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Introduction

Arakelov theory, also known as arithmetic intersection theory, is used to study number
theoretic problems from a geometrical point of view.

More than 100 years ago, many mathematicians with Dedekind and Weber in [DW] leading
the way, observed that there is an analogy between number fields and function fields.

In the 1960’s, Grothendieck defined the notion of schemes, which turned out to be the right
framework for an algebraic geometry over number fields as well as over function fields. This

was the beginning of the idea of the vague formula

algebraic number theory ‘ + ’ algebraic geometry‘ = ’arithmetic algebraic geometry

In 1974, S. Ju. Arakelov defined in [Ar| an intersection theory on arithmetic surfaces over
the ring of integers of a number field. He showed that geometry over number fields in
addition with differential geometry on some corresponding complex manifolds behaves like

geometry over a compact variety. Hence the idea behind Arakelov theory is

arithmetic algebraic geometry ‘ + ’ complex differential geometry‘ = ’ Arakelov theory

In 1987, P. Deligne generalized in [De| the arithmetic intersection theory of Arakelov.
Indeed, until then, the intersection theory was only defined for arithmetic divisors with
admissible Green’s functions. Deligne discarded this condition and therefore he opened the
way to a higher dimensional generalization.

In 1991, H. Gillet and C. Soulé in |[GS2| extended the arithmetic intersection theory to
higher dimensions by translating the theory of Green’s functions to the more manageable

notion of Green’s currents.

Now we give a motivation why it is of interest to calculate arithmetic self-intersection
numbers. For simplicity we reduce to the case that the arithmetic variety is of dimension

two. An example of an arithmetic surface X is visualized in the following picture.

vil
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Let Z'(X) be the group of arithmetic divisors (D, gp), i.e. D is a divisor on X and
gp is a Green’s function for D. Moreover, let él\il(é\f’) be the arithmetic Chow group of
X. Then the arithmetic intersection number is a pairing from ZI(X) X ZI(X) to R, which
factors through 61\{1()() X C/ﬁl(X). As a special case, for an arithmetic horizontal prime
divisor (P, gp) € Z1(X), its arithmetic self-intersection number is defined by

(P.gp ) 1= (PP~ a1+ 5 [ (o0 + 108 1P PO+ [ gm0 | € B )

Xoo

where f € k(X)* is a rational function such that P — div(f) and P have no common
horizontal components. The differential form w,, denotes the smooth (1,1)-form on the
induced complex manifold X, which is given by dd°gp outside P(C).

For a hermitian line bundle £ = (£, ||-||) € Pic (&), its first Chern class ¢1(L) € CH' (X) is
an element in the arithmetic Chow group of X and is given by ¢;(£) = [div(l), —log ||l||2},
where [ is a non-trivial rational section of £. The arithmetic self-intersection number of L
is defined by

L= (div(l), —log |1]*)".

This number is of great interest in Arakelov theory. An interesting example of a hermitian
line bundle is Wy o, = (WX/specz, H’Hm)a where wy /specz is the dualizing sheaf of A" and
||| o, 18 the Arakelov metric, see [Sz]. Indeed, explicit upper and lower bounds for @5 A,

imply great conjectures in number theory. For instance, an explicit nontrivial lower bound
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for w; A implies an effective version of Bogomolov conjecture, and an explicit upper bound
for @5, ar» Where {Xp — Y} is a certain family of morphisms of arithmetic surfaces, prove
an effective version of Mordell’s conjecture, see [Zh, Conjecture 1.4.1] and [Lal, Appendix
by P. Vojtal. Here we also note that if X comes from a Shimura variety, then it is conjec-
tured that the arithmetic self-intersection number w%(’ Ar 18 essentially given by logarithmic

derivatives of L-functions, see |[Kiil].

In order to calculate the arithmetic self-intersection number of a hermitian line bundle
on an arithmetic surface X we have to choose a rational function f € k(X)* as in equation
(1). In general, it is hard to find a rational function f such that the geometric intersection
number (P, P — div(f))g, is computable. Moreover, in some situations, it is not clear how
to evaluate the Green’s function gp + log|f|* for P — div(f) at P(C). It is only known

how gp looks like in a local coordinate zp in P(C), as zp tends to zero.

The main result of this thesis is the following: We define a new analytic object, which is

called an arithmetic local coordinate. With this notion we transfer the problem of finding a
suitable rational function f € k(X')* to the calculation of an arithmetic local coordinate zp
in P. We show that the arithmetic self-intersection number of an arithmetic divisor (P, gp)
can be written as a limit formula using an arithmetic local coordinate. Similar techniques
have been used by B. Gross and D. Zagier in order to obtain the famous Gross-Zagier
theorem. We apply the theory of arithmetic local coordinates and recover well-known
arithmetic self-intersection numbers. Apart from the application of arithmetic local coor-
dinates to arithmetic self-intersection numbers, we show that these coordinates appear in
other interesting fields of number theory, e.g. arithmetic local coordinates in CM points are
related to periods in the theory of Taylor expansions of modular forms. However, instead
of going too deep into detail, this thesis is focused on the construction of the general theory
of arithmetic local coordinates and their generalization to higher dimensional arithmetic
varieties.
We also apply the idea of arithmetic local coordinates to the computation of arithmetic
self-intersection numbers and generalized arithmetic self-intersection numbers on arith-
metic varieties, and compare this new theory with the arithmetic intersection theory of
H. Gillet and C. Soulé in [GS2| and with the generalized arithmetic intersection theory of
J. I. Burgos Gil, J. Kramer and U. Kiihn in [BGKK].



In Chapter 1 we define a particular choice of a local coordinate, namely an arithmetic
local coordinate zp in a horizontal prime divisor P. That is for all rational functions
f € k(X)* defined by the equation

(div(f) — ordp(f)P, P)an = lim (log|f(Q)| — ordp(f)log|zp(Q)I),

=1
Q—P

where Q is a family of points on X, converging analytically to P := P(C). With this
notion we can work directly with improper intersections. Indeed, for this let p : X — )
be a proper morphism of arithmetic surfaces. For instance, one can choose ) = P}, because
there are plenty of arithmetic surfaces which cover P,. Then compute an arithmetic local
coordinate in some horizontal prime divisor Py € ¢,P on ). Using functoriality we can
compute an arithmetic local coordinate zp in P € ¢p*Py on X. Then we can compute the
arithmetic self-intersection number of an arithmetic divisor (P, gp) by the formula in the

following theorem, which is one of the main theorems of the first chapter:

Theorem (Thm [1.25) Let P be a horizontal prime divisor on the arithmetic surface
X and let zp be an arithmetic local coordinate in P. For an arithmetic divisor (P, gp) €

21(?(), its arithmetic self-intersection number is given by

2

Koo

(Pgw)* = Jim, (108 :p(Q)1 + 5m(Q)) + 5 [ 9p-ct, ®)

where wy,, := dd°gp outside P.

Thus instead of constructing the Green’s function gp+log | f |2, we only have to evaluate

the function gp + log |zp|* at P(C). An example is visualized in the following picture.
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We explore some important properties of arithmetic local coordinates and show that
they are equivalent to the normalized tangent vectors in the intersection theory with a
tangent vector by B. Gross and D. Zagier in [GZ|. Note that they used this new appproch

in the proof of the famous Gross-Zagier theorem.

We calculate examples of arithmetic local coordinates in horizontal prime divisors on the
arithmetic surface P} with the usual holomorphic structure on P%. Moreover, we calculate
examples of arithmetic local coordinates in the cusp and in CM points on the modular
curve X(1) over Z associated to the modular group I'(1) := PSLy(Z). For instance, we
show that the canonical local coordinate ¢ = ™ in the cusp S, of X(1) is an arithmetic
local coordinate. Moreover, if P, is the horizontal prime divisor in X' (1) coming from a
CM point, then we show that

E2E
4Aﬁ(To)

T —1T0

Zp, = ‘
0 =
Pet T 7o

is an arithmetic local coordinate in a non-elliptic CM point 75, and we show that

.\ 2 3
4 , T—1 TP
o =28 Bl () v 2, = 2 Bl (T2

is an arithmetic local coordinates in the elliptic CM point ¢ = v/—1, resp. p = %’73’ Here
|-||po; denotes the Petersson metric for a non-holomorphic modular form, A denotes the

modular discriminant and Ey4, resp. Eg, is the classical Eisenstein series of weight 4, resp. 6.
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Using these arithmetic local coordinates we calculate as an application of our main the-
orem two previously known arithmetic self-intersection numbers with the help of equation
([): On X = P}, the arithmetic self-intersection number of the Serre twist Ox (1) equipped
with the Fubini-Study metric [|-||zg and on X = X'(1) the arithmetic self-intersection num-
ber of the line bundle of modular forms M (I'(1)) := Ox (Sx)®*? equipped with the
Petersson metric ||-||p., where k € N with 12|.

At the end of this chapter we define a new analytic object, which we call an adjusted
Green’s function. This can be seen as a global version of an arithmetic local coordinate.
Indeed, adjusted Green’s functions are Green’s functions gp for a horizontal prime divisor
‘P, characterized by the simple property

li 1 =0

dim, (9r(Q) +log |2p(Q)I) =0,
where zp is an arithmetic local coordinate in P.
We compare the properties of arithmetic local coordinates with those of adjusted Green’s
functions and find the following theorem, which will be useful in Chapter 3, where the

Green’s functions gp are of log-log-type:

Theorem (Thm [1.33) Let X be an arithmetic surface and let (P,gp) € Z1(X) be an
arithmetic divisor for a horizontal prime divisor P. Then its arithmetic self-intersection

number is given by

1

(73,979)2 = 2 / (gp - Wap — Qp * Wyp + gp - ng), (3)

Xoo

where ap is an adjusted Green’s function for P.

In Chapter 2 we apply the ideas from the first chapter to higher dimensional arithmetic
varieties X'. First we recall the Arakelov theory on arithmetic varieties, which is due to
Gillet and Soulé in [GS2]. We discuss the arithmetic intersection number in detail. More
explicitly, the arithmetic intersection number of [Y, gy] € éf{p(X) and [Z, gz| € C/ﬁq()()
with p + ¢ = dim(X) is given by

2
Koo

— 1
doge (1Y 9v] - [Z.92)) = htpygsy(Z) + - / o N2,
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where htjy,,(Z) is the height of Z with respect to [Y, gy]. We define a special class of
Green’s forms, namely Z-adjusted Green’s forms oy, for Y, which are characterized by
the equation

htpy.ay 4 (Z) = 0.

We calculate examples of adjusted Green’s forms associated to a point lying in a hypersur-
face in the arithmetic variety P4 = ProjZ[zo, .. ., 4] of dimension d + 1. For instance, we
show that for the cycles Y := {7-2g =0} and Z := {7z =2, = - =240 =5-241 = 0}

a Z-adjusted Green’s forms for Y is given by
Qyz ‘= gy — 2. 10g(5 . 7),

where gy is the Levine form for Y, and that a Y-adjusted Green’s forms for Z is given by

Qzy =gz — (2 -log(7) +
where gz is the Levine form for Z and wpg denotes the Fubini Study form on ]P’ﬁic.

We define a modification of the x-product between two Green’s forms gy and gz by

gy ® Gz ‘= Way , NGz — Wg, N\ Qy,z + Wy, N gy, (4)

where ay 7 is a Z-adjusted Green’s form for Y. We show [0, gy ® gz] € éT—Idim(X)(X) and

that its arithmetic degree equals the arithmetic intersection number of [Y, gy ] and [Z, g],
le.

— 1
degX ([K gY] ’ [Za gZ]) =35 / (waY,Z NGz — Woz A Qy,z + Wyz /\gy)- (5)

2
Xoo
We generalize the definition of Z-adjusted Green’s form for Y to a family of Z-adjusted
Green’s forms for a family of cycles Yi,...,Y, and compute examples on P4 and on the
arithmetic 3-fold X' (1) xz X(1).
With the use of a family of adjusted Green’s forms we find a description of the arith-
metic self-intersection number of a hermitian line bundle on X, similar to equation ().
Therewith we compute on the arithmetic variety X = P4 the well-known arithmetic self-

intersection number of the Serre twist Oy (1) equipped with the Fubini-Study metric ||-|| .

In the last part of this chapter we generalize the definition of arithmetic local coordinates

to higher dimensional arithmetic varieties X'. For this we consider irreducible and reduced
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cycles Y € ZP(X) and Z € Z4(X) with p + ¢ = dim(X). Let 7 : Xoo — X be a
desingularization of X, along Y (C) and assume 7~ (Y (C)) = {z = 0} for an equation
z = 0 up to a null set. Then the equation z = 0 is called a Z-adjusted equation for Y if

the equation

(div(f) —ordy (f)Y, Z)g, = 11_{% /log | f19z,c) — ordy (f) / alog |z| A dr-1(z,(c))

Xo Xoo

holds for all Kj-chains f such that div(f)—ordy(f)Y and Z intersect generically properly.
For all ¢ > 0, the cycles Z;(C) € Z9(X,) have to intersect div(f)(C) properly and have
to fulfill the property lim,_o Z,(C) = Z(C). Moreover, the real, smooth, 0- and J-closed
form « is defined by m, (a A 67r71(y((c))) = dy()-

We calculate examples of adjusted equations associated to a point lying in a hypersur-
face in the arithmetic variety P = ProjZ[zo,...,74. For instance, we show that for
Y ={7-2p=0}and Z = {7 29 =21 = -+ = x990 =5 241 = 0} the equation
5-7-22 =01is both a Z-adjusted equation for Y on U := {(zo, ..., 24) € PL | 24 # 0} and
also a Y-adjusted equation for Z on V := {(xq, ..., %4, Y0, - - -, Ya-1) € Xoo | g # 0,90 # 0},
where X denotes the blow up of P& along Z(C).

As a generalization of equation we show the following theorem:

Theorem (Thm2.66)) Consider the situation as above. Then the arithmetic intersection

number d/e\gX (IY,gv] - [Z,9z]) can be written as

li 1 AS ! Ao . A
lim alog |z| A dr-1(z,c)) + 5 | W Aoz@© | T5 | Yoy NGz,
Y Xoo Xoc

[e')

where z = 0 is a Z-adjusted equation for Y.

Since arithmetic local coordinates are equivalent to the tangent vector in the intersec-
tion theory by B. Gross and D. Zagier, it would be interesting to know if adjusted equations
have an analogue in the intersection theory of J. H. Bruinier, B. Howard and T. Yang in
IBHY], where they generalize the idea of the intersection theory with a tangent vector to
Shimura varieties of orthogonal type. It might be of use for the article [BY2], where J. H.
Bruinier and T. Yang conjecture relations between arithmetic self-intersection numbers of

CM cycles with derivatives of automorphic L-functions.
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In Chapter 3 we discuss the generalized arithmetic intersection theory.
First we restrict ourselves to the case that X is an arithmetic surface. Note that the
generalized arithmetic intersection theory is very useful, for example in the case when
the arithmetic surface comes from a modular curve, where the canonical and interesting
Green’s functions have singularities of log-log-type.
Recall that for a horizontal prime divisor P a Green’s function gp with singularities of

log-log-type along P(C) has an expansion

9p(Q) = —2n, log (—log [t(Q)[*) — 21og [(Q)| — 21og (¢, (Q))

for a local coordinate ¢t in P := P(C), where 7,, € R and the function ¢, satisfies some
extra conditions, see |[Kii2]. Because of equation we define the generalized arithmetic

self-intersection number of such an arithmetic divisor (P, gp) by

1

(Png)Q = 5 / (gP *Wap — Qp - Wyp + gp - wg??) ) (6)

Xoo

where ap is an adjusted Green’s function for P. A main result is the following:

Theorem (Thm Let P be a horizontal prime divisor and let gp be a log-log Green’s
function for P, which is locally given by

9p(Q) = —2n,, log (—log |2p(Q)|*) — 2log |2p(Q)| — 210g (¢,,(Q))

where zp is an arithmetic local coordinate in P. Then the generalized arithmetic self-

intersection number of (P, gp) is given by
2 : 9 1
(P,gp)" = ngp — 108 (2, (P)) — lim | 1y, log (—loge?) — §/gp~wgp (D
Xe

where the integral is taken over the complexr manifold X. := X \{z € Xl |2p(2)| < €}

As an application of equation (7)) we consider the following situation: Let 7p : X'(I') —
X (1) be a proper map, where X'(I') is a modular curve over Ok associated to a congruence
subgroup I' < I'(1) := PSLy(Z). Moreover, let S; be a cusp of X'(I'). Then we recover on
X (I') the known arithmetic self-intersection number of the line bundle Oy r)(S;) equipped



xvi
with metric [|-[|,,, which is associated to the hyperbolic Green’s function for S;.

In the last part of the discussion of the generalized arithmetic intersection theory on
arithmetic surfaces we show that the modified version (6] of the generalized arithmetic
intersection number with the use of an adjusted Green’s function can be generalized to
two arbitrary arithmetic divisors with log-log Green’s functions (Dy, gp,) and (Da, gp,).

More precisely, we define the generalized arithmetic intersection number of (D1, gp,) and
(D27 gDz) by

1

(Dbng) ) (D27992) = 5 / (992 "Wap, — Dy " Wyp, + 9p; wng) ) (8)

Xoo
where ap, is an adjusted Green’s function for D; depending on Ds. We show that this
modified version of the generalized arithmetic intersection number is well-defined and co-

incides with the generalized arithmetic intersection number due to Kiihn in [Kii2].

When X is a higher-dimensional arithmetic variety we have to consider the generalized

arithmetic intersection theory of J. I. Burgos Gil, J. Kramer and U. Kiihn in [BGKK] with
Green’s forms of log-log-type. For instance, this leads to a well-defined intersection theory
on compactifications of non-compact Shimura varieties, where the natural Green’s currents
have singularities of log-log-type.
If the cycles Y € ZP(X) and Z € Z9(X) with p+ ¢ = dim(&X) intersect generically properly
and if gy and gy are Green’s forms for Y and Z of log-log-type along a normal crossing
divisor Sy, then the generalized arithmetic intersection number of [Y, gy| € CH" (X,S8)
and [Z, g7] € CH' (X, S.) is in [BGKK] defined by

1
V. 2+ 5 [ ov 0z )

Koo

where gy * gz is the x-product between gy and gz, which is given by

gy * gz = dd“ (o2v9z) A gy + Wey N Oy 29z

Here {0y 7,02y} is a partition of unity to the cover X,,\Z(C) and X,,\Y(C) of X.
Because of equation () we set

Gy ® §z ‘= Way , N\ gz — Wy, N\ Qy,z + Wy, A gy, (10)
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where ay 7 is a Z-adjusted Green’s form for Y. Then we define a modified version of
the generalized arithmetic intersection number of [Y, gy] € CH’ (X,Sx) and [Z,g7] €
CH" (X, Sx) by
1
B / gy ® gz- (11)
Xoo

An investigation of the difference gy ® gz — gy * gz shows the following important fact:

Theorem (Thm Assume that the cycles Y € ZP(X) and Z € 79(X) with p +
q = dim(X) intersect generically properly. Then the modified version of the generalized
arithmetic intersection number of [Y, gy] € CH" (X,Sx) and [Z,97] € CH' (X,Sx) in
coincides with the generalized arithmetic intersection number due to Burgos-Kramer-

Kiihn in (@, 1.e.
1 1
5/9Y.9Z:(Kz)ﬁn+§/gY*gZ-

Xoo Xoo

Moreover, it can be shown that the currents gy * gz and gy e g are also well-defined
when Y and Z do not intersect generically properly. Because of this we make some notes

about the case Y = Z. In particular we show the crucial fact that

/gY'gY:/gY*gY

Koo Koo

if gy is a Y-adjusted Green’s form for Y.

In the last part of this thesis we generalize the modified *-product to a family of
Green’s forms gy, , ..., gy, and find an alternative description of the generalized arithmetic
self-intersection number of a good hermitian line bundle (for a definition see [BGKK]). As
an application we compute on the arithmetic 3-fold X = X' (1) xzX' (1) the known arithmetic
self-intersection number of £(k) := piM(I'(1)) @ p5 M (T'(1)), where k € N with 12|k, p; :
X — X(1) is the projection onto the i-th factor and My(I'(1)) := (Ox1)(Sao) 2, ||| pet)

is the line bundle of modular forms equipped with the Petersson metric.
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Chapter 1

Arithmetic Local Coordinates On

Arithmetic Surfaces

In this chapter we start with a review of the relevant definitions of arithmetic intersection
theory on arithmetic surfaces X over Spec Ox. We define arithmetic local coordinates in
horizontal prime divisors. We show that they always exist and that they satisfy a functo-
riality property. We calculate examples of arithmetic local coordinates on the arithmetic
surfaces P, and X(1). In the case that the horizontal prime divisor on X is induced by
a K-rational point on the generic fibre X we show that the concept of arithmetic local
coordinates is equivalent to the intersection theory with a tangent vector by B. Gross and
D. Zagier in [GZ]. As an application we compare the tangent vectors for Heegner points
on X (1) calculated in [GZ] with our arithmetic local coordinates on X'(1). We prove that
the arithmetic self-intersection number of a hermitian line bundle on an arithmetic surface
can be written as a limit formula with the use of an arithmetic local coordinate. With this
new formula we recover classical examples on P}, and X (1). In the last part of this chapter
we show that arithmetic local coordinates can be defined using a special kind of Green’s
functions, called adjusted Green’s functions. These have a simpler characterization than
the arithmetic local coordinates and thereby are easier to handle with. Using adjusted
Green’s functions we prove another version of the arithmetic self-intersection number of a

hermitian line bundle, where we only have to integrate a smooth differential form.



1.1 Review of Arakelov theory on arithmetic surfaces

Let K be a number field and let Ok be the ring of integers of K. An arithmetic surface
m: X — Spec Ok is a reduced, 2-dimensional, regular scheme, which is projective and

flat over Spec Ok. Moreover, we assume that the generic fibre
X = X Xgpecoy Opec K

is geometrically connected, i.e. X is a regular model of X over Spec Ok. For a closed
point p € Spec Ok, let X, = X Xgpeco, OpecF, denote the special fibre of X above p.
Let X, = X(C) be the set of complex-valued points of the generic fibre X considered
as a scheme over Q. Indeed, m : X — Spec Ok can be seen as a Stein factorization
of X — SpecZ, i.e. a morphism from X to Spec Ok which has connected fibres. The
existence of a Stein factorization of 7 : X — SpecZ follows from [Hal Corollary 11.5|.
Note that X, is a compact, 1-dimensional, complex manifold. Actually we have a disjoint
decomposition X, = [[, . x,c A&-(C) into the connected components coming from the
complex curves
Xs = X Xspec k.0 Opec C.

For a smooth function f € C*(X,,) we define the 1-forms 0f = %dz and Of = %di

with respect to a local coordinate z = x + iy € C, where as usual

9 _1(9_ zg and 2 Lo + z2
dz 2\ 0x oy 0z ox oy
Moreover, let us define the real operators d = 0+0 and d¢ = ﬁ@—@), so that dd® = i@é.

In polar coordinates z = re'¥ we can write

é)fd —I—%dr and dcf—i%rdgo—ilafdr

df = or 41 Or A r Op

see [Lal p.11]. Let P be a point on X,.. A Green’s function gp for P is a real-valued
smooth function gp € C* (X, \P) outside P such that

i) for a local coordinate ¢ in P we have an expansion

9r(Q) = —log [t(Q)|* + ¢(Q)

near P, where ¢ € C*(X,) is smooth and

ii) the (1,1)-form w,, on X, which is uniquely defined by w9P|X » = ddgp outside



P, is a normalized volume form. This means that w,, is a (1,1)-form, locally given by
f(2)idz A dzZ where f is a positive, real-valued, smooth function, satisfying the normaliza-
tion [, w,, = 1.

Here we note that Green’s functions are not uniquely determined. Indeed, if gp is a Green’s
function for P, then for all real numbers o € R, the function gp + « is also a Green’s func-
tion for P.

Let Z'(X) denote the group of divisors D on X. Any divisor D is a linear combination
of prime divisors, i.e. irreducible and reduced divisors. There are two types of prime divi-
sors: horizontal and vertical prime divisors. A prime divisor D is called horizontal if D is
the Zariski closure in X of a closed point on the generic fibre X, and is called vertical if D
is an irreducible component of a special fibre X}, hence 7(D) = p € Spec Ok.
A horizontal divisor D on X is a linear combination of horizontal prime divisors and in-
duces a divisor D(C) = > ordp,(D(C))P; on X. With this notion, let gp, be a Green’s
function for ;. Then gp := ) ordp,(D(C))gp, will be called a Green’s function for D.

Let Z!(X) be the group of arithmetic divisors (D, gp) € Z'(X), where D is a divisor
and gp is a Green’s function for D. For two arithmetic divisors (Dy, gp,) and (Da, gp,)

such that D; and D, have no common components, their arithmetic intersection number
(D1, 9p,) - (D2, gp,) € R is defined by

1 1
(D1, 9p,) - (D2, 9p,) = (D1, Da)sin + 597, [Do(C)] + 3 /9172 " Wop, 5 (1.1)

Koo

where gp, [D2(C)] := > ordp, (D1(C))ordg, (D2(C))gp,(Q;) for Di(C) = > ordp,(D1(C))F;
and Dy(C) = ) ordg, (D2(C))Q;. Moreover, the differential form wy,, denotes the smooth
(1,1)-form on X, given by dd°gp, outside D;(C) and (Dy,Ds)sn denotes the geometric
intersection number of Dy and D,y. If D; and D, are prime divisors with no common

component, the geometric intersection number equals

(D1, Do)sin = Z log #(Oxx /(D 4, Daa))
TEX
where D; , (i = 1,2) are local equations for D; (i = 1,2) at the point z € X and the
sum runs through the closed points z in X. For linear combinations of prime divisors,
the intersection number can be defined by bilinearity. For the case that the prime divisors

have common vertical components, we refer to [Li2, Theorem 1.12. p.381]. If the divisors



D; and D, have common horizontal components, we have to move D; by the divisor of a
rational function f € k(X)* such that D; — div(f) and Dy have no common horizontal
components. Indeed, let R'(X) C Z'(X) be the group of arithmetic divisors of the form
(div(f), —log|f|?) with f € k(X)*. The quotient

— 1 = ~
CH (x) = Z2'(X) /R!(x)
is the arithmetic Chow group of X. Then we have the following

Theorem 1.1. (ARAKELOV, DELIGNE ET AL. [SO2, THEOREME 1, P.329|)

There exists a bilinear, symmetric pairing
CH (X) x CH (X) — R
([D17gD1]7 [D279D2]) — (D179D1) ’ (DQngz) :

Moreover, there exists a bilinear pairing

ht: CH (X) x Z'(X) — R
([Dlv 9D1]’ DQ) — ht[Dl,gpl](DQ)’

which satisfies the equation

1

(D17 9D1) : (D279D2) = ht[Dl,gbl](DQ) + 5 /gDQ : wng'

Xoo

The number htip, 4, 1(D2) € R is called the height of Dy with respect to [Di, gp, |-
For an arithmetic divisor (D, gp) € Z'(X), the arithmetic self-intersection number of
(D, gp) is given by

(D407 = (B0 —aiv(1 ) + & (00 +108 D) DO + 5 [ g0 (12

Koo

Here f € k(X)* is chosen such that D intersects D — div(f) properly on the generic fibre
X. By this we mean that D(C) N (D — div(f))(C) = (). By Chow’s Moving Lemma (see
ILi2) Corollary 1.10, p.379]) we can always find such an f.

Let Pic (X) denotes the group of isomorphism classes of hermitian line bundles L =

(L,]]-]l). This means that £ is an invertible sheaf on X and ||| defines a continuous



hermitian metric on Lo, = L®p, C over X,. For a section s of L., and a local coordinate

tin P € X, we can write
ordp (s
Isll (£) = [ b 2),

where 1 is non-vanishing and continuous.

By [Soll Proposition 1, p.67| all arithmetic divisors arise from the isomorphism
~ 5 I .
& Pl (%) < G (X), (£, 1) — [div(l), —log |1]],

where [ is any non-trivial rational section of £. The inverse map of ¢ is given by [D, gp| —
(Ox(D), ||I-). The metric ||-|| is defined by ||1p||> = exp(—gp), where 1p denotes the
canonical 1-section of Oy (D). Note that this isomorphism is compatible with arithmetic
intersection numbers. More explicitly, consider two hermitian line bundles £ and M. Then

their arithmetic intersection number is defined by
LM : = (div(l), —log ||lH2) - (div(m), — log ||m||2)

= (div(l), div(m))g, — log|m|| [div(l)] - /IOgHZII -1 (M),

Xoo

where [ and m are non-trivial rational sections of £ and M resp., whose induced divisors
on X,, have no points in common, and c¢; (M) denotes the first Chern form of M on X.,.
For a non-trivial rational section m of M on X, the first Chern form c;(M) is given by
—dd®(log ||m|)?) outside div(m) on Xs.

Moreover, we have the height of P with respect to £ = (L, ||-||), which is given by

htz(P) = (div(l), P)g, — log || [P(C)] € R,

where [ is any non-trivial rational section of £ having divisor disjoint from P on the generic

fibre. The arithmetic self-intersection number of L is given by
£ = (div(), - log 1]]*)",

where [ is a non-trivial rational section of L.

1.2 Arithmetic local coordinates

In the definition of the arithmetic self-intersection number of an arithmetic prime divisor
(P, gp) we have to choose a rational function f € k(X')* such that P and P —div(f) have



no common components, see equation . Since no rational function f € k(X)* used
to move P as above should be preferred over the others, we may ask whether there is an
analytic shadow of P that replaces the geometric intersection number at the finite places
by an analytic datum on the complex manifold X,,. This leads to the definition of an

arithmetic local coordinate.

Definition 1.2. Let 7 : X — Spec Ok be an arithmetic surface and let P be a closed
point on the generic fibre X with residue field k(P). Moreover, let P be the horizontal
prime divisor given by the Zariski closure of P in X'. Over the curve &, for o : K — C, the
induced divisor P‘Xa = > P,, is the sum of dp = [k(P) : K] points (i = 1,...,dp). An
arithmetic local coordinate zp in P is a family of local coordinates (ZpiJ)i , in the induced
complex-valued points on X, such that for all rational functions f € k:(X )* the following

equation holds:

dp
(Av(f)ordp (1P, Phiw = S0 D lim (log|fo(Que)|—ord,, (f) 08 |2, (Qio)] )

o KC i=1 "

Here, for each 7 and o, the point ();, converges to P, , in the complex topology on X.

Remark 1.3. To simplify the notation we set |a| := [],  |a; | for a family of real numbers
o = (a;,), - Moreover, the equation in Definition [1.2] will be written as

(div(f) — ordp(f)P,P)sin m_ (log|f(Q)] — ordp(f)log|z»(Q)|). (1.3)

=1
Q—P
Remark 1.4. Note that a local coordinate in a point P on X, is a pair (U, zp). Hence

arithmetic local coordinates do not only depend on the divisor P but also on the open
neighborhood U of P(C).

Now we will see that arithmetic local coordinates are independent of the rational func-
tion f used in the defining equation (1.3 and that they do exist.

Proposition 1.5. Suppose P is a horizontal prime divisor on an arithmetic surface X.
Then we have:

i) There exists an arithmetic local coordinate zp in P;

i) If zp and wp are both arithmetic local coordinates in P, then there is a family v =

(Viw);, 0f complex valued functions v, on X with |y(P)| := [ |0 (Fis)| =1 such that

Twp = (%‘,a : IUPZ-,U)W = zp.



Proof. i) We will show that given a family of local coordinates zp = (ZPZ.’U)ZA

P(C), there exists a family o = (), , of positive real numbers «;, € R.q such that the

,, in the points

family azp = (asziva)i i is an arithmetic local coordinate in P.

Let P be a closed point on the generic fibre X such that P is the Zariski closure of P
in X and set n = [k(P) : Q|, where k(P) is the residue field of P. Let zp be a family of
local coordinates in the points P(C). Moreover, fix a rational function f € k(X)* with

ordp(f) # 0. Then there exists a family of real numbers o = (o), . € R" such that

i7

(div(f) — ordp(f)P, P)tn (log | f(Q)] — ordp(f)log|2p(Q)[) = —ordp(f)log]al.

— lim
Q—P
Obviously the numbers «; , can be chosen to be positive and the family of local coordinates

Qzp = (ai,aZPiya)i o satisfies the equation

(div(f) — ordp(f)P, P)n (log [ f(Q)] — ordp(f)log|azp(Q)]) -

Now we show that any family of local coordinates zp in P on X, which satisfies the
equation for one function f € k(X)* with ordp(f) # 0, satisfies the same equation
for all function g € k(X)* and hence is an arithmetic local coordinate in P.

First note that the equation (1.3]) is satisfied for any rational function f € k(X)* with
ordp(f) = 0. Indeed, because of the product formula

(div(f), P)an = log [f(P)].

Now consider a rational function f € k(X')* with ordp(f) # 0. Then there are functions
t € k(X)* with ordp(t) =1 and h € k(X)* with ordp(h) = 0 such that f can be written

as f = h-to"%(), Calculating the geometric intersection number yields

(div(f) — ordp(f)P,P)an = (ordp(f)div(t) + div(h) — ordp(f)P, P)in
= ordp(f)(div(t) — P, P)sn + (div(h), P)sn.

On the other hand, there is the analytic limit

Jim, (log [ f(Q)] — ordp(f) log |2p(Q)]) =

1.4
Jim, (ordp (f) log [H(Q)] — ordp(f) log |2p(Q)]) + log [h(P)] .

Thus dividing both sides of equation (1.4) by ordp(f) and applying the product formula,
we see that the function f satisfies the equation (1.3) if and only if the function ¢ satisfies



equation (L.3). It follows that is satisfied for every rational function g € k(&X)* if
and only if it is satisfied for one function f € k(X)* such that ordp(f) # 0, since we can
always find a function A’ € k(X)* with ordp(h') = 0 and g = b’ - t°"4*(/)| This proves the
first assertion of the proposition.

i) The second assertion is trivial. O

The next proposition shows how arithmetic local coordinates transform under pullbacks.
This yields a method of constructing arithmetic local coordinates. For this let X' C L
be an extension of number fields and consider two arithmetic surfaces ) — Spec Oy,
and X — SpecOg. Let ¢ : Y — X be a surjective proper morphism of arithmetic
surfaces over Spec Og. Let P be a horizontal prime divisor on X with generic point P
and let zp = (ZP,L.?U)Z.U be an arithmetic local coordinate in P, where o0 : K — C and
i=1,...,[k(P): K] ’Moreover, let ¢*P = > b,P, +V be the decomposition of ©*P into

horizontal prime divisors P, with generic point P,, and a vertical divisor VV on ).

Proposition 1.6. Consider the situation as above. Then for each horizontal prime divisor
P, C ¢*(P), there is a family of real numbers o, = (ozjﬁ)jT form: L — C and j =
L,...,[k(P,) : L] such that

2p, = Q- (gp*zp)l/b” (1.5)

15 an arithmetic local coordinate in P,. More explicitly,

1
log v | = Y (Z biPi +V773u) :
Y Ny ,fin

Proof. Let f € k(X)* have ordp(f) = 1. Since the morphism ¢ : ) — X is surjective,
we obtain an inclusion of function fields k(X)) — k()) and f induces a rational function
©*f in k(Y)* such that ordp,(p*f) = b,. For two divisors Dy € Z'(X) and Dy €
7Z'(Y), where ¢, Dy and Dy do not have any common component, the projection formula
(©*Dy, Dx)xsin = (Dy, p«Dx)yan holds. Observe that we have ¢, P, = [k(P,) : k(P)|P
and ¢*div(f) = div(p*f). Using the definition of the arithmetic local coordinate zp in P,



we find

[k(P) : k(P)] lim (log |£(Q)] — log |2p(Q)]) =

[k(P)) : k(P)(div(f) =P, P) g =
(div(go* f=3 6P -, Py)yﬁn -

(div(e ) = 0P Po)ygn — > (0iPi + V. Py g -
1#v

Therefore the equation
(div(e™f) = 0Po, Po) e =[R(P) : K(P)] lim, (log | F(Q)] —log|zp(Q)]) +

> 0P+ V. Po)y g
1534

holds. By equation ([1.5)) we have

Q}/ignp (log " f(Qu)| — b, 1og |zp, (Q)]) = Q}igﬂpy (log |¢" f(Qu)| — log |0 2p(Q.)]) —

v

b, log |ay,|
on Y. It remains to show
ol (log |" f(Qu)| —log [¢"2p(@)]) = [k(F) : K(P)] lim (log|f(Q)] —log|zr(@)]) -

But this is clear, since the valuations of ¢*f(Q,) = f o p(Q,) = f(Q) and ¢*2zp(Q,) =
2p(Q) do not depend on the extensions 7 : k(P,) < C of 0 : k(P) — C. O

Remark 1.7. Here we note a crucial fact about how arithmetic local coordinates transform
under base change morphisms: Let P be a horizontal prime divisor on an arithmetic surface
X over Spec Ok such that the generic point P is K-rational. Let zp be an arithmetic local
coordinate in P. For a number field L O K let X be the arithmetic surface over Spec Oy,
defined by a desingularization of X Xgpec0, Spec Or. Assume that the divisor P on éi’v,
which is induced by P, is a horizontal prime divisor. Then by Proposition [1.6] zp is also

an arithmetic local coordinate in ﬁ

Remark 1.8. In the next proposition we will calculate arithmetic local coordinates in
horizontal prime divisors on P}. Then we can use Proposition to construct arithmetic

local coordinates in horizontal prime divisors on arithmetic surfaces which cover P},.
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Proposition 1.9. Let X = P} = ProjZ[xg, z1] be equipped with the usual homogeneous
coordinates xo and x1. Then the following hold:
i) Let P = (a:b) € X(Z) with b # 0. On the chart U = {z = xy/x1 € C} on the projective

line X = PL, an arithmetic local coordinate zp in P is given by

Zp:b2(2—%>.

i) For a number field K, let P¢, = Proj Ok[zo, 1] and let P = (o : ) € P, (Ok) with
B #0. Foro: K — Clet||, denotes the o-adic valuation, hence |a|, = |o(a)| for a € K.
On the chart U = {z = xo/x1 € C} on Pk, an arithmetic local coordinate zp in P is given
by

zp = (181, - (= = )
where Y P, denotes the divisor on U, which is induced by P(C).

Moreover, let P be the generic point of P and assume that | P, defines a closed point on
Pgy. Let Py~ denote the Zariski closure of 3 P, in Py. Then

o’

Zpg = (ay - (2= P,)),, where a, := |ﬁ|i . H w8 — Byal,
v=2

is an arithmetic local coordinate in Py on P}, where Ps>(C) = >0 (o, : f,) is the

decomposition of Py over P{ with oq == « and 51 := .

Proof. i) The divisor P corresponds to the polynomial bxy — ax;. Taking a rational
function f = Zﬁ%ﬂ with be # ad, the geometric intersection number (div(f) — P, P)fin

equals —log |R(P, Q)|, where R(P, Q) is the resultant of the polynomials P = (dz¢ — cxy)
and @ = (bxg — axy), see |Lill, Theorem 2.1.1]. Thus we have

(div(f) — P, P)sn = —log|bc — ad| .

bz—a
dz—c

The induced rational function f on X, is given by f = on the chart U. Considering

a

a point Qs = § + ¢ close to P(C) = P, = §, we have to calculate the limit

oJim, (log | f(Quo)| — log |2p(Qo)l) -

oo oo

The above expression equals

b

da — ¢cb + bde

b(%—i—e)—a

(¢ 1e)—c| 8

log

(5 ee=3)| v

’—log|62€|
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as ¢ — 0. Cancelling b*c and setting ¢ = 0, we see that the term equals the geometric
intersection number — log |bc — ad).
ii) We show that

= (1B (= P»)),

is an arithmetic local coordinate in P on the arithmetic surface P, . The divisor P is
given by the polynomial Sz¢ — ax;. If we take the function [ = Bmo C”“ + for 7,0 € Ok with
By # ad, then the equation

(div(f) =P, P)g, = — log ‘Nmm@ (By — oz5)‘

holds, see [La, p.56]. Considering zp induced by the rational function zp := W”jﬁ—l‘m),
where P is the generic point of P, then over (IP’%OK)OO we have
dim (log |f(Q) —log|2p(Q)) = > log|=(P)| == >_ log|fy - adl,
o K—C g o:K—C

The definition of the o-adic valuation and the norm of algebraic numbers shows the claim.
Now we consider the divisor Ps-. Over IP’}QK we have the decomposition Py~ = 3" | P,,
where each divisor P, := (o, : §,) is a conjugate of the divisor (a : §). Now using the fact
that

(P,,P)g, = log |NmK|Q (a8 — B,,oz)‘

holds for v # 1, Proposition shows that
2pg = (@0 - (2 = Py)), , where ap = |8]} - [[ law 8 = Bral, .

is an arithmetic local coordinate in Ps~ on Py, O

Example 1.10. We consider the arithmetic surface P, = Proj Z[zg, 7] and the divisor P,
given by the polynomial 22 — 322. Over IP’%[ vz e have the decomposition P = P; + P,
where P, is associated to zo — v/3z; and P, to zo + V/3x1, respectively. Moreover, let
. Pl
L PZ[\/??}
picture.

— PL denotes the projection. This situation is visualized in the following
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. o

Spec Z[v/3] (1 J; V3)  (V3) id o: \/é = —/3

SpecZ (2) (3) id

Now if zp = (2p,, 2p,) is an arithmetic local coordinate in P on P}, where zp, and zp,
are local coordinates on P, then the pullback of zp, under ¢ defines local coordinates zp,
and zp, , in the points Pyjq = (\/g, 1) and P, = (—\/3, 1) on the isomorphic Riemann
surfaces Pg. 4 = Pt .. Up to constants ajq and a,, depending on the geometric intersection
number of P; and P, this defines an arithmetic local coordinate zp, = (aidz]al,id, oz(,;:pLU)

in P; on Pé[\/g]-

1.3 Examples on the modular curve X'(1)

A good introduction into this topic can be found in [Sh2].
Let H={r =241y € C|y > 0} denote the upper half plane and T" a finite index subgroup
of the full modular group

I'(1) =PSLy(Z) = {(2})]a,b,c,d € Z with ad —bc =1} / £ 1.

Important examples are given by congruence subgroups, i.e. subgroups I' < I'(1) such that
there exists N € Nyy with

P(N):={(2]) eT(M|(¢5) =1 mod Nj CT.
The modular curve X (T') is the quotient T'\H U Pg, given by the Mdbius transformations

at +b m) am + bn

V() = and 7 (—

et +d n cm +dn
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with v = (24) €T, 7 € Hand 2 € Pg. Its natural topology is induced by this quotient.
For 7 € HUPY let - = {y € '|7(7) = 7} denote the stabilizer of 7 in I and n, = |T'| its
order. A local coordinate in a point P, on X(I') that corresponds to the orbit of 75 € H

is given by
T —1T0

(1.6)

n
try = Wr, ", Where w, = —.
T —To

If n,, > 1, the point P,, will be called elliptic, otherwise non-elliptic. The cusps S,
on X(I') correspond to the orbits of 79 € P and a local coordinate in Sy, is given by
Gry = 2™ /0 where v € T satisfies () = ico and b = [['(1),, : I';,] denotes the width
of the cusp S,.

Let My (T") denote the space of meromorphic modular forms of weight k € Z associated to
a finite index subgroup I' < I'(1). Thus an element f € My(I") is a meromorphic function
f + H — C that satisfies the functional equation

fOy = (et +d) " f(y7) = f(r) forally=(2}) el

and is meromorphic at the cusps of I'. More precisely, for the local coordinates ¢,, =
®™(M/0 in the cusps of I' we have f(7) = > 77 a,(f)q? where ng € Z and a,(f) € C.
Here we note that meromorphic modular forms are rational sections of a line bundle on
X(I'), which is called the line bundle of meromorphic modular forms and will also be
denoted by M ().

Furthermore, consider the Shimura-Maass differential operator 0 defined by

st (4 M)

2mi \dr T -—T

for f € My(T'). Inductively we set °f = f and 9"f = 9" 1 o 0f for n > 0. The
advantage of this differential operator is that if f € My(I') is a meromorphic modular
form of weight k, then Of transforms like a meromorphic modular form of weight k + 2,
namely the equation 9f(7)|r427 = f(7) holds for all v = (%) € I, see [Zal p.51],

Let M, (T') be the space consisting of the meromorphic modular forms f € M;(T) and
the elements of the form & f where f € My, (I'). For f € M(), the Petersson metric
||| peg is defined by

2 2
1 (D)5 = £ ()] (4rIm(T))".
Note that the Petersson metric defines a hermitian metric on the line bundle of meromor-

phic modular forms, which is singular only at the elliptic points and the cusps of X (I'),
see |Kii3, Proposition 4.9.].
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Now, note that X (I") is an algebraic curve over some number field K. Thus we can calcu-

late arithmetic local coordinates in horizontal prime divisors on a regular model X (I") of
X (D).
We start with the cusp of the modular curve X (I'(1)).

Proposition 1.11. Let X(1) = X(I'(1)) = Py, and let X(1) denote the regular model Py,
of X(1). Let Sy denote the cusp of X(1) and let So, denote the closure of So in X(1).

Then an arithmetic local coordinate zs_, in Soo 1S given by

Proof. Let j be the modular invariant. The Fourier-expansion of j is given by j(q) =
% + 744 + >, ang” for some a, € Z. Since X(1) is the compactification of the j-line
Y = SpecZ]j|, we have j € k(X (1))*. The order of j in Sy is given by ords_(j) = —1.
Let P, denotes the Zariski closure of the elliptic point P, of order 3 in X'(1). Because P,
has potential good reduction, see [Si, Proposition 5.5, p.181], it follows that P, does not

intersect Sy on X'(1). Hence we obtain
(div(j) + Soo, Soo)fin = (P, Soo)fin =
With the help of the Fourier series of j we find
lim (log |j(7)| + log|zs,. (7)]) = lim(log |5(q)| + log q|) = lim(log |1 + O(q)[) = 0,
T—100 q—0 q—0
which proves the proposition. O

Now we will come to the calculation of arithmetic local coordinates in non-cuspidal
points on X (1).

Proposition 1.12. Let P,, € X (1) be a non-elliptic point defined over some number
field K. Let P, be the Zariski closure of Py, in X(1)o, = X(1) Xgpecz Spec Ok and
set Pr,(C) = Z[KQ P.,. Then there is a family of complex numbers o = (oy); with
log |ar] = (Socs Pry)x(1)0, fin sSuch that

ZPT() = (al ||8](T’6) ||Pet tﬂ)l

s an arithmetic local coordinate in P,,, where t., is defined by equatlion .



15

Proof. Consider the rational function j(7) — j(70) on X' (1)o,. Since div(j(7) — j(7)) =
Pr, —Soo, Wwhere S, is the Zariski closure of the cusp So on X (1)x = X (1) Xgpecq Spec K,

there exists a family of algebraic numbers a such that
(div(j(7) = 7(70)) = Prys Pry)in = (—So0; Pry)ein = — log || . (1.7)
On the induced complex manifold X' (1)p, (C) we have to compute the limit
lim (logj(r) = j(70)| — log |2r,, (7)]) ,
which is given by

3 i (1og () = ()] ~1og |0 23l )

It suffices to show that log|j(7) — j(7;)| equals log ‘H@j(Ti)HPet —Z| in the limit 7 — 7;, or
equivalently
() — il 9i(r
log lim ]<T> ](T) —log’ H j(T)ﬂPet ) (18)
T—Ti T —T; T — T;

The definition of the Petersson metric (|0j(7;)||py, = 4mIm(7;)|0j(7:)| and the Shimura-

and hence . O

Important algebraic points on X (1) are Heegner points of discriminant D, see the
definition in [GZ]|. Note that the number of Heegner points P,, € X (1) of discriminant D
equals the class number h(D) = #Clx of K = Q(v/D) and that the residue field of P, is
isomorphic to the Hilbert class field H = K (j(1)) of K.

Maass operator 0j = == dj yield [|05(7:)|pey = |(TZ — ﬁ)ﬂ(n)

2mi dr dr

Corollary 1.13. Consider the situation as in Proposition[1.18, where Py is a non-elliptic
Heegner point and H is the Hilbert class field. Then we can set o = (o; = 1);, where
i=1,...,[H:Q|. In other words

2P,y = (105(7) | pet t);
is an arithmetic local coordinate in the closure Py, in X(1)o,, of the point Py, .

Proof. By [Si, Proposition 5.5, p.181] and [Zal Corollary, p.71] any Heegner point has
potential good reduction. It follows that P,, does not intersect the cusp So, on X(1)p

I’E

Hence equation (1.7)) vanishes. O
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Now we want to calculate the derivatives of meromorphic modular forms more explicitly.
Note that Rankin showed in |[Ra, Theorem 4.3.4] that any meromorphic modular form of

even weight f € Mo (I") associated to a finite index subgroup I' < I'(1) can be written as

f(r) = (0i()"*
where P and @) are polynomials in C[j(7)].

Proposition 1.14. Let E4(7) and Eg¢(7) denote the classical Fisenstein series of weight 4
and 6 respectively, and let A(T) denotes the modular discriminant (of weight 12). Then

0itr) = (252) (),

In particular, an arithmetic local coordinate in the Zariski closure Pr, of a non-elliptic

t) .
Pet i

(7) is the unique meromorphic modular form in My(I'(1)) that

Heegner point Py, is given by

E’E
= (e

Proof. The function E?ffi

is holomorphic in H and has a Fourier series of the form é + Z|[q]], see [AKN| Section 3].

Since 97 is holomorphic in H and has a Fourier expansion (95)(7) = —% +Z|[q]], the result
follows using Corollary [1.13] [

The case that the Heegner points P, are elliptic can be treated similarly.

Proposition 1.15. Let P; and P, be the horizontal prime divisors on X (1) coming from

the elliptic Heegner points P; and P,, respectively. Then

1o Lgs;
T 5 10%5() || po ti and  2p, = 6 10°3(P) | ey 2o

are arithmetic local coordinates in P; and P,, resp.

Moreover, we can write

zp, = 2'3% | By(i) | pe t: and  zp, = 2° |Eg(p) ey tp-
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Proof. Because the Heegner points P; and P, have potential good reduction ([Si, Propo-
sition 5.5, p.181]) and because of j(i) = 12% and j(p) = 0, we are left to prove

0 = lim <log |j(7‘) — 123} — log t; ) and
T
(1.9)

| T
5”83(@)

HPet

t ) |
Since j is holomorphic in w; and w, (see [Ral, equation 4.1.17]), it follows from [Za, Propo-

sition 17] that the values 9;(i), 9j(p) and 9?j(p) vanish. Then the usual derivation shows
jlr)—12%  1d?% (2m)

1
0 = lim ( log|;i(r)| — log | = ||°)
Tgr})<ogb(7)| og | = [|0%(p)

||Pet

. 2
1712% —7 " 2de (i) = 0°j(i) and
() 1 (27”) 5
1 = —— —0
e —p sam T g OI0)
The definition of the Petersson metric yields
» & . d%
16250 = [220] and [0%50) ], = 20 50|

T+1 T—p
To calculate the higher derivatives of the modular invariant j(7), we can use the definition

3
The desired limit formulas follow from the local coordinates ¢; = (ﬂ) and ¢, = <J> .

o' = 0o 0" '), where 95 = —E2Eq/A. After a long calculation, using the classical
derivation of the Eisenstein series
1 dE, EI-E, 1 dE, EE,—E; 1 dB; B —E2
2mi dr 12 7 2w dr 3 T 2mi dr 2 ’
where Es is the holomorphic Eisenstein series of weight 2 (see [Za, Proposition 7| and [Zal
Proposition 15]) and using the equations E} = Aj and E2 = A(j — 1728), we derive the

following expressions:

1
0% = 6E;aj +Ey4 (gj — 1152) and

1 1 7
D) = —E*82 + (84E4 + (E3)*) 9 + (E3Eq — Eg) <Ej — 384)

Here B = By — ( 3 is the modular Eisenstein series of weight 2. We see immediately that
0%5(i) = 2533E4( ) and 9%j(p) = 273E4(p) hold, since 9j(i), dj(p) and 9?j(p) vanish. [

In the final part of this section we want to give an application of arithmetic local
coordinates, namely a normalization condition in the theory of power series expansion of

meromorphic modular forms.
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Proposition 1.16. Let P, be a non-elliptic Heegner point on X (1) and consider the local
coordinate zp, = ||0j(70)||pey tro in Pry- Then there exists a constant Qx € C* depending
only on K = Q(1) such that all meromorphic modular forms f € My(T') associated
to a congruence subgroup T' < T'(1), which have algebraic Fourier coefficients and are

holomorphic in the point 79 € H, can be written as
T — T0o
Q23
(TO - 7'0) Z o

where o, € Q%.Q are algebraic numbers up to the factor Q5.

In particular the coefficients o, of modular functions (k = 0) are algebraic.

Proof. It was shown in |Zal, Proposition 17| and [OR) equation 3.10] that

—To g 2 (—4nIm(m))"™
(Z=2) 1= =2 e

To — 70 0

for all f € My(T'), which are holomorphic in the point 79 € H. Using the definition of the

local coordinate zp, , we obtain

T—To > (0" f)(10) ,
(7’0 —7'0) Z n! 107 (10)|™ “Pry

n=

By [Shll Main Theorem I| there exists a constant Qx € C*, depending only on K such

o @ )(r)
n E @
Q/If(+2
for all n € N and all f € My(I"), which have algebraic Fourier coefficients. For instance,
we can define Qg as the Chowla-Selberg period (see |Zal, equation 97]), i.e. the product of
suitable gamma factors. Thus for these f € My (L") there is a constant 2 € C* such that

O () o~
95 ()" < K

for all n € N. The proof follows. [

1.4 Intersection theory with a tangent vector

In this section we review the intersection theory with a tangent vector, which can be found
in [Gr], [GZ] and [Co|, and compare it with the theory of arithmetic local coordinates.
In the remainder, let 7 : X — Spec Ok be an arithmetic surface with generic fibre X and

let P always be the horizontal prime divisor coming from a K-rational point P € X (K).
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Definition 1.17. Let f € k(X)* be a rational function and let zp € 6}(713 be a formal
local parameter in P. Then the modified value of f in P is the number defined by

sz[P] = %(P) € KX.

P

Remark 1.18. To be more concret, let us consider a local parameter tp € k(X)* in P.
Then we have an isomorphism Oy p = K[[tp]] and the formal local parameter zp is a
power series zp = atp + > ., aitip in tp with « € K* and «; € K. It is clear that the
modified value of f in P only_depends on the first coefficient of the power series expansion
in tp. In other words, taking the formal local parameter zp = atp + ZiZQ a;th yields

fop[P] = fip[P] if and only if o = 1.

For a closed point p € Spec Ok let ||, be the p-adic valuation |a|, = Nm(p)~(®) for
a € K, normalized such that the product formula holds. Moreover, let (-,-), denotes the

local arithmetic intersection number over the special fibre &),. This is for two horizontal
prime divisors Py, Py € Z'(X) with P;(C) N P,(C) = @ given by

(7)17732)13 = Z IOg #(O‘X’x/(]Dl,x;PZx))a

m(z)=p

where Py, (resp. Pa.) is a local equation for P; (resp. P») at the closed point z € X. So

we have

(731, P2)ﬁn = Z (7)17 PZ)p-

(0)#p€Spec O

Definition 1.19. For a formal local parameter zp € 6}(713 in P we define the zp-reqularized

local self-intersection number (P, P)y.., of P by
(P, Pyzp = (P —div(f), P)p — log | f.p [P, ,
where f € k(X)* is a local parameter in P.

Note that the definition is independent of the rational function f by the basic properties
of the local arithmetic intersection number. Moreover, consider two formal local parameters

zp and zp such that zp = azp + O(z2). Then the equality
<P7 P)PJP = (Pv P)P,Z} + log ’a’p

holds. Thus the definition of the p-adic valuation shows (P, P),., = (P, P),., for all
maximal p € Spec Ok if and only if a € OF.
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Remark 1.20. Note that the zp-regularized local self-intersection number permits formal
local parameters zp € @XJ: that don’t necessarily arise from local parameters tp € k(X)*.
This generalization is useful for calculating the regularized local self-intersection number
explicitly, see Example below. However, setting f = tp € k(X)* in Definition [L.19]
yields the simple identity

(P, P)pﬂjp = (P - diV(tp), P)p
Remark 1.21. Using the notation
(P, Plincr = >, (PPlpap,

(0)#pESpec Ok

the product formula on K shows
(P7 P)ﬁn,zp = (7) - diV(f), P)ﬁn + log ‘fzp [P]l )

where we used the notation log|f..[P]| = >, xclog|f:n[P]],. Thus the arithmetic self-

intersection number of an arithmetic divisor (P, g) € Z'(X) equals

(P.9)" = (P Pty — o s PI| + 5 | (o8l F +9) PN+ [ g+

1
= (Pv 7D)ﬁn,zp + =

5 | oslznl +9) P+ [ g+

Koo

Now we want to normalize the formal local parameter zp to simplify the zp-regularized
local self-intersection number. For this let T'(X) denote the relative tangent bundle of the
arithmetic surface 7 : X — Spec Ok and let P : Spec O — X denote the section
associated to the K-rational point P € X(K). Pulling back the relative tangent bundle
T(X) under P we obtain a line bundle Tp(X) := P*T(X) over Spec Ok, since P(Spec Of)
lies in the relative smooth locus of X over Spec Of. We will call Tp(X) the tangent space to
X at P. Let T(X) be the relative tangent bundle of the generic fibre 7y : X — Spec K.
Since the tangent space Tp(X) is given by the pullback of the tangent bundle 7'(X) via
the point P : Spec K — X, we obtain an isomorphism

Tp(X) = Tp(X) o, K

using the natural isomorphism 7'(X) = T(X) ®o, K.
Thus, if 0,, € Tp(X) is a tangent vector associated to a formal local parameter zp € @XJD,

there exists « € K*, unique up to a unit in Ok such that ad,, induces a section of Tp(X).
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Proposition 1.22. Let zp € @va be a formal local parameter in P such that 0., induces a
section of Tp(X). Then for all (0) # p € Spec Ok, the zp-reqularized local self-intersection

number vanishes, i.e. (P,P)p.p = 0. In particular,

(P,P) = 0.

fin,zp

Proof. Let tp € k(X)* be a local parameter in P € X (K) such that 0;, = 0., in Tp(X).
In other words tp = azp + O(2%) with a € O}. Because of the adjunction isomorphism
Tp(X) =2 P*Ox(P) (see |Li2, Lemma 9.1.36]) we see that tp vanishes to order 1 along P.
It follows that P — div(tp) does not intersect P on X, i.e. (P,P),, = 0 for all maximal
p € Spec Ok. Because of (P, P)
number (P, P),

pap = (P’P)mp the zp-regularized local self-intersection

., vanishes for all maximal p € Spec Ok. O

In the following proposition we will show that the intersection theory with a tangent
vector can be viewed as a part of the arithmetic intersection theory using arithmetic local
coordinates. Indeed, the intersection theory with a tangent vector only permits divisors
P coming from K-rational points, whereas the definition of arithmetic local coordinates

allows more general divisors.

Proposition 1.23. A tangent vector 0., € Tp(X) in a point P € X (K) induces a section
of Tp(X) if and only if for all rational functions f € k(X)* the following equation holds:

(div(f) — ordp(f)P, P)en (log | F(Q)| — ordp(f)log [zp(Q)]) - (1.10)

= lim
Q—P

In other words the induced family (zp,) ¢ 18 an arithmetic local coordinate in P.

o K—

Proof. First consider the case where the tangent vector 0., is induced by a local parameter
Zp € k(‘)(')x
Let zp be a local parameter in P such that 0z, induces a section of Tp(X). If we write

zp = azp + O (Z%), where a € K*, we obtain for all p € Spec Ok the equation
log ’Oé|p = log |a‘p + (P’ ’P)p,zp = (P7 ,P)PuZP = (Pv P - diV(ZP)>IJ'

Since log [a, vanishes for all (0) # p € Spec O if and only if o € O, summing over all
p # (0) shows that the geometric intersection number (P, P — div(zp))s, vanishes if and
only if «v is a unit in O, that means that zp induces a section of Tp(X'). By the product
formula on K we know that equation (1.10) is satisfied if and only if holds for one
rational function f € k(X)* with ordp(f) # 0. Since we have shown this for f = zp, the
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proof follows when zp € k(X)*.

For a general tangent vector d,,, choose a local parameter ¢p such that zp = atp + O(t%)
and o € Of. Then 0., induces a section of Tp(X) if and only if 0;, induces a section of
Tp(X). The equation follows from the fact that log |Nmyg(@)| = 3, e log |,
vanishes if and only if « € OF. O

Example 1.24. In this example we compare the tangent vectors for Heegner points
on the modular curve X (1) calculated in [GZ, p.263] with the arithmetic local coor-
dinates in Proposition and Proposition [1.15] For this let us consider the differ-
ential w = n'(¢)dg/q = 2mwin*(r)dr with the eta-function n(7) = ¢/*J[(1 — ¢") as
in [GZ]. Tt determines a tangent vector d. = associated to the formal local parameter
27, = 2min*(79)(T — 7o) in the non-elliptic Heegner point P,, on X (1). It follows that there
exists an arithmetic local coordinate zp, = (ar,(7; — 7)2min*(7;)tr,); in the closure Py, in
X (1) of P,,, where the constants «,, are as in [GZ]. Here we set P,,(C) = >  P,.. Using
the arithmetic local coordinate as in Lemma we obtain

(1:) = o, (13 — F,-)27r2'774(7i),
Pet

E2Eq
A

where = means equality up to functions ~; satisfying [[~;(7;) = 1. Setting v; = 1 yields

2

Together with the equations Ej = Aj and E2 = A(j — 1728), this implies
A7, = j(Ti)Q/g (j (7—2) - 1728)1/2

up to a 6th root of unity. Note that this constant was calculated in |[GZ| with a different
approach.
Since the arithmetic local coordinates are also well-defined in the elliptic Heegner points

P; and P,, we can calculate the arithmetic local coordinate

ZPTO = Qg ((TU - T_O)Qﬂ-inZl(TO))nTo ’ tTo
with the help of the equations (1.15). Hence we have to calculate the constants a, in

(4myg)™mo

- "0 j(10)| = ‘am ((7’0 — 7_0)27?2’774(7'0))nT° .




23

Explicitly, the latter equation is given by 2%3% ||Ey]|p,, (i) = |oi(2:2min*(7))?| for the point
7o = i and is given by 20 ||Eg||p,, (p) = |o,(v3i2min(p))?| for 7o = p, respectively. It
follows

a; = 23" and a, = 293%2

as in [GZ, p.263].

1.5 Arithmetic self-intersection numbers

Now we come to the proof of one main theorem mentioned in the introduction, but in a

more general version using different Green’s functions.

Theorem 1.25. Let X be an arithmetic surface and let zp be an arithmetic local coordinate
in a horizontal prime divisor P on X. Given two arithmetic divisors (P,g1),(P,g2) €

21(?()7 their arithmetic intersection number equals

(P.an): (P = Jim, (logon @+ 501(@)) + 5 [ o

oo

where the equality dd°gy = w,, holds outside P(C).

Proof. If we take a rational function f € k(X')* with ordp(f) = 1 we obtain

(P,g1) - (P,go) = (P —div(f).log [f|* + 1) (P, g2)

= (P = () P+ 5 | ol +00) PO+ [ 920 |

Xoo

since dd®log |f]* vanishes outside div(f) on X. The definition of an arithmetic local

coordinate yields

(P,g1) - (P, g2) = Jim (log |2p(Q)] — log | f(Q)])
. 1 1
+ Jim, (10g|f(62)| + 591(@)) +3 /gz-wgl-
Xeo
Cancelling the term log |f(Q)]|, the proof follows. ]

In section 1.6 we give a different proof of Theorem [1.25] In the remainder of this section,
we use Theorem to compute some important arithmetic self-intersection numbers on
PL.



24

Proposition 1.26. Consider the arithmetic surface X = P}, and the hermitian line bun-

dle L = (Ox(1), |||lps) with the Fubini-Study metric ||-||pg. Then its arithmetic self-
intersection number is given by
—2

1
5—5.

Proof. First note that this proposition is a classical fact, see for instance [Bol p.957].
Consider the arithmetic divisor (P, gp) € Z'(X) given by the divisor P = (a : b) € X(Z),
where b # 0, and the Green’s function gp = — log ||bzo — az)||7g associated to the Fubini-

Study metric ||-||pg. Then we have
—2
L = (Pa g'P>2 :

In Proposition we calculated the arithmetic local coordinate zp = b? (z — %) in P

on the chart U = {z = 22 € C}. On this chart the Green’s function is given by gp =

1

—log (lli::]';) With the Fubini-Study form wrs = wy, = dd®log (1 + |2|*) Theorem [1.25

implies
—=2 . 1 1
£ = lim (log|zp(Q)] +§9P(Q) +§/9P'WFS
C

1
Q—P
P (=3
a

bz —

1 2
= lim (1 ~log (1
Jim <0g +3 og (1 + |2] ))

—1/10 bz =al" e, (1+2%)
2./ P\ TP & |

C
One can calculate directly (or see [CM, Corollaire 2.2.2]) that

2
/log <M> dd“log (1+|2[?) = log (a> + *) — 1
C

1+ |z|?

holds. Thus we get

a2

—=2 1
L —log|bl+§log <1—|— 2

1 1 1
)—glog(a2+b2)+§:§
]

In the next proposition we calculate the arithmetic self-intersection number of the line
bundle of modular forms equipped with the Petersson metric My (I'(1)). Note that the
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2 is a priori not defined because the Petersson

arithmetic intersection number M, (I'(1))
metric is not smooth in the cusp of the modular curve X (1). This problem will be solved
in Chapter 3 using a generalized arithmetic intersection theory. Indeed, in Proposition
we will see that the generalized arithmetic self-intersection number My (I'(1))2 = (P, gp)”
coincides with the arithmetic self-intersection number in Theorem if for the divisor P,

the set P(C) does not contain the cusp of X(1).

Proposition 1.27. Let X = X(1) = PL. For a natural number k € N with 12|k, the
arithmetic self-intersection number of the line bundle of modular forms equipped with the
Petersson metric My(['(1)) = ((9;( (8o ) EH12 ||-||Pet> is given by

MDY = Fo(=1) (ﬁiﬁiii ' %> ,

where (g denotes the Riemann zeta function.

Proof. A similar proof of this result can be found in [Ki3].

We start with the case k = 12. Consider the arithmetic divisor
(P, gp) = (div (A(7)j (7)), — log | A(T)§(7) [pes) -
Then P(C) = P, is the elliptic point of order 3 and
Mup(T(1))* = (P,gp)”.

By Proposition an arithmetic local coordinate in P is given by zp = ¢ [|0%7(0)||pe; t-
It follows

My3(T(1))* =lim <log

T—p

512250 ()| <8 1A ) -

1 ,
3 [ RlAIDIE, - wr

X(1)oo
Here wpet = wy, = 4= denotes the Petersson normalized hyperbolic (1,1)-form on X (1),
where 1 is induced by the T'(1)-invariant hyperbolic (1, 1)-form

idz/\df_dm/\dy o wt
2(Im(z))2 2 - Y

on H see [Shil Proposition 2.18.]. Tt is well-known (see [Kii2]) that

+

Co(=1) 1)
Co(=1) 2/

1 .
[ I v = 108 1A D)+ 12°0() (
X(1)oo
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Moreover, using equation (1.9, we find

1 .
L1050 )

lim (1og log ||A<T>j<7>||m) N ING .

T—p

Therefore,

FMia(T(1)* = 1260(-1) (&= + 3

The general case k # 12 follows from the bilinearity of the arithmetic intersection number

%D 1),

M (T(1))* = 1’“—;H12<F(1>)2 = FGo(-1) (gﬁgji + %) ~

O
In section 3.1 we give a different proof of Proposition [[.27] using the arithmetic divisor
(P, gp) = (div (A(7)), —log ‘|A<T>H123et)‘ Therewith it is necessary to calculate the arith-

metic self-intersection number using the generalized arithmetic intersection theory, which
will be defined in Chapter 3.

1.6 Adjusted Green’s functions

In this section we rewrite the notion of arithmetic local coordinates and the corresponding
arithmetic intersection theory of arithmetic divisors in the terminology of Green’s functions
and hermitian line bundles. At this point we would like to thank Ben Howard who described
in [Ho| an arithmetic local coordinate in terms of the height function with respect to a

hermitian line bundle.

Definition 1.28. Let X be an arithmetic surface and let P be a horizontal prime divisor
on X. Let zp be an arithmetic local coordinate in P. A Green’s function ap for P is called

an adjusted Green’s function for P, if ap is locally given by
ap(Q) = —log|2p(Q)I +#(Q)
with the property that o(P(C)) := > ¢(F;) =0, where P(C) =>_ P,
Recall that a Green’s function gp for P can locally by written as

9p(Q) = —log |zp(Q)|* + 0 (Q),

where zp is an arithmetic local coordinate in P and ¢ € C*(X) is a smooth function.

Then, it is clear that gp induces an adjusted Green’s function ap for P by setting

ap ‘= gp — QO(P(C))



27

Example 1.29. i) As in Proposition let X = P}, = ProjZ[zg, ;] and consider the

Green’s function gp and the arithmetic local coordinate zp in P = (a : b) € X(Z), where

b # 0, given by
bz — al 5 a
z)=—log| ————= | and zp = b (z——).
g’P() g<1+|2|2 P b

bz — al? a
Oép(Z)i—IOg <T|Z|2 —log 1""3

is an adjusted Green’s function for P.

It follows that

2
) — 2log |b|

i) A Green’s function for the cusp S, on X (1) =P} is given by

95..(q) = —log | A(q) [z = —log < 12(0) ) ,

[Ea(@)]” +[A(g)

where A(g) denotes the modular discriminant. It was shown in Proposition that
zs., = q is an arithmetic local coordinate in S,,. Hence gs_ already is an adjusted Green’s

function for S, because
lim (|E4(q)|® + |A(g)]*) = lim (1 + O(q)) = 1.
q—0 q—0

Proposition 1.30. Let gp be a Green’s function for P. Then gp is an adjusted Green’s
function for P if and only if the height htp 4,1(P) vanishes.

Proof. Recall that the height defines a bilinear pairing on CH' (X)xZ'(X). Take a rational
function f € k (X)” with m := —ordp(f) # 0 and a Green’s function gp = — log |zp|* + ¢,
where zp is an arithmetic local coordinate in P. Then by the definition of zp we have

1 W15 51 (P) =Wt (P) = (P 0i¥(1), Py, + 5 Jimy (mp(@) — log /(@)

= (Av(f) — ordp( £)P. Py, — 5 Jim, (1og /(@) + oxdp()ge(@)

= (div(f) — oudp(f)P, P}y, — lim, (log | F(@)] ~ oxdp(f) log |2p(@))
-2 ()

=2o(P(0)

Hence the height ht(p ,,1(P) vanishes if and only if ¢(7P(C)) vanishes, which is the definition

of an adjusted Green’s function for P. [
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Remark 1.31. The definition of the height shows that a Green’s function gp for P is an

adjusted Green’s function for P if and only if the equation

(@v(1) —ordn( £1P. P = iy (108 17(@)] + Jords (1 (@) )

= 1li
Q—P
holds for all rational functions f € k(X')*.

Using adjusted Green’s functions we can give a second proof of Theorem [T.25}
Proof of Theorem [1.25| By the definition of the arithmetic intersection number we have

2
Koo

1
(P.g1) - (P.gs) = higpg(P) + = / go -ty

For an adjusted Green’s function ap for P the equation ht(p o, (P) = 0 holds by Proposi-
—~1
tion |1.300 Since the height is linear on CH (X)), it follows that

ht[P,gl](P) = ht[P,gl](P) - ht[P,ap](P) = ht[0791,a7,](73)

—3 dim, (0(Q) ~ a»(@)) = Jiny (108 :p(Q)] + 301(@) )

which shows that

P.an)- (P = Jim, (1ogln @+ 50@)) + 5 [ -

Koo

and hence proves Theorem [1.25] ]

= lim
Q—P

Remark 1.32. i) In terms of an adjusted Green’s function ap for P, Theorem can

also be written as

—_

: 1
o) (Prgw) = 5 Jim, (0(@) — ap(@) + 5 [ g2
Xoo
Moreover, note that in the special case where g; = go = ap is an adjusted Green’s function
for P, we obtain the arithmetic self-intersection number

1
(7),067))2 = 5 / ap - Wyyp-

Koo
For instance, consider P and ap as in Example i). Then the arithmetic self-intersection

number of (P, ap) is given by

(P,ap)’ = % — log (a® 4 b%) .
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i) In terms of hermitian line bundles we have the following:
For a horizontal prime divisor P let Ox(P) be the corresponding line bundle and consider
two hermitian metrics ||-||; and ||-||, on Ox(P). Then Theorem can be translated into

(Ox(P), [Il) - (Ox(P), [ll)
(log|[1pll,, (Q) —log |17, (Q)) — /log 12y - e (Ox(P), [l),

Koo

= lim
Q—P

where 1p denotes the canonical section of Ox(P) and |[|-]|,, is any hermitian metric on
Ox(P) such that limg_,p (log [1pll., (Q) —log 12p(Q)]) = 0.

The next theorem will be useful when studying generalized arithmetic self-intersection
numbers, which we will consider in the last chapter. However, in the usual case it can be

seen as a version of Theorem without evaluation.

Theorem 1.33. Let X be an arithmetic surface and (P, gp) € Z*(X) an arithmetic divisor

for the horizontal prime divisor P. Then its arithmetic self-intersection number is given

by
1
(77>g7>)2 =5 / (9P - Wap — p - Wy, + gp - W)
Koo

where ap is an adjusted Green’s function for P.

Proof. By Theorem [I.1] the equation

1
(737973)2 = ht[pm,](P) + 5 / gp - Wyp

Xoo

holds. The definition of the adjusted Green’s form ap shows htip o,(P) = 0 and hence
ht(p g, (P) = htp g, (P) — htp o) (P). Since the arithmetic intersection number is sym-

metric, i.e.
(Pa g'P) ' (P7 O['p) = (P7 Q/P) ' <P7g73) 5
we obtain . X
htp g, (P) + 3 / ap - Wy, = htpp o (P) + 3 /gp “Wap -
Xoo Xoo
This yields
1
ht[P,gp](P) = 5 / (97’ ‘Wap — Qp - wgp) )
Xoo

which proves the theorem. O
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Chapter 2

A Generalization On Arithmetic

Varieties

In this chapter we start with a short review of the basic definitions of arithmetic intersection
theory on higher dimensional arithmetic varieties, which is due to H. Gillet and C. Soulé
in |[GS2]. In particular we describe the arithmetic intersection product and the height of a
cycle explicitly.

We generalize the definition of adjusted Green’s functions for divisors on arithmetic surfaces
to adjusted Green’s forms for a cycle on arithmetic varieties and show some important
properties of these objects. More generally, we also define a family of adjusted Green’s
forms for a family of cycles, which depend on one fixed cycle.

On the arithmetic variety P4 = ProjZ[x, ..., 4] we calculate some examples of adjusted
Green’s forms for two fixed cycles Y and Z, which are defined by linear equations.

We define a modified version of the x-product between two Green’s forms with the help of
an adjusted Green’s form. We demonstrate our new approach with two formulas for the
arithmetic self-intersection number of a hermitian line bundle. Therewith we calculate a
classical example of an arithmetic self-intersection number on PZ.

In the last part of this chapter we define adjusted equations, generalizing the definition of
arithmetic local coordinates on arithmetic surfaces. We also calculate examples of adjusted
equations on PZ. As an application we use a new version for the arithmetic intersection
number of two arithmetic cycles to give an alternative proof of the previously computed

arithmetic self-intersection number on P%.
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2.1 Review of higher dimensional Arakelov theory

In this section we give the background of the higher dimensional arithmetic intersection
theory. The following can be found in [BGS|, [Sol], [GS2] and [KMY]. First let us define

the notion of arithmetic varieties, cycles and Green’s forms.

Definition 2.1. An arithmetic variety m : X — Spec Ok is a reduced, regular scheme X,
which is flat and projective over Spec Ok, where as usual Ok denotes the ring of integers of

a number field K. Moreover, we assume that the generic fibre X is geometrically connected.

In the remainder let d € N be the relative dimension of X', hence dim(&X’) = d + 1.
Note that if d = 1, the definition of an arithmetic variety coincides with the definition of

an arithmetic surface X as in Chapter 1.

Definition 2.2. Let X, = X(C) denote the set of complex points of the generic fibre
X. On X, let APD(X,)) be the space of smooth (p, q)-forms endowed with the Schwartz
topology. This means that a sequence (1), in AP9 (X)) converges to n in APD (X)) if
and only if there exists a compact set K such that for any 7, we have supp(n,) C K and
any derivation of 7, converges uniformly to the corresponding derivation of 1. The space
of (p, q)-currents DP9 (X.,) is the continuous dual space of A@P4=D (X ).

We have an embedding AP9 (X)) < DP9 (X,,) sending w to [w], which is for a €
Ald=pd=a)(x_) defined by
[w](a) :== /w A a.
Koo
Let O and O denote the usual derivations on AP9(X,). The corresponding derivations on
D@9 (X)) will be also denoted by & and 0. Explicitly they are given by

9S(n) = (—1)"**1 S(0n) and 9S(n) = (—1)PT S(9n),

where S € DP9 (X)) and n € AP (X ).
It follows [On] = O[n] and [0n] = J[n] for any n € APD(X,).

Definition 2.3. For an integer p > 0 let Z?(X) be the group of cycles Z in X of codi-
mension p. Any cycle Z = > n;Z;, where n; € Z, is a formal sum of irreducible cycles Z;,
i.e. irreducible closed subschemes of X. A Kj-chain f is a formal sum f = > fi with
fw € k(W)*, where W runs through a finite set of integral subschemes of X of codimension
p — 1 and k(W) denotes its function field.
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The divisor of a K;-chain f = > fi as in Definition [2.3]is an example of a codimension
p cycle. Tt is given by div(f) = > div(fw) € Z°(X). Here div(fw) := > ordy(fw) -V,
where the sum runs through all integral subschemes V' of X of codimension p.

Notation 2.4. Let F : X,, — X, be the map coming from the conjugation on C. Then

we set

APP () = {w e APP (X)) wreal, FXw = (—1)"w} and
D(p,p)(/\g) ={we D(p’p)(Xoo)\ wreal, Fiw=(-1)"w},

where a current w € DPP)(X,)) is real if for any n € A4=P4P) (X)) we have w(7) = w(n).

Moreover, for later use we need the following:

A’(p,p)(;\g) = APP () /{8(u) + O(v) € APP)(X)| u e AP (X)), v e APPD (X))}
f)(p,p)(X) — D(p’p)(X)/{a(u) +0(v) € D(p’p)(X)| = D(p_l’p)(Xoo)7U e D(p’p_l)(Xoo)}-

An irreducible cycle Z € ZP(X) defines a real current dzc) € DPP)(X) by integration
along the smooth part of Z(C). More explicitly, the current 6z is defined by

—_~—

where v : Z(C) — Z(C) is a desingularization of Z(C) along the set of singular points of
Z(C). For an arbitrary cycle Z, the current 0z will be extended by linearity.
Note that a desingularization along the set of singular points (or only desingularization) is

a morphism that satisfies the next proposition.

Proposition 2.5. HIRONAKA’S THEOREM, [HI]|

Let Z be an irreducible closed subset of X.,. Then there exists a proper map v : 7 —7
such that

i) Z is smooth;

i) for the set of singular points Z5"¢ of Z, the divisor E := v~ (Z*"8) has normal crossings,
i.e. in local coordinates z1, . . ., zq given by the equation E = {z - -z, = 0} for some k < d;

iii) the map v : Z\E — Z\Z" is an isomorphism.

Definition 2.6. Suppose Z € ZP(X).
i) A Green’s current for Z is a current gz € D®~1P=1(X) such that

dd®gz + dz(c) = [wy,]
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for a smooth form w,, € APP)(X), where as usual d := 9 + 9 and d° := (9 — 0)/(4mi).

ii) A Green’s form for Z is a smooth (p—1, p—1)-form gz on X\ Z(C) such that the induced
current [gz] is a Green’s current for Z and such that there exists a smooth projective
complex variety X, a proper map 7 : Xy — Xs and a smooth form ¢ on X \7(Z(C))
satisfying the following properties:

1. E, =7 YZ(C)) is a normal crossing divisor;
2. 7 Xoo\Eoo — X\Z(C) is an isomorphism and 7, () = gz

3. for all z € X, with local equation (z1,..., 2k, U) for Z(C) in x, there exist smooth

0- and O-closed forms o; and a smooth form 3 on U such that

k
ol = Zai log |z + 3.
i=1

By a local equation (zy, ..., 2, U) for Z(C) in  we mean that 7= }(Z(C))NU = {2, -+ 2, =

0} holds for a system of holomorphic coordinates (2, ..., 24) of U centered at z.

Theorem 2.7. [Sol, THEOREM 3| AND [KMY, PROPOSITION 1.2.11./1.2.12.].

i) For any cycle Z € 7ZP(X) there exists a Green’s form for Z. In particular, for any cycle
Z there exists a Green’s current for Z.

i) If g1 and go are Green’s currents for Z € 7ZP(X), then there exist n € AP~LP=D(X),
u € DP2P= (X)) and v € DPMP=D (X)) such that

g1 — go = [n] + Ou + v.

Example 2.8. Let W be an integral subscheme of X’ of codimension p — 1 and k(W) its
function field. Then any function f € f(W)* defines a current [log |f]*] € D®~1r=D(x)
by

log | /12)(w) = / log |2 - i* (),

w(C)

where f is the restriction of f to a desingularization W(C) of the closure W(C) of W(C)

and ¢ denotes the map W (C) — X, coming from the inclusion W (C) C X.
Then [—log |f]?] defines a Green’s current for div(f) such that

dd“[—log | f1*] + daiv(syc) = 0,
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see [Sol] for instance.

Example 2.9. Consider the arithmetic variety X = PZ = Proj Z[xo, . .., 24 and the cycle

Z={a9,z) = = (a® Y z) =0}
of codimension p, where for 0 <i < p — 1 and z = (g, ...,24) we set (a') z) = &(()i)xo +
cee a((f):cd € Z[xg, . ..,xq). The Levine form gz associated to Z is defined by
p—1 () 2 p—1 p—1 J
P KA . 14
gz(il?) _ log <Zz—0d}< 2>| ) . Z (ddc lOg (Z ‘<a(l)7$>}2)> A W}};Sl J :
Zi:o ’xl‘ =0 i—0

where wpg = dd®log (|930|2 + ]xd\2) is the Fubini-Study form on PZ, see [BYT] equation
(6)]. By [BGS| Proposition 1.4.1] the Levine form gz associated to Z satisfies dd°[gz] +
dz(c) = [whg]. Hence the associated current [gz] is an example of a Green’s current.

Now let us describe g locally as in [GSI]. For this let X be the blow up of X, = P4
along Z(C). Explicitly, it is given by

Xy = {(9307...,:vd,y0,...7yp_1) € Pe xIP’ffé_l | 3t € C s.t. (P, ) =ty Vz‘:O,...7p—1}‘

Let 7 : Xoo — X be the projection onto the first factor. Then we have 7 1(Z(C)) =
{t =0} and 7 : :Y\;\W_I(Z((C)) — X, \Z(C) is an isomorphism. On 5(;\#_1(2(@)) we

define for z = (zo,...,zq) and y = (o, ..., Yyp—1) the smooth form
- ; 2 —1 -1 J
zle <CL(Z), I> p . p Iy
plz,y) = _10g( o [0 (S (aerto [ Swwt) ) nets
D i—o |7l =0 =0

This form satisfies 7.(¢) = g7 and because (a'V, z) = ty; for all i = 0,...,p — 1 it follows
that we can write ¢ = —alog |t|* + 3 with the smooth d- and d-closed form

p—1 p—1 J
alz,y) =Y (ddc log (Z |yz»|2>> Awhs' ™
j=0 =0

and the smooth form

p-1 |yZ’2 p—1 p—1 , J L
Bz, y) = —log | =00 ) ddlog { Y " lwl* ) | Aewbs'
> o |l §=0 i=0

on 5(; This shows that gz is a Green’s form for Z.
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Remark 2.10. 7) For any divisor D € Z'(X) and for any Green’s current gp for D, there
exists a metric [|-|| on the line bundle Ox (D) such that

gp = [~ log||1p]"],

where 1p denotes the canonical section of Oy (D), see [KMY] Proposition 1.2.14.].
ii) More generally, consider a cycle Z € ZP(X). Then every Green’s current gz can be

represented by a Green’s form g7 in the sense that
97 = [gz) in DV (),
see [BGS| Proposition 1.3.1. ii)].

Now we come to the definition of the height of a cycle and the arithmetic intersection

product. For this we need the following notation.

Notation 2.11. Let X be an arithmetic variety of dimension d+ 1 and let p be an integer
with 0 < p < d+ 1. Then we define the integer p¥ with 0 < p¥ < d + 1 by setting
pi=d+1—p.
Definition 2.12. Let ZP(X) be the group of pairs (Z, gz), where Z € ZP(X) and g is a
Green’s current for Z. Let RP(X) be the subgroup of ZP(X) generated by elements of the
form
i) (0,0u + Ov), where u € DP~2P~D(X,) and v € DP~1P=2) (X)) and
i) (div(f),[—log |f\2]), where f = > fi is a K;-chain.
Then the p-codimensional arithmetic Chow group of X is defined by

CH'(x) == Z°(X) [Re ().

Theorem 2.13. [SO1, THEOREM 2]
There exists an associative, commutative, bilinear pairing

CH'(X) x CH'(X) — CH" "(X)g :=CH "(X)®2Q
([Y, gY]7 [Zv gZ]) — [Y7 gY] : [Z7 gZ]7

which makes @pZOC/pr(X)@ into a graded ring.

Definition 2.14. i) The pairing in Theorem is called the arithmetic intersection
product of [Y, gy] and [Z, gz].

ii) The graded ring @pzoéﬁp()’( )o equipped with the arithmetic intersection product will
be denoted by GI\-I(X)Q and is called the arithmetic Chow ring of X.
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Remark 2.15. In Theorem [2.13| the arithmetic Chow group él\-Ierq(X) needs to be ten-
sored with Q. The reason of this is the lack of a Moving Lemma over X. Because of this,
the definition of the pairing in Theorem involves K-theory.

By Chow’s Moving Lemma over the generic fibre X (see [Li2l Corollary 1.10, p.379|)
we can assume that the cycles Y € ZP(X) and Z € Z9(X) intersect properly on X. This
means Yx N Zx = 0 or codim(Yyx N Zx) = codim(Yx) + codim(Zf ), where Y resp. Zg
denotes the restriction of Y resp. Z to the generic fibre X. Then, as in [Soll Theorem 2],
it is possible to define the pairing [Y, gv] - [Z, 92| € C/I\{p+q(?()@ between [Y, gy € él\{p(X)
and [Z,g7] € C/]ﬁq()c’). If moreover the cycles Y € ZP(X) and Z € Z9(X) intersect properly
on the whole X', then the pairing in Theorem can be constructed explicitly by

Y.9v|-[Z,9z] =Y. Z, gv * gz].

Here the cycle Y.Z € ZPT1(X) denotes the geometric intersection product

Y.Z =) x*(Y,2){z}.

This means that the sum runs through the irreducible p+ ¢-codimensional subschemes x of
X lying in the intersection Y N Z and the integer x*(Y, Z) € Z denotes Serre’s intersection
multiplicity, see [Soll, Theorem 1|. The datum gy * g is the x-product of the Green’s

currents gy and gz, explicitly given by
gy * 9z = gy Ndzc) + Wy N 9z, (2.1)

where wy, is the smooth form given by dd“gy + dy(c) = [wg, |. Because of the equation

dd* (QY * gZ) + 5Y-Z((C) - [wgy A wgz]? (2'2)

see [Soll, Theorem 4], it follows [Y.Z, gy *x gz] € CH (X).

Remark 2.16. Note that the current gy A dz(c) in equation (2.1) is a priori not defined.
With Remark we can find a Green’s form gy for Y such that [gy| = gy. Then the
current gy A dz(c) is defined by gy A dz(c). More explicitly, for n € Ald=p=ad=p=a)(x_ we
set

gy Nose (1) = G A Sue) (n) = / = G) A (),

()

where 7 : Z(C) — Z(C) is a desingularization of Z(C). Note that this is indeed indepen-
dent of the choice of gy, see [BGS, Proposition 1.3.1. ii)].



38

Notation 2.17. Because of Remark we do not distinguish between forms and currents.
For instance, equation (2.2) will be written as dd®(gy * gz) + dy.z(c) = wgy A Wy, and we

write gy for a Green’s current as well as for a Green’s form for Y.

Proposition 2.18. [SO1, THEOREM 3]
i) Let ¢ : X — Y be a morphism of arithmetic varieties. Then there exists a pullback
morphism

" CH'(Y) — CH'(X),

which satisfies o*(a- B) = ¢*(a) - p*(B).
ii) If moreover p : X — Y is generically smooth, then there exists a pushforward mor-
phism
=P = p—6
¢« : CH (X) — CH (}),

where § = dim(Y) — dim(X) is the relative dimension of .

iii) There is the projection formula

~=p+q—0

Definition 2.19. Consider the arithmetic variety Spec Ok of dimension 1. An element
in CH' (Spec Ok) is given by [>_ a;p;, (95),], where p; is a maximal ideal of Ok, a; € Z
and (g,), is a family of real number g, indexed by o : K — C. Then the map Ee\g :
CH' (Spec Ok) — R given by

aég ([Z a;p;, (gg)g]) = an log # (OK/pi) + % Zg"

is called the arithmetic degree map. Here we note that in the case that K = Q, the
arithmetic degree map defines an isomorphism from (jl\{l(Spec Z) to R.

For an arithmetic variety @ : X — Spec Ok there is a pushforward morphism =, :
éI\-IdH(X) — éﬁl(SpecOK) and hence a map ge?gx = ge?g O Ty : C/I\-IdH(X) — R,
which will also be called the arithmetic degree map. Explicitly this map is given by

&%XQZ%B,QD :Zailog#k(ﬂ)ﬂL%/g’

Koo

where k(P,) is the residue field of the point P; on X and g € A9 (x),
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Remark 2.20. For an arithmetic variety X we consider the group homomorphisms

w: éﬁp(?() — APPI(X), [Z, g5] — w,, and
a: APTD(x) — CH(X), [ — [0,1]

With this notion we obtain for n € AP=1»=D(x) and y € CH' (X) the useful formula
a(n) -y = a(n A w(y)) (2.3)

. = Dpt+q

in CH (X), see [Soll, Remark 2.3.1].

Definition 2.21. For an arithmetic variety X of dimension d + 1 let [Y, gy] € él\-Ip(X)
—_~ Vv ~

and [Z, gz € cH' (X), where p¥ is as in Notation [2.11] Moreover, let (Y, gy) be a

representative of [Y, gy| such that Y and Z intersect properly on the generic fibre X.

i) The arithmetic intersection number of [Y, gy] and [Z, gz] is the real number

degy ([Y,9v] - [Z,92]) € R.

ii) For ([Y,gy]|Z) ==Y .Z, gy N bz)] € GI\{dH(X) the height of Z with respect to [Y, gy]
is the real number

htfy.gy)(Z) := degy ([Y, 9711 Z) € R,
iii) If the cycles Y and Z intersect properly on X and if Y.Z = > a;P; with a; € Z, then

the geometric intersection number of}7 and Z is the real number

(?7 Z)ﬁn = Zai log #k<Pz) € 10gQ

Remark 2.22. An explicit consideration of the arithmetic degree map and the arithmetic

intersection product shows that the height of Z with respect to [Y, gy] can be written as

degy ([Y, gv]|1Z) = degx (Y, 9v] - [Z, 92] — a (92 Awyy))

where g is any choice of Green’s current for Z. It follows that we have

degy ([Y,9v] - 1Z,92]) = ht[Y,gy}(Z) + B /wgy A gz with
Xoo

~ 1
htpy g1 (Z2) = (Y, Z)gin + B / g5 N 0z(c),

Xoo

where (}7, gy) is a representative of [Y, gy| such that Y and Z intersect properly on X.
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Remark 2.23. Let X’ be an arithmetic surface. For two arithmetic divisors (Dy, gp,) and
(Ds, gp,) in 21(2(), the arithmetic intersection number &%X ([D1, 9p,] - [D2, gp,]) coincides
with the arithmetic intersection number (D1, gp,) - (D2, gp,) as in equation (1.1)). In other

words we have the following commutative diagram:

CH' (X)

l degx j
T
1

R CH (Spec Ok)

Z1(X) x Z'(X) —— CH (X) x CH (X)

T

deg

Now we state two important facts about the height of a cycle.

Proposition 2.24. [BO, PROPOSITION 2.3.1 1V)]

Consider a proper morphism ¢ 'Y — X of arithmetic varieties. Then for [Y,gy] €
éf{p(X) and Z € Z9Y) with p + ¢ = dim(Y) and dim (p(Z)) = dim(Z2), the following

equation holds:

Wt ((v,gy) (Z) = htjy gy (04 (2)) -

Proposition 2.25. Let X be an arithmetic variety. Let [Y1,9v,], ..., [Yn, 9y, ] € éﬁpi(.)()
and let Z € Z9(X) such that ) p;+q = dim(X). If gy.,..., gy, is another family of Green’s
forms for the cycles Yi,...,Y,, then the following equation holds:

Dt vigy, (2) = DUy, gy, ) (2) =

i—

1
52/%%/\..-/\0&9&,_ 1/\ngiJrl/\.../\ngnA(gYi_ggfi)/\(SZ((c)
i=1

Here [ denotes the arithmetic intersection product as in Theorem [2.15,

Proof. First note that the arithmetic Chow ring éfI(X Jo of X is a commutative graded
ring. By equation (2.3)) and Remark it remains to show that the equation

H )/zagY H )/zagY Z[Oang - gg/z] ’ (f[[ykagg/k] : H [YJ{?ng}) (24)

i=1 k=1 k=i+1
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holds in éﬁ(?()@. Indeed, if we use equation 1) we see that the right side of 1} is
given by the cycle

n

Z[Oa (gYi - g;/l) ’ wg§,1 ARERRA wg§i71 A wQYiJrl ARERRA ngn]'
=1

Applying the height of Z with respect to this cycle and using the fact that the height is
linear in 61\-1(/"()@, we see that 1) proves Proposition m
Writing the right side of (2.4) as

> (H[Yk,gézk] (Wagv] = Wags]) - 11 [Yk,gyk]> ,

i=1 k=1 k=i+1

the proof of equation (2.4)) follows from the following general fact:

Let R be a commutative ring and let aq,...,a,,01,...,0, € R. Then
n n i—1 n
[To 116 =3 (H petor ) | ) . 25
i=1 i=1 i=1 \k=1 k=i+1

The proof of (2.5)) is an easy induction over n which can be seen by using the equation
n+1 n+1 n n n
H a; — H b; = < a; — Hbz> apy1 + ((ln+1 - bn+1) Hbl
i=1 i=1 i=1 i=1 i1

]

In the final part of this section we translate Definition in the terminology of
hermitian line bundles. This can be done because there is an isomorphism between the
group of isomorphism classes of hermitian line bundles P/)I\C(X ) and the 1l-codimensional
arithmetic Chow group C/ﬁl (X), see [Soll, Proposition 1, p.67].

Definition 2.26. Let Pic (X) be the group of isomorphism classes of hermitian line bundles
o~ ~ —~ 1 — o~
and let ¢; denotes the isomorphism Pic (X¥) — CH (X'). Suppose L € Pic (X).

i) The arithmetic self-intersection number of L is given by
Zd+1 — d/e\gX </C\1 (Z)d-‘rl) ‘
ii) For a cycle Z € ZP(X) the height of Z with respect to L is defined by

htz(Z) := degy (a ()" \Z) .
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Remark 2.27. Let us describe the arithmetic self-intersection number of a hermitian line
bundle £ more explicit: Let (D, gp) be an arithmetic divisor such that [D, gp] = ¢ (L).
Then the height of D with respect to £ is given by

2

Koo

1
htz(D) = (Dl,...,Dd,D)ﬁn—f— —/ng * -k gp, /\5D((C)7

where for i = 1,. .., d the arithmetic cycle (D;, gp,) is a representative of [D, gp] such that
all D; intersect pairwise properly on the generic fibre X and also intersect properly with D

on X. Thus we have to choose a family {f;},_, _, of rational functions f; € k(X)*, where

i=1,..

all divisors D — div(fy),..., D — div(f;) and D intersect pairwise properly on X. Then
the height of D with respect to £ is given by

htz(D) = (D —div(fi),..., D —div(fa), D), +

d
1 i— 2
52 / Wop' N (9 +10g | £il) A S(p-div(fiy©) A+ A (p-aiv(ra(c) A O(©)-
=1 KXo

It follows that the arithmetic self-intersection number of £ can be written as

—d+1 .

1
£ htz(D) —|— 5 /wgD N ap.

Koo

2.2 Adjusted Green’s forms

In this section we generalize the definition of an adjusted Green’s function on arithmetic
surfaces to an adjusted Green’s form on higher dimensional arithmetic varieties. This is

motivated by the following remark.

Remark 2.28. In [BGS, section 2.3.2.] the authors defined a special class of Green’s forms
gy for a cycle Y € ZP(X), which are called p-normalized Green’s currents for a Kéhler form

it. These satisfy the conditions that wg, is harmonic with respect to ;1 and

/w/\gy:()

Koo

for all w € Al=P4=P)(X) which are harmonic with respect to .
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Now consider two natural numbers p,q with p - ¢ = dim(X). Then for all cycles
Y € ZP(X) and all Green’s forms gy for Y, we have

Bog (V271" = Wy (V) + 5 [ i Ay
Koo
So, instead of considering a condition on the integral, we could consider those Green’s
forms such that the height vanishes. This leads to the definition of an adjusted Green’s
form in the special case Y € Z'(X).

Definition 2.29. Let D be a divisor on the arithmetic variety X with dim(&X’) = d + 1.

An adjusted Green’s form for D is a Green’s form gp for D that satisfies

ht[D,gD]d (D) — O

Proposition 2.30. Let D be a divisor with deg(D) # 0 and let gp be a Green’s form for
D. Then there is a unique number o € R such that ap := gp + « s an adjusted Green’s

form for D. FExplicitly,
2

——— It
d - deg(D)

(D).

a= [D,gp]*

Proof. We have to show that the height ht[D@D}d(D) vanishes. First note the equation

9D

ht[D,aD]d<D) = ht[D,gD—i-a]d(D) = ht[D,gD}d(D) +d- ht[()’a.wd—l] (D)

Now the proposition follows immediately from the equation

2 ht[o,w‘gigl](D> = /w;lDl A\ 5D((C) = /(.UZD = deg(D).

Xoo Koo

[

A crucial fact about an adjusted Green’s form ap for a divisor D is the following:
Let ) and X be two arithmetic varieties with dim())) > dim(X) such that there exists
a surjective proper morphism ¢ : ) — X. Then for a Green’s form gp for a divisor D
on X, both numbers ht;,  ar (D) and ht ., iy (9" D) are well-defined. Here dx and
dy denote the relative dimensions of X and ) resp. Hence we can use functorialities to
compute an adjusted Green’s form for ¢*D in terms of an adjusted Green’s form for D.

For this we need the following lemma.
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Lemma 2.31. Let ¢ : Y — X be a surjective proper morphism between arithmetic
varieties Y and X. Set dy = dim(Y) — 1 and dy := dim(X) — 1. Let D be a divisor on X
and let gp be a Green’s form for D. Then the following equation holds:

deg(D) - deg,, ([sO*D, w*gp]dW) = deg(¢" D) - degy ([ﬂgp]d"“) : (2.6)

Proof. First note that we can assume deg(D) # 0. Because of dy > dy and the fact that

the pullback is multiplicative, we obtain the equation

dy+1 _ dy+1 . [

[0*D, v*gp)] ©* (D, gp) 0D, o gp| P . (2.7)

Let wy be any form in Ax4%)(X) satisfying [ wx =2. Then
(D, gp] ™" = [0, dege (D, 0] ) ]

For instance we can take wy := #(D) -w;’g. It follows

—_— 2
“1D dvtl _ | q (D dX+1> x|
¥ [ agD] |: , degy [ 7gD] deg(D)sO wgD

By equation (2.3) and equation (2.7) we obtain

—_— 2
* * dy+1 __ dx+1 * dy
R i (P P e

Taking the arithmetic degree map yields

=T * * 1 P *
degy, ([%0 D,y gD]dyH) = mdegx ([D,QD]dXH) : / (0"wgp)™ .
Voo

Hence equation 1) follows from fyoo (gp*wgD)dy = fyoo wi?!gD = deg(p*D). O

Proposition 2.32. Consider the situation as in Lemma and assume that the divisor
D satisfies deg(D) # 0. Let ap be an adjusted Green’s form for D. Then the unique
constant ay € R such that ©*ap + ay is an adjusted Green’s form for ©*D is defined by

the relation

ay-dy - deg(D) - deg (" D) = deg(D) / S aun A (W) — deg(¢™D)- / ap AWl (2.8)

Yoo Xoo
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Proof. Let ap be an adjusted Green’s form for D. Hence

degy <[D> QD]dXH) = ht[DyaD}dx(D) + = / ap N wgf;; = 3 / ap N wi’[‘).

2
oo XOO
In this case equation (2.6)) is given by

= (. deg(¢" D)

deg(D) - degy, (g& (D, aD]derl) = / ap Awi. (2.9)
Koo
Moreover, if we use (2.22)) and (2.23) we obtain the equation
* * ay
ht[go*D,ga*aD—i-ay]dy ((10 D) = ht[go*D,(p*aD]dy ((10 D) + 7 ) dy ’ /<w90*01D)dy' (210)
Yoo

Note that [, (Werap)®™ = deg(p*D). Now using the equations

—_— 1
* * * dy+1 *
ht[gp*D,cp*aD]dy (90 D) = deg)} ([gp D’QD aD] vt ) - 5 / ¥ ap A (Wgo*ap)dy
Voo

and (2.9)), the equation (2.10]) vanishes if and only if

. deg(D) - [;,_¢*ap A WZXaD —deg(¢*D) - [, ap Awi¥
v dy - deg(p*D) - deg(D) '

This shows the relation (2.8)). O

Instead of considering only one divisor D, we can also define adjusted Green’s forms
associated to two cycles Y € ZP(X) and Z € ZP'(X). For this note that the height is a
bilinear pairing

P v

CH (&) x 2P (X) — R, ([Y,9v], Z) = htyy,g,1(2).
Definition 2.33. Let X’ be an arithmetic variety and let Y € Z(X) and Z € ZP"(X) be
two cycles on X, where pV is as in Notation 2.11l A Z-adjusted Green’s form for Y is a

Green’s form ay,z for Y such that
ht[Y»OéY,Z](Z) =0.

The subgroup of 61\{10(%') consisting of the Z-adjusted Green’s forms, where Z € ZP' (X),
will be called the p-codimensional Z-arithmetic Chow group of X and is denoted by

CH'(X,Z):={a e CH (X) | htz(Z) = 0}.
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Remark 2.34. i) The definition of a Z-adjusted Green’s form ay,z for Y shows that the
pair (Y, oy z) only depends on its arithmetic Chow group. More precisely, let ay z be a
Z-adjusted Green’s form for Y and let (}7,0457’2) be a representative of [Y,ay z]. Then
oy 5 is a Z-adjusted Green’s torm for Y.

i) Because the height is a function on GI\LIP(X) x ZP'(X), we see that

[div(f), —log|f["] € CH'(X, 2)

for all Z € 7P (X).

iii) The aim of Definition is to define an arithmetic intersection number, where the
cycles meet non-properly on the generic fibre X. However, Definition [2.33] also makes sense
when the cycles Y and Z intersect properly on X or even intersect properly on the whole

arithmetic variety X.

Proposition 2.35. Let X' be an arithmetic variety and let Y € ZP(X) and Z € ZP'(X) be
two cycles.

i) Let gy be a Green’s form for Y € ZP(X) and let wy, € AP~LP=D(X) be a smooth
form such that ono wy,z AN ozcy # 0. Then there exists a unique real number o such that

Qayz = gy +a-wyyz s a Z-adjusted Green’s form for Y. More explicitly,

htjy,g,1(Z)

a=—-2-
Ja, wviz Nz

i) Let ay,z and ay .z be two Z-adjusted Green’s forms for Y. Then the differential form

Wy,z '= Qiy,z — Qy,z Salisfies

Proof. i) We have to show that ht(y., ,)(Z) vanishes for ay,z = gy + a - wy,z. From the

bilinearity of the height we obtain
htpyay ,1(Z) = htpygy1(Z) + - bt e, ,1(2).

The proof follows from

1
ht[Owy,z](Z) =3 /wxz N dz(c)

Koo
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and the definition of the constant a.

ii) For two Z-adjusted Green’s forms ay 7 and ay z for Y we have

1
0= ht[Y@Y,Z](Z) — ht[Y,ay,Z](Z) = ht[07wY7Z](Z) = § / wy,z N\ (52(@),

Koo

which proves the proposition. O

The next proposition shows a more explicit characterization of adjusted Green’s forms.

Proposition 2.36. Let X be an arithmetic variety and let Y € ZP(X) and Z € 7P (X)
be two irreducible and reduced cycles on X. Let gy be a Green’s form for Y. Then gy is
a Z-adjusted Green’s form for Y if and only if for all Ki-chains f with div(f) € ZP(X)
and where div(f) — ordy (f)Y and Z intersect properly on the generic fibre, the following

equation holds:

(div(f) — ordy (f)Y, Z),, = % / (log | £|> + ordy (f)gy ) A dz(c)- (2.11)

Koo

Proof. First recall that the height of Z € ZP'(X) with respect to [Y,gy] € él\{p()() is
given by

htpyy1(Z) = (V, Z)sm + % / 9y N0z,

Xoo

where ()N/, gy) is a representative of [Y, gy such that Y and Z intersect properly on the
generic fibre X.
Now fix an integer m # 0 and let f be a Kj-chain such that mY + div(f) intersect Z
properly on X. Then

. 1
m- ht[yygy}(Z) = ht[my7mgy}(Z) = (mY + le(f), Z)ﬁn + 5 / (ng — log |f‘2) N 5Z(C)

Koo

= (div(f) —ordy ()Y, Z)g, — % / (log IfI? + ordy (f)gy) A dzc).
Xoo

Thus the height htjy,,(Z) vanishes and hence gy is a Z-adjusted Green’s form for Y if
and only if the equation (2.11)) holds. O

Remark 2.37. The definition of the height shows that equation (2.11]) is independent of
the Kj-chain f. Thus to calculate a Z-adjusted Green’s form for Y, it is enough to consider
only one Kj-chain f, where ordy (f) # 0.
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Proposition 2.38. Let Y € ZP(X) and Z € ZF' (X) be two cycles with the decomposition
Y =Y Yy and Z = > 5iZ; into their irreducible components. For all k and all 1 let

ay, 7, be a Zj-adjusted Green’s form for Yy. Then

Qy,z = E Q. Qy,
k

s a Z-adjusted Green’s form for'Y, where oy, is any Green’s form for Yy such that

> .6 / (i, — awz) A Oz c) = 0. (2.12)
l

Koo

Proof. By the bilinearity of the height we obtain with ay z =), ayay, the equation
ht[y,ay,4)(2) = Z aBihtyy, ay, 1(Z1)-
kol
Because of ht[yhayk’zl](Zl) = 0, the height hty,, ,)(Z) is given by
> ol (h‘?m,ayk](Zz) - ht[Yk,ayk,ZJ(Zz)) :
.l

By Proposition this sum equals

1
5 Z af / (aYk; - O‘/Yk»Zl) N 5ZL(‘C)‘
k,l

Xoo

Now the relation (2.12) shows Proposition [2.38] O

Remark 2.39. It follows directly from Proposition that adjusted Green’s forms are
linear in the first entry. By this we mean the following: Let Y € ZP(X') with the decom-
position Y = 3" oY}, into its irreducible components and let Z € ZP'(X). Then, if for all
k the Green’s form ay, ; is a Z-adjusted Green’s form for Yy, then ay z := Y, azoy, 7 is

a Z-adjusted Green’s form for Y.

Proposition 2.40. Let Y € Z°(X) and Z € 7P (X) be two cycles and let gy be a Green’s
form for'Y and gz be a Green’s form for Z. Consider two forms wy,z € AP=Lr=1)(X) and
wzy € AP WP D(X) that satisfy the relation

/ (wyz A dzc) — wzy Adyo)) = / (Wgy A gz — Wy, A gy) . (2.13)
Xoo Koo

Then oy z == gy +wy z 15 a Z-adjusted Green’s form for Y if and only if azy = gz +wzy

is a Y -adjusted Green’s form for Z.
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Proof. For [Y,gy] € C/ﬁp(X) and [Z, g7] € cH’ (X) the arithmetic intersection number

1
ht[y7gy](Z) + 5 /ng A gz

Koo

of [Y, gy| and [Z, gz] is symmetric. Hence the equation

1
btz (V) = B (2) = 5 [ (uy D92 =t 1 g (2.14)

Koo

holds. Now writing

1
ht[Z,gZ} (Y) = ht[Z,ngrwz,Y](Y) — 5 / wzy N 5Y((C) (2.15)
Xoo

(also for htpy,4,1(Z) with wy,z instead of wzy and dz(c) instead of dy(c)) and considering

the equation (2.13)), we obtain the equality

ht[Z,aZ,y](Y) = ht[Y,aY,z](Z)'

The next result follows directly from Proposition [2.40]

Corollary 2.41. For Y € 7Z°(X) and Z € ZP'(X) let ay.z be a Z-adjusted Green's form

for the cycle Y and let gz be an arbitrary Green’s form for Z satisfying the equation

/wOéY,Z NGz = /Wgz A Qy 7. (216)

Xoo Koo

Then gz is a Y -adjusted Green’s form for Z.

In the next proposition we will see that adjusted Green’s forms satisfy a functoriality
property. For this we consider the following situation:
Let X and X" be two arithmetic varieties with dim(X) = dim(X”’) and consider a surjective
proper morphism ¢ : X — X’. Moreover, consider two cycles Y’ € ZP(X’) and 7' €
7P (X') and two cycles Y € ZP(X) and Z € ZP'(X). Let 'Y’ = Y aiY) and ¢*Z' =
>~ B1Z; be the decompositions into the irreducible components of p*Y”" and ¢*Z’. Now let
ayr z be a Z'-adjusted Green’s form for Y’ and let oy z be a Z-adjusted Green’s form for

Y with a decomposition ¢*ay: 77 = > agay, into Green’s forms ay, for Yj.
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Proposition 2.42. Assume that the above situation holds.

i) The property of being an adjusted Green’s form is functorial. In other words ¢*ay z
is a ©*Z'-adjusted Green’s form for o*Y’
oY

i) Fiz two irreducible components Y, € ¢*Y' and Z, € ¢*Z' on X. Then there exists an

and .oy z 1S a p.Z-adjusted Green’s form for

explicit form wy, € AP~P=D(X) such that ay, + wz, s a Z,-adjusted Green’s form for

Y,.. More precisely, wz, is any form in AP~1P=V(X) satisfying

/wzy/\(szu Z&k <Yk> )Xﬁ +/Oé?k/\52u(<c) )

Xoo k#p Xoo

where Yy, = Yy + div(fx) intersect Z, generically properly and ag = ay, — log | fil? for
Ki-chains f;, with div (fy) € ZP(X).
Proof. i) This follows from the fact that the height is functorial. Indeed, let us show that
Yrayr 7 is a p*Z'-adjusted Green’s form for ¢*Y’. For this note that for a € éﬁp(/\f’) and
¢ € 70" (X) we have

hteea(§) = hta (@), (2.17)
see Proposition [2.24. Now consider the arithmetic cycle o = (Y, ay7 /) and the cycle
¢ = p*Z'. The projection formula implies p,0*Z’ = [k(X) : k(X")]Z’. Hence we derive

Dtipryr gray, ) (97 2") = Dty ay, 0 (0ep"Z") = [K(X) : k(X)|htyay, ,1(27) =0,

which proves the assertion.

The push forward can be treated in a similar way by using the functoriality

It (p7€) = hte.a (),
where o € GI\{p(X) and £ € 7P (X') are explicitly given by a = (Y, ay.z) and € = 0,7
i) Using Proposition i) and considering the arithmetic cycle o = (Y, ays /) and the

cycle £ = Z,,, we obtain the equation
ht[@*yl#p*ay,ﬂz,](Z,,) = ht[y/,ay,’z,](go*Zy) = [k’(Z,,) . k(Z)]ht[y/yay,,Z,](Z,) = 0.

Now using the Green’s form ¢*ay: 7 = > agay, and the cycle Y, € ¢*Y’, it follows

ht[YmOlYu-i-wZ,,](ZV) :ht[YH—Lp*Y’,ayu—@*ayl’zz-l-wzy](Zu) =
1
5 / Wz, NOz,) = Y ahty ay,1(20).

Xoo k#p
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The vanishing of ht[ymay“wZV](Z,,) and hence the proposition follows from the explicit
definitions of wz, and ht[ybayk](Zy). O]

Proposition 2.43. Consider n cycles Yi,...,Y, with Y; € ZPi(X) such that all possible
intersections are proper. Then the intersection cycle Y :=Y,...Y, € ZP(X) of Y1,...,Y,
is a well-defined cycle of codimension p :==Y_ p;. For each i let gy, be a Green’s form forY;
and let wy, be a smooth form in AP—1P=V(X). Moreover, consider a cycle Z € ZP"(X).

Now define the Green’s form

n

" k
Gy =gy, * - % gy, + Z Z wy;, N /\ddchil N /\ Woy, (2.18)

k=1 1<ii<-<ip<n 1=2 i=1,
d2{i1, i)

for' Y. Then gy is a Z-adjusted Green’s form for Y if and only if

htH?:l[Yiin-l—w%](Z) =0.

In particular, if for all i the form wy, is closed, then the Green’s form in s given by

gy =gy * *gyn+zwy A/\wgy
J#i

Proof. We show
ht[y,gy](Z) = htH:_L:l[n’gYierYi](Z). (2.19)

Because of [Y1...Y,, gy, * -+ x gv,] =[], [Yi, 9v;], the left side of equation (2.19)) is given
by htl_[?zl[%gyi](z) + htjou)(Z), where we set

n

n k
W= Z Z wy;, A /\ dd wy; A /\ Way, - (2.20)

k=1 1<i1<--<ip<n 1=2 =1
J&{i1,ig}
Now we consider the right side of 1) First note that C/I\{(X)Q has a ring-structure.
Now we need the following general fact: Let R be a ring and let ay,...,a,,bq,...,b, € R.
Then

n

H Cbl+b HCLZ Z Z b“blk H aj.
=1 J:
15

=1 k=1 1<i1 <<, <n
J¢{s i}
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Now with a; := [V, gv;] and b; := [0,wy,] and because [0,wy,] - [0, wy,] = [0,wy; A dd“wy;]
holds in C/FI(X)@, we obtain the equality

n n

IT (e gv] + [0, 0w]) = [TV v =

i=1 i=1
) . (2.21)
ST Y [wy, Addwy, A Addwy, ] T Vi)
k=1 1<i1<--<ip<n vg{iilv )

Now the proof follows from the fact that the right side of ([2.21)) is given by

n

n k
C
E E [0, wy;, A /\dd wy;, A /\ wgyj],
k=1 1<i1<-<ip<n 1=2 i=1,
i ik

because then we obtain the equality of heights

htpye | 1vi.gy, v ) (Z) = Dby 1vi.6y,1(Z) + hitpo ) (2)

with w as in ([2.20)).
Moreover, if for all ¢ the form wy, is closed, i.e. dd“wy, = 0, then in the definition of
w in equation (2.20), the sum vanishes of all £ # 1. Hense with n = 1 we have w =

D i1 wy; A /\j;éi Wyy, - u

Because of Proposition we need to generalize the definition of an adjusted Green’s
form for one cycle to a family of adjusted Green’s forms for a family of cycles. This will

be useful in the study of multiple arithmetic intersections.

Definition 2.44. Fix a cycle Z € Z9(X) and consider n cycles Y7, ..., Y, with Y; € ZPi(X)
such that > p; + ¢ = dim(X). For each i let gy, be a Green’s form for Y;. Then the family

777777777

holds:
Bty (vi,0v,)(Z) = 0.

Remark 2.45. i) For two cycles Y € Z7(X) and Z € ZF'(X) it is clear that a family of

Z-adjusted Green’s forms for {Y'} is given by {ay 2}, where oy z is a Z-adjusted Green’s

form for Y.
ii) Let D be a divisor on the arithmetic variety X with dim(X) = d+ 1. Then an adjusted
Green’s form for D is the same as a family {ap,...,ap} (d-times) of D-adjusted Green’s

forms for {D, ..., D} (d-times).
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Proposition 2.46. For each i = 1,...,n let Y; € ZP(X) and let Z € ZYX) such that
q+ Y. pi =dim(X). Moreover, for each i let gy, be a Green’s form forY; and let wy, be a
closed, smooth form in AP—=1Pi=1)(X). Then there exist a unique real number o such that

{ov, + a-wy,}, is a family of Z-adjusted Green’s forms for {Y;},. More explicitly,

—2htrp v,.0v,)(2)
Do S vy A Ny Wov, Az

o =

Here we assume ) ;_ ono wy; A Nisj Woy, N dz(c) # 0.

Proof. This follows directly from Proposition Indeed, because all wy, are closed, we

have the equation

Bt i gy, o) (Z) = DT v (2) + D Bt oy, AN, woy, )(Z)- (2.22)

Jj=1

The right side of (2.22)) equals

o n

htH?:ﬂYi:gYi](Z) + 5 Z / wy; A /\wgyi AN 52((@). (2.23)
JZIX i#£]

Thus with the definition of a we see that the left side of (2.22)) vanishes, which shows the

proposition. O]

Similar to Proposition we consider the following situation:

Let X and X" be two arithmetic varieties with dim(X) = dim(X”) and consider a surjective

-----

>~ codim(Y;) + codim(Z) = 3 codim(Y) + codim(Z’) = dim(X).

Proposition 2.47. Assume that the above situation holds. Let {O‘Yz-'}i=1
----- j=1,.,
.- Then {"0*0‘5@'}2':1 L 1 a family of ©*Z'-adjusted Green’s

,,,,,

forms for {¢@*Y/}._, ., and {(,D*Ckyj }j=1 . U8 a family of p.Z-adjusted Green’s forms for

-----
7

7777777777

e

Proof. By Proposition the pullback morphism is multiplicative. With the functori-
ality in Proposition it follows

htH[@O*W,w*ayﬂ(‘P*Z/> = ht» H[Y;,ayi/](@*z/) = htn[y;,ayi,](s@*@*Z’).
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Using @.p*Z" = [k(X) : k(X")]Z" and the linearity of the height, the latter expression
equals [k(X) : k(X")|htrqys.a,,1(2’) and hence vanishes by the definition of {ay}

On the other hand we have the equation

i.

BtTTip.v; o) (9 Z) Zhter [Tip.v; 000v,)(Z) = BTG5 0,1 (Z) =
[E(X) + k(X)) htrypy; ay,)(£) = 0,

which shows that {p.ay, }j is a family of ¢, Z-adjusted Green’s forms for {p.Y},. O

2.3 Arithmetic intersection theory using adjusted Green’s

forms

In this section we want to define a version of the arithmetic intersection number with the
help of an adjusted Green’s form. First we do this without the use of the dirac current
dz(c). This will be done similar to Theorem in the first chapter.

Proposition 2.48. Let [Y, gy] € éﬁp(é‘() and [Z, gz] € cH" (X). Moreover, let ay,z be a
Z-adjusted Green’s form for Y and let azy be a Y -adjusted Green’s form for Z. Then we

have the following arithmetic intersection numbers:

_ 1
doge (Y, avd] - [Z,92]) = / oy Az

2
Xoo
T 1
deg)( ([Y7 gY] ’ [Zv aZ,Y]) = 5 Wayzy N gy.
Xoo

Proof. The follows immediately from the definition of the arithmetic intersection number

and the definition of an adjusted Green’s form, e.g. we have the equation

1

— 1
deg)( ([K Oéyz] ’ [Zv gZ]) = ht[YvaY,Z](Z) + 5 /way,z NGz = 5 /wOéY,Z NGgz.

Xoo Koo

]

Definition 2.49. Suppose Y € Z?(X) and Z € Z?'(X). Let gy be a Green’s form for Y
and let gz be a Green’s form for Z. If ay z is a Z-adjusted Green’s form for Y, then we

set
gy ® 9z = Way , N\ Gz — Wg, N\ Qy,z + Wy, N gy

and call it the normalized x-product of gy and g.
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A priori the definition of the normalized *-product depends on the adjusted Green’s
form ay 7. Let us explain why it is useful not to emphasize this dependence. In the next
remark we will show that gy e gz is integrable over X,. Moreover, in the next proposition
below, we will see that this integral do not depend on ay 7. Hence although the normalized
x-product gy e gz depends on the Z-adjusted Green’s form ay z, we only write gy ® gz

because we are only interested in the integral.

Remark 2.50. Let Y € ZP(X) and let gy be a Green’s form for Y. Let f be a K-
chain such that div(f) € ZP(X). Then we set Y := Y + div(f) and gy = gv — log|f]*.
Because — log | f|” is a Z-adjusted Green’s form for div(f) (see Remark i1)) and because
adjusted Green’s forms are linear in the first entry (see Remark we set ay , =

ay.z —log |f|?. Tt is easy to see that with this notion we have

gy ®9z = gy ®3gz.

Thus we can assume that Y and Z intersect properly on the generic fibre X. In other
words we can assume Y (C) N Z(C) = 0.
Now consider dd°(gy e gz). It is clear that

dd® (QY . gZ) = Wgy N Wy, — Way,z A 52(@'

Moreover, note that Way , A 62(c) = Way., * 02 = G2 * Way 5 = Way., A Wy, in DED(X). In

a similar way we find wa,. , A Wy, = wg, Awy, in D@D (x). Therefore we have

dd* (QY L4 gz) =0

~ d+1
by dimension reasons. It follows [0, gy ® gz] € CH ! (X).

Proposition 2.51. Let [Y, gy] € éﬁp(X) and [Z,gz] € CH" (X). Then the arithmetic
intersection number of [Y, gy| and [Z, gz] is given by

dot (V.) - 1Z.92) = 5 [ v w92

Xoo

Proof. Let ay 7 be a Z-adjusted Green’s form for Y. Then the normalized *-product of
gy and gz is given by gy ® gz = way. , A gz — Wy, N Qy,z + w,, A gy. By Proposition
the height htjy,, ,1(Z) vanishes. It follows from equation ({2.14)) that

1

ht[Z,gZ](Y) = 5 / (way,z NGz — Wy, A aY,Z)-

Xoo

Hence the proof follows from the definition of the arithmetic intersection number. O
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The following is a version of the arithmetic intersection number with the use of the

dirac current dz(c).

Proposition 2.52. Let [Y,gy| € (/H\-IP(X) and [Z, gz] € cH’ (X) be two arithmetic cycles
and let oy, z be a Z-adjusted Green’s form for'Y. Then the arithmetic intersection number

of [Y, gv] and [Z, g7] is given by

— 1 1
Tt (Voov) 1 Z.92)) = 5 [ oy —awa) nom + 5 [y Az
Koo Xoo
Proof. This follows from the fact that the equation
1
htyy1(Z) = htpygy)(2) = htyiay 21(Z) = gy —av,21(Z) = 5 / (9y — avz) Aoz
Xoo
holds and from the definition of the arithmetic intersection number. O

Remark 2.53. Let us consider a special case of Proposition [2.52}
Assume that Y and Z intersect properly on the generic fibre X. Then we have

— 1 1 1
degy ([Y. 9v] - [Z, 92]) =5 /gy Noze)— 5 / ayz Noze) + 5 /wgy N9z

Xoo Xoo Xoo
1 1
=5 | Wz N bz + 5 | 9y * 9z
Xoo Xeo
It follows the useful formula
/ OéyyZ A\ 52((:) = -2 (K Z)ﬁn . (224)
Xoo

In the last part of this section we generalize Proposition and Proposition to

a family of arithmetic cycles.

Proposition 2.54. Fori=1,...,n+ 1 let [Yi, gv,] € él\ipi(X) such that Y p; = dim(X).
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Then
o n+1 1
i) degy (H[%%]) =3 /‘*’gn A ANgy, NGyt
=1

Koo

1 n
§Z/w% Ao Ny, AWgy | Ao ANy A gy, — av,) Ay, (©);
iZIXOO

n+1
N 1
ii) degy (l |[Yz‘79Yi]> =3 /%ynH N Ny, Ngnt

i=1 o

1 n

5 E /wayl Noes NWay, A Way, s JARERWAN Way, o, A (wayi NGy, — Woy, A Oéyi> .
z:l‘/\,Oo

Here {ay,},_, , is a family of Y, 11-adjusted Green’s forms for {Yi},_, .

n

Proof. i) We write

n+1
— 1
deg)( (H[Y;, gYJ) = htl_[?zl[yi,gyi}(YnJrl) + 5 /wgyl ARERNAN Wyy,, A 9Yp i1+

i=1 2
By the definition of the family {ay,}, of Y, 1-adjusted Green’s forms for {Y;}, we have
htrr  (vi.ay.](Yat1) = 0. Thus it remains to show

Dt vigy, ) (YVar1) = Bty viay,) (Yas1)

1 n
= 52 / Way, A+ Alay, | AWy A= Awgy A(gy, — av,) Ady, ().
i:1Xoo

This was done in Proposition [2.25]
ii) The idea of the proof of the second part of Proposition is the following: We write

n+1
_ 1
deg.y (H[K,gﬂ) - htH?Igl[%gYi](Yl) + 2 / Yo, 1 Ao Ngy, N Gy

i=1 M

Now we want to construct the height htH;:l[naYi](YnJrl) from the height htl'[?:; D/i,gyi]<}/1>'
By the bilinearity and the symmetry of the arithmetic intersection number, we have for all

i =1,...,n the equation

(H[Yj,as@]- 11 m,gm) Vi1, gvia] = (ﬁm,ayj]- 1T [Yj,gyjo (Y, ayy).

j=1 j=i+2 j=1 j=it1
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It follows that for all s = 1,...,n we have
DO v, v, T o v, ) (Vi) = DOty g 1100 0,1 (V) =
1
B / Way, N+ AWay, N Wy, JARERIA Wy, 41 N oy, —
Xoo
1
5 Way, N+ A Way, /\(,ugyl_+2 /\-~-/\ngYn+1 NGyiiq-
Koo

The latter expression clearly equals

1
3 /wayl Ao ANWay,  Nwgy N Awgy A (ngM N Qy; — Way, N gyi+1> .
Koo
Now using the fact that htH Y ](Ynﬂ) = 0, the telescoping series yields

Dby, gy (Y1) =

n

Z(htnj ¥y, T Vv, ] (Y2) = Bbppe_ gy, m;?;hgm,gyj](ml))'

i=1
The latter expression equals

n

1
5 Z / Way, N  AWay, N Way, JANRIEIVA Wy, A (wayi NGy, — Woy, A Oéyi) .
1,:1‘)(Oo
This proves the proposition. O]

The next result is the special case of Proposition [2.54) where all cycles Y; are given by

one divisor D.

Corollary 2.55. Let [D,gp| € 61\{1(2() and let ap be an adjusted Green’s form for D.
Then the following hold:

N T 1
i) degy ([D,gp]""") =3 Z / Awl A (gp —ap) ANdpe) + 5 /WZD N 9p;
Z+] d— 1X Xoo

Lo 1 o
i) degy ([D,gp]"*") =3 / (Wap A gp — wg, A ap) A ( Z Wep N w§D> +

A itj=d—1

1 d
5 | “on A 9p;

Koo
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ii) If gp — ap = a € R then

— a-d-deg(D 1
degy ([DagD]dH) = —2 ( )+§/wZD/\gD.

Xoo

Proof. The first two assertions are clear.

If gp — ap = a € R, then w,,, = w,,, and hence

Z / /\wj A (gp — ap) A dp() :a-d/ijl/\éD(c) =a-d-deg(D).

i+j=d— IX Koo

2.4 Examples on ProjZ|z, ..., x,]

Let X = P = ProjZ[zy, . .., z4) and consider the cycles Y € Z!(X) and Z € Z¢(X), which

are given by the equations

Y = {(a(o),x> =0} and Z = {(a(o),x> == (a(d_l),x> =0},

(4) (@)

where (W, x) = ay’zg + - + ay (d-1)

xq such that the vectors a®, ... a are linearly

independent in Z%*!. In this section we compute some examples of adjusted Green’s forms
associated to these cycles. A canonical Green’s form for a cycle in P is the Levine form

as in Example 2.9] Recall that the Levine forms associated to Y and Z are given by

(o, 2)|°
gy = —log 5 5 | and
o™ + -+ + [l

Zd—l <CL(Z) 2 d—1 d—1 ) i

_ i=0 c (i) d—1—i
gz = —log dd‘log (a') ) A w :
(i) (5 (s (Sro0ar) ) oot

where wps = dd°log (|zo|* + -+ - + |v4|®) is the Fubini-Study form on PZ.

Proposition 2.56. The Green’s form
Qyz =gy —2- ht[Y,gy](Z)

s a Z-adjusted Green’s form for'Y. More explicitly,

a®, 2y |?
ayz = —log 2}< >‘ 5 | —log (]detAo|2 +- 4 ]detAd\Q) ,
|zol” 4 - + |74l
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where for i =0,...,d the matrices A; are defined by (e;41,a'?, ..., a'% V), where e; is the

i-th vector of the standard basis of 74"

Proof. By Proposition and the fact that ono dz(cy = 1 holds, it is clear that ay, 7 is
a Z-adjusted Green’s form for Y.

We show 2 - htjy,g,1(Z) = log (|det Aol + -+ + |det Ad|2), where the matrices A; are as
() )

in the proposition. For this we choose a rational function f = o) where the vectors
a,a®, ... a4V are linearly independent in Z**'. Then
) 1
ht[yyy}(Z) = (Y — le(f), Z)ﬁn + 5 / (gy + log |f|2) A 5Z(C)' (225)
Xoo
The geometric intersection number in (2.25)) is given by
(Y - le(f), Z)ﬁn = (<Q7 $>, <CL(0)7$>7 R <a(d_1)>x>)ﬁn - log |R68| )

where Res denotes the resultant of the polynomials (a,z), (a(?, z),... (a!®Y x), which
is given by the determinant of the vectors a,a®, ... al® Y, see [Lil, Theorem 2.1.1] and

IGKZ, Theorem 3.1., p.458|. Using the Green’s form

gy = —log !(a(o),x)}g + log (|x0|2 + -+ ]xd\Q)

(@)
(a,z)

and the rational function f = , hence log|f|> = log ‘(a(o),xﬂz — log [{a, z)[?, the

integral in (2.25)) is given by
1 1
5/(gy+10g|f|2)/\52(<0)=§/ (= log [{e, 2} " +log (|zol” + - - + [24l")) A Gz10)-
Xoo Xoo

Thus the height htyy4,1(Z) is given by

log |det(a, a9, a )| + % / (—log [{ev, 2)|* +1og (Jzo|* + - - + |zal*)) A d2(c)-
Xoo
Now the proof follows from Laplace’s formula for determinants, because therewith we see
log |det(a,al?, ..., al®"V)| = log ‘Z?:o a;r1(—1)"det Ai‘, where «; is the i-th entry of the

vector . Because the height is independent of the vector a, is follows that hty,,1(Z) is

given by 1log (|detAo|2—|—---+ |detAd|2). O
Proposition 2.57. The Green’s form
9 9 d—1 m 1
—a — (1 (0) L ‘ (0) 1Y a1
Qzy = gz (og ( ag | + + |ay + m:MZ:; - Wrg

s a Y -adjusted Green’s form for Z.
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Proof. Using the Z-adjusted Green’s form ay,; = gy — 2 - ht{y,4,1(Z) for Y and Corollary

241 with wa, , = wrs and w,, ,, = wiy, we have to show the equation

ool £52) )

m=1n=1
= /Wgs A gy =2 htpyg,)(2)) -
Xoo

2
aéo) + e+ a&o)

Note the well-known fact that

/wfﬁs A gy = —log (‘&(()o)

o<}

2
—I—---—l—‘aéo)

2 d 1

— 2.26
)+3, (2.20)
holds, see [CM, Corollaire 2.10]. Now, since ono wly = 1, it remains to show

d m
1
/ wrs A gz = 300~ 2 Bty (2). (2.27)

Koo m=1n=1
Considering the classical hypersurface H = {z1 = --- = 24 = 0} we have
d m 1
[ersngn=>3"1,
Koo m=1 n=1 n

see [BGS, Proposition 1.4.1. p.922|. Because of ht}y4,|(H) = 0, the proof of this proposi-

tion follows from the equation

/ wrs A gz = /wFs Agr — 2 (htyg,1(Z) — by, (H)) -

Koo Koo

The next result is an easy consequence of Corollary [2.30]

Corollary 2.58. The Green’s form

1
Qy = gy — C_l (10g (‘CLE)O)

s an adjusted Green’s form for'Y .

2
+~--+‘afjo)

)t

m=1 n=1
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Proof. This follows from Corollary and the fact that

1 02 o?) , 1ol
ht[Y,gy]d<Y) == 5 log < ao + tee + ad ) + 5 Z ﬁ
m=1 n=1
holds, see [CMl Corollaire 2.10]. O

Remark 2.59. We can give another proof of Corollary [2.58| using Proposition [2.43] Indeed,

for i = 1,...,d — 1 consider the arithmetic divisors (Y}, gy,), where Y; = {(a®, ) = 0}

and gy, is the Levine form associated to Y;. Note that they intersect pairwise properly

on the whole X and are rationally equivalent to (Y, gy). Now consider the Green’s form

gz = gy * gy, ¥ -+ * gy,_, for the intersecting cycle Z = Y.Y;...Y;_;. Then obviously

ht(z,4,(Y) = hty, a(Y). By Proposition it follows that ay := gy + « is an adjusted
d—1 :

Green’s form for YV if and only if azy := gz +d-a-w, " is a Y-adjusted Green’s form for

Z. Now we can show Corollary using the Y-adjusted Green’s form

2 2 m 1
oer == (i (o o ) - £3552 )t

m=1n=1
for 7 = {(a(0)7x> S <a(d_1)7x> _ 0}'

d—1

Now we want to calculate an example of an arithmetic intersection number with the
new formula in Corollary [2.55 More precisely, we want to calculate the arithmetic self-

intersection number of the Serre twist equipped with the Fubini-Study metric.

Proposition 2.60. Let X = P% and £ = (Ox(1),]|"|lpg)- Then

d m d+1
a1 1 1 d+1 1
,C = — _— = — p—
DI D D
m=1 n=1 =2
Proof. First note that the equation
d m 1 d+1
9 SERITRI) o
n 1
m=1n=1 =2

is an easy induction over d. Now consider the arithmetic cycle (D, gp), where D =

{{(a” 2) = 0} and gp is the Levine form associated to D. Then

L = degy ([D, go]™™).
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By Corollary we know that

ap = gD—$<1og( “30)‘2> +Zi%)

is an adjusted Green’s form for D. Corollary shows

o

2

— d 1
deg ([Dth]d—H) — §deg(D)(gD —ap) + 3 / wZD Agp.
KXo

Because of deg(D) = 1, the proof follows from

_ _11
dp OéD—d 0g

and the fact that
d _ (0)
/wFS A gp = — log (’ao

Koo

o

2

2

+---+’a&0)

2
)+
holds, see equation ([2.26]). ]

In the last part of this section we verify the formulas for the arithmetic intersection
number in Proposition

e First consider the case

d

_ — 1 1
L = degy ([Y,9v] - [Z,92]) = 5/(93/ —ay,z) Nozc) + §/UJFS N9z,

P¢ Pt
where ay 7 is a Z-adjusted Green’s form for Y. By Proposition we can choose
ay,z = gy — 2 - htyy,g(2).

Because of

d m
1
/wps Moz =330 T2 iy (2)

d m=1n=1
PC

we clearly get

S|

>y

m=1 n=1

| —

degy ([Y, gv] - [Z, 92]) =
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e Now consider the case

—d+1 1 1
L o degx([Z,gZ] ) [Y,gy]) = 5/(92 —OéZ,Y) /\5Y(<C) + §/Wgs A Gy,

d d
PC P(C

where azy is a Y-adjusted Green’s form for Z. By Proposition we can choose

2 d— m 1
S N T ot P
2

m=1 n=1
1 0) 02
d 0 0
no =32 g ([0 4 a0,
/WFS gy [ g<a0 + + |aq )
Pd "

see equation (2.26)), it follows

Hence using

degy ([Z,92] - 1Y, 9v])

S

SIS

m=1 n=1

l\DI»—

2.5 Approximation of the Dirac current with applica-

tions on arithmetic intersection numbers

In this section we will only consider irreducible and reduced cycles Y € ZP(X) and Z €
7P"(X). Now let gy be a Green’s form for Y. For a point z € Y (C) let (21,..., 2, U)
be a local equation for Y(C) centered at z, i.e. UN7 Y(Y(C)) = {21---2, = 0} for a
desingularization 7 : :\f; — Xy of Xy along Y(C). As in Definition m we find smooth

0- and O-closed forms «; and a smooth form 8 on U such that

W*gy‘U = ZO@ 10g|Z¢|_2 + 0

Assumption 2.61. In this section we fix one desingularization 7 : j\f; — X and we
assume that the open subset U C X with U N 7YY (C)) = {2 -2, = 0} is dense in
:Y\;. Because };\U is in this case a null set and because we are only interested in the

integral of smooth differential forms, we can assume without loss of generality

7 Y(Y(C)) ={z -2z =0} and gy = Zai log |zi| > + 3. (2.28)

Moreover, we assume in this section that there exists a family (Z,(C)),cp_,
and reduced cycles Z,(C) € ZP"(X,,) with the property that lim,_o Z,(C) = Z(C) and
such that for all £ > 0 the cycles Z;(C) and Y (C) intersect properly on X..

of irreducible
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Definition 2.62. Let z;--- 2z, = 0 be an equation for 771(Y(C)) up to a null set. Then

212, = 018 a Z-adjusted equation for Y if the equation

(div(f) — ordy (f)Y, Z)g, =

_ (2.29)
15% /10g|f\5zt(<C) _OrdY(f)Z/ailog|Zi|/\67r1(Zt((C))

NXoo

oo

holds for any Kj-chain f such that for all ¢ > 0 the cycles div(f)(C) and Z;(C) as well as
the cycles (div(f) — ordy(f)Y) (C) and Z(C) intersect properly on X.,. Here «; are any
real, smooth, 0- and O-closed forms that satisfy m, (3 i A dg,) = dy(c), where E; is given
by the equation z; = 0.

Remark 2.63. i) First note that the smooth forms «; in Definition exist, see [Soll
Lemma 3|. Moreover, the equation z; - - - z;, = 0 do not depend on the choice of the «;. This
follows from the fact that any choice of the forms «; in Definition defines a Green’s
current gy for the same cycle Y, see [Soll, Theorem 3|. Then because of Assumption We
have gy = > «; log |zi|_2 + . Now note that for two different Green’s currents gy, gy €
D®=Lr=D(X) for Y, the difference gy — gy is represented by a smooth form. Hence with
T gy = Y o;log |z 2 + B and Gy = Y d;log |z| 7 + B, the integral [w— 7 (gy — Gv) A
0r-1(z(cy) is well-defined for any cycle Z € ZP"(X). Tt follows that 3" [ (ai — ai) log |zi| A
dx-1(z(c)) is well-defined for any cycle Z ¢ 7P (X), which implies that the latter integral
vanishes.

i) A priori, the equation depends on the family (Z;(C)),cp_,. But in the proof of
the next proposition we will see that is independent of the choice of the cycles Z;(C).
iii) In the proof of the next proposition we will also see that instead of considering the
condition 771 (Y (C)) = {212, = 0} up to a null set as in Assumption [2.61] it is enough
to consider those local coordinates on an open subset U C X, such that U N 7 HZ(C)) C
77 1(Z(C)) is a dense subset.

iv) Instead of considering only one chart, we also could generalize Definition to a
family of local equations. By this we mean the following: Let :\’\; = U;LZI U; and let

z15 26,5 = 0 be an equation for 7=*(Y'(C)) N U;. Then the family {z ;- 2, ; = O}j
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could be defined as a Z-adjusted equation for Y if the equation

(div(f) — ordy (f)Y, Z)g, =

n k]

lim /log |f|0z,c) — ordy (f) Z /Ujai,j log |zij| A 0x-1(z.(0))
U;

A j=1i=1p

holds for any K;-chain f as in Definition [2.62l Here the real, smooth, 0- and d-closed
forms «; ; satisfy ., (EZ a;j N (5Em.) = 5W, where I ; is given by z; ; = 0 and o, is
a integrable partition of unity to the cover {U;}; of X... Note that this is independent of

the partition of unity by the definition of the integral over a smooth differential form.

However, in this thesis we will only consider one chart and one equation z; - -- 2z, = 0.

Proposition 2.64. Let Y € ZP(X) and Z € ZP'(X) be irreducible and reduced cycles on
an arithmetic variety X. Let zy--- 2z, = 0 be an equation for 7= (Y(C)) up to a null set.
Then there exists a unique positive real number a such that z1--- 2z, = 0 is a Z-adjusted

equation for' Y, where for i =1,... k we set z; := az;.

Proof. i) Well-definedness: By the properties of the Kj-chain f, the geometric intersection
number (div(f) — ordy (f)Y, Z)g, is a real number. On the analytic side, let gy be a Green’s
form for Y associated to the forms ;. Then the Green’s form — log |f|* — ordy (f)gy for

div(f) — ordy(f)gy is integrable along a desingularization of Z(C). Hence

/ (log 11>+ ordy (f)gy) A dz(c)

Koo

is a well-defined number. It follows that the limit

. ordy (f)
11_{% (”/ log ‘f’ (Szt((c) + T / gy N 5Z,5((C)

Koo
is well-defined and independent of the choice of the cycles Z;(C). Because Z;(C)NY (C) = ()

and because 7 is an isomorphism apart from Y (C), the equation

/ gy Nz ) = / T gy A Ox-1(z,(C))

Koo Xoo

holds. Now equation (2.28) shows that

lim / tog |1 62,c) — ordy (/) 3 / aslog 22| A Sys )

t—0
Xoo

oo
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is well-defined.
ii) Ezistence depending on f: Because of part i) we know that there exists a number o € R
such that

(div(f) — ordy (f)Y; Z)g, — lim /log | f102,(c) — ordy (f) Z / a; log 2| A dx-1(z,(c))

Koo

oo

= —ordy(f)-log|a|2/a¢/\5ﬂ1(zt(<C))-
"

It follows that the equation Zzj - - - 2, = 0 satisfies (2.29)) for one K;-chain f.
iii) Product-formula: Now let f be a Kj-chain, where ordy (f) = 0 and such that div(f)
and Z intersect properly on the generic fibre X. Then the formula

(iv(), 2)g, =~ [ loglsl " x9z = [ logl1bze

Koo Koo

holds for any choice of Green’s form gz for Z. If we consider the cycles Z;(C), we obtain

the equation
(iv(1), 2)5, = limy [ 1o f]5zc)
Xoo

i) Independence of f: Consider two Kj-chains f; and f, with the assumptions in the
proposition and with ordy (f;) # 0 # ordy(f;). Assume that f; satisfies the equation
(2.29). We can find a suitable Kj-chain h with ordy(h) = 0 = ordz(h) and such that

ordy (F2) — pp . pordv () ¢ follows the equation

(div(fy) — ordy (f2)Y, Z)g,

_ordy(f2) .. .
~ ordy (f1) (div(f1) = ordy (f1)Y, Z)g, — m (div(h), Z)g,
d .
= Zid:g‘j; %1_1}15 X/ log | f1]0z,c) — ordy (f1) ;N/ a;log |zi| A 0r-1(z,(c))
oo Pt

1
——1i log |h| §
Ol“dy(fl) tl_I}% Og | | Zt((c)

(o]

= lim /log!fzwzm —Ordy(fz)Z/ailog!Zz!/\5n—1(zt<<c>>

Koo

[ee)
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Thus the equation (2.29)) is independent of K;j-chains.

v) Uniqueness: Because « is positive and real, it is uniquely determined. O

Proposition 2.65. Let z; -z = 0 be an equation for 7= (Y (C)) up to a null set. Then

21z, = 0 is a Z-adjusted equation in Y if and only if

/ 5 A (Sw—l(z((c)) = 0. (230)

Koo
Here (3 is the smooth form oy z + 3. a; log | 2|
forY.

, where ay 7z s a Z-adjusted Green’s form

Proof. We will use Proposition to prove Proposition The right side of equation
(2.11) can be written as the limit

. ordy (f) .
lim / log|f[0z,c) + —5— | Tavz Az

Xoo Xoo

With the help of Proposition the equation

. . ord .
(@iv() — ordy (1), 2)g, =ty | [ 108151620+ ZE [z noesiaiey

Koo Xoo

holds. Hence to prove Proposition it remains to show

. * 2
lim / <7r Qy,z + ZO@' log |z ) A Ox=1(z,0)) | = 0.

{oo}

But this is exactly the equation (2.30)). [

Theorem 2.66. Let [Y,gy| € éﬁp(?() and [Z,gz] € cH’ (X). Let z1-- 2z, = 0 be a
Z-adjusted equation for Y. Then

2
Koo

—_— . 1
degy ([Y, 9v] - [Z, 92]) :15% Z / a;log | 2| A 0r-1(z,c) + 3 /gy Nozc) | +

oo

1
5/("}91/ /\gZ-
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Proof. Because of Proposition we have

— 1., 1
dogy (Vg1 Z.92) = 5l [ (9 — av) Nz + 5 [ Nz

2 t—0
Xoo Xoo

where ay 7 is a Z-adjusted Green’s form for Y. If 7 : 5(; — X, is a desingularization of
X along Y (C) we obtain

/Oéyz A 5Zt((C) = /W*ayz AN 67r*1(Zt((C))-

Koo o

Because of Proposition the latter equals

Z / a; log |zi]_2 N Or-1(z,cy) + f(t)

17—

oo

with lim; o f(¢) = 0. The proof follows. O
Now we compute some examples of adjusted equations.

Proposition 2.67. Let X = P = ProjZ[zg,...,xq). Let Y € ZY(X) and Z € 7Z4(X)

gien by the equations

Y = {9, 2) =0} and Z = {(aV,2) = --- = (" Y 2) = 0},

where fori=0,...,d—1 we set (a(i), x) = a[(f)gco—i-- . '—l-a((f)xd as in section 2.4. Moreover,

let A; be the matriz (e;1,a®), ... a'%=V), where e; is the i-th vector of the standard basis

of Z4t as in Proposition and assume det(A;) # 0. Then we set

(0)
z = det(4;) - u.
Z;
i) Let
Ui = {(x(]?' - ,.Td) € ]P)% ’ L5 7& O}
Then a Z-adjusted equation for'Y is on U; given by z = 0.
i) Let

—

Xoo = {(%0s -, Ta,Yor - - - Ya1) EPEXPE | It € Cst. (0, 2) =ty; Vi=0,...,d — 1}
be the blow up of X along Z(C) and let
Ui,j = {(I07"'7xd7y07"‘7yd—1) e/‘)?; | X 7£ O7yj #O}

Then for i # 0, a Y-adjusted equation for Z is on U,y given by z = 0.
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2.67

Remark 2.68. In the proof of Proposition

are dense subsets. Moreover, the condition det(A

we will see that U; C P4 and U,y C ]E’Tdc
;) # 0 implies that (a(®, z)/z; = 0 is an

equation for U;NY (C) and also for U; gN7~1(Z(C)), where 7 : Xoo — Xo is the projection
onto the first factor. Thus the equation z = 0 satisfies the condition in Assumption [2.61]

Proof. i) Let z := det(4;) - (@), By definition

T

to verify that the equation

(div(f) = ; Z)g, = lim (K/ log |f18zc) ~ [ log el e,

holds for a rational function f with ordy (f) =1
2.56

are linearly independent in Z%*!'. Then we have

defined. As in Proposition we choose f =

(@)

(a

of a Z-adjusted equation for Y, we have

(2.31)
Koo
such that both sides of (2.31]) are well-

37, where the vectors a, G Co)

(div(f) =Y, Z)g, = —log |det(a, a®, ... ,a(d—l))} .

For t > 0 consider the cycles

Z(C) := {(a9 + 18, 2) = (aY, z)

where the vector 3 satisfies det (38,a(, -+, al®™

grals

/ log | f]dz,(c)

Koo

= log ‘det(a(o), a® +t8,aWM, ...

= log|t| + log
and

/ log

]

/ log 2] 0z,c),

oo

)

= log ‘det(a(o), a
= log |t| + log | det(s, a?, ...

Hence, in the limit ¢ — 0 we have

lglg (,/ log | f]dz,(c)

_ / log [2]6z,0)\y,

Koo

La D) = log |det(a, a® +t8,alV), ..,
det(B,a”,...,a!"")] ~log |det(a,a®, ..., al" )| + O(1)

(a©), 2

= <a(d_1)7x> - 0}7

) # 0. Therewith we have the two inte-

a(d—l))‘

)

5Zt((c)|Ui + log |det(A1)|

© 1 18,aM . ald-V)|

,a(d_l))| .

= —log {det(a, a®, .. 7a(d_l))| ,
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which proves the claim.
i) First note that the blow up Xy = U, Ui can be covered by the U; ;. On these open

sets there are for ¢ # j the local coordinates

()
~ aV x)
%j:Ui,j—>Cd, (zo,...,md,yo,...,yd_1)'—><—< >,—0,...,1,..., )7
T Yj Yj

see [Hul section 2.5]. Let 7 : Xoo — Xo be the projection onto the first factor. Then
we have 771(Z(C)) = {t = 0}, where the equation ¢ = 0 is as in Example On
the open set U;; we have 771(Z(C))|v,, = {(a?,z)/z; = 0}, see [GSI]. We claim that
z = det(A;){a®), z)/x; is a Y-adjusted equation for Z on Uso. For this we consider the
K, -chain f, which is on W(C) := {{a™,z) = --- = (a!¥"V z) = 0} given by the function
“ZS;;C) We denote this Ki-chain by f = “ZS;;C) Sw(c). Here the vector o has to satisfy

det(a,a®, ... al®Y) #£ 0. Moreover, we set Y;(C) := {(a?, x) + tz; = 0}. Then we have

to show the equation

(div(f) = 2,Y);, = lim /10g\f\5n(<c>— /510g|21/\5n(©|yiyo :

Noo Xoo

j .
where a = Z;l;é (ddc log (Zf:_ol \yf)) A wis'™. Note that by [GST, p.207] we have
T (@A 6r-1(2(c))) = 0z(c)- The geometric intersection number (div(f) — Z,Y ), is given

by —log|det(c, a®, ..., al®)|. On the analytic side we have the two integrals

/10g|f|5m(C)
Xeo
(0)
— /log <a 7x>
(o, )

= log |det(a(0), a9 +tegq, a0V, ,a(d_l))’ — log !det(a, a®, .. ,a(d_l))| + O(t)
= log |t| + log |det(4;)| — log |det(a, a®, .. a(dfl))‘ + O(t)

dwc) N Oy, ()
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and

/ &log ’Z| A 6Yt((c)|U¢,0

:/&log

Xoo

(0)
det(Ai)M’ A (5 a(0>

ZT; +t=0}
Xoo
~ (a® z)
= log |det(A;)] - /oz/\é (Z) 0}+/ozlog B /\(5{< O 0}—1—
Xoo Xoo
— (log |det (A5)] + log [£]) / TG 0y +O(0)
i ;
Now, note that {{—=2 “( £ =0} =7 1(Z(C))|v,,- Therewith we have
/&Aéﬁl(z(c))hjip = /a/\éw L(z(C)) = /5Z
Xeo Xoe Koo
Hence, we have the desired condition
: ~ 0 d—1
lg% /log |f] dv,(c) — /alog |z| A 0%i(C)lg,, | = —log ‘det(a,a( ). al ))‘ :

Xeo Xoo

O(t)

Example 2.69. Consider the arithmetic surface X = P}, and the divisor P = (a : b) =

{bxy — axy = 0} € X(Z) with b # 0. As a special case of Proposition we see that

2p = det(b) (b — )y = blbs — ) = 1 (2 = 7)

is a P-adjusted equation for P on the chart U = {z = x¢/x; € C}. Note that the function

zp was calculated in the first chapter and defined there an arithmetic local coordinate in

P.

In the last part of this section we want to compute the arithmetic self-intersection num-

ber of the Serre twist equipped with the Fubini-Study metric using Theorem [2.66]
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e [First consider the case
degy ([Y, gv] - [Z, 92]) =

. 1
11_1}101 Z/ozzlog\zzw\é7r 1(Z,(C /gy/\ézt +§/wgy/\gz,

Koo Xoo

where z;--- 2, = 0 is a Z-adjusted equation for Y. By Proposition we can choose
k=1 a;=1and z; := 2z = det A; - on U; = {(zo,...,7q) € PL | ; # 0}. Hence we

have to compute

degy (1Y, gv] - [Z,92]) =

1
hm (X/ log |2| 6z, ©ly, T /gy Nz | + 3 /wgy Aggz.

OO XOO

As in the proof of Proposition we take
Z,(C) = {(a® +t8,2) = (aW,z) = - .. = (0! Y, z) = 0}

such that the vector 3 satisfies det (3,a®, -+, al@=V) # 0. Because of

d m
1 1 11 , )
é/wgy /\gzzi E E E—ilog(\detAol + -+ |det Ag|7)

Koo m=1 n=1

it is enough to show

1
hm (K/ 10g|2’5zt ‘U / Y/\5Zt((C = §lOg (\detA0|2+---+\detAd|2) .

OO

Note that

/108; 12| 62, (0)), = log|t] + log |det (8,al, - al¥" V)|

Xoo



74

Moreover, we have

s [ o nduer=3 |
5 gy Zt((C)—2

Koo Koo
(0®,z) |
1 T
“a )l L P il 7 | N Oz©)le, =
P’ ﬁ_(i) _|_...+;_—i1 4+ 14 |t +...+§_Z

log |det A;| — log |det (a(o), a® +¢8,aWM, ... ,a(d_l))| + O(t)+

2 2

1 x X Z; o ’

_/log<_0 T IR T e TR )A(Szf«%

2 T T; Z; Lo

Xoo

Now because of
. 9 . 2 2 2 T 2
/1Og<_0 NEPE il B ) e +”.+_d )A(Szt(c)u—

ZT; 7 T Lo

[ee]

log (|det Ag|* + - - - + |det Ay4|?) — log |det 4;]* + O(t)

we obtain the arithmetic intersection number

d m
@X([KQY] [Z, 92]) Zzl

m:l n=1

—
S

e Now consider the case

&EX ([Z,92]) - Y, 9v]) =

. 1 1
1% Z / a; log |z A 57r—1(yt(<c)) + 5 /gz Noy,c) | + 5 /wgz N gy,

Xoo
where 21 -+ 2, = 0 is a Y-adjusted equation for Z. By Proposition we can choose
=1y = T (o (S )Y As™ = 2 = et Ay 22

Ui,O = {(ZZ'(), o Idy Yoy - 7yd—1) S Xoo | X 7£ 0790 7£ 0}

Hence we have to compute

Ee\gx ([Z,92]) - Y, 9v]) =

li al 5 L § !
lim alog|2| Advi)ls,, T 5 [ 92Nm© [ +5 [ Wz Aoy

EYe Xoo Xoo

oo
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As in the proof of Proposition we set Y;(C) :=

{
d 1 d 9
o =31 w351
=0

Koo n=1

and
/ alog|z| A 0Y:(C)|y; , = 108 [t| + log |det (A;)| + O(t).
Xoo

Now let a2y, be the Green’s form

)

9 9 9 d—-1 m 1
_ 10 ‘a( e a(,o P — d—1
9z (g(o i +m: 51" Wrs

|

for Z. Because

/ azy,Ny,c) = —2log ‘det(a(o), a® +teg 1, a0l 1))‘ —2log |t|—2log|det (A;)],

Koo

see equation (2.24)), we find

/gz N dy,(c) =

Xoo

d—1 m
1
— 2log |t| — 21og |det (A;)] + E —l—log(
n
m=1 1 =0

n=

2) + o).

Hence we obtain the arithmetic intersection number

SIS

m=1 n=1

degy ([Z,92] - 1Y, 9v])

l\DIH
S
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Chapter 3

(zeneralized Arithmetic Intersection

Theory

In the first part of this chapter we discuss the generalized arithmetic intersection theory
on arithmetic surfaces with log-log Green’s functions. Using adjusted Green’s functions
we define a generalized arithmetic intersection number and show that a limit version of
this number contains arithmetic local coordinates. With this new formula we compute the
arithmetic self-intersection number on the modular curve X (1) from the first chapter. We
also calculate an example of a generalized arithmetic self-intersection number on a modular
curve X (I'), which is due to U. Kiihn in [Kii4]. With the use of adjusted Green’s functions
we define a generalized arithmetic intersection number of two arbitrary arithmetic divisors
with log-log-singularities and show that this number coincides with the generalized arith-
metic intersection number due to Kiihn in [Kii2].

In the second part of this chapter we discuss the generalized arithmetic intersection the-
ory on arithmetic varieties with log-log Green’s forms. First we review the generalized
arithmetic intersection theory, which is due to J. I. Burgos Gil, J. Kramer and U. Kiihn
in [BGKK]. Similar to the second chapter we define a modified x-product between two
log-log Green’s forms and therewith we define a modified version of the generalized arith-
metic intersection number of arithmetic cycles with log-log Green’s forms. We show that
this number coincides with the generalized arithmetic intersection number due to Burgos
Gil, Kramer and Kiihn. In the last part of this chapter we calculate a known example of a

generalized arithmetic self-intersection number on the arithmetic 3-fold P2 = X'(1) xz X (1).

7
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3.1 Generalized arithmetic self-intersection numbers on
arithmetic surfaces using arithmetic local coordi-

nates

In this section we define a new version of the generalized arithmetic self-intersection number
of an arithmetic divisor with a log-log Green’s function.

The following two definitions can be found in [Kii3], Definition 3.1].

Definition 3.1. Let Soo = > S; be a fixed reduced divisor on X, and let D be a divisor
on X. A log-log Green’s function gp for D is a smooth function outside D(C) U S, such
that

i) gp is a Green’s function for D(C)\(D(C) N Sx) on X \Soo;

i) for a local coordinate ¢ in S; we have an expansion

9p(Q;) = —2ny, ;1 log (—log [t(Q;)|?) — 201ds, (D) log [t(Q;)| — 210g (¢4 ;(Q;))

near S;, where n,, ; € R and ¢, ; is a positive smooth function outside 5;, satisfying the

growth conditions

Wi () < pr

— @)
near S;, where 3,p € R,.

B
(@) [*~*

(@Q))] <

‘ a‘PgD J Q)] <

54 029%73,]
1t(Q;)| =’ otot

Definition 3.2. Let 21(2\,”,800) denote the group of arithmetic divisors (D, gp), where
gp is a log-log Green’s function for D. Moreover, let ﬁl(/l’) denotes the usual group of
arithmetic divisors of the form (div(f), —log|f|*) with f € k(X)*. Then

CH (X, 8x) = 2'(X,8x) /R (&
is the generalized arithmetic Chow group of X with respect to Sy.
Now we define a new version of the generalized arithmetic self-intersection number.

Definition 3.3. Let (P, gp) € 21(?(7800) be an arithmetic divisor, where gp is a log-log
Green’s function for a horizontal prime divisor P. We define the generalized arithmetic
self-intersection number of (P, gp) by

1

<P7 973)2 -5

2/(gP'WaP_aP'wgP+g77'wg7r)ﬂ

Xoo

where ap is an adjusted Green’s function for P.
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Theorem 3.4. Let (P, gp) € Z1(X,S) be an arithmetic divisor, where P is a horizontal
prime divisor, gp 1s a log-log Green’s function for P and Sy, = P(C). Let tp = (tpj)j be
a fized family of local coordinates in P(C) =) P;. Write locally

9p(Q;) = —2n,, ;log (— log }tpj(Qj)\2> — 2log |tp,(Q;)| — 21og (py,,;(Q;))

on X. = X\ UB-(P}) near P;, where B.(P;) = {z € Xy||tp,(z)| < €}. Then the
generalized arithmetic self-intersection number of (P, gp) is well-defined and as a limit

given by

(P.gp)* ZZ(%W log (pgp.(F3))) + lim, (log |2p(Q)] — log [tr(Q)]) -

. 1
lg% anp,j log (_ log 62) B 5/973 "Wop |
J

Xe

where zp 1s an arithmetic local coordinate in P.

Proof. For two log-log Green’s functions gp and g for P, the equation
/g;; Wep == ) / gp - d°gp — /dgp d°gp (3.1)
X. I aB.(P

holds by Stokes Theorem, where the orientation of 0B, (F;) is induced from the orientation
of B.(P;). In |[Kii2, equation (20)] it was shown

/ Ip - d°gp = 2 (Ngp.j + Ngp,.5 10g (—loge?) +log (pg ;(F)))) + f(e), (3.2)
0B:(Pj)

where f is a continuous function with lim._,o f(¢) = 0. For an adjusted Green’s function

ap for P we have 7,, ; = 0 for all j. Hence we have the two terms

/gp Wap = =2 (1lgp,s10g (—loge®) +10g (45(F}))) — /dgp -d°ap + f() and

X. J Xe
/ap Wop = =2 (Ngp.j +108 (Pap i (P))) + /dap -dgp + f(e).
X. J X.

Using the symmetry dap - d°gp = dgp - d°ap we obtain

1
5 (g'P'wOé'p _aP'ng>:

Xe

Z (779733 + log (0ap,i(F)) — log (¢gp,; (L)) — ngmlog( 10g52)) + f(e)-

J
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Taking the limit ¢ — 0, it follows

(P.gp)? = (gpy +108 (Papi(P})) — 10g (04,4(F)))) —

J

. 1
ll_{% ZUQPJ' log (_ log 82) 9 /gp " Wop
J

Xe
The proposition follows now from the two equations

10g (¢apy(P)) = — 5 lim <Oz7>(Qj) +10g‘tPj(Qj)|2> and

2 Qj*)Pj

= Jim <aP(Qj) +log [2p, (@) |2> '

5= bj

]

If the family of local coordinates ¢p in Theorem [3.4]is an arithmetic local coordinate in
P, then we get the following useful version of the generalized arithmetic self-intersection

number:

Corollary 3.5. Consider the situation as in Theorem [3.4), where the Green’s function gp
15 locally given by

9p(Qj) = —2nyy jlog <— log }ZPJ-(QJ‘)\2> — 2log |2p,(Q;)| — 210g (04, ;(Q;)) »

where zp = (ij)j s an arithmetic local coordinate in P. Then the generalized arithmetic

self-intersection number of (P, gp) is given by

1
(P.gp)* =Y (gpj — 108 (94p,5(F;))) — lim anmlog (—loge?) — §/gp-wgp ,

- e—0
J Xe

where X. := X\ U{z € X |2p,(z)] < €}
Now we will see that the arithmetic self-intersection number of the line bundle of

modular forms equipped with the Petersson metric M, (I'(1)) (see Proposition [1.27) indeed

could be calculated without the use of the generalized arithmetic intersection theory.
Proposition 3.6. Let (P,gp) € /Z\l(X,SOO) be an arithmetic prime divisor, where gp is a
log-log Green’s function for P such that P(C) NSy = 0. Then the generalized arithmetic
self-intersection number of (P, gp) is given by

1 1
(P,gp)” = Cgig}g (10g |2p(Q)| + 5977(@)) t3 /979 * Wep,

oo

where zp 18 an arithmetic local coordinate in P.



81

Proof. For P(C) =) P and S, =) S5; we set
= oo\ U B.(P) U U B.(
Then we have to calculate the limit

L.
(73,973)2 = éllg%/ (9P - Wap — Qp - Wyp + gp - Wy ) -
Xe
With the help of Stokes Theorem we obtain

/(gp'wap—&P'wgp+gp'wgp)zz / (ap-dgp — gp - d“ap) +

X © 9B.(P,)
Z / (aP'dch_gP'dcaP)+/g77'wgp~
I 8B.(S;) X.

Since ordg, (P(C)) = 0, the integral
/ (ap - d°gp — gp - dap)
0B:(S5;)

vanishes in the limit ¢ — 0, see [Lal p.23|. Moreover, using the calculations as in [Kii2

equation (20)], the equation
/ (ap - d%gp — gp - d°ap) = 2(10g (Papi(F:)) — 10g (9gp.i(F2))) + f(€)
OB (P;)

holds, where f is a continuous function with lim. .o f(g) = 0. If we write locally

gp(Qi) = — 2log |2p,(Q:)| — 21og (pgp,i(Qi)) and
ap(Qi) = — 2log [2p,(Q:)| — 210g (Parp.i(Qi))

near P;, where zp = (2p,), is an arithmetic local coordinate in P, we see that log (¢a,:(F;))

vanishes for all 7. Thus taking the limit ¢ — 0, it follows

1
(P.gp)" = Zlog Pop.i( L) 5/979'ng- (3.3)

Xoo

Now with ", 10g (¢g,.:(Q:)) = —3 (9p(Q) + 2log |2p(Q)|) we see that equation (3.3) can

be written as

(Pgw)* = fin, (102 |:n(Q)] + 309(Q)) + 5 [ 90

Koo
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Remark 3.7. In the special case S5, = () we recover the arithmetic self-intersection number
of an arithmetic divisor (P, gp) € Z1(X,0) = Z(X).

With Corollary we can give a different proof of Proposition using the general-

ized arithmetic self-intersection number.

Proof of Proposition [1.27, We take the arithmetic divisor

(P.gp) = (div (A(r)), —log | A(T) |5, -
The Petersson metric shows

AT e = [A(T)| (4xTm(7))® = [A(F)] (~log |¢*)°.

24

Using the Fourier expansion A(7) = ¢[] (1 — ¢™)” we obtain

—10g [|A(T)||pe = —1210g (—log q|*) — 21og|q| + O(q)

and hence 7,, .. = 6. By Proposition an arithmetic local coordinate in div (A(7)) =
Sw is given by ¢. Thus Corollary [3.5 shows

M (D(1)? =6 — ll_r}% 6log (—loge®) + / log || A(T) || peg - wet |
x(1).
where X (1), := X(1)a\{z € X(1)oo| |g(z)| < €}. As in [Kii3, Corollary 5.4.] we have the

limit

tim | Glog (~log<?) + / log [ A7) lpu, - wrer | = 12 — 122¢(~1).
X(1)e

It follows o=
Mip(I(1))* = 12%Co (1) <§§E_B i %> .

3.2 Scattering constants for congruence subgroups

In this section we give a short summary of the article [Kii4] and specialize the result given

in |[Kiidl, Theorem 4.4] with the help of the generalized arithmetic self-intersection number

in Corollary [3.5
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Definition 3.8. Let I' < I'(1) be a subgroup of finite index, S; a cusp of X(I') and I'; its
stabilizer. For s € C with Re(s) > 1 and 7 € H, the non-holomorphic Eisenstein series for
the cusp S; is given by
Eg (1,8) = Z Im (0;17(7))8,
YETH\T

where 0; € PSLy(R) satisfies aj_leaj ={(§m)|mez}.

The following can be found in |[Kii4l, Properties 2.3.|:
The function Eg,(7,s) is I'(1)-invariant in 7 and has in s a meromorphic continuation on
C, with a simple pole in s = 1 with residue 3/(n[I'(1) : I']). For a cusp S; of X(I'), the
Fourier expansion of Eg, (7,s) in S; is given by
Eg,(1,8) =y° + @;i(s)y'—° + Z am(y, 8)e*™me
m#0
where we set 7 = x+14y. For an explicit description of the terms ¢;(s) and a,,(y, s) we refer

to |Kiid, Properties 2.3.]. Here we only note that the function ¢,(s) has a meromorphic

continuation with a simple pole in s = 1 with residue 3/(7[I'(1) : I']).

Definition 3.9. The constant

CF .= lim (%(S) - 3/(7@(11 : FD)

J s—1 S —

is called the scattering constant for S; on X (I').

Definition 3.10. For any cusp S; of X (I') we define the I'(1)-invariant function

. 12
gi(T) :==4m iliri (ESJ. (1,5) — goj(s)) — m log(4).
The induced function on X (I') will be also denoted by g¢; and is called the hyperbolic Green’s

function for the cusp S;.

Indeed, by |Kiid, Proposition 2.7.] the function g; is always a log-log Green’s function

for S;, which satisfies
12
ddg; = ————=w
SINCRRY
outside S, where w := wpet|x(r) denotes the (1,1)-form on X (I'), induced by the Petersson

normalized hyperbolic (1, 1)-form wpe on X(1).

Moreover, note that we have the normalization fX(F) w= [F(llgﬂ, see [Kiid].

The following example is due to [Kii4, Remark 4.5].
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Example 3.11. In the special case I' = I'(1) there is only one cusp Sy on X(1). The

function ¢ is given by
1o L(s = 3)¢(2s — 1)

=TI e
where I'(s) denotes the gamma function. The scattering constant ctW i given by
Ot _ Qim W1/2F<S - %) Co(2s —1) _ 3
SR M) Go@s)  as—1)

= 6(12@“@(—1) — 1+ log(4)).

™

Moreover, by Kronecker’s limit formula, we have the equation

~log [|A() [, = 4 lim (B (7, 5) — ae(5)) — 121o(4m) = g (7).

Proposition 3.12. Let I' < I'(1) be a congruence subgroup and let X (T') be a reqular model
of X(T') such that there exists a proper morphism mr : X(I') — X(1) of Spec Z-schemes.
Moreover, let S; denote the closure in X(I') of a cusp S; on X (I') with cusp width b;. Then
the family

1/b;
Zsi:q/

defines an arithmetic local coordinate in S;.

Proof. The modular curve X (I') defines an algebraic curve over some number field K,

1/b

hence X(I') is an arithmetic surface over Spec Ok. Note that zs, = ¢'/" is indeed a

family of local coordinates in the cusps induced by S; on X(I') oo = [[,. 4 ,c X(I's), where
[, are congruence subgroups of I'(1). The modular invariant j defines by pullback a
rational function on X (I') satisfying ordg,(j) = —b;. Thus the ramification index of j
in S; equals the cusp width. The result follows immediately from Proposition [L.6] since
the horizontal divisors associated to different cusps do not intersect on X(T"), see [KML.

Theorem 10.9.1]. O

Proposition 3.13. Let I' be a congruence subgroup and let X (I') be defined over some
number field K. Let X = X(I") be an arithmetic surface over Spec Ok associated to X (I)
such that there exists a proper morphism mr : X(I') — X(1) of Spec Z-schemes. Consider

the hermitian line bundle £ = ((’)X(Sj), H~thp), where S; is the closure in X of a cusp S;
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on X(I') and the metric ||-||,,, s associated to the hyperbolic Green’s function g; for the
cusp S;. Then the self-intersection number of L is given by
6 — 12log(4m)

L'=-2r Y CF+[K: @]W,

g:K—C

where C’jr" denotes the scattering constant for the cusp S; on X(I'), = X(I',).

Proof. Since the local coordinate zs, = ¢'/% is an arithmetic local coordinate in S;, the

arithmetic self-intersection number in question is given by

—2
‘=Y (ngj,(,—log«ogj,xsj,a))—

g:K—C
1 12
li Jog(—loge?) — = e
EIE)% (779;,0 Og( oge ) 9 / g] [F(l) . F} W)),
X(FU)E
where S;(C) = 3__S;, and for zs, = (zg,,)  we set
X(To)e = XTo)\{P € X(T,)| |zs,,(P)| < e}

The hyperbolic Green’s function g; can be written in the local coordinate zs; as

12
(1) : 1]

where f; is a smooth function, which is continuous and has the special value f;(S;,) =0

9;(Q) = —log |25, (Q)|* — log(— log |25,(Q)|") + £;(Q),

for all 0 : K < C, see [Kiidl, Proposition 2.7|. Thus we obtain the constants

B 6 _ 6 and
Ngjo = T(1):T,]  [I(1): 1]

1
log(¢y; , (Sj0)) = —51‘}(5]',0) =0

for all o : K — C. By [Kii4, Lemma 2.8] we have the limit

. 2 _ =T, o,
ll_I)I(l] log(—log|e|”) — / gi-w|="1 AnC; o + 2log(4m).

X(Ty)e
Summing up the [K : Q] embeddings o : K < C yields

—=2 6 r, 12log(4m)
£=2 ([ru):r}‘w - [mm)

g:K—C

=27 ) CJ" +[K: Q]%

INCORS NI

which proves the claim. O
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Example 3.14. Let X = X(1) and let S be the unique cusp of X'(1). Its scattering
constant CLY is given by —2rCEY = 12(12¢p(—1) — 1 +log(4n)), see Example 3.11, Thus
by Proposition [3.13] we obtain the arithmetic self-intersection number

05 =12 (36a(-1) + (1)),

which is the same as in Proposition [1.27]

3.3 Generalized arithmetic intersection theory on arith-

metic surfaces using adjusted Green’s functions

In this section we show that the generalized arithmetic self-intersection number of an
arithmetic divisor with a log-log Green’s function gp for a horizontal prime divisor P
coincides with the generalized arithmetic self-intersection number in [Kii3]. Moreover, we
define the generalized arithmetic intersection number for two arbitrary arithmetic divisors
with log-log Green’s functions with the help of adjusted Green’s functions and compare it
with the generalized arithmetic intersection theory in [Kii3].

The following definition is due to [Kii3, Definition 3.6].

Definition 3.15. Let (Dy, gp, ), (D2, gp,) € Z'(X,S.) be two arithmetic divisors with log-
log Green’s functions such that D; and D, intersect properly on the generic fibre X. Set
Seo = Sj. Then the generalized arithmetic intersection number due to Kihn of (D1, gp,)
and (Da, gp,) is defined by

(Dla ng) ' (D27 gDz) = (Dla DQ)ﬁn + Z (Orde (DQ)nngd + OI“de (Dl)ngDQ J) +
J

1

5 / (ng * Wyp, + 9D, " Wyp, + ng2 ’ dch1) :

XYoo
Let us make some notes about the generalized arithmetic intersection number due to
Kiihn.
For k = 1,2 write Dy(C) = ), ordp, ,(Di(C))Dy;. Moreover, set

X=X\ |J BDyu |J BDa)U ) B(S)). (3.4)

D1,i¢S Dy ;¢S S;€Sco
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Apart from D;(C) we have gp, - wy, = d(gp, - d°gp,) — dgp, - d°gp,. It follows that the

generalized arithmetic intersection number due to Kiihn can be written as

(D1.9p,) (D2, gp,) = (D1, Da)gy + Y (ords, (Da)ryp, ; + ords, (Di)ngy, ;) +

J

1. c
stim | [ gp.-dgp, + [ gp, - i,
X Xe

An explicit calculation of [, gp, - d°gp, vields
1
(D1.90,) - (D2, 9p,) = (D1, Do)y, + 590, Dy = 3 ords, (D1) S| +

> ordg, (D1) (.5 — 108 (240,4(5)))) — (3.5)

j=1

. - 1
lli% Z; Orde (,Dl)ngDQ J log (_ log 52) - 5 /91?1 “Wop, | >
J= X

see [Kii3, Lemma 3.9]. Moreover, in [Kii3, Theorem 3.11] it was shown that the generalized

arithmetic intersection number due to Kiihn defines a bilinear and symmetric pairing
CH (X,S8+) xCH (X,S8») — R
([D17gD1]7 [D2ngQ]) — (Dl,ng) ’ (DQngQ) :

Proposition 3.16. Let P be a horizontal prime divisor on an arithmetic surface X and
set P(C) = > P;. For an arithmetic prime divisor (P, gp) € ZY(X,P(C)) with a log-log
Green’s function gp for P, the generalized arithmetic self-intersection number due to Kihn

coincides with the generalized arithmetic self-intersection number as in Definition |3. 5,

Proof. We have to show that the generalized arithmetic self-intersection number due to

Kiihn can be written as

(P,gp)* =D (gpg — 108 (045 5(P)))) + Jim, (log |2p(Q)] — log [t»(Q)]) —

J

. 1
lim anp,j log (— log gQ) — 5/973 W |
J

e—0
Xe
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where zp is an arithmetic local coordinate in P. For S, = P(C) = > P; fix a family
of local coordinates tp = (tpj)j in P(C). Consider the two arithmetic prime divisors
(P,gp) and (P’, gp/), where gp is a log-log Green’s function and (P’, gp/) is defined by
(P —div(f), gp + log |f|2) for a rational function f € k(X)* such that P and P’ intersect
properly on the generic fibre X. Then the generalized arithmetic self-intersection number

due to Kiihn of (P, gp) and (P’, gp) is given by

(P> P/)ﬁn + Z (ng/,j — log (Spgpuj (P]))) -

J

1
lim | 11g,,.5l0g (~loge®) — 5 / P * Wopr
J

e—0
Xe

Here X, := OO\ U{z € X, |tpj(x)‘ < ¢} and the log-log Green’s functions gp and gps
have the local expansions
2
9p(Q;) = =214, ;1log (—10g |tp,(Q;)] ) —2log |tp,(Q;)] — 2log (¢g,;(Q;)) and

2
99/(Qs) = 21y, 5108 (—log |t2,(Q,)[") = 2108 (4,,.4(Q))
near P;. Because of gp/(Q;) = gp(Q;) + 2log|f(Q;)| we obtain 1y, ; = 1y, ; and
10g (#g,,(F;)) = 10g (9gp.;(P;)) + ol (log | £(Q;)| —log |tr,(Q;)])

for all j. Moreover, note that w,_, = w,,. Now let zp be an arithmetic local coordinate in
P. Then

(P —div(f), P)an = lim (log|zp(Q)[ —log |f(Q)])-
It follows that the generalized arithmetic self-intersection number due to Kiihn of (P, gp)

and (P’ gp) is given by

Z (lgr.j =108 (05,5 (P3))) + lim (log |2p(Q)] — log|tr(Q)]) —

1
lim an%j log (—10g52) ~3 /gp * Wyp
J

e—0
Xe

This number coincides with the generalized arithmetic self-intersection number as in Propo-
sition . Now the proof of Proposition follows from (P, gp)- (P, gpr) = (P, gp)>. O
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Definition 3.17. Let Dy, Dy € Z'(X) be two divisors on X'. A Green’s function ap, p, for
D is called a Ds-adjusted Green’s function for Dy, if the height ht[’Dl’aDl’DQ}(Dg) vanishes,

i.e. ap, p, is a De-adjusted Green’s form for D;.

In the next lemma we recall the basic properties of adjusted Green’s functions. We also

prove these properties although the proof can be found in the second chapter.

Lemma 3.18. Let Dy and D] be divisors on X and let Dy be a divisor on X such that
deg(Ds) # 0. Then the following properties hold:

i) There exists a Dy-adjusted Green’s function ap, p, for D;.

i) If ap, p, is a Dy-adjusted Green’s function for Dy and ap: p, is a Dy-adjusted Green’s
function for Dy, then ap, p p, = ap,p, + api p, is a Dy-adjusted Green’s function for
D, + Dj.

iii) If Dy intersect Dy properly on the generic fibre X, then any Dy-adjusted Green’s func-

tion ap, p, for D; satisfies
ap, p,[D2(C)] = =2 (D1, Da)g,, -

i) If Dy = div(f) for a rational function f € k(X)*, then the canonical Green’s function
—log \f\2 for div(f) is a Dy-adjusted Green’s function for div(f).

Proof. i) It is clear that any Green’s function gp, for D; can be rescaled by some § € R

such that ap, p, := gp, + B is a De-adjusted Green’s function for D; because of the equation

ht(p, ap, p,](D2) =ht(p, gp +6(D2) = htip, g5, 1(D2) + htjo 5 (D2) =

ht(p, 45,1 (D2) + gdeg(Dg).

~1
ii) The second assertion follows from the fact that the height is linear in CH (X’). More
precisely, the height

ht[D1+D£’aD1+D/17’D2]<D2) - ht[DlJr,D/l’aDlvDQJraD/lvDQ}(DQ) - ht[Dlv“DlﬁDz](DQ) + ht[D/PaD/lvDQ](DQ)

vanishes if both htp, 4, 5,)(D2) and ht(p; DQ}(DQ) vanish.
#ii) If Dy intersect Dy properly on X, then the definition of the height shows

Ay
7D1’

1
ht[Dl,OchDg](D2> = (Dla D2)ﬁn + 50@1@2 [D2<C>] =0.
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iv) The last assertion follows immediately from the definition of the height. Since the
— 1 o~
height gives a well-defined pairing on CH (X)) x Z!(X), all elements in R'(X) x Z!(X)
have to map to zero, hence
Dbigiv (1) —10gl 2 (P2) = 0
for any divisor Dy € Z'(X). O

Definition 3.19. For two arithmetic divisors (Di, gp,), (D, gp,) € Z (X, Ss) with log-
log Green’s functions gp, and gp, for Dy and D, we define the generalized arithmetic

intersection number of (D1, gp,) and (Ds, gp,) by

1

(Dbng) : (D27gDQ) = 5 / (gDQ : w@D17D2 — ODpy Dy wng + gD - wng) ) (36)

Koo

where ap, p, is a Dy-adjusted Green’s function for D;.

The next result is a more general version of Corollary with different log-log Green’s
functions and follows directly from the equations (3.1)) and (3.2). However, it will be useful

for later calculations.

Corollary 3.20. Let (P,gp), (P,gp) € Z1(X,P(C)) be two arithmetic prime-divisors with
log-log Green’s functions gp and gp for P. Set P(C) =Y P; and write

gp(Q;j) = =21y, jlog (- log }ZPJ-(QJ')\2> — 2log |zp,(Q;)| — 210g (¢4,.;(Q;))

near P; on the manifold X. = X\ U{z € Xx||zp,(z)| < €}, where zp = (ij)j is
an arithmetic local coordinate in P. Then the generalized arithmetic intersection number

(P,gp) - (P, gp) is given by

(P7 gp) ) (P> g;?) = Z (7797>7j — log (999737]'(Pj))) -

J

1
: 2
lim D g log (~log=”) — 5/99»-%7:
J

Xe

Proposition 3.21. Let Dy and Dy be divisors on an arithmetic surface X, which inter-
sect properly on the generic fibre of X. For two arithmetic divisors (D1, gp,), (D2, gp,) €
Zl(X,SOO) with log-log Green’s functions gp, and gp, for D1 and D, the generalized arith-
metic intersection number s well-defined and coincides with the generalized arithmetic
intersection number due to Kiihn in .
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Proof. We have to show that the generalized arithmetic intersection number can be writ-

ten as

1
(D1.gp,) - (P2, 9p,) = (D1, De)g, + 590, [Dl — ) ordg, (Dl)Sj} +

Z ordsj (Dy) (ngDQ,j — log (‘ﬂgvz,j(sj))) -

J=1

. - 1
lli% Zordgj (D1)1gp, 5 log (—loge?) — 5 /9D1 “Wyp, |
j=1 X
where X is as in (3.4). Using Stokes Theorem and the formulas in [Lal, p.23] we derive for

two log-log Green’s functions gp, and gp, the integral

/gp2 ‘Wyp =YD, [Dl — Zordgj(Dl)Sj} —

Xe
r

Z gDQ : dch1 - /ngQ : ngDI + f(€)7

=lap(s)) X.

where f satisfies lim._,o f(¢) = 0. This formula can also be found in [Kii2, equation (20)].

It was shown in the proof of [Kii3, Lemma 3.9]

T

) / gp, - d°gp, =

I=LoBl(s;)

2 " (ords, (Ds)igp, ; + 0rds, (D1) (ngp, ; 10g (—loge®) +1og (94p,.5(Si))) -

j=1
Using the equation dgp, - d°9p, = dgp, - d°9p, and the fact that 7., , ; vanishes for all j,
the equation (3.6) is given by

(Dhg'Dl) ' (DQagDZ) -
> " ords, (D1) (Ngp,.; — 108 (945,.5(51))) + > ords, (D2)10g (Pap, »,4(5))) —

Jj=1 Jj=1

RS 1

lgrg) Zordsj(Dl)ngDQJ log (—loge?) — §/gpl “Wep, |+
Jj=1 X

1

: <9D2 [pl — > ords, (Dl)sj} — ap, p, [Dg — ) ordg, (Da)SjD .
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Hence it remains to show

r

1

(D1, Ds)g, = ords, (D2) 108 (Pap, 5,(S;)) — 501D [732 —) ords, (792)54 :

J=1

_1

Since D; and D, intersect properly on X, the equation (D1, Ds)g, = —50p,p, [D2] holds,

see Lemma [3.18 Thus we are left to show that the sum

r 1
> " ords, (Da) <10g (Pap, p,.0(55)) + 50D1.D (Sj))

J=1

vanishes. But this follows from the local description of ap, p, near S;. Indeed, if ordg, (Dz) #

0 then ordg, (ap, p,) = 0 and hence

QD Dy (SJ) = _210g ((IDOCDI,D2J (SJ)) .
]

Corollary 3.22. The generalized arithmetic intersection number defines a bilinear, sym-

metric pairing
ZHX,Sx) x ZHX,Ss) — R
((Dl,ng); (D2JgD2)) — <D179D1) : (D279D2) )

which factors through 61\{1()(,800) X éﬁl(X,SOO) and then coincides with the generalized

arithmetic intersection number due to Kihn.

Proof. We use the properties of Lemma3.18, Let ap, p, be a Dy-adjusted Green’s function
for Dy and let ap; p, be a Dy-adjusted Green’s function for D). Because ap, p;p, =

ap, p, + ap;p, 1S a Ds-adjusted Green’s function for Dy + D}, we easily see that

(D1 + Dy, 9py+1;) - (D2, 9p,) = (D1, 9p,) - (D2, 9p,) + (D1, 9p,) - (D2, 9p,) -

Thus the generalized arithmetic intersection number is linear in the first entry. Moreover,
in the case that (Dy, gp,) = (div(f), —log |f|2) for a rational function f € k(X)*, we use
the D,-adjusted Green’s function agiv(p)p, := — log ]f|2 for div(f). Therewith we obtain

the trivial generalized arithmetic intersection number

(div(f), —log|f|*) - (Ds, gp,) = 0.
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Note that the right side of equation (3.6|) is independent of adjusted Green’s functions.

Hence for all rational functions f € k(X)* the equation

(D1 + div(f), gp,+aiv(p)) - (D2, 9p,) = (D1, 9p,) - (D2, 9p,)

holds. Thus we can assume that D; and D, intersect properly on the generic fibre X. Now
the corollary follows from Proposition and the fact that the generalized arithmetic

intersection number due to Kiihn defines a bilinear, symmetric pairing. ]

3.4 Generalized arithmetic intersection numbers on arith-

metic varieties using adjusted Green’s forms

In this section we define a new version of the generalized arithmetic intersection number of
two arithmetic cycles with log-log Green’s forms on an arithmetic variety using adjusted
Green’s forms. Moreover, we prove that this generalized arithmetic intersection number
coincides with the generalized arithmetic intersection number due to Burgos-Kramer-Kiihn
in [BGKXK].

Definition 3.23. Let S, be a normal crossing divisor on X,.. A log-log Green’s form for
7 € 7P(X) is a differential form g, € AP~LP=D(x \ (Z(C) US,)) such that

i) gz is a Green’s form for Z(C)\ (Z(C) N Sx) on Xoo\Seos

ii) there exists a desingularization 7 : Xoo — X of Xy along Z(C) such that for all

z € X, with local equation (z1,..., 2k, U) for Z(C) in x there is a local expansion
k
Tzl = a;loglzl’ + B,
i=1
where «a; are smooth forms on U and § is the pullback of a pre-log-log form along S.. on

Xo. For a definition of a pre-log-log form see [BGKK] Definition 7.3.]. Let ZP(X,SOO) be
the group of pairs (Z, gz), where Z € ZP(X') and g is a log-log Green’s form for Z. Then

CH (X, 8,) = 2"(X,8x) /RP(X)
is called the p-codimensional generalized arithmetic Chow group of X with respect to Seo.

Definition 3.24. Suppose Y € ZP(X) and Z € ZP' (X). Let gy be a log-log Green’s form
for Y and let gz be a log-log Green’s form for Z.

i) Let azy be a Y-adjusted Green’s form for Z. Then we set

gy ® gz ‘= Wy, NGz + Wayzy NGy —wg NQgy



94

and call it the normalized x-product of gy and g.
ii) The generalized arithmetic intersection number of [Y, gy| € cH’ (X,Sx) and [Z,g7] €
cH"’ (X, Sx) is defined by

doty (Vo) 1Z.92) = 5 [ v w9z

Xoo

Proposition 3.25. i) The generalized arithmetic intersection number of [Y, gy| and [Z, g7]
15 well-defined.

i) Assume that the cycles Y € ZP(X) and Z € ZP'(X) intersect properly on the generic
fibre X. Then the generalized arithmetic intersection number of Y, gy| and [Z, gz] can be

written as a limit by

T 1 3 C C
degy ([Y,9v] - 12, 97]) = 5?_{% /Wgy Ngz + / (azy Ndgy — gy ANdazy) |,
€ 0B¢

where X, = X\ B. with B. :== B.(Sw) U B:(Y(C)) U B-(Z(C)).

Proof. i) By Remark we can assume Y (C) N Z(C) = (. Moreover, by definition of a
pre-log-log form 8 on X, along S, both forms § and dd“S have log-log growth along S..,
see [BGKK, Definition 7.1.]. Tt follows that each term wg, A gz, Wa,, A gy and wy, Aazy
has log-log growth along S... Because gy ® g7 = wy, A gz + Wa,y A Gy — Wy A azy i3
smooth on X,,\S., it follows that gy e g is the pullback of a pre-log-log form along S,
on X. By [BGKK| Proposition 7.6.] this form is integrable. Hence the definition of the
generalized arithmetic intersection number is well-defined.

ii) On X the following equation holds:

waz’y A\ gy — Wgy N Qzy = dchéZ’y A gy — ddcgy A azy

=d (chéyz N gz — ngZ A\ Oéyz) .
Hence the second assertion follows from Stokes Theorem. ]
The next definition is due to [BGKK].

Definition 3.26. Let [Y, gy] € cH (X,S%) and [Z, g7 € CH" (X, S) such that Y and
Z intersect properly on the generic fibre X.
i) Let {oy.z,02y} be two smooth functions on X, with the following properties:

1) oy,z =1 on an open neighbourhood of Y (C);
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2) oy.z = 0 on an open neighbourhood of Z(C);
3) 0y,z +UZ,Y =1on XOO.

The x-product between gy and gz is defined by

gy * gz =dd (o2v9z) N\ gy + wgy N Oyz9z.

ii) The generalized arithmetic intersection number due to Burgos-Kramer-Kiihn of [Y, gy|
and [Z, gz] is defined by

doty (V.gv) [Z,92)) = (V. 2y + 5 [ ov 92 (3.7)

Koo

Proposition 3.27. [BGKK|, THEOREM 7.48|
The equation defines a symmetric bilinear pairing

CH" (X, 8.) x CH (X,Sx) — R.
In particular, there exists an arithmetic degree map

— —~ d
dogy : CH (X, 8x) — R.

The next proposition follows from the properties of o7y and the use of Stokes Theorem.

Proposition 3.28. [BGKK|, EQUATION (7.34)]
The generalized arithmetic intersection number due to Burgos-Kramer-Kihn can be written

as a limit by

degy (Y, gv] - [Z, g2))

]' : C C
= (Y, Z)g, + 5 lim /wgy Ngz+ / (02v9z Ny — gy N (02v92)) |

E—
€ 0B¢

where X, 1= X\ B: with B, :== B.(Sw) U B:(Y(C)) U B-(Z(C)).

Proposition 3.29. [BGKK|, PROPOSITION 7.21. II)]
Let gy be a log-log Green’s form for Y € ZP(X). Then for any form o € A(pv_lvpv_l)()()
the equality
— lim / a N\ dch = / a A 5}/(@)
e—0
8B (Y (C)) Xoo
holds.
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With the help of Proposition we deduce from Proposition the following special

cases.

Corollary 3.30. [BGKK], THEOREM 7.33.] AND [BBGK], THEOREM 1.14.]
The following hold:
i) If Z(C)NSs =0, then

. 1
degy ([Y,9v] - [Z,92]) = (Y, Z2)g, + 3 / (9v N Oz + Wy N 9z) -

Koo

i) In the case that Y (C) NSy = 0, we have

degy ([V, 9v] - [Z,92)) = (Y, Z)gn T % / gy +

Z(O\(Z(C)NSeo)

) 1 c c
il_I}(l) §/wgy/\gZ+ / (92 Nd°gy — gy Nd°gz) | |

X 9B:(Soo)

e~

where X := X\ B:(Sx) and Z(C)\(Z(C) N Sw) denotes a desingularization of the closure
of Z(C)\(Z(C) N Sxo).

In the next theorem we compare the generalized arithmetic intersection number in
Definition with the generalized arithmetic intersection number due to Burgos-Kramer-
Kiihn in Definition [3.26

Theorem 3.31. Assume that the cycles Y € ZP(X) and Z € 7P (X) intersect properly
on the generic fibre X. Then the generalized arithmetic intersection number of [Y, gy] €
CH (X,S8x) and [Z,gz] € CH" (X,Sx) coincides with the generalized arithmetic inter-

section number due to Burgos-Kramer-Kiihn, i.e.

1 1
E/gy.gZ:(KZ)ﬁn—f—é/gy*gz.

Xoo Xoo

Proof. First we consider the integral

1 1
§/QY°QZ:§/(wgy/\gz—i-waz,y/\gy—wgy/\azy),

Xoo Koo
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where azy is a Y-adjusted Green’s form for Z. Using Proposition [3.25]it follows that the

latter equals

1

5 ll_I}(l) /wgy NGz + / (azy Nd°gy — gy Ndazy) |,

5 0B:
where X, := X, \B. with B, := B.(S5)UB:(Y(C))UB.(Z(C)). Because of Y(C)NZ(C) =
(), Proposition and equation (2.24) show

. . 1
— lim / OéZ7y/\d gy:—é/azy/\éy((c) Z(KZ)ﬁn
9B:(Y(C)) Koo

Because B is the disjoint union of B.(Y(C)) and
BS\Y<C) = <BE(SOO) U Ba(Z((C))) \ (Ba(Soo) N Ba(Y(C))) )
it follows that the generalized arithmetic intersection number equals

1 : (& (&
(}/’Z>ﬁ + — lim /wgy/\gz—l— / (CYZ’y/\dgy—gy/\d Ckzy)

n 2 =0
e 0(B:\Y (0))

Now let us consider the generalized arithmetic intersection number due to Burgos-Kramer-
Kiihn, i.e.

2 2
Koo Koo

1 1
(Y, Z)gy + 5 /QY x97 =Y, 2)gn + 5 / (dd®(o2v9z) A gy + wgy N Ov29z2) -
Because of Proposition the latter equals

1 : C C
(Y, Z)gn + 5 il_ﬂ% /Wgy Ngz + / (0zvgz Nd°gy — gy Nd°(02v9z))
e 0B¢

Using the basic properties of oy, the latter equals

1 . c c
Y, Z)g, + 5‘113% /wgy Ngz + / (0zvgz Nd°gy — gy ANd(0zvgz))
Xe 0(B:\Y(C))

Thus to prove Theorem it remains to show that the integral

/ (CVZ,Y A dch — gy A\ chéZ7y —Ozy 3z N dcgy -+ gy A d€ (Uzygz))
9(Be\Y (C))
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vanishes in the limit ¢ — 0. If we set wzy := azy —0zy gz, we have to show the equation

lim / wzy VAN dch = hr% / gy N dchy. (38)
e—

e—0
0(B:\Y (C)) 0(B:\Y (C)