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Abstract

This thesis deals with quaternionic pseudo-Kahler manifolds obtained from Hay-
dys’ HK/QK correspondence with particular emphasis on complete quaternionic
Kahler manifolds of negative scalar curvature that appear in certain string theory

constructions.

The starting point for the HK/QK correspondence is a pseudo-hyper-Kéhler
manifold endowed with a real-valued function fulfilling certain assumptions. In
particular, the function is the Hamiltonian for a Killing vector field, which pre-
serves one of the three complex structures while rotating the other two. The
HK/QK correspondence then constructs a quaternionic pseudo-Kéhler manifold
of the same dimension, which is endowed with a Killing vector field. A shift
of the Hamiltonian function by an additive constant leads to a one-parameter

family of deformations of the resulting quaternionic pseudo-Kéahler metric.

We give a new and self-contained proof that the manifolds obtained from the
HK/QK correspondence are quaternionic pseudo-Kéhler. We reprove the known
relation between the HK /QK correspondence, conical pseudo-hyper-Kéhler mani-
folds and the hyper-Kéahler quotient construction. As a new result, we prove
the compatibility of the HK/QK correspondence with the hyper-Kéhler and
quaternionic Kéhler quotient constructions. As an example, we show that a one-
parameter family of quaternionic Kahler manifolds obtained from the cotangent
bundle of complex projective space via the HK/QK correspondence is locally iso-
metric to quaternionic projective space for one choice of parameter and locally

isometric to another Wolf space for a different choice of parameter.

We show that all manifolds in the image of the supergravity c-map can be ob-
tained via the HK/QK correspondence from a manifold in the image of the rigid
c-map. We also show that the shift of the Hamiltonian function in this class
of examples leads to the one-loop deformed supergravity c-map. We show that
in each family of quaternionic Kahler manifolds obtained from the one-loop de-
formed supergravity c-map, all manifolds with positive deformation parameter

are pairwise isometric.

We show that for a large class of examples, the quaternionic Kahler manifolds
obtained from the one-loop deformed supergravity c-map with positive defor-
mation parameter are complete if the undeformed metric is complete. This in
particular gives explicit deformations by complete quaternionic Kahler metrics of

all Wolf spaces of non-compact type (except for quaternionic hyperbolic space)
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and of all non-symmetric Alekseevsky spaces.

We give an explicit realization of Salamon’s E-H formalism and use this to
calculate the quartic symmetric tensor field determining the Riemann curvature
tensor of a quaternionic Kéhler manifold for all manifolds in the image of the
g-map. We use this to show that the members of an explicit series of complete
quaternionic Kahler manifolds that we construct from the g-map are not locally

homogeneous.



Zusammenfassung

Die vorliegende Dissertation beschéftigt sich mit Haydys’ HK/QK-Korrespon-
denz mit besonderem Augenmerk auf vollsténdige quaternionische Kahler-Man-
nigfaltigkeiten, die aus bestimmten Konstruktionen in der Stringtheorie stam-

men.

Den Ausgangspunkt der HK/QK-Korrespondenz bildet eine Pseudo-Hyper-
Kahler-Mannigfaltigkeit, die mit einer reell-wertigen Funktion versehen ist, welche
bestimmte Voraussetzungen erfiillt. Insbesondere ist die Funktion hamiltonsch
beziiglich eines Killing-Vektorfeldes, welches eine der drei komplexen Strukturen
erhélt und die anderen beiden rotiert. Die HK/QK-Korrespondenz konstruiert
dann eine quaternionische Pseudo-Kahler-Mannigfaltigkeit der selben Dimen-
sion, versehen mit einem Killing-Vektorfeld. Das Verschieben der Hamilton-
Funktion um eine additive Konstante fiihrt zu einer Ein-Parameter-Familie von

Deformationen der resultierenden quaternionischen Pseudo-Kéahler-Metrik.

Wir présentieren einen neuen, eigenstéandigen Beweis fiir die Tatsache dass die
durch die HK/QK-Korrespondenz konstruierten Mannigfaltigkeiten quaternio-
nisch pseudo-Kahlersch sind. Wir weisen erneut den bekannten Zusammenhang
zwischen der HK/QK-Korrespondenz, konischen Pseudo-Hyper-Kéhler-Mannig-
faltigkeiten und der Hyper-Kahler-Quotienten-Konstruktion nach. Als ein neues
Resultat zeigen wir dass die HK/QK-Korrespondenz mit den Hyper-Kéhler- und
Quaternionisch-Kéhler-Quotienten-Konstruktionen vertraglich ist. Als Beispiel
zeigen wir, dass eine per HK/QK-Korrespondenz vom Kotangentialraum des
komplex projektiven Raumes erhaltene Ein-Parameter-Famile von quaternio-
nischen Kahler-Mannigfaltigkeiten fiir eine bestimmte Wahl des Parameters lokal
isometrisch zum quaternionisch projektiven Raum und fiir eine andere Wahl des

Parameters lokal isometrisch zu einem weiteren Wolf-Raum ist.

Wir zeigen, dass alle Mannigfaltigkeiten im Bild der Supergravitations-c-Abbil-
dung per HK/QK-Korrespondenz aus Mannigfaltigkeiten im Bild der rigiden
c-Abbildung konstruiert werden kénnen. Desweiteren zeigen wir, dass das Ver-
schieben der Hamilton-Funktion fiir diese Klasse von Beispielen zu der Ein-
Schleifendeformation der Supergravitations-c-Abbildung fithrt. Wir zeigen dass
in jeder durch die Ein-Schleifendeformation der Supergravitations-c-Abbildung
erhaltenen Familie von quaternionischen Kahler-Mannigfaltigkeiten alle Mannig-

faltigkeiten mit positivem Deformationsparameter paarweise isometrisch sind.

Fiir eine grofle Klasse von Beispielen zeigen wir, dass die durch die Ein-Schleifen-
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deformation der Supergravitations-c-Abbildung mit positivem Deformationspa-
rameter erhaltenen quaternionischen Kahler-Mannigfaltigkeiten vollstandig sind,
wenn die undeformierte Metrik vollstandig ist. Dadurch erhalten wir insbeson-
dere fiir alle Wolf-Rdume vom nicht-kompakten Typ (bis auf den quaternio-
nisch hyperbolischen Raum) und alle nicht-symmetrischen Alekseevsky-Raume

explizite Deformationen durch vollstandige quaternionische Kahler-Metriken.

Wir geben eine explizite Realisierung von Salamon’s E-H-Formalismus und be-
nutzen diese um das, den Riemann-Tensor einer jeden quaternionischen Kahler
Mannigfaltigkeit bestimmende, symmetrische quartische Tensorfeld fiir alle Man-
nigfaltigkeiten im Bild der g-Abbildung zu bestimmen. Dies verwenden wir um
zu zeigen, dass alle Mitglieder einer aus der q-Abbildung konstruierten Serie von
vollstandigen quaternionischen Kahler-Mannigfaltigkeiten nicht lokal homogen

sind.
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Chapter 1

Introduction

1.1 Background and motivation

Quaternionic Kahler manifolds constitute a field of study that is of strong in-
terest to both theoretical physicists and to pure mathematicians. For already
more than three decades, this field has seen vast mutual influence from physics
and mathematics and has stimulated a considerable amount of interdisciplinary
collaborations. Similarly to Kahler and hyper-Kéhler geometry, quaternionic
Kéahler geometry was invented by mathematicians and later turned out to be

related to supersymmetry.

In differential geometry, quaternionic Kahler manifolds are widely known for ap-
pearing on Berger’s list of all possible holonomy groups of simply connected, irre-
ducible, non-locally symmetric Riemannian manifolds [Be]. In fact, quaternionic
Ké&hler manifolds (of dimension greater than four) can be defined as Riemannian
manifolds whose holonomy group is contained in Sp(n) - Sp(1) ~ %ﬁs’m.
Alekseevsky showed that all (pseudo-)quaternionic Kéhler manifolds are Ein-
stein [A1]. In this thesis, we exclude the case of zero scalar curvature in the
definition of quaternionic Ké&hler manifolds (a simply connected quaternionic
Kéhler manifold of zero scalar curvature would be hyper-Kéhler, see e.g. [Swl]).
This leaves us with two very different cases: quaternionic Kahler manifolds of
positive scalar curvature and quaternionic Kéhler manifolds of negative scalar
curvature (see the discussion below). Since quaternionic Kéhler manifolds of
negative scalar curvature are the ones related to supergravity, many results on
quaternionic Kéahler manifolds of positive scalar curvature will remain unmen-
tioned in this thesis. See Salamon’s essay [Sa2], Chapter 12 in the book [BoGal]

1



2 Chapter 1. Introduction

by Boyer and Galicki, or Amann’s thesis [Amann| and references therein for an
overview of the results on quaternionic Kéhler manifolds that can be found in

the mathematical literature.

On the physics side, quaternionic Kahler manifolds play a crucial role in super-
gravity and string theory: They appear as the target spaces for hyper-multiplet
scalar fields in three- and four-dimensional N = 2 supergravity theories, as was
shown by Bagger and Witten in [BW]. The type of target space geometry de-
pends on the space-time dimension, on the amount of supersymmetry and on
the representation chosen for the matter multiplets of the supergravity theory.
Since different supergravity theories can be related by the technique of dimen-
stonal reduction, there often exist surprising and non-trivial relations between the
corresponding target space geometries. In particular, dimensional reduction of
four-dimensional N = 2 vector multiplets to three-dimensional hyper-multiplets
leads to the so-called supergravity c-map, which assigns a 4(n + 1)-dimensional
quaternionic Kahler manifold of negative scalar curvature to each 2n-dimensional
projective special Kdahler manifold. This construction was worked out by Ferrara
and Sabharwal in [FS], which is why the quaternionic Kéhler metric of mani-
folds in the image of the supergravity c-map is often called the Ferrara-Sabharwal
metric. Similarly, the reduction of five-dimensional N = 2 vector multiplets to
four-dimensions leads to the supergravity r-map, which assigns a 2n-dimensional
projective special Kéhler manifold to each (n — 1)-dimensional projective spe-
cial real manifold. The latter construction was worked out by de Wit and Van
Proeyen in [DV]. The composition of the supergravity r- and c-map is called
the ¢-map. The supergravity c-map is realized in the low energy limit of type II
string theories compactified on a Calabi-Yau three-fold. Quantum corrections to
the Ferrara-Sabharwal metric appearing in this context are investigated in much
detail in the physics literature. While the full non-perturbative correction to the
Ferrara-Sabharwal metric is still unknown (see [Alex] for a review or [AB] for the
latest paper), the perturbative corrections in the string coupling constant g, were
fully determined in [RSV]. In this paper, Robles-Llana, Saueressig and Vandoren
give an explicit expression for the one-loop deformed Ferrara-Sabharwal metric
and argue that higher loop contributions are excluded. While the supergravity
c-map, as well as the supergravity r-map, are known to preserve completeness
[CHM], the question of completeness for the one-loop deformation constituted

an open problem prior to this thesis (see the appendix of [ACDM)]).

In this thesis, we often consider pseudo-Riemannian analogues of quaternionic

Kéhler manifolds that have arbitrary signature. All symmetric quaternionic
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pseudo-Kéhler manifolds were classified by Cortés and Alekseevsky in [AC].
Their list of examples contains in particular the following three series of sym-
metric pseudo-quaternionic Kahler manifolds which each consist of one example

for every possible dimension and signature:

ke Splk+1,0)
P = 50 = ok O
_ SU(k+2,0)
X (k) = S[U(2) x Uk, )]’
Yk, 0) = 200k +4,0) (1.1)

~ SO(4) x SOy(k, )

The sign of the scalar curvature is of no particular relevance in the study of
quaternionic pseudo-Kahler manifolds of arbitrary signature. In the examples
chosen in the above equation, the sign of the scalar curvature is positive. It can
be changed by changing the sign of the metric and, hence, inverting the signature.
Since in this thesis, we will focus a lot of attention on the Riemannian case, we
also introduce the following notations for quaternionic pseudo-Kahler manifolds

of negative scalar curvature:
HH" .= —HP** X(k,0) .= =X ((,k), Y(k () := =Y (k). (1.2)

In the Riemannian case, the classification of symmetric quaternionic Kéahler
manifolds goes back to Wolf [W]. For this reason, symmetric quaternionic
Kéhler manifolds are called Wolf spaces (of compact type in the case of posi-
tive scalar curvature, respectively of non-compact type in the case of negative
scalar curvature). There is one Wolf space of compact type for every compact
simple Lie group, i.e. the Wolf spaces of compact type consist of the three series
HP" := HP™?, X(n) := X(n,0) and Y (n) := Y (n,0), and of five exceptional
examples corresponding to the Lie groups Gs, Fy, Eg, E7 and Es. We denote the
non-compact duals of HP", X (n) and Y (n) by HH" := HH™°, X (n) := X(n,0)
and Y (n) := Y (n,0), respectively. Apart from HH" and X (n), all Wolf spaces
of non-compact type are in the image of the q-map. X(n) is, however, in the

image of the supergravity c-map [GST, DV].

In the case of positive scalar curvature, it is conjectured by LeBrun and Salamon
that all complete quaternionic Kéhler manifolds are symmetric, i.e. that they are
Wolf spaces of compact type [LS]. As supporting evidence, they showed that up
to isometry and rescaling, there are only finitely many examples of such manifolds

in each dimension. In dimension four and eight, the LeBrun-Salamon conjecture
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was proven by Hitchin, respectively by Poon and Salamon (see the references
in [LS]). In higher dimensions, the conjecture is still open and constitutes the

biggest open problem in the field of quaternionic Kahler manifolds.

In the case of negative scalar curvature the situation is very different and there
are for instance examples of homogeneous, non-symmetric quaternionic Kéhler
manifolds, the so-called normal quaternionic Kéhler manifolds or Alekseevsky
spaces [A2, DV, Co|. The latter are all in the image of the g-map [DV]. LeBrun
showed that in the case of negative scalar curvature, complete non-locally ho-
mogeneous quaternionic Kahler manifolds exist in abundance using deformation
theory on the twistor space of quaternionic hyperbolic space [L]. His proofs are
not constructive, however. Constructions of complete quaternionic Kahler me-
trics that are not locally homogeneous so far either use deformation theory with-
out giving explicit metrics (see e.g. [D] and references therein), the quaternionic
Kéhler quotient construction (see [G2], [G3], [BCGP], etc.), or are restricted to
low dimensions (see, e.g., [DFISUV]).

A rather recently discovered tool for the construction of quaternionic Kéahler
manifolds is the so-called HK/QK correspondence which was invented by Hay-
dys in [Ha] and extended to the pseudo-Riemannian setting in [ACM, ACDM].
As opposed to the (one-loop deformed) supergravity c-map, the HK/QK cor-
respondence can be used to construct quaternionic Kahler manifolds of both
positive and negative scalar curvature. While the correspondence has already
been investigated from various perspectives in [Ha, Hi4, MS1, MS2], the explicit
quaternionic Kahler metric coming from this construction has only been derived
and studied for very few examples and many questions about the construction
are still open. Especially the question of completeness of the quaternionic Kahler
manifolds obtained from the HK/QK correspondence is, up to now, entirely un-

explored.

1.2 Main results and outline

The HK/QK correspondence constructs a quaternionic pseudo-Kéhler manifold
(endowed with a non-vanishing Killing vector field) from a pseudo-hyper-Kéahler
manifold endowed with a real-valued function fulfilling certain properties. In
particular, the function is the Hamiltonian for a Killing vector field, which pre-
serves one of the three complex structures while rotating the other two. The

Hamiltonian function can be shifted by an additive constant, which leads to
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a one-parameter family of deformations of the resulting quaternionic pseudo-
Kéhler metric. As we will see in Chapter 4, the construction involves the choice
of an S!'-bundle with connection over the initial pseudo-hyper-Kéahler manifold

and the choice of a certain codimension one submanifold of the S'-bundle.

In this thesis, we give a new and self-contained proof of the fact that the mani-
folds obtained from the HK/QK correspondence are quaternionic pseudo-Kéahler
(see Theorem 4.1.2). Theorem 4.1.2 gives explicit expressions for the resul-
ting quaternionic Kahler metric, its signature, quaternionic structure and local
Sp(1)-connection one-forms. As a large class of examples, we apply the HK/QK
correspondence to all conical pseudo-hyper-Kéahler manifolds, which in particular
establishes the following HK/QK correspondence:

myo £ (n2 4 HK/QK cor. (HP™)° (¢ >0)
(B =R =™ Y (e <o),

where the superscript ¢ always denotes some open subset which will be specified
in the main text. For ¢ < 0, (H") is a proper subset of H" and thus incomplete,
while the resulting quaternionic Kahler manifold HHH™ is complete. This phe-
nomenon occurs in most of the examples of quaternionic Kahler manifolds with

negative scalar curvature that we study in this thesis.

We show how the HK/QK correspondence is related to conical pseudo-hyper-
Kéhler manifolds and to the Swann bundle construction (Theorem 4.2.1 and
Corollary 4.2.6) and we show a compatibility result between the HK/QK corres-
pondence and the hyper-Kahler and quaternionic Kéahler quotient constructions
(Theorem 4.3.1). These findings are illustrated with an example that in parti-
cular shows the following HK/QK correspondences:

cor. HP™)° =0
(TP, f = %(c + VI T 7)) e eon (EP™)” (e =0)
1

and

(T"CH"), f = —%(c + VT = 2)) e AT (c=0)
1

(X(n)* (c=

The first example shows that the one-parameter family of quaternionic Kéhler

metrics obtained via the HK/QK correspondence from the shift of the Hamilto-
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nian function on a given hyper-Kahler manifold can be extendible to a compact
manifold for two different choices of parameter. In this case, the resulting quater-
nionic Kahler manifold is locally isometric to two different Wolf spaces. The
second example shows that in some cases a complete quaternionic Kahler metric
can get deformed into an incomplete one. This also happens for the one-loop de-
formed supergravity c-map in the case of negative deformation parameter, while
on the other hand, completeness is preserved for positive deformation parameter

(see the discussion below).

For the supergravity c-map, we have the following results: We give a mathe-
matical proof of the fact that the one-loop deformed Ferrara-Sabharwal metric
is quaternionic Kéhler by showing that it can be obtained via the HK/QK cor-
respondence from a pseudo-hyper-Kahler manifold in the image of the so-called
rigid c-map (Theorem 5.4.1). Concerning completeness, we show that, for posi-
tive deformation parameter, the manifolds in the image of the one-loop deformed
g-map are complete, if the undeformed quaternionic Kahler manifold is complete
(Corollary 6.3.8). For X (n), we also show that the one-loop deformation is com-
plete (Corollary 6.3.6) and we show some progress towards the general case of
the one-loop deformed supergravity c-map (Proposition 6.3.10). For negative
deformation parameter, the one-loop deformed Ferrara-Sabharwal metric is al-
ways incomplete [ACDM, Rem. 9|. The undeformed case corresponds to the
choice of parameter ¢ = 0. Note that in the context of compactifications of type
IT string theories on a Calabi-Yau three-fold, a positive deformation parameter
corresponds to a negative Euler characteristic of the internal space in the case
of type ITA string theory, respectively to a positive Euler characteristic in the
case of type IIB [RSV].

These results in particular give deformations by complete quaternionic Kéhler
metrics of all Wolf spaces of non-compact type, except for quaternionic hyper-
bolic space, and of all non-symmetric Alekseevsky spaces. As opposed to [LS]
and similar approaches, we can here give explicit expressions of the deformed
metrics. The deformations are of the following kind: For any complete projec-
tive special Kéhler manifold, we have a family of complete quaternionic Kéhler
metrics g% depending on a parameter ¢ € RZ? on a fixed manifold N, where
(N, g%) is the undeformed quaternionic Kihler manifold in the image of the
supergravity c-map and all manifolds (N, g%g) with positive deformation pa-
rameter ¢ € R>Y are pairwise isometric (Proposition 5.5.2). For the case of the
Wolf space G5/S0(4), we show that the deformed metric is not locally homoge-

neous and hence different from the undeformed metric using computer algebra
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software (see Remark 6.3.9).

We also construct a series of complete non-locally homogeneous quaternionic
Kéhler manifolds in the image of the (undeformed) g-map, i.e. we have an ex-
ample in each dimension with an explicitly given metric that is not manifestly

constructed via a quaternionic Kahler quotient.
The thesis is structured as follows:

Chapter 2 gives a short introduction into quaternionic pseudo-Kahler geometry
including some well-known properties and discusses the pseudo-Riemannian ver-
sions of quaternionic projective and quaternionic hyperbolic space as examples.
It also reviews the quaternionic Kahler quotient construction, which is illustrated

by the examples

HP’““’K///S(Idiag.):X(k,ﬁ) and HH’“’”l///S(ldiag.):f((k,é).

In Chapter 3, we introduce pseudo-hyper-Kahler manifolds as well as the hyper-
Kéhler quotient construction. As an example, we show in particular how to ob-
tain the hyper-Kéhler structure on the cotangent bundles of complex projective
and complex hyperbolic space from a hyper-Kahler reduction. While in Section
3.6, we also discuss the Swann bundle construction and lifts of Killing vector
fields and isometric group actions from a quaternionic pseudo-Kéahler manifold
to its Swann bundle, most of Chapter 3 focuses on conical pseudo-hyper-Kdahler
manifolds and their relation to quaternionic pseudo-Kahler geometry. Conical
pseudo-hyper-Kéhler manifolds are local versions of Swann bundles and are cha-

racterized by possessing a certain homothetic vector field.

Chapter 4 introduces, proves, analyses properties of and illustrates the HK/QK
correspondence between pseudo-hyper-Kahler manifolds endowed with a certain
real-valued function and quaternionic Kahler manifolds of the same dimension

endowed with a non-vanishing Killing vector field.

Chapter 5 shows that all manifolds in the image of the one-loop deformed super-
gravity c-map can be obtained via the HK/QK correspondence from a manifold
in the image of the rigid c-map. Section 5.5 then summarizes properties of the

one-loop deformed supergravity c-map metric.

In Chapter 6, we study the completeness question for the manifolds in the image
of the one-loop deformed supergravity c-map while in particular giving a full

answer in the case of the one-loop deformed g-map.
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In Chapter 7, we give an explicit (local) realization of the complex vector bundles
E and H over a quaternionic Kahler manifold used in Salamon’s F-H formalism
introduced in [Sal]. This gives an easy and clear way to translate between
formulas in the mathematics literature and the quaternionic vielbein formalism
used in the physics literature. Using these formulas, we calculate a quartic
tensor field determining the curvature tensor for all manifolds in the image of
the g-map. This is then used to study an explicit series of complete quaternionic

Kéhler manifolds of negative scalar curvature constructed via the g-map.

1.3 Remarks and relation to other work

The quaternionic Kéhler quotient was introduced in [G1, GL]. The example
HP" ! J/S' = X (n) was the first example discussed by Galicki and Lawson and
the examples in Section 2.2 are a straightforward generalization thereof. The
hyper-Kéhler quotient construction was introduced in [LR] and [HKLR]. The
example H"™! /ST = T*(CP™) in Section 3.4 was first discussed in [LR] and
[Hil] (see [BoGal, Ex. 12.8.5] and references therein).

The results in Chapter 3 about conical pseudo-hyper-Kahler manifolds and their
relation to quaternionic Kéhler manifolds are essentially all known from [Swl].
Here, they are rephrased from a local point of view, which just assumes the exis-
tence of a vector field £, called the Fuler vector field, such that the Levi-Civita
connection V fulfills V.¢ = Id. This viewpoint was also taken in [ACM] and is
close to the treatment of the subject in the physics literature (see [DRV1, DRV2]
and references therein). We need explicit results and formulae about conical
hyper-Kéhler manifolds in this formalism to motivate the HK/QK correspon-

dence and to prove properties thereof in Chapter 4.

The account of the HK/QK correspondence presented in Chapter 4 and in par-
ticular the proof of the quaternionic Kahler property of the resulting metric
only make use of an S'-bundle over the original hyper-Kihler manifold and do
not involve a higher-dimensional conical hyper-Kéahler manifold. This approach
was also taken in [MS1, MS2], where so called elementary deformations of the
original hyper-Kéhler metric are used to relate the HK/QK correspondence to
Swann’s twist formalism [Sw2]. In [ACDM] and [Ha], the proof of the quater-
nionic Kéhler property of the resulting metric is based on the construction of
a higher-dimensional conical hyper-Kéhler manifold. In [Hi4], Hitchin discusses

the HK/QK correspondence from the point of view of the corresponding twistor
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spaces.

Note that the presentation of the HK/QK correspondence in Section 4.1 is en-
tirely self-contained. It just uses the basic facts about quaternionic Kahler geo-
metry introduced in Section 2.1. The reader who is just interested in applying
the HK/QK correspondence and in the proof that the resulting manifold is in-
deed quaternionic Kahler can skip Chapter 3 and go directly to Section 4.1.

Apart from Section 5.5, Chapter 5 has already appeared in a joint publication
with Alekseevsky, Cortés and Mohaupt [ACDM]. The result that the rigid and
the one-loop deformed supergravity c-map are related by the HK/QK corres-
pondence previously appeared in the physics literature in [APP]. On the level
of twistor spaces, the simple relation between quaternionic Kahler manifolds in
the image of the undeformed supergravity c-map and the corresponding pseudo-
hyper-Kahler manifolds in the image of the rigid c-map was already discovered
in [RVV1, RVV2]. For a treatment of the one-loop deformed supergravity c-
map on the level of twistor spaces, see [APSV] and references therein. In ad-
dition to what has already been published in [ACDM], we prove in Section
5.5 that for a given projective special Kahler manifold, the one-loop deformed
Ferrara-Sabharwal metrics g%¢ on N with ¢ > 0 are all pairwise isometric, i.e.
(N, g%5) = (N, g4s) for any c,d € R>°. For the example' G5/SO(4), we show
that (N, g%g) ~ G5/SO(4) and (N, gkg) are non-isometric using computer alge-

bra software (see Remark 6.3.9).

While the question of completeness for the undeformed supergravity c-map was
entirely answered in [CHM], the results on the completeness of the one-loop

deformed c-map in Section 6.3 are new.

Our formulas in Section 7.1 for the Levi-Civita connection and the curvature of
quaternionic Kahler manifolds in terms of the quaternionic vielbein formalism
can also be found in [BW, FS, ACDGV]. The Levi-Civita connection and the
curvature of the manifolds in the image of the supergravity c-map have been
calculated, respectively stated in [FS]. In Section 7.3 we do exactly the same
calculations for the case of the gq-map® For the Levi-Civita connection, we

extend the result to the one-loop deformed case.

Although part of the work on my article [CDL] with V. Cortés and D. Linde-

mann was done during my time as a PhD student, the classification of complete

1G%/S0(4) is the simplest example of a manifold in the image of the g-map.
ZWhile their result for the Levi-Civita connection agrees with ours, the result stated in [FS]
for the curvature at least seems to be missing terms.



10 Chapter 1. Introduction

projective special real surfaces will only be mentioned in a remark in Chapter 6.

1.4 Outlook

As another simple appli- HZ,O2

cation for the compatibi- ) A 5 H*

lity of the HK/QK-correspondence gl \

with the hyper-Kahler and [ HK/QK cor, HH™!
quaternionic Kahler quo- Y HKI I Vi QKS(ldiag.)
tient constructions, one T (C%l, 1) C Hr-L1 % (n)

could construct the mis- HK/QK cor.

sing hyper-Kahler manifold in the adjacent diagram on the right by performing
an appropriate hyper-Kahler quotient of HZ’OQ. This would reprove the HK/QK
correspondence between T*(C%,"") € H* 5! and X (n) = Gro2(C™?). These
are (up to a change of sign) the manifolds in the image of the rigid and su-
pergravity c-map, respectively, when the underlying projective special Kahler
manifold is complex hyperbolic space CH™~!. To fill in the missing manifold in
the diagram, one has to identify the Killing vector field on X (n) that is induced
by the HK/QK correspondence for the c-map in Chapter 5, find a corresponding
Killing vector field on HIH™ !, lift this vector field to H'; and then perform the
corresponding hyper-Kahler quotient.

In the case n = 1 for the above idea, there is a natural strategy to also understand

the one-loop deformed metric in this way:

The one-loop deformed uni- H1’02
<
versal hypermultiplet met- - A H*
ric can be expressed in k/’/ \
. ? i 171
terms of the hyperbolic o HK/QK cor.
eigenfunction ansatz for / I I// T

4-dimensional quaternionic T*(C%OI) C HO! (N, g&1)
Kiihler manifolds with two HK/QK cor.

commuting Killing vector fields given in [CP] (see Remark 8 in the appendix of
[ACDM]). The hyperbolic eigenfunction ansatz in turn can be (locally) expressed
as a quaternionic Kéhler quotient of HP? HH?, or HH"' [BCGP]. This can
be used to understand the HK/QK correspondence for the universal hypermul-
tiplet using the compatibility of the HK/QK correspondence with the HK and

QK quotient constructions using a diagram as depicted on the right.
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In [K], Kronheimer constructed all asymptotically locally Euclidean hyper-Kéhler
four-manifolds as hyper-Kéhler quotients of flat quaternionic vector spaces. In
[GN], Galicki and Nitta constructed quaternionic Kéhler orbifold analogues of
Kronheimer’s examples as quaternionic Kéahler quotients of quaternionic projec-
tive spaces. Using the compatibility of the HK/QK correspondence with hyper-
and quaternionic Kahler quotients, it should be possible to show that the mani-
folds constructed by Kronheimer are (locally) related to the orbifolds constructed
by Galicki and Nitta. For this class of examples, it would be interesting to work
out the respective Killing vector fields on both sides of the correspondence and
to study the deformations of the quaternionic Kahler metrics obtained from a

shift of the Hamiltonian function chosen on the hyper-Kahler side.

In more generality, one could try to systematically study the HK/QK corres-
pondence for all quaternionic Kahler quotients of quaternionic projective and
quaternionic hyperbolic space, or even for all quaternionic Kahler quotients of
symmetric quaternionic (pseudo-)Kéhler manifolds. The quaternionic Kéahler
quotients of symmetric quaternionic (pseudo-)Kéhler manifolds were systemati-

cally studied by Grandini on the level of Lie algebras in [Gr].

In this thesis, we did not pay much attention to quaternionic Kahler mani-
folds of positive scalar curvature, since in this case, all examples obtained from
the HK/QK correspondence are bound to be incomplete. In case the LeBrun-
Salamon conjecture is wrong, it is conceivable that some example of positive
scalar curvature obtained from the HK/QK correspondence can be completed to
a compact quaternionic Kahler manifold that is not symmetric. Candidates for
such a situation can be found by choosing a Killing vector field on a Wolf space
of compact type and then studying the one-parameter family of quaternionic
Kéahler manifolds resulting from a free choice of Hamiltonian function on the
hyper-Kahler side. This idea is highly speculative, but something similar did
happen before in the case of compact irregular Sasaki-Einstein manifolds:
Gauntlett, Martelli, Sparks and Waldram constructed compact irregular Sasaki-
Einstein manifolds in [GMSW2]| by extending a two-parameter family of local
metrics found in [GMSW1] to S? x S? for certain discrete choices of the parame-
ters. This very surprising and rather accidental finding contradicts a conjecture
by Cheeger and Tian which states that all Ricci-flat Kahler cones are standard
[CT].

It remains to investigate, whether the series of complete non-locally homoge-

neous quaternionic Kahler metrics constructed in Section 7.4 can be obtained
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via a quaternionic Kahler quotient from a symmetric quaternionic pseudo-Kahler
manifold. If this is not the case, these examples are manifestly different from all

examples that were previously discussed in the literature.

Using our curvature results from Chapter 7, we plan to study whether the
quaternionic Kéhler manifolds constructed in Section 7.4 (or other examples
obtained from the q-map) have non-positive sectional curvature. The only com-
plete quaternionic Kahler manifolds of non-positive sectional curvature that have
appeared in the literature so far are either locally symmetric or (non-explicit)

small deformations of quaternionic hyperbolic space.

The orthogonal series Y (n) of Wolf spaces can locally be obtained from the
HK/QK correspondence using its compatibility with the hyper-Kéahler and quater-
nionic Kahler quotient constructions and the fact that Y (n) = HP™ 3/ Sp(1) diag.)-
For a certain choice of Killing vector field on the quaternionic Kahler side, the
corresponding hyper-Kéhler manifold should (locally) be a hyper-Kéhler quo-
tient of flat quaternionic vector space by an Sp(1)-action. The family of defor-
mations of the quaternionic Kahler metric obtained from a shift of the Hamil-
tonian function is also worth studying in this case. Both this and the question

below can similarly be studied for the Wolf spaces of non-compact type.

It is a natural question to ask, how the exceptional Wolf spaces can be obtained
from the HK/QK correspondence. This question can be studied by choosing a
Killing vector field on an exceptional Wolf space, lifting it to the Swann bun-
dle and then performing the corresponding hyper-Kahler quotient of the Swann
bundle. This situation can be investigated systematically on the level of Lie

algebras.

The hyper-Kahler structure on cotangent bundles of Hermitian symmetic spaces
constructed by Biquard and Gauduchon constitutes a natural candidate for ap-
plying the HK/QK correspondence. Out of this large class of examples, we so
far only studied the cases CP™ and CH™.



Chapter 2
Quaternionic Kahler geometry

In Section 2.1, we introduce the notion of quaternionic (pseudo-)Kéhler mani-
fold and state some well-known properties. As examples, we discuss the pseudo-
Riemannian versions HP* ¢, HH* ¢ of quaternionic projective, respectively quater-

nionic hyperbolic space.

In Section 2.2, we introduce the quaternionic Kéahler quotient construction which
is due to Galicki and Lawson [G1, GL], and illustrate it with the example of the
Sl-action on HP*+1:¢ respectively HH* ‘! induced from the diagonal S'-action
on quaternionic vector space. This leads to symmetric quaternionic pseudo-

Kéhler manifolds defined by complex Grassmannians.

The discussion of the Swann bundle construction is postponed to Chapter 3 and
curvature properties of quaternionic Kahler manifolds are discussed in Chapter
7.

2.1 Quaternionic Kahler manifolds

Definition 2.1.1 A quaternionic (pseudo-)Kdhler manifold (M, g,Q) of
dimgM > 4 is a (pseudo-)Riemannian manifold (M, g) of non-zero scalar cur-
vature together with a parallel rank three subbundle Q C EndT'M that is locally

spanned by three skew-symmetric almost complex structures Jy, Jo, J3 that fulfill

J1J2 = J3

The four-dimensional case is special. Here, we add an additional property to the

13
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definition. This property automatically holds for all higher-dimensional quater-

nionic (pseudo-)Kéhler manifolds (see e.g. [AM]).

Definition 2.1.2 A four-dimensional (pseudo-)Riemannian manifold (M, g, Q)
with a rank three subbundle ) C EndTM s called quaternionic (pseudo-)
Kahler if it fulfills the assumptions of Definition 2.1.1 and in addition, ) an-

nihilates the Riemann tensor R of g, i.e.
—JRX,)Y)Z+R(X,Y)JZ+R(JX,Y)Z+R(X,JY)Z =0 (X,Y,Z €€ X(M))

for any local section J in Q.

Definition 2.1.3  Let M be a smooth manifold. A collection (Ji,Ja, J3) of
three almost complex structures such that JyJo = Js is called an almost hyper-

complex structure.

Remark 2.1.4 For any quaternionic (pseudo-)Kéhler manifold (M, g, @), we

endow () with the natural scalar product

(A, B) = tr AB, A,Be€Q.

Note that a local almost hyper-complex structure (Ji, Jo, J3) spanning @ is a
local orthonormal frame in ¢ with respect to (-, -). We call a local orthonormal
frame (Jy, J2, J3) in @ oriented if J;Jo = Js.

Remark 2.1.5 The property that () is parallel with respect to the Levi-
Civita connection, i.e. Vx(I'(Q)) C I'(Q) for all X € X(M), is equivalent to the
equation

V.Ja=2(05(-) T, — 05(-)J5) (2.1)

for every cyclic permutation («, 3,7v) of (1,2,3), where (Ji,Jo,J3) is a local
oriented orthonormal frame in Q and 0,, o = 1,2, 3, are local one-forms. We

choose the following basis for s0(3) = sp(1):

00 O 0 0 2 0 -2 0
e1r=10 0 =2, ea=10 0 0|, es=12 0 O (2.2)
02 0 -2 00 0 0 0
We call

3
0 .= Zﬁ_aea c QYU,s0(3))
a=1
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the local Sp(1)-connection one-form with respect to the frame (Ji, Js, J3)
over U C M. Note that with the formula

k
dw(X(h s 7Xk) = Z(_l)l<szw)(X0> s 7Xi7 s 7Xk) (23>
i=0
(X0, ..., Xx € X(M)) for any torsion-free connection V and any k-form
w € QF(M), we obtain
dwe = 2(05 A w, — 0, A wp) (2.4)

from Eq. (2.1), where
Wa = g(Ja-,+) € Q*(U) (a=1,2,3)

are the local fundamental two-forms with respect to (Ji, Jo, J3). The last

equation implies that

3
Q) = Zwa Aws € QYU) (2.5)

a=1

is closed. The four-form QELU) is independent of the choice of orthonormal frame
(J1, J2, J3) in Q|,, i-e. Eq. (2.5) defines a global four-form Q, € Q*(M), which
is called the fundamental four-form of (M, g, Q).

In dimension bigger than four, we now give a characterization of quaternionic
(pseudo-)Kéhler manifolds which uses the exterior derivative of the fundamental

two-forms instead of the Levi-Civita connection.

Definition 2.1.6 A (pseudo-)Riemannian manifold (M, g) of dimgM > 4 to-
gether with a rank three subbundle Q C End T M fulfilling Definition 2.1.1, except
for Q being parallel, is called an almost quaternionic (pseudo-)Hermitian
manifold.

Theorem 2.1.7 [Swl] Let (M, g, Q) be an almost quaternionic (pseudo-)Hermi-
tian manifold, dimg M > 8, such that the fundamental four-form is closed. Then

(M, g,Q) is quaternionic (pseudo-)Kdhler.

Theorem 2.1.8 [Swl| Let (M, g,Q) be an almost quaternionic (pseudo-)Hermi-

tian manifold, dimgxM = 8, such that the fundamental four-form is closed and
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the algebraic ideal generated by Q° = {g(J-,-) | J € Q} C A¥(T*M) is a
differential ideal. Then (M, g, Q) is quaternionic (pseudo-)Kdihler.

Eq. (2.4) holds for all quaternionic (pseudo-)Kéahler manifolds. It implies that
the fundamental four-form is closed. Together with this fact, the two above

theorems immediately give the following corollary:

Corollary 2.1.9 Let (M, g,Q) be an almost quaternionic (pseudo-)Hermitian
manifold, dimg M > 4, such that for any point x € M, there exists a neighborhood
U C M of z and an almost hyper-complex structure (Ji, Ja, J3) on U spanning
Q’U such that Eq. (2.4) is fulfilled for some one-forms 0, € QY(U), a = 1,2,3.
Then (M, g, Q) is quaternionic (pseudo-)Kdhler with local Sp(1)-connection one-
form 0 =" O,eq with respect to (Jy, Ja, J3).

The quaternionic Kahler property in four dimensions can often be deduced from

the higher-dimensional case using the following result:

Definition 2.1.10 Let (M, g, Q) be a quaternionic (pseudo-)Kdihler manifold.
A submanifold N C M 1is called quaternionic if (Q preserves TN C TM.

Proposition 2.1.11 [M] Let (M,g,Q) be a quaternionic (pseudo-)Kdhler
manifold and N C M a quaternionic submanifold. Then (N, g|n,Q|n) is quater-
nionic (pseudo-)Kdahler.

Remark 2.1.12  Note that all quaternionic (pseudo-)K&hler manifolds are
Einstein (see e.g. [Besse|). Hence, their scalar curvature scal is constant. The

real number
scal

V= it (dimg M = 4n) (2.6)

is called the reduced scalar curvature.

For later use, we cite the following well-known result by Alekseevsky:

Proposition 2.1.13 [Al] Let (M,g,Q) be a quaternionic (pseudo-)Kdhler
manifold and let (Jy, Jo, J3) be a locally defined almost hyper-complex structure

spanning Q). Then the local fundamental two-forms are given by

gwa = df, — 205 A, (2.7)
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for every cyclic permutation (a, 3,7) of (1,2,3), where = 22:1 f.€, is the
local Sp(1)-connection one-form with respect to (Jy, J2, J3).

Now, we come to the model examples of quaternionic pseudo-Kéahler manifolds
with positive, respectively negative scalar curvature. Note that in the pseudo-
Riemannian category, the sign of the scalar curvature loses its relevance, since
if (M, g,Q) is a quaternionic pseudo-Kéahler manifold of signature (4k,4¢) and
positive scalar curvature, then (M, —g, @) is a quaternionic pseudo-Kéhler man-
ifold of signature (44, 4k) and negative scalar curvature. Nevertheless, we make
the distinction between positive and negative scalar curvature here since in later

chapters we focus on positive definite quaternionic Kéhler manifolds.

Example 2.1.14 For k,/ € Ny, let

HY Y = {g = 2 + jw € HFYY | (g, q) >0}

k+1,€)

be endowed with the standard flat pseudo-Riemannian metric

s "= > I (AR AE + dwydin)

1,J=0

(k+1)—times {—times
of signature (4k + 4, 4¢), where I**5¢ .= diag(+1, ..., +1, =1, ..., —1). The
invertible quaternions H* = R>% . Sp(1) act on HEH"* via right-multiplication.

Let Mik’g) = H]:gl’e JH* be endowed with the pseudo-Riemannian metric gff’z)
such that the projection from the unit sphere in H];ng’g to Mik’g) is a pseudo-

. . . E,0) . . . .
Riemannian submersion. Then gi )is a pseudo-quaternionic Kahler metric of

reduced scalar curvature v = 4. We call (Mik’g), ggf ’Z)) quaternionic projec-

tive space of signature (k, ) and denote it by HP**. It is a pseudo-Riemannian

symmetric space and has the following realization as a homogeneous space:
Sp(k+1,¢)

kot
B 50) < Sp(h, 0 (28)

For any J € {1, ...,k + 1} we have a chart U, := {qg € HZ{"* | ¢/ # 0} with

complex coordinates (gb’(f,), ¢LJ))M:17__.’j’.__7k+Z+1 defined by

Uy 0 =y =q"(¢))7, pe{l, Lk L+1N{J}. (2.9)

The quaternionic structure ¢ on HP** can be defined by local fundamental
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two-forms 1
J) n(J (D) A o)
W = (a8 — 285" A OY) (2.10)
on Uy, where
_ 1 ) "
0" = > Lt (e depy) + o dul”), (2.11)

1+< Uiy, u(J)>(kZ T

VvV
=143, ey L Cur

) - B 1 § :
ef) _ 92J) . igg‘] _ Ik+1 ‘ w(J do(y)).
L4 (Ui, Wy o T .

Example 2.1.15 Similarly to the above example, we define a quaternionic
pseudo-Kahler metric ggg,e) of reduced scalar curvature v = —4 on
M*0 = H: BOLHF, where HE(H! = {g € HFH1 | (g, q) < 0}. We call

(Mﬁk’e), g(_k 5)) quaternionic hyperbolic space of signature (k,¢) and denote

(k, £+1)

it by HH**. Tt is a pseudo-Riemannian symmetric space and has the following

realization as a homogeneous space:

Sp(k, 0+ 1)

B S, 0) % Sp(1)

(2.12)

For any J € {k+1,...,k+(+1}, we have a chart U, := {g € H ("' | ¢/ # 0}

with complex coordinates (¢{;, /(lJ))uzl,...,J,.‘.,kMJrl defined as in (2.9). The

quaternionic structure @ on HH"** can be defined by local fundamental two-

forms 1
_ =
W) = (o) - 205 1 0.7) (2.13)
on Uy, where
- 1
g — Yo I () ol + o de), (2.14)

\—1 + (u(J)vU(J)>(k,e> IRZ

~~
o K, 041
7_1+Z,u,, v#J IMV

09 = g 4 g —

uku?

1
I8 oy dwl) — ol de ).
-1+ <U(J), u(J)>(k,£) MZ/;J 12 (J) K ()

Remark 2.1.16  For future reference, we note that (with a slight abuse of

notation) the metric on HP**, respectively HH"* in the coordinates defined in
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Examples 2.1.14 and 2.1.15 is given by

(k,0) _ 1 P .
g L (do Aoy + dy dy?)
- +1+ <U(J),’U,(J)>(k7£) N;J ’ (NP 1
! b 7 2
+ (¢! doY +¢(J)d¢l(;])) (2.15)
(£1 4 (u, u(J)>(k’é))2 (‘ /LZV;J (NP p }
v 2
+] D (@pdel” — v dep,)[).
wyv#EJ

The almost hyper-complex structure (Jy, J2, J3) on Uy defined by the fundamen-

tal two-forms given in the above examples fulfills
Jrdelly, = idell,, Jidyl) =idy(D,  J5del, = —dy. (2.16)

Note that Ji, Js, J3 are integrable complex structures on Uj.

2.2 The quaternionic Kahler quotient

For a proof of the following proposition, see for example [ACDV] or [BoGal,
Prop. 12.4.1]:

Proposition 2.2.1 Let (M, g,Q) be a quaternionic (pseudo-)Kdihler manifold
and let X € X(M) be a Killing vector field. Then X preserves @ and the

fundamental four-form:

LxT(Q)) CcT(Q), LxQs=0. (2.17)

Due to the above propostion, we can drop the assumption that the fundamental

four-form is preserved in the next two theorems.

Theorem 2.2.2 [GL, Th. 2.4.] Let (M, g,Q) be a quaternionic (pseudo-)Kdihler
manifold and let X € X(M) be a Killing vector field. Then there exists a unique
section i € I'(Q) such that

3
Vo, = walX, ) o (2.18)
a=1

for each oriented orthonormal frame (Jy,J2, J3) in Q}U over an open subset

UcCM.
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Definition 2.2.3  Let (M, g,Q) be a quaternionic (pseudo-)Kdhler manifold
and X € X(M) a Killing vector field. The section uX € T'(Q) given by the above

theorem s called the quaternionic Kahler moment map associated with X .

Remark 2.2.4 Note that due to Eq. (2.1) and the fact that Ji,.Jo, J3 are
linearly independent, Eq. (2.18) is equivalent to

3
,LLX‘U =: ZufJa, duX + 2/12(57 — ZMVXQ_,B = lxWa (2.19)
pn=1
for every cyclic permutation («, 3,7) of (1,2, 3).
Using Egs. (2.7), (2.3) and (2.1), one can show that

Lxw, = 1/(,112%)7 — ,LL,YXQJ5> + Vxwa (2.20)
— (v + 205(X) oy — (v + 20, (X))

Using the scalar product (A, B) = —m tr AB on @, this gives the following

explicit formula for the quaternionic Kahler moment map with respect to X:
& 1
W=D i e i = (s (Lx = V) ). (2.21)
p=1

The above theorem gives the existence and uniqueness of the following map:

Definition 2.2.5 Let (M,g,Q) be a quaternionic (pseudo-)Kdihler manifold
and let G be a Lie group acting isometrically on (M,g). Then the (quater-
nionic Kdhler) moment map p for (M, g,Q,G) is the smooth map from M
to g* ® Q defined by

1= (p,v) =¥, veg, (2.22)
where ,u”’i is the quaternionic Kdahler moment map associated with the fundamen-

tal vector field v* € X(M) induced by v and u° = {u,v) denotes the contraction
of v € g with the g*-factor of .

Theorem 2.2.6 [GL, Th. 3.1.] Let (M, g,Q) be a quaternionic pseudo-Kdhler

manifold. Let G be a connected compact Lie group acting freely and isometrically

'We define fundamental vector fields without an extra minus sign, i.e.
419 = X(M), v+ o*is a Lie algebra anti-homomorphism: v#|, := %|t:0 exp(tv)-p, p€ M.
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on (M, g) and such that the restriction of g to the distribution tangent to the G-
orbits is non-degenerate. Let p be the corresponding quaternionic Kdhler moment
map.

Then M = p=({0})/G inherits a quaternionic pseudo-Kdihler structure (g, Q)
from (M, g,Q).

Definition 2.2.7  The quaternionic (pseudo-)Kdihler manifold (M, g,Q) ob-
tained from the above theorem is called the quaternionic Kdhler quotient of
(M, g, Q) with respect to G and we will denote it by

MG = (M,g,Q).

Remark 2.2.8 In the situation of the above theorem, Ilet
p : My == pu~*({0}) — M denote the projection. An orthonormal frame
(J1, J2, J3) in Q‘ p over some G-invariant open subset U C M induces an or-
thonormal frame (Jy, Jy, J3) in Q‘U over U := p(U N p~'({0})). The correspon-
ding local fundamental two-forms are related by

*

D Wa = wa‘p71([j)a a=123.

Remark 2.2.9 In the above theorem, one can replace the assumption that G
is compact and acts freely on M by the assumption that 0 is a regular value of
p and that G acts properly? and freely on My (see, e.g., [Lee]), or just by the

assumption that M/G is a smooth manifold of dimension
dimgM = dimgM — 4dim G

such that the projection map p is a smooth submersion.

Example 2.2.10 For k, ¢ € Ny, we consider
Mt = HPHY = WA HY, M7= HER Y = B

respectively (see Examples 2.1.14 and 2.1.15), endowed with the S!'-action in-
duced by diagonal left-multiplication of e € S on quaternionic vector space.

Recall that we defined quaternionic projective and quaternionic hyperbolic space

2The G-action on M is called proper if pre-images of compact subsets of My x My under
the map G x My — My x My, (g9,9) — (g gq,q) are compact.
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via right-multiplication of H*. The zero level set of the corresponding quater-

nionic Kéhler moment map is the following smooth codimension 3 submanifold:
Mg = {lg =2+ julw € M* | (z,2) = (w,w), (z, @) = 0} € M*.  (223)

Note that the S'-action on M{ is free. Hence, the quaternionic Kihler quotient
HPFLE S respectively HH® “H1 /St induces a quaternionic Kihler metric g
of signature (4k,4¢) on

M* = M /S*.

Let A € Gt := SU(k + 2,{), respectively A € G~ := SU(k,{ + 2) act on
q = 2+ jw € HE?" (respectively H2 %) by ¢ — Aq = Az + jAw, where
we consider z,w € CF*2 as column vectors. The induced G*-action on M*
preserves the level set M, so we have an induced action on M®*. This action
is transitive and preserves g+. The pseudo-Riemannian manifold (M*, g.) is in
fact symmetric and we denote it by X (k, £), respectively X (k, ¢). Calculating the
stabilizer of a point in M¥* under the G*-action gives the following realization

as a homogeneous space:

SU(k +2,0)
S(U2) x Uk, 0))’

SU(k, € +2)

X (k,0) ~ S(Uk,6) x U(2))’

X (k,0) =~ (2.24)




Chapter 3
Hyper-Kahler geometry

In this chapter, we discuss pseudo-hyper-Kéahler manifolds and, in particular,
the relation between conical pseudo-hyper-Kéahler manifolds and quaternionic
pseudo-Kéhler manifolds. To motivate the HK/QK correspondence described
in Chapter 4, we also discuss infinitesimal automorphisms of conical pseudo-
hyper-Kahler manifolds, as well as the hyper-Kahler quotient construction. The
property conical is defined by the existence of a vector field &, called the Fuler
vector field, such that the Levi-Civita connection V fulfills V.£& = Id. Coni-
cal pseudo-hyper-Kahler manifolds are locally homothetic to the Swann bundle
over a quaternionic pseudo-Kahler manfold. We review the Swann bundle con-
struction [Swl] in the last section. All results in this chapter about conical
pseudo-hyper-Kéhler manifolds are essentially known from [Sw1], which uses a
slightly different local characterization of the Swann bundles over quaternionic

pseudo-Kahler manifolds.

All results presented in this chapter will be needed in Chapter 4 for the moti-
vation of the HK/QK correspondence, as well as for the proofs of its properties.
The examples presented in this chapter will also be reused for the discussion of

examples of the HK/QK correspondence in Chapter 4.

In Section 3.1, we introduce the notion of (pseudo-)hyper-Kéhler manifold and
discuss the standard hyper-Kahler structure on quaternionic vector spaces. In
Section 3.2, we introduce conical pseudo-hyper-Kahler manifolds, show that
they admit a global hyper-Kahler potential and that they induce a quaternionic
Kéahler structure on an appropriately chosen codimension four submanifold. We
discuss the example of an open subset of flat quaternionic vector space with

quaternionic Lorentzian and positive signature, respectively, endowed with the

23
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Figure 3.1: Relation between the HK/QK correspondence (Chapter 4), the hy-
per-Kéhler quotient construction (Section 3.4) and the construction from Section 3.2.

Euler vector field induced by uniform scaling by a positive factor. By choos-
ing a codimension four submanifold in this example, we recover quaternionic

hyperbolic space and a chart in quaternionic projective space, respectively.

In Section 3.3, we consider tri-holomorphic Killing vector fields X on a conical
(pseudo-)hyper-Kahler manifold M that commute with the Euler vector field
¢. We give an explicit expression for the unique £-homogeneous hyper-Kahler
moment map associated with X. We consider a level set P with respect to a
non-zero level of this homogeneous hyper-Kahler moment map. Using the results
from Section 3.2, we show how geometric data on P inherited from M induces a
quaternionic (pseudo-)Kéhler structure on an appropriately chosen codimension
one submanifold M’ c P. When X induces a free S'-action on P, the geometric
data defined on P in this section, as well as the quaternionic Kahler structure on
M’ are exactly reconstructed when applying the HK/QK correspondence to the
hyper-Kahler quotient M = P/S*, see Chapter 4 and Figure 3.1. We continue
the examples discussed in Section 3.2 and consider the tri-holomorphic S*-action
defined by diagonal left-multiplication in quaternionic vector space. Choosing a
codimension one submanifold in the level set P, we obtain quaternionic hyper-
bolic space and an open subset of quaternionic projective space in a realization

different from the standard one which we obtained in Section 3.2.

In Section 3.4, we review the hyper-Kéhler quotient construction from [HKLR].
As a simple example, we discuss the S'-action on quaternionic vector space
defined by left-multiplication on just one of the quaternionic coordinates. Then
the hyper-Kéahler quotient is again a quaternionic vector space of quaternionic
dimension reduced by one, endowed with the standard flat metric. As a second
example, we discuss the diagonal S!'-action on quaternionic vector space and
show that when we choose a non-zero level for the homogeneous hyper-Kéhler
moment map, the hyper-Kéhler quotient is 7*(CP™) endowed with the Calabi
metric [Ca, LR, Hil]. If we start with {(q,¢),1 < 0} C H™' instead, we
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obtain a tubular neighborhood of the zero section in T*(CH"™). The hyper-
Kéhler structure in both cases agrees with the one constructed in [BiGau].

We show that, under appropriate assumptions, the hyper-Kahler quotient with
respect to two commuting Lie group actions can be performed in stages and
that the outcome does not depend on the order in which one performs the two
respective hyper-Kahler quotients. This is needed later to show the compatibility
of the HK/QK correspondence with the hyper-Kéhler and quaternionic Kéahler

quotient constructions.

In Section 3.5, we consider isometric and tri-holomorphic Lie group actions on
conical (pseudo-)hyper-Kédhler manifolds that preserve the Euler vector field.
We prove that in this situation the hyper-Kahler quotient with level zero for the
homogeneous hyper-Kahler moment map is again conical and that the relation
between conical pseudo-hyper-Kahler manifolds and quaternionic pseudo-Kéahler
manifolds given in Section 3.2 is compatible with the quaternionic Kahler and

hyper-Kéhler quotient constructions (with level zero).

In Section 3.6, we recall the Swann bundle construction [Swl] in a formalism that
does not make use of reduced frame bundles. For any quaternionic pseudo-Kéahler
manifold, the Swann bundle construction defines a conical pseudo-hyper-Kéhler
structure on the metric cone over the SO(3)-bundle of local oriented orthonormal
frames in the quaternionic structure. In the first subsection, we show that for
any Killing vector field on a quaternionic pseudo-Kéhler manifold, there exists
a unique tri-holomorphic lift to the Swann bundle that is Killing and commutes
with the Euler vector field. We describe the norm of the lifted vector field and the
relation between the homogeneous hyper-Kéhler moment map associated with
it and the quaternionic Kahler moment map associated with the initial vector
field. The lifted vector field is non-vanishing if and only if the initial vector
field and the quaternionic Kdhler moment map do not vanish simultaneously. In
the second subsection, we discuss the canonical lift of isometric group actions
from a quaternionic Kahler manifold to the Swann bundle. Infinitesimally, the
canonically lifted group action is described by the unique lifts of Killing vector
fields to the Swann bundle described before.

3.1 Hyper-Kahler manifolds

Definition 3.1.1 A (pseudo-)Kdhler manifold (M, g, J) is a (pseudo-)Rie-

mannian manifold (M, g) together with an almost complex structure J such that
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1. J 1is integrable,

2. g(‘] ) ‘]) = g(' ) ')7

3. dw =0, where w := g(J-,-) € Q*(M).
w 1is called the Kdahler form.

Remark 3.1.2  The complex structure of a Kéhler manifold is covariantly

constant with respect to the Levi-Civita connection, i.e. V..J = 0.

Definition 3.1.3 A (pseudo-)hyper-Kdahler manifold (M, g, Jy, J2, J3) is a
(pseudo- ) Riemannian manifold (M, g) together with three almost complex struc-
tures Jy, Jo, J3 such that

1. J1J2 == Jg
2. (M,g,J,) is Kdhler for a = 1,2, 3.

Remark 3.1.4 The hyper-Kéhler structure can be recovered from the three
Kahler forms w, : TM — T*M, v — g(Jyv, -):

g=wiowy ows, Jo=glow, (a=1,23). (3.1)

Proposition 3.1.5 (Hitchin-Lemma) [Hi2, Lemma 6.8]

Let (M, g, J1, Ja, J3) be a (pseudo-)Riemannian manifold together with an al-
most hyper-complex structure such that g(Jo-,Jo-) = g(-,-) and dw, = 0 for
a = 1,2,3. Then Jy,Js, J5 are integrable, i.e. (M, g, J1, 2, J3) is a (pseudo-)
hyper-Kdahler manifold.

Remark 3.1.6  Let (M,g,Ji,J2,J3) be a (pseudo-)hyper-Kéhler manifold.
Then
Wi 1= wy +iws € QQJIO(M) (3.2)

defines a holomorphic symplectic form on (M, J;).

Example 3.1.7 We endow M = H" with complex coordinates

1 .
(z', ..., 2" wy, ..., w,) given by

H" — C*™, q=z+jw— (z,w), (3.3)
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and define a hyper-Kéhler structure (g, Ji, J2, J3) on H" by the following metric

and holomorphic symplectic form:

n

g=g" = (dzrdz" + dw,dw,), (3.4)
pn=1
Wi = W + iwg = Z dz" A dw,,. (3.5)
pn=1

For future use, we describe this hyper-Kéhler structure in more detail in terms of

real and complex coordinates: The coordinates (2*,w,,),=1,.. » are Ji-holomor-

ceey

phic and
Jydt = —dw,, p=1,...,n (3.6)

: o _ ;0 o _ ;0 o _ 0 o _ - 0
Equwalently, Jlm = Z@, Jlm = Zm, JQW = Bw,’ Jg— = —Z%. The

first Kéhler form w; = g(J-,-) is given by

o = % g(dz“ A dz + dw, A di,). (3.7)
With real coordinates (z*, y*, w,, v,),=1,...n defined by
H" — RY™, q=ux+iy+ ju+ kv (2,9,u,v), (3.8)
¢ is the standard metric on R*":
9= S (@ + (A + (du,)? + (de,)). (39)

p=1

The real coordinates (z,y, u,v) define an isomorphism

kg o T,H" — H", (3.10)
- 0 0 0 0 . .
Z (a“@ * bﬂﬁ_y“ + Cuﬁ_uu + dua_vu) q = (@ i+ oy + kdy) =1,

p=1

of real vector spaces between the tangent space at a point ¢ € H" and H".
Using this identification, the hypercomplex structure (.Jy, Ja, J3) is given by right-
multiplication with (i, j, — k):

Jov =k, (Kg(0) - ia), v € TH", (ia) = (i, 4, — k), a = 1,2,3. (3.11)
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3.2 Conical hyper-Kahler manifolds

Definition 3.2.1 A conical (pseudo-)hyper-Kdhler manifold
(M, g, J1, Ja, J5,€) is a (pseudo-)hyper-Kihler manifold together with a time-
like or space-like vector field & € X(M) such that V.& = Idry, where V is the

Levi-Civita connection. £ is called the Euler vector field.

Let (M, g, Ji, J2, J3,€) be a conical (pseudo-)hyper-Kéhler manifold. We define

o :=sgng(§,§) € C*(M),
r? = 1g(&,§)] € C®(M),
0, — %g(Ja£,~) € QL(M),

7,.2

o = b0 = %g(Jaf, ) e QM) (a=1,2,3). (3.12)
Proposition 3.2.2 A global Kdhler potential for all three Kdhler forms is
given by
K :=or? = g(£,%). (3.13)

More precisely,

~ 1 N
wa = 0dll, = Zdd K, (3.14)

where dS, = i(J, — Ou) is the d°-operator associated with J, for a =1,2,3.

Proof: For X,Y € X(M), we have

N

d0,(X,Y) = X (0,(Y)) = Y (0a(X)) = 0u([X,Y])
~ X (ba Y (0

X (BulY)) = Y (0a(X)) = Zg(Jas TxY) + Zg(Jak, Vi X)

VEY X (0,(Y)) = Y (0a(X)) — %X(g(Ja& Y)+ %g(vx(JaQa Y)

+ 5 Y (9(ab, X) = S 9(Vy(Jad). X)
= —|—%g(VX(Jaf),Y) - %Q(VY(Ja€)>X)

e rwa(X.Y). (3.15)

Using

rdr = %d(ﬂ) - %d(g(g,g)) - %v(g(g,é)) YE 0g(e,ViE) = 0g(&,), (3.16)
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we can show that

O-CA__E* A:_C* :_g .:A
JOK = =L JUdR) = =2 Jidr = =2 g(€. Jo) = b (3.17)

a

The following lemma shows that &, Ji&, o€, J3¢  induce a local
(CO(3) = R>% x SO(3))-action on M:

Lemma 3.2.3
€, Ja8] =0, [Ja&, Js&] = —2J.€. (3.18)

Proof: This follows immediately from V being torsion-free, from V.¢& = Idryy,
from V.J, = 0 and from J,Jg = —JgJo = J5. O

We split the metric and Kahler forms into a vertical part corresponding to the
distribution tangent to the local CO(3)-action and a horizontal part correspon-

ding to the orthogonal distribution:

Lemma 3.2.4  The hyper-Kdhler metric can be written as

3
g =odr® + 07"2(2(9&)2 +07), (3.19)

a=1

where § € I'(Sym* T*M) is a tensor field which has four-dimensional kernel
DY := spang{¢, Ji§, Jo£, Js&} € T M. (3.20)
The Kdhler forms are given by
Wo = rdr ANy +1%(0 05 N O, + Q4) (3.21)
for every cyclic permutation (o, 8,7) of (1,2,3), where
Ga = §(Ja-,-) € Q*(M). (3.22)

Furthermore,
200, = dby — 205 N O, (3.23)
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Proof: We write the metric as
. 2 3 . 2 3
g= W S IURE IV e €)= oart + 0v2(3 (0 + o). (3:28)
a=1

where the last equality follows from Eq. (3.16) and from the definitions in Eq.
(3.12). Since g(J.&, Jo€) = g(&,€) = or? and &, Ji€, o€, J5€ are pairwise ortho-
gonal, the symmetric tensor field g on M defined by Eq. (3.24) has ker g = D".

Eq. (3.21) follows from J:0, = %g(&,-) = tdr and J:0s = —0, together with

o

Eq. (3.19), while Eq. (3.23) is obtained as follows:

2~ (314) 2 20 (3.21) 9
b, = d(ﬁea) =" ——dr Ao+ —Gwa = 205 N Oy + 206, (3.25)

(]

While the horizontal Kéhler forms @, get rotated by the SO(3)-part of the local
C'O(3)-action, the horizontal metric is CO(3)-invariant:

Proposition 3.2.5 The tensor field

3
. 1 o
§=39~ ﬁd?“Q —0 E (6,)? (3.26)
a=1

15 wnvariant under & and J,&, o =1,2,3.

Proof: Using Jy := Idy)y,, we have

LJafg(Xﬂ Y) = (vJaég)(X> Y) + g(vX(Ja5>7Y) + g(Xa VY(JaS))

YL G(XY) + g(X, JY) (3.27)
g:

for X, Y € X(M), a =0,1,2,3. This shows

Leg=29, Lje9=0 (a=1,2,3). (3.28)

The equations £, ¢r = dr(J,€) (319 0, Lj.edr = d(Lyedr) =0,

L560,=4d 0, de, =0 3.29
Jat (Lraela) + trne (3.29)

1 —=20850+205 10,
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Ljageg = d(LJageg) + LJQE d@g = —2&7, (330)
=0 =20Wg+20, N0

and LJ@HV = 295 1mply LJagg =0.

Leg = 0 follows from L¢g (429 2g, Ler (319 r, Le(dr) = d(tedr) = dr and

Ll = d(1c0, 49, =0 —1,2.3). 3.31

¢ (tela) + te (a ) (3.31)
> 2000 +205 70

O

As we shall see in the next theorem the horizontal parts of the metric and Kéhler
forms define a quaternionic Kéhler structure (¢’, Q) on every codimension four
submanifold M’ C M that is transversal to the local CO(3)-action. The induced
quaternionic structure @ is globally trivial. This result is essentially known from
[Swl]. Here, we prove it in the formalism of conical hyper-Kéhler manifolds
defined by the existence of an Euler vector field (see Definition 3.2.1) and obtain
explicit expressions for the fundamental two-forms and the Sp(1)-connection

one-form of the resulting quaternionic pseudo-Kéahler manifold.

Theorem 3.2.6
Let M’ be a codimension four submanifold of M that is transversal to the distri-
bution DY, i.e. TM|py = D|pp @ TM'. Then

g =4, (3.32)

is a quaternionic (pseudo-)Kdhler metric on M'. A compatible quaternionic

structure is given by
Q :=spang{J}, J5, J5},  J=priyodalrr (@ =1,2,3),  (3.33)

where
pr2y, c TM |y = DOy & TM' — TM' (3.34)

is the projection onto the second summand (i.e. the projection onto TM' along

Do),

Remark 3.2.7 Note that W/, := &u|pr, @ = 1,2,3 are the fundamental two-
forms on (M’, ¢') with respect to the frame (Jj, J}, J}) in @, i.e. w, = ¢'(J.-,-),
a=1,23.
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Proof (of Theorem 3.2.6):
The fact that (M, ¢', Ji, J5, J5) is hyper-Hermitian follows from (M, g, J1, Ja, J3)
being hyper-Hermitian and from the definitions, since ker g = DV and since D"

is J,-invariant for o = 1,2, 3.

From Eq. (3.23), we obtain

1
dis = (205 A d6, — 20, A dby)

T 20
— 205 A @y — 20, A .

Restricting this equation to M’ gives
dw), = 205 AW, — 20, A wp, (3.35)

where 0, := 04|p. This shows that (M, ¢, Q) is quaternionic (pseudo-)Kihler
if dimgM’ > 4 (see Corollary 2.1.9).

The four-dimensional case can be deduced from the higher-dimensional case as
follows!:

Assume that dimgM = 8. Let M, := H be endowed with the standard hyper-
Kahler structure (go, JY,J9,JJ) that was defined in Example 3.1.7, i.e.
go = dzdz + dwdw and w? = dz A dw in complex coordinates (z,w) defined
by ¢ = z+ jw € H. Let & := 2Re(20. + wd,,) (see Example 3.2.10 below).
Then

(M =M xH,j:=g+0g,& =&+ &)

together with the product hyper-complex structure (jl,jg,jg) is a conical
(pseudo-)hyper-Kahler manifold. M’ := M’ x H ¢ M is a codimension four
submanifold transversal to the distribution spanned by € and J.¢, a = 1,2, 3.
According to the above proof, the 8-dimensional manifold M’ inherits a quater-

nionic Kéhler structure defined by three fundamental two-forms &, a = 1,2, 3.

!
a2

fundamental two-forms that define a quaternionic Kéhler structure on M’ (see

M' = M' x {0} € M is a quaternionic submanifold and, hence & re

/
)

Proposition 2.1.11). They agree with w/,, since the corresponding components

of the Sp(1)-connection one-form are given by

1 - B 1
R A

Jaév ) + w2(€07 )) ‘M’

(

Qe

!This idea is taken from [MS2, Cor. 4.2.].
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Dar-

— ——g(a,)| = fal,y

(]

Conversely, every quaternionic (pseudo-)Kéahler manifold admits a canonically
defined C'O(3)-principal bundle with a conical pseudo-hyper-Kéhler structure

that locally inverts the above construction:

Theorem 3.2.8 [Swl] (see Section 3.6)
For any quaternionic (pseudo-)Kdihler manifold (M, g, Q), the pseudo-Rieman-
nian cone (M, §) = (R>® x S, odr® +r2gs) admits a conical pseudo-hyper-Kihler
structure such that, up to scaling of the metric by a positive constant, (M, g, Q)
18 locally recovered as in Theorem 3.2.6.
Here, m : S — M denotes the principal SO(3)-bundle of local oriented or-

||

thonormal frames in Q and gs = o0 _ (04)> + Blrrg, where v 1= s

_ _ dn(n+2)’
dimg M = 4n, is the reduced scalar curvature of (M, g), o :=sgnv and

0=> facq: TS — s50(3)

is the principal connection one-form on S induced by the Levi-Civita connection
of (M, g).

Remark 3.2.9 The conical pseudo-hyper-Kahler manifold M in the above

theorem is called the Swann bundle over M:

CO(3) — M — M. (3.36)

In the following example, we choose open subsets in quaternionic vector space
with positive, respectively quaternionic Lorentzian signature and a homothetic
vector field ¢ such that £ is space-like, respectively time-like. ¢ is induced by
uniform scaling of quaternionic vector space by a positive factor. Then the
construction in Theorem 3.2.6 defines a positive definite quaternionic Kéahler
structure on appropriately chosen codimension four submanifolds. In the case
of positive definite quaternionic vector space, this construction yields a chart in
quaternionic projective space and, in the case of quaternionic Lorentzian vector

space, we obtain quaternionic hyperbolic space.

Example 3.2.10 We endow? M, = H"*'\{0}, M_ = {(¢,¢)_, < 0} C H™!

M, M_ are chosen such that ¢ is a space-like, respectively time-like vector field.
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with complex coordinates (ZI, wr) =0, ... n defined by ¢ = 2+ jw € My and define
a (pseudo-)hyper-Kéhler structure (g, Ji, J2, J3) on My by (see Ex. 3.1.7)

g+ = +(d2°dz° + dwodwg) + Y _(dz'dz" + dw,dw,,), (3.37)
pn=1
wf) = wéi) + iw:,()i) = +d2° A dwy + Z dz" A dw,. (3.38)
pn=1

Here, (-, -)( ., denotes the standard quaternion-Hermitian inner product

(gu),, =+¢°0’ + > ¢"u", ¢ ueH, (3.39)
pn=1

on H"*!, respectively H™!. Together with

0 0 ) (3.40)

9
£ = Z<z——|—w1 Gur T e gy

(M, g4, J1, Jo, J3) is a conical (pseudo-)hyper-Kéhler manifold.

For this example, the geometric data defined in Eq. (3.12) reads

o =sgng:(§, &) = £1

= 19+, = £(@, )2, = [2°P + [wol* £ D> (12> + [w,l?),
pn=1
1 1 =
0o := %gi(f, )= Erdr =3 Re (2°dz° + wodwy + Z(Z“dz“ + Wudw,)),
pn=1

~

1 n
= T pui) = L (08 30580+ ),
pn=1
) 1 -
Oy = %gﬂbf; D)= 3 Re (2°dwy — wod2" + Z(Z“dwu — wydz")),
pn=1

R 1 =
05 = %gi((]gg, ) = 5 Im (2%dwy — wodz’ £ Z(z“dw# — w,dz")). (3.41)

pn=1

Choose M = {¢° =1} C My, ie M, ~H", M’ =~ {u e H"| |ul* <1}. In

complex coordinates (¢*,1),,),=1,..,» defined by u = ¢ + jiyb € M, the quater-

-----
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nionic Kéhler metric on M/ is given by (compare Eq. (2.15))

3
P (3.26) 1 4o Ao
9y = Gl = (—T2gi -7 E (6a) >‘M’i (3.42)

Y (drdet + dip,di,)
1 (el (el
L |E(@rder+ Dudt)|" + | S (¢ — Yude)
(1 £ (lgll2 + 1]12)°

Since Jy, Ja, J3 preserve TM!. C T M, the quaternionic structure ) on M is
spanned by the standard complex structures Ji,Jj, J; on M, C H" (see Ex.
3.1.7).

Note that while (M, ¢’,) is isometric to (HP™)? := {¢" # 0} C HP™ and thus
incomplete, (M’ , ¢’ ) is isometric to the symmetric space HH™ and thus complete
(see Examples 2.1.14 and 2.1.15). The normalization of (M, ¢’ ) is again such

that the reduced scalar curvature is v = +4.

3.3 Infinitesimal automorphisms of conical hyper-

Kahler manifolds

Let (]\7[, G, v, Ja, Js, €) be a conical (pseudo-)hyper-Kéhler manifold and let X be
a tri-holomorphic Killing vector field on M such that [X ,€] = 0. In the following,
we will use the definitions in Eq. (3.12) (with a hat added to the metric, complex

structures and Kéahler forms) and

~

7 = Ji€. (3.43)

Proposition 3.3.1 (see [ACDM])

There exists exactly one hyper-Hamiltonian function u~ € C’C’o(]\?7 R3) for X
such that £(u™) = 2u*. More precisely, the functions

. R 1 . . .

ﬂ’i{ = _UQQ(X) = _ég(JafaX) € COO(M> (Oé =1, 2a3) (344)

A

it = @a(X,") (3.45)
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Proof: Since X preserves g, J,, and &, we have Lxéa = 0. From this, we obtain

(3.14) o

dpX = —0 d(150,) = —0(L 0o — 15db,) WX, ).

(3.18)

Since £eg “2 2§ and Le(Ja€) Y20, we have Lef, = 20, and hence

) = —0Lel0a(X)) = —2004(X) = 2.

Remark 3.3.2 We call the map ,uX given by the above proposition the ho-

mogeneous hyper-Kiahler moment map associated with X.

From now on, we assume that X is space-like or time-like.

We consider the level set
P = {u~ = (~0,0,0)} c M (3.46)

of the hyper-Kéhler moment map and define the following data on P:

. 1. .
0F == 0l,|p = §g(Ja£, ), eQ'(P)  (a=1,2,3)
T2 A(é-’é-) (0.0
fi= 20p 2 ‘PEC (P),
1 1. o
9(])3 = édf = 59(57 )’p §rdT‘p < Ql(P)a
Xp:=0X|p € X(P),
§(X
- Ag(A 7) S I(P)J
g(XaX) P
2
fii=—— € C™(P)
9(X, X)lp
ZP = Z|p = Ji€|p € X(P). (3.47)

The fact that Z = jlf is tangent to P follows from

S (Z) = LY = —200aps + 263013
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since ,u2|P = Mg‘P = (0. The last equation used
¢ (3.28) %
Loy "= o X, 3.48
JaEMB (3.18) M'Y ( )

Remark 3.3.3 Note that, if non-empty, every level set of the hyper-Kahler
moment map X is a smooth submanifold of codimension 3 in M , due to Eq.
(3.45).

Proposition 3.3.4  Assume that P is non-empty and let M' C P be a codi-

mension one submanifold that is transversal to ZE. Then

g = m <9P - ;i(@fﬁ) ’M, (3.49)

is a quaternionic (pseudo-)Kdhler metric on M'.

Proof: Since p; }P 40, (1Y) = 2uX and (3.48) imply that P C M is transver-
sal to &, Jof, J5&. Hence, M’ C M is transversal to D = spang{&, J1€, Jof, J5€}.
According to Theorem 3.2.6,

B 1 o, 5, 4o Ao
g g‘M'7< g_r2 - “ (ea))M’CP
1
(- .
(g~ 587~ 7 0%
is a quaternionic (pseudo-)Kéahler metric on M’. a

Remark 3.3.5 Note that if (M, §, J,, €) is the Swann bundle (see Section 3.6)
over a quaternionic (pseudo-)Kihler manifold (M, g, Q), 7 : M — M , then the
group R? x SO(3) generated by &, Ji&, o€, J5€ acts as the standard conformal
linear group C'O(3) on the three-dimensional vector space spanned by the func-

tions . Then Zf induces a free S'-action on P and P/S} .. is diffeomorphic

to M° := M\#({u~ = 0}).

(z{)

Let 1% be the quaternionic Kihler moment map associated with the Killing vec-
tor field X € (M) induced by X. On M°, J := (||@||~*#¥)| - defines an inte-
grable complex structure (see, e.g., [Ba, Prop. 3.3.]). The quaternionic (pseudo-)

Kéahler stuctures defined on codimension one submanifolds in P transversal to
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Z¥ via Theorem 3.2.6 patch together to the quaternionic (pseudo-)Kéhler struc-
ture (%§|MO,RJ|MO @ V), where V = J* C Q|70 C EndTM? is a rank two
vector bundle whose unit sphere bundle is isomorphic to the S!-principal bundle
P — Me.

Note that in general, M° can be equal to M. In the case where (M, g) is positive
definite, complete and of positive scalar curvature however, M° must be a proper
subset of M and, hence (M?, ‘7'1' gl o) is incomplete. The latter is due to the fact
that on a compact quaternionic Kahler manifold of positive scalar curvature,

there exists not even a compatible almost complex structure [AMP, Th. 3.8.].

In the following example, we again treat quaternionic vector space with posi-
tive and quaternionic Lorentzian signature simultaneously (see Example 3.2.10).
The choice of appropriate codimension four submanifolds M/ again leads to (lo-
cal) realizations of quaternionic projective and quaternionic hyperbolic space.
This time, we do not choose the canonical (local) sections M = {¢° = 1}
in the H*-bundles Hfgl — HP™, respectively HZ’Ol — HH". Instead, we choose
submanifolds M. that are contained in the respective level sets Py of the hyper-
Kahler moment map associated with the diagonal S'-action on quaternionic
vector space. This allows us to establish the HK/QK correspondence between,
e.g., a certain subset in 7*(CH™) on the hyper-Kéhler side and HH™ on the

quaternionic Kéhler side in Section 4.4.

Example 3.3.6 Let
My =H = H"\{0}, M_ = HY) = {{¢,q)_, <0} C H"!

with the conical (pseudo-)hyper-Kéhler structure (g, Ji, Jo, JA3,§) defined by
Egs. (3.37)-(3.40) as in Example 3.2.10. We consider the vector field X induced
by the action ¢ = z + jw > e'tq of e € S! on My at t = 0, scaled by a factor

of two for convenience:

(3.50)

The components ,uf = —%Q(jaf X ) of the homogeneous hyper-Kéhler moment,
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map associated with X are given by

X

Ky = _(<Z7Z>(j:)_ <waw>(i)>7
———
02430 [2¢]2
Mf = u§ + i,ug( = 2i(z,w) = 2i ( + 2% + Z z“wu). (3.51)
pn=1
Let
A= <Z’ Z><i) - <w7w><i)a X = <Z, w>(:t) = izowo + Z Z“wu. (352)
pn=1

To introduce appropriate coordinates, we restrict ourselves to the chart {2° # 0}
in
{(A>0} c{z#0} cHY' = M,
and to
(A< 0} C{(z2), <0} C{"#0} CHYy =M,

i.e. we consider

M ={g=2+jw e H"™ | (2,2),, > (ww),,, 2" # 0},
M? :={q=z+jwe " |(z,2)_ < (ww)_,, (g9 <0} (3.53)

We endow ]\710ﬂE with coordinates (A, ¢, x, C*, M) u=1,....n, Where A, x are given by
Eq. (3.52) and

¢ =arg2’, ("= ("), My o= Zowu (p=1,...,n). (3.54)

The coordinates are chosen such that the level sets of ¢ are transversal to the

Sl action (X(¢) = 2), while X, x, ¢*, 7, are S'-invariant, so in these coordinates,

A~

X

e = 20%' When we set A\ = £1 and xy = 0, this induces coordinates

Pi:{u{(:—0:$1,ufz,ug(:O}:{)\:il,szCMi (3.55)

of the homogeneous hyper-Kahler moment map associated with X.

Note that in the current example, &, jlf, jgf , jgf generate a free H*-action on
M. Submanifolds M/, C M that intersect each H*-orbit at most once can be

identified via the projection map with subsets of HP", respectively HH". Under
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this identification, the induced metric ¢’ is independent of the choice of section

according to Proposition 3.2.5.

With the choice M}, = {¢ = 0} C P. of (Z{* = jlﬁ‘Pi)—transversal submani-
fold, we recover the chart {¢° # 0} in

(HP")” = (3.56)
HP"\{[g = z + jwla,, | (z,w) € C" {0}, [|2]* = [lw]]?, 2 - w = 0}

right

for the case M/,
(see Remark 3.3.5). One way of seeing this is by Remark 3.3.5 and the fact
that M. /Z, is the Swann bundle over HP™, respectively HH". (HP™)° is the
complement of the zero level set of the quaternionic Kahler moment map asso-
ciated with the Killing vector field X on HP™ that is induced by X. It is an

open and everywhere dense submanifold of HP™. M_ has empty intersection

while for M’ , we recover the whole symmetric space HH™

with the zero level set of the homogeneous hyper-Kahler moment: The reverse
Cauchy-Schwarz inequality (RCS) for complex Lorentzian vector spaces gives
the following implication for ¢ = z + jw € M_ N {\A=0}:

(¢,9) <0, (2, 2) = (w,w)
= (z,2) = (w,w) <0

) o BCS
= X =1z o7 > (2 2)(w,w) > 0.

This shows that M _ N {x~ =0} = 0.

Note that while all three almost complex structures induced on the canonical
choice of submanifold M/ = {¢°® = 1} C M. (see Example 3.2.10) are inte-
grable, the almost complex structures J3, J; induced on M are non-integrable.
Ji is proportional to the quaternionic Kéhler moment map associated with X

and hence integrable (see Remark 3.3.5 and Proposition 4.1.9).

In the following remark, we specify the image N of the coordinate function
(A &, X C M)yt = M9 — R2 x €2+ defined in the above example and

give the inverse map from N + to M9.

Remark 3.3.7 In the above example, the coordinates (\, ¢, x,(,n) on M"i
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take their values in

N =R xR xCxC"xC",
N_o=
{0, X, ¢m) ERTOXRx Cx C" x C" | [|¢]|* < 1, A%+ 4(C, {) (h, ) > 0},

respectively. Here, (¢, ¢) = =IO + 3 [¢* and (i, #) := £lnof2 + [[n]]2, where

p=1
N——
=:[|¢]1?

=1 = E(x ZC”W (3.57)

The inverse map from N + to M 9 is given by

2= paeCt, wr = (pa) te Ty (I=0,...,n), (3.58)

where

px = ;\/ﬂ + \/A2 + 4(C,C) (A, 7)) (3.59)

A A

+2(¢, Q)

For future reference, we determine the differentials of 2/ and w; in terms of the

coordinates (A, ¢, x, (,n):

dz" = 2" (py dpx +idg) + 2°d(",
dw; = —wy(py'dps +ide) + (2°) dn; (3.60)
with d¢® =0, dno = £(dx — Y_(¢*dn, + 1,d¢*)) and
1
2/ + 4(C, )4, 7)

pyldpy = £

(X = p2d(C.O)+ p32d(i, ). (3.61)

For use in Section 4.4, we explicitly determine the geometric data defined in
Eq. (3.47) for Example 3.3.6:

Remark 3.3.8 We want to express the geometric data on
P. = {\=+1,xy = 0} C M9 defined in Eq. (3.47) for Example 3.3.6 in terms
of the coordinates (¢,¢,n) defined above. Using 67 = aéa|P, a=0,...,3, we
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obtain the following:

a1) 1 -
0y +i0% (34D 5 ( + (2%dwy — wodz) + Z(z“dwu - wudz“)>
pn=1

Py
(3.60) _ } 1 -
= ( — x(py dpx + id¢) + S~ > de“) .
p=1
==Y n.dct, (3.62)
pn=1
or + 0" O L (4 (20020 4 od (et
o it =3 (2°dz" 4+ wy w0)+Z(z 2+ w,dw,) .

60) 1 . = g o
o2 3 (A(/)X Ydpy +ide) + Y (3 CHdSH + p3? Mudny) £ py° 770d770) .
pn=1
1 _ i 1 s 2 _ -
= £opitdps £ 5do + 5 (02 (95,80, + 057 (95,000 5,)
(3.61) 1 . 2 og 2N g4 4
= dt— ) d ) + ) d )
s () (€ + () dn, )
+5de+ (" d(C, Q) + pi2 d%( 1)) (3.63)
1 1
= iid(\/l +72) 41 (i§d¢ + ZdC( +V1IEP2TF 210gpi)> ,
where?
1 Oy —
piizp)\|pi:f 14‘\/1:&?2 ECOO<P:|:)
+£2(¢, ¢)
7= 4G O ) € C(Py), 720, (3.64)

tey

It will later turn out to be the d°-operator associated with the first complex
structure of the hyper-Kihler quotient M /| piS(ldiag.) ~ M, ={p=0} C Py
(see Example 3.4.7).

The other geometric data defined in (3.47) can be calculated as well:

£ :t\/l + 72 =+ 1
T2 T T iE e
3By abuse of notation, ((,¢) = ((,{)lp, = 1 + ||C|® € C=(Py) and

(,0) == (M) e = £ 32—y ¢*mul® + Inl* € C(Px), compare Eq. (3.57) and above.



3.3. Infinitesimal automorphisms of conical hyper-Kahler manifolds 43

0 0 "0 0
Xp=42—, Z{'=_"+2> (fus— —un—).
P 9 T ae T T (””an# ””anu)
1 1 -
= +-_d - 2dc . _Qdc A A
n=E5d6 + o= (p'd"(C, ¢) — pi’d*(, 1))

1
= iﬁ(CM) —pi'dps),

gp = EVI £ (dp — pT'dps)” + Y (ps” dCdCH + p3” di,di,)

pn=1
+ 2 d(Y )| F AVIER o2 Opl (3.65)
pn=1

From the above example, we get the following corollary. It gives the realiza-
tion of quaternionic hyperbolic space that we will later obtain when we apply
the HK/QK correspondence to a certain subset in 7*(CH™) in Section 4.4.

Corollary 3.3.9

N ={(¢,n) eC"xC"|||¢|* < 1,7 < 1}, (3.66)
together with*
g- = (p=tdp-)° (3.67)
+ ﬁ@: (2 dgPdch + p2 dnd,) — p° \d(gwm) )
+ _17:2 <4| ;nﬂdcﬂf + %(dmf + i(dC(—m+ 210gp_))2>

1s 1sometric to HH™.

Proof: From the argument at the end of Example 3.3.6, we know that
M. c M_ = H™, defines a global section of the H*-bundle H, — HH".
By Proposition 3.2.5, (M',¢" ) with the metric ¢’ defined by Eq. (3.49) is
isometric to (M’ g'®™). Here g™
Mo = {® =1} ¢ M_ = H"™, via Theorem 3.2.6 (see Eq. (3.42) in Ex-
ample 3.2.10). The latter is isometric to HH" (see also Example 2.1.15 and

is obtained from the canonical section

‘Recall that on N, # = 41 — KI5 ¢ nal* + [nll*)  and
VITVIo

_ 1
P== aa-1am
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n defined in Example 3.3.6 give

ceey

Remark 2.1.16). The coordinates (¢*,n,)u=1,

a diffeomorphism from
M ={q=z+jwc H" | (w,w) = 1+(z,2), arg2* = 0, (z,w) = 0, {q,q) < 1}

to N ~ {—1} x {0} x {0} x N” c N_. In these coordinates and with the
geometric data calculated in Remark 3.3.8, the metric ¢’ defined by Eq. (3.49)
reads as in Eq. (3.67). ]

Remark 3.3.10 Similarly, N, := {(¢,n) € C" x C"} endowed with the metric

gy = —(p7'dpy)’? (3.68)
1 n L i ) n ,
i W ( ; (pf d¢tdch + p+2 dmdm) + p+2 ‘d( ; C#nu) ‘ )
1 - 1 _ 1, _
i (4] ;mdc‘f + 1 (@VIF7)" 4 (d(+VI+ 72 — 2log p+))2>

is isometric to {¢° # 0} C (HP™)°, where (HP")° is the complement of the zero
level set of the quaternionic Kéhler moment map with respect to the diagonal
St-action that was defined in Example 3.3.6 (see Eq. (3.56)).

3.4 The hyper-Kahler quotient

Definition 3.4.1  Let (M,g, J1,J2, J3) be a (pseudo-)hyper-Kdhler manifold
and let G be a Lie group acting isometrically and tri-holomorphically on M.
A hyper-Kdhler moment map p for (M,g,Ji, Jo, J3,G) is a smooth G-
equivariant’ map from M to g* @ R3 such that

dp’ = (wy(v%, ), we(v?, ), ws (v, 2), v € g. (3.69)

Here, pi* := {u,v) € C(M,R?) denotes the contraction of v € g with the g*-
factor of u and v* € X(M) denotes the fundamental vector field® induced by

v € g. The action of G on g* is given by the coadjoint action.

Remark 3.4.2 We will also use the notation u”ﬁ = u* for a fundamental

SIf G is connected, p is G-equivariant if and only if du®(w?) = pl**! for all v, w € g.
We define fundamental vector fields without an extra minus sign, i.e.
419 — X(M), v+ o*is a Lie algebra anti-homomorphism: v#|, := %|t:0 exp(tv)-p, p€ M.
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vector field v* induced by a vector v € g.

If X € X(M) is a tri-holomorphic Killing vector field on a (pseudo-)hyper-Kéahler
manifold, we call a function p* € C*(M,R?) such that

dﬂf = wa(X> ')a a = 172737

a hyper-Hamiltonian function or a hyper-Kahler moment map with re-

spect to X.

Theorem 3.4.3 [HKLR]
Let G be a compact Lie group acting freely, isometrically and tri-holomorphically
on a (pseudo-)hyper-Kdihler manifold (M, g, J1, Ja, J3) such that the restriction
of g to the distribution tangent to the G-orbits is non-degenerate. Let u be a
(pseudo-)hyper-Kihler moment map for the action of G and let ¢ € Z(g*) @ R3
such that the level set M. := p~'({c}) C M is non-empty. Then M := M./G
inherits a hyper-Kdihler structure from M. The Kdhler forms @y, @9, @s, on M
are defined by

POy = wa|MC (=1,2,3), (3.70)

where p : M, — M denotes the standard projection.

Definition 3.4.4  The (pseudo-)hyper-Kdhler manifold M obtained from the
above theorem is called the hyper-Kdahler quotient of M with respect to G

with level ¢ and we will denote it by

M =M, G

M

Remark 3.4.5 In the above theorem, one can replace the assumption that G
is compact and acts freely on M by the assumption that c is a regular value of
p and that G acts properly” and freely on M, (see, e.g., [Lee]), or just by the
assumption that M./G is a smooth manifold of dimension

dimg M = dimgM — 4dim G
such that the projection map p is a smooth submersion.

In the HK/QK correspondence (see Chapter 4), we always have to choose

a Kahler moment map, which is only fixed up to a constant. In the following

"The G-action on M, is called proper if pre-images of compact subsets of M, x M, under
the map G x M. — M. x M., (g,q) — (g - q,q) are compact.
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example, we discuss the S'-action on HZ’OI, respectively HZng defined by left-
multiplication on just one of the quaternionic coordinates. In the hyper-Kahler
reduction for this example, we scale the Killing vector field by a factor ¢ € R or
equivalently, we choose different level sets depending on c¢. When we apply the
HK/QK correspondence in Chapter 4 to (open subsets of) flat quaternionic vec-
tor space, ¢ will determine the choice of the Kahler moment map. The present
example of a hyper-Kéhler quotient will then show that the result is quaternionic
hyperbolic space, respectively a chart in quaternionic projective space, irrespec-
tively of the choice of Kahler moment map. It will also allow us to establish the
HK/QK correspondence between T*(CP™) and an open subset of the symmetric
space X (n) = Gr,(C"™?) (and similarly for the non-compact duals) for different

choices of the Kahler moment map.

Example 3.4.6 For ¢ € R>?, we consider the hyper-Kihler quotient

Hn—i-l\{()}///{qo:meit}s(lqo) ~ H"

and for ¢ € R<%, we consider

{g € B (4, 0) < O} figo=yireySigoy ~ {g € H | lq])* < e},

where the action of e € S! is given by multiplication of e from the left on the
zeroth quaternionic coordinate ¢°. Here, we use the notation ¢ = (¢°, q) € M 4,
where M, = H”{* and M_ = H™,". In the case of H',, the metric is taken to
be negative definite in the direction of ¢°, see Example 3.2.10. The level set of

the hyper-Kahler moment map is chosen to be
Pi:={G=2%+ji e My ||z°? = ||, wo = 0}.

More precisely, we choose the level set {4 = (F1,0,0)} for the homogeneous
hyper-Kahler moment map

0 1
pX = = (T (12° = Jwol?), Re (£2i2"wp), Im (£2i2"uwp))

]
associated with the tri-holomorphic Killing vector field

0 0
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Here, the upper and lower sign correspond to the case of HTO'I and HZ’OI, respec-
tively. The hyper-Kéhler structure on the quotient is again the standard one on

quaternionic vector spaces, see Example 3.1.7.

In the next example, we obtain 7*(CP™) and a tubular neighborhood of
the zero section in T*(CH") from a hyper-Kéhler reduction of flat quaternionic
vector space. This will allow us to apply the HK/QK correspondence to these
hyper-Kahler manifolds in the next chapter.

Example 3.4.7 We continue Example 3.3.6 and perform the following hyper-
Kahler quotients:
Hn+1///{)\:1,)(:0}5(1diag.) ~~ T*Cpn’

{q € Hn’l | <Q7 Q> < O}///{)\:—l,xio}s(ldiag.) ~ {fQ < 1} CT"CH".

In the case of quaternionic vector space with positive definite signature, this can
be found in [LR] and [Hil]. In both cases, the resulting hyper-Kéhler metric
agrees with the one constructed by Biquard and Gauduchon in [BiGau]. They
construct a complete hyper-Kahler metric on the cotangent bundle of any Her-
mitian symmetric space of compact type and an incomplete hyper-Kéahler metric
on a specific tubular neighborhood of the zero section in the cotangent bundle

of any Hermitian symmetric space of non-compact type.

In this example, we will determine the hyper-Kahler structure on the chart
T({[z": 2" ... 0 2" € CP™ | 2° £ 0}) Cc T*CP"

and on {r? < 1} C T*CH". While the metric defined on the charts in T*CP"
patches together to a complete hyper-Kéahler metric on the whole cotangent
bundle, the hyper-Kéhler metric on {7* < 1} C T*CH™ is incomplete and can
not be extended [BiGau].

Let My ={qg=z+jweH" |20 %40} and M_ = {g € H"' | (g,¢q) < 0} be
endowed with the standard (pseudo-)hyper-Kéhler structure (js, Jy, Ja, J3) (see
Example 3.2.10). As in Example 3.3.6, we consider the tri-holomorphic Killing
vector field X generating the action ¢ = z + jw — e'lq = ez + j(e "w) of
et € ST on M. (scaled by a factor of two):

. E: I o U7 ——
X 2zI 0<z I Wy W Z 21+w1 w{).
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Again, we consider the level set
Py Z:{)\:ﬂzl,XZO}CMi,

where A = (2,2) — (w,w) and x := (z,w) := +2°wy + >0, z"w,. The
orbit  space Pi/S(ldmg.) is  diffeomorphic to the global section®

M, := {¢ := argz® = 0} C P.. The Kéhler forms on M/ induced from M

are given by

3.14 ~ 3.47
(L0 odil,, CAD 40P |\, (3.71)

Wa = Way,

From this equation and from Eq. (3.62), we obtain that

Wy = Wy + iwg = Z ac¢t A dn, (3.72)

p=1

in complex coordinates (¢ := (2°)7'z#,n, := 2%w,) =1, on M. Eq. (3.63)
implies that (¢*,7n,),=1,.. » are actually Ji-holomorphic coordinates and that
w§i) = 1dd5 K for the Kéhler potential

1+ vV1+£72

Ky =4+vV1+£7/2F2logps = £V1E£72Flog +log2, (3.73)

1 [[¢][?
where
8 1 -
P =41 ISP DYl + nll?), pe = NI 14+ V1 + 72

The coordinates (¢, 1,)u=1,...n take their values in

ceey

ML~ {(Cm) €C" x T}, M~ {(Gm) € C x C || < 1,7 < 1},

For later use, we give an explicit expression for the hyper-Kahler metric

obtained from the above example:

Remark 3.4.8 Note that, using the notation

(€0 =1+ C” (mn) == ¢ nal® + Il

p=1

we get the following expression for the first Kahler form from the Kahler potential

8Note that on P_, we have 20 # 0: |l¢||* < 0,A < 0= |]z]> < 0= [2°]*> > 0.
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given in Eq. (3.73):
i
wﬁi) = §8J18J1Ki (374)

_ i% Y dCH A dCH T AlA Y ¢HdCH) A n ¢rdc”
2( <<,<>; ( ,<>>2(,; (2 )
L1000 (=) L 9p(E) A afxif?))

I+ VIt it (14 V/izP)

A direct calculation using £72 = 4((, () (A, 7)) and Eq. (3.61) for A = £1 gives

i [ & - _
Wit = (Z(pf ¢t A dCH + pidny A di,) (3.75)

p=1

+p22d(Y ) A C) F Ap VI £ 95 px A alej:> .
n=1 v=1

The above equation leads to the following expression for the hyper-Kéahler metric:

n

g =Y _(ps dCHdC! + piPdn,dn,) (3.76)

p=1

+p2|d( Y )| F AV E T 0 ps
pn=1

To show the compatibility of the HK/QK correspondence with the hyper-
Kahler and quaternionic Kahler quotient constructions in the next chapter, we
need the following rather obvious proposition. It states that the hyper-Kahler
quotient with respect to two commuting Lie group actions can be performed in
stages and since it is formulated completely symmetrically with respect to the
two Lie group actions, it in particular implies that the outcome of the hyper-
Kahler reduction does not depend on the order in which one performs the two
respective hyper-Kahler quotients. For the reader’s convenience, we include a
diagram of the manifolds involved and a list of geometric data defined on them

(see Figure 3.2).

Proposition 3.4.9 Let (M, g, Ji, J2, J3) be a (pseudo-)hyper-Kdihler manifold
and let G, H be compact Lie groups acting isometrically and tri-holomorphically
on M such that their actions commute and such that the action of G x H on M

is free. Assume that g is non-degenerate along the G-orbits, the H-orbits and
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the (G x H)-orbits in M. Let u : M — g* @R3 and n: M — h* @ R? such
that i @ n is a hyper-Kdihler moment map for the (G x H)-action on M. Let
a€Z(g)QR3 and b € Z(h*) @ R3.

Then we have an induced isometric, tri-holomorphic and free action of H on the
hyper-Kdhler quotient M [fi,—ayG with hyper-Kdhler moment map 7 induced by
n and

(M ff=ay G) M=oy H = M [fyi=a, n=0} (G x H)

as (pseudo- )hyper-Kdahler manifolds.

///{MZG}G M
-
M,
{/G //{M=a,n=b}(G X H)
M Ma,b
U Geom. data on M : g, Wy f; 1)-
;) , /(G x H) Geom. data on M : 9, Was 1.
| /H Geom. data on M : g, Wa.
7 . A Geom. data on M': g, w,.

Figure 3.2: Illustration and list of geometric data for the proof of Proposition 3.4.9.

Proof: G acts freely on M with hyper-Kahler moment map p, so we can

consider the hyper-Kahler quotient
M -G = (M, G, J1, Jo, Js)

with M := M,/G, M, = p~*({a}).

Due to the (G x H)-equivariance of u @ 7, n is constant on the G-orbits in M
and hence induces a smooth map 7 : M — h* @ R? on M = M,/G:

dn” (v!) = v (") = H((p @ n)") = (nen)™ e =0

(vegCgdh, wehCgdh). Analogously to the above equation, one shows
that p is constant on the H-orbits in M. Hence, H acts on M, = p~'({a}) C M.
Since G and H commute, H also acts on the orbit space M = M,/G. Tt is
straightforward to check that H acts freely on M and that H preserves the
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Kahler forms @y, wy, w3, i.e. that it acts isometrically and tri-holomorphically on
M. The map 7 : M — b* @ R? fulfills®

di¥ = Go(w?,)), webh, a=1,2,3

and is H-equivariant. The restriction of the metric to the H-orbits is non-

degenerate. Hence, we can consider the hyper-Kahler quotient
M///{ﬁ:b}H = (M,Q, J1,J2,J3)

with M = M,/H, M, = 77 '({d}) € M. Note that M, = M, ,/G, ie.
M = (M, ,/G)/H, where M, , = {i = a, n = b} C M. This can be naturally
identified with M := M, /(G x H). Since the Kéhler forms on hyper-Kahler
quotients are defined purely in terms of pullbacks (see Eq. (3.70)), it is easy
to check that under the above identification, the hyper-Kéahler structure on M
agrees with that on M obtained from the hyper-Kahler quotient

M///{#:ayn:b}(G X H) = (M7g7J17J27J3>'
O

Remark 3.4.10 The assumptions that ensure the smoothness of the respective
hyper-Kéhler quotients in the above proposition can be relaxed (see Remark
3.4.5). Also note that G and H are treated entirely symmetrically. Hence, for
commuting Lie group actions of G and H on a (pseudo-)hyper-Kéhler manifold

M, we have
(MJl.G)JJ.H =~ (M[].H) .G

for appropriate choices of level sets, whenever all four hyper-Kéhler quotients

exist.

3.5 Hyper-Kahler quotients of conical hyper-
Kahler manifolds
Recall that any codimension four submanifold that is transversal to the vertical

distribution in a conical pseudo-hyper-Kéahler manifold inherits a quaternionic

pseudo-Kahler stucture (see Theorem 3.2.6). First, we show that a vector field

9Here, wh € X(M) denotes the fundamental vector field on M induced by w € b.
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on a conical pseudo-hyper-Kahler manifold preserving the conical hyper-Kahler
structure defines a Killing vector field on such a quaternionic Kahler submanifold
and we relate the homogeneous hyper-Kahler moment map to the quaternionic

Kahler moment map.

Proposition 3.5.1  Let (M,g, Ji, Jo, jg,f') be a conical pseudo-hyper-Kdhler
manifold and let X € %(]\7[) be a Killing vector field such that [X, ¢ = 0. Let
M’ be a codimension four submanifold that is transversal to the distribution
DY := span{¢, J€, I, jg&} C TM and denote the projection to TM' along DY
by pray, T]\AﬂM, — TM'. Then

X = proyy OX}M, e x(M) (3.77)

is a Killing vector field with respect to the quaternionic pseudo-Kdhler metric ¢

on M’ given in Theorem 3.2.6.

Let Q@ = spang{J], J5, Ji} be the quaternionic structure on (M',g') given in
Theorem 3.2.6. Then the quaternionic Kihler moment map u* € T'(Q) associ-
ated with X is given by p* = Zi’:l uXJ!

1 -
X ~ X o0 !

W = = e C®°(M 3.78
ol 2l , ( )7 ( )

where [Lf = —ég(jaf,f() € C’OO(M) are the components of the homogeneous

hyper-Kahler moment map associated with X given in Proposition 3.3.1.

Proof: The horizontal part g of the conical pseudo-hyper-Kahler metric is
invariant under £ and ja£ and has kernel D?. Since X preserves g and commutes

with &, J,&, X = pr2;, OX’M’ preserves ¢’ = g\M,.

Recall that the components of the local Sp(1)-connection one-form with respect
to (J},J}, J}) are given by 0, = HQ‘TM, € Q1(M’) (see the proof of Theorem
3.2.6), where 0, = =A53(Jut, ) (see Eq. (3.12)). Recall that with r* = [3(¢, )|
and o = sgn §(&,€), the Kéhler forms on M are given by

Qo =0rdr N +1%(0 05 N O, + 00), (3.79)
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where W, = Z(d0,—205N0,) (see Lemma 3.2.4). Since 0 = $L 4 (9(£,€)) = rdr(X),
this shows

A = 0a(X, ) = =0 05(X) rdr + 012 05(X) 0, — 012 60,(X) 05 + 12 0a(X, )
2 .
= Xdr—Zué(Q —I—QIUXQg—l—’f’ Wa(X, ). (3.80)

Since W, has kernel DY and the fundamental two-forms on M’ are given by

wh = JJ’M, (see Remark 3.2.7), we have

1/ 2
a = = <——MXdr+dua> ‘M, O _90X0, 4+ 20585 + WL (X, ). (3.81)

This shows that pX = Zi L plJ! s the quaternionic Kéhler moment map
associated with X (see Remark 2.2.4). a

Now, we show that for higher-dimensional Lie group actions on conical pseudo-
hyper-Kahler manifolds, the homogeneous hyper-Kahler moment is automati-

cally equivariant.

Proposition 3.5.2  Let (M,Q, jl, jg, jg,f) be a conical pseudo-hyper-Kdhler
manifold and let G be a connected Lie group that acts on M such that the action
preserves (g, Jy, Jo, jg,é’). Let fi : M — g* @ R? be defined by

~

) 1., .
18 = {fia, v) = —59(Ja$,vﬁ) (veg a=1,23)

Then [i is G-equivariant and hence a hyper-Kdhler moment map with respect to
the G-action.

Proof: Let X,Y be fundamental vector fields induced by some vectors in g.

Since Y preserves (g, Ju, Ja, Js, €), we have

~

. L, - .
3o, X)) = =50(Jo&, Ly X) = i,

DN | —

diiy (V) = Ly (-

This shows that [ is G-equivariant. By Proposition 3.3.1, i fulfills
dpX = @.(X, ). O

Definition 3.5.3  We call the map ji: M — g @ R3 given by

. . 1. -
Mo = <,uaav> - _ég(Ja&Uﬁ) (U €g a= 17273>



54 Chapter 3. Hyper-Kahler geometry

the homogeneous hyper-Kdahler moment map associated with G.

We now prove the compatibility of the construction in Theorem 3.2.6 with the
(level zero) hyper-Kéhler and quaternionic Kéhler quotient constructions. The
analogous statement for the Swann bundle over a quaternionic Kéhler manifold
was proven in [Sw1]. For a better orientation, we include Figure 3.3, which shows
a digram of the manifolds involved and a list of geometric data on the respective

manifolds. These are further explained in the proof of the theorem.

Theorem 3.5.4 Let (M, G, 1, Ja, Js, €) be a conical pseudo-hyper-Kdhler mani-
fold and let G be a compact connected Lie group that acts freely on M such that
the action preserves (g, jl, J, jg, €) and such that the restriction of g to the dis-
tribution tangent to the G-orbits is non-degenerate. Let [i M — g* @ R3 be the

homogeneous hyper-Kdahler moment map associated with the G-action.

Then & induces a vector field £ on M = My/G = i~({0})/G such that the
hyper-Kdhler quotient

M///{QZO}G - (Mag; jl;jZ; j3)

together with £ is a conical pseudo-hyper-Kdahler manifold.

Let M’ C M be a G-invariant codimension four submanifold transversal to the
distribution DV = spang{¢, Ji&, o€, jgé’} C TM and let (¢',Q) denote the in-
duced quaternionic pseudo-Kdhler structure on M’ (see Theorem 3.2.6). Then

G acts isometrically and freely on (M',q").
Consider the quaternionic Kahler quotient M' |G = (M',q',Q). M’ can be

canonically identified with a submanifold in ﬂ that is transversal to the dis-
tribution DY = spanR{g,jl,jg,jg} C Tﬂ and the quaternionic pseudo-Kahler
structure induced from M (via Theorem 3.2.6) is identical to (¢, Q).

Proof: Since
A (€) = 0a(X,€) = =§(Ja, X) = 21y

vanishes on M for any fundamental vector field X € %(M ), € is tangent to M.
Let ¥V and V° denote the Levi-Civita connections of (M ,g) and of the pseudo-
Riemannian submanifold (]\7[ 0 9|11,), Tespectively. Since @.f = Idps7, we have
for q € MO and v € TqMO - TqM:

VO(Eli1) = Py, 7, (Vo) = Dra, g7, v = v. (3.82)
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Geom. data on Z\:/:[ : 3, i, £, Do, 172, 04, [
Geom. dataon M : g, V, &, @, 7%, 0,
Geom. dataon M': ¢, Q, ., p.
M — Geom. data on M': ¢, Q, wh,.
U M’
JiEn G| Mo U
p|/G M} /G
M P /G

-

M/

Figure 3.3: Illustration and list of geometric data for the proof of Theorem 3.5.4.

Here, pr%qMOA: Tq]\A4 = IEMO &) (Tq]\7[0)l — Tq]\7[0 denotes the orthogonal pro-
jection of T'M |y, to TMy with respect to g. (See [O, Ch. 4] for the relation
between the Levi-Civita connection on a pseudo-Riemannian manifold and the

Levi-Civita connection on a pseudo-Riemannian submanifold.)

Let p: Mo — M = My/G denote the standard projection. Since &z, € xX(My)
is preserved by the G-action,  induces a vector field { € X(M) on M = M,/G.

&|11, is horizontal with respect to the decomposition
TMo=T"My &+ T"M,, T°M,:= kerdp,

or in other words, £|5;, is orthogonal to the distribution tangent to the G-orbits.
Hence, the horizontal lift £ € T(Th M) of { € X(M) is equal to &l5r,- Note that
p: (Mo, gl i) — (M, g) is a pseudo-Riemannian submersion. If V denotes the

Levi-Civita connection of (M, g), we have

= ~ (3.82) ~ ~
Vv€ = prongy, (V€)= progy, (Vi (i) = prong, (V) =Y,

for Y € %(ﬂ) and hence vg = Idpg. This shows that (ﬂ,g,_jhjg,_jg,Q
is a conical pseudo-hyper-Kéhler manifold. (See, e.g., [FIP, Ch. 1 & Ch. 7]
for the relation between the Levi-Civita connections of two pseudo-Riemannian

manifolds that are related by a pseudo-Riemannian submersion.)

Since the horizontal lift of § is given by g = i, we have

sgn g(&,€) = sgng(§, &), = o and the radial function r = /|g(&,€)| on ﬂ
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is related to r = \/[§(€, €] € C=(M) by p'r = 7|ir,- Recall that the Kahler
forms wq, W, w3 on the hyper-Kéhler quotient M are defined by

P'Wa = Walir, (a@=1,2,3). (3.83)
Thus, £ = dp(§|;,) implies
p*(@a(ga )) = (p*@a)(§|]@0a ) = (“:}Oc|1\710 (€|]\7[0a )

In total, this shows that for 0, = S, (§,-) € QY(M) and 6, =

we have

@a<§7 ) S Ql(ﬂ):

| Mlq

P*la = 6o (3.84)

Mo
Recall that the quaternionic stucture on M’ induced from M is given by
Q = spang{J{, J5, J}}, where J{, J;, J} are almost complex structures on M’ as
defined in Theorem 3.2.6. The corresponding fundamental two-forms are given
by

/

Wy = Wy

(3.85)

M’ )|M’

- %(d&a — 205 70,
According to Proposition 3.5.1, the quaternionic Kahler moment map associated
with the G-action on M’ is given by u := Zizl(%ﬂa)‘M,J(’l € I'(Q). Since the
almost complex structures J/, are linearly independent, M = p~'({0}) C M’ is
a submanifold of My = 4~({0}) C M. It is of codimension four and transversal
to DY\, C TM o. Hence, M’ is a codimension four submanifold in ﬂ that is
transversal to DY. Let p/ : M}y — M' = M}/G denote the standard projection
and let

LM/ZM/—)M, LMéiMé—)Mo.

The quaternionic structure @ on M induced by the quaternionic Kéahler quotient
is spanned by three almost complex structures Ji, Js,J3. The corresponding

fundamental two-forms are defined by (see Remark 2.2.8)

. (3.85) O . (O
Pl = by 2 2(d0a =205 70,)] = iy (i(dea 205 103)| 5, ) (3.86)

The almost pseudo-hyper-Hermitian structure on M’ induced from ﬂ via Theo-

rem 3.2.6 has fundamental two forms defined by

Galyy = thr (A6 — 205 1 6,). (3.87)
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Their pullback to M via p’ agrees with p”w, (see Eq. (3.86)), since 1y70p” = poryyy
implies

3.84)
= LMé (ea ‘ MO) .

This shows that the quaternionic pseudo-Kahler structures on M’ induced from

p/* L*M’Qa _ L}Fw(;p* 0, (

M’ via the quaternionic Kéhler quotient and from M via Theorem 3.2.6 are
identical. ]

3.6 The Swann bundle

In this section, we first review the Swann bundle construction from [Swl] in the
form presented in the author’s collaboration with D.V. Alekseevsky, V. Cortés
and T. Mohaupt [ACDM] and show that, up to rescaling of the metric, it is
(locally) inverse to the construction of quaternionic pseudo-Kéhler manifolds as
submanifolds of conical pseudo-hyper-Kéahler manifolds in Theorem 3.2.6. The
presentation does not use the formalism of reduced frame bundles from [Swl].
Instead the Swann bundle is directly constructed as the Riemannian cone over
an SO(3)-bundle over a quaternionic (pseudo-)Kéhler manifold, which is closer
to the treatment of this topic in the physics literature (see, e.g., [DRV1, DRV2)).

In the first subsection, we show that Killing vector fields on a quaternionic
(pseudo-)Kahler manifold can be uniquely lifted to tri-holomorphic Killing vector
fields on the Swann bundle that commute with the Euler vector field. In the
second subsection, we discuss canonical lifts of isometric group actions from

quaternionic (pseudo-)Ké&hler manifolds to the Swann bundle.

Let (M, g, Q) be a connected quaternionic (pseudo-)Kéahler manifold. Let
m: S =M

denote the principal SO(3)-bundle of frames (J1, Jo, J3) in @ such that J;Jo = J3
and J? = —Idrys, o = 1,2,3. The principal action of an element A € SO(3) is
given by

7(A,): S =S, s=(J1,Jz,J3) = 7(A,5) i= Ry15:= (Jy, Jo, J3) A,

i.e. we consider S as a left-principal bundle. We choose the basis (e,) of so(3)
given in Eq. (2.2). Tt corresponds to the standard basis of sp(1) = ImH = R3
under the canonical isomorphism sp(1) = ad(sp(1)) = so0(3). Let us denote by
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Z, € X(M) the fundamental vector fields associated with (e,):

T(exp(teq),s), s€S.

Z. \
t=0

s dt

Then
lea, €3] = 2ey, [Za, Zg)| = —2Z, (3.88)

for every cyclic permutation («, 3,7v) of (1,2,3). In the following, (a, 3,v) will
always be a cyclic permutation, whenever the three letters appear in an expres-

sion.

Let o = (J1, 2, J3) € T'(U, S) be a local section defined over some open subset
UcC M andlet 6 = 3°_ e, be the local Sp(1)-connection one-form with
respect to (Jp, Jo, J3), i.e. the local fundamental two-forms w, = g(J,, ) fulfill

dwe = 2(05 N w, — 0, A wg).

In the local trivialization 7=1(U) = U x SO(3) of S given by &, we can define
an 50(3)-valued one-form on 7! (U) by

W) .= 10 + o,

where ¢ = Y pae, € Q(SO(3),50(3)) is the Maurer-Cartan form on SO(3).
Since V) is independent of the choice of section o, it defines an so(3)-valued
one-form ,
0= Oaeq € Q'(S,50(3)) (3.89)

a=1
on S. The one-form 6 is in fact the connection one-form of the principal connec-
tion on S induced by the Levi-Civita connection V of (M, g) (see Eq. (2.1)). Its
curvature is defined by

1
Q:=db — 5[6/\9],

where

1
SONOIX,Y) = [0(X),0(Y)], XY eT.S, ses
Writing Q = >~ Q,e, and using Eq. (3.88), we have

Qo = db, — 205 N0, (3.90)

From the above equation and 6,(Zy) = daa, we immediately get the following

lemma:
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Lemma 3.6.1
Lzaea = 07 ﬁzaeﬂ = —297, Lzae,y = 295;

L0, =0, Lz Qp=-20, LzQ =20

[e3

For any local section o = (Ji, Ja, J5) € I'(U, S) over some open subset U C M,
the one-forms a*6, = 0, are the components of the local Sp(1)-connection one-

form and from (2.7), we get
v

o Q= SWa (3.91)

where wy, ws, ws are the local fundamental two-forms with respect to (Jy, Ja, J3).

We endow the manifold S with the pseudo-Riemannian metric

. 2 *
gs = U;(ea) + T (3.92)
where l
sca
= ——— (dimp M =14 .
v Tt 2) (dimg n) (3.93)

is the reduced scalar curvature of (M, g) and o := sgn v is its sign.

Now, we consider the cone M =R>® x S over S with the radial coordinate
r € R%, the Euler vector field

E=Zy:=r— (3.94)
and the following exact two-forms:
~ ~ ~ 7’2 ~
Qo = odf, € Q*(M), 0, = 59‘1 € QY (M). (3.95)

From now on, Z,, a = 1,2, 3, both denotes the fundamental vector field on S,

as well as its canonical extension to M = R>? x S.

Using the above data, one recovers Swann’s hyper-Kéhler structure on M:

Theorem 3.6.2 [Swl, ACDM]

Let (M,g,Q) be a connected (pseudo-)quaternionic Kdhler manifold.  Let
M = R> x S with radial coordinate r € R, gg and &, be defined as above.

Then the cone metric
g =odr® +1r%gs (3.96)
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1s a pseudo-hyper-Kdahler metric on M with Kdihler forms w,. Together with
the Euler vector field & = r%, (]\AL g, Jy, Jo, jg) 18 a conical pseudo-hyper-Kdhler
manifold. The signature of g is (4k + 4,44) if v > 0 and (4k,4¢ +4) if v < 0,
where (4k,40) is the signature of the quaternionic pseudo-Kdhler metric g on M.

Remark 3.6.3 The corresponding complex structures jl, jg, Js on M preserve
the distribution DY := spang{Z, |a =0, ...,3} C TM as well as its orthogonal

complement and satisfy
JaZO = Zaa jaZa = _ZD> jOéZ,B = Z’ya jozZ'y = _Zﬁa Ty © ja‘(r,s) = Ja 07%*7

where r € R0, s = (Jy, Ja, J5) € S and 7 :=mopry: M =R>0 x § — M.

Definition 3.6.4  For any quaternionic (pseudo-)Kdhler manifold (M, g,Q),
the conical pseudo-hyper-Kdhler manifold (7 : M = M, g, jl, j2’ jg,g) 15 called

the Swann bundle over M.

If M’ C M is a codimension four submanifold that is transversal to the distri-
bution D? = span{&, J;&, Jof, J5€} C TM, then there is a neighborhood around
every point in M’ that intersects each (R>® x SO(3))-orbit of M at most once.
So locally, M’ defines a section of M and fulfills the assumptions of the following

proposition:

Proposition 3.6.5  Let (M,g,Q) be a quaternionic (pseudo-)Kdhler mani-
fold and let (7 : M — M,g, jl,jg,jg,f) be the Swann bundle over M. Let

& : U — M be a local section over some open subset U C M. Define
M :=6&(U) C M and

o= pr206' =: (Jl,JQ,Jg) € F(U, S)

If (¢,Q = spang{Jj, J5, Ji}) denotes the quaternionic (pseudo-)Kdihler struc-
ture on M' obtained from Theorem 3.2.6, then & is an isomorphism between
(U7 %Q‘U’ Jl; JZ: J3) and (Mlagla J{a J£> Jé)

Proof: Note that the geometric data r* = [g§(&,€)], o = sgng(&,§),
0, = ;%g(jag ), o = §0a defined on conical (pseudo-)hyper-Kéhler manifolds
in (3.12) agrees with the geometric data on the Swann bundle defined in this
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section. Recall that the fundamental two-forms on M’ associated with Ji, J3, J;
are given by (see Remark 3.2.7 and (3.23))

g

Weo 5

(o — 2605 1 6,)|,,-

The local fundamental two-forms on U C M associated with o = (Ji, Ja, J3)
fulfill

v| eno

47 T 2

where 0, = 0*0, = 6" pryf, = 6*0,. (Note that in this section, we often

(d0 — 205 A6,

extended geometric data from S to M = R>% x S without explicitly pointing

this out, e.g., by writing (pry)*.) This shows that 6*w!, = %wa. ]

3.6.1 Lifts of Killing vector fields to the Swann bundle

This section was written in collaboration with Lana Casselmann.

For the proof of the next proposition, we use the following definition:

Definition 3.6.6  The differential operator Dy : QF(S) — QFL(S) defined by

(Dem)(Y1, -, Yir) i= dn((V1)", ..., (Yir)"), (3.97)

where n € QF(S) is a differential k-form on S and (Y;)" € T'(ker®) denotes
the horizontal part of Y; € X(S) with respect to the connection 0, is called the
absolute differential defined by 0.

Proposition 3.6.7 Let X be a Killing vector field on (M, g). Then there exists
a unique lift X € X(S) of X to S such that L0, =0, o = 1,2,3. It is given
by X = X + Zzzl faZy, where X € T'(ker®) denotes the horizontal lift and
[ =" fata € C(S,50(3)) is SO(3)-equivariant and fulfills o* fo = =5y for
any local section o = (J1, Ja, Js) : U — S, where 320 _ uXJ, is the restriction

to U of the quaternionic Kdahler moment map associated with X .

Proof: For any vector field X € X(M), an arbitrary lift X to S is given by

3
X=X+ foZa, (3.98)
a=1
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where X € I'(T'S) is the unique horizontal lift (dr(X) = X, 64(X) = 0) and f,,

a =1,2,3, are arbitrary smooth functions on S.

Lemma 3.6.8
L¢00 = 1500+ dfs +2f30, —2f,03

for any cyclic permutation («, 5,7) of (1,2,3).

Proof: Using Cartan’s formula and the fact that X is horizontal, we get

L;{Ha = (dobj(—i-bj(od)@a

For > foZa, we obtain

ZLf,Z, 29 o )for + for Lz, 04
o’'=1

= dfa + 2f50, — 21,05

using Lemma 3.6.1 and 0,(Z./) = dau- O

According to the above lemma, £ (6, = 0 is equivalent to
dfo +2f50, —2f,05 = —15Qq (3.99)

for a = 1,2,3. Following the idea of the proof of [GL, Theorem 2.4.], we show
that this equation has a unique solution: Applying the exterior derivative d to
Eq. (3.99) gives

2lfs A O + 2f5d6., — 2df, A0y — 2f,dfs = —dig Q.

Using Eq. (3.99) to replace df, df., in the above equation and using the expression
for the curvature 2 in (3.90) yields

2f 50 — 2 = —dig Qo + 205 A 15 — 20, A LgQp = —L Q.

For the last equality, we used Cartan’s formula, the fact that X is horizontal
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and Eq. (3.90). Hence, the components of f = > foeq € Q°(S, 50(3)) defined by
[, = —£:0 (3.100)

give the unique solution to Eq. (3.99).

Let o = (J1,J2,J3) : U — S be a section of S. Since 2, is horizontal, we

have

. . . 3.91) V
0" (13Q%) = 0" (Lde(x)S2a) = txO (g 2 §waa,

where w, = ¢(J, - ,-). Using the fact that pullback and exterior derivative
commute, one obtains the following equation for the functions (f,) := (6* f,) on
U C M by pulling back Eq. (3.99):

df +2f50, — 21,05 = —gbxwa. (3.101)

Up to a factor of —%, the functions f.. are the coefficients of the quaternionic
Kahler moment map p := —2 %" f,.J, associated with X (see (2.19)).

We now define a function f@) = Y Ve, € Q(x~1(U),s0(3)) such that
f(U)‘U(U) = 7*f and such that R;_lf(U) = Ad,(f)):

> H o 0)g ea = falp)Adg(ea) (g € SO(B3), peU).

In terms of the basis (eq, ez, e3) of s0(3), Ad, has a simple expression:
Itg= (gaﬁ)a,5:1,2,3 € SO(S), then

f o m)g™) =) gasfsp) (peU).
s=1

The absolute differential Dy of the SO(3)-equivariant function f),
Do f) = df") + [f©), 0],
is equivariant. In components, Dy f() is given by
Dof{" = df{" +2£70, — 216,

i.e. Eq. (3.99) corresponds to DyfV) = —1 3. Both sides of this equation are
SO(3)-equivariant and horizontal. To show that Dy fU) = —1 ¢, it thus suffices
to check the equation o*(DyfV)) = —o* (1), which is fulfilled by construction
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of f). Since Eq. (3.99) has the unique solution f, we have f() = fle=1n

Corollary 3.6.9 Let X be a Killing vector field on (M, g). Then there exists a
unique tri-holomorphic Killing vector field X on (]V[, g, Jh, jQ, jg) that is a lift of
X and that commutes with the Euler vector field &. It is given by the canonical
extension to M = R>® x § of the vector field on S obtained from Proposition
3.6.7.

Proof:

Existence: Let X be the canonical extension to M of the vector field ob-
tained from Proposition 3.6.7. Then £¢{ = Lgyr = L0, = 0. Consequently,
L Xéa =L( gﬁa) = 0. This shows that X preserves the Kahler forms @, = odb,
and hence that X is tri-holomorphic and Killing.

Uniqueness: An arbitrary lift of X to M is given by
X=X+ fuZa (3.102)

where X € F(]\AJ ) is the canonical extension to M of the horizontal lift to S and

fa, a=0, ..., 3, are arbitrary smooth functions on M. The equation

0=L3&= Zfaza,g Zé”fa

implies &(f,) =0fora=0,...,3.

L5(9(&,€)) = 0L (r?) = 20 for®

implies fo = 0. Hence, X is the canonical extension to M of a vector field on
S that is a lift of X and preserves 0, = T%g(jag, -). The latter is unique by
Proposition 3.6.7. a

Proposition 3.6.10 Let (M, g,Q) be a quaternionic (pseudo-)Kdhler manifold
and let (M,Q, jl,jg,jg,é) be the Swann bundle over M, # : M — M. Let
X € X(M) be a Killing vector field on M and let X € X(M) be the unique lift
to M given by the above corollary. Then

Y 2|V|

9(X, X) =r Zﬁ*(g(X,X)JrVHMXHQ) (3.103)
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and

‘I/‘ ~ x 1 NS 4o A~ X

=77 0(X, X)) = 5 (9(X, X) = [l ) (3.104)
where X € T(Q) is the quaternionic Kdhler moment map associated with X,
) = _dimlIRM tr(u®)?, and p~ € C""’(]\Af7 R3) is the homogeneous hyper-

Kihler moment map associated with X, ||p~))2 = 320 _ (aX)2.

Proof:  According to Corollary 3.6.9, X is the canonical extension of
X 4+ 532 faZa € X(S) to M = R*® x S, where X € I'(ker6) is the hori-
zontal lift of X and the functions f, € C*(S) are given in Proposition 3.6.7.
For every local section o = (Ji, Jo, J3) € T'(U,S), the restriction to 7#—!(U) of
the so(3)-valued function f = 322 _ foe, € C*(S,50(3)) is given by the SO(3)-

equivariant extension of (see Proposition 3.6.7)

3
v *
f‘cr(U) - _§ Z(TF u§)|U(U)€a7

where pX are the components of the quaternionic Kihler moment map:
p*|, = > pXJ.. Consider the natural scalar product (v,w) = —%trovw on
s0(3). For g € SO(3), it is Ad,-invariant and it fulfills (e, ea/) = dans. Hence,

3 V2
Sl gy = Dy, = T (D e S pben>)
= = (3 0)?) = = (I ?],) (3.105)

«

for any section o over U. Using the fact that the above equation holds globally,

we get

This shows (3.103), since 0 = sgnv. Recall that the components of the homoge-

neous hyper-Kéahler moment map are given by ,uf = —UT”QQQ(X ) (see Proposition
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3.3.1). Eq. (3.104) then follows from

3 2

% rd 3.105) V2rt |
1~ )12 = ZZ(fa)Q = g7 7.

a=1

Example 3.6.11 Consider the quaternionic Kahler manifolds'®

M, = HP" = (H' 1\ {0})/H",
M_=HH" = {q e H"" | (g,q) < 0}/H",

and their respective Swann bundles

M, = (H"\{0})/Z»,
M_={qgeH™"|(qq) < 0}/Zs,

ﬁ'lMi—>Mi.

The St-action
Qz,, €' €S, [qlz, € My,

on M + is well-defined. It is free, tri-holomorphic, isometric and commutes with
the R>%-action generated by the Euler vector field & € %(M +). Since it com-
mutes with the H*/Zy-action, it induces a well-defined isometric S'-action on
HP™, respectively HHH™. The induced S!-action on the quaternionic Kahler

manifold is not free. For instance, on
#({lqg =z + jwlz, € Mx |w=0}) C My,

the induced S!-action is trivial, since left- and right-multiplication of e € S* on
z € C"*! are identical. Proposition 3.6.10 shows, that the S'-action is locally

free on

Ut

#{9(X, %)~ S| £ 0})
{la ==+ julie € Ma | {2,2) w,w) — |{z,8) 0} € Ms,

where X € %(Z\Zfi) is the vector field generating the S'-action on M. Note

10The H*-quotient is defined by multiplication from the right and M+ are endowed with the
hyper-Kéahler structure described in Examples 3.1.7, 3.2.10.
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that zero is a regular value of the quaternionic Kahler moment map on M, and
the zero level set is contained in U,. Hence, we can perform the quaternionic
Kahler quotient My J/S*.

3.6.2 Lifting isometric group actions to the Swann bundle

Proposition 3.6.12 Let (M, g, Q) be a quaternionic (pseudo-)Kdihler manifold
and let G be a compact, connected Lie group acting isometrically on (M, §) such
that the action is free on the zero level set {u = 0} C M of the quaternionic

Kahler moment map p associated with G.

Then the action canonically lifts to an isometric and tri-holomorphic G-action
on the Swann bundle # : M — M that commutes with the Euler vector field €.
The action is free on {fi = 0} C ]\A4, where [i is the homogeneous hyper-Kahler

moment map associated with G.

Proof: Due to Proposition 2.2.1, G preserves (). It also preserves the inner
product (-,-) and the orientation on (). Hence, it induces an action on the
SO(3)-bundle S of oriented orthonormal frames in (). This action preserves
the SO(3)-connection one-form § = 3> _ 6,e, on S, since 6 is induced by
the Levi-Civita connection of (M, g). The canonical extension of the G-action
to M = R>® x S commutes with the Euler vector field ¢ = r0,. Since the
Kihler forms on M are given by &, = %d(r*0,), the action is isometric and
tri-holomorphic. Since the G-action on {y = 0} C M is free, the lifted action is
free on 7' ({p = 0}) = {z = 0} C M. O

Remark 3.6.13 The above proposition shows that if we can perform the
quaternionic Kihler quotient M //G, then we can also perform the hyper-Kéhler
quotient M Nse0y G With level 0 and obtain a smooth (pseudo-)hyper-Kéhler
manifold. M/, G is again a conical (pseudo-)hyper-Kihler manifold. In fact,
it is the Swann bundle over M /G [Swl] (see also Theorem 3.5.4).

Proposition 3.6.14  Let (M, g, Q) be a quaternionic (pseudo-)Kdhler mani-
fold with an isometric S*-action generated by a vector field X € X(M) such
that X and the quaternionic Kdhler moment map u~ associated with X do not
vanish simultaneously. Then the lifted isometric tri-holomorphic S*-action on
the Swann bundle % : M — M that commutes with & 1s locally free.
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Proof: The lifted S'-action is obtained as in the proof of Proposition 3.6.12.
Since the lift X € X(M) of X constructed in the last subsection is unique, it
generates the lifted S'-action on M. X is the sum of the horizontal lift of X
and a vertical part that vanishes if and only if f vanishes. The latter happens
exactly on #71({u* = 0}). Since by assumption, X and p* do not vanish
simultaneously, X vanishes nowhere on M. Hence, the Sl-action is locally free
on M. O

Remark 3.6.15 The above proposition shows that if S* acts isometrically on
a quaternionic (pseudo-)Kéhler manifold, then we can perform the hyper-Kéahler
quotient of the Swann bundle with respect to the lifted action with an arbitrary

level obtaining at most orbifold singularities.



Chapter 4

The Hyper-Kahler /quaternionic

Kahler correspondence

In Section 4.1, we introduce the HK/QK correspondence. It constructs a quater-
nionic pseudo-Kahler manifold endowed with a Killing vector field from a pseudo-
hyper-Kahler manifold of the same dimension endowed with a real-valued func-
tion. This function is the Ké&hler moment map (with respect to the first Kéhler
form) of a rotating Killing vector field, which means that the vector field pre-
serves the metric and first complex structure while acting as an infinitesimal
rotation on the plane spanned by the other two complex structures. The Kahler
moment map can be shifted by a real constant. The choice of this constant
influences the local geometry and the global topology of the resulting quater-
nionic pseudo-Kéhler manifold. The construction is taken from the author’s col-
laboration [ACDM] and is based on the conification of (pseudo-)hyper-Kéahler
manifolds with rotating Killing vector field introduced in [ACM]. It extends re-
sults of Andriy Haydys who discovered the HK/QK correspondence and studied
the case where the initial hyper-Kahler manifold is positive definite, and the
resulting quaternionic Kahler metric is positive definite and of positive scalar
curvature [Ha]. In contrast to [ACDM], we will give a new and self-contained
proof of the fact that the resulting metric is quaternionic pseudo-Kéhler. In our
account, the construction and the proof just make use of an S'-bundle over the
original pseudo-hyper-Kahler manifold and do not involve the construcion of a
higher-dimensional conical hyper-Kéhler manifold. In [ACDM], the proof was
based on the conification construction from [ACM], which is similar to the way

the quaternionic Kéhler property was proven in [Ha].

69
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We explicitly determine the signature of the metric and the local Sp(1)-connection
one-form for all quaternionic pseudo-Kéahler manifolds obtained from the HK/QK
correspondence. We also determine the quaternionic Kéhler moment map of
the Killing vector field defined by the HK/QK correspondence. It is nowhere
vanishing and thus defines a global integrable complex structure that is compa-
tible with the quaternionic structure. This shows in particular that quaternionic
Kéhler manifolds that are obtained from the HK/QK correspondence can never

be positive definite, of positive scalar curvature and complete.

In Subsection 4.1.1, we apply the HK/QK correspondence to an arbitrary conical
pseudo-hyper-Kéhler manifold (M, g, Ji, J2, J3,€). The real-valued function is
chosen such that the corresponding rotating Killing vector field is J;£. Since
M is conical hyper-Kéahler, it is locally the Swann bundle over a quaternionic
pseudo-Kihler manifold M. Applying the HK/QK correspondence while leaving
the parameter ¢ € R* in the choice of w;-Hamiltonian function free leads to a
family of quaternionic Kahler metrics which is again defined on M. This family
is locally homothetic to the family of quaternionic Kahler metrics on the Swann
bundle over M defined in [Sw1]. As an example, we consider quaternionic vector
space with the standard positive definite hyper-Kéhler metric. For ¢ > 0, the
HK/QK correspondence leads to a chart in quaternionic projective space and

for ¢ < 0, the result is isometric to quaternionic hyperbolic space.

In Section 4.2, we show that if M is obtained from a conical hyper-Kéahler ma-
nifold M via an S*-hyper-Kéhler quotient with level set P (with non-zero level)
and M’ C P is an appropriate codimension one submanifold endowed with the
quaternionic Kéhler structure induced from M , then M and M’ are related by
the HK/QK correspondence. The global consideration of this result gives a re-
verse construction for the HK/QK correspondence (the QK/HK correspondence)
which is a combination of the Swann bundle construction and a hyper-Kahler
quotient (with non-zero level) with respect to the canonical lift of an isometric

Sl-action.

In Section 4.3, we show the compatibility of the HK/QK correspondence with

the hyper-Kahler and quaternionic Kahler quotient constructions.

In Section 4.4 we apply the HK/QK correspondence to a chart in 7*(CP") and
to the tubular neighborhood of the zero-section in 7*(CH™) on which we defined
a hyper-Kéhler structure via a hyper-Kéahler quotient in Section 3.4. As a result,

we obtain families ¢/¢ of quaternionic Kéhler metrics on M/, = {(¢,n) € C*"},
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respectively! M’ = {||¢|]* < 1,7 < 1} € M/, where ¢ € R=? (see Eq. (4.62)).
As an application of the results from Section 4.2, we show that (M, ¢?) is
isometric to? a chart in (HP)° and that (M’ ,¢") is isometric to HH™. As an
application of the results from Section 4.3, we show that (M, ¢’!) is isometric to
a chart in a proper subset (X (n))? of the Wolf space X (n) and that (M’ ¢") is
isometric to a proper subset (X (n))? of the Wolf space X (n). We also give a first
analysis of the case ¢ > 0 and show in particular that while (M’ ¢") ~ HH" is
complete, (M’ ¢’°) is incomplete for all ¢ > 0. Furthermore, we give supporting
evidence for our expectation that (M, ¢f) is not locally symmetric for ¢ different

from zero and one.

4.1 The HK/QK correspondence

First, we review the HK/QK correspondence in a form similar to the one pub-
lished in the author’s collaboration [ACDM]:

Let (M, g, Ji, Ja, J3, f) be a (pseudo-)hyper-Kéhler manifold with Kéhler forms
Wo = g(Ja-,*), @ = 1,2,3, together with a real-valued function f € C*°(M)
such that Z := —w;!(df) € X(M) is a time-like or space-like .J;-holomorphic
Killing vector field satistying £,Jo = —2J;.

We assume that o :=sgn f and oy := sgn f; are constant and non-zero, where
fi:=f—%2= € C°(M). This can be achieved by restricting M to an open

subset.

Let 7 : P — M be an S'-principal bundle® with principal connection 1 whose

curvature is

dn = 1" (wy — %dﬂ) € Q*(P), (4.1)

where

Bi=g(Z,-) € Q" (M). (4.2)

From now on, we will often drop 7#* when pulling back covariant tensor fields
from M to P.

7 10 1) (2 C )+ )

2P =HP"\{[g = 2 + jwlug,,, | (z;w) € C* {0}, [[2[* = [[w]]?, 2w = 0}, see Eq.
(3.56).

3P exists globally if [3- (w1 — 3dB)] = [5=w1] € H3x(M,Z) (sce e.g. [Wood, Prop. 8.3.1]).
Otherwise, we restrict M to an open subset.
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We endow P with the (pseudo-)Riemannian metric
gp = 31772 +7*g € T(Sym? T*P) (4.3)
and with the vector field
7P =7+ fiXp € X(P), (4.4)
where Z € I'(kern) C X(P) denotes the horizontal lift of Z to P and Xp denotes

the fundamental vector field of the principal action of P (normalized such that

n(Xp) = 1). Furthermore, we endow P with the following one-forms*:

1

p . 1L
0, = 2df
0F = g+ p
1 = 1N 9
1

o = §w3(Z, )

1
0y = —§w2(Z, ). (4.5)

Let M’ be a codimension one submanifold of P which is transversal to the
vector field ZF, i.e. TP|yy = TM' ® RZP. Let

prih, i TP|,, =TM &RZF — TM (4.6)

denote the projection onto the first summand (i.e. the projection onto 7'M’ along
ZF). Define the vector field

X = prid, 0 Xp|,, € X(M'). (4.7)
For any vector field Y € X(M) on M, we introduce the notation
P

Y= pri}w, o?‘M, e xX(M"). (4.8)

Define D" := {Z, 11 Z, JyZ, JsZ}*9 © TM
and D" := span {Y' | Y € T'(D")} € TM'. Note that with

D" :=span{ X, (11 2),(JZ)', (J3Z)} Cc TM', (4.9)

“Note that in comparison to [ACDM], we changed the sign of 6.
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we have the splitting
TM =D" @ D" (4.10)

Using this splitting, we now define an almost hyper-complex structure on M’

Proposition 4.1.1  An almost hyper-complex structure (Ji, J5, J}) on M’ is

uniquely defined by

1
I X =——(J2), J.(Js2) =(J,Z2) (a=123) (4.11)
1

and
J (Y = (J,Y) for allY € T(D"). (4.12)

Proof: Since J, preserves D", J! preserves D'. Tt is clear that Eqs. (4.11) and
(4.12) uniquely define three almost complex structures and that they preserve
D', The matrices representing Ji| .., J3|p.; J§|D,v with respect to the frame
(X, — %(JlZ)’, - fil(JgZ)’, - f—ll(J3Z)/> in D' are given by

0 -1 0 0 0 0 —10 00 0 -1
1 0 0 0 0 0 0 1 00 -1 0
0 0 —1|’ 1 0 0] |01 0
0 1 0 0 -1 0 0 10 0

Together with

T T Y =T (JoY) = (Ja oY), (1,00 =1,2,3)

a1 a2

for all Y € T'(D"), we obtain that (Jj, J3, J}) fulfill

NIy =Ty = T,

The following theorem constitutes the HK/QK correspondence:

Theorem 4.1.2 Let (M, g, J1, Jo, J3) be a (pseudo-)hyper-Kdhler manifold and
f € C=(M) such that the assumptions on f and Z := —w; ' (df) stated above are
fulfilled. Choose an S'-bundle P with connection n and a submanifold M’ C P

as above. Let

Q := span{Jj, Jy, J5}, (4.13)
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where Ji, J5, Ji are given by Proposition 4.1.1. With

3
1 2
/ P2
g = —(g9p — = 0, , 4.14
o0 = 7 200, (4.14)
(M, ¢, Q) is a quaternionic pseudo-Kdhler manifold.
The signature of ¢' is related to sign g = (4k,40) as follows:
(4k —4,40+4) if f>0, f1 <0
signg’ = Q (4k + 4,40 —4) if f <0, f1 >0 (4.15)

(4k, 40) if ff1>0.

The local Sp(1)-connection one-form with respect to (Ji,J5 J5) is given
by 0 = Zi:l 0,60, where
1

0o = ?65 » (a=1,2,3). (4.16)

Remark 4.1.3 The above relation between the (pseudo-)hyper-Kéhler mani-
fold with w;-Hamiltonian function (M, g, Ji, J2, Js, f) and the quaternionic pseudo-
Kahler manifold with Killing vector field® (M’, ¢, @Q, X) is called the HK/QK
correspondence. We say that (M’ ¢, Q, X) is obtained from (M, g, J1, J2, J3, f)
via the HK /QK correspondence with the choices (P, n, M') or simply that
(M',¢',Q, X) is obtained from (M, g, J1, Ja, J5, f, P,n, M') via the HK/QK cor-

respondence.

For the proof of the above theorem, we will split the hyper-Kahler metric g
on M according to the splitting TM = D? &9 D" where

DY :=spang{Z, 1 Z, JoZ, JsZ} C TM (4.17)

and D" = (DV)19. Define the following one-forms on M:

1 1
Oy = édf = —5001(2»')7
1 1
0, = =p==g92,-
1 26 29( ) >’

5 Xp commutes with Z¥, 1/(2|f|) (gp — 2/ f PZ(O(I;)Q) € I'(Sym? T*P) has kernel RZ{ and

. z
is preservered by Xp and Z{. Hence, X = proh © Xp|mr preserves g’
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1
Oy = §W3(Z= ')7
93 = _%(JJ2<Z, ) (418)

Proposition 4.1.4  The (pseudo- )hyper-Kdhler metric can be written as

4 S,
9= 57 ;(Ha) + 4, (4.19)

where § € T'(Sym*T*M) is a tensor field that is invariant under Z and has

four-dimensional kernel ker g = D".

The Kdhler forms on M are given by

4
- 2 4.
Wa B(Z)(HOAGC“JF%AH”)W“ (4.20)

for every cyclic permutation (o, B,7) of (1,2,3), where

Go = G(Jur ) € D2 (M). (4.21)

Proof:
Since (Jy, Ja, J3) is hyper-Hermitian, Z, J1Z, JoZ and J3Z are pairwise ortho-
gonal and all have squared norm equal to ¢(Z,Z) = 5(Z). Hence,

G g = S0 = g = (2P 4 2P+ (2 + (B2
has ker g = D".
Since Z is Killing and fulfills £,.J; = —2.J3, we have £z(8(Z)) = 0 and
L700=0, Lz0, =0, Lz0,=—205, Lz03=20,. (4.22)
This implies

L2 = L5 <g -7 ZW) -0, (4.23
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Eq. (4.20) follows directly from Eq. (4.19) and

Ty = —0q, J05=—0, (4.24)

Proof (of Theorem 4.1.2 for dimg M > 4):
From the definition of ¢’ (see Eq. (4.14)) and the splitting of the hyper-Kéahler
metric ¢ in Eq. (4.19), we get

M
a=0
1 /2 4
- m(z’f*(—Z)((95>2+<9f—n)2+(9§)2+(931’)2)
5 B
+ g — ?Z(ef)ﬂﬂw
a=0
_ L (2h D)2 p_ o P2 P2 s
2!f|<f5(Z) ((60)" + (61 )+ 02) +<93>)+wg) .
3
= hom 20 ﬁw*g M (4.25)
a=0
where
. 2f1 | p , 1 ‘ 2h | »  f
=1 0 o= — of _
T ‘/3(2) e =1 5| O~ e
. 2f1 | ,p , 1 ‘2f1 -
0, = — 0 [ — 9 '
are one-forms on M’ and
Aw=sgnf(Z), o=sgnf, o1=sgnf. (4.27)

Note that Z{ lies in the kernel of 6", 0F — f/ fin, 65, 61 and 7*§. Consequently,
the splitting of ¢’ given in Eq. (4.25) corresponds to the splitting TM' = D" oD
defined in the proof of Proposition 4.1.1, i.e. the first summand is non-degenerate
on D" and has kernel D™ while the second summand is non-degenerate on D™
and has kernel D". Eq. (4.25) thus implies that the signature of ¢’ is given by
Eq. (4.15) and in particular, it shows that ¢’ in non-degenerate.
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Now, we want to show that

[0

W= g )= a2 AE) (=128 (429

Lemma 4.1.5
dot = 7w, (a=1,2,3). (4.29)

Proof: For 0F, this follows from the definition of the curvature of 1 (see Eq.
(4.1)). For 0F and 6 this is obtained from £yws = 2wy and Lzwy = —2ws
respectively, e.g.:

2d0F = d(1zws) da=0 L 7w = 2ws.

Since (J7, Jb, J3) (see Proposition 4.1.1) agrees with (J;, Jo, J3) on D,

i o (T ) = 73T )]y = 76

On D", (X, J; X, JyX, J4X) are pairwise orthogonal with respect to >>_ (6")?
and fulfill

00(S1X) = =01 (X) = —05(J3X) = 05(J5X) =

o 150 6

| f 2f1

Using the fact that (J7, J5, J5) is an almost hyper-complex structure, this implies
J0, = -0, J,;*H’B = 0. (4.30)

In total, we have

wl, = Aooy(0y A O, + 05 N 0.,) + 2\f\7r Dol  (@=1,2,3). (4.31)
This is equal to
g(dé — 205 N0,
“ (Lf ~ o7 AT E )|
295
(4.20) (Lf “ If\ﬁz( 7 (90/\9(1—%05/\97)—%(95/\95—%95/\95))‘]‘4/

1
— mw*wa\w + Aooi (0 A6, + 05 N0
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(4.31)
—= wOL

and shows Eq. (4.28). In the second to last equality, we used 87 = 7*0, for
a=0,2,3 and

(™~ %) = (o @ -0 - 59,

= (ﬁf;—%(ef - %n)) | = )\aalﬁ ';(—J;) 0. (4.32)

Eq. (4.28) shows that @ is compatible with ¢’ and implies
dw!, = o (05 AN df, — 0, A dlg) = 2(05 N, — 0, A wh). (4.33)
Together with Corollary 2.1.9, this finishes the proof for dimg M > 4. O

Proof (of Theorem 4.1.2 for dimg M = 4):
The four-dimensional case can be deduced from the higher-dimensional case as
follows®:
Assume that dimgM = 4. Let M, := H be endowed with the standard hyper-
Kahler structure (go, 7, J5,JY) that was defined in Example 3.1.7, i.e.
go = dzdz + dwdw and w9 = dz A dw in complex coordinates (z,w) defined
by ¢ = z+ jw € H. Let f° := ww € C°°(M,). This defines a JP-holomorphic
vector field

7% = — (W) (df) = 2i(wdy — wWyg)

that fulfills £zJ9 = —2J§ and f{ = f° — £¢0(2°,2°) = —ww. Then

ny" == 3 Im(zdz — wdw) fulfills dng™ = w) — 1d(1z00).

We consider (M =M xH,§:=gqg+go,f:=f+ f°) together with the pro-
duct hyper-complex structure (Jy,.Jy,Js). Let U € M be a neighborhood of
M = M x {0} C M, such that the signs of f, f; = fi + f2 and f — f,
restricted to U are constant. Then the restriction of the above data from M to U
fulfills the assumptions of the HK/QK correspondence. The restriction of P x H
defines an S'-bundle P over U with connection 7 = (1 + 77(])”0)‘13. The HK/QK
correspondence with the choices (P, 7, M' :== M’ xH) then defines a quaternionic
Kihler structure (', Q) on the 8-dimensional manifold M’. M’ = M’ x {0} c M’
is a quaternionic submanifold and, hence (M’, §’ ‘ o Q‘ a) 18 quaternionic Kéhler
by Proposition 2.1.11. The globally defined Sp(1)-connection one-form on M’

5This idea is taken from [MS2, Cor. 4.2.].
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Figure 4.1: HK/QK correspondence (global version).

obtained from the HK /QK-correspondence restricts to 8 € Q'(M’, s0(3)) on M,
which in particular shows that (g’]M,, Q|M,) =(d,Q). 0

Remark 4.1.6 Note that if ZF induces a free S'-action (denoted by S*') on P
and if M’ C P intersects each S'-orbit at most once, then M’ defines a section
d:U—P,aU)=M,of7:P— M:=P/S" over U :=#7(M') C M. M’ can
be identified with U via &. The geometric data defined on such submanifolds
U C M under this identification via the HK/QK correspondence patches to-
gether to a quaternionic (pseudo-)Kihler structure (g, Q) on M together with a
Killing vector field X € X(M) (see Figure 4.1). In this situation we also say that
(M, 3,Q,X) is obtained from the HK/QK correspondence. The quaternionic

Kahler moment map ,LLX associated with M is nowhere vanishing on M and thus

defines a global integrable complex structure J := J; 1= — H;XHQ'MX e T'(M,Q)

on M that is compatible with (). The sign is chosen such that J locally corres-

ponds to the complex structure J; on M’ (see Proposition 4.1.9 below).

Remark 4.1.7 Using the well-known result by Alekseevsky [A1] that

gw; — df, — 205 A0, (4.34)
we obtain from Eq. (4.28) that the reduced scalar curvature of any quaternionic
(pseudo-)Kahler manifold (M’, ¢') obtained from the HK/QK correspondence is

scal

v T +2) o (dim n) (4.35)

Remark 4.1.8 Note that the HK/QK correspondence can also be applied if we
drop the assumption that g(Z, Z) is non-vanishing. The above procedure then
gives a manifold M’ together with a tensor field ¢ € T'(Sym? T*M’). We believe
that also in this situation, it is possible to show that (M’,¢’) is quaternionic
pseudo-Kahler with globally defined fundamental two-forms

/ O ah 0 A D 7] —1gP
W, = §(d0a —205N0,), 6:=(f"0,

« )’M/‘
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Proposition 4.1.9  Let (M', ¢, Q = spang{J], J5, J5}, X) be a quaternionic
(pseudo-)Kdhler manifold with Killing vector field that is obtained wvia the
HK/QK correspondence from a hyper-Kdhler manifold with function f. Then

the quaternionic Kdhler moment map on M’ associated with X s

Proof: Recall that @) is defined by globally defined fundamental two-forms

o, = - ~ ~ 1 p
wl, = §(d0a — 205 N0.), 0, = ?ea | pr-
Let a € C*°(P) such that (Xp —aZl)|,,, € D(TM’). Then the Killing vector
field on (M, ¢') is given by X = (Xp — aZfD)‘M,. Note that

and

(4.29)

exdfo =" (= 7R NG+ fIT W) [ (X )
= (F200(Xp = azD)df - af 7 (1200) )|

(f2(0 = af)df + f71df)|,, = f2df|,, (a=1)
= 2af_19§‘M, :2a‘M,9_3 (v =2)
—2af~'0%|,, = —2a,,, 0 (a=3).

From this, we obtain
(Lx00 = dixbo + txd0s)az1,25 = ( — da’M,, Qa‘M, O3, — 2a|M, 02).

This implies (£ xW),)a=1,2.3 = (0, 2a|M, wh, — 2&‘M, wh). From

L, 2 v+ 205(X))f, — (v + 20, (X))

«

and v = 4o (see Remark 4.1.7), we then obtain that the components of the
quaternionic Kahler moment map associated with X with respect to the frame
(Ji, J35, J%) in Q are given by

X _ _L‘
(13 Ja=1,2,3 = ( 207 s 0, 0).
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4.1.1 HK/QK correspondence for conical hyper-Kahler

manifolds

Let (M, g, Ji1, Ja, Js, &) be a conical (pseudo-)hyper-Kéahler manifold. Similarly to
Eq. (3.27), one checks that J;¢ is a Ji-holomorphic Killing vector field satisfying

LJ1§w2 = —QW3.

For ¢ € R*, we choose f = 3(r® + ¢), where r? = g(§,£)| and A = sgng(&,§).
Then Z = —w; H(df) = J1§ and f1 = f—19(Z,Z) = 4c. Note that for ¢ < 0, we
have to restrict M to MY = {r? +C>O}CM0rtoMC) {r*+c<0}cCcM
to fulfill the assumption on the sign of f. For simplicity, we will not write this

restriction explicitly in the following.

We consider the trivial S'-bundle 7 = pr, : P = M x S' — M, endowed with
the flat principal connection n = ds € Q!(P), where s is the natural coordinate
on S = {e** | s € R}. Note that with the notations from Section 3.2 (with o

replaced by M), 8 = g(Z,:) = 20, = 2\0; and hence dn =0 (319 Wy — —dﬁ

The one-forms on P are given by

1 A
p_ Lt _ A
0, = 2df zrdr,
P 1 T2 A
(91 :77+§5:d8+)\591:d8+)\91,
2

1 r ~
95 = 5W3(J1€,') = )\562 = )\92,

p 1 r? A
93 = —§WQ(J15,') = )\593 = )\93

The metric and Killing vector field on P are given by (using 6, := Xdr)

) 19) 4\ : 7
=t +g ) DA+ WY (a2 +9), 2= Z+ fiXe = hE+AS0.

gp =
f 1 c 2—0

Here, ¢ is the horizontal part of the conical pseudo-hyper-Kéhler metric (see

Lemma 3.2.4). We choose the Z{-transversal submanifold
M =Mx{1} ={s=0}C P.

The quaternionic pseudo-Kéhler metric ¢’ on M’ ~ M obtained from the HK/QK
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correspondence is then (o = sgn f)

1 2 o2 e S
"= - P2 = 2 o
g_QVNm) fgxﬁ)”M’ ﬂ+0<ﬂ+c;;%)+g)
3

o oirt
T 7’2—1-022 (4.36)

Remark 4.1.10 Note that for ¢ — oo the quaternionic pseudo-Kéahler metrics
cg’ = ocg’ on M converge to the original conical pseudo-hyper-Kéhler metric g
on M. For ¢ — —oo, the metrics ocg’ on MY

on M.

converge to the original metric ¢

Remark 4.1.11 If M is the Swann bundle over a quaternionic (pseudo-)Ké&hler
manifold M, then the two-parameter family of quaternionic Kéhler metrics % g
on M’ with the replacements ¢ — q and r? — pr?, p,q € R*, is identical to the
metric g; in [Swl, Theorem 3.5] (note that the constant ¢ in [Swl] is related to
the reduced scalar v of M by ¢ = v/4). The original conical pseudo-hyper-Kéhler

metric on M is recovered from g; by setting p =10, g = 1.

Example 4.1.12 Let M = H" be endowed with the standard flat conical”
hyper-Kahler structure of positive definite signature and with the complex co-
ordinates (z*,w,),=1,.. n defined by ¢ = z + jw € M (see Examples 3.1.7 and
3.2.10). For the current example, the metric obtained from Eq. (4.36) reads

g = d

P BTE R I P Z(dz“dz“ + dw,dw,)
pn=1

B U‘ ZZ:1 (ZHdzM + wudwu)|2 + ’ Zzzl(z“dwu — w“dz“)’2
(c+ (2] + [Jw]?)?

(4.37)

For ¢ > 0 (0 = +1), (M, ¢') is isometric to the chart {¢° # 0} C HP" (see Egs.
(2.15) or (3.26)). For ¢ < 0, (MY, ¢') is complete and isometric to HH™ (recall
that o0 = —1 on MY = {c+ ||z||2 + [|w||* < 0} € M). Up to restriction of the

"To be precise, H" is not conical and does not fulfill all assumptions of the HK/QK cor-
respondence since g(§,€) = g(Z, Z) vanishes at the origin. Nevertheless, we can apply the
HK/QK correspondence (see Remark 4.1.8) and we see that, in this example, the result is still
quaternionic Kahler.
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Figure 4.2: Relation between the HK/QK correspondence, the hyper-Kéhler quotient
construction and the construction of quaternionic Kéhler manifolds as submanifolds
of conical hyper-Kéhler manifolds (see Theorem 4.2.1).

respective manifolds this establishes the following HK/QK correspondence:

cor. HP" (¢>0
(Hn’ f — (7"2 + C)/Q) HK/QK ( )
(c0) HH" (c < 0).

4.2 Reverse construction (QK/HK correspon-

dence)

In the following theorem, we show that if M is obtained from a conical hyper-
Kihler manifold M via an S Lhyper-Kéhler quotient with level set P and M’ C P
is a codimension one submanifold transversal to j1§ ’ p endowed with the quater-
nionic Kéahler structure induced from M, then M and M’ are related by the
HK/QK correspondence (see Figure 4.2). It is important that P is taken with

respect to a non-zero level of the homogeneous hyper-Kéahler moment map.

Theorem 4.2.1 Let (M,g, Ju, Ja, Js, €, X) be a conical (pseudo-)hyper-Kdihler
manifold endowed with a space- or time-like tri-holomorphic Killing vector field
X that commutes with the Euler vector field & and induces a free S*-action on

~

M.
Assume that the level set P = {iX = (—=0,0,0)} (o = sgn §(¢,£)) of the homoge-

neous hyper-Kahler moment map ﬂX associated with X is non-empty. Consider
the hyper-Kihler quotient MJ),S%, = (M = P/Sl 0595 T, 2, J3) and define a

) —
function f € C®(M) by p*f = 95,9

> where p : P — M denotes the projection.
Assume that X := sgn (§(€,€) —

P7
m) }P s constant and non-zero.
Then (M, g, J1, Jo, J3, ) fulfills the assumptions of the HK/QK correspondence.

Choose a codimension one submanifold M’ C P transversal to jf‘P- Let
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(M',¢',Q = spang{Ji, J5, Ji}) be the quaternionic pseudo-Kdhler mam'fold 0b-
tained from the HK/QK correspondence with the choices (P,n := O‘/g(X X) }P, .
Then ¢, Ji, J5, J5 are identical to the data on M’ induced from M by Theorem

3.2.6.

Proof: P is an S'-principal bundle over M, p : P — M, with fundamental
vector field® Xp := 0 X|p € X(P).

e QY(P) (4.38)

n=o

9(X,X)|,

defined an S'-principal conncetion on P, i.e. n(Xp) =1, Lx,n = 0. The func-
tions Q(f,&)/2’P and 2/§(X, )A(){P are X p-invariant, so they define functions
f, L e C°(M) via

== pfl—g(XX) . (4.39)

The vector field Z := j1§ is tangent to P and commutes with X, so ZF = j1§|p
induces a vector field Z € X(M).

Recall that the Kahler forms w;,ws, w3 on the hyper-Kéhler quotient M are
defined by
a=1,23.

p*wa =0
Since Z is jl—holomorphic, Killing and fulfills £ ng = —2j3, we have £, = 0,
L, 09 = —2w3 and L,w3 = 2wy. This implies Lzw; = 0, Lzwy = —2w3 and

L zw3 = 2ws, from which we conclude that
ng = 0, LZJI = 0, LZJQ = —2J3, (440)

i.e. Z is a Jyi-holomorphic Killing vector field that rotates J, and Js3. Since
Z = j1§ is tangent to P, we have

(3.16)

vt = 5066, 2 g(e. )| = ~antie )|
= _d)l‘p(ZA’P7 ) (p wl)( ) = _(p*wl)(27 ')7

8The extra sign o is purely conventional and chosen to match the definitions in Chapter 4.
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where Z € I'(kern) denotes the horizontal lift of Z € X(M) to P. This implies
df = _wl(Z7 ')a (441)

i.e. —f is a wy-Hamiltonian function for Z. By our assumptions, sgn f = ¢ and
o1 :=sgn f; = sgn g(X, X) are constant and non-zero.
The metric g on M is related to the metric gp := g|p by

o= (-5 005 7)

2
+ptg=—n"+pg. 4.42
g . F177 9 ( )

Splitting ZF into horizontal and vertical part, one gets Z& = Z 4 aXp, where

— ZP — g(*X} 1A£> _ _QAU/ELI)A( _ A2 _ . :
T S Tl R B e 5
le.
Z{ = Z+ (p"f1)Xp. (4.43)
Since . )
vt =gl 2D) 5 502 2) + '
we get .
fi=f - 3A(2) (4.44)
where 5 := g(Z,-). Note that
« _ o _{ 4
POz =w - = (360 -~z @

ie. Z € X(M) is space- or time-like by assumption. p*8 € QY (P) can be

expressed as follows:

pB= (p*g)<Zv ) = gP(Z’ ) = gP(Zf - (p*f1>XP7 )

el 20 ik
g(Jlga)P QX g( 7)
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Together with the fact that @, (.10 %d (g(jlg , )), this allows us to calculate the

curvature of the principal connection n on P as follows:

- Q(Xv) _1 (T e _1 NG _20@()27'>
dn = 0d<m>‘p B Zd(g(‘]lf’ ))‘p 2d<g(°]1€’ ) 9(X, X) >‘p
= o, — 5B = p*(wr — 5d). (4.46)

In total, we have shown that (M, g, J1, Jo, J3, f) fulfills the assumptions of the
HK/QK correspondence and that (P,n, M’) is a valid choice of S'-bundle with

principal connection and codimension one submanifold.

Define 6 := 3p*df = 39(¢, )|, and 6% := $4(Ja&, )| .. Then

1. 1 1 - 1. - 1,
07 = §Q(Z= ')|p = §QP(le7 ) = §QP(Z+f1XP7 ) = 77—|—§(p O(Z,-) = n+§p B,
I 1 ~ 7 1 * P 1 * ~ 1 *
Oy = 5w3(Z,)|p = 5 W' ws)(Z7,7) = 50 ws)(Z,-) = p*(Lzws)
2 2 2 2
and similarly, 65 = —3p*(1zw,), i.c. the definitions here (and in Section 3.3)

agree with the ones from Chapter 4. Recall that the geometric data ¢', Ji, J3, J5
on M’ defined by the HK/QK correspondence is uniquely determined by the

components

- <p3f95> ‘M/ e QM)

of the Sp(1)-connection one-form. The data induced from M by Theorem 3.2.6 is
also uniquely determined by the components of the Sp(1)-connection one-form.

In this case, these are given by

el = (g9t ) = Gl =

This proves the theorem. O

Remark 4.2.2 Note that in the above theorem, we can drop the assumption
that A is constant and non-zero, i.e. we can allow g(Z, Z) to vanish. In this case,
we can still apply the HK/QK correspondence (see Remark 4.1.8) and Theorem
3.2.6 then shows that the result is still quaternionic pseudo-Kahler.

Example 4.2.3 Let ¢ € R*. For ¢ > 0, we consider M, = H"\{0}
and for ¢ < 0, we consider M_ = H™,. We endow M. with the standard
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conical (pseudo-)hyper-Kéhler structure (see Example 3.2.10) and with the tri-
holomorphic Killing vector field

. 4
X = ﬂ Im(woawo — Zoazo)
c
(see Ex. 3.4.6). We use the notation § = (¢°,¢ = (¢%, ..., q")) = 2+ ji € M.
The level set Py = {uX = (F1,0,0)} of the homogeneous hyper-Kéhler moment

map associated with X reads
Pe={4=2+ji € My | |2 = |e], wo = 0}

(see Example 3.4.6). The hyper-Kéhler quotient M, ///PiS(lX) is isomorphic to
My ={qeH" | F|q|* < |c|} CH" (i.e. M, =H"). The function f € C*(My)
induced by g(§,&)/2 reads f = %’]”2. Similarly to Example 3.2.10, the quater-
nionic Kihler structure on M/, := {§ € Py | ¢° = /|c|} ~ My induced from
M via Theorem 3.2.6 is isomorphic to the chart {¢" # 0} C HP™ and to HH",
respectively. Theorem 4.2.1 then establishes the following HK/QK correspon-

dence?:
HZS! HZy
Mo, Seo Ne_Sio
e (c>0) % e (e<0) Q
f=(llall*+¢)/2 f=(llall*+¢)/2
H™ 4 {QO#O} cC HP" HZM .’q_/> HH™
HK/QK cor. HK/QK cor.

This example for the HK/QK correspondence was already constructed in a direct

way in Example 4.1.12.

For our purposes of studying examples, the relation between conical pseudo-
hyper-Kéhler manifolds and the HK/QK correspondence given in Theorem 4.2.1
is sufficient. For a more global understanding and to do the title of this sec-
tion justice, we consider the situation where the conical pseudo-hyper-Kahler

manifold is a Swann bundle for the rest of the section.

Remark 4.2.4 If in the above theorem, (M, 9,1, Ja, Js, &), 7 M — M is the

9To be precise, H" does not fulfill all assumptions of the HK/QK correspondence since
a(€,6) — @(X4 3 vanishes at {§ = (¢°,q) € P+ | ¢ = 0}. Nevertheless, we can apply the
HK/QK correspondence (see Remark 4.2.2) and we see that, in this example, the result is still
quaternionic Kahler.
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Swann bundle over a quaternionic (pseudo-)Kihler manifold (M, g, Q) and X
the unique lift of a Killing vector field X € X(M) given by Corollary 3.6.9, then
the assumption that X is space- or time-like is equivalent to the assumption that
o1 = segn(g(X, X) + v||uX||?) is constant and non-zero, where uX € I'(Q) is the
quaternionic Kéhler moment map associated with X (see Proposition 3.6.10).
In this situation, Z{" induces a free S'-action on P and P/Z{ is diffeomorphic

to M° := M\{u* =0} (see Remark 3.3.5).

Proposition 4.2.5 Let (M, g,Q, X) be a quaternionic (pseudo-)Kdihler mani-
fold with a Killing vector field and (M,g, Ji, Jo, jg,f), #: M — M the Swann
bundle over M and assume that the unique lift X € %(]\Af) of X given by
Corollary 3.6.9 is space- or time-like and induces a free S*-action on M. Let
Z € X(M) denote the vector field induced by j1§ on the hyper-Kahler quotient
(M = P/S*, g, J1, Jo, J3) with level set P = {i~ = (=,0,0)} (o = sgn j(&,€))
of the homogeneous hyper-Kdhler moment map /lX associated with X. If

p: P — M denotes the projection, then

#(p~'({9(2,2) = 0})) = {g(X, X) = 0} C M. (4.47)
Proof: Note that due to the requirement that X is space- or time-like, g(X, X)
and 4~ cannot vanish simultaneously. Together with (3.103) and the fact that

% V2T4A*
1= 151R ] = S 1 )

Equation (4.45) implies

9(X, X) )’ '

p*(g9(Z, Z :07“27?*(7
9(2.2) 9% X) + vl * P

(]

The following obvious corollary allows for the global understanding of Theorem
4.2.1 in the following Remark 4.2.7.

Corollary 4.2.6 Let (M, 3,Q, X) be a connected quaternionic (pseudo-)Kidhler
manifold endowed with a space- or time-like Killing vector field X such that
o1 = sgn(g(X, X) + v||uX||?) is constant and non-zero, where X € T'(Q) is
the quaternionic Kdahler moment map associated with X . Let (]\7[, g, jl, jz, jg, €)
be the Swann bundle over M and o := sgnv the sign of the scalar curvature
of g. Assume that the unique lift X € X(Z\A@ of X given by Corollary 3.6.9
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induces a free Sl'-action on M. Consider the hyper-Kdhler-quotient
MJ,S, = (M := P/Si,g,Ji,JsJ5) with respect to the level set
P = {,&X = (—0,0,0)} of the homogeneous hyper-Kdihler moment map /EX
associated with X and define a function f € C(M) by p*f = @ o where
p: P — M = P/S; denotes the projection.

Then (M, g, J1, Ja, Js, f) fulfills the assumptions of the HK/QK correspondence.

Let M’ C P be a codimension one submanifold that intersects each (RZ°xSO(3))-
orbit in M at most once, U = a(M'"). Let (M',¢',Q', X'") be the quaternionic
pseudo-Kdihler manifold with Killing vector field obtained from (M, g, J1, J2, J3, f)

via the HK/QK correspondence with the choices (P, n := 0%‘ ,M'"). Then
X) | p
(M, q',Q', X'") is isomorphic to (U, %g U,Q|U,JX|U).

Proof: (M,g, Ji, Jo, jg,f) is a conical (pseudo-)hyper-Kéhler manifold. By
Remark 4.2.4, the assumption that oy is constant and non-zero implies that X
is space- or time-like. By construction, X is tri-holomorphic and Killing and
it commutes with £. Note that since M is a Swann bundle, P is automati-
cally non-empty. Otherwise, up* = 0 everywhere on M (see Remark 3.3.5),
which would imply X = 0 and thus contradicts the assumption that oy is non-

zero. The assumption that sgn g(X, X) is constant and non-zero implies that
A =segn (9(6,€) — g()éfg)) ‘P 2 sgnp*(g(Z, 7)) is constant and non-zero (see
Proposition 4.2.5). Hence, we can apply Theorem 4.2.1.

By Theorem 4.2.1, (M, g, J1,Jo, J3, f) fulfills the assumptions of the HK/QK
correspondence. The submanifold M’ C P is transversal to jlf ‘ p- According to
Theorem 4.2.1, ¢', Q" = spang{Jj, J5, Ji} is the geometric data on M’ induced
from M via Theorem 3.2.6. By Proposition 3.6.5, this agrees with %g U,Q{U
on U C M. The vector field X’ on M’ is induced by Xp = 0 X | p» (see the proof
of Theorem 4.2.1 and the definition of X’ in Eq. (4.7)) and thus corresponds to

ocX - O

Remark 4.2.7 Note that in the situation of the above corollary,

s

. \ [0 . A/ X _
b P = MO = M\{p* =0}

is an Sl-principle bundle, i.e. from the HK/QK correspondence, we globally
recover (M°, g} MO,Q‘ i X | Mo), while the zero level-set of the quaternionic
Kéahler moment map associated with X can not be reconstructed (see Figure
4.3, where Me := #=1(M®)).
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e
M S} & g CO3) =R>? x SO(3)
Km ) S&h -
M £ 0

HK/QK corresp.

Figure 4.3: Relation between the HK/QK correspondence, the hyper-Kéahler quotient
construction and the Swann bundle construction (see Remark 4.2.7).

Remark 4.2.8 Note that in the above corollary, we can drop the assumption
that g(X, X) is non-vanishing. The condition on g(X, X )+ v||u*||? ensures that
the lifted vector field X is space- or time-like. In this case, we can still apply the
HK/QK correspondence (see Remark 4.1.8 and Proposition 4.2.5) and since we
started with a quaternionic (pseudo-)Kéhler manifold, we know that the result

is quaternionic (pseudo-)Kahler.

4.3 Compatibility of the HK /QK correspondence

with quotient constructions

In the following theorem, we show the compatibility of the HK/QK correspon-
dence with the (level zero) hyper-Kéhler and the quaternionic Kéhler quotient
constructions in the situation of Theorem 4.2.1 (see Figure 4.4 for an illustra-

tion).

Theorem 4.3.1 In the situation of Theorem 4.2.1, let G be a compact con-
nected Lie group that acts on ]\7[, preserving ¢, jl,jg,jg,f,X and such that
G is non-degenerate along the G-orbits and along the (S' x G)-orbits. As-
sume that S* x G acts freely on M, where S is the action induced by X
and assume that M' is G-invariant. Let & denote the homogeneous hyper-
Kahler moment map for the G-action on M and let x denote the induced hyper-
Kahler moment map for the G-action on M. Consider the hyper—thler quotient
Mj G = (M,g,Ji,Jz,J3). Let f € C®(M) be induced by ? 55) e C>(M).

Then (M, 9,J1, Ja, J3, f) and the quaternionic pseudo-Kdhler manifold M )G
are related via the HK/QK correspondence.
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Figure 4.4: Compatibility of the HK/QK correspondence with the hyper-Kéhler and
quaternionic Kéahler quotient constructions.

Proof: The codimension four submanifold M’ C M is transversal to the vertical
distribution D¥ = spang{¢, J1€, Jo€, jgg} (see the proof of Proposition 3.3.4). By
Theorem 3.5.4, the hyper-Kéhler quotient M//{k:O}G = (ﬂ, 3, i, Ja, J3) together
with the induced vector field £ is conical pseudo-hyper-Kéahler and the quater-
nionic ~ Kahler  structure on the quaternionic = Kahler  quotient
M' )G = (M, ¢, Q = spang{.J{, J5, Ji}) is identical to the one induced from M
on the codimension four submanifold M’ C M. The vector field X € X(M) in-
duces a tri-holomorphic Killing vector field X € X(M) that commutes with . By
Theorem 4.2.1, the hyper-Kahler quotient of ﬂ with level set!®
P = {ﬁi = (—0,0,0)} with respect to the S'-action induced by X (denoted
by S') is related to M’J/G via the HK/QK correspondence. The corresponding
function needed in the HK/QK correspondence is induced by g(¢,§)/2, which
itself is induced by g(&,£)/2. According to Proposition 3.4.9 and Remark 3.4.10,
M [}, S* can be identified with M /|, _, G = (M, g, J1, Ja, J3). O

Remark 4.3.2 Note that the HK/QK correspondence given in the above theo-
rem is performed with the choices P = (P N {# = 0})/G, n = o;(%’)ﬁ()) e QY(P)
(which is induced by 1) and M’ = (M' n {k =0})/G C P.

Remark 4.3.3 As always, the assumptions in the above theorem that ensure

the smoothness of the respective quotients can be relaxed (see Remark 3.4.5).

0Here, the R3-valued function 4= on M is the homogeneous hyper-Kihler moment map
associated with X .
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4.4 HK/QK correspondence for T*CP" and T*CH"

Recall that for Hermitian symmetric spaces of compact type, there exists a com-
plete hyper-Kéhler metric on the cotangent bundle [BiGau]. In the non-compact
case, the metric is incomplete and only defined on a certain neighborhood of the
zero section in the cotangent bundle [BiGau]. The S'-action on the (holomor-
phic) cotangent bundle given by fiberwise scalar multiplication of e € St fulfills
the assumptions of the HK/QK correspondence, i.e. the fundamental vector field

Z generating it is a rotating Ji-holomorphic Killing vector field.

In this section, we apply the HK/QK correspondence to the chart
T*({z° # 0}) € T*CP™ and to the neighborhood {7? < 1} C T*CH™" of the
zero section. The hyper-Kahler structure for these two examples has been con-
structed by a hyper-Kahler quotient from quaternionic vector space with positive,

respectively quaternionic Lorentzian signature in Example 3.4.7.

Let

My ={(¢n) € CQ”} ~ 1 {[z, w]c~ 20 #0,z-w=0}
C {[z,w]c: | z € C"™\{0}, w € C"™| 2. w =0} = T*CP" (4.48)

and
M_={F <1, |[<I? <1} c{(¢,n) e C" | |[¢|* <1} =T*CH",  (4.49)

where

= %1(1 £ 1CI) (£ (¢ m(C -0 + Inl12) (4.50)

Let J; be the standard complex structure on M_ C M, = C*" such that (¢, n)

are Ji-holomorphic coordinates. We define a hyper-Kahler structure
(g(i),Jl,JQ(i),Jéi)) on My by wy = ws + iwg = Zzzl d¢* A dn, and
wii) = %ajlélei, where

1+VIER
Ki:=+V1+72 T log (—Ti HCH; ) (4.51)

(see Example 3.4.7).

Now, we apply the HK/QK correspondence to (Mi,g(i),Jl,Jéi),Jéi),f(i)),

HC* action on C?"*2: (z,w) — (Az, \"1w), A € C*.

Z7
Biholomorphism: ¢ = (j—;, . 2—2), n = (2w, ..., 2%0,).
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where
V1472
&= iTerc (4.52)
for some ¢ € R. The vector field
~ 0 0
7 = 92 (n ——ﬁ—f) 4.53
Z .U«a?,]“ #anu ( )

p=1

is induced by the Jj-holomorphic and isometric action ((,n) — (¢,e**'n) of
e € S* on M.. Under this action, w, + e**w, and hence Lzwy, = —2ws3. A

direct calculation gives

n

> Re (A + (C-7) ¢"A,) (4.54)

p=1

A7) = df ),

L+ |i¢)?
V1E72
11

41472

—P(Z,) =2

where for p =1, ..., n,

n

> (e + Cm)d¢” € Q57 (M), (4.55)

o=1

1
A =dn, £+ ——
R S FA T

We have

B=g*Z,) = dj, f = —1df™
L4 <) §

—o -~ — I
V1472 pst

Im (7, A, £ (C-77) (" A), (4.56)

B(Z) = g2, Z) = = and
1 1
(£)
=t ——+c¢|. 4.57
19 =5 ( — ) (457)

For f and f; to be non-zero everywhere on M., we assume that ¢ > 0. For Z
to be non-zero everywhere on My, we would need to restrict to { > 0}, but
we can apply the HK/QK correspondence without this restriction (see Remark
4.1.8).

We endow the trivial S'-principal bundle 7 = pr; : P := My x S — M, with
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the principal connection n = ds + n,s, where

1 1 1
e = —dS (Ke — 2f®)) = 2d5 (Flog p2) = F=—dS, ps, (4.58)
4 4 2py

11+ v1+72
Pt = \/ . (4.59)

2 12|

Here, s is the natural coordinate on S' = {e* | s € R}. The principal curvature

is then

1 1, b1
dn = Jdd5, Ky — dd5, f&) = wf™) — 2.

The one-forms on P defined in Eq. (4.5) read

o) = ldf(i) — id—”lw7
2 4
1 1
Hf:n—k—dﬁzds—kzdc Ky,
1
0F = §w3 Z Re(n,d¢"),
pn=1
03 = L I dact)
3 = _§W2 Z m 77u C

The (pseudo-)Riemannian metric on P is given by

2 (3.76) 441+ 72 1 9
+¢g® ="+ ds F —d
=@ FElUR oyt BT g, e

+ 3 (p2d¢dCH + piPdnydn,)
pn=1

2 |d(D ¢ [ F 4 VIE R |05 pe (4.60)

p=1

and the Killing vector field reads

1+c¢ 0 u 0 0
zb =+ — 4+ 2 Ny — M=) (4.61)
1 ;(Hanu #877u)

2 Os

Since ¢ # —1, we can choose M}, = {0} x My = {s =0} C P as a Z'-transversal
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submanifold. According to Theorem 4.1.2,

1 1472
e _ —2\/@ d 2 c —2 dc 2
9+ C_‘_m(q:pi (IOﬂZ) :Fl_l_cm pi(le:t)

+ 3 (p2 d¢tdCH + pPdnudi,) £ p22|d(D " ¢ |’ (4.62)

u=1 pn=1

1 & 2 1 —2 1, . 2
F o (e TR )

is a positive definite quaternionic Kahler metric of positive, respectively negative

scalar curvature on M/, ~ M..
Proposition 4.4.1 (M’ ,g") is incomplete for ¢ > 0.

Proof: Consider the curve v: (0,1) — M_,

t
3 N=...=n,=0, 0<t<l,

which approaches the boundary {72 = 1} of M_ for t — 1. Its length £, is given
by

[ (e 2 2]
o VA" \am " onon " am) |

_/1 1 2v/1— 12 (i /1+\/1—t2)2
o \ct+V1I—2\1+v1I—¢2\dl 2

R 1 (Ly1 =) "
214+V1—t2 4 c++/1—+¢2

Here, we used that d°(t) = d°(m + 1) = 0. Denote the three summands under

the square root in the above integral by a, b and c. Then
1 1
l, :/ Va+b+c dtg/ (vVa+ Vb + /<) dt,
0 0
where

! 1 [t 1 1
adt < = dt = —=log(l + V1 —t2
/0\/_ _2/0 V1—1214++1—1¢2 2 8( )

1
0
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_11 2 <
= —1lo o0
B g )

! R | 1 1 17
\/Bdt<—/ dt = — arcsint| = —— < 00,
/0 V2o V1122 V2 0 V22

1 t .
/\/_dt /oC—l-M\/— log(c+\/1—t)

L og(1 4+ 2y 2"
=-lo - 00.
2 & c

This shows that £, is finite and consequently that (M’ ,¢" ) is incomplete. 0O

Remark 4.4.2 Note that in the above proof the length of ~ fulfills

1! 1 t 1 1

b, > = / dt = —=log(c + 1 — 2
0 C—i—vl—tQ\/l—tz 2 g( )0

For ¢ = 0, the above integral diverges. In fact, we will see in the next subsection

that for ¢ =0, (M’ , ¢’ ) is isometric to HHH"™ and hence complete.

4.4.1 c¢=0

The case ¢ = 0 can be analyzed using the reverse construction of the HK/QK

correspondence given in Theorem 4.2.1.

Proposition 4.4.3  For ¢ = 0, the quaternionic Kdhler manifold (M., g'.) is
isometric to the chart {q¢° # 0} in? (HP™)° and (M’ ,q’) is isometric to HHH™.

Proof: This proposition can be proven by applying Theorem 4.2.1 to
M+ = H’;Jorl, respectively M_ = ]HIZO, endowed with the Killing vector field
X induced by diagonal left-multiplication of e’ € S* (scaled by a factor of two)
with the choices M’ and M’ as submanifolds of Py. This has essentially al-
ready been done in Example 3.3.6 and Remarks 3.3.7 and 3.3.8. The result was

summarized in Corollary 3.3.9 and Remark 3.3.10.

Note that M’ and M’ can be identified with the manifolds M, = {(¢,n) € C*"}
and M_ = {((,n) € C* | #* < 1, |¢||* < 1}. Tt is enough to check that the
metric given in Eq. (4.62) agrees with Egs. (3.68) and (3.67) for ¢ = 0. ]

12(HPn)o — HP”\{[C] =z +]w]H*

f | (220) € C2PFA{0}, [2]12 = |lw]]?, 2 - w = 0}, see Eq.
(3.56).
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oy
///{z"”—oﬁlwn#z_l}swy @
Hzgl (Hpn—l-l)o
QK 1
///{A 1, x=0} (dldg)‘|r :1+\/m W// (diag.)
TCP L (X(n))"

HK/QK corresp.

Figure 4.5: Analysis of the HK/QK correspondence for T*CP"™ with parame-
ter ¢ = 1 using the compatibility of the correspondence with quotient construc-
tions. Here, (HZ}?)° {G = (¢,¢""?) € H""2 | ¢ # 0, ¢""? # 0} and
(HP"+)e = (HZH?)o /H*, ( (n))° = (H P"H)"///S’(}hag) denote the subsets of HP" 1,

respectively X (n) = SU(n+2)/S(U(2) x U(n)) corresponding to (HT(;Q)O.

Remark 4.4.4 Patching the charts together in the case of T*CP", the above
proposition gives the following HK/QK correspondences:

Hn+1 Hn,l
{A 1,x=0} V \ //{Afflx O}y \
V1+72/2 —V1-72/2
T*CP™ (HP™)° { <1}CcT'CH" 77—
HK/QK cor. HK/QK cor.

Here, the superscript ¢ refers to the removal of the zero level set of the quater-
nionic Kahler, respectively homogeneous hyper-Kahler moment map associated
with the S'-action defined by diagonal left-multiplication on quaternionic vector

space, e.g.

(FZE)° = H"""\{g = 2 + jw € H"" | ||2]] = ||wl|, {2, @) = 0}.

442 c=1

The case ¢ = 1 can be analyzed using the compatibility of the HK/QK correspon-
dence with the hyper- and quaternionic Kéhler quotient constructions (Theorem
4.3.1). The result of this analysis is summarized in Figures 4.5 and 4.6, and in

Proposition 4.4.5.
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1 (HZ)°
///{z"+2:0, wn+2|2_1})51(qn/ ﬂ‘
Y, (HH™ 1)
//{A_—l x=0} (dlag)‘|r [// QK (];ilag)
__ 14172 _
{7 <1} c T*CH" X (n))°

HK/QK corresp.

Figure 4.6: Analysis of the HK/QK correspondence for T*CH™ with parame-
ter ¢ = 1 using the compatibility of the correspondence with quotient construc-
tions. Here, (H%)° == {§ = (¢,¢"?) € H™? | (g, Dy < 0, ¢"T* # 0} and

HH™1)° = (HY 2)°/H*, (X (n))° = (HH™) ///S1 , denote the subsets of HH™ L
respectively X (n) = SU(n,2)/S(U(n) x U(2)) correspondmg to (HZ, 2)o,

We consider the chart M, = {¢"*! # 0} in

(HZ5%)° :={¢ = 2 + ji = (¢,¢""*) e H""? | ¢ # 0,¢"** # 0} C HZF?

M_ = M) ={i=(¢.4""*) € H"* | (¢,q),.,, < 0,¢""* # 0} C HI7,

"1 denotes a row vector consisting of the first n+1 standard

where g = (¢*, ..., q
quaternionic coordinates on M +. We endow M + with the standard conical

(pseudo-) hyper-Kéhler structure (g, Ju, Ja, Js, €) (see Example 3.2.10), where in

the case of M _, ¢ is chosen negative definite in the direction of ¢"™! and ¢"*2
We endow My with the vector fields
X = —2i("? 822+2 — Wy 8wi+2 — 2 052+2 + Wpa 8@12) (4.63)
e SR eSS, ] ] 9
Y = 2i Zl (" g~ Wagey g T 0ug): (4.64)
Note that the submanifold M 4+ C H™* is chosen such that ag| N Yl

positive definite, where 0 = +1 for the case M+ and 0 = —1 for the Case M_.
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The vector field Y induces a free S'-action on M + that we denote by G = St :

()*

n+2> ( it n+2)

e (q,q e'q,e'q

The vector field X induces a free S'-action on M + that we denote by Sk .:

(X%)"

eit . ((] qn+2) — <q e—itqn+2)'
Sk, and S;, commute and the action of Sk, x S}, on My is free.

To use Theorem 4.3.1, we study the following diagram:

M

M o, Sy Py NS

M, M/i
HK/QK corresp.

(4.65)

The level set Py := {iX = (—0,0,0)} € My of the homogeneous hyper-Kihler

moment map associated with X reads

Py = {(£(|2""*]* — |wpi2l?), Re(F2i2" 2w, 4), Im(F2i2" 2wny0) = (F1,0,0)}
= {2"2 =0, |wnyol? = 1} € M (4.66)

(compare Example 3.4.6). We identify the hyper-Kéhler quotient M. Mo, Sk
with the global section

- Hn+1 +
My = {(q,q""*) € My | 2" =0, wpyo = 1} = :01 ) (4.67)
HZy  (-)
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in the S'-bundle Py. The vector field Y induced on M, by Y reads

_zznZH z—— i—zfiﬂvi) (4.68)
0z! Low; 0z! L ow; ’

and the corresponding hyper-Kihler moment map ¥ induced by the homoge-

neous hyper-Kahler moment map &Y on M . associated with Y reads

W= B = (F (R = el — (2 2) + (),
Re(Qi(z"+2wn+2 + <Za 7IJ>)),
Im (20 (2" w0 + (2,@))))

{2n+2=0, wy2=1}CM +

= (£ 1—(z2) + (w,w), Re(2i(z,w)), Im(2i(z, w))) (4.69)

(compare Example 3.4.7). Here and in the following, we use the notation from
Example 3.4.7 with the index 0 replaced by n+ 1. The level set {k¥ = 0} C M.
then reads

(k¥ =0} ={\==+1,x =0} C My,

where

A= (z,2) — (w,w) = £(]2"7 = Jwaga ) + ) (127° = wul?),

X = (z,w) = £2" w1 + Z 2w,
p=1
In Example 3.4.7 and Remark 3.4.8, we showed that the resulting hyper-Kahler
quotient My = Myjf . Sy, is isomorphic to the chart T*({z"*! # 0}) in
T*CP", respectively to {72 < 1} € T*CH™. In terms of the complex coordinates
on M, defined by (¢* = ((z"™)~*2#,n, = 2" w,)u=1, . n, M, is given by the
manifolds defined in Eqs. (4.48) and (4.49), and endowed with the hyper-Kéhler
structure defined by w, = wso+iws = 22:1 d¢* Adn, and by the Kahler potential
for the first Kahler form given in Eq. 4.51.

It remains to check that the Hamiltonian function f in Theorem 4.3.1 is the
same as the one chosen in the beginning of this section when we directly applied
the HK/QK correspondence to T*CP™ and to T*CH™. The function f on M,
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is induced by

9(¢,¢)

2 {ny=0}CMiC]\2i

(:I: |Zn+2|2 + |wn+2|2 + <Z7Z> + <U},U}>)

{KJYZO}CM;tCMi

(£1 — A +2(z, 2))

{KY =0} {2 +2=0, wy, 1 o=1}C M4

(E1F 14202 (E1 + |IC])

1+v1+72
2 )

N~ N~ N~

{A=%£1,x=0, 2" t2=0, w,42=1}

H_

(4.70)

which agrees with the Hamiltonian function chosen in Eq. (4.52) for the choice
of parameter ¢ = 1 (see Eqs. (4.50) and (4.59) for the definition of 7 and p4).

To study the quaternionic Kéhler (i.e. right) side of the diagram in Eq. (4.65),

we choose the j1£ ‘ Pi—transversal codimension one submanifold
M, = My = {z""? = 0,wpyp = 1} C P. C My (4.71)

in the level set Pr. Together with the quaternionic (pseudo-)Kéahler structure
induced from My via Theorem 3.2.6, M, is isomorphic to the chart {g" # 0}
in13

(HP™)° = (HZ5?)°/H, (4.72)

respectively to
(HH™')* := (HZ%)° /H". (4.73)

The latter can be shown similarly to Example 3.2.10 (compare Example 2.1.15
and Remark 2.1.16).

For simplicity, we chose M/ equal to M. Note that technically, M’ does not

fulfill the assumptions of Theorem 4.3.1, since it is not S5,

right-multiplication of H* on M +, we can however identify M/ with a j1§| P

-invariant. Using the
transversal codimension one submanifold in Py that is S} -invariant.

The S'-action on M induced by Y is just the one given by diagonal left mul-
tiplication of e € S' on quaternionic vector space. Let Y’ € X(M.) de-

note the corresponding Killing vector field. The quaternionic Kéahler quotient
M, = Mj’[///{myzo} Sy, 1s then isomorphic to the chart {¢"*' # 0} in

(X(n)* == (HP™)JSE < X(n), (4.74)

3Note that although we use the same notation, the subset (HP"*1)° of quaternionic pro-
jective space is different from the one defined in the last subsection.
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respectively to

(X(n) = ®H™") S}, < X(n) (4.75)
(see Example 2.2.10).

Further analysis of the diagram in Eq. (4.65) shows that the choices of S*-bundle
P, with connection n and submanifold M, C P, in Theorem 4.3.1 agree with

the choices made for ¢ = 1 in the beginning of this section when we directly
applied the HK/QK correspondence to T*CP™ and to {7* < 1} C T*CH™.

Applying Theorem 4.3.1 for G = S},

v, now gives the following result:

Proposition 4.4.5  The manifolds given in Fqs. (4.48) and (4.49), endowed
with the metric given in Eq. (4.62) are, for ¢ = 1, isometric to

{g"™ # 0} € (X(n))° and to (X (n))°, respectively.

The following final remark is in agreement with the fact that the quaternionic
Kéhler metric obtained from a direct application of the HK/QK correspondence
to {7 < 1} C T*CH™ in the beginning of this section is incomplete at the

boundary {7 = 1} for positive parameter ¢ > 0 (see Proposition 4.4.1).

Remark 4.4.6 Note that (X(n))? is a proper subset of X (n) and, hence, in-
complete:

For ¢ = 2+ jw = (0, ...,O,%,O) + 4(0, ...,%,0,1) € H™2 we have
(G, Dy = =1 <0, (2,0),, =0and (2,2), , = (W, )

) = i.e. ¢ is in the level

0.

(n,2)7

set of the quaternionic Kéhler moment map, but ¢ ¢ (H™;)° since (g, Dnry =

4.4.3 c¢c>0

Note that in the general case ¢ > 0, the local geometry of (M, ¢’) can also
be analyzed using the idea of Theorem 4.3.1 with local hyper- and quaternionic
Kahler quotients. For this, one has to replace the vector fields X, Y in the above

subsection by

- C 2 n+2 d 0 —n+2 0 — 0
X¢= —z (Z a2 — Wn+2 8wn+2 —Z Oznt2 + wn+28 _n+2) (476)
and
. NS o ;0 0
c __ - I — _

I=1
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for ¢ > 0. For c irrational, the integral curves of V¢ do not close. Neverthe-
less, we can consider local hyper-Kéahler and quaternionic Kéahler quotients by
taking codimension one submanifolds in the level sets of the respective moment
maps that are transversal to the Killing vector field. Let Y denote the vector
field on (HP"*)°, respectively (HH™')° induced by Y. Using a local version
of Theorem 4.3.1 one can show that (M, ¢’f) is locally isometric to the local
quaternionic Kéhler quotients (HP"1)° /Y, respectively (HH™!) /Y.

Remark 4.4.7 Assume that ¢ € R>? is rational. Let p,q € N be coprime and
such that ¢ = ﬁ. The S*-action induced by X° remains unchanged and Ve still

induces the following free S'-action on M 4!
et (g, ") = (ePlq, 9tq+?), it € S,

Note that for ¢ # 1, the action of S. x Si., on M is not free anymore. It has

the following isotropy group at every point:

2k
b

o _ ork
Zp={(e", ey e S x §L [ t="2 f="" g0 .. p—1}

[G1, GL] consider the quaternionic Kahler quotient of HP"™! with respect to
the Sl-action induced by Y for the case ¢ > 1 (i.e. p > q) and show that for
c> 1, HP" )y S}?c) is a compact Riemannian orbifold whose smooth part is not

locally symmetric for ¢ > 1.

Remark 4.4.8 Note that for ¢ — 0o, cg/, converges to the original hyper-
Kéhler metric g+ on M. According to [G1], the convergence is uniform in three

derivatives.
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Chapter 5

HK /QK correspondence for the

c-map

In this chapter!, we use the explicit formula for the metric given in Theorem
4.1.2 to show that the pseudo-hyper-Kéahler structure on the cotangent bundle
of a conical affine special Kdhler manifold given by the rigid c-map is related
to the quaternionic Kahler metric obtained from the supergravity c-map via the
HK/QK correspondence. In fact, we get a one-parameter family of positive de-
finite quaternionic Kéahler metrics, which corresponds to one-loop corrections of
the hypermultiplet moduli space in string theory compactifications on Calabi-
Yau 3-folds (if the corresponding model is realized in string theory). As a corol-
lary, this proves that the Ferrara-Sabharwal metric and its one-loop deformation

are indeed quaternionic Kéahler.

In Section 5.5, we derive the Sp(1)-connection one-form and the fundamental
two-forms for the one-loop deformed Ferrara-Sabharwal metric with respect to
the almost hypercomplex structure (Ji, J}, J%) obtained from the HK/QK corres-
pondence. We also derive a holomorphic coordinate system for Jj, which as a
corollary of the HK/QK correspondence is a globally defined compatible complex

structure.

L Apart from Section 5.5, this chapter is identical to Section 4 of [ACDM] up to minor
changes.

105
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5.1 Conical affine and projective special Kahler

geometry

First, we recall the definitions of conical affine and projective special Kahler

manifolds [ACD, CM]:

Definition 5.1.1 A conical affine special Kadahler manifold
(M, grr, J, YV, €) is a pseudo-Kdhler manifold (M, gy, J) endowed with a flat tor-

stonfree connection V and a vector field & such that

i) Vwy =0, where wyr == gy (J-,-) is the Kdhler form,
ii) (VxJ)Y =(VyJ)X for all X,Y € X(M),
ii1) VE = DE =1d, where D is the Levi-Civita connection,

) gnr is positive definite on D = span{¢, JE} and negative definite on D+,

Let (M, g, J,V,€) be a conical affine special Kéhler manifold of complex di-
mension n + 1. Then & and J¢ are commuting holomorphic vector fields that
are homothetic and Killing respectively [CM]. We assume that the holomorphic
Killing vector field J€ induces a free S'-action and that the holomorphic homo-
thety & induces a free R>%-action on M. Then (M, gys) is a metric cone over
(S,9s), where S := {p € M | gu(&|p.&lp) = 1} C M, gs = gM‘s5 and —gg
induces a Riemannian metric gy on M := S/Sj.. (M, —gy) is obtained from
(M, g, J) via a Kéhler reduction with respect to J¢ and, hence, gy; is a Kéhler
metric (see e.g. [CHM]). The corresponding Kéhler form wy; is obtained from

wys by symplectic reduction. This determines the complex structure Jy;.

Definition 5.1.2  The Kdhler manifold (M, gy, Ji7) is called a projective

special Kahler manaifold.

More precisely, S is a Lorentzian Sasakian manifold and introducing the radial
coordinate r := +/g(&, &), we can write the metric on M as [BC, MSY]

gy = dr* +1r°1%gs,  gs = guls = 1@ 7ls — T g, (5.1)

where 1
7= T—ng(Jg, ) =dlogr =i(0— 9)logr (5.2)
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is the contact one-form when restricted to S and # : M — S = M/R
7:8 > M= S/S}hE are the canonical projection maps. From now on, we
will drop 77* and 7* and identify, e.g., g;; with a (0,2) tensor field on M that has
the distribution D = span{¢, J¢} as its kernel and is invariant under £ and J¢.

Locally, there exist so-called conical special holomorphic coordinates
2= (1) = (2% ...,2") : U S U c C™! such that the geometric data on
the domain U C M is encoded in a holomorphic function F : U — C that is
homogeneous of degree 2 [ACD, CM]. Namely, we have [CM]

(I,J=0,...,n) and £|U = ZZI% + 218%,. The Kéhler potential for gM|U is
given by TQ‘U:gM(gvé)‘U:ZZINIJZJ~

The C*-invariant functions X* := ;—g‘, =1, ...,n, define a local holomorphic

coordinate system on M. The Kahler potential for g5 is
K= —log Y} ;oo X Ny (X)X, where X := (X, ..., X") with X?:= 1.

5.2 The rigid c-map

Now, we introduce the rigid c-map, which assigns to each affine special
(pseudo-)Kahler manifold (M, gar, J, V) and in particular to any conical affine
special Kéahler manifold (M, g, J, V, &) of real dimension 2n + 2 a (pseudo-)
hyper-Kéhler manifold (N = T*M, gy, J1, Jo, J3) of dimension 4n + 4 [CFG,
ACD]J.

From now on, we assume for simplicity that (M C C"™ g, J = Joan, V, €) is
a conical affine special Kahler manifold that is globally described by a homoge-
neous holomorphic function F' of degree two defined on a C*-invariant domain
M in standard holomorphic coordinates z = (27) = (2%, ..., 2") induced from

C"*!. Here, J.,, denotes the standard complex structure induced from C"**.

The real coordinates

OF(z)
0z )

(qa)azl,...,2n+2 = ($1,yJ)1,J:0,...,n = (Re ZI,RG FJ(Z) = Re

on M are V-affine and fulfill wy; = —2 5" dz’ A dyr, where wy; = g(J- ) is the
Kéhler form on M [CM]. We consider the cotangent bundle 7y : N :=T*M — M
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and introduce real functions (p,) := ((;, ¢7) on N such that together with (7%¢%),

they form a system of canonical coordinates.

Proposition 5.2.1  In the above coordinates (21,p,), the hyper-Kdhler struc-
ture on N =T*M obtained from the rigid c-map is given by

gy =Y _dz'Npdz' +) ANV A, (5.3)
Wy = % > Npde' Adz + % > NYANA, (5.4)
wy = —% D (dE' NAp—dZ' A A, (5.5)
w3 = %Z(dzf/\AI+dzlAA1), (5.6)

where Ay = dlr + 3, Frs(2)d¢? (I =0, ...,n) are complez-valued one-forms
on N and wy, = gn(Jo-, ). (Here and in the following, we identify functions and
one-forms on M with their pullbacks to N.)

Proof: One can check by a direct calculation that the metric and Kéhler
forms, Eqgs. (5.3)-(5.6) agree with the geometric data® for the rigid c-map given
in Section 3 of [ACD] (see also Section 3 of [ACM]), up to a conventional sign in
the definition of the Kéhler forms w, = gn(Jo-,*) = —gn(+, Jo-) in [ACD]. For

instance, we can write w; and ws as

1 -
w=-2Y da' Adyr+ 3 > dé ndc, (5.7)
ws =Y _da' NdC+ ) dyr AdCh =" dg* A dp,.

Remark 5.2.2 It follows from the intrinsic geometric description in [ACD]
that the pseudo-hyper-Kahler structure is independent of the particular descrip-

tion of the special Kahler structure in terms of a holomorphic function F'.

Remark 5.2.3 We introduce holomorphic functions w;, I = 0
(N, J;) that together with the holomorphic coordinates z = (2) on (M, J) form

a system of canonical holomorphic coordinates on (N = T*M, J;). Then (wy)

, -..,M, On

2Note that J;dzl = ’L'ZZZO NIJAJ, JyAr=—i 27}:0 N]sz‘l.
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and ({7, ¢”) are related by
S wide! +wpdzt = Z Crda’ + Ty,
I
_ZQd +dz’ ZF,J Vdz? + Fry(2)dz’),
which is equivalent to
1 -
wr =2 (G + Z,: Fri(z)¢)  (I=0,...,n). (5.8)

With the identification (5.8), Egs. (5.3)—(5.6) also agree, up to conventional
factors, with the rigid c-map as given in Appendix B of [CFG| and throughout
the physics literature.

5.3 The supergravity c-map

Let (M,gy;) be a projective special Kihler manifold of complex dimension n
which is globally defined by a single holomorphic function F. The super-
gravity c-map [FS] associates with (M, gy;) a quaternionic Kihler manifold
(N, gy) of dimension 4n + 4. Following the conventions of [CHM], we have
N =M x R>% x R and

gy = 9m T 9a,
1

9o = 4p2dp+ L@+ S - Gdct) +—ZJU )d¢'d¢?

+ ZJ” )(dlr + Ryge (m)d¢™)(dly + Ry (m)dCh),

where (p,$,(r,¢"), I = 0,1, ...,n, are standard coordinates on R>0 x R2"+3,
The real-valued matrices IJ(m) := (J;;(m)) and R(m) := (R;;(m)) depend only
on m € M and J(m) is invertible with the inverse J=}(m) =: (3*/(m)). More
precisely,

N N,
Do Nz 30, Nyrzt Npj:=2ImFy;, (5.9)

Niji=Rpy+idpyi=Fry+i )
21y Nigztz?

where F' is the holomorphic prepotential with respect to some system of special

holomorphic coordinates (z!) on the underlying conical special Kihler manifold
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M — M. Notice that the expressions are homogeneous of degree zero and,
hence, well-defined functions on M. It is shown in [CHM, Cor. 5] that the
matrix J(m) is positive definite and hence invertible and that the metric g5 does
not depend on the choice of special coordinates [CHM, Thm. 9]. It is also shown
that (N, gy) is complete if and only if (M, gy;) is complete [CHM, Thm. 5].

RI7L T+ RIT'R

can combine the last two terms of g4 into 2ip > dpa[:I ®dpy, i.e. the quaternionic

. ~ A J-1 J~1R
Using (pa)azl,...,2n+2 = (CI;CJ)IJzo ..... n and (Hab) = ( _ ); we

Kahler metric is given by

dp* + 5 (do + > (¢fdlr — ¢d¢h)? deaH“bdpb
(5.10)

9F5329N29M+4 5

This metric is known as the Ferrara-Sabharwal metric.

5.4 HK/QK correspondence for the c-map

Again, we assume that (M C C"™, gy, J = Joan,V, €) is a conical affine special
Kahler manifold that is globally described by a homogeneous holomorphic func-
tion F of degree two in standard holomorphic coordinates z = (21) = (2%, ..., 2")
induced from C"*!. We want to apply the HK/QK correspondence to the
hyper-Kéhler manifold (N = T*M, gy, J1, J2, J3) of signature (4,4n) obtained
from the rigid c-map (see Section 5.2). In [ACM], it was shown that the vec-
tor field Z = 2(J&)" = 2J,&" on N fulfills the assumptions of the HK/QK
correspondence, i.e. it is a space-like wi-Hamiltonian Killing vector field with
LzJy = —2J3. Here, Y € X(N) is defined for any vector field Y € X(M) by
YM(rhq®) = 7Y (q?) and Y(p,) = 0 for all a = 1,...,2n + 2. (Y" is the

horizontal lift with respect to the flat connection V.)

Theorem 5.4.1  Applying the HK/QK correspondence to (N, gn, J1, Ja, J3)
endowed with the wi-Hamiltonian Killing vector field Z gives (up to a constant
conventional factor) the one-parameter family g%¢ (5.11) of quaternionic pseudo-
Kdhler metrics, which includes the Ferrara-Sabharwal metric grs (5.10). The
metric gpg 15 positive definite and of negative scalar curvature on the domain
{p > —2c} C N (which coincides with N if ¢ > 0, see Section 5.3). If ¢ < 0
the metric g% is of signature (4n,4) on the domain {—c < p < —2c} C N.

Furthermore, if ¢ > 0 the metric g%q is of signature (4,4n) on the domain
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M x {—c<p<0} x R™3 C M xR0 x R¥¥3,

Proof: We start from the hyper-Kahler structure on N = T*M given in Egs.
(5.3)—(5.6). As in Section 5.2, we identify functions and differential forms on
M with their pullbacks to mn : N — M. We first compute the geometric data

involved in the HK/QK correspondence, cf. Section 4.1. The moment map for

—wy w.r.t. Z =2(JE)" is given by f :=r?—c, where r := ||€]|,,, = /D 2/ Nz’

and ¢ € R:
wl(Zv ) = _gM<2§7 ) = - Z(ZINIJd?] + N]JEJdZI) = —d(r2) = —df’

since ), 215 — 0 With gy(Z, Z) = 4gu (€, €) = 42, we get

0zK

fii= T - so(2.2) =~

For the functions f and f; nowhere to vanish, we have to restrict N to
{r* # ||} € N. Using the contact one form 7 := %gn(JE,-) on M (see Eq.
(5.2)), we get

B=gn(Z,") = 29u(JE, ) = 2r*).

We consider the trivial S*-principal bundle
P:=NxS'" S'={e"]|seR},
with the connection form

n=ds+nn,

where ny is the following one-form on N:

1 fit+ec.

P 1 - -
NN ‘= _57‘277 + Nean = 2 1N+ Neans  TNean = Z Z<Cfdcl - C]dCI)

Then . .
dn = dny = _é_ldﬁ + dNean = w1 — §d5>

where we used that w; can be written as

57) 1 ~ 1
wr 2w + 5 30 dG A d¢! = 2dB + dnan,

since Thywy = $mydde(r?) and mid (r?) = wi(2r2dlogr) (22 i (2r20) = B,

see Section 5.1.
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Now we compute the one-forms 07, a = 0,1,2,3 on P, introduced in Eq. (3.47):

1
0(1)3 = —§df = —rdr,

1 I, +c
9{3:77+§ﬁ:d5+§7"277+77am d5+f2 N+ Nean
1 i .
0 = qws(Z) = —5 D (' A1 = 2TA)) = —Im Y 214y,
1 1 .
05 = —gwi(Z:) =5 ) (fAr+ 214 =Re ) 1AL

For the calculation of 5 and 6%, we used Z = 2i ) (2';% — z'5%)" and Egs.
(5.5)—(5.6).

We compute the pseudo-Riemannian metric

2

gp = f?7+7rgzv(i —(ds + 77+77m+
1

h

and the degenerate tensor field

Doyt ow+ 3 AN A,

9 3
gr == gp — }Z

a=0

2 I
gr —?( dr® + d8+2n+ncan+ i)+ FAn 7 AJ)

2 _ = c. TR AYERERIY
) ds+277+77am) +<2 2)77 fr dr® + gy

+ Z A]NIJAJ — ;(Z ZIA])(Z EJ/_L]).

As always, pullbacks from M and N to P are implied Where necessary.

Using & — § = =1 = —(f +¢), 57 = ff+QCc’ 7 r2 T f(f+6)

N\

and

on 2 dr? + 27— gyp), we get

. 9 f+2c, 5, 4 f+c C . :
= —r2guy — dr? — = ds 4+ =7 + Nean
Jp gir 7 ff+2c( SRR )

2c I ~J 7
- m(zz AN 2 Ay)
+ Z A[NIJAJ — %(Z ZIA[)(Z ZJ/_L]).
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We claim that the last two terms can be combined into —3 Z dpaH @ dpy, which
appeared in the Ferrara-Sabharwal metric (5.10). This Wlll be proven in the
lemma below, see Eq. (5.12).

We use the local coordinates

o
r= \/ZzINUZJ, ¢ =arg2’, Xt =" >

on the conical affine special Kéahler base M and choose the submanifold
={p =0} C P=N x S, which is transversal to

ZP (Z T](Z)Xp)+f1Xp:Z+(T2+f1)Xp:2a¢—Cas,
where Xp = 0, is the fundamental vector field on P.

In these coordinates, we have

|ZO|2 _ 7n2€ﬂ<

and, hence,
1 1 1 1
F—= —d°l 2:_01 012 _ — jeqr T
7 2d ogr 2d og|2"| 2de do 2diK
Z'NIJ(X> IgvJ v I
=d —— 2 (X'dX’ — X7dX
¢+22XtNX( )
and

D (Z'ANY (FTA) =P (XA (XTAY)

=26 Y (Tl + Fr(X)d¢h P,

where X = —log XINX, X!NX := > X!N;;X/, is the Kéhler potential for
the projective special Kahler metric gy;. Replacing the coordinates r and s by
p:= f and ¢ := —4s and recalling that o = sgn f, we obtain the quaternionic
v from the HK/QK correspondence (Theorem 4.1.2)
such that gfg := —20¢’ is given by

Kéhler metric ¢ = 5+¢

p+c 1 p+2c 1 p+c, - 1.5 . 9
g = y d ——Ad d¢; — ¢rd d°K
Gios = — =9 +4p S g0+ DG — G + ed'K)

- 2c ~ 2
§ ab X E I I
+ 2—p dpaH dpb + ?6 ‘ (X dC[ + F](X)dC ) . (511)
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For ¢ = 0, ¢%¢ reduces to the Ferrara-Sabharwal metric (5.10).

Notice that the above metric ¢%¢ obtained from the HK/QK correspondence is
defined on a subset of M x R* x S* x R?"*2_ where the R*-factor corresponds
to the coordinate p (which may now take negative values) and the S'-factor is
parametrized by the coordinate (/5 = —4s considered modulo 87Z. Replacing the
above subset by its universal covering (that is replacing S' by R) we obtain a
subset of M x R* x R?"*3. In particular, grg = g%g is defined on N as well as
on the cyclic quotient N/Z = M x R>? x St x R?"+2,

The pseudo-hyper-Kéhler metric gy has signature (4,4n) and Z is space-like.
Hence, ¢' is negative definite if f > 0 and f; < 0, it has signature (4,4n) if
fif > 0 and it has signature (8,4(n — 1)) if f < 0 and f; > 0 (see Corollary 1
in [ACM]). Using f = p and f; = —p — 2¢, we get

(

(0,4n + 4) for p > max{0, —2c}
sign g = (4,4n) for 0 < p < —2¢,¢<0
(4, 4n) for —2c<p<0,¢c>0

L (8,4(n — 1)) for p < min{0, —2c}.

Taking into account that by definition r? = gp/(£,€) > 0, i.e. p > —c, we get

L, (0,4n +4) for p > max{0, —2c} (& r? > |c|)
signg’ =
(4, 4n) for —c < p <max{0, —2c} (& 0 <r? <|c|).

It remains to prove

Lemma 5.4.2

o _ 4 _
> dp.H"dp, = —2) AN A, + ﬁ(z JdAn) Ay, (5.12)

~ - gt J IR
where, as in the last section, (p,) = ((r,¢7) and (H®) = (iRj—l 9. iRJ_IIR)'

Proof: Recall that 4, = d( + S Fd¢?, I = 0,...,n. We write
A = (A;) = dC + Fd¢, where dC = (d(;), d¢ = (d¢') are form-valued column
vectors and F' := (Fy ).
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First, we show that > A;NT7A; =" dp,H®dp, with

(H"):= (%g];l_l i(N%jLNZ;\Z;—lR) |
where R := 2Re F:
> AN A; = (d" + d'F)NTH(d( + FdC)
= (d¢t + d(t%(R +iN))N~Y(dC + %(R — iN)dC)

~ + 1 1 ~ 1
— dl'NUC + dC'SNTURAC + d¢'SRNT1C 4 dC' (N + RN R)C.
Now, we show that (3 27A)) (X A,27) = 3 dp, H*dp,, with

() = 1 2242 22 F +22'F
" 2\ Fzd+ Fzit F22'F +Fz:'F)

O AN 2 A)) = (dl'z + d' Fz)(3'dC + 2'Fd()
= dC'22'd¢ + AP 2ZFd¢ + dC Fz24dC + dCUF 22 FdC

-1 S
= d(t§(z2t + z2%)d¢ + dCt§(22tF + 22'F)d¢
1 — - 1 —
+d(' 5 (Fzz' + Fz')d( + ¢ (F22'F + Fz2' F)d(.

Hence, the right side of Eq. (5.12) is given by >_ dp,(—2H® + H“b)dp

To rewrite the left side of Eq. (5.12), we need to invert J = ImN = —1 N+ gzzf]:g—i-];;ig

It is easy to check that the inverse of J is given by [MV]

J7t= 2N+ (22" + z2%).

2Nz

. t szt .
Using R = ReN = 1R + “\;ﬁfvjzv “;;jvg, we obtain

2
J'R=—-N"'R+ (22'(R—iN) + 22'(R+iN)) = —N'R + —(22'F 4+ z2'F)

Z2tNZ

and hence 5
RIP=(I'R) = ~RN! +3 S(Fzz' + Fz2').
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For the lower right block in (I;T ) we calculate

1 1 —

RIIR = —5RNT = NZ(FZzt(R +iN) + Fzz'(R —iN))
i

+ 2PNz

2
= ——RN 1R+ ~(Fzz'F + FzZ'F) —

1 1 _
CR4F SR+ F)zEN
( 2R+ )2z thz( 2R+ )ZZ
Nzz!N  NzzZN
22t Nz 2ZtN z

and hence

1 2 —
J+RITIR = _§(N + RN'R) + ﬁ(FZth + F2Z'F).

This shows that (H%) = —2(H®) + %(ﬁ[“b) and thus proves Eq. (5.12). ]
This proves Theorem 5.4.1. O

Remark 5.4.3 Note that the quaternionic Kéhler metric ¢%¢ given in (5.11)
agrees with the one-loop deformed Ferrara-Sabharwal metric first obtained in
[RSV] (see also [APP], Eq. (2.93)).

5.5 The one-loop deformed Ferrara-Sabharwal

metric

Definition 5.5.1  For any c € R, the metric

ptc 1 p+2c 1 p+e ,
Fs = d d _ d dc
Grs = g+ oA+ g (Ao Z(C Cr = Grd¢!) + cd°X)?
1 2n+-2 9 2
rrab X 145 I
+2_azb:1dpaH dpy + 25¢ IZ:;(X Al + F(X)dch|  (5.13)

is defined® on the domains

Nignsa,0) = {p > —2¢, p> 0} C N,
Nign. gy = {—c<p<—2c} CN,
Ny any =M x {—c < p <0} x R € M x RS x R*"*? (5.14)

3The definition of g;; can be found in Section 5.1 and the definition of A% can be found
in Section 5.3.



5.5. The one-loop deformed Ferrara-Sabharwal metric 117

for any projective special Kihler manifold M C C" defined by a holomorphic
function F € C®°(M), where N = M x R*® x R*"*3 (X*),_, ., are standard
holomorphic coordinates on M, X° := 1, the real coordinate p corresponds to the
second factor and (¢, (1, ¢! )1—o,..n are standard real coordinates on R*"+3. The

metric gyg s called the one-loop deformed Ferrara-Sabharwal metric.

Proposition 5.5.2  Let M be any pojective special Kdihler manifold and g%,
gfp/s the one-loop deformed Ferrara-Sabharwal metric for positive deformation
parameters ¢, € R>C defined on N = N(’4n+470). Then (N, g%) and (N, g5)

are isometric.

Proof: Any ¢* € R>? acts diffeomorphically on N = M x R>? x R>**3 as

follows:
N — Na (ma P, an 5[7 CI)IZO, ) — (ma 6/\P7 6>\§£7 eA/Qé:Ia eA/QCI)I:(), e

Under this action, g%¢ — ¢%¢¢ Choosing e* = ¢/¢, this shows that
(N7 g%‘S) ~ (N7 g%S) o

Remark 5.5.3 From Theorem 4.1.2 and the proof of Theorem 5.4.1, we obtain
the following expressions for the components of the Sp(1)-connection one-form
for g%¢ with respect to the almost hyper-complex structure (J7, J5, J%) obtained
from the HK/QK correspondence:

g, — _le(dqz +(p+ )dK — 3 (Gdc — dd))
I=0

G + iy — iYL TE xS X1 g, (5.15)
p =0
(Recall that A; = d¢ + S0 Fr(X)d¢’, I = 0,....,n and

X = _logZ?,J:O XIN]JXJ.)

Remark 5.5.4 Due to the rescaling compared to ¢’, the reduced scalar cur-

vature of ggg is

1
V=——40= -2
20

(see Remark 4.1.7). Using @, = —(df, — 205 A 0,), the fundamental two-forms
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of g%¢ with respect to (Ji, J3, J5) are then found to be
w01 = —dfy +i(0y +i03) A (B — i6s)

1 1
-5 (dp/\dCJCJr(p+c)ddCfK—2ZdQ/\dC1> +=dp A0,

=0
+ (ST XA A (YD XTAY)
P I J
p+cl 11 p+c I 17
—ddK + -— ANT ——— NYANA
p 4 24p2p—|—QCT ’ 2p 5=, ! !
L Lzt 2%“(2 XA A (Y X7A)) (5.16)
9 p2 - I - J)y .
Wy + iws = —d(0y +i03) + 2i0; A (05 + i03) (5.17)
VpFe - VpFe _ &
= —ZTex/z Z dXH N AH + 2—/)2€J</2(7' — QZpﬁﬂC) VAN ZXIA[,
p=1 1=0

where

— db + (CIdQ —GdeT) 4 ede K+ it 2c
p+c

I=

dp (5.18)

and we used that Y77 ;g iN”AI ANAy=31_d AdCT (see Eq. (7.95)).

Remark 5.5.5 As a direct corollary of the fact that the one-loop deformed
Ferrara-Sabharwal metric g¢%¢ is obtained from the HK/QK correspondence
(Theorem 5.4.1), we have the result that Ji is a globally defined compatible
integrable complex structure, see Remark 4.1.6. This was previously shown in
[CLST]. Together with the expression

. (512) ptc L ptc o 1= g, « 20420 goix= wp 4 12
g = g’*|> | | N A[AJ+ e XA]
FS D 4p p+2C pIZJ:() p2 |Iz; |

(5.19)
for the deformed Ferrara-Sabharwal metric, Eq. (5.16) shows that
(1,dX*, Ap)i= 0 _______ " is a coframe of holomorphic one-forms with respect to Jj.

This can be linealy combined into the coframe

(7 + 2ic0K—2 Z(IA, — Z Ty (X)) dx X,

I,J, K=0

S Fr(X)¢dx))

J, K=0
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of closed holomorphic one-forms which corresponds to the Jj-holomorphic coor-

dinate system
1, < —1,.n
(X’ XF wp = E(CI + ZFIJ<X)CJ))7;(}: ........ no (5'20)
J=0
where

X ::qg+z'(p+c(ﬂ<+log(p+c))) — e — (X)) (5.21)
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Chapter 6

Completeness of the one-loop
deformed Ferrara-Sabharwal

metric

In this chapter, we discuss the completeness of the one-loop deformed Ferrara-
Sabharwal metric gfg (see Definition 5.5.1) on the domain N{,, ., o (where it
is positive definite) for positive deformation parameter ¢ € R=%. For ¢ < 0,

(N{4n14,0) 9fs) 1s incomplete [ACDM, Rem. 9].

In the first section, we recall the notion of completeness for Riemannian mani-
folds. In Section 6.2, we introduce projective special real geometry and the super-
gravity r-map. The latter assigns a complete projective special Kéahler manifold
to each complete projective special real manifold. In Section 6.3, we derive a
sufficient condition for the completeness of (N(y,, 4 o), 9Fs) for ¢ € R=%. Recall
that we construct (NN, (’ 4ntd,0)7 J%¢) from a projective special Kéhler manifold. We
prove the completeness of (N(’4n +4,0)) g%g) in the case that the projective special
Kéhler manifold is obtained from a complete projective special real manifold via
the supergravity r-map and in the case of CH™. We also show progress in the

case of a general complete special Kéahler manifold.

As a corollary, we obtain deformations by complete quaternionic Kahler metrics
of all known homogeneous quaternionic Kahler manifolds of negative scalar cur-
vature (including symmetric spaces), except for quaternionic hyperbolic space.

% o SU(n+1,2)
In the case Of X(n+ 1) = m
for the deformed metric.

we give a simple and explicit expression

In this chapter, we only discuss positive definite quaternionic Kahler metrics.

121



122Chapter 6. Completeness of the one-loop deformed Ferrara-Sabharwal metric

6.1 Completeness in Riemannian geometry

Since in this chapter, we restrict ourselves to positive definite Riemannian mani-

folds, we use the following definition for completeness:

Definition 6.1.1  We call a Riemannian manifold (M, g) complete if every

inextendible smooth curve in (M, g) has infinite length.

For Riemannian manifolds, many otherwise different notions of completeness are

equivalent:

Theorem 6.1.2 (Hopf-Rinow, see [O, Ch. 5, Th. 21])

For a Riemannian manifold (M, g), the following conditions are equivalent:

1. (M, g) is complete.
2. (M,dy) is complete as a metric space.
3. (M, g) is geodesically complete.

4. Any closed and bounded subset of M is compact.

We will later prove the completeness of the one-loop deformed Ferrara-Sabharwal
metric based on the completeness of the undeformed metric using the following

obvious criterion:

Proposition 6.1.3  Let (M, g) be a complete Riemannian manifold. If g is a
Riemannian metric on M such that g > g, then (M, g) is complete.

6.2 Projective special real geometry and the su-

pergravity r-map

Definition 6.2.1  Let h be a homogeneous cubic polynomial in n variables
with real coefficients and let UCR™\{0} be an R>-invariant domain such that
hly > 0 and such that g3 = —82h‘9{ s a Riemannian metric on the hypersurface
H:={xecU]|h(x)=1} C U. Then (H,gx) is called a projective special
real (PSR) manifold.
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Define M := R" + iU C C". We endow M with the standard complex structure
Jir and use holomorphic coordinates (X#* = y* + iz*),=1, , € R" +iU. We

veey

define a Kahler metric

n _, n a2g< B
— LAXPAXY = _ T AXrAXY
gM Z g# #;1 8XN'8X

p,v=1

_ 1 (dX" © dX" + dX" @ dX*
Z aXuaX ®dX" +dX" @ dX¥)

on M with Kahler potential
K(X,X) = —log8h(z) = —logh (i(X — X)) . (6.1)

Definition 6.2.2  The correspondence (H, gsc) — (M, gy7) is called the super-

gravity r-map.

Remark 6.2.3 With -2 :%<i—za>,wehave

OXH Oyk Oxh
(D DN, _oKXD)
\oxe ox”) T T T TaxeaxT T
_lazlog h(x) . _hlw(l’) hu(x>hV(x) (6 2)
4 dzrdzy  4h(z) 4h2(z) '
where h,(x) = aahT(f), () i= 88;5,%27 ete., for p,v=1,....n
The inverse of (K,5) . v=1,....n,
02 huw () | hu(@)hy (2)
K,y = ———logh(z) = — - A 6.3
B Sxnaxy 108 (x) 1h(a) 2 (z) (6.3)
is given by (K™), x=1..
K™ = —4h(z)h" (z) + 2272 (6.4)

This can be shown using the fact that h is a homogeneous polynomial of degree
three:

Z hu(x)a" = 3h(z), > hu ()" = 2h,(x),

Z huup ;u/y huupo = 0. (65)
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Remark 6.2.4 Note that any manifold (M, gy;, Jy;) in the image of the su-
pergravity r-map is a projective special Kahler manifold (see Section 5.1). The

corresponding conical affine special Kéhler manifold is the trivial C*-bundle
M={z=2"(1,X)eC"|eC", X e M=R"+iU} > M

endowed with the standard complex structure J and the metric gy, defined by

the holomorphic function
F:M—C, F(°...,2")=

Note that in general, the flat connection! V on M is not the standard one induced

from Crt! ~ R™7*2 The homothetic vector field ¢ is given by
£ = Z?:O(ZI% + ZI%). To check that gy; is the corresponding projective

special Kahler metric, one uses the fact that

n

8l2"Ph(z) = > 2'Nys(z,2)7, (6.6)
I1,J=0

where as above, z = (Im X', ..., ImX") = (Im %;, ..., Im %) € U (see [CHM]).

Definition 6.2.5 A Kdihler manifold (M, gy, Jy;) in the image of the super-

gravity r-map is called a projective very special Kahler manifold.

Due to the following result, projective special real geometry constitutes a pow-
erful tool for the construction of complete projective special Kahler manifolds.
Since an analogous result exists for the supergravity c-map, the latter define

complete quaternionic Kahler manifolds.

Theorem 6.2.6 [CHM]
The supergravity r-map preserves completeness, i.e. it assigns a complete projec-

tive special Kdhler manifold to each complete projective special real manifold.

Remark 6.2.7 In low dimensions, it is possible to classify all complete pro-
jective special real manifolds up to linear isomorphisms of the ambient space.
In the case of curves, there are exactly two examples [CHM]. In the case of
surfaces, there exist precisely five discrete examples and a one-parameter family
[CDLJ.

1V is defined by 2! = Re 2! and y; = Re Fy(2) being flat, I =0, ...,n (see [ACD]).
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Due to the following result, the question of completeness for a projective
special real manifold (3, gs¢) reduces to a simple topological question for the
hypersurface H C R™:

Theorem 6.2.8 [CNS, Thm. 2.6/
Let (K, g5c) be a projective special real manifold of dimension n — 1. If H C R
is closed, then (H, gsc) is complete.

6.3 Completeness of the one-loop deformed Fer-

rara-Sabharwal metric

Definition 6.3.1  The g-map is the composition of the supergravity r- and
c-map. It assigns a (4n + 4)-dimensional quaternionic Kdahler manifold to each

(n — 1)-dimensional projective special real manifold.

Remark 6.3.2  Except for quaternionic hyperbolic space HH"*!, all Wolf
spaces of non-compact type and all known homogeneous, non-symmetric quater-
nionic Kéhler manifolds (called normal quaternionic Kéhler manifolds or Alek-
seevsky spaces) are in the image of the supergravity c-map. While the series
X(n + 1) = Gro,»(C*2) of non-compact Wolf spaces can be obtained via the
supergravity c-map from the projective special Kdhler manifold CH™ (with holo-
morphic prepotential F = £((2°)>=_"_,(2#)?)), which is not in the image of the
supergravity r-map, all the other manifolds mentioned above are in the image of

the g-map.

Below, we prove the completeness of the one-loop deformation of the Ferrara-
Sabharwal metric with positive deformation parameter ¢ € R=? for all manifolds
in the image of the g-map and for X(n + 1) = Gr o(C"*12). We also show

progress in the case of a general special Kahler manifold.

Due to the following result, both the supergravity c-map and the g-map preserve

completeness:

Theorem 6.3.3 [CHM]

The supergravity c-map assigns a complete quaternionic Kdhler manifold of di-
mension 4n+4 to each complete projective special Kdhler manifold of dimension
2n.
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Let (M C C", gy, Jy7) be a projective special Kihler manifold which is globally
defined by a single holomorphic function F on

={z=2"(1,X)| € C, X € M} C C*'. F is homogeneous of
degree two in the standard holomorphic coordinates (ZI)Izo,...,n on M. gy has
a Kahler potential X = —log X'NX = —log Y.} ;,_o X'N;;X” in holomorphic

coordinates (X* = %5),-1, .., on M, where X" := 1 and

sy

O*F(z)

N = 2(Im F]J(Z))L J=0,...n = 2(Im W)Ir J=0,..n’

which is homogeneous of degree zero and hence defines a matrix-valued function
on M (see Section 5.1). Note that

(dX)'N(dX)

o (dX)'N(dX) | 1
IM=TTUNINK

—(de)2+i(dCJ<)2. (6.7)

+(030(9%) = e+

The first term in equation (6.7) has complex Lorentzian signature for special
Kahler manifolds in the image of the supergravity r-map. For the flat conical
affine special Kéhler manifold Ch" with prepotential ' = £((2°)* = >27_, (2#)?),
it is positive definite.

We consider the one-loop deformed Ferrara-Sabharwal metric (see Eq. (5.13))

p+c 1 p+2c,, 1
c o __ _ d d d°K
Jrs 91 4p2p+cp+4 — Grd¢") + cd°K)?
1 2n+2 %2 n 2
— > dp,H"d —f’<§jxfd~ Fr(X)d¢! 6.8
+20a,b:1 p pb+p26 IO( G+ Fr(X)d¢") (6.8)

for ¢ € R=Y defined on N(4n+4 0) = =N = M x R>% x R?"*3 endowed with global

coordinates

(X“;Pa éa 5]>CI>IIL:§: ........ rTLL

Lemma 6.3.4 Let e > 0. If g5y > %(d°K)? for some k € R, then

1 ke
gFS—2k +CgFS

on{p>e} CN.
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Proof: Note that Zzngf ' dp, H*dp, > 0 [MV]. We have

1 2 1
_p+ Cdp2+_
4p? p+c 2p

1 ke 1 1 .
> = —dp* + —dp, H™d 6.9
> 2k€+c(4p20+2pp pb), (6.9)

A 2c ~ 2
dpHdpy + 56" ‘Z(deg, + P (X)dceh

since %kffrc < % <1< ’;Jr—fcc. Now with 6y := d¢ + Z(Cldff — C}dd), we have

p+tc 1 p+ec 9
7+ — 0 d°K
Iu 4p2p—|r20(0+C )
(6.7)
= L ogut+- gm
>% kf—i(‘ Zg(dchV
L PFCl € gt (et O)dEK)? +— S (80)? — hee(dK)?
— € — €
4p% p+2c | ke+c 0 ke+c "
1<.<1 20
1 ke 1 ck
> - S (002 ) £ () — ) (dK)?
> s (o 00) + s (o~ (0
>0
1 ke 1
> 7+ —(60)% ). 1
- 2k:e+c(gM+4p2(0)> (6.10)

Combining the inequalities (6.9) and (6.10), we have shown that

S 1 ke
9rs = le—i—chS'

O

Proposition 6.3.5 If (M, g;;) is complete and gy > %(dCﬂC)Q, for some
k € R>Y, then (N, gg) is complete for every c € R=Y.

Proof: (N, g%s) is complete by Theorem 6.3.3. Since every curve on (N, g%.g)
approaching p = 0 has infinite length, we can restrict to {p > ¢} C N for some
€ > 0. According to the above Lemma,

. >1 ke
9F5_2k6+09Fs-

Since (N, g%g) is complete, this shows that (N, g%g) is complete as well for
c e R2Y. O
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6.3.1 Complex hyperbolic space

For the projective special Kahler manifold CH" with quadratic holomorphic
prepotential F' = §((2°)* — >7_,(2#)?), we have —% > (0. Equation
(6.7) then shows that gy > $(d°KX)?, i.e. the assumption of Lemma 6.3.4 is
fulfilled for k = 1. We know from the literature that (N, g%¢) is isometric to the

series of Wolf spaces

SU(n+1,2)
S[Un+1) x U(2)]

X(n+1)= (6.11)

of non-compact type.

Corollary 6.3.6 For anyn € Ny and c € R=Y, the deformed Ferrara-Sabharwal

metric?
. p+c 1 ( & = 1 "L o 2
g = AXPdXE + —— | S Xrdxn ) (6.12)
P = TR\ EEPIRES

1 p+2c 2

7 pre dp* — (dwodwo - ;dwudwu)

p+c

R ’X”2|dwo+ZX duw, |’
1 p+cy, -~ 2c
— dd — 4Tm (wedwy — Y Wyduw,) + ————T XdX)
Uy P+2c< ¢ — 4Tm (doduwy ;w" w) + 1— | X]? mZ
on
N={(X,p,o,w) e C" xR™ x R x C"*' | | X||?> < 1}

defined by the holomorphic function F = £((2°)> — Y0_,(2)%) on
{z € CY" | (2,2) > 0} is a complete quaternionic Kahler metric. For ¢ = 0,

(N, g%g) is isometric to the symmetric space X(n +1) = —s[ﬁgngSiéiz)]

6.3.2 Manifolds in the image of the supergravity r-map

For quaternionic Kahler manifolds in the image of the g-map, we have
F(z) = % for a homogeneous cubic polynomial h, M = R" + iU, where

2Note that wy = 3((o +¢°), wy = 2(Cu — iC*), =1, ..., n, see Eq. (5.20).
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U C R" is an R”%invariant domain such that h|y > 0 and such that —9?h|y has
Lorentzian signature. The (positive definite) projective special Kéhler metric is

given by

g = 1 Z <—huv(5’7> + M) (dxtdx” + dytdy"), (6.13)

4h(z) ot h(x)
where y + iz € M. The Kihler potential is X = —log8h(z) and
d°K = =55 2o (@) dy”.
Lemma 6.3.7 .
g = E(dCK)Q

Proof: First, we show that
~ - Py () 2 9
= — ——dytdy” > —=(d°K)~. 6.14
J > y'dy” 2 —(dK) (6.14)

Considering g as a family of pseudo-Riemannian metrics on R™ depending on
a parameter x € U, the left hand side is positive definite on the orthogonal
complement Y49 of Y := ZZ:1 x#Oyn, while the right hand side is zero, since
§(Y,-) = 2d°X. In the direction of Y, we have g(Y,Y) = —6 = —2(d“K)*(Y,Y).

Equation (6.14) implies

) R hu@h ()N
9 > e Zl (—h#y(I)JrW) dy*dy

1

(d°K)? = —(d°K)2.

1
12

a
This shows that the assumption of Lemma 6.3.4 is fulfilled with & = 1/3 for
projective special Kéhler manifolds in the image of the supergravity r-map and
proves the following corollary:

Corollary 6.3.8  Let (H, gi) be a complete projective special real manifold
of dimension n — 1 and ¢5g, ¢ € R=°, the one-loop deformed Ferrara-Sabharwal
metric on N = M x R>"xR***3 defined by the projective special Kdhler manifold
(M, g5z, Jy1) obtained from (H, gsc) via the supergravity r-map. Then (N, g%g) is

a complete quaternionic Kdhler manifold. (N, g%<) is the complete quaternionic
14 q y9Fs P q

Kahler manifold obtained from (H, gsc) via the g-map.
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a

Remark 6.3.9 For the case n = 1 (h = %), (N, g%g) is isometric to the
symmetric space G3/SO(4). In this case we checked using computer algebra
software that the squared pointwise norm of the Riemann tensor with respect to

the metric is

8
Z RijklgﬁgjjgkégliRﬁki
i, 5, k, 11,7, k, 1=1
195 (52807 + 2112¢%p + 3664¢° p* + 3568¢* p° >
+ 21103 p* 4 764cp° + 161cp® 4 17p°
3(c+ p)(2¢+ p)S

For ¢ > 0, this function is non-constant, which shows that (N, g%.¢) is not locally

homogeneous for ¢ > 0.

6.3.3 General projective special Kahler manifolds

Let (M C C", gy, Jiz) be a projective special Kihler manifold which is globally
defined by a single holomorphic function F on
M:={z=2"(1,X)| e C, X € M} C C"™'. F is homogeneous of
degree two in the standard holomorphic coordinates (2/);— ., on M. g;; has
a Kéhler potential X = —log X*NX = —log DT J=0 XIN;;X7 in holomorphic

ceey

0?F(z)

N = 2(Im FL](Z))[’ J=0,..,n — 2(Im W)]vjzov'”vn7

which is homogeneous of degree zero and hence defines a matrix-valued function
on M (see Section 5.1). Note that by assumption X!NX > 0. The metric on

M can be written as

1 1
gir =b+ zl(dJC)Q + Z(ch)Q, (6.15)
where -
(dX)IN(dX) 1 & -
b= — = = — - N, dX"dX" 6.16
XtINX XINX ;V;l " (6.16)

is a non-degenerate pseudo-Riemannian metric on M (see [C-G] for the fact

that for the matrix-valued function n := (nuw)uv=1,..n = (Nuw)y,v=1,..n, 2(p)

-----
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is invertible at every point p € M). Define

A= Ny — > Noun" N, (6.17)

Hy,v=1

1

where n™" =: (n*"),, ,=1,..,» is the pointwise inverse of n.

Proposition 6.3.10  Let (M, gy, Ji7) be a complete projective special Kdihler
. 1 v . . . A

manifold. Assume that dX € Q'(M) is non-vanishing and that %5 > 1 or

ﬁ < —¢ for some € > 0. Then for c € RZY, the one-loop deformed Ferrara-

Sabharwal metric g% (see Eq. (5.13)) is a complete quaternionic Kdhler metric

on N = M x R>0 x R2n+3,

Proof: Define the non-vanishing vector field

n n a ~
Y i=b'(dK) =4 ) Re(X'Nyn" 3 € X(M).
I=0 p,v=1
Then
YY) = dX(Y) =~ 30 30 XNV, X7 = A — 1),
’ XINX & o= S XINX

Note that d°X(JY) = dK(Y) and dK(Y) = dK(JyY) = 0. Since g;; is

positive definite,

XY xev) +4) = 4 Xt]A\/' X (XHAVX

gu (YY) = gu (Y, JirY') = ~1) >0,

> 1 or < 0. We can split the tangent

which implies that either ﬁ ﬁ
bundle of M as

TM =RY @t RJ;Y @t H,
where H = {Y, J;;Y }+ = ker dX Nker d*X C TM.

We want to show that gy > %(d°K)? for some k € R>?. Since the left side of
the inequality is positive definite and the right side vanishes on RY and on H,

we just need to check that

A A

( _ A
XINX XINX

2
XINX 1"

>~

1) = g (JV, JigY) = = (d°K (T Y))? = 4k(
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If —A—_ > 1, then this inequality is fulfilled for k¥ = 1. If ﬁ < 0, it is

XINX
equivalent to k < 1,
A k
— — > X
XINX —1-k
This can be fulfilled for some k > 0 if and only if —ﬁ is bounded from above

by a positive number. The proof is then finished by applying Proposition 6.3.5.
0O

Remark 6.3.11 Note that for projective special Kahler manifolds in the image

of the supergravity r-map, we have ﬁ = —%. For complex hyperbolic space,

A 1
Yivy = x> b




Chapter 7
Curvature of the g-map

In Section 7.1, we give explicit local realizations of the complex vector bundles
E and H in Salamon’s E-H formalism for quaternionic Kéhler manifolds. Using
local frames in E and H, we derive the formulas (7.48)-(7.51) for the E- and
H-part of the Levi-Civita connection and the formulas (7.55)-(7.57) for the E-
part Rg of the Riemann curvature tensor. These formulas are known from the
quaternionic vielbein formalism used in the physics literature. In [FS], they
were used to calculate the Levi-Civita connection and Riemann curvature for all
manifolds in the image of the supergravity c-map. We also derive the formula

(7.58), which expresses Rg in terms of a quartic tensor field Q2 on F.

In Section 7.2, we recall the expression for the curvature of manifolds in the
image of the supergravity r-map from [CDL| and express it in terms of a uni-
tary coframe. In Section 7.3 we then calculate expressions for the Levi-Civita
connection of all manifolds in the image of the one-loop deformed g-map and for
the Riemann tensor of all manifolds in the image of the undeformed g-map. We
also derive the quartic tensor field 2 € T'(S*E*) that determines the curvature

tensor of the manifolds in the image of the g-map.

In the last section, we construct a series of complete quaternionic Kahler mani-
folds via the g-map. Using the results from Section 7.3, we calculate a curva-
ture invariant (the pointwise norm of the Riemann tensor, sometimes called the
Kretschmann scalar) for all members of the constructed series and show that it
is a non-constant function. This shows that the constructed series consists of

complete quaternionic Kahler manifolds that are not locally homogeneous.

Note that in this chapter, we will only discuss positive definite quaternionic

Kéahler manifolds.

133
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7.1 FE-H formalism

In this section, we will locally give an explicit realization of the complex vector
bundles £ and H over a quaternionic Kahler manifold that are used to identify
the complexified tangent bundle of the quaternionic Kahler manifold with the
tensor product H ®c E in the so-called E-H formalism introduced in [Sal]. In

particular, we will prove the following proposition throughout the main text:

Proposition 7.1.1  Let (M, g,Q) be a quaternionic Kdhler manifold. Every
choice of a local section' (Jy, Jo, J3) € T (U, S) defines an isomorphism

f:H®cE —TU, h®@e s he (7.1)
of complex vector bundles over U C M, where
H =RIdty ® Qlu, ig = Ry, (7.2)
E=T;U=(Id—iJ))TU, ip = J; =1, (7.3)
are complex vector bundles endowed with quaternionic structure maps
ju=—Ry,, jg=Jy0p, (7.4)

(p is the standard real structure on TCU given by complex conjugation) and with

non-degenerate two-forms
1
wy € TINHY), wy(Id, — Jp) =1, wp= §(w2 +iws) € T(A*E*) (7.5)

that fulfill 3, = ©Wg, ji = wg. Under the identification of T°U and H @¢ F
gwen by f, p corresponds to jy ® jg and the complexified metric gc corresponds
to wyg ® wg. The action of J; on TCU corresponds to L; ® Idg and wy s

invariant under Ly, 1= 1,2, 3.

We will then express the decomposition of the Riemann curvature tensor of
a quaternionic Kéhler manifold (into the sum of a multiple of the curvature
tensor of quaternionic projective space and the quaternionic Weyl tensor) in
terms of (local) frames in H and E. This proves formulas for the Riemann

curvature tensor in the so-called quaternionic vielbein formalism used in the

L As in Chapter 3.6, S denotes the principal SO(3)-bundle of oriented orthonormal frames
in Q.
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physics literature. These formulas will be used in Section 7.3 to calculate the

curvature tensor for all manifolds in the image of the g-map.

Vector bundles H and FE, complex structures iy and ig

Let (M, g, Q) be a positive definite 4n-dimensional quaternionic Kéhler manifold
and let (J1, Ja, J3) € I'(U, S) be a frame in @) defined over an open subset U C M
such that JyJo = J3 and J? = —1Id, i = 1,2, 3. We define

E:=T;"U C (TU)S,
H :=RIdyy @ Q|y = span{ld, Jy, Jo, J3} C End(TU). (7.7)

Note that E' is only defined locally over U and depends on the choice of J;. It is
a complex vector bundle of rank¢c E = 2n with complex structure ig := J; = 1.
H is a globally defined real vector bundle. To turn it into a complex vector
bundle, we restrict it to U and choose a complex structure iy := R, defined by
right-multiplication with J;. By abuse of notation, we will from now on denote
the complex vector bundle (H|y,iy) by H (rankcH = 2).

Quaternionic structure map jy, non-degenerate two-form wy and com-

plex frame (hq, hs)

jH = _RJ2 3H—>H,hf—>—hjg (78)
defines an iy-antilinear (i.e. igjy = —jgiy) structure map on H satisfying
(ju)? = -ldg. ig and jy commute with the natural action of

a+bi+cj+dk € Sp(l) on H given by left-multiplication of a Id+b Jy+c¢ Jo+d J5.

We choose the following complex frame for H:
(hl = Id, hg = —Jg). (79)

We have jg(hy) = hy. Let (h',h?) be the (complex) dual frame? of H*, i.e.
h',h* . H — C are R-linear maps such that h*((a + igb)hs) = (a + ib)dg for

2In  terms of the dual frame (n°,n',n%,n3) of the real frame

(o := h1,m :=igh1,m2 := ha,n3 :=ighs) of H, we have h' = n° +int, h? = n? +in3.
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a,b € R. Now, we define a non-degenerate two-form on H:

2
1 N )
wi = h* Nh? = 3 > eagh® AR €T(NHY), (7.10)

a, =1

where the real-valued 2 x 2 matrix (€,4)a, g=1,2 is defined by €15 = —€5; = 1 and
€11 = €39 = 0. wpy can equivalently be characterized by being non-degenerate
and fulfilling wg(hy, he) = wp(ld, — J;) = 1. Since jy is ig-antilinear and
ju(h1) = hg, we have j5;h' = —h2, jih? = h! and hence jhwy = Wg. Since

Ly, Ly,, Ly, are ig-linear and fulfill
LJ1h1 = iHh17 LJ1h2 = _iHh27 LJth = _h27 LJ2h2 = h17
we have
L?}lhl = ihl, L:’}th = —ih2, L*J2h1 = h2, Lj’}zh2 = —hh.

In combination with J3 = J;J, this can be used to show that wy is Sp(1)-

invariant. In terms of the frame (hy, hy), the action of (L ) on H is given

by
B g0 he 0 1 ha 0 g
Ly = )L LY = L9 = . (7.11)
0 —iH -1 0 1H 0

The almost hyper-complex structure (.Jy, Jo, J3) defines the following symmetric
forms on H:

2ih'h? (

wi(Ly, +,+) = h*h! + h2h? (i

i(h?h? — h'hY) (i

~.
Il

(7.12)

|
w N =
N~—

Quaternionic structure map jz, non-degenerate two-form wgy and com-

pact symplectic group Sp(E,)

On FE = T}l’OU , we define an ig-antilinear structure map that squares to —Idg
by
jpi=podo=1Jyop: E— E, e Joe = Joe, (7.13)



7.1. E-H formalism 137

where p denotes the standard real structure on 7CU given by complex conjuga-

tion. We define the non-degenerate two-form
1 . 2 1%
wp = §(w2 +iws) € D'(A“E™), (7.14)

where w; = g(J; - ,-)|v, ¢ = 1,2,3. Using the fact that JyJ3 = —J3J5 and that
g is Je-invariant, one shows that jjrws = Wy and jrws = —ws, which implies
Jjrwe = wg. The fiber over a point x € U of the subbundle Spc(F) C End(E)
consists of all invertible endomorphisms of E, that leave wg|, invariant. We
denote the compact symplectic group which consists of elements in Spc(F.,)

commuting with jg|, by Sp(E,), i.e. the corresponding subbundle of End(E) is

Sp(E) = Spc(E)’® = {A € Spc(E) | jeAjy' = A}, (7.15)

Isomorphism f between TCU and H ®¢ E

Now, we want to identify TCU with H ®¢ F via the following isomorphism:
f:H®cE— T U, h®e he. (7.16)

Since iy is defined via right-multiplication of J; and ig via left-multiplication
of Ji, f is C-linear, i.e. fo (ig ® Idg) = fo (Idy ® ig) = i o f. The standard
real structure p : v +— ¥ on TCU is recovered via po f = f o (jy ® jg), since

ju = —Ry, and jp = Jo 0 p. Using a frame in F, one can show that

f*g(c‘U :wH®wE, (717)

where g¢ is the complex bilinear extension of g (see Eq. (7.40) below).

Decomposition of the curvature tensor R, quaternionic Weyl tensor

W

Now, we state the well-known decomposition of the Riemann curvature tensor

of a quaternionic Kahler manifold:

Theorem 7.1.2  The curvature tensor R of a quaternionic Kdhler manifold

admits the decomposition
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scal
4n(n+2)

is the reduced scalar curvature and all traces of W € T(TM ® T*M®?) are zero.
Given a local section (Jy, Jo, J3) € T'(U,S), Rupr is given by

where Rypn is the curvature tensor of the standard metric® of HP™, v =

Ripr (X.Y)Z = 1[o(Y, 2)X — (X, 2)Y] = 3 3" (X, )2

=1

+ wi (Y, 2) ;X —wi(X, Z2)J;Y]  (7.19)

A
-

1

-
Il

and in terms of the identification of T°U with H®@c E given in Proposition 7.1.1,
W is an (Idg ® sp(F))-valued 2-form whose complex bilinear extension fulfills

W (he,h'e")(h"e") = —wp(h, h) h"wz* (Qe, €, €”,)) (7.20)
(h,W,h" € T(H), e, ,e" € T(E)), where Q € T(S*E*) such that j5Q = Q.
Proof: This theorem was proven in [Al, Sal]. See also [Besse, ACDGV]. 0O
Remark 7.1.3

1. W is called the quaternionic Weyl tensor. Since R and Rypn fulfill
the Bianchi identity, W does as well:

W(X,Y)Z+W(Y,2)X + W(Z,X)Y =0. (7.21)

2. Note, that we use the following convention to identify E with E*:

E3E* v wglv,-). (7.22)

We denote the inverse of the above map by wgl:

E* - FE, a— wy'(a). (7.23)

3. The condition j5Q = Q ensures that in equation (7.20), W is the C-linear

extension of a real tensor field:

W(he,h'e')(h'e") = W (jghjge, juh'ipe ) (juh"jge") = W (he, h'e’)(h"e").
(7.24)

3Here, the metric on quaternionic projective space is normalized such that its reduced scalar
curvature is equal to one.
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E-H splitting of the curvature tensor of quaternionic projective space

Now, we give a slight refinement of the splitting of the curvature tensor of a
quaternionic Kahler manifold given in Theorem 7.1.2 by splitting the curvature

tensor of HP" into an H- and an E-part (this was done for example in [KSW]):

Proposition 7.1.4
Rypn = Riipn + Rfipn, (7.25)

where for hyh',h" € I'(H) and e, e, e”" € I'(E),
1
Rion(he, W e)(h'e") = —QwE(e,e’)(wH(h, "W + wy (B W )h)e",  (7.26)

1
RE o (he, W) (h'e") = —éwH(h, YR (wg (e, e”)e + wp(e, e"e). (7.27)

Proof: Using the equation

3
> wy(Jih W) Tk = wy(h, k)W + wp (K B)h, (7.28)

=1

which can be checked by direct computation, one finds

3 3
1 /7 n n (7:17) 1 ’ , "o
_§;wi(he,he)Jih e’ = —§wE(e,e);wH(Jih,h)Jih e
1

= —Swn(e, ) wnlh, KO + w0, 1) h)e"
= Rio.(he,W'e)n"e". (7.29)

Equation (7.28) and the Bianchi-type identity

wir(hy YR+ wp (', B+ wg (R )R = 0 (7.30)
imply
1< (717 1 5
!/ " _n el / Vi / " ! "
1 Iz_;wl(h e h"e")Irhe = ZwE(e €N wr (R, R )R + ;wH(Jih ,h'")J;hle
1

- ZwE(e/’ eV wrg (W', K" Yh + wg (b, h)R" + wg (h", h)h']e

1
= —§wE(e’,e")wH(h, h')h'"e, (7.31)
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and hence

Z[wl(h'e', h'e")Jrhe — wr(he, h'e")Jih'e'] = RE L. (he, W'Y e”.  (7.32)

3
I=0

|

Here, we used the notation wy := g and Jy := Id. Equation (7.19) then shows
RHPTL = RI[_I;IIPH —‘I_ Rﬁpn. D

Frame (Er) = (E,, E;) = (8,,0,) in £ and quaternionic vielbein (f°)

(coframe in TCU)

To make contact with formulas used in the physics literature, we will now express
the objects defined above on E and TU in terms of a frame (Ey) of F and a
corresponding frame (fan) = (hoFa) of TCU. The coframe (f*) dual to (faa)

is called a quaternionic vielbein in the physics literature.

Let ey,...,e, € T'(U,TM) such that g(es,ep) = Oap, a,b = 1, ...,n. Then

(€q, J1€4; J2€a; J3€4)a=1,.. n is a local oriented orthonormal frame with respect

tey

to ¢ that is adapted to the almost hypercomplex structure (.J;, Js, J3). Then we

define the following complex frame of E:

1 ) 1 .
(E, = B4 := E(ea —iJi€q), Born = aq := E(Jgea —iJ3€4))a=1,..n-  (7.33)

From now on, we will write a for the index a +n, a = 1, ...,n. We have
J5(Ba) = aq, i.e. jp(E,) = E;.

(B := B := " —iJje”, B := a" := —Jye" — iJ5e") a1, .n (7.34)

is the dual frame of E* = Q},’PU, where e := g(e,, ) € Q'U.

We define f,r = f(h
r=1....2n=1,...n,

fla fld Ba Qg
« o= 1= n - - — . 735
(for)a=1,2,7=1, .2 <f2a f%)a:l ) (_@a 6“>a=1,...,n (7.35)

.....

o« @ Er) = hoEr € TCU for a = 1,2 and for

1, ...,

(far)a=1,2;1=1,.. 2n constitutes a frame in TCU. The corresponding coframe is
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given by

fla fla ﬁa a’
(far)a:1,2;1":1,...,2n = ( . &> = ( . —a> , (7.36)
f2 f2 a=1,...,n -« ﬁ a=1,...,n

where 5% = 2¢g(Ba,-), a® = 2g(ay,-) are defined as in equation (7.34). Then
(f*(f)(hs ® Ea) = fT(fsa) = 0§04, ie. (f71)*(h* @ ET) = f°, where we
naturally identify (H ® E)* with H* ® E*.

Formulas for Levi-Civita connection and curvature tensor in quater-

nionic vielbein formalism

Using the fact that the metric can be written as

- ana a=a 1 - a Ra a ~a na a ~a a
grU—;wﬁ +aa>—§;w ®B +a"®a"+ 4 ® B +a" ®a”) (7.37)
and that J53% = Jye* —iJje* = —a®, one obtains

1 - a a Ra ~a
w2=9(J2'7')‘U2521(5 Ao+ % A at). (7.38)

The (2,0),-form wp = 3(ws + iws) can thus be written as

n 2n
1 1
=52 B nat=2 ) CraB" AE%, (7.39)
a=1 r,A=1
where (Cra)r,a=1,.. 2, is defined by C; = —Czp = dapy, Cup = C;; = 0

(a,b=1, ... n).

In terms of the coframe (f°T'), the metric can be written as

(7. 37) Z Z _EQBCFAfaFfBA (740)

(7.36
) ﬂlFAl

We define the real-valued 2n x 2n matrix

0 -1
J = (J'\)r,act,. o0 = (]l 0 ) : (7.41)
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Then for v = 37" W' Er € E, jpv = ??A:l JUWAEr, i.e. with respect to the
frame (Er), jg is represented by Jo ™. In the definition of J and in the following,

the splitting of matrices into block form corresponds to the splitting

E =span{E,}o—1, . n B span{Ez}te—1 . n (7.42)

ceey

of E into two totally isotropic subspaces with respect to wg. With respect to

the frame (Er), the two-form wp is represented by $C, where as above

0 1
( FA)F, A=1,...,2 <—]l O) ( )

Remark 7.1.5 In terms of the quaternionic frame (f,r), we have

2n 2n
1

wE(Z UFEFf) = B Z UFCFAEAu
r=1 I, A=1
2n 2n

wgl(z aAEA) =2 Z arC? Er,
A=1 A, T=1

where (CT2) = (Cra)™! = —(Cra). The quaternionic Weyl tensor is thus given
by

2n
7.20 /
W(far,fsa)frz 720 —2€ap E QrazyC* AfVA, (7.44)
A=1

where Opaz=p = Q(EF, En, Bz, EA) € COO(U, C)

The Lie algebra of Sp(E,) consists of all endomorphisms B € End(FE,)
such that the matrix B € Mat(2n, C) representing B with respect to the ba-
sis (Er|z)r=1, . on of E, fulfills B!'C+CB=0and JB = BJ, ie.

sp(E,) = {B € End(E,) | B = ( 7 t_) € Mat(2n,C), ¢ :=q = —q, t' =t}

(7.45)
forx € U.
Since the Levi-Civita connection V preserves @, i.e. VxI'(Q) C T'(Q), X € T'(TU),

the connection one-form A, A(X) € I'(so(TU)) C I'(End(TU)), normalizes @,
ie. [A(X),Q] C Q. Thus A(X) can be written as a linear combination of the
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inner automorphisms {J,} of @ and a Q-linear part:
3 .
AX) =D A(X) i+ Ao(X),  [Ao(X), Q) =0. (7.46)
i=1

Then VxJ; = [A(X), ;] = 2?21 AYX) [Ty, i) = —2A49(X)Jy, + 2AR(X)J; for
any cyclic permutation (i, j, k) of (1,2,3). Comparing with Eq. (2.1), we see
that AY(X) = —0;(X), where 6;, i = 1,2,3, are the components of the local
Sp(1)-connection one-form with respect to the frame (Ji, J2, J3). In terms of the
splitting T°U = H ® E, we thus have

A(X) =) A(X) s + Ag(X)

=Ap(X)®Idg +1dy ®Ag(X)
3
== 0u(X)L;, ®1dp +1dy ® Ap(X), (7.47)

a=1

where Ap(X) € T'(sp(F)). We denote the matrix representing Ag(X) in terms
of the frame (Ep) by O(X) := Ag(X) := (O"A(X))r, a—1....2n. With respect to

the frame (f,r), we thus have

N (Vx fon) = paﬂ(X)5FA + 5a5@rA(X)a

where, since V is metric, JO(X) = ©(X)J and O(X)!C + CO(X) = 0, and

11 0 0. _ D
N Py P 7.11 —if —0y — 10
p=() =T D) T TR (7.48)
P Do) (747) 82 - 193 291

We write the sp(E)-part of local Levi-Civita connection one-form with respect

to the frame (Er) as
q t
(02) = (_t q) : (7.49)

where ¢, t are complex 1-form-valued n x n matrices that are anti-Hermitian,

respectively symmetric: ¢ := ¢¢ = —q and ' = t. Since V is torsion-free, ¢ and
t are determined by the equation 0 = df'! + 22:1 plﬁ A fI8 4 ZQATL:1 Ol A fAL
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I'=1, ...,2n, which is equivalent to
0=dB* +p', AB*—p'y Aa* + zn:(q“b A B4t A aP) (7.50)
b=1
0=da”+p'y Aa® +p'y A B+ zn:(—fab A B4 g% A ab), (7.51)
b=1
a=1,...,n.

The calculation of the curvature tensor R(X,Y) = VxVy — VyVx — Vix,v]
leads to
~ ~ T
FT(R(X,Y) faa) = Ry 5(X,Y)0"s + 0%Re A(X,Y), (7.52)

where

RHde—Fp/\p

B —idf; + 2if, A O3 —(dfy + idf3) + 2i0; A (05 + i03)
— \(dfy — idfs) + 20, A (65 — i0s) idf, — 205 A Oy
@n Vv ( —iw  —W)—iws (7.53)
2 Wy — ’iW3 iwl .
and
Rp=dO +0O A6, (7.54)

We write the E-part of the curvature tensor with respect to the frame (Er) as

Rp = (_Tg ;) , (7.55)

where 7, s are complex two-form valued n x n matrices that fulfill ' = —r,

st = s. In components, we then have
r% = dq% + Z(q“c A g — ' AT (7.56)
c=1

% = dt + ) (g N+ A T), (7.57)

c=1
a,b=1,....,n.

To express the E-part Rg of the curvature tensor in terms of the quartic sym-

metric tensor field 2 in E, we combine Theorem 7.1.2 and Proposition 7.1.4:
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Corollary 7.1.6  The E-part of the curvature tensor of a quaternionic Kdhler

manifold with respect to the frame (Er) is given by

2 2n 2 2n
~ A 1% ’
B 3 S G AT 3 3 O a5
a, =1 A=1 a, =1 A T'A=1
(7.58)
Proof: Since wy(hq, hg) = €ap and wp(Er, Ep) = %CFA, we have
SA( pE 2y 1 ) A A
[ (Rgpn (far, foa)frz) = _Zeaﬂéfy(CFEéA + Cazop). (7.59)
The definition of Q € T'(S*E*) in Eq. (7.20) implies
2n
faA(W<faF: fBA)f'yE) = _ngeaﬁ Z QFAEA/CA A- (760)
A=1

Due to the decomposition R = vRypr» + W in Theorem 7.1.2, the E-part of the
curvature tensor with respect to the frame (Er) is given as a linear combination
of the terms in Egs. (7.59) and (7.60):

2n
~ A 174 174 /
RE E(fap, ng) = 1604505A(51/} — ZEBQCEF(Sg — 26a5 Z QFAEA/CA A. (761)
N=1
The above equation is equivalent to Eq. (7.58). O

7.2 Curvature of the supergravity r-map

In this section, we recall expressions for the Levi-Civita connection and the
Riemann curvature tensor for projective special Kahler manifolds in the image
of the supergravity r-map that we stated in [CDL]. We then derive formulas
for the local connection one-form and the curvature tensor in terms of a unitary

coframe.

Note that in this section, we will sometimes leave out summation symbols and
employ Einstein’s summation convention, i.e. every index that appears twice

within one expression is summed over.
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Recall that a projective special Kihler manifold (M = R" + iU C C", gy1, Ju1)
in the image of the supergravity r-map is defined by a real homogeneous cubic
polynomial % in n variables and an R>%invariant domain U C R™\{0} (see

Section 6.2). The Kéhler potential of g;; is
K(X,X) = —1log8h(z) = —log h(i(X — X)),

where (X* = y" + ix“)(H:L._.,n) are standard holomorphic coordinates on
M =R" + iU C C". The metric then reads gy; = K,,dX*dX", where

9? R () hyu()hy(2)
Kuw = logh(w) = =00y © ~an2)

T axeaxe (762)

For all Kéhler manifolds, the only non-vanishing Christoffel symbols are (see e.g.
[Mo], Section 12.2, or [KN])

pr(VBXa aXu) = Fgﬂ = gp'_if)xog“,g (763)

and their complex conjugates. For manifolds in the image of the supergravity

r-map, we have

i i} 1
I, =57 (hh" ho — hodl, — 8% + §xphw) . (7.64)

For the Riemann tensor

R(X,Y)Z :=VxVyZ - VyVxZ - VixvZ (X.Y, Z € X(}))
in local coordinates, we have (see e.g. [Mo], Section 12.2, or [KN])
dX? (R(aXu, (9;(/)3;@) = Rpo.l“; = —3XVF§H. (765)

The other non-vanishing components R’ s R op, and R’ sav Of the curvature
tensor can be obtained from this via symmetry and complex conjugation. The

curvature tensor is given by [CDL, Theorem 3]

? 1|1
R, = —gaxurg# =~z léxp(hhwy — hyohy) + huh, 08 + hehy ol

1
—h <hm,5ﬁ + hy, 08 — §hu055) — th/mhmghﬁvhwa
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= —00Kyp — 60 Kop + €K P K o, (7.66)

where

K" = —4h(z)h(z) + 2272 (7.67)
Unitary coframe (0% = e* —iJ;e* = ZZ=1 erdX ) =1, . n

Let (eZ)a, u=1,..,n be a real n x n matrix-valued function on some open subset in

M such that Y7 | etes = 3" | e%e% = K. Then the holomorphic one-forms

o’ = Z endX" (7.68)

pn=1

constitute a unitary coframe (0%)4=1, . n, i.e. the metric can locally be written

as
n 1 n
V= 0% = = 'R+ ® o). 7.69
Let (0, := ZZ:1 6’;%)@:1,...,71 denote the corresponding local frame in TH°M
dual to (0%)a=1, ..., n, i.¢. (ef) = (e2)~". Then o = 2g;;(0,, ).

For the Levi-Civita connection V, we denote the coefficients of the local connec-
tion one-form associated to the coframe (%) by w%, i.e. V.o = Y ) w%(-)o".
Since the connection is metric, the complex one-form valued matrix (W% )4, p=1,... n
is anti-Hermitian and since the connection is torsion-free, it fulfills
do* + >, wy Ao® =0,a =1,...,n. A formula for the local connection

one-form of any Kahler manifold with respect to a unitary coframe is given by

n

wh =Y (ehdel — &0ek). (7.70)

pn=1
In terms of the local connection one-form, the curvature tensor of a Kéahler
manifold is given by

R(X,Y)oe = (dw’.+ Y " wh Aw) (X, Y)og =Y RLX,Y)os (7.71)

d=1 /=1 d=1

3

Proposition 7.2.1  In terms of the unitary coframe (6*)q=1,.. n, the Riemann

curvature tensor of a projective special Kdhler manifold in the image of the su-
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pergravity r-map reads

n n
RY = =& E g NG¢— o A’ + e E Radeheero® A 7, (7.72)
c=1 c,e,d=1
where hape 1= Y, , oy eheyelhug for a,bye=1, ... n.

Proof: Using X,;, = eSe, K" = ete/ and the fact that

ptvs
(ez)aﬂ/":lvvn = (65);]6:1,,727 we ﬁnd

Rab<0'€7 5’d) = Ua(R(Uea 6'd)0'b)
= 2 dX"(R(Oxn,0x»)0x-) elele]
(7.56) e (—00K s — 60 Kop + €K Py K Ty ) €eie]

— 68040 — 0%8pq + € hagchees.

(]

Recall from Remark 6.2.4 that a projective special Kahler manifold M = R"4iU
in the image of the supergravity r-map is defined by the holomorphic prepotential

F:M—C, F(z° ... 2)=""2 "7 (7.73)
where M is the trivial C*-bundle
M={z=2"-(1,X)eC"|eC", X e M=R"+iU} - M. (7.74)

Recall that the complex (n + 1) X (n + 1) matrix-valued function

O*F(z
F(z) == (Frs(2)1,0=0,..,n == (azfgzz)I,Jzo,...,n

(7.75)

is homogeneous of degree zero and thus defines a function F(X) on M. The

is invertible at every point in M and we denote the components of its inverse by
N1/ Recall from Remark 6.2.4 that in terms of IV, the Kihler potential can be
written as

K =—log XNX =: —log(X' N (X, X)X7), (7.76)

where X% := 1. More generally, for every function fy;(z) on M, we define a



7.2. Curvature of the supergravity r-map 149

function fy;(X) on M by fiz(X) := far(1, X", ..., X"). Like this, the function

DF(z)

F]]K(Z) =

defines a function Fj i (X) on M.

Proposition 7.2.2  The local connection one-form for the Levi-Civita connec-

tion with respect to the unitary coframe (0%)a=1,.. n can be written as

w?, = e X ((OP})N" P} — PN (0PY)) (7.78)
= 080K + e *d(PFN'7)PY 4 ie X PENT® dFpep(X) N* P, (7.79)

where P{ are the components of the complex n X (n + 1) matriz-valued function
(P[a)azl,..‘,n, 1=0,...,n — (P(t)la Pg)a,,u 1,...,n ZeaXV7 Z a,u=1,...,n- (780)

Before we prove the above proposition, we state a few formulas for the matrix-
valued functions F'; N, (Pf), and for Fj;x(X) that can be easily checked or

looked up in the physics literature on special geometry:

Remark 7.2.3
0=> X¥Frk(X) (I,J=0,...,n), (7.81)
I=0
0=> prrx’ (a=1,...,n), (7.82)
1=0
0K = —* > X'Npdx’, (7.83)

I,J=0

Ky = (N — €5 Y Ny XKXNL)  (nv=1,....n), (7.84)

K,L=0

ZP“PJ = —X(Nyy — e Z NigXEXENL) (I,J=0,...,n), (7.85)
K, L=0

—eX§eb = Z PeN'I P (a,b=1,...,n). (7.86)

1,J=0

Proof (of Proposition 7.2.2):
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Multiplication of Eq. (7.86) by —e *e# gives
ey = e X (XHN — N+ Ph.
This equation shows that
—eff@ez = e_x((éeZ)N“J — X“(éeZ)NOJ)Pf} = e_x(gPI“)N”Pf}.

Using the above equation one then finds

W, "2 —ehdey + eoe), = X ((OPF)N' Py — PN (9F)),

Adding 0 (29 620K + e~ *9(Pe N1/ Pb) to the above equation gives

w?, = 040K + e X (d(PN") P}y — PF(ON')PY)
= 070K + e Xd(PI N\ Pb 4 ie ™ PENT® dFyep (X)) N& PS.

7.3 Curvature of the g-map

In this section, we will use the formulas (7.48)-(7.51) for the E- and H-part of
the Levi-Civita connection and the formulas (7.55)-(7.57) for the E-part Rg of
the Riemann curvature tensor derived in Section 7.1 to calculate the Levi-Civita
connection of all manifolds in the image of the one-loop deformed g-map and
the Riemann tensor of all manifolds in the image of the undeformed g-map. We
also derive the quartic tensor field Q € T'(S*E*) that determines the curvature

tensor of the manifolds in the image of the g-map.

Again, we will sometimes leave out summation symbols and employ Einstein’s

summation convention.

As in the last section, let (M = R" + iU C C", gy, Jy7) be a projective special
Kahler manifold in the image of the supergravity r-map. Let h denote the cor-
responding homogeneous cubic polynomial in n real variables. Let (¢, ..., 0")
be a unitary coframe on the projective special Kihler manifold (M, g7, Jir), i.e.
ot =: ZZ:1 e, dX*, a=1,...,n,are locally defined Jy;-holomorphic one-forms
such that gy = >0 0% = 13" (0" ® 6" + 6° ® 0®). Here, (X*),1,

again denotes standard holomorphic coordinates on M C C". Since for Kéhler
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manifolds in the image of the supergravity r-map X,; is real, we can choose
e to be real (see Eq. (7.62)). Recall how M is realized as a C*-quotient of
a conical affine special Kahler manifold M defined by a holomorphic prepoten-
tial £ : M — C (see Eq. (7.73) and below). This in particular defines the

matrix-valued functions N = (N7;)r1.=o....n, F = (Fr)1. j=0. ...n, €tc. on M.
Starting from the projective very special Kihler manifold (M, g5z, J7), we now
consider the one-loop deformed supergravity c-map. For ¢ € R, let

N':= N{jpis0) C M x R** C R (7.87)

denote the domain where the one-loop deformed Ferrara-Sabharwal metric g%
is positive definite (see Definition 5.5.1). As in Definition 5.5.1, we use standard
real coordinates (p, ¢, Cr, ('), ...n on the R2*** factor of N’ and complex coor-
dinates (X*),=1,.. » on M. Note that on N’, p > 0 and p + 2¢ > 0. We define

the following complex-valued one-forms on N':

2V 2
BO: p+ CZXIAL

/p+CZPIdXI [ptc o,
1=0

0 p+2c p+c .
= — d (d d d d°X
o 2,0 o ( . ¢>+Zc &= Cid¢h) + e ))
a._ b5 i BeATLT
a’ = —e P/ N'™A, (7.88)
VP 1,J=0
(CL = 17 ceey )7 where (P[ )I 0,..., (P(;lvpﬁ>,u=1 ..... n — <_Z Xyegae”) =1,..n

and A; = dQ + > o Fry(X )dC‘], I = 0,...,n. Here, we trivially extend
functions and one-forms from M to N’, using the same notation (i.e. leaving out
pullbacks). Let ) = spang{Jj, J5, J5} denote the (trivial) quaternionic structure
on N’ obtained from the HK/QK correspondence (see Remarks 5.5.3 and 5.5.4).

Lemma 7.3.1  The coframe

flA fl/i 514 O_/A
(far)a: ,2;=1,...,2n+2 — ( *) = < _ — ) (789)
o " f2A f2A A=0,...,n —04A ﬁA A=0,...,n

n (T*N")C defines a unitary coframe for the one-loop deformed Ferrara-Sabharwal
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metric, i.e. the metric reads

n

s =Z(ﬂ BA 1 afat), (7.90)

and o, B4 are Ji-holomorphic and fulfill

A—_pBt (A=0,...,n). (7.91)

Proof: Note that 7 = —2ip ’;f—ffozo, where 7 is given by Eq. (5.18). Further-

more,

1 c Z A l a —a_. a a

BOABY = ex%fc(XlAI) A (X7Aj) and

(7.85) 1

1 _ _ -
A ANat = —e *NEPLPINM A A Ay —— (N7 = XIXNYA A A
P

p

Together with Eq. (5.16), this shows that the first fundamental two-form is given
by

ot oA, 7A A=A
w1—§Z(B ABY+a Nat). (7.92)
A=0
Note that

o A B = ie X/2YPE papa NKT A gx!
p

(7.85) Z.egc/z_vPWLC (—A; A AXT 4 X XMN L XTAS A dXI)
p

(759 +z’ej</2pT+c (dXT A A;+ 0K A XTA). (7.93)

Together with Eq. (5.17) and the definitions of % and a°, this shows that
Wy +iwg =Y _BA A’ (7.94)

The statements of the lemma follow immediately from Egs. (7.92) and (7.94). O

Before we proceed, we state a few more formulas that can be proven using the
formulas in Remark 7.2.3 and the definitions of 34, 4. These formulas will be

used in later proofs.
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Remark 7.3.2 We have

NV A NA; = NY(Fr — Fig)dC® AdCy =id¢? A dE;, (7.95)
dx K ") _xKoy % [ L NKIpaga (7.96)

(7.83) p+c
LX) [P N XERO e Xphad, (7.97)

Nz p+2c

U2 gL o b %2 aLM _ o:nLM L5/

—e d¢™ =2——e N*"Im Ay = —2iN“" Re(—=e A
NG Y 7 )

Nz
g [ g0 Re(X18") + 2i “NHRe(Pya), (7.98)

d(PENTYN; X1 T2 peNTIq(N,; XT)

(72D ‘/ " + PN (X)X, (7.99)

SEPENT By NMEFy e (X)dx S T2 o2 [P Fabe(xyge (7,100
¢ PPN Py srp(X)AXT 2 —e o F XS (7.100)

where for a,b,c=1, ..., n,

ﬁabc(X) — Z PENLIP]I\]/[NMJPJ%NNKFIJK(X>. (7101)

I,J,K,L,M,N=0

Proposition 7.3.3

1 2c ptc _ , P+ 2 &
d0:_ 1 0 0y dK ) A 0 b/\ b
A8 2((+p+20) p+2c(a +a%) —i ) 5+,/p+cga B,

c n
dp® = a® +a% A B — w® A B,
N eV )N B ;bﬂ
1 1 cp _ p ptc -
da® = —(p+c)+ 3 )aOAa0+ O A B°
\/p+c\/p+20( (p+c) 2p+2c p+2c p+206 p

[ptc b A B
p+20§ p+c\/p+2025 g
a p+C c P 0 na
da® = 1d°K) A A
a 2(1/p+20(a +a%) —id°K) A a® + FEY: —p+2cﬁ B

n n
—a . P 7 =b c
— E w“b/\ozb—zej{,/ E hape0” N 5,
b=1 P e b,c=1

where hgpe = ZZ v.o—1 Eheyeehyng for a,b,e=1,...,n and (W) a, b=1,...n 15 the
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(pullback to N' of the) connection one-form of the Levi-Civita connection on M
with respect to the given choice of coframe on M, i.e. (w%) is anti-Hermitian
and fulfills do® + 3 ) w4y Ao®=0,a=1,...,n.

Proof: For 3° = ieK/Z—Vp:QCXIAI, we have

1 2c Vp+2c
ag’ = (——(1 dp + =dX) A B0 +ie* YL axT A A
ﬁ(?.Sl)( 2,0( +p—i—2) +2 JAB e p !

:1(1+ 2C) p+c(a0+d0)A5°+(aJ<—idCJ<)Aﬁ“
2 p+2c’\ p+2c 2
v/ 2
+ §eX/? Pt CdXI/\AI
P

1 2c y[pre o oy 0 pt2¢ 4 o
=—|(1 —1d°K ) A —a A
2<( +p+20) p+20(a o) =i ) Fi+ p—l—ca g

since
av g —|—ej</2vp+ch]/\A1+1/p+c K
p p+2c

For 3¢ = , /p:c 0%, we have do® = —w% A a® by the definition of (w%), so

C

d a _5 _ do A\ a a/\ b
B 2pp—|—c pABY—wyAB
0 ~0 a a b
= o +a) A —wy AP .
2\/,0—1—0\/,0—!—20( JNB b/ D
For o’ :—2—p ‘;jfcc <dp—zp"j2cc(d$+dd51—C:IdCI+cdcﬂ<)>,We find
1 1 c 1 p+c ~
da® =5i | —=+= dp ANlma® +i— 2d¢" A dCp + edd°X
( p 2(p+6)(p+20)> ’ 2p p+20< ¢ AdGr )
2 1 ¢p 0 0
= +c— = Rea’ ANlma
Vp+cevp+2 (p 2p+20>T’
§a/\o¢
1 [p+c b ~b N ¢ b A Ab
- = a N ————0 A — Np,
P p+20(p p+2cﬁ g \/p+c\/p—|—205 p
8 () = =55 (1 )
50 [ptc c 1 ptc
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since

1 _ _
abnab = e PLPINTNELA; N AL
P

: 1 - 1 o
(7:85) ——NJLAJ VAN AL + ;e:KXJAJ VAN XLAL

p

7.95) 1 ~ _

(:)__dCL/\CL+ P 50/\50
P p+2c

and dd°X = dwy; = 2i0® A G* = /pr B A B

Finally, a* = \/Lﬁe*wzplaN”AJ fulfills
1

dOéa = <_2_p

1 U x/2 0 BT
- = “ PN A
dp 2diK)/\oz —l—\/pe d(PN")NA,

+ #e‘K/QPﬂN”dFJL(X) Adct

ol [pt+c , o _p u i _ .
=’ = ANa® — (=d°K+ 0K) A
2’//)—1—20(06 +a )N« (2 + 0K) A«

+./ f S d(PPN" )Ny XP A B — e X (PPN P Ao
p+ 2c

4L X2peNTIgp (X)) A dCE

VP
1o L [PHC 04 a0 nat - (Laesc + %) Ao
(7.98) 2\ p+ 2c 2
. p Ha nrlJ L 0 p 2a 0
—P X)X NG — A
+1 JL ) 5 \/p—_l_c\/mﬂ B
— e Xq(PNTYPY A b
—2i, |- PeNTaF XY A Re(XE4°)

+ 2ie X PENT AL (X)NEM A Re(Pyab)

(7.81),(7.79) 1 p+c , o . _o . u p 0 2a
Ty s —idK) A A
(7.100) 2( p—|—2c(a +a7) —idX) A +\/m\/mﬁ P

. — P Tabe ~b c
—w% Aab +ie” X [ pabe(X)ab A Bl
b S F(Xal A g
Finally, note that
Fe(X) = e Ry (Im X). (7.102)

690 (_;o1 pre |\ — _; o1 pte (141 c
dp 2[pl'\/ Ipt+2¢] 2lpl'\ Ipt+2c] p 2 (ptc)(pt2c)
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Recall that 6, = —1, /282 m a0 — idcx and 0y + 105 = ;TJECC % (see Remark

5.5.3). The H-part of the Levi-Civita connection is given by (see Eq. (7.48))

1 - Jc +2c (=0 0 +c 0
L L —Z(—Zdjc—i— %(O& — )) — ;-)ii-LQcﬁ
[P P2
a p21 p22 B
e F(dK 4 22 (a0 - oY)

Corollary 7.3.4 The E-part of the Levi-Civita connection with respect to the
A tA~
frame (Er) for the one-loop deformed g-map is given by (OF,) = < 15 B
B

WZth (qAB) =4q,

7 1 1 402 0 0 T b
K+ e (304 75) (60— o) N
q =
\/ pﬁ7+_“!‘256 da (JJab + }L(—chx —l— Wm (do _ aO))éab
and
2c ptc 30 c ﬁb
p+2c\/ p+2c Vp+e/p+2e
t=(t"5)

c a K /e 7 c
NN B e e Rape O

Proof: ¢ is anti-Hermitian and ¢ is symmetric. A straightforward calculation
shows that the equations given in Proposition 7.3.3 agree with equations (7.50)

and (7.51), when ¢ and t are given as above. ]

From now on, we restrict ourselves to the undeformed g-map, i.e. we set ¢ = 0.

Proposition 7.3.5 The E-part of the curvature two-form with respect to the

frame (Er) is given for any quaternionic Kdhler manifold in the image of the
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r rp sy A
g-map by (Rg ) = 5 P with (rp) =1,
1
n a A @ + B A B0+ ieXhpeadt A B
+> a“na’—pYApY)
C=0
r= . "
—5a C A ~C _ nC A RC
a® nat+BOA B Qe et = AT
C=0
+ie® hgega A B% —(B*AB*+a" Aad)
- 62K}~ladc}~lceb<ad A O_ée + Bd A ﬁe)
and (SAB) =s,

0 0
s = - _ - _ 1,
(O iej{habc(ﬁo A B¢+ a® A Oéc) + 62:Khabfhfdeo_éd A B¢ — 2S5 pea A ﬁd>
where

1 ~ ~ ~ o~ ~ ~ ~ o~ ~ ~ ~ o~
Sabcd = _5‘9%{ <(hbcfhfad - 4hbchad) + (hacfhfbd - 4hachbd) + (habfhfcd - 4habhcd)

+ 4};'ailbcd + 4ilbi;/(:dtz + 4ilt:}~7/clanb + 4ild;~labc) .

Proof: First, we calculate dq:

0 _ 1 e 30 oo ) Los. 3.0
dq0—4ddﬂ<+4(da da”) 2885( 2da

1 _ 3 _
:_§@CA50+§(a°A@0—B°/\B°+a°AdC),

d&O::dOéO

dq’, = —dg’y = —da”
= —%(OJO + 540 — ZdCfK:) N Oéb — ﬁO N Bb + Cz)bc Aaf + iexﬁabco_éa A ﬁc?
a a 1 a ) 0
dqb:dwb+§5b(883C—da )

1 _ _
= dw®, + 55“1,(56 ABH+a’ ANa’ — BOABY+ac Aad).
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Then with
(o) =
—a® A a* —3((dK+a’ —a®) Nab — & A af
—2(dK+a’—a)na+wi Aat wh AwS —atAa
and
0 0

tA /\ t_C — ~ ~ )

( © B> (0 GQKhadchceba/d VAN Oze>
we obtain

r(7£6)dq—|—q/\q—t/\f

%(oﬁ Aac — B¢ A B°)

+g(040/\c‘v0 — B°A B9

a® Aa® + B A B0+ ieXhyegal A B

Cl/O A& + BO A /Ba du_)ab + (,uac A\ wcb —a* A ab — €2ﬂ<ﬁadcﬁcebad A af

- _ 1 _ _
+ie*hgeqa® A B2 + 55%(50 ABC+a’Nat+a’na’ — oA BY)

This can be brought into the form stated above using (see Eq. (7.72))

dw? + w® A wS = —8%B° A B — B A Bb + emﬁadcﬁcebﬁe A B
Since e, is real, we have e“u~de“ b= e’ de’, (7;:70) W+ mY, where
me, = e“uae“ b+ ébuaé“a. Using d(hape) = hdbcedude“a + hadced#de“ b+ habdedﬂde”c,
we calculate
N 1 _
dt®; = i€* hape(x) (dK A ° + 5(oﬂ +a —idK) Aac+ BOA B
P IA at — iexﬁcde(a:)dd A Be)

+ i€ (Rape (@, + %) + hage(@% + M%) + hapa(@0?, +m%)) A a®.

With

A C UJaC:7(I)Ca 0 O
TeNtp = g i K7 - ~0_ .0
0 —ie"hepe@’y A + €% hape(—1d°K +a° — a”) N af
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and

4 .c [0 0
t C A qdB = . KT _ i KT . _0 0 )
0 e haeea® A @0 + €5 hape(—id°K 4 a” — a”) A a®

we obtain
. 0 O
3(7:57)dt+q/\t+t/\q:< )
0 s%

where

5% = ie* hgpe ((dﬂc +a —id°K) A at + BN B — ie*hegea® A ﬁe)
+ i€*(hapern®, + hagen®, + hapam®) A o
= 8™ hgpchaBE A o + i€ hape(B° A B¢+ a° A ) + e hgpeheaed A ¢

+ iej((ildbcmda + iLadcmdb + ilabdmdc) A af.

In the last equality, we used

dK — id°K = 20K = ———h,(z)e" 3% = —8ie*hy3".
h(z)
Now, using
m® = —e“pe“ b7l 0 B

and (see (7.64) and (6.4))

i

om T 9p

1
h o= (hhp”hwg — hoOl — D, 8. + §:r;”hw) ,

e’ e, = K" = —4h(z)h"*(z) + 22”2,

a

we find
haven, = i€* (Rpesh taa — Ahiehaa + Ahahped + Ahghape) B
Hence,
Sab = iexﬁabc(ﬂo A Bc + do N Oéc) + 62‘{KiLabfiLfde@d VAN 56
- e2j< ((ﬁbcfﬁfad - 4Bbcﬁad) + (ilacfﬁfbd - 4ilacl~zbd)
+ (ﬁabfilfcd - 4]~labl~lcd>)gd N af
- 4629{(ilailbcd + Bbﬁcda + iLciLdab + ildﬁabc)gd A af. 0
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Remark 7.3.6 Note that the vanishing of the symmetric quartic tensor field

Sped 00 @ 0¥ ® 0¢ ® o
11 3he(uX ™ hopyr - ..
R < o — 12h(uhoy) + 16k hoy)
11 [ =120l hopyr ...
T 2ap ( = 6hguhop) + 16k Py

> dX'"®dX"®dX7 ®dX?

) dX" ®dX" ®dX° ®@dX”

on the projective special Kihler manifold (M, gy, Ji7) is a necessary and suffi-

cient condition for (M, gs;) to be symmetric [CV].
In the following theorem, we use the notation from Section 7.1.

Theorem 7.3.7 The Sp(FE)-curvature of manifolds in the image of the g-map
can be written as

~ ]_ @ 17 0 al” "
R = _ieaﬁcprﬁ FOUN P 4 O™ Qropipupmens fO8 A FPT (7.103)

where the non-vanishing components of the symmetric quartic tensor field €1 are

given by
1 1 1 1 oir =~
Qooi0 = 9 QOb()d' = Zébda Qabaci = Z(éac‘sbd + 5ad5bc) - §e2j<habfhfcd7
T g~
Q()bcd = QO[}&Z = _56 hbcd; Qabcd = Qa[}gd = Sabcd

(and symmetrization thereof ).

Proof: First, note that

O e UAT=AA BANBB+arAnaB BANGE —art A pB
CarCrm FENT) 008 =\ adn 37— Binal adpal 4 34 A g8

Define

DT e e 70 0 (—BA/\aB+aAABB BA/\BB+64A/\0/?>

—aAnaB —BANBE aANBB - BANGD

and .
RFOF’ = CFOF(RFF/ + §€aﬁcrll—wfra AN fl"”ﬁ)'
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Then

o 1 _

Rip=—(rp+5(8* A 57 +a" Aa®))

280 A B° +3° A o) _ )

20 ) LBOA B +a° A ab) +ie®hya 80 A a
+ 5(60A50+o‘40/\a0)

1 C nC —C C
%(ﬁ“ABM@“/\aO) 55@1)(5 e

1 a b —a b
- _ — A\ A
—ieXhage® A ¢ + 2(ﬁ B+ atnad)

+ e Nageheen(@? A a° + B2 A 3°)

};(UOO + {700 + [yec + UC'C) %‘(UOE + UI;O) — %exﬁbdeUde

1 ~ ~ 1 .
e o gy i g 10U HUC) U UM |
At (U 1 U)
- e+ e
2 adf 't feb

. 1
Rip=—(s5 + 5(5’4 AaP —at A BP))

—B'nal —2(B°Anad—a’ A B

1 -
0w ——(B*nab —a* A BY) + e hayrhia SN G°
CL(gAad - at A ) 2i~ - 0) srhsal N
— i€ hape(B° A BC+ @ A Q) + 2Spea” A 5

%UOO %;(U()b + UbO)
= 1 e?*

ab ba ——}Nla iL . de ’
(a0 4 joay 4(U _+U) 5 Navs faeU

_ %iLabC(U05 + U 4 SppeaU™

and RAB = RAB? RAB = _RAB'

Eq. (758) is equivalent to ﬁzppl = QF[‘/FNF///UF”FW. Now é@o = Q()OF//F///UFHFW
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implies Qgocp = Qgoep = 0, Lgoog = Lgocs = 0 and

O nor. .
Rao = QFZOF”F”’ (]F r 1mp11es QELOCD = 0, anod = O, Q i = 0 and

alc

7 ~
ot x
Qzoed = —26 Racd-

o . T . . o _ _
R&b = Q&bF”F///U 1Inphes Q&béb — 07 Q&bcd — 07 de()d - 0 and

1 e2X . .
szbéd - Z‘:((Sab(scd + 5bc(5ad) — Thacfhfdb-

Qaed = Sabed-

)

Using UAP = UAB and UAB = —UAB we find that Rap = a5 = Qaprrn U
implies Qopep = 0 and

Qabcd = Sabcd-

7.4 Example: A series of inhomogeneous com-

plete quaternionic Kahler manifolds

In this section, we show that the members of a certain series of complete quater-
nionic Kahler manifolds constructed from the g-map are not locally homoge-
neous. This is done by calculating the pointwise norm of the Riemann tensor
and showing that it is a non-constant function on the quaternionic Kahler mani-
fold. We leave out the details of the calculation and just show some intermediate
steps and the final result. Note that some simplifications of formulas were done

using computer algebra software.
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We will again leave out summation symbols and employ Einstein’s summation

convention.

For n € N, we consider the following series of projective special real manifolds:

—_

H={h=1,2>0} CR", h:=z(2* — Y (y:)?). (7.104)

=1

The projective special real manifold (H, gg) is a closed subset of R™ and thus
complete according to Theorem 6.2.8 (which was proven in [CNS]). Due to
Theorems 6.2.6 and 6.3.3 (which were proven in [CHM]), the corresponding
projective special Kéhler manifold obtained from the supergravity r-map and

the quaternionic Kahler manifold obtained from the g-map are complete as well.

The scalar curvature of the corresponding projective special Kihler manifold M
in the image of the supergravity r-map can be calculated to be (see Theorem 3
" [CDL] for the general formula)

scalyy = —2n% +n — thamhao‘/hﬂﬁlhwlh 131yt
= —2n(n + 1) + 275 Pagy KO KPP K By

-2 N 36x3h?
h 43 (h —423)3

32h2
=-n-(2n—1)+3h-

(7.105)

We find the following expression for the squared pointwise norm of the quartic
tensor field B,,q, = huyﬁx“”/hﬁlpa on M:

4096h* (hﬁ (n—
(h — 423)°

— 4h°(n + 3)(5n — 7)z® + 4h*(n(41n + 98) — 159)a"

— 64h°(n(11n + 43) — 75)2” + 128R%*(n(13n + 73) — 78)z'?

— 2048A(n(n + 7) — 3)2' + 1024n(8 + n):z:18>. (7.106)

Buyo.pj{u“/:K:wjlfK:agl:K:pp, B'u,’y’dlp/ = )(n + 3)

The squared pointwise norm of the Riemann tensor of the projective special

Kéhler manifold is (see Theorem 3 in [CDL] for the general formula for the

"Note that compared to [CDL] we scaled the projective special Kihler metric g;; by a
factor of %, which leads to a scaling of the scalar curvature scaly; by a factor of 2.
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Riemann tensor)

||RM||2 - 16Rﬁyaﬁj<#M/J<VV/j<JU/g<pp’Rulﬂ/5,pl

1 / / ’ /
= —32scaly; —32n(n+1) + 44—h43pachpp K K K B s
16

e (hﬁ(n(:an — 8) +9) — 4h>(n(17n — 46) + 57)a

+ 4h*(n(161n — 382) + 537)2°% — 64R3(n(51n — 97) + 99)2°
+ 128h%(n(73n — 107) + 78)x'* — 2048h(n(7n — 8) + 3)x*®
+1024n(9n — S)xls) . (7.107)

For the squared pointwise norm of the tensor field

1 ~ ~ ~ o~ ~ ~ ~ o~
Sp,zlap = _§€2K(<hbcfhfad - 4hbchad) + (hacfhfbd - 4hachbd)
+ (havghpea — 4haphea)
o Ahahyes + Aphda + ichaas + b

on M (see the definition of S in Proposition 7.3.5), we find:

S oy K K KT KOS (7.108)
_ s <h4(n(n + 16) + 207) — 16h*(n — 2)(n + 9)2*
~ (h—423)°

+96h” (n® +n — 6) 2° — 256h(n — 2)na” + 256(n — 2)nx12>.

The squared pointwise norm of the quaternionic Weyl tensor is

1 / / 1" 1 i "
aH\/\?H2 = QFF’F”F’”CFACF A CF A CF a QAA’A”A”’
= 2QacpQigep — 8apepisep + 6 apenisen
= 2Qabcd9a55(i - 8Qabc()QaBao + 6(900()6)2 + 2490&;6(2965% + 6Qab5JQa1§cd
3
= 2SacdSabea + 2n(n + 1) + scal; + 5(71 +1)

n®>+n
8

1 1
+6(E||RM||2+—scalM+ )

4
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1 3 5
= 2Sabcdsabcd + Z(lln + 6)(” + ]‘) + @HRMHQ + §SCCLZM
= % (hGn(n +1) — 4h°(n + 1)(5n — 2)2® + 8h*(n(21n + 37) + 112)2°
2 (h — 4a3)
— 256h°*(n(3n + 10) — 11)2” + 256h%(n(8n + 33) — 20)z"?

— 1024h(n(3n + 11) + 2)2'® + 2048(n + 1)(n + 2):;;18)

3
+ Z”(n +1). (7.109)
By evaluating the above function in different points, one can check that it is

non-constant for n > 1. This gives the following proposition:

Proposition 7.4.1 Forn > 1, the series of manifolds obtained from the com-
plete projective special real manifolds in Eq. (7.104) via the g-map consists of

complete quaternionic Kahler manifolds that are not locally homogeneous.

Remark 7.4.2 The curvature tensor of the quaternionic Kahler manifolds
discussed above splits as R = vRygpnt1 + W. Note that in our conventions
for quaternionic Kéhler manifolds obtained via the supergravity c-map from an
2n-dimensional projective special Kahler manifold manifold, the reduced scalar

curvature is ¥ = —2. The squared pointwise norm of Rypn+1 i8
|Rezpnt1]|® = 20n* + 44n + 24 = 20(n + 1)* + 4(n + 1). (7.110)

Using computer algebra software, we have calculated the squared pointwise norm
|R||?> of the Riemann tensor for n = 2 and n = 3 and have checked that
|R||> — 4||Rygpn+1]|* agrees with the squared pointwise norm of the Weyl ten-
sor in Eq. (7.109).
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