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Notation and conventions

We give here a collection of the notation used in this thesis.

• Numbers and vector spaces:

We denote by R the set of real numbers, by C the set of complex numbers, and by

H the set of quaternions. We will refer to all of these sets as fields, although H is a

skew-field. Let R+ be the set of real positive numbers. We denote by i the imaginary

unit of C. Let i, j, and k be quaternions that satisfy the quaternionic relations,

namely i2 = j2 = k2 = −1 and ij = −ji = k. We will write F if we do not want

to specify any of the three fields R, C, or H. For x ∈ F we denote by <(x) and

=(x) the real and the imaginary part of x, respectively. For the purely imaginary

subspace =(H) = spanR {i, j,k} of H we will sometimes use the symbol I. If we

speak of a subfield F′ ⊂ F we mean one of the fields above. Let F∗ := F \ {0} be the

multiplicative group of F. For an element x ∈ F we denote by x the conjugate of x

and by ‖x‖ :=
√
xx the norm of x.

Let N be the set of natural numbers. The letter n will always denote a natural

number. We will denote by Fn the (right) vector space of n-tuples of elements of F.
Let e1, . . . , en be the standard basis of Fn. An F-subspace of Fn is a subspace over

F. Analogously, if F′ ⊂ F is a subfield, then an F′-subfield of Fn is a subspace of

Fn over F′. Let 〈·, ·〉0 be the standard inner product on Fn, i.e. 〈x, y〉0 =
∑n

i=1 xiyi.

Let Bn(F) = {v ∈ Fn| 〈v, v〉0 < 1} be the open ball of radius 1 and let Sn(F) =

{v ∈ Fn| 〈v, v〉0 = 1} be the sphere. For F = C we denote by ω0 the Kähler form of

〈·, ·〉0 defined by ω0(x+ iy, x′ + iy′) := 〈x, y′〉0 − 〈y, x′〉0 where x, x′, y, y′ ∈ Rn.
Let k be a natural number. Then Fk,n denotes the space Fn+k endowed with the

non-degenerate bilinear form 〈·, ·〉k defined by 〈x, y〉k := −
∑k

i=1 xiyi +
∑n+k

i=k+1 xiyi.

Let Snk =
{
v ∈ Fk,n| 〈v, v〉k = 1

}
be the pseudo-sphere. For F = C we define as above

the Kähler form ωk of 〈·, ·〉k by ωk(x + iy, x′ + iy′) := 〈x, y′〉k − 〈y, x′〉k. We call a

vector v ∈ Fk,n spacelike, if 〈v, v〉k > 0, lightlike, if 〈v, v〉k = 0, and timelike, if

〈v, v〉k < 0. For F1,n we will denote by e0, e1, . . . , en the standard basis where e0 is a

timelike vector.

We call an F-subspace V of Fk,n spacelike, if 〈·, ·〉k restricted to V × V is positive

definite, and timelike if the restriction is non-degenerate and V contains timelike

vectors. If V is space- or timelike, then we denote by V⊥ its orthogonal complement
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in Fk,n with respect to 〈·, ·〉k.
Let F = R or C and V be a vector space over F. Then ΛkV∗ denotes the vector space
of k-forms on V with values in F. If α ∈ ΛkV∗ and U ⊂ V is an F-subspace, then
we denote the restriction of α to U × . . .× U by α|U . For α ∈ Λk1V∗, β ∈ Λk2V∗ we
denote by α ∧ β ∈ Λk1+k2V∗ the wedge-product. Let α ∈ ΛkV∗ and x ∈ V, then we

denote by ιxα the interior product.

• Lie groups and Lie algebras:

We denote by G, H, K, and U Lie groups and the associated Lie algebras by g, h,

k, and u, respectively. The connected components of the identity are denoted by G0,

H0, K0, and U0. Z(G) is the center of G.

For a Lie group G let µ be the Haar measure of G. Let f : G → C be a Borel-

measurable function. Then we define the essential supremum and essential infimum

by

ess supf := inf {a ∈ R | µ({g ∈ G| |f(g)| > a}) = 0} ,

ess inff := sup {b ∈ R | µ({g ∈ G| |f(g)| < b}) = 0} .

Notice that ‖f‖∞ := ess supf is a semi-norm on the vector space

L∞(G) := {f : G→ C | f Borel-measurable, ‖f‖∞ <∞} .

We define N := {f : G→ C | f Borel-measurable, ‖f‖∞ = 0}. Then we obtain a

Banach space by defining L∞(G) := L∞(G)/N .

Let M(n;F) be the set of n × n-matrices with elements of F in the entries and let

1n be the n × n-identity matrix. For a matrix A ∈ M(n;F) we denote by A the

conjugate matrix and by AT its transpose.

We denote by GL(n;F) := {A ∈M(n;F) | A is invertible} the general linear group.

If F = C or R, we denote by

SL(n;F) := {A ∈ GL(n;F) | detA = 1}

the special linear group. Let

U(n;F) := {A ∈ GL(n;F) | 〈Av,Aw〉0 = 〈v, w〉0 ∀v, w ∈ Fn}

be the Lie group of unitary transformations with respect to 〈·, ·〉0. Equivalently,

U(n;F) consists of the the matrices A which satisfy AAT = 1n. If we specify the

field F, we will use also the notation

Sp(n) := U(n;H), U(n) := U(n;C), O(n) := U(n;R);

SU(n) := U(n) ∩ SL(n;C), SO(n) := O(n) ∩ SL(n;R).

Sometimes Sp(1) denotes also the Lie group which acts on Hn by multiplication of

quaternions of norm one from the right.



Analogously, we define for p, q ∈ N the Lie group

U(p, q;F) :=
{
A ∈ GL(p+ q;F) | 〈Av,Aw〉p = 〈v, w〉p ∀v, w ∈ Fp,q

}
.

Equivalently, U(p, q;F) consists of the matrices A which satisfy A1p,qA
T

= 1p,q where

1p,q :=

(
−1p 0

0 1q

)
.

The maximal Lie subgroup of U(p, q;F) is U(p;F) × U(q;F). If we specify the field

F, we will use the following notation

Sp(p, q) := U(p, q;H), U(p, q) := U(p, q;C), O(p, q) := U(p, q;R),

SU(p, q) := U(p, q) ∩ SL(p+ q;C), SO(p, q) := O(p, q) ∩ SL(p+ q;R).

Furthermore, SO0(p, q) denotes the connected component of the identity of SO(p, q).

The quaternionic Heisenberg group will be denoted by Heisn(H) and consists of the

matrices of the form 
1 −tT −1

2 ‖t‖
2 + s

0 1n−1 t

0 0 1


where t ∈ Hn−1, ‖t‖2 = 〈t, t〉0, s ∈ =(H).

• Manifolds:

We denote by M always a finite dimensional manifold. If M is connected, then

M̃ denotes its universal cover. If p ∈ M , then TpM is the tangent space of M

at p, TM the tangent bundle and End(TM) the endomorphism bundle. X(M) is

the Lie algebra of smooth vector fields on M . The pair (M, g) denotes a semi-

Riemannian manifold and ∇ is the Levi-Civita connection. Sometimes we omit the

semi-Riemannian metric g and just write M for a semi-Riemannian manifold. Let R

and Ric be the Riemannian curvature tensor and the Ricci tensor, respectively. If N

is a vector bundle over M , then Γ(N) denotes the set of smooth sections. We denote

by Iso(M, g) the isometry group of (M, g). If J is an almost complex structure on

M and if g is Hermitian, then we define

Iso(M, g, J) :=
{
f ∈ Iso(M, g)|dfp ◦ Jp = Jf(p) ◦ dfp ∀p ∈M

}
.

If (I, J,K) is an almost hypercomplex structure on M and if g is Hermitian, then we

define

Iso(M, g, (I, J,K)) := Iso(M, g, I) ∩ Iso(M, g, J) ∩ Iso(M, g,K).

Furthermore, ωI := g(I·, ·), ωJ := g(J ·, ·), and ωK := g(K·, ·) denote the Kähler

forms.

If Q is an almost quaternionic structure on M and if g is Hermitian, then we define

Iso(M, g,Q) :=
{
f ∈ Iso(M, g)|dfpQp(dfp)−1 = Qf(p) ∀p ∈M

}
.



Furthermore, we denote by Ω the fundamental 4-form.

If a Lie group G acts on a manifold M , then we denote by Gp the stabilizer and by

G · p the orbit for a point p ∈M .

The projective space FPn is the manifold which consists of all one-dimensional F-
subspaces of F1,n which we also call lines. The hyperbolic spaceHn(F) is the manifold

consisting of all timelike lines and its boundary will be denoted by ∂Hn(F) and con-

sists of the lightlike lines. If M ⊂ Hn(F) is a totally geodesic submanifold, then

I(M) and K(M) denotes the Lie subgroup of U(1, n;F) which preserves M or fixes

M pointwise, respectively. The connected components of the identity of I(M) and

K(M) are denoted by I0(M) and K0(M), respectively.

If we consider F1,n as manifold, then we denote it by Minkn+1(F). The real, complex,

and quaternionic de Sitter and Anti de Sitter spaces are denoted by

dSn+1(R) = SO0(1, n+ 1)/SO0(1, n), AdSn+1(R) = SO0(2, n)/SO0(1, n),

dSn+1(C) = SU(1, n+ 1)/U(1, n), AdSn+1(C) = SU(2, n)/U(1, n),

dSn+1(H) = Sp(1, n+ 1)/Sp(1, n)× Sp(1), AdSn+1(H) = Sp(2, n)/Sp(1)× Sp(1, n).

We mention four more manifolds, namely

CdSn+1 = SO0(1, n+ 2)/SO0(1, n)× SO(2), CAdSn+1 = SO0(3, n)/SO(2)× SO0(1, n),

HdSn+1 = SO0(1, n+ 4)/SO0(1, n)× SO(4), HAdSn+1 = SO0(5, n)/SO(4)× SO0(1, n).



Chapter 1

Introduction

In this thesis we study pseudo-Riemannian almost hypercomplex respectively almost quater-

nionic homogeneous spaces with H-irreducible isotropy groups.

An almost hypercomplex Hermitian manifold is a Riemannian manifold which admits three

orthogonal almost complex structures which satisfy the quaternionic relations. All three

almost complex structures together are also called an almost hypercomplex structure. Such

a manifold is called hyper-Kähler if the three almost complex structures are parallel with

respect to the Levi-Civita connection. An equivalent definition is that the holonomy group

is contained in Sp(n).

An almost quaternionic Hermitian manifold is a Riemannian manifold M which admits a

three-dimensional subbundle Q ⊂ Γ(End(TM)) which is locally generated by an almost

hypercomplex structure. Such a manifold is called quaternionic Kähler if dimM > 4 and

the almost quaternionic structure Q is parallel with respect to the Levi-Civita connection.

This definition is equivalent to the holonomy group being contained in Sp(n)Sp(1).

Hyper-Kähler and quaternionic Kähler manifolds have been intensively studied because

they are Einstein manifolds, see also [Be] for a good overview. Furthermore hyper-Kähler

manifolds are Ricci-flat. Specific types of hyper-Kähler respectively quaternionic Kähler

manifolds studied in [Be] are those which are in addition homogeneous or symmetric spaces.

The concept of hyper-Kähler and quaternionic Kähler geometry can be also applied to

pseudo-Riemannian manifolds. Then the definitions are equivalent to the holonomy group

being contained in Sp(p, q) respectively Sp(p, q)Sp(1).

In this thesis we focus on almost hypercomplex and almost quaternionic homogeneous

manifolds with index 4 which have H-irreducible isotropy groups, i.e. the isotropy repre-

sentation has no non-trivial invariant quaternionic subspaces. This investigation is based

on the work of Ahmed and Zeghib [AZ] who studied almost complex pseudo-Hermitian

manifolds which are pseudo-Riemannian manifolds endowed with an orthogonal almost

complex structure. Such a manifold is called pseudo-Kähler if the associated Kähler form

is closed and the Nijenhuis-tensor vanishes. In [AZ] the authors focus on almost com-

plex homogeneous spaces with index 2. The observation is that such manifolds are already

pseudo-Kähler manifolds if the isotropy group acts C-irreducibly, i.e. the isotropy represen-
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CHAPTER 1. INTRODUCTION

tation has no non-trivial invariant complex subspaces. If furthermore the Lie algebra of the

isotropy group acts C-irreducibly, then these homogeneous spaces are locally symmetric.

Theorem 1.1 ([AZ]). Let (M, g, J) be a connected almost complex pseudo-Hermitian man-

ifold with index 2 and dimM = 2n+2 ≥ 8, such that there exists a connected Lie subgroup

G ⊂ Iso(M, g, J) acting transitively on M . If the isotropy group H acts C-irreducibly, then
(M, g, J) is a pseudo-Kähler manifold. If furthermore h acts C-irreducibly, then (M, g, J)

is locally isometric to one of the following symmetric spaces:

Minkn+1(C), dSn+1(C),AdSn+1(C),CdSn+1,CAdSn+1.

The crucial observation of Ahmed and Zeghib is that a real valued 3-form on C1,n vanishes

for n ≥ 3 if it is SO0(1, n)-invariant and that an antisymmetric bilinear form C1,n×C1,n →
C1,n vanishes for n ≥ 3 if it is SO0(1, n)-equivariant. Since for any homogeneous space a

geometrical property that holds at one point also holds at every point, by considering the

differential of the Kähler form and the Nijenhuis tensor these two facts imply, with the

assumption of a C-irreducible isotropy group, that the manifolds are pseudo-Kähler. More

precisely, the authors of [AZ] proved that if the isotropy group is C-irreducible, then the

connected component of the Zariski closure of the linear isotropy group contains SO0(1, n)

up to conjugacy. This is due to the fact that all connected C-irreducible Lie subgroups of

U(1, n) contain SO0(1, n) up to conjugacy. These Lie subgroups have been first classified

by Di Scala and Leistner in [DSL]. Nevertheless the authors of [AZ] gave an independent

proof. In this thesis we are going to study an analogous problem as in [AZ] but for the

almost hypercomplex and almost quaternionic case. There are some analogues between

(pseudo-)Kähler manifolds and (psuedo-)hyper-Kähler and quaternionic (pseudo-)Kähler

manifolds. By the Hitchin Lemma, see Lemma 2.5, for an almost hypercomplex manifold it

is enough to check that the three Kähler forms are closed to ensure that the manifolds are

(pseudo-)hyper-Kähler. Hence, we will prove that the Zariski closure of an H-irreducible

Lie subgroup of Sp(1, n) contains SO0(1, n) and that a real valued 3-form on H1,n with

n ≥ 3 vanishes if it is SO0(1, n)-invariant. The strategy is as follows. In Section 3.1

we will provide an elementary proof that such a 3-form vanishes. We also classify all

connected H-irreducible Lie subgroups of Sp(1, n) to ensure that the Zariski closure of an

H-irreducible Lie subgroup of Sp(1, n) contains SO0(1, n) if n ≥ 2. This classification is

the first important result of this thesis.

Theorem A. Let H ⊂ Sp(1, n) be a connected and H-irreducible Lie subgroup. Then H

is conjugated to one of the following groups:

• SO0(1, n), SO0(1, n) ·U(1), SO0(1, n) · Sp(1) if n ≥ 2,

• SU(1, n), U(1, n),

• Sp(1, n),

• U0 = {A ∈ Sp(1, 1)|AΦ = ΦA} ∼= Spin0(1, 3) with Φ =

(
0 −1
1 0

)
if n = 1.

2



CHAPTER 1. INTRODUCTION

For this classification we will start in an analogous way as in [AZ], i.e. we will distinguish

between amenable and non-amenable Lie subgroups. Then we will make use of a classifica-

tion result by Chen and Greenberg in [CG], who classified all totally geodesic submanifolds

of the hyperbolic space Hn(H) and the subgroups of Sp(1, n) preserving them. By using

these results we can shorten the analogous proofs of Ahmed and Zeghib for subgroups

of U(1, n), see Propositions 3.1 and 3.4. With this results we will prove the following

Theorem.

Theorem B. Let (M, g, (I, J,K)) be a connected almost hypercomplex pseudo-Hermitian

manifold of index 4 and dimM = 4n+4 ≥ 16, such that there exists a connected Lie group

G ⊂ Iso(M, g, (I, J,K)) acting transitively on M . If the isotropy group H := Gp, p ∈ M ,

acts H-irreducibly, then (M, g, (I, J,K)) is a pseudo-hyper-Kähler manifold. If furthermore

h acts H-irreducibly, then (M, g, (I, J,K)) is locally isometric to Minkn+1(H).

Notice that similar to the case of Ahmed and Zeghib the H-irreducibility of the Lie algebra

of the isotropy group implies that the homogeneous space is locally symmetric.

There is an analogue of the Hitchin Lemma for the almost quaternionic case. Swann

showed in [S] that an almost quaternionic (pseudo-)Hermitian manifold of dimension

greater than four is quaternionic (pseudo-)Kähler if the fundamental 4-form is closed.

As in the hyper-Kähler case we will make use of the fact that the Zariski closure of an

H-irreducible Lie subgroup of Sp(1, n) contains SO0(1, n) up to conjugacy. This implies

that the fundamental 4-form is invariant under SO0(1, n). In Section 3.1 we will show that

a real-valued 5-form on H1,n with n ≥ 5 vanishes if it is SO0(1, n)-invariant, see Lemma

3.11. This result will imply that the fundamental 4-form is closed. Our next important

result is the following Theorem.

Theorem C. Let (M, g,Q) be a connected almost quaternionic pseudo-Hermitian manifold

of index 4 and dimM = 4n + 4 ≥ 24, such that there exists a connected Lie subgroup

G ⊂ Iso(M, g,Q) acting transitively on M . Let H := Gp, p ∈ M , denote the isotropy

group. If the intersection of the linear isotropy group with Sp(1, n) acts H-irreducibly,

then (M, g,Q) is a quaternionic pseudo-Kähler manifold. If furthermore M is a reductive

homogeneous space and h ∩ sp(1, n) acts H-irreducibly, then M is locally symmetric.

Theorems A, B and C are the most important results of this thesis.

The structure of this thesis is as follows. In Chapter 2 we give an overview of the basic

concepts. In particular we will introduce the notion of homogeneous and symmetric spaces

in general, almost hypercomplex and almost quaternionic manifolds, amenable Lie groups,

hyperbolic spaces Hn(F), and the Zariski topology.

In Chapter 3 we will prove the algebraic results that are needed for the proof of the

Theorems B and C. In particular we will investigate real-valued 3- and 5-forms on H1,n

which are SO0(1, n)-invariant and show that they vanish for n ≥ 3, respectively n ≥ 5 by

using elementary methods. Furthermore we will classify all connected H-irreducible Lie

subgroups of Sp(1, n) up to conjugacy by using the classification of the totally geodesic

3



CHAPTER 1. INTRODUCTION

submanifolds of Hn(H) and the Lie subgroups of Sp(1, n) preserving them by Chen and

Greenberg [CG].

In Chapter 4 we will finally prove Theorems B and C. For the proof of Theorem B we

will first show with the above results that the Kähler forms are closed and then we will

study the universal cover M̃ = G̃/H0 by considering all possibilities for H0. In all cases

it will turn out that M̃ is globally isomorphic to Minkn+1(H). For the proof of Theorem

C we will show in an analogous way as in the proof of Theorem B that the fundamental

4-form is closed. Finally in Chapter 5 we will point out some open problems that are left

for future research.
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Chapter 2

Basic Concepts

2.1 Homogeneous and symmetric spaces

In this section we give an overview of homogeneous and symmetric spaces. The reader can

find more details for example in [Ba], [Be], [He], [KN2], [O], and [Wa].

Definition 2.1. Let G be a Lie group and M be a differentiable manifold. A Lie group

action of G on M is a differentiable map G×M →M, (g, p) 7→ g · p such that

(i) for all g ∈ G the map x ∈M 7→ g · x ∈M is a diffeomorphism,

(ii) e · p = p for all p ∈M ,

(iii) g · (h · p) = (gh) · p for all g, h ∈ G and all p ∈M .

In the following G will be always a Lie group that acts on a manifold M .

Definition 2.2. Let p ∈ M . The stabilizer of the point p ∈ M is by definition the

subgroup Gp := {g ∈ G | g · p = p}. The subset G · p := {g · p | g ∈ G} is called the orbit

of p.

Notice that Gp is a closed subgroup of G, since the action is continuous. Hence, Gp is a

Lie subgroup of G.

Theorem 2.1 ([Wa, Theorem 3.58]). Let H be a closed subgroup of a Lie group G, and

let G/H be the set {gH | g ∈ G} of left cosets modulo H. Let π : G → G/H denote the

natural projection π(g) = gH. Then G/H has a unique manifold structure such that

(i) π : G→ G/H is smooth.

(ii) There exist local smooth sections of G/H in G; that is, if gH ∈ G/H, there is a

neighbourhood W of gH and a C∞-map τ : W → G such that π ◦ τ = Id.

The dimension of G/H is dimG− dimH.

Definition 2.3. A Lie group action G×M →M is called transitive, if G · p = M .

5



2.1. HOMOGENEOUS AND SYMMETRIC SPACES 6

Let H ⊂ G be a closed subgroup. Then the Lie group action

G×G/H → G/H, (g1, g2H) 7→ g1g2H

is called the natural action of G on G/H. This action is transitive.

Let G ×M → M be a Lie group action, p ∈ M , and H := Gp. There is a natural map

ϕ : G/H →M, gH 7→ g · p. Notice that ϕ is well defined since

g1H = g2H ⇒ g−12 g1H = H ⇒ g−12 g1 ∈ H ⇒ g1 · p = g2 · p.

Proposition 2.1 ([O, Chaper 11, Proposition 13]). Let G×M →M be a transitive action

and p ∈M,H := Gp. Then the natural map ϕ : G/H →M is a diffeomorphism.

Theorem 2.2 ([O, Chapter 9, Theorem 32]). If (M, g) is a semi-Riemannian manifold,

there is a unique way to make Iso(M, g) a manifold such that:

(i) Iso(M, g) is a Lie group.

(ii) The natural action Iso(M, g)×M →M, (f, p) 7→ f(p) is smooth.

(iii) A homomorphism β : R→ Iso(M, g) is smooth if the map R×M →M sending (t, p)

to β(t)p is smooth.

Definition 2.4. Let (M, g) be a semi-Riemannian manifold and Iso(M, g) its isometry

group. If Iso(M, g) acts transitively on M , then M is called a homogeneous space.

If M is a homogeneous space, then any geometrical properties at one point of M hold at

every point. By Proposition 2.1 every homogeneous space can be considered as a coset

space G/H where G is a Lie subgroup of Iso(M, g) that acts transitively on M . The

stabilizer H is also called the isotropy group. The representation

ρ : H → GL(TpM), h→ dhp

is called the isotropy representation. The image ρ(H) is called the linear isotropy

group.

Definition 2.5. A homogeneous space M = G/H is a reductive homogeneous space if

there is a vector subspace m ⊂ g such that g = h⊕m and Ad(H)(m) ⊂ m.

Proposition 2.2 ([O, Chapter 11, Proposition 22]). Let M = G/H be a reductive homo-

geneous space and g = h⊕m.

(i) The linear isotropy group ρ(H) acting on TpM corresponds under dπ to Ad(H) on

m.

(ii) Requiring dπ : m ∼= TpM to be a linear isometry establishes a one-to-one correspon-

dence between Ad(H)-invariant scalar products on m and G-invariant metrics on

M .

6



2.1. HOMOGENEOUS AND SYMMETRIC SPACES 7

Definition 2.6. A connected semi-Riemannian manifold (M, g) is called (semi-Riemannian)

symmetric space if there exists for each p ∈ M an isometry sp ∈ Iso(M, g) such that

sp(p) = p and d(sp)p = −IdTpM . The isometry sp is called global symmetry of the point

p. A semi-Riemannian manifold (M, g) is called locally symmetric if ∇R = 0.

Recall that for a connected manifold an isometry is uniquely determined by its value and

differential at one point. Hence, for a symmetric space (M, g) the isometry sp is unique.

Lemma 2.1 ([O, Chapter 8 and 9]). A symmetric space is locally symmetric, geodesically

complete, and homogeneous.

Lemma 2.2 ([O, Chapter 8, Corollary 21]). A geodesically complete, simply connected,

locally symmetric semi-Riemannian manifold is a symmetric space.

Definition 2.7. Let G be a connected Lie group and H a closed subgroup of G. The

pair (G,H) is called a symmetric pair if there exists an involutive smooth automorphism

σ : G → G such that H0
σ ⊂ H ⊂ Hσ, where Hσ is the set of fixed points of σ and H0

σ the

connected component of the identity of Hσ.

Theorem 2.3 ([O, Chapter 11, Theorem 29]). Let (G,H) be a symmetric pair. Then any

G-invariant metric tensor on M = G/H makes M a semi-Riemannian symmetric space

such that sp ◦ π = π ◦ σ, where π : G→M is the projection.

If (M, g) is a symmetric space, then G = Iso0(M, g) and H = Iso0(M, g)p form a symmetric

pair such that M = G/H, see [O, Chapter 11].

Lemma 2.3 ([O, Chapter 11, Lemma 30]). Let (G,H) be a symmetric pair. Then

(i) h = {X ∈ g | dσ(X) = X}.

(ii) g is the direct sum of h and the subspace m = {X ∈ g | dσ(X) = −X}.

(iii) Ad(H)(m) ⊂ m.

(iv) [h, h] ⊂ h, [h,m] ⊂ m, [m,m] ⊂ h.

As a consequence any symmetric space is a reductive homogeneous space.

Definition 2.8. A symmetric Lie algebra is a triple (g, h, τ) consisting of a Lie algebra

g, a Lie subalgebra h, and an involutive automorphism τ : g→ g such that h consists of all

elements of g which are fixed by τ .

Remark 2.1 ([KN2, Chapter XI]). If (G,H) is a symmetric pair and σ : G → G is the

involutive automorphism, then (g, h, dσ) is a symmetric Lie algebra. Conversely, if (g, h, τ)

is symmetric Lie algebra and if G is a simply connected Lie group with Lie algebra g, then

τ induces an involutive automorphism σ : G→ G such that for any closed subgroup H with

G0
σ ⊂ H ⊂ Gσ, (G,H) is a symmetric pair.

Let (g, h, τ) be a symmetric Lie algebra. Since τ is an involution its eigenvalues are 1 and

7



2.1. HOMOGENEOUS AND SYMMETRIC SPACES 8

−1, and h is the eigenspace of 1. Let m be the eigenspace for −1. Then the decomposition

g = h⊕m is called the canonical decomposition of (g, h, τ). Furthermore,

[h, h] ⊂ h, [h,m] ⊂ m, [m,m] ⊂ h.

These relations characterize a symmetric Lie algebra.

In the following we collect some facts about totally geodesic submanifolds in general and

in the special case for a symmetric space.

Definition 2.9. A semi-Riemannian submanifold M of M is called totally geodesic

provided its second fundamental form vanishes: II = 0.

Proposition 2.3 ([O, Chapter 4, Proposition 13]). For a semi-Riemannian submanifold

M ⊂M the following are equivalent.

(i) M is totally geodesic in M .

(ii) Every geodesic of M is also a geodesic of M .

(iii) If v ∈ TpM is tangent to M , then the M -geodesic γv lies initially in M .

(iv) If α is a curve in M and v ∈ Tα(0)M , then parallel translation of v along α is the

same for M and for M .

Lemma 2.4 ([O, Chapter 4, Lemma 14]). Let M and N be complete, connected, totally

geodesic semi-Riemannian submanifolds of M . If there is a point p ∈ M ∩ N at which

TpM = TpN , then M = N .

Proposition 2.4 ([He, Chapter IV.7, Proposition 7.1]). Let M be a semi-Riemannian

manifold and S a totally geodesic submanifolds of M . If M is locally symmetric, then the

same holds for S.

Definition 2.10. Let g be a real Lie algebra. A subspace m of g is called Lie triple

system if X,Y, Z ∈ m implies [X, [Y, Z]] ∈ m.

Theorem 2.4 ([He, Chapter IV.7, Theorem 7.2]). Let (M, g) be a semi-Riemannian sym-

metric space and (G,H) a symmetric pair such that M = G/H. Denote by g = h⊕m the

canonical decomposition and identify m ∼= TpM,p ∈ M . Let s ⊂ m be a Lie triple system.

Then S := exp(s) is a totally geodesic submanifold of M satisfying TpS ∼= s. Furthermore,

S is a symmetric space.

On the other hand, if S is a totally geodesic submanifold of M and p ∈ S, then the subspace

s ∼= TpS of m is a Lie triple system.

Remark 2.2. In [He] Propsoition 2.4 and Theorem 2.4 are stated for the Riemannian

case, but the proofs work also in the pseudo-Riemannian case.

Finally, we cite the de Rham-Wu decomposition Theorem for simply connected semi-

Riemannian manifolds.

8



2.2. HYPER-KÄHLER AND QUATERNIONIC KÄHLER MANIFOLDS 9

Theorem 2.5 ([Wu], [Ba, Satz 5.8]). Let (M, g) be a geodesically complete, simply-connected

semi-Riemannian manifold and TM = E1 ⊕ E2 a decomposition of the tangent bundle into

two non-degenerate, orthogonal and parallel distributions. For p ∈ M let Mj(p) be the

maximal connected integral submanifold of the distribution Ej through the point p. Then

(M, g) is isometric to the product of (M1(p), g1) and (M2(p), g2), where gj denotes the

induced metric on Mj(p):

(M, g) ∼= (M1(p), g1)× (M2(p), g2).

Remark 2.3. The integral submanifolds Mj(p) in Theorem 2.5 are given by

Mj(p) =

{
q ∈ M̃

∣∣∣∣∣ ∃ a piecewise smooth curve γ : I →Mj(p) connecting

p and q such that γ′(t) ∈ (Ej)γ(t) for all t

}
.

2.2 Hyper-Kähler and quaternionic Kähler manifolds

In this section we give a very short overview of hyper-Kähler and quaternionic Kähler

manifolds. The interested reader can find more details in [A], [Ba], [Be], and [I].

Definition 2.11. Let V be a finite dimensional real vector space. A hypercomplex struc-

ture on V is a triple (I, J,K) of anti-commuting complex structures on V such that IJ = K.

Remark 2.4. Notice that the dimension of a real vector space endowed with a hypercomplex

structure is a multiple of 4.

Definition 2.12. Let M be a smooth n-dimensional manifold. An almost hypercom-

plex structure on M is a triple (I, J,K) consisting of three smooth sections I, J,K ∈
Γ(End(TM)) such that (Ip, Jp,Kp) is a hypercomplex structure on TpM for all p ∈ M .

The pair (M, (I, J,K)) is called an almost hypercomplex manifold.

Definition 2.13. Let (M, (I, J,K)) be an almost hypercomplex manifold. A (pseudo-)

Riemannian metric g on M is called Hermitian if I, J , and K are skew symmetric with

respect to g. Then the triple (M, g, (I, J,K)) is called an almost hypercomplex (pseudo-

) Hermitian manifold.

Remark 2.5. Notice that an almost complex structure I on a (pseudo-) Riemannian man-

ifold (M, g) is skew symmetric if and only if I is orthognal, i.e. g(IX, IY ) = g(X,Y ) for

all X,Y ∈ X(M). In particular the three almost complex structures I, J,K of an almost

hypercomplex (pseudo-) Hermitian manifold are orthogonal.

Definition 2.14. Let (M, g, (I, J,K)) be an almost hypercomplex (pseudo-)Hermitian man-

ifold. Then we define

Iso(M, g, (I, J,K)) := {f ∈ Iso(M, g) | df ◦ I = I ◦ df, df ◦ J = J ◦ df, df ◦K = K ◦ df} .

9
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Definition 2.15. Let (M, g, (I, J,K)) be an almost hypercomplex (pseudo-) Hermitian

manifold. Then each of the three almost complex structures defines a Kähler 2-form by

ωI(X,Y ) := g(IX, Y ), ωJ(X,Y ) := g(JX, Y ), ωK(X,Y ) := g(KX,Y )

with X,Y ∈ X(M).

Definition 2.16. An almost hypercomplex (pseudo-) Hermitian manifold (M, g, (I, J,K))

is called (pseudo-)hyper-Kähler manifold if ∇I = 0, ∇J = 0, and ∇K = 0, where ∇
denotes the Levi-Civita connection.

Lemma 2.5 ([Hi, Lemma 6.8]). Let (M, g, (I, J,K)) be an almost hypercomplex (pseudo-)

Hermitian manifold. If the Kähler forms ωI , ωJ , and ωK are closed, then (M, g, (I, J,K))

is a (pseudo-)hyper-Kähler manifold.

Lemma 2.6 ([Be, Theorem 14.13]). A (pseudo-)hyper-Kähler manifold is Ricci-flat.

Definition 2.17. Let V be a finite dimensional real vector space. A quaternionic struc-

ture on V is a three-dimensional subspace Q ⊂ End(V), which is spanned by a hypercomplex

structure (I, J,K). Then the hypercomplex structure (I, J,K) is called subordinate to the

quaternionic structure Q.

Definition 2.18. Let M be a smooth n-dimensional manifold. An almost quaternionic

structure on M is a three-dimensional subbundle Q ⊂ End(TM) such that for every

p ∈ M there exists an open neighbourhood U of p with an almost hypercomplex structure

(I, J,K) on U and Q|U = spanR {I, J,K}. The pair (M,Q) is called an almost quater-

nionic manifold.

Remark 2.6. The almost quaternionic structure defines pointwise a quaternionic structure

on the tangent spaces.

Notice that in general the local almost hypercomplex structure can not extended globally on

M . An example is the quaternionic projective space HPn, which does not admit an almost

complex structure for topological reasons.

Definition 2.19. Let (M,Q) be an almost quaternionic manifold. A (pseudo-) Rieman-

nian metric g on M is called Hermitian if Q consists of skew symmetric endomorphisms

with respect to g. Then the triple (M, g,Q) is called almost quaternionic (pseudo-)

Hermitian manifold.

Let (M, g,Q) be an almost quaternionic (pseudo-) Hermitian manifold. Then we can define

locally the Kähler forms ωI , ωJ , and ωK , which depend on I, J and K. The 4-form

Ω := ωI ∧ ωI + ωJ ∧ ωJ + ωK ∧ ωK (2.1)

does not depend on the local almost hypercomplex structure and can be extended globally

to M .

10
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Definition 2.20. Let (M, g,Q) be an almost quaternionic (pseudo-) Hermitian manifold.

The 4-form Ω on M which is locally defined by equation (2.1) is called the fundamental

4-form.

Definition 2.21. An almost quaternionic (pseudo-) Hermitian manifold (M, g,Q) of di-

mension 4n ≥ 8 is called quaternionic (pseudo-) Kähler manifold if the almost

quaternionic structure Q is parallel with respect to the Levi-Civita connection ∇, i.e.

∇XΓ(Q) ⊂ Γ(Q) for all X ∈ X(M).

Theorem 2.6 ([S, Theorem A.3]). Let (M, g,Q) be an almost quaternionic (pseudo-)

Hermitian manifold of dimension 4n ≥ 12. If the fundamental 4-form Ω is closed, then

(M, g,Q) is a quaternionic (pseudo-) Kähler manifold.

Definition 2.22. Let (M, g,Q) be an almost quaternionic (pseudo-) Hermitian manifold.

If X ∈ TpM , p ∈ M , then the 4-plane Q(X) := spanR {X, IX, JX,KX} is called the

quaternionic 4-plane determined by X. A (non-degenerate) two dimensional subspace

E of Q(X) is called quaternionic plane. The sectional curvature of a quaternionic plane

E is called quaternionic sectional curvature.

An almost quaternionic (pseudo-) Hermitian manifold is called quaternionic space form

if its quaternionic sectional curvatures are equal to a constant.

It is known that an almost quaternionic (pseudo-) Hermitian manifold (M, g,Q) is a quater-

nionic space form if and only if the Riemannian curvature has the form

R(X,Y )Z =
c

4
(g(Y, Z)X − g(X,Z)Y + g(IY, Z)IX − g(IX,Z)IY

+2g(X, IY )IZ + g(JY, Z)JX − g(JX,Z)JY + 2g(X, JY )JZ

+g(KY,Z)KX − g(KX,Z)KY + 2g(X,KY )KZ)

for some constant c ∈ R, see for instance [A], [I].

Proposition 2.5 ([I, Section 5]). A quaternionic space form is locally symmetric.

2.3 Amenable groups

Amenable groups have been first introduced in 1929 by J. von Neumann in [N] for discrete

groups but he named them messbar, which is the German word for measurable, because

they are closely related to the Banach-Tarski paradoxon. In 1949 M. M. Day named these

groups amenable, see [D]. V. Runde suggests in [R] that Day chose this translation as a

pun. The reader can find an introduction to the historical origin of Amenability Theory

in [P, Chapter 0]

In this section we will give a short overview of the theory of amenable groups from the Lie

theoretical point of view, which will be needed in Section 3.2. The reader can find proofs

of the following propositions and more details in [G], [P], [R], and [Z].

11
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For motivation let us first consider the well known arithmetic mean of real numbers. Let

n ∈ N and a1, . . . , an ∈ R. Then

min {a1, . . . , an} ≤
a1 + . . .+ an

n
≤ max {a1, . . . , an} .

The term in the middle is the arithmetic mean of the real numbers a1, . . . , an. If we set

X := {1, . . . , n} ⊂ N, then the arithmetic mean can be considered as a linear functional on

the vector space of real-valued function on X. More precisely, if f : X → R, the arithmetic

mean is defined as

M(f) :=
1

n

n∑
k=1

f(k).

In particular the inequality

inf {f(x)|x ∈ X} ≤M(f) ≤ sup {f(x)|x ∈ X}

holds. We will now generalize the concept of a mean by replacing X with a Lie group.

First, notice that the above inequality only makes sense for real valued bounded functions

on a set X. In the above example all functions on X are bounded just because X is finite.

One could think of defining a mean of a Lie group on the set of bounded functions but

this does not reflect the topological structure of the Lie group. Actually, we will define the

concept of a mean on the set of essentially bounded functions with respect to the Haar

measure of the Lie group.

Let G be a Lie group and denote L∞(G) the Banach space of essentially bounded complex

valued Borel measurable functions on G.

Definition 2.23. Let G be a Lie group. A continuous linear functional M : L∞(G)→ C
is called a mean on G if

(1) M(f) = M(f) for all f ∈ L∞(G) and

(2) ess inf(f) ≤ M(f) ≤ ess sup(f) for all f ∈ L∞(G) which are real valued almost

everywhere.

Remark 2.7. Condition (1) in Definition 2.23 ensures that M(f) is a real number if f is

real valued almost everywhere. Condition (2) is equivalent to

M(f) ≥ 0 if f ≥ 0 almost everywhere, and M(1) = 1.

Proof: Let f ∈ L∞(G) be real valued almost everywhere and non-negative. Then condition

(2) implies 0 ≤ ess inf(f) ≤M(f) ≤ ess sup(f). Hence, M(f) ≥ 0. Furthermore,

1 = ess inf(1) ≤M(1) ≤ ess sup(1) = 1.

Hence, M(1) = 1.

Conversely, let f be real valued almost everywhere. We have ess inf(f) ≤ f(x) for almost

all x ∈ G. This implies g := f − ess inf(f) ≥ 0 almost everywhere. By assumption

0 ≤ M(g) = M(f) − ess inf(f)M(1). Hence, M(f) ≥ ess inf(f). Analogously, one can

show M(f) ≤ ess sup(f). �

12



2.3. AMENABLE GROUPS 13

Let f ∈ L∞(G). For a fixed x ∈ G we define fx : G→ C by g 7→ f(x−1g).

Definition 2.24. Let G be a Lie group. A mean M : L∞(G) → C on G is called left-

invariant if M(fx) = M(f) for all f ∈ L∞(G) and for all x ∈ G.
A Lie group G is called amenable if there exists a left-invariant mean on G.

Example 2.1. A compact Lie group G is amenable. If µ is the normalized Haar measure

on G, then a left-invariant mean on G is defined by

M(f) :=

∫
G
fdµ.

Proposition 2.6 ([R, Example 1.1.5]). An abelian Lie group is amenable.

Remark 2.8. The proof of Proposition 2.6 is non-constructive.

Proposition 2.7 ([G, Chapter 2 and 3]). Let G be a Lie group.

(i) Let H be a Lie group and π : G→ H be a continuous surjective group homomorphism.

If G is amenable, then H is amenable.

(ii) If G is amenable and H ⊂ G is a closed subgroup, then H is amenable.

(iii) If G is amenable and H ⊂ G is a connected Lie subgroup, then H is amenable.

(iv) If G is amenable and N ⊂ G is a closed normal subgroup, then G/N is amenable.

(v) If H is an amenable Lie group and G is also amenable, then GnH is amenable.

(vi) Let N ⊂ G be a closed normal subgroup. If N and G/N are amenable, then G is

amenable.

Proposition 2.8 ([R, Example 1.2.11]). A solvable Lie group is amenable.

Proposition 2.9 ([G, Cor. 3.3.3]). Let G be a connected Lie group and let G = L · R
be the Levi decomposition of G. Then G is amenable if and only if the semi-simple Levi

factor L is compact.

Now we will consider a special example of an amenable group in detail, because it will play

an important role in the proof of Proposition 3.1.

Example 2.2. We consider the action of the Lie group Sp(1, n) on the right-vector space

H1,n. Sp(1, n) preserves the quadratic form

γ0(q) := 〈q, q〉1 = −|q0|2 +

n∑
i=1

|qi|2,

where q = (q0, q1, . . . , qn)T ∈ H1,n. The corresponding matrix to γ0 is

Γ0 =

(
−1 0

0 1n

)
,

13
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i.e. γ0(q) = qTΓ0q. We will now show that the subgroup preserving a lightlike line is

amenable.

For simplification we will not use γ0 but an equivalent quadratic form, namely

γ1(q) := q0qn + qnq0 +
n−1∑
i=1

|qi|2.

The corresponding matrix of γ1 is

Γ1 =


0 0 1

0 1n−1 0

1 0 0

 ,

i.e. γ1(q) = qTΓ1q. Denote by

T =


1√
2

0 1√
2

0 1n−1 0

− 1√
2

0 1√
2

 .

Since T
T
Γ1T = Γ0, γ0 and γ1 are indeed equivalent. Hence, Sp(1, n) is conjugated to the

Lie group

G :=
{
A ∈ GL(n+ 1,H) | ATΓ1A = Γ1

}
.

It follows that a stabilizer in Sp(1, n) of a lightlike line with respect to γ0 is conjugated to

a stabilizer in G of a lightlike line with respect to γ1.

The advantage of using γ1 is that the vector e0 becomes a lightlike vector. Let e0H be the

quaternionic line spanned by e0. We denote the subgroup of G preserving e0H by Ge0H. Let

Φ ∈ Ge0H and write

Φ =


a vT b

u A x

c wT d

 ,

with a, b, c, d ∈ H, A ∈ M(n − 1,H) and u, v, w, x ∈ Hn−1. First of all, since Φe0 ∈ e0H,

we have c = 0 and u = 0. From Φ
T
Γ1Φ = Γ1 it follows that

0 0 1

0 1n−1 0

1 0 0

 =


0 awT ad

wa vwT +A
T
A+ wvT vd+A

T
x+ wb

da bwT + xTA+ dvT bd+ xTx+ db

 .

This gives us the equations

ad = 1, (2.2)

awT = 0, (2.3)

vwT +A
T
A+ wvT = 1n−1, (2.4)

vd+A
T
x+ wb = 0, (2.5)

bd+ xTx+ db = 0. (2.6)

14
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Equation (2.2) implies d = a−1 and in particular a 6= 0. From equation (2.3) it follows that

w = 0. Now we conclude from equation (2.4) that A ∈ Sp(n − 1). Equation (2.5) implies

v = −ATxa which is equivalent to vT = −axTA.
Let t ∈ Hn−1 and λ ∈ H, such that x = At and b = aλ. Now we can decompose

Φ =


a −atT aλ

0 A At

0 0 a−1

 =


a 0 0

0 A 0

0 0 a−1




1 −tT λ

0 1n−1 t

0 0 1

 .

Equation (2.6) implies

λa a−1 + a−1aλ+ t
T
A
T
At = 0,

which is equivalent to λ+ λ = −tT t. Hence, <(λ) = −1
2 ‖t‖

2. Summarizing,

Φ =


a 0 0

0 A 0

0 0 a−1




1 −tT −1
2 ‖t‖

2 + s

0 1n−1 t

0 0 1


with s ∈ =(H), t ∈ Hn−1, A ∈ Sp(n − 1), and a ∈ H∗. Finally, we see Ge0H =

(H∗ × Sp(n− 1)) n Heisn−1(H).

Sp(n − 1) is compact and it follows from Example 2.1 that Sp(n − 1) is amenable. The

amenability of H∗ = R+ × Sp(1) follows from Example 2.1 and Propositions 2.6 and 2.7.

The Heisenberg group Heisn−1(H) is solvable and hence amenable by Proposition 2.8. Fi-

nally Proposition 2.7 implies the amenability of Ge0H.

2.4 Hyperbolic spaces

In this section we give an overview of the hyperbolic spaces Hn(F). The following results

are taken from [CG]. Recall that F denotes R, C, or H.

Denote by V := F1,n the (right-)vector space Fn+1 endowed with the bilinear form 〈·, ·〉1.
Let U(1, n;F) be the group of unitary transformations, i.e. the group of all F-linear au-

tomorphisms A : V → V such that 〈Av,Aw〉1 = 〈v, w〉1 for all v, w ∈ V. Analogously,

U(n;F) denotes the group of F-linear automorphisms with respect to 〈·, ·〉0.
We define the subsets

V− := {v ∈ V| 〈v, v〉1 < 0} , V+ := {v ∈ V| 〈v, v〉1 > 0} , V0 = {v ∈ V| 〈v, v〉1 = 0} .

Notice that V−, V+ and V0 are invariant under the action of U(1, n;F).

Denote by FPn the projective space of V = F1,n, i.e. the set of all F-lines in V, and let

π : V \ {0} → FPn, v 7→ v ·F =: [v] be the projection. Then we define the hyperbolic space

by Hn(F) := π(V−). The boundary ∂Hn(F) of Hn(F ) in FPn is given by π(V0).
Since g(v · λ) = g(v) · λ for g ∈ U(1, n;F), v ∈ V, and λ ∈ F, the action of U(1, n;F) on V
induces an action on FPn. Furthermore, U(1, n;F) acts on Hn(F) and ∂Hn(F), since the

sets V− and V0 are U(1, n;F)-invariant.
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Proposition 2.10 ([CG, Prop. 2.2.1]). U(1, n;F) acts transitively on Hn(F) and doubly

transitively on ∂Hn(F), i.e. for every p1, p2, q1, q2 ∈ ∂Hn(F) there exists an element g ∈
U(1, n;F) such that g(p1) = p2 and g(q1) = q2.

Since U(1, n;F) acts transitively on the hyperbolic space, we can Hn(F) identify with the

coset space U(1, n;F)/U(1;F)×U(n;F). In particular Hn(F) is a symmetric space.

Now we will discuss the ball model of the hyperbolic space. If v = (v0, . . . , vn)T ∈ V−, the
condition

〈v, v〉1 = −|v0|2 +
n∑
i=1

|vi|2 < 0

implies v0 6= 0. Hence, we can define the inhomogeneous coordinates by

p = (v1v
−1
0 , . . . , vnv

−1
0 )T ∈ Fn.

By definition we have 〈p, p〉0 =
∑n

i=1 |pi|2 < 1. In this way we can identify Hn(F) with

the open ball Bn(F) = {p ∈ Fn| 〈p, p〉0 < 1}. We get a map P : V− → Bn(F) by P (v) :=

(v1v
−1
0 , . . . , vnv

−1
0 )T . The boundary ∂Hn(F) in this model is given by the sphere Sn(F) =

{p ∈ Fn| 〈p, p〉0 = 1}.
Let F′ ⊂ F be one of the subfields R,C, or H and 1 ≤ m ≤ n. We have a natural inclusion

F′1,m ⊂ F1,n, namely (v0, . . . , vm)T 7→ (v0, . . . , vm, 0, . . . , 0). This induces an inclusion

Hm(F′) ⊂ Hn(F).

From now on we will use the ball model of the hyperbolic space. Denote by Hn(F) =

Hn(F) ∪ ∂Hn(F).

Proposition 2.11 ([CG, Prop. 2.4.3]). (i) H1(R) is a geodesic in Hn(F). Every geodesic

is equivalent under U(1, n;F) to H1(R).

(ii) The geodesics at 0 are precisely the R-lines through 0. These are all equivalent under

the isotropy group U(1;F)×U(n;F).

(iii) Let p, q ∈ Hn(F). Then there is a unique geodesic which connects p to q.

SinceHn(F) is a homogeneous space, every totally geodesic submanifold is equivalent under

U(1, n;F) to a totally geodesic submanifold that contains 0. Proposition 2.11 (ii) implies

that the totally geodesic submanifolds at 0 are intersections of real subspaces of Fn with

Hn(F) = Bn(F).

Proposition 2.12 ([CG, Prop. 2.5.1]). Any totally geodesic submanifold of Hn(F) is

equivalent under U(1, n;F) to one of the following:

(i) Hm(F′), where F′ ⊆ F, F′ = R,C, or H, and 1 ≤ m ≤ n;

(ii) H1(I) := e1I ∩ Bn(H), where e1 = (1, 0, . . . , 0)T ∈ Hn and I = spanR {i, j,k}. It

occurs only if F = H.

These are all non-equivalent under U(1, n;F).

16



2.4. HYPERBOLIC SPACES 17

Let X be a subset of of V. The span of X, denoted by 〈X〉, is the smallest F-subspace
containing X. If Y is a subset of Hn(F) (as a subset of FPn), the span 〈Y 〉 is defined by

〈Y 〉 = π(
〈
π−1(Y )

〉
∩ V−).

Lemma 2.7 ([CG, Lemma 3.1.1]). Let Y be a subset of ∂Hn(F) which contains at least

three elements and is pointwise fixed by some g ∈ U(1, n;F). Then there is a totally geodesic

submanifold M ⊂ 〈Y 〉 of Hn(F) such that 〈M〉 = 〈Y 〉 and M is pointwise fixed by g.

The group U(1, n;F) acts on Hn(F). Since Hn(F) is a closed ball and g ∈ U(1, n;F) is

continuous, g has a fixed point in Hn(F) by Brouwer’s fixed point theorem.

Definition 2.25. An element g ∈ U(1, n;F) is called

• elliptic if it has a fixed point in Hn(F),

• parabolic if it has exactly one fixed point in Hn(F) and this lies on ∂Hn(F),

• loxodromic if it has exactly two fixed points in Hn(F) and these belong to ∂Hn(F),

• hyperbolic if it is loxodromic and conjugated to an element different from 1n+1 of

SO0(1, 1)× {1n−1} ⊂ U(1, n;F).

Lemma 2.7 implies that an element g ∈ U(1, n;F) with more than two fixed points in

∂Hn(F) fixes pointwise a totally geodesic submanifold of Hn(F), i.e. g is elliptic. Hence,

Definition 2.25 covers all possibilities. If two elements of U(1, n;F) are conjugated, then

they have the same (elliptic, parabolic, loxodromic) type.

Remark 2.9. Notice that an element f ∈ U(1, n;F) is elliptic if and only if f generates a

precompact subgroup.

Next we present some further properties of elliptic elements.

Lemma 2.8 ([CG, Lemma 3.3.2]). Let g ∈ U(1, n;F) be elliptic, and let p, q ∈ ∂Hn(F). If

g fixes p and q, then it fixes every point on the unique geodesic connecting p and q.

Definition 2.26. Let g ∈ U(1, n;F) be elliptic. An eigenvalue λ of g is called

(i) of positive type if there exists an eigenvector of λ in V−,

(ii) of negative type if there exists an eigenvector of λ in V+.

If F = H, g ∈ U(1, n;H) = Sp(1, n) and v ∈ V, λ ∈ H, such that g(v) = vλ, then

A(vµ) = (vµ)µ−1λµ for all µ ∈ H \ {0}, i.e. vµ is an eigenvector of g with eigenvalue

µ−1λµ. Thus the eigenvalues of g occur in similarity classes.

Lemma 2.9 ([CG, Lemma 3.2.1]). Let g ∈ U(1, n;F) be elliptic. Every eigenvalue of g

has positive or negative type. The eigenvalues fall into n similarity classes of positive type

(which may not be different) and one similarity class of negative type (which may coincide

with one of the positive classes).

17



2.4. HYPERBOLIC SPACES 18

Proposition 2.13 ([CG, Prop. 3.2.2]). Let g ∈ U(1, n;F) be elliptic, let Λ0 be its negative

class of eigenvalues, and let Λ1, . . . , Λn be its positive classes. Let F (g) denote the set of

fixed points of g in Hn(F).

(i) If Λ0 6= Λi for all 1 ≤ i ≤ n, then F (g) contains only one point.

(ii) Suppose that Λ0 coincides with exactly m of the classes Λi, 1 ≤ i ≤ n. Then F (g)

is a totally geodesic submanifold, which is equivalent to Hm(F) if Λ0 ⊂ R, and to

Hm(C) if Λ0 6⊂ R.

Remark 2.10. One has to pay attention with the notation. The authors of [CG] denote

by C a subfield of F which contains R and is isomorphic to the field of complex numbers.

Hence, in Proposition 2.13, C could be for example spanR {1, j}.

Let M ⊂ Hn(F) be a totally geodesic submanifold and denote by I(M) the subgroup of

U(1, n;F) which leaves M invariant.

Lemma 2.10 ([CG, Lemma 4.2.1]). Let M = Hm(F′) be a totally geodesic submanifold of

Hn(F). Then the elements g ∈ I(M) are of the form

g =

(
Aλ 0

0 B

)
,

where A ∈ U(1,m;F′), B ∈ U(n−m;F), and λ ∈ N+(F′,F) :=
{
λ ∈ U(1;F)|λF′λ−1 = F′

}
.

Lemma 2.11 ([CG, Lemma 4.2.2]). Let M = H1(I) ⊂ Hn(H). Then the elements of

g ∈ I(M) are of the form

g =

(
A 0

0 B

)
, where A =

(
a −b
εb εa

)
∈ Sp(1, 1),

ε = ±1, and B ∈ Sp(n− 1).

LetM be a totally geodesic submanifold of Hn(F) and let K(M) be the subgroup of I(M)

which leaves M pointwise fixed. Then K(M) is a compact normal subgroup of I(M).

Let I0(M) and K0(M) be the connected components of the identity of I(M) and K(M),

respectively. We have the following Proposition.

Proposition 2.14 ([CG, Proposition 4.2.1]). Let M be a totally geodesic submanifold in

Hn(F) and let I(M) be the stabilizer of M in U(1, n;F ). Let K(M) be the subgroup of

I(M) which leavesM pointwise fixed. Then there exists a Lie subgroup U(M) ⊂ I(M) such

that I(M) = K(M)U(M) (almost semidirect product). The identity component U0(M) is

a simple Lie group when dimM > 1, and I0(M) = K0(M)U0(M) is an almost direct

product. U0(M) induces the connected isometry group of M .

The following table covers all possibilities of I(M) for a totally geodesic submanifold
M ⊂ Hn(F).

18



2.4. HYPERBOLIC SPACES 19

Table 2.1: Decomposition of I(M)

I(M) = K(M)U(M)

M = Hm(H) ⊂ Hn(H) K(M) = {±1m+1} × Sp(n−m), U(M) = Sp(1,m)× {1n−m},
K0(M) = {1m+1} × Sp(n−m);

M = Hm(C) ⊂ Hn(H) K(M) = U(1) · 1m+1 × Sp(n−m), U(M) = SU(1,m) · {±1,±j} × {1n−m} ,
U0(M) = SU(1,m)× {1n−m};

M = Hm(R) ⊂ Hn(H) K(M) = Sp(1) · 1m+1 × Sp(n−m), U(M) = O(1,m)× {1n−m},
U0(M) = SO0(1,m)× {1n−m};

M = H1(I) ⊂ Hn(H) K(M) = {±12} × Sp(n− 1), U(M) = U × {1n−1},
K0(M) = {12} × Sp(n− 1), U0(M) = U0 × {1n−1}.

M = Hm(C) ⊂ Hn(C) K(M) = U(1) · 1m+1 ×U(n−m), U(M) = SU(1,m)× {1n−m};
M = Hm(R) ⊂ Hn(C) K(M) = U(1)1m+1 ×U(n−m), U(M) = O(1,m)× {1n−m},

U0(M) = SO0(1,m)× {1n−m};
M = Hm(R) ⊂ Hn(R) K(M) = {±1m+1} ×O(n−m), U(M) = O(1,m)× {1n−m},

K0(M) = {1m+1} ×O(n−m), U0(M) = SO0(1,m)× {1n−m};

In the case M = H1(I) the Lie group U ⊂ Sp(1, 1) is given by

U =

{
A ∈ Sp(1, 1)

∣∣∣∣∣A =

(
a −b
εb εa

)
, ε = ±1

}
.

We will now investigate the identity component U0 in more detail. We see easily that U0

is contained in the subgroup of U consisting of the matrices with ε = 1. We denote this

Lie group by S. Next we show that U0 = S. It is sufficient to show that S is connected.

The elements of S are precisely the elements of Sp(1, 1) which commute with

Φ =

(
0 −1

1 0

)
.

Hence, S is an algebraic group. It is known that algebraic groups have finitely many

connected components, see [Mi]. Recall that a Lie group with finitely many connected

components is connected if and only if a maximal compact subgroup is connected. This

follows for instance from [HN, Theorem 14.3.11]. So we have to check that a maximal

compact subgroup of S is connected. A maximal compact subgroup of S is contained in

a maximal compact subgroup of Sp(1, 1), which is conjugated to Sp(1) × Sp(1). Some

computations show that the Lie algebra s is compatible with a Cartan decomposition of

sp(1, 1). Hence, a maximal compact subgroup of S is {A ∈ Sp(1, 1)|q · 12, q ∈ Sp(1)} ∼=
Sp(1). Since Sp(1) is connected, the Lie group S is connected and we conclude U0 = S.

Furthermore, since Sp(1) is simply connected, U0 is simply connected. Its Lie algebra is

u = {X ∈ sp(1, 1)|XΦ = ΦX} .

A basis of u is for example

x =
i

2
Φ, y =

j

2
Φ, z =

k

2
Φ,

u =
i

2
12, v =

j

2
12, w =

k

2
12.
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2.4. HYPERBOLIC SPACES 20

One can show that this Lie algebra is isomorphic to so(1, 3), see Lemma A.1 for a proof.

This implies U0 ∼= Spin0(1, 3).

Lemma 2.12 ([CG, Lemma 4.3.1]). Let p ∈ Hn(F) and let (gn)n be a sequence in U(1, n;F)

such that limn→∞ gn(p) = q ∈ ∂Hn(F). Then limn→∞ gn(p′) = q for all p′ ∈ Hn(F).

Definition 2.27. Let G be a subgroup of U(1, n;F) and let p ∈ Hn(F). The limit set of

G is defined to be the set L(G) := G · p∩∂Hn(F). Lemma 2.12 implies that L(G) does not

depend on p.

Lemma 2.13 ([CG, Lemma 4.3.2]). Let G be a subgroup of U(1, n;F).

(a) L(G) is invariant under G.

(b) If G′ is a subgroup of G, then L(G′) ⊂ L(G).

(c) If G′ is a subgroup of finite index, L(G′) = L(G).

(d) If G is the closure of G in U(1, n;F), then L(G) = L(G).

Lemma 2.14 ([CG, Lemma 4.3.4]). Let N be a normal subgroup of G ⊂ U(1, n;F). Then

G leaves L(N) invariant. Furthermore if L(N) 6= ∅ and the elements of G do not have a

common fixed point in ∂Hn(F), then L(N) = L(G).

Theorem 2.7 ([CG, Theorem 4.4.1]). Let G be a connected Lie subgroup of U(1, n;F).

Then one of the following is true.

(a) The elements of G have a common fixed point in Hn(F).

(b) There is a proper, totally geodesic submanifold M in Hn(F) such that dimM > 1,

L(G) = ∂M = M ∩∂Hn(F), and G = K ·U0(M), where K ⊂ K0(M) is a connected

Lie subgroup.

(c) F = C and G = SU(1, n).

(d) G = U0(1, n;F).

Remark 2.11. The condition dimM > 1 in case (b) is due to the following fact. If G

preserves a proper totally geodesic submanifold M ⊂ Hn(F) such that dimM = 1 and

L(G) = ∂M , then ∂M consists of exactly two points. By Lemma 2.13, G preserves ∂M .

Furthermore since G is connected, it fixes both points inside of it. Thus case (a) holds.

Theorem 2.8 ([CG, Theorem 4.4.2]). Let G be a closed subgroup (not necessarily con-

nected) of U(1, n;F). Then one of the following is true.

(a) G is discrete.

(b) The elements of G have a common fixed point in Hn(F).

(c) G leaves invariant a proper, totally geodesic submanifold.
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2.5. THE ZARISKI TOPOLOGY 21

(d) F = C and SU(1, n) ⊂ G.

(e) U0(1, n;F) ⊂ G.

Remark 2.12. We will point out some details of the Theorems 2.7 and 2.8, since they are

needed later. The proof of Theorem 2.8 makes use of Theorem 2.7. If G is not discrete, G0

has no common fixed point in Hn(F), and (b) of Theorem 2.7 holds for G0, then Lemma 2.14

implies that G preserves ∂M = L(G0) = L(G). Notice that M is the union of all geodesics

whose endpoints lie in ∂M . Since the elements of G map geodesics to geodesics and the

geodesics are uniquely determined by their endpoints, see Proposition 2.11, it follows that G

preservesM . This argument will be used later in the proof of Proposition 3.4. Furthermore,

if (c) of Theorem 2.8 holds for G and the totally geodesic submanifold M preserved by G

has dimension greater than one, then (b) of Theorem 2.7 holds for G0.

Notice that in case (c) of Theorem 2.8 the totally geodesic submanifold M is allowed to be

one dimensional. If we are additionally not in case (b), then G can interchange the two

endpoints of M , since G is not assumed to be connected. In that case G0 fixes both points

in ∂M , so (a) of Theorem 2.7 holds for G0. Furthermore, notice that ∂M = L(G0).

2.5 The Zariski topology

In this section we will recall the definitions of algebraic varieties and the Zariski topology.

The reader can find more details in [OV1].

In the following F will denote C or R. Let F [X1, . . . , Xn] be the polynomial algebra of

X1, . . . , Xn with coefficients in F.

Definition 2.28. An algebraic variety V in Fn is a subset of Fn consisting of the

common zeros of some subset S ⊂ F [X1, . . . , Xn], i.e.

V =
{
x = (x1, . . . , xn)T ∈ Fn | f(x1, . . . , xn) = 0 for all f ∈ S

}
.

Remark 2.13. Notice that algebraic varieties are closed with respect to the standard topol-

ogy of Fn, because they can be written as intersections of zeros of polynomials, which are

closed sets.

Example 2.3. The known matrix Lie groups like SO(p, q), SU(p, q), Sp(p, q) ect. are

examples for algebraic varieties. For instance Sp(p, q) consists of the matrices A ∈ GL(p+

q,H) which satisfy AT1p,qA = 1p,q, i.e. the elements of Sp(p, q) are the common zeros of

(p+ q)2 different polynomials in 4(p+ q) variables.

Proposition 2.15 ([OV1, Chapter 2]). Any algebraic variety can be determined by a finite

system of equations.

Definition 2.29. The topology on Fn where the closed sets are precisely the algebraic

varieties is called the Zariski topology. If M ⊂ Fn, then MZar denotes the closure of M

with respect to the Zariski topology.
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Remark 2.14. Let M ⊂ Fn and S = {f ∈ F [X1, . . . , Xn] | f(x) = 0 for all x ∈M}.
Then the Zariski closure MZar is given by

MZar = {x ∈ Fn | f(x) = 0 for all f ∈ S} .

Lemma 2.15. Let (M, g) be an n-dimensional G-homogeneous (pseudo-)Riemannian man-

ifold with G ⊂ Iso(M, g). Then the Zariski closure of the linear isotropy group H of a point

p ∈M preserves the (pseudo-)Riemannian metric g.

Proof: Let (q, n − q) be the signature of g, p ∈ M and H := Gp the isotropy group. We

consider H as a subgroup of O(q, n− q) and identify TpM with Rq,n−q.
Let S := {f ∈ F [X1, . . . , Xn] | f(x) = 0 for all x ∈ H}. Then the Zariski closure HZar is

given by

HZar = {X ∈ M(n,R) | f(X) = 0 for all f ∈ S} .

We denote by e1, . . . , en the standard basis of Rq,n−q and consider the polynomials

fi,j(X) = gp(Xei, Xej)− gp(ei, ej)

with X ∈ M(n,R). Since H is a subgroup of Iso(M, g), we have fi,j ∈ S for all 1 ≤ i, j ≤ n.
Hence, fi,j(X) = 0 for all X ∈ HZar and 1 ≤ i, j ≤ n. �
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Chapter 3

Algebraic results

In this chapter we will prove the algebraic results which will be needed for the proofs of

the Theorems 4.1 and 4.2 in Chapter 4.

In Section 3.1 we start with studying real-valued 3- and 5-forms on Hn+1 which are

SO0(1, n)-invariant. We present here elementary proofs without using any representa-

tion theory besides of the concept of irreducibility.

In Section 3.2 we will classify all connected H-irreducible Lie subgorups of Sp(1, n).

3.1 SO0(1, n)-invariant forms

Lemma 3.1. Let F denote R or C and let α ∈ Λk
(
F1,n

)∗ be SO0(1, n)-invariant. If

n ≥ k ≥ 1, then α = 0.

Proof: We prove the Lemma by induction over k. Let k = 1, n ≥ 1 and α : F1,n → F be

an F-linear and SO0(1, n)-invariant map. The kernel kerα ⊆ F1,n is an SO0(1, n)-invariant

F-subspace. Since SO0(1, n) acts F-irreducibly on F1,n, we have kerα = {0} or F1,n. But

α can not be injective because n ≥ 1. Hence, kerα = F1,n, i.e. α = 0.

Assume now that the claim holds for some k ∈ N. Let n ≥ k + 1 and α ∈ Λk+1
(
F1,n

)∗
be SO0(1, n)-invariant. Let x ∈ F1,n be spacelike, i.e. 〈x, x〉1 > 0. We consider the

decomposition F1,n = Fx⊕ (Fx)⊥.

The form ιxα vanishes if we insert an element of Fx, so we restrict ιxα to (Fx)⊥. Notice

that ιxα is SO0(1, n)x-invariant. The action of SO0(1, n)x on (Fx)⊥ is equivalent to the

action of SO0(1, n− 1) on F1,n−1. Since n− 1 ≥ k, we know by induction hypothesis that

ιxα|(Fx)⊥ = 0. Hence, x ∈ kerα. Since F1,n is generated by spacelike vectors, we conclude

α = 0. This finishes the proof. �

Lemma 3.2 ([AZ, Fact 2.1]). Let n ≥ 2 and α ∈ Λ2V∗, where V denotes C1,n considered

as real vector space. If α is SO0(1, n)-invariant, then α ∈ R · ω1, where ω1 is the Kähler

form.

Remark 3.1. The proof of Lemma 3.2 works also for SO(n)-invariant forms.
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3.1. SO0(1, N)-INVARIANT FORMS 24

Lemma 3.3. Let n ≥ 3 and α ∈ Λ2V∗, where V denotes Cn considered as real vector

spaces. If α is SO(n)-invariant, then α ∈ R · ω0, where ω0 is the Kähler form.

Lemma 3.4. Let n ≥ 3 and α ∈ V∗ ⊗ V∗ ⊗ V∗, with V = C1,n considered as a real vector

space. If α is SO0(1, n)-invariant, then α = 0.

Proof: Let x ∈ R1,n be spacelike, i.e. 〈x, x〉1 > 0. The proof consists of three Claims.

Claim 1: α(ε1x, ε2x, ·)|(Cx)⊥ = 0, α(ε1x, ·, ε2x)|(Cx)⊥ = 0 and α(·, ε1x, ε2x)|(Cx)⊥ = 0 for

ε1, ε2 ∈ {1, i}.

Claim 2: α(ε1x, ε2x, ε3x) = 0 for ε1, ε2, ε3 ∈ {1, i}.

Claim 3: α(εx, ·, ·)|(Cx)⊥ = 0 for ε ∈ {1, i}.

The Claims imply that α(u, ·, ·) = 0 for all u ∈ Cx. Since the spacelike vectors of R1,n

generate C1,n, this implies the Lemma. Thus we just have to prove the Claims.

Proof of Claim 1: The action of SO0(1, n)x on (Cx)⊥ is equivalent to the action of

SO0(1, n− 1) on C1,n−1 ∼= R1,n−1 ⊕ iR1,n−1. Since n− 1 ≥ 2, SO0(1, n)x ∼= SO0(1, n− 1)

acts R-irreducibly on Rn and iRn. First, we consider the R-linear map

ϕ := α(ε1x, ε2x, ·)|(Cx)⊥ : (Cx)⊥ ∼= C1,n = R1,n ⊕ iR1,n → R,

with ε1, ε2 ∈ {1, i}. Notice that ϕ is SO0(1, n)x-invariant. The same holds for ϕ1 :=

ϕ|R1,n−1 and ϕ2 := ϕ|iR1,n−1 .

The SO0(1, n)x-invariance of ϕ1 and ϕ2 implies that the real subspaces kerϕ1 ⊂ R1,n−1

and kerϕ2 ⊂ iR1,n−1 are invariant under the action of SO0(1, n)x. By the R-irreducibility
of SO0(1, n)x the only possibilities for kerϕ1 are {0} and R1,n−1. Analogously, we have

kerϕ2 = {0} or kerϕ2 = iR1,n−1. Since n ≥ 3, ϕ1 and ϕ2 are not injective, so we have

kerϕ1 = R1,n−1 and kerϕ2 = iR1,n−1. This implies ϕ = 0. A similar computation shows

α(·, ε1x, ε2x)|(Cx)⊥ = 0 and α(ε1x, ·, ε2x)|(Cx)⊥ = 0.

Proof of Claim 2: Let ε1, ε2, ε3 ∈ {1, i}. Let γ : R → R1,n be a smooth curve, such that

γ(t) is spacelike for all t ∈ R, and denote by r(t) :=
√
〈γ(t), γ(t)〉1 the length function.

Now we consider the equation

α(ε1γ(t), ε2γ(t), ε3γ(t)) = r(t)3α

(
ε1
γ(t)

r(t)
, ε2

γ(t)

r(t)
, ε3

γ(t)

r(t)

)
.

Since γ(t)
r(t) lies in

{
p ∈ R1,n| 〈p, p〉1 = 1

}
= Sn1 and SO0(1, n) acts transitively on Sn1 , there

exists for every t ∈ R an element A(t) ∈ SO0(1, n) such that A(t)γ(t)r(t) = x
l , with l :=√

〈x, x〉1. The SO0(1, n)-invariance of α implies that

α(ε1γ(t), ε2γ(t), ε3γ(t)) =
r(t)3

l3
α(ε1x, ε2x, ε3x). (3.1)

Differentiating equation (3.1) yields

3r(t)2r′(t)

l3
α(ε1x, ε2x, ε3x) = α(ε1γ

′(t), ε2γ(t), ε3γ(t)) + α(ε1γ(t), ε2γ
′(t), ε3γ(t))

+α(ε1γ(t), ε2γ(t), ε3γ
′(t)).
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Taking a second derivative and evaluating at t = 0 gives

6r(0)r′(0)2 + 3r(0)2r′′(0)

l3
α(ε1x, ε2x, ε3x) = α(ε1γ

′′(0), ε2γ(0), ε3γ(0)) + α(ε1γ(0), ε2γ
′′(0), ε3γ(0)) (3.2)

+α(ε1γ(0), ε2γ(0), ε3γ
′′(0)) + 2α(ε1γ

′(0), ε2γ
′(0), ε3γ(0))

+2α(ε1γ
′(0), ε2γ(0), ε3γ

′(0)) + 2α(ε1γ(0), ε2γ
′(0), ε3γ

′(0))

All terms on the right hand side of (3.2) are of the form α(ε1v, ε2w, ε3w), α(ε1v, ε2w, ε3v)

or α(ε1w, ε2w, ε3v) for v, w ∈ R1,n. It follows from Claim 1 that such terms vanish, if v, w

are spacelike and v⊥w. So if we find a curve γ, such that γ(t) is spacelike for all t ∈ R,
γ′(0) and γ′′(0) are both spacelike and both orthogonal to γ(0) and in addition r′′(0) 6= 0,

then (3.2) implies α(ε1x, ε2x, ε3x) = 0, since γ(0)⊥γ′(0) implies r′(0) = 0. For instance

such a curve is given by

γ : R→ R1,n, t 7→ (t+
√

2) cos(t)e1 + ((t−
√

2) sin(t) + 1)e2,

with e1 = (0, 1, 0, . . . , 0)T , e2 = (0, 0, 1, 0, . . . , 0)T ∈ R1,n. This proves Claim 2.

Proof of Claim 3: We consider (Cx)⊥ ∼= C1,n−1 = R1,n−1 ⊕ iR1,n−1. Let b1, . . . , bn be an

orthonormal basis of R1,n−1 where b1 is a timelike vector.

First, we show that α(·, ε1bj , ε2bj)|(Cbj)⊥ = 0 for all 1 ≤ j ≤ n and ε1, ε2 ∈ {1, i}. The

R-linear map

ϕ := α(·, ε1bj , ε2bj)|(Cbj)⊥ : (Cbj)⊥ ∼= Cn → R

is invariant under

SO0(1, n)bj
∼=

SO(n) if j = 1,

SO0(1, n− 1) if j ≥ 2.

As in the proof of Claim 1 it follows that ϕ = 0.

Let ε1, ε2 ∈ {1, i} and U := spanC {bj , bk}
⊥ ⊂ C1,n for j 6= k. We consider the R-linear

map

ψ := α(·, ε1bj , ε2bk)U : U ∼= Cn−1 = Rn−1 ⊕ iRn−1 −→ R.

The map ψ is invariant under the action of

G :=
{
A ∈ SO0(1, n) | Abj = bj , Abk = bk

}
.

The same holds for ψ1 := ψ|Rn−1 and ψ2 := ψ|iRn−1 . We have

G ∼=

SO0(1, n− 2) if bj and bk are spacelike

SO(n− 1) if bj or bk is timelike.

We have to distinguish the cases n ≥ 4 and n = 3.

Case n ≥ 4: Since n − 2 ≥ 2, G acts irreducibly on Rn−1 and iRn−1 in both cases. Since

kerψ1 ⊂ Rn−1 and kerψ2 ⊂ iRn−1 are G-invariant subspaces and neither ψ1 nor ψ2 can

be injective, kerψ1 = Rn−1 and kerψ2 = iRn−1, i.e. ψ = 0.

Case n = 3: If bj or bk is timelike then G ∼= SO(2) acts irreducibly on R2 and iR2. As

above this implies ψ = 0.
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Denote by v± = (1,±1)T . If bj and bk are spacelike, then G ∼= SO0(1, 1) acts reducibly on

R1,1 = R · v+ ⊕ R · v−. We have

G ∼= SO0(1, 1) =

{(
cosh(t) sinh(t)

sinh(t) cosh(t)

)∣∣∣∣∣ t ∈ R

}
.

Since ψj is G-invariant it follows for A ∈ G that

ψj(v±) = ψj(Av±) = (cosh(t)± sinh(t))ψj(v±) = e±tψj(v±)

for all t ∈ R. Hence, ψj(v±) = 0. This implies as above ψ = 0.

Summarizing, we have in both cases ψ = 0. Since Cx ⊂ U , α(εx, ε1bj , ε2bk) = 0 for

ε ∈ {1, i}. The multilinearity of α implies Claim 3. �

Remark 3.2. The proof of Lemma 3.4 works also with some simplifications if α is SO(n)-

invariant.

Lemma 3.5. Let n ≥ 4 and α ∈ V∗ ⊗ V∗ ⊗ V∗, with V = Cn considered as a real vector

space. If α is SO(n)-invariant, then α = 0.

Lemma 3.6. Let n ≥ 3 and α ∈ Λ3(H1,n)∗, where H1,n = C1,n ⊕ C1,n · j is considered as

real vector space. If α is SO0(1, n)-invariant, then α = 0.

Proof: Let J : H1,n → H1,n denote the right multiplication with j. The value of α is

given by the values of α|C1,n , (J∗α)|C1,n , α(J ·, ·, ·)|C1,n and α(·, J ·, J ·)|C1,n . They all are

SO0(1, n)-invariant.

Let V denote C1,n considered as real vector space. Then the above trilinear maps can be

considered as elements of V∗⊗V∗⊗V∗. By Lemma 3.4, they all vanish. Summarizing, we

have α = 0. �

Lemma 3.7. Let n ≥ 4 and α ∈ Λ4V∗, where V denotes C1,n considered as real vector

space. If α is SO0(1, n)-invariant, then α ∈ R · (ω1 ∧ ω1), where ω1 denotes the Kähler

form.

Proof: The value of α is given by the values of α(·, ·, ·, ·)|R1,n , α(i·, ·, ·, ·)|R1,n , α(·, i·, ·, i·)|R1,n ,

α(·, i·, i·, i·)|R1,n and α(i·, i·, i·, i·)|R1,n . All these forms are SO0(1, n)-invariant.

By Lemma 3.1, α(·, ·, ·, ·)|R1,n = 0 and α(i·, i·, i·, i·)|R1,n = 0. Next we show α(i·, ·, ·, ·)|R1,n =

0 and α(·, i·, i·, i·)|R1,n = 0. For that it is sufficient to consider an element β ∈ (R1,n)∗ ⊗
Λ3(R1,n)∗ which is SO0(1, n)-invariant.

Let x0 ∈ R1,n be a spacelike vector. Then β(x0, x0, ·, ·) vanishes if we insert an element of

Rx0, so we consider its restriction to (Rx0)⊥ ∼= R1,n−1. This restriction is invariant under

the stabilizer SO0(1, n)x0
∼= SO0(1, n − 1). Lemma 3.1 implies β(x0, x0, ·, ·)|(Rx0)⊥ = 0.

Hence ιx0β vanishes if we insert an element of Rx0, so we consider the restriction of ιx0β

to (Rx0)⊥ ∼= R1,n−1. Again, this restriction is SO0(1, n)x0
∼= SO0(1, n − 1)-invariant and

Lemma 3.1 implies its vanishing. Hence, x0 ∈ kerβ. Since R1,n is generated by spacelike
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vectors, β = 0. This implies α(i·, ·, ·, ·)|R1,n = 0 and α(·, i·, i·, i·)|R1,n = 0.

Next we show that there exists a real number λ such that

α(x, iy, z, iu) = λdet

(
〈x, y〉1 〈y, z〉1
〈x, u〉1 〈z, u〉1

)
,

for x, y, z, u ∈ R1,n.

Let again x0 ∈ R1,n be a spacelike vector and consider the restriction of α(x0, ix0, ·, i·) to

(Rx0)⊥ ∼= R1,n−1. There exists a real matrix A such that α(x0, ix0, v, iw) = 〈v,Aw〉1 for

all v, w ∈ (Rx0)⊥. Since α is SO0(1, n)-invariant, α(x0, ix0, ·, i·)|(Rx0)⊥ is SO0(1, n)x0
∼=

SO0(1, n− 1)-invariant. We have

α(x0, ix0, v, iw) = 〈v,Aw〉1 = 〈Bv,BAw〉1 ,

α(x0, ix0, v, iw) = α(x0, ix0, Bv, iBw) = 〈Bv,ABw〉1 ,

for all B ∈ SO0(1, n)x0 and all v, w ∈ R1,n−1. This implies [A,B] = 0. Since n − 1 ≥ 3,

SO0(1, n)x0 acts irreducibly and by Schur’s lemma, A = λ̃Id. Since α is real-valued, λ̃ is a

real number.

Hence,

α(x0, ix0, v, iw)|(Rx0)⊥ = λ̃ 〈v, w〉1

=
λ̃

〈x0, x0〉1
〈x0, x0〉1 〈v, w〉1 .

Now we set λ := λ̃
〈x0,x0〉1

. Since α(x0, ix0, ·, i·) vanishes if we insert an element of Rx0 it

follows

α(x0, ix0, z, iu) = λ(〈x0, x0〉1 〈z, u〉1 − 〈x0, z〉1 〈x0, u〉1),

for z, u ∈ R1,n.

Now we consider the restriction of α(x0, i·, ·, i·) to (Rx0)⊥. It is an R-trilinear map, which

is antisymmetric in the first and third entry and SO0(1, n)x0-invariant. If we consider it

as an SO0(1, n− 1)-invariant element of W∗ ⊗W∗ ⊗W∗, where W denotes C1,n−1 as real

vector space, then we can apply Lemma 3.4 since n− 1 ≥ 3 and conclude its vanishing.

An elementary calculation shows

α(x0, iy, z, iu) = λ(〈x0, y〉1 〈z, u〉1 − 〈x0, u〉1 〈y, z〉1), (3.3)

for y, z, u ∈ R1,n ∼= Rx0 ⊕ (Rx0)⊥.
Analogously there exists a real number µ for any other spacelike vector x1 ∈ R1,n such

that

α(x1, iy, z, iu) = µ(〈x1, y〉1 〈z, u〉1 − 〈x1, u〉1 〈y, z〉1), (3.4)

for all y, z, u ∈ R1,n.

If we set z = x1 in (3.3) and z = x0 in (3.4), we get

α(x0, iy, x1, iu) = λ (〈x0, y〉1 〈x1, u〉1 − 〈x0, u〉1 〈y, x1〉1) ,

α(x1, iy, x0, iu) = µ(〈x1, y〉1 〈x0, u〉1 − 〈x1, u〉1 〈y, x0〉1)

= −µ(〈x1, u〉1 〈y, x0〉1 − 〈x1, y〉1 〈x0, u〉1)
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for all y, u ∈ R1,n. The relation α(x0, iy, x1, iu) = −α(x1, iy, x0, iu) implies λ = µ. Since

spacelike vectors generate R1,n, it follows that

α(x, iy, z, iu) = λ (〈x, y〉1 〈z, u〉1 − 〈x, u〉1 〈y, z〉1)

= λ det

(
〈x, y〉1 〈x, u〉1
〈y, z〉1 〈z, u〉1

)

for all x, y, z, u ∈ R1,n.

Now we consider complex vectors X,Y, Z, U ∈ C1,n and write X = X0 + iX1,Y = Y0 +

iY1,Z = Z0 + iZ1 and U = U0 + iU1 with Xj , Yj , Zj , Uj ∈ R1,n, j = 0, 1. We get

α(X,Y, Z, U) = α(X0, Y0, iZ1, iU1) + α(X0, iY1, Z0, iU1) + α(X0, iY1, iZ1, U0)

+α(iX1, Y0, Z0, iU1) + α(iX1, Y0, iZ1, U0) + α(iX1, iY1, Z0, U0)

= −α(X0, iZ1, Y0, iU1) + α(X0, iY1, Z0, iU1)− α(X0, iY1, U0, iZ1)

−α(Y0, iX1, Z0, iU1) + α(Y0, iX1, U0, iZ1)− α(Z0, iX1, U0, iY1)

= λ (−〈X0, Z1〉1 〈Y0, U1〉1 + 〈X0, U1〉1 〈Z1, Y0〉1 + 〈X0, Y1〉1 〈Z0, U1〉1
−〈X0, U1〉1 〈Y1, Z0〉1 − 〈X0, Y1〉1 〈U0, Z1〉1 + 〈X0, Z1〉1 〈Y1, U0〉1
−〈Y0, X1〉1 〈Z0, U1〉1 + 〈Y0, U1〉1 〈X1, Z0〉1 + 〈Y0, X1〉1 〈U0, Z1〉1
−〈Y0, Z1〉1 〈X1, U0〉1 − 〈Z0, X1〉1 〈U0, Y1〉1 + 〈Z0, Y1〉1 〈X1, U0〉1)

Next we insert the vectors X,Y, Z and U in ω1 ∧ ω1.

ω1 ∧ ω1(X,Y, Z, U) = 2 (ω1(X,Y )ω1(Z,U)− ω1(X,Z)ω1(Y, U) + ω1(X,U)ω1(Y,Z))

= 2 ((〈X0, Y1〉1 − 〈X1, Y0〉1) (〈Z0, U1〉1 − 〈Z1, U0〉1)

− (〈X0, Z1〉1 − 〈X1, Z0〉1) (〈Y0, U1〉1 − 〈Y1, U0〉1)

+ (〈X0, U1〉1 − 〈X1, U0〉1) (〈Y0, Z1〉1 − 〈Y1, Z0〉1))

= 2 (〈X0, Y1〉1 〈Z0, U1〉1 − 〈X0, Y1〉1 〈Z1, U0〉1 − 〈X1, Y0〉1 〈Z0, U1〉1
+ 〈X1, Y0〉1 〈Z1, U0〉1 − 〈X0, Z1〉1 〈Y0, U1〉1 + 〈X0, Z1〉1 〈Y1, U0〉1
+ 〈X1, Z0〉1 〈Y0, U1〉1 − 〈X1, Z0〉1 〈Y1, U0〉1 + 〈X0, U1〉1 〈Y0, Z1〉1
−〈X0, U1〉1 〈Y1, Z0〉1 − 〈X1, U0〉1 〈Y0, Z1〉1 + 〈X1, U0〉1 〈Y1, Z0〉1) .

Comparing both equations, we see that α and ω1 ∧ ω1 coincide up to a constant. �

Lemma 3.8. Let n ≥ 5 and α ∈ Λ5V∗, where V denotes C1,n considered as real vector

space. If α is SO0(1, n)-invariant, then α = 0.

Proof: Let x ∈ R1,n be a spacelike vector and u ∈ Cx. We have α(u, u, ·, ·, ·) = 0, so

we consider α(u, iu, ·, ·, ·). It vanishes if we insert an element of Cx. Its restriction to

(Cx)⊥ ∼= Cn is invariant under the stabilizer SO0(1, n)x ∼= SO0(1, n − 1). Hence, Lemma

3.4 gives us α(u, iu, ·, ·, ·)|(Cx)⊥ = 0, which implies that ιuα vanishes if we insert an element

of Cx.
Next we consider the restriction of ιuα to (Cx)⊥. It is SO0(1, n)x ∼= SO0(1, n−1)-invariant
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and since n−1 ≥ 4 we can apply Lemma 3.7, so there exists for every u ∈ Cx a real number

φ(u), such that ιuα|(Cx)⊥ = φ(u)ω1 ∧ ω1. This defines an R-linear map φ : Cx→ R. Since
the real dimension of Cx is 2, there exists a non-zero element u0 ∈ kerφ. Hence, u0 ∈ kerα.

Since kerα is an SO0(1, n)-invariant subspace of C1,n it has to be equal {0} ,C1,n or c ·R1,n

for some complex number c ∈ C \ {0}. We already found a non-zero vector u0 ∈ kerα.

Hence, kerα = c · R1,n or C1,n.

Assume kerα = c ·R1,n. Then α induces a 5-form α̃ ∈ Λ5(V/c ·R1,n)∗, which is SO0(1, n)-

invariant. Since V/c · R1,n ∼= R1,n, we can apply Lemma 3.1 and get α̃ = 0. Hence,

kerα = C1,n, i.e. α = 0. �

Lemma 3.9. Let n ≥ 5 and α ∈ V∗⊗Λ4V∗, where V denotes C1,n considered as real vector

space. If α is SO0(1, n)-invariant, then α = 0.

Proof: The idea of the proof is to show that Cx ⊂ W := ker(v 7→ α(v, ·, ·, ·, ·)) for

every spacelike vector x ∈ R1,n ⊂ C1,n = V. Cx ⊂ W follows from several Claims. Let

x ∈ R1,n ⊂ C1,n be a spacelike vector and u ∈ Cx.

Claim 1: (ιuα)(x, ix, ·, ·) : C1,n × C1,n → R vanishes.

Claim 2: (ιuα)(ũ, ·, ·, ·)|(Cx)⊥ = 0 for all ũ ∈ Cx.

Claim 3: (ιuα)(y, z, v, iw) = −(ιuα)(y, z, iv, w) for all y, z, v, w ∈ (Cx)⊥.

First we show that the Claims indeed imply u ∈ W. Notice that Claims 1 and 2 imply

that ιuα vanishes if we insert an element of Cx. So we restrict ιuα to (Cx)⊥ ∼= C1,n−1. It

is an SO0(1, n)x ∼= SO0(1, n− 1)-invariant form. Since n− 1 ≥ 4 we can apply Lemma 3.7.

Hence, there exists a real number µ, such that ιuα = µ·ω1∧ω1. But ω1∧ω1 does not satisfy

the equation in Claim 3. For example consider the vectors Y = i(e0 + e1), Z = e1, V = ie0

and W = i(e0 + e1). Then we have ω1 ∧ ω1(Y, Z, V, iW ) = 2 but ω1 ∧ ω1(Y, Z, iV,W ) = 0.

Hence, µ = 0. Summarizing we have shown Cx ⊂ W for all spacelike vectors x ∈ R1,n.

Since the spacelike vectors of R1,n generate C1,n, we have V =W, i.e. α = 0. This finishes

the proof of the Lemma and we have just to prove the Claims. From now on we identify

(Cx)⊥ with C1,n−1 ∼= R1,n−1 ⊕ iR1,n−1 and denote by b1, . . . , bn an orthonormal basis of

R1,n−1, where b1 is timelike.

Proof of Claim 1: Denote by α̃ := (ιuα)(x, ix, ·, ·). We see that α̃ vanishes if we insert

an element of Cx. Now we restrict α̃ to (Cx)⊥ ∼= C1,n−1 and let ε1, ε2 ∈ {1, i}. Let

U := spanC {bj , bk}
⊥ ⊂ C1,n for j 6= k, which is isomorphic to Cn−1. We consider

β := α(·, ·, ·, ε1bj , ε2bk)|U : U × U × U → R.

β is invariant under

G :=
{
A ∈ SO0(1, n)|Abj = bj , Abk = bk

} ∼=
SO0(1, n− 2) if bj and bk are spacelike

SO(n− 1) if bj or bk is timelike.

Since n − 2 ≥ 3, n − 1 ≥ 4, we can apply Lemma 3.4 and Lemma 3.5, respectively, i.e.

β = 0. Since u, x, ix ∈ U , (ιuα)(x, ix, ε1bj , ε2bk) = 0. Analogously, (ιuα)(x, ix, bj , ibj) = 0
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for 1 ≤ j ≤ n. This finishes the proof of Claim 1.

Proof of Claim 2: Let ũ ∈ Cx. We consider the restriction of the 3-form (ιuα)(ũ, ·, ·, ·) to

(Cx)⊥ ∼= C1,n−1. It is SO0(1, n)x ∼= SO0(1, n− 1)-invariant. Since n− 1 ≥ 4, we can apply

Lemma 3.4, i.e. (ιuα)(ũ, ·, ·, ·)|(Cx)⊥ = 0. This finishes the proof of Claim 2.

Proof of Claim 3: Let β := ιuα|(Cx)⊥ . We identify SO0(1, n)x with SO0(1, n−1) and (Cx)⊥

with C1,n−1.

The 2-form β(bj , ibj , ·, ·) vanishes if we insert an element of Cbj ⊂ C1,n−1. Its restriction

to (Cbj)⊥ is invariant under

SO0(1, n− 1)bj
∼=

SO0(1, n− 2) if bj is spacelike,

SO(n− 1) if bj is timelike.

Since n − 2 ≥ 3 and n − 1 ≥ 4 respectively, we can apply Lemma 3.2 and Lemma 3.3

respectively, i.e. β(bj , ibj , ·, ·) ∈ R · ω1 or β(bj , ibj , ·, ·) ∈ R · ω0, respectively. Since ω1 and

ω0 are of type (1, 1), summarizing the above,

β(bj , ibj , iv, w) = −β(bj , ibj , v, iw)

holds for all v, w ∈ (Cx)⊥. Let j 6= k and ε1, ε2 ∈ {1, i}. Denote by U := spanC {bj , bk} ⊂
C1,n. Next we show that the 2-form β(ε1bj , ε2bk, ·, ·) vanishes on U . For that it is sufficient

to consider the R-linear map

ϕ := α(·, bj , bk, ibj , ibk)|U⊥ : U⊥ ∼= Cn−1 = Rn−1 ⊕ iRn−1.

The map ϕ is invariant under

G :=
{
A ∈ SO0(1, n)|Abj = bj , Abk = bk

} ∼=
SO0(1, n− 2) if bj and bk are spacelike,

SO(n− 1) if bj or bk is timelike.

The same holds for ϕ1 := ϕ|Rn−1 and ϕ2 := ϕ|iRn−1 . Since n− 1 ≥ 4, G acts R-irreducibly
on Rn−1 and iRn−1. Furthermore ϕ1 and ϕ2 can not be injective, i.e. kerϕ1 = Rn−1 and

ϕ2 := iRn−1. Since u ∈ U⊥, β(bj , bk, ibj , ibk) = 0.

Now we consider U as a subspace of (Cx)⊥ ∼= C1,n−1. Then U⊥ ⊂ C1,n−1 and the 2-form

β(ε1bj , ε2bk, ·, ·)|U⊥ is invariant under

H :=
{
A ∈ SO0(1, n− 1)|Abj = bj , Abk = bk

} ∼=
SO0(1, n− 3) if bj and bk are spacelike,

SO(n− 2) if bj or bk is timelike.

Since n − 3 ≥ 2 and n − 2 ≥ 3 respectively, we can apply Lemma 3.2 and Lemma 3.3

respectively, i.e. β(ε1bj , ε2bk, ·, ·)|U⊥ is an element of R · ω1 or R · ω0 respectively.

Finally, we consider the R-linear map β(ε1bj , ε2bk, v, ·)|U⊥ for some v ∈ U . Again, it is H-

invariant. SinceH acts irreducibly on Rn−2 and iRn−2 it follows that β(ε1bj , ε2bk, v, w) = 0

for all v ∈ U and all w ∈ U⊥.
Summarizing,

β(ε1bj , ε2bk, iv, w) = −β(ε1bj , ε2bk, v, iw)
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holds for all v, w ∈ (Cx)⊥. Since it is sufficient to check Claim 3 for vectors y, z belonging

to our real basis b1, . . . , bn, ib1 . . . , ibn of (Cx)⊥ ∼= C1,n−1, this proves Claim 3. �

Remark 3.3. Lemma 3.9 is of course a generalization of Lemma 3.8. We gave an inde-

pendent proof of Lemma 3.8 to show up that this statement is much easier to prove.

Lemma 3.10. Let n ≥ 5 and α ∈ Λ2V∗ ⊗ Λ3V∗, where V denotes C1,n considered as real

vector space. If α is SO0(1, n)-invariant, then α = 0.

Proof: The Lemma follows from several Claims. Let x ∈ R1,n be spacelike and u ∈ Cx.

Claim 1: α(u, iu, u, iu, ·) : C1,n → R vanishes.

Claim 2: α(u, iu, ũ, ·, ·) : C1,n × C1,n → R vanishes for all ũ ∈ Cx.

Claim 3: α(u, iu, ·, ·, ·) : C1,n × C1,n × C1,n → R vanishes.

Claim 4: α(u, ·, ũ, iũ, ·) : C1,n × C1,n → R vanishes for all ũ ∈ Cx.

Claim 5: α(u, ·, ũ, ·, ·) : C1,n × C1,n × C1,n → R vanishes for all ũ ∈ Cx.

Claim 6: ιuα|(Cx)⊥ = 0.

The Claims 3 and 5 imply that ιuα vanishes if we insert an element of Cx. Together with
Claim 6 it follows that ιuα = 0 for all u ∈ Cx, i.e. Cx ⊂ W := ker(v 7→ α(v, ·, ·, ·, ·)). Since
the spacelike vectors of R1,n generate C1,n, W = C1,n, i.e. α = 0. Thus we just have to

prove the Claims.

From now on we identify (Cx)⊥ with C1,n−1 = R1,n−1 ⊕ iR1,n−1 and denote by b1, . . . , bn
an orthonormal basis of Rn where b1 is timelike.

Proof of Claim 1: The R-linear map α(u, iu, u, iu, ·) : C1,n → R vanishes on Cx. So we

consider the restriction ϕ := α(u, iu, u, iu, ·)|(Cx)⊥ : C1,n−1 = R1,n−1 ⊕ iR1,n−1 → R. The

R-linear map ϕ is SO0(1, n)x ∼= SO0(1, n− 1)-invariant. The same holds for ϕ1 := ϕ|R1,n−1

and ϕ2 := ϕ|iR1,n−1 . Since n − 1 ≥ 4, SO0(1, n − 1) acts R-irreducibly on R1,n−1 and

iR1,n−1. Since n ≥ 5, neither ϕ1 nor ϕ2 are injective, i.e. kerϕj 6= {0}. Furthermore,

kerϕ1 ⊂ R1,n−1 and kerϕ2 ⊂ iR1,n−1 are SO0(1, n−1)-invariant subspaces. Hence, ϕ1 = 0

and ϕ2 = 0, i.e. ϕ = 0. This finishes the proof of Claim 1.

Proof of Claim 2: Let ũ ∈ Cx. It follows from Claim 1 that α(u, iu, ũ, ·, ·) vanishes if we

insert an element of Cx.
We consider (Cbj)⊥ as a subspace of C1,n. Then α(·, ·, ·, bj , ibj)|(Cbj)⊥ is SO0(1, n)bj -

invariant and since n ≥ 5, we can apply Lemma 3.4 if j > 1 and Lemma 3.5 if j = 1. Since

u, ũ ∈ (Cbj)⊥, we have α(u, iu, ũ, bj , ibj) = 0.

Let ε1, ε2 ∈ {1, i} and j 6= k. Denote by U := spanC {bj , bk}
⊥ ⊂ C1,n. Then α(·, ·, ·, ε1bj , ε2bk)|U

is invariant under

{
A ∈ SO0(1, n)|Abj = bj , Abk = bk

} ∼=
SO0(1, n− 2) bj and bk are spacelike,

SO(n− 1) bj or bk is timelike.

Since n− 2 ≥ 3, we can apply Lemma 3.4 and Lemma 3.5, respectively. Since u, ũ ∈ U ,

α(u, iu, ũ, ε1bj , ε2bk) = 0.
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The multilinearity of α implies the Claim 2.

Proof of Claim 3: Claim 2 implies that α(u, iu, ·, ·, ·) vanishes if we insert an element of

Cx. Its restriction to (Cx)⊥ is SO0(1, n)x ∼= SO0(1, n− 1)-invariant. Since n− 1 ≥ 4, we

can apply Lemma 3.4, i.e. α(u, iu, ·, ·, ·) = 0. This finishes the proof of Claim 3.

Proof of Claim 4: Let ũ ∈ Cx. It follows from Claim 1 that α(u, ·, ũ, iũ, ·) vanishes if we

insert an element of Cx. So we have to show that it also vanishes on (Cx)⊥.

Let ε1, ε2 ∈ {1, i} and U := spanC {bj , bk}
⊥ ⊂ C1,n with j 6= k. Then α(·, ε1bj , ·, ·, ε2bk)|U

is invariant under

{
A ∈ SO0(1, n)|Abj = bj , Abk = bk

} ∼=
SO0(1, n− 2) bj and bk are spacelike,

SO(n− 1) bj or bk is timelike.

Since n− 2 ≥ 3, we can apply Lemma 3.4 and Lemma 3.5, respectively. Since u, ũ ∈ U ,

α(u, ε1bj , ũ, iũ, ε2bk) = 0.

Analogously, α(u, ε1bj , ũ, iũ, ε2bj) = 0 for all 1 ≤ j ≤ n by using Lemma 3.4 and Lemma

3.5, respectively. The multilinearity of α implies Claim 4.

Proof of Claim 5: Let ũ ∈ Cx. The Claims 3 and 4 imply that α(u, ·, ũ, ·, ·) vanishes if we

insert an element of Cx. So we consider its restriction to (Cx)⊥ ∼= Cn. It is SO0(1, n)x ∼=
SO0(1, n− 1)-invariant. Since n− 1 ≥ 4, we can apply Lemma 3.4, which implies Claim 5.

Proof of Claim 6: Let y ∈ (Cx)⊥ be spacelike and v ∈ Cy. Let U := spanC {x, y}
⊥ ∼=

C1,n−2. The 3-form (ιuα)(v, ·, ·, ·)|U is invariant under{
A ∈ SO0(1, n)|Ax = x,Ay = y

} ∼= SO0(1, n− 2).

Since n − 2 ≥ 3, we can apply Lemma 3.4, i.e. (ιuα)(v, ·, ·, ·)|U = 0. Next we show that

(ιuα)(v, ·, ·, ·)|(Cx)⊥ vanishes if we insert an element of Cy.
Let ṽ ∈ Cy and ϕ := (ιuα)(v, ṽ, iṽ, ·)|U : U ∼= C1,n−2 = R1,n−2⊕iR1,n−2 → R. The R-linear
map ϕ is SO0(1, n − 2)-invariant. The same holds for ϕ1 := ϕ|R1,n−2 and ϕ2 := ϕ|iR1,n−2 .

Since kerϕ1 and kerϕ2 are SO0(1, n − 2)-invariant subspaces and neither ϕ1 nor ϕ2 can

be injective, they both vanish. Hence, ϕ = 0. It follows that β := (ιuα)(v, ṽ, ·, ·) vanishes

if we insert an element of Cy.
Next we show that the bilinear form β also vanishes on U ∼= C1,n−2 ∼= R1,n−2 ⊕ iR1,n−2.

Let ε1, ε2 ∈ {1, i} and denote by d1, . . . , dn−1 be an orthonormal basis of R1,n−2 where d1 is

timelike. Similarly as in the in the proof of Claim 2, it follows that (ιuα)(v, ṽ, ε1dj , ε2dk) =

0 for all 1 ≤ j, k ≤ n − 1. The multilinearity of α implies that (ιuα)(v, ṽ, ·, ·) vanishes on

U .
Summarizing the above, we have shown that (ιuα)(v, ·, ·, ·) vanishes on (Cx)⊥ for every

v ∈ Cy, where y ∈ (Cx)⊥ is spacelike. Since the spacelike vectors generate (Cx)⊥, we have

proven Claim 6. �

Lemma 3.11. Let n ≥ 5 and α ∈ Λ5(H1,n)∗ where H1,n is considered as real vector space.

If α is SO0(1, n)-invariant, then α = 0.
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Proof: Let H1,n = C1,n ⊕ C1,n · j and consider V = C1,n as real vector space. Denote by

J : H1,n → H1,n the right multiplication with j.

The value of α is given by the values of α|V , J∗α|V ∈ Λ5V∗, α(J ·, ·, ·, ·, ·)|V , α(·, J ·, J ·, J ·, J ·)|V
∈ V∗ ⊗ Λ4V∗ and α(J ·, J ·, ·, ·, ·)|V , α(·, ·, J ·, J ·, J ·)|V ∈ Λ2V∗ ⊗ Λ3V∗. All these forms are

SO0(1, n)-invariant. It follows from the Lemmas 3.8, 3.9 and 3.10 that they all vanish.

Hence, α = 0. �

Lemma 3.12. Let n ≥ 3 and β : F1,n × F1,n → F1,n be an R-bilinear form. If β is

SO0(1, n)-equivariant, then β = 0.

Proof: First we consider the case F = R. Let v, w ∈ R1,n be two linearly independent light-

like vectors and V := spanR {v, w}. We define the group G :=
{
A ∈ SO0(1, n)|A(V) = V

}
.

Notice that the action of G on V is equivalent to the action of SO0(1, 1) on R1,1 and that

V⊥ is G-invariant. Hence, for every A ∈ G there exists some λ ∈ R∗ such that Av = λv,

Aw = 1
λw. The SO0(1, n)-equivariance of β implies that the vector β(v, w) is fixed by G.

Since G fixes no non-zero in V, we obtain β(v, w) ∈ V⊥. The action of G on V⊥ is equivalent

to the action of SO(n−1) on Rn−1. Since n−1 ≥ 2, SO(n−1) acts R-irreducibly on Rn−1

and we obtain β(v, w) = 0. Next we show that β(v, v) = 0. The one-dimensional subspace

R · β(v, v) is G-invariant. Since G acts R-irreducibly on the at least two-dimensional sub-

space V⊥, it follows β(v, v) ∈ V. Let A ∈ G be non-trivial. Then there exists a real number

λ = et, t ∈ R∗, such that Av = λv and Aw = 1
λw. Since Aβ(v, v) = λ2β(v, v), β(v, v)

is an eigenvector of A. Notice that A decomposes the subspace V into the eigenspaces of

λ and 1
λ . Since λ2 is no eigenvalue of A, it follows β(v, v) = 0. Analogously, we obtain

β(w,w) = 0. Since the lightlike vectors generate R1,n, we finally conclude β = 0.

If F = C then we restrict β pairwise to the subspaces R1,n and iR1,n, project it to one

of the subspaces and apply the above. Analogously, for F = H we do the same for the

subspaces R1,n, R1,ni, R1,nj, and R1,nk. This finishes the proof. �

Remark 3.4. Lemma 3.12 is not true for n = 2. If F = R, then the pseudo-Euclidean

analogue of the cross-product in the R1,2 is a counterexample. More precisely, the antisym-

metric R-bilinear map 
x1

x2

x3

×

y1

y2

y3

 :=


−(x2y3 − y2x3)
−(x1y3 − y1x3)
x1y2 − y1x2


with (x1, x2, x3)

T , (y1, y2, y3)
T ∈ R3 is SO0(1, 2)-equivariant.

Remark 3.5. Recall that we can consider an R-bilinear map β : F1,n × F1,n → F1,n as

an element of (F1,n)∗ ⊗ (F1,n)∗ ⊗ F1,n. If β is SO0(1, n)-equivariant, then β is SO0(1, n)-

invariant as an element of (F1,n)∗ ⊗ (F1,n)∗ ⊗ F1,n. Since the representations of SO0(1, n)

on the vector spaces F1,n and (F1,n)∗ are equivalent, we are for F = C in the situation of

Lemma 3.4. In other words for F = C the Lemmas 3.12 and 3.4 are equivalent. Analogously,

for F = H Lemma 3.12 implies Lemma 3.6. Nevertheless we gave two different proofs. The
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advantage of the proof of Lemma 3.4 is that it can be easily modified to prove that an R-
trilinear map α : Cn+1×Cn+1×Cn+1 → R vanishes, if n ≥ 3 and α is SO(n+1)-invariant,

see Lemma 3.5. The proof of Lemma 3.12 does not work for such a map α, since it makes

use of the existence of lightlike vectors which do not exist in the Euclidean space.

3.2 Connected H-irreducible Lie subgroups of Sp(1, n)

Proposition 3.1. Let H ⊂ Sp(1, n) be a non-precompact, connected Lie subgroup. Then

(i) H is amenable if and only if H is contained in a stabilizer of a lightlike line.

(ii) If H is non-amenable, then H is conjugated to one of the following groups

• K ·(SO0(1,m)×{1n−m}), where 2 ≤ m ≤ n and K ⊂ (Sp(1)·1m+1)×Sp(n−m)

is a connected Lie subgroup, such that its projection on Sp(1) · 1m+1 is either

{1m+1}, U(1) · 1m+1, or Sp(1) · 1m+1,

• K · (SU(1,m)×{1n−m}), where 1 ≤ m ≤ n and K ⊂ (U(1) · 1m+1)×Sp(n−m)

is a connected Lie subgroup, such that its projection on U(1) · 1m+1 is either

{1m+1} or U(1) · 1m+1,

• K · (Sp(1,m)× {1n−m}), where 1 ≤ m ≤ n and K ⊂ {1m+1} × Sp(n−m) is a

connected Lie subgroup,

• K · (U0 × {1n−1}), where U0 = {A ∈ Sp(1, 1)|AΦ = ΦA} ∼= Spin0(1, 3) with

Φ =

(
0 −1

1 0

)
and K ⊂ {12} × Sp(n− 1) is a connected Lie subgroup.

Proof: Let H ⊂ Sp(1, n) be a non-precompact, connected Lie subgroup. We denote by

Hn(H) = Sp(1, n)/Sp(1)×Sp(n) the quaternionic hyperbolic space. The Lie group Sp(1, n)

acts on Hn(H) and on its boundary ∂Hn(H), which we identify with the set of lightlike

lines of H1,n.

Proof of (i): Suppose H is contained in the stabilizer of a lightlike line. The stabilizers of

a lightlike line are conjugated to

(H∗ × Sp(n− 1)) n Heisn−1(H),

which is amenable, see Example 2.2. Hence H is conjugated to a connected Lie subgroup of

(H∗×Sp(n− 1))nHeisn−1(H). By Proposition 2.7 we know that connected Lie subgroups

of amenable groups are amenable. Hence, H itself is amenable.

Now we prove the converse. Let H be amenable and denote by H = L ·R its Levi decom-

position. By Proposition 2.9 the semi-simple Levi factor L is compact.

Now we apply Theorem 2.7 to H. We will show that (a) holds for H. We can ex-

clude the case (c) just because F = H 6= C. Suppose we are in case (d) which means

H = Sp(1, n). Since Sp(1, n) is a simple Lie group and non-compact, this is a contradic-

tion to the amenability of H, so this is not possible. Suppose we are in case (b). Hence,
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there exists a proper totally geodesic submanifold M ⊂ Hn(H) such that dim(M) > 1 and

H = K · U0(M) where K ⊂ K0(M). By Proposition 2.14 the Lie group U0(M) is simple.

Furthermore, according to Table 2.1 the Lie group U0(M) is non-precompact. This is

again a contradiction to the amenability of H. It follows that we are in case (a). Hence,

the elements of H have a common fixed point p in Hn(H). Suppose p ∈ Hn(H). Then H is

conjugated to a connected subgroup of Sp(1)× Sp(n). This implies that H is precompact

which is a contradiction to the non-precompactness of H. It follows that the fixed point p

lies in ∂Hn(H). Equivalently, H preserves a lightlike line. This finishes the proof of (i).

Proof of (ii): By Proposition 2.9 the semi-simple Levi factor of H is non-compact. Now

we apply Theorem 2.7 to H and consider the four cases (a), (b), (c), and (d). As before

we exclude the case (c). Suppose we are in (a). Then the elements of H have a common

fixed point p in Hn(H). Since H is non-amenable, (i) implies that p ∈ Hn(H). But this

is again a contradiction to the non-precompactness of H. Hence, we are not in case (a).

If we are in case (b), then there exists a proper totally geodesic submanifold M ⊂ Hn(H)

such that dimM > 1 and H = KU0(M) where K ⊂ K0(M) is a connected Lie subgroup.

According to Proposition 2.12 there are four possibilities for M .

Case 1: M = Hm(R) for some 2 ≤ m ≤ n. By Table 2.1 we obtain H = K ·(
SO0(1,m)× {1n−m}

)
where K ⊂ Sp(1) · 1m+1 × Sp(n−m). Let C be the projection of

K to Sp(1) · 1m+1 and denote by C = L · R its Levi decomposition where L is connected

and semi-simple and R is connected and solvable. Recall that L ∩ R is discrete. Since R

is precompact, R is compact. It is known that a compact solvable Lie group is a torus.

Hence, R is abelian. A maximal torus of Sp(1) · 1m+1 is for example U(1) · 1m+1 which is

a one-dimensional Lie group. If R is non-trivial, then it follows R = U(1) · 1m+1, since R

is connected. If L is non-trivial, it is at least three-dimensional. Since L is connected, it

follows L = Sp(1) · 1m+1. Notice that L and R can not be both non-trivial, since L ∩R is

discrete. This gives us the first case in the list of (ii).

Case 2: M = Hm(C) for some 1 ≤ m ≤ n. By Table 2.1 we obtain H = K ·
(SU(1,m)× {1n−m}) where K ⊂ U(1) ·1m+1×Sp(n−m) is a connected Lie subgroup. Let

C be the projection of K on U(1) · 1m+1 and denote by C = L ·R its Levi decomposition.

Since U(1) is one-dimensional, the Levi factor L is trivial. If the solvable radical R is

non-trivial, then it follows R = U(1) ·1m+1, since R is connected. This gives us the second

case in the list of (ii).

Case 3: M = Hm(H) for some 1 ≤ m < n. By Table 2.1 we obtain H = K · Sp(1,m) ×
{1n−m} where K ⊂ {1m+1} × Sp(n −m) is a connected Lie subgroup. This is the third

case in the list of (ii) with m < n.

Case 4: M = H1(I). By Table 2.1 we obtain H = KU0 × {1n−1} where K ⊂ {12} ×
Sp(n − 1) is a connected Lie subgroup and U0 = {A ∈ Sp(1, 1)|AΦ = ΦA} ∼= Spin0(1, 3).

This is the fourth case in the list of (ii).

Finally, by Theorem 2.7, there is the last case (d). Then we have H = Sp(1, n) which is
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the third case in the list of (ii) with m = n. This finishes the proof. �

Remark 3.6. The methods in the proof of Proposition 3.1 can be applied to the connected,

non-precompact Lie subgroups of U(1, n) and O(1, n). Thus there exist complex and real

versions of Proposition 3.1. The complex version is given in [AZ].

Proposition 3.2 ([AZ]). Let H ⊂ U(1, n) be a connected, non-precompact Lie subgroup.

Then

(i) H is amenable if and only if H is contained in the stabilizer of a lightlike line.

(ii) If H is non-amenable, then H is conjugated to one of the following groups

• K · (SO0(1,m)×{1n−m}) where 2 ≤ m ≤ n and K ⊂ (U(1) ·1m+1)×U(n−m)

is a connected Lie subgroup, such that its projection on U(1) · 1m+1 is either

{1m+1} or U(1) · 1m+1,

• K ·(SU(1,m)×{1n−m}) where 1 ≤ m ≤ n and K ⊂ U(1) ·1m+1×U(n−m) is a

connected Lie subgroup, such that its projection to U(1) ·1m+1 is either {1m+1}
or U(1) · 1m+1.

Proposition 3.3. Let H ⊂ O(1, n) be a connected, non-precompact Lie subgroup. Then

(i) H is amenable if and only if H is contained in the stabilizer of a lightlike line.

(ii) If H is non-amenable, then H is conjugated to K · (SO0(1,m) × {1n−m}) where

2 ≤ m ≤ n and K ⊂ {1m+1} × SO(n−m) is a connected Lie subgroup.

Corollary 3.1. Let H ⊂ Sp(1, n) be a connected and H-irreducible Lie subgroup. Then H

is conjugated to one of the following groups:

• SO0(1, n), SO0(1, n) ·U(1), SO0(1, n) · Sp(1) if n ≥ 2,

• SU(1, n), U(1, n),

• Sp(1, n),

• U0 = {A ∈ Sp(1, 1)|AΦ = ΦA} ∼= Spin0(1, 3) with Φ =

(
0 −1
1 0

)
if n = 1.

Remark 3.7. Notice that only the Lie groups Sp(1, n), SO0(1, n) · Sp(1) and U0 ∼=
Spin0(1, 3) act C-irreducibly on H1,n. The other Lie groups SO0(1, n), SO0(1, n) · U(1),

SU(1, n), and U(1, n) act C-reducibly on H1,n.

Furthermore, the matrices in U0 have the form
(
a −b
b a

)
. Hence, U0 does not contain

SO0(1, 1).

Proof: The idea is to apply Proposition 3.1. Notice that H is non-precompact since other-

wise it would be contained in a maximal compact subgroup of Sp(1, n), which is conjugated

to Sp(1) × Sp(n). In that case H would not act H-irreducibly contradicting the assump-

tion.
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By Proposition 3.1 we have to consider the amenable and non-amenable case. If H is

amenable, then it is contained in the stabilizer of a lightlike line. This is again a contra-

diction to the H-irreducibility of H.

Therefore H is conjugated to one of the Lie subgroups of the list in Proposition 3.1. If

H is conjugated to one of the first three Lie groups, then it can only act irreducibly if

m = n, since otherwise H1,m ⊂ H1,n would be an H-invariant subspace. This gives us the

Lie groups SO0(1, n), SO0(1, n) ·U(1), SO0(1, n) ·Sp(1) if n ≥ 2, and SU(1, n), U(1, n) and

Sp(1, n) for n ≥ 1. They all act H-irreducibly.

So we have to consider the fourth case of Proposition 3.1, H = K · (U0 × 1n−1) where

U0 ⊂ Sp(1, 1) is isomorphic to Spin0(1, 3) and K ⊂ 12 × Sp(n − 1). The Lie group H

can act irreducibly only if n = 1. Thus we have to check that U0 ⊂ Sp(1, 1) indeed

acts H-irreducibly. Since U0 is connected, it acts H-irreducibly if and only if its Lie al-

gebra u ⊂ sp(1, 1) acts H-irreducibly on H1,1. So we have to show, that there is no

one-dimensional u-invariant H-subspace of H1,1.

Recall that the matrices

x =
i

2
Φ, y =

j

2
Φ, z =

k

2
Φ,

u =
i

2
12, v =

j

2
12, w =

k

2
12

form a basis of u. The matrices can not be diagonalized simultaneously, e.g. we have for

x and y the eigenspace decompositions

H1,1 =

(
i

−1

)
·H⊕

(
i

1

)
·H and H1,1 =

(
j

−1

)
·H⊕

(
j

1

)
·H.

Hence, u acts H-irreducibly. �

Proposition 3.4. Let n ≥ 2 and H ⊂ Sp(1, n) be an H-irreducible Lie subgroup. Then the

Zariski closure HZar contains a subgroup which is conjugated to SO0(1, n). In particular,

the connected component of HZar is H-irreducible.

Proof: We will follow the arguments of [AZ]. HZar ⊂ Sp(1, n) is an algebraic group and

hence it has finitely many connected components, see [Mi]. It is also a closed subgroup

with respect to the standard topology of Sp(1, n).

The group HZar is not compact since otherwise H ⊂ HZar would be precompact and

hence it would be conjugated to a Lie subgroup of the maximal compact subgroup Sp(1)×
Sp(n). Then H would preserve a one-dimensional timelike subspace contradicting its H-

irreducibility. In particular, HZar is non-precompact.

Let L := (HZar)0 denote the connected component of the identity. It is also non-

precompact since otherwise HZar could be written as finite union of precompact sets of

the form gL for g ∈ HZar and hence HZar would be precompact.

Now we apply Theorem 2.7 to L and consider the cases (a), (b), (c), and (d). First we

exclude the case (c), since F = H.

Next we exclude the case (a) by supposing the opposite, i.e. suppose that L has a common
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fixed point in Hn(H). Notice that such a fixed point can not lie in Hn(H), since otherwise

L would be contained in the stabilizer of this point which is a maximal compact subgroup

of Sp(1, n). This would be a contradiction to the non-precompactness of L. Hence, all

common fixed points of L lie in ∂Hn(H). Let F ⊂ ∂Hn(H) be the set of fixed points of

L. Notice that |F | ≤ 2, since otherwise Lemma 2.7 implies that every element of L is

elliptic and furthermore, by Lemma 2.8, L fixes every point on the geodesic connecting

two elements of F , i.e. L would preserve timelike lines which again contradicts the non-

precompactness of L. So F consists of one or two elements. Since L is a normal subgroup

of HZar, the set F is preserved by HZar.

If F = {p}, then HZar fixes p. But this is a contradiction to the irreducibility of HZar.

If F = {p, q}, then the corresponding lightlike lines in F1,n span a timelike subspace V
with dimH V = 2, which is preserved by HZar. Since n ≥ 2, V is a proper HZar-invariant

subspace which contradicts the H-irreducibility of HZar.

Summarizing we are not in case (a). Hence, we are in case (b) or (d). If we are in case (d),

then L = Sp(1, n) and we are done. So we have to consider the case (b), i.e. there exists a

proper totally geodesic submanifold M with dimM > 1, L(L) = ∂M and L = KU0(M),

whereK ⊂ K0(M) is a connected Lie subgroup. Notice thatM is the union of all geodesics

whose endpoints lie in ∂M .

Since HZar has finitely many connected components, L is a subgroup of finite index. Then

Lemma 2.13 implies that L(HZar) = L(L) = ∂M and that HZar leaves ∂M invariant. Re-

call that HZar acts by isometries on Hn(H). In particular it maps geodesics to geodesics.

Since M is the union of all geodesics whose endpoints lie in ∂M , we conclude that HZar

leaves M invariant. Hence, HZar ⊂ I(M). Now we study the possibilities for the proper

totally geodesic submanifold M case by case.

If M = H1(I), then Lemma 2.11 implies that there is a proper HZar-invariant sub-

space, since n ≥ 2, which contradicts the H-irreducibility of HZar. If M = Hm(H) with

1 ≤ m < n, then Lemma 2.10 implies that there is a proper HZar-invariant subspace which

is again a contradiction. Hence, we have M = Hm(C) with 1 ≤ m ≤ n or M = Hm(R)

with 2 ≤ m ≤ n. Since HZar is H-irreducible, Lemma 2.10 implies in both cases m = n.

Recall that L = KU0(M) where K ⊂ K0(M) is a connected Lie subgroup. Consulting

Table 2.1 we obtain SO0(1, n) ⊂ U0(M). This finishes the proof. �

Proposition 3.5. Let n ≥ 2 and H ⊂ U(1, n;F) be an F-irreducible subgroup. If N ⊂ H

is a normal subgroup which is closed in U(1, n;F), then one of the following is true.

(i) N is discrete.

(ii) N = U(1) · 1n+1 if F = C or H, or N = Sp(1) · 1n+1 if F = H.

(iii) N contains SO0(1, n).

Proof: We will apply Theorem 2.8 to N and discuss the cases (a), (b), (c), (d), and (e).

Assume that N is not discrete. If (d) or (e) holds for N , then we have SO0(1, n) ⊂ N , so
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we are in (iii).

Assume now that (b) holds for N . If N has no common fixed point in Hn(F), then there is

a common fixed point in ∂Hn(F). Let F ⊂ ∂Hn(F) be the set of common fixed points of N

on the boundary. Notice that F consists of either one or two elements. If F has exactly one

element, then H fixes this point, since N is a normal subgroup of H. But this contradicts

the F-irreducibility of H. If F has exactly two elements, then F is preserved by H. It

follows that H preserves the two dimensional F-subspace spanned by the two lightlike lines.

Since n ≥ 2, this is again a contradiction to the F-irreducibility of H. It follows that N has

a common fixed point in Hn(F). Hence, all elements of N are elliptic. Let g ∈ N and F (g)

the set of fixed points of g in Hn(F). By Proposition 2.13, F (g) is either a singleton or a

totally geodesic submanifold. Hence, M :=
⋂
g∈N F (g) is a totally geodesic submanifold

and the set of all common fixed points in Hn(F) of N . Since N is a normal subgroup,

M is preserved by H, i.e. H ⊂ I(M). The F-irreducibility of H implies that M is not a

singleton. Lemmas 2.10 and 2.11 imply that M is Hn(R), Hn(C), or Hn(H). Consulting

Table 2.1 we get the possibilities for K(M). If F = R, then K(M) = {±1n+1}. If F = C,
then K(M) = {±1n+1} or U(1) · 1n+1. If F = H, then K(M) = {±1n+1}, U(1) · 1n+1, or

Sp(1) · 1n+1. By assumption N is not discrete. Since Sp(1) has no two dimensional Lie

subgroup, we obtain N = U(1) · 1n+1 or Sp(1) · 1n+1, so we are in case (ii).

Assume now that (c) holds for N , i.e. there is a proper totally geodesic submanifold M

such that N ⊂ I(M). By Remark 2.12, we know L(N0) = ∂M . If we apply Lemma 2.14

to N0 and N , then it follows ∂M = L(N0) = L(N). Applying Lemma 2.14 again to N

and H, it follows ∂M = L(N) = L(H). Hence, H preserves M . The Lemmas 2.10 and

2.11 imply thatM is either Hn(R) or Hn(C). Since N0 = KU0(M), we obtain from Table

2.1 that SO0(1, n) ⊂ N . This finishes the proof. �

Corollary 3.2. Let n ≥ 2 and H ⊂ U(1, n;F) be a closed subgroup, which acts F-irreducibly
on F1,n. Then one of the following is true.

(i) H is discrete.

(ii) H0 = U(1) · 1n+1 if F = C or H, or H0 = Sp(1) · 1n+1 if F = H.

(iii) H0 contains SO0(1, n).

Proof: This follows from Proposition 3.5 by setting N = H0. �

Corollary 3.3. Let n ≥ 2 and H ⊂ Sp(1, n)Sp(1) be a closed subgroup which acts H-

irreducibly on H1,n. Then one of the following is true.

(i) H ∩ Sp(1, n) is discrete.

(ii) H ∩ Sp(1, n) = U(1) · 1n+1 or Sp(1) · 1n+1.

(iii) H ∩ Sp(1, n) contains SO0(1, n).
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Proof: A subgroup H ⊂ Sp(1, n)Sp(1) is H-irreducibly if and only if prSp(1,n)(H) is H-

irreducible. Notice that H ∩ Sp(1, n) is a normal subgroup of prSp(1,n)(H) which is closed

in Sp(1, n). The Corollary follows now from Proposition 3.5. �
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Chapter 4

Main results

4.1 Classification of isotropy H-irreducible almost hypercom-

plex pseudo-Hermitian manifolds of index 4

Theorem 4.1. Let (M, g, (I, J,K)) be a connected almost hypercomplex pseudo-Hermitian

manifold of index 4 and dimM = 4n+4 ≥ 16, such that there exists a connected Lie group

G ⊂ Iso(M, g, (I, J,K)) acting transitively on M . If the isotropy group H := Gp, p ∈ M ,

acts H-irreducibly, then (M, g, (I, J,K)) is a pseudo-hyper-Kähler manifold. If furthermore

h acts H-irreducibly, then (M, g, (I, J,K)) is locally isometric to Minkn+1(H).

Proof: Let ρ : H → GL(TpM) be the isotropy representation. We identify H with its

image ρ(H). Since H preserves the metric g and the almost hypercomplex structure, we

can consider H as a subgroup of Sp(1, n).

First we show that M is a hyper-Kähler manifold. This follows from Lemma 2.5 by

showing that the Kähler forms ωI , ωJ , and ωK are closed. Notice that since H preserves

the hypercomplex structure and the metric g, it preserves d(ωI)p, d(ωJ)p, and d(ωK)p,

too. Since G acts transitively, it is sufficient to show that (dωI)p = 0, (dωJ)p = 0, and

(dωK)p = 0. Lemma 2.15 implies thatHZar also preserve the three 3-forms. By Proposition

3.4 we know that SO0(1, n) ⊂ HZar. It follows that the three 3-forms are also preserved

by SO0(1, n). If we identify TpM with H1,n, we can consider the 3-forms as elements of

Λ3(H1,n)∗. By assumption we have n ≥ 3. Thus we can apply Lemma 3.6 and conclude

d(ωI)p = 0, d(ωJ)p, and d(ωK)p = 0. Hence, M is a pseudo-hyper-Kähler manifold.

From now on we assume that h acts H-irreducibly. In order to prove that M is locally

isometric to Minkn+1(H) we will investigate its universal cover M̃ = G̃/H0 and show that

it is globally isometric to Minkn+1(H). Since h acts H-irreducibly, the same holds for H0.

According to Corollary 3.1, H0 is one of the following Lie groups

SO0(1, n), SO0(1, n) ·U(1), SO0(1, n) · Sp(1), SU(1, n), U(1, n), Sp(1, n).

Next we show that M̃ is a reductive homogeneous space, i.e. we show that there exists an

Ad(H0)-invariant subspace m ⊂ g such that g = h⊕m.
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If H0 is one of the semi-simple Lie groups above, then the action of Ad(H0) on g is com-

pletely reducible. In that case M̃ is a reductive homogeneous space. So we have to consider

the cases where H0 is either SO0(1, n) ·U(1) or U(1, n) = SU(1, n) ·U(1).

Let s be either so(1, n) or su(1, n). Then we have h = s ⊕ u(1). We consider the adjoint

representation of s on g. Since s is simple, s acts completely reducibly on g and s is an

irreducible s-invariant subspace. Furthermore, there exists an s-invariant complement m of

h = s⊕u(1) which is isomorphic to g/h ∼= TpM̃ ∼= H1,n. Hence, the s-module g decomposes

into g = m ⊕ s ⊕ u(1). Notice that m ∼= H1,n decomposes into four respectively two irre-

ducible s-invariant subspaces which are equivalent to R1,n respectively C1,n. These three

submodules s, u(1), R1,n respectively C1,n are pairwise inequivalent. Since s and u(1) com-

mute, u(1) preserve the isotypical s-submodules. It follows that the isotypical submodule

m is u(1)-invariant and thus also h-invariant. Hence, m is invariant under Ad(H0). Thus

we have shown that M̃ is a reductive homogeneous space.

From now on we identify m with the tangent space TpM̃ ∼= H1,n. Next we show that

(g, h, τ) is a symmetric Lie algebra where τ : g → g is defined by X + Y 7→ X − Y with

X ∈ h, Y ∈ m. By Remark 2.1, it is sufficient to show that [m,m] ⊂ h. For that we

consider the restriction of the Lie bracket [·, ·] to m×m and denote its projection to m by

β. We have to show that β vanishes. We know that β is Ad(H0)-equivariant. Since n ≥ 3,

we know SO0(1, n) ⊂ H0. Thus we can apply Lemma 3.12 by identifying m ∼= H1,n and

obtain β = 0. So (g, h, τ) is indeed a symmetric Lie algebra.

The above implies that G̃/H0 is a symmetric space, since G̃ is simply connected and H0

connected, see Remark 2.1. Now we study the six possibilities for H0 case by case.

Case 1 : Assume H0 = Sp(1, n). We will show that the quaternionic sectional curvature of

M̃ is constant. Let X ∈ TpM ∼= H1,n be a non-lightlike vector such that gp(X,X) = ±1,

Q(X) := spanR {X, IpX, JpX,KpX}, E ⊂ Q(X) be a two-dimensional subspace, and

Cp(E) the quaternionic sectional curvature, see Definition 2.22. Let Y = Xq1, Z = Xq2

be an orthonormal basis of E where q1, q2 ∈ H ∼= spanR

{
IdTpM̃ , Ip, Jp,Kp

}
, |q1| = |q2| = 1.

Notice that since gp(Y,Z) = 0, q1 and q2 are orthogonal considered as elements of R4 en-

dowed with the standard Euclidean inner product. Since Sp(1, n) acts transitively on the

pseudo-spheres there exists an element A ∈ Sp(1, n) such that AX = Xq−11 . Since H0 acts

by isometries, A preserves the curvature. Hence, we obtain gp(Rp(Xq1, Xq2)Xq2, Xq1) =

gp(Rp(X,Xq
−1
1 q2)Xq

−1
1 q2, X). Recall that two quaternions are conjugated if and only if

they have the same real part and the same norm, see [CG, Lemma 1.2.2]. Let λ ∈ C be

a complex number such that λ = µq−11 q2µ
−1 for some µ ∈ H with |µ| = 1. Since µ−1 has

norm one, gp is invariant under multiplication with µ−1 from the right. Let B ∈ Sp(1, n)

such that BX = Xµ. Then B preserves the curvature and by the invariance under µ−1

we obtain gp(Rp(X,Xq−11 q2)Xq
−1
1 q2, X) = gp(Rp(X,Xλ)Xλ,X). Since X and Xλ are or-

thonormal, it follows λ = ±i. Hence, Cp(E) = Cp(F ), where F = spanR {X, IpX}, i.e. the
quaternionic sectional curvature is independent of the two-dimensional subspace of Q(X).

Furthermore, we can find an element in Sp(1, n) which maps X to any other vector
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Y ∈ TpM with gp(X,X) = gp(Y, Y ). This implies Cp(E) = Cp(F ) for all two-dimensional

subspaces E ⊂ Q(X) and F ⊂ Q(Y ).

Let c ∈ R be the quaternionic sectional curvature for the two-dimensional subspaces of

Q(X) with X spacelike. Then Cp−c is the restriction of a polynomial with infinitely many

zeros. Hence, the quaternionic sectional curvature at p is constant independent whether

X is a time- or spacelike vector. Since M̃ is a homogeneous space, the quaternionic sec-

tional curvature is constant for all points. By Theorem B.2 this implies that M̃ is globally

isometric to Minkn+1(H), dSn+1(H), or to the universal cover of AdSn+1(H) up to scale.

Since Minkn+1(H) is the only Ricci-flat manifold in the list, we have M̃ ∼= Minkn+1(H).

Case 2: Assume that H0 is SO0(1, n) · U(1), SU(1, n), U(1, n), or SO0(1, n). Then H0 is

C-reducible.
We will decompose the simply connected manifold M̃ into a product of two totally geodesic

submanifolds by using Theorem 2.5, so we have to check the assumptions. Since M̃ is a

symmetric space, it is geodesically complete. In order to apply Theorem 2.5 we have to

decompose the tangent bundle into two non-degenerate, orthogonal, and parallel distribu-

tions.

The tangent space TpM̃ decomposes into two H0-invariant orthogonal Ip-complex sub-

spaces of real index 2. We can identify these spaces with C1,n and C1,n · j. Let q ∈ M̃ and

g ∈ G̃ such that gp = q. Then we define two geometric distributions by (E1)q := dgp(C1,n)

and (E2)q := dgp(C1,n · j). Notice that the definition is independent of the choice of g.

Both distributions are non-degenerate and orthogonal, so we have TM̃ = E1 ⊕ E2. Next

we show that E1 and E2 are both parallel, i.e. we have to show that ∇XY ∈ Γ(Ej) for all

X ∈ Γ(TM) and Y ∈ Γ(Ej). We define a tensor field by

T : Γ(TM̃)× Γ(Ej)→ Γ(E⊥j ), (X,Y ) 7→ prE⊥j
∇XY.

If we restrict the first component of T to Γ(Ej), we obtain at p an R-bilinear map

β : C1,n × C1,n → C1,n which is H0-equivariant. Since n ≥ 3 and SO0(1, n) ⊂ H0, we can

apply Lemma 3.12 and get β = 0. Analogously, we obtain the same if we restrict the first

component of T to Γ(E⊥j ). Since M̃ is a homogeneous space, this implies ∇XY ∈ Γ(Ej)
for X ∈ Γ(TM̃) and Y ∈ Γ(Ej).
Now Theorem 2.5 implies that (M̃, g) is isometric to the product of the maximal connected

integral submanifolds of E1 and E2 through p which we denote by M1(p) and M2(p). Next

we show that these submanifolds are homogeneous. Let q ∈ M1(p) and g ∈ G̃ such that

gp = q. We will show that gM1(p) ⊂ M1(p) by considering the associated foliation of the

distribution E1. We have gM1(p) = M1(q). Since g maps leaves to leaves, it maps the leaf

which contains p and q into itself. It follows that M1(q) = M1(p). Analogously, we obtain

gM2(p) ⊂M2(p) if gp ∈M2(p).

Since G̃ acts transitively on M̃ , the group Gj :=
{
g ∈ G̃

∣∣∣ gMj(p) ⊂Mj(p)
}

acts tran-

sitively on Mj(p). Since Mj(p) is connected, G0
j acts transitively on Mj(p). Its isotropy

group (G0
j )p coincides with H0 which acts C-irreducibly on TpMj(p) ∼= C1,n. If we restrict

the almost complex structure I to Mj(p) and denote it by Ij , we can apply Theorem 1.1
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to (Mj(p), gj , Ij). Hence, Mj(p) is globally isometric to Minkn+1(C), dSn+1(C), CdSn+1

or to the universal cover of AdSn+1(C) or CAdSn+1.

Since M̃ is a pseudo-hyper-Kähler manifold, it is Ricci-flat. Let Ricj denote the Ricci-tensor

of Mj(p). Since g = g1 + g2, we obtain Ric = Ric1 + Ric2. This implies that M1(p) and

M2(p) are also Ricci-flat. But in the list of Theorem 1.1 occurs only one Ricci-flat space,

namely Minkn+1(C). Thus, Mj(p) ∼= Minkn+1(C). This implies M̃ ∼= M1(p) ×M2(p) ∼=
Minkn+1(C)×Minkn+1(C) ∼= Minkn+1(H).

Case 3: Assume H0 = SO0(1, n) · Sp(1). The SO0(1, n)-action decomposes the tangent

space TpM̃ ∼= m into four real SO0(1, n)-invariant subspaces n1, n2, n3, and n4 which we can

identify with R1,n, R1,n · i, R1,n · j, and R1,n · k, respectively. Notice that these subspaces

are not H0-invariant.

Next we show that all four subspaces are Lie triple systems. Since [m,m] ⊂ h, it follows

[nj , nj ] ⊂ h = so(1, n) ⊕ sp(1). Recall that sp(1) = R · i ⊕ R · j ⊕ R · k. If we con-

sider the R-bilinear map αj := prR·i [·, ·]|nj×nj and identify nj with R1,n, we get a 2-form

αj : Rn+1 × Rn+1 → R which is SO0(1, n)-invariant. Lemma 3.1 implies αj = 0. Analo-

gously, we get the same if we project [·, ·]|nj×nj to R·j and R·k, so we have [nj , nj ] ⊂ so(1, n).

Since so(1, n) preserves nj , it follows [[nj , nj ] , nj ] ⊂ nj . This proves that nj is a Lie triple

system. If we identify the subspaces nj , j = 1, . . . , 4, with the orthogonal subspaces R1,n,

R1,n · i, R1,n · j, R1,n · k of TpM̃ , it follows that

N1 := expp(R1,n), N2 := expp(R1,n · i), N3 := expp(R1,n · j), N4 := expp(R1,n · k)

are connected totally geodesic submanifolds of M̃ which are itself symmetric spaces. Let

Gj be the connected component of the identity of the subgroup which preserves Nj . Then

we have Nj = Gj/(Gj)p with (Gj)p = Gj ∩ H0 = SO0(1, n). Notice that Nj is a real

Lorentz manifold. Similarly as in Case 1, it follows that the sectional curvature of Nj is

constant. Notice that there exists an element hj ∈ H0 such that d(hj)p(TpN1) = TpNj ,

j = 2, 3, 4. Lemma 2.4 implies that the four totally geodesic submanifolds are pairwise

isometric. Thus it is sufficient to study only one of the totally geodesic submanifolds, for

instance N1.

Let Y ∈ Γ(TN1) and X ∈ Γ(TNj) with j 6= 1 and let X, Y be some arbitrary extensions

of X, Y to M̃ . Similarly as in Case 2, it follows that ∇XY (p) ∈ TpN1. This implies

(R(Z,X)Y )(p) ∈ TpN1 (4.1)

for every vector field Z.

Let X,Y ∈ Γ(TN1) and e1, . . . , e4n+4 be a local frame of TM̃ such that e(n+1)(j−1)+1, . . .,

e(n+1)j is a local frame of TNj . Now we consider the Ricci-tensor of M̃ . Since M̃ is a
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pseudo-Hyper-Kähler manifold, it is Ricci-flat, i.e.

0 = Ric(X,Y ) =

4n+4∑
i=1

g(R(ei, X)Y, ei)

=
n+1∑
i=1

g(R(ei, X)Y, ei) +
2n+2∑
i=n+2

g(R(ei, X)Y, ei)

+
3n+3∑
i=2n+3

g(R(ei, X)Y, ei) +
4n+4∑
i=3n+4

g(R(ei, X)Y, ei).

From equation 4.1 it follows that the last three terms vanish at p. Since N1 is a totally

geodesic submanifold, this observation and the Gauss equation imply that at p the Ricci

tensor of N1 vanishes. Since N1 is a homogeneous space, this implies that N1 is Ricci-flat.

We already know that N1 is a Lorentz manifold of constant sectional curvature. Hence,

N1
∼= Minkn+1(R). It follows that Nj

∼= Minkn+1(R) for j = 2, 3, 4.

Next we will show that the Riemannian curvature R of M̃ vanishes at p. For that we show

gp(Rp(x, y)z, w) = 0 for all x, y, z, w ∈ TpM̃ . It is sufficient to check the claim for vectors

tangent to one of the totally geodesic submanifolds.

If x, y, z ∈ TpNj , the claim is clear since Nj is flat and totally geodesic. Let z ∈ TpNj and

let x ∈ TpNj and y ∈ TpN⊥j . If w ∈ TpN⊥j , then gp(Rp(x, y)z, w) = 0, since Rp(x, y)z ∈
TpNj by equation 4.1. If w ∈ TpNj , then gp(Rp(x, y)z, w) = gp(Rp(z, w)x, y) = 0, since

R(z, w)x ∈ TpNj .

Let z ∈ TpNj and x, y ∈ TpN⊥j . If w ∈ TpN⊥j , then gp(Rp(x, y)z, w) = 0. If w ∈ TpNj , then

gp(Rp(x, y)z, w) = −gp(Rp(y, z)x,w) − gp(Rp(z, x)y, w) = 0, since Rp(y, z)x,Rp(z, x)y ∈
TpN

⊥
j .

This finally proves the claim. Since M̃ is a homogeneous space, g(R(X,Y )Z,W ) vanishes

completely on M̃ for X,Y, Z,W ∈ Γ(TM̃). This implies that the Riemannian curvature

tensor vanishes, i.e. M̃ is flat and thus M̃ ∼= Minkn+1(H). This finishes the proof. �

Remark 4.1. Theorem 4.1 implies that the homogeneous space M = G/H is locally sym-

metric, if h acts H-irreducibly. Actually we know even more. Recall that the isotropy

representation ρ : H → GL(TpM) acts on TpM by ρ(h)(v) = dhp(v). By definition every

element of H fixes the point p. It follows that if −IdTpM ∈ ρ(H), then M is a globally

symmetric space. This is the case if H0 is SO0(1, n) · U(1), SO0(1, n) · Sp(1), U(1, n),

or Sp(1, n). If additionally n is an odd number, then this holds even for SO0(1, n) and

SU(1, n).

4.2 Homogeneous almost quaternionic pseudo-Hermitian man-

ifolds of index 4 with H-irreducible isotropy group

Theorem 4.2. Let (M, g,Q) be a connected almost quaternionic pseudo-Hermitian man-

ifold of index 4 and dimM = 4n+ 4 ≥ 24, such that there exists a connected Lie subgroup
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G ⊂ Iso(M, g,Q) acting transitively on M . Let H := Gp, p ∈ M , denote the isotropy

group. If the intersection of the linear isotropy group with Sp(1, n) acts H-irreducibly,

then (M, g,Q) is a quaternionic pseudo-Kähler manifold. If furthermore M is a reductive

homogeneous space and h ∩ sp(1, n) acts H-irreducibly, then M is locally symmetric.

Proof: Let ρ : H → GL(TpM) be the isotropy representation. We identify H with its

image ρ(H). Since H preserves the metric g and the almost quaternionic structure Q, we

can consider H as a subgroup of Sp(1, n)Sp(1).

First we show thatM is a quaternionic pseudo-Kähler manifold. This follows from Theorem

2.6 by showing that the fundamental 4-form Ω is closed. Since G acts transitively, it is suffi-

cient to show that dΩp = 0. Since H preserves the quaternionic structure Q and the metric

g, it preserves dΩp. By assumption H ∩ Sp(1, n) acts H-irreducibly. From Proposition 3.4

we know that SO0(1, n) ⊂ (H ∩ Sp(1, n))Zar. It follows that dΩp is SO0(1, n)-invariant. If

we identify TpM with H1,n, we can consider dΩp as an element of Λ5(H1,n)∗. Lemma 3.11

implies dΩp = 0. This proves that M is a quaternionic pseudo-Kähler manifold.

Let us assume now that h ∩ sp(1, n) acts H-irreducibly and that M is a reductive homo-

geneous space. Then the same holds for the universal cover M̃ ∼= G̃/H0, i.e. there is an

Ad(H0)-invariant subspace m ⊂ g such that g = h⊕m. The subspace m can be identified

with TpM̃ ∼= H1,n. If we restrict the Lie bracket [·, ·] to m×m and project it to m, we obtain

an antisymmetric R-bilinear map β : H1,n × H1,n → H1,n which is Ad(H0)-equivariant.

Since SO0(1, n) ⊂ (H ∩ Sp(1, n))0 = H0 ∩ Sp(1, n), Lemma 3.12 implies β = 0. Hence,

[m,m] ⊂ h. It follows that (g, h, τ) is a symmetric Lie algebra where τ : g → g is defined

by X + Y 7→ X − Y for X ∈ h, Y ∈ m. Hence, M̃ is a symmetric space. This proves that

M is locally symmetric. �

Remark 4.2. Theorem 4.2 says that M̃ is a simply connected pseudo-Riemannian sym-

metric space of quaternionic Kähler type. Those spaces have been classified in [AC].

One step to complete the classification in Theorem 4.2 is to consult the list in [AC] and

check which of them admit a pseudo-Riemannian metric of index 4. Such spaces are for

example the quaternionic space forms dSn+1(H) = Sp(1, n + 1)/Sp(1, n) × Sp(1) and

AdSn+1(H) = Sp(2, n)/Sp(1) × Sp(1, n). Two more symmetric spaces in the list are

HdSn+1 = SO0(1, n+ 4)/SO0(1, n)×SO(4) and HAdSn+1 = SO0(5, n)/SO(4)×SO0(1, n).

The remaining symmetric spaces in [AC] need more investigation.
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Chapter 5

Open problems

In this last chapter we point out some problems which are open and could be considered

in future research.

In Theorem 4.1 we proved that an irreducible isotropy group implies that the considered

manifolds are indeed pseudo-hyper-Kähler, if its dimension is 4n+ 4 ≥ 16. This is due to

Lemma 3.6 which ensures that the three Kähler forms are closed. By Remark 3.5 we know

that Lemma 3.6 does not hold if n < 3. IfM is a homogeneous manifold as in Theorem 4.1

but of dimension 8 or 12, then it is not clear that the H-irreducibility of its isotropy group

implies that M is a pseudo-Hyper-Kähler manifold. This yields the following problem.

Problem 1. Let M be a manifold as in Theorem 4.1 but of dimension 8 or 12. Decide

whether the H-irreducibility of the isotropy group implies that M is pseudo-hyper-Kähler

and if not find further assumptions.

The additional assumption that h acts H-irreducibly in Theorem 4.1 ensures that H0 is

H-irreducible. This is used to classify the universal cover M̃ = G̃/H0. If we do not

assume that h acts H-irreducibly, we know by Corollary 3.2 that H could be discrete or

H0 = U(1) · 1n+1 or Sp(1) · 1n+1. But we can exclude that H is discrete as follows.

LetM be as in Theorem 4.1. Assume thatH is discrete. Then G ∼= G/ {e} → G/H = M is

a covering of M . In particular, we can identify g with TpM ∼= H1,n. Notice that H acts on

g by conjugacy. Then the Lie bracket [·, ·] defines at p an HZar-equivariant antisymmetric

bilinear form. Since SO0(1, n) ⊂ HZar, Lemma 3.12 implies that [·, ·] vanishes. In other

words the connected Lie group G is abelian. Hence, the Lie subgroup H is abelian. But

this is a contradiction, since by assumption H acts non-trivially on TpM . This type of

argument is due to [AZ].

Hence, we are left with the cases H0 = U(1) · 1n+1 and H0 = Sp(1) · 1n+1 for future

investigation.

Problem 2. Classify all manifolds M = G/H as in Theorem 4.1 with H0 = U(1) or

H0 = Sp(1).
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In Theorem 4.2 the assumption dimM = 4n + 4 ≥ 24 is due to the fact that Lemma

3.11 holds for n ≥ 5. The lower dimensional case is an open problem.

Problem 3. Let M be a manifold as in Theorem 4.2 but of dimension 8, 12, 16, or 20.

Decide whether the H-irreducibility of the isotropy group implies that M is quaternionic

pseudo-Kähler and if not find further assumptions.

We assumed in Theorem 4.2 that H ∩ Sp(1, n) acts H-irreducibly to ensure that HZar

contains SO0(1, n), since we only classified all connected H-irreducible Lie subgroups of

Sp(1, n).

Problem 4. Classify all connected H-irreducible Lie subgroups of Sp(1, n)Sp(1).

This classification could be used to replace the additional assumption in Theorem 4.2

that h ∩ sp(1, n) acts H-irreducibly by requiring that h acts H-irreducibly.
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Appendix A

Facts about Lie groups and Lie

algebras

In this chapter we cite one general fact about connected Lie groups and prove furthermore

that the Lie algebra u appearing in Section 2.4 is isomorphic to so(1, 3).

The reader can find general information about Lie groups and Lie algebras for example in

[Ba], [He], [HN], [KN1], [Kn], [O], [OV1], [OV2], and [Wa].

Theorem A.1 ([OV2], Levi decomposition). Let G be a connected Lie group. There exists

a virtual connected Lie subgroup semisimple L ⊂ G such that G = L·R and dim(L∩R) = 0,

where R denotes the radical of G. The Lie group L is called Levi factor.

Lemma A.1. The matrices

x =
i

2
Φ, y =

j

2
Φ, z =

k

2
Φ,

u =
i

2
12, v =

j

2
12, w =

k

2
12,

with

Φ =

(
0 −1

1 0

)
form a basis of the Lie algebra u := spanR {x, y, z, u, v, w} which is isomorphic to so(1, 3).

Proof: We have the following commutators

[x, y] = −w, [y, z] = −u, [z, u] = y, [u, v] = w, [v, w] = u,

[x, z] = v, [y, u] = −z, [z, v] = −x, [u,w] = −v,
[x, u] = 0, [y, v] = 0, [z, w] = 0,

[x, v] = z, [y, w] = x,

[x,w] = −y

A basis of so(1, 3) is given by

x̃ =


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 , ỹ =


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 , z̃ =


0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

 ,
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ũ =


0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0

 , ṽ =


0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

 , w̃ =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 .

We have the following commutators

[x̃, ỹ] = −w̃, [ỹ, z̃] = −ũ, [z̃, ũ] = ỹ, [ũ, ṽ] = w̃, [ṽ, w̃] = ũ,

[x̃, z̃] = ṽ, [ỹ, ũ] = −z̃, [z̃, ṽ] = −x̃, [ũ, w̃] = −ṽ,
[x̃, ũ] = 0, [ỹ, ṽ] = 0, [z̃, w̃] = 0,

[x̃, ṽ] = z̃, [ỹ, w̃] = x̃,

[x̃, w̃] = −ỹ

It follows that u and so(1, 3) are isomorphic. �
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Appendix B

Spaces with constant quaternionic

sectional curvature

It is a well know that simply connected, complete Riemannian manifolds with constant

sectional curvature c are isometric to each other, see [KN1, Chapter VI, Theorem 7.10].

There is an analogous result for simply connected, complete Kähler manifolds of constant

holomorphic sectional curvature c, see [KN2, Chapter IX, Theorem 7.9]. In this chapter we

present the semi-Riemannian analogue for simply connected, complete quaternionic Kähler

manifolds with constant quaternionic sectional curvature c, which can be obtained by some

modifications of the known results.

Recall that manifolds with constant quaternionic sectional curvature c are called quater-

nionic space forms and that their Riemannian curvature tensor has the form

R(X,Y )Z =
c

4
(g(Y, Z)X − g(X,Z)Y + g(IY, Z)IX − g(IX,Z)IY

+2g(X, IY )IZ + g(JY, Z)JX − g(JX,Z)JY + 2g(X, JY )JZ

+g(KY,Z)KX − g(KX,Z)KY + 2g(X,KY )KZ) .

By Proposition 2.5, such manifolds are locally symmetric.

Theorem B.1 ([KN1, Chapter VI, Theorem 7.8]). Let M and M ′ be simply connected,

complete differentiable manifolds with linear connections. Let T , R and ∇ (respectively T ′,

R′ and ∇′) be the torsion, the curvature and the covariant differentiation ofM (respectively

M ′). Assume ∇T = 0, ∇R = 0, ∇′T ′ = 0 and ∇′R′ = 0. If F is a linear isomorphism of

Tx0M onto Ty0M ′ and maps the tensors Tx0 and Rx0 at x0 into the tensors T ′y0 and R′y0
at y0 respectively, then there is a unique affine isomorphism f of M onto M ′ such that

f(x0) = y0 and that the differential of f at x0 coincides with F .

Theorem B.2. Any two simply connected complete quaternionic (pseudo-)Kähler mani-

folds of constant quaternionic sectional curvature c are isometric to each other.

Proof: We follow the arguments of [KN2]. LetM andM ′ be two simply connected complete
quaternionic (pseudo-) Kähler manifolds and choose a point p ∈ M and p′ ∈ M ′. Then
any linear isomorphism F : TpM → Tp′M

′ preserving both the metric and the almost
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quaternionic structure necessarily maps the curvature tensor at p into the curvature tensor
at p′. Then by Theorem B.1, there exists a unique affine isomorphism f of M such that
f(p) = p′ and that dfp = F . Let q be any point of M and γ a curve from p to q. We
set q′ = f(q) and γ′ = f ◦ γ. Since the parallel displacement along γ′ corresponds to that
along γ under f and since the metric tensors and the almost quaternionic structures of
M and M ′ are parallel, the affine isomorphism f maps the metric tensor and the almost
quaternionic structure of M into those of M ′. Hence, M and M ′ are isometric. �

The following table presents some examples of quaternionic space forms with zero, positive,
and negative quaternionic sectional curvature in the Riemannian case and in the pseudo-
Riemannian case with index 4. We call such manifolds of quaternionic Lorentz type.

Table B.1: Quaternionic space forms

Quaternionic Hermitian Quaternionic Lorentz

flat Hn Minkn+1(H) = H1,n

positive HPn = Sp(n+ 1)/Sp(1)× Sp(n) dSn+1(H) = Sp(1, n+ 1)/Sp(1, n)× Sp(1)

negative Hn(H) = Sp(1, n)/Sp(1)× Sp(1, n) AdSn+1(H) = Sp(2, n)/Sp(1, n)× Sp(1)
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Zusammenfassung

In dieser Doktorarbeit betrachten wir homogene fast hyperkomplexe bzw. fast quaternion-

ische pseudo-Hermitsche Mannigfaltigkeiten mit Index 4, die eine H-irreduzible Isotropie-

gruppe besitzen. Wir zeigen, dass diese Mannigfaltigkeiten bereits pseudo-Hyperkähler

bzw. quaternionisch pseudo-Kähler sind, falls die Dimension mindestens 16 bzw. 24 be-

trägt. Hierfür zeigen wir, dass gewisse Multilinearformen auf dem H1,n verschwinden,

sofern sie invariant unter SO0(1, n) sind. Weiter klassifizieren wir alle zusammenhängen-

den H-irreduziblen Lie Untergruppen von Sp(1, n) bis auf Konjugation.

Zudem zeigen wir, dass die betrachteten homogenen Räume lokal symmetrisch sind, falls

die Lie Algebra der Isotropiegruppe selbst H-irreduzibel wirkt. Im hyperkähler Fall sind

die Mannigfaltigkeiten sogar lokal isometrisch zum quaternionischen Minkowski-Raum

Minkn+1(H).
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Abstract

In this thesis we consider homogeneous almost hypercomplex respectively almost quater-

nionic pseudo-Hermitian manifolds with index 4, which have an H-irreducible isotropy

group. We show that these manifolds are already pseudo-Hyper-Kähler respectively quater-

nionic pseudo-Kähler if their dimension is at least 16 respectively 24. For that we show

that some multilinear forms on H1,n vanish if they are invariant under SO0(1, n). We clas-

sify all connected H-irreducible Lie subgroups of Sp(1, n) up to conjugacy.

Furthermore we show that the considered homogeneous spaces are locally symmetric, if

the Lie algebra of the isotropy group itself acts H-irreducibly. In the hyper-Kähler case

it turns out that the manifolds are locally isometric to the quaternionic Minkowski space

Minkn+1(H).
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