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Zusammenfassung

Zusammenfassung

RNA wurde einst lediglich als Träger genetischer Information betrachtet. Je-
doch wurde im vergangenen Jahrzehnt eine Reihe von relevanten regula-
torischen Funktionen dieses Moleküls entdeckt. Ebenso hat das Design von
Molekülen eine lange Tradition in Fachgebieten wie Wirkstoffentwurf, Bio-
Engineering und Nanotechnologie. Die Zielsetzung dieser Arbeit ist es diese
beiden Themen zu verbinden zur Entwicklung von Methoden zum Automati-
sierten Design von RNA Sequenzen die sich in eine vorgegebene Form falten.
Dies ist ein diskretes Problem, da Design von RNA Sequenzen bedeutet, für je-
de Position in einer Struktur, eine von vier Basen auszuwählen. Wir hingegen
verwenden eine Methode aus der Chemieinformatik (Self-Consistent Mean
Field Optimisation), welche es uns erlaubt das Problem als kontinuierliche
Optimierung zu behandeln. Wir zeigen, dass es damit möglich ist beliebige
Formen von Sekundärstrukturen zu behandeln, im Gegensatz zu anderen An-
sätzen.
Eine Prototyp-Implementation um das Prinzip zu zeigen ist die eine Heraus-
forderung, Software zu schreiben die tatsächlich im Laboralltag besteht, hin-
gegen weitaus schwieriger. In dieser Arbeit wird im Rahmen einer Fallstudie
die Struktur einer von unserer Software designten Sequenz in vitro überprüft.
Wenn man sich mit dem Gebiet der computergestützten Strukturanlayse und
Design befasst, trifft man immer wieder auf Definitionen die von diskreten Zu-
ständen, also einer starren Welt, ausgehen. Im ersten Teil dieser Arbeit zeigen
wir, anhand von Wasserstoffbrücken in RNA Molekülen, das diese starren De-
finitionen nicht der chemischen Wahrheit entsprechen. Hier ist die Energie
von Wasserstoffbrücken eine kontinuierliche geometrische Funktion anstatt
einer diskreten Eigenschaft.
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Abstract

Abstract

The polynucleotide, RNA was once thought to be a carrier of genetic informa-
tion, but in the last decade, a variety of regulatory roles have been discovered.
At the same time, molecular design has a long tradition in fields from phar-
maceuticals to bio-engineering and nanotechnology. The aim of this work
combines these two topics in the development of methods for the automatic
design of an RNA sequence that will fold into a desired shape.
This is strictly a discrete problem since design means choosing one of four
base types for each position in a structure. We however have taken a proced-
ure from computational chemistry (self-consistent mean field optimisation)
which lets us treat it as a continuous optimisation procedure. This means
that, unlike other attempts to treat this problem, we show that we can treat
arbitrary shapes and structures.
Proof of principle code is one challenge, but producing software which is
useful to an experimental group is more difficult. In a case study the software
is used to design a sequence which is validated in vitro to form the expected
structure.
When surveying the field of structure analysis and design computationally,
one often finds definitions assuming discrete states, a rigid world. In the first
part of this work, we show on hydrogen bonding in RNA molecules, these
rigid definitions are a convenience and not the chemical truth. Here, the
energy associated with hydrogen bonds is a continuous function of geometry
and not a discrete property.
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Chapter 1

Introduction

This work tries to cover two related topics: energy concerns and the design of
molecules. Here, RNA should obviously be the determinating connection. But
not only by the title, more by the fact that one cannot explore any structural
space, without an idea of an energy scheme. This strong dependency between
the two topics easily defines a natural path for their presentation.

Firstly, we consider the tools. Since Hydrogen bonds vary in their strength
and geometry, a tool was necessary that avoided hard thresholds and was tol-
erant of poor geometry. Furthermore, a major part of the work was a software
foundation to serve as the basis for this and other projects. Finally the main
affiliation, the design of RNA sequences, is described along with its testing.

Since both parts are rather large, they come with their own additional
introduction, more specific on the corresponding topic.

In the central dogma of molecular biology [1], RNA was mainly accepted
as mRNA, the information carrier between DNA and protein synthesis, as a
start. While its role in protein synthesis is larger, as tRNA carrying amino acids
into the ribosome [2]. While the ribosome is a huge functional RNA molecule
in itself. In recent years a variety of more functions and regulatory roles of
RNA have been discovered [3]. Nowadays, the RNA world hypothesis exists,
suggesting RNA as the starting point of evolution and thus the precursor of
life [4]. Usually RNA is found as single strand molecule in the cell, being able
to form a structure on itself. From HIV it is already known that RNA is also
involved in human diseases [5], but in recent years, RNA being pathogenic in
connection with its structure has gained some focus [6, 7].

While RNA has a lot of functions in the cell and the first structures were
analysed in the seventies of the last century, exploring its conformational fea-
tures, still lacks behind proteins. Therefore the first part of this work adapts a
well established model for hydrogen bond recognition on proteins [8] to RNA.
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1. Introduction

Being a molecule comprised of only four different building blocks, modi-
fying RNA to achieve new properties seems to be simple. Some effort has
been invested to design RNA molecules of certain function or improved prop-
erties in vitro [9]. This is what the second part focuses on. Understanding
and improving designing RNA sequences. This part benefits from the amount
of work already done on the computational site for RNA. At least for the two-
dimensional space, algorithms are being developed to predict a structure since
the eighties of the last century [10]. Those started with simple energy models
counting H-bonds until today, when quasi-molecular dynamics methods try to
predict three-dimensional folds [11].
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Chapter 2

Hydrogen Bond Recognition

Given the early development of methods for predicting 2D structure, compu-
tational views of RNA still have a focus on base pairs, rather than 3D coordin-
ates. Therefore, to fit a crystal structure into literature energy models, its
base pairs have to be extracted, pointing towards recognising hydrogen bond
patterns in the structure. Here, we describe an approach to define hydro-
gen bonds in a 3D RNA molecule and utilise them to detect base pairs. The
method itself is an adaption of an approach applied to proteins by Kabsch &
Sander [8].

2.1 Introduction

While the first 3D RNA structures are from the seventies of the last century
[12–14], as of today, computational RNA most of the time means working
on 2D annotations. The most prominent tools of the field, e. g. Vienna RNA
package [15–17] and mfold [18–20], still work on lists of base pairs, while new
tools exploring 3D space like MC-Fold/ MC-Sym [11] receive higher attention.

One reason methods for recognising H-bonds and annotating 3D structures
are necessary, is the Nearest Neighbour energy model [21–23], many tools
employ. In this energy function, stacks of base pairs and certain structural
features have assigned scores which are summed up to define ∆G. In simple
words, this gives an estimate of the energy difference between the folded state
and the set of unfolded states. But in contrast to the common force field ap-
proach, defining H-bonds by electrostatic and Lennard-Jones terms, this model
treats base pairs, and thus H-bonds, binary: either two bases are paired, with
full H-bonds, or not. Local conditions are completely out of focus, e. g. bases
competing with each other for a partner because of special geometry and any
other weakening or strengthening effects. Additionally also features like Hoog-
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2. Hydrogen Bond Recognition

steen interactions and pseudoknots are missing. §3.1.2 gives a larger overview
of the Nearest Neighbour model.

Annotating secondary structure features in a 3D structure means detecting
H-bonds and recognising certain patterns representing base pairs. But prob-
lems already start at the H-bond level: textbooks use distance intervals instead
of single thresholds to define them [2]. Thereby interactions with different dis-
tances do not have the same strength as suggested by the Nearest Neighbour
model. Another problem exists for the patterns defining base pairs. If for a ca-
nonical pair all H-bonds are perfect but one just violates distance cut-offs by a
tiny amount, should the whole pair be dropped? Even more complicated, most
people will decide on the kind of base pair, if it should contain two or three
interactions. For such cases, a model which is able to define probabilities, on
H-bond and/ or base pairing level, would be better suited. The general ques-
tion following up is, whether H-bonds are really a binary concept or a concept
defining an energetic term. Kabsch & Sander already preferred the term “polar
interaction” over “H-bond” in their work, being more descriptive to the nature
of the effect [8].

While there are already methods available to detect H-bonds, we want
to add our own for several reasons. Generalised approaches, dealing with
all possible interactions, are very complex and by this hard to implement in
your own software [24]. Our aim is treat only RNA, so the set of chemical
groups interacting is limited and there is no need to incorporate everything
possible right from the beginning. Focusing on a simple model also lowers the
probability of errors. But our approach should not be too stiff to be extended
for other molecules, later. Especially in case of RNA, there are already tools
which annotate base pairs in 3D structures [25]. But those approaches are too
coarse grained for us. We want to be able to produce input for the Nearest
Neighbour model as well, but also not lose the ability for a smooth transition
towards using 3D structures, later.

2.2 State Of the Art

Whenever one is dealing with 3D structures, models for H-bonds are needed.
Protein structures, as well as ligand contacts, are defined mostly by H-bonds
and for the simulation of solvent interactions, a huge effort is put into mod-
elling these polar interactions. This short list of examples may be seen as
proof that the task of defining H-bonds via a computer must have been ad-
dressed before. Two different avenues can be identified by examining recent
research and up-to-date software: attempts to approach the problem in a gen-
eral manner, based solely on donor and acceptor groups, and specialised solu-
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2.2 State Of the Art

tions, applicable to certain groups of molecules. The first type is in theory able
to handle everything chemically possible and both, inter- and intramolecular
interactions. The cost of this approach is the complexity of implementation
and a less fine-tuned parametrisation of H-bond criteria. The alternative is
a less general approach, designed and parameterised for a specific class of
molecules.

Once we have a list of H-bonds for a nucleic acid, deriving base pairs seems
to be easily possible. For Watson-Crick and wobble (GU) base pairs this task
could be reduced to mere pattern recognition. If the mission is just to produce
a list of base pairs, approaches exist which do not need H-bond information.
Since those methods only work on geometric data of a structure, they do not
provide energy or stability values. This also implies, that H-bonds are a rigid,
not a statistical concept.

For the class of general H-bond detectors, we will give a summary of the
widely used method of Mills & Dean [24]. For the second class, methods
solely acting as a base pair finder, the computational RNA area provides one
prominent example. RNAview [25] does not find H-bonds in a 3D structure,
but reads out base pairs just by investigating geometrical criteria of the whole
pairing site rather than single atoms.

2.2.1 Chimera

Chimera, described as “an Extensible Molecular Modelling System” [26], has
great visualisation and interactive analysis capabilities for 3D biomolecular
data. Needless to say, as a tool to analyse crystal structures, it provides func-
tionality to identify H-bonds using the approach by Mills & Dean [24].

In their study, Mills & Dean describe a set of atoms or chemical groups,
determining a set of geometric constraints, distinguishing a polar interaction.
For atoms, only the H-bond acceptors and donors are considered. By this, the
need of real protons which are rarely found in crystal structures is avoided.

While the study uses the Cambridge Structural Database (CSD) [27] as data
source, Chimera more often sees data from the Protein Data Bank (PDB) [28]
as input. Since the CSD stores small organic molecules at high resolution, the
error in structure determination for whole proteins as stored in the PDB is
expected to be larger by default. This forces FindHBond to relax H-bond pa-
rameters, as advised by Mills & Dean, while retaining the geometrical criteria.
Because the study does not list all possible hydrogen donors and acceptors,
some parameters are estimated for real-world application.

For hydrogen-bonding groups, nitrogen, oxygen and sulfur atoms are con-
sidered. To reflect the geometric parameters used to distinguish the inter-
actions formed, considering single atoms are not enough. Instead, they are

13



2. Hydrogen Bond Recognition

divided into two basic classes of chemical groups bearing those bond-forming
atoms. Both classes contain a distance threshold between non-hydrogen at-
oms but differ by angular constraints. The ψ-φ groups utilise the ψ-angle,
as defined by a plane upon the acceptor atom and the donor atom as well as
the φ-angle, formed by an axis through the ψ-plane and the donor atom as
further parameters. Criteria for the second class, θ-τ groups, take the θ-angle,
measured along the donor - hydrogen - acceptor axis, and the τ-angle, describ-
ing the torsion around the axis measuring θ. If no explicit hydrogen atom is
available or the angle does not subtend it, θ is named υ. Examples for both
classes are found in Fig. 2.1, showing ψ and φ-angles in Fig. 2.1 (a)–(c), and
θ, υ and τ-angles in Fig. 2.1 (d)–(e).

Altogether, both classes provide 76 criteria sets derived from 39 chemical
groups. The ψ-φ groups only split for syn and anti addition. But the θ-τ
groups are subdivided into hydrogen donors and acceptors, with additional
classes formed by the state of hybridisation. Originally, the ψ-φ class contains
15 chemical groups, but 22 distance/ angles-tuples. The θ-τ class keeps some
of its 24 chemical groups as both, donor and acceptor, and provides 3 different
parameter sets for most of the donors, resulting in 54 criteria tuples summed
up.

To find H-bonds in a PDB file using these criteria, several steps have to
be taken. First, nitrogen, oxygen and sulfur atoms have to be identified, to-
gether with adjacent atoms to define the groups they belong to. Next, this
pool of chemical groups has to be divided into hydrogen-bond donors and ac-
ceptors. To verify possible H-bonds, the members of both categories have to
be matched pairwise. For ψ-φ groups, parameters can be used without further
considerations. For θ-τ donors, we need to detect the state of hybridisation of
each possible acceptor. The distances and angles to check the criteria have to
be calculated separately for each donor-acceptor-pair, for both classes. Mills &
Dean only provide a binary answer, candidates meeting the criteria are accep-
ted as H-bonds, not otherwise. Without another automated method to decide,
FindHBond returns a list of all positively evaluated candidates, allowing for mul-
tiple donations simultaneously. For well-determined hydrogen positions, this
physically impossible state may be reduced.

The binary nature of this method immediately reveals one drawback. Since
there are no energetic considerations or interaction probabilities, there is no
information about the stability of a molecule. For detecting base pairs in RNA
crystal structures, this complicates the task. In helical regions, it is common
for donors to have more than one acceptor fulfilling the geometric criteria.
Without a stability measure, this often leads to H-bonds between one base and
multiple possible base-pairing partners. Deciding, which H-bonds will lead to
base-pair formation, is therefore the task of a post-processing algorithm.

14
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tended by the hydrogen atom and therefore renamed υ; (e) secondary amine
(R2N-H).
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2. Hydrogen Bond Recognition

2.2.2 RNAview

RNAview [25] is an application from a small collection of RNA analysis tools,
focusing on 2D structure annotation. Where “2D” refers only to the represent-
ation rather than structural features, since tertiary contacts are also covered
along with the usual base-pairing scheme.

More specifically, RNAview finds nucleoside-nucleoside interactions in 3D
structures. This includes Watson-Crick base pairs as well as other contacts, e. g.
Hoogsteen pairs. Detailed H-bond recognition is not the main focus of the tool.
Interaction detection involves considering H-bonds, but annotation is based on
interacting sides of the nucleosides rather than individual atoms. Those sides
are identified solely by geometric criteria, without consideration of energies.
As input, RNAview works on PDB structures and transforms them into a 2D
base-pair map with additional interactions highlighted. For the annotation,
basically two ingredients are used: a standard coordinate frame applied to
each nucleotide in a structure and a nomenclature to describe interactions.

As point of reference for 3D arrangements of nucleic acids, base coordin-
ates as suggested by Olson et al. [29] are used. This standard coordinate
frame is derived from ideal Watson-Crick base pairs according to structures of
the CSD. Along with the coordinates, the coordinate system is provided, giving
each base its own reference point. The geometric criteria for H-bonds can be
derived from two frames, when their origins overlap while the y-axes point
away from each other. Fig. 2.2 gives a detailed view of the reference frame.

For annotation, the edge-nomenclature from Leontis & Westhof [30] is
used. For H-bond mediated interactions between two nucleotides, this concept
identifies distinct contact sides. Following geometry, three edges can be identi-
fied: the common base-pairing face is denoted Watson-Crick edge. The Hoog-
steen edge is roughly on the back of the first edge and the Sugar edge is loc-
ated below the premier contact side. An illustration of the different edges is
given in Fig. 2.3. For a non-ambiguous classification, a base pair needs at least
two H-bonds. Additionally, the relative orientation of the bases are labelled
cis and trans according to the position of their glycosidic bond. The orienta-
tion is measured along a parallel line between the two H-bonds of contacting
edges. If both glycosidic bonds are on the same side of the line, the interac-
tion is called cis, trans otherwise. For the three edges together with cis-trans
isomerism, Leontis & Westhof describe twelve possible classes of interactions
and also provide a symbolic notation scheme for them.

Before RNAview classifies interactions, the standard coordinate frame is ap-
plied to a structure. This means that the real bases, as seen in a crystal struc-
ture, are substituted by their analogous reference coordinates. Using the least
square fit method, the rigid coordinate frames are translated and rotated onto
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direction of the sugar-phosphate backbone and the z-axis in 5’- to 3’-direction
along the sequence strand following the right-handed rule. The origins of the
coordinate systems are defined by two distances and two angles. x = 0 on
level with a vector between purine R(C8) and pyrimidine Y(C6). y = 0 in the
middle between the two sugar-C1’ atoms of the nucleotides. The positions of
R(C8) and Y(C6) are determined by angles λR and λY, formed by the sugar and
the base (Taken from [25] and [29] and modified).
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prised of U(O4)/ C(N4), Y(C5). The Sugar edge contains Y(O2) and the hy-
droxyl group of the ribose (Adapted from Leontis & Westhof [30]).
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2.2 State Of the Art

the bases without affecting the phosphate backbone. This approach is also ap-
plicable to modified bases. The idea is to use the best fitting standard base as
a substitute. Additionally, along with the least square fit, nucleic acid deform-
ation parameters like shear, stretch and propeller are detected. Also the cis/
trans configurations of the glycosidic bonds are determined in this process.

From the set of standard bases, RNAview derives the interactions of a mole-
cule. Since all possible twelve edge combinations are considered as base pairs
plus tertiary interactions, there are three different sets of criteria and param-
eters. Canonical Watson-Crick pairs are described by angular ranges for the
standard frame axes, by a distance of the origins of the two coordinate systems
and the vertical distance between the base planes. Additionally the glycosidic
bonds are only allowed in cis mode. All contacts which do not belong to this
class are next considered non-Watson-Crick base pairs. According to the defin-
ition of Leontis & Westhof, these are all remaining combinations of the 3 edges
and position of the glycosidic bond. Everything else is assumed to be a real ter-
tiary interaction. While the vertical distance between the planes is common to
all kinds of pairs, the only angle considered for non-Watson-Crick interactions
is formed by the two z-axes. The parameters for these geometrical criteria
are a bit relaxed compared to canonical base pairs, but the requirements on
H-bonds are more strict. For an interaction to belong to the class of non-
Watson-Crick pairs, at least two H-bonds are required. One of which has to be
established between the bases of interacting nucleotides. Additional distance
thresholds differ between the type of H-bond. In contrast to base-base inter-
actions, every other combination gets an atom-dependent range. As a special
case, two H-bonds with an identical donor atom are rated, requiring different
parameters at the same criteria. All contacts left which are neither canonical
base pair nor non-Watson-Crick pair, are assumed tertiary interactions. These
need at least one H-bond, meeting an atom dependent distance threshold.

After defining base pairs in a structure, RNAview presents it as a 2D map.
But instead of just drawing interactions in an enumerative manner, they are
collected into structural features. The most common motif should be helices.
They occur with an initialising pair of Watson-Crick base pairs. If two strands
of helices are interrupted, e. g. by a bulge loop, they are still shown as one
larger pseudo helix. To discriminate base-pair types in the plot, the annota-
tion according to Leontis & Westhof [30] is utilised. Further visual highlights
are applied to the stereochemistry of nucleotides, certain stacks and modified
bases. However, one problem of 2D RNA structure arrangement remains unre-
solved by RNAview: overlaps of structural features in the map. They have to be
solved manually by editing the plot using RNAMLview.

Similar to the Mills & Dean method, RNAview only generates a binary answer.
In contrast to Chimera, there is no H-bond presentation, but edge-to-edge and
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2. Hydrogen Bond Recognition

tertiary interactions. For comparing or discussing structures, this approach of a
holistic, discretised annotation is very convenient. Still, the edge classification
remains a simplification. It gathers up interactions while deciding ambiguous
scenes which are derived from a modified geometry of a structure. Because
everything is solely based on geometrical constraints, no information about
the stability of the interactions can be provided.

2.3 Finding Hydrogen Bonds By Geometrical Fea-
tures

In the last section, two methods were described with different scope but one
important similarity. Mills & Dean [24] provide a general approach for all H-
bonds, while RNAview [25] only goes for interactions in RNA. But both methods
only consider pure geometry/ trigonometry. For visualisation of molecules,
this is sufficient. However, to any calculations with molecules, e. g. scoring
their stability, these methods cannot contribute. Since this is our primary goal,
these approaches are not sufficient for us. What we are aiming at as a primary
target, is detecting H-bonds & base pairs along with a score to easily assess the
stability of a scene.

The two models described define H-bonds as a rigid concept. While RNAview
operates in a somewhat relaxed mode, allowing donors with two acceptors,
the interactions themselves are binary for both approaches. But a discrete
definition is not necessary, probably a hindrance, for determining the stability
of a structure. One problem is weak interactions, which are just neglected, but
may be significant once summed up. Another one arises by geometrically am-
biguous configurations, where H-bonds are equally favourable between single
acceptors and multiple donors or vice versa. Thereby a rigid concept forces
us to drop all but one interaction. Those two examples should point out, that
we always lose energetic contribution, as soon as we decide between distinct
interactions.

In the method presented in this work, we try a continuous approach for H-
bonds. More precisely, at the start there are no bonds, but polar interactions.
These can be described by energies or probabilities, assigning small contribu-
tions to weak interactions and penalising certain steric problems. This scheme
also allows immediate incorporation of situations with more than one ener-
getic favourable pairing possibility. To get from H-bonds to base pairs with
this approach, not much more than a threshold would be needed. This could
be used to go back to discrete interactions and easily identify paired bases,
with the benefit that beside pure “H-bond counting”, certain energy values
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2.3 Finding H-Bonds By Geometrical Features

could be added to the criteria.
As often in the RNA field, we can benefit from what was already done for

proteins. Kabsch & Sander describe a method to recognise secondary structure
features in proteins just by H-bonds and geometrical features [8]. Instead of
analysing the whole geometry around donor and acceptor sites, H-bonds are
recognised based on a simple model for electrostatic energy.

2.3.1 Distances

The main task of the Kabsch & Sander study is to recognise α-helices and β-
sheets in proteins, mainly by H-bond patterns. Single interactions are defined
by a threshold energy based on a simple electrostatic model.

Considering all interaction partners, the potential energy has four contrib-
uting terms. Distances are measured between all atoms which carry a partial
charge in addition to the hydrogen and the acceptor oxygen. These are the
donating amino group and the carbonyl-atom, respectively. Fig. 2.4 shows a
short piece of β-sheet with all distances highlighted.
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Figure 2.4: Interaction distances in proteins. A small excerpt of a β-sheet,
with interatomic distances highlighted. These are used by Kabsch & Sander to
calculate H-bond energies [8]. r(XY) describes the distance between atom X
and Y.
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Figure 2.5: Base pair interaction partners and corresponding distances. (a) H-
bond donor and acceptor atoms in canonical and GU pairs. Adjacent atoms in-
volved in forming polar interactions are also highlighted. (b) Distances to cal-
culate interaction energies. If calculating with partial charges, R(N1)/ Y(N3)
need both adjacent carbon atoms to be included. V replaces remaining atoms
in adenine, cytosine or guanine. B substitutes in cytosine, guanine or uracil. K
describes guanine or uracil atoms. M is a placeholder in adenine or cytosine.
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2.3 Finding H-Bonds By Geometrical Features

In our approach to find H-bonds and RNA base pairs, as proof of principle
we only focus on Watson-Crick edges as described in Fig. 2.3. With all polar
interactions defined, identifying canonical base pairs and some wobble pairs
is left as an enumerative job. Building upon this initial step, an extension
towards a holistic annotation as in RNAview (see §2.2.2) is feasible.

Fig. 2.5 shows an overview of the interaction sites and their partners for
RNA nucleotides. Here, the donors and acceptors forming AU, GC and GU pairs
as well as adjacent atoms are considered. Fig. 2.5(b) lists all distances that
need to be evaluated for canonical base pairs and the wobble GU pair. Since the
process of finding H-bonds will be performed in an all-against-all manner, the
detailed description of the interatomic distances will follow chemical groups
rather than whole nucleobases. Altogether, the four canonical bases make up
four different groups: three nitrogen- and one keto-groups. As donors, the
purine bases and cytosine carry a primary amino group (A(N6), C(N4), G(N2)),
guanine and uracil also carry a secondary amine (G(N1), U(N3)). In adenine
and cytosine, the acceptor nitrogen (A(N1), C(N3)) is part of an enamine group,
formed with the primary amine. Pyrimidines and guanine have keto-groups
(C(O2), G(O6), U(O2), U(O4)). While proton donors occur as pairs, acceptors
consist of a single atom on first sight. But since the energy of a polar inter-
action depends on partial charges, adjacent atoms as also used by Kabsch &
Sander need to be considered. For the keto-group there is only the connected
carbon atom to invoke into distance calculations (C(C2), G(C6), U(C2), U(C4)).
The considered ring nitrogen is slightly different to the known scheme since
it lives in the neighbourhood of two carbons. In the real world, both carbons
contribute partial charges to the interaction. Since we operate in a rather ar-
tificial mode, e. g. we are not trying to calculate absolute real world energies,
we do not need to consider both atoms in theory. This will simplify the formula
to calculate a pseudo-energy. This idea is supported by Kabsch & Sander, since
they showed for proteins that four distances/ energies are enough to define an
H-bond. In nucleotides, we simply always use the carbon atom counterclock-
wise to the nitrogen (A(C6), C(C4)).

2.3.2 Pseudo Hydrogens

All methods for finding hydrogen bonds suffer of one general problem. Their
common input, PDB files, does not usually have coordinates for protons. There
are methods like neutron diffraction which allow to define hydrogen positions.
Unfortunately these have only applied to a small fraction of PDB entries.

The approaches presented here use different strategies to tackle this prob-
lem. By applying the standard coordinate frame (Fig. 2.2), RNAview avoids the
need for explicit protons since the base pair parameters do not incorporate
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2. Hydrogen Bond Recognition

them. The approach of Mills & Dean (§2.2.1) only requires hydrogen atoms in
18 of the 76 criteria. Where they do not provide a strategy how to deal with an
absence for those 18 cases, Chimera does its own proton substitution. Thereby,
the placement follows a few rules, specific for certain chemical groups. How-
ever, if the input structure carries its own protons, these are used. Kabsch
& Sander, the method we are following, give no advice on how to deal with
missing protons.

Since our approach needs the positions of hydrogen atoms to calculate
distances for the energies, we model artificial atoms into the input structures.
As a source of coordinates, the Chemical Component Dictionary (CCD) [31] of
the Worldwide Protein Data Bank (wwPDB) [32] is used. With bond lengths
and angles calculated from them, placing the atoms should be a simple task.
This is true for the secondary amino group of guanine and uracil, since the
proton sits right in front of the nitrogen atom. To get the correct position only
a vector has to be calculated, pointing away from the nitrogen. As reference
points, the adjacent carbon atoms are used, assuring that the artificial atom
lies in a plane with the ring, pointing outwards.

The other donor group, the primary amine in adenine, guanine and cyto-
sine, is more complicated. While in reference coordinates, the two hydrogens
always lie in a plane with the ring atoms, they are attached to a rotatable
group which makes them hard to be placed, once looking at a larger molecule.
Also for determining H-bonds, the question arises, which of the two protons
is to be considered. It is even worse, if we assume, that both might have a
contribution. As a solution, the idea is to work with a single pseudo hydro-
gen atom. This will be both, easier to place and simple in choosing interaction
partners. From Kabsch & Sander we already know that this should work, since
the interacting backbone nitrogen of an amino acid also has only a single pro-
ton attached. This leaves the question, where the pseudo hydrogen is to be
positioned. To avoid the problems of a rotatable group, the middle between
the two real hydrogens seems obvious. The price for this simplification is a
slightly distorted geometry at this interaction site. As a substitution, the dis-
tance to the pseudo hydrogen will most of the time be shorter than one of the
distances to the real protons and longer than the second (see Fig. 2.6). How
much this affects the applicability to detect H-bonds, has to be evaluated. An-
other point to be considered are the contributions to the overall interaction
energy. Assuming that both protons of the amino group have an effect on the
H-bond, we are loosing one term by introduction of a single pseudo hydrogen.
An elegant way to compensate both effects in one go, is to shift the position of
the pseudo hydrogen on the bisector between the real protons. §2.5.3 shows
the results of the search for a plausible placement of the artificial atom.
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Figure 2.6: Pseudo hydrogen position. Schematic view of the positioning prob-
lem of a pseudo hydrogen (blue circle). Y is an H-bond acceptor atom, V marks
the ring of either adenine, cytosine or guanine. If the artificial atom is placed
right between the real protons, distance r(Hpseudo, Y) is smaller than r(H1,Y)
and greater than r(H2, Y).

2.3.3 Quasi Energy Function

Now, that all necessary distances are available, we can go on calculating inter-
action energies using Coulomb’s law:

E =
q1q2

Dr
(2.1)

where E is the energy, q1 and q2 are the charges of the atoms, r is the distance
between them and D is the dielectric constant.

For an H-bond, as a set of interacting atoms, all terms are summed up:

E = q1q2

�

1

r (ON)
+

1

r (CH)
−

1

r (OH)
−

1

r (CN)

�

1

D
(2.2)

where q1 and q2 are the magnitudes of the partial charges.
The Kabsch & Sander formula looks so simple, because the set of interac-

tion partners defining 2D elements in proteins is very limited. When it comes
to nucleic acids, the situation is more diverse due to the two different acceptor
and donor groups involved in canonical base pairs (see Fig. 2.5). Instead of
defining one expression per possible atom combination, we define a nomen-
clature on pairing partners to fit everything into a single formula. With X and
Y as H-bond donor and acceptor atoms, A marks the atom adjacent to the ac-
ceptor and H is always the donated hydrogen. Table 2.1 lists the translation
for each atom of a possible interaction.

Because we assume a single magnitude for the partial charges q1 and q2,
further since we only treat relative energies, our quasi-energy function is given
by:

Equasi =
1

r(X Y )
+

1

r(HA)
−

1

r(HY )
−

1

r(XA)
(2.3)
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Type Atom in nucleobase Label

Donor A(N6), C(N4), G(N1), G(N2), U(N3) X
Hydrogen A(N6Hp), C(N4Hp), G(N1H), G(N2Hp), U(N3H) H
Acceptor A(N1), C(N3), C(O2), G(O6), U(O2), U(O4) Y
Adjacent A(C6), C(C2), C(C4), G(C6), U(C2), U(C4) A

Table 2.1: H-bond donor & acceptor mapping. To simplify the definition of
the formula describing H-bond scores between nucleobases, single atoms are
grouped together. Classification follows the role atoms play in measuring dis-
tances for the Coulomb energies (see Fig. 2.5(b)). For the amino groups, Hp
is the pseudo hydrogen artificially added (refer to §2.3.2).

While the results of this function are not correctly scaled, we will speak of
arbitrary units (arb. units) when referring to them.

2.3.4 Identifying Base Pairs

With H-bonds defined by an energetic term, there is no real need of classify-
ing them into base pairs for our purposes. Therefore the task of identifying
canonical base pairs is only fulfilled in a basic, prototype-like manner.

On first thought, one might assume counting for the “right” number of
interactions between two bases as the most simple method. But just accepting
every two bases forming an H-bond as pair is even simpler. Of course, this is
not exactly what is done, here. When searching for polar interactions, there
is a high chance for finding bases which interact with more than a single base.
Even single atoms are likely to have more than one partner in an energetically
favourable state. On discretising the interaction landscape into base pairs,
those situations have to be eliminated.

Our approach starts with finding H-bonds in an all-against-all manner,
where all donor and acceptor sites of all bases in the whole sequence are
evaluated by Eqn (2.3). All putative H-bonds are measured by their energy
only. Well chosen cut-off values will avoid most nonsense interactions, like
H-bonds over long distances. After this first filtering step, most bases will still
show polar interactions with more than one partner in their direct neighbour-
hood. To bind pairs to single partners, the quasi energies between each two
interacting bases are summed up and the H-bonds leading to the lowest en-
ergy are kept while all others are deleted. In many cases this should already
account for counting H-bonds towards Watson-Crick pairs. Very likely, if two
bases form an interaction on one acceptor-donor pair, remaining sites will also
interact with the same bases. This leaves us with a list of base pairs, all with
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a single partner. Artificially, canonical base pairs can be forced by deleting all
non wanted pairs from that list.

2.4 Implementation

For evaluation, the simple, electrostatic-based model was implemented in a
tool which could read 3D structures and return a list of H-bonds. This starting
point was then used as the basis for a second tool, which could perform base-
pair recognition like RNAview [25], but using the more sophisticated definition
of H-bonds.

A task which both tools have in common is reading RNA structures from
file. Since those are not available in high numbers, we did not want to loose
any of them due to common but negligible format violations. Therefore we
decided to implement our own PDB file reader, driven towards keeping as
many RNA structures as possible.

For faster software engineering, core functions of the GenomeTools [33]
analysis suite were used.

2.4.1 PDB Reader

Since there are already tools for parsing PDB files, here is our motivation for
joining the common sport of implementing a personal version. Amongst the
available choices, there was none which entirely met our needs. The top-
most important feature is the ability to read data from a high share of RNA
carrying PDB files. Such a request immediately forbids the use of available
readers, which strictly rely on the PDB format, e. g. the implementation in the
WURST framework [34]. The second feature heavily needed, points towards
the content of a file, rather than a technical problem. Beside mere atom co-
ordinates, PDB files contain much more information. While we are working
with nucleotides, we are interested in remarks on modified residues. Those
could have been introduced to a structure to solve problems in the process of
X-ray crystallography, e. g. phasing [35], or by nature via post-transcriptional
modification of a structure, e. g. in tRNA [36]. Just for the whole process of
finding H-bonds, modified nucleotides are not a problem. But when it comes
to energetic considerations in a 2D space, the literature energy model is only
capable of the four canonical bases [21–23]. Hence, nucleotides with changed
bases are candidates for substitution with bases manageable by the Nearest
Neighbour model (see Table 2.2 for a list of modified residues recognised).
With those features in mind, the development process was iterative, starting
with the wwPDB format definition [37] and implementing exceptions when
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encountering problems in our RNA subset of the PDB. The result is a PDB
reader, entirely driven by finite state machines (FSM) [38].

Nucleotide

CCD id modified canonical

1MA 6-Hydro-1-Methyladenosine-5’-Monophosphate Adenine

CAR Cytosine Arabinose-5’-Phosphate
CytosineOMC O2’-Methylycytidine-5’-Monophosphate

5MC 5-Methylcytidine-5’-Monophosphate

PGP Guanosine-3’,5’-Diphosphate

Guanine

2MG 2N-Methylguanosine-5’-Monophosphate
M2G N2-Dimethylguanosine-5’-Monophosphate
OMG O2’-Methylguanosine-5’-Monophosphate
YYG 4-(3-[5-O-Phosphonoribofuranosyl]-4,6-

Dimethyl-8-oxo-4,8-Dihydro-3H-1,3,4,5,7A-
Pentaaza-S-Indacen-Ylamino-Butyric Acid Methyl
Ester

7MG 7N-Methyl-8-Hydroguanosine-5’-Monophosphate

PSU Pseudouridine-5’-Monophosphate

Uracil
BRU 5-Bromo-2’-Deoxyuridine-5’-Monophosphate
H2U 5,6-Dihydrouridine-5’-Monophosphate
5MU 5-Methyluridine 5’-Monophosphate

Table 2.2: Modified nucleotides. List of modified nucleotides as found in our
PDB subset with the corresponding canonical residues they are cast to. The
CCD id column gives the identifier as found in a PDB file, modified Nucleotide
its name and canonical Nucleotide the substitutional canonical base.

The reason for setting the reader up as FSM just follows the given structure
of PDB files. In top-down direction, the data is organised in different types of
records, e. g. REMARK records for extra information and ATOM records for co-
ordinates. Since most of the different record types have their own organisation
of information, they have to be parsed by different schemes. This can be easily
reflected by modelling one FSM per record type, where the states correspond
to the data fields, read by the transitions from each line of a file. Beside the
line-wise data, some records may be considered en-block, forming informa-
tion of higher order. That is, residues are formed by several atoms, sequences
by several residues, and so forth. This means, FSMs for parsing records hori-
zontally are not enough, at least one machine is needed gathering additional
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information from what is produced by the lower order parsers. This implies
a hierarchy of FSMs as shown in Fig. 2.7. Therein the different machines are
invoked for transitions between the states of the calling FSM. Of course, the
single automatons could have been pulled together into one large FSM, mak-
ing the scenery unnecessarily confusing. Instead, we organised the machines
as separated vertical and horizontal parsers.

In more detail, PDB files are parsed in two larger steps: first the preamble
is evaluated followed by the body of the file. As preamble, we assume all
lines before the coordinate section. Since the only information read from this
part of a file are remarks of type 101, carrying modified nucleic acid residues,
and the identifiers of heterogens from HET records, no individual FSMs are
provided, here. This data is fetched in a more static way and does not really
need own automatons.

The body parser is organised in two FSMs (Fig. 2.9 & 2.10) plus a general
data-field reader (Fig. 2.8). This field parser only reads cells of data from a
PDB file marked by a certain width or terminal character. Terminators are
set on initialisation from the Init to the Read state. Here, a single character
is read, exit conditions are checked, and a sequence of characters is stored.
Towards the EOC (end of cell) state, data may be validated and cast into an
appropriate type.

The field parser is needed to detect many states in the PDB parsing FSM
illustrated in Fig. 2.9. This may be regarded as “master parser” for the body
section of a file, since it invokes record-based FSMs while running over the file
from top to bottom. On the implementation side as a program, it also arranges
the information found into a higher degree of organisation. On the conceptual
side, the machine starts searching for an ATOM or MODEL record. Following
the opening of a new model, coordinates are read by the ATOM state and its
transitions. After each set of coordinates read, a chain terminator may occur,
followed by more atoms or other coordinate data. For each file processed,
the ENDMDL state has to be visited at least once. Even if the atoms read are
not enclosed in a model in the file, our implementation stores everything as
a model internally. Once a model is closed, more may be read or the parsing
process ends.

For defining polar interactions, only the coordinates, element and the posi-
tion in a residue of an atom is needed. Since we also reconstruct the sequence
(primary structure) solely from the coordinate section of a PDB file, only one
further FSM is invoked by the PDB parser, the ATOM record parser presented in
Fig. 2.10. This is also true when considering HETATM in addition to ATOM re-
cords, since they are of equal structure. The model strictly follows the wwPDB
format description [37] with one exception. The alternate location indicator
is empty for some files in our subset of the PDB, leaving us with nothing to

29
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ATOM 10 N9 A A 1 -2.029 .542 6.685 1.00 1.59 N-2.029

PDB parsing FSM

Atom record parsing FSM
Record field parsing FSM

Figure 2.7: Overview of the PDB file parsing FSMs. Each FSM is described
on its own in separate figures, while this is a sketch how they play together.
The PDB parsing FSM (Fig. 2.9) operates on the whole file, detecting different
records in a top-down manner and the syntax behind. For example it stores dif-
ferent models of a file by detecting surrounding MODEL and ENDMDL entries.
Encountering an ATOM entry, it calls the atom record parsing FSM (Fig. 2.10).
This reads the information in horizontal mode, field by field. Thereby the
states are modelled following data types of the record, e. g. Cartesian coordin-
ates. As a FSM invoked by both of the former, the field parser (Fig. 2.8) reads
data cells of records character-wise.
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Init EOC

Read

Figure 2.8: Record field parsing FSM. Used by the PDB reader to fetch field
data of records and feed them to the other FSMs. Data is read character-wise
up to a certain field width or until a terminator character occurs.

Start

MODEL

ATOM

End

TER

ANISOU

HETATM

CONECT

ENDMDL

Figure 2.9: PDB parsing FSM. Modelling only relevant records, this parser is
specialised on our subset of RNA-carrying PDB files. The artificial start state
is needed because the data retrieval process skips the preamble of a PDB file,
reading only atom information. The end state exists for the case of multiple
models in a file and an extra bit of post processing. For the MODEL-ENDMDL
tandem, the ENDMDL state is special. It does not require the corresponding
record in a file to finalise a set of atoms. While PDB entries exist, not carrying
a single model, our implementation of the parser keeps any set of atoms as
a model which needs proper closing. The ATOM state is the one producing
the highest workload. On the transitions towards it, the atom information is
read. The remaining states are mostly there to handle certain records while
not storing their information. The names of the states are the record types as
found in the wwPDB format guide.
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store in a state. This is the reason, why the ALTLOC state may be skipped by
an immediate transition from state NAME to RESIDUE.

SERIAL NAME

ALTLOC

RESIDUE CHAIN

RESSEQICODEXYZ

OOC TEMPF ELEM CHARGE

Figure 2.10: Atom record parsing FSM. Called by the PDB parsing FSM
(Fig. 2.9) for the transitions towards its ATOM states, this parser is modelled
along the fields of an ATOM record. Beside varying field widths, the only more
dramatic disturbance of the strict format are some missing fields for alternate
location indicators (ALTLOC) in our subset of the PDB used for evaluation. A
list of states and their corresponding record fields may be found in Table 2.3.

2.4.2 Hydrogen Bond Finder

In this section, the basics of the implementation of the evaluation of polar
interactions for nucleic acids are presented. More precisely, the program de-
scribed here, is not a true H-bond finder, but a tool to assess the (quasi) energy
of putative interactions. Its main usage is to proof that our model works in
principle, and to define its working parameters.

In contrast to the natural habit of a software developer, running time is
not a primary objective at this stage, but a proper implementation not using
heuristics, e. g. distance cut-offs. Also the memory usage is negligible with a
good assistance for the evaluation process in mind as one major goal. In other
words, the idea is to drive an all-against-all computation of possible interaction
partners while extracting as much information of the system as possible.

The core of the procedure is described in algorithm 2.1. It does not start
by reading a PDB file, but assumes the already processed structure as input.
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Input : PDB structure S
Output : List of interaction partners with quasi energy

1 interactions←∅, acceptors←∅, donors←∅
2 i← 0

3 foreach b ∈ S do
4 if is_adenine(b)= True then
5 acceptors∪ {〈b, xyz(b, N1), xyz(b, C6)〉}
6 donors∪ {〈b, xyz(b, N6), pseudo_h(b, N6)〉}
7 else if is_cytosine(b)= True then
8 acceptors∪ {〈b, xyz(b, N3), xyz(b, C4)〉}
9 acceptors∪ {〈b, xyz(b, O2), xyz(b, C2)〉}

10 donors∪ {〈b, xyz(b, N4), pseudo_h(b, N4)〉}
11 else if is_guanine(b)= True then
12 acceptors∪ {〈b, xyz(b, O6), xyz(b, C6)〉}
13 donors∪ {〈b, xyz(b, N1), calc_h(b, N1)〉}
14 donors∪ {〈b, xyz(b, N2), pseudo_h(b, N2)〉}
15 else if is_uracil(b)= True then
16 acceptors∪ {〈b, xyz(b, O2), xyz(b, C2)〉}
17 acceptors∪ {〈b, xyz(b, O4), xyz(b, C4)〉}
18 donors∪ {〈b, xyz(b, N3), calc_h(b, N3)〉}
19 end
20 end

21 foreach 〈a, Y, A〉 ∈ acceptors do
22 foreach 〈d, X, H〉 ∈ donors do
23 if a 6= d then
24 e← 1

r(XY)
+ 1

r(HA)
− 1

r(HY)
− 1

r(XA)
25 interactions∪ {〈a, d, e, i〉}
26 i← i+ 1
27 end
28 end
29 end

30 return interactions

Algorithm 2.1: Calculating interaction energies. The is_“nucleotide” functions
are used to identify (modified) nucleotides (Table 2.2). Coordinates of atoms
(Table 2.1) are collected from PDB residues by xyz(). Hydrogen coordinates are
generated by pseudo_h() and calc_h() (§2.3.2). Distances are calculated by r().
i is used to keep interactions of equal donors & acceptors and quasi energy.
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2. Hydrogen Bond Recognition

State Field

SERIAL serial
NAME name
ALTLOC altLoc
RESIDUE resName
CHAIN chainID
RESSEQ resSeq
ICODE iCode
X x
Y y
Z z
OOC occupancy
TEMPF tempFactor
ELEM element
CHARGE charge

Table 2.3: Atom parsing FSM states. List of the states modelled in the parser
for PDB ATOM records (Fig. 2.10) and the corresponding data fields of the
wwPDB contents guide, “Coordinate Section”, subsection “ATOM” [37].

However, file reading is described in §2.4.1. As output, a list of quasi energies
together with the interacting residues is provided. In the output of the actual
implementation, information provided may vary. Before energies are calcu-
lated, in lines 3 to 20 all residues of the input structure are iterated, and accep-
tor and donor atoms are stored in two different lists. To distinguish between
nucleotides and atoms to be stored, possible candidates are verified by con-
ditionals in lines 4, 7, 11 and 15. Thereby the is_“nucleotide”() functions
check for the name-giving residues and modifications thereof, as described
in Table 2.2. What is actually stored for each acceptor and each donor in
the lists, are tuples of the current residue and coordinates. According to the
branch taken in the conditional block, atoms following Table 2.1 are chosen
and their coordinates extracted from the residue by function xyz(). A special
case are donor atoms with their protons artificially placed. For them, functions
calc_h() and pseudo_h() generate coordinates as discussed in §2.3.2. An ex-
ample for an union of an acceptor list and a new coordinates/ residue set can
be found in line 5. Here, the residue r we are considering together with the
coordinates of the N1 and C6 atoms of an adenine are stored in the acceptor
list.

After the input structure was entirely evaluated, calculation of our quasi
energy term takes place in lines 21 to 29. The first loop runs over all stored
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2.4 Implementation

acceptors and the second over all stored donors. Thereby Y is loaded with
the acceptor atom and A with its adjacent atom. For donors, X takes the
coordinates for the donor atom and H for the artificial hydrogen. Following a
test for operating on different residues in line 23, the energy is calculated as
given by Eqn (2.3). The result is stored in a list to be returned by the algorithm,
together with evaluated residues a and d.

The running time of algorithm 2.1 is dominated by the two nested loops
at the end. The first loop only enumerates all residues, while the second
iterates all donors for each acceptor in the list. Since both are always stored
together, the size of the lists results out of the n residues of a structure. This
gives the algorithm an asymptotic complexity of O(n2). The memory usage is
asymptotically also O(n2), because for each acceptor values for each donor are
stored.

The actual implementation of the algorithm also includes thymine as a
source for acceptor and donor atoms but is omitted here for compactness.

2.4.3 Base Pair Finder/ 2D Reader

A simple variant of a tool to define a nucleic acid’s 2D structure is implemen-
ted, based upon the interaction search tool of the last section. The basic idea is
first to define H-bonds in a structure using a threshold, and just count interac-
tions between bases towards Watson-Crick pairs. When thinking of competing
interactions between more than two bases, it gets a bit more complicated.

The general idea is again not to produce a cutting edge tool, but a proof of
principle, that our H-bond model is comparable to established ones in matters
of RNA. With this claim in mind, we can easily reuse the algorithm (imple-
mentation) of the H-bond finder for measuring interactions. Also, problems
which might occur, e. g. in the treatment of incomplete pairs, are just solved,
without bringing the solution to an optimised state. Because of using the al-
gorithm for finding interactions here, the running time cannot get better than
quadratic concerning the number of residues of the input structure.

Algorithm 2.5 summarises an intuitive approach to read base pairs out of
a 3D structure. The filtering of H-bonds to be considered, is done by pro-
cedure 2.2. This small routine picks all allowed interactions as reported by
algorithm 2.1 and applies a threshold onto each of them. To test only for
Watson-Crick pairings, pair_is_allowed() in line 3 is defined by correspond-
ing rules. The result is still a list of interactions between atoms, most probably
smaller than the input.

In the next step, these pairs of atoms are gathered into pairs of residues,
by procedure 2.3. The list of interactions is searched for matching residues,
summing up energies for a hit. Since residues may have both, acceptor and
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Input : List I of interactions as delivered by algorithm 2.1, energy
threshold eth

Output : List of H-bonds

1 hbonds←∅

2 foreach 〈a, d, e, i〉 ∈ I do
3 if pair_is_allowed(a, d)= True then
4 if e≤ eth then
5 hbonds∪ {〈a, d, e, i〉}
6 end
7 end
8 end

9 return hbonds

Procedure 2.2: filter_interactions. Create a list of H-bonds between nucle-
otides being allowed to form base pairs. The pair_is_allowed function returns
True, if an acceptor a and a donor d might form a valid pair. i is used to keep
tuples which are equal in the first three members.

Input : List H of H-bonds as delivered by procedure 2.2
Output : List of base pairs

1 basepairs←∅

2 foreach 〈a, d, e, i〉 ∈ H do
3 foreach 〈at , dt , et , it〉 ∈ H\{〈a, d, e, i〉} do
4 if 〈at , dt〉= 〈a, d〉 or 〈dt , at〉= 〈a, d〉 then
5 e← e+ et

6 H← H\
�

〈at , dt , et , it〉
	

7 end
8 end
9 basepairs∪ {〈a, d, e〉}

10 end

11 return basepairs

Procedure 2.3: pairwise_sum_energies. Add up single interaction energies for
pairs sharing acceptor- and donor residues. Residues may occur more than once
in the returned list.
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Input : List B of base pairs as delivered by procedure 2.3
Output : List of base pairs with each residue only occurring once

1 foreach 〈a, d, e〉 ∈ B do
2 foreach 〈at , dt , et〉 ∈ B\{〈a, d, e〉} do
3 if at = a or at = d or dt = a or dt = d then
4 if e< et then
5 B← B\

�

〈at , dt , et〉
	

6 else
7 B← B\{〈a, d, e〉}
8 break
9 end

10 end
11 end
12 end

13 return B

Procedure 2.4: unify_base_pairs. Clear a list of base pairs from considering a
base in more than one pair. Function break forces the algorithm to step out of a
loop immediately.

Input : List I of interactions as delivered by algorithm 2.1, energy
threshold eth

Output : List of base pairs

/* Create list of H-bonds */
1 hbonds← filter_interactions(I, eth)

/* Gather H-bonds to pairs */
2 basepairs← pairwise_sum_energies(hbonds)

/* Solve pairs competing for the same residue */
3 basepairs← unify_base_pairs(basepairs)

4 return basepairs

Algorithm 2.5: Base pair detection. Procedures 2.2, 2.3 and 2.4 put together
to create a list of base pairs starting with a set of polar interactions. The list
returned contains tuples of residues involved and an energy value.
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2. Hydrogen Bond Recognition

donor atoms, line 4 examines all possible combinations of a current tuple of
pairs. The newly assembled list is at maximum half the size of the H-bond list.

The list of base pairs returned by the last step may contain some residues in
more than one pair. Therefore, procedure 2.4 deletes redundant entries. The
comparison runs over all pairs, searching for shared residues. For a match,
higher energies are immediately excluded from the list, avoiding considering
the corresponding residue combination more than once. The result is our final
list of base pairs.

Algorithm 2.5 queues these three procedures up to form our base pair
finder. Since procedure 2.2 has only a single loop on the input, it has a lin-
ear running time. Procedures 2.3 and 2.4 can both be implemented to run
with

�n
2

�

tests, skipping redundant comparisons. Asymptotically this is of or-
der O(n2). For an average running time, we have to keep in mind, that usually
the lists decrease from one step to the next. Since we do not store any data
dependencies, the memory usage grows linearly with the number of interac-
tions.

One important thing to note about the algorithm is in procedure 2.4. The
way, elements are removed in direct comparison, creates a local minimizer.
The global pendant would be to challenge all possible combinations of shared
residues and then pick the one of lowest energy. An efficient algorithm for this
problem is described by Nussinov [10] and needs O(n3) time and O(n2) space.
Since in our case we do not need to fold an RNA molecule but occupy a given
structure with short range interactions, the local variant should be sufficient.
In practice, the problem of shared residues occurs nearby only between neigh-
bouring residues, making an expensive global search obsolete. Additionally,
moving away from a binary view on H-bonds, shared interactions are easily
allowed in the model.

The actual implementation of algorithm 2.5 operates on a list of bases, all
initialised with an unpaired state. Thereby, we do not need to meddle with
non-paired sites because the algorithm updates only paired bases. The result
of the pair detection process is then an annotated sequence of paired and
unpaired bases.

2.5 Results

As mentioned before, the evaluation of our model is based on PDB structures.
Since we are only interested in RNA, all entries not carrying it are first filtered.
Evaluation is then performed in an all-against-all manner per structure. All
nucleotides of an entry are matched with all other nucleotides in the same
PDB file. If the model is capable to differentiate between interacting and non-
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2.5 Results

interacting sites, the calculated quasi energies should divide into at least two
distributions.

Before describing the procedure and the expectations of the evaluation, our
data foundation is presented. After a short explanation about the filters used
to create a reduction of the PDB, this contains a few statistics about the test set
itself. A few structures will be reserved for testing a possible parametrisation
of our model, that might come out of the process.

2.5.1 Test Set

A complete list of PDB entries used for testing may be found in Appendix B.

Assembling our list of RNA structures can be done immediately via the PDB
web interface and its search tool [28]. In the Advanced Search Interface, the
filters for Structure Features are used to set restrictions on the Macromolecule
Type of our query. For retrieving a decent sample size, we need to include all
entries carrying RNA, not only structures solely made of it. This means, all
fields of the filter are set to ignore, while Contains RNA is enabled with Yes.
Applying these settings leaves us with a list of 1070 entries, 314 of which only
carry nucleic acids, and a total of 404 404 nucleotides.

Table 2.4 shows a list of 15 PDB entries, excluded from large-scale eval-
uation for a deeper investigation of the model parameters. To preserve the
possibility to manually explore H-bonds and base pairs, the chosen structures
are kept rather small. As an outlier, the structure of a ribosome [39] with
2904 nucleotides is stored in the small set. Beside this, the set contains non-
Watson-Crick base pairs [40–43], base triples [44–46], pseudoknots [46, 47]
and modified nucleotides [48, 49]. For comparisons, the original structures
are either copied from corresponding publications or determined using Chi-
mera.

Illustration PDB Id Size [nt] Res [Å] Method Description

157D 24 1.80 X-ray

RNA duplex
containing two
G(anti)·A(anti)
base pairs

Continued on next page
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2. Hydrogen Bond Recognition

Continued from last page

Illustration PDB Id Size [nt] Res [Å] Method Description

165D 18 1.55 X-ray Mispaired RNA
double helix

170D 24 –
NMR/
MD

DNA dodecamer
containing
arabinosylcytosine

17RA 21 – NMR
Yeast binding site
for phage GA coat
proteins

1A51 41 – NMR
Loop D/ loop E
arm of E. coli 5 S
rRNA

1AJT 19 – NMR

Five-nucleotide
bulge loop from
T. thermophila
group I intron

1AKX 30 – NMR

HIV-2
trans-activating
region with
argininamide

Continued on next page
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2.5 Results

Continued from last page

Illustration PDB Id Size [nt] Res [Å] Method Description

1B36 38 – NMR Hairpin ribozyme
loop B domain

1BZT 17 – NMR

tRNALys,3

anticodon domain
with an A+C base
pair

1C2W 2904 7.50 Cryo EM

3D arrangement
of the 23S and 5 S
rRNA subunits of
E. coli

1DDY 35 3.00 X-ray

Molecular
recognition by the
vitamin B12 RNA
aptamer

1EHZ 76 1.93 X-ray Yeast tRNAPhe

1ESH 13 – NMR

Stem loop C
5’AUA3’ triloop of
brome mosaic
virus

Continued on next page
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Continued from last page

Illustration PDB Id Size [nt] Res [Å] Method Description

1FIR 76 3.30 X-ray
HIV-1 reverse
transcription
primer tRNALys,3

1I9X 26 2.18 X-ray BPS-U2 snRNA
duplex

Table 2.4: Model evaluation set. List of structures excluded from the model
evaluation for parameter testing.

2.5.2 Evaluation Procedure

To evaluate our model, we calculate quasi energies using Eqn (2.3) and al-
gorithms 2.1/ 2.5 on our test sets. For a perfect model, this should give us
intervals for avoiding false positive and false negative interactions.

The values obtained during evaluation will be presented by histograms,
showing the occurrences of quasi energies. To get a fine grained distribution,
each energy value is its own bin. Since all values are brought to the same
precision, some columns may still be merged.

Fig. 2.11 shows an example histogram that resembles the perfect result
of our computer experiments. In an ideal world, the model would produce
exactly two clearly separated distributions. The smaller and narrow distri-
bution would represent the true positive interactions, while the larger heap
would show all true negatives. We simply can expect a larger amount of non-
interaction energies, because of our approach to collect the data. For each
interaction, the corresponding partners are also computed in all other pos-
sible combinations for each structure considered. The standard deviation of
the true positive distribution would ideally reflect the common distance ranges
for H-bonds. Acceptable distances should produce quasi energies within the
interval of the distribution, while different ones should significantly drop out.
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H−bond quasi energies example distribution
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Figure 2.11: Ideal quasi energy distribution. This plot is completely made of
artificial data. It was actively designed to look like close to the best possible
outcome of our experiments. That is, the H-bond and the non-interaction
distributions are entirely separated, giving us sharp intervals to define inter-
actions. A Gaussian-like shape would allow to estimate the probability of an
H-bond being present and remove the need to work with physical energies.
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2. Hydrogen Bond Recognition

Once the model is evaluated in a large-scale manner, we will verify the
results by investigating the real world structures from Table 2.4. For predicting
base pairs, algorithm 2.5 will be used. Since we also get a list of putative
interactions with this, pseudoknots and important non-base-pair patterns from
the literature may also be covered.

2.5.3 Pseudo Hydrogens

Prior to the evaluation of the model at large scale, the problem described in
§2.3.2 has to be solved. That is, we have to find an adequate position for the
pseudo hydrogens of NH2 groups. Three placements will be tested: Using the
centre between the two hydrogens placed following standard geometry, using
a centred position further away, and a placement closer to the nitrogen.

The procedure is similar to the general evaluation, while at this point only
NH2 groups are considered as hydrogen donors. For all three approaches,
quasi energies are calculated and plotted as histograms. If this leads to the
afore described shapes more than once, the method which leads to the smaller
overlap of distributions will be used.

Centred Pseudo Hydrogen

This approach resembles the start situation described by Fig. 2.6. The pseudo
atom is located right between the two hydrogens without considering the po-
sition of the nitrogen. If the hydrogens are missing in a target structure, they
are placed using coordinates of the CCD.

Fig. 2.12 shows the energy histogram, where only the NH2 group carrying
the centred pseudo hydrogen is used as a donor. According to the idea presen-
ted in Fig. 2.11 we tried to divide the histogram by various density functions,
but were only successful for a distribution of putative interactions. The func-
tion used is a Gaussian with an additional scaling factor a, as described by:

f (x;µ,σ, a) = a
1

p
2πσ2

e−
(x−µ)2

2σ2 (2.4)

Beside the missing distribution for the non-interaction energies, the low state
of separation has the higher impact: the normal distribution has an integral of
231292 values, but 95 357 of these values are obscured by overlap with the
bulk of the data points. This leaves us with a rather small interval to accept
interactions in a real world use case.

Looking at the histogram including all Watson-Crick hydrogen acceptors
and donors presented in Fig. 2.13, the problems of this distribution get more
prominent. Here, the fitted Gaussian of possible interactions does not overlap

44



Centred pseudo hydrogen as exclusive donor
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Figure 2.12: Quasi-energy distribution, exclusive centred pseudo hydrogen. The
histogram (red) shows all energy values for NH2 groups matched against all
canonical acceptors. With a maximum of 867 102 928 hits with an energy
of −0.001, the plot was cropped for a better representation of the modelled
distribution (green). This Gaussian (µ=−0.02, σ = 0.01, a = 231.30) marks
putative true interactions. Within the interval of (−0.047,0.009), the curve
covers 231 292 H-bonds, 95 357 (41%) of which cannot be distinguished from
the histogram as a whole.
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Centred pseudo hydrogen

quasi energy (arbitrary units)
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Figure 2.13: Quasi-energy distribution, centred pseudo hydrogen. The histo-
gram (red) shows energy values calculated between all canonical hydrogen
donors and acceptors. The protons of NH2 groups were substituted by a single
pseudo hydrogen, placed on the bisector between them. With a maximum of
1 394 649 197 values with an energy of 0, the plot was cropped for a better
representation of the fitted distribution (green). This Gaussian (µ = −0.09,
σ = 0.01, a = 83.98) marks putative true interactions. Within the interval
of (−0.145,0.040), the curve covers 83 971 H-bonds, 17 757 (21 %) of which
are covered by the histogram.
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2.5 Results

with the interval defined for NH2 groups in Fig. 2.12. Instead, the interactions
issued by our pseudo hydrogen are indistinguishable from the distribution for
dumped interactions. On the other hand, considering the remaining donor/ ac-
ceptor pairings, the model seems to work as intended. With a centred pseudo
hydrogen, this would mean that parameters have to be split according to the
donor in our model.

Pseudo Hydrogen 1Å Away From Nitrogen

With this strategy, we stay on the axis between the nitrogen of an amino group
and its adjacent carbon atom. For adenine these are C6/ N6, for cytosine C4/
N4, and for guanine C2/ N2. Instead of placing the pseudo hydrogen in the
centre between the real ones, it is pushed to a distance of 1 Å away from the
nitrogen. As an advantage, we do not need to care about missing hydrogens
in a structure with this approach. Only the carbon and nitrogen atoms are
needed to calculate the directional vector.

Results for this method are shown in Fig. 2.14 with NH2 groups as sole
donors. As for the centred pseudo hydrogens, we were only able to fit a
single Gaussian into the histogram. The larger area, supposedly showing non-
interaction values, is of a shape which was not covered by any tested density
function. Compared to Fig. 2.12, this normal distribution is slightly shifted
more outwards of the main area by its smaller mean. But by the larger stan-
dard deviation, the number of interactions being not clearly separated is more
than 10% higher.

In Fig. 2.15, a composition including all canonical donors is shown. The
distributions show a small overlap, but still not enough to detect hydrogen
bonds by a single set of parameters. In comparison to the last approach, the
relative portion of putative interactions merged into the non-interactions is
higher by 7% while the integral is larger in total.

Pseudo Hydrogen 0.25Å Away From Nitrogen

Similar to the last approach, again we place the pseudo hydrogen in one
straight line with the carbon and the nitrogen atoms. With a distance of 0.25 Å,
we are closer to the nitrogen than the original protons, this time.

The results presented in Fig. 2.16 show a similar shape as for the other two
approaches. For an exclusive NH2 donor, the normal distribution of putative
interactions is not completely detached from the bigger part of the histogram.
With the largest mean value of the testing field, one could expect that the
majority of the distribution is merged with the histogram. But due to the
small standard deviation, it provides the smallest overlap in relative numbers.
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Pseudo hydrogen, 1Å away from N, as exclusive donor
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Figure 2.14: Quasi-energy distribution, exclusive pseudo hydrogen at 1 Å. The
histogram (red) shows energy values for the all-against-all computation, us-
ing NH2 groups as donors. Their protons were substituted by a single pseudo
hydrogen, placed in front of the nitrogen. Because of the maximum of the
histogram at (−0.001, 865654 113), the plot was cropped for a better rep-
resentation of the fitted distribution (green). The Gaussian (µ = −0.03,
σ = 0.02, a = 358.48) covers 366 182 interactions within the interval of
(−0.100, 0.048). Thereof 197801 interactions (54%) overlap with the larger
body of the histogram.
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Pseudo hydrogen, 1Å away from N
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Figure 2.15: Quasi-energy distribution, pseudo hydrogen at 1 Å. The histogram
(red) shows energy values for all possible acceptor-donor combinations. Be-
cause of the maximum of the histogram at (0, 1393 200238), the plot was
cropped for a better representation of the fitted distribution (green). The
Gaussian (µ = −0.09, σ = 0.01, a = 92.41) covers 92403 interactions within
the interval of (−0.147,−0.036). Thereof 26309 interactions (28 %) are in-
distinguishable from the bulk of the histogram.
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Pseudo hydrogen, 0.25Å away from N, as exclusive donor
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Figure 2.16: Quasi-energy distribution, exclusive pseudo hydrogen at 0.25 Å.
The histogram (red) shows energy values for the all-against-all computation,
using NH2 groups as donors. Their protons were substituted by a single
pseudo hydrogen, placed in front of the nitrogen. With a maximum at
(0, 868151 553), the plot had to be cropped for a better representation of the
fitted distribution (green). The Gaussian (µ = −0.01, σ = 0.00, a = 229.72)
covers 229721 interactions within the interval of (−0.022,0.004). Thereof
87 691 interactions (38%) overlap with the larger body of the histogram.
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Thereby the total number of covered interactions is the lowest, but not dra-
matically far off the number for the centred placing.

Pseudo hydrogen, 0.25Å away from N
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Figure 2.17: Quasi-energy distribution, pseudo hydrogen at 0.25 Å. The histo-
gram (red) shows energy values for all possible acceptor-donor combinations.
Because of the maximum of the histogram at (0, 1395 681600), the plot was
cropped for a better representation of the fitted distribution (green). The
Gaussian (µ = −0.09, σ = 0.01, a = 84.93) covers 84926 interactions within
the interval of (−0.146,−0.039). Thereof 18364 interactions (22 %) are in-
distinguishable from the bulk of the histogram.

Also the plot for the complete all-against-all evaluation shown in Fig. 2.17
has similar features seen before. Considering the distribution of interactions
with NH2 groups, there is no overlap with the interval of the Gaussian here.
The area merged into the histogram is lower than for the 1Å shift but larger
than for a centred pseudo hydrogen. The total number of interactions covered
is slightly smaller than for the centred approach.

Conclusion

The first question is, does the system work at all as one would expect over
the three approaches? Looking at the all-against-all plots, this seems to be the
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2. Hydrogen Bond Recognition

case: the maxima are at the same positions and of similar value and the Gaus-
sians covering putative H-bonds also have similar parameters. All together it
seems like interactions not involving NH2 groups are identical throughout the
histograms.

Since the system seems to work in principle, the follow up question targets
the treatment of missing hydrogens in the structures. Using average coordin-
ates for single protons in NH groups leads to good results, like mentioned
before. For our approach of a pseudo hydrogen substituting a rotatable pair,
the results do not look that promising. We were able to fit a small Gaussian
distribution, covering putative H-bonds, for each of the three positions. But
none of them looked completely satisfying. Comparing the two plots for each
placing, its obvious that they miss our first goal: an overlap of the majority
of the Gaussians for accepted interactions. But even this solution using two
distributions in our model, comes not without problems. None of the resulting
intervals is completely free from the major part of the histogram, covering re-
jected interactions. This leaves only a small portion of the Gaussians to accept
or reject a weak interaction, pointing towards a rather rigid H-bond dogma.

For the remaining evaluation, we still need to chose one of the placement
strategies. For the all-against-all plots, the centred pseudo hydrogen and pla-
cing it 0.25 Å away from the nitrogen, look almost identical. Both histograms
have a maximum at a quasi energy of 0 with about 1.39 · 109 members. The
Gaussians are at (µ=−0.09, σ = 0.01, a = 84.93) and (µ=−0.09, σ = 0.01,
a = 83.98) covering 84 926 and 83 971 interactions while 22 % and 21% of
them fall in the unclassified area. This is also remarkably similar to the histo-
gram we get ignoring NH2 groups as donors, shown in Fig. 2.18. As biggest
difference, here the maximum is at (−0.001,527 530047). The normal dis-
tribution is again very similar with (µ = −0.09, σ = 0.01, a = 84.29) and
84 280 interactions. Since the pile of rejected interactions is missing contri-
butions of the pseudo hydrogens, only 16% of the Gaussian overlap. If the
two placements are compared directly, without any other donor than NH2

groups, the differences get a bit larger. While the maxima are still similar, at
(0,868 151553) and (−0.001, 867102 928), the Gaussians are relatively well
separated with (µ=−0.01, σ = 0.00, a = 229.72) and (µ=−0.02, σ = 0.01,
a = 231.30). For centred pseudo hydrogens, 231 292 interactions are covered,
41 % of which fall into the area of rejected interactions, and for pseudo hydro-
gens at a distance of 0.25Å, 229 721 are enclosed. The latter distribution only
overlaps at 38 % with members to be rejected, which is the smallest number
of the whole test.

For the all-against-all comparison, placing pseudo hydrogens at a distance
of 1Å, the plot is still similar to the other ones. The fitted normal distribution
has only slightly different parameters and the maximum is at the same pos-
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ition with a value similar to that seen before. The differences start with the
number of interactions covered by the Gaussian. Here, roughly 10 000 samples
more are fetched, while 28% are indistinguishable from the rest of the histo-
gram. Also the bridge, connecting the distribution and the major part of the
histogram, is around three times bigger than for the other plots. There, the
connecting bit levels around the mark of 500, while here it lies around 1500.
This shows, that the 1 Å placement really has an effect to the all-against-all
plot, which we do not see for the other two strategies.

If we explore the plot only using NH2 groups as donors, a major drawback
of this placement surfaces. Since around 54 % of the fitted Gaussian mix with
the non-fitted data, we can not give an interval for accepting interactions. This
is because for normal distributions threshold intervals usually mirror around
µ because events on both sides are equally likely. With this forbidding the use
of this position for our pseudo hydrogens, we will go on using the distance of
0.25Å simply because the overlap with the unclassified data is smaller than for
the centred variant. Additionally we will do the evaluation on 3D structures
using parameters split for donors in §2.5.5.

2.5.4 Model Evaluation

After deciding on a placement strategy for pseudo hydrogens, we explore the
model more deeply, here. This means, the histograms are split for the groups
making the interactions and compared how they assemble to the larger picture.
Since we already have to split for the donors, the separation will go down to a
one-on-one level, measuring each of the two acceptor- against the two donor
groups.

The goal of this procedure is to verify that distributions of accepted inter-
actions overlap for the individual pairings. Within the overlap we can then
choose a threshold/ interval to gather H-bonds from.

The histogram showing only NH as donor with all canonical acceptors
in Fig. 2.18 was already explained in the last section. Basically, this should
present the sum of Fig. 2.19 and Fig. 2.20. Fig. 2.19 holds energy values,
calculated between NH groups and nitrogens as corresponding atoms, while
Fig. 2.20 uses oxygens.

On first sight, the numbers of the Gaussians seem not to add up. The integ-
rals of the distributions for nitrogen- and oxygen acceptors together, exceed
the number compared to the combined plot. The reason could be, that the
distributions in the split plots cut across the original data line several times.
This is an artefact from fitting the Gaussians separately without knowledge of
each other. If we look at the data itself, e. g. the split maxima of 210 434 504
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Evaluation excluding pseudo hydrogens
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Figure 2.18: Quasi-energy distribution, no NH2 groups. Values of the histo-
gram (red) were calculated using NH groups as donor only. The maximum is
at (−0.001,527 530047), but was cropped for a better representation of the
fitted distribution (green). The Gaussian (µ = −0.09, σ = 0.01, a = 84.29)
covers 84 280 values in the interval of (−0.147,−0.041). Thereof 13 133 in-
teractions (16 %) are indistinguishable from the histogram.
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NH donor with nitrogen acceptors
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Figure 2.19: Quasi-energy distribution of NH donors with nitrogen acceptors.
This plot shows the histogram (red) of energies calculated between canoni-
cal NH donor groups with nitrogen atoms as acceptors. With a maximum at
(−0.001, 210434 504), the plot was cropped for a better representation of the
fitted distribution (green). This Gaussian (µ = −0.09, σ = 0.01, a = 81.66)
covers 81 656 interactions within an interval of (−0.148,−0.038). The inter-
val may seem larger than the distribution, but counts full interactions. This
extends the considered part to values greater or equal to 1. The number of
interactions not distinguishable from the major part of the histogram is 5675
(7%)
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2. Hydrogen Bond Recognition

and 317 095 543 add up to the joined one of 527 530 047. This holds for all
data points. As a sum, Fig. 2.19 and Fig. 2.20 perfectly reassemble Fig. 2.18.

NH donor with oxygen acceptors
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Figure 2.20: Quasi-energy distribution of NH donors with oxygen accept-
ors. The histogram (red) shows energies calculated for canonical NH do-
nor groups with oxygen atoms as acceptors. Because of a maximum at
(−0.001, 317095 543), the plot was cropped for a better representation of the
fitted distribution (green). The Gaussian (µ = −0.09, σ = 0.02, a = 11.59)
covers 11 577 interactions within an interval of (−0.153,−0.020). 2326
(20%) of them are indistinguishable from the major part of the histogram.

Since the Gaussians for each acceptor group show a large overlap, here
no further splitting of a derived parameter set seems to be needed. Especially
when considering that the interval to accept interactions from will be cropped
to avoid the low probability areas of the normal function. The last bit pulling
this result away from being completely satisfying is an additional segmenta-
tion of the nitrogen bearing histogram. Around an energy value of 0.04, there
seems to be another local extremum which could fit a distribution. What ex-
actly it is, we could not determine. In the same region of the oxygen acceptor
histogram, this area is totally covered by rejected interactions.

The combined histogram for canonical acceptors and NH2 groups with
their pseudo hydrogens is illustrated in Fig. 2.16. The split for nitrogen and
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Pseudo hydrogen donors at 0.25Å with nitrogen acceptors
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Figure 2.21: Quasi-energy distribution of NH2 donors with nitrogen accept-
ors. The original data (red) shows the histogram of energy values for NH2
groups matched with canonical nitrogen atoms as acceptor. The pseudo hy-
drogens are placed 0.25Å away of the central nitrogen. With the maximum
at (0, 346254042), the plot had to be cropped for an adequate representa-
tion of the fitted distribution (green). This Gaussian (µ = −0.01, σ = 0.00,
a = 17.46) contains 17 462 interactions within an interval of (−0.024,0.010).
12 174 (70%) of them fall into the body of the rejected part of the histogram.
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2. Hydrogen Bond Recognition

oxygen follows in Fig. 2.21 and Fig. 2.22, respectively. As for the discussion
of NH groups, adding those two plots up, leads to the combined plot. For
technical aspects, this means the evaluation also works here. Looking at the
integrals of the Gaussians, their sum fits even better together than in the latter
case. The difference for NH2 groups is 1625 compared to 8953 in the case
of NH. The Gaussians themselves, with a magnificent, almost perfect overlap,
show that for this donor also no more splitting of a possible parameter set is
needed.

Pseudo hydrogen donors at 0.25Å with oxygen acceptors
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Figure 2.22: Quasi-energy distribution of NH2 donors with oxygen acceptors.
The histogram (red) shows energy values calculated between NH2 donor
groups with oxygen atoms as exclusive acceptors. The pseudo hydrogen of
the amino group is placed at a distance of 0.25 Å away from the nitrogen. The
maximum at (0,521 897511) made it necessary to crop the plot, so the fitted
distribution (green) becomes visible. The Gaussian (µ = −0.01, σ = 0.00,
a = 213.89) contains 213 884 interactions in an interval of (−0.022,0.004).
From this interval, 132 002 values (62 %) cannot be distinguished from the
major part of the histogram.

Problems start, when inspecting the acceptor plots on their own. For a
nitrogen acceptor, the normal function is not separated from the rest of the
histogram. The only sign that this is not a coincidental fit is the remarkable

58



2.5 Results

agreement in the interval and distribution parameters with the other acceptor.
But using oxygen atoms as acceptor is only marginally better, not really satis-
fying. Here, data and fitted distribution show a far better match. The left edge
is clearly set out of the histogram, while the right is again completely absorbed
into it. This forces us to only accept interactions from a small interval in the
tryouts to define base pairs from this model in the next section.

2.5.5 Base Pair Evaluation

This part of the evaluation is looking for qualitative comparisons, finding an
answer to the question if our model is helpful in defining secondary struc-
ture of RNA. That is, for the crystal structures listed in Table 2.4 interaction
energies will be calculated and then gathered towards base pairs following
algorithm 2.5. Unlike the original algorithm, two thresholds will be used in
procedure 2.2 according to the donor group. While giving each example a bit
of individual treatment, we can also have a closer look at challenging struc-
tural features like non-Watson-Crick pairs and pseudoknots.

To get the 2D reference structures, all targets are evaluated manually. Con-
sidering reliability, annotations from corresponding publications are accepted
first order. If no complete secondary structure is available, Chimera is used
to detect interactions. The H-bond patterns are then manually transferred
to base pair lists, in some cases assisted by publications highlighting special
structural features.

The perfect outcome of this test would of course be the correct detection of
all base pairs. But this is just unrealistic. It will be almost impossible to get all
the experimental details right since we are dealing with real world structures,
here. At this moment our model completely ignores some factors influencing
structure formation, e. g. ligands and solvent.

As thresholds, an interval of (−0.113,−0.075) will be used for NH groups
and (−0.010,−0.008) for NH2 groups.

Table 2.5 presents a short summary of the results, followed by a target-wise
inspection.

157D

Structure 157D is a helix formed by two identical sequences CGCGAAUUAGCG. The
peculiar thing are two GA base pairs, formed by G4A21, shown in Fig. 2.23, and
G16A9. The secondary structure is correctly annotated by our model, once we
stop forbidding non-canonical pairs.

This example is important because it shows the power of our approach:
there is no need to actively test for special structural features, the mechanism
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Base pairs

PDB Id missing wrong

157D 0 0
165D 2 0
170D 0 0
17RA 0 0
1A51 2 0
1AJT 1 0
1AKX 0 0
1B36 0 0
1BZT 2 0
1C2W 297 226
1DDY 0 0
1EHZ 0 0
1ESH 0 0
1FIR 0 0
1I9X 0 0

Table 2.5: Summary of base pair detection evaluation. “missing” counts the
number of pairs annotated for the original structure but missed by our model,
“wrong” are pairs that do not exist in the original structure.
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2.5 Results

reports any interacting bases until the pairing is explicitly not allowed.

Figure 2.23: GA base pair. Nucleotides G4 and A21 of structure 157D forming
a G(anti)·A(anti) base pair [40]. The A(N6) interacts with G(O6) and G(N1)
with A(N1). An additional interaction between G(N2) and A(N1) is supposed
to stabilise the pair. As in the crystal structure, hydrogen positions are not
available.

165D

This is another structure forming a helix by two identical sequences. The most
interesting part of PDB entry 165D are two CU base pairs. Fig. 2.24 renders the
pair C5U13, the other is supposedly formed by C14U4. All the expected H-bonds
and base pairs are confirmed. The CU pairs referred to by Cruse et al. could not
be recognised. But these are water- or cation-mediated interactions and rely
on atom pairs that are 1.5Å longer than any conventional H-bond [41].

170D

The first NMR structure in our list is again a helix by two dodecamer DNA
sequences CGCGAATTara-CGCG [48]. While only showing canonical base pairs,
the interesting bit is a modified residue ara-C9. Cytarabine is a pyrimidine
analogue by a cytosine base and an arabinose group used in chemotherapy.

With an unchanged interface, our model should still be able to detect Gara-
C base pairs ignoring slightly changed geometry or interaction pattern by the
sugar. For this example, the complete secondary structure is detected.
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2. Hydrogen Bond Recognition

Figure 2.24: CU base pair. Assumed base pair of C5 and U13 in structure 165D
[41]. A direct H-bond should only exist between C(N4) and U(O4), while water
(not shown) mediates between C(N3) and U(N3). The C(O2) interacts with a
rhodium hexamine cation. As in the crystal structure, hydrogen positions are
not available.

17RA

As first test for loop detection, a 21 nt sequence is used. In case of problems,
this is small enough for in-depth manual inspection. Nevertheless, our model
assigns all base pairs, the hairpin region and an asymmetric interior loop cor-
rectly.

1A51

This larger hairpin loop is a mixture of the usual and of non-canonical base
pairs by Dallas & Moore [42]. Around the middle is a stack of three very
special pairs. First, a non-wobble G102U74 pair where the interactions are not
completely known. At least in our model, a proposed G(N1), U(O4) interaction
seems crucial for the pair. A base pair which we miss is G75A101, with none
of the calculated energies matching the threshold. This is somehow consistent
with Dallas & Moore, since they also note problems with the traditional pairing
interface. The last pair, G76G100, is again positively detected. The whole scene
is illustrated by Fig. 2.25. Another pair missed by the model is G81U95. An ex-
planation could be, that G81 is stacked closely with G96. Dallas & Moore report,
that an interaction of the six-membered rings is involved in the formation of
the GU base pair. Our model is not capable of such triangles.
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2.5 Results

Figure 2.25: GU, GA, GG base pairs. Stack of G102U74, G75A101 and G76G100 base
pairs in the loop E region of 5 S rRNA of E. coli. The GU pair is not the usual
wobble base pair. The exact H-bond pattern is not absolute certain.

1AJT

This bulge loop is part of a T. thermophila group I intron with an interesting
A22U4 pair as shown in Fig. 2.26. The unusual placement of A22 is result of
stack formation with A5 as claimed by Luebke et al. [50]. For our model,
looking only for standard Watson-Crick interaction partners, this conformation
is not accepted as base pair. All other pairs and unpaired bases are correctly
annotated.

1AKX

Another example where our model assigns all structural features correctly is
a trans-activating region of HIV-2, coupled with an argininamide [45]. The
shape is a hairpin loop housing a small bulge in its stem. The interesting
bit is the backbone distortion around the bulge, introduced by an A27U38U23

base-triple. A27U38 form a standard base pair, U23 interacts via its Watson-Crick
interface with the Hoogsteen edge of A27 and is therefore not detected. Despite
the presence of the ligand, all base pairs around the interface are found with
the argininamide itself being ignored by our model.
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Figure 2.26: Non-Watson-Crick AU base pair. The A22U4 pair of a five-nucleotide
RNA bulge loop, which is not interacting via the complete Watson-Crick edge
[50].

1B36

As a usual hairpin with an asymmetric internal loop, the secondary structure
is correctly annotated by our model.

1BZT

In this tRNALys,3 anticodon loop we find two non-standard situations. First, it
contains one pseudouridine (ψ) and then there is an adenine with an extra
proton (A+) at the N1, paired to a cytosine shown in Fig. 2.27. A base pair
between the pseudouridine and A31 we miss, while it violates common distant
constraints. Stryer gives a distance range of 2.4–3.5Å for the acceptor and the
heavy atom of the donor group [2]. The distance of ψ(N3), A(N1) is 2.5 Å but
for A(N6), ψ(O4) it gets to 4.5 Å. The A+38C32 is also not detected with a A+(N6),
C(N3) distance of 3.7 Å and a proposed C(O2), A+(N1) interaction not being
modelled. All remaining base pairs and the loop are positively identified.

1C2W

Entry 1C2W is a ribosome, but with only 7.5Å resolution. Mueller et al. pro-
pose 807 base pairs [39] of which 510 were detected by our model. Our
calculations suggest 226 base pairs which were not noted by the authors. The

64

http://dx.doi.org/10.2210/pdb1b36/pdb
http://dx.doi.org/10.2210/pdb1bzt/pdb
http://dx.doi.org/10.2210/pdb1c2w/pdb
http://dx.doi.org/10.2210/pdb1c2w/pdb
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Figure 2.27: AC base pair. Putative A+38C32 pair in the anticodon stem-loop
of tRNALys,3 [49]. H-bonds should be formed between A+(N6), C(N3) and
A+(N1), C(O2).

structure is interesting because of its size, but at this low resolution does not
merit further interpretation.

1DDY

Helix 1 Helix 2 Helix 3

} } }

Figure 2.28: Dome plot of the pseudoknots in the vitamin B12 aptamer. From
the loop of helix 1, helix 2 forms a stem with the 3’ end of the sequence. Helix
3 starts with one base pair before helix 2 but closes its loop earlier.

A very interesting topology, annotated by Sussman et al., has two pseudo-
knots, four base-triples and one non-canonical AA pair [44]. The adenine-only
base pair is formed by A14, also interacting with the ligand vitamin B12, and A31,
perpendicular stacking on C15. Interactions are formed by Watson-Crick accept-
ors and donors. All three helices of the vitamin B12 aptamer are involved in
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pseudoknot formation, which do not form simple kissing hairpins but spawn
from each other as shown in Fig. 2.28. While we annotate all Watson-Crick
pairs including the AA pair correctly, and by this also the pseudoknots, none of
the base-triples are found.

The first triple is formed by G7, C22 and U23, with a canonical base pair G7C22

and a single weak interaction between G7(N2) and U23(O4). With a distance
of 5.8Å of the interaction partners, the calculated energy does not fit in our
interval to accept H-bonds. For the second triple, base pair G8C21 and A25,
all additional interactions are established via the Sugar edge, which is not
considered in our model. For the third triple, again the energies of Watson-
Crick interactions are filtered out, while one further interaction makes use of
the Hoogsteen edge. Here, G28 and C18 form a base pair, while G10 is linked
to both of them at short distance. The last triple does not contain a complete
base pair. U15 and A17 are both linked to C29 by only a single H-bond, which are
to weak to be counted for pairing.

1EHZ

Figure 2.29: Incomplete GC base pair. Found in PDB entry 1EHZ, G15 and C48
share two H-bonds while not being annotated as base pair. The interactions
(cyan) where detected using Chimera.

For this phenylalanine tRNA, Shi & Moore only deliver the traditional
cloverleaf annotation [47], which is in agreement with our model. But we
get three additional pairs: G18ψ55, G19C56 (Fig. 2.30) and G15C48 (Fig. 2.29). G18
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and G19 sit together in the D loop, connecting it to the TψC loop, stabilising
the L-shaped tertiary form. G15 of the D loop, points to the beginning of the
variable loop, also forming a known tertiary interaction. As these additional
interactions help forming the accepted 3D structure of tRNA, and since they
were annotated in other studies, we assume them valid. Especially the G15C48

couple even has its own name “Levitt pair” [51].

Figure 2.30: Additional base pairs in 1EHZ. Found by our model but not an-
notated by Shi & Moore [47]. The first interaction partners are G18 and ψ55,
connected by one H-bond with two possible end points (cyan) on the guanine
side. G19 and C56 form the second pair, with all necessary interactions detected
by our model as well as Chimera (cyan).

1ESH

This is a small hairpin with 13 nt and a loop of size 3. All pairs are annotated
correctly.

1FIR

Structure 1FIR is published with a complete textbook annotation by Bénas et
al. [46]. They present the usual cloverleaf as secondary structure and list
all known tertiary interactions as found in their crystal. Ignoring Hoogsteen
interactions and triples, the list of traceable tertiary pairs contains: a cis G18ψ55

pair, the trans Levitt pair G15C48, interactions between A26G44 and a somewhat
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Figure 2.31: A and B form of a tRNA GC base pair. The G19C56 pair of tRNALys,3 is
claimed to exist in a closed (A) and open (B) form [46]. This scene was found
as is in PDB file 1FIR. The atoms of G19 are duplicated with new coordinates
and labelled with a “B”.

special G19C56 pair. The latter one gave our model a bit of trouble. Because
Bénas et al. assume a special function of G19, being able to flip out of its pairing
to interact with other molecules, they put coordinates for both forms in the
PDB file. The result can be seen in Fig. 2.31, as drawn by Chimera using the
original database entry. With this input, the implementation of the model finds
a wrong annotation for several sites. Once the B form coordinates are removed,
all interactions based on the Watson-Crick edge are positively detected.

1I9X

This is another small RNA duplex with a bulge loop of size 1. All base pairs
are detected.

2.5.6 Discussion

For closing remarks on this chapter, the model itself and its use in detecting
base pairs will be discussed.

The idea of a simple way to describe H-bonds, weak interactions defining
spatial structure, in RNA, seems to work almost as intended. What we wanted
is a definition skipping an elaborate survey of geometry and only a single value
to decide upon. That is basically what the approach by Kabsch & Sander does:
no consideration of any angles like Mills & Dean, only measuring distances
and combining them into a Coulomb energy. The essential difference from
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protein structures covered by Kabsch & Sander to RNA is that there are four
possible interaction sites to be included rather than only one. This could lead
to four different energy thresholds to be maintained while we would prefer a
single one in terms of simplicity.

Using Coulomb energies as H-bond descriptor definitively works for RNA.
What we did not achieve so far, is fitting the energy range for acceptance into
a single interval. But at least the number of thresholds needed can be bound
on the donor level and has not to be based on a per-base or chemical group
policy. Also the energy distributions of §2.5.3 and §2.5.4 show, that simple
distances are enough to discriminate interactions.

One chance to force the true positive distributions of the two donor groups
into an overlap is the placing of pseudo hydrogens. From the results of their
evaluation we already know that the current placement strategy is suboptimal.
The effect of shifting the proton along the bisector of the two real hydrogens
seems not to have the effect we are looking for. It is mostly affecting σ, al-
lowing for a narrower distribution, which would make the interval to accept
interactions from more prominent. But what we want is shifting µ to create a
large overlap between NH2 and NH distributions. Placing hydrogens in crystal
structures is an old topic in the literature. Approaches range from squeezing
the last bit of information out of electron density maps to inventing atomic net-
works upon coordinates [52]. For us, the idea is not to keep up with the way of
sophisticated, complex methods but to follow a simple route. If modifying the
distance between the nitrogen and its pseudo hydrogen does not improve the
distributions scenery, probably adapting the angle does. But this would lead
back to the problem of orientation for this rotatable pair of protons. An idea,
on how to avoid this, may be observed in the standardised base pair in Fig. 2.2.
There, the hydrogen is in line with its adjacent nitrogen and the acceptor atom.
Looking at NH groups also, the arrangement is almost identical.

Borrowed from the standard coordinate frame, the next approach could
be always to point the pseudo hydrogen into acceptor direction. Getting co-
ordinates is simply done by calculating the vector pointing off the donor to
the acceptor atom, multiplied by some constant and added to the donor co-
ordinate. Thereby the factor setting the proton-donor distance would have
to be determined empirically. A disadvantage of this approach is the increase
in computational costs, since each single acceptor atom would need an indi-
vidual position. But this already leads to a slightly related idea. Instead of
calculating individual coordinates, an averaged position could be determined
over all nucleic acid structures stored in the PDB.

Even more drastic, with atoms in line, it seems tempting to neglect the
hydrogen contribution with terms 1/r(HA) and−1/r(HY ) in Eqn (2.3), but this was
not even tested. One would lose the geometric considerations that are implicit
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2. Hydrogen Bond Recognition

in the distance terms. It would, however, be appealing, since crystallographic
coordinates rarely have hydrogen coordinates.

While thinking about improving the model, there is also room for exten-
sions. What is missing at the moment are Hoogsteen interactions and any
H-bonds along the Sugar edge. That both types are relevant, is already shown
by our test set, e. g. 1DDY and 1FIR contain such interactions which are essential
to their tertiary structure. The good thing is, none of the remaining edges have
hydrogens on rotatable groups. Also an extensive annotation and classification
scheme is already provided by Leontis & Westhof [53]. Their work provides
information on all possible pairings far beyond canonical Watson-Crick inter-
actions. The evaluation of the extended model could easily follow the same
procedure as the basis model. One caveat in the extension of interaction sites
may be the growth of data consumption. While asymptotically everything
stays quadratic, with each acceptor added, we have to store n more elements.
In practice this should not really be an issue for a single-molecule analysis.
But probably the evaluation queue needs a bit of improvement concerning
real disk usage.

The use of our model for detecting base pairs has been proven on a small
collection of samples. For a large scale test, there was no database available,
providing 3D coordinates together with secondary structure annotation in an
appropriate format.

If we look at annotated base pairs our model missed, there are only some-
what special situations. For 165D, two CU pairs lie beyond our thresholds. While
the implementation of the model is capable of the paring in principle, the bases
seem to be to far apart for valid interactions. Also in 1BZT the missing Aψ pair
violates common distance constraints. Example 1A51 provides two cases we
missed. A GA pair which is also described as problematic by the authors and
a GU pair which seems to need a third base to mediate the interactions. Such
interaction triangles are not objective to our model.

While all other base pairs are positively detected, there is one outstanding
result. For tRNA 1EHZ, only the cloverleaf is documented, ignoring the original
L-shape. Assuming a published annotation as gold standard our model would
be too sensitive, detecting three extra pairs. But in the process of identifying
a reason why we find interactions where Shi & Moore do not list them, denial
became harder in every step. The energies out of the model are not sitting at
the edges of the tested interval, hinting a good probability for the existence of
H-bonds. Also distances are within textbook range. Since the model parame-
ters did not point to any problem, the structure was inspected using Chimera.
But this only revealed, that the Mills & Dean method behind FindHBond detects
the same H-bonds as we do, showing pairs which are in good Watson-Crick
shape. As a last source of information, literature on tRNA structures was con-
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2.5 Results

sulted. In agreement this easily identified our extra pairs as both, valid and
crucial for the native L-shaped conformation. Therefore we considered the
finding of these pairs not as failure, while Shi & Moore probably just did not
mention the obvious.

With the results of our little survey on real world structures, the model
seems to be good enough for such tasks as basic feature extraction. But already
this small test set shows, that complex structures are more than just a sum of
base pairs. Especially base triples seem to occur more often than one would
expect, as in structures 1AKX, 1DDY and 1FIR. But it also looks like the model
could be extended towards complete automated annotation of RNA structures.

The last point that remains uncovered in this discussion are the algorithms
for using the H-bond model. Here, the relevant bit is resource consump-
tion. For single-molecule use cases, a quadratic dependency on the input data
should not be a problem. But as soon as the model is integrated in some sort
of database/ index based application, e. g. structure searching, at least the
memory consumption should be lowered.

During base pair selection, memory usage only is quadratic, because we
first compute the complete list of interactions and then select. Merging algo-
rithms 2.1 and 2.5 to an online algorithm, immediately checking the use of
an interaction for base pairing or drop it, would reduce the memory footprint.
Such an algorithm would not necessarily be asymptotically slower, but harder
to maintain and extend because of higher complexity.

A more common approach is the use of a cut-off distance, reducing the
number of potential interaction partners. The complexity of the algorithms
would be equal in the worst case, since all acceptor donor pairs would still be
visited and at least one distance calculated. Based on this distance a decision
could be made for further consideration or not. This would save memory and
lower the constant calculation time per test. But one could even go further
with a slightly modified approach. If two interaction partners of a potential
base pair are too far apart, it seems very likely, that the same holds for all
partners in this specific couple. Therefore one check could be enough to drop
any more calculations between two bases. As an approximation which could
gain a bit more accuracy in some cases, one could also just compare the centre
of the atom cloud building a base. While the whole idea does not slow down
the algorithms, it would dramatically reduce memory usage for collections of
molecules.
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Chapter 3

Sequence Design

Nowadays, molecular design is a well established topic in fields from phar-
maceuticals to bioengineering and nanotechnology, which also includes RNA
with its variety of regulatory roles. In the special case of RNA, designing
means finding a sequence which will fold into a desired shape. While this
is a strictly discrete problem, for every position in a structure one of four
base types is chosen, we use a procedure from computational chemistry (self-
consistent mean field minimisation) to treat it as a continuous optimisation
problem. Unlike other attempts, this enables us to tackle arbitrary shapes
and structures.

3.1 Introduction

Molecular design is a keystone in modern drug development, with many signi-
ficant achievements in the past [5, 54]. But also in the fields of bioengineering
and nanotechnology [55, 56], it makes the difference between just searching
or driving a system to exhibit desired properties [57]. Especially for RNA,
aside from the typical industrial use, there is also scientific interest in sequence
design, e. g. for function determination [9].

3.1.1 The Problem – More Than Inverse Folding

Independent of a specific molecule, molecular design means identifying de-
sired features and trying to construct a system which preserves those prop-
erties. This does not necessarily imply creating completely new molecules
but most of the time to work along a scaffold, modifying certain attributes.
Often an active compound should gain higher throughput under changed en-
vironmental conditions, or substrate specificity is to be tweaked. Designing
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3. Sequence Design

RNA seems to be simple in the first place, because most of the time it is seen
as being assembled from a limited alphabet of building blocks. The connect-
ing backbone is always the same while the four canonical bases vary in se-
quence. Therefore designing RNA molecules is often called sequence design
or sequence prediction.

Usually, energy is modelled as a function of the secondary structure and its
optimisation the classic structure prediction or folding problem. In this work,
we note that energy is also dependent on the RNA sequence. Now, we regard
the structure as fixed and treat the sequence as the variable to be optimised.
This is often referred to as the inverse folding problem [15, 17, 58, 59]. The
design task itself may be described as picking a sequence, providing certain
features, out of a search space of size 4n, with n as the sequence length. In
a numerical description of the problem, for example Andronescu et al. optim-
ised a distance metric on structures [60]. This metric reflects the difference
between the desired fold and a predicted structure for some sequence. The
goal is then to find a sequence leading to a distance of zero.

But minimising the distance between the target structure and the predicted
fold of a designed sequence is only a solution and not the description of the
optimisation problem. Getting the right fold is an obvious part of our objective.
However, just because a sequence folds into a requested shape, it does not
mean that this structure is also stable.

Predicting the secondary structure of an RNA sequence by finding its min-
imum free energy (MFE) will lead to an optimal configuration. But it is not
unlikely that similar conformations exist for the same sequence with close
energies. As an example, a small hairpin like in Fig. 3.1 is already enough.
Fig. 3.1(a) shows the sequence with 6 base pairs, a loop of 5 bases and no
dangling ends. In Fig. 3.1(b), one base pair is removed, thus the loop gets lar-
ger by one and the 3’-terminus has one unpaired base. Using the Nearest
Neighbour model (NN), a literature standard scoring function, the energy
difference is just 1kcal mol−1. Wuchty et al. describe the relation between
Fig. 3.1(a) and (b) as suboptimal folding and list a variety of scenarios why
this may occur [61]. First of all, they note that the energy parameters of any
model may be inaccurate. This means, if a sequence has several structures
with similar energy, any of them may be the most stable one. Additionally,
unknown biological constraints or certain physiological conditions may force
a sequence into another state than the calculated MFE structure.

Especially when modelling sequences for two-dimensional structures, there
will be another problem. Naïvely, simple sequences such as in Fig. 3.1 are a
valid solution to the energy minimisation problem. In three dimensions, this
type of sequence is unlikely to fold to a unique structure. As soon as there
are symmetries or repetitions, alternative conformations become possible with
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5‘ 3‘

(a) ∆G =−12kcal mol−1

5‘

3‘

(b) ∆G =−11 kcal mol−1

Figure 3.1: Suboptimal helices. The same RNA sequence in two different
conformations. While (b) has one base pair less than (a) and a free base at
the 3’ end, the energy difference is only 1kcal mol−1.

similar energy. These alternatives will also be significantly populated. Fur-
thermore, this type of homogeneous sequence is rarely seen in nature. This
suggests that one should add some variation to sequences, hopefully without
disturbing their energetic properties.

This leads to three major tasks in RNA sequence design: positive design
to allow intended interactions, negative design to discourage folding to the
wrong form and artificial variation to give the sequence a more natural look.
For being useful in real world scenarios, the method should also allow fixing
of substrings in the sequence. For example, when reinventing a tRNA, the
anticodon loop is not allowed to change.

Dirks et al. also have a similar list of criteria for nucleic acid sequence
design, describing them in more detail but with slightly different focus [58].

3.1.2 The Nearest Neighbour Model

Probably the first idea of a dedicated energy estimation for nucleic acids,
neglecting the need of coordinates, is by Bolton et al. in 1962 [62]. The
main use of it, until today, is calculating melting temperatures of PCR primers
[63]. Although this seems to be sufficient for DNA primer design, it is known
not to be that accurate [64]. In the 1980’s early versions of the Nearest
Neighbour model started to evolve, considering the immediate environment
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around a base pair for energetic contributions [65, 66]. Albeit the basic
idea is unchanged, having an additive scheme, the focus of the model has
broadened with additional studies. The parameter sets for helical regions
are now extended for the various kinds of loops in RNA secondary structure
and non-Watson-Crick pairs [21, 22, 67, 68]. The level of detail even goes
so far as to label certain loops of special sequence with individual parame-
ters [69, 70]. The development of computational methods evolved, starting
with H-bond counting [10] and exploring the complete parameter set today
[15, 17–20, 22, 23, 61, 71]. Nowadays, the NN model is the most popular
scoring function in the field of computational RNA.

The whole system is driven by Gibbs energy∆G. If temperature effects are
to be included, contributions in Eqn (3.1) can be considered as estimated by
the NN model.

∆G =∆H − T∆S (3.1)

In which ∆H captures the potential energy contributions, ∆S the entropic
contributions and T has its normal meaning of temperature.

The NN model is favoured by computational scientists, because it does
not define a force field but assigns parameters to the sequence and the state of
nucleotides. Thereby, only the Watson-Crick edge is considered to be paired or
not. For many loops, the model is even more simple, having parameters only
depending on their length. To calculate the energy of a secondary structure,
it may be decomposed into certain structural features, evaluated separately
and summed up. Fig. 3.2 illustrates this idea for a single hairpin, showing the
overlapping fragments to be scored.

Fig. 3.3 lists six fragment classes recognised by the NN model. Further
divisions are formed by special geometries within the classes. An important
example are tetraloops. They denote a certain kind of hairpin but with an
additional sequence-dependent energy term, increasing stability [70]. Usually
unpaired bases in loops are just measured by length up to 30nt after which
the score is estimated using a logarithmic scale. In general, contributions are
defined by multiple terms per loop type, originating from the many exceptions
in the model as indicated by Fig. 3.2(c). With this, the model has more than
16 000 parameters.

One major advantage of this scoring function is its low computational cost.
Scoring a structure works in linear time depending on its size, and more im-
portant, local changes only require recalculation on fragments involved. That
is, we change a base in the sequence and only update by parameters of the
structural features affected. Another benefit is the simplicity of the model.
Since the parameters do not heavily depend on each other, they can easily be
modified. This is important for introducing artificial noise to a system. Look-
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(a)
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(b)

=

=ΔG(v,c)

+ΔG5‘ dangle(v2v12,v1)

+ΔGStack(v4v10,v9v5)
+ΔGStack(v3v11,v10v4)
+ΔGStack(v2v12,v11v3)

ΔGHairpin(3)
+ΔGHairpin closing(v5v9,v8,v6)

(c)

Figure 3.2: Nearest Neighbour decomposition. Calculation of ∆G of a hairpin
loop q from sequence v using the NN model. (a)∆G of a nucleic acid structure
is defined by the sum of energies of overlapping structural features. In (b),
fragment classes include dangling ends (external loop), doublets of base pairs
(stack) and the unpaired region (loop). (c) sums up the energy terms referring
to positions in v. Thereby the external loop has a contribution for the unpaired
5’ end and the hairpin loop for the closing base pair with its free adjacent bases
and the loop length. Thick black lines indicate base pairs.

ing at real numbers, it is fairly simple to estimate random values which enable
the exploration of a suboptimal energy landscape without immediately driving
the system into extreme states.

But its advantages also make the NN model a rather crude approximation
of the real world. A major drawback is the lack of long range interactions. In
terms of RNA, this usually refers to pseudoknots, which are base pairs spawn-
ing from a loop region. Since they may consist of Watson-Crick complements
and can form stem-like loops, they could in principle be added to the model.
In practice, the problem is the parameters, which are commonly determined
experimentally by optical melting curves or calorimetry [21, 65–70, 72]. Un-
fortunately the corresponding measurements are extremely difficult to make
on structures with pseudoknots [73]. Nowadays, most attempts to estimate
energies associated with pseudoknots are rarely based on direct experimental
measurements [73, 74]. For different interaction sites than the Watson-Crick
edge, parameter determination seems to be problematic in a similar way. How-
ever, beside knots, other interactions seem to exist as described by He et al.
[72]. They show an influence on stability of stacked base pairs by their con-
text. Also by its experimental foundation, the model is limited in its applicab-
ility when believing in its results to be physical. Since all parameters have to
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Figure 3.3: RNA secondary structure loop types. An overview of the structural
features recognised by the NN model. For each class, only relevant nucleotides
are shown. Thick black lines indicate base pairs.
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be measured under equal conditions, concentrations, salts and temperature,
all values produced are bound to them. Only the temperature may be varied
since ∆S and ∆H values are also available.

The parameters we use are the same as of the Vienna RNA package [15].

3.1.3 State Of the Art

With the Nearest Neighbour model as additive scoring scheme and a folding al-
gorithm based on Dynamic Programming (DP) [10, 15, 18, 75–77], approach-
ing the inverse folding route seems not to be too complicated. The basic idea
of current methods is, to modify a sequence, predict its structure and check if
the changes disturb the target structure.

DP helps to keep the running time low in structure prediction, where a
huge search space would have to be explored otherwise. The basic principle
is to solve sub-problems of a task, store the solution and finally, to combine
them to the global answer. DP especially gains effectiveness for problems
which share sub-problems that only need to be computed once and reused.
This is the case for RNA structures rated by the NN model which may be seen
as sum of smaller structures.

However, with the running time of current structure prediction tools, ex-
ploring the exponential sequence space of an RNA structure is not possible.
The algorithms of Nussinov et al. [10, 78], Zuker et al. [18–20, 71] and the
refinement by Hofacker et al. [15–17, 61] all scale cubically (O(n3)) with se-
quence length, even without considering pseudoknots. Including pseudoknots
means a running time of at least O(n4), with a poor prediction quality for the
most general cases [79, 80].

This makes sequence design not the straightforward approach it seems
to be. Most notably, there are three tools attempting to conquer the task:
RNAinverse by Hofacker et al. [15], RNA-SSD by Andronescu et al. [60] and
INFO-RNA by Busch & Backofen [59]. Comparing the strategies they use to
handle the huge search space, the three approaches look like an evolutionary
line. The oldest one, RNAinverse, introduces the basic ideas. Next, RNA-SSD
picks up those principles and significantly improves them. The most recent
tool, INFO-RNA extends the improvements by RNA-SSD and tries to optimise
solutions in the design process.

To avoid visiting to much of the vast search space, current tools put much
effort in identifying the best starting point of sequence design. In practice,
this means that the initial sequence is compatible with the target structure
concerning base pairing. From there, possible violations of the structural con-
straints are detected and treated by mutations of the sequence. The process
of changing bases is stopped, once all constraints are met or after a maximum
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number of steps. One obstacle in this strategy is that changing bases may lead
to new violations, which require more mutations. Because this could result in
oscillations, the three tools discussed have different strategies to avoid this.

For estimating the conformation a sequence will adopt, RNAfold by Ho-
facker et al. [15, 17] is used, with a cubic running time and no support for
pseudoknots. It has to be run each time the constraints are checked, making
it the rate-limiting factor for the sequence space explored. To reduce the time
spent on folding, RNAinverse, RNA-SSD and INFO-RNA split an input struc-
ture into substructures, solve and combine them to a complete solution. The
idea is that shorter sequences fold faster. In sum, folding non-overlapping
subsequences requires considerably less time than including all bases of a se-
quence in one run. For the sequence-splitting approach, it is assumed that
sequences designed for structural fragments should most likely fold into the
overall shape once combined. In effect, the complete sequence would need to
undergo structure prediction fewer times, only as a control step at the end of
a design cycle.

The main difference of the three tools to be discussed, are the exact strat-
egies on how to initialise, split and alter a sequence. As a summary, their
common approach is illustrated in Fig. 3.4.

RNAinverse

RNAinverse is part of the Vienna RNA package [15, 17] but has only seen minor
modifications during its life. The initial sequence gets filled by random bases
or base pairs, where the input structure requires them. The sequence is op-
timised along a cost function, minimising the distance of its MFE structure
and the constraints. Following immediately out of the NN model, as splitting
strategy, only hairpins are considered to be elongated towards larger structural
features. Basically this means, that first loops of low complexity are designed
and then joined together as multiloop branches. To solve constraint-violations,
mutations of the sequence are introduced randomly and only accepted if they
immediately improve the cost function. Thereby bases to be unpaired are
changed as single while for pairs both bases are modified. If no answer is
found after a predefined number of steps, the whole process is restarted with
a new initial sequence.

A serious drawback of RNAinverse is its long running time. Therefore, to
considerably reduce the search space, the algorithm can be forced to only
alter positions which are wrongly paired once folded. At the same time, this
lowers chances of finding an acceptable sequence for the input structure.

With Hofacker et al. already pointing out the problem of suboptimal fold-
ing described in §3.1.1 (Fig. 3.1), RNAinverse also offers a partition-function
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Input Structure

GGCCAUAGGGCGUAUCGCCCAUAGGCC

Initial Sequence

Split

Accept/ Reject

CCGCAAAGCGCCAAAGGCGCAAAGCGG

Final Sequence

GGCGUAUCGCC CAUAGGCC+

Join Fragments
GGCGUAUCGCC

AA

Modify

Predict Structure

GGCGUAUCGCC
O(n3)

Figure 3.4: Sequence design cycle. The basic approach as implemented by
RNAinverse [15], RNA-SSD [60] and INFO-RNA [59]. As starting point, a
sequence compatible with the input structure is created. To speed up the
folding step, the sequence is divided along structural features of the input.
Structure prediction takes place every time sequences are joined or modified.
Once a full sequence meets all structural constraints, the process ends.
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mode. With this statistical description of all possible structures of the sequence
by the McCaskill algorithm [81], optimisation for folding-probability becomes
available. Since this requires recalculation of the predicted optimal structure
in each step, this mode is impractical for structures of relevant size.

RNA-SSD

RNA-SSD closely follows the route of RNAinverse but adds two significant im-
provements. First, instead of an adaptive walk method, RNA-SSD employs a
stochastic local search algorithm for sequence modifications. By accepting also
bad moves at low probability, this should help avoiding local optima. Second,
the splitting strategy of elongated hairpins is replaced by a sophisticated de-
composition scheme, focused on the optimisation of local substructures. An
essential step in this approach is the addition of small “cap” hairpins at split
points to mimic an embedded structure in the folding step.

For the initial sequence, differences are not so drastic. Coupled positions
are again populated by complementary bases, this time fed from a distribution
built from biological sequences. To avoid too many non-intended interactions
right from the beginning, the base distribution may be modified, e. g. to pre-
vent canonical pairings after the end of a helical region.

As splitting scheme, RNA-SSD performs a hierarchical decomposition, lead-
ing to a balanced tree. Actual structural fragments are stored in the leafs,
merged together to form larger fragments on the way towards the root, rep-
resenting the full input structure. To create the hierarchy, fragments are split
into two pieces aiming at equal size in each step. Leaf nodes are created
for subsequences within a certain range of lengths. While only transitions
between paired and unpaired regions are used as split points, some fragments
may consist of two separated strands. Since RNAfold only predicts structures
for single sequences, the ends of such fragments have to be artificially connec-
ted. This is done by adding a small hairpin of variable sequence to one end
of the helix. For producing the cap sequence, the same approach as for the
initial sequence is used. Rejoining fragments follows the hierarchy of the tree,
with an evaluation of the MFE at each node. On violations of the structural
constraints, a new solution is searched at leaf-node level. This means, that
mutations only take place for the smallest substructures, trying to minimise
the number of cubic run time MFE evaluations of larger subsequences.

The central routine for modifying sequences, a stochastic local search, is
limited to the smallest substructures. Similar to RNAinverse, there is only one
modification at a time: either a single unpaired base or a complete pair is ex-
changed. Instead of choosing randomly, an arbitrary or a conflicting position is
altered chosen with a fixed probability. By the settings of RNA-SSD, attacking
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constraints-violations directly, is much more likely. The mutation itself then
follows the same rules as sequence initialisation. Once a sequence is changed,
its structure is predicted and compared to the input. If the mutation leads
to new conflicts it is stored to prevent doing the same step again in further
iterations. If conflicts are encountered after merging substructures, the one
showing more problems is improved. As a characteristic of the stochastic local
search, it is also possible to accept a bad move by small chance. This, and
choosing the position to be altered stochastically, is meant to prevent getting
stuck in a local optimum and reoccurring conflicts.

The design process stops, when a sequence is found with no conflicts or
after a maximal number of steps taken. Similar to RNAinverse, if no answer
occurs after a certain time, the process is restarted.

Compared to RNAinverse, RNA-SSD is considerably faster and able to find
valid answers for more structures. Moreover, Andronescu et al. claim, that
sequences they design predict to a more stable fold then real biological se-
quences concerning both, MFE and folding probability [60].

INFO-RNA

INFO-RNA tries to improve sequence initialisation and uses a modified search
method similar to RNA-SSD. For splitting, the same strategy as by RNAinverse
is employed.

As starting point, the input structure is populated with bases, minimising
energy according to the NN model. That is, amongst all possible sequences
compatible with the structure, the initial sequence has the lowest energy. This
is not to be mistaken with the actual structure this sequence will fold into.
Conformations may exist which have a lower energy than the input structure.
This feature of the sequence is achieved by a DP algorithm, running in linear
time. The optimisation step only considers paired positions and exclusively
Watson-Crick pairs. Concerning run time, this has to be optimal, since filling
an initial sequence always requires visiting each base at least once.

Modifying the sequence works very similar to RNAinverse and RNA-SSD. In
each step, the objective is to lower the number of wrong base pairs, starting
with smaller substructures like RNAinverse. If the target structure is never met,
the procedure stops after a maximum number of steps. The actual routine to
find adequate mutations introduces a new idea. Where RNA-SSD keeps track
of states already visited, INFO-RNA tries to look ahead, what is probably a
good route to take. Instead of just changing an arbitrary position, possible
new sequence candidates are evaluated using the NN model assuming the tar-
get structure and compared to the current sequence. The next mutation is
then chosen as the largest improvement concerning score among all candid-
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ates. Changes to be evaluated are only introduced at wrong paired positions
or in their immediate neighbourhood. While for prioritisation only the change
in energy from the current to a candidate sequence has to be calculated, eval-
uating a mutation needs structure prediction by RNAfold. For accepting or
rejecting a move, a stochastic local search strategy is employed to avoid local
optima. While the search must not necessarily end up in the best sequence,
the best candidate visited is stored during the process and returned as result.

Aside from optimising for MFE, INFO-RNA also offers a mode targeting
high folding probability.

Comparing the three tools, Busch & Backofen report far better results for
INFO-RNA than for RNAinverse and claim a slight improvement over RNA-SSD
[59]. For their competition, only MFE structures are considered. These are
based on artificial and biological data. The biological test set is divided into
sequences with only predicted structures, and sequences with known struc-
tures. Concerning running time, INFO-RNA was always faster than the other
two. In finding a correct answer, reliability is only marginally higher than for
RNA-SSD. Compared to biological structures, the designed sequences calculate
to a higher folding probability than original sequences. As a drawback of the
optimised initial sequence, low performance at sampling different sequences
for a target structure is reported. Using always the same starting points just
leads to the same result fairly often.

3.2 Self-Consistent Mean Field Design

All three tools described in the last section focus on MFE structures. The
reason seems simply to be that those are efficient to calculate. Thereby the
approaches put much effort into circumventing the caveats of the extended
Nussinov algorithm [10, 18] instead of the task of sequence design.

This means, that what should be just the evaluation method, commands
what can be designed. Another philosophy would be to allow no restriction
on the design while not having covered everything possible by the evaluation.
From here, one could imagine using various testing approaches for different
design patterns. But instead, current tools only cover limited structural fea-
tures.

For the limitations in adding new structural features, pseudoknots serve as
a good example. Fitting them into the standard DP prediction method has of-
ten been tried, but up to now only with poor success [74, 79, 80]. What makes
them complicated for current design methods, beside the higher running time
for structure prediction, is the nature of pseudoknots being long range inter-
actions. Splitting such an input structure is not possible by the approaches
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presented. That is, designing pseudoknots means facing higher computational
costs, while the strategy to prevent them is invalid.

Beside single molecules, structural biology nowadays demands inclusion of
ligands and oligomers. The latter one could be somehow supported by tools
utilising RNAfold, because the Vienna package also provides RNAduplex [15, 17],
RNAcofold [82] and RNAup [83] for folding duplexes and exploring RNA-RNA
interactions. Adapting should be easy because tools of the Vienna RNA suite
are designed to keep a similar interface down to the code level. But with
extending just by functions related to RNAfold, limitations are imminent. The
oligomeric state is limited to only two strands, sometimes only to homomers,
RNAduplex neglects intramolecular base pairs and of course, only 2D structures
are supported.

Incorporation of ligands is only possible, if they are parameterised in the
NN model and adapted by the RNAfold family. Due to the nature of the scoring
function, this would mean to experimentally determine individual parameters
per ligand, various interaction patterns and bases affected like demonstrated
by Vieregg et al. [84]. They measured the effect of cations on hairpin stability
and provide a set of NN parameters for a small number of sequences forming
loops. But instead of details on the interaction, the system is concentration
dependent. Because of the limited set of measurements and the lack of phys-
ical background, one cannot extrapolate to different environmental conditions
and a larger number of sequence patterns.

After all, the suggested extensions are just of minor applicability, if taking
place only for 2D representations of molecules. But porting the described ap-
proaches to work on coordinates is hardly possible at the moment. With their
trial and error approach, this requires a function which is able to fold arbitrary
RNA sequences into 3D molecules. That does not exist, yet. There is a 3D
pipeline available, MC-Fold and MC-Sym [11], working well on short sequences
but using this as a substitute for RNAfold would again render all optimisation
tricks void. Practically this means that only the sequence initialisation ideas
would survive switching to 3D tasks.

Obviously, we want to introduce a method, which does not incorporate the
full evaluation in its inner core, immediately denying the idea of enumerating
sequences and testing. Instead it would be elegant to use gradient information
within a classical optimisation scheme. This, of course, brings with it the
dangers of local minima, but these should not be worse than in a discrete
approach.

But while computational chemistry usually deals with optimising continu-
ous properties like positions of atoms, we operate on a discrete set of choices,
i. e. four nucleobases. When looking at an RNA molecule, nature follows a
rather rigid regime concerning its composition. Each position is populated by
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exactly one base and of course, the result of our method will be a discrete
sequence. But nothing forces us to stay in a physical world for what happens
on the way from input to output as long as it is sound. To use a textbook op-
timisation method, we will not heavily adapt an algorithm to our system, but
the system to the algorithm for simulation time. More precisely, we have to
define a chain of states or probabilities as working representation, which will
be translated into a realistic sequence in the end.

As with all methods, one needs an energy function. We have used the
NN model as it is the most popular in the literature. Even without discrete
bases, using the NN model should not be a problem as long as the scores
are weighted by the local composition of states. Since we do not test folding
during the process, we have to define our own term to push the system away
from adapting an energetically favourable but unstable configuration during
optimisation. Additional terms will be needed, e. g. to avoid high GC-contents.

For the transition of the continuous representation to a discrete sequence
we will need to apply a cooling method to our system. While the effect of
different annealing algorithms is unknown for this novel approach, there are
expectations concerning its behaviour [85, 86]. The rule of thumb would be,
the smoother transitions are, the less likely it is to get stuck in a local optimum.
In a graphical representation, a plot energy vs. temperature, this means that a
step curve is less favourable.

To combine all parts together into a simulation, self-consistent mean field
minimisation (SCMF) will be used [87–92]. This method is used by quantum
chemists to find consistent wave functions [92]. Koehl & Delarue used it, to
optimise side-chain selection in protein sequences [90]. For nucleotide design
it has never been used before. In SCMF, all states of the system start with
equal probabilities, which are subject to changes until the system converges.
New populations are calculated from the mean field of interactions weighted
by their probabilities.

A last component is missing in our new sequence design method. Since
the system will be based on an invented, artificial space, nothing is known
about its parametrisation. The only thing fixed, are the values of the NN
model. But scaling factors and other constants are unknown, and for the
complete model, a large number of parameters may be expected. Therefore we
will search parameters for our optimisation method, utilising another classical
optimisation method, the simplex algorithm [93].

3.2.1 Self-Consistent Mean Field Optimisation

At its very heart, SCMF operates on a system of sites, with each site being
represented by multiple states. The task is then, to find a composition for the
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states, which minimises some force field of the system [89, 94]. A very promin-
ent example comes from homology modelling [95, 96], with several methods
utilising SCMF for side-chain placement. There, sites easily correspond with
the sequence of amino acids while states are fed by libraries of known side-
chain coordinates. As objective, one rotamer per site has to be chosen leading
to a low energy of the whole molecule [87, 88]. Here the subject is RNA, again
with one site per sequence position but with copies of all four nucleotides at-
tached as states. Delarue & Koehl call such a system the chimeric molecule
[90].

To find an optimal composition of states, SCMF minimises the effective en-
ergy of the system given by mean field theory (MFT) [87–91]. By definition, all
possible compositions of the system are considered in a single term, weighted
by probabilities:

Eeff(M) =
n
∑

j=1

4
∑

α=1

mα j E
�

α, j
�

(3.2)

with M as the matrix representing our system, man element of M , n its width
(length of the sequence) and E

�

α, j
�

as the energy of all interactions of state
(nucleobase type) α at position j, weighted by the probability of interaction
partners. Thereby states of the same site never interact with each other, only
with other cells of M . A more detailed definition of E will follow in §3.2.4.
The sum over all states is limited to α = 1, . . . , 4, since this is the size of our
RNA alphabet.

For the mean field optimisation, the probability for each of the multiple
bases in every position needs to be refined. Populating M with new values,
considering the interactions of a site, means transforming energies into prob-
abilities, using the Boltzmann relation [97]. Following Delarue & Koehl, this
step is calculated by [88–90]:

mα j =
exp
�

− Elocal(α, j)
RT

�

∑4
β=1 exp

�

− Elocal(β , j)
RT

� (3.3)

where R is the gas constant, T the temperature and E local

�

α, j
�

= 2E
�

α, j
�

the
quasi local mean field of base type α at position j in the sequence.

On the way from the initial distribution of probabilities to a discrete solu-
tion, the system is in turns evaluated by E local and updated by Eqn (3.3). Once
another step of repopulating the sites leads to the same distribution of states
as before, the system is said to be self-consistent and the process stops. The
scheme described, divides SCMF into two parts: applying MFT for evaluation
and the simulation, calculating changes and monitoring stop criteria [89, 91].
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For the flexibility of the method, this is important, enabling systems of varying
complexity to be optimised using the same tool. As an example, one could
think of designing sequences for oligomers. Literature energy models support-
ing MFT exist (refer to §3.1.2) and the optimisation routine just sees a larger
sequence matrix M . Also going for real coordinates would be possible with
an adequate force field, since interactions could be cached and updating the
matrix scales linearly with the sequence length [87, 91]. Additionally, the sep-
aration of sequence representation by a matrix and its evaluation, no restric-
tions concerning base pair ordering exist. This means, modelling pseudoknots
is only a matter of an appropriate energy function. The rest of this section
describes the simulation part of SCMF.

Eqn (3.3) utilises R and T , by its original meaning to incorporate temper-
ature dependency of a system, but sometimes treated differently by SCMF
variants. Delarue & Koehl just use RT as normalisation factor, set to the value
which fits their method best [88, 90]. In other studies, R is the gas constant
and the temperature T is used for a simulated annealing approach [89, 91].
We also use R with its physical value, since it shows adequate performance
with decreasing temperature compared to other values. In such a system, T is
the annealing parameter and the choice of a constant factor is not as impor-
tant.

One notable feature of SCMF is its robustness concerning the starting point
[90, 91]. Supposedly, the result of a simulation does not change from a dif-
ferent input distribution of states. A high initial temperature will assure this
behaviour, forcing the system into an equilibration phase in the beginning.
Beside helping the sequence matrix to converge faster [91], T plays its own
important role as one of the stop criteria of the annealing process. When RT
gets smaller than any interesting energy barrier, the system is trapped and
there is no point in cooling further. Also for technical reasons there has to be
a final temperature, not only because we can not divide by zero, but simply
because the simulation will run on a computer which has a limited number
range. A more detailed view on the annealing step will follow in §3.2.3.

A common strategy to avoid local minima in simulated annealing is slow
cooling [85, 86], adding a memory to the simulation should help to avoid
oscillations. That is, new values are only slowly accepted in the matrix while
being mixed with the last step [87, 90, 91]:

mα j = λmcur
α j + (1−λ)m

old
α j (3.4)

where λ defines the ratio between the values in M cur, evaluated on the current
system, and the values of the last step stored in Mold. As a further advantage,
not entirely relying on the currently evaluated force field, is known to improve
convergence of the system.
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As stop criterion, a final temperature was already mentioned and obviously,
there should be a maximal number of steps taken, before the system seems un-
likely to converge. But those are criteria for the case when the simulation
does not find a solution. The true goal in SCMF is still to drive M into a self-
consistent state. A naïve approach to test this, would be to compare an old
matrix with the current one. While operating with two matrices is already
necessary, one to be evaluated and another one to store updated probabilities,
considering oscillations gets more complex. As an example, this may be a base
pair, which is alternating between becoming GC and CG for energy parameters,
symmetric concerning the 5’ to 3’ direction. This would mean keeping track
of enough steps to match the frequency and comparing them to recognise a
cyclic relation between individual positions in the matrix. A more elegant so-
lution would already incorporate our objective of pulling a distinct sequence
out of M , instead of just technically observing convergence. Assessing how
well a sequence is defined in a chain of states, could be done by estimating
how many possible solutions are left from undecided states, if they have to
add up to 1 in each position. This cumulates to a single-value measurement of
sequence variability and is defined as a quasi-entropy-like property of the se-
quence matrix, similar to the conformational entropy by Delarue & Koehl [87].
The idea is, to add no contribution for columns already decided, while open
columns should be considered according to their current distribution. Since
this measure should be used to control the simulation, it should be designed
to be easily interpreted. A value of 0 obviously means low entropy, while an
upper bound is introduced through normalisation by sequence length n, here:

s(M) =− 1
n

n
∑

j=1

4
∑

α=1

mα j ln mα j (3.5)

This adds up to a sequence entropy of 1.39 for the initial matrix, with all equal
probabilities [90, 91] and the highest grade of variability. Also since the meas-
ure is calculated on an artificial, non-chemical system, the Boltzmann con-
stant is omitted as a factor. As a stop criterion, a threshold would then suffice,
chosen low enough that variability is not likely to drop any further. Following
oscillations based on a single value, rather than the whole matrix, is already
easier, but with an entropy-like term, we can exploit an important feature of
the annealing approach: as long as the system is not heated up and forced into
another equilibration phase after the start, variability does not increase. It is
either reduced or not changed at all. For constant intervals, one might simply
count how many steps they last and react to it. In our approach, we observe
the change of quasi-entropy and let the step size of cooling depend upon it.

As already mentioned by the stop criteria, another attribute of SCMF is,

89



3. Sequence Design

that it comes without a guarantee to find an optimal solution and sometimes
does not find any at all [91]. Assessing the confidence of a solution in simu-
lated annealing, is sometimes done by sampling more results [86]. The idea
is, if several runs of a simulation lead to the same or very similar answers,
it should be near optimum. The problem for SCMF is, that it is known to re-
semble a deterministic behaviour: the same input should always give the same
result [91]. A simple solution to increase the sampling rate of the method, is
to add artificial noise to the energy function. That is, adding random con-
tributions to the parameters of the NN model, small enough to not decrease
performance of the final sequences, but with high enough impact to change
the route of the simulation.

As requested in the beginning, SCMF easily allows for predefining sequence
positions. In M , one state will be set to a probability of 1 and everything else
to 0. Those columns may then be skipped from updates, but are still usable by
interaction partners.

3.2.2 Sequence Representation

Introduced in the last section, a central part of the SCMF method is the concept
of a chimeric molecule [90]: during simulation time, the polymer to be de-
signed has copies of all four RNA bases attached to each backbone position.
Since the result needs to be a one-dimensional sequence, only singular bases
allowed, all copies come with a probability to emit the final base. These prob-
abilities can be represented by a 4 × n matrix M (sequence matrix), with n
columns as positions of the sequence and 4 rows for the RNA alphabet. Each
column represents a site in the molecule. The sum in any column (the total
probability) is always 1:

4
∑

α=1

mα j = 1 for all j = 1, . . . , n (3.6)

With this constraint satisfied, mα j is the probability, that position j of the se-
quence will be assigned base α [87, 88, 90]. Fig. 3.5 illustrates a chimeric
hairpin structure and its corresponding sequence matrix.

After the simulation stops, the task remains to read an unambiguous RNA
sequence out of the matrix. For columns which assign all probability to a single
state, the solution is obvious. Undecided positions are a bit more complicated
to handle. The probability distribution of a site results from the network of
structural feature it is involved in. At least one other column exists with prob-
abilities tailored to the current one, rendering a strategy like uneducated ma-
jority voting impractical. As an example, looking at a base pair, corresponding
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Figure 3.5: Chimeric hairpin & sequence matrix. Beads representing nucle-
otides are divided into weights of base type by NDB colours. The probabilities
are stored in the sequence matrix with columns corresponding to sequence po-
sitions (green numbers). In the matrix, rows represent base type, as annotated
by the RNA alphabet (green letters).

sites may both end up with a probability of 0.5 to become G or C. If the decision
is made without any knowledge about the pairing, both positions will be fixed
to the same base. Designing a strategy to pay attention to the structural envir-
onment solved, would mean to add some bias to the method. Additionally, this
is also complex to implement, since there are more complicated features than
base pairs. A strategy to retain the generality of the method, while adding
only a very small bias at the same time, would be rerunning the simulation.
To assure that at least one more position has a decision afterwards, the column
containing the highest probability of the whole matrix is fixed before. Then
the SCMF protocol is restarted, excluding already finished positions from be-
ing redesigned. Also the sequence entropy threshold is set to a value of 0,
since for an almost converged matrix it may be already too low from the be-
ginning. This is then repeated, until the whole sequence could be retrieved.
Concerning the running time of the whole process, there should be no major
increase. When repeating the simulation, large parts of the matrix usually can
be excluded and each new run should fix several sites.

91



3. Sequence Design

3.2.3 Annealing

As mentioned before, the SCMF procedure presented here comes with a simu-
lated annealing component [85, 86]. In particular this means, an appropriate
cooling scheme has to be defined. What has to be avoided, are temperature
steps too big for a smooth transition, baring the danger to get stuck in a local
optimum. But with a small step size, running time of the simulation may be
unnecessarily prolonged. Those are the criteria to observe when choosing a
scheme especially tailored for our system. Strategies tested include exponen-
tial, linear and adaptive cooling.

Exponentially decreasing temperature turned out to be too fast to give
good answers. For most structures, more complex than a small hairpin, de-
signed sequences are not likely to fold as intended. Improved performance
is achieved by linear cooling at a considerably increased simulation time. As
a disadvantage, parameters for this strategy do depend on the input system.
With the size and composition of structural features, a varying amount of time
may be necessary to converge. But when the temperature is decreased by a
constant, the maximal number of steps is already determined by the cooling
constant, the initial and the final temperature. To assess adequate parameters,
one has to run the simulation several times for different setups. Another solu-
tion would be to operate at very slow cooling to increase the number of steps,
while also increasing running time.

The final annealing scheme should minimise the simulation time and avoid
the need to tune parameters for specific systems:

T (t) = T (t − 1) · c(t) (3.7)

for temperature T at time t (T (0) is the initial temperature) and the current
cooling rate c. In adaptive cooling, temperature steps are increased, if the
system undergoes only small changes, and decreased if it moves to fast:

c(t) =







p

c(t − 1) if sshort(M)
slong(M)

< sc,

c(t − 1)2 if sshort(M)
slong(M)

≥ sc and c(t − 1)> cmin,

c(t − 1) otherwise

(3.8)

with c(0) set to a value smaller than 1, cmin a lower border for the cooling rate
and the decision to speed up or slow down controlled by sequence entropy.
Thereby slong keeps the trace of old instances of M :

slong(M) = βlongslong(M) + (1− βlong)s(M) (3.9)

with βlong determining the period tracked. To avoid following every single
turn the sequence entropy takes, a little bit of delay is also added for the
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comparison value from the current M by introducing sshort:

sshort(M) = βshortsshort(M) + (1− βshort)s(M) (3.10)

with βshort being considerably smaller than βlong. The ratio between sshort and
slong is then compared to a constant threshold sc.

The calculation starts by equilibrating the system at a high temperature
[91]. By using a cooling rate very close to 1, the system is kept excited for
some time and can evolve to an appropriate speed. For the values depending
on sequence entropy, it is also important to retain the initial temperature until
they adapt to the system. Since sshort is initialised with the sequence entropy
of the initial matrix, it needs a few steps for the delay to establish. Given sc,
slong needs to be started at a value which prevents immediate cooling speed-up.
For us, using two times the initial sequence entropy provides a long enough
grace period until actual cooling starts. From there, the system will run self-
controlled into the final temperature.

3.2.4 Energy Terms

The score of the system closely follows the estimates of Gibbs energies given
by the NN model and usually labelled as ∆G values. In principle, this refers
to a change in Gibbs energy upon melting or folding [97]. Our formulation
contains additional terms, so it is labelled as score E, since it is simply an
energy-like value which we wish to optimise. The score is most easily broken
into four contributions described below. Eneg (negative design), Ehet (hetero-
geneity), ENUN (non-canonical base pairs) and ENN (conventional NN contri-
bution). ENN is the most complicated term and is in turn divided into con-
tributions depending on the structural motifs, as described in the following
section.

During development, two simpler scoring functions were used. The initial
scheme is inspired by Nussinov [10, 18] and simple enough to be followed by
pen & paper as it just counts H-bonds between base pairs. After verifying that
the simulation works on a technical level, a crude approximation of the NN
model was set up. Only measuring overlapping stacked base pairs, and pairs
with adjacent mismatches, already gave an idea of how the final system will
look like while retaining the possibility of manual inspection for small input
structures.

The following definitions in this section usually contain several sums iter-
ating all states of M involved. To save the space occupied by this recurring
scheme, we define a function

b( f ) =
∑

β∈A

∑

γ∈A

∑

ω∈A
f (β ,γ,ω) (3.11)
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for substitution, summing up f for all configurations of states from the RNA
alphabet A.

Nearest Neighbour Contribution

Since the structure is fixed in our problem, it can be decomposed into different
contributions as shown in Fig. 3.2. Thereby it is important to note, that struc-
tural motifs overlap and a base may get more than one contribution. Taking
into account all motifs in Fig. 3.3, there are stacked base pairs, hairpins, bulge
loops, internal loops, external loops and multiloops.

The first term explained covers pairs of adjacent base pairs, usually called
stacks. For each of the four bases involved, the score is calculated by

EHlx(α, j, l) =






















1
4
b(mβkmγl mωk−1EStack(α,β ,ω,γ)) if ( j, k), (l, k− 1) are paired,

1
4
b(mβkmγk+1mωl EStack(β ,α,ω,γ)) if (k, j), (k+ 1, l) are paired,

1
4
b(mβkmγl mωk+1EStack(γ,ω,β ,α)) if ( j, k), (l, k+ 1) are paired,

1
4
b(mβkmγk−1mωl EStack(γ,ω,α,β)) if (k, j), (k− 1, l) are paired,

0 otherwise

(3.12)

where EStack(α,β ,ω,γ) is a tabulated value of the NN model for base types α,
β , ω, γ at sites shown in Fig. 3.6. Each of the contributions is weighted by the
corresponding probability in M . With four bases taking part in a stack loop,
the contribution is divided amongst them. The extra parameter l is necessary
for nested bases in a helix, where a base is involved in two stacks. Since the
second base pair has to include an immediate neighbour of position j, we
calculate contributions for j− 1 and j+ 1 as

ESL(α, j) = EHlx(α, j, j+ 1) + EHlx(α, j, j− 1) (3.13)

Another simple motif are hairpin loops, a region of unpaired bases closed
by one base pair. In the default case, the NN model provides values for the
closing base pair, the first two unpaired bases and a length-dependent score.
Since the latter one does not carry any sequence information, it is ignored by
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Figure 3.6: Base pair arrangements for stack loop contributions. The annota-
tion corresponds to variables in Eqn (3.12). Specimen of bases are given by α,
β , ω, γ. Positions of bases in the sequence are given by j, k, l. (a) Configura-
tion when calculating the contribution for the 5’ base of the first base pair, (b)
the 3’ base of the first pair, (c) the 3’ base of the second pair and (d) the 5’
base of the second pair. Thick black lines indicate base pairs.
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the contribution we calculate:

EHairpin(α, j) =






















1
4
b(mβkmγ j+1mωk−1EHpin(α,β ,ω,γ)) if ( j, k) closes a hairpin,

1
4
b(mβkmγk+1mω j−1EHpin(β ,α,ω,γ)) if (k, j) closes a hairpin,

1
4
b(mβkmγ j−1mωk+1EHpin(γ,ω,β ,α)) if ( j− 1, k+ 1) closes a hairpin,

1
4
b(mβkmγk−1mω j+1EHpin(γ,ω,α,β)) if (k− 1, j+ 1) closes a hairpin,

0 otherwise
(3.14)

where EHpin(α,β ,γ,ω) is a tabulated value of the NN model for base pair
(α,β) in 5’ to 3’ direction and adjacent free bases γ, ω as shown in Fig. 3.7.

5‘ 3‘

j k

j+1 k−1

(a)

5‘ 3‘

k j

k+1 j−1

(b)

5‘ 3‘

j−1 k+1

j k

(c)

5‘ 3‘

k−1 j+1

k j

(d)

Figure 3.7: Base arrangements for hairpin loop contributions. The annotation
corresponds to variables in Eqn (3.14). Base types are labelled α, β , ω, γ.
Positions of bases in the sequence are given by j and k. (a) Configuration
when calculating the contribution for the 5’ base of the closing base pair, (b)
the 3’ base of the base pair, (c) and (d) the unpaired bases. Thick black lines
indicate base pairs.

A special case of hairpins are tetraloops, with only four unpaired bases. The
NN model lists certain combinations of bases to have an additional stabilising
effect on loops [69, 70]. Since this is a value depending on sequences of size
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six (closing base pair plus loop of size four), we define this contribution using
V as the list of tetraloops in the NN model, where vi is the ith base of sequence
v:

ETetraloop(α, j) =






1
6

∑

v∈V
v j−l=α

ETetra(v)
∏5

k=0
l+k 6= j

mvk l+k if (l, l + 5) closes a loop and l ≤ j ≤ l + 5,

0 otherwise

(3.15)

where ETetra(v) is the tetraloop score for sequence v, with base type α at posi-
tion j− l, which is weighted by all probabilities from the loop sites and k, l are
positions in the sequence. With ETetraloop, the full contribution for a position in
a hairpin loop is

EHL(α, j) = EHairpin(α, j) + ETetraloop(α, j) (3.16)

The next loop motif is the bulge loop, formed by a single-sided region
of unpaired bases between two base pairs. Again the loop region itself only
scores by length so only the interacting bases are considered here. This fits the
calculation into the known scheme, collecting probabilities to weight the NN
score and normalise by bases involved. But to get the sequence positions right
for the probabilities, we need to know on which side of the structure the loop
region is, totalling in eight cases rather than four:

EBL(α, j) =


























































1
4
b(mβkmγl mωk−1EBulge(α,β ,ω,γ)) if ( j, k), (l, k− 1) are pairs, loop between j, l,

1
4
b(mβkmγl mω j−1EBulge(β ,α,ω,γ)) if (k, j), (l, j− 1, ) are pairs, loop between k, l,

1
4
b(mγl mωk+1mβkEBulge(γ,ω,β ,α)) if (l, k+ 1), ( j, k) are pairs, loop between l, j,

1
4
b(mγl mω j+1mβkEBulge(γ,ω,α,β)) if (l, j+ 1), (k, j) are pairs, loop between l, k,

1
4
b(mβkmγ j+1mωl EBulge(α,β ,ω,γ)) if ( j, k), ( j+ 1, l) are pairs, loop between l, k,

1
4
b(mβkmγk+1mωl EBulge(β ,α,ω,γ)) if (k, j), (k+ 1, l) are pairs, loop between l, j,

1
4
b(mγ j−1mωl mβkEBulge(γ,ω,β ,α)) if ( j− 1, l), ( j, k) are pairs, loop between k, l,

1
4
b(mγk−1mωl mβkEBulge(γ,ω,α,β)) if (k− 1, l), (k, j) are pairs, loop between j, l,

0 otherwise
(3.17)

where EBulge(α,β ,ω,γ) is the tabulated score for a bulge loop enclosed by base
pairs (α,β), (γ,ω) at sequence positions as shown in Fig. 3.8.
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Figure 3.8: Base arrangements for bulge loop contributions. The annotation
corresponds to variables in Eqn (3.17). Base types are labelled α, β , ω, γ.
Positions of bases in the sequence are given by j, k and l. (a) – (d) show
configurations with the loop region between the 5’ base of the first and the 3’
base of the second base pair, (e) – (h) cover the four remaining cases. In each
setup, EBL(α, j) is calculated. Thick black lines indicate base pairs.
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3.2 SCMF Design

One of the more complex loop types are internal loops. These are formed
by two base pairs separated by two unpaired regions. While a general scheme
exists in the NN model for loops larger than two bases, everything below is
treated as special cases. For internal loops with only two (1× 1), three (2× 1,
1×2) and four (2×2) unpaired bases, sequence dependent scores exist like for
tetraloops. The smallest loop, with two loop regions of size one, is calculated
for a list of sequences I1×1, all of length six, by

EIL1×1(α, j) =










1
6

∑

v∈I1×1
v j−k=α

EInt1×1(v)
∏2

i=0
k+i 6= j

mvi k+i

∏5
i=3 mvi l+i−3 if k ≤ j ≤ k+ 2,

1
6

∑

v∈I1×1
v j−l=α

EInt 1×1(v)
∏2

i=0 mvi k+i

∏5
i=3

l+i−36= j
mvi l+i−3 if l ≤ j ≤ l + 2,

0 otherwise

(3.18)

where we define the conditions as true, if positions (k, l + 2), (k + 2, l) are
paired to form a 1×1 internal loop and k ≤ j ≤ k+2 or l ≤ j ≤ l+2. EInt1×1(v)
is the score for sequence v from the NN table, while the sum only considers
sequences with base type α at position j−k or j−l. The two products fetch the
base type from v and look up the probability in M at positions corresponding
to the internal loop. The biggest of the loops covered as special case are
2 × 2 loops with two unpaired bases on each side. The calculation of the
contribution is similar to the last one with indexes extended for larger loops:

EIL2×2(α, j) =










1
8

∑

v∈I2×2
v j−k=α

EInt2×2(v)
∏3

i=0
k+i 6= j

mvi k+i

∏7
i=4 mvi l+i−4 if k ≤ j ≤ k+ 3,

1
8

∑

v∈I2×2
v j−l=α

EInt 2×2(v)
∏3

i=0 mvi k+i

∏7
i=4

l+i−46= j
mvi l+i−4 if l ≤ j ≤ l + 3,

0 otherwise

(3.19)

where the conditions are true, if positions (k, l + 3), (k + 3, l) are base pairs
forming a 2×2 internal loop and k ≤ j ≤ k+3 or l ≤ j ≤ l+3. Here, I2×2 is the
set of sequences and EInt 2×2(v) the score for sequence v. The normalisation
factor is given as 8, due to the higher number of participating bases in this
motif. The last internal loop type with dedicated parameters is asymmetric,
with a single unpaired base on one side and two on the other. To populate
unpaired and paired positions correctly in the NN model parameter table, this
contribution is split up into 1× 2 (loop size 1 at downstream position in the
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3. Sequence Design

strand) and 2×1 (loop size 1 at a upstream location) loops. With I1×2 holding
the sequences for the first part, we calculate the contribution as

EIL1×2(α, j) =










1
7

∑

v∈I1×2
v j−k=α

EInt1×2(v)
∏2

i=0
k+i 6= j

mvi k+i

∏6
i=3 mvi l+i−3 if k ≤ j ≤ k+ 2,

1
7

∑

v∈I1×2
v j−l=α

EInt 1×2(v)
∏2

i=0 mvi k+i

∏6
i=3

l+i−36= j
mvi l+i−3 if l ≤ j ≤ l + 3,

0 otherwise

(3.20)

where the conditions are defined to be true, if positions (k, l+3), (k+2, l) are
base pairs forming a 1× 2 internal loop and k ≤ j ≤ k + 2 or l ≤ j ≤ l + 3.
EInt1×2(v) is the tabulated score for sequence v resembling a 1 × 2 internal
loop. The first product covers positions k to k+2, the shorter unpaired region,
while the second one operates between l and l + 3, the larger loop. These
intervals are switched for 2× 1 loops:

EIL2×1(α, j) =










1
7

∑

v∈I2×1
v j−k=α

EInt2×1(v)
∏3

i=0
k+i 6= j

mvi k+i

∏6
i=4 mvi l+i−4 if k ≤ j ≤ k+ 3,

1
7

∑

v∈I2×1
v j−l=α

EInt 2×1(v)
∏3

i=0 mvi k+i

∏6
i=4

l+i−46= j
mvi l+i−4 if l ≤ j ≤ l + 2,

0 otherwise

(3.21)

where the conditions are defined to be true, if positions (k, l + 2), (k + 3, l)
form pairs enclosing a 2× 1 internal loop and k ≤ j ≤ k+ 3 or l ≤ j ≤ l + 2.
The scores are listed in EInt 2×1(v) for sequence v in I2×1.

Internal loops with at least one unpaired region larger than 2 are treated
differently. Similar to hairpins, a closing base pair and the first loose bases are
scored. Since an internal loop comes with two ends, we have four bases per
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3.2 SCMF Design

case and eight cases all together:

EIL>2(α, j) =


























































1
4
b(mβkmγ j+1mωk−1EInt(α,β ,ω,γ)) if ( j, k) is the left pair of a loop,

1
4
b(mβkmγk+1mω j−1EInt(β ,α,ω,γ)) if (k, j) is the left pair of a loop,

1
4
b(mγ j−1mωk+1mβkEInt(γ,ω,β ,α)) if ( j− 1, k+ 1) is the left pair of a loop,

1
4
b(mγk−1mω j+1mβkEInt(γ,ω,α,β)) if (k− 1, j+ 1) is the left pair of a loop,

1
4
b(mβkmγ j−1mωk+1EInt(β ,α,γ,ω)) if ( j, k) is the right pair of a loop,

1
4
b(mβkmγk−1mω j+1EInt(α,β ,γ,ω)) if (k, j) is the right pair of a loop,

1
4
b(mγ j+1mωk−1mβkEInt(ω,γ,α,β)) if ( j+ 1, k− 1) is the right pair of a loop,

1
4
b(mγk+1mω j−1mβkEInt(ω,γ,β ,α)) if (k+ 1, j− 1) is the right pair of a loop,

0 otherwise
(3.22)

where all conditions are only valid for internal loops with at least one unpaired
region of a sizer larger than 2. EInt(α,β ,ω,γ) is the tabulated score of a base
pair (α,β) at positions j, k and two adjacent unpaired bases. Combining all
terms for internal loops, the contribution to the NN design term adds up to

EIL(α, j) =
EIL 1×1(α, j) + EIL 2×2(α, j) + EIL1×2(α, j) + EIL2×1(α, j) + EIL>2(α, j) (3.23)

The last two structural motifs, external and multiloops, share a penalty
for initialising stem regions with base pairs not built from bases G and C. As a
value also depending on base types, it needs to be weighted by corresponding
probabilities to be considered:

Enon-GC(α, j) =







1
2

∑

β∈A mβkEpnon-GC(α,β) if ( j, k) is a base pair,
1
2

∑

β∈A mβkEpnon-GC(β ,α) if (k, j) is a base pair,

0 otherwise

(3.24)

where β is iterated for the whole RNA alphabet A and Epnon-GC(α,β) is the
penalty tabulated for base types α, β . Obviously, for GC pairs, Epnon-GC is 0.

The external loop, is a motif at the very end of a structure. It includes the
last base pair at the end of a strand and immediate unpaired neighbours, if
there are dangling ends. Without, there is no contribution by the NN model,
while it is unaffected if the free end is longer than one base. In case there
are unpaired bases at the 5’ and the 3’ end of a structure, both are evaluated
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3. Sequence Design

separately and added to the full score. This means, we define dedicated contri-
butions for both ends and combine them together with the non-GC penalty to
the full score for external loops. For both sides, three cases have to be evalu-
ated, both paired bases and the free base. An external loop with the unpaired
end at the 5’ side is calculated by

EEL 5’(α, j) =















1
3

∑

β∈A

∑

γ∈A mγ j−1mβkE5’ dgl(α,β ,γ) ,
1
3

∑

β∈A

∑

γ∈A mγk−1mβkE5’ dgl(β ,α,γ) ,
1
3

∑

γ∈A

∑

ω∈A mγ j+1mωl E5’ dgl(γ,ω,α) ,

0 otherwise

(3.25)

where the first case is defined to be true, if base types α, β form the base
pair of an external loop at positions j, k and γ starts the 5’ dangling end in
position j − 1. The second case is true for a pair β , α in positions k, j of an
external loop with a dangling base γ in position k− 1. The third case is true,
if evaluating the 5’ unpaired base α at position j, while γ, ω are the base pair
of an external loop at positions j + 1, l. E5’ dgl(α,β ,γ) is the score of the loop
with base types α, β paired and an adjacent 5’ dangling base of type γ from a
NN table. The 3’ end follows the same scheme:

EEL 3’(α, j) =















1
3

∑

β∈A

∑

ω∈A mβkmωk+1E3’ dgl(α,β ,ω) ,
1
3

∑

β∈A

∑

ω∈A mβkmω j+1E3’ dgl(β ,α,ω) ,
1
3

∑

γ∈A

∑

ω∈A mγl mω j−1E3’ dgl(γ,ω,α) ,

0 otherwise

(3.26)

where the first case is true for an external loop with a base pair of types α, β
at positions j, k and a free base γ at the 3’ end at position k+ 1. The second
case is defined to be true for a base pair β , α in positions k, j of an external
loop, with ω as the unpaired base at the 3’ end in position j + 1. The third
case is true for an external loop comprised of a base pair γ, ω at positions l,
j − 1, while evaluating base α in the dangling end at position j. E3’ dgl(α,β ,γ)
is the tabulated score of the loop with base types α, β paired and an adjacent
3’ dangling base of type γ. With the non-GC penalty, the full contribution is
calculated as

EEL(α, j) =
(

Enon-GC(α, j) + EEL 5’(α, j) + EEL 3’(α, j) if EEL 5’(α, j) + EEL 3’(α, j) 6= 0,

0 otherwise

(3.27)
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3.2 SCMF Design

where the first condition checks if there is any external loop contribution and
if not, skips the penalty.

Multiloops, as shown in Fig. 3.3(e), are comprised by base pairs, which
enclose at least two more stem loops. In Vienna notation (“(” opens and “)”
closes a base pair and “.” is an unpaired position [15]), the smallest such loop
would be (()()), which has not been observed in nature, presumably for steric
reasons. For larger structures there is in theory no upper limit for unpaired
positions and helices spawning off the enclosing base pair. In the NN model
the different branches of a multiloop are treated like external loops. Each base
at the start of a new stem and the adjacent 5’ and 3’ bases get a contribution
by E5’ dgl and E3’ dgl. As important difference to external loops, the score is
not restricted to unpaired neighbouring bases, but is also applied for paired
bases adjacent to the current base pair. Subsequently, there is no splitting of
contributions necessary, according to the 5’ and 3’ end like for external loops.
When looking at paired sites, E5’ dgl and E3’ dgl have to be considered, while for
the immediate neighbours only one score needs to be incorporated:

EML(α, j) =


























2
3

∑

β∈A mβk

�

∑

γ∈A mγk−1E5’ dgl(α,β ,γ) +
∑

ω∈A mω j+1E3’ dgl(α,β ,ω)
�

,
2
3

∑

β∈A mβk

�

∑

γ∈A mγ j−1E5’ dgl(β ,α,γ) +
∑

ω∈A mωk+1E3’ dgl(β ,α,ω)
�

,
1
3

∑

γ∈A

∑

ω∈A mγl mω j+1E5’ dgl(γ,ω,α) ,
1
3

∑

γ∈A

∑

ω∈A mγ j−1mωl E3’ dgl(γ,ω,α) ,

0 otherwise
(3.28)

where the first condition is said to be true, if (α,β) at positions j, k are a
base pair in a multiloop and position k− 1 is the 5’ neighbour of k and j + 1
the 3’ neighbour for j. The second case is defined true, if base types (β ,α) at
positions k, j are a pair of a multiloop and j−1, k+1 the 5’ and 3’ neighbours.
The third condition is true for a multiloop base pair by (γ,ω) in positions l,
j + 1 and an adjacent 5’ base in position j. The fourth condition is true for a
base pair by (γ,ω) in positions j − 1, l and a 3’ neighbour at position j. The
first two cases contribute by 2

3
, since they get 1

3
of the 5’ and 3’ score, each.

Combining the terms for all structural motifs, the NN contributions for base
type α at position j in the sequence adds up to

ENN
�

α, j
�

= ESL(α, j) + EHL(α, j) + EBL(α, j) + EIL(α, j) + EEL(α, j) + EML(α, j)
(3.29)

103
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Negative Design Term

In MFT, adding constraints to a system usually means extending the mean
field by additional terms [90]. The negative design term deals with base pairs
in wrong positions, which the tools discussed in §3.1.3 identify by folding
prediction and comparing to the input structure. We do not see the sequence
folded in any step of our approach, thus we add a quasi local mean field of
unwanted interactions to E. For positions within general loop regions, Eneg is
especially important, since they do not get contributions by the NN model. The
idea is to assume stack loops between the current and all other positions, add
the weighted contributions of the interactions, normalise by sequence length
and change the sign to create an antagonist to ENN :

Eneg

�

α, j
�

=−
1

n
d





n
∑

k= j+1

b(mβkmγ j+1mωk−1EStack(α,β ,ω,γ))

+
j−1
∑

k=1

b(mβkmγk+1mω j−1EStack(ω,γ,β ,α))

! (3.30)

where k iterates M downstream and upstream of position j, skipping the case
when ( j, k) form an intended interaction, n is the sequence length and d is a
scaling factor of the term.

Heterogeneity Term

The negative design term already introduces some sequence variation, avoid-
ing patterns likely to lead to suboptimal folding as shown in Fig. 3.1. But still
the NN model favours a high GC content for pairs and adenine for loop re-
gions. To reduce uniform patterns in the designed sequence, we introduce a
completely artificial contribution to the system, the heterogeneity term. An
ideal solution would force the system into more diverse states, without affect-
ing the stability of the requested structure. For a current position in M , the
strategy is to push it away from adapting likely states of its neighbourhood.
Considering only the same row as the state we are looking at, probabilities of
its environment are used as a score. In a first attempt to define the heterogen-
eity contribution, all positions in M were used with an exponential decay of
influence on increasing distance in downstream and upstream direction. Be-
cause results were not completely satisfying, the final version was developed
to use a window around the position of interest, giving each site within full
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3.2 SCMF Design

contribution:

Ehet

�

α, j
�

=















1
2w

h
∑ j−1

k= j−w mαk +
∑ j+w

k= j+1 mαk j > w, j+w ≤ n,
1

j−1+w
h
∑ j−1

k=1 mαk +
∑ j+w

k= j+1 mαk j < w, j+w ≤ n,
1

w+n− j−1
h
∑ j−1

k= j−w mαk +
∑n

k= j+1 mαk j > w, j+w > n,
1

n−1
h
∑ j−1

k=1 mαk +
∑n

k= j+1 mαk j < w, j+w > n

(3.31)

with w as half the size of the window, h a scaling factor and n the sequence
length. The term is divided into four cases to cover positions near to the
beginning or end of the sequence and sequences smaller than the window
size.

NUN Contribution

This terms helps to prevent paired positions in the sequence to be populated
with bases which are not supposed to form a pair. With the NN model, only
canonical Watson-Crick complements and the wobble pair are covered. Since
each position to be designed can be part of several structural motifs, contribu-
tions may add up to probabilities which favour non-unitable nucleotides (NUN)
on both sides of a base pair. This makes ENUN a penalty calculated as

ENUN

�

α, j
�

=

(

∑

β∈A mβkENUNp(α,β) ( j, k) are paired positions,

0 otherwise
(3.32)

where ENUNp(α,β) is the tabulated penalty for base types α, β inhabiting
paired positions but not being included as pair in the NN model. For base
tuples allowed to pair, ENUNp is 0.

With all contributions defined, E becomes

E
�

α, j
�

= ENN
�

α, j
�

+ Eneg

�

α, j
�

+ Ehet

�

α, j
�

+ ENUN

�

α, j
�

(3.33)

for base type α at position j of M . All contributions are only defined for struc-
tures with at least two bases. Designing shorter sequences is not considered.

Thermal Noise

As mentioned before, SCMF design is deterministic, which means a low per-
formance at sampling different sequences for the same input structure. This
determinism can be avoided by adding thermal noise to the energy function
used. For the NN score, this means adding small random numbers to all pa-
rameters in the tables, every time a different sequence is requested. As long as
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the fluctuations are small enough for only neglectable influence on the stabil-
ity of the structure, this approach may be explained by the imprecision of the
parameters, as expectable from experimental determination.

Our system uses random numbers from the interval [−0.5, 0.5], without
significant changes in result quality.

3.2.5 Implementation

The implementation of the SCMF method is for most parts straightforward.
The whole system depends on the size of the input structure and the sequence
to be produced comes with a fixed alphabet. In consequence, all functions
working on the sequence matrix should be manageable in linear time while
they are executed in each step of the simulation.

Repopulating the matrix with new probabilities by Eqn (3.3), needs to be
done for all non-fixed positions. This requires the quasi local mean field of
E local for every entry, but not as an online calculation. E may be precomputed
and distributed in a second matrix, accessed by Eqn (3.3). Splitting this de-
pendency retains a linear evaluation of the SCMF core routines. Columns
which are fixed in the sequence matrix, either during the simulation or reques-
ted by the design task, need no further consideration. The implementation of
the diverse terms needed to calculate the weighted score E of the system and
the annealing procedure, will be discussed in a more separate way. The code
of the SCMF design method is available integrated in the CoRB project as a
tool called brot (basic RNA optimisation tool) [98].

Nearest Neighbour Contribution

The positive design term is not evaluated along the sequence matrix. Follow-
ing the standard SCMF scheme here, would mean for each position to look
up the structural features it is involved in and calculate the contribution sep-
arately. Instead of precomputing the input structure for fast look ups and
caching scores to be reused in later calculations, we compute contributions for
the structure and then assign them to the matrix.

Initially, the input structure is divided into different structural motifs known
by the NN model. Next, the lists of motifs are iterated and contributions of ENN

are calculated. For each motif, parameters from the NN tables only need to be
retrieved once and are reused for evaluating every sequence position involved.
According to the various cases of contributions, some calculations may also
be shared, e. g. products of probabilities. The results of each motif evaluation
are stored in a two-dimensional array according to sequence positions, later
to be used for repopulating the sequence matrix. For positions which are at an
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overlap of structural features, the contributions are summed up in the storage
matrix.

Evaluating ENN for one step of the simulation also happens in linear time.
Obviously, if there were no overlaps of structural features, each position in the
sequence and the corresponding motif needs to be visited once. Since motifs
only overlap by one base on each side, at maximum those positions need to
be considered twice. Because all motifs are treated independent of each other,
in the worst case we have to iterate two times the sequence length plus the
overhead for maintaining the motifs, which is also linearly bound to the system
size according to the Vienna package [15, 17].

The strategy to calculate ENN along the set of structural motifs instead of
the sequence matrix, has one advantage concerning a speed-up of the whole
simulation. When a column in the matrix is fixed, it is actively skipped during
iterations, since it has to stay available for possible data dependencies and
the final sequence. Once all participants in a structural motif are fixed, the
motif itself needs no further evaluation. Also the result of the simulation is a
sequence which does not require for structural information. This means, if all
base types within a motif are set, it is removed from the system, speeding up
the next step of the simulation requiring less iterations.

NUN Term

The penalty for base types which are not supposed to inhabit paired positions,
is applied to the matrix storing E by a linear scan of the sequence matrix.

Negative Design & Heterogeneity Term

In the negative design and heterogeneity term, the contribution of a sequence
position is depending on stretches of the sequence matrix itself. For negative
design, this is the whole width, for the heterogeneity term the window size.
With a naïve approach, these terms would need a full evaluation for every
position on the whole system, resulting in a quadratic time consumption (as-
suming a window size equal to the sequence length). Linear time behaviour is
achieved, by calculating the full energy contribution once in the beginning of
the simulation and then update them for every position while iterating along
the matrix. Thereby an update means to remove the contribution of the cur-
rent position while reintroducing the one last removed.

Scores for each position are simply added to the values in the matrix stor-
ing E.
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Annealing

The sequence entropy, needed to control the cooling rate of the system, is cal-
culated for each step of the simulation. By Eqn (3.5), this is already a linear
term for a fixed alphabet. All parameters from §3.2.3 depending on the se-
quence entropy are updated in constant time from previous values. The short
and long term observers sshort, slong include the sequence entropy directly in
their calculation, while the cooling rate depends on the ratio between sshort

and slong.

Parameter Optimisation

To optimise the parameters of the SCMF simulation, the simplex algorithm
[93, 99] was used. Obviously the goal is to find a set of parameters, which
leads to sequences resembling the correct shape. Another objective is the sta-
bility of the structure, measured by folding probability. Assuming the input
structure for a predicted sequence, Gibbs energy is calculated according to the
NN model using er2de (evaluating RNA 2D energy) of the CoRB project. The
partition function, needed to calculate probabilities, and a predicted fold, are
computed using the Vienna RNA package. To compare a sample structure with
the prediction, RNAdistance of the Vienna package is utilised to calculate the
base pair distance [15]:

∆bp(qu, qv) =
∑

1≤i≤n
i< j,k≤n

j 6=k

yi j(qu) + yik(qv) (3.34)

where qu, qv are two structures to be compared and yi j(q) = 1 if (i, j) are
paired in structure q, otherwise yi j(q) = 0. n is the size of the smaller structure,
then i, j and k are positions in the structures, restricted to count base pairs
only once at the opening partner. Since pairs are only considered if closing
positions j and k are not the same, the base pair distance describes the number
of different pairs in two structures.

With this information provided in each step of the simplex algorithm, the
cost function optimised, is calculated as

fcost(X ) =
∑

q∈Q

(1− P(q|v))∆bp(q, qv) (3.35)

where v is a sequence predicted by brot for structure q using parameters X
to be tested and qv is the structure predicted by RNAfold for v. Q is the set
of structures listed at [100], used for evaluation. Test structures were chosen
to contain all structural motifs of the NN model. The base pair distance of
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3.2 SCMF Design

a structure q to be evaluated and the predicted fold qv is weighted by the
probability for q not being the optimal structure of v as calculated by RNAfold.
This way, the contribution to costs scales up in case v is a bad prediction, but
gets smaller when it becomes more likely to fold into the right shape.

The simplex optimisation is terminated when the difference between best
and worst corners is less than a weighted base pair distance of 1 · 10−5 or the
maximum of 10 000 steps is reached. A new run is started, centred on the best
point found, but with the scattering of initial points 20% of the value used in
the previous run. A third optimisation is started, if the second run improves
the best value found by more than a weighted base pair distance of 1 · 10−5.

Testing Predicted Sequences

For evaluating predicted sequences and comparing the various tools, the suc-
cess rate, folding probabilities and the ensemble defect are calculated with
help of the Vienna package. Just based on the nucleotides in the sequences,
various sequence identities and the average GC content are also used.

The success rate counts how often a sequence is predicted, likely to fold
into the requested structure. Every tested sequence is run through RNAfold
in probability mode. Predictions with highest probability are compared to
the input structure and marked as success if matching. The success rate is
calculated as the mean of positive answers over all runs for the same structure.

The folding probability is not simply connected to a true positive rate. In-
stead of the most likely fold, the probability of a predicted sequence assuming
the requested structure is calculated. This is more of an overall score showing
the stability of predictions. While also sequences contribute which are ex-
cluded in the success rate, successful sequences at low probability will lower
the score. With the partition function and Gibbs energy derived from the Vi-
enna package, folding probability is calculated using the Boltzmann relation.
For a target structure, the result is presented as mean over all runs.

After examining the folding probability of sequences, focus shifts to those
excluded by the success rate. A true negative result means a sequence which
is not predicted to resemble the target shape. By looking at the probability of
true negatives to fold into a target structure instead of its own most probable
structure, one may get an idea how badly a prediction fails. More in general,
low values mean that a method does not get close to a good solution, while at
higher probabilities it gets more likely that the issue is solvable. This would
mean changing parameters or using parts of a suboptimal solution as starting
point for another run.

Evaluating for positive and negative folding probabilities in separate may
not always be the most helpful thing. If a sequence is predicted into a fold
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which only slightly differs from the target structure, simply saying that the
design process failed could be to coarse grain as a measure. Even if a base
pair is missing, it may be present with significant probability in alternative
folds. To account for the base pair level, the ensemble defect measure was
introduced [101]. Using the McCaskill algorithm, one can conceptually visit
every possible structure q and calculate its probability P(q|v) for the sequence
v. For some base pair (i, j), we then calculate its weighted probability in all
structures from

Pi j(v) =
∑

q∈Q

P(q|v)yi j(q) (3.36)

where yi j(q) is the same as in Eqn (3.34) and Q is the set of all possible struc-
tures given sequence v. This is the ensemble-weighted likelihood of a base
pair being present. Next the ensemble-weighted defect r is calculated by com-
paring each base pair in the target q∗ to its probability in the ensemble:

r(v, q∗) = n−
∑

1≤i≤n−1
2≤ j≤n

Pi j(v)yi j(q
∗) (3.37)

where n is the number of bases in the sequence. Clearly, if all desired base
pairs are present with a probability of 1, r(v, q∗) = 0. Of course, there is
always some probability for suboptimal structures, so even in near perfect
sequences r(v, q∗) will always have some small positive value.

In the second class of comparisons, only sequences predicted to fold into
the target structure are considered. But then the evaluation is solely looking
at the base composition of sequences. As discussed when explaining the idea
of sequence design, the GC content is of some interest. We just count the frac-
tion of G and C in the sequences and show the average, standard deviation
and outliers. This will give an overview if a method always goes for high GC
content or more moderate levels. Furthermore a high spread could mean that
a prediction approach is not driven by the idea of adding up the strongest pair-
ing partners to get to a stable sequence. Since all methods promise to deliver
different sequences for the same input on multiple runs, the number of unique
sequences produced is also considered. Beside the absolute count, the similar-
ity of different sequences for the same structure is calculated. That is about the
flexibility inside a method itself, while it is also interesting to see how the res-
ults between SCMF and the other tools compare. Since we have a completely
different approach, we want to know if our sequences are drastically different
or very similar to the other tools. To get an overview, the identity of sequences
between SCMF and each of the other methods is collected.
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3.3 Results

When evaluating new prediction software, one usually wants to see two as-
pects investigated: the performance compared to tools for a similar task and
the behaviour on complex systems, or those of special interest. For the per-
formance tests, our approach is compared to the tools discussed in §3.1.3. As
case of special interest, amongst others a ribosome sequence will be evaluated.
Finally, brot was also used for a real-world case study, synthesising a designed
sequence and determining its structure in vitro. But before our approach can
be used for any testing, the parameters of the simulation need to be defined.
Since this means setting up all the terms in the scoring function, we also give
a concise overview on the influence of most of them.

3.3.1 Parameter Optimisation

To determine a starting point of the simplex algorithm, already the simplex is
used. The very first initial parameters are just guessed and refined by repeated
optimisation runs. Values, that are reoccurring in the results, are used to create
our starting point for the final simplex iteration. This is then used to create
the set of default parameters of brot, as shown in Table 3.1.

Parameter Default Description

steps 1000 max. no. of iterations
T 2.000 initial temperature
d 0.420 negative design factor
h 9.730 heterogeneity factor
w 1 heterogeneity window size
seq. entropy thresh. 0.337 sequence entropy threshold
λ 0.627 ratio of the system memory
βlong 0.949 long term seq. entropy ratio
βshort 0.500 short term seq. entropy ratio
sc 0.816 threshold to speed up or slow down cooling
cmin 0.866 lower bound of the cooling rate

Table 3.1: Parameters of the SCMF approach. All parameters, beside the max-
imal number of steps, as determined by the simplex method [93, 99]. To
assure the end of simulations by cooling or convergence, the number of iter-
ations allowed was set to a large number during run-time. Afterwards it was
reduced to a value still assuring the optimised results for the test set.

Beside optimising the fitness of predicted sequences by the simplex algo-
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rithm, we also examined the progress of temperature and sequence entropy
over time for the final set of parameters. As an example, for structure 16 of
the evaluation set at [100], Fig. 3.9 shows the observed values plotted against
time. Sequence entropy goes down right from the beginning, while the system
is still at high temperature. After 35 % of simulation time, it reaches a plateau,
with 33% of the sites already fixed. Towards the almost constant phase, the
descent slows down, which is an indicator for the absence of abrupt changes
in the system. After 84 % of the simulation have past, cooling increases and
the sequence entropy goes down below the convergence threshold. Along the
decrease of sequence entropy, cooling is slowed down, as intended. With a
final temperature of 0.450 and entropy of 0.334, the simulation is stopped by
achieving convergence and not because the maximum number of 1000 steps
is reached.

Annealing of test structure 16
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Figure 3.9: Example of annealing using the default parameters. Cooling and
sequence entropy values for structure 16 of the evaluation set at [100]. In
91 iterations, the temperature cooled down to 0.574 starting from 2.000. In
the same time, the sequence entropy dropped from 1.386 to 0.334, below the
threshold of 0.337.

For the structures from the test set, all sequence entropy and temperature
curves look similar. But this just means, that the default parameters work well
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for the structures they are optimised for. While every structural motif covered
by the NN model is in the set, for some input systems there may be need to
adjust settings. This means repeated simulations with modified parameters,
until a satisfactory result is achieved.

3.3.2 Energy Terms

To see the effects of the various terms of our scoring function, the fully para-
meterised system had to undergo several small-scale tests. Exploring all pos-
sible combinations of contributions turned on and off, simulations were run
on two RNA motifs, shown in Table 3.2. For the small hairpin loop, the task
reduces to get the base pairing right. With all contributions influencing prob-
abilities of single bases, this seems to be the most basic test. To introduce
intramolecular dependencies, an internal loop was used. Since the NN model
incorporates this motif, it should be able to pick an already good sequence
from its parameter set. The remaining terms have no prior knowledge about
the constraints but should not disturb a correct answer by design. For base
pairs adjacent to the loop region, which are outside the scope of the motif
stored in the NN model, all terms should work together to find an answer
unlikely to favour an undesired shape.

Table 3.2 shows the results, gathered below the structure they belong to.
For each sequence, the folding probability and Gibbs energy are provided,
with the last column declaring contributions enabled for the simulation. Us-
ing single terms, the system behaves as expected: the terms which reward
base pairs find valid answers in both cases, while those targeting other se-
quence features do not succeed. Highest folding probabilities are achieved for
the NUN term by rather artificial looking sequences. With G and C separated
between both sides of a helix, the number of stable folds is obviously lim-
ited. Results produced by the NN model come at considerably lower energy
and higher sequence variation. This originates from the knowledge of the NN
model about stabilising effects of nucleotide-combinations in RNA structures.
Opening a loop with an opposing G and C is one example seen for both motifs
tested. While this gives a lower energy by parameters, it introduces additional
possibilities for base pairing, enlarging the structural ensemble and lowering
folding probability. For the negative design and heterogeneity terms, produced
sequences cannot fold. The latter one is designed to create less uniform se-
quences without paying attention to base pairs. Considering the window size
of 1 and the repetitious sequences, this term works as intended. Negative
design is also not meant to actively help base pairing but avoid unwanted in-
teractions. Looking at this goal alone, it is also met with sequences unable to
form canonical pairs.
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Also for two contributions enabled, the negative design and heterogeneity
term do not find a valid answer when combined. But as soon as joined by one
of the remaining terms, sequences are able to fold. Especially negative design
seems to be potent by taking the lead concerning folding probability. With
the NN model involved, we also see low energies. Including heterogeneity
does introduce more sequence variation at the cost of lower probability for the
desired shape. In the hairpin loop, the effect is not exceptionally big, while in
the internal loop probability almost cuts half when joined with the NUN term.
This should be expected with growing complexity of a structure for two terms
which do not prevent population of unpaired positions with corresponding
bases. When the NUN term is used together with the NN model, results do not
change much compared to only enabling NN contributions. For the internal
loop sequences are equal and in the hairpin loop one GC pair is inverted, while
folding probabilities and energies do not change for both motifs. Such small
or no changes are by intention of the NUN term. It is not designed to drive
the system into forming base pairs, but to prevent it from optimising paired
positions for non-canonical configurations.

When using three terms enabled in a simulation, one would expect valid
sequences for all runs. Every combination of terms contains at least one con-
tribution actively pointing positions towards base pairs. Technically all results
are able to fold into the right shape but for high-ranking results the NN term
seems to be essential. In both test cases where it is absent, energies are high
and for the internal loop, having only the NUN term as matchmaking contribu-
tion, folding probability is low. While for a lower number of terms enabled, the
NUN term does not perform as badly, here we have two contributions disturb-
ing stability at the same time. But repairing their influence is not the objective
of this term. Pointing towards stable folds is left to the NN model. When look-
ing at both test structures, which combination is the most favourable is hard
to tell, since none of the selections scores best in both cases. Compared to en-
abling two terms per simulation, results are rather similar as soon as the NN
term is involved. Only the sequence variation seems to be a bit higher when
using negative design and heterogeneity together with the NN model.

All four terms enabled leads to folding probabilities above 90% for both
test cases. Energies may be lower as shown by other setups, but are still
at least ten times lower than for the worst valid sequence. But showing top
performance for the complete scoring function is not the objective in this quick
survey. The idea is to verify that every term has its effect on the result when
combined. Looking at the single-contribution runs, behaviour is as expected.
Going through the various combinations we see that the terms do work along
instead of cancelling each other out. While the impact on the result is not
the same between contributions. The effect of the NUN term on free energy
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and folding probability is small compared to the NN model. Enabling it for
simulations which already have NN contributions only swaps one base pair in
two cases. For the internal loop, negative design has a higher influence on
folding probability than the heterogeneity term which is not as visible for the
hairpin loop. The most important observation is that combining all terms does
not prevent valid results. None of the other contributions is potent enough to
rival the NN model in finding good answers for an input structure.

3.3.3 Performance

To compare our method with the ones described in §3.1.3, all programs are
run on equal test sets and the predicted sequences are evaluated for the meas-
ures described in §3.2.5. As sets of test structures, the same as by Busch &
Backofen [59] and Andronescu et al. [60] are used. Those cover artificial 2D
structures (sets Ia, Ib and Ic), designed following certain features, and pre-
dicted folds for biological sequences (sets IIa and IIb). An additional set made
of 2D representations of experimental RNA structures is left out at this point.
One reason is the poor performance participants showed on this set. That is
in contrast to published results which could not be reproduced. Inspecting the
list, it turned out that the publication shows 10 structures, while the provided
set has 13 members. One of them features several non-closed base pairs ren-
dering it unusable for the design task. More in general, the original RNA
structures behind the test set feature several pseudoknots which are declared
as removed without further information on how exactly they were opened.

The evaluation procedure is the same for all test sets. For each structure,
every tool is run 100 times and the predicted sequences are used to calculate
our measures. Here, all of the values calculated use folding probability to
assess the shape a sequence will adapt and its stability. This is in contrast
to earlier evaluations behind the tools we compare to, which all use MFE
structures when it comes to structural features. But as explained in §3.1.1,
just optimising free energy seems not to be as significant as probability, if
available.

Since sequence identities and the GC content are very similar over the vari-
ous test sets, those measurements will be shown combined.

Another value to be compared is the running time of each tool. Our idea
is not a hard contest but providing a feeling on how long the user has to wait
for an answer. With the computational prediction part being only the first step
in the design process of a new sequence, there is only a technical difference
in a running time of a couple of minutes or a few hours. Even for sampling
multiple sequences, minutes do not matter since this is usually done in parallel
on high performance clusters nowadays. However, the viewpoint changes if
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Predicted sequence P(q|v) ∆G [kcal mol−1] Terms

((((((.....))))))
GCCCGCGACAAGCGGGC 0.99 −12.40 ndhu
GCCGGCGACAAGCCGGC 0.99 −12.40 ndh
CCCCCCGAAAAGGGGGG 0.95 −13.10 ndu
GCGGGCGACAAGCCCGC 0.99 −12.40 nhu
CUAAAUCACACAUUUAG 0.77 −0.80 dhu
GCCCCCGAAAAGGGGGC 0.99 −13.20 nd
GCGGGCGACAAGCCCGC 0.99 −12.40 nh
GCCGCCCAAAGGGCGGC 0.55 −13.10 nu
ACAAAACACCACACACA 0 – dh
CCGUAGAAAAACUACGG 0.94 −6.80 du
CGCGCGAACAACGCGCG 0.74 −9.50 hu
GCGGGCCAAAGGCCCGC 0.55 −13.10 n
AAAAAAAAAAAAAAAAA 0 – d
AACACACACACACACAC 0 – h
GGGGGGAAAAACCCCCC 0.85 −12.00 u
((..((((.....))))..))
CCGAUCGCGACAAGCGAGAGG 0.95 −8.30 ndhu
CCUGAGGCGAUAAGCCUUGGG 0.73 −12.20 ndh
CCGAGCCCGAAAAGGGCGAGG 0.94 −10.60 ndu
GCUGGGGCGACAAGCCCUGGC 0.73 −14.20 nhu
UAGACAUCGAGACGAUGACUA 0.01 −0.80 dhu
GCGAGCCCGAAAAGGGCGAGC 0.97 −10.70 nd
GCUGGGGCGACAAGCCCUGGC 0.73 −14.20 nh
GCUGGGCCCAAAGGGCCUGGC 0.41 −14.90 nu
CACACCACACACACACACACA 0 – dh
CCAAGUACAAAAAGUACAAGG 0.66 −3.60 du
CGAACGCGAACAACGCGAACG 0.36 −4.60 hu
GCUGGGCCCAAAGGGCCUGGC 0.41 −14.90 n
ACACCACACACACCACACACA 0 – d
AACACACACACACACACACAC 0 – h
GGAAGGGGAAAAACCCCAACC 0.84 −8.20 u

Table 3.2: Effect of energy terms in SCMF. Various combinations of energy
terms turned on and off for the same design task. To show the influence of
a term on the stability of a sequence produced, folding probability and Gibbs
energy are provided. The last column shows the combination of enabled terms:
n - NN contribution, d - negative design, h - heterogeneity, u - NUN term.
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time consumption reaches amounts where it is not easily possible anymore to
rerun, in case of needed adaptation. The whole evaluation presented here is
run on the same hardware, so we skip any transformation of values and just
base measurements on the real running times. To keep the idea of providing
an overview, results are combined over all test sets.

The rest of this section shows results. First the test sets are presented,
followed by the combined measures.

Test Set Ia

Test set Ia is a set of artificial structures provided by Busch & Backofen [59].
They designed it using an internal tool for overall sizes between 30 and 200
nucleotides, certain loop sizes and stem lengths. It comes with a total of 298
structures listed at [100]. The original set had 300 structures but two of them
were redundant.

In contrast to the other sets, here we run RNAinverse in one additional
mode. Probability and MFE mode will be evaluated everywhere, but when
running in MFE mode, treatment of dangling ends will be shown in two ways.
The default only considers unpaired bases for dangling ends, affecting how
the ends of helices may be treated. But there is a switch to enforce the same
energy model as used in probability mode. This is our default for the other
sets since SCMF treats the energy model the same way.

brot, the tool running our SCMF simulation, is also shown in three variants.
Beside the default parameters, for this set it will also be invoked with the
negative design term turned off and a third time without the heterogeneity
term.

An effect of the two terms is immediately visible in Fig. 3.10. In its default
configuration, brot gets to a success rate of 95% on average. The 3 standard
deviations span from 100 % to around 60%. But there are 14 outliers, targets
without any solution. The standard deviation gets bigger once the negative
design term is turned off. Reaching from 100% down to 0%, it means that
we still can find good sequences without negative design, but with an average
of around 30 % this is a rather rare event. Without pushing for heterogeneity,
the average gets back to the level of more than 90%. However, the 3 standard
deviations gain 20 % with new outliers at lower success rates. This means turn-
ing on the heterogeneity term aids making the desired fold the most probable
one more often for test set Ia.

Examining the success rates of INFO-RNA, the probability mode always
yields sequences that fold into the target structure. When run in its MFE mode,
results are different. The average success rate drops by about 20 % and the 3
standard deviations cover the whole range. This does mean that there are still
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Figure 3.10: Success rate for test set Ia. Fractions of sequences which fold into
the requested structure. All tools were evaluated with RNAfold in probability
mode. Diamonds mark the average success rate considering all structures of
the test set. Whiskers show the spread of individual success rates within 3
standard deviations in both directions. Outliers are marked by red circles.
brot-d0 shows results for brot with negative design turned off, brot-h0 has
the heterogeneity term turned off. INFO-RNA2-fp shows results for INFO-
RNA version 2 in probability mode, INFO-RNA2-fm represents MFE mode.
RNAinverse was evaluated in probability (-p) and MFE mode. RNAinverse-d2
shows the MFE mode evaluating the NN model the same way RNAfold does in
probability mode.
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targets with matching sequences produced in every run, but at the same time
some targets are not covered by any successful result.

RNA-SSD does not provide a switch between a probability and a MFE mode.
The usage of the NN model always goes by energy minimisation. Results look
similar to INFO-RNA. But the average is slightly higher in the 80% range and
the 3 standard deviations mark the case of complete failure only an outlier.

With its multiple options concerning the energy model, results for RNAin-
verse are shown in the last three columns in Fig. 3.10. Running the partition
function approach looks promising. Success rates go up to almost 100 % on
average with only a few outliers and the worst still living around 85 %. The
last two columns show RNAinverse featuring MFE mode. Independent of the
way the NN model is treated, the worst result is always complete loss of valid
sequences. While achieving success rates of 100 % is still possible, averages
stay below 85 %. When treating the energy model the same way as for the
evaluation, averages are higher almost by 20%.
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Figure 3.11: Average folding probability for test set Ia. Probability of designed
sequences to fold into a requested structure. Whiskers and red dots have the
same meaning as in Fig. 3.10. Labels for methods have the same meaning as
in Fig. 3.10.

After success rates, Fig. 3.11 shows the average folding probabilities. brot
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shows similar behaviour as before. The default parameters score between
0.70 and 0.80 with some outliers around 0. The 14 missing targets serve as
an explanation here: while they are able to form canonical base pairs where
input structures need them, they are predicted with almost zero probability to
fold. A reason for those weak results may be a wrong setup of the simulation.
Other sequences for the unsolved targets are responsible for the 3 standard
deviations reaching down below 0.10. Every missed structure still produces
100 sequences which operate at low probabilities when calculated assuming
the target shape. As before, turning off the heterogeneity term shows an effect.
This time the average gets slightly better. This could mean, that the sequences
which do not fold into the target structure, still have a high probability towards
this conformation. Turning off the negative design term shows performance
as expected, going considerably down.

INFO-RNA shows that a 100% success rate does not always mean high
folding probability. For the probability mode, one outlier goes below 0.50,
probably pointing at a large ensemble for sequences of this structure. But 3
standard deviations show almost all of the sequences folding at above 0.55.
In MFE mode INFO-RNA performs with a wide spread as expectable from its
mixed success rates.

For RNA-SSD in Fig. 3.11 the highest probabilities stay below 0.90. Further,
getting down to 0 is not an outlier anymore but within 3 standard deviations
of all results. The overall average stays below 0.35.

Top ranking probabilities for test set Ia are produced by RNAinverse in prob-
ability mode. The success rates are similar to INFO-RNA but with some out-
liers. Here the average folding probability goes above 0.90. The 3 standard
deviations shown stay between 1 and 0.60 and the weakest outlier comes at
0.55. This does look better than INFO-RNA. In contrast for the MFE mode,
one could speak of the worst results in the comparison. Regardless of the ex-
act usage of the energy model, when optimising MFE the highest probability
is achieved by an outlier at 0.70. The upper border of 3 standard deviations
stop around 0.55 and the averages stay below 0.20.

Fig. 3.12 shows the probability of true negative sequences to fold into a re-
quested target structure. On a first impression, brot does not look well. An av-
erage probability of 0.12 seems low enough to conclude that those sequences
are not easily fixed to serve as valid solution. But from the success rates we
know that 14 targets are covered here and there are only five more for which
true negatives were produced. One of those missed structures is covered by a
few sequences which fold at a probability of 0.44. While this value vanishes
when averaging, this is the highest value amongst all tested tools for test set
Ia. Without the negative design term the standard deviation gets bigger but
this may be just because there are much more true negatives to count on. We
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Figure 3.12: Average folding probability of true negatives for test set Ia. Prob-
ability of sequences to fold into a test structure, predicted by RNAfold with a
different shape at higher probability. Whiskers and red dots have the same
meaning as in Fig. 3.10. Labels for methods have the same meaning as in
Fig. 3.10. INFO-RNA2-fp is missing in the set, since all RNAfold predictions
comply with the desired shape.
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find sequences for 244 target structures. The missing heterogeneity term looks
again similar to brot. It comes with seven more samples, not being predicted
into the target structure. With heterogeneity turned on, they do fold as ex-
pected, so if this term does not produce completely different sequences, they
should still gain some probability towards valid results.

For INFO-RNA only results of the MFE mode are left. The probability mode
does not produce any true negatives. The highest probability is reached by an
outlier at 0.40 and the average stays below 0.10. 0.40 is also almost the
average folding probability in Fig. 3.11.

As the positive folding probabilities look similar to INFO-RNA, the probabil-
ities of true negatives of RNA-SSD to fold into a target structure look similar
again. What is missing is a high outlier, at maximum RNA-SSD stays below
0.30.

RNAinverse in probability mode comes with the highest average. But only
for three structures true negatives are produced. Those are visible as outliers
in the success rate and folding probability plot. The probabilities are different
to the latter plot, since here we do only count sequences failed to fold. Average
folding probabilities are instead produced from all sequences for a structure.
In MFE mode, both variants of RNAinverse operate at low averages and stan-
dard deviations. Only one outlier goes above 0.25. When running RNAinverse
with the energy model as used by probability mode, no values higher than
0.10 are observed. When evaluated with RNAfold for probabilities, one would
expect a better result when treating energies the same way, not the opposite.

The ensemble distance presented in Fig. 3.13 confirms the trends from the
other plots. brot gains an average defect of 0.01 but the space of 3 standard
deviations is populated until 0.11. Outliers can be found up to 0.30. Those
originate from the 14 structures without well-predicted results. But an average
ensemble defect of 0.30 could mean that the majority of base pairs agrees
with the target at reasonable probability. What we do not learn from the
ensemble defect is the nature of weak base pairs: are single pairs spread over
the structure wrong or complete stretches like a flipped helix? If the negative
design term is turned off, the average goes up to 0.06 and also the standard
deviation is considerably higher. Together with outliers going up to 0.40, this
shows that having the negative design term has a positive effect. Without the
heterogeneity term, the average is similar as with default parameters, while
outliers can be seen above 0.40. The standard deviation is also higher. This
may be an effect from the seven additional sequences failing to fold into the
target shape.

Results for INFO-RNA in probability mode are as one would expect from
the success rates. Obviously, ensemble defect will not be 0 everywhere with
the spread of folding probabilities. But still, averages, standard deviation and
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Figure 3.13: Average normalised ensemble defect for test set Ia. The average is
calculated over all test structures and for all runs of each tool. This includes
all designed sequences, regardless if they are corresponding to their input
structure. For each structure, ensemble defect is normalised by size. Whiskers
and red dots have the same meaning as in Fig. 3.10. Labels for methods have
the same meaning as in Fig. 3.10.
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3. Sequence Design

outliers are very close together. MFE mode also looks reasonable considering
its folding probabilities. The one outlier above 0.60 is the greatest distance of
the whole comparison.

With its success rate, the ensemble distance of RNA-SSD occurs a bit to big.
When comparing folding probabilities, RNA-SSD already looks similar to brot
without negative design. The same holds here, while RNA-SSD comes with
outliers at lower distance.

RNAinverse in probability mode is very similar to INFO-RNA. If low per-
formance at folding probability is an indicator for a high ensemble defect, this
would explain results for RNAinverse in MFE mode.

If we would have to choose an overall “winner” for test set Ia, this would
be RNAinverse in probability mode since it has the highest average folding prob-
ability. Also true negatives fold into the right shapes with highest probabilities
when compared to the other programs. For the ensemble defect it ties with
INFO-RNA and for the success rate INFO-RNA is slightly better. Therefore
INFO-RNA would be the second best followed by brot. While for the true
negative folding probability brot shows the second highest average. RNA-SSD
does not perform as well as other tools or configurations of them.

This is not a bad result for brot. This particular set of structures was de-
signed, and most likely also optimised, for INFO-RNA. RNAinverse just looks
better for us, since we switched the evaluation from MFE to probability mode.
For this mode, RNAinverse does not split a structure and solves it in separa-
tion but samples the full sequence. This may be slow but still means iterating
the full sequence until a matching structure is predicted. INFO-RNA does not
explain how exactly its probability mode works. They may use the partition
function either to evaluate sequences or for ranking candidates for the next
search step.

Where brot does not look that well is on the 14 missed targets. Bad struc-
tures in test set Ia are small and simple enough for manual inspection. None of
the sequences predicted for these structures produced a completely different
base pairing pattern. For some, helices are to short or to long and two placed
a helix in a different location. Looking at the annealing plots, like the example
in Fig. 3.9, descent of entropy looked rather steep for most of those targets.
Since this is a hint for too fast cooling or short simulation time, brot was re-
run with increased cooling threshold sc and a lower entropy boundary. This
already solved 9 of the targets. Since the remaining ones still had base pairs
in wrong positions, they were run again with increased negative design term.
That left one target still refusing to fold into the requested structure. That
structure contains two neighbouring bulge loops and a hairpin. The solution
found by SCMF has the lowest possible energy for bulge loops. When predict-
ing the structure the two loops are merged into one internal loop. Looking
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up the energies, it turned out that the particular sequence is a corner case in
the NN model. While the parameters for the sequence are optimal when con-
sidered as a bulge loop, the same sequence has a lower energy when assuming
an internal loop. The reason is a large bonus given to an internal loop, when
the first mismatching bases of the loop are GA. Overcoming this energy barrier
by the negative design term means scaling it so high that it starts affecting the
rest of the structure. When fixing the G in the GA tuple to a C the internal loop
loses its bonus and a valid solution is found by brot.

Fixing the 14 missed targets is rather simple, but for the last case. This
means, while running an artificial mass test brot does not perform best, but
when considering a more real-world scenario it offers the realistic chance to
fix problems. The numbers for the annealing plots needed to see how well the
simulation worked, can be produced by brot with a command line option. The
parameters to be changed are also accessible and our tool works fast enough
to rerun. Only the last structure requires special knowledge about the whole
method and the energy parameters. But the solution, fixing a base, is simple
enough to explain to users if they do not do this by themselves. The other
tools in this survey offer a lot less parameters to influence the result, if any
at all. They also do not give out any information what may be wrong in the
prediction process.

In the additional evaluation for the energy terms of brot, switching neg-
ative design on and off shows expected behaviour: without an extra term to
avoid unintended interactions, results get considerably worse. For the hetero-
geneity term the effects are not nearly as big. While this is how the term is
intended, it seems that activating this contribution yields little or no improve-
ment in predicted stability. This should produce sequences of higher variability.
Looking at repeat numbers, this can be confirmed. The longest single base re-
petition by brot is 18nt for both cases. However, without the heterogeneity
term this occurs 300 times for test set Ia, while when turned on we only see 4
such sequences. Examining the lower end, we find 3314 repeats of size 3 with
the term enabled and 96 528 without.

Test Set Ib

Test set Ib is the second set of artificial structures provided by Busch & Back-
ofen. It was designed with the same tool as test set Ia for sizes from 300 to
698 nucleotides. More information on the exact features was not provided.
[100] lists all 300 structures of this set.

The whole evaluation utilises RNAfold in probability mode. brot is tested
with its default parameters as shown in Table 3.1. INFO-RNA and RNAinverse
run in both modes, MFE and probability.
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Figure 3.14: Success rate for test set Ib. Fractions of sequences which fold into
the requested structure. All sequences were tested with RNAfold in probability
mode. Diamonds mark the average success rate considering all structures of
the test set. Whiskers show the spread of individual success rates within 3
standard deviations in both directions. Outliers are marked by red circles.
INFO-RNA2-fp shows results for INFO-RNA version 2 in probability mode,
INFO-RNA2-fm represents MFE mode. RNAinverse was evaluated in probab-
ility (-p) and MFE (-d2) mode. For the latter one, the NN model was applied
the same way as in probability mode.
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3.3 Results

The success rates shown in Fig. 3.14 place brot behind RNAinverse in prob-
ability mode with an average above 50%. The results are spread over the full
scale with 140 sequences still gaining a success rate bigger than 90 %. INFO-
RNA in probability mode has an average success rate of above 30%, with 78
sequences being right more than 90 % of the time. A drop on averages can
be seen for INFO-RNA and RNAinverse running in MFE mode. Both stay below
10 % with RNAinverse being close to 0. The maximum achieved by INFO-RNA
is 78 %. RNA-SSD comes with a slightly higher average below 20 % but a max-
imum value of 65% for one target. RNAinverse in probability mode gets close
to 100%.
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Figure 3.15: Average normalised ensemble defect for test set Ib. The average is
calculated over all test structures and for all runs of each tool. This includes
all designed sequences, regardless if they are corresponding to their input
structure. For each structure, ensemble defect is normalised by size. Whiskers
and red dots have the same meaning as in Fig. 3.14. Labels for methods have
the same meaning as in Fig. 3.14.

The picture drawn by the ensemble distance in Fig. 3.15 follows the success
rate. RNAinverse is close to 0 and brot at 0.03 as an average and one outlier
at 0.20. INFO-RNA in probability mode is above 0.10 with its average but
spreading up to 0.40 within 3 standard deviations. RNA-SSD stays around
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3. Sequence Design

0.10 with its average but goes down to 0.02 by its minimum. In MFE mode,
INFO-RNA and RNAinverse produce the highest averages.
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Figure 3.16: Average folding probability for test set Ib. Probability of designed
sequences to fold into a requested structure. Whiskers and red dots have the
same meaning as in Fig. 3.14. Labels for methods have the same meaning as
in Fig. 3.14.

The folding probabilities in Fig. 3.16 show brot at 0.15 behind INFO-RNA
in probability mode at 0.18 for averages. RNAinverse in probability mode takes
the lead at 0.68. The highest outlier of brot is above 0.80 but still below 3
standard deviations of INFO-RNA. With 0.95 this is slightly higher than RNAin-
verse at 0.93. While brot and INFO-RNA both produce sequences with a fold-
ing probability of 0, the lowest probability of RNAinverse is 0.23. The three
remaining approaches purely driven by MFE stay close to 0.

Probabilities of true negatives to fold into the desired shape for test set
Ib always stay below 0.50. In Fig. 3.17, the folding probabilities of all the
MFE based approaches are almost 0. There are some outliers which get some
probability but not considerably higher. The average of INFO-RNA in prob-
ability mode is also almost 0. However, the highest outlier gets up to about
0.25, while the population within 3 standard deviations ends at a probability
of 0.07. brot only looks slightly better with an average of 0.03 and 3 standard
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Figure 3.17: Average folding probability of true negatives for test set Ib. Prob-
ability of sequences to fold into a test structure, predicted by RNAfold with a
different shape at higher probability. Whiskers and red dots have the same
meaning as in Fig. 3.14. Labels for methods have the same meaning as in
Fig. 3.14.
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3. Sequence Design

deviations up to 0.17. Its outlier at almost 0.45 is the highest value seen here.
The few sequences for RNAinverse not predicted with the requested fold, gain
an average of 0.12.

RNAinverse delivers a remarkable result for test set Ib. It definitively comes
with highest success rates and folding probabilities. But the explanation is
rather simple. In probability mode, RNAinverse does not split up the input
structure anymore, but tries to optimise the complete sequence in every step.
Thereby the design strategy is not complex but rather operating “at random”.
The initial sequence is filled with random bases and base pairs where needed,
mutations are also introduced randomly. Scoring of a new sequence is done
with the exactly same method we use to evaluate results. This means, given
infinite time, RNAinverse should always find a solution. There are a few missed
runs for some targets of this test set, since RNAinverse restricts itself concerning
time. After a certain number of steps it will restart the design process and
after several restarts, it will stop completely even if no answer was found. The
running time is a weak spot, here. In the evaluation by Busch & Backofen,
RNAinverse in probability mode was excluded for test set Ib since it “took too
long”. We found an average running time of 1hour per target structure and a
maximum of 5hours.

Because of the change in performance between test sets Ia and Ib we had
a closer look at how many targets were left without any valid solution here.
With 217 unsolved structures, RNAinverse in MFE mode seems to have a gen-
eral problem. The other two MFE based tools, INFO-RNA and RNA-SSD, seem
far better, only missing 94 and 14 targets. But considering the low success
rates shows that for the vast majority of runs those two tools also fail. One
could say they are finding a valid solution only as an exception. brot is missing
104 and INFO-RNA in probability mode 160 targets. Extending the simulation
time for brot would reduce the loss to 66 structures while at the same time
the overall success rate goes down below 50 %. To get an idea of what tar-
gets the latter two tools fail at, we checked the size of missed structures and
their composition concerning structural features. For both tools, no pattern
seems to exist. Sequences unable to fold into the desired shape, are produced
between 300 to 698 nt. Also all structural features are present in those targets
at the same time. Multiloops, marked as “complicated” by Busch & Backofen,
are present in those structures, several times with multiple occurrences. But
this should not be a general problem. Looking at the solved targets the picture
is more than similar. Amongst them, all features are also present, multiloops
again with multiple manifestations per structure. The only thing one can see
is INFO-RNA not predicting any usable sequence above 420nt.
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Test Set Ic

The last set of artificial structures has 2 members which are closely related to
each other and designed to be difficult cases. Structure Ic-1:
.(((....)))...(((.(((.(((...))).(((...))).(((...))).))).(...).(((...))).))).

which is described by Busch & Backofen as rather complicated multiloop be-
cause of the single base pair towards its 5’ end. The second structure Ic-2
fills the small stem with two more base pairs and therefore shifts a hairpin
downstream:
.(((....)))...(((.(((.(((...))).(((...))).(((...))).))).(((...))).(((...))).))).

The first structure could not be solved by any of the tools within 100 runs.
RNAinverse in probability mode at least gets to a very low ensemble defect of
0.08 while brot is in the back of the field with 0.33. Only RNAinverse in MFE
mode is worse at 0.46. However, with a folding probability of 0 for every tool
this structure does seem to be a hard target. Amongst the true negatives the
probability to fold into the desired shape was always 0 for all methods.

brot also found no valid solution, even after manually trying out non-
default parameters. Applying slower cooling gives some improvement. One
can also put parts of the solution in place an rerun the simulation. To this end,
positions 42 and 62 in the sequence where both fixed to C, yielding a base pair
distance of 1. Obviously this improves folding probabilities and the ensemble
defect, but the single pair stem still does not form when predicting a fold. De-
signing such stems is not impossible for brot since they have been observed
when running on various examples.

The results change when looking at the second target structure of test set Ic.
This is almost the same as Ic-1 except for the single stem, which is extended to
a helix of length three. For this setup, the only tools remaining with a success
rate of 0 are brot and RNAinverse in MFE mode. INFO-RNA in probability mode
scores a 100 %, MFE mode 64%, RNA-SSD 53% and RNAinverse in probability
mode goes up to 89 %. Ensemble defect only stays low for RNAinverse, almost
unchanged for brot but ranges from 0.11 to 0.50 for the other tools. The
folding probabilities only improve slightly. brot still operates at 0, but INFO-
RNA with its perfect success rate only goes up to 0.05. RNAinverse takes the
lead with 0.11, everybody else stays between 0 and 0.05.

Since all other tools produced some sequences able to fold, one of the
results of brot shown in Fig. 3.18 was examined more closely. Gibbs energy
of the sequence in the requested structure is −33.9kcal mol−1 with a folding
probability of 0. The predicted fold has an energy of −41.6 kcal mol−1 at a
probability of 0.36. When looking at the stems of size three, it stands out
that all of them are built by a GCC - GGC pattern. This easily increases the
populations of alternative folds. A simple idea trying to break the wrong fold
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CGCCGAAAGGCAACGCCAGCCAGCCACAGGCAGCCACAGGCAGCCACAGGCAGGCAGCCACAGGCAGCCACAGGCAGGCA

.(((....)))...(((.(((.(((...))).(((...))).(((...))).))).(((...))).(((...))).))).

.(((....)))...(((.(((.(((...(((.(((...))).)))...))).(((.(((...))).)))...))).))).

Figure 3.18: Sequence designed for structure Ic-2. A sequence as designed by
brot using default parameters. The first Vienna string below the sequence is
the requested structure. The second Vienna string is the predicted structure
by RNAfold in probability mode. Differing pairing sites are highlighted in red.

CGCCGAAAGGCAACGCCAGCCAGCCACAGGCAGCCACAGGCACCCACAGGGAGGCAGCCACAGGCACCCACAGGGAGGCA

Figure 3.19: Sequence designed for structure Ic-2 after fixing two sites. Result
of SCMF sequence design after fixing C for positions 42 and 66. Positions are
highlighted in red.

is to swap some of those stretches into CGG - CCG. But this only slightly lowers
the energy and does not increase folding probability. At least the prediction
of the wrong structure loses folding probability. Inverting too many of the
stems again leads to a bigger ensemble of alternative folds. Therefore what
is needed are different patterns at some positions in the sequence. As for test
set Ia this can be achieved by fixing bases for the simulation and thus making
the search space smaller. In terms of SCMF this means lowering the number
of base compositions for a structural feature to be chosen from the NN model.
For the more complex structure Ic-2, this was done in two positions: a C was
fixed for position 42 and 66. Fig. 3.19 shows the predicted sequence. This
leads to an energy of −33.10kcal mol−1 and a folding probability of 0.04. The
probability seems to be rather low but stays comparable to the 0.05 of INFO-
RNA. The problem here is again, SCMF goes for a low energy considering a
hairpin loop, while an internal loop of same sequence scores better. This may
mean an extension of the negative design term.

Test Set IIa

This set of structures is predicted for ribosomal RNA sequences obtained from
the Ribosomal Database Project [102]. It is the same set of sequences as
used by Busch & Backofen [59] and Andronescu et al. [60]. Predictions of
structures were done with RNAfold using probability instead of MFE mode. This
affects how dangling ends are treated by the NN model. How exactly RNAfold
was run in the former evaluations could not be recovered. But in theory, this
still leaves an advantage to the other methods excluding SCMF. They apply
the same tool to predict the structures for designing sequences. So for them at
least one sequence, the biological one, exists that will fold as intended.

The set consists of 24 structures of lengths between 260 and 1475 bases.
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They are listed together with identifiers and translated RNA sequences at
[100].

Both variants of RNAinverse are excluded for this test set because the run-
ning time per sequence was incomparably high.
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Figure 3.20: Success rate for test set IIa. Fractions of sequences which fold
into the requested structure. All sequences were tested with RNAfold in prob-
ability mode. Diamonds mark the average success rate considering all struc-
tures of the test set. Whiskers show the spread of individual success rates
within 3 standard deviations in both directions. Outliers are marked by red
circles. INFO-RNA2-fp shows results for INFO-RNA version 2 in probability
mode, INFO-RNA2-fm represents MFE mode.

The success rates in Fig. 3.20 look different to what is the outcome for the
completely artificial test set Ia. While here test structures can not be optim-
ised for a certain tool in this test set, sequences were chosen to present the
performance of INFO-RNA and RNA-SSD. brot outperforms both of them with
the highest average of almost 40 % or 5 structures with a 100 % success rate.
INFO-RNA in probability mode gets above 20% and 3 structures without any
failed sequence. The MFE mode stops below an average of 10 % and does not
solve any structure a 100 times successfully. RNA-SSD does achieve more than
10% but also has not a single 100 % hit. Instead it returned no valid solution
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at all for 15 structures. The MFE mode of INFO-RNA loses 18 targets, while
the probability mode only slightly better with a count of 17. Again the SCMF
method has a better coverage of 50 % of the 24 test structures with at least
partially valid answers in 100 tries.
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Figure 3.21: Average normalised ensemble defect for test set IIa. The average is
calculated over all test structures and for all runs of each tool. This includes
all designed sequences, regardless if they are corresponding to their input
structure. For each structure, ensemble defect is normalised by size. Whiskers
and red dots have the same meaning as in Fig. 3.20. Labels for methods have
the same meaning as in Fig. 3.20.

For the ensemble distance shown in Fig. 3.21, brot has visibly the lowest
average. It stays as low as 0.02, with a very close standard deviation, while
both configurations of INFO-RNA operate at 0.23. In probability mode it goes
close to 0 by three standard deviations, but at the same time has an upper
limit of 0.53. RNA-SSD produces an average ensemble defect of 0.17 without
low outliers or extended standard deviation.

The probability plot in Fig. 3.22 does not show any high averages. The lead
is taken by the SCMF method again but this also only achieves an average of
0.20. All other tools stay below 0.10. When it comes to three standard de-
viations, brot and INFO-RNA in probability mode look more promising. They
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Figure 3.22: Average folding probability for test set IIa. Probability of designed
sequences to fold into a requested structure. Whiskers and red dots have the
same meaning as in Fig. 3.20. Labels for methods have the same meaning as
in Fig. 3.20.
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spread up to 0.80 and 0.75. But both tools also see probabilities of 0. Averages
for the remaining tools stay very close to 0.
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Figure 3.23: Average folding probability of true negatives for test set IIa. Prob-
ability of sequences to fold into a test structure, predicted by RNAfold with a
different shape at higher probability. Whiskers and red dots have the same
meaning as in Fig. 3.20. Labels for methods have the same meaning as in
Fig. 3.20.

Fig. 3.23 shows the probability for true negatives to fold into a target struc-
ture. Those are sequences which predict to not fold into the target shape.
For all tools but brot, results look like once a predicted fold does not match,
sequences would be hard to repair. Methods using the MFE approach get a
probability of 0. This could mean that true negative sequences are not able to
form base pairs between the right positions. INFO-RNA in probability mode is
able to produce probabilities, but a value of 0.02 is already a high outlier. The
average stays close to 0. The average of brot is 0.06. While this is still low, by
three standard deviations a probability of 0.33 is achieved.

After exploring all the tested values, set IIa seems to be especially hard
when compared to former ones. Here, MFE based methods seem to not work
well anymore. Their probabilities go down, literally to zero, while the en-
semble defect goes up in comparison to former tests. INFO-RNA run in probab-
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ility mode does perform slightly better but still stays behind brot. One reason
for the change in performance could be the overall occurrence of the struc-
tures. While the artificial structures from set Ia and many in set Ib look rather
linear, the ones predicted for biological sequences seem to have more mul-
tiloops. This may interfere with the splitting strategies of other methods than
SCMF, which operates on the full structure.

Test Set IIb

This is the second set of biological sequences with predicted structures from
Busch & Backofen [59]. The set comes again from the Ribosomal Database
Project [102] and covers 308 annotated eukaryotic rRNA sequences. The
lengths vary from 220 to 1975 bases. The prediction procedure is the same as
for test set IIa. Sequences and structures are listed at [100].

We only evaluated the SCMF method with this test set. This decision was
made after considering running times. Following test runs, a rough time esti-
mate for brot to calculate 100 sequences for the 308 structures was 2000 CPU
hours. While brot runs only a couple of minutes per structure, it seemed like
the other tools need about an hour or more for the same task. This means
30 800 CPU hours per tools or 92 400 hours combined. Finally the other tools
were dropped because of lack of resources.

Since there is only data for one tool, all plots are presented in Fig. 3.24 in
a compact way.

Fig. 3.24(a) shows the success rate of brot for test set IIb. The average is
slightly above 30 % and the three standard deviations span the full scale. That
means that producing 100 sequences predicted into the target fold is not an
outlier. But also structures exist without a valid solution. In total, 92 targets
are covered a 100 times by a qualified sequence, while in 205 cases success
rate was 0.

That sequences for these 205 targets may not be completely bad is the
outcome of Fig. 3.24(b). The average ensemble defect is 0.02 with three stan-
dard deviations going up to 0.05. Above this, there is only a single outlier but
staying below 0.10. This means that only a few base pairs seem to mismatch
throughout most of the ensembles of all sequences.

Folding probabilities in Fig. 3.24(c) seem to be low for this test set. The
three standard deviations do not even reach 0.5 and the average stays below
0.10. Going to more decent values is always an outlier.

But looking at the values only computed for sequences predicted to not
fold into the target shape, could be an explanation. Fig. 3.24(d) covers 205
targets without any solution. Just numerically this can pull the scores down
when averaging over all sequences. Especially with the low values found here.
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Figure 3.24: Combined results for test set IIb. Results of the SCMF method. (a)
Average success rate, fractions of sequences predicted by RNAfold in probabil-
ity mode to fold into a requested structure. (b) Average normalised ensemble
defect, calculated for all sequences designed for this test set without consid-
ering if they predict to fold as requested. Results are normalised by structure
size. (c) Average probability of sequences to fold assuming target structures.
(d) Average probability of sequences with a different shape than the target
one being more probable. For every plot, diamonds mark the mean, whiskers
show the spread of three standard deviations and outliers are highlighted as
red circles.
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3.3 Results

As test set IIa, redesigning biological sequences may seem harder than ar-
tificial structures. But almost one third of the set was successfully covered
without manual adjustment of parameters. For the missing targets, the en-
semble defect, accumulated over the whole set, seems to be low enough that
not much is needed to fix. When one thinks of a more relevant scenario of
designing a single sequence, rather than 308, this is an important result of
this evaluation.

Sequence Compositions

This section of the evaluation focuses on how predicted sequences look like.
Fig. 3.25 counts how many different sequences are produced for a structure
and Fig. 3.26 measures their GC content. For both plots, all sequences able
to form base pairs as occur in the corresponding target structure are used.
Sequences which are unable to fold are excluded since those are obviously
wrong answers. Structure prediction is not considered as an external filter
here. Results are based on all test sets since the values do not change much
when investigated per set.

Creating a different sequence every time brot is run, is only an outlier in
Fig. 3.25. While for hard targets it seems unlikely to produce a completely
new and still foldable sequence on every try, outliers go on down to 80. Below
begins the range of three standard deviations, including targets where only a
single sequence is predicted. On average, the SCMF method creates almost 20
different sequences per structure. This means running brot six times should
produce two different sequences.

The other tools all have higher averages, around 70, RNAinverse even above
90. INFO-RNA and RNA-SSD spread within the full range by three standard
deviations. This means they also produce single answers for some targets.
RNAinverse in both modes only has outliers, spreading around the average of
brot.

The GC contents shown in Fig. 3.26 on average stay between 0.50 and 0.80.
The minimum is achieved by RNAinverse, the maximum by INFO-RNA, both
tools run in MFE mode. INFO-RNA exceeds its own GC content of 0.80 by
three standard deviations and outliers above 0.90. All other tools always stay
below 0.85. RNA-SSD provides an outlier with the minimum GC content of
0.41.

brot has an average of 0.74 but three standard deviations include a lower
border of 0.64. By outliers it even gets down to 0.55.

In terms of number of different sequences produced per target, brot seems
to have room for improvement. Considering results for the artificial test sets,
it does not seem to be harmful to produce more unique sequences. For the GC
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Figure 3.25: Average no. of unique sequences predicted per target. Only se-
quences which are compatible with the desired fold concerning Watson-Crick
and GU pairs are counted. Data is used over all test sets. Diamonds mark
the averages. Whiskers show the spread within 3 standard deviations in both
directions. Outliers are marked by red circles. INFO-RNA2-fp shows results
for INFO-RNA version 2 in probability mode, INFO-RNA2-fm represents MFE
mode. RNAinverse was evaluated in probability (-p) and MFE (-d2) mode. For
the latter one, the NN model was applied the same way as in probability mode.
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Figure 3.26: Average GC content of designed sequences. The share of GC nuc-
leotides is calculated for each tool, only incorporating sequences which are
compatible with the desired fold concerning Watson-Crick and GU pairs. Also
redundancy is removed from sets of predicted sequences. Sequences are col-
lected over all test sets. Whiskers and red dots have the same meaning as in
Fig. 3.25. Labels for methods have the same meaning as in Fig. 3.25.
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3. Sequence Design

content all tools seem to be rather close together, while behaviour like RNA-
SSD would be preferable if not disturbing performance.

Sequence Identities

When the methods compared produce different sequences for the same target,
it is interesting to see how similar they still are. The same holds for sequences
designed by different methods for the same target.
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Figure 3.27: Average identity of sequences predicted for a target. Sequence
identity is only measured between different sequences for the same test struc-
ture. Furthermore, only unique sequences are compared. Data is used over
all test sets. Diamonds mark the averages. Whiskers show the spread within 3
standard deviations in both directions. Outliers are marked by red circles.
INFO-RNA2-fp shows results for INFO-RNA version 2 in probability mode,
INFO-RNA2-fm represents MFE mode. RNAinverse was evaluated in probab-
ility (-p) and MFE (-d2) mode. For the latter one, the NN model was applied
the same way as in probability mode.

First, Fig. 3.27 shows identities per tool. That is, average similarities for
sequences of the same target by the same tool. An average of above 0.95
for brot means that only a few bases get exchanged in two sequences for a
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3.3 Results

structure. Three standard deviations reach 0.99. By outliers, not even a value
below 0.80 is populated.

In contrast RNAinverse in MFE mode has an average below 0.30. Outliers
are not found above 0.35. Only RNA-SSD goes to a lower 0.12 by an outlier.
The average is 0.39 and high outliers occur above 0.55. In MFE mode the
average of INFO-RNA is 0.85 and one outlier is seen at 0.95. With low outliers,
sequence identity goes down to almost 0.70. In probability mode, INFO-RNA
and RNAinverse look worse than their MFE pendants. RNAinverse has an average
identity of 0.65 and populates the area between 0.50 to 0.80 by three standard
deviations and outliers. INFO-RNA has an average of 0.91, going up to 0.98
by three standard deviations.

se
qu

en
ce

 id
en

tit
y

●
●●●●
●
●●●●●●
●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●
●●●●●
●

●
●
●●●●●●●
●●●●●●●●
●●●
●●●●
●●●●●
●●●●●●●●●●●
●●●●
●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●
●●●

●●●
●●
●●●●●●●
●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●
●

●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●
●●
●

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IN
FO−R

NA2−
fp

IN
FO−R

NA2−
fm

RNA−S
SD

RNAinv
er

se
−p

RNAinv
er

se
−d

2

mean within 3σ ● outlier

Figure 3.28: Average sequence identity between various tools and the SCMF
method. Sequence identity is measured between sequences, designed for the
same structure, of brot and the tools compared here. Only unique sequences
of each tool are considered. Whiskers and red dots have the same meaning as
in Fig. 3.27. Labels for methods have the same meaning as in Fig. 3.27.

In Fig. 3.28 sequences from the other tools are compared to the SCMF
method. Only unique sequences are used which are compatible with a target.
To match with brot, only sequences for the same target are used. That is, we
compare unique sequences for the same target of a different method and our
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SCMF method.
The most different sequences are produced by RNAinverse in MFE mode. By

outliers, it gets close to 0 which would mean a different base in almost every
position. The average identity is 0.28. Outliers exist with values up to 0.63.
Highest values are found for INFO-RNA in probability mode. The average is
close to 0.60, its maximum by an outlier close to 0.90. The MFE mode looks
similar with low outliers at 0.25. The minimum for RNA-SSD is below 0.10
and the average at 0.32. RNAinverse in probability mode looks similar to INFO-
RNA in MFE mode with more extreme outliers.

Running Times

Since all tools but RNAinverse return a sequence within a decent amount of
time, all available data will be used for a quick overview. This means that for
brot, also running times are included for test sets IIa and IIb, which did not
cover all tools. INFO-RNA and RNA-SSD have measurements for test set IIa,
while RNAinverse only has data for sets Ia and Ib.

The averaged running times per run in Fig. 3.29 show the SCMF method
ahead of the others. While there are more low average values, three standard
deviations plus the outliers are considerably lower than for any other tool. For
brot it is already an outlier if it runs for 15minutes. In the best case it returns
instantly. With an average of 46 seconds, it is still more than twice as fast as
RNAinverse in MFE mode with 110 seconds.

INFO-RNA in MFE mode has an average of 233 seconds but as outliers
already sees runs taking longer than an hour, even without test set IIb. In prob-
ability mode, the average raises to 2362seconds and times of over an hour are
included in three standard deviations. RNA-SSD does better in terms of aver-
age with 412seconds and a longest time of 37minutes. The big outlier in the
field is RNAinverse in probability mode. While in MFE mode, the highest value
is just a bit more than an hour, the maximum running time in the other mode
is close to 5.5hours. By three standard deviations, a time between 2.5 hours
and almost 0 seconds is covered. The average is 1728 seconds. Included for all
tools within three standard deviations are cases where the result is delivered
almost immediately.

Discussion

In a quick summary of the performance results, brot is not outstandingly better
than the other tools on the artificial test sets Ia, Ib and Ic. But also it is not
left behind, on set Ib it is only outmatched by RNAinverse. In probability mode,
this tool is not really doing sequence design but sampling. Without splitting,
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Figure 3.29: Average running times. For each tool, running times are shown
as average of a 100 runs per sequence. For each tool, all test sets it was eval-
uated for are used. Diamonds mark the averages. Whiskers show the spread
within 3 standard deviations in both directions. Outliers are marked by red
circles. INFO-RNA2-fp shows results for INFO-RNA version 2 in probability
mode, INFO-RNA2-fm represents MFE mode. RNAinverse was evaluated in
probability (-p) and MFE (-d2) mode. For the latter one, the NN model was
applied the same way as in probability mode.
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it exchanges nucleotides in the sequence on mismatching base pairs, which
basically means enumerating sequences and testing if they fold as intended. By
the running times it is clear that enumerating only works for small sequences.
INFO-RNA works well in probability mode, especially on the smaller structures
of set Ia while for set Ib it falls behind brot. The same holds for the MFE mode.
Only for set Ia it outperforms the other tools, on other sets it falls behind.
RNA-SSD looks like it is rivalling INFO-RNA. Being good on the first test set,
afterwards it ranks last against INFO-RNA in MFE mode. RNAinverse in MFE
mode looks very different to its probability mode. It never performs better
than any of the other tools even when treating the NN model the same way
as RNAfold in probability mode. Also it is only fast enough for the artificial
test sets. When it gets to the bigger and more complex structures based on
biological sequences, it gets too slow to compete with the others.

For test set Ic brot and RNAinverse in MFE mode are the only ones to find no
answer. Since the second structure of the set is marked as “complicated mul-
tiloop”, RNAinverse may fail because the splitting strategy could be inadequate.
While designing the single branches of the loop, possible cross-interactions are
not considered and may prevent joined subsequences from folding correctly.
INFO-RNA and RNA-SSD seem to have the better strategy assembling the final
sequence.

On test set IIa, based on biological sequences, all tools perform worse than
brot. These structures were not designed around INFO-RNA or any other
tool, those are predictions on given sequences. While the artificial structures
look quite linear, many of the predicted ones seem to have more complicated
shapes featuring multiple multiloops. This could be a scenario to complex for
the more advanced splitting strategies behind INFO-RNA and RNA-SSD. With
every multiloop, the possibilities for unforeseen interactions by a subsequences
increase. Especially at the point of joining two multiloop-sequences, wrong
base pairs can easily disturb the overall shape of the structure. Since branching
loops are joined in later steps of the procedure, such an event would mean
throwing away a lot of already made steps. Also if a tool needs to redesign a
subsequence, nothing prevents it from running into the same problem again,
so the whole process gets infeasible. INFO-RNA tries to prevent bad moves by
ranking possible steps ahead. But a sequence for a whole multiloop without
knowledge about other components of the structure could already be a local
minimum to deep to get out that easily. It just takes more steps to assemble
such a loop than INFO-RNA looks ahead.

Splitting an input structure into smaller parts may prevent finding a com-
plete solution. But from ensemble distances it also seems like INFO-RNA,
RNAinverse and RNA-SSD do not try to find partially good answers. Whenever
success rates are not near perfect, the ensemble defect is worse than for brot.

146



5‘ 3‘

5‘3‘

(a) ∆G = 7.3kcal mol−1

3‘

5‘

5‘

3‘

(b) ∆G = 4.9 kcal mol−1

5‘ 3‘

5‘3‘

(c) ∆G = 7.3kcal mol−1

3‘

5‘

5‘

3‘

(d) ∆G = 6.4kcal mol−1

5‘ 3‘

5‘3‘

(e) ∆G = 9.3 kcal mol−1

3‘

5‘

5‘

3‘

(f) ∆G = 10.6kcal mol−1

Figure 3.30: Bulge & internal loop energies. Comparison of Gibbs energies
for bulge and internal loops populated with the same bases. (a) shows bases
GAGGC...GC as bulge loop and (b) GAGG...CGC as internal loop. (c) shows bases
GAACG...CC, (d) GAAC...GCC. (e) shows bases AAAUA...UU, (f) AAAU...AUU. While
for (a) to (b) the internal loop always gets the lower energy, for (e) and (f)
the bulge loop is more stable. Dots in the sequences indicate the 3’ to 5’
strand break in the figure. Thick black lines indicate base pairs. Energies were
calculated using RNAeval of the Vienna RNA package [15].
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3. Sequence Design

The trial and error approaches do not have a good sense for the quality of an
answer. Either a sequence does fold or a modification step is rejected until
some stop criterion. There is no means in choosing a second best solution, e. g.
optimise folding probabilities if the overall fold is not right. This would keep
the ensemble defect low while instead leaving mismatching sites alone drives
it up.

Fig. 3.30 delivers an example what may be done better. It shows bulge and
internal loops, paired by equal base populations and the Gibbs energies from
the NN model as calculated by RNAeval [15]. For bulge loops with three un-
paired nucleotides as in Fig. 3.30(a) and Fig. 3.30(c), 7.3kcal mol−1 is the min-
imum. By the same bases, 2× 1 internal loops in Fig. 3.30(b) and Fig. 3.30(d)
are formed at a lower energy. If we assume the design task to be a bulge loop
of size three, Fig. 3.30(a) and Fig. 3.30(c) are energetically favourable choices.
With Fig. 3.30(b) and Fig. 3.30(d) being loops of lower energy, these will be
preferred by a folding algorithm discarding the choice of nucleotides by trial
and error methods. If we ignore loops in Fig. 3.30(e) and Fig. 3.30(f), no per-
fect solution in finding the bulge loop may exist. In this case, INFO-RNA, RNA-
SSD and RNAinverse will stop trying at some point leaving the base population
in the state of the last try. What setup this is exactly, is undetermined. It only
depends on the order how sequence candidates are iterated rather than some
further optimisation criterion. If a tool starts with the best possible choice,
the last step may explore the worst possibility, affecting folding probability.
What would be a good strategy in this particular scenario, is minimising the
difference in energy between the bulge and internal loop. Fig. 3.30(c) and
Fig. 3.30(d) have a lower energy threshold to overcome than Fig. 3.30(a) and
Fig. 3.30(b). This makes forming a bulge loop at the particular position more
probable while not completely solving the issue. At least this would lower the
ensemble distance.

Fig. 3.30 also illustrates the problem of the SCMF method with the manu-
ally fixed sequences of test sets Ia and Ic. In both cases a sequence pattern is
selected for a certain structural motif which has a lower energy when folded
into a different conformation. When designing a bulge loop, this is the situ-
ation in Fig. 3.30(a) to Fig. 3.30(d). By Fig. 3.30(e) and Fig. 3.30(f) a solution
to the problem is provided. There the bulge loop has the lower energy making
it more favourable when folding than the corresponding internal loop. While
the force field of SCMF favours the lower energy bulge loops from Fig. 3.30(a)
and Fig. 3.30(c), the negative design term should fix the situation. This does
not happen since this term only prevents stacked base pairs in wrong positions.
It does not have the knowledge about any other motif. For the bulge loops all
positions are tested to not interact with wrong partners but any contribution
assuming an internal loop is not considered. That way the system converges
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to a state enabling the lowest energy bulge loop. Since having less guanines
in unpaired positions should be preferable to prevent false pairs, SCMF could
converge to the setup in Fig. 3.30(c). This still will not fold as intended but it
does lower the ensemble defect. A solution for this issue may be an extension
of the negative design term. For internal loops, they could be added as second
motif to be tested, making the computation of the term more complex. Given
the current speed brot operates at, this should be no problem. Considering
that the NN model may have more such cases for other structural features,
this could be not sufficient. A different solution would be to add all the pos-
sible bonuses for certain sequence patterns existing in the NN model to the
current negative design term.

In general it seems like that all methods lose performance on larger and
more complex structures. For the other methods the main reason seems to
be splitting up the input structures. For SCMF some missed targets could be
fixed by adapting parameters, enabling more conservative cooling schemes
and longer simulation times. This is a hint that the default parameters are
not optimal. Probably the structures used for the simplex optimisation are too
simple. Creating a new mix of easy and hard targets to optimise parameters
on should change the defaults to work better with the difficult cases.

One topic only covered by our method and partially by RNA-SSD is enfor-
cing some sequence composition. RNA-SSD provides the possibility to enforce
a certain GC level, we have implemented the heterogeneity term in SCMF. Be-
ing an artificial term, not targeting sequence quality directly, the most impor-
tant note is that it does not have a large effect on target stability. For test
set Ia results are very close having the heterogeneity term enabled or disabled.
However, it does for sure change the energy landscape and the path the system
takes on it. This includes visiting different minima while the term is paramet-
erised to still find a sequence for which the target structure lies in the middle
of a set of near-optimal similar structures. But scaling the heterogeneity factor
to high can still affect finding good solutions. We would also concede that
part of the benefit of this term is aesthetic. Predicted sequences do have less
repetitive regions which look extremely unlike biological sequences.

3.3.4 Case Studies

This section leaves the comparisons of the SCMF method behind and goes for
scenarios of special interest. Here we use structures with experimental evid-
ence instead of artificial setups. First, a ribosome is investigated as the largest
RNA structure one can find. The initial idea was mere curiosity if brot can
handle such a large system. After this, we have prepared structures with fea-
tures the other methods can not handle, namely pseudoknots. As a proof of

149
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concept, a sequence for a ribonuclease is discussed. The last example tests the
workflow from design to synthesis and experimental validation by collaborat-
ors [103]. This included the design itself, validation in silico, synthesis and
the analysis of the base pairing pattern of the molecule in vitro.

Ribosome

As largest structure, the 23 S rRNA of the 50 S ribosomal subunit of E. coli
[39] is used as an input to the SCMF method. This corresponds to the PDB
entry 1C2W used in the test set to evaluate the H-bond recognition method in
Chapter 2. An overview of the secondary structure is presented in Fig. 3.31,
taken as is from Mueller et al.. The list of base pairs in a format that brot un-
derstands, is provided at [100]. The point of interest in an RNA with 2904 nt,
are the vast possibilities of cross-talk between sites, making this a hard target.

Before finding a good solution, a first sequence was predicted using the
default parameters listed in Table 3.1. After around 2.6days, this produced an
answer incompatible with the input structure. Some positions were populated
with bases which can not form canonical base pairs as required by the 23 S
rRNA. Since the running time is to long for just testing multiple parameter
sets, the first step to improve the result was to improve the implementation
of SCMF, brot, itself. Earlier versions of brot always consider the full sys-
tem in every step of the simulation. That is, even already fixed sites will still
be evaluated while the outcome stays the same, a probability of 1 does not
change anymore. For smaller examples the influence of these extra calcula-
tions seemed to small to be considered as serious overhead. In contrast the
ribosome calculates slow having 2904nt and all together 808 structural fea-
tures. Since the number of steps is not to be cut, the time spent per step needs
to be reduced for a speed-up. This has been done for the final version of brot
as described in §3.2.5: fixed sites are not evaluated anymore, only considered
for contributions, and structural motifs are excluded from the simulation once
completely solved. This reduces the running time with default parameters to
12 minutes.

With the faster implementation, parameters could be tweaked to produce
a compatible sequence. For this large structure, a longer equilibration phase
at the beginning of the simulation was set by raising the start temperature
to 3. Used with default parameters, the emitted sequence scored a base pair
distance of 101 when predicted into the most probable structure. The corres-
ponding annealing plot showed a drop by more than half of the temperature
right after the equilibration phase. Entropy, decreasing slowly until this incid-
ent, jumped down 20 % afterwards. After an almost constant phase, the simu-
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Figure 3.31: 2D structures of 23 S and 5 S rRNA. Fig. 1 of Mueller et al. [39]
shows the 23 S and 5 S rRNA of the 50 S ribosomal subunit of E. coli (PDB
entry 1C2W) split into four regions. The 5 S structure is shown in the upper
right corner. The Vienna string corresponding to the 23 S rRNA is listed at
[100].
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3. Sequence Design

lation ended by another temperature jump. Certainly, fixing the system in two
big steps makes hitting local optima rather likely. Therefore parameters were
fitted into producing an almost linear curve for the sequence entropy decrease,
shown in Fig. 3.32. Different to default parameters are the start temperature
T = 4, the maximal cooling rate cmin = 0.97, the long term entropy ratio
βlong = 0.80 and the cooling threshold sc = 0.85. The whole simulation needs
89 steps until the entropy drops below the convergence threshold. During this
time, it decreases slowly, almost linear. After the equilibration phase of 25
steps, there is no huge speed up following the faster cooling. Towards the end,
entropy and temperature slow down slightly instead of “jumping” into the final
state. This looks like behaviour to be expected: in the beginning of the sim-
ulation more undecided sites are available to cause bigger entropy changes.
Once most positions of the sequence are fixed, the impact of the remaining
ones on the entropy can only be smaller than before. Therefore slowing down
towards the end should mean that the system is almost completely populated
with single bases in each site.

In terms of quality of the designed sequence, it is able to form canonical
base pairs where the target requires them. There is still a base pair distance
for the predicted structure but going down to 87 for a total of 808 base pairs
in the rRNA. Considering the ensemble distance as more appropriate, it is
148.48 in total and 0.05 normalised. With the vast ensemble of possible struc-
tures a sequence with 2904 nt can produce, this does not seem to be a bad
result. For this low defect, the majority of base pairs will exist in many con-
formations. Since folding probabilities get to small to be compared with such
big ensembles, energies have to serve here. The most probable structure for
our sequence has a Gibbs energy of −1840.51 kcal mol−1. Assuming the target
structure for our design the energy is −1813.09 kcal mol−1. This does not look
like a big difference but those 27.42kcal mol−1 cover a range of too many struc-
tures to be computationally enumerated in decent time. The native sequence
has an energy of −962.39 kcal mol−1 in the target conformation. Predicting
a fold for the rRNA sequence, an energy of −1173.71 kcal mol−1 is reached.
Obviously the most probable and the real structure are not identical and differ
at a base pair distance of 862. The corresponding ensemble defect is 1254.04,
0.43 normalised. The similarity between the designed and the native sequence
is 47.7%.

One could argue that our result looks good, while not perfect, since the dif-
ference in energy between the predicted and the target structure is orders of
magnitude smaller compared to the native sequence. Also our low ensemble
defect indicates that our ensemble has the base pairs more conserved than the
native setup. A conclusion may be that the SCMF approach can give a prom-
ising starting point for real physical exploration of designing RNA sequences.
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Figure 3.32: Annealing of the 23 S rRNA of E. coli. Temperature and entropy
changes during time, predicting a sequence for ribosomal RNA using SCMF.
Instead of the default parameters of brot, this simulation was run with start
temperature T = 4, maximal cooling rate cmin = 0.97, long term entropy
memory rate βlong = 0.80 and the threshold to speed up or slow down cooling
sc = 0.85.
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3. Sequence Design

Pseudoknots

As working example of a pseudoknot, the structure of a ribonuclease P RNA by
Kazantsev et al. [104] was used. With 417 nt this structure seems of relevant
size and provides all structural features but internal loops. The pseudoknot to
be included in the design is marked as helix P4 in Fig. 3.33. The structure is
listed at [100] as Connectivity Table.

Figure 3.33: 2D structure of bacterial ribonuclease P RNA. Fig. 1 of Kazantsev et
al. of the B. stearothermophilus RNase P RNA structure, PDB entry 2A64 [104].
The most notable feature is the pseudoknot formed by helix P4. Base pairs are
listed at [100] as Connectivity Table.

To be able to process the structure, the implementation of the SCMF method,
brot, needed some adaptation. Just for the proof of principle, the input parser
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3.3 Results

was preloaded with the structure and the analysis of structural features was
modified. When fetching features from the input structure without pseudo-
knots, the case that a new helix may spawn from within a helix is not covered.
For this one example this was enabled in a way that it works for the ribonuc-
lease P structure. Therefore this functionality is highly experimental in terms
of program code.

With those extensions brot is able to produce a sequence within 15 minutes.
The result is able to form Watson-Crick and GU pairs in positions where the
input structure requests them. It was not possible to check if the designed se-
quence would fold to the target structure, since there are no reliable tools for
predictions including pseudoknots. Those kind of long range interactions are
not supported by many tools predicting secondary structure. The one which
was tried with the designed sequence is pKiss by Janssen & Giegerich [105],
the successor of pknotsRG by Reeder et al. [79] but without a positive result.
Every structure predicted by pKiss does look rather different to the ribonuc-
lease P structure. Predictions do contain pseudoknots, some even several, but
the 5’ end of helix P4 always stays unpaired.

Since it was unclear if the issue was the sequence or the structure predic-
tion, brot was not further tested with different parameters. The sequence de-
signed by default parameters already calculates to a Gibbs energy of 256.2kcal mol−1

while the native sequence gets 190.0kcal mol−1, using the NN model as energy
function. In theory this makes our design more stable than nature.

tRNA Design & Validation

This study is a joint work between the group of Ulrich Hahn (University of
Hamburg, Institute for Biochemistry and Molecular Biology) and our group.
The subject is the redesign of a 76nt yeast phenylalanine tRNA [107] and the
experimental validation. The structure is available as PDB entry 6TNA. Fig. 3.34
shows the secondary structure after stripping from the PDB file using s2s by
Jossinet & Westhof [106].

The work is split into two parts: the first task is the computational design of
a new sequence folding into a tRNA cloverleaf secondary structure, the second
was done by Kristina Dorothée Gorkotte-Szameit, experimentally validating
base pairs.

As a first step, a pool of sequence candidates was created. This was done
by SCMF and a second method based on Newtonian dynamics operating on
the same sequence space as our method, developed by Marco Matthies in our
group [108]. The idea behind using two tools was to gain confidence in the
solution by choosing a sequence predicted by both methods. brot was used
with various parameters to create several sequences which are stable for dif-
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3. Sequence Design

Figure 3.34: 2D structure of yeast tRNA-Phe. Secondary structure of PDB entry
6TNA as stripped by s2s [106].

ferent settings. The list of sequences both design methods agreed up on was
then run through various computational tools to chose a single sequence.

GAGCGCCACGGACGAACACAAGUCCGAUCGCGACAACAGCGAUCAACAGCCACGACAACAGUGGCGGCGCUCACAA

Figure 3.35: Designed sequence for the yeast tRNA-Phe. The final sequence as
the outcome of the design process and in silico validation. Predicted structures
with RNAfold and CONTRAfold have a base pair distance of 0 compared to the
target structure. Folding probability is 0.904.

To predict a fold for the sequences, not only RNAfold was used. CONTRAfold
[109] predicts secondary structure based on a machine learning approach and
MC-Fold [11] allows structures with non-canonical base pairs. Acceptance cri-
teria for RNAfold were a base pair distance of 0 and a folding probability above
0.9. Since CONTRAfold does not provide probabilities, only the base pair dis-
tance was tested. A distance measurement with results of MC-Fold would have
rejected all sequences. This originates form the tendency of this tool to estab-
lish too many base pairs. Since the final sequence shown in Fig. 3.35 passed
the first two tools, we assumed a ranking in the top ten scoring of MC-Fold as
sufficient. After passing all tests, we made sure that we look at a really unique
sequence by running a BLAST search on the NCBI web page [110] finding no
hits.
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Figure 3.36: Sequencing gel of the designed yeast tRNA-Phe sequence. The
left lane shows a sequencing reaction locating guanines in the sequence. On
the middle lane reactivity of SHAPE fragments is shown. The right lane is a
control for the absence of signals without inducing SHAPE reactions. Image
used unmodified from [111].
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In the second part of this study, the structure of the synthesised RNA is
analysed utilising the SHAPE method [112, 113]. This experimental part is
entirely covered by the diploma thesis of Kristina Dorothée Gorkotte-Szameit
[111], so here we only give a quick overview on the method. SHAPE (Select-
ive 2’-Hydroxyl Acylation analysed by Primer Extension) exploits the different
flexibility in paired and unpaired RNA nucleotides. Chemical reagents are
added to the solution and react with the 2’-hydroxyl group of nucleotides, if
those are flexible. That way SHAPE is detecting unpaired nucleotides while
the absence of signals is interpreted as paired regions. To identify locations of
unpaired sites a sequencing run is needed on the same gel SHAPE fragments
are distributed on. This is shown in the first two columns of Fig. 3.36. On the
gel, loop and paired regions show good agreement with sequence positions,
providing evidence that the secondary structure was established as intended.

The conclusion of the experimental validation of the designed sequence
is that designing a sequence works in principle. Other sequence prediction
tools always stayed on the hypothetical level, while here it has been shown
for SCMF and the Newtonian dynamics methods that sequence design in silico
works. While it seems to be also evident that a single tool will not be enough
for real world scenarios given the amount of additional testing done on se-
quence candidates.
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Chapter 4

Discussion

When surveying the field of structure analysis and design, there are still prob-
lems at the fundamental and technical levels.

As a first idea, thinking of the definition of sequence design in Chapter 3.
This assumes a rigid world by considering a base pair as discrete state. But the
work on hydrogen bonding shows, these rigid definitions are a convenience
and not the chemical truth. Following the evaluation in Chapter 2 the energy
associated with a hydrogen bond is a continuous function of geometry and not
a discrete property. This is clear from the distributions of quasi-energy from
the simple model in §2.5. To get to a better model of the real world would
mean using a probabilistic description over correct physical models. Unfortu-
nately, this will lead to a sea of probability distributions which quickly renders
this kind of problem intractable. As an example, if one considers extending the
hydrogen bond model for all possible interaction edges in Fig. 2.3 instead of
only treating the Watson-Crick edge, this ends up in several additional quasi-
energy distributions per edge.

This leads to the general question of the energy models used in this work.
For hydrogen bond recognition, a model with the same idea of Kabsch &
Sander [8], resembling Coulomb energies was used. For proteins, this is well
established and has become a standard tool for secondary structure assign-
ment. To deal with the sequence design problem, the NN model was used.
It is a simple choice with the virtue of being the most widely used model in
the literature. But there is the severe disadvantage of having little physical
basis. Parameters do come from experimental measurements, but then they
are treated somewhat out of the context of the system they originate from.
Each structural motif measured is assumed to be self-contained and can be
combined with every other motif. Within loops, including base pairs as stack
loops, that goes to the extend that Gibbs energies are approximated as simple
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summation. This completely ignores the fact that entropy is not a linear addit-
ive quantity.

In most molecular modelling exercises, there are two aspects which can be
difficult to disentangle. Firstly, there is the question of force field or scoring
function. How close is the model to the real world, in terms of true physics or
minima on the computed energy landscape? Secondly, one wants to know how
well the energy model is explored. That is a question of search method. Does
the choice of Monte Carlo [114], SCMF or another search strategy find the best
minimum on a computed energy landscape? In this work, the scoring function
is not a question since all methods use the NN model. Also for the evaluation
known cases were used, calculated using the same model. Obviously this is
not a test of real world behaviour, but a traditional test of search methods
in computational biology & chemistry. Interpreting test results is slightly more
complicated in our particular case, since there are two goals in literature. Does
a method design a sequence with the target structure at minimum free energy
or is success judged by the calculated probability of the target structure? For
us the decision was clear. The probability of a sequence to adopt the target
conformation is most important. But one also has to consider the success rate
for MFE since this is often discussed in the literature.

Given our criterion of success, we can say that the SCMF methods by its
implementation brot works very well. On the artificial structures, the other
methods compared may be better. One could even go so far as to say that
on small structures RNAinverse in probability mode is unbeatable. That is just
because it is not really searching but enumerating full sequences to pick a
matching one. Given enough time, this should always converge to a good
solution. But considering time consumption, this is the limiting factor. Con-
cerning structure size, RNAinverse gets quickly impracticable. INFO-RNA does
look better on its own publication [59], only evaluating MFE and version 1 of
the tool. In this work version 2 was used and testing for probability. It turns
out, optimising for probability seems to be more challenging. Where brot is
not the top-performer is on the cases of pure search method comparison with
less real world relevance. When it comes to biological sequences, producing
structures of higher complexity, brot takes the lead. Additionally our tool has
shown its potential in three case studies. Firstly, we are able to compute a
ribosomal RNA of 2904nt in less than half an hour. The result is compatible
with the target structure and the most probable fold gets only 87 out of 808
base pairs wrong at low normalised ensemble defect of 0.05. In a proof of
principle manner, we have shown that pseudoknots are not a problem. Once
adapted to the constraints in difference to knot-free structures, sequences fit-
ting the target pairing pattern are produced. This is something impossible
for the other tools. As a last dedicated study, the secondary structure of a
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sequence designed with the SCMF method was successfully validated in vitro.
Experimental evidence is another topic the other tools are missing.

In general, SCMF seems to have some advantages over the discrete ap-
proaches. As explained in §3.3.3 splitting of structures, necessary to keep
running times manageable, may prevent some good results. Only optimising
parts of a structure can easily end up in a local minimum. Another disadvant-
age is to rely on a trial and error strategy. This limits the classes of structures
which can be handled to motifs which can be predicted. Namely this forbids
pseudoknots and the possibility to move to three-dimensional space. In con-
trast we do not test intermediate results, we can converge on the full-size
structure without testing folding during the process. What is crucial in SCMF
is a scoring scheme for what should be designed and a representation fitting
our sequence matrix.

This already points at extensions of brot. But before increasing the func-
tionality, some ideas for improvements on the current status. What is most
unsatisfying in the current implementation, is the low level of different se-
quences produced for the same target structure. On average, currently five to
six runs are needed to produce two different sequences. While SCMF is known
to be deterministic in its end point, adding thermal noise to the NN model has
an effect. Probably one needs to look into which are the exact parameters
changed, once a new sequence is produced. Maybe some structural motifs in-
side the model are more likely to favour new sequences if equipped with a cer-
tain amount of noise. Another idea concerning the use of the NN model is an
improvement of the negative design term. As discussed in §3.3.3, some base
compositions exist in multiple states with different energies. What strategy
prevents accepting a pattern more favourable in a different than the intended
motif needs further investigation. A simple extension to the sequence matrix
would be moving towards modelling multimers. Multiple sequence can be
placed one after another in the sequence matrix. What needs some considera-
tion is the negative design term. It needs to be aware of the ends of sequences
while a private value per sequence seems not to be necessary. Just the up-
date routine moving the term over the sequence matrix needs to be aware of
sequence starts and ends. At those points the calculation can not assume a
continuous sequence anymore and skip two stacked base pairs. For intended
interactions nothing should change. This term only considers interacting sites,
not complete sequences.

A real challenging extension would be sequence design in three-dimensional
space. With the current approach, only secondary structure is covered without
knowledge about tertiary interactions. This means every design needs to be
thoroughly evaluated in vitro before it can be used for its purpose. That will
not entirely vanish with the possibility to create three-dimensional designs,
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but speed up the process by suggesting solutions which are less likely to fail.
A huge practical advantage could be to include ligands in the design step, in
the future. This is impossible with two-dimensional designs. To get to this
state bears some difficulties. Firstly there is the representation of the scaf-
fold. This could be provided by something like the standardised nucleotide
presented in Fig. 2.2. At least the orientation of nucleotides in space could be
described with this. But when describing interactions, this also needs some
coarse-grained representation. For secondary structure design, the states are
“paired” and “unpaired”, easy to reflect with bases on a non-atomistic level. In
tertiary structures, states go into the direction of “H-bond” or “no H-bond”. But
this would already determine where in space atoms are needed, limiting de-
sign possibilities. Instead, the interaction edges discussed in Chapter 2 could
be useful to declare the interaction pattern. Since building a RNA structure
just from known interactions seems not to be doable in a reliable way for now,
this would not eradicate the need for a scaffold. Then, also a scoring func-
tion would be needed to evaluate the system. Assuming a completely rigid
molecule, calculating H-bond interactions may be sufficient. This would push
the whole idea quite a bit away from the real world. But when insisting on a
flexible backbone calculating the force field for SCMF becomes computation-
ally challenging. Flexibility would also mean to employ a minimiser to relax
the structure which needs to be able to deal with our four-dimensional nucle-
otides. Beside fixing nucleotides in the sequence matrix, this would mean over
time also the structure settles into a final state. Three-dimensional sequence
design does not seem to be impossible but it does require a lot of further con-
sideration before one can state how usable a result would be in the end.

To some extend the H-bond probability distributions could serve for the
scoring of three-dimensional design. In terms of extending the H-bond terms
in this work, the next step would be to lower the number of probability dis-
tributions as described in §2.5.6. After this, the Hoogsteen and sugar edge
should be incorporated, since they are crucial in tertiary interactions of RNA
molecules. Once all interaction sites are described, favourably by a low num-
ber of probability distributions, the whole model could be assembled into a
tool for automated RNA structure assignment.
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Appendix A

Gefahrstoffe und KMR-Substanzen

Die vorliegende Arbeit ist rein theoretischer Natur. Es wurden daher keiner-
lei Laborexperimente mit chemischen oder biologischen Materialien durchge-
führt. Aus diesem Grund werden keine Gefahrstoffe, krebserzeugende, erbgut-
verändernde oder fortpflanzungsgefährdende (KMR) Stoffe angegeben.

175



176



Appendix B

PDB Structures Used For H-Bond
Evaluation

This list was compiled in August 2008 by searching the PDB for structures
containing RNA.

100D 104D 124D 157D 161D 165D 168D 170D 176D 17RA 1A1T
1A34 1A3M 1A4D 1A4T 1A51 1A60 1A9L 1A9N 1AC3 1AFX 1AJF
1AJL 1AJT 1AJU 1AKX 1AL5 1AM0 1ANR 1APG 1AQ3 1AQ4 1AQO
1ARJ 1ASY 1ASZ 1ATO 1ATV 1ATW 1AUD 1AV6 1B23 1B2M 1B36
1B7F 1BAU 1BGZ 1BIV 1BJ2 1BMV 1BN0 1BR3 1BVJ 1BYJ 1BYX
1BZ2 1BZ3 1BZT 1BZU 1C04 1C0A 1C0O 1C2Q 1C2W 1C2X 1C4L
1C9S 1CGM 1CQ5 1CQL 1CSL 1CVJ 1CWP 1CX0 1CX5 1D0T 1D0U
1D4R 1D6K 1D87 1D88 1D96 1D9H 1DDL 1DDY 1DFU 1DI2 1DK1
1DNO 1DNT 1DNX 1DQF 1DQH 1DRR 1DRZ 1DUH 1DUL 1DUQ 1DV4
1DXN 1DZ5 1E4P 1E7K 1E8O 1E8S 1E95 1EBQ 1EBR 1EBS 1EC6
1EFO 1EFS 1EFW 1EG0 1EHT 1EHZ 1EI2 1EIY 1EJZ 1EKA 1EKD
1EKZ 1ELH 1EMI 1EOR 1EQQ 1ESH 1ESY 1ET4 1ETF 1ETG 1EUQ
1EUY 1EVP 1EVV 1EXD 1EXY 1F1T 1F27 1F5G 1F5H 1F5U 1F6U
1F6X 1F6Z 1F78 1F79 1F7F 1F7G 1F7H 1F7I 1F7U 1F7V 1F7Y
1F84 1F85 1F8V 1F9L 1FC8 1FCW 1FEQ 1FEU 1FFK 1FFY 1FFZ
1FG0 1FHK 1FIR 1FIX 1FJE 1FJG 1FKA 1FL8 1FMN 1FNX 1FOQ
1FQZ 1FUF 1FYO 1FYP 1G1X 1G2E 1G2J 1G3A 1G4Q 1G59 1G70
1GAX 1GID 1GIX 1GIY 1GRZ 1GSG 1GTF 1GTN 1GTR 1GTS 1GUC
1GV6 1H0Q 1H1K 1H2C 1H2D 1H38 1H3E 1H4Q 1H4S 1HC8 1HG9
1HHW 1HHX 1HJI 1HLX 1HMH 1HNW 1HNX 1HNZ 1HO6 1HOQ 1HQ1
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http://dx.doi.org/10.2210/pdb1a9l/pdb
http://dx.doi.org/10.2210/pdb1a9n/pdb
http://dx.doi.org/10.2210/pdb1ac3/pdb
http://dx.doi.org/10.2210/pdb1afx/pdb
http://dx.doi.org/10.2210/pdb1ajf/pdb
http://dx.doi.org/10.2210/pdb1ajl/pdb
http://dx.doi.org/10.2210/pdb1ajt/pdb
http://dx.doi.org/10.2210/pdb1aju/pdb
http://dx.doi.org/10.2210/pdb1akx/pdb
http://dx.doi.org/10.2210/pdb1al5/pdb
http://dx.doi.org/10.2210/pdb1am0/pdb
http://dx.doi.org/10.2210/pdb1anr/pdb
http://dx.doi.org/10.2210/pdb1apg/pdb
http://dx.doi.org/10.2210/pdb1aq3/pdb
http://dx.doi.org/10.2210/pdb1aq4/pdb
http://dx.doi.org/10.2210/pdb1aqo/pdb
http://dx.doi.org/10.2210/pdb1arj/pdb
http://dx.doi.org/10.2210/pdb1asy/pdb
http://dx.doi.org/10.2210/pdb1asz/pdb
http://dx.doi.org/10.2210/pdb1ato/pdb
http://dx.doi.org/10.2210/pdb1atv/pdb
http://dx.doi.org/10.2210/pdb1atw/pdb
http://dx.doi.org/10.2210/pdb1aud/pdb
http://dx.doi.org/10.2210/pdb1av6/pdb
http://dx.doi.org/10.2210/pdb1b23/pdb
http://dx.doi.org/10.2210/pdb1b2m/pdb
http://dx.doi.org/10.2210/pdb1b36/pdb
http://dx.doi.org/10.2210/pdb1b7f/pdb
http://dx.doi.org/10.2210/pdb1bau/pdb
http://dx.doi.org/10.2210/pdb1bgz/pdb
http://dx.doi.org/10.2210/pdb1biv/pdb
http://dx.doi.org/10.2210/pdb1bj2/pdb
http://dx.doi.org/10.2210/pdb1bmv/pdb
http://dx.doi.org/10.2210/pdb1bn0/pdb
http://dx.doi.org/10.2210/pdb1br3/pdb
http://dx.doi.org/10.2210/pdb1bvj/pdb
http://dx.doi.org/10.2210/pdb1byj/pdb
http://dx.doi.org/10.2210/pdb1byx/pdb
http://dx.doi.org/10.2210/pdb1bz2/pdb
http://dx.doi.org/10.2210/pdb1bz3/pdb
http://dx.doi.org/10.2210/pdb1bzt/pdb
http://dx.doi.org/10.2210/pdb1bzu/pdb
http://dx.doi.org/10.2210/pdb1c04/pdb
http://dx.doi.org/10.2210/pdb1c0a/pdb
http://dx.doi.org/10.2210/pdb1c0o/pdb
http://dx.doi.org/10.2210/pdb1c2q/pdb
http://dx.doi.org/10.2210/pdb1c2w/pdb
http://dx.doi.org/10.2210/pdb1c2x/pdb
http://dx.doi.org/10.2210/pdb1c4l/pdb
http://dx.doi.org/10.2210/pdb1c9s/pdb
http://dx.doi.org/10.2210/pdb1cgm/pdb
http://dx.doi.org/10.2210/pdb1cq5/pdb
http://dx.doi.org/10.2210/pdb1cql/pdb
http://dx.doi.org/10.2210/pdb1csl/pdb
http://dx.doi.org/10.2210/pdb1cvj/pdb
http://dx.doi.org/10.2210/pdb1cwp/pdb
http://dx.doi.org/10.2210/pdb1cx0/pdb
http://dx.doi.org/10.2210/pdb1cx5/pdb
http://dx.doi.org/10.2210/pdb1d0t/pdb
http://dx.doi.org/10.2210/pdb1d0u/pdb
http://dx.doi.org/10.2210/pdb1d4r/pdb
http://dx.doi.org/10.2210/pdb1d6k/pdb
http://dx.doi.org/10.2210/pdb1d87/pdb
http://dx.doi.org/10.2210/pdb1d88/pdb
http://dx.doi.org/10.2210/pdb1d96/pdb
http://dx.doi.org/10.2210/pdb1d9h/pdb
http://dx.doi.org/10.2210/pdb1ddl/pdb
http://dx.doi.org/10.2210/pdb1ddy/pdb
http://dx.doi.org/10.2210/pdb1dfu/pdb
http://dx.doi.org/10.2210/pdb1di2/pdb
http://dx.doi.org/10.2210/pdb1dk1/pdb
http://dx.doi.org/10.2210/pdb1dno/pdb
http://dx.doi.org/10.2210/pdb1dnt/pdb
http://dx.doi.org/10.2210/pdb1dnx/pdb
http://dx.doi.org/10.2210/pdb1dqf/pdb
http://dx.doi.org/10.2210/pdb1dqh/pdb
http://dx.doi.org/10.2210/pdb1drr/pdb
http://dx.doi.org/10.2210/pdb1drz/pdb
http://dx.doi.org/10.2210/pdb1duh/pdb
http://dx.doi.org/10.2210/pdb1dul/pdb
http://dx.doi.org/10.2210/pdb1duq/pdb
http://dx.doi.org/10.2210/pdb1dv4/pdb
http://dx.doi.org/10.2210/pdb1dxn/pdb
http://dx.doi.org/10.2210/pdb1dz5/pdb
http://dx.doi.org/10.2210/pdb1e4p/pdb
http://dx.doi.org/10.2210/pdb1e7k/pdb
http://dx.doi.org/10.2210/pdb1e8o/pdb
http://dx.doi.org/10.2210/pdb1e8s/pdb
http://dx.doi.org/10.2210/pdb1e95/pdb
http://dx.doi.org/10.2210/pdb1ebq/pdb
http://dx.doi.org/10.2210/pdb1ebr/pdb
http://dx.doi.org/10.2210/pdb1ebs/pdb
http://dx.doi.org/10.2210/pdb1ec6/pdb
http://dx.doi.org/10.2210/pdb1efo/pdb
http://dx.doi.org/10.2210/pdb1efs/pdb
http://dx.doi.org/10.2210/pdb1efw/pdb
http://dx.doi.org/10.2210/pdb1eg0/pdb
http://dx.doi.org/10.2210/pdb1eht/pdb
http://dx.doi.org/10.2210/pdb1ehz/pdb
http://dx.doi.org/10.2210/pdb1ei2/pdb
http://dx.doi.org/10.2210/pdb1eiy/pdb
http://dx.doi.org/10.2210/pdb1ejz/pdb
http://dx.doi.org/10.2210/pdb1eka/pdb
http://dx.doi.org/10.2210/pdb1ekd/pdb
http://dx.doi.org/10.2210/pdb1ekz/pdb
http://dx.doi.org/10.2210/pdb1elh/pdb
http://dx.doi.org/10.2210/pdb1emi/pdb
http://dx.doi.org/10.2210/pdb1eor/pdb
http://dx.doi.org/10.2210/pdb1eqq/pdb
http://dx.doi.org/10.2210/pdb1esh/pdb
http://dx.doi.org/10.2210/pdb1esy/pdb
http://dx.doi.org/10.2210/pdb1et4/pdb
http://dx.doi.org/10.2210/pdb1etf/pdb
http://dx.doi.org/10.2210/pdb1etg/pdb
http://dx.doi.org/10.2210/pdb1euq/pdb
http://dx.doi.org/10.2210/pdb1euy/pdb
http://dx.doi.org/10.2210/pdb1evp/pdb
http://dx.doi.org/10.2210/pdb1evv/pdb
http://dx.doi.org/10.2210/pdb1exd/pdb
http://dx.doi.org/10.2210/pdb1exy/pdb
http://dx.doi.org/10.2210/pdb1f1t/pdb
http://dx.doi.org/10.2210/pdb1f27/pdb
http://dx.doi.org/10.2210/pdb1f5g/pdb
http://dx.doi.org/10.2210/pdb1f5h/pdb
http://dx.doi.org/10.2210/pdb1f5u/pdb
http://dx.doi.org/10.2210/pdb1f6u/pdb
http://dx.doi.org/10.2210/pdb1f6x/pdb
http://dx.doi.org/10.2210/pdb1f6z/pdb
http://dx.doi.org/10.2210/pdb1f78/pdb
http://dx.doi.org/10.2210/pdb1f79/pdb
http://dx.doi.org/10.2210/pdb1f7f/pdb
http://dx.doi.org/10.2210/pdb1f7g/pdb
http://dx.doi.org/10.2210/pdb1f7h/pdb
http://dx.doi.org/10.2210/pdb1f7i/pdb
http://dx.doi.org/10.2210/pdb1f7u/pdb
http://dx.doi.org/10.2210/pdb1f7v/pdb
http://dx.doi.org/10.2210/pdb1f7y/pdb
http://dx.doi.org/10.2210/pdb1f84/pdb
http://dx.doi.org/10.2210/pdb1f85/pdb
http://dx.doi.org/10.2210/pdb1f8v/pdb
http://dx.doi.org/10.2210/pdb1f9l/pdb
http://dx.doi.org/10.2210/pdb1fc8/pdb
http://dx.doi.org/10.2210/pdb1fcw/pdb
http://dx.doi.org/10.2210/pdb1feq/pdb
http://dx.doi.org/10.2210/pdb1feu/pdb
http://dx.doi.org/10.2210/pdb1ffk/pdb
http://dx.doi.org/10.2210/pdb1ffy/pdb
http://dx.doi.org/10.2210/pdb1ffz/pdb
http://dx.doi.org/10.2210/pdb1fg0/pdb
http://dx.doi.org/10.2210/pdb1fhk/pdb
http://dx.doi.org/10.2210/pdb1fir/pdb
http://dx.doi.org/10.2210/pdb1fix/pdb
http://dx.doi.org/10.2210/pdb1fje/pdb
http://dx.doi.org/10.2210/pdb1fjg/pdb
http://dx.doi.org/10.2210/pdb1fka/pdb
http://dx.doi.org/10.2210/pdb1fl8/pdb
http://dx.doi.org/10.2210/pdb1fmn/pdb
http://dx.doi.org/10.2210/pdb1fnx/pdb
http://dx.doi.org/10.2210/pdb1foq/pdb
http://dx.doi.org/10.2210/pdb1fqz/pdb
http://dx.doi.org/10.2210/pdb1fuf/pdb
http://dx.doi.org/10.2210/pdb1fyo/pdb
http://dx.doi.org/10.2210/pdb1fyp/pdb
http://dx.doi.org/10.2210/pdb1g1x/pdb
http://dx.doi.org/10.2210/pdb1g2e/pdb
http://dx.doi.org/10.2210/pdb1g2j/pdb
http://dx.doi.org/10.2210/pdb1g3a/pdb
http://dx.doi.org/10.2210/pdb1g4q/pdb
http://dx.doi.org/10.2210/pdb1g59/pdb
http://dx.doi.org/10.2210/pdb1g70/pdb
http://dx.doi.org/10.2210/pdb1gax/pdb
http://dx.doi.org/10.2210/pdb1gid/pdb
http://dx.doi.org/10.2210/pdb1gix/pdb
http://dx.doi.org/10.2210/pdb1giy/pdb
http://dx.doi.org/10.2210/pdb1grz/pdb
http://dx.doi.org/10.2210/pdb1gsg/pdb
http://dx.doi.org/10.2210/pdb1gtf/pdb
http://dx.doi.org/10.2210/pdb1gtn/pdb
http://dx.doi.org/10.2210/pdb1gtr/pdb
http://dx.doi.org/10.2210/pdb1gts/pdb
http://dx.doi.org/10.2210/pdb1guc/pdb
http://dx.doi.org/10.2210/pdb1gv6/pdb
http://dx.doi.org/10.2210/pdb1h0q/pdb
http://dx.doi.org/10.2210/pdb1h1k/pdb
http://dx.doi.org/10.2210/pdb1h2c/pdb
http://dx.doi.org/10.2210/pdb1h2d/pdb
http://dx.doi.org/10.2210/pdb1h38/pdb
http://dx.doi.org/10.2210/pdb1h3e/pdb
http://dx.doi.org/10.2210/pdb1h4q/pdb
http://dx.doi.org/10.2210/pdb1h4s/pdb
http://dx.doi.org/10.2210/pdb1hc8/pdb
http://dx.doi.org/10.2210/pdb1hg9/pdb
http://dx.doi.org/10.2210/pdb1hhw/pdb
http://dx.doi.org/10.2210/pdb1hhx/pdb
http://dx.doi.org/10.2210/pdb1hji/pdb
http://dx.doi.org/10.2210/pdb1hlx/pdb
http://dx.doi.org/10.2210/pdb1hmh/pdb
http://dx.doi.org/10.2210/pdb1hnw/pdb
http://dx.doi.org/10.2210/pdb1hnx/pdb
http://dx.doi.org/10.2210/pdb1hnz/pdb
http://dx.doi.org/10.2210/pdb1ho6/pdb
http://dx.doi.org/10.2210/pdb1hoq/pdb
http://dx.doi.org/10.2210/pdb1hq1/pdb


B. PDB Structures Used For H-Bond Evaluation

1HR0 1HR2 1HS1 1HS2 1HS3 1HS4 1HS8 1HVU 1HWQ 1HYS 1I2X
1I2Y 1I3X 1I3Y 1I46 1I4B 1I4C 1I5L 1I6H 1I6U 1I7J 1I94
1I95 1I96 1I97 1I9F 1I9K 1I9V 1I9X 1IBK 1IBL 1IBM 1ICG
1ID9 1IDV 1IDW 1IE1 1IE2 1IHA 1IK1 1IK5 1IKD 1IL2 1IVS
1J1U 1J2B 1J4Y 1J5A 1J5E 1J6S 1J7T 1J8G 1J9H 1JB8 1JBR
1JBT 1JGO 1JGP 1JGQ 1JID 1JJ2 1JO7 1JOX 1JP0 1JTJ 1JTW
1JU1 1JU7 1JUR 1JWC 1JZC 1JZV 1JZX 1JZY 1JZZ 1K01 1K1G
1K2G 1K4A 1K4B 1K5I 1K6G 1K6H 1K73 1K8A 1K8S 1K8W 1K9M
1K9W 1KAJ 1KC8 1KD1 1KD3 1KD4 1KD5 1KFO 1KH6 1KIS 1KKA
1KKS 1KNZ 1KOC 1KOD 1KOG 1KOS 1KP7 1KPD 1KPY 1KPZ 1KQ2
1KQS 1KUO 1KUQ 1KXK 1L1C 1L1W 1L2X 1L3D 1L3M 1L3Z 1L8V
1L9A 1LAJ 1LC4 1LC6 1LDZ 1LMV 1LNG 1LNT 1LPW 1LS2 1LU3
1LUU 1LUX 1LVJ 1M1K 1M5K 1M5L 1M5O 1M5P 1M5V 1M82 1M8V
1M8W 1M8X 1M8Y 1M90 1MDG 1ME0 1ME1 1MFJ 1MFK 1MFQ 1MFY
1MHK 1MIS 1MJ1 1MJI 1ML5 1MME 1MMS 1MNB 1MNX 1MSW 1MSY
1MT4 1MUV 1MV1 1MV2 1MV6 1MVR 1MWG 1MWL 1MY9 1MZP 1N1H
1N32 1N33 1N34 1N35 1N36 1N38 1N53 1N66 1N77 1N78 1N7A
1N7B 1N8R 1N8X 1NA2 1NAO 1NB7 1NBK 1NBR 1NBS 1NC0 1NEM
1NJI 1NJM 1NJN 1NJO 1NJP 1NKW 1NLC 1NTA 1NTB 1NTQ 1NTS
1NTT 1NUJ 1NUV 1NWX 1NWY 1NXR 1NYB 1NYI 1NZ1 1O0B 1O0C
1O15 1O3Z 1O9M 1OB2 1OB5 1OKF 1OLN 1OND 1OO7 1OOA 1OQ0
1OSU 1OSW 1OW9 1P5M 1P5N 1P5O 1P5P 1P6G 1P6V 1P79 1P85
1P86 1P87 1P9X 1PBL 1PBM 1PBR 1PGL 1PJG 1PJO 1PJY 1PN7
1PN8 1PNS 1PNU 1PNX 1PNY 1PVO 1Q29 1Q2S 1Q75 1Q7Y 1Q81
1Q82 1Q86 1Q8N 1Q93 1Q96 1Q9A 1QA6 1QBP 1QC0 1QC8 1QCU
1QD3 1QD7 1QES 1QET 1QF6 1QFQ 1QLN 1QRS 1QRT 1QRU 1QTQ
1QU2 1QU3 1QVF 1QVG 1QWA 1QWB 1QZA 1QZB 1QZC 1QZW 1R2P
1R2W 1R2X 1R3E 1R3O 1R3X 1R4H 1R7W 1R7Z 1R9S 1R9T 1RAU
1RAW 1RC7 1RFR 1RGO 1RHT 1RKJ 1RLG 1RMN 1RMV 1RNA 1RNG
1RNK 1ROQ 1RPU 1RRD 1RRR 1RXA 1RXB 1RY1 1S03 1S0V 1S1H
1S1I 1S2F 1S34 1S72 1S76 1S77 1S9L 1S9S 1SA9 1SAQ 1SCL
1SDR 1SDS 1SER 1SFO 1SI3 1SJ3 1SJ4 1SJF 1SLO 1SLP 1SM1
1SY4 1SYZ 1SZ1 1SZY 1T0D 1T0E 1T0K 1T1M 1T1O 1T28 1T2R
1T4L 1T4X 1TBK 1TFN 1TFW 1TFY 1TJZ 1TLR 1TN2 1TOB 1TRA
1TRJ 1TTT 1TUT 1TXS 1U0B 1U2A 1U3K 1U63 1U6B 1U6P 1U8D
1U9S 1ULL 1UN6 1UON 1UTD 1UTS 1UUD 1UUI 1UUU 1UVI 1UVJ
1UVK 1UVL 1UVM 1UVN 1VBX 1VBY 1VBZ 1VC0 1VC5 1VC6 1VC7
1VFG 1VOP 1VOQ 1VOR 1VOS 1VOU 1VOV 1VOW 1VOX 1VOY 1VOZ
1VP0 1VQ4 1VQ5 1VQ6 1VQ7 1VQ8 1VQ9 1VQK 1VQL 1VQM 1VQN
1VQO 1VQP 1VS5 1VS6 1VS7 1VS8 1VS9 1VTM 1W2B 1WKS 1WMQ
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http://dx.doi.org/10.2210/pdb1hr0/pdb
http://dx.doi.org/10.2210/pdb1hr2/pdb
http://dx.doi.org/10.2210/pdb1hs1/pdb
http://dx.doi.org/10.2210/pdb1hs2/pdb
http://dx.doi.org/10.2210/pdb1hs3/pdb
http://dx.doi.org/10.2210/pdb1hs4/pdb
http://dx.doi.org/10.2210/pdb1hs8/pdb
http://dx.doi.org/10.2210/pdb1hvu/pdb
http://dx.doi.org/10.2210/pdb1hwq/pdb
http://dx.doi.org/10.2210/pdb1hys/pdb
http://dx.doi.org/10.2210/pdb1i2x/pdb
http://dx.doi.org/10.2210/pdb1i2y/pdb
http://dx.doi.org/10.2210/pdb1i3x/pdb
http://dx.doi.org/10.2210/pdb1i3y/pdb
http://dx.doi.org/10.2210/pdb1i46/pdb
http://dx.doi.org/10.2210/pdb1i4b/pdb
http://dx.doi.org/10.2210/pdb1i4c/pdb
http://dx.doi.org/10.2210/pdb1i5l/pdb
http://dx.doi.org/10.2210/pdb1i6h/pdb
http://dx.doi.org/10.2210/pdb1i6u/pdb
http://dx.doi.org/10.2210/pdb1i7j/pdb
http://dx.doi.org/10.2210/pdb1i94/pdb
http://dx.doi.org/10.2210/pdb1i95/pdb
http://dx.doi.org/10.2210/pdb1i96/pdb
http://dx.doi.org/10.2210/pdb1i97/pdb
http://dx.doi.org/10.2210/pdb1i9f/pdb
http://dx.doi.org/10.2210/pdb1i9k/pdb
http://dx.doi.org/10.2210/pdb1i9v/pdb
http://dx.doi.org/10.2210/pdb1i9x/pdb
http://dx.doi.org/10.2210/pdb1ibk/pdb
http://dx.doi.org/10.2210/pdb1ibl/pdb
http://dx.doi.org/10.2210/pdb1ibm/pdb
http://dx.doi.org/10.2210/pdb1icg/pdb
http://dx.doi.org/10.2210/pdb1id9/pdb
http://dx.doi.org/10.2210/pdb1idv/pdb
http://dx.doi.org/10.2210/pdb1idw/pdb
http://dx.doi.org/10.2210/pdb1ie1/pdb
http://dx.doi.org/10.2210/pdb1ie2/pdb
http://dx.doi.org/10.2210/pdb1iha/pdb
http://dx.doi.org/10.2210/pdb1ik1/pdb
http://dx.doi.org/10.2210/pdb1ik5/pdb
http://dx.doi.org/10.2210/pdb1ikd/pdb
http://dx.doi.org/10.2210/pdb1il2/pdb
http://dx.doi.org/10.2210/pdb1ivs/pdb
http://dx.doi.org/10.2210/pdb1j1u/pdb
http://dx.doi.org/10.2210/pdb1j2b/pdb
http://dx.doi.org/10.2210/pdb1j4y/pdb
http://dx.doi.org/10.2210/pdb1j5a/pdb
http://dx.doi.org/10.2210/pdb1j5e/pdb
http://dx.doi.org/10.2210/pdb1j6s/pdb
http://dx.doi.org/10.2210/pdb1j7t/pdb
http://dx.doi.org/10.2210/pdb1j8g/pdb
http://dx.doi.org/10.2210/pdb1j9h/pdb
http://dx.doi.org/10.2210/pdb1jb8/pdb
http://dx.doi.org/10.2210/pdb1jbr/pdb
http://dx.doi.org/10.2210/pdb1jbt/pdb
http://dx.doi.org/10.2210/pdb1jgo/pdb
http://dx.doi.org/10.2210/pdb1jgp/pdb
http://dx.doi.org/10.2210/pdb1jgq/pdb
http://dx.doi.org/10.2210/pdb1jid/pdb
http://dx.doi.org/10.2210/pdb1jj2/pdb
http://dx.doi.org/10.2210/pdb1jo7/pdb
http://dx.doi.org/10.2210/pdb1jox/pdb
http://dx.doi.org/10.2210/pdb1jp0/pdb
http://dx.doi.org/10.2210/pdb1jtj/pdb
http://dx.doi.org/10.2210/pdb1jtw/pdb
http://dx.doi.org/10.2210/pdb1ju1/pdb
http://dx.doi.org/10.2210/pdb1ju7/pdb
http://dx.doi.org/10.2210/pdb1jur/pdb
http://dx.doi.org/10.2210/pdb1jwc/pdb
http://dx.doi.org/10.2210/pdb1jzc/pdb
http://dx.doi.org/10.2210/pdb1jzv/pdb
http://dx.doi.org/10.2210/pdb1jzx/pdb
http://dx.doi.org/10.2210/pdb1jzy/pdb
http://dx.doi.org/10.2210/pdb1jzz/pdb
http://dx.doi.org/10.2210/pdb1k01/pdb
http://dx.doi.org/10.2210/pdb1k1g/pdb
http://dx.doi.org/10.2210/pdb1k2g/pdb
http://dx.doi.org/10.2210/pdb1k4a/pdb
http://dx.doi.org/10.2210/pdb1k4b/pdb
http://dx.doi.org/10.2210/pdb1k5i/pdb
http://dx.doi.org/10.2210/pdb1k6g/pdb
http://dx.doi.org/10.2210/pdb1k6h/pdb
http://dx.doi.org/10.2210/pdb1k73/pdb
http://dx.doi.org/10.2210/pdb1k8a/pdb
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1WZ2 1X18 1X1L 1X8W 1X9C 1X9K 1XBP 1XHP 1XJR 1XMO 1XMQ
1XNQ 1XNR 1XOK 1XP7 1XPE 1XPF 1XPO 1XPR 1XPU 1XSG 1XSH
1XST 1XSU 1XV0 1XV6 1XWP 1XWU 1Y0Q 1Y1W 1Y26 1Y27 1Y39
1Y3O 1Y3S 1Y69 1Y6S 1Y6T 1Y73 1Y77 1Y90 1Y95 1Y99 1YFG
1YFV 1YG3 1YG4 1YHQ 1YI2 1YIJ 1YIT 1YJ9 1YJN 1YJW 1YKV
1YL3 1YL4 1YLG 1YMO 1YN1 1YN2 1YNC 1YNE 1YNG 1YRJ 1YSH
1YSV 1YTU 1YTY 1YVP 1YXP 1YYK 1YYO 1YYW 1YZ9 1Z2J 1Z30
1Z31 1Z43 1Z58 1Z7F 1ZBH 1ZBI 1ZBL 1ZBN 1ZC5 1ZC8 1ZCI
1ZDH 1ZDI 1ZDJ 1ZDK 1ZE2 1ZEV 1ZFT 1ZFV 1ZFX 1ZH5 1ZHO
1ZIF 1ZIG 1ZIH 1ZJW 1ZL3 1ZN0 1ZN1 1ZO1 1ZO3 1ZSE 1ZX7
1ZZ5 1ZZN 205D 216D 217D 219D 222D 246D 247D 248D 255D
259D 280D 283D 28SP 28SR 299D 2A04 2A0P 2A1R 2A2E 2A43
2A64 2A8V 2A9L 2A9X 2AAR 2AB4 2AD9 2ADB 2ADC 2ADT 2AGN
2AHT 2AKE 2ANN 2ANR 2AO5 2AP0 2AP5 2ASB 2ATW 2AU4 2AVY
2AW4 2AW7 2AWB 2AWE 2AWQ 2AZ0 2AZ2 2AZX 2B2D 2B2E 2B2G
2B3J 2B57 2B63 2B64 2B66 2B6G 2B7G 2B8R 2B8S 2B9M 2B9N
2B9O 2B9P 2BBV 2BCY 2BCZ 2BE0 2BEE 2BGG 2BH2 2BJ2 2BJ6
2BNY 2BQ5 2BS0 2BS1 2BTE 2BU1 2BX2 2BYT 2C06 2C0B 2C4Q
2C4R 2C4Y 2C4Z 2C50 2C51 2CJK 2CKY 2CSX 2CT8 2CV0 2CV1
2CV2 2CZJ 2D17 2D18 2D19 2D1A 2D1B 2D2K 2D2L 2D3O 2D6F
2DB3 2DD1 2DD2 2DD3 2DER 2DET 2DEU 2DQO 2DQP 2DQQ 2DR2
2DR5 2DR7 2DR8 2DR9 2DRA 2DRB 2DU3 2DU4 2DU5 2DU6 2DVI
2DXI 2E2H 2E2I 2E2J 2ERR 2ES5 2ESE 2ESI 2ESJ 2ET3 2ET4
2ET5 2ET8 2EUY 2EVY 2EZ6 2F4S 2F4T 2F4U 2F4V 2F4X 2F87
2F88 2F8K 2F8S 2F8T 2FCX 2FCY 2FCZ 2FD0 2FDT 2FEY 2FGP
2FK6 2FMT 2FQN 2FRL 2FTC 2FY1 2FZ2 2G1G 2G1W 2G32 2G3S
2G4B 2G5K 2G5Q 2G8F 2G8H 2G8I 2G8K 2G8U 2G8V 2G8W 2G91
2G92 2G9C 2GBH 2GCS 2GCV 2GDI 2GIC 2GIO 2GIP 2GIS 2GJE
2GJW 2GM0 2GO5 2GOZ 2GPM 2GQ4 2GQ5 2GQ6 2GQ7 2GRB 2GRW
2GTT 2GUN 2GV3 2GV4 2GY9 2GYA 2GYB 2GYC 2H0S 2H0W 2H0X
2H0Z 2H1M 2H2X 2H49 2HEM 2HGH 2HGI 2HGJ 2HGP 2HGQ 2HGR
2HGU 2HHH 2HNS 2HO6 2HO7 2HOJ 2HOK 2HOL 2HOM 2HOO 2HOP
2HT1 2HUA 2HVR 2HVS 2HVY 2HW8 2HYI 2I1C 2I2P 2I2T 2I2U
2I2V 2I2Y 2I7E 2I7Z 2I82 2I91 2IHX 2IL9 2IPY 2IRN 2IRO
2IX1 2IXY 2IXZ 2IY3 2IY5 2IZ8 2IZ9 2IZN 2J00 2J01 2J02
2J03 2J0Q 2J0S 2J28 2J37 2JA5 2JA6 2JA7 2JA8 2JEA 2LDZ
2NOK 2NOQ 2NVQ
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http://dx.doi.org/10.2210/pdb2g5k/pdb
http://dx.doi.org/10.2210/pdb2g5q/pdb
http://dx.doi.org/10.2210/pdb2g8f/pdb
http://dx.doi.org/10.2210/pdb2g8h/pdb
http://dx.doi.org/10.2210/pdb2g8i/pdb
http://dx.doi.org/10.2210/pdb2g8k/pdb
http://dx.doi.org/10.2210/pdb2g8u/pdb
http://dx.doi.org/10.2210/pdb2g8v/pdb
http://dx.doi.org/10.2210/pdb2g8w/pdb
http://dx.doi.org/10.2210/pdb2g91/pdb
http://dx.doi.org/10.2210/pdb2g92/pdb
http://dx.doi.org/10.2210/pdb2g9c/pdb
http://dx.doi.org/10.2210/pdb2gbh/pdb
http://dx.doi.org/10.2210/pdb2gcs/pdb
http://dx.doi.org/10.2210/pdb2gcv/pdb
http://dx.doi.org/10.2210/pdb2gdi/pdb
http://dx.doi.org/10.2210/pdb2gic/pdb
http://dx.doi.org/10.2210/pdb2gio/pdb
http://dx.doi.org/10.2210/pdb2gip/pdb
http://dx.doi.org/10.2210/pdb2gis/pdb
http://dx.doi.org/10.2210/pdb2gje/pdb
http://dx.doi.org/10.2210/pdb2gjw/pdb
http://dx.doi.org/10.2210/pdb2gm0/pdb
http://dx.doi.org/10.2210/pdb2go5/pdb
http://dx.doi.org/10.2210/pdb2goz/pdb
http://dx.doi.org/10.2210/pdb2gpm/pdb
http://dx.doi.org/10.2210/pdb2gq4/pdb
http://dx.doi.org/10.2210/pdb2gq5/pdb
http://dx.doi.org/10.2210/pdb2gq6/pdb
http://dx.doi.org/10.2210/pdb2gq7/pdb
http://dx.doi.org/10.2210/pdb2grb/pdb
http://dx.doi.org/10.2210/pdb2grw/pdb
http://dx.doi.org/10.2210/pdb2gtt/pdb
http://dx.doi.org/10.2210/pdb2gun/pdb
http://dx.doi.org/10.2210/pdb2gv3/pdb
http://dx.doi.org/10.2210/pdb2gv4/pdb
http://dx.doi.org/10.2210/pdb2gy9/pdb
http://dx.doi.org/10.2210/pdb2gya/pdb
http://dx.doi.org/10.2210/pdb2gyb/pdb
http://dx.doi.org/10.2210/pdb2gyc/pdb
http://dx.doi.org/10.2210/pdb2h0s/pdb
http://dx.doi.org/10.2210/pdb2h0w/pdb
http://dx.doi.org/10.2210/pdb2h0x/pdb
http://dx.doi.org/10.2210/pdb2h0z/pdb
http://dx.doi.org/10.2210/pdb2h1m/pdb
http://dx.doi.org/10.2210/pdb2h2x/pdb
http://dx.doi.org/10.2210/pdb2h49/pdb
http://dx.doi.org/10.2210/pdb2hem/pdb
http://dx.doi.org/10.2210/pdb2hgh/pdb
http://dx.doi.org/10.2210/pdb2hgi/pdb
http://dx.doi.org/10.2210/pdb2hgj/pdb
http://dx.doi.org/10.2210/pdb2hgp/pdb
http://dx.doi.org/10.2210/pdb2hgq/pdb
http://dx.doi.org/10.2210/pdb2hgr/pdb
http://dx.doi.org/10.2210/pdb2hgu/pdb
http://dx.doi.org/10.2210/pdb2hhh/pdb
http://dx.doi.org/10.2210/pdb2hns/pdb
http://dx.doi.org/10.2210/pdb2ho6/pdb
http://dx.doi.org/10.2210/pdb2ho7/pdb
http://dx.doi.org/10.2210/pdb2hoj/pdb
http://dx.doi.org/10.2210/pdb2hok/pdb
http://dx.doi.org/10.2210/pdb2hol/pdb
http://dx.doi.org/10.2210/pdb2hom/pdb
http://dx.doi.org/10.2210/pdb2hoo/pdb
http://dx.doi.org/10.2210/pdb2hop/pdb
http://dx.doi.org/10.2210/pdb2ht1/pdb
http://dx.doi.org/10.2210/pdb2hua/pdb
http://dx.doi.org/10.2210/pdb2hvr/pdb
http://dx.doi.org/10.2210/pdb2hvs/pdb
http://dx.doi.org/10.2210/pdb2hvy/pdb
http://dx.doi.org/10.2210/pdb2hw8/pdb
http://dx.doi.org/10.2210/pdb2hyi/pdb
http://dx.doi.org/10.2210/pdb2i1c/pdb
http://dx.doi.org/10.2210/pdb2i2p/pdb
http://dx.doi.org/10.2210/pdb2i2t/pdb
http://dx.doi.org/10.2210/pdb2i2u/pdb
http://dx.doi.org/10.2210/pdb2i2v/pdb
http://dx.doi.org/10.2210/pdb2i2y/pdb
http://dx.doi.org/10.2210/pdb2i7e/pdb
http://dx.doi.org/10.2210/pdb2i7z/pdb
http://dx.doi.org/10.2210/pdb2i82/pdb
http://dx.doi.org/10.2210/pdb2i91/pdb
http://dx.doi.org/10.2210/pdb2ihx/pdb
http://dx.doi.org/10.2210/pdb2il9/pdb
http://dx.doi.org/10.2210/pdb2ipy/pdb
http://dx.doi.org/10.2210/pdb2irn/pdb
http://dx.doi.org/10.2210/pdb2iro/pdb
http://dx.doi.org/10.2210/pdb2ix1/pdb
http://dx.doi.org/10.2210/pdb2ixy/pdb
http://dx.doi.org/10.2210/pdb2ixz/pdb
http://dx.doi.org/10.2210/pdb2iy3/pdb
http://dx.doi.org/10.2210/pdb2iy5/pdb
http://dx.doi.org/10.2210/pdb2iz8/pdb
http://dx.doi.org/10.2210/pdb2iz9/pdb
http://dx.doi.org/10.2210/pdb2izn/pdb
http://dx.doi.org/10.2210/pdb2j00/pdb
http://dx.doi.org/10.2210/pdb2j01/pdb
http://dx.doi.org/10.2210/pdb2j02/pdb
http://dx.doi.org/10.2210/pdb2j03/pdb
http://dx.doi.org/10.2210/pdb2j0q/pdb
http://dx.doi.org/10.2210/pdb2j0s/pdb
http://dx.doi.org/10.2210/pdb2j28/pdb
http://dx.doi.org/10.2210/pdb2j37/pdb
http://dx.doi.org/10.2210/pdb2ja5/pdb
http://dx.doi.org/10.2210/pdb2ja6/pdb
http://dx.doi.org/10.2210/pdb2ja7/pdb
http://dx.doi.org/10.2210/pdb2ja8/pdb
http://dx.doi.org/10.2210/pdb2jea/pdb
http://dx.doi.org/10.2210/pdb2ldz/pdb
http://dx.doi.org/10.2210/pdb2nok/pdb
http://dx.doi.org/10.2210/pdb2noq/pdb
http://dx.doi.org/10.2210/pdb2nvq/pdb
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Appendix C

Selbstständigkeitsversicherung

Versicherung an Eides statt

Hiermit versichere ich an Eides statt, die vorliegende Dissertation selbst ver-
fasst und keine anderen als die angegebenen Hilfsmittel benutzt zu haben. Ich
versichere, dass diese Dissertation nicht in einem früheren Promotionsverfah-
ren eingereicht wurde.

(Stefan Bienert)

Hamburg, den 27. November 2015
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