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Introduction

Algebraic K-Theory encompasses a variety of mathematical disciplines, natural

settings, questions and tools, and thus also motivations. As an algebraic topol-

ogist I primarily use the motivation by chromatic homotopy theory. I refer the

interested reader to [Ro] for a general introduction to the red-shift conjecture,

while focussing on the aspects which centrally motivate my thesis here.

Since algebraic topology formed as an independent mathematical discipline, a

major aspect of it is the study of invariants associated to topological spaces. The

most prominent and easily defined of these invariants are the homotopy groups

associated to a topological space. The higher homotopy groups, i.e., for n ≥ 2,

give a countable family of abelian groups associated to a space. These however

suffer from the defect of being very hard to compute. Even more drastically, it

is usually a very hard question to establish, if a homotopy group of some fixed

degree is trivial or non-trivial for some given space, unless elementary arguments

force its triviality.

Much easier to compute, but harder to define are (singular) homology groups,

defined by a variety of constructions up to the 1950s, proved to coincide by an

axiomatic approach by Eilenberg and Steenrod in 1945. In the 1950s people

found that there are more constructions satisfying all except one of the axioms,

thus establishing topological K-theory and bordism as “extraordinary” homology

theories.

The Atiyah-Hirzebruch spectral sequence in principle makes it possible to com-

pute any homology theory on any space, given only its singular homology with

Z-coefficients as input. However, chromatic homotopy theory establishes that

singular homology is the least complex of all homology theories. In particular,

it gives a conceptual reason for the difficulties one encounters, when one tries

to actually fully calculate the Atiyah-Hirzebruch spectral sequence for specific

spaces. Cobordism is at the other extreme, having chromatic complexity ∞ in a

conceptually satisfying sense.

In particular one could hope for an iterative approach to understanding invari-
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ants on a topological space by starting with singular homology on this space, thus

at complexity 0, and then iterating from complexity n to n+ 1. Chromatic red-

shift as described for instance in [Ro] is the conjecture that one way to produce

such intermediary theories of increasing complexity is given by iterating algebraic

K-theory on the associated spectra.

Suslin has established in 1984 that for any separably closed field F its algebraic

K-theory completed at primes p (other than its characteristic) is equivalent to

topological complex K-theory. Thus the singular homology with coefficients in

F being a theory of complexity 0 is transformed into a theory of complexity 1.

By the results of Christian Ausoni, specifically the ones in [A-Kku] we know that

K(kup) is the spectrum associated to a cohomology theory of complexity 2. In

general chromatic red-shift predicts that this is part of a pattern, saying that

algebraic K-theory raises chromatic complexity by one.

This thesis is specifically concerned with the involutive structures present on

these spectra. Singular homology arises as the Eilenberg-MacLane spectrum of

a discrete rig category, while [R] shows that on algebraic K-theory objects we

always have an involution induced by transposing and inverting matrices. On

complex K-theory this involution specialises to the natural involution induced

by complex conjugation. One chromatic step higher this involution describes the

operation on 2 vector bundles [BDR], which conjugates each transitional vector

bundle. On K-theory of complex K-theory we can describe this as the involution

induced by transposition and inversion in both iterations of K-theory.

In Chapter 1 I recall the most prominent combinatorial models for connective

spectra given by ringlike categories, specifically bimonoidal and bipermutative

categories, while in addition recalling the results of [EM] delooping their classi-

fying spaces. I rewrite the construction of [EM] in such a way that I can easily

generalise it in Chapter 3 to bicategories.

In Chapter 2 I establish a multiplicative structure on a combinatorial model for

modules over a bipermutative category as already studied additively by Angélica

Osorno in [Os]. I tie in the multiplicative structure with her additive structure

in a manner that makes this module bicategory a ringlike object again.

In Chapter 3 – the technical core of this thesis – I set up a multiplicative

delooping analogous to [EM] for permutative bicategories, which generalises the

one of [Os], while allowing a multiplication to be induced by the tensor product

defined in chapter 2.

In Chapter 4 I offer a few partial results, essentially summaries of known results



in various papers, pertaining to the uniqueness of such structures. The delooping

of a module category of a permutative category is sufficiently unique to fix the

spectrum by minimal data as observed by May and Thomason in 1978 [MT].

However, I was unfortunately unable to prove multiplicative uniqueness of this

delooping, which would as a corollary imply that the multiplicative structure of

chapter 3 is the same as the one obtained by iterating the construction of [EM]

twice. I do outline two arguments by which one might approach this conjectural

uniqueness.

Chapters 5 and 6 are concerned with the motivating calculational example

K(ku). In particular, since the calculations of [A-Kku] are done by trace methods,

i.e., by computations along the natural map K → THH, I recall the definition of

topological Hochschild homology in chapter 5. Fixing conventions along the way,

specifically how an involution on a ring spectrum induces one on its topological

Hochschild homology, we find that the trace is compatible with the involutions

defined in chapters 2 and 5.

Compare this to the introduction of Dundas [D1], where he states that the

construction of the trace map in the context of [D1] is compatible with involutions

induced by the appropriate functors. Thus the result in chapter 5 establishes that

we have internalised the involution in chapter 2 on K-theory and in chapter 5 on

topological Hochschild homology in a compatible way.

Finally in Chapter 6 I retrace the calculations of [A-Kku] to the extent that I

can establish the effects of the involution on K(ku) on classes, which are not in

the kernel of the trace map.
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1 Permutative Categories and

Connective Spectra

This chapter is just a summary of known techniques to combinatorially model

(connective) spectra by permutative categories. In particular until 1.1.4 there

is nothing original in this chapter. The examples are borrowed from [MayE∞,

pp. 160-167] and [R, pp. 337+338]. However I deviate quite a bit from May’s

notation. Furthermore I want to warn the reader that I am close to an erroneous

sequence of lemmas in [MayE∞] (VI.2.3, VI.2.6, VI.4.4) (cf. [May2, p. 321]).

The claimed result in [MayE∞] can be stated informally as: Bipermutative

categories yield maximally homotopy commutative ring-spectra. The error is

combinatorial, in how the multiplication and addition ought to interact, governed

by the notion of an “operad pair”. But the claimed “operad pair” in [MayE∞]

is not an operad pair as defined there. The result still holds [May2] (and its

accompanying papers), [EM], but the techniques employed differ quite a bit from

the planned proof in [MayE∞].

1.1 Delooping Permutative Categories

Permutative categories seen through a modern eye are a categorified version of

abelian groups with just as much strictness as generality would allow - compare

the classical strictification result 1.1.2.

Definition 1.1.1. A permutative category (A,+, 0, c+) is a category A to-

gether with a functor +: A × A → A, a strict additive unit 0 ∈ A, and a twist

natural transformation (for T : A×A → A×A the exchange of factors):

c+ : (+ ◦ T )⇒ +,

satisfying the following conditions:
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1 Permutative Categories and Connective Spectra

1. + is strictly associative:

+ ◦ (+× id) = + ◦ (id×+),

2. The unit 0 is a strict unit for +:

0 + = + 0 = idA,

3. The twist is trivial at 0: For every object a ∈ A we have the identity

c+ = id : a = 0 + a→ a+ 0 = a,

which is natural in a.

4. The twist is its own inverse: For every two objects a, b ∈ A we have the

commutative diagram:

a+ b

c+ $$

+3 a+ b

b+ a.

c+

::

5. The twist is associative: For each triple of objects a, b, c ∈ A we have the

commutative diagrams:

a+ b+ c
c+ //

id+c+ ''

c+ a+ b

a+ c+ b,

c++id

OO a+ b+ c
c+ //

c++id ''

b+ c+ a

b+ a+ c.

id+c+

OO

I have no need in this thesis for the most general symmetric monoidal categories

given for instance by module categories. Nonetheless the following statement

shows that the structure of permutative categories is sufficiently general:

Theorem 1.1.2. For any symmetric monoidal category C there is a symmetri-

cally monoidally equivalent permutative category Str(C) with a natural equiva-

lence Str(C)→ C.

There are many ways to obtain this result. A brute force way is to consider

words in objects, have the empty word be the strict unit, and add in morphisms

accordingly [MayE∞, Prop VI.3.2,cf. pp.155-157]. This proof has as a corollary

that a small symmetric monoidal category of cardinality ℵ yields a permutative

12



1.1 Delooping Permutative Categories

category of size smaller than ℵω (for ω = |N|). In particular the theorem stays

true with “small” added in everywhere.

The high-tech way to show this result is given by the Yoneda Lemma in bicat-

egories [Le, 2.3]. One considers a monoidal category C as a one-point bicategory

ΣC, embeds it into the equivalent one-point 2-category given by the essential

image of the Yoneda embedding

Y : ΣC → Fun(ΣCop, Cat1)

and the symmetry just comes along. Then sizes are limited by the bicategorical

Yoneda Lemma.

Regarding enrichments we find that a topological, simplicial, etc. symmetric

monoidal category strictifies to a permutative category of the same kind.

1.1.1 Bimonoidal Categories

Since this thesis is about multiplicative structures, I want to introduce the types

of multiplication on permutative categories right away. Furthermore, I prove

a convenient lemma, so that I do not have to bore the reader with pages of

coherence diagrams. The following two concepts are directly copied from [EM] for

instance, although a look into [MayE∞] shows that at least the E∞-version (i.e.,

bipermutative categories) was known to be a fruitful concept for much longer.

Like the concept of permutative categories these concepts are strictified versions

of general ringlike objects in 1-categories. Laplaza has shown in 1972 [Lap] that

the analogous strictification result to 1.1.2 above holds for these structures. Thus

the following definitions represent no loss of generality.

Definition 1.1.3. A ring category (R,+, ·, 0, 1, c+) is given by a permuta-

tive structure (R,+, 0, c+) and a strictly associative and strictly unital monoidal

structure (R, ·, 1), which interact by two natural isomorphisms:

λ : ab+ ab′ → a(b+ b′), ρ : ab+ a′b→ (a+ a′)b,

such that the following properties hold:

1. 0 is a strict zero for multiplication ·:

0 · a = a · 0 = 0 ∀a ∈ R,

13



1 Permutative Categories and Connective Spectra

2. +-associativity of distributors:

λ ◦ (λ+ id) = λ ◦ (id +λ), ρ ◦ (ρ+ id) = (id +ρ) ◦ ρ,

3. additive symmetry of distributors:

(c+ · id) ◦ λ = λ ◦ c+, (id ·c+) ◦ ρ = ρ ◦ c+,

4. ·-associativity of distributors:

λ = (id ·λ) ◦ λ, ρ = (ρ · id) ◦ ρ,

5. middle ·-associativity of distributors:

(id ·ρ) ◦ λ = (λ · id) ◦ ρ,

6. mixed associativity of distributors:

λ ◦ (ρ+ ρ) = ρ ◦ (λ+ λ) ◦ (id +c+ + id).

It is nice to have a multiplicative structure on any given object, but it is

genuinely hard to produce ring categories, which are not also commutative up

to some degree or an infinity of degrees. In particular, I do not investigate plain

ring categories in this thesis. So I define the E∞-multiplicative version next, also

directly following [MayE∞, EM], but explicitly with no strictness assumptions

on either distributor. This type of category is the central object of study in the

first three chapters.

Definition 1.1.4. A bipermutative category (R,+, ·, 0, 1, c+, c·) is a ring cat-

egory, where the multiplicative category (R, ·, 1) is also permutative with twist c·,

and where the distributors are interrelated via the multiplicative twist as follows:

ab+ ab′
λ //

c·+c·
��

a(b+ b′)

c·
��

ba+ b′a
ρ // (b+ b′)a.

Remark 1.1.5. Do note that although I am following [EM] as well, I want the

distributivity transformations to be isomorphisms! This is essential in defining

the bicategory of matrices in Chapter 2.

I do not fix either distributor to be the identity intentionally: Since I want

to investigate multiplicative structures interacting with involutions, having both

distributors general isomorphisms not forced to be identities, makes it meaningful

to speak of the multiplicatively opposite bimonoidal/bipermutative category.
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1.1 Delooping Permutative Categories

1.1.2 Bipermutative Structures on Finite Sets

As an illustration that bipermutative categories are natural things to consider, I

give a lemma which applies in a variety of cases, where the category is a skeletal

version of some category with coproducts and products (or tensor products). I

have denoted the following lemma analogous to the second monoidal structure

being the product. However, I want to explicitly emphasise that I do not assume

π to be a product-functor or the unit ∗ ∈ C to be terminal.

Lemma 1.1.6. Let C be a small category with coproducts, which is furthermore

a permutative closed category with monoidal structure

π : C × C → C,

which is strictly associative and has unit ∗ ∈ C. Assume π has a right adjoint:

Hom(−,−) : Cop × C → C.

Assume furthermore a chosen functor representing coproducts:

t : C × C → C,

which is strictly associative, and a chosen representative ∅ for the initial object,

thus the unit for t.

Then this can be endowed with unique natural transformations ct, cπ, λ, ρ, such

that the resulting tuple (C,t, π, ∅, ∗, ct, cπ) is a bipermutative category.

Proof. The proof is just a repeated application of universal properties. Because

π(−, c) has a right adjoint, it commutes with coproducts, in particular we have

π(∅, c) = ∅, ∀c ∈ C. Consider the additive symmetry: For T : C ×C → C ×C the

symmetry of the product on categories both t and t ◦ T represent a coproduct-

functor on C, hence by the universal property of the coproduct, we get a unique

natural transformation

ct : t ◦T ⇒ t.

By uniqueness of the natural isomorphism c t d→ c t d, for every pair c, d ∈ C,
we also get that ct is a symmetry:

idt = c2
t : t = t ◦ T 2 ⇒ t.

The other natural isomorphisms are constructed much the same way.

15



1 Permutative Categories and Connective Spectra

For the interaction of the natural isomorphisms consider for instance the rela-

tion λ = cπ ◦ ρ ◦ (cπ t cπ). Both are natural isomorphisms between the functors:

t ◦ (π × π) ◦ (id× T × id) ◦ (∆× id)⇒ π ◦ (id× t),

hence again by uniqueness of those natural isomorphisms we have equality. Every

other diagram commutes by the same reasoning.

This lemma illustrates well, why ring categories which are just associative but

admit no multiplicative symmetries, are a bit harder to come by. The easy

(closed) monoidal constructions usually come from symmetric universal proper-

ties: product, tensor product, smash product, etc.. What follows are the pro-

totypical examples which provide the structural morphisms in my examples of

interest.

Example 1.1.7. In everything ringlike that follows, the category with objects

the non-negative integers {n = {1, . . . , n}| n ∈ N0} and with morphisms the

symmetric groups Σ∗(n,n) = Σn, i.e., Σ∗ =
∐

n Σn, features prominently. In

particular categories and bicategories of the form “free modules over R” have

their structural natural transformations given by permutations.

Define the following functors:

+, · : Σ∗ × Σ∗ → Σ∗

on objects:

n + m := {1, . . . , n+m},n ·m := {1, . . . , nm},

and more interestingly on morphisms:

(f + g)(i) :=

f(i), i ≤ n,

g(i− n) + n, i ≥ n+ 1,
for f ∈ Σn, g ∈ Σm,

and

(fg)((i− 1)m+ j) := (f(i)− 1)m+ g(j) (i = 1, . . . , n; j = 1, . . .m).

Note that this implicitly fixes a choice of bijections n × m → nm, in this case

given by (i, j) 7→ (i− 1)m+ j. Two easy calculations show that + and · defined

this way are strictly associative. To use Lemma 1.1.6 we need to exhibit + as

representing coproducts, so consider the embedding

Σ∗ → Fin.

16



1.1 Delooping Permutative Categories

That is, we embed the skeletal category of finite sets and bijections into the

skeletal category of finite sets and all maps. Together with the canonical injections

n→ n + m and m→ n + m, which are part of the category Fin, we have that +

represents coproducts. Hence Fin is a bipermutative category by Lemma 1.1.6.

The structural maps we get are all isomorphisms, so restricting to Σ∗ again makes

Σ∗ a bipermutative category. Furthermore we can restrict to its subcategory on

all objects with just epimorphisms and get the bipermutative category Epi. Also

we can restrict to the subcategory on all objects with just injections to get the

bipermutative category Inj.

The induced additive symmetry c+ : n+m→ m+ n is given by:

c+(i) :=

i+m, i ≤ n,

i− n, n+ 1 ≤ i,

and we have the multiplicative symmetry c· : nm→ mn given by:

c·((i− 1)m+ j) = (j − 1)n+ i.

Recall that the distributivity transformations of bipermutative categories de-

termine each other

ab+ ac λ //

c+c

��

a(b+ c)

c

��
ba+ ca

ρ // (b+ c)a.

May shows in full generality [MayE∞, p. 155, Proposition 3.5] that one can always

strictify one distributivity to be the identity. For finite sets this corresponds to

ordering a product of finite sets either lexicographically or anti-lexicographically.

This way we find for general bipermutative categories two one-sidedly strict cases:

λ = id⇒ ρb,c;a = ca,b+c ◦ (cb,a + cc,a),

ρ = id⇒ λa;b,c = cb+c,a ◦ (ca,b + ca,c).

The choice of bijection for products considered above forces λ = id and a non-

trivial right distributivity, so the first case. This makes Σ∗ into a bipermutative

category. The opposite choice with ρ = id is given for instance in [MayE∞, p.

161, Example 5.1].

17



1 Permutative Categories and Connective Spectra

Example 1.1.8. We can just repeat the argument above to find the pointed

analogues of the above categories, hence we get Inj+,Epi+,Fin+. For definiteness

let me reemphasise the bipermutative structure on these categories:

The coproduct (for Inj+) is the pointed sum, hence we can define a strictly

associative functor representing it by:

n+ + m+ := n+ ∨m+ = (n + m)+,

with the obvious extension to morphisms.

Fixing a choice of associative bijections ω̄n,m : n×m→ nm induces associative

bijections for the smash product by:

n+ ∧m+ = (n×m)+ → (nm)+ = nm+.

Hence the symmetries and distributors are given by adjunction of basepoints

to the relevant morphisms above. In other words, given the bijections ω, I fix the

pointed structures such that

(·)+ : Fin→ Fin+

becomes a strictly bipermutative functor with respect to disjoint union and

pointed sum, and cartesian product and smash product.

1.1.3 Bicategories - Notation for this thesis

In 1.1.4 I use functors between bicategories with non-trivial coherence 2-cells, so

I fix the notations and conventions for bicategories here.

Definition 1.1.9. A small bicategory with strict identities C is given by a set

of objects C0 = ObC, a set of 1-categories C1 = MorC, and the following maps:

• source and target

s, t : C1 → C0,

where we call objects a, b ∈ C1 with t(a) = s(b) composable,

• identity objects

id : C0 → C1,

with s ◦ id = t ◦ id = idC0 ,

18



1.1 Delooping Permutative Categories

• a composition functor

� : C1 ×C0 C1 → C1,

where the pullback is to be understood as composable pairs in the sense

described above,

• a natural associativity isomorphism

α : ( � ) ◦ ( � × idC1)⇒ ( � ) ◦ (idC1 × � ).

These satisfy:

• The identity 1-cells are strict units, i.e., we have strict equalities of functors

(C0 × C1 → C1 or C1 × C0 → C1 respectively):

( � ) ◦ (id ×idC1) = ( � ) ◦ (idC1 × id ) = prC1 ,

where prC1 denotes the respective projection onto the C1-factor.

• The transformation α is the identity, if any factor is id .

• The transformation α satisfies Mac Lane’s pentagon identity, i.e., we have

a unique associator on fourfold �-composites, hence by induction on com-

posites of arbitrary length.

Remark 1.1.10. Most of the definition is standard apart from the fact that for

this thesis I can get away with strict identities, so I took them as part of the

definition.

For clarity: I stick to the convention that the associator always transforms

expressions with left-biased bracketing (ab)c into expressions with right-biased

bracketing a(bc).

Further notation: I will refer to morphisms in (the disjoint union of) the cat-

egories C1 as 2-cells, and refer to them globally as C2. Furthermore I denote the

component of C1, which is (s, t)-over objects a, b ∈ C0 as C1(a, b) =: C(a, b), i.e.,

the full subcategories of C1 with objects:

C(a, b)0 = {f ∈ C1|s(f) = a and t(f) = b}.

Moreover I will always refer to the objects of the bicategory as objects, the objects

of the morphism categories as 1-cells, thus in particular I refrain from calling 1-

cells “objects” of their respective morphism categories.
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1 Permutative Categories and Connective Spectra

I only stick to the notation � here to stress the difference between the compo-

sition functor and composition in C1. In the example of interestM(R) the 1-cells

are given by matrices, and hence the composition functor � is matrix multiplica-

tion, which I denote by · or drop from notation altogether, while the composition

of 2-cells is just composition in a product 1-category, so I refer to that as ◦. Also

just for this section I denote identity 1-cells by ida to stress that they are usually

in fact natural basepoints for the categories C(a, a), but usually are not defined

as maps of the type x 7→ x. Again in M(R) these are the identity matrices, but

the way these matrices represent “linear maps of modules” is at the very least

not obvious. After this section I trust the context is sufficient to infer which type

of identities I refer to.

Example 1.1.11. A category enriched in categories, i.e., a 2-category, is a bicat-

egory with α = id. In particular, every 1-category is a bicategory with discrete

morphism categories and hence trivial associator as well.

Any monoidal category (C,⊗, 1) can be understood as a one-point bicategory

ΣC: set ΣC0 = {∗} and ΣC1 = ΣC(∗, ∗) = C. Composition is given by ⊗, the

associator hence by the associator for ⊗.

Conversely the endomorphism category of any object a ∈ A0 in a bicategory A
yields the monoidal category A(a, a), occasionally denoted by ΩaA. In particular

we have the trivial equality

Ω∗Σ(C,⊗) = (C,⊗),

and for each object a ∈ A0 the strict inclusion functor

ηa : ΣΩaA = ΣA(a, a)→ A

with ηa(∗) = a.

Given two bicategories there are adequate 1-cells between them, but the des-

ignations in the literature vary quite a bit - specifically compare the classical

“Introduction to Bicategories” of Bénabou [Ben] with the more recent overview

in [CCG]. On pages 9 and 10 of [CCG] the authors provide an excellent dictio-

nary of the common terms for morphisms. A more detailed exposition can be

found in Ross Street’s “Categorical Structures” [Str1], in particular section 9.

Furthermore its references are a nice guide to the literature up to 1993.

I fix my notation here, and only define the types of functors that appear in

this thesis.
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1.1 Delooping Permutative Categories

Definition 1.1.12. For two bicategories C,D a pseudofunctor F : C → D con-

sists of the following maps:

• A map on objects F0 : C0 → D0.

• For each pair of objects a, b ∈ C0 a functor

F1 : C(a, b)→ C(F0a, F0b),

that is pointed at identities, i.e., for every a ∈ C0:

F1(ida) = idF0a .

• For each triple of objects a, b, c ∈ C0 a natural isomorphism, which I refer

to as compositor 2-cell,

F2 : ( �D )(F1 × F1)⇒ F1 × ( �C ),

which is trivial at identities, i.e., F2 = idprD1
at:

prD1 = ( �D ) ◦ (F1×F1) ◦ (idC1 × id )⇒ F1 ◦ ( �C ) ◦ (idC1 × id ) = prD1 ,

and similarly for the other argument.

The compositor satisfies associativity, i.e., for every composable triple f, g, h of

1-cells in C1 the diagram

(F1f �D F1g) �D F1h

αD
��

F2�DidD1 // F1(f �C g) �D F1h
F2 // F1((f �C g) �C h)

F1(αC)

��
F1f �D (F1g �D F1h)

idD1
�DF2

// F1f �D (F1(g �C h))
F2

// F1(f �C (g �C h))

commutes.

A pseudofunctor is called strict, if furthermore F2 = id as morphisms in D1,

i.e., F1(fg) = F1fF1g and F1α = α and for every pair of composable 1-cells

f, g ∈ C1 we have

F2 = idF1(fg) : F1f �D F1g ⇒ F1(f �C g).
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1 Permutative Categories and Connective Spectra

Remark 1.1.13. Occassionally – cf. [CCG, pp. 9–10] – one refers to pseudofunc-

tors as strong normal functors, where strong refers to the fact that the involved

2-cell is an isomorphism and normality refers to strictly fixing identity 1-cells,

which I carry through this thesis as a permanently standing assumption.

For emphasis I occassionally refer to functors, which strictly respect identity

1-cells and composition of 1-cells, as strict normal functors.

Remark 1.1.14. I only study bicategories arising from “finitely generated free

module”-constructions, and thus by standard assumptions for K-theory only con-

sider isomorphism subcategories of permutative 1-categories. For a clarifying

mathematical reason to restrict to isomorphisms see in particular [GGN, Propo-

sition 8.14]. Since I can restrict to exclusively isomorphism 2-cells, I have no need

for less rigid functors between bicategories.

Pseudofunctors satisfy a preservation property on 1-cells, which (op)lax func-

tors of bicategories do not satisfy in general.

Proposition 1.1.15. A pseudofunctor F : C → D sends equivalence 1-cells of C
to equivalences in D. In particular, isomorphism 1-cells in C are sent to equiva-

lences in D.

Proof. Let f : a → b be an equivalence in C, i.e., there is a 1-cell g : b → a

and isomorphism 2-cells ε : gf ⇒ ida, η : idb ⇒ fg. Then Ff is an equivalence

inverted by Fg by the following diagrams:

@@

id

�� F2

F (gf) --
��F (ε)

Fg

AA
Ff

�� and

id

��

�� F
−1
2

++F (fg)
��F (η)

Ff
��

Fg

AA .

Hence we need the compositor two-cell and its inverse, and find that Ff is an

equivalence. In particular, if F is not a strict functor, F sends isomorphisms to

equivalences with F2 as a non-trivial isomorphism to the identity.

(Furthermore note that I have implicitly used the assumption that F is normal

in the diagrams by id = F id.)

Definition 1.1.16. Let F,G be two pseudofunctors of bicategories:

(F0, F1, F2), (G0, G1, G2) : C → D.
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1.1 Delooping Permutative Categories

Then a (strong) pseudonatural transformation σ : F ⇒ G consists of chosen

1-cells

σ0 : C0 → D1

with s(σ0(a)) = F0a and t(σ0(a)) = G0a, as well as coherence isomorphism 2-cells

chosen for every pair a, b ∈ C0 and every 1-cell f ∈ C(a, b):

F0a

�� σ1
f

F1f //

σ0a
��

F0b

σ0b
��

G0a G1f
// G0b,

which are appropriately natural and are compatible with the compositors, i.e. we

have for all objects a, b, c ∈ C0 and all 1-cells f, g ∈ C1:

F0a

σ0

��

F1(gf)

""�� F
−1
2

F1f //

~� σ1
f

F0b

σ0

��

F1g //

~� σ1
g

F0c

σ0

��
G0a ==

G1(gf)

�� G2

G1f // G0b G1g // G0c

= F0a

σ0

��

F1(gf) //

�� σ1
gf

F0c

σ0

��
G0a

G1(gf)
// G0c.

Furthermore for bicategories with strict units we want σ1
ida

= idσ0
a

for each object

a ∈ C0. If in addition the two-cells σ1 are identities we call σ a strict natural

transformation.

Remark 1.1.17. Since I restrict attention to bicategories with only isomorphism

two-cells or at least functors and transformations with isomorphism two-cells, I

do not need to introduce the concepts of lax and oplax natural transformations.

It is classical for 1-categories that a natural transformation η : F ⇒ G is the

same thing as a functor C × I → D for I = [0 < 1] the interval category. The

analogous statement for bicategories holds true as well, which I want to isolate

into a proposition for emphasis and reference.

Proposition 1.1.18. A pseudonatural transformation η of functors F,G : C → D
consists of the same data as a pseudofunctor η : C × I → D, while the coherence

of 2-cells is equivalent to the pseudonaturality of the transformation.
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1 Permutative Categories and Connective Spectra

Given sufficient experience with 1-categories one would expect that I introduced

all types of morphisms, but it should not be surprising that the extra-level of

morphisms in bicategories (i.e., two-cells) introduces a higher type of morphisms

between “natural transformations”, called modifications.

Definition 1.1.19. Given two pseudonatural transformations σ, τ between the

same two pseudofunctors F,G, a modification ξ : σ ⇒ τ consists of a choice of

isomorphism two-cells

ξ : C0 → D2,

making the following two diagrams of two-cells equal:

Ff //

σ0a

��

τ0a

��

ks
ξa

~� σ1

σ0b

��

Ff //

~�τ1

τ0a

��

σ0b

��

τ0b

��

ks
ξb

Gf
//

Gf
// .

Remark 1.1.20. Do note that on the level of 2-cells the diagrams above are only

commutative squares resembling naturality in the context of 1-categories.

With the relevant morphisms in place I can introduce equivalences of bicate-

gories.

Definition 1.1.21. A pseudofunctor of bicategories F : C → D is an equiva-

lence of bicategories, if there is a pseudofunctor G : D → C and there are two

pseudonatural equivalences η : FG⇒ idD and ζ : GF ⇒ idC.

The following proposition is particularly useful in chapter 3, nonetheless its

appropriate context is abstract nonsense about bicategories, so this section. I

repeat the proof in particular to convince the reader that it holds for bicategories

with enriched morphism categories.

Proposition 1.1.22. A pseudonatural transformation of pseudofunctors of small

bicategories is an equivalence if and only if all its 1-cells are equivalences.

Proof. It is clear that an inverse equivalence establishes each component 1-cell

as an equivalence in the target category. So we have to establish that having all

1-cells equivalences is sufficient.
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1.1 Delooping Permutative Categories

Let η : F ⇒ G be a pseudonatural transformation comprised of 1-cells η1 : C0 →
D1, and for each pair of objects a, b in C a natural transformation:

C(a, b)
η1
b ∗◦F1

++

η1
a
∗◦G1

33�� η
2
a,b D(Fa,Gb).

By assumption each 1-cell η1
a is an equivalence, so by the axiom of choice choose

for each a an inverse equivalence ζ1
a and isomorphism two-cells σ : ζ1η1 → id and

τ : id→ η1ζ1.

With these choices in place we can make ζ into a pseudonatural transformation

by choosing its two-cells as indicated by the following diagram:

ζGA = ζGA id τ // (ζGA) · (ηζ)

α

��

(ζη)(FAζ) σ // idFAζ = FAζ.

ζ((GAη)ζ)
η2
// ζ((ηFA)ζ)

α

OO

Since τ and σ are chosen objectwise, we get a natural transformation. Since

each arrow is an isomorphism 2-cell, the 1-cells ζ along with the two-cells indi-

cated above compromise a pseudonatural transformation. It is compatible with

the compositors of G and F because η is, and hence ζ is an inverse equivalence

to η. The relevant modifications are by construction given by τ and σ.

Remark 1.1.23. For this proposition bicategories are much nicer than the stricter

theory of 2-categories. Even if the pseudo-natural transformation strictly satisfies

naturality, its inverse equivalence might have non-trivial 2-cells.

Remark 1.1.24. Do note that despite the fact this proposition is the analogue to

the 1-category statement that a natural transformation is a natural isomorphism

if and only if each component is an isomorphism, its truth is (ZF-)axiomatically

equivalent to the statement that a functor is an equivalence of categories if and

only if it is essentially surjective and fully faithful. Hence it is stronger because

of the missing uniqueness for the inverse 1-cells.

The following proposition is an immediate generalisation from the context of

1-categories. I want to exhibit that the proof works in the context I define above.

Thus it reassures us that the definitions are consistently chosen.

Proposition 1.1.25. A pseudofunctor F = (F0, F1, F2) of (small) bicategories

is an equivalence of bicategories if and only if F0 is surjective up to equivalence

and each functor F1 is an equivalence of 1-categories.
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1 Permutative Categories and Connective Spectra

Proof. Given a pseudofunctor F : C → D that satisfies the conditions, we can

by the axiom of choice find a map G0 : ObD = D0 → C0 such that there is an

equivalence ηd : F (G0(d)) → d for each d ∈ D0. Fix that equivalence and an

inverse κd together with the isomorphisms ηdκ
d ∼= id and κdηd ∼= id for each

d ∈ D0, it is the system of 1-cells for the natural equivalence FG ' idD we need.

By assumption we have for each pair d1, d2 an equivalence of categories

F1 : C(G0d1, G0d2)→ D(FG0d1, FG0d2).

Fix an inverse equivalence for each such pair Gd1,d2 , then we make G into a functor

of bicategories by the following assignment on morphism categories:

D(d1, d2)
η∗d1 // D(FG0d1, d2)

κ
d2
∗ // D(FG0d1, FG0d2)G

d1,d2 // C(G0d1, G0d2).

Without loss of generality make G into a functor pointed at the identity 1-cells.

This is an inverse equivalence to F by construction; it is a pseudofunctor with

compositor 2-cell given by the isomorphisms ηκ ∼= id chosen above and with the

natural equivalence on one side given by η with inverse κ and on the other by Gη

and Gκ.

It is reassuring to know that bicategories can still be strictified to 2-categories.

(This is wrong for tricategories!)

Lemma 1.1.26. (cf. [Le]) Each bicategory is equivalent to a 2-category.

Remark 1.1.27. From here I drop the properly emphasised but clumsy notation,

and denote � in a bicategory by · or do not denote it at all, while composition

of 2-cells is denoted by ◦, as it is usually the composition in some product of

1-categories in my examples.

For functors I refer to (F0, F1) generically as F and I denote the compositor in

uppercase greek letters Φ, thus referring to a pseudofunctor (F,Φ) for instance.

I stick to the following conventions for elements in a general bicategory: objects

are denoted by lowercase latin letters a, b, c, . . . ∈ C0, which inM(R) are natural

numbers, but I do not want to restrict to that case unnecessarily. In M(R) the

1-cells are matrices, hence I denote 1-cells by uppercase latin letters A,B,C, . . . ∈
C1, and finally 2-cells by lowercase greek letters ϕ, ψ, . . . which are morphisms in

products of the coefficient category R for M(R).
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1.1 Delooping Permutative Categories

Remark 1.1.28. I refer to bicategories C as enriched in topological spaces,

simplicial sets, categories,. . . if the morphism categories C1 are enriched in these

monoidal categories.

Example 1.1.29. A category enriched in topologically or simplicially enriched

categories is a bicategory enriched in topological spaces or simplicial sets re-

spectively. A topological/simplicial monoidal category gives rise to a one-point

bicategory enriched in topological spaces/simplicial sets. Do note that the propo-

sitions before work in the enriched cases as well, i.e. for enriched bicategories, and

enriched pseudofunctors, since the axiom of choice was only involved objectwise.

The rest of this chapter – apart from the section 1.2 - can safely be skipped

by the reader familiar with the delooping in [EM]. For ease of reference I rewrite

their delooping in the following sections, so that the delooping in bicategories 3

can be read in close analogy with the case in 1-categories.

1.1.4 A Delooping of Permutative Categories

Permutative categories provide a classical useful tool to model connective spectra,

hence are valuable in stable homotopy theory. Even more than that Thomason

proved [Th1] that “Symmetric monoidal categories model all connective spec-

tra”. Thomason was also driven by the desire to provide a nice model for a

smash product of spectra: “[I]n June 1993 [. . . ] I used this alternate model of

stable homotopy to give the first known construction of a smash product which

is associative and commutative up to coherent natural isomorphism in the model

category.” Since [MMSS] showed “all” models for symmetric monoidal categories

of spectra yield (Quillen-)equivalent results, Thomason’s construction of a smash

product has lost attention.

I elaborate on the construction C+ in [Th2] in excessive detail, so I can refer

back to its details for the analogous construction in bicategories 3. Warning on

notation: The notational conventions for bicategories described in 1.1.27 do not

apply here, because they would clash with the natural interpretations.

The following results are each found in section 4 of [Th2]. In particular, I repeat

his results and definitions in order to fix the notations I mimic for bicategories in

chapter 3.

Definition 1.1.30. Let (C,+, 0, c+) be a permutative category and f : n+ → m+
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1 Permutative Categories and Connective Spectra

a map of pointed sets n+ = {0, 1, . . . , n}. Define the following functor:

f∗ : C×n →C×m

(c1, . . . , cn) 7→(
∑
i∈f−1j

ci)j=1,...,m,

where the empty sum is defined to be the zero object (and its identity). Note that

we have to use the induced ordering f−1j ⊂ (n,≤) and sum the ci accordingly.

Remark 1.1.31. Note in particular that this gives a left-action of the symmetric

groups on the respective powers: σ∗(c1, . . . , cn)j =
∑

i∈σ−1j ci = cσ−1j.

The fact that we have to choose an ordering on the fibres of f is precisely what

breaks the strictness of the functor (·)∗Fin+ → Cat, which on morphisms is the

assignment f 7→ f∗ according to the above definition. I isolate this fact into the

following lemma.

Lemma 1.1.32. Given pointed maps f : n+ → m+ and g : m+ → l+ there is a

natural isomorphism of functors ϕg,f : (gf)∗ ⇒ g∗f∗.

Proof. We can consider this componentwise, so without loss of generality let

g : m+ → 1+ = {0, 1} the unique map with g−10 = {0}. Then the summation

according to g∗f∗ looks as follows:

(g∗f∗)(c) =
m∑
i=1

(f∗c)i =
m∑
i=1

∑
j∈f−1i

cj,

whereas the summation of (gf)∗ is according to the linear order on n given by

(gf)∗(c) =
∑

i∈(gf)−11

ci =
n∑
i=1

ci.

Then there is a unique additive symmetry giving the isomorphism:

((gf)∗c)j =
∑

k∈(gf)−1j ck
c+g,f //

∑
i∈g−1j

∑
k∈f−1i ck =

∑
i∈g−1j(f∗c)i = g∗(f∗(c)),

which yields a natural isomorphism of functors:

(gf)∗ ⇒ g∗f∗.
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1.1 Delooping Permutative Categories

Remark 1.1.33. Take special note of the following composites, which reappear

in the delooping constructions and the distributivity axioms of bimonoidal cate-

gories. Define

f : 4+ → 2+ : f(1) = f(3) = 1, f(2) = f(4) = 2

and

g : 4+ → 2+ : g(1) = g(2) = 1, g(3) = g(4) = 2

. We have the unique map q : 2+ → 1+ with q−10 = {0} for n+ = {0, 1, . . . , n}
pointed at 0. We also have a unique map c : 4+ → 1+ with c−10 = {0}. Then we

have qf = qg = c, and hence for a permutative category a unique isomorphism:

q∗g∗ = c∗ = (qf)∗ ⇒ q∗f∗,

which is given by the symmetry:

1 + c+ + 1: a+ b+ c+ d→ a+ c+ b+ d.

In more detail: The compositor for q and g is the identity: ϕq,g = id, and for q

and f is the symmetry ϕq,f = 1 + c+ + 1.

More generally: Since the action of the symmetric groups on the respective

powers of C is strict, we get ϕσ1,σ2 = id, for each n ∈ N and σ1, σ2 ∈ Σn. Consider

the composite of a permutation σ ∈ Σn with the unique map q : n+ → 1+,

with q−10 = {0}. Then we get: q∗(c1, . . . , cn) =
∑n

i=1 ci, and q∗σ∗(c1, . . . , cn) =∑n
i=1 cσ−1i, hence ϕq,σ = c+

σ , for c+
σ the unique natural additive symmetry in C

between these sums.

We can define a “classifying” pseudofunctor into the 2-category Cat for a per-

mutative category.

Proposition 1.1.34. Given a permutative category (C,+, 0, c+), the assignment

BC : Fin+ → Cat

n+ 7→ C×n,
f : n+ → m+ 7→ f∗ : C×n → C×m

defines a pseudofunctor of 2-categories, where we consider Fin+ as a 2-category

with discrete morphism categories.
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1 Permutative Categories and Connective Spectra

Proof. We have to prove the coherence:

(hgf)∗
ϕhg,f //

ϕh,gf

��

(hg)∗f∗

ϕh,gid

��
h∗(gf)∗

idϕg,f // h∗g∗f∗,

but we know by [Lap] that the additive symmetry defining the transformation

(hgf)∗ ⇒ h∗g∗f∗

is uniquely determined by the ordering of summands the composite h∗g∗f∗ in-

duces, so the diagram commutes. Furthermore we obviously have id∗ = id, so BC

is a normal functor.

Remark 1.1.35. Observe that giving a covariant pseudofunctor Epi → Cat,

which on objects is the assignment n 7→ Cn, already defines a symmetric monoidal

product on C, which is strictly associative and includes a symmetry but does not

have a unit or unitors. In order to take care of the zero object we need a strong

normal functor Fin → Cat. Choosing pointed sets as an index category induces

projections in the additive Grothendieck construction below associated to the

maps:

ρi : n+ → 1+

with

ρi(j) =

0 j 6= i

1 j = i,

which is easily identified as: (ρi)∗ = pri : C×n → C.
This association of a monoidal category to a functor is sufficiently natural for

the following lemma to hold:

Lemma 1.1.36. A (pointed) functor F : (C,+)→ (D,+) together with a natural

transformation λ : F ( ) + F ( ) ⇒ F ( + ) is strongly symmetrically monoidal

if and only if the induced map of pseudofunctors BC ⇒ BD is a pseudonatural

transformation. For C and D permutative F is a strictly additive functor if and

only if the induced map is a strict natural transformation BC ⇒ BD.

Additionally a natural transformation of symmetric monoidal functors is sym-

metrically monoidal if and only if it induces a modification of the respective in-

duced transformations.
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Proof. That a strong symmetric functor defines a pseudonatural transformation

is given in [Th2, Paragraph 4.1.4]. The converse follows from the observation that

we can reconstruct F by restriction to U -level 1: F = BF |{1+} : C ∼= BC(1+) →
BD(1+) ∼= D. The pseudonaturality 2-cell of BF for the unique map q : 2+ → 1+

with q−1(0) = 0, gives the diagram:

BC(2+)
B1
F //

q

��
�
B2
F

BD(2+)

q

��
BC(1+)

B1
F // BD(1+),

which identifies λ as the pseudonaturality 2-cell B2
F . It is coherently associative

and symmetric because of the appropriate pseudonaturality diagrams in higher

degrees.

Comparing the diagram above with the diagram in definition 1.1.19 yields the

properly analogous claim for monoidal natural transformations.

I do not give the full generality of Grothendieck constructions, but only define

the resulting category of the Grothendieck construction on BC with respect to

the permutative category (C,+, 0, c+). It destills the complexity of the functor

into an ordinary 1-category, so I do not refer to bicategories again until 2. For a

compatible general exposition of the Grothendieck construction as considered by

Grothendieck compare pages 47–49 in [Ben].

Definition 1.1.37. Define the category C+ as follows: Its objects are

ObC+ :=
∐
n

C×n,

its morphisms:

C+((c1, . . . , cn), (d1, . . . , dm)) =
∐

f∈Fin+(n+,m+)

Cm(f∗c, d).

The identities are given by the identities in Fin+ and Cm, the composition is given
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as follows: c = (c1, . . . , cn), d = (d1, . . . , dm), e = (e1, . . . , el):

C+(d, e)× C+(c, d)

∐
g,f Cl(g∗d, e)× Cm(f∗c, d)

∐
id×g∗

��∐
g,f Cl(g∗d, e)× Cl(g∗f∗c, g∗d)

compCl

��∐
Cl(g∗f∗c, e)

ϕ∗g,f
��∐

Cl((gf)∗c, e) ⊂ C+(c, e).

It is associative precisely because ϕ is, and if (C,+, 0, c+) carries an enrichment

such that + is an enriched functor, then C+ is enriched over the same category.

Call this the additive Grothendieck construction on a permutative cate-

gory (C,+).

Remark 1.1.38. The construction C+ is already given by Thomason in [Th2,

Definition 2.1.2]. Let me summarise the idea of the construction. Given a

monoidal product on a category: ⊗ : C × C → C, we can define for each map

f : n+ → m+ of finite sets a functor C×n → C×m (in the same direction). This

assembles into a pseudofunctor Fin+ → Cat. The Grothendieck construction

associated to it is C+. I find it useful to describe the delooping constructions of

[EM, Os, Se] in this one syntax.

Note that by the description of the composition given above we have an en-

riched additive Grothendieck construction for an enriched permutative category -

specifically if the monoidal functor +: C×C → C is enriched, then the enrichment

carries over to C+.

Example 1.1.39. Consider an ordinary category, that is one enriched in sets,

then we can write morphisms between tuples as pairs

(f, (a1, . . . , am)) : (c1, . . . , cn)→ (d1, . . . , dm),

where f : n+ → m+ and ai :
∑

j∈f−1i cj → di, where we understand the empty

sum as the zero object.
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1.1 Delooping Permutative Categories

Then composition looks as follows (with f : n→ m, g : m→ l):

(g, (b1, . . . , bl)) ◦ (f, (a1, . . . , am)) = (gf, (b1, . . . , bl) ◦ g∗(a1, . . . , am) ◦ ϕg,f ).

I consider the two extreme cases: The composites of symmetries are strict. So

we have trivial compositors here, and thus (with āi = (ai1, . . . , a
i
n) n-tuples of

morphisms in C):

(σ, ā3) ◦ (τ, ā2) ◦ (ρ, ā1) = (στρ, ā3 ◦ σ.ā2 ◦ (στ).ā1).

The other extreme case is given for the composite of any symmetry σ ∈ Σn with

a map q : n+ → 1+ with q−10 = {0}, there is a unique additive symmetry c+
σ in

C:

c+
σ : q∗(c1, . . . , cn) =

n∑
i=1

ci → q∗(σ.(c1, . . . , cn)) =
n∑
i=1

cσ−1i.

Thus we get:

(q, a) ◦ (σ, (b1, . . . , bn)) = (qσ, a ◦ q∗(b1, . . . , bn) ◦ ϕσ,q)
= (q, a ◦ (

∑
i bi) ◦ c+

σ )

and by the naturality of the additive twist we can identify this with:

= (q, a ◦ c+
σ ◦ (

∑
i bσ−1i))

= (q, a ◦ c+
σ ◦ q∗(σ.(b1, . . . , bn)))

= (q, a ◦ c+
σ ) ◦ (id, σ.(b1, . . . , bn)).

In particular this Grothendieck construction incorporates structural morphisms

for permutations between n-tuples that project down to the ordinary additive

symmetry in C.

Remark 1.1.40. Note that in particular the category C+ has structural mor-

phisms (f, id) : c → f∗c, for c = (c1, . . . , cn) and f : n+ → m+. We call these

morphisms the discrete component of morphisms c → d. This is a forgetful

functor U : C+ → Fin+, which is important for the delooping construction.

Example 1.1.41. Building on the previous example let us reconsider the maps

from 1.1.33. We set

f : 4+ → 2+ : f(1) = f(3) = 1, f(2) = f(4) = 2,

g : 4+ → 2+ : g(1) = g(2) = 1, g(3) = g(4) = 2,

q : 2+ → 1+ : q(2) = q(1) = 1,
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1 Permutative Categories and Connective Spectra

and write c : 4+ → 1+ for the unique map with c−10 = 0. Then the compositor

ϕq,f is given by 1 + c+ + 1, whereas the compositor ϕq,g is the identity. So we

find:
(q, a) ◦ (g, (b1, b2)) = (qg, a ◦ q∗(b1, b2))

= (c, a ◦ (b1 + b2))

(q, a) ◦ (f, (b1, b2)) = (qf, a ◦ (b1 + b2))

= (c, a ◦ (b1 + b2) ◦ (1 + c+ + 1)).

Hence the following diagram represents a commutative square in C+:

(c1, c2, c3, c4)

(g,id)

��

(f,id) // (c1 + c3, c2 + c4)

(q,id)

��
(c1 + c2, c3 + c4)

(q,id)// (c1 + c3 + c2 + c4) (c1 + c2 + c3 + c4),
ϕq,foo

because ϕ is part of the composition law.

The additive Grothendieck construction is naturally associated to the pseudo-

functors B•, thus leading to the following naturality:

Lemma 1.1.42. A strong symmetric monoidal functor (F, µ) : (C,+) → (D,+)

induces a canonical functor F+ on additive Grothendieck constructions as follows:

It assigns tuples componentwise F+(c1, . . . , cn) = (Fc1, . . . , F cn). For morphisms

consider the case with morphism sets. The map

(f, (ϕ1, . . . , ϕm)) : (c1, . . . , cn)→ (d1, . . . , dm)

is sent to:

(Fc1, . . . , F cn)

(f,id)

��
(
∑

j∈f−1i Fcj)i
(id,(µ)i)// (F (

∑
j∈f−1i cj))i

(id,(F (ϕ1),...,F (ϕm)))

��
(Fd1, . . . , Fdm).

This is a functor precisely because (F, µ) is symmetrically monoidal.

A monoidal natural transformation η : (F, µ)⇒ (G, ν) induces a natural trans-

formation η+ : F+ ⇒ G+.

Proof. I only comment on the natural transformation. Again consider the case

with morphism sets, then we set η+ as tuples with the appropriate instances of
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1.1 Delooping Permutative Categories

η and no discrete component. This is natural in morphisms (f, (µ)i) trivially,

because η is monoidal, and it is natural in morphisms (id, (F (ϕ1), . . . , F (ϕm)))

because it is a product of natural transformations η : F ⇒ G.

Do note that it is not meaningful for a natural transformation to be symmet-

rically monoidal; there is no additional compatibility for η to be satisfied.

Given any symmetric monoidal category C we can restrict to its subcategory

of isomorphisms Ciso, which is a symmetric monoidal subcategory of C, so this

gives an inclusion on their Grothendieck constructions.

Corollary 1.1.43. There is a natural inclusion I : (Ciso)+ → C+.

The following definition describes the index categories relevant for the deloop-

ing. Specifically, we consider the comma category of finite pointed sets under A+,

for A+ not necessarily an object of Fin+.

Definition 1.1.44. For an arbitrary finite pointed set A+ define the index cate-

gory A+ ↓ Fin+ as follows: Objects are pointed maps p : A+ → n+ and morphisms

f : p→ q are commutative triangles under A+: A+
p //

q
""

n+

f

��
m+.

Definition 1.1.45. Call the morphisms ρi with ρi(j) = ∗ for j 6= i and ρi(i) = 1.

They fit into the diagram:

A+
f //

χf−1i !!

n+

ρi

��
1+,

for each f and each non-empty preimage f−1i 6= ∅.

Remark 1.1.46. Note that the functors (ρi)∗ : Cn → C are strictly equal to the

projection onto the ith factor.

Remark 1.1.47. We have a target functor, i.e., T : A+ ↓ Fin+ → Fin+.

For f : A+ → B+ a pointed map we have a (covariant) functor f ∗ : B+ ↓
Fin+ → A+ ↓ Fin+, which is a functor over T , i.e., the diagram

B+ ↓ Fin+

T ''

f∗ // A+ ↓ Fin+

T
��

Fin+

commutes.
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1 Permutative Categories and Connective Spectra

Remark 1.1.48. The categories A+ ↓ Fin+ have a “full”, actually discrete,

subcategory on objects the characteristic maps χa : A+ → 1+ with χa(x) = + for

x 6= a and χa(a) = 1. This yields a functor jA : Aδ → A+ ↓ Fin+, which includes

the unpointed set A as a discrete subcategory Aδ into A+ ↓ Fin+, by identifying

each element a with its characteristic map χa.

It is not strictly necessary to define the delooping construction for n = 1

(1.1.5), but the essential mathematics happen here. The cases for n > 1 are then

reductions to this case.

Definition 1.1.49. Given a permutative category (C,+) and a finite pointed set

A+ define its first delooping category C(A+, 1) as the category of functors

lifting T : A+ ↓ Fin+ → Fin+ through U : (Ciso)+ → Fin+, i.e., the dashed arrows

in the diagram:

(Ciso)+

U
��

A+ ↓ Fin+

88

T
// Fin+,

where T is the target functor given in 1.1.47, and U is the functor sending each

morphism to its discrete component as in 1.1.40. Its morphisms are the natural

transformations of the functors pushed forward with I : (Ciso)+ → C+, i.e., natural

transformations but with arbitrary components, not just isomorphisms.

Remark 1.1.50. The delooping of a permutative category given in [EM] can be

understood as a categorified version of the usual classifying space construction for

abelian groups (cf. [May1, pp.87+88 and Theorem 23.2]). For the functoriality

of the delooping construction in finite pointed sets and arbitrary maps it is more

convenient to consider all maps of finite pointed sets as structural morphisms.

But one should think of the structural Epi+-morphisms as fundamental, whereas

non-surjective morphisms just keep track of zeroes.

Remark 1.1.51. By contravariant functoriality of the indexing categories over

T we get that C( , 1) defines a covariant functor Fin+ → Cat. Furthermore

restriction along jA : Aδ → A+ ↓ Fin+ is a functor R : C(A+, 1)→ C×A.

Proposition 1.1.52. Every functor F : A+ ↓ Fin+ → C+ lifting T through U

is isomorphic to a unique strict representative. i.e., a functor, which assigns to

commutative triangles of A+ ↓ Fin+ only morphisms with discrete components

and additive symmetries and appropriate identities in the second component. In
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particular any two functors restricting to the same A-tuple along R are naturally

isomorphic.

Proof. To build the strict representative F st proceed as follows: Choose a bi-

jection σA : A+ → |A|+ and set F st(σA) = (F (χa : A+ → 1+))a∈A. Any other

object of A+ ↓ Fin+ has a unique morphism from σA. So for p ∈ A+ ↓ Fin+ set

F st(p) = (pσ−1
A )∗(F

st(σA)) ∈ C×|T (p)| ⊂ C+. I drop the σ−1
A from the notation

immediately, since it is only there to make coherent choices for all maps of finite

sets at once. For a commutative triangle under A+:

A+
p //

qp
""

n+

q

��
m+

we need a morphism F st(p) = p∗(F
st(σA)) → q∗p∗(F

st(σA)) → (qp)∗(F
st(σA)) =

F st(qp), which we can choose to be (q, ϕq,p); in particular it only has the claimed

components. Furthermore it obviously projects down to q in Fin+ by the forgetful

functor U : C+ → Fin+, so it is a lift of T through U . Since the second component

is always a symmetry we also trivially have a functor F st : A+ ↓ Fin+ → (Ciso)+,

hence an object of C(A+, 1).

For the isomorphism first consider the following diagram:

A+
σA //

χa
""

|A|+.
ρa

��
1+

By definition F sends ρa to a morphism (U -)over ρa, hence of the form (ρa, fa)

with fa : (ρa)∗FσA = F (σA)a → F (χa) an isomorphism in C. These assemble to

an isomorphism FσA → (Fχa)a∈A in C×A.

We can uniquely write each Fq : Fp→ F (qp) as

Fp
(q,id) // q∗Fp

(id,FC(q)) // F (qp),

with F C a morphism in a product category Ck for q : A+ → k+.

In particular we get a canonical morphism:

Fp
(FC(pσ−1

A ))−1

// p∗FσA
(id,p∗((Fχa)a∈A)) // p∗F

stσA = F st(p),
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which assembles to a natural transformation F ⇒ F st whose components are

isomorphisms by the assumption on F . So we have a canonical isomorphism

for each functor to its strict representative, and the strict representative only

depends on the restriction of F along jA.

This immediately has the following corollary, which is useful for constructing

such lifting functors more easily.

Corollary 1.1.53. Each functor F lifting T through U is uniquely determined

up to natural isomorphism by its restriction to A+ ↓ Epi+. In particular we

can assume without loss of generality that for each p : A+ → k+ with k > |A| the

object Fp is given by padding with zeroes from a bijection FσA, and the morphisms

accordingly only have identities in zero-components.

Remark 1.1.54. Restricting to epimorphisms is extremely convenient. Given

any finite set A+ we know a priori that the index-categories A+ ↓ Epi+ are finite,

i.e., have finitely many objects.

Since for finite A+ there is always a non-unique maximal surjection, i.e. a

bijection A+ → |A|+, any other object of A+ ↓ Fin+ can be written relative to

a chosen bijection. In particular for n > |A| there is an injection |A|+ → n+,

which is unique, if we choose the injection strictly monotonous and with minimal

maximal element.

Let me reemphasise the uniqueness clause of the strict representative to the

canonical delooping statement:

Proposition 1.1.55. For (C,+) a permutative category the delooping category

C(A+, 1) is naturally equivalent to a product category by restriction along jA. I.e.,

we have an equivalence:

C(A+, 1) ' CA.

Proof. The construction of the strict representative given above can also be used

to promote each A-tuple to a lifting functor, which gives the inverse equivalence

to restriction along jA. The natural isomorphism on the left was given above, on

CA these functors strictly compose to the identity.

Remark 1.1.56. It is true, but inessential and uninstructive to prove, that

the delooping category C(A+, 1) is actually naturally isomorphic to the Segal

construction on a permutative category C as defined in [EM, Construction 4.1,

Theorem 4.2].
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The isomorphism C(A+, 1) → CSeg is given by sending a lifting functor F to

its restriction on characteristic functions for subsets χS : A+ → 1+. The additors

ρS,T are given by the maps associated to the factorisation in A+ ↓ Fin+:

A+

χ(S,T ) //

χS∪T
  

2+

��
1,

for S, T disjoint subsets of A.

The associativity of the additors given in the diagrams of [EM, Construction

4.1] follows from the fact that the map χ(S,T,U) : A+ → 3+ in particular has maps

in A+ ↓ Fin+ to χ(S∪T,U) and χ(S,T∪U), which both map to χS∪T∪U , giving a

commutative square in A+ ↓ Fin+, thus one in C+ for each lifting functor.

1.1.5 The Construction C(A+, n) for Permutative 1-Categories

I want to describe the delooping construction in [EM, Construction 4.4] in the

same way that I just described the Segal construction C(A+, 1). To that end

I consider the Segal construction with n-fold products of finite sets and maps

flattened into the additive Grothendieck construction C+, such that the case

before is n = 1.

As in 1.1.8 fix a smash product functor on Fin+. Then we can define a sym-

metric monoidal structure on C+ when given a bimonoidal structure on C.

Proposition 1.1.57. Consider the additive Grothendieck construction C+ for a

bimonoidal category (C,+, ·), then we have an induced monoidal structure on C+,

which makes the forgetful functor U : C+ → Fin+ strictly monoidal with respect

to the induced multiplication on C+ and the smash-product functor on Fin+. If

moreover the multiplication of (C,+, ·) makes C a bipermutative category, the

induced monoidal structure is symmetric, and the functor U is strictly symmetric

monoidal.

Proof. Given a smash product functor on Fin+ we have fixed pointed bijections

(n×m)+ = n+∧m+ → nm+, hence also ωn,m : n×m→ nm, which are associative.

For two objects c = (c1, . . . , cn), d = (d1, . . . , dm) in C+ set their product to be:

c� d = (cidj)ω(i,j),

where I have written points in the indexing set {1, . . . , nm} as images ω(i, j).
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The essential subtlety is the fact that this can be made into a functor. Consider

the following two objects in C+:

(f ∧ g)∗(c� c̄)ω(i,j) =
∑

ω(k,l)∈(f×g)−1(ω(i,j))

ckc̄l,

and analogously:

((f∗c) � (g∗c̄))ω(i,j) = (f∗c)i · (g∗c̄)j =

 ∑
k∈f−1i

ck

 ∑
l∈g−1j

c̄l

 .

By 1.1.3 and [Lap] we find that there is a unique composite of distributors

and additive symmetries comparing these objects. For instance by first reducing

summands on the left, then on the right, we get:

(f ∧ g)∗(c� c̄) =
∑
k,l

ckc̄l →
∑
k

(
ck

(∑
l

c̄l

))

→

 ∑
k∈f−1i

ck

 ∑
l∈g−1j

c̄l

 = f∗c� g∗c̄.

Hence there is a unique structural morphism Df,g determined by the summations

f and g induce. Thus for two maps in C+ in the case of hom-sets with structure:

(f, (a1, . . . , am1)) : c = (c1, . . . , cn1)→ (d1, . . . , dm1) = d,

(g, (b1, . . . , bm2)) : c̄ = (c̄1, . . . , c̄n2)→ (d̄1, . . . , d̄m2) = d̄,

we set their product to be the composite:

c� c̄ = (cic̄j)
(f∧g)∗// (

∑
ckc̄l)

Df,g // (
∑
ck) (

∑
c̄l)

aibj // (did̄j).

Analogously define the product for general enriched bimonoidal categories as

follows: Consider Df,g ◦ (f ∧ g)∗ on the (f, g)-component of the morphisms

on the product of the additive Grothendieck construction on C, i.e., (C+ ×
C+)((c, c̄), (d, d̄)) =

∐
(p,q) C|c̄|(p∗c, c̄) × C|d̄|(q∗d, d̄), and postcompose with the

monoidal product · of C, which in its ω(i, j)th component pairs the ith factor

in the first product with the jth factor in the second product.

This assignment evidently sends identities to identities, and it respects com-

posites, because · is part of a bimonoidal/bipermutative structure on C, hence
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we can always interchange distributors Df,g and tuples of genuine C-morphism

(aibj) by summing up and reducing the appropriate components. In summary we

obtain a functor:

� : C+ × C+ → C+.

Since we have chosen ∧ to be a strictly unital functor on Fin+ and · strictly

unital on C, the 1-tuple (1) ∈ C+ with entry the multiplicative unit of C is a strict

unit for �. Since ∧ is strictly associative and · is strictly associative, � is strictly

associative as well.

Finally for · not just a monoidal, but a braided or symmetric monoidal structure

with symmetry c·, consider the symmetry in Fin+ for ∧, and call it χ. Then a

multiplicative symmetry for � on C+ is given by:

c� d = (cidj)ω(i,j)
χ // (cidj)ω(j,i)

c· // (djci)ω(j,i) = d� c.

It squares to the identity if c· does, and satisfies the braiding coherence diagrams

for triple products that c· satisfies. Hence yields a braided/symmetric monoidal

structure, if (C, ·) is braided/symmetric monoidal and bimonoidal as (C,+, ·).
We have evidently constructed the symmetric monoidal structure just so that U

becomes a strictly (braided/symmetric) monoidal functor.

I do not intend to get back to this multiplicative structure until chapter 3, but

wanted to explicitly state it for 1-categories. It emphasises that the multiplicative

structure exhibited in chapter 3 can be built easily here as well.

To define the higher delooping categories C(A+, n) we need to consider target

functors for the product categories (A+ ↓ Fin+)n.

Proposition 1.1.58. There is a forgetful functor Tn : (A+ ↓ Fin+)n → Fin+

for each n ≥ 1, which is faithful away from the basepoint, and can moreover be

chosen to be associative, i.e., the diagram

(A+ ↓ Fin+)n × (A+ ↓ Fin+)m × (A+ ↓ Fin+)l
Tn+m×id //

id×Tm+l

��

Fin+ × (A+ ↓ Fin+)l

id×Tl
��

(A+ ↓ Fin+)n × Fin+

Tn×id

��

Fin+ × Fin+

∧
��

Fin+ × Fin+
∧ // Fin+,

commutes. Moreover the functors Tn can be chosen symmetric, i.e., the functors

(A+ ↓ Fin+)n × (A+ ↓ Fin+)m
Tn×Tm // Fin+ × Fin+

∧ // Fin+
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and

(A+ ↓ Fin+)n+m
tw×n,m // (A+ ↓ Fin+)m+nTm×Tn// Fin+ × Fin+

∧ // Fin+

are naturally isomorphic by exchanging priority of the smash components, i.e.,

χ∧ on Fin+.

Proof. Simply set Tn to be the following functor:

(A+ ↓ Fin+)n
(T )n // Finn+

∧ // Fin+,

where T is the target functor of A+ ↓ Fin+, and ∧ is the n-fold smash, which is

defined because ∧ is strictly associative. Then the Tn inherit associativity and

symmetry as claimed, and are just as faithful as T and ∧. Hence for maps with

f−1+ = {+} we get injectivity on hom-sets.

These functors should give the reader a reasonable hunch how I define C(A+, n)

such that C(A+, 1) considered above trivially becomes the case n = 1.

Definition 1.1.59. The higher delooping category of a permutative category

C(A+, n) for n ∈ N and A+ a finite pointed set, is given as the category of functors

lifting Tn through U , i.e., the dashed arrows in the diagram:

(Ciso)+

U

��
(A+ ↓ Fin+)n

77

Tn // Fin+.

Its morphisms are the natural transformations of functors pushed forward with

the inclusion (Ciso)+ → C, i.e., natural transformations with arbitrary compo-

nents, not just isomorphisms.

Example 1.1.60. Consider again (1.1.33) the prototypical surjections f, g : 4+ →
2+, with f(1) = f(3) = 1,f(2) = f(4) = 2, g(1) = g(2) = 1,g(3) = g(4) = 2,and

q : 2+ → 1+ again. Choosing the bijection ω for the smash product gives the
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following commutative cube:

(2× 2)+
id×q //

q×id

��

ω

$$

(2× 1)+

ω

$$
q×id

��

4+
f //

g

��

2+

q

��

(1× 2)+
id×q //

ω
$$

(1× 1)+

ω

$$
2+ q

// 1+.

Flattening this cube makes a pentagon with the additional arrow given by

1 + c+ + 1, which appears for instance in axiom (5) of [EM, Construction 4.4].

Proposition 1.1.61. Each permutation σ ∈ Σn induces a functor

σ : (A+ ↓ Fin+)×n → (A+ ↓ Fin+)×n.

Precomposing with this permutation of the components and post-composing a

functor with the symmetry χ of the smash-product on Fin+, induces a natural

Σn-action on C(A+, n) .

Proof. The statement concerning the symmetry warrants some explanation. By

1.1.58 we know that we can choose the target functors Tn as (A+ ↓ Fin+)n →
Finn+ → Fin+, hence the symmetry isomorphism from Tn to σ∗Tn, for σ ∈ Σn can

be pushed forward to Fin+ by the appropriate symmetry χ∧σ of the smash-product

on Fin+. Then by pushing forward the permuted functor in C+ with the same

symmetry we get a functor lifting Tn again.

Remark 1.1.62. To state the following proposition conveniently I introduce a

standard simplifying assumption. For C a permutative category we can without

loss of generality assume that 0 ∈ C is an isolated object, i.e., it has at most

non-trivial endomorphisms, but no maps in C from or to different objects. This

makes C \ {0} t {0} a decomposition of C by full subcategories.

For C with isolated zero 0 as above we can define the smash product of C with

a finite pointed set A+ = A t {∗} as:

A+ ∧ C := End(0)
∐
x∈A

(C \ {0}).
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The assumption is without loss of generality since we can attach to each cat-

egory C a disjoint basepoint C+ := C t {∗}. For C permutative we extend the

monoidal functor by letting ∗ act as a strict unit, thus in particular the object

0 ∈ C is not neutral in C+. On classifying spaces we get |NC+| = |NC| t {∗}, i.e.,

we only added a disjoint basepoint to the classifying space as well.

Finally note that for C permutative with an isolated additive unit 0, any finite

pointed set A+ and any natural number n, the higher delooping categories have

an isolated zero as well: The category C(A+, n) has a basepoint given by the

functor

O : (A+ ↓ Epi+)×n → C+

with O((f1, . . . , fn) : (A+, . . . , A+) → (k1
+, . . . , k

n
+)) = 0 the k1 · . . . · kn-tuple

consisting only of the additive unit, and each morphism is sent to its appropriate

discrete component with C×•-components only identities. If the additive unit in

C is isolated, then this zero functor O is an isolated basepoint of C(A+, n) as well,

and we can identify the smash as:

A+ ∧ C(A+, n) = End(O) t
∐
x∈A

(C(A+, n) \ {O})× {x}.

Take note that the disjoint union is over all non-basepoints in A+, hence all

elements of A. The fact that O is isolated ensures that each C(A+, n)\{O} forms

a (sub)category.

The extension functors are a bit obscured by the fact that I chose to reduce

the arguments in the delooping-construction of [EM] to n equal inputs A+ only,

but it coalesces nicely.

Proposition 1.1.63. We have a natural inclusion of categories:

e : A+ ∧ C(A+, n)→ C(A+, 1 + n).

Furthermore this inclusion is Σn-equivariant, where on C(A+, 1 + n) the action

is given by restriction along the inclusion Σn = Σ1 × Σn → Σ1+n, i.e., letting

n-permutations act on the indices {2, . . . , n+ 1}.

Proof. As above we see if the additive unit in C is isolated, then the zero functor

O is an isolated basepoint of C(A+, n), and we can identify the smash as:

A+ ∧ C(A+, n) = End(O) t
∐
x∈A

(C(A+, n) \ {O})× {x}.
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1.1 Delooping Permutative Categories

Hence I can describe the extension functor on each component seperately. We

set e(O) = O and send an endomorphism of O ∈ C(A+, n) to the endomorphism

of O ∈ C(A+, 1 +n), which we obtain by appropriately extending with identities.

More interestingly consider a summand C(A+, n)\{0}×{x}. Then we have to

define e(F, x)(p1, . . . , pn+1) for each (n+ 1)-tuple of maps pi : A+ → ki. We set:

e(F, x)(p1, . . . , pn+1) =

0 p1 6= (ρx : A+ → 1+),

F (p2, . . . , pn+1) p1 = ρx.

Accordingly, e(F, x) is the identity on the additive unit for all (n + 1)-tuples of

morphisms, which do not have id1+ = idρx as its first component. On the tuples,

where the last component is id1+ and target and source have last component ρx

we can use F on the first n maps.

This is obviously a functor, natural in C and A+. Equivariance follows by

our choice of singling out the first component. Changing the marked component

changes the inclusion Σn → Σ1+n but still yields equivariance as claimed.

Again we have the result making C(A+, n) a delooping of C.

Theorem 1.1.64. For (C,+) a permutative category we have a natural equiva-

lence of categories

C(A+, n) ' Set(A, C(A+, n− 1)),

with the map C(A+, n) → Set(A, C(A+, n − 1)) given by restriction of functors

along (idn−1, jA) : (A+ ↓ Fin+)n−1 × Aδ → (A+ ↓ Fin+)n. Inductively we get a

natural equivalence:

C(A+, n) ' CA×n .

Proof. The start of the induction is the case n = 1 displayed above. The same

argument with strict representatives can be made to prove the equivalence above

by making a functor in C(A+, n) only consist of discrete components and additive

symmetries one component at a time.

I give the construction of the Eilenberg-Mac Lane spectrum based on this de-

looping in chapter 3 in the maximal generality I need it. The case of permutative

1-categories then follows by considering them as permutative bicategories with

discrete morphism categories. The maximal generality in this thesis is motivated

by the principal example of interest K(ku). The next chapter is thus concerned

with the module bicategory of a bimonoidal category. For the spectrum ku I

want to fix the relevant models and maps next.
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1 Permutative Categories and Connective Spectra

1.2 Models for ku

Assuming that the delooping given by C(A+, n) yields an E∞ symmetric ring

spectrum HC, which I prove in chapter 3, we get models for connective K-theory

with an E∞-multiplication by considering nicely explicit bipermutative categories.

Example 1.2.1. Given a commutative ring k, consider its (skeletal) category of

finitely generated free modules Mk on objects:

ObMk = Ob Fin = {n|n ∈ N}.

Consider the unpointed sets n as ranks of finitely generated free modules over

k. To establish its bipermutative structure first consider the morphism sets in a

bigger category ML (compare 1.1.7):

ML
k (n,m) := Homk(k{1, . . . , n}, k{1, . . . ,m})

of all k-linear maps of free modules on the unpointed sets n,m.

Fixing the direct sum functor as the linear extension of disjoint union gives a

strictly associative coproduct-functor for ML:

k{1, . . . , n} ⊕ k{1, . . . ,m} := k{n + m} = k{1, . . . , n, n+ 1, . . . , n+m},

with the obvious extension to morphisms by linearly extending the description of

Fin on basis elements.

The product functor chosen on finite sets (specifically by fixing associative

bijections ω = ωn,m : n×m→ nm) extends to the tensor-product of free modules:

k{1, . . . , n} ⊗ k{1, . . . ,m} := k{1, . . . , nm},

where we define the tensor-product of linear maps represented as quadratic ma-

trices f ∈Mn(k), g ∈Mm(k) as follows:

(f ⊗ g)(eω(i,j)) :=
∑

ω(s,t)∈nm

fsigtjeω(s,t).

For the entries of the representing matrix for f ⊗ g with respect to the ordering

on nm fixed by ω : n×m→ nm we get:

(f ⊗ g)ω(i1,j1),ω(i2,j2) = fi1,i2 · gj1,j2 ,
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1.2 Models for ku

which is a strictly associative representation of the tensor-product. We know it

is left-adjoint to the Homk-functor, hence Lemma 1.1.6 applies, and we get a

bipermutative structure on the ML
k .

Analogous to finite sets we can restrict to injections, surjections and isomor-

phisms. The case of isomorphisms is the one of primary interest in this thesis, so

I define the module category Mk of a commutative ring as:

Mk(n,m) =

GLn(k) n = m

∅ n 6= m.

For k = R,C we have a topological version of the above example.

Example 1.2.2. The same constructions as in the example above describe con-

tinuous functors with respect to the topologies on GLnR and GLnC as subspaces

of MnR ∼= Rn2
and MnC ∼= Cn2

. Call the category with objects the natural

numbers and morphism spaces GLnk considered as a topologically enriched cate-

goryMc
k, where the upper index is a reminder for continuity. Call the analogous

discrete category with morphism sets GLnk and their discrete topology Mδ
k.

For real and complex coefficients we can restrict to the respective compact

subgroups:

On → GLn(R), and Un → GLn(C).

These inclusions define subcategories of the topological as well as the discrete

module categories. Denote the topological subcategories by Vck ⊂ Mc
k and anal-

ogously the discrete subcategories by Vδk ⊂ Mδ
k. Since the symmetries and dis-

tributors are unitary morphisms as well, the canonical inclusion functors are

bipermutative:

VR →MR,

VC →MC,

for the topological as well as the discrete versions.

A continuous inverse is given by the Gram-Schmidt process, which I denote

by r : Mk → Vk. This is compatible with direct sum by considering the sum

as orthogonal. It can be promoted to a homeomorphism as follows (cf. [MT,

pp.33-35]): We have a natural map

gn : Onk ×H+
n k → GLnk
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1 Permutative Categories and Connective Spectra

with gn(U,B) = UB for Onk the orthogonal group for k = R and the unitary

group for k = C, and H+
n k the space of symmetric/hermitian positive definite

matrices. For each n the map gn is a homeomorphism with inverse:

hn : GLnk → Onk ×H+
n k

given by:

hn(A) = (A
√

(A∗A)
−1
,
√

(A∗A)).

The map gn is compatible with direct sums. For tensor-products consider the

following diagram:

On ×H+
n ×Om ×H+

m

gn×gm//

��

GLn ×GLm

⊗

��

On ×Om ×H+
n ×H+

m

⊗×⊗
��

Onm ×H+
nm gnm

// GLnm,

which needs to commute for g to induce a strictly multiplicative functor Vk →
Mk. Fixing associative bijections ω write:(A⊗B)ij = Ai1j1 ·Bi2j2 .

Then we have:

(gn(U,B)⊗ gm(V,C))ij = gn(U,B)i1j1gm(V,C)i2j2

= (UB)i1j1(V C)i2j2 =
∑
k,l

Ui1kBkj1Vi2lClj2 ,

while the other side is given by:

gnm(U ⊗ V,B ⊗ C)ij = ((U ⊗ V )(B ⊗ C))ij

=
∑
p

(U ⊗ V )ip(B ⊗ C)pj =
∑
p

Ui1p1Vi2p2Bp1j1Cp2j2 .

The terms thus agree by commutativity of addition and multiplication in k, so we

get a bipermutative inclusion I : Vk →Mk as well as a bipermutative retraction

R : Mk → Vk given by g. Specifically we get topologically enriched functors

R : Mc
k → Vck, i.e., functors, which are continuous on the morphism spaces, and

the same assignments define functors on the discrete versions R : Mδ
k → Vδk .

Remark 1.2.3. The tensor-product structure on categories of the formMk has

a more natural interpretation: Choose an euclidean/hermitian scalar product
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1.2 Models for ku

in each dimension n for k = R,C or any non-degenerate bilinear form for an

arbitrary field k - say 〈·, ·〉. By basic linear algebra we know that any bilinear

form b yields a uniquely determined linear map f such that 〈f ·, ·〉 = b(·, ·). If

moreover the bilinear form b is non-degenerate as well, then f is an isomorphism.

Hence fixing (any) non-degenerate bilinear form 〈·, ·〉 we get an isomorphism:

Bil+(V ) ∼= GL(V )

of non-degenerate bilinear-forms on V and linear automorphisms of V , which is

a homeomorphism when meaningful.

In light of this consider the following tensor product of bilinear forms: For two

bilinear forms bV : V ⊗ V → k and bW : W ⊗W → k, define their tensor product

bV⊗W : (V ⊗W )⊗2 → k on generators:

bV⊗W (v1 ⊗ w1, v2 ⊗ w2) = bV (v1, v2) · bW (w1, w2),

and extend bilinearly. This is non-degenerate if both forms above are non-

degenerate. It is symmetric/hermitian if both forms are symmetric/hermitian.

On representing matrices we get the following:

bV⊗W (ei ⊗ ej, ek ⊗ el) = bV (ei, ek)b
W (ej, el) = bVikb

W
jl ,

hence precisely the coefficients given in 1.2.1 for the tensor-product of the linear

maps associated to the representing matrices.

Finally I summarise the canonical functors between the examples:

Example 1.2.4. For each commutative ring k we have a canonical inclusion

functor

k[·] : Fin→ML
k

given by sending each finite set to its associated free module, and each map to

its linear extension. This is a strictly additive as well as multiplicative functor,

moreover it strictly respects the symmetries and distributors. We can obviously

restrict to Inj, Epi, Σ and restrict the codomain to the appropriate linear maps,

i.e., monomorphisms, epimorphisms, or isomorphisms.

We also have the analogous canonical inclusion functor given by reduced free

modules:

k̃[·] : Fin+ →ML
k
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1 Permutative Categories and Connective Spectra

sending each finite set to the associated free module with the basepoint divided

out. It is again strictly symmetric monoidal with respect to pointed sum and

smash product, and respects the distributivity transformations as well.

Finally for k = R,C these functors even have image in the categories Vk, since

the described maps are obviously orthogonal/unitary.

Definition 1.2.5. Since we want to model connective complex K-theory we

consider k = C in the example above, and find that VcC also becomes a topological

bipermutative category in that case. The delooping of VcC is the prototypical

model for connective complex K-theory. In particular I denote by ku := HVcC
the delooping spectrum of the topological category of finitely generated complex

vector spaces with morphism spaces the unitary isomorphisms.

Preliminaries on Discrete Models for ku

For each odd prime p there are in addition “discrete models” for ku, which are a

suitable replacement when studying its HFp-homology.

Fix a prime p for which we want an HFp-approximation of ku, i.e., a spec-

trum E with a map E → ku, which induces an isomorphism on HFp-homology.

Following Quillen [Q1] we want to approximate ku by algebraic K-theory of the

algebraic closure F̄p of the finite field with p elements. In fact it is sufficient to

restrict to a subfield of F̄p which contains the appropriate roots of unity, which

we construct here.

For that we need to choose a prime that is a generator of (Z/p2)×. Observe

that necessarily the existence of just one generator implies that p is odd, because

for p = 2 we have (Z/2k)× ∼= {±1}×Z/2k−2Z, where for k ≥ 3 the second factor

is always generated by the powers of 5 [Gauß, Art. 91, p. 89 - Latin edn.]. For p

odd the group of units has a decomposition (Z/pk)× ∼= Z/(p− 1)× Z/pk−1, and

is thus a product of two cyclic groups of coprime order [Gauß, Art. 84, p. 82

- Latin edn.]. Given an integer g reducing to a multiplicative generator of the

units of Z/p we know by Fermat’s little theorem gp−1 = 1 mod p, so gp−1 = 1+ lp

for some l ∈ Z. Then we have in Z/p2:

(g + p)p−1 = gp−1 + (p− 1)gp−2p mod p2 6= gp−1 mod p2,

so at least one of the integers {g, g + p} satisfies

gp−1 6= 1 mod p2 or (g + p)p−1 6= 1 mod p2.
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1.2 Models for ku

An integer of {g, g+p} satisfying the above inequality (multiplicatively) generates

the units of Z/pk for each k ≥ 2, in particular it generates the units of the p-adic

integers Zp topologically.

We use Dirichlet’s Theorem on arithmetic progressions in the following form:

Theorem 1.2.6 (Dirichlet). For a natural number n ≥ 2 and a unit a ∈ (Z/n)×

consider the class of primes Pa = { p ∈ N | p prime and p = a mod n}. Then

each class Pa has “logarithmic density” 1
ϕ(n)

in the set of all primes, for ϕ(n) the

number of units in Z/n.

Remark 1.2.7. I do not need the concept of logarithmic density again, so I only

give a vague description: The intuition is that it is an adapted way to measure

subsets of countable sets (such as the set of all prime numbers), such that the

measure is 0 for finite subsets.

One proof of the theorem by complex analysis involves the Dirichlet L-series

associated to a homomorphism (Z/n)× → C×. For the trivial homomorphism

which sends everything to 1 ∈ C the L-series has a singularity in 1. This forces

the L-series of every non-trivial character to be bounded, but non-zero, in 1. This

gives the following comparison of divergence around s = 1:∑
p≡amodn

p−s =
1

ϕ(a)
log

1

s− 1
± C.

In words: The sum over all primes, which are in Pa, taken with the exponent

−s diverges like log 1
s−1

in 1 (up to a constant C ∈ R). In particular there are

infinitely many such primes.

We can use the theorem in particular to specialise to a generator a ∈ Z/p2,

and find a prime q with q = a mod p2, which generates the units of each Z/pk by

the considerations before.

Example 1.2.8. I want to exhibit valid choices for all primes below 100. I or-

ganised the table by smallest multiplicative generator q for Z/p2:

q p

2 3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83,

3 7, 17, 31, 43, 79, 89,

5 23, 47, 73, 97,

7 41, 71.

We want to approximate ku by algebraicK-theory applied to a suitable tower of

field extensions. Start with the prime field with q elements Fq. Since q generates
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1 Permutative Categories and Connective Spectra

the units of Z/p2 it generates Z/p× as well. So the cyclotomic polynomial of

degree p− 1

ϕp(X) =

p−1∑
i=0

X i

is irreducible over Fq. Thus we have the extension of fields

`0 := Fq → Fq[X]/ϕp ∼= Fqp−1 = `0(ζp) =: k0

for ζp some chosen primitive pth root of unity. Since q and p are trivially coprime

by the assumptions, each element in Fq has a pth root in `0. However, the units

of k0 have order qp−1 − 1. Because q is a unit in Z/p, we get

qp−1 − 1 = 0 mod p,

so taking the pth power is not injective, hence not surjective. So there is an

element a ∈ k0, which does not have a pth root. There is an obvious candidate:

ζp. Because of our assumption on q and p we have qp−1 − 1 = 0 mod p, but

qp−1− 1 6= 0 mod p2, because p− 1 is strictly smaller than the order of the units

of Z/p2, so the units of `0(ζp) decompose as:

`0(ζp)
× ∼= Z/p〈ζp〉 × Z/s,

for some s coprime to p. In particular we find that the kernel of (·)p is contained in

the Z/p-summand, while the image is contained in the Z/s-factor, hence ζp does

not have a pth root in k0 = `0(ζp). Since p is odd, we get that fm(X) = Xpm − ζp
is irreducible for each m ≥ 1 if and only if ζp has no pth root in k0, which we

just established. So inductively call αi = p
√
αi−1 with α0 = ζp. More explicitly

for each i ≥ 1 we choose a primitive pith root of ζp, and call it αi.

For exposition let me choose a presentation. We can write ki for i ≥ 1 as:

Fq[X, Yi]/

(
Y pi

i −X,
p−1∑
k=0

Xk

)
∼= Fq[Yi]/

(
p−1∑
k=0

Y pik = ϕp(Y
pi

i )

)
.

Then the field `i ⊂ ki is given as the fixed-set under the Galois-action of the

factor Z/p− 1, which stems from the cyclotomic extension.

In the fields ki we trivially have the inclusions ki → ki+1 with Yi 7→ Y p
i+1, i.e.,

identifying Yi+1 as a pth root of Yi. This yields the following diagram

k0
// k1

// . . . // ki // . . .

`0

OO

// `1
//

OO

. . . // `i //

OO

. . . ,
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where the horizontal arrows signify Z/p-Galois-extensions, while the vertical ar-

rows are Z/(p − 1)-Galois-extensions. Hence on colimits K = colimi ki and

L = colimi `i we get the Z/(p − 1)-extension: L → K, which by the presen-

tations given above is of the form

L→ K = L[X]/ϕp = L(ζp).

Remark 1.2.9. Let me emphasise that the prime p defining the degree of the

extension with Galois group Z/p−1 is structurally important, while q only serves

to ensure the existence of this extension and its particular choice is irrelevant to

the construction.

Example 1.2.10. Building on the previous example the extension of L by a

primitive pth root of unity ζp, as above L → L(ζp), induces a map of biper-

mutative categories VL → VL(ζp). Hence the delooping of these bipermutative

categories provides a map

H(VL)→ H(VL(ζp)),

which is a map of E∞ symmetric ring spectra. Again referring to chapter 3 we

see that these spectra are models for the algebraic K-theory of their respective

fields and hence we understand this map as:

K(L)→ K(L(ζp)).

Consider the Galois group of the extension L → L(ζp): G = Gal(L(ζp)/L). For

any homology theory h∗ with p− 1 = |G| = |Z/p− 1| a unit in its coefficients the

map K(L)→ K(L(ζp)) induces an isomorphism on h-homology groups:

h∗K(L) = (h∗K(L(ζp)))
G.

In particular for h = HFp we get an equivalence of p-completed spectra:

K(L)∧p ' (K(L(ζp))
∧
p )hG.

Comparison of the Models

One essential insight that led Quillen to the definition of algebraic K-theory

[Q1, Q2, Q3] was the fact that he could compute the full Algebraic K-theory of
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all finite fields by comparison to fibres of Adams operations on BU , so in essence

by comparison to ku. I want to exhibit the map involved, which is established

by the Brauer lift, but I shall defer the proofs to the relevant sources.

Again by the construction in 1.2 we can easily fix a homomorphism:

µ : L(ζp)
× ⊂ 〈ζp〉 ×

⊕
l prime 6=p

Z/l∞ → C×

by setting µ(ζp) = exp(2πi
p

). For a summand indexed by a prime l choose a

primitive lth root of unity in C× as exp(2πi
l

) as well as the primitive ljth roots of

unity exp(2πi
lj

) = ζl,j. This yields coherent homomorphisms for each l

µl : Z/lj → C×, hence on the colimit µl : Z/l∞ → C×.

With these choices fixed we can use the following theorem (cf. [Ros, p. 283,

Theorem 5.3.4]):

Theorem 1.2.11. Let G be a finite group, and let ρ : G → GLnFq be a finite-

dimensional representation of G over the algebraic closure of Fq. Let {ξig | i =

1, . . . , n} be the eigenvalues of ρg with multiplicities, so that the trace of ρg is

given as: tr(ρg) =
∑

i ξ
i
g.

The function fρ : G → C with fρ(g) =
∑

i µ(ξg) is a class-function, hence by

basic complex representation theory (cf. [Se, Part I, Chapters 1-3]) a linear com-

bination of characters of complex G-representations. Call fρ the Brauer character

of ρ.

In fact we have integral coefficients, so f uniquely determines a complex virtual

representation of G, called the Brauer lift of ρ - denote it F (ρ). Furthermore the

Brauer lift is additive, i.e., for a short exact sequence of Fq[G]-modules:

0→ U → V → W → 0

the lifts satisfy F (V ) = F (U) + F (W ).

Remark 1.2.12. Observe that the Brauer lift consists of representations of G

that have eigenvalues on the circle S1 ⊂ C, because the group has finite order.

I want to exhibit the idea of how this induces a comparison map, but I gloss

over quite a few details, which are in part explained in [Ros, pp. 284–285] and

much more in the original [Q1, Q2].

We want to consider the homomorphism in : GLn(L(ζp)) → GLn(Fq). Since

L(ζp) is a colimit of finite fields the general linear groups GLn(li) are finite groups,
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which yield GLn(L(ζp)) as their colimit. The Brauer Lift is evidently stable in

the colimit over the fields li, since the eigenvalues of the matrices do not change.

We can determine the virtual dimension of the Brauer Lift by the trace of the

identity: We get ξi(idn) = 1 for 1 ≤ i ≤ n, so
∑

i µ(ξi) =
∑

i µ(1) =
∑

i 1 = n.

This is obviously not stable in n; thus subtract the trivial GLn(C) representation

of GLnli, and consider the lift of in minus n. Obviously the trivial complex

representation of GLnli of dimension n is a lift for the trivial GLnli-representation

over Fq, so we get F (in − n) = F (in) − n and hence a stable class of a virtual

representation of dimension zero giving a map

BGL(L(ζp))→ BGLδ(C)→ BGL(C) ' BU.

This map induces homology isomorphisms with Fm-coefficients for any prime m

other than q, thus induces an equivalence of completed spaces at each prime

m 6= q:

BGL(L(ζp))
∧
m → BU∧m,

given as theorems 1.6 and 4.7 by Quillen in [Q1].

If the Brauer Lift happened to be not just a virtual representation but indeed

a genuine homomorphism Φ: GL(L(ζp))→ GL(C) we could try to restrict to the

GLn again, and induce a map of bipermutative categories VL(ζp) → VC, which

would give an infinite loop map, i.e., a map of spectra K(L(ζp)) → K(C) =

ku, and furthermore of E∞-ring spectra. But calculating in low dimensions for

GL2(Fq) shows that the Brauer Lift has a genuine negative component. I suspect

this approach could be repaired with a “ring-complete” version of VC as given by

[BDRR2], but the result has been established long before that by other methods.

The additivity directly yields that the Brauer Lift is an E∞-map with respect to

the E∞-structure on BGL(L(ζp))
+ and BU+ induced by direct sum of matrices.

Furthermore in “E∞ Ring Spaces and E∞ Ring Spectra” May shows [MayE∞, pp.

212-222] that the induced map is also an E∞-map for the E∞-structure induced

by tensor-products. With all this in place we have an equivalence of E∞ ring

spectra at p:

K(L(ζp))
∧
p → K(C) = ku∧p .

The equivalence of spectra is given in [MayE∞, pp. 217+218, Corollary VIII.2.7,

Theorem VIII.2.8], the compatibility with the E∞ structures on these spectra is

[MayE∞, pp. 219-222, Theorem VIII.2.11].
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The Involutions

In this thesis I want to investigate the induced involution on the algebraic K-

theory of ku as well, so as the final comment on the models I establish which

involution is induced on K(l(ζp)) by the Brauer lift.

Proposition 1.2.13. For any multiplicative embedding µ : l(ζp)
× → C× we have

the following relation for involutions:

µ ◦ (·)−1 = (·)−1 ◦ µ = (·) ◦ µ.

That is, we have on C× that multiplicative inversion (·)−1 and complex conjuga-

tion (·) coincide on the image of the embedding, and the embedding is a monoid

homomorphism, thus compatible with multiplicative inversion.

Proof. Since we have µ(1) = 1 it commutes with inverting elements, which is

a homomorphism because the involved groups are commutative. But since the

order of every element of l(ζp)
× is finite, we know that µ(l(ζp)

×) ⊂ S1. Hence

inverting and complex conjugation coincide.

Proposition 1.2.14. For any representation of a finite group ρ : G→ GLnFq and

the induced representation of the group Gop with opposed multiplication given by

ρ ◦ (·)−1 : Gop → GLnFq we have the following relation for the Brauer characters:

fρ = fρ◦(·)
−1

.

Proof. For g ∈ G calculate the Brauer character with ξig again the eigenvalues of

ρg with multiplicities:∑
i

µξig =
∑
i

µξig =
∑
i

(µξig)
−1 =

∑
i

µ((ξig)
−1) =

∑
i

µ(ξig−1),

hence follows the claim.

Finally, we would like to induce this Brauer character by some virtual repre-

sentation which only explicitly depends on ρ and starts from the same group G

instead of the one with opposed multiplication, but we do not want to cancel out

the inversion. Note that the target is a general linear group. For G = GLnR the

group hence comes equipped with a second isomorphism from G to Gop given by

transposition.
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Theorem 1.2.15. For any representation of a finite group ρ : G→ GLnFq let ρ†

be the representation induced by considering the composition:

G
(·)−1

// Gop ρ // GLnF
op

q

(·)t // GLnFq

Then their Brauer characters satisfy:

fρ
†

= fρ,

and hence by uniqueness of the associated (virtual) representation we find

F (fρ
†
) = (·) ◦ F (fρ).

Proof. Obviously transposing matrices does not change the eigenvalues involved

in the definition of the Brauer character, so the preceding proposition directly

yields the claimed result.

For ease of reference I summarise Quillen’s approximation [Q1] by the Brauer

lift with respect to its multiplicative and involutive structure in one theorem.

Theorem 1.2.16. The Brauer lift at any prime p ≥ 3 is a map of E∞ ring

spectra K(L(ζp)) = H(M(L(ζp)))→ H(M(C)) = ku, which is an equivalence of

E∞-ring spectra after completion at p: K(L(ζp))
∧
p → ku∧p .

Furthermore the involution on ku given by complex conjugation is approximated

by (·)t◦(·)−1 on L(ζp), in particular the involution as induced on ku by 3.5.5 from

complex conjugation cancels out to give the approximation of E∞-ring spectra with

involution:

(K(L(ζp))
∧
p , id)→ (ku∧p , (·)∗).
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2 Bicategories of Matrices

2.1 Osorno’s Delooping of M(R)

Given a permutative category that has a compatible associative multiplication,

one can define its module bicategory [Os]. Furthermore, Osorno provides a de-

looping of this bicategory by considering block sums of matrices and organising

these into a Γ-structure on the module bicategory. This leads to an associated

spectrum given a permutative bicategory.

I extend Osorno’s result in a multiplicative manner. This means I define the

bicategory-analogue of bipermutative categories in this chapter and adapt Os-

orno’s delooping in a manner that it has an induced multiplicative structure in

the next chapter, leading to an E∞ symmetric ring spectrum.

Given a bimonoidal category (R,⊕,⊗) one can define its bicategory of matrices

as follows:

Definition 2.1.1. The bicategory of matrices M(R) associated to a bi-

monoidal category R is given as follows. It has as objects the natural numbers

n ∈ N0, and its morphism categories are:

M(R)(n,m) :=

GLnR, n = m,

∅, else,

with GLnR the categories of weakly invertible n×n-matrices over the bimonoidal

coefficients R (cf. [Os, R, BDR]).

For this category to have an associator it is vital that the distributivity mor-

phisms of R are isomorphisms (cf. equation (4) on p.323 of [R])!

In what follows I need that for each bimonoidal category the bipermutative

category Σ∗ is part of the bicategory M(R) in a well-behaved way:

Proposition 2.1.2. Consider the map

E• : Σn → GLnR σ 7→ Eσ,
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2 Bicategories of Matrices

with (Eσ)ij := δi,σj. This map satisfies Eστ = EσEτ . It is a faithful functor

between monoidal categories.

Furthermore there is an action on general matrices:

(EσAEτ )ij = Aσ−1i,τj,

hence in particular:

(Eσ−1AEσ)ij = Aσi,σj.

Structurally more satisfactory we get the following embedding.

Proposition 2.1.3. The category of finite sets as described in Example 1.1.7

includes into the bicategory of modules for each coefficient category R:

Σ∗ →M(R).

More explicitly: Consider Σ∗ as a bicategory with discrete morphism categories,

then for each coefficient category R we get a strict normal functor E• : Σ∗ →
M(R), i.e., E• strictly respects identities and compositions 1.1.13.

Proof. I only give the indication of why this is true in my setup. The essential

point is the strictness of 0 and 1 in the coefficient category as units, as well as

the strict equality 0 · a = 0.

This has the following extremely convenient corollary.

Corollary 2.1.4. For each (small) coefficient category R its module bicategory

M(R) has a sub-bicategory which is the faithful image of E•, in particular, this

sub-bicategory is a 2-category, so the associator restricts to the identity there.

Remark 2.1.5. With these results it is just a minor abuse of notation to identify

permutations with their images in M(R), hence I write σ = Eσ. In particular

the identity matrix of an object n ∈ M(R) is in the image of E and I write

En = Eidn for the unit matrix.

In [Os] Osorno established that the direct sum of matrices equips this bicate-

gory with a well-behaved permutative structure [Os, Theorem 4.7], and the main

result of the paper [Os, Theorem 3.6] states that this can be delooped just as the

classical case [Se].
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2.1 Osorno’s Delooping of M(R)

Theorem 2.1.6 ([Os, Theorem 4.7]). The bicategory of matricesM(R) is strictly

symmetric monoidal with respect to the block sum of matrices:

� : M(R)×M(R) → M(R)

(n,m) 7→ n+m

(A,B) 7→

(
A 0

0 B

)
.

The symmetry is just the one given by the functor E• defined in Proposition 2.1.2

from Σ∗ (cf. Example 1.1.7), i.e.:

Σn+m 3 c+
n,m = c+ : n�m→ m� n.

This symmetric monoidal structure exhibits the classifying space of M(R) as

an infinite loop space.

Theorem 2.1.7 ([Os, Theorem 3.6]). Let M be a strict symmetric monoidal

bicategory. Then there is a special Γ-bicategory M̂ such that:

M̂(1) ∼=M.

Therefore the classifying space |NM| is an infinite loop space upon group com-

pletion.

I elaborate on the permutative structure and the delooping further in 2.3 once

my multiplicative matters are in place. In particular my main result of this

chapter is the following.

Theorem 2.1.8. Given a bipermutative coefficient category (R,⊕,⊗) there are

two permutative structures �,� on its module bicategory M(R) that can be ar-

ranged into a bipermutative bicategory.

This bipermutative structure can then be fitted onto the delooping of M(R),

such that the result is an E∞-ring spectrum. This is the content of the next

chapter 3.

Theorem 2.1.9. There is an E∞ symmetric ring spectrum HM(R), which is

weakly equivalent to the spectrum of Osorno’s Γ-space |NM̂(R)|, with multipli-

cation induced by the multiplicative structure of M(R).
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2 Bicategories of Matrices

Remark 2.1.10. The embeddings of the symmetric groups are compatible with

direct sum of matrices in the nicest possible way:

Σn × Σm
t //

��

Σm+n

��
GLnR×GLmR � // GLn+mR.

So we have σ � τ = σ t τ, i.e., considering permutations as matrices yields that

their direct sum is the disjoint union.

2.2 Definition - Symmetric Monoidal and

Permutative Bicategories

In what follows I need two types of symmetric monoidal structures. One is the

E∞-structure which we deloop, thus the one thought of as additive. The other

one gives the induced E∞-multiplication on the delooping.

For convenience I use the shorthand ObC = C0. For 1-cells, i.e., objects of

morphism categories, when I do not want to refer to their source and target I use

MorC = C1.

By weakening the definition of 2-categories to bicategories one has an assort-

ment of ways how monoidality can be defined for a bicategory. Apart from the

weakenings of unit axioms, one can impose associativity up to isomorphism, and

varying degrees of symmetry. For bicategories there is one more degree of sym-

metry in addition to “associative, braided,” and “symmetric”, which is called

“sylleptic”. For a detailed discussion of these notions, as well as a guide to the 7

sources, which incrementally built the notion of “monoidal bicategory” in a fully

weakened version, I defer to the PhD thesis of Christopher Schommer-Pries [SP].

The original fully weakened definition of braided monoidal bicategories goes back

to Kapranov and Voevodsky in [KV] as braided Gray monoids.

Definition 2.2.1. A permutative bicategory (C,+, 0, c+) is a bicategory with

strict identities, a strict normal 1.1.13 functor

+: C × C → C,

a chosen additive unit 0 ∈ C0 and a strict natural transformation

c+ : + ◦tw ⇒ +
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2.2 Definition - Symmetric Monoidal and Permutative Bicategories

for tw : C × C → C × C the strict isomorphism, which exchanges factors.

These satisfy the following identities:

• Adding 0 is strictly equal to the identity functor on C:

0 + = + 0 = idC.

• Addition is strictly associative, i.e., we have an equality of functors

( + ) ◦ (( + )× id) = ( + ) ◦ (id× ( + )),

giving a well-defined strict normal n-fold sum functor for each n ≥ 0:∑
n

: C×n → C.

Additionally the additive twist has to make the following diagrams strictly com-

mutative for every a, b, c ∈ C0:

a+ b+ c
c++idc//

c+ ''

b+ a+ c

idb+c+
��

b+ c+ a

a+ b+ c
ida+c+//

c+ ''

a+ c+ b

c++idb
��

c+ a+ b

a+ b

c+ $$

a+ b

b+ a,

c+

::

giving a unique (strict) natural transformation for every n ∈ N0 and σ ∈ Σn:

cσ :
∑
n

◦
(
σ : C×n → C×n

)
⇒
∑
n

built from composites of c+.

Remark 2.2.2. This is a maximally strictified version of the definition of “strict

symmetric monoidal” Angélica Osorno uses in [Os, Definition 3.1]. She considers

more generally a monoidal product, which is just a pseudofunctor, as well as a

symmetry, which is just pseudonatural. Thus in addition to the assumption of

strict identities, the strict functoriality of + and the strict naturality are stronger

conditions to impose.
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2 Bicategories of Matrices

Definition 2.2.3. A symmetric monoidal bicategory (C, ·, 1, c·) consists of

a bicategory with strict units C, a pseudofunctor

(·,Φ): C × C → C,

a chosen unit-object 1 ∈ C0, a strong pseudonatural transformation

(c1
· , c

2
· ) : · ◦tw ⇒ ·,

satisfying the following identities:

• Multiplying with 1 is strictly equal to the identity functor on C:

1 · = · 1 = idC.

• Multiplication is strictly associative, i.e., we have a strict equality of func-

tors (and their compositors):

( · ) ◦ (( · )× id) = ( · ) ◦ (id× ( · )),

giving a well-defined pseudofunctor:

(
∏
n

,Φ
∏
n) : C×n → C.

In addition the multiplicative twist makes the following diagrams strictly

commute for every a, b, c ∈ C0:

abc
c··idc //

c· ""

bac

idb·c·
��

bca

abc
ida·c· //

c· ""

acb

c··idb
��

cab

ab

c·   

ab

ba,

c·

OO

which means in more detail that the functors as well as their composi-

tors coincide. In particular c1
· squares to the identity transformation with

identity two-cell, hence c2
· has to square to the identity as well. Again

this implies that we have a unique strong pseudonatural transformation for

every n ∈ N0, σ ∈ Σn:

cσ :
∏
n

◦
(
σ : C×n → C×n

)
⇒
∏
n

built from composites of (c1
· , c

2
· ).

64



2.3 The Multiplicative Structure on M(R)

Remark 2.2.4. The above notion is precisely the notion of “strict symmetric

monoidal” Osorno gives in [Os] apart from my standing assumption on strict

identity 1-cells in the underlying bicategory. Since I consider no other symmetric

monoidal structures on bicategories than the ones given by block sum and tensor-

product on M(R), I choose to drop the attribute “strict”, since the essential

difference to “permutative” is the non-strictness of the monoidal functor (·,Φ).

Remark 2.2.5. Do note that the condition that c1 squares to the identity implies

that it is an isomorphism 1-cell, not just an equivalence as one might guess.

Remark 2.2.6. In chapter 3 I can much more easily generalise the Grothendieck

construction as I defined it in 1.1.37, since the additive structure of M(R) is

even a bit stricter than Osorno axiomatised, making her delooping apply to more

general monoidal bicategories than mine does.

I chose the symbols before incorporating the intuition that I think of permuta-

tive structures as additive structures, which we deloop, while symmetric monoidal

structures can potentially give superimposed multiplications on the delooping.

2.3 The Multiplicative Structure on M(R)

Just as in the classical case of commutative rings one should expect the module

category of a bipermutative category to have a multiplicative structure analogous

to the tensor product of modules. Since for combinatorial reasons I decided to

restrict to a coordinatised version of modules, given by ranks and matrices, the

tensor product has to be one of matrices as well.

Let me reiterate that the distributivity morphisms for a bipermutative category

are isomorphisms in this thesis! (Compare Remark 1.1.5.)

Given a bipermutative coefficient category (R,+, ·) we want to define a tensor

product on its bicategory of matrices M(R). Choose an associative bijection

ωn,m : n × m → nm, defining a strictly associative monoidal product on Fin,

which represents the cartesian product of finite sets - cf. Example 1.1.7. For

definiteness I set ωn,m(i, j) := (i−1)·m+j with inverse θn,m(i) = (((i−1) div m)+

1, ((i− 1) mod m + 1), where i div m := b i
m
c is the integer part of division of i

by m, while i mod m is the remainder r for i = qm+ r the Euclidean division of

i by m.

Recall that this is consistent with the associative smash product on Fin+ de-

scribed in Example 1.1.8.
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2 Bicategories of Matrices

Definition 2.3.1. Given a choice of associative bijections ω : n×m→ nm define

the tensor product as follows:

� : M(R) × M(R) −→M(R)

(n,m) 7→ nm

(A,B) 7→ (A�B)ω(i1,j1),ω(i2,j2) := Ai1,i2 ·Bj1,j2 .

The same description applies to the tensor product of 2-cells.

The rest of the section is devoted to proving that M(R) equipped with this

monoidal structure satisfies the axioms given in 2.2.3.

Remark 2.3.2. Obviously my choice of ω is dictated by the choices I fixed in

1.1.7 so that I can establish E• as a bipermutative functor.

Example 2.3.3. For clarity consider the following small example. Let

A =

(
A11 A12

A21 A22

)

and

B =

(
B11 B12

B21 B22

)
,

then with the bijections chosen above we have:

A�B =


A11B11 A11B12 A12B11 A12B12

A11B21 A11B22 A12B21 A12B22

A21B11 A21B12 A22B11 A22B12

A21B21 A21B22 A22B21 A22B22

 .

Remark 2.3.4. Following this example it is easy to see that the tensor product

as defined in 2.3.1 respects weakly invertible matrices with coefficients in a biper-

mutative category. In particular, if we considered a tensor-product of matrices

given by columnwise or linewise ordering (as opposed to blockwise), any entry

aij = 0 would produce a full zero column or line, hence definitely not a (weakly)

invertible matrix.

Remark 2.3.5. As I indicated before the structure induced by direct sum of

matrices on M(R) yields a permutative structure, but the tensor-product does
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2.3 The Multiplicative Structure on M(R)

not. The fact that (M(R),�) is permutative is shown in the proof of [Os, Theo-

rem 4.7]. The tensor-product already fails at the first strictness of a permutative

bicategory, because � is not a strict functor, i.e., it only respects composition

up to an isomorphism two-cell, which is strict if and only if the multiplicative

symmetry of the coefficients is trivial, hence only for R an ordinary ring (or rig

as in the case of N).

2.3.1 The Matrix Tensor Product is Symmetric Monoidal

This subsection is devoted to proving that the tensor product equipsM(R) with

a symmetric monoidal structure in all detail. It can be skipped safely by the

reader without losing any essential information. I am sure that an elegant short

proof by exploiting the functor E• : Σ∗ → M(R) can be devised, but I want to

exhibit the additional strictness the tensor-product onM(R) satisfies in explicit

detail.

Lemma 2.3.6. The assignment � of definition 2.3.1 is a pseudofunctor of bi-

categories.

In addition we have the following natural identities on 1-cells:

A�B = (A� id)(id�B)

as well as strict compositors:

(A1A2) � id = (A1 � id)(A2 � id),

id� (B1B2) = (id�B1)(id�B2).

Proof. Normality is obvious: the identity matrices En and Em are sent to

En � Em = Enm,

by strictness of 0 and 1 in R. The interesting aspect is the compositor

Φ� : (A1 ◦ A2) � (B1 ◦B2)⇒ (A1 �B1) ◦ (A2 �B2).

Composition of 1-cells in M(R) is given by matrix multiplication, hence

(A1 ◦ A2) � (B1 ◦B2)ω(i1,j1),ω(i2,j2)
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2 Bicategories of Matrices

= (A1 ◦ A2)i1,i2(B1 ◦B2)j1,j2

=

(∑
k

A1
i1,k
A2
k,i2

)(∑
l

B1
j1,l
B2
l,j2

)

⇒ρ−1
∑
k

A1
i1,k
A2
k,i2

(∑
l

B1
j1,l
B2
l,j2

)
⇒

∑
k λ
−1
∑
(k,l)

A1
i1,k
A2
k,i2
B1
j1,l
B2
l,j2

⇒
∑

(k,l) id·cR⊗ ·id
∑
(k,l)

A1
i1,k
B1
j1,l
A2
k,i2
B2
l,j2

=
∑
(k,l)

(A1 �B1)ω(i1,j1),ω(k,l)(A
2 �B2)ω(k,l),ω(i2,j2)

= (A1 �B1) ◦ (A2 �B2)ω(i1,j1),ω(i2,j2).

So define Φ� := (id · c⊗ · id) ◦ λ−1 ◦ ρ−1 in the manner described above for each

component (with summations suppressed because of the appropriate coherences

in the coefficient category). It is natural, because the involved morphisms are

natural in R. It is obvious if either A1A2 = id or B1B2 = id then the involved

natural isomorphisms are forced to be identities, hence follow the strict identities

claimed above.

To see that Φ is associative I refer the reader to [Lap]: Given a morphism

((A1 ◦ A2) ◦ A3) � ((B1 ◦B2) ◦B3)⇒ (A1 ◦ (A2 ◦ A3)) � (B1 ◦ (B2 ◦B3))

comprised only of structural (iso)morphisms of the bipermutative category R
there is a unique structural morphism between the given source and target. Since

the associator ofM(R) is given by structural morphisms ofR and the compositor

Φ� of � is given by structural morphisms of R as well, this gives that Φ� is

associative in the appropriate manner (cf. [Le, p. 4]).

Remark 2.3.7. Since this is the first proof of this type let me emphasise that it

is sufficient to consider the compatibilities on 1-cells, because the 2-cells are any

type of n× n-matrix with no additional condition. So the calculations on 1-cells

are “always” strictly natural with respect to 2-cells.

Remark 2.3.8. The additional strict identities show that the compositor of � is

a result of the natural isomorphism: (id�B)(A�id)⇒ (A�id)(id�B) = A�B.

Remark 2.3.9. Consistently with the Deligne conjecture for Algebraic K-theory

we see that we need at least a braiding (i.e., an E2-structure) on the coefficient
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2.3 The Multiplicative Structure on M(R)

category R to define an E1 = A∞-multiplication on its module category. Cf.

for instance [Ba, Example 3.9] and [Lu2, Remarks after C.6.3.5.17]. For a more

thorough survey of the Deligne conjecture on Hochschild cohomology as well as

a survey of its proofs see Section 16 of [MSm].

Lemma 2.3.10. The functor � is strictly associative.

Proof. For this proof I fix the specific associative bijections from the beginning

of this section. For A ∈ GLnR, B ∈ GLmR, C ∈ GLlR we have:

((A�B) � C)(i1−1)ml+(j1−1)l+k1,(i2−1)ml+(j2−1)l+k2

= (A�B)(i1−1)m+j1,(i2−1)m+j2 · Ck1,k2

= Ai1,i2 ·Bj1,j2 · Ck1,k2

= Ai1,i2 · (B � C)(j1−1)l+k1,(j2−1)l+k2

= (A� (B � C))(i1−1)ml+(j1−1)l+k1,(i2−1)ml+(j2−1)l+k2 .

Lemma 2.3.11. The object 1 with its identities is a strict unit for �.

Proof. We have:

(A� 1)(i1−1)1+j1,(i2−1)1+j2 = Ai1,i2

for i1, i2 = 1, . . . , |A| and j1 = j2 = 1, analogously 1 � A = A.

The following statement can also be thought of as a convention: Just as the

empty matrix is a strictly neutral element for �, it is a strict zero for �.

Lemma 2.3.12. The object 0 with its identity considered as the empty matrix

(of objects and morphisms respectively) is a strict zero for �.

I needed some commutativity to show that � is a functor, it should be much

less surprising that it is necessary for commutativity of �.

Lemma 2.3.13. The bicategory of matrices M(R) over a bipermutative coeffi-

cient category R is symmetric monoidal with respect to �.

Proof. At this point I borrow the bipermutative structure from Σ∗ (cf. 2.1.2), let

A ∈ GLnR, B ∈ GLmR, and consider:

(cn,m(A�B))(i1−1)n+j1,(i2−1)m+j2 = (A�B)(j1−1)m+i1,(i2−1)m+j2 = Aj1,i2Bi1,j2 ,
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((B � A)cn,m)(i1−1)n+j1,(i2−1)m+j2 = (B � A)(i1−1)n+j1,(j2−1)n+i2 = Bi1,j2Aj1,i2 ,

these can obviously be transformed into each other by the multiplicative twist

of R, so the symmetry has as one-cells cn,m : nm → mn and two-cells (C�)ij =

cR· ∀i, j.

Example 2.3.14. Consider this again on 2× 2-matrices, i.e., a diagram:

2 · 2
�� cR

A�B //

c2,2
��

2 · 2
c2,2
��

2 · 2
B�A

// 2 · 2.

Use the identification c2,2 = (23) to calculate:

(B � A)E(23) =


B11A11 B11A12 B12A11 B12A12

B11A21 B11A22 B12A21 B12A22

B21A11 B21A12 B22A11 B22A12

B21A21 B21A22 B22A21 B22A22




1

1

1

1



=


B11A11 B12A11 B11A12 B12A12

B11A21 B12A21 B11A22 B12A22

B21A11 B22A11 B21A12 B22A12

B21A21 B22A21 B21A22 B22A22



and the other side:

E(23)(A�B) =


1

1

1

1




A11B11 A11B12 A12B11 A12B12

A11B21 A11B22 A12B21 A12B22

A21B11 A21B12 A22B11 A22B12

A21B21 A21B22 A22B21 A22B22



=


A11B11 A11B12 A12B11 A12B12

A21B11 A21B12 A22B11 A22B12

A11B21 A11B22 A12B21 A12B22

A21B21 A21B22 A22B21 A22B22

 ,
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2.3 The Multiplicative Structure on M(R)

thus we have the 2-cell given by the multiplicative twist of R in each component:
B11A11 B12A11 B11A12 B12A12

B11A21 B12A21 B11A22 B12A22

B21A11 B22A11 B21A12 B22A12

B21A21 B22A21 B21A22 B22A22


cR

��
A11B11 A11B12 A12B11 A12B12

A21B11 A21B12 A22B11 A22B12

A11B21 A11B22 A12B21 A12B22

A21B21 A21B22 A22B21 A22B22

 .

Let me summarise these results into one big lemma:

Lemma 2.3.15. The module bicategory M(R) of a bipermutative category R is

strictly symmetric monoidal with respect to the tensor product of matrices �, i.e.,

we have:

• (�,Φ�) is a pseudofunctor:

� : M(R)×M(R)→M(R),

• � is strictly associative, i.e.,

� ◦ (�× id) = � ◦ (id×�),

• � has a strict unit 1, i.e.,

� ◦ (id× 1) = � ◦ (1× id) = idM(R),

• � has a strong symmetry transformation (cΣ, cR· ).

Additionally the symmetry satisfies the following coherences strictly:

l ·m · n

cΣl,mn &&

cΣl,m�1n
//m · l · n

1m�cΣl,n
��

m · n · l

l ·m · n

cΣlm,n &&

1l�cΣm,n// l · n ·m
cΣn,l�1m
��

n · l ·m.
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2 Bicategories of Matrices

Furthermore the symmetry is its own inverse:

n ·m

cΣn,m %%

n ·m

m · n.
cΣm,n

99

Proof. Each of the properties that do not follow from the previous lemmas is

just promoted to M(R) from Σ∗ by the functor E•, so there is nothing new to

prove.

In summary I have proved that (M(R),�, 1, c·) is a strict symmetric monoidal

bicategory in the sense also used by [Os, Definition 3.1]. Since the tensor product

of matrices satisfies these strict axioms, it is sufficient for me to consider this type

of symmetric monoidal bicategory, although it is very probable that this class does

not cover all equivalence classes of the most general type of bicategories with a

symmetric monoidal structure one could devise.

With the tensor-product in place I can state the second strict monoidality the

functor E satisfies, which quite trivially follows from the fact that I chose the

same bijection for the tensor-product as I did for the product in Σ∗.

Proposition 2.3.16. For each bipermutative coefficient category R the inclusion

E : Σ∗ →M(R)

is strictly symmetric monoidal with respect to × on Σ∗ and � on M(R).

Remark 2.3.17. With the symmetric monoidal structures onM(R) settled the

remark that everything works enriched as well is obligatory. The calculations

before extend to 2-cells, because they are defined merely as part of the appropri-

ate product-categories with no additional conditions, thus reordering 2-cells as

indicated by the 1-cells is compatible with the enrichment.

2.4 The Bimonoidal Structure on M(R)

Osorno has proved that (M(R),�, 0, c+) is a permutative bicategory (see The-

orem 2.1.6), and in Section 2.3 I elaborate on the fact that (M(R),�, 1, c·) is

a second symmetric monoidal bicategory structure on M(R). One would want

these to interact in a manner analogous to bipermutative 1-categories. This
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2.4 The Bimonoidal Structure on M(R)

section is devoted to making the analogy precise, and establishing M(R) as a

bipermutative bicategory.

In 1.1.7 the choice of a strictly associative functor representing the product

made the left-distributor strict in Σ∗, i.e., we have λ = id. Here I used the

same bijection that fixes this for the tensor-product structure in 2.3.1. It should

be intuitive that this makes E• into a well-behaved bipermutative functor. I

elaborate on that after the appropriate definition for bicategories.

The distributors of the bipermutative structure on Σ∗ promote to natural trans-

formations in M(R) without using two-cells.

Proposition 2.4.1. We have strict equalities of one-cells for A ∈ GLnR, B ∈
GLmR, C ∈ GLlR:

(A�B) � C = A� C � A� C

and

A� (B � C)cΣ
m+l,n(cΣ

n,m � cΣ
n,l) = cΣ

m+l,n(cΣ
n,m � cΣ

n,l)((A�B) � (A� C)).

Proof. I only comment on the strictness, which is a result of the fact that the

multiplicative twist enters twice as a two-cell, hence cancels out.

Example 2.4.2. Let me elaborate on l = n = 2,m = 1, so we get:

cm+l,n = c3,2,

which is

c3,2((i− 1)3 + j) = (j − 1)2 + i

i.e., c3,2 is the cycle (2453). We have

c2,1 + c2,2 = id+ (23) = (45),

hence

c3,2(c2,1 + c2,2) = (2453)(45) = (432).
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2 Bicategories of Matrices

On one side we find:

A� (B � C)E(432)

=



A11b A12b

A11C11 A11C12 A12C11 A12C12

A11C21 A11C22 A12C21 A12C22

A21b A22b

A21C11 A21C12 A22C11 A22C12

A21C21 A21C22 A22C21 A22C22





1

1

1

1

1

1



=



A11b A12b

A11C11 A11C12 A12C11 A12C12

A11C21 A11C22 A12C21 A12C22

A21b A22b

A21C11 A21C12 A22C11 A22C12

A21C21 A21C22 A22C21 A22C22


.

On the other side we have:

E(432)(A�B � A� C)

=



1

1

1

1

1

1





A11b A12b

A21b A22b

A11C11 A11C12 A12C11 A12C12

A11C21 A11C22 A12C21 A12C22

A21C11 A21C12 A22C11 A22C12

A21C21 A21C22 A22C21 A22C22



=



A11b A12b

A11C11 A11C12 A12C11 A12C12

A11C21 A11C22 A12C21 A12C22

A21b A22b

A21C11 A21C12 A22C11 A22C12

A21C21 A21C22 A22C21 A22C22


= A� (B � C)E(432).

Because of this strictness I define what a bipermutative bicategory is in close

analogy with 1-categories.

Definition 2.4.3. A bipermutative bicategory R is a bicategory (with strict

identities) with two monoidal structures �,�, an additive symmetry c�, making
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(R,�) into a permutative bicategory (Definition 2.2.1), a multiplicative symme-

try c�, making (R,�) into a symmetric monoidal bicategory (Definition 2.2.3),

and strictly natural distributivity isomorphisms (strictly invertible 1-cells):

λ : a� b� a� b′ → a� (b� b′),

ρ : a� b� a′ � b→ (a� a′) � b,

satisfying the following strict identities of 1-cells:

1. strict zero:

0 � a = a� 0 = 0 ∀a ∈ R,

2. �-associativity of distributors:

λ(λ� id) = λ(id� λ),

ρ(ρ� id) = ρ(id� ρ),

3. additive symmetry of distributors:

(c� � id)λ = λ ◦ c�,

(id� c+)ρ = ρc+,

4. �-associativity of distributors:

λ = λ ◦ (λ� id),

ρ = ρ ◦ (id� ρ),

5. middle associativity of distributors:

λ ◦ (id� ρ) = ρ ◦ (λ� id),

6. mixed associativity of distributors:

λ(ρ� ρ) = ρ(λ� λ)(1 � c� � 1),

7. multiplicative symmetry of distributors:

c� ◦ λ = ρ ◦ (c� � c�).
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2 Bicategories of Matrices

Remark 2.4.4. Let me emphasise that I have modelled this definition of biper-

mutative bicategory in such a way that the only thing left to show given the two

symmetric monoidal structures � and � on M(R) is: There are distributors λ

and ρ, they are strict natural transformations and they satisfy the coherences

above. There is no additional data in the form of coherence 2-cells involved.

Definition 2.4.5. Define the distributivity 1-cells for M(R) as follows:

λ := id = Eλ, and ρ := EρΣ = cΣ
m+l,n(cΣ

n,m � cΣ
n,l),

with identities as 2-cells.

With these distributivity 1-cells I can easily prove the following theorem, which

I use to summarise all explicit details about the bipermutative structure ofM(R),

because most of it is part of the lemmas already proven above.

Theorem 2.4.6. For R a bipermutative 1-category (possibly enriched over the

symmetric monoidal categories Top,Cat , sSet), the following is a bipermutative

bicategory M(R) (with 2-cells in the same enrichment):

• ObM(R) = N0,

• M(R)(n,m) =

GLnR, n = m,

∅, n 6= m,

• (A�B)i,j =


Ai,j, 1 ≤ i, j ≤ |A|,

Bi−|A|,j−|A|, 1 ≤ i− |A|, j − |A| ≤ |B|,

0,

• � is a strict normal 1.1.13 functor, i.e., (A1A2�B1B2) = (A1�B1)(A2�B2)

and idn� idm = idn+m,

• (A�B)(i1−1)|B|+j1,(i2−1)|B|+j2 := Ai1,i2Bj1,j2 ,

• � is a pseudofunctor, i.e., (idn� idm) = idnm and there is a natural isomor-

phism 2-cell (A1 �B1)(A2 �B2)⇒ (A1A2)� (B1B2) given by the adequate

composition of (both) R-distributors and its multiplicative symmetry cR (cf.

2.3.6),
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2.4 The Bimonoidal Structure on M(R)

• the matrix Ec+ for the additive twist in Σ∗:

c+
n,m(i) =

i+m, i ≤ n,

i− n, i ≥ n+ 1,

yields the additive twist with (C+)i,j = δi,c+n,m(j), which is a strict natural

transformation � ◦ tw ⇒ �, i.e., a pseudonatural transformation with co-

herence 2-cells identities,

• the bijections cn,m((i− 1)m+ j) = i+ (j− 1)n yield the multiplicative twist

with Ci,j = δi,cn,m(j), which is a strong pseudonatural transformation with

2-cell given by the cR in each component.

the distributors are given as:

• λ = id: nm+ nl→ n(m+ l), and

• ρ = cn,m+l(cm,n + cl,n) : mn+ ln→ (m+ l)n,

and satisfy the coherences of 2.4.3.

Proof. The only thing left to prove is the fact that the distributors satisfy the

claimed coherences. For that consider the functor

E : Σ∗ →M(R)

again. I already established that it is strictly symmetric monoidal with respect

to �, but given � as in 2.3.1 and × as in 1.1.7 it is obvious that E is also

strictly symmetric monoidal with respect to these structures. Take particular note

that the coherence 2-cell of c� does not feature here because the multiplicative

symmetry of R is forced to be the identity for the product 0 · 0 = 0 · 1 = 0 and

1 · 1 by the axioms of symmetric monoidal categories for the first and third case

and the additional zero-axiom for bipermutative categories.

The distributors are defined as part of the image of E explicitly, so obviously

we have Eλ = λ and Eρ = ρ, but E is a strict functor of bicategories (and even

2-categories, if we restrict our attention to its image), so all coherences these

distributors satisfy in Σ∗ directly promote to M(R) for arbitrary bipermutative

coefficients R.

In particular, E is a strict functor of bipermutative bicategories, which is

strictly additive, strictly multiplicative, and strictly satisfies E(c+) = C�, E(c·) =

C� as well as Eλ = λ,Eρ = ρ.
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Remark 2.4.7. Let me emphasise that I can get away with such a strict struc-

ture, because the 2-cells in M(R) are just parts of the appropriate product

categories with no additional compatibility condition among them. If one were

to impose “weak invertibility” on the matrices of 2-cells for instance, I do not

know, if we still get such a strict bipermutative structure.

2.5 Transposition and Involutions

In commutative rings we are well aware of the formula:

(AB)t = BtAt.

In preparation for involutions on module bicategories I want to isolate how this

formula behaves with genuine bipermutative categories as coefficients.

Definition 2.5.1. For any bicategory C consider the 1-opposed bicategory Cop1 ,

which has the same objects, 1-cells, 2-cells, but opposed composition of 1-cells,

which I denote by ◦, while I do not denote the composition of 1-cells in C, just

as usual for ordinary matrix multiplication. The associator is then the inverse of

the original associator:

A ◦ (B ◦ C) = (CB)A α−1
// C(BA) = (A ◦B) ◦ C.

For a bimonoidal 1-category R we also consider the µ-opposed category Rµ with

the same objects and morphisms, opposed multiplication, and hence exchanged

distributors.

Proposition 2.5.2. For bimonoidal coefficients transposition is a strict normal

1.1.13 functor:

(·)t : M(Rµ)→M(R)op1 .

Proof. We calculate on 1-cells:

(At ◦1 B
t)ij = (BtAt)ij

=
∑
k

Bt
ikA

t
kj

=
∑
k

Atkj ◦Bt
ik

=
∑
k

Ajk ◦Bki = (AB)ji = (AB)tij.
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So transposition strictly respects composition of 1-cells and strictly respects iden-

tities.

Remark 2.5.3. For bipermutative coefficients we could use the multiplicative

twist to suppress the µ-opposition. However to make the book keeping of oppo-

sitions more transparent I do not use that.

I want to consider involutions on the coefficient category R as considered by

Richter in [R, Definition 3.1].

Definition 2.5.4. An anti-involution on a bipermutative category R is given

by a self-inverse strictly symmetric monoidal functor T : (R,+) → (R,+) with

respect to (R,+, 0, cR+) together with a natural isomorphism:

t : T (a)T (b)→ T (ba).

Satisfying:

• (T, t) strictly respects the unit, i.e., T (1) = 1 and

t = id : T (a)1 = 1T (a) = T (1)T (a)→ T (a),

• t is associative with respect to multiplication

T (a)T (b)T (c)
tT (c) //

T (a)t

��

T (ba)T (c)

t
��

T (a)T (cb) t // T (cba).

• (T, t) is symmetric with respect to multiplication:

T (a)T (b) t //

c

��

T (ba)

T (c)

��
T (b)T (a) t // T (ab).

• the involution commutes with the distributors:

T (a)T (b) + T (a)T (c) λ //

t+t
��

T (a)T (b+ c)

t
��

T (ba) + T (ca)
T (ρ) // T ((b+ c)a),
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and

T (a)T (c) + T (b)T (c)
ρ //

t+t
��

T (a+ b)T (c)

t
��

T (ca) + T (cb)
T (λ) // T (c(a+ b)).

Remark 2.5.5. It is quite obvious that in the bipermutative case, the way I

consider it in this thesis, one of the compatibilities with distributors implies the

other, but the exposition is more transparent this way.

Remark 2.5.6. Richter proceeds in [R] to define an induced involution on the

bar construction of the monoidal categories GLnR. I define this involution as

induced on matrix bicategories.

Proposition 2.5.7. Let (F, ϕ) : R → A be a strictly additive functor of strictly

bimonoidal categories, i.e.

F (0) = 0, F (r + s) = F (r) + F (s),

furthermore let F be strictly unital F (1) = 1, then

• a lax transformation ϕ : F (a)F (b)→ F (ab) promotes to a lax normal func-

tor

MF : M(R)→M(A),

• if furthermore ϕ : F (a)F (b) → F (ab) is a natural isomorphism, so F is

strongly multiplicative, then (F, ϕ) promotes to a pseudofunctor

MF : M(R)→M(A).

Proof. Again the interesting point is what happens on 1-cells:

(MFA · MFB)ij =
∑
k

FAik · FBkj

⇒ϕ
∑
k

F (AikBkj) = F (
∑
k

AikBkj)

= F (ABij) =MF (AB)ij,

obviously the functor (MF, ϕ) then is just as good as the constraint ϕ of F .
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Lemma 2.5.8. An anti-involution on a bimonoidal category R is a strictly ad-

ditive, strongly multiplicative functor from R to its multiplicative opposition Rµ

T : R → Rµ.

Consequently an anti-involution induces a pseudofunctor of module bicategories:

MT : M(R)→M(Rµ).

�

This is as far as I can come in the bicategory setting without appealing to

classifying spaces, so let me summarise what the involution induces on module

bicategories.

Lemma 2.5.9. Composing transposition and an anti-involution on coefficients

gives a pseudofunctor

MT ◦ (·)t : M(R)→M(R)op1 .

2.5.1 Involution and Tensor-products

One aim of this chapter on module bicategories is to get a combinatorial insight

on how the involution on the coefficient category and the E∞-structure on its

module bicategory interact. Fortunately this is easily described on the level of

bipermutative bicategories.

It is obvious that the induced involution strictly respects direct sum:

Lemma 2.5.10. For a bimonoidal category R with involution (T, t) the induced

involution on module bicategories is strictly additive and symmetric:

MT (A�B) =MTA�MTB,

and

MT (c+
m,n) = c+

m,n.

The tensor product structure, if defined, is also easily seen to be compatible

with the coordinatewise involution:

81



2 Bicategories of Matrices

Lemma 2.5.11. For a bipermutative category R with involution (T, t) we have

a strictly natural isomorphism of functors:

t : � ◦MT ×MT ⇒MT ◦�,

each considered as functors M(R)×M(R)→M(Rµ).

Proof. This is a simple calculation, again consider 1-cells:

(MT (A) �MT (B))(i1−1)|B|+j1,(i2−1)|B|+j2 =MT (A)i1,i2 ◦MT (B)j1,j2

= T (Ai1,i2) ◦ T (Bj1,j2)

⇒t T (Ai1,i2Bj1,j2)

=MT ((A�B)(i1−1)|B|+j1,(i2−1)|B|+j2)

=MT (A�B)(i1−1)|B|+j1,(i2−1)|B|+j2 .

So we can summarise:

Theorem 2.5.12. For a bipermutative category R with involution (T, t) the co-

ordinatewise involution on the bicategory of matrices M(R) induces a strong

bipermutative functor:

MT : (M(R),�,�)→ (M(Rµ),�,�),

in the sense that it is strictly additive, and strongly multiplicative with respect to

�.

Proof. I only need to elaborate on the multiplicative symmetry ofMT , which is

a consequence of the compatibility on coefficients:

T (a)T (b) t //

c

��

T (ba)

Tc
��

T (b)T (a) t // T (ab).

In particular the fact that MT is strictly additive with respect to � implies

that it induces a map of Γ-spaces, i.e., an infinite loop map on classifying spaces

as follows:

BMT : BM(R)→ BM(Rµ),
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cf. 2.1.7. In what follows I want to define an internal involution on BM(R),

and refine Osorno’s delooping of Theorem 2.1.7 to one that allows us to induce

a multiplicative structure more easily. Thus as the last compatibility, which is

directly visible on the level of bicategories of matrices, we see that transposition

and tensor-product strictly commute.

Proposition 2.5.13. For any bipermutative category R transposition induces

a strictly additive and strictly multiplicative strict normal 1.1.13 functor on its

bicategory of matrices M(R):

(·)t : (M(Rµ),�,�µ)→ (M(R)op1 ,�,�op),

where we consider the opposite multiplication on M(R)op1, i.e. fully reversed

A�op B = B � A.

Proof. The fact that transposition is a strict normal functor is Proposition 2.5.2.

The strict additivity is obvious as (A � B)t = At � Bt. For the multiplicativity

consider the following sequence of equations:

(A�µ B)tω(i1,i2),ω(j1,j2) = (A�µ B)ω(j1,j2),ω(i1,i2)

= Aj1,i1 ◦Bj2,i2

= Bt
i2,j2

Ati1,j1

= (Bt � At)ω(i2,i1),ω(j2,j1) = (At �op Bt)ω(i1,i2),ω(j1,j2).

Thus transposition and the coordinatised tensor-product 2.3.1 commute up to

one exchange of factors, yielding the claimed compatibility.

Thus we see that by strict additivity of transposition we get an infinite loop

map of classifying spaces as:

BMT ◦ (·)t : BM(R)→ BM(R)op1 .

2.6 Basics on Nerves of Bicategories

On page 2 of [CCG] one can see various constructions of nerves, thus classifying

spaces for bicategories, all homotopy equivalent after realisation. In previous

versions of this thesis I considered the “Segal Nerve” as for instance in [CCG,

p.21, Definition 5.2]. I finally noticed that in this bisimplicial set associated to a
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bicategory one of the simplicial directions only consists of homotopy equivalences

[CCG, Theorem 6.2.]. Hence I can restrict to one simplicial direction, simplifying

the exposition.

Definition 2.6.1. The nerve of a bicategory C (with only isomorphism 2-cells)

is the simplicial set with n-simplices pseudofunctors:

NCn := NorHom([n], C).

Let me be more explicit about this, I consider the ordered set [n] = {0 < 1 <

. . . < n− 1 < n} as a 1-category, which is a bicategory with only identity 2-cells.

Then a pseudofunctor

(F, ϕ) : [n]→ C

is the same thing as a collection of objects Fi ∈ ObC, and for each pair 0 ≤
i < j ≤ n a choice of 1-cell Ai<j : Fi → Fj ∈ ObC(Fi, Fj) (where normality

corresponds to the fixed choice Ai≤i = idFi), and for each triple i < j < k a

2-cell ϕi<j<k : AjkAij → Aik, assembling to the compositor ϕ of F , which is hence

associative in the appropriate sense.

Compare page 22 of [LP], where there is also a condition on identities I do not

need, because I only consider normal functors.

So for a bicategory C (possibly enriched) we get a simplicial set:

NC : ∆op → Set.

I want to elaborate on the simplicial operators, let

Φ: [n]→ [m]

be a monotone map: The effect on an n-simplex F : [n]→ C is then given as:

Φ∗F (i) := F ◦ Φ(i),

on 1-cells we have:

Φ∗Aij := AΦ(i),Φ(j) : FΦ(i) → FΦ(j),

which is the identity, if Φ(i) = Φ(j) according to the normality condition on F .

Finally on compositors we get:

Φ∗ϕi<j<k := ϕΦ(i),Φ(j),Φ(k),

which is the identity if any two of the three indices coincide. This is coherent,

because I only consider bicategories with strict identity 1-cells.
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Remark 2.6.2. The terminology varies, which is partly due to the fact that there

are at least 10 reasonable ways to define a nerve for bicategories (cf. the diagram

[CCG, p. 2]). This particular construction is called the “unitary geometric nerve”

in [CCG], where more generally all lax functors are considered. These coincide

with pseudofunctors for bicategories with just isomorphism 2-cells. In particular

the warning after Theorem 6.5 in [CCG] does not apply for bicategories with all

2-cells isomorphisms.

We are used to the fact that natural transformations of functors on 1-categories

induce homotopies. For bicategories the same argument yields that an arbitrary

pseudonatural transformation induces a homotopy. The observation is not origi-

nal, but in the presence of 10 different nerve constructions I want to exhibit this

fact specifically for the one I use.

Proposition 2.6.3. A pseudonatural transformation η of pseudofunctors

F,G : C ⇒ D

is equivalent to a pseudofunctor C × I → D, hence induces a map:

N(C × I) ∼= NC ×NI → ND.

Proof. This is plainly the universal property of the product in bicategories, i.e.,

Fun(A, C ×D) = Fun(A, C)× Fun(A,D), where Fun can be any of the classes

of functors between bicategories. Thus in particular for A = [n] and Fun the

class of normal pseudofunctors we get the claimed natural isomorphism.

2.6.1 Opposition of a Bicategory and its Nerve

As I alluded to at the end of section 2.5, I want to induce an involution on the

nerve of a bicategory. For that I need one last preparation.

Definition 2.6.4. Let the reversal functor

r : ∆→ ∆

be given as the identity on objects and on morphisms Φ: [n]→ [m] define:

r(Φ)(i) := m− Φ(n− i).

Given a simplicial object in any category X : ∆op → C, set Xop := X ◦ r, analo-

gously for cosimplicial objects.
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2 Bicategories of Matrices

The special point special about Top as a target category is the cosimplicial

object that defines geometric realisation. (The analogous isomorphism in chain

complexes Ch is given by only a sign depending on the chain degree.)

Lemma 2.6.5. Let ∆• : ∆→ Top be the cosimplicial space defined as usual:

∆n = {(t0, . . . , tn) ∈ In+1|
∑

ti = 1},

with cosimplicial operators:

δi(t0, . . . , tn−1) = (t0, . . . , ti−1, 0, ti, . . . , tn−1)

and

σi(t0, . . . , tn) = (t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tn).

Then we have an isomorphism of cosimplicial topological spaces:

Γ: ∆• → ∆• ◦ r.

Proof. Define Γ(t0, . . . , tn) = (tn, . . . , t0), this is obviously a degreewise homeo-

morphism, and the identities:

Γ ◦ δi = δn−i ◦ Γ

Γ ◦ σi = σn−i ◦ Γ

give that Γ is an isomorphism of cosimplicial objects.

Lemma 2.6.6. Let X : ∆op → Top be a simplicial space (in particular sets with

discrete topology), then consider geometric realisation as a coend:

X ⊗∆ ∆• = |X|.

Then we have the identity

X ⊗ (∆• ◦ r) = (X ◦ r)⊗∆•,

and hence a natural homeomorphism of realisations:

X ⊗ Γ: |X| → |X ◦ r|.
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Proof. The identity

X ⊗ (∆• ◦ r) = (X ◦ r)⊗∆•

can be seen as follows. Both objects are quotients of the object∐
n

Xn ×∆n,

because r does not change anything on the simplices. The identification according

to X ⊗ (∆• ◦ r) then is:

[x, δn−it] = [dix, t],

and in (X ◦ r)⊗∆• it is:

[dn−ix, t] = [x, δit].

So the idenfications are just listed in a different order, but the equivalence relation

we divide out is the same.

As a consequence the natural homeomorphism spells out:

X ⊗ Γ: |X| → |X ◦ r|
[x, (t0, . . . , tn)] 7→ [x, (tn, . . . , t0)].

With the simplicial considerations in place I define the classifying space of a

bicategory as follows:

Definition 2.6.7. Given a bicategory C consider its nerve, which is a simplicial

set as defined before:

NC : ∆op → Set.

The geometric realisation of this simplicial set then defines the classifying space

of C:
BC := |NC|.

We can understand opposing 1-cells as the opposition of simplicial objects by

precomposition with the reversal functor r : ∆→ ∆.

Lemma 2.6.8. The nerve of the bicategory Cop1 with reversed composition of

1-cells is isomorphic to the r-reversed simplicial set NC ◦ r:

NC ◦ r ∼= N(Cop1).

87



2 Bicategories of Matrices

Proof. This is immediate from the definition. The core point is that opposing

functors [n] → C does change the direction of 1-cells, but does not change the

direction of 2-cells, just their indexing.

Hence we find that the homeomorphism BC ∼= BCop extends to bicategories:

Lemma 2.6.9. The isomorphism Γ: ∆• → ∆• ◦ r extends to a natural homeo-

morphism:

Γ: BC → BCop1 .

So the homeomorphism interprets a sequence of n 1-cells in C as an n-sequence

of the opposed 1-cells.

Definition 2.6.10. For R a bimonoidal category with involution T define the

induced involution on its module bicategory as follows:

BM(R)
BM(T )// BM(Rµ)

B(·)t // BM(R)op1 Γ // BM(R).

Recall that transposition and the involution are covariant with respect to the

2-cells, so the 1-cells of the functors are opposed twice, but the 2-cells are never

opposed, so the constraints of F,G,H (for n ≥ 2) do not change their direction.

Remark 2.6.11. Chasing through the definitions and taking into account the

homeomorphism

BM(R) ∼=
∐
n

|BGLnR|,

where BGLnR is the bar construction on the monoidal category GLnR as defined

in [BDR, Definition 3.8], it is easy to see that this is precisely the same involution

as defined in [R].

2.7 Examples for Nerves of Bicategories

There is an integral class in degree 3, from which I can bootstrap my calculations

of the involution on V (1)∗K(ku). I can describe it easily as induced from a functor

Σ2S1 →M(VC), thus induced by a map S3 → K(Z, 3)→ K(ku). For this I want

to prepare some preliminaries on the nerve of bicategories. For this section recall

that we can understand the totally ordered set [n] = [0 < 1 < . . . < n] as a

1-category, thus as a bicategory with discrete morphism categories.
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Proposition 2.7.1. Let C be an arbitrary bicategory, and F : [n] → C a strong

normal functor. Then F is uniquely determined by its restriction to all 2-faces,

i.e., by all restrictions

[2]→ [n]→ C.

Such a system of pseudofunctors [2] → C determines a (unique) pseudofunctor

[n]→ C if and only if each four compatible 2-faces can be extended over [3]

(∂∆3 =)
∐

4[2]

��

// C

[3],

66

where the boundary can obviously not be made into a (bi)category, but we can still

express it as functors on the disjoint union subject to the appropriate compatibility

on 1-cells.

Proof. This follows by inspecting the definition of pseudofunctor carefully. The

data given by functors [2] → C precisely gives the compositor 2-cells, and the

condition on extending a functor on the boundary of [3] to all of [3] is precisely

the associativity condition on compositors 1.1.12.

The following result is classical and implicit in Section 5 of [Str2], where Street

even more generally considers nerves of n-categories for each n. However the

exposition is quite dated, so I want to phrase the specific result I need in the

context I set up here.

Proposition 2.7.2. The bicategory Σ2A with A an abelian (possibly topological)

group with one object ∗, one 1-cell id∗ and Σ2A(id∗, id∗) = A yields as classifying

space a double delooping of A, i.e., there is a homotopy equivalence

Ω2|NΣ2A| = A.

Thus define B2A = |NΣ2A|.
In particular, if A is a discrete group we get B2A = K(A, 2), and for A = S1

we have B2S1 = K(Z, 3), so Σ2S1 is a bicategory modelling a K(Z, 3).

Proof. We see immediately from the definition NΣ2A0 = NΣ2A1 = {∗}, as

well as NΣ2A2 = A. The functors ra,b,a+b : [0 < 1 < 2 < 3] → C with

ra,b,a+b(012) = a, ra,b,a+b(023) = b, ra,b,a+b(123) = a + b, ra,b,a+b(013) = idid∗ in-

troduce the relations of the Bar complex, thus we get that NΣ2A is a model for

the double delooping as claimed.
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2 Bicategories of Matrices

The Prototypical Class in H(MVC) = K(ku)

Definition 2.7.3. Consider the topologically enriched 1-category SX for X an

arbitrary topological space defined as

0 X // 1.

It is a category for arbitrary X, because no non-trivial compositions need to

be defined. The classifying space is the suspension of X, hence in particular

we can realise spheres by X = Sn, giving BSX = Sn+1. Call it the directed

suspension.

Example 2.7.4. Consider the categories VC andMC and the directed suspension

of the topological circle SS1. The functor u : SS1 → VC ⊂MC with u(0) = u(1) =

1 and the identity on morphisms realises the Bott class on classifying spaces

S2 →
∐
n

BGLnC→ ΩB

(∐
n

BGLnC

)
' BU × Z,

since the Bott class can be represented as

ΣS1 = ΣU(1)→ BU(1) ' CP∞ → BU⊗.

By the fact that the objects 0 and 1 are sent to the same object we get a

factorisation over the one-point suspension ΣS1, because S1 is an associative

monoid:

SS1

""

// VC

ΣS1,

OO

which on classifying spaces realises:

S2 //

&&

∐
nBGLnC // BU × Z

BS1 ' K(Z, 2).

OO

We can suspend these categories to bicategories analogously. Consider a 1-

category C, and define its directed suspension bicategory SC by

0 C // 1,
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where again we do not need a composition for 1-cells, hence objects of C. It

realises the (unreduced) suspension on classifying spaces, i.e., BSC = ΣBC.
In particular we get the following example.

Example 2.7.5. We can suspend the category SS1 to the bicategory SSS1 =

S2S1 realising S3 on classifying spaces. Thus we get a directed suspension of the

“Bott functor” above

Su : S2S1 → SVC.

In general the directed suspension of a bipermutative category includes into

the bicategory of matrices j : SR →M(R) by the inclusion: on objects j0(0) =

j0(1) = 2, on 1-cells: j1(r) =

(
1 r

1

)
, and the identification M(R)(j1r, j1s) ∼=

R(1, 1)×2×R(0, 0)×R(r, s), yields the inclusion j2 : R(r, s)→ {id1}×2×{id0}×
R(r, s) ⊂ R(1, 1)×2 ×R(0, 0)×R(r, s).

Example 2.7.6. For the suspended Bott functor we get

S2S1 → SVC →M(VC),

with the additional factorisation over the double one-point suspension Σ2S1,

which is a bicategory because ΣS1 is a monoidal category, because S1 is an abelian

group. So we get

S2S1

$$

//M(VC)

Σ2S1

OO

and thus on classifying spaces:

S3

&&

// BM(VC) // ΩB (
∐
BGLnVC)

B2S1 ' K(Z, 3).

OO

This is the class representing the Dirac Monopole in R3 considered as a 2 vector

bundle as described in [ADR].

We can simplify the discussion of the suspended Bott class as given in the

following section. Since it is given by a class over the multiplicative unit 1, its

1×1-matrix is weakly invertible, and we do not need to extend to 2×2-matrices.
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2 Bicategories of Matrices

2.7.1 The Involution on the Monopole S3 →M(VC)

The examples above determine a class a ∈ π3HM(VC) = π3K(ku), the Dirac

Monopole (cf. [ADR]), thus we can understand the involution on it.

Lemma 2.7.7. Consider the class ā ∈ π3K(ku) = K3(ku) represented by the

functor:

S1u : S2S1 →M(VC)

with S1 the functor which assigns matrix rank 1 to the objects j(0) = j(1) = 1, and

considers the 1-cells of S2S1 both as the 1× 1-matrix (1) in M(VC)1 It obviously

commutes with complex conjugation on 2-cells, while transposition has no effect.

So the diagram:

S2S1

S1u
��

S2S1 (·)2 //

S1u
��

S2S1

S1u
��

M(VC)
(·)t //M(VC)op1

(·)2 //M(VC)op1

strictly commutes.

Additionally observe that the functor S1 is oblivious to opposition of 1-cells,

because in a directed suspension this only amounts to relabelling source and

target object. In summary we find:

Theorem 2.7.8. On the class a ∈ π3K(ku) the internalised involution induced

by M(VC) is represented as the composite:

|NS2S1|
|N(·)2|// |NS2S1|

∼= // |N(S2S1)op1| = |Ñ(S2S1)| Γ // |N(S2S1)|.

In particular, the outer maps induce multiplication by −1 on a, thus the involution

induces the identity a 7→ a.

Proof. As above we see that the double directed suspension of S1 realises to

Σ2S1 = S3. The conjugation represents a reflection along an equator, thus has

degree −1.

For Γ consider non-degenerate simplices of maximal degree. These are precisely

given by functors [0 < 1 < 2] → S2S1 assigning for example 01 to the initial 1-

cell, 12 to the identity 1-cell, 02 to the terminal 1-cell, and choosing any x ∈ S1 as

compositor 2-cell. Abusively call such a functor x as well. Then the maximal cells

are parametrised as [x, (t0, t1, t2)]. Here Γ acts as: [x, (t0, t1, t2)] 7→ [x, (t2, t1, t0)].

In particular it has degree given by the sign of the transposition (02), which is

thus −1.
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Bipermutative Bicategories

In the previous chapters I convinced the reader that bipermutative bicategories

exist, and that they occur when one wants to study algebraic K-theory of a

bipermutative (1-)category. In particular, the primary example of this thesis

K(ku) can be described as the Eilenberg-MacLane-spectrum of the bicategory of

finitely generated free modules of finite-dimensional complex vector spaces:

K(ku) = HM(VC).

To tie this in with the calculations made by Christian Ausoni in the papers

[A-THH, AR1, A-Kku] we need a combinatorial handle on the E∞-structure on

K(ku) induced by the tensor-product on M(VC). To this end I modify the de-

looping given by Angélica Osorno in [Os] in a manner analogous to [EM] (cf. in

particular the paragraph after Definition 4.3.) so the resulting construction al-

lows an induced multiplication by the multiplicative structure of a bipermutative

bicategory. I do restrict to the case of E∞-structures, and also use a specific E∞-

operad, the Barratt-Eccles-operad in a tentative multicategory of permutative

bicategories.

The reader should compare the delooping of this chapter to the delooping in

section 6 of [GJOs]. The authors, however, are driven by the desire to generalise

[Th1] to permutative bicategories, thus their emphasis is different from mine.

This makes the deloopings differ in a few ways, which I suspect are inessential.

3.1 The Additive Grothendieck Construction

This section is where the work in 1.1.4 to rewrite the delooping construction

of [EM] becomes fruitful. Since the additive symmetric monoidal structure on

M(R) as described by [Os] is sufficiently strict that the Grothendieck construc-

tion 1.1.37 can be used for symmetric monoidal bicategories as well. So we need
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3 Multiplicative Delooping of Bipermutative Bicategories

to study which functors are adequate for the analogous construction of C(A+, n)

such that the delooping given by Osorno is the case n = 1 and such that we get

pairings 3.3.3

C(A+, n)× C(A+,m)→ C(A+, n+m),

which induces an E∞-multiplication on the resulting spectrum 3.3.16.

I again use the shorthand ObC = C0 and for 1-cells when I do not want to refer

to their source and target I write MorC = C1.

Remark 3.1.1. As indicated before �, i.e., block sum of matrices turns M(R)

into a permutative bicategory. The tensor-product does not.

Symmetric monoidal bicategories of the strict type of permutative bicategories

allow for the same construction of an associated C+ as in 1.1.37.

Lemma 3.1.2. A permutative bicategory C has an associated pseudofunctor

BC : Fin+ → Bicat,

given by BC(n+) = C×n and FC(f : n+ → m+) = f∗ : C×n → C×m, where f∗

is the strict functor f∗(c1, . . . , cn)j =
∑

i∈f−1j ci, with compositors given by the

additive symmetry: ϕf,g : f∗ ◦ g∗ ⇒ (fg)∗ as a strict natural transformation of

strict functors.

Proof. The proofs in 1.1.4 transfer without any problems when I restrict the

target to be the 2-category of bicategories with strict functors as 1-cells and

strictly natural transformations as 2-cells, which works because of the strictness

of permutative bicategories.

In particular the construction 1.1.37 translates literally:

Definition 3.1.3. Given a permutative bicategory (C,+, 0, c+) define its additive

Grothendieck construction C+ as follows: It has objects:

C+
0 =

∐
n≥0

C×n

and morphism categories:

C+((c1, . . . , cn), (d1, . . . , dm)) =
∐

f∈Fin+(n+,m+)

C×m(f∗(c1, . . . , cn), (d1, . . . , dm)),
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3.1 The Additive Grothendieck Construction

with composition functors given for a triple of objects a = (a1, . . . , an), b =

(b1, . . . , bm), c = (c1, . . . , cl) as:

C+(b, c)× C+(a, b)

∐
f,g C×l(g∗b, c)× C×m(f∗a, b)∐

id×g∗
��∐

f,g C×l(g∗b, c)× C×l(g∗f∗a, g∗b)∐
compCl

��∐
f,g C×l(g∗f∗a, c)

ϕ∗

��∐
f,g C×l((gf)∗a, c) ⊂ C+(a, c).

Identities are given by pairs (id, (id)) for id : n+ → n+ and (id) : (a1, . . . , an) →
(a1, . . . , an) the n-tuple of identities. In particular the identities are strict identi-

ties because the ones in C are strict.

The associator is given as follows: In each product bicategory Cl we have an

associator given by the l-tuple with the appropriate instances of the C-associator.

For this paragraph call this αl. Then consider the following two ways of forming

a three-fold composite for a, b, c as above and d = (d1, . . . , dk):

C+(c, d)× C+(b, c)× C+(a, b) //

��

C+(b, d)× C+(a, b)

��
C+(b, d)× C+(a, b) // C+(a, d).

So we need a natural transformation of the two composition-functors:

C+(c, d)× C+(b, c)× C+(a, b)⇒ C+(a, d),

which is defined on the category C+(a, d) =
∐

f Ck(f∗a, d), hence it has compo-

nents αk.

Remark 3.1.4. Let me issue a warning here: I have no idea what happens,

when one tries to apply the same construction to less strict symmetric monoidal

categories - even of the type I defined in 2.2.3. I strongly suspect, it involves a

lot more care.
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In particular this construction is not naturally set up with respect to the context

of bicategories, in that it is the Grothendieck construction of a functor into the 2-

category of bicategories with strict functors and strict natural transformations as

morphisms. Not every strong functor of symmetric monoidal 1-categories can be

made strict - consider for instance the strictification functor ε : (C,+)st → (C,+),

which augments the permutative strictification of an arbitary symmetric monoidal

category 1.1.2. Its suspension to bicategories 1.1.11 hence is an example of a

strong normal functor/pseudofunctor, which is not equivalent to a strict functor.

Remark 3.1.5. If the input bicategory C is in fact a 2-category, i.e., a bicategory

with associator-cells only identities, then C+ is a 2-category as well.

Remark 3.1.6. Do note that the subcategory of morphisms with only discrete

components is a strict 2-category, because its composition is just the one in Fin+.

Furthermore, just as in the 1-categorical case, we have that each morphism

1-cell in C+ can be written uniquely as:

c = (c1, . . . , cn)
(f,id) // f∗c

(idm,(A1,...,Am)) // (d1, . . . , dm).

3.2 A Multiplicative Delooping for Bicategories

Reminder 3.2.1. Because it features prominently in this chapter let me recall

the concept of an equivalence in a bicategory. It is a 1-cell, say A : a→ b, which

has a 1-cell in the other direction B : b→ a such that AB ∼= idb and BA ∼= ida. By

fixing directions and only demanding morphisms instead of isomorphism 2-cells

we arrive at the concept of adjoint 1-cells, but I do not need that here.

Example 3.2.2. Adjoint as well as equivalence 1-cells in our primary example

of interest M(Mk) are just permutation matrices. To see this first note that we

consider only isomorphism 2-cells, because we only have isomorphisms in Mk,

hence being adjoint and being equivalent is the same. Furthermore since Mk is

skeletal the existence of an isomorphism AB → idn already gives an equality of

the 1-cells, i.e., matrices, AB = idn, analogously for BA. Hence A and B are

strictly invertible matrices, both in GL(N), thus permutation matrices.

The natural analogue for bicategories of 1.1.4 is the following proposition:
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Proposition 3.2.3. There is a natural inclusion (Ceq1)+ → C+, where the bicat-

egory Ceq1 is the bicategory with the same objects as C, and morphism categories

on 1-cells only the equivalences and all 2-cells.

Furthermore there is a natural inclusion (Ceq1,iso2)+ → (Ceq1)+ → C+ where we

restrict to just equivalence 1-cells and isomorphism 2-cells.

The Construction C(A+, 1) for Permutative Bicategories

Many of the next considerations would probably work for bicategories with not

just isomorphism 2-cells, if one modifies the results appropriately. Most of the

time this means changing equivalences into adjunctions, which probably intro-

duces a lot more thought about when these 1-cells compose appropriately. But

since my emphasis is on delooping to a K-theory spectrum, in this chapter I only

consider bicategories with C = Ciso2 , hence also C+ = (Ciso2)+. This in particular

makes every adjunction in C already an equivalence.

To arrange the delooping bicategories as functor bicategories we need to under-

stand the forgetful functor C+ → Fin+ again, which yields a stronger assertion

for bicategories than for 1-categories.

Proposition 3.2.4. The forgetful functor U : C+ → Fin+, which assigns each

tuple of objects in C+, i.e., (c1, . . . , cn) to its finite pointed set n+ and on mor-

phisms (f, (A1, . . . , Am)) forgets down to the discrete component in finite pointed

sets f : n+ → m+, is a strict functor of bicategories.

Proof. This is trivially true, since the target is a 1-category, thus does not support

non-trivial compositor 2-cells.

Recall the “comma categories” introduced in 1.1.44: For an arbitrary finite set

A with added disjoint basepoint {∗} t A = A+ consider the category of pointed

maps under it, i.e., A+ ↓ Fin+ with objects maps from A+ to a natural number

n+ = {0, 1, . . . , n} = {∗} t {1, . . . , n}, and morphisms commutative triangles

under A+.

Recall that the index categories also have forgetful functors T : A+ ↓ Fin+ →
Fin+, which send each object to its target and forgets the commutativity of

triangles under A+.

This way I can define C(A+, 1) for permutative bicategories:
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3 Multiplicative Delooping of Bipermutative Bicategories

Definition 3.2.5. The bicategory C(A+, 1) has objects strong normal functors

that lift T through U

(Ceq1,iso2)+

U
��

A+ ↓ Fin+

77

T // Fin+,

i.e., send maps of finite sets under A+ to equivalences in C+.

The category of morphisms between two such lifts F,G is given by the mor-

phism category Bicat(J∗F, J∗G), with J : (Ceq1)+ → C+ the natural inclusion.

That is, we consider the morphism category with strong pseudonatural transfor-

mations, i.e., with isomorphism 2-cells but arbitrary 1-cells of C, and modifica-

tions between those comprised of isomorphism 2-cells.

Remark 3.2.6. Recall that a map of finite based sets f : A+ → B+ induces a map

of the indexing categories in the opposite direction f ∗ : B+ ↓ Fin+ → A+ ↓ Fin+,

which is a functor over T : B+ ↓ Fin+ → Fin+. By restricting lifting functors from

A+ ↓ Fin+ to B+ ↓ Fin+ along f ∗ we thus get lifting functors from B+ ↓ Fin+, so

in summary a strict normal functor f∗ : C(A+, 1)→ C(B+, 1) in the same direction

as f .

Since in what follows the subbicategory of C+ with just equivalence 1-cells is the

central object, I reduce the notation to Ceq+ to refer to the additive Grothendieck

construction on the subbicategory of equivalence 1-cells and isomorphism 2-cells

of a permutative bicategory (C,+).

Remark 3.2.7. Again consider in A+ ↓ Fin+ the “full”, actually discrete, sub-

category given by characteristic functions χa : A+ → 1+ with χa(x) = ∗ for x 6= a

and χa(a) = 1. This yields a natural inclusion:

χ• : A
δ → A+ ↓ Fin+.

On the other hand we have the subcategory of A+ ↓ Fin+ given by objects the

bijections and morphisms between them. This gives an inclusion of the translation

category associated to the bijections of A, or equivalently pointed bijections of

A+

EΣA → A+ ↓ Fin+.

This inclusion embeds the full subcategory of initial objects of A+ ↓ Fin+, since

each map under A+ can be factored uniquely through a bijection. In particular
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I do not refer to these initial objects as initial again, because the isomorphisms

between them are prominent in the delooping.

The delooping is supposed to be a generalisation of the classical delooping of

(topological) abelian groups, so we should expect the objects to be determined

by their “summands”. The following proposition should thus not be surprising,

parallel to the analogous statement in 1.1.4.

Proposition 3.2.8. Any pseudofunctor lifting T through U has a unique up to

equivalence strict representative. More precisely: Any two functors with the same

restrictions along χ• are naturally equivalent in C(A+, 1).

Proof. Choose a total ordering on A, hence a bijection σA : A+ → |A|+, and

consider a lifting functor F : A+ ↓ Fin+ → (Ceq)+.

By the assumption that F sends 1-cells to equivalences we have an equivalence

in the product bicategory C×|A| of the form FσA → (Fχa)a∈A+ given by the

components associated to the diagrams in A+ ↓ Fin+:

A+
σA //

χa

""

|A|+
ρa

��
1+.

So the equivalence is given by (id|A|, (F
Cρa)a∈A) in C×|A| ⊂ C+, for F C the C-1-

cells of the equivalence without their discrete components ρa in C+. Choose an

inverse to this equivalence in the product category, hence ζaF
C(ρa) ∼= idFχa with

the analogous isomorphism for the other composition of ζa with F C(ρa).

Build the strict representative as follows: F st(σA) := (Fχa)a∈A. Any other

object of A+ ↓ Fin+ has a unique morphism coming from σA, so for p ∈ A+ ↓ Fin+

set F st(p) := (p ◦ σ−1
A )∗(F

st(σA)) ∈ C×|Tp|. Again drop σ−1
A from the notation for

instance by assuming A+ totally ordered, thus a unique element of Fin+ itself.

For a commutative triangle under A+:

A+
p //

qp

""

n+

q

��
m+

we need to have a morphism

F st(p) = p∗(F
st(σA))→ q∗p∗(F

stσA)→ (qp)∗(F
st(σA)) = F st(qp),
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which by construction of C+ we can take to be (q, ϕq,p), and this is obviously a

morphism over q in Epi+. So we have constructed F st as a lift of T through U ,

which sends each commutative triangle inA+ ↓ Fin+ to morphisms in C+ with just

discrete components and additive symmetries. In particular we can choose F st

with identity 2-cells, and thus have a strict normal functor, because the additive

symmetries were assumed to be strictly natural for permutative bicategories.

By the decomposition of 1-cells in C+, we can uniquely write the map F (p ◦
σ−1
A ) : F (σA)→ F (p) as its discrete component followed by a 1-cell with discrete

component the identity

FσA
(p,id)// p∗FσA

(id,FC(p◦σ−1
A ))

// Fp .

So we have in C+ with the equivalence 1-cells ζa as chosen before:

F stp = p∗((Fχa)a∈A)
(id,p∗((ζa)a)) // p∗FσA

(id,FC(p◦σ−1
A ))
// Fp,

which we can promote to a pseudonatural transformation by choosing as the

naturality 2-cells the inverses of the adequate compositor 2-cells F . This trans-

formation then trivially commutes with the strict compositor of F st and the ones

of F , and has as 1-cells equivalences by construction. So we have established a

pseudonatural equivalence F st ' F, which only depended on data coming from

F, while F st even only depended on the restriction of F along Aδ → A+ ↓ Fin+,

hence is as unique as claimed.

Remark 3.2.9. At this point let me informally compare this construction to

the one displayed in the proof of Theorem 3.6 in [Os]. The objects as described

there are strict functors (A+ ↓ Fin+)op → C+, so precisely the chosen inverse

equivalences ζ I just described. For notational convenience let me treat them as

if the functors in [Os] were written down as covariant functors A+ ↓ Fin+ → C+.

The passage to the strict representative as I indicated above shows that each

pseudofunctor A+ ↓ Fin+ → Ceq+ lifting T through U is naturally equivalent to

one that is not just a strict functor, but also just comprised of discrete compo-

nents. So we can include the functors described by Osorno into C(A+, 1) and

find that the strict representative is of the kind described in [Os], so we get a

surjection up to equivalence, which by inspection of the 1- and 2-cells described

in that same proof is also an equivalence on the morphism categories. (Most

specifically she describes the construction on n, which is n+ in my convention, so

a subbicategory of C(n+, 1).)
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3.2 A Multiplicative Delooping for Bicategories

I chose the morphism categories in the delooping construction just so that this

equivalence is true.

The passage to the strict representative is sufficiently natural that the typical

delooping result is an easy corollary:

Corollary 3.2.10. We have a natural equivalence of bicategories:

(·)st : C(A+, 1)→ CA.

Proof. We know that CA is strictly equal to the bicategory of functors Aδ → C+

and we can restrict each functor to its components on (χa)a∈A, which is precisely

Aδ as a full subcategory of A+ ↓ Fin+. So the inclusion of the product bicategory

by the functor, which sends each tuple to a lifting functor which is its own strict

representative, is an inverse equivalence for (·)st. On the left we find that the

natural equivalence to the identity is just the one described at the end of the

proof before. On the right we have: Making a tuple into a strict functor and then

restricting to its χa-summands is strictly equal to the identity functor on CA.

Remark 3.2.11. This is the initial step in the induction to prove the analogous

equivalence for the higher delooping bicategories C(A+, n).

3.2.1 The Construction C(A+, n) for Permutative Bicategories

This section is where the rewriting of the delooping constructions of [EM] and

[Os] in 1.1.4 and the section before comes to fruition, because this way it easily

generalises to using (A+ ↓ Fin+)×n as the index category, and letting coherence

2-cells take care of themselves by using pseudofunctors.

Recall from 1.1.4 the target functors Tn : (A+ ↓ Fin+)n → C+ given in 1.1.58:

We have the analogous definition of C(A+, n) for bicategories.

Definition 3.2.12. For a permutative bicategory (C,+) the delooping bicategory

C(A+, n) has as objects strong normal functors F lifting Tn through U :

(Ceq)+

U

��
(A+ ↓ Fin+)n

F
77

Tn
// Fin+.

Its morphism bicategories are again the pseudonatural transformations and mod-

ifications of the functors after including by (Ceq)+ → C+.
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Remark 3.2.13. Do note that as in the case in 1.1.4 the delooping bicategories

C(A+, n) have a canonical basepoint object given by the functor On, which has

as objects the adequate zero-tuples of each degree and morphisms consisting of

the adequate discrete components with id0 as its second component.

Remark 3.2.14. Since for n = 1 we do not have to choose bijections for the

smash product in Fin+ the functor T1 is strictly the same as T in the section

before, in particular I described the same bicategory of functors.

It is consistent to set C(A+, 0) = C, since (A+ ↓ Fin+)0 = ∗ is the one-point

category.

Remark 3.2.15. Apart from an opposition of the indexing category A+ ↓ Fin+

this definition would read “strict normal” functors in the delooping considered by

[Os], which works well there because the additive structure is strict enough. Since

I want to induce a multiplicative structure from a symmetric monoidal structure

as given by � in 3, which prominently features a pseudofunctor which is usually

not strict, I need to consider more generally all strong normal pseudofunctors

with possibly non-trivial compositor 2-cells.

It is possible to give an explicit construction of the delooping bicategories of

a permutative bicategory along the lines of [EM] and [Os]. However, since the

tensor functor I describe in 2.3.1 has a non-trivial isomorphism 2-cell I cannot

restrict to strict additors the way Osorno does in [Os, Proof of Theorem 3.6, p.

11], but have to allow potentially non-trivial isomorphism 2-cells. This becomes

unwieldy in the explicit construction, so I arranged the delooping by functor

bicategories, analogous to the rewriting of [EM] I present in 1.1.4 above. In par-

ticular the construction runs parallel to the 1-categorical case, with equivalences

inserted where there are isomorphisms for permutative 1-categories.

Remark 3.2.16. At this point an informal comparison to [EM] is convenient. For

the case of bicategories with discrete morphism categories (or actually topological

spaces or simplicial sets, which are discrete as 1-categories, but possibly non-

discrete as spaces,) we can compare to Construction 4.4. on page 19 of [EM].

The systems described there are indexed over arbitrary product categories (A1 ↓
Epi+) × . . . × (An ↓ Epi+). By passing their based systems of subsets S =

(S1, . . . , Sn) to their unbased components we can associate to each such subset a

characteristic map, and thus an object in Ai ↓ Epi+. The additors ρ described

there are then given under the condition that we can factor a characteristic map

over 2+, and hence we get an associated map for this 2+ → 1+-component.
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3.2 A Multiplicative Delooping for Bicategories

Condition (1) is then the fact that the wedge at the basepoints of the index-

categories Ai ↓ Epi+, which is given by tuples of maps, which have any component

mapping to 0+, smashes to 0+ and is hence sent to 0+ by Tn. Condition (2) is

the normality of the functor, i.e., strictly respecting identities. Condition (3)

expresses the fact that the choice of which subset to map to which element in

2+ should not matter. Condition (4) is simply the functoriality, as in respecting

composites strictly, because the context in [EM] are enriched 1-categories, and

last condition (5) is by construction of C+ and by the remark 1.1.41, which still

applies for the additive Grothendieck construction on even general bicategories,

also just strictly respecting composites. Here 1 + c+ + 1 is the twist needed to

express the following trivially commutative diagram in Epi×2
+ :

2+ ∧ 2+
//

��

1+ ∧ 2+

��
2+ ∧ 1+

// 1+ ∧ 1+,

by flattening it with the bijections ω chosen before, such that we have get indexing

sets appropriate for summations. Morphisms are the appropriate stricter version

of the ones considered in [Os] as well, so the same remarks apply.

In particular do note that C(A+, n) could easily be generalised to n different

indexing categories, but since the resulting spectrum is defined by inserting S1

for each A+, I chose to reduce to the case with equal inputs.

As indicated at the end of the last section I prove the equivalence of C(A+, n) to

the appropriate product bicategory by displaying the inductive step in construct-

ing the equivalence. For this let me emphasise that for arbitrary bicategories

(possibly enriched) we have the following simple case of the exponential law, for

A,B sets considered as discrete categories, hence bicategories:

Fun(A,Fun(B, C)) ∼= Fun(A×B, C) ∼= CA×B.

In particular I can reduce the index juggling quite a bit by proving this form of

the following theorem.

Theorem 3.2.17. For (C,+) a permutative bicategory we have the following

natural equivalence of bicategories:

C(A+, n) ' Set(A, C(A+, n− 1)).

Inductively we find the natural equivalence:

C(A+, n) ' CA×n .
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3 Multiplicative Delooping of Bipermutative Bicategories

Proof. The functor C(A+, n)→ Set(A, C(A+, n−1)) is – as in the case of permuta-

tive 1-categories – given by restricting along (A+ ↓ Fin+)n−1×Aδ → (A+ ↓ Fin+)n

with one component the inclusion of A as the full discrete subcategory of char-

acteristic functions χa in A+ ↓ Fin+.

The same reasoning as for C(A+, 1) before yields for each functor in C(A+, n)

a strict representative, which in this case means strict with respect to one of the

A+ ↓ Fin+-factors, for instance the last one as described above. So the restriction

has an inverse functor given by extending an A-tuple of functors in C(A+, n− 1),

by sending the maps in the last factor to the appropriate discrete components in

C+, and thus summing up the functors according to the chosen bijections.

Furthermore we have the following generalisations of the analogous results in

1.1.4.

Proposition 3.2.18. For each n ∈ N we have a strictly natural strict Σn-action

on C(A+, n), given by permuting the inputs and pushing forward with the induced

symmetry χ∧ of Fin+ in C+.

Proposition 3.2.19. For each pointed finite set A+ we have natural strict ex-

tension functors

A+ ∧ C(A+, n)→ C(A+, 1 + n),

which are Σ1 × Σn-equivariant.

Both proofs essentially proceed as the case for 1-categories, where the strict-

ness of the functors is a consequence of the fact that they only use the discrete

components in C+, which are part of the included 2-category on all objects but

just discrete morphisms.

Remark 3.2.20. The extension functors as well as the Σn-action of the propo-

sitions above strictly respect the basepoint functors O. For the extension this is

obvious, since we extend functors by zeroes. For the symmetric action observe

that in particular the assignment on objects gives constant tuples, which are

hence invariant under permutations.

The delooping construction C(A+, n) is directly comparable to Osorno’s de-

looping [Os] by restricting the source of the lifting functors.

Proposition 3.2.21. For two finite pointed sets A+, B+ we have a functor

A+ ↓ Fin+ ×B+ ↓ Fin+ → (A+ ∧B+) ↓ Fin+,
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3.2 A Multiplicative Delooping for Bicategories

which by the canonical identification A+∧B+
∼= (A×B)+ is an indexing category

for the construction C( , 1).

Proof. By choosing an identification k+ ∧ l+ ∼= kl+, i.e., a total ordering on

binary products, for instance the lexicographic order, we get a smash product

functor on Fin+. Thus we map a pair of morphisms f : k+ → l+, g : m+ → n+ to

f ∧ g : km+ → ln+.

Analogously on objects, for a pair p : A+ → k+ and q : B+ → l+, we can

consider their product p × q : A+ × B+ → k+ × l+ composed with the canonical

projection k+ × l+ → kl+ to the smash product. This factors over (A × B)+ =

A+ ∧B+.

Thus the above assignments define a functor, since the smash product on Fin+

is a functor.

Corollary 3.2.22. For any finite pointed set A+ we have a natural functor

(A+ ↓ Fin+)×n → A+
∧n ↓ Fin+.

Proposition 3.2.23. Restricting a functor F ∈ C((A+)∧n, 1) along the functor

S : (A+ ↓ Fin+)×n → A+
∧n ↓ Fin+ gives an element of C(A+, n).

Proof. Reconsider the definition of Tn as in 1.1.58: For T : A+ ↓ Fin+ → Fin+

the forgetful functor assigning to each object p : A+ → n+ its target n+ and to

each commutative triangle f : p→ fp the map f we set Tn to be

(A+ ↓ Fin+)n → Finn+ → Fin+

with first map (T )n and second map the n-fold smash product.

This factors as:

(A+ ↓ Fin+)n
(T )n //

S
��

Finn+

∧
��

(A+)∧n ↓ Fin+
T // Fin+.

Thus a functor F : A+
∧n ↓ Fin+ → C+ satisfying UF = T trivially satisfies

UFS = TS, which by the commutative square above gives UFS = TS = Tn, so

FS is an element of C(A+, n).

Finally to tie the delooping categories in with the delooping constructed in [Os]

we need the following equivalence:
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Theorem 3.2.24. Smashing the source category (A+ ↓ Fin+)n → (A+)∧n ↓ Fin+

induces a natural strict restriction functor

S∗ : C((A×n)+, 1)→ C(A+, n),

which is a natural equivalence of bicategories.

Proof. Recall the statement and proof of corollary 3.2.10: Specifically for the

delooping bicategories C((A×n)+, 1) and C(A+, n) we find that the natural inclu-

sions (A×n)+
δ → (A+ ↓ Fin+)n and (A×n)+

δ → (A+)∧n ↓ Fin+ – each identifying

(A×n)+
δ

as a discrete subcategory of the respective indexing categories – fit into

a commutative triangle:

(A×n)+
δ

ww ''
(A+ ↓ Fin+)n S // (A×n)+ ↓ Fin+.

Since restriction along the diagonal arrows of this triangle each give equivalences

of bicategories by 3.2.10, we find that S∗ also is an equivalence of bicategories.

3.3 The Multiplicative Structure on C(A+, n)

Let me reiterate that I only consider multiplicative structures as induced on

matrices for a bipermutative coefficient category R. Hence I restrict to the E∞-

case and by choosing the Barratt-Eccles-operad as in [EM, p. 16, Theorem 3.7] I

can avoid constructing a multi(bi)category-structure for permutative bicategories.

To understand how a bipermutative structure induces a multiplication on the

delooping bicategories C(A+, n) I have to fix a multiplication on C+ and compati-

ble target functors Tn. The induced multiplication on C+ is a direct generalisation

from the case of 1-categories, so I repeat the proof to keep track of strictnesses

and genuine 2-cells.

Theorem 3.3.1. Consider a bipermutative bicategory (see 2.4.3) (C,+, ·). Fix a

smash product on Fin+, then we have a symmetric monoidal structure � on C+

making the forgetful functor strictly symmetric monoidal

U : (C+,�)→ (Fin+,∧).
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Proof. Do the same on objects as in 1.1.4:

(c1, . . . , cn) � (d1, . . . , dm) = (cidj)ω(i,j),

where the multiplication on the right is the multiplicative structure of the biper-

mutative bicategory (C,+, ·). Again the subtlety is the definition on morphisms.

For this consider first the following objects in C+:

(f × g)∗(c� c̄)ω(i,j) =
∑

ω(k,l)∈(f×g)−1(ω(i,j))

ckc̄l,

and analogously:

(f∗c� g∗c̄)ω(i,j) = (f∗c)i · (g∗c̄)j =

 ∑
k∈f−1i

ck

 ∑
l∈g−1j

c̄l

 .

By 2.4.3 we find a unique structural map Df,g comprised of isomorphism 1-cells

(given for instance here by first all left reductions, then all right reductions)

(f × g)∗(c� c̄) =
∑
k,l

ckc̄l →
∑
k

(
ck

(∑
l

c̄l

))

→

 ∑
k∈f−1i

ck

 ∑
l∈g−1j

c̄l

 = f∗c� g∗c̄,

which is given by composites of distributors, and uniquely determined by the

summations of f and g. Hence for two maps in C+:

(f, (a1, . . . , am1)) : c = (c1, . . . , cn1)→ d = (d1, . . . , dm1),

(g, (b1, . . . , bm2)) : c̄ = (c̄1, . . . , c̄n2)→ d̄ = (d̄1, . . . , d̄m2),

we set their product to be the following composite:

c� c̄ = (cic̄j)
(f×g)∗// (

∑
ckc̄l)

Df,g // (
∑
ck) (

∑
c̄l)

ai·bj // (di · d̄j).

The map � respects identity 1-cells strictly, because · was assumed to be

normal 2.4.3. Since f, g are part of the data of morphisms in C+, the structural

morphism (f × g)∗ is strictly natural. Since the distributors in 2.4.3 are strict

natural transformations, Df,g strictly commutes with genuine morphisms of C as

well. Thus only the appropriate products of compositor 2-cells for · yield the
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compositor for � with no additional 2-cells introduced by either (f × g)∗ or Df,g.

So we have a strong normal functor

� : C+ × C+ → C+.

Since 1+ is a strict unit object for ∧ on Fin+, the 1-tuple (1) ∈ C+ with entry

the multiplicative unit of C yields a strict unit object in C+.

The functor � is strictly associative: visibly on objects precisely because the

bijections for the smash-product in Fin+ are chosen that way, and because the

multiplication on C was assumed strictly associative. Because of the strict identity

of functors for triple products that · on C satisfies by assumption, we get strict

associativity for � as a strict functor identity on C+.

Finally the multiplicative symmetry transformation is given as follows. Let the

symmetry in Fin+ with respect to ∧ be χ, then the 1-cell for the symmetry of �

is the composite:

c� d = (cidj)ω(i,j)
χ // (cidj)ω(j,i)

c·1 // (djci)ω(j,i) = d� c.

Since the symmetry χ introduces no 2-cell, the 2-cell for the symmetry of � is

thus given as the appropriate product of the symmetry 2-cells of · in C.
The symmetry squares to the identity strictly, since the symmetries of (Fin+,∧)

and (C, ·) do. It satisfies the two diagrams for triple products strictly for the same

reason.

For the final claim we only need to observe that the discrete components of the

functor � and its symmetry c� are modelled just so that the forgetful functor

U : C+ → Fin+ is strictly symmetric monoidal.

Remark 3.3.2. Since I have established that a bipermutative structure gives a

functor over the smash-product functor ∧ : Fin+ × Fin+ → Fin+ I strongly con-

jecture that this could be used to make bimonoidal and bipermutative categories

much more explicit in the context of ∞-categories. Compare this for instance

to (p. 149) Definition 2.1.3.7 in [Lu2] and more directly to (p. 136) Definition

2.0.0.7, where Lurie defines a symmetric monoidal ∞-category just so that by

adding in all morphisms of Fin+ into C+ the map U : C+ → Fin+ exhibits its

nerve NC+ as a symmetric monoidal ∞-category, and by 2.1.3.7 � as a symmet-

ric monoidal functor.

The multiplication on C+ induces a pairing of the delooping bicategories.
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Theorem 3.3.3. Given a bipermutative bicategory (C,+, ·) the delooping bicate-

gories C(A+, n) have a pairing pseudofunctor:

µn,m : C(A+, n)× C(A+,m)→ C(A+, n+m),

which is strictly natural in A+, and Σn × Σm-equivariant.

Furthermore the pairing strictly satisfies µ(On, ) = µ( , Om) = On+m, i.e.,

pairing with the zero-functor yields the constant map to the zero-functor On+m ∈
C(A+, n+m).

Proof. By the propositions before we know that we can pair two lifting func-

tors Fn : (A+ ↓ Fin+)n → C+ and Gm : (A+ ↓ Fin+)m → C+ by the symmetric

monoidal structure on C+ to give �∗(Fn, Gm) : (A+ ↓ Fin+)n+m → C+×C+ → C+,

which is evidently compatible with the Σn-operation on Fn and the Σm- opera-

tion on Gm independently, thus with Σn×Σm as a whole. Furthermore evidently

�∗(On, ) = �∗( , Om) = On+m, since the zero-functor acts as a strict zero for �,

which is induced by · on the bipermutative bicategory.

Since the symmetric monoidal structure of C+ is defined over the forgetful

functor U : C+ → Fin+ such that it becomes strictly symmetric monoidal, the

resulting functor lifts the map

(A+ ↓ Fin+)n × (A+ ↓ Fin+)m
Tn×Tm// Fin+ × Fin+

∧ // Fin+,

which by 1.1.58 is the same as Tn+m. Hence the resulting functor is in C(A+, n+

m).

The same description applies to 1- and 2-cells, since I did not need to refer to

1-equivalences to define the symmetric monoidal structure on C+. Hence we have

a strict symmetric monoidal inclusion (Ceq)+ → C+, and can extend the product

to 1- and 2-cells. By applying the compositor of · appropriately componentwise

we get the compositor 2-cell for µ.

Strict naturality in the pointed set is a consequence of the fact that a map of

pointed finite sets f : A+ → B+ induces a strict normal 1.1.13 functor C(A+, n)→
C(B+, n) by pulling the category B+ ↓ Fin+ back along f to A+ ↓ Fin+ and then

pulling back functors along this pullback. In particular it is restriction of the

source category, hence the multiplication is strictly natural in A+.

Remark 3.3.4. Do note that by convention C(A+, 0) = C, so for (C,+, ·) biper-

mutative we trivially have a map η0 : ∗ → C(A+, 0) sending the object to 1 and

its identity.
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Furthermore by the extension A+×C(A+, 0)→ C(A+, 1) we get a map η1 : A+
∼=

A+×{1} → C(A+, 1), which hence sends a pair (a, 1) to the functor, which is the

tuple (1) at ρa : A+ → 1+ with zeroes adequately added everywhere else.

In particular for (C,+, ·) we can rewrite the extension maps A+ × C(A+, n)→
C(A+, 1 + n) as the multiplication with η1:

A+ × C(A+, n)→ C(A+, 1)× C(A+, n)→ C(A+, 1 + n).

The pairing inherits strict associativity from the strict associativity of (C, ·).

Proposition 3.3.5. For (C,+, ·) a bipermutative bicategory the pairing of 3.3.3

is strictly associative, i.e.,

C(A+, l)× C(A+,m)× C(A+, n) //

��

C(A+, l)× C(A+,m+ n)

��
C(A+, l +m)× C(A+, n) // C(A+, l +m+ n)

is strictly commutative for each pointed finite set A+ and natural numbers l,m, n.

Proof. This follows from the strict associativity of the chosen bijections ω : n ×
m → nm making the monoidal structure on C+ with ((ci), (dj)) 7→ (ci · dj)ω(i,j)

strictly associative, because · is strictly associative.

By rewriting the extension maps as above we get the following corollary:

Corollary 3.3.6. The pairings commute with extension maps strictly, i.e., there

is a unique pairing of the form

C(A+, n) ∧ A+ ∧ C(A+,m) // C(A+, n+ 1 +m).

Definition 3.3.7. For σ ∈ Σn define the map:

µσ : C(A+, k1)× . . .× C(A+, kn)→ C(A+,
∑
i

kσ−1(i))

as the composite of the symmetry in (Bicat,×)

c×σ :
∏
i

C(A+, ki)→
∏
i

C(A+, kσ−1(i))
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followed by the n-fold pairing (uniquely determined by the proposition above):∏
i

C(A+, kσ−1(i))→ C(A+,
∑
i

kσ−1(i)).

Remark 3.3.8. By definition of µ• we have a functor

Σn ×

( ∐
k1+...+kn=N

C(A+, k1)× . . .× C(A+, kn)

)
→ C(A+, N)

with Σn considered as a discrete category, which factors as

Σn ×Σn

( ∐
k1+...+kn=N

C(A+, k1)× . . .× C(A+, kn)

)
→ C(A+, N).

Furthermore since we established that binary multiplication becomes the con-

stant map to the zero-functor, if one parameter is the zero-functor, we find that

each µ• becomes the constant map if one parameter is restricted to the zero-

functor.

Finally I want to state the E∞-commutativity in its binary form for clarity

before summarising the E∞-structure in 3.3.16.

Proposition 3.3.9. For a bipermutative bicategory (C,+, ·), a finite pointed

set A+ and two natural numbers n,m the two pairings µid, µ(12) : C(A+, n) ∧
C(A+,m)→ C(A+, n+m) are pseudonaturally isomorphic.

Furthermore the pseudonatural isomorphisms inherent the coherence of the ·-
symmetry in that for each two σ, τ ∈ ΣN there is a unique composite pseudonat-

ural isomorphism µσ ⇒ µτ of pairings

C(A+, n1) ∧ . . . ∧ C(A+, nN)→ C(A+,
∑
i

ni).

Proof. The 1-cells of the pseudonatural transformation consist of (χn,m, c
1
· ) with

χn,m the block permutation shifting the first n elements of n+m past the last m

elements, and c1
· the 1-cell of the pseudonatural symmetry for (C, ·).

In particular by 2.2.3 we already see that each 1-cell is a strict isomorphism,

which squares to the identity, thus we only need pseudonaturality. The pseudo-

naturality 2-cell is given accordingly by (id, c2
· ).

Furthermore we see immediately that the coherence of c· promotes to the co-

herence claimed above.
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3 Multiplicative Delooping of Bipermutative Bicategories

Reminder 3.3.10. For 1-categories C,D that natural transformations η : F ⇒ G

are in a natural one-to-one correspondence with functors H : C × I → D.

Specifically, the functors F,G are restrictions of H to the objects 0, 1 ∈ I

respectively, while the components of the natural transformation η are the arrows

H(c, 0→ 1) = ηc. Naturality of η is then equivalent to H being a functor, because

C × I is a product-category.

Remark 3.3.11. For C,D bicategories the above correspondence generalises

to pseudonatural transformations, which are in one-to-one correspondence with

pseudofunctors. However, since for pseudofunctors the compositor 2-cells fill tri-

angles, while the 2-cell involved in the pseudonaturality condition fills a square,

we actually get (at least) two correspondences by fixing one or the other triangle

in the diagramme

H(c, 0) //

%%��

H(d, 0)

��
H(c, 1) // H(d, 1)

to be filled with the compositor 2-cell.

The same correspondence establishes that a pseudonatural transformation is

strictly natural, i.e., has only identity 2-cells, if and only if its associated pseud-

ofunctor is a strict functor.

To introduce the specific E∞-coherences for the pairing on the delooping bi-

categories, recall the Barratt-Eccles operad in 1-categories (cf. [EM, p. 15]).

Definition 3.3.12. For any discrete set M define its translation category EM

as follows: Its objects are the elements of M , its arrow set is M × M , where

(s, t) : s → t with composition (t, u) ◦ (s, t) = (s, u) and identities (u, u) for

an object u ∈ M . By definition each object is initial and terminal, hence the

classifying space of EM is contractible for any M .

Moreover for G a group we have a canonical action EG × G → EG by the

assignment (s, t).g := (sg, tg).

We can by coherence of the pseudonatural isomorphisms in 3.3.9 extend the

map

Σn ×Σn

( ∐
k1+...+kn=N

C(A+, k1)× . . .× C(A+, kn)

)
→ C(A+, N)

over EΣn as follows:
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3.3 The Multiplicative Structure on C(A+, n)

Corollary 3.3.13. The n-fold pairing

µ : Σn ×Σn

( ∐
k1+...+kn=N

C(A+, k1)× . . .× C(A+, kn)

)
→ C(A+, N)

extends to a pairing

µE : EΣn ×Σn

(∐
C(A+, k1)× . . .× C(A+, kn)

)
→ C(A+, N).

Proof. Since we want to extend the assignment µ, we can define µE at each object

of EΣn by µ. Locally, i.e., for each arrow (s, t) ∈ EΣn, we set µE( , (s, t)) to be

the canonical pseudonatural 1-cells for µs ⇒ µt as established in 3.3.9.

By analogy with 3.3.11 fill in the upper right triangle with the pseudonaturality

2-cell for the canonical pseudonatural isomorphism µs ⇒ µt.

This assignment defines a normal functor (i.e., one pointed at identity 1-cells)

because c1
· strictly squares to the identity by 2.2.3. The compositor 2-cells are

coherent, because the two diagrams:

µE(s, F1, . . . , Fn) //

�� ))

µE(s,G1, . . . , Gn)

��
µE(t, F1, . . . , Fn) //

�� ))

µE(t, G1, . . . , Gn)

��
µE(u, F1, . . . , Fn) // µE(u,G1, . . . , Gn)

µE(s, F1, . . . , Fn) //

�� %%

µE(s,G1, . . . , Gn)

��
µE(u, F1, . . . , Fn) // µE(u,G1, . . . , Gn)

with each upper right triangle filled by the pseudonaturality 2-cells express that

there is a unique ·-symmetry from an s-permuted input to an u-permuted input.

In particular, the composite twist factored over a t-permuted input produces the

same multiplicative twist. Do note that all the other triangles are filled with

identities, including the ones expressing the equalities E((t, u), ) �E((s, t), ) =

E((s, u), ), so that the above prism with base a triangle degenerates to just three

(potentially) non-trivial 2-cells.
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3 Multiplicative Delooping of Bipermutative Bicategories

Reminder 3.3.14. Since the Σ∗-module (EΣn)n in fact is an operad, we have a

multiassociative, Σ∗-equivariant, and unital multicomposition:

EΣN × EΣk1 × . . .× EΣkN → EΣ∑
i ki
.

I refer to this as block sum composition as it is given by application of the functor

E to the multicomposition

ΣN × Σk1 × . . .× ΣkN → Σ∑
i ki
,

which can be described as

(σ, τ1, . . . , τN) 7→ σ〈k1, . . . , kN〉 ◦ (τ1 � . . .� τN)

for σ〈k1, . . . , kN〉 the permutation that permutes the N blocks of length ki by

exchanging the blocks according to σ, and � a disjoint union functor on finite

sets as in 1.1.7.

Proposition 3.3.15. The EΣ∗-extensions of the pairings of delooping bicate-

gories for a bipermutative bicategory (C,+, ·) of the above corollary make the

following multiassociativity-diagram commute

EΣN × (
∏

iEΣki)×
(∏

j C(A+, l
i
j)
) ∼= //

��

EΣN ×
∏

i

(
EΣki ×

∏
j C(A+, l

i
j)
)

��
EΣ∑

i ki
×
∏

i

∏
j C(A+, l

i
j)

,,

EΣN ×
∏

i C(A+,
∑

j l
i
j)

��
C(A+,

∑
i,j l

i
j)

for all natural numbers N, ki, l
i
j.

Proof. By the specific structure of EΣ∗ and the definition of the pairings µσ by

equivariance, we can reduce to the case, where each object in EΣ∗ is the identity,

which is just the strict associativity of the pairings. Since morphisms in the

EΣ∗ are uniquely determined by their source and target, and the pseudonatural

isomorphisms of 3.3.9 are coherent, this extends to the morphisms as well.

I want to again suppress the operadic context for the E∞-structure and instead

display what comprises the algebra structure of C(A+, •) over EΣ∗, including its

coherences.
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3.3 The Multiplicative Structure on C(A+, n)

Theorem 3.3.16. Given a bipermutative bicategory (C,+, ·) the resulting pairing

of delooping categories from the theorem above:

µn,m : C(A+, n)× C(A+,m)→ C(A+, n+m)

is E∞ in the following sense (cf. the definition of a commutative symmetric ring

spectrum as in [Schw2, p. 9], as well as [MayE∞, pp. 66-68]):

• It is strictly associative, i.e., we get a well-defined triple product for every

n,m, l ∈ N as a strict identity of strong normal functors:

µn,m+l ◦ (id×µm,l) = µn+m,l ◦ (µn,m × id).

• The functor {∗} → 1 ∈ C ⊂ C+ considered as an element of C(A+, 0) is a

strict unit, turning µ0,n = µn,0 = idC(A+,n) into a strict identity of functors.

• We have a natural central map ι1 : A+ → C(A+, 1) given by

ι1(a)(p : A+ → k+) =

1, if a /∈ p−1+,

0, if a ∈ p−1+,

with structural maps being given either by identities 0 + 0 = 0 or 1 + 0 =

0 + 1 = 1, hence strict identities. Centrality means that we have a strict

equality of the functors

A+ × C(A+, n)→ C(A+, 1)× C(A+, n)→ C(A+, 1 + n)

and

A+ × C(A+, n)→ C(A+, n)× A+ → C(A+, n)× C(A+, 1)

→ C(A+, n+ 1)→ C(A+, 1 + n),

where the final arrow here is the action by χ1,n which shuffles the last input

coordinate to first place without changing the order of the other inputs, and

pushing forward the functor by χ so that it is a lift 1.1.61. Do note that

these maps describe the extension functors A+ ∧ C(A+, n)→ C(A+, 1 + n).

• For each two multiplications of n inputs associated to two permutations

σ, τ ∈ Σn there is a pseudonatural isomorphism:

C(A+,m1)× . . .× C(A+,mn)

µσ

++

µτ

33�� C−→στ C(A+,m1 + . . .+mn).
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3 Multiplicative Delooping of Bipermutative Bicategories

• The isomorphisms are coherent in that they compose vertically as in EΣn:

C−→στC−→ρσ = C−→ρτ .

• The isomorphisms have a block sum composition 3.3.14, which is multias-

sociative and Σ∗-equivariant.

Proof. All the claims are just summaries of the propositions above. Note that the

coherence of the isomorphisms C follows from the coherence of the compositor

2-cells for µE, which itself follows from the coherence of the ·-symmetry for triple

products in (C, ·).

3.4 The Symmetric Spectrum from the Delooping

The passage from the delooping categories C(A+, n) to the associated spectrum

is fortunately very straight-forward. I fix a pointed simplicial S1:

Definition 3.4.1. Consider the simplicial set ∆1 = ∆( , [1]) and its simplicial

subset of constant maps ∂∆1, then S1 := ∆1/∂∆1 is a pointed simplicial set.

Since the delooping bicategories C(A+, n) are strict normal 1.1.13 functors in

pointed finite sets we get the following:

Theorem 3.4.2. The delooping bicategories C(A+, n) are strictly simplicial bi-

categories by insertion of a simplicial set. In particular C(S1, n) is a simplicial

bicategory with Σn-action.

By naturality of the extension functors and understanding S1 as a discrete

simplicial bicategory we get suspension maps as strict functors of bicategories:

S1 ∧ C(S1, n)→ C(S1, 1 + n),

which is Σn-equivariant, and assembles to Σm × Σn-equivariant maps

Sm ∧ C(S1, n)→ C(S1,m+ n).

For a bipermutative bicategory C the pairings from above assemble into strictly

associative pairings of simplicial bicategories:

C(S1, n) ∧ C(S1,m)→ C(S1, n+m),

with two strictly central unit maps

ι0 : {∗} → C(S1, 0), ι1 : S1 → C(S1, 1),
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3.5 The Induced Involution

and each two permutations of higher multiplications connected by coherent sim-

plicial pseudonatural isomorphisms.

In summary: Set HCn = |NC(S1, n)|, then the Eilenberg-Mac Lane spectrum

H to a permutative bicategory C inherits a natural E∞-ring spectrum structure

from a bipermutative structure on C.

By applying the nerve and geometric realisation we get:

Theorem 3.4.3. A bipermutative bicategory C yields an E∞-symmetric ring spec-

trum, which is level-equivalent to the spectrum defined in [Os]. In particular it is

semi-stable, because it is equivalent to the symmetric spectrum of a Γ-space.

Proof. By 3.2.24 we know that restriction of lifting functors along smashing (A+ ↓
Fin+)n → (An)+ ↓ Fin+ gives a natural equivalence C((A+)∧n, 1) → C(A+, n),

which by inserting S1 yields a level-equivalence:

C((S1)∧n, 1) = C(Sn, 1)→ C(S1, n),

so in particular on realisation of nerves we get a map of symmetric spectra, which

is a level-equivalence.

3.5 The Induced Involution

We have already seen that an involution on bipermutative coefficients R induces

a strictly additive functor on the bicategories of matrices M(R)→M(Rµ). By

transposition we can remove the µ-opposition, still strictly additively, but at the

expense of opposing 1-cells and the tensor-product. Finally the comparison BC ∼=
BCop1 is what we need to study with respect to additivity and multiplicativity.

Lemma 3.5.1. Given a bicategory C and its 1-opposition, i.e., with respect to

1-cells, the homeomorphism Γ of their nerves is strictly natural with respect to

functors F : C → D. So we have a commutative diagram:

|NC| Γ //

|NF |
��

|NCop|
|NF |
��

|ND| Γ // |NDop|.

�

In particular the homeomorphism is compatible with the pairings established

above.
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3 Multiplicative Delooping of Bipermutative Bicategories

Corollary 3.5.2. The pairing of delooping bicategories commutes with opposi-

tion:

|NC(A+, n)| × |NC(A+,m)|

��

Γ×Γ // |NCop1(A+, n)| × |NCop1(A+,m)|

��
|N(C(A+, n)× C(A+,m))|

��

Γ // |N(Cop1(A+, n)× Cop1(A+,m))|

��
|N(C(A+, n+m))| Γ // |N(Cop1(A+, n+m))|.

Proof. The only thing left to emphasise is that the homeomorphism |X| × |Y | →
|X × Y | is natural as well (given the compactly generated topology on the prod-

uct).

Remark 3.5.3. A minor warning is in order about the notation Cop1(A+, n).

Since (Cop1)+ 6= (C+)op1 this is potentially ambiguous, thus I intend to mean the

delooping bicategory of Cop1 .

Since the induced involution is defined in [R] and analogously in 2.6.10 as the

composite:

BM(R)
BM(T )// BM(Rµ)

B(·)t // BM(R)op1 Γ // BM(R),

and we have already established that Γ strictly commutes with the pairings, we

only have to establish the effect of coordinatewise involution and subsequent

transposition. Both functors strictly commute with the direct sum of matrices,

thus induce functors on the delooping bicategories, but in 2.5.13 we saw that

transposition fully reverses the monoidal structure given by tensor product. So

we have to consider the following situation. For emphasis I suppress the commu-

tativity of the multiplication and call it a bimonoidal bicategory.

Proposition 3.5.4. Given a bimonoidal bicategory (C,+, ·) and its multiplicative

opposition (C,+, ◦) the induced monoidal structure on C+ by ◦ is strictly naturally

isomorphic to the opposite monoidal structure on C+ induced by ·.

Proof. By retracing the construction in 3.3.1 we find on objects that ◦ induces

(c1, . . . , cn) ◦∗ (d1, . . . , dm) = (ci ◦ dj)ω(i,j) = (dj · ci)ω(i,j).

Thus the isomorphism is given by using the smash symmetry χ on Fin+ to ex-

change the indices:

(c1, . . . , cn) ◦∗ (d1, . . . , dm) = (dj · ci)ω(i,j)

(χn,m,id)// (dj · ci)ω(j,i) = d ·∗ c = c ·op∗ d.

118



3.5 The Induced Involution

In particular we find that the involution and subsequent transposition strictly

oppose the multiplicative structure on the delooping bicategories.

Corollary 3.5.5. The induced involution is a functor I : (C,+, ·)→ (Cop1 ,+, ·op),

thus composition with Γ induces a map of E∞-spectra:

Γ ◦ |NI| : (HC, µ)→ (HC, µopp).
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4 Partial Uniqueness Results

Evidently, I am interested if the multiplication on the delooping I describe in

chapter 3 describes a new structure or the known E∞-structure on the K-theory

of an E∞-ring spectrum.

Given this I can avoid the complicated constructions of the trace map described

for example in [BHM, S] (compare also [DGM]). By [BGT1] there is an essentially

unique map of symmetric multifunctors from K-theory to any other (symmetric)

multifunctor F that satisfies F (S) = S. For topological Hochschild homology

the equality THH(S) = S is immediate from the definitions, thus there is a

unique E∞-map K → THH, which by [BGT1, Theorem 1.9] is the trace map.

Specifically the essential uniqueness proven in [BGT1] entails that the trace map

is a point in the space of E∞-maps K → THH, which is contractible.

However, for the multiplicative uniqueness I have to concede conjecture status,

while the additive uniqueness, i.e., the fact that there is essentially only one

delooping of the nerve of a symmetric monoidal category by its E∞-structure is

classical [MT], which can be rephrased nicely with the results of [GGN].

Convention: The Language of ∞-Categories

To conveniently state and prove results about uniqueness of E∞-structures we

evidently need some organisational language in which to compare them. As shown

in [EM] multicategories can be used in absence of symmetric monoidal structures

on a category to define operad-structures. However, comparison theorems in

this setting seem too restrictive to expect. Since E∞-structures are a coherently

weakened notion of commutativity, we would not expect different E∞-structures

from potentially different E∞-operads to be comparable by strict multifunctors.

This would probably prove to be even worse for general operads.

Given the recent popularisation of (∞, 1)-categories for instance by [Ber1, Ber2,

J, JT, Lu1, Lu2] advancing the theory of quasi-categories as a convenient model
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4 Partial Uniqueness Results

for (∞, 1)-categories, the authors have made such comparison results easier to

state and prove in a satisfactory manner. Hence following my principal sources

[GGN, BGT1] for the uniqueness results I use the language of (∞, 1)-categories,

and refer to specific results about quasi-categories in [Lu1, Lu2] where I need

them. For a nice survey I specifically recommend [Ber2] and an accompanying

talk [Ber3].

4.1 Uniqueness of the Spectrum R 7→ HR

I can directly (partially) quote this result from [GGN] with the only alteration

that, as in [BDRR1], I refer to the associated spectrum of a permutative category

C as its Eilenberg-MacLane-spectrum HC, for instance given by the delooping of

[EM].

Theorem 4.1.1 (First part of Prop. 8.2. in [GGN]). The Eilenberg-MacLane-

spectrum functor H : SymMonCat→ Sp is lax symmetric monoidal.

This statement does not obviously incorporate ∞-categories. Their use is im-

plicit in the symmetric monoidal structure on SymMonCat, which probably does

not exist, when we consider SymMonCat as a 1-category with objects small sym-

metric monoidal 1-categories and symmetric monoidal functors as morphisms –

cf. [K] for a specific construction of a product on symmetric monoidal categories

with strictly symmetric monoidal functors, which fails to have a unit object, and

does not produce bimonoidal/bipermutative categories as its monoids. However,

if we relax to considering SymMonCat as a 2-category with the same objects

and 1-cells, but additionally monoidal natural transformations as 2-cells, we can

see in [Schm] that SymMonCat does in fact support the structure of a “sym-

metric monoidal bicategory”. But his construction has the wrong (E∞) monoids,

thus at most serves as a proof that SymMonCat can equipped with a symmetric

monoidal bicategory structure at all.

I strongly conjecture that a symmetric monoidal product on the bicategory

of symmetric monoidal categories with the right monoids can be constructed:

Specifically the construction of a “classifying pseudofunctor” as in 1.1.34, which

for (C,+) symmetric monoidal gives a pseudofunctor BC : Fin+ → Cat. The

additive Grothendieck construction as in 1.1.37 is the Grothendieck construction

over this functor. When we restrict BC to the source category with just surjec-

tions Epi+ however, the Grothendieck construction C+,epi over this functor admits
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a natural adjunction

C+,epi // Coo

and thus the classifying spaces are homotopy equivalent. We can easily consider

the product BC×BD, and the Grothendieck construction over this functor yields

a candidate for a “smash product” of permutative categories. However I do not

know, which of the specific “averaging” processes described by the Grothendieck

construction yields the most convenient smash product. We could consider the

product BC × BD and pull back by the diagonal Fin+ → Fin+ × Fin+. Alter-

natively we could directly consider the Grothendieck construction restricted to

Epi+ × Epi+. Since this becomes unwieldy quite fast, I have not established the

properties this product might have. I am quite sure it is unital and associative

“up to adjunction”, symmetric up to isomorphism, however, one would have to

establish the appropriate coherences of adjunctions and isomorphisms.

The theorem quoted above reframes the results in [EM] that the associated

Eilenberg-MacLane-spectrum is a symmetric multifunctor from permutative cat-

egories to spectra, where in [EM] the multicategory-structure is precisely the

concession needed for the fact that the 1-category of symmetric monoidal cate-

gories (probably) does not support a symmetric monoidal product.

The results of [GGN] make it unnecessary to construct a symmetric monoidal

product on SymMonCat on the 2-categorical level.

Recall from [Lu2, GGN] that given an∞-category, we have naturally associated

to it its category of pointed objects C∗, its category of E∞-monoids MonE∞C,
modelled as Γ-objects in C, its category of grouplike E∞-monoids GrpE∞C, and

its stabilisation, for instance given as the category of spectrum objects in C,
denoted Sp(C). Moreover, each pointed object c ∈ C gives rise to a free E∞-

monoid hc given by hc(n+) = c×n with the evident maps induced by pointed

maps in Fin+ = Γ. Group completion provides a free grouplike object associated

to an arbitrary E∞-monoid in the sense that it is a left-adjoint to the forgetful

functor in the opposite direction. Finally, a grouplike Γ-object gives rise to an

associated spectrum for instance by insertion of simplicial spheres Sn (cf. 3.4.2).

Theorem 4.1.2 (Theorem 5.1 [GGN]). Let C⊗ be a closed symmetric monoidal

presentable ∞-category C. The ∞-categories C∗, MonE∞C, GrpE∞C, Sp(C) all

admit closed symmetric monoidal structures, which are uniquely determined by

the requirement that the respective free functors from C are symmetric monoidal.
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Moreover each of the functors

C∗ → MonE∞C → GrpE∞C → Sp(C)

uniquely extends to a symmetric monoidal functor.

By [GGN] the ∞-category of symmetric monoidal categories thus has a sym-

metric monoidal ∞-category-structure by the following argument of Theorem

5.1 in [GGN] specialised for C the ∞-category of 1-categories with cartesian

product as its closed symmetric monoidal structure. The ∞-category of sym-

metric monoidal categories is identified as a smashing ∞-localisation with the

E∞-monoids in spaces MonE∞(Top) [GGN, Theorem 4.6]. So they get

SymMonCat = MonE∞(Cat1) ' Cat1 ⊗MonE∞(Top),

where ⊗ denotes the tensor-product of presentable ∞-categories as defined in

[Lu2]. Hence arguing the same way as for Bousfield localisations of symmet-

ric monoidal model categories, one only has to establish that ⊗MonE∞(Top)

respects local equivalences with respect to MonE∞ . This is trivial for a smash-

ing localisation in ∞-categories, because of the equivalence ⊗MonE∞(Top) ⊗
MonE∞(Top) ' ⊗ MonE∞(Top), which makes the smashing functor idempo-

tent up to a chosen coherent equivalence, hence a localisation. The equivalence

MonE∞(MonE∞( )) ' MonE∞( ) is just an elaboration on the Eckmann-Hilton-

argument, two compositions which are homomorphisms with respect to each other

and have neutral elements are equal.

Replace in [GGN, p. 19] the expression “algebraic K-theory” with “Eilenberg-

MacLane spectrum”; this identifies the Eilenberg-MacLane spectrum functor as

the composition of functors

SymMonCat
(·)iso // SymMonCat

N(·) //MonE∞(T ) // GrpE∞(T ) // Sp,

for T some ∞-category of spaces and Sp modelled by any model category of

spectra as seen in [MMSS] or directly by stabilisation of an∞-category of spaces

as in [Lu2, Section 1.4.3]. Additionally by [Lu2, p. 624] the ∞-category Sp

admits an essentially unique (i.e., parametrised by a contractible Kan complex)

symmetric monoidal structure characterised by

1. Sp× Sp→ Sp preserves colimits in each argument,

2. the unit is the sphere spectrum S.
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Even more drastically, we have by [Lu2, Corollary 6.3.2.19] that each stable

presentable ∞-category C with a symmetric monoidal product, which preserves

colimits in each argument, admits a unique (up to contractible choice) symmetric

monoidal functor Sp → C (in particular pointed S → 1C), which preserves small

colimits.

Thus Sp is not only equipped with a unique symmetric monoidal structure, but

it is initial among stable presentable ∞-categories with a symmetric monoidal

product preserving colimits. Hence Sp is unique with these properties.

Returning to the Eilenberg-MacLane spectrum we find that the functors

MonE∞(sSet) // GrpE∞(sSet) // Sp,

are uniquely symmetric monoidal by [GGN, Theorem 5.1], thus we can reduce

multiplicative uniqueness to the claim

SymMonCat
(·)iso // SymMonCat

N(·) //MonE∞(sSet),

is uniquely symmetric monoidal. Passing from a category to its maximal sub-

groupoid (·)iso is strictly symmetric monoidal on the level of 1-categories, and

it is the unique such structure on ∞-categories by [GGN, Corollary 5.5 (i)] on

the subdiagram for C = Cat1 the∞-category of small 1-categories with cartesian

product as symmetric monoidal structure and D = Gpd the ∞-category of small

1-groupoids with the same symmetric monoidal structure:

Cat1

(·)iso
��

//MonE∞Cat1

��
Gpd //MonE∞Gpd.

Here the corollary precisely says that the unique symmetric monoidal structure

given on MonE∞C for a symmetric monoidal ∞-category C allows a unique sym-

metric monoidal extension of the dashed arrow in the diagram. (Compare however

Warning 5.2 in [GGN]: The E∞-monoids are defined with respect to the carte-

sian product. Their monoidal product is the extension of a potentially different

monoidal structure on C.) The identification MonE∞Cat1 = SymMonCat gives

uniqueness for (·)iso.
The same argument for C = Gpd and D = sSet yields the unique extension

of the nerve N(·) to a symmetric monoidal functor, because the nerve is strictly

product-preserving, hence extends uniquely to a symmetric monoidal functor on
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4 Partial Uniqueness Results

the respective E∞-monoids. Since the Eilenberg-MacLane spectrum HC has zero-

level HC(S0) = NC, we find that it is this unique extension.

Thus by these arguments we get the following classical (cf. [MT]) theorem:

Theorem 4.1.3. There is a unique functor extending the classifying space con-

struction |N · | : Cat1 → Top to their E∞-monoids, thus inducing a commutative

diagram, where the horizontal arrows are the respective free functors:

Cat1

|N ·|
��

//MonE∞(Cat1)

��

SymMonCat

Top //MonE∞(Top) TopΓ.

Note that the equality below is by definition, while the equality above is the

identification of symmetric monoidal 1-categories with Γ-objects in 1-categories,

which can be found originally in [Th1, Th2].

4.2 Conjectural Multiplicative Uniqueness

The theorems of [GGN] establish the functor H as the unique functor from sym-

metric monoidal groupoids to connective spectra with the group completion prop-

erty as classically identified in [MT].

Apart from the claim in [May2] on page 321 in a footnote “I now have a sketch

proof that looks convincing.” I could not find a result immediately stating the

fact that the constructions in [EM, May2, GGN] each produce the same E∞-

structure on HR. Unfortunately I could not prove this uniqueness, i.e., that

the multifunctor-structure of [EM] is essentially the only multifunctor-structure

on H(·). I suspect the essential uniqueness can analogously to [BGT2, BGT1,

GGN] be specified to say the space of multifunctor-structures on H(·) is actually

contractible.

The following elaboration on [GGN, p. 19] would identify “my” E∞-structure

on HM(R), as described in the previous chapter, with the E∞-structure on the

Eilenberg-MacLane spectrum of the category of matrices with coefficients in the

Eilenberg-MacLane spectrum H(M(HR)) given by using [EM] twice.

In the sequence

SymMonCat
(·)iso // SymMonCat

N(·) //MonE∞(T ) // GrpE∞(T ) // Sp,
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4.2 Conjectural Multiplicative Uniqueness

the first, third and fourth functor admit unique multifunctor-structures by [GGN].

Thus the appropriate conjecture establishing multiplicative uniqueness of H is:

Conjecture 4.2.1. The passage from symmetric monoidal categories to Γ-spaces

has a unique multifunctor-structure.

I have tried two avenues, which can probably be made to work: Given the

symmetric monoidal structures on Γ-spaces, and the unique symmetric monoidal

structure on SymMonCat extending the product on Cat asserted by [GGN],

one should be able to make the identification of MonE∞(N ·) : SymMonCat →
MonE∞(sSet) as the tensor-unit in a symmetric monoidal sub-∞-category of the

functors Fun(SymMonCat,MonE∞(sSet)), but I simply do not know how to

approach finding the appropriate subcategory systematically.

Furthermore each nerve N is defined as a right adjoint. Specifically choose

a cosimplicial category. Then functors from this category associate a simplical

object to categories. Considering instead Ex2 ◦ N one can promote this to the

right adjoint in a Quillen equivalence of categories with the Thomason model

structure to simplicial sets in the Kan model structure [Th3].

But the symmetric monoidality established in [GGN] is canonical only for left-

adjoint functors, thus the nerve is not easily a canonical extension. This might feel

trivial, but since the canonical structures in [GGN] are established by specific left-

adjoint functors, their compatibility with right-adjoints is not straight-forward.

This is parallel to the transfer of model structures: Presentable ∞-categories

are nerves of combinatorial simplicial model categories. In particular these are

cofibrantly generated with generating (trivial) cofibrations satisfying compactness

with respect to their category. The dual notion of “cosmall/cocompact” turns out

to be too trivial. For instance in Sets the only cosmall objects are the empty set

and any one-point-set. Thus most categories of the type “sets with structure” do

not have many candidates for generating (trivial) fibrations, much less a model

structure determined by them. On presentable categories we see this on objects:

The opposite of a presentable category is not presentable in general.

In conclusion: The first avenue is quite ambitious, since in particular it yields

a comparison of the E∞-structures produced by [EM, May2, GGN].

The modest approach runs into a similar problem, i.e., a map in the “wrong”

direction. In principle it should not be too hard to produce an E∞-map of

symmetric spectra H(M(R)) → H(M(HR)) with the E∞-structures of chap-

ter 3 and [EM]. I modelled the delooping in chapter 3 explicitly as a careful
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generalisation of [EM]. It would be conceptual to pass through strictification

to 2-categories: The canonical monoidality map of strictification is an inclusion

(C ×D)st → Cst×Dst given by including words of pairs to pairs of words of equal

length. It is an equivalence. Any inverse would need to be coherently associa-

tive and symmetric with respect to the product, which is not possible without

introducing an adequate tricategory-structure on permutative bicategories. This

hinges on the fact that the canonical map is only pseudonatural, and the anchor

equivalence Cst → C is only lax monoidal up to an invertible transformation.

Consider instead strictification by Yoneda embedding into Fun(Cop, Cat). This

produces a similar problem in addition to several new ones. Canonically we get

a map in the wrong direction. One could try to resolve this by a Day-type

convolution, but this introduces new problems. What is a small diagram over

which to take the colimit? In addition the target 2-category as well as the source

tricategory make a variety of lax colimits conceivable. Finally given a Day-type

convolution, does it make the Yoneda-embedding an appropriate multifunctor?

Another problem, which I assume is much simpler to resolve, is the fact that

strictification cannot respect the functor-strictnesses of addition and tensor prod-

uct the way I axiomatised it for permutative and symmetric monoidal bicate-

gories. Thus even if one could pass to a bimonoidally equivalent 2-category, the

result would not have addition and tensor product given by strict 2-functors.

Thus some clever construction of an equivalent 2-category, for which these func-

tors are strict would yield a canonical map to the construction of [EM], but I did

not find such a 2-category. So here the essential question is how a bipermutative

bicategory can strictify to a bipermutative 2-category, thus a particular example

of a simplicially enriched bipermutative 1-category suited to the machine of [EM].

Finally, I want to state a guess, why these problems arise: K-theory construc-

tions involve passing to categories of isomorphisms first. By [GGN, Proposition

8.14] there is a structural reason for this: Group completion adds objectwise

monoidal inverses, but consequently turns every morphism into an equivalence

by an Eckmann-Hilton-type argument. I have not found a good way to impose

invertibility of morphisms productively, but it has to enter in an essential way.

Furthermore this seems to conflict heavily with the principal example M(R).

There the equivalence 1-cells are automatically isomorphisms, since the 2-cells are

only products of isomorphisms. For instance for ObR = N we only get permuta-

tion matrices as equivalence 1-cells, which only incorporates the endomorphism-

objects R(0, 0) and R(1, 1) as 2-cells. This “delooping” does not satisfy the
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4.2 Conjectural Multiplicative Uniqueness

comparison of [BDRR1], i.e., it does not deloop the appropriate space in order

to be equivalent to K(HR). I have no idea how to resolve this conflict. I have to

concede however that the conflict might be my illusion, and [GGN, Proposition

8.14] only enforces isomorphism 2-cells in M(R), which is consistent with the

assumption in [BDRR1]. In particular this perspective makes the assumption

in [BDRR1] that each translation functor X ⊕ be a faithful functor appear as

an inessential peculiarity of the Grayson-Quillen-completion, while discarding all

non-invertible morphisms is essential to the construction.
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5 THH and the Trace Map

Since my construction of the delooping of a bimonoidal bicategory naturally yields

a symmetric spectrum and I do not want to switch contexts too much, I refer

the reader to [Sh] for Topological Hochschild Homology in symmetric spectra, as

well as [AnR] for a careful study of the algebraic structure present for nice input

spectra. I also want to mention the nicely model independent paper [BFV], which

states in general that THH of an En-ring spectrum is an En−1-ring spectrum by

careful analysis of the involved operads. They do not need to fix their context of

a model category of spectra, since any category tensored over topological spaces

or simplicial sets will do, and they all are.

The generalisation of Hochschild homology to ring spectra by way of “functors

with smash products” is due to Bökstedt and part of a paper, which is noto-

rious for its preprint-stage [B1]. It is however highly influential, in particular,

since Bökstedt subsequently fully calculated THH(Z/p) as well as THH(Z) in

[B2], he provided the foundations for many subsequent calculations of topological

Hochschild homology.

5.1 THH with Coefficients

The algebra V (1)∗THH(ku) that Christian Ausoni describes in [A-THH] is quite

unwieldy — in particular it is of good use to have descriptions of easier objects

with clear relations to THH(ku) the way he describes it in [A-THH]. By intro-

ducing the appropriate analog of logarithmic structures on ring spectra, Sagave

and Schlichtkrull provided a localisation sequence, which makes the extension

`→ ku tamely ramified in a well-defined way [SaS]. In particular, they describe

the algebra V (1)∗THH(ku) as a square-zero extension of the V (1)-homotopy of

THH log(ku). However, since I introduce THH purely for analysis of V (1)∗K(ku)

by trace methods along the lines of [A-THH, A-Kku], the introduction of loga-

rithmic structures and the resulting cofibre sequence on topological Hochschild
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5 THH and the Trace Map

homology seems a drastic detour, which I do not want to present here.

Even before it was known that there are symmetric monoidal categories of

spectra, people have studied THH in that then hypothetical category [MS] or

like Bökstedt in auxiliary categories, which turned out to be equivalent to the

model categories of spectra [MMSS]. In particular, given the construction of

Hochschild homology for discrete algebras as presented in [Lo] for instance, the

generalisation to spectra is straightforward.

Definition 5.1.1. [EKMM, Definition IX.2.1] Given an associative S-algebra

A with product µ : A ∧ A → A and unit η : S → A, and an A-bimodule M

with actions M ∧ A → M and A ∧ M → M , which I denote by µ as well,

let THH•(A,M) be the following simplicial spectrum: In degree n we have the

(n+ 1)-fold smash product:

THHn(A,M) := M ∧ A∧n,

with face maps

di : M ∧ A∧n →M ∧ A∧n−1

defined as

di =

id∧i−1 ∧ µ ∧ id∧n−i 0 ≤ i ≤ n

(µ ∧ idn−1) ◦ t i = n+ 1,

for t the symmetry of the smash product that exchanges factors as follows:

M ∧ A1 ∧ A2 ∧ . . . ∧ An t // An ∧M ∧ A1 ∧ A2 ∧ . . . ∧ An−1.

The degeneracies are given by insertion of units at all places after the module M :

si : M ∧ A∧n →M ∧ A∧n+1 for 0 ≤ i ≤ n:

si = idi+1 ∧ η ∧ idn−i,

where I have notationally suppressed the unit isomorphism A ∼= S ∧ A. Call this

the simplicial Hochschild spectrum of A with coefficients in M .

For M the algebra itself we set THH•(A) := THH•(A,A) and call the resulting

simplicial spectrum the simplicial Hochschild spectrum of A.

This construction can be defined for arbitrary S-algebras A and A-bimodules

M . However, for it to be of topological significance, in particular for THH•(A,M)

to be homotopy invariant, we impose a technical condition.
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Remark 5.1.2. If the unit of the algebra S → A is a cofibration in the model

structure on a chosen model category of spectra, and A and M are cofibrant

S-modules, the simplicial spectrum THH•(A,M) is proper [EKMM, Theorem

VII.6.7]. This means that for each simplicial degree n the inclusion

sTHHn(A,M)→ THHn(A,M)

of sTHHn(A,M) the image of all degeneracies with target degree n is a cofibra-

tion [EKMM, p. 182].

This in particular implies that a weak equivalence M → M ′ of A-bimodules

and a weak equivalence A → A′ of algebras, with M ′ and A′ again cofibrant

S-modules with the unit S → A′ a cofibration, gives rise to a levelwise weak

equivalence THH•(A,M) → THH•(A
′,M ′), and since both spectra are proper

this induces an equivalence on the realisations as well.

For a nicely short exposition of this compare to section 7 of [BLPRZ].

Definition 5.1.3. Let A be an associative S-algebra, which is a cofibrant S-

module, and for which the unit S→ A is a cofibration. Let furthermore M be an

A-bimodule, which is a cofibrant S-module. The topological Hochschild homology

of A with coefficients in M is defined as the realisation of the (proper) simplicial

spectrum THH•(A,M). To give this unambiguous meaning, understand this as

the coend

THH(A,M) := |THH•(A,M)| =
∫ ∆

THHq(A,M) ∧ (∆q)+,

where we use the tensored structure of a model category of spectra over topolog-

ical spaces to form ∧ (∆q)+ and then form the coend.

Analogously, with A = M define THH(A) := |THH•(A)| = |THH•(A,A)|.
We care how multiplicative opposition affects this construction and find that

it opposes the simplicial structure as expected.

Remark 5.1.4. For an associative S-algebra A denote its multiplicative opposi-

tion Aµ. In particular, I do not want to use the notation Aop, since this notation

implies the wrong idea for the Eilenberg-MacLane-spectrum of a bipermutative

(bi)category HC: No opposition of morphisms is involved, only the symmetry of

the smash product in spectra.

Proposition 5.1.5. (cf.[Lo, 5.2.1], [Lan, Chapter 5]) For an S-algebra A and

an A-bimodule M we see that simplicial opposition on the Hochschild spectrum
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5 THH and the Trace Map

is isomorphic to multiplicative opposition, i.e.

ι : THH•(A
µ,Mµ) ∼= T̃HH•(A,M)

where on the left we oppose the multiplication on A and exchange the left- and

right-action on M , while on the right we reverse the simplicial direction as in

2.6.8, i.e., T̃HH•(A,M) = THH•(A,M)◦r for r : ∆→ ∆ the reversion functor.

Proof. The relevant isomorphism in discrete algebra reads m ⊗ a1 ⊗ . . . ⊗ an 7→
m ⊗ an ⊗ . . . ⊗ a1. This can be generalised to spectra by the appropriate twists

of the smash product.

The lemma 2.6.6 literally applies, because we used the tensored structure over

Top. This gives the following isomorphism of spectra:

Proposition 5.1.6. We have the identification given by reversing the simplex

coordinates in realisations:

Γ: | ˜THH(A)| → |THH(A)|.

Given these two structural maps, we can easily induce an involution on THH

of a ring spectrum with anti-involution.

Definition 5.1.7. Let (A, µ, τ) be an associative S-algebra with anti-involution

τ , i.e., a self-inverse S-algebra map: τ : (A, µ) → (A, µopp). Then we call the

following sequence of maps:

THH(A) τ // THH(Aµ) ι // ˜THH(A) Γ // THH(A)

the induced involution of τ on THH(A).

5.2 The Bökstedt Spectral Sequence

The Bökstedt spectral sequence, calculating topological from algebraic Hochschild

homology, is the essential tool Bökstedt uses in [B2] to calculate THH(Z) and

THH(Z/p). For a published reference see [EKMM, Theorem IX.2.9].

The induced maps of τ and ι are simplicial by the results before, so for the

spectral sequence associated to the simplicial filtration, which yields the Bökstedt
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spectral sequence under flatness assumptions, we can deduce the following result.

For technical convenience assume we have arranged for THH•(A,M) to be proper

by the conditions mentioned above in Remark 5.1.2.

Theorem 5.2.1. Let h be a generalised homology theory, then the simplicial

filtration of |THH(A)| yields a spectral sequence

E1
∗,n = Ccell

∗ (THHn(A), THHn−1(A), h∗)⇒ h∗(THH(A)).

If h satisfies the Künneth-formula on A, i.e., h∗(A∧A) ∼= h∗(A)⊗h∗(S)h∗(A), then

we can identify the E2-term with the algebraic Hochschild-homology of h∗(A), i.e.:

E2 ∼= HH(h∗(A)).

The induced involution given above is compatible with the simplicial filtration,

thus induces a map of spectral sequences. In particular we find on E2-terms:

HH(h∗A) τ // HH(h∗(A
µ)) = HH((h∗A)µ) ι // H̃H(h∗A) Γ // HH(h∗A).

Remark 5.2.2. Do note that τ and ι can be induced on the simplicial level, while

Γ is a map of chain complexes given by introducing the adequate sign associated

to the map

∆n/∂∆n → ∆n/∂∆n

with [t0, t1, . . . , tn] 7→ [tn, tn−1, . . . , t0], which is given by the sign of the permuta-

tion that fully inverts the set {0, 1, . . . , n}, i.e.,

(0 n)(1 n− 1) . . . (
⌊n

2

⌋⌈n
2

⌉
),

which is (−1)
n(n+1)

2 .

The Bökstedt spectral sequence generalises to the case with coefficients in a

bimodule as well by the same filtration:

Theorem 5.2.3. Let h be a generalised homology theory, A an associative S-

algebra, M an A-bimodule; additionally assume that h satisfies the Künneth-

isomorphisms h∗(A∧M) = h∗(A)⊗h∗(S)h∗(M), h∗(M ∧A) = h∗(M)⊗h∗(S)h∗(A),

and h∗(A ∧ A) = h∗(A) ⊗h∗(S) h∗(A), then we have a Bökstedt spectral sequence

of the form:

HH(h∗(A), h∗(M))⇒ h∗(THH(A,M)).
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If additionally for M∗ = h∗(M) and A∗ = h∗(A) the algebra A∗ is projective over

k = h∗S then we can understand the E2-term as a derived functor:

TorA∗⊗kA∗
op

(M∗, A∗).

Remark 5.2.4. I have suppressed convergence discussions in spectral sequences,

because the homology theories and spectra I consider only give modules and alge-

bras with non-negative grading, thus we have strongly convergent first quadrant

spectral sequences.

5.3 The Multiplicative Structure of the Involution

Structural Example: The Product for the Commutative Case

Most sources discuss the product on Hochschild homology for the chain complex

associated to the simplicial module formed by the Hochschild complex (cf. [Lo,

Lemma 1.6.11] or [McL, Theorem VIII.8.8]). However this introduces the com-

plications associated to dealing with the sum of shuffles in the Eilenberg-Zilber

map, so I prefer the simplicial structure of the product in algebraic modules as a

template for spectra.

Remark 5.3.1. For A a commutative k-algebra let M,N be A-modules and

consider the simplicial modules Cn(M,A) = M ⊗A⊗n and Cn(N,A) = N ⊗A⊗n.

In general we have the pairing M ⊗ A⊗n ⊗ N ⊗ A⊗n → M ⊗ N ⊗ (A ⊗ A)⊗n,

which is given by reordering the tensor factors according to the two-rail rail fence

cipher, i.e., by pairing M with N and the ith A-factor of the first A⊗n with the

ith A-factor in the second A⊗n. This assembles to a simplicial isomorphism:

C•(M,A)⊗ C•(N,A)→ C•(M ⊗N,A⊗ A).

Hochschild homology is a functor in the module variable for arbitrary maps

linear over the appropriate algebra. Furthermore it is a functor in the algebra

argument for algebra maps. For commutative A we have that µ : A⊗A→ A is an

A-linear map of A-modules as well as a map of k-algebras, thus for M = N = A

we get a map

C•(A,A)⊗ C•(A,A)→ C•(A⊗ A,A⊗ A)→ C•(A,A).
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Analogously, we can define for A a commutative S-algebra a pairing of the

simplicial spectrum THH•A with itself as

THH•(A) ∧ THH•(A)→ THH•(A ∧ A)→ THH•(A).

Since this map is simplicial, it is obviously compatible with the filtration giving

the Bökstedt spectral sequence, and thus introduces the structure of a spectral

sequence of differential graded algebras.

Remark 5.3.2. To use [BGT2] I need to diverge into spectral categories, i.e., cat-

egories enriched over a symmetric monoidal model category of spectra: The above

discussion applies to spectral categories as follows. Consider two small spectral

categories C,D, and set their smash product to be the category with objects

ObC × ObD with smash-product on morphism spectra C ∧ D((c1, d1), (c2, d2)) =

C(c1, c2) ∧ D(d1, d2).

For a small spectral category with cofibrant morphism spectra C define its

simplicial Hochschild spectrum as (compare [BGT1, p. 73]):

THHq(C) :=
∨
C(cq−1, cq) ∧ C(cq−2, cq−1) ∧ . . . ∧ C(c0, c1) ∧ C(cq, c0).

Take special note of the last factor, making it a “circle of degree q” in C. The

analogous face- and degeneracy-maps make it a simplicial spectrum, call its re-

alisation the topological Hochschild homology of C.
The indicated rail-fence shuffle above induces an isomorphism of simplicial

spectra:

THH•(C) ∧ THH•(D)→ THH(C ∧ D),

which by coherence of the symmetry of ∧ in spectra is strongly symmetric

monoidal in the sense that the following diagram strictly commutes:

THH•(C) ∧ THH•(D) //

c∧
��

THH•(C ∧ D)

c∧
��

THH•(D) ∧ THH•(C) // THH•(D ∧ C).

Since realisation and smash product commute by naturality of the product iso-

morphism |X×Y | ∼= |X|× |Y | in compactly generated Hausdorff spaces for X, Y

simplicial spaces, this descends to the same multifunctoriality after realisation.

Proposition 5.3.3. Consider the category of small spectral categories CatSp en-

riched over a chosen symmetric monoidal model category of spectra. By [Tab] we
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know that by cofibrantly replacing a small spectral category in the model struc-

ture on CatSp we obtain a weakly equivalent small spectral category with cofibrant

morphism spectra.

On the category of small spectral categories with cofibrant morphism spectra

consider topological Hochschild homology THH•(·). This is a strong symmetric

monoidal and simplicially enriched functor

THH•(·) : CatSp → sSp.

In particular, it is a multifunctor by considering the multicategory-structures in-

duced by the symmetric monoidal products on CatSp and sSp.

By passing to realisations we get a strong symmetric monoidal and simplicially

enriched functor, hence a multifunctor:

THH(·) : CatSp → Sp.

Proof. The structure of a multifunctor on THH is an elaboration on the transfor-

mation THH(C)∧THH(D)→ THH(C∧D), which is strictly symmetric, strictly

unital, and coherently associative, hence yields a multifunctor of the described

type.

Remark 5.3.4. I strongly recommend the preprint of Bjørn Ian Dundas es-

tablishing multifunctoriality of topological cyclic homology as well, and more-

over proving that the trace maps are also natural transformations for these

multifunctor-structures [D2].

In absence of an explicit symmetric monoidal product on symmetric monoidal

categories (cf. however [GGN] for a monoidal structure on the ∞-category of

symmetric monoidal categories) the authors in [EM] describe a multicategory-

structure on permutative categories instead, which has bipermutative categories

as its E∞-monoids, and establish that the Eilenberg-MacLane spectrum of per-

mutative categories (which [EM] call “K-theory”) can be given the structure

of a multifunctor. Thus by the natural equivalence K(HR) = H(M(R)) es-

tablished in [BDRR1] we can consider an induced multifunctor-structure on

H(M ) = H ◦M . In particular, in absence of a comparison of the multiplicative

structure I describe in chapter 3, I refer to the E∞-structures induced by the

multifunctor-structure as the E∞-structure.

I summarise the appropriate identifications of [BDRR1, BGT2] in the following

theorem – to summarise the known results.
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Theorem 5.3.5. The algebraic K-theory space BM(R) of a permutative cate-

gory R is naturally equivalent to the algebraic K-theory space of its associated

Eilenberg-MacLane spectrum K(HR) [BDRR1].

The algebraic K-theory functor from small spectral categories to spectra can be

given the structure of a (symmetric) multifunctor in an essentially unique way

[BGT2, Theorem 1.5].

There is an essentially unique natural transformation of (symmetric) multi-

functors K ⇒ THH, which by [BGT2, Theorem 6.3] is the trace map from alge-

braic K-theory to topological Hochschild homology [BGT2, Theorem 1.9]. Thus

in particular we get a unique natural multiplicative map K(HR)→ THH(HR)

for Eilenberg-MacLane spectra.

Remark 5.3.6. As seen in 4 I have to concede that I do not know if the unique-

ness of [BGT2] forces the E∞-structure of chapter 3 on H(M(R)) to agree with

the canonical structure on K(HR) asserted by [BGT2]. If, however, one were

able to prove that the Eilenberg-MacLane spectrum functor admits an essentially

unique multifunctor-structure, or more modestly to produce E∞-equivalences

K(HR) → HM(R) and HM(R) → K(HR), then either of these would im-

ply that HM(R) has the unique multifunctor-structure given by composition of

the unique structure on K : CatSp → Sp and the conjecturally unique structure

on H : PermCat → Sp, while the second approach obviously directly gives the

claimed equivalence.

Since I introduce the trace map K → THH by its multiplicative universality as

proven in [BGT2], I want to emphasise the equivalence of E∞ and commutative

structures in most model categories of spectra.

Remark 5.3.7. In orthogonal and symmetric spectra with their positive stable

model structure as well as in the category of S-modules we have that commutative

ring spectra model all E∞-ring spectra – [MMSS, Lemma 15.5] and also [EKMM,

Theorem 5.1, Chapter III]. However, since I already use the reference [EM] often

in preceding chapters, I follow the setup of their Theorem 1.4; in particular I

restrict to the case of symmetric and orthogonal spectra in the positive stable

model structure for this remark.

Considering the multicategory-structure on symmetric (or orthogonal) spec-

tra induced by the smash-product, it is meaningful to speak of multifunctor-

categories MFun(M, SpΣ), where we consider a simplicially enriched multicat-

egory M and symmetric spectra with their natural simplicial mapping spaces.
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5 THH and the Trace Map

Given an enriched multifunctor f : M′ →M we have an induced restriction func-

tor:

f ∗ : MFun(M′, SpΣ)→MFun(M, SpΣ)

by precomposition with f , which by [EM, Theorem 1.4] is the right adjoint in a

Quillen adjunction – with the left-adjoint given by extension in the appropriate

manner (cf. p.56 of [EM]).

If f is an equivalence of simplicially enriched multicategories, i.e., π0f is an

equivalence of ordinary 1-categories, and for each set of objects we have a weak

equivalence of simplicial sets M(a1, . . . , an; b)→M ′(fa1, . . . , fan; fb), then The-

orem 1.4 of [EM] furthermore yields that this adjunction is a Quillen equivalence

(compare also [Ber1]). To my knowledge it has not been established that these

equivalences of multicategories are weak equivalences in a model structure on

small multicategories, which preferably would extend the Bergner model struc-

ture on simplicially enriched categories.

When we consider the Barratt-Eccles operad EΣ∗ as a one-point multicategory

and map it to the terminal multicategory Com, we have an underlying isomor-

phism of (one-point) 1-categories. Since each multimorphism-category of EΣ∗ is

equivalent to the one-point category we get a weak equivalence of its nerve to a

point as well, giving a Quillen equivalence:

P : MFun(EΣ∗, Sp
Σ) //MFun(Com, SpΣ) : U,oo

where I consider the functors given by extension and restriction as a prolongation

functor P and a forgetful functor U . In particular for a cofibrant E∞-ring spec-

trum A in SpΣ we have a natural E∞-map η : A→ UP (A) to a stably equivalent

commutative symmetric ring spectrum.

5.3.1 The Opposite E∞-Structure

Following Section 9 of [EM] define the following map of operads.

Definition 5.3.8. For each k ≥ 0 set rk : {1, . . . , k} → {1, . . . , k} to be rk(j) =

k+ 1− j, i.e., the map consisting of only transpositions (1 k), (2 k− 1) until the

centre. In other words rk fully reverses the set {1, . . . , k}.

Lemma 5.3.9. The symmetric sequences (Σn)n∈N and (EΣn)n∈N of categories,

where Σn is the discrete category on objects σ ∈ Σn, while EΣn is the translation
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5.3 The Multiplicative Structure of the Involution

category of Σn with objects σ ∈ Σn and a unique morphism between each pair of

objects, form the associative and the Barratt-Eccles-operad.

Both maps op : Σ∗ → Σ∗, op : EΣ∗ → EΣ∗ defined as op(σ) = rk ◦ σ for

σ ∈ Σk, and extended to a covariant functor in the unique way on EΣ∗, are

maps of operads. Specifically, op respects units, is equivariant with respect to the

obvious right Σ∗-action by functors, and preserves multicomposition, i.e., block

sum followed by permutation of blocks.

Proof. The claim is explicit after Definition 9.1.11 of [EM], however, the proof is

“left to the reader”. Since in particular the compatibility with multicompositions

can be confusing, I want to elaborate on that.

Unitality of op is obvious, since r1 = id{1}. Equivariance is obvious as well,

since we defined op by a left-action and the equivariance-condition involves the

right-action of Σn on itself.

For compatibility with multicompositions I first reduce the condition we have

to show drastically: For Θ the multicomposition on Σ∗ and EΣ∗ we can reduce

an expression Θ(rn◦σn; rk1 ◦σk1 , . . . , rkn ◦σkn) by using the right-Σ∗-action on the

resulting product: Θ(rn◦σn; rk1◦σk1 , . . . , rkn◦σkn) = Θ(rn◦σn; rk1 , . . . , rkn).(σk1⊕
. . . ⊕ σkn). Thus we can, without loss of generality, consider a multiproduct

Θ(rn ◦ σn; rk1 , . . . , rkn). But by the “inner” equivariance condition on an op-

erad, we can replace σn on the left by the appropriate permutation on the right,

giving an expression Θ(rn; rl1 , . . . , rln). As the final reduction, note that by mul-

tiassociativity of the multicomposition Θ it suffices to show Θ(r2; rn, rm) = rn+m,

which yields the higher compatibilities by an easy induction.

Note that Θ(r2;σn, σm) = χ+
n,m ◦ (σn ⊕ σm), for χ+

n,m the symmetry of the sum

in Fin and σi ∈ Σi. Thus we have to show χ+
n,m ◦ (rn ⊕ rm) = rn+m. This is an

easy calculation, recall

χ+
n,m(i) =

i+m, 1 ≤ i ≤ n,

i− n, n+ 1 ≤ i ≤ n+m,

and for convenience

(rn ⊕ rm)(i) =

rn(i), 1 ≤ i ≤ n,

rm(i− n) + n, n+ 1 ≤ i ≤ n+m.

The block sum trivially preserves the condition on i, thus the composite ϕ :=
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5 THH and the Trace Map

χ+
n,m ◦ (rn ⊕ rm) is given by

ϕ(i) = χ+
n,m ◦ (rn ⊕ rm)(i) =

rn(i) +m, 1 ≤ i ≤ n

rm(i− n), n+ 1 ≤ i ≤ n+m.

Clearly we have ϕ(1) = rn(1) + m = n + m and ϕ(n + m) = rm(m) = 1, so

ϕ = (1 n + m) ◦ ϕ̄ and ϕ̄ is of the form Θ(r2; rn−1, rm−1), so we are done by

induction.

In particular we can define what the opposite algebra for an associative and

an E∞-algebra are, when we restrict to EΣ∗ as the E∞-operad.

Definition 5.3.10. An associative algebra in spectra determines and is deter-

mined by a multifunctor Σ∗ → Sp, which sends the unique object of the multi-

category Σ∗ to the algebra. In particular, we define its opposite algebra as the

composition Σ∗ → Σ∗ → Sp with the first map being the opposition op above.

This multifunctor determines and is determined by the algebra with opposed

multiplication, which is associative if and only if the original multiplication is

associative.

Analogously an E∞-algebra in spectra is a multifunctor EΣ∗ → Sp, which

is simplicially enriched with respect to the usual simplicial structure on spec-

tra and EΣ∗ made simplicial by arity-wise application of the nerve. Since op

is in particular a map of sets in each arity, it extends uniquely to a functor

E(op) : EΣ∗ → EΣ∗ in each arity, thus to a simplicially enriched multifunctor.

The opposite E∞-algebra is given by precomposition with E(op).

In particular the underlying associative algebra of an EΣ∗-algebra is given by

restriction along Σ∗ → EΣ∗ the inclusion of objects, and the underlying associa-

tive algebra of the opposed E∞-structure is the opposed associative algebra.

We can thus define what an anti-involution on an EΣ∗-spectrum is.

Definition 5.3.11. An anti-involution τ : A → A for A an EΣ∗-algebra is an

EΣ∗-map with respect to the EΣ∗-structure on the source, and the opposed

EΣ∗-structure on the target, with τ 2 = id.

Remark 5.3.12. Recall the Quillen-equivalence of E∞-ring spectra and commu-

tative ring spectra for instance in the positive stable model structure on sym-

metric spectra [EM, MMSS], or the model structure on S-modules as exhibited

in [EKMM]. With the notation as in Remark 5.3.7 we find that for A a cofibrant
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5.3 The Multiplicative Structure of the Involution

EΣ∗-algebra the prolonged involution Pτ : PA → PAµ is a map of commutative

spectra. Since P(Aµ) = P(A)µ = PA by strict commutativity, we find that Pτ is a

self-inverse algebra map of commutative algebras, which by P(A)µ = PA becomes

an endomorphism.

5.3.2 Induced Multiplications on THH and the Involution

I introduced the trace by its multiplicative universality as proven in [BGT2], thus

we need to see that the induced involution of 5.1.7 opposes multiplication to find

that the trace map commutes with the involutions on K-theory and topological

Hochschild homology.

The identification NCop = ÑC extends to the cyclic nerve defining THH as we

see above, and is strictly symmetric monoidal.

Proposition 5.3.13. The natural isomorphism

ι : THH(Aµ,Mµ)→ ˜THH(A,M)

is strictly symmetric monoidal with respect to the smash product.

Proof. The rail-fence isomorphism indicated above and ι are instances of the

symmetry of the smash product, thus the coherence of the smash-symmetry yields

the claim.

The natural homeomorphism Γ is symmetric monoidal as well.

Proposition 5.3.14. The natural homeomorphism Γ: | · | ⇒ | ·̃ | is symmetric

monoidal with respect to cartesian as well as smash-product.

Proof. This is a bit easier to see by considering the symmetric monoidal structure

of realisation oplax, i.e., |X × Y | ∼= |X| × |Y |. The natural map in this case is

given by realisation of prX and prY respectively. In particular it is induced

on simplicial objects. The natural transformation Γ, however, operates on the

realisation coordinates, thus the transformations strictly commute.

These propositions assemble to the following:

Theorem 5.3.15. For an E∞-ring spectrum A with anti-involution T : (A, µ)→
(A, µopp), consider the internal involution induced on THH by

THH(A) T // THH(Aµ) ι // ˜THH(A) Γ // THH(A).
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5 THH and the Trace Map

This is a natural E∞-map with respect to the induced E∞-structure on the source

and the opposed E∞-structure on the target THH(A).

Proof. This is just assembling the last three propositions, where we have analysed

each of the maps individually. In particular, the multiplicative opposition induced

from T is not changed by ι and Γ, thus follows the claim.

We can reuse [BGT2] to establish that the trace map commutes with the in-

duced involutions.

Theorem 5.3.16. The unique natural transformation of (simplicially) enriched

multifunctors tr : K ⇒ THH commutes with the involution on K induced as in

3.5.5 and induced on THH as above.

Proof. In the diagram

K(A)

T∗
��

// THH(A)

K(A) // THH(A)

T∗

OO

both the upper horizontal map as well as the map given by composing the induced

involutions with the trace give an E∞-map K(A) → THH(A). The first E∞-

structure is directly asserted by [BGT2], the second follows from the fact, that the

E∞-structure is opposed twice by the respective involutions. Thus by uniqueness

of the multiplicative trace [BGT2] we get that the threefold composite describes

the trace as well.

Remark 5.3.17. With just a conjectural identification of the E∞-structures on

H(M(HR)) and H(M(R)) the reference to 3.5.5 in the theorem is more informal

than I intended. Formally, one could, however, set up exactly the same procedure

I describe in chapter 3 to establish that the involution opposes the E∞-structure

onH(M(HR)) as well. This amounts to mostly rewriting [EM] the way I describe

in 1.1.4 but explicitly establishing the multiplicative structure for topologically

enriched permutative categories the way I do for bicategories in chapter 3. This is

not an immediate specialisation of chapter 3, because I implicitly assume discrete

sets of 1-cells in this thesis, but I expect no essential difficulties in generalising

chapter 3 to bicategories with morphism categories internal to topological spaces.

Remark 5.3.18. I think, the calculations in chapter 6 are more easily readable

if I declare for the reader how I think about the three maps involved in inducing
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the involution on THH, and the analogous sequence on K-theory 3.5.5, i.e. the

classifying spaces of the bicategory of matrices:

THH(A) T // THH(Aµ) ι // ˜THH(A) Γ // THH(A),

BM(R) T // BM(Rµ)
(·)t // BM(R)op1 Γ // BM(R).

In both cases we directly induce a multiplicatively opposing map using the involu-

tion. The transposition on matrices and the map ι allow to identify the simplices

in the nerve of the multiplicative opposition with simplices in the simplicially

opposed nerve. Finally Γ, in both cases, modifies the simplices in the realisation

by a map of degree ±1 only depending on the simplicial degree of the simplex,

which internalises the involution.

In summary: Γ ◦ ι as well as Γ ◦ (·)t consist of degrees and a preferred identifi-

cation of simplices, thus are usually easily analysed.

5.4 A Useful Subspectrum of THH

In section 3 of [MS] the authors identify a simplicial subspectrum of THH•(A)

which is naturally included for any A. Since then the functor homology interpre-

tations of Hochschild homology (cf. for instance [Lo, PR]) via the Loday functor

L(A,M) : Fin+ → k−Mod have been established, providing a nicely clean, natu-

ral interpretation of this subspectrum. I want to elaborate on this in this section.

This section deserves an emphasised special acknowledgement : Since Stephanie

Ziegenhagen and I have been close ever since our own modest beginnings in

Algebraic Topology, I have also observed her conception of her thesis [Z] in quite

some detail. If I had not been a test-case for numerous “functor co*homology”-

talks provided in her own trademark-clarity, I am quite sure I would never have

understood and probably not even bothered to understand that context. Thus

the essential clarifications in this section rest firmly on her shoulders.

Non-Commutative Sets

The existence of the subspectrum identified in [MS, Section 3] does not depend

on any additional structure on an associative ring spectrum A. In particular, it

is not relevant if A happens to be commutative or not.
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5 THH and the Trace Map

To properly identify the simplicial topological Hochschild homology spectrum

for an associative algebra object however, one obviously needs to keep track of

the order with respect to which one multiplies. The category of non-commutative

sets FinAs
+ does just that. I follow the exposition in the sections 1.2-1.4 in [PR],

but instead immediately consider pointed sets, called Γ(as) in [PR].

Definition 5.4.1. (cf. [PR, Section 1.2]) The category FinAs
+ has objects pointed

finite sets n+ = {∗, 1, . . . , n}, and morphisms pointed maps f : n+ → m+ with

chosen total orderings on the fibres f−1j for every j ∈ m+ (including the base-

point). For maps composable in finite pointed sets, i.e., f : n+ → m+, g : m+ →
l+ the underlying map is the composite in finite sets gf with total orderings on

the fibres given as indicated by:

(gf)−1i = f−1g−1i =
∐

j∈g−1i

f−1j.

Explicitly, the ordering of elements j ∈ g−1i provides an ordering of the sum-

mands, while each summand is ordered with the order chosen for f .

Lemma 5.4.2. [PR, Lemma 1.1] Any morphism f : n+ → m+ in FinAs
+ has

a unique decomposition ∆f ◦ σf , where ∆f : n+ → m+ is order-preserving and

pointed, and σf : n+ → n+ is a bijection, usually not pointed.

Proof. The proof of [PR] is for the unpointed case, so I want to retrace the

decomposition for pointed maps. Given a map f : n+ → m+ we find a unique

order-preserving map ∆f isomorphic to it over m+, i.e., with

n+
f //

σf

��

m+

n+.
∆f

<<

More explicitly ∆f is the unique order-preserving map with the same fibre-

cardinalities as f , i.e., |∆−1
f {i}| = |f−1{i}| for every i ∈ m+. In particular

there is a unique bijection n+ → n+ which makes the fibres of f into intervals in

n+ while order preserving on the fibres. The total ordering chosen on the fibres

of f then fixes a unique fibre-wise bijection n+ → n+ of the order induced by

f to the order induced by the total order on n+. The composite is the unique

bijection σf .

In particular we find that σf is pointed if and only if the base-point is minimal

in the chosen order of f−1{∗}.
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Remark 5.4.3. Since σf is not pointed in general the decomposition is not

internal to pointed sets. However, the bijection necessarily still satisfies σf (∗) ∈
∆−1
f (∗), because the composite is a pointed map.

This category makes it possible to define a Loday functor L(A,M) : FinAs
+ → Sp

for an associative S-algebra A and A-bimodule M . I want to specifically elaborate

on the dependence of L on the symmetric monoidal structure with respect to

which it is defined. Hence I consider a general symmetric monoidal category

(C,⊗,1, c⊗) an associative ⊗-algebra A in C and an A-bimodule M , keeping the

designations usual for monoids and bimodules in (Sp,∧, S, c∧).

Definition 5.4.4. (cf. [PR, Section 1.3]) The Loday functor L(A,M) : FinAs
+ →

C is given on objects as n+ 7→M ⊗ A⊗n. For a morphism f : n+ → m+ consider

its unique decomposition f = σ ◦ δ. Then σ describes a unique symmetry of the

monoidal structure:

cσ : M ⊗ A⊗n → A⊗|f
−1{∗}<∗| ⊗M ⊗ A⊗|f−1{∗}>∗| ⊗ A⊗|f−1{1}| ⊗ . . .⊗ A⊗|f−1{m}|.

From this reordered object we consider the map

A⊗|f
−1{∗}<∗| ⊗M ⊗ A⊗|f−1{∗}>∗| ⊗ A⊗|f−1{1}| ⊗ . . .⊗ A⊗|f−1{m}| →M ⊗ A⊗m,

composed of the left- and right-action of A on M , i.e., A⊗|f
−1{∗}<∗| ⊗ M ⊗

A⊗|f
−1{∗}>∗| → M and |f−1i|-fold products A⊗|f

−1{i}| → A. Call this map δ∗,

then define f∗ = δ∗ ◦ cσ. This makes L(A,M) a functor by uniqueness of the

decomposition 5.4.2.

To relate this functor to the simplicial topological Hochschild homology spec-

trum I need to elaborate on the simplicial circle a bit more. More specifically, we

need to know that it is in fact a simplicial associative pointed set.

Proposition 5.4.5. (cf. [PR, Section 1.4]) Recall the simplicial set ∆1 =

∆( , [1]) with its boundary ∂∆1 identified as the constant maps f : [n] → [1].

The quotient S1 = ∆1/∂∆1 is a pointed simplicial set by 3.4.1, which can be

promoted to a pointed associative simplicial set S1
As : ∆op → FinAs

+ .

Given an associative S1, we can interpret topological Hochschild homology

for associative algebras. Recall the spectral Loday functor for an associative

S-algebra A and A-bimodule M :

L(A,M) : FinAs
+ → Sp.
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5 THH and the Trace Map

More generally for an associative algebra and bimodule in a symmetric monoidal

category (C,⊗,1, c⊗) with the assignment on objects: L(A,M)(n+) = M ⊗A⊗n.

The total order on the fibres precisely makes this a well-defined functor for as-

sociative (as opposed to commutative) objects. We can easily identify the sim-

plicial Hochschild spectrum of A with coefficients in M as the composite of the

Loday functor L(A,M) : FinAs
+ → Sp with the pointed associative circle 5.4.5:

S1
As : ∆op → FinAs

+ .

Proposition 5.4.6. (cf. [Lo, p. 213]) The composite:

∆op
S1
As // FinAs

+

L(A,M) // Sp

is strictly equal to the simplicial Hochschild spectrum of A with coefficients in M

as defined in 5.1.1. In particular, the identification is natural in maps of algebras

and bimodules.

Proof. Objectwise the identification is clear, the example above should convince

the reader that I fixed the choices of orderings and basepoints in 5.4.5 just so

that one can identify the face maps and degeneracies in the standard complex

easily with the maps induced on the pointed associative circle.

With these considerations in place we can find that the subspectrum identified

in [MS, Section 3] is inherent to the Loday-functor.

Proposition 5.4.7. [MS, Section 3] Let A be an associative algebra, and M an

A-bimodule with a map of A-bimodules A → M. In particular both have a fixed

unit map from the sphere spectrum S→ A→M.

Then we have two factorisations of the identity at M :

M ∼= M ∧ S //

��

M ∧ A

��
M ∨ A //M ∨M = (M ∧ S) ∨ (S ∧M) //M,

with the analogous factorisations holding for the left-module action and the algebra

structure of A.

Thus in particular for A an S-algebra, and M an A-algebra, we can define

the Loday-functor with respect to coproducts L∨(A,M)(n+) = M ∨ A∨n. By

universal property of the coproduct to describe a map L∨(A,M)(n+) = M∨A∨n →
M ∧A∧n = L(A,M)(n+), we need to describe it on each summand. Thus for M
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consider M ∼= M ∧ S∧n → M ∧ A∧n, while the ith A-summand is mapped to the

ith smash factor by the analogous description.

The factorisation above gives that this is a natural transformation

L∨(A,M)⇒ L(A,M),

which is moreover natural in the algebra A and the A-algebra M appropriately.

Proposition 5.4.8. (cf. [MS, Lemma 3.3]) The coproduct Loday-functor on an

S-algebra A, and an A-algebra M , evaluated on the associative circle is naturally

isomorphic to the simplicial spectrum M ∨ ((S1) ∧ A), for S1 = ∆1/∂∆1 the

simplicial circle.

In particular, the geometric realisation of the natural transformation above

yields a natural map:

|L∨(A,M)(S1
As)| = |M ∨ ((S1) ∧ A)| = M ∨ ΣA→ THH(A,M).

I used the description of topological Hochschild homology as a Loday functor

on the associative circle to facilitate the following identification:

Theorem 5.4.9. The Loday functor evaluated on the opposite associative circle

S1
As ◦r : ∆op → FinAs

+ is naturally isomorphic to the Loday functor on the opposite

algebra and opposed bimodule:

L(A,M)(S1
As ◦ r) ∼= L(Aµ,Mµ)(S1

As).

In particular, for M an A-algebra, the natural transformation

L∨(A,M)⇒ L(A,M),

commutes with this isomorphism, as does its geometric realisation.

We can draw the following corollary, which I use repeatedly in the following

chapter. To not confuse opposition of module actions with opposition of multi-

plications I only assume an appropriate map A→M, which we need for the map

L∨(A,M)→ L(A,M).

Theorem 5.4.10. Given an associative S-algebra A with anti-involution T : A→
Aµ, and an left- and right-A-linear map A → M we have the following commu-
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tative diagram:

M ∨ ΣA

��

//M ∨ ΣA

��

//

1∨(−1)

))
M ∨ Σ̃A

��

//M ∨ ΣA

��
THH(A,M)

(T,idM )// THH(Aµ,Mµ) ι // | ˜THH(A,M)| Γ // THH(A,M).

More explicitly: The bimodule includes at simplicial degree 0, thus each of the

lower three maps restricts to the identity. The suspended algebra is the realisation

of the simplicial spectrum S1 ∧ A, hence includes at degree 1, so that ι and Γ

together induce a sign.

Remark 5.4.11. I want to place the appropriate emphasis on this subspectrum.

Despite the fact that these are the “obvious” classes in THH(A,M), they are usu-

ally not trivial. Instead one can usually use the suspension ΣA→ THH(A,M),

inducing a map h∗A→ h∗+1THH(A,M), and multiplicative structures on THH

to exhaust the classes of interest. Good examples of this are [MS] and [A-THH],

the second of which we study in detail in the next chapter.
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In this chapter we can finally use the results of all preceding chapters to revisit the

calculations of Christian Ausoni to analyse them along the induced involutions

- primarily the ones in [A-THH, A-Kku]. For this I go through many details of

the calculations and recall the ones, which I need for establishing the involution

on classes in homology or homotopy groups. However I have written this chapter

under the assumption that the reader has the sources [A-THH, A-Kku] close. In

particular the effect of the involution has clearer emphasis, when I consider the

hard calculations of [A-THH, A-Kku] as given.

Inherent to the calculations of [A-THH, A-Kku] is the restriction to odd primes,

for a partial picture at p = 2 see [AnHL] computing the homotopy groups

π∗THH(`) and π∗THH(ko) locally at 2.

6.1 The Involutions on ` and ku

Preliminaries

The model provided by algebraic K-theory of an algebraic closure of a finite field

K(Fq), which comes with a ring map given by the Brauer lift K(Fq) → KU ,

as well as the connective cover given by HMC = ku → KU yield the same

E∞-structure, when completed at p for which q ∈ (Z/p2)× is a generator, by

[BR2]. The homology theories in [A-THH, A-Kku] are insensitive to p-completion,

because the involved homology theories are HFp-local (in the sense of Bousfield-

localisation), hence I switch between the models for ku whenever convenient for

a clearer exposition.

Do note that by the homotopy limit involved in the definition of topological

cyclic homology and the fact that completion can for instance be described as a

homotopy colimit we cannot expect completion and cyclic homology to commute.

On K-theory we can trace the analogous failure back to the fact that a ring

usually has fewer units than its p-completion, thus analysing BGL(R∧p ) and
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6 The Involution on V (1)∗K(kup)

BGL(R)∧p are usually two different problems. However topological Hochschild ho-

mology does commute with colimits (given cofibrant spectra, as we assumed above

5.1.2), thus as long as I rely on [A-THH] for the determination of V (1)∗THH(ku)

and do not refer to TC(ku) and K(ku), it is not ambiguous, if I do not specify,

if ku denotes its integral, p-local or p-completed version.

By the description of ku given above 1.2 we know that at an odd prime p the

spectrum ku has a direct summand ` called the Adams summand, first identified

by Adams through operations on vector bundles - see Lecture 4 of [Ad2]. The

inclusion of fields L → L(ζp) induces a map of E∞-ring spectra i : K(L) →
K(L(ζp)), and I fix these completed at p as a model for the inclusion i : `p → kup

1.2.

By basic obstruction theory (cf. [EKMM, Proposition 3.1], [MayE∞, p. 36,

Lemma 2.12]) we can realise the map ku→ HZ = H(π0ku) as a map of E∞-ring

spectra, as well as the map ku → HZ → HZ/p. This induces in particular a

map of E∞-ring spectra ` → HZ/p, which by [Ad1, Lemma 16.8] realises the

inclusion:

H∗(`;Z/p) = Z/p[ξ1, ξ2, . . .]⊗ E(τ2, τ3, . . .)

→ A∗ = H∗(HZ/p,Z/p) = Z/p[ξ1, ξ2, . . .]⊗ E(τ0, τ1, . . .)

of the indicated subalgebra of the dual Steenrod algebra at p (cf. for instance

[Ko, pp. 51-53]), with generators in degrees |ξi| = 2pi − 2 and |τi| = 2pi − 1.

Do note that the map HZp → HZ/p induces an injection on HZ/p-homology as

well with image the full polynomial algebra, and all of the exterior algebra apart

from τ0, i.e., the dual of the Bockstein element in the Steenrod-algebra, which is

the HFp∗-Bockstein map.

Since the map ` → ku → Z can be realised on bipermutative categories as

ML → ML(ζp) → Nδ, with N = Nδ considered as a discrete bipermutative

category with its obvious rig structure, we see that the involutions are compatible

as follows:

`

τ`
��

// ku

τku
��

// HZ

` // ku // HZ,

independently of what involutions we chose compatibly on ku and `.

In particular we find that any involution on ` given by an involution on ML

induces the identity on its homology:
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Proposition 6.1.1. Let (T, t) : ML → Mµ
L be an involution of bipermutative

categories with HML = `, then the involution induced on homology with Z/p-

coefficients is trivial.

Proof. Let me repeat the core of the argument: If the involution arises on biper-

mutative categories, then we can map to the discrete rig N, and this induces the

monomorphism H∗` → H∗HZ. Since N is discrete it only supports the trivial

involution.

Recall [A-THH, Theorem 2.5]:

Theorem 6.1.2. There is an isomorphism of A∗-comodule algebras:

H∗(ku,Fp) = H∗(`,Fp)⊗ Pp−1(x)

with x ∈ H2(ku,Fp) the Hurewicz-image of u ∈ π2ku, where Pp−1(x) denotes the

polynomial algebra on x truncated by xp−1.

Furthermore H∗` can be identified as the inclusion of Z/(p − 1)- fixed points

under the action by the Galois group of L→ L(ζp), hence in particular we have:

` ' kuhZ/(p−1).

Proof. Each of the statements is found on pp. 1268–1269 of [A-THH]. Compare

also for the fixed point statement the corresponding statements on THH and

K-theory on p. 1307 of [A-THH]. While the fixed point statement is immediate

from the homological fixed point spectral sequence (cf. for instance [BrRo]) which

collapses at E2, because the relevant group homology is acyclic, since the order

of the group is a unit p− 1 = −1 ∈ F×p – cf. [Rot, p. 156].

Theorem 6.1.3. The involution on H∗ku is completely determined by the effect

on u ∈ π2ku, thus also on its image under the Hurewicz map x ∈ H2(ku,Fp).

Explicitly: For the map of commutative S-algebras τ : ku → ku induced by

strictifying HVC and complex conjugation along the Quillen equivalence of com-

mutative and E∞-ring spectra (recalled in 5.3.7), we get

τ∗(u
n) = (−1)nun.

Since on VC complex conjugation and transposition-inversion agree, this is also

the effect of the involution induced by the identity.
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6 The Involution on V (1)∗K(kup)

Proof. We have the canonical map ku→ KU , and by a classical result of Snaith

[Sn] we know, that we can obtain KU as the suspension spectrum of the infi-

nite complex projective space by inverting the Bott class u ∈ π2Σ∞+ CP∞. For a

modernised account in motivic spectra compare Gepner-Snaith [GSn].

But this class arises as the suspension of u : S2 → CP∞ on space level. In

particular we can choose to realise it as the inclusion ΣU(1) → BU(1) ' CP∞,
where complex conjugation evidently acts on ΣU(1) ∼= S2 by a reflection along

one equator, hence has degree −1.

We have seen at 1.2 that the involution induced 3.5.5 on ` is strictly equal to the

identity. In particular for commutative models inverting and transposing agrees

with complex conjugation, thus I consider the effect of complex conjugation as

fundamental.

Corollary 6.1.4. Transposition-inversion induces the identity on (HFp)∗`, thus

on HFp-homology of ku it is given as x 7→ −x and the identity on H∗`.

Proof. I already presented above that the fact that `→ HFp induces a monomor-

phism on homology, forces any self-map on bipermutative categories to be visible

on Nδ, thus trivial.

Corollary 6.1.5. Complex conjugation on π∗ku = ku∗ ∼= Z[u] induces the map:

un 7→ (−1)nun by 6.1.3. Thus for a prime p ≥ 3 the map ` → ku realising the

inclusion Z(p)[v] 7→ Z(p)[u] with v 7→ up−1, identifies the effect of conjugation on

` as the identity.

Proceeding in following [A-THH] we consider topological Hochschild homology

of ku with coefficients in HZp, which is a ku-module by the canonical maps

ku ∧HZp → HZp ∧HZp → HZp.

Theorem 6.1.6 ([A-THH, pp. 1282–1287, Proposition 5.6]). There is an iso-

morphism of A∗-comodule algebras

H∗(THH(ku,HZp),Fp) = H∗(HZp,Fp)⊗ E([σx], [σξ1])⊗ P ([y]).

with degrees |σx| = |x|+ 1 = 3, |σξ1| = 2p− 2 + 1 = 2p− 1, and |y| = 2p.

The Bökstedt spectral sequence for THH(ku,HZp):

E2 = HHFp(H∗(ku,Fp), H∗(HZp,Fp))⇒ H∗(THH(ku,HZp);Fp)
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has E2-term:

HH∗(H∗ku,H∗HZp) ∼= H∗HZp ⊗ E(σx, σξ1, σξ2, . . .)⊗ Γ(y, στ2, στ3, . . .),

where Γ denotes the divided power algebra over Fp on the given generators. The

spectral sequence collapses at E2p and thus has E∞-term:

E2p = E∞ = H∗HZp ⊗ E(σx, σξ1)⊗ Pp(y, στ2, στ3, . . .)

with multiplicative extensions [y]p = [στ2] and [στi]
p = [στi+1].

Proof. This is all explicit in [A-THH] at the given pages.

Remark 6.1.7. Note in particular that the divided power algebra Γ(y) in E2-

terms of the Bökstedt spectral sequence actually gives rise to a polynomial algebra

in 6.1.6.

For the Adams summand the analogous computational result was already pub-

lished in 1991 by McClure and Staffeldt. In absence of the complications intro-

duced by the truncated polynomial algebra Pp−1(x) I can directly quote the result

for THH(`).

Theorem 6.1.8 ([MS, Proposition 4.2; p.22], cf. also [A-THH, Theorem 5.9]).

For any prime p ≥ 3 there is an isomorphism of Fp-algebras:

H∗(THH(`),Fp) = H∗(`,Fp)⊗ E([σξ1], [σξ2])⊗ P ([στ2]).

Since the computation of THH(`) involves fewer complications than the anal-

ogous one for THH(ku) I can immediately determine the full effect of the invo-

lution here.

Proposition 6.1.9. An endomorphism of `, which induces the identity on ho-

mology HFp∗`, induces the identity on the tensor factor HFp∗` of HFp∗THH(`)

as well. On the suspension classes the homeomorphism Γ induces the sign −1.

Proof. It is easily seen that the tensor factor (HFp)∗` stems from simplicial degree

0, thus ι and Γ are identities there. The suspended classes [σx] can be represented

by classes 1⊗x in the Bökstedt spectral sequence. In particular we see that since

these classes are of simplicial degree 1, the simplicial inversion is the identity,

while the homeomorphism Γ introduces the sign of one transposition, thus−1.
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6 The Involution on V (1)∗K(kup)

I opted to present these results before the calculational cornerstone of [A-THH],

which is fundamental to Ausoni’s calculations, hence also to mine. In [MS] the

choice of ` as their object of focus facilitates the calculations performed by Mc-

Clure and Staffeldt, particular the absence of the truncated polynomial algebra

in HFp-homology of `. In [A-THH] Christian Ausoni traces the effect of this

algebra in HFp∗ku on homology carefully, isolating its Hochschild homology in

[A-THH, Proposition 3.3], which I reduce here to isolating the acyclic resolution

and the resultant cycles. More generally for k a commutative ring with unit the

Hochschild homology of algebras A = k[X]/f with f a monic polynomial was

quite generally calculated in [GGRSV], however I am following the exposition of

Ausoni specialised to f = Xn and k = Fp. As far as I know the original source

for this resolution is [MN, Section 3].

Proposition 6.1.10. Let A = Ph(x) be the polynomial algebra truncated by the

ideal xh over k = Fp, then there is an acyclic resolution of A as an A⊗Aop = Ae-

module with underlying graded module:

X = Ae ⊗ E(σx)⊗ Γ(τ)

with Ae in resolution degree 0, σx of degree (1, |x|), τ of degree (2, h|x|). For h a

unit in Fp the cycles in A⊗AeX consist of the A-submodule Γ(τ)⊗{σx}⊕(τ)⊗{x}
for (τ) ⊂ Γ(τ) the ideal of positive divided powers in Γ(τ).

Proof. This is all explicit in [A-THH, Proposition 3.3]. Note that X in fact

describes a Z-resolution of Z[x]/xh, identifying the cycles in A⊗Ae X however is

less clean for k = Z.

Proposition 6.1.11. Consider on A = Ph(x) the morphism of commutative

k = Fp-algebras given by x 7→ −x. On generators in Hochschild homology it

induces: x 7→ −x, σx 7→ −σx, τ 7→ τ.

Proof. In the acyclic resolution given above with Ae = Ph(x) ⊗ Ph(y) we have

d(σx) = x−y, d(τ) = xh−yh
x−y σx [A-THH, Proposition 3.3]. Thus a lift of the given

map is given by σx 7→ −σx and τ 7→ τ, giving the claimed effect.

The analogous consideration works immediately for HFp∗THH(ku,HZp).

Theorem 6.1.12. Complex conjugation on ku induces the identity on the tensor

factor HFp∗(HZp) ⊂ HFp∗(THH(ku,HZp)) = HFp∗HZp ⊗ E(σx, σξ1)⊗ P (τ).
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The involution induced by THH(A,M)→ ˜THH(A,M)→ THH(A,M), with

first map the anti-involution composed with simplicial reversion, and second map

the homeomorphism Γ on realisations – cf. 5.1.7 – induces the following maps:

σx 7→ σx, σξ1 7→ −σξ1, τ 7→ −τ.
In more detail: The map induced by x 7→ −x gives σx 7→ −σx and the identity

on σξ1 and τ , while the homeomorphism Γ induces a sign −1 on all three classes.

Proof. We see in the resolution X chosen above that ι can be represented as the

identity, since it is also a resolution of A as an (Ae)op = A⊗2-module, since A is

commutative. Thus only Γ introduces an additional effect as a sign dependent

on resolution degree, which is 1 for the suspensions, and 2 for τ , thus we get −1

in both cases 5.2.2.

6.2 Increasing Chromatic Complexity – Reduction

by p

As indicated I use the modules, which are easiest to describe, whenever possible.

For the next calculational steps of [A-THH] I thus need to introduce “mod p

homotopy”. The idea is quite simple, instead of considering the prime p as a

self-map on HZ or HZp, we can consider it as a self-map of the sphere spectrum,

giving the cofibre sequence of spectra:

S p // S // V (0) // ΣS.

In particular one could hope that V (0) gives a better approximation to homotopy

groups than HFp, thus its homology theory is usually called mod p homotopy. In

other words the spectrum V (0) is the two-cell spectrum S0 ∪p D1 = V (0).

It is classical that the spectrum V (0) at a prime p ≥ 3 admits a multiplication,

which is part of an Ap−1-structure, which cannot be extended to Ap. For p = 2 we

do not have a multiplication, while for p = 3 the multiplication is not associative

even up to homotopy. For a good survey of this I refer to [Schw1]. In particular

in [Schw1, Theorem 2.5] we see the obstruction to extending the Ap−1-structure

to an Ap-structure.

The construction [Schw1, Definition 2.1] works by introducing levels of ex-

tended powers DnX = X∧n ∧Σn EΣn+. As a consequence, a coherent M =
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6 The Involution on V (1)∗K(kup)

S2 ∪p D3-module structure as defined in [Schw1, Definition 2.1] entails degrees of

commutativity as well. Specifically in [Schw1, Example 2.4] the “tautological”

coherent module structure on V (0) is defined up to degree p − 1. So for p ≥ 5,

the second extended power D2V (0) = V (0)∧2 ∧Σ2 EΣ2+ is part of the module

structure. Thus the multiplication admits the following factorisation:

V (0) ∧ V (0)

µ

��

tw // V (0) ∧ V (0)

µ

��
D2V (0)

( ∧(12)) // D2V (0),

where the transposition (12) acts on the factor EΣ2, and thus is canonically

simplicially homotopic to the identity. Thus the multiplication on V (0) is ho-

motopy commutative for p ≥ 5, by analogously considering the third extended

power, which is also part of the module structure for p ≥ 5, we get homotopy

associativity as well.

For the classical interpretations in particular of the obstruction class I defer

to the references of [Schw1], in particular the three Toda references, and the

reference to Ravenel.

6.2.1 The Involution on V (0)∗THH(ku,HZp)

Referring to [A-THH, Proposition 10.1] I focus exclusively on ku from here. The

appropriate restriction for ` follows by the observation, that the Galois group

acts by maps on coefficients of the approximating bipermutative categories. In

particular the action strictly commutes with the involution on ku, thus the in-

duced involution for ` can be recovered by restricting to the submodule of fixed

points under the action of the Galois group by [A-THH, Proposition 10.1].

Introducing V (0)-coefficients makes the topological Hochschild homology of

HZp easier to understand. By the equivalence V (0) ∧HZp ' HFp the resulting

module admits an Fp-algebra structure for all odd primes p ≥ 3.

Proposition 6.2.1. [A-THH, Theorem 5.7] For any prime p ≥ 3 there is an

isomorphism of Fp-algebras

V (0)∗THH(HZp) ∼= E(λ1)⊗ P (µ1),

with degrees |λ1| = 2p− 1 and |µ1| = 2p. Moreover the Hurewicz homomorphism

is an injection

V (0)∗THH(HZp)→ (HFp)∗(V (0) ∧ THH(HZp))
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6.2 Increasing Chromatic Complexity – Reduction by p

with λ1 7→ [σξ1] and µ1 7→ [στ1]− τ0[σξ1].

The fact that the Hurewicz is an injection immediately yields the following

corollary.

Corollary 6.2.2. The involution induced on V (0)∗THH(HZp) by the identity

as in 5.1.7 is λ1 7→ −λ1 and µ1 7→ −µ1.

Proof. Arguing as in the propositions for ` we identify the claimed effects as the

effect of ι and Γ on suspension classes.

For THH(ku,HZp) the equivalence V (0) ∧ HZp ' HFp yields an Fp-algebra

structure on the mod p homotopy for all p ≥ 3, giving the result:

Proposition 6.2.3. [A-THH, Theorem 6.8] There is an isomorphism of Fp-
algebras for any prime p ≥ 3:

V (0)∗THH(ku,HZp) ∼= E(z, λ1)⊗ P (µ1)

with degrees |z| = 3, |λ1| = 2p− 1 and |µ1| = 2p.

The Hurewicz homomorphism is an injection

V (0)∗THH(ku,HZp)→ HFp∗(V (0) ∧ THH(ku,HZp))

with z 7→ [σx], λ1 7→ [σξ1], and µ1 7→ [τ ]− τ0[σξ1].

Remark 6.2.4. Let me note in particular that the 0th Postnikov section j : ku→
HZp induces a map of HZp-algebras, which on mod p homotopy gives j∗(σx) =

0, j∗(y) = στ1, and j∗(σξ1) = σξ1. Thus the only class we have not analysed with

respect to the involution is σx.

Corollary 6.2.5. The involution on V (0)∗THH(ku,HZp) ∼= E(z, λ1) ⊗ P (µ1)

is given as follows: z 7→ z, λ1 7→ −λ1, µ1 7→ −µ1.

Proof. The Hurewicz homomorphism, as well as the map induced by j : ku →
HZp give monomorphisms in the degrees relevant to λ1 and µ1, giving the claim

for them. For z simply note that it is the mod p reduction of the integral class

σx considered before.
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6 The Involution on V (1)∗K(kup)

6.3 Reducing by α1 : Σ2p−2V (0)→ V (0)

In [A-THH, Sections 7+8] Ausoni proceeds to identify the mod p homotopy of

THH(ku) by considering a Bockstein spectral sequence associated to the Bott

class u : ku → ku. In mod p coefficients the resulting algebra V (0)∗THH(ku)

however has infinitely many generators and infinitely many relations for any pre-

sentation [A-THH, Corollary 7.11]. Thus even for purely presentational reasons

it is convenient to introduce one further reduction here.

Recall that the obstruction to extending the Ap−1-structure on V (0) to an

Ap-structure is the Adams self-map usually called α1 : Σ2p−2V (0) → V (0). In

particular in the coherent module structures as considered in [Schw1] it appears

as a non-trivial obstruction to unitality of a non-existent Ap-structure on the

Moore spectrum (cf. [Schw1, Theorem 2.5]).

Consider the cofibre sequence defining V (1):

Σ2p−2V (0)
α1 // V (0) // V (1) // Σ2p−1V (0).

Compare specifically to page 58 of [Toda]. In particular [Toda, Theorem 4.1]

fixes V (1) as the unique (up to homotopy equivalence) spectrum with 4 cells

with attaching maps as indicated: V (1) = (S∪pCS)∪α1 C(S2p−2∪pCS2p−2). It is

usual to call its homology theory V (1)-homotopy, I do so as well in what follows.

By considering V (0) and V (1) as part of a family of spectra V (a) with in-

clusions V (a) → V (b) for a < b Toda identifies multiplicative pairings of the

form V (a) ∧ V (b) → V (c) with a, b ≤ c. In particular for V (1) included into

V (11
2
), V (21

4
), V (23

4
), and V (3), we find that the first three cases of [Toda, The-

orem 4.4] give a multiplication on V (1) for p ≥ 11, p = 7 and p = 5 respectively.

Furthermore [Toda, Theorem 6.3] gives in particular that for p = 3 such a mul-

tiplication cannot exist, while [Toda, Theorem 6.1] explicitly establishes that a

spectrum of the analogous type of V (1) does not exist at p = 2 at all. In par-

ticular since this consideration has naturally led us to primes with p ≥ 5 we can

apply [Oka] to find that the obstruction to homotopy-commutativity is always

2-torsion, while the obstruction to homotopy-associativity is always 3-torsion.

Thus both vanish in the coefficients of V (1).

Since I wanted to introduce V (1) as late as possible with respect to the calcu-

lations in [A-THH], I only partially quoted the result of [MS] regarding THH(`).

Here it can thus serve to convince the reader that V (1) simplifies the modules

considerably.
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Proposition 6.3.1. ([MS], cf. [A-THH, Theorem 5.9]) For any prime p ≥ 3

there is an isomorphism of Fp-algebras:

(HFp)∗(THH(`)) ∼= (HFp)∗`⊗ E(σξ1, σξ2)⊗ P (στ2).

The V (1)-homotopy V (1)∗THH(`) maps by an injective Hurewicz homomorphism

to (HFp)∗(V (1)∧THH(`)), with image generated as an algebra by [σξ1], [σξ2] and

[στ2]− τ0[σξ2], yielding an isomorphism of Fp-algebras:

V (1)∗THH(`) ∼= E(λ1, λ2)⊗ P (µ2),

with degrees |λ1| = 2p− 1, |λ2| = 2p2− 1, and |µ2| = 2p2, with generators defined

as the preimages of [σξ1], [σξ2] and [στ2]− τ0[σξ2] respectively.

In particular since the generators are preimages of suspension classes by an in-

jective Hurewicz homomorphism, the involutions are determined by 6.1.9, giving

the following cleaner statement.

Corollary 6.3.2. For the V (1)-homotopy of THH(`):

V (1)∗THH(`) ∼= E(λ1, λ2)⊗ P (µ2),

the homeomorphism Γ (cf. 2.6.6) induces a sign −1 on each generator. Thus

the induced involution 5.1.7 on V (1)∗THH(`) is given as: λ1 7→ −λ1, λ2 7→
−λ2, µ2 7→ −µ2.

6.3.1 The Homology and V (1)-Homotopy of THH(ku)

People familiar with the computations in [A-THH] know that the algebras on

homology HFp∗THH(ku) and V (1)∗THH(ku) contain big subalgebras Ω∗ and

Ξ∗ respectively on (p − 1)2 + 1 = p2 − 2p generators with quite a few relations

- cf. [A-THH, Definition 9.9, Definition 9.13]. Essentially this stems from the

truncated polynomial algebra in HFp∗ku [A-THH, Proposition 2.3].

In order to understand the involution on H∗THH(ku) and V (1)∗THH(ku)

however I do not need to display the relations, it suffices to understand the effect

on the cycles (x)⊗ (τ)⊕ (σx)⊗ Γ(τ)→ HH∗(Pp−1(x)).

To determine the involution on V (1)∗THH(ku) we shall use the topological

Hochschild homology of ku with coefficients in HZp, i.e., V (1)∗THH(ku,HZp)
as an anchor.
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6 The Involution on V (1)∗K(kup)

Lemma 6.3.3. ([A-THH, p. 1305]) The isomorphism on mod p homotopy

V (0)∗THH(ku,HZp) ∼= E(z, λ1)⊗ P (µ1) implies the algebra isomorphism:

V (1)∗THH(ku,HZp) ∼= E(z, λ1, ε)⊗ P (µ1)

with ε of degree 2p− 1.

Proof. The Hurewicz from V (0)∗THH(ku,HZp) toHFp∗(V (0)∧THH(ku,HZp))
is a monomorphism [A-THH, Theorem 6.8]. So the Adams map α1 : Σ2p−2V (0)→
V (0) induces the zero map on V (0)∗THH(ku,HZp), because it induces the trivial

map in HFp-homology. Thus the V (1)-homotopy of THH(ku,HZp) consists of

two shifted copies of its mod p homotopy, which we can parametrise by a formal

generator ε of degree 2p− 1.

Proposition 6.3.4. The induced involution 5.1.7 on V (1)∗THH(ku,HZp) is

given on generators as:

z 7→ z, λ1 7→ −λ1, µ1 7→ −µ1, ε 7→ ε.

Proof. Since ε in essence describes the connecting homomorphism of the cofibre

sequence:

Σ•V (0)→ V (0)→ V (1)→ Σ•V (0),

and thus acts on the coefficients it commutes with the involution induced on

THH. On the other elements the involution is the one given in 6.2.5

As seen above I do not need to display the relations of the algebras Ξ∗ and

Ω∗ defined in [A-THH, Definition 9.9, Definition 9.13], thus I use the following

simplified description – which amounts to ignoring the relations introduced by

boundaries in the Hochschild complex.

Proposition 6.3.5. The Pp−1(u)-algebras Ξ∗ and Θ∗ admit a surjection of the

Pp−1(u)-module Γ(τ){σu} ⊕ (γ1τ){u} ⊕ Fp ⊗ {µ2} with (γ1τ) ⊂ Γ(τ) the ideal of

positive divided powers in Γ(τ).

Specifically for Ξ∗ we assign γiτ · σu 7→ z̄i and γiτ · u 7→ ȳj.

Proof. The generators of Ξ∗ and Ω∗ arise from the E2-term of the Bökstedt spec-

tral sequence HH∗(HFp∗ku) ⇒ HFp∗THH(ku), which are images of the gen-

erators given by the inclusion HH∗(Pp−1(u)) → HH∗(HFp∗ku). For Hochschild

homology of this truncated polynomial algebra we have determined the claimed

surjection in 6.1.10. The class µ2 maps to [στ2] in HFp∗THH(ku) and to the

class with the same name in V (1)∗THH(ku).
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This description is sufficient to determine the effect of the maps defining the

involution on THH(ku).

Theorem 6.3.6. For the isomorphism of [A-THH, Proposition 9.10]

HFp∗THH(ku) ∼= HFp∗`⊗ E([σξ1])⊗ Ξ∗

and the analogous isomorphism in V (1)-homotopy of [A-THH, Theorem 9.15]:

V (1)∗THH(ku) = E(λ1) ⊗ Θ∗ we can determine the involutions as follows. On

µ2 we have µ2 7→ −µ2 as visible in THH(`) 6.1.9,6.3.2. On ai ∈ Ω∗ we have

ai 7→ (−1)iai, analogously on z̄i ∈ Ξ∗: z̄i 7→ (−1)iz̄i. For bi ∈ Ω∗ we have

bi 7→ (−1)i+1bi, analogously for ȳi ∈ Ξ∗: ȳi 7→ (−1)i+1ȳi.

Proof. The classes ai and z̄i arise as infinite cycles in the Bökstedt spectral se-

quence represented by the classes σxγiτ giving the claim by Theorem 6.1.12.

Analogously the classes bi and ȳi are cycles associated to the classes xγiτ for

i ≥ 1, thus giving the claim again by Theorem 6.1.12.

6.4 Results on the Involution on V (1)∗K(kup)

Since the calculations in [A-Kku], as well as [AR2, AR3] rely on trace methods,

my intended approach was to determine the involution on K(kup) and K(`p) by

using the trace tr : K ⇒ THH. As shown above it commutes with the involutions

5.3.16 defined on K as in 2.6.10 and on THH as in 5.1.7. A few of the classes

allow more direct approaches, so I prefer these for the exposition below.

From this point on I explicitly denote the completions at p of ` and ku. In

particular since the computations in [AR2, A-Kku] rely partly on comparison to

the integers, thus on the results of [BHM] and more specifically [BM] it would not

be reasonable to expect global information given our limited state of knowledge

about K(Z). Instead we rely on the computations for K(Zp).

6.4.1 The Module V (1)∗K(kup) and its Traces

For reference in the sections below I directly quote the main result of [A-Kku]. I

examine a few classes individually below, so I quote only the identification of the

module given in [A-Kku, Theorem 8.1].
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Theorem 6.4.1. [A-Kku, Theorem 8.1]There is an isomorphism of P (b)-modules

V (1)∗K(kup) ∼=P (b)⊗ E(λ1, a1)

⊕P (b)⊗ E(λ1)⊗ Fp{σn| 1 ≤ n ≤ p− 2}
⊕P (b)⊗ Fp{∂λ1, ∂b, ∂a1, ∂λ1a1}
⊕P (b)⊗ E(a1)⊗ Fp{tdλ1| 0 < d < p}
⊕P (b)⊗ E(λ1)⊗ Fp{tp

2−pλ2}
⊕Fp{s}.

With regard to the traces of the classes, I draw the following corollary, which

is less precise than the determination in [A-Kku, Theorem 8.1] but sufficient for

determining the involution on the first direct summand.

Corollary 6.4.2. to [A-Kku, Theorem 8.1] In the direct sum decomposition

above, the third to sixth summand are contained in the kernel of the map in-

duced by the trace V (1)∗K(kup)→ V (1)∗THH(kup).

Furthermore the traces of the classes σn are contained in the Pp−1(u)-subalgebra

of V (1)∗THH(kup) generated by a0 ∈ V (1)3THH(kup), while the traces of the

first summand are part of the Pp−1(u)-subalgebra generated by a1, b1, and λ1.

We can use basic linear algebra over Fp to actually find that the trace can be

described as a direct sum of maps with “orthogonal” images in low degrees. Again

this follows directly from reading [A-Kku, Theorem 8.1] and [A-THH, Theorem

9.15] appropriately.

Corollary 6.4.3. to [A-Kku, Theorem 8.1] The trace corresponds to a direct sum

of maps with respect to the direct sum decomposition of V (1)∗K(kup) above and

the direct sum decomposition of V (1)∗THH(kup) (as a Pp−1(u)-module) given by

the generators λ1, ai, bi, µ2.

In particular, in low degrees it is injective on the classes λ1, a1 of the first

summand, with image having trivial intersection with the other summands.

6.4.2 The Involution on E(λ1, a1) ⊂ V (1)∗K(kup).

By the corollary above we only need to determine the involution on λ1, and a1

in V (1)∗THH(ku), which implies we have the same effect on V (1)∗K(kup) by

injectivity in those degrees. So I isolate the part of 6.3.6 relevant to K(kup) here.
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Theorem 6.4.4. The involution on the P (b)-subalgebra

E(λ1, a1) ⊂ V (1)∗K(kup)

is given by λ1 7→ −λ1 and a1 7→ −a1.

Proof. This follows directly from the theorems on V (1)∗THH(ku). Specifically

recall that λ1 stems from the class of σξ1 in HFp∗THH(HZp) with ξ1 the gen-

erator in the dual of the Steenrod algebra. Thus the involution induced by

conjugation is trivial, Γ induces a sign −1.

The class a1 can be traced back to the class σxγ1τ = σxτ in the Bökstedt

spectral sequence. The class σx has simplicial degree 1, τ has simplicial degree

2. The map induced by conjugation induces a sign −1 on σx and the identity on

τ , the homeomorphism Γ induces a sign −1 on both, yielding the claim.

Remark 6.4.5. We have the involution determined on this full subalgebra after

determining the effect on b as well below.

6.4.3 The Suspended Bott Classes σn

By restricting the isomorphism of [A-Kku, Proposition 5.2] we get an inclusion

identifying the classes σn ∈ V (1)∗K(kup). In fact they are global, i.e., σn ∈
V (1)∗K(ku).

Specifically they arise as follows: We have the inclusion BBU⊗ ⊂ BGL1ku,

where the units of an E∞-ring spectrum are defined as the (homotopy) pullback:

GL1A //

��

Ω∞A

��
GL1(π0A) // π0A,

which is a sufficient notion of “units” for our purposes. For ku we haveGL1π0ku =

GL1Z = {±1}, hence GL1ku = BU × {±1}. Restricting to the “index” +1,

we get the inclusion BBU → BGL1ku. By delooping the topologically en-

riched permutative category on objects natural numbers with endomorphisms

GLnku along the lines of [EM] recalled in 1.1.4 we get a model for K-theory

of ku. In particular its underlying infinite loop space is the group completion:

ΩB(
∐

nBGLnku) = Ω∞K(ku). The canonical inclusion GL1ku →
∐

nGLnku

fits in the sequence of maps

BBU → BGL1ku→
∐
n

BGLnku→ Ω∞K(ku).
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6 The Involution on V (1)∗K(kup)

Considering units in a stricter setting, for instance with ku as a symmetric ring

spectrum, we can find a strictly associative model for BU⊗. Thus we have a one-

point suspension category ΣBU⊗. Embed this into its free permutative category

PΣBU⊗ =
∐

nEΣn ×Σn (ΣBU⊗)n. The induced map of permutative categories

PΣBU⊗ →
∐

nGLnku delooped as in 1.1.4 induces a map:

HPΣBU⊗ → H(
∐
n

GLnku),

which we can identify as

ω : Σ∞BBU⊗ → K(ku)

as given in [A-Kku, p. 627].

Trivially the map BU → BU × Z identifying BU as a connected cover of

BU × Z is an isomorphism in positive degrees, thus we have classes yn ∈ π2nBU

for n ≥ 1 which map to the powers of the Bott class un.

Suspending these once gives classes σyn ∈ π2n+1ΣBU giving classes:

Σ∞S2n+1 → Σ∞ΣBU → Σ∞BBU → K(ku).

Call these σn in agreement with [A-Kku, Definition 3.2]. Then we have:

Proposition 6.4.6. (cf. [A-Kku, Proposition 5.2]) The classes σn ∈ π2n+1K(ku)

are non-trivial for 1 ≤ n ≤ p− 2.

Remark 6.4.7. I have to concede that I am not certain about non-triviality

for the higher σn, however the traces of the σn are un−1a0 by [A-Kku, Theorem

8.1]. Thus one should probably consider the upper limit p − 2 as an artefact

of the relations for Θ∗ and Ξ∗ in V (1)∗THH(ku). At least on the subspectrum

Σ(ku)→ THH(ku) one can identify these globally in homotopy groups, thus in

particular removing the bound p − 2. However establishing their non-triviality

would entail non-trivial calculations in the homotopy groups of THH(ku).

We can identify the involution on these suspended classes as follows:

Theorem 6.4.8. The involution on the classes σn ∈ π2n+1K(ku) for n ≥ 1 is

given as σn 7→ (−1)n+1σn.

Proof. Consider part of the inclusion into Ω∞K(ku):

BBU → BGL1ku→
∐
n

BGLnku.
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Then the classes of the σn are given by ΣS2n → BBU → BGL1ku. Thus conju-

gation acts as it does on un, giving a sign (−1)nun. Transposition has no effect

on GL1ku. Finally Γ acts on simplicial degree 1 here, thus reverses the signs to

give (−1)n+1σn.

6.4.4 The Higher Bott Class b ∈ V (1)2p+2K(ku)

The class of major interest in K(ku) is a class in degree 2p + 2 of the V (1)-

homotopy of K(ku), which is a non-trivial root of v2 ∈ π∗V (1), thus in particular

establishing K(ku) as the representing spectrum of a homology theory of chro-

matic type 2.

Moreover: By the calculations of Ausoni in [A-Kku], in particular Theorem 8.1

as recalled above in Theorem 6.4.1, we know that apart from a sporadic class the

module V (1)∗K(ku) is a free module over the polynomial algebra on b.

Remark 6.4.9. To be consistent in denoting HFp-homology on the left, I refer

to classes in degree n as z ∈ HFp,nX in the following proposition.

Recall the construction of the element b:

Proposition 6.4.10. Consider the homology algebra of CP∞ ' K(Z, 2), which

is a divided power algebra Γ(y) ∼= HFp∗K(Z, 2).

Then in the spectral sequence in HFp-homology associated to the bar filtration

of K(Z, 3) = B(K(Z, 2)) the class yp−1 ⊗ y is an infinite non-bounded cycle of

degree (2, 2p). By [A-Kku, Lemma 2.3] we have in particular an exact sequence

HFp,5(K(Z, 3)) → V (1)2p+2(K(Z, 3)) → HFp,2p+2(K(Z, 3)) → HFp,0(K(Z, 3)).

Since HFp,5(K(Z, 3)) = 0, and (P 1)∗(γp−1(y)) = 0 the last map and the first

group are zero, so we have a unique class V (1)2p+2K(Z, 3) which maps to the

class of yp−1 ⊗ y by the Hurewicz V (1) → HFp. Finally by considering the

embedding K(Z, 3) = BBU(1) → BBU →
∐

nBGLn(ku) as before we get the

higher Bott element b ∈ V (1)2p+2K(ku).

Theorem 6.4.11. The involution on the higher Bott element is trivial, specifi-

cally the algebra map ku→ ku induced by conjugation acts as a sign −1, and the

homeomorphism Γ acts as a sign −1.

Proof. By [A-Kku, p. 623] we know ΣK(Z, 2) → B2 → Σ2(K(Z, 2)∧2) induces

an injective map in degree 2p + 2: V (1)2p+2B2 → V (1)2p+2(Σ2(K(Z, 2)∧2)) with

B2 ⊂ K(Z, 3) the image of the 2-skeleton.
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6 The Involution on V (1)∗K(kup)

In particular the map B2 → K(Z, 3) → BBU →
∐

nBGLn(ku) again is a

class associated to GL1ku, thus transposition has no effect. Furthermore it is

a class of simplicial degree 2 by definition, thus Γ acts as a sign −1. Finally

we have to determine how complex conjugation acts on b. For this consider the

representative of the bar spectral sequence yp−1 ⊗ y. On homology of K(Z, 2) =

BU(1) complex conjugation acts by a group homomorphism on U(1) as yn 7→
(−1)nyn. In particular we get: yp−1 ⊗ y 7→ (−1)pyp−1 ⊗ y = −yp−1 ⊗ y.

In summary Γ and the conjugation cancel out, which is visible on B2.

6.4.5 Summary of the Induced Involution

Here I want to summarise the above results. Recall the isomorphism of [A-Kku]:

V (1)∗K(kup) ∼=P (b)⊗ E(λ1, a1)

⊕P (b)⊗ E(λ1)⊗ Fp{σn| 1 ≤ n ≤ p− 2}
⊕P (b)⊗ Fp{∂λ1, ∂b, ∂a1, ∂λ1a1}
⊕P (b)⊗ E(a1)⊗ Fp{tdλ1| 0 < d < p}
⊕P (b)⊗ E(λ1)⊗ Fp{tp

2−pλ2}
⊕Fp{s}.

In the section above we have established that b is invariant under the induced

involution. In the first section we have determined the involution on λ1 and a1

to each be given by a sign. In the second section we found that the involution

induces σn 7→ (−1)n+1σn.

6.4.6 The TC-Classes

For the third to the sixth summand in the above decomposition, one would have

to establish, if there is an involution on topological cyclic homology, which is

compatible with the cyclotomic trace. Specifically the classes tdλ1 and tp
2−pλ2

are composites of the eponymous classes λi ∈ V (1)∗THH(ku) and powers of the

classes t ∈ H∗(Z/pn) → H∗(S1) arising from the homotopy fixed point spectral

sequences from THH to TC. In particular, one would have to establish how the

circle action on THH behaves with respect to the involution.

Regrettably I have to say that this is beyond the scope of this thesis. In

particular I cannot even offer a conjecture on what map the involution induces on

the other summands. Specifically I do not know the effect of the involution on ∂, s
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6.4 Results on the Involution on V (1)∗K(kup)

and t, which are each part of the remaining classes, and each most transparently

appear in V (1)∗TC(kup).

I hope to get back to a full description of the involution on V (1)∗K(kup)

in future work. Most probably the description of an involution on TC can be

bypassed for this case, since the class ∂ is an artifact of p-adic completion, which

is already present in V (1)∗K(Zp), and the classes td are visible in the homotopy

fixed point spectral sequence for THH(ku)hS
1
.
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Géom. Différentielle 21(3), 1980, 305–324

[Toda] H. Toda, On Spectra Realising Exterior Parts of the Steenrod Algebra,

Topology 10, 1971, 53–65

[W] C. Weibel, The K-Book: An Introduction to Algebraic K-Theory,

Graduate Studies in Math. 145, AMS, 2013

[Z] S. Ziegenhagen, En-Cohomology as Functor Cohomology and Ad-

ditional Structures, PhD thesis, 2014, http://ediss.sub.uni-

hamburg.de/volltexte/2014/6950

http://arxiv.org/abs/math/9801079
http://arxiv.org/abs/0801.4524
http://ediss.sub.uni-hamburg.de/volltexte/2014/6950
http://ediss.sub.uni-hamburg.de/volltexte/2014/6950


Summary

In this thesis I investigate the interaction of multiplicative and involutive struc-

tures on algebraic K-theory of E∞-ring spectra. Algebraic K-theory is associ-

ated classically to discrete rings by a definition of Quillen [Q3] with preceding

approaches by Grothendieck, Bass and Milnor, who defined K0R, K1R and K2R

respectively. Quillen identified algebraic K-theory as the homotopy groups of

a space naturally associated to a ring, unifying the first three definitions, and

providing a definition of KnR for all natural numbers. One approach to com-

putations is the generalisation of K-theory to more ringlike objects, yielding

more induced structures on K-theory, for instance multiplicative structures as

described in [EM, GGN, BGT2, May2] and involutions as defined in [R].

Driven by the main example, algebraic K-theory of the connective complex

K-theory spectrum ku, and building on the computations of Christian Ausoni

in [A-Kku, A-THH], I focus on the induced multiplicative structure on K(ku)

in chapters 1 to 3. Building on the delooping of permutative bicategories as de-

veloped by Angélica Osorno in [Os], I exhibit a tensor product on a bicategory

of matrices M(R) associated to a bipermutative category R in chapter 2. By

modifying the delooping of Osorno in chapter 3 I find an induced E∞-ring spec-

trum structure on K(ku) by identifying this spectrum as the Eilenberg-MacLane-

spectrum associated to the bicategory of matrices over finite-dimensional complex

vector spaces. The involution as defined in [R] easily generalises to this setting,

so I can exhibit the interaction of the involution with the multiplication easily.

Since the calculations in [A-Kku, A-THH] rely on trace methods, i.e., are

obtained by careful comparison of K(ku) to topological Hochschild homology

THH(ku) along the trace map, I can use the compatibility of the trace map

with the multiplicative structures defined on both as a universal property by

the results of [BGT1, BGT2]. This in particular implies that the trace map is

compatible with the involution defined on K-theory as in [R] and on topological

Hochschild homology analogous to [Lo], giving the main result of chapter 5.

Finally in chapter 6 I investigate the involution on mod (p, v1) homotopy

groups of K(ku) as calculated in [A-Kku]. Specifically there is a subalgebra

of V (1)∗K(ku), which can be understood purely in terms of the trace map

K(ku)→ THH(ku), and there are special classes σn as well as the “higher Bott

element” b. For all of these I describe the effect induced by complex conjugation

on ku, and thus the induced involution on algebraic K-theory on V (1)∗K(ku).



Zusammenfassung

In dieser Dissertation untersuche ich Multiplikationen und Involutionen auf alge-

braischer K-Theorie von E∞-Ringspektren. Klassisch ist algebraische K-Theorie

eine Invariante diskreter Ringe definiert von Quillen in [Q3]. Quillen verein-

heitlicht Definitionen von Grothendieck, Bass und Milnor der Gruppen KiR für

i = 0, 1, 2 in dieser Reihenfolge. Er definiert algebraische K-Theorie als Homo-

topiegruppen eines natürlich zu einem Ring R assoziierten Raumes BGL(R)+.

Diese Definition vereinheitlicht zugleich die vorher genannten Definitionen und

gibt eine Definition für alle natürlichen Zahlen. Ein Zugang zu Berechnungen ist

die Verallgemeinerung von K-Theorie auf ringartige Objekte, was insbesondere

Aufschluss gibt über induzierte Strukturen auf K-Theorie wie etwa Multiplika-

tionen [EM, GGN, BGT2, May2] und Involutionen [R].

In den Kapiteln 1 bis 3 untersuche ich die multiplikative Struktur von K(ku),

die durch die Identifikation entlang [BDRR1] als Delooping einer Bikategorie von

Matrizen M(R) induziert wird. Genauer definiere ich in Kapitel 2 ein Tensor-

produkt, das eine Multiplikation auf M(R) induziert, die sich mit der additiven

Struktur, die Angélica Osorno [Os] definiert, verträgt. In Kapitel 3 beschreibe

ich eine Variante ihres Deloopings [Os], die durch das Tensorprodukt die Struk-

tur eines E∞-Ringspektrums erhält. Die von Birgit Richter in [R] beschriebene

Involution lässt sich auf M(R) erweitern, und wir erhalten, dass die Involution

diese Multiplikation opponiert.

Die Berechnungen der mod (p, v1) Homotopiegruppen von Christian Ausoni in

[A-Kku, A-THH] basieren grundlegend auf Spurmethoden, also einem sorgsamen

Vergleich algebraischer K-Theorie mit topologischer Hochschildhomologie. Die

vergleichende Abbildung ist die Spur K(ku) → THH(ku), die ich mithilfe der

Resultate aus [BGT1, BGT2] als die universelle multiplikative natürliche Trans-

formation K ⇒ THH in Kapitel 5 definieren kann. Aus dieser Universalität

folgt das Hauptresultat von Kapitel 5, dass sich die Spurabbildung auch mit der

induzierten Involution auf K-Theorie wie in [R] beschrieben und der auf topolo-

gischer Hochschildhomologie zu der in [Lo] analogen Involution verträgt.

In Kapitel 6 untersuche ich die Involution auf mod (p, v1) Homotopiegruppen

von K(ku), wie sie aus der Berechnung von [A-Kku] hervorgehen. Es gibt eine

Unteralgebra in V (1)∗K(ku), die sich vollständig über die Spur in V (1)∗THH(ku)

verstehen lässt, sowie spezielle Elemente σn und das “höhere Bott-Element” b in

diesem Modul. Für diese Klassen beschreibe ich die Involution auf V (1)∗K(ku).
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