
Multiperspective Change Impact Analysis to
Support Software Maintenance and

Reengineering

Dissertation with the aim of achieving the doctoral degree of

Doktor der Naturwissenschaften (Dr. rer. nat.)

at the Faculty of Mathematics, Informatics and Natural Sciences
Department of Software Engineering and Construction Methods

at the University of Hamburg

submitted by

Dipl.-Inf. Steffen Lehnert

Hamburg, 2015

Day of oral defense: 07.07.2015

The following evaluators recommend the admission of the dissertation:

1st Examiner: Prof. Dr.-Ing. habil. Matthias Riebisch, University of Hamburg
2nd Examiner: Prof. Dr. rer. nat. Horst Lichter, RWTH Aachen University
3rd Examiner: Prof. Dr. rer. nat. Andreas Winter, University of Oldenburg

Abstract

The lifecycle of software is characterized by frequent and inevitable changes to address varying
requirements and constraints, remaining defects, and various quality goals, such as portability
or efficiency. Adapting long-living systems, however, poses the risk of introducing unintended
side effects, such as new program errors, that are typically caused by dependencies between
software artifacts of which developers are not aware of while changing the software. Conse-
quently, research has focused on developing approaches for software change impact analysis
to aid developers with assessing the consequences of changes prior to their implementation.
Yet, current change impact analysis approaches are still code-based and only able to assess the
consequences of changing source code artifacts. Software development on the other hand is ac-
companied by various different types of software artifacts, such as software architectures, test
cases, source code files, etc. which in turn demand for comprehensive change impact analysis.

This thesis presents a novel approach for change impact analysis that is able to address hetero-
geneous software artifacts stemming from different development stages, such as architectural
models and source code. It allows to forecast the impacts of changes prior to their implemen-
tation and is able to address a multitude of different change operations. The approach is based
on a novel concept for computing the propagation of changes, for which the interplay of the
types of changes, types of software artifacts, and the types of dependencies between them is an-
alyzed by a set of predefined impact propagation rules. To accomplish this, the heterogeneous
software artifacts are first mapped on a common meta-model to allow for a multiperspective
analysis across the different views on software. Secondly, their dependencies are extracted and
explicitly recorded as traceability links, while the type of change to be implemented is specified
and modeled using a taxonomy and meta-model for change operations supplied by this thesis.
A set of impact propagation rules is then recursively executed to compute the overall impact of
the change, where each rule addresses a specific change operation and determines the resulting
impact. Meanwhile, the impact computed by each rule is fed back into the analysis process
where it may trigger the execution of further rules. Once the overall impact of a change has
been determined, the impacted software artifacts are presented to the developer who is then
able to understand the overall implications of the change and to implement it more efficiently.

The presented approach is implemented by the prototype tool EMFTrace and currently enables
change impact analysis of UML models, Java source code, and JUnit test cases to support
developers with their everyday modifications of software systems. The approach was deployed
during a comprehensive case study to evaluate its efficiency and correctness when determining
the impacts of changes. The approach helped to maintain the consistency of the architecture
and the source code of the test system by reliably forecasting the impact propagation between
both. The study furthermore confirmed that the approach achieves both high precision (90%)
and recall (93%) when determining impacted software artifacts. Consequently, it computed
only few false-positives and did not overestimate the impact propagation, which in turn enables
developers to understand the effects of changes more easily and with less effort.

i

Kurzfassung

Der Lebenszyklus von Software wird von fortlaufenden Änderungen bestimmt, durch welche
die Systeme an sich an stetig ändernde Anforderungen und Rahmenbedingungen angepasst,
bestehende Defekte behoben sowie Qualitätsziele wie Portabilität und Effizienz adressiert wer-
den. Änderungen bestehender, langlebiger Systeme bergen jedoch immer das Risiko unge-
wollter Seiteneffekte in sich, die durch Abhängigkeiten zwischen den einzelnen Bestandteilen
der Software verursacht und häufig von Entwicklern übersehen werden. So können unbewusst
durch Änderungen etwa zusätzliche Programmfehler oder Sicherheitslücken entstehen. In-
folgedessen wurden Methoden entwickelt, mit deren Hilfe die Auswirkungen von Änderungen
noch vor deren Umsetzung abgeschätzt werden können. Jedoch sind diese Ansätze haupt-
sächlich auf Quellcode beschränkt und vernachlässigen andere Arten von ebenso relevanten
Beschreibungsmitteln, wie etwa Architekturmodelle oder Testfälle.

Diese Arbeit präsentiert einen neuen Ansatz zur Abschätzung der Auswirkungen von Änder-
ungen, der in der Lage ist, unterschiedliche Softwareartefakte verschiedener Entwicklungs-
phasen, wie etwa Architekturmodelle und Quellcode, zu analysieren. Er ermöglicht es, die
Konsequenzen von einer Vielzahl unterschiedlicher Änderungen noch vor deren Umsetzung
zu erfassen. Der Ansatz basiert auf einem neuen Konzept zur Vorherbestimmung der Ausbre-
itung von Änderungen, wofür das Zusammenspiel von Änderungsoperationen, Softwarearte-
fakten und deren Abhängigkeiten von Impact-Regeln analysiert wird. Dafür werden die het-
erogenen Softwareartefakte zunächst auf ein vereinheitlichendes Metamodell abgebildet, um
einen sichtenübergreifenden Zugriff auf diese zu ermöglichen. Anschließend werden deren
Abhängigkeiten extrahiert und explizit als Traceability-Links gespeichert, während die Änder-
ungen anhand ihres Typs klassifiziert und ebenfalls explizit modelliert werden, wofür jeweils
eine entsprechende Taxonomie sowie ein Metamodell bereitgestellt werden. Durch die an-
schließend rekursive Ausführung der Impact-Regeln werden die Auswirkungen der Änderung
bestimmt, wobei jede Regel genau eine Änderung adressiert. Die von einer Regel berechneten
Auswirkungen werden zurück in den Analyseprozess eingespeist, wo sie ggf. die Ausführung
weiterer Regeln bedingen. Sobald die rekursive Regelverarbeitung abgeschlossen ist, werden
dem Entwickler alle die von der geplanten Änderung betroffenen Softwareartefakte aufgezeigt.

Der entwickelte Ansatz wird prototypisch durch das Werkzeug EMFTrace implementiert und
ermöglicht die Analyse von UML-Modellen, Java-Quellcode und JUnit-Testfällen, um Ent-
wickler bei der Modifikation bestehender Systeme zu unterstützen. Der Ansatz wurde in einer
umfangreichen Fallstudie hinsichtlich seiner Effektivität und Korrektheit bei der Vorherbestim-
mung der Auswirkungen von Änderungen evaluiert. Mit Hilfe des entwickelten Ansatzes kon-
nte die Konsistenz zwischen der Architektur und dem Quellcode des Testsystems während der
Umsetzung verschiedener Modifikationen aufrechterhalten werden. Gleichzeitig konnte gezeigt
werden, dass der Ansatz in der Lage ist, die Auswirkungen von Änderungen sowohl möglichst
korrekt (90%), als auch möglichst vollständig (93%) zu bestimmen, wodurch Entwickler effek-
tiv bei der Implementierung von Änderungen unterstützt werden.

iii

Acknowledgment

First and foremost I would like to thank my supervisor Prof. Matthias Riebisch for his guidance,
helpful advices, and support during my PhD studies. I would like to thank him for always asking
the right questions and for providing me with the opportunity to be a part of his research group.
Furthermore, I would like to thank Prof. Andreas Winter and Prof. Horst Lichter for taking their
time to review my thesis and for their many useful hints and advices. Likewise, I am grateful
for all the support I received from Prof. Ilka Philippow and from Prof. Vesselin Detschew.

Moreover, I had the pleasure to work together with many great colleagues who accompanied
me during the pursuit of my PhD and who also deserve to be mentioned here. Stephan Bode for
his assistance during the early stages of a PhD and for the many useful advices what to do and
what not to do. Annie for being the best pal in the office, for our endless discussions, and all
the nice food you’ve brought along. Danny and Sebastian for all the fun we had with our “Ajax
voodoo” during seemingly endless debug-sessions. Yibo and Sebastian for their support with
EMFTrace. And last but not least Elke...I will miss our talks during lunch.

Finally, I would like to express my deepest gratitude to my family and friends who supported
me during the last couple of years.

v

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Goals of the Thesis . 3
1.3. Challenges . 4
1.4. Contribution . 5
1.5. Thesis Outline . 5

2. Change Impact Analysis 7
2.1. A Comprehensive Literature Review . 7

2.1.1. Research Questions and Review Process 8
2.2. A Taxonomy for Change Impact Analysis . 9

2.2.1. Evaluation of Existing Taxonomies 9
2.2.2. Towards a More Fine-grained Taxonomy 10
2.2.3. Investigating the Applicability of our Taxonomy 11

2.3. Change Impact Analysis Techniques . 12
2.3.1. Dependency Analysis . 12

2.3.1.1. Distance-based Graph Analysis 12
2.3.1.2. Message Dependency Graph Analysis 13
2.3.1.3. Call Graph Analysis . 13
2.3.1.4. Dynamic Execution Trace Analysis 14
2.3.1.5. Program Slicing . 14

2.3.2. Mining of Software Repositories (MSR) 15
2.3.3. Information Retrieval (IR) . 15
2.3.4. Probabilistic Approaches . 16
2.3.5. Rule-based Approaches . 16
2.3.6. Hybrid Approaches . 17

2.4. Multiperspective Approaches . 17
2.5. Open Research Issues . 19
2.6. Summary . 20

3. Thesis Foundations 21
3.1. Views on Software . 21
3.2. Managing Heterogeneous Software Artifacts 22

3.2.1. Multiperspective Modeling . 22
3.2.2. Multiperspective Consistency Management 23

3.3. Dependency Relations . 24
3.3.1. Origin of Dependencies . 24
3.3.2. Types of Dependency Relations . 25
3.3.3. Traceability Links . 28

vii

Contents

3.3.4. Traceability Detection Techniques . 28
3.3.4.1. Information Retrieval (IR) 29
3.3.4.2. Mining of Software Repositories (MSR) 29
3.3.4.3. Dependency Detection Rules 30
3.3.4.4. Semantic Wikis and Ontologies 30
3.3.4.5. Machine Learning (ML) . 31

3.4. Change Operations . 31
3.4.1. Modeling of Change Operations . 31
3.4.2. Classification of Change Operations 32

3.5. Open Research Issues . 33
3.6. Summary . 34

4. Overview of the Approach 35
4.1. Research Hypothesis . 35
4.2. Refined Goals . 36
4.3. Proposed Approach . 37

4.3.1. Handling of Problem Space and Solution Space 39
4.3.2. Covered Views . 40
4.3.3. Assumptions . 41

4.4. Summary . 41

5. Comprehensive Artifact Integration 43
5.1. Comparing Integration Techniques . 43

5.1.1. Mega-Models and Model Weaving . 43
5.1.2. Combining Modeling Frameworks and Model Repositories 44

5.2. Integration Approach . 45
5.2.1. Transformation into EMF-models . 46
5.2.2. Integration into an EMF-based Model-Repository 48

5.3. Critical Discussion and Limitations . 48
5.4. Summary . 49

6. Dependency Detection 51
6.1. Defintion of Dependencies . 51
6.2. Modeling of Dependencies . 52
6.3. Classification of Dependencies . 53

6.3.1. Purposes of Dependencies . 53
6.3.2. A Taxonomy of Dependencies . 54

6.4. Rule-based Dependency Detection . 57
6.4.1. Properties for Dependency-Retrieval 57
6.4.2. Detection Approach . 58
6.4.3. Identification of Potential Dependencies 60

6.4.3.1. Meta-model Dependencies 60
6.4.3.2. Object Oriented Dependencies 62
6.4.3.3. Design Methodology Dependencies 64
6.4.3.4. Multiperspective Dependencies 67

6.4.4. Detection Rules . 69
6.4.4.1. Structure of the Rules . 69

viii

Contents

6.4.4.2. Query Operators . 71
6.4.4.3. Definition of Dependency Detection Rules 72

6.5. Evaluation . 73
6.5.1. Setup and Research Questions . 73
6.5.2. Results and Discussion . 75

6.6. Critical Discussion and Limitations . 76
6.6.1. Comparison to Existing Approaches 76
6.6.2. Correctness of the Dependency Detection Rules 77
6.6.3. Completeness of the Dependency Detection Rules 78
6.6.4. Complexity of the Approach . 79
6.6.5. Addressing (Textual) Inconsistencies 80

6.7. Summary . 80

7. Change Comprehension 81
7.1. Modeling of Change Operations . 81

7.1.1. Atomic and Composite Operations . 81
7.1.1.1. Move-operation . 83
7.1.1.2. Replace-operation . 83
7.1.1.3. Split-operation . 84
7.1.1.4. Merge-operation . 85
7.1.1.5. Swap-operation . 85

7.1.2. A Meta-model for Change Operations 86
7.1.3. Modeling of Refactoring Activities 87

7.1.3.1. Scenario 1: Renaming a method 87
7.1.3.2. Scenario 2: Extracting a sub-class from an existing class . . . 88
7.1.3.3. Scenario 3: Moving an attribute up to the base class 88

7.2. Classification of Change Operations . 88
7.2.1. Classification of Refactoring Activities 89

7.3. Critical Discussion and Limitations . 91
7.4. Summary . 91

8. Rule-based Impact Analysis 93
8.1. Impact Propagation Concept . 93

8.1.1. Modeling the Change Impact . 96
8.1.2. Understanding the Change Impact . 96
8.1.3. Monitoring the Impact Propagation 97
8.1.4. Impact Analysis Process . 100
8.1.5. Influence of the Challenges . 101

8.1.5.1. Varying Formalization . 101
8.1.5.2. Incomplete Artifacts and Missing Information 102
8.1.5.3. Inconsistencies between Artifacts and Views 102

8.2. Determining the Effects of Changes . 103
8.2.1. Analyzing the Directions of Dependency Relations 103
8.2.2. Analyzing the Origins of Dependency Relations 104
8.2.3. Analyzing the Interplay of Changes and Dependencies 104
8.2.4. Analyzing the Interplay of Artifact Type and Change Type 108

ix

Contents

8.3. Impact Propagation Rules . 109
8.3.1. Structure of the Rules . 109
8.3.2. Definition of Impact Rules . 110
8.3.3. Example Scenario . 111

8.4. Critical Discussion and Limitations . 112
8.4.1. Impact Rules . 113

8.4.1.1. Ambiguous Impacts . 113
8.4.1.2. Correctness of the Impact Rules 114
8.4.1.3. Completeness of the Impact Rules 114

8.4.2. Influence of Dependency Relations 115
8.4.2.1. Missing Dependencies . 115
8.4.2.2. Incorrect Dependencies . 115
8.4.2.3. Impacts on Dependencies 116

8.4.3. Cost Trade-Off of the Approach . 116
8.4.4. Complexity of the Approach . 117
8.4.5. Classification of the Approach . 118
8.4.6. (Semi)-Automated Change Implementation 119

8.5. Summary . 119

9. The EMFTrace Prototype 121
9.1. Overview . 121
9.2. Typical Use Cases . 122

9.2.1. Automated Dependency Detection . 122
9.2.2. Program Comprehension . 123
9.2.3. Change Impact Analysis . 124

9.3. Architecture . 124
9.4. Status and Summary . 126

10.Evaluation 127
10.1. Goals and Research Questions . 127

10.1.1. RQ1: Support for Heterogeneous Software Artifacts 127
10.1.1.1. Measures . 127
10.1.1.2. Metrics . 128
10.1.1.3. Hypotheses . 128

10.1.2. RQ2: Performance Improvements . 129
10.1.2.1. Measures . 129
10.1.2.2. Metrics . 129
10.1.2.3. Hypotheses . 130

10.2. Study Design . 130
10.2.1. Case Study Subject . 130
10.2.2. Evaluation Process . 131
10.2.3. Change Scenarios . 132

10.2.3.1. Scenario 1: Refactoring of the Impact Analyzer Components 132
10.2.3.2. Scenario 2: Extraction of a Cache Component 133
10.2.3.3. Scenario 3: Replacement of the Logging Features 133
10.2.3.4. Scenario 4: Migration to EMFStore/ECP 1.2.x 134
10.2.3.5. Scenario 5: Miscellaneous Changes 134

x

Contents

10.2.4. Construction of the Oracle . 135
10.3. Results . 135
10.4. Discussion . 139

10.4.1. RQ1: Support for Heterogeneous Software Artifacts 139
10.4.2. RQ2: Performance Improvements . 140

10.5. Threats to Validity . 141
10.5.1. Construct Validity . 141
10.5.2. Internal Validity . 141
10.5.3. External Validity . 142
10.5.4. Reliability . 142

10.6. Summary . 142

11.Conclusions and Future Work 145
11.1. Contributions . 145
11.2. Critical Review . 146
11.3. Future Work . 148

Bibliography 149

List of Figures 169

List of Tables 171

A. Dependency Detection Rules 173

B. Impact Propagation Rules 179

C. Evaluation Material 199
C.1. Case Study Data . 199
C.2. Scenario 1: Refactoring of the Impact Analyzer Components 199
C.3. Scenario 2: Extraction of a Cache Component 199
C.4. Scenario 3: Replacement of the Logging Features 201
C.5. Scenario 4: Migration to EMFStore/ECP 1.2.x 202
C.6. Scenario 5: Miscellaneous Changes . 203

xi

1. Introduction

This chapter provides an overview of the context of this thesis, elaborates on its research goals,
and explains what this thesis contributes to research on software change impact analysis and
software evolution. Moreover, the structure of the thesis at hand is outlined to guide the reader.

1.1. Motivation

The majority of today’s software is in a state of constant evolution and development, which is
triggered by frequent requests for changes [Leh80]. This constant need for changes is inherent
to all stages of the software lifecycle and has various reasons, such as:

• Changing customer needs demanding for the addition of new features.

• Fixing remaining bugs and security issues.

• The advent of new hardware devices demanding for software support, e.g. adding support
for touch-based user interaction via finger gestures.

• Changing legal circumstances and regulations that must be adhered by software systems.

• Performance improvements demanding for optimizations of the software.

• Integrating new middleware or other COTS1 components.

Consequently, frequent changes are vital for software systems that are deployed in an ever-
changing context. Due to the importance of changes even after the initial development of soft-
ware, software maintenance2 has become increasingly relevant for developers, researchers, and
entire companies. Many studies even indicate that companies nowadays spent most of their
costs for software, between 50% and up to 70%, on the maintenance of their software sys-
tems [Leh80, Ben90, CDPC11]. Likewise, software reengineering3 as a prelude to many soft-
ware engineering activities plays a similar important role for developers dealing with legacy
software and also results in frequent and comprehensive changes of legacy systems [DDN08].

However, apart from adding new features, fixing bugs, etc. the changes themselves can also
have adverse effects on software systems. Changes are often accompanied by unintended side
effects that are byproducts of changing complex and long-living software systems [YCM78].
These side effects are potentially able to deteriorate the quality of software in manifold ways,
which, over the course of time, typically results in the following phenomena and defects:

1“Commercial-Off-The-Shelf”, see [Boh02a]
2“modification of a software product after delivery to correct faults, to improve performance or other attributes,

or to adapt the product to a modified environment”, see [Ins98b]
3“Reengineering ... is the examination and alteration of a subject system to reconstitute it in a new form and the

subsequent implementation of the new form”, see [CC92]

1

1. Introduction

• Changes increase the drift between the originally planned architecture and the actual im-
plementation in source code [IK06].

• Changes introduce new bugs [HH04] or impose new security issues [YC04].

• Changes result in a loss of internal structure and architectural erosion [RSN09].

• Frequent changes decrease the maintainability4 of a system [CKKL99].

These side effects typically result from changes that were implemented in an inconsistent or
incorrect manner, which is mostly caused by overlooked or misinterpreted dependencies that
exist between the involved software artifacts [Raj97]. These dependency relations carry the
effects of changes to other software artifacts of which software developers are often not aware
of due to the complexity of today’s software [GS82,Han96,Boh02a]. Fittingly, Yau et al. coined
the term “ripple effect” [YCM78] to describe this phenomena of “hidden” change propagation
which is in the focus of research on software maintenance for almost four decades by now.

When software is changed, it is therefore necessary to assess all the consequences of those
changes prior to their implementation, which is typically achieved by applying change impact
analysis approaches. Early research conducted by Bohner and Arnold [AB93, Boh95, BA96,
Boh96] investigated the foundations of software change impact analysis and provided the fol-
lowing definition of the term impact analysis that has been adapted by most researchers today:

“Identifying the potential consequences of a change, or estimating what needs to
be modified to accomplish a change [BA96].”

Later on, this definition was extended and adapted by the IEEE Standard for Software Mainte-
nance as follows:

“impact analysis: Identifies all system and software products that a change request
affects and develops an estimate of the resources needed to accomplish the change.
This includes determining the scope of the changes to plan and implement work,
accurately estimating the resources needed to perform the work, and analyzing the
requested change’s cost and benefits [Int06].”

Years of ongoing research on impact analysis have put forth many different kinds of approaches
which, however, share several disadvantages. The most striking and severe limitation of current
research is the lack of impact analysis support for the interplay of heterogeneous software arti-
facts, as the majority of current research is still solely focused on source code [Leh11a]. Hence,
these approaches fail to assess the consequences of changes that simultaneously affect different
types of software artifacts at the same time, which constraints their applicability.

In contrast to what is addressed by current impact analysis approaches, software systems are
comprised of heterogeneous types of software artifacts, such as source code files, architectural
diagrams, requirements descriptions, documentation files, configuration files, etc. These dif-
ferent types of software artifacts are typically associated with certain views or perspectives of
software, such as the architectural view or the code view, that represent a cut-out of the system
in regard to a specific purpose and thus are interconnected with each other [OG02]. Moreover,
the perspectives are associated with different stakeholders, such as programmers, architects,
requirements engineers or testers who are responsible for maintaining the artifacts that typi-
cally constitute a certain perspective [SF01]. Therefore, the term multiperspective software was

4“the capability of the software product to be modified”, see ISO 9126 [ISO01]

2

1. Introduction

introduced by Sunetnanta and Finkelstein to describe this interplay of different stakeholders,
artifacts, and perspectives [SF01].

Consequently, today’s multiperspective software also requires multiperspective change impact
analysis to cope with the frequent changes. Since changes spread across all perspectives and
affect different types of software artifacts alike [FMP99], they have to be addressed adequately
in each perspective to prevent potential inconsistencies that cause the various aforementioned
problems and defects. Architectural changes, for example, must as well be reflected in the
source code to prevent the drift between architecture and implementation. This support, how-
ever, is not yet sufficiently provided by current research [Leh11a, LFR13].

Additionally, most impact analysis approaches do not distinguish between different types of
changes and the different effects caused by them [Leh11a, LFR13]. Consequently, they fail to
precisely determine the effects of different types of change operations, which either results in
too many false-positives being detected or large amounts of actual impacts being missed, or
both at the same time. Thus, they are not sufficiently supporting developers changing software.

This thesis therefore investigates change impact analysis in the light of multiperspective soft-
ware systems that are comprised of heterogeneous software artifacts. As its main contribution,
it proposes an approach to assess the impacts of changes prior to their implementation while
facilitating the analysis of different types of software artifacts belonging to different perspec-
tives and views. The proposed methodology is able to adequately address different types of
change operations and assists with maintaining the consistency of the heterogeneous artifacts
and perspectives by enabling developers to understand and retrace the propagation of changes
and their impacts across the entire software system.

1.2. Goals of the Thesis

The main goal of this thesis in regard to the previous problem statement is to study the propa-
gation of changes between the different views on software and across heterogeneous software
artifacts to assess their impacts on the whole software system. Therefore, a novel approach for
analyzing the impacts of changes shall be developed that can be applied in the context of hetero-
geneous software artifacts, which in turn shall enable its applicability during different phases or
stages of software development. The main goal of the approach to be developed is to identify
all the software artifacts that are impacted by a change and to do so with high correctness, thus
greatly reducing the amount of false-positives. Hence, the following two goals are defined.

Goal 1: Develop a change impact analysis approach that provides a high reliability when as-
sessing the effects of changes prior to their implementation. The approach should identify all
artifacts impacted by a change and determine as few false-positives as possible.

Goal 2: Develop a change impact analysis approach that enables the analysis of different types
of software artifacts to keep them synchronized and consistent to each other. The approach to
be developed shall at least support the following types of artifacts: architectural models (design
view), source code (code view), and test cases (test view).

Furthermore, it is important to determine how a software artifact is impacted by a change as no
appropriate counter measures can be taken and no precise effort estimation for the implementa-
tion of this change can be established otherwise. Hence, the following third goal is defined.

3

1. Introduction

Goal 3: Develop a change impact analysis approach that allows developers to understand how
and why software artifacts are impacted by a certain change. The approach should be applicable
during forward engineering, reengineering, and software maintenance in general.

Finally, the existing literature on change impact analysis lacks a precise description of the
term “change” and neglects discussions of the different impacts caused by different types of
changes [Leh11a]. Analyzing changes for their impacts, however, first of all requires a thor-
ough understanding of the actual changes. Therefore, the following fourth goal is defined.

Goal 4: Study the influence of different types of change operations on the propagation of
changes and on change impact analysis to support a wide variety of change operations, including
typical reengineering, refactoring, and maintenance activities.

1.3. Challenges

Developing an approach for multiperspective change impact analysis faces several challenges
that are issued by the interplay of heterogeneous software artifacts and the usage of different
perspectives, which are discussed in this section. Later on, the implications of these challenges
for the proposed impact analysis approach and the means to address them will be discussed in
the upcoming chapters of this thesis.

Degree of Formalization: The degree of formalization determines whether the structure and
content of a software artifact adhere to any formal specification. Typical degrees of formaliza-
tion as encountered in practice are, for example, unstructured free text, semi-structured text, and
artifacts adhering a meta-model or any other formal specification, such as a programming lan-
guage specification. The degree of formalization determines to which extent a software artifact
can be analyzed by automated approaches that usually demand for a certain level of formaliza-
tion. Thus, a low degree of formalization or the complete absence of any formalization might
hamper any change impact analysis effort or even render it impossible.

Degree of Abstraction/Completeness: The degree of abstraction (or completeness) describes
to which extent the information that could potentially be provided by a certain software artifact
are actually present. It is important to note that software artifacts of the same type can have a
different level of abstraction and completeness. For example, a UML component diagram pro-
viding a high-level overview of a software architecture possesses a higher level of abstraction
than a fined-grained UML component diagram describing interfaces and sub-components of a
certain architectural layer. Moreover, some artifacts may lack certain details because they were
simply forgotten to add or were neglected due to time and budget constraints. Likewise, some
information might be added in a later stage of development and are thus not yet available to
developers. The level of abstraction and completeness influences to which extent the impact of
a change can be determined for a given software artifact. In contrast to the degree of formal-
ization, a strictly formalized but yet incomplete artifact still poses a challenge for any change
impact analysis approach, as the required information for detecting potential impacts might not
be present. Furthermore, due to an artifact’s incompleteness, its relations to other software
artifacts might not be detectable and thus analyzable for determining the impact propagation.

Inconsistencies: Finally, the consistency of the heterogeneous software artifacts and perspec-
tives issues another challenge. Software artifacts of different perspectives typically posses a

4

1. Introduction

different level of abstraction and formalization; however, they still represent the same concepts,
only with a different view. For example, there are UML diagrams to model the structure of soft-
ware systems while other UML diagrams are designed for modeling the behavior of software
systems. In practice, however, the ongoing evolution of most software systems often introduces
inconsistencies to those artifacts, as not all of the artifacts are adequately changed and main-
tained over time [IK06, RSN09]. These inconsistencies in turn complicate the actual change
impact analysis, as the dependencies between the heterogeneous software artifacts become “in-
visible” to developers and tools alike. Additionally, the usage of different vocabulary by differ-
ent stakeholders (e.g. architects, programmers, testers) for expressing the same concerns and
concepts might also lead to additional inconsistencies between the perspectives [TLCvV11b].

1.4. Contribution

As its major innovation this thesis presents a novel approach for multiperspective change impact
analysis. The approach assists developers with maintaining the consistency of heterogeneous
software artifacts when changes were applied on them. This change impact analysis approach
is able to automatically determine the impacts of changes and can be customized for different
types of software artifacts. The proposed approach currently supports impact assessments of
UML models, Java source code, and JUnit test cases.

The presented approach is based on two fundamental concepts that are introduced in this the-
sis. The first of these is the observation that the impacts of changes can be determined by
analyzing the interplay of change operations, software artifacts, and the dependency relations
between them. Secondly, a recursive rule-based concept is presented to analyze and monitor
this interplay of changes and dependencies in order to estimate the impacts of changes prior to
their implementation through a set of impact propagation rules. To accomplish this, a step-wise
approach for the definition of impact propagation rules is introduced.

Additionally, the approach provides two important benefits. First, the rule-based analysis of the
interplay of change types and dependency types allows for determining how software artifacts
are impacted by changes, which in turn enables more precise effort estimations and assists
with actually implementing the changes. Secondly, the presented approach is not restricted to
certain types of software artifacts. The incorporation of further artifacts into the impact analysis
process only demands for the addition of new impact propagation rules, but does not require
any changes in the underlying concepts and algorithms. Hence, it offers a greater flexibility.

The research presented in this thesis furthermore contributes towards a deeper understanding
of change operations and dependency relations by providing taxonomies for the classification
of both that are based upon comprehensive reviews and analyses of existing research. Like-
wise, a taxonomy for the classification and comparison of change impact analysis approaches
is established that eases the comparison of the presented approach with existing works.

1.5. Thesis Outline

The remainder of the thesis at hand is organized as follows.

5

1. Introduction

Chapter 2: Change Impact Analysis provides an overview of current state-of-the-art research
on impact analysis. It presents and discusses the results of a systematic literature review and
the taxonomy for impact analysis that was derived from it. Existing approaches are analyzed
for their support of multiperspective impact analysis and yet unsolved problems are outlined.

Chapter 3: Thesis Foundations discusses related work on multiperspective modeling and
consistency checking and its relation to impact analysis. Further works are being discussed
dealing with the classification and modeling of dependencies between software artifacts, as well
as with the classification and modeling of change operations as a prelude to impact analysis.

Chapter 4: Overview of the Approach provides a high-level overview of the approach pre-
sented in this thesis and outlines its four major steps: the integration of software artifacts, the
detection and classification of their dependencies, the specification of the changes, and finally
the impact analysis. Furthermore, the initial research goals are refined, the main research hy-
pothesis is presented and discussed, and the assumptions of the approach are laid out.

Chapter 5: Comprehensive Artifact Integration examines approaches for the integration of
heterogeneous software artifacts for multiperspective impact analysis. Based on that, the chap-
ter presents an approach how heterogeneous types of software artifacts are joined through a
unifying modeling framework and model repository, and illustrates the mapping of the hetero-
geneous artifacts upon the common meta-model provided by the modeling framework.

Chapter 6: Dependency Detection presents an approach how potential dependency relations
between software artifacts can be detected and classified according to their type to utilize them
for impact analysis tasks. The chapter also introduces a purpose-based taxonomy of dependency
types to provide the required means for classifying the detected dependency relations.

Chapter 7: Change Comprehension introduces an approach how change activities can be
modeled using the concepts of atomic and composite change operations, and demonstrates how
different types of refactoring operations can be modeled with the help of these concepts in order
to enable a later impact analysis. Therefore, this chapter also presents a taxonomy for change
operations and illustrates how real changes can be classified according to its criteria.

Chapter 8: Rule-based Impact Analysis describes our novel approach for change impact anal-
ysis as the main innovation provided by this thesis. The chapter discusses the underlying impact
propagation concept and explains how the change propagation is monitored. It elaborates on
the concept of impact propagation rules and provides a scheme for defining such rules.

Chapter 9: The EMFTrace Prototype introduces the prototype tool EMFTrace that imple-
ments the concepts presented in this thesis, describes its architecture, illustrates its typical use
cases, and outlines its current status and future development.

Chapter 10: Evaluation elaborates on the evaluation of the presented impact analysis approach
with the help of a comprehensive case study. This chapter presents the design of the study, the
research questions, the results, and discusses possible threats to validity.

Chapter 11: Conclusions and Future Work summarizes the content and contribution of this
thesis, outlines future work, and performs a final critical review of this thesis’ research.

Appendix A lists all the dependency detection rules that accompany this thesis.

Appendix B lists all the impact rules that accompany this thesis.

Appendix C provides all the material and data of the case study reported in Chapter 10.

6

2. Change Impact Analysis

This chapter explores the state of the art of current research on change impact analysis accord-
ing to the goals of this thesis. We report on the findings of a comprehensive literature survey
and analyze various techniques that have been proposed for change impact analysis in detail. In
order to keep this thesis self-contained, this chapter also briefly recaps the systematic literature
review and the taxonomy for change impact analysis approaches that was derived from it, al-
though both were already reported in [Leh11b, Leh11a]. As a novel contribution, this chapter
systematically outlines the strengths and weaknesses of the proposed techniques in regard to the
interplay of heterogeneous software artifacts. Moreover, this chapter summarizes open research
problems and prepares the ground for refining the research goals of this thesis.

2.1. A Comprehensive Literature Review

This section elaborates on the comprehensive literature review on change impact analysis that
was conducted at the beginning of the research that eventually resulted in the thesis at hand.
This section briefly describes the intentions and goals of the review, the structure of the review
process, and the obtained results in relation to its initial research questions.

Overall, the review was conducted with the following initial intentions:

1. Provide an overview of the state-of-the-art of research on change impact analysis.

2. Identify open research questions and problems in regard to the goals of this thesis.

3. Refine the goals of the thesis at hand if necessary.

The review process adhered to the guidelines for conducting systematic literature reviews in
software engineering as reported by Biolchi et al. [BMNT05]. The research questions to be
answered were laid out in advance, while the data collection and analysis were planned by
peer-reviewed protocols. The initial review was conducted between January and November
2011 and identified approximately 180 relevant studies that were examined in detail [Leh11a].
Further and later studies were subsequently examined afterwards based on the same criteria.

The results of the review were threefold and in line with its initial intentions. First, a taxonomy
for change impact analysis approaches was derived and published that enables the comparison
of the identified approaches [Leh11b]. Second, the studied approaches were classified according
to the criteria of the taxonomy. The outcome of this classification was later on published as a
technical report [Leh11a]. As one important outcome of this classification, the lack of impact
analysis support for the interplay of heterogeneous software artifacts was revealed [Leh11a].
Hence, the motivation for the research presented in this thesis was strengthened. Finally, a
set of open research questions was identified and the research goals of this thesis were refined
[Leh11a].

7

2. Change Impact Analysis

2.1.1. Research Questions and Review Process

Our literature review was comprised of the five steps as outlined by Biolchi et al. [BMNT05].

Step 1: Defining the Research Questions. Each literature review starts from a set of research
questions that were formulated as follows for the thesis at hand:
RQ1: What types of software artifacts are covered by change impact analysis approaches?
RQ2: What type of input and user interaction is required by these approaches?
RQ3: What types of change operations are supported by these approaches?
RQ4: What techniques or algorithms are used by these approaches?

Step 2: Study Selection. The literature review addressed studies that were published between
1991 and 2011 in the field of change impact analysis. We accepted studies that were published
as PhD thesis, Master thesis, journal articles, conference papers, workshop papers, and techni-
cal reports in either English or German. However, studies describing manual impact analysis
approaches were excluded, as they do not scale well with complex software systems [Boh02b].

Step 3: Search Process. The identification of relevant studies was accomplished using the
two academic search engines Google Scholar1 and CiteSeerX2 and by applying a three-pronged
search strategy consisting of the following steps.

1. Performing a direct search for relevant studies using combinations of primary and sec-
ondary search terms (see below).

2. Scanning the bibliography of identified relevant studies for further relevant studies.

3. Searching for studies that cite studies that were identified in the previous steps.

For each study identified during the execution of those steps the abstract and conclusion were
scanned to further omit irrelevant studies. Finally, a full text scan was performed before any
study was accepted. The lists of primary and secondary search terms used during the first phase
of the search process were comprised of the following terms:

• Primary terms: impact analysis, change impact analysis, change propagation

• Secondary terms: software, evolution, maintenance, review, taxonomy, classification,
comparison, study

Step 4: Data Extraction. The studies that were identified as relevant according to our research
questions and goals were archived and analyzed in a structured way using the following scheme
for extracting all relevant data.

• Addressed problems - What problems are addressed by the study?

• Research questions - What questions does the study try to answer?

• Contribution - What is the actual contribution of the study?

• Proposed solution - What is the solution for the stated problems?

• Open issues - What are the unsolved issues and future work acknowledged by the authors?

1http://scholar.google.de/
2http://citeseer.ist.psu.edu/

8

2. Change Impact Analysis

Step 5: Data Analysis and Results. Finally, the extracted data was analyzed and processed
according to the intentions of the review and resulted in the following outcome.

1. We established a taxonomy for change impact analysis approaches in order to compare
them using a fixed set of criteria, which is discussed in Section 2.2.

2. We identified six major techniques that are being used for change impact analysis, which
are presented in Section 2.3.

3. We identified existing multiperspective impact analysis approaches and the types of soft-
ware artifacts supported by them, which is discussed in Section 2.4.

4. We discovered open research problems that helped to refine our research goals, which is
explained in Section 2.5.

2.2. A Taxonomy for Change Impact Analysis

The systematic literature review identified approximately 180 relevant studies that had to be
examined according to the research goals of this thesis. Identifying similarities and comparing
the studies, however, demands for precise and well-defined criteria supplied by a taxonomy for
change impact analysis. Yet, existing taxonomies did not sufficiently fulfill these requirements
and thus had to be revised [Leh11b], which is described in the following sections.

We defined a set of key criteria that must be obtained from existing impact analysis approaches
in order to compare and evaluate them in a comprehensive manner and to answer our initial
research questions. Consequently, they also serve as requirements for the revised change impact
analysis taxonomy.

• REQ1: Provide information on the required input (types of artifacts, types of changes).

• REQ2: Provide information on the computed output (types of impacts).

• REQ3: Provide information on the utilized algorithm/technology.

• REQ4: Provide information on the supported modeling/programming languages.

• REQ5: Provide information on the availability of (semi)-automated tool support.

• REQ6: Provide information on the scalability of the approach.

• REQ7: Provide information on the quality of achieved results.

• REQ8: Provide information on the required manual interaction and effort.

Based on these requirements we first evaluate the existing change impact analysis taxonomies
in the next section. We then outline why they are not sufficient and why a new taxonomy is
required that is a part of the contribution of the research presented in this thesis.

2.2.1. Evaluation of Existing Taxonomies

An initial framework for comparing change impact analysis approaches was proposed by Arnold
and Bohner [AB93]. Their framework allows for classifying impact analysis approaches accord-
ing to the applied impact analysis technique, supported software artifacts, quality of obtained

9

2. Change Impact Analysis

results, and the required amount of human interaction. In contrast to the requirements stated in
the previous section, however, their framework does not provide any information on the sup-
ported change types, computed results, scalability of the approaches, supported programming
and modeling languages, and on potential tool support. Thus, their framework lacks the required
applicability in regard to our goals. On the other hand, it already provides a solid baseline for
establishing an enhanced taxonomy of change impact analysis approaches.

A different classification was later introduced by Kilpinen [Kil08] who divides change impact
analysis approaches into three groups: Traceability Impact Analysis, Dependency Impact Anal-
ysis, and Experimental Impact Analysis. This distinction according to the utilized technology,
however, does only fulfill one of our eight requirements. Her classification does not provide
any information on the software artifacts and change operations that are supported by an ap-
proach. Furthermore, important information regarding the scalability and performance of the
approaches are not considered by her taxonomy. Thus, the classification of Kilpinen does not
fulfill our requirements and is therefore not applicable in regard to our goals.

Table 2.1 summarizes the above stated findings of our review.

Our requirements Arnold and Bohner Kilpinen
REQ1 required input partly -
REQ2 computed output - -
REQ3 utilized algorithm yes partly
REQ4 supported software artifacts yes -
REQ5 tool support partly -
REQ6 scalability - -
REQ7 quality of results yes -
REQ8 manual effort partly -

Table 2.1.: Coverage of our requirements by existing taxonomies

2.2.2. Towards a More Fine-grained Taxonomy

As the previous section has shown, none of the existing taxonomies is truly suitable for compar-
ing and classifying impact analysis approaches according to our needs. Hence, a new taxonomy
is required that is supplied as a part of the contribution of this thesis and was originally pub-
lished in [Leh11b]. According to our requirements defined above and the analysis of existing
classification schemes, we introduce the following criteria that constitute our taxonomy.

• Scope of Analysis: defines what types of software artifacts are analyzed, e.g. code,
architectural models or a combination of heterogeneous software artifacts (see REQ1).

• Granularity of Artifacts: defines what artifacts are required as input, what changes are
supported, and what types of impacts are detected (see REQ2).

• Utilized Technique: defines what impact analysis algorithm is used (see REQ3).

• Supported Languages: defines what programming languages, modeling languages, etc.
are supported (see REQ4).

• Tool Support: provides information whether a tool is available or not (see REQ5).

10

2. Change Impact Analysis

• Scalability: defines the time and space complexity of the approach (see REQ6).

• Experimental Results: reports on the size of the conducted case studies and the achieved
results in regard to execution time, precision, and recall (see REQ7).

• Style of Analysis: defines how the change impact analysis is performed, i.e. exploratory,
search-based or as a global analysis (see REQ8).

The criterion Scope of Analysis is further refined into the categories of “source code”, “models”,
and “miscellaneous artifacts”, as most approaches were either focused on source code, various
kinds of models or different (but not specified) types of files. Approaches analyzing source code
are further refined into approaches based on “static”, “dynamic” or “online” analysis of source
code artifacts [Leh11b]. Similarly, the scope of models was refined into “architectural models”
and “requirements models” as both constitute the majority of the identified works.

Figure 2.1 summarizes our taxonomy and provides a comprehensive view upon it. Practi-
cal examples of applying our taxonomy for the classification of approaches can be found in
[Leh11b, Leh11a] and in Section 8.4.5 where we classify our approach proposed in this thesis.

Scope of Analysis

Source Code

Static

Dynamic

Online

Models

Requirements

Architecture

Misc.
Artifacts

Utilized
Technique(s)

 Granularity
of Entities

Artifacts

Changes

Results

Style of
Analysis

Global

Search-
based

Exploratory

Tool
Support

Supported
Languages

Scalability Experimental Results

Size of
studied
system

Precision Recall Time

Figure 2.1.: Our taxonomy for change impact analysis approaches [Leh11b]

2.2.3. Investigating the Applicability of our Taxonomy

Further, we investigated the applicability of our taxonomy by classifying all the studies that were
identified as relevant by our literature review according to its criteria. During this classification
process we also measured the coverage of our proposed criteria in regard to the studied literature
[Leh11a]. Our findings are discussed in the following and are finally summarized by Figure 2.2.

While evaluating the coverage of our criteria, we notice the trend that most researchers did
not provide any information on the actual performance of their approaches, i.e. there are only
few reports on the obtained precision (25%) and recall (21%) or the required computation time
(13%). Furthermore, only few researchers (10%) reported on the time and space complexity of
their approaches, which might be due to difficulties in obtaining these figures.

In contrast, information on the types and granularity of the involved software artifacts (94%)
and computed impacts (91%) could be obtained from most studies. The only exception is the
granularity of the addressed change operations, which only 60% of all studies mentioned ex-
plicitly. Likewise, information on existing tool support (75%) and the supported modeling or
programming languages (73%) could also be extracted from most studies.

In conclusion, our taxonomy is applicable for classifying the change impact analysis approaches
proposed by current research, as most of its criteria are covered by the majority of the ap-
proaches identified by our review. Moreover, our taxonomy provides more detailed information
on the classified studies than existing taxonomies and therefore eases their comparison.

11

2. Change Impact Analysis

100% 99% 94%

60%

91%
75% 73%

10%
22%

60%

25% 21% 13%

Figure 2.2.: Coverage of our criteria in the studied literature [Leh11a]

2.3. Change Impact Analysis Techniques

The following analyzes related work on change impact analysis identified by our review accord-
ing to the utilized impact analysis approach. The upcoming sections will focus on the major
techniques proposed in the literature, examine their basic ideas, and evaluate them according to
their potential of supporting multiperspective impact analysis. Our three main requirements for
analyzing the existing change impact analysis approaches are derived from our research goals
as laid out in Section 1.2 and are therefore defined as follows.

• The capability of analyzing heterogeneous types of software artifacts.

• The support for developers trying to comprehend the impacts of their changes.

• The support for different types of change operations.

In the following subsections we are discussing the six major categories of change impact anal-
ysis techniques as identified by our review. Likewise, a later review conducted by Li et al. on
source code based change impact analysis techniques came to a similar classification [LSLZ13].
However, our classification as initially presented in [Leh11b, Leh11a] is more comprehensive
due to its wider scope (see also Section 2.2.2).

2.3.1. Dependency Analysis

Our review identified many change impact analysis approaches utilizing dependency relations
between software artifacts for the actual change impact analysis. These approaches can be
further divided into five distinct groups that are discussed in the following sections.

2.3.1.1. Distance-based Graph Analysis

Early approaches for impact analysis explicitly extracted the dependencies of a software system
and utilized the obtained dependency graph for estimating the propagation of changes across the

12

2. Change Impact Analysis

dependent software artifacts using reachability analysis. However, propagating changes across
all dependencies within the graph often lead to an “explosion of impacts” [Boh02a] that left the
entire software system affected. Hence, the impact computed for a given change was likely to
be overestimated and thus not useful to support maintenance or reengineering activities.

Consequently, an extension of the approach was proposed to limit the propagation of changes
using a fixed cut-off distance. The underlying assumption is that changes are only having a
local impact, which is why further change propagation is cut off once a certain distance to
the initially changed artifact is reached (i.e. a certain amount of dependency relations were
“crossed”) [Boh02a]. However, these approaches typically suffer from the choice of the prop-
agation distance, which still remains an open research question [HBG+11]. If the distance is
too large, many false-positives will be detected as all software artifacts in range are consider as
being impacted. In contrast, a too narrow distance may result in many missed impacts, since
not all of the actually impacted software artifacts can be reached.

Advantages Disadvantages
(+) Multiperspective analysis possible (-) Hard to determine correct distance
(+) Easy to understand and implement (-) No distinction between different changes

Table 2.2.: Summary of the distance-based graph analysis approach

2.3.1.2. Message Dependency Graph Analysis

A special kind of dependency-based impact analysis approaches was developed for distributed
and event-based systems, for which the message communication between the possibly remote
components of a system is analyzed. By monitoring the exchanged messages and recording
the obtained communication paths, a dependency graph can be constructed that can be utilized
for a later impact analysis. Examples can be found in the works of Yoo and Choi [YC04] and
Popescu et al. [PGBM10, Pop10].

Advantages Disadvantages
(+) Analysis of distributed systems (-) Requires execution of software
(+) Analysis of event-based systems (-) Requires monitoring of messages

(-) Coarse-grained analysis

Table 2.3.: Summary of the message dependency graph analysis approach

2.3.1.3. Call Graph Analysis

Assessing the impacts of changes on existing source code can be accomplished by studying
the call-relations of the methods and functions that constitute the code. Therefore, method and
function calls have to be extracted from the source code and stored in a so called “call graph”.
Once the extraction is done, the transitive closure of the obtained graph is computed, which is
later on utilized for impact analysis tasks. In this approach methods are considered as being
impacted by a change if they call a changed method, or if a changed method is called by one of

13

2. Change Impact Analysis

their called methods (recursively). Examples can be found in works of Ryder and Tip [RT01],
Ren et al. [RST+03, RST+04, RRST05, Ren07], and Störzer et al. [SRRT06].

Advantages Disadvantages
(+) Easy to extract call graph (-) Only applicable on source code

(-) Granularity limited to methods
(-) No distinction between different changes

Table 2.4.: Summary of the call graph analysis approach

2.3.1.4. Dynamic Execution Trace Analysis

Approaches for call graph based change impact analysis typically suffer from low precision
[LR03]. One way of improving their results is to only consider those methods that were ac-
tually called during the execution of a program. Hence, the idea of monitoring the execution
of programs for change impact analysis purposes was developed. This, however, requires pro-
grams to be instrumented and executed to monitor their call behavior. The recorded execu-
tion traces can then be utilized for change impact analysis, where all the methods of a trace
containing at least one changed method are considered as being impacted. Examples can be
found in the works of Orso et al. [OAH03, OAL+04], Law and Rothermel [LR03], Breech et
al. [BTP05], Apiwattanapong et al. [AOH05], Huang and Song [HS06,HS07,HS08], and Gupta
et al. [GSC09, GSC10].

Advantages Disadvantages
(+) More precise than call graphs (-) Only applicable on source code

(-) Granularity limited to methods
(-) Requires instrumentation of code
(-) Requires execution of code
(-) No distinction between different changes

Table 2.5.: Summary of the dynamic execution trace analysis approach

2.3.1.5. Program Slicing

Program slicing is a technique that is often used for program comprehension and software main-
tenance, and can potentially be used for change impact analysis as well. Slicing “brushes away”
all the code statements that do not affect a certain program variable, leaving behind the code
statements that might be affected by changes to the variable. A slice is computed by analyz-
ing data dependencies (e.g. value assignments) and control dependencies (e.g. if-conditions)
of program statements that access or modify a variable. Hence, it can be applied in a forward
manner (“What will happen with this variable?”) or in a backward manner (“Where does the
current value come from?”) [Tip94]. Thus, when changing a certain program statement, slicing
can be used to identify all the statements that are affected by the change. Examples can be found
in the works of Gallagher and Lyle [GL91], Tonella [Ton03], Vidács et al. [VBF07], Korpi and
Koskinen [KK07], Santelices and Harrold [SH10], Sun et al. [SLTZ11], and Yazdanshenas and

14

2. Change Impact Analysis

Moonen [YM12]. Slicing tools are also available for different programming languages and
IDEs, such as Indus for Java [Ind] or Wisconsin for C/C++ [Wis14] for example.

Advantages Disadvantages
(+) Good tool support (-) Only applicable on source code
(+) Acceptance by programmers

Table 2.6.: Summary of the program slicing approach

2.3.2. Mining of Software Repositories (MSR)

In contrast to the techniques discussed so far, MSR-based approaches do not extract dependen-
cies from software artifacts but from the software repositories the artifacts evolved in. They
investigate evolutionary dependencies between software artifacts that are only obtainable from
software repositories keeping track of an artifacts’ version history, such as CVS, SVN or Git.
MSR-based approaches investigate the co-change or co-evolution patterns of software artifacts
to determine if they were frequently changed together in the past. By reasoning about the fre-
quency of potential co-changes, MSR-based approaches are able to propose possibly impacted
artifacts if they were frequently changed together. Additionally, most MSR-based approaches
apply a sliding window technique to improve the precision of their predictions, as otherwise
early and meanwhile outdated co-change events might mislead current predictions [GDL04].
Examples can be found in the works of Gı̂rba et al. [GDL04], Hassan and Holt [HH04],
Ying et al. [YMNCC04], Zimmermann et al. [ZWDZ05], Fluri et al. [FGP05, FG06], Kagdi
et al. [KM07a, Kag07, Kag08, KGPC10], Nadi et al. [NHM10], Canfora et al. [CCCDP10a],
and Hassaine et al. [HBG+11].

Advantage Disadvantage
(+) Multiperspective analysis possible (-) Requires availability of history

(-) Dependent on commit-behavior
(-) Artifacts must evolve in same repository
(-) Not applicable in early phases
(-) Selection of sliding window critical
(-) No distinction between different changes

Table 2.7.: Summary of the MSR-based approach

2.3.3. Information Retrieval (IR)

IR-based approaches scan the names, identifiers, and other free text components contained by
software artifacts for similar textual patterns. If such textual similarities between two artifacts
were found, it is assumed that changing one artifact also impacts the other one as well. Similar
to the previously discussed MSR-based approaches, they are potentially able to analyze different
types of software artifacts, as only their textual components are considered. Typical IR-based
approaches consist of two phases: the preprocessing and the actual text analysis. During the
preprocessing phase, techniques such as word stemming or stop word elimination are applied to

15

2. Change Impact Analysis

reduce the potential search space [Bod11]. The actual text analysis is then accomplished using
techniques such as n-gram-matching [CT94] or by applying latent semantic indexing [MM03]
for instance. However, these approaches are not able to distinguish between different types of
change operations, nor are they able to specify the resulting impacts. Examples can be found in
the works of Antoniol et al. [ACCDL00], Vaucher et al. [VSV08], Poshyvanyk et al. [PMFG09],
and Binkley and Lawrie [BL10].

Advantages Disadvantages
(+) Multiperspective analysis possible (-) No distinction between different changes

(-) Only lexical similarities considered

Table 2.8.: Summary of the IR-based approach

2.3.4. Probabilistic Approaches

A whole set of probabilistic approaches have been proposed to model and analyze software
systems under change using probabilistic models, such as Bayesian Belief Networks or Markov
chains. Once a system has been modeled accordingly, probabilistic analysis can be performed
for change impact analysis tasks, such as Bayesian inference or Granger Causality Tests. Ac-
cording to the computed likelihood, a software artifact is then considered as being impacted and
reported to the developer. Examples can be found in the works of Lock and Kotonya [LK99],
Tang et al. [TNJH07], Sharafat and Tahvildari [ST07, ST08], Zhou et al. [ZWG+08], Abdi et
al. [ALS09b, ALS09a], Ceccarelli et al. [CCCDP10b], and Canfora et al. [CCCDP10a].

Advantages Disadvantages
(+) Multiperspective analysis possible (-) Difficult to model the interplay of hetero-

geneous software artifacts
(-) Difficult to understand the computed
change propagation
(-) No distinction between different changes

Table 2.9.: Summary of probabilistic approaches

2.3.5. Rule-based Approaches

A different impact analysis methodology is applied by rule-based approaches that utilize ex-
plicit rules to forecast the impacts of changes. The underlying assumption is that a set of rules
can be established that are able to compute the impact of applying a specific change operation on
a software system. The actual definition or creation of the required rules differs from approach
to approach. Some researchers propose to utilize developer knowledge, domain knowledge or
knowledge of design methodologies for constructing valid impact analysis rules. Dependent
on the types of software artifacts to be analyzed, different query languages can be utilized to
implement the rules, such as OCL [OMG12], XPath [W3C10] or EMF Query [EMFb]. Exam-
ples can be found in the works of Queille et al. [QVWM94], Barros et al. [BBE+95], Briand et
al. [BLBS02, BLO03, BLOS06], Feng and Maletic [FM06], Keller et al. [KSD09, KD11], ten
Hove et al. [tHGK+09], and Müller and Rumpe [MR14].

16

2. Change Impact Analysis

Advantages Disadvantages
(+) Multiperspective analysis possible (-) Creation of rules is time consuming
(+) Can address different changes (-) Hard to address ambiguous impacts
(+) Can be enhanced with repair plans (-) Rules require maintenance
(+) Allows addition/change of rules (-) Rules require validation

(-) Creation of rules not addressed by current
research

Table 2.10.: Summary of the rule-based approach

2.3.6. Hybrid Approaches

There are hybrid approaches that combine various of the aforementioned techniques for con-
ducting change impact analysis. As for example the work of Gethers et al. [GDKP12] who
utilize a combination of information retrieval, mining of software repositories, and dynamic
execution trace analysis. Although their approach is potentially able to detect the impacts of
changes applied to heterogeneous software artifacts, it is not able to determine the exact types
of impacts and furthermore suffers from other disadvantages of the approaches it combines.

2.4. Multiperspective Approaches

One of the key questions of our literature review was whether there exist approaches for mul-
tiperspective change impact analysis and if they meet our requirements. Hence, in this section
we present the results of our review in regard to the types of software artifacts and perspec-
tives covered by recent studies. In accordance to our impact analysis taxonomy, we consider
three major types of software artifacts and their associated perspectives: source code, software
architectures, and requirements. Moreover, some studies also analyze configuration and docu-
mentation files, which we refer to as “other artifacts” due to their inhomogeneous purposes and
structure (see Section 2.2.2). Figures 2.3 and 2.4 below summarize the findings of our review.

98

17 10 6
19

Figure 2.3.: Distribution of scopes among the studied approaches [Leh11a]

It is obvious that the vast majority of the change impact analysis approaches proposed in the
literature is still solely focused on source code [Leh11a], while other types of software artifacts

17

2. Change Impact Analysis

are more or less being neglected. We noticed an increasing interest in supplying change impact
analysis support for the architectural level and architectural design decisions, though.

Secondly, we investigated how many perspectives and different types of software artifacts are
covered by the few existing multiperspective approaches. Figure 2.4 summarizes the distribu-
tion of the different perspectives among the few available multiperspective approaches.

3

8

1

7

Code,
Architecture,
Requirements

Code,
Architecture

Code,
Requirements

Architecture,
Requirements

Figure 2.4.: Scopes supported by multiperspective approaches [Leh11a]

The vast majority of the existing multiperspective approaches (16 out of 19) is focused on
exactly two perspectives, while only three approaches are truly able to address heterogeneous
types of software artifacts (see Figure 2.4). Additionally, most of the approaches are strictly
limited in their support of different types of change operations.

In the remainder of this section we discuss the few truly multiperspective approaches in detail.
However, we do not discuss all works identified by our review because some of them only
represent extended versions of other preceding studies (e.g. journal publications that are based
on preceding conference papers of the same authors etc.).

Hammad et al. [HCM09] and Sharafat and Tahvildari [ST07] propose approaches for analyzing
the change propagation between source code classes and UML design classes. Hammad et al.
rely on dependency analysis for determining the effects of “add” and “delete” operations, while
Sharafat and Tahvildari apply a probabilistic algorithm for the same purpose. However, both
code and UML classes are instances of one and the same concept and therefore quite similar.
Their approaches do not provide any means for analyzing other important UML models, such
as component diagrams, nor do they allow for analyzing actual source code statements. Thus,
their approaches are not truly “multiperspective” in regard to the goals of this thesis.

In a similar fashion, Kotonya and Hutchinson [KH05], as well as Khan and Lock [KL09], ana-
lyze the change propagation between architectural components and system requirements using
approaches built upon dependency analysis. Although this is an import step for analyzing the
overall change propagation, further connections to other architectural artifacts and implemen-
tation artifacts are required to provide a truly holistic estimation of the impact of a change.
Currently, there is still a yawning abstraction gap between high-level architectural components
and fine-grained design artifacts, let alone implementation classes and source code statements.

Kim et al. [KKK10] and Hassan et al. [HDB10] propose approaches for assessing the propa-
gation of changes in between source code and architectural components. Hassan et al. utilize
a rule-based approach, while Kim et al. apply a simple dependency-based fan-in fan-out ap-
proach. However, as already pointed out for the approaches discussed above, there is a gap
between the analyzed abstract architectural components and the fine-grained design that com-
plicates the change impact analysis and is not addressed by their works. Furthermore, in the

18

2. Change Impact Analysis

approach of Kim et al. architectural components are extracted from source code using a revised
version of the reflexion model approach of Murphy et al. [MNS01], which in turn restricts the
addressable architectural components to those that can be recovered from the source code.

Finally, our systematic review discovered only two approaches that are truly applicable for the
interplay of heterogeneous types of software artifacts. We discuss them in the following and
point out why they are still not sufficient and why further research is necessary.

Briand et al. [BLBS02] propose an approach for change impact analysis and regression test
selection that is capable of analyzing test cases, use cases, class diagrams, and sequences dia-
grams. By the means of change impact analysis the authors propose an approach for classifying
test cases as either reusable, re-testable or obsolete. The proposed impact analysis approach is
based on traceability relations between the UML models and the test cases and can be classified
as dependency-based impact analysis. However, the approach does not cover important struc-
tural UML artifacts, such as packages or components that are often used in practice. Additional
behavioral diagrams, such as state charts or activity diagrams, are also not considered, which
limits the applicability of the approach and reduces its capability for multiperspective change
impact analysis in regard to the goals of this thesis. Moreover, source code artifacts are also
entirely neglected from the impact analysis, thus further limiting the scope of the approach.

The approach proposed by Ibrahim et al. [IIMD05a, IIMD05b, IIMD06] allows for analyzing
requirements, test cases, classes, and methods using dependency analysis. The required depen-
dencies are obtained by a three-pronged approach. Static code analysis is used for extracting a
call graph from the source code, while the test cases are executed to gather further dependency
relations between methods and requirements. Thirdly, additional dependencies are supplied
by applying a manual traceability mining technique. The recorded dependencies are stored as
traceability links that are used for analyzing the change propagation between the software arti-
facts. However, the approach does not provide support for distinct types of change operations,
nor does it support all source code artifacts or architectural diagrams. Furthermore, the approach
requires the instrumentation and execution of test cases for linking methods with requirements,
as well as additional manual traceability detection. This instrumentation and manual analysis
vastly adds to the cost of applying this approach on a system of realistic size and complexity
(see discussions in Section 2.3.1.4) which contradicts with our goals.

2.5. Open Research Issues

Our review identified four general problems of existing works on impact analysis that corre-
spond to the goals of this thesis and therefore justify the conducted research.

P1 - Multiperspective Impact Analysis. There is a lack of change impact analysis support for
heterogeneous software artifacts and for multiperspective software. As revealed by our review
of current impact analysis approaches, almost two thirds of the them are still solely focused on
source code [Leh11a]. Only a minority of the proposed impact analysis approaches is capable
of analyzing more than one type of software artifact (e.g. source code and UML models).
However, in Section 2.4 we have shown that the few available approaches are accompanied by
various problems and limitations and thus do not solve the goals of this thesis.

19

2. Change Impact Analysis

P2 - Change Operations. Our review revealed that there exists no consistent approach for the
modeling of change operations among the studied impact analysis approaches. To the contrary,
almost every study introduced its own classification of changes. Change impact analysis on the
other hand first of all demands for a precise classification and modeling of change operations.
Therefore, a comprehensive investigation of the different types of change operations is required.

P3 - Dependency Relations. A similar problem has been identified for the dependency relations
that cause changes to propagate to other software artifacts. The studied dependencies are often
not explicitly specified nor properly classified. Furthermore, the proposed classifications either
contradict with each other or are still incomplete. Consequently, a thorough investigation of
dependency relations is required to allow for reliable change impact analysis support.

P4 - Expressiveness of the Impact Analysis. The outcome of current research on impact
analysis is very limited in regard to Goal 3 of this thesis. Only very few approaches are actually
able to inform developers about why and how a certain software artifact is impacted by a change
and what they should do about it. Independent of the later usage of the results of the change
impact analysis (change planning, change implementation, etc.), it is important to know why
and how a certain software artifact is impacted, as otherwise all impacts have to be treated in
the same way.

2.6. Summary

In this chapter we discussed the process and the results of a systematic literature review con-
ducted in the field of change impact analysis according to the research goals of this thesis. First,
the review provided an overview of existing change impact analysis approaches and the different
techniques applied by them. Second, it discovered yet unsolved problems that correlate with the
research goals of the thesis. Third, a taxonomy for impact analysis approaches was developed
and evaluated that assists with comparing impact analysis approaches and allows for classify-
ing the solution proposed by this thesis. We identified five main categories of impact analysis
techniques, out of which four are potentially able to analyze the change propagation between
heterogeneous types of software artifacts. Subsequently, we discussed their potential and main
limitations in regard to the goals of this thesis. We further investigated to which extent current
impact analysis approaches support multiperspective impact analysis. However, in the recent
literature only very few approaches actually support multiperspective impact analysis. They do
either not cover the required software artifacts and development phases or their applicability
is constrained by the required amount of manual effort, e.g. for instrumenting and executing
the software under change. Finally, our literature review identified the four main limitations of
current impact analysis approaches that we address with the research presented in this thesis,
namely: the lack of multiperspective impact analysis support, the adequate treatment of differ-
ent types of changes and dependencies, and providing support for developers to enable them to
understand the outcome of the impact analysis.

20

3. Thesis Foundations

In this chapter we explore related work that constitutes the foundation of research on change
impact analysis. To begin with, we analyze the concept of software views and its relation to
impact analysis in Section 3.1. We then analyze current research on multiperspective model-
ing and consistency checking in Section 3.2 which shares common aims and challenges with
multiperspective change impact analysis. In Section 3.3 we analyze how dependencies between
the different views and software artifacts can be elicited, recorded, and classified in order to
prepare the ground for understanding how the effects of changes propagate across them. Sec-
tion 3.4 explores possible means for modeling and classifying change operations to provide a
solid understanding of changes according to the needs of impact analysis. Finally, Section 3.5
summarizes our findings to later refine the research questions of this thesis.

3.1. Views on Software

A view or perspective describes a certain cutout of a software system that is tailored for a
specific purpose, such as presenting a general overview of the structure of a system or describing
the services provided by a system [Kru95, FMP99]. Thus, each view conveys an excerpt of
the concepts that constitute a software [SF01]. Many of these views have been proposed and
explored in existing works and this section therefore presents an overview of typical views and
their purposes to highlight their relevance for change impact analysis.

Initially, Kruchten [Kru95] defined five views on software architectures, namely the logical
view, the process view, the physical view, the development view, and the use case view. For our
work we can apply these views not just for the architecture of a software system, but also for
its other aspects, such as the final implementation in source code. In fact, the heterogeneous
artifacts to be addressed by impact analysis approaches represent excerpts of those views on
different levels of abstraction. Due to our goals, however, this thesis will mostly focus on
the logical view describing the decomposition of the design that contains most of the typical
software artifacts and the process view describing the interactions of those artifacts.

Cook et al. [CJH01] present an approach to study software evolution based on the dynamic
and the static view of software. The dynamic view describes the trends of a system’s evolution,
whereas the static view describes the characteristics of the involved software artifacts. Addition-
ally, each view is further refined by three different conceptual levels, namely the requirements
level, the architectural level, and the fine design and source code level. For our work it is im-
portant to distinguish between the different conceptual levels when performing impact analysis,
even though this thesis is only focused on the architectural and fine design level of Cook et al.

The work of Dueñas and Capilla [DnC05] goes beyond previous approaches by explicitly cap-
turing design decisions in the architectural decision view. Explicitly recorded decisions present

21

3. Thesis Foundations

a valuable asset for change impact analysis [TLCvV11b]; however, a meta-model for captur-
ing design decisions is still subject to ongoing research [GLR14]. Moreover, for the majority
of software systems these information no longer exist as separate items, since they were not
explicitly recorded in the first place. Thus, we exclude this view from our current work.

A further extension of the set of views is proposed by El Ghazi and Assar [EGA08] who in-
troduce the actors perspective, product perspective, process perspective, evolution perspective,
configuration perspective, rationale perspective, and the traceability perspective. However, as
our approach is focused on software artifacts and not on software development processes, the
proposed views are less helpful for change impact analysis of software artifacts. Nevertheless,
their research provides a valuable starting point if one wants to extend impact analysis beyond
software artifacts to address the actual software development processes.

3.2. Managing Heterogeneous Software Artifacts

Software development consists of different phases that require different types of software arti-
facts to express the concerns of each phase [SF01]. Thus, the different artifacts are dependent on
each other and must evolve together [EPRV08]. However, in most software systems that evolve
over time there is a drift between the different types of software artifacts [IK06]. To counter
this drift, research on multiperspective modeling and multiperspective consistency management
has been conducted with the aim of keeping the artifacts synchronized. The following analyzes
how related work deals with the interplay and evolution of heterogeneous software artifacts.
Additionally, we discuss how these approaches bridge the gap between the different types of
software artifacts and how they deal with the emerging inter-model dependencies.

3.2.1. Multiperspective Modeling

The work of Yie et al. [YCDW09] addresses the problem that different models and views are
used for modeling the different concerns of an application, which in turn have to be composed
to obtain a complete representation of the system. They propose to transform the heterogeneous
models into a unified representation that is based on a common low-level modeling language. In
a second step the final system model is obtained by composing the unified low-level models, for
which correspondences between them are derived. However, composing the final model from
the set of intermediate low-level models further demands for the correspondences between the
models and their low-level representations to be explicitly established too. This explicit linkage
is achieved by recording the correspondences as traceability links between the models.

In a similar fashion, Eramo et al. [EPRV08] present a framework for multi-view modeling utiliz-
ing multiple independent views and viewpoints that are connected by correspondence relations.
However, as the views and viewpoints evolve, synchronization is required, which is why the
correspondence relations have to be explicitly modeled. The authors propose to use the concept
of Answer Set Programming that is embedded into a transformation engine to ensure that the
consistency of the involved views is maintained using declarative logic and proof procedures.

Demuth et al. [DLHE11] present an approach and an accompanying tool for cross-layer mod-
eling to facilitate the co-evolution of different meta-models and their model instances. Their

22

3. Thesis Foundations

approach allows for linking between models of different layers using UML dependency con-
nections, and provides rules for checking their consistency. The core concept of their approach
is that instances of a certain element can be created on different meta levels with a different de-
gree of abstraction and level of detail. However, they also support the usage of different models
for expressing the different concerns of a system and thus allow for multiperspective modeling.

In conclusion, an idea common to all of the above mentioned approaches is the usage of explic-
itly modeled correspondence relations between the heterogeneous software artifacts to express
dependencies and overlappings between them. Furthermore, another interesting idea that was
brought up is to map the heterogeneous software artifacts on a common low-level model whose
instances are then used for further analysis.

3.2.2. Multiperspective Consistency Management

Fradet et al. [FMP99] introduce a framework for representing and analyzing software architec-
tures that are build upon multiple views, whereas each view is comprised of different types of
models adhering a graph-based structure. The authors further introduce a constraint checking
algorithm to deal with potential inconsistencies that can be utilized during the phase of archi-
tectural design. To accomplish this, the proposed algorithm analyzes the dependency relations
connection the software artifacts, which is why it is closely related to the dependency-based
impact analysis approaches as discussed in the previous chapter.

Sunetnanta and Finkelstein [SF01] explore why software development requires different per-
spectives, models, and diagrams from an end-users point of view. The authors investigate the
different types of end-users, such as requirements engineers or architects, and explain why they
demand for different modeling perspectives. They conclude that the usage of different perspec-
tives, however, complicates the process of maintaining the consistency among them. To cope
with the different views, they propose a multiperspective viewpoint framework that is based
on conceptual graphs (CG) for linking the different types of models. Each CG consists of the
concepts to be modeled (nodes) and potential relations between them (edges), whereas relations
are also required for connecting models of different perspectives. Finally, a set of simple con-
sistency checking rules is applied to assist with maintaining the consistency of the perspectives.

Olsson and Grundy [OG02] propose an approach for multiperspective traceability and incon-
sistency management that covers requirements descriptions, UML use cases, and black-box test
plans. Their goal is to adapt the entire system to evolutionary changes of single artifacts in or-
der to maintain the overall consistency of the system. Therefore, changes are propagated across
dependency relations between the software artifacts, for which they are either implicitly linked
by their underlying meta-model or explicitly by users of their prototype tool that implements
their approach. The degree of automation of the change propagation, however, depends on the
applied change type, as only “simple” changes, such as rename operations for example, are
handled by their approach. More complex change scenarios are directly presented to the user.

Muskens et al. [MBC05] investigate inconsistencies between the various views of software
that emerge from the different phases of software development. Their approach allows for
consistency checking among and in-between different phases, for example spanning high-level
design artifacts and the implementation-related, fine-grained design of classes. They provide a
set of consistency checking rules for UML models and C++ code that are based on relational

23

3. Thesis Foundations

partitioning algebra. These rules are designed to analyze the dependency relations that exist
between the software artifacts, although it is not mentioned where the relations stem from. The
key part of their approach is to determine which model’s evolutionary changes are prevailing
and thus serve as a reference for the evolution of all other artifacts. Overall, their approach is
similar to the rule-based impact analysis approaches as discussed in Section 2.3.5.

The work of Kolovos et al. [KPP08] addresses the problem of inconsistency management that
arises from the usage of multiple DSLs and modeling techniques in software development. The
authors recognized the need for a distinct modeling and classification of inter- and intra-model
dependencies and therefore analyzed the types of dependency relations between the models.
They propose a novel classification of dependencies, which, however, seems not to be based
on a thorough review process. Moreover, they do not state where the addressed dependencies
stem from. As we will show in Section 3.3.1, there are different sources of dependencies, which
is why their classification is incomplete, which in turn might affect their ability to thoroughly
analyze the interplay of the different models.

In summary, our analysis further strengthens the need for a thorough investigation of multiper-
spective dependency relations, especially in regard to how they can be modeled and classified.
Likewise, they emphasize the need for addressing the heterogeneous artifacts in a homogeneous
manner, such as a common low-level meta-model for example.

3.3. Dependency Relations

In Section 2.3.1 we have reviewed different types of change impact analysis algorithms which,
however, all rely on the analysis of dependency relations for estimating the propagation of
changes. Consequently, dependency relations play an important role for change impact anal-
ysis [GS82, Raj97, Boh02a]. In order to utilize dependency relations for impact analysis, it is
therefore necessary to thoroughly understand the dependencies, their origins, and their types
in the first place. Hence, this section explores the origins and types of dependency relations
between software artifacts as a prerequisite for change impact analysis. Moreover, we discuss
the concept of traceability links as one possible means for expressing dependency relations be-
tween software artifacts. We investigate how traceability links can be recovered from software
artifacts, and how these concepts can be utilized for multiperspective dependency detection.

3.3.1. Origin of Dependencies

In this section we analyze the potential sources of dependencies. In order to conduct multiper-
spective change impact analysis, one has to be aware of these sources to take the dependencies
that are emerging from them into account during the actual impact analysis process.

1) Dependencies defined by the meta-models of software artifacts. A meta-model, such as
the UML meta-model or the C++ language specification, defines the elements and possible
relations a software artifact can be comprised of. Hence, various dependencies are directly
encoded in them. For example, there exist dependencies between UML use cases and UML use
case actors or between Java interfaces and the operations provided by them. These relations are
also referred to as “structural relations” by De Lucia et al. [DLFO08].

24

3. Thesis Foundations

2) Dependencies defined by software development paradigms. Dependencies also stem from
the concepts enforced by certain development paradigms. Our work focuses on the object
oriented paradigm, which introduces additional dependencies that do not occur in procedu-
ral software systems [Boo94]. Typical examples are inheritance relations between classes or
implementation relations between classes and interfaces. These relations are also classified as
“structural relations” by De Lucia et al. [DLFO08].

3) Dependencies introduced by development methodologies. Additional dependencies are also
introduced by development methodologies that are applied by system analysts, architects, and
developers. Within the scope of this thesis we are extracting such dependency relations by ana-
lyzing the development methodologies of Object Oriented Analysis [CY91, Boo94] and Object
Oriented Design [Boo94]. When following these guidelines, various dependencies are intro-
duced between the architecture and implementation of a system. Such relations are referred to
as “knowledge-based relations” by De Lucia et al. [DLFO08].

4) Dependencies stemming from the usage of different views. Finally, further dependencies are
introduced by the usage of different views and perspectives for expressing the different aspects
of a software system. There are views that are not bound to a specific development methodology
or paradigm, such as the behavioral or structural view (see discussions in Section 3.1), that are
interrelated by dependencies. There are, for example, overlappings between components of the
structural view and their representation in the behavioral view.

It is important to note that all these sources are not disjoint, as for example all object oriented
relations are already contained in the UML meta-model or the Java language specification.
Thus, there are overlappings which, however, do not reduce the benefits of addressing a wide
scope of potential sources of dependencies.

Moreover, we like to point out that there are additional sources of dependencies that are not yet
covered by this thesis, such as software development processes for instance. We are further con-
vinced that determining a finite list of all the sources of dependencies is not feasible; however,
in this thesis we address potential sources that, even though to a varying extent, are inherent to
the majority of software development projects.

3.3.2. Types of Dependency Relations

Apart from explicitly addressing the origins of different dependencies, it is also crucial to un-
derstand the types and purposes of those relations. Research on software dependencies has
brought up a wide variety of different types of dependency relations, which potentially have to
be addressed by change impact analysis approaches. However, since the amount of proposed
dependency types is vast (see Table 3.1), it is necessary to group and classify them to enable
their consistent usage for subsequent software engineering activities. This need has first been
recognized in the field of requirements traceability where several classifications have been pro-
posed so far. We conducted a literature survey for such classifications and in the following
report on its findings.

An initial classification of requirements traceability was introduced by Pohl [Poh96a, Poh96b].
He divided dependencies of requirements into five clusters that are organized as follows.

• Content dependencies: relations that signify comparisons, contradictions, and conflicts
between requirements.

25

3. Thesis Foundations

• Condition dependencies: relations between requirements and restrictions associated
with them.

• Evolution dependencies: relations indicating the replacement of (previous) require-
ments.

• Documentation dependencies: relations associating different types of software docu-
ments to a requirement.

• Abstraction dependencies: relations representing abstractions like generalizations and
refinements between requirements.

A similar classification was later proposed by Ramesh and Jarke to serve as a reference model
for requirements traceability [RJ01]. The proposed classification is comprised of four clusters
that altogether contain twenty-five different types of dependency relations (see Table 3.1).

• Satisfaction dependencies: relations between design/implementation artifacts and re-
quirements artifacts realized by them.

• Evolution dependencies: relations documenting the input-output relationships of actions
leading from existing artifacts to modified artifacts.

• Rationale dependencies: relations representing the rationale behind artifacts or docu-
menting the reason for their existence.

• Dependency relations: relations expressing general dependencies among artifacts.

While concerned with identifying directions for future research on software traceability, Span-
oudakis and Zisman [SZ05] also reviewed the types of traceability relations as used in the ex-
isting literature and organized them in a new classification scheme. Their review covered more
perspectives than previous research since they also investigated relations between requirements
and source code, and requirements and design models. Spanoudakis and Zisman distinguish
between eight different types of traceability relations which they define as follows.

• Dependency: exists between two artifacts when the existence of one depends on the other
or when changes applied on one artifact must be reflected by the other artifact as well.

• Generalization/Refinement: relations used to identify how complex elements of a sys-
tem can be broken down into components, how elements of a system can be combined to
form other elements, and how an element can be refined by another element.

• Evolution: relations signifying the evolution of elements of software artifacts.

• Satisfiability: relations expressing how one entity meets the expectations, needs, and
desires of another entity or how it complies with a condition represented by another entity.

• Overlap: relations expressing common features between two entities.

• Conflict: relations indicating conflicts between two entities.

• Rationalization: relations used to represent and maintain the rationale behind the cre-
ation and evolution of entities at different levels of granularity.

• Contribution: relations used to represent associations between requirement artifacts and
stakeholders that contributed to the generation of the requirements.

Khan et al. [KGGR08] analyzed the interplay of requirements dependencies and architectural

26

3. Thesis Foundations

evolution, from which they derived a taxonomy for the dependencies connecting requirements
and architectural components. They propose the following seven dependency clusters.

• Goal dependencies: relate system quality attributes (problem space) with their realiza-
tion (solution space).

• Service dependencies: relate requirements with their realizing operations and functions
of the system.

• Conditional dependencies: relate conditions, constraints, and decisions taken at the re-
quirements level with their realization at the architectural level.

• Temporal dependencies: relate requirements specifying the time frame of an event to
occur, processes to complete, or condition to hold true with their realization at the archi-
tectural level.

• Task dependencies: trace the connections between artifacts that require input and feed-
back from other tasks, processes or users for their completion.

• Infrastructure dependencies: relate resources, infrastructure, technical standards/de-
tails, design constraints, and compatibility issues to the architectural conception.

• Usability dependencies: relate user interaction with the responsible system components.

El Ghazi and Assar [EGA08] proposed a framework for the management of dependencies con-
necting the different views of software systems. As one constituent of their framework they
proposed a taxonomy of traceability relations that is comprised of the following clusters.

• Satisfaction relations: express the degree of satisfaction between requirements and sys-
tem components.

• Dependency relations: express generic dependencies between software artifacts.

• Evolution relations: express the evolution of software artifacts over time.

• Rationale relations: represent the context in which software artifacts are produced.

• Containment relations: express structural dependencies between software artifacts.

• Contribution relations: link agents and actors that contribute towards software artifacts.

Moreover, our literature survey identified several works that either provide or utilize distinct
types of dependency relations without organizing them by a taxonomy or by any other formal
approach. The following Table 3.1 summarizes the dependency types that are referred to by
those works and the types proposed by the above discussed classifications.

In conclusion, there is still demand for a consistent classification of dependency relations for
change impact analysis tasks. The classifications that were proposed so far are either incon-
sistent to each other, incomplete or contain too many overlappings. Consequently, a compre-
hensive investigation of the purposes of dependency relations is required to formulate a strict
taxonomy of potential relation types for impact analysis tasks. This statement is also supported
by the research of Zhang et al. [ZLZ+14] who evaluated two existing dependency classifications
in an industrial setting and came to similar conclusions in regard to the ambiguous, overlapping,
and incomplete character of these classifications.

27

3. Thesis Foundations

Approach Proposed Dependency Types
Tang et al. [TLCvV11a] affected by, implemented by, satisfied by, realized by, is proposed by, comprised of, is a,

identifies, supercedes, depends on, results in, related to, addressed by

Constantopoulos et al. [CJMV95] generalization, specialization, generality, specificity, correspondence, similarity, derivedFrom,
importsFrom

Walderhaug et al. [WJSA06] refine, transform, evolves to, generation, justifies, modifies, uses, implements, owns, executes,
validates

Sherba and Anderson [SA03] implemented by, tested by, validated by, allocated to, elaborated by, discussed by, elaborate,
depend on, part of, refines, replaces, based on, formalizes, allocated to

Mäder et al. [MPR07] refinement, realize, verify, define

Espinoza et al. [EG11] is tested by, satisfies test

Aizenbud-Reshef et al. [ARPR+05] rationaleOf, validatedBy, responsibleOf, calls

Jirapanthong and Zisman [JZ09] satisfiability, depends on, overlaps, evolution, implements, refinement, containment, similar,
different, variability

Espinoza and Garbajosa [EAG06] satisfies, dependency, rationale, validation, verification, evolution

Ramesh and Jarke [RJ01] satisfies, dependency, evolution, rationale, allocates, perform, part of, derive, modify, used by,
address, derived from, verified by, developed for, generate, is a, elaborated, influence, affect,
define, create, comply, supports, manages, resolve

Spanoudakis et al. [SZPMK04] overlap, requires execution of, requires feature in, can partially realise

Olsson and Grundy [OG02] exact, specialization, generalization, similar, splits, merges, exact group

Paige et al. [POK+08, PDK+11] consistent with, dependency, has a, is a, part of, import, export, includes, usage, refinement,
calls, notifies, generates, builds, synchronized with, verifies, certifies, satisfies, allocated to,
performs, explains, supports

Letelier [Let02] validatedBy, traceTo, verifiedBy, assignedTo, rationaleOf, partOf, modifies, responsibleOf

Table 3.1.: Dependency types proposed in related work

3.3.3. Traceability Links

The initial concept of traceability was developed to enable stakeholders to trace the lifecycle of
software artifacts, such as requirements for example. A widely accepted definition of the term
traceability was given by Gotel and Finkelstein:

”The ability to describe and follow the life of an artifact, in both a forwards and
backwards direction [GF94].”

A traceability link connects two software artifacts and typically expresses a dependency relation
between them. Each traceability link consists of three mandatory attributes: a reference to the
source of the link, a reference to the target of the link, and the type of the relation. A link can
be further enhanced with additional attributes, such as timestamps, authorship information, etc.
An overview of possible types of relations was already provided in the previous section.

As traceability links allow for interconnecting different types of software artifacts [ARNRSG06],
they are a suitable data structure for expressing dependencies between heterogeneous software
artifacts [III08]. Moreover, traceability links can be utilized for ripple effect analysis [WvP10],
and hence for impact analysis [BGW13].

3.3.4. Traceability Detection Techniques

In this section we analyze five techniques that were proposed for traceability detection and
that could potentially be reused for multiperspective dependency detection. We review them

28

3. Thesis Foundations

in regard to their support for heterogeneous software artifacts and their ability to determine the
types of the dependency relations. We exclude manual traceability detection approaches from
our review as they stand in contrast to our overall goal of providing automated tool support.
Further reviews and comparisons of existing traceability detection techniques can also be found
in the works of Rochimah et al. [RWKA07], Imtiaz et al. [III08], De Lucia et al. [DLFO08],
and in our previous works [Leh10, BLR11, RBFL11].

3.3.4.1. Information Retrieval (IR)

Various approaches for IR-based traceability detection have been proposed in the literature, such
as the vector space model [ACC+02] or latent semantic indexing [MM03, LFOT07]. Similar to
the IR-based change impact analysis approaches as discussed in Section 2.3.3, they analyze the
names and identifiers of software artifacts. Hence, if the names of two artifacts are “similar”
a traceability relation between both is created. Many approaches utilize further preprocessing
techniques, such as stop word elimination or word stemming, to increase the precision of the
link detection. A comprehensive review conducted by Oliveto et al. [OGPDL10] revealed that
there is little difference between the results achieved by various IR techniques. In fact they
turned out to be almost equivalent to each other. In an earlier experiment Abadi et al. [ANS08]
also compared several IR-based techniques and came to the conclusion that a combination of
different techniques might yield better results. However, IR-based approaches lack the required
precision and recall when compared to other approaches [Bod11] and are therefore not suitable
for dependency detection in multiperspective environments, as too many false-positives are
detected. Furthermore, IR-based approaches are also not able to determine the types of the
detected relations, which in turn restricts the reusability of the detected dependencies for a later
impact analysis.

Advantages Disadvantages
(+) Multiperspective dependency detection (-) Not able to determine dependency types
(+) Completely automatable (-) Typically low precision

Table 3.2.: Summary of IR approaches for multiperspective dependency detection

3.3.4.2. Mining of Software Repositories (MSR)

Similar to the previously discussed approaches for history-based impact analysis (see Section
2.3.2), MSR-based approaches can also be applied for traceability recovery [KM07b, KMS07,
Kag08]. Therefore, the same assumption is applied as for change impact analysis: if two arti-
facts were frequently changed together, a traceability relation is likely to exists between them.
Consequently, applying MSR for traceability detection suffers from the same limitations. First
of all, only evolutionary couplings can be detected, whereas other types of dependencies are
entirely neglected. Secondly, different types of software artifacts usually evolve in different
repositories and thus do not share a common “history” that can be mined. Moreover, MSR
cannot be applied when the version history is incomplete or missing (e.g. legacy systems) or in
the early stages of software development when the software is an unstable state.

29

3. Thesis Foundations

Advantages Disadvantages
(+) Multiperspective dependency detection (-) Not able to determine dependency types
(+) Completely automatable (-) Dependent on commit-behavior

(-) Artifacts must evolve in same repository
(-) Not applicable in early phases

Table 3.3.: Summary of MSR approaches for multiperspective dependency detection

3.3.4.3. Dependency Detection Rules

Researchers and developers can define and execute rules to detect dependencies between soft-
ware artifacts and to record them as traceability links. To accomplish this, the rules may query
the structure, attributes or relations of software artifacts in order to identify dependencies. Typ-
ical examples can be found in the fields of requirements traceability [FZS03, SZPMK04, JZ09]
and in works on model driven engineering [DPFK08,Kol09,BLR11,RPB11]. These rule-based
approaches for traceability detection share the same advantages and disadvantages as the rule-
based approaches for change impact analysis reviewed in Section 2.3.5. Namely, they require
manual upfront effort for creating and maintaining the rule database, which cannot be auto-
mated. On the other hand, they provide more reliable results [Bod11] and allow for a better
understanding of their results when compared to other approaches. Furthermore, they are also
able to determine the types of the detected dependency relations. Likewise, the concept of de-
tection rules is easier to adapt to other software artifacts as new rules can be added for them,
whereas other approaches might require severe changes in their underlying algorithms. How-
ever, the identification and creation of dependency detection rules is currently not covered in
related works.

Advantages Disadvantages
(+) Multiperspective dependency detection (-) Rule-creation causes effort
(+) Can determine types of dependencies (-) Rule-maintenance causes effort

Table 3.4.: Summary of rule-based approaches for multiperspective dependency detection

3.3.4.4. Semantic Wikis and Ontologies

A fourth group of traceability detection techniques utilizes the concept of semantic modeling
for eliciting dependency relations between software artifacts. These approaches are motivated
by the fact that software development involves various stakeholders, each using his own spe-
cial vocabulary that introduces synonyms and homonyms of the same concepts [SF01], and
the inevitable drift between software artifacts due to the ongoing evolution [TLvV11]. These
approaches propose to index software documents with an ontology that in turn allows for re-
trieving knowledge from the software artifacts from which traceability links can be inferred.
Such an approach is for example discussed by Bode and Wagner [Wag10, Bod11] to bridge the
gap between URN models [ITU08], UML models, and factor tables and issue cards [HNS05]
using an OWL ontology [W3C09]. Likewise, Tang et al. proposed a similar concept [TL-
CvV11b, TLCvV11a, TLvV11] that allows for a (semi)-automated indexing of documents for
dependency retrieval once the concepts of the ontology have been defined. The major difficulty

30

3. Thesis Foundations

and drawback of such approaches is the initial creation and definition of the concepts that consti-
tute the software and to model them in an ontology. On the other hand they allow for traceability
detection in the context of heterogeneous and possibly inconsistent software artifacts.

Advantages Disadvantages
(+) Multiperspective dependency detection (-) Creation of ontology causes effort
(+) Can determine types of dependencies (-) Maintenance of ontology causes effort
(+) Can resolve inconsistencies

Table 3.5.: Summary of Semantic Wikis for multiperspective dependency detection

3.3.4.5. Machine Learning (ML)

Machine learning approaches apply algorithms that are able to automatically “learn” traceabil-
ity links from software artifacts based on a given training set of dependency relations. These
training sets are either supplied by developers [SdGZ03] or they are comprised of a combi-
nation of manually established links and links identified by program analysis and runtime-
monitoring [GMP07], dependent on the level of granularity. If the training sets contain trace-
ability links connecting heterogeneous software artifacts, the approaches are potentially able to
elicit such links as well. Moreover, these approaches are potentially able to distinguish between
different types of relations, if the types are reflected by their training set. However, case studies
indicate that the precision of the obtained results highly varies [GMP07].

Advantages Disadvantages
(+) Multiperspective dependency detection (-) Requires training set
(+) Can determine types of dependencies (-) Unstable results

Table 3.6.: Summary of ML approaches for multiperspective dependency detection

3.4. Change Operations

Understanding changes is an essential part of change impact analysis, since understanding the
types of changes is important for determining their effects. In this section we therefore in-
vestigate how change operations can be modeled and classified to allow for automated change
impact analysis. The following discussions are based on a literature survey on the modeling and
classification of changes in the fields of impact analysis and regression testing [LFR12].

3.4.1. Modeling of Change Operations

A change operation, in short “a change”, transforms a software system or one of its constituents
from version n to version n + 1. In order to describe and model changes, the following infor-
mation are required: the element that should be changed, a description of the change activity,
and a description of the element after the change.

31

3. Thesis Foundations

For describing such change activities, Fluri and Gall [FG06] introduced the concept of basic (or
atomic) changes. As the name suggests, atomic changes describe change operations that cannot
be further refined or broken down to other changes. Fluri and Gall list add, delete, modification,
and move as their set of basic change operations.

This concept was extended by Mäder et al. [MRP06b,M1̈0] who introduced the notion of com-
posite operations that are comprised of sequences of other atomic operations. Mäder et al.
propose the same atomic operations as Fluri and Gall except for the move-operation which they
consider a composite operation.

The work of Robbes [Rob08] also distinguishes between atomic and composite changes, where
the latter may also consist of sequences of atomic changes. Moreover, composite operations are
further subdivided into developer-level actions (behavior-modifying changes) and refactorings
(behavior-preserving changes [Fow99]). As his basic units of change Robbes proposes Cre-
ation, Deletion, Destruction, Addition, Removal, Insertion, and Change Property operations.

In conclusion, the concept of atomic and composite operations is most suitable for providing a
solid base for the modeling of change operations for impact analysis tasks. The concept allows
for combining existing atomic operations into composite operations, which can be further nested
if necessary. However, the current concepts must be extended to allow for composite operations
also being modeled as sequences of other composite operations. Secondly, the set of atomic
operations should be kept as small and unambiguous as possible, which is why we have to
revise the sets of atomic operations presented by the discussed works.

3.4.2. Classification of Change Operations

If the impact of a change shall be analyzed, it is first of all necessary to understand the actual
change. Understanding the changes can be assisted by means for classifying changes accord-
ing their type, scope, purpose, etc. As a result of our literature review [LFR12], we identified
different approaches for the classification of change operations which we are discussing in the
following. The reviewed studies encompass approaches proposed for change impact analy-
sis [KGHW94, LO96, RT01, FM06, GSC10, SLT+10], regression testing [RST+03, RST+04,
SRRT06], software design [Fow99, BC00], traceability maintenance [MRP06b, M1̈0], change
coupling analysis [XS04a,XS04b,XS05,FG06], and requirements management [MG09,MG11].
Overall, we identified two groups of approaches for the classification of changes:

1. Classification based on how the changes can be modeled.

2. Classification based on the purpose of the changes.

The classifications proposed by Fluri and Gall [FG06] and Mäder et al. [MRP06b, M1̈0] are
based on the approach that is used to actually model the changes, e.g. the concept of atomic and
composite changes as discussed in the previous section. Thus, both classifications only reflect
the structure of the changes while they are neglecting, for example, their scopes or purposes.

In contrast, Gupta et al. [GSC10] propose to classify changes according to their purpose. There-
fore, the authors distinguish between changes that either affect the functionality, behavior, struc-
ture or the logic of a software system. This approach, however, is ambiguous in regard to the
purposes of changes. Deleting an entire component from a software system, for example, al-
ters its structure as well as its functionality and behavior, since all the functionality provided

32

3. Thesis Foundations

by the component is removed as well. Hence, we do not consider this type of classification as
applicable for research and practice due to its ambiguousness.

The vast majority of the studies that were analyzed during our review, however, did at best list
the change operations that are supported by their approaches. Yet, they did not introduce any
systematic means for classifying and modeling the changes, which is why the proposed changes
are overlapping or inconsistent for the most part. Hence, a systematic classification of changes
is required to allow for comparing change impact analysis approaches according to the change
operations supported by them. Yet, such a classification is still missing in related work but
required for performing change impact analysis.

3.5. Open Research Issues

Based on the analyses presented in the previous sections, we identified a set of open problems
that are directly related to the scope and the goals of this thesis and thus require further research.

P5 - Integrating Heterogeneous Software Artifacts. Approaches for multiperspective model-
ing and consistency checking advocate the need for integrating and unifying the heterogeneous
software artifacts prior to any subsequent analyses. However, different concepts were proposed
for this purpose, where the concept of utilizing a common meta-model for bridging between the
different types of software artifacts seems to be most promising.

P6 - Recording Dependency Relations. Finding a suitable data structure and concept for ex-
plicitly recording the various dependencies of the heterogeneous software artifacts is an impor-
tant precondition for conducting change impact analysis. Additionally, multiperspective impact
analysis requires a unified treatment of the different types of dependency relations as well.

P7 - Multiperspective Dependency Detection. Moreover, it is necessary to establish a suit-
able technique for multiperspective dependency detection. Various approaches for traceability
detection were discussed that can potentially be reused to accomplish this. However, a suitable
approach must be found that allows for multiperspective dependency detection according to the
goals of this thesis

P8 - Dependency Classification. Our review of related work on software dependencies re-
vealed the need for a thorough classification of dependencies. Currently, many different clas-
sifications have been proposed in the literature that are either inconsistent or overlap with each
other. Furthermore, not all of the required dependency types are covered by current classifica-
tions. This issues therefore corresponds to problem P3 as already discussed in Section 2.5.

P9 - Change Classification. Finally, our analysis of related work regarding the modeling and
classification of change operations revealed the need for a consistent classification of change
types and a practical way of modeling change operations. In contrast, the classifications that are
proposed in the current literature are either inconsistent to each other or contain too many over-
lappings and redundancies. Thus, an appropriate scheme for the modeling of change operations
is required to provide adequate support for change impact analysis tasks. This issue therefore
corresponds to problem P2 as already discussed in Section 2.5.

33

3. Thesis Foundations

3.6. Summary

In this chapter we reviewed related work that builds the foundations for research on change im-
pact analysis. First, we explored the concept of views to identify the views on software that are
most relevant for this work. Secondly, we studied approaches dealing with the modeling and
consistency management of multiperspective software systems due to their tight coupling with
multiperspective change impact analysis. Consequently, typical dependencies of heterogeneous
software artifacts were studied in regard to their purposes and in regard to how they are classi-
fied by existing works since they carry the effects of changes. We then outlined the similarities
between the concepts of traceability links and dependency relations and analyzed various tech-
niques that were proposed for traceability detection with the goal of reusing the latter to support
change impact analysis. We also analyzed current works on software maintenance in regard to
how they deal with different types of change operations. Finally, we summarized open research
issues that are also related to the scope and the goals of this thesis.

34

4. Overview of the Approach

In this chapter we provide the big picture of the approach that is presented in this thesis. To be-
gin with, we introduce our main research hypothesis that was formulated based on our analyses
of related work according to the goals of the thesis at hand and own experiences from various
software development projects. Secondly, the research goals of this thesis are refined accord-
ing to conclusions drawn from related work studied in the previous two chapters. Finally, an
overview of the proposed approach is given that elaborates on its main steps and assumptions.

4.1. Research Hypothesis

The central concern of this thesis is to identify if and how a change that is applied on a certain
software artifact affects the software artifacts that are dependent on it, and how these questions
can be answered when different types of software artifacts belonging to different perspectives
and development phases are involved. As acknowledged by related work and confirmed by
own observations from several software development projects, dependency relations between
software artifacts carry the effects of changes [Han96, Boh02a]. However, we also observed
that not every type of dependency relation carries the effects of every type of change from one
software artifact to others. Therefore, the following initial hypothesis was developed and acted
as the central driver for the research presented in this thesis.

Initial Hypothesis: The impact of a change can be determined by inspecting the
dependency relations that connect the software artifact to be changed with other
software artifacts under consideration of the type of the change. The interplay of
change type and dependency type determines further change propagation.

According to our hypothesis, the impacts of a change on a software system can be determined
by analyzing the interplay of the following information:

• The type of the software artifact to be changed.

• The type of the dependent software artifact (i.e. the possibly impacted one).

• The type of the dependency relation between both.

• The type of the change to be applied.

Furthermore, we believe that the above stated interplay can be analyzed by a rule-based concept,
which, when applied prior to the implementation of a change, can determine its impact on the
software system. Consequently, our research hypothesis has been further refined as follows.

Revised Hypothesis: The impact of a change can be determined by inspecting the
dependency relations that connect the software artifact to be changed with other
software artifacts under consideration of the type of the change. The interplay of

35

4. Overview of the Approach

change type, dependency type, and artifact type determines further change prop-
agation. This interplay can be analyzed by impact propagation rules that can be
utilized for determining the impact of a change prior to its implementation.

The concept that emerges from our refined hypothesis is realized by the approach presented
in Chapters 5 to 8, and the prototype tool presented in Chapter 9. Finally, our hypothesis is
evaluated by a comprehensive case study discussed in Chapter 10.

4.2. Refined Goals

In Section 2.5 and Section 3.5 we summarized the problems and limitations of current ap-
proaches for impact analysis, heterogeneous modeling, modeling of change operations, and de-
pendency detection and classification in regard to our goals. To address these issues, we refine
and revise our research goals as introduced in Section 1.2 under consideration of our research
hypothesis as presented in the previous section and the findings of our literature reviews.

Based on our research hypothesis and our analysis of current impact analysis approaches (see
Section 2.3), we propose to utilize a rule-based concept for analyzing the interplay of changes
and dependencies. A rule-based concept can be applied on heterogeneous artifacts, is extensible
to address new types of software artifacts, and allows to further process the detected impacts.
However, our rule-based concept will be substantially different when compared to existing ap-
proaches as it will be based on a different propagation strategy (i.e. the analysis of the interplay
of changes, dependencies, and software artifacts). We can therefore refine Goal 1 as follows.

Goal 1: Develop a rule-based change impact analysis approach that provides a high reliability
when assessing the effects of changes prior to their implementation. The approach should
identify all artifacts impacted by a change and determine as few false-positives as possible.
Various experiments shall be conducted to evaluate its performance and efficiency.

To address the main limitation of existing rule-based approaches, namely the creation and vali-
dation of impact rules, we have to define another goal which this thesis has to meet.

Goal 5: Provide a methodology for the creation of additional impact rules to extend the ap-
proach and to provide support for change impact analysis of new types of software artifacts not
yet covered by thesis.

According to our analysis of existing impact analysis approaches and the fact that support for
multiperspective impact analysis is still missing (see Section 2.5), Goal 2 remains unchanged.
Moreover, the few available multiperspective impact analysis approaches are limited in regard
to their support of heterogeneous artifacts and are only able to assess the change propagation
between two types of software artifacts (see Section 2.4).

Goal 2: Develop a rule-based change impact analysis approach that enables the analysis of
different types of software artifacts to keep them synchronized and consistent to each other.
The approach to be developed shall at least support the following types of artifacts: architectural
models (design view), source code (code view), and test cases (test view).

As revealed by our literature review, only very few impact analysis approaches are able to
determine how a software artifact is impacted by changes (see Section 2.5). Consequently,
developers have to further inspect the artifact to determine how it is affected, which causes an

36

4. Overview of the Approach

additional manual overhead. Thus, Goal 3 remains unchanged as it addresses this problem.

Goal 3: Develop a rule-based change impact analysis approach that allows developers to under-
stand how and why software artifacts are impacted by a certain change. The approach should
be applicable during forward engineering, reengineering, and software maintenance in general.

After analyzing how changes are modeled and how the different types of changes are classified
by related work, we have to refine Goal 4 to support our impact analysis approach with a
thorough concept for the modeling and classification of change operations.

Goal 4: Develop a meta-model for change operations that allows for the modeling of arbitrary
changes to study their impacts on software artifacts. Furthermore, it is necessary to establish a
taxonomy of change operations to classify changes according to their type of operation.

Additionally, to enable multiperspective change impact analysis it is necessary to bridge the gap
between the heterogeneous types of software artifacts. In order to be able to apply the same im-
pact analysis concept on all types of software artifacts, means must be sought to address them in
a homogeneous manner. To accomplish this, the concept of utilizing a common representation
for all types of software artifacts as discussed in Section 3.2 seems most promising.

Goal 6: Find or develop a suitable common meta-model for all the software artifacts addressed
by this thesis and the required means for mapping them on this meta-model if necessary.

Based on our analysis of existing multiperspective approaches, we have to derive two additional
goals to adequately address the dependency relations connecting the heterogeneous software
artifacts that are responsible for propagating the effects of changes between them.

Goal 7: Find or develop a suitable meta-model to explicitly model different types of dependency
relations. This model should also be accompanied by suitable means for determining the types
of the dependency relations for the later change impact analysis.

Goal 8: Extend or develop a suitable multiperspective dependency detection technique as a
precondition for the later change impact analysis.

4.3. Proposed Approach

We now present a general overview of the change impact analysis approach that is proposed in
this thesis to put the upcoming discussions into a broader context.

The approach is divided into the two phases of preprocessing and change impact analysis,
whereas each phase is further comprised of two distinct steps. The preprocessing phase is re-
sponsible for providing unified access to the various software artifacts that constitute a software
system (step 1), such as source code files or UML diagrams, and to explicitly record their de-
pendencies for the later change impact analysis (step 2). While recording the dependencies,
our approach is able to address inter- and intra-artifact dependencies alike and to explicitly de-
termine their types. The 2nd phase starts with the classification of the change operation that is
about to be applied on the software system (step 3), which then triggers the actual change impact
analysis to assess the consequences of this change (step 4). The classification of changes must
be accomplished by the developer who is applying our approach, whereas the impact analysis
is accomplished in an automated manner. This overview is also illustrated by Figure 4.1.

37

4. Overview of the Approach

Impact Analysis Phase

Preprocessing Phase

Step 4: Estimate the impact of the change with rules that
analyze the interplay of change types and dependency types

Step 1: Transform the artifacts into EMF-based models

Java Source
Code

UML Models JUnit Test
Cases

EMF-Models

Step 2: Elicit inter- and intra model dependencies

EMF-Models

EMF-Models Explicit
Dependencies

Step 3: Specify and model the change operation

EMF-Models

Explicit
Dependencies

Change
Operation

EMF-Models Explicit
Dependencies

EMF-Models

Explicit
Dependencies

Change
Operation

Impacted
Artifacts

Figure 4.1.: Overview of the proposed approach

38

4. Overview of the Approach

Step 1: Artifact Integration. We bridge the gap between the different types of software arti-
facts by mapping them on a unifying meta-model supplied by the Eclipse Modeling Framework
(EMF) [EMFa] to allow for a unified access to the software artifacts. The unified software ar-
tifacts are then imported into a model-repository which provides the basis for the introduced
multiperspective impact analysis approach. Chapter 5 elaborates on this step.

Step 2: Dependency Detection and Recording. Potential dependency relations connecting
the heterogeneous software artifacts are elicited by applying an automated traceability mining
approach on the artifacts stored in the model-repository. To accomplish this, a rule-based detec-
tion approach is applied that utilizes a set of pre-defined rules for dependency detection. These
detection rules are able to determine the types of the dependency relations and to record the
identified relations as traceability links. The classification of the dependencies is accomplished
by a taxonomy of dependency types introduced in this thesis. Chapter 6 elaborates on this step.

Step 3: Change Type Classification. As a first step of the actual change impact analysis, the
developer who is changing the system has to specify the artifact(s) to be changed. Secondly,
the changes to be applied on them must be classified according to their type, for which the
developer is supported by a catalog of change operations that allows him choosing the right
type. This catalog of change operations is based on a novel taxonomy and modeling approach
for change operations that are both introduced in this thesis. Chapter 7 elaborates on this step.

Step 4: Change Impact Analysis. According to our research hypothesis, the impact of a
change can be determined by analyzing the dependency relations of software artifacts according
to the type of the change operation that is applied upon them. We accomplish this by applying
a rule-based concept to analyze this interplay and to determine further change propagation.
Once a change is classified and the impact analysis is triggered, a set of impact propagation
rules is applied which require as input the type of the change and the changed artifact. Our
approach then recursively explores the artifacts that are related to the changed one by analyzing
the dependency relations between them. Based on the types of the dependency relations and
changes, potential impacts are determined by the impact propagation rules. If an impact is
detected, it is feed back into the recursive analysis process where it may trigger the execution
of further rules. Thus, the impact propagation rules are recursively applied until no further
change propagation is triggered by them. After the recursive propagation has come to an end,
all impacted elements will be reported to the developer. Chapter 8 elaborates on this step.

4.3.1. Handling of Problem Space and Solution Space

In this section we discuss whether the proposed approach is situated on either the problem space,
the solution space or whether it covers both. The problem space generally denotes a variety of
factors surrounding a software system, in particular its requirements, constraints, and human
factors [CE00]. In contrast, the solution space is comprised of entities that contribute towards
solving the requirements of the software system and problem space, which can be, for example,
architectural decisions, COTS components, design patterns, and algorithms [CE00].

The research presented in this thesis is solely focused on the solution space, while the problem
space is entirely neglected for two reasons. First and foremost, the interconnection between
both worlds is still subject to ongoing research. Although many approaches are focused on
bridging this gap, e.g. [HNS05] and [Bod11], there is still no comprehensive approach avail-

39

4. Overview of the Approach

able to accomplish this linking, which in turn would shift the focus of this thesis away from
understanding change impact analysis towards problem-solution-mapping. Secondly, this the-
sis is aimed upon research on impact analysis with the goal of supporting software maintenance
and reengineering. These two tasks, however, are mainly focused on existing software artifacts
stemming from the solution space, such as source code, software architectures, and test cases.
Thus, we more or less concentrate on them only.

4.3.2. Covered Views

In this thesis we propose an impact analysis approach that can be applied on artifacts stemming
from the structural view, the behavioral view, the code view, and the test view. These views were
chosen because they are inherent to any software development project and are independent of
the applied development methodology and technology (see discussions in Section 3.1).

The structural view describes the components and relations a system is comprised of, and is
typically modeled by UML component, class, deployment, and package diagrams. The behav-
ioral view describes the services and operations provided by a system, internal communication
paths, data exchange, and to a certain extent, user interaction. Hence, UML sequence, activity,
and use case diagrams are considered as relevant for this view. The code view represents the
actual implementation of the system and consists of Java source code entities such as classes,
interfaces, methods, and data types. Finally, the test view consists of similar artifacts as the
code view, whereas its purpose is to test the functionality implemented in the code view.

Defines system components

Defines behavior of system
components

Tests code

Tests
behavior

Code
 View

Implements
behavior

Structural
View

Defines system
 components

Implements
system components

Test
 View

Behavioral
View

Figure 4.2.: Views considered by our approach (ellipses) and their relations (arrows)

Figure 4.2 summarizes the four views considered in this thesis along with their general depen-
dencies (directed arrows). Arrows pointing from one view to another view indicate the role that
artifacts of the one view play for artifacts of the related view. For example, the relation “Defines
System Components” connecting the Structural View and the Behavioral View denotes that the
Behavioral View can only describe the behavior of those artifacts (e.g. system components) that
are defined in the Structural View and vice versa.

40

4. Overview of the Approach

4.3.3. Assumptions

The multiperspective change impact analysis approach presented in this thesis is build upon the
following set of assumptions. Later on, we discuss the influence of these assumptions on the
feasibility and applicability of the proposed approach.

Assumption 1 - Software is developed using Object Oriented concepts. The majority of the
concepts presented in this thesis assumes that object oriented software systems shall be analyzed
and object oriented concepts are applied. This, however, can be taken as granted considering
today’s software and the software systems constructed during the last two decades.

Assumption 2 - The architecture of software systems is realized by UML models. Although the
general concepts presented in this thesis are not tailored to certain types of software artifacts,
all the impact propagation rules developed for this thesis, as well as all the examples utilized
throughout this thesis, assume an UML-based representation of software architectures (e.g. by
UML class and component diagrams).

Assumption 3 - The architecture and the source code of software systems are available to
developers. The presented approach assumes that both the architecture and the source code
of a software system are available to developers in their native form and that both are freely
accessible, e.g. that the source code is not only provided as byte code or compiled binary files.

Assumption 4 - The software artifacts to be analyzed are consistent to each other. In order
for the change impact analysis to predict correct results, the artifacts to be analyzed must be
in a consistent state. For example, the modeled architecture and the implemented architecture
must both be consistent to each other in terms of applied concepts and architectural entities.
They may, however, possess a different level of abstraction. Hence, the change impact analysis
requires a solid baseline to embrace future changes, which is in line with, for example, all
regression testing approaches that also require a fixed baseline test suite [FLR14].

Assumption 5 - Unified access to all artifacts is required. The application of impact propaga-
tion rules on the software artifacts and their dependencies demands for a homogenous access
to all the software artifacts. All the heterogeneous artifacts must be analyzable using the same
approach, as otherwise a generalizable rule-based concept cannot be developed and applied.

Assumption 6 - Dependencies must be made explicit. Dependency relations, either between or
contained within the heterogeneous software artifacts, must be made explicit and accessible for
the change impact analysis approach in a homogenous way. Furthermore, it is necessary that the
type of each dependency relation is explicitly known to the change impact analysis approach.

4.4. Summary

In this chapter we presented the research hypothesis of this thesis that is based on our initial
research questions and the results of our reviews of related work in Chapters 2 and 3. Subse-
quently, the goals of the thesis were refined according to the results of our analysis of related
work and the established research hypothesis. Moreover, an overview of the proposed approach
was given that summarized its core concepts and steps to put the discussions in the upcoming
chapters into a broader context. Finally, the assumptions of the approach were laid out and the
views and perspectives that are considered by our approach were presented.

41

5. Comprehensive Artifact Integration

Multiperspective change impact analysis requires a unified treatment of the different types of
software artifacts if one and the same impact analysis approach shall be applied on them (see
Goal 2). To accomplish this, in this chapter we introduce an approach for integrating various
different types of software artifacts. We therefore explain how the heterogeneous artifacts can
be mapped on a unifying representation to accomplish Goal 6. The upcoming discussions are
based on the findings of our state-of-the-art review regarding multiperspective approaches in
Section 3.2, our works on multiperspective dependency detection [Leh10, BLR11, RBFL11,
FLR14], and our works on multiperspective impact analysis [LFR12, LR12, LFR13].

This chapter is organized as follows. In Section 5.1 we compare two approaches how hetero-
geneous software artifacts can be integrated and prepared for multiperspective change impact
analysis. Based on our findings we then introduce our integration approach in Section 5.2. We
perform a final critical review of our approach and outline further extensions in Section 5.3.

5.1. Comparing Integration Techniques

In order to be able to apply the same impact analysis approach independent of the artifacts to
be analyzed, appropriate means are required to bridge the gap between the different types of
artifacts. The analysis of related work in Section 3.2 brought up the idea of mapping the hetero-
geneous artifacts on a common model to enable a unified treatment of them. In the following,
we review and compare two possible options that are currently proposed in related work to ac-
complish this mapping. Afterwards, we introduce our mapping approach which is based on the
outcome of this comparison under consideration of our goals and our previous works.

5.1.1. Mega-Models and Model Weaving

An approach that has attracted quite some attention in the model-driven engineering (MDE)
community is the concept of mega-models. Current software development practice has to deal
with software artifacts that are instances of a variety of meta-models, such as the UML meta-
model or certain requirements definition languages, such as URN [ITU08] or ReqIF [OMG11]
for instance. Instead of dealing with this variety of different meta-models, the concept of mega-
models proposes to merge them into one unified mega-model using the concepts of model
weaving and model transformations [BJV04, FN05, RKRS05, SNG10]. After joining the meta-
models, their dependencies can be modeled explicitly and integrated into the mega-model as
well [SNG10]. Figure 5.1 illustrates an exemplary mega-model.

The main advantage of this approach results from the usage of only one model that encompasses
all the required artifacts along with their dependencies. This direct integration of dependencies

43

5. Comprehensive Artifact Integration

and their treatment as first-class citizens next to the actual models embraces the utilization of
the dependencies for tasks such as impact analysis or model comprehension.

Mega-Model

Meta-model B Meta-model A Meta-model C

ModelElement
A1

ModelElement
A2

ModelElement
A3

ModelElement
B1

ModelElement
B2

ModelElement
C1

Figure 5.1.: The mega-model approach. Thick arrows indicate cross-model dependencies

On the other hand, a mega-model requires sophisticated tool support to be of use in practice.
However, various different tools are being used to create and maintain the different types of
artifacts, whereas adapting all the involved tools is either impossible or simply not feasible in
practice. Furthermore, such a combined mega-model is also prone to changes, as it has to be
adapted to changes of the meta-models that were weaved into it. Since modeling languages,
such as UML or BPMN, and programming languages, such as Java or C++, constantly evolve,
their integration into a mega-model could result in increased effort when maintaining the model.

The strengths and weaknesses of such approaches are summarized by Table 5.1.

Strengths Weaknesses
(+) Everything in one model (-) Lack of tool support
(+) Dependencies explicitly integrated (-) Maintenance of model

(-) Complexity of model

Table 5.1.: Summary of the mega-model approach

5.1.2. Combining Modeling Frameworks and Model Repositories

Instead of merging all artifacts into one comprehensive model, the software artifacts can also
be mapped on a common low-level model which allows to represent all artifacts in a homoge-
nous way [YCDW09] (see also the discussions in sections 3.2.1 and 3.2.2). Once mapped on
such a common representation, the different software artifacts can be accessed and analyzed
by the same impact analysis approach. The required common low-level model can be supplied
by modeling frameworks that provide a generic graph-based meta-model, such as the Eclipse
Modeling Framework (EMF) [EMFa] for example. Since most software artifacts adhere to a
hierarchical, graph-based structure [DST11,LFR12], such as UML diagrams or the AST of any
programming language, they can easily be mapped on a graph-based meta-model.

The utilization of such an approach requires means to map the heterogeneous artifacts on the
common model, such as model transformation languages like XSLT [W3C07] or ATL [ATL] for
instance. Hence, this mapping causes an initial manual effort as convenient transformation rules

44

5. Comprehensive Artifact Integration

Transformation & Import

Tool 1

Tool 3

Tool 2

Tool 4

Shared
Repository

Common
Meta-Model
MOF Layer 3

 Meta-Model D
MOF Layer 2

Meta-Model B
MOF Layer 2

Meta-Model A
MOF Layer 2

Meta-Model C
MOF Layer 2

Transformation & Import

Model A

Model B Model D

Model C

Figure 5.2.: The joint model repository approach. Arrows indicate the transformation and im-
port of software artifacts into the repository

must be supplied. Additionally, a central model repository is required to store the transformed
artifacts as they can no longer be maintained in their original tools. However, they can now
be accessed and queried through the same means, such as model query languages like EMF
Query [EMFb] for example. Furthermore, all the change impact analysis infrastructure can be
integrated into the repository as well. Figure 5.2 visualizes this concept.

The major disadvantage of this approach is that it requires effort for synchronizing the models
inside the repository with the original artifacts stored in other tools. However, most tools offer
APIs or services for recording and exchanging change events which can be forwarded to the
model repository to update the transformed artifacts. On the other hand, this approach allows
to reuse existing IDEs, CASE tools, etc. as they are still used for editing the artifacts.

The strengths and weaknesses of such approaches are summarized by Table 5.2.

Strengths Weaknesses
(+) Simple integration of new artifacts (-) Requires additional repository
(+) Impact logic in one place (-) Requires re-synchronization with tools
(+) Changes in tools only affect transfor-
mations

(-) Requires transformation of artifacts

(+) Meta-model changes only affect trans-
formations

(-) Transformations require manual effort

Table 5.2.: Summary of combining modeling frameworks and model repositories

5.2. Integration Approach

Based on the findings of the previous section, we extend our existing works on the integra-
tion of different modeling languages through a unifying modeling framework. The approach
was originally developed for interconnecting UML, URN, and OWL models using the Eclipse
Modeling Framework (EMF) [EMFa] and a centralized repository for storing the transformed
artifacts [Leh10, BLR11, RBFL11]. During the course of this thesis’ research, the approach
was extended to encompass Java source code and JUnit test cases [LFR12, LFR13], as well as
BPMN models [FLR14]. The overall approach works as follows. In a first step, the software

45

5. Comprehensive Artifact Integration

artifacts maintained by different tools are transformed into an EMF-based representation. This
mapping is supplied by model transformations that are realized by different means, dependent
on the artifacts to be transformed. Secondly, all the transformed software artifacts are then im-
ported into a central model repository that utilizes the common EMF meta-model for managing
the various types of software artifacts. This mapping and transformation of software artifacts
into EMF-based models is explained in Section 5.2.1, while Section 5.2.2 explains the concept
and usage of a central model repository. Moreover, Figure 5.3 summarizes our entire concept.

We prefer this approach over the concept of mega-models and model weaving as the lack of tool
support is an important limitation which cannot be neglected due to its influence on the appli-
cability of the approach. Furthermore, we circumvent the problem of updating the inter-weaved
meta-models. In the case of meta-model changes, our approach only requires the adaptation
of its transformation rules. This, however, also applies to the mega-model approach where the
transformations must be adjusted likewise, hence causing greater effort. However, we like to
point out that the impact analysis concept presented in this thesis is not hard-wired to one of the
concepts discussed in the previous sections. It can be build on any of the presented integration
techniques, whereas the decision for a certain integration technique might be influenced by the
amount and types of artifacts to be interconnected, the available budget and developers, etc.

Eclipse Modeling Framework (EMF)

Model

Repository

Transformation

into EMF-Models

Heterogeneous

Software Artifacts

EMF-Models

Import into

 model repository

EMF-Models

CASE Tools &

IDEs

Figure 5.3.: Overview of our artifact integration approach

5.2.1. Transformation into EMF-models

Mapping the heterogeneous software artifacts on a common meta-model demands for their
transformation into a graph-based representation. In [LFR12] we already outlined that the dif-
ferent types of software artifacts can be mapped on a graph-based representation G = (V,E),
where software artifacts, such as the UML components or Java classes, are inserted as nodes
(V) and dependencies between them, such as inheritance-relations, are inserted as edges (E).
In our approach, this graph-based meta-model is supplied by the Eclipse Modeling Framework
(EMF) [EMFa] that provides the Ecore meta-model. The Ecore meta-model is the core compo-
nent of the framework and offers the EClass-object to model arbitrary types of entities, while
relations between those entities can be modeled using the EReference-class. The entire Ecore
meta-model and all its constituents are displayed by Figure 5.4 which is taken from the project’s
API documentation1. Since the Ecore meta-model adheres to the MOF specification [OMG14],

1http://download.eclipse.org/modeling/emf/emf/javadoc/2.8.0/org/eclipse/emf/ecore/package-summary.html

46

5. Comprehensive Artifact Integration

all Ecore-models are by definition hierarchical graphs. Consequently, the mapping between
Ecore model elements and the nodes and edges of a graph is realized as follows [LFR12]:

• Nodes (V): EPackage, ECLass, EDataType, EEnum, EAnnotation, EOperation, EParam-
eter, EAttribute, EEnumLiteral.

• Edges (E): EReference, EInheritance, EAnnotationLink.

By using EMF it is therefore possible to recreate the meta-models of all the artifacts to be in-
tegrated based on EClass-objects and the other constituents of the Ecore-model. Hence, EMF
allows to express all types of artifacts with only one underlying meta-model. By default, EMF-
based meta-models for many modeling languages are already provided by the Eclipse Modeling
Tools project [EMP], such as EMF-based UML and BPMN meta-models for example. Addi-
tionally, an EMF-based meta-model of the Java language specification was made available by
the MoDisco project [Mod], which can be reused for our purposes. In regard to Goal 2 this
allows us to cover architectural models (UML), source code (Java), and test cases (JUnit).

Figure 5.4.: The constituents of the Ecore meta-model

The conversion of the original artifacts into EMF-based models is accomplished by graph trans-
formations using a specific set of transformation rules for each of the addressed modeling lan-
guages. These transformation rules are realized by XSLT-templates that were created in one
of our previous works [Leh10]. They were published under the Eclipse Public License [EPL]
and are available for download on our project website [EMF14]. Additional XSLT-templates
for mapping URN and OWL models to EMF-models are also available; yet, these modeling
languages are out of the scope of this thesis’ research.

Further mapping support for transforming Java source code into EMF-models is supplied by the
MoDisco [Mod] tool environment, which is able to transform entire Java-projects into EMF-
models. For the details of this mapping process, we refer to the documentation of the MoDisco
tool suite [Mod].

47

5. Comprehensive Artifact Integration

5.2.2. Integration into an EMF-based Model-Repository

The EMF-models resulting from the model transformations require a centralized storage from
where they can be accessed by the later impact analysis as they can no longer be maintained by
their original tools. Consequently, our approach demands for an EMF-based model repository
that complements the integration of the heterogeneous software artifacts. Once the artifacts are
converted into EMF-models they are imported into the repository, which then stores an EMF-
based copy of them. Finally, with all the different artifacts in place, it is possible to study the
propagation of changes and their impacts on the heterogeneous software artifacts.

The selection of a suitable repository was comprised of two steps: searching for available tools
and comparing them based on well-defined criteria derived from our research goals. The criteria
that were used for evaluating the repositories discovered by our search were as follows [Leh10]:

• REQ1: Maturity - how mature is the tool to apply it in an academic environment?

• REQ2: Provided Features - which features are already provided by the tool?

• REQ3: Documentation - how well is the tool documented? Are tutorials and demos
supplied to guide further extensions?

• REQ4: Extensibility - is it possible to extend the tool with custom features and how
much effort is required to accomplish these extensions?

The initial search returned ten different repositories out of which three were examined in detail:
EMFStore [EMFc], CDO [CDO], and the Eclipse Model Repository [Ecl10]. As a result of
this analysis, the EMFStore repository was chosen due to its well-documented features, contin-
uous developer support, good extensibility, and ongoing development [Leh10]. Further details
regarding the repository are presented along with our prototype case tool in Chapter 9.

5.3. Critical Discussion and Limitations

Our approach of mapping the heterogeneous software artifacts on a common meta-model and
importing them into a model repository gives rise to several issues which we are going to discuss
in the following.

The chosen approach of transforming the heterogeneous software artifacts into EMF-models
introduces a certain overhead to the change impact analysis processes, and results in the need
for a unifying model repository for storing the transformed artifacts. However, if no unified
representation of the artifacts is employed, the change impact mechanisms to be developed must
be specifically tailored for each type of software artifact. In contrast, a unified representation
demands for only one change impact analysis approach and thus requires less overall effort.

The most obvious limitation of our approach is that the repository stores duplicates of the arti-
facts that are not updated when developers modify the original artifacts in their original tools.
As a consequence of this, the model repository approach requires additional and potentially
manual effort for synchronizing its data with the tools that are used for creating and maintain-
ing the original software artifacts. A possible solution could be to connect those tools with
the repository using special adapters or plug-ins which could then forward change events and
updates between the repository and the tools as illustrated by Figure 5.5. With the help of this

48

5. Comprehensive Artifact Integration

extension, the impact logic could still remain as a centralized component in the repository, while
it would involve less (manual) effort for synchronizing the artifacts after changes were applied
on them.

Transformation / Change Events

Tool
Adapter

Tool
Adapter

Tool
Adapter

Tool
Adapter

Shared

Repository

Transformation / Change Events

Figure 5.5.: Enhancing the repository approach with adapters forwarding change events

Another limitation of our approach is the effort that is required for updating the model transfor-
mations in the case of meta-model changes, e.g. when a language specification is updated to a
new revision. A similar but yet more frequent problem arises when CASE tool vendors update
the internal meta-models of their CASE tools, which in turn may alters their output. For ex-
ample, almost every UML modeling tool has its own specifics that are not necessarily reflected
by the OMG standard for UML and hence must be considered by the model transformations.
Unfortunately, this problem cannot be addressed in an academic way and will always remain a
challenge for any formal approach relying on the concepts of model transformation and model
integration.

5.4. Summary

In this chapter we addressed the problem of integrating heterogeneous types of software artifacts
for multiperspective change impact analysis. We proposed an approach to map the software ar-
tifacts under consideration on a common meta-model provided by the Eclipse Modeling Frame-
work to accomplish Goal 6 and to contribute towards Goal 2. We explained how the software
artifacts are mapped to EMF-models and how they are integrated into a unifying EMF-based
model repository that later on serves as the starting point for the impact analysis approach pro-
posed in this thesis. Moreover, we also discussed the shortcomings of our approach resulting
from the usage of duplicated data stored in the external repository, and explained a potential
solution to mitigate its impact on the applicability of the overall approach.

49

6. Dependency Detection

After integrating the different types of software artifacts in a model repository using a com-
mon meta-model, their dependencies must be elicited and explicitly recorded to enable a later
change impact analysis. However, current research on dependency detection does not provide
such a concept that sufficiently meets these demands. The following sections therefore intro-
duce a comprehensive approach for multiperspective dependency detection. We explain how
inter- and intra-artifact dependencies can be recorded to accomplish Goal 8, and how the chal-
lenges outlined in Section 1.3 are addressed. Furthermore, a taxonomy of dependency types is
introduced that allows for the correct classification of dependencies and thus addresses Goal 7
and further prepares the ground for the proposed impact analysis approach. First, however, we
introduce our concept and data structure for storing dependency relations as traceability links.

The presented approach is build on our works on rule-based dependency detection for differ-
ent modeling languages [Leh10, BLR11, RBFL11, FLR14]. New aspects contributed by this
thesis are a) the thorough analysis of the different sources of dependencies, b) the analysis of
the properties of software artifacts that can be utilized for dependency retrieval, c) our novel
approach for the classification of dependencies, d) a systematic approach for the definition of
dependency detection rules which, up until now, is only accomplished in an ad-hoc manner by
existing work, and e) an evaluation of our approach by three additional case studies.

This chapter is organized as follows. To begin with, we provide definitions for the terms “de-
pendency” and “dependency relation”. Subsequently, Section 6.2 introduces our traceability
meta-model that allows for modeling dependency relations as traceability links. Section 6.3
explains our taxonomy of dependency types and provides assistance for classifying dependency
relations between software artifacts. In Section 6.4 we introduce our approach for dependency
detection that is build upon our traceability meta-model and our dependency type taxonomy. We
evaluate and compare our approach against other dependency detection approaches in Section
6.5 and finally discuss its critical points in Section 6.6.

6.1. Defintion of Dependencies

Unfortunately, software engineering literature does not provide a standard definition of the term
“dependency”. Therefore, we provide the following definition for the context of our work:

Dependency: An element A is dependent on an element B if a change in A affects
B or vice versa.

We are further defining the term ”dependency relation” as follows:

Dependency Relation: A dependency relation expresses a dependency and is de-
fined as a 3-tuple consisting of a source element, a target element, and a type that

51

6. Dependency Detection

characterizes the dependency.

The type of a relation further provides semantics to the relation according to its purpose, which
we are discussing in the next sections.

6.2. Modeling of Dependencies

Our first requirement for the utilization of dependencies for change impact analysis is the
need for expressing arbitrary dependencies. As outlined in Section 3.3.3, traceability links
are a suitable means for recording the dependencies between different software artifacts [III08],
[ARNRSG06]. Hence, we propose an approach to model dependencies as traceability links to
accomplish Goal 7. Although the general structure of traceability links has already been dis-
cussed in Section 3.3.3, we refine it by providing an EMF-based meta-model for traceability
links. An initial version of this meta-model was originally developed in one of our previous
works [Leh10]; however, it has been revised and simplified due to ongoing research and expe-
riences gained from several case studies. Figure 6.1 illustrates our traceability meta-model.

refinement

0..*

0..*

 traces

links

 0..*
 types

 type

 1

2..* traceabilityLinks

TraceElement

- name
- createdByUser

Trace

TraceLink

- description
- createdByRule
- lastModified
- lastVisited

LinkType

- name

LinkTypeCatalog

- name LinkContainer

- name
- description

<<external>>
EObject

1 0..*
 target

1 0..*
 source

0..*

Figure 6.1.: Traceability meta-model. Improved and simplified version of [Leh10]

For the concepts presented in this thesis, the classes TraceLink and LinkType are of importance.
The class TraceLink represents an actual traceability link, while the class LinkType represents
the type of the dependency relation that is modeled. The actual source and target of a depen-
dency are encoded as references to EObjects, as any software artifact is mapped upon this base
class of the EMF meta-model (see Section 5.2.1). Due to usability reasons, LinkTypes can be
nested and are stored in a LinkTypeCatalog. The resulting type hierarchy corresponds to the de-
pendency type taxonomy which will be introduced in Section 6.3. The class Trace is part of our
previous work on traceability detection and utilization [Leh10, BLR11]. A trace encompasses
a set of transitively related traceability links, i.e. links that share common source or target ele-
ments. The class LinkContainer serves as a container element for traceability links and traces,
and assists with organizing the workspace of our prototype tool (see Chapter 9).

In contrast to the traceability models proposed by Drivalos et al. [DKPF09] and Jaber et al.
[JSL13], our model is much simpler in terms of neglecting any process related information. In
regard to our goals we need to be able to link arbitrary types of software artifacts and to provide

52

6. Dependency Detection

the information required for the later impact analysis (i.e. the dependencies and their types).
Therefore, our model suffices. Moreover, when compared to the traceability model of Schwarz
et al. [SEW09], our meta-model involves less effort when integrating new types of software
artifacts because their model requires the traceable elements to be explicitly integrated into the
meta-model. In contrast, in our approach every type of artifact can be linked without further
changes to the traceability meta-model since all artifacts are mapped upon EMF-models.

6.3. Classification of Dependencies

Our next step towards the utilization of dependency relations for impact analysis is to classify
the relations according to their type in order to facilitate the comprehension of their purposes.
Therefore, this section introduces our classification of dependency types to accomplish Goal 7.
The presented classification is based on the purposes of dependency relations that are discussed
in the next section and the existing dependency classifications as discussed in Section 3.3.2.

6.3.1. Purposes of Dependencies

Each dependency relation is defined by its purpose or rationale that characterizes the relation
and determines its effects on the propagation of changes [LFR13,FLR14]. We identified a whole
set of different types of dependency relations where each is reflecting a different purpose. From
these dependencies we distill a set of abstract dependency types that express the basic purposes
of dependencies. For example, there are structural relations between the sub-components of
a system and the system as a whole, such as aggregations or compositions. We identified a
set of nine general purposes of dependency relations which were obtained from existing im-
pact analysis approaches, existing dependency classifications (see Section 3.3.2), and our own
observations and experiences gained through industrial projects and research case studies.

• Purpose 1: Describe the structure of software artifacts. The static structure or the dy-
namic allocation of software artifacts is one important aspect for impact analysis, e.g. the
composition of components through sub-components.

• Purpose 2: Describe the behavior of software artifacts. The data flow within a system or
the services provided by a component are useful sources for impact analysis, e.g. record-
ing the execution traces of methods or functions.

• Purpose 3: Describe the evolution of software artifacts. Co-evolution patterns identified
by repository mining approaches can indicate important dependencies between software
artifacts.

• Purpose 4: Describe conditions and constraints which exist between software artifacts,
e.g. the compliance of a requirement as precondition for another requirement [CSL+01].

• Purpose 5: Describe similarities between software artifacts which are caused by either
textual or conceptual overlappings between software artifacts. For example, overlappings
between documentation and source code [ACC+02].

• Purpose 6: Describe abstraction levels between software artifacts. Different views and
artifacts often describe a software system on different levels of abstraction. For example,

53

6. Dependency Detection

there are high-level system goals and derived fine-grained requirements [SZ05].

• Purpose 7: Describe how software artifacts realize other software artifacts, e.g. how
requirements are implemented through software architectures [SA03].

• Purpose 8: Describe how one software artifact defines another software artifact, e.g. how
requirements are defined by design processes [RJ01].

• Purpose 9: Describe cause-effect relations between software artifacts, e.g. how a change
in one software artifact can affect others [RJ01].

It might, however, be possible that there are additional purposes of dependency relations that
our classification is not yet able to grasp and that other authors may propose an entirely differ-
ent classification. However, our classification covers the basic purposes of dependencies that
encompass the majority of the dependency relations under study and is thus sufficient.

6.3.2. A Taxonomy of Dependencies

This section introduces our classification scheme for dependency types that is based on the
hypothesis that dependency types can be distinguished by their purpose. Thus, grouping de-
pendency types with a similar purpose helps in formulating precise clusters of dependency
types. To enhance the comprehension, a hierarchical arrangement of the dependency clusters
is employed, where each level refines its predecessor by further specializing the purposes of
the dependency relations it contains. In doing so, we provide a scheme for classifying depen-
dency relations in a step-wise manner. Our taxonomy is comprised of four abstraction levels
that provide a refinement of the dependencies according to their purpose. Figure 6.2 illustrates
our taxonomy and its four levels of granularity that are discussed in detail in the remainder of
this section.

• Level-0: The general dependency as located on Level-0 of our hierarchy represents the
abstract concept of software dependencies. Such dependency relations do not carry a
further meaning except that the two related software artifacts are dependent on each other.
Level-0 dependencies are therefore detectable by any approach for dependency analysis,
such as program slicers [Tip94] or call graph extractors.

Some impact analysis approaches even do not go beyond analyzing Level-0 dependencies,
such as the approaches of Bohner [Boh02a] or Hassaine et al. [HBG+11] for instance, as
the types and purposes of dependencies are of no relevance to them.

When manually analyzing a software system for dependencies, developers may come to
the conclusion that two software artifacts are dependent on each other. However, they
might not yet be able to correctly say why or how as the exact type of the relation is not
yet clear to them. Hence, they can label it as an abstract Level-0 dependency and later
refine it once their knowledge of the system and its constituents has increased.

• Level-1: By introducing the notion of purpose to the abstract dependencies, Level-1 de-
pendency clusters adhere to the nine different purposes of dependencies as identified in
Section 6.3.1. In contrast to Level-0 dependencies, Level-1 allows for a more fine-grained
selection of dependencies for certain types of impact analysis approaches. When per-
forming history-based impact analysis for example, only Evolutionary dependencies are
of interest (see Section 2.3.2).

54

6. Dependency Detection

Dependency

Realization

Definition

Similarity

Evolutionary

Conditional

Refinement

Generalization

Composition

Distribution

Creation

Utilization

Examination

Compliance

Conflict

Contribution

Refines

Is-A

Is-Based-On

Extends

Contains

Is-Part-Of

Aggregates-To

Allocates-To

Distributes-To

Realizes

Implements

Is-Instance-Of

Is-Type-Of

Defines

Creates

Deletes

Transforms

Tests

Simulates

Verifies

Validates

Asserts

Uses

Calls

Activates

Deactivates

Notifies

Imports

Modifies

Overlaps-With

Is-Similar-To

Is-Equivalent-To

Evolves-To

Replaces

Conforms-With

Is-Compatible-To

Constraints

Requires

Satisfies

Conflicts-With

Resolves

Is-Inconsistent-To

Provides

Supports

Contributes-To

Temporal

Is-Before

Is-After

Is-Parallel-To

Level-3 Level-2 Level-1 Level-0

Abstraction

Causation

Is-Caused-By

Triggers

Affects

Structure

Behavior

Figure 6.2.: Our taxonomy of dependency types

55

6. Dependency Detection

Furthermore, some impact analysis approaches are only capable of utilizing certain Level-
1 dependencies and their corresponding concrete types as situated on Level-3. For exam-
ple, information retrieval approaches are only able to process Similarity relations between
software artifacts that are based on similar names or identifiers of software artifacts (see
Section 2.3.3). Moreover, some Level-1 clusters, such as Similarity dependencies for in-
stance, cannot be further refined and directly link to concrete Level-3 dependency types.

In regard to a potential, manual dependency analysis the dependency clusters of Level-1
allow for abstract dependencies to be refined according to their general purpose. This
allows developers to actually comprehend the rationale of the dependencies.

• Level-2: The dependency clusters provided by the 3rd level of our taxonomy allow for a
more precise classification of dependencies and further refine the notion of abstract pur-
poses as introduced by Level-1. The Level-1 dependency clusters are refined as follows.

The Abstraction cluster is sub-divided into the Refinement cluster expressing how soft-
ware artifacts refine others to a more concrete form and into the Generalization cluster
to express how software artifact extend the capabilities of others. Structural relations
are refined to Composition relations to model dependencies between the constituents of
a system and into Distribution relations to model allocations between different types of
artifacts. The Conditional cluster is sub-divided into Temporal relations that express the
order in which artifacts must be executed, Contribution relations that reflect how soft-
ware artifacts contribute towards others (e.g. in a GRL goal graph), Conflict relations that
model conflicts (e.g. conflicting requirements), and Compliance relations that model con-
straints and conditions between software artifacts. The Behavior dependencies are further
refined into dependencies that express how artifacts utilize other software artifacts, how
artifacts create or destroy other artifacts, and how artifacts are used to examine others.

Refining a dependency to a Level-2 dependency already allows for a detailed assessment
of how this relation propagates the effects of changes to dependent artifacts. For example,
refining the Abstraction cluster into the Refinement and Generalization clusters allows
to separate changes applied on the “fine-grained artifact” from changes applied on the
“coarse-grained artifact”, as changes applied on the latter propagate to all of the more fine-
grained artifacts but not necessarily vice versa. Our Level-2 clusters therefore provide
developers with further means for a more precise classification of Level-1 dependencies.

• Level-3: The fourth and final level of our taxonomy consists of lists of concrete depen-
dency types that constitute Level-1/2 dependency clusters. To better distinguish between
concrete dependency types and dependency type clusters, all concrete dependency types
are named as verbs since they indicate a former or still ongoing developer activity be-
tween the two dependent software artifacts.

Our clusters of concrete dependency types as shown in Figure 6.2 are based on the out-
come of our comprehensive literature review (see Section 3.3.2 and Table 3.1) and our
own findings from various case studies and industrial projects.

However, prior to populating Level-3 dependency clusters with concrete dependencies,
we had to consolidate the available dependency types proposed by related work in order
to merge duplicates, resolve inconsistencies, and to add yet missing types. The process
of revising the dependency types consisted of the following three steps:

56

6. Dependency Detection

1. Merge duplicated and similar dependency types. Many approaches proposed the
usage of similar or even the same types of dependencies, however with different
names, which therefore had to be merged. For example, there are three different
versions of the Refinement dependency that can be found in related work: “refines”
[SA03], “refinement” [MPR07, JZ09, PDK+11], and “refine” [WJSA06].

2. Merge dependency types and their inverse types. There is no conceptual difference
whether “A tests B” or “B is tested by A”. Hence, such dependency types were
merged as well, which helped to further reduce the number of dependency types.

3. Assign the remaining types to our dependency clusters. The collected dependency
types were sorted into one of the nine purpose clusters defined in Section 6.3.1.

Finally, we obtained a list of 51 concrete dependency types as situated on Level-3 of our
taxonomy (see Figure 6.2). In doing so, we were able to reduce the amount of dependency
types by more than 70% when compared to the types listed in Table 3.1, which makes our
taxonomy much more suitable for developers and researchers applying it in practice.

Which of our concrete dependency types are utilized by a certain impact analysis approach
depends on the approach itself. A call graph based approach would analyze “Calls” relations
(Utilization cluster), whereas an approach for analyzing the impacts of changes on source code
packages would, for example, inspect “Imports” relations (also Utilization cluster). Other im-
pact analysis approaches, such as program slicing for example, analyze a multitude of different
dependency types, including Behavioral, Structural, and Conditional relations.

6.4. Rule-based Dependency Detection

After providing suitable means for modeling and classifying dependency relations, we intro-
duce an approach to elicit the actual dependencies in order to utilize them for the proposed
change impact analysis approach and to accomplish Goal 8. The discussion of our approach is
structured as follows. To begin with, in Section 6.4.1 we analyze what properties of software
artifacts can be utilized for dependency detection. Second, in Section 6.4.2 we introduce our
dependency detection approach. Third, in Section 6.4.3 we discuss how dependencies of differ-
ent origin can be detected. Finally, in Section 6.4.4 we discuss our dependency detection rules,
their structure, and define a methodology how dependency detection rules can be defined and
derived for different types of software artifacts to expand the scope of the approach.

6.4.1. Properties for Dependency-Retrieval

Before we introduce our approach for dependency detection we have to analyze what properties
of software artifacts can actually be analyzed to derive potential dependencies.

An initial survey with the same intentions was carried out by Antoniol et al. [ACPT01] which,
however, was only focused on source code artifacts and did not address all of the available
properties of software artifacts. Antoniol et al. consider the names of classes, methods, and
attributes, as well as inheritance and collaboration relations as relevant for detecting dependen-
cies. Furthermore, they combine and prefix the names of methods and attributes with the name

57

6. Dependency Detection

of their class. However, this covers the available properties only in a partial manner.

For our approach, we distinguish between three different categories of properties of software
artifacts that can be utilized when searching for dependencies:

1. Names and identifiers of software artifacts.

2. Structural aspects of software artifacts.

3. Existing relations between or within software artifacts.

The first category of properties is similar to the information considered by Antoniol et al., i.e.
we also examine text-based attributes, such as the names of classes, the names of data types
etc., as they are an important indicator of dependencies [CT99, DP06]. The second category
encompasses all types of structural information that can be used for dependency detection, such
as hierarchical containment relations (e.g. “a class is a part of a package”). The last category
is comprised of explicit relations that already exist in or in-between software artifacts, such as
explicit inheritance relations stemming from the usage of object oriented concepts.

Consequently, our dependency detection approach will investigate all three types of properties
when searching for dependency relations stemming from one of the four sources of dependency
relations as outlined in Section 3.3.1.

6.4.2. Detection Approach

We now present a holistic rule-based approach for detecting and explicitly recording the de-
pendencies of heterogeneous software artifacts. Therefore, our approach takes into account the
different sources of dependencies (see Section 3.3.1) and the different properties of software
artifacts which can be exploited for dependency detection (see previous section).

We utilize a set of dependency detection rules that are able to elicit and record dependency
relations as traceability links using our traceability model as presented in Section 6.2. The
rules are applied on the heterogeneous software artifacts that were converted into unified EMF-
models and later on stored in the model repository (see previous chapter). Once applied on
a set of EMF-models, the rules query and compare their attributes and existing relations to
determine potential dependencies. They are also capable of traversing the graph-like structure
of the software artifacts in order to assess existing structural relations. Consequently, they are
able to address all of the potential properties of software artifacts as discussed in Section 6.4.1.
Moreover, as the rules are pre-defined to address specific dependencies, they are able to capture
the semantics of potential dependency relations (i.e. their type and direction).

Therefore, for each potential dependency relation, a detection rule must be established that
is capable of capturing this dependency and to record it as a traceability link. The required
detection rules are implemented by a query language which is able to analyze the artifacts that
were converted into EMF-based models as described in the previous chapter. Each rule encodes
a set of conditions that must be fulfilled by the software artifacts in order to detect and record
a dependency relation between them. Furthermore, each rule contains information that are
required for determining the types and directions of potential dependency relations. The latter
only applies if a relation is directed, such as inheritance-relations between classes and their
superclasses for instance. In contrast, typical examples for undirected dependency relations are
equivalence-relations between UML design classes and their corresponding Java code classes.

58

6. Dependency Detection

In summary, our approach for rule-based dependency detection consists of the following four
steps which are also illustrated by Figure 6.3:

1. Manual identification of potential dependency relations by studying the meta-models of
software artifacts, development paradigms, development methodologies, views, etc.

2. Understanding the potential dependencies by determining why, when, and where they
exist. Furthermore, their type has to be classified according to their purpose.

3. Definition of dependency detection rules based on the information obtained in the previ-
ous steps. The rules encode the conditions to detect the dependencies and conditions to
determine their type and direction.

4. Application of the established dependency detection rules on a set of software artifacts to
elicit their dependencies and to explicitly record them as traceability links.

Manual analysis for

potential dependencies

Meta-Models Views Development
Paradigms

Development
Methodologies

Potential
Dependencies

Dependency Comprehension

Potential
Dependencies

Extraction of conditions under which
dependencies occur

Classification of dependencies
according to their purpose

Classified
Dependencies

Detection
Conditions

Creation of
 dependency

 detection rules

Classified
Dependencies

Detection
Conditions

Detection
Rules

Rule-based dependency detection

Detection
Rules

Software
Artifacts

Explicit Dependency
Relations

Figure 6.3.: Overview of our dependency detection approach

In stark contrast to the ability of our approach to analyze all the properties of software artifacts
and all the sources of dependencies, existing dependency detection approaches as discussed
in Section 3.3.4 are much more restricted in this regard. IR-based approaches, for example,
cannot analyze the structure of software artifacts nor existing relations between them as they
are limited to the analysis of textual information. Likewise, most approaches are not able to
take into account all the different origins of dependencies. For example, IR-based approaches
are not able to detect dependencies encoded in the meta-models of software artifacts, such as
simple inheritance-relations as defined in the Java or UML meta-models.

On the other hand, our approach requires a set of rules to be available before any automated
dependency detection can be conducted. Hence, our rule-based approach requires an initial
manual effort for creating the dependency detection rules. We have to manually analyze meta-
models, programming language specifications, development methodologies etc. to identify po-
tential dependencies and establish a set of detection rules which are then used for detecting these
dependencies in real software development projects. However, the upcoming section presents a
scheme to guide the manual dependency detection, which in turn reduces the required effort.

59

6. Dependency Detection

Our approach’s most important advantage, however, is its ability to determine the types of the
dependency relations due to the preceding manual analysis of the software artifacts and their
underlying concepts. This in turn is important for any change impact analysis effort since the
type of a dependency relation assists with determining further change propagation [LFR13].
In contrast, IR-based and MSR-based approaches are not able to distinguish between different
types of dependencies, which limits their applicability for dependency-based impact analysis.

Additional benefits of our approach are the increased precision and recall when detecting de-
pendencies. We conducted five case studies on rule-based dependency detection and achieved
an average precision and recall of 85%, which is well above results achieved with IR-based or
MSR-based approaches (see the upcoming discussions in Section 6.5). Moreover, while the
initial effort for creating the dependency detection rules accounts only once, the higher ratios of
false-positives as detected by IR-based and MSR-based approaches result in frequent effort for
developers when examining the proposed dependencies.

Thus, with our approach we seek to combine knowledge of meta-models, development para-
digms, and development methodologies with the ability for automation. We transform this
knowledge into rules that afterwards can automatically be applied for multiperspective depen-
dency detection. With this approach we reduce the required manual effort to an initial phase of
rule-creation, whereas the resulting rules can be reused throughout different projects.

6.4.3. Identification of Potential Dependencies

In the following sections we elaborate on the initial manual detection of different types of
dependencies as a precondition for defining the required dependency detection rules. We focus
on the specific properties of each source of dependencies and illustrate how they influence the
dependency detection. However, we cannot discuss each of the potential dependencies in detail,
therefore we present typical examples instead. Additionally, we analyze how the challenges
discussed in Section 1.3 influence multiperspective dependency detection and how our approach
copes with them. Finally, we also analyze how existing dependency detection approaches cope
with those challenges and how they cope with the different types and sources of dependencies
in comparison to our approach.

6.4.3.1. Meta-model Dependencies

The set of meta-model dependencies this thesis is dealing with encompass the UML meta-
model, the Java language specification, and the JUnit specification. In general, the UML and
Java meta-models share many commonalities regarding classes, interfaces, methods, attributes,
etc. which simplifies the detection of dependencies among them. In both specifications, classes
and interfaces have the same dependencies towards attributes and methods, such as that classes
and interfaces define methods, while methods return instances of classes for example.

Consequently, such dependencies can be identified by studying the respective meta-models,
which requires an initial manual effort. However, once identified, those dependencies can be
made explicit for every software project using the same set of rules. Meta-model dependencies
encompass all types of relations as identified in Section 6.3.1, except for similarity and cause-
effect dependencies. An excerpt of those dependencies is presented by Table 6.1.

60

6. Dependency Detection

Source Type Target
Component Requires Interface
Component Provides Port
Class Defines Method
Method Defines Parameter
Method Calls Method
Attribute Is-Instance-Of Class
Parameter Is-Type-Of Data Type

Table 6.1.: An excerpt of meta-model dependencies

For example, one of the most common meta-model dependencies is the call-relation between
two methods, which is utilized by call graph based change impact analysis approaches (see
Section 2.3.1.3). In the following, we present and discuss the three steps that are required to
elicit such dependencies and demonstrate the required conditions as pseudo code in Listing 6.1
(for an explanation of the utilized query statements see Table 6.5 in Section 6.4.4.2). First, one
has to determine the method being called by a (Java) code statement. Secondly, the method
containing this code statement must be determined by traversing the structure of the program
AST. Finally, the resulting call-relation between the method containing the calling statement
(caller) and the called method (callee) can be established.

IF
ModelRela tedTo (c o d e s t a t e m e n t , ’ C a l l s ’ , method1) AND
ModelParen tOf (method2 , c o d e s t a t e m e n t)

THEN
C r e a t e R e l a t i o n (method2 , ’ C a l l s ’ , method1)

Listing 6.1: Conditions for detecting call relations

In the following paragraphs we discuss the influence of the challenges outlined in Section 1.3
on the detection of meta-model dependencies.

Degree of Formalization: The degree of formalization does not influence the detection of meta-
model dependencies because each meta-model defines the degree of formalization of its in-
stances beforehand. If an artifact does not adhere to any meta-model or language specification,
such as free text for instance, no meta-model dependencies can be detected as there are simply
none present. Moreover, if an artifact violates its underlying meta-model, further errors are
likely to occur, such as compilation errors (code) or validation errors (models).

Level of Abstraction/Completeness: An artifact’s abstraction level determines which of the po-
tential meta-model dependencies are present in the artifact and thus potentially detectable. For
example, consider a detailed component diagram that contains various meta-model dependen-
cies between the depicted components, interfaces, and ports, such as “component A provides
interface B”. In contrast, another component diagram displaying the same context on a higher
level of abstraction (e.g. system components only) might neglect all the fine-grained details,
such as internal components and interfaces, and hence contains less meta-model dependencies.

Inconsistencies: Inconsistencies affecting the detection of meta-model dependencies are usually
related to inconsistencies between two or more software artifacts, which results in a loss of
meta-model dependencies between them. For example, if no class, use case actor or component

61

6. Dependency Detection

matches with a lifeline of a process or sequence diagram, no Is-Instance-Of -relations are present
and thus detectable. On the other hand, these cross-artifact inconsistencies do not interfere with
the dependencies that are contained within a certain software artifact. For example, even if
a UML class and its corresponding Java class are inconsistent to each other, the meta-model
dependencies within each class are still present and hence detectable by the corresponding rules.

Finally, we analyze how IR and MSR-based approaches deal with meta-model dependencies un-
der consideration of those three challenges and how they compare to our rule-based approach.
IR-based approaches typically cannot detect meta-model dependencies as there is often no tex-
tual similarity between the artifacts, e.g. between methods and classes or between class at-
tributes and data types. Likewise, MSR-based approaches are hardly able to detect meta-model
dependencies as they are typically contained within a single file. For example, dependencies
between a class and its methods are contained within the same Java-file, hence there are no co-
changes to be detected if the co-change analysis is conducted on the granularity level of files,
which, however, is most typical. A more fine-grained analysis could only be accomplished by
analyzing the co-change behavior of entities such as methods and attributes. This, however, is
a very costly operation as the entire version history of a repository has to be searched at this
fine-grained level. To the best of our knowledge, no such approach has yet been considered
in current research (see Section 2.3.2 and Section 3.3.4.2). Furthermore, both MSR-based and
IR-based approaches are not able to distinguish between the different types of dependencies.
However, both approaches are not affected by varying degrees of formalization or abstraction.
Yet, inconsistencies between software artifacts have the same severe impact as on our approach.

6.4.3.2. Object Oriented Dependencies

Since this thesis deals with software that is developed using object oriented concepts and tech-
nologies, we have to discuss the dependencies that are introduced by applying these concepts.
The most important object oriented dependency relation is the inheritance relation between
classes as one of the key features of object orientation [Mey96]. Other relevant dependencies
encompass the “implementation” of interfaces by classes, as well as the “creation” and “dele-
tion” of objects through constructors and destructors defined by classes.

Source Type Target
Class Extends Class
Interface Extends Interface
Class Implements Interface
Method Implements Method
Method Creates Class
Method Deletes Class

Table 6.2.: An excerpt of object oriented dependencies

Dependencies introduced by the object oriented paradigm require an initial manual analysis
of object oriented concepts in order to establish the required dependency detection rules. An
excerpt of those dependencies is presented by Table 6.2. As a running example we discuss how
implementation dependencies between interface-methods and class-methods can be detected
because if a class implements an interface, the class’ methods are supposed to implement the
methods defined by the interface (see Figure 6.4).

62

6. Dependency Detection

RuleEngine

logger

+ init()
+ executeRules()

<<interface>>
IRuleEngine

+ executeRules()

<<implements>>

Figure 6.4.: implements-dependency between two methods

Hence, there is a dependency between both “types” of methods that requires four steps to be de-
tected. These steps are illustrated by the pseudo code depicted by Listing 6.2 (for an explanation
of the utilized query statements see Table 6.5 in Section 6.4.4.2). First, a set of defines-relations
between a class and its methods must be established. Likewise, the same has to be established
between the interface and its methods. Thirdly, the implements-relation between the class and
the interface must be detected. Finally, the corresponding methods of those interfaces and
classes can be linked based on the equivalence of their names or method signatures.

IF
ModelRela tedTo (c l a s s , ’ D e f i n e s ’ , method1) AND
ModelRela tedTo (i n t e r f a c e , ’ D e f i n e s ’ , method2) AND
ModelRela tedTo (c l a s s , ’ Implements ’ , i n t e r f a c e) AND
ValueEqua l s (method1 : : name , method2 : : name)

THEN
C r e a t e R e l a t i o n (method1 , ’ Implements ’ , method2)

Listing 6.2: Conditions for detecting implementation relations between methods

Furthermore, we have to discuss the influence of the challenges outlined in Section 1.3 on the
detection of object oriented dependencies.

Degree of Formalization: The discussion of the consequences of insufficient formalization can
be omitted for object oriented dependencies, as the concept of object orientation itself defines
a certain level of formalization. Moreover, all types of software artifacts considered by this
thesis (UML, Java, JUnit) adhere to a strict meta-model, hence the lack of formalization has no
influence as already laid out for meta-model dependencies in the previous section.

Level of Abstraction/Completeness: Likewise, the influence of different abstraction levels and
incomplete artifacts on the detection of object oriented dependencies is quite similar. The level
of completeness defines which of the potential dependencies are present in an artifact and hence
can be detected. Therefore, incomplete artifacts result in missing dependencies.

Inconsistencies: Inconsistencies between artifacts of different views are not related to object
oriented dependency relations, as object oriented dependencies are limited to artifacts of a single
view. For example, inheritance relations between classes of the data model are always restricted
to the data view, while inheritance relations between system components are situated on the
structural view and do not interfere with them. However, inconsistencies within artifacts may
occur, such as that an attribute’s type refers to a non-existing class and thus cannot be resolved.

In this final paragraph we analyze how IR and MSR-based approaches deal with object ori-
ented dependencies under consideration of those three challenges and how they compare to our
rule-based approach. To begin with, we have to point out again that both IR and MSR-based

63

6. Dependency Detection

approaches are not able to determine the types of potential object oriented dependencies.

The effectiveness of IR-based approaches directly depends on the similarity of the names, iden-
tifiers, etc. provided by the artifacts to be analyzed. This assumption, however, does not always
hold. This is especially true in regard to implementation and inheritance dependencies, where
the names of the involved software artifacts do often not match. The following code example
represents a cutout of our prototype’s source code (see Chapter 9) which illustrates this problem.

public class RuleApplicationOperation implements IRunnableWithProgress {...};

public interface IRuleEngine extends IProcessingComponent {...};

Listing 6.3: Java code illustrating object oriented dependencies

Since there are no textual similarities in the code-snippet presented in Listing 6.3, IR-methods
fail to detect the inheritance-dependency as well as the implementation-dependency. In contrast,
the required dependency detection rules can be easily written (see Appendix A).

MSR-based approaches are better suited for detecting object oriented dependencies because
most inheritance and implementation relations exist between entities that are usually contained
by different Java source code files. For example, the dependencies given in the code-snippet
above (Listing 6.3) could be detected if the Java files were frequently changed together. On the
other hand, conducting a co-evolution analysis in this scenario is actually impossible since the
IRunnableWithProgress interface is a part of the Java API, while the RuleApplicationOperation
class is a custom class defined in our prototype. Hence, they cannot evolve together in the same
physical repository. Likewise, it is hard to directly couple the evolution of source code with the
evolution of UML diagrams as both usually evolve in separate repositories as well. Moreover,
the detection of object oriented dependencies through MSR-based approaches is limited to the
granularity of class-files when applied for Java source code.

6.4.3.3. Design Methodology Dependencies

In this section we discuss dependencies introduced by design methodologies, how they can be
detected, and how the challenges outlined in Section 1.3 influence their detection. In general,
design methodologies define steps to be followed when creating a software system and means
to accomplish these steps. In this thesis we focus on Object Oriented Analysis (OOA) [CY91,
Boo94] and Object Oriented Design (OOD) [Boo94] as two examples of such methodologies.
Both approaches define a sequence of steps leading from the initial system requirements towards
the final implementation in source code. At the same time they also define the types of artifacts
to be created during each step, such as classes or components, and the services provided by
them. Through this step-wise refinement, these methodologies also introduce dependencies to
the software artifacts that describe different aspects of the resulting design and implementation.

The following presents a brief overview of the steps of Object Oriented Analysis (OOA) as
proposed by Coad and Yourdon [CY91] and shows how and which dependencies are introduced
by applying them.

64

6. Dependency Detection

The initial step “Finding classes and objects” aims to define the classes that constitute a soft-
ware system. The second step “Identifying structures” defines the communication paths be-
tween those classes by introducing dependency relations between them, such as inheritance
relations or aggregations. Hence, this step introduces a set of object oriented dependencies and
meta-model dependencies that can be detected as discussed in Section 6.4.3.2. The third step
“Identifying subjects” defines the system components to which classes are assigned, thereby in-
troducing structural meta-model dependencies when utilizing UML components and UML/Java
classes that can be captured as discussed in Section 6.4.3.1. Once the structure of the system is
laid out, the next step “Defining attributes” assigns attributes to the classes, which again intro-
duces meta-model dependencies, this time however between classes and attributes. Finally, the
last step “Defining services” assigns the required services (methods) to the classes, which also
introduces meta-model dependencies between the classes and methods.

Overall, by analyzing the steps proposed by a methodology it is possible to derive rules to cap-
ture the dependencies that are introduced by the methodology. This manual analysis is therefore
required for each development methodology that is applied in a certain software development
project. An excerpt of the dependencies introduced by OOA/OOD is presented by Table 6.3.

Source Type Target
(Java)-Class Is-Equivalent-To (UML)-Class
(UML)-Class Refines (UML)-Component
(Java)-Package Is-Equivalent-To (UML)-Package
(UML)-Activity Refines (UML)-Use Case
(UML)-ActivityNode Is-Equivalent-To (UML)-Message
(UML)-Activity Realizes (UML)-Use Case

Table 6.3.: An excerpt of design methodology dependencies

A typical example of such a design methodology dependency is the refinement of a use case
by UML activity or sequence diagrams during the “Defining services”-step of OOA. Figure
6.5 presents an example in which a use case diagram is refined by a sequence diagram, where
grey arrows indicate meta-model dependencies and the red arrow indicates the introduced de-
sign methodology dependency. The detection of this dependency involves the following four
steps that are also illustrated as pseudo code by Listing 6.4 (for an explanation of the utilized
query statements see Table 6.5 in Section 6.4.4.2). First, the general equivalence of the se-
quence diagram and the use case diagram has to be detected. Secondly, a contains-dependency
must be established between the use case diagram and the actual use case. Likewise, contains-
dependencies must be established between the sequence diagram and the messages exchanged
between its swimlanes. Finally, the equivalence-relation between the message and the use case
can be established based on similar names and the equivalence of their containing objects.

IF
ModelRela tedTo (use c a s e diagram , ’ I s−E q u i v a l e n t−To ’ , s e q u e n c e d iagram) AND
ModelRela tedTo (use c a s e diagram , ’ C o n t a i n s ’ , use c a s e) AND
ModelRela tedTo (s e q u e n c e diagram , ’ C o n t a i n s ’ , message) AND
ValueEqua l s (use c a s e : : name , message : : name)

THEN
C r e a t e R e l a t i o n (use case , ’ I s−E q u i v a l e n t−To ’ , message)

Listing 6.4: Conditions for detecting dependencies between use cases and sequence diagrams

65

6. Dependency Detection

uc Order Pizza sd Order Pizza
Order System

pay

serve pizza

confirm order

place order

<<contains>>

<<is-equivalent-to>>

<<is-equivalent-to>>

<<contains>

>

place order

serve pizza

confirm
order

Client Delivery

Service

<<is-instance-of>>

:Client :Delivery
Service

Figure 6.5.: Design dependencies between a use case and a sequence diagram (red arrow)

Finally, we discuss how our approach is influenced by the challenges outlined in Section 1.3
and how IR and MSR-based approaches are affected by them during the detection of design
methodology dependencies. Prior to this discussion we like to highlight the fact that, since
design methodologies define the steps to be followed and the means to accomplish these steps,
they also define the level of formalization (i.e. which types of artifacts are created) and the level
of abstraction (i.e. which information are encoded in the artifacts) for each of their steps.

Degree of Formalization: Varying levels of formalization or the absence of any formalization
while applying a design methodology eventually lead to one of the following two scenarios. If
the artifacts that are created within a certain step of a methodology do not adhere to any for-
malization, they cannot be linked to other artifacts of previous or upcoming steps by our rules.
In contrast, IR and MSR approaches are potentially able to do so, if either textual similarities
or evolutionary couplings are present. Secondly, if the artifacts that were created during the
transition from one step to another step adhere a certain but different degree of formalization,
rules can be written to record these dependencies, for example for the transition from use cases
towards the initial system components. Likewise, IR and MSR-based approaches are poten-
tially able to record such dependencies as well. They are, however, not able to determine any
auxiliary information of the dependencies, such as their types for example.

Level of Abstraction/Completeness: As discussed in the previous sections for meta-model de-
pendencies and object oriented dependencies, the level of abstraction determines which of the
potential dependencies are present and thus potentially detectable by rules. Hence, the detection
rules can be adjusted according to the level of abstraction defined by a design methodology, for
example for the transition from high-level component diagrams describing the overall system
architecture to fine-grained component diagrams describing sub-components that represent a
refined excerpt of the former. In contrast, IR and MSR-based approaches are independent of
the level of abstraction, as long as their underlying assumptions are met. Therefore, they are
also able to record such dependencies, however, without being able to gather any additional
information like the types of the dependencies for instance.

Inconsistencies: The influence of cross-artifact inconsistencies on the detection of design-
methodology dependencies is twofold. The first case is characterized by applying a design
or development methodology without executing all of its steps. If certain steps were not exe-
cuted, the transitions between certain views might be missing. Consequently, the cross-view-

66

6. Dependency Detection

dependencies have never been introduced to the system and hence cannot be detected, neither by
rules nor by IR and MSR-based approaches. The second case is characterized by the incorrect
application of a design or development methodology, which leads to inconsistencies between
the views, which in turn results in incorrect or missing dependencies. Thus, our rules cannot
detect the potential dependencies. The same applies to IR-based approaches, as the names of
the involved software artifacts are unlikely to match due to the inconsistencies. MSR-based
approaches on the other hand are able to detect potential evolutionary couplings despite incon-
sistencies, which, however, assumes that the artifacts of the inconsistent views evolved together.

In conclusion, it can be stated that dependency detection rules can be established in a way that
they are able to follow the steps of a design methodology, while MSR and IR-based approaches
cannot be adapted to do so directly. However, IR and MSR-based approaches can help to
establish dependencies if design or development methodologies were not applied correctly but
for the price of losing all auxiliary information, such as dependency types.

6.4.3.4. Multiperspective Dependencies

Finally, we address the detection of multiperspective dependencies and the challenges associ-
ated with them. As stated in Section 4.3.2, in this thesis we consider the structural view, the
behavioral view, the code view, and the test view of software that all describe a specific cutout
of a system and are therefore discussed in the following.

We consider multiperspective dependencies that exist between Java source code entities, JUnit
test cases, and different types of UML models that emerge from the interplay of the above
mentioned views. For example, there are dependencies between Java classes (code view) and
JUnit classes (test view), as well as between Java methods (code view) and JUnit methods (test
view), such as that there should exist a unit test for each class and at least one test-method
for each method. Consequently, these dependencies connect elements of the code view with
elements of the test view. An excerpt of those dependencies is presented by Table 6.4.

Source Type Target
(UML)-Lifeline Is-Instance-Of (UML/Java)-Class
(Java)-CodeStatement Is-Equivalent-To (UML)-ActivityNode
(Java)-CodeStatement Is-Equivalent-To (UML)-Message
(JUnit)-Class Tests (Java)-Class
(JUnit)-Method Tests (Java)-Method

Table 6.4.: An excerpt of multiperspective dependencies

Detecting dependencies between source code statements and behavioral UML diagrams is es-
pecially important as they allow to bridge the gap between high-level design and the actual
implementation in source code. Behavioral UML models, such as sequence diagrams or activ-
ity diagrams, model the behavior of a system on a more abstract level than source code. At
the same time, they are also related to structural UML diagrams, such as component diagrams
for instance, that describe the participants of the dynamic processes. Consequently, they allow
for establishing connections between artifacts of the structural view and artifacts of the more
fine-grained code view.

67

6. Dependency Detection

A typical multiperspective dependency exists between Java method-calls (code-view) and UML
sequence diagrams (behavioral-view), where the method-calls correspond to messages that are
exchanged between the lifelines of a sequence diagram. This example is illustrated by Figure
6.6, where the red arrow indicates the dependency connecting the artifacts of both views. The
detection of such dependency relations requires the execution of the following five steps. First,
a dependency between the UML lifeline and the Java class has to be detected, stating that the
lifeline is an instance of the class. Second, the Java class has to be linked with all the methods
it defines. Likewise, the lifeline must be linked with all the messages contained by it. Once this
is done, the equivalence between the Java method and the UML message has to be detected.
Subsequently, a call-relation between the Java source code statement and the Java method has
to be established. Finally, the equivalence-relation between the Java source code statement and
the UML message can be established. These steps are also illustrated in pseudo code by Listing
6.5 (for an explanation of the utilized query statements see Table 6.5 in Section 6.4.4.2).

IF
ModelRela tedTo (L i f e l i n e , ’ I s−I n s t a n c e−Of ’ , C l a s s D e c l a r a t i o n) AND
ModelRela tedTo (C l a s s D e c l a r a t i o n , ’ D e f i n e s ’ , Method) AND
ModelRela tedTo (L i f e l i n e , ’ C o n t a i n s ’ , Message) AND
ModelRela tedTo (Method , ’ I s−E q u i v a l e n t−To ’ , Message) AND
ModelRela tedTo (J a v a S t a t e m e n t , ’ C a l l s ’ , Method)

THEN
C r e a t e R e l a t i o n (J a v a S t a t e m e n t , ’ I s−E q u i v a l e n t−To ’ , Message)

Listing 6.5: Conditions for detecting equivalences between code statements and sequence charts

<<contains>>

foo

:B

UML Sequence Diagram Java Source Code <<is-instance-of>>

:A

<<is-equivalent-to>>

1 public class A
2 {
3 public void foo(B b)
4 {
5 //…
6 }
7
8
9 public void bar()
10 {
11 B b = new B();
12
13 foo(b);
14 }
15 }

<<defines>>

<<calls>

>

<<contains>>

<<is-equivalent-to>>

Figure 6.6.: Dependencies between the code view and the behavioral view

To conclude this section, we discuss the influence of the challenges outlined in Section 1.3
on the detection of multiperspective dependencies. At the same time, we also analyze how
IR and MSR-based approaches deal with the detection of multiperspective dependencies under
consideration of the challenges, and how they compare to our approach.

Degree of Formalization: We have to discuss the influence of different levels of formalization
and the absence of any formalization respectively. First, if the artifacts of one view are not
formalized at all (e.g. free-text requirements), then the only remaining option is to try to map

68

6. Dependency Detection

the names of the artifacts. Our approach is able to address this situation by applying a rule
that only compares the names of arbitrary artifacts. However, IR-based approaches are more
suitable in this context. Second, if the level of formalization of one view is different than the
formalization of a second view, the rules can be adapted accordingly as well. For example, our
rules are able to analyze the names and structural aspects encoded in semi-structured artifacts,
which potentially provides more information than plain text analysis as implemented by IR-
based approaches. Likewise, MSR-based approaches are applicable on any type of files, even
if the content of the files it not formalized. However, as discussed before, the detection of
dependencies is then limited to files only, while no additional information can be provided.

Level of Abstraction/Completeness: A varying level of abstraction among the views limits the
detection of dependencies to those of the most “abstract” (or less detailed) view. Dependencies
of more fine-grained levels, however, cannot be detected as the more fine-grained dependencies
are not present in the “abstract view”. The same limitation applies for IR-based approaches as
the level of abstraction determines which names and identifiers are provided by the software
artifacts. In contrast, MSR-based approaches are applicable independent of any abstraction
level, as long as sufficient historical information are available.

Inconsistencies: In general, inconsistencies between the views prevent any dependency from
being detected by our rules because the artifacts of the views are inconsistent to each other.
Typical examples are test cases (test view) that refer to classes that do exist in the code view or
UML lifelines (behavioral view) that refer to non-existing components of the structural view.
The same limitation applies to IR-based approaches as the names and identifiers of the software
artifacts are unlikely to match if the artifacts themselves are inconsistent to each other. MSR-
based approaches on the other hand are able to detect potential evolutionary couplings between
files despite inconsistencies. However, the chances are likely that the detected dependencies are
incorrect due to the inconsistencies and thus not useful for a later impact analysis.

6.4.4. Detection Rules

In this section we focus on the rules that implement our approach for dependency detection
and provide the required means to elicit the potential dependencies as discussed in the previous
sections. Therefore, we explain the structure of our rules in Section 6.4.4.1 and discuss an
exemplary rule to further illustrate our concepts. We present the query operators which can be
used by our rules in Section 6.4.4.2 and introduce a scheme for the definition of additional rules
in Section 6.4.4.3. Moreover, Appendix A lists all dependency detection rules that accompany
this thesis. They can also be obtained from the website of our prototype tool [EMF14].

6.4.4.1. Structure of the Rules

The structure of our rules is very similar to typical SQL-queries and consists of three parts:

1) Element-Definition: Within the Element-Definition, all types of artifacts that are addressed
by a rule are specified. Furthermore, an alias-name is assigned to each type to allow for writing
more readable query-statements. This part therefore corresponds to the “SELECT”-statement
of SQL, while the alias corresponds to its “SELECT AS”-statement.

69

6. Dependency Detection

2) Query-Definition: The Query-Definition contains the actual query-conditions to identify
potential dependencies between the artifacts declared in the Element-Definition part. The query
corresponds to the “WHERE”-clause of a SQL-query and may contain nested sub-queries.

3) Result-Definition: Last, the Result-Definition is responsible for processing the results of the
query, i.e. it determines which type of traceability link shall be created and which artifacts shall
be linked. Our rule concept supports the creation of multiple traceability links using one rule,
which allows us to even link sub-parts of artifacts using only one rule.

The structure of our rules is also reflected by their meta-model that is presented by Figure 6.7.
The Query-Definition is modeled by the LogicCondition-class that is used to model logical op-
erations, such as AND. The BaseCondition-class is used for modeling query-operations that
assess attributes and relations of models, which is explained in the next section. The ActionDef-
inition-class is used for determining how the output of a rule shall be processed, i.e. which mod-
els should be linked by which type of dependency relation. To ease the usage of our dependency
detection rules, they can be grouped in rule catalogs implemented by the RuleCatalog-class.

 0 .. *

 rules

 1 .. *

 actions

1

 conditions

logicConditions

 0 .. *

1 .. *

 elements

 0..*

 baseConditions

ActionDefinition

- actionType
- resultType
- sourceElement
- targetElement
- impactedElement

LogicCondition

- type

ElementDefinition

- type
- alias

RuleCatalog

- name
- description

Rule

- name
- description

BaseCondition

- type
- source
- target
- value

Figure 6.7.: Meta-model for dependency detection rules

Our rules are based on EMF as well and can be imported into the model repository along with
the actual software artifacts. The syntax and concept behind our rules was originally published
in [Leh10, BLR11, RBFL11] and has since then been extended according to our goals. In con-
trast to [Leh10, BLR11, RBFL11], five new query operators were added (ValueStartsWith, Val-
ueEndsWith, ModelRelatedTo, ModelUndirectedRelatedTo, ModelIndirectlyRelatedTo), which
are explained in the next section.

The reasons why a custom rule-concept was chosen instead of existing, similar concepts, such
as OCL [OMG12] for example, are threefold. First, the creation of traceability-links as a result
of executing the rules demands for a custom implementation of a rule-processing infrastructure
anyway, thus the overhead of our approach is negligible. Second, the EMF-based modeling of
our rules allows for their direct integration into EMFStore without requiring further transfor-
mations, etc. Moreover, the rules benefit from the validation features supplied by EMF and
EMFStore as well as from the versioning support provided by EMFStore. Third, our rules are
easier to read and therefore easier to comprehend than typical OCL expression, which in turn
results in an improved maintainability and helps creating additional rules must faster.

70

6. Dependency Detection

Finally, we discuss an exemplary rule to illustrate our concepts. Therefore, Listing 6.6 presents
a typical dependency detection rule which illustrates the above discussed structure of our rules.
It refers back to the example that was already discussed in Section 6.4.3.2 and is illustrated by
Figure 6.4 (to briefly recap the example: it describes an “implementation”-dependency between
the methods of a class and the methods of an interface when the class implements the interface).
Although the basic conditions to uncover such relations where already provided by Listing 6.2
in Section 6.4.3.2, Listing 6.6 as presented in this section displays the complete EMF-based
rule in its native XML-form. Moreover, the rule can also be found in Appendix A.

<Rule i d =” TR Mth 009 ”>
<Elemen t s a l i a s =” e1 ” t y p e =” Method ”/>
<Elemen t s a l i a s =” e2 ” t y p e =” Method ”/>
<Elemen t s a l i a s =” e3 ” t y p e =” C l a s s ”/>
<Elemen t s a l i a s =” e4 ” t y p e =” I n t e r f a c e ”/>
<C o n d i t i o n s t y p e =”And”>

<B a s e C o n d i t i o n t y p e =” ModelRela tedTo ” s o u r c e =” e3 ” t a r g e t =” e4 ” v a l u e =” Implements ”/>
<B a s e C o n d i t i o n t y p e =” M o d e l D i r e c t P a r e n t O f ” s o u r c e =” e3 ” t a r g e t =” e1 ”/>
<B a s e C o n d i t i o n t y p e =” M o d e l D i r e c t P a r e n t O f ” s o u r c e =” e4 ” t a r g e t =” e2 ”/>
<B a s e C o n d i t i o n t y p e =” Va lueEqua l s ” s o u r c e =” e1 : : name” t a r g e t =” e2 : : name”/>

</ C o n d i t i o n s>
<A c t i o n s a c t i o n T y p e =” C r e a t e L i n k ” s o u r c e =” e1 ” t a r g e t =” e2 ” r e s u l t T y p e =” Implements ”/>

</Rule>

Listing 6.6: A rule linking corresponding methods of interfaces and classes.

The Element-Definition part of this rule consists of four declarations since it has to access four
software artifacts: one Class, one Interface, and two Methods. The actual Query-Definition
consists of four distinct operations that are nested in an encapsulating AND-condition. The
first BaseCondition checks whether the Class “e3” is related to the Interface “e4” through an
“Implements”-relation. The second and third BaseCondition check whether the methods belong
to either Class “e3” or Interface “e4” (the implemented interface operation) respectively. The
fourth BaseCondition checks whether the names of both methods are equal. The name-property
of the methods is accessed using the scope-operator “::”. Finally, the Action-Definition part
creates an “Implements” traceability link between both methods if all conditions were met.

6.4.4.2. Query Operators

Our rules offer three distinct types of operations which can be used within the Query-Definition
part. First, there are logical operators for nesting sub-queries that are realized by instances
of the LogicCondition-class. Secondly, there are operators to access and compare properties
of software artifacts that are realized by instances of the BaseCondition-class. Thirdly, there
are operators to analyze relations between models that are also realized by instances of the
BaseCondition-class. Table 6.5 below summarizes and briefly explains our query-operators.

Operator Description
AND implements the logical and-operator
OR implements the logical or-operator
NOT implements the logical not-operator
XOR implements the logical exclusive-or-operator
ValueEquals compares two values for equality
ValueLesserThan checks if the value of a property is lesser than another value

71

6. Dependency Detection

ValueGreaterThan checks if the value of a property is greater than another value
ValueContains checks if the value of a property contains a certain string
ValueStartsWith checks if the value of a property starts with a certain string
ValueEndsWith checks if the value of a property ends with a certain string
ValueSimilarTo checks if one value is similar to another value. This operation is

implemented by the n-gram algorithm [CT94]
ValueNotNull checks if the value of a property exists and is not null
ModelEquals checks if two models are equal
ModelRelatedTo checks if there is a dependency between two models of a certain

type under consideration of the direction of the relation
ModelUndirectedRelatedTo checks if there is a dependency between two models of a certain

type while ignoring the direction of the relation
ModelIndirectlyRelatedTo checks if two models are transitively related through a chain of de-

pendency relations of a certain type
ModelParentOf checks if one model transitively contains another model
ModelDirectParentOf checks if one model directly contains another model

Table 6.5.: Overview of all query-operators supported by our rule-concept

6.4.4.3. Definition of Dependency Detection Rules

A rule-based concept like ours demands for an ongoing refinement and addition of rules to
cope with new types of software artifacts, development methodologies, and views (see Section
3.3.4.3). Therefore, in this section we present a scheme for defining dependency detection rules
to complement our approach. This section stands in a stark contrast to related rule-based works
that do not provide any details regarding how the required rules should actually be created.

The general idea of our approach is that, once a source of a possible dependency relation is
known, a rule or a set of rules can be establish for recording this dependency. However, it
requires more than to simply identify dependencies to formulate strict rules for detecting them in
an automated manner. First and foremost, the dependent software artifacts have to be explicitly
identified, meaning that their type or class has to be determined. Secondly, the purpose of the
relation has to be understood in order to specify the actual type of the relation. For this purpose,
the taxonomy and clusters of dependency relations introduced in Section 6.3 come into play
and are used as a reference. Thirdly, the conditions under which this dependency occurs must
be identified as otherwise no rules can be established for the automated detection of this very
dependency. In a final step, the rule should be tested and evaluated by applying it on real
software development projects to verify its correctness.

The following presents the step-wise scheme we developed for guiding researchers and devel-
opers when creating dependency detection rules to extend the concepts presented in this thesis.

• Step 1 - Identify the dependency relation. This step can be accomplished in different
ways. Manual analysis of software artifacts and their relations can identify dependencies
(see Section 6.4.3), as well as couplings inferred by MSR-based or IR-based approaches
can point towards dependencies.

• Step 2 - Identify the related artifacts. The artifacts that are involved in the dependency
relation have to be explicitly determined. Likewise, their class or type has to be deter-

72

6. Dependency Detection

mined. This step is important for accomplishing the Element-Definition part of a rule.

• Step 3 - Determine the purpose of the relation. In order to define the actions to be taken
by a rule, the type of the traceability link to be create must be defined. The taxonomy of
dependency types presented in this thesis can serve as reference for this step. This step
assists with creating the Action-Definition part of a rule.

• Step 4 - Define the conditions under which the relation exists. Once a relation, its
type, and the involved artifacts are determined, the conditions under which the relation
occurs must be identified. This can be accomplished by manually studying the relation.

• Step 5 - Transform the conditions into query-statements. The conditions identified in
the previous step must be transformed into proper query-statements using the operators
provided by our rules (see Section 6.4.4.2). As a result of this step, the Query-Definition
part of a rule can be created.

• Step 6 - Validation. We propose to first test the rule using artificial test projects contain-
ing mock-objects to verify the general correctness and functionality of a rule. Secondly,
each rule should be further evaluated during a comprehensive case study.

6.5. Evaluation

After introducing our approach for dependency detection, we have to report on the evaluation
of our concepts to outline their applicability. We evaluated our dependency detection approach
with the help of five case studies in which different software systems were analyzed for depen-
dencies. This section reports on the research questions, the setup, and the achieved results of
our studies. We also compare the results of our approach with those of existing dependency
detection approaches. We can show that our approach achieves both better precision and recall
and is thus better suited for detecting dependencies between heterogeneous software artifacts.

6.5.1. Setup and Research Questions

In this section we first describe our case study subjects, before we outline our research goals
and the metrics and measures that were applied during our studies.

The following briefly presents our case study subjects and provides an overview of the types
of software artifacts they are comprised of. Our first test subject is the robot control frame-
work RSIFramework developed at the Ilmenau University of Technology, which provides sev-
eral UML models, an OWL ontology, and a URN goal model [Leh10]. Secondly, we analyzed
our own prototype tool EMFTrace (see Chapter 9) providing UML models, Java source code,
and JUnit test cases [Leh10]. Further case study subjects are supplied by EMFfit [Wag10]
and QUARC [Mot12]. Both tools are stand-alone extensions of EMFTrace and allow for an-
alyzing dependencies between UML models and Java source code [Gup13]. EMFfit assists
with the transition from requirements to software architectures according to the methodology
of Hofmeister et al. [HNS05], while QUARC implements the Goal Solution Scheme (GSS)
proposed by Bode [Bod11] and assists with architectural decision making. The fifth case we
applied our detection approach on is the CoCoME project [CoC] that implements an enterprise
application and consists of Java source code artifacts and different types of UML models.

73

6. Dependency Detection

Unfortunately, we could not use the de facto standard benchmarks for traceability detection ap-
proaches as established by the Center of Excellence for Software Traceability (COEST) [COE]
since they only contain requirements descriptions1. Furthermore, most of the offered bench-
marks are rather small in size and only provide a few hundred software artifacts, which results
in a comparable low figure of traceability links. Hence, we had to refer to other case study sub-
jects providing heterogeneous software artifacts, such as source code, test cases, and different
types of UML diagrams. Table 6.6 summarizes our five case study subjects, their size, and the
software artifacts they are comprised of to provide an overview of our case study subjects. The
source lines of code (SLOC) were obtained using Code Analyzer [Cod13].

All five software systems were manually analyzed for dependencies to provide an oracle or
golden standard [BGA06] to compare our approach against. Apart from the CoCoME project,
this manual analysis was conducted by the developers and researchers who were involved in
the development of the systems to ensure a correct detection of the dependency relations. Fur-
thermore, each link was verified by at least two persons. For the CoCoME application this
information was obtained by the author of this thesis only. The manual analysis was also sup-
ported by the execution of unit tests and the dependency detection features of the Eclipse IDE.

Case Study Subject Java Files Java SLOC JUnit Tests #UML Diagrams
EMFTrace 250 25900 124 4 Component

6 Package
26 Class
4 Use Case
1 Activity

RSI-Framework na na na 2 Sequence
3 Component
1 Composite Structure
+ 1 OWL Ontology
+ 1 GRL Goal-model

EMFfit 197 12600 172 1 Component
5 Object
3 Activity

QUARC 210 21500 275 6 Component
8 Activity

CoCoME 171 7300 11 1 Use Case
2 Class
10 Sequence
6 Component
1 Deployment

Table 6.6.: Overview of all cases study subjects

The quality of our approach’s results was assessed with the help of the precision and recall met-
rics. Therefore, the results of the manual analysis (ResultsMA) and the results of the automated
analysis (ResultsAA) were compared to obtain the relevant figures for precision (P), recall (R),
and their combined F1 − score, for which the following formulas were applied:

1http://coest.org/index.php/resources/dat-sets

74

6. Dependency Detection

P = |ResultsAA∩ResultsMA|
|ResultsAA| R = |ResultsAA∩ResultsMA|

|ResultsMA| F1 − score = 2·P ·R
P+R

6.5.2. Results and Discussion

In the following, we discuss the results achieved by our approach in regard to its precision,
recall, and F1 − score. The achieved results are also summarized by Table 6.7.

To begin with, it is important to note that all the results obtained during our case study reflect
the ability of our approach to detect multiperspective “high-level” dependencies between UML
models, JUnit test cases, and Java source code that are not provided by current tools. Rules
for the detection of “low-level” dependencies of Java source code (e.g. “code statement A Ini-
tializes the value of Attribute B”, “Method C Calls Method D”, etc.) were not executed due
to the vast amount of resulting dependency relations, which is due to three reasons. First of
all, the large amount of mostly code-based “low-level” dependencies (≥ 100K for each case
study subject) would have overshadowed the comparably small amount of true multiperspec-
tive “high-level” dependencies, which ranged between 900 and 20000, depending on the case
study subject. Consequently, the obtained precision and recall would not have reflected the
approach’s ability of detecting multiperspective dependencies. Second, the large amount of
dependencies would have rendered any means of a manual validation of the links impossible,
hence preventing any elicitation of precision and recall within reasonable time and with reason-
able effort. Third, the neglected and mostly code-based dependencies can be easily obtained by
dependency browsers, call graph extractors, etc. that are already integrated in modern IDEs.

Case Study Subject Precision Recall F1-score
EMFTrace 0.7125 0.8370 0.7697
RSI-Framework 0.9685 0.8575 0.9096
QUARC 0.9723 0.9789 0.9755
EMFfit 0.8876 0.8884 0.8879
CoCoMe 0.8536 0.8077 0.8300

Table 6.7.: Results achieved with our approach

Based on the results obtained for each of the five case study subjects (see Table 6.7 above), our
rule-based detection approach achieved a mean precision of 0.8789, a mean recall of 0.8739,
and a mean F1 − score of 0.8745 respectively.

Finally, we compare and discuss our results with those obtained by other IR, MSR, ML, and
rule-based (RB) approaches, which is also summarized by Table 6.8 (for a general discussion
of these techniques see Section 3.3.4).

As indicated by Table 6.8, the F1-scores of rule-based approaches, including ours, are much
better than those of IR or MSR-based approaches; in average by a factor of two. Thus, a rule-
based dependency detection approach as presented in this thesis is able to provide more stable
and reliable results when compared to other IR, ML, and MSR-based approaches. Likewise,
our approach was evaluated with the help of five different case study subjects and we obtained
similar figures for precision and recall for each of them.

When compared to the work of Jirapanthong and Zisman [JZ09], our case studies did not just
cover UML models but also Java source code, JUnit test cases, as well as OWL and GRL

75

6. Dependency Detection

Approach Method Avg. Precision Avg. Recall F1-score
Antoniol et al. [ACC+02] IR 0.500 0.480 0.489
Marcus and Maletic [MM03] IR 0.274 0.822 0.411
De Lucia et al. [LFOT07] IR 0.460 0.700 0.555
Grechanik et al. [GMP07] ML 0.711 0.676 0.693
Kagdi [Kag08] MSR 0.815 0.165 0.274
Jirapanthong and Zisman [JZ09] RB 0.853 0.833 0.843
Our Approach RB 0.879 0.874 0.875

Table 6.8.: Comparison of traceability detection approaches

models stemming from five different projects. This means that our approach was evaluated
with a greater variety of software artifacts but still produced slightly better results. In contrast
to their work, we also provide a scheme for defining dependency detection rules and we take into
account dependencies stemming from four different sources. Hence, we consider our approach
as a suitable asset to the impact analysis approach proposed in this thesis.

6.6. Critical Discussion and Limitations

In this final section we discuss potential limitations of the proposed dependency detection ap-
proach, for which we analyze the implications of missing and incorrect dependency detection
rules. Additionally, we thoroughly compare our approach to MSR and IR-based approaches
and analyze its space and time complexity.

6.6.1. Comparison to Existing Approaches

To allow for a final verdict on our proposed dependency detection approach, we summarize how
it compares to existing MSR and IR-based techniques in regard to the detection of meta-model
dependencies, object oriented dependencies, design methodology dependencies, and multiper-
spective dependencies. Therefore, we summarize and conclude on the findings of Section 6.4.3.
Furthermore, we analyze and compare all three approaches for their ability of detecting inter-
and intra-artifact dependencies, and we outline the preconditions for applying the approaches.
The results of the upcoming discussion are summarized in a tabular manner by Figure 6.8.

The most notable difference between the approaches are the sources of dependencies that can be
analyzed by them. While IR-based approaches are restricted to the analysis of textual informa-
tion and MSR-based approaches are restricted to the investigation of evolutionary couplings, our
rule-based approach currently analyzes structural and textual information of software artifacts,
as well as existing dependencies between them, therefore covering a wider range of potential
dependency relations. Moreover, future work could expand our approach to take evolutionary
couplings into consideration as well. When compared to MSR-based approaches, another ben-
efit of our approach is its capability of detecting inter- and intra-artifact dependencies, whereas
MSR techniques cannot detect dependencies within single files with reasonable effort.

The main limitation of our approach is its dependence on a certain level of formalization,

76

6. Dependency Detection

 Approach
Criteria

Detection Rules Information Retrieval Mining of Software Repositories

Prerequisites A set of available rules None Version history (e.g. SVN, Git, CVS repository, etc.)

Manual Effort Initial effort for creation and validation of rules None None

Detection of Types Yes, fine-grained Impossible Impossible

Applicable Artifacts No restrictions No restrictions No restrictions

Utilizable Information Textual, structural, and evolutionary information Textual information Evolutionary information

M
et

a-
m

o
d

el

D
ep

en
d

en
ci

es

Detection of intra-artifact dep. Yes Yes No

Detection of inter-artifact dep. Yes Yes Yes

Influence of Formalization No influence No influence No influence

Influence of Level of Abstraction Dependencies of highest abstraction level detectable Dependencies of highest abstraction level detectable No influence

Influence of Inconsistencies Intra artifact dependencies remain detectable

 Inter artifact dependencies not detectable

 Intra artifact dependencies remain detectable

 Inter artifact dependencies not detectable

Might detect wrong dependencies

O
b

je
ct

 O
ri

en
te

d

D
ep

en
d

en
ci

es

Detection of intra-artifact dep. Yes Yes No

Detection of inter-artifact dep. Yes Yes Yes

Influence of Formalization No influence No influence No influence

Influence of Level of Abstraction Dependencies of highest abstraction level detectable Dependencies of highest abstraction level detectable No influence

Influence of Inconsistencies Intra artifact dependencies remain detectable

 Might detect wrong inter artifact dependencies

Might detect wrong dependencies Might detect wrong dependencies

D
ev

el
o

p
m

en
t

M
et

h
o

d
o

lo
gy

D

ep
en

d
en

ci
es

Detection of intra-artifact dep. Yes Yes No

Detection of inter-artifact dep. Yes Yes Yes

Influence of Formalization

Detection not possible if no formalization available No influence No influence

Influence of Abstraction Dependencies of highest abstraction level detectable Dependencies of highest abstraction level detectable No influence

Influence of Inconsistencies Intra artifact dependencies not detectable

 Inter artifact dependencies not detectable

 Intra artifact dependencies not detectable

 Inter artifact dependencies not detectable

 Intra artifact dependencies not detectable

 Might detect wrong inter artifact dependencies

M
u

lt
ip

er
sp

ec
ti

ve

D
ep

en
d

en
ci

es

Detection of intra-artifact dep. / / /

Detection of inter-artifact dep. Yes Yes Yes

Influence of Formalization

Detection not possible if no formalization available No influence No influence

Influence of Level of Abstraction

Dependencies of highest abstraction level detectable Dependencies of highest abstraction level detectable No influence

Influence of Inconsistencies

Inter artifact dependencies not detectable Inter artifact dependencies not detectable Might detect wrong inter artifact dependencies

Figure 6.8.: Comparison of dependency detection approaches regarding the detection of meta-
model, object oriented, design methodology, and multiperspective dependencies

whereas IR and MSR-based approaches are independent of any formalization of the software
artifacts under scrutiny. However, most software artifacts adhere to a strict specification which
mitigates the impact of this limitation to a certain extent. Likewise, our rule-based approach
is more prone to be affected by software artifacts having a different level of abstraction. In
contrast, potential inconsistencies have the same negative impact on all detection approaches as
they result in the detection of false-positives.

Arguably the most important advantage of our approach on the other hand, is its capability of
detecting the types of the dependency relations, whereas IR and MSR-based approaches are not
able to do so. It is, however, most crucial to be able to distinguish between the different types
of dependencies when performing impact analysis [LFR13], regression testing [FLR14], etc.

The last major difference between our approach and others is the manual effort that is required
for creating the initial set of dependency detection rules. However, when putting the effort for
creating the rules in relation to the effort for dealing with the higher quotas of false-positives
as detected by IR and MSR-based approaches [Bod11], the overhead decreases significantly.
Additionally, while the tremendous effort for checking for false-positives (up to 80%, see Table
6.8) accounts every time IR or MSR-based approaches are applied, the effort for creating the
rules accounts only once. Thus, our approach requires overall less manual effort.

6.6.2. Correctness of the Dependency Detection Rules

The correctness of the detected dependency relations is of great importance for the impact anal-
ysis approach presented in this thesis. Incorrect (or false-positive) dependencies may derail the

77

6. Dependency Detection

impact analysis and result in impact sets that are useless to developers. In the worst case, these
incorrect dependencies might even mislead developers by overestimating the overall impacts
of changes. Thus, the correctness of the impact estimations depends on the correctness of the
recorded dependency relations, which in turn directly depends on the correctness of the ap-
plied dependency detection rules. We identified three potential threats concerning the proposed
dependency detection rules which we are discussing in the following:

• A rule detects a dependency where there is none.

• A rule fails to detect an existing dependency.

• A rule determines the wrong type of a dependency.

The first case is either triggered by wrong conditions encoded within a rule, which is due to
misunderstandings of the creator of the rule, or by an over-specialization of the rule for a given
software system (i.e. tailoring the rule according to the attributes of this specific software). In
either case, the problem can be solved by manually adjusting the (defect) query condition(s).

The second problem arises when the reasons why a dependency exists between two software
artifacts were not understood correctly and hence were not correctly transformed into suitable
query conditions for detection rules. Consequently, a thorough analysis of the conditions lead-
ing to the dependency is required in order to correct the rule. Depending on the source of
the dependency, it might help to inspect this source under consideration of the dependency to
identify suitable query-conditions, e.g. studying an artifacts’ meta-model if the dependency
arises from the meta-model. Additionally, our scheme for creating dependency detection rules
as established in Section 6.4.4.3 can also assist developers when fixing broken rules.

The third problem points towards an incorrect specification of the ActionDefinition-part of a
rule by the developer who created the rule. This problem can be easily addressed by adjusting
the type of the dependency relation to be created in the ActionDefinition-part of the rule. This
adjustment is supported by our taxonomy of dependency types as introduced in Section 6.3.1
that assists with determining the type of a relation based on its purpose in a step-wise manner.

Despite these potentials threats, our detection rules achieved reliable results during their ap-
plication on five different case study subjects (see Section 6.5.2). Therefore, our dependency
detection concept provides a solid basis for the impact analysis approach presented in this thesis.

6.6.3. Completeness of the Dependency Detection Rules

Apart from detecting correct dependency relations only, it is also important to elicit all the de-
pendencies that exist between the software artifacts to enable a later impact analysis. In contrast
to incorrect detection rules, the implications of missing detection rules are twofold. First of all,
missing (explicit) dependencies hamper a developer’s ability to understand the software sys-
tem since relations to dependent parts and concepts are hidden from him [RBFL11]. Secondly,
missing dependency relations decrease the effectiveness of change impact analysis approaches.

Unfortunately, we cannot discuss the completeness of our set of detection rules in a theoretical
manner. However, to mitigate the implications of missing dependencies, we demonstrated the
detection of dependencies stemming from four different sources, namely meta-models, object
oriented concepts, design methodologies, and the usage of different perspectives. By reasoning
about the dependencies stemming from these sources, we provide better and more compre-

78

6. Dependency Detection

hensive coverage of dependency relations than existing works. Moreover, we established an
easy-to-follow guideline for the creation of additional dependency detection rules, if a missing
rule should be identified (see Section 6.4.4.3).

As already pointed out in the previous section, the set of detection rules that accompanies this
thesis has been tested, refined, and complemented during its application on five different soft-
ware systems. During each of these studies our rules achieved a recall of at least 80% while
maintaining a similar high figure for precision (see Section 6.5.2). Thus, our detection rules and
their underlying concepts provide a solid basis for multiperspective dependency detection.

6.6.4. Complexity of the Approach

A critical discussion of our dependency detection approach also demands for a discussion of
its efficiency in terms of space and time requirements. Therefore, we discuss these figures in a
theoretical manner using the Bachmann–Landau notation (“big O notation”).

The theoretical worst case space complexity s(n) of our approach can be computed as follows
for n artifacts whose dependencies shall be detected. Each dependency detection rule consists
of a set of conditions that query model elements, whereas each condition can only query two
artifacts at once (i.e. a source and a target, see 6.4.4.1). Therefore, for each condition there is
a maximum of n × n tuples being computed and checked. As all the conditions of a rule are
executed in a sequential manner, the amount of conditions to be executed has no influence on
the required space. Hence, each rule has a maximum space requirement of O(n2). Now as the
detection rules are executed in a sequential manner as well, the worst case space complexity of
a single rule equals the worst case space complexity of our entire approach, thus:

s(n) = O(n2) (6.1)

The theoretical worst case time complexity t(n) of our approach can be computed as follows for
n artifacts whose dependencies shall be detected. As stated above, for each condition encoded
within a rule a maximum of n× n tuples are being checked, which results in n2 operations per
condition. Consequently, a rule containing k conditions requires k · n2 operations, where k is
independent of n. Now let r denote the total number of rules to be executed, where r is also
independent of n. Hence, a total amount of r · k · n2 operations is required. Therefore, the total
worst case time complexity of executing these rules can be estimated as follows:

t(n) = O(n2) (6.2)

Although these figures seem high at first, a typical rule contains between 2 to 5 conditions,
which reduces its execution time to a couple of milliseconds for the cases discussed in Section
6.5.1. Moreover, due to the sequential processing of the conditions, no condition will require
the n2 operations in practice, as model elements are constantly being filtered by previous con-
ditions, thus vastly reducing the amount of tuples to be checked. Furthermore, our current
rule-processing infrastructure (see also Section 9.3) can be replaced by optimized industrial
query-processing engines that would therefore significantly speed up the processing of rules.

79

6. Dependency Detection

6.6.5. Addressing (Textual) Inconsistencies

Despite our previous discussions of the influence of inconsistencies on the detection of (mul-
tiperspective) dependencies, we outline possible future work to deal with textual inconsisten-
cies introduced by the usage of synonyms2 and homonyms3 by different stakeholders during
software development [TLCvV11b]. This challenge can be tackled by blending concepts like
ontologies or semantic wikis into the rule-based approach proposed in this thesis. The dif-
ferent vocabulary introduced by different stakeholders can be resolved by utilizing an ontol-
ogy [Bod11] or a word similarity database [TLL14] for resolving the possibly inconsistent
terms. Consequently, the application of such a concept requires the establishment of an on-
tology prior to the dependency analysis and the integration of the resulting ontology into the
dependency detection process. The proposed rule-concept could be extended with a new type
of query operation to compare text-based values with the help of the resolving ontology, such as
for example a “ValueMatchesSynonym”-operation. Similar concepts were already proposed by
Bode [Bod11] to bridge between architectural issues and requirements, which therefore could
be reused. However, not all inconsistencies can be resolved through such an approach, which
furthermore requires manual effort for creating and maintaining the ontology (or what else is
used to establish the mapping). For these reasons, such an extension is currently omitted from
this thesis.

6.7. Summary

In this chapter we discussed how dependencies between different types of software artifacts can
be uncovered, recorded as traceability links, and classified according to their type to allow for a
later impact analysis. Therefore, we presented a meta-model providing a traceability link model
to explicitly store the identified dependencies. We introduced a taxonomy for dependency types
that is based on the idea of distinguishing between different types of dependencies by their
purpose to address the problem of dependency classification. The proposed taxonomy consists
of clusters of similar dependency types which are arranged in a hierarchical manner and enable
a step-wise refinement of the dependency relations according to their purposes. As the main
contribution of this chapter, we introduced a rule-based approach for the automated detection of
dependency relations between heterogeneous software artifacts. We therefore discussed where
the dependencies stem from and how they can be detected. We illustrated the structure of our
dependency detection rules and presented a scheme for the definition of additional detection
rules. Finally, we conducted an evaluation of our detection approach with the help of five case
studies and discussed the critical points and limitations of our concept.

In conclusion, the research presented in this chapter contributes towards Goal 7 and Goal 8 by
introducing a meta-model for dependencies, supplying means for classifying dependencies ac-
cording to their relation type, and by providing an approach for detecting dependency relations
between heterogeneous types of software artifacts.

2“a word having the same or nearly the same meaning as another [...]”, see:
http://dictionary.reference.com/browse/synonym

3“a word pronounced the same as another but differing in meaning [...]”, see:
http://dictionary.reference.com/browse/homonym

80

7. Change Comprehension

When performing impact analysis, developers first of all require a solid understanding of the
changes to be applied on the software. This, however, is not sufficiently dealt with by current
research on impact analysis [Leh11a]. Therefore, based on our refined goals in Section 4.2 and
Goal 4 in particular, we present an approach to model arbitrary change operations and to classify
them according to their type to alleviate this shortcoming of current research. We present a
meta-model for change operations that extends the concept of atomic and composite changes
and is implemented using the Eclipse Modeling Framework (EMF) [EMFa]. Furthermore, we
introduce a taxonomy that is build upon our modeling approach and allows for the correct
classification of changes. Parts of the research presented in this chapter were already discussed
in [LFR12,LFR13,FLR14]. Novel contributions of this thesis are a) our meta-model for change
operations, b) strict definitions of the terms atomic and composite changes, and c) detailed
discussions of how more complex refactoring scenarios can be modeled using our approach.

This chapter is organized as follows. First, in Section 7.1 we present our concept and meta-
model for the modeling of arbitrary change operations. Section 7.1.3 then elaborates on how
typical refactoring activities can be modeled using our approach for the modeling of change
operations. Finally, Section 7.2 presents a taxonomy for the classification of change operations
as one precondition for our proposed impact analysis approach.

7.1. Modeling of Change Operations

In Section 3.4.1 we investigated how approaches for regression testing, impact analysis, etc.
model different types of change operations and refactoring activities. Our analysis revealed that
the concept of atomic and composite change operations provides a solid base for the modeling
of change operations. However, we also noticed that current approaches suffer from three lim-
itations, namely an ambiguous set of atomic operations, the inability of comprising composite
operations of other composite operations (see discussions in Section 3.4.1), and the absence
of strict definitions of composite operations. Therefore, we have to refine these approaches by
introducing a modeling approach for change operations that can be applied for change impact
analysis and that allows to model arbitrary types of changes and entire refactoring scenarios.

7.1.1. Atomic and Composite Operations

When modeling change operations, it requires a fixed set of reference-operations to compose
the actual changes [LFR12]. Such a set of reference-operations can be supplied by the concept
of atomic and composite changes. An atomic operation, as the name suggests, cannot be further
broken down into other operations, whereas composite operations are comprised of other types

81

7. Change Comprehension

of change operations. However, it requires strict definitions for how both atomic and compos-
ite operations can be modeled. Therefore, in the following we extend existing works on the
modeling of changes and introduce strict definitions for both types of change operations.

• Atomic Change: a change activity that is comprised of exactly one non-interruptible
operation. Each atomic operation can only involve a maximum of two software artifacts.

• Composite Change: a change activity that is comprised of at least two atomic or com-
posite change operations. The sequence of operations is potentially interruptible. A com-
posite operation may involve at least two or more software artifacts.

Our definition of atomic operations stands in contrast to the definition of Engels et al. [EHKG02]
because the atomic add-operation must address two software artifacts, namely the artifact to be
added and the artifact it should be added to. Likewise, our definition of composite changes is
slightly different than the one of Mäder [M0̈9] because in our approach composite operations
can be comprised of other composite operations as well.

However, as proposed by Mäder et al. [MRP06b, M0̈9, M1̈0], we utilize the following set of
atomic operations as our base for modeling further change operations:

OPatomic := {addnode, deletenode, addedge, deleteedge, update property}

The add- and delete-operations either add or delete edges or nodes to a graph (the software
system), whereas the update property-operation on the other hand modifies a property of a
node or edge, such as its name or visibility for example.

The above presented definitions apply to the logical structure of a graph and hence to any
type of software artifact under consideration by this thesis since any piece of source code can
be mapped to an AST and all modeling languages are built upon graph-based meta-models
[DST11,LFR12]. However, depending on the context and the artifacts to be changed, the addnode

and addedge operations may be represented by the same real change activity, which is then simply
referred to as add-operation. The same applies to both cases of the delete-operation. Hence, in
the following we will refer to them as simply add and delete.

Furthermore, the presented atomic operations can be combined into composite change opera-
tions. In contrast to previous works analyzed in Section 3.4.1, we allow composite operations
to be modeled by other composite operations as well. Therefore, in our approach composite
operations may consist of sequences of either atomic or other composite change operations.
To provide additional support for impact analysis, we define a set of the most common com-
posite changes as encountered in ever-day software engineering tasks. This set is composed
of composite changes as proposed in [FG06, M0̈9] and complemented with the yet missing
swap-operation [LFR12]. Hence, we obtain the following set of basic composite operations:

OPcomposite := {move, replace, split,merge, swap}

Moreover, existing works lack a precise and formal definition of those operations. Therefore, in
the upcoming sections we also discuss how each composite operation can be modeled using our
concept. The operation P (x) thereby refers to the parent-node of x, i.e. its containing element.
For example, when P is applied on a method it returns the class containing the method.

82

7. Change Comprehension

7.1.1.1. Move-operation

The move-operation allows to move nodes or entire sub-graphs within a graph and to attach
them to other nodes. We support two versions of the move-operation. First, developers might
want to move an entire sub-graph x to another node y, which is displayed by Figure 7.1. A
typical example for such an operation is when a class is moved to another package, as all the
methods and attributes contained within the class are also moved.

move(x, y) := deleteedge(x, P (x)), addedge(x, y).

x

y
P(x)

x

y
P(x) i) ii)

Figure 7.1.: The structure of the graph before (i) and after (ii) applying the Move-operation

We also support to only move the node x to another node y, while leaving all the potential child
nodes xi of x in place. This operation is visualized by Figure 7.2. For example, this operation
might be applied when one is moving an attribute up to the base class of a class hierarchy.

move′(x, y) :=
n∧

i=0

move(xi, P (x)),move(x, y).

x

y
P(x)

x

y
P(x) i) ii)

x1 x2 x1 x2

Figure 7.2.: The structure of the graph before (i) and after (ii) applying the Move-operation

7.1.1.2. Replace-operation

The replace-operation allows to replace parts of a graph by another sub-graph. For this operation
we also support two cases. First, developers might want to replace the entire sub-graph x by
another sub-graph y, which is displayed by Figure 7.3. A practical example would be when one
is overwriting a method that was inherited from the superclass.

replace(x, y) := deletenode(x),move(y, P (x)).

83

7. Change Comprehension

P(x)

x y

i) ii) P(x)

y

Figure 7.3.: The structure of the graph before (i) and after (ii) applying the Replace-operation

Secondly, we also support replacing the node x by node y, while leaving all the child nodes xi
of x in place, which is displayed by Figure 7.4.

replace′(x, y) :=
n∧

i=0

move(xi, y), replace(x, y).

x1 x1

P(x)

x y

i) ii) P(x)

y

Figure 7.4.: The structure of the graph before (i) and after (ii) applying the Replace-operation

7.1.1.3. Split-operation

The split-operation allows to divide a graph into a set of graphs, which is shown in Figure 7.5.
It creates a set of n nodes (n ∈ N, n ≥ 2) which are of the same type as x and moves all
child elements y of x to the respective new node x′i. Each tuple (sa, db) denotes that the sa-th
sub-graph of the node x should be moved to the db-th sub-graph of the resulting set x′.

split(x, n, (s0, d0) . . . (sm, dm)) :=
n∧

i=0

addnode(x
′
i, P (x)),

m∧
j=0

move(ysj , x
′
dj
).

y1 y2

 y3 y1 y2 y3

x1

P(x)

x

i) ii)
P(x)

x

Figure 7.5.: The structure of the graph before (i) and after (ii) applying the Split-operation

84

7. Change Comprehension

An example for such an operation is the extraction of a class from another class. A new class is
created and all the methods and attributes that should be extracted are moved to the new class.

7.1.1.4. Merge-operation

The merge-operation allows to merge several graphs into one graph, which is displayed by
Figure 7.6. It is the inverse operation to split and bundles n entities (n ∈ N, n ≥ 2) of the same
type into one, where yij is the j-th sub-graph of xi. For example, a merge-operation is applied
when a set of rather similar classes are merged into a new base class.

merge(x0 . . . xn) :=
n∧

i=1

(
m∧
j=0

move(yij , x0)),
n∧

i=1

(deletenode(xi)).

 y01 y02 y11 y12

x0' x1

 y01 y02 y11 y12

P(x)

x0

i) ii)
P(x)

Figure 7.6.: The structure of the graph before (i) and after (ii) applying the Merge-operation

7.1.1.5. Swap-operation

Finally, the swap-operations allows for exchanging two nodes or even entire graphs by one an-
other. The case of swapping entire sub-graphs is illustrated by Figure 7.7 below. This operation
can be applied when one is exchanging methods between classes due to refactorings.

swap(x, y) :=move(x, P (y)),move(y, P (x)).

x

P(y) P(y) P(x)

x y

i) ii) P(x)

y

Figure 7.7.: The structure of the graph before (i) and after (ii) applying the Swap-operation

Secondly, we also support exchanging nodes only, which attaches the potential child nodes xi
of x to y, and vice versa. This case is displayed by Figure 7.8.

swap′(x, y) :=
n∧

i=0

move(xi, y),
m∧
j=0

move(yj, x), swap(x, y).

85

7. Change Comprehension

y0 y1 y0

x

P(y) P(y) P(x)

x y

i) ii) P(x)

y

y1

Figure 7.8.: The structure of the graph before (i) and after (ii) applying the Swap-operation

7.1.2. A Meta-model for Change Operations

To address Goal 4 and to implement the above presented concept of atomic and composite
operations, we need to establish a meta-model for change operations. This meta-model in turn
should allow for the modeling of real change operations for impact analysis tasks. Hence, we
provide an EMF-based meta-model for changes that is integrated into the EMF-based repository,
along with all software artifacts and their dependencies (see chapters 5 and 6). Our meta-model
for change operations is illustrated by Figure 7.9 and is discussed in the following.

 changeTypes

0 .. *

 clusters

 0 .. *

subTypes

 2 .. *

AtomicChangeType

- source
- target
- value
- property
- atomicType

ChangeTypeCatalog

- name

CompositeChangeType

- sources
- targets
- compositeType

AbstractChangeType

- name
- abstractionLevel

Figure 7.9.: Our EMF-based meta-model for change operations

First, we have to provide means to model the atomic and composite operations, for which we
introduce the classes AtomicChangeType and CompositeChangeType. While atomic operations
can address a maximum of two software artifacts, composite operations can address more than
two at once, for example when merging multiple elements into one. Consequently, each atomic
operation may have only one source artifact and only one target artifact, whereas a composite
operation may have multiple. The AtomicChangeType-class further possesses optional value
and property fields to model the update property-operation. The composition of composite
changes is expressed through the subTypes-reference of the CompositeChangeType-class.

In order to enable the grouping of similar change types and the grouping of change types per
type of software artifact, we furthermore introduce the container class ChangeTypeCatalog.
This container class allows to create arbitrary sub-clusters of change operations, which is re-
quired to provide researchers and developers with a catalog of change types to ease the appli-
cation of our concept in practice (e.g. for grouping all the changes that are applicable on Java
classes). A cutout of an exemplary change catalog is illustrated in Figure 9.4 in Section 9.2.3.

86

7. Change Comprehension

7.1.3. Modeling of Refactoring Activities

In this section we discuss how typical refactoring activities can be modeled using the approach
of atomic and composite change operations as presented in the previous sections. Furthermore,
we illustrate how composite operations can be instantiated by sets of real atomic and composite
operations. We demonstrate this using the following three refactoring scenarios:

• Scenario 1: Renaming a method.

• Scenario 2: Extracting a sub-class from an existing class.

• Scenario 3: Moving an attribute up to the common base class.

The following discussions are based on the code snippet illustrated by Listing 7.1 which presents
a simple code scenario consisting of the two Java classes Vehicle and Car.

package vehiclepackage;

public class Vehicle
{

public enum TireType
{

UNKNOWN,
WINTER,
SUMMER

};

private int numTires;
private float tireDiameter;
private float tireWeight;
private TireType tireType;

public void steer();
public void move();

}

public class Car extends Vehicle
{

private int numPassengers;

public void startEngine();
public void stopEngine();

}

Listing 7.1: Example Java source code scenario

7.1.3.1. Scenario 1: Renaming a method

If the method steer() of the Vehicle-class shall be renamed to steerVehicle(), the resulting change
operation can be modeled using the atomic update property-operation as follows:

1. update property(’Vehicle::steer::name’, ’steerVehicle’)

The steer-method as well as its name-property are accessed using the scope-operator (“::”).

87

7. Change Comprehension

7.1.3.2. Scenario 2: Extracting a sub-class from an existing class

The class Vehicle contains many attributes that could be outsourced to a separate Tire-class
which would then be responsible for managing all tire-related data. Hence, a sub-class is ex-
tracted from Vehicle, which is modeled using a Split-operation that is instantiated as follows:

1. add(’Tire’, ’vehiclepackage’)

2. move(’TireType’, ’Tire’)

3. move(’tireDiameter’, ’Tire’)

4. move(’tireWeight’, ’Tire’)

5. move(’tireType’, ’Tire’)

To complete the refactoring, the following operation is afterwards applied on the Vehicle-class:

1. add(’Tire[] tires’, ’Vehicle’)

7.1.3.3. Scenario 3: Moving an attribute up to the base class

The integer property numPassengers of the class Car could be moved to the base class Vehicle
as it will be required for any type of vehicle. This move-operation is instantiated as follows:

1. delete(’numPassengers’, ’Car’)

2. add(’numPassengers’, ’Vehicle’)

7.2. Classification of Change Operations

Next to the explicit support for modeling change operations, our impact analysis approach also
requires detailed information on the purposes and structure of the changes to be applied. For
the concepts presented in this thesis, it is therefore necessary to classify change operations
according to their type of operation, their scope, and their structure. This classification can only
be supplied by a taxonomy for change operations which is discussed in the following.

A potentially suitable taxonomy was already established by Mens et al. [MBZR03] and was
later refined by Buckley et al. [BMZ+05]. The proposed taxonomy is comprised of four di-
mensions of changes, namely the System properties (what), the Object of change (where), the
Temporal properties (when), and the Change support (how). Based on this taxonomy infor-
mation on the types of changes can be derived from the Change support dimension, whereas
the scopes of the changes can be obtained from the Object of change dimension. In contrast
to our work though, the authors distinguish between structural changes and semantic changes
when referring to the “types of changes”. This distinction, however, suffers from the same
problems as the approach of Gupta et al. [GSC10] that was discussed in Section 3.4.2 and that
distinguishes between functional, behavioral, structural, and logical changes. Consequently, the
resulting classification is ambiguous and thus less useful for change impact analysis tasks.

Hence, it requires a more sophisticated taxonomy for classifying change operations based on
their types, scope, and structure to accomplish Goal 4 and to provide the required support for the

88

7. Change Comprehension

impact analysis approach presented in this thesis. Therefore, we propose a different taxonomy
of change operations that is comprised of three dimensions [LFR12]: the scope of a change, the
abstraction level of a change, and the structure of a change. In the remainder of this section we
discuss each dimension and introduce the criteria each dimension is comprised of.

The structural dimension of the proposed classification is supplied by the distinction between
atomic and composite changes and by providing concrete sets of change types for each category
(see Section 7.1.2). We express this information with the help of the two criteria Composition
Type and Type of Operation. The Composition Type denotes whether a change is of atomic
character (atomic change) or it is comprised of other change operations (composite change).
The Type of Operation reflects the actual type of a change operation, such as add or merge.
While the Composition Type provides the information if a change operation is comprised of
other sub-operations, the Type of Operation provides the explicit information how. Although
this seems like an overlapping or redundancy at first, we consider both criteria as important
because the actual type of an operation is not always unambiguous, thus having both criteria
provides easy clarification for developers applying the concept.

To address the scopes of the changes to be modeled, we introduce the criterion Scope of Change.
With the help of this criterion, one is able to provide information on the context of a change,
such as if the change applies to architectural models, source code statements, test specifications
or other types of software artifacts. This criterion is especially important when developers are
evaluating different impact analysis approaches for their support of multiperspective analysis,
as the scopes of the supported operations may turn out to be a decisive criterion in this regard.

Finally, we introduce the criterion Abstraction Level to our taxonomy to allow for distinguishing
between generic and concrete change operations. By the term generic change operations we
refer to the change operations as discussed in Section 7.1 of this chapter, as we did not discuss
explicit examples like “move class A to package B”. Instead, we were only talking about generic
“move” operations. In contrast, a concrete change operation is tailored for a specific software
artifact, such as the refactoring operations we discussed in Section 7.1.3 for example.

The following listing summarizes our criteria for classifying change operations that comprise
our taxonomy [LFR12]:

• Abstraction Level: Generic, Concrete.

• Composition Type: Atomic, Composite.

• Type of Operation: Add, Delete, Update, Move, Merge, Split, Replace, Swap.

• Scope of Change: Requirements, Architecture, Code, Test, Configuration, etc.

7.2.1. Classification of Refactoring Activities

The following section illustrates how the presented taxonomy can be utilized for classifying
refactoring activities proposed in related work in order to assist with change impact analysis.
The purpose of this classification is to outline the usefulness of our taxonomy when comparing
different types of change operations and to outline its feasibility when determining the types of
the changes for a later impact analysis. Therefore, we classify exemplary refactoring operations
that were proposed in related work and the refactoring activities discussed in Section 7.1.3. The
results of this classification process are also summarized by Table 7.1.

89

7. Change Comprehension

Change Source Abstraction
Level

Composition
Type

Type of
Operation

Scope of
Change

move method [Fow99] generic composite move code
move method
to superclass

[VGSMD03] generic composite move code

replace code
statement

[VGSMD03] generic composite replace code

split
state machine

[SPLTJ01] generic composite split architecture

replace
transition

[SPLTJ01] generic composite replace architecture

merge
transitions

[SPLTJ01] generic composite merge architecture

merge states [BSF03] generic composite merge architecture
replace
element

[vdWvdH02] generic composite replace architecture

rename
method

Sec. 7.1.3.1 concrete atomic update code

split class Sec. 7.1.3.2 concrete composite split code
move attribute
to superclass

Sec. 7.1.3.3 concrete composite move code

Table 7.1.: Classification of the discussed changes according to our taxonomy

The studied works can be characterized as follows. Fowler [Fow99] proposes the movement of
methods in between classes as a refactoring step to improve the structure and understandability
of source code. In a similar fashion Van Gorp et al. [VGSMD03] utilize move-operations to pull
methods up to a superclass to limit the redundancy of code clones, which is similar to our third
scenario discussed in Section 7.1.3. Moreover, the authors propose the extraction of methods
from blocks of code statements to replace them by method calls.

Sunyé et al. [SPLTJ01] are concerned with refactorings of UML models to increase their ex-
tensibility and therefore propose, for instance, to extract sub-states from UML state machines
by splitting them into a set of states and replacing or merging UML state machine transitions.
Boger et al. [BSF03] propose a refactoring browser for UML models that also supports refac-
torings of state machines, including the merging of states.

Finally, the work of Westhuizen and Hoek [vdWvdH02] is concerned with understanding archi-
tectural evolution and is especially focused on the identification and comprehension of replace-
operations applied on architectural elements during the ongoing development process.

The results of this classification as illustrated by Table 7.1 show that one is able to precisely
classify change operations for a later impact analysis with the help of our taxonomy. Our
taxonomy allows to extract and explicitly record the required information in a structured manner
and therefore supports the comprehension of changes.

90

7. Change Comprehension

7.3. Critical Discussion and Limitations

Finally, we discuss the two critical points of our approach for the modeling of change opera-
tions, namely its completeness and its applicability for real software development projects.

By utilizing our concept of atomic and composite change operations developers are enabled to
model any type of change and refactoring operation that might occur in practice. Our approach
allows for combining existing change operations into new types of operations, like for example
an add and a subsequent delete-operation are combined into a move-operation. To illustrate
this property of our approach, we applied our modeling concept during our case study for the
modeling of a series of refactoring scenarios that were applied on an existing software system
(see Section 10.2.3). Our case study required the modeling of various different kinds of change
operations, including typical refactorings like the splitting and merging of classes, but also
comprehensive changes required for the adaptation of existing Java source code to changed
APIs and meta-models. Therefore, our case study covered a wide range of typical changes
applied by developers that could easily be modeled using our approach.

Moreover, our case study has shown that even complex and extensive change scenarios can be
modeled with reasonable effort and that the outcome is still easily comprehensible by humans.
In fact, when applying changes on an existing system, developers have to think about how
to implement them in the first place anyway. Hence, the explicit modeling of the changes is
just a minor overhead as it requires developers to actually “write down” the changes before
implementing them. Therefore, we also deem our modeling approach as applicable for both
research and practice alike in this regard.

7.4. Summary

In this chapter we presented a concept how change operations can be modeled as sequences of
atomic and composite operations to accomplish Goal 4. Our atomic operations represent the
basic units of change, whereas composite operations are comprised of sequences of atomic and
other composite changes. Moreover, we introduced a set of basic atomic change operations
and a set of basic composite operations to enable the precise modeling of change operations as
required for typical software development tasks. Our atomic operations encompass the addition,
deletion, and modification of elements, whereas the set of composite operations is comprised of
move, merge, split, replace, and swap operations.

Secondly, we introduced a meta-model for change operations that implements our concept of
atomic and composite operations. This meta-model is realized as an EMF-model and goes in
line with the EMF-based modeling of the software artifacts under consideration and the EMF-
based modeling of their dependency relations as introduced in the previous two chapters.

Finally, we proposed a taxonomy for the classification of change operations consisting of four
distinct criteria. The taxonomy enables researchers to classify the changes under study accord-
ing our pre-defined criteria, which eases the comparison with other works. For practitioners our
taxonomy provides valuable information on how a change operation is structured and in which
context it may be applied, which is especially useful when developers are confronted with the
task of classifying changes for a later impact analysis.

91

8. Rule-based Impact Analysis

The following chapter introduces our novel rule-based change impact analysis approach that
is based on our research hypothesis presented in Section 4.1 and that addresses Goal 1 and
Goal 2 of this thesis. To begin with, we discuss the general concept of our approach and
how the propagation of changes is monitored by our approach. We illustrate how our novel
impact propagation approach allows developers to understand and retrace the propagation of
changes in order to meet Goal 3. Furthermore, we elaborate on our impact propagation rules,
their structure, and introduce a scheme how impact propagation rules can be defined to fulfill
Goal 5. At the same time, we also discuss the influence of the challenges outlined in Section
1.3 on the determination of impacts and the creation of impact propagation rules. Parts of the
research presented in this chapter were already discussed in [LFR12, LR12, LFR13, FLR14].
Novel contributions of this chapter are a) a thorough discussion of how the impacts of changes
are determined and b) the strict definition of a scheme for creating impact propagation rules.

The remainder of this chapter is organized as follows. Section 8.1 describes our approach for
computing the impacts of changes using the concept of impact propagation rules and explains
how developers are enabled to understand the resulting impact propagation. We discuss how the
effects of different types of changes can be determined in Section 8.2. Subsequently, Section 8.3
introduces the concept and structure of our impact propagation rules and presents a scheme for
developing impact propagation rules. Finally, in Section 8.4 the approach is critically discussed
and it is classified according to the taxonomy of impact analysis approaches as introduced in
Section 2.2 to enable an easy comparison with related work and to further outline its benefits.

8.1. Impact Propagation Concept

Our research hypothesis for studying the propagation of changes and for estimating their im-
pacts on heterogeneous software artifacts is based on the analysis of the interplay of change
operations, software artifacts, and dependency relations (see Section 4.1). Based on our hy-
pothesis we propose a concept to analyze this interplay with the help of impact propagation
rules that can be executed even before changes are applied on a software system and that are
able to determine the impacts resulting from those changes. Figure 8.1 illustrates the situation
developers are confronted with when changing software and outlines where the information
required by our impact propagation rules can be obtained from.

In our approach each impact propagation rule is designed to react on a specific combination
of change operations, software artifacts, and dependency relations and analyzes this interplay
in accordance to our research hypothesis. The two main functions of our impact propagation
rules are therefore to a) determine how the effects of changes propagate across the interplay
of software artifacts and b) to determine how the artifacts are affected by those changes. Each
rule consists of a set of conditions that encode the required dependency type, the change type

93

8. Rule-based Impact Analysis

Existing Software System

Artifact A2 Artifact A1
Dependency D1

[Artifact-Type a2] [Artifact-Type a1]

[Dependency-Type d1]

[Change-Type c1]

Artifact A3

[Artifact-Type a3]

Dependency D2

[Dependency-Type d2]

Applies C on A1

Change C

Developer

Reasons about impact of C on A3

Reasons about impact
of C on A2

Figure 8.1.: All information that are potentially available when determining the impacts of
changes

to be applied, the type of the artifact to be changed, and the type of the dependent and thus
potentially impacted artifact. Additionally, each rule contains information to determine how the
dependent artifact is impacted by the change. If a rule is triggered and all of its conditions are
met, it declares the dependent artifact as impacted by the initial change and determines how this
artifact is impacted according to the information encoded within the rule. To accomplish the
latter, an impact report is created that afterwards can be inspected by the software developers
conducting the impact analysis. Above all, this impact report provides information on the type
of the change that is required in the related software artifact as a reaction to the initial change
(i.e. the “impact”).

If the execution of a rule resulted in an impact being reported, the rule-based impact analysis
starts all over at the impacted artifact using the previously computed change type (i.e. the
impact) as the new change trigger. This propagation of impacts continues as long as further
rules are being triggered to react on new impact reports created during the impact analysis
process. Hence, our approach operates in a recursive manner when predicting the propagation
of changes. This concept enables our approach to better estimate the propagation of changes
across the different views on software as only the aforementioned interplay of the different
types determines where and how the impact of a change is being propagated to. Thus, one of
the core benefits of our approach is that, as long as proper impact propagation rules are supplied
to react on potential changes of software artifacts, any type of software artifact can be analyzed
by it. Figure 8.2 illustrates the above discussed recursive concept and highlights where manual
interaction is required and which parts of the approach are fully automated.

More importantly though, our rule-based propagation concept provides another improvement
which is one of its main differences when compared to existing impact analysis approaches.
In our approach, the type of impact resulting from the execution of a rule must not neces-
sarily equal the type of change that triggered the initial execution of the rule. For example,
merging two classes requires developers to adjust the data types of all the attributes and vari-
ables that were instances of the former classes. In this case, the initial change is a composite
merge-operation, whereas the resulting impacts are atomic property updates (see Section 7.1).

94

8. Rule-based Impact Analysis

Automated Approach

Developer Interaction

[no]

Specify change

Check if change
triggers any rule

Apply rules

Present impact to
developer

Feed impact back
as new trigger

[new impacts]

Developer Interaction

Select artifact to
be changed

Inspect impact
reports

Figure 8.2.: Overview of our impact analysis approach

Modifying the data types of those attributes and variables in turn requires developers to adjust
all the source code statements referring to them and so on. Consequently, this causes a mul-
titude of subsequent changes that are required for adapting the software system to the initial
change of merging the two classes. Yet, existing approaches try to estimate the propagation
of a single type of change operation across the entire software system. However, as software
is comprised of different types of artifacts, different views and perspectives, the initial change
will result in different types of impacts at different parts of the software system, which they are
therefore not able to grasp. In contrast, in our approach a single change may result in different
types of impacts being propagated to different parts of the software system, which is only de-
termined by the interplay of change types, artifact types, and dependency relations. Therefore,
our approach is able to determine the propagation of changes more reliably than existing ones
and it is independent of the actual artifacts to be analyzed.

Finally, we discuss the preconditions and requirements of our approach. First, all types of
software artifacts must be accessible to our impact propagation rules, which requires a com-
mon meta-model and a model repository as discussed in Chapter 5 to unify the heterogeneous
artifacts. Second, our approach requires that the dependencies between the software artifacts
have been recorded and that the types of the dependencies have been determined according to
the approach presented in Chapter 6. It furthermore requires that the changes to be applied
on the software artifacts have been modeled and classified according to our concept of atomic
and composite change operations and our taxonomy of change types as presented in Chapter 7.
Likewise, the impacts resulting from the changes must also be classified according to their type.

Similar to our rule-based dependency detection approach presented in Chapter 6, our concept of
impact propagation rules requires the rules to be set up in advance by developers or researchers.
Thus, it requires an initial manual effort for analyzing the interplay of changes, dependencies,
and software artifacts to formulate the rules. Therefore, to support the creation of such rules

95

8. Rule-based Impact Analysis

we discuss in detail how the impacts of changes can be determined in Section 8.2 and present a
scheme to guide developers when creating or maintaining impact rules (see Section 8.3.2).

8.1.1. Modeling the Change Impact

In contrast to existing works we also define what we understand of the term “change impact”
and how the impact of a change can be modeled in a structured manner. In accordance to the
initial definition of the activity of change impact analysis as established by Bohner [BA96], the
following excerpt of his definition can be reused for modeling the impacts of changes:

“Identifying [...] what needs to be modified to accomplish a change [BA96].”

Now for defining the impact of a change, we have to extend this part of the definition as follows:

“Identifying [...] what needs to be modified and how it needs to be modified to
accomplish a change.”

Thus, the structure of potential impacts is not different than the structure of the initial changes
and can be modeled accordingly. Consequently, our concept of atomic and composite change
operations as introduced in Chapter 7 can be applied for this purpose as well, which means that
the impacts of changes are modeled using sequences of add, delete, update property, move,
merge, swap, and replace operations [LFR12, LFR13]. For example, if two classes are about to
be merged (type of change: merge) all attributes and variables that are instances of one of these
classes should change their type in a similar manner (type of impact: update property).

A different approach for the classification of impacts is discussed by Wilkerson who distin-
guishes between direct and indirect impacts of changes [Wil12]. However, his taxonomy only
encompasses a small subset of changes that are applicable on source code and completely ne-
glects any changes and impacts on other software artifacts. Furthermore, in his taxonomy the
impacts of changes are semantically and syntactically distinguished from the actual changes,
which in turn limits its applicability. In contrast, with our approach of modeling impacts as
change operations we present a concept that allows impacts already determined by our ap-
proach to act as triggers for additional impacts. This enables our approach to better estimate
how the effects of changes spread across a software system and to more precisely capture the
iterative change and maintenance process of software developers.

8.1.2. Understanding the Change Impact

Apart from determining the impacts of changes and their propagation across the software sys-
tem, it is also important to enable developers to trace and understand this propagation and the
different effects of changes, as they are supposed to actually change the software based on the
computed impact assessments. However, as our investigation in Section 2.5 has turned out, re-
cent approaches for impact analysis fail to convey to developers why and how software artifacts
are impacted by changes, which stands in contrast to Goal 3 of this thesis.

Our rule-based approach that creates impact reports as explained in Section 8.1 accomplishes
Goal 3 by providing the necessary information for actually implementing the changes. Our
concept of impact reports provides developers with the following information:

96

8. Rule-based Impact Analysis

• Which artifact is impacted.

• Which type of change must be applied on it.

• Which artifact caused the impact.

• Which change operation caused the impact.

• Which dependency relation exists between the two artifacts.

• Which rule created the impact report.

To implement this approach, each impact report generated during the impact analysis process is
defined as a 5-tuple providing the following information:

• Source of the Change: defines the initially changed element that triggered the creation of
the impact report.

• Impact Target: defines the impacted element.

• Initial Change: stores a reference to the change that triggered the rule.

• Required Change: defines the change operation which must be applied on the impacted
element as a reaction to the initial change.

• Dependency: stores a reference to the dependency relation that carried the impact.

The creation of such impact reports is defined within our impact propagation rules and depends
on the artifacts and changes analyzed by them.

In stark contrast to our concept of impact reports, existing impact analysis approaches as dis-
cussed in Section 2.3 are only able to determine which artifacts are impacted by a change
without explicitly stating why and how. Only probabilistic approaches are moreover able to
determine the likelihood that an artifact is impacted by a change (see Section 2.3.4). However,
when compared to the information provided by our concept, they fail to convey the information
that are necessary for implementing the changes as no information are given how the impacted
artifacts should be changed. In contrast, in our approach developers are supplied with a list of
impact reports that reflect the propagation and overall impact of the initial change on the soft-
ware system. Moreover, the computed impact reports contain step-by-step instructions how the
software should be adapted in regard to the initial change operation.

Additionally, our concept of detailed impact reports even enables a (semi)-automated imple-
mentation of changes as we are going to discuss in Section 8.4.6.

8.1.3. Monitoring the Impact Propagation

One of the key challenges of our approach is to monitor the recursive propagation of changes
to prevent impacts from being mutually propagated between the same software artifacts in an
indefinite loop due to cyclic dependencies. As most software artifacts are typically dependent on
more than one other software artifact, the dependency relations between them may form a cyclic
graph. Thus, a change can be propagated anywhere within this graph and into any direction,
and it might even be propagated back to the initial trigger of the impact analysis. Consequently,
one has to keep track of the change propagation to break chains of mutual dependencies and to
ensure that each potential impact path is only taken once in reaction to the initial change.

97

8. Rule-based Impact Analysis

The naive solution of limiting the number of dependency relations that can be searched starting
from a given software artifact using a fixed cut-off distance (see Section 2.3.1.1) produces poor
results when applied on real software systems [LFR13]. Moreover, this approach does not truly
solve the problem of cyclic dependencies as iterations are allowed as long as the propagation
limit is not reached. Hence, to be best of our knowledge, no further research was conducted on
such approaches since the early 2000s.

This problem can only be tackled if one is able to keep track of those dependency relations that
have already been “visited” by propagation rules and those “impact paths” that have already
been explored and thus are no longer relevant for the impact propagation. Similar problems
are being studied in the fields of artificial intelligence and pathfinding in particular. A typical
pathfinding problem is to find a way from a given source node of a graph to a given destination
node while avoiding circles within the path itself and performing potential backtracking due to
dead-ends and obstacles. Therefore, in our approach we are blending pathfinding concepts into
the impact analysis process to record the “paths” already taken by the impact propagation in
order to identify and prevent potential infinite loops caused by cyclic dependencies.

A suitable and widely-used pathfinding algorithm that allows to keep track of already visited
paths is the A* -pathfinding algorithm [HNR68] that is nowadays often used for pathfinding of
virtual agents in environments such as 3D simulations and computer games [Mat02, Hig02].
Just like our impact propagation concept, A* operates in a recursive manner and thus allows
for nodes to be visited more than once. To keep track of the nodes that were already visited
and processed by the algorithm, A* maintains two lists: the ClosedList and the OpenList. The
ClosedList contains all nodes that have already been completely processed, whereas the Open-
List contains all nodes which are still to be inspected by A*. Each time a node of the graph
is investigated, the ClosedList is checked for whether the same node was already completely
processed before. If not, the node is added to the OpenList for further inspection.

For our impact analysis approach we adjust and reuse this concept as follows. The ClosedList
stores all impact reports whose effects on other software artifacts have been fully explored,
meaning that all directly related elements were visited by impact propagation rules and no di-
rectly dependent artifacts are left for inspection. In contrast, the OpenList stores all impact
reports where a further propagation of impacts might be possible and at least one dependent el-
ement is still left for inspection by our impact propagation rules. Whenever a new impact report
is created, the ClosedList is searched for entries containing the same elements. If such an entry
is found, the impact report is dropped from the OpenList and further propagation on this path is
stopped since is has already been computed before. The recursive propagation then continues
as long as the OpenList is not empty. Therefore, at the beginning of the impact analysis, the
initial change is transformed into an impact report and is inserted as the first element into the
OpenList, which then triggers the subsequent execution of our impact propagation rules.

This concept is illustrated by the example presented in Figure 8.3 that depicts the propagation
of a change and the changing contents of the OpenList and the ClosedList. In this example,
the node A is the initially changed artifact (step i) and its dependent artifacts are to be analyzed
whether they are impacted by this change. Thus, in a second step the artifacts B and D and their
dependencies towards A are examined by our rules (step ii), which is indicated by the grey el-
lipses that represent the current search space. Now we assume that D is impacted by the change
and therefore added to the OpenList (step iii), while the resulting impact is fed back as a new
change trigger into the propagation process. Consequently, the impact propagation recursively

98

8. Rule-based Impact Analysis

A D

B

E

C

F

D E

C

F

d1

d2

d3

d4

d5

d6

d7

d1

d2

d3

d4

d5

d6

d7

i)

ii)
A

B

A D

B

E

C

F

d1

d2

d3

d4

d5

d6

d7

iii)

A D

B

E

C

F

d1

d2

d3

d4

d5

d6

d7

iv)

A D E

C

F

d1

d2

d3

d4

d5

d6

d7

v)

B

Open-List:
[]

Closed-List:
[]

Open-List:
[]

Closed-List:
[]

Open-List:
[(A,d2,D)]

Closed-List:
[]

Open-List:
[(D,d4,C)]

Closed-List:
[(A,d2,D)]

Open-List:
[(C,d6,F)]

Closed-List:
[(A,d2,D), (D,d4,C)]

A D E

C

F

d1

d2

d3

d4

d5

d6

d7

vi)

B

Open-List:
[]

Closed-List:
[(A,d2,D), (D,d4,C), (C,d6,F)]

Figure 8.3.: The propagation of changes and the changing contents of the closed and open
list. Grey ellipses indicate the current search space. Grey nodes indicate impacted
artifacts

99

8. Rule-based Impact Analysis

restarts at this node by inspecting the nodes E and C, where C is declared as impacted and the
tuple (A, d2, D) is now added to the ClosedList since all directly dependent software artifacts are
explored (step iv). Finally, the propagation comes to an end once the OpenList is empty (step
vi), whereas the ClosedList contains the entire impact of the initial change applied on node A.

Finally, we present our modified version of the A*-algorithm that implements the above dis-
cussed concept and that is demonstrated as pseudo code by Listing 1. The modified algorithm
was initially published in [LFR13] and works as follows. In line 1 the initial change and the
artifact it is applied upon are inserted into the OpenList as the first impact report, while the
dependency, impacted artifact, and type of impact are left blank. Line 2 then checks if there are
impact reports left to be processed, which is true for the initial change as a new report has just
been added. In line 3 the actual impact propagation rules are applied on all directly dependent
artifacts, which potentially returns a list of further impact reports. Then, for all the impact re-
ports created by our rules lines 4 to 8 check whether they should be added to the OpenList or
if they have already been explored. Line 10 adds the initial impact report to the ClosedList as
all directly dependent neighbors of the changed software artifact have been explored. Finally,
in line 11 the initial impact report is dropped from the OpenList and the recursive propagation
continues using the next impact report from the OpenList or terminates if there is none.

Algorithm 1 Monitoring the recursive change propagation approach
1: openList.add(new ImpactReport(changedModel, change, null, null, null));
2: while (!openList.isEmpty()) do
3: List < ImpactReport > tmp = executeRules(openList.get(0));
4: for (i = 0; i < tmp.size()) do
5: if (!containsTuple(openList, tmp.get(i))) then
6: openList.add(tmp.get(i));
7: end if
8: end for
9: if (!containsTuple(closedList, openList.get(0))) then

10: closedList.add(openList.get(0));
11: openList.remove(0);
12: end if
13: end while

8.1.4. Impact Analysis Process

This section illustrates the change impact analysis process the approach presented in the previ-
ous sections is embedded into, to further outline where manual interaction is required and how
our prototype tool to be presented in the next chapter is incorporated into the impact analysis.

The actual impact analysis process is triggered by developers who have to select the software
artifacts they are going to change due to a given change request, bug report, etc. Secondly, they
have to specify the type of the change they want to apply on this software artifact using our
approach of atomic and composite change operations as explained in Chapter 7. Finally, they
have to trigger the execution of our impact propagation rules that compute the impacts of this
change. Once all the impacted artifacts were determined, a list of impact reports is presented to
them, based on which they can then modify the software artifacts under consideration. If further
impact analysis support is required during those modifications, the approach has to be restarted
at the first step.

100

8. Rule-based Impact Analysis

The process outlined above is also illustrated as a BPMN [OMG13] process diagram by Figure
8.4, which features the process participants Developer and our prototype tool EMFTrace (see
Chapter 9). We discuss the potential shortcomings of this process in detail in Section 8.4.2.3,
such as the influence of impacts on existing dependency relations and the necessity for re-
executing the dependency analysis due to changes of dependencies.

D
ev

el
o

p
e

r
EM

FT
ra

ce

Specifiy
change type

Select artifact
to be changed

Start impact
analysis

Perform impact
analysis

Inspect impact
reports

Implement
change

 ×

Figure 8.4.: The impact analysis process illustrated as a BPMN process diagram

8.1.5. Influence of the Challenges

In this section we discuss the influence of the challenges outlined in Section 1.3 on the proposed
rule-based change impact analysis approach. We therefore analyze how each challenge poten-
tially hampers the change impact analysis, discuss possible solutions to tackle those challenges,
and outline the implications if the challenges cannot be addressed in an adequate manner.

8.1.5.1. Varying Formalization

A varying degree of formalization among the different types of software artifacts restricts the
creation of impact propagation rules to address potential changes. Even though all types of
software artifacts can be transformed into EMF-based models (see Section 5.2.1), not all of them
can be accessed using the same structured approach afterwards. For example, defining an EMF-
based model for free text requirements is a trivial task, yet the information still remain “hidden”
within the text that offers no structural features and relations. Thus, a lack of formalization goes
hand in hand with a lack of proper impact propagation rules. In this case information retrieval
based approaches could be used as a potential fallback solution. However, they do not provide
any type information and are less useful due to their comparably high ratios of false positives
as discussed in Section 2.3.3. Consequently, not all types of software artifacts can be addressed
by a rule-based approach in accordance to the requirements of this thesis. Nevertheless, our
rule-based concept allows for analyzing free text using n-gram-matching and other text-based
operations (see Sections 6.4.4.2 and 8.3.1), which mitigates this limitation to a certain extent.
Additionally, most software artifacts of the solution space that are addressed by this thesis can
be analyzed by impact propagation rules as they adhere to a more thorough formalization than
most artifacts of the problem space (see Section 4.3.1).

101

8. Rule-based Impact Analysis

8.1.5.2. Incomplete Artifacts and Missing Information

The absence of information, such as missing properties and relations of software artifacts for
example, may restrict the applicability of our concept of impact propagation rules. Missing
information might result in impact propagation rules not being triggered when they are sup-
posed to, as the conditions encoded within the rules cannot be fulfilled. Likewise, the complete
absence of certain software artifacts can cause the same issue. For example, when a design
methodology was applied but not followed correctly and thus not all of the required artifacts
and dependencies were introduced, all impact rules that react on these combinations of artifacts
and dependencies will never be triggered. Consequently, the overall estimation of the impact
propagation will be incomplete. On the other hand, missing information do not affect the quality
of already determined impacts, i.e. they do not result in false-positives.

To the best of our knowledge there is no approach to cope with missing information in an
automated manner. Even developers conducting manual impact analysis face the same problem
as they cannot estimate the impacts of a change if the required information are missing. Instead,
one could use other techniques as a fallback mechanism, such as information retrieval based
approaches for example. Yet, there is no empirical evidence that these approaches are able
to cope with such situations, as the reported experiments were conducted with complete case
study subjects only, e.g. [PMFG09,GP10]. Other studies applying Bayesian belief networks for
impact analysis also reported that they were only partially able to cope with missing information
[ZWG+08]. Hence, the problem of missing information cannot be addressed by impact rules in
an adequate manner, nor by other approaches proposed up until now.

8.1.5.3. Inconsistencies between Artifacts and Views

The impacts of inconsistencies on our concept are twofold. First of all, potential inconsisten-
cies prevent our impact rules from being triggered due to the absence of (correct) dependency
relations between the inconsistent software artifacts. Likewise, inconsistencies between actu-
ally dependent software artifacts prevent the conditions encoded by our impact rules from being
fulfilled, such as for example when the names of the software artifacts are inconsistent (e.g. the
name of a UML class and its corresponding Java class do not match at all).

Secondly, inconsistencies might trigger the wrong impact rules, which in turn results in an
incorrect assessment of the impacts of a certain change, thus misleading the overall impact
propagation and eventually resulting in false-positives and missed impacts. In a similar fashion
inconsistent software artifacts may cause the impact rules to create the wrong types of impact
reports, which also leads to the above stated problems.

Yet, there is no comprehensive approach to cope with inconsistencies during change impact
analysis. Inconsistencies are too manifold to be successfully tackled in an automated man-
ner. There are, for example, “simple” inconsistencies due to the application of an inconsistent
naming scheme and the more severe conceptual inconsistencies (e.g. the modeled software ar-
chitecture is not reflected in the source code). While the influence of inconsistent names might
be mitigated by the usage of IR-based techniques (see discussions in the previous section), it is
hard to correct conceptual inconsistencies in an automated fashion. Consequently, we advocate
the usage of (semi)-automated impact analysis approaches prior to any changes to prevent such
inconsistencies.

102

8. Rule-based Impact Analysis

8.2. Determining the Effects of Changes

After introducing the general concepts of our approach in the previous sections we now elab-
orate on how the actual impacts of changes are determined based on the interplay of changes,
dependencies, and software artifacts. Consequently, the next important step of our approach
is to analyze and determine how different types of changes and dependencies influence the
propagation of impacts in order to formulate strict impact propagation rules.

In the following four sub-sections we discuss the different steps that can be applied for deter-
mining the effects of a certain change, where each step is focused on analyzing a certain aspect
of the dependency relations, change types, and software artifacts. The first step Analyzing the
Directions of Dependency Relations is aimed upon determining whether a certain relation prop-
agates a change or not. However, it does not always answer this question immediately. Thus,
our second step Analyzing the Origins of Dependency Relations assists with determining the
reason why a dependency has been introduced in the first place and therefore helps to determine
its role for the impact propagation. The third step Analyzing the Interplay of Changes and De-
pendencies finally determines if and how a change propagates across a dependency relation if
the previous steps were not able to determine these information. Finally, the last step Analyzing
the Interplay of Artifact Type and Change Type tailors the impact according to the concrete soft-
ware artifact that is impacted, which is then fed back into the recursive propagation and later on
handed to the developer in the form of a comprehensive impact report.

8.2.1. Analyzing the Directions of Dependency Relations

In a first step we examine the directions of dependency relations as they help to determine the
propagation of impacts to a certain extent. Therefore, one has to distinguish between two cases
when studying dependency relations: the directed and the undirected dependencies.

Undirected dependency relations either express equivalences and similarities between two soft-
ware artifacts, or they represent uncertain dependencies whose purpose could not be precisely
determined, which is why they lack a concrete dependency type.

If a dependency relation is undirected due to equivalences, the impact will spread in either of
the two directions, such as for example when a dependency was detected between a UML class
and its corresponding Java class. Consequently, the dependent software artifact demands for the
application of the same type of change operation which only has to be tailored according to the
specific type of the software artifact (see Section 8.2.4).

Imprecise relations whose type could not be determined are excluded from the impact analy-
sis process, as our concepts demand that the types of the dependency relations are explicitly
known. Incorporating such unclassified and potentially incorrect dependencies would most
likely introduce many false-positives to the estimated impact sets as no specific types of im-
pacts can be determined for them. This phenomena can be observed in approaches that propa-
gate changes across any dependency relation regardless of their type or direction, e.g. the work
of Bohner [Boh02a] as discussed in Section 2.3.1.1.

The effects of directed dependency relations entirely depend on the combination of change
type and dependency type and thus require further analysis. Hence, this discussion will be
interweaved with the discussion of their interplay with changes in the next sections.

103

8. Rule-based Impact Analysis

8.2.2. Analyzing the Origins of Dependency Relations

In a second step we analyze the origins of dependency relations, as the origin of a dependency
provides information on the background of the dependency and why this dependency exists
between certain software artifacts. Hence, these information also assist with determining further
change propagation and thus need to be discussed.

Meta-model Dependencies and Object Oriented Dependencies: the influence of dependen-
cies stemming from these origins is very similar. For the artifacts considered in this thesis
(UML models and Java source code) it is precisely the same. Since a meta-model or language
specification defines all the potential states of its instances, it also assists with determining the
effects of changes that were applied on artifacts of the same meta-model or language specifica-
tion. For example, the Java language specification demands to either delete or modify attributes
and variables after the class they instantiated was deleted. Consequently, these information can
be converted into impact propagation rules that are triggered by deleting classes.

Design Methodology dependencies: design methodologies define steps leading from one type
of software artifact (e.g. requirements) to another type of software artifact (e.g. architectural
design) to realize a certain aspect of a software system. Hence, these steps also apply when
developers change software. We illustrate this using the exemplary approach of Object Ori-
ented Analysis (OOA) [CY91] as discussed in Section 6.4.3.3. When applying OOA, the initial
step “Finding classes and objects” aims to define the classes that comprise the software, while
the later step “Identifying subjects” defines the system components to which these classes are
assigned. Now if one of these components is changed, the related classes require a similar treat-
ment as they originally resulted from the meanwhile modified component. Thus, by identifying
which step of a design methodology connects the dependent artifacts, one can potentially derive
an initial set of impact conditions and even determine the type of the resulting impact.

Multiperspective dependencies: the view or perspective a software artifact is associated with
helps to determine its purpose by providing its general context, e.g. whether it is expressing an
excerpt of the structure or behavior of a software system. These information in turn assist with
determining the effects of changes on software artifacts of a different perspective. For example,
a relation between an artifact of the structural view and an artifact of the behavioral view either
indicates that the behavioral artifact describes the functional features of the structural artifact
(e.g. a state chart diagram defining the legal states of a component’s port) or that the behavioral
artifact is an instance of a structural entity (e.g. a lifeline or actor that instantiates a class or
component). Therefore, if the reasons why and how both artifacts are dependent on each other
are clear, the effects of changes can be determined more easily. However, if both artifacts stem
from the same view this information is of no additional use because both are having the same
general purpose.

8.2.3. Analyzing the Interplay of Changes and Dependencies

The most important step when determining the effects of changes is to study the interplay of
change operations and dependency relations according to our research hypothesis. This can be
accomplished by studying the purpose of the involved dependency relations in regard to the
type of change to be applied. Therefore, we utilize our purpose-based taxonomy of dependency
types as introduced in Section 6.3 and our approach of modeling change operations based on

104

8. Rule-based Impact Analysis

the concept of atomic and composite operations as introduced in Section 7.1. In the remainder
of this section we discuss the effects of changes according to the nine general purposes of
dependencies that build the foundation of our dependency type taxonomy (see Section 6.3.1).

Abstraction Dependencies: the effects of abstraction relations are determined by their direc-
tion, for which we distinguish between two cases. First, changes applied on the more “abstract”
artifact have to be reflected by the “fine-grained” artifact as well, since this artifact “inherits”
parts of its content and concepts from it, regardless of the type of operation. For example,
every change applied on the base class of an inheritance hierarchy has to be reflected by all
of its sub-classes (e.g. when an attribute is deleted from the base class). Secondly, changing
the “fine-grained” artifact does not necessarily affect the more “abstract” artifact and depends
on the type of change. For example, adding methods to a sub-class does not affect the base
class, whereas changing the name of a component refining another component also affects the
refined component which should be renamed as well. Likewise, the splitting and merging of
“fine-grained” artifacts affects the “abstract” artifact in a similar manner. Table 8.1 summarizes
the impact propagation between the “abstract” artifact A and the “fine-grained” artifact B. The
exceptions of inheritance relations are marked by an ∗ to indicate their alternative impacts.

Change
applied on B

Impact on abstract
artifact A

Change
applied on A

Impact on fine-grained
artifact B

add to B no impact add to A add to B
delete B no impact delete A delete B
update B update A∗ update A update B
merge B merge A∗ merge A merge B
split B split A∗ split A split B
move B move A∗ move A move B
replace B replace A∗ replace A replace B
swap B swap A∗ swap A swap B

Table 8.1.: Impact propagation based on abstraction-dependencies. Inheritance relations are not
impacted by this type of change (∗)

Structural Dependencies: the direction of structural dependencies determines their influence
on the propagation of changes. If the artifact that contains or aggregates other artifacts (i.e. their
“container”) is deleted, all its “content” must be deleted as well. If containers are merged into
one, all their content must be moved to the merged container. In contrast, if a container is split,
all its content must be moved to the container that resulted from the split-operation. Changes
affecting the container (i.e. the opposite direction) are the deletion of contained elements or
the movement of contained elements to other containers. However, the splitting or merging of
contained content does not affect the container itself, as all the functionality provided by the
modified content still remains within the container. Table 8.2 summarizes the impact propaga-
tion between the containing artifact A and the contained artifact B.

Realization Dependencies: there are two different cases of realization-dependencies between
which we have to distinguish. The first case encompasses artifacts that are instances of others,
such as that a variable or attribute is an instance of a class. The second case encompasses
artifacts that implement the concept represented by a different artifact, for example Java classes
implementing UML use case actors or classes implementing interfaces. The first case typically
demands for an impact that is different than the original change, as for example the renaming,

105

8. Rule-based Impact Analysis

Change
applied on B

Impact on container
artifact A

Change
applied on A

Impact on contained
artifact B

add to B no impact add to A no impact
delete B update A delete A delete B
update B no impact update A no impact
merge B no impact merge A move B
split B no impact split A move B
move B update A move A no impact
replace B update A replace A delete B
swap B update A swap A no impact

Table 8.2.: Impact propagation based on structural-dependencies

splitting or merging of classes requires to modify the data types of all attributes, variables, and
method parameters that are instances of these classes. The second case demands for applying
the same type of operation on the related artifact. For example, changing a method defined by
an interface demands for changing all (class)-methods that implement this method. Therefore,
Table 8.3 only summarizes the impact propagation for the first case, i.e. between the artifact A
and one of its instances B.

Change
applied on B

Impact on realized
artifact A

Change
applied on A

Impact on realizing
artifact B

add to B no impact add to A no impact
delete B no impact delete A delete B
update B no impact update A update B
merge B merge A merge A update B
split B split A split A update B
move B no impact move A no impact
replace B no impact replace A replace B
swap B no impact swap A swap B

Table 8.3.: Impact propagation based on realization-dependencies

Definition Dependencies: when determining the effects of definition-dependencies, one has to
distinguish between the effects of delete, merge, split, and replace operations. Property updates,
additions, and swap operations on the other hand can be neglected, as they do not affect neither
of the two artifacts when applied on the other. The delete operation is “direction sensitive”
as the “defined” elements have to be deleted when the element defining them is deleted, for
example when an interface is deleted that defined several operations. The same applies to the
merge operation, where the “defined” artifacts have to be moved if the artifacts that defined
them were merged. When splitting the defining artifact, the artifacts that are defined by them
either have to be moved to another artifact or they have to be split as well, which depends on
the exact type of the software artifact. When replacing the defining artifact, the artifacts that
are defined by them either have to be deleted or moved to the artifact that replaced the initial
defining artifact, which again depends on the artifacts the change is applied upon. Table 8.4
outlines the impact propagation between artifact A and artifact B that is defined by it.

106

8. Rule-based Impact Analysis

Change
applied on B

Impact on defining
artifact A

Change
applied on A

Impact on defined
artifact B

add to B no impact add to A no impact
delete B no impact delete A delete B
update B no impact update A no impact
merge B no impact merge A move B
split B no impact split A move or delete B
move B no impact move A move B
replace B update A replace A move or delete B
swap B no impact swap A no impact

Table 8.4.: Impact propagation based on definition-dependencies

Behavioral Dependencies: the effects of behavioral relations depend on the exact sub-cluster
they stem from. Yet, the influence of Examination and Utilization dependencies is the same
and is furthermore direction sensitive. This means that each change applied on an artifact that
is either used or examined by another artifact has to be reflected by the other artifact as well.
For example, adding an additional parameter to a method requires all code statements calling
this method to add this parameter as well. In contrast, changes applied on the artifacts that
examine or utilize other artifacts do not affect the other artifacts. Table 8.5 summarizes the
impact propagation between artifact A and the used or examined artifact B.

Change
applied on B

Impact on examin-
ing/using artifact A

Change
applied on A

Impact on used/exam-
ined artifact B

add to B no impact add to A no impact
delete B update A delete A no impact
update B update A update A no impact
merge B update A merge A no impact
split B update A split A no impact
move B update A move A no impact
replace B update A replace A no impact
swap B update A swap A no impact

Table 8.5.: Impact propagation based on examination- and utilization-dependencies

Dependencies of the Creation cluster have a much more diverse effect on the propagation of
changes. Therefore, let software artifact A create, delete or transform software artifact B. When-
ever artifact B is changed in any way, artifact A has to be equally adapted in order to ensure that
B is correctly created, deleted or transformed by A. For example, the constructor of a class must
be updated if a new attribute is added to the class. The same applies when B is split, merged,
replaced or swapped. On the other hand, if artifact A is deleted or replaced, artifact B has to be
removed as well. Likewise, if artifact A is split, artifact B must be split as well. However, up-
dating, merging or moving artifact A does not affect artifact B. Table 8.6 summarizes the impact
propagation between artifact A and artifact B that is either created, deleted or transformed by it.

Similarity Dependencies: dependency relations stating that two software artifacts are similar
or equivalent to each other require that every change operation is propagated between them in
a similar fashion. Therefore, no further discussions of certain types of changes are necessary.

107

8. Rule-based Impact Analysis

Change
applied on B

Impact on creating/delet-
ing artifact A

Change
applied on A

Impact on created/deleted
artifact B

add to B update A add to A no impact
delete B no impact delete A delete B
update B update A update A no impact
merge B update A merge A no impact
split B update A split A delete or split B
move B update A move A no impact
replace B update A replace A delete B
swap B update A swap A delete or update B

Table 8.6.: Impact propagation based on creation-dependencies

For example, if there exists an “Is-Equivalent-To” relation between a UML class and a Java
class each change applied on the UML class has to be reflected by the Java class and vice versa.
Otherwise inconsistencies between the architecture and implementation would arise.

Evolutionary Dependencies: evolutionary relations are currently not addressed by our type-
based impact analysis approach. This is due to the reason that the existence of a common
version history cannot be taken as granted for the heterogeneous software artifacts, since UML
models, requirements, source code, etc. typically not evolve in the same version control system.
Moreover, their interplay with different types of changes cannot be determined since nothing
can be stated about the true purposes of evolutionary couplings.

Conditional Dependencies: the effects of conditional relations depend on their exact purpose.
For example, deleting an element which is part of a conflict-relation might resolve the conflict,
whereas deleting an element of a contribution-relation has the opposite effect on the system.
However, these types of relations are currently excluded from this thesis’ research as they are
mostly focused on artifacts of the problem space, whereas this thesis is solely focused on the
solution space (see discussions in Section 4.3.1).

Causation Dependencies: such dependencies are not considered by the approach presented
in this thesis, as they describe dependencies resulting from impacts on software artifacts. In
our approach, however, such relations are never created, as our rule-based concept directly
determines the effects of changes and is able to react on new types of impacts created during
the impact analysis due to its recursive rule-based propagation concept.

8.2.4. Analyzing the Interplay of Artifact Type and Change Type

Finally, after analyzing the interplay of change types and dependency types to determine if
and how a change propagates to dependent artifacts, one still needs to determine the true types
of the resulting impacts, i.e. the resulting change operations that are required to maintain the
consistency of the dependent artifacts. Based on the interplay of change type and dependency
type one can determine how a dependent artifact is impacted, which, however, must be tailored
according to the actual type of the dependent artifact. For example, if artifact A “refines” artifact
B and B is about to be “renamed”, then A has to be “renamed” as well. Yet, dependent on the
type of A, different types of rename-operations are required in order to precisely determine the
impact of the change. For example, if a UML component refines a UML use case system the

108

8. Rule-based Impact Analysis

resulting change operation would be “Rename component”. In contrast, if a UML class refines
the same UML use case system the resulting change operation would be “Rename class”.

Although this step might seem obvious at first, tailoring the resulting impacts is important for
three reasons. First of all because the resulting change operations might act as triggers for
further change propagation, hence precise type information are required. Secondly, the final
impact set is presented to a developer who should be able to unambiguously comprehend and
implement the resulting changes. Finally, it is also possible to realize a (semi)-automated imple-
mentation of the resulting impacts (see discussions in Section 8.4.6), which therefore requires a
strict classification of the necessary change operations.

8.3. Impact Propagation Rules

In this section we introduce the aforementioned impact propagation rules that implement our
concept of type-based impact analysis. First, we explain the general structure of our rules in
Section 8.3.1 and demonstrate their relation to our dependency detection rules as presented in
Section 6.4.4. Secondly, in Section 8.3.2 we discuss a scheme for developing impact propa-
gation rules which is based on the discussions of the previous sections to accomplish Goal 5.
Finally, we present several exemplary rules to further illustrate our concepts of impact propa-
gation rules and recursive impact propagation in Section 8.3.3. Moreover, Appendix B lists all
the impact propagation rules that accompany this thesis. They can also be obtained from the
website of our prototype tool [EMF14].

8.3.1. Structure of the Rules

The impact propagation rules presented in this thesis are derived from our dependency detection
rules as introduced in Section 6.4.4.1, since they already encode the required dependency rela-
tions and the software artifacts involved in the dependency. Therefore, the impact propagation
rules inherit their structure from the dependency detection rules, i.e. they are comprised of the
same three parts: ElementDefinition, QueryDefinition, and ResultDefinition. Furthermore, they
utilize the same query operators as defined in Section 6.4.4.2. Yet, they have to be extended with
means for analyzing change operations and dependencies according to our research hypothesis.

Our impact rules analyze the interplay of changes, dependencies, and software artifacts as fol-
lows. First, with the help of the ModelRelatedTo and ModelUndirectedRelatedTo operations
our rules are able to analyze the dependency relations connecting the dependent software ar-
tifacts. Secondly, the changes to be applied are analyzed by an ValueEquals condition that is
added to each rule to compare the name of a given change operation with the type of change
that should be addressed by a rule. Finally, the types of the related software artifacts do not
need to be specifically addressed by additional query conditions as they are already specified in
the ElementDefinition-part of the rules.

The major difference between our dependency detection rules and our impact propagation rules
resides in the ResultDefinition-part of the impact propagation rules, as they trigger the creation
of impact reports in response to changes, whereas our dependency detection rules create trace-
ability links. However, apart from that there are no conceptual differences between the two

109

8. Rule-based Impact Analysis

types of rules. Therefore, the impact propagation rules are also able to query and assess the
structure and properties of software artifacts, as well as the dependency relations between them.

The reasons why a custom rule-concept was chosen to implement our rule-based impact analysis
approach (and not OCL as for example by Briand et al. [BLOS06]) are the same as already
discussed for our dependency detection rules in Section 6.4.4.1.

8.3.2. Definition of Impact Rules

In order to accomplish Goal 5 and to support the practical applicability of our impact analysis
approach we have to provide a scheme for defining the required impact propagation rules. The
scheme presented in this thesis can be utilized for creating further impact propagation rules to
address additional software artifacts that are not yet considered by this thesis, such as configu-
ration files or ontologies for instance.

In contrast to our scheme for defining dependency detection rules as introduced in Section
6.4.4.3, the proposed scheme for defining impact propagation rules is conceptually different. As
stated in the previous section, our impact propagation rules are based on existing dependency
detection rules for two reasons: they already contain the required dependencies and they already
contain the required types of software artifacts. What is still missing are means to address
potential change operations, which is why the rules have to be extended in this regard.

This extension is accomplished by computing the cross product of a dependency detection rule
and all types of meaningful change operations that can be applied on the source artifact of the
encoded dependency relation. In the context of our research by the term “meaningful opera-
tions” we refer to change operations that actually occur in practice. In contrast, an example
for a non-meaningful operation is the application of a split-operation on an attribute of a class.
Thus, the following formula describes how the set of potential impact propagation rules (PIR)
can be obtained from a set of existing dependency detection rules (DR) and the change opera-
tions (AC) that are applicable on the source artifacts of the dependency relations:

PIR := {DR× AC} (8.1)

Once a set of potential impact propagation rules has been established, the effects of each change
operation in regard to the type of the dependency relation and the types of the involved software
artifacts must be determined. This step is supported by the outcome of our discussion of the
effects of different types of changes in Section 8.2. Finally, the following seven steps should be
taken when defining impact propagation rules:

• Step 1 - Identify the relevant changes that are applicable on the source artifact. To
reduce the set of potential impact propagation rules it is first of all necessary to exclude
changes that are not applicable on the source artifact of a dependency detection rule.

• Step 2 - Compute the cross product of the dependency detection rule and all possible
change operations that are applicable on the source artifact. By constructing the cross
product of both sets one obtains the final set of potential impact propagation rules.

• Step 3 - Determine the effects of each change on the dependent artifact. For each of
the potential changes to be applied on the source artifact of a dependency relation one has

110

8. Rule-based Impact Analysis

to determine whether they impact the related artifact and if so, how they impact it. The
impact guidelines as discussed in Section 8.2 assist with this task.

• Step 4 - Specify the type of the change to be analyzed. An additional ElementDefinition
has to be added to the rule in order to address the change operation to be analyzed by it.

• Step 5 - Adjust the query conditions encoded by the rule. The query-conditions en-
coded in the rule must be revised to query the change operation and the dependency
relation connecting the software artifacts addressed by the rule.

• Step 6 - Define the impact report to be created by the rule. The ResultDefinition-part
of the rule must be changed in order to create Impact Reports instead of traceability links.

• Step 7 - Validation. We suggest that each rule should undergo a thorough test and eval-
uation process prior to its application in real software development projects. This can be
accomplished with the help of real world case studies and artificial mock projects.

8.3.3. Example Scenario

In the remainder of this section we present a set of exemplary impact propagation rules to further
illustrate our approach. We discuss from which dependency detection rules they were derived
from and how they interact to determine the impacts of changes.

In Listing 6.6 in Section 6.4.4.1 we already presented an exemplary dependency detection rule
(TR Mth 009) to elicit implementation-dependencies between methods of classes and methods
of interfaces (see also Figure 6.4 in Section 6.4.3.2). Due to this dependency, the changes that
are applied on one of the methods should be reflected by the other method as well. Therefore,
the cross-product of the dependency detection rule and potential changes is computed. One of
the resulting impact propagation rules is IR Mth 017 that is illustrated by Listing 8.1 below.

<Rule D e s c r i p t i o n =”Rename t h e i m p l e m e n t a t i o n o f t h e method ” RuleID=” IR Mth 017 ”>
<Elemen t s t y p e =” M e t h o d D e c l a r a t i o n | O p e r a t i o n ” a l i a s =” e1 ”/>
<Elemen t s t y p e =” M e t h o d D e c l a r a t i o n | O p e r a t i o n ” a l i a s =” e2 ”/>
<Elemen t s t y p e =” AtomicChangeType ” a l i a s =” e3 ”/>
<C o n d i t i o n s>

<B a s e C o n d i t i o n t y p e =” Va lueEqua l s ” s o u r c e =” e3 : : name” t a r g e t =” ” v a l u e =”Rename method ”/>
<B a s e C o n d i t i o n t y p e =” ModelRela tedTo ” s o u r c e =” e2 ” t a r g e t =” e1 ” v a l u e =” Implements ”/>

</ C o n d i t i o n s>
<Ac t i on a c t i o n T y p e =” R e p o r t I m p a c t ” r e s u l t T y p e =”Rename method ” s o u r c e =” e1 ” im pa c t =” e2 ”/>

</Rule>

Listing 8.1: Propagating rename-changes between methods of interfaces and classes

This impact propagation rule reuses the structure of the dependency detection rule TR Mth 009
but replaces its ActionDefinition to create impact reports. Likewise, a new ElementDefinition
was added to address the change operation.

Yet, a rename-operation does not just affect the implemented method, but also potential unit
test cases and the equivalent UML operations in class diagrams (see Figure 8.5). Therefore,
additional impact propagation rules have to be derived from our dependency detection rules to
address those changes. For example, impact rule IR Mth 016 is deployed to propagate rename-
operations between Java and UML methods (see Listing 8.2). Likewise, impact rule IR Mth 018
as presented in Listing 8.3 is able to determine potential impacts on unit tests.

111

8. Rule-based Impact Analysis

RuleEngine

logger

+ init()
+ executeRules()

<<interface>>
IRuleEngine

+ executeRules()

RuleEngineUnitTest

setUp()
tearDown()
+ testExecuteRules()

<<tests>>

Figure 8.5.: Renaming the interface-method executeRules would impact the class-method exe-
cuteRules, which in turn would impact the JUnit test-method testExecuteRules

A typical scenario that involves all three rules could be triggered by a developer who is renam-
ing the method of an interface, which in turn would trigger rule IR Mth 017 that declares the
corresponding class-method as being impacted by this change. This in turn would trigger rules
IR Mth 016 and IR Mth 018, which, based on the impacted class-method, would determine the
potential impacts of the initial change on unit tests and on related UML-operations respectively.

<Rule D e s c r i p t i o n =”Rename t h e c o r r e s p o n d i n g UML/ Java method ” RuleID=” IR Mth 016 ”>
<Elemen t s t y p e =” M e t h o d D e c l a r a t i o n | O p e r a t i o n ” a l i a s =” e1 ”/>
<Elemen t s t y p e =” M e t h o d D e c l a r a t i o n | O p e r a t i o n ” a l i a s =” e2 ”/>
<Elemen t s t y p e =” AtomicChangeType ” a l i a s =” e3 ”/>
<C o n d i t i o n s>

<B a s e C o n d i t i o n t y p e =” Va lueEqua l s ” s o u r c e =” e3 : : name” t a r g e t =” ” v a l u e =”Rename method ”/>
<B a s e C o n d i t i o n t y p e =” M o d e l U n d i r e c t e d R e l a t e d T o ” s o u r c e =” e2 ” t a r g e t =” e1 ” v a l u e =” I s−

E q u i v a l e n t−To”/>
</ C o n d i t i o n s>
<Ac t i on a c t i o n T y p e =” R e p o r t I m p a c t ” r e s u l t T y p e =”Rename method ” s o u r c e =” e1 ” im pa c t =” e2 ”/>

</Rule>

Listing 8.2: Propagating rename-changes between Java and UML methods

<Rule D e s c r i p t i o n =”Rename t h e t e s t method of t h e method ” RuleID=” IR Mth 018 ”>
<Elemen t s Type=” M e t h o d D e c l a r a t i o n | O p e r a t i o n ” A l i a s =” e1 ”/>
<Elemen t s Type=” M e t h o d D e c l a r a t i o n | O p e r a t i o n ” A l i a s =” e2 ”/>
<Elemen t s Type=” AtomicChangeType ” A l i a s =” e3 ”/>
<C o n d i t i o n s>

<B a s e C o n d i t i o n t y p e =” Va lueEqua l s ” s o u r c e =” e3 : : name” t a r g e t =” ” v a l u e =”Rename method ”/>
<B a s e C o n d i t i o n t y p e =” ModelRela tedTo ” s o u r c e =” e2 ” t a r g e t =” e1 ” v a l u e =” T e s t s ”/>

</ C o n d i t i o n s>
<Ac t i on a c t i o n T y p e =” R e p o r t I m p a c t ” r e s u l t T y p e =”Rename method ” s o u r c e =” e1 ” im pa c t =” e2 ”/>

</Rule>

Listing 8.3: Propagating rename-changes between methods and test-methods

8.4. Critical Discussion and Limitations

In this section we address the potential limitations and threats to the validity of our proposed
impact analysis approach. We are therefore discussing the correctness and the completeness
of our set of impact propagation rules and the influence of dependency relations on the impact
analysis approach. For the latter we especially focus on the effects of missing and incorrect
dependency relations. Additionally, we analyze the complexity of our approach and classify it
according to our taxonomy for change impact analysis approaches. Furthermore, we analyze
the costs of applying our approach and discuss possible extensions of the approach.

112

8. Rule-based Impact Analysis

8.4.1. Impact Rules

The following three sections address the potential implications of ambiguous, incomplete, in-
correct, and missing impact propagation rules for the proposed impact analysis approach.

8.4.1.1. Ambiguous Impacts

The change impact analysis approach presented in this thesis assumes that there is only one
type of impact resulting from a specific combination of change operations, software artifacts,
and dependency relations. In practice, however, developers might favor alternate solutions that
are not reflected by our current rules. This assumption constraints our approach and might limit
its applicability as it potentially results in false-positives and missed impacts.

There are five different approaches to cope with ambiguous impacts if there is more than one
impact propagation rule to react on a certain change.

1. One could apply all the n different impact rules to assess the impact of a certain type
of change, which in turn results in n potentially different impact sets which have to be
inspected by the developers, i.e. they have to decide for one of the alternatives. However,
the benefit of its easy implementation is counteracted by the resulting manual effort.

2. The ambiguous rules could be entirely excluded from the impact analysis. Hence, the
precision of our approach would increase, however at the cost of sacrificing its recall and
thus resulting in missed impacts. This, however, contradicts with our goal of identifying
all the artifacts that are impacted by a change and is thus less feasible in practice.

3. The developers could directly participate in the impact analysis process by automatically
presenting ambiguous cases to them and letting them decide which rule is to be applied.
Thus, whenever there is more than one rule to react on a given change, they have to chose
between a set of rules according to the current situation. Consequently, this approach
results in additional manual effort but at the same time improves the efficiency of the
impact analysis in ambiguous situations.

4. If the developers are allowed to chose which rules are to be applied (see third option
above), their choices could be recorded to afterwards compute the likelihood that a certain
rule is always chosen in a given situation. Thus, after recording and processing a sufficient
amount of developer decisions, probabilistic reasoning could be applied to automatically
select a specific rule when there are several potentially suitable rules available.

5. As a further derivation of the 4th option, one could also apply the probabilistic concept to
only suggest or recommend certain rules to the developers while leaving the final decision
to them. In doing so, the developer is still in control but is able to benefit from his previous
actions and thus requires less time to take a decision.

Although we did not implement or evaluate any of the above listed solutions, the third option
seems most promising as it allows for a tighter integration of change impact analysis into the
workflows of software developers. Given that a suitable probabilistic approach can be found,
the fifth option might be applied as well, if it results in a significant reduction of manual effort.

113

8. Rule-based Impact Analysis

8.4.1.2. Correctness of the Impact Rules

The second factor that might hamper the applicability of our approach is the correctness of the
impact propagation rules that implement the analysis of the interplay of changes and dependen-
cies. We identified three potential threats to the correctness of our impact rules that are almost
identical to the threats to our dependency detection rules as discussed in Section 6.6.2:

• A rule triggers when it is not supposed to.

• A rule fails to trigger when required.

• A rule determines the wrong type of impact.

The first two threats both point towards the same underlying problem, namely that the assumed
interplay of change types, dependency types, and artifact types encoded within a rule is incor-
rect. Thus, the rule has to be revised. Our concept of impact reports assists developers with
tracing the propagation of impacts and therefore allows them to determine the incorrect impact
reports based on the software artifacts, dependency relations, and changes that are encoded in
each impact report. If an incorrect impact report is identified, the rule that created this report
is revealed too since each report is linked with the responsible rule. Once the incorrect rule is
identified, it can be revised according to the results of our discussion of the effects of changes
in Section 8.2 and our scheme for developing impact propagation rules (see Section 8.3.2).

The third case requires a different treatment as the impact that is determined by a rule is not cor-
rectly encoded, i.e. either the wrong type of impact or the wrong impacted element is specified
in the rule. Consequently, the ActionDefinition-part of the rule should be revised.

Moreover, since developers are able to retrace the propagation of changes and their impacts by
inspecting the generated impact reports, they are able to spot false-positives more easily when
compared to other approaches that do not provide these information, since no impact analysis
approach will ever achieve a precision of 100%.

8.4.1.3. Completeness of the Impact Rules

The third category of threats to the validity of our approach is characterized by the absence
of rules implementing the interplay of certain types of changes, artifacts, and dependencies.
Hence, the obvious consequence of a missing rules is that the impact of a certain change cannot
be entirely forecast, which in turn will render the overall impact estimation incomplete as well.

In order to ensure that the set of impact rules accompanying this thesis is as complete as possible
and to facilitate the addition of new impact rules, we established a guideline for the creation of
impact rules in Section 8.3.2. If a change that is not covered by any rule is observed during the
application of our approach, the necessary rule(s) can be created according to our guidelines,
added to the set of already available rules, and can then be applied on any software system
thereafter. Moreover, with our approach of computing the cross-product of an existing depen-
dency detection rule and the change operations that can be applied on the artifacts addressed by
the rule, we provide complete coverage of all the dependency relations that exist between those
software artifacts, which cannot be guaranteed by other impact analysis approaches.

On the other hand, the completeness of our rule catalog cannot be measured or determined in
a theoretical manner, though. However, as the upcoming evaluation in Chapter 10 will show,

114

8. Rule-based Impact Analysis

the current rule catalog already provides solid coverage of many types of changes and software
artifacts. Furthermore, an earlier version of this rule catalog was applied in an initial case study
reported in [LFR13] and has been enhanced with yet missing rules due to ongoing research.

Additionally, even though our catalog of impact rules might not be complete and thus never
achieve a recall of 100%, it at least provides developers with a good estimate of the impacts of a
change and allows them to inspect those software artifacts and dependencies more closely that
are considered as being impacted to identify potentially missing impacts.

8.4.2. Influence of Dependency Relations

In the following we are discussing the implications of missing and incorrect dependency re-
lations on the proposed impact analysis approach, since the detection of dependency relations
is no trivial task and faces various obstacles (see discussions in Section 6.6). Secondly, we
illustrate how the impacts of changes influence dependency relations and how these impacts on
dependencies can be addressed.

8.4.2.1. Missing Dependencies

We have to distinguish between two types of worst-case scenarios that revolve around missing
dependencies. First, if no dependency relations at all were made explicit our impact analysis
approach cannot be applied. Secondly, if the actually present dependency relations have only
been partially recorded, then only a subset of our impact rules can be applied, which in turn
results in an incomplete estimation of the overall impact of a change.

Both issues can only be addressed by providing reliable means for multiperspective dependency
detection. Therefore, we developed a comprehensive approach for detecting dependencies that
is able to analyze the different sources and types of dependency relations, as well as the different
properties of software artifacts (see Section 6.4). In contrast to other dependency detection
approaches, our approach takes into account a combination of structural and textual information
of software artifacts, as well as already existing relations between them, and is thus able to
detect more and more fine-grained dependencies (see Section 6.6.1). In a similar fashion in
our approach we consider four distinct sources of potential dependency relations which, to the
best of our knowledge, is not done by other works. Consequently, our approach covers a wider
variety of dependency relations, which is also confirmed by our case studies on rule-based
dependency detection (see Section 6.5).

If still no dependency relations can be recorded other impact analysis techniques might be
applied instead. However, the majority of the proposed approaches also depends on explicit
dependency information and therefore suffers from the same limitations (see Section 2.3).

8.4.2.2. Incorrect Dependencies

The quality and correctness of the impact assessments computed by our approach also depends
on the quality of the underlying dependency relations that are used to determine the propagation
of changes. In contrast to the absence of dependencies, the presence of incorrect dependencies
may mislead the recursive impact propagation as the wrong impact rules could be triggered.

115

8. Rule-based Impact Analysis

Consequently, the estimated overall impact will be incorrect as well. Likewise, incorrect de-
pendencies may cause the wrong type of impact to be detected by our impact propagation rules.

Thus, the precision of our approach also depends on the precision of our dependency detec-
tion rules that are being used for eliciting the dependencies. However, we already discussed
the threats to the correctness of our dependency detection rules in Section 6.6.2 and outlined
potential solutions to mitigate the effects of incorrect dependency detection rules.

Finally, when we compare our rule-based approach to other impact analysis techniques as re-
viewed in Section 2.3, the precision of most approaches is also directly tied to the quality of the
analyzed dependency relations, which is why they share the same potential limitation.

8.4.2.3. Impacts on Dependencies

The impacts of changes do not only influence software artifacts, such as UML diagrams or Java
source code, but also the dependency relations between them. However, the approach presented
in this thesis does not yet address these impacts on dependency relations. Our approach cur-
rently assumes that the dependency relations are to be re-detected after changes were applied on
the system in order to capture the modified dependencies and to remove possibly outdated de-
pendencies. Thus, the frequent re-detection of dependencies might introduce a certain overhead
to the entire change impact analysis process. This overhead is partially reduced by the auto-
mated approach for multiperspective dependency detection as introduced in Chapter 6, which
can be executed immediately after changes were applied on the software artifacts.

However, maintaining and updating dependency relations during the evolution of software is
not in the scope of this thesis and is being dealt with in a different field of research, namely
traceability maintenance. A detailed discussion of this specific maintenance problem can be
found in the works of Mäder et al. [MRP06a, MGP08, M0̈9] and in the work of Murta et al.
[MvdHW06]. Nevertheless, we will refer back to this problem when we discuss how future
works can extend the concepts presented in this thesis in Section 11.3.

8.4.3. Cost Trade-Off of the Approach

Our approach also demands for a discussion of its overall costs issued by the effort required
for transforming the software artifacts into EMF-based models, importing them into the model
repository, eliciting their dependencies, and applying the impact propagation rules. The un-
derlying question is whether these costs are higher than the costs inflicted by incomplete or
incorrect implementations of changes. One could argue that, if the costs of our approach are
higher, no impact analysis or pure manual analysis should be conducted instead.

It is, however, obvious that this discussion cannot be based on real (monetary) figures taken
from existing projects as they would hardly be comparable in practice. Moreover, such figures
would also be hard to obtain since no one would implement the same change twice using two
different approaches. Instead, we discuss the conceptual effort issued by our approach and put
it into relation with other benefits that can be drawn from the data generated by our approach,
such as the explicit dependency relations for example.

116

8. Rule-based Impact Analysis

Most of our approach’s effort is spent on the detection of dependencies and the later application
of our impact propagation rules. However, the effort for the detection of dependencies is not in
vain as the recorded dependencies can be reused for multiple purposes. They can be utilized for
regression testing [FLR14], program comprehension [BFV00], program visualization [LM12],
and the documentation of design decisions [GLR14]. They also support the traceability that
is required to comply to software development standards, such as IEEE830-1998 [Ins98a] for
instance. Moreover, once an initial set of dependencies is discovered, a suitable approach for
maintaining these dependencies can be applied, making the frequent re-detection of dependen-
cies obsolete and thus further reducing the overall costs of our approach.

The costs of the actual change impact analysis stand in contrast to costs issued by potential bugs
and system failures, which of course cannot be forecast. However, there are various examples
of accidents that were caused by software failures after changes were applied on the systems.
These failures eventually resulted in enormous costs and in the loss of human life that could
have been prevented by proper impact analysis. A rather tragic example is a series of incidents
caused by software updates applied on a cancer radiation therapy machine resulting in radia-
tion overdoses killing and severely injuring several people [LT93]. Additionally, our approach
allows developers to simulate alternative solutions for a given problem if a change can be imple-
mented in different ways. Therefore, it provides additional benefits over more time consuming
manual analyses, which do not allow for simulating such alternatives with reasonable effort.

The only case when the costs of the impact analysis and all of its necessary preprocessing steps
are higher than potential gains are very simple change scenarios that can easily be resolved by
developers. In such cases the overhead of applying our approach will be much higher than the
effort for implementing the changes right away without conducting any impact analysis. Like-
wise, when only source code is available the inspection of program dependencies as provided
by modern IDEs (e.g. Eclipse) might be sufficient to support the implementation of changes.

8.4.4. Complexity of the Approach

Next to the efficiency of our approach in terms of precision and recall (see our evaluation in
Chapter 10) we also report on its theoretical space and time complexity. Therefore, we first
illustrate the worst case scenario in regard to our recursive rule-based impact analysis in which
every artifact of a software system is potentially dependent on any other artifact of the same
system. Thus, the whole set of dependencies forms one comprehensive graph that is equivalent
to the transitive closure of all dependencies. Consequently, there are n(n − 1)/2 edges (i.e.
dependency relations) in a graph containing n nodes (i.e. software artifacts).

The space complexity of our approach can be estimated by calculating the space complexity of
executing a single impact propagation rule, as in our concept only one rule is executed at a time.
Furthermore, the memory consumption of our modified A*-algorithm that is applied to monitor
the recursive rule application adds to the overall space complexity of the approach. Since our
impact propagation rules are directly derived from our dependency detection rules, they share
the same space complexity, namelyO(n2) (see Section 6.6.4). The maximum space required by
the modified A*-algorithm can be determined as follows. Since there are n(n−1)/2 dependency
relations that can be inspected by our rules and each relation can carry an impact only once, the
maximum size of the OpenList and ClosedList stored by our modified algorithm also equals
n(n − 1)/2. Therefore, the total worst case space complexity of our approach computes to

117

8. Rule-based Impact Analysis

n2 + n(n− 1)/2 + n(n− 1)/2, which finally results in the following:

s(n) = O(n2) (8.2)

Due to our recursive propagation concept, the time complexity of our approach is computed in a
different way. Therefore, we have to compute the time complexity of executing a single rule and
determine how often the rules are being executed. Additionally, the overhead of the modified
A*-algorithm must be taken into account as well. The first question is easily answered as our
impact propagation rules are derived from our dependency detection rules, thus both possess the
same worst case time complexity of O(n2). The second question demands for a more thorough
discussion of what is happening in the worst case when there are n(n − 1)/2 dependencies.
When our approach is applied on this set of relations, the recursive propagation inspects each
dependency relation and executes all impact rules on each dependency relation. However, due
to our concept, each dependency relation can propagate an impact only once, thus each impact
rule is maximally executed n(n − 1)/2 times. Thirdly, the computational overhead issued by
our modified A*-algorithm accounts every time a rule creates an impact report as the ClosedList
has to be searched for the same element, which requires n(n− 1)/2 operations. Therefore, the
time complexity is computed as n(n− 1)/2 · (n2 + n(n− 1)/2), which leads to the following
overall worst case time complexity of our rule-based impact analysis approach:

t(n) = O(n4) (8.3)

8.4.5. Classification of the Approach

In this section we classify the presented approach according to our taxonomy of impact anal-
ysis approaches as introduced in Section 2.2. By classifying our own approach, we facilitate
its comparability with other approaches proposed in the literature, which in turn assists with
outlining its contributions and may help developers or researchers deciding for an approach.

• Scope of Analysis: code, architecture, test cases

• Granularity of Artifacts: adaptable

• Granularity of Changes: add, delete, update, move, merge, split, swap, replace

• Granularity of Results: adaptable

• Utilized Technique: rule-based analysis

• Tool Support: Eclipse-based EMFTrace

• Supported Languages: Java, UML, JUnit

• Style of Analysis: search-based

• Scalability - Time complexity: O(n4)

• Scalability - Space complexity: O(n2)

• Experimental Results - Size: 25 kLOC, 124 unit tests, 40 UML diagrams, 210 changes

• Experimental Results - Precision: 90.96%

• Experimental Results - Recall: 93.96%

118

8. Rule-based Impact Analysis

• Experimental Results - Computation Time: 5 minutes

8.4.6. (Semi)-Automated Change Implementation

Our concept of impact propagation rules and the impact reports created by them offer an addi-
tional advantage, as they allow for a (semi)-automated implementation of changes. Instead
of presenting the impact reports to developers only, one could also directly implement the
changes encoded within them in an automated fashion, given that an adequate processing con-
cept is available. Our impact reports contain the necessary information for implementing most
changes, such as the artifact to be changed and the type of the change to be performed. Thus, a
wide variety of change operations could already be automated with the given concept, such as
add, delete or rename operations. Even complex operations, such as merging or splitting inter-
faces and classes, could be realized to a certain extent. For example, the refactoring operation
of “merging two classes” could be fully automated except for providing a meaningful name to
the new class. Hence, certain types of change operations would still require manual interference
by developers. All other sub-operations, such as moving all the methods and attributes to the
merged class or deleting the 2nd class after the merge, can be fully automated by utilizing our
change type taxonomy and the information provided by the impact reports.

However, this concept is out of the scope of the thesis at hand which is focused on providing
a reliable mechanism for studying the propagation of changes. Nevertheless, this thesis can
provide the basis for a (semi)-automated approach for the implementation of changes.

8.5. Summary

In this chapter we presented our novel approach for conducting multiperspective change impact
analysis in order to accomplish Goal 1, Goal 2, and Goal 3 of this thesis. We illustrated how
a set of impact propagation rules can be utilized for estimating the propagation of changes and
their impacts on the interplay of different types of software artifacts and how this propagation
can be computed in a recursive manner. We discussed how this recursive propagation strategy
is monitored and how the impact reports created by our concept enable developers to under-
stand the resulting impact propagation. Moreover, the impact propagation rules were presented
and discussed in regard to their structure and origin and a step-wise guide was developed for
creating additional impact propagation rules to accomplish Goal 5. The proposed approach
was classified according to our taxonomy for change impact analysis approaches as presented
in Section 2.2 to facilitate the comparison of our approach with other change impact analysis
approaches. Finally, the critical points of the presented approach were discussed, its time and
space complexity were analyzed, and potential directions for further research were outlined.

119

9. The EMFTrace Prototype

This chapter presents the prototype tool EMFTrace that implements the approach proposed
in this thesis. This chapter is organized as follows. Section 9.1 presents an overview of the
tool and explains its purpose, while Section 9.2 discusses the main use cases EMFTrace has
been developed for. Subsequently, Section 9.3 explains the overall architecture and the main
components of our prototype and discusses the extensibility of our architecture. Finally, Section
9.4 reports on the current status of EMFTrace and outlines ongoing and future development.

9.1. Overview

EMFTrace was initially developed for performing automated traceability mining among UML,
OWL, and URN models using a rule-based approach [Leh10, BLR11, RBFL11]. EMFTrace
is build upon the Eclipse Modeling Framework (EMF) [EMFa] that provides a common meta-
model on which all the software artifacts can be mapped upon (see Section 5.2.1). It extends
the EMFStore model repository [EMFc] that is used for managing the heterogeneous software
artifacts in a centralized manner. Furthermore, the Eclipse Client Platform (ECP) [ECP] sup-
plies the basic components of the user interface of EMFTrace. The entire tool is programmed
in Java and is comprised of several Eclipse plug-ins.

EMFTrace was continuously developed and extended to implement the novel concepts pre-
sented in this thesis. It supports the rule-based dependency detection (see Chapter 6), rule-based
impact analysis (see Chapter 8), and the distinct modeling of dependency relations (see Chapter
6) and change operations (see Chapter 7).

Additionally, EMFTrace offers the following features:

• Import of Java source code and JUnit test cases from the Eclipse IDE.

• Import of various design models from different CASE tools, e.g. UML models.

• Creation and validation of dependency detection rules.

• Creation and validation of impact analysis rules.

• Basic maintenance support for traceability links.

• Visualization of dependencies and transitive dependency chains.

EMFTrace is an open source project published under the Eclipse Public License (EPL) [EPL]
and is available for download on Sourceforge [EMF14]. EMFTrace currently supports and
interacts with the following case tools and IDEs as shown in Figure 9.1.

121

9. The EMFTrace Prototype

Eclipse Modeling Framework (EMF)

jUCMNav pure::Variants Visual Paradigm Eclipse UML2 Tools Protégé

EMFTrace

EMFStore
Repository

MoDisco

 Our part

 3rd party

 Artifacts

Eclipse IDE

XSLT Model Conversion Adapter

Java JUnit URN Feature

Models

UML UML OWL

Change

Types

Dependency

Types

Traceability

Links

Rules Software

Artifacts

Eclipse Client Platform
(ECP)

Dependency Detection

Impact Analysis

Figure 9.1.: EMFTrace and its relation to other 3rd party frameworks and tools

9.2. Typical Use Cases

In the following sections we describe the three main use cases of EMFTrace and illustrate how
EMFTrace supports software developers when they are analyzing and maintaining software
systems. It is assumed that the underlying EMFStore repository is already populated with the
elements to be analyzed, as this section is solely focused on the application of EMFTrace for
typical software maintenance and reengineering tasks. For detailed descriptions of how EMF-
Trace supports the population of EMFStore with various types of software artifacts, we refer to
the online documentation of EMFTrace1 and to the online documentation of EMFStore2.

9.2.1. Automated Dependency Detection

Developers need to be aware of potential dependency relations between software artifacts when
they are analyzing and changing software systems. We therefore provide them with the required
means for eliciting those dependencies using our prototype tool that implements the comprehen-
sive rule-based concept for multiperspective dependency detection as introduced in Chapter 6.
Consequently, EMFTrace provides means to execute dependency detection rules and to record
the resulting dependency relations as traceability links. The following steps should be taken by
developers in order to execute the automated dependency analysis:

1. Import dependency detection rules into EMFTrace.

1https://sourceforge.net/p/emftrace/wiki/Home/
2http://eclipse.org/emfstore/documentation.html

122

9. The EMFTrace Prototype

2. Select the rule(s) to be applied.

3. Select the software artifact(s) to be searched.

4. Start the execution of rule(s).

The developers are guided by Eclipse UI wizards during each of the above listed tasks to in-
crease their productivity and to limit human error. Figure 9.2 presents an actual screenshot of
EMFTrace while executing rules and extracting dependencies. Once the extraction is done, all
the obtained links can be visualized, which is further explained in the next section.

Figure 9.2.: EMFTrace while searching for dependency relations (screenshot)

9.2.2. Program Comprehension

Once the dependency relations are explicitly recorded, developers must be enabled to browse,
query, and comprehend them. Understanding the relations can best be supported by providing
an appropriate visualization concept for them. Related works on software visualization already
proposed a variety techniques for visualizing dependency relations (e.g. [Kos03], [GC08], and
[LM12]), out of which EMFTrace implements two visualization concepts. EMFTrace provides
a fish-eye-view [Fur86] of the direct dependencies of a certain software artifact and a second
view for visualizing transitive chains of dependency relations. Developers have to execute the
following steps in order to browse and explore the dependencies:

1. Execute the dependency analysis (see previous section).

2. Select the model of interest and bring up its context menu.

3. Select “Show Model Dependencies” from the menu.

EMFTrace allows developers to browse through all the dependencies in a step-wise manner
(fish-eye-view) or to render all the dependencies into one comprehensive graph. For the most
time, developers ought to prefer the fish-eye-view as holistic dependency graphs tend to be too
complex for comprehension. Figure 9.3 provides a screenshot illustrating how both visualiza-
tion techniques are implemented by EMFTrace.

123

9. The EMFTrace Prototype

Figure 9.3.: Visualization of direct dependencies using the fish-eye-view (left) and transitive
dependency chains (right) in EMFTrace (screenshot)

9.2.3. Change Impact Analysis

After analyzing the software artifacts for dependencies, developers might want to change a
certain artifact and assess the impacts of this change. Therefore, EMFTrace also implements
the impact analysis approach presented in Chapter 8 and guides the developers through the
impact analysis process with the help of various Eclipse-based wizards and dialogs. Developers
have to follow the steps listed below in order to perform the change impact analysis:

1. Import a set of impact analysis rules into EMFTrace.

2. Select the model to be changed.

3. Select the type of change to be applied on the model.

4. Start the rule execution.

5. Inspect the generated impact report(s).

EMFTrace then applies the impact analysis rules according to the approach introduced in Chap-
ter 8. After the impact analysis rules were executed, the developers will be informed about the
amount of impacted artifacts and they will be supplied with comprehensive reports that state
why and how certain software artifacts are impacted by the initial change. Before the impact
analysis is executed, however, the developers can chose whether they want to receive one com-
prehensive impact report or rather a set of reports (i.e. one for each impacted software artifact).
Figure 9.4 provides a screenshot of conducting impact analysis using EMFTrace.

9.3. Architecture

This section provides a brief overview of the architecture of EMFTrace and elaborates on how
it can be extended in future work.

As previously stated, EMFTrace is based on Eclipse technology, most notably the Eclipse plug-
in concept. It extends the EMFStore repository by providing additional features that are hooked
into the existing EMFStore client. This provides potential users with a unified view and reduces
the amount of tools they have to deal with. Overall, EMFTrace consists of four plug-ins:

124

9. The EMFTrace Prototype

Figure 9.4.: Performing impact analysis when changing the return type of the method “addEle-
ment” that is centered on the screen (screenshot)

• org.emftrace.core: contains the core functionality provided by EMFTrace.

• org.emftrace.ui: contains extensions to the user interface of EMFStore.

• org.emftrace.metamodel: contains the meta-models supplied by EMFTrace.

• org.emftrace.metamodel.edit: contains the editor code to manipulate these models.

The functional core of EMFTrace is comprised of five main components that are displayed by
Figure 9.5 and are explained in the remainder of this section.

<<component>>
EMFTrace

<<component>>
AccessLayer

<<component>>
LinkManager

<<component>>
ReportManager

<<component>>
RuleEngine

<<component>>
ImpactAnalyzer

<<component>>
EMFStore

<<artifact>>

UML Metamodel

<<artifact>>
Java Metamodel

<<artifact>>
Change Metamodel

<<artifact>>
Dependency
Metamodel

Figure 9.5.: The core components of EMFTrace

The AccessLayer is the core component of EMFTrace. It acts as a wrapper for EMFStore by
providing access to all the models deposited in the repository. Moreover, it provides a set of
operations to simplify the querying for relations, attributes, and the structure of those models.

The RuleEngine is the 2nd core component next to the AccessLayer. It is responsible for
executing the dependency detection rules (see Section 6.4) and the impact analysis rules (see

125

9. The EMFTrace Prototype

Section 8.3). It offers features for executing the query conditions of our rules and for joining
the results of different query conditions afterwards. Furthermore, it also provides means for
validating the rules prior to their application (i.e. performing syntax checking).

The LinkManager is responsible for creating and maintaining traceability links that express
dependencies. It is able to search for existing links to prevent the creation of duplicated entries
and it can repair or remove broken or outdated links. Additionally, it allows to search for
transitive relations between a set of links that are then grouped by a trace (see Section 6.2).

The ReportManager is responsible for creating different types of reports, such as impact
analysis reports and consistency checking reports. Its functionality is therefore similar to the
LinkManager, i.e. it allows for creating and validating reports.

The ImpactAnalyzer implements the proposed recursive rule-based impact propagation ap-
proach as introduced in Section 8.1 and the distance-based impact analysis approach as dis-
cussed in Section 2.3.1.1 due to the 2nd goal of our case study (see Section 10.1.2).

The internal architecture of EMFTrace is realized as illustrated by Figure 9.6. All core com-
ponents extend the TraceComponent that is responsible for granting access to the AccessLayer-
component and furthermore provides a comprehensive logging mechanism. Any new feature
that shall be added to EMFTrace can thus extend the TraceComponent to obtain full and com-
fortable access to the models stored in the repository along with the optional logging features.

 1

AccessLayer

LinkManager

accessLayer

ReportManager

RuleEngine

ImpactAnalyzer

TraceComponent

Figure 9.6.: The internal structure of the core components of EMFTrace

9.4. Status and Summary

In this chapter we discussed our prototype tool EMFTrace that implements the two main con-
cepts and innovations introduced in this thesis: multiperspective dependency detection and
multiperspective impact analysis. EMFTrace extends the EMFStore model repository and is
comprised of five main components that provide means for applying rules for dependency de-
tection and impact analysis, and support the evolution of traceability links. The architecture
of EMFTrace is extensible and allows for the addition of new components to support new use
cases. EMFTrace is still subject to ongoing development and improvement. Further develop-
ment is currently focused on two aspects: replacing the current rule-processing infrastructure by
query-frameworks, such as EMF Query [EMFb], and improving the dependency visualization.

126

10. Evaluation

The change impact analysis approach proposed in thesis and all the impact rules that were de-
veloped during the course of this thesis’ research were evaluated by a comprehensive case study
which is discussed in this chapter. During the course of this case study various reengineering
and maintenance measures were applied to an existing software system, while our approach
was deployed to forecast the impacts of those changes. Afterwards, the output of our approach
was compared against the true impacts of the changes as determined by manual analysis and
the output computed by other tools and approaches. Overall, our evaluation follows the Goal
Question Metric approach [BCR94] and the guidelines for conducting and reporting case study
research in software engineering [RH09].

This chapter is organized as follows. First, we present our research goals and research questions
in Section 10.1 and discuss the design of our evaluation in Section 10.2. We then present the
results of our study in Section 10.3 and interpret and explain them in Section 10.4. Finally, we
discuss and address potential threats to the validity of our case study in Section 10.5.

10.1. Goals and Research Questions

In this section we present the two research goals that act as drivers for our evaluation. We
further present the measures, metrics, and hypothesis that are related to these goals in order to
conduct our evaluation.

10.1.1. RQ1: Support for Heterogeneous Software Artifacts

Is the proposed change impact analysis approach able to predict the impacts of changes that
are applied on multiperspective software systems?

First and foremost, we need to evaluate if our impact analysis approach is able to correctly deter-
mine the impacts of changes that are applied on heterogeneous software artifacts. We therefore
apply changes on different types of software artifacts and study the resulting impact propaga-
tion, where our approach should achieve reliable results for each kind of software artifact. This
is achieved by comparing the results computed by our approach against the results determined
by an “oracle”. This research question directly corresponds to Goal 1 and Goal 2 of this thesis.

10.1.1.1. Measures

There are two important measures when determining the impacts of changes, the Actual Im-
pact Set (AIS) and the Estimated Impact Set (EIS). The AIS encompasses the set of impacted

127

10. Evaluation

software artifacts as determined by the oracle [AB93]. This set constitutes the true impact of a
change and is obtained for each change operation (AISi). In contrast, the EIS denotes the set
of impacted software artifacts as determined by the impact analysis algorithm [AB93]. Con-
sequently, this set might contain false-positives or lack impacted artifacts, depending on the
quality of the impact analysis. This set is also obtained for each change operation (EISi).

10.1.1.2. Metrics

The empirical evaluation of our impact analysis approach can be accomplished by utilizing
the metrics of precision and recall that are based on the previously defined AIS and EIS. The
precision-metric (P) determines the correctness of the computed impact sets. Hence, we have
to determine the precision for each change operation Pi and the global average precision P� as
follows.

Pi =
|EISi∩AISi|
|EISi| P� =

n∑
i=1

Pi

n

Similarly, the recall-metric (R) determines whether all impacted software artifacts were identi-
fied by an impact analysis algorithm. Likewise, we have to determine the recall for each change
operation Ri, as well as the global average recall R� as follows.

Ri =
|EISi∩AISi|
|AISi| R� =

n∑
i=1

Ri

n

In order to answer RQ1, we have to determine the precision and recall of our approach per type
of software artifact (e.g. component, method, use case, etc.) and set it in relation to the global
average precision and recall of our approach. Hence, we also have to determine the average
precision per type of software artifact Pt, the average recall per type of software artifact Rt, and
the standard deviation of precision sd(P) and recall sd(R) respectively.

sd(P) =

√
n∑

i=1
(Pi−P�)2

n−1 sd(R) =

√
n∑

i=1
(Ri−R�)2

n−1

Finally, we can determine the deviation of precision per type of software artifact d(Pt) and the
deviation of recall per type of software artifact d(Rt) as follows.

d(Pt) = |P� − Pt| d(Rt) = |R� −Rt|

10.1.1.3. Hypotheses

We apply statistical hypothesis testing to answer our research question. Thus, we have to es-
tablish a null hypothesis H0 that must be rejected through significance testing. We reject the
null hypothesis H0 and instead prefer the alternative hypothesis Ha if the data collected during
our evaluation supports the null hypothesis H0 with a probability of α = 0.05 or less. Our null
hypothesis H0 regarding RQ1 is that the deviation of recall and precision for at least one type

128

10. Evaluation

of software artifact is greater than the total standard deviation of recall and precision, which
means that our approach is dependent on the software artifacts to be analyzed and is thus hardly
generalizable. The alternative hypothesis Ha states that the deviation of recall and precision for
each type of artifact is lower or equal compared to the standard deviation of precision and recall
(see Table 10.2). In this case our approach would achieve similar and stable results for each
type of software artifact. The hypothesis is tested by Student’s one-sided one-sample t-test.

Variable Null hypothesis H0 Alternative hypothesis Ha

deviation of precision ∃d(Pt) : |d(Pt)| > |sd(P)| ∀d(Pt) : |d(Pt)| ≤ |sd(P)|
deviation of recall ∃d(Rt) : |d(Rt)| > |sd(R)| ∀d(Rt) : |d(Rt)| ≤ |sd(R)|

Table 10.2.: Tested hypotheses to answer RQ1

10.1.2. RQ2: Performance Improvements

Does the proposed rule-based impact analysis approach result in better precision and recall
than existing dependency-based impact analysis approaches?

Apart from comparing the results of our approach against the oracle, we also need to find out
how our approach compares to other dependency-based impact analysis approaches to demon-
strate its benefits in terms of better precision and recall. Therefore, we compare our approach
against the concept of distance-based impact analysis as proposed by Bohner [Boh02a] (see
also Section 2.3.1.1). The reasons why this approach was chosen are manifold. First, we cannot
apply MSR-based techniques due to the lack of a common version history (see Section 2.3.2).
Second, other dependency-based techniques, such as call graph analysis or program slicing, are
only applicable on source code (see Section 2.3.1). Third, like our approach Bohner explicitly
takes into account design and code and is thus comparable in regard to its goals.

The point is that a more sophisticated approach like ours should yield better results, as otherwise
the more simple solution could be utilized instead. For this purpose we apply the distance-based
change impact analysis approach with a propagation distance of 2, which is based on empirical
results of Hassaine et al. [HBG+11] who studied the propagation distance of various change
operations. This research question also corresponds to Goal 1 and Goal 2 of this thesis.

10.1.2.1. Measures

For answering this research question we apply the same measures as for RQ1. In addition,
however, we also have to consider the impact sets computed by the distance-based approach
(EISdbi). Thus, for a better distinction, we refer to the impact sets computed by our rule-based
approach as EISrbi instead of just EISi. The actual impact sets (AISi) remain the same.

10.1.2.2. Metrics

In order to answer RQ2 we have to compute the global average precision and recall for both
techniques, which can be accomplished by using the same formulas as for RQ1. The precision

129

10. Evaluation

(Prb) and recall (Rrb) of our rule-based approach can be taken from RQ1 (Prb = P�, Rrb =
R�), while the precision and recall of the distance-based approach are determined as follows.

Pdb =

n∑
i=1

|EISdbi
∩AISi|

|EISdbi
|

n
Rdb =

n∑
i=1

|EISdbi
∩AISi|

|AISi|

n

10.1.2.3. Hypotheses

The null hypothesis H0 regarding RQ2 is that the precision and recall of our rule-based ap-
proach is lower or equal compared to the precision and recall of the distance-based approach.
Consequently, the alternative hypothesisHa states that the precision and recall of our rule-based
approach is greater than the recall and precision of the distance-based approach. The hypoth-
esis is tested by Welch’s t-test for two independent samples with different variance (results of
rule-based approach vs. results of distance-based approach). The α-value remains at 0.05.

Variable Null hypothesis H0 Alternative hypothesis Ha

Precision Prb ≤ Pdb Prb > Pdb

Recall Rrb ≤ Rdb Rrb > Rdb

Table 10.3.: Tested hypotheses to answer RQ2

10.2. Study Design

In this section we outline how our evaluation was conducted. We describe the refactorings and
changes that were applied on our case study subject, and how the oracle or golden standard for
comparing the results was built. First, however, we introduce our case study subject.

10.2.1. Case Study Subject

In order to thoroughly evaluate our approach in a real world context we had to identify a suitable
software system that could be utilized as a test system. This section outlines the search process
for possible case study candidates and explains how and why we selected the final candidate.
Our requirements for such a case study candidate were defined as follows:

• The project should be accompanied by heterogeneous software artifacts.

• The project should have evolved for several years (i.e. no academic toy projects).

• The project should be freely accessible, i.e. no closed-source software.

• The project should be in need of changes, e.g. the addition of new features.

• The project should provide support for implementing the changes in order to determine
the oracle for the change impact analysis.

130

10. Evaluation

Thus, we carried out a search for open source projects that could be used as potential candidates
for our case study. We analyzed open source hosting platforms like SourceForge1 for suit-
able projects, as well as several websites of academic research projects, such as CoCoME (see
Section 6.5.1). Finally, we identified 20 potentially suitable open source projects that were ana-
lyzed in detail based on our requirements. However, it turned out that the majority of the studied
projects is only accompanied by source code artifacts, while no UML diagrams, test cases or
other models are being provided. Secondly, we were not able to identify relevant change sce-
narios for all of the studied projects for various reasons, such as insufficient documentation or
missing contact to the original contributors of the project. Thus, only artificial changes could
have been applied. Thirdly, most academic projects did not qualify as candidates either, because
they were too small in size. Moreover, for projects only providing source code it would have
been possible to reverse engineer architectural diagrams; however, the resulting 1-1 mapping
between architectural components and source code components would not have provided a re-
alistic context for our study. Consequently, we selected our own research prototype EMFTrace
which is developed in a joint effort of the Ilmenau University of Technology and the University
of Hamburg as case study subject for the following reasons:

• The project provides source code, architectural diagrams, and a rich set of unit tests.

• The project was in need of various refactoring and maintenance measures.

• The project evolved for more than 4 years and was frequently changed by various devel-
opers (employees and students of both universities).

• The whole project is freely available under the Eclipse Public License [EPL].

• The author of this thesis possesses decent knowledge of the internals of EMFTrace since
he has been involved in its development for more than 4 years and is thus able to plan,
implement, and validate the necessary changes.

A summary of EMFTrace and its internal structure was already presented in Chapter 9 of this
thesis. Furthermore, Section 6.5.1 and Table 6.6 in particular provide an overview of the avail-
able types of software artifacts and the complexity of EMFTrace. Links to the source code of
EMFTrace before and after applying the changes can be found in Appendix C.1.

10.2.2. Evaluation Process

According to the underlying hypothesis of our impact analysis approach (see Section 4.1), we
have to investigate how the interplay of change types, dependency types, and artifact types
influences the propagation of changes. To accomplish this, we applied a series of refactoring
activities and other change operations on our case study subject to address new requirements, fix
remaining defects, etc. with the overall goal of evaluating our approach in a real world context.
Before we elaborate on the change scenarios in the next section, this section briefly summarizes
our evaluation process which consisted of the following seven steps:

1. Identifying the necessary changes to be applied on EMFTrace.

2. Designing the change operations and refactoring scenarios.

3. Constructing the oracle for each change, i.e. defining the AIS.

1http://www.sourceforge.net

131

10. Evaluation

4. Applying and testing the changes on EMFTrace to verify the AIS.

5. Executing our impact analysis approach to obtain the EIS.

6. Comparing the results of our approach against the oracle.

7. Assessing the gathered data according to our research goals.

10.2.3. Change Scenarios

The following sub-sections describe the intention and the structure of our changes. We are also
listing the software artifacts and views that are addressed by them.

10.2.3.1. Scenario 1: Refactoring of the Impact Analyzer Components

Since being a research prototype, EMFTrace is subject to frequent and spontaneous changes in
order to implement and test new hypothesis and research approaches. As a result of extending
EMFTrace while conducting a preliminary case study on change impact analysis, several impact
analysis algorithms were integrated into EMFTrace. Later on it turned out that this addition of
multiple algorithms introduced cloned data and functionality to the system. Hence, a refactoring

TraceComponent

<<interface>>
IImpactAnalyzer

+ performImpactAnalysis

DistanceBasedImpactAnalyzer

+ registerReportManager
+ disconnectReportManager
+ performImpactAnalysis

<<tests>>

TypeBasedImpactAnalyzer

+ registerReportManager
+ disconnectReportManager
+ performImpactAnalysis

AbstractImpactAnalyzer

+ registerReportManager
+ disconnectReportManager
+ performImpactAnalysis

DistanceBasedImpactAnalyzer

+ performImpactAnalysis

TypeBasedImpactAnalyzer

+ performImpactAnalysis

<<interface>>
IImpactAnalyzer

+ performImpactAnalysis

TraceComponent

DistanceBasedImpactAnalyzerTest

+ testRegisterReportManager
+ testDisconnectReportManager
+ testPerformImpactAnalysis

<<tests>>

TypeBasedImpactAnalyzerTest

+ testRegisterReportManager
+ testDisconnectReportManager
+ testPerformImpactAnalysis

AbstractImpactAnalyzerTest

+ testRegisterReportManager
+ testDisconnectReportManager
+ testPerformImpactAnalysis

<<tests>>

DistanceBasedImpactAnalyzerTest

+ testPerformImpactAnalysis

TypeBasedImpactAnalyzerTest

+ testPerformImpactAnalysis

<<tests>>
<<tests>>

Figure 10.1.: The class hierarchy of impact analyzers before (left) and after (right) the
refactoring

of the impact analysis infrastructure was required in order to comply to general software quality

132

10. Evaluation

standards and to improve the maintainability2 and evolvability3 of EMFTrace.

The general architecture of EMFTrace’s impact analysis infrastructure before and after the
refactoring is illustrated by Figure 10.1. The applied refactoring represents the classical case of
extracting a common base class from a set of similar classes [Fow99]. We had to identify suit-
able attributes and methods to be moved to the common base class, redesign the class hierarchy
accordingly, and update the remaining system thereafter.

This scenario is focused on the structural view and the behavioral view (see Figure 4.2) of EMF-
Trace and takes place on its architectural level. The concrete change operations of this scenario
are modeled according to our approach presented in Chapter 7 and are listed in Appendix C.2.

10.2.3.2. Scenario 2: Extraction of a Cache Component

The AccessLayer-component of EMFTrace is responsible for encapsulating and providing ac-
cess to the models stored in the EMFStore repository (see Section 9.3). During the initial devel-
opment of EMFTrace a cache was added to the AccessLayer in order to speed up the processing
of rules and other operations. However, due to the concept of “separation of concerns” [Dij82],
it was decided to extract this cache and instead establish it as a distinct component of EMF-
Trace. Hence, all the data structures representing the model element cache and all the asso-
ciated functions had to be moved to this new component, along with all the JUnit test cases.
Likewise, every access to the cache in the remaining code of the AccessLayer had to be revised
accordingly.

This scenario is focused on the structural view and the behavioral view (see Figure 4.2) of EMF-
Trace and takes place on its architectural level. The concrete change operations of this scenario
are modeled according to our approach presented in Chapter 7 and are listed in Appendix C.3.

10.2.3.3. Scenario 3: Replacement of the Logging Features

During the initial development of EMFTrace in 2010 a simple logging mechanism was imple-
mented to dump warnings and progress reports on the Eclipse console [Leh10]. In order to
extend the logging capabilities of EMFTrace (e.g. directing the log output to a file), a replace-
ment was sought. For this purpose, the JavaLogging API4 was identified to be the most suitable
candidate as it provided all the necessary functionality. Thus, the internal logging features of
EMFTrace had to be replaced with calls to the JavaLogging API and its components.

This scenario is focused on the code view (see Figure 4.2) of EMFTrace and takes place on its
implementation level. The concrete change operations of this scenario are modeled according
to our approach presented in Chapter 7 and are listed in Appendix C.4.

2“the capability of the software product to be modified”, see ISO 9126 [Int01]
3“ability of a software system throughout its lifespan to accommodate to changes and enhancements in require-

ments and technologies, that influence the system’s architectural structure, with the least possible cost while
maintaining the architectural integrity”, see [Bod11]

4http://docs.oracle.com/javase/7/docs/technotes/guides/logging/overview.html

133

10. Evaluation

10.2.3.4. Scenario 4: Migration to EMFStore/ECP 1.2.x

As previously stated in Chapter 9, EMFTrace is build upon the EMFStore model repository and
the Eclipse Client Platform (ECP) framework. Since EMFStore and ECP are subjects to fre-
quent changes themselves, EMFTrace must adapt to these changes as well. Both EMFStore and
ECP underwent a series of major revisions while evolving from version 0.9.3 to version 1.2.x
and leaving the Eclipse Incubation phase to become fully-fledged Eclipse projects. These major
revisions heavily affected the APIs of EMFStore and ECP as many interfaces and operations
were either refactored, deleted, renamed or replaced. Furthermore, the data models shipped
and supported by EMFStore/ECP were revised as well. Additionally, most of the previously
provided ECP Eclipse Extension Points5 were no longer available and were replaced by new
extension points. As a consequence of these changes, EMFTrace did not compile with the new
API out-of-the-box nor was it executable anymore. Thus, major migration work was needed to
address a) the new API b) the new data models and c) the new Eclipse Extension Points.

The migration of EMFTrace’s core components responsible for dependency detection, impact
analysis, etc. required more than 60 change operations, while migrating the user interface
required an even larger amount of work due to its tight coupling with former ECP extension
points. The following describes some of the necessary changes of EMFTrace.

A change in EMFStore’s data model rendered several operations and use case of EMFTrace
obsolete. The previously available model element id’s were moved to the internals of EMFStore
and were no longer accessible from the outside. Hence, all operations that were based on those
id’s had to be revised or deleted, as the access to the internal API of EMFStore was either denied
or strongly discouraged. Secondly, major changes of the API of EMFTrace were required due to
the replacement of EMFStore Projects by ECPProjects which, unfortunately, are incompatible
to each other. Consequently, the interface of EMFTrace’s lowest architectural layer had to be
revised (the AccessLayer, see Section 9.3). Together with the replacement of EMFStore Projects
by ECPProjects, the addition and deletion of models to a project had to be adjusted accordingly
as well (e.g. when creating traceability links during the rule-based dependency detection).

This scenario is focused on the code view (see Figure 4.2) of EMFTrace and takes place on its
implementation level. The concrete change operations of this scenario are modeled according
to our approach presented in Chapter 7 and are listed in Appendix C.5.

10.2.3.5. Scenario 5: Miscellaneous Changes

Although the above presented scenarios cover a wide range of typical change activities and
software artifacts, further changes were necessary to thoroughly test our approach with hetero-
geneous types of software artifacts. Consequently, we applied a series of additional changes on
EMFTrace to test combinations of change operations, dependencies, and artifacts that were not
covered by the changes of the above presented scenarios, such as for example use case diagrams.
To accomplish this, we tested any relevant combination of change type and artifact type that was
not yet covered by the other scenarios. Hence, the remaining set of change operations C(t) for
each type of artifact t was determined as follows: C(t) = t× {RelevantChangeTypes}.

The concrete change operations of this scenario are modeled according to our approach pre-

5http://wiki.eclipse.org/FAQ What are extensions and extension points%3F

134

10. Evaluation

sented in Chapter 7 and are listed in Appendix C.6.

10.2.4. Construction of the Oracle

The evaluation of the proposed impact analysis approach requires an oracle against which the
obtained impact sets can be compared to. This oracle was constructed by manually analyzing
the case study subject for the impacts of the aforementioned changes with the help of additional
tool support, which was accomplished by a four-pronged approach.

First and foremost, the potential impacts of our changes were determined by manually analyzing
the software artifacts prior to the implementation of the changes, which was accomplished by
the author of this thesis. Secondly, we validated the identified impacts with the help of tools built
into the Eclipse IDE, such as the Java refactoring browser, the Java compiler, and the execution
of unit tests. Thirdly, we compared the modified version of EMFTrace (version n + 1) against
the original project (version n) with the help of diff -tools to additionally validate the estimated
impact sets based on the computed diffs. Finally, the modified version of EMFTrace was tested
by three other software developers to ensure that the changes were implemented correctly, thus
guaranteeing a high quality of the estimated oracle.

By applying the above mentioned strategy we were able to obtain the complete actual impact
sets (AIS) for each of our change operations as discussed in the previous sections. We could
furthermore assure that no impact was missed while constructing the oracle.

10.3. Results

This section presents the results of our case study in accordance to the initial goals of our evalu-
ation. Therefore, we report on the precision and recall achieved by our approach in comparison
to a) the oracle and b) the distance-based impact propagation approach. A critical discussion
and analysis of these results then follows in Section 10.4.

Figures 10.2, 10.3, 10.4, 10.5, and 10.6 illustrate the resulting precision and recall for each
change operation applied on our case study subject for both rule-based and distance-based im-
pact propagation, where each figure summarizes the results of a specific scenario.

Subsequently, Tables 10.4 and 10.5 summarize the results of both approaches per scenario.
They present the minimum and average precision and recall, their combined F1-score, as well
as the average sizes of the actual impact sets (|AIS|) and both estimated impact sets (|EIS|).

Table 10.6 illustrates the overall results of both approaches in terms of precision, recall, and
F1-score. Furthermore, it lists the standard deviation of precision and recall of both approaches.
Moreover, Table 10.7 lists the t-values and the t-quantile of both approaches for a total of 210
conducted change operations.

Finally, Table 10.8 lists the average precision and recall per type of software artifact and the
deviation of precision and recall per type of software artifact.

135

10. Evaluation

0,0

0,2

0,4

0,6

0,8

1,0

Rule-based Impact Analysis

Precision

Recall

0,0

0,2

0,4

0,6

0,8

1,0

Distance-based Impact Analysis

Precision

Recall

Figure 10.2.: Results of Scenario 1 (17 changes, see Appendix C.2)

0,0

0,2

0,4

0,6

0,8

1,0

Rule-based Impact Analysis

Precision

Recall

0,0

0,2

0,4

0,6

0,8

1,0

Distance-based Impact Analysis

Precision

Recall

Figure 10.3.: Results of Scenario 2 (72 changes, see Appendix C.3)

Scenario Changes |AIS�| |EIS�| Pmin P� Rmin R� F1�
S1 17 2 6 0.1000 0.7254 1.0000 1.0000 0.8408
S2 72 2 2 0.5714 0.9718 0.3500 0.9757 0.9737
S3 7 1 1 1.0000 1.0000 1.0000 1.0000 1.0000
S4 69 3 4 0.3333 0.8429 0.3333 0.9141 0.8737
S5 45 13 12 0.5560 0.9774 0.2940 0.9112 0.9431

Table 10.4.: Average results of our rule-based propagation approach per scenario

136

10. Evaluation

0,0

0,2

0,4

0,6

0,8

1,0

Rule-based Impact Analysis

Precision

Recall

0,0

0,2

0,4

0,6

0,8

1,0

Distance-based Impact Analysis

Precision

Recall

Figure 10.4.: Results of Scenario 3 (7 changes, see Appendix C.4)

0,0

0,2

0,4

0,6

0,8

1,0

Rule-based Impact Analysis

Precision

Recall

0,0

0,2

0,4

0,6

0,8

1,0

Distance-based Impact Analysis

Precision

Recall

Figure 10.5.: Results of Scenario 4 (69 changes, see Appendix C.5)

Scenario Changes |AIS�| |EIS�| Pmin P� Rmin R� F1�
S1 17 2 72 0.0037 0.2021 1.0000 1.0000 0.3363
S2 72 2 49 0.0000 0.3003 0.0000 0.4347 0.3552
S3 7 1 118 0.0000 0.0007 0.0000 0.1429 0.0014
S4 69 3 114 0.0000 0.0698 0.0000 0.6181 0.1255
S5 45 13 58 0.0045 0.1361 0.1111 0.6251 0.2235

Table 10.5.: Average results of the distance-based propagation approach per scenario

137

10. Evaluation

0,0

0,2

0,4

0,6

0,8

1,0

Rule-based Impact Analysis

Precision

Recall

0,0

0,2

0,4

0,6

0,8

1,0

Distance-based Impact Analysis

Precision

Recall

Figure 10.6.: Results of Scenario 5 (45 changes, see Appendix C.6)

Propagation Approach P R F1 sdP sdR
Rule-based 0.9096 0.9396 0.9244 0.2033 0.1478

Distance-based 0.1714 0.5686 0.2634 0.3189 0.4020

Table 10.6.: Comparison of rule-based and distance-based propagation regarding precision, re-
call, F1-score, and standard deviation of precision and recall

n m tP tR vP vR t(1− α, v)
210 210 28.28 12.54 354 265 1.66

Table 10.7.: t-values for precision and recall, degrees of freedom, and t-quantile for α = 0.05
for the comparison of rule-based and distance-based propagation. Each approach
was tested with n = m = 210 changes. Welch’s t-test for two independent samples
is applied

Artifact Type n Pt d(Pt) tP Rt d(Rt) tR t(1− α, n− 1)
Component 6 0.9784 0.0688 −1.62 0.9306 0.0091 −2.34 2.01

Package 11 0.9596 0.0501 −2.49 0.9691 0.0295 −2.83 1.81
Class 18 0.8874 0.0222 −3.77 0.9162 0.0235 −3.75 1.73

Method 36 0.8664 0.0432 −4.72 0.9769 0.0373 −4.89 1.68
Attribute 19 0.8826 0.0270 −3.77 0.8728 0.0688 −2.92 1.73
Parameter 52 0.8522 0.0547 −5.17 0.8949 0.0448 −5.62 1.67
Use Case 4 1.0000 0.0940 −1.11 0.8303 0.1094 −0.92 2.35

Code Statement 64 0.9495 0.0399 −6.42 0.9685 0.0288 −6.86 1.67

Table 10.8.: Number of changes per type of software artifact (n), precision and recall per type of
software artifact, deviation of precision and recall per type, t-values for precision
and recall per type, and t-quantile for α = 0.05. Student’s One-sample t-test is
applied

138

10. Evaluation

10.4. Discussion

The following discusses our results in regard to our two research questions as stated in Section
10.1.1 and Section 10.1.2 respectively.

10.4.1. RQ1: Support for Heterogeneous Software Artifacts

In order to answer our first research question we have to analyze the data listed in Table 10.8 that
accumulates the results of our case study per type of software artifact. The precision achieved
by our approach varies between 85% (method parameter) and 100% (use case), while the recall
varies between 83% (use case) and 97% (method). Furthermore, the deviation of precision
per type of artifact varies between 3% and 9%, which can be regarded as being overall stable.
Likewise, the deviation of recall per type of artifact varies between 1% and 11%, which is
slightly worse than similar figures for precision but still in an acceptable range.

The conducted change operations were distributed across different views (e.g. the structural
view, behavioral view, test view, etc.) and covered the levels of software architecture (Scenario
1 & 2) and source code (Scenario 3 & 4). Moreover, the applied change operations represent
typical real-world operations that occur in many software development projects. Overall, our
approach was able to compute the impacts of all those changes with similar good results in
regard to precision and recall (see Table 10.4). Therefore, our approach is applicable for change
impact analysis of multiperspective software comprised of heterogeneous software artifacts.

To reject the null hypothesis regarding RQ1 with a probability of at least 95%, the following
equations have to hold true for all types of software artifacts in order to prefer the alternative
hypothesis (Student’s one-sample one-sided t-test, see Table 10.2 in Section 10.1.1):

tP < −t(1− α, n− 1) tR < −t(1− α, n− 1)

For each type of software artifact addressed by our changes both equations hold, except for
UML use cases and UML components (see Table 10.8). It turned out that the results that
were achieved for those use cases and components are statistically not significant, as their t-
values are greater than the corresponding t-quantile, thus violating the above stated equations.
Consequently, both null hypothesis of RQ1 cannot be rejected and thus may or may not be true.

The reason for these results not being statistically significant is the comparably low number
of change operations that were applied on use cases and components when compared to the
amount of changes involving other types of software artifacts. For example, there are only 4
changes targeting use cases and 6 changes involving components, whereas there are 18 changes
that were directly applied on classes and 52 changes involving method parameters.

However, for all other types of software artifacts our results are statistically significant (see t-
values in Table 10.8). Moreover, there are no major deviations in between the results of our
approach when applied on software artifacts of different type and granularity.

Another interesting aspect which, however, was not precisely measured during the course of our
case study is the reduction of the manual effort that is required for the change impact analysis. It
took several days to perform the manual impact analysis for each of the changes to be applied on
either the source code or the architecture of our case study subject. In contrast, the application

139

10. Evaluation

of our approach resulted in an effort of roughly five hours, which is caused by user interaction
with our prototype tool (i.e. selecting the artifacts to be changed, select the changes to be
applied, browsing the created impact reports, etc.). Yet, a more thorough analysis of potential
effort savings is out of the scope of this thesis and may be conducted in future works.

10.4.2. RQ2: Performance Improvements

With the help of our previous research question we were able to underpin the applicability of our
approach for multiperspective change impact analysis. Yet, we have to analyze how it compares
to other approaches to allow for a final verdict on whether it fulfills our research goals or not.

By comparing the precision and recall of our rule-based approach against the distance-based
impact analysis approach as illustrated by Figures 10.2 to 10.6, it becomes apparent that our
rule-based approach achieves both better precision and recall and overall more stable results.
The same conclusions can be drawn when analyzing the average precision and recall of both
approaches for each of the five scenarios of our study (see Tables 10.4 and 10.5). The minimum
average precision of our rule-based approach (72%, Scenario 1) is still more than two times
better than the maximum average precision of the distance-based approach (30%, Scenario 2).
Consequently, the overall average precision and recall of our approach are much better than the
average precision (91% vs. 17%) and recall (94% vs. 57%) of the distance-based approach (see
Table 10.6). Likewise, the standard deviation of precision and recall of our approach is lower
than the one of the distance-based approach, which indicates more stable results (20% vs. 31%
and 15% vs. 40% respectively).

The performance of the distance-based approach decreases significantly when the impacts of
source code changes shall be analyzed (Scenario 3 and 4). In contrast, our approach performs
equally well, independent of whether the changes are applied on the UML diagrams constituting
the architecture of the system (Scenario 1 and 2) or on the source code of the system (Scenario
3 and 4). In general it can be stated that the more views are affected by a change, the more
the performance of the distance-based approach declines. One could increase the recall of the
distance-based approach by adjusting the applied propagation distance, however at the cost
of further reducing the obtained precision. Hence, our rule-based concept is better suited for
estimating the propagation of impacts in between different views and abstraction levels.

Another interesting aspect is the size of the computed impact sets (see Tables 10.4 and 10.5).
While the average estimated impact set computed by our rule-based approach is of similar size
as the actual impact set (i.e. the oracle), the estimated impact sets computed by the distance-
based approach are between 4 and 118 times larger. When applied in a real-world context this
means that developers have to face huge impact reports containing many false-positives. Thus,
our approach performs much better than the distance-based approach in this regard as well.

To reject the null hypothesis regarding RQ2 with a probability of at least 95%, the following
equations have to hold true for the precision and recall of our approach in comparison to the
precision and recall of the distance-based approach in order to prefer the alternative hypothesis
(Welch’s t-test for two independent samples, see Table 10.3 in Section 10.1.2):

tP > t(1− α, v) tR > t(1− α, v)

As the t-values (28.28 and 12.54) and the corresponding t-quantile (1.66) in Table 10.7 indi-

140

10. Evaluation

cate, both of the above stated equations hold true. Hence, we can reject both null hypothesis
with a probability of at least 95% and instead prefer the alternative hypothesis, stating that our
rule-based approach performs better than the distance-based approach. Welch’s t-test had to
be performed instead of Student’s two-sample t-test because the variance of the distance-based
results was much greater than the variance of the rule-based results, thus violating the require-
ments of Student’s two-sample t-test that assumes equal variance among the samples.

In conclusion, we were able to show that our approach clearly outperforms distance-based im-
pact analysis when applied on the architectural level and on the code level. Our approach
computed less false-positives, missed fewer impacts, and provided overall more stable results.

10.5. Threats to Validity

Each scientific case study or experiment faces certain threats that might hamper the validity
and generality of its results [RH09, KD11]. There are four general categories of such potential
threats to validity [RH09] which we are discussing in the following. We also explain what was
done in advance to lessen their effects on the validity of the presented evaluation.

10.5.1. Construct Validity

Do we measure what was intended according to our research goals? We could only assess the
performance of our impact analysis approach by changing an existing software system and ap-
plying our approach to compute the impacts of those changes on the system. We determined the
true impacts of the changes in advance in order to compare the output of the approach against
them. The creation of this oracle or golden standard was accomplished by a four-pronged ap-
proach involving a combination of manual analysis and tool support. Based on the established
oracle we measured the impacts of our changes according to the amount of impacted artifacts
and applied the formulas for precision and recall as established in the literature. To answer RQ1
we determined the precision and recall for each type of software artifact that was provided by
our case study subject. We then analyzed how the precision and recall per type of software
artifact differed from the overall precision and recall to draw conclusions on the applicability
of our approach for heterogeneous software artifacts. To answer RQ2 and to determine whether
our approach is better suited than existing distance-based impact analysis algorithms, we ap-
plied both approaches to forecast the impacts of the exact same changes and then compared
the obtained results. Hence, we assured that both approaches were applied on the exact same
scenario under the exact same conditions.

10.5.2. Internal Validity

Are there unknown factors which might affect the causal dependencies? We have to analyze
whether there exist yet unknown factors influencing the precision and recall of our approach in
regard to the changes applied on our case study subject. Our approach depends on the classi-
fication of change operations and the classification of dependency relations between software
artifacts according to their type. We supply a precise and easy-to-use approach for the modeling

141

10. Evaluation

of changes that also builds the foundation of our change classification. As the studied changes
were not of artificial character but instead applied on a real software system, it was assured that
the operations were correctly modeled prior to the application of our approach. Likewise, the
detection and classification of the dependency relations was accomplished prior to the applica-
tion of our impact analysis approach. These results were furthermore evaluated and validated
through preceding case studies, while excerpts of them were already published in peer-reviewed
publications, e.g. [BLR11, LFR13, FLR14].

10.5.3. External Validity

To what extent it is possible to generalize the findings of our evaluation? Our change scenar-
ios reflect typical real world problems which developers have to face every day. The applied
changes are of varying complexity, cover a wide range of possible change operations, and were
applied on a real system that is under ongoing development. Yet, it is still not entirely possible
to draw final conclusions on our approach without conducting further studies involving different
types of software systems. Likewise, for other systems where there are no such detailed UML
diagrams other impact analysis approaches may suffice as well. However, the underlying trends
should be similar as our approach addresses reoccurring dependency relations emerging from
meta-models and the object oriented paradigm that are present in most of today’s software.

10.5.4. Reliability

Are the results dependent on the researcher, methodologies, and the tools? A replication of our
change scenarios should yield similar results if conducted by other researchers. Therefore, we
provide other researchers with our prototype tool and detailed descriptions of our changes as
listed in the appendix of this thesis. The conducted case study should be easy to replicate, since
we defined the applied changes in a step-wise manner and carefully described our process of
data collection and analysis. Some researchers, however, may propose a different oracle for
certain changes due to alternate solutions preferred by them. Hence, they will obtain slightly
different results. Yet, the overall precision and recall should remain the same. Moreover, the
utilization of our own prototype tool as a case study candidate may raise certain doubts regard-
ing the reliability of the study. However, our approach was not specifically tailored for applying
it on our own tool as all the concepts and impact rules were developed in advance and are based
on the research discussed in this thesis. Likewise, the changes that were applied on our proto-
type tool were not specifically related to our study either as they had to be implemented anyway
due to the ongoing development of our prototype tool. Additionally, we already discussed the
negative implications of utilizing 3rd party software as case study candidates in regard to the
validity of the obtained oracle (see Section 10.2.1).

10.6. Summary

In this chapter we reported on the evaluation of our concepts with the help of a comprehensive
case study. We applied a series of necessary changes and refactorings on a software system
that evolved for more than four years and utilized our approach to forecast the impacts of those

142

10. Evaluation

changes. Our concept of impact propagation rules achieved an average precision of 0.9096 and
an average recall of 0.9396 during the application of 210 change operations on an existing soft-
ware system that evolved for several years. The results of our study imply that our approach is
a suitable option for conducting change impact analysis even for multiperspective software sys-
tems. We obtained similar results for different types of software artifacts, including elements of
the software architecture, source code, and test cases. Moreover, our evaluation has shown that
our approach performs much better than existing distance-based impact analysis approaches,
whose results were less stable and the achieved precision and recall were overall much lower.
Both approaches were tested with the exact same set of changes and software artifacts, which
enables us to draw such a clear conclusion. Additionally, the conducted evaluation contributes
towards Goal 1 and Goal 2 of this thesis as we were able to illustrate the applicability of the
proposed change impact analysis approach. Our evaluation illustrates the feasibility of estab-
lishing a set of impact propagation rules that can be applied to assess the impacts of changes
prior to their implementation.

143

11. Conclusions and Future Work

This chapter summarizes the contributions of this thesis, performs a final critical review of the
presented work, and based on the current achievements discusses possible future research.

11.1. Contributions

This thesis presents a novel change impact analysis approach that can be applied in the context
of software which is comprised of heterogeneous types of software artifacts. The presented
approach supports developers performing maintenance and reengineering tasks that involve fre-
quent changes of existing and potentially long-living software systems. It provides a forecast of
the impacts of a change and supplies a potential solution for maintaining the consistency of the
impacted software artifacts after applying the change. It furthermore allows developers to esti-
mate the expected costs of a change, plan the implementation of the change, and decide between
alternative solutions based on their impacts before the change is actually being implemented.

Rule-based Multiperspective Change Impact Analysis. The presented impact analysis ap-
proach is based on the observation that the effects of changes propagate across dependencies to
related software artifacts. It was further observed that whether a dependency carries the effects
of a change or not depends on the type of the change and the type of the dependency itself.
The proposed approach analyzes this interplay of change types and dependency types using a
set of impact propagation rules that are designed to react on certain combinations of changes
and dependencies. The impact rules are triggered by changes and are able to determine how
these changes affect related software artifacts, which is accomplished in a recursive manner.
Each impact that is determined by a rule is feed back into the recursive impact analysis process
where it may trigger the execution of further impact rules. In doing so, our approach is able
to forecast the propagation of changes more reliably than existing techniques and across the
different views on software. In the end, the set of impacted software artifacts is presented to the
developer, along with the information how and why each artifact is impacted by the change.

Comprehensive Dependency Detection. Since our multiperspective impact analysis approach
is based on the analysis of dependency relations connecting the heterogeneous software arti-
facts, these dependencies first of all have to be elicited and explicitly recorded. Yet, current
research does not provide a comprehensive concept for multiperspective dependency detection.
Hence, we extended a rule-based detection approach that was initially developed in one of our
previous works for detecting dependencies of UML models. This enhanced approach utilizes a
set of dependency detection rules to elicit and record potential dependency relations as trace-
ability links. Our rules are furthermore able to determine the types of the dependencies, which
is also accomplished during the detection process. Moreover, our approach analyzes dependen-
cies stemming from four different sources and is capable of exploiting structural and textual
properties of software artifacts, as well as existing relations between them.

145

11. Conclusions and Future Work

Classification of Dependency Relations. Once all the dependencies of a software system have
been elicited, it is necessary to determine their types to enable a later impact analysis. We
propose to classify the dependencies according to their purpose to provide the rationale of the
relations. To achieve this, we introduced a novel taxonomy for dependency types that is based
on a step-wise refinement of the purposes of dependencies using several abstraction levels.

Modeling of Change Operations. Our approach supports the precise modeling of the change
operations that act as triggers for the actual change impact analysis. We extend existing works
on change modeling by introducing an enhanced concept that is based on atomic and composite
operations. The proposed atomic changes constitute the basic units of change while the com-
posite operations are comprised of other atomic or composite changes. We demonstrated the
applicability of this concept by modeling all the change operations that were applied during the
course of our case study according to it. Moreover, the precise modeling of change operations
also allows us to model the exact types of the impacts that are determined by our impact rules.

Prototype Implementation and Evaluation. We provide additional tool support for the ap-
proach presented in this thesis. Our prototype tool EMFTrace implements and supports all
four steps of our approach and currently allows for change impact analysis of UML models,
Java source code, and JUnit test cases. With the help of our prototype we conducted an initial
evaluation of our approach [LFR13] and the comprehensive evaluation reported in this thesis.
We compared our rule-based change impact analysis approach against distance-based change
impact analysis and were able to show that our approach achieves both better precision (90%)
and recall (93%) when estimating the impacts of changes. Thus, developers have to face less
false-positives and are enabled to better understand the implications of their changes.

11.2. Critical Review

While there is no doubt about the usefulness of change impact analysis support for software
maintenance and reengineering, the following critically discusses the proposed approach in
regard to its underlying assumptions, the correctness of the established impact propagation
rules, and the soundness of the conducted evaluation.

Assumptions of the Approach. In Section 4.3.3 we described the assumptions that are inherent
to our approach. In the following we are going to discuss them in regard to their implications
on the applicability of our approach for real software development projects.

Our approach is designed for software that is developed using object oriented technologies and
concepts, and in regard to the current state of the art in software engineering we believe that this
assumption holds because the vast majority of today’s software is build upon these concepts.
Nevertheless, our approach can as well be tailored for software systems that are developed using
other paradigms, such as procedural legacy systems for instance.

Our decision of utilizing UML for the modeling of software architectures may limit the appli-
cability of our current approach when other ADLs are used for this task. However, UML and
many of its offshoots, such as SysML for example, are the nowadays de facto industry standard
for the modeling of complex systems. Consequently, our current approach is applicable for
them. Moreover, our approach can be extended to encompass further modeling languages and
programming languages as already discussed in sections 5.2.1, 6.4.4.3, and 8.3.2 of this thesis.

146

11. Conclusions and Future Work

The major assumption of the research presented in this thesis is that the different software arti-
facts must be consistent to each other prior to any change impact analysis activity. In practice,
however, the consistency of all the involved software artifacts (source code, architecture, etc.)
might not be taken as granted for all software development projects. Yet, any change impact
analysis approach requires a solid and consistent baseline for estimating the propagation of
changes as otherwise inconsistencies may result in missed impacts and false-positives. Unfor-
tunately, this cannot be tackled conceptually, except by emphasizing the need for change impact
analysis right from the beginning of software development to obviate potential inconsistencies.

The applicability of our approach might be further constrained by its demand for explicitly
recorded dependencies. This, however, also applies to the vast majority of the existing change
impact analysis approaches as discussed in Section 2.3. To mitigate this limitation we supply a
comprehensive approach for multiperspective dependency detection.

Reliability and Completeness of the Analyzed Dependency Relations. Since our approach
is based on the analysis of explicitly recorded dependency relations, their quality and complete-
ness also influences the quality and completeness of the impact sets computed by our approach.
To ensure a high quality of the detected relations, we defined a scheme for creating dependency
detection rules (Section 6.4.4.3), provide developers with a taxonomy of dependency types to
classify the detected dependencies (Section 6.3), and discussed the detection of dependencies
stemming from four different origins (Section 6.4.2). Additionally, we analyzed the potential
threats to our dependency detection rules in Section 6.6 and illustrated how they can be re-
solved. Related work on dependency detection was thoroughly compared to our approach in
Section 6.6.1 and the benefits of our detection approach were outlined. Moreover, the results of
several case studies indicate that our dependency detection approach provides better recall and
precision than existing works (see Section 6.5.2). However, even the results of five case studies
do not allow for a final verdict on our approach as a theoretical discussion of the correctness
and completeness of our dependency detection rules is not feasible.

Reliability and Completeness of our Impact Propagation Rules. The success of the proposed
change impact analysis approach depends on four factors: the quality and completeness of
the dependency relations as discussed above and the quality and completeness of our impact
propagation rules. The correctness and completeness of our impact propagation rules determine
to which extent only correct impacts are reported and whether all impacted artifacts can be
identified. We already discussed the potential threats to the completeness and correctness of
our impact rules and outlined means to limit their influence on the impact analysis (see Section
8.4.1). However, it still remains a manual task of creating, validating, and maintaining the
impact propagation rules, even though these steps are supported by our scheme for developing
impact rules (see Section 8.3.2). On the other hand, the results of an initial case study [LFR13]
and the evaluation reported in this thesis already indicate a high quality of our impact rules.

Soundness of our Evaluation. The evaluation was conducted with a real software system under
study and a set of real changes. In contrast to most existing works, the changes were actually
implemented to realize a series of refactorings and the addition of new features. We compared
our approach against manual impact assessments and against distance-based impact analysis to
obtain convincing results. Our approach achieved similar good results for both precision and
recall, which were furthermore much more stable than those of the distance-based approach.
However, one may not generalize the findings of our evaluation without first conducting further
case studies involving different types of systems and systems of varying complexity.

147

11. Conclusions and Future Work

11.3. Future Work

Based on the presented change impact analysis approach as the main contribution of this thesis
there are several potential directions for further research to extend the proposed concepts.

Semi-automated Implementation of Changes. A possible extension of our approach can be
achieved by integrating the concept of (semi)-automated change implementation into our impact
analysis approach as discussed in Section 8.4.6. Since the proposed impact propagation rules
are able to determine the exact types of impacts, it is possible to extend the impact rules and
the rule execution infrastructure with means for adjusting the impacted software artifacts on
the fly. To accomplish this, the rules have to be extended with “repair plans” [KPP08] that
are applied after the impact has been determined. Although not all types of impacts can be
resolved automatically (e.g. complex refactorings), the vast majority of changes that occur in
real software development projects could be addressed in an automated manner (e.g. renaming
methods, changing data types, etc.). Similar support for simple refactoring activities of Java
source code is already provided by the Eclipse IDE, which therefore could be complemented
with our approach. The (semi)-automated implementation of changes would further reduce the
costs of changes as a lot of manual work for actually realizing the changes could be saved.

Combining Traceability Maintenance and Impact Analysis. In a similar fashion the impact
analysis approach could be extended to update and modify the analyzed dependency relations
according to the results of the impact analysis (see Section 8.4.2.3). This extension could be
based upon the work of Mäder [M0̈9] who already updates traceability relations according
to changes applied by developers. At the moment, our approach requires the re-detection of
dependencies after each change that was applied on the software system. This overhead could be
reduced if the dependencies would automatically be updated during the change impact analysis
process. Hence, a combination of Mäder’s approach and ours would help to further reduce
the costs of changes by decreasing the costs of the dependency detection that is required for
conducting the change impact analysis and related tasks, such as regression testing.

Expanding the Impact Analysis. Furthermore, the proposed impact analysis approach could
be extended to encompass additional software artifacts and views, such as requirements de-
scriptions or (BPMN) process models for instance. Such an extension first of all requires the
identification and detection of potential dependencies between the artifacts to be integrated and
those artifacts that are already addressed by our current approach. Likewise, it requires the
creation of additional impact propagation rules to address the new types of software artifacts.

Integration into Development Environments. Finally, the direct integration of our impact
analysis approach into existing IDEs like Eclipse could help to increase its applicability by
making additional tools like EMFTrace obsolete and streamlining the actual impact analysis
process. This in turn demands for implementing a change listening mechanism that transforms
IDE-internal change events into our representation of changes that is based on atomic and com-
posite operations, which could then automatically trigger the change impact analysis. Similar
ideas are already proposed in the work of Robbes and Lanza [RL08], which therefore could be
reused and incorporated into our approach. Moreover, the results of an experiment conducted
in an industrial setting by Goeritzer [Goe11] emphasize the need for a direct incorporation of
change impact analysis features into the tools and processes applied by software developers.

148

Bibliography

[AB93] Robert S. Arnold and Shawn A. Bohner. Impact analysis - towards a framework
for comparison. In Proceedings of the IEEE Conference on Software Mainte-
nance (CSM ’93), pages 292–301, Montreal, Quebec, Canada, September 1993.

[ACC+02] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea De Lucia, and
Ettore Merlo. Recovering traceability links between code and documentation.
IEEE Trans. Softw. Eng., 28(10):970–983, Oct 2002.

[ACCDL00] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, and Andrea De Lucia.
Identifying the starting impact set of a maintenance request: A case study. In
Proceedings of the Fourth European Conference on Software Maintenance and
Reengineering, pages 227–230, Zurich, Switzerland, February 2000.

[ACPT01] Guiliano Antoniol, B. Caprile, A. Potrich, and Paolo Tonella. Design-code
traceability recovery: selecting the basic linkage properties. Science of Com-
puter Programming, 40:213–234, 2001.

[ALS09a] M.K. Abdi, H. Lounis, and H. Sahraoui. Predicting change impact in object-
oriented applications with bayesian networks. In Proceedings of the 33rd
Annual IEEE International Computer Software and Applications Conference
(COMPSAC ’09), pages 234–239, Seattle, WA, USA, July 2009.

[ALS09b] M.K. Abdi, H. Lounis, and H. Sahraoui. A probabilistic approach for change im-
pact prediction in object-oriented systems. In Proceedings of the 2nd Workshop
on Artificial Intelligence Techniques in Software Engineering (AISEW 2009),
pages 189–200, Thessaloniki, Greece, April 2009.

[ANS08] Aharon Abadi, Mordechai Nisenson, and Yahalomit Simionovici. A traceabil-
ity technique for specifications. In Proceedings of the 16th IEEE International
Conference on Program Comprehension (ICPC 2008), pages 103–112, Amster-
dam, Netherlands, June 2008.

[AOH05] Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. Efficient
and precise dynamic impact analysis using execute-after sequences. In Pro-
ceedings of the 27th International Conference on Software Engineering (ICSE
2005), pages 432–441, St. Louis, Missouri, USA, May 2005.

[ARNRSG06] Netta Aizenbud-Reshef, B. T. Nolan, Julia Rubin, and Yael Shaham-Gafni.
Model traceability. IBM Systems Jounal, 45(3):515–526, July 2006.

[ARPR+05] Netta Aizenbud-Reshef, Richard F. Paige, Julia Rubin, Yael Shaham-Gafni, and
Dimitrios S. Kolovos. Operational semantics for traceability. In Proceedings
of the 1st ECMDA Workshop on Traceability, pages 7–14, Nürnberg, Germany,
2005.

149

Bibliography

[ATL] Atlas Transformation Language (ATL). http://eclipse.org/atl/. (Accessed on
November, 20th 2014).

[BA96] Shawn A. Bohner and Robert S. Arnold. Software Change Impact Analysis.
IEEE Computer Society Publications Tutorial Series, Los Alamitos, California,
USA, 1996.

[BBE+95] S. Barros, T. Bodhuin, A. Escudie, J.P. Queille, and J.F. Voidrot. Supporting
impact analysis: a semi-automated technique and associated tool. In Proceed-
ings of the 11th International Conference on Software Maintenance (ICSM’95),
pages 42–51, Opio (Nice), France, October 1995.

[BC00] Carliss Y. Baldwin and Kim B. Clark. Design Rules: The Power of Modularity.
MIT Press, Cambridge, Massachusetts, USA, 2000.

[BCR94] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. The goal question
metric approach. In J. Marciniak, editor, Encyclopedia of Software Engineering,
pages 528–532. John Wiley & Sons, 1994.

[Ben90] Keith H. Bennett. An introduction to software maintenance. Information and
Software Technology, 12(4):257–264, 1990.

[BFV00] Alessandro Bianchi, Anna Rita Fasolino, and Giuseppe Visaggio. An ex-
ploratory case study of the maintenance effectiveness of traceability models.
In Proceedings of 8th International Workshop on Program Comprehension
(IWPC’00), pages 149 – 158. IEEE, 2000.

[BGA06] Salah Bouktif, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. Extracting
change-patterns from CVS repositories. In Proceedings of the 13th Working
Conference on Reverse Engineering (WCRE ’06), pages 221–230, Benevento,
October 2006.

[BGW13] Markus Borg, Orlena Gotel, and Krzysztof Wnuk. Enabling traceability reuse
for impact analyses - a feasibility study in a safety context. In Proceedings of
the 7th International Workshop on Traceability in Emerging Forms of Software
Engineering (TEFSE 2013), pages 72–78, San Francisco, California, USA, May
2013.

[BJV04] Jean Bézivin, Frédéric Jouault, and Patrick Valduriez. On the need for meg-
amodels. In Proceedings of the OOPSLA and GPCE Workshop, Vancouver,
Canada, 2004.

[BL10] David Binkley and Dawn Lawrie. Information retrieval applications in software
maintenance and evolution. In P. Laplante, editor, Encyclopedia of Software
Engineering, chapter 2. Taylor & Francis LLC, 2010.

[BLBS02] Lionel C. Briand, Yvan Labiche, K. Buist, and G. Soccar. Automating impact
analysis and regression test selection based on UML designs. In Proceedings of
the 18th IEEE International Conference on Software Maintenance (ICSM’02),
pages 252–261, Montreal, Quebec, Canada, October 2002.

[BLO03] Lionel C. Briand, Yvan Labiche, and L. O’Sullivan. Impact analysis and change
management of UML models. In Proceedings of the 19th International Con-
ference on Software Maintenance, pages 256–265, Amsterdam, Netherlands,

150

Bibliography

September 2003.

[BLOS06] L. Briand, Yvan Labiche, L. O’Sullivan, and Michal Sówka. Automated impact
analysis of UML models. Journal of Systems and Software, 79:339–352, 2006.

[BLR11] Stephan Bode, Steffen Lehnert, and Matthias Riebisch. Comprehensive model
integration for dependency identification with EMFTrace. In Joint Proceed-
ings of the First International Workshop on Model-Driven Software Migration
(MDSM 2011) and the Fifth International Workshop on Software Quality and
Maintainability (SQM 2011), pages 17–20, Oldenburg, Germany, March 2011.
CEUR.

[BMNT05] Jorge Biolchi, Paul Gomes Mian, Ana Candida Cruz Natali, and Guil-
herme Horta Travassos. Systematic review in software engineering. Technical
Report RT - ES 679/05, Systems Engineering and Computer Science Depart-
ment, University of Rio de Janeiro, May 2005.

[BMZ+05] Jim Buckley, Tom Mens, Matthias Zenger, Awais Rashid, and Günter Kniesel.
Towards a taxonomy of software change. Journal of Software Maintenance and
Evolution: Research and Practice, 17:309–332, September 2005.

[Bod11] Stephan Bode. Quality goal oriented architectural design and traceability for
evolvable software systems. PhD thesis, Ilmenau University of Technology, Il-
menau, Germany, April 2011.

[Boh95] Shawn A. Bohner. A graph traceability approach for software change impact
analysis. PhD thesis, George Mason University, Fairfax, Virginia, USA, 1995.

[Boh96] Shawn A. Bohner. Impact analysis in the software change process: a year 2000
perspective. In Proceedings of the 12th International Conference on Software
Maintenance (ICSM’96), pages 42–51, Monterey, California, USA, November
1996.

[Boh02a] Shawn A. Bohner. Extending software change impact analysis into COTS com-
ponents. In Proceedings of the 27th Annual NASA Goddard/IEEE Software
Engineering Workshop, pages 175–182, Greenbelt, Maryland, USA, December
2002.

[Boh02b] Shawn A. Bohner. Software change impacts - an evolving perspective. In Pro-
ceedings of the 18th International Conference on Software Maintenance, pages
263–272, Montreal, Quebec, Canada, October 2002.

[Boo94] Grady Booch. Object Oriented Analysis and Design With Applications.
Addison-Wesley Longman, Amsterdam, 2nd edition, October 1994.

[BSF03] Marko Boger, Thorsten Sturm, and Per Fragemann. Refactoring browser for
UML. Lecture Notes in Computer Science, 2591:366–377, 2003.

[BTP05] Ben Breech, Mike Tegtmeyer, and Lori Pollock. A comparison of online and dy-
namic impact analysis algorithms. In Proceedings of the Ninth European Con-
ference on Software Maintenance and Reengineering, pages 143–152, Manch-
ester, United Kingdom, March 2005.

[CC92] Elliot J. Chikofsky and James H. Cross. Software Reengineering, chapter Re-

151

Bibliography

verse engineering and design recovery: A taxonomy, pages 54–58. IEEE Com-
puter Society Press, 1992.

[CCCDP10a] Gerardo Canfora, Michele Ceccarelli, Luigi Cerulo, and Massimiliano Di Penta.
Using multivariate time series and association rules to detect logical change cou-
pling: an empirical study. In Proceedings of the 26th IEEE International Con-
ference on Software Maintenance (ICSM 2010), pages 1–10, Timisoara, Roma-
nia, September 2010.

[CCCDP10b] Michele Ceccarelli, Luigi Cerulo, Gerardo Canfora, and Massimiliano Di Penta.
An eclectic approach for change impact analysis. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering, pages 163–166,
Cape Town, South Africa, May 2010.

[CDO] CDO Model Repository. http://eclipse.org/cdo/. (Accessed on November, 20th
2014).

[CDPC11] Gerardo Canfora, Massimiliano Di Penta, and Luigi Cerulo. Achievements and
challenges in software reverse engineering. Commun. ACM, 54(4):142–151,
April 2011.

[CE00] K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods, Tools,
and Applications. Addision Wesley, Boston, 2000.

[CJH01] Stephen Cook, He Ji, and Rachel Harrison. Dynamic and static views of soft-
ware evolution. In Proceedings of the 17th IEEE International Conference on
Software Maintenance (ICSM’01), pages 592–601, Los Alamitos, California,
USA, November 2001. IEEE Computer Society.

[CJMV95] Panos Constantopoulos, Matthias Jarke, John Mylopoulos, and Yannis Vassil-
iou. The software information base: a server for reuse. The International Jour-
nal on Very Large Data Bases, 4(1):1–43, 1995.

[CKKL99] M. Ajmal Chaumun, Hind Kabaili, Rudolf K. Keller, and Francois Lustman. A
change impact model for changeability assessment in object-oriented software
systems. In Proceedings of the Third European Conference on Software Main-
tenance and Reengineering, pages 130–149, Amsterdam, Netherlands, March
1999.

[CoC] Common Component Modelling Example (CoCoME).
http://cocome.org/index.htm. (Accessed on November, 20th 2014).

[Cod13] Code Analyzer. http://sourceforge.net/projects/codeanalyze-gpl/, April 2013.
(Accessed on November, 20th 2014).

[COE] Center of Excellence for Software Traceability (COEST). http://coest.org/. (Ac-
cessed on November, 20th 2014).

[CSL+01] Pär Carlshamre, Kristian Sandahl, Mikael Lindvall, Björn Regnell, and Jo-
han Natt och Dag. An industrial survey of requirements interdependencies in
software product release planning. In Proceedings of the Fifth IEEE Interna-
tional Symposium on Requirements Engineering, pages 84–91, Toronto, On-
tario, Canada, August 2001.

152

Bibliography

[CT94] William B. Cavnar and John M. Trenkle. N-gram-based text comparison. In
Proceedings of the 3rd Annual Symposium on document Analysis and Informa-
tion Retrieval (SDAIR-94), pages 161–175, 1994.

[CT99] Bruno Caprile and Paolo Tonella. Nomen est omen: Analyzing the language of
function identifiers. In Proceedings of the 6th Working Conference on Software
Reverse Engineering, pages 112–122, Atlanta, Georgia, USA, October 1999.

[CY91] Peter Coad and Edward Yourdon. Object-Oriented Analysis. Prentice-Hall, Inc.,
2nd edition, 1991.

[DDN08] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Object-Oriented
Reengineering Patterns. Square Bracket Associates, Kehrsatz, Switzerland,
June 2008.

[Dij82] Edsger W. Dijkstra. On the role of scientific thought. In Selected Writings
on Computing: A personal Perspective, Texts and Monographs in Computer
Science, pages 60–66. Springer New York, 1982.

[DKPF09] Nikolaos Drivalos, Dimitrios S. Kolovos, Richard F. Paige, and Kiran J. Fer-
nandes. Engineering a DSL for software traceability. In Dragan Gašević, Ralf
Lämmel, and Eric Van Wyk, editors, Software Language Engineering, volume
5452 of Lecture Notes in Computer Science, pages 151–167. Springer Berlin
Heidelberg, 2009.

[DLFO08] Andrea De Lucia, Fausto Fasano, and Rocco Oliveto. Traceability management
for impact analysis. In Proceedings of Frontiers of Software Maintenance (FoSM
2008), pages 21–30, Beijing, China, October 2008.

[DLHE11] Andreas Demuth, Roberto E. Lopez-Herrejon, and Alexander Egyed. Cross-
layer modeler - a tool for flexible multilevel modeling with consistency check-
ing. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th Eu-
ropean conference on Foundations of software engineering, pages 452–455,
Szeged, Hungary, September 2011.

[DnC05] Juan C. Dueñas and Rafael Capilla. The decision view of software architecture.
In Ron Morrison and Flavio Oquendo, editors, Software Architecture, volume
3527 of Lecture Notes in Computer Science, pages 222–230. Springer Berlin
Heidelberg, June 2005.

[DP06] Florian Deissenboeck and Markus Pizka. Concise and consistent naming. Soft-
ware Quality Journal, 14(3):261–282, 2006.

[DPFK08] Nicholas Drivalos, Richard F. Paige, Kiran J. Fernandes, and Dimitrios S.
Kolovos. Towards rigorously defined model-to-model traceability. In Proceed-
ings of the 4th ECMDA Traceability Workshop (ECMDA-TW), pages 17–26,
Berlin, Germany, June 2008.

[DST11] Robert Dabrowski, Krzysztof Stencel, and Grzegorz Timoszuk. Software is a
directed multigraph. In Ivica Crnkovic, Volker Gruhn, and Matthias Book, edi-
tors, Software Architecture, volume 6903 of Lecture Notes in Computer Science,
pages 360–369. Springer Berlin Heidelberg, 2011.

[EAG06] Angelina Espinoza, Pedro P. Alarcón, and Juan Garbajosa. Analyzing and sys-

153

Bibliography

tematizing current traceability schemas. In Proceedings of the 30th Annual
IEEE/NASA Software Engineering Workshop SEW-30 (SEW’06), pages 21–32,
Columbia, Maryland, USA, April 2006. IEEE.

[Ecl10] Eclipse Model Repository. http://modelrepository.sourceforge.net, April 2010.
(Accessed on November, 20th 2014).

[ECP] Eclipse Client Platform (ECP). http://www.eclipse.org/ecp. (Accessed on
November, 20th 2014).

[EG11] Angelina Espinoza and Juan Garbajosa. A study to support agile methods more
effectively through traceability. Innovations in Systems and Software Engineer-
ing, 7(1):53–69, 2011.

[EGA08] Hamid El Ghazi and Said Assar. A multi view based traceability management
method. In Proceedings of the 2nd International Conference on Research Chal-
lenges in Information Science (RCIS ’08), pages 393–400, Marrakech, Morocco,
June 2008.

[EHKG02] Gregor Engels, Reiko Heckel, Jochen M. Küster, and Luuk Groenewegen.
Consistency-preserving model evolution through transformations. In Jean-Marc
Jézéquel, Heinrich Hussmann, and Stephen Cook, editors, UML 2002 - The Uni-
fied Modeling Language, volume 2460 of Lecture Notes in Computer Science,
pages 212–226. Springer Berlin Heidelberg, 2002.

[EMFa] Eclipse Modeling Framework (EMF). http://www.eclipse.org/modeling/emf/.
(Accessed on November, 20th 2014).

[EMFb] EMF Query. http://projects.eclipse.org/projects/modeling.emf.query. (Ac-
cessed on November, 20th 2014).

[EMFc] EMFStore. http://www.eclipse.org/emfstore/. (Accessed on November, 20th
2014).

[EMF14] EMFTrace. https://sourceforge.net/projects/emftrace/, June 2014. (Accessed on
November, 20th 2014).

[EMP] Eclipse Modeling Project. http://www.eclipse.org/modeling/. (Accessed on
November, 20th 2014).

[EPL] Eclipse Public License v1.0. http://www.eclipse.org/legal/epl-v10.html. (Ac-
cessed on November, 20th 2014).

[EPRV08] R. Eramo, A. Pierantonio, J. R. Romero, and A. Vallecillo. Change management
in multi-viewpoint system using ASP. In Proceedings of the 5th International
Workshop on ODP for Enterprise Computing (EDOC 2008), pages 19–28, Mu-
nich, Germany, September 2008.

[FG06] Beat Fluri and Harald C. Gall. Classifying change types for qualifying change
couplings. In Proceeding of the 14th IEEE International Conference on Pro-
gram Comprehension (ICPC 2006), pages 35–45, Athens, Greece, June 2006.

[FGP05] Beat Fluri, Harald C. Gall, and Martin Pinzger. Fine-grained analysis of change
couplings. In Proceeding of the Fifth IEEE International Workshop on Source
Code Analysis and Manipulation 2005, pages 66–74, November 2005.

154

Bibliography

[FLR14] Qurat-Ul-Ann Farooq, Steffen Lehnert, and Matthias Riebisch. Analyzing
model dependencies for rule-based regression test selection. In Proceedings
of Modellierung 2014, pages 305–320, Vienna, Austria, March 2014.

[FM06] Tie Feng and Jonathan I. Maletic. Applying dynamic change impact analysis
in component-based architecture design. In Proceeding of the Seventh Inter-
national Conference on Software Engineering, Artificial Intelligence, Network-
ing and Parallel/Distributed Computing (SNPD 2006), pages 43–48, Las Vegas,
Nevada, USA, June 2006.

[FMP99] Pascal Fradet, Daniel Métayer, and Michaël Périn. Consistency checking for
multiple view software architectures. In Oscar Nierstrasz and Michel Lemoine,
editors, Software Engineering - ESEC/FSE 1999, volume 1687 of Lecture Notes
in Computer Science, pages 410–428. Springer Berlin / Heidelberg, 1999.

[FN05] Jean-Marie Favre and Tam NGuyen. Towards a megamodel to model software
evolution through transformations. Electronic Note, 127(3):59–74, 2005.

[Fow99] Martin Fowler. Refactoring: Improving the design of existing code. Addison
Wesley, Longman, Inc., Amsterdam, 1999.

[Fur86] George W. Furnas. Generalized fisheye views. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 16–23, 1986.

[FZS03] Gilberto A. A. Cysneiros Filho, Andrea Zisman, and George Spanoudakis.
Traceability approach for i* and UML models. In Proceedings of the 2nd Inter-
national Workshop on Software Engineering for Large-Scale Multi-Agent Sys-
tems (SELMAS’03), Portland, Oregon, USA, May 2003.

[GC08] Yaser Ghanam and Sheelagh Carpendale. A survey paper on software architec-
ture visualization. Technical report, University of Calgary, Canada, 2008.

[GDKP12] Malcom Gethers, Bogdan Dit, Huzefa Kagdi, and Denys Poshyvanyk. Inte-
grated impact analysis for managing software changes. In Proceedings of the
34th International Conference on Software Engineering (ICSE 2012), pages
430–440, Zurich, Switzerland, June 2012.

[GDL04] Tudor Gı̂rba, Stéphane Ducasse, and Michele Lanza. Yesterday’s Weather:
Guiding early reverse engineering efforts by summarizing the evolution of
changes. In Proceeding of the 20th IEEE International Conference on Soft-
ware Maintenance (ICSM ’04), pages 40–49, Chicago, Illinois, USA, Septem-
ber 2004. IEEE Computer Society.

[GF94] Orlena C. Z. Gotel and Anthony C. W. Finkelstein. An analysis of the require-
ments traceability problem. In Proceedings of the First International Confer-
ence on Requirements Engineering, pages 94–101, Colorado Springs, Colorado,
USA, April 1994. IEEE Computer Society Press.

[GL91] K. B. Gallagher and J. R. Lyle. Using program slicing in software maintenance.
IEEE Transactions on Software Engineering, 17(8):751–761, August 1991.

[GLR14] Sebastian Gerdes, Steffen Lehnert, and Matthias Riebisch. Combining archi-
tectural design decisions and legacy system evolution. In Proceedings of the
8th European Conference on Software Architectures (ECSA2014), pages 50–57,

155

Bibliography

Vienna, Austria, August 2014.

[GMP07] Mark Grechanik, Kathryn S. McKinley, and Dewayne E. Perry. Recovering
and using use-case-diagram-to-source-code traceability links. In Proceedings
of the the 6th joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of software engineering
(ESEC-FSE ’07), pages 95–104, Cavtat, Croatia, September 3-7 2007.

[Goe11] Robert Goeritzer. Using impact analysis in industry. In Proceedings of the 33rd
International Conference on Software Engineering, pages 1155–1157, Honoulu,
Hawaii, USA, May 2011.

[GP10] Malcom Gethers and Denys Poshyvanyk. Using relational topic models to
capture coupling among classes in object-oriented software systems. In Pro-
ceedings of the 26th IEEE International Conference on Software Maintenance
(ICSM’10), pages 1–10, Timisoara, Romania, September 2010.

[GS82] Chris P. Gane and Trish Sarson. Structured system analysis. Technical report,
McDonnell Douglas, 1982.

[GSC09] Chetna Gupta, Yogesh Singh, and Durg Singh Chauhan. An efficient dynamic
impact analysis using definition and usage information. International Journal
of Digital Content Technology and its Applications, 3(4):112–115, 2009.

[GSC10] Chetna Gupta, Yogesh Singh, and Durg Singh Chauhan. A dynamic approach
to estimate change impact using type of change propagation. Journal of Infor-
mation Processing Systems, 6(4):597–608, December 2010.

[Gup13] Nikhilumar Gupta. Rule-based Dependency Detection Between Source Code
and UML Models. Master’s thesis, Ilmenau University of Technology, Ilmenau,
Germany, February 2013.

[Han96] Jun Han. Supporting impact analysis and change propagation in software engi-
neering environments. Technical Report 96-09, Monash University, Peninsula
School of Computing & Information Technology, McMahons Road, Frankston,
Victoria 3199, Australia, October 1996.

[HBG+11] Salima Hassaine, Ferdaous Boughanmi, Yann-Gaël Guéhéneuc, Sylvie Hamel,
and Giuliano Antoniol. A seismology-inspired approach to study change propa-
gation. In Proceedings of the 27th International Conference on Software Main-
tenance (ICSM 2011), pages 53–62, Williamsburg, Virginia, USA, September
2011.

[HCM09] Maen Hammad, Michael L. Collard, and Jonathan I. Maletic. Automatically
identifying changes that impact code-to-design traceability. In Proceedings of
the IEEE 17th International Conference on Program Comprehension (ICPC
’09), pages 20–29, Vancouver, British Columbia, Canada, May 2009.

[HDB10] Mohamed Oussama Hassan, Laurent Deruelle, and Henri Basson. A knowledge-
based system for change impact analysis on software architecture. In Proceed-
ings of the Fourth International Conference on Research Challenges in Infor-
mation Science (RCIS), pages 545–556, Nice, France, May 2010.

[HH04] Ahmed E. Hassan and Richard C. Holt. Predicting change propagation in soft-

156

Bibliography

ware systems. In Proceedings of the 20th IEEE International Conference on
Software Maintenance (ICSM 2004), pages 284–293, Washington, DC, USA,
September 2004. IEEE Computer Society.

[Hig02] Dan Higgins. AI Game Programming Wisdom, volume 1, chapter Generic A*
Pathfinding, pages 114–121. Charles River Media, 2002.

[HNR68] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems Science
and Cybernetics, 4(2):100–107, 1968.

[HNS05] Christine Hofmeister, Robert Nord, and Dilip Soni. Global analysis: moving
from software requirements specification to structural views of the software ar-
chitecture. IEE Proceedings - Software, 152(4):187–197, August 2005.

[HS06] Lulu Huang and Yeong-Tae Song. Dynamic impact analysis using execution
profile tracing. In Proceedings of the Fourth International Conference on Soft-
ware Engineering Research, Management and Applications (SERA’06), pages
237–244, Seattle, Washington, USA, August 2006.

[HS07] Lulu Huang and Yeong-Tae Song. Precise dynamic impact analysis with depen-
dency analysis for object-oriented programs. In Proceedings of the 5th ACIS
International Conference on Software Engineering Research, Management &
Applications (SERA 2007), pages 374–384, Busan, South Korea, August 2007.

[HS08] Lulu Huang and Yeong-Tae Song. A dynamic impact analysis approach for
object-oriented programs. In Proceedings of the Conference on Advanced Soft-
ware Engineering and Its Applications (ASEA ’08), pages 217–220, Hainan Is-
land, December 2008.

[III08] Salma Imtiaz, Naveed Ikram, and Saima Imtiaz. Impact analysis from multiple
perspectives: Evaluation of traceability techniques. In Proceedings of the 3rd
International Conference on Software Engineering Advances, pages 457–464,
Sliema, Malta, October 2008.

[IIMD05a] Suhaimi Ibrahim, Norbik Bashah Idris, Malcolm Munro, and Aziz Deraman.
Integrating software traceability for change impact analysis. The International
Arab Journal of Information Technology, 2(4):301–308, October 2005.

[IIMD05b] Suhaimi Ibrahim, Norbik Bashah Idris, Malcolm Munro, and Aziz Deraman. A
requirements traceability to support change impact analysis. Asean Journal of
Information Technology, 4(4):345–355, 2005.

[IIMD06] Suhaimi Ibrahim, Norbik Bashah Idris, Malcolm Munro, and Aziz Deraman.
A software traceability validation for change impact analysis of object oriented
software. In Proceedings of the International Conference on Software Engi-
neering Research and Practice & Conference on Programming Languages and
Compilers, SERP 2006, volume 1, pages 453–459, Las Vegas, Nevada, USA,
June 2006.

[IK06] Igor Ivkovic and Kostas Kontogiannis. Towards automated establishment of
model dependencies using formal concept analysis. International Journal of
Software Engineering and Knowledge Engineering, 16(4):499–522, Aug 2006.

157

Bibliography

[Ind] Indus Java Program Slicer. http://indus.projects.cis.ksu.edu/index.shtml. (Ac-
cessed on August, 21th 2014).

[Ins98a] Institute of Electrical and Electronics Engineers. IEEE Recommended Practice
for Software Requirements Specifications, 1998.

[Ins98b] Institute of Electrical and Electronics Engineers. IEEE Standard for Software
Maintenance. IEEE Std 1219-1998, Oct 1998.

[Int01] International Standardization Organisation. ISO/IEC 9126-1 International Stan-
dard. Software Engineering – Product quality – Part 1: Quality models, June
2001.

[Int06] International Standardization Organisation. Software Engineering—Software
Life Cycle Processes—Maintenance. ISO/IEC 14764:2006, IEEE Std 14764-
2006, 2006.

[ISO01] ISO/IEC. ISO/IEC 9126. Software engineering – Product quality. ISO/IEC,
2001.

[ITU08] ITU-T. Recommendation ITU-T Z.151 User requirements notation (URN) –
Language definition, November 2008.

[JSL13] Khaled Jaber, Bonita Sharif, and Chang Liu. A study on the effect of traceability
links in software maintenance. Access, IEEE, 1:726–741, 2013.

[JZ09] Waraporn Jirapanthong and Andrea Zisman. Xtraque: traceability for product
line systems. Software and Systems Modeling, 8(1):117–144, 2009.

[Kag07] Huzefa Kagdi. Improving change prediction with fine-grained source code min-
ing. In Proceedings of the 22nd IEEE/ACM International Conference on Auto-
mated Software Engineering, pages 559–562, New York, NY, USA, 2007.

[Kag08] Huzefa Kagdi. Mining Software Repositories to support software evolution.
PhD thesis, Kent State University, Kent, Ohio, USA, August 2008.

[KD11] Anne Keller and Serge Demeyer. Change Impact Analysis for UML Model
Maintenance, chapter 2, pages 32–56. IGI Global, 2011.

[KGGR08] Safoora Shakil Khan, Phil Greenwood, Alessandro Garcia, and Awais Rashid.
On the interplay of requirements dependencies and architecture evolution: An
exploratory study. In Proceedings of the 20th International Conference Ad-
vanced Information Systems Engineering (CAiSE ’08), pages 243–257, Mont-
pellier, France, June 2008.

[KGHW94] D. Kung, J. Gao, P. Hsia, and F. Wen. Change impact identification in object
oriented software maintenance. In International Conference on Software Main-
tenance, pages 202–211, Victoria, British Columbia, Canada, September 1994.

[KGPC10] Huzefa Kagdi, Malcom Gethers, Denys Poshyvanyk, and Michael L. Collard.
Blending conceptual and evolutionary couplings to support change impact anal-
ysis in source code. In Proceedings of the 17th IEEE Working Conference on Re-
verse Engineering (WCRE’10), pages 119–128, Beverly, Massachusetts, USA,
October 2010.

[KH05] Gerald Kotonya and John Hutchinson. Analysing the impact of change in

158

Bibliography

COTS-based systems. Lecture Notes in Computer Science, 3412:212–222,
2005.

[Kil08] Malia Sofia Kilpinen. The Emergence of Change at the Systems Engineering and
Software Design Interface - An Investigation of Impact Analysis. PhD thesis,
Cambridge University, Engineering Department, Cambridge, United Kingdom,
August 2008.

[KK07] Jaakko Korpi and Jussi Koskinen. Supporting impact analysis by program de-
pendence graph based forward slicing. In Khaled Elleithy, editor, Advances and
Innovations in Systems, Computing Sciences and Software Engineering, pages
197–202. Springer Netherlands, 2007.

[KKK10] Tae-hyung Kim, Kimun Kim, and Woomok Kim. An interactive change im-
pact analysis based on an architectural reflexion model approach. In Proceed-
ings of the IEEE 34th Annual Computer Software and Applications Conference
(COMPSAC ’10), pages 297–302, Seoul, South Korea, July 2010.

[KL09] Safoora Shakil Khan and Simon Lock. Concern tracing and change impact
analysis: An exploratory study. In Proceedings of the 2009 ICSE Workshop
on Aspect-Oriented Requirements Engineering and Architecture Design, pages
44–48, Vancouver, British Columbia, Canada, May 2009.

[KM07a] Huzefa Kagdi and Jonathan I. Maletic. Combining single-version and evolution-
ary dependencies for software-change prediction. In Proceedings of 4th Inter-
national Workshop on Mining Software Repositories (MSR’07), pages 107–110,
Minneapolis, Minnesota, USA, May 2007.

[KM07b] Huzefa Kagdi and Jonathan I. Maletic. Software repositories: A source for
traceability links. In Proceedings of the 4th ACM International Workshop on
Traceability in Emerging Forms of Software Engineering (GCT/TEFSE’07),
pages 32–39, Lexington, KY, USA, March 2007.

[KMS07] Huzefa Kagdi, Jonathan I. Maletic, and Bonita Sharif. Mining software repos-
itories for traceability links. In Proceedings of the 15th IEEE International
Conference on Program Comprehension (ICPC ’07), pages 145–154, Banff,
Alberta, British Columbia, Canada, June 2007.

[Kol09] Dimitrios S. Kolovos. Establishing correspondences between models with the
epsilon comparison language. In Proceedings of the 5th European Conference
on Model Driven Architecture - Foundations and Applications, ECMDA-FA
’09, pages 146–157, Berlin, Heidelberg, 2009. Springer-Verlag.

[Kos03] Rainer Koschke. Software visualization in software maintenance, reverse engi-
neering, and reengineering: a research survey. Journal of Software Maintenance
and Evolution: Research and Practice, 15:87–109, 2003.

[KPP08] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. Detecting and
repairing inconsistencies across heterogeneous models. In Proceedings of the
1st International Conference on Software Testing, Verification, and Validation,
pages 356–364, Lillehammer, Norway, April 2008.

[Kru95] P. B. Kruchten. The 4+1 View Model of Architecture. IEEE Software, 12(6):42–

159

Bibliography

50, 1995.

[KSD09] Anne Keller, Hans Schippers, and Serge Demeyer. Supporting inconsistency
resolution through predictive change impact analysis. In Proceedings of the 6th
International Workshop on Model-Driven Engineering, Verification and Valida-
tion, Denver, Colorado, USA, October 2009.

[Leh80] M.M. Lehman. Programs, life cycles, and laws of software evolution. Proceed-
ings of the IEEE, 68(9):1060–1076, Sept. 1980.

[Leh10] Steffen Lehnert. Softwarearchitectural Design and Realization of a Reposi-
tory for Comprehensive Model Traceability (in German: Softwarearchitektur-
Entwurf und Realisierung eines Repositories für Modell-übergreifende Trace-
ability). Diploma thesis, Ilmenau University of Technology, Ilmenau, Germany,
November 2010.

[Leh11a] Steffen Lehnert. A review of software change impact analysis. Technical report,
Ilmenau University of Technology, Department of Software Systems / Process
Informatics, Ilmenau, Germany, December 2011.

[Leh11b] Steffen Lehnert. A taxonomy for software change impact analysis. In Proceed-
ings of the 12th International Workshop on Principles of Software Evolution and
the 7th annual ERCIM Workshop on Software Evolution (IWPSE-EVOL 2011),
pages 41–50, Szeged, Hungary, September 2011. ACM.

[Let02] Patricio Letelier. A framework for requirements traceability in UML-based
projects. In Proceedings 1st International Workshop on Traceability in Emerg-
ing Forms of SE (TEFSE’02), pages 32–41, Edinburgh, United Kingdom, 2002.
ACM.

[LFOT07] Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Genoveffa Tortora. Re-
covering traceability links in software artifact management systems using in-
formation retrieval methods. ACM Transactions on Software Engineering and
Methodology (TOSEM), 16(4):13–62, September 2007.

[LFR12] Steffen Lehnert, Qurat-Ul-Ann Farooq, and Matthias Riebisch. A taxonomy of
change types and its application in software evolution. In Proceedings of the
19th Annual IEEE International Conference on the Engineering of Computer
Based Systems, pages 98–107, Novi Sad, Serbia, April 2012.

[LFR13] Steffen Lehnert, Qurat-Ul-Ann Farooq, and Matthias Riebisch. Rule-based
impact analysis for heterogeneous software artifacts. In Proceedings of
the 17th European Conference on Software Maintenance and Reengineering
(CSMR2013), pages 209–218, Genova, Italy, March 2013.

[LK99] Simon Lock and Gerald Kotonya. An integrated, probabilistic framework for
requirement change impact analysis. Australasian Journal of Information Sys-
tems, 6(2):38–63, September 1999.

[LM12] Yang Li and Walid Maalej. Which traceability visualization is suitable in this
context? a comparative study. Lecture Notes in Computer Science, 7195:194–
210, 2012.

[LO96] Li Li and A. Jefferson Offutt. Algorithmic analysis of the impact of changes

160

Bibliography

on object-oriented software. In Proceedings of the International Conference on
Software Maintenance, pages 171–184, Monterey, California , USA, November
1996.

[LR03] James Law and Gregg Rothermel. Whole program path-based dynamic impact
analysis. In Proceedings of the 25th International Conference on Software En-
gineering (2003), pages 308–318, Portland, Oregon, USA, May 2003.

[LR12] Steffen Lehnert and Matthias Riebisch. Tackling the challenges of evolution in
multiperspective software design and implementation. Softwaretechnik Trends,
32(2):27–28, May 2012.

[LSLZ13] Bixin Li, Xiaobing Sun, Hareton Leung, and Sai Zhang. A survey of code-
based change impact analysis techniques. Software Testing, Verification and
Reliability, 23(8):613–646, December 2013.

[LT93] Nancy G. Leveson and Clark S. Turner. An investigation of the Therac-25 acci-
dents. IEEE Computer, 26(7):18–41, 1993.

[M0̈9] Patrick Mäder. Rule-Based Maintenance of Post-Requirements Traceability.
PhD thesis, TU Ilmenau, Ilmenau, Germany, 2009.

[M1̈0] Patrick Mäder. Rule-Based Maintenance of Post-Requirements Traceability.
MV-Verlag, Münster, 2010.

[Mat02] James Matthews. AI Game Programming Wisdom, volume 1, chapter Basic A*
Pathfinding Made Simple, pages 105–113. Charles River Media, 2002.

[MBC05] J. Muskens, R. J. Bril, and M. R. V. Chaudron. Generalizing consistency check-
ing between software views. In Proceedings of the 5th Working IEEE/IFIP Con-
ference on Software Architecture (WICSA 2005), pages 169–180, Pittsburgh,
Pennsylvania, USA, November 2005.

[MBZR03] Tom Mens, Jim Buckley, Matthias Zenger, and Awais Rashid. Towards a taxon-
omy of software evolution. In Proceedings of the 2nd International Workshop
on Unanticipated Software Evolution, pages 1–18, Warsaw, Poland, April 2003.

[Mey96] Bertrand Meyer. The many faces of inheritance: A taxonomy of taxonomy.
IEEE Computer, 29(5):105–108, May 1996.

[MG09] Sharon McGee and Des Greer. A software requirements change source tax-
onomy. In Proceedings of the Fourth International Conference on Software
Engineering Advances (ICSEA ’09), pages 51–58, Porto, Portugal, September
2009.

[MG11] Sharon McGee and De Greer. Software requirements change taxonomy: Eval-
uation by case study. In Proceedings of the 19th IEEE International Require-
ments Engineering Conference (RE 2011), pages 25–34, Trento, Italy, Septem-
ber 2011.

[MGP08] Patrick Mäder, Orlena Gotel, and Ilka Philippow. Rule-based maintenance of
post-requirements traceability relations. In Proceedings of the 2008 16th IEEE
International Requirements Engineering Conference (RE ’08), pages 23–32,
Washington, DC, USA, 2008. IEEE Computer Society.

161

Bibliography

[MM03] Andrian Marcus and Jonathan I. Maletic. Recovering documentation-to-source-
code traceability links using latent semantic indexing. In International Confer-
ence on Software Engineering (ICSE’03), pages 125–135, Los Alamitos, Cali-
fornia, USA, May 2003. IEEE.

[MNS01] Gail C. Murphy, David Notkin, and Kevin Sullivan. Software reflexion models:
Bridging the gap between design and implementation. IEEE Transactions on
Software Engineering, 27(4):364–380, April 2001.

[Mod] MoDisco. http://www.eclipse.org/MoDisco/. (Accessed on November, 20th
2014).

[Mot12] Daniel Motschmann. Multikriterielle Suche in einem Eclipse-basierten Repos-
itory für Software-Architekten. Diplomarbeit, Ilmenau University of Technol-
ogy, Ilmenau, Germany, March 2012.

[MPR07] Patrick Mäder, Ilka Philippow, and Matthias Riebisch. A traceability link model
for the unified process. In Proceedings of the 8th ACIS International Conference
on Software Engineering, Artificial Intelligence, Networking, and Parallel/Dis-
tributed Computing, pages 700–705, Qingdao, China, July 2007.

[MR14] Klaus Müller and Bernhard Rumpe. A model-based approach to impact analysis
using model differencing. In Proceedings of the 8th International Workshop on
Software Quality and Maintainability (SQM2014), Antwerp, Belgium, February
2014.

[MRP06a] Patrick Mäder, Matthias Riebisch, and Ilka Philippow. Maintaining traceabil-
ity links during evolutionary software development. Softwaretechnik Trends,
26(3):89–90, May 2006.

[MRP06b] Patrick Mäder, Matthias Riebisch, and Ilka Philippow. Traceability for manag-
ing evolutionary change. In Proceedings of the 15th International Conference
on Software Engineering and Data Engineering (SEDE-2006), pages 1–8, Los
Angeles, California, USA, July 2006.

[MvdHW06] Leonardo G. P. Murta, André van der Hoek, and Cláudia M. L. Werner.
Archtrace: Policy-based support for managing evolving architecture-to-
implementation traceability links. In Proceedings of the 21st IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE’06), pages
135–144, Tokyo, Japan, September 2006.

[NHM10] Sarah Nadi, Ric Holt, and Serge Mankovskii. Does the past say it all? using
history to predict change sets in a CMDB. In Proceedings of the 14th Euro-
pean Conference on Software Maintenance and Reengineering, pages 97–106,
Madrid, Spain, March 2010.

[OAH03] Alessandro Orso, Taweesup Apiwattanapong, and Mary Jean Harrold. Leverag-
ing field data for impact analysis and regression testing. In Proceedings of the
9th European software engineering conference held jointly with 11th ACM SIG-
SOFT international symposium on Foundations of software engineering (ES-
EC/FSE’03), pages 128–137, Helsinki, Finland, 2003.

[OAL+04] Alessandro Orso, Taweesup Apiwattanapong, James Law, Gregg Rothermel,

162

Bibliography

and Mary Jean Harrold. An empirical comparison of dynamic impact analysis
algorithms. In Proceedings of the 26th International Conference on Software
Engineering (ICSE’04), pages 491–500, Edinburgh, Scotland, 2004.

[OG02] Thomas Olsson and John Grundy. Supporting traceability and inconsistency
management between software artifacts. In Proceedings of the IASTED Inter-
national Conference on Software Engineering and Applications, pages 63–78,
2002.

[OGPDL10] Rocco Oliveto, Malcom Gethers, Denys Poshyvanyk, and Andrea De Lucia. On
the equivalence of information retrieval methods for automated traceability link
recovery. In Proceedings of the IEEE 18th International Conference on Program
Comprehension (ICPC 2010), pages 68–71, Braga, Portugal, June 2010.

[OMG11] OMG. Requirements Interchange Format (ReqIF), April 2011.

[OMG12] OMG. Object Constraint Language (OCL). ISO/IEC 19507, April 2012.

[OMG13] OMG. Business Process Model and Notation (BPMN) Version 2.0.1. ISO/IEC
19510:2013, July 2013.

[OMG14] OMG. MetaObject Facility. ISO/IEC 19508, April 2014.

[PDK+11] Richard F. Paige, Nikolaos Drivalos, Dimitrios S. Kolovos, Kiran J. Fernandes,
Christopher Power, Goran K. Olsen, and Steffen Zschaler. Rigorous identifi-
cation and encoding of trace-links in model-driven engineering. Software and
Systems Modeling, 10(4):469–487, 2011.

[PGBM10] Daniel Popescu, Joshua Garcia, Kevin Bierhoff, and Nenad Medvidovic. Helios:
Impact analysis for event-based systems. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering, pages 531–532, Cape Town,
South Africa, May 2010.

[PMFG09] Denys Poshyvanyk, Andrian Marcus, Rudolf Ferenc, and Tibor Gyimóthy. Us-
ing information retrieval based coupling measures for impact analysis. Empiri-
cal Software Engineering, 14(1):5–32, 2009.

[Poh96a] Klaus Pohl. PRO-ART: Enabling requirements Pre-traceability. In Proceedings
of the Second International Conference on Requirements Engineering, ICRE,
pages 76–84. IEEE Computer Society, Apr 1996.

[Poh96b] Klaus Pohl. Process-Centered Requirements Engineering. John Wiley & Sons,
Inc., New York, NY, USA, 1996.

[POK+08] Richard F. Paige, Goran K. Olsen, Dimitrios S. Kolovos, Steffen Zschaler, and
Christopher Power. Building model-driven engineering traceability classifica-
tions. In Proceedings of the ECMDA Traceability Workshop, pages 49–58, 2008.

[Pop10] Daniel Popescu. Impact analysis for event-based components and systems. In
Proceedings of the 32nd ACM/IEEE International Conference on Software En-
gineering, pages 401–404, Cape Town, South Africa, May 2010.

[QVWM94] Jean-Pierre Queille, Jean-Francois Voidrot, Norman WiIde, and Malcom
Munro. The impact analysis task in software maintenance: A model and a
case study. In Proceedings of the International Conference on Software Main-

163

Bibliography

tenance, pages 234–242, Victoria, British Columbia, Canada, September 1994.

[Raj97] Václav Rajlich. A model for change propagation based on graph rewriting.
In Proceedings of the 13th International Conference on Software Maintenance
(ICSM ’97), pages 84–91, Bari, Italy, October 1997.

[RBFL11] Matthias Riebisch, Stephan Bode, Qurat-Ul-Ann Farooq, and Steffens Lehn-
ert. Towards comprehensive modelling by inter-model links using an integrating
repository. In Proceedings of the 8th IEEE Workshop on Model-Based Develop-
ment for Computer-Based Systems - Covering Domain and Design Knowledge
in Models, pages 284–291, Las Vegas, Nevada, USA, April 2011.

[Ren07] Xiaoxia Ren. Change Impact Analysis for Java programs and applications. PhD
thesis, New Brunswick Graduate School, Rutgers University, New Brunswick,
New Jersey, USA, October 2007.

[RH09] Per Runeson and Martin Höst. Guidelines for conducting and reporting case
study research in software engineering. Journal of Empirical Software Engi-
neering, 14:131–164, 2009.

[RJ01] Balasubramaniam Ramesh and Matthias Jarke. Toward reference models for
requirements traceability. IEEE Trans. Softw. Eng., 27(1):58–93, 2001.

[RKRS05] T. Reiter, E. Kapsammer, W. Retschitzegger, and W. Schwinger. Model integra-
tion through mega operations. In Proceedings of the Workshop on Model-driven
Web Engineering, pages 20–29, Sydney, Australia, July 2005.

[RL08] Romain Robbes and Michele Lanza. SpyWare: A change-aware development
toolset. In Proceedings of the 30th international conference on Software engi-
neering (ICSE ’08), pages 847–850, Leipzig, Germany, May 2008.

[Rob08] Romain Robbes. Of Change and Software. PhD thesis, Faculty of Informatics
of the University of Lugano, Lugano, Switzerland, December 2008.

[RPB11] Matthias Riebisch, Alexander Pacholik, and Stephan Bode. Towards optimiza-
tion of design decisions for embedded systems by exploiting dependency rela-
tionships. In Proceedings of the Workshop Modellbasierte Entwicklung einge-
betteter Systeme (MBEES2011), Dagstuhl, Germany, February 2011. Dagstuhl.

[RRST05] Xiaoxia Ren, Barbara G. Ryder, Maximilian Störzer, and Frank Tip. Chianti:
A change impact analysis tool for Java programs. In Proceedings of the 27th
international conference on Software Engineering (ICSE ’05), pages 664–665,
New York, NY, USA, 2005. ACM.

[RSN09] Mehwish Riaz, Muhammad Sulayman, and Husnain Naqvi. Architectural de-
cay during continuous software evolution and impact of ‘design for change’ on
software architectures. In Dominik Slezak, Tai-hoon Kim, Akingbehin Kiumi,
Tao Jiang, June Verner, and Silvia Abrahao, editors, Advances in Software Engi-
neering, volume 59 of Communications in Computer and Information Science,
pages 119–126. Springer, 2009.

[RST+03] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, Ophelia Chesley, and
Julian Dolby. Chianti: A prototype change impact analysis tool for Java. Techni-
cal Report DCS-TR-533, Rutgers University, Department of Computer Science,

164

Bibliography

New Brunswick, New Jersey, USA, September 2003.

[RST+04] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia Chesley.
Chianti: A tool for change impact analysis of Java programs. In Proceedings of
the 19th annual ACM SIG-PLAN Conference on Object-oriented programming,
systems, languages, and applications (OOPSLA ’04), pages 432–448, Vancou-
ver, British Columbia, Canada, October 2004.

[RT01] Barbara G. Ryder and Frank Tip. Change impact analysis for object-oriented
programs. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering (PASTE ’01), pages 46–53,
Snowbird, Utah, USA, June 2001.

[RWKA07] Siti Rochimah, Wan M.N. Wan Kadir, and Abdul H. Abdullah. An evaluation of
traceability approaches to support software evolution. In Proceedings of the 2nd
International Conference on Advances in Software Engineering, pages 19–27,
Cap Esterel, France, August 2007.

[SA03] Susanne A. Sherba and Kenneth M. Anderson. A framework for managing
traceability relationships between requirements and architectures. In Proceed-
ings of the International Conference on Software Engineering, pages 150–156,
Portland, Oregon, May 2003.

[SdGZ03] George Spanoudakis, A. d’Avila Garces, and Andrea Zisman. Revising rules
to capture requirements traceability relations: A machine learning approach.
In Proceedings of the 15th International Conference in Software Engineering
and Knowledge Engineering (SEKE 2003), pages 570–577. Knowledge Systems
Institute, Skokie, 2003.

[SEW09] Hannes Schwarz, Jürgen Ebert, and Andreas Winter. Graph-based traceability: a
comprehensive approach. Software and Systems Modeling, 9(4):473–492, 2009.

[SF01] Thanwadee Sunetnanta and Anthony Finkelstein. Automated consistency
checking for multiperspective software specifications. In Proceedings of the
International Conference on Software Engineering Workshop on Advanced Sep-
aration of Concerns, pages 1–12, Toronto, Ontario, Canada, May 2001.

[SH10] Raul Santelices and Mary Jean Harrold. Probabilistic slicing for predictive im-
pact analysis. Technical report, Georgia Tech Center for Experimental Research
in Computer Systems (CERCS), Atlanta, Georgia, USA, 2010.

[SLT+10] Xiaobing Sun, Bixin Li, Chuanqi Tao, Wanzhi Wen, and Sai Zhang. Change im-
pact analysis based on a taxonomy of change types. In Proceedings of the IEEE
34th Annual Computer Software and Applications Conference, pages 373–382,
Seoul, South Korea, July 2010.

[SLTZ11] Xiaobing Sun, Bixin Li, Chuanqi Tao, and Sai Zhang. HSM-based change im-
pact analysis of object-oriented Java programs. Chinese Journal of Electronics,
20(2):247–251, April 2011.

[SNG10] Andreas Seibel, Stefan Neumann, and Holger Giese. Dynamic hierarchical
mega models: comprehensive traceability and its efficient maintenance. Soft-
ware and Systems Modeling, 9(4):493–528, 2010.

165

Bibliography

[SPLTJ01] Gerson Sunyé, Damien Pollet, Yves Le Traon, and Jean-Marc Jézéquel. Refac-
toring UML models. Lecture Notes in Computer Science, 2185:134–148, 2001.

[SRRT06] Maximilian Störzer, Barbara G. Ryder, Xiaoxia Ren, and Frank Tip. Finding
failure-inducing changes in Java programs using change classification. In Pro-
ceedings of the 14th ACM SIGSOFT international symposium on Foundations
of software engineering, pages 57–68, Portland, Oregon, USA, 2006.

[ST07] Ali R. Sharafat and Ladan Tahvildari. A probabilistic approach to predict
changes in object-oriented software systems. In Proceedings of the 11th Eu-
ropean Conference on Software Maintenance and Reengineering (CSMR ’07),
pages 27–38, Amsterdam, Netherlands, March 2007.

[ST08] Ali R. Sharafat and Ladan Tahvildari. Change prediction in object-oriented
software systems: A probabilistic approach. Journal of Software, 3(5):26–39,
May 2008.

[SZ05] George Spanoudakis and Andrea Zisman. Software traceability: A roadmap.
In Chang S. K., editor, Handbook of Software Engineering and Knowledge En-
gineering, volume III, pages 395–428. World Scientific Publishing Co., River
Edge, NJ, 2005.

[SZPMK04] George Spanoudakis, Andre Zisman, Elena Perez-Minana, and Paul Krause.
Rule-based generation of requirements traceability relations. Journal of Systems
and Software, 72(2):105–127, 2004.

[tHGK+09] David ten Hove, Arda Goknil, Ivan Kurtev, Klaas van den Berg, and Koos
de Goede. Change impact analysis for sysml requirements models based on
semantics of trace relations. In Proceedings of the ECMDA Traceability Work-
shop (ECMDA-TW), pages 17–28, Enschede, Netherlands, June 2009.

[Tip94] Frank Tip. A survey of program slicing techniques. Journal of Programming
Languages, 3:121–189, 1994.

[TLCvV11a] Antony Tang, Peng Liang, Viktor Clerc, and Hans van Vliet. Relating Soft-
ware Requiremens and Software Architecture, chapter Supporting Co-evolving
Architectural Requirements and Design through Traceability and Reasoning,
pages 35–60. Springer, 2011.

[TLCvV11b] Antony Tang, Peng Liang, Viktor Clerc, and Hans van Vliet. Supporting Co-
evolving Architectural Requirements and Design through Traceability and Rea-
soning, pages 35–60. Springer, 2011.

[TLL14] Yuan Tian, David Lo, and Julia Lawall. Automated construction of a software-
specific word similarity database. In Proceedings of the IEEE Conference on
Software Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE
2014), pages 44–53, Antwerp, Belgium, February 2014.

[TLvV11] Antony Tang, Peng Liang, and Hans van Vliet. Software architecture documen-
tation: The road ahead. In Proceedings of the 2011 Ninth Working IEEE/IFIP
Conference on Software Architecture, pages 252–255, Boulder, Colorado, USA,
June 2011.

[TNJH07] Antony Tang, Ann Nicholson, Yan Jin, and Jun Han. Using bayesian belief

166

Bibliography

networks for change impact analysis in architecture design. The Journal of
Systems and Software, 80:127–148, 2007.

[Ton03] Paolo Tonella. Using a concept lattice of decomposition slices for program un-
derstanding and impact analysis. IEEE Transactions on Software Engineering,
29(6):495–509, June 2003.

[VBF07] László Vidács, Árpád Beszédes, and Rudolf Ferenc. Macro impact analysis
using macro slicing. In Proceedings of the Second International Conference on
Software and Data Technologies (ICSOFT ’07), pages 230–235, July 2007.

[vdWvdH02] Christian van der Westhuizen and André van der Hoek. Understanding and
propagating architectural changes. In Jan Bosch, Morven Gentleman, Chris-
tine Hofmeister, and Juha Kuusela, editors, Software Architecture, volume 97 of
IFIP - The International Federation for Information Processing, pages 95–109.
Springer US, 2002.

[VGSMD03] Pieter Van Gorp, Hans Stenten, Tom Mens, and Serge Demeyer. Towards au-
tomating source-consistent uml refactorings. Lecture Notes in Computer Sci-
ence, 2863:144–158, 2003.

[VSV08] Stephane Vaucher, Houari Sahraoui, and Jean Vaucher. Discovering new change
patterns in object-oriented systems. In Proceedings of the 2008 15th Working
Conference on Reverse Engineering (WCRE ’08), pages 37–41, Washington,
DC, USA, 2008.

[W3C07] W3C. XSL Transformations (XSLT) Version 2.0. W3C Recommendation, Jan-
uar 2007.

[W3C09] W3C OWL Working Group. OWL 2 Web Ontology Language Document
Overview. W3C Recommendation, October 27 2009.

[W3C10] W3C. XML Path Language (XPath) 2.0 (Second Edition). W3C Recommenda-
tion, December 2010.

[Wag10] Philipp Wagner. Tool Support for the Analysis during Software Architec-
tural Design (in German: Werkzeugunterstützung für die Analyse beim Soft-
warearchitekturentwurf). Bachelor thesis, Ilmenau University of Technology,
Ilmenau, Germany, December 2010.

[Wil12] Jerod W. Wilkerson. A software change impact analysis taxonomy. In Pro-
ceedings of the 28th IEEE International Conference on Software Maintenance,
pages 625–628, Riva del Garda, Trento, Italy, September 2012.

[Wis14] The Wisconsin Program-Slicing Tool. http://research.cs.wisc.edu/wpis/html/,
May 2014. (Accessed on November, 20th 2014).

[WJSA06] Ståle Walderhaug, Ulrik Johansen, Erlend Stav, and Jan Aagedal. Towards a
generic solution for traceability in MDD. In Proceedings of the ECMDA Trace-
ability Workshop, pages 41–50, Sintef, Trondheim, Norway, 2006.

[WvP10] Stefan Winkler and Jens von Pilgrim. A survey of traceability in requirements
engineering and model-driven development. Software and Systems Modeling,
9(4):529–565, 2010.

167

Bibliography

[XS04a] Zhenchang Xing and Eleni Stroulia. Data-mining in support of detecting class
co-evolution. In Proceedings of the 16th International Conference on Software
Engineering & Knowledge Engineering (SEKE’04), pages 123–128, June 2004.

[XS04b] Zhenchang Xing and Eleni Stroulia. Understanding class evolution in object-
oriented software. In Proceedings of the 12th IEEE International Workshop on
Program Comprehension (IWPC’04), pages 34–43, June 2004.

[XS05] Zhenchang Xing and Eleni Stroulia. UMLDiff: An algorithm for object-
oriented design differencing. In Proceedings of the 20th IEEE/ACM interna-
tional Conference on Automated software engineering (ASE ’05), pages 54–65,
Long Beach, California, USA, November 2005.

[YC04] Namho Yoo and Hyeong-Ah Choi. An XML-based approach for interface im-
pact analysis in sustained system. In Proceedings of the International Confer-
ence on Information and Knowledge Engineering (IKE’04), pages 161–167, Las
Vegas, Nevada, USA, June 2004.

[YCDW09] Andres Yie, Rubby Casallas, Dirk Deridder, and Dennis Wagelaar. A practical
approach to multi-modeling views composition. In Proceedings of the 3rd In-
ternational Workshop on Multi-Paradigm Modeling: Concepts and Tools, colo-
cated with the ACM/IEEE 12th International Conference on Model Driven Engi-
neering Languages and Systems, pages 1–11, Denver, Colorado, USA, October
2009.

[YCM78] S. S. Yau, J. S. Collofello, and T. M. McGregor. Ripple effect analysis of soft-
ware maintenance. In Proceedings Computer Software and Applications Con-
ference (COMPSAC ’78), pages 60–65. IEEE Computer Society Press: Piscat-
away NJ, 1978.

[YM12] Amir Reza Yazdanshenas and Leon Moonen. Fine-grained change impact anal-
ysis for component-based product families. In Proceedings of the 28th IEEE
International Conference on Software Maintenance (ICSM 2012), pages 119–
128, Riva del Garda, Trento, Italy, September 2012.

[YMNCC04] Annie T.T. Ying, Gail C. Murphy, Raymond Ng, and Mark C. Chu-Carroll.
Predicting source code changes by mining change history. IEEE Transactions
on Software Engineering, 30(9):574–586, September 2004.

[ZLZ+14] He Zhang, Juan Li, Liming Zhu, Ross Jeffery, Yan Liu, Qing Wang, and Ming-
shu Li. Investigating dependencies in software requirements for change propa-
gation analysis. Information and Software Technology, 56(1):40–53, 2014.

[ZWDZ05] Thomas Zimmermann, Peter Weissgerber, Stephan Diehl, and Andreas Zeller.
Mining version histories to guide software changes. IEEE Transactions on Soft-
ware Engineering, 31(6):429–445, June 2005.

[ZWG+08] Yu Zhou, Michael Wuersch, Emanuel Giger, Harald Gall, and Jian Lue. A
bayesian network based approach for change coupling prediction. In Proceed-
ings of the 15th Working Conference on Reverse Engineering 2008, pages 27–
36, Antwerp, Belgium, October 2008.

168

List of Figures

2.1. Our taxonomy for change impact analysis approaches [Leh11b] 11
2.2. Coverage of our criteria in the studied literature [Leh11a] 12
2.3. Distribution of scopes among the studied approaches [Leh11a] 17
2.4. Scopes supported by multiperspective approaches [Leh11a] 18

4.1. Overview of the proposed approach . 38
4.2. Views considered by our approach (ellipses) and their relations (arrows) 40

5.1. The mega-model approach. Thick arrows indicate cross-model dependencies . 44
5.2. The joint model repository approach. Arrows indicate the transformation and

import of software artifacts into the repository 45
5.3. Overview of our artifact integration approach 46
5.4. The constituents of the Ecore meta-model . 47
5.5. Enhancing the repository approach with adapters forwarding change events . . 49

6.1. Traceability meta-model. Improved and simplified version of [Leh10] 52
6.2. Our taxonomy of dependency types . 55
6.3. Overview of our dependency detection approach 59
6.4. implements-dependency between two methods 63
6.5. Design dependencies between a use case and a sequence diagram (red arrow) . 66
6.6. Dependencies between the code view and the behavioral view 68
6.7. Meta-model for dependency detection rules 70
6.8. Comparison of dependency detection approaches regarding the detection of

meta-model, object oriented, design methodology, and multiperspective depen-
dencies . 77

7.1. The structure of the graph before (i) and after (ii) applying the Move-operation . 83
7.2. The structure of the graph before (i) and after (ii) applying the Move-operation . 83
7.3. The structure of the graph before (i) and after (ii) applying the Replace-operation 84
7.4. The structure of the graph before (i) and after (ii) applying the Replace-operation 84
7.5. The structure of the graph before (i) and after (ii) applying the Split-operation . 84
7.6. The structure of the graph before (i) and after (ii) applying the Merge-operation 85
7.7. The structure of the graph before (i) and after (ii) applying the Swap-operation . 85
7.8. The structure of the graph before (i) and after (ii) applying the Swap-operation . 86
7.9. Our EMF-based meta-model for change operations 86

8.1. All information that are potentially available when determining the impacts of
changes . 94

8.2. Overview of our impact analysis approach . 95

169

List of Figures

8.3. The propagation of changes and the changing contents of the closed and open
list. Grey ellipses indicate the current search space. Grey nodes indicate im-
pacted artifacts . 99

8.4. The impact analysis process illustrated as a BPMN process diagram 101
8.5. Renaming the interface-method executeRules would impact the class-method

executeRules, which in turn would impact the JUnit test-method testExecuteRules112

9.1. EMFTrace and its relation to other 3rd party frameworks and tools 122
9.2. EMFTrace while searching for dependency relations (screenshot) 123
9.3. Visualization of direct dependencies using the fish-eye-view (left) and transitive

dependency chains (right) in EMFTrace (screenshot) 124
9.4. Performing impact analysis when changing the return type of the method “ad-

dElement” that is centered on the screen (screenshot) 125
9.5. The core components of EMFTrace . 125
9.6. The internal structure of the core components of EMFTrace 126

10.1. The class hierarchy of impact analyzers before (left) and after (right) the refac-
toring . 132

10.2. Results of Scenario 1 (17 changes, see Appendix C.2) 136
10.3. Results of Scenario 2 (72 changes, see Appendix C.3) 136
10.4. Results of Scenario 3 (7 changes, see Appendix C.4) 137
10.5. Results of Scenario 4 (69 changes, see Appendix C.5) 137
10.6. Results of Scenario 5 (45 changes, see Appendix C.6) 138

170

List of Tables

2.1. Coverage of our requirements by existing taxonomies 10
2.2. Summary of the distance-based graph analysis approach 13
2.3. Summary of the message dependency graph analysis approach 13
2.4. Summary of the call graph analysis approach 14
2.5. Summary of the dynamic execution trace analysis approach 14
2.6. Summary of the program slicing approach . 15
2.7. Summary of the MSR-based approach . 15
2.8. Summary of the IR-based approach . 16
2.9. Summary of probabilistic approaches . 16
2.10. Summary of the rule-based approach . 17

3.1. Dependency types proposed in related work 28
3.2. Summary of IR approaches for multiperspective dependency detection 29
3.3. Summary of MSR approaches for multiperspective dependency detection . . . 30
3.4. Summary of rule-based approaches for multiperspective dependency detection . 30
3.5. Summary of Semantic Wikis for multiperspective dependency detection 31
3.6. Summary of ML approaches for multiperspective dependency detection 31

5.1. Summary of the mega-model approach . 44
5.2. Summary of combining modeling frameworks and model repositories 45

6.1. An excerpt of meta-model dependencies . 61
6.2. An excerpt of object oriented dependencies 62
6.3. An excerpt of design methodology dependencies 65
6.4. An excerpt of multiperspective dependencies 67
6.5. Overview of all query-operators supported by our rule-concept 72
6.6. Overview of all cases study subjects . 74
6.7. Results achieved with our approach . 75
6.8. Comparison of traceability detection approaches 76

7.1. Classification of the discussed changes according to our taxonomy 90

8.1. Impact propagation based on abstraction-dependencies. Inheritance relations
are not impacted by this type of change (∗) . 105

8.2. Impact propagation based on structural-dependencies 106
8.3. Impact propagation based on realization-dependencies 106
8.4. Impact propagation based on definition-dependencies 107
8.5. Impact propagation based on examination- and utilization-dependencies 107
8.6. Impact propagation based on creation-dependencies 108

10.2. Tested hypotheses to answer RQ1 . 129

171

List of Tables

10.3. Tested hypotheses to answer RQ2 . 130
10.4. Average results of our rule-based propagation approach per scenario 136
10.5. Average results of the distance-based propagation approach per scenario 137
10.6. Comparison of rule-based and distance-based propagation regarding precision,

recall, F1-score, and standard deviation of precision and recall 138
10.7. t-values for precision and recall, degrees of freedom, and t-quantile for α =

0.05 for the comparison of rule-based and distance-based propagation. Each
approach was tested with n = m = 210 changes. Welch’s t-test for two inde-
pendent samples is applied . 138

10.8. Number of changes per type of software artifact (n), precision and recall per
type of software artifact, deviation of precision and recall per type, t-values for
precision and recall per type, and t-quantile for α = 0.05. Student’s One-sample
t-test is applied . 138

172

A. Dependency Detection Rules

Rule(s) Description
TR Cls 001 Link classes with their superclass (UML)
Elements Class e1, Class e2, Generalization e3
Conditions AND(modelEquals(e3::general, e2), modelDirectParentOf(e1, e3))
Action createLink(e1, ’Is-A’, e2)
TR Cls 002 Link classes with their superclass (Java)
Elements ClassDeclaration e1, ClassDeclaration e2, TypeAccess e3
Conditions AND(modelEquals(e1::superclass, e3), modelEquals(e3::type, e2)))
Action createLink(e1, ’Is-A’, e2)
TR Cls 003 Link classes with their implemented interface (UML)
Elements Class e1, Interface e2, InterfaceRealization e3
Conditions AND(modelEquals(e3::client, e3), modelEquals(e3::supplier, e2)))
Action createLink(e1, ’Implements’, e2)
TR Cls 004 Link classes with their implemented interface (Java)
Elements ClassDeclaration e1, InterfaceDeclaration e2, TypeAccess e3
Conditions AND(modelDirectParentOf(e1, e3), modelEquals(e3::type, e2)))
Action createLink(e1, ’Implements’, e2)
TR Cls 005 Link UML classes and corresponding source code classes
Elements Class e1, ClassDeclaration e2
Conditions valueEquals(e1::name, e2::name)
Action createLink(e1, ’Is-Equivalent-To’, e2)
TR Cls 006 Link classes with UML components refined by them
Elements Class|ClassDeclaration e1, Component e2
Conditions valueEquals(e1::name, e2::name)
Action createLink(e1, ’Refines’, e2)
TR Cls 007|8 Find UML classes that implement UML [use case systems|use cases]
Elements Class|ClassDeclaration e1, Model|Actor e2
Conditions valueEquals(e1::name, e2::name)
Action createLink(e1, ’Implements’, e2)
TR Cls 009 Find UML classes that realize UML use cases
Elements Class e1, UseCase e2
Conditions ValueSimilarTo(e1::name, e2::name)
Action createLink(e1, ’Realizes’, e2)
TR Cls 010 Find UML classes that realize UML use cases
Elements Class e1, Operation e2, UseCase e3
Conditions AND(modelDirectParentOf(e1, e2), OR(valueEquals(e1::name, e2::name), AND(valueContains(e3::name, e1::name),

valueContains(e3::name, e2::name))))
Action createLink(e1, ’Realizes’, e2)
TR Cls 011|13 Link classes with their methods
Elements Class|ClassDeclaration e1, Operation|MethodDeclaration e2
Conditions modelDirectParentOf(e1, e2)
Action createLink(e1, ’Defines’, e2)
TR Cls 012|14 Link classes with their attributes
Elements Class|ClassDeclaration e1, Property|FieldDeclaration e2
Conditions modelDirectParentOf(e1, e2)
Action createLink(e1, ’Defines’, e2)
TR Cls 015|16 Link classes with their corresponding test cases
Elements Class|ClassDeclaration e1, Class|ClassDeclaration
Conditions AND(valueStartsWith(e1::name, e2::name), valueEndsWith(e1::name, ’Test’))
Action createLink(e1, ’Tests’, e2)
TR Cls 017 Find classes that are a part of a component
Elements Class e1, Component e2
Conditions modelDirectParentOf(e2, e1)
Action createLink(e1, ’Is-Part-Of’, e2)
TR Cls 018|19 Link classes with packages containing them
Elements Class|ClassDeclaration e1, Package e2
Conditions modelDirectParentOf(e2, e1)
Action createLink(e1, ’Is-Part-Of’, e2)

173

A. Dependency Detection Rules

TR Cls 020 Find UML classes that are part of an UML collaboration
Elements Class e1, Collaboration e2, CollaborationUse e3
Conditions AND(modelDirectParentOf(e2, e3), valueEquals(e1::name, e3::name))
Action createLink(e1, ’Is-Part-Of’, e2)
TR Int 001 Link interfaces with their superclass (UML)
Elements Interface e1, Interface e2, Generalization e3
Conditions AND(modelEquals(e3::general, e2), modelDirectParentOf(e1, e3))
Action createLink(e1, ’Is-A’, e2)
TR Int 002 Link interfaces with their superclass (Java)
Elements InterfaceDeclaration e1, InterfaceDeclaration e2, TypeAccess e3
Conditions AND(modelEquals(e1::superclass, e3), modelEquals(e3::type, e2)))
Action createLink(e1, ’Is-A’, e2)
TR Cls 003 Link UML interfaces and corresponding source code interfaces
Elements Interface e1, InterfaceDeclaration e2
Conditions valueEquals(e1::name, e2::name)
Action createLink(e1, ’Is-Equivalent-To’, e2)
TR Cls 004 Find interfaces that correspond to interfaces defined by components
Elements Interface e1, Interface e2, Component e3
Conditions AND(valueEquals(e1::name, e2::name), OR(modelRelatedTo(e3, ’Provides’, e1), modelRelatedTo(e3, ’Provides’, e1),

modelDirectParentOf(e3, e1)))
Action createLink(e2, ’Refines’, e1)
TR Int 005|7 Link interfaces with their methods
Elements Interface|InterfaceDeclaration e1, Operation|MethodDeclaration e2
Conditions modelDirectParentOf(e1, e2)
Action createLink(e1, ’Defines’, e2)
TR Int 006|8 Link interfaces with their attributes
Elements Interface|InterfaceDeclaration e1, Property|FieldDeclaration e2
Conditions modelDirectParentOf(e1, e2)
Action createLink(e1, ’Defines’, e2)
TR Int 009|10 Link interfaces with packages containing them
Elements Interface|InterfaceDeclaration e1, Package e2
Conditions modelDirectParentOf(e2, e1)
Action createLink(e1, ’Is-Part-Of’, e2)
TR Cmp 001 Link components refining other components
Elements Component e1, Component e2, Component|Interface e3
Conditions AND(valueEquals(e1::name, e2::name), modelDirectParentOf(e1,e3), NOT(modelDirectParentOf(e2, e3)))
Action createLink(e2, ’Refines’, e1)
TR Cmp 002|3 Find components implementing a use case [system|actor]
Elements Component e1, Model|Actor e2
Conditions valueEquals(e1::name, e2::name)
Action createLink(e1, ’Implements’, e2)
TR Cmp 004|5|10 Find components that are a part of a [component|package|deployment node]
Elements Component e1, Component|Package|Node e2
Conditions modelDirectParentOf(e1::name, e2::name)
Action createLink(e2, ’Is-Part-Of’, e1)
TR Cmp 006 Find UML interfaces required by UML components
Elements Interface e1, Component e2, Usage e3
Conditions AND(modelEquals(e3::supplier, e1), modelEquals(e3::client, e2))
Action createLink(e2, ’Requires’, e1)
TR Cmp 007 Find UML interfaces provided by UML components
Elements Component e1, Interface e2, InterfaceRealization e3
Conditions AND(modelDirectParentOf(e1, e3), modelEquals(e3::supplier, e2))
Action createLink(e1, ’Provides’, e2)
TR Cmp 008 Link components with their ports
Elements Component e1, Port e2
Conditions modelDirectParentOf(e1, e2)
Action createLink(e1, ’Defines’, e2)
TR Cmp 009 Link components with their artifacts
Elements Component e1, Port e2
Conditions modelDirectParentOf(e1, e2)
Action createLink(e1, ’Contains”’, e2)
TR Prt 001 Link ports with required interfaces
Elements Port e1, Interface e2, Usage e3
Conditions AND(modelEquals(e3::supplier, e2), modelEquals(e3::client, e1))
Action createLink(e1, ’Requires’, e2)
TR Prt 002 Link ports with interfaces provided by them
Elements Port e1, Interface e2, Usage e3
Conditions AND(modelEquals(e3::supplier, e1), modelEquals(e3::client, e2))
Action createLink(e1, ’Provides’, e2)
TR Pck 001|2 Link packages with their sub-packages

174

A. Dependency Detection Rules

Elements Package e1, Package e2
Conditions modelDirectParentOf(e2, e1)
Action createLink(e1, ’Is-Part-Of’, e2)
TR Pck 003 Link UML packages with corresponding Java packages
Elements Package e1, Package e2
Conditions AND(valueNotNull(e1::umlId), valueEquals(e1::name, e2::name))
Action createLink(e1, ’Is-Equivalent-To’, e2)
TR Mth 001 Link methods with their return types (UML)
Elements Operation e1, Parameter e2, DataType e3
Conditions OR(modelEquals(e1::type, e3), AND(modelEquals(e2::type, e3),

modelDirectParentOf(e1, e2), NOT(valueNotNull(e2::name))))
Action createLink(e1, ’Is-Type-Of’, e3)
TR Mth 002|3 Link methods (UML) with their return types if they return an instance of a [class|interface]
Elements Operation e1, Parameter e2, Class|Interface e3
Conditions AND(modelDirectParentOf(e1, e2), modelEquals(e2::type, e3), valueEquals(e2::direction, ’Return’))
Action createLink(e1, ’Is-Type-Of’, e3)
TR Mth 004|5 Link [class|interface]-attributes and their getter-methods (UML)
Elements Operation e1, Property e2, Class|Interface e3
Conditions AND(modelDirectParentOf(e3, e1), modelDirectParentOf(e3, e2), valueStartsWith(e1::name, ’get’),

valueEndsWith(e1::name, e2::name))
Action createLink(e1, ’Uses’, e3)
TR Mth 006|7 Link [class|interface]-attributes and their setter-methods (UML)
Elements Operation e1, Property e2, Class|Interface e3
Conditions AND(modelDirectParentOf(e3, e1), modelDirectParentOf(e3, e2), valueStartsWith(e1::name, ’set’),

valueEndsWith(e1::name, e2::name))
Action createLink(e1, ’Modifies’, e3)
TR Mth 008|22 Link test-methods with the methods they test
Elements Class|ClassDeclaration e1, Class|ClassDeclaration e2, Operation|MethodDeclaration e3, Operation|MethodDecl. e4
Conditions AND(modelRelatedTo(e1, ’Tests’, e2), modelDirectParentOf(e1, e3), modelDirectParentOf(e2, e4),

valueContains(e3::name, e4::name), valueStartsWith(e3::name, ’test’))
Action createLink(e3, ’Tests’, e4)
TR Mth 009|23 Link interface methods with methods of classes implementing them
Elements Class|ClassDeclaration e1, Operation|MethodDeclaration e2, Interface|InterfaceDecl. e3, Operation|MethodDecl. e4
Conditions AND(modelRelatedTo(e1, ’Implements’, e3), modelDirectParentOf(e1, e2), modelDirectParentOf(e3, e4),

valueEquals(e2::name, e4::name))
Action createLink(e3, ’Implements’, e4)
TR Mth 010|24 Link methods with their method parameters
Elements Parameter|SingleVariableDeclaration e1, Operation|MethodDeclaration e2
Conditions modelDirectParentOf(e2, e1)
Action createLink(e2, ’Defines’, e1)
TR Mth 011 Link UML operations with corresponding source code methods
Elements Operation e1, MethodDeclaration e2, Class|Interface e3, ClassDeclaration|InterfaceDeclaration e4
Conditions AND(valueEquals(e1::name, e2::name), valueEquals(e3::name, e4::name), modelDirectParentOf(e3, e1), modelDirect-

ParentOf(e4, e2))
Action createLink(e1, ’Is-Equivalent-To’, e2)
TR Mth 012|13|14 Find methods that realize UML [sequences|use cases|activities]
Elements Operation|MethodDeclaration e1, UseCase|Interaction|CallBehaviorAction|Activity e2
Conditions OR(valueEquals(e1::name, e2::name), valueSimilarTo(e1::name, e2::name))
Action createLink(e1, ’Realizes’, e2)
TR Mth 015|16|17 Link methods with their return types (Java)
Elements MethodDeclaration e1, TypeAccess e2, ClassDeclaration|InterfaceDeclaration|DataType e3
Conditions AND(modelDirectParentOf(e1, e2), modelEquals(e2::type, e3))
Action createLink(e1, ’Is-Type-Of’, e3)
TR Mth 018|19 Link attributes and their getter-methods (Java)
Elements MethodDeclaration e1, FieldDeclaration e2, VariableDeclarationFragment e3, ClassDeclaration|InterfaceDeclaration e4
Conditions AND(modelDirectParentOf(e2, e3), modelDirectParentOf(e4, e1), modelDirectParentOf(e4, e2),

valueStartsWith(e1::name, ’get’), valueEndsWith(e1::name, e3::name))
Action createLink(e1, ’Uses’, e2)
TR Mth 020|21 Link attributes and their setter-methods (Java)
Elements MethodDeclaration e1, FieldDeclaration e2, VariableDeclarationFragment e3, ClassDeclaration|InterfaceDeclaration e4
Conditions AND(modelDirectParentOf(e2, e3), modelDirectParentOf(e4, e1), modelDirectParentOf(e4, e2),

valueStartsWith(e1::name, ’set’), valueEndsWith(e1::name, e3::name))
Action createLink(e1, ’Modifies’, e2)
TR Mth 025-30 Link code statements with the method they belong to
Elements MethodDeclaration e1, ExpressionStatement|ReturnStatement|IfStatement|ForStatement|WhileStatement|DoStmt. e2
Conditions modelParentOf(e1, e2)
Action createLink(e1, ’Contains’, e2)
TR Mth 031 Link Java methods with other methods called by them
Elements MethodDeclaration e1, MethodDeclaration e2, ExpressionStatement e3
Conditions AND(modelParentOf(e1, e3), modelRelatedTo(e3, ’Calls’, e2))

175

A. Dependency Detection Rules

Action createLink(e1, ’Calls’, e2)
TR Att 001|2|3 Link attributes with their datatype (UML)
Elements Property e1, Class|Interface|DataType e2
Conditions OR(modelEquals(e1::type, e2), modelEquals(e1::datatype, e2))
Action createLink(e1, ’Is-Instance-Of’, e2)
TR Att 004 Link UML properties with corresponding source code attributes
Elements Property e1, FieldDeclaration e2, VariableDeclarationFragment e3, Class e4, ClassDeclaration e5
Conditions AND(valueEquals(e1::name, e3::name), modelDirectParentOf(e2, e3), valueEquals(e4::name, e5::name), modelDirect-

ParentOf(e4, e1), modelDirectParentOf(e5, e2))
Action createLink(e1, ’Is-Equivalent-To’, e2)
TR Att 005|6|7 Link attributes with their datatype (Java)
Elements FieldDeclaration e1, TypeAccess e2, ClassDeclaration|InterfaceDeclaration|ParameterizedType|PrimitiveType e3
Conditions AND(modelEquals(e2::type, e3), modelDirectParentOf(e1, e2))
Action createLink(e1, ’Is-Instance-Of’, e2)
TR Par 001|2|3 Link method-parameters with their datatype (UML)
Elements Parameter e1, Class|Interface|DataType e2
Conditions AND(modelEquals(e1::type, e2), NOT(valueEquals(e1::direction, ’return’)))
Action createLink(e1, ’Is-Instance-Of’, e2)
TR Par 004 Link UML parameters with corresponding source code parameters
Elements Parameter e1, SingleVariableDeclaration e2, Operation e3, MethodDeclaration e4
Conditions AND(valueEquals(e1::name, e2::name), modelDirectParentOf(e3, e1), modelDirectParentOf(e4, e2),

modelUndirectedRelatedTo(e3, ’Is-Equivalent-To’ , e4))
Action createLink(e1, ’Is-Equivalent-To’, e2)
TR Par 005|6|7 Link attributes with their datatype (Java)
Elements SingleVariableDeclaration e1, TypeAccess e2, ClassDeclaration|InterfaceDecl.|ParameterizedType|PrimitiveType e3
Conditions AND(modelEquals(e2::type, e3), modelDirectParentOf(e1, e2))
Action createLink(e1, ’Is-Instance-Of’, e2)
TR Dat 001 Link UML data types with corresponding source code data types
Elements DataType e1, ParameterizedType|PrimitiveType e2
Conditions valueEquals(e1::name, e2::name)
Action createLink(e1, ’Is-Equivalent-To’, e2)
TR Usc 001 Find similar state machines and use cases that share a similar name
Elements StateMachine e1, UseCase e2
Conditions valueSimilarTo(e1::name, e2::name)
Action createLink(e1, ’Overlaps-With’, e2)
TR Usc 002 Find UML use cases that represent evolutionary steps of other UML use cases
Elements UseCase e1, UseCase e2, Model e3, Model e4
Conditions AND(modelParentOf(e3, e1), modelParentOf(e4, e2), valueEquals(e3::name, e4::name),

valueContains(e1::name, e2::name))
Action createLink(e1, ’Evolves-To’, e2)
TR Usc 003 Link actors and use cases
Elements UseCase e1, Actor e2, Association e3, Property e4, Property e5
Conditions AND(modelParentOf(e3, e4), modelDirectParentOf(e3, e5), modelEquals(e4::type, e1), modelEquals(e5::type, e2))
Action createLink(e2, ’Uses’, e1)
TR Seq 001 Find UML sequence diagrams that overlap with UML activities
Elements Interaction e1, CallBehaviorAction|Activity e2
Conditions OR(valueEquals(e1::name, e2::name), valueContains(e1::name, e2::name), valueSimilarTo(e1::name, e2::name))
Action createLink(e1, ’Overlaps-With’, e2)
TR Seq 002 Find UML sequence diagrams that realize UML use cases
Elements Interaction e1, UseCase e2
Conditions OR(valueEquals(e1::name, e2::name), valueContains(e1::name, e2::name), valueSimilarTo(e1::name, e2::name))
Action createLink(e1, ’Realizes’, e2)
TR Seq 003 Find UML sequence diagrams that realize UML use cases
Elements Interaction e1, UseCase e2, Message e3
Conditions AND(modelParentOf(e1, e3), OR(valueEquals(e3::name, e2::name), valueContains(e3::name, e2::name),

valueSimilarTo(e3::name, e2::name)))
Action createLink(e1, ’Realizes’, e2)
TR Seq 004 Find UML sequence diagrams that overlap with UML state machines
Elements Interaction e1, StateMachine e2
Conditions OR(valueEquals(e1::name, e2::name), valueContains(e1::name, e2::name), valueSimilarTo(e1::name, e2::name))
Action createLink(e1, ’Overlaps-With’, e2)
TR Seq 005 Find UML sequence diagrams that refine a message in another UML sequence diagram
Elements Interaction e1, Message e2
Conditions AND(NOT(modelParentOf(e1, e2), OR(valueEquals(e1::name, e2::name), valueContains(e1::name, e2::name),

valueSimilarTo(e1::name, e2::name)))
Action createLink(e1, ’Refines’, e2)
TR Seq 006|7|8|9 Find UML sequence diagrams that use [classes|interface|components|deployment nodes|actors|systems]
Elements Interaction e1, Lifeline e2, Class|ClassDeclaration|Interface|InterfaceDeclaration|Component|Node|Actor|Model e3
Conditions AND(modelParentOf(e1, e2), OR(valueEquals(e2::name, e3::name), valueSimilarTo(e2::name, e3::name)))
Action createLink(e1, ’Uses’, e3)

176

A. Dependency Detection Rules

TR Seq 010 Find UML lifelines that construct or init other UML lifelines
Elements Lifeline e1, Lifeline e2, Message e3
Conditions AND(valueEquals(e3::messageSort, ’createMessage’), valueContains(e1::coveredBy, e3::sendEvent),

valueContains(e2::coveredBy, e3::receiveEvent))
Action createLink(e1, ’Activates’, e2)
TR Seq 011 Find UML lifelines that destroy/close/de-init other UML lifelines
Elements Lifeline e1, Lifeline e2, Message e3
Conditions AND(valueEquals(e3::messageSort, ’deleteMessage’), valueContains(e1::coveredBy, e3::sendEvent),

valueContains(e2::coveredBy, e3::receiveEvent))
Action createLink(e1, ’Activates’, e2)
TR Seq 012 Find UML lifelines that call other UML lifelines
Elements Lifeline e1, Lifeline e2, Message e3
Conditions AND(valueContains(e1::coveredBy, e3::sendEvent), valueContains(e2::coveredBy, e3::receiveEvent),

NOT(valueEquals(e3::messageSort, ’deleteMessage’)), NOT(valueEquals(e3::messageSort, ’createMessage’)))
Action createLink(e1, ’Uses’, e2)
TR Seq 013|14 Find [classes|interfaces] that are part of an interaction
Elements Interaction e1, Property e2, Lifeline e3, Class|ClassDeclaration|Interface|InterfaceDeclaration e4
Conditions AND(modelParentOf(e1, e2), OR(valueEquals(e3::name, e4::name), AND(modelParentOf(e1, e2),

modelEquals(e2::type, e4), valueEquals(e2, e3::represents))))
Action createLink(e3, ’Is-Instance-Of’, e4)
TR Seq 015 Find components that are part of an interaction
Elements Interaction e1, Lifeline e2, Component e3
Conditions AND(modelParentOf(e1, e2), OR(valueEquals(e2::name, e3::name), valueSimilarTo(e2::name, e3::name)))
Action createLink(e2, ’Is-Instance-Of’, e3)
TR Seq 016|17 Find lifelines that are instances of a [deployment node|system]
Elements Node|Model e1, Lifeline e2
Conditions AND(valueNotNull(e1::umlId), valueEquals(e1::name, e2::name))
Action createLink(e2, ’Is-Instance-Of’, e1)
TR Seq 018 Find lifelines that are equivalent to an use case actor
Elements Lifeline e1, Actor e2
Conditions AND(valueNotNull(e2::umlId), valueEquals(e1::name, e2::name))
Action createLink(e1, ’Is-Equivalent-To’, e2)
TR Seq 019 Find messages in sequence diagrams that correspond to activities in activity diagrams
Elements Message e1, CallBehaviorAction|Activity e2
Conditions OR(valueSimilarTo(e1::name, e2::name), valueEquals(e1::name, e2::name))
Action createLink(e1, ’Is-Equivalent-To’, e2)
TR Seq 020 Find messages in sequence diagrams that correspond to operations in class diagrams
Elements Message e1, Operation|MethodDeclaration e2, MessageOccurrenceSpecification e3, Lifeline e4, Class|ClassDecl. e5
Conditions AND(modelDirectParentOf(e5, e2), valueEquals(e4::name, e5::name), modelEquals(e3::covered, e4),

modelEquals(e3::message, e1), OR(valueEndsWith(e1::name, e2::name), valueEquals(e1::name, e2::name))))
Action createLink(e1, ’Is-Equivalent-To’, e2)
TR Seq 021 Find messages in sequence diagrams that correspond to classes
Elements Message e1, Class|ClassDeclaration e2
Conditions valueEquals(e1::name, e2::name)
Action createLink(e1, ’Is-Instance-Of’, e2)
TR Seq 022 Find messages in sequence diagrams that correspond to operations in class diagrams
Elements Message e1, Operation|MethodDeclaration e2
Conditions OR(valueEndsWith(e1::name, e2::name), valueEquals(e1::name, e2::name))
Action createLink(e1, ’Is-Equivalent-To’, e2)
TR Dep 001|2|3 Find deployment nodes that are equivalent to an [class|actor|component]
Elements Node e1, Actor|Component|Class|ClassDeclaration e2
Conditions AND(valueNotNull(e1::umlId), valueEquals(e1::name, e2::name))
Action createLink(e1, ’Is-Equivalent-To’, e2)
TR Dep 004 Link nodes of a deployment diagram with its contained artifacts
Elements Node e1, * e2
Conditions modelDirectParentOf(e1, e2)
Action createLink(e1, ’Is-Part-Of’, e2)
TR Stm 001 Find UML state machines that overlap with UML activity diagrams
Elements StateMachine e1, Activity e2
Conditions valueContains(e1::name, e2::name)
Action createLink(e1, ’Overlaps-With’, e2)
TR Stm 002 Find UML state machines that overlap with UML classes
Elements StateMachine e1, State e2, Class e3, Operation e4
Conditions AND(modelParentOf(e1, e2), modelParentOf(e3, e4), valueContains(e2::name, e4::name))
Action createLink(e1, ’Overlaps-With’, e3)
TR Stm 003 Find UML state machines that realize UML use cases
Elements StateMachine e1, UseCase e2, Transition|State e3
Conditions AND(modelParentOf(e1, e2), valueEquals(e2::name, e3::name))
Action createLink(e1, ’Realizes’, e2)
TR Act 001 Find UML activities that realize UML use cases

177

A. Dependency Detection Rules

Elements CallBehaviorAction|Activity e1, UseCase e2
Conditions OR(valueEquals(e1::name, e2::name), valueSimilarTo(e1::name, e2::name))
Action createLink(e1, ’Realizes’, e2)
TR Act 002 Find UML activities that refine other UML activities
Elements CallBehaviorAction|Activity e1, Activity e2
Conditions OR(valueEquals(e1::name, e2::name), valueSimilarTo(e1::name, e2::name))
Action createLink(e1, ’Refines’, e2)
TR Act 003|4 Find activity [swimlanes|object nodes] that are instances of UML classes
Elements ActivityPartition|ObjectNode e1, Class e2
Conditions OR(valueEquals(e1::name, e2::name), valueSimilarTo(e1::name, e2::name))
Action createLink(e1, ’Is-Instance-Of’, e2)
TR Src 001 Find code statements that modify values of attributes
Elements FieldDeclaration e1, VariableDeclarationFragment e2, ExpressionStatement e3, Assignment e4, SingleVariableAccess e5
Conditions AND(modelDirectParentOf(e1, e2), modelDirectParentOf(e3, e4), modelDirectParentOf(e4, e5),

modelEquals(e5::variable, e2))
Action createLink(e3, ’Modifies’, e1)
TR Src 002 Find code statements that evaluate attributes
Elements FieldDeclaration e1, VariableDeclarationFragment e2, IfStatement|ForStatement|WhileStatement|DoStatement e3,

InfixExpression e4, SingleVariableAccess e5
Conditions AND(modelDirectParentOf(e1, e2), modelDirectParentOf(e3, e4), modelDirectParentOf(e4, e5),

modelEquals(e5::variable, e2))
Action createLink(e3, ’Examination’, e1)
TR Src 003 Find code statements that use values of attributes
Elements FieldDeclaration e1, VariableDeclarationFragment e2, ExpressionStatement e3, Assignment e4, InfixExpression e5,

SingleVariableAccess e6
Conditions AND(modelDirectParentOf(e1, e2), modelDirectParentOf(e3, e4), modelDirectParentOf(e4, e5),

modelDirectParentOf(e5, e6), modelEquals(e6::variable, e2))
Action createLink(e3, ’Uses’, e1)
TR Src 004 Find code statements where attributes are passed as method parameters
Elements FieldDecl. e1, VariableDeclarationFragment e2, ExpressionStmt. e3, MethodInvocation e4, SingleVariableAccess e5
Conditions AND(modelParentOf(e1, e2), modelParentOf(e3, e4), modelDirectParentOf(e4, e5), modelEquals(e5::variable, e2))
Action createLink(e3, ’Uses’, e1)
TR Src 005 Find code statements that call methods
Elements MethodDeclaration e1, Statement e2, InfixExpression e3, MethodInvocation e4
Conditions AND(modelDirectParentOf(e2, e3), modelEquals(e3::method, e1))
Action createLink(e1, ’Calls’, e2)
TR Src 006 Find code statements that call methods
Elements MethodDeclaration e1, Statement e2, MethodInvocation e3
Conditions AND(modelParentOf(e2, e3), modelDirectParentOf(e3, e4), modelEquals(e4::method, e1))
Action createLink(e1, ’Calls’, e2)
TR Src 007 Find code statements that are similar to decision nodes in activity diagrams
Elements VariableDeclarationStatement e1, DecisionNode e2, ControlFlow e3
Conditions AND(valueSimilarTo(e1::name, e2::name), OR(modelEquals(e2, e3::source), modelEquals(e2, e3::target)))
Action createLink(e1, ’Is-Equivalent-To’, e2)
TR Src 008 Find code statements that define variables
Elements VariableDeclarationStatement e1, VariableDeclarationFragment e2
Conditions modelDirectParentOf(e1, e2)
Action createLink(e1, ’Defines’, e2)
TR Src 009 Find code statements that modify variables
Elements ExpressionStatement e1, VariableDeclarationFragment e2, Assignment e3 SingleVariableAccess e4
Conditions AND(modelParentOf(e1, e3), modelParentOf(e3, e4), modelEquals(e4::variable, e2))
Action createLink(e1, ’Modifies’, e2)
TR Src 010 Find code statements that access variables
Elements Statement e1, VariableDeclarationFragment e2, SingleVariableAccess e3
Conditions AND(modelParentOf(e1, e3), modelEquals(e3::variable, e2))
Action createLink(e1, ’Uses’, e2)
TR Src 011 Find code statements that import packages
Elements Package e1, ClassDeclaration e2, ImportDeclaration e3
Conditions AND(modelRelatedTo(e2, ’Is-Part-Of’, e1), modelEquals(e3::importedElement, e2))
Action createLink(e3, ’Imports’, e1)
TR Src 012 Find code statements that use parameters declared by methods
Elements MethodDeclaration e1, Statement e2, SingleVariableDeclaration e3, MethodInvocation e4, SingleVariableAccess e5
Conditions AND(modelParentOf(e1, e2), modelDirectParentOf(e1, e3), modelParentOf(e2, e4), modelParentOf(e4, e5),

modelEquals(e5::variable, e3))
Action createLink(e2, ’Uses’, e3)
TR Var 001|2|3 Find variables that are instances of a [class|interface|datatype]
Elements VariableDeclarationStatement e1, VariableDeclarationFragment e2, TypeAccess e3, ClassDecl.|InterfaceDecl.|Type e4
Conditions AND(modelDirectParentOf(e1, e2), modelDirectParentOf(e1, e3), modelEquals(e3::type, e4))
Action createLink(e2, ’Is-Instance-Of’, e4)

178

B. Impact Propagation Rules

Rule(s) Description
IR Usc 001|2|3|4|5 Delete the [method|activity|activity node|sequence|state machine] realizing the use case
Elements Operation|Activity|ActivityNode|Interaction|StateMachine e1, UseCase e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete use case’), modelRelatedTo(e1, ’Realizes’, e2))
Action reportImpact(e2, ’Delete [method|activity|activity node|sequence|state machine]’, e1)
IR Usc 006|7|8|9|10 Rename the [method|activity|activity node|sequence|state machine] realizing the use case
Elements Operation|Activity|ActivityNode|Interaction|StateMachine e1, UseCase e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename use case’), modelRelatedTo(e1, ’Realizes’, e2))
Action reportImpact(e2, ’Rename [method|activity|activity node|sequence|state machine]’, e1)
IR Usc 011 Move the method realizing the use case to the class implementing the new system
Elements System e1, UseCase e2, Class e3, Operation e4, CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Move use case to other system’), modelRelatedTo(e41, ’Realizes’, e2),

modelRelatedTo(e3, ’Implements’, e1))
Action reportImpact(e2, e1, ’Move method to other class’, e4, e3)
IR Usc 012|13|14|15|16 Split the [method|activity|activity node|sequence|state machine] realizing the use case
Elements Operation|Activity|ActivityNode|Interaction|StateMachine e1, UseCase e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split use case’), modelRelatedTo(e1, ’Realizes’, e2))
Action reportImpact(e2, ’Split [method|activity|activity node|sequence|state machine]’, e1)
IR Usc 017|18|19|20|21 Merge the [method|activity|activity node|sequence|state machine] realizing the use case
Elements Operation|Activity|ActivityNode|Interaction|StateMachine e1, Operation|Activity|ActivityNode|Interaction|

StateMachine e2, UseCase e3, UseCase e4, CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Merge use case’), modelRelatedTo(e1, ’Realizes’, e3),

modelRelatedTo(e2, ’Realizes’, e4))
Action reportImpact(e2, e4, ’Merge [methods|activities|activity nodes|sequences|state machines]’, e1, e2)
IR Usc 022|23 Delete the [component|class] implementing the actor
Elements Component|Class e1, Actor e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete actor’), modelRelatedTo(e1, ’Implements’, e2))
Action reportImpact(e2, ’Delete [component|class]’, e1)
IR Usc 024|25 Rename the [component|class] implementing the actor
Elements Component|Class e1, Actor e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename actor’), modelRelatedTo(e1, ’Implements’, e2))
Action reportImpact(e2, ’Rename [component|class]’, e1)
IR Usc 026|27 Merge the [components|classes] implementing the actors
Elements Component|Class e1, Component|Class e2, Actor e3, Actor e4, CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Merge actors’), modelRelatedTo(e1, ’Implements’, e3),

modelRelatedTo(e2, ’Implements’, e4))
Action reportImpact(e3, e4, ’Merge [components|classes]’, e1, e2)
IR Usc 028|29 Split the [component|class] implementing the actors
Elements Component|Class e1, Actor e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split actors’), modelRelatedTo(e1, ’Implements’, e2))
Action reportImpact(e2, ’Split [components|classes]’, e1)
IR Usc 030|31 Delete the [component|class] implementing the system
Elements Component|Class e1, Model e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete system’), modelRelatedTo(e1, ’Implements’, e2))
Action reportImpact(e2, ’Delete [component|class]’, e1)
IR Usc 032|33 Rename the [component|class] implementing the system
Elements Component|Class e1, Model e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename system’), modelRelatedTo(e1, ’Implements’, e2))
Action reportImpact(e2, ’Rename [component|class]’, e1)
IR Usc 034|35 Split the [component|class] implementing the actors
Elements Component|Class e1, Model e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split actors’), modelRelatedTo(e1, ’Implements’, e2))
Action reportImpact(e2, ’Split [components|classes]’, e1)
IR Usc 036|37 Merge the [components|classes] implementing the systems
Elements Component|Class e1, Component|Class e2, Model e3, Model e4, CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Merge systems’), modelRelatedTo(e1, ’Implements’, e3),

modelRelatedTo(e2, ’Implements’, e4))
Action reportImpact(e3, e4, ’Merge [components|classes]’, e1, e2)

179

B. Impact Propagation Rules

IR Cmp 001|5 Delete the refining [component|class] as the refined component was deleted
Elements Component|Class e1, Component e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete component’), modelRelatedTo(e1, ’Refines’, e2))
Action reportImpact(e2, ’Delete [component|class]’, e1)
IR Cmp 002 Remove the sub-components of a deleted component
Elements Component e1, Component e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete component’), modelRelatedTo(e2, ’Is-Part-Of’, e1))
Action reportImpact(e1, ’Delete component’, e2)
IR Cmp 003 Remove the ports of a deleted component
Elements Component e1, Port e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete component’), modelRelatedTo(e1, ’Defines’, e2))
Action reportImpact(e1, ’Delete port’, e2)
IR Cmp 004 Remove the artifacts of a deleted component
Elements Component e1, Artifact e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete component’), modelRelatedTo(e1, ’Contains’, e2))
Action reportImpact(e1, ’Delete artifact’, e2)
IR Cmp 006|7 Delete the use case [system|actor] implemented by the component
Elements Component e1, Model|Actor e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete component’), modelRelatedTo(e1, ’Implements’, e2))
Action reportImpact(e1, ’Delete [use case system|actor]’, e2)
IR Cmp 008 Delete the interfaces provided by the component
Elements Component e1, Interface e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete component’), modelRelatedTo(e1, ’Provides’, e2))
Action reportImpact(e1, ’Delete interface’, e2)
IR Cmp 009 Delete the lifelines that are instances of the component
Elements Component e1, Lifeline e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete component’), modelRelatedTo(e1, ’Is-Instance-Of’, e2))
Action reportImpact(e1, ’Delete lifeline’, e2)
IR Cmp 010|11 Rename the refining [component|class] according to the renamed component
Elements Component|Class e1, Component e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename component’), modelRelatedTo(e1, ’Refines’, e2))
Action reportImpact(e2, ’Rename [component|class]’, e1)
IR Cmp 012|13 Rename the implemented [system|actor] according to the renamed component
Elements Component e1, Model|Actor e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename component’), modelRelatedTo(e1, ’Implements’, e2))
Action reportImpact(e1, ’Rename [use case system|actor]’, e2)
IR Cmp 014 Rename the lifelines that are instances of the component
Elements Component e1, Lifeline e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename component’), modelRelatedTo(e1, ’Is-Instance-Of’, e2))
Action reportImpact(e1, ’Rename lifeline’, e2)
IR Cmp 015|16 Merge the refining [components|classes]
Elements Component e1, Component e2, Component|Class e3, CompositeChangeType e4, Component|Class e5
Conditions AND(valueEquals(e4::name, ’Merge components’), modelRelatedTo(e3, ’Refines’, e1),

modelRelatedTo(e5, ’Refines’, e2))
Action reportImpact(e1, e2, ’Merge [component|class]’, e3, e5)
IR Cmp 017|18 Merge the implemented [systems|actors] according to the merged components
Elements Component e1, Component e2, Model|Actor e3, Model|Actor e4, CompositeChangeType e5
Conditions AND(valueEquals(e4::name, ’Merge components’), modelRelatedTo(e3, ’Implements’, e1),

modelRelatedTo(e4, ’Implements’, e2))
Action reportImpact(e1, e2, ’Merge [use case systems|actors]’, e3, e4)
IR Cmp 019 Move the artifacts to the merged component
Elements Component e1, Component e2, Artifact e3, CompositeChangeType e4
Conditions AND(valueEquals(e4::name, ’Merge components’), OR(modelRelatedTo(e1, ’Contains’, e3),

modelRelatedTo(e2, ’Contains’, e3)))
Action reportImpact(e1, e2, ’Move artifact to other component’, e3)
IR Cmp 020 Move the ports to the merged component
Elements Component e1, Component e2, Port e3, CompositeChangeType e4
Conditions AND(valueEquals(e4::name, ’Merge components’), OR(modelRelatedTo(e1, ’Defines’, e3),

modelRelatedTo(e2, ’Defines’, e3)))
Action reportImpact(e1, e2, ’Move port to other component’, e3)
IR Cmp 021 Merge the lifelines that are instances of the merged components
Elements Component e1, Component e2, Lifeline e3, Lifeline e4, CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Merge components’), modelRelatedTo(e3, ’Is-Instance-Of’, e1),

modelRelatedTo(e4, ’Is-Instance-Of’, e2))
Action reportImpact(e1, e2, ’Merge lifelines’, e3, e4)
IR Cmp 022|23 Move the refining class to the new package
Elements Component e1, Class|Component e2, Package e3, CompositeChangeType e4
Conditions AND(valueEquals(e4::name, ’Move component to other package’), modelRelatedTo(e2, ’Refines’, e1))
Action reportImpact(e1, e3, ’Move [class|component] to other package’, e3, e3)
IR Cmp 024|25 Split the refining [component|class]

180

B. Impact Propagation Rules

Elements Component e1, Class|Component e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split component’), modelRelatedTo(e2, ’Refines’, e1))
Action reportImpact(e1, ’Split [class|component]’, e2)
IR Cmp 026|29 Split the implemented [use case system|actor]
Elements Component e1, Model|Actor e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split component’), modelRelatedTo(e1, ’Implements’, e2))
Action reportImpact(e1, ’Split [use case system|actor]’, e2)
IR Cmp 027 Move provided interfaces when splitting components
Elements Component e1, Interface e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split component’), modelRelatedTo(e1, ’Provides’, e2))
Action reportImpact(e1, ’Move provided interface to other component’, e2)
IR Cmp 028 Move ports when splitting components
Elements Component e1, Interface e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split component’), modelRelatedTo(e1, ’Defines’, e2))
Action reportImpact(e1, ’Move port to other component’, e2)
IR Cmp 030 Split lifelines that are instances of the component
Elements Component e1, Lifeline e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split component’), modelRelatedTo(e2, ’Is-Instance-Of’, e1))
Action reportImpact(e1, ’Split lifeline’, e2)
IR Cmp 031 Add the required interface to the refined component as well
Elements Component e1, Interface e2, Component e3, CompositeChangeType e4
Conditions AND(valueEquals(e4::name, ’Add required interface to component’), modelRelatedTo(e1, ’Requires’, e2),

modelRelatedTo(e3, ’Refines’, e2), NOT(modelRelatedTo(e3, ’Requires’, e2)))
Action reportImpact(e1, e2, ’Add required interface to component’, e3, e2)
IR Cmp 032 Add the provided interface to the refined component as well
Elements Component e1, Interface e2, Component e3, CompositeChangeType e4
Conditions AND(valueEquals(e4::name, ’Add provided interface to component’), modelRelatedTo(e1, ’Provides’, e2),

OR(modelRelatedTo(e3, ’Refines’, e1), modelRelatedTo(e3, ’Is-Part-Of’, e1)))
Action reportImpact(e1, e2, ’Add provided interface to component’, e3, e2)
IR Cmp 033 Delete the required interface from subcomponents and from the refined component
Elements Component e1, Interface e2, Component e3, CompositeChangeType e4
Conditions AND(valueEquals(e4::name, ’Delete required interface from component’), modelRelatedTo(e1, ’Requires’, e2),

OR(modelRelatedTo(e3, ’Is-Part-Of’, e1), modelRelatedTo(e1, ’Refines’, e3)))
Action reportImpact(e1, e2, ’Add required interface to component’, e3, e2)
IR Cmp 034 Delete empty ports which became obsolete after removing the required interface
Elements Component e1, Interface e2, Port e3, AtomicChangeType e4
Conditions AND(valueEquals(e4::name, ’Delete required interface from component’), modelRelatedTo(e1, ’Requires’, e2),

modelRelatedTo(e1, ’Defines’, e3), modelRelatedTo(e3, ’Requires’, e2))
Action reportImpact(e1, e2, ’Delete port from component’, e3)
IR Cmp 035 Remove the provided interface from the refined component
Elements Component e1, Interface e2, Component e3, AtomicChangeType e4
Conditions AND(valueEquals(e4::name, ’Delete provided interface from component’), modelRelatedTo(e1, ’Provides’, e2),

modelRelatedTo(e1, ’Refines’, e3), modelRelatedTo(e3, ’Provides’, e2))
Action reportImpact(e1, e2, ’Delete provided interface from component’, e3, e2)
IR Cmp 036 Delete empty ports which became obsolete after removing the provided interface
Elements Component e1, Interface e2, Port e3, AtomicChangeType e4
Conditions AND(valueEquals(e4::name, ’Delete provided interface from component’), modelRelatedTo(e1, ’Provides’, e2),

modelRelatedTo(e1, ’Defines’, e3), modelRelatedTo(e3, ’Provides’, e2))
Action reportImpact(e1, e2, ’Delete port from component’, e3)
IR Cmp 037 Add the new port to refining component as well
Elements Component e1, Port e2, Component e3, AtomicChangeType e4
Conditions AND(valueEquals(e4::name, ’Add port to component’), modelRelatedTo(e1, ’Refines’, e3))
Action reportImpact(e1, e2, ’Add port to component’, e2, e3)
IR Cmp 038 Add the new artifact to refining component as well
Elements Component e1, Artifact e2, Component e3, AtomicChangeType e4
Conditions AND(valueEquals(e4::name, ’Add artifact to component’), modelRelatedTo(e3, ’Refines’, e1))
Action reportImpact(e1, e2, ’Add port to component’, e2, e3)
IR Cmp 039 Remove the port from the refined component
Elements Component e1, Port e2, Component e3, AtomicChangeType e4
Conditions AND(valueEquals(e4::name, ’Delete port from component’), modelRelatedTo(e1, ’Defines’, e2),

modelRelatedTo(e1, ’Refines’, e3))
Action reportImpact(e1, e2, ’Delete port from component’, e3, e2)
IR Cmp 040|43 Move the [port|artifact] to the refined component
Elements Component e1, Component e2, Component e3, Component e4, Port e5, CompositeChangeType e6
Conditions AND(valueEquals(e6::name, ’Move [port|artifact] to other component’), modelRelatedTo(e2, ’Defines’, e5),

modelRelatedTo(e1, ’Refines’, e2), modelRelatedTo(e3, ’Defines’, e4))
Action reportImpact(e5, e4, ’Move [port|artifact] to to other component’, e5, e3)
IR Cmp 041 Remove the artifact from the refined component as well
Elements Component e1, Artifact e2, Component e3, AtomicChangeType e4
Conditions AND(valueEquals(e4::name, ’Delete artifact from component’), modelRelatedTo(e2, ’Is-Part-Of’, e1),

modelRelatedTo(e1, ’Refines’, e3))

181

B. Impact Propagation Rules

Action reportImpact(e1, e2, ’Delete artifact from component’, e3, e2)
IR Cmp 042 Rename the refined artifact
Elements Artifact e1, Artifact e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename artifact’), modelRelatedTo(e2, ’Refines’, e1))
Action reportImpact(e1, ’Rename artifact’, e2)
IR Pck 001 Rename the corresponding UML/Java package
Elements Package e1, Package e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename package’), modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, ’Rename package’, e2)
IR Pck 002 Add the new package to the corresponding UML/Java package as well
Elements Package e1, Package e2, Package e3, AtomicChangeType e4
Conditions AND(valueEquals(e4::name, ’Add package’), modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, e3, ’Add package’, e2, e3)
IR Pck 003 Add the class to the corresponding UML/Java package as well
Elements Package e1, Package e2, Class|ClassDeclaration e3, AtomicChangeType e4
Conditions AND(valueEquals(e4::name, ’Add class’), modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, e3, ’Add class’, e2, e3)
IR Pck 004 Add the interface to the corresponding UML/Java package as well
Elements Package e1, Package e2, Interface|InterfaceDeclaration e3, AtomicChangeType e4
Conditions AND(valueEquals(e4::name, ’Add interface’), modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, e3, ’Add interface’, e2, e3)
IR Pck 005 Remove all sub-packages of a deleted package
Elements Package e1, Package e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete package’), modelRelatedTo(e2, ’Is-Part-Of’, e1))
Action reportImpact(e1, ’Delete package’, e2)
IR Pck 006 Delete the corresponding UML/Java package
Elements Package e1, Package e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete package’), modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, ’Delete package’, e2)
IR Pck 007 Remove all classes contained by deleted package
Elements Package e1, Class|ClassDeclaration e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete package’), modelRelatedTo(e2, ’Is-Part-Of’, e1))
Action reportImpact(e1, ’Delete class’, e2)
IR Pck 008 Remove all components contained by deleted package
Elements Package e1, Component e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete package’), modelRelatedTo(e2, ’Is-Part-Of’, e1))
Action reportImpact(e1, ’Delete component’, e2)
IR Pck 009 Remove all interfaces contained by deleted package
Elements Package e1, Interface|InterfaceDeclaration e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete package’), modelRelatedTo(e2, ’Is-Part-Of’, e1))
Action reportImpact(e1, ’Delete interface’, e2)
IR Pck 010 Move the corresponding UML/Java package to the new package
Elements Package e1, Package e2, Package e3, Package e4, CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Move package to other package’),

modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2), modelUndirectedRelatedTo(e3, ’Is-Equivalent-To’, e4))
Action reportImpact(e1, e3, ’Move package to other package’, e2, e4)
IR Pck 011 Merge the corresponding UML/Java packages
Elements Package e1, Package e2, Package e3, Package e4, CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Merge packages’), modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2),

modelUndirectedRelatedTo(e3, ’Is-Equivalent-To’, e4))
Action reportImpact(e1, e2, ’Merge packages’, e3, e4)
IR Pck 012 Move all components into the merged package
Elements Package e1, Package e2, Component e3, Package e4, CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Merge packages’), OR(modelRelatedTo(e3, ’Is-Part-Of’, e1),

modelRelatedTo(e3, ’Is-Part-Of’, e2)))
Action reportImpact(e1, e2, ’Move component to other package’, e3)
IR Pck 013 Move all classes into the merged package
Elements Package e1, Package e2, Class|ClassDeclaration e3, Package e4, CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Merge packages’), OR(modelRelatedTo(e3, ’Is-Part-Of’, e1),

modelRelatedTo(e3, ’Is-Part-Of’, e2)))
Action reportImpact(e1, e2, ’Move class to other package’, e3)
IR Pck 014 Move all interfaces into the merged package
Elements Package e1, Package e2, Interface|InterfaceDeclaration e3, Package e4, CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Merge packages’), OR(modelRelatedTo(e3, ’Is-Part-Of’, e1),

modelRelatedTo(e3, ’Is-Part-Of’, e2)))
Action reportImpact(e1, e2, ’Move interface to other package’, e3)
IR Pck 015 Split the corresponding UML/Java package
Elements Package e1, Package e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split package’), modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, ’Split package’, e2)

182

B. Impact Propagation Rules

IR Pck 016 Move the content of the split package to the other package
Elements Package e1, Component e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split package’), modelRelatedTo(e2, ’Is-Part-Of’, e1))
Action reportImpact(e1, ’Move component to other package’, e2)
IR Pck 017 Move the content of the split package to the other package
Elements Package e1, Interface|InterfaceDeclaration e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split package’), modelRelatedTo(e2, ’Is-Part-Of’, e1))
Action reportImpact(e1, ’Move component to other package’, e2)
IR Pck 018 Move the content of the split package to the other package
Elements Package e1, Class|ClassDeclaration e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split package’), modelRelatedTo(e2, ’Is-Part-Of’, e1))
Action reportImpact(e1, ’Move component to other package’, e2)
IR Pck 019 Adjust the import statements according to the new name of the package
Elements Package e1, ImportDeclaration e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename package’), modelRelatedTo(e2, ’Imports’, e1))
Action reportImpact(e1, ’Modify statement’, e2)
IR Pck 020 Delete import statements if the imported package was deleted
Elements Package e1, ImportDeclaration e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete package’), modelRelatedTo(e2, ’Imports’, e1))
Action reportImpact(e1, ’Delete statement’, e2)
IR Int 001 Add the implementation of a method declaration
Elements MethodDeclaration|Operation e1, Interface|InterfaceDeclaration e2,

Class|ClassDeclaration e3, AtomicChangeType e4
Conditions AND(valueEquals(e4::name, ’Add method’), modelRelatedTo(e3, ’Implements’, e2))
Action reportImpact(e2, e1, ’Add method’, e3)
IR Int 002 Add the method to the equivalent UML/Java class/interface
Elements MethodDeclaration|Operation e1, Class|ClassDeclaration|Interface|InterfaceDeclaration e2,

Class|ClassDeclaration|Interface|InterfaceDeclaration e3, AtomicChangeType e4
Conditions AND(valueEquals(e4::name, ’Add method’), modelUndirectedRelatedTo(e3, ’Is-Equivalent-To’, e2))
Action reportImpact(e2, e1, ’Add method’, e3)
IR Int 003 Add the attribute to the corresponding UML/Java classes/interfaces
Elements FieldDeclaration|Property e1, Class|ClassDeclaration|Interface|InterfaceDeclaration e2,

Class|ClassDeclaration|Interface|InterfaceDeclaration e3, AtomicChangeType e4
Conditions AND(valueEquals(e4::name, ’Add method’), modelUndirectedRelatedTo(e3, ’Is-Equivalent-To’, e2))
Action reportImpact(e2, e1, ’Add attribute’, e3)
IR Int 004 Rename the equivalent UML/Java interface and the refined required/provided interfaces
Elements Interface|InterfaceDeclaration e1, Interface|InterfaceDeclaration e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename interface’), OR(modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2),

modelUndirectedRelatedTo(e1, ’Refines’, e2)))
Action reportImpact(e1, ’Rename interface’, e2)
IR Int 005 Rename the “inherits” property of the subclass to match the new name of the superclass
Elements Interface|InterfaceDeclaration e1, Interface|InterfaceDeclaration e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename interface’), modelRelatedTo(e1, ’Is-A’, e2))
Action reportImpact(e1, ’Add superclass to interface’, e2)
IR Int 006 Update the “implements” property of the class to match the new name of the interface
Elements Interface|InterfaceDeclaration e1, Class|ClassDeclaration e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename interface’), modelRelatedTo(e1, ’Implements’, e2))
Action reportImpact(e1, ’Add implemented interface’, e2)
IR Int 007 Update the data type of the attribute to match the new name of the interface
Elements Interface|InterfaceDeclaration e1, Property|FieldDeclaration e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename interface’), modelRelatedTo(e2, ’Is-Instance-Of’, e))
Action reportImpact(e1, ’Change attribute data type’, e2)
IR Int 008 Update the data type of the variable to match the new name of the interface
Elements Interface|InterfaceDeclaration e1, VariableDeclarationFragment e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename interface’), modelRelatedTo(e2, ’Is-Instance-Of’, e1))
Action reportImpact(e1, ’Change attribute data type’, e2)
IR Int 009 Update the data type of the variable to match the new name of the interface
Elements Interface|InterfaceDeclaration e1, Parameter|SingleVariableDeclaration e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename interface’), modelRelatedTo(e2, ’Is-Instance-Of’, e1))
Action reportImpact(e1, ’Change methodparameter data type’, e2)
IR Int 010 Update the return type of the method to match the new name of the interface
Elements Interface|InterfaceDeclaration e1, Operation|MethodDeclaration e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename interface’), modelRelatedTo(e2, ’Is-Type-Of’, e1))
Action reportImpact(e1, ’Change methodparameter data type’, e2)
IR Int 011 Update the name of the lifeline to match the new name of the interface
Elements Interface|InterfaceDeclaration e1, Lifeline e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename interface’), modelRelatedTo(e2, ’Is-Instance-Of’, e1))
Action reportImpact(e1, ’Rename lifeline’, e2)
IR Int 012 Delete the corresponding and refining UML/Java interface
Elements Interface|InterfaceDeclaration e1, Interface|InterfaceDeclaration e2, AtomicChangeType e3

183

B. Impact Propagation Rules

Conditions AND(valueEquals(e3::name, ’Delete interface’), OR(modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2),
modelUndirectedRelatedTo(e1, ’Refines’, e2)))

Action reportImpact(e1, ’Delete interface’, e2)
IR Int 013 Delete the implementing class
Elements Interface|InterfaceDeclaration e1, Class|ClassDeclaration e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete interface’), modelRelatedTo(e2, ’Implements’, e1))
Action reportImpact(e1, ’Delete class’, e2)
IR Int 014|15 Delete the [methods|attributes] defined by the interface
Elements Interface|InterfaceDeclaration e1, Operation|MethodDeclaration|Property|FieldDeclaration e2,

AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete interface’), modelRelatedTo(e1, ’Defines’, e2))
Action reportImpact(e1, ’Delete [method|attribute]’, e2)
IR Int 016 Delete the method which returns an instance of the deleted interface
Elements Interface|InterfaceDeclaration e1, Operation|MethodDeclaration e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete interface’), modelRelatedTo(e2, ’Is-Type-Of’, e1))
Action reportImpact(e1, ’Delete method’, e2)
IR Int 017 Delete attributes that are instances of deleted interfaces
Elements Interface|InterfaceDeclaration e1, Property|FieldDeclaration e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete interface’), modelRelatedTo(e2, ’Is-Instance-Of’, e1))
Action reportImpact(e1, ’Delete attribute’, e2)
IR Int 018 Delete variable that are instances of deleted interfaces
Elements InterfaceDeclaration e1, VariableDeclarationFragment e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete interface’), modelRelatedTo(e2, ’Is-Instance-Of’, e1))
Action reportImpact(e1, ’Delete variable’, e2)
IR Int 019 Delete method-parameters that are instances of deleted interfaces
Elements Interface|InterfaceDeclaration e1, Parameter|SingleVariableDeclaration e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete interface’), modelRelatedTo(e2, ’Is-Instance-Of’, e1))
Action reportImpact(e1, ’Delete methodparameter’, e2)
IR Int 020 Delete lifelines which represent deleted interfaces
Elements Interface e1, Lifeline e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete interface’), modelRelatedTo(e2, ’Is-Instance-Of’, e1))
Action reportImpact(e1, ’Delete lifeline’, e2)
IR Int 021 Move the corresponding UML/Java interface to the new package
Elements Interface|InterfaceDeclaration e1, Interface|InterfaceDeclaration e2, Package e3, Package e4,

CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Move interface to other package’),

modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2), modelUndirectedRelatedTo(e3, ’Is-Equivalent-To’, e4))
Action reportImpact(e1, e3, ’Move interface to other package’, e2, e4)
IR Int 022 Move the implementing class to the new package
Elements Interface|InterfaceDeclaration e1, Class|ClassDeclaration e2, Package e3, Package e4, CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Move interface to other package’), modelRelatedTo(e2, ’Implements’, e1),

modelUndirectedRelatedTo(e3, ’Is-Equivalent-To’, e4))
Action reportImpact(e1, e3, ’Move class to other package’, e2, e4)
IR Int 023 Add the superclass to the corresponding UML/Java interface
Elements Interface|InterfaceDeclaration e1, Interface|InterfaceDeclaration e2, Interface|InterfaceDeclaration e3,

Interface|InterfaceDeclaration e4, AtomicChangeType e5
Conditions AND(valueEquals(e5::name, ’Add superclass to interface’),

modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2), modelUndirectedRelatedTo(e3, ’Is-Equivalent-To’, e4))
Action reportImpact(e1, e3, ’Add superclass to interface’, e2, e4)
IR Int 024 Add implementations for methods inherited from the new superclass to the implementing class
Elements Interface|InterfaceDeclaration e1, Interface|InterfaceDeclaration e2, Class|ClassDeclaration e3,

Operation|MethodDeclaration e4, AtomicChangeType e5
Conditions AND(valueEquals(e5::name, ’Add superclass to interface’), modelRelatedTo(e2, ’Defines’, e4),

modelRelatedTo(e3, ’Implements’, e1))
Action reportImpact(e1, e3, ’Add method’, e4, e2)
IR Int 025 Delete the superclass from the corresponding UML/Java interface
Elements Interface|InterfaceDeclaration e1, Interface|InterfaceDeclaration e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Add superclass to interface’),

modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, ’Remove superclass from interface’, e2)
IR Int 026 Delete the implementations of methods inherited from the deleted superclass of the implementing interface
Elements Interface|InterfaceDeclaration e1, Interface|InterfaceDeclaration e2, Class|ClassDeclaration e3,

Operation|MethodDeclaration e4, Operation|MethodDeclaration e5, AtomicChangeType e6
Conditions AND(valueEquals(e5::name, ’Delete superclass from interface’), modelRelatedTo(e1, ’Is-A’, e2),

modelRelatedTo(e3, ’Implements’, e1), modelRelatedTo(e3, ’Defines’, e4), modelRelatedTo(e2, ’Defines’, e5),
modelRelatedTo(e4, ’Implements’, e5))

Action reportImpact(e1, ’Delete method’, e3, e4)
IR Int 027 Update the superclass property of interfaces who’s superclass was split
Elements Interface|InterfaceDeclaration e1, Interface|InterfaceDeclaration e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split interface’), modelRelatedTo(e2, ’Is-A’, e1))

184

B. Impact Propagation Rules

Action reportImpact(e1, ’Add superclass to interface’, e2)
IR Int 028 Split the corresponding UML/Java interfaces
Elements Interface|InterfaceDeclaration e1, Interface|InterfaceDeclaration e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split interface’), modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, ’Split interface’, e2)
IR Int 029 Update the the implemented interface of a class after splitting the interface
Elements Interface|InterfaceDeclaration e1, Class|ClassDeclaration e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split interface’), modelRelatedTo(e2, ’Implements’, e1))
Action reportImpact(e1, ’Add implemented interface’, e2)
IR Int 030|31 Move [attributes|methods] to other interface when splitting an interface
Elements Interface|InterfaceDeclaration e1, Property|FieldDeclaration|Operation|MethodDeclaration e2,

CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split interface’), modelRelatedTo(e1, ’Defines’, e2))
Action reportImpact(e1, ’Move [attribute|method] to other interface’, e2)
IR Int 032|33|34 Update the type of [attributes|variables|parameters] after splitting interfaces
Elements Interface|InterfaceDeclaration e1, Property|FieldDeclaration|VariableDeclarationFragment|

SingleVariableDeclaration|Parameter e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split interface’), modelRelatedTo(e2, ’Is-Instance-Of’, e1))
Action reportImpact(e1, ’Change [attribute|variable|methodparameter] data type’, e2)
IR Int 035 Update the return type of methods after splitting interfaces
Elements Interface|InterfaceDeclaration e1, Operation|MethodDeclaration e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split interface’), modelRelatedTo(e2, ’Is-Type-Of’, e1))
Action reportImpact(e1, ’Change return type’, e2)
IR Int 036 Split the lifelines that are instances of a split interface
Elements Interface e1, Lifeline e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split interface’), modelRelatedTo(e2, ’Is-Instance-Of’, e1))
Action reportImpact(e1, ’Split lifeline’, e2)
IR Int 037 Merge the corresponding UML/Java interfaces
Elements Interface|InterfaceDeclaration e1, Interface|InterfaceDeclaration e2, Interface|InterfaceDeclaration e3,

Interface|InterfaceDeclaration e4, CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Merge interfaces’), modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e3),

modelUndirectedRelatedTo(e2, ’Is-Equivalent-To’, e4))
Action reportImpact(e1, e2, ’Merge interfaces’, e3, e4)
IR Int 038 Update the superclass reference of all subclasses of the merged interfaces
Elements Interface|InterfaceDeclaration e1, Interface|InterfaceDeclaration e2, Interface|InterfaceDeclaration e3,

CompositeChangeType e4
Conditions AND(valueEquals(e4::name, ’Merge interfaces’), OR(modelRelatedTo(e1, ’Is-A’, e3),

modelRelatedTo(e2, ’Is-A’, e3)))
Action reportImpact(e1, e2, ’Add superclass to interface’, e3)
IR Int 039 Update the implemented-class of all classes implementing one of the merged interfaces
Elements Interface|InterfaceDeclaration e1, Interface|InterfaceDeclaration e2, Class|ClassDeclaration e3,

CompositeChangeType e4
Conditions AND(valueEquals(e4::name, ’Merge interfaces’), OR(modelRelatedTo(e3, ’Implements’, e1),

modelRelatedTo(e3, ’Implements’, e2)))
Action reportImpact(e1, e2, ’Add implemented interface’, e3)
IR Int 040|44 Move all [attributes|methods] to the merged interface
Elements Interface|InterfaceDeclaration e1, Interface|InterfaceDeclaration e2, FieldDeclaration|Property|

MethodDeclaration|Operation e3, CompositeChangeType e4
Conditions AND(valueEquals(e4::name, ’Merge interfaces’), OR(modelRelatedTo(e2, ’Defines’, e3),

modelRelatedTo(e1, ’Defines’, e3)))
Action reportImpact(e1, e2, ’Move [attribute|method] to other interface’, e3)
IR Int 041|42|43 Update the type of the [attributes|variables|parameters] to match the merged interfaces
Elements Interface|InterfaceDeclaration e1, Interface|InterfaceDeclaration e2, FieldDeclaration|Property|

VariableDeclarationFragment|Parameter|SingleVariableDeclaration e3, CompositeChangeType e4
Conditions AND(valueEquals(e4::name, ’Merge interfaces’), OR(modelRelatedTo(e3, ’Is-Instance-Of’, e1),

modelRelatedTo(e3, ’Is-Instance-Of’, e2)))
Action reportImpact(e1, e2, ’Change [attribute|variable|methodparameter] data type’, e3)
IR Int 045 Update all methods who returned one of the merged interfaces
Elements Interface|InterfaceDeclaration e1, Interface|InterfaceDeclaration e2, Operation|MethodDeclaration e3,

CompositeChangeType e4
Conditions AND(valueEquals(e4::name, ’Merge interfaces’), OR(modelRelatedTo(e3, ’Is-Type-Of’, e1),

modelRelatedTo(e3, ’Is-Type-Of’, e2)))
Action reportImpact(e1, e2, ’Change return type’, e3)
IR Int 046 Merge lifelines that are instances of one the merged interfaces
Elements Interface e1, Interface e2, Lifeline e3, Lifeline e4, CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Merge interfaces’), modelRelatedTo(e3, ’Is-Instance-Of’, e1),

modelRelatedTo(e4, ’Is-Instance-Of’, e2))
Action reportImpact(e1, e2, ’Merge lifelines’, e3, e4)
IR Cls 001 Delete the corresponding UML/Java class
Elements Class|ClassDeclaration e1, Class|ClassDeclaration e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete class’), modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))

185

B. Impact Propagation Rules

Action reportImpact(e1, ’Delete class’, e2)
IR Cls 002 Delete interfaces whose only implementing class was deleted and which is not superclassed by any class
Elements Class|ClassDeclaration|Interface|InterfaceDelcaration e1, Interface|InterfaceDelcaration e2,

Class|ClassDeclaration|Interface|InterfaceDelcaration e3, AtomicChangeType e4
Conditions AND(OR(valueEquals(e4::name, ’Delete class’), valueEquals(e4::name, ’Delete interface’)),

OR(modelRelatedTo(e1, ’Implements’, e2), modelRelatedTo(e2, ’Is-A’, e1)),
NOT(modelRelatedTo(e2, ’Is-A’, e3)), NOT(modelRelatedTo(e3, ’Implements’, e2)), NOT(modelEquals(e3, e1)))

Action reportImpact(e1, ’Delete interface’, e2)
IR Cls 003 Delete the superclass property of a UML/Java class
Elements Class|ClassDeclaration e1, Class|ClassDeclaration e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete class’), modelRelatedTo(e2, ’Is-A’, e1))
Action reportImpact(e1, ’Delete superclass from class’, e2)
IR Cls 004 Delete the test class when the corresponding class is removed
Elements Class|ClassDeclaration e1, Class|ClassDeclaration e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete class’), modelRelatedTo(e2, ’Tests’, e1))
Action reportImpact(e1, ’Delete class’, e2)
IR Cls 005 Delete the component that was refined by the deleted class
Elements Class|ClassDeclaration e1, Component e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete class’), modelRelatedTo(e1, ’Refines’, e2))
Action reportImpact(e1, ’Delete component’, e2)
IR Cls 006 Delete the use case system that was implemented by the deleted class
Elements Class|ClassDeclaration e1, Model e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete class’), modelRelatedTo(e1, ’Implements’, e2))
Action reportImpact(e1, ’Delete system’, e2)
IR Cls 007 Delete the methods that were defined by the deleted class
Elements Class|ClassDeclaration e1, Operation|MethodDeclaration e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete class’), modelRelatedTo(e1, ’Defines’, e2))
Action reportImpact(e1, ’Delete method’, e2)
IR Cls 008 Delete the attributes that were defined by the deleted class
Elements Class|ClassDeclaration e1, Property|FieldDeclaration e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete class’), modelRelatedTo(e1, ’Defines’, e2))
Action reportImpact(e1, ’Delete attribute’, e2)
IR Cls 009 Delete the method which returns an instance of the deleted class
Elements Class|ClassDeclaration e1, Operation|MethodDeclaration e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete class’), modelRelatedTo(e2, ’Is-Type-Of’, e1))
Action reportImpact(e1, ’Delete method’, e2)
IR Cls 010|11|12 Delete [attributes|variables|parameters] which type is a deleted class
Elements Class|ClassDeclaration e1, FieldDeclaration|Property|VariableDeclarationFragment|Parameter|

SingleVariableDeclaration e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete class’), modelRelatedTo(e2, ’Is-Instance-Of’, e1))
Action reportImpact(e1, ’Delete [attribute|variable|methodparameter]’, e2)
IR Cls 013 Delete the use case actor implemented by the class
Elements Class|ClassDeclaration e1, Actor e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete class’), modelRelatedTo(e1, ’Implements’, e2))
Action reportImpact(e1, ’Delete actor’, e2)
IR Cls 14|15|16 Delete [lifelines|swimlanes|object nodes] that were instances of the deleted class
Elements Class|ClassDeclaration e1, Lifeline|ActivityPartition e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete class’), modelRelatedTo(e2, ’Is-Instance-Of’, e1))
Action reportImpact(e1, ’Delete [lifeline|swimlane|object node]’, e2)
IR Cls 017 Rename the equivalent UML/Java class
Elements Class|ClassDeclaration e1, Class|ClassDeclaration e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename class’), modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, ’Rename class’, e2)
IR Cls 018 Rename the test class when the actual class is renamed
Elements Class|ClassDeclaration e1, Class|ClassDeclaration e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename class’), modelRelatedTo(e2, ’Tests’, e1))
Action reportImpact(e1, ’Rename class’, e2)
IR Cls 019 Rename the “inherits” property of the subclass to match the new name of the superclass
Elements Class|ClassDeclaration e1, Class|ClassDeclaration e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename class’), modelRelatedTo(e2, ’Is-A’, e1))
Action reportImpact(e1, ’Add superclass to class’, e2)
IR Cls 020 Rename the refined component
Elements Class|ClassDeclaration e1, Component e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename class’), modelRelatedTo(e1, ’Refines’, e2))
Action reportImpact(e1, ’Rename component’, e2)
IR Cls 021|26 Rename the implemented use case [system|actor]
Elements Class|ClassDeclaration e1, Model|Actor e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename class’), modelRelatedTo(e1, ’Implements’, e2))
Action reportImpact(e1, ’Rename [system|actor]’, e2)
IR Cls 022|23|24 Change the type of the [attributes|variables|parameters] to match to new name of the class

186

B. Impact Propagation Rules

Elements Class|ClassDeclaration e1, FieldDeclaration|Property|VariableDeclarationFragment|Parameter|
SingleVariableDeclaration e2, AtomicChangeType e3

Conditions AND(valueEquals(e3::name, ’Rename class’), modelRelatedTo(e2, ’Is-Instance-Of’, e1))
Action reportImpact(e1, ’Change [attribute|variable|methodparameter] data type’, e2)
IR Cls 025 Change the return type of the method to match the new name of the class
Elements Class|ClassDeclaration e1, MethodDeclaration|Operation e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename class’), modelRelatedTo(e2, ’Uses’, e1))
Action reportImpact(e1, ’Change return type’, e2)
IR Cls 027|28|29 Rename all [lifelines|swimlanes|object nodes] that are instances of the renamed class
Elements Class|ClassDeclaration e1, Lifeline|ActivityPartition e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename class’), modelRelatedTo(e2, ’Is-Instance-Of’, e1))
Action reportImpact(e1, ’Rename [lifeline|swimlane|object node]’, e2)
IR Cls 030 Move the corresponding UML/Java class to the new package
Elements Class|ClassDeclaration e1, Class|ClassDeclaration e2, Package e3, Package e4, CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Move class to other package’),

modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2), modelUndirectedRelatedTo(e3, ’Is-Equivalent-To’, e4))
Action reportImpact(e1, e3, ’Move class to other package’, e2, e4)
IR Cls 031 Move the refined component to the new package
Elements Class|ClassDeclaration e1, Component e2, Package e3, CompositeChangeType e4
Conditions AND(valueEquals(e4::name, ’Move class to other package’), modelRelatedTo(e1, ’Refines’, e2))
Action reportImpact(e1, e3, ’Move class to other package’, e2, e3)
IR Cls 032 Add the superclass to the corresponding UML/Java class
Elements Class|ClassDeclaration e1, Class|ClassDeclaration e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Add superclass to class’), modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, e3, ’Add superclass to class’, e2, e4)
IR Cls 033 Delete the superclass from the corresponding UML/Java class
Elements Class|ClassDeclaration e1, Class|ClassDeclaration e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Remove superclass from class’),

modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, e3, ’Remove superclass from class’, e2, e4)
IR Cls 034 Change the implmented interface of the corresponding UML/Java class
Elements Class|ClassDeclaration e1, Class|ClassDeclaration e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Add implemented interface’),

modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, ’Add implemented interface’, e2)
IR Cls 035 Add implementations for all methods of the new interface
Elements Class|ClassDeclaration e1, Interface|InterfaceDeclaration e2, MethodDeclaration|Operation e3,

AtomicChangeType e4
Conditions AND(valueEquals(e4::name, ’Add implemented interface’), modelRelatedTo(e2, ’Defines’, e3))
Action reportImpact(e1, e2, ’Add method’, e3, e1)
IR Cls 036 Change the implmented interface of the corresponding UML/Java class
Elements Class|ClassDeclaration e1, Class|ClassDeclaration e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete implemented interface’),

modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, ’Delete implemented interface’, e2)
IR Cls 037 Remove all method-implementations of the former interface
Elements Class|ClassDeclaration e1, Interface|InterfaceDeclaration e2, MethodDeclaration|Operation e3,

MethodDeclaration|Operation e4, AtomicChangeType e5
Conditions AND(valueEquals(e5::name, ’Delete implemented interface’), modelRelatedTo(e1, ’Implements’, e2),

modelRelatedTo(e2, ’Defines’, e3), modelRelatedTo(e1, ’Implements’, e5),
modelRelatedTo(e5, ’Implements’, e3))

Action reportImpact(e1, ’Delete method’, e3)
IR Cls 038 Add the abstract modifier to the corresponding UML/Java class
Elements Class|ClassDeclaration e1, Class|ClassDeclaration e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Add abstract modifier to class’),

modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, ’Add abstract modifier to class’, e2)
IR Cls 039 Delete the abstract modifier from the corresponding UML/Java class
Elements Class|ClassDeclaration e1, Class|ClassDeclaration e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete abstract modifier from class’),

modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, ’Delete abstract modifier from class’, e2)
IR Cls 040 Split corresponding classes
Elements Class|ClassDeclaration e1, Class|ClassDeclaration e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split class’), modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, ’Split class’, e2)
IR Cls 041 Update the superclass property of classes who’s superclass was split
Elements Class|ClassDeclaration e1, Class|ClassDeclaration e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split class’), modelRelatedTo(e2, ’Is-A’, e1))
Action reportImpact(e1, ’Add superclass to class’, e2)

187

B. Impact Propagation Rules

IR Cls 042 Split the test class when split the class
Elements Class|ClassDeclaration e1, Class|ClassDeclaration e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split class’), modelRelatedTo(e2, ’Tests’, e1))
Action reportImpact(e1, ’Split class’, e2)
IR Cls 043 Split the refined component when split the class
Elements Class e1, Component e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split class’), modelRelatedTo(e1, ’Refines’, e2))
Action reportImpact(e1, ’Split component’, e2)
IR Cls 044 Split the implemented interface when splitting classes
Elements Class|ClassDeclaration e1, Interface|InterfaceDeclaration e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split class’), modelRelatedTo(e1, ’Implements’, e2))
Action reportImpact(e1, ’Split interface’, e2)
IR Cls 045 Split the implemented use case actor when splitting classes
Elements Class|ClassDeclaration e1, Actor e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split class’), modelRelatedTo(e1, ’Implements’, e2))
Action reportImpact(e1, ’Split actor’, e2)
IR Cls 046 Move methods to other class when splitting a class
Elements Class|ClassDeclaration e1, Operation|MethodDeclaration e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split class’), modelRelatedTo(e1, ’Defines’, e2))
Action reportImpact(e1, ’Move method to other class’, e2)
IR Cls 047 Update the return type of methods after splitting classes
Elements Class|ClassDeclaration e1, Operation|MethodDeclaration e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split class’), modelRelatedTo(e2, ’Is-Type-Of’, e1))
Action reportImpact(e1, ’Change return type’, e2)
IR Cls 048|50|51 Update the type of [attributes|variables|methodparamters] after splitting classes
Elements Class|ClassDeclaration e1, Property|FieldDeclaration|VariableDeclarationFragment|Parameter|

SingleVariableDeclaration e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split class’), modelRelatedTo(e2, ’Is-Instance-Of’, e1))
Action reportImpact(e1, ’Change [attribute|variable|methodparamter] data type’, e2)
IR Cls 049 Move attributes to other class when splitting a class
Elements Class|ClassDeclaration e1, Property|FieldDeclaration e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split class’), modelRelatedTo(e1, ’Defines’, e2))
Action reportImpact(e1, ’Move attribute to other class’, e2)
IR Cls 052|53|54 Split [lifelines|swimlanes|object nodes] that are instances of split classes
Elements Class|ClassDeclaration e1, Lifeline|ActivityPartition|ObjectNode e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split class’), modelRelatedTo(e2, ’Is-Instance-Of’, e1))
Action reportImpact(e1, ’Split [lifeline|swimlane|object node]’, e2)
IR Cls 055 Merge the corresponding UML/Java classes
Elements Class|ClassDeclaration e1, Class|ClassDeclaration e2, Class|ClassDeclaration e3, Class|ClassDeclaration e4,

CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Merge classes’), modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e3),

modelUndirectedRelatedTo(e2, ’Is-Equivalent-To’, e4))
Action reportImpact(e1, e2, ’Merge classes’, e3, e4)
IR Cls 056 Update the superclass reference of all subclasses of the merged classes
Elements Class|ClassDeclaration e1, Class|ClassDeclaration e2, Class|ClassDeclaration e3, CompositeChangeType e4
Conditions AND(valueEquals(e4::name, ’Merge classes’), OR(modelRelatedTo(e3, ’Is-A’, e1),

modelRelatedTo(e3, ’Is-A’, e2)))
Action reportImpact(e1, e2, ’Add superclass to class’, e3)
IR Cls 057 Merge test classes when merging classes
Elements Class|ClassDeclaration e1, Class|ClassDeclaration e2, Class|ClassDeclaration e3, Class|ClassDeclaration e4,

CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Merge classes’), modelRelatedTo(e3, ’Tests’, e1), modelRelatedTo(e4, ’Tests’, e2))
Action reportImpact(e1, e2, ’Merge classes’, e3, e4)
IR Cls 058 Merge the refined components when merging classes
Elements Class|ClassDeclaration e1, Class|ClassDeclaration e2, Component e3, Component e4, CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Merge classes’), modelRelatedTo(e1, ’Refines’, e3),

modelRelatedTo(e2, ’Refines’, e4))
Action reportImpact(e1, e2, ’Merge components’, e3, e4)
IR Cls 059 Merge the implemented actors when merging classes
Elements Class|ClassDeclaration e1, Class|ClassDeclaration e2, Actor e3, Actor e4, CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Merge classes’), modelRelatedTo(e1, ’Implements’, e3),

modelRelatedTo(e2, ’Implements’, e4))
Action reportImpact(e1, e2, ’Merge actors’, e3, e4)
IR Cls 060 Move all methods to the merged class
Elements Class|ClassDeclaration e1, Class|ClassDeclaration e2, Operation|MethodDeclaration e3,

CompositeChangeType e4
Conditions AND(valueEquals(e4::name, ’Merge classes’), OR(modelRelatedTo(e1, ’Defines’, e3),

modelRelatedTo(e2, ’Defines’, e3)))
Action reportImpact(e1, e2, ’Move method to other class’, e3)
IR Cls 061 Update all methods who returned one of the merged classes

188

B. Impact Propagation Rules

Elements Class|ClassDeclaration e1, Class|ClassDeclaration e2, Operation|MethodDeclaration e3,
CompositeChangeType e4

Conditions AND(valueEquals(e4::name, ’Merge classes’), OR(modelRelatedTo(e3, ’Is-Type-Of’, e1),
modelRelatedTo(e3, ’Is-Type-Of’, e2)))

Action reportImpact(e1, e2, ’Change return type’, e3)
IR Cls 062 Update the types of method-parameters to match the merged classes
Elements Class|ClassDeclaration e1, Class|ClassDeclaration e2, Parameter|SingleVariableDeclaration e3,

CompositeChangeType e4
Conditions AND(valueEquals(e4::name, ’Merge classes’), OR(modelRelatedTo(e3, ’Is-Instance-Of’, e1),

modelRelatedTo(e3, ’Is-Instance-Of’, e2)))
Action reportImpact(e1, e2, ’Change methodparameter data type’, e3)
IR Cls 063 Move all attributes to the merged class
Elements Class|ClassDeclaration e1, Class|ClassDeclaration e2, Property|FieldDeclaration e3, CompositeChangeType e4
Conditions AND(valueEquals(e4::name, ’Merge classes’), OR(modelRelatedTo(e1, ’Defines’, e3),

modelRelatedTo(e2, ’Defines’, e3)))
Action reportImpact(e1, e2, ’Move attribute to other class’, e3)
IR Cls 064|65 Update the types of the [attributes|variables] to match the merged classes
Elements Class|ClassDeclaration e1, Class|ClassDeclaration e2, Property|FieldDeclaration|

VariableDeclarationFragment e3, CompositeChangeType e4
Conditions AND(valueEquals(e4::name, ’Merge classes’), OR(modelRelatedTo(e3, ’Is-Instance-Of’, e1),

modelRelatedTo(e3, ’Is-Instance-Of’, e2)))
Action reportImpact(e1, e2, ’Change [variable|attribute] data type’, e3)
IR Cls 066|67|68 Merge [lifelines|swimlanes|activity nodes] that are instances of the merged classes
Elements Class e1, Class e2, Lifeline|ActivityPartition|ObjectNode e3, Lifeline|ActivityPartition|ObjectNode e4,

CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Merge classes’), modelRelatedTo(e3, ’Is-Instance-Of’, e1),

modelRelatedTo(e4, ’Is-Instance-Of’, e2))
Action reportImpact(e1, e2, ’Merge [lifelines|swimlanes|object nodes] data type’, e3, e4)
IR Mth 001 Remove the method from the corresponding UML/Java class/interface
Elements MethodDeclaration|Operation e1, MethodDeclaration|Operation e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete method’), modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, ’Delete method’, e2)
IR Mth 002 Delete the implementation of a deleted method declaration
Elements MethodDeclaration|Operation e1, MethodDeclaration|Operation e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete method’), modelRelatedTo(e2, ’Implements’, e1))
Action reportImpact(e1, ’Delete method’, e2)
IR Mth 003 Delete the test method of a deleted method
Elements MethodDeclaration|Operation e1, MethodDeclaration|Operation e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete method’), modelRelatedTo(e2, ’Tests’, e1))
Action reportImpact(e1, ’Delete method’, e2)
IR Mth 004|5|6|7|8 Delete the [use case|activity|activity node] realized by this method
Elements MethodDeclaration|Operation e1, UseCase|Activity|CallBehaviorAction|StateMachine|Message e2,

AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete method’), modelRelatedTo(e1, ’Realizes’, e2))
Action reportImpact(e1, ’Delete [use case|activity|activity node|state machine|message]’, e2)
IR Mth 009 Delete code statements containbed by the deleted method
Elements MethodDeclaration e1, ExpressionStatement|IfStatement|ForStatement|WhileStatement|DoStatement e2,

AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete method’), modelRelatedTo(e1, ’Contains’, e2))
Action reportImpact(e1, ’Delete statement’, e2)
IR Mth 010 Delete code statements calling the deleted method
Elements MethodDeclaration e1, ExpressionStatement|IfStatement|ForStatement|WhileStatement|DoStatement e2,

AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete method’), modelRelatedTo(e1, ’Calls’, e2))
Action reportImpact(e1, ’Delete statement’, e2)
IR Mth 011 Delete attributes that were either get or set by the deleted method
Elements MethodDeclaration|Operation e1, FieldDeclaration|Property e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete method’), OR(modelRelatedTo(e1, ’Modifies’, e2),

modelRelatedTo(e1, ’Uses’, e2)))
Action reportImpact(e1, ’Delete attribute’, e2)
IR Mth 012 Change the return type of the corresponding UML/Java method
Elements MethodDeclaration|Operation e1, MethodDeclaration|Operation e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Change return type’), modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, ’Change return type’, e2)
IR Mth 013 Change the return type of the related method declaration/implementation
Elements MethodDeclaration|Operation e1, MethodDeclaration|Operation e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Change return type’), modelUndirectedRelatedTo(e1, ’Implements’, e2))
Action reportImpact(e1, ’Change return type’, e2)
IR Mth 014 Change the return type of the related method declaration/implementation
Elements MethodDeclaration|Operation e1, FieldDeclaration|Property e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Change return type’), modelRelatedTo(e1, ’Uses’, e2))

189

B. Impact Propagation Rules

Action reportImpact(e1, ’Change attribute data type’, e2)
IR Mth 015 Change the code statements calling the method
Elements MethodDeclaration e1, ExpressionStatement|IfStatement|ForStatement|WhileStatement|DoStatement e2,

AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Change return type’), modelRelatedTo(e1, ’Calls’, e2))
Action reportImpact(e1, ’Modify statement’, e2)
IR Mth 016 Rename the corresponding UML/Java method
Elements MethodDeclaration|Operation e1, MethodDeclaration|Operation e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename method’), modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, ’Rename method’, e2)
IR Mth 017 Rename the implementation of the method
Elements MethodDeclaration|Operation e1, MethodDeclaration|Operation e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename method’), modelUndirectedRelatedTo(e1, ’Implements’, e2))
Action reportImpact(e1, ’Rename method’, e2)
IR Mth 018 Rename the test method of the method
Elements MethodDeclaration|Operation e1, MethodDeclaration|Operation e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename method’), modelRelatedTo(e2, ’Tests’, e1))
Action reportImpact(e1, ’Rename method’, e2)
IR Mth 019|20|21|22|23 Rename the [use case|activity|activity node] realized by this method
Elements MethodDeclaration|Operation e1, UseCase|Activity|CallBehaviorAction|StateMachine|Message e2,

AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename method’), modelRelatedTo(e1, ’Realizes’, e2))
Action reportImpact(e1, ’Rename [use case|activity|activity node|state machine|message]’, e2)
IR Mth 024 Add the static modifier to the corresponding and implementing methods
Elements MethodDeclaration|Operation e1, MethodDeclaration|Operation e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Add static modifier to method’),

OR(modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2), modelUndirectedRelatedTo(e1, ’Implements’, e2)))
Action reportImpact(e1, ’Add static modifier to method’, e2)
IR Mth 025 Delete the static modifier from the corresponding and implementing methods
Elements MethodDeclaration|Operation e1, MethodDeclaration|Operation e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete static modifier from method’),

OR(modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2), modelUndirectedRelatedTo(e1, ’Implements’, e2)))
Action reportImpact(e1, ’Delete static modifier from method’, e2)
IR Mth 026 Update the code statement calling the now non-static method
Elements MethodDeclaration e1, ExpressionStatement|IfStatement|ForStatement|WhileStatement|DoStatement e2,

AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete static modifier from method’), modelRelatedTo(e1, ’Calls’, e2))
Action reportImpact(e1, ’Modify statement’, e2)
IR Mth 027 Change the final modifier of the corresponding and implementing methods
Elements MethodDeclaration|Operation e1, MethodDeclaration|Operation e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Add final modifier to method’),

OR(modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2), modelUndirectedRelatedTo(e1, ’Implements’, e2)))
Action reportImpact(e1, ’Add final modifier to method’, e2)
IR Mth 028 Change the final modifier of the corresponding and implementing methods
Elements MethodDeclaration|Operation e1, MethodDeclaration|Operation e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete final modifier from method’),

OR(modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2), modelUndirectedRelatedTo(e1, ’Implements’, e2)))
Action reportImpact(e1, ’Delete final modifier from method’, e2)
IR Mth 029 Update the visibility of the corresponding and implementing UML/Java method to “public”
Elements MethodDeclaration|Operation e1, MethodDeclaration|Operation e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Change method visibility to public’),

OR(modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2), modelUndirectedRelatedTo(e1, ’Implements’, e2)))
Action reportImpact(e1, ’Change method visibility to public’, e2)
IR Mth 030 Update the visibility of the corresponding and implementing UML/Java method to “protected”
Elements MethodDeclaration|Operation e1, MethodDeclaration|Operation e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Change method visibility to protected’),

OR(modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2), modelUndirectedRelatedTo(e1, ’Implements’, e2)))
Action reportImpact(e1, ’Change method visibility protected’, e2)
IR Mth 031 Change the code statement that is now calling a “protected” method
Elements MethodDeclaration e1, ExpressionStatement|IfStatement|ForStatement|WhileStatement|DoStatement e2,

AtomicChangeType e3, MethodDeclaration e4, ClassDeclaration e5, ClassDeclaration e6
Conditions AND(valueEquals(e3::name, ’Change method visibility to protected’), modelRelatedTo(e2, ’Calls’, e1),

modelRelatedTo(e4, ’Contains’, e2), modelRelatedTo(e5, ’Defines’, e1), modelRelatedTo(e6, ’Defines’, e4),
NOT(modelRelatedTo(e6, ’Is-A’, e5)))

Action reportImpact(e1, ’Modify statement’, e2)
IR Mth 032 Update the visibility of the corresponding and implementing UML/Java method to “private”
Elements MethodDeclaration|Operation e1, MethodDeclaration|Operation e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Change method visibility to private’),

OR(modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2), modelUndirectedRelatedTo(e1, ’Implements’, e2)))
Action reportImpact(e1, ’Modify statement’, e2)

190

B. Impact Propagation Rules

IR Mth 033 Change the code statement that is now calling a “private” method
Elements MethodDeclaration e1, ExpressionStatement|IfStatement|ForStatement|WhileStatement|DoStatement e2,

AtomicChangeType e3, MethodDeclaration e4, ClassDeclaration e5, ClassDeclaration e6
Conditions AND(valueEquals(e3::name, ’Change method visibility to private’), modelRelatedTo(e2, ’Calls’, e1),

modelRelatedTo(e4, ’Contains’, e2), modelRelatedTo(e5, ’Defines’, e1), modelRelatedTo(e6, ’Defines’, e4),
NOT(modelRelatedTo(e6, ’Is-A’, e5)))

Action reportImpact(e1, ’Modify statement’, e2)
IR Mth 034 Move the corresponding UML/Java method to the UML/Java equivalent of the new class
Elements MethodDeclaration|Operation e1, MethodDeclaration|Operation e2, CompositeChangeType e3,

Class|ClassDeclaration e4, Class|ClassDeclaration e5
Conditions AND(valueEquals(e3::name, ’Move method to other class’), OR

(modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2), modelUndirectedRelatedTo(e4, ’Is-Equivalent-To’, e5)))
Action reportImpact(e1, e4, ’Move method to other class’, e2, e5)
IR Mth 035 Move the UML/Java method declaration to the UML/Java interface implemented by the new class
Elements MethodDeclaration|Operation e1, MethodDeclaration|Operation e2, CompositeChangeType e3,

Interface|InterfaceDeclaration e4, Class|ClassDeclaration e5
Conditions AND(valueEquals(e3::name, ’Move method to other class’), modelRelatedTo(e1, ’Implements’, e2),

modelRelatedTo(e5, ’Implements’, e4))
Action reportImpact(e1, e5, ’Move method to other interface’, e2, e4)
IR Mth 036 Move the corresponding UML/Java test method to the corresponding UML/Java test class of the new class
Elements MethodDeclaration|Operation e1, MethodDeclaration|Operation e2, CompositeChangeType e3,

Class|ClassDeclaration e4, Class|ClassDeclaration e5
Conditions AND(valueEquals(e3::name, ’Move method to other class’), modelRelatedTo(e2, ’Tests’, e1),

modelRelatedTo(e5, ’Tests’, e4))
Action reportImpact(e1, e4, ’Move method to other class’, e2, e5)
IR Mth 037 Move the attribute accessed by the getter/setter to the new class
Elements MethodDeclaration|Operation e1, FieldDeclaration|Property e2, CompositeChangeType e3,

Class|ClassDeclaration e4, ImpactReport e5
Conditions AND(valueEquals(e3::name, ’Move method to other class’), OR(modelRelatedTo(e1, ’Uses’, e2),

modelRelatedTo(e1, ’Modifies’, e2)), NOT(AND(valueEquals(e5::changetype::name, ’Move attribute to other
class’), modelEquals(e5::impactsources, e4), modelEquals(e5::impactsources, e2))))

Action reportImpact(e1, e4, ’Move method to other class’, e2, e5)
IR Mth 038 Adjust code statements calling a method that has been moved to another class
Elements MethodDeclaration e1, ExpressionStatement|IfStatement|ForStatement|WhileStatement|DoStatement e2,

AtomicChangeType e3, Class|ClassDeclaration e4, Class|ClassDeclaration e5
Conditions AND(valueEquals(e3::name, ’Move method to other class’), modelRelatedTo(e2, ’Calls’, e1),

modelDirectParentOf(e5,e1), NOT(modelRelatedTo(e4, ’Is-A’, e5)))
Action reportImpact(e1, e4, ’Modify statement’, e2)
IR Mth 039 Move the corresponding UML/Java method to the UML/Java equivalent of the new interface
Elements MethodDeclaration|Operation e1, MethodDeclaration|Operation e2, CompositeChangeType e3,

Interface|InterfaceDeclaration e4, Interface|InterfaceDeclaration e5
Conditions AND(valueEquals(e3::name, ’Move method to other interface’), OR

(modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2), modelUndirectedRelatedTo(e4, ’Is-Equivalent-To’, e5)))
Action reportImpact(e1, e4, ’Move method to other interface’, e2, e5)
IR Mth 040 Move the implementation of the method to the implementation of the interface
Elements MethodDeclaration|Operation e1, Interface|InterfaceDeclaration e2, MethodDeclaration|Operation e3,

CompositeChangeType e4, Class|ClassDeclaration e5
Conditions AND(valueEquals(e4::name, ’Move method to other interface’), modelRelatedTo(e3, ’Implements’, e1),

modelRelatedTo(e5, ’Implements’, e2), NOT(modelRelatedTo(e5, ’Defines’, e3)))
Action reportImpact(e1, e2, ’Move method to other interface’, e3, e5)
IR Mth 041 Move the attribute along with the method to the new interface
Elements MethodDeclaration|Operation e1, Property|FieldDeclaration e2,

CompositeChangeType e3, Interface|InterfaceDeclaration e4
Conditions AND(valueEquals(e3::name, ’Move method to other interface’), modelRelatedTo(e1, ’Uses’, e2),

NOT(modelRelatedTo(e4, ’Defines’, e2)))
Action reportImpact(e1, e4, ’Move method to other interface’, e2, e4)
IR Mth 042 Move the attribute along with the method to the new interface
Elements MethodDeclaration|Operation e1, Property|FieldDeclaration e2,

CompositeChangeType e3, Interface|InterfaceDeclaration e4
Conditions AND(valueEquals(e3::name, ’Move method to other interface’), modelRelatedTo(e1, ’Uses’, e2),

NOT(modelRelatedTo(e4, ’Defines’, e2)))
Action reportImpact(e1, e4, ’Change attribute visibility to public’, e2)
IR Mth 043 Merge the corresponding UML/Java methods
Elements MethodDeclaration|Operation e1, MethodDeclaration|Operation e2, MethodDeclaration|Operation e3,

MethodDeclaration|Operation e4, CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Merge methods’),

modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e3), modelUndirectedRelatedTo(e2, ’Is-Equivalent-To’, e4))
Action reportImpact(e1, e2, ’Merge methods’, e3, e4)
IR Mth 044 Merge the implementations of both methods

191

B. Impact Propagation Rules

Elements MethodDeclaration|Operation e1, MethodDeclaration|Operation e2, MethodDeclaration|Operation e3,
MethodDeclaration|Operation e4, CompositeChangeType e5

Conditions AND(valueEquals(e5::name, ’Merge methods’),
modelUndirectedRelatedTo(e1, ’Implements’, e3), modelUndirectedRelatedTo(e2, ’Implements’, e4))

Action reportImpact(e1, e2, ’Merge methods’, e3, e4)
IR Mth 045 Merge the test methods of both methods
Elements MethodDeclaration|Operation e1, MethodDeclaration|Operation e2, MethodDeclaration|Operation e3,

MethodDeclaration|Operation e4, CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Merge methods’), modelRelatedTo(e3, ’Tests’, e1),

modelRelatedTo(e4, ’Tests’, e2))
Action reportImpact(e1, e2, ’Merge methods’, e3, e4)
IR Mth 046 Modify code statements calling merged methods
Elements MethodDeclaration e1, MethodDeclaration e2, ExpressionStatement|IfStatement|ForStatement|WhileStatement|

DoStatement e3, CompositeChangeType e4
Conditions AND(valueEquals(e4::name, ’Merge methods’), OR(modelRelatedTo(e3, ’Calls’, e1),

modelRelatedTo(e3, ’Calls’, e2)))
Action reportImpact(e1, e2, ’Modify statement’, e3)
IR Mth 047 Add the method-parameter to the corresponding UML/Java method
Elements Parameter|SingleVariableDeclaration e1, MethodDeclaration|Operation e2, MethodDeclaration|Operation e3,

AtomicChangeType e4
Conditions AND(valueEquals(e4::name, ’Add methodparameter’), modelUndirectedRelatedTo(e2, ’Is-Equivalent-To’, e3))
Action reportImpact(e2, e1, ’Add methodparameter’, e3, e1)
IR Mth 048 Add the method-parameter to the implementation of the method as well
Elements Parameter|SingleVariableDeclaration e1, MethodDeclaration|Operation e2, MethodDeclaration|Operation e3,

AtomicChangeType e4
Conditions AND(valueEquals(e4::name, ’Add methodparameter’), modelUndirectedRelatedTo(e2, ’Implements’, e3))
Action reportImpact(e2, e1, ’Add methodparameter’, e3, e1)
IR Mth 049 Change the code statements which call methods where new method-parameters were introduced
Elements SingleVariableDeclaration e1, MethodDeclaration e2, ExpressionStatement|IfStatement|ForStatement|

WhileStatement|DoStatement e3, AtomicChangeType e4
Conditions AND(valueEquals(e4::name, ’Add methodparameter’), modelRelatedTo(e3, ’Calls’, e2))
Action reportImpact(e1, e2, ’Modify statement’, e3)
IR Par 001 Delete the method-parameter from the corresponding or implementing UML/Java method
Elements Parameter|SingleVariableDeclaration e1, Operation|MethodDeclaration e2, Operation|MethodDeclaration e3,

AtomicChangeType e4
Conditions AND(valueEquals(e4::name, ’Delete methodparameter’), modelRelatedTo(e2, ’Defines’, e1), OR

(modelUndirectedRelatedTo(e2, ’Is-Equivalent-To’, e3), modelUndirectedRelatedTo(e2, ’Implements’, e3)))
Action reportImpact(e1, ’Delete methodparameter’, e3)
IR Par 002 Change the code statements which call methods where method-parameters were deleted
Elements SingleVariableDeclaration e1, MethodDeclaration e2, ExpressionStatement|IfStatement|ForStatement|

WhileStatement|DoStatement e3 , AtomicChangeType e4
Conditions AND(valueEquals(e4::name, ’Delete methodparameter’), modelRelatedTo(e2, ’Defines’, e1),

modelRelatedTo(e3, ’Calls’, e2))
Action reportImpact(e1, ’Modify statement’, e3)
IR Par 003 Rename the method-parameter in the method declaration/implementation or the corresponding parameter
Elements Parameter|SingleVariableDeclaration e1, Parameter|SingleVariableDeclaration e2, Operation|MethodDeclaration

e3, Operation|MethodDeclaration e4 , AtomicChangeType e5
Conditions AND(valueEquals(e5::name, ’Rename methodparameter’), OR(modelUndirectedRelatedTo(e1, ’Is-Equivalent-

To’, e2), AND(valueEquals(e1::name, e2::name), modelRelatedTo(e3, ’Defines’, e1), modelRelatedTo(e4, ’De-
fines’, e2), OR(modelUndirectedRelatedTo(e3, ’Implements’, e4), modelUndirectedRelatedTo(e3, ’Is-Equivalent-
To’, e4)))))

Action reportImpact(e1, ’Rename methodparameter’, e2)
IR Par 004 Change the data type of the method-parameter in the method declaration/implementation
Elements Parameter|SingleVariableDeclaration e1, Parameter|SingleVariableDeclaration e2, Operation|MethodDeclaration

e3, Operation|MethodDeclaration e4 , AtomicChangeType e5
Conditions AND(valueEquals(e5::name, ’Change methodparameter data type’), OR(modelUndirectedRelatedTo(e1, ’Is-

Equivalent-To’, e2), AND(valueEquals(e1::name, e2::name), modelRelatedTo(e3, ’Defines’, e1), modelRelat-
edTo(e4, ’Defines’, e2), OR(modelUndirectedRelatedTo(e3, ’Implements’, e4),
modelUndirectedRelatedTo(e3, ’Is-Equivalent-To’, e4)))))

Action reportImpact(e1, ’Change methodparameter data type’, e2)
IR Par 005 Change the code statements which call methods where the type of method-parameters was changed
Elements SingleVariableDeclaration e1, MethodDeclaration e2, ExpressionStatement|IfStatement|ForStatement|

WhileStatement|DoStatement e3 , AtomicChangeType e4
Conditions AND(valueEquals(e4::name, ’Change methodparameter data type’), modelRelatedTo(e2, ’Defines’, e1),

modelRelatedTo(e3, ’Calls’, e2))
Action reportImpact(e1, ’Modify statement’, e3)
IR Par 006 Add the final modifier to the corresponding method-parameter or of the implementing method
Elements SingleVariableDeclaration|Parameter e1, SingleVariableDeclaration|Parameter e2, MethodDeclaration|Operation

e3, MethodDeclaration|Operatio e4 , AtomicChangeType e5

192

B. Impact Propagation Rules

Conditions AND(valueEquals(e5::name, ’Add final modifier to methodparameter’), OR(modelUndirectedRelatedTo(e1, ’Is-
Equivalent-To’, e2), AND(valueEquals(e1::name, e2::name), modelRelatedTo(e3, ’Defines’, e1), modelRelat-
edTo(e4, ’Defines’, e2), OR(modelUndirectedRelatedTo(e3, ’Implements’, e4),
modelUndirectedRelatedTo(e3, ’Is-Equivalent-To’, e4)))))

Action reportImpact(e1, ’Add final modifier to methodparameter’, e2)
IR Par 007 Change the code statements which call methods where the method-parameter changed to final
Elements SingleVariableDeclaration e1, MethodDeclaration e2, ExpressionStatement|IfStatement|ForStatement|

WhileStatement|DoStatement e3 , AtomicChangeType e4
Conditions AND(valueEquals(e4::name, ’Add final modifier to parameter’), modelRelatedTo(e2, ’Defines’, e1),

modelRelatedTo(e3, ’Calls’, e2))
Action reportImpact(e1, ’Modify statement’, e3)
IR Par 008 Delete the final modifier from the corresponding method-parameter or of the implementing method
Elements SingleVariableDeclaration|Parameter e1, SingleVariableDeclaration|Parameter e2, MethodDeclaration|Operation

e3, MethodDeclaration|Operatio e4 , AtomicChangeType e5
Conditions AND(valueEquals(e5::name, ’Delete final modifier from methodparameter’), OR(modelUndirectedRelatedTo(e1,

’Is-Equivalent-To’, e2), AND(valueEquals(e1::name, e2::name), modelRelatedTo(e3, ’Defines’, e1), modelRelat-
edTo(e4, ’Defines’, e2), OR(modelUndirectedRelatedTo(e3, ’Implements’, e4),
modelUndirectedRelatedTo(e3, ’Is-Equivalent-To’, e4)))))

Action reportImpact(e1, ’Delete final modifier from methodparameter’, e2)
IR Par 009 Move the method-parameter to the equivalent and implementing methods
Elements SingleVariableDeclaration|Parameter e1, SingleVariableDeclaration|Parameter e2, MethodDeclaration|Operation

e3, MethodDeclaration|Operatio e4, MethodDeclaration|Operatio e5, MethodDeclaration|Operatio e6,
CompositeChangeType e7

Conditions AND(valueEquals(e7::name, ’Move parameter to other method’), valueEquals(e1::name, e2::name),
OR(modelUndirectedRelatedTo(e3, ’Is-Equivalent-To’, e4), modelUndirectedRelatedTo(e3, ’Implements’,
e4)), OR(modelUndirectedRelatedTo(e5, ’Implements’, e6),
modelUndirectedRelatedTo(e5, ’Is-Equivalent-To’, e6)))

Action reportImpact(e1, e5, ’Move parameter to other method’, e2, e6)
IR Par 010 Change the code statements which call methods where the method-parameters were moved to other methods
Elements SingleVariableDeclaration e1, MethodDeclaration e2, ExpressionStatement|IfStatement|ForStatement|

WhileStatement|DoStatement e3 , CompositeChangeType e4
Conditions AND(valueEquals(e4::name, ’Move parameter to other method’), modelRelatedTo(e2, ’Defines’, e1),

modelRelatedTo(e3, ’Calls’, e2))
Action reportImpact(e1, ’Modify statement’, e3)
IR Att 001 Delete the attribute from the equivalent UML/Java class/interface
Elements FieldDeclaration|Property e1, FieldDeclaration|Property e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete attribute’), modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, ’Delete attribute’, e2)
IR Att 002 Remove the getter and setter for a deleted attribute
Elements FieldDeclaration|Property e1, MethodDeclaration|Operation e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete attribute’), OR(modelRelatedTo(e2, ’Uses’, e1),

modelRelatedTo(e2, ’Modifies’, e1))
Action reportImpact(e1, ’Delete method’, e2)
IR Att 003 Modify code statements that access a deleted attribute
Elements FieldDeclaration e1, ExpressionStatement|IfStatement|ForStatement|WhileStatement|DoStatement e2,

AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete attribute’), OR(modelRelatedTo(e2, ’Uses’, e1),

modelRelatedTo(e2, ’Modifies’, e1))
Action reportImpact(e1, ’Modify statement’, e2)
IR Att 004 Change the attribute type of the corresponding UML/Java attribute
Elements FieldDeclaration|Property e1, FieldDeclaration|Property e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Change attribute data type’),

modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, ’Change attribute data type’, e2)
IR Att 005 Change the return type of the method to match the new attribute type
Elements FieldDeclaration|Property e1, MethodDeclaration|Operation e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Change attribute data type’), modelRelatedTo(e2, ’Uses’, e1))
Action reportImpact(e1, ’Change return type’, e2)
IR Att 006 Modify code statements that access attributes who’s datatype was changed
Elements FieldDeclaration e1, ExpressionStatement|IfStatement|ForStatement|WhileStatement|DoStatement e2,

AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Change attribute data type’), OR(modelRelatedTo(e2, ’Uses’, e1),

modelRelatedTo(e2, ’Modifies’, e1))
Action reportImpact(e1, ’Modify statement’, e2)
IR Att 007 Rename corresponding UML/Java attribute
Elements FieldDeclaration|Property e1, FieldDeclaration|Property e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename attribute’), modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, ’Rename attribute’, e2)
IR Att 008 Rename the getter and setter to match the new name of the attribtute
Elements FieldDeclaration|Property e1, MethodDeclaration|Operation e2, AtomicChangeType e3

193

B. Impact Propagation Rules

Conditions AND(valueEquals(e3::name, ’Rename attribute’), OR(modelRelatedTo(e2, ’Uses’, e1),
modelRelatedTo(e2, ’Modifies’, e1)))

Action reportImpact(e1, ’Rename method’, e2)
IR Att 009 Modify code statements that access renamed attributes
Elements FieldDeclaration e1, ExpressionStatement|IfStatement|ForStatement|WhileStatement|DoStatement e2,

AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename attribute’), OR(modelRelatedTo(e2, ’Uses’, e1),

modelRelatedTo(e2, ’Modifies’, e1)))
Action reportImpact(e1, ’Modify statement’, e2)
IR Att 010 Add a final modifier to the corresponding UML/Java attribute
Elements FieldDeclaration|Property e1, FieldDeclaration|Property e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Add final modifier to attribute’),

modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, ’Add final modifier to attribute’, e2)
IR Att 011 Add the final modifier to the getter method
Elements FieldDeclaration|Property e1, MethodDeclaration|Operation e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Add final modifier to attribute’), modelRelatedTo(e2, ’Uses’, e1))
Action reportImpact(e1, ’Add final modifier to method’, e2)
IR Att 012 Remove the setter method for the now final attribute
Elements FieldDeclaration|Property e1, MethodDeclaration|Operation e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Add final modifier to attribute’), modelRelatedTo(e2, ’Modifies’, e1))
Action reportImpact(e1, ’Delete method’, e2)
IR Att 013 Delete code statements that assign values to final attributes
Elements FieldDeclaration e1, ExpressionStatement|IfStatement|ForStatement|WhileStatement|DoStatement e2,

AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Add final modifier to attribute’), modelRelatedTo(e2, ’Modifies’, e1))
Action reportImpact(e1, ’Delete statement’, e2)
IR Att 014 Delete the final modifier from the corresponding UML/Java attribute
Elements FieldDeclaration|Property e1, FieldDeclaration|Property e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete final modifier from attribute’),

modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, ’Delete final modifier from attribute’, e2)
IR Att 015 Delete the final modifier from the getter method
Elements FieldDeclaration|Property e1, MethodDeclaration|Operation e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete final modifier from attribute’), modelRelatedTo(e2, ’Uses’, e1))
Action reportImpact(e1, ’Delete final modifier from method’, e2)
IR Att 016 Add the static modifier to the corresponding UML/Java attribute
Elements FieldDeclaration|Property e1, FieldDeclaration|Property e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Add static modifier to attribute’),

modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, ’Add static modifier to attribute’, e2)
IR Att 017 Add the static modifier to the getter and setter methods
Elements FieldDeclaration|Property e1, MethodDeclaration|Operation e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Add static modifier to attribute’), OR(modelRelatedTo(e2, ’Uses’, e1),

modelRelatedTo(e2, ’Modifies’, e1)))
Action reportImpact(e1, ’Add static modifier to method’, e2)
IR Att 018 Delete the static modifier from the corresponding UML/Java attribute
Elements FieldDeclaration|Property e1, FieldDeclaration|Property e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete static modifier from attribute’),

modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, ’Delete static modifier from attribute’, e2)
IR Att 019 Delete the static modifier from the getter and setter methods
Elements FieldDeclaration|Property e1, MethodDeclaration|Operation e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete static modifier from attribute’), OR(modelRelatedTo(e2, ’Uses’, e1),

modelRelatedTo(e2, ’Modifies’, e1)))
Action reportImpact(e1, ’Delete static modifier from method’, e2)
IR Att 020|21|22 Change the visibility of the corresponding Java/UML attribute to [public|protected|private]
Elements FieldDeclaration|Property e1, FieldDeclaration|Property e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Change attribute visibility to [public|protected|private]’),

modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, ’Change attribute visibility to [public|protected|private]’, e2)
IR Att 023|24 Modify code statements that try to access [protected|private] attributes
Elements FieldDeclaration e1, ExpressionStatement|IfStatement|ForStatement|WhileStatement|DoStatement e2,

MethodDeclaration e3, ClassDeclaration e4, ClassDeclaration e5, AtomicChangeType e6
Conditions AND(valueEquals(e6::name, ’Change attribute visibility to [protected|private]’), modelRelatedTo(e3, ’Contains’,

e2), modelRelatedTo(e4, ’Defines’, e3), modelRelatedTo(e5, ’Defines’, e1), OR(modelRelatedTo(e2, ’Uses’, e1),
modelRelatedTo(e2, ’Modifies’, e1)), NOT(modelEquals(e4, e5)))

Action reportImpact(e1, ’Modify statement’, e2)
IR Att 025 Move the corresponding UML/Java attribute to the corresponding UML/Java class
Elements FieldDeclaration|Property e1, FieldDeclaration|Property e2, Class|ClassDeclaration e3, Class|ClassDeclaration

e4, CompositeChangeType e5

194

B. Impact Propagation Rules

Conditions AND(valueEquals(e5::name, ’Move attribute to other class’), modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’,
e2), modelUndirectedRelatedTo(e3, ’Is-Equivalent-To’, e4), NOT(modelRelatedTo(e4, ’Defines’, e2))

Action reportImpact(e1, e3 ’Move attribute to other class’, e2, e4)
IR Att 026 Move the getter and setter to the new class
Elements FieldDeclaration|Property e1, MethodDeclaration|Operation e2, Class|ClassDeclaration e3,

CompositeChangeType e4
Conditions AND(valueEquals(e4::name, ’Move attribute to other class’), OR(modelRelatedTo(e2, ’Uses’, e1),

modelRelatedTo(e2, ’Modifies’, e1)))
Action reportImpact(e1, e3 ’Move method to other class’, e2, e4)
IR Att 027 Modify code statements that access attributes that were moved to other classes
Elements FieldDeclaration e1, ExpressionStatement|IfStatement|ForStatement|WhileStatement|DoStatement e2,

CompositeChangeType e3, ClassDeclaration e4, ClassDeclaration e5
Conditions AND(valueEquals(e3::name, ’Move attribute to other class’), modelDirectParentOf(e4, e1),

OR(modelRelatedTo(e2, ’Uses’, e1), modelRelatedTo(e2, ’Modifies’, e1)),
NOT(modelIndirectlyRelatedTp(e4, ’Is-A’, e5)))

Action reportImpact(e1, e5 ’Modify statement’, e2)
IR Att 028 Move the corresponding UML/Java attribute to the corresponding UML/Java interface
Elements FieldDeclaration|Property e1, FieldDeclaration|Property e2, Interface|InterfaceDeclaration e3,

Interface|InterfaceDeclaration e4, CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Move attribute to other interface’), modelUndirectedRelatedTo(e1, ’Is-Equivalent-

To’, e2), modelUndirectedRelatedTo(e3, ’Is-Equivalent-To’, e4), NOT(modelRelatedTo(e4, ’Defines’, e2))
Action reportImpact(e1, e3 ’Move attribute to other interface’, e2, e4)
IR Att 029 Move the getter and setter to the new interface
Elements FieldDeclaration|Property e1, MethodDeclaration|Operation e2, Interface|InterfaceDeclaration e3,

CompositeChangeType e4
Conditions AND(valueEquals(e4::name, ’Move attribute to other interface’), OR(modelRelatedTo(e2, ’Uses’, e1),

modelRelatedTo(e2, ’Modifies’, e1)))
Action reportImpact(e1, e3 ’Move method to other interface’, e2, e4)
IR Att 030 Modify code statements that access attributes that were moved to other interfaces
Elements FieldDeclaration e1, ExpressionStatement|IfStatement|ForStatement|WhileStatement|DoStatement e2,

CompositeChangeType e3, InterfaceDeclaration e4, InterfaceDeclaration e5
Conditions AND(valueEquals(e3::name, ’Move attribute to other interface’), modelDirectParentOf(e4, e1),

OR(modelRelatedTo(e2, ’Uses’, e1), modelRelatedTo(e2, ’Modifies’, e1)),
NOT(modelIndirectlyRelatedTp(e4, ’Is-A’, e5)))

Action reportImpact(e1, e5 ’Modify statement’, e2)
IR Var 001 Modify code statements that access deleted variables
Elements VariableDeclarationFragment e1, ExpressionStatement|IfStatement|ForStatement|WhileStatement|DoStatement

e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete variable’), OR(modelRelatedTo(e2, ’Uses’, e1),

modelRelatedTo(e2, ’Modifies’, e1)))
Action reportImpact(e1, ’Delete statement’, e2)
IR Var 002 Modify code statements that access renamed variables
Elements VariableDeclarationFragment e1, ExpressionStatement|IfStatement|ForStatement|WhileStatement|DoStatement

e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename variable’), OR(modelRelatedTo(e2, ’Uses’, e1),

modelRelatedTo(e2, ’Modifies’, e1)))
Action reportImpact(e1, ’Modify statement’, e2)
IR Var 003 Modify code statements that access variables who’s value was changed
Elements VariableDeclarationFragment e1, ExpressionStatement|IfStatement|ForStatement|WhileStatement|DoStatement

e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Change variable value’), OR(modelRelatedTo(e2, ’Uses’, e1), modelRelatedTo(e2,

’Modifies’, e1)))
Action reportImpact(e1, ’Modify statement’, e2)
IR Var 004 Modify code statements that access variables who’s data type was changed
Elements VariableDeclarationFragment e1, ExpressionStatement|IfStatement|ForStatement|WhileStatement|DoStatement

e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Change variable data type’), OR(modelRelatedTo(e2, ’Uses’, e1),

modelRelatedTo(e2, ’Modifies’, e1)))
Action reportImpact(e1, ’Modify statement’, e2)
IR Var 005 Delete code statements that change final variables
Elements VariableDeclarationFragment e1, ExpressionStatement|IfStatement|ForStatement|WhileStatement|DoStatement

e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Add final modifier to variable’), modelRelatedTo(e2, ’Modifies’, e1))
Action reportImpact(e1, ’Delete statement’, e2)
IR Seq 001 Delete the use case that is realized by a sequence
Elements Interaction e1, UseCase e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete sequence’), modelRelatedTo(e1, ’Realizes’, e2))
Action reportImpact(e1, ’Delete use case’, e2)
IR Seq 002|3 Delete the [statemachine|activity] that overlaps with a sequence
Elements Interaction e1, StateMachine|Activity e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete sequence’), modelUndirectedRelatedTo(e1, ’Overlaps-With’, e2))

195

B. Impact Propagation Rules

Action reportImpact(e1, ’Delete [state machine|activity]’, e2)
IR Seq 004 Rename the use case that is realized by a sequence
Elements Interaction e1, UseCase e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename sequence’), modelRelatedTo(e1, ’Realizes’, e2))
Action reportImpact(e1, ’Rename use case’, e2)
IR Seq 005|6 Rename the [statemachine|activity] that overlaps with a sequence
Elements Interaction e1, StateMachine|Activity e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename sequence’), modelUndirectedRelatedTo(e1, ’Overlaps-With’, e2))
Action reportImpact(e1, ’Rename [state machine|activity]’, e2)
IR Seq 007 Split the use case that is realized by a sequence
Elements Interaction e1, UseCase e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split sequence’), modelRelatedTo(e1, ’Realizes’, e2))
Action reportImpact(e1, ’Split use case’, e2)
IR Seq 008|9 Split the [statemachine|activity] that overlaps with a sequence
Elements Interaction e1, StateMachine|Activity e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split sequence’), modelUndirectedRelatedTo(e1, ’Overlaps-With’, e2))
Action reportImpact(e1, ’Split [state machine|activity]’, e2)
IR Seq 010 Merge the use cases that are realized by merged sequences
Elements Interaction e1, Interaction e2, UseCase e3, UseCase e4, CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Merge sequences’), modelRelatedTo(e1, ’Realizes’, e3),

modelRelatedTo(e2, ’Realizes’, e4))
Action reportImpact(e1, ’Merge use cases’, e2)
IR Seq 011|12 Merge the [statemachines|activities] that overlap with merged sequences
Elements Interaction e1, Interaction e2, StateMachine|Activity e3, StateMachine|Activity e4, CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Merge sequences’), modelUndirectedRelatedTo(e1, ’Overlaps-With’, e3),

modelUndirectedRelatedTo(e2, ’Overlaps-With’, e4))
Action reportImpact(e1, ’Merge [state machines|activities]’, e2)
IR Lin 001|2 Delete [classes|components] that are equivalent to deleted lifelines
Elements Lifeline e1, Class|ClassDeclaration|Component e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete lifeline’), modelRelatedTo(e1, ’Is-Instance-Of’, e2))
Action reportImpact(e1, ’Delete [class|component]’, e2)
IR Lin 003|4 Rename [classes|components] that are equivalent to renamed lifelines
Elements Lifeline e1, Class|ClassDeclaration|Component e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename lifeline’), modelRelatedTo(e1, ’Is-Instance-Of’, e2))
Action reportImpact(e1, ’Rename [class|component]’, e2)
IR Lin 005|6 Merge [classes|components] that are equivalent to merged lifelines
Elements Lifeline e1, Lifeline e2, Class|ClassDeclaration|Component e3, Class|ClassDeclaration|Component e4,

CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Merge lifelines’), modelRelatedTo(e1, ’Is-Instance-Of’, e3),

modelRelatedTo(e2, ’Is-Instance-Of’, e4))
Action reportImpact(e1, ’Merge [classes|componentes]’, e2)
IR Lin 007|8 Split [classes|components] that are equivalent to split lifelines
Elements Lifeline e1, Class|ClassDeclaration|Component e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split lifeline’), modelRelatedTo(e1, ’Is-Instance-Of’, e2))
Action reportImpact(e1, ’Split [class|component]’, e2)
IR Msg 001|2|3 Delete the [method|activity|activity node] that is equivalent to a deleted message
Elements Message e1, Operation|Activity|CallBehaviorAction e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete message’), modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, ’Delete [method|activity|activity node]’, e2)
IR Msg 004|5|6 Rename the [method|activity|activity node] that are equivalent to a deleted message
Elements Message e1, Operation|Activity|CallBehaviorAction e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename message’), modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, ’Rename [method|activity|activity node]’, e2)
IR Msg 007|8|9 Merge the [methods|activities|activity nodes] that are equivalent to merged messages
Elements Message e1, Message e2, Operation|Activity|CallBehaviorAction e3, Operation|Activity|CallBehaviorAction e4,

CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Merge message’), modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e3),

modelUndirectedRelatedTo(e2, ’Is-Equivalent-To’, e4))
Action reportImpact(e1, ’Rename [method|activity|activity node]’, e2)
IR Msg 010|11|12 Split the [methods|activities|activity nodes] that are equivalent to split messages
Elements Message e1, Operation|Activity|CallBehaviorAction e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split message’), modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, ’Split [method|activity|activity node]’, e2)
IR Act 001|2 Delete the [state machine|sequence] that overlaps with a deleted activity
Elements Activity e1, StateMachine|Interaction e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete activity’), modelUndirectedRelatedTo(e1, ’Overlaps-With’, e2))
Action reportImpact(e1, ’Delete [state machine|sequence]’, e2)
IR Act 003 Delete the use case that is realized by deleted activity
Elements Activity e1, UseCase e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete activity’), modelRelatedTo(e1, ’Realizes’, e2))

196

B. Impact Propagation Rules

Action reportImpact(e1, ’Delete use case’, e2)
IR Act 004|5 Rename the [state machine|sequence] that overlaps with a deleted activity
Elements Activity e1, StateMachine|Interaction e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename activity’), modelUndirectedRelatedTo(e1, ’Overlaps-With’, e2))
Action reportImpact(e1, ’Rename [state machine|sequence]’, e2)
IR Act 006 Rename the use case that is realized by deleted activity
Elements Activity e1, UseCase e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename activity’), modelRelatedTo(e1, ’Realizes’, e2))
Action reportImpact(e1, ’Rename use case’, e2)
IR Act 007|8 Split the [state machine|sequence] that overlaps with a split activity
Elements Activity e1, StateMachine|Interaction e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split activity’), modelUndirectedRelatedTo(e1, ’Overlaps-With’, e2))
Action reportImpact(e1, ’Split [state machine|sequence]’, e2)
IR Act 009 Split the use case that is realized by the merged activities
Elements Activity e1, UseCase e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split activity’), modelRelatedTo(e1, ’Realizes’, e2))
Action reportImpact(e1, ’Split use case’, e2)
IR Act 010|11 Merge the [state machines|sequences] that overlap with merged activities
Elements Activity e1, Activity e2, StateMachine|Interaction e3, StateMachine|Interaction e4, CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Merge activities’), modelUndirectedRelatedTo(e1, ’Overlaps-With’, e3),

modelUndirectedRelatedTo(e2, ’Overlaps-With’, e4))
Action reportImpact(e1, e2, ’Merge [state machines|sequences]’, e3, e4)
IR Act 012 Merge the use case that is realized by the merged activities
Elements Activity e1, Activity e2, UseCase e3, UseCase e4, CompositeChangeType e5
Conditions AND(valueEquals(e3::name, ’Split activity’), modelRelatedTo(e1, ’Realizes’, e3),

modelRelatedTo(e2, ’Realizes’, e4))
Action reportImpact(e1, e2, ’Merge use cases’, e3, e4)
IR Act 013 Delete the method that is equivalent to a deleted activity node
Elements CallBehaviorAction e1, Operation e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete activity node’), modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, ’Delete method’, e2)
IR Act 014 Delete the activity node that refines a deleted activity node
Elements CallBehaviorAction e1, CallBehaviorAction e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete activity node’), modelUndirectedRelatedTo(e1, ’Refines’, e2))
Action reportImpact(e1, ’Delete activity node’, e2)
IR Act 015 Rename the method that is equivalent to a renamed activity node
Elements CallBehaviorAction e1, Operation e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename activity node’), modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, ’Rename method’, e2)
IR Act 016 Rename the activity node that refines a renamed activity node
Elements CallBehaviorAction e1, CallBehaviorAction e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename activity node’), modelUndirectedRelatedTo(e1, ’Refines’, e2))
Action reportImpact(e1, ’Rename activity node’, e2)
IR Act 017 Merge the methods that are equivalent to merged activity nodes
Elements CallBehaviorAction e1, CallBehaviorAction e2, Operation e3, Operation e4, CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Merge activity nodes’), modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e3),

modelUndirectedRelatedTo(e2, ’Is-Equivalent-To’, e4))
Action reportImpact(e1, e2, ’Merge methods’, e3, e4)
IR Act 018 Merge the methods that are equivalent to merged activity nodes
Elements CallBehaviorAction e1, CallBehaviorAction e2, CallBehaviorAction e3, CallBehaviorAction e4,

CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Merge activity nodes’), modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e3),

modelUndirectedRelatedTo(e2, ’Is-Equivalent-To’, e4))
Action reportImpact(e1, ’Merge methods’, e2)
IR Act 019 Split the method that is equivalent to a split activity node
Elements CallBehaviorAction e1, Operation e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split activity node’), modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, ’Split method’, e2)
IR Act 020 Split the activity node that is equivalent to a split activity node
Elements CallBehaviorAction e1, Operation e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split activity node’), modelUndirectedRelatedTo(e1, ’Refines’, e2))
Action reportImpact(e1, ’Split activity node’, e2)
IR Act 021 Delete code statements that are equivalent to deleted decision nodes
Elements DecisionNode e1, IfStatement|ForStatement|WhileStatement|DoStatement e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete decision node’), modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))
Action reportImpact(e1, ’Delete statement’, e2)
IR Act 022 Modify code statements that are equivalent to modified decision nodes
Elements DecisionNode e1, IfStatement|ForStatement|WhileStatement|DoStatement e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Change decision node condition’),

modelUndirectedRelatedTo(e1, ’Is-Equivalent-To’, e2))

197

B. Impact Propagation Rules

Action reportImpact(e1, ’Modify statement’, e2)
IR Stm 001|3 Delete [activities|sequences] that overlap with deleted state machines
Elements StateMachine e1, Activity|Interaction e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete state machine’), modelUndirectedRelatedTo(e1, ’Overlaps-With’, e2))
Action reportImpact(e1, ’Delete [activity|sequence]’, e2)
IR Stm 002 Delete use cases that are realized by a deleted state machine
Elements StateMachine e1, UseCase e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete state machine’), modelRelatedTo(e2, ’Realizes’, e1))
Action reportImpact(e1, ’Delete use case’, e2)
IR Stm 004|5 Rename [activities|sequences] that overlap with a renamed state machine
Elements StateMachine e1, Activity|Interaction e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename state machine’), modelUndirectedRelatedTo(e1, ’Overlaps-With’, e2))
Action reportImpact(e1, ’Rename [activity|sequence]’, e2)
IR Stm 006 Rename use cases that are realized by a renamed state machine
Elements StateMachine e1, UseCase e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Rename state machine’), modelRelatedTo(e2, ’Realizes’, e1))
Action reportImpact(e1, ’Rename use case’, e2)
IR Stm 007|8 Split [activities|sequences] that overlap with a split state machine
Elements StateMachine e1, Activity|Interaction e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split state machine’), modelUndirectedRelatedTo(e1, ’Overlaps-With’, e2))
Action reportImpact(e1, ’Split [activity|sequence]’, e2)
IR Stm 009 Split use cases that are realized by a split state machine
Elements StateMachine e1, UseCase e2, CompositeChangeType e3
Conditions AND(valueEquals(e3::name, ’Split state machine’), modelRelatedTo(e2, ’Realizes’, e1))
Action reportImpact(e1, ’Split use case’, e2)
IR Stm 010|11 Merge [activities|sequences] that overlap with merged state machines
Elements StateMachine e1, StateMachine e2, Activity|Interaction e3, Activity|Interaction e4, CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Merge state machines’), modelUndirectedRelatedTo(e1, ’Overlaps-With’, e3),

modelUndirectedRelatedTo(e2, ’Overlaps-With’, e4))
Action reportImpact(e1, e2, ’Merge [activities|sequences]’, e3, e4)
IR Stm 012 Merge use cases that are realized by merged state machines
Elements StateMachine e1, StateMachine e2, UseCase e3, UseCase e4, CompositeChangeType e5
Conditions AND(valueEquals(e5::name, ’Merge state machines’), modelRelatedTo(e1, ’Realizes’, e3),

modelRelatedTo(e2, ’Realizes’, e4))
Action reportImpact(e1, e2, ’Merge use cases’, e3, e4)
IR Src 001 Move variables to other methods if the code-statements accessing them were moved
Elements ExpressionStatement|IfStatement|ForStatement|WhileStatement|DoStatement|VariableDeclarationStatement e1,

VariableDeclarationFragment e2, MethodDeclaration e3, CompositeChangeType e4, ImpactReport e5
Conditions AND(valueEquals(e4::name, ’Move statement to other method’), OR(modelRelatedTo(e1, ’Modifies’, e2),

modelRelatedTo(e1, ’Uses’, e2)), NOT(valueEquals(e5::changetype::name, ’Move variable to other method’),
modelEquals(e5::impactsources, e2), modelEquals(e5::impactsources, e3)))

Action reportImpact(e1, e3, ’Move variable to other method’, e2, e3)
IR Src 002 Move attributes to other classes if code-statements using them were moved to methods of other classes
Elements ExpressionStatement|IfStatement|ForStatement|WhileStatement|DoStatement|VariableDeclarationStatement e1,

FieldDeclaration e2, MethodDeclaration e3, ClassDeclaration e4, CompositeChangeType e5, ImpactReport e6
Conditions AND(valueEquals(e5::name, ’Move statement to other method’), modelDirectParentOf(e4, e3),

NOT(modelDirectParentOf(e4, e2)), NOT(valueEquals(e6::changetype, ’Move attribute to other class’), modelE-
quals(e6::impactsources, e2), modelEquals(e6::impactsources, e4)))

Action reportImpact(e1, e3, ’Move variable to other method’, e2, e4)
IR Src 003 Delete variables if the statements declaring them were deleted
Elements VariableDeclarationStatement e1, VariableDeclarationStatement e2, AtomicChangeType e3
Conditions AND(valueEquals(e3::name, ’Delete statement’), modelRelatedTo(e1, ’Defines’, e2))
Action reportImpact(e1, ’Delete variable’, e2)

198

C. Evaluation Material

C.1. Case Study Data

Due to the size of all the case study data it is not attached to this thesis in a printed form. Instead,
the source code of the EMFTrace application can be obtained from the project’s website. The
original version of EMFTrace before the application of the change scenarios is located here:
https://sourceforge.net/p/emftrace/code/HEAD/tree/tags/EMFTrace_0.3.2/

The revised version after applying the changes is located here:
https://sourceforge.net/p/emftrace/code/HEAD/tree/tags/EMFTrace_0.4.0/

C.2. Scenario 1: Refactoring of the Impact Analyzer
Components

S1.C001: add(“AbstractImpactAnalyzer”, “impactanalyzer”)

S1.C002: update(“AbstractImpactAnalyzer::implementedinterface”, “IImpactAnalyzer”)

S1.C003: update(“AbstractImpactAnalyzer::superclass”, “TraceComponent”)

S1.C004: update(“TypeBasedImpactAnalyzer::superclass”, “AbstractImpactAnalyzer”)

S1.C005: update(“DistanceBasedImpactAnalyzer::superclass”, “AbstractImpactAnalyzer”)

S1.C006: update(“TypeBasedImpactAnalyzer::implementedinterface”, “null”)

S1.C007: update(“DistanceBasedImpactAnalyzer::implementedinterface”, “null”)

S1.C008: move(“TypedBasedImpactAnalyzer::reportManager”, “AbstractImpactAnalyzer”)

S1.C009: delete(“DistanceBasedImpactAnalyzer::reportManager”)

S1.C010: move(“TypedBasedImpactAnalyzer::disconnectReportManager”, “AbstractImpactAnalyzer”)

S1.C011: delete(“DistanceBasedImpactAnalyzer::disconnectReportManager”)

S1.C012: move(“TypedBasedImpactAnalyzer::registerReportManager”, “AbstractImpactAnalyzer”)

S1.C013: delete(“DistanceBasedImpactAnalyzer::registerReportManager”)

S1.C014: add(“AbstractImpactAnalyzerTest”, “impactanalyzer”)

S1.C015: update(“AbstractImpactAnalyzerTest::superclass”, “EMFTraceBaseTest”)

S1.C016: add(“testRegisterReportManager”, “AbstractImpactAnalyzerTest”)

S1.C017: add(“testDisconnectReportManager”, “AbstractImpactAnalyzerTest”)

C.3. Scenario 2: Extraction of a Cache Component

S2.C001: add(“ModelElementCache”, “accesslayer”)

S2.C002: move(“AccessLayer::modelCacheHeader”, “ModelElementCache”)

199

https://sourceforge.net/p/emftrace/code/HEAD/tree/tags/EMFTrace_0.3.2/
https://sourceforge.net/p/emftrace/code/HEAD/tree/tags/EMFTrace_0.4.0/

C. Evaluation Material

S2.C003: move(“AccessLayer::modelCacheTable”, “ModelElementCache”)

S2.C004: move(“AccessLayer::projects”, “ModelElementCache”)

S2.C005: delete(“AccessLayer::dirtyFlags”)

S2.C006: add(“insert”, “ModelElementCache”)

S2.C007: add(“get”, “ModelElementCache”)

S2.C008: add(“remove”, “ModelElementCache”)

S2.C009: add(“clear”, “ModelElementCache”)

S2.C010: add(“clearEntireCache”, “ModelElementCache”)

S2.C011: add(“containsProject”, “ModelElementCache”)

S2.C012: add(“addProject”, “ModelElementCache”)

S2.C013: add(“getProjects”, “ModelElementCache”)

S2.C014: add(“modelCache”, “AccessLayer”)

Changes applied on AccessLayer::invalidateCache():
S2.C015: move(“if(projectIdx <modelCacheTable.size()) modelCacheTable.get(projectIdx).clear();”, “ModelElementCache::clear”)

S2.C016: move(“if(projectIdx <modelCacheHeader.size()) modelCacheHeader.get(projectIdx).clear();”, “ModelElementCache::clear”)

S2.C017: add(“ModelElementCacheTest”, “accesslayer”)

S2.C018: update(“ModelElementCacheTest::superclass”, “EMFTraceBaseTest”)

S2.C019: add(“testInsert”, “ModelElementCacheTest”)

S2.C020: add(“testGet”, “ModelElementCacheTest”)

S2.C021: add(“testRemove”, “ModelElementCacheTest”)

S2.C022: add(“testClear”, “ModelElementCacheTest”)

S2.C023: add(“testClearEntireCache”, “ModelElementCacheTest”)

S2.C024: add(“testAddProject”, “ModelElementCacheTest”)

S2.C025: add(“testGetProjects”, “ModelElementCacheTest”)

S2.C026: add(“testContainsProject”, “ModelElementCacheTest”)

Changes applied on AccessLayer::init():
S2.C027: move(“projects = new ArrayList<Project>();”, “ModelElementCache()”)

S2.C028: delete(“dirtyFlags = new ArrayList<Boolean>();”)

S2.C029: move(“modelCacheTable = new ArrayList<ArrayList<ArrayList<EObject>>>();”, “ModelElementCache()”)

S2.C030: move(“modelCacheHeader = new ArrayList<ArrayList<String>>();”, “ModelElementCache()”)

S2.C031: delete(“projects.clear();”)

S2.C032: delete(“dirtyFlags.clear();”)

S2.C033: delete(“projectSpaces.clear();”)

S2.C034: delete(“modelCacheTable.clear();”)

S2.C035: delete(“modelCacheHeader.clear();”)

Changes applied on AccessLayer::getElements():
S2.C036: replace(“if(!projects.contains(project))”, “if(!cache.containsProject(project))”)

S2.C037: replace(“projects.add(project);”, “cache.addProject(project);”)

S2.C038: add(“cache.insert(project, element);”)

S2.C039: delete(“dirtyFlags.add(true);”)

S2.C040: delete(“modelCacheTable.add(new ArrayList<ArrayList<EObject>>());”)

S2.C041: delete(“modelCacheHeader.add(new ArrayList<String>());”)

S2.C042: delete(“int idx = projects.indexOf(project);”)

S2.C043: delete(“modelCacheTable.get(idx).add(new ArrayList<EObject>());”)

S2.C044: delete(“modelCacheTable.get(idx).get(0).add(element);”)

200

C. Evaluation Material

S2.C045: delete(“modelCacheHeader.get(idx).add(element.eClass().getName());”)

S2.C046: delete(“int projectIdx = projects.indexOf(project);”)

S2.C047: delete(“int modelIdx = modelCacheHeader.get(projectIdx).indexOf(classname);”)

S2.C048: delete(“if(modelIdx != -1)”)

S2.C049: delete(“return modelCacheTable.get(projectIdx).get(modelIdx);”)

S2.C050: delete(“modelCacheHeader.get(projectIdx).add(classname);”)

S2.C051: delete(“modelIdx = modelCacheHeader.get(projectIdx).indexOf(classname);”)

S2.C052: delete(“modelCacheTable.get(projectIdx).add(new ArrayList<EObject>());”)

S2.C053: replace(“modelCacheTable.get(projectIdx).get(modelIdx).addAll(result);”, “cache.insert(project, list.get(i));”)

Changes applied on AccessLayer::notifyProject():
S2.C054: replace(“if(!projects.contains(project))”, “if(!cache.containsProject(project))”)

S2.C055: replace(“projects.add(project);”, “cache.addProject(project);”)

S2.C056: delete(“dirtyFlags.add(true)”)

S2.C057: delete(“modelCacheTable.add(new ArrayList<ArrayList<EObject>>());”)

S2.C058: delete(“modelCacheHeader.add(new ArrayList<String>());”)

S2.C059: delete(“int idx = projects.indexOf(project);”)

S2.C060: delete(“modelCacheTable.get(idx).add(new ArrayList<EObject>());”)

S2.C061: delete(“modelCacheTable.get(idx).get(0).add(element);”)

S2.C062: delete(“modelCacheHeader.get(idx).add(element.eClass().getName());”)

S2.C063: delete(“int projectIdx = projects.indexOf(project);”)

S2.C064: delete(“dirtyFlags.set(projectIdx, true);”)

S2.C065: delete(“int modelIdx = modelCacheHeader.get(projectIdx).indexOf(element.eClass().getName());”)

S2.C066: delete(“if(modelIdx != -1)”)

S2.C067: replace(“if(delete) modelCacheTable.get(projectIdx).get(modelIdx).remove(element);”,

“if(delete) cache.remove(project, element);”)

S2.C068: replace(“else modelCacheTable.get(projectIdx).get(modelIdx).add(element);”, “else cache.insert(project, element);”)

S2.C069: delete(“modelCacheHeader.get(projectIdx).add(element.eClass().getName());”)

S2.C070: delete(“modelIdx = modelCacheHeader.get(projectIdx).indexOf(element.eClass().getName());”)

S2.C071: delete(“modelCacheTable.get(projectIdx).add(new ArrayList<EObject>());”)

S2.C072: delete(“modelCacheTable.get(projectIdx).get(modelIdx).add(element);”)

C.4. Scenario 3: Replacement of the Logging Features

S3.C001: add(“java.util.logging.Level”, “TraceComponent”)

S3.C002: add(“java.util.logging.Logger”, “TraceComponent”)

S3.C003: add(“logger”, “TraceComponent”)

S3.C004: replace(“System.out.println(logEntry);”, “logger.log(Level.INFO, logEntry.toString());”)

S3.C005: replace(“System.out.println(logEntry);”, “logger.log(Level.INFO, logEntry.toString());”)

S3.C006: replace(“System.out.println(logEntry);”, “logger.log(Level.INFO, logEntry.toString());”)

S3.C007: replace(“System.out.println(logEntry);”, “logger.log(Level.INFO, logEntry.toString());”)

201

C. Evaluation Material

C.5. Scenario 4: Migration to EMFStore/ECP 1.2.x

S4.C001: delete(“removeElement”, “IAccessLayer”)

S4.C002: delete(“getElement”, “IAccessLayer”)

S4.C003: delete(“registerProjectSpace”, “IAccessLayer”)

S4.C004: update(“IAccessLayer::addElement::project::type”, “ECPProject”)

S4.C005: update(“IAccessLayer::removeElement::project::type”, “ECPProject”)

S4.C006: update(“IAccessLayer::getElements::project::type”, “ECPProject”)

S4.C007: update(“IAccessLayer::getElements::project::type”, “ECPProject”)

S4.C008: update(“IAccessLayer::getAllElements::project::type”, “ECPProject”)

S4.C009: update(“IAccessLayer::invalidateCache::project::type”, “ECPProject”)

S4.C010: update(“IAccessLayer::notifyProject::project::type”, “ECPProject”)

S4.C011: update(“IAccessLayer::notifyProject::project::type”, “ECPProject”)

S4.C012: update(“IAccessLayer::commitProject::project::type”, “ECPProject”)

S4.C013: delete(“projectSpaces”, “AccessLayer”)

S4.C014: update(“AccessLayer::projects::type”, “ArrayList<ECPProject>”)

Changes applied on AccessLayer::addElement():
S4.C015: replace(“project.addModelElement(element);”, “project.getContents().add(element);”)

Changes applied on AccessLayer::commitProject():
S4.C016: replace(“project == null ‖ !projects.contains(project)) return;”, “if(project != null && project.hasDirtyContents())”)

S4.C017: delete(“int index = projects.indexOf(project);”)

S4.C018: replace(“projectSpaces.get(index).commit(null, null, null);”, “project.saveContents();”)

Changes applied on AccessLayer::commitProjects():
S4.C019: replace(“for(int i = 0; i <projectSpaces.size(); i++)”, “for(int i = 0; i <projects.size(); i++)”)

S4.C020: replace(“projectSpaces.get(i).commit(null, null, null);”, “projects.get(i).saveContents();”)

Changes applied on AccessLayer::getAllChildren():
S4.C021: replace(“TreeIterator<EObject >it = element.eAllContents();”, “result.addAll(element.eContents());”)

S4.C022: replace(“while(it.hasNext())”, “for(int i = 0; i <element.eContents().size(); i++)”)

S4.C023: replace(“while-body”, “result.addAll(getAllChildren(element.eContents().get(i)));”)

S4.C024: update(“IImpactAnalyzer::performImpactAnalysis::project::type”, “ECPProject”)

S4.C025: update(“TypeBasedImpactAnalyzer::addToClosedListAndPrepareNewSIS::project::type”, “ECPProject”)

S4.C026: update(“TypeBasedImpactAnalyzer::getChangeType::project::type”, “ECPProject”)

S4.C027: delete(“ILinkManager::deleteTrace”)

S4.C028: delete(“ILinkManager::validateTrace”)

S4.C029: delete(“ILinkManager::validateLink”)

S4.C030: update(“ILinkManager::checkIfLinkExists::project::type”, “ECPProject”)

S4.C031: update(“ILinkManager::createLink::project::type”, “ECPProject”)

S4.C032: update(“ILinkManager::deleteLink::project::type”, “ECPProject”)

S4.C033: update(“ILinkManager::createTrace::project::type”, “ECPProject”)

S4.C034: update(“ILinkManager::deleteTrace::project::type”, “ECPProject”)

S4.C035: update(“ILinkManager::validateLink::project::type”, “ECPProject”)

S4.C036: update(“ILinkManager::validateTrace::project::type”, “ECPProject”)

S4.C037: update(“ILinkManager::addToTrace::project::type”, “ECPProject”)

S4.C038: update(“ILinkManager::removeFromTrace::project::type”, “ECPProject”)

202

C. Evaluation Material

S4.C039: update(“ILinkManager::performTransitivityAnalysis::project::type”, “ECPProject”)

S4.C040: update(“IProjectCleaner::cleanUpProject::project::type”, “ECPProject”)

S4.C041: update(“IProjectCleaner::cleanUpRuleOrphans::project::type”, “ECPProject”)

S4.C042: update(“IProjectCleaner::cleanUpLinkTypeOrphans::project::type”, “ECPProject”)

S4.C043: update(“IProjectCleaner::cleanUpViolationTypeOrphans::project::type”, “ECPProject”)

S4.C044: update(“IProjectCleaner::cleanUpChangeTypeOrphans::project::type”, “ECPProject”)

S4.C045: update(“IProjectCleaner::updateLinkTypeCatalogs::project::type”, “ECPProject”)

S4.C046: update(“IProjectCleaner::updateViolationTypeCatalogs::project::type”, “ECPProject”)

S4.C047: update(“IProjectCleaner::updateRuleCatalogs::project::type”, “ECPProject”)

S4.C048: update(“IProjectCleaner::updateChangeTypeCatalogs::project::type”, “ECPProject”)

S4.C049: update(“IProjectCleaner::updateLinkContainer::project::type”, “ECPProject”)

S4.C050: update(“IProjectCleaner::updateReportContainer::project::type”, “ECPProject”)

S4.C051: update(“IReportManager::createImpactReport::project::type”, “ECPProject”)

S4.C052: update(“IReportManager::createConsistenceReport::project::type”, “ECPProject”)

S4.C053: update(“IReportManager::checkIfImpactReportAlreadyExists::project::type”, “ECPProject”)

S4.C054: update(“IReportManager::checkIfConsistenceReportAlreadyExists::project::type”, “ECPProject”)

S4.C055: update(“EMFTraceBaseTest::project::type”, “ECPProject”)

S4.C056: delete(“EMFTraceBaseTest::projectSpace”)

S4.C057: update(“IProcessingComponent::run::project::type”, “ECPProject”)

S4.C058: update(“IResultProcessor::processCreateLinkResult::project::type”, “ECPProject”)

S4.C059: update(“IResultProcessor::processReportViolationResult::project::type”, “ECPProject”)

S4.C060: update(“IResultProcessor::processReportImpactResult::project::type”, “ECPProject”)

S4.C061: update(“IRuleEngine::applyRule::project::type”, “ECPProject”)

S4.C062: update(“IRuleValidator::checkActionDefinition::project::type”, “ECPProject”)

S4.C063: update(“IRuleValidator::validateRule::project::type”, “ECPProject”)

S4.C064: update(“JoinProcessor::run::project::type”, “ECPProject”)

S4.C065: update(“IElementProcessor::retrieveElements::project::type”, “ECPProject”)

S4.C066: update(“IElementProcessor::retrieveElements::project::type”, “ECPProject”)

S4.C067: update(“IElementProcessor::run::project::type”, “ECPProject”)

S4.C068: update(“ConditionProcessor::project::type”, “ECPProject”)

S4.C069: update(“IElementProcessor::run::project::type”, “ECPProject”)

Changes applied on ElementProcessor::retrieveElements():
S4.C070: replace(“list = new ArrayList<EObject>(project.getAllModelElements())”,

“list = new ArrayList<EObject>(accessLayer.getAllElements(project))”)

C.6. Scenario 5: Miscellaneous Changes

Component-changes:
S5.C001: update(“QueryOptimizer::name”, “RuleOptimizer”)

S5.C002: delete(“QueryOptimizer”)

S5.C003: add(“FastOptimizer”, “QueryOptimizer”)

S5.C004: update(“QueryOptimizer::providedinterface”, “IFastOptimizer”)

S5.C005: update(“QueryOptimizer::requiredinterface”, “IFastOptimizer”)

S5.C006: delete(“IQueryOptimizer”)

S5.C007: split(“QueryOptimizer”, “BaseConditionOptimizer”, “LogicConditionOptimizer”)

203

C. Evaluation Material

S6.C008: merge(“QueryOptimizer”, “RuleValidator”)

S5.C009: move(“QueryOptimizer”, “RuleValidator)

Package-changes:
S5.C010: update(“AccessLayer::name”, “RepositoryLayer”)

S5.C011: add(“TestPackage”, “AccessLayer”)

S5.C012: delete(“AccessLayer”)

S5.C013: add(“AccessLayerChangeListener”, “AccessLayer”)

S5.C014: delete(“AccessLayerImpl”, “AccessLayer”)

S5.C015: split(“AccessLayer”, “AccessLayer”, “AccessLayerTest”)

S5.C016: merge(“LinkManager”, “ProjectCleaner”)

Class/Interface-changes:
S5.C017: update(“ITraceComponent::name”, “EMFTraceBaseComponent”)

S5.C018: add(“dumpComponentStats”, “ITraceComponent”)

S5.C019: delete(“disconnectAccessLayer”, “ITraceComponent”)

S5.C020: add(“msgBuffer”, “TraceComponent”)

S5.C021: delete(“accessLayer”, “TraceComponent”)

S5.C022: update(“ElementProcessor::ImplementedInterface”, “IProcessingComponent”)

S5.C023: update(“ElementProcessor::SuperClass”, “Object”)

S5.C024: split(“TraceComponent”, “BaseComponent”, “LogComponent”)

S5.C025: move(“TraceComponent”, “accessLayer”)

S5.C026: merge(“QueryOptimizer”, “RuleValidator”)

Method-changes:
S5.C027: update(“ITraceComponent::getName::type”, “ComponentID”)

S5.C028: update(“ITraceComponent::getName::final”, “true”)

S5.C029: update(“ITraceComponent::getName::static”, “true”)

S5.C030: add(“newParameter”, “ITraceComponent::getName”)

S5.C031: delete(“status”, “ITraceComponent::enableLogging”)

S5.C032: update(“ITraceComponent::getName::visibility”, “private”)

S5.C033: update(“ITraceComponent::getName::name”, “getComponentName”)

S5.C034: move(“ITraceComponent::getName”, “ILinkManager”)

Parameter-changes:
S5.C035: update(“IAccessLayer::getParent::element::type”, “Object”)

S5.C036: update(“IAccessLayer::getParent::element::final”, “true”)

S5.C037: update(“IAccessLayer::getParent::element::static”, “true”)

S5.C038: update(“IAccessLayer::getParent::element::name”, “modelElement”)

Attribute-changes:
S5.C039: update(“TraceComponent::componentName::type”, “ComponentIdentifier”)

S5.C040: update(“TraceComponent::componentName::final”, “true”)

S5.C041: update(“TraceComponent::componentName::static”, “true”)

S5.C042: update(“TraceComponent::componentName::visibility”, “private”)

S5.C043: update(“TraceComponent::componentName::name”, “componentID”)

S5.C044: move(“TraceComponent::componentName”, “LinkManager”)

UseCase-changes:
S5.C045: update(“LinkManager::name”, “DependencyManager”)

204

C. Evaluation Material

S5.C046: update(“Create trace::name”, “Create transitive dependency relations”)

S5.C047: delete(“LinkManager”)

S5.C048: delete(“Create trace”)

205

Eidesstattliche Versicherung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationsschrift selbst verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.
I hereby declare, on oath, that I have written the present dissertation by my own and have not
used other than the acknowledged resources and aids.

Hamburg, den Unterschrift
city and date signature

207

	Introduction
	Motivation
	Goals of the Thesis
	Challenges
	Contribution
	Thesis Outline

	Change Impact Analysis
	A Comprehensive Literature Review
	Research Questions and Review Process

	A Taxonomy for Change Impact Analysis
	Evaluation of Existing Taxonomies
	Towards a More Fine-grained Taxonomy
	Investigating the Applicability of our Taxonomy

	Change Impact Analysis Techniques
	Dependency Analysis
	Distance-based Graph Analysis
	Message Dependency Graph Analysis
	Call Graph Analysis
	Dynamic Execution Trace Analysis
	Program Slicing

	Mining of Software Repositories (MSR)
	Information Retrieval (IR)
	Probabilistic Approaches
	Rule-based Approaches
	Hybrid Approaches

	Multiperspective Approaches
	Open Research Issues
	Summary

	Thesis Foundations
	Views on Software
	Managing Heterogeneous Software Artifacts
	Multiperspective Modeling
	Multiperspective Consistency Management

	Dependency Relations
	Origin of Dependencies
	Types of Dependency Relations
	Traceability Links
	Traceability Detection Techniques
	Information Retrieval (IR)
	Mining of Software Repositories (MSR)
	Dependency Detection Rules
	Semantic Wikis and Ontologies
	Machine Learning (ML)

	Change Operations
	Modeling of Change Operations
	Classification of Change Operations

	Open Research Issues
	Summary

	Overview of the Approach
	Research Hypothesis
	Refined Goals
	Proposed Approach
	Handling of Problem Space and Solution Space
	Covered Views
	Assumptions

	Summary

	Comprehensive Artifact Integration
	Comparing Integration Techniques
	Mega-Models and Model Weaving
	Combining Modeling Frameworks and Model Repositories

	Integration Approach
	Transformation into EMF-models
	Integration into an EMF-based Model-Repository

	Critical Discussion and Limitations
	Summary

	Dependency Detection
	Defintion of Dependencies
	Modeling of Dependencies
	Classification of Dependencies
	Purposes of Dependencies
	A Taxonomy of Dependencies

	Rule-based Dependency Detection
	Properties for Dependency-Retrieval
	Detection Approach
	Identification of Potential Dependencies
	Meta-model Dependencies
	Object Oriented Dependencies
	Design Methodology Dependencies
	Multiperspective Dependencies

	Detection Rules
	Structure of the Rules
	Query Operators
	Definition of Dependency Detection Rules

	Evaluation
	Setup and Research Questions
	Results and Discussion

	Critical Discussion and Limitations
	Comparison to Existing Approaches
	Correctness of the Dependency Detection Rules
	Completeness of the Dependency Detection Rules
	Complexity of the Approach
	Addressing (Textual) Inconsistencies

	Summary

	Change Comprehension
	Modeling of Change Operations
	Atomic and Composite Operations
	Move-operation
	Replace-operation
	Split-operation
	Merge-operation
	Swap-operation

	A Meta-model for Change Operations
	Modeling of Refactoring Activities
	Scenario 1: Renaming a method
	Scenario 2: Extracting a sub-class from an existing class
	Scenario 3: Moving an attribute up to the base class

	Classification of Change Operations
	Classification of Refactoring Activities

	Critical Discussion and Limitations
	Summary

	Rule-based Impact Analysis
	Impact Propagation Concept
	Modeling the Change Impact
	Understanding the Change Impact
	Monitoring the Impact Propagation
	Impact Analysis Process
	Influence of the Challenges
	Varying Formalization
	Incomplete Artifacts and Missing Information
	Inconsistencies between Artifacts and Views

	Determining the Effects of Changes
	Analyzing the Directions of Dependency Relations
	Analyzing the Origins of Dependency Relations
	Analyzing the Interplay of Changes and Dependencies
	Analyzing the Interplay of Artifact Type and Change Type

	Impact Propagation Rules
	Structure of the Rules
	Definition of Impact Rules
	Example Scenario

	Critical Discussion and Limitations
	Impact Rules
	Ambiguous Impacts
	Correctness of the Impact Rules
	Completeness of the Impact Rules

	Influence of Dependency Relations
	Missing Dependencies
	Incorrect Dependencies
	Impacts on Dependencies

	Cost Trade-Off of the Approach
	Complexity of the Approach
	Classification of the Approach
	(Semi)-Automated Change Implementation

	Summary

	The EMFTrace Prototype
	Overview
	Typical Use Cases
	Automated Dependency Detection
	Program Comprehension
	Change Impact Analysis

	Architecture
	Status and Summary

	Evaluation
	Goals and Research Questions
	RQ1: Support for Heterogeneous Software Artifacts
	Measures
	Metrics
	Hypotheses

	RQ2: Performance Improvements
	Measures
	Metrics
	Hypotheses

	Study Design
	Case Study Subject
	Evaluation Process
	Change Scenarios
	Scenario 1: Refactoring of the Impact Analyzer Components
	Scenario 2: Extraction of a Cache Component
	Scenario 3: Replacement of the Logging Features
	Scenario 4: Migration to EMFStore/ECP 1.2.x
	Scenario 5: Miscellaneous Changes

	Construction of the Oracle

	Results
	Discussion
	RQ1: Support for Heterogeneous Software Artifacts
	RQ2: Performance Improvements

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability

	Summary

	Conclusions and Future Work
	Contributions
	Critical Review
	Future Work

	Bibliography
	List of Figures
	List of Tables
	Dependency Detection Rules
	Impact Propagation Rules
	Evaluation Material
	Case Study Data
	Scenario 1: Refactoring of the Impact Analyzer Components
	Scenario 2: Extraction of a Cache Component
	Scenario 3: Replacement of the Logging Features
	Scenario 4: Migration to EMFStore/ECP 1.2.x
	Scenario 5: Miscellaneous Changes

