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Abstrat

This work presents the strutural and magneti haraterization of platinum-

rih FexPt1−x nanopartiles, whih were prepared following a wet-hemial

organometali nanopartile synthesis by thermal deomposition in the pres-

ene of stabilizing olei aid. The behaviour of anisotropy and magneti mo-

ment of FexPt1−x nanopartiles is investigated ombining (quasi-)stati mag-

neti magnetization measurements with dynami suseptibility measurements

at gigahertz frequenies.

The strutural haraterization by TEM and XRD yield the presene of

hemially disordered spherial FexPt1−x nanorystals with a mean ore diam-

eter dp of about 4 nm and having a rather narrow log-normal size distribu-

tion. A platinum-rih omposition of the nanopartiles with x in the range

0.1 . . . 0.25 is indiated by the lattie onstant a0. The omposition of the

partiles ould be veri�ed by relating the Curie temperature determined from

ZFC magnetization measurements to the omposition. By annealing of the as

synthesized partiles at temperatures up to 800 K, no hemial ordering ould

be ahieved.

A log-normal distribution with mean anisotropy barrier energies EA about

300 K to 600 K is revealed from temperature dependent ZFC- and AC mag-

netization measurements, from whih an e�etive anisotropy onstants Keff of

about 105 J/m3
follows. High �eld (H = 10 kOe) magnetization measurements

M(T ) of FexPt1−x nanopartiles reveal Bloh type temperature dependent

magneti moments µp(T ) with muh smaller Bloh oe�ients than observed

in bulk systems. Mean partile moments µp(T = 0 K) in the range 500µB to

1000µB extrapolated to T = 0 K have been determined from magnetization

isotherms M(H) inorporating the Bloh type temperature dependene.

The isotropi g-fator determined by magneti resonane spetrosopy (MRS)

is linearly dependent on the omposition x of the FexPt1−x nanopartiles. The

dominating ontribution to the g-fator is given by the spin moment. To de-

sribe the strong shift of the resonane �eld Hres towards zero �eld and the

marked inrease of the line-width ∆Hpp observed in the MRS-spetra at lower

temperatures, di�erent models based on the phenomenologial Landau-Lifshitz

and Gilbert line shape models have been implemented and analysed.



The mean anisotropy �eld HA ould be determined from the shift of the res-

onane �eld Hres using an analytial expression desribing Hres(HA) obtained

from energy minimization of the free energy inluding �eld and anisotropy en-

ergy. A more onvining desription desribing the full measured line shapes

ould be ahieved introduing a omplex damping into the basi Landau-

Lifshitz model.

magneti nanopartiles, iron-platinum aloys, magneti resonane spetrosopy,

magnetization dynamis, magnetorystalline anisotropy, line-shape analysis



Zusammenfassung

Im Shwerpunkt dieser Arbeit stand die Untersuhung der statishen und dy-

namishen magnetishen Eigenshaften nass-hemish hergestellter FexPt1−x

Nanopartikel mit organisher Umhüllung. Das magnetishe Verhalten von An-

isotropie und magnetishem Moment in FexPt1−x -Nanopartikeln wurde an-

hand von (quasi-)statishen Magnetisierungsmessungen und Messungen der

transversalen dynamishen magnetishen Suszeptibilität im Bereih von Mi-

krowellenfrequenzen ermittelt.

Die strukturelle Charakterisierung mittels TEM und XRD ergab das Vor-

liegen von hemish ungeordneten sphärishen FexPt1−x Nanokristallen mit

einem mittleren Durhmesser von 4 nm und shmaler Log-Normal Gröÿen-

verteilung. Die Gitterkonstanten a0 deuten auf eine Platin-reihe Zusammen-

setzung der FexPt1−x Nanopartikel mit x im Bereih 0.1 . . . 0.25 hin. Diese

wurde über die Curie Temperatur, die aus magnetishen ZFC-Messungen an

den vorhandenen FexPt1−x Nanopartikeln abgeleitet wurde, präzise ermittelt.

Mit dem Heizen der Proben bis hoh zu Temperaturen von 800 K konnte keine

hemishes Ordnen der FexPt1−x Partikel erzielt werden.

Aus ZFC- und AC-Messungen ergab sih eine Log-Normal Verteilung der

Anisotropieenergiebarrieren mit mittleren Energien von 300 K bis zu 600 K,

aus der eine e�ektive Anisotropiekonstante Keff ≈ 105 J/m

3
folgt für die

4 nm FexPt1−x Nanopartikel. Hohfeld-Magnetisierungsmessungen M(T,H =

10kOe) der FexPt1−x Nanopartikel zeigen Blohshes Temperaturverhalten der

magnetishen Momente, allerdings mit deutlih geringeren Blohkoe�zienten

als in bulk Systemen beobahtet wird. Aus den Magnetisierungsisothermen

wurden mittlere Partikelmomente µp(T = 0) im Bereih 500 µB bis 1000 µB

ermittelt.

Mit der Magnetisher Resonanzspektroskopie bei Raumtemperatur wurde

der isotrope g-Faktor bestimmt, der linear mit der Komposition x der FexPt1−x

Nanopartikel abnimmt. Dabei trägt das Spinmoment den gröÿten Anteil am g-

Faktor. Die Temperatur-abhängigen Resonanzspektren zeigen mit abnehmen-

der Mess-Temperatur eine starke Abnahme der Resonanzfeldstärke Hres bei

gleihzeitig deutliher Zunahme der Linienbreite∆Hpp. Um dieses Verhalten zu

beshreiben, wurden die phänomelogishen Landau-Lifshitz und Gilbert Mo-

delle zur Beshreibung der Linienform erweitert und analysiert. Dabei konnte



ein analytisher Ausdruk aus einer Energieminimierung unter Berüksihti-

gung von Feld- und Anisotropiebeiträgen gefunden werde, um das mittlere

Anisotropiefeld HA aus der Vershiebung von Hres zu berehnen. Darüber hin-

aus wurde ein Landau-Lifshitz Ansatz mit komplexer Dämpfung vorgestellt,

der eine überzeugende Beshreibung der Linienform der FexPt1−x Nanopartikel

erlaubt.

Magnetishe Nanopartikel, Eisen-Platin Verbindungen, Magnetishe Reso-

nanz Spektroskopie, Magnetisierungsdynamik, magnetokristalline Anisotropie,

Linienformanalyse
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Chapter 1

Introdution

Sine the 1980s nanotehnology has ome to be one of the most exiting and

propelling interdisiplinary researh areas [1℄. Originally intended to build

mahines on the sale of moleules, the meaning of nanotehnology shifted

more and more in the following years to the development of systems smaller

than 100 nanometers with novel physial, hemial or biologial properties [2℄.

Out of these systems, magneti nanopartiles emerged from 2000 onwards as

a lass with ontinuously growing researh e�ort, see Fig. 1.1.

Currently, magneti nanopartiles are of intense interest for a variety of ap-

pliations, not only for the general miniaturization of devies, but beause their

physial properties may dramatially deviate from their bulk ounterparts,

whih an be asribed to two harateristi features of magneti nanopartiles,

namely single domain ferromagnetism and superparamagnetism. For this, not

only the nanometre size is responsible, but espeially the magneti anisotropy

of the material onstituting the magneti nanopartiles.

Therefore, muh researh has been related to binary transition-metal sys-

tems like FePt, CoPt and FePd with their huge magnetorystalline anisotropy

energy, whih is in the order of 106 J/m3
. While �rst researh was foused on

the magnetism of these systems in thin-�lms, it was with the presentation of a

novel wet-hemial preparation route by Sun et. al. [4℄ in 2000, that espeially

magneti nanopartiles of FePt beame promising andidates for ultrahigh-

density magneti reording media. Even today this interest is still going on to

improve the understanding of the omplex magnetism in FexPt1−x magneti

nanopartiles, as is doumented by the number of publiations oping with

1
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Figure 1.1: Yearly number of itations ontaining (left) ombinations of the

keywords magneti nanopartiles and iron-platinum and (right) iron-platinum

with either magneti nanopartiles, thin �lms, reording media, or biomedial

appliations. The ounts were determined by Web of Siene online queries [3℄

using the keywords as searh items.

this topi, as displayed in Fig. 1.1.

FexPt1−x an be prepared over the ontinuous range of solid solutions, and

both stoihiometri and non-stoihiometri alloys with various degrees of hem-

ial order exist. Of the three ordered stoihiometri phases � Fe3Pt, FePt,

FePt3 � the equiatomi FePt shows the largest anisotropy energy with values

up to 6 · 106 J/m

3
. This extremely large value is almost two orders of mag-

nitude larger than the one found for the disordered f phase, 1 · 105 J/m

3

[5℄.

The on�nement of the geometrial extension entails a ompliated intera-

tion of the magneti and eletroni strutures in FexPt1−x nanopartiles with

tremendous onsequenes for the magneti properties ompared to those mea-

sured and alulated in bulk systems. Of partiular interest is the interplay
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between e�etive magneti anisotropy generated by the rystal struture and

shape of the nanopartiles and magneti moment µp related to the internal

magneti struture of the partile. But not only internal struture and param-

eters are of importane. The nanopartile physis depends strongly on external

parameters suh as temperature and external magneti �eld. Furthermore, the

time sale of an experiment has a great impat on the observed behaviour of

magneti nanopartiles. On the other hand, the appropriate hoie of these

external parameters allows one to isolate an e�et of interest without being

disturbed by other properties. So is the in�uene of magneti anisotropy in

nanopartiles strongly redued by thermal �utuations at high temperatures.

This work presents a omprehensive study of the magneti behaviour of

hemially disordered platinum-rihFexPt1−x nanopartiles. The aim is to om-

bine magneti suseptibility measurements, whih re�et an integral (quasi-)

stati magneti �ngerprint with mirowave resonane spetrosopy probing the

dynami magneti properties of the loal magneti and eletroni environment

of FexPt1−x nanopartiles. To this end the in�uene of anisotropy and mag-

neti moment on the stati and dynami properties in FexPt1−x nano-partiles

is determined.

The struture of this work is organized as follows. In hapter 2, the theoret-

ial groundwork omprising the magnetism of nanopartiles and fundamentals

of magneti resonane spetrosopy are presented. In hapter 3, the strutural

and magneti properties of the binary transition-metal ompound Fe-Pt to-

gether with experimental details of the utilized measurement tehniques are

olleted. Chapter 4 �rst presents the results of the strutural haraterization

of the FexPt1−x nanopartiles. Then, the quasi-stati magneti behaviour of

FexPt1−x nanopartiles is analysed, espeially the distribution of anisotropy

energy barriers and the determination of the mean magneti moment µp. In

hapter 5 the dynamis of the magnetization at mirowave frequenies is in-

vestigated, for whih a desription of the observed temperature dependent

magneti resonane spetra is presented. Summary and onlusions are given

in hapter 6.
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Chapter 2

Fundamentals

In this hapter, some fundamentals of the magnetism of magneti nanoparti-

les will be presented. First, the main interations and energies responsible for

the magneti behaviour observed in interation-free magneti nanopartiles are

introdued. After this, the general magneti properties of magneti nanopar-

tiles merged under the notion superparamagnetism are desribed. Hereby,

(quasi-)stati and dynami aspets of the magnetism are onsidered separately.

Furthermore, the basi theory of magneti resonane absorption of magneti

nanopartiles is depited sine it is the main experimental tehnique used in

this work. Finally, several strutural and magneti properties of the binary

iron-platinum system are desribed for bulk and nanopartiular FexPt1−x .

2.1 Magnetism of magneti nanopartiles

2.1.1 Magneti interations and energies

The magnetism in a magneti nanopartile is a olletive phenomenon of the

eletroni spins; there are di�erent ways for the magneti moments to om-

muniate with eah other. Some relevant mehanisms for possible interations

are summarized in this setion.

Exhange interation In a magneti nanopartile, the exhange interation

is responsible for the oupling of typially 102 to 104 atomi magneti moments

to form one giant magneti moment µp. The exhange energy of two eletrons

5
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with spin operators Ŝ1 and Ŝ2 is given by

Eex = −2J12Ŝ1 · Ŝ2, (2.1)

where J12 is the exhange integral, whih for J12 > 0 leads to parallel alignment

of the spins, e. g. to ferromagneti ordering. Sine J12 is vanishing exept for

neighbouring eletrons, the exhange interation is very short ranged. How-

ever, its magnitude in the order of 10−2
(≈ 100 K) eV leads to magneti long

range ordering of magneti moments below a ritial temperature. In a on-

tinuum approximation of the rystal the exhange energy an be expressed

as

Eex = A
∫

dV (~∇ · ~µ)2, (2.2)

with the exhange onstant A = 2JS2p/a , where J is the exhange integral

(now with ontributions from mainly next-neighbour moments), a the distane

between next neighbours and p the number of sites in the unit ell.

Spin-orbit interation The spin-orbit interation is the origin of anisotropy

in magneti nanopartiles. Generally, eletrons possess both an orbital mag-

neti moment ml (aused by their angular momentum due to the preession

around the nuleus) and an spin magneti moment ms (due to their intrinsi

spin momentum). The spin-orbit interation denotes the oupling of the spin

magneti moment with their own orbital magneti moment, and an be written

for hydrogen-like atoms with spin h̄~S and angular moment h̄~L as

ESO = β
〈~L · ~S〉

n3l(l + 1/2)(l + 1)
, (2.3)

where n and l denote the priniple and angular quantum numbers. The pre-

fator β = Z4e2h̄2/(4πǫ0a
3
0) ontains the atomi number Z and the Bohr radius

a0. The rystal struture symmetry is mediated by the spin-orbit interation

to the spin system, and is one origin of magnetorystalline anisotropy. This

anisotropy energy is larger for rystal latties of low symmetry and smaller

in latties of high symmetry, and depends on the state of hemial order.

Hene, the two orders of magnitude higher anisotropy onstant K ≈ 107 J/m3

appearing in the ordered L10 FePt phase when ompared to the unordered

phase (105 J/m3
) [6℄ are due to tetragonal distortion and atomi arrangement.
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Furthermore, the spin-orbit oupling is aountable for intrinsi magneti

damping. For atoms in a rystal lattie, the spin-orbit interation energy is of

the order 10−3
eV (≈ 10 K).

Magneti dipolar interation Two magneti nanopartiles with moment

~µ1 and ~µ2 at a distane ~r from eah other give rise to the magneti dipolar

interation energy

Edip =
µ0

4πr3

[
~µ1 · ~µ2 −

3

r2
(~µ1 · ~r)(~µ2 · ~r)

]
. (2.4)

While the dipolar interation in the order of 10−6
eV (≈ 12 mK) is not suf-

�ient to ause long range order of magneti moments, it is aountable for

demagnetizing �eld e�ets and spin waves in the long wave length regime. Fur-

thermore, at low temperatures it may ause partile-partile interations (spin

glass behaviour) when a oupling of moments between individual nanopartiles

is energetially favourable ompared to the thermal energy kBT .

Magnetorystalline and surfae anisotropy energy As mentioned be-

fore, the anisotropy is aused by the spin-orbit interation, whih projets the

rystal symmetry of the nanopartiles onto the magneti spin and orients the

eletron spin moments along an easy axis. In bulk materials, magnetorys-

talline and magnetostati energies are the main soure of anisotropy, whereas

in magneti nanopartiles partiles additional ontributions from shape and

surfae anisotropy may beome relevant.

Due to the magnetorystalline anisotropy energy, a nanopartile will, in

the absene of an external magneti �eld, align its magneti moment with

one of the easy axes, an energetially favourable diretion usually related to a

prinipal axes of the rystal lattie of the partile.

The simplest form of anisotropy is uniaxial anisotropy, where a nanopartile

has only one easy axis

Euni = K1V sin2 θ +K2V sin4 θ + · · · (2.5)

where K1 and K2 are the anisotropy onstants, V is the partile volume, and

θ is the angle between magnetization and easy axis diretion. The anisotropy

onstants possess a temperature dependeny [7℄, but at temperatures muh
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lower than the Curie temperature of the material they are onsidered as tem-

perature independent onstants. Usually, K2 and all higher order oe�ients

are negligible ompared to K1, so often only the �rst term with K1 = K is

inluded in alulations. Aording to Eq. 2.5 a positive value of K implies an

easy axis.

Thus, to �ip the magneti moment diretion from one easy diretion, θ = 0,

to the other, θ = π, an energy barrier KV at θ = π/2 has to be surmounted.

In a rystal struture with ubi symmetry the anisotropy is given by

Ecub = K1V (α2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1) +K2V α

2
1α

2
2α

2
3 + · · · (2.6)

Here, the diretion osines are de�ned as α1 = sin θ cosφ, α1 = sin θ sinφ,

α3 = cos θ, with θ being the angle between magnetization and z-diretion and

φ the azimuthal angle.

Espeially in on�ned nanopartiles systems, the (distorted) lattie stru-

ture and symmetry at surfaes and interfaes may lead via the spin-orbit ou-

pling to substantial anisotropy ontributions in addition to the magnetorys-

talline anisotropy. It is often onvenient to ombine surfae, interfae, and

magnetorystalline anisotropies into one e�etive anisotropy Keff . Further-

more, it turned out that for many magneti nanopartile systems � even with

ubi rystal struture � the (simple) uniaxial anisotropy Eq. 2.5 is su�ient

to desribe magnetorystalline, surfae, or shape anisotropy e�ets observed

in experiment.

Shape anisotropy Shape anisotropy ours for magneti nanopartiles whih

are not perfetly spherial, so that the demagnetizing �eld will not be equal for

all diretions reating one or more easy diretions. The demagnetizing energy

is formally given by

Edem = −1

2

∫
~µ · ~Bdem =

1

2
N̂ ~m( ~B). (2.7)

Here, the integral is very omplex to alulate even for simple homogeneously

magnetized sample geometries, where

~Bdem is the internal demagnetizing �eld

aused by unompensated magneti harges due to the nanopartile surfae.

Only for homogeneously magnetized ellipsoids Eq. 2.7 simpli�es as given in

the seond term with the dimensionless demagnetizing tensor N̂ [8℄. With the
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magneti moment pointing along one of the prinipal axes it an be diagonal-

ized with Nx +Ny +Nz = 1.

Zeeman energy The Zeeman energy results from the interation of a mag-

neti nanopartile with an external magneti �eld. It depends on the orienta-

tion of magneti moment ~µ with the magneti �eld

~B = µ0
~H ,

Emag = −(~µ · ~B), (2.8)

favouring a parallel alignment between moment and �eld diretion.

2.1.2 The e�etive �eld within a magneti nanopartile

From the funtional derivative of the total energy Etot the e�etive magneti

�eld

~Beff is found to be

~Beff = −MS
∂Etot

∂~µ
. (2.9)

For non-interating nanopartiles, the individual ontributions to Etot are given

by the Zeeman energy Emag, magnetorystalline and shape anisotropy energy

Eani, demagnetization energy Edem and exhange energy Eex

Etot = Emag + Eani + Edem + Eex. (2.10)

2.1.3 Superparamagnetism of magneti nanopartiles

Phenomenology of superparamagnetism

The de�nition of superparamagnetism is based on two harateristi obser-

vations. First, in thermodynamial equilibrium or at in�nite time sales, the

magnetization urve shows no hysteresis, no oerivity, and no remanene. Se-

ond, the magnetization urvesM(H, T = const) of an isotropi (without any or

with negligible anisotropy) magneti nanopartile ensemble taken at di�erent

temperatures T superimpose when plotted against H/T (see isotropi super-

paramagnetism in se 2.1.5). Often, a orretion for a temperature variation

of the spontaneous magnetization or the magneti moment of the magneti

nanopartile is required.

There are various models for the magnetization reversal of single-domain

partiles. The most prominent is the model of oherent rotation of magneti-

zation as developed by Stoner and Wohlfarth [9℄. This model, whih, stritly
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speaking, is valid only at T = 0 K, assumes non-interating partiles with

uniaxial anisotropy, in whih the magneti moments are parallel and rotate in

unison. In another model, valid at any �nite temperatures also, the moments

an overome the anisotropy energy barrier by thermal ativation, thus leading

to a swithing of the partile magnetization. Thus, the observed net magne-

tization of an nanopartile ensemble shows a time dependent relaxation. This

relaxation proess was �rst proposed by Néel [10℄, and further developed by

Brown [11; 12℄.

The time sales on whih a magneti nanopartile system is disturbed and on

whih its response is observed onstitute the main di�erene between dynami

and stati magnetization phenomena. When applying a quasi stati �eld, the

magneti moments appear to be always in equilibrium sine the dynamis

of the moments are in a muh faster time sale (typially nanoseonds to

milliseonds). When applying an alternating magneti �eld at a frequeny

lose to the resonane frequeny of the nanopartile system, the magneti

moments are resonantly disturbed from their equilibrium orientation.

Magneti moment µp and saturation magnetization MS of single do-

main nanopartiles

Below a ritial diameter dc, the formation of magneti domains separated by

domain walls whih is observed in bulk ferromagnets beomes unfavourable, so

the magneti nanopartile is said to be in a single domain state. This diameter

is approximately given by [13℄

dc ≈
72
√
AKu

µ0M2
S

, (2.11)

with the exhange onstant A, the uniaxial anisotropy onstant Ku and the

saturation magnetization MS. For L10-FePt partiles, ritial diameters dc

ranging from 50 nm up to 600 nm were reported [14; 15℄. Depending on

the size and material, magneti single domain nanopartiles onsist of 102 −
105 individual magneti moments oupled by the exhange interation to at

as one giant moment µp. The a partile with diameter d has a saturation

magnetization MS = µp/V = 6µp/(πd
3).

The magnetization behaviour of single domain magneti nanopartiles in

thermodynami equilibrium is idential to that of an atomi paramagneti



11

material, exept that muh larger magneti moments, and thus larger susep-

tibilities, are involved. These similarities oined the term superparamagnetism

for the thermal equilibrium behaviour.

Temperature dependent magneti nanopartile moment µp(T ) and

Curie temperature TC

At temperatures well below TC, the temperature dependene of the magneti

moment µp is asribed to spin-wave �utuations (propagating olletive exi-

tations of the oupling between the spin moments within one nanopartile) as

�rst desribed by Bloh [16℄, who found that

µp(T ) = µp(0)(1− BT β
C), (2.12)

where B is the Bloh onstant and β the Bloh exponent, whih has the value

β = 3/2 for bulk systems, but is found to derease with partile size [17℄.

Furthermore, from mean-�eld theory, the temperature dependent magneti

moment is given by

µp(T ) = µp(0)(1− T/TC)
α). (2.13)

Here, α = 0.5 is taken for T < TC, whih an only approximate the tem-

perature dependene of the magneti moment, in partiular for T/TC → 0.

An interesting funtion apable of desribing µp(T ) over the full temperature

range was proposed to be [18℄

µp(T ) = µp(0)
[
1− γ (T/TC)

3/2 − (1− γ) (T/TC)
5/2
]1/3

, (2.14)

where γ denotes the shape fator and is determined by the intensity of the

exhange interation. For T/TC → 0 Eq. 2.14 merges into the Bloh law

Eq. 2.12.

For nanopartiles a redution of TC with dereasing diameter has been re-

ported for ferromagneti Fe, Co and Ni nano�lms [19; 20℄ and Fe3O4 nanopar-

tiles [21℄.
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2.1.4 In�uene of the anisotropy on the magneti be-

haviour of magneti nanopartiles

Bloking temperature

The (e�etive) anisotropy of a magneti nanopartile generates an energy bar-

rier ∆E = KeffV (Eq.2.5 with θ = π/2) whih has to be overome by thermal

energy kBT to hange the magnetization diretion and thus to lead to �utu-

ations whih are of Neel-Arrhenius type

1

τ = τ0 exp
(
∆E

kBT

)
= τ0 exp

(
KeffV

kBT

)
, (2.15)

with the harateristi time τ0 � the attempt time � in the range 10−12
s to

10−9
s [10; 11℄. For τ0 an analytial expression an be given that is valid in

the absene of a magneti �eld and in the high barrier limit [12℄

τ0 =
1 + α2

αγ

√√√√πkBTM2
S

4K3
effV

=
1 + α2

αγ

√√√√πkBTµ2
p

4E3
A

. (2.16)

Here, α denotes the dimensionless Gilbert damping onstant and γ the eletron

gyromagneti ratio (see setion 2.2). The relation MS = µp/V has been used

to introdue EA = KeffV in the seond term. Though a variation of τ0 with

temperature and partile size is present in Eq. 2.16, it usually is taken to be

onstant.

For a given energy barrier and temperature, the time of measurement tm

determines the observed magneti behaviour of a magneti nanopartile en-

semble. For tm > τ , the individual magneti moments of a partile will �ip

several times during the measurement, so that the measured magnetization

will average to zero without any magneti �eld applied. One a magneti �eld

is present the nanopartile ensemble will approah a reversible magnetization

desribed by the Langevin funtion (see Eq.2.34 below). Due to the large num-

ber of magneti moments oupled within one partile, this behaviour is alled

superparamagnetism.

If tm < τ , the individual moments will not �ip during the measurement,

so that the measured magnetization will be the same as in the beginning of

1

Sine in this work only dried samples have been investigated, e�ets of Brownian re-

laxation, e.g. �utuations of the measured magneti moments due to rotation of omplete

partile, are not onsidered here.
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the measurement. As the partile moments are in a bloked state, hysteresis

e�ets with oerivity and remanene beome visible.

Therefore, the behaviour of magneti nanopartiles (superparamagneti or

bloked) always depends on the measurement time tm. The transition from su-

perparamagneti to bloked state ours at the so-alled bloking temperature

Tb, whih logarithmially depends on the measurement time

Tb =
KeffV

kB ln
(
tm
τ0

) ≈ KeffV

25kB
, (2.17)

for magneti measurements with typial tm ≈ 100 s duration.

Zero-�eld ooled and �eld ooled suseptibility

By zero-�eld ooled (ZFC) and �eld ooled (FC) magnetization urves, the

transition from bloked to superparamagneti behaviour of a magneti nanopar-

tile ensemble aording to their moment distribution and anisotropy an be

visualized. Typially, a ZFC magnetization urve is obtained by �rst ooling

in zero �eld from a high (room) temperature, where all partiles show super-

paramagneti behaviour, down to a low temperature. Then the magnetization

is measured in a small applied magneti �eld with stepwise inreasing temper-

atures up to room temperature. Subsequently, the FC magnetization urve is

obtained by measuring the magnetization in the same small applied magneti

�eld, now stepwise dereasing temperatures again. It is assumed that eah

magnetization measurement is taken after a pause time tm ≈ 100 s to settle

the temperature and to aquire the magnetization.

Following the pioneering work of Wohlfarth [22℄, the initial suseptibility

for a single nanopartile in the superparamagneti state is given as χsp =

µ0M
2
SV/(3kBT ) and in the bloked state χbl = µ0M

2
S/(3Keff). The transition

ours at the so-alled bloking temperature Tb(Eb), whih depends on the

energy barrier Eb = KeffV = Keff µp/MS given by the e�etive anisotropy Keff

and moment µp of the partile. Furthermore, it depends on the time sale of the

measurement so that TB(Eb) = Eb/(kB ln(tm/τ0)) = Keff µp/(MSkB ln(tm/τ0)).

Here, the small ontribution of bloked partiles, (Tb > T ), to χZFC is ig-

nored, while for superparamgneti partiles, (Tb < T ), TχZFC follows a Curie

law. At a given temperature T , only partiles with Tb ∼ T signi�antly on-

tribute to d(TχZFC). Thus, from a ZFC magnetization urve the distribution
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of energy barriers f(EA) an be obtained

f(EA) = kB ln(tm/τ0)
d(TχZFC)

dT
, (2.18)

where the observation time tm is in the order of 100 s.

The ZFC and FCmagnetization urves of a random-oriented, non-interating

nanopartile system may be alulated numerially, as proposed by Hansen and

Morup [23℄

MZFC(T ) =
µ0HM

2
S

3Keff

[
Ebm

kB

∫ T/Tbm

0

y

T
f(y)dy +

∫ ∞

T/Tbm

f(y)dy

]
; (2.19)

and

MFC(T ) =
µ0HM

2
S

3Keff

Ebm

kB

[∫ T/Tbm

0

y

T
f(y)dy +

∫ ∞

T/Tbm

yf(y)

Tb(yEbm)
dy

]
. (2.20)

They use the redued energy variable y ≡ Eb/Ebm, where Ebm is the median

energy barrier and introdue the volume weighted log-normal distribution of

energy barriers f(y) = (2π)−1/2(σy)−1 exp[− ln2 y/(2σ2)] with median at one.

Here, Tb(Eb) ≡ Eb/(kB ln(tm/τ0)), so that y ≡ Tb/Tbm. Di�erent other ap-

proahes exist [24; 25℄, a olletion of whih may be found in the appendix.

AC-suseptibility

Measuring the temperature dependene of the omplex AC suseptibility is

another ommon proedure to probe the dynami answer of magneti nanopar-

tiles to a small magneti �eld harmonially varying in time.

Arrhenius analysis of AC-data Based on the lassial Debye theory, the

real and imaginary parts of the omplex dynami suseptibility at a frequeny

ω are given by

χ′(ω) = χ0
1

1 + (ωτ)2
; (2.21)

χ′′(ω) = χ0
ωτ

1 + (ωτ)2
. (2.22)

where χ0 is the linear stati zero-�eld suseptibility (in the limit ω → 0)

of Np partiles with moment µp. The relaxation time τ is given by the

Arrhenius-Néel relaxation Eq. 2.15. In Eq. 2.22 the loss omponent χ′′(ω)
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has a maximum at ωτ = 1. By means of Eq. 2.15, this an be written

ω = τ−1 = τ−1
0 exp(−EA/(kBTω) and ast into the form [26℄

log(ω) = − EA

kB ln(10)

1

Tω
− log(τ0), (2.23)

where Tω is the temperature at the maximum of χ′′(ω). Aording to Eq. 2.23,

plotting the (logarithm of the) exitation frequenies ω as a funtion of the

inverse maximum temperature Tω of χ′′(ω) allows one to extrat the energy

barrier EA and the pre-fator τ0. Generally, an ensemble of magneti nanopar-

tiles exhibits a size distribution, while by Eq. 2.23 only one mean energy

barrier is obtained in the ase of a narrow size distribution. A more sophisti-

ated analysis resolving the omplete energy barrier distribution is presented

in the following paragraph.

Distribution of anisotropy energy barriers

For non-interating nanopartiles with random distribution of easy axes the

temperature dependent omplex AC-suseptibility χ(ω, T ) may be written as

[27; 28℄

χ(ω, T ) =
C

T

∫ ∞

0
dǫP (ǫ)ǫ

{
R′/R

1 + iωτ(ǫ)
+

1−R′/R

1 + iωτ⊥

}
, (2.24)

where C is the Curie onstant, and ω = 2πf = 2π/tm is the frequeny of the

AC-�eld. The omplex suseptibility is divided into longitudinal and transver-

sal ontributions. The longitudinal relaxation time ontant τ(ǫ) in the �rst

term in the brakets of Eq. 2.24 desribes just as in Eq. 2.22 the thermally

ativated oherent �ipping of the magneti moment between two energy min-

ima, for whih the Néel-Arrhenius ansatz Eq. 2.15 with the redued anisotropy

energy ǫ = EA/EA,m and the abbreviation σ = EA/(kBT ) is utilized

τ(ǫ) = τ0 exp
(
ǫEA,m

kBT

)
≡ τ0 exp(σ). (2.25)

The transversal relaxation time onstant τ⊥ in the seond term of Eq. 2.24

re�ets the dynamis of the magneti moment within one of the energy minima.

The transversal suseptibility is probed by magneti resonane spetrosopy,

see Se. 2.2.2. The ratio σ between anisotropy energy and thermal energy at

a given temperature determines the relative weights of both mehanisms and
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is given by the statistial fators

R(σ) =
∫ 1

0
dz exp(σz2); (2.26)

R′(σ) =
dR

dσ
=
∫ 1

0
dz z2 exp(σz2). (2.27)

Furthermore, a log-normal distribution P (ǫ) of the (redued) anisotropy energy

is inluded.

By deomposing Eq. (2.24) into real and imaginary parts, individual ex-

pressions for the dissipation and absorption are obtained

χ ′(ω, T ) = Re [χ(ω, T )] =

=
C

T

∫ ∞

0
dǫP (ǫ)ǫ

{
R′/R

1 + (ωτ(ǫ))2
+

1− R′/R

1 + (ωτ⊥)2

}
; (2.28)

χ′′(ω, T ) = Im [χ(ω, T )] =

=
C

T

∫ ∞

0
dǫP (ǫ)ǫ

{
ωτ(ǫ)R′/R

1 + (ωτ(ǫ))2
+
ωτ⊥1− R′/R

1 + (ωτ⊥)2

}
. (2.29)

Generally, the transversal relaxation time is assumed to be muh shorter

than the longitudinal τ⊥ ≈ τ0 ≪ τ(ǫ). Thus, for low measurement frequenies

ω the seond term in Eq. 2.24 an be negleted. Furthermore, τ(ǫ) varies

rapidly as ompared to ǫP (ǫ), so that under the integral of the imaginary part

χ′′(ω) the substitution an be employed [29℄

ωτ(ǫ)

1 + (ωτ(ǫ))2
≈ π

2
kBT · δ(ǫ− ǫω). (2.30)

Here, ǫω ≡ T/Tω = kBT (− ln(ωτ0))/EA,m is the largest relative energy barrier

that an be surmounted by thermally ativation within the given observation

time 2π/ω. With this the integration of Eq. 2.29 is arried out to yield

χ′′(ω, T ) =
π

2

kBC(T )

EB

R ′(ǫω)

R(ǫω)
P (ǫω)ǫω. (2.31)

This means in the absorption χ′′
the dynami ontribution P (ǫω)dǫ of the

anisotropy distribution is piked up. Exept for P (ǫω), the other fators in

Eq. 2.31 vary little as ompared to the distribution funtion. This inludes the

ratio R ′(ǫω)/R(ǫω), whih for EA,m/(kBTω) ≈ − ln(ωτ0) ≫ 1 is always lose to

one

R ′

R
= 1− kBTω

EA,m

. (2.32)
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Therefore, in a plot of χ′′(ω, T ) (measured for individual exitation frequenies

ω) as a funtion of the renormalized temperature −T ln(ωτ0) = ǫωEA,m/kB all

data should ollapse on a single urve, diretly providing the distribution of

anisotropy energy barriers

P (ǫω) = χ′′(ω,−T ln(ωτ0)). (2.33)

2.1.5 In�uene of the external magneti �eld on the mag-

neti behaviour of magneti nanopartiles

Isotropi superparamagnetism in a magneti �eld: Langevin-funtion

Well above the bloking temperature Tb, the magnetization of the nanopartiles

is reversible within the time of measurement, thus no hysteresis e�ets are

observed. Negleting the in�uene of any anisotropy the resulting orientation

of a magneti moment ~µ of a nanopartile in an external applied magneti

�eld

~H is determined by the ratio of Zeeman energy (see Eq. 2.8) tending to

align the moments with the �eld diretion and thermal energy kBT aiming

the equipartition of moment orientations at temperature T . The resulting

magnetization of an ensemble of magneti nanopartiles follows Boltzmann

statistis and is expressed by the Langevin funtion L(x) = coth(x) − 1/x.

Its argument is x ≡ µµ0H/(kBT ). Thus, the �eld dependent magnetization

urve of an ensemble of Np nanopartiles per kilogram measured at a onstant

temperature T , also known as magnetization isotherm, is given by

M(H) = Np µ

(
coth

(
µµ0H

kBT

)
− kBT

µµ0H

)
. (2.34)

Real nanopartile systems are never found to onsist of idential partiles, but

show variations in sizes and struture leading to a distribution of magneti

moments µ. This is aounted for by inorporating a log-normal distribution

P (µ) of the moments µ in Eq. (2.34)

P (µ) =
1√
2πσµ

exp

(
−(lnµ− ln µ̃)2

2σ2

)
, (2.35)
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with two harateristi parameters, the median µ̃ and the width σ of the

distribution

2

. Thus we obtain

M(H, T ) = Np

∫ ∞

0
µP (µ)

(
coth

(
µµ0H

kBT

)
− kBT

µµ0H

)
dµ+ χbgdH, (2.36)

where a linear suseptibility χbgd has been introdued to aount for any dia-

and paramagneti ontributions mainly from the inorgani shell of the nanopar-

tile. Equation 2.36 provides a ommon basis for the desription and analysis

of measured magnetization urves.

For µµ0H ≫ kBT the Langevin funtion beomes 1 and the saturation

value is approahed:

MS = Npµ̄, (2.37)

where the mean partile moment µ̄ = µ̃ exp(σ2/2) is related by the width σ

to the median µ̃ of the log-normal distribution, Eq. 2.35. In the linear regime,

for µµ0H ≪ kBT the Langevin funtion L is approximated by x/3 so that

M(H, T ) =
Npµ0H

3kBT

∫ ∞

0
µ2 P (µ)dµ =

Npµ̄
2µ0H

3kBT
exp(σ2). (2.38)

2.1.6 Behaviour of magneti nanopartiles in the pres-

ene of anisotropy and external magneti �eld

Anisotropi superparamagnetism

Upon dereasing the temperature, but still keeping it above TB, the in�uene of

the anisotropy on the magnetization urveM(H) an no longer be disregarded.

In order to failitate numeris, non-interating magneti nanopartiles with an

uniaxial anisotropy EA and randomly distributed easy axes are assumed. Thus,

the energy of a magneti nanopartile with a moment ~µ in a magneti �eld

~H

taking an uniaxial anisotropy of the partile into aount is given by

E(θ, α, φ, v) = −KV cos2 θ − µ(H‖ cos θ +H⊥ sin θ cos φ)

= −KvṼ cos2 θ − µH(cosα cos θ + sinα sin θ cos φ).(2.39)

Here, θ denotes the angle between easy axis and magneti moment diretion, as

de�ned in the spherial oordinate system displayed in Fig. 2.1. The volume V

2

The median of the log-normal distribution is not to be onfused with the mean diameter,

see appendix (B) for more details on this distribution B
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of the partile is expressed relative to the median volume v = V/Ṽ . In Eq. 2.39,

the �eld has been divided into a omponent parallel and perpendiular with

respet to the easy axis diretion. The �eld

~H is assumed to lie in the xz-plane

where cosφ = 1.

Figure 2.1: De�nitions of the angles used in the alulation of the magnetiza-

tion in the anisotropi superparamagneti regime.

Following Garia-Palaios [29℄, the partition funtion Z of a partile at an

individual angle α between external �eld and easy axis an be de�ned as

Z(H, T, α, v) =
1

2π

∫ π

0
dθ sin θ

∫ 2π

0
dφ exp

(
−E(α, θ, φ, v)

kBT

)
, (2.40)

while the assoiated free energy is given by F = −kBT lnZ. At equilibrium,

the probability distribution of magneti moment orientations is given by the

Boltzmann distribution P (α, cos θ, φ, v) = Z−1 exp(−E(α, θ, φ, v)/(kBT )).
From the partition funtion, the (equilibrium) magnetization M = Np〈~µ ·

~H〉eq of an ensemble of Np nanopartiles an be derived by the logarithmi

derivative

M =
Npµ

2

kBT

∂ lnZ
∂H

. (2.41)

The integration over φ an be performed by introduing the modi�ed Bessel-

funtion of order zero I0(y) = π−1
∫ π
0 dt exp(y cos t) [30℄ to obtain

Z(H, T, α) =
∫ π

0
dθ sin θ exp

(
v(
KṼ cos2 θ + µ̃H cosα cos θ)

kBT

)
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×I0
(
vµ̃H sinα sin θ

kBT

)
. (2.42)

Substituting the variable z = cos θ and thus dz = sin θ dθ, the integration over

θ may be written more ompatly as

Z(H, T, α, v) =
∫ 1

−1
dz exp

(
vKṼ z2 + vµ̃H cosα z

kBT

)

×I0
(
vµ̃H sinα

√
1− z2

kBT

)
. (2.43)

Then, the integration over α is exeuted

M(H, T, v) =
1

2
NpkBT

∫ π

0
dα sinα

∂ lnZ(H, T, α, v)

∂H
, (2.44)

where the integration over α for symmetry reasons an be redued to the

interval [0, π℄, leading to the fator 1/2.

Finally, a log-normal distribution for the partile volumes is used to alu-

late the magnetization of an ensemble of magneti nanopartiles

M(H, T ) =
∫ ∞

0
dvP (v)M(H, T, v). (2.45)

In Fig. 2.1.6, magnetization urves M(H, T ) (for the �xed volume v = 1)

aording to Eq. 2.44 for individual angles α are displayed together with the av-

eraged urve (red urve) and the Langevin funtion without anisotropy (blue).

This shows that the in�uene of the anisotropy leads to a derease of magneti-

zation in the mid-�eld range ompared with the isotropi Langevin urve. Fur-

thermore, with inreasing magneti �eld the anisotropi magnetization Eq. 2.44

approahes more and more the Langevin urve and �nally its saturation value.

The limit EA = 0: Isotropi superparamagnetism In ase of vanish-

ing anisotropy EA = 0, whih an be assumed if EA ≪ kBT , the partition

funtion Z does not depend on α, so α = 0 an be hosen (meaning that

H‖ = H and H⊥ = 0), so that the Bessel funtion beomes I0(0) = 1. Using
∫ 1
−1 dz exp(az) = a−1(exp(a)− exp(−a)) = a−1 2 sinh a the partition funtion

Eq. 2.43 beomes Z =
∫ 1
−1 dz exp

(
z µH
kBT

)
= 2kBT

µH
sinh

(
µH
kBT

)
. Therefore, for an

ensemble of Np partiles the Langevin expression Eq. 2.34 is reprodued

M(H, T ) = NpkBT
∂ lnZ
∂H

= Npµ

(
coth

(
µH

kBT

)
− kBT

µH

)
. (2.46)

Thus, the isotropi Langevin magnetization is obtained from the partition

funtion in the limiting ase of vanishing anisotropy.
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Figure 2.2: Magnetization urves aording to Eq. 2.43 for individual values of

the angle α and �xed v = 1 (no size distribution) for T = 30 K (left panel) and

T = 300 K (right panel) assuming an anisotropy energy of KṼ /kB = 1000 K.

Additionally,M(H, T ) after integration over α (straight red line) and isotropi

Langevin-magnetization (dotted blue line) are plotted.

2.2 Magneti resonane spetrosopy (MRS)

Magneti resonane spetrosopy (MRS) is a powerful spetrosopi tehnique

for probing the magnetization of magneti materials. It is similar to nulear

magneti resonane exept that the sample magnetization resulting from the

magneti moments of unpaired eletrons are probed ,rather than the atomi

nulear magneti moments. Due to the muh lower eletron mass, the reso-

nane frequeny is shifted towards mirowave frequenies (gigahertz). Para-

magneti resonane and ferromagneti resonane are the most prominent res-

onane absorption tehniques lassifying the type of magneti material under

investigation.

Paramagneti resonane An atom or moleule with unpaired eletrons

possesses a non-vanishing magneti dipole moment µ, whih is generated by

the angular momentum

~L and spin

~S

~µ = −µB(gS ~S + gL~L)/h̄, (2.47)

where gS ≈ 2.0023 and gL = 1 are the Landé-fators of spin and orbital

moment of an eletron. In a homogeneous magneti �eld

~Hres, the �eld will

exert a torque ~τ = ~µ× ~Hres on the moment, leading to a preession of ~µ about
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the �eld diretion at the Larmor frequeny ω

ω =
gµBHres

h̄
= γHres, (2.48)

with the gyromagneti ratio γ ≡ gµB/h̄ ontaining the e�etive g-fator, whih

re�ets the oupling of angular with spin moment. Quantum-mehanially, this

is equivalent to the e�et of splitting ∆E = gµBBres of the two degenerated

energy levels of the unpaired eletron moment ±1
2
mS by the stati magneti

�eld (Zeeman e�et).

In a basi setup for an MRS-experiment a mirowave resonant avity and

an eletromagnet are utilized. The resonant avity has a main eigenresonane

at a mirowave frequeny ωcav. A mirowave detetor is plaed at the end

of the avity. A magneti sample positioned in the avity plaed between

the poles of an eletromagnet providing a homogeneous quasi-stati magneti

�eld. This �eld is slowly swept while the resonant absorption intensity of

the mirowaves is deteted. When the Larmor preession frequeny of the

magneti moment and the resonant avity (eigenresonane) frequeny are the

same ω = ωcav, absorption of mirowave energy P by the sample takes plae,

whih is indiated by a derease in the intensity at the detetor.

Ferromagneti resonane Unlike in paramagneti materials, strong ex-

hange interations between individual spins are present in ferromagnet. This

results in a oherent preession of the spins, and thus of the total partile mo-

ment µ, if a magneti �eld is applied. The oupling of the (spin) moments due

to exhange interation, as well as magnetorystalline and shape anisotropies

aused by spin-orbit interation within a nanopartile, involve large internal

magneti �elds whih an be probed by MRS of a magneti material.

2.2.1 Phenomenologial equations of motion

The mirosopi origin of the damping is not ompletely understood in detail

and onstitues an ative area of researh. Possible relaxation mehanisms are

divided into intrinsi (spin-orbit interation) and extrinsi (magnon-magnon

sattering due to rystal imperfetions) proesses, but are hard to separate by

experiment. Hene, these are ommonly taken into aount by one e�etive

damping onstant αeff .
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In an MRS experiment, the preession of a partile moment ~µp in an e�etive

magneti �eld is desribed by the lassial equation of motion [31; 32℄

d

dt
~µp = γ ~Beff × ~µp + ~R, (2.49)

whih represents an undamped preession with the left hand side desribing

the temporal development of the magneti moment driven by the torque ating

on the moment on the right hand side. To aount for energy losses due to

interations of the moments with eah other (magnons) and the environment

(phonons) a damping term

~R is added to the right hand side of Eq. 2.49.

One approah for this damping is the Landau-Lifshitz damping given by

[33℄

~RL =
λL
MS

(
~Beff × ~µp

)
× ~µp

µp
, (2.50)

with damping frequeny λL = 1/τ , whih orresponds to an inverse relaxation

time. But this damping approah leads to the non-physial behaviour that

very large damping auses very fast preession of the moment. This problem

was irumvented by introduing a visous damping term [34℄

~RG = α
d~µp

dt
× ~µp

µp
, (2.51)

with α = λ/(γMS) being a dimensionless damping parameter. This approah

is referred to as the Landau-Lifshitz-Gilbert (LLG) equation.

2.2.2 Dynami suseptibility in MRS

The magneti resonane absorption signal is proportional to the imaginary

part of the transverse

3

dynami suseptibility χ. A oordinate system is ho-

sen where the stati magneti �eld omponent of

~H is along the z-axis, the

mirowave magneti �eld

~h = (hx, hy) lies in the perpendiular plane. Using

the Polder tensor method [35℄ the phenomenologial equations may be solved.

The magnetization response ~m = (mx, my) to the mirowave �eld

~h may be

expressed as

~m =


 χ −iκ
iκ χ


~h, (2.52)

3

See the seond term of Eq. 2.24. In the following the index ⊥ for the transversal

suseptibility χ⊥ will be omitted.
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where χ and κ desribe the response to the x- and y- omponents of

~h. For a

irularly polarized mirowave �eld h± = h0e
±iωt

, the dynami suseptibility

is given by χ± = χ∓κ = χ′
±− iχ′′

±. The ± signs stand for the two polarization

diretions and are usually referred to as resonant (or Larmor) and non-resonant

(anti-Larmor) polarization. For a linear polarized mirowave �eld h = h0 cosωt

applied along the x-axis, the omplex suseptibility is

χ = χ′ − iχ′′ =
1

2
(χ+ + χ−) =

1

2

[
χ′
+ + χ′

− − i(χ′′
+ + χ′′

−)
]
, (2.53)

so the absorption for linear and irular polarization are related by χ′′(H) =
1
2

[
χ′′
+(H) + χ′′

−(H)
]
.

2.2.3 Landau-Lifshitz and Gilbert line shape

Assoiated with the two phenomenlogial equations of motions Eq.2.49 - 2.51

are two individual omplex MRS-suseptibilities. So, for Landau-Lifshitz damp-

ing

~R = ~RL the two normal, irularly polarized modes for Np independent

nanopartiles per gram take the form

χL
±(H) = Npµpγ

1∓ iα

γH(1∓ iα)∓ ω
. (2.54)

Aordingly, for Gilbert damping

~R = ~RG the normal suseptibility follows as

χG
±(H) = Npµpγ

1

γH ∓ ω(1 + iαG)
. (2.55)

Using Eq. 2.53 the experimental, transverse suseptibility χxx = 1
2
(χ+ + χ−)

takes the form for Landau-Lifshitz damping

χL
xx(H) = Npµpγ

γH(1 + α2)− iαω

(γH)2(1 + α2)− ω2 − 2iαωγH
, (2.56)

and

χG
xx(H) = Npµpγ

γH − iαω

(γH)2 − ω2(1 + α2)− 2iαωγH
, (2.57)

for Gilbert damping

4

4

Alternatively, introduing the resonane �eld Hω = ω/γ eq. 2.56 and eq. 2.57 an be

written more ompatly

χL
xx(H) = Npµp

H(1 + α2)− iαHω

H2(1 + α2)−H2
ω − 2iαHHω

, (2.58)

and

χG
xx(H) = Npµp

γH − iαHω

H2 −H2
ω(1 + α2)− 2iαHHω

. (2.59)
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Taking the imaginary part the experimentally observed Landau-Lifshitz line

shape beomes

χ′′L(H) = Im[χL(H)]

= Npµpωγα
(γH)2(1 + α2) + ω2

(γH)4(1 + α2)2 + 2(ωγH)2(α2 − 1) + ω4
, (2.60)

and aordingly,

χ′′G(H) = Im[χG(H)]

= Npµpωγα
(γH)2 + ω2(1 + α2)

(γH)4 + 2(ωγH)2(α2 − 1) + ω4(1 + α2)2
, (2.61)

for the Gilbert damping

5

As an be seen in Eq. 2.60 - Eq. 2.61 both line shapes are very similar in

their mathematial struture, one main di�erene is that the fator 1 + α2
is

plaed at the external �eld H in the Landau-Lifshitz model, while it stands

with Hω = ω/γ in the Gilbert model. Formally, the Gilbert line shape eq. 2.57

an be obtained from the Landau-Lifshitz line shape eq. 2.56 by replaing the

gyromagneti ratio γ by γ/(1 + α2). For α≪ 1 both line shapes oninide.

In Se. 5 the behaviour of resonane �eld Hres and line-width ∆Hpp of

both line shape models are investigated in detail to desribe the temperature-

dependent behaviour of FexPt1−x nanopartiles found in the MRS-spetra.

2.2.4 Resonane onditions

Alternatively, the equation of motion an be expressed in terms of the free

energy F . The general resonane ondition (without damping) is then obtained

from the derivatives of the free energy density F (θ, φ) in spherial oordinates

with polar angle θ and azimuthal φ of the equilibrium magneti moment [36℄

ω =
γ

MS sin θ

√
FθθFφφ − F 2

θφ (2.64)

5

Again, using Hω = ω/γ eq. 2.56 and eq. 2.61 an be written more ompatly

χ′′L(H) = Npµpγ
2αHω

H2(1 + α2) +H2
ω

H4(1 + α2)2 + 2H2H2
ω(α

2 − 1) +H4
ω

, (2.62)

and

χ′′G(H) = Npµpγ
2αHω

H2 +H2
ω(1 + α2)

H4(1 + α2)2 + 2H2H2
ω(α

2 − 1) +H4
ω

. (2.63)



26

=
γ

MS

√√√√Fθθ

(
Fφφ

sin2 θ
+ Fθ

cos θ

sin θ

)
−
(
Fθφ

sin θ
− Fφ

cos θ

sin2 θ

)
, (2.65)

using the short notation Fxy ≡ ∂(∂F/∂x)/∂y for the partial derivatives. The

resonane ondition Eq. 2.65 is an extension of Eq. 2.64 [37℄ also inluding

the ase θ = 0 [38℄. Together with the resonane onditions requires the

minimization of the free energy Fθ
!
= 0 and Fφ

!
= 0 to obtain the equilibrium

of the magneti moment orientation.

The intrinsi resonane line width is given by [36℄

∆ω =
γ

MS

(
Fθθ +

1

sin2 θ
Fφφ

)
; (2.66)

∆Bi =
∂B

∂ω
∆ω, (2.67)

where the intrinsi resonane line width ∆B is obtained from the frequeny

line width ∆ω.

2.2.5 Damping and linewidth

The spin-orbit interation is the main mirosopi origin of damping e�ets

observed in resonane absorption. In a simple piture it is assumed that the

orbital magneti moment whih is oupled to the preession of the spin moment

is distorted by phonons leading to a phase shift, and thus damping of the

resonane. It has been shown that the damping α is proportional to the spin-

orbit oupling onstant [39℄ α ∝ γ2(∆g)2ξ2 , where ∆g is the di�erene of the

g-fator of the nanopartiles with the g-value of the free eletron g ≈ 2.0023.

In magneti systems with small spin-orbit interation the ratio between

angular µL and spin moments µS an be determined from the g-fator [40; 41;

42℄

µL/µS = (g − 2)/2. (2.68)



Chapter 3

Materials and Methods

3.1 Iron-platinum alloys FexPt1−x

Sine many years the Fe-Pt system has been intensely investigated for its

interesting magneti properties and the variety of rystallographi strutures.

At the beginning of 1900 studies were foussing on bulk FexPt1−x ompositions

used as material for permanent magnets [43; 44; 45; 46℄. From 2000 onwards,

the Fe-Pt system experiened a revival when magneti nanopartiles beame

interesting as potential materials for high density reording media [4; 47℄. Here,

most attention was drawn to FexPt1−x systems near the equiatomi state x =

0.5, sine these alloys show a huge uniaxial magnetorystalline anisotropy of

K1 ≈ 106J/m3
in the ordered state [48℄. The resulting high oerivity is

essential for the thermal stability of suh a material used in a storage medium.

But besides the tehnial appliation, FexPt1−x is interesting for the in-

vestigation of fundamental e�ets in magnetism. Platinum-rih alloys with

x < 0.45 exhibit interesting magneti properties [49℄, with a ompetition be-

tween antiferromagnetism and ferromagnetism depending on omposition x

and strutural order. Relatively little fous has been put onto FexPt1−x with

x < 0.3 [50℄ or highly diluted ompositions with x < 0.1 [51℄. Additionally,

iron-rih FexPt1−x alloys were intensely investigated to study the thermody-

namis of the Invar e�et [52℄, whih denotes the uniquely low oe�ient of

thermal expansion observed at x ≈ 0.65 . . . 0.75 analogous to f Ni-Fe alloys

with the same Fe ontent.

27
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3.1.1 Strutural properties

Binary intermetalli FexPt1−x sytems form stable alloys over the whole on-

entration range x, as shown in the phase diagram of Fig. 3.1. At high temper-

atures Fe and Pt are misible at any ratio resulting in a disordered f solid so-

lution (A1)[45; 53℄. The transition from a hemially disordered to an ordered

phase by annealing is driven by volume di�usion and kinetially suppressed,

so it beomes in�nitely slow at temperatures below 600

◦
C in onventional bulk

alloys. The fration of the ordered phase inreases with the annealing time.

A orrelation between lattie onstant a0 and iron onentration x has been

found experimentally [54℄ for disordered FexPt1−x .

In thermodynami equilibrium, three stable hemially ordered phases are

observed [45℄. At low iron onentration, FexPt1−x alloys with x in the range

0.18 ≤ x ≤ 0.45 order in a stable f Cu3Au type superstruture (L12) below

1350

◦
C. The platinum-rih FePt3 alloys show antiferromagneti ordering.

FexPt1−x alloys lose to the equiatomi omposition (0.45 ≤ x ≤ 0.65)

exhibit a disorder-order transformation from the A1 state to an ordered ft

CuAu-type superstruture (L10) by annealing at temperatures between 600

◦
C

and 1300

◦
C [55; 56; 57℄. The L10 phase of ordered FePt onsists of alternating

layers of Fe and Pt along a (100)-diretion, where the di�erent atomi radii

of Fe rFe = 1.24 Å and Pt rPt = 1.39 Å [58℄ indue a tetragonal distortion

(ontration) of the otherwise ubi lattie. The bulk lattie parameter are

a=3.838 Å and =3.715 Å in the ordered state [59℄ and a=3.804 Å in the

disordered A1-state.

At high iron onentrations FexPt1−x alloys with x in the range 0.65 ≤
x ≤ 0.85 order in a L12 superstruture below 750

◦
C. A lattie onstant of

3.72 Å has been reported [60℄. The iron-rih Fe3Pt alloys show ferromagneti

behaviour.

Finally, iron-rih ompositions with x > 0.85 form a b struture (α-Fe)

below 900

◦
C, whih also is ferromagneti.
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Figure 3.1: Phase diagram of FexPt1−x alloys (adapted from [61℄).

3.1.2 Ferromagnetism and Antiferromagnetism in

FexPt1−x -alloys

The magnetorystalline anisotropy energy of FexPt1−x As introdued

in setion 2.1.1, the magnetorystalline anisotropy is related to magnitude and

anisotropy ∆µL of the orbital magneti moment µL. In the binary itinerant

FexPt1−x system onsisting of a 3d (Fe) and a 5d (Pt) element, the total mo-

ment annot be attributed to the Fe moment alone. Hybridization and Po-

larization e�ets have to be taken into aount. Therefore, an in�uene of

omposition and order in FexPt1−x nanopartiles on the magnetorystalline

anisotropy is expeted. From the orresponding g-fator, the e�etive ratio

µeff
L /µ

eff
S is obtained. FexPt1−x follows the Slater-Pauling rule desribing the

dependene of the magneti moment µ on the iron onentration µ(x)[54℄. Fur-

thermore, saturation magnetization MS and Curie temperature TC ruially

depend on the omposition x and hemial order in FexPt1−x nanopartiles

[62℄ as depited in Fig. 3.2. The saturation magnetization MS is linearly in-

reasing with inreasing iron ontent x of the FexPt1−x nanopartiles (omitting
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the ompostion range x = 0.25 . . . 0.33 where antiferromagneti behaviour of

the hemially ordered struture has been observed[50℄.
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Figure 3.2: Curie temperature TC or Néel temperature TN (left panel) and

room temperature saturation magnetization MS (right panel) as a funtion

of omposition x in ordered FexPt1−x nanopartiles. The dotted area mark

the omposition range x where antiferomagneti order has been observed in

FexPt1−x alloys. Adapted from [62℄.

FePt3

Completely disordered FePt3 (A1-phase) has an f struture in whih eah

lattie site is oupied with 25% probability by an Fe and 75% by a Pt atom.

FePt3 is ferromagneti in the hemially disordered state with Fe moments of

2 µB and a Curie temperature in the range of TC = 360 . . . 400 K.

In the hemially ordered L12-phase FePt3 exhibits antiferromagnetism with

two di�erent magneti phases, as observed by neutron sattering [50; 63; 64℄. In

the Q1-phase with Néel temperature TN1 = 160 K, the Fe moments are loated

in alternating ferromagneti layers along the (110) plane, and the antiferro-

magneti unit ell is given by doubling of the L12 unit ell along the (001)- and
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(010)-axis [49℄. In this on�guration, the Fe atoms arry a magneti moment

of about 3.3 µB. In slightly iron-enrihed FePt3 the Q1-phase hanges into a

seond antiferromagneti Q2-phase below T < TN2 =100 K. The Fe moments

are now loated in alternating ferromagneti layers along the (100)-plane with

a magneti moment of about 2.0 µB. The unit ell in this phase is here given

only by doubling of the L12 unit ell along the (001)-axis. It is important to

note that only the Fe atoms arry a magneti moment in both antiferromag-

neti phases without induing any moment at the Pt sites. Antiferromagnetism

was also reported for ordered FePt3 nanopartiles [65℄. The appearane of an-

tiferromagnetism in ordered FePt3 with x in the range 0.22 . . . 0.34 is strongly

dependent on the omposition [66; 67℄. As displayed in Fig 3.3 (adapted from

[50℄), the antiferromagneti ordering ours at T ≈ 110 K emerging as a usp

in the magnetization data.

Additionally, by plasti deformation, whih an be obtained by old work-

ing of the hemially ordered alloy, hemial disorder is introdued [68℄ with

onsequential inreased disloation densities, e. g. Fe atoms oupying fae en-

tered positions rather than orner positions in the f ordered lattie. By this,

positive exhange between next neighbour Fe atoms introdues a tendeny to

ferromagneti order.

FePt

In the disordered state (A1-phase), the equiatomi FePt alloy shows ferromag-

neti behaviour with a vanishingly small ubi magnetorystalline anisotropy

(observed in thin �lms) of K1 ≈ 6 · 103 J/m

3
[69℄, and therefore only a low

thermal stability. In the ordered state (L10-phase), the regular arrangement of

Fe- and Pt-layers leads to a tetragonal distortion of the rystal struture (along

the -axis), whih indues by large spin-orbit oupling (mediated by Pt atoms)

the high uniaxial anisotropy with K ≈ 6 · 106 J/m3
[4; 70; 71℄. This leads to a

transition from a magneti soft material without signi�ant oerivity for dis-

ordered FePt to a hard magnet with a tremendous inrease of oerivity up to

9 kOe in thin �lms [72℄. For these high anisotropy and oerviity values FePt

storage devies with reording densities up to 1 Tbit/in

2
have been predited

[73℄.

In the ferromagneti phase of the ordered FePt alloys, the Fe-atoms as well
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Figure 3.3: Competition between ferromagnetism and antiferromagnetism in

ordered platinum-rih FexPt1−x bulk alloys revealed by the variation of mag-

netization M with temperature T measured in a magneti �eld H = 8.2 kOe.

Note, the di�erent sales of the magnetization M . Adapted from [50℄.

as the Pt-atoms show a magneti moment of 2.83 µB and 0.41 µB, respetively.

The indued magneti moment at the Pt atom is resulting from its eight nearest

Fe neighbours.

For bulk FePt [74℄ as well as FePt nanopartiles [62℄, a Curie-temperature

of about 670 K has been reported. The room temperature saturation magneti-

zationMS of about 43 Am
2
/kg for disordered bulk FePt is slightly larger than

the value of about 40 Am

2
/kg for ordered FePt [45; 60℄. For 15 nm ordered

FePt nanopartiles, a saturation magnetization of about 40 Am

2
/kg has been

found [62℄. A omparatively large ritial single domain diameter of 600 nm

has been found for FePt-partiles [15℄.

Fe3Pt

Chemially disordered Fe3Pt shows ferromagneti order below TC < 297 K

with a magneti moment per unit ell of 4.5 µB/iron atom [75℄. Although
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the Invar e�et (negative oe�ient of thermal expansion) is more pronouned

in the disordered state of Fe3Pt, the saturation magnetization value of about

100 Am

2
/kg [60℄ and Curie onstant seem to be independent of strutural

order.

3.2 Preparation of Fe-Pt nanorystals

3.2.1 Organometalli synthesis of FexPt1−x nanorystals

The preparation of the FexPt1−x nanopartiles whih are investigated in this

work was arried out at the Institute of Physial Chemistry at Hamburg Uni-

versity. Comprehensive synthesis and hemistry details of sample preparation

an be found in the thesis of E. Shevhenko [76℄. The approah followed the

wet-hemial organometalli route for Fe-Pt nanopartiles presented by Sun [4℄

in 2000. A general overview of the organometalli nanopartile synthesis lead-

ing to narrow size distributions was given by Murray et al. [77℄.

As shown shematially in Fig. 3.4, the preparation of rystalline FexPt1−x

nanopartiles onsists of a short-perioded nuleation phase followed by a pro-

longed growth and healing period of the seed nulei. This is ahieved under

airless onditions by a rapid addition of iron pentaarbonyl (Fe(CO)5) pre-

ursor together with a binary stabilizer mixture of olei aid/oleyl amine into

a 100

◦
C hot solution of platinum(II)-aetylaetonate (Pt(aa)2) dissolved in

a oordinating mixture of hexadeanediol and diotylether. The stabilizing

agents will reversibly adsorb to the nanopartile surfae thereby mediating

the growth rate and hindering the formation of larger (bulk) partiles. Thus,

eah nanopartile onsists of an inorgani and at �rst disordered rystalline

FexPt1−x ore surrounded by an organi layer of olei aid/oleyl amine to sta-

bilize the olloidal suspension against agglomeration and to prevent the ores

from oxidizing.

To improve the rystallinity the solution is subsequently boiled under argon

atmosphere for 30 min at 300

◦
C to heal rystal defets and afterwards slowly

ooled down to room temperature, followed by washing steps to remove the

exess of organi materials. To narrow the nanopartile size distribution, size-

seletive preipitation steps have been arried out under ambient atmosphere
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Figure 3.4: Synthesis sheme for FexPt1−x nanopartiles by thermal deompo-

sition following the organometalli route [4℄.

by slowly titrating non-solvent ethanol into the suspension of nanorystals.

This proedure an be repeated to further narrow the size distribution, as long

as the resulting nanopartile yield is su�ient.

Finally, the nanopartiles are redispersed in a non-polar organi solvent

(toluene) for storage making up the individual stable olloidal bathes from

whih partiular powder and �lm FexPt1−x samples

1

were prepared by drying

whih then were employed in this work for strutural (TEM, XRD) and mag-

neti haraterization (magnetometry, magneti resonane spetrosopy), see

Se. 4.1-5.

1

Several FexPt1−x nanopartile �lm samples have been produed by evaporation of the

nanopartile solution on a sapphire substrate, but due to their poor quality and stability

they are not onsidered in this work
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3.2.2 FexPt1−x samples prepared for magneti harater-

ization

For magneti haraterization individual FexPt1−x samples have been produed

out of the basi olloidal nanopartile bathes prepared as desribed in the

previous hapter 3.2.1. Theses samples were dried by evaporating the organi

solvent under argon atmosphere. This yielded blak to grey-brown powder

samples of 5 to 30 mg weight, whih then were �lled into gelatine apsules for

the magneti measurements. Table 3.1 shows a ompilation of the samples,

whih have been investigated in this work.

sample- bath as synth. annealing

name weight m(mg) m (mg)/treatment/Tmax (K)

A II 18.9 7.8 / MRS-ht / 530

B II 20.2 5.0 /furnae/820

C III 25.8 10.0 / MRS-ht / 630

2.5 /SQUID-oven /640

D IV 16.4 5.5 / MRS-ht /635

E IV 7.0 6.5 /MRS-ht / 545

Table 3.1: Overview of FexPt1−x nanopartile powder samples. Listed are

sample name and olloidal bath together with the as synthesized sample mass.

In the ourse of magneti measurements, some samples have been divided into

smaller frations to investigate the in�uene of annealing on hemial order

and magneti behaviour. Therefore, partial masses, type of annealing, and

maximum temperature are quoted.

3.2.3 Annealing of FexPt1−x nanopartile samples

In the ourse of magneti haraterization, some samples have been divided

into smaller frations in order to investigate hanges in hemial order by an-

nealing of the FexPt1−x samples. This was done for sample B in a furnae under

N2 inert gas atmosphere for 2 hours at 820 K, during the MRS-measurements

using the heater up 640 K, or for a fration of sample C in the SQUID-oven
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at 640 K. Therefore, the orresponding partial masses, type of annealing, and

maximum temperature are quoted in Tab. 3.1.

3.3 Strutural haraterization tehniques

The strutural haraterization of the nanorystals was arried out at the Insti-

tute of Physial Chemistry using the two well-established tehniques Transmis-

sion Eletron Mirosopy (TEM) and X-ray Di�ration (XRD), respetively.

3.3.1 Transmission eletron mirosopy (TEM)

TEM images were obtained using a Philips CM-300 mirosope operated at

300 kV. All samples for TEM-measurements had to be individually prepared

by depositing a droplet of the nanorystal suspension bath onto a 400 mesh

arbon-oated opper grid. The exess of solvent was sponged up by �lter pa-

per, and the grids were dried in air to evaporate the organi solvent. Therefore,

it an not be ruled out that the struture of the sample, espeially the surfa-

tant, may be hanged during this drying proess. Additionally, high resolution

imaging (HRTEM) of the rystallographi struture of the nanopartiles at an

atomi sale was performed with the same devie.

3.3.2 X-ray Di�ration

Crystallinity, mean size, omposition, and strutural order of the FexPt1−x

nanopartiles were investigated by X-ray di�ration. These measurements

were performed on a Philips X'Pert di�ratometer operated at a wavelength

λ = 1.54 Å (Cu Kα radiation

2

), in a Bragg-Brentano θ-2θ geometry using a

seondary monohromator. As for TEM measurements the samples for XRD

had to be prepared diretly from the FexPt1−x bathes by depositing single

droplets of the nanopartile suspension onto standard single rystal Si sup-

ports and drying in air by evaporating of the organi solvent. Additionally,

some of the powder samples prepared for magneti measurements were mea-

sured by XRD after their magneti haraterization. See table 3.1 for sample

assignment details.

2

Cu Kα1=1.54056 Å, Cu Kα2=1.54439 Å, I(α2/α1)=0.497
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3.4 Magneti haraterization tehniques

3.4.1 SQUID-Magnetometry

For the main magneti haraterization of the FexPt1−x nanorystals a om-

merial SQUID-magnetometer (MPMS2, Quantum Design

3

, San Diego) was

used. The magnetometer allows sensitive detetion of magneti moments down

to 10−11
Am

2
with high auray in the presene of an stati external magneti

�eld to magnetize a sample. The moment detetion is based on a rf-SQUID

sensor (SQUID=Superonduting Quantum Interferene Devie) onneted to

a superonduting �ux transformer wound in a seond order gradiometer pik-

up oil on�guration in order to suppress e�ets of the stati magneti �eld and

external interfering stray �elds. Stati magneti �elds up to ±1 T (±10 kOe)
with a resolution of 0.1 µT (10 mOe) are provided by a superonduting magnet

housing the gradiometer oil. The sample temperature an be varied ontinu-

ously over the range 1.3 K to 350 K, with a stability of better than 0.1 K.

For aurate mounting of samples two thin paper strips folded aross are

inserted half-way up a plasti drinking straw, providing a robust sample sup-

port on whih either a powder sample within a gelatine apsule or a sapphire

disk with a FexPt1−x �lm on top was �xed. The straw with a sample inside

was then onneted with the transport unit of the magnetometer. From bak-

ground measurements without sample, a parasiti diamagneti suseptibility

of about −5 ·10−8
Am

2
/T (=−5 ·10−9

emu/Oe) arising from the paper sample

support was determined.

Additionally, an AC-option was an integral part of the magnetometer, allow-

ing for the detetion of the real and imaginary parts of the magneti response

of a sample to a sinusoidal magneti exitation. To this end, AC-�elds in the

frequeny range up to 1 kHz and at amplitudes up to 2 Oe were provided by

a small integrated opper oil wound around the gradiometri pik-up oil.

Optionally, an oven ould be inserted into the devie, allowing for magneti

measurements at elevated sample temperatures up to 650 K. In this ase, the

sample had to be transferred from the gelatine apsule into a temperature-

resistant glass te�on sample holder.

To redue interfering external rf-noise entering the pik-up the magnetome-

3

Magneti Property Measurement System 2
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ter was operated within an eletrially shielded room. Furthermore, by means

of a three-axis Helmholtz oil system loated outside the He-Dewar, the earth's

magneti �eld at the sample position was suppressed.

Further tehnial details of the MPMS2 magnetometer are found in [78℄.

Measurement modi

The DOS-based ontrol software of the magnetometer allows automati mea-

surement sequenes in the given �eld and temperature ranges. The following

standard sequenes for magneti measurements of FexPt1−x nanopartiles were

used (see table 3.2). From the measured magneti moment of a sample the

orresponding magnetization has been derived by division of the sample mass.

Magnetization isotherms, M(H), at a �xed temperature the magneti

moment of the sample is measured at di�erent �eld values within the full

magneti �eld range. At low temperatures a full yle of magneti �eld values

(+1 T → −1 T → +1 T) is performed in order to obtain a full hysteresis loop.

Zero �eld ooled magnetization, MZFC(T ). After ooling the sample

in zero magneti �eld down to 5 K, the magneti moment in a moderate

magneti �eld of 100 Oe (10 mT) is measured while step-wise inreasing the

temperature up to 350 K. Subsequently, the Field ooled magnetization,

MFC(T ) is reorded, where the magneti moment of a sample is measured

in a magneti �eld of 100 Oe sweeping the temperature from 350 K down

to 5 K. Remanene magnetization, Mrem. After ooling of the sample

down to 5 K in a magneti �eld of 100 Oe, the magneti �eld is removed and

the magneti moment is deteted while step-wise inreasing the temperature.

AC magnetization, MAC(T ). Here, the real and imaginary parts of the

omplex dynami magneti moment at �ve di�erent driving frequenies (of 2

Oe amplitude) are deteted while stepwise inreasing the temperature after

ooling the sample down to 5 K in zero magneti �eld.

3.4.2 Magneti Resonane Absorption

For magneti resonane absorption measurements a mirowave spetrometer

operating in the GHz frequeny range was built within this work. Primarily,

the devie was designed for investigation of the dynami magneti absorption
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type name range �xed parameter sample history

M(H) magnetization isotherms H = −1 T . . .1 T T -

MZFC(T ) zero �eld ooled T = 5 K. . . 350 K H = 100 Oe ooling to start tem-

perature in zero �eld

MFC(T ) �eld ooled T = 350 K. . . 5 K H = 100 Oe starting at highest

temperature

Mrem(T ) remanene magnetization T = 5 K. . . 100 K H = 0 Oe after ooling in 100 Oe

magnetizing �eld

MAC(T ) AC suseptibility T = 5 K. . . 300 K HAC = 2 Oe f =

0.1, 1, 10, 93, 928Hz

after ooling in zero

magneti �eld

Table 3.2: Standard sequenes used for magneti measurements of FexPt1−x

samples with the MPMS2 magnetometer.

of FexPt1−x samples at X-band frequenies (8...10 GHz) and di�erent temper-

atures (15 K...600 K). All magneti resonane experiments were performed at

a �xed frequeny by slowly sweeping an external magneti �eld, whih is om-

mon tehnique nowadays. Therefore, resonant avities ould be used exposing

the sample to a de�ned mirowave �eld pattern, whih is aligned perpendiular

to the external magneti �eld. The geometri �eld on�gurations within the

avity are shown in Fig. 3.5.

Charateristi parameters of the main omponents of the mirowave spe-

trometer setup are summarized in Tab. 3.3. Photographs of the devie are

shown in Fig. 3.6 and 3.8.

Mirowave spetrometer setup

Mirowave synthesizer The mirowave power was generated by a synthe-

sized swept signal generator (Hewlett Pakard HP 83624 A), providing mi-

rowave radiation in the frequeny range 2 to 20 GHz (L and X-band) in steps

of 1 kHz and a power range -20 dBm to 20 dBm

4

. By an additional mirowave

multiplier the frequeny range ould be extended up to 60 GHz enabling for

avities operating in the K, Q, U-band. Auray and frequeny stability of

the synthesized mirowave radiation was in the range of a few Hz.

4

This orresponds to 0.01 ... 100 mW.
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omponent devie name spei�ation

mirowave generator HP 83624 3-band synthesizer (10 MHz lok)

frequeny range 2...20 GHz,∆f = 1 kHz

power −20... + 20 dBm, ∆P = 0.02 dBm

external �eld magnet Bruker EPR-Magnet Hmax = ±1.2 T
pole shoes d = 30 m, b = 6 m

power supply F.u.G. HTN 5000 M-2500 voltage ontrolled

max voltage 2000 V

max urrent 2.5 A≡5 kW

Table 3.3: Charateristi parameters of the mirowave spetrometer ompo-

nents.

Resonant avities The temperature dependent magneti resonane mea-

surements were done at X-band frequenies in a gold-plated retangular reso-

nant avity (Varian V-4531). Mainly used was the TE102 eigenresonane mode,

whih for the unloaded avity lay at 9.095 GHz with a high quality fator of

about 5000 (Q-fator, proportional to the resonane width). Due to sample

material and the glass elements of the ryostat in the resonant avity the res-

onane was slightly shifted (≈ 0.1 GHz for the glass Dewar inset) and the

Q-fator redued to about 2000-3000. The optimal oupling of the mirowave

radiation ould be tuned by a small srew in the avity aperture. A pair of

opper oils were integrated in the two avity walls normal to the external

magneti �eld, whih enabled a �eld modulation to enhane the sensitivity

using lok-in-tehnique (see paragraph signal detetion below). In vertial di-

retion (top and bottom plate) of the avity a entred 10 mm wide bore was

available through whih the samples ould onveniently be inserted and posi-

tioned. Figure 3.5 shows a sketh of the avity together with the mirowave,

external sweeping and modulating �eld on�guration.

In addition, several other gold-plated resonane avities were at disposal,

designed for operation at S-band (2-4 GHz) and K-band (12-40 GHz) frequen-

ies, respetively.

For room temperature measurements without the �ow ryostat sample hold-

ers made of te�on or aryli glass were used. These holders were tested for
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Figure 3.5: Magneti �eld on�guration of mirowave

~h, stati ~H0 (blue),

and modulating �elds within the resonator avity. The sample (yellow) is

positioned (mounted in a uvette or te�on sample holder) through the vertial

bore at the avity enter in the maximum of the TE102-mode mirowave �eld

b (red lines).

magneti impurities by measurements without nanopartile sample.

An automati frequeny ontrol (AFC) was employed to adjust the mi-

rowave synthesizer to the resonane frequeny of the loaded resonator. This

was neessary to aount for hanges of the avity eigenresonane while pass-

ing through the resonane of a sample or due to temperature hanges of the

avity. Therefore, the w-signal of the mirowave synthesizer was frequeny

modulated and phase sensitive reti�ed by the internal AFC lok-in ampli�er.

Sign and amplitude of the AFC were fed bak into the synthesizer to trak the

output mirowave frequeny.

In a similar way, the �ne-tuning of the synthesizer frequeny to math the

eigenresonane of the avity was aomplished with aid of the AFC. For this,

the synthesizer frequeny was gently hanged until the AFC output signal was

adjusted to zero.
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External �eld magnet For sweeping the external magneti �eld a water-

ooled Varian 4012A eletromagnet with a maximum �eld amplitude of about

1.2 T was used. An air gap of 6 m between the pole shoes of the magnet

o�ers su�ient spae to house the resonant avity and the ryostat. Due to

the large pole shoe diameter of 30 m of the magnet, a magneti �eld homo-

geneity ∆H/H of better than 10−6
at the sample position ould be ahieved.

The magnet was onneted to a ontrollable high-voltage 5 kW power sup-

ply (HTN 5000 M-2500, F.u.G. Elektronik GmbH, Rosenheim). By aid of a

manual swith, the �eld polarity ould be reversed. The ontrol of the power

supply output feeding the magnet was arried out by an analogue d voltage

in the range 0..10 V, either onneted to an eletro-mehanial voltage ramp

generator or to a 12 bit I/O ard ontrolled by the measurement program.

In the latter ase the step size of the magneti �eld ould be further re�ned

using a voltage divider (1:2), resulting in a step-size of about 1 Oe at ost of a

redued maximum magneti �eld of 7 kOe. Muh smaller step-sizes ould be

ahieved using the voltage ramp generator.

The strength of the external magneti �eld was deteted by a hall probe

mounted at one of the magnet's pole shoes. The alibration of the hall probe

was heked at regular intervals by means of DPPH

5

, a substane whih is

used as a standard g-marker in eletron paramagneti resonane (g0=2.0036)

to alibrate resonane �eld and intensity. An example is shown in Fig. 3.7,

where from the nominal resonane �eld o�set and voltage to �eld onversion

fator of the digital multimeter used for data aquisition are determined.

Signal detetion and data aquisition For the detetion of the re�eted

mirowave radiation a Ge-rystal diode was used. The sensitivity of the mi-

rowave detetion was further inreased using a lok-in tehnique modulating

the external magneti �eld. To this end, a weak magneti AC-�eld (provided

by a oil pair in the walls of the resonant avity operated at a frequeny of

about 130 Hz and a maximum amplitude of 1 Oe) was superimposed to the

external magneti �eld, leading to a modulation of the resonane absorption

signal. The output signal of the detetor diode was then demodulated by a

referene modulation signal, bandpass �ltered and ampli�ed using a single-

5

C18H12N5O6: 1,1-diphenyl-2-piryl-hydrazyl, stable free radial
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hannel lok-in ampli�er. Due to the lok-in tehnique, the �rst derivative

dχ′′/dH of the mirowave absorption (imaginary part of the dynami susep-

tibility χ(H)) is obtained. By this, the signal-to-noise ratio ould be improved

up to 4 orders of magnitude.

Temperature ontrol For measurements di�erent from room temperature

an evauated double-walled quartz tube ontaining the sample was inserted

into the bore of the resonant avity. Keeping the avity at room temperature,

the sample ould either be ooled by means of a ontinuous helium �ow ryostat

(Oxford ESR 900) down to 15 K, or heated up to 600 K by an external Pt-

resistane wire wound around a sapphire sample support. A needle valve

in the Helium �ow was used to ontrol the Helium gas �ow of the ryostat,

thereby adjusting the temperature manually. The temperature of the sample

was reorded using a germanium thermometer in the �ow hannel. Resonane

measurements at higher sample temperatures were ahieved by plaing the

sample on top of a sapphire rod in the avity. Five turns of a Pt-resistane

wire are wound losely around the middle part of the sapphire rod, transferring

heat generated in the wire by a d urrent. A Pt-100 thermometer plaed at the

same distane of the wire from the sample, but at the bottom of the sapphire

rod was used to ontrol the temperature of the sample.

Measurement ontrol The measurements were ontrolled by omputer us-

ing the IEC bus ommuniation standard and the objet oriented program-

ming language HPVee. Several programs were written to math partiular

measurement requirements. Changing the �eld polarity of the magnet and the

temperature ontrol had to be done manually.

Measurement proedures

All resonane absorption measurements were performed at a �xed frequeny

(main eigenresonane modes of the avity), slowly (≈ 1 Oe/s) sweeping the

external magneti �eld. In most ases, a full �eld yle was performed to hek

for hystereti e�et in the resonane absorption.
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Figure 3.6: Mirowave spetrometer:

1© mirowave synthesizer

2© waveguide

with resonant avity (Varian) inside air gap of the magnet

3© Bruker EPR

magnet

4© F.u.G. high voltage power supply

5© Ge-detetor diode mounted to

diretional oupler

6© Lok-in ampli�er

7© automati frequeny ontrol (AFC)

unit

8© Digital multimeters for reading absorption derivative dχ′′/dH , Hall

probe voltage, temperatures, et.

9© Hall probe high preision urrent soure

10© DA onverter for magnet power supply ontrol

11© Goniometer table with

step motor for angle dependent magneti absorption measurements

12© ele-

tromehanial voltage ramp for magnet power supply ontrol

13© I/O interfae

and manual adjustment of goniometer step motor.
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Figure 3.7: Magneti �eld alibration of the mirowave spetrometer using the

resonane absorption of the g-marker DPPH at 9.1 Ghz.
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Figure 3.8: Varian resonant avity with ryostat used for the temperature de-

pendent X-band magneti absorption experiments:

1© waveguide

2© evauated

double-walled quartz tube

3© multi-purpose resonant avity (Varian)

4© ryo-

stat (Oxford) with thermoouple and heating

5© He �ow support and exhaust

onnetor

6© ryostat vauum valve.
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Chapter 4

Struture and magnetism in

FexPt1−x nanopartiles

This hapter presents the results of strutural and magneti haraterization of

FexPt1−x nanopartiles. First the main strutural parameters like geometrial

size, rystal struture, hemial order and Fe-Pt omposition are determined

from TEM and XRD measurements. Furthermore, the FexPt1−x omposition

is validated and re�ned by a omposition-dependent Curie-temperature TC

extrated from ZFC magnetization measurements. Then, the two important

parameters haraterizing the magneti behaviour of the nanopartiles, the

anisotropy energy EA (distribution) and the magneti moment µp, are inves-

tigated.

4.1 Strutural haraterization of FexPt1−x

nanopartiles

4.1.1 Shape, size distribution and next-

neighbour distane of FexPt1−x nanopartiles

The TEM pitures depited in Fig. 4.1 indiate the existene of spherial

nanorystaline FexPt1−x nanopartiles with rather narrow ore size distribu-

tion of the partile diameter d. The tendeny of the partiles to self-organize

beomes visible, at least for single layer formation after drying on the TEM

grid. From the analysis of these TEM distribution histograms of rystal diame-

47
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Figure 4.1: Typial TEM-pitures showing (left panel) the nanorystallinity

with visible atomi layers and spherial shape and (right panel) self-assembling

of FexPt1−x nanopartiles on the TEM grid.

ters were generated and the mean next-neighbour distane Nnn was estimated.

The histograms (Fig. 4.2) of diameters ould be niely �tted to a log-normal

funtion P (d) = (
√
2π σd)−1 exp(− ln2(d/d̃)/(2σ2)), similar to Eq. 2.35 (see

Se. B), to obtain the median diameter d̃ and distribution width σ of the

log-normal distribution.

The FexPt1−x samples A,C,D exhibit mean diameters d̄ in the range 2.4 . . . 4

nm with a narrow distribution width of about σ ≈ 0.15. It should be noted

that, for these narrow size distributions, a symmetrial Gaussian distribution

funtion would have been su�ient instead of the log-normal distribution. The

mean next-neighbour distaneDnn for the FexPt1−x partiles dried on the TEM

grid was in the range 6 . . . 12 nm. This allows a rough estimation of minimum

organi layer thikness of about 3 . . . 6 nm, disregarding the potential shrinking

of the organi layer during drying on the TEM grid, or by the vauum required

for the TEM measurements of the samples.

The parameters of the TEM analysis are summarized in Tab. 4.1 for the

di�erent samples investigated.
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Figure 4.2: Distribution histograms for partile diameters in di�erent FexPt1−x

formulations derived from TEM-pitures as shown in Fig. 4.1. Solid urves

represent orresponding �tted log-normal size distribution to obtain median

diameter d̃ and width σ. The parameters are listed in Tab. 4.1.

4.1.2 Chemial order, size and omposition of FexPt1−x

nanopartiles

A typial wide range x-ray di�ration san of sample C, see Tab. 4.1, is shown

in Fig. 4.3. All spetra only reveal the presene of a hemially disordered

rystalline f-phase A1. No indiation of the hemially ordered L12- or L10-

phase ould be deteted, as evidened by the lak of the superstruture peaks

(001), (110), (021), (112) marked by red lines in Fig. 4.3. Even after annealing

of samples A, B, C no traes of ordered phases beame visible in the XRD

spetra. Furthermore, no formation of rystalline iron oxide phases, magnetite

or maghemite, was observed indiating a good protetion against oxidation by

the organi olei aid-oleyl amine apping of the partiles. Nevertheless, the

presene of a very thin iron oxide layer less than 0.4 nm, as reported for 4 nm

ordered FePt nanopartiles [79℄, ould not be exluded.

The position qi and width ∆qi of the individual peaks have been determined
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Figure 4.3: Wide-angle XRD san of FexPt1−x nanopartiles (sample C). The

red lines mark the position of super-struture peaks (ordered struture L12 or

L10), peak positions of iron oxides are denoted by blue (magnetite, Fe3O4) and

yan (maghemite, γ−Fe2O3) lines.

from �tting the XRD sans to a sum of Lorentz-lines Σi2Ai∆qi/(π(4(q−qi)2+
∆q2i )). The lattie onstant a0 was determined from the position of the peak

with Miller index (hkl) using the Bragg equation

1 q = 2πn/dhkl with n = 1,

together with the lattie spaing dhkl = a0/(
√
h2 + k2 + l2) for ubi systems

resulting in

a0(h, k, l) =
2π

√
h2 + k2 + l2

q
. (4.1)

As shown in Fig. 4.4, all FexPt1−x samples possess a lattie onstant at about

3.90 Å. A slight inrease of lattie onstant was observed after annealing, see

Se. 3.2.3, of samples A, B, and C.

Comparing a0 with literature values for bulk, �lm and nanopartiles [80; 81;

82; 83℄, the FexPt1−x stoihiometries of the samples investigated have been es-

timated. They re�et a platinum-rih stoihiometry of the FexPt1−x nanorys-

1

Combining nλ = 2dhkl sin θ with the wave vetor de�nition q = 4π sin θ/λ)
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Figure 4.4: Overview of lattie onstants a0 determined from the main (111)-

peak of the XRD sans of FexPt1−x samples. The preparation of the samples for

XRD has been distinguished, samples dried diretly from the bath solution

are denoted by irles, while powder samples measured after annealing are

depited as squares.

tals with an iron amount x in the range 0.1 to 0.25 as shown in Fig. 4.5.

This is in lear ontrast to the intended equiatomi ompostion x = 0.5 of the

FexPt1−x nanopartiles by the hosen molar ratio of the Fe- and Pt-preursors

for the preparation of the partiles [76℄. One reason for this deviation ould

be hanges in the hemistry of the preursors during their storage.

The rystal ore diameter was estimated from the width of the main (111)-

peak using the Sherrer formula

dXRD =
2πKhkl

∆q111
, (4.2)

with shape fator K≈ 0.89 for index (111) and spherial rystallites. Figure 4.6

shows the mean diameter extrated from XRD for several FexPt1−x samples.

Additionally, the diameter obtained by the analysis of the TEM pitures has

been inluded. It an be seen that all FexPt1−x rystallites have a mean ore

diameter ranging from 3 nm to 5 nm. A small redution of rystal size with

annealing of the samples an be seen for sample B and C, whih also has been

reported for disordered FePt nanopartiles annealed at 970 K [84℄. Where



52

0 0.2 0.4 0.6 0.8 1.0
0.372

0.376

0.380

0.384

0.388

0.392

 bulk
 theory
 films

 

 

la
tti

ce
 c

on
st

an
t a

0 
/ n

m

x

Figure 4.5: Relation between FexPt1−x stoihiometry and lattie onstant a0.

Based on literature values for bulk, �lm and nanopartile samples [80; 81; 82;

83℄, an Fe ontent x in the range 0.1 . . . 0.25 (red bar) is estimated for the

FexPt1−x samples investigated in this work.

data is available, TEM and XRD reveal diameters in good aordane. No

orrelation of the ore diameter d to the lattie onstant a0 was found.

The strutural haraterization by TEM and XRD yields the presene of

hemially disordered spherial FexPt1−x nanorystals with a mean ore di-

ameter dp about 4 nm, and having a rather narrow size distribution. The

omposition of the platinum-rih nanopartiles from the lattie onstant a0 is

found to be in the range x = 0.1 . . . 0.25. An approah extrating the FexPt1−x

omposition based on their magneti properties is presented in the following

setion.

4.2 Composition of FexPt1−x nano-partiles ex-

trated from ZFC measurements

An additional way to determine the omposition of the FexPt1−x nanoparti-

les an be pursued by analysing the e�etive superparamagneti Curie on-
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Figure 4.6: Mean ore diameters FexPt1−x nanopartiles determined from the

line-width of the (111)-peak of the XRD measurements.

stant C(T ) determined from ZFC-magnetization measurements. Mainly, a

ZFC magnetization urve is a ommon way to visualize the transition from

bloked to superparamagneti behaviour for an ensemble of magneti nanopar-

tiles. As shown in Fig. 4.7, the main harateristi of the ZFC urves is the

appearane of a maximum in the magnetization at di�erent bloking tem-

peratures Tb within the temperature range 10 K to 60 K for the FexPt1−x

samples onsidered. From Tb a rough estimation of the e�etive anisotropy

energy EA ≈ 25 kBTb is obtained, and an e�etive anisotropy energy Keff =

6EA/(πd
3) ≈ 10−4

J/m

3
was estimated, assuming a mean diameter d of 4 nm

for all FexPt1−x partiles.

The temperature behaviour of the superparamagneti Curie onstant C =

M/H · T (above the bloking temperature) is displayed in Fig. 4.7. The

observed linear deay of the Curie onstant is to �rst order assigned to a

temperature dependent magneti moment µ(T ) of the nanopartile, C(T ) =

Npµ
2
p(T )/(3V µ0kB). This linear deay signals a mean-�eld behaviour of the

partile moment, µp(T ) = µp(0)(1− T/TC)
1/2

, see Eq. 2.13 and by �tting this

relation, the orresponding Curie temperatures TC have been determined, as

indiated by dashed lines in Fig. 4.7. As an be seen, the samples exhibit a
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sample XRD TEM

ID bath/ a0 dXRD dTEM σ Dnn

state Å nm nm nm

A II/st 3.899(4) 2.9(3) 2.4(0) 0.16(1) 6.0(6)

A

ESRht
II/pwd 3.902(1) 3.6(1)

B II/st 3.8927(4) 4.86(8)

B

ESRht
II/pwd 3.898(2) 4.7(2)

B

anneal
II/pwd 3.915(2) 16(4)

C III/st 3.890(1) 3.8(2) 3.8(8) 0.15(2) 11.4(3)

C

ESRht
III/pwd 3.896(2) 2.9(1)

D IV/st 3.900(3) 2.9(2) 0.14(2) 6.9(9)

Table 4.1: Preparational and strutural parameter of FexPt1−x nanopartiles

obtained by TEM and XRD. Lattie onstant a0 and mean partile sizes dXRD,

dTEM determined by XRD and TEM. Note, that only the annealed samples

were the same as used in the magneti investigations while for all other mea-

surements individual samples were drawn from stok suspension.

quite large variation of Curie temperatures TC ranging from about 150 K (E)

to 850 K (C). Obviously, in sample C the magneti phase with TC ≈ 850 K ob-

sures a phase with lower TC, whih an be identi�ed by the upturning o�shoot

of C(T ) for T > 325 K. After subtrating a small temperature independent

magnetization of about M = 0.2 Am

2
/kg, a value TC ≈ 350 K an be esti-

mated, see Fig. 4.7 (right panel, grey triangles). This phase might orrespond

to the superparamgneti phase with Tb at about 20 K.

To estimate the omposition, several Curie temperatures have been ol-

leted from literature data of disordered FexPt1−x as depited in Fig. 4.8 (left

panel) and approximated by a 4th order polynomial, TC(x) =
∑4

n=0Anx
n
with

A0 = 16(3), A1 = 21.1(8), A2 = −0.41(5), A3 = 0.010(1), A4 = 6.86(7) · 10−4
.

Using the lower branh of the polynomial (platinum-rih omposition), the

iron ontent x ≡ x Fe(at %) of the FexPt1−x samples was alulated from the

orresponding TC value.

The values reveal the presene of a platinum-rih FexPt1−x omposition with

x in the range 0.1 . . . 0.25 for the FexPt1−x samples as an be seen in Fig. 4.8

(right panel). For sample C the orreted value for TC ≈ 350 K has been used
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Figure 4.7: Left panel: ZFC-magnetization urves of FexPt1−x nanopartiles

measured in H = 0.1 kOe. The harateristi temperature marked for sample

B by the arrow, where the maximum of the ZFC-magnetization is reahed,

depits the main bloking temperature Tb, roughly separating the region of

bloked ferromagnetism, T < Tb, from superparamagnetism, T > Tb. Note the

barely visible shoulder in the ZFC urve at about 20 K deteted in sample C in-

diating the ourrene of at least two di�erent magneti phases. Right panel:

E�etive Curie onstants C =M/H ·T following from the ZFC-magnetization

urves. For temperatures T ≫ Tb the Curie temperature TC has been deter-

mined assuming a mean-�eld behaviour of the partile moments. Note, that

the data have been normalized to max(M/H · T ) for graphial representation.

to determine x. Over this omposition range, the relation between TC and

x may be approximated linearly. These results on�rm and re�ne the values

already extrated from the lattie onstant a0 in aordane with Se. 4.1.2.

The proedure to determine the omposition x from TC has the advantage

that it is independent on the exat FexPt1−x amount in the sample, whih

was espeially for the small sample amounts available in this study di�ult to

determine with high auray. On the other hand, the in�uene of hemial

order on TC has not been taken into aount.
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Figure 4.8: Left panel: Relation between Curie temperature TC and iron on-

tent x ompiled from literature data of disordered FexPt1−x bulk, thin �lm and

nanopartile samples: Crangle [51℄, Segnan [85℄, Menshikov [86℄, Palaith [63℄,

Kussmann [46℄, Vinokurova [87℄. Right panel: Composition x of FexPt1−x

powder samples estimated from Curie temperature TC determined by ZFC-

magnetization measurements using the TC(x) relation ompiled form litera-

ture data, whih over this omposition range an be linearly approximated by

TC = 1550 · x K as depited by the red line.

4.3 Anisotropy energy barrier distribution of

FexPt1−x nanopartiles

The energy barrier distribution of FexPt1−x nanopartiles is an important har-

ateristis of magneti nanopartiles to assess the internal magneti struture.

The bloking temperature Tb already allows for a rough estimation of the mean

anisotropy energy EA. In this setion, two di�erent ways to extrat the under-

lying e�etive anisotropy distribution are presented and ompared. Most om-

mon are the analysis of temperature-dependent ZFC- and AC-measurements

in small magneti �elds, where the anisotropy energy EA is dominating over

the magneti �eld energy µpH .
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Energy barrier distribution extrated from ZFC measurements

By taking the derivative of the e�etive Curie onstant d(M(T )·T/H)/dT , see

Eq. 2.18, the anisotropy energy barrier distribution of the FexPt1−x samples

may be obtained from a ZFC magnetization urve [22℄. Some representative

distribution urves of FexPt1−x nanopartiles are displayed in Fig. 4.9, where

the relation Eq. 2.17 has been used to onvert between measured temperature

T and orresponding energy sale EA(T ) = T ln(tm/τ0) ≈ 27.6, where typial

values for measurement time tm = 100 s and prefator τ0 = 10−10
s have been

employed.
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Figure 4.9: Anisotropy energy barrier distribution of FexPt1−x determined from

the derivative of the e�etive Curie onstant d(M(T ) · T/H)/dT as measured

in ZFC-measurements, see Fig. 4.7. All urves an be desribed by a single-

peaked log-normal distribution exept for sample C where at least three di�er-

ent maxima are visible indiating the presene of di�erent magneti FexPt1−x

phases.

All samples show an asymmetri distribution of energy barriers with one

distint maximum at EA ≈ 200 . . . 400 K. Only in sample C are two additional



58

maxima observed, the largest in amplitude at EA = 1000 K, and a rather

small maximum at EA = 2200 K. A log-normal distribution of anisotropy en-

ergies ould be niely �tted to the urves to obtain mean anisotropy energy

ĒA and distribution width σ. For sample C, two individual log-normal dis-

tributions have been utilized disregarding the smallest maximum loated at

EA ≈ 2200 K. The orresponding values for the FexPt1−x nanopartiles are

olleted in Tab. 4.2.

The existene of two additional anisotropy ontributions in sample C with

higher energies suggests the presene of a mixture of di�erent phases. The

presene of a seond phase with high anisotropy is supported by the high

Curie temperature TC ≈ 850 K drawn from the e�etive Curie onstant of this

sample, see Fig. 4.7.

Energy barrier distribution extrated from AC measurements

The imaginary part of the omplex AC suseptibility is spei� to the relax-

ational ontribution of the magneti nanopartiles only, and therefore not ham-

pered by any ontributions from paramagneti or bloked ferromagneti fra-

tion within the FexPt1−x samples. A typial set of AC-magnetization urves of

FexPt1−x nanopartiles is shown in Fig.4.10 for sample E, where at �ve di�erent

exitation frequenies ω/(2π), the temperature dependent real and imaginary

parts of the suseptibility (HAC = 2 Oe) have been reorded. The real parts

χ′(T, ω) show rather broad maxima just above the ZFC bloking temperature

Tb whih are shifting with inreasing frequeny towards higher temperatures.

At the same time, the amplitude of the urves are fairly dereasing with in-

reasing frequeny. The stati ZFC-magnetization urve (dotted blak line in

the �gure) an be onsidered as a χ′
-magnetization reorded at a frequeny

1/tm = 0.01 Hz and aordingly exhibits the maximum at the lowest temper-

ature.

The imaginary parts χ′′(T, ω) have a narrower shape with their maxima at

temperatures Tmax(ω) (marked by arrows in the �gure) lose to the in�etion

point of the orresponding χ′(T, ω) urve. Also the maximum temperatures

Tmax(ω) are shifting with inreasing frequeny, while the amplitudes of the

urves mainly remain onstant.

A straightforward way to extrat the mean anisotropy energy is gained by
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Figure 4.10: Temperature-dependent omplex AC-suseptibility χ(T, ω) of

FexPt1−x nanopartiles sample E measured at �ve �xed frequenies at a driv-

ing amplitude of HAC = 2 Oe. Top panel: Real part χ′(T ;ω) of the AC-

suseptibility (oloured symbols) together with the stati ZFC-suseptibility

(grey dotted line, see Fig. 4.7). Bottom panel: Imaginary parts χ′′(T, ω). The

arrows mark the temperature Tmax at whih the maximum of the imaginary

part max(χ′′(ω, Tmax)) is reahed for the individual frequenies. These tem-

peratures Tmax are used for the Arrhenius analysis, as shown in Fig. 4.11.

Arrhenius plots of ω/(2π) versus the inverse of Tmax(ω), as shown in the inset of

Fig. 4.11. Then, by �tting of Eq. 2.23 to the data, the mean anisotropy barrier

energy EA,m and the relaxational pre-fator τ0 have been determined for the

FexPt1−x nanopartiles. The resulting mean anisotropy energies show good

agreement with the energies determined from ZFC-measurements. Obviously,

the values of τ0 = 10−14 . . . 10−18
s are found to be muh smaller than the

ommonly stated 10−9
s to 10−12

s for magneti nanopartiles. Furthermore, τ0

seems to be orrelated to EA,m for the FexPt1−x nanopartiles, as an be seen in

Fig. 4.11. From the analytial expression of the prefator Eq. 2.16 a τ0 should

derease to �rst order like E
−3/2
A (dotted grey line), while a muh stronger
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Figure 4.11: Relation between relaxation prefator τ0 and anisotropy energy

EA,AC in FexPt1−x nanopartiles obtained by Arrhenius analysis of AC mea-

surements. The red line re�ets a τ0 ∼ E
−1/5
A dependene desribing the ex-

perimental data while the dotted grey line is a expeted τ0 ∼ E
−3/2
A relation

aording to Eq. 2.16. The inset shows Arrhenius plots of the AC-exitation

frequeny ω/2π versus inverse of maximum temperature Tmax of the imaginary

suseptibility χ′′(T ). The straight lines are �ts providing mean energy barrier

EA,m and apparent relaxation prefator τ0.

desrease proportional E
−1/5
A (straight red line) is found experimentally for

the FexPt1−x nanopartiles.

More information about the anisotropy present in FexPt1−x nanopartiles

barrier, inluding the distribution of energy barriers may be ahieved by plot-

ting the χ′′(T, ω) urves versus saled temperatures −T ln(ωτ0), for whih the

urves fuse into a single urve re�eting the energy barrier distribution EA/kB,

as shown in Fig. 4.12 for FexPt1−x sample E. Here again, all samples show

an asymmetri distribution of anisotropy energies with one single maximum,

while in sample C, a seond distint maximum is visible. Similarly, by �tting

a log-normal funtion, the mean ĒA and width σ of the anisotropy energy dis-

tribution, together with the saling fator τ0 were obtained. The parameters

are inluded in Tab. 4.2.
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Figure 4.12: Energy barrier distribution of FexPt1−x nanopartiles (sample E)

extrated from the temperature dependent imaginary part χ′′(T ) of the AC-

suseptibility plotted versus saled temperature −T ln(ωτ0) with τ0 = 1.6 ·
10−13

s , as shown in Fig. 4.10. By �tting a log-normal distribution (orange

straight line) median and width of the energy barrier distribution are obtained.

Obviously, the mean anisotropy energy an be reliably determined from the

Arrhenius plots in exellent agreement with the values following from χ′′(T, ω).

The same width σ ≈ 0.4 of the energy distribution is found for most samples,

and this for both measurement tehniques, ZFC- and AC measurements. De-

viations are present for the value of the mean anisotropy energy, where the

energy from ZFC-measurement is in most ases less than the value from the

orresponding AC-measurement.

The orresponding e�etive anisotropy onstantsKeff = EA/V of the nanopar-

tiles have been estimated from the mean anisotropy barrier energy and the

mean partile volume V = π/6d̄p. The resulting Keff in the range 1 · 104 . . . 5 ·
104 J/m3

are found to be one order of magnitude smaller than in ordered FePt

partiles, where values up to 106 J/m3
have been reported [71℄.
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ID ZFC AC M(H)

MZFC(T ) dC(T )/dT Arrhen. χ′′(T (ω))

TC(K) EA(K) ĒA(K) ĒA (K) ĒA (K)/σ MS(
Am2

kg
)

x Tb(K) σ τ0 (s) τ0(s) /C0(
Am2

kgT ) B (K

−3/2
)

A 300 470 545 7.2

0.2 17 0.49 3.7 · 10−4

B 247 663 580 640 580 / 0.41 11.2

0.16 24 0.45 3 · 10−16 3 · 10−15
/ 7.1 2.4 · 10−4

C 350 553 598 780 / 0.39 12.9

∼0.23 20 0.4 6 · 10−18
/ 3.7 1.3 · 10−4

1418 1347 1878 1890 / 0.35

56 0.3 4 · 10−18 6 · 10−18
/ 6.4

D 312 553 380 479 480 / 0.37 7.4

0.21 20 0.42 7 · 10−14 5 · 10−14
/ 4.4 2.7 · 10−4

E 156 359 420 318 292 / 0.39 4.9

0.1 13 0.39 1 · 10−14 3 · 10−14
/ 4.7 6.2 · 10−4

Table 4.2: Anisotropy energies EA of FexPt1−x nanopartiles extrated from

ZFC-measurements, either from bloking temperature Tb or dC(T )/dT repre-

sentation, and from AC-measurements, applying Arrhenius plots or log-normal

�ts to χ′′(T (ω)) magnetization urves. Note, all energies are given in units of

K, but the fator k−1
B with EA has been suppressed to save spae in the olumn

names.

4.4 FexPt1−x nanopartiles at large magneti

�elds H=10 kOe

4.4.1 The magneti moment of FexPt1−x nanopartiles

At large magneti �elds H , the in�uene of the magnetorystalline anisotropy

on the magneti behaviour of magneti nanopartiles beomes negligible, sine

then µpH ≫ EA. Therefore, temperature dependent measurements of the

magnetization of FexPt1−x nanopartiles at H = 10 kOe were performed to

analyse the behaviour of the saturation magnetizationMS(T = 0) or the mean

partile moment µp = MSV , as displayed in Fig. 4.13. The magnetization



63

at H = 10 kOe is strongly diminishing with inreasing temperature, whih is

attributed to a temperature dependene of the nanopartile's magnet moment

µp(T ). At low temperatures, this behaviour may be adequately desribed using

Bloh's law Eq. 2.12 with β = 3/2 as for bulk systems. The resulting Bloh

oe�ients about 10

−4
K

−3/2
for the FexPt1−x nanopartile samples turned out

to be muh larger than the bulk value [17℄, 3 · 10−6
K

−3/2
. Similar large values

were also found on Fe nanorystals [88; 17℄ and on�rmed by Monte Carlo

simulations [89℄. The Bloh oe�ient B is dereasing with the saturation

magnetization MS(T = 0) as an be seen in the right panel of Fig. 4.13.
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Figure 4.13: Left: Temperature dependent magnetization MS of FexPt1−x

nanopartiles measured at H = 10 kOe . The straight lines are �ts using

Bloh's law, Eq. 2.12, to desribe the low temperature behaviour of the par-

tile moment µp(T ). Right: Resulting Bloh oe�ient B versus saturation

magnetization MS(T = 0).

In a same manner, the mean anisotropy energy ĒA determined from the

AC-measurements of the FexPt1−x nanopartiles appears to be related to the

saturation magnetizationMS(T = 0), as displayed in Fig. 4.14. This behaviour

an be roughly approximated by EA,m [K℄≈ 61·MS(T = 0) [Am2
/kg℄, as shown

by the dotted grey line of the �gure.
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Figure 4.14: Mean anisotropy energy EA,m determined from AC-measurements

versus saturation magnetization MS obtained from high �eld magnetiza-

tion measurements. The dotted grey line re�ets the linear approximation

EA,m [K℄≈ 61 ·MS [Am

2
/kg℄.

From the relation EA = KeffV , suh strong variation of the anisotropy EA

would not have been expeted for FexPt1−x nanopartiles all having a diameter

lose to 4 nm, and thus the same volume. Likewise, a onsiderable variation of

the anisotropy onstant K over this narrow omposition range seems not to be

plausible. Therefore, it is not the geometrial size, but also the magneti order

indued by the hemial order, that determines both partile moment µp (and

thereby saturation magnetization MS(0) = µp(0)/V ) and anisotropy energy

EA. Therefore, it is inferred that the representation EA(MS(0)) is a suitable

indiator of magneti and hemial order of the FexPt1−x nanopartiles.

4.4.2 The regime of isotropi superparamagnetism

As already observed in the analysis of the ZFC-magnetization in Se. 4.2, the

magneti moments of the FexPt1−x nanopartiles exhibit a pronouned tem-
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perature dependene µp = µp(T ). Aordingly, this also is apparent in the

magnetization isothermsM(H), where a resaling asM(H/T ) is not su�ient

to bring the magnetization urves M(H) measured at di�erent temperatures

T onto one single urve, as expeted from Eq. 2.34. An example for sample

B is shown in the left panel of Fig. 4.15. Hene, inorporating a temperature

dependene q(T ) as a free parameter for resaling the x-axis, the resulting

M(q(T ) · H/T ) urves ould be brought onto one single urve as shown in

the right panel of Fig. 4.15. For the other FexPt1−x samples, single urves of

similar quality with di�erent q(T )-behaviour ould be ahieved. The remain-

ing splitting of the urves at high magneti �elds was attributed to parasiti

paramagneti and diamagneti bakground suseptibilities.
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Figure 4.15: Left panel: Magnetization isotherms M as a funtion of H/T of

FexPt1−x nanopartiles (sample B). Aording to Eq. 2.36 the data should ol-

lapse onto one single urve. But lear deviations our due to the strong

temperature dependene of the moment µp(T ). The values of bloking,

Tb = 24 K, and Curie temperature, TC = 247 K have been added to the

temperature legend. Right panel: Single urve of magnetization isotherms af-

ter resaling to M(q(T ) · H/T ) assuming a temperature-dependent moment

µp(T ) = µp(0)q(T ).
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The resulting normalized temperature dependene q(T ) of the magneti mo-

ment is shown on Fiq. 4.16 (oloured symbols), together with the orrespond-

ing normalized e�etive Curie onstant as a funtion of temperature (straight

lines) for these samples obtained from ZFC-measurements, see Fig. 4.7.
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Figure 4.16: Normalized temperature dependent derease (symbols) of the

magneti moment q(T ) ≈ µp(T )/µp(Tb) obtained by resaling of the magneti-

zation isotherms, as displayed in Fig. 4.15. The FexPt1−x nanopartile samples

show the same temperature behaviour for T > Tb as the e�etive Curie on-

stant extrated from the orresponding ZFC-magnetization (straight lines), see

Fig. 4.7.

Clearly, the same temperature behaviour for T > Tb of the magneti mo-

ment µp(T ) is extrated from magnetization isotherms M(H) measured in

magneti �elds up to 10 kOe as well as from ZFC-magnetization whih were

measured in a small magneti �eld of 0.1 kOe. In this regime well above Tb, the

magneti behaviour of the FexPt1−x nanopartiles seems to be dominated by

a thermal indued derease of the oupling (aused by exhange interation)

of the individual atomi moments within eah nanopartile, and not strongly

in�uened by anisotropy e�ets.

Finally, to determine the magneti moment µp(0) extrapolated to T = 0 K,
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the magneti moment was determined from a magnetization isotherm M(H)

measured at a temperature T slightly above the bloking temperature Tb.

Therefore, the Langevin-funtion with a log-normal distribution of moments

Eq. 2.36 was used as a model.
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Figure 4.17: Left panel: Magnetization isotherms M(H) (oloured symbols)

of FexPt1−x nanopartiles measured at Tm slight above Tb (25 K for sample E

and D; 44 K for B, 77 K for A and C). The lines are �ts using the Eq. 2.36

to obtain mean µ̄ and width σ of a log-normal magneti moment distribution.

Right panel: Mean partile moment µ̄(0) extrated from M(H) data versus

omposition of FexPt1−x nanopartiles.

The resulting �ts (straight lines) and theM(H) magnetization isotherms for

the FexPt1−x samples are displayed in the left panel of Fig. 4.17. The parame-

ters of the �ts are olleted in Tab. 4.3. Based on the observed Bloh-behaviour

of the temperature dependent magnetizationM(T ) measured at H = 10 kOe,

see Fig. 4.13, a mean magneti moment µ̄(T = 0) was extrapolated from the �t-

ted µp(Tm) by inverting the Bloh relation Eq. 2.12, µ̄(0) = µ̄(T )/(1−BT 3/2
m ),

where the individual values for Bloh oe�ient B and temperature Tm at

whih the magnetization isotherm was measured have been utilized.
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ID µ̄(0) µp(Tm) σ Tm χbgd B

µB µB K Am

2
/(kg·kOe) 10

−4
K

−2/3

A 642(370) 307(177) 1.0(2) 77 3(2) 3.70(6)

B 1014(99) 623(61) 0.91(4) 44 4.6(6) 2.40(2)

C 985(161) 427(70) 1.22(4) 77 7.8(9) 1.31(1)

D 556(41) 365(27) 0.88(2) 25 8.9(3) 2.72(8)

E 382(56) 206(39) 1.06(5) 20 5.2(3) 6.20(2)

Table 4.3: Mean magneti moment µ̄(0) determined from �ts using Eq. 2.36

to magnetization isotherms M(H) of FexPt1−x nanopartiles measured at Tm.

The quoted Bloh oe�ient was extrated from M(T,H = 10 kOe) for ex-

trapolation of µp(Tm) to µ̄(0) at T = 0 K.

As an be seen from Fig. 4.17, resulting mean magneti moments µ̄(0) in

the range 400 to 1000 µB are found for the FexPt1−x nanopartile samples, and

there seems to be only a weak orrelation with omposition x. Generally, the

partile moment is inreasing with inreasing ontent of iron in the nanoparti-

les, yet the hemial order in the partiles has some impat on the resulting

magneti moment µ̄(0).



Chapter 5

Spin dynamis of FexPt1−x
nanopartiles at mirowave

frequenies

This hapter analyses the dynami magneti behaviour of FexPt1−x nanopar-

tiles probed by magneti resonane spetrosopy at mirowave frequenies.

This omprises the determination of the g-fator at room temperature in the

isotropi range, where anisotropy shows no in�uene. Further fous is put on

the temperature variation of the resonane �eld Hres and peak-to-peak line-

width ∆Hpp, for whih several models are investigated. Finally, a full line

shape analysis is presented based on a Landau-Lifshitz model with omplex

damping.

5.1 FexPt1−x nanopartiles in the isotropi regime

At temperatures far above the bloking temperature Tb, the in�uene of the

anisotropy energy EA on the magneti behaviour in FexPt1−x magneti nanopar-

tiles is widely suppressed by the thermal energy kBT . Therefore, room tem-

perature MRS-spetra have been analysed to reveal three basi parameters

haraterizing the dynamis of FexPt1−x nanopartiles in the isotropi regime.

69
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E�etive g-fator, ratio µeff
L /µ

eff
S of orbital and spin angular momen-

tum, and damping onstant α

The gyromagneti ratio γ = g0µB/h̄, whih is the ratio between magneti

dipole moment and the angular moment of the partile, is determined by

the g-fator of the preessing moment. Generally, the determination of the

g-fator based on resonane absorption measurements is hampered by large

intrinsi magneti anisotropy �elds whih, moreover, may be temperature de-

pendent. In ensembles of superparamagneti nanopartiles well above their

bloking temperature, these intrinsi magneti �elds beome negligible small

due to thermal �utuations. Therefore, the resonane absorption behaviour of

FexPt1−x nanopartiles at room temperature is onsidered �rst, to investigate

the in�uene of FexPt1−x omposition on g-fator and damping parameter α.
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Figure 5.1: MRS-spetra of di�erent FexPt1−x nanopartile samples reorded

at ω/(2π) = 9.1 GHz and room temperature (T = 297 K). As depited for

sample C the resonane �eld Hres is given by the zero rossing dχ′′/dH = 0,

and the peak-to-peak linewidth ∆Hpp by the �eld distane between absorp-

tion maximum and minimum of the derivative. For better omparison, the

amplitudes of the MRS-spetra have been normalized in the peak-to-peak am-

plitude.
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Figure 5.2: Left panel: Composition dependent g-fator determined for

FexPt1−x nanopartiles at room temperature. Additionally, g-fators from

literature [90℄ and the g-fator of bulk f Fe have been added for ease of

omparison. The right sale in the left panel denotes µL/µS the ratio between

orbital and spin momentum aording to Eq. 2.68. Right panel: No orre-

lation was visible between damping onstant α and omposition in the room

temperature MRS-spetra.

In Fig. 5.1, the derivatives of mirowave FexPt1−x absorption spetra mea-

sured at ω/(2π) =9.1 GHz and room temperature T = 297 K are shown. At

that temperature, all samples exhibit a main resonane lose to Hres ≈ 3 kOe,

with peak-to-peak line-width ∆Hpp ranging from about 0.2 kOe (sample D) to

1.1 kOe (sample B). The MRS-spetra of samples A, D, E display one or several

additional narrow resonanes below H = 2 kOe with ∆Hpp ≈ 50 Oe. These

additional narrow absorption lines will be disussed in Se. 5.3. From Hres

and ∆Hpp of the main resonane the g-fator g = h̄ω/µBHres and the damping

α = ∆Hpp/Hres were determined and displayed in Fig. 5.2 as a funtion of

omposition.

The resulting g-fator of the FexPt1−x nanorystals is linearly dereasing

with Fe ontent x. Interestingly, this trend found for the FexPt1−x samples

agrees well with the behaviour observed in [90℄ for x = 0.4 . . . 0.7, that g
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linearly dereases with inreasing x as also indiated by the squares in Fig. 5.2.

So it is onluded that, for ompositions x = 0.1 . . . 0.7, the isotropi g-fator is

determined mainly by the iron ontent. The large g-fator observed in sample

B may be aused by the large line-width already present at room temperature,

leading to an asymmetry of the line with a potential shift of the resonane

�eld Hres determined as dχ′′/dH(H) = 0. This ould be originating from an

inhomogeneous FexPt1−x ompositional struture, i. e. iron-rih and platinum-

rih areas within the nanopartiles.

From the g-fator, the ontributions due to spin and orbital angular mo-

mentum an be obtained using the relation Eq. 2.68, µL/µS = (g − 2)/2 [40℄.

This ratio is shown as the right y-axis sale in the left panel of Fig. 5.2.

In strongly exhange oupled binary systems suh as FexPt1−x with an in-

dued polarization at the Pt site, the e�etive olletive orbital and spin on-

tributions are measured. It turns out that the dominating ontribution to

the g-fator is the spin moment, as depited in Fig. 5.2 (µL/µS ratio, right

sale), sine in ubi rystals the orbital moment is nearly quenhed [91℄ by

rystal �eld e�ets modifying the eletroni states. For all ompositions the

orbital ontribution is found to be below 10%. The oupling between of Fe

and (indued) Pt moments has been predited theoretially and on�rmed by

experiment to be ferromagneti in the onentration range x > 0.3. From

this, the tendeny for ferromagneti order has been found to beome more

favourable when the hemial disorder is inreased. Hene, this omposition

range an be expanded down to x ≈ 0.1 for disordered FexPt1−x nanopartiles.

In ontrast to the g-value, the damping parameter α displayed no ompo-

sition dependeny. For most samples, a quite large damping onstant 0.25 ≤
α ≤ 0.3 was found. Only sample D exhibits an exeptional small damping

α = 0.06.
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5.2 Resonane �eld Hres and line-width ∆Hpp in

FexPt1−x nanopartiles at temperatures

T < 300 K

The in�uene of thermal �utuations ating on the magnetization dynamis

an be diminished by lowering the temperature, so the impat of anisotropy and

magneti moment emerges more learly. Therefore, MRS-spetra of FexPt1−x

nanopartiles at lower temperatures have been performed.

5.2.1 Measured MRS-spetra of FexPt1−x nanopartiles
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Figure 5.3: Typial temperature dependent MRS-spetra of FexPt1−x (sample

A) reorded at 9.1 GHz. With dereasing temperature, the resonane is shifting

towards lower �elds, while the linewidth is inreasing and the line shape is

beoming unsymmetrial. Left panel: The derivative dχ′′/dH as reorded

by the spetrometer. Note the additional narrow temperature independent

resonane at H ≈ 1.5 kOe on top of the main resonane. Right panel: After

numerial integration to obtain the absorption χ′′(H).

As an example, the spetra of sample A at seleted lower temperatures down
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Figure 5.4: Temperature behaviour of FexPt1−x nanopartiles determined for

MRS-spetra (dχ′′/dH). Left panel: Downward shift of Hres with dereasing

temperature. The vertial oloured lines mark the individual bloking tem-

peratures Tb determined from the ZFC-magnetization, see Fig. 4.7. Right

panel: Inrease of line-width ∆Hpp with dereasing temperature. This be-

haviour an be desribed by a mean-�eld ansatz similar to Eq. 2.13∆Hpp(T ) =

∆Hpp(0)(1 − T/TC)2 using the Curie temperatures TC determined from the

ZFC-measurements, see Fig. 4.7, as indiated by the orresponding lines.

to T = 20 K are depited in Fig. 5.3. With dereasing temperature, amplitude

and line-width of the resonane are strongly inreasing. Furthermore, the

resonane �eld Hres is shifting towards lower �elds, in some samples (sample

C) reahing zero �eld at about the (stati) bloking temperature. At the

lowest temperatures, T ≤ Tb, the spetra show slight hystereti behaviour

(di�erent amplitudes dχ′′/dH for external �eld sweeping up or down) for �elds

H < 1 kOe. At all higher temperatures the lines are reversible and have

a zero amplitude at zero �eld, whih is to say that dχ′′/dH|H=0 = 0. The

rather symmetri line shape at room temperature beomes more and more

asymmetri while lowering the temperature, whih shows up more pronouned

in the spetra after integrating (χ′′(H), right panel of Fig. 5.3).

The additional narrow resonane visible in samples A, B, E, see Fig. 5.1,

also inreases in amplitude with dereasing temperature. However, position
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and width of the line remain onstant with temperature. The temperature

behaviour of this narrow line is investigated in Se. 5.3.

The resonane �eld Hres and peak-to-peak line-width ∆Hpp of the main res-

onane have been determined from the spetra and are olleted in Fig. 5.3.

The right panel shows the shift of Hres towards lower �elds and even zero �eld

(samples D and C) already before approahing the (stati) bloking tempera-

ture Tb. In samples A, B, E the downward shift is muh less pronouned so

that, even at Tb, the resonane �eld is still larger than 0.5 kOe. For all samples,

the line-width ∆Hpp is initially inreasing with dereasing temperature. Only,

if Hres is approahing zero �eld the peak-to-peak line-with is dereasing again

to some extent, sine the lower peak of dχ′′/dH is loated at zero �eld then and

the higher peak is approahing zero �eld, as an be seen in sample B and C.

The temperature-dependent growth of ∆Hpp in samples A, B, C and D ould

be adequately desribed using the model∆Hpp(T ) = ∆Hpp(0)(1−T/TC)2 with
Curie temperatures TC determined from the ZFC-measurements (see Fig. 4.7)

has been used.

5.3 The additional narrow resonane at geff ≈ 4

in FexPt1−x nanopartiles

As an be seen in Fig. 5.3, FexPt1−x samples A, B, and E show a narrow

resonane below Hω ≤ 2 kOe in addition to the broad main resonane loated

at Hω ≈ 3 kOe. Contrary to the main resonane, position and width of

the narrow resonane show no temperature variation, while the amplitude is

inreasing with dereasing temperature. By �tting this narrow resonane line

with the derivative of a Lorentz line dχ′′(H)/dH = −16I w(H−Hres)/(π(w
2+

4(H − Hres)
2)2), position Hres, width ∆Hpp and amplitude I(T ) have been

determined as funtions of temperature.

The resonanes are loated at Hres = 1.552(6), 1.55(2), 1.429(3)) kOe and

have a width ∆H = 0.15(4), 0.10(5), 0.11(2)) kOe for sample A, B, and E over

the whole temperature range. From Hres, temperature independent geff-values

of 4.5(2) (A) and 4.2(1) for B and E have been determined. This narrow

resonane was not observed in samples C and D, whih may be aused by a

redued dynami range of the Lok-in ampli�er required for the detetion of the
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larger amplitudes in that samples. So, in these samples, the narrow resonane

may be present, despite having been onealed by the main resonane.

A similar resonane has been observed in FMR spetra of of annealed iron-

ontaining borate glass [92℄ and was attributed to paramagneti Fe

3+
impuri-

ties. This was supported by the integrated amplitude I(T ) of the additional

resonane, whih has been displayed in Fig. 5.5. After normalizing to the am-

plitude at T = 0, a Curie-like behaviour C/T was observed for the temperature

dependene of I(T ) of the three samples A,B, and E. The ratio between inte-

grated amplitude of main and additional narrow resonane (at a temperature

lose to the bloking temperature Tb) allows the rough estimation of less than

�ve per ent for the impurity fration in the FexPt1−x samples.

0 100 200 300
0

1  A
 B
 E

 

 

P
 / 

P
(T

→
 0

) 

T / K

Figure 5.5: Curie-like behaviour of the MRS-amplitude of the additional nar-

row resonane at geff ≈ 4 observed in FexPt1−x nanopartiles. The blue line

represents a Curie law C/T = 30.5/T .
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5.4 Models to desribe the full line shape of

MRS-spetra

5.4.1 Resonane �eld Hres and line-width ∆Hpp in the ba-

si Landau-Lifshitz and Gilbert model

The �rst step towards the desription of the experimentally observed tem-

perature variation of resonane �eld Hres and line-width ∆Hpp in FexPt1−x

nanopartiles was to hek by simulations the behaviour of the two basi line

shape approahes, the Landau-Lifshitz line shape, Eq. 2.60 and the Gilbert line

shape, Eq. 2.61. For these simulations, a �xed value of Hω = 3 kOe was as-

sumed and the damping parameter α was varied within the range 0.001 . . . 1.5.

0 2 4 6

-1

0

1

          αααα : 
  0.2
  0.5
  1.0

 Gilb.
 Land.-Lif.

 
 

dχ
'' 

/ d
H

 (
a.

u.
)

H / kOe
0 2 4 6

0

1

 

χ'
' /

  (
a.

u.
)

 

H / kOe

Figure 5.6: Simulated magneti resonane absorption spetra at Hω = 0.3 T

for three values of the damping parameter α = 0.2, 0.5, and 1.0 using the

Landau-Lifshitz line shape, Eq. 2.60, (red lines) and the Gilbert line shape,

Eq. 2.61, (blue lines). In the left panel, the derivative of the transverse mag-

neti suseptibility dχ′′(H)/dH is shown, while right panel diretly displays

the suseptibility χ′′(H). Note, the urves have been normalized to their max-

imum absorption value max(χ′′(H)) for better omparison.
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Examples of simulated resonane urves for three di�erent values of α are

displayed in Fig. 5.6. For graphial representation, the urves have been nor-

malized to maximum absorption value max(χ′′(H)).

With inreasing α, the line-width inreases and the resonane �eld Hres is

shifted towards lower �elds for both line shape types. But the shift is muh

stronger for the Landau-Lifshitz line shape, while the Gilbert lines are only

moderately shifted for quite large values of α. Furthermore, the high �eld peak

position of the resonane in the derivative dχ′′(H)/dH of the line is always

above Hω for all values α in the Gilbert model, while it is loated below Hω

in the Landau-Lifshitz line shape for larger values of α. This explains the

derease in the ∆Hpp while approahing zero �eld of the resonane �eld in this

line shape, as an be seen in Fig. 5.7, where the Hres and ∆Hpp resulting from

the simulations for both lines shape types are drawn together.
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Figure 5.7: Resonane �eld Hres and peak-to-peak linewidth ∆Hpp resulting

from simulations of Landau-Lifshitz (Eq. 2.60) and Gilbert (2.61) line shape

spetra as a funtion of α.

Both, Landau-Lifshitz and Gilbert model in their basi forms yield only

symmetrial lines shapes and are therefore suitable to desribe the MRS-

spetra at high temperatures, where the observed lines are symmetrial. Fur-
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thermore, the strong in�uene of the damping α on both parameters Hres and

∆Hpp in the Landau-Lifshitz model has a negative impat ompared to the

Gilbert line shape. Therefore, more advaned models are taken into aount

in the following.

5.4.2 E�et of anisotropy on resonane position Hres and

line-width ∆Hpp

In the desription of the magneti resonane spetrosopy the e�et of the

magneti anisotropy energy EA is ommonly inorporated by the orresponding

anisotropy �eld HA = 2EA/µp = 2Keff/MS.

Introduing anisotropy into the basi Gilbert model

Choosing the basi Gilbert line shape Eq. 2.61, a straightforward approah to

inlude anisotropy in the line shape an be ahieved by replaing the external

�eld H by an e�etive �eld Heff ating on the preession of the nanopartile's

moment

χ′′G(H,HA) = Npµpωγα
(γHeff)

2 + ω2(1 + α2)

(γHeff)4 + 2(ωγHeff)2(α2 − 1) + ω4(1 + α2)2
. (5.1)

Here, the e�etive �eld is given by the square root of the sum of squared

external �eld H and anisotropy �eld HA

Heff =
√
H2 +H2

A. (5.2)

A simulation of the line shapes (dχ′′(H)/dH) for di�erent values of the

anisotropy �eld HA for a small damping, α = 0.2, and large damping, α = 1.0,

is shown in Fig. 5.8. In this approah, the resonane �eld Hres is shifting

towards H = 0 and the line-width ∆Hpp is inreasing with the anisotropy

�eld HA. However, an absorption di�erent from zero at zero external �eld

dχ′′(H → 0)/dH > 0 is not observed in the experimental MRS-spetra, so

this simple way to introdue the anisotropy seems not to be appropriate.

E�et of anisotropy on resonane �eld Hres and line-width ∆Hpp de-

termined by energy minimization

The starting point is the energy funtional Eq. 2.39 inorporating magnetorys-

talline anisotropy and Zeeman �eld energy, see 2.1.6, whih in redued �eld
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Figure 5.8: Simulation of MRS-spetra at Hω = 3 kOe for di�erent values of

the anisotropy �eld HA introdued by an e�etive �eld ansatz into the basi

Gilbert line shape model aording to Eq. 5.1 for small damping α = 0.2, left

panel and large damping α = 1.0, right panel.

units h = µpH/2EA = H/HA may be written as

E = − cos2(θ)− 2h cos(ψ − θ), (5.3)

where θ is the angle between moment µp and anisotropy �eldHA and ψ between

external �eld H and HA, as depited in Fig. 5.9. The resulting equilibrium

angle θ0 of the magneti moment µp in the redued �eld h is determined by

taking the �rst derivative of eq. 5.3:

d

dθ

[
− cos2(θ)− 2h cos(ψ − θ)

]
θ=θ0

= 0. (5.4)

Then, the redued resonane frequeny Ω = Hω/HA of the preession of the

magneti moment is given by [93; 42℄

Ω(ψ, h) ≡ Hω

HA
=

[(
cos2 θ0(ψ, h) + h cos(ψ − θ0(ψ, h)

)

× (cos 2θ0(ψ, h) + h cos(ψ − θ0(ψ, h))]
1/2 . (5.5)

In Fig. 5.10, Ω(ψ, h) is plotted as a funtion of h for a series of angles ψ.

For ψ = 0 (external �eld parallel to easy axis), the equilibrium angle is θ0 = 0
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Figure 5.9: Coordinate system de�ning the angles θ0 (equilibrium angle be-

tween partile moment µp and the anisotropy �eld HA = 2EA/µp direted

along the partile's easy axis) and ψ (angle between external �eld and easy

axis of the partile).

and, aording to eq. 5.5, resonane ours at 1 + h. For h approahing zero,

θ0 ≃ 0 for all ψ, with a resulting resonane Ω = 1. For ψ = 90◦ (external

�eld perpendiular to easy axis), θ0 is shifting from 0◦ for h = 0 to 90◦ for

h = 1, with a resulting resonane Ω = 0. Upon further inreasing h, the angle

θ remains at 90◦, so that Ω ∼ h for h≪ 1.

Experimentally, resonane absorption is observed sweeping the external �eld

H at a �xed frequeny ω. Thus, at a given anisotropy �eld HA the intersetion

of the horizontal line ω/(γHA) = const with an individual resonane urve

Ω(θ0(ψ, h)) determines the orresponding resonane �elds hr(ψ, ω/(γH)). The

resulting marosopi resonane �eld obtained after averaging numerially over

all angles ψ of the external �eld, h̄r =
∫
d sin(ψ)hr(ψ, ω), is shown in Fig. 5.10

(blue urve). Starting from Ω = 1, for h = 0 it asymptotially approahes

Ω = γh for h≫ 1.

Already in Eq. 5.1 of this setion, the in�uene of the anisotropy was in-

orporated phenomenologially by an e�etive anisotropy �eld, see Eq. 5.2, so

here in a similar way the resonane �eld is extended Hω ≡ (H2
res +H2

A)
0.5
, so

that the resonane �eld an be modelled as

Hres =
√
H2

ω −H2
A =

ω

γ

(
1−

(
γHA

ω

)2
)0.5

. (5.6)

Figure 5.11 shows the averaging results in the inverse representation, i.e. the
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Figure 5.10: Individual normalized resonane �elds Ω as a funtion of the

anisotropy �eld HA = 2EA/µp obtained using Eq. 5.5 taking the equilibrium

angle θ0 (by minimization of Eq. 5.3) for individual angles ψ between external

�eld H and easy axis.

averaged resonane �eld γh̄r/ω as a funtion of Ω−1
(grey irles) together

with the urve aording to Eq. 5.6 (red dotted line). A marked deviation

is observed between data and model urve. But by lowering in Eq. 5.6 the

exponent 0.5 down to 0.36(1), a nearly perfet agreement between data and

model urve is ahieved (blue line in Fig. 5.11):

Hres =
ω

γ

(
1−

(
γHA

ω

)2
)0.36

. (5.7)

Inverting Eq. 5.7, the anisotropy �eld HA may be alulated from a given

resonane �eld Hr for this phenomenologial approah, as shown in the inset

of Fig. 5.11:

HA =
ω

γ

(
1−

(
γHres

ω

)2.78
)0.5

. (5.8)

Furthermore, the peak-to-peak linewidth may be estimated in this approah

by

∆H =
[∫

cosψ dψ(ω/γ −Hres(ψ))
2
]1/2

. (5.9)
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Figure 5.11: Left panel: Averaged resonane �eld normalized to ω/γ as a

funtion of the anisotropy �eld HA in units of ω/γ. The blue urve is the

phenomenologial approximation Eq. 5.7, the red urve shows the relation

Eq. 5.6. The green urve in the inset of the �gure shows the inverted relation

Eq. 5.8 used to determine Hres from HA. Right panel: The line-width ∆H

normalized to ω/γ as determined from Eq. 5.9 and approximated numerially

by ∆ ≈ 0.25H2
A, red line or valid up with higher auray by ∆H ≈ 0.24H2

A+

0.40H4
A, blue line.

For low anisotropy values the line-width an be approximated by ∆H ≈
0.25H2

A. A more sophistiated approximation desribing the line-width be-

haviour up to γHA/ω < 0.95 is given by ∆H ≈ 0.24(1)H2
A + 0.40(1)H4

A.

Employing Eq. 5.8, the anisotropy �eld HA an be extrated from the res-

onane position Hres and the individual Hω determined in Se.5.2 from the

experimental MRS-spetra. The resulting variation of the anisotropy �eld

with temperature HA(T ) extrated from Hres(T ) for FexPt1−x nanopartiles is

depited in Fig.5.12. An obvious drawbak of the analysis is that the maximum

possible anisotropy �eld HA = Hω ≈ 3 kOe is reahed at lower temperatures

for all samples. Interestingly, the line-width ∆H(T ) alulated from Eq. 5.9

(using HA(Hres(T )) aording to Eq. 5.8) shows a good agreement with the
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Figure 5.12: Left panel: Temperature dependent anisotropy �eld HA(T ) of

FexPt1−x nanopartiles determined from the resonane �eld Hres using Eq. 5.8.

Right Panel: Temperature behaviour alulated from HA(T ) aording to

Eq. 5.9(lines) together with measured peak-to-peak line-width in FexPt1−x

nanopartiles.

measured ∆Hpp at lower temperatures, while at mid temperatures the line-

width is underestimated. Here, the orresponding value for TC determined

from ZFC-measurements and the room temperature value for ∆Hpp have been

used for the FexPt1−x samples.

5.4.3 MRS line shapes derived from magneti free energy

minimization inluding anisotropy

An alternative approah to inlude the e�ets of magnetorystalline and shape

anisotropy into the MRS-line shape behaviour has been given by Netzelmann

[94℄. There, the line shape of a ferromagneti grain is alulated from mini-

mization of the free energy inluding magnetorystalline and shape anisotropy

terms equivalent to the terms Eq. 2.5 - 2.7. His speial ansatz was speialized

to uniaxial anisotropy represented by an anisotropy �eld

~HA oriented at angles

(θ, φ) with respet to the external DC �eld

~H (parallel to z-diretion) and the
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mirowave �eld. Then, the equilibrium orientation (ϑ0, ϕ0) of the moment ~µp

is obtained by minimization of the magneti free energy

F (θ, φ, ϑ, ϕ) = −µp[cosϑ+
H

HA

(sinϑ sin θ− cos(ϕ−φ) + cos θ cosϑ)2]. (5.10)

After averaging over the angle φ, the transverse suseptibility of a partile with

orientation θ is given by

χL
xx(θ,H) =

γµp

2

(Fϑ0ϑ0
+ Fϕ0ϕ0

/ tan2 ϑ0)(1 + α2)− iαµpω(1 + cos2 ϑ0)

(1 + α2)(γHeff)2 − ω2 − iαωγ∆H
,

(5.11)

where the e�etive �eld H2
eff = (Fϑ0ϑ0

Fϕ0ϕ0
− F 2

ϑ0ϕ0
/(µp sin ϑ0)

2) and ∆H =

(Fϑ0ϑ0
+Fϕ0ϕ0

/ sin2 ϑ0)/µp are given by the seond derivatives of F at the equi-

librium orientation of ~µp. For randomly distributed Np independent partiles

per gram one has

χL
xx(H) =

∫ π/2

0
d(cos θ)χL

xx(θ,H). (5.12)

Simulations of the resulting line shape for di�erent values of the anisotropy �eld

HA based on this approah are shown in Fig. 5.13. A striking feature in the

model urves is the �nite value of dχ′′
xx/dH at H=0, whih is in ontradition

to the experimental observation. From Eq. 5.11 it follows that χ′′
xx(H → 0, θ) ∼

HAH/ω
2
, whih remains �nite even after averaging over all orientations θ, as

in Eq. 5.12.

But sine MRS-line shape of superparamagneti and non-ferromagneti

nanopartiles are onsidered, thermal �utuations must be taken into into

aount. The presene of thermal �utuations leads to a redution of the

anisotropy �eld [95℄, and an be modelled as

HA(z) = HA[1/L(z)− 3/z], (5.13)

whih for z = (H/HT) ≪ 1 implies that HA(z) = HAz/5, and thus χ′′
xx(H →

0) ∼ H2
. Here, the thermal �utuation �eld HT is de�ned as

HT ≡ kBT

µp(T )
, (5.14)

and L(z) is the Langevin funtion. Then, Eq. 5.13 inserted into Eq. 5.10 was

employed to alulate the model MRS-spetra, taking into aount the e�et

of thermal �utuations of superparamagneti nanopartiles on the anisotropy
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�eld. As depited by the dotted lines in Fig. 5.13, a thermal �utuation �eld

HT = 0.1 kOe already leads to a vanishing suseptibility of the resonane at

zero �eld and a distint redution of the line intensity for anisotropy �elds

HA > 1 kOe.
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Figure 5.13: Model MRS-spetra using the anisotropi line shape model a-

ording to Eq. 5.12 for Hω = 0.3 kOe and di�erent values of HA for α = 0.2

left panel and α = 1.0 (right panel). The straight lines represent model urves

without thermal �utuations, and the dotted lines taking thermal �utuations

into aount, assuming a thermal �utuation �eld ofHT = 0.1 kOe.

Any attempts to aount for the downward-shift in the resonane �eld Hres

by introduing a (uniaxial) magnetorystalline anisotropy failed, sine low val-

ues of the anisotropy �eld HA had no e�et on Hres due to orientational aver-

aging. Larger anisotropy �elds HA ould provide a su�ient shift of Hres, but

produed severe distortions of the alulated line shape.

Furthermore, the strong dependeny of this approah on the temperature

dependent partile moment µp e�eting the thermal �utuation �eld HT at

the expense of numerial implementation (the summation over θ an not be

written in losed form in a �tting routine) are however appreiable reasons to
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onsider a more simple approah as presented in the following setion.

5.5 Full line shape desription of the measured

MRS-spetra

5.5.1 Landau-Lifshitz model with omplex damping

As already seen in Se. 5.4.1, the e�et of the damping parameter α on res-

onane �eld Hres and line-width ∆Hpp is more pronouned in the Landau-

Lifshitz model than ompared to the Gilbert model. To yield a more appropri-

ate model suitable for a full line shape analysis of the measured MRS-spetra

of the FexPt1−x nanopartiles, the Landau-Lifshitz model with a temperature-

dependent omplex damping was introdued:

α̂(T ) = α(T )− iβ(T ). (5.15)

The approah of omplex damping has already been used to desribe the do-

main wall dynamis in ferromagneti EuO [96℄.Aording to Eq. 2.51, Se. 2.2.1,

this formally orresponds to a negative g-shift

g(T ) = g0 − β(T )g0. (5.16)

Combining Eq. 5.15 and Eq. 5.16 with Eq. 2.60, the dynami suseptibility

with omplex damping is given by

χ′′(H) =
NpµpHωαgp

2

(
1

(αHω)2 + (Hω − gpH)2
+

1

(αHω)2 + (Hω + gpH)2

)
.

(5.17)

5.5.2 Temperature variation of the omplex damping pa-

rameter α̂(T )

With this approah, the MRS-spetra line shapes ould be desribed over the

full temperature range with high aordane, as shown in Fig. 5.14.

From �tting the model Eq. 5.17 to the experimental MRS-spetra the tem-

perature dependenes of the two damping parameter α(T ) and ∆g(T )/g0 have

been determined, as shown for sample A in Fig. 5.15.
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Figure 5.14: Full line shape analysis using the omplex Gilbert model Eq. 5.17

for temperature dependent MRS-spetra of FexPt1−x nanopartile sample A.

Shown are reorded derivative dχ′′/dH together with the �tted urve (left

panel) and the residuum (di�erene data-�t values, right panel) for several

seleted temperatures, the orresponding �t parameters for α(T ) and∆g(T )/g0

as a funtion of temperature are displayed in Fig. 5.15.

Exept for sample C, all other FexPt1−x samples show a very similar tem-

perature behaviour of the omplex omponent of the damping, ∆g/g0.

A physial justi�ation for the omplex damping would be rather speu-

lative, espeially sine a general theory of magnetization is not yet available.

The similarity of the omplex damping behaviour impliates a relation with

intrinsi e�ets, sine no in�uene of the moment distribution µp, strutural

disorder or omposition are notieable.

The temperature variation of both omponents of the omplex damping

obey the same power law as the magneti moments µp(T ) = µ(0)q(T ), whih

implies that

α̂(T ) = (α− iβ)q(T ) + α0. (5.18)

Also, it was observed that the intensity I of the MRS-spetra roughly shows

the same temperature dependene as the moments I(T ) ∼ µp(T ). From this,
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Figure 5.15: Complex damping parameters α (top panel) and ∆g/g0 (bottom

panel), obtained by �tting the temperature dependent MRS-spetra using the

landau-Lifshitz model with omplex damping Eq. 5.17.

it an be onluded that superparamagneti �utuations do not have a large

in�uene, as otherwise a derease of the intensity I(T ) ∼ µp(T )/T would have

been expeted.

The striking feature observed in the MRS-spetra of the FexPt1−x nanopar-

tiles are the large magnitudes and the temperature variation of both ompo-

nents, α(T ) and ∆g(T ) of the omplex damping. It has been suggested that

this is aused by the sattering of a q=0-magnon by an eletron/hole exita-

tion [97℄, well established for bulk ferromagnets [98℄. But deeper quantitative

onlusions require more detailed information on the eletroni and magneti

struture of the FexPt1−x nanopartiles.
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Chapter 6

Summary and onlusions

This work foussed on the strutural and magneti haraterization of disor-

dered platinum-rih FexPt1−x nanopartiles, whih were prepared following a

wet-hemial organometali nanopartile synthesis by thermal deomposition

in the presene of stabilizing olei aid. Struture and morphology of the

nanopartiles were haraterized by TEM and XRD. SQUID-suseptometry

and magneti resonane spetrosopy (MRS) were employed for determination

of the quasi-stati and dynami magneti parameters.

The main results, whih have been obtained for the FexPt1−x nanopartiles,

an be summarized as follows:

The samples onsist of spherial nanorystalline partiles with a narrow

log-normal shaped distribution of partile sizes at a mean diameter of about 4

nm. A platinum-rih omposition of the FexPt1−x nanopartiles in the range

x = 0.1 . . . 0.25 was derived from the lattie onstant a0 and on�rmed by anal-

ysis of the Curie temperature TC found in ZFC magnetization measurments.

Chemial ordering of the FexPt1−x nanopartiles was not observed and ould

not be indued by annealing treatment.

Both, ZFC- and AC-magnetization reveal a log-normal energy barrier dis-

tribution with mean anisotropy energies EA/kB in the range 300 K to 600 K.

An unexpeted relation τ0 ∼ E
−1/5
A between the relaxational pre-fator τ0 and

mean anisotropy energy EA has been found experimentally. A seond mag-

neti phase at a higher anisotropy energy EA/kB ≈ 1900 K is observed in

one sample, indiating the formation of di�erent magneti phases in FexPt1−x

nanopartiles.
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The magneti moment µp of the FexPt1−x nanopartiles shows a distint

temperature dependene following Bloh's law µp(T ) ∼ 1 − BT β
, with a ex-

ponent β = 3/2 typial for bulk systems, while the resulting oe�ients B are

muh larger than the bulk value, a phenomenon observed in other nanopartile

systems.

From the magnetization isotherms M(H, T ), the same temperature be-

haviour q(T ) of the magneti moment µp = µp(0)q(T ) has been derived than

extrated from the e�etive Curie onstant as determined from ZFC-measure-

ments at H = 0.1 kOe. The magneti moment µp(T = 0) was obtained by

extrapolation of the magneti moment µp(Tm) measured at a temperature Tm

lose above the bloking temperature. Hereby, a log-normal size distribution of

the partiles was taken into aount and the observed Bloh behaviour of the

magneti moment was used for the extrapolation. The resulting moments in

the range 500 µB to 1000 µB only show a weak orrelation with the omposition

x of the FexPt1−x nanopartiles.

Furthermore, the anisotropy energy in the FexPt1−x nanopartiles was found

to inrease linearly with the saturation magnetization MS(T = 0). It is as-

sumed that this an be used to assess the magneti order indued by the

hemial order independent of the omposition of the FexPt1−x nanopartiles.

The isotropi g-fator of the FexPt1−x nanopartiles determined from room-

temperature MRS-measurements at 9 GHz are dereasing linearly with inreas-

ing iron ontent x, and on�rm this trend reported in literature for FexPt1−x

nanopartiles with x = 0.4 . . . 0.7. It turns out that the dominating ontribu-

tion to the g-fator arises from the spin moment, while the orbital moment

ontribution is below 10% for all samples. From the line-width of the MRS-

spetra, quite large damping onstants α in the range 0.2 . . . 0.4 are found

for most of the samples, whih are independent of the omposition of the

FexPt1−x nanopartiles. One sample (D) exhibits a very small line width with

orresponding α = 0.06.

From temperature dependent MRS-measurements, the strong shift of the

resonane �eld Hres towards smaller �elds and an inrease in line-width ∆Hpp

with dereasing temperature are observed. The analysis of the basi phe-

nomenologial Landau-Lifshitz and Gilbert line shapes are insu�ient for an

adequate desription of the measured spetra, espeially at low temperatures,
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where broad and asymmetri lines are reorded.

To improve the desription of the line shapes, the anisotropy was inorpo-

rated into the Gilbert model. To this end, the e�et of the anisotropy �eld

HA = 2EA/µp on resonane �eld and line-width was simulated for two di�erent

approahes. An analytial expression was derived to determine the anisotropy

�eld HA from the resonane position Hres. From this the temperature depen-

deny of the anisotropy HA(T ) was estimated. As a ross hek the line-width

∆H(T ) alulated from HA(T ) agrees reasonably well with the measured line-

width ∆Hpp of the MRS-spetra.

Sine these models did not desribe the full line shape, espeially the ob-

served asymmetry of the MRS-spetry at low temperatures, sophistiated line

shape models have been investigated. The resulting line shape based on the

minimization of the free energy inluding magneti anisotropy ould not pro-

vide a onvining math with the observed line shapes. One striking feature

here was the �nite absorption at zero �eld, whih was not observed experimen-

tally.

Finally, using the model of Landau-Lifshitz, line shape with omplex damp-

ing allowed for a very good desription of the measured MRS-spetra. With

only three free parameters, stable �ts of this model to the experimental data

were ahieved. The resulting temperature behaviour of the omplex damping

parameter ∆g/g0 was found to be the same for all FexPt1−x samples exept

sample C. More variation was observed in the real part α(T ). A similar ap-

proah has been suggested and applied for the desription of the domain wall

dynamis in ferromagneti EuO; in any ase the underlying physis deserves

further detailed investigations.

The additional temperature-independent narrow resonane observed in some

FexPt1−x nanopartiles with an e�etive g-fator geff ≈ 4 was attributed to

paramagneti Fe

3+
impurities. This was supported by the same Curie-like

behaviour of the amplitude of the narrow line.

Magneti suseptibility measurements are indispensable to determine quasi-

stati properties of magneti nanopartiles. In ombination with magneti

resonane spetrosopy, whih is an exellent tehnique for analysing the dy-

namis magneti nanopartiles diretly using the eletroni moments as loal

probes. It ould be shown, that this allows the investigation of the in�u-
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ene of order and ompositional e�ets on the resulting magneti properties of

transition metal nanopartiles, mainly expressed by the omplex behaviour of

anisotropy and magneti moment.
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Appendix A

Some important magneti units

and physial onstants

In table (A) important magneti units and onstants in the SI and CGS system

are summarized

name symbol SI CGS onversion

(SI→CGS)

magneti moment m A·m2
emu 103

magneti �eld (strength) H A

m

Oe

4π
103

magneti �ux density B T G 10−4

volume magnetization M A

m

emu

m

3 10−3

mass magnetization M A·m2

kg

emu

g

1

mass suseptibility χ m

3

kg

emu

g·Oe

103

4π

volume suseptibility χ -

emu

m

3·Oe

1
4π

anisotropy onstant K J

m

3

erg

m

3 0.1

Table A.1: Important magneti quantities and their onversion from SI to

units. Used unit abbreviations are eletromagneti unit (emu), Tesla (T),

Gauss (G), Oersted (Oe). 1 J = 10

−7
kg·m2· s2 = 10

−7
erg. The magneti mo-

ment often is expressed in units of Bohr-magneton µB as 1 Am

2
= 1.078·1023µB

(1 emu=1.078 · 1020µB).
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name symbol value unit

permeability of vauum µ0 4π · 10−7 V·s
A·m

= m·kg
s2·A2

Bohr magneton µB = eh̄
2me

9.2740110−24 J
T
= A ·m2

Boltzmann onstant kB 1.380710−23 J
K
= m2·kg

s2·K2

vauum speed of light  299792458

m
s

Plank onstant h̄ = h
2π

1.05459 10

−34
J·s

eletron harge e 1.6022 10

−19
C

eletron mass me 9.1094 10

−31
kg

eletron magneti moment µe 9.28477 10

−24 J
T

Landé g-fator of free eletron ge =
2µe

µB

2.0023193

gyromagneti ratio of free eletron

∗ γe =
gµB

h̄
= ge

2mec
Hz
T

Table A.2: Fundamental magneti onstants in SI units

∗γ = µ
L
, µ magneti moment, L angular momentum



Appendix B

The log-normal distribution

Two equivalent notations of the log-normal distribution are found in literature,

the widely used P (x) with median x̃ and width σ

P (x) =
1√
2πσx

exp

(
−(ln x− ln x̃)2

2σ2

)
=

1√
2πσx

exp

(
−(ln x

x̃
)2

2σ2

)
(B.1)

and a notation P (y) with redued argument y ≡ x/x̃

P (y) =
1√
2πσy

exp

(
− ln2 y

2σ2

)
(B.2)

Both distributions are normalized to unity

∫∞
0 P (x)dx =

∫∞
0 P (y)dy ≡ 1. And

the orresponding mean values are given by (assuming σ > 0)

x̄ =
∫ ∞

0
xP (x)dx = x̃ exp(σ2/2) (B.3)

and

ȳ =
∫ ∞

0
yP (y)dy = exp(σ2/2) (B.4)

Equation (B.2) transforms into the �rst one eq.(B.1) by substitution y ≡ x/x̃

and resaling of y-axis y → y · x̃ and amplitude P (y) → P (y)/x̄, so that both

distributions oinide. When using eq.(B.2) to desribe a magnetization urve,

the equivalent to eq.(2.36) reads as

M(H, T ) = Npµ̃
∫ ∞

0
y P (y)

(
coth

(
yµ̃ µ0H

kBT

)
− kBT

yµ̃ µ0H

)
dy + χbgdH (B.5)
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B.1 Relation between mean, median and maxi-

mum of the log-normal distribution

Besides the median xmd as a basi parameter to haraterize a log-normal

distribution P (x) eq.(B.1) often the mean x0 or the maximum xmax are stated

whih are related to eah other by

xmax = xmd exp(−σ2) (B.6)

x0 = xmd exp(σ
2/2) = xmax exp(3σ

2/2) (B.7)

As shown in �g. B.1 for σ → 0 the three parameter oinide, while for σ > 0

the mean value lies above and the maximum below the median value.

0 1000 2000
0.000

0.004  x
0

 x
max

 0.25

 0.5

σ = 0.1

x
md

= 1000

 

 

P
(x

)

x

Figure B.1: Log-normal distributions with median xmd = 1000 and inreasing

widths σ = 0.1, 0.25, 0.5. The squares mark the orresponding maxima, the

irles the orresponding mean values.
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B.2 Relations between diameter and volume log-

normal distribution

We de�ne the log-normal distribution of diameters P (D) with median diameter

D̃ and width σ aording to eq. B.1

P (D) =
1√

2πσDD
exp

(
−(lnD − ln D̃)2

2σ2
D

)
(B.8)

and aordingly the log-normal distribution of volumes P (V ) with median

volume Ṽ and width σV

P (V ) =
1√

2πσV V
exp

(
−(lnV − ln Ṽ )2

2σ2
V

)
(B.9)

Then the mean diameter D̄ is given by

D̄ =
∫ ∞

0
DP (D)dD = D̃ exp

(
σ2
D

2

)
(B.10)

And the mean volume V̄ is de�ned in the same way

V̄ =
∫ ∞

0
V P (V )dV = Ṽ exp

(
σ2
V

2

)
(B.11)

The mean volume an also be alulated using the diameter log-normal

distribution as

V̄ =
∫ ∞

0

πD3

6
P (D)dD =

πD̃3

6
exp

(
9σ2

D

2

)
(B.12)

=
π

6

(
D̃ exp

(
σ2
D

2

))3

exp(3σ2
D)

=
π

6
D̄3 exp(3σ2

D) (B.13)

where relation eq. B.10 between mean and median has been used. Comparing

right-hand side of eq. B.12 with B.11 we see that formally Ṽ = πD̃3/6 and

σV = 3σD. In other words, the median values are diretly related, while the

mean values are in�uened by the distribution width.
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B.3 Logarithmi sampling

For the modelling of log-normal distribution the logarithmially sampling of an

interval [xb, ..., xe] by N sampling points is often usedful. This an be ahieved

by

xlog(i) = x
N−i

N−1

b x
i−1

N−1

e , i = 1, ..., N (B.14)



Appendix C

Relation between atomi and

weight perentages in binary alloys

In literature both, atomi perentage at% and weight perentage wt% are

denoted for desription of the omposition of binary alloys. The onversion

between atomi perentage at% and weight perentage wt% of a omponent

in a binary system A-B is given by

wt% A =
at% A ·ma(A)

(at% A ·ma(A)) + (at% B ·ma(B))
· 100 (C.1)

and

at% A =
wt% A/ma(A)

(wt% A/ma(A)) + (wt% B/ma(B))
· 100 (C.2)

where ma(X) is the atomi mass of omponent X.
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Appendix D

Experimental details

D.1 Field alibration of the SQUID magnetome-

ter

Moving a sample stepwise through the pik-up oil, a voltage proportional to

the magneti �eld reated by the sample's magneti moment is indued and

deteted as SQUID response h(z) (inset of Fig. D.1). By �tting to the data the

response urve (idealized point dipole moving through a 2nd order gradiometer

with radius R = 1 m and distane A = 1.5 m between the oils)

h(z) = A0 + A1

[
R

(R2 + ((z − z0)−A)2)3/2
− 2R

((R2 + (z − z0)2)3/2

+
R

(R2 + ((z − z0) + A)2)3/2

]
, (D.1)

the amplitude A1 is determined. By means of a ylindri Palladium referene

sample (m = 0.2756 g) the amplitude A1 is alibrated to obtain an abso-

lute magneti moment. At regular intervals the moment alibration of the

devie was veri�ed by omparison of the paramagneti suseptibility of the

referene sample measured at T=300 K with the nominal suseptibility of

5.23 · 10−6
Am

2
/kg [99℄, as shown in Fig. D.1.
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Figure D.1: Magneti moment alibration hek of the SQUID-magnetometer

by a �eld sweep at T = 300 K of the Pd referene ylinder (m=0.2756 g). The

determined suseptibility χmeas = 5.237(5) · 10−2
Am

2
/(kg·T) niely mathes

the nominal value χnom = 5.23 · 10−6
Am

2
/(kg·T). The inset shows a single

SQUID response urve of the referene sample measured at B = 1 T, together

with the �tted model urve Eq. D.1.



Publiations

with the subjet area FexPt1−x �nanopartiles

E. Shevhenko, D. Talapin, A. Kornowski, F. Wiekhorst, J. Kötzler, M.

Haase, A. Rogah, H. Weller. Colloidal rystals of monodisperse FePt nanopar-

tiles grown by a three-layer tehnique of ontrolled oversaturation. Adv.

Mater. 14:287-290, 2002.

F. Wiekhorst, E. Shevhenko, H. Weller, J. Kötzler. Anisotropi superpara-

magnetism of monodispersive obalt-platinum nanorystals. Phys. Rev. B

67:224416-1-11, 2003.

F. Wiekhorst, E. Shevhenko, H. Weller, J. Kötzler. Temperature-dependent

anisotropy e�ets on FMR and magnetization of FePt2 and CoPt3 nanorys-

tals. J. Magn. Magn. Mater. 272-276:1559-1560, 2004.

J. Kötzler, D. Görlitz, F. Wiekhorst. Strong spin-orbit-indued Gilbert

damping and g-shift in iron-platinum nanopartiles. Phys. Rev. B 76:104404-

1-8, 2007.

further relevant publiations

2014

M. Liebl, F. Wiekhorst, U. Steinho�, J. Haueisen, L. Trahms. Quantita-

tive imaging of magneti nanopartiles by magnetorelaxometry with multiple

exitation oils. Phys. Med. Biol. 59(21):6607-6620, 2014.

J. Nowak, F. Wiekhorst, L. Trahms, S. Odenbah. The in�uene of hy-

drodynami diameter and ore omposition on the magnetovisous e�et of

bioompatible ferro�uids, J. Phys. Cond. Matter 26(17):176004, 2014.

A. Coene, G. Creveoeur, M. Liebl, F. Wiekhorst, L. Dupré, U. Steinho�.

Unertainty of reonstrutions of spatially distributed magneti nanopartiles

117



118

under realisti noise onditions, J. Appl. Phys. 115:17BN509, 2014.

2013

C. Harms, A. L. Datwyler, F. Wiekhorst, L. Trahms, R. Lindquist, E. Shel-

lenberger, S. Müller, G. Shütz, F. Roohi, A. Ide, M. Fühtemeier, K. Gertz,

G. Kronenberg, U. Harms, M. Endres, U. Dirnagl, T. D. Farr. Certain types of

iron oxide nanopartiles are not suited to passively target in�ammatory ells

that in�ltrate the brain in response to stroke. JCBFM 33(5):e1-e9, 2013.

R. Tietze, S. Lyer, S. Dürr, T. Stru�ert, T. Engelhorn, M. Shwarz, E. Ek-

ert, T. Göen, S. Vasylyev, W. Peukert, F. Wiekhorst, L. Trahms, A. Dör�er, C.

Alexiou. E�ient drug-delivery using magneti nanopartiles - biodistribution

and therapeuti e�ets in tumour bearing rabbits. Nanomediine 9(7):961-971,

2013.

Ch. Knopke, F. Wiekhorst, D. Eberbek, I. Gemeinhardt, M. Ebert, J.

Shnorr, S. Wagner, M. Taupitz, L. Trahms. Quanti�ation of magneti

nanopartile uptake in ells by temperature dependent magnetorelaxometry.

IEEE Trans. Mag. 49:421-424, 2013.

N. Löwa, F. Wiekhorst, I. Gemeinhardt, M. Ebert, J. Shnorr, S. Wagner,

M. Taupitz, L. Trahms. Cellular uptake of magneti nanopartiles quanti�ed

by magneti partile spetrosopy. IEEE Trans. Mag. 49:275-278, 2013.

F. Wiekhorst, U. Steinho�, M. Bär, L. Trahms, W. Haberkorn. Quanti�-

ation and loalization of extended nanopartile distributions in tissue using

multipole expansion. Biomed. Teh. 58:1-2 dx.doi.org/10.1515/bmt-2013-

4345, 2013.

2012

F. Wiekhorst, U. Steinho�, D. Eberbek, L. Trahms. Magnetorelaxometry

assisting biomedial appliations of magneti nanopartiles. Pharmaeut. Res.

29(5):1189-1202, 2012.

R. Eihardt, D. Baumgarten, B. Petkovi, F. Wiekhorst, L. Trahms, J.

Haueisen. Adapting soure grid parameters to improve the ondition of the

magnetostati linear inverse problem of estimating nanopartile distributions.

MBEC 50(10): 1081-1089, 2012.

G. Hasenpush, J. Geiger, K. Wagner, O. Mykhaylyk, F. Wiekhorst, L.

Trahms, A. Heidsiek, B. Gleih, C. Bergemann, M. K. Aneja, C. Rudolph.



119

Magnetized aerosols omprising superparamagneti iron oxide nanopartiles

improve targeted drug and gene delivery to the lung. Pharmaeut. Res.

29(5):1308-1318, 2012.

F. Wiekhorst, M. Liebl, U. Steinho�, L. Trahms, S. Lyer, S. Dürr, C. Alex-

iou. Magnetorelaxometry for in-vivo quanti�ation of magneti nanopartile

distributions after magneti drug targeting in a rabbit arinoma model. Pro.

in Phys. 140:301-305, 2012.

F. Wiekhorst, W. Haberkorn, U. Steinho�, S. Lyer, C. Alexiou, M. Bär, L.

Trahms. Prinipal moments of a multipole expansion to quantify the magneti

nanopartile distributions in arteries. Biomed. Teh. 57(1):751-754, 2012.

Ch. Knopke, F. Wiekhorst, I. Gemeinhardt, M. Ebert, J. Shnorr, M.

Taupitz, L. Trahms. Quanti�ation of small magneti nanopartile harateris-

tis by temperature dependent magnetorelaxometry. Biomed. Teh. 57(1):84,

2012.

N. Löwa, D. Eberbek, U. Steinho�, F. Wiekhorst, L. Trahms. Potential of

improving MPI performane by magneti separation. Pro. in Phys. 140:73-

78, 2012.

U. Steinho�, M. Liebl, M. Bauer, F. Wiekhorst, L. Trahms, D. Baumgarten,

J. Haueisen. Spatially resolved measurement of Magneti Nanopartiles using

inhomogeneous exitation �elds in the linear suseptibility range (<1 mT).

Pro. in Phys. 140:295-300, 2012.

2011

M. Kettering, H. Rihter, F. Wiekhorst, S. Bremer-Strek, L. Trahms, W.

A. Kaiser, I. Hilger. Minimal-invasive magneti heating of tumors does not

alter intra-tumoral nanopartile aumulation, allowing for repeated therapy

sessions: an in vivo study in mie. Nanotehnology 22(50):7, 2011.

F. Wiekhorst, I. Gemeinhardt, J. Shnorr, M. Taupitz, L. Trahms. Cellular

uptake of magneti nanopartiles quanti�ed by non-linear AC suseptometry.

Biomed. Teh. ISSN 0939-4990, 2011.

D. Eberbek, F. Wiekhorst, S. Wagner, L. Trahms. How the size distri-

bution of magneti nanopartiles determines their magneti partile imaging

performane. Appl. Phys. Lett. 98(18):182502-1-182502-2, 2011.

F. Wiekhorst, U. Steinho�, M. Liebl, P. Zirpel, K. Shwarz, S. Lyer, C.



120

Alexiou, L. Trahms. In-vivo determination of magneti nanopartile ontent

after magneti drug targeting. Biomed. Teh. ISSN 0939-4990, 2011.

F. Wiekhorst, D. Baumgarten, W. Haberkorn, U. Steinho�, J. Haueisen,

M. Bär, L. Trahms. Reonstrution of magneti nanopartile distributions in

organs by magneti multipole expansion. Biomed. Teh. ISSN 0939-4990,

2011.

2010

S. Knappe, T. Sander-Thömmes, O. Kosh, F. Wiekhorst, J. Kithing,

L. Trahms. Cross-validation of mirofabriated atomi magnetometers with

superonduting quantum interferene devies for biomagneti appliations.

Appl. Phys. Lett. 97(13):133703-1-133703, 2010.

F. Wiekhorst, D. Baumgarten, W. Haberkorn, U. Steinho�, J. Haueisen, M.

Bär, L. Trahms. Quantitative imaging of magneti nanopartile distributions

in organs by a ombined multipole-multiple dipoles approah. Front. Neurosi.

Biomag 2010 doi: 10.3389/onf.fnins.2010.06.00388, 2010.

D. Eberbek, F. Wiekhorst, L. Trahms. Evidene of aggregates of mag-

neti nanopartiles in suspensions whih determine the magnetisation behav-

ior, Magneti Nanopartiles: Partile Siene, Imaging Tehnology, and Clini-

al Appliations Pro. IWMPI 66-72, 2010.

H. Rahn, S. Lyer, R. Tietze, H. Rihter, C. Alexiou, D. Eberbek, F.

Wiekhorst, L. Trahms, F. Bekmann, S. Odenbah. SRµCT and MRX analyses

of ferro�uid aumulation in bovine arteries: A step further in the understand-

ing of Magneti Drug Targeting. Physis Proedia 9:258-261, 2010.

H. Rihter, M. Kettering, F. Wiekhorst, U. Steinho�, I. Hilger, L. Trahms.

Magnetorelaxometry for loalization and quanti�ation of magneti nanopar-

tiles for thermal ablation studies. Phys. Med. Biol. 55(3):623-633, 2010.

2009

D. Eberbek, F. Wiekhorst, U. Steinho�, L. Trahms. Quanti�ation of

biomoleule agglutination by magnetorelaxometry. Appl. Phys. Lett. 95(21):

213701-1-3, 2009.

H. Rihter, F. Wiekhorst, K. Shwarz, S. Lyer, R. Tietze, C. Alexiou,

L. Trahms. Magnetorelaxometri quanti�ation of magneti nanopartiles in

an artery model after ex vivo magneti drug targeting. Phys. Med. Biol.



121

54(18):N417-424, 2009.

F. Wiekhorst, U. Steinho�, W. Haberkorn, G. Lindner, M. Bär, L. Trahms.

Loalization of a magneti nanopartile spot from features of the magneti

�eld pattern and omparison to a magneti dipole �t. IFMBE proeedings

22(7):2347-2351, 2009.

F. Wiekhorst, D. Baumgarten, W. Haberkorn, U. Steinho�, J. Haueisen, M.

Bär, L. Trahms. A physial phantom modeling extended magneti nanopar-

tile distributions in biologial systems. IFMBE proeedings 25(7):293-296,

2009.

D. Eberbek, F. Wiekhorst, U. Steinho�, K. O. Shwarz, A. Kummrow, M.

Kammel, J. Neukammer, L. Trahms. Spei� binding of magneti nanopartile

probes to platelets in whole blood deteted by magnetorelaxometry. J. Magn.

Magn. Mater. 321(10):1617-1620, 2009.

C. Seliger, R. Jurgons, F. Wiekhorst, D. Eberbek, L. Trahms, H. Iro, C.

Alexiou. In vitro investigation of the behaviour of magneti partiles by a

irulating artery model. J. Magn. Magn. Mater. 311(1):358-362, 2009.

R. Tietze, R. Jurgons, S. Lyer, E. Shreiber, F. Wiekhorst, D. Eberbek, H.

Rihter, U. Steinho�, L. Trahms, C. Alexiou. Quanti�ation of drug-loaded

magneti nanopartiles in rabbit liver and tumor after in vivo administration.

J. Magn. Magn. Mater. 321(10):1465-1468, 2009.

2008

F. Wiekhorst, U. Steinho�, D. Eberbek, K. Shwarz, H. Rihter, R. Renner,

M. Roessner, C. Rudolph, L. Trahms. Quanti�ation of magneti nanoparti-

le onentration in pig lung tissue after magneti aerosol drug targeting by

magnetorelaxometry. IFMBE Proeedings 22:2326-2329, 2008.

F. Wiekhorst, U. Steinho�, W. Haberkorn, G. Lindner, M. Bär, L. Trahms.

Loalization of a magneti nanopartile spot from features of the magneti

�eld pattern and omparison to a magneti dipole �t. IFMBE Proeedings

22:2347-2351, 2008.

D. Eberbek, A. P. Astalan, K. Petersson, F. Wiekhorst, C. Bergemann, C.

Johansson, U. Steinho�, H. Rihter, A. Krozer, L. Trahms. AC suseptometry

and magnetorelaxometry for magneti nanopartile based biomoleule dete-

tion. IFMBE Proeedings 22:2317-2321, 2008.



122

D. Baumgarten, M. Liehr, F. Wiekhorst, U. Steinho�, P. Münster, P. Mi-

ethe, L. Trahms, J. Haueisen. Magneti nanopartile imaging by means of

minimum norm estimates from remanene measurements. Med. Biol. Eng.

Comput. 46:1177-1185, 2008.

D. Eberbek, C. Bergemann, F. Wiekhorst, U. Steinho�, L. Trahms. Quan-

ti�ation of spei� bindings of biomoleules by magnetorelaxometry. J. Nano-

bioteh. 6:4:1-12, 2008.

2007

F. Wiekhorst, D. Eberbek, U. Steinho�, D. Gutkelh, L. Trahms. Shluss-

beriht zum Teilvorhaben "SQUID-basierte Magnetrelaxometrie an magnetis-

hen Nanopartikeln für die medizinishe Diagnostik" (FKZ 13N8535) im BMBF-

Verbundvorhaben "Nanomagnetomedizin", 62 Seiten, URL: edok01.tib.uni-

hannover.de/edoks/e01fb08/576714585.pdf, 2007.

F. Wiekhorst, U. Steinho�, D. Eberbek, R. Jurgons, C. Seliger, C. Alexiou,

L. Trahms. Magnetorelaxometri quanti�ation of nanopartile ontent in

biologial tissue using a multihannel vetor magnetometer. Biomed. Teh.

52:1569047463.pdf, 2007.

F. Wiekhorst, U. Steinho�, R. Fisher, D. Gutkelh, F. Ruede, R. Aker-

mann, M. Bader, Th. Shurig, L. Trahms , H. Koh. Charaterization of a

standalone SQUID-system with integrated superonduting shield for magne-

toardiography of mie. Biomed. Teh. 52:1569047617.pdf, 2007.

P. Dames, B. Gleih, A. Flemmer, K. Hajek, N. Seidl, F. Wiekhorst, D.

Eberbek, I. Bittmann, Ch. Bergemann, Th. Weyh, L. Trahms, J. Roseneker,

C. Rudolph. Targeted delivery of magneti aerosol droplets to the lung. Nature

Nanoteh. 2:495 - 499, 2007.

C. Seliger, R. Jurgons, F. Wiekhorst, D. Eberbek, L. Trahms, H. Iro, C.

Alexiou. In vitro investigation of the behaviour of magneti partiles by a

irulating artery model. J. Magn. Magn. Mater. 311:358 - 362, 2007.

R. Akermann, F. Wiekhorst, A. Bek, D. Gutkelh, F. Ruede, A. Shn-

abel, U. Steinho�, D. Drung, J. Beyer, C. Aÿmann, L. Trahms, H. Koh,

Th. Shurig, R. Fisher, M. Bader, H. Ogata, H. Kado. Multihannel SQUID

system with integrated magneti shielding for magnetoardiography of mie.

IEEE Trans. Appl. Superond. 17:827-830, 2007.



123

2006

F. Wiekhorst, D. Eberbek, U. Steinho�, R. Jurgons, C. Seliger, C. Alexiou,

L. Trahms. Quanti�ation of magneti nanopartiles in tissue demonstrated

by magnetorelaxometry tomography. Biomed. Teh. 2006.

F. Wiekhorst, C. Seliger, R. Jurgons, U. Steinho�, D. Eberbek, L. Trahms,

C. Alexiou. Quanti�ation of magneti nanopartiles by magnetorelaxometry

and omparison to histology after magneti drug targeting. J. Nanosi. Nan-

oteh. 6:3222-3225, 2006.

D. Eberbek, F. Wiekhorst, U. Steinho�, L. Trahms. Aggregation behaviour

of magneti nanopartile suspensions investigated by magnetorelaxometry. J.

Phys.: Condens. Matter 18:S2829-2846, 2006.

F. Wiekhorst, D. Eberbek, U. Steinho�, R. Jurgons, C. Seliger, C. Alexiou,

L. Trahms. Quanti�ation of magneti nanopartiles in tissue demonstrated by

magnetorelaxometry tomography. Re. Dev. in Ferro�uid Res., EUROMECH

470, 2006

2005

D. Eberbek, Ch. Bergemann, F. Wiekhorst, G. Glökl. Quanti�ation of

aggregates of magneti nanopartiles in di�erent suspension media by magne-

torelaxometry. Magnetohydrodynamis 41:305-316, 2005.

U. Steinho�, A. Link, F. Wiekhorst, M. Bader, S. Knappe-Grüneberg, R.

Akermann. Complex narrow band-pass �lters for QRS detetion in ontatless

magnetoardiograms of small animals. Comput. in Cardiology 32:467-470,

2005.

U. Steinho�, C. Wilhelm, F. Wiekhorst, S. Y. Lee, R. Akermann, M. Bader,

Th. Shurig. Contatless magnetoardiographi haraterization of knok-out

mie. Folia Cardiologia 12D:396-398, 2005.

F. Wiekhorst, R. Jurgons, D. Eberbek, T. Sander, U. Steinho�, S. Hartwig,

C. Alexiou, L. Trahms. SQUID system with integrated superonduting shield

for monitoring of drug targeting with magneti nanopartiles in animals. Bio-

med. Teh. 50(1):609-610, 2005.

S. Bauer, R. Weber dos Santos, U. Steinho�, F. Wiekhorst, R. Akermann,

Th. Shurig, L. Trahms, M. Bär, H. Koh. Bidomain modelling of eletrial

ativity of the mouse heart supports the design of a speialized magnetoar-



124

diographi devie. Biomed. Teh. 50(1):171-172, 2005.

<2005

F. Wiekhorst. Konzeption der tehnishen und organisatorishen Grundla-

gen der Siherheits- und Authenti�zierungsmodule für eine verteilt betriebene

Qualitätskontrolle, interner Beriht, Hamburg, 2002.

F. Wiekhorst, J. Kötzler, V. V. Matveev, I. V. Pleshakov, V. I. Chizhik.

NMR in nanoomposites of obalt in SiO2 matries Trends in Magnetism -

EASTMAG, St. Petersburg, Russland, 2001.

M. W. Pieper, F. Wiekhorst, T. Wolf. Charaterization of loalized hole

states in Pr1+xBa2−xCu3O6+y by nulear magneti resonane. Phys. Rev. B

62: 1392-1407, 2000.

M. W. Pieper, K. Nehrke, F. Wiekhorst, T. Wolf. The Magneti State of

Cu in the CuO2-Bilayers of PrBa2Cu3O6+x: An NMR investigation. J. Low.

Temp. Phys. 105:431-436, 1996.

patents:

D. Eberbek, U. Steinho�, F. Wiekhorst. Verfahren zum quantitativen

Nahweis von Analyten in �üssigem Medium, Patent:10 2008 013 997.1, 2008.


