this remaining part stays always in the wavefront-tangent plane and can be computed
by the homogeneous 4 × 4 dynamic ray tracing (since 4n(t) = 4n(t0) = 0, see eq. 3.26).
The shifted values of projections 4xq1,4x

q
2 and 4pq1,4p

q
2 arising in eq. (3.38) are exactly

the perturbations in wavefront-orthonormal coordinates (see eqs 3.32 and 3.34). Therefore,
they satisfy the homogeneous 4× 4 dynamic ray tracing system even for 4n(t0) 6= 0:

d

dt


q1

q2

pq1
pq2

 = S(4)


q1

q2

pq1
pq2

 . (3.39)

This agrees with the isotropic case (Farra and Madariaga, 1987, eq. 8). With the help of
relations (3.32, 3.34) it can be alternatively explained as follows. The projections 4xq1,4x

q
2
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3.4 Perturbation by the anisotropic model

and 4pq1,4p
q
2 satisfy the inhomogeneous system (3.28). Therefore, for the wavefront-

orthonormal perturbations q1, q2 and pq1, p
q
2 to satisfy the corresponding homogeneous sys-

tem, it is necessary and sufficient that the residual vector

4t


uq1
uq2

−v1/v

−v2/v

 (3.40)

satisfies the inhomogeneous system (3.28) as well. Components of the residual vector
are, however, projections of the right-hand side of the kinematic ray tracing system (3.1-
3.2), which is a solution of the 6 × 6 dynamic ray tracing. Therefore, the residual vector
has to satisfy the inhomogeneous system for projections (3.28). Note, for the ray-tangent
perturbations q1 = q2 = pq1 = pq2 = 0.
To obtain the Cartesian equal-time perturbations directly from the wavefront-orthonormal

ray-centered perturbations, the following relations can be used:

4x = qαeα +4t u,

4p = pqαeα −
1
v2 (vαqα + vuqαp

q
α) +4t

(
−∇v

v

)
. (3.41)

3.4 Perturbation by the anisotropic model

We now proceed to consider the perturbations caused by a small change in the anisotropic
model.

3.4.1 Global Cartesian coordinates

First, we formulate computing of the equal-time perturbations 4x(t) = x(1)(t) − x(0)(t)
and 4p(t) = p(1)(t) − p(0)(t). A reference ray x(0)(t) and the reference slowness vector
p(0)(t) satisfy the kinematic ray tracing system (3.1-3.2) in the reference anisotropic model
with density normalized elastic moduli a(0)

ijkl(x) and initial conditions x(0)(t0), p(0)(t0). A
perturbed ray x(1)(t) and the perturbed slowness vector p(1)(t) satisfy the kinematic ray
tracing system (3.1-3.2) as well but with slightly changed parameter values, a(1)

ijkl(x) =
a

(0)
ijkl(x) +4aijkl(x). Kinematic perturbations 4x,4p are assumed to be small as long as

the perturbation of the model, 4aijkl(x), is also small.
A linearized system for the kinematic perturbations in Cartesian coordinates is deter-

mined by the dynamic ray-tracing matrix S(6) and a source term with the model perturba-
tion (Jech and Pšenčík, 1989; Farra, 1989):

d

dt
4xi =

(
S

(6)
11

)
ij
4xj +

(
S

(6)
12

)
ij
4pj +4aijklgjgkpl +

(
ŴB

)
ij
4ajklmpkplgm, i = 1, 2, 3

d

dt
4pi =

(
S

(6)
21

)
ij
4xj +

(
S

(6)
22

)
ij
4pj −

1
2
∂4ajklm
∂xi

gkglpjpm −
(
V̂ B

)
ij
4ajklmpkplgm.

(3.42)
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3 Ray perturbation theory in wavefront-orthonormal coordinates

Here we use notations for the four 3×3 blocks of the S(6) matrix. Note that the source term
comprises two parts. The first one is due to linear occurrence of the elastic moduli in the
right-hand side of the kinematic ray tracing system (3.1-3.2). The second term is a result of
accurate expansion of the polarization vectors. In fact, polarizations are determined with
elastic moduli and direction of the wavefront normal. In the kinematic ray tracing system
considered for the perturbed ray, perturbed polarization g(1) is included correspondingly
as a function of the moduli in a form a

(0)
ijkl(x(0) +4x) +4aijkl(x(0) +4x), which leads to

extra terms containing the polarization derivatives with respect to the normalized elastic
moduli (see Appendix D.1):

∂gi
∂ajklm

= Bijpkplgm, i, j, k, l,m = 1, 2, 3. (3.43)

To fully formulate the perturbation problem, initial conditions for the kinematic per-
turbations has to be specified. Since the eikonal equation (3.5) is satisfied both for the
unperturbed and for the perturbed quantities, perturbation of the slowness vector is re-
lated to the perturbation of ray and to the perturbation of elastic moduli (Farra, 1989):

(u,4p) =
(
−∇xv

v
,4x

)
− 4v

v
, (3.44)

where 4v is a notation for the fixed normal perturbation of the phase velocity:

4v = 1
2v4aijklgjgkpipl. (3.45)

Eq. (3.44) differs from eq. (3.22) by this additional term containing the model perturbation.
For an additional discussion on initial conditions reasonable for the kinematic perturbations,
we refer to Appendix B.2.
The inhomogeneous system (3.42) can be solved with the 6×6 wave propagator Π(6) and

the system source vector s(6) as follows (e. g., Gilbert and Backus, 1966):(
4x
4p

)
(t) = Π(6)(t, t0)

(
4x
4p

)
(t0) + Π(6)(t, t0)

t∫
t0

(
Π(6)(t̃, t0)

)−1
s(6)(t̃)dt̃. (3.46)

Simplicticity of the wave propagator (e. g., Červený, 2001) may be additionally employed
to compute the inverse using blocks:

Π−1 =
(

ΠT
22 −ΠT

12
−ΠT

21 ΠT
11

)
. (3.47)

3.4.2 Projections of the equal-time perturbations

Let us study projections of the kinematic perturbations onto the reference wavefront-
orthonormal basis in this case. Due to eq. (3.44), five scalars 4xq1,4x

q
2, 4p

q
1,4p

q
2, and 4n

are sufficient for describing evolution of the perturbations:

4x = 4xqα eα +4n en, (3.48)

4p = 4p qα eα −
1
v2 (vα4xqα + v uqα4p qα + vn4n+4v) en. (3.49)
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3.4 Perturbation by the anisotropic model

The projection (4p, en) follows from the eikonal equation perturbation (3.44). In contrast
to the case of perturbation by initial conditions (see eq. 3.25), it comprises an extra term
with 4v.
Differentiating the projections 4xq1,4x

q
2,4p

q
1,4p

q
2, substituting eqs (3.42), basis decom-

position (3.48, 3.49), and derivatives (3.15), we obtain again a system with the dynamic
ray tracing matrix S(4) and a source term with 4n:

d

dt
4xqα =

(
S

(4)
11

)
αβ
4xqβ +

(
S

(4)
12

)
αβ
4pqβ +4n

((
Φ̂ + ŴBV̂ T

)
ij
eαienj −

vn
v
uqα + vα

)
+4aijklgjgkeαipl + (WB)αi4aijklpjpkgl −

uqα
v
4v,

d

dt
4pqα =

(
S

(4)
21

)
αβ
4xqβ +

(
S

(4)
22

)
αβ
4pqβ +4n

((
Ŷ + V̂ BV̂ T

)
ij
eαienj + vn

v
vα

)
− 1

24aα,ijklgkglpipl − (V B)αi4aijklpjpkgl + vα
v24v, α = 1, 2, (3.50)

where 4aα,ijkl = (∇4aijkl, eα). However, the source term now additionally comprises a
vector with the elastic module perturbations (see eqs 3.26).
Computing time derivative of the projection 4n yields an inhomogeneous independent

equation for 4n:
d4n
dt

= vn4n+4v. (3.51)

We solve it with the method of variation of constants applied to the solution of the homo-
geneous problem (eqs 3.26):

4n(t) = v(t)

4n(t0)
v(t0) +

t∫
t0

4v
v
dt̃

 . (3.52)

This expression can be placed to the source term of the system (3.50) closing it with respect
to the unknown projections 4xq1,4x

q
2 and 4pq1,4p

q
2:

d

dt
4xqα =

(
S

(4)
11

)
αβ
4xqβ +

(
S

(4)
12

)
αβ
4pqβ +4t

(
v
(
Φ̂ + ŴBV̂ T

)
ij
eαienj − vnuqα + vvα

)
+4aijklgjgkeαipl + (WB)αi4aijklpjpkgl −

uqα
v
4v,

d

dt
4pqα =

(
S

(4)
21

)
αβ
4xqβ +

(
S

(4)
22

)
αβ
4pqβ +4t

(
v
(
Ŷ + V̂ BV̂ T

)
ij
eαienj + vnvα

)
− 1

24aα,ijklgkglpipl − (V B)αi4aijklpjpkgl + vα
v24v, α = 1, 2, (3.53)

where

4t(t) = 4n(t)
v(t) = 4n(t0)

v(t0) +
t∫

t0

4v
v
dt̃. (3.54)

Note, this time lag now consists of two terms, due to the perturbation of initial ray point
and due to the model perturbation. The latter one is opposite to the first-order correction
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3 Ray perturbation theory in wavefront-orthonormal coordinates

of the traveltime along the unperturbed ray (e. g., Jech and Pšenčík, 1989)

4τ = −
t∫

t0

4v
v
dt̃. (3.55)

3.4.3 Perturbations in wavefront-orthonormal coordinates

Verifying the derivations from Section 3.3.3, we confirm the same relations between the
equal-time perturbation projections and the wavefront-orthonormal perturbations for the
case of perturbation by anisotropic model:

4xqα = qα +4t uqα, 4pqα = pqα +4t
(
−vα
v

)
, α = 1, 2. (3.56)

However, the time lag 4t is not a constant anymore (see eq. 3.54):

d

dt
4t = 4v

v
. (3.57)

Unlike the case of perturbations caused by the initial conditions, the discrepancy between
the equal-time perturbation projections and the wavefront-orthonormal perturbations is
present for t 6= t0 even when the reference and the perturbed ray emerge from the same
location.
Using eq. (3.57) and the fact that the projected right-hand side vector, eq. (3.40) without

the factor 4t, satisfies the inhomogeneous system for projections (3.28) with 4t = 1, we
find an expression for the derivative of the residual vector:

d

dt
4tuqα = uqα

v
4v +

(
S

(4)
11

)
αβ
4tuqβ +

(
S

(4)
12

)
αβ
4t
(
−vβ
v

)
+4t

(
v
(
Φ̂ + ŴBV̂ T

)
ij
eαienj − vnuqα + vvα

)
,

d

dt
4t
(
−vα
v

)
= −vα

v24v +
(
S

(4)
21

)
αβ
4tuqβ +

(
S

(4)
22

)
αβ
4t
(
−vβ
v

)
+4t

(
v
(
Ŷ + V̂ BV̂ T

)
ij
eαienj + vnvα

)
, α = 1, 2. (3.58)

Together with relations (3.56), it helps to transform the system for the wavefront-orthonormal
projections (3.53) to a reduced system for the ray-centered perturbations:

dqα
dt

=
(
S

(4)
11

)
αβ
qβ +

(
S

(4)
12

)
αβ
pqβ +4aijklgjgkeαipl + (WB)αi4aijklpjpkgl − 2u

q
α

v
4v,

dpqα
dt

=
(
S

(4)
21

)
αβ
qβ +

(
S

(4)
22

)
αβ
pqβ −

1
24aα,ijklgkglpipl − (V B)αi4aijklpjpkgl + 2vα

v24v,

α = 1, 2. (3.59)

This is an anisotropic analogue of equations formulated by Farra and Madariaga (1987, eq.
11) for the kinematic ray-centered perturbations in isotropic media.
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3.5 Numerical examples

It can be solved with the 4× 4 wave propagator Π(4) and the source vector of the system
s(4) as follows (e. g., Gilbert and Backus, 1966):

q1
q2
pq1
pq2

 (t) = Π(4)(t, t0)


q1
q2
pq1
pq2

 (t0) + Π(4)(t, t0)
t∫

t0

(
Π(4)(t̃, t0)

)−1
s(4)(t̃)dt̃. (3.60)

Simplicticity of the wave propagator may be employed to compute the inverse (see eq. 3.47).
To obtain the Cartesian equal-time perturbations directly from the wavefront-orthonormal

ray-centered quantities, the following relations can be used:

4x = qαeα +4t u,

4p = pqαeα −
1
v2 (vαqα + vuqαp

q
α +4v) +4t

(
−∇v

v

)
. (3.61)

These transformation has an additional term with 4v (see 3.41).

3.5 Numerical examples

To evaluate the theory, we solve the equations numerically in a 2D inhomogeneous VTI
medium for the qP-wave. Thomsen’s anisotropic parameters vP0, vS0, ε, and δ (Thomsen,
1986) linearly increase with depth in the background model (Figs 3.2, 3.4, 3.6, 3.8): vP0 =
2.2÷ 2.6 km/s, vS0 = 1.0÷ 1.4 km/s, ε = 0.2÷ 0.3, δ = −0.1÷−0.2. The extreme values
are given at the zero depth and at the 620 m depth correspondingly. First, we trace a ray
in the background model from the zero depth to the subsurface (unperturbed ray marked
with dash-dotted lines in Figs 3.2, 3.4, 3.6, 3.8). Its initial x = 25 m and px = 0.2143 s/km.
We independently consider perturbations of the Thomsen’s parameters by adding local-

ized anomalies to the background model in the vicinity of the unperturbed ray (Figs 3.2,
3.4, 3.6, 3.8). The anomalies are bump functions proportional to exp

(
(x−x0)2

(x−x0)2−R2

)
with a

radius of R = 50 m and centered at a point with coordinates x0 = 175 m, z0 = 175 m. Cor-
responding coefficients in front of the exponential function are 4vP0 = 0.03 km/s, 4vS0=
0.6 km/s, 4ε = 0.05, 4δ = −0.02. For all four cases of perturbation, we trace rays with
the same initial conditions as for the unperturbed ray (solid lines in Figs 3.2, 3.4, 3.6, 3.8).
The elastic module perturbations are chosen relatively small to adequately be described by
the first-order ray perturbation theory. On the other hand, the qP-ray is barely sensitive
to the vS0 parameter leading to a higher value of the velocity anomaly 4vS0.
Subtracting unperturbed rays and slowness vectors from the perturbed ones yields “ex-

act” perturbations, which are further compared with those perturbations computed by
the ray perturbation approaches in Cartesian and wavefront-orthonormal coordinates (Figs
3.3, 3.5, 3.7, 3.9). We compute the kinematic perturbations using both the direct Carte-
sian coordinates approach, eq. (3.46) with the zero initial conditions, and the reduced
wavefront-orthonormal approach, eq. (3.60) with the zero initial conditions, followed by
the transformation (3.61). Figs 3.3a, 3.5a, 3.7a, 3.9a show the resulting components of ray
perturbation. Figs 3.3b, 3.5b, 3.7b, 3.9b show the components of slowness vector perturba-
tion. In all examples, we observe a good consistency between the exact and the linearized
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Figure 3.2: Vertical compressional velocity vP 0 of the perturbed model together with the perturbed
and unperturbed rays. The high-velocity anomaly highlighted with black dots was
added to the constant gradient background.
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Figure 3.3: Comparison of the kinematic perturbations computed with the “exact”, the Carte-
sian, and the wavefront-orthonormal approaches in the case of vP 0-anomaly: the ray
perturbation components (a) and the slowness vector perturbation components (b).

perturbations. The Cartesian and wavefront-orthonormal approaches yield similar results,
which differ from the exact perturbations as much as the first-order theory allows for.
The Cartesian and wavefront-orthonormal perturbations are close to each other. Some-
times the wavefront-orthonormal approach exhibit a better fit, as shown in Figs 3.3a, 3.3b.
Sometimes the Cartesian solution is closer to the exact perturbations (Figs 3.3a, 3.3b).
This confirms the validity of the newly formulated anisotropic ray perturbation theory in
wavefront-orthonormal coordinates.

3.6 Discussion

In the present study, we have investigated the kinematic ray tracing perturbations in the
wavefront-orthonormal coordinates. We derived an anisotropic analogue of the equations
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Figure 3.4: Vertical shear velocity vS0 of the perturbed model together with the perturbed and
unperturbed rays. The high-velocity anomaly highlighted with black dots was added
to the constant gradient background.
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Figure 3.5: Comparison of the kinematic perturbations computed with the “exact”, the Carte-
sian, and the wavefront-orthonormal approaches in the case of vS0-anomaly: the ray
perturbation components (a) and the slowness vector perturbation components (b).

by Farra and Madariaga (1987). Originally, the authors used expansion of the isotropic
ray-centered Hamiltonian. However, we worked directly with ordinary differential equa-
tions avoiding an interesting question about formulation of the wavefront-orthonormal ray-
centered Lagrangian and Hamiltonian in the anisotropic case.
As well as the dynamic ray tracing quantities, ray and slowness vector perturbations

can be alternatively computed either in Cartesian or wavefront-orthonormal coordinates
depending on the available code.
The perturbation theory method can be also applied to the dynamic ray tracing. In the

first place, the dynamic ray tracing results in wave amplitudes. Secondly, the dynamic
ray tracing allows for a local construction of the wavefront by computing the wavefront
curvatures (e. g., Červený, 2001). In particular, we are motivated by a need for computing
the Fréchet derivative of the wavefront curvature for the velocity model building (Duveneck,
2004; Dell et al., 2014; Bauer et al., 2017; Diekmann et al., 2019; Znak et al., 2019). The
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Figure 3.6: Thomsen’s parameter ε of the perturbed model together with the perturbed and unper-
turbed rays. The anomaly of ε highlighted with black dots was added to the constant
gradient background.
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Figure 3.7: Comparison of the kinematic perturbations computed with the “exact”, the Cartesian,
and the wavefront-orthonormal approaches in the case of ε-anomaly: the ray pertur-
bation components (a) and the slowness vector perturbation components (b).

wavefront attributes, such as traveltime, horizontal components of slowness vector and
wavefront curvatures, can be extracted from noisy seismic data by the Common-Reflection-
Surface stack (Jäger et al., 2001). In anisotropic media, it is also possible using an accurate
interpretation of the hyperbolic traveltime parameters (Vanelle et al., 2018).
Jech and Pšenčík (1989) suggested to utilize the 6×6 system for the perturbations of the

dynamic ray tracing. Farra (1989) also presented such a system in terms of the perturbation
of the Cartesian Hamiltonian. Pšenčík and Farra (2005) derived it explicitly for the case of
weak anisotropy.
Since the wavefront curvature matrix is directly expressed using the wavefront-orthonormal

dynamic ray tracing matrices as M = PQ−1 (e. g., Červený, 2001), its perturbation can
be also described naturally with perturbations of the wavefront-orthonormal dynamic ray
tracing matrices. If we adhere the same strategy for perturbation of the 4 × 4 dynamic
ray tracing in wavefront-orthonormal coordinates, working directly with the differential
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Figure 3.8: Thomsen’s parameter δ of the perturbed model together with the perturbed and unper-
turbed rays. The anomaly of δ highlighted with black dots was added to the constant
gradient background.
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Figure 3.9: Comparison of the kinematic perturbations computed with the “exact”, the Cartesian,
and the wavefront-orthonormal approaches in the case of δ-anomaly: the ray pertur-
bation components (a) and the slowness vector perturbation components (b).
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equations without expansion of the ray-centered Hamiltonian, we would face an interesting
problem of the wavefront-orthonormal basis perturbation. Not only the ray and slowness
vector derivatives differ on the perturbed ray, but it also concerns the basis vectors used
for projecting.

3.7 Conclusions
We have developed the first-order ray perturbation theory in the local wavefront-orthonormal
coordinates. It is generally formulated for 3D inhomogeneous anisotropic solids. Two first-
order linear systems of differential equations respectively allow for computing partial deriva-
tives of ray and slowness vector with respect to the ray tracing initial conditions and the
Fréchet derivatives of ray and slowness vector with respect to the density normalized elastic
moduli. These systems are respectively a homogeneous and an inhomogeneous dynamic ray
tracing system in wavefront-orthonormal coordinates. They have less equations than in the
Cartesian coordinates formulation. In 3D, the 4×4 wave propagator can be utilized instead
of the Cartesian 6×6 wave propagator. However, the wavefront-orthonormal basis needs to
be additionally computed. In 2D, the basis is determined automatically after kinematic ray
tracing as the wavefront normal and the unique tangent vector. The 2× 2 propagator for-
malism can be utilized instead of the Cartesian 4× 4 one in this case. We have considered
two ways for describing ray perturbations – the equal-time perturbation projections and
the wavefront-orthonormal coordinates. They are transformed into each other using a time
lag, which generally needs extra integration in the first-order correction of traveltime. Our
studies of relations between them have revealed simplification of the ray perturbation equa-
tions for the wavefront-orthonormal coordinates approach. Numerical tests have confirmed
validity of the proposed method.
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4 Identification and focusing of edge
diffractions with wavefront attributes

Abstract
The wavefront attributes locally characterize propagation of the body waves, thus are rou-
tinely extracted from seismic data using various traveltime approximations. In the 3D
zero-offset case, they encompass the first- and second-order traveltime derivatives of the
so-called NIP- and N-waves. We propose utilizing them to identify and isolate different
types of 3D wave propagation: point diffractions, edge diffractions, and specular reflec-
tions. Therefore, we formulate a missing wavefront curvature based criterion for diffraction
from an arbitrarily oriented and possibly curved edge in 3D heterogeneous and anisotropic
media. Additionally, we propose a method, also based on the wavefront attributes, for sort-
ing traces into specific groups in order to get ray focusing of the edge diffraction during back
propagation. The traveltime response of 3D edge diffraction behaves as a 2D diffraction,
but locally and in a specific direction, which changes from point to point. This fact allows us
to construct a vector field of such directions on the acquisition surface by solving a system
of homogeneous algebraic equations with a residual matrix. The residual matrix is simply
a difference between the NIP- and the N-wavefront curvature matrices. Accordingly, the
edge diffraction criterion can be formulated as a solvability condition for this homogeneous
system. It utilizes vanishing of the residual matrix determinant. Inspecting the columns of
the residual matrix, which are zeros for point diffraction and non-zeros for edge diffraction
allows for complete classification. Building integral curves of the investigated directional
field allows for appropriate receiver grouping. The rays propagated downward from such a
curve focus at a particular point on the edge. Using traveltime simulations and ray tracing,
we confirm the proposed edge identification criterion and the method of edge diffraction
focusing in a heterogeneous isotropic and a homogeneous anisotropic VTI model.

4.1 Introduction
Wavefront attributes are routinely retrieved during multiparameter and multidimensional
stacking of seismic data. In the 3D case, they are two horizontal components of the zero-
offset slowness and six second-order derivatives of the NIP- and N-wave traveltimes. Usually,
a fictitious wave induced by a source placed at the normal-incidence-point on the reflector
is called NIP-wave (Hubral, 1983). “N-wave” is a term used to denote another fictitious
wave that is triggered by the exploding reflector element. Throughout this paper, we
also use the term wavefront curvature matrices to denote matrices of the second-order
traveltime derivatives (see e.g., in Vanelle et al., 2018). The wavefront attributes describe
the propagation of the seismic body waves and are used in various processing sequences.
Duveneck (2004); Dell et al. (2014); Bauer et al. (2017); Znak et al. (2019) utilize the
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wavefront attributes in the velocity model building. Baykulov and Gajewski (2009); Hoecht
et al. (2009) use the wavefront attributes to interpolate the prestack seismic data and
improve signal-to-noise ratio. Since the wavefront attributes locally describe the kinematics
of the wave propagation, they can also be used to identify the type of the propagating
wave. Dell and Gajewski (2011); Asgedom et al. (2013) exploit the wavefront attributes
to, e.g., identify and isolate seismic diffractions from seismic reflections. Throughout the
paper we distinguish between point and edge diffractions. The prominent examples of a
diffractor, which produces the edge diffraction response, are such geological structures as
faults, highly curved folds, cracks, and pinch-outs. A small-scale sphere (velocity inclusion)
or a tip produce the point diffractions.
The criterion for identifying point diffraction in 3D media by fronts of the NIP- and N-

wave considers that both matrices of wavefront curvatures fully coincide. The same criterion
holds for 2D diffraction where matrices of wavefront curvatures reduce to scalar curvatures.
Dell and Gajewski (2011); Rad et al. (2018) applied this equality condition to identify and
separate diffractions from reflections using a binary reflection filter. Berkovitch et al. (2009);
Asgedom et al. (2013) used the coherent summation along diffraction traveltimes to enhance
diffracted events, which implies reflected events incoherently sum up when performing the
amplitude summation along the stacking operator, which is parametrized in terms of the
single wavefront curvature. Schwarz (2019) proposed an adaptive filter which exploits the
coherent data summation and subtraction based on the wavefront attributes. All the meth-
ods, either based on coherent summation and subtraction or on binary filtering, allow for an
unambiguous discriminating diffracted waves, separating them from the reflected ones and,
as a consequence, a dedicated diffraction processing (see e.g., in Alonaizi et al., 2013; Bauer
et al., 2017; Dell et al., 2018; Keydar and Landa, 2019; Yin and Nakata, 2019). Moreover,
both a point and an edge diffractor produce a kinematically equivalent response in the 2D
case (see e.g., in Dell et al., 2018). This means the waterfront curvatures are equal indepen-
dently of the type of the diffracting object and the same separation criterion can be used to
isolate edge diffraction. In the 3D case, however, response from the edge diffractor differs
from response from the point diffractor. The 2D criterion holds only for particular edge
types and acquisition symmetry, for instance when the edge is horizontal and straight and
the isotropic medium is invariant in the direction along this edge. Moreover, the acquisition
line should be orthogonal to the edge as shown in Figure 4.1 a) and b).
In this paper, we show how to find the 2D lines in a 3D survey where the 2D criterion

fulfills. We generalize our approach to an arbitrarily oriented and curved edge in hetero-
geneous media, including anisotropy. We propose a separation and identification of the
diffraction response in the data domain. The separation methods in the image (migrated)
domain have been described in the literature as well, (see eg., Moser and Howard, 2008;
Klokov and Fomel, 2012). S. Dell and Hoelker (2019), for instance, showed that the edge
diffraction response in the Kirchhoff migration operator is mainly distributed along a cer-
tain azimuth direction, so-called stationary curve. This property allows one to separate
edge diffractions in the image (migrated) domain. Moreover, the stationary curve, which
gives the most contribution to the Kirchhoff integral, is the focusing curve discussed in de-
tails further in this paper. The image-domain methods yield the focused amplitudes of the
isolated diffractions which are very suitable for a structural interpretation but not suitable
for a subsequent processing based on diffractions, e.g., focusing tomography (Znak et al.,
2019).
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Figure 4.1: A schematic example of an acquisition line in a 3D edge model, where the 2D criterion
is fulfilled. The prominent examples of the 3D edge diffractors are such geological
structures as faults, highly curved folds, cracks, and pinch-outs.

In this paper we focus only on the kinematic characteristics of the edge diffractions. The
kinematics of the edge diffractions can be described using geometrical optics. Keller (1962)
formulated the geometrical optics law for the edge diffractions first in isotropic media,
which was extended by Rosenbaum (1967a,b) to anisotropic case. Bakker (1990) suggested
an algorithm based on dynamic ray tracing to evaluate edge diffraction amplitudes in the
vicinity of the shadow zone boundary. For a comprehensive acquaintance with the theory of
the edge diffractions, including phase and amplitudes computation, and review of existing
asymptotic methods, we refer the reader to (Klem-Musatov et al., 2008). We consider
that an edge diffractor is a curved segment, i.e., an 1D object, thus its seismic response can
kinematically be focused to a point similarly as for a point diffraction. We propose to specify
independent groups of central midpoints in a way the backpropagated rays constituting one
group focus on the edge at a specific point. This fulfills when the wavefront attributes
are determined in a vicinity of a specific curve on the surface, which we call the focusing
curve. In the mentioned-above symmetric cases, the focusing curves regress to the straight
lines orthogonal to the edge. We provide an algorithm based on the NIP- and N-wave
curvature matrices to build the focusing curves on the acquisition surface. We also show
that a 3D edge-diffraction response kinematically behaves as a 2D diffraction, but locally
and in a specific direction, which changes from point to point. We first construct a vector
field of such directions by solving a system of homogeneous algebraic equations with so-
called residual matrix. The residual matrix contains residuals of the wavefront curvature
matrices. The focusing curves are then retrieved as integral curves of the resulting tangent
vector field. We also formulate a general criterion for identification and separation of the
edge diffractions in seismic data. We show that the determinant of a residual matrix of
the second-order derivatives of NIP- and N-wave vanishes for the edge diffraction. We
emphasize a connection of this criterion with the equations for the geometrical spreading of
a zero-offset reflected wave (Eq. 14 and Eq. 25 in Hubral, 1983). The geometrical spreading
becomes singular as long as the separation criterion fulfills.
The paper consists of a part describing the theoretical concept and a part with numerical

tests that prove the concept. In the methodological section, we first recall the geometrical
law of edge diffraction, formulate an identification criterion based on wavefront-curvatures
and describe an algorithm for discriminating edge diffractions, point diffractions, and re-
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edge diffractor 

incident ray 

diffraction cone 

Figure 4.2: The geometrical law of edge diffraction: an illustration in isotropic case. The angle of
the cone formed by the diffracted rays equals the angle between the incident ray and
the edge.

flections. Additionally, we present an algorithm for receiver grouping, which allows one to
kinematically focus the edge diffraction. In the example section, we show an application to
synthetic models comprising an edge embedded in isotropic heterogeneous and homogeneous
vertically transverse isotropic medium, respectively. We also provide technical appendices
at the end of the paper with discussion on regularity of focusing curves, description of an
alternative derivation of the separation criterion by the dynamic ray tracing method, and
a short derivation of the equations for geometrical spreading.

4.2 Theory and method

4.2.1 Geometrical optics considerations for scattering on edge

A point diffractor scatters rays in all possible directions while the scattering at edge obeys
the geometrical law of diffraction (Keller, 1962; Klem-Musatov et al., 2008). This implies,
an incident ray evokes diffracted rays in a particular geometric shape, so-called Keller
(diffraction) cone, which is formed around the edge (Figure 4.2). An angle of the diffraction
cone is equal to the angle between the incident ray and the edge due to Fermat’s principle.
In the anisotropic case, geometric shapes formed by the diffracted rays may be complex.
However, in each plane containing the tangent to the edge, diffracted rays may arise with
a tangent slowness that equals to the tangent slowness of the incident ray (Rosenbaum,
1967a,b; Felsen, 1970).

4.2.2 Edge identification using wavefront attributes

Wavefront attributes usually encompass the first and second-order derivatives of emerging
wavefront in midpoint and offset direction. They are directly related to two hypothetical
waves, NIP and normal wave. NIP-wave is a wave induced by a source that is placed at
the normal-incidence-point on the reflector. N-wave is triggered by an exploding reflector
element. The wavefront attributes are fully sufficient to locally describe the propagation of
the body waves, thus are routinely used in various traveltime approximations. In general,
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4.2 Theory and method

we can consider common-reflection-surface (CRS) stacking as a part of paraxial traveltime
approximations. This allows one to classify different CRS implementations depending on
the approximation type. In the literature, one usually distinguishes between multifocusing
(Landa et al., 2010), hyperbolic CRS (Jäger et al., 2001), non-hyperbolic CRS (Fomel and
Kazinnik, 2013), and implicit CRS (Schwarz et al., 2014). We use a hyperbolic approxima-
tion that is formulated as followed

t2 = (t0 + 2(p,4xm))2 + 2 t0
((

h, M̂NIPh
)

+
(
4xm, M̂N4xm

))
, (4.1)

where h = 1
2(xr − xs) is offset and 4xm = 1

2(xr + xs) − x0 is midpoint displacement.
t0 is two-way traveltime at the central midpoint x0, p stands for the central horizontal
slowness, and the 2×2 second-derivatives matrices of the NIP- and N-wave traveltime with
respect to the surface Cartesian coordinates are denoted as M̂NIP and M̂N . Since a matrix
of second-derivatives and the wavefront curvature matrix are related, we denote them as
wavefront curvature matrices. we also refer to Vanelle et al. (2018) for read up about
a transformation to main curvatures from the second-order traveltime derivatives in the
general 3D anisotropic case.
In the case of a point diffraction, fronts of the NIP- and N-waves fully coincide, and,

therefore matrix M̂NIP and matrix M̂N are equal componentwise. Further, we will formulate
a similar criterion relating M̂NIP and M̂N in the case of an edge diffraction. We first assume
an isotropic medium. Due to Fermat’s principle (see e.g., law of edge diffraction in Keller,
1962), a zero-offset ray is orthogonal to the edge. Since the incident and diffracted rays
are the same, the diffraction cone degenerates to a plane that is orthogonal to the edge.
Moreover, kinematics of edge diffraction is determined only by the edge as a space curve and
is not influenced by the interfaces. When we place a point source at the normal-incidence-
point on the edge (see Figure 4.3), it triggers the NIP-wave. Due to Fermat’s principle
and reciprocity of the diffraction point, the NIP-wave theorem Hubral (1983) is also valid
for an edge and assures that a small-offset experiment provides the NIP-front curvature.
When we explode an edge segment as a whole, the N-wave is induced. Since zero-offset
rays are orthogonal to the edge, N-wave corresponds to the zero-offset experiment. The
initial wavefront of the N-wave is locally a cylinder whereas the wavefront of the NIP-wave
is spherical. The cylinder and the sphere, however, has a common circle. These two waves
include the same rays, which start from the normal-incidence-point orthogonal to the edge.
This common (one-parameter) family of rays includes the zero-offset ray as well. All they
spotlight a curve at the acquisition surface. We call this curve a focusing curve because rays
backpropagated from such a curve focus at one particular point on the edge (Figure 4.3).
The central midpoints, which take place on the focusing curve, correspond to the same
normal-incidence-point. In the 2.5D model comprising a horizontal straight edge in the
isotropic medium, which is invariant along the edge, the focusing curves are the straight
lines on the surface orthogonal to the edge. The same applies for the inclined edge in
isotropic homogeneous medium. In the case of curved edge in the homogeneous medium,
the focusing curves are also straight lines but are rotated depending on the central midpoint
location.
Further, we consider a naturally parameterized and regular focusing curve x = x(s),

y = y(s) crossing the central midpoint at s = s0: x(s0) = x0, y(s0) = y0 (see Figure 4.3).
In Appendix B we show that for differentiable rays, a focusing curve is regular at a point if
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NIP-wave source 

edge diffractor 

focusing curve 

𝑥0, 𝑦0  

𝑥(𝑠), 𝑦(𝑠)  

𝒆1 

N-wave source 

Figure 4.3: The family of rays common for the NIP- and the N-wave. The rays emerge from a
normal-incidence-point ans stand orthogonal to the edge. They outline a curve at the
acquisition surface. When propagated back to the the edge, the rays focus at the
normal-incidence-point.

the NIP- and the N-wave have no caustics at this point. This is a natural assumption since
we also assume finite experimental values for the matrix elements of M̂NIP and M̂N . For
the common rays, traveltimes are equal:

tNIP (x(s), y(s)) = tN (x(s), y(s)), (4.2)

tNIP (x0, y0) = tN (x0, y0) = t0
2 . (4.3)

Moreover, the slowness components are also equal:

∂tNIP
∂x

(x(s), y(s)) = ∂tN
∂x

(x(s), y(s)), (4.4)

∂tNIP
∂y

(x(s), y(s)) = ∂tN
∂y

(x(s), y(s)), (4.5)

∂tNIP
∂x

(x0, y0) = ∂tN
∂x

(x0, y0) = px, (4.6)

∂tNIP
∂y

(x0, y0) = ∂tN
∂y

(x0, y0) = py. (4.7)

Differentiating the identities (4.4, 4.5) along the focusing curve yields:

∂2tNIP
∂x2 ẋ+ ∂2tNIP

∂y∂x
ẏ = ∂2tN

∂x2 ẋ+ ∂2tN
∂y∂x

ẏ, (4.8)

∂2tNIP
∂x∂y

ẋ+ ∂2tNIP
∂y2 ẏ = ∂2tN

∂x∂y
ẋ+ ∂2tN

∂y2 ẏ. (4.9)

Now we consider a local Cartesian coordinate system satisfying ẏ(s0) = 0 and ẋ(s0) = 1.
This is a coordinate system where the x-axis is tangent to the focusing curve at the central
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midpoint location. Therefore, in this coordinate system the following holds:

∂2tNIP
∂x2 (x0, y0) = ∂2tN

∂x2 (x0, y0) ,

∂2tNIP
∂x∂y

(x0, y0) = ∂2tN
∂x∂y

(x0, y0) ,

∂2tNIP
∂y2 (x0, y0) 6= ∂2tN

∂y2 (x0, y0). (4.10)

The equations 4.10 imply that for any edge diffraction at each central midpoint location
there exists an azimuth, for which the wavefront curvature matrices are equal component-
wise with one exception: M̂NIP

xx = M̂N
xx, M̂NIP

xy = M̂N
xy, and M̂NIP

yy 6= M̂N
yy. In this direction

the edge diffraction behaves locally as a 2D diffraction.
If we now compose a residual matrix ResM = M̂NIP − M̂N , we see that the determinant

det(ResM ) vanishes because the first columns in the matrix coincide. Since the determinant
is a rotational invariant, this allows one to formulate a criterion for the edge diffraction
identification for arbitrarily oriented global Cartesian coordinate system on the surface,
i.e., for an arbitrary azimuth in the global surface-related Cartesian coordinates:

det(M̂NIP − M̂N ) = 0. (4.11)

A similar derivation applies for anisotropy except a difference that the common family of
rays is not orthogonal to the edge. It comprises rays with zero slowness component along
the edge. The reader can consult Appendix A for an alternative derivation of the above
equation (4.11), which is based on specific initial conditions for the dynamic ray tracing of
the NIP- and the N-wave.
The result obtained in equation 4.11 is consistent with equations for geometrical spreading

of reflections (see in Hubral, 1983). Accordingly, the zero-offset geometrical spreading can
be expressed through the wavefront curvatures as:

Q = −1
v

2
MNIP −MN

in 2D ,

detQ = − 1
v2

4
det(MNIP −MN ) in 3D , (4.12)

where Q or detQ stand for the geometrical spreading, and MNIP = PNIP QNIP
−1, MN =

PN QN
−1 are corresponding dynamic ray tracing quantities (matrices) related to the wave-

front curvatures (e.g., Červený, 2001). For detailed derivations of equation 4.12 the reader
can consult Appendix C. To read up about relation between MNIP −MN and M̂NIP − M̂N

see Appendix A.
Finally, we propose the following workflow for the identification of point, edge diffraction

and reflection:

1. compute and store the residual matrix M̂NIP − M̂N for each time sample at every
central midpoint location;

2. compute det(M̂NIP − M̂N ) for each sample;
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3. isolate diffractions (point and edge) from reflections with the criterion that det(M̂NIP−
M̂N ) equals zero;

4. tag point and edge diffractions by inspecting the elements of the stored residual matrix.
If the matrix element appears to be nonzero (with some threshold) for a sample, assign
an edge diffraction tag to this sample, else assign a point diffraction tag to the sample.

The proposed workflow results in an edge or point diffraction binary mask, which can further
be used for an event separation filter (Dell and Gajewski, 2011).

4.2.3 Focusing edge diffractions

Rays shot downward from the focusing curve, which we introduced in the previous sections,
intersect at one point on the edge. This implies, focusing curves can be exploited to sort
traces into groups which contain arrivals from the same location on the edge. Such groups
can be used for an analysis of wavefront attributes, which are subsequently utilized in a
ray focusing tomography similarly to point diffractions (see e.g., in Znak et al., 2019). We
first assume that our seismic experiment (survey) is performed in a global surface-related
coordinate system along a direction, which builds up an angle with Northing. The matrices
of wavefront curvatures, M̂NIP and M̂N , are determined in the global coordinate system.
We seek for a rotation angle, which transforms the global coordinate to a local coordinate
system, where the tensors of wavefront curvatures have equal columns. We abound all
attempts to find a local coordinate system, where the matrices of the wavefront curvatures
are equal elementwise:

RM̂NIPR
T 6= RM̂NR

T , R =
(

cosϕ sinϕ
− sinϕ cosϕ

)
. (4.13)

R is the rotation matrix and ϕ is the rotation angle. Instead, we search for a local coordinate
system providing a coincidence of a column, e.g., the first one:

RM̂NIPR
T

(
1
0

)
= RM̂NR

T

(
1
0

)
. (4.14)

Multiplying the transposed rotation matrix by the unit vector yields a vector equation

R
(
M̂NIP − M̂N

)( cosϕ
sinϕ

)
= 0 (4.15)

or, equivalently, two scalar equations

(
cosϕ sinϕ

) (
M̂NIP − M̂N

)( cosϕ
sinϕ

)
= 0,

(
− sinϕ cosϕ

) (
M̂NIP − M̂N

)( cosϕ
sinϕ

)
= 0. (4.16)

The unit vectors represents the basis vectors of the rotated coordinate system. In other
words, there exists a local coordinate system with horizontal basis vectors eI and eII such
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that: (
eI ,
(
M̂NIP − M̂N

)
eI
)

= 0,(
eII ,

(
M̂NIP − M̂N

)
eI
)

= 0. (4.17)

If both basis projections of a vector are zeros, the vector is a null vector itself:

(M̂NIP − M̂N ) eI = 0. (4.18)

The above equation 4.18 represents a homogeneous linear system with respect to the
components of a unit vector that is tangent to the focusing curve. The linear system has a
non-trivial solution that is in correspondence with the condition of the edge diffraction (Eq.
4.11). Solving equation 4.18 for different central midpoints yields a unit vector field, which
is tangent to a set of focusing curves. These curves subsequently build integral curves of
the vector field.
As previously shown, if a diagonal element of the residual matrix vanishes, then the

symmetrical elements on the adjacent diagonals also vanish to preserve the zero equality
of the determinant. Vice versa, if the elements on the adjacent diagonals vanish, then
there has to be one and only one element on the primary diagonal that also vanishes.
These are two cases when the focusing curve is tangent to the basis vectors of the global
Cartesian coordinates. Otherwise, all elements of the residual matrix are nonzero. To
prevent numerical instabilities due to division by zero in case if elements of the residual
matrix become very small number, we suggest to use the row of the residual matrix that
has the largest norm when computing the tangent vector. Within this row, we suggest a
division by an element with the larger modulus.
We formulated a procedure for kinematic ray focusing of edge diffraction. However, for the

edge diffraction as well as for the point diffraction, geometrical spreading of both NIP-wave
and N-wave vanishes when we back-propagate the waves till the one-way traveltime expires
(see Appendix A for more details). This corresponds to the fact that a ray tube, when
propagated back, collapses to the point source or the line source, respectively. For dynamic
ray focusing of edge diffraction this implies that not only M̂NIP but also M̂N wavefront
curvatures can potentially be utilized in a focusing-based tomography, i.e. velocity model
building, by minimizing the backpropagated geometrical spreading Znak et al. (2019).

4.3 Numerical tests

In this section, we demonstrate the proposed approach for identification of seismic events
and focusing the edge diffractions on two simple synthetic data examples. We consider
a heterogeneous isotropic and a homogeneous anisotropic VTI model. We show that the
determinant of the residual matrix vanishes for both isotropic and anisotropic media. We
further show how to build the focusing curves for isotropic and anisotropic media and also
discuss the different mechanisms of the bending the focusing curves in these media. Both
models includes an edge diffractor with the lateral extension of 1 km in Y-direction.
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4 Identification and focusing of edge diffractions with wavefront attributes

Figure 4.4: The lateral inhomogeneous isotropic velocity model. The velocity gradient is function of
all three coordinates, x, y, and z. The figure also displays rays (white lines) traced down
to a focusing point. The horizontal slowness and zero-offset traveltime determined in
the vicinity of the focusing curve (green line) allow for the kinematic focusing at the
specific point on the edge.

4.3.1 Linear diffractor in a heterogeneous isotropic medium

The heterogeneous isotropic medium represents a 3D gradient-velocity model with a straight
edge that is slightly rotated in the horizontal plane (Figure 4.4). We first compute the
traveltimes of edge diffractions by eikonal solver and subsequently the wavefront attributes
by finite differences. The elements of the wavefront-curvature matrices are displayed as
functions of the central midpoint location in Figures 4.5 and 4.6. We observe, the difference
between the xx-element of the M̂NIP matrix (Figure 4.5a) and the xx-element of the M̂N

matrix (Figure 4.6a) is not as prominent as for xy- and yy-elements because the model is
still close to the symmetric one, i.e., the 2D criterion is fulfilled in the direction orthogonal to
the edge. In the correspondence with equation (4.11), the values of the residual determinant
are relatively small as shown in Figure 4.7. We explain non-zero values by numerical errors
during computing two-way traveltimes and second-order derivatives and a potential loss of
significance when two nearly equal small numbers are subtracted.
The matrix elements displayed in Figures 4.5 and 4.6 are used to solve the residual system

of algebraic equations (4.18) for every central midpoint location. This results in the unit-
length vector field on the acquisition surface as shown in Figure 4.8. The unit-length vector
field is tangent to the set of the focusing curves. For illustration, we compute one of the
possible focusing curves continuing it as an integral curve starting from a point at the
boundary. Finally, we determine the traveltimes and the horizontal components of slowness
in the vicinity of the focusing curve (Figure 4.8) and use them as initial values to trace rays
downwards. The resulting rays focus precisely at the edge as demonstrated in Figure 4.4.

4.3.2 Linear diffractor in an anisotropic medium

As anisotropic media, we consider a homogeneous vertical transversely isotropic (VTI)
model with Thomsen’s parameters vP0 = 2.2 km/s, vS0 = 0.8 km/s, ε = 0.2, and δ = −0.2.
The geometry of the edge is illustrated in Figure 4.9. The edge is inclined comparing to
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Figure 4.5: Figure displays the elements of the curvature matrix of NIP-wave wavefront as function
of midpoint displacements to the central midpoint location. The velocity model is
laterally inhomogeneous as shown in Figure 4.4.
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Figure 4.6: Figure displays the elements of curvature matrix of the N-wave wavefront as function
of midpoint displacements to the central midpoint location. The velocity model is
laterally inhomogeneous as shown in Figure 4.4.
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Figure 4.7: Figure shows the determinant of the residual matrix, M̂NIP − M̂N , as a function of
the central midpoint location. It vanishes in the case of edge diffraction. The velocity
model is laterally inhomogeneous as shown in Figure 4.4.
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Figure 4.8: Figure displays the focusing curve and the tangent vector field. The unit vector field is
tangent to the family of focusing curves and is computed by solving the homogeneous
system of algebraic equations for the residual matrix M̂NIP −M̂N . The focusing curve
is obtained as an integral curve of this vector field. The attributes for focusing (see
Figure 4.4) are determined in the vicinity of this focusing curve.

the isotropic model. For an horizontal edge the focusing curves would appear as straight
lines due to the anisotropic symmetry while for the inclined edge the focusing curves will
bend as shown in Figure 4.9. The same bending effect is achieved by considering a tilted
transversely isotropic medium with a horizontal edge. We compute the traveltimes by
eikonal solver and calculate the wavefront attributes by the finite differences. Elements
of matrices of the wavefront curvature are shown in Figures 4.10 and 4.11 as function of
the midpoint displacements. We again observe that the difference between the xx-element
of the M̂NIP matrix and the xx-element of the M̂N matrix for each central midpoint is
smaller than for other elements. We explain it by the fact that the model is still close to
the symmetric one with horizontal edge. The determinant of the residual matrix vanishes
for every central midpoint as shown in Figure 4.12.
The tangent vector field (Figure 4.13 is obtained by solving the residual system of al-

gebraic equations (4.18) with the matrix elements shown in Figures 4.10 and 4.11. For
comparison, we build the focusing curves starting from the same point at the boundary
as in the isotropic case (see Figures 4.8 and 4.13). In the specific anisotropic case, it ap-
pears to be less smooth. Traveltimes and the horizontal components of slowness, which we
again determine in the vicinity of the focusing curve (Figure 4.13), are used to trace rays
reversely in time. We again observe a perfect focusing of rays at the single point on the
edge as illustrated in Figure 4.9. This confirms the stability and feasibility of the proposed
trace sorting into focusing groups.

4.3.3 Edge diffraction identification in the SEG/EAGE salt model

We used SEG C3 NA Narrow Azimuth dataset to test our approach on a complex syn-
thetic data. The SEG/EAGE Salt model is a 3-D geological model that was created as
part of a multi-phase collaboration between the SEG and EAGE, with funding from the
U.S. Department of Energy National Laboratories, as well as several institutions from in-
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4.3 Numerical tests

Figure 4.9: Anisotropic VTI model. Thomsen’s parameters are vP 0 = 2.2 km/s, vS0 = 0.8 km/s,
ε = 0.2, and δ = −0.2. The figure also displays rays (black lines) traced down to a
focusing point. The horizontal slowness and zero-offset traveltime determined in the
vicinity of the focusing curve (green line) allow for the kinematic focusing at the specific
point on the edge.
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Figure 4.10: Figure displays the elements of curvature matrix of the NIP-wave wavefront as func-
tion of midpoint displacements to the central midpoint location. The velocity model
is VTI model as shown in Figure 4.9.
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Figure 4.11: Figure displays the elements of curvature matrix of the N-wave wavefront as function
of midpoint displacements to the central midpoint location. The velocity model is
VTI model as shown in Figure 4.9.
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Figure 4.12: Figure shows the determinant of the residual matrix, M̂NIP − M̂N , as a function of
the central midpoint location. It vanishes in the case of edge diffraction also for the
VTI model (Figure 4.9).
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Figure 4.13: Figure displays the focusing curve and the tangent vector field for VTI model. The
tangent field is computed by solving the homogeneous system of algebraic equations
for the residual matrix M̂NIP − M̂N as in the isotropic case. The focusing curve is
obtained as an integral curve of this vector field. The attributes for focusing (see
Figure 4.9) are determined in the vicinity of this focusing curve.
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Figure 4.14: Figure displays the x- and y-profiles of the SEG/EAGE velocity model. The corre-
sponding acquisition lines are depicted in Figure 4.15 using dash lines.

Figure 4.15: Topography of the salt body with pronounced edge diffractors. Dash lines illustrate
the x- and y-profiles that we picked for the edge diffraction identification.

dustry and academia (Aminzadeh et al., 1994, 1996). Figure 4.14 show two 2D sections,
further called as x- and a y-profile, used to test the diffraction identification. The dataset
consists of 51 “sail” lines, separated by 320 m: 96 shots per line, 80 m shot interval 8 cables
per shot, 40 m cable separation 68 receivers per cable, 20 m receiver separation Source
between first receiver on cables 4 and 5. The narrow acquisition mimics a vessel moving
along the y-coordinate. We also added Gaussian noise with s/n=1 and applied simultane-
ous 8-parameter search based on differential evolution optimization (Walda et al., 2017).
In order to enhance stacked waveforms and wavefront attributes of relatively weak diffrac-
tions, we account for the conflicting dips in the CRS stacking (Walda and Gajewski, 2017).
This means that the global multidimensional search domain is divided into shorter search
intervals according a partition of the slowness vector components.
Both x- and y-profile are also displayed in Figure 4.15 as dashed line. We observe the

profiles cut a very pronounce edge of the salt diapir, which causes a richness of diffractions
in the corresponding inline and crossline sections in seismic data.
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4 Identification and focusing of edge diffractions with wavefront attributes

Figures 4.16 and 4.17 show the determinant of the residual matrix and the corresponding
stacked sections for several ranges of the slowness vector components. The sections in
Figure 4.16 displays y-profile (see Figure 4.15). Respectively, figure 4.17 illustrates the
section related to x-profile. Vanishing determinant of residual matrix for some prominent
edge diffractions is marked by red arrows. For consistency and a better visualisation, the
same prominent edge diffractions are marked with red arrows in the stacked sections. We
observe that the determinant criterion works and highlights many diffraction events. For
instance, we clearly identify two diffractions in Figure 4.16, the top raw. Comparing with
Figure 4.14, we conclude that they resulted from the edge of the salt diapir (the right one)
and from the edge formed by the sediments at the salt bottom (the left one). The diffraction
by the edge of the salt mountain is also present for other dips (Figures 4.16, the middle and
bottom raw). It is also clearly tracked in y-profiles (follow the upper red arrow in Figure
4.17). The tail of the second one is also observed in 4.17, top raw. The upper strongly
highlighted event in Figure 4.16, the bottom raw, is a diffraction tail from the junction zone
of the salt surface with the third reflecting boundary (Figure 4.14).
The right part of the y-profile is strongly heterogeneous, not only due to presence of

many peculiarities in the salt topography, but also because of strongly irregular mesh of
the reflecting boundaries above the salt. Therefore, it is a zone of strong wave interference,
where wavefront attribute determination and, therefore, seismic event identification is chal-
lenging. However, we observe two bright spots slightly on left from this complicated zone,
above the deepening of the salt surface (Figure 4.17, the bottom row).

4.4 Discussion

In the presented approach we assume that the edge diffraction response is registered every-
where on the acquisition surface though for small-offsets. We also consider the kinematic
characteristics of the edge response only. This implies we ignore such factors as phase,
amplitude decay, and diffractor radiation pattern. The dynamic characteristics are crucial
in the vicinity of zones of evanescence of the edge diffraction (Klem-Musatov et al., 2008)
and might affect extraction of the wavefront attributes.
We have discussed a possibility to use M̂N wavefront curvatures extracted from the edge

diffractions for velocity model building. Similarly to minimizing the backpropagated geo-
metrical spreading of the NIP-wave, we can minimize geometrical spreading of the N-wave.
However, initial conditions for dynamic ray tracing, which are required for forward mod-
eling of the N-wave, are different from those for the NIP-wave. In the case of a curved
edge, they also contain curvature and torsion of the edge as a space curve as discussed in
Appendix A. This is especially important in the case of limited-offset acquisition such as
p-Cable streamer or ground penetrating radar. Missing zero source-receiver offsets compli-
cate applying NIP-wave tomography as it requires to separate edge diffraction from point
diffractions. On the contrary, the available slope and MN curvature information can safely
be utilized in the dynamic ray focusing irrespective of type of diffraction.
Dell et al. (2018) separated edge diffractions using the property of the edge diffraction

response to align along a particular azimuth within the Kirchhoff migration operator. The
corresponding azimuth direction gives the most contribution to the Kirchhoff integral being
the line where the zero-offset traveltime is tangent to the doubled point source traveltime.

64



4.4 Discussion

        x = 5.3 [km]

[s
2
m

-4
]

2 4 6 8
    y-coordinate [km]

0

0.5

1

1.5

2

2.5

  t
im

e 
[s

]

-8

-6

-4

-2

0

2

4

6

8

10 -14         x = 5.3 [km]

2 4 6 8

    y-coordinate [km]

0

0.5

1

1.5

2

2.5

  
ti
m

e
 [
s
]

        x = 5.3 [km]

[s
2
m

-4
]

2 4 6 8
    y-coordinate [km]

0

0.5

1

1.5

2

2.5

  t
im

e 
[s

]

-8

-6

-4

-2

0

2

4

6

8

10 -14         x = 5.3 [km]

2 4 6 8

    y-coordinate [km]

0

0.5

1

1.5

2

2.5

  
ti
m

e
 [
s
]

        x = 5.3 [km]

[s
2
m

-4
]

2 4 6 8
    y-coordinate [km]

0

0.5

1

1.5

2

2.5

  t
im

e 
[s

]

-8

-6

-4

-2

0

2

4

6

8

10 -14         x = 5.3 [km]

2 4 6 8

    y-coordinate [km]

0

0.5

1

1.5

2

2.5

  
ti
m

e
 [
s
]

Figure 4.16: Determinant of the residual matrix and stacked section for the x-profile (Figures
4.14, 4.15) of the SEG/EAGE salt model. The slowness search intervals are: px ∈
[−12,−3] · 10−4 s/m, py ∈ [−1, 1] · 10−4 s/m for the top row, px ∈ [−12,−3] · 10−4

s/m py ∈ [3, 12] · 10−4 s/m for the middle row, and px ∈ [−3,−1] · 10−4 s/m, py ∈
[−12,−3] · 10−4 s/m for the bottom row.
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Figure 4.17: Determinant of the residual matrix and stacked section for the y-profile (Figures
4.14, 4.15) of the SEG/EAGE salt model. The slowness search intervals are: px ∈
[−3,−1]·10−4 s/m, py ∈ [−3,−1]·10−4 s/m for the top row, px ∈ [1, 3]·10−4 s/m, py ∈
[3, 12] ·10−4 s/m for the middle row, and px ∈ [−1, 1] ·10−4 s/m, py ∈ [−12,−3] ·10−4

s/m for the bottom row.

66



4.5 Conclusions

Therefore, it is precisely the focusing curve discussed in the above sections. We provided an
algorithm to build the focusing curves by means of wavefront attributes. This allows for a
diffraction separation based on a wavefront-attribute filter during Kirchhoff migration, i.e.,
directly in the image domain (time or depth).

4.5 Conclusions
We proposed a novel method for separation and identification of the diffraction response in
the data domain. The method is generalized to an arbitrarily oriented and curved edge in
3D heterogeneous media, including anisotropy, and allows one to distinguish seismic events
between point diffraction, edge diffraction, and reflection. We exploited the fact that for
an edge diffraction there is an acquisition line in a 3D survey where 3D edge-diffraction
response kinematically behaves as a 2D diffraction, but locally and in a specific direction,
which changes from point to point. We constructed the tangent vector field of such directions
by solving a system of homogeneous algebraic equations with so-called residual matrix. The
residual matrix contains residuals of the wavefront curvature matrices of the second-order
derivatives of NIP- and N-wave. The identification criterion utilizes the determinant of the
residual matrix, which vanishes for diffractions, and inspecting the columns of the residual
matrix, which are zeros for point diffraction and non-zeros for edge diffraction.
We also provided an algorithm based on the NIP- and N-wave curvature matrices to

build the focusing curves on the acquisition surface. The rays propagated downward from
a focusing curve focus at a particular point on the edge which allows one to sort traces into
specific groups. We showed that NIP-wave and N-wave geometrical spreading estimated for
these group vanishes exactly at the edge when we propagate the waves downwards. This
implies that the 3D edge diffraction response can kinematically and dynamically be focused
to a point similarly to a point diffraction.
The proposed algorithm was applied to synthetic examples comprising isotropic hetero-

geneous and anisotropic model. Matrices of curvatures of NIP-wave and N-wave were first
estimated by a multidimensional multiparameter stacking and then used to solve the residual
system of algebraic equations for every central midpoint location. The obtained unit-length
vector field was used to compute the set of the focusing curves. For the anisotropic model,
it appeared to be less smooth than for an isotropic model. Traveltimes and the horizontal
components of slowness determined in the vicinity of the focusing curve were used to trace
rays reversely in time. We observed a perfect focusing of rays at the single point on the
edge for both isotropic and anisotropic model.
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5 Polarization-consistent stacking of
multicomponent seismic data

Abstract
Offshore subsurface imaging of data acquired on the seafloor has been very successful. This
kind of acquisition naturally provides wide-azimuth data and does not have limitations due
to the streamer length or obstructions, such as production platforms. However, the seafloor
acquisition usually has a coarser receiver grid, which requires a trace interpolation algorithm
to avoid acquisition footprint in migration sections. Also onshore subsurface imaging of land
data strongly depends on the signal-to-noise ratio in the recorded data. Both imaging meth-
ods benefit from the knowledge of kinematics, polarization, and wave mode velocities at the
acquisition line. This all motivates us to investigate a multicomponent data precondition-
ing approach based on wavefront attributes. They are normally obtained from the prestack
data by a multidimensional and -parameter stacking technique, e.g., common-reflection-
surface (CRS) method. In the conventional CRS method the attributes are extracted by
an amplitude-coherency analysis of the vertical component. However, all components of
elastic wavefield are often recorded during the seafloor and land surveys. To fully exploit
this data redundancy, we generalize the conventional CRS method to the multicomponent
case using a local polarization approach. The multicomponent CRS method exploits a
semblance optimization where weighted components are summed up along the traveltime
surface defined with the wavefront attributes. The component weights are determined with
polarization vector. The proposed approach not only results in enhancing the data with a
more physically accurate stacking, but it also enables us to automatically pick polarization
and polarization derivatives in offset and midpoint directions. To interpret these quantities,
we provide a proof of the NIP-wave theorem formulated for the polarizations. In addition,
the attributes of the multicomponent CRS allow for the identification of P- and S-waves
and a retrieval of compressional and shear velocities at the acquisition line. The presented
method was successfully applied to synthetic data.

5.1 Introduction
Utilizing the complete vector field of the emerging seismic wave is necessary for a physically
accurate processing of data recorded onshore or on the ocean bottom. The multicomponent
data can be incorporated into a variety of processing, imaging, and inversion tools: wave-
field decomposition (Amundsen and Reitan, 1995; Schalkwijk et al., 2003), surface waves
suppression (Shieh and Herrmann, 1990) and inversion (Ikeda et al., 2014), various elastic
migration (e.g., Kuo and Dai, 1984; Chang and McMechan, 1994; Zhe and Greenhalgh,
1997; Hokstad, 2000; Feng and Schuster, 2017; Yang et al., 2018), microseismic-event lo-
calization (Gajewski and Tessmer, 2005), or elastic full-waveform inversion (Sears et al.,
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5 Polarization-consistent stacking of multicomponent seismic data

2008; Brossier et al., 2009; Prieux et al., 2013). Additionally, a multicomponent approach
is natural for describing different wave modes, which is crucial for interpretation of rock
properties (Tatham et al., 1991). For example, the analysis of shear-wave splitting provides
information about seismic anisotropy caused by particular orientation of fractures in rocks
(Crampin, 1985; Martin and Davis, 1987). Also shear-waves are less affected by propa-
gating through gas-saturated media than pressure-waves due to a minor effect of gas on
the shear modulus (Granli et al., 1999). This allows an improved reservoir monitoring in
areas where gas is present. However, multicomponent methods also face common problems
of the single-component ones. The seafloor acquisition usually has a coarser receiver grid
and requires trace interpolation algorithms to avoid acquisition footprint in migrated sec-
tions. Onshore subsurface imaging strongly depends on the noise level of the recorded data.
Therefore, multicomponent data processing also benefits from preconditioning, i.e., trace
regularization and signal-to-noise ratio (S/N) enhancement.
We investigate an approach to enhance multicomponent data with wavefront attributes.

They are obtained by an application of the common-reflection-surface (CRS) stack to
prestack data. This method is a multidimensional extension of the conventional common-
midpoint (CMP) stack. CRS involves traces from adjacent midpoint locations, i.e., it is mu-
tually applied in the midpoint-offset domain. Stacking more coherent data this way results
in an improved S/N. Depending on a paraxial traveltime approximation, we can roughly
divide CRS methods into multifocusing (Landa et al., 2010), hyperbolic CRS (Jäger et al.,
2001), non-hyperbolic CRS (Fomel and Kazinnik, 2013), and implicit CRS (Schwarz et al.,
2014). For a reader interested in a detailed comparison of these approaches, we refer to
Walda et al. (2017). Wavefront attributes parametrize the CRS traveltime approximation
and have a distinct physical meaning in terms of slope and curvatures of two hypothetical
wavefronts, normal wave (N-wave) and normal-incidence-point wave (NIP-wave) (Hubral
and Krey, 1980). They have been widely used in the applications, among others calculation
of geometrical spreading (Hubral, 1983), velocity model building (Duveneck, 2004; Bauer
et al., 2017), data preconditioning (Baykulov and Gajewski, 2009), and diffraction sepa-
ration (Dell and Gajewski, 2011). Zhang et al. (2001) generalized the conventional CRS
method to finite offsets, which allowed for a processing of the converted waves (Bergler
et al., 2002). Recently, Bloot et al. (2018) suggested a CRS approximation for weakly
anisotropic VTI media with larger (non-hyperbolic) offsets and Vanelle et al. (2018) yielded
an interpreting of the hyperbolic CRS parameters for general anisotropic media.
Generally, the benefit of including polarization into seismic processing has been long rec-

ognized as discussed by Perelberg and Hornbostel (1994). Various approaches to determine
polarization are reported in the literature, e.g., principal component analysis (Jurkevics,
1988; de Franco and Musacchio, 2001), complex analytic signals (Rene et al., 1986; Moro-
zov and Smithson, 1996), or time-frequency transforms (Pinnegar, 2006). Gal’perin (1984)
proposed to extend polarization analysis from single stations to the continuous seismic array.
We follow this concept and apply it for stacking in the midpoint-offset domain.
In this paper, we formulate the CRS method for multicomponent seismic data and dis-

cuss its applications. We simultaneously stack different wavefield components over the
common-reflection-surface. The contribution of a single component is controlled with an
approximation for the alternating polarization vector. Here, we refer to polarization of bulk
waves in a sense of the zero-order ray theory assuming only linearly polarized events. Pa-
rameters of the approximation are automatically picked during a semblance analysis, which
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5.1 Introduction

is similar to extracting the wavefront attributes by the conventional CRS workflow. They
are polarization angle, polarization angle derivative with respect to the midpoint coordi-
nate, and polarization angle derivative with respect to the half-offset. To interpret these
new attributes in terms of N- and NIP-waves we formulate and prove the NIP-wave theorem
for polarizations: for zero offset the derivative of the reflected-wave polarization vector with
respect to the half-offset coincides with the spatial derivative of the NIP-wave polarization
vector.

𝑥0 
𝐾𝑁 

𝛼0 

(a)

𝐾𝑁𝐼𝑃 𝑥0 

𝛼0 

(b)

Figure 5.1: Hypothetical N- and NIP-wave. Normal wave (a) is triggered by an exploding reflector
element. The corresponding rays are normal to the reflector, which gives the wave
its name. NIP-wave (b) is a wave excited by a point source placed at the normal-
incidence-point (NIP) on the reflector. The wavefront attributes are measured at the
central midpoint with coordinate x0.

Interpreting the wavefront attributes requires knowledge of the velocity model at the ac-
quisition line. However, in the proposed multicomponent CRS approach there is no such
requirement. The compressional- and shear-wave velocities and corresponding slowness
vectors are fully determined with the wavefront and polarization attributes. Moreover,
these data-driven values represent a priori information useful for constraining depth ve-
locity model building algorithms. The surface-velocities inversion carried out by utilizing
slowness and polarization attributes is actually an application of the slowness-polarization
method (Dewangan and Grechka, 2003; Tsvankin and Grechka, 2011), which was originally
formulated for estimating local anisotropy in a borehole by the vertical seismic profile (VSP)
method.
Additionally, the polarization attributes allow to identify and subsequently separate P-

and S-waves. This yields P-only and S-only stacked sections and P-only and S-only at-
tributes. P- and S-waves filtering using slopes and polarization was suggested by Bergler
et al. (2002) to separate arrivals after the converted-waves CRS stacking. They obtain the
polarization angle from independently stacked single components and combine the slowness
attribute with the angle subject to specified near-surface propagation velocities. Gener-
ally speaking, methods of separating wave modes have been comprehensively discussed in
the literature. Dankbaar (1985) devised filtering in f -k domain by considering the P- and
S-waves receiving characteristics. The method inherently accounts for the free-surface ef-
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5 Polarization-consistent stacking of multicomponent seismic data

fect, but requires homogeneous velocities at the acquisition line to be known. Foster and
Gaiser (1986) introduced a slant stack with rotation of multicomponent VSP data. The
rotation operator, however, also needs velocities along the well. This method was improved
by Greenhalgh et al. (1990). They accounted for P- and S-wave crosstalks and free-surface
mode conversion. An alternative τ -p domain approach with mode conversion was introduced
by Wang et al. (2002) for both free surface and seabed interfaces.
The paper is organized as follows. In the methodology section, we first briefly review

the conventional CRS method. Then we introduce the concept of polarization-consistent
stacking. Subsequently we discuss a notion of polarization vector on the common-reflection-
surface as a function of the half-offset and the midpoint displacement, its possible approxi-
mations, and the interpretation of its derivatives. We also provide a simple attributes-based
algorithm to separate P- and S-waves and build surface-velocities. In the appendix, we de-
rive equations for the polarization vector derivatives. We end up the paper by demonstrating
an application of the presented method to a 2D synthetic data example.

5.2 Common-reflection-surface method

The basic idea of the common-reflection-surface (CRS) method (Jäger et al., 2001) is to
stack mutually in two dimensions, midpoint displacement, 4xm, and half-offset, h:

4xm = xm − x0, xm = xr + xs
2 , h = xr − xs

2 , (5.1)

where xr and xs are receiver and source coordinates, and x0 is a coordinate of a central
midpoint. This extension of the common-midpoint (CMP) stacking (Mayne, 1962), where
the data summation is performed only in one, half-offset, direction, allows to incorporate
more coherent traces and, consequently, further enhance the seismic data.
In this section, we describe the CRS traveltime by a hyperbolic approximation. How-

ever, all paraxial traveltime approximations, which have been reported in the literature,
can be formulated in terms of the same parameters (Walda et al., 2017) and utilized for
the polarization-consistent stacking. Being a squared second-order Taylor expansion of
reflected-wave traveltimes, the hyperbolic one has the simplest form among other widely
used approaches:

t2(x0,4xm, h) = (t0+2px4xm)2 + 2t0
(
M̂N4x2

m+M̂NIPh
2
)
. (5.2)

t0 is two-way central midpoint traveltime. Patameters of CRS approximation are called
wavefront attributes. There are three of them in the 2D case. The zero-offset ray emerging
at the central midpoint location has a value of horizontal slowness. This value, denoted by
px, is the first wavefront attribute. The remaining attributes, M̂N and M̂NIP , describe two
fictitious wavefronts (Fig. 5.1). So M̂N is related to the wavefront curvature of a normal
wave triggered by an exploding reflector element (N-wave). This wave is called the normal
wave (Hubral, 1983) as the corresponding rays are all normal to the reflector. The attribute
M̂NIP is related to the wavefront curvature of the wave caused by a point source at the
normal-incidence-point (NIP) on the reflector (NIP-wave). The curvatures are assumed to
be measured at the central midpoint location. In terms of traveltimes of the hypothetical
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5.2 Common-reflection-surface method

waves, the wavefront attributes represent derivatives with respect to the spatial coordinates:

px = ∂xtN = ∂xtNIP , M̂N = ∂xxtN , M̂NIP = ∂xxtNIP . (5.3)

In the 3D case, the number of the wavefront attributes is grown to eight.
Since the wavefront attribures describe kinematics of the propagated waves, their extract-

ing is crucial for many seismic processing applications, e.g., for formulating the wavefront
tomography (Duveneck, 2004; Bauer et al., 2017). When the medium is isotropic and seis-
mic velocity, v0, is assumed to be known and homogeneous at the acquisition line, e.g., in
the case of the towed streamer acquisition, the wavefront attributes are linked directly to
the emergence angle, α0, and N- and NIP-wave wavefront curvatures, KN and KNIP (Fig.
5.1):

px = sinα0
v0

, M̂N = cos2α0
v0

KN , M̂NIP = cos2α0
v0

KNIP . (5.4)

Note, the curvature attributes M̂N and M̂NIP are marked with a hat sign to distinguish
them from the dynamic ray tracing quantities, MN and MNIP (Červený, 2001):

M̂N = cos2α0MN , M̂NIP = cos2α0MNIP . (5.5)

In the multicomponent approach which we present in this paper laterally variable values
of P- and S-wave surface-velocities appear as an additional output. They allow for the
subsequent determination of the emergence angle α0. However, since eqs (5.4) and (5.5), in
the case of heterogeneous velocity at the acquisition line, contain spatial derivatives of the
velocity model, the curvatures KN and KNIP can be extracted only if the heterogeneity is
negligible.
In practice, the wavefront attributes are determined by an analysis of semblance (Neidell

and Taner, 1971; Mann, 2002). It represents a ratio of the stacked energy to the average
energy in a user-defined coherence window, for i-th time sample:

S(i) =

i+n
2∑

j=i−n2

(
m∑
k=1

ujk

)2

m
i+n

2∑
j=i−n2

m∑
k=1

u2
jk

, (5.6)

where m is a trace number, n is the length of the coherence window, and ujk is the scalar
wavefield (or single component) value of the jk-sample in the window. The wavefield is
interpolated at traveltimes given by eq. (5.2), which makes the semblance coefficient (5.6)
depending on the wavefront attributes.
The wavefront attributes maximizing the semblance are supposed as searched-for at-

tributes. Finally, enhancement of the data is carried out by stacking:

St(i) = 1
m

m∑
j=1

uij . (5.7)
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Figure 5.2: Polarization vectors gP and gS depending on the midpoint displacement 4xm and the
half-offset h. νP and νS are polarization angles. The quantities with a zero in the
subscript are central, i.e., they correspond to the case of zero midpoint displacement
and zero offset. For P-waves it is reasonable to use the lower half-plane z ≥ 0 con-
straining the polarization vector, whereas for S-waves it is naturally to constrain the
polarization vector within the right half-plane x ≥ 0.

5.3 Polarization-consistent stacking
For a certain central midpoint with coordinate x0, we consider a polarization vector,
g(x0,4xm, h), as a function of the midpoint displacement 4xm and the half-offset h (Fig.
5.2). One could visualize it as a smooth vector field of a unit length, which is attached to the
common-reflection-surface in a space spanned by 4xm-, h-, and t-axis. Alternatively, one
could imagine a polarization angle surface in the same space. We locally describe the po-
larization vector with three attributes: polarization angle of the zero-offset ray emerging at
the central midpoint location, ν0; polarization angle derivative with respect to the midpoint
coordinate, νxm ; and polarization angle derivative with respect to the half-offset, νh. A de-
tailed discussion on approximations of the polarization vector, ĝ(x0,4xm, h), parametrized
with these attributes is given in Section 5.4.
The polarization-consistent stacking is based on an optimization of the total projection

of the wavefield onto the variable polarization vector. The cumulative projection reaches
its maximum at the correctly determined alternating polarization. On this basis we in-
troduce an energy function for the multicomponent CRS stack with the scalar product of
multicomponent data u and the polarization vector approximation ĝ:

E(px, M̂N , M̂NIP ; ν0, νxm , νh) =
∑
CRS

(u, ĝ)2. (5.8)

The sign of summation over CRS denotes a summation over traces along the traveltimes
(5.2) parametrized with the wavefront attributes px, M̂N , and M̂NIP . The approximation
ĝ(x0,4xm, h) is parametrized with the polarization attributes ν0, νxm , and νh. In that
way, the energy function (5.8) becomes a function of six variables, multicomponent CRS
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5.3 Polarization-consistent stacking

attributes. The wavefront attributes together with the polarization attributes can be de-
termined for different central midpoints and time samples by maximization of this energy
function.
However, by an analogy to the single component stacking, we seek a normalized measure

for the amplitude-coherency analysis. Therefore, we generalize the conventional semblance
(5.6) and extend the analysis to the multicomponent data:

S(i) =

i+n
2∑

j=i−n2

(
m∑
k=1

(ujk, ĝj)
)2

m
i+n

2∑
j=i−n2

m∑
k=1

u2
jk

, (5.9)

where ujk is the vector wavefield value, and ĝk is a value of the polarization vector for
the trace with number k. The multicomponent semblance represents a ratio of the stacked
energy of the projected wavefield to the average energy in a user-defined window.
After the determination of the multicomponent CRS attributes, we perform a polarization-

consistent stack:

St(i) = 1
m

m∑
j=1

(uij , ĝj). (5.10)

By the weighting of multicomponent data we account for the variations of the wave polariza-
tion along the stacking operator. The enhanced vertical and horizontal component sections
are subsequently obtained by a projection of the polarization-consistent stack section by
means of the section with polarization angle ν0. Note that, as soon as the multicompo-
nent CRS attributes are available, a prestack enhancement of multicomponent data can be
performed in a similar way as proposed in Baykulov and Gajewski (2009).
In the 2D case, the polarization-consistent CRS stacking demands values of the six at-

tributes. Generally speaking, determination of the attributes requires an optimization in
the six-dimensional unknowns space. This could be still computationally expensive. To re-
duce the dimensionality and incorporate the conventional three-parameter CRS, we suggest
splitting of the six-dimensional optimization into a sequence of three-parameter searches
which is summarized in the following step-by-step scheme:

1. conduct wavefront attribute search independently for both single components;

2. merge the resulting sections by a coherence-based selection of the single-component
wavefront attributes;

3. perform polarization attribute search, i.e., use jointly the single components to max-
imize the semblance (5.9) for the fixed wavefront attributes previously determined in
the step 2;

4. do the polarization-consistent stack, eq. (5.10), using the determined wavefront and
polarization attributes.
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Figure 5.3: Polarization vector discontinuities due to the half-space representations. Applying
the P-representation, suitable for P-waves, leads to the discontinuity of the S-wave
polarization vector (top-right figure). Applying the S-representation, suitable for S-
waves, leads to the discontinuity of the P-wave polarization vector (bottom-left figure).

5.4 Polarization vector on common-reflection-surface
A vector characterizing wave polarization is defined up to the sign. This implies that a vector
opposite to an estimated one is also relevant. Therefore, a complete set of polarizations is
equivalent to the full set of lines passing through a point. In mathematics, such an object in
2D is called real projective line. The ambiguity can lead to a non-unique determination of
the polarization vector. One of the ways to tackle this issue is constraining of polarization
vector directions. However, as will be shown, such constraining properly works for a single
mode (P- or S-) processing and faces problems in a simultaneous P- and S-waves imaging.
Later on, we will formulate an alternative approach to cope the non-uniqueness of the
polarization vector which is suitable for the simultaneous processing as well.
We limit the set of polarization vectors by choosing those vectors which are directed

only to a certain half-plane. For P-waves, a natural condition for constraining is that the
polarization vector lies in the lower half-plane z ≥ 0, while for S-waves we constrain the
polarization vector with the right half-plane x ≥ 0, as shown in Fig. 5.2. Accordingly, by
considering polarization angles νP and νS we introduce the natural P- and S-representations
in the component form:

gP =
(
− sin νP

cos νP

)
, gS =

(
cos νS
sin νS

)
, −90◦ < νP,S ≤ 90◦. (5.11)

The simplest first-order approximation, parametrized with three attributes, follows from
the linear expansion of the polarization angle:

ĝP (x0,4xm, h) =
(
− sin(ν0 + νxm4xm + νhh)

cos(ν0 + νxm4xm + νhh)

)
,

ĝS(x0,4xm, h) =
(

cos(ν0 + νxm4xm + νhh)
sin(ν0 + νxm4xm + νhh)

)
. (5.12)
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5.4 Polarization vector on common-reflection-surface

We introduce new scalar attributes: polarization angle ν0 of the zero-offset ray emerging
at the central midpoint location, polarization angle derivative with respect to the midpoint
coordinate, νxm , and polarization angle derivative with respect to the half-offset, νh. Further
refinement of the approximations (5.12) by expanding the polarization angle up to the higher
order may be used for more accurate applications to larger offsets and non-hyperbolic events.
It turns out that the first-order polarization coefficients νxm and νh can be expressed in
terms of the second-order expansion of the traveltimes (see Appendix D.1). This implies to
a certain extent that we stay within the same order for both polarizations and traveltimes.
Linearizing the polarization vectors in eq. (5.12) leads to another approximation as

followed:

ĝP,S(x0,4xm, h) = gP,S0 + (νxm4xm + νhh)R+gP,S0√
1 + (νxm4xm + νhh)2 , (5.13)

where

gP0 =

 − sin νP0
cos νP0

 , gS0 =

 cos νS0
sin νS0

 (5.14)

are central polarization vectors, and R+ is a 90◦ clockwise rotation matrix. The approxima-
tion given by eq. (5.13) is normalized in order to prevent an undesired growth of semblance
(5.9) when νxm and νh increase. The attributes ν0, νxm , and νh are responsible for a local
behaviour of both polarization vector approximations (5.12) and (5.13):

ĝP,S(x0, 0, 0) = gP,S0 ,

∂4xm ĝP,S(x0, 0, 0) = νxmR
+gP,S0 ,

∂hĝP,S(x0, 0, 0) = νhR
+gP,S0 . (5.15)

Consequently, the attributes extracted from the data locally describe the actual polarization.
From now on, we will assume an isotropic medium. The introduced P- and S-representations

(5.11) behave differently with regard to the wave modes under consideration. Namely, a rep-
resentation is suitable only for processing of waves of the same kind. This is due to the fact
that the approximations (5.12) and (5.13) are derived under the assumption of smoothness
of the polarization vector as a function of the midpoint displacement and the half-offset.
However, it may be violated. The polarization vector defined by the P-representation may
undergo a jump when applied to S-waves. The same applies for the polarization vector
of P-waves described by the S-representation. This kind of behaviour takes place where
the horizontal slowness of a registered wave vanishes. For instance, in a CMP experiment
with a horizontal reflector in a laterally homogeneous medium the issue appears at zero
offsets, as shown in Fig. 5.3. Common-reflection-surface can be divided into two parts by a
curve at which the horizontal slowness vanishes. If this curve crosses an aperture rectangle,
centered at the origin of the 4xm-h plane, application of the approximations (5.12) and
(5.13) to extrinsic events may lead to erroneous results. Evidently, the discontinuity will
take place when the horizontal slowness of the central ray, px, is small. For small midpoint
displacements and offsets the curve becomes a straight line:

∂xr t = M̂N4xm + M̂NIPh+ px = 0. (5.16)

77



5 Polarization-consistent stacking of multicomponent seismic data

The horizontal slowness of the central ray px is responsible for the distance between this
line and the origin of the 4xm-h plane. Therefore, we don’t expect the discontinuity to be
an issue for steeper arrivals, like diffraction events away from their apices.
In order to image both of the wave modes at the same time, we apply a strategy to tackle

the discussed-above problem of unique representation discontinuity. We use a representation
which is not unique but smooth. For the sake of simplicity, we will consider only the P-
representation. This means, an approximation ĝP from eqs. (5.12) or (5.13) is involved. We
allow the polarization angle attribute ν0 to vary from −180◦ to 180◦. The result is that the
semblance, eq. (5.9), has two distinct maximums which correspond to opposite directions
of the central polarization vector. In any case, the optimization method converges to one of
these solutions resulting in three attribute values, ν0, νxm , and νh. Afterwards, we simply
turn the values back to the description by the unique P-representation. Namely, we increase
the ν0 value by adding 180◦ if in the found solution ν0 ≤ −90◦, or we decrease the ν0 value
by subtracting 180◦ if ν0 > 90◦. The value ν0 = −90◦ corresponds to the vertical incidence
of S-waves, and we alter it as well. The derivatives νxm and νh are kept unaltered. Unlike
the derivatives of the vectors, they are invariant with respect to a change of representation
since vectors aligned in opposite directions have equal angle increments. This fact also leads
to continuity of νxm and νh along an event in contrast to the polarization angle attribute ν0.
In this way, we process both P- and S-waves obtaining the attributes in terms of one of the
representations (5.11). One can easily switch between the representations in the determined
attribute sections when needed.
In Appendix D.1 we show that the derivatives of reflected-wave polarizations with respect

to the midpoint coordinate and the half-offset can be interpreted in terms of the hypothetical
N- and NIP-waves, respectively:

∂4xmgP (x0, 0, 0) = ∂xgPN = −
(
vP

(
∂xx

∂xz

)
tPN + ∂xvPpP

)
,

∂hgP (x0, 0, 0) = ∂xgPNIP = −
(
vP

(
∂xx

∂xz

)
tPNIP + ∂xvPpP

)
,

∂4xmgS(x0, 0, 0) = ∂xgSN = R+
(
vS

(
∂xx

∂xz

)
tSN + ∂xvSpS

)
,

∂hgS(x0, 0, 0) = ∂xgSNIP = R+
(
vS

(
∂xx

∂xz

)
tSNIP + ∂xvSpS

)
, (5.17)

where gPN , gPNIP are polarizations of compressional N- and NIP-waves, and gSN , gSNIP are
polarizations of shear N- and NIP-waves. These formulas are given in the natural repre-
sentations: in the P-representation for P-waves and in the S-representation for S-waves.
They are valid only for monotypic waves, and the modes conversion at the free surface is
neglected.
In the case of point diffractor, traveltimes of the fictitious waves coincide, i.e., tN = tNIP

(e.g., Dell and Gajewski, 2011). For the CRS attributes this means that the N- and NIP-
wave curvature attributes are equal: M̂N = M̂NIP . However, for the polarization attributes
it also implies identity in the midpoint and the offset directions: ∂xmg = ∂hg and νxm = νh.
When the velocities at the acquisition line are assumed to be homogeneous, the polariza-
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Figure 5.4: The P- and S-waves separation principle based on the sign of horizontal slowness and
polarization angle. It is valid for both, positive (a) and negative (b) emergence angles.
The criterion is summarized as followed: for P-waves applies ν0px > 0, for S-waves
applies ν0px < 0.

tion angle derivatives are fully described by the curvatures of the hypothetical wavefronts
and the emergence angle:

∂4xmgP (x0, 0, 0) = −
(

cos2αP0
sinαP0 cosαP0

)
KP
N , νPxm = cosαP0 KP

N ;

∂hgP (x0, 0, 0) = −
(

cos2αP0
sinαP0 cosαP0

)
KP
NIP , νPh = cosαP0 KP

NIP ;

∂4xmgS(x0, 0, 0) =
(
− sinαS0 cosαS0

cos2αS0

)
KS
N , νSxm = cosαS0KS

N ;

∂hgS(x0, 0, 0) =
(
− sinαS0 cosαS0

cos2αS0

)
KS
NIP , νSh = cosαS0KS

NIP . (5.18)

This follows from eqs (5.17) and the relation between second-order traveltime derivatives
with respect to global Cartesian and local Cartesian ray-centered coordinates (e.g., Červený,
2001). Note, the formulas for the angle derivatives in eqs (5.18) are independent of the P-
or S- representation, unlike the formulas for the vector derivatives, which correspond to the
representations chosen for eqs (5.17).

5.5 Attributes-based P- and S-waves separation and
surface-velocities model building

Bergler et al. (2002) proposed a method to separate P- and S-wave arrivals stacked to zero-
offset, as well as the wavefront attributes, by means of matching emergence and polarization
angles. They introduced this approach in a context of a five-parameter converted-waves
CRS. Nevertheless, it is also valid for processing of monotypic events by the conventional
three-parameter CRS. The emergence angle can either be directly picked during the CRS
stacking or subsequently transformed from the slope attribute. In both cases a surface-
velocity model is necessary. The polarization angle is obtained from independently stacked
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components of the vector wavefield. Then, the wave modes are sorted in accordance to
a difference between the polarization and emergence angles. However, an a priori surface-
velocity model may not always be available in practice. In contrast, we present a completely
data-driven technique and do not make any assumptions about the surface velocities. We
unambiguously identify the arrivals and subsequently retrieve the compressional- and shear-
wave velocities at the acquisition line. To do this, we apply another separation criterion to
the slowness and polarization angle attributes and build the surface-velocities model by the
slowness-polarization method (Dewangan and Grechka, 2003; Tsvankin and Grechka, 2011).
Moreover, the polarization angle attribute is obtained with the polarization-consistent stack
in our approach naturally accounting for the variation of polarization in the prestack data.
Note, this is not the case when the components are stacked independently as proposed in
the paper by Bergler et al. (2002). The slowness-polarization method in isotropic media
degenerates to an explicit estimating with no regression involved. However, the estimates
become unstable in the case of nearly normal emergence. Therefore, we provide a comple-
mentary alternative through the second-order quantities, the polarization angle derivatives
and the wavefront curvature attributes.
We will formulate the separation criterion in terms of the P-representation. As described

in Section 5.4, the P-representation implies the polarization vector to be directed downwards
and the polarization angle to be measured from the vertical axis. The separation criterion
is illustrated in Fig. 5.4. If the horizontal slowness is greater than zero, i.e., px > 0, the
following relations hold:

ν0 > 0 for P-waves, and ν0 < 0 for S-waves. (5.19)

If the horizontal slowness is less than zero, i.e., px < 0, the opposite relations hold:

ν0 < 0 for P-waves, and ν0 > 0 for S-waves. (5.20)

The criterion for identifying arrivals reads as follows:

ν0px > 0 ⇒ P, ν0px < 0 ⇒ S. (5.21)

In the case of normal emergence, when px is sufficiently small, we examine whether the
absolute value of ν0 is also small. Despite the fact that in the zero-order ray theory a case
of small but non-zero horizontal slowness and zero polarization angle is not allowed, it is
reasonable on practice to account for this possibility by making the P-wave condition non-
strict. Classification is performed for all time samples and central midpoints, which allows
to form a P- and S-wave filter. The filter is subsequently applied to the attribute and stack
sections.
The above-described arrivals identification is an essential part of the surface-velocities

and the slowness vector building. For P-waves, the polarization angle ν0 is equal to the
emergence angle α0. Therefore, the compressional-wave velocity is computed as vP =
sin ν0/px. The vertical slowness component reads then as pPz = −(v−2

P − px2)
1
2 . For the S-

wave arrivals, however, this is erroneous as we first need to determine the emergence angle:
α0 = ν0 ± 90◦. Here, “+” stands for negative and “−” for positive polarization angle ν0.
With the corrected value of the emergence angle we are able to build the shear-wave velocity,
again as vS = sinα0/px, and the vertical slowness component as pSz = −(v−2

S − px2)
1
2 . The

80



5.5 Attributes-based P- and S-waves separation and surface-velocities model build.

CRS attributes differ from the exact theoretical values. They are sensitive to the level of
noise and the stacking apertures. Therefore, a workaround is needed to prevent a potential
instability in the determination of the velocities which occur in the case of almost normal
emergency of the central rays (e.g., a diffraction apex or reflection in a laterally homogeneous
medium). The alternative is incorporating the first-order polarization and the second-order
traveltime attributes. From eqs (5.15) and (5.17) we conclude that the following identities
take place when the horizontal slowness vanishes:

vP =
νPxm
M̂P
N

= νPh
M̂P
NIP

, vS =
νSxm
M̂S
N

= νSh
M̂S
NIP

. (5.22)

Note, if at a central midpoint location the velocity model gradient does not have a horizontal
component (no lateral variations) the formulas

vP =
νPxm cos νP0

M̂P
N

= νPh cos νP0
M̂P
NIP

, vS =
νSxm sin

∣∣∣νS0 ∣∣∣
M̂S
N

=
νSh sin

∣∣∣νS0 ∣∣∣
M̂S
NIP

. (5.23)

remain valid regardless of the horizontal slowness value. In the expression for the S-wave
velocity the polarization angle attribute νS0 is given in the P-representation as this repre-
sentation was chosen for processing both wave modes from the beginning. A pair νh and
M̂NIP in eqs (5.23) is strongly recommended for the velocity estimation with reflections
since the attributes νxm and M̂N are less reliable in this case due to the higher uncertainty
of fitting traveltimes with smaller curvatures. Estimating with the second-order quantities,
oppositely to the first-order slowness-polarization method, becomes unstable in the case of
vanishing curvature attributes (e.g., flanks of diffraction). In this sense, the first- and the
second-order attributes and the correspondent estimates are complementary to each other.
We have discussed the slowness-polarization approach to estimate the local velocities.

Velocity is evaluated here independently for every central midpoint location, which requires
only one arrival per each wave mode. Theoretically, this is sufficient in the case of isotropic
media. However, to decrease uncertainties in the retrieved models caused by possible errors
in the attribute values, one can incorporate more central midpoints and more arrivals as
well. For instance, if the velocity model is assumed homogeneous all along the acquisition
line, polarization vectors and slopes from all the central midpoints can be utilized. In the
case of anisotropy, incorporation of arrivals emerging at one central midpoint from different
directions will improve illumination. This can be done by applying the slowness-polarization
method in terms of Christoffel equation fitting as it was formulated by Dewangan and
Grechka (2003) for VSP walkaway data.
In the case of inhomogeneity presented at the acquisition line, eqs (5.4) and (5.5) have

additional terms containing spatial derivatives of the velocity model (when precisely derived
with a relation between traveltime derivatives with respect to the global Cartesian and the
local Cartesian ray-centered coordinates (e.g., Červený, 2001)). Unfortunately, we are not
able to extract a value of the vertical velocity gradient from the wavefront attributes and
the zero-order ray method polarizations, consequently, not able to account for these terms.
Therefore, the extraction of the wavefront curvatures KN and KNIP , as well as the dynamic
ray tracing quantitiesMN andMNIP , from the M̂N and M̂NIP attribute sections without a
priori knowledge of the vertical gradient value may be inaccurate for strongly heterogeneous
near-surface.
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Figure 5.5: Elastic model used to generate the synthetic data. Position of the point diffractor is
depicted with a black dot.
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Figure 5.6: Zero-offset sections after adding the noise. The diffraction response was modeled by the
elastic rapid expansion method and a subsequent direct waves attenuation. Gaussian
noise with the S/N of 20 was added to the traces.
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5.6 Synthetic example

We use a smooth model comprising a salt body covered by sediments and a point diffractor
for testing the presented method. Elastic parameters of the background and position of the
diffractor are depicted in Fig. 5.5. First, the P- and S-wave velocity models are built with
a set of 4-th order B-spines placed on an 11× 11 grid of nodes. Moreover, moderate near-
surface variations are introduced in order to test feasibility of the surface-velocities retrieval
(Fig. 5.13). The velocity of S-waves is scaled to get a physically reasonable density model.
The low velocity point diffractor has the following elastic parameters values: vP = 3 km s−1,
vS = 2.4 km s−1, ρ = 2 g cm−3. We employ the vertical force source and a Ricker wavelet
with prevailing frequency of 25 Hz. The 2D elastic modeling is based on the Fourier method
with high-accuracy time integration by rapid expansion (Kosloff and Baysal, 1982; Kosloff
et al., 1989). Data are simulated on the top of the model with source and receiver spacing of
20 m. Direct waves are muted, so that the data contain primarily diffracted wavefield. We
add some Gaussian noise to the multicomponent traces so that the S/N of the diffraction
only dataset becomes equal to 20. Resulting zero-offset sections of both elastic displacement
components are presented in Fig. 5.6. We observe distinctively separated in time monotypic
P-wave and S-wave diffractions. The P-wave is prominent in the vertical component section,
while the S-wave dominates in the section with the horizontal one. Note, the amplitude of
the monotypic S-wave diffraction vanishes at the apex due to the source radiation pattern
and the phase of the horizontal component undergoes a reversal. An intermediate arrival
represents a superposition of converted PS- and SP-wave, which have coincident zero-offset
traveltimes.
Following the workflow suggested in Section 5.3, we start determining the wavefront

attributes independently for the vertical and for the horizontal component. During the
wavefront and polarization attributes search we restrict the maximum offset to 700 m and
the displacement aperture to 150 m. Global optimization is performed by the method
of differential evolution (e.g., Walda and Gajewski, 2017). We also allow both positive
and negative offsets imitating a seafloor or an onshore acquisition. The single component
wavefront attribute searches are in turn carried out in the pragmatic way (Jäger et al.,
2001): first M̂NIP is determined with the CMP stack, then the small aperture slant-stack
is applied to the zero-offset stack section resulting in the p attribute, both p and M̂NIP

attributes are slightly adjusted and the attribute M̂N is determined simultaneously by the
three-dimensional optimization. The result for the vertical component is shown in Fig. 5.7.
Analogous sections for the horizontal component are shown in Fig. 5.8. We clearly observe
higher coherence of the monotypic waves (Figs 5.7a and 5.8a). The converted-waves arrival
is, however, poorly described not only due to an inaccuracy of the CRS approximation
but also because the PS- and SP-wave have different moveout and both are present in the
dataset. The corresponding attribute values are erroneous. Note also a lack of the stack
energy near the traveltime apex of the S-wave in the semblance section for the vertical
component and, similarly, a P-wave energy lack in the semblance section for the horizontal
component. This polarization effect leads to undetermined wavefront attributes.
At the second step, we combine the single-component attribute sections into the joint

sections, which heals the attribute gaps. Indeed, the attribute quality is improved and the
semblance upraises (Fig. 5.9).
The third step is the multicomponent CRS semblance analysis using the wavefront at-
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Figure 5.7: Vertical component sections: (a) semblance; (b) slowness; (c) N-wave curvature at-
tribute; (d) NIP-wave curvature attribute.
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Figure 5.8: Horizontal component sections: (a) semblance; (b) slowness; (c) N-wave curvature
attribute; (d) NIP-wave curvature attribute.
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Figure 5.9: Joint sections: (a) semblance; (b) slowness; (c) N-wave curvature attribute; (d) NIP-
wave curvature attribute.
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Figure 5.10: Multicomponent sections: (a) semblance; (b) polarization angle; (c) polarization angle
derivative with respect to the midpoint displacement; (d) polarization angle derivative
with respect to the half-offset.
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tributes from the joint sections. They remain fixed during the optimization. The local
polarization is built by retrieving the polarization attributes (Figs 5.10b-d). We see, the
polarization angle attribute as well as the polarization angle derivatives are determined ev-
erywhere except the phase reversal zone at the S-wave apex. We adhere the P-representation
with polarization vector directed downwards and polarization angle measured with respect
to the vertical axis (see Section 5.4). Accordingly, we get smaller angles at the P-wave apex
and a jump from −90◦ to 90◦ at the apex of the S-wave traveltime (Fig. 5.10b) In contrast,
as explained in Section 5.4, the values of both polarization angle derivatives are continuous
along the events (Figs 5.10c and d). Stacking in the zone of S-wave phase reversal fails
causing unreliable attribute values. As the proposed method is applied to diffraction data,
the polarization angle derivatives picked for monotypic arrivals coincide (Figs 5.10c and d),
i.e., νxm = νh, similarly to the sections in Figs 5.9(c) and (d) with coincident wavefront
curvature attributes, M̂N = M̂NIP . We have found out that both polarization vector ap-
proximations, (5.12) and (5.13), are suitable for the multicomponent processing. There are
no significant differences for our setting.
The final step is the enhancement of the multicomponent data by stacking. The stacking

aperture was 200 m both for the half-offset and the midpoint displacement. The enhanced
sections are displayed in Fig. 5.11. The polarization-consistent stack section (Fig. 5.11a)
is free of the wavefield inclination effect. It has both wave modes equally presented in this
sense. Due to the unreliably determined polarization angle around the S-wave apex there
are discontinuities present in the polarization-consistent stack. But they disappear in the
enhanced single-component sections. We achieve the S/N improvement of the zero-offset
sections for both displacement components by projecting pixel-by-pixel the polarization-
consistant stack section onto the axes of the Cartesian coordinate system. The projecting is
carried out by means of the polarization angle section given in Fig. 5.10b. Comparing the
processed single component sections (Fig. 5.11b and c) with the raw noisy traces (Fig. 5.6)
clearly demonstrates that all polarization features are preserved and the data are sufficiently
enhanced. Note also an interpolation of the zero-offset traces made with the CRS stack by
introducing central midpoints between the actual receiver locations.
Having the slowness (Fig. 5.9b) and polarization (Fig. 5.10b) attributes in hand, we are

able to separate the P- and S-wave enhanced waveforms as well as the attribute sections.
We construct a filter based on the separation criterion as presented in Fig. 5.12. The
monotypic events are perfectly identified with an exception again near the S-wave apex
where the wrong polarization angles are misleading. The identification applied to the con-
verted waves, despite being not justified theoretically, apparently reveals dominating of the
PS-wave energy.
We retrieve the compressional- and shear-wave velocities on the top of the model indepen-

dently for every central midpoint by picking and processing the attributes. The estimated
surface-velocities are plotted in Fig. 5.13. One way is to utilize horizontal slowness and
polarization angle (first-order estimates). Alternatively, NIP-wave curvature attribute and
polarization angle derivative with respect to the half-offset with eq. (5.23) are used (second-
order estimates). Again, processing in the S-wave phase reversal zone at the apex faces dif-
ficulties. Let us concentrate on the P-wave. The first-order estimates are much more stable
accurately matching with the original velocities away from the traveltime apex. However, in
the vicinity of the apex they are unstable and the second-order approach demonstrates bet-
ter matching. On the contrary, second-order estimates are strongly unstable at the flanks
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due to the vanishing wavefront curvature. In this sense, the approaches are complementary
to each other. We expect that observed velocity uncertainties caused by the inaccuracy of
the attribute values can be compensated by an approach where attributes from adjacent
central midpoints are jointly involved.

5.7 Discussion

We have described and applied polarization-consistent stacking as an extension of the con-
ventional three-parameter CRS method. However, the idea of stacking multicomponent
traces along the traveltimes, itself, is very general. Various multidimensional and -parameter
processing techniques could benefit from such an extension, e.g., finite-offset CRS and
converted-waves CRS. Enhancement of prestack multicomponent data may be organized as
partial CRS (Baykulov and Gajewski, 2009) in terms of the polarization-consistent stack-
ing with preliminary extracted polarization and wavefront attributes. The polarization
attributes have a potential for P- and S-waves filtering in the prestack domain as well. Due
to the same property of the polarization angle derivatives, νxm and νh, to coincide in the
case of diffractions they have a potential to be utilized for diffraction separation, in addition
to the wavefront curvature attributes (see Dell and Gajewski, 2011).
The determination of the wavefront and polarization attributes by stacking in the phase

reversal zone, such as an S-wave apex, is difficult. Analogues problems would arise in
applications to edge diffractions and passive data where the phase reversals take place for
P-waves as well. A possible solution may be an adapting of the stacking algorithm for
rapidly changing amplitudes by using additional weighting (e.g., Fomel, 2009; Dell et al.,
2018). Another important limitation we haven’t addressed so far is an effect of the free
surface on the retrieved polarizations. Surely, the wave conversion phenomenon should
be taken into account for field data processing. It becomes crucial for the subsequent
applications of the polarization attributes. However, this requirement doesn’t apply to
the data preconditioning itself at least for P-waves and subcritical emergence of S-waves.
Further work needs to be done also to competitively compare miscellaneous polarization
approximations, including higher order extensions, for adapting the presented method to
larger offsets and non-hyperbolic events.
We have tested a pragmatic approach for the attribute determination which comprises a

sequence of three-parameter searches. There are other options too. For instance, a search in
the six-dimensional space spanned by both polarization and wavefront attributes is one of
them. Another potential approach is a refinement of the wavefront attributes by the multi-
component semblance optimization. When the surface-velocity model is homogeneous and
known, the polarization angle derivatives νxm and νh are fully described by the wavefront
attributes α0, KN , and KNIP , as shown in eq. (5.18). In this case, the full six-dimensional
attribute space degenerates to a four-dimensional one spanned by three wavefront attributes,
α0, KN , KNIP , and one polarization attribute, ν0.
Polarization-consistent stacking and the concept of the local polarization, introduced in

this paper, are reasonable for anisotropy as well. However, the interpretation of the po-
larization derivatives and the subsequent processing steps must be revised. We emphasize
that polarization and its derivatives with respect to the midpoint coordinate and the half-
offset very well fit into the concept of wavefront attributes in anisotropic media (Vanelle
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Figure 5.11: Enhanced zero-offset sections. Component sections (b) and (c) were derived with
the pixel-by-pixel projection of the polarization-consistent stack (a) onto the z- and
x-axes, respectively, with the help of the polarization angle section (Fig. 5.10b).

88



5.7 Discussion

0 1 2 3 4

       lateral distance [km]

0

1

2

3

4

  
ti
m

e
 [

s
]

Figure 5.12: Result of the attributes-based arrival separation. Black pixels were identified as P-
wave and white ones as S-wave.
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Figure 5.13: Retrieved acquisition line compressional and shear velocities compared to the original
ones. Black circles display the first-order estimates using horizontal slowness and
central polarization angle. Green circles display the second-order estimates using
NIP-wave curvature attribute and polarization angle derivative with respect to the
half-offset.
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et al., 2018). Similarly to the isotropic case, the wavefront attributes together with the po-
larization attributes could be utilized for anisotropic surface-velocity model building. This
enables a retrieval of initial conditions for the backpropagation with kinematic and dynamic
ray tracing, which can be considered as input data for depth inversion. Subsurface model
building could also benefit from constraining the elastic parameters at the acquisition line.
Methods of polarization and slowness inversion for the local density-scaled stiffness tensor
already exist (see Dewangan and Grechka, 2003; Tsvankin and Grechka, 2011). Obviously,
one central midpoint and a single arrival are not sufficient to build a general stiffness tensor.
Even reflections from multiple interfaces within a geological formation, picked all along the
acquisition line, contain rather limited slowness information. Nevertheless, diffractions and
microseismic events, since they have better illumination, may cover a part of the slowness
surface sufficient for the inversion.

5.8 Conclusions

We have presented a polarization-consistent approach for stacking multicomponent data.
It is formulated as an extension of the conventional common-reflection-surface method.
The vertical and horizontal components are simultaneously stacked along the traveltimes
computed using wavefront attributes. Contribution of a single wavefield component to the
total stacked section is controlled by continuously changing polarization. Both wavefront
and polarization attributes are automatically picked during a multicomponent semblance
optimization. The polarization-consistent stack section is subsequently projected producing
enhanced single component zero-offset sections.
We have introduced a concept of local polarization. Local approximations of polarization

vector are described by a set of additional parameters. With regard to the multicomponent
common-reflection-surface in 2D these new polarization attributes are central polarization
angle and first-order derivatives of the polarization angle with respect to the midpoint and
half-offset coordinates. The polarization angle derivatives can be interpreted in terms of
the normal-incidence-point and normal waves. We have proved this for isotropic media
by considering a polarization analogue of the NIP-wave theorem. A potential of using the
polarization attributes has been demonstrated by some immediate applications, namely,
utilizing them for the P- and S-waves separation and building of P- and S-waves velocities
at the acquisition line.
The introduced polarization-consistent stacking has been successfully applied to 2D syn-

thetic multicomponent diffraction data. The local polarization attributes have been de-
termined by the multicomponent semblence optimization. The signal to noise ratio in the
projected sections has been noticeably enhanced comparing to the prestack zero-offset sec-
tions. We have also utilized the wavefront and polarization attributes for the P- and S-waves
identification and surface-velocities model building. The different arrivals have been suc-
cessfully identified and the heterogeneous P- and S-wave velocities retrieved from a single
diffraction have a good match with the synthetic model. Application to synthetic data
has clearly demonstrated the capability of the proposed method to process and image the
multicomponent data.
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6 Conclusions

Wavefront attributes, including curvature matrices of the eigenwaves, contain fundamental
information on the wavefront properties. Furthermore, the wavefront curvature being re-
lated to the geometrical spreading of waves and at the same time determined by kinematics
is a unique physical quantity.
That is why the wavefront attributes definitely deserve a close attention of applied geo-

physicists. In this thesis, I established only a few possible applications of the zero-offset
wavefront attributes. Undoubtedly, the zero-offset and the finite-offset wavefront attributes
will find many other applications, especially with advances in the technology for their ac-
curate extraction.
First, I developed a new well-conditioned method for macro-velocity model building. It

is based on kinematic and dynamic ray tracing of normal-incidence-point waves and diffrac-
tions in reverse time and on minimizing geometrical spreading. The waves simultaneously
focus, which updates the fictitious source positions and the velocity model. The input for
the inversion are traveltime, the horizontal component of slowness vector, and the wavefront
curvature. The new objective functional contains a single physical quantity and depends
only on the velocity model. If compared to the conventional wavefront tomography based
on data fitting, this reformulation by its smaller inversion matrix leads to favorable proper-
ties of the inverse problem such as relaxing regularization. Additionally, a reduced amount
of tuning parameters in the objective functional allows one to easier obtain reproducible
results. This concerns, e.g., weighting different physical parameters since the proposed
functional comprises only a focusing measure. I tested the proposed tomographic inversion
on the synthetic data comprising a salt body. The retrieved tomographic image highly cor-
relates with the synthetic model. The end-points of normal-incidence-rays propagated into
the final model constitute the layer boundaries. I further applied my approach to complex
marine data. The inverted model was used in a common-shot depth migration. In the mi-
grated section, I observed a clean and continuous image of the top of salt and well focused
steep faults. In both synthetic and field data examples, I did not use any regularization
terms, which confirmed the well-conditioned behavior of the new formulation.
In order to conceive anisotropic velocity model building by ray focusing in the same man-

ner, I developed the first-order ray perturbation theory in the local wavefront-orthonormal
coordinates. This is an alternative approach to Fréchet derivatives of ray and slowness
vector with respect to the density normalized elastic moduli. In contrast to the standard
Cartesian coordinates formulation, it has a reduced number of equations but requires ad-
ditional tracing of the wavefront-orthonormal basis.
Next, I proposed an approach for identification and separation of wave modes in the data

domain. This method allows one to distinguish seismic events between point diffractions,
edge diffractions, and reflections. It is a generalization of the scalar curvature technique to
an arbitrarily oriented and curved edge in 3D heterogeneous media, including anisotropy.
The identification is performed by analyzing a matrix, which contains residuals of the wave-
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front curvature matrices. Its determinant vanishes for both kinds of diffractions. Conse-
quentially inspecting its elements, however, provides a tool to distinguish between point
and edge diffractions. Using this residual wavefront curvature matrix, I also designed an
algorithm to sort traces into specific groups in a way that rays of a single group focus at
a particular point on the edge. This implies that the 3D edge diffraction can be focused,
kinematically and dynamically, similarly to the point diffraction. The identification crite-
rion and the methodology for receiver grouping were successfully verified with synthetic
examples comprising an isotropic heterogeneous and an anisotropic model. The wavefront
attributes extracted from the realistic SEG/EAGE dataset allowed for the edge diffraction
identification under condition of moderate model heterogeneity even in the case of strong
uncorrelated noise.
Finally, I formulated an extension of the conventional common-reflection-surface method

to multicomponent data introducing a concept of local polarization. Local approximation
of polarization is described by a set of new attributes. They are central polarization angle
and first-order derivatives of the polarization angle with respect to the midpoint and half-
offset coordinates. The polarization angle derivatives can be interpreted in terms of the
eigenwave curvatures. The polarization-consistent stacking was successfully applied to a
synthetic elastic diffraction data. This means that the local polarization attributes were
determined by the multicomponent semblance optimization and the signal-to-noise ratio in
the projected sections was noticeably enhanced. I successfully utilized the wavefront and
the polarization attributes of a single elastic diffraction for the P- and S-waves identification
and for the building of P- and S-velocities at the acquisition surface.
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7 Outlook

Kinematic and/or dynamic ray focusing
Point diffractions can be focused in reverse time not only by the dynamic ray focusing,
but also kinematically by minimizing distances between endpoints of rays, which belong
to the same subsurface locations (Bauer et al., 2019). This requires slight modifications
of the code and additional computing of the kinematic Fréchet derivatives. Apparently, in
the dynamic ray focusing a single ray constraints the velocity model stronger than in the
kinematic ray focusing since the curvature is related to the ray tube, i.e., to some vicinity of
the ray. However, in the kinematic approach mutual focusing is imposed and no curvatures
are needed, which may be important when they are determined unreliably. Finally, both
objective functionals can be applied simultaneously.

3D dynamic ray focusing
The objective functional of dynamic ray focusing introduced in this work can easily be
generalized to the 3D case. For doing this, it is necessary to define an acquisition-normalized
matrix

Q(t) = Qd(t)Qd(ti)
−1
,

where Qd is the first dynamic ray tracing matrix of the registered wave (NIP-wave or diffrac-
tion), and ti is the registered travel time. Indeed, this matrix is acquisition normalized:

Q(ti) = I.

Let us define a second normalized dynamic ray tracing matrix:

P (t) = P d(t)Qd(ti)
−1
,

where P d is the second dynamic ray tracing matrix of the registered wave. Its initial
condition (for the reverse propagation) is simply given by the wavefront curvature matrix
obtainable from the measurements:

P (ti) = P d(ti)Qd(ti)
−1 = Md(ti).

Since the dynamic ray tracing system is linear, it is satisfied with the acquisition normalized
matrices, Q and P . Therefore, the 4× 4 propagator formalism can be applied to construct
them. Furthermore, geometrical spreading computed using the acquisition normalized ma-
trix vanishes together with the geometrical spreading of the registered wave:

detQ(t) = detQd(t)
detQd(ti)

,

which forms the basis of the dynamic ray focusing.
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7 Outlook

Edge diffractions in focusing tomography

In 2D, traveltime responses of point and edge diffractions are equivalent. However in 3D,
one should distinguish and treat them differently to carefully account for such objects as
faults, highly curved folds, fractures, and pinch-outs. Particularly, this is crucial for velocity
model building by the kinematic ray focusing. For point diffractions, this method requires
tagging of individual diffractions. For edge diffractions, it is necessary to additionally group
receivers in a special way that they are back projected to single points on the edge. The
method of receiver grouping based on the wavefront curvatures is outlined in this thesis.

Microseismic localization and velocity model building

Simultaneous microseismic localization and velocity model building is closely related to
global seismology. For such acquisitions, there is a great challenge of determining the
unknown source excitation time. A set of wavefront attributes can also be extracted from the
passive seismic data (Schwarz et al., 2016) similarly as from the reflections and diffractions.
Passive-seismic wavefront tomography with the source time as an additional unknown has
a potential to solve the problem of determination of the source excitation time (Diekmann
et al., 2019). However, the focusing methodology is also very promising, especially regarding
the reduction of the number of unknowns.

Anisotropic model building

Seismic anisotropy in the subsurface is a well documented fact. It has either macroscopic
or microscopic origin. Macroscopically, it is caused by thin layering of sediments or by
presence of oriented fracturing. On the micro scale, seismic anisotropy is due to the intrinsic
crystal properties. Concerning the inversion of anisotropic elastic parameters, a tremendous
increase in the number of unknowns inevitably leads to a greater uncertainty. Therefore,
the anisotropic inversion remains a big challenge. At the current state, the wavefront
tomography is formulated only for the isotropic inversion. Even in this case, calculation of
the Fréchet derivatives looks cumbersome and the data/unknowns ratio is low. Therefore,
I expect generalization to anisotropy to be a non-trivial problem. To reduce the number of
Fréchet derivatives and to increase stability, I suggest to apply the reverse time strategy as
well. If a near-surface model is available, one can extract the same input for the dynamic ray
focusing from the wavefront attributes in the most general anisotropic case (Vanelle et al.,
2018). Moreover, the objective functional together with the methodology of computing the
gradient, can be used to conceive inversion for anisotropic models. However, kinematic
and dynamic ray tracing will require an adjustment. Additionally, the perturbed matrix of
dynamic ray tracing needs to be reformulated in terms of perturbations of the anisotropic
parameters.

Polarization-consistent stacking in anisotropic media

Polarization-consistent stacking and the concept of local polarization are reasonable for
anisotropy as well. However, the interpretation of polarization derivatives with the NIP-
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wave theorem has to be revised. Polarization and its derivatives with respect to the mid-
point coordinate and the half-offset very well fit into the concept of wavefront attributes
in anisotropic media (Vanelle et al., 2018). Similarly to the isotropic case, the wavefront
attributes together with the polarization attributes could be utilized for building the elas-
tic moduli at the acquisition-surface. Methods of polarization and slowness inversion for
the local density-scaled stiffness tensor already exist (see Dewangan and Grechka, 2003;
Tsvankin and Grechka, 2011). Obviously, one central midpoint and a single arrival are not
sufficient to build a general stiffness tensor. Even reflections from multiple interfaces within
a geological formation, picked all along the acquisition line, contain rather limited slowness
information. Nevertheless, diffractions or microseismic events may cover a sufficient part of
the slowness surface due to their superior illumination.
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A Appendix for the Chapter 2

A.1 Illustrating the objective function for a single pick in a
homogeneous medium

The illustration for a homogeneous medium gains some intuition on how the method works.
Let us assume we have measured one-way traveltime t and the curvature attribute M in
the homogeneous medium with velocity v0. First, we compute the time-reversal propagator
for a trial velocity model:

Π(0, t) = Π−1(t, 0) =
(

1 −v2t

0 1

)
. (A.1)

Next, we consider the objective function comprising the elements of the time-reversal prop-
agator and the curvature attribute:

J(v) = 1
2
(
Q(1)(0, t) +Q(2)(0, t)M

)2
. (A.2)

Since t = Rv−1
0 and M = (v0R)−1, it becomes

J(v) = 1
2

(
1− v2

v2
0

)2

(A.3)

with a unique positive minimum at v = v0.

A.2 On the initial condition for the perturbed
ray-centered slowness

The horizontal slowness of the emerging ray px is determined from data. It is fixed in the
focusing approach. The perturbed eikonal equation considered at the point of arrival

(p,4p) = −4v
v3 (A.4)

reveals components of the perturbed slowness vector 4p in the local ray-centered coordi-
nates. Transformation from the Cartesian to the ray-centered coordinate system(

−4v
v2

p

)
=
(

vpx vpz

−vpz vpx

)(
0
4pz

)
(A.5)

may be considered as a linear system of equations with respect to the perturbed ray-centered
slowness p and the Cartesian component 4pz. Its determinant, equal to vpz, vanishes if
the reference ray is tangent to the registration line. Otherwise,

p = −4v
v2

px
pz
. (A.6)
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A.3 The adjoint-state formulation for the Fréchet derivative
of the objective functional

We will derive the adjoint-state method formulation in a unified way (e.g., Plessix, 2006;
Chavent, 2010) to illustrate how the adjoint-state variables λQi , λPi are introduced as solu-
tions of the adjoint dynamic ray tracing system.
Let us think of λQi (t), λPi (t) as a set of functions that are undefined so far. We introduce

an auxiliary functional 4J by taking a dot product of the perturbation theory system
of equations 2.13 with a vector of elements λQi , λPi , integrating resulting scalar over the
corresponding time interval, and summing the quantities for all picks:

4J =
Ndata∑
i=1

0∫
ti

dt

(
−
(
λQi λPi

) d

dt

(
4Qi
4Pi

)
+
(
λQi λPi

)
S

(
4Qi
4Pi

)
+
(
λQi λPi

)
4S

(
Qi

Pi

))
.

(A.7)
This is the zero functional since the perturbation theory system is satisfied. We integrate
it by parts in order to isolate dynamic perturbations as multipliers:

4J = −
Ndata∑
i=1

(λQi 4Qi)
∣∣∣t=0

t=ti
−
Ndata∑
i=1

(λPi 4Pi)
∣∣∣t=0

t=ti
+

Ndata∑
i=1

0∫
ti

dt

(
d

dt

(
λQi λPi

)(4Qi
4Pi

)
+
(
λQi λPi

)
S

(
4Qi
4Pi

)
+
(
λQi λPi

)
4S

(
Qi

Pi

))
. (A.8)

Adding the auxiliary zero functional, 4J , to the derivative of the objective functional 2.7
expressed though the derivatives of the state variables,

4J =
Ndata∑
i=1

Qi(0)4Qi(0), (A.9)

doesn’t change its value: 4J = 4J +4J. However, this representation makes possible to
define the adjoint-state variables in order to get an alternative formulation for the gradient.
Namely, we choose them to cancel out the quotients of the dynamic perturbations. Indeed,
the adjoint-state variables defined with a system

d

dt

(
λQ

λP

)
= −ST

(
λQ

λP

)
(A.10)

eliminate two terms in the integrand of equation A.8. As was explained in the main body
of the paper, dynamic perturbations equal zero at the arrival time: 4Qi(ti) = 0 and
4Pi(ti) = 0. Therefore, to remove the remaining external terms, we have to impose initial
conditions on the other side, in depth: λQi (0) = Qi(0), λPi (0) = 0. Thus, the adjoint-state
vector is a result of forward propagation with the adjoint dynamic ray tracing system A.10
and initial conditions containing the back-propagated geometrical spreading. The remainder
represents the Fréchet derivative of the objective functional:

4J =
Ndata∑
i=1

0∫
ti

(
λQi λPi

)
4S

(
Qi

Pi

)
dt. (A.11)
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A.3 The adjoint-state formulation for the Fréchet derivative of the objective funct.

The operator of the dynamic ray tracing system 2.2 is not self-adjoint. However, its
matrix has a special property related to the symplecticity of the propagator (e.g., Červený,
2001):

JST + SJ = 0, J =
(

0 1
−1 0

)
. (A.12)

We use it to transform the matrix of the adjoint system A.10: −ST = J−1SJ . Consequently,
the adjoint system of differential equations coincides with the initial one up to permutation
of variables and change of a sign:

d

dt
J

(
λQ

λP

)
= SJ

(
λQ

λP

)
. (A.13)

Solving it with the dynamic ray tracing propagator and using the chain rule for the propa-
gator, we get an expression for computing the adjoint vector at t̃ < t:(

λQ
(
t̃
)

λP
(
t̃
)) = JTΠ

(
t̃, 0
)
J

(
Q(0)

0

)
= Π−1T (t̃, 0)(Q(0)

0

)
= Π−1T (t̃, t)ΠT (0, t)

(
Q(0)

0

)
=

(A.14)

Q(0)Π−1T (t̃, t)(Q(1)(0, t)
Q(2)(0, t)

)
. (A.15)
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B Appendix for the Chapter 3

B.1 First-order derivatives of the polarization vector
After determining an eigenvalue v2(x,n) and the corresponding eigenvector g(x,n), the
Christoffel system may be considered as an identity valid for different x and n:

aijkl(x)njnkgl(x,n) = v(x,n)2gi(x,n), i = 1, 2, 3. (B.1)

Differentiating it with respect to the Cartesian coordinates leads to an inhomogeneous
algebraic system with respect to the polarization derivatives:

(aijklnjnk − v2δil)
∂gl
∂xm

= ∂v2

∂xm
gi −

∂aijkl
∂xm

njnkgl, i,m = 1, 2, 3. (B.2)

δij denotes the Kronecker delta. The symmetric matrix of this system comes from the
Christoffel equation and has, therefore, zero determinant. The null-space of adjoint sys-
tem is determined with the eigenvector g, which is orthogonal to the right-hand side of
the system. Therefore, the system (B.2) has solutions. Note that we are looking for the
polarization derivatives that are orthogonal to the unit vector g and this way belong to
the secondary eigenspace. To find their projections onto the secondary eigenvectors, we
evaluate the dot product of eq. (B.2) with a secondary eigenvector g(α) (α = 1, 2). Using
the Christoffel equation written for the secondary eigenvectors

aijklnjnkg
(α)
l = (v(α))2g

(α)
i , i = 1, 2, 3, α = 1, 2, (B.3)

we get
∂gi
∂xj

g
(α)
i = V̂jig

(α)
i

v2

v2 − (v(α))2 , j = 1, 2, 3, α = 1, 2, (B.4)

where the 3× 3 matrix

V̂ij = ∂ajklm
∂xi

pkplgm, i, j = 1, 2, 3, (B.5)

is introduced. Eventually, with the help of the 3× 3 matrix

Bij = Bji = v2
2∑

α=1

g
(α)
i g

(α)
j

v2 − (v(α))2 , i, j = 1, 2, 3, (B.6)

the polarization derivatives are formulated as follows:

∂gi
∂xj

=
2∑

α=1

∂gk
∂xj

g
(α)
k g

(α)
i = (BV̂ T )ij , i, j = 1, 2, 3. (B.7)
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B Appendix for the Chapter 3

Analogously, differentiating eq. (B.1) with respect to the components of the wavefront
normal leads to another inhomogeneous algebraic system for the corresponding polarization
derivatives:

(aijklnjnk − v2δil)
∂gl
∂nm

= ∂v2

∂nm
gi − (aimkl + aikml)nkgl, i,m = 1, 2, 3. (B.8)

Again, the determinant is zero and the right-hand side is orthogonal to the eigenvector g.
Evaluating the dot product of eq. (B.8) with the secondary eigenvectors, we get

∂gi
∂nj

g
(α)
i = Ŵjig

(α)
i

v

v2 − (v(α))2 , j = 1, 2, 3, α = 1, 2, (B.9)

where the 3× 3 matrix

Ŵij = (aijkl + aikjl)gkpl, i, j = 1, 2, 3, (B.10)

is introduced. In dynamic ray tracing, we need derivatives with respect to the slowness
vector components rather than with respect to the wavefront normal components. Polar-
ization components are, however, homogeneous functions of zero degree with respect to the
normal vector. Using the chain rule

∂gi
∂pj

= ∂gi
∂nk

∂nk
∂pj

= v
∂gi
∂nj
− v2 ∂gi

∂nk
nkpj , i, j = 1, 2, 3, (B.11)

and the Euler’s theorem for homogeneous functions, ∂gi
∂nk

nk = 0 in this case, we conclude
that the derivatives are proportional. Finally,

∂gi
∂pj

= v
∂gi
∂nj

= v
2∑

α=1

∂gk
∂nj

g
(α)
k g

(α)
i = (BŴ T )ij , i, j = 1, 2, 3. (B.12)

For the perturbation by anisotropic model, we need derivatives of the polarization vector
with respect to the normalized elastic moduli. We again consider the Christoffel eigenvalues
and eigenvector problem

aijklnjnkgl = v2gi, i = 1, 2, 3. (B.13)

However, since we are going to compute derivatives with respect to single components aαβγδ,
we have to relax the stiffness tensor symmetries. Which means that for the eigenvalue we
have to use exactly as it follows from eq. (B.13), v2 = aijklnjnkgigl, without transposing
the indices. Otherwise, one could end up with erroneous consequences. Differentiating the
Christoffel equation in a form relating the elastic moduli and the wavefront normal and
polarization components

aijklnjnkgl = amjklnjnkgmglgi, i = 1, 2, 3, (B.14)

with respect to a component aαβγδ leads to a final inhomogeneous algebraic system:

(aijklnjnk − v2δil)
∂gl

∂aαβγδ
= gαnβnγgδgi − δiαnβnγgδ, i, α, β, γ, δ = 1, 2, 3. (B.15)
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B.2 Initial conditions for the kinematic perturbations

Again, the determinant is zero and the right-hand side is orthogonal to the eigenvector g.
Computing the dot product of eq. (B.15) with the secondary eigenvectors gives

∂gi
∂aαβγδ

g
(ε)
i = g(ε)

α pβpγgδ
v2

v2 − (v(ε))2 , α, β, γ, δ = 1, 2, 3. (B.16)

Eventually,

∂gi
∂aαβγδ

=
2∑
ε=1

∂gj
∂aαβγδ

g
(ε)
j g

(ε)
i = Biαpβpγgδ, i, α, β, γ, δ = 1, 2, 3. (B.17)

Note, it is crucial that the eigenvalues are assumed isolated. The given formulas are
not valid in the case of S-wave degeneracy and may work unstable in cases close to the
degeneracy.

B.2 Initial conditions for the kinematic perturbations
We will keep the initial ray point fixed since such a condition takes place in seismic inversion
with back propagation we are working on (Znak et al., 2019).
As previously mentioned, physically reasonable initial conditions for the perturbations

of ray and slowness vector are restricted with the perturbation of eikonal equation (3.44).
Particularly, if the initial point of the ray is kept fixed, 4x(t0) = 0 and the equation for
perturbed eikonal at the initial time t0 reduces to

(4p,u) = −4v
v

(B.18)

imposing a restriction on the projection of the initial slowness vector perturbation. This
projection to the direction of the unperturbed ray is determined with the anisotropic model
perturbation at the initial ray point.
Thus, choosing remaining components orthogonally to the unperturbed ray is an option

available in formulation of this perturbation problem. Equivalently, this option may be for-
mulated in terms of the wavefront-orthonormal projections of the slowness vector perturba-
tion, 4pq1 and 4pq2. Since 4n(t0) = (4x(t0), en(t0)) = 0 for the problem with fixed initial
ray point, the wavefront-orthonormal projections are equal to the wavefront-orthonormal
perturbations at the initial time (see eqs 3.54 and 3.56):

qα = 4xqα = 0, pqα = 4pqα, α = 1, 2. (B.19)

Unit vectors in the ray-orthogonal plane u⊥1 and u⊥2 may be defined with the wavefront-
orthonormal basis as follows:

u⊥α = veα − uqαen√
v2 + (uqα)2

, α = 1, 2. (B.20)

Using eq. (3.49), we can relate the ray-orthogonal projections and the wavefront-orthonormal
perturbations at the initial time:

(4p,u⊥α ) =
v3pqα + uqα(4v − vuqβp

q
β)

v2
√
v2 + (uqα)2

, α = 1, 2. (B.21)
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When no model perturbation is present at the initial ray point, the projection (4p,u)
has to vanish. For the isotropic media, this statement reflects the fact that the perturbation
of the constant length vector, u = p, is orthogonal to this vector. In the anisotropic case, it
corresponds to another fact that the ray velocity vector is orthogonal to the slowness vector
surface.
When the anisotropic model is perturbed at the initial point of the ray, more options

are available. For instance, one could be interested in a perturbed ray that emerges with
the same direction of the wavefront normal as the reference one. In this case, perturbation
of the slowness vector is directed along the normal and pq1 = pq2 = 0. Perturbation in the
anisotropic model affects dilation of the slowness vector in this case: (4p, en) = −4v

v2 .
In practice, there is a perturbation problem formulated provided that two Cartesian

components of the slowness vector are fixed at the acquisition surface. Such a formulation
arises in seismic inversion with back propagation, when the slowness vector components are
measured at the receiver side and considered fixed during inversion.
Let us assume that Cartesian components of the slowness vector, p1 and p2, are fixed.

To determine the initial values of the wavefront-orthonormal perturbations pq1 and pq2, we
consider a transformation from the Cartesian to the wavefront-orthonormal coordinates
applied to the slowness vector perturbation:

pq1
pq2

−uqαp
q
α

v − 4v
v2

 =


e11 e12 e13

e21 e22 e23

vp1 vp2 vp3




0
0
4p3

 . (B.22)

Regarding it as a linear algebraic system with respect to pq1, p
q
2, and 4p3,

1 0 −e13

0 1 −e23

uq1 uq2 v2p3




pq1
pq2
4p3

 =


0
0
−4vv

 , (B.23)

we conclude that its determinant represents the vertical component of ray velocity vector,
u3, and

pqα = − eα3
vu3
4v, α = 1, 2, 4p3 = − 1

vu3
4v. (B.24)

In practice, we most likely deal with rays which are not tangent to the acqusition surface
and u3 6= 0. However in anisotropic media, this may happen when horizontal slowness
vector components are not zero, for slowness vectors corresponding to the horizontally
extreme points of the slowness vector surface. It is an interesting example of peculiarity
when the standard first-order perturbation approach fails due to a root dependency between
the perturbed values and the parameter perturbations. Let us examine this peculiarity.
In isotropic media, tangent ray implies tangent slowness vector. It is impossible to turn

the full length of the slowness vector into the acquisition-surface component of the slowness
vector by an arbitrary velocity perturbation. It is allowed only on a greater slowness
sphere. Subtracting the unperturbed eikonal equation from the perturbed one yields 4p3 =
±
√
−24v

v3 , which is real only for negative values of 4v.
Standard first-order expansion of the eikonal equation (3.5) with a(1)

ijkl = aijkl +4aijkl,
p

(1)
i = pi+ δi34p3, and u3 = a3jklgjgkpl = 0 leads to an erroneous identity 4aijklgjgkpipl =
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0, which additionally indicates that the perturbation series needs to be accurately spec-
ified. If we now consider the perturbation parameter ε for the elastic moduli, a(1)

ijkl =
aijkl + ε4aijkl, we should substitute p(1)

i = pi +
√
εδi34p3 according to the previous ob-

servations. Collecting terms with ε0 again gives the unperturbed eikonal equation. Terms
with ε

1
2 vanish due to u3 = 0. Finally, collecting terms of the first-order yields consistent

asymptotics:

4p3 = ±

√√√√√√√√√−
3∑

i,j,k,l=1
4aijklgjgkpipl

3∑
i,j=1

a3ij3gigj

= ±

√√√√√√− 24v

v
3∑

i,j=1
a3ij3gigj

. (B.25)
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C Appendix for the Chapter 4

C.1 Derivation of the identification criterion of the edge
diffraction by dynamic ray tracing

We consider an edge as a smooth naturally parameterized curve x0(σ) in space and assume
it has a nonzero curvature at the normal-incidence-point, σ = σ0. The standard Frenet-
Serret basis on the edge consists of tangent t, normal n, and binormal b (Figure C.1). We
introduce ray-coordinates of the N- and NIP-wave, which are measured with respect to this
basis. For the N-wave, the second ray-coordinate γ2, shooting angle of the normal to the
wavefront ϕ, is computed with respect to the normal of the edge in the edge-orthogonal
plane:

eNn (0, ϕ, σ) = cosϕn(σ) + sinϕb(σ). (C.1)
Tracing rays from position xN (0, ϕ, σ) = x0(σ) with initial wavefront normals eNn (0, ϕ, σ)
yields a set of rays xN (τ, ϕ, σ), where the third ray-coordinate γ3 is the length parameter
of the edge. For the NIP-wave, the shooting position xNIP (0, ϕ, θ) = x0(σ0) is fixed and
the ray coordinates are the spherical angles ϕ defined in the same way as for the N-wave
and θ, a complementary shooting angle out of the edge-orthogonal plane:

eNIPn (0, ϕ, θ) = sin θ(cosϕn(σ0) + sinϕb(σ0)) + cos θt(σ0). (C.2)

Ray tracing yields a set of rays xNIP (τ, ϕ, θ). When σ = σ0 and θ = π
2 , the initial conditions

coincide, which leads to the common one-parametric family of rays:

xNIP (τ, ϕ, π/2) = xN (τ, ϕ, σ0), pNIP (τ, ϕ, π/2) = pN (τ, ϕ, σ0). (C.3)

We adhere the dynamic ray tracing formulated in the wavefront-orthonormal coordinates
(e.g., Červený, 2001). To find initial conditions for the dynamic ray tracing of NIP- and

NIP 

n 𝜎0 𝜎 

t 
b en𝑁 𝜑 

en𝑁𝐼𝑃 𝜃 

Figure C.1: NIP- and N-wave ray-coordinates measured with respect to the Frenet-Serret basis on
the edge.

109



C Appendix for the Chapter 4

N-wave along the zero-offset ray, we first specify the wavefront-orthonormal basis at the
initial moment of time:

e1(0) = eNIPn (0, ϕ, π/2) = eNn (0, ϕ, σ0),
e2(0) = t(σ0),
e3(0) = [e2(0), e1(0)], (C.4)

where brackets are used for the vector product. Further, we compute projections of the ray
and slowness derivatives onto the wavefront-orthonormal basis

Qij =
(
∂x
∂γj

, ei

)
, Pij =

(
∂p
∂γj

, ei

)
, i, j = 2, 3. (C.5)

at initial moment of time.
The NIP-wave is triggered by the point source, thus:

∂xNIP
∂ϕ

(0, ϕ, θ) = ∂xNIP
∂θ

(0, ϕ, θ) = 0, (C.6)

QNIPij (0) = 0, i, j = 2, 3. (C.7)

PNIP22 (0) =
(
∂

∂ϕ

eNIPn

v (xNIP , eNIPn ) , t(σ0)
)

(0, ϕ, π/2) = 0,

PNIP23 (0) =
(
∂

∂θ

eNIPn

v (xNIP , eNIPn ) , t(σ0)
)

(0, ϕ, π/2) = − 1
v (xNIP , eNIPn )(0, ϕ, π/2),

PNIP32 (0) =
(
∂

∂ϕ

eNIPn

v (xNIP , eNIPn ) ,
[
t(σ0), eNIPn

])
(0, ϕ, π/2) = 1

v (xNIP , eNIPn )(0, ϕ, π/2),

PNIP33 (0) =
(
∂

∂θ

eNIPn

v (xNIP , eNIPn ) ,
[
t(σ0), eNIPn

])
(0, ϕ, π/2) = 0, (C.8)

where v (x, en) stands for the phase velocity at a point x corresponding to the wavefront
normal direction en.
Initial conditions for the N-wave contain geometrical characteristics of the edge as a space

curve:
∂xN
∂ϕ

(0, ϕ, σ) = 0, ∂xN
∂σ

(0, ϕ, σ) = t(σ), (C.9)

QNi 2(0) = 0, QNi 3(0) = δ i 2, i = 2, 3; (C.10)

PN22(0) =
(
∂

∂ϕ

eNn
v (xN , eNn ) , t(σ)

)
(0, ϕ, σ0) = 0,

PN23(0) =
(
∂

∂σ

eNn
v (xN , eNn ) , t(σ)

)
(0, ϕ, σ0) = 0,

PN32(0) =
(
∂

∂ϕ

eNn
v (xN , eNn ) ,

[
t(σ), eNn

])
(0, ϕ, σ0) = 1

v (xNIP , eNIPn )(0, ϕ, π/2),

PN33(0) =
(
∂

∂σ

eNn
v (xN , eNn ) ,

[
t(σ), eNn

])
(0, ϕ, σ0) = sinϕ cosϕK(σ0) + T (σ0)

v (xNIP , eNIPn ) (0, ϕ, π/2) , (C.11)
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where the Frenet-Serret equations were used to introduce curvature K and torsion T of the
edge.
These initial conditions are valid for all rays in the common ray family, for each shooting

angle ϕ including the zero-offset ray. Note, initial geometrical spreading of both N- and
NIP-waves is zero: detQNIP (0) = detQN (0) = 0. The ray tube collapses when propagated
back for both the point source and the line source.
We will further use the matrices defining the wavefront curvature MNIP = PNIPQ

−1
NIP

and MN = PNQ
−1
N expressed in terms of the 4×4 upward dynamic ray tracing propagator

Π(t, 0) =
(
Q1(t, 0) Q2(t, 0)
P 1(t, 0) P 2(t, 0)

)
. (C.12)

QNIP (t) = Q2PNIP (0), PNIP (t) = P 2PNIP (0), MNIP = P 2Q
−1
2 . (C.13)

QN (t) = Q1QN (0) +Q2PN (0),
PN (t) = P 1QN (0) + P 2PN (0). (C.14)

Using symplecticity of the propagator, one can find an identity

P 1 = P 2Q
−1
2 Q1 −Q−1T

2 , (C.15)

which helps to transform PN :

PN (t) = −Q−1T
2 QN (0) + P 2Q

−1
2 QN (t). (C.16)

Therefore,
MN (t) = −Q−1T

2 QN (0)Q−1
N (t) +MNIP (t) (C.17)

and

det (MNIP (t)−MN (t)) = 1
v2 (xNIP , eNIPn )(0, ϕ, π/2) detQN (0)

detQNIP (t) detQN (t) = 0. (C.18)

If both NIP-wave and N-wave have no caustic at the time t, the left side of this equation
is defined and equals zero. It is an invariant for simultaneous point and line source wave
propagation.
Now we provide the derivation for the second-derivatives matrices of traveltimes in Carte-

sian coordinates. Transformation to the wavefront-orthonormal coordinates of the 3×3
Cartesian matrix of second traveltime derivatives in general anisotropic medium gives a
matrix

M (3×3) = HM̂ (3×3)HT = 1
v
·

 (dp
dt , e1

)
−
(
dp
dt ,

v⊥
r
v

)
+
(
v⊥r ,M

v⊥
r
v

) ((
dp
dt

)
⊥
−Mv⊥r

)T(
dp
dt

)
⊥
−Mv⊥r vM

 ,
(C.19)

where H is an orthogonal matrix with rows being wavefront-orthonormal basis vectors, vr is
ray velocity, ⊥ is used to denote a vector projected to the wavefront-tangent plane. Because
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we consider curvatures of two waves along the same ray, the following relations hold:

M
(3×3)
NIP −M

(3×3)
N =H

(
M̂

(3×3)
NIP − M̂

(3×3)
N

)
HT = (v⊥

r
v , (MNIP −MN )v⊥

r
v

) (
−(MNIP −MN )v⊥

r
v

)T
−(MNIP −MN )v⊥

r
v MNIP −MN

 , (C.20)

so that
det

(
M

(3×3)
NIP −M

(3×3)
N

)
= det

(
M̂

(3×3)
NIP − M̂

(3×3)
N

)
= 0. (C.21)

Moreover, this holds for any two wavefronts on a coinciding ray.
Now we show that a more specific identity for 2×2 Cartesian matrices is present on a

common ray for two wavefronts with vanishing geometrical spreading at one point (one of
them must be a point source), as in the case of the NIP- and the N-front. We can represent
the residual matrix as follows:

M
(3×3)
NIP −M

(3×3)
N =


− (vr,e2)

v − (vr,e3)
v

1 0
0 1

 (MNIP −MN )
(
− (vr,e2)

v 1 0
− (vr,e3)

v 0 1

)
. (C.22)

For the 2×2 Cartesian matrices, we use an inverse transformation:

M̂
(x,y)
NIP − M̂

(x,y)
N =

(
(e1)x (e2)x (e3)x
(e1)y (e2)y (e3)y

)(
M

(3×3)
NIP −M

(3×3)
N

)
(e1)x (e1)y
(e2)x (e2)y
(e3)x (e3)y

 . (C.23)

Substituting the factorized representation (C.22), we obtain a 2×2 transformation

M̂
(x,y)
NIP − M̂

(x,y)
N = H(x,y)T (MNIP −MN )H(x,y) (C.24)

with

H(x,y) =
(
− (vr,e2)

v (e1)x + (e2)x − (vr,e2)
v (e1)y + (e2)y

− (vr,e3)
v (e1)x + (e3)x − (vr,e3)

v (e1)y + (e3)y

)
. (C.25)

Recalling (C.18) we finally obtain

det
(
M̂

(x,y)
NIP − M̂

(x,y)
N

)
= 0. (C.26)

Analogous invariant relations take place for other pairs of coordinates as well:

det
(
M̂

(y,z)
NIP − M̂

(y,z)
N

)
= 0, det

(
M̂

(x,z)
NIP − M̂

(x,z)
N

)
= 0. (C.27)

The equations above represent the identification criterion for the edge diffraction, generally
formulated in the paper as det(M̂NIP − M̂N ) = 0.
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C.2 On regularity of a focusing curve

If NIP- and N-wave have no caustics at the acquisition point, the elements of the matrices
M̂NIP and M̂N are finite. In this case, the focusing curve is regular due to existence of
the unit length tangent with components ẋ and ẏ. We first consider the family of rays
common for the NIP- and the N-wave x(τ, ϕ, γ0). We also assume smoothness with respect
to ϕ, otherwise ẋ, ẏ don’t exist at a cusp of the wavefront. γ0 is the fixed value of the
third ray-coordinate: for the N-wave – a length parameter of edge, for the NIP-wave – a
complementary shooting angle of slowness out of the edge-orthogonal plane. An implicit
equation for the traveltimes of each ray given as

z(τ, ϕ, γ0) = 0 , (C.28)

defines a function if ∂z
∂τ = (vr)z 6= 0, where vr is a vector of ray velocity. Using the ray

tracing system (see e.g., Červený, 2001) implies existence of a function τ = τ(ϕ) when the
emerging ray is not tangent to the surface:

dτ

dϕ
= − 1

(vr)z
∂z

∂ϕ
. (C.29)

Therefore, we can construct the focusing curve parameterized with the ray-coordinate ϕ:

x = x(τ(ϕ), ϕ, γ0), y = y(τ(ϕ), ϕ, γ0). (C.30)

The focusing curve becomes irregular at a point when the derivatives

dx

dϕ
= ∂x

∂ϕ
+ ∂x

∂τ

dτ

dϕ
= ∂x

∂ϕ
− (vr)x

(vr)z
∂z

∂ϕ
,

dy

dϕ
= ∂y

∂ϕ
+ ∂y

∂τ

dτ

dϕ
= ∂y

∂ϕ
− (vr)y

(vr)z
∂z

∂ϕ
(C.31)

vanish. In this case, the ray Jacobian (transformation from the ray-coordinates to the
Cartesian coordinates) equals zero:

J =

∣∣∣∣∣∣∣∣
∂x
∂τ

∂x
∂ϕ

∂x
∂γ

∂y
∂τ

∂y
∂ϕ

∂y
∂γ

∂z
∂τ

∂z
∂ϕ

∂z
∂γ

∣∣∣∣∣∣∣∣ = ∂z

∂ϕ

1
(vr)z

∣∣∣∣∣∣∣∣
(vr)x (vr)x ∂x

∂γ

(vr)y (vr)y ∂y
∂γ

(vr)z (vr)z ∂z
∂γ

∣∣∣∣∣∣∣∣ = 0. (C.32)

Therefore, if focusing curve is irregular there is a caustic of N- and also of NIP-wave. Vice
versa, if both N- and NIP-waves have no caustics, the focusing curve is regular.

C.3 Geometrical spreading of reflected wave at zero offsets

In this appendix, we recapitulate derivation of equation (4.12) for the two-way zero-offset
geometrical spreading (Equations 14 and 24 in Hubral (1983)). We first establish a rela-
tion between the second-derivatives of traveltime matrix of the reflected wave, which are
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expressed by the curvature matrices of NIP- and N-waves. We follow the approach formu-
lated in Krey (1983). Our derivations are however based on the CRS approximation for the
sake of simplicity. The parabolic CRS approximation for reflected traveltimes reads as:

t = t0 + 2(p,4xm) +
(
h, M̂NIPh

)
+
(
4xm, M̂N4xm

)
. (C.33)

Considering a special direction when 4xm = h allows for computing two-point traveltime
between a central midpoint xs = x0 and a point xr = x0 + 24xm:

t(x0 + 24xm,x0) =

t0 + 2(p,4xm) +
(
4xm,

(
M̂NIP + M̂N

)
4xm

)
. (C.34)

Expanding the two-point traveltime and cancelling out zero- and first-order terms provides
a relation valid for an arbitrary direction of 4xm:( 4xm

||4xm||
, M̂
4xm
||4xm

||
)

=
( 4xm
||4xm||

,
1
2
(
M̂NIP + M̂N

) 4xm
||4xm||

)
. (C.35)

Since the direction is arbitrary and the matrices are symmetric, the following applies:

M̂ = 1
2
(
M̂NIP + M̂N

)
. (C.36)

Analogously, one can obtain identities for every pair of Cartesian coordinates. The identity
thus holds for the whole 3×3 second-derivatives of traveltime matrices, and, consequently,
for the 2×2-matrix in the wavefront-orthonormal coordinates:

M = 1
2 (MNIP +MN ) . (C.37)

Applying the derivation from Appendix A (formula C.17) but for the NIP-wave coupled
with the reflected wave yields

M(t) = −Q−1T
2 Q(0)Q−1(t) +MNIP (t). (C.38)

Comparing (C.37) with (C.38) followed by computing determinant provides

detQ = 4 detQ(0)
detQ2 det(MNIP −MN ) . (C.39)

detQ(0) is a value of the geometrical spreading just after the reflection. Right before the
reflection, geometrical spreading is equal to 1

v2 detQ2 due to the reciprocity of the relative
geometrical spreading detQ2 (e.g., Červený, 2001). The geometrical spreading undergoes
a sign change when incident wavefront is tangent to the interface: detQ(0) = − 1

v2 detQ2.
Finally, we obtain:

detQ = − 1
v2

4
det(MNIP −MN ) , (C.40)

which corresponds to the equation 14 in Hubral (1983).
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To explain the sign change, we consider an incident x(0)(t, γ2, γ3) and reflected x(1)(t, γ2, γ3)
set of rays. Incident rays touch the reflected ones on the interface at the corresponding in-
cidence time:

x(0)(t(γ2, γ3), γ2, γ3) = x(1)(t(γ2, γ3), γ2, γ3). (C.41)

Differentiating the identity with respect to the ray-coordinates and accounting for the fact
that normal-incidence ray has minimal time, leads us to conclusion that the whole vector
remains continuous:

∂x(0)

∂γi
= ∂x(1)

∂γi
, i = 2, 3. (C.42)

However, if we aim at preserving the orientation of the basis after reversing of the wavefront
normal, we should choose the basis vectors in a way they undergo a jump. For instance,
we choose e(1)

2 = e(0)
3 and e(1)

3 = e(0)
2 , which together with condition (C.42) and definition

(C.5) results in

Q(0) = PQ(1), P =
(

0 1
1 0

)
, detQ(1) = −detQ(0). (C.43)
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D.1 NIP-wave theorem for polarization vector
In this section, we provide formulas for the polarization derivatives with respect to the
midpoint coordinate and the half-offset in isotropic media. We consider monotypic waves
only and also do not acknowledge the free surface. The formulas are given in terms of the
natural representations (see Section 5.4).
First, we look upon the P-wave polarization. Considering a zero-offset experiment pro-

vides a way to express the reflected-wave polarization in terms of the exploding-reflector
traveltimes (N-wave):

gP (x0,4xm, 0) = −vP (x0 +4xm, 0)∇tPN (x0 +4xm, 0). (D.1)

Thus, the derivative of the reflected-wave polarization with respect to the midpoint coor-
dinate is equal to a space derivative of the N-wave polarization:

∂4xmgP (x0, 0, 0) = −
(
vP

(
∂xx

∂xz

)
tPN + ∂xvPpP

)
= ∂xgPN . (D.2)

We then consider a CMP experiment in order to get the polarization derivative with
respect to the half-offset, i.e., we set the midpoint displacement to zero. Polarization vector
in this case can be expressed in terms of the two-point reflected-wave traveltime:

gP (x0, 0, h) = −vP (xr)∇xr tP (xr; xs). (D.3)

According to the definition (5.1), components of the source-position vector, xs, and receiver-
position vector, xr, are related to the common-midpoint method coordinate, xm = x0, and

𝑥𝑚 

−g𝑁𝐼𝑃𝑃
 ℎ ℎ 

−g𝑃 𝑥𝑠 𝑥𝑟 
NIP 

Figure D.1: NIP-wave theorem illustration. Reflected wave (solid rays) is approximated by the
NIP-wave (dashed rays) in a sense of traveltime and polarization.
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the half-offset, h, as xs = x0 − h, xr = x0 + h, zs = zr = 0. Differentiating eq. (D.3) with
respect to the half-offset leads to an expression containing the second-order derivatives of
the two-point traveltime:

∂hgP (x0, 0, 0) = −∂h

(
vP (x0 + h, 0)∂xr tP (x0 + h, 0;x0 − h, 0)
vP (x0 + h, 0)∂zr tP (x0 + h, 0;x0 − h, 0)

)∣∣∣∣∣
h=0

=
(
vP (x0) (∂xsxr − ∂xrxr)− ∂xvP (x0)∂xr
vP (x0) (∂xszr − ∂xrzr)− ∂xvP (x0)∂zr

)
tP (x0; x0). (D.4)

The first-order derivatives constitute the slowness vector of the zero-offset ray:

∂xr tP (x0; x0) = pPx , ∂zr tP (x0; x0) = pPz . (D.5)

We have to investigate the value of two-point traveltime Hessian,

HP (xr; xs) =


∂xrxr ∂xrzr ∂xrxs ∂xrzs
∂zrxr ∂zrzr ∂zrxs ∂zrzs
∂xsxr ∂xszr ∂xsxs ∂xszs
∂zsxr ∂zszr ∂zsxs ∂zszs

 tP (xr; xs), (D.6)

when source and receiver positions coincide, i.e., xr = xs = x0. For this, we follow the
approach given in the NIP-wave theorem proof by Chernjak and Gritsenko (1979). We
omit the wave type subscript in this derivations since they are common for both monotypic
waves. The two-point traveltime can be represented as a sum of one-way times:

t(xr; xs) = T (xs;xrefl(xr; xs)) + T (xr;xrefl(xr; xs)) = F (xr; xs;xrefl(xr; xs)), (D.7)

where xrefl(xr; xs) denotes a horizontal coordinate of the reflection point. This coordinate
becomes a function of source and receiver positions for a given reflector.

∇xr t = ∇xrF + ∂xreflF ∇xrxrefl,

∇xst = ∇xsF + ∂xreflF ∇xsxrefl. (D.8)

Due to the Fermat principle

∂xreflF (xr; xs;xrefl(xr; xs)) = 0 (D.9)

and, therefore,

∇xr t(xr; xs) = ∇xT (xr;xrefl(xr; xs)),
∇xst(xr; xs) = ∇xT (xs;xrefl(xr; xs)). (D.10)

Differentiating these identities once again yields a representation for the two-point travel-
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time Hessian:

H(xr; xs) =


(
∂xx ∂xz

∂zx ∂zz

)
T (xr;xrefl(xr; xs)) 0

0
(
∂xx ∂xz

∂zx ∂zz

)
T (xs;xrefl(xr; xs))


+
(
∂xr ∂zr ∂xs ∂zs

)T
xrefl(xr; xs)

·
(
∂xxreflT (xr;xrefl(xr; xs)) ∂zxreflT (xr;xrefl(xr; xs))

∂xxreflT (xs;xrefl(xr; xs)) ∂zxreflT (xs;xrefl(xr; xs))
)
. (D.11)

Now, we can return to the polarization derivative calculation (D.4). By means of the
two-point Hessian representation (D.11) we evaluate the following differences:

(∂xrxr − ∂xsxr)tP (xr; xs) = ∂xxTP (xr;xPrefl(xr; xs))
+ (∂xr − ∂xs)xPrefl(xr; xs)∂xxreflTP (xr;xPrefl(xr; xs)),

(∂xrzr − ∂xszr)tP (xr; xs) = ∂xzTP (xr;xPrefl(xr; xs))
+ (∂xr − ∂xs)xPrefl(xr; xs)∂zxreflTP (xr;xPrefl(xr; xs)). (D.12)

Position of the reflection point is reciprocal for any monotypic wave:

xPrefl(xr; xs) = xPrefl(xs; xr). (D.13)

This reciprocity results in an identity

(∂xr − ∂xs)xPrefl(x0; x0) = 0. (D.14)

Furthermore, setting xr equal to xs in eqs (D.12) yields relations to the NIP-wave:

(∂xrxr − ∂xsxr)tP (x0; x0) = ∂xxt
P
NIP ,

(∂xrzr − ∂xszr)tP (x0; x0) = ∂xzt
P
NIP . (D.15)

Finally,

∂hgP (x0, 0, 0) = −
(
vP

(
∂xx

∂xz

)
tPNIP + ∂xvPpP

)
= ∂xgPNIP . (D.16)

We call this identity the NIP-wave theorem for polarization vector. It states that at the
zero offset, the derivative of the reflected-wave polarization with respect to the half-offset
is equal to the spacial derivative of the fictitious NIP-wave polarization.
NIP-wave theorem for traveltimes (Chernjak and Gritsenko, 1979; Hubral and Krey, 1980)

states that reflected-wave traveltimes can be approximated up to the second order with a
sum of traveltimes of two NIP-wave branches if offsets are small. Both of the statements are
illustrated in Fig. D.1. In terms of the second-order derivatives the theorem for traveltimes
means the following identity:

∂hht(x0, 0, 0) = 2∂xxtNIP .
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It remains valid in heterogeneous anisotropic media until the traveltime is smooth and
there is no focusing at the acquisition line (Fomel and Grechka, 2001). However, the term
NIP-wave itself is confusing since for general anisotropy a zero-offset ray is not necessarily
orthogonal to the reflector. Its extension to higher order derivatives is given by Fomel (1994).
Similarly, the NIP-wave theorem for polarizations can be formulated as an approximation
for small offsets. Polarization of reflected wave is approximated with polarization of the
NIP-wave up to the first order.
The derivation for S-waves is similar to the derivation for P-waves. The only difference

is the S-wave polarization given by a 90◦ clockwise rotation of the slowness vector:

∂4xmgS(x0, 0, 0) = R+
(
vS

(
∂xx

∂xz

)
tSN + ∂xvSpS

)
= ∂xgSN ,

∂hgS(x0, 0, 0) = R+
(
vS

(
∂xx

∂xz

)
tSNIP + ∂xvSpS

)
= ∂xgSNIP . (D.17)
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