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Abstract

Cosmic inflation is an attractive paradigm to explain the initial conditions of the uni-

verse. It can be conveniently described by the dynamics of a single scalar field within

N = 1 supergravity. Due to the high energy scale during the inflationary epoch, which

is favored by recent observations of the cosmic microwave background radiation, and

the flatness of the inflaton potential it is necessary to consider inflation in the context

of a UV-complete theory like string theory. To this end, we study the effects of moduli

stabilization on inflation models in supergravity, focussing on Kähler moduli in type

IIB string theory which govern the size of extra dimensions. For generic models of F-

term inflation we calculate back-reaction terms by integrating out the moduli at a high

energy scale. When the moduli are stabilized supersymmetrically, all effects decouple

in the limit of very heavy moduli. The corrections, however, may be sizeable for re-

alistic moduli masses above the Hubble scale and affect the predicted observables of

many models like chaotic inflation and hybrid inflation. If, on the other hand, moduli

stabilization entails spontaneous supersymmetry breaking, there are non-decoupling ef-

fects like soft mass terms for the inflaton. By the example of chaotic inflation we show

that a careful choice of parameters and initial conditions is necessary to reconcile large-

field inflation with popular moduli stabilization schemes like KKLT stabilization or the

Large Volume Scenario. Furthermore, we study the interplay of moduli stabilization and

D-term inflation. If inflation is driven by a constant Fayet-Iliopoulos term, the back-

reaction decouples but the gravitino mass in the vacuum is surprisingly constrained. For

a field-dependent Fayet-Iliopoulos term associated with an anomalous U(1) symmetry

we discuss a number of obstructions to realizing inflation. Moreover, we propose a way

to evade them using a new mechanism for supersymmetric moduli stabilization with

world-sheet instantons.



Zusammenfassung

Kosmische Inflation ist ein attraktives Szenario zur Beschreibung der Anfangsbedin-

gungen unseres Universums. Inflation kann durch die Dynamik eines skalaren Feldes

beschrieben werden, beispielsweise im Rahmen von N = 1 Supergravitation. Allerdings

hängen solche Theorien, aufgrund der hohen Energieskalen und der Flachheit des Infla-

tonpotentials, von neuer Physik an der Planck-Skala, die beispielsweise durch Stringth-

eorie beschrieben werden kann, ab. Wir untersuchen die Auswirkungen von Moduli

Stabilisierung auf Inflationsmodelle in Supergravitation. Dabei konzentrieren wir uns

auf Kähler Moduli in Typ IIB Stringtheorie, welche die Größe zusätzlicher Dimensionen

parametrisieren. Wir bestimmen die Rückkopplung solcher Moduli für beliebige Mod-

elle von F-Term Inflation durch Ausintegrieren an einer hohen Skala. Wenn die Moduli

supersymmetrisch stabilisiert sind, entkoppeln alle Effekte im Limes unendlich schwerer

Moduli. Für realistische Modulimassen oberhalb der Hubble-Skala werden die Kor-

rekturterme allerdings relevant für die vorhergesagten Observablen vieler Modelle, wie

beispielweise Hybridinflation oder Chaotischer Inflation. Wenn die Stabilisierung ander-

erseits Supersymmetrie spontan bricht, treten Effekte auf, die nicht entkoppeln. Anhand

von Chaotischer Inflation zeigen wir, dass nur eine sorgfältige Wahl der Parameter und

Anfangsbedinungen Moduli Stabilisierung und Inflation miteinander vereinbaren kann.

Des Weiteren untersuchen wir die Effekte von schweren Moduli in D-Term Inflation. Im

Falle eines konstanten Fayet-Iliopoulos Terms entkoppeln alle Korrekturen durch Mod-

uli, während die mögliche Gravitinomasse im echten Vakuum stark eingeschränkt ist.

Andererseits ist ein feldabhängiger Fayet-Iliopoulos Term nur schwer mit D-Term Infla-

tion vereinbar. Wir diskutieren eine Reihe von Einschränkungen, und präsentieren einen

Vorschlag, diese zu umgehen.
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Chapter 1

Introduction

The study of the early universe is a difficult but rewarding task. Modern particle physics

experiments like the Large Hadron Collider (LHC) can probe physics up to an energy

scale of approximately 1 TeV. In the early universe, according to the well-established Hot

Big Bang scenario, this corresponds to a period about 10−10 seconds after the Big Bang

singularity. The LHC has tested the predictions of the Standard Model (SM) of particle

physics with remarkable precision, in particular the structure of electroweak symmetry

breaking [1–3]. It has, furthermore, put lower bounds on the masses of supersymmetric

particles close to the TeV scale [4]. However, in order to illuminate processes in the very

early universe, i.e., processes significantly above the TeV scale, we need different tools.

Since the discovery of the cosmic microwave background (CMB) radiation by Pen-

zias and Wilson [5], cosmological observations have developed into such a precision tool.

Measurements of the CMB temperature fluctuations by the Cosmic Background Ex-

plorer (COBE) [6], the Wilkinson Microwave Anisotropy Probe [7], and more recently

the Planck satellite [8], as well as maps of the distribution of large-scale structure [9]

and supernova redshift surveys [10, 11] have established a standard model of cosmol-

ogy, the ΛCDM model. Furthermore, a new generation of experiments have begun to

measure the polarization of the CMB with increasing accuracy [12, 13], possibly lead-

ing to a discovery of primordial gravitational waves in the near future. Among others,

ground-based observatories like the BICEP telescope, the Keck Array, POLARBEAR,

the Atacama Cosmology Telescope [14], and the South Pole Telescope [15] will continue

to make cosmology a highly interesting field of research in the next years.

The success in relating the various observations to the Hot Big Bang theory, i.e., the

thermal afterglow of processes in the first 10−10 seconds of the universe, motivates us

to ask what the origin of the observed fluctuations in the CMB could be. An attractive

paradigm to explain these primordial fluctuations, as well as the remarkable isotropy

1



2 Chapter 1. Introduction

of the CMB on large scales, is a phase of cosmic inflation [16–18] in the very early

universe. The principle idea of this paradigm is that a phase of exponential expansion

of space, believed to have taken place approximately 10−34 seconds after the Big Bang

singularity, can solve a series of problems of the Hot Big Bang scenario, as well as explain

the origin of the CMB fluctuations leading to the formation of structure as the universe

evolves. Such an accelerated expansion may have occurred during an early phase of

vacuum domination with negative pressure. According to the paradigm, after inflation

has ended the universe can reheat and subsequently cool down, leading to the successful

predictions of the Hot Big Bang theory like, for example, Big Bang Nucleosynthesis.

In field theory, inflation is most simply driven by the vacuum energy of a single scalar

field called inflaton. For sufficient expansion to occur the scalar field must roll slowly in

a flat potential. However, both the particle physics origin of the inflaton field and the

exact shape and origin of its potential are currently debated problems. Among successful

models are chaotic inflation [19] with a monomial potential, most simply a mass term

for the inflaton field, and hybrid inflation [20], involving the spontaneous breaking of

a U(1) symmetry. Moreover, the first release of Planck CMB data [21, 22] generated

renewed interest in one of the very first inflation models developed by A. Starobinsky

[23] which involves terms in the gravity action beyond the standard Einstein-Hilbert

term. Alternatively, inflation may be driven by D-terms of various kinds, cf. [24, 25].

Recent measurements of the CMB temperature and polarization anisotropies strongly

favor the realization of single-field slow-roll inflation in nature, resulting in nearly scale-

invariant, Gaussian, and adiabatic scalar perturbations. While they severely constrain

many models, cf. [13], they do not nominate a clear favorite theory of inflation.

For many reasons it is instructive to consider inflation in the context of string theory.

On the one hand, string theory postulates the existence of many candidate fields for

the inflaton. On the other hand, the required flatness of the inflaton potential makes it

susceptible to new physics at the Planck scale. This is most pronounced in large-field

inflation, i.e., in models where the inflaton traverses trans-Planckian distances during

slow-roll, which would be favored by the observation of primordial tensor perturba-

tions. It is therefore necessary to evaluate the absence or size of certain correction terms

in a candidate theory of quantum gravity that can describe physics up to the Planck

scale. String theory, though demanding the existence of ten space-time dimensions, is

arguably the best-developed of those candidate theories. While the time-resolved anal-

ysis of the cosmological evolution in a ten-dimensional setup is, thus far, technically

impossible, many relevant phenomena can be studied by means of four-dimensional ef-

fective field theories. After compactifying six dimensions on a suitable complex manifold,
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the supersymmetric four-dimensional macroscopic theory can be described by N = 1

supergravity, i.e., local supersymmetry. As its name implies, supergravity contains a

supersymmetrized version of gravity and is thus a convenient framework to analyse an

ultraviolet (UV) completion of inflation. A particularly attractive class of compactifi-

cation spaces is Calabi-Yau manifolds. In heterotic string theory [26,27] they naturally

give rise to N = 1 supergravity in four dimensions [28], and in type IIB string theory

they do so after orientifolding, cf. [29, 30] for reviews.

A generic prediction of string compactifications on Calabi-Yau manifolds is the ex-

istence of moduli superfields whose scalar components parameterize either the shape

or the size of subspaces of the manifold. For multiple reasons these additional scalar

fields should be heavier than the characteristic energy scale during inflation. First, for

single-field slow-roll inflation to proceed successfully there must be only one light field.

Second, for the size of the extra dimensions to remain small enough to escape detec-

tion, the so-called Kähler moduli must be fixed at a suitable vacuum expectation value

without the possibility to run away towards infinity. This raises the critical issue of

moduli stabilization whenever inflation is treated in the context of string theory. Since

the fundamental works [31,32] substantial progress has been achieved especially in type

IIB string theory, but also in heterotic string theory, cf. [33, 34] and references therein.

Studying the supergravity effective theory after integrating out heavy moduli fields

yields crucial information on higher-dimensional operators descending from the UV-

complete theory. The interaction of such correction terms with inflation is the subject

of this thesis. It is organized as follows. Chapter 2 begins with an overview of the Hot Big

Bang scenario, cosmic inflation, the problems it solves, and its relation to string theory

and supergravity. Subsequently, we introduce a number of successful inflation models

and their descriptions in four-dimensionalN = 1 supergravity. Chapter 3 contains a brief

review of moduli stabilization, focussing on Kähler moduli in type IIB string theory, as

well as detailed descriptions of Minkowski or de Sitter vacua with spontaneously broken

supersymmetry in a number of examples. In Chapter 4 we begin to put these two pieces

together and describe the interaction of supersymmetric Kähler moduli stabilization, a

rather simple case, with inflation driven by F-terms. We give general expressions for

higher-dimensional operators in the effective action arising from moduli stabilization

and discuss two examples. Subsequently, in Chapter 5 we give a detailed analysis of

chaotic inflation combined with moduli stabilization and spontaneous supersymmetry

breaking. Again, we present general expressions as well as numerical studies of useful

examples. Chapter 6 is devoted to inflation driven by D-terms and how it interacts with

heavy Kähler moduli. We describe cases with both a constant Fayet-Iliopoulos term
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and a field-dependent one. We summarize our results and conclusions in Chapter 7, and

give a short outlook. Details about Fayet-Iliopoulos terms and supergravity formulae

are collected in several appendices.

The results presented in this thesis have been previously published in [35–39]. Parts

of it also refer to two separate publications [40, 41]. While the results of [35–41] are

undisputed, their presentation in this work may be focussed on specific aspects, resulting

in a slightly different treatment. These aspects are emphasized in the beginning of each

chapter and reflect the author’s personal contribution to the respective publication.



Chapter 2

Cosmic Inflation and its

Supergravity Embedding

Motivated by shortcomings of the established Hot Big Bang scenario, cosmic inflation

can explain the initial conditions of the universe. In this chapter we give a brief review

of the original motivation for inflation and summarize its principal virtues. Afterwards,

on the basis of simple arguments we illustrate the intimate connection between inflation

and other extensions of the SM like supersymmetry and string theory. As a prelude to

subsequent chapters, we introduce the standard treatment of inflation in quantum field

theory, and discuss some of the most successful models of single-field slow-roll inflation

and their embedding in supergravity.

For a thorough treatment of the Hot Big Bang theory we refer the reader to [42].

Useful reviews of inflationary cosmology and its embedding in supergravity and string

theory can be found in [43–45]. As an introduction to four-dimensional N = 1 super-

gravity we recommend the standard reference [46].

2.1 Puzzles in the early universe

The Hot Big Bang theory is a remarkably successful framework which can explain the

expansion history of the universe, the existence of the CMB radiation, the relative

abundances of light elements, and the formation of structure. E. Hubble’s observation

[47] that the universe is currently in a state of accelerated expansion brought forward

the idea that it may have originated from a very hot and dense initial state, a cosmic

singularity. Starting from this, the thermal history of the universe can be reconstructed

by comparing the interaction rate of particle species with the expansion rate of the

universe. When the former is much greater than the latter the respective particle species

5



6 Chapter 2. Cosmic Inflation and its Supergravity Embedding

are in a state of thermal equilibrium largely unaffected by the expansion of the universe.

As the universe cools down, interaction rates may decrease faster than the expansion

rate. When both are of the same order, particle species decouple from the thermal bath

and freeze out. In this way photons in the hot plasma decoupled 380 000 years after

the initial singularity to form the remarkably isotropic CMB radiation. Analogously,

Big Bang Nucleosynthesis successfully predicts the relative abundances of light elements

in the universe, cf. [48] for a review. The consequences of small-scale temperature

fluctuations observed in the CMB are another success of the Hot Big Bang theory. Such

fluctuations can act as seeds of structure formation since small initial inhomogeneities

grow with time due to the attractive nature of gravity.

The horizon, flatness, and monopole problems

Despite its successes a number of puzzles arise in this description of the universe, which

the Hot Big Bang theory cannot explain. Most importantly the universe seems to have

evolved from highly fine-tuned initial conditions, as emphasized in [49].1

First, according to the Big Bang model the universe must have emerged from a

remarkably isotropic state. As mentioned before, inhomogeneities grow with time due to

gravitational instabilities. Thus, we expect the small-scale inhomogeneities observed in

the CMB to have been even smaller at earlier times. This is particularly surprising since

one can show that at the time of last scattering, i.e., at the birth of the CMB radiation,

the universe consisted of numerous causally disconnected patches. Why should these

causally disconnected regions of space show such similar physical conditions? In more

technical terms, the comoving particle horizon, a measure for the distance a light ray

can travel in any given time, monotonically increases with time if the expansion of the

universe is matter- or radiation-dominated as in conventional Big Bang expansion. This

means that comoving scales entering the horizon today must have been far outside the

horizon at the time of CMB decoupling. This is commonly referred to as the horizon

problem.

Second, the initial state of the universe must have been spatially flat to incredible

accuracy to explain the observed flatness of the universe today. This is because any

primordial spatial curvature grows with time as long as the universe expands as pos-

tulated by the Hot Big Bang theory. Again this is due to the fact that the comoving

1Notice, however, that the question whether initial conditions should be treated as part of a physical theory

or not is highly debatable. Some argue that physics should predict the future evolution of a system given a set

of initial conditions, as in Newtonian dynamics [44]. Thus, it is far from obvious that a consistent cosmological

theory should predict or explain its own initial conditions.
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horizon increases with time. Quantitatively, the universe can have deviated from spatial

flatness at most by a fraction of 10−16 during the epoch of Big Bang Nucleosynthesis,

and by 10−55 during a possible era of Grand Unification at 1016 GeV [44]. This apparent

shortcoming of the Big Bang model is known as the flatness problem.

Notice that these are indeed shortcomings of the predictive power of the theory, and

not conceptual inconsistencies. If the universe was fine-tuned to be extremely isotropic

and flat across super-Horizon distances, it would have evolved as predicted in the Hot

Big Bang scenario. Before we continue to discuss how a period of cosmic inflation

can dynamically generate these rather specific initial conditions let us mention a third

problem, which was part of the original motivation to propose inflation [16]. As the

universe cools down from a hot initial state different kinds of phase transitions can

occur when symmetries are broken. During some of these phase transitions, topological

defects may be produced whose presence would perturb the successful predictions of the

Hot Big Bang theory. In particular, magnetic monopoles from a Grand Unified Theory

(GUT) phase transition could overclose the universe by contributing large amounts of

energy density [50,51]. This is sometimes called the monopole problem.2

Inflation to the rescue

In order to solve or circumvent these problems the concept of inflationary cosmology

was proposed in [16–18]. It was noticed that in an epoch dominated by vacuum en-

ergy, i.e., an epoch of de Sitter space-time which is dominated by energy with negative

pressure, the universe would expand exponentially while the comoving horizon would

shrink. From what we have discussed so far, it is quite clear how this can solve all of the

aforementioned problems. On the one hand, if the comoving horizon shrinks in some

early phase of the universe, patches which were causally disconnected during the time

of CMB decoupling may have been in causal contact before. This naturally explains the

large-scale homogeneity of the CMB. On the other hand, the inverted behavior of the co-

moving horizon drives the universe towards flatness. Qualitatively, any spatial curvature

present in an initial state of the universe is smoothed out by the exponential expansion

of space. Furthermore, inflation dilutes the number density of topological defects pro-

duced during early-stage phase transitions. In fact, all of the above shortcomings are

ameliorated if inflation lasted long enough to increase the size of the universe by a factor

of 1027, or approximately e60.

2Notice that overclosure of the universe is not a problem unique to magnetic monopoles and GUT sym-

metry breaking. Similar features are shared by the spontaneous breaking of discrete symmetries during which

supermassive domain walls are produced [52,53].
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Apart from this, inflation predicts the presence of small perturbations in the CMB

radiation. In a spectacular triumph for early universe cosmology and the inflationary

paradigm itself these have been confirmed by the COBE satellite [6]. They are a generic

consequence of the quantum mechanical treatment of the inflationary de Sitter space-

time. Quantum fluctuations generated on sub-horizon scales exit the horizon, and thus

“freeze in”, once the Hubble horizon becomes smaller than their comoving wavelength.

Once inflation has ended and the horizon expands in the subsequent Big Bang evolution

they may re-enter the horizon and become classical density perturbations. Through

gravitational collapse these perturbations evolve to form the presently observed large-

scale structure in the universe. For a thorough treatment of the evolution of initial

quantum fluctuations during inflation, we refer the reader to [54].

The study of inflationary cosmology in quantum field theory has been the subject of

research for more than three decades. Quite early it has been realized that the vacuum

energy of a scalar field, the inflaton, can drive inflation as long as its kinetic energy is

much smaller than its potential energy. This means that the inflaton must roll slowly

in a suitable potential for a sufficiently long period of time. After this phase of vacuum

domination the universe reheats, for example, by coherent oscillation of the inflaton field

around its vacuum expectation value.3 After it has reached a thermal state Big Bang

expansion may proceed as in the original Hot Big Bang scenario.

Although there is no unique theory of inflation with a clear origin of the inflaton

field and its potential, substantial progress has been made in constructing models in

supersymmetric field theories. In Section 2.3 we describe in detail how inflation can be

implemented in (locally) supersymmetric theories. But first, let us comment briefly on

why supersymmetry is a useful extension of quantum field theory, and why considering

inflation in the context of string theory is instructive and necessary.

Why supersymmetry?

There are many reasons, related to both particle physics and cosmology, to believe that

the underlying theory describing inflation and the evolution of the universe should be

space-time supersymmetric. Low-energy supersymmetry can solve the gauge hierarchy

problem by protecting the mass of the Higgs field from radiatively induced divergences

of momentum integrals, cf. [56] for a review. The same holds for the mass of the scalar

inflaton field, which can similarly be stabilized by supersymmetry. In addition, it is

appealing from the perspective of GUTs since unification of the three SM gauge couplings

3Reheating and preheating after inflation is an interesting field of research by itself. In this thesis we cannot

treat it with proper attention, and instead refer the reader to [55] and the respective chapters in [54].
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is only sufficiently accurate after taking supersymmetric partner fields into account [57–

59]. It also gives rise to suitable candidates for dark matter particles, like the neutralino,

possibly explaining the origin of roughly 25% of the energy density of the universe.

However, since supersymmetry is broken in nature it cannot be a global symme-

try. Otherwise, theories with spontaneously broken supersymmetry were to postulate

an unobserved massless goldstino fermion by virtue of Goldstone’s theorem. In local

supersymmetry the massless goldstino is eaten by the massive superpartner of the gravi-

ton, the gravitino. This illuminates another motivation to consider supersymmetry a

useful idea: it is naturally connected to gravity. The supersymmetry algebra contains

the operator of space-time translations, thus local supersymmetry must contain gen-

eral space-time coordinate transformations, the invariance group of general relativity.

Equivalently the spin-2 graviton, belonging to a gravity supermultiplet together with the

spin-3/2 gravitino, must be part of the supersymmetric spectrum to preserve Lorentz

invariance.

Apart from these apparent virtues supersymmetry plays a crucial role in the structure

of string theory. In fact, its first appearance as a symmetry in physics was in the

attempt to extend bosonic string theory by space-time fermions [60, 61]. World-sheet

supersymmetric string theories naturally lead to space-time supersymmetry in simple

backgrounds, guaranteeing the absence of tachyons in the spectrum and thus providing

stable vacua. For a thorough treatment, cf. [62].

2.2 Connection to string theory and extra dimensions

The emergence of four-dimensional space-time supersymmetry from string compacti-

fications is already a convincing reason to consider string theories which consistently

describe the evolution of the universe. However, a number of other reasons are worth

pointing out. As discussed below, inflation is generically susceptible to physics rele-

vant at higher energy scales, i.e., it is UV-sensitive. Therefore, inflation should be ad-

dressed in a framework which can describe Planck-scale physics, for which string theory

is arguably the best-developed candidate. Since string theory is a fundamental theory

containing gravity we expect it to correctly describe the cosmological evolution of the

universe. Conversely, cosmological observations may provide important insights and

constraints on possible string theory vacua. Superstring theory requires the existence of

ten space-time dimensions, meaning that six dimensions must be compactified in order

to describe inflation in the remaining four dimensions. A study of the cosmological his-

tory in full string compactifications with time-dependent four-dimensional backgrounds
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is technically challenging, if not, thus far, impossible in realistic setups. Many questions,

however, can be addressed by means of four-dimensional effective fields theories which

encode information about the underlying string theory. This is possible as long as there

is a hierarchy of scales,

H �MKK �Ms , (2.1)

where H denotes the Hubble scale, parameterizing the energy scale during the inflation-

ary epoch, MKK denotes the Kaluza-Klein scale, and Ms denotes the string scale.

Effective field theory descriptions

Starting from the observation that new physics must enter at the Planck scale in order to

render graviton-graviton scattering unitary,4 we can ask how this new physics affects a

description of inflation. Note that the following arguments hold independent of whether

physics at the Planck scale is described by a finite theory of quantum gravity, such as

string theory, or is in turn an effective theory of some unimagined physics at even higher

scales. In four-dimensional effective field theory the effects of physics above a cut-off

scale Λ are parameterized by Lagrangian operators of the form

Oδ
M δ−4

, (2.2)

where M > Λ is the mass scale of fields which have been integrated out and δ denotes

the mass dimension of the operator. Planck-scale processes and operators of very high

dimension are usually suppressed and decouple from low-energy physics. For inflation,

however, the picture is different. The flatness of the inflaton potential V (ϕ) makes it

susceptible to operators of the form

O6

M2
P

=
O4

M2
P

ϕ2 , (2.3)

where MP denotes the reduced Planck mass. Such operators are allowed if the inflaton

field ϕ is not protected by an appropriate symmetry. If the operator O4 has a vacuum

expectation value of the same order as the energy scale during inflation, the inflaton

potential becomes too steep for inflation to be possible. This is one manifestation of the

so-called η problem, discussed in more detail in Section 2.3. In more general terms, we

4String theory does so by introducing a characteristic length scale `s which cuts off the divergences in

graviton scattering. This happens at the energy scale Ms ∼ `−1
s where the extended nature of the string

becomes important. This results in a finite description of quantum gravity.
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can expand the effective Lagrangian for a real inflaton field ϕ as follows,5

L = −1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 − 1

4
λϕ4 −

∞∑
k=1

ckO4,k
ϕ2k

M2k
P

. (2.4)

Here, m denotes the mass of the inflaton field, λ is a dimensionless coupling, and ck

are real numbers. This expression illustrates that in small-field models of inflation,

i.e., when the inflaton traverses distances smaller than the Planck scale, dimension-six

operators are potentially dangerous and higher-order operators are suppressed by powers

of ϕ/MP. For large-field models, with ∆ϕ > MP during inflation, the UV sensitivity

is dramatically enhanced. In this case an infinite series of higher-dimensional operators

from Planck-scale physics is potentially relevant. Hence in general, if the UV theory has

no additional symmetries all coefficients ck must be fine-tuned to very small values for

the operators to be negligible. From this discussion it becomes clear that knowledge of

such higher-dimensional operators and symmetries is required to guarantee that a given

model supports 60 e-folds of slow-roll inflation.

One possibility to protect the flatness of the inflaton potential is to impose a global

shift symmetry,

ϕ→ ϕ+ c , (2.5)

where c is a real constant. This kind of symmetry was first used in the context of

in inflation in [63]. Such a symmetry may, however, be broken by higher-dimensional

operators. Thus, the consistency of the symmetry in the effective field theory must

be checked in the UV theory. Independent of the form of additional operators, a shift

symmetry like (2.5) can solve a different manifestation of the η problem in supergravity,

as discussed in Section 2.3.

Additional fields from string compactifications

Dangerous operators as in Eq. (2.4) generically arise when integrating out heavy fields

descending from the string compactification, such as stabilized moduli fields. The study

of such operators and their effect on inflation is the main subject of this thesis. As

explained in more detail in Chapter 3, moduli fields are massless at tree level. Thus, they

must be stabilized by some mechanism to guarantee that single-field slow-roll inflation

is not spoiled by fluctuations of other light fields, and to guarantee the stability of the

extra dimensions themselves. To this end, it is desirable to achieve a hierarchy

H �MModuli , (2.6)

5For the sake of simplicity we have imposed the reflection symmetry ϕ→ −ϕ.
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in addition to the one in (2.1). In fact, this hierarchy during the inflating phase of the

universe must be achieved for any additional scalar field in the theory. As discussed

above, integrating out such heavy fields, i.e., solving their equations of motion to find

the Wilsonian effective action for the inflaton, generically yields operators relevant for

inflation.

However, additional scalar degrees of freedom from string compactifications are not

only obstructive to realizing inflation. Generically, some of the new fields postulated by

string theory are viable candidates for the inflaton field. This holds most prominently for

axions, which can be part of complex moduli fields. They are naturally equipped with a

shift symmetry of the form (2.5) which guarantees sufficient flatness of their potentials.

In recent years, a large number of inflation models has been constructed from string

theory, with various choices for the inflaton field and a plethora of possible potential

shapes. An attempt to list them is beyond the scope of this thesis. Instead we refer

the interested reader to a number of well-written reviews, for example [45, 64–66], and

references therein.

In most of this thesis we do not specify the string theory origin of the inflaton field.

Instead we treat moduli and inflaton as separate fields to study their interaction in

string-effective models of supergravity. Before discussing the details of moduli stabiliza-

tion we proceed by introducing the embedding of slow-roll inflation in four-dimensional

supergravity.

2.3 Inflation in supergravity

The physics of slow-roll inflation

In quantum field theory a real scalar field ϕ minimally coupled to gravity obeys the

action6

S =

∫
d4x
√
−g
(

1

2
R +

1

2
gµν∂µϕ∂νϕ− V (ϕ)

)
, (2.7)

where R denotes the Ricci scalar. When the four-dimensional space-time background is

homogeneous and isotropic7 it can be described by the Friedman-Lemâıtre-Robertson-

Walker metric defined by

ds2 = −dt2 + a2(t)dx2 . (2.8)

6Notice that from now on we work in natural units, where the reduced Planck mass is set to one.
7This was first dignified as the “Cosmological Principle” in [67].
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Here, a(t) is the scale factor of the expanding universe and x are suitable coordinates of

three-dimensional space. With gµν of this form, and assuming homogeneity of the scalar

field, ϕ(t,x) ≡ ϕ(t), the dynamics of the theory are governed by the Friedman equation

and the Klein-Gordon equation,

3H2 =
1

2
ϕ̇2 + V (ϕ) , ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 , (2.9)

where dots denote time derivatives and primes indicate derivatives with respect to ϕ. H

is the aforementioned Hubble scale, defined by

H ≡ ȧ

a
. (2.10)

If the potential energy V dominates over the kinetic energy accelerated expansion of

space is possible. This can be translated into a condition on the so-called first slow-roll

parameter

ε̃ ≡ − Ḣ

H2
< 1 . (2.11)

For slow-roll inflation to last long enough there is a condition on a second slow-roll

parameter, defined by

η̃ ≡ − ϕ̈

Hϕ̇
. (2.12)

Imposing |η̃| < 1 ensures that the change of ε̃ during inflation is small enough. More

commonly, the two slow-roll conditions are expressed as conditions on the shape of the

potential V (ϕ),

ε ≡ 1

2

(
V ′

V

)2

� 1 , |η| ≡
∣∣∣∣V ′′V

∣∣∣∣� 1 . (2.13)

If these are satisfied8 Eqs. (2.9) become

3H2 ≈ V (ϕ) ≈ const. , 3Hϕ̇ ≈ −V (ϕ) , (2.14)

and the scale factor increases exponentially, a(t) ∼ eHt . Inflation ends when the slow-

roll conditions (2.13) are violated, i.e., when ε(ϕend) ≈ 1 or η(ϕend) ≈ 1. Before this

happens, a convenient way to parameterize the duration of the inflationary phase is to

specify the number of e-folds of spatial expansion. It can be computed as follows,

Ne ≡ ln
aend

a
≈

ϕ∫
ϕend

dϕ√
2ε
. (2.15)

8In the slow-roll regime ε̃ ≈ ε but η̃ ≈ η − ε.
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Solving the horizon and flatness problems requires a total number of e-folds Ne ≈ 60,

while the details depend on the specific mechanism of inflation and on the way the

universe reheats after inflation. The fluctuations observed in the CMB were produced

when the scales probed by the CMB exited the horizon. This instance corresponds to a

point in field space, denoted by ϕ?, which typically obeys

40 . N? ≈
ϕ?∫

ϕend

dϕ√
2ε

. 60 . (2.16)

We move on to discussing suitable scalar potentials in supergravity shortly, but before

let us mention constraints on the shape of V (ϕ) from recent CMB measurements.

Constraints from CMB observations

There are a number of important quantities related to the CMB radiation and its fluc-

tuations which allow us to draw inferences on the mechanism of inflation. Some of

them have been measured with remarkable accuracy [68]. First, the amplitude of scalar

fluctuations is measured to be

As = (2.207± 0.076)× 10−9 . (2.17)

In the slow-roll approximation it is given by

As =
H2

8π2ε
. (2.18)

Thus, the measured value of the amplitude can be used to constrain the parameters of

a model, as all other observables can. Second, the spectral index of scalar fluctuations,

ns = 1− 6ε+ 2η during slow-roll, is

ns = 0.9645± 0.0049 . (2.19)

In both measurements the errors correspond to 1σ uncertainties. Finally,9 there is an

upper bound on the ratio of tensor-to-scalar fluctuations, defined by

r ≡ At

As

= 16ε , (2.20)

9Let us remark that there are many more observable parameters relevant for inflation than the ones listed

here. Among others the level of non-Gaussianities in the CMB fluctuations, the amplitude of isocurvature

fluctuations, the level of spectral distortions of the CMB black body spectrum, the scale-dependence of tensor

modes, and the running of ns. However, they are of less relevance to this thesis. Cf. [44] for a more thorough

discussion of additional tests of inflation.
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where the last equality holds during slow-roll and At = 2H2/π2. Notice that all slow-roll

expressions are to be evaluated at the scale of CMB horizon re-entry, i.e., at ϕ = ϕ?. As

of this writing r is constrained to be

r < 0.1 , (2.21)

at 95% confidence level [68]. These observations contain valuable information about the

energy scale of inflation,

V (ϕ?) = 3H2
? =

3π2As

2
r = (1.88× 1016 GeV)4 r

0.1
. (2.22)

This is one of many reasons why a discovery of primordial gravitational waves, i.e., a

detection of r 6= 0, would be a substantial step forward for the study of inflation.

Embedding in supergravity

Supergravity, as the low-energy effective field theory of string theory, is a useful frame-

work to describe inflation and effects from a UV-complete theory.10 The bosonic degrees

of freedom of a general four-dimensional N = 1 supergravity theory are the metric gµν ,

gauge fields Aaµ, and complex scalar fields zα. We are particularly interested in the in-

teractions of the scalars, which are encoded in the holomorphic superpotential W (zα)

and in the Kähler potential K(zα, z̄ᾱ), which is a real analytic function of the fields. In

the absence of gauge interactions the scalar Lagrangian takes the form

L = −Kαᾱ∂µz
α∂µz̄ᾱ − VF , (2.23)

where Kαᾱ = ∂α∂ᾱK is the Kähler metric on the complex manifold spanned by the

scalar fields. The F-term scalar potential describes the self-interactions of the fields. It

is given by

VF = eK(KαᾱDαWDᾱW − 3|W |2) , (2.24)

where DαW = ∂αW +KαW denotes the Kähler-covariant derivative of the superpoten-

tial. Moreover, in a supergravity theory with U(1) gauge interactions the gauge kinetic

function f and the Killing vectors kα, which parameterize the gauge transformations of

10The detailed construction of the supergravity action, first performed in [69, 70], is beyond the scope of

this thesis. We restrict ourselves to introducing relevant expressions for reference in subsequent chapters.

More details and useful supergravity formulae concerning both F-term and D-term potentials can be found in

Appendices A.1 and A.2.
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the zα, must be specified. In this case the scalar part of the Lagrangian has an additional

D-term piece,

VD =
1

2Re f
D2 , (2.25)

with

D = −ikαKα + ξ , (2.26)

with ξ denoting a Fayet-Iliopoulos (FI) term.11

From the previous discussions it is clear that in supergravity the real inflaton field

ϕ must be part of a complex scalar field φ = 1√
2
(χ + iϕ). The form of the F-term

potential in Eq. (2.24) suggests that sufficient flatness of the scalar potential for ϕ is not

a generic property of supergravity [71]. This becomes evident when we expand K around

some chosen origin, for example, φ = 0. Then the scalar potential for the complex field

containing the inflaton can be written as

V = V0

(
1 +Kφφ̄,0 φφ̄+ . . .

)
, (2.27)

where V0 = VF (φ = 0) and similarly for Kφφ̄,0. Hence, once φ is canonically normalized,

the second term in the bracket gives a model-independent contribution to the inflaton

mass and hence to the slow-roll parameter η,

∆η = 1 . (2.28)

This is the supergravity η problem briefly mentioned in Section 2.2. In addition to the

steep potential contribution from expanding eK there may be model-dependent contri-

butions to the inflaton mass from expanding the rest of the scalar potential, i.e.,

Kφφ̄DφWDφ̄W − 3|W |2 , (2.29)

which are generically of the same order as (2.28). Typically, this problem can be evaded

if the model-independent piece in Eq. (2.27) cancels the model-dependent contribution

from (2.29), or if the inflaton direction is protected by a symmetry. In most of this thesis

we choose the latter path and impose a shift symmetry for φ. This is best illustrated in

a number of examples.

11Consult Appendix A.1 for a more thorough discussion of FI terms in supergravity and string theory.
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2.3.1 Chaotic inflation

Chaotic inflation, first proposed in [19], proposes inflation to be driven by a monomial

F-term potential for a real scalar field ϕ. We focus here on its simplest realization, given

by a free massive field theory with potential

V =
1

2
m2ϕ2 . (2.30)

It predicts a scalar spectral index of ns ≈ 0.967 and a tensor-to-scalar ratio of r ≈ 0.13

for 60 e-folds of inflation beginning at ϕ? ≈ 15.12 The amplitude of the CMB scalar

fluctuations constrains the inflaton mass to be m ≈ 6× 10−6 in Planck units.

In supergravity, one may think that this form of potential can be obtained by choosing

a quadratic superpotential,13

W =
1

2
mφ2 , (2.31)

with φ = 1√
2
(χ + iϕ) as above. However, for a generic Kähler potential the scalar

potential is far too steep to allow for inflation, a manifestation of the η problem. It was

proposed in [72] that this can be circumvented by imposing a global shift symmetry for

the complex scalar, φ → φ + ic, where c is a real constant. This way, the inflaton field

ϕ does not enter the Kähler potential and the steep contribution from the factor eK is

absent. At the same time, the real part χ does receive a large mass from supergravity

terms and thus does not interfere with single-field inflation. Specifically, one may choose

K =
1

2
(φ+ φ̄)2 (2.32)

However, for the large inflaton field values required by chaotic inflation the potential

resulting from Eqs. (2.31) and (2.32),

V =
1

2
m2ϕ2 − 3

16
m2ϕ4 , (2.33)

is negative and unbounded from below. The dangerous second piece in this expression

may either be forbidden by an (approximate) symmetry or set to zero by the dynamics

of an additional chiral multiplet. While the first possibility is explored in detail in

Chapter 5, we focus here on the second one, suggested in [72]. It relies on the presence

12Although such a large value of r is mildly disfavored by observations we consider this a useful toy model.

As discussed in subsequent chapters, different effects from other heavy scalars in the theory may flatten the

potential and decrease the value of r.
13For convenience we denote complex scalar fields and their supermultiplets by the same symbol throughout

this thesis. The difference will be clear from the context surrounding a given expression.
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of a so-called stabilizer field S which couples to the inflaton. We can define the scalar

Lagrangian by

K =
1

2
(φ+ φ̄)2 + |S|2 − 1

Λ2
|S|4 + . . . ,

W = mSφ .
(2.34)

The term quartic in S in the Kähler potential is necessary to make the stabilizer field

heavy enough to not interfere with inflation.14 It may be produced radiatively by cou-

plings to heavy fields which have been integrated out at a scale Λ > H, cf. [73] and the

detailed discussion in the appendix of [74].15 The scalar potential, with S and χ stabi-

lized at the origin, is then identical to Eq. (2.30). Furthermore, the authors of [75, 76]

have demonstrated that the superpotential in Eq. (2.34) may be generalized to depend

on general holomorphic functions f(φ) coupled to S. This leads to a variety of possible

scalar potentials and predictions.

2.3.2 F-Term hybrid inflation

The concept of hybrid inflation was first suggested in [20] and was subsequently studied

in supergravity theories in [71,77]. In its simplest form it contains three chiral superfields,

one containing the inflaton and the other two containing the so-called waterfall fields,

responsible for ending inflation. In contrast to chaotic inflation it is a small-field model,

meaning that the inflaton field traverses sub-Planckian distances during the last 60

e-folds of slow-roll inflation. Hybrid inflation can be implemented with a canonical

Kähler potential,

K = |φ|2 + |S1|2 + |S2|2 , (2.35)

where S1 and S2 denote the complex waterfall fields. The supergravity η problem can

be avoided by choosing a linear superpotential for φ,

W = λφ
(
v2 − S1S2

)
, (2.36)

where λ is a dimensionless coupling and v is a mass scale. As long as the inflaton field

takes values larger than the critical value φc = v the two waterfall fields are heavy and

stabilized at S1 = S2 = 0. The superpotential on this inflationary trajectory reduces to

W = λv2φ , (2.37)

14Nevertheless, in the presence of high-scale supersymmetry breaking after inflation the stabilizer field may

give sizeable contributions to the effective inflaton potential, as discussed in Section 5.1.
15We come back to this discussion in Chapter 5, when evaluating the effects of high-scale supersymmetry

breaking on this setup of chaotic inflation.
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and we can write the inflaton potential as follows,

V = λ2v4 + VCW + VSugra . (2.38)

During inflation the energy density of the universe is dominated by the false vacuum

contribution λ2v4. In the small-field regime φ� 1 the slope of the potential is dominated

by the Coleman-Weinberg one-loop potential, denoted by VCW. It is generated by the

Yukawa coupling between φ and the two heavy waterfall fields and approximately scales

like

VCW ∼
λ4v4

16π2
ln
φ2

v2
. (2.39)

The supergravity terms contained in VSugra are of quartic or higher order in the inflaton

field. Once the inflaton field surpasses the critical value from above, a linear combination

of the waterfall fields becomes tachyonic and destabilizes the inflationary trajectory.

Inflation ends in a waterfall transition and the system settles in its true vacuum state.

For Yukawa couplings λ & 10−5 comparable to SM Yukawa couplings, the mass scale

v must lie close to the GUT scale, v ≈ 10−2. Hybrid inflation then predicts, for 60 e-

folds of inflation, a scalar spectral index of ns ≈ 0.98 and negligible tensor-to-scalar ratio.

Such a large value of ns is disfavored by CMB data, cf. Eq. (2.19). A number of natural

extensions of the simplest model can ameliorate this phenomenological shortcoming. On

the one hand, as discussed in [78], supersymmetry breaking after inflation may introduce

a linear term in the inflaton potential which can decrease the spectral index as far as

ns ≈ 0.96. On the other hand, a similar effect can be induced by the back-reaction of

a supersymmetrically stabilized modulus from a string compactification, as discussed in

Chapter 4.

2.3.3 D-term hybrid inflation

A related model of hybrid inflation, driven by D-terms instead of F-terms, may be

constructed in the presence of a U(1) gauge symmetry [24,25]. In D-term hybrid inflation

(DHI) an FI term ξ associated with the U(1) symmetry may constitute the vacuum

energy, while again quantum corrections govern the dynamics of the inflaton field. The

waterfall fields are charged under the U(1) symmetry and the superpotential consists of

a single Yukawa coupling,

W = λφS+S− . (2.40)

The notation indicates that the waterfall fields S± carry U(1) charge q±, respectively.

During and after inflation one of the waterfall fields is stabilized at the origin, S+ = 0.
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The F- and D-term potentials read

VF = λ2e|S−|
2|S−|2φ2 +O(φ4) , (2.41)

VD =
g2

2

(
q−|S−|2 + ξ

)2
, (2.42)

where g denotes the gauge coupling of the U(1) symmetry. Notice that gauge invariance

requires q++q− = ξ. The scalar potential V = VF +VD has a supersymmetric Minkowski

minimum at

〈S−〉2 =
ξ

|q−|
, φ = 0 . (2.43)

As in F-term hybrid inflation the potential has a plateau for large inflaton field val-

ues, φ > φc ≡ g
√
|q−|ξ/λ. Here S− = 0 and the gauge symmetry is restored. The

corresponding potential energy is determined by the FI term,

V0 =
g2ξ2

2
. (2.44)

As before, the Yukawa interaction in the superpotential lifts the potential at the one-

loop level, generating a slope for the inflaton. Supergravity corrections of quartic order

or higher are again suppressed since φ� 1 in Planck units. When φ < φc, S− becomes

tachyonic and settles in its true vacuum state defined by Eqs. (2.43). Inflation ends in

a waterfall phase transition with spontaneous breaking of the U(1) gauge symmetry.

This simple implementation of DHI has a potential problem due to the generation

of cosmic strings during the U(1) phase transition. Furthermore, it predicts a scalar

spectral index of ns & 0.98 in tension with CMB data. However, minor modifications of

the Kähler potential can reconcile the model with observations. The reader can find an

appropriate treatment of both issues in [79].

2.3.4 Subcritical D-term hybrid inflation

It has recently been realized that DHI does not necessarily terminate after the U(1) phase

transition [80]. The analysis of this curiosity was subsequently extended in [38,81]. The

treatment in this thesis is based on the account given in [38].

If the critical field value is very large, φc � 1, the scalar potential in the water-

fall regime may be sufficiently flat for inflation to continue. This occurs if the Yukawa

coupling λ is suppressed compared to the U(1) gauge coupling g. Indeed, the inflaton

potential (2.41) is of the form m2φ2 close to the supersymmetric minimum, which sug-

gests the possibility of chaotic inflation. In order to see that, in the waterfall regime,
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DHI is indeed identical to the implementation of chaotic inflation in supergravity dis-

cussed in Section 2.3.1, we consider the full Kähler potential including the U(1) vector

superfield V ,

K = S̄+e
2q+V S+ + S̄−e

2q−V S− +
1

2
(φ+ φ̄)2 + 2ξV . (2.45)

Notice that we have introduced a shift symmetry for the inflaton field to protect the

potential from corrections terms in VSugra. In contrast to the previous two scenarios

of hybrid inflation, these are potentially destructive due to the large field values we

consider. After a suitable field redefinition and a Kähler transformation we can write

the superpotential and Kähler potential in the instructive form

W = λφS+〈S−〉 , (2.46)

K = S̄+e
2q+V S+ + 〈S−〉2e2q−V +

1

2
(φ+ φ̄)2 + 2ξV . (2.47)

The chiral superfield S− has disappeared from the spectrum, its vacuum expectation

value is given by (2.43). It has been eaten by the vector superfield V , which became

massive in turn. Integrating out V supersymmetrically by solving its equation of motion,

∂V K = 0 , (2.48)

yields an intriguing expression for the effective Lagrangian.

V = − q+

2|q−|ξ
|S+|2 +O

(
|S+|4

)
(2.49)

solves Eq. (2.48) and yields the effective super- and Kähler potential,

W = mφS+ , (2.50)

K =
1

2
(φ+ φ̄)2 + |S+|2 −

|S+|4

Λ2
, (2.51)

with m = λ〈S−〉e〈S−〉
2/2 and Λ2 = 2|q−|ξ/q2

+. Remarkably, Eqs. (2.50) and (2.51) define

the embedding of chaotic inflation in supergravity described in Section 2.3.1. Here, S+

plays the role of the stabilizer field. An important difference is that previously the quartic

Kähler potential term for the stabilizer field was introduced by hand. In subcritical DHI

it arises in the effective theory through the exchange of the heavy U(1) gauge boson.

This mechanism has previously been observed in [82,83].

One more remark is in order. The supersymmetric limit considered thus far is valid

only in the vicinity of the minimum φ = 0. However, corrections are suppressed as

long as the scale of the U(1) breaking is large compared to the supersymmetry breaking
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scale, which coincides with the Hubble scale. This becomes evident by considering the

full scalar potential. Consistently integrating out S− in its vacuum defined by 〈S−〉
yields the effective inflaton potential16

V = V0

(
1− V0

2g2ξ2
+ . . .

)
, (2.52)

valid in the regime φ < φc, with V0 = 1
2
m2ϕ2 and ϕ =

√
2Imφ. This implies that, if

√
gξ > MGUT ∼ 10−2 in Planck units, the last 60 e-folds of inflation can occur within the

quadratic regime of the potential. Notice, furthermore, that the cosmic string problem

of DHI is absent in this case since the U(1) symmetry is already broken during inflation.

Cosmic strings produced during the phase transition are diluted by subsequent e-folds

of inflation.

16We neglect the small correction to V from the pre-factor eK .



Chapter 3

Moduli Stabilization and

Supersymmetry Breaking in

Supergravity

Many aspects of the UV sensitivity of inflation can be studied in four-dimensional ef-

fective supergravity theories as they arise in string theory compactifications. Whenever

inflation is described in string-effective setups, the crucial issue of moduli stabilization

must be addressed. In the last decade substantial progress has been made in the search

for stable string vacua. However, since many scenarios which provide moduli stability

yield supersymmetric anti-de Sitter (AdS) or Minkowski vacua, a mechanism for su-

persymmetry breaking, or equivalently “uplifting”, must be specified. In this chapter

we review the origin of geometric moduli in compactifications on Calabi-Yau manifolds

and discuss the most successful examples, focussing on four-dimensional effective actions

from type IIB orientifold compactifications with fluxes. Furthermore, we discuss how to

obtain Minkowski or de Sitter (dS) vacua with spontaneously broken supersymmetry,

with particular focus on F-term supersymmetry breaking.

As in the previous chapter we introduce the most important concepts for reference in

later chapters. For detailed reviews of moduli stabilization and supersymmetry breaking

in string theory and supergravity we refer to [30,45]. For details on type IIB orientifold

compactifications with D-branes and fluxes, cf. the reviews [29, 84]. Many of the facts

summarized here have been previously reviewed in [35,36,39,40]. The stabilization mech-

anism discussed in Section 3.4.3 was developed in [38]. Similarities in the discussions

are intended and reflect the author’s contribution to those publications.

23
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3.1 Geometric moduli from Calabi-Yau compactifications

Consistency of critical superstring theory requires the existence of ten space-time di-

mensions. To establish contact with a four-dimensional description of the universe, the

ten-dimensional background space X10 is usually decomposed as follows,

X10 = R1,3 ×X6 . (3.1)

R1,3 denotes Minkowski space-time with four large dimensions and X6 is a compact six-

dimensional manifold. This is known as a compactification of string theory on X6. The

best-understood class of compactification manifolds is Calabi-Yau (CY) manifolds. We

can define CY manifolds as compact Kähler manifolds with Ricci-flat metric, i.e., with

Ric(gX6) = 0 , (3.2)

where gX6 denotes the metric on X6.1 CY manifolds are intimately connected to space-

time supersymmetry in the four-dimensional effective theory. Compactification of het-

erotic string theory on CY three-folds naturally preserves N = 1 supersymmetry [28].

In type IIB string theory N = 2 supersymmetry remains, which can be broken to N = 1

supersymmetry by orientifolding, cf. [29, 84] for instructive reviews.

The geometric moduli appearing as scalar fields in the four-dimensional effective

theory are deformation modes of the CY metric which respect the property Eq. (3.2).2

A number of them are associated with deformations of the complex structure of X6,

so-called complex structure moduli, and others are associated with deformations of the

Kähler structure, so-called Kähler moduli. The latter parameterize the volume of sub-

manifolds of X6. If there is only one Kähler modulus, it parameterizes the total volume

of X6.

Moduli stabilization is particularly well understood in CY orientifold compactifica-

tions of type IIB string theory with D-branes and fluxes. The authors of [31] have

demonstrated that in the presence of suitable three-form fluxes all complex structure

moduli and the complex dilaton field can be stabilized supersymmetrically at a mass

scale close to the string scale. Consequently, we assume that this has been achieved at a

high scale and that those fields decouple from the dynamics of inflation. In particular,

we assume that the Gukov-Vafa-Witten superpotential [86]

WGVW =

∫
X6

G3 ∧ Ω , (3.3)

1There are a number of equivalent definitions of CY manifolds, cf. [85].
2For obvious reasons only those deformations which cannot be undone by coordinate or Kähler transforma-

tions appear as physical degrees of freedom in the effective theory.
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is fixed at a vacuum expectation value 〈WGVW〉 ≡ W0. Here Ω denotes the unique

holomorphic three-form on X6 and G3 is the three-form flux which stabilizes the complex

structure moduli and the dilaton. The Kähler moduli fields, however, do not enter

the flux superpotential and their Kähler potential is of no-scale type, i.e., it satisfies

KαK
αᾱKᾱ = 3 at tree level [87]. It reads

K = −2 lnV , (3.4)

where V is the volume of X6. Formally it can be expressed in terms of the Kähler form

J on X6 as follows,

V =

∫
X6

J ∧ J ∧ J . (3.5)

The volume implicitly depends on the Kähler moduli through the Kähler form. The

specific form of J and V depends on the topology of the considered CY manifold. A

thorough treatment of this issue is, however, beyond the scope of this thesis. We restrict

ourselves to very simple examples with only one or two dynamical Kähler moduli which

are to be stabilized. As a helpful introduction to the geometry and topology of complex

manifolds we recommend [85] and the relevant chapters in [88].

A no-scale Kähler potential and the absence of a tree-level superpotential implies

that all Kähler moduli are massless at this stage. However, for a number of reasons, for

example, due to constraints from cosmological observations and fifth-force experiments

[89–91], they should be massive. Furthermore, in metastable vacua the potential barrier

must be larger than the Hubble scale H to preserve compactness of the internal manifold

during inflation. Since the Kähler moduli govern the size of sub-manifolds of X6, or, in

extreme cases, the total volume of X6, a run-away of these moduli fields towards infinity

would imply decompactification to ten-dimensional space-time. As will become clear in

the examples we discuss, the height of this potential barrier is generically proportional

to the moduli masses. Moreover, very heavy moduli avoid the infamous cosmological

moduli problem [92–95].

Fortunately, Kähler moduli can be stabilized by including quantum corrections in

the effective action. These can be perturbative and non-perturbative corrections in the

Kähler potential or non-perturbative corrections in the superpotential, or both. We

demonstrate this in the following sections by means of successful examples. We distin-

guish two different classes. On the one hand, moduli stabilization mechanisms which

necessarily entail spontaneous breaking of supersymmetry. Prominent examples are the

mechanism of KKLT [32], Kähler Uplifting [96, 97], and the Large Volume Scenario
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(LVS) [98, 99]. In all these examples the scale of supersymmetry breaking is related to

the mass of the stabilized Kähler moduli. On the other hand, we present mechanisms

of supersymmetric moduli stabilization, in which the scale of supersymmetry breaking

is independent of the moduli masses. This is sometimes referred to as “strong moduli

stabilization”, cf. [100, 101]. As examples we choose racetrack stabilization as proposed

in [102] and a recently developed mechanism involving world-sheet instanton couplings

and D-terms of an anomalous U(1) gauge symmetry [38].

3.2 KKLT mechanism and F-term uplifting

The possibly simplest setup to stabilize Kähler moduli via non-perturbative effects was

proposed in [32]. The original model assumes all complex structure moduli of a compact

CY manifold and the dilaton to be stabilized by fluxes, as discussed above. The remain-

ing effective theory contains a single lightest Kähler modulus, in the following denoted

by T , which parameterizes the volume of the compact manifold, i.e.,

V = (T + T )3/2 . (3.6)

Assuming that only one Kähler modulus is dynamical is a strong simplification, but

a justified one. Once the mechanism that stabilizes the lightest modulus is specified,

one may envision a setup in which all other Kähler moduli are stabilized by the same

mechanism but at a higher mass scale. Although the stabilization of multiple moduli

may be challenging computationally, the basic principle can be explained by considering

only the lightest one.3

3.2.1 Finding an AdS vacuum

With Eq. (3.6) the Kähler potential in Eq. (3.4) becomes

K = −3 ln (T + T ) . (3.7)

To break the no-scale symmetry and generate a potential for T we can consider non-

perturbative terms in the superpotential, i.e.,

Wnp =
∑
i

Aie
−aiT , (3.8)

3On a more technical note, the separation between complex structure moduli stabilization and Kähler moduli

stabilization is possible because the mass scale of heavy fields stabilized by fluxes is determined by the flux

quantization condition, and thus is independent of W0. As we will see below, the mass of the remaining

modulus is actually proportional to W0. Thus, by tuning W0 to stabilize T the stability of the other moduli is

not affected. We refer to the discussion in [103] for more details.
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Here, Ai are constant coefficients which generically depend on the vacuum expectation

values of complex structure moduli. The values of the ai depend on the origin of the

non-perturbative terms. For example, a Euclidean D3 instanton has a = 2π [104], while

a = 2π/N for an SU(N) gaugino condensate on a stack of D7 branes [105–108]. The

authors of [32] have shown that a single non-perturbative term suffices to stabilize T .

Thus, we consider the superpotential

W = W0 + Ae−aT . (3.9)

W0 and A are assumed to be real in what follows, since a relative phase between the two

can be compensated by a field redefinition. The scalar potential

V = eK
(
KTTDTWDTW − 3|W |2

)
, (3.10)

has two extrema defined by ∂TV = 0. One of them is a global maximum at T = ∞
where the potential vanishes, and the other one is a global minimum which satisfies

DTW = 0 , (3.11)

i.e., it corresponds to a supersymmetric AdS vacuum. Its position in field space, TAdS,

is defined by

W0 = −Ae−aTAdS

(
1 +

2

3
aTAdS

)
. (3.12)

With all parameters in the superpotential chosen to be real, TAdS is real. ImT is sta-

bilized at the origin at the same mass scale as ReT . For the effective theory in this

vacuum to be consistent with the supergravity approximation, i.e., the assumption that

the characteristic length scale of the compact manifold is much larger than the string

scale, the vacuum must satisfy TAdS & 1. Furthermore, to justify the single-instanton

approximation it must be aTAdS & 1. In fact, these two requirements are not specific to

the KKLT setup but must be met in any string-effective supergravity theory.

3.2.2 Uplift to de Sitter with F-terms

To uplift the AdS vacuum to a dS or near-Minkowski vacuum, we must break super-

symmetry in a different sector of the theory. To this end, the authors of [32] introduced

an anti-D3 brane. However, since this breaks supersymmetry explicitly4 numerous other

ways of uplifting with F-terms or D-terms have been proposed since.5

4For very recent treatments of this subtle issue, cf. [109,110].
5We recommend Chapter 3 of [45] for an exhaustive list of references.
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Supersymmetry breaking in the Polonyi model

We choose the arguably simplest example, which is uplifting with the F-term of a Polonyi

field [111,112], as was first discussed in [113]. The Polonyi field X enters the Lagrangian

as follows,

W = W0 + fX , K = |X|2 − |X|
4

Λ2
. (3.13)

Apparently, the parameter f determines the scale of supersymmetry breaking. This

setup corresponds to a version of the O’Raifeartaigh model [114] where the heavy fields

coupling to the supersymmetry-breaking field have been integrated out at a high scale

Λ � 1. Quantum corrections thus produce the quartic term in K. For a thorough dis-

cussion of the interaction of the O’Raifeartaigh model with KKLT moduli stabilization,

cf. [115]. The Lagrangian defined by Eqs. (3.13) has a local minimum on the real axis

at

X0 = X0 =

√
3

6
Λ2 . (3.14)

The vacuum energy is cancelled when f =
√

3W0.6 The vacuum expectation value of X

lies close to the origin of field space since the cut-off scale must satisfy Λ� 1 in Planck

units. This is important from the perspective of cosmology, since it avoids the so-called

Polonyi problem first discussed in [92,93,116].

Since the F-term of X breaks supersymmetry spontaneously the gravitino becomes

massive by eating the goldstino fermion, which is the superpartner of the scalar Polonyi

field. The gravitino mass in the vacuum is

m3/2 ≡ eK/2W ≈ W0 =
f√
3
, (3.15)

neglecting terms suppressed by powers of Λ. The mass of X, on the other hand, can be

much larger due to the quartic term in K. One finds

mX =
f

2Λ
� m3/2 . (3.16)

This is again favorable from the perspective of cosmology. Since during inflation we

aspire a hierarchy mX > H for the Polonyi field to remain stabilized, choosing the scale

Λ appropriately allows for a separation of scales between H and m3/2.7 As discussed

6We remark that there is also a global minimum at X ≈
√

3− 1. The necessary longevity of the metastable

vacuum at X0 has been studied and confirmed in [93,116].
7Notice that the cut-off scale itself is constrained by H < Λ � 1 to ensure consistency of the effective field

theory.
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in the following, this becomes impossible when the theory is coupled to KKLT moduli

stabilization. In the treatment of uplifted vacua with a Polonyi field in subsequent

chapters, we usually assume that X can be made heavy enough, and X0 can be made

small enough, so that the field decouples from the dynamics of inflation and moduli

stabilization. This assumption has been justified in more detail in [115].

The uplifted KKLT vacuum

With this in mind, we observe that when KKLT moduli stabilization is coupled to a

Polonyi field sector, the supersymmetry-breaking piece of the theory is not significantly

altered.8 The potential of the modulus, however, changes significantly. The uplifted

scalar potential, defined by

K = −3 ln (T + T ) + |X|2 − |X|
4

Λ2
, (3.17)

W = W0 + Ae−aT + fX , (3.18)

evaluated at X ≈ 0, now has three extrema. One is the run-away vacuum at T = ∞,

one is the uplifted AdS minimum, and the third is a local maximum in between. The

position of the local minimum, which is now metastable, has been slightly shifted by the

supersymmetry-breaking sector,

T0 = TAdS +
f 2

2a2T0W 2
0

+ . . . , (3.19)

omitting terms suppressed by higher orders of aT0. Here we have used that W (T0) ≈ W0.

The background in the uplifted minimum is Minkowski when

f =
√

3W0

(
1− 3

2aT0

+ . . .

)
. (3.20)

The modulus potential is displayed in Fig. 3.1 for a typical set of parameters.

As opposed to the original AdS vacuum, the modulus actually contributes to super-

symmetry breaking,

〈FT 〉 = eK/2
√
KTTDTW

∣∣∣
T0

≈ − 3
√

3W0

a(2T0)5/2
≈ −3〈FX〉

4aT0

. (3.21)

However, the dominant contribution to supersymmetry breaking stems from the Polonyi

field. The gravitino mass in the Minkowski vacuum is

m3/2 =
W0

(2T0)3/2

(
1− 3

2aT0

+ . . .

)
≈ W0

(2T0)3/2
. (3.22)

8With the exception that the scalar potential is rescaled by eK ≈ 1/V2.
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Figure 3.1: Uplifted modulus potential in KKLT for W0 = 0.009, A = −0.75, and a = 2π/10. A

metastable Minkowski vacuum lies at T0 ≈ 10. Clearly visible are, furthermore, the run-away global

minimum at the barrier separating the two.

It is closely related to the mass of the canonically normalized modulus,

mT ≈ 2aT0m3/2 . (3.23)

As mentioned above, the uplifted Minkowski vacuum is protected by a barrier from

the run-away vacuum at T = ∞. The height of the barrier is approximately the same

as the depth of the original AdS minimum. Conveniently, we can express it in terms of

the gravitino mass,

VB ≈ 3m2
3/2 . (3.24)

Evidently, all relevant scales in the KKLT potential are related to the gravitino mass

in the uplifted vacuum. This fact becomes important when discussing the interaction

with inflation. Before we discuss moduli stabilization schemes which do not share this

property in Section 3.4, let us mention two more stabilization mechanisms closely related

to the KKLT scenario.

3.3 Related mechanisms: Kähler Uplifting and the Large Vol-

ume Scenario

There are two more instructive examples of moduli stabilization with spontaneous su-

persymmetry breaking worth pointing out. Both make use of a single non-perturbative
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term in the superpotential. One of them takes a perturbative correction to the Kähler

potential into account, the other stabilizes the volume of a manifold with two Kähler

moduli at exponentially large values.

3.3.1 Kähler Uplifting

Kähler Uplifting was first proposed in [96, 97] and further developed in [117–119]. An

appealing feature of this scheme is that Kähler moduli can be stabilized in Minkowski

or dS vacua without the need of an uplift sector. It is based on the observation that the

interplay between the KKLT superpotential and the leading-order α′-correction in the

Kähler potential can produce local minima in the scalar potential with both negative

and positive cosmological constant. In particular, for a careful choice of parameters the

Lagrangian defined by

K = −2 ln
[(
T + T

)3/2
+ ξ
]
,

W = W0 + Ae−aT ,
(3.25)

can stabilize T in a suitable Minkowski vacuum. Here, ξ = − ζ(3)
4(2π)3χ〈ReS〉3/2 where χ

denotes the Euler number of the compactification manifold and S denotes the complex

dilaton field whose real part determines the string coupling.9 We assume the dilaton to

be stabilized supersymmetrically at a high scale so that ξ can be treated as a constant.

We remark that this mechanism only works if ξ is positive, hence we only consider

negative Euler numbers. For more details on the α′ expansion in effective theories of

type IIB orientifold compactifications we refer to the original works [120,121].

The scalar potential defined by Eqs. (3.25) has solutions to the constrained equations

of motion for T , ∂TV = V = 0, one of which is a local minimum. This solution can

be written as two illuminating relations between the parameters. For convenience we

expand the solution in powers of

η0 ≡
ξ

2(2T0)3/2
, (3.26)

where T0 denotes the position of the metastable Minkowski vacuum.10 The latter is then

defined by

aT0 =
5

2
− 27η0

8
+O(η2

0) , (3.27)

9ξ is not to be confused with the FI term introduced in Chapter 2.
10For the α′ expansion to be under control η0 must be a small parameter. In other words, we demand V � ξ.
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i.e., the vacuum expectation value of the modulus only depends on a and ξ.11 Fur-

thermore, we obtain a relation between the remaining parameters of the model in the

vacuum,

W0 = − 4

3η0

aT0Ae
−aT0 − 1

3
Ae−aT0(3 + 7aT0) +O(η0) . (3.28)

Since η0 � 1 it follows that W0 � A, contrary to the KKLT case where W0 typically

must be small to allow for a sufficiently large vacuum expectation value of the modulus.

However, similar to KKLT, the superpotential in the vacuum is dominated by the con-

stant piece, W (T0) ≈ W0. Clearly, the auxiliary field of T breaks supersymmetry and

the gravitino mass is given by

m3/2 =
W0

(2T0)3/2

(
1− 23η0

10
+O(η2

0)

)
≈ W0

(2T0)3/2
. (3.29)

The canonically normalized real and imaginary parts of T have the following masses,

m2
ReT ≈ 5m2

3/2η0 , m2
ImT ≈

25

2
m2

3/2η0 , (3.30)

respectively. Again, we observe that the modulus mass is proportional to the gravitino

mass. In fact, a few more comments about the peculiar vacuum structure of Kähler

Uplifting are in order.

First, the potential has a global minimum at T =∞ with DTW = ∂TV = V = 0, as

in KKLT. Hence, there must exist a local maximum separating the two minima. This

time, the corresponding barrier is lower than in KKLT, but again proportional to the

mass of T . One finds

VB ≈ η0m
2
3/2 . (3.31)

This suppression is due to the approximate no-scale cancellation between FT and W ,

which is absent in KKLT because FT is too small. This approximate no-scale symmetry

becomes important in the discussions in Chapter 5.

Second, the suppression of all scales by η0 hints towards the fact that this vacuum

is actually not the uplifted KKLT vacuum. It disappears if ξ → 0, in which case

Eqs. (3.25) equal the setup of KKLT. In fact, the KKLT AdS vacuum is still a solution

to the F-term constraint DTW = 0 in Kähler Uplifting. However, it lies at small field

values, TAdS � 1, due to the required magnitude of W0 and is thus unphysical in our

supergravity treatment.

11Notice that the numerical value aT0 ≈ 2.5 is at the border of control regarding the single-instanton approx-

imation.
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3.3.2 The simplest Large Volume Scenario

Our last example of moduli stabilization with spontaneously broken supersymmetry

is the Large Volume Scenario developed in [98, 99]. It is based on the observation

that, for certain types of CY compactifications with multiple Kähler moduli, the scalar

potential may have a non-supersymmetric AdS minimum at exponentially large volume.

A particularly simple example of this type is given by a “swiss-cheese” CY manifold

with a single “hole”, i.e., a manifold whose volume can be written as

V = (Tb + T b)3/2 − (Ts + T s)
3/2 , (3.32)

where Tb is the Kähler modulus of a big four-cycle of the manifold, i.e., the “cheese”,

and Ts controls the volume of a small four-cycle, the “hole”. The simplest setup for a

Large Volume Scenario is then described by

K = −2 ln(V + ξ) ,

W = W0 + Ae−aTs ,
(3.33)

with ξ defined as in Section 3.3.1. As in the previous examples we consider real superpo-

tential parameters, and hence restrict our attention to the real parts of the moduli, i.e.,

we set Tb,s = T b,s in the following. In the search for possible vacua it is convenient to

parameterize the scalar potential in terms of V and Ts instead of Tb and Ts. At leading

order in inverse powers of the volume one finds

V ≈ 2
√

2 a2A2
√
Ts e

−2aTs

3V
− 4aAW0Ts e

−aTs

V2
+

3ξW 2
0

2V3
. (3.34)

To obtain this form, the imaginary part of Ts has been fixed at its minimum given by

〈ImTs〉 = π/a. In this case W0 and A must have the same sign for the stabilization

mechanism to work. Minimizing with respect to V and Ts by solving ∂VV = ∂TsV = 0

reveals a local AdS minimum at

VAdS ≈
3
√
Ts,AdS e

aTs,AdS W0√
2aA

,

Ts,AdS ≈
ξ2/3

2
+

1

3a
,

(3.35)

assuming aTs,AdS � 1. The volume of the CY manifold indeed depends exponentially

on the vacuum expectation value of Ts. The depth of the AdS vacuum is of the order

VAdS ∼ −
W 2

0

V3
, (3.36)
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instead of W 2
0 /V2 as one may naively expect. Again, this is due to an approximate no-

scale cancellation between FTb
and W0. As will become clear in the following discussion

of the uplift to Minkowski space-time, an important difference to KKLT is that in LVS

the moduli contribute most to supersymmetry breaking. The resulting approximate

no-scale symmetry is important in our discussion of inflation in an LVS background in

Chapter 5.

To uplift this AdS vacuum to a Minkowski vacuum we employ, once more, a Polonyi

field X as a toy example. Treating the uplift in the same way as in KKLT moduli

stabilization, we assume that X is stabilized at a high scale with a nearly-vanishing

vacuum expectation value. However, in LVS the quartic term in the Kähler potential

is not required since X is stabilized by its soft mass term. The contribution of the

Polonyi field then amounts to a term Vup = f 2/V2 in the scalar potential. To cancel the

cosmological constant in the vacuum, it must be

f 2 ≈ χ0W
2
0 , χ0 =

9
√

2T0

2aV0

� 1 , (3.37)

up to terms suppressed by higher powers of V or aTs. Here, V0 and T0 denote the values

of the two real fields in the uplifted vacuum. Note that χ0 plays a role analogous to the

parameter η0 in Kähler Uplifting. We find the uplifted vacuum at

V0 = VAdS

∣∣
Ts=T0

, (3.38)

T0 ≈
ξ2/3

2
+

1

a
. (3.39)

The F-terms of the fields in this vacuum are given by

FTb
≈ −
√

3
W0

V0

, FTs ≈
√

6aT0χ0
W0

V0

, FX ≈
√
χ0

W0

V0

. (3.40)

Clearly, the dominant contribution to supersymmetry breaking comes from the volume

mode. As expected, the uplift sector is important to cancel the cosmological constant

but its contribution to supersymmetry breaking is suppressed in the large volume limit.

The corresponding gravitino mass is again

m3/2 ≈
W0

V0

, (3.41)

up to terms suppressed by higher powers of the inverse volume or aT0. The masses of
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the canonically normalized moduli are schematically12

mTb
∼ W0

V3/2
0

, mTs ∼
W0

V0

. (3.42)

The uplifted vacuum is protected by a potential barrier of height

VB ≈ χ0m
2
3/2 . (3.43)

As in Kähler Uplifting, we observe that the barrier is suppressed by a small parameter

compared to KKLT, due to the approximate no-scale symmetry in the vacuum.

3.4 Supersymmetric stabilization

Let us now turn to the second class of moduli stabilization schemes, in which the fields are

stabilized in supersymmetric Minkowski vacua. Spontaneous supersymmetry breaking

can then be introduced in a separate sector, completely independent of all scales in the

modulus potential. This class we refer to as supersymmetric stabilization.

3.4.1 Avoiding conflicts with inflation

The motivation to consider models of this type is cosmic inflation. Shortly after the

KKLT scenario was developed some of the authors recognized that a period of inflation

severely constrains the parameter space of the theory. The authors of [102] emphasized

that inflation corresponds to a second uplifting which can lift the modulus over its

potential barrier. Schematically, a theory of inflation with energy scale H coupled to

KKLT moduli stabilization can be described by

V ≈ VKKLT(T ) +
3H2

T 3
, (3.44)

where the inverse T -dependence stems from the overall factor eK . Apparently, moduli

stabilization in this setting is only possible for small values of the inflaton potential,

or for large values of the potential barrier.13 Since high-scale inflation is favored by

observations, cf. Eq. (2.22), the only solution seems to be high-scale supersymmetry

breaking, i.e., choosing

m3/2 > H . (3.45)

12Note that the axion of Tb is exactly massless at this level and thus irrelevant during inflation. It may,

however, give rise to interesting discussions of dark radiation, cf. [122]. The axion of Ts is stabilized at the same

mass scale as the real part of Ts.
13A similar observation concerning dilaton stabilization was previously made in [123].
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Notice that this constraint is only valid in the KKLT setup. In Kähler Uplifting and

LVS the bound on the gravitino mass is even more severe due to the suppression of the

potential barrier. Concerning LVS this fact was pointed out in [124] and we discuss it

more thoroughly in explicit examples in Chapter 5.

In order to avoid this restriction we may resort to moduli stabilization schemes in

which the height of the potential barrier, and the mass of T , is independent of m3/2. This

allows for a large modulus mass and a stable vacuum, while the scale of supersymmetry

breaking is almost arbitrary.14

3.4.2 Stabilization in a racetrack

The authors of [102] proposed a solution which relies on the inclusion of more parameters

in the superpotential, which allows for a fine-tuning that achieves

DTW = W = 0 , (3.46)

in the vacuum. In particular, this is possible when a second non-perturbative term for

the same modulus T is taken into account,

W = W0 + Ae−aT +Be−bT , (3.47)

under the assumption that all parameters can be tuned independently.15 The scalar po-

tential is called a “racetrack potential” due to the appearance of another AdS minimum.

We have illustrated the potential for typical parameter values in Fig. 3.2.

One of the solutions to Eqs. (3.46) is a local minimum at

T0 =
1

a− b
ln

∣∣∣∣aAbB
∣∣∣∣ . (3.48)

Note that for real superpotential parameters T0 is real, and ImT is stabilized at the

origin at the same mass scale. At the same time Eqs. (3.46) imply a specific relation

among the parameters,

W0 = −A
∣∣∣∣aAbB

∣∣∣∣ a
b−a

−B
∣∣∣∣aAbB

∣∣∣∣ b
b−a

. (3.49)

The mass of the complex modulus field,

m2
T =

2

9
abAB(a− b)

∣∣∣∣aAbB
∣∣∣∣− a+b

a−b

ln

∣∣∣∣aAbB
∣∣∣∣ , (3.50)

14Different approaches to circumvent the problem in specific setups have been suggested in [125–128].
15Note that this assumption is non-trivial in string theory constructions. Cf. [129] for an instructive discussion

in effective supergravities from M-theory.
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Figure 3.2: Racetrack potential for A = 4, B = −1.5, a = 2π/12, b = 2π/14. The value of W0 is fixed

by the condition (3.49). A metastable Minkowski vacuum lies at T0 ≈ 15. The barrier separating this

vacuum from the adjacent AdS vacuum is independent of the gravitino mass, which vanishes in the

absence of other fields.

is large for typical parameter values, mT > 10−5, while the gravitino is massless in the

vacuum. We can break supersymmetry subsequently in a separate sector, for example

with the F-term of a Polonyi field. The gravitino mass is then proportional to W0 but

can be much smaller than the modulus mass. We refer the reader to [100] for a detailed

discussion of supersymmetry breaking in supersymmetrically stabilized backgrounds.

3.4.3 Stabilization with world-sheet instanton couplings

Another mechanism with supersymmetric stabilization, which involves more fields but

less fine-tuning of parameters than the previous example, was recently proposed in [38].

It has since found application in the context of axion inflation in heterotic string theory,

cf. [41, 130].

Let us consider a supergravity theory with one modulus T and two chiral superfields

χ+ and S− which are charged under an anomalous U(1) gauge symmetry, denoted by

U(1)A. In the context of heterotic string theory, the authors of [131] observed that a shift

of T , i.e., a non-linear U(1)A gauge transformation, may cancel all anomalies associated

with the gauge symmetry. More details on Green-Schwarz anomaly cancellation and

the subsequent generation of field-dependent FI terms are presented in Appendix A.1.

These details are, however, mostly irrelevant to the mechanism of moduli stabilization.

Superpotential couplings of charged superfields which are forbidden by gauge invari-
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ance may, in such a setup, be allowed by couplings to world-sheet instantons involving

the charged modulus. For example, the superpotential for the fields introduced above

could be

W = χ+S
2
−e
−T/δGS −mχ+S− . (3.51)

This superpotential is gauge-invariant if χ+ and S− carry U(1)A charge ±1, respectively,

and the modulus transforms as

T → T − iδGSε , (3.52)

where δGS ∼ O(1) is a real constant which depends on the charged spectrum of the

theory, cf. Eq. (A.10), and ε is a chiral superfield gauge transformation parameter.

Yukawa couplings like the one in Eq. (3.51) generically arise in intersecting D-brane

models of type IIB string theory, cf. [30, 132], and at fixed points in heterotic orbifold

compactifications, cf. [133]. Moduli stabilization via Yukawa-type interactions has been

previously studied in [134] in the context of heterotic string theory, as well as in [135] with

the inclusion of a constant piece in the superpotential. In generic string compactifications

the mass parameter m in the second term of Eq. (3.51) is field-dependent. For the sake

of simplicity we assume that the term arises from a gauge-invariant Yukawa coupling

and that the scale m is fixed by the vacuum expectation value of an uncharged chiral

superfield stabilized at a higher scale.

As in all other examples we assume a no-scale Kähler potential, written in a gauge-

invariant way,

K = −3 ln
(
T + T − 2δGSV − S̄−e−2V S− − χ̄+e

2V χ+

)
, (3.53)

where V denotes the vector multiplet of U(1)A. This choice of K is convenient and well-

motivated from a string theory perspective, but the specific form of K does not affect

the following discussion. Already at the level of global supersymmetry it is clear that

the F-term of χ+ stabilizes T at a non-vanishing vacuum expectation value. Moreover,

the D-term potential

VD =
4π

T + T

(
Kχ+χ+ −KS−S− +

3δGS

T + T

)2

, (3.54)

stabilizes 〈S−〉 =
√
δGS.16 We can find the effective theory for χ+ and T by integrating

out the heavy vector multiplet, which eats the symmetry-breaking field S−. This works

16Once more, details about the origin of this potential can be found in Appendix A.1 and in the original

work [38].
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Figure 3.3: Scalar potential V (T ) after integrating out S− and χ+, for m = 0.1 and δGS = 1. Unsurpris-

ingly, the shape of the potential bears resemblance to the KKLT potential. The important difference is,

however, that the vacuum at T0 ≈ 2.4 has supersymmetric Minkowski background space-time. There-

fore, the potential barrier only depends on m and δGS, but not on m3/2.

analogous to the discussion in Section 2.3.4, for details we refer to [38]. After a straight-

forward computation we find

K = −3 ln

(
T + T − δGS − |χ+|2 +

|χ+|4

2δGS

)
,

W = δGSχ+

(
e−T/δGS − m√

δGS

)
.

(3.55)

The effective Lagrangian has a supersymmetric Minkowski minimum at

T0 = δGS ln

√
δGS

m
, χ+,0 = 0 . (3.56)

The mass of the canonically normalized modulus is

mT =
m

3
√
δGS

, (3.57)

which coincides with the mass of χ+. Since m is a free parameter in our discussion,

this mechanism again allows for a separation of scales between mT and m3/2, after

supersymmetry is spontaneously broken in a separate sector. Fig. 3.3 illustrates the

scalar potential of T for fixed values of S− and χ+.
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Chapter 4

Supersymmetric Moduli

Stabilization and F-Term Inflation

Whenever inflation is treated in string-effective supergravity models, stabilization of all

moduli including the dilaton, Kähler and complex structure moduli must be addressed.

As outlined in Chapter 3, a standard procedure is to use gaugino condensates and fluxes

[31,32], which can lead to metastable Minkowski vacua. In general, moduli stabilization

in the entire cosmological history leads to upper bounds on the reheating temperature

[123] and the energy scale of inflation [102]. In setups with spontaneous supersymmetry

breaking the modulus mass and the barrier protecting the vacuum are proportional to

the gravitino mass. This leads to a tension between high-scale inflation and low-energy

supersymmetry breaking, cf. Section 3.4.1.

To avoid this tension, in this chapter we study supersymmetric moduli stabilization

in combination with F-term inflation. It is instructive to study this rather simple case

before moving on to including the effects of supersymmetry breaking by the moduli in

Chapter 5. In general, the coupling to heavy Kähler moduli generates corrections to the

inflaton potential which can be expanded in powers of H/mT , the ratio of the Hubble

scale during inflation and the modulus mass. Besides general corrections induced by the

modulus back-reaction we systematically study the effective inflaton potential in two

examples, F-term hybrid inflation and chaotic inflation. In hybrid inflation, the back-

reaction of T produces a linear term in the inflaton at leading order. This is analogous

to the effect of supersymmetry breaking which induces a linear term proportional to the

gravitino mass [136]. Depending on its size such a linear term can have a significant effect

on inflationary observables, in particular the spectral index of scalar fluctuations [78,

137–139]. In chaotic inflation the leading-order correction is suppressed by an additional

power of H/mT compared to hybrid inflation. Nevertheless, the modulus-induced terms

41
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can have severe consequences for CMB observables in the case of a large Hubble scale.

Detailed analyses of moduli dynamics in specific inflation and supersymmetry break-

ing models have been carried out in [140–142]. The results presented here constitute

an extension and generalization of these works. They have been published in [36]. The

treatment in this thesis focusses on the derivation of the general expression for the

inflaton effective potential, Eq. (4.9), which is the central result of this chapter.

4.1 Supersymmetrically integrating out heavy moduli

Let us consider inflation in a sector comprised of chiral superfields φα in a four-

dimensional effective theory with a single modulus T . As discussed in Chapter 3, T

typically has the classical Kähler potential Eq. (3.7). Stabilization of the modulus is

achieved by an appropriate superpotential Wmod(T ). Here we assume that Wmod is such

that the scalar potential has a local minimum at T0 = T 0 which is supersymmetric and

Minkowski, i.e.,

Wmod(T0) = 0 , DTWmod(T0) = 0 . (4.1)

With these conditions fulfilled one finds for the mass of the canonically normalized

modulus

|mT | =
√

2T0

3
|W ′′

mod(T0)| , (4.2)

where primes denote derivatives with respect to T . For simplicity we choose W ′′
mod(T0) to

be real. As discussed before, to ensure that the modulus remains stabilized in the entire

cosmological evolution its mass must be larger than the scale of any other dynamics

in the effective theory, for example, the scale of inflation. The same must hold for the

barriers protecting metastable vacua.

Notice that the conditions (4.1) correspond to the conditions for supersymmetric

moduli stabilization discussed in Section 3.4. Although examples for this kind of mech-

anism are known and listed in Section 3.4 we do not specify the exact form of Wmod(T )

since our analysis does not depend on it.

To study the back-reaction of the heavy modulus on the inflationary potential, we

consider a class of supergravity theories defined by

K = −3 ln (T + T ) +Kinf(φα, φ̄α) ,

W = Wmod(T ) +Winf(φα) .
(4.3)

Note that in general the Kähler potential and superpotential of the inflaton sector can be

moduli-dependent. The precise coupling of moduli to matter fields depends on the string
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model under consideration, cf. [100,143] for examples. In some cases the dependence on

the lightest modulus can even be absent. In the following we neglect the dependence

of the inflaton sector on T , following the discussions in [100,140–142]. The relevance of

these supergravity models to string constructions has to be examined for each particular

case. Even with the simplifying assumption that T couples only gravitationally to the

inflaton sector we can draw crucial inferences on the structure of the effective theory

after integrating out T .

The scalar potential resulting from Eqs. (4.3) can be written as

V =
eKinf

(T + T )3

(
(T + T )2

3
|DTW |2 +Kαᾱ

inf DαWDᾱW − 3|W |2
)
. (4.4)

Generically, there is a non-trivial interaction between the modulus and inflaton sectors.

Due to the large positive energy density during inflation the minimum of the modulus

potential is shifted by an amount δT (φα) = T (φα)−T0. In other words, the inflationary

energy density acts as an uplift on the modulus potential.

We can find this displacement by solving the equations of motion for T during infla-

tion, i.e., by imposing ∂TV |T0+δT = 0 in the new minimum. Thus, we expand the scalar

potential as follows,

V = V |T0 + (∂TV )|T0δT +
1

2
(∂2
TV )|T0δT

2 + . . . (4.5)

and then minimize with respect to δT . As before, we choose all superpotential param-

eters to be real. In that case only the real part of T is affected by inflation. Thus,

T = T is implied in the above expression and in everything that follows. Allowing for

complex parameters in the superpotential does not change our results qualitatively. We

can conveniently write the resulting expression as a power series in the ratio H/mT . The

aforementioned requirement of mT > H makes this analysis self-consistent. Including

all terms up to second order in H/mT , we find1

δT =
Winf√
2T0mT

+
1

(2T0)2m2
T

[
Kαᾱ

inf DαWinf∂ᾱW inf − |Winf|2 (4.6)

−W 2
inf

(
1

2
+

(2T0)3/2W ′′′
mod(T0)

6mT

)]
. (4.7)

This implies

DTW |T0+δT =
3

(2T0)5/2mT

Kαᾱ
inf DαW∂ᾱW +O

(
H2

mT
2

)
. (4.8)

1We assume that W ′′mod is not hierarchically suppressed compared to higher derivatives of Wmod.
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We observe that T contributes to supersymmetry breaking during inflation, but its F-

term is suppressed by one power of H/mT .

After setting the modulus to its proper minimum, the effective inflaton potential

reads

V ≈ Vinf(φα)

(2T0)3
− 3

2(2T0)9/2mT

{
Winf

[
Vinf(φα) + eKinfKαᾱ

inf ∂αWinfDᾱW inf

]
+ c.c.

}
− 3eKinf

(2T0)6m2
T

∣∣∣Kαᾱ
inf DαWinf∂ᾱW inf

∣∣∣2 , (4.9)

at leading order in H/mT . Here Vinf(φα) denotes the inflationary potential in the absence

of a modulus sector, i.e.,

Vinf(φα) = eKinf

{
Kαᾱ

inf DαWinfDᾱW inf − 3|Winf|2
}
. (4.10)

Notice that all powers of T0 in Eq. (4.9) can be absorbed by a redefinition of Winf.

As naively expected, all corrections vanish in the limit of an infinitely heavy modulus.

Since T does not break supersymmetry in the vacuum it completely decouples from

the dynamics of inflation. Supersymmetry breaking after inflation can be achieved in a

separate sector without affecting this discussion. In the following we study the effect of

the leading-order correction operators in two representative examples of F-term inflation.

4.2 Examples

4.2.1 Hybrid inflation

As a first example we consider F-term hybrid inflation as introduced in Section (2.3.2).

With Kinf and Winf defined by Eqs. (2.35) and (2.36), respectively, we find for the

leading-order potential at tree level

V = V0

[
1− 3

√
V0

mT

(
φ+ φ̄

)]
+ . . . , (4.11)

with V0 = 1
4
λ̃2v4 and λ̃2 = λ2/(2T0)3. The modulus induces a linear term in the inflaton

potential. In the limit mT →∞ we recover the original potential up to a total rescaling

factor which can be absorbed by a redefinition of λ.

Such a linear term in the inflaton field is also induced by soft supersymmetry break-

ing, cf. the detailed discussion in [136]. Depending on its size relative to the one-loop

potential, it can significantly affect the dynamics of inflation [136–138]. This is partic-

ularly important for the spectral index of scalar fluctuations, which in hybrid inflation

is typically ns ' 0.98 [77]. This value can be reduced to the currently measured value
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ns ≈ 0.96 if the linear term is taken into account [78, 138, 139]. In particular, a can-

cellation between the slopes generated by the linear term and the Coleman-Weinberg

one-loop potential may lead to a flatter potential for certain parameter regimes. Hence,

modulus-induced corrections to the inflaton potential can be used to reconcile F-term

hybrid inflation with CMB observations. A consistent discussion of the effective po-

tential (4.11) necessitates a two-field description since the modulus-induced term treats

the real and imaginary parts of φ differently. This is, however, beyond the scope of

this thesis. Instead we refer the reader to the original publication [36] and the related

discussion in [78].

Based on Eq. (4.11) one may expect that corrections from the back-reaction of T

become relevant if mT ∼ H. However, the authors of [36] have shown that the modulus

induces an O(1) correction to the slope of the potential if

mT ∼ 6π
√

2Ne v
2 ∼ 0.2MGUT , (4.12)

with Ne ≈ 60. This implies that even if the modulus is stabilized at a scale close to

MGUT ∼ 10−2, it can significantly affect the dynamics of hybrid inflation. Notice that

mT in Eq. (4.12) is much larger than the naive estimate mT ∼ H ∼ 10−7, where we have

assumed λ̃ ∼ 10−2, the largest coupling for which hybrid inflation works. This strong

back-reaction may appear surprising, but it is a consequence of the enormous flatness of

the inflaton potential.

4.2.2 Chaotic inflation

Our second example is chaotic inflation with a stabilizer field, defined by the Kähler

potential in Eq. (2.34) and the superpotential

Winf = Sf(φ) , (4.13)

where f(φ) is a holomorphic function. The stabilizer field S generates the inflaton

potential via its F-term but decouples from the inflationary dynamics. This situation is

engineered by including a sufficiently large quartic term in the Kähler potential. This

lifts the mass mS above the Hubble scale during inflation and stabilizes S at the origin

of field space. The inflaton is identified with the imaginary part of φ which is protected

against supergravity corrections by a shift symmetry. The real part of φ is stabilized at

the origin with a Hubble-scale mass for typical choices of f(φ), in particular monomial

functions.2

2This does not change when coupled to a heavy modulus. Thus, we consider Reφ = 0 in what follows.
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Including the leading-order modulus correction we can write the scalar potential as

follows,

V = m2
S|S|2 + |f̃(φ)|2 − 3|f̃(φ)|2

mT

[(
Sf̃(φ) + c.c.

)
+
|f̃(φ)|2

mT

+O(|S|2)

]
, (4.14)

up to higher order terms in |S|. Here,

f̃(φ) =
f(φ)

(2T0)3/2
, m2

S =
∣∣∣f̃ ′(φ)

∣∣∣2 +
4

Λ2

∣∣∣f̃(φ)
∣∣∣2 . (4.15)

Apparently the modulus back-reaction induces a linear term in S. The resulting dis-

placement of S affects the potential of φ. At leading order in H/mT , the new minimum

of the stabilizer field lies at

S̄ =
3|f̃(φ)|2f̃(φ)

mT m2
S

. (4.16)

The effective inflaton potential after integrating out T and S becomes

V = V0

(
1− 3V0

m2
T

− 9V 2
0

m2
T m

2
S

+ . . .

)
, (4.17)

with V0 = |f̃(φ)|2. Again, all corrections vanish in the limit of a very heavy modulus,

as naively expected in the absence of supersymmetry breaking. Notice that the leading

modulus correction only appears at order m−2
T . The absence of a correction of order m−1

T

results from the suppression of Winf by one power of mT . This is an important difference

compared to hybrid inflation. A more pronounced example of this suppression arises in

Chapter 6, in D-term hybrid inflation with a constant FI term coupled to supersymmetric

moduli stabilization. In that case the superpotential of the inflaton sector vanishes

identically due to the vacuum expectation values of two waterfall fields.

One more remark is in order before we move on to moduli stabilization with su-

persymmetry breaking. Similar to hybrid inflation, the modulus mass in chaotic infla-

tion is forced to be very large for a four-dimensional description to be consistent. The

outlined analysis is only meaningful as long as V
1/4

0 < mT , beyond which the modu-

lus is destabilized by the uplift of the inflaton potential. In chaotic inflation typically

V
1/4

0 ∼MGUT ∼ 10−2, meaning that all moduli must be stabilized around or above the

GUT scale to guarantee stability of the vacuum. In that sense our analysis implies severe

consequences for studies of extra dimensions during high-scale inflation. When treating

the more general case of moduli stabilization with spontaneous supersymmetry breaking

in the next chapter, we make these consequences more explicit.



Chapter 5

Supersymmetry-Breaking Moduli

Stabilization and Chaotic Inflation

As discussed in Chapter 2, in large-field inflation the effects of high-scale physics from

a UV complete theory are generically most severe. In this chapter we study these

effects on chaotic inflation, in its simplest manifestation with a quadratic potential,

as a representative example for large-field inflation. Having treated supersymmetric

moduli stabilization in the previous two chapters, we move on to the more general

case of stabilization schemes which necessarily involve supersymmetry breaking. We

have observed that in most cases, with the exception of D-term inflation driven by a

field-dependent FI term, all effects from the modulus sector decouple if it is made very

heavy. This is not true once supersymmetry breaking is involved. There are well-known

non-decoupling effects, such as soft mass terms, which can have severe effects on the

sensitive inflaton potential. As will become clear, these effects may be constructive

or destructive for realizing inflation. In particular, they enable us to realize chaotic

inflation with a single chiral superfield, i.e., without the need of a stabilizer field. On

the other hand, large correction terms in the form of higher-dimensional operators may

destabilize the moduli and the inflationary trajectory. We investigate correction terms in

a general way, which constitutes a generalization of the results presented in Section 4.1,

and then discuss three prominent examples: KKLT stabilization, Kähler Uplifting, and

the simplest Large Volume Scenario. However, before we study these non-decoupling

effects in Sections 5.2 to 5.5, we begin this chapter with a systematic analysis of the

effects of high-scale supersymmetry breaking in chaotic inflation with a stabilizer field.

This is an instructive analysis as it illuminates the need for a different approach to

chaotic inflation in supergravity whenever supersymmetry is broken at a high scale.

This alternative approach is then studied in the subsequent sections.
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The discussion of supersymmetry breaking in chaotic inflation with a stabilizer field,

cf. Section 5.1, is based on the publication [37]. In this thesis we focus on the sim-

plest example of supersymmetry breaking with a Polonyi field, as well as the inclusion

of additional renormalizable interactions in the superpotential. The remainder of the

chapter is based on the results found in [39]. Here we emphasize in particular the three

examples for moduli stabilization given in that reference, and the numerical study of

the back-reaction on inflation. As before, expressions and figures taken from the publi-

cations [37, 39] reflect the author’s contribution to those works.

5.1 Chaotic inflation and supersymmetry breaking

In Section 2.3.1 we discussed in detail how chaotic inflation can be implemented in

supergravity. The simplest way to avoid the supergravity η problem and dangerous

negative terms in the potential seems to be the inclusion of a stabilizer field S and a

shift symmetry for the complex inflaton field φ. Therefore, we consider the supergravity

model defined by Eqs. (2.34) as a candidate model for inflation. In the following we study

its interplay with a sector of F-term supersymmetry breaking, represented by a Polonyi

model or an O’Raifeartaigh model. We analyze how different couplings between the two

sectors affect the allowed supersymmetry breaking scale and derive upper bounds on the

gravitino mass from the requirement of successful inflation.1 We find that in none of our

setups the gravitino mass can be larger than the Hubble scale during inflation. Among

other things, this implies that chaotic inflation is challenged when combined with moduli

stabilization, where typically m3/2 > H is required, cf. the discussion in Section 3.4.1.

This motivates the detailed analyses in the subsequent sections of this chapter.

5.1.1 Back-reaction of a Polonyi field

Although chaotic inflation and many of its variants have been extensively studied in

the literature, its connection to supersymmetry breaking was not as closely investigated.

Generic setups to achieve F-term supersymmetry breaking are the O’Raifeartaigh model

and the Polonyi model, as discussed in Section 3.2.2. Coupling the inflaton sector to

a supersymmetry-breaking sector turns out to be more difficult than expected. In the

simplest working scenarios we find that the gravitino mass is bounded from above. To

1For a related analysis of the effects of supersymmetry breaking on inflation, cf. [144].
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see this explicitly in a simple toy model, let us consider the effective theory defined by2

W = mSφ+ fX +W0 , (5.1)

i.e., by adding a Polonyi-like sector with a chiral superfield X to the inflation model of

Section 2.3.1. In the way proposed here, the two sectors decouple except for gravitational

interactions. As in previous cases we choose the parameters m, f , and W0 to be real,

which can always be achieved by field redefinitions and Kähler transformations. Similar

to the superpotential, a suitable Kähler potential is obtained by adding the contributions

from the inflation and supersymmetry breaking sectors, i.e.,

K =
1

2
(φ+ φ̄)2 + |S|2 + |X|2 − ξ1|X|4 − ξ2|S|4 , (5.2)

where ξ1,2 � 1 are real parameters.3 Note, once more, that the two quartic terms are

necessary to stabilize the respective fields during and after inflation. In the absence of

the term proportional to ξ2, the stabilizing scalar S gets no Hubble-scale contribution

to its mass. The quartic term for the supersymmetry-breaking field X stabilizes the

corresponding scalar in the true vacuum and circumvents the Polonyi problem. Both

terms may result from integrating out heavy degrees of freedom at the quantum level.

Since X gets a Hubble-scale mass during inflation, we often neglect the term involving

ξ1 in our discussion of inflation.

Vacuum after inflation

In this combined model, if f is small compared to all other scales in the theory, m still

corresponds to the inflaton mass, f denotes the scale of supersymmetry breaking in the

true vacuum after inflation, and W0 can be chosen such that the vacuum energy vanishes

after inflation. The latter implies W0 ≈ f/
√

3 at leading order in f . After inflation the

true vacuum of the model lies at

〈φ〉 = 〈S〉 = 0 , 〈X〉 ≈ 1

2
√

3ξ1

. (5.3)

In this vacuum the gravitino mass is given by

m3/2 ≈ W0 ≈
f√
3
, (5.4)

up to terms suppressed by powers of f or ξ−1
1 .

2Notice that this form of superpotential has been studied, in slightly different contexts, in [142,145].
3Notice that, for convenience, we have slightly changed the notation of the quartic terms compared to

Eqs. (2.34). As explained below, ξ1 and ξ2 are inversely proportional to the square of cut-off scales at which

heavy degrees of freedom have been decoupled.
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An important observation made in [37] is that this vacuum structure is altered if f

is chosen to be larger than m. To see this, consider the full scalar potential

V = eK
(
|mS + (φ+ φ̄)W |2 +K−1

SS̄
|mφ+KSW |2 +K−1

XX̄
|f +KXW |2 − 3|W |2

)
, (5.5)

where

KX = X̄(1− 2ξ1|X|2) , KXX̄ = 1− 4ξ1|X|2 , (5.6)

KS = S̄(1− 2ξ2|S|2) , KSS̄ = 1− 4ξ2|S|2 . (5.7)

We can expand V up to second order in all real scalars to obtain

V = f 2 − 3W 2
0 − 2

√
2fW0 α + 2mW0 ϕχ+

1

2
f 2
(
2ζ2 + χ2 + ψ2

)
−W 2

0

(
α2 + β2 + ζ2 + χ2 + ψ2

)
+

1

2
m2
(
ζ2 + χ2 + ψ2 + ϕ2

)
+ 2f 2ξ1

(
α2 + β2

)
, (5.8)

where we have defined

S =
ψ + iχ√

2
, X =

α + iβ√
2

, φ =
ζ + iϕ√

2
. (5.9)

We can study the mass matrix of this system of scalar fields to look for possible vacua.

We find that W0 = f/
√

3 leads to a tachyonic direction close to the origin of the potential

if

f > m . (5.10)

Specifically, only for f < m there is a stable vacuum at 〈φ〉 = 〈S〉 = 0 and f 2 = 3W 2
0

cancels the cosmological constant. For larger f a linear combination of φ and S obtains

a non-vanishing vacuum expectation value. Cancellation of the cosmological constant is

then ensured by

〈V 〉 = f 2 − 3W 2
0 +

m2 (f 2 − 6W 2
0 )

256 (f 2 − 2W 2
0 )

4
(f 2 −W 2

0 + 2ξ2 (f 2 − 3W 2
0 ))

= 0 , (5.11)

at leading order in m. This effect, although small, is taken into account in our analysis

of the inflaton dynamics.

Interaction during inflation

During inflation all real degrees of freedom must be stabilized at a high scale, i.e., with

masses larger than the Hubble scale, so they can be integrated out. Considering the
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scalar potential in Eq. (5.5) and its expansion in Eq. (5.8) it is evident that all fields are

stabilized at the origin with large masses, except for the inflaton ϕ =
√

2Imφ and the

imaginary part of the stabilizer field χ =
√

2ImS. Due to the presence of the additional

scale f and the constant W0, χ is displaced from its original minimum at 〈χ〉 = 0.

Assuming that χ� 1, we can expand the potential Eq. (5.5) up to second order around

χ = 0. The result reads

V = f 2 − 3W 2
0 +

1

2
m2ϕ2 + 2mW0ϕχ+

1

2

(
f 2 − 2W 2

0 +m2 + 2m2ϕ2ξ2

)
χ2 , (5.12)

neglecting the small vacuum expectation value of X. In particular, the linear term

2mW0ϕχ , (5.13)

causes a displacement from χ = 0 whenever ϕ 6= 0. By minimizing with respect to χ we

find

χ ≈ − 2mW0ϕ

f 2 − 2W 2
0 +m2 + 2m2ϕ2ξ2

, (5.14)

during inflation. Notice that Eq. (5.14) depends on f and W0, as well as on ϕ, and

that only the imaginary part of S receives a shift. By means of a numerical analysis

of the full equations of motion we can verify that S indeed remains stabilized in its

new minimum for the entire inflationary epoch. While the inflaton slowly rolls down

its quadratic potential the stabilizer field trails its inflaton-dependent minimum almost

instantly. This behaviour is illustrated in Fig. 5.1.

Thus, we can still treat S as a heavy degree of freedom and integrate it out at its

shifted vacuum expectation value given by Eq. (5.14). This yields an effective potential

for the inflaton direction which reads4

V (ϕ) = f 2 − 3W 2
0 +

1

2
m2ϕ2

(
1− 4W 2

0

f 2 − 2W 2
0 +m2 + 2m2ϕ2ξ2

)
. (5.15)

Evidently, depending on the magnitude of f and hence the gravitino mass, the correction

resulting from integrating out χ may severely alter the predictions of chaotic inflation.

Bounds on the gravitino mass

Considering the effective inflaton potential in Eq. (5.15) alteration of the CMB observ-

ables, in particular the scalar spectral index ns and the tensor-to-scalar ratio r, is to

4Notice that this procedure is very similar to integrating out a heavy modulus field. This time, however,

the back-reaction on ϕ is not only sourced by inflationary vacuum energy, but also by the contribution of the

Polonyi field.



52 Chapter 5. Supersymmetry-Breaking Moduli Stabilization and Chaotic Inflation

300 000 600 000
t

-10

-8

-6

-4

-2

106*χ(t )

(a)

2 000 000 4 000 000
t

5

10

15

φ(t )

(b)

Figure 5.1: Evolution of the canonically normalized imaginary part of S (a) and the inflaton ϕ (b)

during inflation, for ξ1 = ξ2 = 10, f = 10−8, and m = 6 · 10−6. In this case, since f < m, cancellation

of the cosmological constant implies W0 = f/
√
3. Depending on its initial value the stabilizer field

settles in its shifted minimum very early and remains stabilized for the rest of the inflationary epoch

and beyond. Due to its inflaton-dependence, the vacuum expectation value of χ evolves with time. The

inflaton field rolls slowly in its potential and then oscillates around its minimum at ϕ = 0. Notice the

different time scales in the two figures. The characteristic time until the end of inflation is m−1.

be expected at f & m. We expect that increasing f even further will make inflation

impossible at a value which satisfies

3m2 . f 2 . 2m2ϕ2ξ2 , (5.16)

neglecting the correction to W0 in Eq. (5.11). Since m is fixed by observations to be

m ' 6× 10−6 in Planck units, it is necessary to specify realistic values of ξ2 to obtain a

meaningful upper bound on the gravitino mass. As stated previously, we assume that

the Kähler potential terms involving ξ1 and ξ2 stem from couplings to heavy fields, i.e.,

from

Wheavy ⊃ λ1Sψ
2
1 + λ2Xψ

2
2 + mass terms , (5.17)

where ψi denotes heavy superfields of mass Mi. One-loop corrections of the Coleman-

Weinberg type generate a quartic term for S in K,

K1-loop ≈ |S|2
[
1− λ2

1

16π2
log

(
1 +

λ2
1|S|2

M2
1

)]
≈ |S|2 − λ4

1

16π2M2
1

|S|4 , (5.18)

and similarly for X, cf. the discussion in [115]. Thus, in the generic case λi ∼ O(1) the

ξi are related to the mass scales Mi as follows,

ξi ∼
1

16π2M2
i

. (5.19)
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Figure 5.2: The CMB observables ns and r as a function of the supersymmetry breaking scale f . Clearly,

the model is ruled out by observation at values of f quite below 10−4.

Given that the heavy degrees of freedom should be integrated out above the energy scale

of inflation, Mi & ρinf ∼MGUT ' 0.01, but below the Planck scale, we assume

ξ1 ∼ ξ2 ∼ 10 (5.20)

to be reasonable values for the coefficients. We remark that quartic terms in the Kähler

potential could also arise from α′ corrections in string theory. In such a setup the

coefficients would rather be ξi ∼ 1/M2
s , where Ms denotes the string scale. In order

for string modes to decouple, Ms would have to be larger than the energy scale during

inflation, but smaller than the Planck scale. Due to the absence of the loop suppression

factor 16π2, this could result in substantially larger coefficients.

Using these estimates, the spectral index and tensor-to-scalar ratio resulting from the

corrected potential Eq. (5.15) are displayed in Fig. 5.2, as a function of f . Evidently,

above a value of f ≈ 6 × 10−5 the tensor-to-scalar ratio increases above r ∼ 0.2 and

ns drops below 0.94, a point at which the model is essentially ruled out by observation.

This translates into the following bound on the gravitino mass,

m3/2 . 1014 GeV . (5.21)

Hence the most minimal way to achieve supersymmetry breaking in chaotic inflation

excludes the possibility m3/2 & H. This has interesting implications for setups with

string-inspired supersymmetry breaking in which the supersymmetry breaking scale is

usually very high, as recently investigated in [146–148]. We study this possibility in

Sections 5.2 to 5.5.
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5.1.2 Effects of additional interactions

In an attempt to relax the gravitino mass bound (5.21) the authors of [37] have extended

the minimal model. By including a renormalizable coupling between X and φ in the

superpotential, i.e.,

W = mSφ+MXφ+ fX +W0 , (5.22)

one may hope that the situation can be improved. The new mass scale M contributes,

together with m, to the mass of the inflaton, i.e.,

V =
1

2
m2ϕ2 −→ V =

1

2
(m2 +M2)ϕ2 , (5.23)

in the absence of supersymmetry breaking. The associated Kähler potential can be

written as

K =
1

2
(φ+ φ̄)2 + |S|2 + |X|2 − ξ1|X|4 . (5.24)

The quartic term in S is no longer necessary to stabilize the corresponding scalars in

this setup.

Vacuum after inflation

In this framework, the fields are stabilized at different vacuum expectation values in

the vacuum, and the constant W0 consequently takes a different value to cancel the

cosmological constant. Specifically, writing the complex scalars in terms of their real

components

S =
ψ + iχ√

2
, X =

α + iβ√
2

, φ =
ζ + iϕ√

2
, (5.25)

the associated vacuum expectation values after inflation are given by

〈ϕ〉 = 〈χ〉 = 〈β〉 = 0 , 〈ζ〉 ≈ −
√

2
Mf

m2 +M2
, 〈α〉 ≈ 1√

6ξ1

m√
m2 +M2

, (5.26)

and

〈ψ〉 ≈ M

(m2 +M2)3/2

f 2 (m2 + 3M2)− 3m2 (m2 +M2)

3
√

6ξ1m2
, (5.27)

at leading order in f and ξ−1
1 . The gravitino mass in the true vacuum is given by

m3/2 ' W0 '
m√

m2 +M2

f√
3
. (5.28)

Notice that, as in the minimal model, this vacuum will be corrected for large values of

f . The corrections will, however, not alter our conclusions about the allowed gravitino

mass by much. Therefore, in what follows we use the value of W0 stated in Eq. (5.28)

as a leading-order approximation.
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Interaction during inflation

Again, the supersymmetry breaking scale f induces a shift of the imaginary part of S

during inflation. In fact, some of the other real scalars are shifted as well, but their

vacuum expectation values are suppressed compared to that of χ. A numerical analysis

once more confirms that all vacuum expectation values are reached quickly and that all

fields, except the inflaton ϕ, remain stabilized during inflation. In the same manner as

in the previous section, expanding up to second order in χ and integrating out the field

gives a leading-order effective potential for the inflaton. The result reads

V (ϕ) =
1

2
(1 + δ2)m2ϕ2

(
1− 8f 2

f 2(2 + 8δ2 + 6δ4) + 3m2(1 + δ2)2(2 + δ2ϕ2)

)
, (5.29)

where we have introduced the dimensionless parameter

δ =
M

m
. (5.30)

Notice that, in the limit δ → 0, Eq. (5.29) reduces to the effective potential of the

minimal model. The only difference is that in the present setup ξ2 = 0. Again, it

appears that in this model chaotic inflation is not possible for arbitrarily large values

of f .

Bounds on the gravitino mass

As shown in more detail in [37], the bound on m3/2 actually becomes more stringent.

Since m3/2 is inversely proportional to δ there is a finite optimal value of δ. The best

situation is δ ≈ 4. In this case, after integrating out χ, the model is ruled out by

observation if

f & 3 · 10−5 , (5.31)

a bound which is twice as stringent as in the minimal model. The situation does not

improve if we re-introduce a quartic term for S in K.

In addition to extending the minimal model by renormalizable interactions, the au-

thors of [37] explored the option of embedding chaotic inflation in the O’Raifeartaigh

model. To guarantee stability of the model this requires the inclusion of unspecified α′

corrections to K or the use of nilpotent superfields, as first proposed in [149]. However,

even if the model is relieved from tachyonic instabilities there are upper bounds on the

gravitino mass which are similar to (5.21). Hence, it appears that the bound m3/2 . H

is generic in chaotic inflation with a stabilizer field.
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5.2 Integrating out supersymmetry-breaking moduli: General

results

On the path to embedding chaotic inflation in string theory with consistent moduli sta-

bilization, the results of the previous section force us to consider a different mechanism of

chaotic inflation if the moduli break supersymmetry spontaneously. This is because the

constraint m3/2 > H found in Chapter 3 and the constraint m3/2 . H from Section 5.1

are obviously at odds.

In Section 2.3.1 we elaborated on the troubles of chaotic inflation without a stabilizer

field, i.e., with the simple superpotential

W =
1

2
mφ2 . (5.32)

We have already hinted towards the fact that additional ingredients, apart from a sta-

bilizer field, may remedy the model. In this section we prove that heavy moduli which

break supersymmetry spontaneously are such an ingredient. This makes our setup in-

teresting from the perspective of UV completion, since moduli are present in any string

compactification and spontaneous supersymmetry breaking in the moduli sector is quite

generic.

There has been substantial progress in implementing chaotic inflation without a

stabilizer, and related models, in string theory. For recent discussions, cf. [147, 148,

150–156]. In particular, the authors of [153, 154] have analyzed the effects of moduli

stabilization in F-term axion monodromy inflation. A general supergravity analysis

comparing the scale of inflation and the gravitino mass has been performed in [157,

158]. On the other hand, it has proven difficult to implement the model proposed

in [72], i.e., the one with a stabilizer field, in explicit string constructions. Both moduli

stabilization and the origin of the stabilizer field are difficult questions to address. For

recent treatments we refer to [150,159].

In this part of the thesis we discuss, in general terms, how integrating out heavy

moduli which break supersymmetry can have strong effects on the effective inflaton

potential. We derive explicit formulae for the latter, assuming that the inflaton and

moduli sectors interact only gravitationally. We then illustrate these general results

with three examples – KKLT moduli stabilization, Kähler Uplifting, and the Large

Volume Scenario – in Sections 5.3, 5.4, and 5.5 respectively. We derive bounds on the

gravitino mass and the field value of the inflaton arising from stability of the moduli.

Furthermore, each case is illustrated by means of a numerical example. In Section 5.6

we discuss the universality of the leading-order effective inflaton potential arising in all
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our examples and the shared universal CMB observables this predicts.

5.2.1 Non-decoupling effects from supersymmetry breaking

As before, we are interested in string-effective supergravity models in which the inflaton

field ϕ, which is the imaginary part of a complex scalar field φ = 1√
2
(χ + iϕ), interacts

with heavy moduli and supersymmetry breaking fields, collectively denoted by Tα. The

effective action is defined by

K = K0(Tα, T ᾱ) +
1

2
K1(Tα, T ᾱ)(φ+ φ̄)2 ,

W = Wmod(Tα) +
1

2
mφ2 .

(5.33)

It can potentially reconcile chaotic inflation, moduli stabilization, and supersymme-

try breaking. We are interested in the regime where the moduli and the supersymmetry

breaking fields Tα are much heavier than the inflaton. Such heavy fields usually decouple

from low-energy dynamics once they settle into their minima, denoted by Tα,0. Remem-

ber that we studied the case without supersymmetry breaking in Chapter 4. We showed

that for a single heavy modulus T with K0(T, T ) = −3 ln
(
T + T

)
and K1(T, T ) = 1 the

effects on the dynamics of inflation are given by Eq. (4.9). In particular, all corrections

stemming from integrating out the heavy modulus disappear in the limit mT →∞.

However, if any of the fields Tα break supersymmetry the picture changes. In this

case, there are well-known effects that do not decouple from inflation. In the context

of low-energy supersymmetric models these lead to soft-breaking terms whose size is

controlled by the gravitino mass. In particular, considering spontaneous supersymmetry

breaking we expect the effective inflaton potential to be of the form

V = VSugra +
c

2
m̃m3/2ϕ

2 + . . . , (5.34)

where c is a model-dependent real constant and VSugra is to be computed using

K =
1

2

(
φ+ φ̄

)2
, W =

1

2
m̃φ2 , (5.35)

with m̃ = K−1
1 e

1
2
K0(T0,T 0)m and the wave-function normalization φ→ K

−1/2
1 φ to match

the notation of Eq. (5.33). Notice that in Eq. (5.34) a term proportional to m2
3/2ϕ

2 is

absent due to the shift symmetry φ → φ + ic, which is broken softly by the mass term

in the superpotential.5 Computing VSugra from Eqs. (5.35) while imposing cancellation

5We encounter this situation again in D-term hybrid inflation, cf. Section 6.1.3, where a soft mass term for

the inflaton is present unless the Kähler potential is shift-symmetric.
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of the cosmological constant at the end of inflation and setting the heavy real scalar χ

to its minimum at 〈χ〉 = 0, we find

V =
1

2
m̃2ϕ2 +

c

2
m̃m3/2ϕ

2 − 3

16
m̃2ϕ4 + . . . . (5.36)

This expression deserves our attention. Apparently, the second piece only decouples

from inflation if m3/2 � m̃. If m3/2 is large, however, it may potentially replace the

supersymmetric mass term proportional to m̃2 in driving inflation. In that case the

term may even be large enough to dominate over the negative third piece for a sufficient

field range.

The dots in Eqs. (5.34) and (5.36) denote sub-leading terms and higher powers in

ϕ, for example, terms of order O(m̃m3/2ϕ
4). Usually, such terms can be discarded

easily. In large-field inflation, however, trans-Planckian excursions of ϕ can make cor-

rections relevant. Therefore, in the following we systematically calculate corrections to

the leading-order potential in Eq. (5.36). We are curious to find out if corrections from

the modulus sector can cancel the third term in the effective potential, which makes V

unbounded from below. Furthermore, if the modulus sector has an approximate no-scale

symmetry we expect a cancellation of the bilinear soft mass term, i.e., c� 1. We wish

to discuss if, in this situation, chaotic inflation can proceed via the supersymmetric mass

term of ϕ without spoiling the stabilization of moduli.

5.2.2 Effective inflaton potentials

Therefore, we must attempt to find a generalization of Eq. (4.9), including the effects of

supersymmetry breaking in the moduli sector. We start from the effective theory defined

by Eqs. (5.33) and we assume that the moduli fields adiabatically trace the minimum of

their potential during inflation. This is justified as long as their masses are larger than

the Hubble scale. Specifically,

∇αV = 0 ⇒ GI∇αGI +Gα = 0 . (5.37)

Here ∇α denotes the covariant derivative on field space, i.e., ∇αGI = GαI − ΓJαIGJ in

terms of the Kähler function G = K + ln |W |2, where Γ is defined in Appendix A.2.

We can then integrate out the heavy fields Tα to obtain an effective scalar potential

for the inflaton ϕ. Using that χ is heavy due to its soft mass and stabilized at the origin

we can expand V in powers of the inflaton field,

V = V0(Tα, T ᾱ) +
1

2
V1(Tα, T ᾱ)mϕ2 +

1

4
V2(Tα, T ᾱ)m2ϕ4 . (5.38)
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The explicit coefficients V0, V1, and V2 and other details of the computation are given

in Appendix A.3. For a more thorough treatment of the derivation of the effective

potential we refer to the original publication [39]. As we have seen many times before,

during inflation the fields Tα are displaced from their minima,

Tα = Tα,0 + δTα . (5.39)

We can expand the coefficients Vi in Eq. (5.38) at leading order in δTα as long as

|δTα| � |Tα,0|. Minimizing the result with respect to the displacement, and inserting

back into the potential gives the effective potential for ϕ in its most general form,

V =
1

2
V1

(
Tα,0, T ᾱ,0

)
mϕ2 +

1

4
V2

(
Tα,0, T ᾱ,0

)
m2ϕ4

− 1

2

(
∂V1

∂Tα
∂V1

∂T ᾱ

)((m−2)αβ̄ (m−2)αβ

(m−2)ᾱβ̄ (m−2)ᾱβ

)(
∂V1

∂T β̄
∂V1

∂Tβ

)
m2ϕ4 + . . . .

(5.40)

The supergravity masses m2
αβ and m2

αβ̄
are defined in Appendix A.2. A useful obser-

vation made in [39] is that this rather unwieldy expression simplifies significantly when

supersymmetry is only weakly broken, cf. the more detailed discussion in Appendix A.3.

This is the case when the supersymmetric mass, i.e., the mass of the fermions associated

with the scalars Tα, is much larger than the gravitino mass.6 Specifically, when

Eigenvalues [(mF )αβ] = Eigenvalues

[
eG/2

(
∇αGβ +

1

3
GαGβ

)]
� m3/2 . (5.41)

Alternatively, one may consider the case where the supersymmetry breaking scale is

large but the supersymmetry-breaking sector decouples from moduli stabilization. An

example for this is supersymmetry breaking by the F-term of a very heavy Polonyi field,

as discussed in the previous chapters. For both of these possibilities the effective inflaton

potential becomes

V ≈ mϕ2

2
eK0

{
−1

2
Kαβ̄

0

(
K0,β̄DαWmod +K0,αDβ̄Wmod

)
+mK−1

1 +
3

2
(Wmod +Wmod)

}
+
m2ϕ4

16
eK0

{
− 3 + eK0/2

[
Kδ

(
m−1
F

)βδ [−Kεε̄
0 (Kβε +KβKε − ΓγβεKγ)Dε̄Wmod

+ 2DβWmod + 3KβWmod + 2mK−2
1 (K0,βK1 −K1,β)

]
+ h.c.

]}
,

(5.42)

which is the desired generalization of Eq. (4.9). Notice, however, that the quadratic term

in the first line is independent of the small-supersymmetry breaking approximation. It

6With the exception of the goldstino, of course.
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is simply the total mass – supersymmetric and soft mass – of the inflaton in the true

vacuum, computed from the effective action defined by Eqs. (5.33). Indeed, using the

definition of the supergravity scalar masses in Eqs. (A.16) we find that the inflaton mass

is

m2
ϕ = m2

φφ̄ −
1

2

(
m2
φφ +m2

φ̄φ̄

)
. (5.43)

It can be shown that Eq. (5.43) indeed equals the mass term in the first line of Eq. (5.42).

Using this result we can, in principle, calculate the effective potential with corrections

for any model of moduli stabilization described by the ansatz (5.33). In practice, how-

ever, the approximation outlined above to obtain Eq. (5.42) – more precisely, the quartic

term, as explained above – is not always applicable. In that case, either a more general

expression for the effective potential can be used, given by Eq. (5.40), or the calcula-

tion can be significantly simplified by expanding in small parameters while performing

the above analysis. In the following we demonstrate this in three popular examples of

moduli stabilization with spontaneously broken supersymmetry.

5.3 Chaotic inflation and KKLT stabilization

We have discussed KKLT moduli stabilization in some detail in Section 3.2. The results

obtained there allow us to start this discussion with the interaction between KKLT

stabilization and chaotic inflation without a stabilizer field.

5.3.1 Effective inflaton potential: Analytic approach

Treating the interaction between the modulus and inflaton sectors in the simplest way,

we assume that their superpotentials and Kähler potentials completely decouple. Thus,

the theory is defined by

W = W0 + Ae−aT + fX +
1

2
mφ2 , (5.44a)

K = −3 ln
(
T + T

)
+ k
(
|X|2

)
+

1

2

(
φ+ φ̄

)2
. (5.44b)

In particular, in the notation of Section 5.2 we choose

Wmod(Tα) = W0 + Ae−aT + fX , (5.45)

K0(Tα, T ᾱ) = −3 ln
(
T + T

)
+ k
(
|X|2

)
(5.46)

K1(Tα, T ᾱ) = 1 . (5.47)
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Note that the relative phase between W0 and m is physical. In the following we choose

all superpotential parameters to be real, so that only the real part of T is affected by

inflation. Therefore, we set T = T in the following discussion. Our results do not

change qualitatively if we allow for m and/or W0 to be complex. Notice that we uplift

the KKLT AdS vacuum with a Polonyi field X in the way discussed in Sec. 3.2.2. Hence,

we assume that the function k stabilizes X close to the origin with a large mass. On the

inflationary trajectory the superpotential reads

W = W0 + Ae−aT − 1

4
mϕ2 . (5.48)

A natural question to ask is the following: can the effective theory of inflation defined

by Eqs. (5.44) resemble chaotic inflation, after integrating out T at a high scale?

To answer this question we must again find the displacement of T during inflation

by expanding

V = V |T0 + (∂TV )|T0δT +
1

2
(∂2
TV )|T0δT

2 +O(δT 3) , (5.49)

along the lines of the general analysis in Section 5.2, and minimizing subsequently. The

result reads, at leading order,

δT

T0

=
m̃ϕ2

4aT0m3/2

+O(T−2
0 ) , (5.50)

with m̃ = m/(2T0)3/2 and m3/2 given by Eq. (3.22). Alternatively, using Eq. (3.23) we

can write δT in terms of the modulus mass as

δT

T0

=
m̃ϕ2

2mT

+O(T−2
0 ) . (5.51)

With this, the effective inflaton potential including the leading-order correction becomes,

at quartic order in ϕ and leading order in (aT0)−1 and m̃/m3/2,

V (ϕ) =
1

2
m̃2ϕ2 +

3

2
m̃m3/2ϕ

2 − 3

16
m̃2ϕ4 − 3

4aT0

(
3m̃m3/2ϕ

2 +
3

4
m̃2ϕ4

)
+ . . . . (5.52)

To obtain higher-order corrections to the potential, the potential must be expanded at

higher orders in δT , and δT must be computed up to higher powers in T−1
0 . Thus, it

seems that after integrating out T the negative definite term proportional to m̃2ϕ4 still

appears in the potential, making it unbounded from below. This is related to the fact

that the modulus is only a sub-leading source of supersymmetry breaking.7

7Notice that this way of obtaining the leading-order potential, i.e., the first three pieces in Eq. (5.52), is

equivalent to the naive treatment outlined in Sec. 5.2, which resulted in Eq. (5.36).
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However, things are not quite as they seem by merely studying the result in Eq. (5.52).

For large values of ϕ, i.e., when the quartic term in the effective potential dominates, the

modulus can be destabilized by the potential energy of ϕ. In this case, the inflationary

trajectory becomes tachyonic and the modulus can no longer be integrated out. This is

to be expected when

m̃ϕ2 & 4m2
3/2 , (5.53)

which corresponds to the bound m3/2 > H discussed previously. This will become more

clear in our numerical example. There, a more detailed analysis reveals that, actually,

the local maximum of the effective inflaton potential Eq. (5.52) is never reached while the

modulus is stabilized.8 Hence, the negative quartic term is no obstruction to inflation,

which may be driven by the soft mass term as long as T remains stabilized.

One more remark is in order before we proceed to our numerical example. In a

manner similar to integrating out T , it is possible to verify that the displacement δX of

the Polonyi field during inflation gives negligible contributions to the inflaton potential.

For the particular choice

k
(
|X|2

)
= |X|2 − |X|

4

Λ2
, (5.54)

for example, the displacement of X is at leading order

δX = Λ2δT . (5.55)

Since Λ � 1 to stabilize X at a high scale with a small vacuum expectation value, the

contribution of integrating out X at Eq. (5.55) is clearly negligible. Among other things,

this means that the sector which dominates supersymmetry breaking can be completely

decoupled from the dynamics of inflation. In this case, it is possible to obtain the

effective potential Eq. (5.52) essentially by applying the approximated general expression

Eq. (5.42).

5.3.2 A numerical example

Let us now study whether 60 e-folds of slow-roll inflation can be realized with the

effective inflaton potential Eq. (5.52), and whether the resulting predictions for the

CMB observables resemble those of chaotic inflation. It is worth noting that in the

parameter regime where T is stabilized, i.e., when m3/2 is very large, the bilinear term

8In fact, the full potential defined by Eqs. (5.44) is bounded from below at all points in field space.
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proportional to m̃m3/2 actually dominates in V and drives inflation. In this case, the

relevant terms in the inflaton potential are

V (ϕ) ≈ 3

2
m̃m3/2ϕ

2

(
1− 1

8

m̃

m3/2

ϕ2

)
. (5.56)

Consequently, inflation is only possible if m̃ andm3/2 have the same sign. With Eq. (3.24)

the corrections can be interpreted as a power series in H2/VB, the squared Hubble scale

divided by the barrier height of the modulus potential. This is a natural expansion

parameter because the modulus is destabilized when the vacuum energy of ϕ lifts the

modulus over the barrier, cf. (5.53). Neglecting order-one coefficients, COBE normal-

ization imposes
√
|m̃m3/2| ∼ 3× 10−6. This puts a lower bound on the gravitino mass,

i.e.,

m3/2 >
√
|m̃m3/2|ϕ? ∼ 5× 10−5 ∼ H , (5.57)

where ϕ? ≈ 15 denotes the inflaton field value at the beginning of the last 60 e-folds

of inflation. This means that the gravitino must be very heavy and there must be a

moderate hierarchy between the gravitino and inflaton mass for 60 e-folds of chaotic

inflation to be possible. This is illustrated in Fig. 5.3 for a suitable set of parameters.

Indeed, 60 e-folds of inflation can take place starting at ϕ? ≈ 15. The CMB observ-

ables in our example are

ns = 0.966 ,

r = 0.106 ,
(5.58)

which are slightly below the predictions of pure quadratic inflation. This is due to

the flattening of the quadratic potential by the negative quartic term. Notice that the

modulus is destabilized and the inflaton trajectory becomes tachyonic at the critical

value ϕc ≈ 24, corresponding to the bound in (5.53). Therefore, Eq. (5.56) and the

dashed line in Fig. 5.3 are only meaningful up to this point.

Moreover, the interplay between inflaton and modulus can be illustrated by means

of the full scalar potential as a function of T and ϕ, depicted in Fig. 5.4. The minimum

in the modulus direction is uplifted as ϕ increases, until the point where it disappears

at ϕc ≈ 24.

5.4 Chaotic inflation and Kähler Uplifting

Another instructive example for moduli stabilization with broken supersymmetry is

Kähler Uplifting, as discussed in Section 3.3.1. We can analyze its interplay with chaotic

inflation in a similar way as for KKLT stabilization.
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Figure 5.3: Effective inflaton potential in KKLT for W0 = 0.009, A = −0.75, a = 2π
10 , and m =

1.67 × 10−5. With these parameters we find T0 = 10 and m3/2 = 10−4. The dotted line denotes a

purely quadratic potential with mϕ = 6 × 10−6 imposed by COBE normalization. The dashed line

is the effective potential Eq. (5.52) evaluated at all orders in (aT0)
−1. This potential is valid only as

long as the modulus remains stabilized. The solid line is obtained numerically by setting the modulus

to its minimum value at each value of ϕ. Evidently, above the critical value ϕc ≈ 24 the modulus is

destabilized towards the run-away minimum at T = ∞ and the theory can no longer be described by

Eq. (5.52).

5.4.1 Effective inflaton potential: Analytic approach

As before, to simplify the discussion we assume that the interactions between modulus

and inflaton sector are purely gravitational. Hence, we study the theory defined by

W = W0 + Ae−aT +
1

2
mφ2 , (5.59a)

K = −2 ln
[(
T + T

)3/2
+ ξ
]

+
1

2

(
φ+ φ̄

)2
. (5.59b)

Again, since we choose real superpotential parameters only the real part of T is affected

by inflation. Hence, we set T = T in the scalar potential. Since the modulus F-term in

this case is bigger than in KKLT, at leading order it cancels the negative contribution

to the inflaton potential. At leading order in δT , η0 and T−1
0 it is simply

V =
1

2
m̃2ϕ2 +O(δT, η0, T

−1
0 ) . (5.60)
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Figure 5.4: Scalar potential as defined by Eqs. (5.44) as a function of T and ϕ, for the same parameter

example as in Fig. 5.3. Apparently, a minimum for the modulus exists for ϕ . ϕc ≈ 24. Beyond this

point the modulus runs away towards T =∞ and can no longer be integrated out. For ϕ < ϕc inflation

may take place in the valley of the uplifted modulus minimum.

The displacement of T during inflation contains two pieces,

δT

T0

=
m̃2ϕ2

5η0m2
3/2

− 9m̃ϕ2

20m3/2

+ . . . , (5.61)

where the dots denote higher-order terms in η0 and T−1
0 . Consequently, there are two

upper bounds on the value of the inflaton field to guarantee stability of the modulus

potential. Specifically,

m̃ϕ2 . 4m3/2 ,

m̃2ϕ2 . η0m
2
3/2 .

(5.62)

Clearly, if these conditions are fulfilled the expansion in δT converges. Expanding the

inflaton potential in δT/T0 and η0, we find at leading order

V (ϕ) ≈ 1

2
m̃2ϕ2 − 3η0

4
m̃m3/2ϕ

2 − 3

20η0

m̃4ϕ4

m2
3/2

+
27

40

m̃3ϕ4

m3/2

− 183η0

320
m̃2ϕ4 + . . . , (5.63)
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which contains negative quartic terms in the inflaton field, analogous to the KKLT case.

This time, however, they are suppressed by factors of δT/T0 or η0 due to the approximate

no-scale symmetry of Kähler Uplifting.9

As in the previous section we may rewrite Eq. (5.61) in terms of mT . We find

δT

T0

=
4m̃2ϕ2 − 9η0m̃m3/2ϕ

2

4m2
T

+ . . . . (5.64)

From this the situation is quite clear: the first term in the numerator is the leading-order

inflaton uplift of the potential and the second terms arises due to the incomplete no-scale

cancellation at the shifted modulus vacuum expectation value,

δV ∝ KTT |DTW |2 − 3|W |2 ∼ η0|W |2 . (5.65)

In the following we study the phenomenology of inflation resulting from this effective

potential in two numerical examples. To this end, it is instructive to rewrite the effective

potential as

V (ϕ) ≈ 1

2
m̃2ϕ2

(
1− 3

10η0

m̃2

m2
3/2

ϕ2

)
− 3η0

4
m̃m3/2ϕ

2

(
1 +

61

80

m̃

m3/2

ϕ2

)
. (5.66)

At leading order V (ϕ) consists of two quadratic terms and one relevant correction to

each, suppressed by one power of H2/VB. The second piece in Eq. (5.66) is very similar

to the leading-order potential found in the KKLT case, but is suppressed by one power

of η0. This means that the supersymmetric mass term for ϕ can drive inflation as well.

Before discussing inflation in more detail, let us remark that to guarantee stability of T

we require H2 < VB. Using Eq. (3.31) this leads to a generic bound on the gravitino

mass,

m3/2 >
H
√
η0

∼ 10−4

√
η0

. (5.67)

5.4.2 Numerical examples

Starting from the effective potential Eq. (5.66) we can distinguish two cases. Inflation

can either be driven by the supersymmetric term proportional to m̃2ϕ2, or by the bilinear

soft term proportional to m̃m3/2ϕ
2.

9The procedure to find the effective potential is significantly simplified by expanding all quantities in powers

of η0. Since, in this case, T is the only field which contributes to supersymmetry breaking in the vacuum and

m3/2 is generically very large, the general formula Eq. (5.42) does not apply. However, it is possible to obtain

Eq. (5.63) by applying the most general result Eq. (5.40), which does not contain assumptions about the scale

of supersymmetry breaking.
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The supersymmetric mass term dominates

If η0m3/2 � m̃ chaotic inflation may be realized in the “traditional” sense. The leading-

order potential in this parameter regime is simply the first piece of Eq. (5.66), i.e.,

V (ϕ) ≈ 1

2
m̃2ϕ2

(
1− 3

10η0

m̃2

m2
3/2

ϕ2

)
. (5.68)

The viable parameter regime in this scenario is particularly constrained. On the one

hand, η0m3/2 must be small for the soft term to be suppressed. On the other hand,

η0m
2
3/2 must be large enough to guarantee a high barrier in the modulus potential.

Specifically, we find

m3/2 �
m̃2ϕ2

?

η0m3/2

� m̃ϕ2
? & 10H ∼ 10−3 . (5.69)

A suitable example is illustrated in Fig. 5.5. As expected, the parameter choices are quite

elaborate, especially from the perspective of string theory. Specifically, the hierarchy

between W0 and A as well as the size of η0 are rather particular. With such a small

value of ξ it is doubtful whether the string coupling can be small enough to allow for a

perturbative description of the theory.

If one ignores this problem inflation can be realized and we find for the solid line

ns = 0.966 ,

r = 0.116 ,
(5.70)

for ϕ? ≈ 15.2. The modulus is destabilized at ϕc ≈ 19.

The bilinear soft term dominates

The scenario η0m3/2 � m̃ seems slightly more appealing since it can be realized with

more realistic choices for the input parameters. The leading-order potential becomes

V (ϕ) ≈ −3η0

4
m̃m3/2ϕ

2

(
1 +

61

80

m̃

m3/2

ϕ2

)
. (5.71)

Notice the sign difference of the soft term compared to KKLT. Since η0 > 0 this means

that m̃ and m3/2 must have opposite signs for inflation to work in this parameter regime.

COBE normalization imposes
√
|η0m̃m3/2| ∼ 5× 10−6. Since η0 is allowed to be larger

in this case, the only bound on m3/2 is the generic one, (5.67). An example is depicted

in Fig. 5.6.

The corresponding CMB observables are

ns = 0.965 ,

r = 0.107 ,
(5.72)

at ϕ? ≈ 15. In this case the modulus is destabilized at ϕc ≈ 20.
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Figure 5.5: Effective inflaton potential in Kähler Uplifting for W0 = 4.67, A = −3.4 × 10−4, a = 2π
30 ,

m = 8 × 10−4, and ξ = 0.0047. With these parameters we find T0 = 11.9, m3/2 = 0.04, and η0 =

2× 10−5. The dotted line denotes a purely quadratic potential with mϕ = 6× 10−6 imposed by COBE

normalization. The dashed line is the effective potential Eq. (5.63) evaluated at all orders in η0. The

solid line is obtained numerically by setting the modulus to its minimum value at each value of ϕ. In

this case, modulus destabilization occurs at ϕc ≈ 19. Again, Eq. (5.63) and the dashed line are only

meaningful for ϕ < ϕc.

5.5 Chaotic inflation and the Large Volume Scenario

As our last example we present moduli stabilization via the simplest Large Volume

Scenario, as discussed in Section 3.3.2. Although the structure of the vacuum is more

complicated than in the last two examples, the results after coupling to chaotic inflation

are qualitatively similar.

5.5.1 Effective inflaton potential: Analytic approach

Our starting point for the coupled model is this time

W = W0 + Ae−aTs + fX +
1

2
mφ2 , (5.73)

K = −2 ln
[(
Tb + T b

)3/2 −
(
Ts + T s

)3/2
+ ξ
]

+ k
(
|X|2

)
+

1

2

(
φ+ φ̄

)2
. (5.74)
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Figure 5.6: Effective inflaton potential in Kähler Uplifting for W0 = 0.23, A = −0.008, a = 2π
30 ,

m = −1.37 × 10−4, and ξ = 2.29. With these parameters we find T0 = 11.8, m3/2 = 0.002, and

η0 = 0.01. The dotted line denotes a purely quadratic potential with mϕ = 6×10−6 imposed by COBE

normalization. The dashed line is the effective potential Eq. (5.63) evaluated at all orders in η0. The

solid line is obtained numerically by setting the modulus to its minimum value at each value of ϕ. In

this setup, modulus destabilization occurs at ϕc ≈ 20. Again, Eq. (5.63) and the dashed line are only

meaningful for ϕ < ϕc.

The uplift sector is treated as described above, since it is safe to neglect its influence on

inflation. The scalar potential at leading order in V−1 reads

V =
2
√

2 a2A2
√
Ts e

−2aTs

3V
− 16aATs e

−aTs (4W0 −mϕ2)

V2

+
3ξ (4W0 −mϕ2)

2

32V3
+

(V − 2ξ)
(
f 2 + 1

2
m2ϕ2

)
V3

.

(5.75)

Comparing this expression to Eq. (3.34) we observe that, in principle, the contribution of

the inflaton can be absorbed in a redefinition of W0 and f . As before, we treat inflation

as a perturbation of the true vacuum. Hence, we naively expect chaotic inflation to be

successful in LVS as long as

m2ϕ2 � f 2 , mϕ2 � W0 , (5.76)

neglecting order-one coefficients. It will become clear in the following that these two

conditions precisely guarantee that the inflaton energy density does not destabilize the

moduli.
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To compute the effective inflaton potential we have to take the back-reaction of both

moduli into account. Hence, we expand the potential around

δV = V − V0 , δTs = Ts − T0 . (5.77)

Minimizing the result with respect to both displacements yields

δV
V0

≈ m̃2ϕ2

χ0m2
3/2

+
m̃ϕ2

4m3/2

, (5.78a)

δTs

T0

≈ m̃2ϕ2

aT0χ0m2
3/2

+
m̃ϕ2

2aT0m3/2

, (5.78b)

up to terms suppressed by higher powers of V−1 or (aT0)−1. Note that the shifts have

the same form as in Kähler Uplifting, cf. Eq. (5.61). Furthermore, the displacement of

Ts is relatively suppressed by one power of V0. This is to be expected because Ts is

the heavier of the two moduli. Nonetheless, δTs must be taken into account to find the

correct leading-order result.

Integrating out the displacements of both moduli, we are left with the leading-order

effective potential

V (ϕ) ≈ 1

2
m̃2ϕ2 +

χ0

4
m̃m3/2ϕ

2 − 1

2χ0

m̃4ϕ4

m2
3/2

− 1

4

m̃3ϕ4

m3/2

− χ0

16aT0

m̃2ϕ4 . (5.79)

We refrain from rewriting this unwieldy expression in terms of the moduli masses, but

the idea is the same as in our previous examples. Some of the correction terms are

suppressed by inverse powers of mTb
and mTs and vanish in the limit of very heavy

moduli. Others, like the supersymmetry-breaking second term in Eq. (5.79) grow with

the moduli masses, and hence do not vanish. As in the previous examples, the region

where V (ϕ) is unbounded from below is never reached since the moduli are destabilized

at smaller values of ϕ.

As in our model with Kähler Uplifting we rewrite the effective potential to study

inflation. In particular,

V (ϕ) ≈ 1

2
m̃2ϕ2

(
1− 1

χ0

m̃2

m2
3/2

ϕ2

)
+
χ0

4
m̃m3/2ϕ

2

(
1− 1

4aT0

m̃

m3/2

ϕ2

)
. (5.80)

Again, V (ϕ) contains a supersymmetric mass term and a bilinear soft term – suppressed

by one power of χ0 –, both with a correction proportional to H2/VB. By requiring

the barrier to be larger than the Hubble scale during inflation, the gravitino mass is

generically constrained as follows,

m3/2 > H
√
V0 ∼ 10−4

√
V0 . (5.81)
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Figure 5.7: Effective inflaton potential in LVS for W0 = 1, A = 0.13, a = 2π, m = 5.8 × 10−4, and

ξ = 1.25. With these parameters we find T0 = 0.75, V0 = 200, and m3/2 = 0.005. The dotted line

denotes a purely quadratic potential with mϕ = 6 × 10−6 imposed by COBE normalization. The

dashed line is the effective potential Eq. (5.79) evaluated at all orders in aT0. The solid line is obtained

numerically by setting the modulus to its minimum value at each value of ϕ. Since the barrier height

and Hubble scale are the same as in the previous example, modulus destabilization occurs at ϕc ≈ 18.

Again, Eq. (5.79) and the dashed line are only meaningful for ϕ < ϕc. Notice that the difference between

the dashed and the solid line is comparably large in this example. This is because the relatively small

value of V0 limits the precision of the expansion in V−1.

As before, this constraint is equivalent to demanding that ϕ is not large enough to uplift

the modulus minimum to a saddle point or beyond.

5.5.2 Numerical examples

Based on the effective potential Eq. (5.80) we can distinguish two cases in which 60

e-folds of inflation may be realized.

The supersymmetric mass term dominates

If m̃� χ0m3/2 ∼ m3/2/V0, in principle the supersymmetric quadratic term in Eq. (5.80)

could dominate, yielding the leading-order potential

V (ϕ) ≈ 1

2
m̃2ϕ2

(
1− 1

χ0

m̃2

m2
3/2

ϕ2

)
. (5.82)
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However, this scenario is excluded by a consistency requirement of the LVS scheme.

Specifically, the gravitino mass must not exceed the Kaluza-Klein scale which, as dis-

cussed in [160], means that W0 � V1/3
0 . Requiring the supersymmetric term to be larger

than the soft term while both moduli are stabilized always violates this bound.

The bilinear soft term dominates

If, on the other hand, m̃ � χ0m3/2 ∼ m3/2/V0, the term proportional to m̃m3/2 may

drive inflation. In this case, the leading-order inflaton potential reads

V (ϕ) ≈ χ0

4
m̃m3/2ϕ

2

(
1− 1

4aT0

m̃

m3/2

ϕ2

)
. (5.83)

The gravitino mass is constrained by the generic requirement (5.81). Interestingly, by

requiring m3/2 < MKK for consistency, the volume of the compactification manifold is

bounded from above,

V0 . 103 . (5.84)

A numerical example for this scenario is depicted in Fig. 5.7. The CMB observables in

this case are

ns = 0.964 ,

r = 0.116 ,
(5.85)

at ϕ? ≈ 15.2. Modulus destabilization towards the run-away minimum occurs at ϕc ≈ 18.

5.6 Universality and CMB observables

We can make a number of intriguing observations regarding all effective potentials found

in our three examples. We observe that a simple expression captures all models and their

flattening of the inflaton potential by moduli back-reaction,

V (ϕ) =
1

2
m2
ϕ ϕ

2 − 1

4
λϕ4 , λ > 0 . (5.86)

This expression is valid at leading order in the modulus shift, and thus holds for a certain

range ϕ < ϕc until the moduli are destabilized.

Due to the negative quartic term the potential has a local maximum at ϕM = m/
√
λ.

All three scenarios share the property that the moduli destabilization point occurs to

the left of the maximum of the leading-order inflaton potential,

ϕc < ϕM . (5.87)
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Hence, V (ϕ) is a good approximation for ϕ < ϕc. Two parameters determine the

effective potential, m/
√
λ gives the position of the maximum and m fixes the overall

normalization of V (ϕ). Thus, we can write the potential in terms of m and ϕM,

V (ϕ) =
1

2
m2
ϕ ϕ

2

(
1− ϕ2

2ϕ2
M

)
. (5.88)

As long as ϕM, ϕc � 1 inflation can occur to the left of the local maximum. For ϕM →∞
the potential asymptotes to the pure quadratic form. In this limit, the field value ϕ?

corresponding to Ne(ϕ?) e-folds of slow-roll before the end of inflation takes the limiting

value ϕ? = 2
√
Ne, which for Ne = 50− 60 is about 15.

For smaller ϕM the 60 e-fold point lies increasingly close to the local maximum

and the destabilization point. Thus, for ϕc → ϕ? the inflationary dynamics changes

continuously from the quadratic large-field behaviour to a nearly hill-top small-field

model. Correspondingly, the scalar spectral index and r are decreased compared to pure

quadratic inflation. For more details and an illuminating parameter plot we refer to the

original publication [39].

Inflaton potentials of this type arise in the context of non-minimally coupled quadratic

inflation [161] and more recently in subcritical models of D-term hybrid inflation [38,

80, 81]. As the leading-order scalar potential is the same in all our models, the CMB

observables agree as well. A detailed account is given in [80,81]. There it was found that

imposing the most recent observational constraints on ns and r leads to a lower bound

on the tensor-to-scalar ratio,

r & 0.05 , (5.89)

for 60 e-folds of inflation. For the reasons given above, this bound applies to all of our

example models. It is particularly interesting in the light of the most recent CMB data,

which favor a tensor-to-scalar ratio of this magnitude [13].



74 Chapter 5. Supersymmetry-Breaking Moduli Stabilization and Chaotic Inflation



Chapter 6

D-Term Inflation and Moduli

Stabilization

Many of the interesting back-reaction effects we studied in the previous chapters also

arise when inflation is driven by D-terms instead of F-terms. In D-term hybrid inflation

(DHI) the vacuum energy sourcing the accelerated expansion of the universe is deter-

mined by a Fayet-Iliopoulos term associated with a U(1) gauge symmetry, as outlined

in Section 2.3.3. As a step towards a UV embedding of this mechanism, we study the

consistency of DHI with supersymmetric moduli stabilization. String theory embed-

dings of hybrid inflation have been discussed thoroughly in the literature, and in all

of the proposed scenarios moduli stabilization is a critical issue [162–167]. Along the

lines of Chapter 4 we analyze D-term inflation and its coupling to a single supersym-

metric Kähler modulus in string-effective supergravity models. Depending on the source

of the FI term the interplay between inflation and moduli stabilization can be highly

non-trivial. We study two different cases, inflation with a constant FI term and with a

modulus-dependent one.

In the first case, treated in Section 6.1, the back-reaction of the modulus simplifies

significantly because the inflaton superpotential vanishes exactly during inflation. This

becomes clear from the results obtained in Chapter 4. The back-reaction of a heavy

Kähler modulus on the dynamics of DHI has been previously studied in [168]. Fur-

thermore, we point out an intriguing relation between our setup of DHI with stabilized

modulus and superconformal D-term inflation, cf. [79, 169]. After inflation we break

supersymmetry spontaneously with a Polonyi field without spoiling moduli stabilization

or inflation, and derive stringent bounds on the allowed gravitino mass.

With regard to a possible UV embedding of DHI, it was noted in [170–172] that

constant FI terms in supergravity are potentially inconsistent. However, supergrav-
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ity models in which the arguments of these references do not apply have been stud-

ied in [173–175]. Whatever the outcome of this discussion, so far there are no known

four-dimensional effective theories derived from string theory which contain constant FI

terms. String theory, however, provides an elegant mechanism which generates “field-

dependent FI terms”1 which, from the perspective of cosmology, may play a similar role

as their constant counterparts. We study inflation driven by these field-dependent FI

terms in Section 6.2. In this case, even a very heavy modulus never fully decouples

from the dynamics of inflation. After listing the potential problems of known setups,

we propose a mechanism which achieves moduli stabilization and a phase of subcritical

DHI, as discussed in Section 2.3.4.

The results summarized here have been published in [35, 38]. Regarding inflation

with a constant FI term, in this thesis we focus on the modulus back-reaction and the

inclusion of spontaneous supersymmetry breaking via a Polonyi field. The emphasis of

Section 6.2 lies on the challenges of stabilizing a charged modulus, and the interplay

between inflation and the stabilization mechanism described in Section 3.4.3.

6.1 Inflating with a constant FI term

6.1.1 Moduli corrections

To study the interaction of DHI, as introduced in Section 2.3.3, with a supersymmetri-

cally stabilized modulus we start with a no-scale Kähler potential of the form

K = −3 ln

[
T + T − 1

3

(
|φ|2 + |S+|2 + |S−|2

)
− χ

6

(
φ2 + φ̄2

)]
, (6.1)

and the superpotential

W = Winf +Wmod(T ) , (6.2)

where Winf is given by Eq. (2.40). The particular form of Wmod is irrelevant for our

discussion, as long as the conditions (3.46) are fulfilled in the true vacuum after inflation.

Our choice of Kähler potential, although it has only little impact on our results, deserves

a few remarks. The first two pieces in the logarithm, i.e., the case χ = 0, arise in many

string compactifications and are thus well-motivated from the perspective of the UV-

complete theory. The last piece proportional to χ, a real constant, is necessary because

1Notice that this terminology is somewhat misleading. The “field-dependent FI term” is the D-term of a

modulus field which transforms non-linearly under a U(1) symmetry. Thus, it is quite different in nature from

the constant gauge-invariant term introduced by Fayet and Iliopoulos in [176].
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the inflaton contained in φ must be protected by an appropriate symmetry to avoid

the η problem. Our choice corresponds to a version of the underlying superconformal

symmetry of supergravity. A detailed treatment of this symmetry is beyond the scope of

this thesis. For a detailed introduction to superconformal supergravity we recommend

[177], as well as [169] for the connection to D-term inflation. Notice that for χ = 1

the Kähler potential reduces to the standard no-scale form with a shift symmetry for φ.

Therefore, the reader may consider the additional piece and χ as a parameterization of

a generalized shift symmetry.

An important ingredient in addition to the F-term potential defined by Eqs. (6.1)

and (6.2) is the D-term potential, which reads

VD =
g2

2

[
1

Ξ
(|S+|2 − |S−|2) + ξ

]2

, (6.3)

where Ξ denotes the argument of the logarithm in Eq. (6.1) and ξ is an FI term of

unspecified origin, treated here as a constant.2 As before, S± are chosen to carry U(1)-

charge ±1.

Integrating out T , S+, and S− to study the effective potential of φ works analogously

to the procedure discussed in Section (4.1). Although the form of the Kähler potential

is different, the results are similar. S+ and S− remain stabilized at the origin until the

waterfall transition. In particular, they are not displaced by the back-reaction of T .

Integrating out T yields correction terms proportional to Winf, which vanishes identi-

cally during inflation. Therefore, all leading-order modulus corrections vanish in this

case. This is, however, only true as long as T is stabilized supersymmetrically, and thus

Wmod(T0) = W ′
mod(T0) = 0. In this sense, the interaction between DHI and a supersym-

metrically stabilized modulus is trivial and inflation proceeds unperturbed as described

in Section 2.3.3.

6.1.2 Relation to superconformal symmetry and the Starobinsky model

We mentioned before that our choice of Kähler potential is motivated by the supercon-

formal symmetry of supergravity. By illuminating this connection we can make contact

with another successful supergravity model of inflation, the Starobinsky model proposed

in [23].

Specifically, the authors of [79] developed a model of D-term inflation with the same

2As explained in more detail in App. A.1.1 this can actually not be a constant FI term since the superpotential

we choose is gauge-invariant. It may, for example, be an FI term which depends on the vacuum expectation

values of mesonic fields [178].
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superpotential as ours, and the following Kähler potential,

K = −3 ln

(
−1

3
Φ

)
, (6.4)

where

Φ = −3 + |φ|2 + |S+|2 + |S−|2 +
χ

6

(
φ2 + φ̄2

)
, (6.5)

is the so-called frame function. This type of frame function characterizes a large class

of models, cf. [179] for details. The superconformal symmetry, which is the starting

point in constructing these models, is explicitly broken by the term proportional to χ

and by gauge fixing the so-called compensator field, resulting in the appearance of the

Planck scale in Eq. (6.5). This particular symmetry-breaking structure allows to keep

the attractive features implied by the superconformal symmetry.

In [79] the D-term scalar potential is found to be

VD =
g2

2

[
Ω2
(
|S+|2 − |S−|2

)
+ ξ
]2
, (6.6)

with Ω2 = − 3
Φ

. This is identical to Eq. (6.3) after a suitable field redefinition,

φ =
√
T + T φ′ , S± =

√
T + T S ′± . (6.7)

The F-term scalar potential is invariant under these redefinitions since the Kähler func-

tion K + ln |W |2 is invariant. In particular,

K(φ, S±) = −3

2
ln
(
T + T

)
+ ln Ω−2(φ′, S ′±) ,

ln |W (φ, S±)|2 = +
3

2
ln
(
T + T

)
+ ln |W (φ′, S ′±)|2 .

(6.8)

Hence, even after rescaling inflation proceeds as discussed in Section 2.3.3 and the F-term

potential vanishes along the inflationary trajectory, as it does in in the model of [79].

Another intriguing connection was pointed out in [169]. In the large-field regime, i.e.,

if inflation proceeds in the regime φ� 1, superconformal D-term inflation is asymptot-

ically equivalent to the Starobinsky model. In particular, at leading order in N−1
e the

predictions for the scalar spectral index and the tensor-to-scalar ratio coincide,

ns ≈ 1− 2

Ne

, r ≈ 12

N2
e

. (6.9)

This makes D-term hybrid inflation even more appealing, since these predictions match

CMB observations very well for Ne ≈ 55− 60.
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6.1.3 Bounds on the scale of supersymmetry breaking

During inflation the D-term determined by ξ and g breaks supersymmetry. After in-

flation, however, the model defined by Eqs. (6.1)-(6.3) has a supersymmetric vacuum.

Therefore, it is necessary to check whether it can be combined with a separate sector of

supersymmetry breaking without spoiling either inflation or moduli stabilization.

As in our discussion of moduli stabilization in Chapter 3 we can break supersymmetry

with a Polonyi field X in the way outlined in Section 3.2.2. Again, we choose

W = W0 + fX , K = |X|2 − |X|
4

Λ2
, (6.10)

so that X0 ≈
√

3
6

Λ2 and

m2
X =

f 2

2T 3
0 Λ2

. (6.11)

By an appropriate choice of parameters we can realize a hierarchy of scales,

mT > mX > H � m3/2 , (6.12)

and allow for low-energy supersymmetry breaking. Remember that m3/2 is determined

by f , cf. Eq. (3.15). Requiring that mX & H and demanding Λ2 & f in the effective

theory defined by Eqs. (6.10) leads to the lower bounds

f, Λ2 & 10−10 , (6.13)

where we have used that H ∼ 0.1M2
GUT ≈ 10−5 in DHI.

This appears surprising because, starting from supersymmetric moduli stabilization,

one may have expected that an arbitrarily small value of the gravitino mass is possible.

However, since both mX and the mass scale Λ are constrained by the scale of inflation,

one is driven to a regime of intermediate-scale supersymmetry with

m3/2 & 105 GeV . (6.14)

Even if the Polonyi field is allowed to be lighter than H but heavier than the inflaton,

thus taking part in the dynamics of inflation, this bound is not significantly relaxed.

Furthermore, it is independent of the mechanism of inflation. It only depends on the

energy scale H and is therefore generic in all models of high-scale inflation.

Notice that the choice of parameters in the Polonyi sector only slightly influences

the modulus sector and vice versa. Therefore, in a large portion of parameter space

the proposed mechanism of supersymmetry breaking does not interfere with moduli
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stabilization. Quantifying the impact of the Polonyi field on the dynamics of inflation

is slightly more involved. During inflation, X is displaced by the inflationary vacuum

energy. Integrating it out consistently leads to a mass term for the inflaton of the form

∆m2
φ = m2

3/2 (1 + χ)2 , (6.15)

at leading order in f .3 Note that this term is present even before integrating out T , which

yields small corrections of higher order in φ2. Eq. (6.15) implies that successful inflation

also puts an upper bound on the gravitino mass, unless χ = −1, which corresponds to

a shift-symmetric Kähler potential.4 For χ 6= −1, we can demand that the correction to

the slow-roll parameter η induced by (6.15) does not alter the prediction for ns by more

than 1σ. This leads to the upper bound

m3/2 .
1010 GeV

|1 + χ|
. (6.16)

The bound resulting from the correction to the slow-roll parameter ε is less severe. We

conclude that our model can be extended by a simple supersymmetry breaking sector

without spoiling any of its features. In this setup, the gravitino mass has to satisfy lower

and upper bounds,

105 GeV . m3/2 . 1010 GeV , (6.17)

which are due to the high scale of inflation and an inflaton mass term induced by

supersymmetry breaking in the vacuum, respectively.

6.2 Inflating with a field-dependent FI term

The interaction between T and D-term inflation becomes much more interesting if we

drop the notion of a constant FI term and instead attempt to drive inflation with a

T -dependent term. Such terms arise when the U(1) symmetry under consideration has

anomalies which are cancelled by the transformation of the axion associated with T .

This was first observed in context of the Green-Schwarz mechanism [131] in heterotic

string theory [180]. A similar situation may arise in type IIB string theory, cf. [181]

for an instructive discussion. For a more detailed treatment of D-terms associated with

anomalous U(1) symmetries we refer the reader to Appendix A.1. There it is shown that

3We have assumed that 2T0 � |φ|2 towards the end of inflation, which can be satisfied even in the large-field

regime discussed in [169].
4As naively expected, a shift symmetry protects the inflaton from soft mass terms like the one in Eq. (6.15).

Remember that we previously encountered this important fact in Chapter 5.
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the D-term potential of an anomalous U(1)A for a Kähler modulus T and a number of

chiral superfields φα can be written as,

VD =
4π

T + T

(∑
α

qαKαφα + ξGS

)2

, (6.18)

with

ξGS ≡ −δGS ∂TK '
3δGS

T + T
. (6.19)

In particular, we assume the absence of a constant FI term. It seems that, if T is

stabilized at a high scale with a suitable vacuum expectation value, the last piece in VD

can play the role of a constant FI term and thus drive D-term inflation. In fact, this

was already proposed in the original reference [180] and later in [182].

However, it was realized later that moduli stabilization is a subtle issue in the presence

of the field-dependent FI term [183,184]. Gauge invariance of the modulus superpotential

poses severe restrictions on possible setups [181, 185–187]. In particular, it has been

shown that invoking non-perturbative superpotential terms for T requires the inclusion

of additional fields charged under U(1)A. Otherwise, T can not be stabilized in a gauge-

invariant way. This can be achieved, for example, by including a non-Abelian gauge

sector with chiral matter which undergoes gaugino condensation [188,189].

The authors of [38] have attempted to clarify whether a field-dependent FI term can

play the role of an effective constant which drives inflation. Following that account we

discuss a series of obstacles which prevent possible setups from resembling the simple

controllable model reviewed in Section 2.3.3. Taking stabilization of all additional fields

into account, it turns out that in all feasible setups of modulus stabilization with non-

perturbative superpotentials the modulus never decouples from the dynamics of inflation,

leading to much more complicated multi-field inflation models. We remark, however,

that in cases where the modulus that generates the FI term does not appear in the

superpotential some of our arguments may be avoided. This can be realized, for example,

in the Large Volume Scenario, cf. the related discussion in [190].

In subcritical DHI, on the other hand, a separation of the modulus from the inflaton

dynamics seems possible in many moduli stabilization schemes. We provide an example

in which the effective theory, after integrating out the modulus and the heavy U(1)

vector supermultiplet supersymmetrically, is identical to single-field chaotic inflation.

This proceeds along the lines of the discussion of the inflation model in Section 2.3.4.
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6.2.1 Stabilizing a charged modulus field

As explained above, the field-dependent FI-term of a modulus T scales as (T +T )−1 and

the corresponding Lagrangian scales as (T + T )−3. Thus, to prevent T from running

away to infinity we must consider an appropriate mechanism to stabilize it.

Naively, we could assume that T obtains a large supersymmetric mass mT � ξGS by

some unspecified mechanism so that the field-dependent FI term becomes an effective

constant. However, it was argued in [184] that this assumption is inconsistent. The

reason is that the vector superfield V of U(1)A would receive the same large mass

mT via the Stückelberg mechanism. This, however, immediately implies that one can

integrate out V supersymmetrically at the scale mT which excludes the existence of an

FI term in the effective theory. Hence, a more careful treatment of modulus stabilization

is required in the presence of the field-dependent FI term.

The standard procedure, as discussed in Chapter 3, is to stabilize T by employing

instantonic contributions to the superpotential of the form

W = W0 +
∑
j

Aje
−ajT . (6.20)

The interplay of one or several such terms with a constant W0 or with corrections to the

Kähler potential can lead to stable minima for T .

The coefficients Aj are typically assumed to be constant in the effective theory and

may arise from integrating out other heavy moduli. However, if T contains the Green-

Schwarz axion, constant coefficients Aj would result in a violation of U(1)A gauge in-

variance. In order to remedy the theory, the Aj must be promoted to functions Aj(φα)

of chiral superfields φα which carry charge under U(1)A. Writing each piece of the

superpotential in the form

W ⊃ A(φα) e−q0T/δGS , (6.21)

gauge invariance implies q [A(φα)] = −q0 for the charge of the function A, cf. the trans-

formation (A.9). Superpotential terms as in Eq. (6.21) arise, for example, in intersecting

D-brane models where the couplings between matter fields are suppressed by the world-

sheet instanton action. Generation of Yukawa couplings of this type has first been

treated in [191,192], for a review cf. [132]. Similar couplings are well-known in heterotic

string theory [133].

Alternatively, the φα can be associated with mesonic states of a strongly coupled non-

Abelian gauge theory. Let us consider an SU(Nc) gauge theory with one pair of quarks

{Q, Q̃} transforming as (Nc, q) and (N̄c, q̃) under SU(Nc)×U(1)A, respectively. In other

words, they are matter fields in the fundamental and antifundamental representations of
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SU(Nc). Since they are also charged under U(1)A, they enter the D-term potential. To

ensure that their D-terms do not cancel ξGS, which must be non-zero to drive inflation,

we assume q + q̃ > 0. The gauge theory undergoes gaugino condensation at a scale

Λ = e−2πT/(3Nc−1) . (6.22)

At energy scales below Λ the effective theory can be described by canonically normalized

mesonic degrees of freedom

M ≡
√

2QQ̄ . (6.23)

The gauge-invariant superpotential, first computed in [193], reads5

W = (Nc − 1)

(
2 e−2(q+q̃)T/δGS

M2

) 1
Nc−1

, (6.24)

after inserting the expression for δGS in Eq. (A.10). Thus, in the case of gaugino con-

densation the function A in Eq. (6.21) is generically non-analytic. This is important

since any field with negative U(1)A charge6 entering A can potentially cancel the FI

term through its vacuum expectation value. Only for non-analytic A the inclusion of

negatively charged fields is unnecessary.7

From the perspective of modulus stabilization the dependence of A on other chiral

fields is undesirable. In particular, the non-perturbative superpotential of Eq. (6.21) in-

duces couplings of the modulus to other light degrees of freedom, rather than generating

a mass term. Only if the fields φα themselves are stabilized appropriately an effective

modulus mass term may arise. As will become clear in the following discussion, this is

difficult to achieve in combination with successful hybrid inflation.

6.2.2 The challenge of realizing inflation

Having discussed modulus stabilization, let us analyze whether DHI can proceed with a

field-dependent FI term. We are interested in situations where the modulus T is stabi-

lized during inflation and does not perturb the dynamics of DHI, i.e., a situation similar

to the one found in Section 6.1. As a starting point, assuming that the superpotential

explicitly depends on the charged modulus, we consider

W = Winf +Wmod(T ) , (6.25)

5Note that the superpotential for a gaugino condensate without an anomalous U(1) was proposed much

earlier in [188,189].
6Notice that exchanging ‘negative charge’ with ‘positive charge’ is merely a choice of convention. Only the

sign relative to ξGS is of importance.
7This fact was used in [181] to construct consistent string models with KKLT stabilization and D-term uplift.
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where Winf is again given by Eq. (2.40). Following the previous discussion, we choose

Wmod = A(φα)e−q0T/δGS + . . . , (6.26)

responsible for modulus stabilization. In order to promote the instanton contribution

to a mass term, stabilization of the fields φα must be achieved by one of the following

mechanisms.

Vector-like mass terms

The presence of gauge anomalies implies charged chiral states in the spectrum. However,

the φα which enter A(φα) may be only a subset of the charged spectrum. Hence they

might not contribute to the anomaly, i.e., they could still have large vector-like mass

terms of the form

Lvector = m2
vφαφ̄α . (6.27)

In this case we can integrate out all fields φα and φ̄α supersymmetrically. This, in turn,

yields A(φα) = 0. This would imply that the instanton term disappears in the effective

theory below the scale mv. Note, however, that this is not necessarily true if A(φα) is

a non-analytic function as in gaugino condensation. In that case vector-like mass terms

do not appear because the effective degrees of freedom, the mesons in Eq. (6.23), are

already two-particle states.

Soft mass terms

Soft mass terms for the φα may be generated by non-vanishing F- and D-terms, i.e., by

supersymmetry breaking. If the field-dependent FI term is not canceled, gauge-mediated

soft masses of the form

LDsoft = g2qα ξGS|φα|2 , (6.28)

arise. In addition, depending on the mechanism of modulus stabilization and supersym-

metry breaking, gravity-mediated soft terms may appear.8 For a minimal choice of the

Kähler potential, these are expected to be of the form

LFsoft = m2
3/2|φα|2 . (6.29)

8Notice that the inflaton, when protected by a shift symmetry of the Kähler potential, does not receive a

soft mass term at tree level.
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Mass terms from spontaneous symmetry breaking

Finally, if U(1)A is broken spontaneously, Yukawa couplings can become effective mass

terms. Consider, for example, a mesonic state M which couples to the waterfall field S−

as follows,

LYuk = λS−M
2 . (6.30)

In the true vacuum of the theory S− cancels the FI term and the meson receives the

mass λ〈S−〉.
From this discussion it is clear that modulus stabilization either requires the sponta-

neous breaking of U(1)A or the breaking of supersymmetry. In principle, all ingredients

exist within the simple DHI setup of Section 2.3.3. During inflation supersymmetry is

broken by the inflaton sector while the U(1) symmetry is intact. After inflation super-

symmetry is restored but the U(1) is spontaneously broken by the vacuum expectation

value of S−. While this may lead to successful stabilization of all fields, the responsible

mechanism is clearly different during and after inflation. Therefore, the modulus sector

does not decouple from the inflaton dynamics and we are left with an inflation model

with several dynamical degrees of freedom. This may happen, for example, in the super-

symmetric racetrack scheme studied in [102]. Moreover, depending on the shape of the

potential, the motion of the modulus at the end of inflation may lead to a manifestation

of the Polonyi problem.

To obtain the simple controllable DHI setup, the same mechanism of modulus sta-

bilization must operate in the entire cosmological history. This requires the inclusion of

additional sources of supersymmetry breaking which fix the modulus during and after

inflation. A similar conclusion has previously been drawn in [184]. There it was noted

that, in a field-dependent realization of DHI, F-terms and D-terms must split their roles

in a way that F-terms provide modulus stabilization while D-terms drive inflation. As-

suming that the modulus mass is comparable to the gravitino mass, mT ∼ m3/2, as in

many of the mechanisms reviewed in Chapter 3, results in the constraint

m3/2 > gξGS , (6.31)

which ensures that the modulus decouples from inflation. In the following, we wish to

point out that a series of problems arises even if this constraint is satisfied.

First, no negatively charged fields beyond S− should be present in the spectrum.

Such fields receive large tachyonic masses during inflation, analogous to Eq. (6.28), and

tend to cancel ξGS. Therefore, we consider the case of gaugino condensation, where the

function A in the instanton term contains only the positively charged mesonic fields,
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cf. the discussion in Section 6.2.1. It turns out that in this setup, condition (6.31)

is insufficient to decouple the modulus sector from inflation. This is because during

inflation the FI term induces a soft mass term proportional to mM ∼ g
√
ξGS for the

meson fields.9 These soft masses are enhanced compared to the Hubble scale since they

originate from gauge mediation. In order to avoid that the mesons, and as a consequence

also the modulus, are shifted by large amounts at the end of inflation, the gauge-mediated

masses should be sub-dominant. This can be achieved by introducing even larger gravity-

mediated soft masses mM ∼ m3/2 > g
√
ξGS. At the same time the waterfall fields must

be protected against such large gravity-mediated masses by a specific choice of Kähler

potential, otherwise inflation would never end. The origin of this sequestering could lie

in a higher-dimensional theory where the dominant source of supersymmetry breaking

is localized on a different brane than the waterfall fields, cf. the discussion in [194].

Second, even in this case, another type of problem occurs related to the size of the

instanton term. Given that modulus stabilization must proceed via supersymmetry

breaking, we expect that

FT ∼ A(φα) e−aT ∼ m3/2 . (6.32)

For the case of a condensing SU(Nc) gauge theory with a single meson M , one finds

A(M) = (Nc − 1)M−2/(Nc−1) . (6.33)

The meson is then stabilized by the interplay of this instanton term and its soft mass

term, as explained in detail in [185]. Evidently, the instanton term is responsible for a

large vev of M , which we can schematically write as

〈M〉 ∼ FT
mM

. (6.34)

Given a meson mass mM ∼ m3/2, the minimum lies at 〈M〉 ∼ 1 in Planck units.

Therefore, if the constraint (6.31) holds, the D-term contribution of the meson exceeds

the size of the field-dependent FI term. This is inconsistent with having an effective

realization of standard DHI.10

In order to find a possible way out of this apparent predicament, one may invoke

schemes of modulus stabilization with mT � m3/2. An example of this kind may be

stabilization via additional Kähler potential terms as proposed, for example, in [82]. But

9Without loss of generality we assume qM ∼ O(1) for the U(1)A charge of the mesons.
10While it may be possible to obtain an approximate version of DHI with an FI term generated by stabilized

mesons, the analysis of such schemes is beyond the scope of this work. For a detailed discussion of this option

we refer the reader to [178].
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even this is not a full solution to the problem, as stabilization of the mesons still requires

a very large gravitino mass and DHI is spoiled by the large displacement of the meson,

cf. Eq. (6.34).

To summarize, in models where a field-dependent FI term drives inflation there is

always an intimate connection between modulus stabilization and inflation. Generically,

the modulus does not decouple from the dynamics of inflation. When trying to ob-

tain the simple controllable scheme of DHI as an effective theory, a series of problems

arises. These problems are related to the fact that inflation back-reacts on the modulus

stabilization and vice versa. While we have shown that there is no straight-forward real-

ization of DHI with a field-dependent FI-term, we can not exclude that it arises to some

approximation by a very delicate engineering of the Kähler potential and the mechanism

of modulus stabilization.

These considerations lead us to consider D-term inflation in a regime where the D-

term has actually been cancelled. This is the mechanism of subcritical DHI discussed

in Section 2.3.4. In this scheme, T can be stabilized conveniently via the breaking of

U(1)A, without the need for gaugino condensates. The obstacles mentioned above are

absent in this case.

6.2.3 Inflating in the chaotic regime of D-term inflation

From the previous discussions it is clear that to circumvent the above problems, inflation

may proceed in the subcritical regime of DHI, while the Kähler modulus which cancels

the anomalies of U(1)A is stabilized by the mechanism of Section 3.4.3. This is, of

course, different from the standard mechanism of DHI. In fact, it is not even D-term

inflation since the vacuum energy during inflation is determined by the F-term of one of

the waterfall fields. Nevertheless, we consider it an instructive example.

Let us investigate the theory defined by the superpotential

W = χ+

(
S2
−e
−T/δGS −mS−

)
+ λφS+S− , (6.35)

which is obtained by adding the superpotential of DHI to the superpotential in Eq. (3.51)

and identifying the waterfall field S− with the field which renders the instantonic term

gauge-invariant. As in previous examples, the inflaton field ϕ =
√

2Imφ is protected by

a shift symmetry in the Kähler potential. The Kähler potential reads

K = −3 ln
[
T + T − |S−|2 − |S+|2 − |χ+|2 + (φ+ φ̄)2

]
. (6.36)

Here, as in our previous examples, we implicitly assume that the inflaton is part of the

matter sector of a possible string theory embedding. In this particular case it could be
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associated with a Wilson line scalar with the shift symmetry being a consequence of

higher-dimensional gauge invariance. For a recent discussion of large-field inflation with

such Wilson lines, cf. [150].

Along the lines of Section 2.3.4 we can absorb S− into the vector superfield, which

we integrate out supersymmetrically to obtain the effective theory for the remaining

degrees of freedom. For more details we refer to the original publication [38]. We find

the following effective superpotential and Kähler potential,

W = δGS χ+

(
e−T/δGS − 3mT

)
+ λ
√
δGS φS+ , (6.37)

K = −3 ln

[
T + T − δGS − |S+|2 − |χ+|2 +

(|S+|2 + |χ+|2)2

2δGS

+ (φ+ φ̄)2

]
, (6.38)

where we have used Eq. (3.57) to express m in terms of the modulus mass. If mT > H

the modulus decouples from the dynamics and can be integrated out together with χ+.

The resulting effective theory for φ and S+ is defined by

W = m̂φ̂Ŝ+ , K = |Ŝ+|2 −
|Ŝ+|4

2ξGS

− 1

2
(φ̂+

¯̂
φ)2 , (6.39)

where we have introduced the mass parameter m̂ = λ
√
ξGS/3

√
6 and the canonically

normalized superfields

Ŝ+ =

√
3

2T0 − δGS

S+ , φ̂ =

√
6

2T0 − δGS

φ , (6.40)

with T0 given by Eq. (3.56). Evidently, by integrating out all heavy degrees of freedom

we have obtained the standard realization of chaotic inflation, cf. Section 2.3.1, as an

effective theory.

A few more comments are in order. For finite mT a small correction to the predictions

of chaotic inflation arises due to a displacement of the modulus during inflation, similar

to the one derived in Chapter 4. Integrating out T at its shifted vacuum expectation

value induces an inflaton-dependent correction to the scalar potential. The leading-

order correction can be found by expanding V around T0, along the lines of Section 4.1.

Specifically,

V =
1

(T + T − δGS)2

[1

2
m̂2ϕ̂2(2T0 − δGS)2 + 3m2

T |T − T0|2
]
, (6.41)

where ϕ̂ =
√

Im φ̂ is the canonically normalized inflaton field. Minimizing this expression

with respect to T gives

T − T0 =
2T0 − δGS

3m2
T

m̂2ϕ̂2 . (6.42)
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For the leading-order effective inflaton potential we obtain

V = V0

(
1− 4

3

V0

m2
T

)
, (6.43)

with V0 = 1
2
m̂2ϕ̂2. Notice that the numerical coefficient of the correction term differs

from the result obtained in Section 4.2.2 due to the different choice of Kähler potential.

As naively expected in supersymmetric stabilization, the correction induced by the shift

of the modulus disappears in the limit where T is infinitely heavy.

Similar to our discussion in Chapter 5, modulus stabilization in the effective theory

implies constraints on the initial conditions of the system. In particular, inflation can not

begin at arbitrarily large field values of ϕ̂ because, to ensure that T remains stabilized

in the entire cosmological history, the energy density of the universe must never exceed

the modulus mass. This is a conceptual shortcoming which remains to be addressed in

many effective theories of inflation with moduli stabilization. It is a common problem

of all four-dimensional descriptions of string-effective supergravity.
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Chapter 7

Conclusion and Outlook

Embeddings of cosmic inflation in supergravity and string theory give rise to a number

of interesting phenomena. In the scenarios considered here, inflation takes place at an

energy scale close to the GUT scale and the Planck scale. This, as well as the flatness of

the inflaton potential, makes supergravity descriptions of inflation sensitive to Planck-

scale physics, as, for example, described by string theory. Whenever inflation is treated

in the context of string theory, the issue of moduli stabilization must be addressed.

We have demonstrated that the requirement of stability of all moduli in the entire

cosmological history leads to a number of constraints on both moduli stabilization and

inflation schemes.

In F-term inflation we have formulated these constraints in quite general terms.

For supersymmetric moduli stabilization, i.e., for setups which produce supersymmetric

Minkowski vacua after inflation, we have calculated back-reaction terms from heavy

Kähler moduli for arbitrary superpotentials. All of these correction terms vanish if the

moduli are infinitely heavy. For realistic moduli masses above the Hubble scale, the

corrections are sizeable and affect the predicted CMB observables in many models. We

have demonstrated this in the examples of hybrid inflation and chaotic inflation with a

stabilizer field. On the other hand, inflation affects the potential for the moduli. The

vacuum energy sourced by the inflaton acts as an uplift of the moduli, so that the moduli

masses must lie close to the GUT scale to ensure stability of the extra dimensions.

Furthermore, we have generalized this analysis by including the effects of spontaneous

supersymmetry breaking in the moduli sector. The latter occurs in many successful

moduli stabilization schemes, such as KKLT stabilization or the Large Volume Scenario.

In these cases, there are a number of non-decoupling effects like soft mass terms for the

inflaton. The strength of the back-reaction of these terms increases with the mass of

the moduli. By the example of chaotic inflation without a stabilizer field we have shown

91
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that this leads to challenges for large-field inflation in string theory. In particular, the

parameters and initial conditions must be chosen carefully to ensure stability of the extra

dimensions and to allow for inflation in accordance with observations. Moreover, chaotic

inflation with a stabilizer field is incompatible with such moduli stabilization schemes

due to mutually exclusive constraints on the gravitino mass. On the one hand, moduli

stabilization with spontaneous supersymmetry breaking requires at least m3/2 & H to

ensure stability of all moduli. On the other hand, supersymmetry breaking induces a

back-reaction of the stabilizer field which makes inflation unfeasible unless m3/2 . H.

Lastly, we have studied the back-reaction of heavy Kähler moduli on D-term inflation.

If inflation is driven by a constant FI term, all moduli corrections decouple due to

a suppression of the inflaton superpotential. There are, however, constraints on the

gravitino mass in the vacuum after inflation, forcing supersymmetry to be broken at

an intermediate scale 105 GeV . m3/2 . 1010 GeV. Driving inflation with the field-

dependent FI term of an anomalous U(1) symmetry, on the other hand, is non-trivial.

Gauge invariance of the superpotential forces the introduction of additional fields in

the modulus sector, making it difficult to decouple the latter from inflation. We have

discussed a series of obstacles which prevent the realization of the standard DHI scheme.

To evade these obstacles we have proposed a version of subcritical DHI in which the

moduli are stabilized by Yukawa couplings and world-sheet instantons.

The phenomena studied in this thesis may have a variety of consequences for string

theory models of inflation. The alleged discovery of primordial gravitational waves by the

BICEP2 collaboration [12], by now ascribed to foreground contaminations, has sparked

renewed interest in such models. Explicit or semi-realistic string theory constructions like

the ones in [41,130,148,150,151,154,195,196] have demonstrated that the back-reaction of

moduli on the inflationary trajectory is important. In particular, in all of them the back-

reaction can be studied by means of four-dimensional effective supergravity Lagrangians

as described here. Constraints from inflation, like the necessity of moduli masses close to

the GUT scale, hold in all setups available so far. They teach us valuable lessons about

possible compactification manifolds and the selection of string theory vacua. At the

same time constraints from moduli stability may leave testable string theory imprints

in the CMB fluctuations which are in reach of experiments in the near future.

Let us conclude this thesis with a few biased remarks. The concepts and models

studied in this work are connected to a number of open discussions, and raise a number

of questions which deserve to be commented on.

First, assuming that the very early universe developed in a phase of single-field

inflation, it is presently unknown whether small-field or large-field inflation is realized
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in nature. From a conceptual point of view small-field inflation entails a number of

advantages. These are, for example, control over the effective field theory and Planck-

suppressed operators, as well as its well-understood relation to post-inflationary thermal

evolution like reheating and the production of dark matter, cf. [197] for an enlightening

discussion and a comprehensive list of references. Furthermore, it has been shown in

many examples that small-field inflation can be realized in string theory, cf. [45]. Large-

field inflation seems to require the existence of appropriate symmetries which protect the

flatness of the inflaton potential on super-Planckian distances. While such symmetries

– approximate ones, at least – do exist in string theory, realistic models of large-field

high-scale inflation are difficult to reconcile with moduli stabilization, and potentially

with other aspects of cosmology and particle physics. Without resorting to full string

theory compactifications we have analyzed several of these difficulties in this thesis.

Moreover, the effectiveness of axionic shift symmetries in string theory has recently

been questioned by the authors of [198–200]. They argue that gravitational instantons

generically obstruct large-field inflation driven by axions. Given that we have made use

of shift symmetries in our examples of large-field inflation, these arguments may apply

to string theory implementations of some of the models presented in this thesis. Hence,

on purely conceptual grounds it seems that small-field inflation is simply easier to treat.

From the perspective of CMB observations as guidance for model building, on the other

hand, large-field inflation is clearly more appealing. The discovery of a non-vanishing

tensor-to-scalar ratio from primordial gravitational waves would be constructive proof

for large-field inflation, while the confirmation of r ≈ 0 would merely hint towards the

realization of small-field inflation in nature. In the latter case one has to use other

observables to distinguish between different models of inflation and to find definite proof

for an inflationary epoch itself. Therefore, as emphasized before, the CMB data expected

in the next few years is vital to achieving progress in inflationary model building. Until

then it seems more instructive to constrain existing models than to invent new ones with

a plethora of predictions.

Second, in this thesis we have not taken Standard Model fields into account. But, as

mentioned before, during inflation all fields must be heavier than the Hubble scale for

single-field inflation to work. Since supersymmetry is always broken during inflation all

relevant matter fields are expected to receive soft mass terms of the same order as the

Hubble scale. In many cases this implies a mass hierarchy between the matter fields and

the inflaton. But fields with Hubble-scale masses may in some cases still contribute to

the fluctuations generated by the inflaton field. As pointed out in [201–206], and most

recently in [207], a very interesting situation arises when many fields are stabilized close
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to the Hubble scale. On the path to a consistent theory of inflation and particle physics,

the models discussed in this thesis certainly deserve a careful investigation of this issue.

Our third and last remark is related to the scale of supersymmetry breaking and the

mass of the lightest supersymmetric partners. As stated in the beginning, the LHC has

set lower bounds on these scales close to the TeV scale. However, high-scale inflation

with consistent moduli stabilization seems to favor supersymmetry at a much higher

scale. If supersymmetry is broken by Kähler moduli as discussed in this thesis, or by

fluxes in the internal manifold, one typically has m3/2 . MGUT ∼ 1016 GeV. In this

case many of the virtues of supersymmetry are futile. High-scale supersymmetry does

not solve the Standard Model hierarchy problem, and may even be unfit to protect the

inflaton mass from quantum corrections. The only way to avoid this predicament seems

to be supersymmetric moduli stabilization. However, this either requires a substantial

amount of fine-tuning or the presence of additional stabilizer fields which interact with

the moduli in a specific way. Hence it is doubtful whether supersymmetric stabilization

is implemented in nature to reconcile high-scale inflation with low-energy supersymme-

try. This implies that a discovery of low-energy supersymmetry during the next run of

the LHC would put immense pressure on many available setups. One may view this

as a shortcoming of high-scale inflation or of the available mechanisms for moduli sta-

bilization. A few critical arguments regarding the latter are worth pointing out: As

explained before, most moduli stabilization schemes require substantial fine-tuning for

self-consistency and for compatibility with inflation and phenomenology. Thus, many

examples which are viable as toy models are unnatural in some way. Furthermore, since

these schemes are mostly toy models, usually a large portion of the full string theory

superpotential is discarded. Generically, there is a plethora of non-perturbative terms

which can depend on various moduli in intricate ways. It is computationally and concep-

tually challenging to prove that the mechanisms discussed in this thesis are viable in full

string theory compactifications. Connected to this is the question whether reheating can

be implemented successfully. The reheating mechanism crucially depends on couplings

between the inflaton and other matter fields which are encoded in the superpotential.

Therefore, neglecting parts of the latter can have severe implications. Moreover, it may

be troubling that in high-scale inflation the moduli masses are necessarily close to the

GUT scale. This means that in generic string compactifications with O(100) moduli

fields all of them must have masses between the GUT scale and the string scale, i.e., in

an interval of typically one or two orders of magnitude. It is far from obvious that this

can be achieved. Of course, these shortcomings of moduli stabilization schemes do not

imply that high-scale inflation describes the evolution of the early universe correctly.
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But, hopefully, this question can be settled by precision CMB data in the near future.
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Appendix A

A.1 Fayet-Iliopoulos terms in supergravity and string theory

A.1.1 Constant FI terms

In a supergravity theory with U(1) gauge interactions the Lagrangian is determined

by the choice of superpotential W , Kähler potential K, gauge kinetic function f , and

Killing vectors kα specifying the gauge transformation properties of chiral superfields

φα. The superpotential and Kähler potential enter the Lagrangian in the combination

G = K + ln |W |2 , (A.1)

which must be gauge-invariant. The gauge kinetic function transforms trivially under

the U(1) up to a possible shift required for anomaly cancellation. It determines the

gauge coupling as g2 = (Re f)−1. In case the U(1) symmetry is linearly realized, chiral

superfields φα transform as

φα → eiqαεφα , (A.2)

where ε is a chiral superfield gauge transformation parameter and qα denotes the charge

of φα. This corresponds to the choice of Killing vector kα = iqαφα. The transformation

of the U(1) vector superfield V can be written as

V → V − i

2
(ε− ε̄) . (A.3)

The scalar potential may contain an F-term and a D-term piece, i.e., V = VF +VD with

VF = eK
(
KαᾱDαWDᾱW − 3|W |2

)
, (A.4)

VD =
1

2Re f
D2 . (A.5)

We can write D-terms associated with the U(1) as [175]

D = −ikαGα = −ikαKα−i
Wα

W
kα︸ ︷︷ ︸

≡ ξ

. (A.6)
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Notice that, by gauge invariance of the supergravity Lagrangian, W may transform

with a constant phase denoted by ξ. This is the local variant of the constant FI term

introduced in [176] in the context of globally supersymmetric theories. This means,

in particular, that in supergravity a constant FI term can only be present when the

superpotential is not gauge-invariant.

A.1.2 Field-dependent FI terms

Depending on the full gauge group and chiral spectrum of the theory under considera-

tion, a U(1) symmetry like the one in Section A.1.1 can have anomalies, in which case

we denote it by U(1)A. This is actually the generic situation in many string compactifi-

cations. The anomalies manifest as divergences of the gauge current J , i.e.,

∂µJ
µ ∝ c1AG2−U(1)A

trFµνF̃µν + c2AU(1)3
A
FµνF̃

µν + c3Agrav2−U(1)A
trRµνR̃

µν , (A.7)

where F , F , and R denote the field strengths of a non-Abelian gauge group piece G,

U(1)A, and the Riemann tensor, respectively. The pre-factors ci are model-dependent

and the anomaly coefficients A are given by

AG2−U(1)A
=
∑
f

qf`(Rf ) , AU(1)3
A

=
∑
α

q3
α , Agrav2−U(1)A

=
∑
α

qα . (A.8)

The first sum runs over all chiral fermions transforming in the representation R of G and

`(R) denotes the quadratic index of R. The sums in the second and third expression

run over all chiral fermions.

For the theory to be consistent, all anomalies must be canceled by the four-dimensional

version of the Green-Schwarz mechanism [131]. This means there must be at least one

axion which shifts under U(1)A, and this shift cancels all anomalies via its coupling

to the field strengths. Motivated by compactifications of type IIB string theory, we

take the axion to be the imaginary part of a Kähler modulus T and assume all other

moduli to be stabilized by fluxes [31]. Note that the discussion proceeds analogously in

heterotic string theory with the dilaton playing the role of the Kähler modulus. The

transformation of T under U(1)A reads

T → T − iδGSε , (A.9)

which corresponds to the Killing vector kT = −iδGS. In what follows we consider the case

G = SU(Nc) and Nf quark pairs transforming as (Nc, q) and (N̄c, q̃) under SU(Nc) ×
U(1)A, respectively. Cancellation of the pure U(1)3

A and the mixed SU(Nc) × U(1)2
A
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anomaly then implies [181]

δGS =
1

6πκ

∑
α

q3
α =

1

4πκ̃
Nf(q + q̃) , (A.10)

where the sum again runs over all chiral fermions. We do not impose additional con-

straints on δGS related to the cancellation of the gauge-gravity anomaly, as in type IIB

orientifold compactifications the coupling of the axion to the Riemann tensor is model-

dependent [208]. The coefficients κ and κ̃ which enter the above equation are O(1)

constants which appear in the gauge kinetic functions, i.e.,

f =
κ

2π
T , f̃ =

κ̃

2π
T , (A.11)

for U(1)A and SU(Nc), respectively. The U(1)A gauge coupling is given by

g2 =
1

Re f
=

4π

κ(T + T )
, (A.12)

and similarly for the gauge coupling of the SU(Nc). In the following we choose a nor-

malization which coincides with the one used in the work of KKLT [32], i.e., κ = κ̃ = 1
2
.

Since T transforms non-trivially under U(1)A, the familiar no-scale Kähler potential

must be modified accordingly,

K = −3 ln
(
T + T

)
−→ K = −3 ln

(
T + T − 2δGSV

)
. (A.13)

Allowing for the presence of additional chiral fields φα which transform linearly under

U(1)A, the D-term potential reads

VD =
4π

T + T

(∑
α

qαKαφα + ξGS

)2

, (A.14)

where we have assumed gauge invariance of W , i.e., the absence of a constant FI term

in VD. The piece

ξGS ≡ −δGS ∂TK '
3δGS

T + T
, (A.15)

is usually called a field-dependent FI term in the literature [180]. Notice that a D-term

like this can only arise in theories with an anomalous U(1) symmetry. In a theory

without anomalies, a non-trivial shift of an axion associated with a modulus or the

dilaton field introduces an anomaly itself.
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A.2 Useful supergravity formulae

Scalar masses in supergravity with Minkowski background are given by [185,209–211]

m2
αβ̄ = eG

(
Gαβ̄ −Rαβ̄γδ̄G

γGδ̄ +∇αG
γ̄∇β̄Gγ̄

)
,

m2
αβ = eG (2∇αGβ +Gγ∇α∇βGγ) ,

(A.16)

without taking canonical normalization into account. Here, Rαβ̄γδ̄ is the Riemann cur-

vature of the Kähler manifold and Γαβγ = Gαᾱ∂βGγᾱ. Notice that these expressions can

be used to compute physical masses in the ground state of the theory, but not during

inflation. The fermionic mass matrix, on the other hand, is given by

(m̃F )αβ = eG/2(∇αGβ +GαGβ) . (A.17)

After extracting the goldstino-gravitino mass mixing, the fermionic mass matrix becomes

(mF )αβ = eG/2
(
∇αGβ +

1

3
GαGβ

)
= eK/2

(
DαDβW −

2

3W
DαWDβW

)
. (A.18)

The fermionic masses also define the supersymmetric contribution to the scalar masses.

Hence, we can define the soft scalar mass matrix m0 by subtracting the fermionic mass

contribution,

m2
αβ̄ = (mFm

†
F )αβ̄ + eG

(
Gαβ̄ −Rαβ̄γδ̄G

γGδ̄ +
1

3
GαGβ̄

)
≡
(
mFm

†
F

)
αβ̄

+
(
m2

0

)
αβ̄

,

m2
αβ = 2eG/2(mF )αβ + eG

(
−2

3
GαGβ +Gγ∇α∇βGγ

)
,

(A.19)

where
(
mFm

†
F

)
αβ̄

= Gγγ̄(mF )αγ(mF )β̄γ̄ ≡ (m2
S)αβ̄. Furthermore, it is useful to define

the inverse supersymmetric mass matrix,

(
m−2
S

)ᾱδ
= Gβγ̄

(
mF

−1
)βδ (

m−1
F

)ᾱγ̄
, (A.20)

which satisfies the relations

(mF )αβ
(
m−2
S

)αβ̄
= Gβγ̄(m

−1
F )β̄γ̄ ,

(
m−2
S

)αβ̄
(mF )β̄γ̄ = Gβγ̄

(
mF

−1
)βα

. (A.21)
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A.3 Integrating out supersymmetry-breaking moduli

A.3.1 Obtaining the general result

The coefficients of the Taylor series in Eq. (5.38) are given by

V0 = eK0

{
Kαβ̄

0 [Wα +K0,αWmod]
[
W β̄ +K0,β̄Wmod

]
− 3|Wmod|2

}
, (A.22a)

V1 = eK0

{
−1

2
Kαβ̄

0

(
K0,β̄DαWmod +K0,αDβ̄Wmod

)
+mK−1

1 +
3

2
(Wmod +Wmod)

}
,

(A.22b)

V2 =
1

4
eK0

{
Kαβ̄

0 K0,αK0,β̄ − 3
}
, (A.22c)

where DαWmod = Wmod,α + K0,αWmod. Expanding these coefficients at leading order in

δTα � Tα,0 leads to

V0(Tα, T ᾱ) =
1

2

(
δTα δT ᾱ

)(m2
αβ̄

m2
αβ

m2
ᾱβ̄

m2
ᾱβ

)(
δT β̄
δTβ

)
+ . . . , (A.23a)

V1(Tα, T ᾱ) = V1(Tα,0, T ᾱ,0) +
∂V1

∂Tα
δTα +

∂V1

∂T ᾱ
δT ᾱ + . . . , (A.23b)

V2(Tα, Tα) = V2(Tα,0, T ᾱ,0) + . . . , (A.23c)

keeping only the leading-order terms up to fourth order in ϕ. m2
αβ̄

and m2
αβ denote the

mass matrices of the moduli fields in the true vacuum, defined by Eqs. (A.16). In the

expansion of V0 we have used that the cosmological constant vanishes in the vacuum

and that the moduli trace their minima adiabatically. In particular,

V0(Tα,0, T ᾱ,0) = ∂αV0|T=T0 = 0 . (A.24)

Plugging the results in Eqs. (A.23) back into V and inserting the correct moduli displace-

ment in the potential leads to the general expression in Eq. (5.40). By a straight-forward

computation we find

∂V1

∂Tα
|T=T0 = eK0

{
− 1

2
Kβγ̄

0

[
Kγ̄DαDβWmod + (Kαβ +KαKβ − ΓγαβKγ)Dγ̄Wmod

]
+DαWmod +KαWmod +mK−2

1 (KαK1 −K1,α)

}
, (A.25)

where DαDβW = ∇αDβW +KαDβW .

Using the mass formulae of Appendix A.2, we can further simplify the effective

potential. In particular, using the approximation that the supersymmetric mass scale is
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much larger than m3/2 we find(
∂V1

∂Tα
∂V1

∂T ᾱ

)((m−2)αβ̄ (m−2)αβ

(m−2)ᾱβ̄ (m−2)ᾱβ

)(
∂V1

∂T β̄
∂V1

∂Tβ

)

≈ ∂V1

∂Tα
(m−2)αβ̄

[
∂V1

∂T β̄
−m2

β̄γ̄(m
−2)γ̄β

∂V1

∂Tβ

]
+ h.c.

≈ 1

2
eK0Kαβ̄

0 K0,αK0,β̄ −
1

2
e3K0/2

{
Kδ(m

−1
F )βδ

[
−Kεε̄

0 (Kβε +KβKε − ΓγβεKγ)Dε̄Wmod

+ 2DβWmod + 3KβWmod + 2mK−2
1 (K0,βK1 −K1,β)

]
+ h.c.

}
.

(A.26)

After inserting this into V we find the approximate effective potential Eq. (5.42). We

remark that there are subtleties involved: when supersymmetry is broken, the fermion

mass matrix has a zero eigenvalue, corresponding to the goldstino direction. Therefore,

it is necessary to make the scalar partner of the goldstino very heavy so that its entry

in the inverse scalar mass matrix can be neglected and Eq. (5.42) indeed can be used to

obtain the leading-order result. However, it would be interesting to find an analogous

expression to Eq. (5.42) in cases where this is not possible.

A.3.2 Nearly-supersymmetric stabilization

If the supersymmetric masses are much larger than the supersymmetry breaking scale,

mF � m3/2, we can expand the inverse mass matrix,

m2
αβ̄ =

(
m2
S

)
αγ̄

[
δγ̄
β̄

+
(
m−2
S

)γ̄δ (
m2

0

)
δβ̄

]
(A.27)

to obtain (
m−2

)ᾱβ ≈ (m−2
S

)β̄β [
δᾱβ̄ −

(
m−2
S

)ᾱδ (
m2

0

)
δβ̄

]
. (A.28)

In this limit the holomorphic terms m2
αβ are small, so that for the inverse of the mass

matrix

M2 =

(
m2
αβ̄

m2
αβ

m2
ᾱβ̄

m2
ᾱβ

)
, (A.29)

we find

M−2 ≈

(
(m−2)β̄γ −(m−2)β̄γm2

γβ(m−2)βγ̄

−(m−2)βᾱm2
ᾱβ̄

(m−2)β̄γ (m−2)βγ̄

)
. (A.30)

This result allows us to find the approximate scalar potential in Eq. (5.42).
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