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Abstract

The motivation for this work is the today’s abstraction gap between the high-level
robot control involved in symbolic planning and the low-level, fine-grained control of
mobile robot motors. To deal with the complex, changeable environments in which
humans live, state-of-the-art robots need to be able to exploit common-sense knowledge
(i.e. physical laws) to calculate velocity, acceleration, friction and so on. Physical
prediction is typically the domain of a physics simulation, such as Gazebo.

The literature contains examples in which symbolic planning and reasoning meth-
ods are extended, such as by adding geometric or temporal extensions or by offline
recording of simulated actions.

The goal of this thesis is to question how a task-planning based robot system can be
improved by prediction derived from physical simulation and to provide some answers.
The goal-directed approach is to integrate a realistic prediction of robot activities so as
to allow these activities to be adapted before execution fails. The hypothesis, therefore,
is that a system that integrates such prediction is more efficient than a comparable
system that does not.

A probabilistic prediction method named “functional imagination” and a system archi-
tecture have been developed. The prediction method was integrated into a blackboard-
based robot control system and a PR2 robot and Gazebo were used for its evaluation.
Experiments verified that simulation is indeed accurate and close to reality. The re-
sults of three experimental scenarios in a restaurant domain supported the hypothesis
that the robustness and efficiency of such a planning and execution-based system are
improved by the addition of physics-based prediction.

The work concludes by summarizing its findings, limitations and possible further re-
search directions and with a future perspective on how parallel and cloud computing
will affect the field of robotics in the context of simulation.






Zusammenfassung

Der Ansatz dieser Arbeit ist motiviert von der , Abstraktionsliicke* zwischen heutiger
symbolischer Aufgabenplanung und Motoransteuerung. Denn gerade heutige Roboter
miissen sich in komplexen und sich dndernden Umgebungen zurechtfinden koénnen.
Damit sie das tun kénnen, muss eine Verarbeitung von physikalischem Allgemein-
wissen moglich sein. Die physikalische Vorhersage von Roboteraktionen ist dabei die
Paradedisziplin von Physiksimulationen, wie Gazebo.

In der fachverwandten Literatur werden bereits symbolische Planung und Schlussfol-
gerung mit geometrischen sowie zeitlichen Komponenten, oder der Aufzeichung von
offline simulierten Aktionen, erweitert.

Das Ziel dieser Arbeit ist die Beantwortung der Frage, wie ein planungs-basiertes
Robotersystem sein Verhalten durch physik-basierte Vorhersage von Roboteraktionen
verbessern kann. Der zielgerichtete Ansatz ist hier die Integration einer physikalisch
realistischen Vorhersage um Ausfithrungsfehler zu verhindern. Erreicht wird das durch
die Anpassung oder Verdnderung des aktuellen Roboterplans und seiner Aktionen. Die
Arbeitshypothese lautet deshalb, dass solch ein integriertes Vorhersagesystem Pléane
effizienter ausfithrt als ein System ohne dieses.

Im Verlauf dieser Arbeit wurden eine probabilistische Vorhersagemethode, “Functio-
nal Imagination”, und eine Systemarchitektur entwickelt. Fiir die praktische Evalua-
tion wurde der PR2 Roboter und Gazebo benutzt. Die Vorhersagemethode wurde in
ein Blackboard-basiertes Roboter-Kontroll-System integriert. Experimente verifizier-
ten die Simulation als genau und sehr nahe an der Realitéit. Die Ergebnisse von drei
experimentellen Szenarien in einer Restaurantdoméne unterstiitzen die Hypothese,
dass die physikalische Vorhersage in Kombination mit Planungs- und Ausfithrungs-
Komponenten einem System ohne diese Vorhersage iiberlegen ist, hinsichtlich Robust-
heit und Effizienz.

Am Ende werden die Ergebnisse, Einschriankungen und mogliche zuktunftige For-
schungsfelder aufgezeigt und ein kurzer Ausblick im Simulationskontext gegeben, wie
verteiltes Rechnen und Cloud-Computing das Forschungsfeld der Robotik in Zukunft
beeinflussen werden.
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Introduction

1.1 Motivation and Goals

From the early days of robotics, a fundamental and interesting question has always
been how robots could adopt human cognitive processes. In this work an approach
is proposed that implements the principle of cognitive imagination, otherwise named
functional imagination [MHNOS]:

We define functional imagination in the context of artificial embodied
agents as the mechanism that allows an agent to simulate its own be-
haviours, predict their sensory-based consequences and extract behavioural
benefit from doing so. By behavioural benefit we mean an increase in re-
ward or utility achieved by using internal simulation.

The approach combines into one hyperreal system the cognitive concept of imagination
with high-level planning and execution. The proposed Hyperreality Imagination-based
Reasoning and Evaluation System (HIRES) does not rely upon traditional spatial
reasoning [RNO7], but instead uses simulation as a tool that enables the testing of robot
execution before actions are actually performed. This naturally saves robot resources
and, when optimized, total execution time, as well as improving system robustness.
The approach is inspired by the concept of imagination [Cas71]. Imagination enables
humans to consult rules or principles but not merely to apply those rules [Loa01].
Instead humans imagine what the consequences might be if the rules are, or are not,
followed [Lod96]. The author notes that humans constantly use imaginative projection
and that imagination is essential for human reasoning. So why should it not also be
used for robot reasoning in a human-robot environment?

According to Loasby [Loa0l], reasoning is expensive in time and energy and should
therefore be used sparingly. The approach of this thesis is to combine the concept of
imagination with the concept of ‘Hyperreality’ [TT01]. The term Hyperreality comes
from earlier work by Baudrillard [Bau94]. It originates in semiotics and postmodern
philosophy and is considered to be the condition in which an agent cannot distinguish
reality from a simulation of reality. Therefore reality and virtual reality can be consid-
ered interchangeable at some point. This blending of virtuality and reality can be seen



1 Introduction

in a broader sense as mixing human and artificial intelligence!. Baudrillard postulates
that with ‘Hyperreality’ there is no longer a difference between real and imaginary -
both exist at the same time. This seamless transition between simulation and reality
is related to the term Mixed Reality (MR) as employed in [RKZ12, CMWO09)).

An exact simulation of a scene can be used in order to execute robot actions (e.g.
picking-up a mug from a counter and placing it in front of a guest) before they are
actually performed. The consequence of simulating the action might be that the
current plan must be adapted in order for the task to succeed (e.g. after the failure of
placing a mug in simulation).

The results from this work support the idea that applying a functional method of
imagination within the context of a hyperreal system improves robot autonomy and
saves resources. Results are described in Chapter 6.

1.2 Motivating Scenarios

To illustrate and evaluate the performance of such a system, a real-world dynamic
environment should be appropriate. Thus the evaluation of this work employs various
scenarios in which a mobile service robot performs tasks in a human environment.
These scenarios demonstrate how well the approach predicts spatial, temporal and
physics-related action results. As these scenarios benchmark the whole system, they
are also a measure of how well the system components are integrated. In the following
paragraphs, some possible situations are described.

The experimental domain is a restaurant-like environment in which the robot carries
out tasks typical for a waiter, such as serving a beverage to a guest or cleaning a
table. Aspects of these tasks require reasoning in order to be performed correctly. For
example, to place a mug on the table near to the guest, the robot must use spatial
reasoning to compute a suitable table-top area in which the mug is to be placed. The
appropriate area might already be occupied by the guest’s belongings, e.g. a mobile
phone or a book, or by normal table decorations such as a vase or salt and pepper
pots. Considering this scene in a restaurant with a spatial reasoning procedure causes
an increase in “reasoning space” as more objects are considered, because computations
have to consider each object in relation to all other objects.

One can imagine a situation in which the robot must place a cup of coffee on a
restaurant table with a guest waiting. Typical constraints on a waiter include placing
the mug in front of the guest, often with the handle directed towards the right hand for
convenience. State-of-the-art mobile robot manipulation capabilities allow the table to
be found. Prior knowledge might allow the robot to query the best place for the mug.

! Baudrillard rejects the reference to his work in the movie trilogy “The Matrix” where Morpheus
refers to world outside the Matrix as the “desert of the real”.
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Nevertheless the table might be occupied by other objects such as plates, cutlery or the
guest’s belongings, such as a mobile phone. Modern reasoning and learning systems
consist not only of knowledge representation systems and planning modules, but also
contain reasoning and planning components. A spatial reasoning unit is concerned
with the spatial relation between objects (on the table) and calculates the best place
to put the mug, whereas a temporal unit tells the robot to deliver the drink while it is
still hot. A hierarchical planning module coordinates robot capabilities at a symbolic
level. Such modular task sharing increases the autonomous robustness of intelligent
mobile systems and represents the state-of-the-art.

One can still imagine a situation in which the robot is serving a drink and the spatial
planner finds that no area of the table is free. This would cause the ‘place’ action in
a planning chain to fail and thus would either cause the whole plan to fail or would
trigger replanning, if possible. Whereas a Hierarchical Task Network (HTN) planner,
or similar, operates at a purely symbolic level, the spatial reasoning module typically
considers the bounding boxes of objects and therefore considers more geometric details.
In this work the spatial reasoner considers the objects on the table represented only
as two dimensional (2D) objects. So what happens when an area of the table is
unoccupied but that area is not reachable by the robot due to kinematic or collision
constraints relating to robot geometry? Or what happens when the spatial reasoning
module finds no free space, e.g. because although there is space available the placement
tolerances are too high? A more sophisticated example can be imagined in which
objects may be stacked but the mug should not be placed on a sloping surface. In
a simulation, these situations can be reconstructed by applying the placing routine
multiple times with different parametrization. This allows the feasibility of such a
parametrized placement to be considered.

In another possible scenario, the robot might fetch an object from a counter and carry
it on its tray. Planning and hybrid reasoning is based on the input and output of a
so-called “carry-object” task. The system can only react to the outcome - either fail
or replan if possible with another object of the same kind. Physical parametrizations,
such as trajectory, velocity and acceleration, are typically the domain of a physics
simulation or a motion controller. Here the carrying of an object can be accurately
simulated in order to predict the toppling of the object on the tray over a range of
robot motion parameter variations.

As described earlier, temporal constraints ensure, for example, that a cup of coffee
is still hot when placed in front of a guest. The basic calculation here is limited
to either hand-coded or learned knowledge about general events for a robot moving
in a restaurant. In a simulation, it is feasible to measure the exact time of a given
trajectory by letting the robot execute it. Accurate timing can then be the basis for
reasoning about which actions the robot should take.

The two motivating examples above need good parameter values in order to succeed.
Finding these values with a physical simulation needs multiple simulation runs, as there
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is usually not just one best parameter (to test). Even though certain parameter values
have a high likelihood of success in simulation, the outcome of the operation might
still be different in reality. Hence this uncertainty has to be dealt with appropriately.

1.3 The Faculty of Imagination

Imagination is based upon images in the human mind that are not perceived through
the ordinary senses. When somebody imagines the color of the sky at sun set, this
might involve 2D pictures. Imagining the rotation of a cube in order to ‘see’ the rear
face might involve three dimensional (3D) images. In principle it should be possible
to create these images in a robot’s ‘mind’.

In this work the term ‘imagination’ is not related to the technical process in psy-
chology of reviving in the mind aspects of objects formerly perceived. This rather
‘reproductive’ process conflicts with the ‘productive’ process of imagination.

As the robot’s ‘mind’ is not technically defined, imagination must be implemented as
a function within a robot control program. More concretely, a 3D physical simulation
can render 2D images with colors and textures in a very detailed manner close to
reality as well as creating 3D motions with physical embodiments. Thus there must
be a deeper reason for the fact that cognitive scientists see a fundamental difference
between imagination and physical (or visual) simulation.

The answer might be found in the work of Ned Block and Philip N. Johnson-Laird.
Block, the author of [Blo81], describes the long-lasting and still current “great debate”
on the nature of mental images: are images pictures in the head or are they like the
symbol structures in computers? In other words, one could ask whether mental images
are the consequence of cognitive processes or the tools of those processes. In another
work the author claims that mental images do indeed exist, both 2D and 3D [Blo83].
Are people rotating mental images at measurable speeds? Imagine an experiment in
which the task is to look at pairs of pictures showing rotated 3D blocks and to decide
from the pictures whether or not the blocks are congruent. The experiment shows that
it is possible to measure the speed at which images are rotated in the human mind.
Further experiments are presented, for example Map Scanning and an explanation of
Mental Image is given.

The author of [JL83] deals with the fundamental question of the nature of mental
models. He argues that humans understand the world by building inner mental replicas
of the relations between objects and events. The mind is therefore a model-building
device that can itself be modeled on a computer. Furthermore this work provides
a guide to the building of such a model. In [JL95], the same author considers the
two main approaches to deductive thinking: formal rule-based inference as a syntactic
process; and mental model theory, which includes the idea that deductive thinking
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is a semantic process. The conclusion is that “Models are the natural way in which
the human mind constructs reality, conceives alternative realities and searches out the
consequences of assumptions.” Models are the medium of thought, proposed [Cra43].
According to Craik,

“thought is a term for the conscious working of a highly complex machine,
built of parts having dimensions where the classical laws of mechanics are
still very nearly true, and having dimensions where space is, to all intents
and purposes, Euclidean. This mechanism has the power to represent,
or parallel, certain phenomena in the external world as a calculating ma-
chine will parallel — and so be able to ‘give an account of’ or ‘predict’
most easily — those phenomena whose mechanism most resembles itself”
(pp. 94-95).

But what 7s a mental model? Craik described the brain’s internal models as follows:

“My hypothesis then is that thought models, or parallels, reality — that its
essential feature is not ‘the mind’, ‘the self’, ‘sense data’, nor propositions
but symbolism, and that this symbolism is largely of the same kind as
that which is familiar to us in mechanical devices which aid thought and
calculation”.

Craik goes further as he considers the use of physical models (for him they can serve
also as symbols), as well as words and numbers for prediction and reasoning. Further-
more he states that a mental model does not have to resemble the object or situation
pictorially “since the physical object is ‘translated’ into a working model which gives
a prediction...”. In contrast to defining mental models, this thesis is about finding

appropriate functional models that are computationally representable.

1.4 Research Question and Contribution

In this work one fundamental question posed is whether and how a physical simulation
can be used as a companion tool for predicting the results of robot actions. Another
question is how this can improve robot competence, both quantitatively and qualita-
tively. Competence here is referred to as adapting behavior in a goal-directed way to
save resources and succeed with the task at hand.

In order to verify that simulation is an appropriate tool for prediction, it has to
be evaluated with respect to its quantitative similarity with the real world. This is
discussed in Chapter 6. Therefore reasonable metrics have to be proposed, applied and
evaluated. Based on the assumption that the simulation in use has a sufficient degree
of realism, a prototype system able to exploit simulation as a companion tool must
be integrated. The evaluation is based on the scenarios and software developed in the
Robustness by Autonomous Competence Enhancement (RACE) project in the context
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of the European Union (EU) Framework Programme for Research and Technological
Development (FP7). The RACE project is described in Chapter 4 and the scenarios are
described in Chapter 6. In order to support the hypothesis posed below, an evaluation
metric benchmarking the robot’s competence has to be defined. This is done for each
scenario and is described with the related experiments in Chapter 6.

The research question, approach and hypothesis of this thesis can be refined as:

Research question: How can a task planning based robot system be improved by
prediction derived from physical simulation?

Approach: Integrate a realistic prediction of robot activities to allow these activities
to be adapted (by a plan change or by replanning) before a sub-optimal (failing) activity
s executed.

Hypothesis: A system integrating such prediction is more efficient (such as requiring
less time, plan steps) than a comparable system without.

Answering the research question and verifying the stated hypothesis in this dissertation
spans multiple topics:

e Design & Integration: How to integrate the cognitive science principle of ‘imag-
ination’ into a mobile service robot.

o Physics & Robot Motor Control: Is an off-the-shelf physical simulation accurate
enough to predict robot action results?

o Task planning & Execution: Does an integrated imagination approach improve
plan-based execution?

o Algorithms & Data structures: Which algorithms and representations have to
be implemented to handle and reason about simulated robot action results?

o Motion Control and Navigation: How can robot motion control and navigation
be reasonably parametrized?

1.5 Structure of the Thesis and Related Publications

This thesis is organized as follows:

« Chapter 2 gives an overview of related literature in relevant fields.
o Chapter 3 describes in detail the hardware platform, sensors and actuators used.

o Chapter 4 gives an overview of the software tools and frameworks used for this
work and discusses the decisions that led to the approach taken in this work.
Contributing publications were [HZZ 14, RNZ"13].



1.5 Structure of the Thesis and Related Publications

o Chapter 5 contains the main contributions of the work. After stating the ob-
jectives, a methodology and system architecture that integrate functional imag-
ination are developed. The proposed system and its use cases are described.
Publications that contributed to the chapter were [RKZZ14, CNSV14, KRZ13,
ZRZ7Z13, EKRZ13, KRZ12, RKZ12].

o Chapter 6 describes the experiments conducted and the way in which results were
collected. Tt also evaluates the results. [ZRPT13] contributed to this chapter.

o Chapter 7 concludes this thesis and gives an outlook of future research.

Work during the years leading up to this thesis has resulted in several publications that
were accepted at conferences, workshops and seminars, including: contributions relat-
ing primarily to plan-based, reasoning-and-learning mobile service robotic systems and
their software architecture; simulation-based reasoning in mixed-reality environments;
co-operative multi-robot systems; robot action prediction and system evaluation. Ap-
pendix A.9 gives a comprehensive list of all publications resulting from this work.






Related Work

This chapter presents a summary of related work, starting by describing current ap-
proaches to symbolic planning and recent extensions, such as geometric, spatial and
temporal planning. The chapter also introduces the main topic of this work - the com-
bination of simulation with planning and execution - and describes how this approach
goes beyond related work. It also discusses some approaches to the evaluation of in-
telligent robotic systems and introduces several software frameworks used partially in
this work. Various technical terms will also be introduced.

2.1 Symbolic and Geometric Task Planning

State-of-the-art reasoning and planning is based on symbolic, hybrid (spatial, tempo-
ral, causal), kinematic and collision information, as well as on parameters obtained
through theoretical deduction or simulation. A classical approach to task planning is
the STanford Research Institute Problem Solver (STRIPS) method [FN71]. STRIPS-
based planners focus on achieving a specified goal state, whereas HTN planners focus
on solving abstract tasks. The latter is generally more efficient than classical planning
because the search is limited to a given library of recipes. In this work a popular
HTN planning method called “totally-ordered” HTN planning with partially ordered
sub tasks (henceforth simply called HTN planning [NMAC*01]) is used. In this hi-
erarchical approach, methods and operators are modelled along with their pre- and
post-conditions (effects). Decomposition of the problem definition creates a hierarchy
of methods and operators to solve the task at hand, as shown in Fig. 2.1. As an
optimization, in this work the resulting plan is scheduled for parallel execution if the
robot has the necessary resources. This is described in [EKRZ13].

Extensions to traditional symbolic planning techniques incorporate additional con-
straint processing techniques. They are based on a temporal knowledge representa-
tion (KR), such as Allen’s Interval Algebra [All84]. The Meta-Constraint Satisfaction
Problems (Meta-CSP) framework! [MPO6] enriches these representations with metric
constraints [vB90], see also Fig. 2.2. This method searches in a tree-like structure for

Lhttp://metacsp.org (March 16, 2015)
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Fig. 2.1: Hierarchy of HTN methods: grasp a mug with the right arm. Primitive operators
are in grey boxes and arrows indicate method decomposition (from left to right). [Courtesy
of Sebastian Stock, University of Osnabriick]

a solution to the problem at hand and back-tracks if needed. This hybrid reasoning
and planning method combines spatial, resource, action and ontological models on
symbolic and geometric levels.

[dSPA13] combines a geometric task planner (GTP) with a symbolic HTN planner
employing backtracking (Fig. 2.3). Certain actions and operators are of a geometric
nature and so are checked by the geometric planner (“lazy checking”). Checking hap-
pens during planning, before the creation and execution of the final plan. Predicates
like isReachable(Object,Human) are checked and are preconditions for HTN plan-
ning methods. Evaluation focuses on the system execution time and especially the
run-time overhead of the GTP. Recent work [dSGPA14] uses interleaved backtracking
to (try to) close the gap between symbolic and geometric planning.

[LB13] proposes a hybrid reasoning approach to autonomous mobile manipulation
systems. Symbolic planning is integrated with geometric reasoning to fulfill a mobile
pick-and-place task. Actions are simulated step-wise until the goal state is reached or
otherwise they are back-tracked. Evaluation uses the proposed system for reachability
analysis while taking two mugs from a table to a shelf.

[DHN13] presents an integrated task and motion planning system (evaluated on the
Personal Robot 2 (PR2)). It combines symbolic and geometric reasoning. The authors
apply a continual planning system in which replanning is automatically triggered dur-
ing run-time. Geometric reasoning is implemented as an external function call built
into the precondition of the (planner) task as a “semantic attachment” delivering ge-
ometric facts. An additional condition checker module determines the truth values of

10



2.1 Symbolic and Geometric Task Planning

Fig. 2.2: Planning with temporal and spatial constraints [Courtesy of Iran Mansouri, Orebro
University]
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Fig. 2.3: Planning with geometric constraints. A symbolic planner is combined with a
geometric planner enabling projection and backtracking. [dSGPA14]
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Fig. 2.4: Temporal projection using simulation. [MB09]

logical variables by an external function call, e.g. canPutdown (while placing an ob-
ject). A cost module computes operator costs using an external function. The authors
observed an increase in planning and execution time as more objects were present. An-
other target of the paper was to test the impact of lazy evaluation and cached searches
on overall performance. Evaluation focuses on measuring the relative planning times
of ‘lazy’ vs. ‘eager’ approaches. Further evaluation aspects involve execution times
and (table) actions, cache misses and subsumption.

[MBO09] investigates how a database of projected robot behavior in household tasks
can help a planning system prevent costly misbehavior. Information is logged and
translated into first-order representations of robot plans. This allows the planner to
infer world states at (sampled) projected times and thus to recognize various plan
failures in manipulation tasks. The work concludes that many robot-behavior failure
conditions that are difficult to represent in symbolic transition modes can be recog-
nized at very low cost in physics-based and sensor-based simulations. Nevertheless,
according to the authors, “[...] simulators, do very little abstraction, time has a high
resolution, [...| However, the realism and accuracy comes at a price. Simulations can
only sample possible episodes but not quantify over all possible ones.” The essence of
the work seems to be to build a repertoire of projected robot actions from which the
planner can choose. It does not try to build a system to project behavior on-the-fly
based on current world state, i.e. the state perceived by the real robot sensors. Fig. 2.4
shows the connection between simulation and interpretation in the authors’ approach.

In contrast to a general action approach, the authors of [ZV10] developed Variable
Level-Of-Detail (VLOD) motion planning, employing a simulated physics-engine, the
NVIDIA PhysX. This is based on Rapidly-exploring Random Trees (RRT). The goal
was to enable efficient replanning in changing environments with the help of a physical
simulation.

[DHCS12] presents a planning method for operating in cluttered environments. The
author’s method is a physics-based object-centric approach with a clutter-centric per-
spective. To predict the outcome of an intended grasp, the authors use a physics-based
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simulation method that computes the reaction of objects in the scene to a set of pos-
sible robot movements. It considers simultaneous object interactions that can be
pre-computed and cached. The authors state that object-object interaction would re-
quire run-time capability, which is left out. The approach allows more possible grasps
to be found for a given scene and it succeeds in more scenes. Validation uses a PR2
showing that the predicted outcomes match real-life results. It is a partially online
approach that also explores sampling as the method of choice when handling uncertain
parameters. A current limitation is that it considers only 2D collisions, i.e. no toppling
or stacking of objects.

[BHKLP12, BKLP13] defines the diverse action manipulation (DAMA) problem con-
cerning a robot, a set of movable objects and a set of diverse manipulation actions. The
aim is to find a sequence of actions that moves each of the objects to a goal configura-
tion. The problem is addressed as a multi-modal planning problem and a hierarchical
algorithm is proposed to deal with it. Although the work addresses robot manipula-
tion problems that are similar to those addressed by this thesis, the authors do not
use physics planning or simulation to improve the robot’s autonomy or robustness.

[KLP12] presents geometric and symbolic representations in a hierarchical planning
architecture called Hierarchical Planning in the Now (HPN). A system is integrated
to generate behavior in a real robot that robustly achieves tasks in uncertain domains.
Simulation is used to demonstrate the system but physics capabilities are not exploited
for reasoning.

[LDS*14] combines symbolic and geometric reasoning. The authors use the Planning
Domain Definition Language (PDDL) and compute geometric alternatives for whole-
body control with null space projections.

[KLP*14] uses an online Google text corpus to extract commonsense rules for use in
robot planning.

HTN planning is currently one of the most popular high-level planning strategies
for mobile robotics. In this work the Simple Hierarchical Ordered Planner 2 (SHOP2)
[INMACT01] is used. A huge advantage of SHOP2 over other HTN planners is its ability
to generate partial-order plans. Unfortunately, HTN planners provide no facilities for
parallelization or replanning. To compensate, in this work the planner is extended
with a parallelization layer realized with State MACHine (SMACH) [BRGJ*11]. This
allows the use of containers to assign different tasks to each state and thereby enables
any type of parallelized plan to be executed. This early work is described in [EKRZ13].

[KLP12] combines geometric and symbolic representations into a hierarchical planning
architecture, referred to as HPN. A system is integrated to generate behavior in a
real robot that robustly achieves tasks in uncertain domains. Simulation is used to
demonstrate the system but not to exploit physical reasoning capabilities. [BHKLP12,
BKLP13] define the DAMA problem concerning a robot, a set of movable objects and
a diverse set of manipulation actions. The objective is to find a sequence of actions
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that moves each of the objects to a goal configuration. The manipulation problem is
addressed as a multi-modal planning problem and a hierarchical algorithm is proposed
to deal with it. Although the work addresses robot manipulation activities similar to
those in this thesis, the authors do not use physical planning or simulation to improve
robot autonomy or robustness.

Most state-of-the-art planning approaches are based on symbolic information (i.e.
abstract information) and lack commonsense reasoning. Although current methods
are promising in combining high-level and low-level knowledge representation with
reasoning and planning, there is still a gap. This is especially true when working in
changing and partially unknown environments where object information such as size,
weight, and inertia are not even modelled.

2.2 Projection, Simulation, Imagination and Prediction

In [KDBL11] a system projecting robot action results in everyday object manipulation
tasks (making a pancake in this case) is proposed in order to gain appropriate action
parametrizations for successful execution. This complicated task (for a robot) is broken
down into simpler actions, such as breaking an egg, pouring the pancake mix (Fig. 2.5),
etc. A model integrated with PROLOG allows chronological backtracking of actions
and triggers physical simulations, monitoring and logging. It translates the logged data
into first-order time-interval-based representations, called timelines. Naive physics and
commonsense reasoning are used to improve the robot’s manipulation capabilities. The
framework includes the Gazebo simulator, the PROLOG logic programming language
and a parametrizable robot control program. Evaluation focuses on qualitative results
(e.g. a broken egg) related to specific parameters. The authors state that today’s
methods of symbolic reasoning that infer the behaviour of simple physical problems
are of limited use because the necessary detailed physical properties are abstracted
away. The system presented uses a high-fidelity physics model that lacks real-time
performance and must therefore be applied offline (a-priori). Predictions cannot be
made quickly enough to be useful for planning during execution. The work does
not use higher level symbolic planning (e.g. HTN planners) or state machines (e.g.
SMACH). [KDGB11] focuses on the combination of first-order symbolic representation
with physics-based simulation as an inference mechanism for predicting the effects
of actions. This allows for probabilistic predictions. [KHB12] uses a data glove to
interact virtually and to demonstrate activities, such as pouring a pancake mix, and
translates the logged data structures into first-order representations (timelines). This
is planned for use with a robot performing similar tasks. Parametrization takes place
by iteratively simulating changing robot action parameters and evaluating the results.
Once again, simulation is used offline.
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Fig. 2.5: Different actions in a pancake making scenario: typical action, such as flipping
the pancake, are tested in simulation in order to find good action parameters, e.g. the angle
by which the wrist must turn. [KDB11]

[BB07] presents a qualitative evaluation of a number of free, publicly available, physics
engines for simulation systems and game development. Simulation can be described
as solving the forward dynamics problem: given the forces acting on a system, how
does the system move as a result? The authors present six major metrics of simulation
performance: the simulator paradigm, the integrator, object representation, collision
detection, material properties and constraint implementation. Of the ten physics en-
gines evaluated by [BBO7], this work mainly uses the Open Dynamics Engine (ODE)?,
version 1.0 of which is used in the Gazebo simulator. Bullet?® is compared as an engine
supported by recent versions of Gazebo.

In [BHHO4] a mobile robot control architecture is introduced for projection-based
planning, execution and learning. It supports the projection of navigation plans based
on learned models of such actions. This information is used to improve the robot’s
navigation plan. The results show that navigational models learned in simulation can
improve physical robot performance.

In [AKPL13|, the authors show how to use simulation to detect faults caused by the
environment when releasing an object. The results are used to modify actions in
order to avoid such faults. The theory of these so-called external faults is investigated
frequently. Such faults are sometimes also called interaction faults or unfavorable

2 http://www.ode.org (March 16, 2015)
3 http://bulletphysics.org/wordpress (March 16, 2015)
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environment conditions and are also labeled as unforeseen events, exogenous events
and errors. The authors use the ODE physics engine to predict robot action results.
They evaluate their approach by comparing their N-Bins algorithm to popular machine
learning (ML) algorithms, such as decision trees and k-nearest neighbors. Results are
judged by comparing the model properties (such as object kinematics and dynamics)
of the initial and final states. The approach is evaluated on a ‘release’ action of a
robot manipulating an object. Simulation was used to estimate a good release state
for the manipulator in order to prevent external faults. Although this approach limits
the simulation use-case to one action, it applies a similar paradigm to the prediction
of robot action results: simulation, evaluation and action modification.

In [JLS12] the authors allow a robot to arrange the human environment by letting
the robot anticipate and imagine human positions and then figuring out what those
virtual humans are likely to do. This approach relies on learning how objects relate
to human poses based on their affordances?*, ease of use and reach-ability.

[MKNHO8| defines the term functional imagination as the purposeful manipulation
of information that is not directly available to the senses. It states that imagination
always points to something that in reality is not there and that in order to be useful,
imagination also needs to provide information about the likely consequences of actions.
This is then to be used by a mechanism for translating imagined motor actions into
sensory-based representations of their consequences. In [MHNOS8] the authors propose
a framework for modelling functional imagination: an embodied agent that simulates
its own behaviors, predicts their sensory-based consequences and extracts behavioral
benefit from doing so. The system is based on a physics-based humanoid simulator -
SIMNOS [GNHKO06].

In [KS13] the authors developed a system that anticipates what a human will do next
with the aim of allowing an assistive robot to plan ahead in response. A temporal,
conditional, random field represents each possible future.

The term robot imagination was used in [VMJB13] for a system that generates models
of objects prior to their perception. Robot imagination is defined here as the robot’s
capability to generate feature parameter values of unknown objects by generalizing
characteristics from previously presented objects.

Simulation has become an essential tool in the development of complex mobile robotic
systems. The availability of physical robots is limited and researchers often work
in separate physical locations on different system parts. Consequently whole-system
evaluation and testing is often not possible. In such cases a realistic simulation is
indispensable. Simulation as a verification and testing tool is widely adopted during

4 The term ‘affordance’ was coined by psychologist J.J. Gibbson (1904-79). In Gibson’s formulation,
affordances are properties of the environment, independent of the perceiver. Later, Don Normen,
a student of Gibbson, replaced the term with the notion of the actual and fundamental properties
of the thing, such as how it can be used [Nor02].
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system development. Recent research into autonomous robot control extends the use
of simulation for reasoning.

Harris et-al. [HC11] give a good outline of the available simulators, frameworks and
tool-kits. The authors suggest that most simulators are not well documented (for
anything but Windows environments), have no sensors or offer no possibilities for the
integration of new robots and sensors. Many tools are insufficiently precise, do not
include physics engines or are no longer under active development. However, according
to the authors, Robot Operating System (ROS) has been proven to be very suitable.
The Gazebo-based simulator provided by ROS integrates many robots and sensors as
well as many libraries and tools. It also provides a physics engine and delivers accurate
results. Furthermore ROS is designed to be a partially real-time system according to
Harris. This, in addition to very good PR2 integration, explains why ROS is currently
one of the most popular robotics frameworks.

[KyHRO03] developed a robotic system that incorporates a coupling between simulation
and perception that keeps an internal world model of the robot’s environment up-to-
date. This so called “object permanence” is used for conversational robots that can
ground the semantics of spoken language with sensorimotor representations. The
motivation for the work comes from the extensive use of visualization and imagination
in human cognition.

[LCO1] discusses how a robot agent appears to be controlled by a human and also
discusses artificial intelligence in a broader sense. It defines requirements orthogonal
to traditional artificial intelligence (AI) topics (such as planning, vision and learning)
- namely being animate, adaptable and accessible. Such a robotic system is called a
semi-sentient robot.

[KGTO01] is a philosophical and psychological view of mental imagery. It discusses
mental imagery as a basic process of cognitive functions, tackling interesting questions
about the mechanisms used in other activities, such as perception and motor control.
The work concludes that imagination affects the body, much as actual perceptual
experience can.

[Thol4] discusses Mental Imagery historically. According to the authors it is referred
to as ‘visualizing’, “seeing in the mind’s eye”, “hearing in the head”, “imagining the feel
of,” etc. It is a quasi-perceptual experience that occurs in the absence of appropriate
external stimuli. Is it a mental representation or an experience? Despite this long-
lasting discussion, it is believed to play a large role in both memory and motivation,
in visuo-spatial reasoning and in inventive or creative thought. The work states that
imagery is “a dynamic process more like active perception than a passive recorder of
experience”. Technically it mentions a development towards modeling mental images
as digitized pictures generated within a computer simulation. It has also influenced

cognitive science.
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As already mentioned in Chapter 1, handling uncertainty is essential when working
with prediction models in the real world. Models are used to represent the probability
that a certain robot action succeeds. In addition they can determine suitable robot
action parametrization.

Beetz’ work [MB09, KDB11, KDGB11] with Bayesian networks seems suited to the
calculation and representation of the probabilities of action results. Combining the
probabilities, here called ‘nodes’; gives the success probability of a whole robot plan.
The author considers nodes to be independent. Furthermore the latter approach han-
dles uncertainties (caused by sensor noise) during simulated execution by projecting
the same plans multiple times. As projection takes place offline the approach devel-
oped handles uncertainty by sampling single simulations per parametrization online.

In order to represent parameter sets, e.g. for motion parameters, a defined or learned
fuzzy set could be appropriate. Furthermore to learn from and reason about the
relations between motion parameters and toppling events, a representation for speed
parameters might have to be defined, e.g. a unifying vector for angular and linear sets.

Current HTN planners take only success and failure into account, not the probabilities
of action results. A method of representing and handling probabilities has to be
defined.

In [Bee00] the author uses a weaker form of imagination integrated into (re-) planning
and execution monitoring employing a dedicated planning language. However plan
generation does not scale well due to the complexity of the problem.

Predicting the results of robot actions is an interesting field of research. Two ap-
proaches for arm motion and motion parameter prediction for a mobile base are briefly
discussed below. These methods do not, however, use simulation to derive prediction.

[BBF14] deals with “Learning Predictive Models of a Depth Camera and Manipulator
from Raw Execution Traces”. The requirement of this approach is to show that a
Hilbert Space Embeddings variant of a Predictive State Representation (PSR) can
learn a model of a Color and Depth (RGB-D) camera and robotic arm directly from
uninterpreted actions and observations. The overall goal is to predict future actions.
The approach represents an arm state as a set of conditional distributions of future
observations given future and historic actions. The results show that it is possible to
predict the movements of a 7-degree-of-freedom (DOF) arm after training.

[OSB14] developed a learning-based nonlinear model for predictive control to improve
vision-based mobile robot path-tracking in challenging outdoor environments. The
system is able to predict the right motion parameters depending on the surface (rec-
ognized visually).

On the basis of an accurate and recent simulation, the border between simulation
(or virtual reality) and reality fades away. In philosophy and sociology the term
Hyperreality has been established to describe exactly this condition [Bau94].
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Lodato [Lod96] describes imagination as being central to human reasoning in that it
allows us to organize and describe our experiences. And Loasby states that the creation
of new patterns rests on imagination, not logic. In this work, robot imagination enables
reasoning about possible robot actions by inferring from simulation.

2.3 State-of-the-art Robot Operating Systems

A Multi-Robot System (MRS) allows multiple robots to operate in parallel. More im-
portantly, it supports the running of encapsulated system components in a distributed
manner. In the following section the two main open source multi robot systems are
briefly introduced.

The Player Project, described in [GVHO3], was previously used widely. It is a software
MRS providing tools that simplify controller development, particularly for multiple-
robot, distributed-robot and sensor network systems. Typically various heterogeneous
mobile robots are controlled by a dedicated MRS.

An MRS provides hardware abstraction and driver encapsulation, where a driver is a
control algorithm that supports the underlying hardware. For example, a driver might
control differential drives, ranging sensors or localization. Furthermore an MRS typi-
cally provides tools, drivers and software frameworks for accessing a range of different
robots. Generally, concurrent robot activity and inter-robot communication are sup-
ported. Nevertheless there is currently no framework for intelligent, networked device
behavior.

The Player Project offers a basic set of functionality for every robot: perception,
manipulation and representation of the environment in the form of a map. In particu-
lar, any client based on this MRS can rely upon motion control, object manipulation
(such as controlling a robot arm), perception of the environment via sensors and mo-
tion planning towards a specified target. Motion planning includes the mapping of
sensory data to map coordinates (localization) and navigation.

A successor to the Player Project is ROS, which was based on central Player compo-
nents, such as the navigation implementation. It adds state-of-the-art functionality,
such as a publish-subscriber mechanism, to nodes.

ROS® provides features similar to those of the Player /Stage project and uses algorithms
from that project and others [QCGT09]. Its focus is more on dynamic, peer-to-peer
communication between robot devices and on modular design. ROS supports client

® http:/ /www.ros.org (March 16, 2015)
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code in C++, Python, Octave and LISP. Other language support, such as a Java-
Application Programming Interface (API) via Java Native Interface (JNI)S, is either
planned or currently in an early phase of support’.

ROS is an open source project consisting of many software modules that support a
variety of users and developers.

In this thesis, ROS is used as a low-level framework and its integrated simulator proves
to be suitable for research, testing and evaluation.

2.4 Benchmarking and Evaluation of Intelligent Robots

The evaluation of intelligent autonomous systems has been explored widely in the
literature, although ‘intelligent” has no clear definition. Very little work has concen-
trated on improving robot competence by learning from mistakes. One example of
such work is a system developed as part of an EU project that targets learning from
experience, described in [RNZ*13]. Some approaches for evaluating intelligent systems
are presented below.

The RoboCup@Home league® intends to develop service and assistive robot technology
for domestic applications. The main topics concerned are human-robot interaction and
cooperation, navigation and mapping in dynamic environments, computer vision and
object recognition in natural light conditions, object manipulation, adaptive behaviors,
behavior integration, ambient intelligence, standardization and system integration.
The only requirement for participation is the provision of an autonomous robot that
can take part in at least one real-world scenario. At the time of writing, the test
criteria include that the project should:

e include a human-machine interaction,

e be socially relevant,

 be application directed/oriented,

« be scientifically challenging,

e be easy to set up and low cost,

e be simple and have self-explanatory rules,
e be interesting to watch,

o take a small amount of time.

6 http://en.wikipedia.org/wiki/Java_ Native_Interface (July 26, 2011)
"http://www.ros.org/wiki/rosjava (July 26, 2011)
8 http://www.robocupathome.org (March 16, 2015)
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A basic home environment, supplied as a general scenario, provides at least a living
room and a kitchen.

The European Robotics Research Network (EURON) Benchmarking Initiative® states
that defining a benchmark is difficult and proposes that success should be related to
quality, i.e. the robot really must serve its purpose and “benchmarks should focus on
particular sub-domains, such as visual servoing, grasping, motion, planning etc.”

Defining benchmarks in industry environments seems to work differently, since many
resources for benchmark development can be provided. Furthermore this initiative
gives an overview of current efforts in comparative robotics research and provides
some initial results!?. A classification of benchmarks as either analytic or functional is
proposed. In both categories a benchmark can have either component or system level
focus. [Bal00] gives an introduction to the benchmarking of mobile robots with respect
to robot capability-specific tasks. [ILSKa05] focuses on reproducible test specifications
and evaluation criteria and also on benchmarking. It formalizes tests and presents
them using domestic grasping and placement tasks.

In [vdZI11], a benchmarking approach in the context of RoboCup@Home provides a
cognitive benchmark for mobile robots where the order of task execution is left open
in order to allow the robot flexibility when addressing new situations. In addition to
cognition, it also provides benchmarks for robot capabilities, e.g. person recognition,
object recognition, object manipulation, speech recognition etc. Due to yearly par-
ticipation of robotics groups in this event, results are already available for more than
seven years beginning in 2008.

[HIvdZ13] discusses the requirements for the redefinition of benchmarking principles
for the testing of domestic service robots, specifically when it comes to dynamic and
uncertain environments that include humans. The work also explains the evolution of
the RoboCup@Home statistical procedure to track and steer progress since 2006. An
important recent milestone is, according to the authors, the benchmarking of robot
cognition, i.e. the ability to understand and reason about the world. These tests in-
volve for example an undefined order of deliberative actions and complex requirements
for speech recognition. The work concludes that beside essential capabilities (naviga-
tion, perception), there has been significant progress in all fields in recent years. Older
reports of this contest, such as [WvdZIS09, WvdZIS10], focused strictly on robot capa-
bilities, such as person or object recognition, manipulation or mapping. [BGMH12]
presents Johnny, an autonomous mobile service robot with an ontology and plan-based
control architecture. It has successfully taken part in the RoboCup@Home challenge.
Individual robot capabilities are nevertheless evaluated.

The book [RM09] on performance evaluation and benchmarking of intelligent systems
tries to present a comprehensive overview as the first book of its kind on the topic.

9 http://www.euron.org/activities/benchmarks/index (March 16, 2015)
10 http:/ /www.cas.kth.se/euron/euron-deliverables/kal-10-benchmarking.pdf (March 16, 2015)
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Chapter three focuses on assistive robots in the medical care area, specifically on end-
user evaluations and on performance measures using a Fitness to Ideal Model (FIM)
approach. It concludes that performance measures should be dedicated to the relevant
domain and task at hand. Chapter six draws the connection between simulation
and real robots. According to the authors, simulation does indeed accelerate robot
development but simulation is also “doomed to succeed” as most simulation fails to
simulate the unexpected. The authors present a methodology and techniques for
simulation development with one of today’s leading simulation engines.

[Wis09] is related to RoboCup@Home and concentrates on benchmarking in scientific
competitions for service robotics. It addresses the problem of defining standard bench-
marks for quantitative performance evaluation of mobile service robots. It is intended
for non-standardized environments in the real world (including human-robot interac-
tion). It features co-evolutionary development processes between test procedures and
robot capabilities and evaluates robot capability (sub-) levels to create a final score.

The Defense Advanced Research Projects Agency (DARPA) Grand Challenge has high
public and media recognition and is very application-oriented.

Several interesting evaluation approaches for intelligent systems exist. However they
are typically focused on a dedicated use case, e.g. RoboCup@Home, medical care
etc. Therefore use-case dependent benchmark criteria for measuring the benefit of an
imagination based robot control system will be presented in Chapter 6.

2.5 Summary

There has been much recent work on the development of plan-based systems and on
extending current approaches with so called semantic attachments in order to reason
about geometric, spatial, temporal and causal aspects. First approaches show how
simulation can help to train such systems for better parametrizations. Given the
available planning, simulation, perception and robot control possibilities presented
in this chapter, an integration of reasonably chosen instances of each field promises
to be an efficient foundation for a physics-based prediction approach. To evaluate
intelligent and learning systems, new approaches and metrics have to be developed, as
the methods presented here are either of limited scope or cannot benchmark the benefit
of autonomous competence enhancement. The next chapter, Chapter 3, focuses on
the experimental platform used for this work.
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This chapter introduces the physical robot platform used for experiments and eval-
uation. The platform has a variety of sensors and two versatile arms, each with a
two-finger sensory gripper. Extra sensors have been mounted to augment the standard
sensors with additional modalities. An open-source software framework is introduced.
The framework helps with robot control and sensor data acquisition and with the de-
velopment of software packages. Relevant hardware specifications are introduced and
a description of the experimental physical domain, including mapping and navigation,
concludes this chapter.

3.1 The PR2 Robot

In early 2012 when the research for this thesis started, the PR2 was probably the
mobile robot most commonly used by the robotics research community. It had recently
been added to the range of robots available at the Technical Aspects of Multimodal
Systems (TAMS) laboratory. The PR2 robot was introduced by Willow Garage in
2010 as a successor to the Personal Robot 1 (PR1) prototype developed at Stanford
University in the context of the personal robotics program' in 2007 [WBVALS0S].
Willow Garage was founded in 2006 by Scott Hassan, a prolific software engineer and
an early Google employee, as a research lab dedicated to robotics. At that time a
team of researchers was put together with the goal of impact first, return on capital
second. Though labelled an experimental platform, the PR2 is intended for practical
robot applications, e.g. serving in a restaurant as a waiter or, in personal life, doing
laundry or supporting humans in health or elderly care. With the ROS software
framework, the PR2 allows new users to rapidly prototype an application, e.g. within
a week. A main driver behind the PR2 is a world-wide community working on the
same hardware platform. This helps to avoid reinventing the wheel and allows a focus
on new capabilities that can be shared among PR2 users. Last but not least, it is easy
to reproduce results, which enables true scientific validation. At the time of writing
there are 34 PR2 users world-wide?.

! http://personalrobotics.stanford.edu (March 16, 2015)
2 http:/ /www.willowgarage.com/pages/pr2/pr2-community (March 16, 2015)
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3.2 Actuators

In order to manipulate its environment, a robot needs to move in a human environment
and to handle objects. Holonomic robots have a number of controllable degrees of
freedom equal to the total degrees of freedom in the movement of the base. The
PR2, with four active casters each of two wheels (see Fig. 3.3), is considered to be a
holonomic omnidirectional robot [SK08], although this is theoretically not true as the
wheels might have to be rotated before the base can move in any particular direction.
Examples of “real” omni wheels are, for instance, the Mecanum wheel?® and ball transfer
units?. The robot operates in two dimensions and thus the (base) system state is
defined as z = [z y G]T, where the robot position is represented as x,y € R and its
orientation as 6 € R. The control input is v = [u v w]” with u € R, v € R and w € R
being the linear and angular velocities of the robot. To derive practically feasible
trajectories, the following conditions should be satisfied:

0 < [1o]l < Vmazs Nawll < Guman (3.1)

Where a,, a,, a,, € R denote the linear and angular accelerations, respectively. 4z,
Aoy mazs Umazs Qo maz, Wmaz, wmar € R represent the corresponding maximum values
of velocity and acceleration u, a,, v, @y, W, Q.

The two, 7-DOF, arms allow versatile manipulation of objects in a large workspace,
as shown in Fig. 3.4. Fig. 3.1 shows that each arm consists of four passively counter-
balanced, back-drivable, joints; the wrist includes three joints and the gripper adds
another DOF. In combination, the upper arm and forearm give a practical arm length
of about 72e¢m. The wrist offers 4Nm of torque and the grip force is 8ON. The arm
payload is around 1.8kg. A remarkable feature is that both the forearm and wrist roll-
joints can operate continuously. Back-drivability and the counterbalance mechanism
as well as the soft arm cover (not including the gripper) enable the robot to operate
safely in human environments. The counterbalance mechanism ensures that the arms
do not drop in case of a power cut or emergency. Back-drivability is very important
for the avoidance of injury. It gives an aspect of resilience (as opposed to rigidity) to
the robot arm in that it allows a human user to move the arm by pushing on any part.

The fingertips are covered with tactile sensors. Fach finger has 22 tactile cells that
support discrete force readings. This enables accurate manipulation (corrections) as
it is possible to detect when an object has been grasped stably and safely. The sensor

3 http://en.wikipedia.org/wiki/Mecanum_ wheel (March 16, 2015)
4 http://en.wikipedia.org/wiki/Ball_transfer _unit (March 16, 2015)
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Fig. 3.1: PR2 arm joint specifications: (A) Arm: 4-DOF (passive counterbalance, back-
drivable), (B) Wrist: 3-DOF, (C) Gripper: 1-DOF. Upper arm: 400mm, forearm: 321mm.
Payload: 1.8kg, wrist torque: 4Nm, grip force: 80N. Continuous forearm and wrist roll
joints. [Willow Garage]

layout is shown in Fig. 3.2. The rubber finger tip surfaces allow objects to be held
securely without slipping.

Fig. 3.2: PR2 gripper sensors: Arrangement of the 22 pressure sensors on each finger pad.

To maximize manipulation capability while maintaining a small driving posture (to
avoid obstacles while driving), the upper torso of the PR2 can be extended upwards by
about 30cm. Raising the torso increases the workspace accessible by the two arms when
manipulating objects on a table. This is discussed further in Chapter 6 (Section 6.2.1).
The full extension of the torso is shown in Fig. 3.6 and the specifications are shown in
Fig. 3.3.

The PR2 provides two 77 Xeon based server computers each with eight Central Pro-
cessing Unit (CPU) cores. This, combined with 24 Gigabyte (GB) of memory, makes
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3 Experimental Platform

on-board sensor data processing possible. In fact the base system (Hardware (HW)
drivers, manipulation control, navigation and collision avoidance) runs completely on
board. Four hard disk drive (HDD) storage devices allow the logging of various sensor
data for testing, debugging or later processing.

Fig. 3.3: PR2 base and computing: (A) Pan-tilt head, (B) Telescopic spine (from 1330 to
1645 mm), (C) Omni directional base: 4 steered and driven casters, max. 1 m/s, (D) On-
board servers: two Quad-Core i7 Xeon (PR2 on-board computer 1 (C1) and PR2 on-board
computer 2 (C2), 8 cores each), 24 GB Random Access Memory (RAM), two 1.5 Terabyte
(TB) removable hard drive, two 500 GB internal hard drive. [Willow Garage]

For practical use the actual work space, e.g. on a table, is important. Fig. 3.4 shows
that the measured work space covered by the two arms is a rectangular area of about
54cm by 27c¢m in front of the robot when the robot base is 5¢m in front of the table.
When considering the PR2’s arm length in addition to its shoulder, the resulting radius
without the gripper is about 83cm.

3.3 Tray

Service robotic tasks might involve carrying multiple objects. A tray allows the PR2
to carry more than the two objects it can carry in its hands. An initial design was
developed that was grasped by the robot. This design is shown in Fig. 3.5. The tray
is meant to be grasped while objects are transported on top. With this design, the
arm-joint tolerances and inadequate contact between the PR2 gripper and the tray
handle produce wobble when the robot is moving. This instability and difficulties in
grasping the tray made the design unsuitable, despite the benefit of being able to leave
the tray on a table (which allows the robot to move without the tray). The design
was therefore rejected in favor of the robot mounted design shown in Fig. 3.6.
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Fig. 3.4: PR2 arms work space: Standing in front of and close to a table, the robot has a
rectangular work space reachable by both arms of 54c¢m by 27¢m (a). This work space was
measured with a table height of 74cm (b).

(a) (b)
Fig. 3.5: First PR2 external tray design (a), (b). A physically and visually simulated model

Fig. 3.6: Final PR2 mounted tray design with laser scanner to detect objects on the tray

(), (d)
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Even though the tray is not removable it should not limit the robots work space or
normal operation. A flat design at the robot’s base was a reasonable solution. This
design does not extend the robot’s footprint and thus does not increase the likelihood
of collision with its environment.

3.4 Sensors

The PR2 robot comes with a variety of sensors on board. There are two front-pointing
laser scanners, one mounted in the base and one near the head. These laser scanners
allow detection of objects in the robot’s environment at distances of up to 30m and
with a viewing angle of 270°. They are used for mapping and collision avoidance.
The head includes two stereo camera systems for 3D and 2D vision, with a red light
projector to support stereo camera accuracy. In addition, a high definition (HD)
camera is available. All default sensors are shown in Fig. 3.7.

=il

Fig. 3.7: PR2 default sensors: (A) 5 Mega-pixel (MP) Ethernet color camera, wide-angle
color stereo camera, narrow-angle monochrome stereo camera, Light-emitting diode (LED)
texture projector triggered with narrow-angle camera, (B) Tilting Hokuyo UTM-30LX laser
scanner, 3D Inertial Measurement Units (IMU), (C) two forearm cameras, (D) Gripper:
3-axis accelerometer, fingertip pressure sensor arrays, calibration LED, (E) base: Hokuyo
UTM-30LX laser scanner. [Willow Garage|

Extra sensors were added to support additional modalities. A Kinect-like sensor, the
Asus Xtion Pro Live, is mounted on top of the robot head as shown in Fig. 3.8.
This sensor can replace the stereo camera systems as it has lower latency and less
overall noise. A thermal camera was also attached to allow the detection of object
temperatures. Both sensor mounts were modified to attach to the PR2’s head frame.
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3.4 Sensors

Fig. 3.8: PR2 mounted additional sensors: Asus Xtion Pro Live (a,d) and Flir A615 thermal
camera (b,c)

Internally there is no difference between the Microsoft Kinect and ASUS Xtion Pro
Live sensors, as both use the same PrimeSense sensor technology. The basic specifi-
cations are: depth range between 0.8m and 3.5m, a field of view of 58° horizontal, 45°
vertical, 70° diagonal and a resolution of 640x480 at 30 frames per second (FPS) red,
green and blue color space (RGB) and depth [ASUS]. Audio sensing is not used in this
work. The advantages of mounted sensors are lower power consumption, a smaller
casing and a 5V supply over USB (no external power supply is needed). The lack of
a tilt motor is compensated for by the tilting joint of the PR2’s head.

Micraphone LED Vision camera

array

Microphone
array

&———Motorized tilt Projector

3D depth sensor cameras

KINECT

for &

Fig. 3.9: The Microsoft Kinect sensors and actuators

The PR2’s on-board visual and inertial sensors function as the robot’s eyes and inner
ears, allowing the robot to keep track of its speed and orientation. To obtain exact
measurements, calibration of the relative positions of the robot’s cameras and of the
IMU is necessary. The consequence of inaccurate calibration would be ‘disagreement’
about the robot’s motion causing navigation problems. Therefore, regular calibration
of the robot is required, which is typically time-consuming and labor-intensive. The
PR2 has a semi-automatic procedure for calibrating its sensors. The calibration results
shown in Fig. 3.10 are of a ‘good’ calibration used in this work, including the additional
Kinect sensor. This calibration was performed with the PR2 calibration package’. At
the time of writing an experimental calibration procedure was available but that was
not tested in this work.

® http://wiki.ros.org/pr2_ calibration (March 16, 2015)
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Fig. 3.10: PR2 calibration results: error values are in pixels. (a) PR2 head sensors vs. tilt

laser. (b) PR2 head sensors vs. right and left arm. (c) right and left vs. right and left forearm
camera
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For calibration, transformations between the PR2’s local coordinate frames are used.
The transformations for all standard PR2 links and sensors are shown in Fig. 3.11.

Fig. 3.11: PR2 coordinate frames: the configuration used has 99 frames, depending upon
the attached sensors.

3.5 Power and Control

A typical ROS-based system consists of many Operating System (OS) processes. Pro-
cesses and inter-process communication rely on OS functionality that is not in principle
real-time capable on a non real-time OS, such as Windows, Linux, Mac OS X%. To
communicate with HW components, a low level software layer operates in a 1kH z loop.
Dedicated motor controller boards operate in a 100kH z loop. The latter communi-
cate directly with the robot’s motors and encoders. The basic control flow, illustrated
in Fig. 3.12, shows the abstraction of control elements. One important aspect is the
transition between non-real-time and real-time levels at the Controller Manager.

Fig. 3.13 shows the network setup including the base station computer and the PR2
robot. The robot’s internal setup shows its two computers, a local area wireless tech-
nology (WiFi) router and an additional wireless access point (WAP). A sophisticated
tunneling mechanism allows transparent communication between computers on the
building network and the robot, whether the PR2 is connected wirelessly or via Eth-
ernet cable. More details can be found in the PR2 manual’.

The PR2’s power system consists of a 1.3kWh lithium ion battery pack allowing an
approximate run time of 2 hours depending upon the robot’s task. When operation
requires a longer run time or the battery has decreased in capacity over its lifetime,
it is possible to charge and run the robot at the same time. For safety, an on-board

6 Although there might be real-time capable OS distributions for special purposes, such as embedded
systems.
" https://pr2s.clearpathrobotics.com /wiki/PR2%20Manual (March 16, 2015)

31


https://pr2s.clearpathrobotics.com/wiki/PR2%20Manual

3 Experimental Platform

ROS
ROS messages Software, non-realtime
Y Software, realtime
Controller Manager
1 kHz loop
A _
EtherCAT Torque | Torque _ Software, realtime

Position Hardware

Y
Motor Controller Boards
100 kHz loop

A A
Voltage Current | Position

Y

Motors Encoders

Fig. 3.12: PR2 low-level motion control [Willow Garage]

ROBOT WIFI ROLUTER

BUILDING WIFI

LAND H,‘T.IJLAM: I-);}%L = b

26603 i L
4

r

FIREWALL

Wlhoan Port 2104

.
bl -
= -
—= -
= -
WLA N LMD
anmp | DHF | | HF |

Fig. 3.13: PR2 network: Robot: 32 Gigabit back plane switch, multi gigabit connection to
each server, separate camera gigabit network. 1kHz control to all motors. Dual-radio WiF1i,
dedicated service access point, Bluetooth access point. [Willow Garage]
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and a wireless ‘run-stop’ (cutout switches) allow instant disabling of all motor drivers
while still leaving all the sensors, servers and motor board diagnostics running [Willow
Garage).

3.6 Navigation and Mapping

Navigation is an important capability for a mobile service robot. In this work the
standard ROS PR2 packages are used. These contain navigation related methods
[IMEBF*10], which are: an implementation of the A* algorithm [Kon00] for global
path planning; and a Dynamic Window Approach (DWA) implementation, see sec-
tion 4.4, for local path planning. Also used are implementations of the Adaptive Monte
Carlo Localization (AMCL) [FBDT99] probabilistic particle filter and of the extended
Kalman filter [Kal60] to fuse IMU with wheel odometry data. In order to detect ob-
stacles on the ground the Random Sample Consensus (RANSAC) algorithm [FB81]
is used to extract a (horizontal) plane (e.g. the floor) from the laser scan; outliers are
classified as obstacles.

As a basis for global 2D navigation, an occupancy grid map of the 3rd level TAMS
floor of the F building on the computer science campus® was created with the occu-
pancy grid Simultaneous Localization And Mapping (SLAM) technique [TBF05]. The
commands to launch the SLAM system on the PR2 can be found in Appendix A.1. A
standard ROS package? combines the SLAM algorithm with the standard PR2 navi-
gation algorithm!® [MEBFT10]. The resulting TAMS floor map is shown in Fig. 3.14.
In the map are the main floor and the laboratory, which houses the restaurant environ-
ment. In addition to the map-origin coordinate frame, other origins are shown. This
map can be used as a blueprint for building an accurate 3D environment, as shown in
Chapter 5.

3.7 Summary

Willow Garage closed in 2013. Many successful ideas have been spun out as commercial
start-ups, such as Savioke (autonomous service robots) and Unbounded Robotics (low
cost mobile manipulation robots), or as independent non-profit organizations, such as
the Open Source Robotics Foundation, Inc. (OSRF) and more.

This chapter gave an overview of the PR2 platform. It showed that the platform
is well-suited for the tasks envisaged, mainly because of its versatility and multi-
modal sensors. The huge open-source community working with the platform and the

8 https://www.inf.uni-hamburg.de/en /service/location.html (March 16, 2015)
9 http://wiki.ros.org/pr2_ 2dnav_slam (March 16, 2015)
10 http:/ /wiki.ros.org/navigation (March 16, 2015)
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Fig. 3.14: 2D occupancy grid map of the TAMS floor including the Lab is the navigational
basis for the RACE domain at a resolution of 0.05cm per pixel. ‘North’ defines the map
orientation in relation to the world coordinate frame.

availability of software frameworks and tools all support its application in this work. In
addition, the necessary additional sensors and tools have been described and important
specifications have been listed. Sensor calibration and map building results have been
discussed. The next chapter, Chapter 4, focuses on the frameworks and tools used in
this work.
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Frameworks and Tools

This chapter introduces the software frameworks employed and developed in the course
of this work. The RACE project is introduced first, as it not only provides a devel-
opment framework but it also serves as the foundation of the scenarios and ideas of
this work. Related parts of ROS, such as the underlying development framework,
will be discussed. An important tool is the Gazebo simulator and its physics-based
engine, ODE. These will be discussed, along with two frameworks developed to create
toppling experiences, to generate unsupervised experiences in changing environments
and to create and record training data.

4.1 The RACE Project

In previous work, an ontology-based robot control architecture was developed to allow
robots to learn from experience [RNZ*13]. To focus the research on high-level tasks,
such as learning from experience employed in the RACE project!, it is necessary
to be able to take the robustness and functionality of lower level components for
granted. The platform provides basic capabilities, such as navigation, manipulation
and grasping.

The three year EU funded FP7 project RACE started in December, 2011 and ended in
November, 2014. Most of the work of this thesis was developed in the context of this
project. The overall aim of the project was to enhance the behavior of an autonomous
mobile service robot by having the robot learn from conceptualized experiences of
previous performances, based on initial models of the domain and on its own actions.
The contributions of the project to the state of the art can be summarized as producing
a robot:

« that is capable of storing experiences in a multi-level way using appropriate
structures,
« that is able to learn and generalize,

« that demonstrates enhanced competence by applying learned knowledge.

Lhttp:/ /www.project-race.eu (March 16, 2015)
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Fig. 4.1: The RACE software architecture. The modules closely involved in functional
imagination are highlighted.

A high-level system architecture is shown in Fig. 4.1. A more detailed description of
the system, its parts and the evaluation results is given in [HZZ"14, RNZ*13]. Work
that focuses on evaluation is described in [ZRP*13, ZRP*12]. The resulting system
is plan-based. It adapts its behavior using hybrid reasoning causally, temporally and
spatially. This leads to robust real-world task execution. Nevertheless the most impor-
tant achievement is the enhancement of robot competence by learning from experience.
This enhancement is measured in terms of performance quality and the description
length of the robot instructions.

4.2 ROS and the PR2

Robots and robot control software become ever more complex. There is also a tendency
to use ever more sensors and consequently the amount of data to be processed rises. As
the complexity of tasks increases and as tasks are divided into many parts, coherence
between capabilities grows rapidly. For example the PR2? robot produces data at
about 50M B/s, not including the RGB-D sensor output. Newer sensors with higher
resolution, such as the second generation Microsoft Kinect, already produce 3D data
at a rate of about 60M B/s.

ROS provides many features for the PR2 as part of the standard system, although
most of the features are platform independent and can be used on other robots as

2 http://www.willowgarage.com /pages/pr2/overview (March 16, 2015)
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well. Furthermore, tools providing additional functionality, e.g. image processing, of-
ten have a ROS API and cooperate well with ROS. Examples are the Open source
Computer Vision library (OpenCV)? and the Point Cloud Library (PCL)*. Both soft-
ware frameworks provide advanced perception filtering capabilities, such as 2D and 3D
image processing. The standard ROS tools include applications for navigation, ma-
nipulation, visualization, logging and playback, simulation and hardware diagnostics.
A running ROS instance typically maintains many ‘nodes’ - processes in a graph-like
topology communicating with each other using streaming topics, Remote Procedure
Call (RPC) services and a parameter server. The node hierarchy is flat, consisting of
a master node and all other nodes. The master node is responsible for all communica-
tion requests between nodes. It also acts as a network time server and both this and
limitations of the parameter server lead to difficulties in distributed systems. These
are discussed in Section 5.3, together with possible solutions.

In the development phase, Willow Garage (originators of the PR2) used software
components from the Player Project® to develop the application programming stack
for the PR2 robot. Its three components, Player, Stage and Gazebo, have all been
adapted for use within ROS. Thus important parts, such as drivers, algorithms and
simulation environments could be reused. The Player Project [GVHO03] grew from
the need for alternatives to existing closed source software and was developed in 2000
initially by Brian Gerkey, Richard Vaughan and Kasper Stoy. It was hosted at the
University of Southern California (USC) Robotics Lab website before it migrated to
SourceForge.

4.3 Gazebo Simulator

The Gazebo® simulation is used in this work. The version used (1.0), which was re-
leased early in the project (2012) and retained, brought major updates compared to the
previous version (0.1), such as the completely re-implemented Graphical User Inter-
face (GUI) with “Cute” cross-platform programming library (QT4) and performance
improvements, as well as an adapted Extensible Markup Language (XML) world file
syntax.

The simulator features” related to this work are:

 the ability to simulate indoor environments with multiple robots in real-time

— multiple rooms (at least three), multiple objects, one PR2

3 http:/ /wiki.ros.org/vision_opencv (March 18, 2015)

4 http:/ /www.pointclouds.org (March 18, 2015)

® http://playerstage.sourceforge.net (March 18, 2015)

6 http://gazebosim.org (March 18, 2015)

" http://wiki.ros.org/gazebo/Version_1.0_ Design_ Specification (March 18, 2015)
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— a physics engine that allows stable manipulation of objects during run time
o the graphical editing of worlds (not used; XML was edited directly)

— ability to import common, self-created meshes in Collada or Surface Tesse-
lation Language (STL) format

creation of robot models: ability to set joints and physical properties

— ability to apply forces and torques to models

ability to position objects via the GUI
— a camera, for 2D rendering
— visualization of object collision models
« a ROS API
The current implementation uses ODE as a physics engine, the Object-Oriented Graph-
ics Rendering Engine (OGRE) for rendering and QT4 as the GUI. Sensor and con-
troller access is provided via a shared memory interface, as indicated in Fig. 4.2.

Gazebo simulates a ‘World” that consists of an arbitrary number of models; each
model can consist of joints, sensors or body elements, such as a box.
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Fig. 4.2: General structure of Gazebo components [KHO04]. Here the OpenGL Utility Toolkit
(GLUT) is used as the Open Graphics Library (OpenGL) API.

Two threads run in Gazebo. A distinction is made between the GUI and rendering
in one thread and the physical engine in a separate thread. This approach allows the
physics engine to cycle at a higher rate than the GUI, which is necessary for high
accuracy simulation.

The monolithic architecture prevents advantage being taken of multi-core and dis-
tributed systems and reduces the flexibility of Gazebo as a physics simulation. This
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limitation on systems that wish to simulate multiple instances or that have strong
real-time requirements influences the resulting architecture and design.

Figure 4.3 shows the architecture current when Gazebo 1.0 was released. In compari-
son, the ROS bundled version distinguishes between only two executables: the Gazebo
server (including physics, rendering, sensors) and the client GUI. Note however that
in the final 1.0 version wzWidgets was replaced by QT4.
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Fig. 4.3: Gazebo dependency graph [ROS.org].
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Fig. 4.4: Gazebo plug-in architecture

Gazebo provides an external API to alter physical world properties, such as setting
the real-time factor. The API can also change individual items in the simulation,
for example manipulating the pose of an object. The physics, sensor and rendering
libraries support plug-ins that allow dedicated behavior or appearance control. For
example it is possible to attach an object with its own dedicated model of inertia
or to provide more sophisticated rendering effects by using Graphics Processing Unit
(GPU) functionality. The Gazebo plug-in architecture is shown in Fig. 4.4. It should
be noted that Gazebo (the ODE physics engine) is a rigid body simulator and does
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not simulate soft objects - clothes or liquids, such as water. This limitation can be
partially offset by using particles (e.g. small spheres) to approximate the behavior of
liquids. This approach was applied, for example, in [KDB11].

4.3.1 Physical Simulation

Euler’s method [BW97] is often used as an integrator, such as in ODE:

ODE supports static and kinetic friction as well as restitution, whereas Bullet does not
provide kinetic friction. The Bullet physics engine instead supports partial graphics
processing on the GPU for physics calculation. ODE is a constraint-based physics
engine with fixed time-stepping. The evaluation compares accurate ODE integrator
calculations for the costs of performance to those for Bullet. Tests include the dis-
placement of a non-moving object compared to classical physics, which is:

1
r= §at2 (4.2)

where r is the body’s displacement, a is the body’s acceleration and ¢ is the time.

Restitution is given in classical physics by:

h
Cp = ﬁ (4.3)

where Cg is the coefficient of restitution, h is the bounce height and H is the drop
height. Friction is typically calculated according to the Coulomb friction model [KEPO05].

The accuracy and performance of the physics engine when calculating friction, col-
lisions and constraints are important for predicting robot action results in a typical
domestic domain. ODE and Bullet differ slightly in these disciplines, but both provide
the required capabilities. Nevertheless, no currently available engine offers superior
performance in all situations. Thus the prediction model has to take variations and
minor deviations from true behavior into account. Not all tested engines support noise
models.

[WHR10] evaluates the Bullet engine as an ingredient of physical reasoning. It investi-
gates the prediction accuracy of a physics engine when simulating a robot arm pushing
flat objects across a table. The authors recommend reasoning about goals and actions
using physics simulations. Successful reasoning is considered to imply the need for a
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strong understanding of dynamics and the effects of actions. Physics engines can com-
plement classical rule-based reasoning systems by acting as a source of information or
as an ‘oracle’. This can help answer questions concerning the stability of manipulated
objects, such as whether they might tip over or start to roll, or how to shift several
objects without changing their configuration. The authors propose that simulation
accuracy is a problem of selecting parameters for an optimal match to reality. The
parameters most important for optimization by a cost function are the object’s shape
factor and friction between the object and the ground and fingers.

n

E(P,P") = i > e =<

Jj=1

(4.4)

Here the error E of the real and simulated poses, P and P’ respectively, is the sum
of the deviations of all object corner points ¢; in contact with the ground. The au-
thors propose using a combination of the simplex algorithm [NM65] and differential
evolution [SP97] to search for optimal parameter values.

The authors conclude that accurate prediction of real world interactions is possible
with state-of-the-art physics engines. However their focus is on flat objects that are
pushed across tables. Furthermore the accuracy of the particular engine used has been
optimized to reduce errors by 50 percent when compared to default values. They pro-
pose employing the simulation for learning processes and combining it with qualitative
and quantitative simulation.

4.4 Robot Capabilities

The perception capabilities of the PR2 are based on the Object Recognition Kitchen
(ORK) framework, which uses the ROS tabletop module®. The procedure is described
in [ML09]. Firstly, a (table) plane is extracted from the point cloud by the RANSAC
algorithm [FB81]. Remaining points are clustered and each cluster is processed us-
ing the Iterative Distance Fitter (IDF) technique for rotationally symmetric objects.
This compares the cluster with Computer-Aided Design (CAD) models stored in a
CouchDB database and results in a confidence value for each possible object type. For
object recognition, the recognizable objects have to be rotationally symmetrical. In
the case of recognized objects, grasping relies on learned gripper configurations (mul-
tiple configurations per object can be stored in the database) in relation to the object.
In the case of new objects, grasping relies on bounding boxes calculated around the
object’s segmented point cloud. For a recognizable object, the bias is that the object
has the same upright orientation stored in the database.

8 http://wiki.ros.org/tabletop_object_detector (September 8, 2015)
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There are several coherent frameworks, like ROS, that integrate many different ca-
pabilities. One such capability is navigation, which typically consists of localization,
path planning and robot control. The combination of 2D navigation and 3D collision
avoidance is the state-of-the-art method in mobile robotics. 2D navigation provides
the necessary performance; 3D collision avoidance the required fidelity.

The DWA is used for local path planning [FBT97]. DWA is a local robot navigation
approach in two dimensional space”. It considers current and projected velocity and
acceleration settings for linear and angular directions and requires a global planner,
which is not of interest here. Nevertheless a global plan and cost map are required to
produce velocity commands to control the robot’s base. The algorithm implementation
in use supports robots with a footprint that can be represented as a convex polygon or
a circle. One important property is its support for dynamic changes of parameters such
as velocity and acceleration. The basic DWA algorithm is described in Algorithm 4.1.

Algorithm 4.1 : Basic DWA Algorithm

Ax, Ay, Af, obstacles, trajectories Output : collision free velocity v
while true do
sample the robot’s control space (Ax, Ay, Af);
foreach v do
L perform forward simulation for At of robot’s current state;

evaluate each trajectory score regarding proximity to obstacles, the goal, the
global path and v;

discard trajectories with collisions;

pick highest-scoring trajectory;

return v;

Other essential capabilities are manipulation and grasping. For these it is important
that a solution for inverse kinematics exists, in addition to solutions for the calculation
of possible trajectories and grasps. One difficulty is the calibration between the sensors,
the robot and the gripper pose. High grasp accuracy and the coordination of grasping
with the recognition process must be ensured. Generally the task can be finished
successfully only if all components are sound. If one component fails, the goal cannot
be achieved. Other components, such as the planner, object recognition and the
simulator are indispensable and belong to the basic capabilities.

9 http://wiki.ros.org/dwa_local_planner (March 19, 2015)
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4.5 Summary

4.5 Summary

This chapter gave an overview of the software frameworks and tools used in this work.
The RACE project - the foundation of this work - was introduced, and its high-level
architecture was presented. ROS, the underlying open-source development framework,
was described, and PR2-related components were discussed. The Gazebo simulator,
which is the basis of the functional imagination approach in this work, was introduced,
and robot capabilities necessary for the experimental scenarios were presented. In the
next chapter, Chapter 5, a detailed look will be taken at the approach taken by this
work.
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Functional Imagination

This chapter describes the methods and algorithms of the proposed system. It also
describes the robot capabilities developed for the experiments. Experimental methods
and scenarios are developed and the scenario setup is discussed in detail. The models
required to represent the problem domain are developed and a detailed architecture is
crafted.

The chapter also gives an overview of the physical realization of the approach in
terms of software and hardware. It describes in detail how frameworks and tools
are employed, combined and optimized. The goal of this chapter is to develop and
integrate a simulation system that provides a basis upon which robot action results
can be predicted and exploited for plan adaptation in order to prevent sub-optimal
activity (cf. Section 1.4).

5.1 Methodology

A pragmatic approach to the use of physics-based simulation for predicting robot
action results is to simulate an action and then to evaluate the resulting simulation
state. The three important parts of the process are:

1. intention
2. simulated execution

3. simulated result

In this work, the intention is the action the robot is supposed to execute, i.e. the plan
(step) created by the symbolic planner; the simulated execution is the manipulation
of the world state, i.e. execution in Gazebo; the simulated result is the world state in
the simulation after the execution has finished.
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5 Functional Imagination

5.1.1 Traditional Robot Control Paradigms

Since around the 1970’s, the predominant robot control paradigm has been Sense-
Plan-Act (SPA). The robot is supposed to sense its environment, create a plan of
what to do next and execute that plan. This is a continuous cycle during the robot’s
lifetime. The robot operates in a hierarchical/deliberative fashion, heavy on planning
and storing gathered sensor readings in a global world model. Fig. 5.1 shows this
paradigm.

Sense Plan Act

Fig. 5.1: Hierarchical Sense-Plan-Act robot control paradigm

At the lower level, such as for the reactive execution of manipulation or locomotion,
the Act-Sense paradigm of reactive robot control is typically applied. In this, the
robot has multiple, concurrent, act-sense couplings (Fig. 5.2). Each coupling creates an
output, i.e. the robot’s behavior, independent of other couplings. The robot eventually
executes a combination of these behaviors. A prominent example of the reactive robot
control paradigm is the Subsumption architecture [Bro86].

[sone Jo o A |

Fig. 5.2: Reactive-Sense-Act robot control paradigm

Today’s robot systems typically apply a combination of these two paradigms (Fig. 5.3).
This hybrid deliberative/reactive paradigm takes advantage of the hierarchical decom-
position by the planner of one task into subtasks and the reactive accomplishment of
each subtask. Exactly this approach is applied within the RACE framework with its
plan-based nature and its reactive ROS robot capabilities.

Plan
oo ol |

Fig. 5.3: Hybrid Sense-Plan-Act robot control paradigm

5.1.2 Hybrid Sense-Plan-Imagine-Act Control Paradigm
In hierarchical robot control, imagination would be a prerequisite for acting and a

consequence of planning, as shown in Fig. 5.4. Consequently a hybrid Sense-Plan-
Imagine-Act would involve imagination as shown in Fig. 5.5.
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Sense Plan Imagine Act

Fig. 5.4: Hierarchical Sense-Plan-Imagine-Act robot control paradigm

Plan

Sense Act

Imagine

Fig. 5.5: Hybrid Sense-Plan-Imagine-Act robot control paradigm

5.2 Functional Imagination System Architecture

The overall RACE architecture was introduced in Chapter 4 and in Fig. 4.1. In
Fig 5.6 the previous architecture is extended and refined to include the capability for
functional imagination.

plan
HTN =~ Execution ROS ROBOT Functional Imagination
Planner Middlelayer actions Q S— :
ees imagine faCthnS
=a Capabilities
_SEM Y| [ D rTR——T
o" e Q [ AN J
Blackboard '% Translator s | Imagination Client 1]
fluent . - i tk—
uents bolic| Idi ' _ k| T4 3
: symbolic| |discrete ‘es SPTLEE Execution | Black-| fd 2
Ry e te, Middlelayer| | board 1
. Functional 'magine Simulation 1 |h*
*s Imagination - imulation %
- actions . Simulation 1
LI o imulation
Tea "wag anu®®
(a) (b)

Fig. 5.6: Functional Imagination: (a) Integration of functional imagination (highlighted)
into the RACE architecture (excerpt). (b) Detailed view of modules running on external
computers.

Before going into module details, it is necessary to describe how functional imagination
was integrated into the robot control architecture developed in the RACE! project. For
greater detail, see [RNZ"13]. An excerpt from this paper that includes the integration
of additional modules is presented in Fig. 5.6. All modules query a common store of
knowledge called the Blackboard.

Lhttp://project-race.eu (March 20, 2015)
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5 Functional Imagination

Without imagination, the nominal system workflow is as follows. On receiving a
new task, the task planner generates a plan based on the current state retrieved
from the Blackboard. This plan, which uses the basic capabilities of the PR2 robot
to achieve the task, is sent to the Semantic Execution Monitor (SEM). The SEM
monitors the preconditions and effects of plan actions and dispatches new actions as
appropriate. It maintains a temporal network that represents temporal expectations
about execution [KSPS14], e.g. the earliest possible start or finish time of an action.
This temporal network is updated based upon real world observations. Temporal
observations, such as trajectory durations, could also be obtained by simulation, i.e.
from functional imagination.

Actions are dispatched by sending them to the Execution Middlelayer, which calls the
appropriate ROS actions implementing basic robot capabilities.

To enable the use of functional imagination, this workflow needed several extensions.
Some plan actions need to be simulated with a variety of different parameters before
they are executed on the real robot. The plan therefore needs to indicate which actions
should be simulated, at which step this should be done and which parameters should
be tested. To this end a dedicated imagine operator is introduced into the planning
domain.

Beside the planning domain, no changes to the planner itself are necessary; this work
uses the off-the-shell HTN planner SHOP2 [NIK 03] integrated into the RACE system.
Domain modeling of the planner is described in [SGH14]. The new operator !imagine
7action 7argl 7arg?2 takes as arguments the action to be simulated and that action’s
own arguments. Methods using the new operator have to be modified by adding a new
action (with arguments): !imagine !move_base_param 7area slow/fast. With the
action !'move_base_param the robot is able to drive to a goal position with a specified
motion and acceleration set, such as slow or fast. The definitions for both sets used
in the experiments are listed in Table 5.1. The !imagine operator can simulate a
variety of robot actions. Whereas the !imagine operator is specific to simulation,
actions like 'move_base_param apply both to the real robot and to the simulation.

The SEM has to analyze the plan and send each action to be tested to the Imagination
Client instead of to the Execution Middlelayer. Furthermore, it is important to note
that as the goal is to simulate the execution of an action at a later stage of the plan,
the current states of the robot and its environment will be unsuitable. Therefore, the
SEM needs to project the state at the later plan stage and send that to the Imagination
Client.

Furthermore, the Imagination Client needs to know the poses of all objects and of
the robot together with the robot’s configuration, in order to initialize the simula-
tion accordingly. This is done by the Translator module, which is given the projected
symbolic world state and returns this state in a format that can be used as input to
the simulation. This information contains discrete values for the object poses, such
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as x,v, z coordinates instead of ‘tablel’. The translation is based on initial knowledge
about a sub-set of the world’s objects present in the Blackboard. The SEM generates
the expected world state and calls the Translator in order to decouple the Imagination
Client from the symbolic representation used by the Execution Monitor. This decou-
pling allows imagination to be integrated more easily into other systems by adjusting
the Translator module. Generation of the expected world state works as follows. For
each action a given to an !imagine operator, a world state has to be generated. The
generator considers both the current Blackboard state and the sequence of actions ex-
ecuted before a. With this information it is possible to conclude how the world state
will have changed by the time a is executed.

The Imagination Client will be provided with the altered world state, action to be
simulated and possible parameters. At the same time all other operators, with the
exception of !imagine operators, are executed as usual. Potential further !imagine
operators are handled the same way as the first. Upon successful execution the Imagi-
nation Client returns an ordered list of action parametrizations along with the expected
(simulated) duration of the parametrization with the highest confidence. The confi-
dence calculation is described in Section 6.3. If the Imagination Client does not finish
simulating an action in time, the plan can wait for imagination to return. However,
where there are hard real-time requirements, the action must be executed directly,
without waiting, using default parameters defined in the planning domain.

For each parameter combination the Imagination Client starts a separate subset of the
RACE system on a different machine, i.e. each with an independent ROS system, as
presented in Fig. 5.6.

The prediction system is based on the previously developed HIRES framework, de-
scribed in [RKZZ14]. It has been integrated into the RACE framework and extended
to predict commonsense physics events and to handle uncertainty. A standard PR2
platform equipped with a tray, which is used to deliver a pepper mill, is employed.

In the following paragraphs, model- and scenario-related definitions are introduced.
a is the smallest angle between the perpendicular up-axis (z) of the global reference
frame and the principal axis of the tray object, as shown in Fig. 5.7. A topple-state s;
is a value from a set of three possible topple-states, s; : {notopple, topple, shaking}
which are defined in Eq. 5.1. The thresholds are defined as follows: «, = 0.01rad
(= 0.5%), oy = 0.5rad (=~ 29°). The threshold angles were defined empirically and
are automatically and continuously measured during experiments. Furthermore any
toppling is automatically detected and the tray object is put back on its start position
to detect more potential topple events. For the experimental scenario a cylindrical
object (the pepper mill) of height 27.4¢m and radius 3.7¢m with a point mass of 140g
has been modelled to match the real object. The object inertia has been defined
appropriately.
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Fig. 5.7: PR2 carrying a tray object: The red circle indicates the actual rotation center
and radius of the object and the green vector marker indicates the actual up-orientation and
reference of the object (a). The object deviation angle a (b).

notopple, ifa<a,
T =1 topple, ifa>o (5.1)
shaking, ifon <a <oy

To execute the scenario, two sets of motion parameters 0, and 04, were defined,
as shown in Table 5.1. The parameter-set elements are necessary for the local motion
planner. The individual elements are defined by the standard values for fast and
by empirical minimum values for slow. The latter were chosen to allow a maximal
difference from the fast set while still allowing the local path planning algorithm and
motion controller to execute a trajectory smoothly.

Hfast efast

Ulinear [ ] 0.55 0.30
Vangular [md s~ 1.00 1.00
Qlinear [m-s7% 250  1.40
Qangular [Tad 572 3.20 2.00

Table 5.1: Experimental results: motion parameter sets (0).

Experiments performed with this approach are discussed in Chapter 6.
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5.3 Integration of the PR2 with the Gazebo Simulation

5.3 Integration of the PR2 with the Gazebo Simulation

This section elaborates some different approaches to combining a ROS based robot
simultaneously with its simulated version. This is not supported by ROS, which has a
central node structure that can have only one master node. A related approach with
the Player Project framework is presented in [RKZ12]. Here, multiple robots interact
and communicate with each other in an agent-based system.

The ROS framework, described in Section 4.2, is used. There are two possibilities to
achieve the goal:

1. Multiple networked computers run separate instances of ROS (each with its own
‘rosmaster’ process). This restricts communication between ROS instances to a pro-
prietary protocol, as rosmasters can only communicate with nodes, not with other
rosmasters.

This approach is promising because individual instances run with standard ROS com-
ponents and configurations. This allows out-of-the-box support for existing robot
capabilities, such as navigation, manipulation, vision etc. The drawback is that com-
munication between ROS instances has to be implemented from scratch to transport
existing ROS message formats between instances via the network. One approach would
be to enable inter-computer communication using sockets. In each ROS instance, a
node would listen/publish information on the communication channel within its own
“ROS world” with a unique instance Identifier (ID) added. This approach can be
implemented quickly for a basic demo (e.g. involving sharing just odometry data) but
complexity increases quickly as more information is shared, e.g. for navigation, ma-
nipulation etc. Furthermore, being proprietary and thus not (yet) supported by the
open-source community, it might become obsolete in future releases of ROS.

2. A second approach is to use existing ROS network facilities. This involves hav-
ing just one rosmaster running on the network (computers) and sharing information
strictly via ROS topics. This method seems straightforward and appealing as it uses
the existing ROS interfaces. Nevertheless, at the time of writing, ROS PR2 support
is limited to only one PR2 running at a time. Even if this issue is solved (work is
ongoing to support multiple simultaneous PR2s), other issues may arise. For example,
if different namespaces are used for each robot, existing ROS modules for basic robot
capabilities (navigation, manipulation or movement of the robot base) that rely on
the standard PR2/ROS configuration (with respect to topic names and namespaces as
well as service and parameter names) must be adapted. This tedious work is expensive
in developer costs.

In this work the first approach was chosen for following reasons: Namespace issues
alone preclude the use of the second approach, but the approach has a further problem
in that it violates a ROS requirement that the real and simulated (in Gazebo) robots
publish consistent system clock values. In the second approach they would not, causing
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problems in all modules. The selected first approach is based on the multimaster
package?. The package provides topics that each rosmaster can access. With this basic
facility it is possible to construct any message-based ROS communication between
multiple rosmasters.

5.4 Creating an Optimized Simulation Environment

This section describes the creation of an accurate and computationally efficient sim-
ulation environment and the related tools used for this work. As described in the
previous chapter, Gazebo serves as the simulation base. The following section firstly
describes how to build the environment and tools and then presents the procedure for
the optimization of simulation speed.

5.4.1 Tools

The basis for an accurate 3D simulation environment is the 2D map created by the
robot itself, as described in Chapter 3. The map indicates the footprints of walls and
static objects. The following list contains the tools used to create these 3D objects
and to adapt properties such as appearance:

o Sweet Home 3D?(GNU General Public License): a free interior design application
for drawing the plan of a house, arranging furniture and rendering the results in

3D.
o Wings3D*(Custom License): a lightweight 3D modeling tool.

o MeshLab®>(GNU General Public License): an editing tool for unstructured 3D
triangular meshes.

e BlenderS(GNU General Public License): a comprehensive 3D modeling tool for
rendering, animations and game play.

e Gimp"(GNU General Public License): the comprehensive GNU image manipu-
lation program.

2 http:/ /wiki.ros.org/multimaster (June 7, 2015)

3 http:/ /www.sweethome3d.com (March 18, 2015)
4 http://www.wings3d.com (March 18, 2015)

5 http://meshlab.sourceforge.net (March 18, 2015)
6 http://www.blender.org (March 18, 2015)
"http://www.gimp.org (March 18, 2015)
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5.4 Creating an Optimized Simulation Environment

5.4.2 Performance Requirements and Implementation

With the tools presented it is possible to create the functional simulation environment
shown in Fig. 5.8. The use of simulation as a companion tool for real robot execution
imposes real-time requirements. The initial simulation setup produced an approximate
real-time factor of ~0.1, i.e. 10% of real-time, when running the Blackboard, localiza-
tion, navigation and manipulation. As such poor simulation performance would not
be sufficient in a practical system, several performance improvements had to be made.

This section describes an iterative optimization process that reduces CPU time for
simulation. Measurements refer to the real-time factor of simulation (Equation 5.2),
i.e. how fast "simulated time" can be computed in simulation. When simulation time
passes more slowly than real time, this factor is typically a value smaller than 1.0; when
simulation time passes more quickly, the factor is greater than 1.0. Measurements were
taken both before and after optimization. The factor F§, represents the simulation
time compared with real-time and is defined in Equation 5.2. The time durations T’
are independent of the task performed, thus T and 7, represent the time passed (in s)
in simulation and reality respectively. An example would be that the simulation was
able to simulate 6 seconds in “simulation time” whereas in real-time 10 seconds passed.
This would then result in F§, = 16—(; = 0.6. Compared to real-time, the simulation time
might not be linear, as the duration of the simulation steps calculation is dependent on
the particular situation, e.g. checking for object collisions with one or many contact
points. The Gazebo internal physics update rate is defined by the real-time factor
F,, resulting from the real-time update rate R, in s~! and the maximum step size
S in s, typically 0.001s, as shown in Equation 5.3. As this equation is dependent
on the computation speed it defines only the maximum real-time factor. A factor
F., = 1000s~! - 0.001s would define a maximum real-time factor of 1.0. Whereas F,,
defines the upper limit, F,. measures the actual real-time factor and is used in the
following benchmarks.

T.
F, == 2
- (52)
Frt - RT . S (53)

Running scenarios with the PR2 in the simulation takes quite a lot of computation
time, even on fast computers. For example, a serve-a-coffee scenario (see [ZRP112]
for details) involves 3D collision checking, 2D navigation and collision checking as well
as running the RACE framework. This configuration runs at approximately 0.3 times
real-time®. It should be possible to save some CPU cycles by reducing (appropriately)

™

8 The computer used was a 64-bit Intel® Core™ i5-3570 CPU operating at its maximum speed,
3.4 GHz. The CPU had 4 physical cores (without hyper-threading) and 8 GB of working memory.
The graphics card was an nVidia® Quadro® 600 with 1 GB of working memory.
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the level of environmental detail. Another solution could be to provide a “headless”
run of the scenario (without camera sensors).

In the following paragraphs a step-by-step optimization of the simulation environment
is given with empirical performance evaluations. In each case, optimization started
with an initial setup in which the PR2 robot is placed in the simulation along with
the basic wall layout of the TAMS laboratory. The environment is shown in Fig. 5.8.
With this reference setup the performance is approximately 0.5 that of real-time.

Lo %[ vow o4

Models | Lights | Insert Model

Models ® i

» race_table1

» race_table2
» race_chair2

» race_chair1

» race_chair3

» race_chaird4

» ground_plane
> race_map

» race_table7
» race_table4

Property Value

XYZ: |-8.20 0.00 1.64 RPY: |0.00 11.31 0.00

Real Time Factor: |2.21 Sim Time: | 714.40 sec Real Time: |345.40 sec | Reset |

Fig. 5.8: Restaurant environment in Gazebo 1.0 (Fuerte) with a “Real Time Factor” of 2.21

Step 1: Using Static Models. In Gazebo, static objects are not updated during
calculation of the next simulation state. This is not the case with dynamic models,
i.e. models where joints actually move. Thus changing the race_chairl.model links
to static increases the simulation performance from 0.73 to 0.85.

Step 2: Skip rendering. Adding the gui argument to the main launch files allows
the simulation to run without the Gazebo GUI. This improves the simulation speed
by about 7%. Just launch e.g.

roslaunch plan_executors_common_scheduler.launch gui:=false

Step 3: Use simple geometric shapes for collision models. This improves
performance in an idle RACE world (tables, cups, robot etc.) from ~0.55 to ~1.50
by optimizing object collision models, especially complex meshes such as those of the
cups (Fig. 5.9).
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Fig. 5.9: RACE cup mesh visual model (left) and cylindrical collision model overlaid (right)

Furthermore, the reduction in the number of particles in the ROS navigational com-
ponent of the AMCL node leads to a performance improvement of ~0.1. Nevertheless,
navigation (including the collider_node for arm_navigation that checks for colli-
sions of the arm with the environment) is CPU intensive.

Gazebo runs in a single thread and thus does not currently benefit from multiple cores.
A faster single core does lead to improvement.

Step 4: Use simple geometric shapes for wall collision models. This reduces
the collision model to geometric primitives (boxes) of background objects (walls, tables
etc.) and chairs. Introducing a simplified wall model (for collision only) that contains
only flat walls (and holes), no windows etc. improved collision checking performance.
These changes improved performance by more than 2.0 (with tables, cups, robot etc.).
See also Fig. 5.10.

Several aspects of running a Gazebo world have a major impact on performance. Even
things not directly related to simulation, such as navigation and manipulation, can
consume many CPU cycles.

Most (if not all) objects are ‘rigid’; links in the model (e.g. table legs) do not move
with respect to other links in the same model and thus do not have to be updated.
This is reflected by setting the static tag in a Gazebo model to true (once for each
model). This leads to a potential performance improvement of ~0.15 (depending on
the number of Gazebo objects, such as tables).

Watching the simulation GUI is interesting and sometimes necessary for supervision.
If the GUT is not needed, it can be disabled in the launch file (supervising in ROS visu-
alization (Rviz) instead). If the GUI is thus disabled, it can later be launched without
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Fig. 5.10: (a) RACE walls visual model (gray) and collision model overlaid (orange). The
collision model skips fancy features of the visual model for the sake of performance, e.g.
the area top-left is unreachable by the robot and is not part of the collision model. (b, c)
complex features like the door latch or even the door itself may be omitted. (d) windows
too. (e) and door frames.
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restarting the whole simulation (by the rosrun gazebo gui command). Disabling
the GUI yields a possible improvement of ~0.10.

A lot of computation is needed for collision avoidance in the simulation and so using
simplified collision models is crucial. Simplification involves using geometric primi-
tives like boxes and cylinders for the collision model (or parts of it) instead of more
accurate shapes. This is especially helpful when using a complex mesh (with many
faces). For example a wonderful mesh cup could have a cylinder collision model. Such
simplifications could lead to an improvement of up to ~2.5.

On the subject of simplification, collisions with walls must almost always be checked.
Simplified environmental and collision models therefore help a lot (especially when
using a mesh model, e.g. Collada or STL format). Improvements of between ~0.33
and 3.0 are possible.

In Gazebo these improvements can be realized using different models for the <visual>
and <collision> tags. For visualization a sophisticated version can be used and for
collision checking a much simpler version might be sufficient. It is irrelevant whether
mesh, box or cylinder is used.

Besides the simulation environment, optimization of robot capabilities is also possible.
Navigation and localization can easily reduce performance by ~0.5. One can therefore
try to reduce the number of particles on which AMCL localization is based, for exam-
ple, inside the amcl_node{*}.xml configuration file. In this work the min_particles
and max_particles are reduced by a factor of 50 (from 500 to 10 and from 5000 to
100 respectively). The navigation system must be verified with these settings. A very
accurate localization map created within the simulation itself improves accuracy signif-
icantly. An empirical test showed improvements of ~0.10. On the system tested, this
is a small improvement. On other systems this number can vary and the optimization
is given here only for completeness.

The performance improvements were collected in chronological optimization order and
are probably very dependent on the Gazebo world used.

5.5 Modeling Object Properties

Inertia I describes how an object resists rotational acceleration. It can be seen as
the rotational analogue of mass?. I has units of [mass| - [length)?. In this work and
for convenience, objects are considered to have symmetric mass distributions, with
constant density throughout the object; the axis of rotation is taken to be through
the center of mass. In the case of a cylinder, as shown in Fig. 5.11, the inertia for the
central axis, i.e. the z-axis here, is I, = %mrQ. The inertia for the x- and y-axes is

9 http://en.wikipedia.org/wiki/List_of moments_of inertia (March 18, 2015)
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I, = I, = £m(3r* + h?). For the cylindric object used in the pepper mill toppling
scenario, the resulting Gazebo model description would be as shown in Appendix A.2.
This model description contains the inertia and mass definition used to calculate the
model dynamics among other things. In this specific example the moments of inertia
are scalar, but in general the moment of inertia is a tensor. To obtain the scalar values
above, the tensor moment is projected along an axis. The three dimensional inertia
tensor for the above example would be as shown in Equation 5.4. The inertia of other
geometric shapes can be obtained here®.

5m(3r? + h?) 0 0
I = 0 +Sm3r2+h?) 0 (5.4)
0 0 smr?

PO h

Fig. 5.11: Solid cylinder

5.6 Update Simulation by Object Recognition Results

Hyperreality is an abstract concept based upon a tight relationship between reality
and virtual reality (the simulation). A fundamental aspect of the simulation is that
it is updated whenever objects appear or change (in the robot’s view) in reality. In
this thesis a simulated virtual environment will be used for reasoning about robot
action results. This environment will therefore be partially updated with objects the
robot encounters in reality. However, no single object recognition algorithm is perfect.
Uncertain perception information is always present and must be dealt with. A robust
object recognition approach using multiple complementary detectors, as used in this
work, is presented in [Klil5].

In a real scenario in which the robot faces a table-top situation, the robot may not
successfully recognize the objects on the table. Traditional 3D object recognition in-
volves comparing a segmented RGB-D point cloud against an ideal 3D model stored
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in a database. The output of successful object recognition is the object ID correspond-
ing to the correct real world object. In this approach the database is extended with
new attributes that store additional information about objects. This information is
needed in order to create an instance of the object in the simulation. Objects in the
database are referenced by their ID and include at least a Label and a Category. For
Gazebo simulation compliance, the attributes 3D model and Gazebo description were
added. The 3D model holds a file name referring to a Collada!® model that is used
for object recognition and for spawning into Gazebo. The XML Gazebo description
represents the model information in either the Simulation Description Format (SDF')
or the Unified Robot Description Format (URDF)! such that it can be spawned into
the Gazebo simulation.

Successful object recognition provides the object’s ID and also provides its 3D position
(and orientation), which is transformed into the Gazebo world coordinate system and
used to spawn the object at the correct location. Fig. 5.12 shows the robot situated in
front of a counter, recognizing the two mugs on top of the counter; the spawned objects
are shown in the simulation. When re-creating a real situation in the simulation, the
robot’s position is also transformed after it has been retrieved from an AMCL. Any
pose applied from the simulation into reality is transformed in the opposite direction.
The applied affine transformation is dependent upon the robot’s AMCL map relation
to the Gazebo world and has to be calculated once for the environment setup in use.

Fig. 5.12: A real table-top scenario in which the robot faces two mugs on the table (a).
The objects are recognized in reality (b) and are spawned into the simulated scene concur-
rently (c).

A related area of increasing motivation and effort is the field of mixed reality simula-
tion, which was studied for mobile robots in [CMWO09] and in [RKZ12].

10 https:/ /www.khronos.org/collada (September 8, 2015)
1 http://wiki.ros.org/urdf (March 16, 2015)
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5.7 Generating High-Level Activity Experiences

In this section, a framework for gathering experiences through the process of imagi-
nation is described. The framework was developed as part of this work and is based
on the Gazebo simulator. The part developed is a software layer to:

 start and stop the Gazebo simulator and the RACE system;
« manipulate the initial robot experience automatically;

« store scenario experiences ordered in episodes!? on the Blackboard.

In the following paragraphs, two approaches to generating virtual experiences are
described. Both feature HIRES and are documented development steps towards the
final HIRES system.

5.7.1 Creating experiences with prediction based on robot imagination

Imagination provides prediction of the results of robot actions and activities. This
leads to improved robot behavior by detecting successful and failed robot actions -
and thus allows replanning - before plan execution fails on the physical robot. The
main concept is described in [SHL13], where a more technical report is given.

In order to integrate the facility to create and use simulations online, i.e. when the
RACE system is running, a new component, the ‘Mediator’, has been introduced.
The Mediator communicates with the Blackboard. Its interface allows execution of
robot instructions and delivers the results of those executions. These results might
then be used by a planner to replan activities. An example would be the currently
implemented SHOP2 planner, but future planners, such as a spatial planner, will be
supported as well. An overview of how the related modules communicate with the
current RACE system is given in Fig. 5.13.

The Mediator aggregates information from multiple simulations and delivers this in-
formation to the RACE system. Furthermore it sets up multiple simulations with the
information provided by the RACE system.

The integrated Gazebo simulation provides (dynamic) physics constraints (such as
object collisions) and kinematic constraints for the PR2, e.g. while manipulating with
its arms or moving its base.

121n this work, an episode is a coherent set of temporally and spatially related experiences, typically
occurring during one scenario run. Running (or re-running) a scenario causes the creation of a new
episode inside the robot’s equivalent of an episodic memory [Tul72], i.e. its Blackboard (in contrast
to the robot’s equivalent of a semantic memory, which is its ontology).
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Robot Control System

updates activity results Blackboard — world update

creates ~ ——_creates

P - T
" Simulation N )
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Y LN starts)
‘\\Robot Activity l\l/F

Fig. 5.13: Dynamic View: The Mediator is triggered by the world up-to-date Blackboard.
When triggered, it creates a simulation with a defined initial state and asks the robot to
execute an activity. This may happen in a loop until the completion criteria are met, e.g.
all parameters have been tested.

With this abstract architecture it is possible to develop a system that incorporates
multiple simulations to test robot actions (parametrization) ahead of real execution.
This approach was refined in Section 5.2.

5.7.2 Unsupervised Experience Acquisition

The collection of a sufficient knowledge base (of experiences) for learning can be a
cumbersome task, especially when using a real robot. Whereas the PR2 robot should
not operate unsupervised, the simulation of the system can. Therefore a framework
is introduced that employs the Gazebo simulation, starts the RACE system, monitors
system runs, executes scenarios and takes care of proper shutdown.

The proposed Automated Scenario Execution Framework (ASEF) enables unsuper-
vised learning by creating experiences over many different scenarios. Scenarios can
vary, e.g. in the robot’s environmental setup and/or the instructions given to the
robot. The ASEF creates different scenarios and executes them, recognizing success

or failure status automatically. Status can be detected via an activity result that is
updated on the Blackboard by the SEM. The latter is described in [SHL13].

The main benefits are the automatic changes to the robot and its environment in
simulation. Furthermore the simulation can rely on accurate sensor values, i.e. without
sensor noise (ideal sensors). Fast prototype addition of (as-yet unavailable) sensors is
possible.

As an example, a simulated thermal sensor was implemented as a simulated version
of the real thermal camera introduced in Chapter 3. It uses RGB color information
from objects as a proxy for their thermal properties. A predefined color, such as a
hexadecimal RGB value of 0xFF0000 for idealized ‘Red’, is recognized as a thermal
feature. With this approach an ordinary simulated RGB camera interface can be used.
A sample visualization is shown in Fig. 5.14.
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Fig. 5.14: A simulated thermal sensor. The window at the bottom left shows the visual-
ization of mugs with different simulated temperatures (red indicates a higher temperature
than yellow).

The ASEF handles the complete RACE system start up (simulation) including robot
task initiation. This avoids the need for user interaction and prevents potential brit-
tleness (e.g. of the simulation start up) interfering with scenario execution, i.e. if an
error on a (sub-)system might still occur it is detected and the scenario run is aborted
and re-started.

A per-scenario configuration file allows the specification of objects in the environment
(e.g. tables, chairs and tabletop objects) and of robot instructions. This means that
robot instructions, such as “Serve guest1”, can be included in the file. An example file
is shown in List. 5.1. The format is based on that of a ‘fluent’'® [PMvRH13], as used
in RACE, e.g. for loading the initial knowledge into the Blackboard. It provides some
convenient features. Attachments binds entities together spatially in a hierarchy. This
is useful e.g. when moving a table that has chairs ‘attached’ to it. Modifications
allow specification of alternative positions for an object. Each coordinate (axis) takes
a vector of different values that define the spatial difference between multiple scenario
runs.

13 A fluent is a semantic spatio-temporal data structure that represents current knowledge (i.e. an
experience) and is the atomic data type of the Blackboard. It is an instance of a concept from the
ontology and usually has a start and finish time.
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Group: testGroupl
'FluentPoseModification Choices: 3
Instance: poseTablel Modifications:
Grogp: testGroupl - [hasX, [0, 3, -1]]
Cho;cgs: § - [hasy, [0, -0.7, 2]]
Modifications: - [hasZ, [-0.375, -0.375, -0.375]]
- Eﬁasi, Eg, ?,51]]2]] - [hasYaw, [0, -1.57, 0]]
- asy, s 1.9, ~ Attachments: [poseMugl, poseMug2]
- [hasz, [-0.375, -0.375, -0.375]] . P 85 P &
Attachments: [poseChairl, poseChair2] |FluentPoseModification
- L . Instance: posePR21
!FluentPoseModification Group: testGroup2
Instance: poseTable2 Choices: 3
Group: testGroupl Modifications:
Choices: 3 - [hasX, [0, -1, 0]]
Modifications: - [hasYy, [0, 1, 1]]
- [hasX, [0, 0, 3]] - [hasYaw, [0, -2, -0.43]]
- [hasy, [0, 1.5, 1]] Attachments: []
- [hasZ, [-0.375, -0.375, -0.375]]
Attachments: [poseChair3, poseChair4] List. 5.1: An example configuration for three
IFluentPoseModification different scenario runs.
Instance: poseCounterl

The framework loads the environmental information directly from the Blackboard
(initial and scenario knowledge) and applies user-defined changes in order to create
the simulation environment. The resulting environments could look like those depicted
in Fig. 5.15, in which three different spatial environments are created in sequence for
a coffee serving scenario.

Fig. 5.15: Examples of three scenario runs. Each has a different initial environment setup
but the robot was given the same instruction: “Serve a coffee”.

During scenario execution, various information is given to the user (via the terminal),
such as the number of fluents currently being processed. After each run a per-run
summary is given and on completion of all runs a final summary is output. These
summaries include the number of episodes created and their references in the Black-
board, the instructions given to the robot, the time taken and brief statistics on the
total number of fluents and the average fluents processed per-second, as shown in
List. 5.2. A possible future addition will be the management of different ontologies
(updated after learning).
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$rosrun race_simulation_run sim_run 20
RUN 20 SUMMARY =
INFO]: Scenario episode is: ’2013-10-10T20:14:10°
INFO]: Scenario instruction: ’achieve serve_coffee_to_guest_Task guestl’
INFO]: Total (sim) time used: 300.21 seconds
INFO]: Total number of Fluents used: 381
INFO]: Average ratio of (Fluents/sec): 1.27

[ W W W W |

= TEST SUMMARY =

=[ INFO]: 20 episodes created during test with names: ’2013-10-10T16:50:30°’
’2013-10-10T17:00:33’ ’2013-10-10T17:13:563° ’2013-10-10T17:27:57°
’2013-10-10T17:41:08’ ’2013-10-10T17:52:11° ’2013-10-10T18:03:46"
’2013-10-10T18:13:40° ’2013-10-10T18:25:29° ’2013-10-10T18:36:06"
’2013-10-10T18:47:46° ’2013-10-10T18:50:54° ’2013-10-10T19:05:33"
’2013-10-10T19:19:26° ’2013-10-10T19:22:34° ’2013-10-10T19:33:12°
’2013-10-10T19:44:05° ’2013-10-10T19:47:12° ’2013-10-10T20:00:35"
’2013-10-10T20:14:10°

=[ INFO]: Average Fluents per episode: 386.42

=[ INFO]: 37 episodes are now in repository ’sim_runi’

List. 5.2: An example output of 20 scenario runs.

5.8 Generating Dynamics-based Experiences

The previous section described an approach in which experience was obtained in an
unsupervised way by automatically executing scenarios while significantly changing
the robot environment. In contrast, this section describes an approach in which the
robot executes scenarios in a known, fixed, environment. Whereas before it was of
interest whether the robot could still solve its task with an altered environment, here
the question is whether the robot can fulfill its task in a fixed environment. And if not,
whether it is possible to learn the cause of failure in order to ensure future success.
This work focuses on providing the framework and data for learning. Actual learning
is not included here.

Learning from toppling events requires many scenario runs. Simulation is an ideal
tool to obtain the necessary training data, as it allows direct object tracking and
creates reproducible situations. The HIRES system [RKZZ14] is used as the underlying
framework. All of the resulting data is useful: toppling events ( fioppic), Where a pepper
mill (or any other object carried on the robot’s tray) actually topples; shaking events,
where the pepper mill bounces but does not topple; and non-toppling events (no
bouncing). Furthermore the robot dynamics (Rg,,), such as velocity v, acceleration
a and jerk j, should be included in the training data, as should the dynamics of the
pepper mill (Ogyn). Dynamics data also includes the current position P,,4 in 2D
(z,y, ) at time t. Definitions and relations between an episode E (set of fluents) and
a fluent f (n-tuple of time, episode id, object deviation, object dynamics and robot
dynamics) are shown in Equation 5.5 and 5.6. The data visualization is shown in
Figures 5.16, 5.17, 5.7, 5.18. In the work presented, a vase substitutes for the pepper
mill as a tall tray object.
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In this scenario, an episode starts from the beginning of the scenario or from the last
toppling event and lasts until the next toppling event. During an episode, fluents
containing significant information are constantly created and stored. The fluent high-
level format is shown in Listing 5.3 and a sample fluent is shown in Listing 5.4 in a
data-mining friendly format.

To train with realistic data, a scenario was created that lets the PR2 robot drive to
a pre-manipulation area (PMA) selected sequentially from those stored in the Black-
board. A qualitative comparison of real and simulated results is presented in Chap-
ter 6, Section 6.1.

5.8.1 Toppling Detection

Detection of toppling is generally straightforward in a simulation. Every object is
constantly updated in the simulation event loop - at 1000H z in Gazebo. An object’s
position on the robot tray can be queried and can be used to calculate quite accurate
object dynamics. In this scenario an object like a pepper mill is tracked. To obtain a
vertical deviation, the object’s normal vector is compared to its initial normal vector
(robot z-axis, upward), see Figure 5.7. To obtain the horizontal deviation the object’s
current position is compared to its initial position. Any toppling event is detected
and stored in the data trace for later processing. As described before, a toppling
event concludes an episode and starts a new one, resetting the tray object’s pose and
orientation.

5.8.2 Data Storage and Learning
In order to provide a facility for (offline) learning, all data generated during scenario

execution is stored on-the-fly in a database. The database can later be mined to aid
learning about the toppling demo.

65



5 Functional Imagination

1 # Message to publish base translational wvelocity, acceleration and jerk

2 # angular veloctity, acceleration, jerk

3 std_msgs/Header header

4 uint32 EpisodeID

5 string state # ‘notopple’, ‘shaking’, ‘topple’
geometry_msgs/Vector3Stamped obj_dev # Object angular and linear deviation
7 race_pr2_markers/BaseDynamics obj_dyn # Object absolute dynamics

s race_pr2_markers/BaseDynamics base_dyn # Robot absolute dynamics

List. 5.3: ToppleEpisodePart high-level fluent message definition

57492000000,0,57492000000, ,

0,

notopple,

1023,57492000000, /base_footprint,0.000200874365274,0.0146495010202,0.0,

0,57154000000, /map,0.108661428094,0.117334552109,0.693616688251,

9.20355669223e-05,0.0,0.0,0,0,,0.0,0.0,0.0,

0,56996000000, /map
,0.000426712387707,0.00571070192382,0.113538585603,0.370499312878,

0.464733093977,2.83434391022,0,56996000000, /map
,7.93312692642,12.701253891,-1.86824214458

List. 5.4: Sample fluent for a ‘notopple’ event

The monitored data visualization is shown in Fig. 5.16, 5.17, 5.7 and 5.18.

—<— North

L 62 -

(b)

Fig. 5.16: PR2 approaching PMA north of tablel in the simulation (a). The thickness
of trace markers indicates speed, colors indicate acceleration. The red circle indicates the
actual rotation center and radius of the tray object. The color indicates positive acceleration
in green and negative acceleration in red (b).

5.9 Many Worlds Interpretation

When it comes to imagining a fictional world, a logical next step is to extend that
approach to imagining many worlds in parallel. Whereas this is difficult for humans
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Fig. 5.17: PR2 approaching PMA east of counterl in simulation (a): A smooth trajectory
allows ‘acceleration-sparse’ movement (b).
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Fig. 5.18: Angular object deviation vs. linear velocity/acceleration: The blue line indicates
the object’s angular deviation from the vertical reference vector. The dark green line indi-
cates the velocity. The light green line indicates the acceleration. All values are absolute
values. The Y-axis indicates angular deviation in radians. The horizontal line indicates the
empirical value where the object topples and is reset.

67



5 Functional Imagination

it is straightforward for computers if appropriate resources are available. A system
imagining multiple scenes of the same or different scenarios would naturally save time
resources in the process of predicting future events.

The Many Worlds Interpretation (MWI) is a theory originating from quantum physics.
It states that all possible alternative histories exist in parallel, i.e. any event that can
possibly happen does actually happen thus leading to a “many-worlds universe”. Hugh
Everett III first published this theory in 1956 in his doctoral thesis The Theory of the
Universal Wave Function, which was compiled later in [BSD73]. It is about the second
most accepted theory in quantum mechanics, after the Copenhagen theory [Teg98|.
Some recent popular work by David Deutsch employs the concept in theoretical sup-
port of quantum computers [Deu85].

In theory, the ability to access multiple worlds allows the results of different actions
or action parametrizations to be evaluated. The common ground (i.e. the domain)
has to be the same in all worlds investigated. In practice this would work as follows.
Firstly, a scenario is created, different actions are applied (with a robot) within the
scenario and the results are collected. The results are then evaluated and the best
is selected (according to some selection criteria). The “action parametrization” from
the selected world is then extracted and applied to the real environment. The term
“action parametrization” will be explained later.

In order to predict events, the range of possible alternatives is important. Relevant
questions would, for example, be: what would happen if the robot took this route
rather than that route, what if it placed an object in one position on the table rather
than another? Combining the theory of MWI with the capability of today’s available
computational power allows a many-simulation interpretation of future action results,
in particular for robotics.

One programmatic approach is to map an action parameter to one simulated world.
For each reasonable parameter a new world is created, with the upper limit to the
number of possible worlds depending upon the available computational power. After
an action finishes, the related world is either terminated, in order to save resources, or
re-used for a similar simulation. Each simulation provides information on the result
of the action and back-tracking leads to the parameters which caused that result.

Another approach is not to limit a simulation to one action but to “keep it running”.
That means creating a simulation at a specific time, executing consecutive actions
within it and tracing the simulation state at the end of a complete episode (or indefi-
nitely). As small variations during the simulation can lead to very different simulation
states, this approach is very computationally intensive and thus provides very little
practical granularity.

In the example of a robot given the task of moving to a table, depending upon its
initial position and its environment, the robot can decide whether to approach the
table from one side or another. The decision will determine the robot’s trajectory and
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might have other implications. The action could be parametrized with two valid goal
positions. Thus in this work, the term “action parametrization” refers to the possibility
for a robot action to be instantiated with different parameters that possibly result in
different world states after execution.

5.10 Summary

This chapter developed the methods and experimental design required in order to
ensure a robust realization of the approach initially stated (cf. Section 1.4). The
scenario setup was introduced and the required robot capabilities were developed. A
model for representing the problem domain was developed and a detailed architecture
was created. The chapter also introduced the tools and methods necessary for the
creation of a simulation environment for the problem domain. In order to help meet
real-time constraints, a detailed performance optimization was performed on various
elements of the simulation. A framework proposal to integrate imagination into a
Blackboard-based robot control system, such as the RACE framework, was given
and two frameworks for creating unsupervised experiences were described. Finally
an overview of overlapping aspects of this work and the MWI was presented. The
next chapter, Chapter 6, describes experiments that measure the effects of adding
functional imagination to a robot system.
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Experimental Scenarios and
Evaluation

This chapter presents the experiments used to evaluate the functional imagination
approach described in Chapter 5. The simulation used to implement imagination is
verified for accuracy and repeatability. If the simulation is accurate, it is possible to
compare simulated and real world action results. Assuming the correctness of the sim-
ulation, it will be shown that predicted results from a simulation can prevent failures
in reality. Furthermore the results will show that multiple aspects of reasoning (spa-
tial, temporal, causal) derived from simulation can enhance a plan-based system that
uses execution monitoring and will thus support the hypothesis stated in Section 1.4.

In order to verify simulation the same experiments were executed in simulation (Gazebo)
and on the real robot (PR2). The experiments for evaluating action result prediction
were performed on the real robot (with simulation based imagination). The experi-
mental restaurant environment is shown in the ROS visualization in Fig. 6.1. This
figure shows labels of both real world and artificial concepts. Whereas most labels
in the robot domain relate to existing objects (for example the label ‘tablel’ refers
to the first table in the restaurant environment), a label for an artificial concept has
also been introduced. The representation of a pre-manipulation area (PMA) was in-
troduced because the underlying collision avoidance system prevents the robot from
navigating close to an object. The robot also has limited ability to manipulate objects.
For example, putting an object on the robot’s tray would cause a collision with the
table next to the robot. With the concept of a PMA, a robot action dedicated to nav-
igating close to tables was developed for the RACE project. Throughout this work,
whenever a robot trajectory is mentioned, it refers to a trajectory between PMAs.

The following sections first present the results of validating simulated actions against
reality. Subsequently, the results of executing the proposed system on a PR2 are
presented.
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m PMA NorthTa

nearStartAreal

[~
E} table2
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Fig. 6.1: Restaurant floor map with markers for the counter and the two tables (filled blue
boxes) and for each PMA (one for a possible approach direction): two for each table on
opposite sides, one for the counter and one in the start area near the door on the right.
North is defined here as upwards.

6.1 Simulation Validation

Is a physics-based simulation deterministic or does it include (some) in-built noise? A
simple deterministic scenario is created for an object on a robot tray almost toppling
while the robot is in motion. The deviations are measured and compared for several
trails. If simulation is deterministic the results should be very similar. The Gazebo
simulation employed is deterministic in the sense that repetitions of the same scenario
will most likely lead to similar results. This is not guaranteed however, as system
behavior is affected by other aspects, such as operating system scheduling. Scheduling
alters both the timing of the simulation and the allocation of CPU resources to the
calculations. In combination with floating point rounding effects, this can have a
minor influence on simulation outcomes.

Verification and validation of computer simulations is very common in the develop-
ment of accurate and credible models. In this work the simulation model is used to
predict real-world states and thus depends strongly on accuracy and reliability. Sim-
ulation is widely used in the development of software algorithms for areas such as
exploration, mapping and navigation. Two important limitations are that Gazebo, or
more precisely the ODE physics-engine, can only simulate rigid-body dynamics and
that its monolithic dynamics engine does not allow the use of distributed computation.

As a partial conclusion: OS (Ubuntu Linux) scheduling leads to at least partial ran-
domness. This cannot be changed without altering the Gazebo code base itself, which
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is outside the scope of this work.

There has been some work on this topic in the literature. [BB07] presents a qualitative
evaluation of free, publicly available, physics engines. Its criteria are the number of
constraints implemented (among others). The most useful constraints are models of
real life system behavior. Common constraints are, for example, those affecting joints
(prismatic, revolute and spherical). [WHR10], in contrast, evaluates the Bullet engine
as an ingredient for physical reasoning. It studies how accurately the pushing of flat
objects across a table with a robotic arm can be predicted. [OFY07] implements an
omnidirectional camera model for Gazebo and verifies it by qualitative comparison of
rendered images with images obtained by a real omnidirectional vision sensor.

[KHO4] describes the design and usage paradigms of the Gazebo simulator. Fig. 4.2
shows how a model is constructed in a tree-like hierarchical structure and how world
models are connected to the external Gazebo interfaces. [FCKT09] verifies a Zigbee
based distributed communication system by comparing simulated and real results.

Generally a physics-based simulation has no noise apart from the minor noise intro-
duced by the underlying hardware and OS, i.e. scheduling. An obvious exception is
noise that is explicitly modeled, such as the Gaussian noise used in the Gazebo laser
simulation. Also, the standard deviation o of the durations of actions measured in
the restaurant environment within Gazebo is small, as can be seen in Table 6.1. The
corresponding measurements with the PR2 are shown in Table 6.2. A comparison of
the same actions in simulation and in reality is shown graphically in Fig. 6.2. The two

tables list the action executed, with parameters as appropriate. In each table, ‘Sam-

ples’ is the number of iterations performed, o = \/ L3N (z; — p)? is the standard

deviation of the duration, p is the mean duration and ‘to/from’ gives the acronyms
of the starting pose or posture of the robot. As discussed earlier, for the move_base
action, ET2 corresponds to EastTable2, EC1 is EastCounterl and so on. For the
move_torso action, ‘U’ means up and ‘D’ means down. The tuck_arms action uses
‘U’ for untucked arms and ‘T’ for tucked arms.

The probability distributions of these measurements are shown in Appendix A.8. An
example measurement is shown in Fig. 6.3. It shows the !'move_base_param action
driving the robot from PMA east of counterl to PMA south of tablel. Although the
test data size is rather small with only 24 samples, the histogram and the overlaid
density of action duration show an approximately standard Gaussian distribution.
The QQ plot shows independent standard normal data (in seconds) on the vertical
axis against a standard normal population on the horizontal axis. The linear fit to
the data indicates that they are normally distributed. There are some clear outliers
that do not fit (five in total in Fig. 6.3 a,b and two in Fig. 6.3 c¢,d). They show up
disproportionately in the plots because of the small sample size.

The validation data was retrieved by running the robot capabilities (perception, ac-
tuation) and the RACE system. The system load on each computer performing the
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Action Parameter  to/from  Samples o 7

1 'MOVE_BASE_PARAM fast EC1/ET2 20 0.45 14.04

2 \MOVE_BASE PARAM  slow  ECI/ET2 20 059 20.22
3 I|MOVE_BASE_PARAM fast EC1/NT1 20 0.72  15.99
4 'MOVE_BASE_PARAM slow EC1/NT1 20 0.57 18.38
5 IMOVE_BASE_PARAM fast ET2/EC1 20 5.38 24.08
6 'MOVE_BASE_PARAM slow ET2/EC1 20 0.82 27.00
7 'MOVE_BASE_PARAM fast NT1/EC1 20 0.89 15.33
8 IMOVE_BASE_PARAM slow NT1/EC1 20 0.89 19.06
9 'MOVE_TORSO U/D 20 0.02  20.99
10 'MOVE_TORSO D/U 20 0.04 21.69
11 'TUCK_ARMS u/T 20 0.09 9.25
12 'TUCK_ARMS T/U 20 0.08 5.70
Average 0.88 17.65

Table 6.1: Quantitative results of the standard deviation o of various simulated actions.

Action Parameter  to/from  Samples o I
1 'MOVE_BASE_PARAM fast EC1/ET2 20 1.57 16.40
2 IMOVE_BASE_PARAM slow EC1/ET2 20 1.47  22.59
3 IMOVE_BASE_PARAM fast EC1/NT1 20 0.95 16.85
4 'MOVE_BASE_PARAM slow ECI1/NT1 20 0.53 19.41
5 IMOVE_BASE_PARAM fast ET2/EC1 20 1.23 23.07
6 'MOVE_BASE_PARAM slow ET2/EC1 20 1.39 29.86
7 'MOVE_BASE_PARAM fast NT1/EC1 20 1.07 16.59
8 'MOVE_BASE_PARAM slow NT1/EC1 20 0.46 20.89
9 'MOVE_TORSO U/D 10 0.03 23.39
10 'MOVE_TORSO D/U 10 0.07 22.19
11 'TUCK_ARMS u/T 10 0.03  8.58
12 ''TUCK_ARMS T/U 10 0.01  5.29
Average 0.74 18.76

Table 6.2: Quantitative results of the standard deviation o of the duration of various real
robot actions.
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Fig. 6.2: Simulation vs. PR2 action duration. The two charts show the simulation and
PR2 action duration mean, p, (a) and their standard deviation, o, (b), both in seconds. The
actions on the x — axis correspond to those in Tables 6.2 and 6.1
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Fig. 6.3: Statistics of action !MOVE_BASE_PARAM on the real robot (a,b) and in simulation
(c,d). (a,c) Density and Histogram. (b,d) Q-Q Plot.
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6.1 Simulation Validation

simulation is close to its limit. System load will thus influence the measurements
slightly. The data shows that o and p are slightly smaller in simulation than on the
real robot and that arm and torso movements (actions 9 to 12) have very small o both
in simulation and in the real environment. Moving the base from ET2 to EC1 (the
5th action) seems to have a very high ¢ in simulation, whereas the same trajectory in
the opposite direction (action 1) has a very low ¢ (< 0.5s). The total duration might
differ according to the robot start position. The duration depends heavily upon the
robot’s orientation when it reaches or leaves the table. The orientation determines
whether or not the robot must rotate. Nevertheless the test data reveals three tests
with obviously excessive durations (< 36s) that indicate a problem. The most likely
explanation is that a navigation problem resulting from a loss of localization caused
the action to be aborted or led to the selection of an unfavorable choice of low-level
navigational behaviour. In summary, the test data qualifies the o value of action 5 as
an outlier.

Ignoring outliers, the first observation is that there are only small differences between
simulated and real results, with a maximum difference in mean values of 2.9s (action
6). The difference may reflect the quality of sensor data, which is almost perfect in
simulation but includes significant noise in reality. Odometry and laser sensors, which
are used for localization and path planning, are noisy due to wheel slippage and to
reflections or absorption of the laser beams by the environment. Furthermore, the
laser sensor has inherent noise. The simulated friction and laser noise (which has
a Gaussian distribution) may imperfectly model reality. Arm and torso movements
depend on real and modeled joints, springs and friction. Deviations could result from
slightly inaccurate modeling parameters.

Another qualitative comparison between simulated and real navigation is shown in
Fig. 6.4. In this experiment the robot was instructed to approach every PMA in the
restaurant. The resulting trajectories are recorded and visualized. The simulation
ran for about four hours (simulation time) corresponding to about one hour here
in real time. In the figure the thickness of the trace indicates the robot’s velocity
with a maximum of 0.55ms™!, green indicates positive acceleration and red indicates
negative acceleration. The few outliers from the real trajectory result from a noisy
laser scanner adding “ghost obstacles™ that cause the path planner to add detours.
The two free spots in the trajectory indicate the two restaurant tables, as can be seen
in Fig. 6.1. Deviations are mainly caused by sensor noise from the real sensors and by
the systematic “ghost obstacle” issue. With those caveats, the two trajectories look
very similar, especially the velocity and acceleration readings.

Related diagrams showing velocity against time for both simulation and reality are
shown in Appendix A in Fig. A.6. The “ghost obstacle” issue manifests itself in
diagram artifacts. Linear and angular density histograms are shown in Fig. A.7. Jerk

L http://answers.ros.org/question /37126 /pr2-sees-ghost-obstacles-in-tilting-laser (March 16, 2015)
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6 Experimental Scenarios and Evaluation

densities in simulation and reality are shown in Fig. A.8. Comparisons of the object
dynamics with robot base dynamics are shown in Fig. A.9, A.10, A.11, A.12 and A.13.

(a)
(b)

Fig. 6.4: Real and simulated robot trajectories compared: Simulation (a), real (b). The
robot was instructed to approach every PMA in the restaurant.

6.2 Spatial Prediction

The following two scenarios are introduced to show the spatial reasoning capability
of HIRES. In the first scenario the robot evaluates different self-torso positions in
combination with four table-relative approach configurations in order to determine
the optimal robot configuration for object recognition and for table-top manipulation.

6.2.1 Torso Poses

Table-top manipulation often occurs in robot service tasks in human environments
- and often fails. The complexity of such actions includes perceiving the table and
objects, planning collision-free arm motion and grasping the object in a stable way.
Due to sensor noise and to the robot’s position in relation to the table and objects,
perception and motion planning can sometimes fail.

A simple experiment illustrates the use of simulation in such situations. Instead of
giving the robot a fixed pose in front of the table, it is given four poses: default, left,
right and behind. The robot’s default configuration in front of the table can be seen
in Fig. 6.5. The latter three poses are derived from this default position. The exact
definitions are set by empirical measurements. In the experiment the robot is given
additional freedom to parametrize the pick-up action, namely the pre-condition of its
pose. The robot executes segmentation and recognition, as well as grasping an object
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6.2 Spatial Prediction

on the table. The grasp-planning and perception results are measured and compared.
They can be seen in Fig. 6.6.

Simulation here is performed offline. The results show significantly improved recog-
nition results in the torso-down position and an increase in grasping quality of 32.5%
in the torso-up position. The grasping quality indicator is measured in the standard
ROS manipulation modules and expresses a relative metric of individual grasps. The
recognition probability indicator is also measured in the standard recognition mod-
ules and expresses the likelihood that an object is similar to a 3D model in a CAD
database. This experiment shows that it is possible to predict the results of standard
robot actions and to reason using those predicted results.

Fig. 6.5: Overlay of different poses tested within the simulation. The results of the simula-
tion are used to aid object recognition and successful motion planning for grasping objects.
This image shows four tested poses with the robot in front of a table on which there are
some graspable and recognizable objects.

M torso up Il torso down

Fig. 6.6: Object recognition results (skill probability) for different robot torso and base
positions: Objects can be recognized most reliably in the torso-down position. The base
position in front of the table has little effect on recognition probability.

6.2.2 Table Occupation

In a restaurant, a typical task for the waiter might be to serve a coffee in front of
a guest. The setup of the physical environment is illustrated in Fig. 6.7. The robot
is given the instruction achieve serve_coffee_to_guest_Task guestl through its
Command Line Interface (CLI). The planner is triggered and creates the plan shown
in Listing 6.1 according to the problem description and current knowledge. Each line
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represents a plan operator with its arguments. The plan operators correspond to robot
capabilities and are bound to the robot. Arguments are instances from the robot’s
ontology and are stored in the central component of the RACE architecture, the Black-
board. The Blackboard collects and distributes information between different system
components. Fig. 6.9 shows the robot’s environment with respect to its knowledge.

1 tuck__arms armtuckedposture armtuckedposture
> !move__base premanipulationareaeastcounterl
3 !move__torso torsoupposture
Ituck__arms armtuckedposture armuntuckedposture
5 !move__arm_ to_ side rightarml
¢ !move__base_ blind manipulationareaeastcounterl
7 Ipick__up_ object mugl rightarml
s !move__base_ blind premanipulationareaeastcounterl
9 !move__torso torsomiddleposture
10 !move__arms_ to_ carryposture
11 !move__base premanipulationareasouthtablel
12 !move__torso torsoupposture
13 !move__arm_ to_ side rightarm1
14
1
1

!move__base_ blind manipulationareasouthtablel
5 !place__object mugl rightarm1 placingareawestrighttablel
¢ !move__base_ blind premanipulationareasouthtablel

List. 6.1: Generated (parallel) plan for serving a coffee.

11 !move__base premanipulationareanorthtablel

12 !move__torso torsoupposture

15 !move__arm_ to_ side rightarml

11 !move__base__blind manipulationareanorthtablel

15 !place__object mugl rightarml placingareawestlefttablel
16 !move__base__blind premanipulationareanorthtablel

List. 6.2: Generated (partial) alternative plan for serving a coffee. The adapted operator
parameters are highlighted.

When the robot approaches the table from the south, as illustrated in Fig. 6.7, plan
step 15 instructs the robot to place the mug on the table. This fails because various
objects occupy the placing area and this would cause the complete plan to fail. HIRES
is designed to reason about the next best action and to prevent the plan from failing.
In the scenario presented, the “place” action is considered crucial and is the most likely
to fail. Therefore it is chosen to be reasoned about before it is executed in reality.

Upon successfully picking up the mug (plan step 7) HIRES is started. It uses the
post-condition of the 14th plan step (the robot being at the manipulation area south
of the table) and sets up the simulation accordingly (Fig. 6.8) in order to execute the
next plan step (place the mug). This fails in the simulation too but this failure will
not affect the original plan. Moreover, it provides the plan with failure information
before actual failure. The failure is detected by the return value of the “place” action
in the simulation. The planner, in return, is able to repair the current plan (a.k.a.
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6.2 Spatial Prediction

Fig. 6.7: The environment setup includes the counter, table and various table-top objects.

replanning) and to produce a (partial) new plan, as shown in Listing 6.2. This is
possible because the two different manipulation areas (north and south) are valid
parameters to the move base operator. As this work does not focus on particular
replanning methods, for the sake of simplicity the planner creates partial plans before
executing them. This allows replanning by simply changing the plan parameter and
planning again (partially).

Fig. 6.8: The robot reaches the table to place the mug in front of the guest (omitted here,
supposed to sit at the side of the table to the robot’s left). As the placing area is occupied
by various items the robot is unable to succeed.

As indicated in Table 6.3, plan execution fails while simulating serving to the PMA
south of tablel (as it would in reality). Subsequent reasoning, which decides to serve to
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Fig. 6.9: Planning scene consisting of bounding boxes and coordinates for the table and
counter and their approach positions. Labels correspond to plan operator parameters.

the other side of the table, succeeds. To evaluate the proposed system, the execution
time when using imagination is compared in Table 6.4 to a standard system using
replanning. The latter, illustrated in Fig. 6.10, shows that execution with imagination
is faster than letting execution fail south of tablel followed by replanning. The detailed
approach is described in Chapter 5.

premanipulationarea premanipulationarea
southtablel northtablel

Plan B ok

Table 6.3: Qualitative results: serving a coffee.

move_base parameter

System  Default system + re-planning HIRES

Duration 298 seconds 283 seconds

Table 6.4: Averaged quantitative results of five scenario runs.

The standard system does not include replanning at this time. For these experiments,
replanning was simulated by issuing a new ‘intend’ causing a new partial plan to
succeed. Notice that on average, imagination takes only 20 seconds compared to 90
seconds for replanning: ~80% faster.

In this simple example, only the simulation knows in advance that an object occupies
the target table position (the object that leads to placement failure); the planner is
unaware of the object. In this scenario the planning domain has been constrained to
know only the initial position of the mug. The Planner knows nothing about objects
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6.3 Physical Prediction and Probabilistic Method

occupying the table. The simulation, in contrast, is able to update its internal world
model with objects perceived from the robot’s sensors? (cf. Section 5.6). In a realistic
scenario this information must be obtained and fed into the simulation in order for it
to be used efficiently. Nevertheless this example shows how a simulation-based robot
action result can alter plan execution, reduce overall execution time and increase the
probability of success.

l execution M re-planning/imagination

standard

prediction

0 75 150 225 300

Fig. 6.10: Comparison of the prediction-enhanced system to the standard system with
replanning, here the execution time is in seconds. Green indicates the time used for both
replanning and imagination. In this scenario the prediction-enhanced system is about 15
seconds, or 5%, faster.

6.3 Physical Prediction and Probabilistic Method

The system proposed in this work is capable of different aspects of prediction. Physical
prediction here refers to the prediction of action results that are neither temporal
(“How long does a robot action last?”) nor spatial (“Can the robot place an object
there next to other objects on the table?”). The predictable actions referred to as
“physical prediction” typically involve object dynamics only to enable a hypotheses
about the action results.

6.3.1 Dynamics-based Prediction

For the robot to learn how to move smoothly, example-based compositional learning
(EBCL) [NHRL14] was used to study robot dynamics data. For the transport of a tall
object on a tray, the data turned out to be too noisy to show any significant co-relation
between object or base dynamics and topple events [DDO™14]. Dynamics data from
the experiments can be seen in appendix section A.2.

Some methods of filtering noisy data are briefly described below. Nevertheless, learning
or predicting from robot dynamics is not the focus of this work.

2 The author knows of no one-shot planning system that incorporates dynamic updates from the
environment during execution and which updates the running plan, i.e. replanning.
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[Gui08] presents a study of noise detection and filtering for borehole drilling data.
Three types of filtering were compared: moving average®, median and Butterworth.
The results show that although most of the analyzed data, such as drilling speed,
rotation speed and time data, contained a lot of noise, the noise could be removed
using an appropriate digital filter. Most of the noise could be eliminated using time-
domain filters, such as moving average and median filters. It was also shown that an
auto-correlation analysis could determine the filter parameters.

6.3.2 Sampling-based Prediction

In this section, a system is evaluated that combines realistic physical simulation with
symbolic reasoning. The main focus is on how to integrate functional imagination
[MKNHO08] into the HIRES framework [RKZZ14] with an off-the-shelf task planner and
SEM to simulate an action before it is executed. The task planner has to create plans
containing information about the actions to simulate. Furthermore, the plan needs to
provide causal precondition-effect relations for actions. These relations will be used
by a SEM to generate the context of the action relevant for imagination — the initial
state imagined. From functional imagination, approximate information is obtained
about the expected duration of an action and the likelihood of toppling. In order to
use imagination, one must address the problem of how to express abstract qualitative
terms (i.e. ‘slow’; ‘topple’) in sufficient detail for simulation, and how this simulation
is performed. The SEM uses the expected duration obtained from imagination for
temporal reasoning and scheduling (reasoning and scheduling are beyond the scope of
this work).

A possible scenario is for the robot to fetch an object from a counter and put it on
a tray in order to carry the object to its goal. Task planning and symbolic reasoning
consider only an abstract description of the world state and the expected changes in
this description resulting from executing a task, e.g., ‘carry object’. The execution of
the task is atomic - it may either succeed or fail. In contrast, the parametrization of
physical aspects of the transition between abstract symbolic states is typically the do-
main of a physics simulation. By considering the trajectory, velocity and acceleration,
the simulation can accurately model the carrying of an object in order to determine
the parameters necessary to prevent toppling.

To evaluate the system, a variation of the latter scenario has been chosen: the robot
is instructed to carry a pepper mill from a counter to a table in a restaurant domain.
The scenario layout is shown in Fig. 5.16, in Chapter 5. In order to prevent the
pepper mill from toppling, the correct parametrization (i.e. velocity and acceleration
settings) for the move_base robot action must be ‘imagined’ in simulation. This action

3 http://www.analog.com/media/en/technical-documentation/dsp-book /dsp__book__Ch15.pdf
(March 16, 2015)
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6.3 Physical Prediction and Probabilistic Method

efast gslow
all events 179054 171717
notopple 165906 165596
shaking 12735 6031
topple 413 90

duration [s] 18090 (~5h) 17350 (~4.9h)

Table 6.5: Experimental results: simulated toppling scenario measuring topple events for
fast and slow parameter sets.

parametrization, in combination with the accurate time the action takes in simulation,
can be used by the reasoning modules to take appropriate measures. One of the
simulated action parametrizations might turn out to be superior to the parametrization
chosen by the planner, e.g. it is more likely to succeed. In this case the execution
will adapt the plan to use the safer parametrization (Fig. 6.11). Thus functional
imagination is used to predict the outcome of future actions so that they can be
adapted accordingly before execution.

execution Q e Q ., Q -

777777777777 >

execute: <actionl> <arg2>

imagine: <actionl> Q<arg2> \—//

Fig. 6.11: Parameter instantiation in principle: during action execution (white circles) the
result of one ‘imagine’ action (gray circles) might alter the parameters of another action,
and so on. The ‘imagine’ action is executed in parallel with ‘normal’ robot actions.

Based on these definitions, the following validation experiments were executed in sim-
ulation: the robot was instructed to drive between fixed positions in a fixed order,
repeatedly accelerating and stopping. The positions considered, which can be seen in
Fig. 6.1, correspond to PMAs of furniture in the environment: tables (T1, T2) and
a counter (C1). Multiple PMAs belonging to the same piece of furniture are distin-
guished by respective cardinal directions, e.g. ST1 for south and NT1 for north. The
starting area of the robot nearStartAreal (NSA1), was not included in the tests.

The robot’s motion, its velocity and acceleration, as well as the tray object’s deviation
were continuously tracked. As expected, use of the slow motion parameter-set resulted
in significantly fewer topple events, as shown in Table 6.5.

Based on these results it is now possible to calculate the likelihood of the three distinct
events (topple, shaking, no topple) according to the equation: L£(0|z) ~ P(X = x;0).
Here x is defined by the three distinct values and € is the (motion) parameter-set.
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X L(Osast|r)  L(Osiow|z) ratio (f/s)

notopple  0.9266 0.9644
shaking 0.0711 0.0351
topple 0.0023 0.0005

QX

1
2
)

Table 6.6: Experimental results: simulated toppling likelihood L for fast and slow param-
eter sets, as well as the relation between them: ratio (f/s).

The likelihoods are shown in Table 6.6 and are calculated as L(0|z) ~ x - [2N ,0;]7L.
Although the topple ratio between fast and slow results is &~ 5 it is not guaranteed
that such an event will happen in any time period as it has a probability by time of
occurrence of once every ~ 44s. A shaking occurs every ~ 1.4s with 0,s.

Arbitration between the competing simulations is based on several factors. If the action
returns a failure, the simulation is eliminated; if it is successful, the confidence measure
is evaluated (Eq. 6.1) and higher confidence wins. Finally the duration measure is
taken into account to favour faster execution. ¢, the result of the probabilistic model,
represents confidence that the robot task will succeed. It is based on possible random
events and some empirical coefficients.

o (at-ct—i—as-cs—i-an-cn)_l
ay +ag + an
c=(0,1:={ceRT0<c<1},a; +as+a, >0

(6.1)

Coefficients are: ¢; (topple), ¢s (shaking), ¢, (no event) and the variables are: a;-
topple, as-shaking, a,-no event. To keep the confidence between 0 and 1 and to scale
well between the three possible events, the following coefficient values were defined
empirically from the data of Table 6.5 and Table 6.6: ¢; = 100, ¢, = 10, ¢, = 1. The
duration of an action is simply defined by: t.ction = tend —tstart With taction maz := 300s.

The Simulation Client monitors toppling events by sampling the object’s deviation
angle at a rate of approximately 20 Hz. Depending on the measured angle, the counter
for one of the three possible events is increased. If an action fails, its corresponding
confidence value will be set to 0. If no action (parametrization) has been successful,
or if imagination has not concluded either before the defined deadline or before the
SEM has to execute the (parametrized) action, a standard value, i.e. fast, is inserted
to instantiate the complete plan.

6.3.3 Results

The results from executing the proposed scenario on a PR2 are presented in the follow-
ing section. The time resources used by the simulation during real scenario execution
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are listed in Table 6.7. Fig. 6.13 shows the time taken by each involved action and the
cumulative time. The result of the scenario is that the robot employed a ‘slow’ move-
ment when carrying the tall object on the tray. This recommendation was provided as
the optimal motion parameter set by functional imagination. An average confidence
result is cyqsr = 0.87 including 12 shaking and ¢4,y = 1.00 with only ‘notopple’ events.
The scenario setup is shown in Fig. 6.12.

Fig. 6.12: Real toppling demo: while the robot is executing the pick-up (bottom) two
simulations (top) are testing a fast and a slow parameter set.

The two ‘imagine’ tasks are performed in parallel (both at the same time). They occur
after the first “prepare move base” (actually they have already been triggered during
that action) because the imagine tasks can theoretically run for an arbitrary period (in
practise the duration is more limited as only short actions are simulated, not complete
plans). The ‘imagine’ tasks should therefore be started as early as possible during
execution. All information for the imagine action is available at the start of plan
execution: the projected world state can be created with complete information about
the pepper mill - what and where it is and where to take it. In other scenarios this
information might only become available later, and so imagination might be started
later during plan execution.

The robot has to leave the counter or table before being able to place an object onto
its tray because it stands too close to the table to move the arms and not collide
with the counter or table. Similarly, the robot must lift the object from its tray
before approaching the table. The introduction of an artificial PMA to represent this
constraint in the planning domain was described at the beginning of this chapter and
is shown in Fig. 6.1.
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Notably the figure shows that both imagination actions return before the robot picks
up the object from the counter. Therefore information gained from imagination can
be used to schedule and reschedule any action after picking up the object.

efast eslow

Duration simulation [s] 32.01  45.27
Duration real [s] 76.24 109.85
Real-time factor 0.42  0.41

Duration scenario [s] 384.0
Relative imagination time (.08 0.12

Table 6.7: Experimental results: time resources used by simulation during the toppling
scenario.
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Fig. 6.13: Topple scenario: robot actions over time in seconds. The two imagination actions,
executed in parallel, and the affected move base action are highlighted in red.

6.4 Summary

This chapter has shown that Gazebo simulation is deterministic in the sense that
multiple simulation runs give consistent results. Nevertheless it has also shown that
the influence of OS process scheduling can lead to slight variations in simulation re-
sults. Related work on verifying simulations suggests that simulated results can be
compared with real-world results. The experiments presented here have shown that
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6.4 Summary

simulation results from the selected physics engine (ODE) can accurately predict real-
world states. Related work suggests that ODE performs well in comparison with other
physics engines.

These results have shown that offline simulation can be of benefit in obtaining optimal
parameters. The results from various experimental scenarios show merit in the causal,
temporal and spatial aspects of simulation. The different aspects of the proposed
prediction system have shown that prediction aided by simulation can prevent plan
failures, i.e. by plan change or replanning. It has also been shown that the resulting
system is more efficient, i.e. actions execute in less time, supporting the hypothesis
stated in Section 1.4. The final chapter, Chapter 7, presents some conclusions and an
outlook.
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Conclusion and Outlook

This chapter summarizes the evaluation and findings of this work. It discusses the
value of the results and finally looks at future developments.

This work set out to answer the research question stated in Chapter 1: How can a
task planning based robot system be improved by prediction derived from physical sim-
ulation? A precondition for success was that simulation is accurate enough to allow
comparison with real world execution. The very similar test durations in simulation
and on the real robot (shown by the results in Section 6.1) indicate that such compar-
ison is indeed valid and support the use of the selected physics engine.

To answer the research question, the method of “functional imagination” was inte-
grated: a realistic prediction of robot activities, based on physical simulation, was
integrated into a plan and execution-based system (Chapter 5 describes how it is
done, i.e. the approach, cf. Section 1.4). As the results in Chapter 6 show, this system
adapts its plan (or replans) before executing plan actions that simulation shows are
likely to fail.

The PR2 mobile robot platform is accurate, extensible and well suited as an evaluation
platform. Hardware extensions are straightforward to apply. This allowed the mount-
ing of a tray (to carry additional objects) and of extra sensors (such as a laser range
finder and a thermal camera) as well as the addition of auxiliary robot capabilities
that allowed objects to be carried with the robot arms while driving. The robot was
able to execute all scenarios related to the evaluation of this work.

As a basis for the software framework used in this work, a distributed ROS-based
robot control architecture was developed in the context of the RACE project. This
was extended to incorporate a physics-based simulation that predicts robot action
results with a high-level, plan-based, cognitive system.

To compensate for execution speed limitations caused by simulation, a method that
interleaves simulation and real-world action execution was chosen. A probabilistic
approach was used to project perfect simulation results onto the real world. The state
of each simulation was sampled during execution to obtain the probability distribution
of possible outcomes. The simulation granularity, in terms of action parametrization,
remains limited by execution speed to certain planned actions and alternatives.
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The hypothesis stated in this work was:

A system integrating such prediction is more efficient (such as requiring less time, plan
steps) than a comparable system without.

The experiments in Chapter 6 showed that various failure conditions could be detected
and that such failure prediction could lead to improved overall system robustness (the
scenario could be completed) and execution time. Similarly, in physical prediction
scenarios the use of simulation allowed the robot to carry objects without the object
toppling. This improves the robustness of robot actions and allows tasks to be carried
out more efficiently. The results verify the hypothesis.

In principle, the computational cost of simulation limits the sample size and the dura-
tion of actions. Nevertheless the practical scenario presented showed that interleaving
simulation with execution does not necessarily incur extra costs.

7.1 Conclusion

The main experimental findings are summarized in Chapter 6. This section assembles
the findings to answer the study’s research question: How can a task planning based
robot system be improved by prediction derived from physical simulation?

1. Functional imagination methodology: The system architecture presented
here combines the traditional SPA control paradigm with functional imagina-
tion to create a high-level, plan-based, reasoning and execution system (cf. Sec-
tion 5.1). This has been demonstrated in a conceptional and experimental way.

2. Plan operators: The limitation of simulating only plan actions instead of (par-
tial) plans appeared to be purely qualitative, as not all actions must be simulated.
Assigning each imagination action to an imagination operator in a symbolic HTN
planner provided an abstract and adaptable method (cf. Section 5.2).

3. Handling uncertainty: The proposed probabilistic approach samples simula-
tion to accommodate uncertainty and allows uncertainty to be represented as a
confidence value (cf. Section 6.3).

4. Simulation accuracy: The experiments verified that in simulation, robot ac-
tions execute accurately enough to allow the comparison of simulation results
with reality (cf. Section 6.1).

5. Distributed system approach: The distributed system architecture presented
here provides the required performance and compensates for the resource bot-
tleneck imposed by sophisticated physical simulation (cf. Section 5.2). The
performance scales linearly with the number of actions to be simulated O(n),
and is constant when actions are executed in parallel O(1), in the sense that
additional hardware can be added on demand.
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7.2 Limitations and Future Research

6. Common Sense: Experiments testing recognition and manipulation of the en-
vironment using different robot postures demonstrated the potential for physical
simulation to enhance competence (cf. Section 6.2.1).

7. Action parametrization: The parametrization approach showed that action
failure (and thus possible plan failure) could be prevented and that the plan could
be successfully completed. Execution measurements demonstrated that although
simulation is expensive, overall system execution time could be improved (cf.
Sections 6.2.2, 6.3.2).

8. Training data generation for learning: The proposed automated execution
framework ASEF supports the creation of training data from robot experiences

(cf. Section 5.7).

While compliant with state-of-the-art approaches (cf. [KDB11, dSPA13]), this work
differs significantly in the way simulation is applied to the finding of optimal action
parameters and to the discovery of a suitable robot plan. Its main contribution is the
use of simulation as a general companion tool to robot reasoning. Moreover, it uses
simulation during (plan) execution in order to adapt current behavior to unforeseen
events in the robot environment. And it contributes to the understanding of the
probabilistic nature of real world uncertainty in robot action results.

Evidence from this work and that of several others, including Beetz [KHB12, KDBI11,
KDGB11, Bee00, MB09], indicates that simulation is a suitable companion for im-
proving real world robot competence, beside being a helpful tool in developing and
evaluating software for robots. Empirical findings in this work show that simulation
can be used to represent the world state, to reason about it and to adapt robot be-
havior on-the-fly. The theoretical arguments in favour of this method could influence
future methodologies in the design of robot control programs and could thus support
cognitive improvement of future systems.

7.2 Limitations and Future Research

The proposed simulation-based prediction approach is capable of testing all robot
actions before they are executed in reality. The current approach is limited to ‘imag-
ining’ one action a time, which makes functional imagination strongly dependent on
plan-step granularity; granularity is based on the underlying atomic robot capabilities,
such as moving the robot to a destination. A valid future research question, therefore,
is how functional imagination could benefit from either intra-plan-step prediction or
partial-plan prediction. An example could be whether parametrization of the robot’s
drive action can be extended to adapt to a global optimized trajectory. This can be
realized by dividing a trajectory into multiple parts, for each of which a simulation
provides the optimal motion parametrization. This approach should lead to faster
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7 Conclusion and Outlook

overall trajectories, as only part of each trajectory might have to be executed with a
slow-motion parameter set.

The current approach uses simulated action results in order to parametrize actions of
an existing plan. If an action fails in all tested configurations, it will be necessary to
produce a new plan, i.e. to perform re-scheduling. Therefore future research might
investigate whether a re-scheduling integration approach improves robot competence.

Action durations are determined during simulation (temporal prediction), but the
present system takes no advantage of these (although they are quite accurate, cf.
Section 6.1). For example, in the case of temporal-constraint execution monitoring,
an action must be executed before or after another action, or it might not be executed
at all. Thus taking simulated action durations into account during execution also
enforces re-scheduling.

Other future research questions arise from the development of faster computer hard-
ware and more complex scenarios: How can parallelization help a plan benefit from
faster distributed systems? And how does the use of greater computational power af-
fect action simulation granularity? In a recent article [Pral5] the author sees a “Cam-
brian Explosion-like” development in robotics, partly coming from cloud-computing.
“Learning from Imagination” is supposed to be one of the biggest ideas exploiting
cloud-computing for robotics. Computational simulation power helps therein

...to explore circumstances that may be faced by a robot in the future
and to experiment with possible solutions, remembering only those that
worked. Such simulations can be done without the need for any physical
activity, and every robot’s dreams will improve the performance of all
robots.

As a final future research recommendation, there is the question of how other phys-
ical simulation engines perform compared to the ODE engine used here. Qualitative
performance and feature analyses might be helpful. For example other engines might
support non-rigid-body interactions.

This thesis has presented an evaluative perspective of simulation accuracy and of the
improvements achieved in mobile robot performance and competence. The inclusion
of many more test samples would certainly strengthen the findings.

Furthermore this thesis has presented an approach by which common-sense physics
knowledge can be exploited to prevent robot action failure in the field of mobile service
robotics. It is hoped that this approach will help advance research and development
and that it will support the creation of new service robotics applications. The work
covered four major aspects in this context. Firstly, it defined and implemented a
probabilistic method for the use of simulation as a direct model representing the
robot’s world state. Secondly, it validated the simulation of real-robot actions as an
appropriate tool. Thirdly, it developed the concept of “functional imagination” using
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7.2 Limitations and Future Research

simulation to predict robot action results. Finally, it designed an architecture that
integrates “functional imagination” into a high-level, cognitive, plan-based system.

The system presented integrated high-level symbolic reasoning and concrete physics-
based reasoning and ran in parallel on a PR2 robot and in the Gazebo simulation. The
scenarios presented in Chapter 6 showed how physics-based common-sense knowledge
can improve a plan-based high-level cognitive system via action parametrization.

In summary, this work proposed a methodology for the use of a physical simulation
to make planning and reasoning systems more robust when dealing with real-world
scenarios. Similar systems have in recent years made significant progress, incorporating
dedicated geometric robot capabilities into the planning and reasoning process. This
has already led to a significant increase in robot system performance. The innovation
rate and the number of publications in this field indicate the potential importance of
employing non-abstract reasoning in symbolic-based Al systems. This work provides a
general approach by which systems can benefit from low-level, physics-based reasoning.
This, it is hoped, will contribute to and accelerate the acceptance of simulation-based
prediction in future intelligent mobile service robotics.
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Appendix

This chapter lists additional material related to this work.

A.1 Gazebo Simulation

Fig. A.1: Restaurant simulation environment (top view). The robot, on the right side, is
facing the entrance.
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A.2 Dynamics Data

() (b) (c)

Fig. A.2: PR2 base dynamics data for various movements; the rotation center of the tray
object is also shown.

()

(c)

Fig. A.3: Shaking Event: Jerky motion (a) causes a tall tray object to shake but not to
topple (b). The corresponding linear and angular robot base dynamics are shown in (c).
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Fig. A.4: Dynamics of object on tray (a), robot base dynamics (b) and object deviation

(angular and linear) from ideal orientation and position (c). See Section 5.8.1 for details on
toppling detection.
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Fig. A.5: Dynamics of object on tray (a), robot base dynamics (b) and object deviation
(angular and linear) from ideal orientation and position (c). See Section 5.8.1 for details on
toppling detection.
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Fig. A.6: Robot velocity distribution over time: a) Simulation, b) real. The velocity data
was collected (in simulation) over 4 hours of random driving, equivalent to 1 hour in reality.
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A.3 Creating a 2D Occupancy Grid Map with the PR2

A.3 Creating a 2D Occupancy Grid Map with the PR2

1 # start PR2 or gazebo

# then:

3 roslaunch pr2_ 2dnav__slam pr2_ 2dnav.launch

1 # start rviz

5 roslaunch pr2_ navigation_ slam rviz_ move_ base_ slam.launch
6 # save map:

7 rosrun map__server map_ saver —f /tmp/my__map

List. A.1: Launching the 2D SLAM package for the PR2.

A.4 Moment of Inertia

1 <gazebo version="1.0">

> <model name="race_peppermill" static="false">

3 <link name="body ">

1 <origin pose="0 0 0 0 0 0"/>

5 <inertial mass="0.5">

6 <origin pose="0 0 0.15 0 0 0"/>

7 <inertia ixx="0.003903125" ixy="0" ixz="0" iyy="0.003903125" iyz="0" izz="
0.00030625" />

8 < /inertial >

9 < collision name="geom">

10 <origin pose="0 0 0.15 0 0 0"/>

11 <geometry>

12 <cylinder radius="0.035" length="0.30"/>

13 < /geometry>

14 </ collision >

15 <visual name="visuall">

16 <origin pose="0 0 0.15 0 0 0"/>

17 <geometry>

18 <cylinder radius="0.035" length="0.30"/>

19 < /geometry>

20 <material script="Gazebo/Red"/>

21 < /visual>

22 </link>

23 </model>

21 </gazebo>

List. A.2: Pepper mill model with inertia parameters.

IX




A Appendix

A.5 Standard Deviation and Normal Distribution

Here the random variable is X and the mean value is u. The standard deviation is

calculated as follows 0 = /(X — p)2. For discrete distributions the following equation
N N

is appropriate: o = % > (x; — pu)?, where p = % > x;, for the same probability and
i=1 i=1

1 —goz(z—p)?

for all x. The normal probability density function is as follows: f(x) = We_zﬁ



A.6 Additional Robot Capabilities

A.6 Additional Robot Capabilities

This section presents robot capabilities developed for the experimental scenarios in
the contexts of the RACE project and this work.

Fig. A.15: Carry arm posture: the robot can grasp (a) two objects in its grippers and
can carry the objects while moving. In this configuration the arms are within the robot’s
footprint in order not to collide with the environment. The arms are held out of view of the
sensors so as not to be wrongly detected as obstacles (b).

Fig. A.16: Tray object manipulation: the robot can place objects on the tray and can grasp
objects from the tray, in simulation (a) and on the real robot (b). The objects are detected
by a laser scanner mounted at the level of the tray.
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Fig. A.17: Tray object detection: objects are clustered and represented by bounding boxes
(red) based on the laser readings in simulation (a) and on the real robot (b).
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A.7 The Pepper Mill
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Fig. A.18: A typical tall pepper mill found in a supermarket.
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A.8 Statistical Analysis of Simulated Robot Actions
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Fig. A.19: Statistics of action (a,c) Density and Histogram. (b,d) Q-Q Plot.
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Fig. A.20: Statistics of action (a,c) Density and Histogram. (b,d) Q-Q Plot.
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Fig. A.21: Statistics of action (a,c) Density and Histogram. (b,d) Q-Q Plot.
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Fig. A.22: Statistics of action (a,c) Density and Histogram. (b,d) Q-Q Plot.
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Density and Histogram Normal Q-Q Plot
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Fig. A.24: Statistics of action (a) Density and Histogram. (b) Q-Q Plot.
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A.9 Statistical Analysis of Real Robot Actions
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Fig. A.25: Statistics of action (a,c) Density and Histogram. (b,d) Q-Q Plot.
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