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Abstract

This thesis deals with quaternionic pseudo-Kähler manifolds obtained from Hay-

dys’ HK/QK correspondence with particular emphasis on complete quaternionic

Kähler manifolds of negative scalar curvature that appear in certain string theory

constructions.

The starting point for the HK/QK correspondence is a pseudo-hyper-Kähler

manifold endowed with a real-valued function fulfilling certain assumptions. In

particular, the function is the Hamiltonian for a Killing vector field, which pre-

serves one of the three complex structures while rotating the other two. The

HK/QK correspondence then constructs a quaternionic pseudo-Kähler manifold

of the same dimension, which is endowed with a Killing vector field. A shift

of the Hamiltonian function by an additive constant leads to a one-parameter

family of deformations of the resulting quaternionic pseudo-Kähler metric.

We give a new and self-contained proof that the manifolds obtained from the

HK/QK correspondence are quaternionic pseudo-Kähler. We reprove the known

relation between the HK/QK correspondence, conical pseudo-hyper-Kähler mani-

folds and the hyper-Kähler quotient construction. As a new result, we prove

the compatibility of the HK/QK correspondence with the hyper-Kähler and

quaternionic Kähler quotient constructions. As an example, we show that a one-

parameter family of quaternionic Kähler manifolds obtained from the cotangent

bundle of complex projective space via the HK/QK correspondence is locally iso-

metric to quaternionic projective space for one choice of parameter and locally

isometric to another Wolf space for a different choice of parameter.

We show that all manifolds in the image of the supergravity c-map can be ob-

tained via the HK/QK correspondence from a manifold in the image of the rigid

c-map. We also show that the shift of the Hamiltonian function in this class

of examples leads to the one-loop deformed supergravity c-map. We show that

in each family of quaternionic Kähler manifolds obtained from the one-loop de-

formed supergravity c-map, all manifolds with positive deformation parameter

are pairwise isometric.

We show that for a large class of examples, the quaternionic Kähler manifolds

obtained from the one-loop deformed supergravity c-map with positive defor-

mation parameter are complete if the undeformed metric is complete. This in

particular gives explicit deformations by complete quaternionic Kähler metrics of

all Wolf spaces of non-compact type (except for quaternionic hyperbolic space)
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and of all non-symmetric Alekseevsky spaces.

We give an explicit realization of Salamon’s E-H formalism and use this to

calculate the quartic symmetric tensor field determining the Riemann curvature

tensor of a quaternionic Kähler manifold for all manifolds in the image of the

q-map. We use this to show that the members of an explicit series of complete

quaternionic Kähler manifolds that we construct from the q-map are not locally

homogeneous.
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Zusammenfassung

Die vorliegende Dissertation beschäftigt sich mit Haydys’ HK/QK-Korrespon-

denz mit besonderem Augenmerk auf vollständige quaternionische Kähler-Man-

nigfaltigkeiten, die aus bestimmten Konstruktionen in der Stringtheorie stam-

men.

Den Ausgangspunkt der HK/QK-Korrespondenz bildet eine Pseudo-Hyper-

Kähler-Mannigfaltigkeit, die mit einer reell-wertigen Funktion versehen ist, welche

bestimmte Voraussetzungen erfüllt. Insbesondere ist die Funktion hamiltonsch

bezüglich eines Killing-Vektorfeldes, welches eine der drei komplexen Strukturen

erhält und die anderen beiden rotiert. Die HK/QK-Korrespondenz konstruiert

dann eine quaternionische Pseudo-Kähler-Mannigfaltigkeit der selben Dimen-

sion, versehen mit einem Killing-Vektorfeld. Das Verschieben der Hamilton-

Funktion um eine additive Konstante führt zu einer Ein-Parameter-Familie von

Deformationen der resultierenden quaternionischen Pseudo-Kähler-Metrik.

Wir präsentieren einen neuen, eigenständigen Beweis für die Tatsache dass die

durch die HK/QK-Korrespondenz konstruierten Mannigfaltigkeiten quaternio-

nisch pseudo-Kählersch sind. Wir weisen erneut den bekannten Zusammenhang

zwischen der HK/QK-Korrespondenz, konischen Pseudo-Hyper-Kähler-Mannig-

faltigkeiten und der Hyper-Kähler-Quotienten-Konstruktion nach. Als ein neues

Resultat zeigen wir dass die HK/QK-Korrespondenz mit den Hyper-Kähler- und

Quaternionisch-Kähler-Quotienten-Konstruktionen verträglich ist. Als Beispiel

zeigen wir, dass eine per HK/QK-Korrespondenz vom Kotangentialraum des

komplex projektiven Raumes erhaltene Ein-Parameter-Famile von quaternio-

nischen Kähler-Mannigfaltigkeiten für eine bestimmte Wahl des Parameters lokal

isometrisch zum quaternionisch projektiven Raum und für eine andere Wahl des

Parameters lokal isometrisch zu einem weiteren Wolf-Raum ist.

Wir zeigen, dass alle Mannigfaltigkeiten im Bild der Supergravitations-c-Abbil-

dung per HK/QK-Korrespondenz aus Mannigfaltigkeiten im Bild der rigiden

c-Abbildung konstruiert werden können. Desweiteren zeigen wir, dass das Ver-

schieben der Hamilton-Funktion für diese Klasse von Beispielen zu der Ein-

Schleifendeformation der Supergravitations-c-Abbildung führt. Wir zeigen dass

in jeder durch die Ein-Schleifendeformation der Supergravitations-c-Abbildung

erhaltenen Familie von quaternionischen Kähler-Mannigfaltigkeiten alle Mannig-

faltigkeiten mit positivem Deformationsparameter paarweise isometrisch sind.

Für eine große Klasse von Beispielen zeigen wir, dass die durch die Ein-Schleifen-
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deformation der Supergravitations-c-Abbildung mit positivem Deformationspa-

rameter erhaltenen quaternionischen Kähler-Mannigfaltigkeiten vollständig sind,

wenn die undeformierte Metrik vollständig ist. Dadurch erhalten wir insbeson-

dere für alle Wolf-Räume vom nicht-kompakten Typ (bis auf den quaternio-

nisch hyperbolischen Raum) und alle nicht-symmetrischen Alekseevsky-Räume

explizite Deformationen durch vollständige quaternionische Kähler-Metriken.

Wir geben eine explizite Realisierung von Salamon’s E-H-Formalismus und be-

nutzen diese um das, den Riemann-Tensor einer jeden quaternionischen Kähler

Mannigfaltigkeit bestimmende, symmetrische quartische Tensorfeld für alle Man-

nigfaltigkeiten im Bild der q-Abbildung zu bestimmen. Dies verwenden wir um

zu zeigen, dass alle Mitglieder einer aus der q-Abbildung konstruierten Serie von

vollständigen quaternionischen Kähler-Mannigfaltigkeiten nicht lokal homogen

sind.
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Chapter 1

Introduction

1.1 Background and motivation

Quaternionic Kähler manifolds constitute a field of study that is of strong in-

terest to both theoretical physicists and to pure mathematicians. For already

more than three decades, this field has seen vast mutual influence from physics

and mathematics and has stimulated a considerable amount of interdisciplinary

collaborations. Similarly to Kähler and hyper-Kähler geometry, quaternionic

Kähler geometry was invented by mathematicians and later turned out to be

related to supersymmetry.

In differential geometry, quaternionic Kähler manifolds are widely known for ap-

pearing on Berger’s list of all possible holonomy groups of simply connected, irre-

ducible, non-locally symmetric Riemannian manifolds [Be]. In fact, quaternionic

Kähler manifolds (of dimension greater than four) can be defined as Riemannian

manifolds whose holonomy group is contained in Sp(n) · Sp(1) ≈ Sp(n)×Sp(1)
Z2

.

Alekseevsky showed that all (pseudo-)quaternionic Kähler manifolds are Ein-

stein [A1]. In this thesis, we exclude the case of zero scalar curvature in the

definition of quaternionic Kähler manifolds (a simply connected quaternionic

Kähler manifold of zero scalar curvature would be hyper-Kähler, see e.g. [Sw1]).

This leaves us with two very different cases: quaternionic Kähler manifolds of

positive scalar curvature and quaternionic Kähler manifolds of negative scalar

curvature (see the discussion below). Since quaternionic Kähler manifolds of

negative scalar curvature are the ones related to supergravity, many results on

quaternionic Kähler manifolds of positive scalar curvature will remain unmen-

tioned in this thesis. See Salamon’s essay [Sa2], Chapter 12 in the book [BoGal]

1
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by Boyer and Galicki, or Amann’s thesis [Amann] and references therein for an

overview of the results on quaternionic Kähler manifolds that can be found in

the mathematical literature.

On the physics side, quaternionic Kähler manifolds play a crucial role in super-

gravity and string theory: They appear as the target spaces for hyper-multiplet

scalar fields in three- and four-dimensional N = 2 supergravity theories, as was

shown by Bagger and Witten in [BW]. The type of target space geometry de-

pends on the space-time dimension, on the amount of supersymmetry and on

the representation chosen for the matter multiplets of the supergravity theory.

Since different supergravity theories can be related by the technique of dimen-

sional reduction, there often exist surprising and non-trivial relations between the

corresponding target space geometries. In particular, dimensional reduction of

four-dimensional N = 2 vector multiplets to three-dimensional hyper-multiplets

leads to the so-called supergravity c-map, which assigns a 4(n + 1)-dimensional

quaternionic Kähler manifold of negative scalar curvature to each 2n-dimensional

projective special Kähler manifold. This construction was worked out by Ferrara

and Sabharwal in [FS], which is why the quaternionic Kähler metric of mani-

folds in the image of the supergravity c-map is often called the Ferrara-Sabharwal

metric. Similarly, the reduction of five-dimensional N = 2 vector multiplets to

four-dimensions leads to the supergravity r-map, which assigns a 2n-dimensional

projective special Kähler manifold to each (n − 1)-dimensional projective spe-

cial real manifold. The latter construction was worked out by de Wit and Van

Proeyen in [DV]. The composition of the supergravity r- and c-map is called

the q-map. The supergravity c-map is realized in the low energy limit of type II

string theories compactified on a Calabi-Yau three-fold. Quantum corrections to

the Ferrara-Sabharwal metric appearing in this context are investigated in much

detail in the physics literature. While the full non-perturbative correction to the

Ferrara-Sabharwal metric is still unknown (see [Alex] for a review or [AB] for the

latest paper), the perturbative corrections in the string coupling constant gs were

fully determined in [RSV]. In this paper, Robles-Llana, Saueressig and Vandoren

give an explicit expression for the one-loop deformed Ferrara-Sabharwal metric

and argue that higher loop contributions are excluded. While the supergravity

c-map, as well as the supergravity r-map, are known to preserve completeness

[CHM], the question of completeness for the one-loop deformation constituted

an open problem prior to this thesis (see the appendix of [ACDM]).

In this thesis, we often consider pseudo-Riemannian analogues of quaternionic

Kähler manifolds that have arbitrary signature. All symmetric quaternionic
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pseudo-Kähler manifolds were classified by Cortés and Alekseevsky in [AC].

Their list of examples contains in particular the following three series of sym-

metric pseudo-quaternionic Kähler manifolds which each consist of one example

for every possible dimension and signature:

HP k,` :=
Sp(k + 1, `)

Sp(1)× Sp(k, `)
,

X(k, `) :=
SU(k + 2, `)

S[U(2)× U(k, `)]
,

Y (k, `) :=
SO0(k + 4, `)

SO(4)× SO0(k, `)
. (1.1)

The sign of the scalar curvature is of no particular relevance in the study of

quaternionic pseudo-Kähler manifolds of arbitrary signature. In the examples

chosen in the above equation, the sign of the scalar curvature is positive. It can

be changed by changing the sign of the metric and, hence, inverting the signature.

Since in this thesis, we will focus a lot of attention on the Riemannian case, we

also introduce the following notations for quaternionic pseudo-Kähler manifolds

of negative scalar curvature:

HHk, ` := −HP `, k, X̃(k, `) := −X(`, k), Ỹ (k, `) := −Y (`, k). (1.2)

In the Riemannian case, the classification of symmetric quaternionic Kähler

manifolds goes back to Wolf [W]. For this reason, symmetric quaternionic

Kähler manifolds are called Wolf spaces (of compact type in the case of posi-

tive scalar curvature, respectively of non-compact type in the case of negative

scalar curvature). There is one Wolf space of compact type for every compact

simple Lie group, i.e. the Wolf spaces of compact type consist of the three series

HP n := HP n, 0, X(n) := X(n, 0) and Y (n) := Y (n, 0), and of five exceptional

examples corresponding to the Lie groups G2, F4, E6, E7 and E8. We denote the

non-compact duals of HP n, X(n) and Y (n) by HHn := HHn, 0, X̃(n) := X̃(n, 0)

and Ỹ (n) := Ỹ (n, 0), respectively. Apart from HHn and X̃(n), all Wolf spaces

of non-compact type are in the image of the q-map. X̃(n) is, however, in the

image of the supergravity c-map [GST, DV].

In the case of positive scalar curvature, it is conjectured by LeBrun and Salamon

that all complete quaternionic Kähler manifolds are symmetric, i.e. that they are

Wolf spaces of compact type [LS]. As supporting evidence, they showed that up

to isometry and rescaling, there are only finitely many examples of such manifolds

in each dimension. In dimension four and eight, the LeBrun-Salamon conjecture



4 Chapter 1. Introduction

was proven by Hitchin, respectively by Poon and Salamon (see the references

in [LS]). In higher dimensions, the conjecture is still open and constitutes the

biggest open problem in the field of quaternionic Kähler manifolds.

In the case of negative scalar curvature the situation is very different and there

are for instance examples of homogeneous, non-symmetric quaternionic Kähler

manifolds, the so-called normal quaternionic Kähler manifolds or Alekseevsky

spaces [A2, DV, Co]. The latter are all in the image of the q-map [DV]. LeBrun

showed that in the case of negative scalar curvature, complete non-locally ho-

mogeneous quaternionic Kähler manifolds exist in abundance using deformation

theory on the twistor space of quaternionic hyperbolic space [L]. His proofs are

not constructive, however. Constructions of complete quaternionic Kähler me-

trics that are not locally homogeneous so far either use deformation theory with-

out giving explicit metrics (see e.g. [D] and references therein), the quaternionic

Kähler quotient construction (see [G2], [G3], [BCGP], etc.), or are restricted to

low dimensions (see, e.g., [DFISUV]).

A rather recently discovered tool for the construction of quaternionic Kähler

manifolds is the so-called HK/QK correspondence which was invented by Hay-

dys in [Ha] and extended to the pseudo-Riemannian setting in [ACM, ACDM].

As opposed to the (one-loop deformed) supergravity c-map, the HK/QK cor-

respondence can be used to construct quaternionic Kähler manifolds of both

positive and negative scalar curvature. While the correspondence has already

been investigated from various perspectives in [Ha, Hi4, MS1, MS2], the explicit

quaternionic Kähler metric coming from this construction has only been derived

and studied for very few examples and many questions about the construction

are still open. Especially the question of completeness of the quaternionic Kähler

manifolds obtained from the HK/QK correspondence is, up to now, entirely un-

explored.

1.2 Main results and outline

The HK/QK correspondence constructs a quaternionic pseudo-Kähler manifold

(endowed with a non-vanishing Killing vector field) from a pseudo-hyper-Kähler

manifold endowed with a real-valued function fulfilling certain properties. In

particular, the function is the Hamiltonian for a Killing vector field, which pre-

serves one of the three complex structures while rotating the other two. The

Hamiltonian function can be shifted by an additive constant, which leads to
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a one-parameter family of deformations of the resulting quaternionic pseudo-

Kähler metric. As we will see in Chapter 4, the construction involves the choice

of an S1-bundle with connection over the initial pseudo-hyper-Kähler manifold

and the choice of a certain codimension one submanifold of the S1-bundle.

In this thesis, we give a new and self-contained proof of the fact that the mani-

folds obtained from the HK/QK correspondence are quaternionic pseudo-Kähler

(see Theorem 4.1.2). Theorem 4.1.2 gives explicit expressions for the resul-

ting quaternionic Kähler metric, its signature, quaternionic structure and local

Sp(1)-connection one-forms. As a large class of examples, we apply the HK/QK

correspondence to all conical pseudo-hyper-Kähler manifolds, which in particular

establishes the following HK/QK correspondence:

(
(Hn)o, f = (r2 + c)/2

) HK/QK cor.7−→
(c 6=0)

(HP n)o (c > 0)

HHn (c < 0),

where the superscript o always denotes some open subset which will be specified

in the main text. For c < 0, (Hn)o is a proper subset of Hn and thus incomplete,

while the resulting quaternionic Kähler manifold HHn is complete. This phe-

nomenon occurs in most of the examples of quaternionic Kähler manifolds with

negative scalar curvature that we study in this thesis.

We show how the HK/QK correspondence is related to conical pseudo-hyper-

Kähler manifolds and to the Swann bundle construction (Theorem 4.2.1 and

Corollary 4.2.6) and we show a compatibility result between the HK/QK corres-

pondence and the hyper-Kähler and quaternionic Kähler quotient constructions

(Theorem 4.3.1). These findings are illustrated with an example that in parti-

cular shows the following HK/QK correspondences:

(
T ∗CP n, f =

1

2
(c+

√
1 + r̃2)

) HK/QK cor.7−→

(HP n)o (c = 0)

(X(n))o (c = 1)

and

(
(T ∗CHn)o, f = −1

2
(c+

√
1− r̃2)

) HK/QK cor.7−→

HHn (c = 0)

(X̃(n))o (c = 1).

The first example shows that the one-parameter family of quaternionic Kähler

metrics obtained via the HK/QK correspondence from the shift of the Hamilto-
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nian function on a given hyper-Kähler manifold can be extendible to a compact

manifold for two different choices of parameter. In this case, the resulting quater-

nionic Kähler manifold is locally isometric to two different Wolf spaces. The

second example shows that in some cases a complete quaternionic Kähler metric

can get deformed into an incomplete one. This also happens for the one-loop de-

formed supergravity c-map in the case of negative deformation parameter, while

on the other hand, completeness is preserved for positive deformation parameter

(see the discussion below).

For the supergravity c-map, we have the following results: We give a mathe-

matical proof of the fact that the one-loop deformed Ferrara-Sabharwal metric

is quaternionic Kähler by showing that it can be obtained via the HK/QK cor-

respondence from a pseudo-hyper-Kähler manifold in the image of the so-called

rigid c-map (Theorem 5.4.1). Concerning completeness, we show that, for posi-

tive deformation parameter, the manifolds in the image of the one-loop deformed

q-map are complete, if the undeformed quaternionic Kähler manifold is complete

(Corollary 6.3.8). For X̃(n), we also show that the one-loop deformation is com-

plete (Corollary 6.3.6) and we show some progress towards the general case of

the one-loop deformed supergravity c-map (Proposition 6.3.10). For negative

deformation parameter, the one-loop deformed Ferrara-Sabharwal metric is al-

ways incomplete [ACDM, Rem. 9]. The undeformed case corresponds to the

choice of parameter c = 0. Note that in the context of compactifications of type

II string theories on a Calabi-Yau three-fold, a positive deformation parameter

corresponds to a negative Euler characteristic of the internal space in the case

of type IIA string theory, respectively to a positive Euler characteristic in the

case of type IIB [RSV].

These results in particular give deformations by complete quaternionic Kähler

metrics of all Wolf spaces of non-compact type, except for quaternionic hyper-

bolic space, and of all non-symmetric Alekseevsky spaces. As opposed to [LS]

and similar approaches, we can here give explicit expressions of the deformed

metrics. The deformations are of the following kind: For any complete projec-

tive special Kähler manifold, we have a family of complete quaternionic Kähler

metrics gcFS depending on a parameter c ∈ R≥0 on a fixed manifold N̄ , where

(N̄, g0
FS) is the undeformed quaternionic Kähler manifold in the image of the

supergravity c-map and all manifolds (N̄, gcFS) with positive deformation pa-

rameter c ∈ R>0 are pairwise isometric (Proposition 5.5.2). For the case of the

Wolf space G∗2/SO(4), we show that the deformed metric is not locally homoge-

neous and hence different from the undeformed metric using computer algebra
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software (see Remark 6.3.9).

We also construct a series of complete non-locally homogeneous quaternionic

Kähler manifolds in the image of the (undeformed) q-map, i.e. we have an ex-

ample in each dimension with an explicitly given metric that is not manifestly

constructed via a quaternionic Kähler quotient.

The thesis is structured as follows:

Chapter 2 gives a short introduction into quaternionic pseudo-Kähler geometry

including some well-known properties and discusses the pseudo-Riemannian ver-

sions of quaternionic projective and quaternionic hyperbolic space as examples.

It also reviews the quaternionic Kähler quotient construction, which is illustrated

by the examples

HP k+1, `///S1
(diag.) = X(k, `) and HHk, `+1///S1

(diag.) = X̃(k, `).

In Chapter 3, we introduce pseudo-hyper-Kähler manifolds as well as the hyper-

Kähler quotient construction. As an example, we show in particular how to ob-

tain the hyper-Kähler structure on the cotangent bundles of complex projective

and complex hyperbolic space from a hyper-Kähler reduction. While in Section

3.6, we also discuss the Swann bundle construction and lifts of Killing vector

fields and isometric group actions from a quaternionic pseudo-Kähler manifold

to its Swann bundle, most of Chapter 3 focuses on conical pseudo-hyper-Kähler

manifolds and their relation to quaternionic pseudo-Kähler geometry. Conical

pseudo-hyper-Kähler manifolds are local versions of Swann bundles and are cha-

racterized by possessing a certain homothetic vector field.

Chapter 4 introduces, proves, analyses properties of and illustrates the HK/QK

correspondence between pseudo-hyper-Kähler manifolds endowed with a certain

real-valued function and quaternionic Kähler manifolds of the same dimension

endowed with a non-vanishing Killing vector field.

Chapter 5 shows that all manifolds in the image of the one-loop deformed super-

gravity c-map can be obtained via the HK/QK correspondence from a manifold

in the image of the rigid c-map. Section 5.5 then summarizes properties of the

one-loop deformed supergravity c-map metric.

In Chapter 6, we study the completeness question for the manifolds in the image

of the one-loop deformed supergravity c-map while in particular giving a full

answer in the case of the one-loop deformed q-map.
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In Chapter 7, we give an explicit (local) realization of the complex vector bundles

E and H over a quaternionic Kähler manifold used in Salamon’s E-H formalism

introduced in [Sa1]. This gives an easy and clear way to translate between

formulas in the mathematics literature and the quaternionic vielbein formalism

used in the physics literature. Using these formulas, we calculate a quartic

tensor field determining the curvature tensor for all manifolds in the image of

the q-map. This is then used to study an explicit series of complete quaternionic

Kähler manifolds of negative scalar curvature constructed via the q-map.

1.3 Remarks and relation to other work

The quaternionic Kähler quotient was introduced in [G1, GL]. The example

HP n+1///S1 = X(n) was the first example discussed by Galicki and Lawson and

the examples in Section 2.2 are a straightforward generalization thereof. The

hyper-Kähler quotient construction was introduced in [LR] and [HKLR]. The

example Hn+1///S1 = T ∗(CP n) in Section 3.4 was first discussed in [LR] and

[Hi1] (see [BoGal, Ex. 12.8.5] and references therein).

The results in Chapter 3 about conical pseudo-hyper-Kähler manifolds and their

relation to quaternionic Kähler manifolds are essentially all known from [Sw1].

Here, they are rephrased from a local point of view, which just assumes the exis-

tence of a vector field ξ, called the Euler vector field, such that the Levi-Civita

connection ∇ fulfills ∇· ξ = Id. This viewpoint was also taken in [ACM] and is

close to the treatment of the subject in the physics literature (see [DRV1, DRV2]

and references therein). We need explicit results and formulae about conical

hyper-Kähler manifolds in this formalism to motivate the HK/QK correspon-

dence and to prove properties thereof in Chapter 4.

The account of the HK/QK correspondence presented in Chapter 4 and in par-

ticular the proof of the quaternionic Kähler property of the resulting metric

only make use of an S1-bundle over the original hyper-Kähler manifold and do

not involve a higher-dimensional conical hyper-Kähler manifold. This approach

was also taken in [MS1, MS2], where so called elementary deformations of the

original hyper-Kähler metric are used to relate the HK/QK correspondence to

Swann’s twist formalism [Sw2]. In [ACDM] and [Ha], the proof of the quater-

nionic Kähler property of the resulting metric is based on the construction of

a higher-dimensional conical hyper-Kähler manifold. In [Hi4], Hitchin discusses

the HK/QK correspondence from the point of view of the corresponding twistor
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spaces.

Note that the presentation of the HK/QK correspondence in Section 4.1 is en-

tirely self-contained. It just uses the basic facts about quaternionic Kähler geo-

metry introduced in Section 2.1. The reader who is just interested in applying

the HK/QK correspondence and in the proof that the resulting manifold is in-

deed quaternionic Kähler can skip Chapter 3 and go directly to Section 4.1.

Apart from Section 5.5, Chapter 5 has already appeared in a joint publication

with Alekseevsky, Cortés and Mohaupt [ACDM]. The result that the rigid and

the one-loop deformed supergravity c-map are related by the HK/QK corres-

pondence previously appeared in the physics literature in [APP]. On the level

of twistor spaces, the simple relation between quaternionic Kähler manifolds in

the image of the undeformed supergravity c-map and the corresponding pseudo-

hyper-Kähler manifolds in the image of the rigid c-map was already discovered

in [RVV1, RVV2]. For a treatment of the one-loop deformed supergravity c-

map on the level of twistor spaces, see [APSV] and references therein. In ad-

dition to what has already been published in [ACDM], we prove in Section

5.5 that for a given projective special Kähler manifold, the one-loop deformed

Ferrara-Sabharwal metrics gcFS on N̄ with c > 0 are all pairwise isometric, i.e.

(N̄, gcFS) ≈ (N̄, gc
′
FS) for any c, c′ ∈ R>0. For the example1 G∗2/SO(4), we show

that (N̄, g0
FS) ≈ G∗2/SO(4) and (N̄, g1

FS) are non-isometric using computer alge-

bra software (see Remark 6.3.9).

While the question of completeness for the undeformed supergravity c-map was

entirely answered in [CHM], the results on the completeness of the one-loop

deformed c-map in Section 6.3 are new.

Our formulas in Section 7.1 for the Levi-Civita connection and the curvature of

quaternionic Kähler manifolds in terms of the quaternionic vielbein formalism

can also be found in [BW, FS, ACDGV]. The Levi-Civita connection and the

curvature of the manifolds in the image of the supergravity c-map have been

calculated, respectively stated in [FS]. In Section 7.3 we do exactly the same

calculations for the case of the q-map2. For the Levi-Civita connection, we

extend the result to the one-loop deformed case.

Although part of the work on my article [CDL] with V. Cortés and D. Linde-

mann was done during my time as a PhD student, the classification of complete

1G∗2/SO(4) is the simplest example of a manifold in the image of the q-map.
2While their result for the Levi-Civita connection agrees with ours, the result stated in [FS]

for the curvature at least seems to be missing terms.



10 Chapter 1. Introduction

projective special real surfaces will only be mentioned in a remark in Chapter 6.

1.4 Outlook

As another simple appli- Hn, 2
<0

? HHn, 1

T ∗(Cn−1, 1
<0 ) ⊂ Hn−1, 1 X̃(n)

///HK
HK/QK cor.

HK/QK cor.

///QKS1
(diag.)

H∗///HKcation for the compatibi-

lity of the HK/QK-correspondence

with the hyper-Kähler and

quaternionic Kähler quo-

tient constructions, one

could construct the mis-

sing hyper-Kähler manifold in the adjacent diagram on the right by performing

an appropriate hyper-Kähler quotient of Hn, 2
<0 . This would reprove the HK/QK

correspondence between T ∗(Cn−1, 1
<0 ) ⊂ Hn−1, 1 and X̃(n) = Gr0,2(Cn,2). These

are (up to a change of sign) the manifolds in the image of the rigid and su-

pergravity c-map, respectively, when the underlying projective special Kähler

manifold is complex hyperbolic space CHn−1. To fill in the missing manifold in

the diagram, one has to identify the Killing vector field on X̃(n) that is induced

by the HK/QK correspondence for the c-map in Chapter 5, find a corresponding

Killing vector field on HHn, 1, lift this vector field to Hn, 2
<0 and then perform the

corresponding hyper-Kähler quotient.

In the case n = 1 for the above idea, there is a natural strategy to also understand

the one-loop deformed metric in this way:

The one-loop deformed uni- H1, 2
<0

? HH1, 1

T ∗(C0, 1
<0 ) ⊂ H0, 1 (N̄, gcUH)

///HK
HK/QK cor.

HK/QK cor.

///QK?

H∗///HKversal hypermultiplet met-

ric can be expressed in

terms of the hyperbolic

eigenfunction ansatz for

4-dimensional quaternionic

Kähler manifolds with two

commuting Killing vector fields given in [CP] (see Remark 8 in the appendix of

[ACDM]). The hyperbolic eigenfunction ansatz in turn can be (locally) expressed

as a quaternionic Kähler quotient of HP 2, HH2, or HH1, 1 [BCGP]. This can

be used to understand the HK/QK correspondence for the universal hypermul-

tiplet using the compatibility of the HK/QK correspondence with the HK and

QK quotient constructions using a diagram as depicted on the right.
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In [K], Kronheimer constructed all asymptotically locally Euclidean hyper-Kähler

four-manifolds as hyper-Kähler quotients of flat quaternionic vector spaces. In

[GN], Galicki and Nitta constructed quaternionic Kähler orbifold analogues of

Kronheimer’s examples as quaternionic Kähler quotients of quaternionic projec-

tive spaces. Using the compatibility of the HK/QK correspondence with hyper-

and quaternionic Kähler quotients, it should be possible to show that the mani-

folds constructed by Kronheimer are (locally) related to the orbifolds constructed

by Galicki and Nitta. For this class of examples, it would be interesting to work

out the respective Killing vector fields on both sides of the correspondence and

to study the deformations of the quaternionic Kähler metrics obtained from a

shift of the Hamiltonian function chosen on the hyper-Kähler side.

In more generality, one could try to systematically study the HK/QK corres-

pondence for all quaternionic Kähler quotients of quaternionic projective and

quaternionic hyperbolic space, or even for all quaternionic Kähler quotients of

symmetric quaternionic (pseudo-)Kähler manifolds. The quaternionic Kähler

quotients of symmetric quaternionic (pseudo-)Kähler manifolds were systemati-

cally studied by Grandini on the level of Lie algebras in [Gr].

In this thesis, we did not pay much attention to quaternionic Kähler mani-

folds of positive scalar curvature, since in this case, all examples obtained from

the HK/QK correspondence are bound to be incomplete. In case the LeBrun-

Salamon conjecture is wrong, it is conceivable that some example of positive

scalar curvature obtained from the HK/QK correspondence can be completed to

a compact quaternionic Kähler manifold that is not symmetric. Candidates for

such a situation can be found by choosing a Killing vector field on a Wolf space

of compact type and then studying the one-parameter family of quaternionic

Kähler manifolds resulting from a free choice of Hamiltonian function on the

hyper-Kähler side. This idea is highly speculative, but something similar did

happen before in the case of compact irregular Sasaki-Einstein manifolds:

Gauntlett, Martelli, Sparks and Waldram constructed compact irregular Sasaki-

Einstein manifolds in [GMSW2] by extending a two-parameter family of local

metrics found in [GMSW1] to S2×S3 for certain discrete choices of the parame-

ters. This very surprising and rather accidental finding contradicts a conjecture

by Cheeger and Tian which states that all Ricci-flat Kähler cones are standard

[CT].

It remains to investigate, whether the series of complete non-locally homoge-

neous quaternionic Kähler metrics constructed in Section 7.4 can be obtained
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via a quaternionic Kähler quotient from a symmetric quaternionic pseudo-Kähler

manifold. If this is not the case, these examples are manifestly different from all

examples that were previously discussed in the literature.

Using our curvature results from Chapter 7, we plan to study whether the

quaternionic Kähler manifolds constructed in Section 7.4 (or other examples

obtained from the q-map) have non-positive sectional curvature. The only com-

plete quaternionic Kähler manifolds of non-positive sectional curvature that have

appeared in the literature so far are either locally symmetric or (non-explicit)

small deformations of quaternionic hyperbolic space.

The orthogonal series Y (n) of Wolf spaces can locally be obtained from the

HK/QK correspondence using its compatibility with the hyper-Kähler and quater-

nionic Kähler quotient constructions and the fact that Y (n) = HP n+3///Sp(1)(diag.).

For a certain choice of Killing vector field on the quaternionic Kähler side, the

corresponding hyper-Kähler manifold should (locally) be a hyper-Kähler quo-

tient of flat quaternionic vector space by an Sp(1)-action. The family of defor-

mations of the quaternionic Kähler metric obtained from a shift of the Hamil-

tonian function is also worth studying in this case. Both this and the question

below can similarly be studied for the Wolf spaces of non-compact type.

It is a natural question to ask, how the exceptional Wolf spaces can be obtained

from the HK/QK correspondence. This question can be studied by choosing a

Killing vector field on an exceptional Wolf space, lifting it to the Swann bun-

dle and then performing the corresponding hyper-Kähler quotient of the Swann

bundle. This situation can be investigated systematically on the level of Lie

algebras.

The hyper-Kähler structure on cotangent bundles of Hermitian symmetic spaces

constructed by Biquard and Gauduchon constitutes a natural candidate for ap-

plying the HK/QK correspondence. Out of this large class of examples, we so

far only studied the cases CP n and CHn.



Chapter 2

Quaternionic Kähler geometry

In Section 2.1, we introduce the notion of quaternionic (pseudo-)Kähler mani-

fold and state some well-known properties. As examples, we discuss the pseudo-

Riemannian versions HP k, `, HHk, ` of quaternionic projective, respectively quater-

nionic hyperbolic space.

In Section 2.2, we introduce the quaternionic Kähler quotient construction which

is due to Galicki and Lawson [G1, GL], and illustrate it with the example of the

S1-action on HP k+1, `, respectively HHk, `+1, induced from the diagonal S1-action

on quaternionic vector space. This leads to symmetric quaternionic pseudo-

Kähler manifolds defined by complex Grassmannians.

The discussion of the Swann bundle construction is postponed to Chapter 3 and

curvature properties of quaternionic Kähler manifolds are discussed in Chapter

7.

2.1 Quaternionic Kähler manifolds

Definition 2.1.1 A quaternionic (pseudo-)Kähler manifold (M, g,Q) of

dimRM > 4 is a (pseudo-)Riemannian manifold (M, g) of non-zero scalar cur-

vature together with a parallel rank three subbundle Q ⊂ EndTM that is locally

spanned by three skew-symmetric almost complex structures J1, J2, J3 that fulfill

J1J2 = J3.

The four-dimensional case is special. Here, we add an additional property to the

13
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definition. This property automatically holds for all higher-dimensional quater-

nionic (pseudo-)Kähler manifolds (see e.g. [AM]).

Definition 2.1.2 A four-dimensional (pseudo-)Riemannian manifold (M, g,Q)

with a rank three subbundle Q ⊂ EndTM is called quaternionic (pseudo-)

Kähler if it fulfills the assumptions of Definition 2.1.1 and in addition, Q an-

nihilates the Riemann tensor R of g, i.e.

−JR(X, Y )Z+R(X, Y )JZ+R(JX, Y )Z+R(X, JY )Z = 0 (X, Y, Z ∈ X(M))

for any local section J in Q.

Definition 2.1.3 Let M be a smooth manifold. A collection (J1, J2, J3) of

three almost complex structures such that J1J2 = J3 is called an almost hyper-

complex structure.

Remark 2.1.4 For any quaternionic (pseudo-)Kähler manifold (M, g,Q), we

endow Q with the natural scalar product

〈A,B〉 := − 1

dimRM
trAB, A,B ∈ Q.

Note that a local almost hyper-complex structure (J1, J2, J3) spanning Q is a

local orthonormal frame in Q with respect to 〈·, ·〉. We call a local orthonormal

frame (J1, J2, J3) in Q oriented if J1J2 = J3.

Remark 2.1.5 The property that Q is parallel with respect to the Levi-

Civita connection, i.e. ∇X(Γ(Q)) ⊂ Γ(Q) for all X ∈ X(M), is equivalent to the

equation

∇·Jα = 2(θ̄β(·)Jγ − θ̄γ(·)Jβ) (2.1)

for every cyclic permutation (α, β, γ) of (1, 2, 3), where (J1, J2, J3) is a local

oriented orthonormal frame in Q and θ̄α, α = 1, 2, 3, are local one-forms. We

choose the following basis for so(3) ∼= sp(1):

e1 =

0 0 0

0 0 −2

0 2 0

 , e2 =

 0 0 2

0 0 0

−2 0 0

 , e3 =

0 −2 0

2 0 0

0 0 0

 . (2.2)

We call

θ̄ :=
3∑

α=1

θ̄αeα ∈ Ω1(U, so(3))
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the local Sp(1)-connection one-form with respect to the frame (J1, J2, J3)

over U ⊂M . Note that with the formula

dω(X0, . . . , Xk) =
k∑
i=0

(−1)i(∇Xiω)(X0, . . . , X̂i, . . . , Xk) (2.3)

(X0, . . . , Xk ∈ X(M)) for any torsion-free connection ∇ and any k-form

ω ∈ Ωk(M), we obtain

dωα = 2(θ̄β ∧ ωγ − θ̄γ ∧ ωβ) (2.4)

from Eq. (2.1), where

ωα := g(Jα · , ·) ∈ Ω2(U) (α = 1, 2, 3)

are the local fundamental two-forms with respect to (J1, J2, J3). The last

equation implies that

Ω
(U)
4 :=

3∑
α=1

ωα ∧ ωα ∈ Ω4(U) (2.5)

is closed. The four-form Ω
(U)
4 is independent of the choice of orthonormal frame

(J1, J2, J3) in Q
∣∣
U

, i.e. Eq. (2.5) defines a global four-form Ω4 ∈ Ω4(M), which

is called the fundamental four-form of (M, g,Q).

In dimension bigger than four, we now give a characterization of quaternionic

(pseudo-)Kähler manifolds which uses the exterior derivative of the fundamental

two-forms instead of the Levi-Civita connection.

Definition 2.1.6 A (pseudo-)Riemannian manifold (M, g) of dimRM > 4 to-

gether with a rank three subbundle Q ⊂ EndTM fulfilling Definition 2.1.1, except

for Q being parallel, is called an almost quaternionic (pseudo-)Hermitian

manifold.

Theorem 2.1.7 [Sw1] Let (M, g,Q) be an almost quaternionic (pseudo-)Hermi-

tian manifold, dimRM > 8, such that the fundamental four-form is closed. Then

(M, g,Q) is quaternionic (pseudo-)Kähler.

Theorem 2.1.8 [Sw1] Let (M, g,Q) be an almost quaternionic (pseudo-)Hermi-

tian manifold, dimRM = 8, such that the fundamental four-form is closed and
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the algebraic ideal generated by Q[ := {g(J · , ·) | J ∈ Q} ⊂ Λ2(T ∗M) is a

differential ideal. Then (M, g,Q) is quaternionic (pseudo-)Kähler.

Eq. (2.4) holds for all quaternionic (pseudo-)Kähler manifolds. It implies that

the fundamental four-form is closed. Together with this fact, the two above

theorems immediately give the following corollary:

Corollary 2.1.9 Let (M, g,Q) be an almost quaternionic (pseudo-)Hermitian

manifold, dimRM > 4, such that for any point x ∈M , there exists a neighborhood

U ⊂ M of x and an almost hyper-complex structure (J1, J2, J3) on U spanning

Q
∣∣
U

such that Eq. (2.4) is fulfilled for some one-forms θ̄α ∈ Ω1(U), α = 1, 2, 3.

Then (M, g,Q) is quaternionic (pseudo-)Kähler with local Sp(1)-connection one-

form θ̄ =
∑
θ̄αeα with respect to (J1, J2, J3).

The quaternionic Kähler property in four dimensions can often be deduced from

the higher-dimensional case using the following result:

Definition 2.1.10 Let (M, g,Q) be a quaternionic (pseudo-)Kähler manifold.

A submanifold N ⊂M is called quaternionic if Q preserves TN ⊂ TM .

Proposition 2.1.11 [M] Let (M, g,Q) be a quaternionic (pseudo-)Kähler

manifold and N ⊂M a quaternionic submanifold. Then (N, g|N , Q|N) is quater-

nionic (pseudo-)Kähler.

Remark 2.1.12 Note that all quaternionic (pseudo-)Kähler manifolds are

Einstein (see e.g. [Besse]). Hence, their scalar curvature scal is constant. The

real number

ν :=
scal

4n(n+ 2)
(dimRM = 4n) (2.6)

is called the reduced scalar curvature.

For later use, we cite the following well-known result by Alekseevsky:

Proposition 2.1.13 [A1] Let (M, g,Q) be a quaternionic (pseudo-)Kähler

manifold and let (J1, J2, J3) be a locally defined almost hyper-complex structure

spanning Q. Then the local fundamental two-forms are given by

ν

2
ωα = dθ̄α − 2θ̄β ∧ θ̄γ, (2.7)
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for every cyclic permutation (α, β, γ) of (1, 2, 3), where θ̄ =
∑3

α=1 θ̄αeα is the

local Sp(1)-connection one-form with respect to (J1, J2, J3).

Now, we come to the model examples of quaternionic pseudo-Kähler manifolds

with positive, respectively negative scalar curvature. Note that in the pseudo-

Riemannian category, the sign of the scalar curvature loses its relevance, since

if (M, g,Q) is a quaternionic pseudo-Kähler manifold of signature (4k, 4`) and

positive scalar curvature, then (M,−g,Q) is a quaternionic pseudo-Kähler man-

ifold of signature (4`, 4k) and negative scalar curvature. Nevertheless, we make

the distinction between positive and negative scalar curvature here since in later

chapters we focus on positive definite quaternionic Kähler manifolds.

Example 2.1.14 For k, ` ∈ N0, let

Hk+1, `
>0 := {q = z + jw ∈ Hk+1, ` | 〈q, q〉

(k+1, `)
> 0}

be endowed with the standard flat pseudo-Riemannian metric

ĝ
(k+1, `)
flat :=

n∑
I, J=0

Ik+1, `
IJ (dzIdz̄J + dwIdw̄J)

of signature (4k + 4, 4`), where Ik+1, ` := diag(

(k+1)−times︷ ︸︸ ︷
+1, . . . , + 1 ,

`−times︷ ︸︸ ︷
−1, . . . , − 1). The

invertible quaternions H∗ = R>0 · Sp(1) act on Hk+1, `
>0 via right-multiplication.

Let M
(k, `)
+ := Hk+1, `

>0 /H∗ be endowed with the pseudo-Riemannian metric g
(k, `)
+

such that the projection from the unit sphere in Hk+1, `
>0 to M

(k, `)
+ is a pseudo-

Riemannian submersion. Then g
(k, `)
+ is a pseudo-quaternionic Kähler metric of

reduced scalar curvature ν = 4. We call (M
(k, `)
+ , g

(k, `)
+ ) quaternionic projec-

tive space of signature (k, `) and denote it by HP k, `. It is a pseudo-Riemannian

symmetric space and has the following realization as a homogeneous space:

HP k, ` ≈ Sp(k + 1, `)

Sp(1)× Sp(k, `)
. (2.8)

For any J ∈ {1, . . . , k + 1} we have a chart UJ := {q ∈ Hk+1, `
>0 | qJ 6= 0} with

complex coordinates (φµ(J), ψ
(J)
µ )µ=1, ..., Ĵ, ..., k+`+1 defined by

φµ(J) + jψ(J)
µ := uµ(J) = qµ(qJ)−1, µ ∈ {1, . . . , k + `+ 1}\{J}. (2.9)

The quaternionic structure Q on HP k, ` can be defined by local fundamental
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two-forms

ω(J)
α =

1

2
(dθ̄(J)

α − 2θ̄
(J)
β ∧ θ̄

(J)
γ ) (2.10)

on UJ , where

θ̄
(J)
1 =

1

1 + 〈u(J), u(J)〉(k, `)︸ ︷︷ ︸
=1+

∑
µ, ν 6=J I

k+1, `
µν uµūν

∑
µ, ν 6=J

Ik+1, `
µν Im(φ̄µ(J)dφ

ν
(J) + ψ̄(J)

µ dψ(J)
ν ), (2.11)

θ̄
(J)
+ := θ̄

(J)
2 + iθ̄

(J)
3 =

1

1 + 〈u(J), u(J)〉(k, `)

∑
µ, ν 6=J

Ik+1, `
µν (φµ(J)dψ

(J)
ν − ψ(J)

µ dφν(J)).

Example 2.1.15 Similarly to the above example, we define a quaternionic

pseudo-Kähler metric g
(k, `)
− of reduced scalar curvature ν = −4 on

M
(k, `)
− := Hk, `+1

<0 /H∗, where Hk, `+1
<0 := {q ∈ Hk, `+1 | 〈q, q〉

(k, `+1)
< 0}. We call

(M
(k, `)
− , g

(k, `)
− ) quaternionic hyperbolic space of signature (k, `) and denote

it by HHk, `. It is a pseudo-Riemannian symmetric space and has the following

realization as a homogeneous space:

HHk, ` ≈ Sp(k, `+ 1)

Sp(k, `)× Sp(1)
. (2.12)

For any J ∈ {k+ 1, . . . , k+ `+ 1}, we have a chart UJ := {q ∈ Hk, `+1
<0 | qJ 6= 0}

with complex coordinates (φµ(J), ψ
(J)
µ )µ=1, ..., Ĵ, ..., k+`+1 defined as in (2.9). The

quaternionic structure Q on HHk, ` can be defined by local fundamental two-

forms

ω(J)
α = −1

2
(dθ̄(J)

α − 2θ̄
(J)
β ∧ θ̄

(J)
γ ) (2.13)

on UJ , where

θ̄
(J)
1 =

1

−1 + 〈u(J), u(J)〉(k, `)︸ ︷︷ ︸
=−1+

∑
µ, ν 6=J I

k, `+1
µν uµūν

∑
µ, ν 6=J

Ik, `+1
µν Im(φ̄µ(J)dφ

ν
(J) + ψ̄(J)

µ dψ(J)
ν ), (2.14)

θ̄
(J)
+ := θ̄

(J)
2 + iθ̄

(J)
3 =

1

−1 + 〈u(J), u(J)〉(k, `)

∑
µ, ν 6=J

Ik, `+1
µν (φµ(J)dψ

(J)
ν − ψ(J)

µ dφν(J)).

Remark 2.1.16 For future reference, we note that (with a slight abuse of

notation) the metric on HP k, `, respectively HHk, ` in the coordinates defined in



2.2. The quaternionic Kähler quotient 19

Examples 2.1.14 and 2.1.15 is given by

g
(k, `)
± =± 1

±1 + 〈u(J), u(J)〉(k, `)

∑
µ, ν 6=J

Iµν(dφ
µ
(J)dφ̄

ν
(J) + dψ(J)

µ dψ̄(J)
ν )

∓ 1

(±1 + 〈u(J), u(J)〉(k, `))2

(∣∣ ∑
µ, ν 6=J

(φ̄µ(J)dφ
ν
(J) + ψ̄(J)

µ dψ(J)
ν )
∣∣2 (2.15)

+
∣∣ ∑
µ, ν 6=J

(φµ(J)dψ
(J)
ν − ψ(J)

µ dφν(J))
∣∣2).

The almost hyper-complex structure (J1, J2, J3) on UJ defined by the fundamen-

tal two-forms given in the above examples fulfills

J∗1dφ
µ
(J) = idφµ(J), J∗1dψ

(J)
µ = idψ(J)

µ , J∗2dφ
µ
(J) = −dψ̄(J)

µ . (2.16)

Note that J1, J2, J3 are integrable complex structures on UJ .

2.2 The quaternionic Kähler quotient

For a proof of the following proposition, see for example [ACDV] or [BoGal,

Prop. 12.4.1]:

Proposition 2.2.1 Let (M, g,Q) be a quaternionic (pseudo-)Kähler manifold

and let X ∈ X(M) be a Killing vector field. Then X preserves Q and the

fundamental four-form:

LX(Γ(Q)) ⊂ Γ(Q), LXΩ4 = 0. (2.17)

Due to the above propostion, we can drop the assumption that the fundamental

four-form is preserved in the next two theorems.

Theorem 2.2.2 [GL, Th. 2.4.] Let (M, g,Q) be a quaternionic (pseudo-)Kähler

manifold and let X ∈ X(M) be a Killing vector field. Then there exists a unique

section µX ∈ Γ(Q) such that

∇·µX
∣∣
U

=
3∑

α=1

ωα(X, ·)Jα (2.18)

for each oriented orthonormal frame (J1, J2, J3) in Q
∣∣
U

over an open subset

U ⊂M .
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Definition 2.2.3 Let (M, g,Q) be a quaternionic (pseudo-)Kähler manifold

and X ∈ X(M) a Killing vector field. The section µX ∈ Γ(Q) given by the above

theorem is called the quaternionic Kähler moment map associated with X.

Remark 2.2.4 Note that due to Eq. (2.1) and the fact that J1, J2, J3 are

linearly independent, Eq. (2.18) is equivalent to

µX
∣∣
U

=:
3∑

µ=1

µXα Jα, dµXα + 2µXβ θ̄γ − 2µXγ θ̄β = ιXωα (2.19)

for every cyclic permutation (α, β, γ) of (1, 2, 3).

Using Eqs. (2.7), (2.3) and (2.1), one can show that

LXωα = ν(µXβ ωγ − µXγ ωβ) +∇Xωα (2.20)

= (νµXβ + 2θ̄β(X))ωγ − (νµXγ + 2θ̄γ(X))ωβ.

Using the scalar product 〈A,B〉 = − 1
dimRM

trAB on Q, this gives the following

explicit formula for the quaternionic Kähler moment map with respect to X:

µX
∣∣
U

=
3∑

µ=1

µXα Jα, µXα =
1

ν
〈Jβ, (LX −∇X)Jγ〉. (2.21)

The above theorem gives the existence and uniqueness of the following map:

Definition 2.2.5 Let (M, g,Q) be a quaternionic (pseudo-)Kähler manifold

and let G be a Lie group acting isometrically on (M, g). Then the (quater-

nionic Kähler) moment map µ for (M, g,Q,G) is the smooth map from M

to g∗ ⊗Q defined by

µv := 〈µ, v〉 := µv
]

, v ∈ g, (2.22)

where µv
]

is the quaternionic Kähler moment map associated with the fundamen-

tal vector field1 v] ∈ X(M) induced by v and µv = 〈µ, v〉 denotes the contraction

of v ∈ g with the g∗-factor of µ.

Theorem 2.2.6 [GL, Th. 3.1.] Let (M, g,Q) be a quaternionic pseudo-Kähler

manifold. Let G be a connected compact Lie group acting freely and isometrically

1We define fundamental vector fields without an extra minus sign, i.e.
· ] : g→ X(M), v 7→ v] is a Lie algebra anti-homomorphism: v]|p := d

dt

∣∣
t=0

exp(tv) ·p, p ∈M .
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on (M, g) and such that the restriction of g to the distribution tangent to the G-

orbits is non-degenerate. Let µ be the corresponding quaternionic Kähler moment

map.

Then M̄ := µ−1({0})/G inherits a quaternionic pseudo-Kähler structure (ḡ, Q̄)

from (M, g,Q).

Definition 2.2.7 The quaternionic (pseudo-)Kähler manifold (M̄, ḡ, Q̄) ob-

tained from the above theorem is called the quaternionic Kähler quotient of

(M, g,Q) with respect to G and we will denote it by

M///G = (M̄, ḡ, Q̄).

Remark 2.2.8 In the situation of the above theorem, let

p : M0 := µ−1({0}) → M̄ denote the projection. An orthonormal frame

(J1, J2, J3) in Q
∣∣
U

over some G-invariant open subset U ⊂ M induces an or-

thonormal frame (J̄1, J̄2, J̄3) in Q̄
∣∣
Ū

over Ū := p(U ∩ µ−1({0})). The correspon-

ding local fundamental two-forms are related by

p∗ω̄α = ωα
∣∣
p−1(Ū)

, α = 1, 2, 3.

Remark 2.2.9 In the above theorem, one can replace the assumption that G

is compact and acts freely on M by the assumption that 0 is a regular value of

µ and that G acts properly2 and freely on M0 (see, e.g., [Lee]), or just by the

assumption that M0/G is a smooth manifold of dimension

dimRM̄ = dimRM − 4 dimG

such that the projection map p is a smooth submersion.

Example 2.2.10 For k, ` ∈ N0, we consider

M+ := HP k+1, ` = Hk+2, `
>0 /H∗, M− := HHk, `+1 = Hk, `+2

<0 /H∗

respectively (see Examples 2.1.14 and 2.1.15), endowed with the S1-action in-

duced by diagonal left-multiplication of eit ∈ S1 on quaternionic vector space.

Recall that we defined quaternionic projective and quaternionic hyperbolic space

2The G-action on M0 is called proper if pre-images of compact subsets of M0 ×M0 under
the map G×M0 →M0 ×M0, (g, q) 7→ (g · q, q) are compact.
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via right-multiplication of H∗. The zero level set of the corresponding quater-

nionic Kähler moment map is the following smooth codimension 3 submanifold:

M±
0 = {[q = z + jw]H∗ ∈M± | 〈z, z〉 = 〈w,w〉, 〈z, w̄〉 = 0} ⊂M±. (2.23)

Note that the S1-action on M±
0 is free. Hence, the quaternionic Kähler quotient

HP k+1, `///S1, respectively HHk, `+1///S1, induces a quaternionic Kähler metric ḡ±

of signature (4k, 4`) on

M̄± := M±
0 /S

1.

Let A ∈ G+ := SU(k + 2, `), respectively A ∈ G− := SU(k, ` + 2) act on

q = z + jw ∈ Hk+2, `
>0 (respectively Hk, `+2

<0 ) by q 7→ Aq = Az + jĀw, where

we consider z, w ∈ Ck+`+2 as column vectors. The induced G±-action on M±

preserves the level set M±
0 , so we have an induced action on M̄±. This action

is transitive and preserves ḡ±. The pseudo-Riemannian manifold (M̄±, ḡ±) is in

fact symmetric and we denote it by X(k, `), respectively X̃(k, `). Calculating the

stabilizer of a point in M̄± under the G±-action gives the following realization

as a homogeneous space:

X(k, `) ≈ SU(k + 2, `)

S(U(2)× U(k, `))
, X̃(k, `) ≈ SU(k, `+ 2)

S(U(k, `)× U(2))
. (2.24)



Chapter 3

Hyper-Kähler geometry

In this chapter, we discuss pseudo-hyper-Kähler manifolds and, in particular,

the relation between conical pseudo-hyper-Kähler manifolds and quaternionic

pseudo-Kähler manifolds. To motivate the HK/QK correspondence described

in Chapter 4, we also discuss infinitesimal automorphisms of conical pseudo-

hyper-Kähler manifolds, as well as the hyper-Kähler quotient construction. The

property conical is defined by the existence of a vector field ξ, called the Euler

vector field, such that the Levi-Civita connection ∇ fulfills ∇· ξ = Id. Coni-

cal pseudo-hyper-Kähler manifolds are locally homothetic to the Swann bundle

over a quaternionic pseudo-Kähler manfold. We review the Swann bundle con-

struction [Sw1] in the last section. All results in this chapter about conical

pseudo-hyper-Kähler manifolds are essentially known from [Sw1], which uses a

slightly different local characterization of the Swann bundles over quaternionic

pseudo-Kähler manifolds.

All results presented in this chapter will be needed in Chapter 4 for the moti-

vation of the HK/QK correspondence, as well as for the proofs of its properties.

The examples presented in this chapter will also be reused for the discussion of

examples of the HK/QK correspondence in Chapter 4.

In Section 3.1, we introduce the notion of (pseudo-)hyper-Kähler manifold and

discuss the standard hyper-Kähler structure on quaternionic vector spaces. In

Section 3.2, we introduce conical pseudo-hyper-Kähler manifolds, show that

they admit a global hyper-Kähler potential and that they induce a quaternionic

Kähler structure on an appropriately chosen codimension four submanifold. We

discuss the example of an open subset of flat quaternionic vector space with

quaternionic Lorentzian and positive signature, respectively, endowed with the

23
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M̂

P

M M ′

///
P
S1

(X̂)

⊃
⊃

⊃
S1

(X̂|P )

HK/QK corresp.

Figure 3.1: Relation between the HK/QK correspondence (Chapter 4), the hy-
per-Kähler quotient construction (Section 3.4) and the construction from Section 3.2.

Euler vector field induced by uniform scaling by a positive factor. By choos-

ing a codimension four submanifold in this example, we recover quaternionic

hyperbolic space and a chart in quaternionic projective space, respectively.

In Section 3.3, we consider tri-holomorphic Killing vector fields X̂ on a conical

(pseudo-)hyper-Kähler manifold M̂ that commute with the Euler vector field

ξ. We give an explicit expression for the unique ξ-homogeneous hyper-Kähler

moment map associated with X̂. We consider a level set P with respect to a

non-zero level of this homogeneous hyper-Kähler moment map. Using the results

from Section 3.2, we show how geometric data on P inherited from M̂ induces a

quaternionic (pseudo-)Kähler structure on an appropriately chosen codimension

one submanifold M ′ ⊂ P . When X̂ induces a free S1-action on P , the geometric

data defined on P in this section, as well as the quaternionic Kähler structure on

M ′ are exactly reconstructed when applying the HK/QK correspondence to the

hyper-Kähler quotient M = P/S1, see Chapter 4 and Figure 3.1. We continue

the examples discussed in Section 3.2 and consider the tri-holomorphic S1-action

defined by diagonal left-multiplication in quaternionic vector space. Choosing a

codimension one submanifold in the level set P , we obtain quaternionic hyper-

bolic space and an open subset of quaternionic projective space in a realization

different from the standard one which we obtained in Section 3.2.

In Section 3.4, we review the hyper-Kähler quotient construction from [HKLR].

As a simple example, we discuss the S1-action on quaternionic vector space

defined by left-multiplication on just one of the quaternionic coordinates. Then

the hyper-Kähler quotient is again a quaternionic vector space of quaternionic

dimension reduced by one, endowed with the standard flat metric. As a second

example, we discuss the diagonal S1-action on quaternionic vector space and

show that when we choose a non-zero level for the homogeneous hyper-Kähler

moment map, the hyper-Kähler quotient is T ∗(CP n) endowed with the Calabi

metric [Ca, LR, Hi1]. If we start with {〈q, q〉n, 1 < 0} ⊂ Hn, 1 instead, we
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obtain a tubular neighborhood of the zero section in T ∗(CHn). The hyper-

Kähler structure in both cases agrees with the one constructed in [BiGau].

We show that, under appropriate assumptions, the hyper-Kähler quotient with

respect to two commuting Lie group actions can be performed in stages and

that the outcome does not depend on the order in which one performs the two

respective hyper-Kähler quotients. This is needed later to show the compatibility

of the HK/QK correspondence with the hyper-Kähler and quaternionic Kähler

quotient constructions.

In Section 3.5, we consider isometric and tri-holomorphic Lie group actions on

conical (pseudo-)hyper-Kähler manifolds that preserve the Euler vector field.

We prove that in this situation the hyper-Kähler quotient with level zero for the

homogeneous hyper-Kähler moment map is again conical and that the relation

between conical pseudo-hyper-Kähler manifolds and quaternionic pseudo-Kähler

manifolds given in Section 3.2 is compatible with the quaternionic Kähler and

hyper-Kähler quotient constructions (with level zero).

In Section 3.6, we recall the Swann bundle construction [Sw1] in a formalism that

does not make use of reduced frame bundles. For any quaternionic pseudo-Kähler

manifold, the Swann bundle construction defines a conical pseudo-hyper-Kähler

structure on the metric cone over the SO(3)-bundle of local oriented orthonormal

frames in the quaternionic structure. In the first subsection, we show that for

any Killing vector field on a quaternionic pseudo-Kähler manifold, there exists

a unique tri-holomorphic lift to the Swann bundle that is Killing and commutes

with the Euler vector field. We describe the norm of the lifted vector field and the

relation between the homogeneous hyper-Kähler moment map associated with

it and the quaternionic Kähler moment map associated with the initial vector

field. The lifted vector field is non-vanishing if and only if the initial vector

field and the quaternionic Kähler moment map do not vanish simultaneously. In

the second subsection, we discuss the canonical lift of isometric group actions

from a quaternionic Kähler manifold to the Swann bundle. Infinitesimally, the

canonically lifted group action is described by the unique lifts of Killing vector

fields to the Swann bundle described before.

3.1 Hyper-Kähler manifolds

Definition 3.1.1 A (pseudo-)Kähler manifold (M, g, J) is a (pseudo-)Rie-

mannian manifold (M, g) together with an almost complex structure J such that
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1. J is integrable,

2. g(J · , J ·) = g(· , ·),

3. dω = 0, where ω := g(J · , ·) ∈ Ω2(M).

ω is called the Kähler form.

Remark 3.1.2 The complex structure of a Kähler manifold is covariantly

constant with respect to the Levi-Civita connection, i.e. ∇·J = 0.

Definition 3.1.3 A (pseudo-)hyper-Kähler manifold (M, g, J1, J2, J3) is a

(pseudo-)Riemannian manifold (M, g) together with three almost complex struc-

tures J1, J2, J3 such that

1. J1J2 = J3

2. (M, g, Jα) is Kähler for α = 1, 2, 3.

Remark 3.1.4 The hyper-Kähler structure can be recovered from the three

Kähler forms ωα : TM → T ∗M, v 7→ g(Jαv, ·):

g = ω1 ◦ ω−1
2 ◦ ω3, Jα = g−1 ◦ ωα (α = 1, 2, 3). (3.1)

Proposition 3.1.5 (Hitchin-Lemma) [Hi2, Lemma 6.8]

Let (M, g, J1, J2, J3) be a (pseudo-)Riemannian manifold together with an al-

most hyper-complex structure such that g(Jα · , Jα ·) = g(· , ·) and dωα = 0 for

α = 1, 2, 3. Then J1, J2, J3 are integrable, i.e. (M, g, J1, J2, J3) is a (pseudo-)

hyper-Kähler manifold.

Remark 3.1.6 Let (M, g, J1, J2, J3) be a (pseudo-)hyper-Kähler manifold.

Then

ω+ := ω2 + iω3 ∈ Ω2,0
J1

(M) (3.2)

defines a holomorphic symplectic form on (M,J1).

Example 3.1.7 We endow M = Hn with complex coordinates

(z1, . . . , zn, w1, . . . , wn) given by

Hn → C2n, q = z + jw 7→ (z, w), (3.3)
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and define a hyper-Kähler structure (g, J1, J2, J3) on Hn by the following metric

and holomorphic symplectic form:

g = g
(n, 0)
flat =

n∑
µ=1

(dzµdz̄µ + dwµdw̄µ), (3.4)

ω+ = ω2 + iω3 =
n∑
µ=1

dzµ ∧ dwµ. (3.5)

For future use, we describe this hyper-Kähler structure in more detail in terms of

real and complex coordinates: The coordinates (zµ, wµ)µ=1, ..., n are J1-holomor-

phic and

J∗2dz
µ = −dw̄µ, µ = 1, . . . , n. (3.6)

Equivalently, J1
∂
∂zµ

= i ∂
∂zµ

, J1
∂
∂wµ

= i ∂
∂wµ

, J2
∂
∂zµ

= ∂
∂w̄µ

, J3
∂
∂zµ

= −i ∂
∂w̄µ

. The

first Kähler form ω1 = g(J1 · , ·) is given by

ω1 =
i

2

n∑
µ=1

(dzµ ∧ dz̄µ + dwµ ∧ dw̄µ). (3.7)

With real coordinates (xµ, yµ, uµ, vµ)µ=1, ..., n defined by

Hn → R4n, q = x+ iy + ju+ kv 7→ (x, y, u, v), (3.8)

g is the standard metric on R4n:

g =
n∑
µ=1

((dxµ)2 + (dyµ)2 + (duµ)2 + (dvµ)2). (3.9)

The real coordinates (x, y, u, v) define an isomorphism

κq : TqHn → Hn, (3.10)
n∑
µ=1

(
aµ

∂

∂xµ
+ bµ

∂

∂yµ
+ cµ

∂

∂uµ
+ dµ

∂

∂vµ

)∣∣∣
q
7→ (aµ + ibµ + jcµ + kdµ)µ=1,...,n

of real vector spaces between the tangent space at a point q ∈ Hn and Hn.

Using this identification, the hypercomplex structure (J1, J2, J3) is given by right-

multiplication with (i, j, − k):

Jαv = κ−1
q (κq(v) · iα), v ∈ TqHn, (iα) = (i, j, − k), α = 1, 2, 3. (3.11)
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3.2 Conical hyper-Kähler manifolds

Definition 3.2.1 A conical (pseudo-)hyper-Kähler manifold

(M, g, J1, J2, J3, ξ) is a (pseudo-)hyper-Kähler manifold together with a time-

like or space-like vector field ξ ∈ X(M) such that ∇· ξ = IdTM , where ∇ is the

Levi-Civita connection. ξ is called the Euler vector field.

Let (M, g, J1, J2, J3, ξ) be a conical (pseudo-)hyper-Kähler manifold. We define

σ := sgn g(ξ, ξ) ∈ C∞(M),

r2 := |g(ξ, ξ)| ∈ C∞(M),

θα :=
σ

r2
g(Jαξ, ·) ∈ Ω1(M),

θ̂α :=
r2

2
θα =

σ

2
g(Jαξ, ·) ∈ Ω1(M) (α = 1, 2, 3). (3.12)

Proposition 3.2.2 A global Kähler potential for all three Kähler forms is

given by

K̂ := σr2 = g(ξ, ξ). (3.13)

More precisely,

ωα = σdθ̂α =
1

4
ddcαK̂, (3.14)

where dcα = i(∂̄α − ∂α) is the dc-operator associated with Jα for α = 1, 2, 3.

Proof : For X, Y ∈ X(M), we have

dθ̂α(X, Y ) = X(θ̂α(Y ))− Y (θ̂α(X))− θ̂α([X, Y ])

Tor(∇)=0
= X(θ̂α(Y ))− Y (θ̂α(X))− σ

2
g(Jαξ,∇XY ) +

σ

2
g(Jαξ,∇YX)

∇g=0
= X(θ̂α(Y ))− Y (θ̂α(X))− σ

2
X(g(Jαξ, Y ) +

σ

2
g(∇X(Jαξ), Y )

+
σ

2
Y (g(Jαξ,X)− σ

2
g(∇Y (Jαξ), X)

= +
σ

2
g(∇X(Jαξ), Y )− σ

2
g(∇Y (Jαξ), X)

∇Jα=0
=
∇ξ=Id

σ ωα(X, Y ). (3.15)

Using

rdr =
1

2
d(r2) =

σ

2
d(g(ξ, ξ)) =

σ

2
∇·(g(ξ, ξ))

∇g=0
= σg(ξ,∇·ξ) = σg(ξ, ·), (3.16)
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we can show that

σ

4
dcαK̂ = −σ

4
J∗α(dK̂) = −r

2
J∗αdr = −σ

2
g(ξ, Jα·) = θ̂α. (3.17)

The following lemma shows that ξ, J1ξ, J2ξ, J3ξ induce a local

(CO(3) = R>0 × SO(3))-action on M :

Lemma 3.2.3

[ξ, Jαξ] = 0, [Jαξ, Jβξ] = −2Jγξ. (3.18)

Proof : This follows immediately from ∇ being torsion-free, from ∇· ξ = IdTM ,

from ∇·Jα = 0 and from JαJβ = −JβJα = Jγ.

We split the metric and Kähler forms into a vertical part corresponding to the

distribution tangent to the local CO(3)-action and a horizontal part correspon-

ding to the orthogonal distribution:

Lemma 3.2.4 The hyper-Kähler metric can be written as

g = σdr2 + σr2(
3∑

α=1

(θα)2 + σğ), (3.19)

where ğ ∈ Γ(Sym2 T ∗M) is a tensor field which has four-dimensional kernel

Dv := spanR{ξ, J1ξ, J2ξ, J3ξ} ⊂ TM. (3.20)

The Kähler forms are given by

ωα = σ rdr ∧ θα + r2(σ θβ ∧ θγ + ω̆α) (3.21)

for every cyclic permutation (α, β, γ) of (1, 2, 3), where

ω̆α := ğ(Jα · , ·) ∈ Ω2(M). (3.22)

Furthermore,

2σω̆α = dθα − 2θβ ∧ θγ. (3.23)
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Proof : We write the metric as

g =
(g(ξ, ·))2

g(ξ, ξ)
+

3∑
α=1

(g(Jαξ, ·))2

g(ξ, ξ)
+ g(ξ, ξ) ğ = σdr2 + σr2(

3∑
α=1

(θα)2 + σğ), (3.24)

where the last equality follows from Eq. (3.16) and from the definitions in Eq.

(3.12). Since g(Jαξ, Jαξ) = g(ξ, ξ) = σr2 and ξ, J1ξ, J2ξ, J3ξ are pairwise ortho-

gonal, the symmetric tensor field ğ on M defined by Eq. (3.24) has ker ğ = Dv.

Eq. (3.21) follows from J∗αθα = σ
r2 g(ξ, ·) = 1

r
dr and J∗αθβ = −θγ together with

Eq. (3.19), while Eq. (3.23) is obtained as follows:

dθα = d
( 2

r2
θ̂α
) (3.14)

= −2

r
dr ∧ θα +

2σ

r2
ωα

(3.21)
= 2θβ ∧ θγ + 2σω̆α. (3.25)

While the horizontal Kähler forms ω̆α get rotated by the SO(3)-part of the local

CO(3)-action, the horizontal metric is CO(3)-invariant:

Proposition 3.2.5 The tensor field

ğ =
1

r2
g − σ

r2
dr2 − σ

3∑
α=1

(θα)2 (3.26)

is invariant under ξ and Jαξ, α = 1, 2, 3.

Proof : Using J0 := IdTM , we have

LJaξg(X, Y ) = (∇Jaξg)(X, Y ) + g(∇X(Jaξ), Y ) + g(X,∇Y (Jaξ))

∇(Jaξ)=Ja
=
∇g=0

g(JaX, Y ) + g(X, JaY ) (3.27)

for X, Y ∈ X(M), a = 0, 1, 2, 3. This shows

Lξg = 2g, LJαξg = 0 (α = 1, 2, 3). (3.28)

The equations LJαξr = dr(Jαξ)
(3.16)
= 0, LJαξdr = d(ιJαξdr) = 0,

LJαξθα = d(ιJαξθα︸ ︷︷ ︸
=1

) + ιJαξ dθα︸︷︷︸
=2σω̆α+2θβ∧θγ

= 0 (3.29)
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LJαξθβ = d(ιJαξθβ︸ ︷︷ ︸
=0

) + ιJαξ dθβ︸︷︷︸
=2σω̆β+2θγ∧θα

= −2θγ, (3.30)

and LJαξθγ = 2θβ imply LJαξğ = 0.

Lξğ = 0 follows from Lξg
(3.28)
= 2g, Lξr

(3.16)
= r, Lξ(dr) = d(ιξdr) = dr and

Lξθα = d(ιξθα︸︷︷︸
=0

) + ιξ dθα︸︷︷︸
=2σω̆α+2θβ∧θγ

= 0 (α = 1, 2, 3). (3.31)

As we shall see in the next theorem the horizontal parts of the metric and Kähler

forms define a quaternionic Kähler structure (g′, Q) on every codimension four

submanifold M ′ ⊂M that is transversal to the local CO(3)-action. The induced

quaternionic structure Q is globally trivial. This result is essentially known from

[Sw1]. Here, we prove it in the formalism of conical hyper-Kähler manifolds

defined by the existence of an Euler vector field (see Definition 3.2.1) and obtain

explicit expressions for the fundamental two-forms and the Sp(1)-connection

one-form of the resulting quaternionic pseudo-Kähler manifold.

Theorem 3.2.6

Let M ′ be a codimension four submanifold of M that is transversal to the distri-

bution Dv, i.e. TM |M ′ = Dv|M ′ ⊕ TM ′. Then

g′ := ğ
∣∣
M ′

(3.32)

is a quaternionic (pseudo-)Kähler metric on M ′. A compatible quaternionic

structure is given by

Q := spanR{J ′1, J ′2, J ′3}, J ′α := prD
v

TM ′ ◦Jα|TM ′ (α = 1, 2, 3), (3.33)

where

prD
v

TM ′ : TM |M ′ = Dv|M ′ ⊕ TM ′ → TM ′ (3.34)

is the projection onto the second summand (i.e. the projection onto TM ′ along

Dv).

Remark 3.2.7 Note that ω′α := ω̆α|M ′ , α = 1, 2, 3 are the fundamental two-

forms on (M ′, g′) with respect to the frame (J ′1, J
′
2, J

′
3) in Q, i.e. ω′α = g′(J ′α· , ·),

α = 1, 2, 3.
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Proof (of Theorem 3.2.6):

The fact that (M ′, g′, J ′1, J
′
2, J

′
3) is hyper-Hermitian follows from (M, g, J1, J2, J3)

being hyper-Hermitian and from the definitions, since ker ğ = Dv and since Dv

is Jα-invariant for α = 1, 2, 3.

From Eq. (3.23), we obtain

dω̆α =
1

2σ
(2θβ ∧ dθγ − 2θγ ∧ dθβ)

= 2θβ ∧ ω̆γ − 2θγ ∧ ω̆β.

Restricting this equation to M ′ gives

dω′α = 2θ̄β ∧ ω′γ − 2θ̄γ ∧ ω′β, (3.35)

where θ̄α := θα|M ′ . This shows that (M ′, g′, Q) is quaternionic (pseudo-)Kähler

if dimRM
′ > 4 (see Corollary 2.1.9).

The four-dimensional case can be deduced from the higher-dimensional case as

follows1:

Assume that dimRM = 8. Let M0 := H be endowed with the standard hyper-

Kähler structure (g0, J
0
1 , J

0
2 , J

0
3 ) that was defined in Example 3.1.7, i.e.

g0 = dzdz̄ + dwdw̄ and ω0
+ = dz ∧ dw in complex coordinates (z, w) defined

by q = z + jw ∈ H. Let ξ0 := 2 Re(z∂z + w∂w) (see Example 3.2.10 below).

Then

(M̃ := M ×H, g̃ := g + σg0, ξ̃ := ξ + ξ0)

together with the product hyper-complex structure (J̃1, J̃2, J̃3) is a conical

(pseudo-)hyper-Kähler manifold. M̃ ′ := M ′ × H ⊂ M̃ is a codimension four

submanifold transversal to the distribution spanned by ξ̃ and J̃αξ̃, α = 1, 2, 3.

According to the above proof, the 8-dimensional manifold M̃ ′ inherits a quater-

nionic Kähler structure defined by three fundamental two-forms ω̃′α, α = 1, 2, 3.

M ′ = M ′ × {0} ⊂ M̃ ′ is a quaternionic submanifold and, hence ω̃′α
∣∣
M ′

are

fundamental two-forms that define a quaternionic Kähler structure on M ′ (see

Proposition 2.1.11). They agree with ω′α, since the corresponding components

of the Sp(1)-connection one-form are given by

1

g̃(ξ̃, ξ̃)
g̃(J̃αξ̃, ·)

∣∣
M ′⊂M̃ ′⊂M̃ =

1

g(ξ, ξ) + zz̄ + ww̄

(
g(Jαξ, ·) + ω0

α(ξ0, ·)
)∣∣∣
M ′

1This idea is taken from [MS2, Cor. 4.2.].



3.2. Conical hyper-Kähler manifolds 33

=
1

g(ξ, ξ)
g(Jαξ, ·)

∣∣∣
M ′

= θα
∣∣
M ′

= θ̄α.

Conversely, every quaternionic (pseudo-)Kähler manifold admits a canonically

defined CO(3)-principal bundle with a conical pseudo-hyper-Kähler structure

that locally inverts the above construction:

Theorem 3.2.8 [Sw1] (see Section 3.6)

For any quaternionic (pseudo-)Kähler manifold (M̄, ḡ, Q), the pseudo-Rieman-

nian cone (M̂, ĝ) = (R>0×S, σdr2 + r2gS) admits a conical pseudo-hyper-Kähler

structure such that, up to scaling of the metric by a positive constant, (M̄, ḡ, Q)

is locally recovered as in Theorem 3.2.6.

Here, π : S → M̄ denotes the principal SO(3)-bundle of local oriented or-

thonormal frames in Q and gS = σ
∑3

α=1(θα)2 + |ν|
4
π∗ḡ, where ν := scal

4n(n+2)
,

dimR M̄ = 4n, is the reduced scalar curvature of (M̄, ḡ), σ := sgn ν and

θ =
∑

θαeα : TS → so(3)

is the principal connection one-form on S induced by the Levi-Civita connection

of (M̄, ḡ).

Remark 3.2.9 The conical pseudo-hyper-Kähler manifold M̂ in the above

theorem is called the Swann bundle over M̄ :

CO(3) ↪→ M̂ → M̄. (3.36)

In the following example, we choose open subsets in quaternionic vector space

with positive, respectively quaternionic Lorentzian signature and a homothetic

vector field ξ such that ξ is space-like, respectively time-like. ξ is induced by

uniform scaling of quaternionic vector space by a positive factor. Then the

construction in Theorem 3.2.6 defines a positive definite quaternionic Kähler

structure on appropriately chosen codimension four submanifolds. In the case

of positive definite quaternionic vector space, this construction yields a chart in

quaternionic projective space and, in the case of quaternionic Lorentzian vector

space, we obtain quaternionic hyperbolic space.

Example 3.2.10 We endow2 M+ = Hn+1\{0}, M− = {〈q, q〉
(−)
< 0} ⊂ Hn, 1

2M+,M− are chosen such that ξ is a space-like, respectively time-like vector field.
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with complex coordinates (zI , wI)I=0, ..., n defined by q = z+jw ∈M± and define

a (pseudo-)hyper-Kähler structure (g±, J1, J2, J3) on M± by (see Ex. 3.1.7)

g± = ±(dz0dz̄0 + dw0dw̄0) +
n∑
µ=1

(dzµdz̄µ + dwµdw̄µ), (3.37)

ω
(±)
+ = ω

(±)
2 + iω

(±)
3 = ±dz0 ∧ dw0 +

n∑
µ=1

dzµ ∧ dwµ. (3.38)

Here, 〈·, ·〉
(±)

denotes the standard quaternion-Hermitian inner product

〈q, u〉
(±)

= ±q0ū0 +
n∑
µ=1

qµūµ, q, u ∈ Hn+1, (3.39)

on Hn+1, respectively Hn, 1. Together with

ξ =
n∑
I=0

(
zI

∂

∂zI
+ wI

∂

∂wI
+ z̄I

∂

∂z̄I
+ w̄I

∂

∂w̄I

)
, (3.40)

(M±, g±, J1, J2, J3) is a conical (pseudo-)hyper-Kähler manifold.

For this example, the geometric data defined in Eq. (3.12) reads

σ = sgn g±(ξ, ξ) = ±1,

r2 = |g±(ξ, ξ)| = ±〈q, q〉2
(±)

= |z0|2 + |w0|2 ±
n∑
µ=1

(
|zµ|2 + |wµ|2

)
,

θ̂0 :=
σ

2
g±(ξ, ·) =

1

2
rdr =

1

2
Re
(
z̄0dz0 + w̄0dw0 ±

n∑
µ=1

(z̄µdzµ + w̄µdwµ)
)
,

θ̂1 =
σ

2
g±(J1ξ, ·) =

1

2
Im
(
z̄0dz0 + w̄0dw0 ±

n∑
µ=1

(z̄µdzµ + w̄µdwµ)
)
,

θ̂2 =
σ

2
g±(J2ξ, ·) =

1

2
Re
(
z0dw0 − w0dz

0 ±
n∑
µ=1

(zµdwµ − wµdzµ)
)
,

θ̂3 =
σ

2
g±(J3ξ, ·) =

1

2
Im
(
z0dw0 − w0dz

0 ±
n∑
µ=1

(zµdwµ − wµdzµ)
)
. (3.41)

Choose M ′
± = {q0 = 1} ⊂ M±, i.e. M ′

+ ≈ Hn, M ′
− ≈ {u ∈ Hn | ‖u‖2 < 1}. In

complex coordinates (φµ, ψµ)µ=1, ..., n defined by u = φ + jψ ∈ M ′
±, the quater-
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nionic Kähler metric on M ′
± is given by (compare Eq. (2.15))

g′± = ğ±|M ′±
(3.26)
=
( 1

r2
g± −

4σ

r4

3∑
a=0

(θ̂a)
2
)∣∣∣

M ′±

(3.42)

=

∑n
µ=1(dφµdφ̄µ + dψµdψ̄µ)

1± (‖φ‖2 + ‖ψ‖2)

∓
∣∣∑n

µ=1(φ̄µdφµ + ψ̄µdψµ)
∣∣2 +

∣∣∑n
µ=1(φµdψµ − ψµdφµ)

∣∣2(
1± (‖φ‖2 + ‖ψ‖2)

)2 .

Since J1, J2, J3 preserve TM ′
± ⊂ TM±, the quaternionic structure Q on M ′

± is

spanned by the standard complex structures J ′1, J
′
2, J

′
3 on M ′

± ⊂ Hn (see Ex.

3.1.7).

Note that while (M ′
+, g

′
+) is isometric to (HP n)o := {q0 6= 0} ⊂ HP n and thus

incomplete, (M ′
−, g

′
−) is isometric to the symmetric space HHn and thus complete

(see Examples 2.1.14 and 2.1.15). The normalization of (M ′
±, g

′
±) is again such

that the reduced scalar curvature is ν = ±4.

3.3 Infinitesimal automorphisms of conical hyper-

Kähler manifolds

Let (M̂, ĝ, Ĵ1, Ĵ2, Ĵ3, ξ) be a conical (pseudo-)hyper-Kähler manifold and let X̂ be

a tri-holomorphic Killing vector field on M̂ such that [X̂, ξ] = 0. In the following,

we will use the definitions in Eq. (3.12) (with a hat added to the metric, complex

structures and Kähler forms) and

Ẑ := Ĵ1ξ. (3.43)

Proposition 3.3.1 (see [ACDM])

There exists exactly one hyper-Hamiltonian function µX̂ ∈ C∞(M̂,R3) for X̂

such that ξ(µX̂) = 2µX̂ . More precisely, the functions

µX̂α := −σθ̂α(X̂) = −1

2
ĝ(Ĵαξ, X̂) ∈ C∞(M̂) (α = 1, 2, 3) (3.44)

fulfill

dµX̂α = ω̂α(X̂, ·) (3.45)

and ξ(µX̂α ) = 2µX̂α .
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Proof : Since X̂ preserves ĝ, Ĵα and ξ, we have LX̂ θ̂α = 0. From this, we obtain

dµX̂α = −σ d(ιX̂ θ̂α) = −σ(LX̂ θ̂α − ιX̂dθ̂α)
(3.14)
= ω̂α(X̂, ·).

Since Lξĝ
(3.28)
= 2ĝ and Lξ(Ĵαξ)

(3.18)
= 0, we have Lξθ̂α = 2θ̂α and hence

ξ(µX̂α ) = −σLξ(θ̂α(X̂)) = −2σθ̂α(X̂) = 2µX̂α .

Remark 3.3.2 We call the map µX̂ given by the above proposition the ho-

mogeneous hyper-Kähler moment map associated with X̂.

From now on, we assume that X̂ is space-like or time-like.

We consider the level set

P := {µX̂ = (−σ, 0, 0)} ⊂ M̂ (3.46)

of the hyper-Kähler moment map and define the following data on P :

gP := ĝ|P ∈ Γ(Sym2 T ∗P ),

θPα := σθ̂α|P =
1

2
ĝ(Ĵαξ, ·)

∣∣
P
∈ Ω1(P ) (α = 1, 2, 3),

f := σ
r2

2

∣∣∣
P

=
ĝ(ξ,ξ)

2

∣∣∣
P
∈ C∞(P ),

θP0 :=
1

2
df =

1

2
ĝ(ξ, ·)

∣∣
P

=
σ

2
rdr
∣∣
P
∈ Ω1(P ),

XP := σX̂|P ∈ X(P ),

η := σ
ĝ(X̂, ·)
ĝ(X̂, X̂)

∣∣∣∣
P

∈ Ω1(P ),

f1 :=
2

ĝ(X̂, X̂)

∣∣∣∣
P

∈ C∞(P )

ZP
1 := Ẑ|P = Ĵ1ξ|P ∈ X(P ). (3.47)

The fact that Ẑ = Ĵ1ξ is tangent to P follows from

dµX̂α (Ẑ) = LẐµ
X̂
α = −2δ2αµ

X̂
3 + 2δ3αµ

X̂
2
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since µ2

∣∣
P

= µ3

∣∣
P

= 0. The last equation used

LĴαξ
µX̂β

(3.28)
=

(3.18)
−2µX̂γ . (3.48)

Remark 3.3.3 Note that, if non-empty, every level set of the hyper-Kähler

moment map µX̂ is a smooth submanifold of codimension 3 in M̂ , due to Eq.

(3.45).

Proposition 3.3.4 Assume that P is non-empty and let M ′ ⊂ P be a codi-

mension one submanifold that is transversal to ZP
1 . Then

g′ =
1

2|f |

(
gP −

2

f

3∑
a=0

(θPa )2
)∣∣∣

M ′
(3.49)

is a quaternionic (pseudo-)Kähler metric on M ′.

Proof : Since µX̂1
∣∣
P
6= 0, ξ(µX̂α ) = 2µX̂α and (3.48) imply that P ⊂ M̂ is transver-

sal to ξ, Ĵ2ξ, Ĵ3ξ. Hence, M ′ ⊂ M̂ is transversal to Dv = spanR{ξ, Ĵ1ξ, Ĵ2ξ, Ĵ3ξ}.
According to Theorem 3.2.6,

g′ = ğ
∣∣
M ′

=
( 1

r2
ĝ − σ

r2
dr2 − 4σ

r4

3∑
α=1

(θ̂α)2
)∣∣∣

M ′⊂P

=
( 1

2|f |
gP −

σ

f 2
(θP0 )2 − σ

f 2

3∑
α=1

(θPα )2
)∣∣∣

M ′

is a quaternionic (pseudo-)Kähler metric on M ′.

Remark 3.3.5 Note that if (M̂, ĝ, Ĵα, ξ) is the Swann bundle (see Section 3.6)

over a quaternionic (pseudo-)Kähler manifold (M̄, ḡ, Q), π̂ : M̂ → M̄ , then the

group R>0 × SO(3) generated by ξ, Ĵ1ξ, Ĵ2ξ, Ĵ3ξ acts as the standard conformal

linear group CO(3) on the three-dimensional vector space spanned by the func-

tions µX̂α . Then ZP
1 induces a free S1-action on P and P/S1

(ZP1 )
is diffeomorphic

to M̄ o := M̄\π̂({µX̂ = 0}).

Let µ̄X be the quaternionic Kähler moment map associated with the Killing vec-

tor field X ∈ X(M̄) induced by X̂. On M̄ o, J := (‖µ̄X‖−1µ̄X)|M̄o defines an inte-

grable complex structure (see, e.g., [Ba, Prop. 3.3.]). The quaternionic (pseudo-)

Kähler stuctures defined on codimension one submanifolds in P transversal to
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ZP
1 via Theorem 3.2.6 patch together to the quaternionic (pseudo-)Kähler struc-

ture ( |ν|
4
ḡ|M̄o ,RJ |M̄o ⊕ V ), where V = J⊥ ⊂ Q|M̄o ⊂ EndTM̄ o is a rank two

vector bundle whose unit sphere bundle is isomorphic to the S1-principal bundle

P → M̄ o.

Note that in general, M̄ o can be equal to M̄ . In the case where (M̄, ḡ) is positive

definite, complete and of positive scalar curvature however, M̄ o must be a proper

subset of M̄ and, hence (M̄ o, |ν|
4
ḡ|M̄o) is incomplete. The latter is due to the fact

that on a compact quaternionic Kähler manifold of positive scalar curvature,

there exists not even a compatible almost complex structure [AMP, Th. 3.8.].

In the following example, we again treat quaternionic vector space with posi-

tive and quaternionic Lorentzian signature simultaneously (see Example 3.2.10).

The choice of appropriate codimension four submanifolds M ′
± again leads to (lo-

cal) realizations of quaternionic projective and quaternionic hyperbolic space.

This time, we do not choose the canonical (local) sections M ′can.
± := {q0 = 1}

in the H∗-bundles Hn+1
>0 → HP n, respectively Hn, 1

<0 → HHn. Instead, we choose

submanifolds M ′
± that are contained in the respective level sets P± of the hyper-

Kähler moment map associated with the diagonal S1-action on quaternionic

vector space. This allows us to establish the HK/QK correspondence between,

e.g., a certain subset in T ∗(CHn) on the hyper-Kähler side and HHn on the

quaternionic Kähler side in Section 4.4.

Example 3.3.6 Let

M̂+ = Hn+1
>0 = Hn+1\{0}, M̂− = Hn,1

<0 = {〈q, q〉
(−)

< 0} ⊂ Hn,1

with the conical (pseudo-)hyper-Kähler structure (ĝ±, Ĵ1, Ĵ2, Ĵ3, ξ) defined by

Eqs. (3.37)–(3.40) as in Example 3.2.10. We consider the vector field X̂ induced

by the action q = z + jw 7→ eitq of eit ∈ S1 on M̂± at t = 0, scaled by a factor

of two for convenience:

X̂ = 2i
n∑
I=0

(
zI

∂

∂zI
− wI

∂

∂wI
− z̄I ∂

∂z̄I
+ w̄I

∂

∂w̄I

)
. (3.50)

The components µX̂α = −1
2
ĝ(Ĵαξ, X̂) of the homogeneous hyper-Kähler moment
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map associated with X̂ are given by

µX̂1 = −(〈z, z〉
(±)︸ ︷︷ ︸

±|z0|2+
∑
|zµ|2

−〈w,w〉
(±)

),

µX̂+ = µX̂2 + iµX̂3 = 2i〈z, w̄〉 = 2i
(
± z0w0 +

n∑
µ=1

zµwµ
)
. (3.51)

Let

λ := 〈z, z〉
(±)
− 〈w,w〉

(±)
, χ := 〈z, w̄〉

(±)
= ±z0w0 +

n∑
µ=1

zµwµ. (3.52)

To introduce appropriate coordinates, we restrict ourselves to the chart {z0 6= 0}
in

{λ > 0} ⊂ {z 6= 0} ⊂ Hn+1
>0 = M̂+

and to

{λ < 0} ⊂ {〈z, z〉
(−)

< 0} ⊂ {z0 6= 0} ⊂ Hn,1
<0 = M̂−,

i.e. we consider

M̂ o
+ := {q = z + jw ∈ Hn+1 | 〈z, z〉

(+)
> 〈w,w〉

(+)
, z0 6= 0},

M̂ o
− := {q = z + jw ∈ Hn,1 | 〈z, z〉

(−)
< 〈w,w〉

(−)
, 〈q, q〉

(−)
< 0}. (3.53)

We endow M̂ o
± with coordinates (λ, φ, χ, ζµ, ηµ)µ=1, ..., n, where λ, χ are given by

Eq. (3.52) and

φ := arg z0, ζµ := (z0)−1zµ, ηµ := z0wµ (µ = 1, . . . , n). (3.54)

The coordinates are chosen such that the level sets of φ are transversal to the

S1-action (X̂(φ) = 2), while λ, χ, ζµ, ηµ are S1-invariant, so in these coordinates,

X̂
∣∣
M̂o
±

= 2 ∂
∂φ

. When we set λ = ±1 and χ = 0, this induces coordinates

(φ, ζµ, ηµ)µ=1, ..., n on the level set

P± = {µX̂1 = −σ = ∓1, µX̂2 = µX̂3 = 0} = {λ = ±1, χ = 0} ⊂ M̂ o
± (3.55)

of the homogeneous hyper-Kähler moment map associated with X̂.

Note that in the current example, ξ, Ĵ1ξ, Ĵ2ξ, Ĵ3ξ generate a free H∗-action on

M̂±. Submanifolds M ′
± ⊂ M̂± that intersect each H∗-orbit at most once can be

identified via the projection map with subsets of HP n, respectively HHn. Under
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this identification, the induced metric g′ is independent of the choice of section

according to Proposition 3.2.5.

With the choice M ′
± = {φ = 0} ⊂ P± of (Z

P±
1 = Ĵ1ξ

∣∣
P±

)-transversal submani-

fold, we recover the chart {q0 6= 0} in

(HP n)o := (3.56)

HP n\{[q = z + jw]H∗right
| (z, w) ∈ C2n+2\{0}, ‖z‖2 = ‖w‖2, z · w = 0}

for the case M ′
+, while for M ′

−, we recover the whole symmetric space HHn

(see Remark 3.3.5). One way of seeing this is by Remark 3.3.5 and the fact

that M̂±/Z2 is the Swann bundle over HP n, respectively HHn. (HP n)o is the

complement of the zero level set of the quaternionic Kähler moment map asso-

ciated with the Killing vector field X on HP n that is induced by X̂. It is an

open and everywhere dense submanifold of HP n. M̂− has empty intersection

with the zero level set of the homogeneous hyper-Kähler moment: The reverse

Cauchy-Schwarz inequality (RCS) for complex Lorentzian vector spaces gives

the following implication for q = z + jw ∈ M̂− ∩ {λ = 0}:

〈q, q〉 < 0, 〈z, z〉 = 〈w,w〉
⇒ 〈z, z〉 = 〈w,w〉 < 0

⇒ |χ|2 = |〈z, w̄〉|2
RCS

≥ 〈z, z〉〈w,w〉 > 0.

This shows that M̂− ∩ {µX̂ = 0} = ∅.

Note that while all three almost complex structures induced on the canonical

choice of submanifold M ′can.
± = {q0 = 1} ⊂ M̂± (see Example 3.2.10) are inte-

grable, the almost complex structures J ′2, J
′
3 induced on M ′

± are non-integrable.

J ′1 is proportional to the quaternionic Kähler moment map associated with X

and hence integrable (see Remark 3.3.5 and Proposition 4.1.9).

In the following remark, we specify the image N̂± of the coordinate function

(λ, φ, χ, ζµ, ηµ)µ=1, ..., n : M̂ o
± → R2 × C2n+1 defined in the above example and

give the inverse map from N̂± to M̂ o
±.

Remark 3.3.7 In the above example, the coordinates (λ, φ, χ, ζ, η) on M̂ o
±
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take their values in

N̂+ := R>0 × R× C× Cn × Cn,

N̂− :=

{(λ, φ, χ, ζ, η) ∈ R<0 × R× C× Cn × Cn | ‖ζ‖2 < 1, λ2 + 4〈ζ̂ , ζ̂〉〈η̂, η̂〉 > 0},

respectively. Here, 〈ζ̂ , ζ̂〉 := ±|ζ0|2 +
n∑
µ=1

|ζµ|2︸ ︷︷ ︸
=:‖ζ‖2

and 〈η̂, η̂〉 := ±|η0|2 + ‖η‖2, where

ζ0 := 1, η0 := ±(χ−
n∑
µ=1

ζµηµ). (3.57)

The inverse map from N̂± to M̂ o
± is given by

zI = ρλe
iφζI , wI = (ρλ)

−1e−iφηI (I = 0, . . . , n), (3.58)

where

ρλ :=
1√

±2〈ζ̂ , ζ̂〉

√
±λ+

√
λ2 + 4〈ζ̂ , ζ̂〉〈η̂, η̂〉 . (3.59)

For future reference, we determine the differentials of zI and wI in terms of the

coordinates (λ, φ, χ, ζ, η):

dzI = zI
(
ρ−1
λ dρλ + idφ

)
+ z0dζI ,

dwI = −wI
(
ρ−1
λ dρλ + idφ

)
+ (z0)−1dηI (3.60)

with dζ0 = 0, dη0 = ±(dχ−
∑

(ζµdηµ + ηµdζ
µ)) and

ρ−1
λ dρλ = ± 1

2

√
λ2 + 4〈ζ̂ , ζ̂〉〈η̂, η̂〉

(
dλ− ρλ2 d〈ζ̂ , ζ̂〉+ ρ−2

λ d〈η̂, η̂〉
)
. (3.61)

For use in Section 4.4, we explicitly determine the geometric data defined in

Eq. (3.47) for Example 3.3.6:

Remark 3.3.8 We want to express the geometric data on

P± = {λ = ±1, χ = 0} ⊂ M̂ o
± defined in Eq. (3.47) for Example 3.3.6 in terms

of the coordinates (φ, ζ, η) defined above. Using θPa = σθ̂α
∣∣
P

, a = 0, . . . , 3, we
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obtain the following:

θP2 + iθP3
(3.41)
=

1

2

(
± (z0dw0 − w0dz

0) +
n∑
µ=1

(zµdwµ − wµdzµ)
)∣∣∣

P±

(3.60)
=
(
− χ(ρ−1

λ dρλ + idφ) +
1

2
dχ−

n∑
µ=1

ηµdζ
µ
)∣∣∣

P±

= −
n∑
µ=1

ηµdζ
µ, (3.62)

θP0 + iθP1
(3.41)
=

1

2

(
± (z̄0dz0 + w̄0dw0) +

n∑
µ=1

(z̄µdzµ + w̄µdwµ)
)∣∣∣

P±

(3.60)
=

1

2

(
λ(ρ−1

λ dρλ + idφ) +
n∑
µ=1

(ρλ
2 ζ̄µdζµ + ρ−2

λ η̄µdηµ)± ρ−2
λ η̄0dη0

)∣∣∣
P±

= ±1

2
ρ−1
± dρ± ±

i

2
dφ+

1

2

(
ρ±

2
(
∂Ĵ1
〈ζ̂ , ζ̂〉

)∣∣
P±

+ ρ−2
±
(
∂Ĵ1
〈η̂, η̂〉

)∣∣
P±

)
(3.61)
= ± 1

2
√

1± r̃2

(
〈η̂, η̂〉 d〈ζ̂ , ζ̂〉+ 〈ζ̂ , ζ̂〉 d〈η̂, η̂〉

)
± i

2
dφ+

i

4

(
ρ±

2 dc〈ζ̂ , ζ̂〉+ ρ−2
± dc〈η̂, η̂〉

)
(3.63)

= ±1

4
d
(√

1± r̃2
)

+ i

(
±1

2
dφ+

1

4
dc
(
±
√

1± r̃2 ∓ 2 log ρ±
))

,

where3

ρ± := ρλ|P± =
1√

±2〈ζ̂ , ζ̂〉

√
1 +
√

1± r̃2 ∈ C∞(P±)

r̃2 := ±4〈ζ̂ , ζ̂〉〈η̂, η̂〉 ∈ C∞(P±), r̃2 ≥ 0. (3.64)

In Eq. (3.63), dc = i(∂̄ − ∂) acts on the holomorphic functions (ζµ, ηµ)µ=1, ..., n.

It will later turn out to be the dc-operator associated with the first complex

structure of the hyper-Kähler quotient M̂±///P±S
1
(diag.) ≈ M ′

± = {φ = 0} ⊂ P±

(see Example 3.4.7).

The other geometric data defined in (3.47) can be calculated as well:

f = ±
√

1± r̃2

2
, f1 = ± 1

2
√

1± r̃2
,

3By abuse of notation, 〈ζ̂, ζ̂〉 := 〈ζ̂, ζ̂〉|P± = ±1 + ‖ζ‖2 ∈ C∞(P±) and
〈η̂, η̂〉 := 〈η̂, η̂〉|P± = ±|

∑n
µ=1 ζ

µηµ|2 + ‖η‖2 ∈ C∞(P±), compare Eq. (3.57) and above.



3.3. Infinitesimal automorphisms of conical hyper-Kähler manifolds 43

XP = ±2
∂

∂φ
, ZP

1 =
∂

∂φ
+ 2i

n∑
µ=1

(
ηµ

∂

∂ηµ
− η̄µ

∂

∂η̄µ

)
,

η = ±1

2
dφ+

1

4
√

1± r̃2

(
ρ±

2dc〈ζ̂ , ζ̂〉 − ρ−2
± d

c〈η̂, η̂〉
)

= ±1

2

(
dφ− ρ−1

± d
cρ±
)
,

gP = ±
√

1± r̃2 (dφ− ρ−1
± d

cρ±)2 +
n∑
µ=1

(
ρ±

2 dζµdζ̄µ + ρ−2
± dηµdη̄µ

)
± ρ−2

±
∣∣d( n∑

µ=1

ζµηµ
)∣∣2 ∓ 4

√
1± r̃2 |ρ−1

± ∂ρ±|2. (3.65)

From the above example, we get the following corollary. It gives the realiza-

tion of quaternionic hyperbolic space that we will later obtain when we apply

the HK/QK correspondence to a certain subset in T ∗(CHn) in Section 4.4.

Corollary 3.3.9

N ′− := {(ζ, η) ∈ Cn × Cn | ‖ζ‖2 < 1, r̃2 < 1}, (3.66)

together with4

g′− = (ρ−1
− dρ−)2 (3.67)

+
1√

1− r̃2

( n∑
µ=1

(
ρ−

2 dζµdζ̄µ + ρ−2
− dηµdη̄µ

)
− ρ−2

−
∣∣d( n∑

µ=1

ζµηµ
)∣∣2)

+
1

1− r̃2

(
4
∣∣ n∑
µ=1

ηµdζ
µ
∣∣2 +

1

4

(
d
√

1− r̃2
)2

+
1

4

(
dc(−

√
1− r̃2 + 2 log ρ−)

)2
)

is isometric to HHn.

Proof : From the argument at the end of Example 3.3.6, we know that

M ′
− ⊂ M̂− = Hn, 1

<0 defines a global section of the H∗-bundle Hn, 1
<0 → HHn.

By Proposition 3.2.5, (M ′
−, g

′
−) with the metric g′− defined by Eq. (3.49) is

isometric to (M ′can.
− , g′can.

− ). Here g′can.
− is obtained from the canonical section

M ′can.
− = {q0 = 1} ⊂ M̂− = Hn, 1

<0 via Theorem 3.2.6 (see Eq. (3.42) in Ex-

ample 3.2.10). The latter is isometric to HHn (see also Example 2.1.15 and

4Recall that on N ′−, r̃2 = 4(1 − ‖ζ‖2)(−|
∑n
µ=1 ζ

µηµ|2 + ‖η‖2) and

ρ− = 1√
2(1−‖ζ‖2)

√
1 +
√

1− r̃2.
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Remark 2.1.16). The coordinates (ζµ, ηµ)µ=1, ..., n defined in Example 3.3.6 give

a diffeomorphism from

M ′
− = {q = z+jw ∈ Hn, 1 | 〈w,w〉 = 1+〈z, z〉, arg z0 = 0, 〈z, w̄〉 = 0, 〈q, q〉 < 1}

to N ′− ≈ {−1} × {0} × {0} × N ′− ⊂ N̂−. In these coordinates and with the

geometric data calculated in Remark 3.3.8, the metric g′ defined by Eq. (3.49)

reads as in Eq. (3.67).

Remark 3.3.10 Similarly, N ′+ := {(ζ, η) ∈ Cn × Cn} endowed with the metric

g′+ = −(ρ−1
+ dρ+)2 (3.68)

+
1√

1 + r̃2

( n∑
µ=1

(
ρ+

2 dζµdζ̄µ + ρ−2
+ dηµdη̄µ

)
+ ρ−2

+

∣∣d( n∑
µ=1

ζµηµ
)∣∣2)

− 1

1 + r̃2

(
4
∣∣ n∑
µ=1

ηµdζ
µ
∣∣2 +

1

4

(
d
√

1 + r̃2
)2

+
1

4

(
dc(+
√

1 + r̃2 − 2 log ρ+)
)2
)

is isometric to {q0 6= 0} ⊂ (HP n)o, where (HP n)o is the complement of the zero

level set of the quaternionic Kähler moment map with respect to the diagonal

S1-action that was defined in Example 3.3.6 (see Eq. (3.56)).

3.4 The hyper-Kähler quotient

Definition 3.4.1 Let (M, g, J1, J2, J3) be a (pseudo-)hyper-Kähler manifold

and let G be a Lie group acting isometrically and tri-holomorphically on M .

A hyper-Kähler moment map µ for (M, g, J1, J2, J3, G) is a smooth G-

equivariant5 map from M to g∗ ⊗ R3 such that

dµv = (ω1(v], ·), ω2(v], ·), ω3(v], ·)), v ∈ g. (3.69)

Here, µv := 〈µ, v〉 ∈ C∞(M,R3) denotes the contraction of v ∈ g with the g∗-

factor of µ and v] ∈ X(M) denotes the fundamental vector field6 induced by

v ∈ g. The action of G on g∗ is given by the coadjoint action.

Remark 3.4.2 We will also use the notation µv
]

:= µv for a fundamental

5If G is connected, µ is G-equivariant if and only if dµv(w]) = µ[v, w] for all v, w ∈ g.
6We define fundamental vector fields without an extra minus sign, i.e.

· ] : g→ X(M), v 7→ v] is a Lie algebra anti-homomorphism: v]|p := d
dt

∣∣
t=0

exp(tv) ·p, p ∈M .
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vector field v] induced by a vector v ∈ g.

If X ∈ X(M) is a tri-holomorphic Killing vector field on a (pseudo-)hyper-Kähler

manifold, we call a function µX ∈ C∞(M,R3) such that

dµXα = ωα(X, ·), α = 1,2,3,

a hyper-Hamiltonian function or a hyper-Kähler moment map with re-

spect to X.

Theorem 3.4.3 [HKLR]

Let G be a compact Lie group acting freely, isometrically and tri-holomorphically

on a (pseudo-)hyper-Kähler manifold (M, g, J1, J2, J3) such that the restriction

of g to the distribution tangent to the G-orbits is non-degenerate. Let µ be a

(pseudo-)hyper-Kähler moment map for the action of G and let c ∈ Z(g∗)⊗ R3

such that the level set Mc := µ−1({c}) ⊂ M is non-empty. Then M̄ := Mc/G

inherits a hyper-Kähler structure from M . The Kähler forms ω̄1, ω̄2, ω̄3, on M̄

are defined by

p∗ω̄α = ωα
∣∣
Mc

(α = 1, 2, 3), (3.70)

where p : Mc → M̄ denotes the standard projection.

Definition 3.4.4 The (pseudo-)hyper-Kähler manifold M̄ obtained from the

above theorem is called the hyper-Kähler quotient of M with respect to G

with level c and we will denote it by

M̄ = M///
Mc
G.

Remark 3.4.5 In the above theorem, one can replace the assumption that G

is compact and acts freely on M by the assumption that c is a regular value of

µ and that G acts properly7 and freely on Mc (see, e.g., [Lee]), or just by the

assumption that Mc/G is a smooth manifold of dimension

dimRM̄ = dimRM − 4 dimG

such that the projection map p is a smooth submersion.

In the HK/QK correspondence (see Chapter 4), we always have to choose

a Kähler moment map, which is only fixed up to a constant. In the following

7The G-action on Mc is called proper if pre-images of compact subsets of Mc ×Mc under
the map G×Mc →Mc ×Mc, (g, q) 7→ (g · q, q) are compact.
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example, we discuss the S1-action on Hn, 1
<0 , respectively Hn+1

>0 defined by left-

multiplication on just one of the quaternionic coordinates. In the hyper-Kähler

reduction for this example, we scale the Killing vector field by a factor c ∈ R or

equivalently, we choose different level sets depending on c. When we apply the

HK/QK correspondence in Chapter 4 to (open subsets of) flat quaternionic vec-

tor space, c will determine the choice of the Kähler moment map. The present

example of a hyper-Kähler quotient will then show that the result is quaternionic

hyperbolic space, respectively a chart in quaternionic projective space, irrespec-

tively of the choice of Kähler moment map. It will also allow us to establish the

HK/QK correspondence between T ∗(CP n) and an open subset of the symmetric

space X(n) = Grn(Cn+2) (and similarly for the non-compact duals) for different

choices of the Kähler moment map.

Example 3.4.6 For c ∈ R>0, we consider the hyper-Kähler quotient

Hn+1\{0}///{q0=
√
|c| eit}S

1
(q0) ≈ Hn

and for c ∈ R<0, we consider

{q̂ ∈ Hn, 1 | 〈q̂, q̂〉 < 0}///{q0=
√
|c| eit}S

1
(q0) ≈ {q ∈ Hn | ‖q‖2 < |c|},

where the action of eit ∈ S1 is given by multiplication of eit from the left on the

zeroth quaternionic coordinate q0. Here, we use the notation q̂ = (q0, q) ∈ M̂±,

where M̂+ = Hn+1
>0 and M̂− = Hn, 1

<0 . In the case of Hn, 1
<0 , the metric is taken to

be negative definite in the direction of q0, see Example 3.2.10. The level set of

the hyper-Kähler moment map is chosen to be

P± := {q̂ = ẑ + jŵ ∈ M̂± | |z0|2 = |c|, w0 = 0}.

More precisely, we choose the level set {µX̂ = (∓1, 0, 0)} for the homogeneous

hyper-Kähler moment map

µX̂ =
1

|c|
(
∓ (|z0|2 − |w0|2), Re (±2iz0w0), Im (±2iz0w0)

)
associated with the tri-holomorphic Killing vector field

X̂ =
2i

|c|

(
z0 ∂

∂z0
− w0

∂

∂w0

− z̄0 ∂

∂z̄0
+ w̄0

∂

∂w̄0

)
.
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Here, the upper and lower sign correspond to the case of Hn+1
>0 and Hn, 1

<0 , respec-

tively. The hyper-Kähler structure on the quotient is again the standard one on

quaternionic vector spaces, see Example 3.1.7.

In the next example, we obtain T ∗(CP n) and a tubular neighborhood of

the zero section in T ∗(CHn) from a hyper-Kähler reduction of flat quaternionic

vector space. This will allow us to apply the HK/QK correspondence to these

hyper-Kähler manifolds in the next chapter.

Example 3.4.7 We continue Example 3.3.6 and perform the following hyper-

Kähler quotients:

Hn+1///{λ=1, χ=0}S
1
(diag.) ≈ T ∗CP n,

{q ∈ Hn, 1 | 〈q, q〉 < 0}///{λ=−1, χ=0}S
1
(diag.) ≈ {r̃2 < 1} ⊂ T ∗CHn.

In the case of quaternionic vector space with positive definite signature, this can

be found in [LR] and [Hi1]. In both cases, the resulting hyper-Kähler metric

agrees with the one constructed by Biquard and Gauduchon in [BiGau]. They

construct a complete hyper-Kähler metric on the cotangent bundle of any Her-

mitian symmetric space of compact type and an incomplete hyper-Kähler metric

on a specific tubular neighborhood of the zero section in the cotangent bundle

of any Hermitian symmetric space of non-compact type.

In this example, we will determine the hyper-Kähler structure on the chart

T ∗({[z0 : z1 : . . . : zn]C∗ ∈ CP n | z0 6= 0}) ⊂ T ∗CP n

and on {r̃2 < 1} ⊂ T ∗CHn. While the metric defined on the charts in T ∗CP n

patches together to a complete hyper-Kähler metric on the whole cotangent

bundle, the hyper-Kähler metric on {r̃2 < 1} ⊂ T ∗CHn is incomplete and can

not be extended [BiGau].

Let M̂+ = {q = z + jw ∈ Hn+1 | z0 6= 0} and M̂− = {q ∈ Hn, 1 | 〈q, q〉 < 0} be

endowed with the standard (pseudo-)hyper-Kähler structure (ĝ±, Ĵ1, Ĵ2, Ĵ3) (see

Example 3.2.10). As in Example 3.3.6, we consider the tri-holomorphic Killing

vector field X̂ generating the action q = z + jw 7→ eitq = eitz + j(e−itw) of

eit ∈ S1 on M̂± (scaled by a factor of two):

X̂ := 2i
n∑
I=0

(
zI

∂

∂zI
− wI

∂

∂wI
− z̄I ∂

∂z̄I
+ w̄I

∂

∂w̄I

)
.
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Again, we consider the level set

P± := {λ = ±1, χ = 0} ⊂ M̂±,

where λ := 〈z, z〉 − 〈w,w〉 and χ := 〈z, w̄〉 := ±z0w0 +
∑n

µ=1 z
µwµ. The

orbit space P±/S
1
(diag.) is diffeomorphic to the global section8

M ′
± := {φ := arg z0 = 0} ⊂ P±. The Kähler forms on M ′

± induced from M̂

are given by

ωα = ω̂α
∣∣
M ′±

(3.14)
= σdθ̂α

∣∣
M ′±

(3.47)
= dθPα |M ′ . (3.71)

From this equation and from Eq. (3.62), we obtain that

ω+ = ω2 + iω3 =
n∑
µ=1

dζµ ∧ dηµ (3.72)

in complex coordinates (ζµ := (z0)−1zµ, ηµ := z0wµ)µ=1, ..., n on M ′
±. Eq. (3.63)

implies that (ζµ, ηµ)µ=1, ..., n are actually J1-holomorphic coordinates and that

ω
(±)
1 = 1

4
ddcJ1

K± for the Kähler potential

K± = ±
√

1± r̃2 ∓ 2 log ρ± = ±
√

1± r̃2 ∓ log
1 +
√

1± r̃2

1± ‖ζ‖2
± log 2, (3.73)

where

r̃2 = 4(1± ‖ζ‖2)(±|
∑

ζµηµ|2 + ‖η‖2), ρ± =
1√

2(1± ‖ζ‖2)

√
1 +
√

1± r̃2.

The coordinates (ζµ, ηµ)µ=1, ..., n take their values in

M ′
+ ≈ {(ζ, η) ∈ Cn × Cn}, M ′

− ≈ {(ζ, η) ∈ Cn × Cn | ‖ζ‖2 < 1, r̃2 < 1}.

For later use, we give an explicit expression for the hyper-Kähler metric

obtained from the above example:

Remark 3.4.8 Note that, using the notation

〈ζ̂ , ζ̂〉 = ±1 + ‖ζ‖2, 〈η̂, η̂〉 = ±|
n∑
µ=1

ζµηµ|2 + ‖η‖2,

we get the following expression for the first Kähler form from the Kähler potential

8Note that on P−, we have z0 6= 0: ‖q‖2 < 0, λ < 0⇒ ‖z‖2 < 0⇒ |z0|2 > 0.
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given in Eq. (3.73):

ω
(±)
1 =

i

2
∂J1 ∂̄J1K± (3.74)

=
i

2

(
± 1

〈ζ̂ , ζ̂〉

n∑
µ=1

dζµ ∧ dζ̄µ ∓ 1

(〈ζ̂ , ζ̂〉)2

( n∑
µ=1

ζ̄µdζµ
)
∧
( n∑
ν=1

ζνdζ̄ν
)

± 1

2

∂J1 ∂̄J1(±r̃2)

1 +
√

1± r̃2
∓ 1

4
√

1± r̃2

∂J1(±r̃2) ∧ ∂̄J1(±r̃2)

(1 +
√

1± r̃2)2

)
.

A direct calculation using ±r̃2 = 4〈ζ̂ , ζ̂〉〈η̂, η̂〉 and Eq. (3.61) for λ = ±1 gives

ω
(±)
1 =

i

2

(
n∑
µ=1

(ρ 2
± dζ

µ ∧ dζ̄µ + ρ−2
± dηµ ∧ dη̄µ) (3.75)

± ρ−2
± d(

n∑
µ=1

ζµηµ) ∧ d(
n∑
ν=1

ζ̄ν η̄ν)∓ 4ρ−2
±
√

1± r̃2 ∂J1ρ± ∧ ∂̄J1ρ±

)
.

The above equation leads to the following expression for the hyper-Kähler metric:

g± =
n∑
µ=1

(ρ 2
± dζ

µdζ̄µ + ρ−2
± dηµdη̄µ) (3.76)

± ρ−2
±
∣∣d( n∑

µ=1

ζµηµ
)∣∣2 ∓ 4ρ−2

±
√

1± r̃2 |∂J1ρ±|2.

To show the compatibility of the HK/QK correspondence with the hyper-

Kähler and quaternionic Kähler quotient constructions in the next chapter, we

need the following rather obvious proposition. It states that the hyper-Kähler

quotient with respect to two commuting Lie group actions can be performed in

stages and since it is formulated completely symmetrically with respect to the

two Lie group actions, it in particular implies that the outcome of the hyper-

Kähler reduction does not depend on the order in which one performs the two

respective hyper-Kähler quotients. For the reader’s convenience, we include a

diagram of the manifolds involved and a list of geometric data defined on them

(see Figure 3.2).

Proposition 3.4.9 Let (M, g, J1, J2, J3) be a (pseudo-)hyper-Kähler manifold

and let G, H be compact Lie groups acting isometrically and tri-holomorphically

on M such that their actions commute and such that the action of G×H on M

is free. Assume that g is non-degenerate along the G-orbits, the H-orbits and
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the (G × H)-orbits in M . Let µ : M → g∗ ⊗ R3 and η : M → h∗ ⊗ R3 such

that µ ⊕ η is a hyper-Kähler moment map for the (G × H)-action on M . Let

a ∈ Z(g∗)⊗ R3 and b ∈ Z(h∗)⊗ R3.

Then we have an induced isometric, tri-holomorphic and free action of H on the

hyper-Kähler quotient M///{µ=a}G with hyper-Kähler moment map η̃ induced by

η and

(M///{µ=a}G)///{η̃=b}H ≈M///{µ=a, η=b}(G×H)

as (pseudo-)hyper-Kähler manifolds.

M

Ma

M̃ Ma, b

M̃b

M̃ M

///{µ=a}G

⊃

⊃

/G

///{η̃=b}H

/H
/(G×H)

⊃

///{µ=a, η=b}(G×H)

≈

Geom. data on M : g, ωα, µ, η.
Geom. data on M̃ : g̃, ω̃α, η̃.
Geom. data on M̃ :

¯
g̃,

¯
ω̃α.

Geom. data on M ′ :
¯
g,

¯
ωα.

Figure 3.2: Illustration and list of geometric data for the proof of Proposition 3.4.9.

Proof : G acts freely on M with hyper-Kähler moment map µ, so we can

consider the hyper-Kähler quotient

M///{µ=a}G = (M̃, g̃, J̃1, J̃2, J̃3)

with M̃ := Ma/G, Ma = µ−1({a}).

Due to the (G × H)-equivariance of µ ⊕ η, η is constant on the G-orbits in M

and hence induces a smooth map η̃ : M̃ → h∗ ⊗ R3 on M̃ = Ma/G:

dηw(v]) = v](ηw) = v]((µ⊕ η)w) = (µ⊕ η)[w, v]g⊕h = 0

(v ∈ g ⊂ g⊕ h, w ∈ h ⊂ g⊕ h). Analogously to the above equation, one shows

that µ is constant on the H-orbits in M . Hence, H acts on Ma = µ−1({a}) ⊂M .

Since G and H commute, H also acts on the orbit space M̃ = Ma/G. It is

straightforward to check that H acts freely on M̃ and that H preserves the
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Kähler forms ω̃1, ω̃2, ω̃3, i.e. that it acts isometrically and tri-holomorphically on

M̃ . The map η̃ : M̃ → h∗ ⊗ R3 fulfills9

dη̃wα = ω̃α(w]̃, ·), w ∈ h, α = 1, 2, 3

and is H-equivariant. The restriction of the metric to the H-orbits is non-

degenerate. Hence, we can consider the hyper-Kähler quotient

M̃///{η̃=b}H = (M̃,
¯
g̃,

¯
J̃1,

¯
J̃2,

¯
J̃3)

with M̃ = M̃b/H, M̃b = η̃−1({b}) ⊂ M̃ . Note that M̃b = Ma, b/G, i.e.

M̃ = (Ma, b/G)/H, where Ma, b = {µ = a, η = b} ⊂ M . This can be naturally

identified with M := Ma, b/(G × H). Since the Kähler forms on hyper-Kähler

quotients are defined purely in terms of pullbacks (see Eq. (3.70)), it is easy

to check that under the above identification, the hyper-Kähler structure on M̃

agrees with that on M obtained from the hyper-Kähler quotient

M///{µ=a, η=b}(G×H) = (M,
¯
g,

¯
J1,

¯
J2,

¯
J3).

Remark 3.4.10 The assumptions that ensure the smoothness of the respective

hyper-Kähler quotients in the above proposition can be relaxed (see Remark

3.4.5). Also note that G and H are treated entirely symmetrically. Hence, for

commuting Lie group actions of G and H on a (pseudo-)hyper-Kähler manifold

M , we have

(M///?G)///?H ≈ (M///?H)///?G

for appropriate choices of level sets, whenever all four hyper-Kähler quotients

exist.

3.5 Hyper-Kähler quotients of conical hyper-

Kähler manifolds

Recall that any codimension four submanifold that is transversal to the vertical

distribution in a conical pseudo-hyper-Kähler manifold inherits a quaternionic

pseudo-Kähler stucture (see Theorem 3.2.6). First, we show that a vector field

9Here, w]̃ ∈ X(M̃) denotes the fundamental vector field on M̃ induced by w ∈ h.
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on a conical pseudo-hyper-Kähler manifold preserving the conical hyper-Kähler

structure defines a Killing vector field on such a quaternionic Kähler submanifold

and we relate the homogeneous hyper-Kähler moment map to the quaternionic

Kähler moment map.

Proposition 3.5.1 Let (M̂, ĝ, Ĵ1, Ĵ2, Ĵ3, ξ) be a conical pseudo-hyper-Kähler

manifold and let X̂ ∈ X(M̂) be a Killing vector field such that [X̂, ξ] = 0. Let

M ′ be a codimension four submanifold that is transversal to the distribution

Dv := span{ξ, Ĵ1ξ, Ĵ2ξ, Ĵ3ξ} ⊂ TM̂ and denote the projection to TM ′ along Dv

by prD
v

TM ′ : TM̂
∣∣
M ′
→ TM ′. Then

X := prD
v

TM ′ ◦X̂
∣∣
M ′
∈ X(M ′) (3.77)

is a Killing vector field with respect to the quaternionic pseudo-Kähler metric g′

on M ′ given in Theorem 3.2.6.

Let Q = spanR{J ′1, J ′2, J ′3} be the quaternionic structure on (M ′, g′) given in

Theorem 3.2.6. Then the quaternionic Kähler moment map µX ∈ Γ(Q) associ-

ated with X is given by µX :=
∑3

α=1 µ
X
α J
′
α,

µXα :=
1

r2
µ̂X̂α

∣∣∣
M ′
∈ C∞(M ′), (3.78)

where µ̂X̂α = −1
2
ĝ(Ĵαξ, X̂) ∈ C∞(M̂) are the components of the homogeneous

hyper-Kähler moment map associated with X̂ given in Proposition 3.3.1.

Proof : The horizontal part ğ of the conical pseudo-hyper-Kähler metric is

invariant under ξ and Ĵαξ and has kernel Dv. Since X̂ preserves ğ and commutes

with ξ, Ĵαξ, X = prD
v

TM ′ ◦X̂
∣∣
M ′

preserves g′ = ğ
∣∣
M ′

.

Recall that the components of the local Sp(1)-connection one-form with respect

to (J ′1, J
′
2, J

′
3) are given by θ̄α := θα

∣∣
TM ′
∈ Ω1(M ′) (see the proof of Theorem

3.2.6), where θα = 1
ĝ(ξ, ξ)

ĝ(Ĵαξ, ·) (see Eq. (3.12)). Recall that with r2 = |ĝ(ξ, ξ)|
and σ = sgn ĝ(ξ, ξ), the Kähler forms on M̂ are given by

ω̂α = σ rdr ∧ θα + r2(σ θβ ∧ θγ + ω̆α), (3.79)
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where ω̆α = σ
2
(dθα−2θβ∧θγ) (see Lemma 3.2.4). Since 0 = σ

2
LX̂(ĝ(ξ, ξ)) = rdr(X̂),

this shows

dµ̂X̂α = ω̂α(X̂, ·) = −σ θα(X̂) rdr + σ r2 θβ(X̂) θγ − σ r2 θγ(X̂) θβ + r2 ω̆α(X̂, ·)

=
2

r
µ̂X̂α dr − 2 µ̂X̂β θγ + 2 µ̂X̂γ θβ + r2 ω̆α(X̂, ·). (3.80)

Since ω̆α has kernel Dv and the fundamental two-forms on M ′ are given by

ω′α = ω̆
∣∣
M ′

(see Remark 3.2.7), we have

dµXα =
1

r2

(
−2

r
µ̂X̂α dr + dµ̂X̂α

) ∣∣∣
M ′

(3.80)
= −2µXβ θ̄γ + 2µXγ θ̄β + ω′α(X, ·). (3.81)

This shows that µX =
∑3

α=1 µ
X
α J
′
α is the quaternionic Kähler moment map

associated with X (see Remark 2.2.4).

Now, we show that for higher-dimensional Lie group actions on conical pseudo-

hyper-Kähler manifolds, the homogeneous hyper-Kähler moment is automati-

cally equivariant.

Proposition 3.5.2 Let (M̂, ĝ, Ĵ1, Ĵ2, Ĵ3, ξ) be a conical pseudo-hyper-Kähler

manifold and let G be a connected Lie group that acts on M̂ such that the action

preserves (ĝ, Ĵ1, Ĵ2, Ĵ3, ξ). Let µ̂ : M̂ → g∗ ⊗ R3 be defined by

µ̂vα = 〈µ̂α, v〉 = −1

2
ĝ(Ĵαξ, v

]) (v ∈ g, α = 1, 2, 3).

Then µ̂ is G-equivariant and hence a hyper-Kähler moment map with respect to

the G-action.

Proof : Let X, Y be fundamental vector fields induced by some vectors in g.

Since Y preserves (ĝ, Ĵ1, Ĵ2, Ĵ3, ξ), we have

dµ̂Xα (Y ) = LY

(
− 1

2
ĝ(Ĵαξ,X)

)
= −1

2
ĝ(Ĵαξ,LYX) = µ̂[Y,X]

α .

This shows that µ̂ is G-equivariant. By Proposition 3.3.1, µ̂ fulfills

dµ̂Xα = ω̂α(X, ·).

Definition 3.5.3 We call the map µ̂ : M̂ → g⊗ R3 given by

µ̂vα = 〈µ̂α, v〉 = −1

2
ĝ(Ĵαξ, v

]) (v ∈ g, α = 1, 2, 3)
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the homogeneous hyper-Kähler moment map associated with G.

We now prove the compatibility of the construction in Theorem 3.2.6 with the

(level zero) hyper-Kähler and quaternionic Kähler quotient constructions. The

analogous statement for the Swann bundle over a quaternionic Kähler manifold

was proven in [Sw1]. For a better orientation, we include Figure 3.3, which shows

a digram of the manifolds involved and a list of geometric data on the respective

manifolds. These are further explained in the proof of the theorem.

Theorem 3.5.4 Let (M̂, ĝ, Ĵ1, Ĵ2, Ĵ3, ξ) be a conical pseudo-hyper-Kähler mani-

fold and let G be a compact connected Lie group that acts freely on M̂ such that

the action preserves (ĝ, Ĵ1, Ĵ2, Ĵ3, ξ) and such that the restriction of ĝ to the dis-

tribution tangent to the G-orbits is non-degenerate. Let µ̂ : M̂ → g∗ ⊗R3 be the

homogeneous hyper-Kähler moment map associated with the G-action.

Then ξ induces a vector field
¯
ξ on M̂ = M̂0/G = µ̂−1({0})/G such that the

hyper-Kähler quotient

M̂///{µ̂=0}G = (M̂,
¯
ĝ,

¯
Ĵ1,

¯
Ĵ2,

¯
Ĵ3)

together with
¯
ξ is a conical pseudo-hyper-Kähler manifold.

Let M ′ ⊂ M̂ be a G-invariant codimension four submanifold transversal to the

distribution Dv = spanR{ξ, Ĵ1ξ, Ĵ2ξ, Ĵ3ξ} ⊂ TM̂ and let (g′, Q) denote the in-

duced quaternionic pseudo-Kähler structure on M ′ (see Theorem 3.2.6). Then

G acts isometrically and freely on (M ′, g′).

Consider the quaternionic Kähler quotient M ′///G = (M ′,
¯
g′,

¯
Q). M ′ can be

canonically identified with a submanifold in M̂ that is transversal to the dis-

tribution Dv = spanR{
¯
ξ,

¯
Ĵ1,

¯
Ĵ2,

¯
Ĵ3} ⊂ TM̂ and the quaternionic pseudo-Kähler

structure induced from M̂ (via Theorem 3.2.6) is identical to (
¯
g′,

¯
Q).

Proof : Since

dµ̂Xα (ξ) = ω̂α(X, ξ) = −ĝ(Ĵαξ,X) = 2µ̂Xα

vanishes on M̂0 for any fundamental vector field X ∈ X(M̂), ξ is tangent to M̂0.

Let ∇̂ and ∇0 denote the Levi-Civita connections of (M̂, ĝ) and of the pseudo-

Riemannian submanifold (M̂0, ĝ|M̂0
), respectively. Since ∇̂· ξ = IdTM̂ , we have

for q ∈ M̂0 and v ∈ TqM̂0 ⊂ TqM̂ :

∇0
v(ξ|M̂0

) = pr⊥TqM̂0
(∇̂vξ) = pr⊥TqM̂0

v = v. (3.82)
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M̂

M ′

M̂0

M ′
0

M̂

M ′

///HK
{µ̂=0}G

⊃ ⊃

p /G

⊃

⊃

p′ /G

///QKG

Geom. data on M̂ : ĝ, ∇̂, ξ, ω̂α, r2, θα, µ̂.
Geom. data on M̂ :

¯
ĝ, ∇,

¯
ξ,

¯
ω̂α,

¯
r2,

¯
θα.

Geom. data on M ′ : g′, Q, ω′α, µ.
Geom. data on M ′ :

¯
g′,

¯
Q,

¯
ω′α.

Figure 3.3: Illustration and list of geometric data for the proof of Theorem 3.5.4.

Here, pr⊥
TqM̂0

: TqM̂ = TqM̂0 ⊕ (TqM̂0)⊥ → TqM̂0 denotes the orthogonal pro-

jection of TM̂ |M̂0
to TM̂0 with respect to ĝ. (See [O, Ch. 4] for the relation

between the Levi-Civita connection on a pseudo-Riemannian manifold and the

Levi-Civita connection on a pseudo-Riemannian submanifold.)

Let p : M̂0 → M̂ = M̂0/G denote the standard projection. Since ξ|M̂0
∈ X(M̂0)

is preserved by the G-action, ξ induces a vector field
¯
ξ ∈ X(M̂) on M̂ = M̂0/G.

ξ|M̂0
is horizontal with respect to the decomposition

TM̂0 = T vM̂0 ⊕⊥ T hM̂0, T vM̂0 := ker dp,

or in other words, ξ|M̂0
is orthogonal to the distribution tangent to the G-orbits.

Hence, the horizontal lift ˜
¯
ξ ∈ Γ(T hM̂0) of

¯
ξ ∈ X(M̂) is equal to ξ|M̂0

. Note that

p : (M̂0, ĝ|M̂0
) → (M̂,

¯
ĝ) is a pseudo-Riemannian submersion. If ∇ denotes the

Levi-Civita connection of (M̂,
¯
ĝ), we have

∇̃Y
¯
ξ = prThM̂0

(∇0
Ỹ

˜
¯
ξ) = prThM̂0

(∇0
Ỹ

(ξ|M̂0
))

(3.82)
= prThM̂0

(Ỹ ) = Ỹ,

for Y ∈ X(M̂) and hence ∇·
¯
ξ = IdTM̂ . This shows that (M̂,

¯
ĝ,

¯
Ĵ1,

¯
Ĵ2,

¯
Ĵ3,

¯
ξ)

is a conical pseudo-hyper-Kähler manifold. (See, e.g., [FIP, Ch. 1 & Ch. 7]

for the relation between the Levi-Civita connections of two pseudo-Riemannian

manifolds that are related by a pseudo-Riemannian submersion.)

Since the horizontal lift of
¯
ξ is given by

¯
ξ̃ = ξ|M̂0

, we have

sgn
¯
ĝ(

¯
ξ,

¯
ξ) = sgn ĝ(ξ, ξ)|M̂0

= σ and the radial function
¯
r =

√
|
¯
ĝ(

¯
ξ,

¯
ξ)| on M̂
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is related to r =
√
|ĝ(ξ, ξ| ∈ C∞(M̂) by p∗

¯
r = r|M̂0

. Recall that the Kähler

forms
¯
ω̂1,

¯
ω̂2,

¯
ω̂3 on the hyper-Kähler quotient M̂ are defined by

p∗
¯
ω̂α = ω̂α|M̂0

(α = 1, 2, 3). (3.83)

Thus,
¯
ξ = dp(ξ|M̂0

) implies

p∗(
¯
ω̂α(

¯
ξ, ·)) = (p∗

¯
ω̂α)(ξ|

M̂0
, ·) = ω̂α|M̂0

(ξ|
M̂0
, ·).

In total, this shows that for θα = σ
r2 ω̂α(ξ, ·) ∈ Ω1(M̂) and

¯
θα = σ

¯
r2

¯
ω̂α(

¯
ξ, ·) ∈ Ω1(M̂),

we have

p∗
¯
θα = θα

∣∣
M̂0
. (3.84)

Recall that the quaternionic stucture on M ′ induced from M̂ is given by

Q = spanR{J ′1, J ′2, J ′3}, where J ′1, J
′
2, J

′
3 are almost complex structures on M ′ as

defined in Theorem 3.2.6. The corresponding fundamental two-forms are given

by

ω′α = ω̆α
∣∣
M ′

=
σ

2
(dθα − 2θβ ∧ θγ)

∣∣
M ′
. (3.85)

According to Proposition 3.5.1, the quaternionic Kähler moment map associated

with the G-action on M ′ is given by µ :=
∑3

α=1( 1
r2 µ̂α)

∣∣
M ′
J ′α ∈ Γ(Q). Since the

almost complex structures J ′α are linearly independent, M ′
0 = µ−1({0}) ⊂ M ′ is

a submanifold of M̂0 = µ̂−1({0}) ⊂ M̂ . It is of codimension four and transversal

to Dv|M̂0
⊂ TM̂0. Hence, M ′ is a codimension four submanifold in M̂ that is

transversal to Dv. Let p′ : M̂ ′
0 → M ′ = M ′

0/G denote the standard projection

and let

ιM ′ : M ′ → M̂, ιM ′0 : M ′
0 → M̂0.

The quaternionic structure
¯
Q on M′ induced by the quaternionic Kähler quotient

is spanned by three almost complex structures
¯
J1,

¯
J2,

¯
J3. The corresponding

fundamental two-forms are defined by (see Remark 2.2.8)

p′∗
¯
ω′α = ω′α

∣∣
M ′0

(3.85)
=

σ

2
(dθα− 2θβ ∧ θγ)

∣∣
M ′0

= ι∗M ′0

(σ
2

(dθα− 2θβ ∧ θγ)
∣∣
M̂0

)
. (3.86)

The almost pseudo-hyper-Hermitian structure on M ′ induced from M̂ via Theo-

rem 3.2.6 has fundamental two forms defined by

¯
ω̆α
∣∣
M ′

=
σ

2
ι∗M ′(d¯

θα − 2
¯
θβ ∧

¯
θγ). (3.87)
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Their pullback toM ′
0 via p′ agrees with p′∗

¯
ω′α (see Eq. (3.86)), since ιM ′◦p′ = p◦ιM ′0

implies

p′∗ι∗M ′¯
θα = ι∗M ′0p

∗
¯
θα

(3.84)
= ι∗M ′0

(
θα
∣∣
M̂0

)
.

This shows that the quaternionic pseudo-Kähler structures on M ′ induced from

M ′ via the quaternionic Kähler quotient and from M̂ via Theorem 3.2.6 are

identical.

3.6 The Swann bundle

In this section, we first review the Swann bundle construction from [Sw1] in the

form presented in the author’s collaboration with D.V. Alekseevsky, V. Cortés

and T. Mohaupt [ACDM] and show that, up to rescaling of the metric, it is

(locally) inverse to the construction of quaternionic pseudo-Kähler manifolds as

submanifolds of conical pseudo-hyper-Kähler manifolds in Theorem 3.2.6. The

presentation does not use the formalism of reduced frame bundles from [Sw1].

Instead the Swann bundle is directly constructed as the Riemannian cone over

an SO(3)-bundle over a quaternionic (pseudo-)Kähler manifold, which is closer

to the treatment of this topic in the physics literature (see, e.g., [DRV1, DRV2]).

In the first subsection, we show that Killing vector fields on a quaternionic

(pseudo-)Kähler manifold can be uniquely lifted to tri-holomorphic Killing vector

fields on the Swann bundle that commute with the Euler vector field. In the

second subsection, we discuss canonical lifts of isometric group actions from

quaternionic (pseudo-)Kähler manifolds to the Swann bundle.

Let (M, g,Q) be a connected quaternionic (pseudo-)Kähler manifold. Let

π : S →M

denote the principal SO(3)-bundle of frames (J1, J2, J3) in Q such that J1J2 = J3

and J2
α = − IdTM , α = 1, 2, 3. The principal action of an element A ∈ SO(3) is

given by

τ(A, ·) : S → S, s = (J1, J2, J3) 7→ τ(A, s) := RA−1s := (J1, J2, J3)A−1,

i.e. we consider S as a left-principal bundle. We choose the basis (eα) of so(3)

given in Eq. (2.2). It corresponds to the standard basis of sp(1) = ImH ∼= R3

under the canonical isomorphism sp(1) ∼= ad(sp(1)) = so(3). Let us denote by
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Zα ∈ X(M) the fundamental vector fields associated with (eα):

Zα
∣∣
s

=
d

dt

∣∣∣
t=0
τ(exp(teα), s), s ∈ S.

Then

[eα, eβ] = 2eγ, [Zα, Zβ] = −2Zγ (3.88)

for every cyclic permutation (α, β, γ) of (1, 2, 3). In the following, (α, β, γ) will

always be a cyclic permutation, whenever the three letters appear in an expres-

sion.

Let σ = (J1, J2, J3) ∈ Γ(U, S) be a local section defined over some open subset

U ⊂ M and let θ̄ =
∑3

α=1 θ̄αeα be the local Sp(1)-connection one-form with

respect to (J1, J2, J3), i.e. the local fundamental two-forms ωα = g(Jα, ·) fulfill

dωα = 2(θ̄β ∧ ωγ − θ̄γ ∧ ωβ).

In the local trivialization π−1(U) ∼= U × SO(3) of S given by σ, we can define

an so(3)-valued one-form on π−1(U) by

θ(U) := π∗θ̄ + ϕ,

where ϕ =
∑
ϕαeα ∈ Ω1(SO(3), so(3)) is the Maurer-Cartan form on SO(3).

Since θ(U) is independent of the choice of section σ, it defines an so(3)-valued

one-form

θ =:
3∑

α=1

θαeα ∈ Ω1(S, so(3)) (3.89)

on S. The one-form θ is in fact the connection one-form of the principal connec-

tion on S induced by the Levi-Civita connection ∇ of (M, g) (see Eq. (2.1)). Its

curvature is defined by

Ω := dθ − 1

2
[θ ∧ θ],

where
1

2
[θ ∧ θ](X, Y ) := [θ(X), θ(Y )], X, Y ∈ TsS, s ∈ S.

Writing Ω =
∑

Ωαeα and using Eq. (3.88), we have

Ωα = dθα − 2θβ ∧ θγ. (3.90)

From the above equation and θα(Zα′) = δαα′ , we immediately get the following

lemma:
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Lemma 3.6.1

LZαθα = 0, LZαθβ = −2θγ, LZαθγ = 2θβ;

LZαΩα = 0, LZαΩβ = −2Ωγ, LZαΩγ = 2Ωβ.

For any local section σ = (J1, J2, J3) ∈ Γ(U, S) over some open subset U ⊂ M ,

the one-forms σ∗θα = θ̄α are the components of the local Sp(1)-connection one-

form and from (2.7), we get

σ∗Ωα =
ν

2
ωα, (3.91)

where ω1, ω2, ω3 are the local fundamental two-forms with respect to (J1, J2, J3).

We endow the manifold S with the pseudo-Riemannian metric

gS = σ
3∑

α=1

(θα)2 +
|ν|
4
π∗g, (3.92)

where

ν :=
scal

4n(n+ 2)
(dimRM = 4n) (3.93)

is the reduced scalar curvature of (M, g) and σ := sgn ν is its sign.

Now, we consider the cone M̂ = R>0 × S over S with the radial coordinate

r ∈ R>0, the Euler vector field

ξ := Z0 := r
∂

∂r
(3.94)

and the following exact two-forms:

ω̂α := σdθ̂α ∈ Ω2(M̂), θ̂α =
r2

2
θα ∈ Ω1(M̂). (3.95)

From now on, Zα, α = 1, 2, 3, both denotes the fundamental vector field on S,

as well as its canonical extension to M̂ = R>0 × S.

Using the above data, one recovers Swann’s hyper-Kähler structure on M̂ :

Theorem 3.6.2 [Sw1, ACDM]

Let (M, g,Q) be a connected (pseudo-)quaternionic Kähler manifold. Let

M̂ = R>0 × S with radial coordinate r ∈ R>0, gS and ω̂α be defined as above.

Then the cone metric

ĝ = σdr2 + r2gS (3.96)
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is a pseudo-hyper-Kähler metric on M̂ with Kähler forms ω̂α. Together with

the Euler vector field ξ = r ∂
∂r

, (M̂, ĝ, Ĵ1, Ĵ2, Ĵ3) is a conical pseudo-hyper-Kähler

manifold. The signature of ĝ is (4k + 4, 4`) if ν > 0 and (4k, 4` + 4) if ν < 0,

where (4k, 4`) is the signature of the quaternionic pseudo-Kähler metric g on M .

Remark 3.6.3 The corresponding complex structures Ĵ1, Ĵ2, Ĵ3 on M̂ preserve

the distribution Dv := spanR{Za | a = 0, . . . , 3} ⊂ TM̂ as well as its orthogonal

complement and satisfy

ĴαZ0 = Zα, ĴαZα = −Z0, ĴαZβ = Zγ, ĴαZγ = −Zβ, π̂∗ ◦ Ĵα|(r, s) = Jα ◦ π̂∗,

where r ∈ R>0, s = (J1, J2, J3) ∈ S and π̂ := π ◦ pr2 : M̂ = R>0 × S →M .

Definition 3.6.4 For any quaternionic (pseudo-)Kähler manifold (M, g,Q),

the conical pseudo-hyper-Kähler manifold (π̂ : M̂ → M, ĝ, Ĵ1, Ĵ2, Ĵ3, ξ) is called

the Swann bundle over M .

If M ′ ⊂ M̂ is a codimension four submanifold that is transversal to the distri-

bution Dv = span{ξ, Ĵ1ξ, Ĵ2ξ, Ĵ3ξ} ⊂ TM̂ , then there is a neighborhood around

every point in M ′ that intersects each (R>0 × SO(3))-orbit of M̂ at most once.

So locally, M ′ defines a section of M̂ and fulfills the assumptions of the following

proposition:

Proposition 3.6.5 Let (M, g,Q) be a quaternionic (pseudo-)Kähler mani-

fold and let (π̂ : M̂ → M, ĝ, Ĵ1, Ĵ2, Ĵ3, ξ) be the Swann bundle over M . Let

σ̂ : U → M̂ be a local section over some open subset U ⊂ M . Define

M ′ := σ̂(U) ⊂ M̂ and

σ := pr2 ◦ σ̂ =: (J1, J2, J3) ∈ Γ(U, S).

If (g′, Q = spanR{J ′1, J ′2, J ′3}) denotes the quaternionic (pseudo-)Kähler struc-

ture on M ′ obtained from Theorem 3.2.6, then σ̂ is an isomorphism between

(U, |ν|
4
g
∣∣
U
, J1, J2, J3) and (M ′, g′, J ′1, J

′
2, J

′
3).

Proof : Note that the geometric data r2 = |ĝ(ξ, ξ)|, σ = sgn ĝ(ξ, ξ),

θα = σ
r2 ĝ(Ĵαξ, ·), θ̂α = r2

2
θα defined on conical (pseudo-)hyper-Kähler manifolds

in (3.12) agrees with the geometric data on the Swann bundle defined in this
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section. Recall that the fundamental two-forms on M ′ associated with J ′1, J
′
2, J

′
3

are given by (see Remark 3.2.7 and (3.23))

ω′α =
σ

2
(dθα − 2θβ ∧ θγ)

∣∣
M ′
.

The local fundamental two-forms on U ⊂ M associated with σ = (J1, J2, J3)

fulfill
|ν|
4
ωα

(2.7)
=

σ

2
(dθ̄α − 2θ̄β ∧ θ̄γ),

where θ̄α = σ∗θα = σ̂∗ pr∗2 θα = σ̂∗θα. (Note that in this section, we often

extended geometric data from S to M̂ = R>0 × S without explicitly pointing

this out, e.g., by writing (pr2)∗.) This shows that σ̂∗ω′α = |ν|
4
ωα.

3.6.1 Lifts of Killing vector fields to the Swann bundle

This section was written in collaboration with Lana Casselmann.

For the proof of the next proposition, we use the following definition:

Definition 3.6.6 The differential operator Dθ : Ωk(S)→ Ωk+1(S) defined by

(Dθη)(Y1, . . . , Yk+1) := dη((Y1)h, . . . , (Yk+1)h), (3.97)

where η ∈ Ωk(S) is a differential k-form on S and (Yi)
h ∈ Γ(ker θ) denotes

the horizontal part of Yi ∈ X(S) with respect to the connection θ, is called the

absolute differential defined by θ.

Proposition 3.6.7 Let X be a Killing vector field on (M, g). Then there exists

a unique lift X̂ ∈ X(S) of X to S such that LX̂θα = 0, α = 1, 2, 3. It is given

by X̂ = X̃ +
∑3

α=1 fαZα, where X̃ ∈ Γ(ker θ) denotes the horizontal lift and

f :=
∑
fαeα ∈ C∞(S, so(3)) is SO(3)-equivariant and fulfills σ∗fα = −ν

2
µXα for

any local section σ = (J1, J2, J3) : U → S, where
∑3

α=1 µ
X
α Jα is the restriction

to U of the quaternionic Kähler moment map associated with X.

Proof : For any vector field X ∈ X(M), an arbitrary lift X̂ to S is given by

X̂ = X̃ +
3∑

α=1

fαZα, (3.98)
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where X̃ ∈ Γ(TS) is the unique horizontal lift (dπ(X̃) = X, θα(X̃) = 0) and fα,

α = 1, 2, 3, are arbitrary smooth functions on S.

Lemma 3.6.8

LX̂θα = ιX̃Ωα + dfα + 2fβθγ − 2fγθβ

for any cyclic permutation (α, β, γ) of (1, 2, 3).

Proof : Using Cartan’s formula and the fact that X̃ is horizontal, we get

LX̃θα = (d ◦ ιX̃ + ιX̃ ◦ d)θα
(3.90)
= ιX̃(Ωα + 2θβ ∧ θγ)
= ιX̃Ωα.

For
∑
fα′Zα′ , we obtain

3∑
α′=1

Lfα′Zα′
θα =

3∑
α′=1

θα(Zα′)dfα′ + fα′LZα′
θα

= dfα + 2fβθγ − 2fγθβ

using Lemma 3.6.1 and θα(Zα′) = δαα′ .

According to the above lemma, LX̂θα = 0 is equivalent to

dfα + 2fβθγ − 2fγθβ = −ιX̃Ωα (3.99)

for α = 1, 2, 3. Following the idea of the proof of [GL, Theorem 2.4.], we show

that this equation has a unique solution: Applying the exterior derivative d to

Eq. (3.99) gives

2dfβ ∧ θγ + 2fβdθγ − 2dfγ ∧ θβ − 2fγdθβ = −dιX̃Ωα.

Using Eq. (3.99) to replace dfβ, dfγ in the above equation and using the expression

for the curvature Ω in (3.90) yields

2fβΩγ − 2fγΩβ = −dιX̃Ωα + 2θβ ∧ ιX̃Ωγ − 2θγ ∧ ιX̃Ωβ = −LX̃Ωα.

For the last equality, we used Cartan’s formula, the fact that X̃ is horizontal
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and Eq. (3.90). Hence, the components of f =
∑
fαeα ∈ Ω0(S, so(3)) defined by

[f,Ω] = −LX̃Ω (3.100)

give the unique solution to Eq. (3.99).

Let σ = (J1,J2,J3) : U → S be a section of S. Since Ωα is horizontal, we

have

σ∗(ιX̃Ωα) = σ∗(ιdσ(X)Ωα) = ιXσ
∗Ωα

(3.91)
=

ν

2
ιXωα,

where ωα = g(Jα · ,·). Using the fact that pullback and exterior derivative

commute, one obtains the following equation for the functions (f̄α) := (σ∗fα) on

U ⊂M by pulling back Eq. (3.99):

df̄α + 2f̄β θ̄γ − 2f̄γ θ̄β = −ν
2
ιXωα. (3.101)

Up to a factor of −ν
2
, the functions f̄α are the coefficients of the quaternionic

Kähler moment map µ := − 2
ν

∑
f̄αJα associated with X (see (2.19)).

We now define a function f (U) :=
∑
f

(U)
α eα ∈ Ω0(π−1(U), so(3)) such that

f (U)
∣∣
σ(U)

= π∗f̄ and such that R∗g−1f (U) = Adg(f
(U)):

∑
f (U)
α (σ(p)g−1)eα :=

∑
f̄α(p)Adg(eα) (g ∈ SO(3), p ∈ U).

In terms of the basis (e1, e2, e3) of so(3), Adg has a simple expression:

If g = (gαβ)α, β=1, 2, 3 ∈ SO(3), then

f (U)
α (σ(p)g−1) =

3∑
β=1

gαβ f̄β(p) (p ∈ U).

The absolute differential Dθ of the SO(3)-equivariant function f (U),

Dθf
(U) = df (U) + [f (U), θ],

is equivariant. In components, Dθf
(U) is given by

Dθf
(U)
α = df (U)

α + 2f
(U)
β θγ − 2f (U)

γ θβ,

i.e. Eq. (3.99) corresponds to Dθf
(U) = −ιX̃Ω. Both sides of this equation are

SO(3)-equivariant and horizontal. To show that Dθf
(U) = −ιX̃Ω, it thus suffices

to check the equation σ∗(Dθf
(U)) = −σ∗(ιX̃Ω), which is fulfilled by construction



64 Chapter 3. Hyper-Kähler geometry

of f (U). Since Eq. (3.99) has the unique solution f , we have f (U) = f |π−1(U).

Corollary 3.6.9 Let X be a Killing vector field on (M, g). Then there exists a

unique tri-holomorphic Killing vector field X̂ on (M̂, ĝ, Ĵ1, Ĵ2, Ĵ3) that is a lift of

X and that commutes with the Euler vector field ξ. It is given by the canonical

extension to M̂ = R>0 × S of the vector field on S obtained from Proposition

3.6.7.

Proof :

Existence: Let X̂ be the canonical extension to M̂ of the vector field ob-

tained from Proposition 3.6.7. Then LX̂ξ = LX̂r = LX̂θα = 0. Consequently,

LX̂ θ̂α = LX̂( r
2

2
θα) = 0. This shows that X̂ preserves the Kähler forms ω̂α = σdθ̂α

and hence that X̂ is tri-holomorphic and Killing.

Uniqueness: An arbitrary lift of X to M̂ is given by

X̂ = X̃ +
3∑

a=0

faZa, (3.102)

where X̃ ∈ Γ(M̂) is the canonical extension to M̂ of the horizontal lift to S and

fa, a = 0, . . . , 3, are arbitrary smooth functions on M̂ . The equation

0 = LX̂ξ = [X̂, ξ] = [
3∑

a=0

faZa, ξ] = −
3∑

a=0

ξ(fa)Za

implies ξ(fa) = 0 for a = 0, . . . , 3.

0 = LX̂(ĝ(ξ, ξ)) = σLX̂(r2) = 2σf0r
2

implies f0 = 0. Hence, X̂ is the canonical extension to M̂ of a vector field on

S that is a lift of X and preserves θα = σ
r2 ĝ(Ĵαξ, ·). The latter is unique by

Proposition 3.6.7.

Proposition 3.6.10 Let (M, g,Q) be a quaternionic (pseudo-)Kähler manifold

and let (M̂, ĝ, Ĵ1, Ĵ2, Ĵ3, ξ) be the Swann bundle over M , π̂ : M̂ → M . Let

X ∈ X(M) be a Killing vector field on M and let X̂ ∈ X(M̂) be the unique lift

to M̂ given by the above corollary. Then

ĝ(X̂, X̂) = r2 |ν|
4
π̂∗(g(X,X) + ν‖µX‖2) (3.103)
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and
|ν|
4
π̂∗(g(X,X)) =

1

r2

(
ĝ(X̂, X̂)− 4σ

r2
‖µ̂X̂‖2

)
(3.104)

where µX ∈ Γ(Q) is the quaternionic Kähler moment map associated with X,

‖µX‖2 = − 1
dimRM

tr(µX)2, and µ̂X̂ ∈ C∞(M̂,R3) is the homogeneous hyper-

Kähler moment map associated with X̂, ‖µ̂X̂‖2 =
∑3

α=1(µ̂X̂α )2.

Proof : According to Corollary 3.6.9, X̂ is the canonical extension of

X̃ +
∑3

α=1 fαZα ∈ X(S) to M̂ = R>0 × S, where X̃ ∈ Γ(ker θ) is the hori-

zontal lift of X and the functions fα ∈ C∞(S) are given in Proposition 3.6.7.

For every local section σ = (J1, J2, J3) ∈ Γ(U, S), the restriction to π−1(U) of

the so(3)-valued function f =
∑3

α=1 fαeα ∈ C∞(S, so(3)) is given by the SO(3)-

equivariant extension of (see Proposition 3.6.7)

f
∣∣
σ(U)

= −ν
2

3∑
α=1

(π∗µXα )
∣∣
σ(U)

eα,

where µXα are the components of the quaternionic Kähler moment map:

µX
∣∣
U

=
∑
µXα Jα. Consider the natural scalar product 〈v, w〉 = −1

8
tr vw on

so(3). For g ∈ SO(3), it is Adg-invariant and it fulfills 〈eα, eα′〉 = δαα′ . Hence,

3∑
α=1

(fα)2
∣∣∣
π−1(U)

= 〈f, f〉
∣∣∣
π−1(U)

=
ν2

4
π∗(<

∑
α

µXα eα,
∑
α′

µXα′eα′>)

=
ν2

4
π∗(
∑
α

(µXα )2) =
ν2

4
π∗
(
‖µX‖2

∣∣
U

)
(3.105)

for any section σ over U . Using the fact that the above equation holds globally,

we get

ĝ(X̂, X̂)
(3.96)
= r2gS(X̃ +

3∑
α=1

fαZα, X̃ +
3∑

α′=1

fα′Zα′)

(3.92)
= r2

(
σ

3∑
α=1

(fα)2 +
|ν|
4
π∗(g(X,X))

)
= r2π∗

(
σ
ν2

4
‖µX‖2 +

|ν|
4
g(X,X)

)
.

This shows (3.103), since σ = sgn ν. Recall that the components of the homoge-

neous hyper-Kähler moment map are given by µX̂α = −σr2

2
θα(X̂) (see Proposition
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3.3.1). Eq. (3.104) then follows from

‖µ̂X̂‖2 =
r4

4

3∑
α=1

(fα)2 (3.105)
=

ν2r4

16
π̂∗‖µX‖2.

Example 3.6.11 Consider the quaternionic Kähler manifolds10

M+ = HP n = (Hn+1\{0})/H∗,
M− = HHn = {q ∈ Hn, 1 | 〈q, q〉 < 0}/H∗,

and their respective Swann bundles

M̂+ = (Hn+1\{0})/Z2,

M̂− = {q ∈ Hn, 1 | 〈q, q〉 < 0}/Z2,

π̂ : M̂± →M±.

The S1-action

eit · [q]Z2 = [e
i
2
tq]Z2 , eit ∈ S1, [q]Z2 ∈ M̂±,

on M̂± is well-defined. It is free, tri-holomorphic, isometric and commutes with

the R>0-action generated by the Euler vector field ξ ∈ X(M̂±). Since it com-

mutes with the H∗/Z2-action, it induces a well-defined isometric S1-action on

HP n, respectively HHn. The induced S1-action on the quaternionic Kähler

manifold is not free. For instance, on

π̂({[q = z + jw]Z2 ∈ M̂± | w = 0}) ⊂M±,

the induced S1-action is trivial, since left- and right-multiplication of eit ∈ S1 on

z ∈ Cn+1 are identical. Proposition 3.6.10 shows, that the S1-action is locally

free on

U± = π̂({ĝ(X̂, X̂)− 4σ

r2
‖µ̂X̂‖2 6= 0})

= {[q = z + jw]H∗ ∈M± | 〈z, z〉 〈w,w〉 − |〈z, w̄〉|2 6= 0} ⊂M±,

where X̂ ∈ X(M̂±) is the vector field generating the S1-action on M̂±. Note

10The H∗-quotient is defined by multiplication from the right and M̂± are endowed with the
hyper-Kähler structure described in Examples 3.1.7, 3.2.10.
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that zero is a regular value of the quaternionic Kähler moment map on M± and

the zero level set is contained in U±. Hence, we can perform the quaternionic

Kähler quotient M±///S
1.

3.6.2 Lifting isometric group actions to the Swann bundle

Proposition 3.6.12 Let (M̄, ḡ, Q) be a quaternionic (pseudo-)Kähler manifold

and let G be a compact, connected Lie group acting isometrically on (M̄, ḡ) such

that the action is free on the zero level set {µ = 0} ⊂ M̄ of the quaternionic

Kähler moment map µ associated with G.

Then the action canonically lifts to an isometric and tri-holomorphic G-action

on the Swann bundle π̂ : M̂ → M̄ that commutes with the Euler vector field ξ.

The action is free on {µ̂ = 0} ⊂ M̂ , where µ̂ is the homogeneous hyper-Kähler

moment map associated with G.

Proof : Due to Proposition 2.2.1, G preserves Q. It also preserves the inner

product 〈·, ·〉 and the orientation on Q. Hence, it induces an action on the

SO(3)-bundle S of oriented orthonormal frames in Q. This action preserves

the SO(3)-connection one-form θ =
∑3

α=1 θαeα on S, since θ is induced by

the Levi-Civita connection of (M̄, ḡ). The canonical extension of the G-action

to M̂ = R>0 × S commutes with the Euler vector field ξ = r∂r. Since the

Kähler forms on M̂ are given by ω̂α = σ
2
d(r2θα), the action is isometric and

tri-holomorphic. Since the G-action on {µ = 0} ⊂ M̄ is free, the lifted action is

free on π−1({µ = 0}) = {µ̂ = 0} ⊂ M̂ .

Remark 3.6.13 The above proposition shows that if we can perform the

quaternionic Kähler quotient M̄///G, then we can also perform the hyper-Kähler

quotient M̂///{µ̂=0}G with level 0 and obtain a smooth (pseudo-)hyper-Kähler

manifold. M̂///{µ̂=0}G is again a conical (pseudo-)hyper-Kähler manifold. In fact,

it is the Swann bundle over M̄///G [Sw1] (see also Theorem 3.5.4).

Proposition 3.6.14 Let (M̄, ḡ, Q) be a quaternionic (pseudo-)Kähler mani-

fold with an isometric S1-action generated by a vector field X ∈ X(M̄) such

that X and the quaternionic Kähler moment map µX associated with X do not

vanish simultaneously. Then the lifted isometric tri-holomorphic S1-action on

the Swann bundle π̂ : M̂ → M̄ that commutes with ξ is locally free.
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Proof : The lifted S1-action is obtained as in the proof of Proposition 3.6.12.

Since the lift X̂ ∈ X(M̂) of X constructed in the last subsection is unique, it

generates the lifted S1-action on M̂ . X̂ is the sum of the horizontal lift of X

and a vertical part that vanishes if and only if µ̂ vanishes. The latter happens

exactly on π̂−1({µX = 0}). Since by assumption, X and µX do not vanish

simultaneously, X̂ vanishes nowhere on M̂ . Hence, the S1-action is locally free

on M̂ .

Remark 3.6.15 The above proposition shows that if S1 acts isometrically on

a quaternionic (pseudo-)Kähler manifold, then we can perform the hyper-Kähler

quotient of the Swann bundle with respect to the lifted action with an arbitrary

level obtaining at most orbifold singularities.



Chapter 4

The Hyper-Kähler/quaternionic

Kähler correspondence

In Section 4.1, we introduce the HK/QK correspondence. It constructs a quater-

nionic pseudo-Kähler manifold endowed with a Killing vector field from a pseudo-

hyper-Kähler manifold of the same dimension endowed with a real-valued func-

tion. This function is the Kähler moment map (with respect to the first Kähler

form) of a rotating Killing vector field, which means that the vector field pre-

serves the metric and first complex structure while acting as an infinitesimal

rotation on the plane spanned by the other two complex structures. The Kähler

moment map can be shifted by a real constant. The choice of this constant

influences the local geometry and the global topology of the resulting quater-

nionic pseudo-Kähler manifold. The construction is taken from the author’s col-

laboration [ACDM] and is based on the conification of (pseudo-)hyper-Kähler

manifolds with rotating Killing vector field introduced in [ACM]. It extends re-

sults of Andriy Haydys who discovered the HK/QK correspondence and studied

the case where the initial hyper-Kähler manifold is positive definite, and the

resulting quaternionic Kähler metric is positive definite and of positive scalar

curvature [Ha]. In contrast to [ACDM], we will give a new and self-contained

proof of the fact that the resulting metric is quaternionic pseudo-Kähler. In our

account, the construction and the proof just make use of an S1-bundle over the

original pseudo-hyper-Kähler manifold and do not involve the construcion of a

higher-dimensional conical hyper-Kähler manifold. In [ACDM], the proof was

based on the conification construction from [ACM], which is similar to the way

the quaternionic Kähler property was proven in [Ha].

69
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We explicitly determine the signature of the metric and the local Sp(1)-connection

one-form for all quaternionic pseudo-Kähler manifolds obtained from the HK/QK

correspondence. We also determine the quaternionic Kähler moment map of

the Killing vector field defined by the HK/QK correspondence. It is nowhere

vanishing and thus defines a global integrable complex structure that is compa-

tible with the quaternionic structure. This shows in particular that quaternionic

Kähler manifolds that are obtained from the HK/QK correspondence can never

be positive definite, of positive scalar curvature and complete.

In Subsection 4.1.1, we apply the HK/QK correspondence to an arbitrary conical

pseudo-hyper-Kähler manifold (M, g, J1, J2, J3, ξ). The real-valued function is

chosen such that the corresponding rotating Killing vector field is J1ξ. Since

M is conical hyper-Kähler, it is locally the Swann bundle over a quaternionic

pseudo-Kähler manifold M̄ . Applying the HK/QK correspondence while leaving

the parameter c ∈ R∗ in the choice of ω1-Hamiltonian function free leads to a

family of quaternionic Kähler metrics which is again defined on M . This family

is locally homothetic to the family of quaternionic Kähler metrics on the Swann

bundle over M̄ defined in [Sw1]. As an example, we consider quaternionic vector

space with the standard positive definite hyper-Kähler metric. For c > 0, the

HK/QK correspondence leads to a chart in quaternionic projective space and

for c < 0, the result is isometric to quaternionic hyperbolic space.

In Section 4.2, we show that if M is obtained from a conical hyper-Kähler ma-

nifold M̂ via an S1-hyper-Kähler quotient with level set P (with non-zero level)

and M ′ ⊂ P is an appropriate codimension one submanifold endowed with the

quaternionic Kähler structure induced from M̂ , then M and M ′ are related by

the HK/QK correspondence. The global consideration of this result gives a re-

verse construction for the HK/QK correspondence (the QK/HK correspondence)

which is a combination of the Swann bundle construction and a hyper-Kähler

quotient (with non-zero level) with respect to the canonical lift of an isometric

S1-action.

In Section 4.3, we show the compatibility of the HK/QK correspondence with

the hyper-Kähler and quaternionic Kähler quotient constructions.

In Section 4.4 we apply the HK/QK correspondence to a chart in T ∗(CP n) and

to the tubular neighborhood of the zero-section in T ∗(CHn) on which we defined

a hyper-Kähler structure via a hyper-Kähler quotient in Section 3.4. As a result,

we obtain families g′c± of quaternionic Kähler metrics on M ′
+ = {(ζ, η) ∈ C2n},
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respectively1 M ′
− = {‖ζ‖2 < 1, r̃2 < 1} ⊂ M ′

+, where c ∈ R≥0 (see Eq. (4.62)).

As an application of the results from Section 4.2, we show that (M ′
+, g

′0
+) is

isometric to2 a chart in (HP )o and that (M ′
−, g

′0
−) is isometric to HHn. As an

application of the results from Section 4.3, we show that (M ′
+, g

′1
+) is isometric to

a chart in a proper subset (X(n))o of the Wolf space X(n) and that (M ′
−, g

′1
−) is

isometric to a proper subset (X̃(n))o of the Wolf space X̃(n). We also give a first

analysis of the case c > 0 and show in particular that while (M ′
−, g

′0
−) ≈ HHn is

complete, (M ′
−, g

′c
−) is incomplete for all c > 0. Furthermore, we give supporting

evidence for our expectation that (M ′
±, g

′c
±) is not locally symmetric for c different

from zero and one.

4.1 The HK/QK correspondence

First, we review the HK/QK correspondence in a form similar to the one pub-

lished in the author’s collaboration [ACDM]:

Let (M, g, J1, J2, J3, f) be a (pseudo-)hyper-Kähler manifold with Kähler forms

ωα := g(Jα · , ·), α = 1, 2, 3, together with a real-valued function f ∈ C∞(M)

such that Z := −ω−1
1 (df) ∈ X(M) is a time-like or space-like J1-holomorphic

Killing vector field satisfying LZJ2 = −2J3.

We assume that σ := sgn f and σ1 := sgn f1 are constant and non-zero, where

f1 := f − g(Z,Z)
2
∈ C∞(M). This can be achieved by restricting M to an open

subset.

Let π : P → M be an S1-principal bundle3 with principal connection η whose

curvature is

dη = π∗(ω1 −
1

2
dβ) ∈ Ω2(P ), (4.1)

where

β := g(Z, ·) ∈ Ω1(M). (4.2)

From now on, we will often drop π∗ when pulling back covariant tensor fields

from M to P .

1r̃ =

√
4(1± ‖ζ‖2)

(
± (ζ · η)(ζ̄ · η̄) + ‖η‖2

)
2(HPn)o = HPn\{[q = z + jw]H∗right | (z, w) ∈ C2n+2\{0}, ‖z‖2 = ‖w‖2, z ·w = 0}, see Eq.

(3.56).
3P exists globally if [ 1

2π (ω1 − 1
2dβ)] = [ 1

2πω1] ∈ H2
dR(M,Z) (see e.g. [Wood, Prop. 8.3.1]).

Otherwise, we restrict M to an open subset.
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We endow P with the (pseudo-)Riemannian metric

gP :=
2

f1

η2 + π∗g ∈ Γ(Sym2 T ∗P ) (4.3)

and with the vector field

ZP
1 := Z̃ + f1XP ∈ X(P ), (4.4)

where Z̃ ∈ Γ(ker η) ⊂ X(P ) denotes the horizontal lift of Z to P and XP denotes

the fundamental vector field of the principal action of P (normalized such that

η(XP ) = 1). Furthermore, we endow P with the following one-forms4:

θP0 :=
1

2
df

θP1 := η +
1

2
β

θP2 :=
1

2
ω3(Z, ·)

θP3 := −1

2
ω2(Z, ·). (4.5)

Let M ′ be a codimension one submanifold of P which is transversal to the

vector field ZP
1 , i.e. TP |M ′ = TM ′ ⊕ RZP

1 . Let

pr
ZP1
TM ′ : TP

∣∣
M ′

= TM ′ ⊕ RZP
1 → TM ′ (4.6)

denote the projection onto the first summand (i.e. the projection onto TM ′ along

ZP
1 ). Define the vector field

X := pr
ZP1
TM ′ ◦XP

∣∣
M ′
∈ X(M ′). (4.7)

For any vector field Y ∈ X(M) on M , we introduce the notation

Y ′ := pr
ZP1
TM ′ ◦ Ỹ

∣∣
M ′
∈ X(M ′). (4.8)

Define Dh := {Z, J1Z, J2Z, J3Z}⊥g ⊂ TM

and D′h := span {Y ′ | Y ∈ Γ(Dh)} ⊂ TM ′. Note that with

D′v := span {X, (J1Z)′, (J2Z)′, (J3Z)′} ⊂ TM ′, (4.9)

4Note that in comparison to [ACDM], we changed the sign of θP0 .
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we have the splitting

TM ′ = D′v ⊕D′h. (4.10)

Using this splitting, we now define an almost hyper-complex structure on M ′:

Proposition 4.1.1 An almost hyper-complex structure (J ′1, J
′
2, J

′
3) on M ′ is

uniquely defined by

J ′αX = − 1

f1

(JαZ)′, J ′α(JβZ)′ = (JγZ)′ (α = 1, 2, 3) (4.11)

and

J ′α(Y ′) = (JαY )′ for all Y ∈ Γ(Dh). (4.12)

Proof : Since Jα preserves Dh, J ′α preserves D′h. It is clear that Eqs. (4.11) and

(4.12) uniquely define three almost complex structures and that they preserve

D′v. The matrices representing J ′1
∣∣
D′v

, J ′2
∣∣
D′v

, J ′3
∣∣
D′v

with respect to the frame

(X, − 1
f1

(J1Z)′, − 1
f1

(J2Z)′, − 1
f1

(J3Z)′) in D′v are given by


0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

 ,


0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0

 ,


0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0

 .

Together with

J ′α1
J ′α2

Y ′ = J ′α1
(Jα2Y )′ = (Jα1Jα2Y )′, (α1, α2 = 1, 2, 3)

for all Y ∈ Γ(Dh), we obtain that (J ′1, J
′
2, J

′
3) fulfill

J ′1J
′
2 = −J ′2J ′1 = J ′3.

The following theorem constitutes the HK/QK correspondence:

Theorem 4.1.2 Let (M, g, J1, J2, J3) be a (pseudo-)hyper-Kähler manifold and

f ∈ C∞(M) such that the assumptions on f and Z := −ω−1
1 (df) stated above are

fulfilled. Choose an S1-bundle P with connection η and a submanifold M ′ ⊂ P

as above. Let

Q := span{J ′1, J ′2, J ′3}, (4.13)
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where J ′1, J
′
2, J

′
3 are given by Proposition 4.1.1. With

g′ :=
1

2|f |
(
gP −

2

f

3∑
a=0

(θPa )2
)∣∣∣
M ′
, (4.14)

(M ′, g′, Q) is a quaternionic pseudo-Kähler manifold.

The signature of g′ is related to sign g = (4k, 4`) as follows:

sign g′ =


(4k − 4, 4`+ 4) if f > 0, f1 < 0

(4k + 4, 4`− 4) if f < 0, f1 > 0

(4k, 4`) if ff1 > 0.

(4.15)

The local Sp(1)-connection one-form with respect to (J ′1, J
′
2, J

′
3) is given

by θ̄ =
∑3

α=1 θ̄αeα, where

θ̄α :=
1

f
θPα

∣∣∣
M ′

(α = 1, 2, 3). (4.16)

Remark 4.1.3 The above relation between the (pseudo-)hyper-Kähler mani-

fold with ω1-Hamiltonian function (M, g, J1, J2, J3, f) and the quaternionic pseudo-

Kähler manifold with Killing vector field5 (M ′, g′, Q,X) is called the HK/QK

correspondence. We say that (M ′, g′, Q,X) is obtained from (M, g, J1, J2, J3, f)

via the HK/QK correspondence with the choices (P, η,M ′) or simply that

(M ′, g′, Q,X) is obtained from (M, g, J1, J2, J3, f, P, η,M
′) via the HK/QK cor-

respondence.

For the proof of the above theorem, we will split the hyper-Kähler metric g

on M according to the splitting TM = Dv ⊕⊥g Dh, where

Dv := spanR{Z, J1Z, J2Z, J3Z} ⊂ TM (4.17)

and Dh = (Dv)⊥g. Define the following one-forms on M :

θ0 :=
1

2
df = −1

2
ω1(Z, ·),

θ1 :=
1

2
β =

1

2
g(Z, ·),

5XP commutes with ZP1 , 1/(2|f |) (gP − 2/f
∑

(θPa )2) ∈ Γ(Sym2 T ∗P ) has kernel RZP1 and

is preservered by XP and ZP1 . Hence, X = pr
ZP

1

TM ′ ◦XP |M ′ preserves g′.
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θ2 :=
1

2
ω3(Z, ·),

θ3 := −1

2
ω2(Z, ·). (4.18)

Proposition 4.1.4 The (pseudo-)hyper-Kähler metric can be written as

g =
4

β(Z)

3∑
a=0

(θa)
2 + ğ, (4.19)

where ğ ∈ Γ(Sym2 T ∗M) is a tensor field that is invariant under Z and has

four-dimensional kernel ker ğ = Dv.

The Kähler forms on M are given by

ωα =
4

β(Z)
(θ0 ∧ θα + θβ ∧ θγ) + ω̆α (4.20)

for every cyclic permutation (α, β, γ) of (1, 2, 3), where

ω̆α := ğ(Jα · , ·) ∈ Ω2(M). (4.21)

Proof :

Since (J1, J2, J3) is hyper-Hermitian, Z, J1Z, J2Z and J3Z are pairwise ortho-

gonal and all have squared norm equal to g(Z,Z) = β(Z). Hence,

ğ = g − 4

β(Z)

3∑
a=0

(θa)
2 = g − 1

g(Z,Z)

(
(Z[)2 + (J1Z

[)2 + (J2Z
[)2 + (J3Z

[)2
)

has ker ğ = Dv.

Since Z is Killing and fulfills LZJ2 = −2J3, we have LZ(β(Z)) = 0 and

LZθ0 = 0, LZθ1 = 0, LZθ2 = −2θ3, LZθ3 = 2θ2. (4.22)

This implies

LZ ğ = LZ

(
g − 4

β(Z)

3∑
a=0

(θa)
2

)
= 0. (4.23)
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Eq. (4.20) follows directly from Eq. (4.19) and

J∗αθ0 = −θα, J∗αθβ = −θγ. (4.24)

Proof (of Theorem 4.1.2 for dimRM > 4):

From the definition of g′ (see Eq. (4.14)) and the splitting of the hyper-Kähler

metric g in Eq. (4.19), we get

g′ =
1

2|f |

( 2

f1

η2 + π∗g − 2

f

3∑
a=0

(θPa )2
)∣∣∣

M ′

=
1

2|f |

( 2

f1

η2 +
4

β(Z)

(
(θP0 )2 + (θP1 − η)2 + (θP2 )2 + (θP3 )2

)
+ π∗ğ − 2

f

3∑
a=0

(θPa )2
)∣∣∣

M ′

=
1

2|f |

( 4f1

fβ(Z)

(
(θP0 )2 + (θP1 −

f

f1

η)2 + (θP2 )2 + (θP3 )2
)

+ π∗ğ
)∣∣∣

M ′

= λσσ1

3∑
a=0

(θ′a)
2 +

1

2|f |
π∗ğ
∣∣
M ′
, (4.25)

where

θ′0 :=
1

|f |

√∣∣∣∣ 2f1

β(Z)

∣∣∣∣ θP0 ∣∣M ′ , θ′1 :=
1

|f |

√∣∣∣∣ 2f1

β(Z)

∣∣∣∣ (θP1 − f

f1

η)
∣∣
M ′
,

θ′2 :=
1

|f |

√∣∣∣∣ 2f1

β(Z)

∣∣∣∣ θP2 ∣∣M ′ , θ′3 :=
1

|f |

√∣∣∣∣ 2f1

β(Z)

∣∣∣∣ θP3 ∣∣M ′ (4.26)

are one-forms on M ′ and

λ := sgn β(Z), σ = sgn f, σ1 = sgn f1. (4.27)

Note that ZP
1 lies in the kernel of θP0 , θP1 −f/f1 η, θP2 , θP3 and π∗ğ. Consequently,

the splitting of g′ given in Eq. (4.25) corresponds to the splitting TM ′ = D′v⊕D′h

defined in the proof of Proposition 4.1.1, i.e. the first summand is non-degenerate

on D′v and has kernel D′h, while the second summand is non-degenerate on D′h

and has kernel D′v. Eq. (4.25) thus implies that the signature of g′ is given by

Eq. (4.15) and in particular, it shows that g′ in non-degenerate.
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Now, we want to show that

ω′α := g′(J ′α · , ·) =
σ

2
(dθ̄α − 2θ̄β ∧ θ̄γ) (α = 1, 2, 3). (4.28)

Lemma 4.1.5

dθPα = π∗ωα (α = 1,2,3). (4.29)

Proof : For θP1 , this follows from the definition of the curvature of η (see Eq.

(4.1)). For θP2 and θP3 , this is obtained from LZω3 = 2ω2 and LZω2 = −2ω3

respectively, e.g.:

2dθP2 = d(ιZω3)
dωα=0

= LZω3 = 2ω2.

Since (J ′1, J
′
2, J

′
3) (see Proposition 4.1.1) agrees with (J1, J2, J3) on D′h,

π∗ğ
∣∣
M ′

(J ′α · , ·) = π∗(ğ(Jα · , ·))
∣∣
M ′

= π∗ω̆
∣∣
M ′
.

On D′v, (X, J ′1X, J
′
2X, J

′
3X) are pairwise orthogonal with respect to

∑3
a=0(θ′a)

2

and fulfill

θ′0(J ′1X) = −θ′1(X) = −θ′2(J ′3X) = θ′3(J ′2X) =
λσ1

|f |

√∣∣∣∣β(Z)

2f1

∣∣∣∣ 6= 0.

Using the fact that (J ′1, J
′
2, J

′
3) is an almost hyper-complex structure, this implies

J ′α
∗
θ′0 = −θ′α, J ′α

∗
θ′β = −θ′γ. (4.30)

In total, we have

ω′α = λσσ1(θ′0 ∧ θ′α + θ′β ∧ θ′γ) +
1

2|f |
π∗ω̆α

∣∣
M ′

(α = 1, 2, 3). (4.31)

This is equal to

σ

2
(dθ̄α − 2θ̄β ∧ θ̄γ)

(4.16)
=

(4.29)

( 1

2|f |
π∗ωα −

σ

2f 2
df︸︷︷︸
2θP0

∧θPα −
σ

f 2
θPβ ∧ θPγ

)∣∣∣
M ′

(4.20)
=
( 1

2|f |
π∗ω̆α +

2

|f | β(Z)
π∗(θ0 ∧ θα + θβ ∧ θγ)−

σ

f 2
(θP0 ∧ θPα + θPβ ∧ θPγ )

)∣∣∣
M ′

=
1

2|f |
π∗ω̆α

∣∣
M ′

+ λσσ1(θ′0 ∧ θ′α + θ′β ∧ θ′γ)
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(4.31)
= ω′α

and shows Eq. (4.28). In the second to last equality, we used θPa = π∗θa for

a = 0, 2, 3 and( 2

|f | β(Z)
π∗θ1 −

σ

f 2
θP1

)∣∣∣
M ′

=
( 2

|f | β(Z)
(θP1 − η)− σ

f 2
θP1

)∣∣∣
M ′

=
( 1

|f |
2f1

f β(Z)

(
θP1 −

f

f1

η
))∣∣∣

M ′
= λσσ1

1

|f |

√∣∣∣∣ 2f1

β(Z)

∣∣∣∣θ′1. (4.32)

Eq. (4.28) shows that Q is compatible with g′ and implies

dω′α = σ(θ̄β ∧ dθ̄γ − θ̄γ ∧ dθ̄β) = 2(θ̄β ∧ ω′γ − θ̄γ ∧ ω′β). (4.33)

Together with Corollary 2.1.9, this finishes the proof for dimRM > 4.

Proof (of Theorem 4.1.2 for dimRM = 4):

The four-dimensional case can be deduced from the higher-dimensional case as

follows6:

Assume that dimRM = 4. Let M0 := H be endowed with the standard hyper-

Kähler structure (g0, J
0
1 , J

0
2 , J

0
3 ) that was defined in Example 3.1.7, i.e.

g0 = dzdz̄ + dwdw̄ and ω0
+ = dz ∧ dw in complex coordinates (z, w) defined

by q = z + jw ∈ H. Let f 0 := ww̄ ∈ C∞(M0). This defines a J0
1 -holomorphic

vector field

Z0 := −(ω0
1)−1(df) = 2i(w∂w − w̄∂w̄)

that fulfills LZ0J0
2 = −2J0

3 and f 0
1 := f 0 − 1

2
g0(Z0, Z0) = −ww̄. Then

ηM0
0 := 1

2
Im(z̄dz − w̄dw) fulfills dηM0

0 = ω0
1 − 1

2
d(ιZ0g0).

We consider (M̃ := M × H, g̃ := g + g0, f̃ := f + f 0) together with the pro-

duct hyper-complex structure (J̃1, J̃2, J̃3). Let Ũ ⊂ M̃ be a neighborhood of

M = M × {0} ⊂ M̃ , such that the signs of f̃ , f̃1 := f1 + f 0
1 and f̃ − f̃1

restricted to Ũ are constant. Then the restriction of the above data from M̃ to Ũ

fulfills the assumptions of the HK/QK correspondence. The restriction of P ×H
defines an S1-bundle P̃ over Ũ with connection η̃ = (η + ηM0

0 )
∣∣
P̃

. The HK/QK

correspondence with the choices (P̃, η̃, M̃ ′ := M ′×H) then defines a quaternionic

Kähler structure (g̃′, Q̃) on the 8-dimensional manifold M̃ ′. M ′ = M ′×{0} ⊂ M̃ ′

is a quaternionic submanifold and, hence (M ′, g̃′
∣∣
M ′
, Q̃
∣∣
M ′

) is quaternionic Kähler

by Proposition 2.1.11. The globally defined Sp(1)-connection one-form on M̃ ′

6This idea is taken from [MS2, Cor. 4.2.].
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P,XP , Z
P
1

M,Z M̄, X̄

S̄1
(ZP1 )

S1
(XP )

HK/QK cor.

Figure 4.1: HK/QK correspondence (global version).

obtained from the HK/QK-correspondence restricts to θ̄ ∈ Ω1(M ′, so(3)) on M ′,

which in particular shows that (g̃′
∣∣
M ′
, Q̃
∣∣
M ′

) = (g′, Q).

Remark 4.1.6 Note that if ZP
1 induces a free S1-action (denoted by S̄1) on P

and if M ′ ⊂ P intersects each S̄1-orbit at most once, then M ′ defines a section

σ̄ : U → P , σ̄(U) = M ′, of π̄ : P → M̄ := P/S̄1 over U := π̄(M ′) ⊂ M̄ . M ′ can

be identified with U via σ̄. The geometric data defined on such submanifolds

U ⊂ M̄ under this identification via the HK/QK correspondence patches to-

gether to a quaternionic (pseudo-)Kähler structure (ḡ, Q̄) on M̄ together with a

Killing vector field X̄ ∈ X(M̄) (see Figure 4.1). In this situation we also say that

(M̄, ḡ, Q̄, X̄) is obtained from the HK/QK correspondence. The quaternionic

Kähler moment map µX̄ associated with M̄ is nowhere vanishing on M̄ and thus

defines a global integrable complex structure J̄ := J̄1 := − 1√
‖µX̄‖2

µX̄ ∈ Γ(M̄, Q̄)

on M̄ that is compatible with Q̄. The sign is chosen such that J̄ locally corres-

ponds to the complex structure J ′1 on M ′ (see Proposition 4.1.9 below).

Remark 4.1.7 Using the well-known result by Alekseevsky [A1] that

ν

2
ω′α = dθ̄α − 2θ̄β ∧ θ̄γ, (4.34)

we obtain from Eq. (4.28) that the reduced scalar curvature of any quaternionic

(pseudo-)Kähler manifold (M ′, g′) obtained from the HK/QK correspondence is

ν =
scal

4n(n+ 2)
= 4σ (dimM ′ = 4n). (4.35)

Remark 4.1.8 Note that the HK/QK correspondence can also be applied if we

drop the assumption that g(Z,Z) is non-vanishing. The above procedure then

gives a manifold M ′ together with a tensor field g′ ∈ Γ(Sym2 T ∗M ′). We believe

that also in this situation, it is possible to show that (M ′, g′) is quaternionic

pseudo-Kähler with globally defined fundamental two-forms

ω′α :=
σ

2
(dθ̄α − 2θ̄β ∧ θ̄γ), θ̄ := (f−1θPα )

∣∣
M ′
.



80 Chapter 4. The Hyper-Kähler/quaternionic Kähler correspondence

Proposition 4.1.9 Let (M ′, g′, Q = spanR{J ′1, J ′2, J ′3}, X) be a quaternionic

(pseudo-)Kähler manifold with Killing vector field that is obtained via the

HK/QK correspondence from a hyper-Kähler manifold with function f . Then

the quaternionic Kähler moment map on M ′ associated with X is

µX = − 1
2|f |

∣∣
M ′
J ′1 ∈ Γ(M ′, Q).

Proof : Recall that Q is defined by globally defined fundamental two-forms

ω′α =
σ

2
(dθ̄α − 2θ̄β ∧ θ̄γ), θ̄α =

1

f
θPα
∣∣
M ′
.

Let a ∈ C∞(P ) such that (XP − aZP
1 )
∣∣
M ′
∈ Γ(TM ′). Then the Killing vector

field on (M ′, g′) is given by X = (XP − aZP
1 )
∣∣
M ′

. Note that

(ιX θ̄α)α=1, 2, 3 =
(
(f−1 − a)

∣∣
M ′
, 0, 0

)
and

ιXdθ̄α
(4.29)
=
(
− f−2df ∧ θPα + f−1π∗ωα

)∣∣
M ′

(X, ·)

=
(
f−2θPα (XP − aZP

1 )df − af−1π∗(ιZωα)
)∣∣∣

M ′

=


(
f−2(1− af)df + f−1df

)∣∣
M ′

= f−2df
∣∣
M ′

(α = 1)

2af−1θP3
∣∣
M ′

= 2a
∣∣
M ′
θ̄3 (α = 2)

−2af−1θP2
∣∣
M ′

= −2a
∣∣
M ′
θ̄2 (α = 3).

From this, we obtain

(LX θ̄α = dιX θ̄α + ιXdθ̄α)α=1, 2, 3 =
(
− da

∣∣
M ′
, 2a

∣∣
M ′
θ̄3, − 2a

∣∣
M ′
θ̄2

)
.

This implies (LXω
′
α)α=1, 2, 3 = (0, 2a

∣∣
M ′
ω′3, − 2a

∣∣
M ′
ω′2). From

LXω
′
α

(2.20)
= (νµXβ + 2θ̄β(X))ω′γ − (νµXγ + 2θ̄γ(X))ω′β

and ν = 4σ (see Remark 4.1.7), we then obtain that the components of the

quaternionic Kähler moment map associated with X with respect to the frame

(J ′1, J
′
2, J

′
3) in Q are given by

(µXα )α=1, 2, 3 =
(
− 1

2|f |

∣∣∣
M ′
, 0, 0

)
.
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4.1.1 HK/QK correspondence for conical hyper-Kähler

manifolds

Let (M, g, J1, J2, J3, ξ) be a conical (pseudo-)hyper-Kähler manifold. Similarly to

Eq. (3.27), one checks that J1ξ is a J1-holomorphic Killing vector field satisfying

LJ1ξω2 = −2ω3.

For c ∈ R∗, we choose f = λ
2
(r2 + c), where r2 = |g(ξ, ξ)| and λ = sgn g(ξ, ξ).

Then Z = −ω−1
1 (df) = J1ξ and f1 = f − 1

2
g(Z,Z) = λ

2
c. Note that for c < 0, we

have to restrict M to M
(c)
> = {r2 + c > 0} ⊂M or to M

(c)
< = {r2 + c < 0} ⊂M

to fulfill the assumption on the sign of f . For simplicity, we will not write this

restriction explicitly in the following.

We consider the trivial S1-bundle π = pr1 : P = M × S1 → M , endowed with

the flat principal connection η = ds ∈ Ω1(P ), where s is the natural coordinate

on S1 = {eis | s ∈ R}. Note that with the notations from Section 3.2 (with σ

replaced by λ), β = g(Z, ·) = λr2θ1 = 2λθ̂1 and hence dη = 0
(3.14)
= ω1 − 1

2
dβ.

The one-forms on P are given by

θP0 =
1

2
df =

λ

2
rdr,

θP1 = η +
1

2
β = ds+ λ

r2

2
θ1 = ds+ λθ̂1,

θP2 =
1

2
ω3(J1ξ,·) = λ

r2

2
θ2 = λθ̂2,

θP3 = −1

2
ω2(J1ξ,·) = λ

r2

2
θ3 = λθ̂3.

The metric and Killing vector field on P are given by (using θ0 := 1
r
dr)

gP =
2

f1

η2 + g
(3.19)
=

4λ

c
ds2 + r2(λ

3∑
a=0

(θa)
2 + ğ), ZP

1 = Z̃ + f1XP = J1ξ + λ
c

2
∂s.

Here, ğ is the horizontal part of the conical pseudo-hyper-Kähler metric (see

Lemma 3.2.4). We choose the ZP
1 -transversal submanifold

M ′ = M × {1} = {s = 0} ⊂ P.

The quaternionic pseudo-Kähler metric g′ onM ′ ≈M obtained from the HK/QK
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correspondence is then (σ = sgn f)

g′ =
1

2|f |
(
gP −

2

f

3∑
a=0

(θPa )2
)∣∣∣
M ′

=
σr2

r2 + c

(
λc

r2 + c

3∑
a=0

(θa)
2 + ğ

)

=
σ

r2 + c
g − σλ r4

(r2 + c)2

3∑
a=0

(θa)
2. (4.36)

Remark 4.1.10 Note that for c→∞ the quaternionic pseudo-Kähler metrics

cg′ = σcg′ on M converge to the original conical pseudo-hyper-Kähler metric g

on M . For c→ −∞, the metrics σcg′ on M
(c)
< converge to the original metric g

on M .

Remark 4.1.11 IfM is the Swann bundle over a quaternionic (pseudo-)Kähler

manifold M̄ , then the two-parameter family of quaternionic Kähler metrics σ
p
g′

on M ′ with the replacements c 7→ q and r2 7→ pr2, p, q ∈ R∗, is identical to the

metric g1 in [Sw1, Theorem 3.5] (note that the constant c in [Sw1] is related to

the reduced scalar ν of M̄ by c = ν/4). The original conical pseudo-hyper-Kähler

metric on M is recovered from g1 by setting p = 0, q = 1.

Example 4.1.12 Let M = Hn be endowed with the standard flat conical7

hyper-Kähler structure of positive definite signature and with the complex co-

ordinates (zµ, wµ)µ=1, ..., n defined by q = z + jw ∈ M (see Examples 3.1.7 and

3.2.10). For the current example, the metric obtained from Eq. (4.36) reads

g′ =
σ

c+ ‖z‖2 + ‖w‖2

n∑
µ=1

(dzµdz̄µ + dwµdw̄µ)

− σ
∣∣∑n

µ=1(z̄µdzµ + w̄µdwµ)
∣∣2 +

∣∣∑n
µ=1(zµdwµ − wµdzµ)

∣∣2
(c+ ‖z‖2 + ‖w‖2)2

. (4.37)

For c > 0 (σ = +1), (M, g′) is isometric to the chart {q0 6= 0} ⊂ HP n (see Eqs.

(2.15) or (3.26)). For c < 0, (M
(c)
< , g′) is complete and isometric to HHn (recall

that σ = −1 on M
(c)
< = {c + ‖z‖2 + ‖w‖2 < 0} ⊂ M). Up to restriction of the

7To be precise, Hn is not conical and does not fulfill all assumptions of the HK/QK cor-
respondence since g(ξ, ξ) = g(Z,Z) vanishes at the origin. Nevertheless, we can apply the
HK/QK correspondence (see Remark 4.1.8) and we see that, in this example, the result is still
quaternionic Kähler.
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M̂

P

M M ′

///
P
S1

(X̂)

⊃
⊃

⊃
S1

(X̂|P )

HK/QK corresp.

Figure 4.2: Relation between the HK/QK correspondence, the hyper-Kähler quotient
construction and the construction of quaternionic Kähler manifolds as submanifolds
of conical hyper-Kähler manifolds (see Theorem 4.2.1).

respective manifolds this establishes the following HK/QK correspondence:

(
Hn, f = (r2 + c)/2

) HK/QK cor.7−→
(c 6=0)

HP n (c > 0)

HHn (c < 0).

4.2 Reverse construction (QK/HK correspon-

dence)

In the following theorem, we show that if M is obtained from a conical hyper-

Kähler manifold M̂ via an S1-hyper-Kähler quotient with level set P and M ′ ⊂ P

is a codimension one submanifold transversal to Ĵ1ξ
∣∣
P

endowed with the quater-

nionic Kähler structure induced from M̂ , then M and M ′ are related by the

HK/QK correspondence (see Figure 4.2). It is important that P is taken with

respect to a non-zero level of the homogeneous hyper-Kähler moment map.

Theorem 4.2.1 Let (M̂, ĝ, Ĵ1, Ĵ2, Ĵ3, ξ, X̂) be a conical (pseudo-)hyper-Kähler

manifold endowed with a space- or time-like tri-holomorphic Killing vector field

X̂ that commutes with the Euler vector field ξ and induces a free S1-action on

M̂ .

Assume that the level set P := {µ̂X̂ = (−σ, 0, 0)} (σ = sgn ĝ(ξ, ξ)) of the homoge-

neous hyper-Kähler moment map µ̂X̂ associated with X̂ is non-empty. Consider

the hyper-Kähler quotient M̂///
P
S1

(X̂)
= (M := P/S1

(X̂|P )
, g, J1, J2, J3) and define a

function f ∈ C∞(M) by p∗f = ĝ(ξ, ξ)
2

∣∣
P

, where p : P →M denotes the projection.

Assume that λ := sgn
(
ĝ(ξ, ξ)− 4

ĝ(X̂, X̂)

)∣∣
P

is constant and non-zero.

Then (M, g, J1, J2, J3, f) fulfills the assumptions of the HK/QK correspondence.

Choose a codimension one submanifold M ′ ⊂ P transversal to Ĵ1ξ
∣∣
P

. Let
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(M ′, g′, Q = spanR{J ′1, J ′2, J ′3}) be the quaternionic pseudo-Kähler manifold ob-

tained from the HK/QK correspondence with the choices (P, η := σ ĝ(X̂, ·)
ĝ(X̂, X̂)

∣∣
P
,M ′).

Then g′, J ′1, J
′
2, J

′
3 are identical to the data on M ′ induced from M̂ by Theorem

3.2.6.

Proof : P is an S1-principal bundle over M , p : P → M , with fundamental

vector field8 XP := σX̂|P ∈ X(P ).

η = σ
ĝ(X̂, ·)
ĝ(X̂, X̂)

∣∣∣∣∣
P

∈ Ω1(P ) (4.38)

defined an S1-principal conncetion on P , i.e. η(XP ) = 1, LXP η = 0. The func-

tions ĝ(ξ, ξ)/2
∣∣
P

and 2/ĝ(X̂, X̂)
∣∣
P

are XP -invariant, so they define functions

f, f1 ∈ C∞(M) via

p∗f =
ĝ(ξ, ξ)

2

∣∣∣
P
, p∗f1 =

2

ĝ(X̂, X̂)

∣∣∣
P
. (4.39)

The vector field Ẑ := Ĵ1ξ is tangent to P and commutes with X̂, so ZP
1 := Ĵ1ξ|P

induces a vector field Z ∈ X(M).

Recall that the Kähler forms ω1, ω2, ω3 on the hyper-Kähler quotient M are

defined by

p∗ωα = ω̂α
∣∣
P
, α = 1, 2, 3.

Since Ẑ is Ĵ1-holomorphic, Killing and fulfills LẐ Ĵ2 = −2Ĵ3, we have LẐω̂1 = 0,

LẐω̂2 = −2ω̂3 and LẐω̂3 = 2ω̂2. This implies LZω1 = 0, LZω2 = −2ω3 and

LZω3 = 2ω2, from which we conclude that

LZg = 0, LZJ1 = 0, LZJ2 = −2J3, (4.40)

i.e. Z is a J1-holomorphic Killing vector field that rotates J2 and J3. Since

Ẑ = Ĵ1ξ is tangent to P , we have

p∗df =
1

2
d(ĝ(ξ, ξ))

∣∣
P

(3.16)
= ĝ(ξ, ·)

∣∣∣
P

= −ω̂1(Ĵ1ξ, ·)
∣∣∣
P

= −ω̂1

∣∣
P

(Ẑ|P , ·) = −(p∗ω1)(ZP
1 , ·) = −(p∗ω1)(Z̃, ·),

8The extra sign σ is purely conventional and chosen to match the definitions in Chapter 4.
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where Z̃ ∈ Γ(ker η) denotes the horizontal lift of Z ∈ X(M) to P . This implies

df = −ω1(Z, ·), (4.41)

i.e. −f is a ω1-Hamiltonian function for Z. By our assumptions, sgn f = σ and

σ1 := sgn f1 = sgn ĝ(X̂, X̂) are constant and non-zero.

The metric g on M is related to the metric gP := ĝ|P by

gP =
( 1

ĝ(X̂, X̂)
(ĝ(X̂, ·))2

)∣∣∣
P

+ p∗g =
2

p∗f1

η2 + p∗g. (4.42)

Splitting ZP
1 into horizontal and vertical part, one gets ZP

1 = Z̃ + aXP , where

a = η(ZP
1 ) = σ

ĝ(X̂, Ĵ1ξ)

ĝ(X̂, X̂)

∣∣∣∣∣
P

=
−2σµ̂X̂1

ĝ(X̂, X̂)

∣∣∣∣∣
P

=
2

ĝ(X̂, X̂)

∣∣∣∣∣
P

= p∗f1,

i.e.

ZP
1 = Z̃ + (p∗f1)XP . (4.43)

Since

p∗f =
1

2
gP (ZP

1 , Z
P
1 )

(4.42)
=

(4.43)

1

2
(p∗g)(Z̃, Z̃) + p∗f1,

we get

f1 = f − 1

2
β(Z), (4.44)

where β := g(Z, ·). Note that

p∗(g(Z,Z)) = 2p∗(f − f1) =
(
ĝ(ξ, ξ)− 4

ĝ(X̂, X̂)

)∣∣∣
P
, (4.45)

i.e. Z ∈ X(M) is space- or time-like by assumption. p∗β ∈ Ω1(P ) can be

expressed as follows:

p∗β = (p∗g)(Z̃, ·) = gP (Z̃, ·) = gP (ZP
1 − (p∗f1)XP , ·)

= ĝ(Ĵ1ξ, ·)
∣∣∣
P
− 2σ

ĝ(X̂, X̂)
ĝ(X̂, ·)

∣∣∣
P
.
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Together with the fact that ω̂1
(3.14)
= 1

2
d
(
ĝ(Ĵ1ξ, ·)

)
, this allows us to calculate the

curvature of the principal connection η on P as follows:

dη = σd
( ĝ(X̂, ·)
ĝ(X̂, X̂)

)∣∣∣
P

=
1

2
d
(
ĝ(Ĵ1ξ, ·)

)∣∣∣
P
− 1

2
d
(
ĝ(Ĵ1ξ, ·)−

2σĝ(X̂, ·)
ĝ(X̂, X̂)

)∣∣∣
P

= ω̂1

∣∣
P
− 1

2
dp∗β = p∗(ω1 −

1

2
dβ). (4.46)

In total, we have shown that (M, g, J1, J2, J3, f) fulfills the assumptions of the

HK/QK correspondence and that (P, η,M ′) is a valid choice of S1-bundle with

principal connection and codimension one submanifold.

Define θP0 := 1
2
p∗df = 1

2
ĝ(ξ, ·)

∣∣
P

and θPα := 1
2
ĝ(Ĵαξ, ·)

∣∣
P

. Then

θP1 =
1

2
ĝ(Ẑ, ·)

∣∣
P

=
1

2
gP (ZP

1 , ·) =
1

2
gP (Z̃+f1XP , ·) = η+

1

2
(p∗g)(Z̃, ·) = η+

1

2
p∗β,

θP2 =
1

2
ω̂3(Ẑ, ·)

∣∣
P

=
1

2
(p∗ω3)(ZP

1 , ·) =
1

2
(p∗ω3)(Z̃, ·) =

1

2
p∗(ιZω3)

and similarly, θP3 = −1
2
p∗(ιZω2), i.e. the definitions here (and in Section 3.3)

agree with the ones from Chapter 4. Recall that the geometric data g′, J ′1, J
′
2, J

′
3

on M ′ defined by the HK/QK correspondence is uniquely determined by the

components

θ̄α :=
( 1

p∗f
θPα

)∣∣∣
M ′
∈ Ω1(M ′)

of the Sp(1)-connection one-form. The data induced from M̂ by Theorem 3.2.6 is

also uniquely determined by the components of the Sp(1)-connection one-form.

In this case, these are given by

θα
∣∣
M ′

=
( 1

ĝ(ξ, ξ)
ĝ(Ĵαξ, ·)

)∣∣∣
M ′

=
( 1

p∗f
θPα

)∣∣∣
M ′

= θ̄α.

This proves the theorem.

Remark 4.2.2 Note that in the above theorem, we can drop the assumption

that λ is constant and non-zero, i.e. we can allow g(Z,Z) to vanish. In this case,

we can still apply the HK/QK correspondence (see Remark 4.1.8) and Theorem

3.2.6 then shows that the result is still quaternionic pseudo-Kähler.

Example 4.2.3 Let c ∈ R∗. For c > 0, we consider M̂+ = Hn+1\{0}
and for c < 0, we consider M̂− = Hn, 1

<0 . We endow M̂± with the standard
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conical (pseudo-)hyper-Kähler structure (see Example 3.2.10) and with the tri-

holomorphic Killing vector field

X̂ =
4

|c|
Im(w0∂w0 − z0∂z0)

(see Ex. 3.4.6). We use the notation q̂ = (q0, q = (q1, . . . , qn)) = ẑ + jŵ ∈ M̂±.

The level set P± = {µX̂ = (∓1, 0, 0)} of the homogeneous hyper-Kähler moment

map associated with X̂ reads

P± = {q̂ = ẑ + jŵ ∈ M̂± | |z0|2 = |c|, w0 = 0}

(see Example 3.4.6). The hyper-Kähler quotient M̂±///P±S
1
(X̂)

is isomorphic to

M± = {q ∈ Hn | ∓‖q‖2 < |c|} ⊂ Hn (i.e. M+ = Hn). The function f ∈ C∞(M±)

induced by ĝ(ξ, ξ)/2 reads f = c+‖q‖2
2

. Similarly to Example 3.2.10, the quater-

nionic Kähler structure on M ′
± := {q̂ ∈ P± | q0 =

√
|c|} ≈ M± induced from

M̂± via Theorem 3.2.6 is isomorphic to the chart {q0 6= 0} ⊂ HP n and to HHn,

respectively. Theorem 4.2.1 then establishes the following HK/QK correspon-

dence9:

Hn+1
>0

Hn {q0 6= 0} ⊂ HP n

///
P+
S1

(q0) ⊃
f=(‖q‖2+c)/2

(c>0)

HK/QK cor.
,

Hn, 1
<0

Hn
<|c| HHn

///
P−
S1

(q0)

⊃

f=(‖q‖2+c)/2

(c<0)

HK/QK cor.
.

This example for the HK/QK correspondence was already constructed in a direct

way in Example 4.1.12.

For our purposes of studying examples, the relation between conical pseudo-

hyper-Kähler manifolds and the HK/QK correspondence given in Theorem 4.2.1

is sufficient. For a more global understanding and to do the title of this sec-

tion justice, we consider the situation where the conical pseudo-hyper-Kähler

manifold is a Swann bundle for the rest of the section.

Remark 4.2.4 If in the above theorem, (M̂, ĝ, Ĵ1, Ĵ2, Ĵ3, ξ), π̂ : M̂ → M̄ is the

9To be precise, Hn does not fulfill all assumptions of the HK/QK correspondence since
ĝ(ξ, ξ) − 4

ĝ(X̂, X̂)
vanishes at {q̂ = (q0, q) ∈ P± | q = 0}. Nevertheless, we can apply the

HK/QK correspondence (see Remark 4.2.2) and we see that, in this example, the result is still
quaternionic Kähler.
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Swann bundle over a quaternionic (pseudo-)Kähler manifold (M̄, ḡ, Q) and X̂

the unique lift of a Killing vector field X ∈ X(M̄) given by Corollary 3.6.9, then

the assumption that X̂ is space- or time-like is equivalent to the assumption that

σ1 := sgn(ḡ(X,X) + ν‖µX‖2) is constant and non-zero, where µX ∈ Γ(Q) is the

quaternionic Kähler moment map associated with X (see Proposition 3.6.10).

In this situation, ZP
1 induces a free S1-action on P and P/ZP

1 is diffeomorphic

to M̄ o := M̄\{µX = 0} (see Remark 3.3.5).

Proposition 4.2.5 Let (M̄, ḡ, Q,X) be a quaternionic (pseudo-)Kähler mani-

fold with a Killing vector field and (M̂, ĝ, Ĵ1, Ĵ2, Ĵ3, ξ), π̂ : M̂ → M̄ the Swann

bundle over M̄ and assume that the unique lift X̂ ∈ X(M̂) of X given by

Corollary 3.6.9 is space- or time-like and induces a free S1-action on M̂ . Let

Z ∈ X(M) denote the vector field induced by Ĵ1ξ on the hyper-Kähler quotient

(M := P/S1, g, J1, J2, J3) with level set P = {µ̂X̂ = (−σ, 0, 0)} (σ = sgn ĝ(ξ, ξ))

of the homogeneous hyper-Kähler moment map µ̂X̂ associated with X̂. If

p : P →M denotes the projection, then

π̂
(
p−1({g(Z,Z) = 0})

)
= {ḡ(X,X) = 0} ⊂ M̄. (4.47)

Proof : Note that due to the requirement that X̂ is space- or time-like, ḡ(X,X)

and µX cannot vanish simultaneously. Together with (3.103) and the fact that

1 = ‖µ̂X̂‖2
∣∣
P

=
ν2r4

16
π̂∗‖µX‖2

∣∣
P
,

Equation (4.45) implies

p∗(g(Z,Z)) = σ r2π̂∗
( ḡ(X,X)

ḡ(X,X) + ν‖µX‖2

)∣∣∣
P
.

The following obvious corollary allows for the global understanding of Theorem

4.2.1 in the following Remark 4.2.7.

Corollary 4.2.6 Let (M̄, ḡ, Q,X) be a connected quaternionic (pseudo-)Kähler

manifold endowed with a space- or time-like Killing vector field X such that

σ1 := sgn(ḡ(X,X) + ν‖µX‖2) is constant and non-zero, where µX ∈ Γ(Q) is

the quaternionic Kähler moment map associated with X. Let (M̂, ĝ, Ĵ1, Ĵ2, Ĵ3, ξ)

be the Swann bundle over M̄ and σ := sgn ν the sign of the scalar curvature

of ḡ. Assume that the unique lift X̂ ∈ X(M̂) of X given by Corollary 3.6.9
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induces a free S1-action on M̂ . Consider the hyper-Kähler-quotient

M̂///
P
S1 = (M := P/S1, g, J1, J2, J3) with respect to the level set

P := {µ̂X̂ = (−σ, 0, 0)} of the homogeneous hyper-Kähler moment map µ̂X̂

associated with X̂ and define a function f ∈ C∞(M) by p∗f = ĝ(ξ, ξ)
2

∣∣∣
P

, where

p : P →M = P/S1 denotes the projection.

Then (M, g, J1, J2, J3, f) fulfills the assumptions of the HK/QK correspondence.

Let M ′ ⊂ P be a codimension one submanifold that intersects each (R>0×SO(3))-

orbit in M̂ at most once, U := π̂(M ′). Let (M ′, g′, Q′, X ′) be the quaternionic

pseudo-Kähler manifold with Killing vector field obtained from (M, g, J1, J2, J3, f)

via the HK/QK correspondence with the choices (P, η := σ ĝ(X̂, ·)
ĝ(X̂, X̂)

∣∣∣
P
,M ′). Then

(M, g′, Q′, X ′) is isomorphic to (U, |ν|
4
g
∣∣
U
, Q
∣∣
U
, σX

∣∣
U

).

Proof : (M̂, ĝ, Ĵ1, Ĵ2, Ĵ3, ξ) is a conical (pseudo-)hyper-Kähler manifold. By

Remark 4.2.4, the assumption that σ1 is constant and non-zero implies that X̂

is space- or time-like. By construction, X̂ is tri-holomorphic and Killing and

it commutes with ξ. Note that since M̂ is a Swann bundle, P is automati-

cally non-empty. Otherwise, µX = 0 everywhere on M̄ (see Remark 3.3.5),

which would imply X = 0 and thus contradicts the assumption that σ1 is non-

zero. The assumption that sgn ḡ(X,X) is constant and non-zero implies that

λ = sgn
(
ĝ(ξ, ξ) − 4

ĝ(X̂, X̂)

)∣∣
P

(4.45)
= sgn p∗(g(Z,Z)) is constant and non-zero (see

Proposition 4.2.5). Hence, we can apply Theorem 4.2.1.

By Theorem 4.2.1, (M, g, J1, J2, J3, f) fulfills the assumptions of the HK/QK

correspondence. The submanifold M ′ ⊂ P is transversal to Ĵ1ξ
∣∣
P

. According to

Theorem 4.2.1, g′, Q′ = spanR{J ′1, J ′2, J ′3} is the geometric data on M ′ induced

from M̂ via Theorem 3.2.6. By Proposition 3.6.5, this agrees with |ν|
4
g
∣∣
U
, Q
∣∣
U

on U ⊂ M̄ . The vector field X ′ on M ′ is induced by XP = σX̂
∣∣
P

(see the proof

of Theorem 4.2.1 and the definition of X ′ in Eq. (4.7)) and thus corresponds to

σX
∣∣
U

.

Remark 4.2.7 Note that in the situation of the above corollary,

π̂
∣∣
P

: P → M̄ o := M̄\{µX = 0}

is an S1-principle bundle, i.e. from the HK/QK correspondence, we globally

recover (M̄ o, ḡ
∣∣
M̄o , Q

∣∣
M̄o , σX

∣∣
M̄o), while the zero level-set of the quaternionic

Kähler moment map associated with X can not be reconstructed (see Figure

4.3, where M̂ o := π̂−1(M̄ o)).
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M̂ o

P

M M̄ o

///
P
S1

(X̂)

⊃

CO(3) = R>0 × SO(3)

S1
(X̂|P )

S̄1
(Ĵ1ξ|P )

HK/QK corresp.

Figure 4.3: Relation between the HK/QK correspondence, the hyper-Kähler quotient
construction and the Swann bundle construction (see Remark 4.2.7).

Remark 4.2.8 Note that in the above corollary, we can drop the assumption

that g(X,X) is non-vanishing. The condition on g(X,X)+ν‖µX‖2 ensures that

the lifted vector field X̂ is space- or time-like. In this case, we can still apply the

HK/QK correspondence (see Remark 4.1.8 and Proposition 4.2.5) and since we

started with a quaternionic (pseudo-)Kähler manifold, we know that the result

is quaternionic (pseudo-)Kähler.

4.3 Compatibility of the HK/QK correspondence

with quotient constructions

In the following theorem, we show the compatibility of the HK/QK correspon-

dence with the (level zero) hyper-Kähler and the quaternionic Kähler quotient

constructions in the situation of Theorem 4.2.1 (see Figure 4.4 for an illustra-

tion).

Theorem 4.3.1 In the situation of Theorem 4.2.1, let G be a compact con-

nected Lie group that acts on M̂ , preserving ĝ, Ĵ1, Ĵ2, Ĵ3, ξ, X̂ and such that

ĝ is non-degenerate along the G-orbits and along the (S1 × G)-orbits. As-

sume that S1 × G acts freely on M̂ , where S1 is the action induced by X̂

and assume that M ′ is G-invariant. Let κ̂ denote the homogeneous hyper-

Kähler moment map for the G-action on M̂ and let κ denote the induced hyper-

Kähler moment map for the G-action on M . Consider the hyper-Kähler quotient

M///{κ=0}G = (M, g,
¯
J1,

¯
J2,

¯
J3). Let f ∈ C∞(M) be induced by ĝ(ξ, ξ)

2
∈ C∞(M̂).

Then (M, g,
¯
J1,

¯
J2,

¯
J3, f) and the quaternionic pseudo-Kähler manifold M ′///G

are related via the HK/QK correspondence.
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M̂

P

M M ′

M̂

P

M M ′

///
P
S1

(X̂)

⊃

⊃
S1

(X̂|P )

///
P
S1

(X̂)

⊃

⊃
S1

(X̂|P )

HK/QK corresp.

///HK
{κ=0}G ///QKG

///HK
{κ̂=0}G

Figure 4.4: Compatibility of the HK/QK correspondence with the hyper-Kähler and
quaternionic Kähler quotient constructions.

Proof : The codimension four submanifoldM ′ ⊂ M̂ is transversal to the vertical

distribution Dv = spanR{ξ, Ĵ1ξ, Ĵ2ξ, Ĵ3ξ} (see the proof of Proposition 3.3.4). By

Theorem 3.5.4, the hyper-Kähler quotient M̂///{κ̂=0}G = (M̂, ĝ,
¯
Ĵ1,

¯
Ĵ2,

¯
Ĵ3) together

with the induced vector field ξ is conical pseudo-hyper-Kähler and the quater-

nionic Kähler structure on the quaternionic Kähler quotient

M ′///G = (M ′, g′, Q = spanR{¯J
′
1,¯
J ′2,¯

J ′3}) is identical to the one induced from M̂

on the codimension four submanifold M ′ ⊂ M̂ . The vector field X̂ ∈ X(M̂) in-

duces a tri-holomorphic Killing vector field X̂ ∈ X(M̂) that commutes with ξ. By

Theorem 4.2.1, the hyper-Kähler quotient of M̂ with level set10

P = {µ̂X̂ = (−σ, 0, 0)} with respect to the S1-action induced by X̂ (denoted

by S1) is related to M ′///G via the HK/QK correspondence. The corresponding

function needed in the HK/QK correspondence is induced by ĝ(ξ, ξ)/2, which

itself is induced by ĝ(ξ, ξ)/2. According to Proposition 3.4.9 and Remark 3.4.10,

M̂///
P
S1 can be identified with M///{κ=0}G = (M, g,

¯
J1,

¯
J2,

¯
J3).

Remark 4.3.2 Note that the HK/QK correspondence given in the above theo-

rem is performed with the choices P = (P ∩ {κ̂ = 0})/G, η = σ
ĝ(X̂, ·)
ĝ(X̂, X̂)

∈ Ω1(P )

(which is induced by η) and M ′ = (M ′ ∩ {κ̂ = 0})/G ⊂ P .

Remark 4.3.3 As always, the assumptions in the above theorem that ensure

the smoothness of the respective quotients can be relaxed (see Remark 3.4.5).

10Here, the R3-valued function µ̂X̂ on M̂ is the homogeneous hyper-Kähler moment map

associated with X̂.
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4.4 HK/QK correspondence for T ∗CP n and T ∗CHn

Recall that for Hermitian symmetric spaces of compact type, there exists a com-

plete hyper-Kähler metric on the cotangent bundle [BiGau]. In the non-compact

case, the metric is incomplete and only defined on a certain neighborhood of the

zero section in the cotangent bundle [BiGau]. The S1-action on the (holomor-

phic) cotangent bundle given by fiberwise scalar multiplication of eit ∈ S1 fulfills

the assumptions of the HK/QK correspondence, i.e. the fundamental vector field

Z generating it is a rotating J1-holomorphic Killing vector field.

In this section, we apply the HK/QK correspondence to the chart

T ∗({z0 6= 0}) ⊂ T ∗CP n and to the neighborhood {r̃2 < 1} ⊂ T ∗CHn of the

zero section. The hyper-Kähler structure for these two examples has been con-

structed by a hyper-Kähler quotient from quaternionic vector space with positive,

respectively quaternionic Lorentzian signature in Example 3.4.7.

Let

M+ = {(ζ, η) ∈ C2n} ≈ 11 {[z, w]C∗ | z0 6= 0, z · w = 0}
⊂ {[z, w]C∗ | z ∈ Cn+1\{0}, w ∈ Cn+1, z · w = 0} ≈ T ∗CP n (4.48)

and

M− = {r̃2 < 1, ‖ζ‖2 < 1} ⊂ {(ζ, η) ∈ C2n | ‖ζ‖2 < 1} = T ∗CHn, (4.49)

where

r̃ :=

√
4(1± ‖ζ‖2)

(
± (ζ · η)(ζ̄ · η̄) + ‖η‖2

)
. (4.50)

Let J1 be the standard complex structure on M− ⊂ M+ = C2n such that (ζ, η)

are J1-holomorphic coordinates. We define a hyper-Kähler structure

(g(±), J1, J
(±)
2 , J

(±)
3 ) on M± by ω+ = ω2 + iω3 =

∑n
µ=1 dζ

µ ∧ dηµ and

ω
(±)
1 = i

2
∂J1 ∂̄J1K±, where

K± := ±
√

1± r̃2 ∓ log

(
1 +
√

1± r̃2

1± ‖ζ‖2

)
(4.51)

(see Example 3.4.7).

Now, we apply the HK/QK correspondence to (M±, g
(±), J1, J

(±)
2 , J

(±)
3 , f (±)),

11C∗-action on C2n+2: (z, w) 7→ (λz, λ−1w), λ ∈ C∗.
Biholomorphism: ζ = ( z

1

z0 , . . . ,
zn

z0 ), η = (z0w1, . . . , z
0wn).
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where

f (±) := ±
√

1± r̃2 + c

2
(4.52)

for some c ∈ R. The vector field

Z := 2i
n∑
µ=1

(
ηµ

∂

∂ηµ
− η̄µ

∂

∂η̄µ

)
(4.53)

is induced by the J1-holomorphic and isometric action (ζ, η) 7→ (ζ, e2itη) of

eit ∈ S1 on M±. Under this action, ω+ 7→ e2itω+ and hence LZω2 = −2ω3. A

direct calculation gives

−ω(±)
1 (Z, ·) = 2

1± ‖ζ‖2

√
1± r̃2

n∑
µ=1

Re
(
η̄µAµ ± (ζ̄ · η̄) ζµAµ

)
(4.54)

=
1

4

1√
1± r̃2

d(r̃2) = df (±),

where for µ = 1, . . . , n,

Aµ := dηµ ±
1

1± ‖ζ‖2

n∑
σ=1

(ζ̄µησ + ζ̄σηµ)dζσ ∈ Ω
(1,0)
J1

(M±). (4.55)

We have

β = g(±)(Z, ·) = dcJ1
f (±) = −J∗1df (±)

= 2
1± ‖ζ‖2

√
1± r̃2

n∑
µ=1

Im
(
η̄µAµ ± (ζ̄ · η̄) ζµAµ

)
, (4.56)

β(Z) = g(±)(Z,Z) = r̃2
√

1±r̃2 and

f
(±)
1 = ±1

2

(
1√

1± r̃2
+ c

)
. (4.57)

For f and f1 to be non-zero everywhere on M±, we assume that c ≥ 0. For Z

to be non-zero everywhere on M±, we would need to restrict to {r̃ > 0}, but

we can apply the HK/QK correspondence without this restriction (see Remark

4.1.8).

We endow the trivial S1-principal bundle π = pr1 : P := M± × S1 → M± with
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the principal connection η = ds+ ηM , where

ηM =
1

4
dcJ1

(K± − 2f (±)) =
1

4
dcJ1

(∓ log ρ 2
± ) = ∓ 1

2ρ±
dcJ1

ρ±, (4.58)

ρ± :=

√
1

2

1 +
√

1± r̃2

1± ‖ζ‖2
. (4.59)

Here, s is the natural coordinate on S1 = {eis | s ∈ R}. The principal curvature

is then

dη =
1

4
ddcJ1

K± −
1

2
ddcJ1

f (±) = ω
(±)
1 − 1

2
dβ.

The one-forms on P defined in Eq. (4.5) read

θP0 =
1

2
df (±) = ±d

√
1± r̃2

4
,

θP1 = η +
1

2
dβ = ds+

1

4
dcJ1

K±,

θP2 =
1

2
ω3(Z, ·) = −

n∑
µ=1

Re(ηµdζ
µ),

θP3 = −1

2
ω2(Z, ·) = −

n∑
µ=1

Im(ηµdζ
µ).

The (pseudo-)Riemannian metric on P is given by

gP =
2

f
(±)
1

η2 + g(±) (3.76)
= ± 4

√
1± r̃2

1 + c
√

1± r̃2
(ds∓ 1

2ρ±
dcJ1

ρ±)2

+
n∑
µ=1

(ρ 2
± dζ

µdζ̄µ + ρ−2
± dηµdη̄µ)

± ρ−2
±
∣∣d( n∑

µ=1

ζµηµ
)∣∣2 ∓ 4ρ−2

±
√

1± r̃2 |∂J1ρ±|2 (4.60)

and the Killing vector field reads

ZP
1 = ± 1 + c

2

∂

∂s
+ 2i

n∑
µ=1

(
ηµ

∂

∂ηµ
− η̄µ

∂

∂η̄µ

)
. (4.61)

Since c 6= −1, we can choose M ′
± = {0}×M± = {s = 0} ⊂ P as a ZP

1 -transversal
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submanifold. According to Theorem 4.1.2,

g′c± =
1

c+
√

1± r̃2

(
∓ ρ−2

±
√

1± r̃2 (dρ±)2 ∓ 1± r̃2

1 + c
√

1± r̃2
cρ−2
± (dcJ1

ρ±)2

+
n∑
µ=1

(ρ 2
± dζ

µdζ̄µ + ρ−2
± dηµdη̄µ)± ρ−2

±
∣∣d( n∑

µ=1

ζµηµ
)∣∣2 (4.62)

∓ 1

c+
√

1± r̃2

(
4
∣∣ n∑
µ=1

ηµdζ
µ
∣∣2 +

1

4

(
d
√

1± r̃2
)2

+
1

4

(
dcJ1

K±
)2
))

is a positive definite quaternionic Kähler metric of positive, respectively negative

scalar curvature on M ′
± ≈M±.

Proposition 4.4.1 (M ′
−, g

′
−) is incomplete for c > 0.

Proof : Consider the curve γ : (0, 1)→M−,

ζ1 = . . . = ζn = 0, η1 =
t

2
, η2 = . . . = ηn = 0, 0 < t < 1,

which approaches the boundary {r̃2 = 1} of M− for t→ 1. Its length `γ is given

by

∫ 1

0

√
1

4
g′−

( ∂

∂η1

+
∂

∂η̄1

,
∂

∂η1

+
∂

∂η̄1

) ∣∣∣∣∣
γ(t)

dt

=

∫ 1

0

√√√√ 1

c+
√

1− t2

(
2
√

1− t2

1 +
√

1− t2
( d
dt

√
1 +
√

1− t2
2

)2

+
1

2

1

1 +
√

1− t2
+

1

4

(
d
dt

√
1− t2

)2

c+
√

1− t2

)
dt

Here, we used that dc(t) = dc(η1 + η̄1) = 0. Denote the three summands under

the square root in the above integral by a, b and c. Then

`γ =

∫ 1

0

√
a+ b + c dt ≤

∫ 1

0

(
√

a +
√

b +
√

c) dt,

where ∫ 1

0

√
a dt ≤ 1

2

∫ 1

0

t√
1− t2

1

1 +
√

1− t2
dt = −1

2
log(1 +

√
1− t2)

∣∣∣1
0
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=
1

2
log 2 <∞,

∫ 1

0

√
b dt ≤ 1√

2

∫ 1

0

1√
1− t2

dt =
1√
2

arcsin t
∣∣∣1
0

=
1√
2

π

2
<∞,

∫ 1

0

√
c dt =

1

2

∫ 1

0

1

c+
√

1− t2
t√

1− t2
dt = −1

2
log(c+

√
1− t2)

∣∣∣1
0

=
1

2
log(1 +

1

c
)

(c>0)
< ∞.

This shows that `γ is finite and consequently that (M ′
−, g

′
−) is incomplete.

Remark 4.4.2 Note that in the above proof the length of γ fulfills

`γ ≥
1

2

∫ 1

0

1

c+
√

1− t2
t√

1− t2
dt = −1

2
log(c+

√
1− t2)

∣∣∣1
0
.

For c = 0, the above integral diverges. In fact, we will see in the next subsection

that for c = 0, (M ′
−, g

′
−) is isometric to HHn and hence complete.

4.4.1 c = 0

The case c = 0 can be analyzed using the reverse construction of the HK/QK

correspondence given in Theorem 4.2.1.

Proposition 4.4.3 For c = 0, the quaternionic Kähler manifold (M ′
+, g

′
+) is

isometric to the chart {q0 6= 0} in12 (HP n)o and (M ′
−, g

′
−) is isometric to HHn.

Proof : This proposition can be proven by applying Theorem 4.2.1 to

M̂+ = Hn+1
>0 , respectively M̂− = Hn, 1

<0 , endowed with the Killing vector field

X̂ induced by diagonal left-multiplication of eit ∈ S1 (scaled by a factor of two)

with the choices M ′
+ and M ′

− as submanifolds of P±. This has essentially al-

ready been done in Example 3.3.6 and Remarks 3.3.7 and 3.3.8. The result was

summarized in Corollary 3.3.9 and Remark 3.3.10.

Note that M ′
+ and M ′

− can be identified with the manifolds M+ = {(ζ, η) ∈ C2n}
and M− = {(ζ, η) ∈ C2n | r̃2 < 1, ‖ζ‖2 < 1}. It is enough to check that the

metric given in Eq. (4.62) agrees with Eqs. (3.68) and (3.67) for c = 0.

12(HPn)o = HPn\{[q = z + jw]H∗right | (z, w) ∈ C2n+2\{0}, ‖z‖2 = ‖w‖2, z ·w = 0}, see Eq.

(3.56).
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(Hn+2
>0 )o

Hn+1
>0 (HP n+1)o

T ∗CP n (X(n))o

///
{zn+2=0, |wn+2|2=1}

S1
(qn+2) H∗

HK/QK corresp.

f= 1+
√

1+r̃2

2

///HK
{λ=1, χ=0}S

1
(diag.)

///QKS1
(diag.)

.

Figure 4.5: Analysis of the HK/QK correspondence for T ∗CPn with parame-
ter c = 1 using the compatibility of the correspondence with quotient construc-
tions. Here, (Hn+2

>0 )o = {q̂ = (q, qn+2) ∈ Hn+2 | q 6= 0, qn+2 6= 0} and
(HPn+1)o = (Hn+2

>0 )o/H∗, (X(n))o = (HPn+1)o///S1
(diag.)

denote the subsets of HPn+1,

respectively X(n) = SU(n+ 2)/S(U(2)× U(n)) corresponding to (Hn+2
>0 )o.

Remark 4.4.4 Patching the charts together in the case of T ∗CP n, the above

proposition gives the following HK/QK correspondences:

(Hn+1
>0 )o

T ∗CP n (HP n)o

///{λ=1, χ=0}S
1
(diag.) H∗

f=
√

1+r̃2/2

HK/QK cor. ,

Hn, 1
<0

{r̃2 < 1} ⊂ T ∗CHn HHn

///{λ=−1, χ=0}S
1
(diag.) H∗

f=−
√

1−r̃2/2

HK/QK cor. .

Here, the superscript o refers to the removal of the zero level set of the quater-

nionic Kähler, respectively homogeneous hyper-Kähler moment map associated

with the S1-action defined by diagonal left-multiplication on quaternionic vector

space, e.g.

(Hn+1
>0 )o = Hn+1\{q = z + jw ∈ Hn+1 | ‖z‖ = ‖w‖, 〈z, w̄〉 = 0}.

4.4.2 c = 1

The case c = 1 can be analyzed using the compatibility of the HK/QK correspon-

dence with the hyper- and quaternionic Kähler quotient constructions (Theorem

4.3.1). The result of this analysis is summarized in Figures 4.5 and 4.6, and in

Proposition 4.4.5.
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(Hn, 2
<0 )o

Hn, 1
<0 (HHn, 1)o

{r̃2 < 1} ⊂ T ∗CHn (X̃(n))o

///
{zn+2=0, |wn+2|2=1}

S1
(qn+2) H∗

HK/QK corresp.

f=− 1+
√

1−r̃2
2

///HK
{λ=−1, χ=0}S

1
(diag.)

///QKS1
(diag.)

.

Figure 4.6: Analysis of the HK/QK correspondence for T ∗CHn with parame-
ter c = 1 using the compatibility of the correspondence with quotient construc-
tions. Here, (Hn, 2

<0 )o := {q̂ = (q, qn+2) ∈ Hn, 2 | 〈q, q〉
(n, 1)

< 0, qn+2 6= 0} and

(HHn, 1)o = (Hn, 2
<0 )o/H∗, (X̃(n))o = (HHn, 1)o///S1

(diag.)
denote the subsets of HHn, 1,

respectively X̃(n) = SU(n, 2)/S(U(n)× U(2)) corresponding to (Hn, 2
<0 )o.

We consider the chart M̂+ := {qn+1 6= 0} in

(Hn+2
>0 )o := {q̂ = ẑ + jŵ = (q, qn+2) ∈ Hn+2 | q 6= 0, qn+2 6= 0} ⊂ Hn+2

>0

and

M̂− := (Hn, 2
<0 )o := {q̂ = (q, qn+2) ∈ Hn, 2 | 〈q, q〉

(n, 1)
< 0, qn+2 6= 0} ⊂ Hn, 2

<0 ,

where q = (q1, . . . , qn+1) denotes a row vector consisting of the first n+1 standard

quaternionic coordinates on M̂±. We endow M̂± with the standard conical

(pseudo-) hyper-Kähler structure (ĝ, Ĵ1, Ĵ2, Ĵ3, ξ) (see Example 3.2.10), where in

the case of M̂−, ĝ is chosen negative definite in the direction of qn+1 and qn+2.

We endow M̂± with the vector fields

X̂ = −2i
(
zn+2 ∂

∂zn+2
− wn+2

∂

∂wn+2

− z̄n+2 ∂

∂z̄n+2
+ w̄n+2

∂

∂w̄n+2

)
(4.63)

and

Ŷ = 2i
n+2∑
a=1

(
za

∂

∂za
− wa

∂

∂wa
− z̄a ∂

∂z̄a
+ w̄a

∂

∂w̄a

)
. (4.64)

Note that the submanifold M̂± ⊂ Hn+2 is chosen such that σĝ
∣∣
spanR(X̂, Ŷ )

is

positive definite, where σ = +1 for the case M̂+ and σ = −1 for the case M̂−.
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The vector field Ŷ induces a free S1-action on M̂± that we denote by G = S1
(Ŷ )

:

eit · (q, qn+2) = (eitq, eitqn+2).

The vector field X̂ induces a free S1-action on M̂± that we denote by S1
(X̂)

:

eit · (q, qn+2) = (q, e−itqn+2).

S1
(X̂)

and S1
(Ŷ )

commute and the action of S1
(X̂)
× S1

(Ŷ )
on M̂± is free.

To use Theorem 4.3.1, we study the following diagram:

M̂±

P± M̂
(±)
0

M± M̂± M ′
±

P±

M± M ′
±

///
P±
S1

(X̂)
⊃

⊃
⊃

S1
(X̂|P )

S1
(Ŷ |

M̂0
)

⊃

⊃
S1

(X̂|P± )

HK/QK corresp.

///HK

{κY =0}
S1

(Y ) ///QKS1
(Y ′)

. (4.65)

The level set P± := {µ̂X̂ = (−σ, 0, 0)} ⊂ M̂± of the homogeneous hyper-Kähler

moment map associated with X̂ reads

P± = {(±(|zn+2|2 − |wn+2|2), Re(∓2izn+2wn+2), Im(∓2izn+2wn+2) = (∓1, 0, 0)}
= {zn+2 = 0, |wn+2|2 = 1} ⊂ M̂± (4.66)

(compare Example 3.4.6). We identify the hyper-Kähler quotient M̂±///P±S
1

(X̂)

with the global section

M± := {(q, qn+2) ∈ M̂± | zn+2 = 0, wn+2 = 1} ≈

Hn+1
>0 (+)

Hn, 1
<0 (−)

(4.67)
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in the S1-bundle P±. The vector field Y induced on M± by Ŷ reads

Y = 2i
n+1∑
I=1

(
zI

∂

∂zI
− wI

∂

∂wI
− z̄I ∂

∂z̄I
+ w̄I

∂

∂w̄I

)
(4.68)

and the corresponding hyper-Kähler moment map κY induced by the homoge-

neous hyper-Kähler moment map κ̂Ŷ on M̂± associated with Ŷ reads

κY = κ̂Ŷ
∣∣∣
M±⊂M̂±

=
(
∓ (|zn+2|2 − |wn+2|2)− 〈z, z〉+ 〈w,w〉,

Re(2i(zn+2wn+2 + 〈z, w̄〉)),

Im(2i(zn+2wn+2 + 〈z, w̄〉))
)∣∣∣
{zn+2=0, wn+2=1}⊂M̂±

=
(
± 1− 〈z, z〉+ 〈w,w〉, Re(2i〈z, w̄〉), Im(2i〈z, w̄〉)

)
(4.69)

(compare Example 3.4.7). Here and in the following, we use the notation from

Example 3.4.7 with the index 0 replaced by n+ 1. The level set {κY = 0} ⊂M±

then reads

{κY = 0} = {λ = ±1, χ = 0} ⊂M±,

where

λ = 〈z, z〉 − 〈w,w〉 = ±(|zn+1|2 − |wn+1|2) +
n∑
µ=1

(|zµ|2 − |wµ|2),

χ = 〈z, w̄〉 = ±zn+1wn+1 +
n∑
µ=1

zµwµ.

In Example 3.4.7 and Remark 3.4.8, we showed that the resulting hyper-Kähler

quotient M± := M±///{κY =0}
S1

(Y ) is isomorphic to the chart T ∗({zn+1 6= 0}) in

T ∗CP n, respectively to {r̃2 < 1} ⊂ T ∗CHn. In terms of the complex coordinates

on M± defined by (ζµ = ((zn+1)−1zµ, ηµ = zn+1wµ)µ=1, ..., n, M± is given by the

manifolds defined in Eqs. (4.48) and (4.49), and endowed with the hyper-Kähler

structure defined by ω+ = ω2+iω3 =
∑n

µ=1 dζ
µ∧dηµ and by the Kähler potential

for the first Kähler form given in Eq. 4.51.

It remains to check that the Hamiltonian function f in Theorem 4.3.1 is the

same as the one chosen in the beginning of this section when we directly applied

the HK/QK correspondence to T ∗CP n and to T ∗CHn. The function f on M±
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is induced by

ĝ(ξ, ξ)

2

∣∣∣
{κY =0}⊂M±⊂M̂±

=
1

2

(
± |zn+2|2 ± |wn+2|2 + 〈z, z〉+ 〈w,w〉

)∣∣∣
{κY =0}⊂M±⊂M̂±

=
1

2
(±1− λ+ 2〈z, z〉)

∣∣∣
{κY =0}⊂{zn+2=0, wn+2=1}⊂M̂±

=
1

2
(±1∓ 1 + 2ρ±

2(±1 + ‖ζ‖2))
∣∣∣
{λ=±1, χ=0, zn+2=0, wn+2=1}

= ±1 +
√

1± r̃2

2
, (4.70)

which agrees with the Hamiltonian function chosen in Eq. (4.52) for the choice

of parameter c = 1 (see Eqs. (4.50) and (4.59) for the definition of r̃ and ρ±).

To study the quaternionic Kähler (i.e. right) side of the diagram in Eq. (4.65),

we choose the Ĵ1ξ
∣∣
P±

-transversal codimension one submanifold

M ′
± = M± = {zn+2 = 0, wn+2 = 1} ⊂ P± ⊂ M̂± (4.71)

in the level set P±. Together with the quaternionic (pseudo-)Kähler structure

induced from M̂± via Theorem 3.2.6, M ′
± is isomorphic to the chart {qn+1 6= 0}

in13

(HP n+1)o := (Hn+2
>0 )o/H∗, (4.72)

respectively to

(HHn, 1)o := (Hn, 2
<0 )o/H∗. (4.73)

The latter can be shown similarly to Example 3.2.10 (compare Example 2.1.15

and Remark 2.1.16).

For simplicity, we chose M ′
± equal to M±. Note that technically, M ′

± does not

fulfill the assumptions of Theorem 4.3.1, since it is not S1
(Ŷ )

-invariant. Using the

right-multiplication of H∗ on M̂±, we can however identify M ′
± with a Ĵ1ξ

∣∣
P±

-

transversal codimension one submanifold in P± that is S1
(Ŷ )

-invariant.

The S1-action on M ′
± induced by Ŷ is just the one given by diagonal left mul-

tiplication of eit ∈ S1 on quaternionic vector space. Let Y ′ ∈ X(M ′
±) de-

note the corresponding Killing vector field. The quaternionic Kähler quotient

M ′
± = M ′

±///{κY =0}
S1

(Y ′) is then isomorphic to the chart {qn+1 6= 0} in

(X(n))o := (HP n+1)o///S1
(diag.)

⊂ X(n), (4.74)

13Note that although we use the same notation, the subset (HPn+1)o of quaternionic pro-
jective space is different from the one defined in the last subsection.
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respectively to

(X̃(n))o := (HHn, 1)o///S1
(diag.)

⊂ X̃(n) (4.75)

(see Example 2.2.10).

Further analysis of the diagram in Eq. (4.65) shows that the choices of S1-bundle

P± with connection η and submanifold M ′
± ⊂ P± in Theorem 4.3.1 agree with

the choices made for c = 1 in the beginning of this section when we directly

applied the HK/QK correspondence to T ∗CP n and to {r̃2 < 1} ⊂ T ∗CHn.

Applying Theorem 4.3.1 for G = S1
(Ŷ )

now gives the following result:

Proposition 4.4.5 The manifolds given in Eqs. (4.48) and (4.49), endowed

with the metric given in Eq. (4.62) are, for c = 1, isometric to

{qn+1 6= 0} ⊂ (X(n))o and to (X̃(n))o, respectively.

The following final remark is in agreement with the fact that the quaternionic

Kähler metric obtained from a direct application of the HK/QK correspondence

to {r̃ < 1} ⊂ T ∗CHn in the beginning of this section is incomplete at the

boundary {r̃ = 1} for positive parameter c > 0 (see Proposition 4.4.1).

Remark 4.4.6 Note that (X̃(n))o is a proper subset of X̃(n) and, hence, in-

complete:

For q̂ = ẑ + jŵ = (0, . . . , 0, 1√
2
, 0) + j(0, . . . , 1√

2
, 0, 1) ∈ Hn, 2, we have

〈q̂, q̂〉
(n, 2)

= −1 < 0, 〈ẑ, ¯̂w〉
(n, 2)

= 0 and 〈ẑ, ẑ〉
(n, 2)

= 〈ŵ, ŵ〉
(n, 2)

, i.e. q̂ is in the level

set of the quaternionic Kähler moment map, but q̂ /∈ (Hn, 2
<0 )o since 〈q, q〉

(n, 1)
= 0.

4.4.3 c > 0

Note that in the general case c > 0, the local geometry of (M ′
±, g

′c
±) can also

be analyzed using the idea of Theorem 4.3.1 with local hyper- and quaternionic

Kähler quotients. For this, one has to replace the vector fields X̂, Ŷ in the above

subsection by

X̂c = −2i

c

(
zn+2 ∂

∂zn+2
− wn+2

∂

∂wn+2

− z̄n+2 ∂

∂z̄n+2
+ w̄n+2

∂

∂w̄n+2

)
(4.76)

and

Ŷ c = −X̂ + 2i
n+1∑
I=1

(
zI

∂

∂zI
− wI

∂

∂wI
− z̄I ∂

∂z̄I
+ w̄I

∂

∂w̄I

)
(4.77)
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for c > 0. For c irrational, the integral curves of Ŷ c do not close. Neverthe-

less, we can consider local hyper-Kähler and quaternionic Kähler quotients by

taking codimension one submanifolds in the level sets of the respective moment

maps that are transversal to the Killing vector field. Let Ȳ c denote the vector

field on (HP n+1)o, respectively (HHn, 1)o induced by Ŷ c. Using a local version

of Theorem 4.3.1 one can show that (M ′
±, g

′c
±) is locally isometric to the local

quaternionic Kähler quotients (HP n+1)o///Ȳ c, respectively (HHn, 1)o///Ȳ c.

Remark 4.4.7 Assume that c ∈ R>0 is rational. Let p,q ∈ N be coprime and

such that c = p
q
. The S1-action induced by X̂c remains unchanged and Ŷ c still

induces the following free S1-action on M̂±:

eit · (q, qn+2) = (eiptq, eiqtqn+2), eit ∈ S1.

Note that for c 6= 1, the action of S1
(X̂c)
×S1

(Ŷ c)
on M̂± is not free anymore. It has

the following isotropy group at every point:

Zp = {(eit, eit̃) ∈ S1
(X̂) × S1

(Ŷ ) | t =
2πk

p
, t̃ =

2πkq

p
, k = 0, . . . ,p− 1}.

[G1, GL] consider the quaternionic Kähler quotient of HP n+1 with respect to

the S1-action induced by Ȳ c for the case c ≥ 1 (i.e. p ≥ q) and show that for

c > 1, HP n+1///S1
(Ȳ c) is a compact Riemannian orbifold whose smooth part is not

locally symmetric for c > 1.

Remark 4.4.8 Note that for c → ∞, cg′± converges to the original hyper-

Kähler metric g± on M±. According to [G1], the convergence is uniform in three

derivatives.
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Chapter 5

HK/QK correspondence for the

c-map

In this chapter1, we use the explicit formula for the metric given in Theorem

4.1.2 to show that the pseudo-hyper-Kähler structure on the cotangent bundle

of a conical affine special Kähler manifold given by the rigid c-map is related

to the quaternionic Kähler metric obtained from the supergravity c-map via the

HK/QK correspondence. In fact, we get a one-parameter family of positive de-

finite quaternionic Kähler metrics, which corresponds to one-loop corrections of

the hypermultiplet moduli space in string theory compactifications on Calabi-

Yau 3-folds (if the corresponding model is realized in string theory). As a corol-

lary, this proves that the Ferrara-Sabharwal metric and its one-loop deformation

are indeed quaternionic Kähler.

In Section 5.5, we derive the Sp(1)-connection one-form and the fundamental

two-forms for the one-loop deformed Ferrara-Sabharwal metric with respect to

the almost hypercomplex structure (J ′1, J
′
2, J

′
3) obtained from the HK/QK corres-

pondence. We also derive a holomorphic coordinate system for J ′1, which as a

corollary of the HK/QK correspondence is a globally defined compatible complex

structure.

1Apart from Section 5.5, this chapter is identical to Section 4 of [ACDM] up to minor
changes.
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5.1 Conical affine and projective special Kähler

geometry

First, we recall the definitions of conical affine and projective special Kähler

manifolds [ACD, CM]:

Definition 5.1.1 A conical affine special Kähler manifold

(M, gM , J,∇, ξ) is a pseudo-Kähler manifold (M, gM , J) endowed with a flat tor-

sionfree connection ∇ and a vector field ξ such that

i) ∇ωM = 0, where ωM := gM(J · , ·) is the Kähler form,

ii) (∇XJ)Y = (∇Y J)X for all X, Y ∈ X(M),

iii) ∇ξ = Dξ = Id, where D is the Levi-Civita connection,

iv) gM is positive definite on D = span{ξ, Jξ} and negative definite on D⊥.

Let (M, gM , J,∇, ξ) be a conical affine special Kähler manifold of complex di-

mension n + 1. Then ξ and Jξ are commuting holomorphic vector fields that

are homothetic and Killing respectively [CM]. We assume that the holomorphic

Killing vector field Jξ induces a free S1-action and that the holomorphic homo-

thety ξ induces a free R>0-action on M . Then (M, gM) is a metric cone over

(S, gS), where S := {p ∈ M | gM(ξ|p, ξ|p) = 1} ⊂ M , gS := gM
∣∣
S
; and −gS

induces a Riemannian metric gM̄ on M̄ := S/S1
Jξ. (M̄, −gM̄) is obtained from

(M, g, J) via a Kähler reduction with respect to Jξ and, hence, gM̄ is a Kähler

metric (see e.g. [CHM]). The corresponding Kähler form ωM̄ is obtained from

ωM by symplectic reduction. This determines the complex structure JM̄ .

Definition 5.1.2 The Kähler manifold (M̄, gM̄ , JM̄) is called a projective

special Kähler manifold.

More precisely, S is a Lorentzian Sasakian manifold and introducing the radial

coordinate r :=
√
g(ξ, ξ), we can write the metric on M as [BC, MSY]

gM = dr2 + r2π∗gS, gS = gM |S = η̃ ⊗ η̃|S − π̄∗gM̄ , (5.1)

where

η̃ :=
1

r2
gM(Jξ, ·) = dc log r = i(∂ − ∂) log r (5.2)
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is the contact one-form when restricted to S and π : M → S = M/R>0
ξ ,

π̄ : S → M̄ = S/S1
Jξ are the canonical projection maps. From now on, we

will drop π∗ and π̄∗ and identify, e.g., gM̄ with a (0,2) tensor field on M that has

the distribution D = span{ξ, Jξ} as its kernel and is invariant under ξ and Jξ.

Locally, there exist so-called conical special holomorphic coordinates

z = (zI) = (z0, . . . , zn) : U
∼→ Ũ ⊂ Cn+1 such that the geometric data on

the domain U ⊂ M is encoded in a holomorphic function F : Ũ → C that is

homogeneous of degree 2 [ACD, CM]. Namely, we have [CM]

gM
∣∣
U

=
∑
I, J

NIJdz
Idz̄J , NIJ(z, z̄) := 2ImFIJ(z) := 2Im

∂2F (z)

∂zI∂zJ

(I, J = 0, . . . , n) and ξ
∣∣
U

=
∑
zI ∂

∂zI
+ z̄I ∂

∂z̄I
. The Kähler potential for gM

∣∣
U

is

given by r2
∣∣
U

= gM(ξ, ξ)
∣∣
U

=
∑
zINIJ z̄

J .

The C∗-invariant functions Xµ := zµ

z0 , µ = 1, . . . , n, define a local holomorphic

coordinate system on M̄ . The Kähler potential for gM̄ is

K := − log
∑n

I, J=0 X
INIJ(X)X̄J , where X := (X0, . . . , Xn) with X0 := 1.

5.2 The rigid c-map

Now, we introduce the rigid c-map, which assigns to each affine special

(pseudo-)Kähler manifold (M, gM , J,∇) and in particular to any conical affine

special Kähler manifold (M, gM , J,∇, ξ) of real dimension 2n + 2 a (pseudo-)

hyper-Kähler manifold (N = T ∗M, gN , J1, J2, J3) of dimension 4n + 4 [CFG,

ACD].

From now on, we assume for simplicity that (M ⊂ Cn+1, gM , J = Jcan,∇, ξ) is

a conical affine special Kähler manifold that is globally described by a homoge-

neous holomorphic function F of degree two defined on a C∗-invariant domain

M in standard holomorphic coordinates z = (zI) = (z0, . . . , zn) induced from

Cn+1. Here, Jcan denotes the standard complex structure induced from Cn+1.

The real coordinates

(qa)a=1, ..., 2n+2 := (xI , yJ)I, J=0, ..., n := (Re zI ,ReFJ(z) := Re
∂F (z)

∂zJ
)

on M are ∇-affine and fulfill ωM = −2
∑
dxI ∧ dyI , where ωM = g(J · , ·) is the

Kähler form onM [CM]. We consider the cotangent bundle πN : N := T ∗M →M
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and introduce real functions (pa) := (ζ̃I , ζ
J) onN such that together with (π∗Nq

a),

they form a system of canonical coordinates.

Proposition 5.2.1 In the above coordinates (zI , pa), the hyper-Kähler struc-

ture on N = T ∗M obtained from the rigid c-map is given by

gN =
∑

dzINIJdz̄
J +

∑
AIN

IJĀJ , (5.3)

ω1 =
i

2

∑
NIJdz

I ∧ dz̄J +
i

2

∑
N IJAI ∧ ĀJ , (5.4)

ω2 = − i
2

∑
(dz̄I ∧ ĀI − dzI ∧ AI), (5.5)

ω3 =
1

2

∑
(dzI ∧ AI + dz̄I ∧ ĀI), (5.6)

where AI := dζ̃I +
∑

J FIJ(z)dζJ (I = 0, . . . , n) are complex-valued one-forms

on N and ωα = gN(Jα· , ·). (Here and in the following, we identify functions and

one-forms on M with their pullbacks to N .)

Proof : One can check by a direct calculation that the metric and Kähler

forms, Eqs. (5.3)–(5.6) agree with the geometric data2 for the rigid c-map given

in Section 3 of [ACD] (see also Section 3 of [ACM]), up to a conventional sign in

the definition of the Kähler forms ωα = gN(Jα · , ·) = −gN( ·, Jα·) in [ACD]. For

instance, we can write ω1 and ω3 as

ω1 = −2
∑

dxI ∧ dyI +
1

2

∑
dζ̃I ∧ dζI , (5.7)

ω3 =
∑

dxI ∧ dζ̃I +
∑

dyI ∧ dζI =
∑

dqa ∧ dpa.

Remark 5.2.2 It follows from the intrinsic geometric description in [ACD]

that the pseudo-hyper-Kähler structure is independent of the particular descrip-

tion of the special Kähler structure in terms of a holomorphic function F .

Remark 5.2.3 We introduce holomorphic functions wI , I = 0, . . . , n, on

(N, J1) that together with the holomorphic coordinates z = (zI) on (M,J) form

a system of canonical holomorphic coordinates on (N = T ∗M,J1). Then (wI)

2Note that J∗2 dz
I = i

∑n
J=0N

IJ ĀJ , J∗2AI = −i
∑n
J=0NIJdz̄

J .
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and (ζ̃I , ζ
J) are related by∑

I

wIdz
I + w̄Idz̄

I !
=
∑
I

ζ̃Idx
I + ζIdyI

=
∑
I

ζ̃I
2

(dzI + dz̄I) +
ζI

2
(
∑
J

FIJ(z)dzJ + FIJ(z)dz̄J),

which is equivalent to

wI =
1

2
(ζ̃I +

∑
J

FIJ(z)ζJ) (I = 0, . . . , n). (5.8)

With the identification (5.8), Eqs. (5.3)–(5.6) also agree, up to conventional

factors, with the rigid c-map as given in Appendix B of [CFG] and throughout

the physics literature.

5.3 The supergravity c-map

Let (M̄, gM̄) be a projective special Kähler manifold of complex dimension n

which is globally defined by a single holomorphic function F . The super-

gravity c-map [FS] associates with (M̄, gM̄) a quaternionic Kähler manifold

(N̄, gN̄) of dimension 4n + 4. Following the conventions of [CHM], we have

N̄ = M̄ × R>0 × R2n+3 and

gN̄ = gM̄ + gG,

gG =
1

4ρ2
dρ2 +

1

4ρ2
(dφ̃+

∑
(ζIdζ̃I − ζ̃IdζI))2 +

1

2ρ

∑
IIJ(m)dζIdζJ

+
1

2ρ

∑
IIJ(m)(dζ̃I + RIK(m)dζK)(dζ̃J + RJL(m)dζL),

where (ρ, φ̃, ζ̃I , ζ
I), I = 0, 1, . . . , n, are standard coordinates on R>0 × R2n+3.

The real-valued matrices I(m) := (IIJ(m)) and R(m) := (RIJ(m)) depend only

on m ∈ M̄ and I(m) is invertible with the inverse I−1(m) =: (IIJ(m)). More

precisely,

NIJ := RIJ + iIIJ := F̄IJ + i

∑
K NIKz

K
∑

LNJLz
L∑

IJ NIJzIzJ
, NIJ := 2ImFIJ , (5.9)

where F is the holomorphic prepotential with respect to some system of special

holomorphic coordinates (zI) on the underlying conical special Kähler manifold
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M → M̄ . Notice that the expressions are homogeneous of degree zero and,

hence, well-defined functions on M̄ . It is shown in [CHM, Cor. 5] that the

matrix I(m) is positive definite and hence invertible and that the metric gN̄ does

not depend on the choice of special coordinates [CHM, Thm. 9]. It is also shown

that (N̄, gN̄) is complete if and only if (M̄, gM̄) is complete [CHM, Thm. 5].

Using (pa)a=1, ..., 2n+2 := (ζ̃I , ζ
J)IJ=0,...,n and (Ĥab) :=

(
I−1 I−1R

RI−1 I + RI−1R

)
, we

can combine the last two terms of gG into 1
2ρ

∑
dpaĤ

abdpb, i.e. the quaternionic

Kähler metric is given by

gFS := gN̄ = gM̄ +
1

4ρ2
dρ2 +

1

4ρ2
(dφ̃+

∑
(ζIdζ̃I − ζ̃IdζI))2 +

1

2ρ

∑
dpaĤ

abdpb.

(5.10)

This metric is known as the Ferrara-Sabharwal metric.

5.4 HK/QK correspondence for the c-map

Again, we assume that (M ⊂ Cn+1, gM , J = Jcan,∇, ξ) is a conical affine special

Kähler manifold that is globally described by a homogeneous holomorphic func-

tion F of degree two in standard holomorphic coordinates z = (zI) = (z0, . . . , zn)

induced from Cn+1. We want to apply the HK/QK correspondence to the

hyper-Kähler manifold (N = T ∗M, gN , J1, J2, J3) of signature (4, 4n) obtained

from the rigid c-map (see Section 5.2). In [ACM], it was shown that the vec-

tor field Z := 2(Jξ)h = 2J1ξ
h on N fulfills the assumptions of the HK/QK

correspondence, i.e. it is a space-like ω1-Hamiltonian Killing vector field with

LZJ2 = −2J3. Here, Y h ∈ X(N) is defined for any vector field Y ∈ X(M) by

Y h(π∗Nq
a) = π∗NY (qa) and Y h(pa) = 0 for all a = 1, . . . , 2n + 2. (Y h is the

horizontal lift with respect to the flat connection ∇.)

Theorem 5.4.1 Applying the HK/QK correspondence to (N, gN , J1, J2, J3)

endowed with the ω1-Hamiltonian Killing vector field Z gives (up to a constant

conventional factor) the one-parameter family gcFS (5.11) of quaternionic pseudo-

Kähler metrics, which includes the Ferrara-Sabharwal metric gFS (5.10). The

metric gcFS is positive definite and of negative scalar curvature on the domain

{ρ > −2c} ⊂ N̄ (which coincides with N̄ if c ≥ 0, see Section 5.3). If c < 0

the metric gcFS is of signature (4n, 4) on the domain {−c < ρ < −2c} ⊂ N̄ .

Furthermore, if c > 0 the metric gcFS is of signature (4, 4n) on the domain



5.4. HK/QK correspondence for the c-map 111

M̄ × {−c < ρ < 0} × R2n+3 ⊂ M̄ × R<0 × R2n+3.

Proof : We start from the hyper-Kähler structure on N = T ∗M given in Eqs.

(5.3)–(5.6). As in Section 5.2, we identify functions and differential forms on

M with their pullbacks to πN : N → M . We first compute the geometric data

involved in the HK/QK correspondence, cf. Section 4.1. The moment map for

−ω1 w.r.t. Z = 2(Jξ)h is given by f := r2−c, where r := ‖ξ‖gM =
√∑

zINIJ z̄J

and c ∈ R:

ω1(Z, ·) = −gM(2ξ, ·) = −
∑

(zINIJdz̄
J +NIJ z̄

JdzI) = −d(r2) = −df,

since
∑

I z
I ∂FIJ (z)

∂zK
= 0. With gN(Z,Z) = 4gM(ξ, ξ) = 4r2, we get

f1 := f − 1

2
gN(Z,Z) = −r2 − c.

For the functions f and f1 nowhere to vanish, we have to restrict N to

{r2 6= |c|} ⊂ N . Using the contact one form η̃ := 1
r2 gM(Jξ, ·) on M (see Eq.

(5.2)), we get

β := gN(Z, ·) = 2gM(Jξ, ·) = 2r2η̃.

We consider the trivial S1-principal bundle

P := N × S1, S1 = {eis | s ∈ R},

with the connection form

η = ds+ ηN ,

where ηN is the following one-form on N :

ηN := −1

2
r2η̃ + ηcan =

f1 + c

2
η̃ + ηcan, ηcan :=

1

4

∑
(ζ̃Idζ

I − ζIdζ̃I).

Then

dη = dηN = −1

4
dβ + dηcan = ω1 −

1

2
dβ,

where we used that ω1 can be written as

ω1
(5.7)
= π∗NωM +

1

2

∑
dζ̃I ∧ dζI =

1

4
dβ + dηcan,

since π∗NωM = 1
4
π∗Ndd

c(r2) and π∗Nd
c(r2) = π∗N(2r2dc log r)

(5.2)
= π∗N(2r2η̃) = β,

see Section 5.1.
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Now we compute the one-forms θPa , a = 0, 1, 2, 3 on P , introduced in Eq. (3.47):

θP0 = −1

2
df = −rdr,

θP1 = η +
1

2
β = ds+

1

2
r2η̃ + ηcan = ds+

f + c

2
η̃ + ηcan,

θP2 =
1

2
ω3(Z,·) = − i

2

∑
(z̄IĀI − zIAI) = −Im

∑
zIAI ,

θP3 = −1

2
ω2(Z,·) =

1

2

∑
(zIAI + z̄IĀI) = Re

∑
zIAI .

For the calculation of θP2 and θP3 , we used Z = 2i
∑

(zI ∂
∂zI
− z̄I ∂

∂z̄I
)h and Eqs.

(5.5)–(5.6).

We compute the pseudo-Riemannian metric

gP =
2

f1

η2 + π∗gN
(5.3)
=

2

f1

(ds+
c

2
η̃ + ηcan +

f1

2
η̃)2 + gM +

∑
AIN

IJĀJ

and the degenerate tensor field

g̃P := gP −
2

f

3∑
a=0

(θPa )2

= gP −
2

f

(
r2dr2 + (ds+

c

2
η̃ + ηcan +

f

2
η̃)2 + (

∑
zIAI)(

∑
z̄JĀJ)

)
=

(
2

f1

− 2

f

)
(ds+

c

2
η̃ + ηcan)2 +

(
f1

2
− f

2

)
η̃2 − 2

f
r2dr2 + gM

+
∑

AIN
IJĀJ −

2

f
(
∑

zIAI)(
∑

z̄JĀJ).

As always, pullbacks from M and N to P are implied where necessary.

Using f1

2
− f

2
= −r2 = −(f + c), 2

f1
− 2

f
= − 4

f
f+c
f+2c

, 2
f

= 2
r2 + 2c

f(f+c)
and

gM
(5.1)
= dr2 + r2(η̃2 − gM̄), we get

g̃P = −r2gM̄ −
f + 2c

f
dr2 − 4

f

f + c

f + 2c
(ds+

c

2
η̃ + ηcan)2

− 2c

f(f + c)
(
∑

zIAI)(
∑

z̄JĀJ)

+
∑

AIN
IJĀJ −

2

r2
(
∑

zIAI)(
∑

z̄JĀJ).
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We claim that the last two terms can be combined into −1
2

∑
dpaĤ

abdpb, which

appeared in the Ferrara-Sabharwal metric (5.10). This will be proven in the

lemma below, see Eq. (5.12).

We use the local coordinates

r =
√∑

zINIJ z̄J , φ := arg z0, Xµ =
zµ

z0

on the conical affine special Kähler base M and choose the submanifold

N ′ = {φ = 0} ⊂ P = N × S1, which is transversal to

ZP
1 = (Z − η(Z)XP ) + f1XP = Z + (r2 + f1)XP = 2∂φ − c∂s,

where XP = ∂s is the fundamental vector field on P .

In these coordinates, we have

|z0|2 = r2eK

and, hence,

η̃ =
1

2
dc log r2 =

1

2
dc log |z0|2 − 1

2
dcK = dφ− 1

2
dcK

= dφ+
∑ iNIJ(X)

2X tNX̄
(XIdX̄J − X̄JdXI)

and ∑
(zIAI)

∑
(z̄JĀJ) = |z0|2

∑
(XIAI)

∑
(X̄JĀJ)

= r2eK|
∑

(XIdζ̃I + FI(X)dζI)|2,

where K = − logX tNX̄, X tNX̄ :=
∑
XINIJX̄

J , is the Kähler potential for

the projective special Kähler metric gM̄ . Replacing the coordinates r and s by

ρ := f and φ̃ := −4s and recalling that σ = sgn f , we obtain the quaternionic

Kähler metric g′ = 1
2|f | g̃P

∣∣
N ′

from the HK/QK correspondence (Theorem 4.1.2)

such that gcFS := −2σg′ is given by

gcFS =
ρ+ c

ρ
gM̄ +

1

4ρ2

ρ+ 2c

ρ+ c
dρ2 +

1

4ρ2

ρ+ c

ρ+ 2c
(dφ̃+

∑
(ζIdζ̃I − ζ̃IdζI) + cdcK)2

+
1

2ρ

∑
dpaĤ

abdpb +
2c

ρ2
eK
∣∣∣∑(XIdζ̃I + FI(X)dζI)

∣∣∣2 . (5.11)
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For c = 0, gcFS reduces to the Ferrara-Sabharwal metric (5.10).

Notice that the above metric gcFS obtained from the HK/QK correspondence is

defined on a subset of M̄ × R∗ × S1 × R2n+2, where the R∗-factor corresponds

to the coordinate ρ (which may now take negative values) and the S1-factor is

parametrized by the coordinate φ̃ = −4s considered modulo 8πZ. Replacing the

above subset by its universal covering (that is replacing S1 by R) we obtain a

subset of M̄ × R∗ × R2n+3. In particular, gFS = g0
FS is defined on N̄ as well as

on the cyclic quotient N̄/Z = M̄ × R>0 × S1 × R2n+2.

The pseudo-hyper-Kähler metric gN has signature (4, 4n) and Z is space-like.

Hence, g′ is negative definite if f > 0 and f1 < 0, it has signature (4, 4n) if

f1f > 0 and it has signature (8, 4(n − 1)) if f < 0 and f1 > 0 (see Corollary 1

in [ACM]). Using f = ρ and f1 = −ρ− 2c, we get

sign g′ =


(0, 4n+ 4) for ρ > max{0,−2c}

(4, 4n) for 0 < ρ < −2c, c < 0

(4, 4n) for −2c < ρ < 0, c > 0

(8, 4(n− 1)) for ρ < min{0,−2c}.

Taking into account that by definition r2 = gM(ξ, ξ) > 0, i.e. ρ > −c, we get

sign g′ =

(0, 4n+ 4) for ρ > max{0, −2c} (⇔ r2 > |c|)

(4, 4n) for −c < ρ < max{0,−2c} (⇔ 0 < r2 < |c|).

It remains to prove

Lemma 5.4.2∑
dpaĤ

abdpb = −2
∑

AIN
IJĀJ +

4

r2
(
∑

zIAI)(
∑

z̄JĀJ), (5.12)

where, as in the last section, (pa) = (ζ̃I , ζ
J) and (Ĥab) =

(
I−1 I−1R

RI−1 I + RI−1R

)
.

Proof : Recall that AI = dζ̃I +
∑

J FIJdζ
J , I = 0, . . . , n. We write

A = (AI) = dζ̃ + F dζ, where dζ̃ = (dζ̃I), dζ = (dζI) are form-valued column

vectors and F := (FIJ).
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First, we show that
∑
AIN

IJĀJ =
∑
dpaH

abdpb with

(Hab) :=

(
N−1 1

2
N−1R

1
2
RN−1 1

4
(N +RN−1R)

)
,

where R := 2ReF :∑
AIN

IJĀJ = (dζ̃t + dζtF )N−1(dζ̃ + F dζ)

= (dζ̃t + dζt
1

2
(R + iN))N−1(dζ̃ +

1

2
(R− iN)dζ)

= dζ̃tN−1dζ + dζ̃t
1

2
N−1Rdζ + dζt

1

2
RN−1dζ̃ + dζt

1

4
(N +RN−1R)dζ.

Now, we show that (
∑
zIAI)(

∑
ĀJ z̄

J) =
∑
dpaH̆

abdpb with

(H̆ab) :=
1

2

(
zz̄t + z̄zt zz̄tF + z̄ztF

F z̄zt + F zz̄t F zz̄tF + F z̄ztF

)
:

(
∑

zIAI)(
∑

z̄JĀJ) = (dζ̃tz + dζt F z)(z̄tdζ̃ + z̄tF dζ)

= dζ̃tzz̄tdζ̃ + dζ̃tzz̄tF dζ + dζtF zz̄tdζ̃ + dζtF zz̄tF dζ

= dζ̃t
1

2
(zz̄t + z̄zt)dζ̃ + dζ̃t

1

2
(zz̄tF + z̄ztF )dζ

+ dζt
1

2
(F zz̄t + F z̄zt)dζ̃ + dζt

1

2
(F zz̄tF + F z̄ztF )dζ.

Hence, the right side of Eq. (5.12) is given by
∑
dpa(−2Hab + 4

r2 H̆
ab)dpb.

To rewrite the left side of Eq. (5.12), we need to invert I = ImN = −1
2
N+NzztN

2ztNz
+Nz̄z̄tN

2z̄tNz̄
.

It is easy to check that the inverse of I is given by [MV]

I−1 = −2N−1 +
2

ztNz̄
(zz̄t + z̄zt).

Using R = ReN = 1
2
R + iNzztN

2ztNz
− iNz̄z̄tN

2z̄tNz̄
, we obtain

I−1R = −N−1R +
1

ztNz̄
(zz̄t(R− iN) + z̄zt(R + iN)) = −N−1R +

2

r2
(zz̄tF + z̄ztF )

and hence

RI−1 = (I−1R)t = −RN−1 +
2

r2
(F z̄zt + F zz̄t).
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For the lower right block in (Ĥab), we calculate

RI−1R = −1

2
RN−1R +

1

ztNz̄
(F z̄zt(R + iN) + F zz̄t(R− iN))

+
i

ztNz
(−1

2
R + F )zztN − i

z̄tNz̄
(−1

2
R + F )z̄z̄tN

= −1

2
RN−1R +

2

r2
(F z̄ztF + F zz̄tF )− NzztN

2ztNz
− Nz̄z̄tN

2z̄tNz̄

and hence

I + RI−1R = −1

2
(N +RN−1R) +

2

r2
(F z̄ztF + F zz̄tF ).

This shows that (Ĥab) = −2(Hab) + 4
r2 (H̆ab) and thus proves Eq. (5.12).

This proves Theorem 5.4.1.

Remark 5.4.3 Note that the quaternionic Kähler metric gcFS given in (5.11)

agrees with the one-loop deformed Ferrara-Sabharwal metric first obtained in

[RSV] (see also [APP], Eq. (2.93)).

5.5 The one-loop deformed Ferrara-Sabharwal

metric

Definition 5.5.1 For any c ∈ R, the metric

gcFS =
ρ+ c

ρ
gM̄ +

1

4ρ2

ρ+ 2c

ρ+ c
dρ2 +

1

4ρ2

ρ+ c

ρ+ 2c
(dφ̃+

n∑
I=0

(ζIdζ̃I − ζ̃IdζI) + cdcK)2

+
1

2ρ

2n+2∑
a, b=1

dpaĤ
abdpb +

2c

ρ2
eK

∣∣∣∣∣
n∑
I=0

(XIdζ̃I + FI(X)dζI)

∣∣∣∣∣
2

(5.13)

is defined3 on the domains

N ′(4n+4, 0) := {ρ > −2c, ρ > 0} ⊂ N̄,

N ′(4n, 4) := {−c < ρ < −2c} ⊂ N̄,

N ′(4, 4n) := M̄ × {−c < ρ < 0} × R2n+3 ⊂ M̄ × R<0 × R2n+3 (5.14)

3The definition of gM̄ can be found in Section 5.1 and the definition of Ĥab can be found
in Section 5.3.
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for any projective special Kähler manifold M̄ ⊂ Cn defined by a holomorphic

function F ∈ C∞(M̄), where N̄ = M̄ × R>0 × R2n+3, (Xµ)µ=1, ..., n are standard

holomorphic coordinates on M̄ , X0 := 1, the real coordinate ρ corresponds to the

second factor and (φ̃, ζ̃I , ζ
I)I=0, ..., n are standard real coordinates on R2n+3. The

metric gcFS is called the one-loop deformed Ferrara-Sabharwal metric.

Proposition 5.5.2 Let M̄ be any pojective special Kähler manifold and gcFS,

gc
′
FS the one-loop deformed Ferrara-Sabharwal metric for positive deformation

parameters c, c′ ∈ R>0 defined on N̄ = N ′(4n+4, 0). Then (N̄, gcFS) and (N̄, gc
′
FS)

are isometric.

Proof : Any eλ ∈ R>0 acts diffeomorphically on N̄ = M̄ × R>0 × R2n+3 as

follows:

N̄ → N̄, (m, ρ, φ̃, ζ̃I , ζ
I)I=0, ..., n 7→ (m, eλρ, eλφ̃, eλ/2ζ̃I , e

λ/2ζI)I=0, ..., n.

Under this action, gcFS 7→ ge
−λc
FS . Choosing eλ = c/c′, this shows that

(N̄, gcFS) ≈ (N̄, gc
′
FS).

Remark 5.5.3 From Theorem 4.1.2 and the proof of Theorem 5.4.1, we obtain

the following expressions for the components of the Sp(1)-connection one-form

for gcFS with respect to the almost hyper-complex structure (J ′1, J
′
2, J

′
3) obtained

from the HK/QK correspondence:

θ̄1 = − 1

4ρ

(
dφ̃+ (ρ+ c)dcK−

n∑
I=0

(ζ̃Idζ
I − ζIdζ̃I)

)
θ̄2 + iθ̄3 = i

√
ρ+ c

ρ
eK/2

n∑
I=0

XIAI . (5.15)

(Recall that AI = dζ̃I +
∑n

J=0 FIJ(X)dζJ , I = 0, . . . , n and

K = − log
∑n

I, J=0X
INIJX̄

J .)

Remark 5.5.4 Due to the rescaling compared to g′, the reduced scalar cur-

vature of gcFS is

ν = − 1

2σ
4σ = −2

(see Remark 4.1.7). Using ω̄α = −(dθ̄α − 2θ̄β ∧ θ̄γ), the fundamental two-forms
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of gcFS with respect to (J ′1, J
′
2, J

′
3) are then found to be

ω̄1 = −dθ̄1 + i(θ̄2 + iθ̄3) ∧ (θ̄2 − iθ̄3)

=
1

4ρ

(
dρ ∧ dcK + (ρ+ c) ddcK− 2

n∑
I=0

dζ̃I ∧ dζI
)

+
1

ρ
dρ ∧ θ̄1

+
ρ+ c

ρ2
eKi(

∑
I

XIAI) ∧ (
∑
J

X̄JĀJ)

=
ρ+ c

ρ

1

4
ddcK +

i

2

1

4ρ2

ρ+ c

ρ+ 2c
τ ∧ τ̄ − i

2

1

ρ

n∑
I, J=0

N IJAI ∧ ĀJ

+
i

2

2ρ+ 2c

ρ2
eK(
∑
I

XIAI) ∧ (
∑
J

X̄JĀJ), (5.16)

ω̄2 + iω̄3 = −d(θ̄2 + iθ̄3) + 2iθ̄1 ∧ (θ̄2 + iθ̄3) (5.17)

= −i
√
ρ+ c

ρ
eK/2

n∑
µ=1

dXµ ∧ Aµ +

√
ρ+ c

2ρ2
eK/2(τ − 2iρ∂K) ∧

n∑
I=0

XIAI ,

where

τ := dφ̃+
n∑
I=0

(ζIdζ̃I − ζ̃IdζI) + cdcK + i
ρ+ 2c

ρ+ c
dρ (5.18)

and we used that
∑n

I, J=0 iN
IJAI ∧ ĀJ =

∑n
I=0 dζ̃I ∧ dζI (see Eq. (7.95)).

Remark 5.5.5 As a direct corollary of the fact that the one-loop deformed

Ferrara-Sabharwal metric gcFS is obtained from the HK/QK correspondence

(Theorem 5.4.1), we have the result that J ′1 is a globally defined compatible

integrable complex structure, see Remark 4.1.6. This was previously shown in

[CLST]. Together with the expression

gcFS
(5.12)
=

ρ+ c

ρ
gM̄ +

1

4ρ2

ρ+ c

ρ+ 2c
|τ |2 − 1

ρ

n∑
I, J=0

N IJAI ĀJ +
2ρ+ 2c

ρ2
eK
∣∣ n∑
I=0

XIAI
∣∣2

(5.19)

for the deformed Ferrara-Sabharwal metric, Eq. (5.16) shows that

(τ, dXµ, AI)
µ=1, ..., n
I=0, ..., n is a coframe of holomorphic one-forms with respect to J ′1.

This can be linealy combined into the coframe

(
τ + 2ic∂K−2

n∑
I=0

ζIAI −
n∑

I, J,K=0

ζIFIJK(X)ζJdXK ,

dXµ,
1

2
(AI −

n∑
J,K=0

FIJK(X)ζJdXK)
)



5.5. The one-loop deformed Ferrara-Sabharwal metric 119

of closed holomorphic one-forms which corresponds to the J ′1-holomorphic coor-

dinate system

(χ, Xµ, wI =
1

2
(ζ̃I +

n∑
J=0

FIJ(X)ζJ))µ=1, ..., n
I=0, ..., n , (5.20)

where

χ := φ̃+ i(ρ+ c(K + log(ρ+ c)))−
n∑
I=0

ζI ζ̃I −
n∑

I, J=0

ζIFIJ(X)ζJ . (5.21)
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Chapter 6

Completeness of the one-loop

deformed Ferrara-Sabharwal

metric

In this chapter, we discuss the completeness of the one-loop deformed Ferrara-

Sabharwal metric gcFS (see Definition 5.5.1) on the domain N ′(4n+4, 0) (where it

is positive definite) for positive deformation parameter c ∈ R≥0. For c < 0,

(N ′(4n+4, 0), g
c
FS) is incomplete [ACDM, Rem. 9].

In the first section, we recall the notion of completeness for Riemannian mani-

folds. In Section 6.2, we introduce projective special real geometry and the super-

gravity r-map. The latter assigns a complete projective special Kähler manifold

to each complete projective special real manifold. In Section 6.3, we derive a

sufficient condition for the completeness of (N ′(4n+4, 0), g
c
FS) for c ∈ R≥0. Recall

that we construct (N ′(4n+4, 0), g
c
FS) from a projective special Kähler manifold. We

prove the completeness of (N ′(4n+4, 0), g
c
FS) in the case that the projective special

Kähler manifold is obtained from a complete projective special real manifold via

the supergravity r-map and in the case of CHn. We also show progress in the

case of a general complete special Kähler manifold.

As a corollary, we obtain deformations by complete quaternionic Kähler metrics

of all known homogeneous quaternionic Kähler manifolds of negative scalar cur-

vature (including symmetric spaces), except for quaternionic hyperbolic space.

In the case of X̃(n+ 1) = SU(n+1, 2)
S[U(n+1)×U(2)]

we give a simple and explicit expression

for the deformed metric.

In this chapter, we only discuss positive definite quaternionic Kähler metrics.

121
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6.1 Completeness in Riemannian geometry

Since in this chapter, we restrict ourselves to positive definite Riemannian mani-

folds, we use the following definition for completeness:

Definition 6.1.1 We call a Riemannian manifold (M, g) complete if every

inextendible smooth curve in (M, g) has infinite length.

For Riemannian manifolds, many otherwise different notions of completeness are

equivalent:

Theorem 6.1.2 (Hopf-Rinow, see [O, Ch. 5, Th. 21])

For a Riemannian manifold (M, g), the following conditions are equivalent:

1. (M, g) is complete.

2. (M,dg) is complete as a metric space.

3. (M, g) is geodesically complete.

4. Any closed and bounded subset of M is compact.

We will later prove the completeness of the one-loop deformed Ferrara-Sabharwal

metric based on the completeness of the undeformed metric using the following

obvious criterion:

Proposition 6.1.3 Let (M, g) be a complete Riemannian manifold. If g̃ is a

Riemannian metric on M such that g̃ ≥ g, then (M, g̃) is complete.

6.2 Projective special real geometry and the su-

pergravity r-map

Definition 6.2.1 Let h be a homogeneous cubic polynomial in n variables

with real coefficients and let U⊂Rn\{0} be an R>0-invariant domain such that

h|U > 0 and such that gH := −∂2h
∣∣
H

is a Riemannian metric on the hypersurface

H := {x ∈ U | h(x) = 1} ⊂ U . Then (H, gH) is called a projective special

real (PSR) manifold.
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Define M̄ := Rn + iU ⊂ Cn. We endow M̄ with the standard complex structure

JM̄ and use holomorphic coordinates (Xµ = yµ + ixµ)µ=1, ..., n ∈ Rn + iU . We

define a Kähler metric

gM̄ = 2
n∑

µ, ν=1

gµν̄dX
µdX̄

ν
:=

n∑
µ, ν=1

∂2K

∂Xµ∂X̄
ν dX

µdX̄ν

=
1

2

n∑
µ, ν=1

∂2K

∂Xµ∂X̄
ν (dXµ ⊗ dX̄ν

+ dX̄
ν ⊗ dXµ)

on M̄ with Kähler potential

K(X, X̄) := −log 8h(x) = −logh
(
i(X̄ −X)

)
. (6.1)

Definition 6.2.2 The correspondence (H, gH) 7→ (M̄, gM̄) is called the super-

gravity r-map.

Remark 6.2.3 With ∂
∂Xµ = 1

2

(
∂
∂yµ
− i ∂

∂xµ

)
, we have

2gM̄

(
∂

∂Xµ
,
∂

∂X̄
ν

)
= 2gµν̄ =

∂2K(X, X̄)

∂Xµ∂X̄
ν =: Kµν̄

= −1

4

∂2logh(x)

∂xµ∂xν
= −hµν(x)

4h(x)
+
hµ(x)hν(x)

4h2(x)
, (6.2)

where hµ(x) := ∂h(x)
∂xµ

, hµν(x) := ∂2h(x)
∂xµ∂xν

, etc., for µ, ν = 1, . . . , n.

The inverse of (Kµν̄)µ, ν=1, ..., n,

Kµν̄ = − ∂2

∂Xµ∂X̄ν
logh(x) = −hµν(x)

4h(x)
+
hµ(x)hν(x)

4h2(x)
, (6.3)

is given by (Kν̄λ)ν, λ=1, ..., n,

Kν̄λ = −4h(x)hνλ(x) + 2xνxλ. (6.4)

This can be shown using the fact that h is a homogeneous polynomial of degree

three:

n∑
µ=1

hµ(x)xµ = 3h(x),
n∑
ν=1

hµν(x)xν = 2hµ(x),

n∑
ρ=1

hµνρ(x)xρ = hµν , hµνρσ = 0. (6.5)
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Remark 6.2.4 Note that any manifold (M̄, gM̄ , JM̄) in the image of the su-

pergravity r-map is a projective special Kähler manifold (see Section 5.1). The

corresponding conical affine special Kähler manifold is the trivial C∗-bundle

M := {z = z0 · (1, X) ∈ Cn+1 | z0 ∈ C∗, X ∈ M̄ = Rn + iU} → M̄

endowed with the standard complex structure J and the metric gM defined by

the holomorphic function

F : M → C, F (z0, . . . , zn) =
h(z1, · · · , zn)

z0
.

Note that in general, the flat connection1 ∇ onM is not the standard one induced

from Cn+1 ≈ R2n+2. The homothetic vector field ξ is given by

ξ =
∑n

I=0(zI ∂
∂zI

+ z̄I ∂
∂z̄I

). To check that gM̄ is the corresponding projective

special Kähler metric, one uses the fact that

8|z0|2h(x) =
n∑

I, J=0

zINIJ(z, z̄)z̄J , (6.6)

where as above, x = (ImX1, . . . , ImXn) = (Im z1

z0 , . . . , Im zn

z0 ) ∈ U (see [CHM]).

Definition 6.2.5 A Kähler manifold (M̄, gM̄ , JM̄) in the image of the super-

gravity r-map is called a projective very special Kähler manifold.

Due to the following result, projective special real geometry constitutes a pow-

erful tool for the construction of complete projective special Kähler manifolds.

Since an analogous result exists for the supergravity c-map, the latter define

complete quaternionic Kähler manifolds.

Theorem 6.2.6 [CHM]

The supergravity r-map preserves completeness, i.e. it assigns a complete projec-

tive special Kähler manifold to each complete projective special real manifold.

Remark 6.2.7 In low dimensions, it is possible to classify all complete pro-

jective special real manifolds up to linear isomorphisms of the ambient space.

In the case of curves, there are exactly two examples [CHM]. In the case of

surfaces, there exist precisely five discrete examples and a one-parameter family

[CDL].

1∇ is defined by xI = Re zI and yI = ReFI(z) being flat, I = 0, . . . , n (see [ACD]).
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Due to the following result, the question of completeness for a projective

special real manifold (H, gH) reduces to a simple topological question for the

hypersurface H ⊂ Rn:

Theorem 6.2.8 [CNS, Thm. 2.6.]

Let (H, gH) be a projective special real manifold of dimension n− 1. If H ⊂ Rn

is closed, then (H, gH) is complete.

6.3 Completeness of the one-loop deformed Fer-

rara-Sabharwal metric

Definition 6.3.1 The q-map is the composition of the supergravity r- and

c-map. It assigns a (4n + 4)-dimensional quaternionic Kähler manifold to each

(n− 1)-dimensional projective special real manifold.

Remark 6.3.2 Except for quaternionic hyperbolic space HHn+1, all Wolf

spaces of non-compact type and all known homogeneous, non-symmetric quater-

nionic Kähler manifolds (called normal quaternionic Kähler manifolds or Alek-

seevsky spaces) are in the image of the supergravity c-map. While the series

X̃(n + 1) = Gr0, 2(Cn+1, 2) of non-compact Wolf spaces can be obtained via the

supergravity c-map from the projective special Kähler manifold CHn (with holo-

morphic prepotential F = i
2
((z0)2−

∑n
µ=1(zµ)2)), which is not in the image of the

supergravity r-map, all the other manifolds mentioned above are in the image of

the q-map.

Below, we prove the completeness of the one-loop deformation of the Ferrara-

Sabharwal metric with positive deformation parameter c ∈ R≥0 for all manifolds

in the image of the q-map and for X̃(n + 1) = Gr0, 2(Cn+1, 2). We also show

progress in the case of a general special Kähler manifold.

Due to the following result, both the supergravity c-map and the q-map preserve

completeness:

Theorem 6.3.3 [CHM]

The supergravity c-map assigns a complete quaternionic Kähler manifold of di-

mension 4n+4 to each complete projective special Kähler manifold of dimension

2n.
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Let (M̄ ⊂ Cn, gM̄ , JM̄) be a projective special Kähler manifold which is globally

defined by a single holomorphic function F on

M := {z = z0 · (1, X) | z0 ∈ C∗, X ∈ M̄} ⊂ Cn+1. F is homogeneous of

degree two in the standard holomorphic coordinates (zI)I=0, ..., n on M . gM̄ has

a Kähler potential K = −logX tNX̄ = − log
∑n

I, J=0 X
INIJX̄

J in holomorphic

coordinates (Xµ = zµ

z0 )µ=1, ..., n on M̄ , where X0 := 1 and

N = 2(ImFIJ(z))I, J=0, ..., n = 2
(
Im

∂2F (z)

∂zI∂zJ
)
I, J=0, ..., n

,

which is homogeneous of degree zero and hence defines a matrix-valued function

on M̄ (see Section 5.1). Note that

gM̄ = −(dX)tN(dX̄)

X tNX̄
+(∂K)(∂̄K) = −(dX)tN(dX̄)

X tNX̄
+

1

4
(dK)2 +

1

4
(dcK)2. (6.7)

The first term in equation (6.7) has complex Lorentzian signature for special

Kähler manifolds in the image of the supergravity r-map. For the flat conical

affine special Kähler manifold C1, n with prepotential F = i
2
((z0)2−

∑n
µ=1(zµ)2),

it is positive definite.

We consider the one-loop deformed Ferrara-Sabharwal metric (see Eq. (5.13))

gcFS =
ρ+ c

ρ
gM̄ +

1

4ρ2

ρ+ 2c

ρ+ c
dρ2 +

1

4ρ2

ρ+ c

ρ+ 2c
(dφ̃+

n∑
I=0

(ζIdζ̃I − ζ̃IdζI) + cdcK)2

+
1

2ρ

2n+2∑
a, b=1

dpaĤ
abdpb +

2c

ρ2
eK

∣∣∣∣∣
n∑
I=0

(XIdζ̃I + FI(X)dζI)

∣∣∣∣∣
2

(6.8)

for c ∈ R≥0 defined on N ′(4n+4, 0) = N̄ = M̄ × R>0 × R2n+3 endowed with global

coordinates

(Xµ, ρ, φ̃, ζ̃I , ζ
I)µ=1, ..., n
I=0, ..., n .

Lemma 6.3.4 Let ε > 0. If gM̄ ≥ k
4
(dcK)2 for some k ∈ R>0, then

gcFS ≥
1

2

kε

kε+ c
g0
FS

on {ρ > ε} ⊂ N̄ .
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Proof : Note that
∑2n+2

a, b=1 dpaĤ
abdpb ≥ 0 [MV]. We have

1

4ρ2

ρ+ 2c

ρ+ c
dρ2 +

1

2ρ
dpaĤ

abdpb +
2c

ρ2
eK
∣∣∣∑(XIdζ̃I + FI(X)dζI)

∣∣∣2
≥ 1

2

kε

kε+ c

(
1

4ρ2
dρ2 +

1

2ρ
dpaĤ

abdpb

)
, (6.9)

since 1
2

kε
kε+c
≤ 1

2
< 1 ≤ ρ+2c

ρ+c
. Now with θ0 := dφ̃+

∑
(ζIdζ̃I − ζ̃IdζI), we have

ρ+ c

ρ
gM̄ +

1

4ρ2

ρ+ c

ρ+ 2c
(θ0 + cdcK)2

(6.7)
= 1︸︷︷︸

> 1
2

kε
kε+c

gM̄ +
c

ρ
gM̄︸︷︷︸

≥ k
4

(dcK)2

+
1

4ρ2

ρ+ c

ρ+ 2c︸ ︷︷ ︸
1
2
≤...≤1

 c

kε+ c
(θ0 + (kε+ c)dcK)2︸ ︷︷ ︸

≥0

+
kε

kε+ c
(θ0)2 − kcε(dcK)2


≥ 1

2

kε

kε+ c

(
gM̄ +

1

4ρ2
(θ0)2

)
+

ck

4ρ2
(ρ− ε)︸ ︷︷ ︸

>0

(dcK)2

≥ 1

2

kε

kε+ c

(
gM̄ +

1

4ρ2
(θ0)2

)
. (6.10)

Combining the inequalities (6.9) and (6.10), we have shown that

gcFS
ρ>ε

≥ 1

2

kε

kε+ c
g0
FS.

Proposition 6.3.5 If (M̄, gM̄) is complete and gM̄ ≥ k
4
(dcK)2, for some

k ∈ R>0, then (N̄, gcFS) is complete for every c ∈ R≥0.

Proof : (N̄, g0
FS) is complete by Theorem 6.3.3. Since every curve on (N̄, gcFS)

approaching ρ = 0 has infinite length, we can restrict to {ρ > ε} ⊂ N̄ for some

ε > 0. According to the above Lemma,

gcFS ≥
1

2

kε

kε+ c
g0
FS.

Since (N̄, g0
FS) is complete, this shows that (N̄, gcFS) is complete as well for

c ∈ R≥0.
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6.3.1 Complex hyperbolic space

For the projective special Kähler manifold CHn with quadratic holomorphic

prepotential F = i
2
((z0)2 −

∑n
µ=1(zµ)2), we have − (dX)tN(dX̄)

XtNX̄
> 0. Equation

(6.7) then shows that gM̄ ≥ 1
4
(dcK)2, i.e. the assumption of Lemma 6.3.4 is

fulfilled for k = 1. We know from the literature that (N̄, g0
FS) is isometric to the

series of Wolf spaces

X̃(n+ 1) =
SU(n+ 1, 2)

S[U(n+ 1)× U(2)]
(6.11)

of non-compact type.

Corollary 6.3.6 For any n ∈ N0 and c ∈ R≥0, the deformed Ferrara-Sabharwal

metric2

gcFS =
ρ+ c

ρ

1

1− ‖X‖2

( n∑
µ=1

dXµdX̄µ +
1

1− ‖X‖2

∣∣ n∑
µ=1

X̄µdXµ
∣∣2) (6.12)

+
1

4ρ2

ρ+ 2c

ρ+ c
dρ2 − 2

ρ
(dw0dw̄0 −

n∑
µ=1

dwµdw̄µ)

+
ρ+ c

ρ2

4

1− ‖X‖2

∣∣dw0 +
n∑
µ=1

Xµdwµ
∣∣2

+
1

4ρ2

ρ+ c

ρ+ 2c

(
dφ̃− 4 Im

(
w̄0dw0 −

n∑
µ=1

w̄µdwµ
)

+
2c

1− ‖X‖2
Im

n∑
µ=1

X̄µdXµ
)2

on

N̄ = {(X, ρ, φ̃, w) ∈ Cn × R>0 × R× Cn+1 | ‖X‖2 < 1}

defined by the holomorphic function F = i
2
((z0)2 −

∑n
µ=1(zµ)2) on

{z ∈ C1, n | 〈z, z〉 > 0} is a complete quaternionic Kähler metric. For c = 0,

(N̄, gcFS) is isometric to the symmetric space X̃(n+ 1) = SU(n+1, 2)
S[U(n+1)×U(2)]

.

6.3.2 Manifolds in the image of the supergravity r-map

For quaternionic Kähler manifolds in the image of the q-map, we have

F (z) = h(z1, ..., zn)
z0 for a homogeneous cubic polynomial h, M̄ = Rn + iU , where

2Note that w0 = 1
2 (ζ̃0 + iζ0), wµ = 1

2 (ζ̃µ − iζµ), µ = 1, . . . , n, see Eq. (5.20).
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U ⊂ Rn is an R>0-invariant domain such that h|U > 0 and such that −∂2h|U has

Lorentzian signature. The (positive definite) projective special Kähler metric is

given by

gM̄ =
1

4h(x)

n∑
µ,ν=1

(
−hµν(x) +

hµ(x)hν(x)

h(x)

)
(dxµdxν + dyµdyν), (6.13)

where y + ix ∈ M̄ . The Kähler potential is K = −log 8h(x) and

dcK = − 1
h(x)

∑n
µ=1 hµ(x)dyµ.

Lemma 6.3.7

gM̄ ≥
1

12
(dcK)2.

Proof : First, we show that

g̃ := −
n∑

µ,ν=1

hµν(x)

h(x)
dyµdyν ≥ −2

3
(dcK)2. (6.14)

Considering g̃ as a family of pseudo-Riemannian metrics on Rn depending on

a parameter x ∈ U , the left hand side is positive definite on the orthogonal

complement Y ⊥g̃ of Y :=
∑n

µ=1 x
µ∂yµ , while the right hand side is zero, since

g̃(Y, ·) = 2dcK. In the direction of Y , we have g̃(Y, Y ) = −6 = −2
3
(dcK)2(Y, Y ).

Equation (6.14) implies

gM̄ ≥
1

4h(x)

n∑
µ,ν=1

(
−hµν(x) +

hµ(x)hν(x)

h(x)

)
dyµdyn

≥ −1

6
(dcK)2 +

1

4
(dcK)2 =

1

12
(dcK)2.

This shows that the assumption of Lemma 6.3.4 is fulfilled with k = 1/3 for

projective special Kähler manifolds in the image of the supergravity r-map and

proves the following corollary:

Corollary 6.3.8 Let (H, gH) be a complete projective special real manifold

of dimension n− 1 and gcFS, c ∈ R≥0, the one-loop deformed Ferrara-Sabharwal

metric on N̄ = M̄×R>0×R2n+3 defined by the projective special Kähler manifold

(M̄, gM̄ , JM̄) obtained from (H, gH) via the supergravity r-map. Then (N̄, gcFS) is

a complete quaternionic Kähler manifold. (N̄, g0
FS) is the complete quaternionic

Kähler manifold obtained from (H, gH) via the q-map.
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Remark 6.3.9 For the case n = 1 (h = x3), (N̄, g0
FS) is isometric to the

symmetric space G∗2/SO(4). In this case we checked using computer algebra

software that the squared pointwise norm of the Riemann tensor with respect to

the metric is

8∑
i, j, k, l, ĩ, j̃, k̃, l̃=1

Rijklg
ĩigjj̃gkk̃gll̃Rĩj̃k̃l̃

=

128

(
528c7 + 2112c6ρ+ 3664c5ρ2 + 3568c4ρ3

+ 2110c3ρ4 + 764c2ρ5 + 161cρ6 + 17ρ7

)
3(c+ ρ)(2c+ ρ)6

.

For c > 0, this function is non-constant, which shows that (N̄, gcFS) is not locally

homogeneous for c > 0.

6.3.3 General projective special Kähler manifolds

Let (M̄ ⊂ Cn, gM̄ , JM̄) be a projective special Kähler manifold which is globally

defined by a single holomorphic function F on

M := {z = z0 · (1, X) | z0 ∈ C∗, X ∈ M̄} ⊂ Cn+1. F is homogeneous of

degree two in the standard holomorphic coordinates (zI)I=0, ..., n on M . gM̄ has

a Kähler potential K = −logX tNX̄ = − log
∑n

I, J=0 X
INIJX̄

J in holomorphic

coordinates (Xµ = zµ

z0 )µ=1, ..., n on M̄ , where X0 := 1 and

N = 2(ImFIJ(z))I, J=0, ..., n = 2
(
Im

∂2F (z)

∂zI∂zJ
)
I, J=0, ..., n

,

which is homogeneous of degree zero and hence defines a matrix-valued function

on M̄ (see Section 5.1). Note that by assumption X tNX̄ > 0. The metric on

M̄ can be written as

gM̄ = b+
1

4
(dK)2 +

1

4
(dcK)2, (6.15)

where

b := −(dX)tN(dX̄)

X tNX̄
= − 1

X tNX̄

n∑
µ, ν=1

NµνdX
µdX̄ν (6.16)

is a non-degenerate pseudo-Riemannian metric on M̄ (see [C–G] for the fact

that for the matrix-valued function n := (nµν)µ, ν=1,..., n := (Nµν)µ, ν=1,..., n, n(p)
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is invertible at every point p ∈ M̄). Define

∆ := N00 −
n∑

µ, ν=1

N0µn
µνNν0, (6.17)

where n−1 =: (nµν)µ, ν=1, ..., n is the pointwise inverse of n.

Proposition 6.3.10 Let (M̄, gM̄ , JM̄) be a complete projective special Kähler

manifold. Assume that dK ∈ Ω1(M̄) is non-vanishing and that ∆
XtNX̄

> 1 or
∆

XtNX̄
< −ε for some ε > 0. Then for c ∈ R≥0, the one-loop deformed Ferrara-

Sabharwal metric gcFS (see Eq. (5.13)) is a complete quaternionic Kähler metric

on N̄ = M̄ × R>0 × R2n+3.

Proof : Define the non-vanishing vector field

Y := b−1(dK) = 4
n∑
I=0

n∑
µ, ν=1

Re(XINIµn
µν ∂

∂Xν
) ∈ X(M̄).

Then

b(Y, Y ) = dK(Y ) = − 4

X tNX̄

n∑
I=0

n∑
µ, ν=1

XINIµn
µνNνJX̄

J = 4
( ∆

X tNX̄
− 1
)
.

Note that dcK(JM̄Y ) = dK(Y ) and dcK(Y ) = dK(JM̄Y ) = 0. Since gM̄ is

positive definite,

gM̄(Y, Y ) = gM̄(JM̄Y, JM̄Y ) =
dK(Y )

4
(dK(Y ) + 4) = 4

∆

X tNX̄

( ∆

X tNX̄
− 1
)
> 0,

which implies that either ∆
XtNX̄

> 1 or ∆
XtNX̄

< 0. We can split the tangent

bundle of M̄ as

TM̄ = RY ⊕⊥ RJM̄Y ⊕⊥ H,

where H := {Y, JM̄Y }⊥ = ker dK ∩ ker dcK ⊂ TM̄ .

We want to show that gM̄ ≥ k
4
(dcK)2 for some k ∈ R>0. Since the left side of

the inequality is positive definite and the right side vanishes on RY and on H,

we just need to check that

4
∆

X tNX̄

( ∆

X tNX̄
− 1
)

= gM̄(JM̄Y, JM̄Y ) ≥ k

4
(dcK(JM̄Y ))2 = 4k

( ∆

X tNX̄
− 1
)2
.
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If ∆
XtNX̄

> 1, then this inequality is fulfilled for k = 1. If ∆
XtNX̄

< 0, it is

equivalent to k < 1,

− ∆

X tNX̄
≥ k

1− k
.

This can be fulfilled for some k > 0 if and only if − ∆
XtNX̄

is bounded from above

by a positive number. The proof is then finished by applying Proposition 6.3.5.

Remark 6.3.11 Note that for projective special Kähler manifolds in the image

of the supergravity r-map, we have ∆
XtNX̄

= −1
2
. For complex hyperbolic space,

∆
XtNX̄

= 1
1−‖X‖2 > 1.



Chapter 7

Curvature of the q-map

In Section 7.1, we give explicit local realizations of the complex vector bundles

E and H in Salamon’s E-H formalism for quaternionic Kähler manifolds. Using

local frames in E and H, we derive the formulas (7.48)-(7.51) for the E- and

H-part of the Levi-Civita connection and the formulas (7.55)-(7.57) for the E-

part RE of the Riemann curvature tensor. These formulas are known from the

quaternionic vielbein formalism used in the physics literature. In [FS], they

were used to calculate the Levi-Civita connection and Riemann curvature for all

manifolds in the image of the supergravity c-map. We also derive the formula

(7.58), which expresses RE in terms of a quartic tensor field Ω on E.

In Section 7.2, we recall the expression for the curvature of manifolds in the

image of the supergravity r-map from [CDL] and express it in terms of a uni-

tary coframe. In Section 7.3 we then calculate expressions for the Levi-Civita

connection of all manifolds in the image of the one-loop deformed q-map and for

the Riemann tensor of all manifolds in the image of the undeformed q-map. We

also derive the quartic tensor field Ω ∈ Γ(S4E∗) that determines the curvature

tensor of the manifolds in the image of the q-map.

In the last section, we construct a series of complete quaternionic Kähler mani-

folds via the q-map. Using the results from Section 7.3, we calculate a curva-

ture invariant (the pointwise norm of the Riemann tensor, sometimes called the

Kretschmann scalar) for all members of the constructed series and show that it

is a non-constant function. This shows that the constructed series consists of

complete quaternionic Kähler manifolds that are not locally homogeneous.

Note that in this chapter, we will only discuss positive definite quaternionic

Kähler manifolds.

133
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7.1 E -H formalism

In this section, we will locally give an explicit realization of the complex vector

bundles E and H over a quaternionic Kähler manifold that are used to identify

the complexified tangent bundle of the quaternionic Kähler manifold with the

tensor product H ⊗C E in the so-called E-H formalism introduced in [Sa1]. In

particular, we will prove the following proposition throughout the main text:

Proposition 7.1.1 Let (M, g,Q) be a quaternionic Kähler manifold. Every

choice of a local section1 (J1, J2, J3) ∈ Γ(U, S) defines an isomorphism

f : H ⊗C E → TCU, h⊗ e 7→ he (7.1)

of complex vector bundles over U ⊂M , where

H = R IdTU ⊕Q|U , iH = RJ1 , (7.2)

E = T 1,0
J1
U = (Id− iJ1)TCU, iE = J1 = i, (7.3)

are complex vector bundles endowed with quaternionic structure maps

jH = −RJ2 , jE = J2 ◦ ρ, (7.4)

(ρ is the standard real structure on TCU given by complex conjugation) and with

non-degenerate two-forms

ωH ∈ Γ(Λ2H∗), ωH(Id,− J2) = 1, ωE =
1

2
(ω2 + iω3) ∈ Γ(Λ2E∗) (7.5)

that fulfill j∗H = ωH , j∗E = ωE. Under the identification of TCU and H ⊗C E

given by f , ρ corresponds to jH ⊗ jE and the complexified metric gC corresponds

to ωH ⊗ ωE. The action of Ji on TCU corresponds to LJi ⊗ IdE and ωH is

invariant under LJi, i = 1, 2, 3.

We will then express the decomposition of the Riemann curvature tensor of

a quaternionic Kähler manifold (into the sum of a multiple of the curvature

tensor of quaternionic projective space and the quaternionic Weyl tensor) in

terms of (local) frames in H and E. This proves formulas for the Riemann

curvature tensor in the so-called quaternionic vielbein formalism used in the

1As in Chapter 3.6, S denotes the principal SO(3)-bundle of oriented orthonormal frames
in Q.
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physics literature. These formulas will be used in Section 7.3 to calculate the

curvature tensor for all manifolds in the image of the q-map.

Vector bundles H and E, complex structures iH and iE

Let (M, g,Q) be a positive definite 4n-dimensional quaternionic Kähler manifold

and let (J1, J2, J3) ∈ Γ(U, S) be a frame in Q defined over an open subset U ⊂M

such that J1J2 = J3 and J2
i = −Id, i = 1, 2, 3. We define

E := T 1,0
J1
U ⊂ (TU)C, (7.6)

H := R IdTU ⊕Q|U = span{Id, J1, J2, J3} ⊂ End(TU). (7.7)

Note that E is only defined locally over U and depends on the choice of J1. It is

a complex vector bundle of rankCE = 2n with complex structure iE := J1 = i.

H is a globally defined real vector bundle. To turn it into a complex vector

bundle, we restrict it to U and choose a complex structure iH := RJ1 defined by

right-multiplication with J1. By abuse of notation, we will from now on denote

the complex vector bundle (H|U , iH) by H (rankCH = 2).

Quaternionic structure map jH, non-degenerate two-form ωH and com-

plex frame (h1, h2)

jH := −RJ2 : H → H, h 7→ −hJ2 (7.8)

defines an iH-antilinear (i.e. iHjH = −jHiH) structure map on H satisfying

(jH)2 = −IdH . iH and jH commute with the natural action of

a+b i+c j+d k ∈ Sp(1) on H given by left-multiplication of a Id+b J1+c J2+d J3.

We choose the following complex frame for H:

(h1 := Id, h2 := −J2). (7.9)

We have jH(h1) = h2. Let (h1, h2) be the (complex) dual frame2 of H∗, i.e.

h1, h2 : H → C are R-linear maps such that hα((a + iHb)hβ) = (a + ib)δαβ for

2In terms of the dual frame (η0, η1, η2, η3) of the real frame
(η0 := h1, η1 := iHh1, η2 := h2, η3 := iHh2) of H, we have h1 = η0 + iη1, h2 = η2 + iη3.
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a, b ∈ R. Now, we define a non-degenerate two-form on H:

ωH := h1 ∧ h2 =
1

2

2∑
α, β=1

εαβ h
α ∧ hβ ∈ Γ(Λ2H∗), (7.10)

where the real-valued 2× 2 matrix (εαβ)α, β=1, 2 is defined by ε12 = −ε21 = 1 and

ε11 = ε22 = 0. ωH can equivalently be characterized by being non-degenerate

and fulfilling ωH(h1, h2) = ωH(Id , − J2) = 1. Since jH is iH-antilinear and

jH(h1) = h2, we have j∗Hh
1 = −h2, j∗Hh

2 = h1 and hence j∗HωH = ωH . Since

LJ1 , LJ2 , LJ3 are iH-linear and fulfill

LJ1h1 = iHh1, LJ1h2 = −iHh2, LJ2h1 = −h2, LJ2h2 = h1,

we have

L∗J1
h1 = ih1, L∗J1

h2 = −ih2, L∗J2
h1 = h2, L∗J2

h2 = −h1.

In combination with J3 = J1J2, this can be used to show that ωH is Sp(1)-

invariant. In terms of the frame (h1, h2), the action of (LJα) on H is given

by

L
(hα)
J1

=

(
iH 0

0 −iH

)
, L

(hα)
J2

=

(
0 1

−1 0

)
, L

(hα)
J3

=

(
0 iH

iH 0

)
. (7.11)

The almost hyper-complex structure (J1, J2, J3) defines the following symmetric

forms on H:

ωH(LJi · , ·) =


2ih1h2 (i = 1)

h1h1 + h2h2 (i = 2)

i(h2h2 − h1h1) (i = 3).

(7.12)

Quaternionic structure map jE, non-degenerate two-form ωE and com-

pact symplectic group Sp(Ex)

On E = T 1,0
J1
U , we define an iE-antilinear structure map that squares to −IdE

by

jE := ρ ◦ J2 = J2 ◦ ρ : E → E, e 7→ J2e = J2e, (7.13)
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where ρ denotes the standard real structure on TCU given by complex conjuga-

tion. We define the non-degenerate two-form

ωE :=
1

2
(ω2 + iω3) ∈ Γ(Λ2E∗), (7.14)

where ωi = g(Ji · ,·)|U , i = 1, 2, 3. Using the fact that J2J3 = −J3J2 and that

g is J2-invariant, one shows that j∗Eω2 = ω2 and j∗Eω3 = −ω3, which implies

j∗EωE = ωE. The fiber over a point x ∈ U of the subbundle SpC(E) ⊂ End(E)

consists of all invertible endomorphisms of Ex that leave ωE|x invariant. We

denote the compact symplectic group which consists of elements in SpC(Ex)

commuting with jE|x by Sp(Ex), i.e. the corresponding subbundle of End(E) is

Sp(E) := SpC(E)jE = {A ∈ SpC(E) | jEAj−1
E = A}. (7.15)

Isomorphism f between TCU and H ⊗C E

Now, we want to identify TCU with H ⊗C E via the following isomorphism:

f : H ⊗C E → TCU, h⊗ e 7→ he. (7.16)

Since iH is defined via right-multiplication of J1 and iE via left-multiplication

of J1, f is C-linear, i.e. f ◦ (iH ⊗ IdE) = f ◦ (IdH ⊗ iE) = i ◦ f . The standard

real structure ρ : v 7→ v on TCU is recovered via ρ ◦ f = f ◦ (jH ⊗ jE), since

jH = −RJ2 and jE = J2 ◦ ρ. Using a frame in E, one can show that

f ∗gC|U = ωH ⊗ ωE, (7.17)

where gC is the complex bilinear extension of g (see Eq. (7.40) below).

Decomposition of the curvature tensor R, quaternionic Weyl tensor

W

Now, we state the well-known decomposition of the Riemann curvature tensor

of a quaternionic Kähler manifold:

Theorem 7.1.2 The curvature tensor R of a quaternionic Kähler manifold

admits the decomposition

R = νRHPn +W, (7.18)
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where RHPn is the curvature tensor of the standard metric3 of HP n, ν = scal
4n(n+2)

is the reduced scalar curvature and all traces of W ∈ Γ(TM ⊗ T ∗M⊗3) are zero.

Given a local section (J1, J2, J3) ∈ Γ(U, S), RHPn is given by

RHPn(X, Y )Z =
1

4
[g(Y, Z)X − g(X,Z)Y ]− 1

2

3∑
i=1

ωi(X, Y )JiZ

+
1

4

3∑
i=1

[ωi(Y, Z)JiX − ωi(X,Z)JiY ] (7.19)

and in terms of the identification of TCU with H⊗CE given in Proposition 7.1.1,

W is an (IdH ⊗ sp(E))-valued 2-form whose complex bilinear extension fulfills

W (he, h′e′)(h′′e′′) = −ωH(h, h′)h′′ω−1
E (Ω(e, e′, e′′,·)) (7.20)

(h, h′, h′′ ∈ Γ(H), e, e′, e′′ ∈ Γ(E)), where Ω ∈ Γ(S4E∗) such that j∗EΩ = Ω.

Proof : This theorem was proven in [A1, Sa1]. See also [Besse, ACDGV].

Remark 7.1.3

1. W is called the quaternionic Weyl tensor. Since R and RHPn fulfill

the Bianchi identity, W does as well:

W (X, Y )Z +W (Y, Z)X +W (Z,X)Y = 0. (7.21)

2. Note, that we use the following convention to identify E with E∗:

E
≈→ E∗, v 7→ ωE(v, ·). (7.22)

We denote the inverse of the above map by ω−1
E :

E∗ → E, α 7→ ω−1
E (α). (7.23)

3. The condition j∗EΩ = Ω ensures that in equation (7.20), W is the C-linear

extension of a real tensor field:

W (he, h′e′)(h′′e′′) = W (jHhjEe, jHh
′jEe

′)(jHh
′′jEe

′′) = W (he, h′e′)(h′′e′′).

(7.24)
3Here, the metric on quaternionic projective space is normalized such that its reduced scalar

curvature is equal to one.
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E-H splitting of the curvature tensor of quaternionic projective space

Now, we give a slight refinement of the splitting of the curvature tensor of a

quaternionic Kähler manifold given in Theorem 7.1.2 by splitting the curvature

tensor of HP n into an H- and an E-part (this was done for example in [KSW]):

Proposition 7.1.4

RHPn = RH
HPn +RE

HPn , (7.25)

where for h, h′, h′′ ∈ Γ(H) and e, e′, e′′ ∈ Γ(E),

RH
HPn(he, h′e′)(h′′e′′) := −1

2
ωE(e, e′)(ωH(h, h′′)h′ + ωH(h′, h′′)h)e′′, (7.26)

RE
HPn(he, h′e′)(h′′e′′) := −1

2
ωH(h, h′)h′′(ωE(e, e′′)e′ + ωE(e′, e′′)e). (7.27)

Proof : Using the equation

3∑
i=1

ωH(Jih, h
′)Jih

′′ = ωH(h, h′′)h′ + ωH(h′, h′′)h, (7.28)

which can be checked by direct computation, one finds

−1

2

3∑
i=1

ωi(he, h
′e′)Jih

′′e′′
(7.17)
= −1

2
ωE(e, e′)

3∑
i=1

ωH(Jih, h
′)Jih

′′e′′

= −1

2
ωE(e, e′)(ωH(h, h′′)h′ + ωH(h′, h′′)h)e′′

= RH
HPn(he, h′e′)h′′e′′. (7.29)

Equation (7.28) and the Bianchi-type identity

ωH(h, h′)h′′ + ωH(h′, h′′)h+ ωH(h′′, h)h′ = 0 (7.30)

imply

1

4

3∑
I=0

ωI(h
′e′, h′′e′′)JIhe

(7.17)
=

1

4
ωE(e′, e′′)[ωH(h′, h′′)h+

3∑
i=1

ωH(Jih
′, h′′)Jih]e

=
1

4
ωE(e′, e′′)[ωH(h′, h′′)h+ ωH(h′, h)h′′ + ωH(h′′, h)h′]e

= −1

2
ωE(e′, e′′)ωH(h, h′)h′′e, (7.31)
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and hence

1

4

3∑
I=0

[ωI(h
′e′, h′′e′′)JIhe− ωI(he, h′′e′′)JIh′e′] = RE

HPn(he, h′e′)h′′e′′. (7.32)

Here, we used the notation ω0 := g and J0 := Id. Equation (7.19) then shows

RHPn = RH
HPn +RE

HPn .

Frame (EΓ) = (Ea, Eã) = (βa, αa) in E and quaternionic vielbein (fαΓ)

(coframe in TCU)

To make contact with formulas used in the physics literature, we will now express

the objects defined above on E and TCU in terms of a frame (EΛ) of E and a

corresponding frame (fαΛ) = (hαEΛ) of TCU . The coframe (fαΛ) dual to (fαΛ)

is called a quaternionic vielbein in the physics literature.

Let e1, ..., en ∈ Γ(U, TM) such that g(ea, eb) = δab, a, b = 1, . . . , n. Then

(ea, J1ea, J2ea, J3ea)a=1, ..., n is a local oriented orthonormal frame with respect

to g that is adapted to the almost hypercomplex structure (J1, J2, J3). Then we

define the following complex frame of E:

(Ea := βa :=
1

2
(ea − iJ1ea), Ea+n := αa :=

1

2
(J2ea − iJ3ea))a=1, ..., n. (7.33)

From now on, we will write ã for the index a + n, a = 1, . . . , n. We have

jE(βa) = αa, i.e. jE(Ea) = Eã.

(Ea := βa := ea − iJ∗1ea, E ã := αa := −J∗2ea − iJ∗3ea)a=1, ..., n (7.34)

is the dual frame of E∗ = Ω1,0
J1
U , where ea := g(ea, ·) ∈ Ω1U .

We define fαΓ := f(hα ⊗ EΓ) = hαEΓ ∈ TCU for α = 1, 2 and for

Γ = 1, . . . , 2n = 1, . . . n, 1̃, . . . , ñ:

(fαΓ)α=1, 2; Γ=1, ..., 2n =

(
f1a f1ã

f2a f2ã

)
a=1, ..., n

=

(
βa αa

−ᾱa β̄a

)
a=1, ..., n

. (7.35)

(fαΓ)α=1, 2; Γ=1, ..., 2n constitutes a frame in TCU . The corresponding coframe is
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given by

(fαΓ)α=1, 2; Γ=1, ..., 2n =

(
f 1a f 1ã

f 2a f 2ã

)
a=1, ..., n

:=

(
βa αa

−ᾱa β̄a

)
a=1, ..., n

, (7.36)

where βa = 2g(βa, ·), αa = 2g(αa, ·) are defined as in equation (7.34). Then

(f ∗(fαΓ))(hβ ⊗ E∆) = fαΓ(fβ∆) = δαβ δ
Γ
∆, i.e. (f−1)∗(hα ⊗ EΓ) = fαΓ, where we

naturally identify (H ⊗ E)∗ with H∗ ⊗ E∗.

Formulas for Levi-Civita connection and curvature tensor in quater-

nionic vielbein formalism

Using the fact that the metric can be written as

g|U =
n∑
a=1

(βaβ̄a +αaᾱa) =
1

2

n∑
a=1

(βa⊗ β̄a +αa⊗ ᾱa + β̄a⊗βa + ᾱa⊗αa) (7.37)

and that J∗2β
a = J∗2e

a − iJ∗3ea = −ᾱa, one obtains

ω2 = g(J2 · , ·)|U =
1

2

n∑
a=1

(βa ∧ αa + β̄a ∧ ᾱa). (7.38)

The (2, 0)J1-form ωE = 1
2
(ω2 + iω3) can thus be written as

ωE =
1

2

n∑
a=1

βa ∧ αa =
1

4

2n∑
Γ,∆=1

CΓ∆E
Γ ∧ E∆, (7.39)

where (CΓ∆)Γ,∆=1, ..., 2n is defined by Cab̃ = −Cãb = δab, Cab = Cãb̃ = 0

(a, b = 1, . . . , n).

In terms of the coframe (fαΓ), the metric can be written as

g|U
(7.37)
=

(7.36)

2∑
α, β=1

2n∑
Γ,∆=1

1

2
εαβCΓ∆f

αΓfβ∆. (7.40)

We define the real-valued 2n× 2n matrix

J := (JΓ
∆)Γ,∆=1, ..., 2n =

(
0 −1
1 0

)
. (7.41)
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Then for v =
∑2n

Γ=1 v
ΓEΓ ∈ E, jEv =

∑2n
Γ,∆=1 J

Γ
∆v

∆EΓ, i.e. with respect to the

frame (EΓ), jE is represented by J ◦a. In the definition of J and in the following,

the splitting of matrices into block form corresponds to the splitting

E = span{Ea}a=1, ..., n ⊕ span{Eã}a=1, ..., n (7.42)

of E into two totally isotropic subspaces with respect to ωE. With respect to

the frame (EΓ), the two-form ωE is represented by 1
2
C, where as above

C = (CΓ∆)Γ,∆=1, ..., 2n =

(
0 1

−1 0

)
. (7.43)

Remark 7.1.5 In terms of the quaternionic frame (fαΓ), we have

ωE(
2n∑

Γ=1

vΓEΓ,·) =
1

2

2n∑
Γ,∆=1

vΓCΓ∆E
∆,

ω−1
E (

2n∑
∆=1

α∆E
∆) = 2

2n∑
∆,Γ=1

α∆C
∆ΓEΓ,

where (CΓ∆) = (CΓ∆)−1 = −(CΓ∆). The quaternionic Weyl tensor is thus given

by

W (fαΓ,fβ∆)fγΞ
(7.20)
= −2εαβ

2n∑
Λ′=1

ΩΓ∆ΞΛ′C
Λ′ΛfγΛ, (7.44)

where ΩΓ∆ΞΛ = Ω(EΓ, E∆, EΞ, EΛ) ∈ C∞(U,C).

The Lie algebra of Sp(Ex) consists of all endomorphisms B ∈ End(Ex)

such that the matrix B̃ ∈ Mat(2n,C) representing B with respect to the ba-

sis (EΓ|x)Γ=1, ..., 2n of Ex fulfills B̃tC + CB̃ = 0 and JB̃ = B̃J , i.e.

sp(Ex) = {B ∈ End(Ex) | B̃ =

(
q t

−t̄ q̄

)
∈ Mat(2n,C), q† := qt = −q, tt = t}

(7.45)

for x ∈ U .

Since the Levi-Civita connection∇ preservesQ, i.e.∇XΓ(Q) ⊂ Γ(Q), X ∈ Γ(TU),

the connection one-form A, A(X) ∈ Γ(so(TU)) ⊂ Γ(End(TU)), normalizes Q,

i.e. [A(X), Q] ⊂ Q. Thus A(X) can be written as a linear combination of the
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inner automorphisms {Jα} of Q and a Q-linear part:

A(X) =
3∑
i=1

Ai(X)Ji + A0(X), [A0(X), Q] = 0. (7.46)

Then ∇XJi = [A(X), Ji] =
∑3

l=1 A
l(X)[Jl, Ji] = −2Aj(X)Jk + 2Ak(X)Jj for

any cyclic permutation (i, j, k) of (1, 2, 3). Comparing with Eq. (2.1), we see

that Ai(X) = −θ̄i(X), where θ̄i, i = 1, 2, 3, are the components of the local

Sp(1)-connection one-form with respect to the frame (J1, J2, J3). In terms of the

splitting TCU = H ⊗ E, we thus have

A(X) =
3∑
i=1

Ai(X)Ji + A0(X)

=̂AH(X)⊗ IdE + IdH ⊗AE(X)

= −
3∑

α=1

θ̄α(X)LJα ⊗ IdE + IdH ⊗ AE(X), (7.47)

where AE(X) ∈ Γ(sp(E)). We denote the matrix representing AE(X) in terms

of the frame (EΓ) by Θ(X) := ÃE(X) := (ΘΓ
∆(X))Γ,∆=1, ..., 2n. With respect to

the frame (fαΓ), we thus have

fαΓ(∇Xfβ∆) = pαβ(X)δΓ
∆ + δαβΘΓ

∆(X),

where, since ∇ is metric, JΘ(X) = Θ(X)J and Θ(X)tC + CΘ(X) = 0, and

p = (pαβ) =

(
p1

1 p1
2

p2
1 p2

2

)
(7.11)
=

(7.47)

(
−iθ̄1 −θ̄2 − iθ̄3

θ̄2 − iθ̄3 iθ̄1

)
. (7.48)

We write the sp(E)-part of local Levi-Civita connection one-form with respect

to the frame (EΓ) as

(ΘΓ
∆) =

(
q t

−t̄ q̄

)
, (7.49)

where q, t are complex 1-form-valued n × n matrices that are anti-Hermitian,

respectively symmetric: q† := q̄t = −q and tt = t. Since ∇ is torsion-free, q and

t are determined by the equation 0 = dfΓ1 +
∑2

β=1 p
1
β ∧ fΓβ +

∑2n
∆=1 ΘΓ

∆ ∧ f∆1,



144 Chapter 7. Curvature of the q-map

Γ = 1, . . . , 2n, which is equivalent to

0 = dβa + p1
1 ∧ βa − p1

2 ∧ ᾱa +
n∑
b=1

(qab ∧ βb + tab ∧ αb) (7.50)

0 = dαa + p1
1 ∧ αa + p1

2 ∧ β̄a +
n∑
b=1

(−t̄ab ∧ βb + q̄ab ∧ αb), (7.51)

a = 1, . . . , n.

The calculation of the curvature tensor R(X, Y ) = ∇X∇Y − ∇Y∇X − ∇[X,Y ]

leads to

fαΓ(R(X, Y )fβ∆) = R̃H
α

β(X, Y )δΓ
∆ + δαβR̃E

Γ

∆(X, Y ), (7.52)

where

R̃H = dp+ p ∧ p

=

(
−idθ̄1 + 2iθ̄2 ∧ θ̄3 −(dθ̄2 + idθ̄3) + 2iθ̄1 ∧ (θ̄2 + iθ̄3)

(dθ̄2 − idθ̄3) + 2iθ̄1 ∧ (θ̄2 − iθ̄3) idθ̄1 − 2iθ̄2 ∧ θ̄3

)
(2.7)
=

ν

2

(
−iω1 −ω2 − iω3

ω2 − iω3 iω1

)
(7.53)

and

R̃E = dΘ + Θ ∧Θ. (7.54)

We write the E-part of the curvature tensor with respect to the frame (EΓ) as

R̃E =

(
r s

−s̄ r̄

)
, (7.55)

where r, s are complex two-form valued n × n matrices that fulfill r† = −r,
st = s. In components, we then have

rab = dqab +
n∑
c=1

(qac ∧ qcb − tac ∧ t̄cb) (7.56)

sab = dtab +
n∑
c=1

(qac ∧ tcb + tac ∧ q̄cb), (7.57)

a, b = 1, . . . , n.

To express the E-part RE of the curvature tensor in terms of the quartic sym-

metric tensor field Ω in E, we combine Theorem 7.1.2 and Proposition 7.1.4:
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Corollary 7.1.6 The E-part of the curvature tensor of a quaternionic Kähler

manifold with respect to the frame (EΓ) is given by

R̃E
Λ

Ξ =
2∑

α, β=1

2n∑
∆=1

ν

4
εαβCΞ∆f

αΛ ∧ fβ∆ +
2∑

α, β=1

2n∑
Λ′,Γ,∆=1

CΛΛ′ΩΛ′ΞΓ∆εαβf
αΓ ∧ fβ∆.

(7.58)

Proof : Since ωH(hα, hβ) = εαβ and ωE(EΓ, E∆) = 1
2
CΓ∆, we have

f δΛ(RE
HPn(fαΓ, fβ∆)fγΞ)

(7.27)
= −1

4
εαβδ

δ
γ(CΓΞδ

Λ
∆ + C∆Ξδ

Λ
Γ ). (7.59)

The definition of Ω ∈ Γ(S4E∗) in Eq. (7.20) implies

f δΛ(W (fαΓ, fβ∆)fγΞ) = −2δδγεαβ

2n∑
Λ′=1

ΩΓ∆ΞΛ′C
Λ′Λ. (7.60)

Due to the decomposition R = νRHPn +W in Theorem 7.1.2, the E-part of the

curvature tensor with respect to the frame (EΓ) is given as a linear combination

of the terms in Eqs. (7.59) and (7.60):

R̃E
Λ

Ξ(fαΓ, fβ∆) =
ν

4
εαβCΞ∆δ

Λ
Γ −

ν

4
εβαCΞΓδ

Λ
∆ − 2εαβ

2n∑
Λ′=1

ΩΓ∆ΞΛ′C
Λ′Λ. (7.61)

The above equation is equivalent to Eq. (7.58).

7.2 Curvature of the supergravity r-map

In this section, we recall expressions for the Levi-Civita connection and the

Riemann curvature tensor for projective special Kähler manifolds in the image

of the supergravity r-map that we stated in [CDL]. We then derive formulas

for the local connection one-form and the curvature tensor in terms of a unitary

coframe.

Note that in this section, we will sometimes leave out summation symbols and

employ Einstein’s summation convention, i.e. every index that appears twice

within one expression is summed over.
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Recall that a projective special Kähler manifold (M̄ = Rn + iU ⊂ Cn, gM̄ , JM̄)

in the image of the supergravity r-map is defined by a real homogeneous cubic

polynomial h in n variables and an R>0-invariant domain U ⊂ Rn\{0} (see

Section 6.2). The Kähler potential of gM̄ is

K(X, X̄) = − log 8h(x) = − log h
(
i(X̄ −X)

)
,

where (Xµ = yµ + ixµ)(µ=1, ..., n) are standard holomorphic coordinates on

M̄ = Rn + iU ⊂ Cn. The metric then reads gM̄ = Kµν̄dX
µdX̄ν , where

Kµν̄ = − ∂2

∂Xµ∂X̄ν
logh(x) = −hµν(x)

4h(x)
+
hµ(x)hν(x)

4h2(x)
. (7.62)

For all Kähler manifolds, the only non-vanishing Christoffel symbols are (see e.g.

[Mo], Section 12.2, or [KN])

dXρ(∇∂Xσ∂Xµ) =: Γρσµ = gρκ̄∂Xσgµκ̄ (7.63)

and their complex conjugates. For manifolds in the image of the supergravity

r-map, we have

Γρσµ = − i

2h

(
hhρκhκµσ − hσδρµ − hµδρσ +

1

2
xρhµσ

)
. (7.64)

For the Riemann tensor

R(X, Y )Z := ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z (X, Y, Z ∈ X(M̄))

in local coordinates, we have (see e.g. [Mo], Section 12.2, or [KN])

dXρ (R(∂Xµ , ∂X̄ν )∂Xσ) =: Rρ
σµν̄ = −∂X̄νΓρσµ. (7.65)

The other non-vanishing components Rρ̄
σ̄µν̄ , R

ρ
σµ̄ν and Rρ̄

σ̄µ̄ν of the curvature

tensor can be obtained from this via symmetry and complex conjugation. The

curvature tensor is given by [CDL, Theorem 3]

Rρ
σµν̄ = − i

2
∂xνΓ

ρ
σµ = − 1

4h2

[
1

2
xρ(hhµσν − hµσhν) + hµhνδ

ρ
σ + hσhνδ

ρ
µ

− h
(
hσνδ

ρ
µ + hµνδ

ρ
σ −

1

2
hµσδ

ρ
ν

)
− h2hραhναβh

βγhγµσ

]
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= −δρσKµν̄ − δρµKσν̄ + e2KKρᾱhανβK
βγ̄hγµσ, (7.66)

where

Kν̄λ = −4h(x)hνλ(x) + 2xνxλ. (7.67)

Unitary coframe (σa = ea − iJ∗
M̄
ea =

∑n
µ=1 e

a
µdX

µ)a=1, ..., n

Let (eaµ)a, µ=1, ..., n be a real n× n matrix-valued function on some open subset in

M̄ such that
∑n

a=1 e
a
µē
a
ν =

∑n
a=1 e

a
µe
a
ν = Kµν̄ . Then the holomorphic one-forms

σa :=
n∑
µ=1

eaµdX
µ (7.68)

constitute a unitary coframe (σa)a=1, ..., n, i.e. the metric can locally be written

as

gM̄ =
n∑
a=1

σaσ̄a =
1

2

n∑
a=1

(σa ⊗ σ̄a + σ̄a ⊗ σa). (7.69)

Let (σa :=
∑n

µ=1 e
µ
a

∂
∂Xµ )a=1, ..., n denote the corresponding local frame in T 1, 0M̄

dual to (σa)a=1, ..., n, i.e. (eµa) = (eaµ)−1. Then σa = 2gM̄(σ̄a, ·).

For the Levi-Civita connection ∇, we denote the coefficients of the local connec-

tion one-form associated to the coframe (σa) by ωab, i.e. ∇·σa =
∑n

b=1 ω
a
b(·)σb.

Since the connection is metric, the complex one-form valued matrix (ωab)a, b=1, ..., n

is anti-Hermitian and since the connection is torsion-free, it fulfills

dσa +
∑n

b=1 ω
a
b ∧ σb = 0, a = 1, . . . , n. A formula for the local connection

one-form of any Kähler manifold with respect to a unitary coframe is given by

ωab =
n∑
µ=1

(eaµ∂̄e
µ
b − ē

b
µ∂ē

µ
a). (7.70)

In terms of the local connection one-form, the curvature tensor of a Kähler

manifold is given by

R(X, Y )σc =
n∑
d=1

(dωdc +
n∑

c′=1

ωdc′ ∧ ωc
′

c)(X, Y )σd =:
n∑
d=1

R̃d
c(X, Y )σd. (7.71)

Proposition 7.2.1 In terms of the unitary coframe (σa)a=1, ..., n, the Riemann

curvature tensor of a projective special Kähler manifold in the image of the su-
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pergravity r-map reads

R̃a
b = −δab

n∑
c=1

σc ∧ σ̄c − σa ∧ σ̄b + e2K

n∑
c, e, d=1

h̃adch̃cebσ
e ∧ σ̄d, (7.72)

where h̃abc :=
∑n

µ, ν, σ=1 e
µ
ae
ν
be
σ
chµνσ for a, b, c = 1, . . . , n.

Proof : Using Kµν̄ = ecµē
c
ν , Kµν̄ = eµc ē

ν
c and the fact that

(eaµ)a, µ=1, ..., n = (eνb )
−1
ν, b=1, ..., n, we find

R̃a
b(σe, σ̄d) = σa(R(σe, σ̄d)σb)

= eaρ dX
ρ(R(∂Xµ , ∂X̄ν )∂Xσ) eµe ē

ν
de
σ
b

(7.66)
= eaρ

(
−δρσKµν̄ − δρµKσν̄ + e2KKρᾱhανβK

βγ̄hγµσ
)
eµe ē

ν
de
σ
b

= −δab δde − δaeδbd + e2Kh̃adch̃ceb.

Recall from Remark 6.2.4 that a projective special Kähler manifold M̄ = Rn+iU

in the image of the supergravity r-map is defined by the holomorphic prepotential

F : M → C, F (z0, . . . , zn) =
h(z1, · · · , zn)

z0
, (7.73)

where M is the trivial C∗-bundle

M := {z = z0 · (1, X) ∈ Cn+1 | z0 ∈ C∗, X ∈ M̄ = Rn + iU} → M̄. (7.74)

Recall that the complex (n+ 1)× (n+ 1) matrix-valued function

F (z) := (FIJ(z))I, J=0, ..., n :=
(∂2F (z)

∂zI∂zJ
)
I, J=0, ..., n

(7.75)

is homogeneous of degree zero and thus defines a function F (X) on M̄ . The

same holds true for N(z, z̄) := (NIJ(z, z̄))I, J=0, ..., n := 2 ImF (z). The matrix N

is invertible at every point in M̄ and we denote the components of its inverse by

N IJ . Recall from Remark 6.2.4 that in terms of N , the Kähler potential can be

written as

K = − logXNX̄ =: − log(XINIJ(X, X̄)X̄J), (7.76)

where X0 := 1. More generally, for every function fM(z) on M , we define a
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function fM̄(X) on M̄ by fM̄(X) := fM(1, X1, . . . , Xn). Like this, the function

FIJK(z) :=
∂3F (z)

∂zI∂zJ∂zK
(I, J,K = 0, . . . , n) (7.77)

defines a function FIJK(X) on M̄ .

Proposition 7.2.2 The local connection one-form for the Levi-Civita connec-

tion with respect to the unitary coframe (σa)a=1, ..., n can be written as

ωab = e−K
(
(∂̄P a

I )N IJ P̄ b
J − P a

I N
IJ(∂P̄ b

J)
)

(7.78)

= δab∂K + e−Kd(P a
I N

IJ)P̄ b
J + ie−KP a

I N
IK dFKL(X)NLJ P̄ b

J , (7.79)

where P a
I are the components of the complex n× (n+ 1) matrix-valued function

(P a
I )a=1, ..., n, I=0, ..., n = (P a

0 , P
a
µ )a, µ=1, ..., n := (−

n∑
ν=1

eaνX
ν , eaµ)a, µ=1, ..., n. (7.80)

Before we prove the above proposition, we state a few formulas for the matrix-

valued functions F , N , (P a
I ), and for FIJK(X) that can be easily checked or

looked up in the physics literature on special geometry:

Remark 7.2.3

0 =
n∑
I=0

XKFIJK(X) (I, J = 0, . . . , n), (7.81)

0 =
n∑
I=0

P a
I X

I (a = 1, . . . , n), (7.82)

∂K = −eK
n∑

I, J=0

X̄INIJdX
J , (7.83)

Kµν̄ = −eK(Nµν − eK
n∑

K,L=0

NµKX̄
KXLNLν) (µ, ν = 1, . . . , n), (7.84)

n∑
a=1

P a
I P̄

a
J = −eK(NIJ − eK

n∑
K,L=0

NIKX̄
KXLNLJ) (I, J = 0, . . . , n), (7.85)

−eKδab =
n∑

I, J=0

P a
I N

IJ P̄ b
J (a, b = 1, . . . , n). (7.86)

Proof (of Proposition 7.2.2):



150 Chapter 7. Curvature of the q-map

Multiplication of Eq. (7.86) by −e−Keµa gives

eµb = e−K(XµN0J −NµJ)P̄ b
J .

This equation shows that

−eµb ∂̄e
a
µ = e−K((∂̄eaµ)NµJ −Xµ(∂̄eaµ)N0J)P̄ b

J = e−K(∂̄P a
I )N IJ P̄ b

J .

Using the above equation one then finds

ωab
(7.70)
= −eµb ∂̄e

a
µ + ēµa∂ē

b
µ = e−K

(
(∂̄P a

I )N IJ P̄ b
J − P a

I N
IJ(∂P̄ b

J)
)
.

Adding 0
(7.86)
= δab∂K + e−K∂(P a

I N
IJ P̄ b

J) to the above equation gives

ωab = δab∂K + e−K
(
d(P a

I N
IJ)P̄ b

J − P a
I (∂̄N IJ)P̄ b

J

)
= δab∂K + e−Kd(P a

I N
IJ)P̄ b

J + ie−KP a
I N

IK dFKL(X)NLJ P̄ b
J .

7.3 Curvature of the q-map

In this section, we will use the formulas (7.48)-(7.51) for the E- and H-part of

the Levi-Civita connection and the formulas (7.55)-(7.57) for the E-part RE of

the Riemann curvature tensor derived in Section 7.1 to calculate the Levi-Civita

connection of all manifolds in the image of the one-loop deformed q-map and

the Riemann tensor of all manifolds in the image of the undeformed q-map. We

also derive the quartic tensor field Ω ∈ Γ(S4E∗) that determines the curvature

tensor of the manifolds in the image of the q-map.

Again, we will sometimes leave out summation symbols and employ Einstein’s

summation convention.

As in the last section, let (M̄ = Rn + iU ⊂ Cn, gM̄ , JM̄) be a projective special

Kähler manifold in the image of the supergravity r-map. Let h denote the cor-

responding homogeneous cubic polynomial in n real variables. Let (σ1, . . . , σn)

be a unitary coframe on the projective special Kähler manifold (M̄, gM̄ , JM̄), i.e.

σa =:
∑n

µ=1 e
a
µ dX

µ, a = 1, . . . , n, are locally defined JM̄ -holomorphic one-forms

such that gM̄ =
∑n

a=1 σ
aσ̄a = 1

2

∑n
a=1(σa ⊗ σ̄a + σ̄a ⊗ σa). Here, (Xµ)µ=1, ..., n

again denotes standard holomorphic coordinates on M̄ ⊂ Cn. Since for Kähler
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manifolds in the image of the supergravity r-map Kµν̄ is real, we can choose

eaµ to be real (see Eq. (7.62)). Recall how M̄ is realized as a C∗-quotient of

a conical affine special Kähler manifold M defined by a holomorphic prepoten-

tial F : M → C (see Eq. (7.73) and below). This in particular defines the

matrix-valued functions N = (NIJ)I, J=0, ..., n, F = (FIJ)I, J=0, ..., n, etc. on M̄ .

Starting from the projective very special Kähler manifold (M̄, gM̄ , JM̄), we now

consider the one-loop deformed supergravity c-map. For c ∈ R, let

N ′ := N ′(4n+4, 0) ⊂ M̄ × R2n+4 ⊂ R4n+4 (7.87)

denote the domain where the one-loop deformed Ferrara-Sabharwal metric gcFS
is positive definite (see Definition 5.5.1). As in Definition 5.5.1, we use standard

real coordinates (ρ, φ̃, ζ̃I , ζ
I)I=0, ..., n on the R2n+4 factor of N ′ and complex coor-

dinates (Xµ)µ=1, ..., n on M̄ . Note that on N ′, ρ > 0 and ρ + 2c > 0. We define

the following complex-valued one-forms on N ′:

β0 := ieK/2
√
ρ+ 2c

ρ

n∑
I=0

XIAI ,

βa :=

√
ρ+ c

ρ

n∑
I=0

P a
I dX

I =

√
ρ+ c

ρ
σa,

α0 := − 1

2ρ

√
ρ+ 2c

ρ+ c

(
dρ− i ρ+ c

ρ+ 2c
(dφ̃+

n∑
I=0

(ζIdζ̃I − ζ̃IdζI) + cdcK)

)
,

αa :=
i
√
ρ
e−K/2

n∑
I,J=0

P
a

IN
IJAJ (7.88)

(a = 1, . . . , n), where (P a
I )I=0,...,n = (P a

0 , P
a
µ )µ=1,...,n = (−

∑n
ν=1X

νeaν , e
a
µ)µ=1,...,n

and AI = dζ̃I +
∑n

J=0 FIJ(X)dζJ , I = 0, . . . , n. Here, we trivially extend

functions and one-forms from M̄ to N ′, using the same notation (i.e. leaving out

pullbacks). Let Q = spanR{J ′1, J ′2, J ′3} denote the (trivial) quaternionic structure

on N ′ obtained from the HK/QK correspondence (see Remarks 5.5.3 and 5.5.4).

Lemma 7.3.1 The coframe

(fαΓ)α=1, 2; Γ=1, ..., 2n+2 =

(
f 1A f 1Ã

f 2A f 2Ã

)
A=0, ..., n

:=

(
βA αA

−ᾱA β̄A

)
A=0, ..., n

(7.89)

in (T ∗N ′)C defines a unitary coframe for the one-loop deformed Ferrara-Sabharwal
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metric, i.e. the metric reads

gcFS =
n∑

A=0

(βAβ̄A + αAᾱA), (7.90)

and αA, βA are J1-holomorphic and fulfill

αA = −J∗2 β̄
A

(A = 0, . . . , n). (7.91)

Proof : Note that τ = −2iρ
√

ρ+2c
ρ+c

α0, where τ is given by Eq. (5.18). Further-

more,
1

4
ddcK =

i

2
∂∂̄K =

i

2
σa ∧ σ̄a =

i

2

ρ

ρ+ c
βa ∧ β̄a,

β0 ∧ β̄0 = eK ρ+2c
ρ2 (XIAI) ∧ (X̄JĀJ) and

αa ∧ ᾱa =
1

ρ
e−KN IKP̄ a

KP
a
LN

LJAI ∧ ĀJ
(7.85)
= −1

ρ
(N IJ − eKXIX̄J)AI ∧ ĀJ .

Together with Eq. (5.16), this shows that the first fundamental two-form is given

by

ω̄1 =
i

2

n∑
A=0

(βA ∧ β̄A + αA ∧ ᾱA). (7.92)

Note that

αa ∧ βa = ie−K/2
√
ρ+ c

ρ
P a
I P̄

a
KN

KJAJ ∧ dXI

(7.85)
= ieK/2

√
ρ+ c

ρ
(−AI ∧ dXI + eKX̄MNMIX

JAJ ∧ dXI)

(7.83)
= +ieK/2

√
ρ+ c

ρ
(dXI ∧ AI + ∂K ∧XIAI). (7.93)

Together with Eq. (5.17) and the definitions of β0 and α0, this shows that

ω̄2 + iω̄3 =
n∑

A=0

βA ∧ αA. (7.94)

The statements of the lemma follow immediately from Eqs. (7.92) and (7.94).

Before we proceed, we state a few more formulas that can be proven using the

formulas in Remark 7.2.3 and the definitions of βA, αA. These formulas will be

used in later proofs.



7.3. Curvature of the q-map 153

Remark 7.3.2 We have

N IJAI ∧ ĀJ = N IJ(FIK − F̄IK)dζK ∧ dζ̃J = idζJ ∧ dζ̃J , (7.95)

dXK (7.85)
=

(7.83)
−XK∂K− e−K

√
ρ

ρ+ c
NKJ P̄ a

J β
a, (7.96)

i
√
ρ
e−K/2AJ

(7.85)
=

√
ρ

ρ+ 2c
NJLX̄

Lβ0 − e−KP b
Jα

b, (7.97)

i
√
ρ
e−K/2dζL = 2

i
√
ρ
e−K/2NLM ImAM = −2iNLMRe(

i
√
ρ
e−K/2AM)

(7.97)
= −2i

√
ρ

ρ+ 2c
Re(X̄Lβ0) + 2ie−KNLMRe(P b

Mα
b), (7.98)

d(P̄ a
I N

IJ)NJLX̄
L (7.82)

= −P̄ a
I N

IJd(NJLX̄
L)

(7.81)
= −

√
ρ

ρ+ c
β̄a + iP̄ a

I N
IJdFJL(X)X̄L, (7.99)

e−KP̄ a
I N

IJ P̄ b
MN

MLFJKL(X)dXK (7.96)
=

(7.81)
−e−2K

√
ρ

ρ+ c
F̃ abc(X)βc, (7.100)

where for a, b, c = 1, . . . , n,

F̃ abc(X) :=
n∑

I, J,K,L,M,N=0

P̄ a
LN

LIP̄ b
MN

MJ P̄ c
NN

NKFIJK(X). (7.101)

Proposition 7.3.3

dβ0 =
1

2

((
1 +

2c

ρ+ 2c

)√ ρ+ c

ρ+ 2c
(α0 + ᾱ0)− idcK

)
∧ β0 +

√
ρ+ 2c

ρ+ c

n∑
b=1

αb ∧ βb,

dβa =
c

2
√
ρ+ c

√
ρ+ 2c

(α0 + ᾱ0) ∧ βa −
n∑
b=1

ωab ∧ βb,

dα0 =
1√

ρ+ c
√
ρ+ 2c

(
−(ρ+ c) +

1

2

cρ

ρ+ 2c

)
α0 ∧ ᾱ0 +

ρ

ρ+ 2c

√
ρ+ c

ρ+ 2c
β0 ∧ β̄0

−
√

ρ+ c

ρ+ 2c

n∑
b=1

αb ∧ ᾱb − c√
ρ+ c

√
ρ+ 2c

n∑
b=1

βb ∧ β̄b,

dαa =
1

2
(

√
ρ+ c

ρ+ 2c
(α0 + ᾱ0)− idcK) ∧ αa +

ρ√
ρ+ c

√
ρ+ 2c

β0 ∧ β̄a

−
n∑
b=1

ωab ∧ α
b − ieK

√
ρ

ρ+ c

n∑
b,c=1

h̃abcᾱ
b ∧ βc,

where h̃abc =
∑n

µ, ν, σ=1 e
µ
ae
ν
be
σ
chµνσ for a, b, c = 1, . . . , n and (ωab)a, b=1, ..., n is the
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(pullback to N ′ of the) connection one-form of the Levi-Civita connection on M̄

with respect to the given choice of coframe on M̄ , i.e. (ωab) is anti-Hermitian

and fulfills dσa +
∑n

b=1 ω
a
b ∧ σb = 0, a = 1, . . . , n.

Proof : For β0 = ieK/2
√
ρ+2c
ρ

XIAI , we have

dβ0 =
4

(7.81)
(− 1

2ρ

(
1 +

2c

ρ+ 2c

)
dρ+

1

2
dK) ∧ β0 + ieK/2

√
ρ+ 2c

ρ
dXI ∧ AI

=
1

2

(
1 +

2c

ρ+ 2c

)√ ρ+ c

ρ+ 2c
(α0 + ᾱ0) ∧ β0 + (∂K− i

2
dcK) ∧ β0

+ ieK/2
√
ρ+ 2c

ρ
dXI ∧ AI

=
1

2

((
1 +

2c

ρ+ 2c

)√ ρ+ c

ρ+ 2c
(α0 + ᾱ0)− idcK

)
∧ β0 +

√
ρ+ 2c

ρ+ c
αb ∧ βb,

since

αa ∧ βa (7.93)
= +ieK/2

√
ρ+ c

ρ
dXI ∧ AI +

√
ρ+ c

ρ+ 2c
∂K ∧ β0.

For βa =
√

ρ+c
ρ
σa, we have dσa = −ωab ∧ σb by the definition of (ωab), so

dβa =5 − c

2ρ

1

ρ+ c
dρ ∧ βa − ωab ∧ βb

=
c

2
√
ρ+ c

√
ρ+ 2c

(α0 + ᾱ0) ∧ βa − ωab ∧ βb.

For α0 = − 1
2ρ

√
ρ+2c
ρ+c

(
dρ− i ρ+c

ρ+2c
(dφ̃+ ζIdζ̃I − ζ̃IdζI + cdcK)

)
, we find

dα0 =6 i

(
−1

ρ
+

1

2

c

(ρ+ c)(ρ+ 2c)

)
dρ ∧ Imα0 + i

1

2ρ

√
ρ+ c

ρ+ 2c
(2dζI ∧ dζ̃I + cddcK)

=
2i√

ρ+ c
√
ρ+ 2c

(
ρ+ c− 1

2

cρ

ρ+ 2c

)
Reα0 ∧ Imα0︸ ︷︷ ︸

i
2
α0∧ᾱ0

− 1

ρ

√
ρ+ c

ρ+ 2c

(
ραb ∧ ᾱb − ρ2

ρ+ 2c
β0 ∧ β̄0

)
− c√

ρ+ c
√
ρ+ 2c

βb ∧ β̄b,

4 ∂
∂ρ

(√
ρ+2c
ρ

)
= − 1

2ρ

(
1 + 2c

ρ+2c

)√ρ+2c
ρ

5 ∂
∂ρ

√
ρ+c
ρ = − c

2ρ
1
ρ+c

√
ρ+c
ρ
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since

αb ∧ ᾱb =
1

ρ
e−KP b

KP̄
b
IN

IJNKLAJ ∧ ĀL

(7.85)
= −1

ρ
NJLAJ ∧ ĀL +

1

ρ
eKXJAJ ∧ X̄LĀL

(7.95)
= − i

ρ
dζL ∧ ζ̃L +

ρ

ρ+ 2c
β0 ∧ β̄0

and ddcK = 4ωM̄ = 2iσa ∧ σ̄a = 2iρ
ρ+c

βa ∧ β̄a.
Finally, αa = i√

ρ
e−K/2P̄ a

I N
IJAJ fulfills

dαa = (− 1

2ρ
dρ− 1

2
dK) ∧ αa +

i
√
ρ
e−K/2d(P̄ a

I N
IJ) ∧ AJ

+
i
√
ρ
e−K/2P̄ a

I N
IJdFJL(X) ∧ dζL

(7.97)
=

1

2

√
ρ+ c

ρ+ 2c
(α0 + ᾱ0) ∧ αa − (

i

2
dcK + ∂̄K) ∧ αa

+

√
ρ

ρ+ 2c
d(P̄ a

I N
IJ)NJLX̄

L ∧ β0 − e−Kd(P̄ a
I N

IJ)P b
J ∧ αb

+
i
√
ρ
e−K/2P̄ a

I N
IJdFJL(X) ∧ dζL

(7.99)
=

(7.98)

1

2

√
ρ+ c

ρ+ 2c
(α0 + ᾱ0) ∧ αa − (

i

2
dcK + ∂̄K) ∧ αa

(((((((((((((((((((

+i

√
ρ

ρ+ 2c
P̄ a
I N

IJdFJL(X)X̄L ∧ β0 − ρ√
ρ+ c

√
ρ+ 2c

β̄a ∧ β0

− e−Kd(P̄ a
I N

IJ)P b
J ∧ αb

((((((((((((((((((((((

−2i

√
ρ

ρ+ 2c
P̄ a
I N

IJdFJL(X) ∧ Re(X̄Lβ0)

+ 2ie−KP̄ a
I N

IJdFJL(X)NLM ∧ Re(P b
Mα

b)

(7.81), (7.79)
=

(7.100)

1

2
(

√
ρ+ c

ρ+ 2c
(α0 + ᾱ0)− idcK) ∧ αa +

ρ√
ρ+ c

√
ρ+ 2c

β0 ∧ β̄a

− ωab ∧ α
b + ie−2K

√
ρ

ρ+ c
F̃ abc(X)ᾱb ∧ βc.

Finally, note that

F̃ abc(X) = −e3Kh̃abc(ImX). (7.102)

6 ∂
∂ρ

(
−i σ1

2|ρ|

√
ρ+c
|ρ+2c|

)
= −i σ1

2|ρ|

√
ρ+c
|ρ+2c|

(
− 1
ρ + 1

2
c

(ρ+c)(ρ+2c)

)
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Recall that θ̄1 = −1
2

√
ρ+2c
ρ+c

Imα0 − 1
4
dcK and θ̄2 + iθ̄3 =

√
ρ+c
ρ+2c

β0 (see Remark

5.5.3). The H-part of the Levi-Civita connection is given by (see Eq. (7.48))

p =

(
p1

1 p1
2

p2
1 p2

2

)
=


−1

4
(−idcK +

√
ρ+2c
ρ+c

(ᾱ0 − α0)) −
√

ρ+c
ρ+2c

β0

√
ρ+c
ρ+2c

β̄0 1
4
(−idcK +

√
ρ+2c
ρ+c

(ᾱ0 − α0))

 .

Corollary 7.3.4 The E-part of the Levi-Civita connection with respect to the

frame (EΓ) for the one-loop deformed q-map is given by (ΘΓ
∆) =

(
qAB tA

B̃

−t̄ÃB q̄Ã
B̃

)
with (qAB) = q,

q =


i
4
dcK + 1

4
1√

ρ+c
√
ρ+2c

(
3ρ+ 4c2

ρ+2c

)
(ᾱ0 − α0) −

√
ρ+c
ρ+2c

αb

√
ρ+c
ρ+2c

ᾱa ωab + 1
4
(−idcK + ρ√

ρ+c
√
ρ+2c

(ᾱ0 − α0))δab


and

t = (tA
B̃

) =


2c
ρ+2c

√
ρ+c
ρ+2c

β0 c√
ρ+c
√
ρ+2c

βb

c√
ρ+c
√
ρ+2c

βa ieK
√

ρ
ρ+c

h̃abc α
c

 .

Proof : q is anti-Hermitian and t is symmetric. A straightforward calculation

shows that the equations given in Proposition 7.3.3 agree with equations (7.50)

and (7.51), when q and t are given as above.

From now on, we restrict ourselves to the undeformed q-map, i.e. we set c = 0.

Proposition 7.3.5 The E-part of the curvature two-form with respect to the

frame (EΓ) is given for any quaternionic Kähler manifold in the image of the
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q-map by (RE
Γ
∆) =

(
rAB sA

B̃

−s̄ÃB r̄Ã
B̃

)
with (rAB) = r,

r =



1

2

(
α0 ∧ ᾱ0 − β0 ∧ β̄0

+
n∑

C=0

αC ∧ ᾱC − βC ∧ β̄C
) αb ∧ ᾱ0 + β̄b ∧ β0 + ieKh̃bcdᾱ

c ∧ βd

α0 ∧ ᾱa + β̄0 ∧ βa

+ieKh̃acdα
c ∧ β̄d

1

2
δab

n∑
C=0

(αC ∧ ᾱC − βC ∧ β̄C)

− (βa ∧ β̄b + ᾱa ∧ αb)
− e2Kh̃adch̃ceb(α

d ∧ ᾱe + β̄d ∧ βe)


and (sA

B̃
) = s,

s =

(
0 0

0 ieKh̃abc(β
0 ∧ β̄c + ᾱ0 ∧ αc) + e2Kh̃abf h̃fdeᾱ

d ∧ βe − 2Sabcdα
c ∧ β̄d

)
,

where

Sabcd := −1

2
e2K
(

(h̃bcf h̃fad − 4h̃bch̃ad) + (h̃acf h̃fbd − 4h̃ach̃bd) + (h̃abf h̃fcd − 4h̃abh̃cd)

+ 4h̃ah̃bcd + 4h̃bh̃cda + 4h̃ch̃dab + 4h̃dh̃abc

)
.

Proof : First, we calculate dq:

dq0
0 =

i

4
ddcK +

3

4
(dᾱ0 − dα0)

(dᾱ0=−dα0)
= −1

2
∂∂̄K− 3

2
dα0

= −1

2
βc ∧ β̄c +

3

2
(α0 ∧ ᾱ0 − β0 ∧ β̄0 + αc ∧ ᾱc),

dq0
b = −dqb0 = −dαb

= −1

2
(α0 + ᾱ0 − idcK) ∧ αb − β0 ∧ β̄b + ω̄bc ∧ αc + ieKh̃abcᾱ

a ∧ βc,

dqab = dωab +
1

2
δab(∂∂̄K− dα0)

= dωab +
1

2
δab(β

c ∧ β̄c + α0 ∧ ᾱ0 − β0 ∧ β̄0 + αc ∧ ᾱc).
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Then with

(qAC∧qCB) =(
−αc ∧ ᾱc −1

2
(idcK + ᾱ0 − α0) ∧ αb − ω̄bc ∧ αc

−1
2
(idcK + ᾱ0 − α0) ∧ ᾱa + ωac ∧ ᾱc ωac ∧ ωcb − ᾱa ∧ αb

)

and

(tAC ∧ t̄CB) =

(
0 0

0 e2Kh̃adch̃cebα
d ∧ ᾱe

)
,

we obtain

r
(7.56)
= dq + q ∧ q − t ∧ t̄

=



1

2
(αc ∧ ᾱc − βc ∧ β̄c)

+
3

2
(α0 ∧ ᾱ0 − β0 ∧ β̄0)

αb ∧ ᾱ0 + β̄b ∧ β0 + ieKh̃bcdᾱ
c ∧ βd

α0 ∧ ᾱa + β̄0 ∧ βa

+ieKh̃acdα
c ∧ β̄d

dωab + ωac ∧ ωcb − ᾱa ∧ αb − e2Kh̃adch̃cebα
d ∧ ᾱe

+
1

2
δab(β

c ∧ β̄c + αc ∧ ᾱc + α0 ∧ ᾱ0 − β0 ∧ β̄0)


.

This can be brought into the form stated above using (see Eq. (7.72))

dωab + ωac ∧ ωcb = −δabβc ∧ β̄c − βa ∧ β̄
b

+ e2Kh̃adch̃cebβ
e ∧ β̄d.

Since eaµ is real, we have eaµde
µ
b = ēaµdē

µ
b

(7.70)
= ω̄ab + m̄a

b, where

ma
b := eaµ∂e

µ
b + ēbµ∂ē

µ
a. Using d(h̃abc) = h̃dbce

d
µde

µ
a + h̃adce

d
µde

µ
b + h̃abde

d
µde

µ
c,

we calculate

dtad = ieKh̃abc(x)
(
dK ∧ αc +

1

2
(α0 + ᾱ0 − idcK) ∧ αc + β0 ∧ β̄c

− ω̄cd ∧ αd − ieKh̃cde(x)ᾱd ∧ βe
)

+ ieK
(
h̃dbc(ω̄

d
a + m̄d

a) + h̃adc(ω̄
d
b + m̄d

b) + h̃abd(ω̄
d
c + m̄d

c)
)
∧ αc.

With

qAC ∧ tCB
ωac=−ω̄ca=

(
0 0

0 −ieKh̃cbeω̄ca ∧ αe + i
4
eKh̃abe(−idcK + ᾱ0 − α0) ∧ αe

)
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and

tAC ∧ q̄CB =

(
0 0

0 ieKh̃aceα
e ∧ ω̄cb + i

4
eKh̃abe(−idcK + ᾱ0 − α0) ∧ αe

)
,

we obtain

s
(7.57)
= dt+ q ∧ t+ t ∧ q̄ =

(
0 0

0 sab

)
,

where

sab = ieKh̃abc

(
(dK + ᾱ0 − idcK) ∧ αc + β0 ∧ β̄c − ieKh̃cdeᾱd ∧ βe

)
+ ieK(h̃dbcm̄

d
a + h̃adcm̄

d
b + h̃abdm̄

d
c) ∧ αc

= 8e2Kh̃abch̃dβ̄
d ∧ αc + ieKh̃abc(β

0 ∧ β̄c + ᾱ0 ∧ αc) + e2Kh̃abch̃cdeᾱ
d ∧ βe

+ ieK(h̃dbcm̄
d
a + h̃adcm̄

d
b + h̃abdm̄

d
c) ∧ αc.

In the last equality, we used

dK− idcK = 2∂̄K = − i

h(x)
hµ(x)eµdβ̄

d = −8ieKh̃dβ̄
d.

Now, using

ma
b = −eaρe

µ
be
σ
cΓ

ρ
µσβ

c

and (see (7.64) and (6.4))

Γρσµ = − i

2h

(
hhρκhκµσ − hσδρµ − hµδρσ +

1

2
xρhµσ

)
,

eνae
λ
a = K ν̄λ = −4h(x)hνλ(x) + 2xνxλ,

we find

h̃dbcm̄
d
a = ieK(h̃bcf h̃fda − 4h̃bch̃da + 4h̃ah̃bcd + 4h̃dh̃abc)β̄

d.

Hence,

sab = ieKh̃abc(β
0 ∧ β̄c + ᾱ0 ∧ αc) + e2Kh̃abf h̃fdeᾱ

d ∧ βe

− e2K
(

(h̃bcf h̃fad − 4h̃bch̃ad) + (h̃acf h̃fbd − 4h̃ach̃bd)

+ (h̃abf h̃fcd − 4h̃abh̃cd)
)
β̄d ∧ αc

− 4e2K(h̃ah̃bcd + h̃bh̃cda + h̃ch̃dab + h̃dh̃abc)β̄
d ∧ αc.
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Remark 7.3.6 Note that the vanishing of the symmetric quartic tensor field

Sabcd σ
a ⊗ σb ⊗ σc ⊗ σd

= −1

2

1

43h2

(
3hτ(µνK

ττ ′hσρ)τ ′ . . .

. . .− 12h(µνhσρ) + 16h(µhνσρ)

)
dXµ ⊗ dXν ⊗ dXσ ⊗ dXρ

= −1

2

1

43h2

(
− 12hτ(µνh

ττ ′hσρ)τ ′ . . .

. . .− 6h(µνhσρ) + 16h(µhνσρ)

)
dXµ ⊗ dXν ⊗ dXσ ⊗ dXρ

on the projective special Kähler manifold (M̄, gM̄ , JM̄) is a necessary and suffi-

cient condition for (M̄, gM̄) to be symmetric [CV].

In the following theorem, we use the notation from Section 7.1.

Theorem 7.3.7 The Sp(E)-curvature of manifolds in the image of the q-map

can be written as

R̃Γ
Γ′ = −1

2
εαβCΓ′Γ′′f

αΓ ∧ fβΓ′′ + CΓΓ0

ΩΓ0Γ′Γ′′Γ′′′εαβf
αΓ′′ ∧ fβΓ′′′ , (7.103)

where the non-vanishing components of the symmetric quartic tensor field Ω are

given by

Ω000̃0̃ =
1

2
, Ω0b0̃d̃ =

1

4
δbd, Ωabc̃d̃ =

1

4
(δacδbd + δadδbc)−

1

2
e2Kh̃abf h̃fcd,

Ω0̃bcd = Ω0b̃c̃d̃ = − i
2
eKh̃bcd, Ωabcd = Ωãb̃c̃d̃ = Sabcd

(and symmetrization thereof).

Proof : First, note that

(εαβCΓ′Γ′′f
Γα ∧ fΓ′′β)Γ=A,Ã

Γ′=B,B̃
=

(
βA ∧ β̄B + ᾱA ∧ αB βA ∧ ᾱB̃ − ᾱA ∧ βB̃

αÃ ∧ β̄B − β̄Ã ∧ αB αÃ ∧ ᾱB̃ + β̄Ã ∧ βB̃

)
.

Define

UΓΓ′ := εαβf
Γα ∧ fΓ′β =

(
−βA ∧ ᾱB + ᾱA ∧ βB βA ∧ β̄B̃ + ᾱA ∧ αB̃

−αÃ ∧ ᾱB − β̄Ã ∧ βB αÃ ∧ β̄B̃ − β̄Ã ∧ αB̃

)

and

R̊Γ0Γ′ := CΓ0Γ(R̃Γ
Γ′ +

1

2
εαβCΓ′Γ′′f

Γα ∧ fΓ′′β).
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Then

R̊ÃB = −
(
rAB +

1

2
(βA ∧ β̄B + ᾱA ∧ αB)

)

=



1

2
(β0 ∧ β̄0 + ᾱ0 ∧ α0)

+
1

2
(βC ∧ β̄C + ᾱC ∧ αC)

1
2
(β0 ∧ β̄b + ᾱ0 ∧ αb) + ieKh̃bdeβ

e ∧ ᾱd

1

2
(βa ∧ β̄0 + ᾱa ∧ α0)

−ieKh̃adeαd ∧ β̄e

1

2
δab(β

C ∧ β̄C + ᾱC ∧ αC)

+
1

2
(βa ∧ β̄b + ᾱa ∧ αb)

+ e2Kh̃adch̃ceb(α
d ∧ ᾱe + β̄d ∧ βe)



=



1
4
(U00̃ + U 0̃0 + UCC̃ + U C̃C) 1

4
(U0b̃ + U b̃0)− i

2
eKh̃bdeU

de

1
4
(Ua0̃ + U 0̃a)− i

2
eKh̃adeU

d̃ẽ

1

4
δab(U

CC̃ + U C̃C) +
1

4
(Uab̃ + U b̃a)

− e2K

2
h̃adf h̃feb(U

dẽ + U d̃e)

 ,

R̊ÃB̃ = −
(
sAB +

1

2
(βA ∧ ᾱB − ᾱA ∧ βB)

)

=


−β0 ∧ ᾱ0 −1

2
(β0 ∧ ᾱb − ᾱ0 ∧ βb)

−1
2
(βa ∧ ᾱ0 − ᾱa ∧ β0)

− 1

2
(βa ∧ ᾱb − ᾱa ∧ βb) + e2Kh̃abf h̃fdeβ

d ∧ ᾱe

− ieKh̃abc(β0 ∧ β̄c + ᾱ0 ∧ αc) + 2Sabcdα
c ∧ β̄d



=



1
2
U00 1

4
(U0b + U b0)

1
4
(Ua0 + U0a)

1

4
(Uab + U ba)− e2K

2
h̃abf h̃fdeU

de

− i

2
h̃abc(U

0c̃ + U c̃0) + SabcdU
c̃d̃

 ,

and R̊AB = R̊ÃB̃, R̊AB̃ = −R̊ÃB.

Eq. (7.58) is equivalent to R̊ΓΓ′ = ΩΓΓ′Γ′′Γ′′′U
Γ′′Γ′′′ . Now R̊0̃0 = Ω0̃0Γ′′Γ′′′U

Γ′′Γ′′′
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implies Ω0̃0CD = Ω0̃0C̃D̃ = 0, Ω0̃00d̃ = Ω0̃0c0̃ = 0 and

Ω0̃000̃ =
1

2
, Ω0̃0cd̃ =

1

4
δcd.

R̊ã0 = Ωã0Γ′′Γ′′′U
Γ′′Γ′′′ implies Ωã0CD = 0, Ωã00d̃ = 0, Ωã0cd̃ = 0 and

Ωã0c̃d̃ = − i
2
eKh̃acd.

R̊ãb = ΩãbΓ′′Γ′′′U
Γ′′Γ′′′ implies ΩãbC̃D̃ = 0, Ωãbcd = 0, Ωãb0̃d = 0 and

Ωãbc̃d =
1

4
(δabδcd + δbcδad)−

e2K

2
h̃acf h̃fdb.

R̊0̃b = Ω0̃bΓ′′Γ′′′U
Γ′′Γ′′′ implies Ω0̃b0̃0̃ = 0, Ω0̃b0̃d = 0 and

Ω0̃bcd = − i
2
eKh̃bcd.

It remains to determine the components of the form ΩABCD and ΩÃB̃C̃D̃:

R̊ÃB̃ = ΩÃB̃Γ′′Γ′′′U
Γ′′Γ′′′ implies Ω0̃B̃C̃D̃ = 0 and

Ωãb̃c̃d̃ = Sabcd.

Using UAB = U ÃB̃ and UAB̃ = −U ÃB, we find that R̊AB = R̊ÃB̃ = ΩABΓ′′Γ′′′U
Γ′′Γ′′′

implies Ω0BCD = 0 and

Ωabcd = Sabcd.

7.4 Example: A series of inhomogeneous com-

plete quaternionic Kähler manifolds

In this section, we show that the members of a certain series of complete quater-

nionic Kähler manifolds constructed from the q-map are not locally homoge-

neous. This is done by calculating the pointwise norm of the Riemann tensor

and showing that it is a non-constant function on the quaternionic Kähler mani-

fold. We leave out the details of the calculation and just show some intermediate

steps and the final result. Note that some simplifications of formulas were done

using computer algebra software.
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We will again leave out summation symbols and employ Einstein’s summation

convention.

For n ∈ N, we consider the following series of projective special real manifolds:

H = {h = 1, x > 0} ⊂ Rn, h := x(x2 −
n−1∑
i=1

(yi)
2). (7.104)

The projective special real manifold (H, gH) is a closed subset of Rn and thus

complete according to Theorem 6.2.8 (which was proven in [CNS]). Due to

Theorems 6.2.6 and 6.3.3 (which were proven in [CHM]), the corresponding

projective special Kähler manifold obtained from the supergravity r-map and

the quaternionic Kähler manifold obtained from the q-map are complete as well.

The scalar curvature of the corresponding projective special Kähler manifold M̄

in the image of the supergravity r-map can be calculated to be (see Theorem 3

in7 [CDL] for the general formula)

scalM̄ = −2n2 + n− 2hhαβγh
αα′hββ

′
hγγ

′
hα′β′γ′

= −2n(n+ 1) +
1

32h2
hαβγK

αα′Kββ′Kγγ′hα′β′γ′

= −n · (2n− 1) + 3h · n− 2

h− 4x3
+

36x3h2

(h− 4x3)3
. (7.105)

We find the following expression for the squared pointwise norm of the quartic

tensor field Bµνσρ := hµνκK
κκ′hκ′ρσ on M̄ :

BµνσρK
µµ′Kνν′Kσσ′Kρρ′Bµ′ν′σ′ρ′ =

4096h4

(h− 4x3)6 ·
(
h6(n− 1)(n+ 3)

− 4h5(n+ 3)(5n− 7)x3 + 4h4(n(41n+ 98)− 159)x6

− 64h3(n(11n+ 43)− 75)x9 + 128h2(n(13n+ 73)− 78)x12

− 2048h(n(n+ 7)− 3)x15 + 1024n(8 + n)x18
)
. (7.106)

The squared pointwise norm of the Riemann tensor of the projective special

Kähler manifold is (see Theorem 3 in [CDL] for the general formula for the

7Note that compared to [CDL] we scaled the projective special Kähler metric gM̄ by a
factor of 1

2 , which leads to a scaling of the scalar curvature scalM̄ by a factor of 2.
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Riemann tensor)

‖RM̄‖2 = 16Rµ̄νσρ̄K
µµ′Kνν′Kσσ′Kρρ′Rµ′ν̄′σ̄′ρ′

= −32 scalM̄ − 32n(n+ 1) +
1

44h4
BρσµνK

ρρ′Kσσ′Kµµ′Kνν′Bρ′σ′µ′ν′

=
16

(h− 4x3)6

(
h6(n(3n− 8) + 9)− 4h5(n(17n− 46) + 57)x3

+ 4h4(n(161n− 382) + 537)x6 − 64h3(n(51n− 97) + 99)x9

+ 128h2(n(73n− 107) + 78)x12 − 2048h(n(7n− 8) + 3)x15

+ 1024n(9n− 8)x18
)
. (7.107)

For the squared pointwise norm of the tensor field

Sµνσρ = −1

2
e2K
(

(h̃bcf h̃fad − 4h̃bch̃ad) + (h̃acf h̃fbd − 4h̃ach̃bd)

+ (h̃abf h̃fcd − 4h̃abh̃cd)

+ 4h̃ah̃bcd + 4h̃bh̃cda + 4h̃ch̃dab + 4h̃dh̃abc

)
on M̄ (see the definition of S in Proposition 7.3.5), we find:

SµνσρK
µµ′Kνν′Kσσ′Kρρ′Sµ′ν′σ′ρ′ (7.108)

=
3x6

(h− 4x3)6

(
h4(n(n+ 16) + 207)− 16h3(n− 2)(n+ 9)x3

+ 96h2
(
n2 + n− 6

)
x6 − 256h(n− 2)nx9 + 256(n− 2)nx12

)
.

The squared pointwise norm of the quaternionic Weyl tensor is

1

64
‖W‖2 = ΩΓΓ′Γ′′Γ′′′C

Γ∆CΓ′∆′CΓ′′∆′′CΓ′′′∆′′′Ω∆∆′∆′′∆′′′

= 2ΩABCDΩÃB̃C̃D̃ − 8ΩABCD̃ΩÃB̃C̃D + 6ΩABC̃D̃ΩÃB̃CD

= 2ΩabcdΩãb̃c̃d̃ − 8Ωabc0̃Ωãb̃c̃0 + 6(Ω000̃0̃)2 + 24Ω0b0̃d̃Ω0̃b̃0d + 6Ωabc̃d̃Ωãb̃cd

= 2SabcdSabcd + 2n(n+ 1) + scalM̄ +
3

2
(n+ 1)

+ 6(
1

43
‖RM̄‖2 +

1

4
scalM̄ +

n2 + n

8
)
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= 2SabcdSabcd +
1

4
(11n+ 6)(n+ 1) +

3

32
‖RM̄‖2 +

5

2
scalM̄

=
3

2 (h− 4x3)6

(
h6n(n+ 1)− 4h5(n+ 1)(5n− 2)x3 + 8h4(n(21n+ 37) + 112)x6

− 256h3(n(3n+ 10)− 11)x9 + 256h2(n(8n+ 33)− 20)x12

− 1024h(n(3n+ 11) + 2)x15 + 2048(n+ 1)(n+ 2)x18
)

+
3n

4
(n+ 1). (7.109)

By evaluating the above function in different points, one can check that it is

non-constant for n > 1. This gives the following proposition:

Proposition 7.4.1 For n > 1, the series of manifolds obtained from the com-

plete projective special real manifolds in Eq. (7.104) via the q-map consists of

complete quaternionic Kähler manifolds that are not locally homogeneous.

Remark 7.4.2 The curvature tensor of the quaternionic Kähler manifolds

discussed above splits as R = νRHPn+1 + W. Note that in our conventions

for quaternionic Kähler manifolds obtained via the supergravity c-map from an

2n-dimensional projective special Kähler manifold manifold, the reduced scalar

curvature is ν = −2. The squared pointwise norm of RHPn+1 is

‖RHPn+1‖2 = 20n2 + 44n+ 24 = 20(n+ 1)2 + 4(n+ 1). (7.110)

Using computer algebra software, we have calculated the squared pointwise norm

‖R‖2 of the Riemann tensor for n = 2 and n = 3 and have checked that

‖R‖2 − 4‖RHPn+1‖2 agrees with the squared pointwise norm of the Weyl ten-

sor in Eq. (7.109).
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[RVV1] M. Roček, C. Vafa and S. Vandoren, Hypermultiplets and topological

strings, JHEP 0602 062 (2006).
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