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1. Summary

The impact of drought on trees and its consequences in the event of an additional
pathogen attack were repeatedly studied. Based upon published work, the hypothesis
was put forward by Desprez-Loustau et al. (2006) that trees are predisposed to
pathogen attacks weakened by drought stress. The underlying details, however, are
mainly based on field observations but not yet substantiated by experimental evidence.
Therefore, the present project was designed with saplings of black locust (Robinia
pseudoacacia L.) to study their responses to drought with and without wounding and

fungal infestation.

In detail, seven-year old black locust saplings cultivated in pots on an experimental plot
of the Thinen-Institute and Centre of Wood Sciences, University of Hamburg, were kept
well-watered or put under drought stress. Additionally, wooden dowels either sterile or
infected by the pathogen Armillaria mellea were introduced into the stems of saplings via
bore holes. Also the influence of the season of wounding on the process of
compartmentalization was studied by setting the bore holes and infecting the saplings in

July (season of activity) or in February (season of dormancy).

Morphology, phenology, physiology and biomass of the saplings were severely affected
by drought, but not by the pathogenic fungus. Drought has been reducing the overall
growth, leaf area and total biomass as well as gas exchange and stomatal conductance
resulting in a down-regulation of photosynthesis. However, the saplings stressed by
drought and by a pathogen at the same time were found to be drastically more affected,

showing the lowest values for nearly all variables measured.

With regards to host responses to the wounding and to the fungal infestation at different
seasons, the shape and extent of discoloration and the intensity of callus formation were
observed or measured. Both in well-watered and drought-stressed saplings, the area of
dysfunctional and discoloured wood was larger in axial than in radial or tangential
direction. The discoloration was slightly larger when the infection occurred in February
as compared to July. The axial discoloration was much longer in drought-stressed than

in well-watered saplings. Callus formation being the visible sign of compartmentalization
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was measured in all saplings. Well-watered saplings infected either in February or in
July formed more callus tissue than drought-stressed saplings, whereby drought-

stressed saplings inoculated in February were even not at all able to form a callus.

There are only small amounts of non-structural carbohydrates detectable after wounding
and infection in the decay and reaction zones of wounds (non-infected or infected) in
well-watered saplings inoculated in July. This is interpreted as an active defence
reaction against wounding and infection. The disappearance of the previously existing
non-structural carbohydrates is based on their conversion into phenols/flavonoids which
are strong fungicides. Well-watered and drought-stressed saplings inoculated in
February and drought-stressed ones in July were unable to convert their reserves into
defence substances. In drought-stressed saplings inoculated in February, the presence
of considerable amounts of starch in the reaction zone emphasizes the inability of the

saplings to convert them into phenols/flavonoids for an adequate biochemical defence.

By applying molecular techniques, the pathogen was neither detected in the decay and
reaction zone nor in the sound wood of the saplings that were inoculated in July, no
matter if they were well-watered or drought-stressed. However, the pathogen was
detected in well-watered saplings inoculated in February, but only in the decay zone,
inoculated dowels and in the adjacent callus. However, most frequently the pathogen
was detected in almost all zones in wood samples of drought-stressed saplings,

inoculated in February.

In conclusion, black locust saplings were severely affected by drought; however,
saplings stressed by drought and a pathogen simultaneously were drastically more
affected. In addition, well-watered saplings can be considered as stronger
compartmentalizers than drought-stressed saplings, and drought-stressed saplings

inoculated in February were proven to be the weakest compartmentalizers.
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Zusammenfassung

Stressreaktionen von Robinie auf Trockenheit und/oder Pathogen-Befall

Die Wirkung von Trockenheit auf Baume und ihre Folgen im Falle eines zusatzlichen
Pathogen-Befalles wurden wiederholt untersucht. Auf der Grundlage von publizierten
Studien haben Desprez-Loustau et al. (2006) die Hypothese formuliert, dass durch
Trockenstress geschwachte Baume fur einen Pathogen-Befall pradisponiert sind. Die
dieser Annahme zugrunde liegenden Details beruhen jedoch zumeist auf Feld-
Beobachtungen und sind noch nicht experimentell bestatigt worden. Daher wurden im
vorliegenden Projekt junge Robinien auf ihre Reaktion auf Trockenstress mit und ohne

Verwundung und mit und ohne nachfolgenden Pilzbefall untersucht.

Sieben Jahre alte getopfte Robinien wurden auf ein Freilandversuchsfeld des Thinen-
Institutes und Zentrums Holzwirtschaft der Universitat Hamburg gestellt, wo sie
ausreichend bewassert oder unter Trockenstress gesetzt worden sind. Zusatzlich
wurden sterile oder mit dem pathogenen Pilz Armillaria mellea infizierte Holzdibel in
Bohrlocher in die Sprossachse der Versuchspflanzen eingefihrt. Auch ein
jahreszeitlicher Einfluss der Verwundung auf die Abwehrprozesse der Versuchspflanzen
wurde untersucht, indem die Pflanzen wéhrend des aktiven Wachstums im Juli bzw.

wahrend der Ruheperiode im Februar verletzt und infiziert worden sind.

Morphologie, Phanologie, Physiologie und Biomasse der Testpflanzen wurden durch
Trockenstress beeinflusst, aber nicht durch den Pilz. Trockenstress hat das gesamte
Wachstumsgeschehen, aber auch die Blattentwicklung und Biomassebildung ebenso
behindert wie den Gaswechsel und die stomatare Leitfahigkeit, was zu einer
Herunterregulation der Photosynthese gefiihrt hat. Jedoch sind die Versuchspflanzen,
die gleichzeitig von Trockenheit und einem Pathogen-Befall gestresst waren, deutlich
starker beeintrachtigt und zeigten fir fast alle erhobenen Parameter die niedrigsten
Werte.

Im Hinblick auf die Reaktionen der Versuchspflanzen auf die Bohrlécher und

Pilzinfektionen zu verschiedenen Jahreszeiten wurden die Form und Ausdehnung von
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Verfarbungen im Holz und die Intensitat der Kallus-Bildung beobachtet und gemessen.
Sowohl in ausreichend bewésserten als auch in Trocknis-gestressten Versuchspflanzen
war die funktionslos gewordene und verfarbte Holzsaule gréf3er in axialer als in radialer
und tangentialer Richtung. Sie war geringfugig groRer, wenn die Infektion im Februar
geschah als wenn sie im Juli erfolgte. Die axiale Verfarbung war deutlich langer in
Trocknis-gestressten als in ausreichend bewésserten Versuchspflanzen. In &hnlicher
Weise haben ausreichend bewésserte, im Februar oder im Juli infizierte
Versuchspflanzen  mehr  Kallus-Gewebe  gebildet als  Trocknis-gestresste
Versuchspflanzen, wobei diese sogar ganzlich unfahig waren, einen Kallus zu bilden,

wenn sie im Februar verwundet bzw. infiziert worden sind.

In den ausreichend bewasserten, im Juli verwundeten Versuchspflanzen waren nur
kleine Mengen von nicht-strukturellen Kohlenhydraten in den Abbau- und
Reaktionszonen um die sterilen bzw. infizierten Wunden herum nachweisbar. Dies
wurde als aktive Abwehrreaktion gegen die Verwundung interpretiert. Das
Verschwinden der zuvor vorhandenen Kohlenhydrate beruht auf deren Umwandlung in
Phenole/Flavonoide, die als starke Fungizide gelten. Ausreichend bewasserte und
Trocknis-gestresste Versuchspflanzen, die im Februar verwundet worden sind, sowie
Trocknis-gestresste Versuchspflanzen, die im Juli verwundet worden sind, waren
unfahig, ihre Reservestoffe in Abwehrsubstanzen umzuwandeln. In Trocknis-
gestressten, im Februar verwundeten Versuchspflanzen wurde der Nachweis von
betrachtlichen Starke-Mengen in der Reaktionszone als Unfahigkeit interpretiert, Starke

in Phenole/Flavonoide als angemessene biochemische Abwehr zu verwandeln.

Der pathogene Pilz war weder in der Befalls- und Reaktionszone noch im gesunden
Holz der Versuchspflanzen molekularbiologisch nachweisbar, die im Juli verwundet
worden sind, unabhéngig davon ob sie ausreichend bewassert oder Trocknis-gestresst
waren. Der Pilz wurde dagegen in ausreichend bewasserten und im Februar
verwundeten Versuchspflanzen gefunden, aber nur in den Befallszonen, in infizierten
Dubeln und im Kallus. Jedoch am haufigsten wurde das Pathogen in fast allen Zonen
des Holzes von Trocknis-gestressten und im Februar verwundeten Versuchspflanzen

nachgewiesen.
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Zusammenfassend kann gesagt werden, dass die Robinien-Versuchspflanzen stark
durch Trockenheit beeintrachtigt wurden, wobei Pflanzen unter Trockenstress bei
gleichzeitigem Pathogen-Befall noch weit starker geschadigt worden sind. Die

ausreichend bewasserten Versuchspflanzen kénnen als starkere
‘Kompartimentierer” von Wunden betrachtet werden als die durch Trockenheit

gestressten bzw. die durch Trockenheit und eine Infektion zur Zeit der Kambiumruhe

belasteten Versuchspflanzen.
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2. Introduction

Trees are exposed to abiotic and biotic stress lifelong. Drought is one of the most
relevant abiotic factors, impairing many physiological and biochemical processes in
trees (Larcher 2003; Ohashi et al. 2006; Reddy et al. 2004) and in consequence causing
a substantial reduction in their overall vigor, growth, and productivity (Boyer 1982;
Kramer and Boyer 1995). During the past 30 years, Central Europe has been affected
by a number of major drought events, among them the summer heat wave in 2003
having caused severe tree mortality. Such drought effects are expected to increase with
climate change and increasing water shortage (IPCC 2007). Among biotic stress events,
pathogen attacks are playing a major role. Armillaria mellea is such a pathogen. It is
ubiquitous and affects trees, shrubs and herbaceous plants causing root rot, root-collar
rot and butt rot (Fox 2000). To cope with, trees have evolved a variety of defence

strategies.

In nature, trees are subjected to abiotic and biotic stress successively or simultaneously.
The fungus Armillaria mellea grows on and derives its nourishment from trees weakened
by some prior stress factors such as drought, temperature extremes, other pathogens,
or reduction in site quality (Wargo and Harrington 1991; Popoola and Fox 1996; Wargo
1980). Drought stress makes trees more susceptible to infections (Ayres 1991; Hepting
1963; Schoeneweiss 1975). Studies on drought/disease interactions in forest trees have
been reviewed by Desprez-Loustau et al. (2006) who concluded that drought-stressed
trees are predisposed to diseases because of their weakened defence potential.
Nevertheless, such interactions between various stressors need more attention to enrich

our understanding of tree pathology.

Forest trees are suffering from a wide range of injuries caused by wind, snow, ice, fire,
animals, and insects; in cities and alongside roads, trees additionally face damages
caused by human activities (Dujesiefken and Stobbe 2002; Lonsdale 2004; Smith and
Lewis 2005). If a tree is unable to seal-off a wound from the surrounding sound tissue by
a self-generated compartmentalization, damages spread quickly and the tree vitality is

declining. The processes involved in this encapsulation of any kind of damage were
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firstly summarized by Shigo and Marx (1977) under the concept called CODIT
(Compartmentalization of Decay in Trees) which later was modified/advanced by
Dujesiefken and Liese (2008) to Compartmentalization of Damage/Decay in Trees. The
main characteristic is the formation of a discolored reaction zone as an active host
response at the dynamic interface between the living sapwood and the damaged wood
(Shain 1979). This comprises the closure of vessels by plugs or tyloses in the case of
broad-leaved trees (Schmitt and Liese 1995) or the closure of bordered pits in conifers,
as well as cell-wall alterations by suberization (Schmitt and Liese 1995). Additionally,
antimicrobial polyphenolic compounds are deposited in the reaction zone (Pearce 1991,
1996; Frankenstein and Schmitt 2006). Finally, a wound is closed by the formation of a
callus induced by cambial cells which develop from the parenchymatic callus tissue. The
extent of discoloration and damage/decay in the wood considerably reduces its
economic value even if the wounded tree continues to grow (Shortle et al. 2003). The
efficiency of compartmentalization depends primarily on the tree species (Eckstein and
Dujesiefken 1998/99) but also on the type, severity and season of wounding
(Dujesiefken et al. 2005) as well as on tree vigour, environmental conditions and
aggressiveness of the pathogens (Shigo and Hillis 1973). But up to now, no information
is available whether drought impacts the efficiency of compartmentalization of

damage/decay in trees.

Stress by droughts and pathogen has been extensively studied in the field but details
have still to be supported by experimental evidence. To our knowledge, this is the first
study on the influence of a long-term drought and of an aggressive fungal pathogen on
trees, both separately and in combination. The objectives of this project were to monitor
various growth parameters as well as leaf traits, phenology, gas exchange and biomass
and to study how black locust saplings, well-watered or under drought conditions,
respond to wounding in combination with the attack by a pathogen whereby the
pathogen was introduced either in the dormant or in the active season of growth.
Moreover, a biochemical approach to the compartmentalization of saplings and to the
spread of A. mellea were studied to compare the effectiveness of compartmentalization

of well-watered and of drought-stressed saplings.
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For this purpose, black locust (Robinia pseudoacacia L.) was selected as a “relatively
drought tolerant” species (Veste and Kriebitzsch 2010), and a wide spectrum of various
techniques was applied to measure and compare morphological, physiological and

biochemical variables of the control saplings and of differently treated saplings.

2.1. Objectives of this PhD project

The overall purposes of this study were to explore the impact of two important stressors
(drought and pathogen) on black locust, separately and in combination, and in return the
responses of the tree.

» Assessing the influence of long-term drought and of the pathogen Armillaria
mellea, both separately and simultaneously, on the overall vigor, growth,
morphology, phenology, physiology and biomass of black locust (Robinia

pseudoacacia L.).

» Observing and discussing the defense responses, visible as discoloration and
callus formation, of well-watered and drought-stressed black locust, to injuries

and infections, applied in different seasons.

» Analyzing the occurrence and distribution of non-structural carbohydrates
(glucose, fructose, sucrose and starch), both in non-infected and in infected
wounds in all saplings of black locust to determine an active defence reaction

against wounding and infection.
» Studying the effectiveness of compartmentalization, both in well-watered and

drought-stressed saplings, against the spread of Armillaria mellea by designing

specific primers using molecular techniques.
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3. Literature review

3.1. Background scenario and exposure of the problem

It is assumed that the increasing concentration of gases in the atmosphere has caused
a warming of the ambient air worldwide (“greenhouse effect”). This global warming
coincides with the increasing emission of carbon dioxide and other greenhouse gases
from about 275 in 1800 to 370 ppm of today (CDIAC 2002). Greenhouse gas emissions
are substantially changing the global climate and resulting in an increasing rate of
warming as particularly reported for the last three decades (Fig. 3.1). Climate models for
the 20" century suggest that there was little change prior to around 1915, and that a
considerable fraction in the early 20" century was contributed by natural influences
including solar radiation changes and volcanism. The increasing industrialization from
about 1940-1970 following World War Il increased the air pollution in the Northern
Hemisphere, and carbon dioxide and other greenhouse gases dominated the observed
warming after the mid-1970s (IPCC 2007).

Global warming progresses and produces both higher temperatures and increased
drought. Observations over the past one and a half century manifested that
temperatures at the surface have risen globally. An increase in global mean temperature
(about 0.58°C since 1970) and changes in the world’s hydrological cycle are on the
record (IPCC 2007).

20



Global Mean Temperature
0_6 v T v T v T v T v T v T Y 146
= 144
®
@
- 14.2
(o]
-
£ 14.0
o
-~ 13.8
e
: |136
o
()]
g 4134
-0.8 L. 1 3 1 : 1 “ 1 - 1 A 1 : 1 x 1 13.2
1860 1880 1900 1920 1940 1960 1980 2000
Period  Rate
®  Annual mean ';:‘ 077;8‘:;
== Smoothed series . S0 0.128+0.026
] 5-95% decadal error bars = 100 0.0740.018
w150  0.045£0.012

(Do) seinjesedwe)} uesw
1eqo|6 |[enjoe pejewns3

Fig. 3.1: Observed annual global mean temperatures (black dots). The left hand y-axis shows
differences relative to the 1961-1990 average, and the right hand y-axis shows the estimated
temperature (°C). Linear trends are calculated for the last 25 years (1981-2005) (yellow), 50
(1956-2005) (orange), 100 (1906-2005) (purple) and 150 years (1856-2005) (red). Note that for
the shorter recent periods (yellow and orange) the slope is steeper, indicating an accelerated
warming. The smoothed curve in blue captures the decadal variations. To make clear whether
the fluctuations are meaningful, decadal 5 to 95% (light grey) error ranges around that line are

given (accordingly, annual values may exceed those limits) (IPCC 2007).

http://www.ipcc.ch/publications_and_data/ar4/wgl/en/fag-3-1-figure-1.htm
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However, conclusions made in the 5" assessment report by the IPCC (accepted but not
published yet) have downgraded the degree of threat, however, it is emphasized that
climate change has not stopped and human activities are the main cause. The rate of
warming over the past 15 years (1998-2012) is only 0.05°C per decade; this is smaller
than the trend from 1951 to 2012 that is 0.12°C per decade. Similarly, the temperature
range given for a doubling of CO, in the atmosphere, provided in 2007, was 2.0 to
4.5°C, and the range has changed from 1.5 to 4.5°C in the latest report. Von Storch and
Krauf3 (2013) stated that the rate of warming from 1998-2012 is smaller than anticipated
by the IPCC (2007). Anyhow, the report agrees that warming is projected to continue in
future under all scenarios and the global surface temperature changes by the end of the
21% century by at least 1.5°C, relative to 1850-1990. Moreover, climate changes are
expected to include a further increase in mean temperature (about 2-4°C globally) with a

significant drought in some regions as emphasized by Christensen et al. (2007).

3.2. Drought and its impacts on trees

According to the World Meteorological Organization (WMO 1986), drought means an
extended deficiency in precipitation. The United Nations Convention to Combat Drought
and Desertification (UNCCD; UN Secretariat General 1994) defines drought as a
naturally occurring phenomenon that exists when precipitation has been significantly
below normal levels, causing hydrological imbalances that adversely affect land and
resource production systems. Passioura (2002) has summarized how various
geologists, meteorologists, historians, farmers, plant physiologists and biochemists have
defined a drought (Table 3.1). Accordingly, plant physiologists, plant biochemists and
molecular biologists are interested in very short time scales and more concerned with
the survival than with the productivity of trees; in terms of days and hours, drought
events could be triggered by rapid desiccation and sudden exposure to strong osmotica.
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Table 3.1: Drought: definitions and significance (adapted from Passioura (2002).

Practitioner Time scale of Common meaning of Significance
interest drought
Geologist, paleontologist Millennia Aridity Major climatic
change
Historian, geographer, relief | A decade to Sequence of many Migration
agency one century or | years of low rainfall
two Desertion Famine
Meteorologist, farmer, Years Rare event (the lowest | Risk management
insurer seasonal rainfall)
Farmer, agronomist, crop Weeks to Yield strongly limited Water productivity
physiologist, breeder months, by water
growing season
Plant physiologist Days Pots not watered Mild shock,
survival
Biochemist, molecular Hours Rapid desiccation, Severe shock,
biologist sudden exposure to survival

strong osmotica

Droughts are becoming a severe problem in many regions of the world (Passioura 1996,
2007) as they can reduce the crop yield by up to 50% (Boyer 1982; Chaves and Oliveira
2004) and are associated with tree mortality (Allen et al. 2010). According to Isendahl
and Schmidt (2006), the percentage of drought-affected areas became double from the
1970s to 2000 in the world and will still increase in future (Hennessy et al. 2008; Allen et
al. 2010). A conceptual assessment of tree mortality due to global climate change is
provided by Allen et al. (2010) (Fig. 3.2); it shows increases in extreme drought and
temperature events, and indicates the high risk of drought-induced die-off in the future.
Longer drought duration and higher drought intensity are conceptualized as causal

agents of tree mortality.

Based on historical evidences, it is easy to conclude that droughts are a frequent

phenomenon globally. During the past three decades, Europe has experienced a
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number of major drought events, especially in Northern and Western Europe in 1976, in
most of Europe in the years 1989 and 1991, and more recently over large parts of
Europe associated with a heat wave in the summer of 2003 (Feyen and Dankers 2009),
that caused a high mortality of fir, spruce, oak, beech, and pine in France, Switzerland

and ltaly (Breda et al. 2006; Bigler et al. 2006; Landmann and Dreyer 2006).
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Fig. 3.2: Conceptual diagram, showing the range of variability of “Current Climate” parameters
(precipitation and temperature) and alternatively of drought duration and intensity. “Future
Climate” shows increases in extreme drought and temperature events associated with the
projected global climate change, indicating higher risk of drought-induced die-off for current tree
populations (Allen et al. 2010).

Since 1991, the economy has been affecting by drought in Europe, with an economic
damage by the 2003-drought amounting to €8.7 billion (European Community 2007).
Moreover, Anenkhonov in 2008 reported about a decline of birch stands in southeast

Siberia. Similarly, vegetation die-off in response to global-change-type droughts was
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presented for over a million hectares by Breshears et al. (2005) in the United States.
Likewise, the mortality of Populus tremuloides was caused by a regional drought in
Canadian forests (Hogg et al. 2008), and a well-known Millennium Drought (2001-2009)
is described as one of the worst droughts for southeast Australia as mentioned by Van
Dijik et al. (2013). According to the International Research Institute of Climate and
Society (IRl 2001), from 1999-2000 a persistent drought and its severe impacts were
experienced in Western Pakistan, Iran, Afghanistan, Tajikistan, Uzbekistan, and
Turkmenistan. In addition, the Food and Agricultural Organization of the United Nations
(FAO 2002) and the World Bank (2003) reported that the frequency of droughts has
risen in India. Droughts in 1997, 1999 to 2002 in large areas of northern China were

responsible of large economic losses (Zhang 2003).

Drought-induced forest decline and die-off during the last decades is illustrated in a
global overview by Allen et al. (2010) (Fig. 3.3); for some regions, this review is

obviously incomplete, particularly for mainland Asia and Russia.

Temperature

Sunlight A

Water

Fig. 3.3: Background map showing potential environmental limits to vegetation net primary
production (Boisvenue and Running 2006). Drought and heat-driven forest mortality is
documented in dry regions (red/orange/pink), but also occurs outside these regions. White dots
indicate localities with documented forest mortality due to drought and high temperatures (Allen
et al. 2010).
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Drought is the notable environmental factor limiting plant growth and yield through the
combination of photosynthetic and biochemical limitations. Inadequate availability of
water damages plant tissues and metabolic processes. Drought escape, avoidance,
tolerance, and resistance are different strategies that plants have evolved under short-
term (hours to days) and long-term (days to weeks and months) drought conditions (Fig.
3.4). In short-term droughts plants minimize water loss or exhibit metabolic protection. In
long-term droughts plants escape dehydration by shortening their life cycle or through
acclimation responses. Severe droughts lead to catastrophic biological/metabolic
failures and even to plant death. A lot of literature is available on plant responses to
drought (Mittler 2006; McDowell et al. 2008).

Soil compaction
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Fig. 3.4: Whole plant responses to drought stress. Left, long-term or acclimation responses;

right, short-term responses (Chaves et al. 2003).
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Droughts are considered as one of the major abiotic factors, negatively affecting many
plant processes, such as photosynthesis, transpiration, stomatal conductance, and
metabolite accumulation (Larcher 2003; Ohashi et al. 2006). In addition, it limits plant
growth and performance and causes substantial reductions in yield (Boyer 1982; Bray et
al. 2000; Yordanov et al. 2000; Wang et al. 2003; Reddy et al. 2004). Stomatal closure
resulting in a decreased flow of CO, into the mesophyll or in an impairment of metabolic
activities (Chaves et al. 2003; Flexas et al. 2004) is because of drought. Similarly,
stomatal closure and loss of leaf turgor to prevent desiccation reduces carbon uptake
and in consequence the assimilation (Chaves et al. 2009; McDowell et al. 2008; Galmes
et al. 2007). Stomatal closure is the main limiting factor for photosynthesis under
moderate water availability, but under severe condition, metabolic impairment occurs
(Medrano et al. 2002; Chaves et al. 2003). Adverse effects of drought on photosynthesis
are mediated by the response of the respiration system (electron transport and ATP
synthesis) in the mitochondria, the accumulation of metabolites and through gene
expression and protein synthesis (Atkin and Macherel 2009; Lawlor and Tezara 2009).
Plants respond to water stress by acclimation in non-severe cases and by damage and
loss of plant parts in severe cases (Chaves et al. 2002), and even mortality in extreme
situations (Allen et al. 2010).

3.3. Impacts of pathogens on trees

Pathogens can reduce the yield of trees, extensive timber losses and even tree
mortality. This can happen by the direct loss of tissue, damaging xylem, restricting water
and nutrient uptake or reducing phloem transport or both, inducing defences (Kozlowski
1969; Froelich et al. 1977; Franceschi et al. 2005) that divert resources, thus affecting
growth and physiology of their host trees. Severe infections can eventually kill the host.
However, the time required for the pathogen to kill a tree varies considerably and
depends on many factors, including vigor of the host, host and parasite combination,
severity of disease, and climatic situation under which the host tree is growing. Drought
can increase the frequency of tree pathogens through effecting the host physiology
(Ayres and Lombardero 2000; Lloyd and Bunn 2007; Scholze et al. 2006).
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Armillaria root disease, of both trees and crops, is known to occur everywhere except
Antarctica (DeLong 1995). Hundreds of species of trees and shrubs are hosts for this
aggressive pathogen. The disease is caused by the fungus, living parasitic on the host
tissue. Saprophytic fungi on dead woody material are another source of disease for
healthy trees. Most frequently, the identified fungus causing a disease is Armillaria
mellea. But several different and closely related species can also be involved.
Therefore, the generic term Armillaria is used for this group. As parasitic fungus, it
causes growth reduction, wood decay and mortality of the tree. Armillaria living as
saprophyte on dead wood, spreads through rhizomorphs by contacting non-infected
roots of host or when non-infected roots get into contact with infected ones (Fig. 3.5).
Rhizomorphs can grow over distances of up to 10 feet (3 m) through the top soil layers,
and penetrate the roots by mechanical pressure and enzymatic actions. According to
Williams et al. (1989), the ability of rhizomorphs to penetrate into roots depends upon
the specific fungus, the soil environment and the host species.

Fig. 3.5: Spread of Armillaria from a dead to a living tree via root contacts; infected roots are
painted white; blue ribbons mark the infection points (Wargo and Shaw 1985).

There are more than 30 Armillaria species worldwide (Watling et al. 1991) causing root
rot, root-collar rot and butt rot. In general, losses (mainly mortality) attributed to
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Armillaria root disease are most severe in forests in dry Mediterranean or continental
climates (Kile et al. 1991). Armillaria is considered as an important contributor to tree
mortality and has resulted in significant economic losses (Bendel and Rigling 2008).
However, early studies revealed that the fungus usually acts as a pathogen on trees

weakened by some stress factor (Day 1929; Raabe 1966).

Similarly, the virulence of Armillaria is assumed to depend on environmental conditions
stressing the host (Popoola and Fox 1996; Wargo 1980). Some Armillaria species are
primary pathogens and infect healthy trees, whereas other species act as secondary
pathogens invading trees after their resistance has been impaired by drought,
temperature extremes, other pathogens, or reduction in site quality (Wargo and
Harrington 1991). Moreover, the physiological resistance of healthy tissues against A.
mellea is also the part of the literature, according to that, penetration by the fungus is
not preventable but the subsequent development and spread can be limited (Thomas
1934).

3.4. Abiotic and biotic stresses and their interactions

In their natural environment, trees are exposed to various stresses (abiotic, biotic).
Droughts, wind, frost, nutrient deficiency, overwatering or planting too deep may act as
abiotic stressors. Biotic stressors are living organisms, such as viruses, bacteria, fungi,
insects, and animals to which a tree may be exposed during its lifetime. Abiotic stress
often occurs on many species but does not spread from tree to tree like biotic stressors
that can spread throughout a tree and even to neighboring trees of the same species.

Plants may be injured by a stress and exhibit metabolic impairment. The injury may be
temporary in case of a moderate and short-term stress and the plant may recover after
the stress is over. Intense stress may prevent flowering, seed formation, and induce

senescence and may lead to plant death. Such plants are known as susceptible.

Some plants like ephemeral, short-lived, desert plants escape drought stress by

germinating, growing, and flowering quickly following rains. Thereby, they complete their
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life cycle during a period of appropriate moisture and form dormant seeds before the
beginning of dry period. Similarly, many arctic annuals rapidly complete their life cycle
during the short arctic summer and survive over winter in form of seeds, thus these
plants survive by avoiding stress. Deep, extensive roots, thick cuticles, small stomatal
openings and physiological adjustments are the salient features that enable the plants to

escape unfavorable conditions.

Plants that can tolerate a particular stress are considered to be stress-resistant as these
organisms adjust (avoid or survive) or acclimate to stress. In this case, plants apply an
avoidance strategy through biochemical and physiological processes, but plants that

cannot survive such an extreme situation starve to death (Fig. 3.6).

Environmental Stress
Abiotic Biotic

v

Stress response

4 v N

Resistance Susceptibility Avoidance
Acclimation Senescence Survival
Growth Death

Fig. 3.6: Effects of environmental stress on plants (Hopkins and Hiiner 2009).

In nature, plants are often subjected to multiple or simultaneous stresses whose
influences are not easily understood neither if studied under controlled conditions nor in
the field. Stresses that occur in the field can be additive or can interact positively or

negatively (Niinemets and Valladares 2004; Mittler 2006; Rennenberg et al. 2006). The
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influence of heat and drought can act additive, and stresses that cause stomatal closure
or the formation of a thicker cuticle may prevent invasion by pathogens, especially by

obligate parasites (Gaumann 1950), thus interacting positively.
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Fig. 3.7: The Manion Decline Spiral, showing three sets of stressors that may contribute in the
complex process of decline (Manion 1981).

For the first time, Yarwood (1959) used the term predisposition by illustrating the

environmental influence on the genetically controlled response of a host plant to the
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presence of a pathogen or of its metabolites. The concept of predisposition was then
introduced into the field of plant pathology by Sorauer (1974), who emphasized the
importance of environmental factors in relation to plant diseases. Later on, Manion
(1981; 1991) categorized plant diseases into biotic, abiotic and decline. Biotic and
abiotic diseases are related to symptoms, host specificity and spatial distribution,
whereas decline diseases are caused not from a single agent but from an interacting set
of factors (Fig. 3.7). In this process of decline, climate or site factors are almost always
major predisposing or inciting factors that make the host vulnerable to contributing
factors like pathogens. More recently, such drought/disease interactions have been
reviewed by Desprez-Loustau et al. (2006), who hypothesized that trees impacted by
drought are predisposed to biotic diseases because of their weakened defence

potential.

3.5. Drought-pathogen interactions

Climate warming is thought to increase disease and mortality of plants by pathogens,
particularly fungi (Schoeneweiss 1981, 1983, 1986; Ayres and Lombardero 2000;
Desprez-Loustau et al. 2006; Garrett et al. 2006; McDowell et al. 2008). For example,
water stress was proven to increase the development of canker in sycamore (Platanus
occidentalis). Similarly, significant drought effects on the formation of diseases in red
pine (Pinus resinosa) have been reported (Blodgett et al. 1997). Recently, Linares et al.
(2010) observed Heterobasidion abietinum-related mortality of Abies pinsapo following a
drought. Similarly, Lindberg and Johansson (1992) highlighted that drought may
predispose conifers to Heterobasidion attacks through the reduction of the endogenous
defence mechanisms of the trees. Phytophthora species as predisposing or triggering

agents are considered to play a role in oak declines (Delatour 1983; Wargo 1996).

Global environmental changes are likely to have a deep impact on the host-pathogen
interactions at several levels. Based on a review of 270 scientific publications, La Porta
et al. (2008) concluded that climatic conditions giving advantages to a pathogen may at

the same time giving disadvantages to a host tree; such situations are often intensifying
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tree damage. According to Desprez-Loustau et al. (2006), three main types of drought-
disease interactions are expected, (1) direct effects of drought on the pathogens, (2)
indirect effects through community interactions, and (3) interactions by predisposing the
host to pathogen attacks. Armillaria is an aggressive killer of healthy trees and shrubs
throughout the world but on the other hand, it is known as a secondary pathogen of
trees that are stressed and as its saprophytic mode of action on dead trees. Armillaria
following drought was found to be associated with declines (Wargo et al. 1991). In
another study, species such as A. gallica and A. cepistipes were recognized as
secondary pathogens, i.e. pathogens can invade trees when they are stressed by
another factor (Gregory at al. 1991). Deciduous and coniferous trees weakened by
abiotic factors like drought, waterlogging, soil compaction, air pollution or by biotic
factors like insects, foliage diseases, stem cankers and bark-sucking are colonized and
eventually killed by Armillaria. Pathogen as saprophyte can also be a cause to spread
infection through rhizomorphs to weak trees, and this process is intensified after a
severe stress such as drought. A spread by basidiospores also occurs but it is limited.
Mostly, the rhizomorphs can spread from a diseased tree to a neighboring tree (see Fig.
3.5), if it has already been under some stress. However, colonization does not occur and
tree mortality ceases, if the stress is abated and tree health is restored. The fungus thus
depends a lot on stressed hosts to play its pathogenic role. Moreover, differences in site,
soil factors, and tree vigor are mitigating influences, and different species of Armillaria
can behave differently (Wargo and Shaw 1985).

Similarly, the virulence of some Armillaria species depends on environmental changes
stressing the host (Popoola and Fox 1996; Wargo 1980). Fox (2000) reported that
symptoms of infections by many Armillaria species appear after physiological injury from
environmental stress. Host plants treated like drought stress or their roots kept
constantly flooded were more susceptible. Moreover, amounts of carbohydrates, fatty
acids and amino-acids were also changed in water-stressed Lawson cypress as
compared to control plants, favoring increased growth of Armillaria mellea and A. gallica
on root extracts (Popoola and Fox 2003). Drought as an inciting factor and pathogens,

such as Armillaria, was recognized as contributing factor (see Fig. 3.7).
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3.6. Defence strategies of trees against drought and pathogens

Trees are the tallest, massive and longest living organisms on Earth. Their longevity is
due to their unique defence responses against destructive forces. Trees suffer from
injuries caused by wind, snow, ice, fire, animals, insects, and by man all over the planet.
These injuries provide a pathway to surrounding microorganisms to invade. Effective
defence responses of the trees are in action at this stage to restrict the development of
decay. Various models are proposed for better understanding of these processes. A
protective barrier and chemical changes at the margin between decay lesions and the
living sapwood were differently named by different authors. Such mechanisms were
found to be very dynamic (Shain 1967; 1979). Shortle and Smith (1990) proposed to
term them as column boundary layers (CBL), and Pearce (1996) used the term reaction
zone. Later on, this model was refined, indicating that lesions formed by reaction zones

can retain their function for an extended time.

These lesions can expand under even little host response, before a new reaction zone
boundary is formed (Pearce 1987; 1991; 2000; Boddy 1992). However, among these
models, Compartmentalization of Decay/Damage in Trees (CODIT), proposed by Shigo
and Marx (1977), Shigo (1979; 1984) and modified/advanced by Dujesiefken and Liese
(2008), is widely applied. According to this model, trees attempt to wall-off the injured or

infected portion, thus trees respond by compartmentalization (Fig. 3.8).

Fig. 3.8: Compartmentalization of a wound in Robinia pseudoacacia L.
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Trees respond to injuries by strengthening existing walls or forming new walls to
encapsulate the subsequent spread of air or of an infection. Wall 1 resists the vertical
spread by anatomical and chemical means thus plugging the axially running cells; it is
rather weak. Wall 2 exists continuously around each growth ring and from top to bottom
of a tree and resists the radial spread of an infection. Wall 3 is built up of the radially
oriented ray cells and hence resists the tangential spread of an infection. Wall 4 does
not exist at the time of wounding but is built to separate the infected wood from the
newly formed healthy wood; it is the strongest of all these walls and acts as a barrier
against microorganisms. Walls 1 to 3 are equivalent to reaction zones, but wall 4 is
clearly noticeable comprising a tissue laid down by the cambium in the vicinity of
wounds. The strengthening of all these walls is achieved by biochemical conversion of
carbon compounds into phenolic. Phenols act antimicrobial and discolor the wood.
Trees grow continuously after injury and infection, if they have enough time, energy and
genetic capacity to recognize and compartmentalize the injured and infected tissue
(Shigo and Marx 1977).

The strong host response in form of compartmentalization depends primarily on the tree
species (Eckstein and Dujesiefken 1998/99) but also on the type, severity and season of
wounding (Dujesiefken et al. 2005). Compartmentalization of autumn or winter wounds
is considered as weak compared to summer and spring wounds (Leben 1985; Shain
and Miller 1988; Mireku and Wilkes 1989). Moreover, tree vigour, environmental
conditions and aggressiveness of the pathogens are important in this regard (Shigo and
Hillis 1973).

Compartmentalization is not always successful and does not function perfectly all the
time. When it fails, some tree part or even the whole tree will die. When a tree stays
alive for years after injury and infection, compartmentalization is functioning well. As
long as the tree generates new rings over the older infected ones, and keeps strong
durable boundaries between the infected areas. Successful respond of a tree depends
greatly on its genetic program and its ability to generate and allocate energy.

Compartmentalization is the framework for a tree defence system that consumes much
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energy. The system is unique because the interaction between trees and pathogens
usually takes place within the tissues present at the time of injury and infection, and the
tree sets a boundary between these tissues and newly forming tissues. The newly
forming tissues act as new "tree" growing over the older "trees”. This system has long-

term survival benefits (Shigo 1984).

Survival of a tree after injury or infection depends on its ability to compartmentalize
pathogens. The virulence of pathogens depends on their ability to occupy as much
tissue as possible before they are compartmentalized. There is always an interaction
between host and pathogen in an ever-changing environment. Trees cannot ‘move
away’ and many types of wounds accumulate on or in them during their long life. It is
compartmentalization that makes long-term survival possible, after hundreds or even
thousands of infections. Compartmentalization is a defence process that has the
potential to be effective for millennia. Otherwise, trees would not be thousands of years
old, full of rot, and still growing (Shigo 1984). Gaumann (1950) summarized the situation
succinctly: "Man is able to destroy the pathogen in many infectious diseases, whereas

the plant can only localize it."

Moreover, drought stress reduces tree vigour, and thus reduces the ability to
compartmentalize. The water status of a tree is a fundamental factor in plant pathology.
Decay processes are mostly initiated by an injury, leading to infection, whereby the host
water status plays a pivotal role. Climatic changes over a period of years have been
addressed along with severity of many diseases. Ash dieback, maple decline, birch
dieback, oak decline, dry face of slash pine, and pitch streak in slash pine were found to
be associated with an extended period of below normal precipitation in the 1930s in the
United States (Hepting 1963; Ross 1966). Similarly, Leaphart and Stage (1971)
concluded that extended drought from 1916 to 1940 in the United States, played crucial
role in the severity of pole blight of western white pine. The importance of water in
relation to canker development was reported and canker caused by various

microorganisms depended on the relative turgidity of the bark (Bier 1959).

Drought-stressed trees were described as more susceptible to disease than well-
watered ones (Bier 1959; Hepting 1963; Schoeneweiss 1975). Moreover, cankers were
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significantly larger on drought-stressed trees than on unstressed trees (Mcintyre 1996).
Patterns of callus formation in various hosts in response to infection and water stress
were reported by Bevercombe and Rayner (1980); accordingly, callus often failed to
form effectively around diamond-cankers during the dry summer of 1976 in Devon,
Britain and this was associated with death of the whole or upper part of the tree.
Eventually, this resulted in a huge destroy of large trees in this area.

Drought/disease interactions in trees have again been reviewed in response to the
Europe-wide drought in 2003 (Desprez-Loustau et al. 2006). Disease-related variables,
severity of infection and timing of water stress were recognized as significant factors
influencing the drought-infection interaction, and it was hypothesized that drought-
stressed trees are predisposed to diseases because of their weakened defence
potential. This problem may increase if drought episodes will occur more often along
with global warming, as anticipated by the IPCC (2007).

Unfortunately, most reports having indicated water stress as a predisposing effect on the
host’s susceptibility to a disease are based on field observations and are not supported

by experimental evidences.

3.7. Biochemical aspects of compartmentalization

Compartmentalization involves both stable and dynamic, wounding-induced, anatomical,
and physiological and biochemical changes. On the whole, compartmentalization ‘walls-
off’ infections and tends to resist the spread of the decay process into the wood formed
after wounding (Shigo 1984).

Generally, the wood (xylem) in a living tree is protected from pathogen by the periderm
and rhytidome and by defence mechanisms in the bark. Only a few pathogens may
penetrate through these tissues directly, whereas most xylem pathogens gain entry
through open wounds. Biochemical aspects of wounding in tree species are not much

available. However, a series of predictable and coordinated events are concluded from
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histochemical investigations in the tree bark, with the formation of a ligno-suberized
boundary layer, and/or a wound periderm through cell division, of callus tissue, and/or a
new vascular cambium, and possibly a closure of the wound, which may function both

as inhibitory and as barrier to a further pathogen spread (Biggs 1992).

Injured trees are at a great risk of infection. Wounded wood is exposed for infection by
many microorganisms from the surroundings. Only a small number of fungi and bacteria
act as ‘pioneers’ consuming the nutrients in the wood cells but are unable to degrade
and digest the wood itself. During time, these pioneers are replaced by other
microorganisms including further non-decay fungi but also decay fungi. Some of the
decay fungi can degrade only certain components of the woody cell wall and some
others can degrade most or all of the wood substance. Such patterns of succession vary
from place-to-place and with the prevailing circumstances. Few decay fungi effectively
infect and spread from wounds even without the preparatory impact of pioneers.
However, the first few days after wounding mean a maximum risk of infection to
sapwood. Therefore, at this time, protective treatments that accelerate or stimulate tree
defence responses have the potential to reduce the establishment of infection in

sapwood.

Changes in the anatomy and chemistry of xylem cells, undergoing differentiation at the
time of wounding (Frankenstein et al. 2006), are part of the process of barrier-zone
formation. The barrier zone tends to resist the outward spread of wound-initiated
discoloration and decay into the wood formed after an injury. As a result, the wood-

decay process takes place in wood present at the time of injury (Smith 2006).

Histochemical analyses of heartwood and discolored wood were presented by Shigo
and Hillis (1973). From this comparison, main similarities and differences are mentioned
here. Tyloses in vessels and parenchymal necrosis, formation of phenolic substances,
separation with a transition zone/reaction zone to the sapwood are common in both
kinds of tissues. Discolored wood differs from heartwood by a lower content of phenols
and a higher content of ash minerals and of water, an increase in the pH value, and by
the occurrence of fungal hyphae. Moreover, heartwood contains compounds of low-
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molecular mass; in contrast, compounds with a high-molecular weight are accumulated
in discolored tissue due to the reaction of oxidative polymerization (Smith 1997). In a
wounded tree, discoloration is compartmentalized from the sound sapwood by the tissue
known as reaction zone (Shain 1967; Shortle and Smith 1990). Biochemical changes
lead to the production of phenol-based chemical defences. Brown-colored polyphenolic
materials are commonly deposited in reaction zones (Pearce 1990). These processes
make the attacked tissues resistant against microbial decay and fungal invasion, and
may lead to acquire resistance against future attacks (Krokene et al. 1999). Some of the
key fungicide phenolic compounds in reaction zones are produced as a result of an
infection, not just injury (Barry et al. 2002). According to Vance et al. (1980), the
production of phenolic derivatives is a universal response after injury or infection of the
plants. Substances synthesized as a reaction to wounding neutralize, inhibit or confine
the effect of pathogens (Klepzig et al. 1996). Carbohydrates stored in parenchymatous
tissues of wood and bark, mainly as starch (Kozlowski 1992; Hoch et al. 2003), are

converted to phenols and flavonoids.

There is a discrepancy between the on-site limited existence of non-structural
carbohydrates and an increasing content of phenolic constituents in Robinia, in the
heartwood/sapwood transition zone during heartwood formation. The increased content
of phenols and flavonoids in this zone require an import of carbon skeletons (Magel et
al.1991; Magel and Hubner 1997; Hauch and Magel 1998). The source used in the
heartwood/sapwood transition zone exists on-site reserve materials and the imported
sucrose. After intercalation of heartwood substances, the sapwood transition zone
turned into dead heartwood (Magel et al. 1994). Magel et al. (1997) stated that starch
and sucrose, accumulated in young living woody cells, deplete abruptly in the oldest
ones. Therefore, the formation of heartwood phenolics coincides with the transformation
of sapwood into heartwood, and sugars are metabolized for the synthesis of phenolics
(Niamke et al. 2010). Similarly, it has also been stated that discolored wood of Fagus
sylvatica is not physiologically different from heartwood (Magel and Ho6ll 1993).
According to the literature, both in conifers and in deciduous trees, the outermost
sapwood contains a high amount of sugars and starch, whereas the heartwood is almost

free of storage material (Magel and Holl 1993; Islam et al. 2012) and that starch is
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consumed or withdrawn during sapwood-heartwood transformation (Datta and Kumar
1987; Magel et al. 1994). Thus, it is obvious that phenolic substances are derived from

carbohydrates.

Seasonal variations in the susceptibility of trees to fungal attacks were exhibited, in the
effectiveness of endogenous defence (Spiers et al. 1998). Seasonal alterations in the
availability of starch reserves or changes in a tree's internal microenvironment may
influence the ability of a tree to establish durable defensive barriers. Similarly, abiotic
stress such as drought stress might impair the ability of the compromised xylem to re-
wet - apparently an important stage in the formation of a structurally continuous reaction

zone barrier (Pearce 2000).

3.8. Molecular investigation of the pathogen

The DNA-based PCR, particularly, taxon-specific primers technique (Garbelotto et al.
1996; Schmidt and Moreth 2000; Gardes and Bruns 1996) is valuable appliance to
identify fungi in their natural substrates as only a small amount of wood is used. For this
purpose the internal transcribed spacer (ITS) region (ITSI, the 5.8S ribosomal DNA and
ITSII) is analyzed. This region is frequently used because of multicopy arrangement and
highly conserved priming sites in the genome of fungi. In addition, the high variability of
ITSI and ITSII facilitates to generate restriction fragment length polymorphism (RFLP)
patterns to identify wood decay fungi or to design taxon-specific primers. Fungus-
specific primers were initially designed to identify fungal symbionts directly from
ectomycorrhizae and to identify rusts that are obligate parasites, in the host tissue by
Gardes and Bruns (1993).

However, in this case, taxon-specific primers were used to investigate the spread of

Amillaria mellea in inoculated stems to study the effectiveness of compartmentalization.
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4. Materials and methods

4.1. Site of experiment

The research was conducted at an experimental plot of the Thinen Institute and the
Centre of Wood Sciences in Hamburg, North Germany (about 53.3° northern latitude
and 10.0° eastern longitude). The average annual temperature is 8.9°C; July and August
are the warmest (23°C) and January and February the coldest months (-3°C). The
annual sum of rainfall is 716 mm (Fig. 4.1).

Hamburg, Germany Climate Graph (Altitude: 22 m)
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Fig. 4.1: Climate graph of Hamburg, Germany;

http://www.climatetemp.info/germany/hamburg.html.
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4.2. Experimental design and treatments

The experiment, based on 22 seven-year old saplings of black locust (Robinia
pseudoacacia L.) growing in 65 | pots, lasted for two years from June 2010 until July
2012. One half of the plants were kept well-watered and one half of them were
submitted to drought stress. From the well-watered and drought-stressed saplings,
three, were infected by A. mellea in July and in February. Five saplings of well-watered
and drought-stressed each, remained unwounded and uninfected (Fig. 4.2). The
experimental design consisted of four treatments, T1 (well-watered), T2 (well-watered +
infected with A. mellea), T3 (drought-stressed), and T4 (drought-stressed + infected with
A. mellea), with five (T1, T3) and three (T2 July, T2 February; T4 July, T4 February)

replicates, respectively.

Initial group of
saplings
n=22
Well-watered Drought-stressed
n=11 n=11
Infected in | Infected in Infected in | Infected in
July February July February
n=3 n=3 n=3 n=23
T1 T2 T3 T4
n=5 n=6 n=>5 n=6

Fig. 4.2: Experimental design, treatments along with number of saplings (n).

The well-watered plants were irrigated daily to field capacity, with a maximum of ten

liters of water; irrigation was withheld on rainy days. The drought-stressed saplings were

42



irrigated according to the prevailing daily temperature, i.e. 825 ml at up to 20°C, 1100 mi
from 21 to 25°C, 1650 ml from 26 to 30°C, and 2200 ml at and above 31°C (Table 4.1,
adopted from Veste and Kriebitzsch (2013). To avoid any influence of rainfall, the pots of

the drought-stressed saplings were covered with plastic sheets from June to October

(Fig. 4.3).

Table 4.1: Water regime for well-watered and drought-stressed saplings of black locust.

Temperature Drought-stressed Well-watered
(°C) saplings saplings
(ml) 0}
20 825 10
21 to 25 1100 10
26 to 30 1650 10
= 31°C 2200 10

Fig. 4.3: Well-watered saplings (control) (left) and drought-stressed saplings (right), whose pots
were covered with plastic sheets to avoid the effect of rainfall.
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4.3. Inoculum

Armillaria mellea (120.59) obtained from CBS (Centraalbureau voor Schimmelcultures,
Holland) was cultivated on 2% malt extract agar (consisting of 15 g of malt extract and

11.25 g of agar dissolved in 750 ml of water and autoclaved at 121°C for 30 minutes).

Beech wood dowels (8 mm diameter, 15 mm long) were autoclaved. Six were placed on
the growing mycelium. After six weeks, the dowels were sufficiently covered and

penetrated by the fungus (Fig. 4.4) and were used as inoculum as shown in 4.4.

Fig. 4.4: Dowels on malt extract agar covered by Armillaria mellea mycelium.

4.4. Wounding and artificial inoculation

In July 2010 and February 2011, three well-watered and three drought-stressed saplings
were wounded and inoculated. For this purpose, in each sapling, two holes, 8 mm wide
and 15 mm long, were drilled at 30 and 60 cm above ground (Fig. 4.5). Then, an

autoclaved dowel was introduced into the upper drill hole as non-infected; similarly,
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dowel containing the inoculum was introduced into the lower hole (Fig. 4.6). To avoid

any interaction the holes were slightly displaced at each level. After inoculation, each
wound was sealed with wound dressing.

Fig. 4.5: Artificial inoculation: (a) bore holes were drilled into the stem, (b) a dowel was
introduced into the bore holes; (c) wounds were sealed with a wound dressing.

Control

Inoculated

Fig. 4.6: Wounding and infection design: Two bore holes were drilled in the stems at 30 cm

above ground for Armillaria mellea containing dowels and at 60 cm above ground for the control
dowels without an inoculum.
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Thus to study compartmentalization, the experimental design consisted of four
treatments, T2, T2c, T4 and T4c. The statistical sample size in each experimental

variant was n = 3 (Fig. 4.7).

Well-watered Drought-stressed
n==6 n==6
Infected in Infected in Infected in Infected in
July February
n=3 n=3

Fig. 4.7: Wounding and artificial inoculation scheme; treatments along with the number of
saplings T2 (well-watered with infected dowel), T2c (well-watered with non-infected dowel), T4
(drought-stressed with infected dowel), and T4c (drought-stressed with non-infected dowel). The
statistical sample size in each experimental variant was n = 3.
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4.5. Morphological measurements

4.5.1. Leaf parameters

Morphological measurements were made on all 22 saplings. One year after the
inoculation, the area, length and width of seven leaves per sapling were measured non-

destructively using a portable leaf-area meter (Fig. 4.8).

Fig. 4.8: Leaf measurements by a Leaf Area Meter (Li-Cor model 3000, Lincoln, NE USA).

4.5.2. Stem diameter

The stem diameter were measured with a Vernier caliper at 40 cm above the soil in
August 2010 and 2011 for all saplings (Fig. 4.9) to know their average diameter per

treatment and to calculate the increase in diameter per treatment in one year.

Fig. 4.9: Measuring diameter of black locust saplings by a Vernier caliper.
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4.5.3. Tree height

The height of all saplings of each treatment was measured and noted after leaf fall with
a meter ruler by determining the distance from the soil level to the top of the saplings in
November 2011.

4.5.4. Number of seed pods

The number of seed pods (Fig. 4.10) of all the saplings per treatment was counted at

maturity to study any difference in the yield of seed pods.

Fig. 4.10: Seed pod of well-watered black locust.

4.5.5. Morphological and phenological aspects

Along with the measurements, observations about the initiation of the leaves and of the
inflorescence, as well as of senescence and leaf abscission were noted and

photographed with a digital camera (Olympus SP-550U2Z) at various intervals.
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4.6. Gas exchange measurements

Gas exchange measurements were made on all saplings using a portable Infra-Red Gas
Analyzer (IRGA; Model LI 6400; LI-Cor Inc., Lincoln, NE, USA) fitted with a standard leaf
chamber of 2 cm? (Fig. 4.11). The light intensity was 800 pmolm™s™ provided by a red-
blue light source, and the CO, was 380 ppm. Net photosynthesis (Py), transpiration (E),
and stomatal conductance (gs) were measured in June, July, August and September
2011 of at least 2 to 3, fully expanded healthy leaves per sapling. All measurements
were made between 1 and 4 o'clock pm. The mesophyll conductance (gmn) was
calculated by dividing the photosynthesis (Pn) data by the intercellular CO, (Ci) data
(Fischer et al. 1998).

Fig. 4.11: Gas exchange measurements by IRGA; Model LI 6400; LICor Inc., Lincoln, NE, USA.

4.7. Harvesting

All well-watered and drought-stressed saplings of black locust were harvested in July

2012 and separated into leaves, branches, stems and roots.

49



The soil was carefully shaken off the roots and the remaining soil was washed off in a
separate container by careful rinsing. Soil was removed from roots by gently washing
over a 2 mm sieve placed on top of a container under running tap water (Fig. 4.12).

Care was taken to ensure that all roots were collected from the sieve and container.

Fig. 4.12: Washed roots of black locust saplings after harvesting.

4.8. Biomass determination and root-to-shoot ratio

The biomass of the saplings was determined for all saplings per treatment after the
harvest. The fresh weight of all fractions (leaves, stems, branches and roots) was
determined to calculate the water content and the dry weight biomass. For this purpose,
the biomass fractions of each sapling were oven-dried at 70°C until a constant weight
was reached. In addition, the root-to-shoot ratio was calculated for all treatments by
dividing the average dry weight of the roots by the average dry weight of the above
ground biomass of the saplings.
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4.9. Statistical analysis

The data collected were subjected to Analysis of Variance (ANOVA) using Microsoft
Excel 2007 (Data analysis). After the rejection of the null hypothesis, the treatment
means were compared using Fisher's LSD (Least Significance Difference) at p = 0.05
for morphological traits. Multiple ANOVA (pair-wise comparisons) was performed for

physiological parameters to investigate any difference between treatments.

4.10. Freeze drying of inoculated stem sections

After harvesting, stem sections containing the wounds, both aseptic and infected, were

frozen at -20°C and processed for freeze drying prior to other experiments (Fig. 4.13).

Fig. 4.13: Stem sections containing the wound and inoculation sites are freeze dried.

4.11. Measurement of discoloration and callus formation

After freeze drying, longitudinal and cross sections of the stems were prepared and the
extent of discoloration and decay was measured in axial, radial, and tangential direction,
as mentioned by Deflorio et al. (2008). Discoloration in axial, radial and tangential
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direction was also observed under UV light. In addition, the thickness of the callus in the

vicinity of each wound was also measured in all trees of each treatment (Fig. 4.14).

Fig. 4.14. Measuring the callus formation in the vicinity of wounds in all samples of black locust;
measurements were taken from a to b.

As the statistical sample size was too small for a rigorous statistical analysis, results

were graphically presented to show the ranges of the data for each experimental variant.

4.12. Homogenizing material for biochemical and molecular analysis

For biochemical and molecular analysis, wood samples from the decayed zone, reaction
zone, sound wood and callus (Fig. 4.15) were collected from wounded and infected
stems. Freeze dried samples were stored in airtight plastic bags (see Fig. 4.19) and

were reopened after thawing, just before proceeding with the analysis of the samples.
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Sound Zone

Fig. 4.15: Decayed zone, reaction zone, sound wood and callus in an inoculated wood sample
under UV light.

4.13. Determination of soluble carbohydrates and starch

The soluble carbohydrates (glucose, fructose, and sucrose) and starch were
quantitatively analyzed by an enzyme-based method as presented by Magel et al.
(2001). For that purpose, 10 mg homogenized fine powder from the respective tissues
were taken in a 2 ml Eppendorf tube and a pinch of activated charcoal and of PVPP
(polyvinyl-polypyrolidone) was added to bind polyphenols and to eliminate pigments;
then, 1 ml of 65% ethanol was added. This mixture was incubated for 60 min at 60°C.
Then the extract was centrifuged for 10 min at 4°C and 12500 rpm. The supernatant
was separated from the pellets for sugar analysis and the pellets were prepared for
starch analysis. Chemicals and solutions along with respective concentrations are given
(Table 4.2).
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Table 4.2. Chemicals and solutions with concentrations.

Chemicals and Solutions Concentrations

PVPP 20 mg (SERVA)

Ethanol 65%

Charcoal Pinch

Acetate buffer 0.1M,pH4.6
10 ml (1N) acetic acid, 5ml (1N) NaOH fill
up to 100 ml with bidest; adjust pH to 4.6

Glucose TmM

Fructose TmM

Sucrose TmM

Table 4.3. Test mixture for sugar and starch analysis.

For Sugar analysis; TRIS-Buffer (500mM pH 7.5) 10ml
For Starch analysis; TRIS-Buffer (500mi pH 8.8)

1M MgS04 60 pl

200 mM ATP 200 pl
200 mM NADP 100pl
Glucose-6-phosphate Dehydrogenase (GEP-DH; 140 U/mg, smg/ml) | 10pl

To the pellets, 200 ul Acetate buffer (0.1 M, pH 4.6) was added and homogeneously
mixed for 15 min in a boiling water bath. This mixture was cooled down to room
temperature, 10 ul of the original Amyloglucosidase solution (Roche Diagnostic GmbH
102857) was added, mixed carefully and incubated overnight at 37°C. Then, the extract
was centrifuged for 10 min at 12500 rpm at room temperature. Test mixture for sugar
and starch analysis is provided (Table 4.3). Background was adjusted by mixing 75 pl
test mixture and 30 ul H,O, and standard was maintained with 75 pl test mixture and 10

ul of each, Glucose (1mM), Fructose (1mM), and sucrose (ImM). 75 pul test mixture
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along with 20 pl test sample was used for sugar analysis, whereas 75 pl test mixture
along with 10 pl test sample was used for starch analysis.

By successive addition of the enzymes hexokinase, phosphoglucoisomerase and [3-
fructosidase, the carbohydrates glucose, fructose and sucrose were determined,
respectively. The amount of the carbohydrates was calculated based on the respective
formation of NADPH at 340 nm wavelength. Enzymes along with their respective
concentrations and manufacturer are provided (Table 4.4). All experiments were
performed in triplicate and quantified using Lambert-Beer's law. The extinction
coefficient of NADPH at 340 nm is 6.27 mmol*cm™.

Table 4.4. Enzymes with respective concentrations and manufacturer.

Enzymes Concentrations Amount | Manufacturer
Amyloglucosidase 14U 10 pl Roche
Hexokinase 0.15U 10 pl Roche
Phosphoglucoisomerase 0.7U 10 pl Roche
R-Fructosidase 6 mgin 1.2 ml Acetate 30 pl Roche

buffer (pH 4.6; 0.1 M)

Glucose-6- Smgin1ml 10 pl Roche
phosphateDehydrogenase

4.14. Investigation of Armillaria mellea by molecular techniques

To study the effectiveness of compartmentalization, the spread of Armillaria mellea was
followed in inoculated stems through molecular technique. This was done in

collaboration with Corinna Gebarowski during her B.Sc. thesis work.
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Selective amplification of the genomic DNA by the polymerase chain reaction (PCR) is a
sensitive and specific tool appropriate to investigate fungal pathogens in wood with the

help of specific primers.

Taxon-specific primers are to identify the pathogen. For this purpose, the internal
transcribed spacer (ITS region; ITS1, the 5.8S ribosomal DNA and ITS2) was analyzed
(Fig. 4.16), and suitable taxon primers were designed to investigate the pathogen in

question.

185 5.85 285
DNA TS DNA I ‘DNA

Fig. 4.16: Map of the ribosomal DNA region containing ITS1 and ITS2, and the 5.8S rDNA.

4.14.1. DNA extraction from pure culture

DNA of Armillaria mellea grown on 2% malt agar at room temperature was extracted by
using 30 mg fresh mycelium and DNeasy® Plant Mini Kit from Qiagen. The experimental
procedure was applied according to the manufacturer’s instruction. Kits and solutions

used are provided here (Tables 4.5, 4.6).
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Table 4.5. Kits used with solutions and manufacturers.

Kit Solutions Manufacturer

DNeasy® Plant Mini Kit Buffer AP1 Qiagen
Buffer AP2

Buffer AP3

Buffer AW1 (+Ethanol)
Buffer AE

PCR Core Kit 5 x Q Solution Qiagen
10 x PCR Buffer
dNTP Mix

Tag-Polymerase

Qiaquick® PCR Purification Kit | Buffer PB Qiagen
Buffer PE (+Ethanol)
Buffer EB

Table 4.6. Chemicals and solutions used during molecular work.

Chemicals and Solutions Manufacturer
Agarose SERVA

DNA AWAY ™ Carl Roth
Ethanol (2 99.8 % p.a.) Carl Roth
Ethidiumbromide Carl Roth
GelPilot 100bp Plus Ladder (Marker) Qiagen
Loading buffer (0.25 % Bromphenolblau, 30% Glycerin) Lab setting
TAE-Buffer (50 x Stock-Solution: 2M TRIS, 1M Acetate, 50mM EDTA Lab setting
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4.14.2. Amplification of desired DNA regions

Amplification of desired regions was performed using PCR Taq Core Kit from Qiagen
(Table 4.5); solutions and concentrations for master mix for a test with the Taq Core Kit
from Qiagen are given (Table 4.7). Master mixture was adjusted up to 12 pl and 0.5 pl
template was used.

For this purpose, ITS forward primer (ITS1.1; GAACCTGCGGAAGGATCAT) and ITS
reverse primer (ITS4; TCCTCCGCTTATTGATATGC), fungal-specific forward primer
(pilzfor 1; AACTTTCAACAACGGATCTCTT) and fungal-specific reverse primer (pilzrev
1; AAGAGATCCGTTGTTGAAAGTT) were used (White et al. 1990). These universal
primers along with respective melting temperatures are provided (Table 4.8).
Amplification was carried out with the following conditions: an initial denaturing for 4 min
at 94°C, 40 cycles of 30 sec at 94°C, 30 sec at 55°C for annealing of primers,
respectively, 45 sec at 72°C for elongation. The final extension was for 7 min at 72°C.

Table. 4.7. Master mixture for a test with the Taqg Core Kit from Qiagen.

Solutions and concentrations Volume (pl)
Bidest 7.775
Q-Solution 2.5

10 x Reactions buffer 1.25

dNTP Mix (10mM/dNTP) 0.25

Primer for (100 pmol/pl) 0.075
Primerrev (100 pmol/ul) 0.075
Tag-polymerase (5 units/pl) 0.075

Total volume 12
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Table 4.8. Primers along with sequences and melting temperatures.

Primer name Primer sequence Melting
temperature

Forward primer GAACCTGCGGAAGGATCAT 56.7°C

(ITS1.1)

Reverse primer TCCTCCGCTTATTGATATGC 95.3°C

(ITS4)

Fungal specific for AACTTTCAACAACGGATCTCTT |54.7°C

Fungal specific rev AAGAGATCCGTTGTTGAAAGTT | 54.7°C

4.14.3. Purification of PCR products

PCR products were cleaned by means of the Qia-quick purification kit (Qiagen,

Valencia, CA) and sequenced by MWG-Biotech (Ebersberg, Germany).

4.14.4. Taxon-specific primers design and testing

The sequence was used to compare the query sequence with database sequences. The
sequence of the test strain and sequence information of objective and related species
from the European Molecular Biology Laboratory (EMBL) and the Gene Bank (NCBI)
database (www.ncbi.nim.nih.gov/nucleotide) were aligned by Mega 5.1 and ClustalX
(1.81) to search A. mellea taxon-specific sequence. Along with A. mellea, sequences of
A. hinnulea, A. ectypa, Pleurotus pulmonarius, Ganoderma pseudoferrum, Laetiporus
sulphureus and Phellinus robiniae were used to find out specificity. Thus, taxon-specific
PCR primers based on a suitable informative area of the sequenced ITS region was
designed for A. mellea (Garbelotto et al. 1996; Moreth and Schmidt 2000; Nicolotti et al.
2009).
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The primers were designed as forward (tax for) and reverse primers (tax rev) using the
software PRIMER3 (www.genome.wi.mit.edu/cgibin/primer/primer3) to be specific for A.
mellea (Fig. 4.17; Table 4.9). The length of specific primers was between 20 and 22

basepairs.

PCR amplification with taxon-specific primers forward and reverse (Amtaxforb;
GTTACKGGTTCTGTTCTAATC) and (Amtaxrevb; CCAAGAGTTTCTTGTTACSG) was
carried out in a thermal cycler by Biometra by using 0.5 pl template and test mixture
given in table (4.7) and with the following conditions: an initial denaturing for 4 min at
94°C, 40 cycles of 30 sec at 94°C, 30 sec at 55°C for annealing of A. mellea specific
primers, respectively, 40 sec at 72°C for elongation. The final extension was for 7 min at
72°C.

Table 4.9. Taxon-specific primers of A. mellea along with sequences and melting temperatures.

Taxon-specific primer Primer sequence Melting
of A. mellea temperature
Amtax-for b GTTACKGGTTCTGTTCTAATC | 54.9°C
Amtax-rev b CCAAGAGTTTCTTGTTACSG | 55.3°C

To analyze PCR products, aliquots of 2.5 pl were loaded to gel electrophoresis on 2.5 %
(w/v) agarose gel and visualized with ethidium bromide (0.00015%). A DNA marker (100

bp) was used for size estimation.
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4.14.5. DNA extraction from different wood zones

DNA was extracted from 60 mg of homogenized material from all zones (decayed zone,
reaction zone, sound wood and callus) as mentioned in 4.12 (see Fig. 4.18) with the
DNeasy® Plant Mini Kit from Qiagen. The experimental procedure developed by the
manufacturer was applied. It should be added, that the elution of DNA from the column
with AE buffer was repeated and elution two is mentioned in results section as 2™

elution.

Fig. 4.18: Homogenized material from decayed and reaction zones as well as sound wood and
callus.

4.14.6. PCR amplification of A. mellea from wounded and inoculated stems

To detect the fungus in question by PCR amplification, the total DNA was isolated from
infected plant material and NanoDrop was performed to quantify nucleic acid.
Furthermore, the presence or absence of A. mellea was investigated with specific
primers (tax for and tax rev) designed for A. mellea (Fig. 4.17) in the callus, decay zone,

reaction zone and sound wood. For this purpose, 0.5 ul to 2ul template was used.

PCR conditions were set as mentioned in 4.14.4 and products were visualized with
ethidium bromide (0.00015%).
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5. Results

5.1. Morphology and phenology

There were no significant differences in the morphological and phenological parameters
of well-watered and drought-stressed saplings infected in summer or in winter.
Therefore, saplings infected in summer and winter of the individual treatment were

considered together.

5.1.1. Leaf parameters

All morphological leaf parameters (area, length and width) were significantly smaller in
drought-stressed saplings (non-infected or infected; T3, T4) than in well-watered ones
(non-infected or infected; T1, T2). Moreover, the leaves of drought-stressed saplings
emerged on April 12, 2011 (emergence of leaf was just started in drought-stressed
ones; Fig. 5.1) compared to well-watered ones whose leaves unfolded already on March
25, 2011.

Fig. 5.1: Effect of drought stress in the form of delayed bud break of black locust saplings in April
2011; drought-stressed saplings (right) vs. well-watered ones (left).
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In addition, a change in morphology and a significantly smaller number of leaflets of the
drought-stressed saplings was found. The average number of leaflets per leaf ranged
from 17 in the case of well-watered leaf and 10 in the case of drought-stressed saplings
(Table 5.1). Moreover, the individual leaflets were shorter and broader and their
surfaces did not overlap each other as compared to the leaves of well-watered saplings
(Fig. 5.2).

Fig. 5.2: Morphology of leaves under well-watered (a) and drought-stressed (b) growth
conditions.

The average leaf area varied from 160 t0158 cm? in T1 and T2 and from 72 to 64 cm? in
T3 and T4, respectively. The average leaf area and the average number of leaflets were
not statistically different between the infected and non-infected well-watered saplings
(T2, T2). In the drought-stressed saplings, the leaf area was significantly smaller by
more than 50%, and the leaves were shorter by more than 30%.
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The average leaf length varied from 32 to 30 cm in T1 and T2 and from 22 to 20 cm in
T3 and T4, respectively. The average leaf width varied from 7.3 to 7.2 cm in T1 and T2
and from 6.1 to 5.2 cm in T3 and T4, respectively. The average leaf length was not
statistically different between the infected and non-infected well-watered saplings (T1,
T2) or between the infected and non-infected drought-stressed saplings (T3, T4).
However, the average leaf length and the average leaf width of well-watered saplings

were significantly different than the drought-stressed ones (Table 5.1).

The smallest area, length, and width of leaves were recorded for saplings under the

combined effects of drought and infection (T4; Table 5.1).

Table 5.1: Mean value * standard deviation of various leaf parameters of black locust saplings,
well-watered (T1), well-watered + infected (T2), drought-stressed (T3), and drought-stressed +
infected (T4). All measurements were taken on seven leaves from five saplings in each
treatment; LSD = least significant difference at 5% probability.

Treatments Leaf area (cm?) Les;ilrir)]gth Leaf width (cm) | Number of leaflets
T1 160 £ 15 32+1.2 7.3+0.7 17+1.3
T2 158 £ 14 30+4.4 7.2+0.7 17+£1.2
T3 72 +16 22+ 31 6.1+0.7 10+1.8
T4 64+8 20+ 1.1 52107 10+0.7
LSD 13 2.7 0.67 1

Additionally, the flowering of the saplings was impaired by water shortage. In drought-
exposed saplings, inflorescence started on June 6, 2011, and thus was delayed by more
than two weeks compared to the well-watered saplings that started to flower already on
May 19, 2011.
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In addition, drought stress resulted in a stunted growth of inflorescences which are
looking somehow ball-shaped, whereas well-watered saplings got long and fresh

inflorescences (Fig. 5.3).

Fig. 5.3: Morphology of the inflorescence of drought-stressed (right) vs. well-watered saplings
(left) in June 2011.

Moreover, early senescence was observed in drought-stressed saplings. Whose leaves

started to become yellow in July, compared to well-watered saplings (Fig. 5.4).

Similarly, leaf abscission was more rapid in drought-stressed saplings compared to

well-watered ones (Fig. 5.5).
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Fig. 5.5: Accelerated leaf abscission in drought-stressed (right) vs. well-watered saplings (left) in
November.
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5.1.2. Stem diameter

Well-watered saplings, both infected and non-infected (T1, T2; Fig. 5.6), showed a
diameter increase of about 10 mm within one year. Drought-stressed saplings, however,
had only half the diameter increase compared to well-watered ones in one year. This is
a significantly smaller average diameter for the drought-exposed saplings (T3) by 48%.
In the case of the saplings stressed by both drought plus a pathogenic fungus, diameter

growth was even reduced by 54% (Fig. 5.6).

After one year of inoculation, the average diameter varied from 45.7 to 45.9 mm in T1
and T2 respectively. In T3 and T4, the diameter was 33.9 to 34.1 mm, respectively
(Table 5.2).

— —
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!

Increase in diameter (mm)
o
1

T1 T2 T3 T4

Fig. 5.6: Average growth in stem diameter = standard deviation of the saplings T1 to T4 within
one year (n=5 for T1 and T3; n=6 for T2 and T4); for the definition of the treatments T1 — T4 see
Table 5.1.

69



Table 5.2: Mean value + standard deviation of stem diameters of saplings T1 to T4; the mean
values are calculated from five saplings per treatment; LSD = least significant difference at 5%
probability; for the definition of the treatments T1 — T4 see Table 5.1.

Treatments Stem diameter (mm)
T1 457+ 0.5
T2 459+0.2
T3 33.9+0.2
T4 341+01
LSD 3.0

5.1.3. Tree height

The height was measured on five saplings from each treatment after leaf fall in
November. The well-watered saplings, both infected and non-infected (T1, T2), were
significantly taller than the drought-stressed ones (T3, T4) (Table 5.3; Fig. 5.7). The
average height varied from 423 to 434 cm in T1 and T2 and from 317 to 312 cm in T3
and T4, respectively.

Table 5.3: Mean value + standard deviation of the height of the saplings T1 to T4. Values are the
average from five saplings per treatment; LSD = least significant difference at 5% probability; for
the definition of the treatments T1 — T2 see Table 5.1.

Treatments Sapling height (cm)
T1 423+ 13
T2 434 + 13
T3 317 £ 27
T4 312+ 28
LSD 21.6
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Fig. 5.7: Drought-stressed saplings (right) were by 30% shorter than the well-watered ones (left).

5.1.4. Number of seed pods

The drought-exposed saplings (T3, T4) produced significantly less seed pods than the
well-watered ones (T1, T2). An impact by the pathogen was not recorded, neither in
well-watered nor in drought-stressed saplings. The average number of seed pods varied
from 28 to 24 in T1 and T2, and from 11 to 13 in T3 and T4 (Table 5.4).
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Table 5.4: Mean value + standard deviation of the number of seed pods of the black locust
saplings T1 to T4. Values are the average of five saplings per treatment; LSD = least significant
difference at 5% probability; for the definition of the treatments T1 — T4 see Table 5.1.

Treatments Number of seed pods
T1 28+ 11
T2 24 + 11
T3 11+10
T4 139
LSD 9.6

Moreover, the impact of drought became apparent in the color of the seed pods. Well-

watered saplings formed dark-brown and bright seed pods, whereas drought-stressed
ones formed pale-brown pods (Fig. 5.8).

Fig. 5.8: Seed pods of well-watered black locust saplings were dark-brown and bright (a) and of
drought-stressed saplings were pale-brown in color.
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5.2. Gas exchange

All gas exchange processes such as net photosynthesis (Py), stomatal conductance
(gs), mesophyll conductance (gm), and transpiration (E) were reduced in T3 and T4
saplings as compared to T1 and T2 saplings, measured from June to September. Both
in well-watered and in drought-stressed saplings the season of infection, July or

February, did not significantly change the gas exchange parameters.

5.2.1. Net photosynthesis

The net photosynthesis (Py) of all saplings was measured once in June, July, August
and September (Fig. 5.9a, b). In June, its average was 8.89 and 8.23 pmol CO, m?s™ in
T1 and T2, and 6.76 and 5.26 umol CO, m?s™in T3 and T4, respectively. In July, it was
8.31 and 8.22 umol CO, m?s™ in T1 and T2, and 6.62 and 4.5 pmol CO, m?s™*in T3 and
T4, respectively. In August, it was 10.5 and 10.2 pmol CO, m?s™in T1 and T2, and 4.2
and 3.19 pmol CO, m?s™ in T3 and T4, respectively. In September, it was 10.37 and
10.27 pmol CO, m?s™ in T1 and T2, and 6.94 and 5.9 pmol CO, m?s™ in T3 and T4,
respectively.

12

10 -
< .
£ ——T1
8“ 6 - -T2
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Fig 5.9a: Net photosynthesis (Py, pmol CO, m?s™) of the saplings of the treatments T1 to T4
(n=10-12) in June, July, August, and September.
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The net photosynthesis declined significantly under drought by 36% and under
simultaneous drought and pathogen stress, even more, by 48% (Fig. 5.9b). In detail, a
significant limitation of the net photosynthesis was noticed in the T4 than that of T3

saplings in June, July and August, but no longer in September (Table 5.5; T3xT4).

12

10 -
8 -
4
5
0
T1 T2 T3 T4

Fig. 5.9b: Net photosynthesis (Py, umol CO, m?s™) of treatments T1 to T4. Mean value *
standard deviation of June + July + August + September; n=42; for the definition of the
treatments T1 — T4 see Table 5.1.

Py (Mmol CO, m2s™)
(@)

The highest rate of net photosynthesis occurred in T1 and T2 saplings in August and
September (Fig. 5.9a). Nevertheless, the net photosynthesis in T1 and T2 was not
significantly different throughout the season (Table 5.5; T1xT2). This means that the
pathogen did not affect the net photosynthesis of these saplings. Conversely, declined
net photosynthesis was noticed in drought-stressed saplings (T3, T4) in June, July,
August and September. The lowest values were measured in T4 saplings throughout the

season (Fig 5.9a).

74



It should be added, that there was no significant difference in net photosynthesis of well-
watered saplings, no matter if they were infected in July or in February. Similarly, the
photosynthesis of drought-stressed saplings was not affected by the season of infection
(Table 5.5; T2FxT2J, T4FxT4J). Moreover, according to ANOVA results T1xT3, T1xT4,
T2xT3, T2xT4, and T1/T2xT3/T4 were significantly different throughout the season and
collectively (JJAS) as well due to drought stress Table 5.5).

Table 5.5: ANOVA results of the net photosynthesis (P, pmol CO, m?s™) of all saplings of the
treatments T1 to T4 (n=10-12) of June, July, August, and September measurements, both
separately and seasonalized (JJAS = June + July + August + September; n=42). F = February
inoculation; J = July inoculation; n=6); n.s. = not significant, * = 0.05, ** = 0.01, *** = 0.001; for
the definition of the treatments T1 — T4 see Table 5.1.

Pu TIXT2 | TIXT3 | T1xT4 | T2xT3 | T2xT4 | T3xT4 | T1/T2x | T2FxT2J | TAFxT4J
T3/T4

June n-s Ex + 3 Ex + 3 KhE KK K KK ns n-s

July n.S Ex + 3 Ex + 3 KhE KK KK KK nS n-s

Aug ust n-s wRE wRE Ex 2 EE 23 * EE 23 ns *

September | n.s ol ol ol ek n.s ek n.s n.s

JJAS ns *hk *hk *hk Fhk Fhk Fhk ns ns
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5.2.2. Stomatal conductance

An average stomatal conductance (gs) in June was 0.2 and 0.18 mol H,O m?s™ in T1
and T2, and 0.16 and 0.14 mol H,O m™?s™in T3 and T4, respectively. In July, it was 0.17
and 0.13 mol H,0 m?s™in T1 and T2, and 0.1 and 0.09 mol H,O m?s™in T3 and T4,
respectively. In August, it was 0.2 and 0.19 mol H,O m?s™ in T1 and T2, and 0.09 and
0.07 mol H,0 m?s™in T3 and T4, respectively. In September, it was 0.1 and 0.15 mol
H,O m?s?in T1 and T2, and 0.14 and 0.12 mol H,O m™?s™?in T3 and T4, respectively
(Fig. 5.10a).

Stomatal conductance (gs) remained higher in well-watered saplings (T1) than in
drought-stressed ones, except in September. However, it was reduced in drought-
stressed saplings and lowest values were measured in T4 saplings in June, July and
August (Fig. 5.10a).

0.25
0.2
o
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0.05
0 . .
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Fig 5.10a: Stomatal conductance (gs, mol H,O m™?s™) of the saplings of the treatments T1 to T4
(n=10-12) in June, July, August, and September.
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The average seasonal stomatal conductance (gs) was significantly reduced by 26 and
34% in the drought-exposed saplings T3 and T4, respectively (Fig. 5.10b). This

difference remained throughout the season as well (Fig 5.10a).
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Fig. 5.10b: Stomatal conductance (gs, mol H,O m?s™) of treatments T1 to T4. Mean value +
standard deviation of June + July + August + September; n=42; for the definition of the
treatments T1 — T4 see Table 5.1.

Overall, the average stomatal conductance in well-watered saplings, infected or non-
infected (T1, T2) was not significantly different in JJAS (June + July + August +
September), but variations can be seen on the monthly basis (Table 5.6; T1xT2).
Similarly, stomatal conductance in drought-stressed saplings, infected or non-infected
(T3, T4) was significantly not different between each other (Table 5.6; T3xT4).

There were no significant alterations in stomatal conductance of well-watered saplings,
no matter if they were infected in July or in February. Similarly, stomatal conductance of
drought-stressed saplings was not either affected by the season of infection (Table 5.6;
T2FxT2J, T4FxT4J). Moreover, according to ANOVA results T1xT3, T1xT4, T2xT3,
T2xT4, and T1/T2xT3/T4 were significantly different due to drought stress (Table 5.6).
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Fig. 5.11: Net photosynthesis (Py) vs. stomatal conductance (gs); for the definition of the
treatments T1 — T4 see Table 5.1.

Drought stress reduced the stomatal conductance (gs) resulting in a reduction of net
photosynthesis (Py); this cause/effect relationship is visualized in Fig. 5.11, where Py
was plotted versus gs. In this graph, the cause/effect relationship between stomatal
conductance (gs) and photosynthesis (Pn) of well-watered saplings (T1, T2) and
drought-stressed saplings (T3, T4) clearly differed from each other. However, this
relationship is almost same for well-watered saplings infected or non-infected (T1, T2)
and drought-stressed saplings infected or non-infected (T3, T4); again confirming, that

the black locust mainly have been affected by drought stress.
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Table 5.6: ANOVA of the stomatal conductance (gs, mol H,O m?s™) of saplings of the treatments
T1 to T4 (n=10-12) of June, July, August, and September measurements, both separately and
seasonalized (JJAS = June + July + August + September; n=42), F = February inoculation; J =
July inoculation; n=6); n.s. = not significant, * = 0.05, ** = 0.01, *** = 0.001; for the definition of
the treatments T1 — T4 see Table 5.1.

gs TIxT2 | TIXT3 | T1xT4 | T2xT3 | T2xT4 | T3xT4 | T1/T2x | T2FxT2J | T4FxT4J
T3/T4
June sk o dede dedede *eke ek oedede sede ke n.s n.s
July *k Hkk *kk n.s * n.s Fhk n.s n.s
August n.s Hkk ek Hededke *k Kk n.s Fedek n.s n.s
September | ** il bl n.s n.s n.s n.s n.s n.s
JJAS n.s Fkk kK Fkk kK n.s Fhk n.s n.s

5.2.3. Transpiration

An average transpiration in June was 3.39 and 3.06 mmol H,O m?s™in T1 and T2, and
2.99 and 2.46 mmol H,O m™?s?in T3 and T4, respectively. In July, it was 2.54 and 1.38
mmol H,O m?s?in T1 and T2, and 1.1 and 0.85 mmol H,0 m?s™ in T3 and T4,
respectively. In August, it was 2.4 and 2.39 mmol H,O m?s™*in T1 and T2, and 1.22 and
1.07 mmol H,O m?s™in T3 and T4, respectively. In September, it was 0.64 and 1.62
mmol H,O m?s™ in T1 and T2, and 1.88 and 1.76 mmol H,O m?s™ in T3 and T4,
respectively (Fig. 5.12a).

79



4 —
3.5
—_— 3 B
o
= 25 ——T1
Q, > —-—T2
= T3
g 15
e —T4
g 1 -
05
(0] . . . :
June July August September

Fig. 5.12a: Leaf transpiration (E, mmol H,O m?s™) of the saplings of the treatments T1 to T4
(n=10-12) in June, July, August, and September.

The average seasonal transpiration (E) was significant reduced by 13 and 22% in the
drought-exposed saplings T3 and T4, respectively (Fig. 5.12b). It remained higher in
well-watered saplings (T1) except in September, whereas it was variable in T2 saplings.
However, it was reduced in drought-stressed saplings and the lowest transpiration was
measured in T4 saplings in June, July and August (Fig. 5.12a, b).

3.5

2.5
2
1.5
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O - . . . .
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Fig. 5.12b: Leaf transpiration (E, mmol H,O m?s™) of treatments T1 to T4. Mean value *
standard deviation of June + July + August + September; n=42; for the definition of the
treatments T1 — T4 see Table 5.1.

E (mmolH,0 m?s)
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According to ANOVA, the average seasonal transpiration in well-watered saplings,
infected or non-infected (T1, T2) was not significantly different in JJAS (June + July +
August + September) (Table 5.7; T1xT2). Similarly, transpiration in drought-stressed
saplings, infected or non-infected (T3, T4), was also significantly not different either
(Table 5.7; T3xT4).

There were no significant alterations in stomatal conductance of well-watered saplings,
no matter if they were infected in July or in February. Similarly, stomatal conductance of
drought-stressed saplings was not either affected by the season of infection (Table 5.7;
T2FxT2J, TAFxT4J). Moreover, ANOVA results of T1xT3, T1xT4, T2xT3, T2xT4, and
T1/T2xT3/T4 were significantly different due to drought stress (Table 5.7).

Table 5.7: ANOVA of leaf transpiration (E, mmol H,O m?s™) of saplings of the treatments (T1 to
T4; n=10-12) of June, July, August, and September measurements, both separately and
seasonalized (JJAS = June + July + August + September; n=42), F = February inoculation; J =
July inoculation; n=6); n.s. = not significant, * = 0.05, ** = 0.01, *** = 0.001; for the definition of
the treatments T1 — T4 see Table 5.1.

E TIxT2 | TAXxT3 | TI1xT4 | T2xT3 | T2xT4 | T3xT4 | T1/T2x | T2FxT2J | T4FxT4J
T3/T4
June e e e e e n_s e Ed e e e n.S n.S
July o el el n.s n.s n.s el n.s n.s
Aug L.ISt n_S Fodek E E L3 n_s L x 3 H n_S
September | * e e n.s n.s n.s el n.s n.s
JJAS n.s ll ek n.s wox n.s el n.s n.s
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5.2.4. Mesophyll conductance

An average mesophyll conductance in June was 0.03 and 0.028 mol m?s™ in T1 and
T2, and 0.022 and 0.017 mol m?s™in T3 and T4, respectively. In July, it was 0.029 and
0.032 mol m?st in T1 and T2, and 0.025 and 0.016 mol m?s? in T3 and T4,
respectively. In August, it was 0.037 and 0.036 mol m?s™ in T1 and T2, as well as 0.014
and 0.01 mol m?s™ in T3 and T4, respectively. In September, it was 0.052 and 0.041
mol m?s™?in T1 and T2, as well as 0.023 and 0.019 mol m?s™in T3 and T4, respectively
(Fig. 5.13a).

The mesophyll conductance remained higher in well-watered saplings (T1, T2), in
September it was highest in T1. It was, however, reduced in drought-stressed saplings
and the lowest stomatal conductance was measured in T4 saplings in June, July,
August and September (Fig. 5.13a, b).

0.06
0.05 -
% 0.04 -
w; ——T1
o 0.03 - ;-T2
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£
& 002 - W ——T4
0.01 -
0 T T T 1
June July August September

Fig. 5.13a: Mesophyll conductance (g., mol m?s™) of the saplings of the treatments T1 to T4
(n=10-12) in June, July, August, and September.
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Fig. 5.13b: Mesophyll conductance (g, mol m?s™) of treatments T1 to T4. Mean value +
standard deviation of June + July + August + September; n=42; for the definition of the
treatments T1 — T4 see Table 5.1.

O, (molmZs)

According to ANOVA (Table 5.8), the average mesophyll conductance in well-watered
saplings, infected or non-infected (T1, T2) was not significantly different throughout the
season, except in September (T1xT2). However, mesophyll conductance in drought-
stressed saplings, infected or non-infected (T3, T4), was significantly different

throughout except in September (Table 5.8; T3xT4).

There were no significant alterations in mesophyll conductance of well-watered saplings,
no matter if they were infected in July or in February. Similarly, mesophyll conductance of
drought-stressed saplings was not either affected by the season of infection (Table 5.8;
T2FxT2J, T4FxT4J). Moreover, according to ANOVA results T1xT3, T1xT4, T2xT3,
T2xT4, and T1/T2xT3/T4 were significantly different throughout the season and
collectively (JJAS) as well due to drought stress (Table 5.8).
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Fig. 5.14: Net photosynthesis (Py) vs. mesophyll conductance (g.,); T4 saplings exhibited lowest
photosynthesis associated with the lowest mesophyll conductance (as shown in the circle); for
the definition of the treatments T1 — T4 see Table 5.1.

The pathogen did not affect the mesophyll conductance of the well-watered saplings
from June to August but in September. In the drought-stressed saplings, however, a
significant limitation of mesophyll conductance was noticed in the T4 saplings as
compared to T3 saplings in June, July and August, but not in September. Similarly, the
mesophyll conductance averaged over JJAS (June, July, August, and September)
significantly differed between T3 and T4 (highlighted in Table 5.8). Moreover, a reduced
net photosynthesis was associated with a lowered mesophyll conductance (Fig. 5.14); it
clearly depicts the role of pathogen in the physiology of drought-stressed saplings. It
should be added, that net-photosynthesis and mesophyll conductance were significantly
different between drought-stressed saplings infected and non-infected.
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Table 5.8: ANOVA of mesophyll conductance (g, mol m?s™) of saplings of the treatments (T1 to
T4; n=10-12) of June, July, August, and September measurements, both separately and
seasonalized (JJAS = June + July + August + September; n=42), F = February inoculation; J =
July inoculation; n=6); n.s. = not significant, * = 0.05, ** = 0.01, *** = 0.001; for the definition of
the treatments T1 — T4 see Table 5.1.

Im TIXT2 [ TIXT3 | T1xT4 | T2xT3 | T2xT4 | T3xT4 | T1/T2x | T2FxT2J | T4FxT4J
T3/T4
June n.s Hkk Hekk Hekk Hkk ke dekk n.s ns
JU'y n.s * ek ek de ek ke ek n.s n.s
AUgUSt n.s Tk kK kK Tk *k kK n.s n.s
September e ek Heek Hekk ek ns dekk * n.s
JUAS n.s ek ek ek de ek Fekek ek n.s n.s
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5.3. Biomass

The total biomass (leaves, branches, stems and roots) of drought-stressed saplings was

significantly smaller than of non-stressed ones.

5.3.1. Average dry weight of leaves

The average dry weight of leaves was 0.46 and 0.48 kg in T1 and T2, respectively,
whereas in T3 and T4 it was 0.12 and 0.13 kg, respectively (Fig. 5.15). The average dry
weight of leaves of well-watered and drought-stressed saplings was highly significantly
different, but there was no difference due to the pathogen, neither in well-watered nor in

drought-stressed saplings.
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Fig. 5.15: Average dry weight = standard deviation of leaves of T1 to T4 saplings after harvest
and oven drying (n=3 for T1 and T3; n=6 for T2 and T4); for the definition of the treatments T1 —

T4 see Table 5.1.
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5.3.2. Average dry weight of stems

The average dry weight of stems was not different for T1 and T2, as it was 1.9 kg for
both treatments, whereas in T3 and T4 saplings the average dry weight was only 0.85
and 0.78 kg, respectively (Fig. 5.16). These differences between well-watered and
drought-stressed saplings were highly significant, but there was no difference resulting

from the infection, neither in the well-watered nor in the drought-exposed saplings.

25

2 m Stem
1.5
1
0 .
T1 T2 T3 T4

Fig. 5.16: Average dry weight *+ standard deviation of stems of T1 to T4 saplings after harvest,
and oven drying (n=3 for T1 and T3; n=6 for T2 and T4; for the definition of the treatments T1 —

T4 see Table 5.1.

Average dry weight (Kg)

5.3.3. Average dry weight of branches

The average dry weight of branches was significantly different between well-watered
(T2, T2) and drought-stressed saplings (T3, T4) but not between T1 and T2, as it was
1.4 kg for both treatments; also between T3 and T4 saplings, the difference was

insignificant (0.37 and 0.36 kg, respectively) (Fig. 5.17).
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Fig. 5.17: Average dry weight + standard deviation of branches of T1 to T4 saplings after
harvest, and oven drying (n=3 for T1 and T3; n=6 for T2 and T4; for the definition of the
treatments T1 — T4 see Table 5.1.

5.3.4. Average dry weight of roots

The average dry weight of roots was 1.7 and 1.8 kg in T1 and T2, respectively, whereas
in T3 and T4 it was 0.59 and 0.53 kg, respectively (Fig. 5.18). The difference between
well-watered and drought-stressed saplings was highly significant, but there was no
significant difference resulting from the pathogen infection, neither in well-watered nor in
drought-stressed saplings. However, the average dry weight of roots was slightly

lowered when the saplings grew up under drought stress plus a pathogen infection.
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Fig. 5.18: Average dry weight = standard deviation of roots of T1 to T4 saplings after harvest and
oven drying (n=3 for T1 and T3; n=6 for T2 and T4); for the definition of the treatments T1 — T4
see Table 5.1.

5.3.5. Total biomass dry weight and root-to-shoot ratio

The total biomass dry weight (leaves, branches, stems and roots) of drought-stressed
saplings was significantly reduced by 64% than of non-stressed ones (Fig. 5.19). The
presence of the pathogen did not significantly affect the biomass neither of the well-
watered nor of the drought-stressed saplings. However, the lowest biomass was
recorded for the saplings that were simultaneously stressed by drought and infection. A
shift of the root-to-shoot ratio was not found in any of the treatments. Calculated root-to-

shoot ratio varied from 0.45 to 0.46 for T1 and T2 as well as 0.43 to 0.42 for T3 and T4,

respectively.
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Fig. 5.19: Mean values of total biomass dry weight + standard deviations of leaves, branches,
stems, and roots of T1 to T4 saplings after harvest and oven drying (n=3 for T1 and T3; n=6 for
T2 and T4); for the definition of the treatments T1 — T4 see Table 5.1.

5.4. Host reaction

Trees are able to encapsulate wounded and decayed tissues by specific defence
reactions. This part of the present study was conducted to reveal the impacts of drought
stress on the efficiency of compartmentalization of damage or decay in black locust. For
this purpose, host reactions to non-infected and infected wounds, visible as discoloration
and callus formation both of well-watered and drought-stressed saplings were measured

after harvesting of the stems.

5.4.1. Discoloration

Both non-infected and infected wounds induced dark-brown discolorations in well-
watered and drought-stressed saplings (Figs. 5.23 and 5.24). In general, the
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discoloration was longer in axial direction, ranging from 39 to 75 mm, than in tangential
(12-16 mm) and radial (14-16 mm) direction (Figs. 5.20, 5.21, and 5.22).

5.4.1.1. Discoloration in axial direction

There was no difference in the average extent of axial discoloration in drought-stressed
saplings between infected and non-infected wounds (T4, T4c) no matter if they were
inoculated in July or in February. In well-watered saplings a slight difference was visible

between infected and non-infected wounds (T2, T2c) inoculated in February (Fig. 5.20).

In well-watered saplings, inoculated in July, the total average extent of axial
discoloration (above and below the hole) was 39 and 40 mm, in infected and non-
infected wounds (T2 and T2c), respectively. In drought-stressed saplings, in infected
and non-infected wounds (T4 and T4c), the total average extent of axial discoloration
was 75 and 72 mm, respectively (Fig. 5.20).

In well-watered saplings, inoculated in February, the average extent of axial
discoloration (above and below the hole) was 55 and 45 mm, in infected and non-
infected wounds (T2 and T2c), respectively. In drought-stressed saplings, due to
infected and non-infected wounds (T4 and T4c); the average extent of axial discoloration

was similar to the saplings that were inoculated in July (Fig. 5.20).

The discoloration columns in the well-watered saplings were longer when the infection
occurred in February as compared to July. In drought-stressed saplings the axial
discoloration was distinctly longer, 75 mm, than in the well-watered saplings without any

difference as to the time of wounding (Fig. 5.20).
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Fig. 5.20: Average extent of axial discoloration in saplings inoculated in July 2010 and February
2011. T2 = well-watered with infected wound, T2c = well-watered with non-infected wound, T4 =
drought-stressed with infected wound, T4c = drought-stressed with non-infected wound; error
bars indicate maximum and minimum values around the mean (n=3).

5.4.1.2. Discoloration in radial (inward) direction

All in all, there were no distinct differences in the radial extension of the discoloration
between infected and aseptic wounds both in well-watered and drought-stressed

saplings, no matter if they were inoculated in July or in February (Fig. 5.21).

In well-watered saplings inoculated in July, around infected and non-infected wounds
(T2 and T2c), the average extent of radial discoloration was 15 and 14 mm, respectively.
In drought-stressed saplings, around infected and non-infected wounds (T4 and T4c),
the average extent of radial discoloration was 15 mm for both infected and aseptic
wounds (Fig. 5.21).

In well-watered saplings inoculated in February, the average radial discoloration both in

infected and non-infected wounds (T2 and T2c) was 16.3 mm, whereas in drought-
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stressed saplings the average radial discoloration, both in infected and non-infected
wounds (T4 and T4c), was 15.6 mm (Fig. 5.21).

The average radial discoloration columns were slightly larger in all saplings infected in
February than in July. There was no distinct difference in the average radial
discoloration between infected and aseptic wounds, both in well-watered and drought-

stressed saplings (Fig. 5.21).
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Fig. 5.21: Average extent of radial discoloration in saplings inoculated in July 2010 and February
2011. T2 = well-watered with infected wound, T2c = well-watered with non-infected wound, T4 =
drought-stressed with infected wound, T4c = drought-stressed with non-infected wound; error
bars indicate maximum and minimum values around the mean (n=3).

5.4.1.3. Discoloration in tangential direction

There was no difference in average tangential discoloration between infected and non-
infected wounds, both in well-watered and drought-stressed saplings.

In well-watered saplings inoculated in July, the average tangential discoloration was

13.3 mm for both infected and non-infected wounds (T2, T2c), whereas in drought-
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stressed saplings the average tangential discoloration was 12 mm in infected (T4) and
12.3 mm in non-infected wounds (T4c) (Fig. 5.22).

There was a slight difference in average tangential discoloration between infected and

non-infected wounds both in well-watered and drought-stressed saplings.

In well-watered saplings inoculated in February, the average tangential discoloration
was 15.6 mm in infected (T2) and 15 mm in non-infected wounds (T2c), whereas in
drought-stressed saplings the average tangential discoloration was 14 mm in infected
(T4) and 13 mm in non-infected wounds (T4c) (Fig. 5.22).

The average tangential discoloration columns were slightly wider in all saplings infected
in February as compared to July. There was no distinct difference in the average
tangential discoloration between infected and non-infected wounds both in well-watered

and drought-stressed saplings (Fig. 5.22).
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Fig. 5.22: Average extent of tangential discoloration in saplings inoculated in July 2010 and in
February 2011. T2 = well-watered with infected wound, T2c = well-watered with non-infected
wound, T4 = drought-stressed with infected wound, T4c = drought-stressed with non-infected
wound; error bars indicate maximum and minimum values around the mean (n=3).
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Fig. 5.23: Cross-sections through black locust saplings inoculated in February with Armillaria
mellea; well-watered (a, c), drought-stressed (b, d); ¢ and d under UV light; rz, reaction zone;
sw, sound wood.

5.4.1.4. Discoloration in radial and tangential direction under UV light

There was no distinct difference in radial and tangential discoloration between infected
and non-infected wounds both in well-watered and drought-stressed saplings (Fig. 5.21,
5.22). However, under UV light (Fig. 5.23 a, c¢) a stronger host response in form of a
distinct reaction zone is visible in the well-watered saplings, whereas in drought-
stressed saplings that were infected in February (Fig. 5.23 d) the reaction zone
apparently might not be effective enough to protect the functional sapwood around the
bore holes by means of flavonoids components, scattered outside the reaction zone.
Without an effective barrier, there is a high possibility that the inoculated pathogen could

have breached the defence line.
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Fig. 5.24: Longitudinal section through black locust inoculated with Armillaria mellea: well-
watered (a, c), drought-stressed (b, d); a and b depict the axial extent of discoloration (arrows) in
well-watered and drought-stressed saplings, respectively; ¢ and d are photographed under UV
light indicating a larger axial discoloration and decay in drought-stressed saplings (d, arrows).
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5.5. Callus formation

The callus formed in direct vicinity around the wound was remarkably more intense in
well-watered than in drought-stressed saplings. In well-watered saplings with non-
infected dowels (T2c) and with infected dowels (T2), in the July bore holes, the callus
was 10.3 mm and 9.3 mm thick, respectively. However, in drought-stressed saplings
with non-infected dowels (T4c) and with infected dowels (T4), the callus was only 5.7

and 3.3 mm thick, respectively, in July bore holes (Fig. 5.25).

The callus formation was distinctly less intense in saplings inoculated in February than
in July, both in well-watered and drought-stressed saplings. The callus was 4.7 and 5.3
mm in T2 and T2c, respectively, whereas there was no callus formation at all in T4 but
of 3.3 mm thickness in T4c (Fig. 5.25).

All in all, the callus formation was distinctly more intense when the saplings were
inoculated in July as compared to February (Fig. 5.25), no matter if they were well-

watered or drought-stressed.
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Fig. 5.25: Callus formation in black locust inoculated in July 2010 and February 2011 and
harvested in July 2012. T2 = well-watered with infected wound, T2c = well-watered with non-
infected wound, T4 = drought-stressed with infected wound, T4c = drought-stressed with non-
infected wound; error bars indicate the maximum and minimum values around the mean (n=3).
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The situation in the saplings inoculated in February (T4 and T4c) highlights the
difference between an aseptic wound vs. an infected wound in view of the intensity of
callus formation; directly around the infected wound no callus tissue was built, instead

the callus formation ended further apart from the wound (Fig. 5.26).

Fig. 5.26: Callus formation around a non-infected wound of a drought-stressed sapling (T4c)
(arrow) (a); no callus formation around an infected wound of a drought-stressed sapling (T4)
inoculated in February (b, arrow).
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5.6. Determination of non-structural carbohydrates

The occurrence and distribution of non-structural carbohydrates (glucose, fructose,
sucrose and starch) were studied both in non-infected wounds and in infected wounds in

all saplings of black locust.

The amounts of non-structural carbohydrates were 0-20 nmol/mg in the decay and
reaction zones of non-infected as well as in infected wounds of well-watered saplings
(P7, P10 and P11), inoculated in July. Their amounts were similarly high in bark and
sapwood, except in sapling P11 where the amount of starch was negligible in sapwood
of infected wound. In adjacent bark of non-infected wounds, amount of sucrose varied
from 150 to 204 nmol/mg, and in infected wound, it varied from 142 to 165 nmol/mg.
Similarly, in adjacent bark of non-infected wounds, amount of starch varied from 126 to
231 nmol/mg, and in infected wound, it varied from 169 to 237 nmol/mg. However, in
sapwood, amount of starch varied from 46 to 306 nmol/mg, and 16 to 257 nmol/mg in

non-infected wound and infected wound, respectively (Fig. 5.27).

In well-watered saplings inoculated in February (P4, P5 and P6), the amounts of non-
structural carbohydrates were also lower in decay and reaction zones of non-infected
wounds and in infected wounds, except in sapling P4, where the amount of starch was
slightly higher in decay and reaction zones than in the other saplings. In P4, in decay
and reaction zones of non-infected wound the amount of starch was 61 and 77 nmol/mg;
and of infected wound it was 59 and 91 nmol/mg, respectively. Similarly, their amounts
coincide in adjacent bark and sapwood, both in non-infected wounds and in infected
wounds with minor differences. In all saplings of this treatment, both in adjacent bark of
infected and non-infected wounds, the amount of sucrose varied from 80 to 195
nmol/mg and amount of starch varied from 104 to 269 nmol/mg. Moreover, both in non-
infected and infected wounds, the amount of starch varied from 94 to 377 nmol/mg in
sapwood (Fig. 5.28).
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Fig. 5.27: Non-structural carbohydrates (glucose, fructose,
tissues of well-watered black locust inoculated in July 2010 and harvested in July 2012. B =

bark, D = decay zone, R = reaction zone, S = sapwood.
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Fig. 5.28: Non-structural carbohydrates in well-watered black locust inoculated in February 2011
and harvested in July 2012; for abbreviations, see Fig. 5.27.
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In drought-stressed saplings (P7, P8 and P9) inoculated in July, variable amounts of
non-structural carbohydrates were measured in decay and reaction zones. In P9, the
amount of starch was higher (128 nmol/mg) in the reaction zone of non-infected and 78
nmol/mg in infected wound. In P8 and P9, in adjacent bark of non-infected wound,
amounts of starch varied from 99 to 253 nmol/mg, respectively; while in adjacent bark of
infected wound it ranged from 294 to 328 nmol/mg. Additionally, in these saplings, both
in non-infected and infected wounds, the amount of starch varied from 203 to 300
nmol/mg in sapwood, except in P7, where the lowest amount of non-structural
carbohydrates was noted in adjacent bark, decay zone, reaction zone and sapwood
(Fig. 5.29).

In drought-stressed saplings (P1, P3 and P4) inoculated in February, the trend in the
amounts of non-structural carbohydrates was coinciding in the different zones of non-
infected and infected wounds in almost all saplings. The amounts of sucrose and starch
were not conspicuous in adjacent bark. However, in P4, the amounts of sucrose and
starch were 203 and 88 nmol/mg, respectively. Moreover, the amount of starch was
higher in decay and reaction zones, both in non-infected wounds and in infected
wounds. In decay and reaction zones, it varied from 18 to 63 nmol/mg and 17 to 193
nmol/mg, respectively. In these saplings, in sapwood surrounding non-infected and
infected wounds, amount of starch remained higher; varied from 145 to 393 nmol/mg
(Fig. 5.30).
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Drought-stressed saplings inoculated in July
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Fig. 5.29: Non-structural carbohydrates in drought-stressed

and harvested in July 2012; for abbreviations, see Fig. 5.27.
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Drought-stressed saplings inoculated in February
Sapling Non-infected wound Infected wound
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Fig. 5.30: Non-structural carbohydrates in drought-stressed black locust inoculated in February
2011 and harvested in July 2012; for abbreviations, see Fig. 5.27.
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Overall, the starch and sucrose content in the bark of well-watered saplings was higher
than of drought-stressed saplings, and a large amount of starch was found in sapwood,
both in well-watered and drought-stressed saplings. In contrast, non-structural
carbohydrates in decay and reaction zones of well-watered saplings inoculated in July
were lower compared to drought-stressed saplings (Figs. 5.31). However, in well-
watered saplings inoculated in February, overall a reasonable amount of starch, 48 to 60
nmol/mg can be seen in the reaction zones of non-infected and infected wounds,
respectively (Fig. 5.32). Similarly, in drought-stressed saplings inoculated in July, the
amount of starch in reaction zones ranged from 28 to 47 nmol/mg (Fig. 5.33).
Additionally, in drought-stressed saplings inoculated in February, the amount of starch
was considerably higher; 118 nmol/mg and 62 nmol/mg in non-infected and infected

wounds, respectively (Figs. 5.34).

Well-watered saplings inoculated in July
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Fig. 5.31: Mean values + standard deviation (n=3) of non-structural carbohydrates in well-
watered black locust saplings (P7, P10 and P11) inoculated in July 2010 and harvested in July
2012; for abbreviations, see Fig. 5.27.
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Well-watered saplings inoculated in February
Mean Non-infected wound Infected wound
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Fig. 5.32: Mean values + standard deviation (n=3) of non-structural carbohydrates) in well-
watered black locust saplings (P4, P5 and P6), inoculated in February 2011 and harvested in
July 2012; for abbreviations, see Fig. 5.27.

Drought-stressed saplings inoculated in July
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Fig. 5.33: Mean values + standard deviation (n=3) of non-structural carbohydrates in drought-
stressed black locust saplings (P7, P8 and P9) inoculated in July 2010 and harvested in July
2012: for abbreviations, see Fig. 5.27.
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Drought-stressed saplings inoculated in February
Mean Non-infected wound Infected wound
values
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Fig. 5.34: Mean values + standard deviation (n=3) of non-structural carbohydrates in drought-
stressed black locust saplings (P1, P3 and P4) inoculated in February 2011 and harvested in
July 2012; for abbreviations, see Fig. 5.27.

5.7. Investigating the spread of Armillaria mellea by taxon-specific primer

To study the effectiveness of compartmentalization spread of Armillaria mellea was
studied in inoculated stems by using molecular technique in collaboration with Corinna
Gebarowski during her B.Sc. thesis work. Taxon-specific primers were used to
investigate A. mellea in the callus, sapwood, and decay and reaction zones as well as in

infected dowels.

In the well-watered saplings P10 and P11, inoculated in July (Fig. 5.35a; Table 5.9), the
pathogen was not found in any of the tissues tested. In the well-watered sapling P4,
inoculated in February, the pathogen was found in the infected dowel but also in the
adjacent callus and in the decay zone, however not in sapwood and in the reaction zone
of inoculated tissue (Fig. 5.35b; Table 5.9). In the well-watered sapling P5, inoculated in
February, the pathogen was also confirmed in the callus formed after wounding and

inoculation (Table 5.9). In the drought-stressed saplings P8 and P9, inoculated in July,
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the pathogen was not found in any zones of inoculated and control wounds (Fig. 5.35c;
Table 5.9). In the drought-stressed sapling P3, inoculated in February, the pathogen
was confirmed in decay, reaction and sapwood zones of inoculated tissue. In P4, the
pathogen was confirmed in the infected dowel and in the decay zone. Interestingly, the
viability of the pathogen was identified in the callus of the control tissue in both saplings
P3 and P4 (Fig. 5.35d; Table 5.9).
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Fig. 5.35 a-d: A taxon-specific primer applied to determine the presence or absence of the
pathogen, Armillaria mellea, in various tissues of the differently treated saplings. P: Positive
control, C: Control, In: Inoculated, O: Callus, D: Decay zone, S: Sapwood, Do: Dowel, R:
Reaction zone, and * = 2" elution. a. well-watered sapling P10, inoculated in July, b. well-
watered sapling P4, inoculated in February, c. drought-stressed sapling P8, inoculated in July, d.
drought-stressed sapling P3, inoculated in February; bands around 700bp are visible.
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Table 5.9: Presence or absence of the pathogen, Armillara mellea, in the specifically chosen
zones of the saplings. C: Control, In: Inoculated, O: Callus, O*: Callus (2" elution), D: Decay
zone, D*: Decay zone (2™ elution), S: Sapwood, S*: Sapwood (2™ elution), R: Reaction zone,
R*: Reaction zone (2" elution), Do: Dowel, Do*: Dowel (2" elution). Presence of the pathogen =
+, absence of the pathogen = -, x = samples were not available.

Zones Well-watered Drought-stressed
July February July February
Sapling Sapling Sapling Sapling
number number number number
10 [ 11 4 5 8 9 3 4
CO - - - - - - + +
CcCoO* - - - - - - - -
CD - - - - - - - -
CD* - - - - - - - -
CR - - - - - - - -
CR* - - - - - - - -
CS - - - - - - - -
cs* - - - - - - - -
CDo - - X X - - X X
CDo* - - X X - - X X
InO - - + + - - X X
InO* - - - - - - X X
InD - - - - - - - +
InD* - - + - - _ + +
InR - - - - - - - -
InR* - - - - - - + -
InS - - - - - - + -
InS* - - - - - - + -
InDo X X - X X X X oF
InDo* X X oF X X X X oF
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6. Discussion

Trees are exposed to all kinds of abiotic stressors and biotic aggressors whose intensity
and viability, respectively, is changing on short-term to long-term time scales. In their
endeavors to survive, trees have to cope continuously with their ever changing
environmental growth conditions by various defence strategies of which several have

been experimentally studied in the preceding chapters and discussed in the following.

6.1. Morphological and phenological adaptations

Morphology and phenology of the saplings of black locust were severely affected by
drought, but not by the pathogenic fungus. Drought has been reducing the overall
growth and leaf area of the saplings. However, the saplings stressed by drought and by
a pathogen were found to be drastically more affected, showing the lowest values for
nearly all morphological and phenological variables. For the drought-exposed saplings
(T3), a 48% smaller average diameter was recorded. In the case of the saplings
stressed by both drought and a pathogenic fungus, the diameter growth was even
reduced by 54% (Fig. 5.6). Moreover, drought-stressed saplings were by 30% shorter
than the well-watered ones (Table 5.3, Fig 5.7).

It is a general adaptation strategy of plants to avoid drought by reducing their size and
minimizing drought-induced injuries. Plants respond to water stress by acclimation in
non-severe cases but in severe cases a damage and loss of plant parts can happen
(Chaves et al. 2002). This fits well with a number of studies, as for example by
Meenakshi et al. (2005) who described that drought stress reduced the growth of
Albizzia seedlings by affecting various physiological and biochemical processes. Similar
observations are reported for water-stressed Eucalyptus microtheca (Li et al. 2000),
several Populus species (Yin et al. 2005) and Citrus (Wu et al. 2008). Similarly, diameter
and height of Pinus radiata was also reduced because of drought stress (Nanayakkara
et al. 2013).
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Moreover, the drought-stressed black locust saplings adapted themselves by delaying
leaf initiation, reducing the leaf number, and increasing leaf senescence and abscission
(Figs. 5.1, 5.4, 5.5); this is in line with earlier observations by Boyer (1976). A delay in
leaf initiation, reduction in leaf number, and an increase in leaf senescence (Fernandez-
Conde 1998) as well as a higher number of leaf abscissions (Kozlowski 1976; Grice
1998; Arndt et al. 2001) are adaptation strategies to minimize the transpiration surface

and restricting water loss.

Drought avoidance by drastically reducing the leaf area by more than 50% (Table 5.1) is
consistent with recent findings by Veste and Kriebitzsch (2013). Similarly, the total leaf
area was reduced, when black locust was subjected to a reduced availability of soil
water (Mantovani et al. 2014). Black locust plants subjected to 35% and 70 % availability
of water developed smaller leaves by 60 % and 42 %, respectively compared with the

plants subjected to the 100% availability of water.

Experiments with herbaceous plants and trees have manifested that reducing the leaf
area is a common response to soil-water limitation (Fischer and Turner 1978; Lof and
Welander 2000; Otieno et al. 2005) and thus avoiding a severe decrease in cell-water
potential and turgor pressure (Hinckley et al. 1981; Kozlowski and Pallardy 1997).
Significant differences between two sympatric Populus species were found in the
number of leaves, leaf area and leaf biomass under drought stress (Yin et al. 2005). The
lowest average leaf area in drought-stressed black locust saplings, infected with a
fungus, is noteworthy and indicates a trend of decline under dual stresses. It has also
been reported that drought stress increased the susceptibility of plants for pathogens by
reducing plant growth (Boyer 1995). A significant reduction in the number of leaflets
(Table 5.1, Fig. 5.2) as confirmed for drought-stressed black locust saplings was also
observed for Leucaena (Hegde 1983). Moreover, drought stress resulted in a stunted
growth of inflorescences, morphologically somehow ball-shaped, whereas well-watered
saplings got long and fresh inflorescences (Fig. 5.3). A delayed flowering was described
for container-grown drought-stressed mango trees by Chaikiattiyos et al. (1994).
Moreover, drought stress caused a reduction in the number of seed pods. It is

mentioned in the literature that drought avoidance by reducing the leaf area may also
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reduce the yield (Blum 2005). As similar decrease in the number of pods due to drought
stress was seen with cowpea (Turk et al. 1980; Turk and Hall 1980) and soybean
(Specht et al. 2001).

6.2. Physiological responses

The black locust plants responded to drought stress also by physiological parameters.
Water stress decreased the net photosynthesis (Pn) by decreasing the stomatal
conductance (gs) for CO,. The net photosynthesis (Py) ranged from 7 to 15 umol CO, m’
s in well-watered saplings and from 3 to 7 pmolCO, m?s™ in drought-stressed ones
(Fig. 5.11). This is consistent with findings of another study on black locust by Veste and
Kriebitzsch (2013); who reported that the net photosynthesis (Pn) ranged from 6 to 14
pmol CO, m? s™ in well-watered and from 2 to 10 umol CO, m™ s in drought-stressed
saplings. Similarly, the transpiration (E) varied from 0.62 to 3.39 mmol H,O m™? st in
well-watered saplings and from 0.84 to 2.99 mmol H,O m? s in drought-stressed ones
(Fig. 5.12a). Veste and Kriebitzsch (2013) measured 0.5 to 4.5 mmol H,O m? s™in well-

watered and 0.4 to 0.9 mmol H,O m™ s in drought-stressed black locust trees.

Stomatal closure is one of the crucial events taking place during drought (Chaves et al.
2002). Under moderate water stress, the photosynthetic apparatus is considered to be
very resistant (Chaves et al. 2002, 2009; Warren et al. 2004). However, as water deficit
progresses, like in the drought-stressed black locust saplings, the biochemistry of the
CO;, fixation is affected. Flexas et al. (2004; 2007) reported that drought stress primarily
down-regulates the photosynthesis by increasing the diffusive resistances to CO, entry
into the chloroplasts, and thus causes a lowered mesophyll conductance for CO..
Throughout the experiments, the mesophyll conductance was significantly reduced in
drought-stressed black locust trees, like in many other plant species (Flexas et al. 2002;
Galmés et al. 2007a; Warren et al. 2004). As water deficit progresses, the biochemical

limitations to photosynthesis might have also been involved.
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The presence of a pathogen did not affect the gas exchange of the well-watered
saplings, but of the drought-stressed ones. It might be because of little or no
physiological damage in well-watered saplings infected in July and February, so that
significant alterations were not exhibited in gas exchange parameters. Conversely, the
significant limitation of gas exchange in drought-stressed saplings inoculated with a
pathogen (T4) as compared to the drought-stressed saplings T3 indicated that the
pathogen has affected the respective saplings physiologically (Table 5.8). A reduced net
photosynthesis and a significantly lowered mesophyll conductance for CO; in drought-
stressed saplings inoculated with pathogen (T4; Fig. 5.14) might be due to an increased
susceptibility of drought-stressed saplings to pathogen attack. Boyer (1995) described
that drought stress increased the susceptibility of plants to attacks by pathogens by
reducing the assimilate production or by reducing plant growth. This is also supported by
Popoola and Fox (2003) who showed an increased susceptibility of host plants from
which water had been withheld. Therefore, these results strengthen the hypothesis
presented by Desprez-Loustau et al. (2006) that drought-stressed trees are predisposed
to diseases. Moreover, the physiological resistances of healthy tissues restrict the

development and spread of the pathogen (Thomas 1934).

6.3. Alterations in biomass

Alterations in growth, leaf morphology and physiology resulted in a reduction of the total
biomass of drought-stressed saplings by 64% (Fig. 5.19). This is in line with the findings
of Mantovani et al. (2014); the total above-ground biomass of black locust was reduced
under less availability of soil water. The biomass reached only 46% and 48% of the
black locust saplings with 35% and 70% availability of water, respectively than that of

the biomass yield obtained in 100% availability of water.

This is also consistent with findings for Tribulus terretris, where water stress hindered
dry matter accumulation and decreased the biomass (Yang et al. 2010). A biomass
reduction due to drought is also reported for Jatropha (Niu et al. 2012; Achten et al.

2010). A reduction in total biomass is recently recorded for Pinus radiata due to drought
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stress (Nanayakkara et al. 2013). However, in this study the total biomass was even
more reduced when the black locust saplings were loaded by two stressors, drought and

pathogenic infection.

None of our experimental treatments led to an effect on the root-to-shoot ratio, as
reported for other plant species under drought stress (Jackson et al. 2000). Kozlowski
(1982) recorded a larger reduction of shoot growth compared to root growth under water
shortage for a number of woody species, but the root-to-shoot ratio was not altered in
perennial grasses and Leymus chinensis (Xu and Zhou 2005). Joslin et al. (2000) could
not confirm an increase in the root-to-shoot ratio due to a long-term drought exposure.
Recently, the root-to-shoot ratio was found to be unaffected in drought-stressed Pinus

radiata (Nanayakkara et al. 2013).

6.4. Host reaction in form of discoloration

The longer discoloration in the stems of black locust in axial direction (the amount of
dysfunctional wood) than in tangential and radial direction (Figs. 5.20, 5.21, 5,22) is
similar to a number of previous studies (e.g., Gibbs 1968; Kile and Wade 1974;
Armstrong et al. 1981; Boddy and Rayner 1983; Smith and Shortle 1993; White and Kile
1993; Shortle et al. 1995; Deflorio et al. 2008). The vertical extension of discoloured
wood was equal or longer upward than downward from the bore hole, both around the
control holes and the infected holes (Fig. 5.24). This was also observed earlier by
Mireku and Wilkes (1989). Similarly, the vertical spread of discoloration induced by fall
and spring wounds was longer upward than downward from the injury (Armstrong et al.
1981).

Furthermore, the discoloration columns were slightly larger in all saplings inoculated in
winter than in summer. Several studies supported this finding such as by Leben (1985),
Shain and Miller (1988) and Mireku and Wilkes (1989) who reported that discoloration
around autumn or winter wounds was largest, around summer wounds intermediate,

and around spring wounds minimal. Roots of oak and linden compartmentalized weaker
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when wounded in winter than at the beginning of the growing season (Balder et al.
1995). However, according to Santamour (1985), no difference was observed for sweet

gum and plane trees injured in the dormant and in the growing season.

Distinctly shorter axial discoloration in well-watered as compared to drought-stressed
saplings indicated that drought-stress increased the vulnerability of the saplings for
wound and pathogens. The well-watered saplings have shown a high potential for
developing a strong reaction zone on the basis of a high energy reservoir, and
responded successfully against the fungal attack, proving to be strong
compartmentalizers. The poorer compartmentalization of drought-stressed saplings
might be the result of colonization by the pathogen on one hand and a weak
performance of the host on the other hand. According to the literature, the rate of
pathogenic colonization can be increased by drought stress (Towers and Stambaugh
1968; Lindberg and Johansson 1992). The stimulation or inhibition of fungal decay may
depend on the level of stress as well as on the host and pathogen species (Wahlstrom
and Barklund 1994; Desprez-Loustau et al. 2006). Drought stress enhanced the severity
and progression of the symptoms when Parthenocissus quinquefolia was infected by
Xylella fastidiosa (McElrone et al. 2001). Larch subjected to drought stress appeared to
show an increased susceptibility to infection by the bark beetle Ips cembrae which acts

as a vector for the fungus Ceratocystis laricicola (Redfern et al. 1987).

6.5. Callus formation

The cambium around a wound continues to produce cells more than elsewhere on the
same level of the stem. This new tissue is essential for defence. The wound callus,
produced around the wound expands faster tangentially than radially that allows the
wound to close whereas the tree expands in girth. Due to an effective
compartmentalization, infected and decaying trees can live and contribute to the human

landscape for many years (Lonsdale 2004).
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The larger callus formation in well-watered than in drought-stressed black locust
saplings (see Fig. 5.25) makes it easy to understand vitality of trees. When trees are
growing up without any abiotic stress like drought, the cambium effectively produces

cells around a wound and vice versa.

Less callus formation in trees inoculated in February might be due to weaker
compartmentalization ability in winter when trees are dormant. A similar finding has
been reported for injuries of oak and linden roots in winter as compared to the beginning
of the season (Balder et al. 1995). Callus formation of drought-stressed saplings with
non-infected dowels (T4c), saplings, inoculated in February, is also not similar to
saplings inoculated in July. Thus, a poorer compartmentalization ability of drought-
stressed saplings is obvious even in different seasons. In T4c (inoculated in February),
the significantly more intense callus formation as compared to T4, is interesting to
understand the role of pathogens in drought-stressed saplings. Moreover, the failing of
callus formation in T4, inoculated in February, might be because of a high susceptibility
of drought-stressed saplings to the pathogen, or A. mellea can be considered as
‘cambium killer’. In this situation, chances of a fungus to establish are higher when the
host is already under stress and passing through dormancy. In contrast, saplings
inoculated in July have a chance to seal the wound in the highly active time of the year.
The wound surfaces of drought-stressed saplings (T4c) are admittedly also colonized by
spores from the ambient air, but the infection potential is by many times lower compared

to drought-stressed saplings inoculated with a pathogen (T4).

6.6. Distribution of non-structural carbohydrates

From the biochemical approach in the context of compartmentalization, the sapling-
related results per treatment were highly similar (see Figs. 5.27 to 5.30), that is why they
were averaged to variant-specific mean values (see Figs. 5.31 to 5.34). Only these will

be discussed, unless it is necessary to refer to an outlier value.
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In the well-watered saplings, no matter whether the wounds were kept sterile or were
infected in July, the amounts of non-structural carbohydrates (glucose, fructose, sucrose
and starch) in the decay and reaction zones were between 0 and 20 nmol/mg (Figs.
5.27, 5.31). These results are consistent with findings by Busch H (1999); in black locust
after 360 days of inoculation by a pathogen the amount of non-structural carbohydrates
(glucose, fructose, sucrose and starch) present in decay and reaction zones was also
only 0 to 20 nmol/mg. In contrast, in the bark starch and sucrose and in the sapwood
only starch were found in appreciable amounts. From these observations, it can be
concluded that all three saplings have converted the non-structural carbohydrates in the
decay and reaction zones into phenolic substances for defence activities against the
wounding. In the sapwood and in the bark, however, high amounts of carbohydrates are
present, except in P7 and P11. The starch in the sapwood of P7 and P11 (see Fig. 5.27)
may have been consumed during an untimely sprouting or may have been transformed
into phenolic substances for some defence activity against any other causes. The
appreciable amount of starch in the reaction zone of all three saplings inoculated in
February (Fig. 5.28) indicates that they were unable to convert all reserves available into
defence substances. Presumably, their metabolism was still in winter dormancy and not

yet sufficiently active.

In contrast to the well-watered saplings, the drought-stressed saplings show a less
consistent appearance as to the amount of carbohydrates between individuals and
between the season of inoculation (see Figs. 5.29 and 5.30). First of all, it is striking that
in P7 nearly no carbohydrates were detectable. According to protocol notes, P7 has
been declining before the harvest. The most obvious difference, particularly regarding
the high amount of starch in the reaction zone, exists between drought-stressed
saplings inoculated in February and the saplings of the other three experimental
variants. This observation can be taken as evidence for a weakened potential of the
drought-stressed saplings infected in February to react against wounding. Drought-
stress in combination with wounding in February, that is to say during dormancy, might
be the reason that starch was insufficiently converted into phenolic substances in the

reaction zone especially in sterile wounds compared to infected ones.

118



The interaction between carbohydrates and phenols, including flavonoids, is widely
discussed in the literature. Carbohydrates are not only potential carbon and energy
sources for processes taking place during defence actions but they also affect the
expression and activity of enzymes in the sucrose metabolism and in the phenol
synthesis (Koch et al. 1992, Ehnel3 et al. 1997). In our saplings, from the tissues
selected, the decay and the reaction zone contain only traces of non-structural
carbohydrates. A maximum of non-structural carbohydrates might have been converted
into phenols and flavonoids during the active defence reactions against wounding and
pathogen attacks, as the production of phenolic derivatives is a ubiquitous response of
plants when injured or infected (Vance et al. 1980). According to Klepzig et al. (1996),
substances synthesized as a reaction to wounding neutralize, inhibit or confine the effect

of pathogens.

In this way, discolored wood of well-watered saplings inoculated in July (Fig. 5.27) is
physiologically similar to heartwood, as decay and reaction zones of all three saplings
are almost free of storage material. Both in softwood and hardwood species, the
outermost sapwood contain high amounts of sugars and starch, and starch is consumed
or withdrawn during the sapwood-heartwood transformation process (Datta and Kumar
1987; Magel and HOoll 1993; Magel et al. 1994). Similarly, Magel and HoIll (1993)
described that discolored wood, in the case of Fagus sylvatica, is physiologically not
different from true heartwood. Moreover, the low amount of starch in the bark near
wounds of drought-stressed saplings inoculated in February reveals about shortage of
resources around the wound (fig. 5.30).

6.7. Investigation of Armillaria mellea by molecular technique

In order to follow the spread of Armillaria mellea, its presence or absence within the
different zones of wood was tested by molecular technique. The pathogen was not
confirmed in the control and in the inoculated tissues (decay, sap, reaction zones and

callus) of well-watered and drought-stressed saplings inoculated in July. In these
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saplings, absence of the pathogen in the decay zone of inoculated tissue is reflecting

towards an effective encapsulation of the A. mellea during the active season.

Well-watered saplings, inoculated in February, were also competitive enough to repel
the pathogen. Only in decay zones, in inoculated dowels and in the callus adjacent to
the dowel, the pathogen was confirmed. However, most frequently the pathogen was
present in drought-stressed saplings inoculated in February. These saplings were
unable to close the wounds and stop the growth of the pathogen. According to Shigo
(1986), an incompletely closed wound provides an excellent environment for the growth
and spread of pathogens. A. mellea even occurred in the callus around sterile wounds
30 cm above the inoculum. In addition, the higher amount of starch in the reaction zones
of control saplings compared to infected ones reflects that stored resources might be
consumed by the pathogen. Most frequently, pathogens occurred in inoculated and
surrounding tissue; its spread up to the callus of control wounds and the inability to close
inoculated wounds confirms the high susceptibility of drought-stressed saplings
inoculated in February. In these saplings, the presence of starch and phenols might be
favorable for the fungal growth, as the fungus is able to use oxidized phenols as an
additional carbon source and can grow more vigorously than on glucose alone (Wargo
1980b, 1981a, 1981b). In contrast, drought-stressed saplings inoculated in July showed
active defence, wounds were closed, and the spread of the pathogen restricted.
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7. Conclusions and outlook

The experimental approach of applying two stressors, both separately and in
combination, was interesting as evidences were found to be supporting field
observations. This study suggests that most strikingly water stress is by far the most

severe impairment for young black locust trees.

A long-term drought stress has severely affected growth parameters, leaf traits,
phenology, and gas exchange, yield and biomass of the saplings. A limitation in
stomatal conductance regulated the response of photosynthesis. However, a declining
trend in leaf area, a more pronounced physiological stress and average biomass tended
to show, at least, a weak detrimental effect of the pathogen superimposed in drought-

stressed saplings.

Furthermore, drought-stressed black locust saplings with a reduced metabolic activity,
however, are not efficient enough to properly compartmentalize the wounds or tissues
infected by the pathogen. Similarly, the axial spread of discoloration was small and the
callus formation was almost double in well-watered saplings as compared to drought-
stressed saplings. In contrast, the drought-stressed saplings, inoculated in February,

failed to form a callus around inoculated wounds entirely.

The non-structural carbohydrates very likely have been converted into phenols and
flavonoids during the active defence reactions against wounding and pathogen attack in
well-watered saplings inoculated in July. An obvious amount of starch in the reaction
zones of drought-stressed saplings inoculated in February is due to a low rate of
biochemical conversion. Similarly, the very low amount of starch in bark in the vicinity of
wounds revealed least or no physiological activity to keep the saplings functional. In
addition, the presence of the pathogen in drought-stressed saplings inoculated in
February confirms their susceptibility. Incompletely closed wounds have provided a
suitable environment for the growth and spread of pathogen, as the presence of A.
mellea was also confirmed in the callus of sterile wounds. Therefore, the well-watered

saplings inoculated in July can be taken as strong compartmentalizers whereas the
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drought-stressed saplings, inoculated in February can be taken as poor

compartmentalizers.

These findings give experimental evidence for the hypothesis that trees impacted by
drought are predisposed to biotic diseases because of their weakened defence
potential, presented by Desprez-Loustau et al. (2006), and that drought-stressed trees
are more susceptible to attacks by pathogens (McDowell et al. 2008). Our results also
support Dujesiefken et al. (2005) who mentioned that the efficacy of

compartmentalization depends upon the season of wounding.

As drought conditions are expected to increase with climate change and rising water
shortage in many areas of the world, quantifying the impacts of drought or water stress
on tree species and their interaction with pathogens is of core importance and need to
be elucidated in further experiments, so that the aggressiveness or virulence could be
offset by a concurrent increase in host resistance. Therefore, detailed information about

the tolerance of tree species to environmental stresses is urgently wanted.
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