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Kurzfassung

In dieser Arbeit wird eine zeitabhängige (TD) Erweiterung der Slave Boson Mean-
field Theory (SBMFT) basierend auf der TD-Gutzwiller Näherung (TD-GA) einge-
führt. Sie wird angewandt auf das ein- und mehrorbitalige fermionische Hubbard-
modell außerhalb des Gleichgewichts in verschiedenen Zusammenhängen. Zunächst
wird der Einfluss von orbitalen Fluktuationen auf Prethermalisierung, frozen dynam-
ics und den dynamischen Metall zu Isolator (Mott) Übergang untersucht. Während
Prethermalisierung und frozen dynamics qualitativ intakt bleiben, verbreitert sich
der dynamische Mott Übergang in eine Region kritischen Verhaltens mit oder ohne
Hundscher Kopplung. Weiterhin werden magnetische Nichtgleichgewichtsreaktio-
nen bei oder abseits von Halbfüllung unter Berücksichtigung mehrerer orbitaler
Freiheitsgrade aufgedeckt. Zum Einen findet man einen magnetischen Nichtgle-
ichgewichtsübergang zwischen antiferromagnetischen und paramagnetischen Zus-
tand in einem großen Füllungsbereich. Zum Anderen werden longitudinale (tem-
poräre) Spin Oszillationen entdeckt, wobei die temporäre Eigenschaft und die Fül-
lungsabhängigkeit stark von dem Grundzustand abhängen. Diese Aspekte ver-
schaffen einen Blick auf zu erwartende Multiorbitalphysik in zukünftigen Nichtgle-
ichgewichtsexperimenten. Um die Anwendbarkeit von TD-SBMFT auf reale Ma-
terialien zu verdeutlichen wird V2O3 betrachtet. Kürzlich hat ein bis jetzt nicht
publiziertes ultraschnelles Laser Experiment einen Nichtgleichgewicht Mott-Isolator
zu Metall Übergang in diesem Material entdeckt. Ergebnisse dieses Experiments
werden qualitativ reproduziert und der Übergang kann als Quench eines Korrela-
tionsverstärkten Kristallfeldes verstanden werden. Außerdem wird eine Realraum-
formulierung von TD-SBMFT im Gleichgewicht angewandt auf die anspruchsvolle
Physik von Sauerstoffleerstellen an der LaAlO3/SrTiO3 Grenzfläche. Auf diesem
Weg wird die Konkurrenz von Ruderman-Kittel-Kasuya-Yosida(RKKY)-ähnlichen,
double exchange-ähnlichen und superexchange Prozessen abhängig von der Anzahl
der Leerstellen aufgedeckt. Schlüsselergebnisse von Experimenten an der LaAlO3/SrTiO3

Grenzfläche werden reproduziert, welches die wichtige Rolle von Sauerstoffleerstellen
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für Magnetismus an der Grenzfläche unterstreicht. Außerhalb des Gleichgewichts
wird Realraum-TD-SBMFT verwendet, um magnetische Anregungen des Hubbard-
modells mit einem Orbital zu berechnen. Zunächst liegt der Fokus auf einer schwachen
Störung des Systems. Im Grenzfall niedriger elektronischer Wechselwirkung wer-
den Elektron-Loch-Anregungen (Stoner-Anregungen) produziert, während im entge-
gengesetzten Grenzfall kollektive Spin-Anregungen (Magnonen) aufgedeckt werden.
Diese beiden Ergebnisse reproduzieren lineare Antwort Ergebnisse. Danach werden
Stärken von Realraum TD-SBMFT benutzt. Stoner Anregungen und Magnonen
bei mittlerer Wechselwirkungsstärke werden aufgedeckt und die Entwicklung dieser
Anregungen in den Grenzfall niedriger und starker Wechselwirkung wird verfolgt.
Anschließend wird die Störung des Systems verstärkt und der Einfluß von der Stärke
der Störung auf das Magnonenspektrum betrachtet. Dies zeigt störungsabhängigen
Magnonenzerfall außerhalb von linearer Antwort, der zuvor mittels selbstkonsis-
tenter Born Approximation im Heisenberg Spin Modell bei starken Magnetfeldern
entdeckt wurde.



Abstract

In this work a time-dependent (TD) extension of the slave boson mean-field theory
(SBMFT) based on the TD-Gutzwiller approximation (TD-GA) is introduced. It is
applied to the single- and multi-orbital fermionic Hubbard model out of equilibrium
in different contexts. The influence of orbital fluctuations onto prethermalization,
frozen dynamics and the dynamical metal to insulator (Mott) transition is inves-
tigated. While prethermalization and frozen dynamics remain qualitatively intact,
the dynamical Mott transition broadens into an extended region of critical behavior.
Additionally non-equilibrium magnetic responses with multiple orbital degrees of
freedom at or away from half-filling are revealed. On the one hand a non-equilibrium
magnetic transition from antiferromagnetic to a paramagnetic state is encountered in
a wide range of fillings. One the other hand longitudinal (transient) spin oscillations
are revealed, where transient property and filling dependence strongly depend on
the specifics of the ground state. This provides a preview on multi-orbital physics to
unveil by upcoming non-equilibrium experiments. To demonstrate the applicability
of TD-SBMFT on real materials V2O3 is considered. Recently an up to now unpub-
lished ultrafast laser experiment revealed a non-equilibrium Mott insulator to metal
transition in this material. Results of this experiment are qualitatively reproduced
and the transition is attributed to a quench in correlation enhanced crystal field.
Furthermore a real-space formulation of TD-SBMFT is employed. It is applied in
equilibrium on the challenging physics of oxygen vacancies at the LaAlO3/SrTiO3 in-
terface. On this way the competition is revealed between Ruderman-Kittel-Kasuya-
Yosida(RKKY)-like, double exchange-like and superexchange processes depending
on the number of vacancies. Key results of experiments at the LaAlO3/SrTiO3

interface are reproduced underlining the vital role of oxygen vacancies concerning
magnetism at the interface. Real-space TD-SBMFT is employed to compute mag-
netic excitations of the single-orbital Hubbard model. First a weak perturbation is
considered. In the small interaction limit electron-hole excitations (Stoner excita-
tions) are reproduced, while in the large interaction limit collective spin excitations



(magnons) are recapped, both known from previous linear-response results. Af-
terwards strengths of real-space TD-SBMFT are utilized. Stoner excitations and
magnons at intermediate interaction are revealed and their evolution into small or
large interaction limit is traced. Additionally the perturbation is enhanced and the
influence of the perturbation onto the magnon dispersion is investigated. This re-
veals perturbation-dependent magnon decay away from linear-response previously
known from results in self-consistent Born approximation of the Heisenberg Spin
model in strong magnetic field.
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1 Preface

Experiments in ultracold gases have stimulated for the last decade ongoing research
in non-equilibrium physics of fermionic or bosonic Hubbard models [15]. The con-
nection between Hubbard models and ultracold gases is simple as the latter work
as quantum simulators of the former [127]. Ultracold gases have in contrast to ma-
terials no impurities, purely local Coulomb interaction and nearly zero temperature
[127]. The finding of the metal to insulator (Mott) transition in bosonic [37] and
fermionic [57, 127] ultracold gases underlines this fact. Non-equilibrium physics af-
ter an external perturbation are accessible in ultracold gases by probing [57, 127]
or in solids by femtosecond spectroscopy [113]. From the theory side a useful the-
oretical idealization is a so called quantum quench [20]. Studies on an interaction
quenched single-orbital fermionic Hubbard model reveal intriguing non-equilibrium
phenomena like prethermalization, frozen dynamics and the dynamical Mott tran-
sition [29, 96, 125]. Switching again to the experimental side, theoretical studies on
how to incorporate orbital physics of models like the Kondo lattice model in ultracold
fermionic atoms raised great interest [12, 34]. Experimental realization especially
of magnetic states is a serious challenge in ultracold gases due to the required low
temperatures and entropies needed to observe exchange-driven spin ordering effects
[36]. Still progress has been made [36, 124] raising the impression that it is only
a matter of time until non-equilibrium multi-orbital (magnetic) phenomena will be
accessible in ultracold gases.
Definitely within reach of ultracold gases in the near future are magnetic states of the
single-orbital fermionic Hubbard model, as already for example short-range magnetic
order could be established in ultracold gases [36] or antiferromagnetic correlations
measured [45]. The Hubbard model includes two complementary approaches toward
magnetism in solid state systems worth investigating in ultracold gases. The strong
interaction limit leads to the Heisenberg model, which describes magnetism as in-
duced by local magnetic moments on atoms [109]. In the weak interaction limit
the interaction term of the Hubbard model is well approximated by its mean-field
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value leading to the Stoner model [109]. While the Heisenberg model contains only
transverse low energy collective spin excitations (magnons), the Stoner model con-
sists only of longitudinal magnetic excitations covering a broad energy range [103].
Therefore interesting and challenging are investigations of magnetic excitations in
the intermediate interaction regime. Theoretical studies already discovered intrigu-
ing results [128, 152], but struggled with employing a high resolution of the Brillouin
zone or taking into account high energy magnetic excitations.
The work is structured as follows. In chapter 2 the Hubbard model, equilibrium
slave boson mean-field theory (SBMFT) and its time-dependent extension (TD-
SBMFT) are introduced as well as their real-space formulations. As a testing case
TD-SBMFT is applied to the single-orbital Hubbard model at half-filling in chap-
ter 3 to recover time-dependent Gutzwiller approximation results. Afterwards the
influence of orbital degrees of freedom on prethermalization, frozen dynamics and
dynamical Mott transition using the two-orbital Hubbard model is investigated in
chapter 4. TD-SBMFT is not limited to model applications, thus the origin of a
non-equilibrium Mott insulator to metal transition in V2O3 is investigated in chap-
ter 5. Additionally non-equilibrium magnetic fluctuations in the three t2g orbitals
at and away from half-filling are revealed in chapter 6. Then the real-space formu-
lation of TD-SBMFT is employed. First the equilibrium part is applied to simple
test cases and the intriguing interplay of correlations and oxygen vacancies at the
LaAlO3/SrTiO3 interface in chapter 7. In chapter 8, before the strengths of real-
space TD-SBMFT are utilized, it is tested displaying magnetic excitations in the
interaction limits of the single-orbital Hubbard model. Still in the same chapter
as strengths magnetic excitations at intermediate interactions are revealed and the
magnon decay at high interaction in pulsed magnetic fields.



2 Theoretical framework

2.1 Hubbard model

2.1.1 Single-orbital model

The main problem of condensed matter theory is, that one knows the Hamiltonian
(N electrons in the potential V (~r) of the ion cores with Coulomb interaction) [94]

H =
N∑

j=1

(
p2
j

2m
+ V (r)

)

︸ ︷︷ ︸
Eikin

+
1

2

j 6=k∑

jk

e2

|rj − rk|︸ ︷︷ ︸
EijC

, (2.1)

but can not solve the corresponding Schrödinger equation analytically. The Hubbard
model [48] has established its place as standard model of condensed matter systems
with strong Coulomb interaction in recent years. Assuming the electrons to be
strongly localized near the atomic nucleus, atomic eigenstates (for N electrons and
L lattice sites) {|ϕiσn〉| i ∈ {1, . . . , L} , n ∈ {1, . . . , N}} are used as second quanti-
zation basis. Greek letters represent in this subsection a spin index. In this basis
the Hubbard model can be rewritten as

H =
L∑

i,j=1

∑

σ

(
τiσjσc

†
iσcjσ + h.c.

)

︸ ︷︷ ︸
Hkin

+
1

2

L∑

i=1

∑

αβγδ

(
Uiαiβiγiδc

†
iαc
†
iβciδciγ + h.c.

)

︸ ︷︷ ︸
Hloc=∑

iHloci

, (2.2)

where Hkin denotes the kinetic part and Hloc the local interaction. Here τiσjσ =

〈ϕiσ1 |E1
kin|ϕjσ1〉 depicts the expectation value of the electrons’ kinetic energy and

ion cores’ potential. τiσjσ describes the probability for an electron with spin σ to
move from lattice site j to site i. In the following τ is often called hopping or
hopping matrix. Uiαiβiγiδ = 〈ϕiα1ϕiβ1 |E12

C |ϕiγ1ϕiδ1〉 is a local description of the
Coulomb interaction between electrons at site i. Often only Uiαiαiᾱiᾱniαniᾱ with
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niα = c†iαciα and ᾱ the opposing spin index to α is considered (Hubbard-U). Meaning
the following Hamiltonian is taken into account

H =
L∑

i,j=1

∑

σ

(
τiσjσc

†
iσcjσ + h.c.

)

︸ ︷︷ ︸
Hkin

+
∑

iα

Uiαiαiᾱiᾱniαniᾱ

︸ ︷︷ ︸
Hloc=∑

iHloci

. (2.3)

Compared to Eij
C (Eq. 2.1) Hloc (Eq. 2.2) and the Hubbard-U are simplifications,

as they are only taking into account the Coulomb interaction between electrons at
the same lattice site and no radial dependence. For all single-orbital applications
considered in this work Uiαiαiᾱiᾱ is not spin-dependent and set to 0.5U . There are
only few special cases, in which the Hubbard model can be solved analytically. In
the case U = 0 the Hamiltonian reduces to Hkin, which can be diagonalized in mo-
mentum space. This is called the itinerant limit, as the hopping of the electrons
is not affected by Coulomb interaction and the eigenstates of the Hamiltonian are
therefore Bloch states. In a similar way τ = 0 can be solved analytically, too. There
all lattice sites are isolated from each other, as there is no way for one electron to
move between them. The Hamiltonian of a single site consists only of the Coulomb
interaction at that site and can be diagonalized. As eigenstates the atomic eigen-
states and the so called atomic limit are obtained. However the case U 6= 0 and
τ 6= 0 has in general no analytic solution. An overview considering solutions of the
Hubbard model can be found in [81]. Numerically exact solutions with state of the
art supercomputers are only possible for up to 20 lattice sites. So to obtain solutions
in the thermodynamic limit (N →∞) approximations are needed.

2.1.2 Multi-orbital model

The presented Hubbard model in the last section (Eq. 2.2) takes only one orbital
degree of freedom into account. The formulation of Eq. 2.2 is chosen in a way that
a generalization to multiple orbital degrees of freedom is possible. For this purpose
the greek index elements are ∈ (mσ) instead of σ in Hloc, where m is an orbital
index. Additionally in Hkin the index σ has to be replaced with mσ. The derived
model is called n-orbital model (or n-band model), where n represents the number
of orbitals. Considering multiple orbital degrees of freedom, Hund’s rules [38] have
to be ensured. They describe empirically the energetic order of atomic states for
atoms with multiple electrons and multiple orbitals. There are three rules (sorted
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by energetic relevance in descending order) and in the statement the z-component
of the stated vector operators is taken, which is an arbitrary choice:

1. The total spin in z-direction of the electrons’ spin vector operator (Sz =
∑

i (Sz)i)

of one atom is maximal. An asymmetric orbital part of the electrons’ wave-
function is energetically favored, because this induces a smaller overlap of the
spin part of the electrons’ wavefunction resulting in a smaller Coulomb inter-
action.

2. The total angular momentum of the electrons’ angular momentum vector op-
erator (Lz =

∑
i (Lz)i) is maximal for states with same Sz. Electrons with

higher Lz tend to be further away from the atomic nucleus and by this also
from each other reducing again the Coulomb interaction.

3. In atoms with multiple not fully occupied shells, the following holds: Is the
shell filled less than half, the total momentum operator J is J = |L + S| else
J = |L−S|. As in this work only single not fully occupied shells are considered,
this rule is not relevant.

Accounting now for the Hund’s rules and multiple orbitals in the Hubbard model
leads to the following Hamiltonian (with JH denoting the Hund’s rule coupling)

H = Hkin +
∑

i

Hloc
i

︸ ︷︷ ︸
Hloc

= −
∑

〈i,j〉mm′σ

(
τimjm′c

†
imσcjm′σ + h.c.

)

︸ ︷︷ ︸
Hkin

+U
∑

im

nim↑nim↓ +

+
1

2

∑

i,m 6=m′,σ

{
U ′ nimσnim′σ̄ + U ′′ nimσnim′σ + (2.4)

+ JH

(
c†imσc

†
im′σ̄cimσ̄cim′σ + c†imσc

†
imσ̄cim′σ̄cim′σ

)}
.

As long as cubic symmetry is present regarding the orbital degrees of freedom
U ′=U−2JH, U ′′=U−3JH proves adequate [22, 33]. Note that the Hamiltonian of
Eq. 2.4 is spin and orbital rotationally invariant [22].

2.2 Slave boson mean-field theory in equilibrium

Slave boson mean-field theory (SBMFT) aims at the qualitative and fast description
of the low-energy and low-temperature physics of a Hubbard model tailored to a
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specific physical scenario. The results are retrieved in the framework of Fermi-liquid
theory, which allows access to bandstructure, quasiparticle weight, local eigenstates
of the atoms, but neglects quantum fluctuations of the derived observables. Starting
point is a multi-orbital Hubbard modelH = Hkin+Hloc (see Eq. 2.4). In this section
i denotes atoms in the unit cell and greek indices |α〉 = |mσ〉 , where m labels
orbitals and σ spin degrees of freedom. Additionally occasionally

∣∣∣∼α
〉

= |imσ〉 is
utilized. Note that in fact instead of the Hkin in Eq. 2.4 the Fourier transformed
version

Hkin =
∑

k
∼
α
∼
β

ε
k
∼
αk
∼
β
c†
k
∼
α
c
k
∼
β

(2.5)

is used with k denoting points in momentum space. In this section only translational
invariant systems with respect to the unit cell are considered. The derivation of the
formalism is now briefly sketched in a series of steps and afterwards characteristic
SBMFT values are explained. Technical details regarding the mentioned steps and
more details considering the method can be found in [25] and [77], respectively.

1. The multi-orbital Hubbard Hamiltonian is projected onto an extended Hilbert
space H using c†iα = Riαiβ [φ] f †iβ, where f

† represents a fermionic quasiparticle
and φ†iAn a bosonic creation operator. With this projection no intersite φ are
used. In the index iAn of H, A stands for the bosonic and n for the fermionic
part. Utilizing the constraints

∑

An

φ†iAnφiAn = 1, ∀i (2.6)

∑

A

∑

nn′

φ†iAnφiAn

〈
n
∣∣∣f †iαfiα′

∣∣∣n′
〉

= f †iαfiα′ ∀i (2.7)

only physical states remain in H. The first constraint norms the slave bosons
φ†iAn and the second one ensures that charge matches between original and
extended Hilbert space. Both is ensured for all sites i of the unit cell. One
representation of H in H is

H =
∑

k

∑

∼
α
∼
α
′

∑

∼
β
∼
β
′

R†∼
α
∼
α
′ε

k
∼
α
′
k
∼
β
′R∼

β
∼
β
′f
†
k
∼
α
f
k
∼
β

︸ ︷︷ ︸
HSB∗

+
∑

iAA′

〈
iA
∣∣Hloc

i

∣∣ iA′
〉∑

n

φ†iAnφiA′n

︸ ︷︷ ︸
Hloc
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In this representation the Hamiltonian is now quadratic in bosonic and quasi-
fermionic operators. Note that ε is the Fourier transform of τ denoted in Hkin

(Eq. 2.4).

2. The path-integral formalism [102] is used, to calculate the partition function
Z (with β as inverse temperature)

Z =

∫
D
[
φ†φ

]
D [Λλi0]D

[
f †f

]
exp

[
−
∫ β

0

dt (L1 + L2 + L3 + L4)

]
.

L1 =
∑

iAn

∑

A′n′

φ†iAn

(
∂

∂t
+ λ0

)
φiA′n′ − λ0

L2 =
∑

iAA′

∑

nn′

φ†iAn

(
δAA′δnn′

∂

∂t
− δAA′

〈
f †infin′

〉
Λinin′

)
φiA′n′

L3 =
∑

iAn

∑

A′n′

φ†iAn

(
δAA′δnn′

∂

∂t
+ δnn′

〈
A
∣∣Hloc

i

∣∣A′
〉)

φiA′n′

L4 =
∑

inn′

f †in

(
∂

∂t
+ Λinin′

)
fin′ +

∑

k

∑

∼
α
∼
α
′∼
β
∼
β
′

R†∼
α
∼
α
′ [φ] ε

k
∼
α
′
k
∼
β
′R∼

β
∼
β
′ [φ] f †

k
∼
α
f
k
∼
β

The constraints from Eqs. 2.6 and 2.7 are ensured at each site i of the unit
cell by Lagrange multipliers λi0 and Λinin′ . The integration regarding L4 with
respect to

[
f †f

]
can be done now analytically [25]. Of particular interest is

the renormalized Hamiltonian HSB
∗

HSB
∗ =

∑

k

∑

∼
α
∼
α
′∼
β
∼
β
′

R†∼
α
∼
α
′ [φ] ε

k
∼
α
′
k
∼
β
′R∼

β
∼
β
′ [φ] f †

k
∼
α
f
k
∼
β
, (2.8)

especially later on, when turning to the non-equilibrium description (see sec-
tion 2.4).

3. Applying a mean-field treatment by assuming φ†iAn and φiAn as time indepen-
dent and moving to the zero temperature limit leads to the following partition
function

Z = lim
β→∞

∫
D
[
φ†φ

]
D [Λλ0] exp [−β (L1 + L2 + L3)] . (2.9)

4. The corresponding free energy Ω to this partition function can be approx-
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imated in the saddle-point approximation. In this approximation the free
energy is estimated by evaluation the function inside the integral at the high-
est contribution, which is a complex saddle-point [94]. This point is indicated
by the saddle-point equations

∂Ω

∂φi
= 0,

∂Ω

∂Λinin′
= 0,

∂Ω

∂λ0i

= 0. (2.10)

5. In the end the numerical evaluation of Eq. 2.10 follows, leading to the following
characteristic values of RISB (in matrix form)

Z = R†R (2.11)

Σ = ω
(
1−

(
R†R

))−1
+
(
R†
)−1

ΛR−1 − ε0 (2.12)

〈Oi〉 =
∑

AA′n

〈iA |Oi| iA′〉φ†iAnφiA′n (2.13)

G−1
f (k, ω) = ω −R†ε (k)R − Λ (2.14)

Here Z denotes the quasiparticle weight, Σ the selfenergy, 〈O〉 the expecta-
tion value of a local operator and Gf the one-particle Green’s function of the
fermionic quasiparticles. These characteristic values are computed at low ener-
gies near the Fermi energy and low temperatures and are listed and described
hereinafter.

Quasiparticle weight Z: The value Z = 1 indicates free, non-interacting
electrons. Z < 1 describes a correlated system and correlations increase
with decreasing value until at Z = 0 the systems transitions to an insu-
lator.

Selfenergy Σ: The real part indicates the strength of many-particle interac-
tions. The imaginary part describes, when the Green’s function is evolved
at least to second order in ω the finite lifetime of the quasiparticles.

Quasiparticle occupation f †iαfiα: Expresses the number of quasiparticles, which
occupy the specified (by iα) site, orbital and spin degree of freedom.

Slave-boson occupation: φ†iAnφiAn: Occupation of the corresponding slave
boson state. It is not directly related to the original system, as it is an
unphysical auxiliary value. But the distribution and weights of the slave
boson states often lead to important statements regarding the investi-
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gated system.

2.3 Real-space slave boson mean-field theory in
equilibrium

In the last section the evaluation of the important observables in SBMFT is sketched
under the assumption, that a translational invariant system with a small unit cell is
present. It is written in a general form, which allows for a multi-atom unit cell. A
(minimum) two-atom unit cell is needed for example to describe antiferromagnetic
order (see chapter 6). However when a (sufficiently large) inhomogeneous system
is the focus of attention, this formulation reaches its limits quite fast. The main
problem is the linear scaling of the number of saddle-point equations with sites in the
unit cell i as shown in Eq. 2.10. Additionally the diagonalization of HSB

∗ at each k

point of each iteration to determine the Fermi level becomes numerically demanding.
To consider a real-world example, let’s take into account the calculation of chapter
7, which was done using the real-space SBMFT formulation, which is addressed in
a few lines. If this would have been done inside the formulation of the last section
the 10x10 lattice with two-orbitals on each site mean the following. For two orbitals
there are 60 symmetry inequivalent slave bosons with one λ0 and 16 (=4x4) Λnn′

present per site. This results in 7700 saddle-point equations in total for the 100
sites considered. Already numerically very demanding, the fact that some of the
equations contain k sums [25] complicates parallelization of the problem at hand.
Furthermore HSB

∗ is a 400x400 matrix at each k-point, which has to be diagonalized
at each k-point in each iteration step of the self-consistent calculation. This leads
to the conclusion that a real-space formulation is beneficial.
The derivation of the real-space formalism is straightforward and analogue to the
last section, only the following aspects have to be considered.

• As in the previous section no intersite slave bosons are considered. Inhomoge-
neous effects arise in the self-consistency cycle.

• All k-sums vanish and the same holds for the appropriate k indices.

• Instead of Hkin (Eq. 2.5) the real-space formulation Hkin (Eq. 2.4) is used uti-
lizing periodic or open boundary conditions to enforce or neglect translational
invariance.
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• This leads to the following renormalized free Hamiltonian

HSB
∗ =

∑

ijmm′nn′σ

R†imim′τim′jn′Rjn′jnc
†
imσcjnσ, (2.15)

where i,j label sites and m,m′, n, n′ denote orbitals.

• The index i now runs over all sites of the lattice using open/periodic boundary
conditions. In the mentioned example i ∈ 1, . . . ,100.

This leads to the following advantages with respect to the formalism of the previous
section

• In momentum space determination of the Fermi level needs diagonalization of
HSB
∗ at each k-point and each iteration. In contrast in real-space only a single

diagonalization of HSB
∗ per iteration is required. However HSB

∗ is a 4x4 matrix
at each k-point, while HSB

∗ is a 400x400 matrix in the example.

• The (still) 7700 saddle-point equations can be parallelized over sites as no
momentum-space sums are involved anymore.

One serious drawback is, that the system size considered (10x10 in the mentioned
example) is ultimately linked to the accuracy of the whole calculation as it limits
the dimension of the kinetic Hamiltonian. To elaborate on this, having a 400x400
kinetic Hamiltonian means that there are only 400 eigenvalues and eigenstates to
resolve the energy dispersion. This limits the resolution of the density of states.
Previously the momentum space grid limited the density of states and the number
of atoms in the unit cell the resolution of spatial inhomogeneities. Now one grid
has to be chosen to acquire a suitable resolution in both aspects. In section 7.1
the just presented real-space equilibrium formulation is tested by applying it to
the homogeneous single-orbital Mott transition using various real-space lattice sizes
(section 7.1.1). Furthermore a single non-magnetic defect scenario is considered to
test also inhomogeneous qualities (section 7.1.2).

2.4 Time-dependent slave boson mean-field theory

It is important to realize that the Gutzwiller approximation is equivalent to the
slave boson formulation in equilibrium [19]. For example, one Gutzwiller projector
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in the mixed basis notation defined in some lines can be transformed by unitary
transformation of the basis to a slave boson. The time-dependent slave boson mean-
field theory (TD-SBMFT) is based on the time-dependent Gutzwiller Approximation
(TD-GA) [125]. Hence the differential equations in the Gutzwiller framework are
derived first in section 2.4.1. Then a look on conserved quantities in the time-
dependent description is performed in section 2.4.2. Afterwards in section 2.4.3 the
differential equations are transferred to slave boson formalism (compare equilibrium
introduction in section 2.2). The equivalent transfer for the real-space description
(see section 2.3) is done in section 2.4.4. In the appendix (section A.1.1) the Runge-
Kutta methods are introduced, which are needed to solve the differential equations.
Additionally the error estimation of variables obtained by Runge-Kutta methods is
explained in section A.1.2.

2.4.1 Derivation of the time-dependent Gutzwiller
approximation

In this section a review of TD-GA is followed [160]. The time-dependent Schrödinger
equation describes the time evolution of a pure quantum state |Ψ (t)〉 by

i
∂

∂t
|Ψ (t)〉 = H (t) |Ψ (t)〉 (2.16)

This equation can be restated as being the stationary point of the following action
functional

S [|Ψ〉 ] =

∫ tf

0

dτ

〈
Ψ (τ)

∣∣∣∣i
∂

∂τ
−H

∣∣∣∣Ψ (τ)

〉
. (2.17)

The solution of the Schrödinger equation can be understood in this as a solution of
the variational principle

∂S [|Ψ〉 ]
∂ |Ψ (t)〉

!
= 0 (2.18)

This reformulation allows to look for the best solution in a subclass of time-dependent
wavefunctions out of which in the following the time-dependent Gutzwiller wavefunc-
tions ψ (t) are considered with

|Ψ (t)〉 = P (t) |ψ (t)〉 . (2.19)
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Pi (t) denotes the time-dependent Gutzwiller projector at a given site i of the unit
cell, which will be parametrized below. Furthermore the equilibrium Gutzwiller
constraints are imposed to hold at each time t

〈
ψ (t)

∣∣∣P†i (t)Pi (t)
∣∣∣ψ (t)

〉
!

= 1 (2.20)
〈
ψ (t)

∣∣∣P†i (t)Pi (t) d†iαdiβ
∣∣∣ψ (t)

〉
!

=
〈
ψ (t)

∣∣∣d†iαdiβ
∣∣∣ψ (t)

〉
(2.21)

These constraints ensure that the wavefunction Ψ is normalized and that calculations
in the limit of infinite lattice coordination number can be done analytically. The
action S (t) can be evaluated now exactly in this limit and reads1 [160]

S [|Ψ〉 ] =

∫ tf

0

dτ

[
i

〈
ψ (τ)

∣∣∣∣
∂

∂t
ψ (τ)

〉
+

+ i
∑

i

〈
ψ (τ)

∣∣∣∣P
†
i (t)

∂

∂t
Pi (t)

∣∣∣∣ψ (τ)

〉
− E (τ)

]
(2.22)

where E (t) =
〈
Ψ (t)

∣∣P† (t)H (t)P (t)
∣∣Ψ (t)

〉
is the total energy. Assuming now

that there exists operators d̃†a and d̃a, which are related to the previous ones (d†α and
dα) by unitary transformation, and fulfill

〈
ψ (t)

∣∣∣d̃†iad̃ib
∣∣∣ψ (t)

〉
= δiabn

0
ia (t) (2.23)

the Gutzwiller projector can be rewritten in a mixed basis notation. In this notation
|i,Γ〉 indicates the basis introduced by d†α and dα and |i, n〉 is the new so called
natural basis given by d̃†a and d̃a.

Pi (t) =
∑

Γn

Φi,Γn (t)√
P0
i,n (t)

|i,Γ〉 〈i, n| (2.24)

with the Gutzwiller variational matrix Φi and the local uncorrelated probability
P0
i,n (t) = 〈ψ (t) |i, n〉 〈i, n |ψ (t)〉 . Utilizing the renormalization Matrix R with

1Note that an in depth calculation of Eqs. 2.22 and 2.28 can be found in the appendix of [121].
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entries n(0)
b (t) of the (diagonal) P0

i,n (t)

R∗iaib =
1√

n
(0)
b (t)

(
1− n(0)

b (t)
)Tr

(
Φ†i (t) d†iaΦi (t) d̃ib

)
(2.25)

the renormalized Hamiltonian HGA
∗ can be defined as

HGA
∗ =

∑

ij

∑

abcd

R†iaicτicjdRjdjb d̃
†
iad̃jb. (2.26)

Its momentum-space formulation reads

HGA
∗ =

∑

k

∑

abcd

R†acεkckdRdb d̃
†
kad̃kb. (2.27)

These two equations can be compared to Eqs. 2.15 and 2.8, where HSB
∗ and HSB

∗
are defined, respectively. As they are related by unitary transform and from the
context it is clear if Gutzwiller framework or slave boson description is used, they
are denoted in the following as H∗ and H∗. Using H∗ the following form of action
is obtained with2 [160]

S [|Ψ〉 ] =

∫ tf

0

dτ

[
i

〈
ψ (τ)

∣∣∣∣
∂

∂τ
ψ (τ)

〉
− 〈ψ (τ) |H∗ (τ)|ψ (τ)〉

+i
∑

i

Tr

(
Φ†i (τ)

∂

∂τ
Φi (τ)

)
−
∑

i

Tr
(

Φ†i (τ)HlocΦi (τ)
)]

(2.28)

The best approximation to the real evolving state in the subclass of Gutzwiller
wavefunctions can then be retrieved by requiring the stationary of this action with
respect to the Slater determinant ψ (t) and the Gutzwiller variational matrix Φi, as

2Note that an in depth calculation of Eq. 2.28 can be found in the appendix of [121].
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well as its conjugate Φ†i . Deriving the functional derivatives results in

i
∂

∂t
|ψ (t)〉 = H∗ [Φ (t)] |ψ (t)〉 (2.29)

i
∂

∂t
Φi (t) = Hloc (t) Φi (t) +

〈
ψ (t)

∣∣∣∣∣
∂H∗ [Φ (t)]

∂Φ†i

∣∣∣∣∣ψ (t)

〉
(2.30)

−i
∂

∂t
Φ†i (t) = Φ†i (t)Hloc (t) +

〈
ψ (t)

∣∣∣∣
∂H∗ [Φ (t)]

∂Φi

∣∣∣∣ψ (t)

〉
(2.31)

By these first-order ordinary differential equations quasiparticle degrees of freedom
(Slater determinants) |ψ (t)〉 are coupled to local degrees of freedom (Gutzwiller
projectors) Φ. |ψ (t)〉 is evolved by an effective Schrödinger equation for the renor-
malized Hamiltonian H∗. Note that TD-GA is similar to Gutzwiller with fluctu-
ations accounted by random phase approximation (GA+RPA). The latter method
was invented by Seibold et al. [128, 129], but the here presented method has the
major advantage that the Gutzwiller projector Φ has its own time evolution. In
GA+RPA the time evolution of Φ is only driven by the time evolution of the Slater
determinant |ψ (t)〉 . It is necessary to give Φ its own time evolution to be able to
describe for example the dynamic metal to insulator transition [126].
Note that from Eqs. 2.30 and 2.31 using the Gutzwiller expression for E (t) it is
straightforward to show that

i
∂Φi

∂t
=

∂E

∂Φ†i
∧ −i

∂Φ†i
∂t

=
∂E

∂Φi

(2.32)

meaning Φi and Φ†i work as classical conjugate variables and E (t) as their effective
Hamiltonian. This turns the whole description via Eqs. 2.29−2.31 into a semiclas-
sical approach and will be used to proof energy conservation in section 2.4.2. In the
following, discussion can be limited to Eqs. 2.29 and 2.30 as Eq. 2.31 is just the
adjoint of Eq. 2.30.
The derivation of these differential equations is so far exact, done in the limit of infi-
nite lattice coordination number. Applying these formulas to other cases then yields
the time-dependent Gutzwiller approximation (TD-GA). Furthermore in most cases
the enforcing of the constraints depicted by Eqs. 2.20 and 2.21 is not necessary, as
it is proven in [160]. To be specific, these constraints hold for t > 0, if fulfilled at
t = 0 and the local occupation matrix has a representation, in which it has only
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diagonal elements.

2.4.2 Conserved quantities

In this section conserved quantities during the time evolution of TD-GA are depicted,
which occur also in TD-SBMFT.

Theorem 1. The occupation of an arbitrary bloch state nk′a′ is conserved during
the time evolution as

[
H∗, nk′a′

]
− holds, where the commutator is defined as follows

[A,B]− = AB −BA.

Proof. Using
[
d†a, d

†
b

]
−

= 0 =
[
da, db

]
−
and

[
da, d

†
b

]
−

= δab, as well as [A,BC]− =

[A,B]−C +B [A,C]− leads to:

[
dka, nk′a′

]
−

=
[
dka, d

†
k′a′dk′a′

]
−

=
[
dka, d

†
k′a′

]
−
dk′a′ +

+d†k′a′
[
dka, dk′a′

]
−

= δkk′δaa′dk′a′
[
d†ka, nk′a′

]
−

=
[
d†ka, d

†
k′a′dk′a′

]
−

=
[
d†ka, d

†
k′a′

]
−
dk′a′ +

+d†k′a′
[
d†ka, dk′a′

]
−

= −δkk′δaa′d†k′a′

These both equations are helpful when computing
[
H∗, nk′a′

]
−. As H∗ is a one-

particle operator,

H∗ =
∑

k

∑

ab

Hk
∗abd

†
kadkb +Hk∗

∗bad
†
kbdka

holds. Using the two identities

[
d†kadkb, nk′a′

]
−

= −
([
nk′a′ , d

†
ka

]
−
dkb + d†ka

[
nk′a′ , dkb

]
−

)

= −
(
δaa′δkk′d

†
kadkb − δkk′δba′d†kadkb

)

[
d†kbdka, nk′a′

]
−

= δaa′δkk′d
†
kbdka − δkk′δba′d†kbdka
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[
H∗, nk′a′

]
− can be easily computed.

[
H∗, nk′a′

]
− =

[∑

k

∑

ab

(
Hk
∗abd

†
kadkb +Hk∗

∗bad
†
kbdka

)
, nk′a′

]

−

=
∑

k

∑

ab

Hk
∗ab

[
d†kadkb, nk′a′

]
−

+
∑

k

∑

ab

Hk∗
∗ba

[
d†kbdka, nk′a′

]
−

=
∑

k

∑

ab

Hk
∗ab

(
−δaa′δkk′d†kadkb + δkk′δba′d

†
kadkb

)

+
∑

k

∑

ab

Hk∗
∗ba

(
δaa′δkk′d

†
kbdka − δkk′δba′d†kbdka

)

=
∑

a

Hk′
∗aa′d

†
k′adk′a′ −

∑

b

Hk′
∗a′bd

†
k′a′dk′b +

∑

b

Hk′∗
∗ba′d

†
k′bdk′a′

−
∑

a

Hk′∗
∗a′ad

†
k′a′dk′a′

= 0

In the last step the hermitecity of H∗ was used.

Theorem 2. The total Energy E (t) is conserved, if the Hamiltonian is time-independent.
If the Hamiltonian is explicitly time-dependent, only the explicit time-dependence re-
mains.

Proof.

dE

dt
=

d

dt
〈Ψ (t) |H|Ψ (t)〉 =

d

dt

[
〈
ψ (t)

∣∣H∗
∣∣ψ (t)

〉
+
∑

i

Tr
(

Φ†iHlocΦi

)]

=

〈
dψ (t)

dt

∣∣H∗
∣∣ψ (t)

〉

︸ ︷︷ ︸
1

+

〈
ψ (t)

dt

∣∣H∗
∣∣ dψ (t)

dt

〉

︸ ︷︷ ︸
2

+

〈
ψ (t)

∣∣∣∣∣
dH∗

[
Φ† (t) ,Φ (t) , t

]

dt

∣∣∣∣∣ψ (t)

〉

︸ ︷︷ ︸
3

+
∑

i

Tr

(
dΦ†i
dt
HlocΦi

)

︸ ︷︷ ︸
4

+
∑

i

Tr

(
Φ†iHlocdΦi

dt

)

︸ ︷︷ ︸
5

+
∑

i

Tr

(
Φ†i
dHloc

dt
Φi

)

︸ ︷︷ ︸
6

As Eq. 2.29 holds also with opposite sign for the corresponding bra vector contribu-
tion 1 and 2 negate each other and the contributions 3 − 6 can be restated
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using the chain rule.

=
dE
(
Φ† (t) ,Φ (t) , t

)

dt
=
dE

dΦ

dΦ

dt
+
dE

dΦ†
dΦ†

dt
+
∂E

∂t

= −i
dE

dΦ

dE

dΦ†
+ i

dE

dΦ†
dE

dΦ
+
∂E

∂t
=
∂E

∂t
, (2.33)

where in the first step, Eq. 2.32 was utilized and in the second step it can be
safely assumed that the energy E has continuous second order partial derivatives
with respect to Φ and Φ†. Therefore dE

dt
= 0 holds, if H is not explicitly time-

dependent.

2.4.3 Transfer of differential equations to momentum space
slave boson formulation

After deriving TD-GA in section 2.4.1 and computing conserved quantities in the
previous section, the interest lies now on the transfer of the differential equations
2.29 and 2.30 to the slave boson formalism. These differential equations control the
time evolution in TD-GA. Since section 2.4.1 latin letters denote spin and orbital
degrees of freedom in Gutzwiller space and in the following greek letters denote spin
and orbital degrees of freedom in slave boson formalism. Starting from the first
equation (Eq. 2.29)

i
∂

∂t
|ψ (t)〉 = H∗ |ψ (t)〉 (2.34)

and utilizing the unitary transform

d†K =
∑

νkc
†
K → d†KaνKβa = νKαβc

†
KβνKβa

c†Kβ =
∑

a

d†Kaν
†
Kβa (2.35)

cKβ =
∑

b

νKbβdKb. (2.36)

Let us look now at the left hand side first. Note that d† denotes the creator in
Gutzwiller space and c† the one in slave boson space. Both are at each point K in
momentum space only a unitary transformation away from each other denoted by
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νK. We start at

i · ∂
∂t
|ψ〉 = i · ∂

∂t




occ∏

K
a

(∑

β

νKaβc
†
Kβ

)
|0〉




Note that |ψ〉 is a Slater determinant, therefore only indices occupied by electrons
are considered in products or sums denoted by ’occ’. The product is restructured
in the following way, where an additional sign P (K) is obtained related to shifting
the specific contribution K′ = K at the end of the product

occ∏

K
a

(. . . ) = P (K)
occ∏

K′ 6=K
a

(. . . )
occ∏

K′=K
b

(. . . ) .

This leads to

i · ∂
∂t




occ∏

K
a

(∑

β

νKaβc
†
Kβ

)
|0〉




= i ·
occ∑

K

P (K)
occ∏

K′ 6=K
a

(
νK′aβc

†
K′β

) ∂

∂t

(
occ∏

d

(∑

β

i · νKdβc†Kβ

)
|0〉
)

=
occ∑

Ka

P (K) P (a)
occ∏

K′ 6=K
b

(
νK′bβc

†
K′β

) occ∏

d6=a



∑

α

i · ∂
∂t
νKaα c†Kα︸︷︷︸∑

c d
†
KcνKαc


 ·

·
(∑

β′

νKdβ′c
†
Kβ′

)

︸ ︷︷ ︸
d†Kd

|0〉 (2.37)
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Let us look now at the right hand side

H̃ |ψ〉 =
∑

Kαβ

HK
∗αβc

†
KαcKβ |ψ〉 =

∑

Kαβ

HK
∗αβc

†
KαcKβ

occ∏

K′
a

(∑

β

νK′aβc
†
K′β

)
|0〉

=
∑

Kαβ

P (K)HK
∗αβc

†
KαcKβ

︸ ︷︷ ︸
1

occ∏

K′ 6=K
a

(∑

β′

νK′aβ′c
†
K′β′

)

︸ ︷︷ ︸
2

occ∏

b

(∑

β′

νKbβ′c
†
Kβ′

)
|0〉

1 and 2 can be swapped now as they share no common index.

=
∑

K

P (K)
occ∏

K′ 6=K
a

(∑

β′

νK′aβ′c
†
K′β′

)∑

αβ

HK
∗αβc

†
KαcKβ

occ∏

b

(∑

β′

νKbβ′c
†
Kβ′

)

︸ ︷︷ ︸
d†Kb

|0〉

=
∑

K

P (K)
occ∏

K′ 6=K
a

(∑

β′

νK′aβ′c
†
K′β′

)∑

αβcd

HK
∗αβd

†
Kcν

†
KαcνKdβ dKd

occ∏

b

d†Kb

︸ ︷︷ ︸
P(d)

∏occ
b 6=d d

†
Kb

|0〉

=
∑

Kcd

P (K) P (d)
occ∏

K′ 6=K
a

(∑

β′

νK′aβ′c
†
K′β′

)∑

αβ

HK
∗αβd

†
Kcν

†
KαcνKdβ

occ∏

b 6=d
d†Kb |0〉

Now some index changes a→ b, d→ a, b→ d:

=
∑

Kca

P (K) P (a)
occ∏

K′ 6=K
b

(∑

β′

νK′bβ′c
†
K′β′

)∑

αβ

HK
∗αβd

†
Kcν

†
KαcνKaβ

occ∏

d 6=a
d†Kd |0〉 (2.38)

By comparing the result of the right hand side (Eq. 2.38) to the one of the left hand
side (Eq. 2.37), we arrive at

∑

αβc

HK
∗αβd

†
Kcν

†
KαcνKaβ =

∑

αc

i · ∂
∂t
νKaαd

†
Kcν

†
Kαc

⇔
∑

β

HK
∗αβ νKaβ = i · ∂

∂t
νKaα ∀a occupied, ∀K occupied, ∀α. (2.39)
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Eq. 2.39 is the final result for the first differential equation.

Let us now take a look at the second equation (Eq. 2.30), where
∂〈ψ|HK

∗ [φ(t)]|ψ〉
∂φ† =〈

ψ
∣∣∣∂HK

∗
∂φ†

∣∣∣ψ
〉

is the interesting part. In the other parts of Eq. 2.30, a simple re-
placement of the Gutzwiller projector Φ with the slave boson φ is sufficient. This is
justified by the fact, that both operators are the same, when applying the mentioned
unitary transformation (Eqs. 2.35 and 2.36) to the basis [19].

∂H∗
∂φ†
|ψ〉 =

∂H∗
∂φ†

occ∏

K′
a

(∑

β′

νK′aβ′c
†
K′β′

)
|0〉

=
∑

αβK

∂HK
∗αβ

∂φ†
c†Kα cKβ︸︷︷︸∑

b νKbβdbK

occ∏

K′
a

(∑

β′

νKaβ′c
†
K′β′

)

︸ ︷︷ ︸
d†
K′a

|0〉

=
∑

αβK

∑

b

∂HK
∗αβ

∂φ†
c†KανKbβdbK

︸ ︷︷ ︸
1

occ∏

K′ 6=K
a

P (K) P (a)

(∑

β′

νK′aβ′c
†
K′β′

)

︸ ︷︷ ︸
2

·
occ∏

c

d†Kc |0〉

Again 1 and 2 can be swapped now.

=
∑

αβK

occ∏

K′ 6=K
a

P (K) P (a)

(∑

β′

νK′aβ′c
†
K′β′

)∑

b

∂HK
∗αβ

∂φ†
c†KανKbβdbK

occ∏

c

d†Kc |0〉

=
∑

αβK

occ∏

K′ 6=K
a

P (K) P (a)

(∑

β′

νK′aβ′c
†
K′β′

)∑

b

∂HK
∗αβ

∂φ†
c†KανKbβ

occ∏

c 6=b
d†Kc |0〉

Together with

〈ψ| = 〈0|
occ∏

K′′e

dK′′e = 〈0|
occ∏

K′′
e

(∑

β′

ν†Keβ′cK′′β′

)
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it follows with 3 =
〈
ψ
∣∣∣∂H∗∂φ†

∣∣∣ψ
〉

3 = 〈0|
occ∏

K′′
e

dK′′e
∑

αβK

occ∏

K′ 6=K
a

P (K) P (a)

(∑

β′

νK′aβ′c
†
K′β′

)
·

·
∑

b

∂HK
∗αβ

∂φ†
c†KανKbβP (b)

occ∏

c 6=b
d†Kc |0〉

= 〈0|
∑

K

occ∏

e

(∑

β′

ν†Keβ′cKβ′

)
·

·
occ∏

K6=K′′
d

P (K) P (d)

(∑

β′

ν†K′′dβ′cK′′β′

)∑

α,β

occ∏

K′ 6=K
a

P (K) P (a)

(∑

β′

νK′aβ′c
†
K′β′

)

︸ ︷︷ ︸
=1

·

·
∂HK

∗αβ
∂φ†

c†Kα︸︷︷︸∑
f d
†
fKν

†
Kαf

∑

b

νKbβP (b)
occ∏

c6=b
d†Kc |0〉

= 〈0|
∑

K

occ∏

e

deK
∑

f

d†fKν
†
Kαf

∂HK
∗αβ

∂φ†

∑

b

νKbβP (b)
occ∏

c 6=b
d†Kc |0〉

= 〈0|
∑

Kαβ

∑

f

occ∏

e 6=f
deKν

†
Kαf

∂HK
∗αβ

∂φ†
P (f)

∑

b

P (b) νKbβ

occ∏

c 6=b
d†Kc |0〉

Note that this expression is zero for f 6= b, thus

= 〈0|
∑

Kαβ

∑

b

ν†Kαb
∂HK

∗αβ
∂φ†

νKbβ |0〉 , (2.40)

which is the final expression for 3 . Finally we can write up the slave boson equiv-
alents of (Eqs. 2.29 and 2.30)

i
∂

∂t
νKaα =

∑

β

HK
∗αβνKaβ ∀a, K occupied ∀α (2.41)

i
∂φ

∂t
= Hlocφ+

occ∑

Kb

∑

αβ

ν†Kαb
∂HK

∗αβ
∂φ†

νKbβ (2.42)
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The unitary transformation νK is the Slater determinant, which replaces ψ of the
Gutzwiller formalism. νKa are in fact the eigenvectors of the renormalized Hamilto-
nian H∗ (Eq. 2.8 regarding the eigenvalue a. The Gutzwiller projector Φ is replaced
by the slave bosons φ. A central role in the differential equations 2.41 and 2.42
play the occupied points in momentum space and spin+orbital space. This is the
reminder that νK are Slater determinants and by definition only meaningful, when
at least partially occupied.

2.4.4 Transfer of differential equations to real-space slave
boson formulation

The calculation depicted here is analogous to the one of the last section. Instead of
points in momentum space real-space lattice indices are considered. Starting from
the first equation 2.29

i
∂

∂t
|ψ (t)〉 = H∗ |ψ (t)〉 (2.43)

using the unitary transformation

c†iα =
∑

jb

d†jbη
†
iαjb (2.44)

cjβ =
∑

j′b

ηj′bjβdj′b, (2.45)

where i,j (and primed i,j) denote lattice sites. Orbitals with spin in Gutzwiller
space are denoted by greek letters (and primed greek letters) and orbitals with spin
in slave boson space by latin letters (and primed latin letters). Furthermore one
state in real-space is characterized by both site and orbital (with spin) meaning one
state in Gutzwiller real-space is | α̃〉 = |iα〉 . The right hand site of Eq. 2.43 can
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now be turned into

H̃ |ψ〉 =
∑

ijαβ

H∗iαjβ c†iαcjβ

(
occ∏

i′a

d†i′a

)
|0〉

=
∑

ijαβ

H∗iαjβc†iα

(∑

j′b

ηj′bjβdj′b

)(
occ∏

i′a

d†i′a

)
|0〉

=
occ∑

j′b

P (j′) P (b)
∑

ijαβ

H∗iαjβc†iαηj′bjβ
occ∏

i′ 6=j′
a6=b

d†i′a |0〉 . (2.46)

Working now on the left hand site of Eq. 2.43, leads to

i
∂

∂t
|ψ〉 = i

∂

∂t

(
occ∏

ib

d†ib

)
|0〉 = i

∂

∂t







occ∏

i 6=i′
a6=b′

d†ia




(
occ∏

b′

d†i′b′

)

 |0〉

= i
occ∑

i′b′

P (i′) P (b′)




occ∏

i 6=i′
a6=b′

d†ia




∂

∂t
d†i′b′ |0〉

Now apply the index changes: i′ → j′ b′ → b

= i
occ∑

j′b

P (j′) P (b)




occ∏

i 6=j′
a6=b

d†ia




∂

∂t

(∑

iα

ηj′biαc
†
iα

)
(2.47)

Comparing Eqs. 2.47 and 2.46 leads to

i
∂

∂t
ηj′biα =

∑

jβ

H∗iαjβ · ηj′bjβ, (2.48)

where j′ and b run over occupied lattice sites and orbitals and i, α indicate any
lattice site or orbital, respectively. Eqn. 2.48 is the real-space equivalent of Eq. 2.41.
Turning now to the second equation 2.30,

〈
ψ (t)

∣∣∣∂H∗[Φ(t)]

∂Φ†i

∣∣∣ψ (t)
〉
is the part, which

needs to be transformed. This is started by transforming ∂H∗
∂Φ† |ψ (t)〉 (suppressing
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site index of derivative to improve readability)

∂H∗
∂Φ†
|ψ (t)〉 =

∂H∗
∂Φ†

(
occ∏

ia

d†ia

)
|0〉 =

∑

ijαβ

∂H∗iαjβ
∂Φ†

c†iαcjβ

(
occ∏

i′a

d†i′a

)
|0〉

=
∑

ijαβ

∂H∗iαjβ
∂Φ†

c†iα

(∑

j′d

ηj′djβdj′d

)(
occ∏

i′a

d†i′a

)
|0〉

=
occ∑

j′d

∑

ijαβ

P (d) P (j′)
∂H∗iαjβ
∂Φ†

c†iαηj′djβ

occ∏

i′ 6=j′
a6=d

d†i′a |0〉

using 〈ψ (t)| = 〈0|∏i′′b di′′b results in

〈
ψ (t)

∣∣∣∣
∂H∗
∂Φ†

∣∣∣∣ψ (t)

〉
= 〈0|

∏

i′′b

di′′b

occ∑

j′d

∑

ijαβ

P (d) P (j′)
∂H∗iαjβ
∂Φ†

c†iαηj′djβ

occ∏

i′ 6=j′
a6=d

d†i′a |0〉

=
occ∑

j′d

∑

ijαβ

P (d) P (j′) 〈0|
∏

i′′b

di′′b

(∑

j′′g

d†j′′gη
†
iαj′′g

)
∂H∗iαjβ
∂Φ†

ηj′djβ

occ∏

i′ 6=j′
a6=d

d†i′a |0〉

=
occ∑

j′d

occ∑

i′′b

P (d) P (j′) P (i′′) P (b)
∑

ijαβ

〈0|
occ∏

i′′ 6=j′′
b 6=g

di′′bη
†
iαj′′g

∂H∗iαjβ
∂Φ†

ηj′djβ

occ∏

i′ 6=j′
a6=d

d†i′a |0〉

as 〈0|
occ∏

i′′ 6=j′′
b 6=g

di′′b

occ∏

i′ 6=j′
a6=d

d†i′a |0〉 = 0, if j′′ 6= j′ or g 6= d

=
occ∑

j′d

∑

ijαβ

η†iαj′d
∂H∗iαjβ
∂Φ†

ηj′djβ (2.49)

This results in the second differential equation in real-space:

i
∂φi
∂t

=
∑

i

Hloc
i φi +

occ∑

j′d

∑

ijαβ

η†iαj′d
∂H∗iαjβ
∂φ†i

ηj′djβ, (2.50)

where the Gutzwiller projector Φ was replaced with the slave boson φ. Eqn. 2.50
is the real-space equivalent of Eq. 2.42. Finally let’s write both equations in the
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real-space formulation together

i
∂

∂t
ηj′biα =

∑

jβ

H∗iαjβ · ηj′bjβ,

i
∂φi
∂t

=
∑

i

Hloc
i φi +

occ∑

j′d

∑

ijαβ

η†iαj′d
∂H∗iαjβ
∂φ†i

ηj′djβ,

where in the first equation j′ and b run over occupied lattice sites and orbitals. i, α
indicate any lattice site or orbital in the first equation. In the real-space formulation
no intersite slave bosons are used (see section 2.3). Different sites are coupled via
non-zero site-offdiagonal entries of the eigenvectors ηij of the renormalized Hamilto-
nian H∗. The derivative of the renormalized Hamiltonian with respect to the slave
bosons acts as transfer matrix.
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3 Metal-insulator transition in
one-orbital case

Metal to insulator (Mott) transitions are well-known from transition metal oxides
[54]. In recent years they were also found in bosonic [37] and fermionic ultracold
quantum gases [57, 127]. These gases work as a quantum simulator of the appro-
priate Hubbard model, and in contrast to solids have no impurities, purely local
Coulomb interaction and nearly zero temperature [127]. Non-equilibrium dynamics
after an external perturbation of ultracold quantum gases or solids are experimen-
tally accessible by probing the ultracold gas [57, 127] or in the case of solids by using
femtosecond spectroscopy [113] and provide a new perspective. Indeed interacting
quantum systems out of equilibrium can display intriguing dynamical behavior or
be trapped in metastable states, which have no equilibrium counterpart [115, 119].
Although experimental perturbation happens at a finite rate a useful theoretical ide-
alization is a so called quantum quench [20]. Here the system is prepared in an initial
state given by the Hamiltonian Hi and then evolved under a different Hamiltonian
Hf . This turns the initial state into a highly excited state of the final Hamiltonian.
The (single-orbital) Hubbard model displays the simplest theoretical approach, which
encodes strongly correlated physics like the metal to insulator (Mott) transition at
equilibrium. Recent theoretical studies [29, 30, 96] have addressed this model out of
equilibrium by inducing a quench from a non-interacting initial state to a state with
stronger interactions. They encountered at half-filling for paramagnetic states a dy-
namical transition separating two regimes. At weak coupling (quenching to small
interactions) observables like double occupation are thermalized to equilibrium val-
ues, but the momentum distribution resembles a zero temperature Fermi liquid and
correlations are more pronounced [96]. Time-dependent dynamical mean-field the-
ory (TD-DMFT) [7] confirmed this prethermalization [29] and revealed a dynamical
transition towards a regime with pronounced oscillations in the dynamics of physi-
cal quantities. The questions, which arise naturally as time-dependent slave boson
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mean-field theory (TD-SBMFT) was introduced in section 2.4. Is TD-SBMFT able
to reproduce central results of these studies ? Where are the limits of the semiclassi-
cal approach (compare section 2.4)? These questions were already addressed within
TD Gutzwiller approximation (TD-GA) [125, 126], which is the basis of the TD-
SBMFT formulation. So this chapter is a reproduction of central results of TD-GA
within TD-SBMFT comparing to the mentioned previous studies [29, 30, 96].

The single-orbital Hubbard model (Eq. 2.3) is considered using a simple cubic
dispersion in three dimensions. The results are restricted to paramagnetic states
and the interaction quench will start from a non-interacting state (Ui = 0, if not
mentioned otherwise) into a higher interacting state (Uf > 0) at half-filling. To
achieve the best correspondence with TD-GA works [125, 126], it is mandatory to
work in units of U (1)

c , where U (1)
c is the critical interaction value to obtain the Mott

transition in equilibrium. For simplicity in this chapter Uc ≡ U
(1)
c is set for the

figures. For a dispersion with bandwidth 2 eV , meaning working in units of half-
bandwidth W , U (1)

c = 2.65 is obtained (see Fig. 3.1). By appropriate rescaling of

Figure 3.1: Quasiparticle weight as function of the on-site interaction U at half-filling
depicting a metal-insulator transition at U (1)

c = 2.65.

the hopping τ , the non-equilibrium calculation is done in units of U (1)
c . Therefore

the notation uf = Uf/U
(1)
c and ui = Ui/U

(1)
c is used. From the differential equations

(see Eqs. 2.41 and 2.42), which are the basis of the time evolution in TD-SBMFT,
it is known that not only slave bosons are evolved but also the eigenvectors νK
of the renormalized free Hamiltonian. Their evolution at three different points in
momentum space is depicted as an example at uf = 0.40 in Fig. 3.2. As the
absolute value is unchanged during the time evolution, the eigenvectors acquire
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ν
k

Figure 3.2: Time-dependent real and imaginary part of eigenvector νK at three dif-
ferent k-points for uf = 0.40.

merely a phase. So their time evolution is trivial and they have no importance for
the physics. In Fig. 3.3 time-dependent quasiparticle weight Z and slave boson
occupation probabilities |φ|2 are depicted for an interaction quench to uf = 0.05

(a), uf = 0.40 (b) and uf = 0.70 (c). Periodic, undamped oscillations in Z and in
the local slave boson occupation probabilities |φ|2 are observed. This is clearly an
artifact of the semi-classical approach (compare section 2.4). Especially for weak
quenches uf ∼ 0 as the initial state is a metal, one would expect the system to
quickly relax to one equilibrium state due to the continuum of low lying excitations.
As half-filling and only paramagnetic ground states are considered double and zero
occupation are degenerate. Furthermore both single occupied states are degenerate,
too. Due to this symmetry, interpretation of local occupation can be restricted to
the double occupation D = |φ↑↓|2. Increasing the quenched interaction to uf = 0.4

in Fig. 3.3 (b), leads to an increased amplitude and period of oscillations in Z andD.
When uf = 0.7 (Fig. 3.3 (c) is reached, the quasiparticle weight oscillates between
zero and one with decreased period and the amplitude of D decreases compared to
uf = 0.4. This indicates that somewhere between uf = 0.4 and uf = 0.7 a qualitative
change of non-equilibrium dynamics has happened. Assuming this change to happen
abruptly at one uf = u

(1)
fc a deeper look is now performed into the weak-coupling

(uf < u
(1)
fc ), critical (uf = u

(1)
fc ) and strong coupling (uf > u

(1)
fc ) region. To analyze

these three regions the period of the quasiparticle weight is computed by counting the
number of oscillations and dividing by the total time ttot = 1000 1/U

(1)
c . Note that

all physical quantities have the same period. Additionally the undamped periodicity
of Z and D suggest to look at the averaged time integrated value to check if this
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|φ
|2

| ↑0〉 = | ↓0〉
|00〉 = | ↑↓〉

|φ
|2

|φ
|2

Figure 3.3: Time-dependent quasiparticle weight Z and time-dependent slave boson
occupation probabilities |φ|2 for uf = 0.05, 0.40 and 0.70 in (a), (b) and
(c), respectively.

bears any physical meaning

Os =
1

s

∫ s

0

dt 〈O (t)〉 (3.1)

with O as representative for any local observable like Z and |φ|2. s will be in the
following also set to 1000 1/U

(1)
c , if not mentioned otherwise.

3.1 Weak coupling

Z and |φ|2 show periodic and undamped oscillations, which increase in period T

between uf = 0.05 and uf = 0.40 (see Fig. 3.3 (a) and (b). Looking at the de-
pendence on uf in Fig. 3.4 shows that the period diverges from below approaching
uf = 0.5. To get an additional perspective onto the dynamics in the weak-coupling
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uf

¯ |φ
|2

uf

| ↑0〉 = | ↓0〉
| 00〉 = | ↑↓〉

Z̄

Figure 3.4: Left: Period of physical quantities with uf . Red dotted lines denote col-
lapse and revival period 2π/uf discovered as approximate value by TD-
DMFT in strong-coupling regime [29]. Top right: Time-averaged Z as
function of uf . Black dotted line denote equilibrium values. Red dotted
line depicts 1− Z = 2 (1− Z(t=0)) known from a weak-coupling expan-
sion using the flow-equation method [96]. Bottom right: Time-averaged
occupation (straight lines) and equilibrium values (dotted lines). Black
arrow indicates strong-coupling perturbative result from [29] computed
at uf = 1.0.

regime, Fig. 3.4 depicts also Z and |φ|2 with uf . The time-averaged double oc-
cupation follows the equilibrium value, meaning D is thermalized. In contrast Z
deviates already for small values of uf to the equilibrium value and follows the re-
lation 1 − Z = 2 (1− Z(t=0)) known from a weak-coupling expansion using the
flow-equation method [96]. These both observations characterize the prethermal-
ization regime first recognized in [96] and then confirmed with TD-DMFT [29].
In this prethermalization regime momentum-averaged quantities like kinetic and
potential energy are thermalized, but the momentum-distribution and related ob-
servables like the quasiparticle weight are not, but still well-defined. The relation
1− Z = 2 (1− Z(t=0)) is a general result of an interaction quench to weak interac-
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tions of a non-interacting Fermi liquid [97]. TD-SBMFT captures correctly the onset
of prethermalization, but fails in describing its relaxation. Increasing uf towards 0.5
shows a vanishing (numerical smeared) Z and D.

3.2 Critical point

At the point uf = 0.5 the period diverges and time-averaged quasiparticle weight
and double occupation vanish. The time-dependent Z and D is depicted in Fig.
3.5. Both show an exponential decay with revival, where the latter can be clearly
attributed to the numerical handling of the system instead of analytic computation
(dotted lines are analytic results). As Z andD both vanish at this point, it is natural
to compare this steady state to the equilibrium Mott insulator, which has the same
characteristics. An additional property of the equilibrium Mott insulator is that any
finite doping is sufficient to transition into a metallic state. This will be discussed,
when finite doping is applied to the non-equilibrium state in section 3.4. Intriguingly
u

(1)
fc = 0.5 can be obtained solely from the energetic argument E0 = EMott, where
E0 is the energy of the quenched state and EMott is the energy of the ideal τ = 0

Mott-insulator (decoupled half-filled sites). Applied to the conditions of the TD-
DMFT study this leads to u(1)

fc = 3.3 [126] in very good agreement to the position of
the DMFT critical point [29]. This is reason enough to call u(1)

fc the dynamic Mott
transition.

3.3 Strong coupling

Between uf = 0.40 and uf = 0.70 period T and double occupation D decreases (see
Fig. 3.3). The latter can also be seen in Fig. 3.4. The double occupation dynamics
freeze out, as their energy is much higher than the kinetic energy, so a decay would
need many-particle scattering processes [119]. Additionally D approaches again the
values of the initial state, leading to a trapping in the initial state at uf →∞ [126].
In the limit of very strong couplings uf = 1, T ≈ 2π/Uf is given by the dynamics in
the atomic limit. In the latter limit the time propagator is exp

(
iHloct

)
, having the

denoted periodicity. This period is also seen in TD-DMFT studies of the strong-
coupling regime looking at collapse and revival oscillations of the double occupation
[29, 30]. Furthermore looking again at Fig. 3.4 D approaches its initial value,
when increasing uf and matches very well the strong-coupling perturbative result
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|φ
|2

|φ
|2

| ↑0〉 = | ↓0〉
| 00〉 = | ↑↓〉

Figure 3.5: Bottom: Time-dependent quasiparticle weight Z (left) and time-
dependent slave boson occupation probabilities |φ|2 (right) for uf = 0.5
and until t = 105. Top: Same until t = 15. Dotted lines are analytic
behavior obtained in TD Gutzwiller approximation [125, 126] (see Eqs.
3.3 and 3.4).

from Eckstein et al. [29] for the prethermalization plateau at uf = 1.0. The time-
averaged Z saturates not at its initial value, but half of it, which can be explained
by the periodic oscillation between zero and one (see Fig. 3.3).

3.4 Interaction quenches away from half-filling

To compare the dynamic Mott transition to the equilibrium Mott transition a small
hole doping is applied. The derived T (uf ) and Z as well as Z (t) is shown in
Fig. 3.6. The only notable deviation is close to uf = u

(1)
fc , where the divergence is

smeared out both in period and time-averaged quasiparticle weight. Weak-coupling
and strong-coupling prethermalization remain the same, doping does not affect Z
or T except very close to uf = u

(1)
fc . This means that the previous description of

both prethermal states still holds. Investigation of Z (t) shows, that there is no
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uf

N = 1
N = 0.95

Z̄

uf

Figure 3.6: Left: Period of physical quantities with uf at half-filling N = 1 and
small hole doping. Top right: Time-averaged quasiparticle weight Z
at half-filling and small hole doping. Bottom right: Time-dependent
quasiparticle weight at uf = u

(1)
fc with N = 0.95.

exponential relaxation of Z anymore to zero. This leads to the conclusion that the
dynamical Mott transition is a unique feature of the half-filled case and a finite
doping is enough (as in equilibrium) to render the sharp transition into a crossover.

3.5 Interaction quenches from an initial interacting
state at half-filling

After considering a doping from half-filling at ui = 0 another aspect is the depen-
dance of prethermalized states and dynamical transition onto ui. Hence half-filling
is considered and all relevant physical quantities T , Z and D are computed also for
ui = 0.25. The results are depicted in Fig. 3.7. First one can compare the results
to the shifted ui = 0.0 ones, where the shift is equal to ∆uf = 0.125. As far as the
period T is concerned the agreement is very good indicating that only the dynam-
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uf

ui = 0.00
ui = 0.25

¯ |φ
|2

uf

| ↑0〉 = | ↓0〉
| 00〉 = | ↑↓〉

Z̄

Figure 3.7: Left: Period of physical quantities with uf and different ui at half-filling.
Top right: Time-averaged quasiparticle weight Z at half-filling and dif-
ferent ui with dotted line denoting equilibrium results. Bottom right:
Time-dependent quasiparticle weight at u(1)

fc and different ui. Shift de-
notes offset of ui = 0.0 results by ∆uf = 0.125. Black arrow indicates
strong coupling TD Gutzwiller approximation result from Eq. 3.2 evalu-
ated at uf = 1.0.

ical transition is shifted by ∆uf , but still present. The same can be seen in Z and
by the shift of the peak in D. As the initial interaction is finite the corresponding
quasiparticle weight is not exactly one, which explains the difference in slope to the
shifted result in Z. Note that results for uf < 0.25 and ui = 0.25 are not of interest
here, as quenches should be investigated to higher interactions in this chapter. Sec-
ond comparing now both ui curves, the shift in u

(1)
fc delays the strong coupling limit,

but apparently roughly the same limits are reached in Z and period. This does not
hold for the time-averaged double occupation D, which seems to be dependent on
ui in strong coupling. Conversely in weak-coupling it is independent on ui and fol-
lows again the equilibrium results. The good agreement between equilibrium Z and
ui = 0.25 Z results can be considered coincidental and solely related to the shift. To
summarize, considering a weakly interacting initial state ui < u

(1)
fc leads to a shift of
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u
(1)
fc and with the two values computed, it could be assumed to be u(1)

fc = 1+ui
2

. The
prethermalized state in weak-coupling remains unaltered, still the time-averaged
double occupation follows the equilibrium results, while time-averaged quasiparticle
weight is different. In strong coupling the atomic oscillation T = 2π/uf are delayed
to higher uf due to the shift of u(1)

fc . The behavior of time-averaged double occu-
pation is qualitatively different but matches very good the strong coupling TD-GA
result from the next section, where some analytical results of previous TD-GA stud-
ies [125, 126] are mentioned. Note that the strong-coupling perturbative result for
D in the prethermal state used before is only valid for the non-interacting initial
state [29].

3.6 Comparison to results of time-dependent
Gutzwiller approximation

In previous sections the numerical results of TD-SBMFT are shown. Now it is time
to compare them to the results of TD-GA studies [125, 126]. In the following the re-
sults of Refs. [125, 126] are explained and references are made to the corresponding
section or figures, which contain the appropriate TD-SBMFT results. Computations
in TD-GA are done analytically, which is possible due to the high symmetry of the
single-orbital Hubbard model considering only paramagnetic states. Two classical
coupled differential equations of the two conjugated variables double occupation D
and phase p describe the time evolution. As the Slater determinants have only a
trivial time evolution, they can be assumed time-independent (compare beginning
of chapter). In contrast to the equilibrium quasiparticle weight Z (t) is dependent
on D and on p. A critical point separating two regimes is found at uf = 1+ui

2

(compare section 3.5). Analytical expressions for the period, long-time averaged
double occupancy and quasiparticle weight written in terms of elliptic functions are
retrieved. In the weak quench limit the time-averaged double occupation D follows
the equilibrium curve independent of ui, however the time-averaged quasiparticle
weight deviates from the equilibrium value following 1−Z = 2 (1− Z(t=0))) (com-
pare section 3.1 and [96]). In strong coupling T ∼ 2π/uf matches smoothly the
atomic limit (compare section 3.3 and [29]) and

D ' D(t=0) · (1−
u

(1)
fc

2uf
) (3.2)
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holds (compare Fig. 3.7), which equals the strong coupling perturbation result from
[29]. At the critical point uf = u

(1)
fc , D and Z relax exponentially with time scale

t∗ = 4/Z(t=0) and

D = D(t=0) ·
(
1− tanh2 (t/t∗)

)
(3.3)

Z = Z(t=0) ·
(
1− tanh2 (t/t∗)

)
(3.4)

(compare Fig. 3.5). This leads to logarithmically divergence (in leading order) of
T , D and Z, when approaching u(1)

fc from below or above (compare Fig. 3.7). To
summarize, TD-SBMFT recovers all results from TD-GA well including position and
characteristic of the dynamical transition and physical attributes of the prethermal
states at weak and strong coupling. Even the comparison to analytic expressions
done at the critical point in Fig. 3.7 are very good. The small deviations may be
related to the fact that in TD-SBMFT a three-dimensional cubic dispersion is used,
whereas in TD-GA a flat density of states is utilized.

3.7 Summary of this chapter

TD-SBMFT features the same dynamics for the single-orbital paramagnetic Hub-
bard model as already discovered within TD Gutzwiller approximation (TD-GA)[125,
126]. They are oversimplified meaning they lack relaxation due to neglecting quan-
tum fluctuation in the semi-classical approach. Still TD-SBMFT is able to retrieve
many interesting features. The prethermalized states at weak coupling [96] as well as
in strong coupling [29] are correctly reproduced. In weak coupling the prethermal-
ized state is characterized by thermalized double occupation but non-equilibrium
quasiparticle weight. To be precise, interactions lead to twice as strong correla-
tions in non-equilibrium as in equilibrium, when starting from the non-interacting
ground state. This is a general result for an interaction quench of the Fermi sea
[97]. On the strong coupling side the double occupations are far from being equal to
the corresponding equilibrium value and display oscillations with period of approx-
imate the atomic limit 2π/uf [29]. These metastable states are wrongly predicted
to have infinite lifetime. Additionally TD-SBMFT is able to capture the dynamical
Mott transition first observed in TD-DMFT [29]. On the one hand the dynamical
transition could be expected from the viewpoint that already in equilibrium the
system undergoes a quantum phase transition, the Mott transition. On the other
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hand as mentioned in [29] the pumped energy at uf = u
(1)
fc corresponds to an effec-

tive temperature of an equilibrium system, which is higher than the Mott ending
point. Still comparing the energy of the quenched system to the one of the ideal
perfect decoupled Mott insulator yields the right uf = u

(1)
fc in TD-SBMFT as well

as in TD-DMFT [126]. This together with the fact that the transition turns into
a crossover at finite doping is a clear indicator that the dynamic Mott transition is
the non-equilibrium equivalent of the Mott transition. TD-SBMFT addresses well
the short-time metastable states of the system both at weak and strong interaction
quenches by time-averaged physical quantities. Additionally critical behavior like
the dynamical phase transition is captured. Note that the notion "short-time" is
relative, as it was shown that the decay of the metastable states is very sensitive to
model parameters and can be substantially delayed [29, 30].



4 Metal-insulator transition in
two-orbital case

In the last chapter the single-orbital Hubbard model was addressed out of equilib-
rium motivated by recent advances in ultracold gases and femtosecond spectroscopy
of real materials. In materials orbital degrees of freedom play a central role giving
rise to basic magnetic couplings like double exchange [156, 157] and superexchange
[70]. To list a few examples orbital degrees of freedom induce ferromagnetism in
transition metals like Fe and Ni [28, 80, 146] and multiple phenomena in transi-
tion metal oxides. Among them Ferro-orbital order in LaTiO3 [5, 61, 108] and
the Mott transition in V2O3 first discovered in [90]. Later it was found out that
the single-orbital picture of the Mott transition does not hold in this material as
the quasiparticle weight diverges only in the eg orbital, but remains finite for the
a1g orbital [60]. Additionally in the series Ca2−xSrxRuO4 an orbital-selective Mott
transition [4] and in one of the end members Sr2RuO4 unconventional spin triplet
superconductivity [56] has been found. Due to these interesting effects orbital de-
grees of freedom recently attracted interest also in the ultracold gases community. In
a first step it has been shown theoretically, how to realize orbital physics of models
like the Kugel-Khomskii model [72] and Kondo Lattice model [3, 68] with ultracold
fermionic atoms [12, 34]. Already some systems with orbital degrees of freedom has
been experimentally realized [124, 136]. Another way is to consider also higher bands
as part of the lattice formed in an ultracold gas leading to orbital-dependent phases
[153]. From a model point of view already the two-orbital Hubbard model gives
rise to new energy scales like the crystal field and Hund’s rule coupling. The latter
has not only tremendous effects regarding magnetization [6, 120], it also greatly
increases correlation in paramagnetic systems. This increase of correlations leads
to a substantial shift of the Mott transition to lower interaction values [66]. The
crystal field is competing with Hund’s rule coupling [75], while the former favors
orbital ordering the latter likes to equally populate all orbitals. This competition
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induces for example the high-spin to low-spin transition [149]. Additionally different
bandwidths in a two-orbital framework can induce orbital selective Mott transitions
[27, 55, 67, 83]. Treating of the Hund’s rule coupling in a full rotational-invariant
way regarding spin and orbital space is especially important not only for magnetism
[6, 120], but also for paramagnetic phenomena like the Mott transition [148]. In
this chapter the paramagnetic two-orbital case is investigated, where the effect of
interorbital interactions and Hund’s rule coupling on the dynamical Mott transi-
tion and the metastable states for weak and strong quenches discovered in the last
chapter are of central interest. As mentioned ultracold gases are nowadays able to
emulate orbital physics and might be able to simulate the Hubbard model used in
this chapter soon.

We study interaction quenches in the canonical two-band Hubbard Hamiltonian
H = Hkin +

∑
iHloc

i with a nearest-neighbor hopping τ that defines the kinetic part
Hkin. In detail it is introduced in Eq. 2.4, which is formulated in a full rotational-
invariant way regarding spin and orbital space. A three-dimensional simple-cubic
dispersion is used and thus the parametrization U ′=U−2JH, U ′′=U−3JH proves ad-
equate [22, 33]. The value of the hopping τ is such that the half-bandwidth W is
the energy unit. This is in contrast to the last chapter, where U (1)

c , the Mott critical
interaction value of the single-orbital Hubbard model, is used as energy unit. Again
the initial state is the non-interacting ground state. In the following, the focus lies
on the paramagnetic half-filled scenario and aims at general dynamic multi-orbital
Mott transition mechanisms; thus antiferromagnetic fluctuations are neglected. The
antiferromagnetic fluctuations will be of central interest in chapter 6. First equilib-
rium properties are shortly recapped in section 4.1. Afterwards interaction quenches
starting from the non-interacting state are considered. In section 4.2 interaction
quenches with interorbital coupling and JH = 0 are investigated. Furthermore in
section 4.3 the interorbital coupling with JH = 0.2U are analyzed. In the latter
case the ratio is fixed before and after the quench. This means JH,i = 0.2Ui and
JH,f = 0.2Uf holds, which is noted in the following as JH = 0.2U . The chapter
closes with a summary in section 4.4.

4.1 The equilibrium case

In the single-orbital case the Mott critical interaction is already evaluated in chapter
3. By decoupling the orbitals using U ′ = U ′′ = 0, U (1)

c = 2.65 can be reproduced.
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JH = 0
JH = 0.2U

Figure 4.1: Quasiparticle weight as function of the on-site interaction U at half-filling
depicting a metal insulator transition at U (1)

c =2.65 eV for decoupled
orbitals, U (2,JH=0)

c =4.0 eV for JH = 0 and U
(2,JH=0.2U)
c =1.75 eV for

JH = 0.2U .

Imposing a basic orbital coupling utilizing U ′ = U ′′ = U (note JH = 0) leads to a
high degeneracy of local states (see Tab. 4.1). The local energy depends only on
the number of electrons described by the Fock state. With finite JH this degeneracy
in the two-particle-sector is lifted as can be seen in Tab. 4.2. This decreases orbital
fluctuations [55] and gives rise to local spin triplet and singlet states. Both effects
greatly reduce the Mott critical value from U

(2,JH=0)
c = 4.0 in the basic orbital

coupling case to U (2,JH=0.2U)
c = 1.75 [66]. As a well-known fact (see for example [55])

the second order phase transition turns into a first-order one with finite JH. The
chemical potential shift

∑
im(−3

2
U + 5

2
JH)(nim↑ + nim↓) added to the Hamiltonian

renders the particle-hole symmetry obvious (see Tab. 4.1 and 4.2). Thus only six
local states need to be computed, as this is the maximum number of non-degenerate
eigenstates of Hloc for finite JH. Zero JH has only three non-degenerate eigenstates.
Furthermore the discussion of results can be restricted to the particle-sectors zero,
one and two. With this in mind interaction quenches with JH = 0 can be considered.
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4.2 Interorbital interactions with zero Hund’s
coupling

Let us focus first on neglecting spin-flip and pair-hopping terms (e.g. setting JH =

0). Note that still interorbital interactions are present. Then as elaborated in the
last section all particle-sectors are degenerate. Therefor the presented occupation
probabilities of a given particle-sector are the sum over all occupation probabilities
of the corresponding states. Fig. 4.2 shows the time-dependent quasiparticle weight
Z(t) and occupation probability #p for different particle-sectors for the interaction
quench to Uf=0.2. Additionally as an inset the Fourier transform of Z(t) is depicted.
This non-uniform Fourier transform is computed in the time interval [0,7500D−1],
which is also used for all upcoming Fourier transforms [35, 78]. Note that higher
multiples of the relevant frequencies appear due to restricting the Fourier transform
to a finite time interval. Contrary to the single-orbital case, where only one frequency
shows up a second frequency ω2 with sideband ω1 − ω2 appears (Fig. 4.4). This
sideband is a clear indicator that ω1 gets amplitude modulated by ω2. Hence ω1

could be the frequency known from the single-orbital case and ω2 arises due to the
interorbital interactions. As in the single orbital case it is interesting to check, if
there is some qualitative change in physical quantities with Uf like Z. In Fig. 4.3
Z (t), |φ|2 and the Fourier transform of physical quantities are depicted at the four Uf
values 0.4, 1.6, 1.8 and 2.6. Like in the single-orbital case the number of oscillations

Fock state Particle-sector Energy (eV) Energy with shift (eV)
|0〉 0 0 0

|↑000〉 , |0↓00〉 1 0 −3
2
U|00↑0〉 , |000↓〉

|↑↓00〉 , |↑0↑0〉
2 U −2U|↑00↓〉 , |0↓↑0〉

|0↓0↓〉 , |00↑↓〉
|↑↓↑0〉 , |↑↓0↓〉 3 3U −3

2
U|↑0↑↓〉 , |0↓↑↓〉

|↑↓↑↓〉 4 6U 0

Table 4.1: Local Fock states with appropriate particle-sector and energy with and
without shift for orbital coupling U = U ′ = U ′′. Shift denotes a shift in
chemical potential and is

∑
im−3

2(nim↑ + nim↓), which is added to Hloc.
This allows to use the particle-hole symmetry.
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Eigenstate Particle-sector Energy (eV) Energy with shift (eV)
|0〉 0 0 0

|↑000〉 , |0↓00〉 1 0 −3
2
U + 5

2
JH|00↑0〉 , |000↓〉

|↑0↑0〉 , |0↓0↓〉 2 (triplet) U − 3J −2U + 2JH1√
2
(|↑00↓〉+|0↓↑0〉)

1√
2
(|↑00↓〉 -|0↓↑0〉) 2 (singlet) U − J −2U + 4JH1√

2
(|↑↓00〉 -|00↑↓〉 )

1√
2
(|↑↓00〉+|00↑↓〉 ) 2 (singlet) U + J −2U + 6JH

|↑↓↑0〉 , |↑↓0↓〉 3 3U − 5JH −3
2
U + 5

2
JH|↑0↑↓〉 , |0↓↑↓〉

|↑↓↑↓〉 4 6U − 10JH 0

Table 4.2: Eigenstates and energy eigenvalues in atomic limit with finite JH [77].
Energy eigenvalues are denoted with and without shift. Shift denotes a
shift in chemical potential and is

∑
im(−3

2U + 5
2JH)(nim↑ + nim↓), which

is added to Hloc. This allows to use the particle-hole symmetry.

visible in Z (t) and |φ|2 first decreases and then increases by increasing Uf , going
from Uf = 0.4 to Uf = 1.6 and then from Uf = 1.8 to Uf = 2.6, respectively. But
in contrast to the single-orbital case there is an intermediate region of Uf showing
other qualitative behavior. There a continuous and broad Fourier spectrum can be
observed. This hints towards a qualitative different physics in three regions, which
are called from now on weak-coupling (I), precursor and critical region (II) and
strong-coupling (III). Region II is uniquely characterized by a broad and continuous
Fourier spectrum. To investigate these three regions, the same physical quantities,
that proved helpful in the single-orbital case are considered again, namely period
T , time-averaged Z and local occupations shown in Fig. 4.4 (compare Fig. 3.4).
Orbital decoupled case U ′ = U ′′ = 0 and coupled case U ′ = U ′′ = U are compared,
too. These results will be used to interpret the three regions, starting with the
weak-coupling one.

4.2.1 Weak-coupling

Already from lowest Uf values on, there are two instead of one dominant frequen-
cies/periods (Fig. 4.2 and 4.4). Because T1 = T1S holds in the limit Uf → 0, T1

seems to be the period already known from the single-orbital case, which gets mod-
ified by interorbital interactions. Additionally the interorbital interactions give rise



Page 44

|φ
|2

#0 #1 #2

ω2
ω1 − ω2

ω1

Figure 4.2: QP weight Z(t) and occupation probability #p of local sectors with par-
ticles p=0,1,2 for the interaction quench to Uf=0.2. Dotted lines denote
period of local states oscillations. The inset shows the Fourier transform
(absolute value of Fourier coefficients in logarithmic units) of Z(t).

to a new period T2 starting from approximately six times the period of T1. Like in the
single-orbital case time-averaged local slave boson occupation probabilities |φ|2 are
the same as equilibrium ones, but Z is substantially different from the equilibrium
counterpart. As an additional common feature the relation 1− Z = 2 (1− Z(t=0))

holds with an overall good agreement, but increasing deviations close to the crit-
ical region. Interestingly, just before entering the critical region the agreement to
the mentioned relation becomes better, when the interorbital interacting systems is
weaker correlated than the decoupled one. The level diagram in Fig. 4.5 shows in
this region quite substantial development from one frequency and sidebands to a
splitting of sidebands followed by ground state and excited state having sidebands.
Furthermore T2 shows huge changes like splitting into two periods and deviations
of factor 5 inside this region. Despite these two last aspects the prethermalized
state can be described in the same way like in the single-orbital model [29, 96] in
a very good approximation. The defining aspects of equilibrated occupation proba-
bilities and non-equilibrated quasiparticle weight as 1−Z = 2 (1− Z(t=0)) are still
in place. Approaching Uf = 1.15 T2 diverges and a drop in Z is visible signaling
critical behavior.



4 Metal-insulator transition in two-orbital case Page 45

|φ
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#0 #1 #2
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|2
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|2

|φ
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ω

Figure 4.3: Time-dependent quasiparticle weight Z (left), Fourier transform of phys-
ical quantities (middle) and slave-boson occupation probability |φ|2
(right) for Uf = 0.4, 1.60, 1.80 and 2.60 in (a), (b), (c) and (d), re-
spectively.

4.2.2 Precursor and critical region

A better understanding of the dynamical transition can be gained by an Ising-spin
representation of the model that is fully equivalent to slave-bosons and reads [160]

HS = − J

S2

2

r

∑

〈i,j〉
SixSjx +

U

2

∑

i

(Siz)
2 . (4.1)

Here the spin S=2 is used and r=6 is the lattice coordination number, while
−J=−2/3 is the energy per site of the non interacting ground state. Within mean-
field, i.e., assuming a variational wave function

∏
i |Φ(Siz)〉, the spin model above

becomes identical to the slave boson mean-field theory at half-filling if |Φ(Siz)〉 =
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¯ |φ
|2

#0
#1
#2

Z̄

U ′ = U ′′ = 0
U ′ = U ′′ = U

Figure 4.4: Left: Period of physical quantities with Uf . Without interorbital inter-
action only T1S shows up, else the others. Red dotted lines denote period
2π/Uf from single-orbital strong-coupling regime [29]. Top right: time-
averaged Z as function of Uf with interorbital interactions (blue) and
without (black). Dotted lines denote equilibrium values. Red dotted line
depicts 1 − Z = 2 (1− Z(t=0)) for values with interorbital interaction.
This relation is known from single orbital weak-coupling expansion [96].
Bottom right: Local occupation probabilities with corresponding equi-
librium values as dotted lines. Dashed lines separate three regions (see
text) and grey hashed area marks precursor behavior. This figure is the
two-orbital JH = 0 equivalent of Fig. 3.4.

∑4
p=0 φp |Siz = p− 2〉, where φp is the original slave boson at site in particle-sector

p. Because of half-filling, φp=φ4−p, so that 〈Siz〉=0. Metallic coherence is signaled
in the spin model by a finite Ising order parameter 〈Six〉=<

[√
6
(
φ∗3 φ2 + φ∗2φ1

)
+

2
(
φ∗4φ3 +φ∗1φ0

)]
≡M1 +M2, while the incoherent Mott insulator has 〈Six〉=〈S2

iz〉=0.
The initial non-interacting state is characterized by 〈Six〉=2 and 〈S2

iz〉=1, i.e. energy
per site E=−2/3+U/2, conserved during the unitary evolution. If, like in the single-
band case [125], the dynamical Mott transition is assumed to occur when the energy
equals that of the Mott insulator, i.e., E=0, then U (2,JH=0)

fc =4/3 is expected. This is
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0.0 < Uf ≤ 0.3 0.3 < Uf ≤ 1.0 1.0 < Uf ≤ 1.1 2.4 < Uf ≤ 3.0

Figure 4.5: Level diagram for the active frequencies in the case U ′=U ′′=U within the
different regimes dictated by Uf .

also equal to the single-band value for the dynamical Mott transition. In fact, this
argument predicts one and the same value U (N,JH=0)

fc =4/3 for any N -band simple,
i.e., JH=0, Hubbard model at half-filling, indeed close to the numerical value. Figure
4.6 exhibits the quantity 〈Sx〉 revealing characteristics of an order parameter. In the
case of vanishing interorbital interactions equivalent to considering a single-orbital
model on the left side of Figure 4.6, there are two regions as also revealed in chapter 3.
Weak-coupling (I) with finite 〈Sx〉 describing metallic behavior and strong-coupling
(III) with zero value signaling insulating properties with U

(1)
fc =1.325=U (1)

c /2=u(1)
fc .

The contributions M1 and M2 depict the time-averaged correlations between differ-
ent particle-sectors. Similar to equilibrium an increasing Uf favors the transition
towards a Mott insulator, decreasing 〈Sx〉. Both contributions decrease linearly
with increasing interaction, with M1 being the larger contribution due to the filling
induced higher occupation of the two-particle-sector. This picture is substantially
different in the case with interorbital interactions shown in the right panel of Fig-
ure 4.6. At Uf=0.1 M1 and M2 are nearly the same as in the decoupled case, but
increasing the interaction with interorbital terms effects M1 greatly in contrast to
M2, which is nearly unaffected in weak-coupling. This leads to a crossover of these
contributions. It seems as the interorbital terms (note that JH = 0) on the one
hand pronounce the occupation dependence ofM1, but on the other hand lead to an
unnoticeable occupation dependence of M2. At Uf =1.15 a precursor regime starts
with increasing fluctuations visible inM1 andM2. In the region 1.375≤ Uf ≤2.0 the
order parameter vanishes only after averaging over a longer time, which is shown
in the inset. This extended Mott insulating transition (EDMT) is characterized by
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〉

¯〈Sx〉
M̄1

M̄2

Figure 4.6: Order parameter 〈Sx〉 without interorbital couplings (left) and with in-
terorbital couplings (JH = 0) (right). Inset shows 〈Sx〉 (s) (see Eq. 3.1) in
the three different regions. The decoupled two-band case (left) stabilizes
only in regions I and III (divided by the vertical dashed line). Region II
appears with interorbital terms. The precursor regime is visualized by
the gray hashed area.

noisy Fourier spectra. Note that in equilibrium the Mott critical value is increased
(from 2.65 to 4.0) by including interorbital interactions with JH = 0 due to the high
induced degeneracy of local states. Similarly in the non-equilibrium case the insu-
lating strong-coupling region (III) appears for higher Uf with the EDMT between
pure metallic and pure insulating non-equilibrium state.

4.2.3 Strong-coupling

In the strong-coupling limit T1 approaches like T1S the value 2π/Uf measured for
oscillations in the strong-coupling single-orbital case [29]. This is an intuitive result,
as it is also the period of the time propagator in the atomic limit. T2 saturates
at ∼ 25 1/W , which equals 0.25 W . Additionally the slave boson occupations |φ|2
approach their initial values, where at Uf =3.0 only two-particle-sector has not
yet reached it. Furthermore the amplitude of |φ|2 decreases in the strong-coupling
limit with higher Uf (see Fig. 4.3). Thus for Uf → ∞ locally frozen dynamics are
induced, which are trapped in the initial state. Furthermore Z saturates due to the
interorbital couplings not at 0.5 but at 0.33.
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ω

U/JH = 5
JH = 0

Figure 4.7: Comparison of Fourier transforms at Uf = 0.4 with and without finite
Hund’s rule coupling.

4.3 Interorbital interactions with finite Hund’s
coupling

Turning to the case JH =0.2U renders the whole picture more complicated. Instead
of one low frequency multiple arise (see Fig. 4.7). The following considerations are
limited to the highest and lowest dominant frequency determined at Uf = 0.1. It is
assumed that both frequencies evolve continuously with Uf . Then period T , time-
averaged Z and time-averaged |φ|2 are investigated for Uf/JH = 5 shown in Fig. 4.8.
Note that with finite JH the previous degenerate two-particle-sector turns into two
singlets and one triplet. The former having the energy U − JH (multiplicity 2) and
U + JH (multiplicity 1). The latter yields U − 3JH with multiplicity 3. Additionally
the finite JH leads to a drastically increase in correlation shifting the Mott critical
interaction from 4.0 to 1.75 in equilibrium. In the following weak-coupling, critical
region and strong-coupling are discussed.

4.3.1 Weak-coupling

In comparison to JH = 0 (Fig. 4.4) the highest period has shifted from the average
value ∼ 20 to ∼ 100. This is in line with the fact that previously the interor-
bital interaction scaled with U ′ = U ′′ = U , where now the lowest energy scale
are spin-flip and pair-hopping, which scale with JH = U/5. As already shown for
JH = 0, T1 substantially deviates from the single-orbital values for moderate Uf .
Still the single-orbital picture of the prethermalized state holds. Time-averaged
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¯ |φ
|2

#0
#1
U + JH
U − JH
U − 3JH
#2 JH = 0

Z̄

JH = 0
U/JH = 5

Figure 4.8: Left: Period of physical quantities with Uf and Uf/JH = 5 (see text).
Red dotted lines denote period 2π/Uf from single-orbital strong-coupling
regime [29]. Top right: Time-averaged Z as function of Uf with JH =
0.2Uf (orange) and with JH = 0 (blue). Dotted lines denote equilibrium
values with JH = 0.2Uf . Red dotted line depicts 1− Z = 2 (1− Z(t=0))
for values with JH = 0.2Uf . This relation is known from single orbital
weak-coupling expansion [96]. Bottom right: Time-dependent local occu-
pation probabilities (straight lines) and equilibrium values (dotted lines).
Dashed lines separate three regions (see text) and grey hashed area marks
precursor behavior. Black circle marks Mott critical interaction in equi-
librium. This figure is the two-orbital JH 6= 0 equivalent of Fig. 3.4.

local occupation probabilities are equal to their equilibrium values. Furthermore
1 − Z = 2 (1− Z(t=0)) [96] is fulfilled. This is quite astonishing as the impact of
JH is quite severe by giving rise to (local) singulet and triplet formation, as well as
a very low energy scale. The deviations in Z between zero JH and non-zero case
are overall quite small, but become bigger when approaching the critical region. A
notable change is the smoothing of the abrupt decrease of Z close to the critical
region with finite JH. Additionally the low frequency T2 shows diverging tendencies
similar to the T2 in the JH = 0 case.
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R̄

Figure 4.9: Time-averaged diagonal renormalization R for U/J = 5. Insets show
R(s) in the three different regions.

4.3.2 Precursor and critical region

It is important to note that the EDMT is not an artifact of JH = 0. The mapping
to a spin model proves elusive to add an additional point of view to the picture,
but is not needed to access an order parameter. In fact, the renormalization matrix
depicted in Fig. 4.9 shows the same characteristics. Comparing Fig. 4.6 and Fig.
4.9 introducing a finite Hund’s coupling broadens the EDMT (from 1.375 ≤ Uf ≤2.0
to 1.125 ≤ Uf ≤2.225).

4.3.3 Strong-coupling

As shown in Fig. 4.8, T1 approaches again the atomic-like oscillation limit 2π/Uf ,
known already from the single-orbital [29] and JH = 0 case. The other defining char-
acteristic of the large Uf metastable state in the single-orbital case is the approaching
of initial values regarding the time-dependent |φ|2 leading to frozen doublon dynam-
ics. The argument is that for high U doublons have a very high energy compared to
the kinetic energy, so a decay would need many-particle scattering processes [119].
However with interorbital interaction this does not hold for all local states. Without
Hund’s coupling it is the two particle-sector, which shows highest deviations from
its initial state at the considered maximum interaction quench (see Fig. 4.4). With
finite JH as can be seen in |φ|2 for Uf = 3.0 (Fig. 4.8) all local states are already
quite close to their initial values with small amplitudes (close to frozen dynamics),
but not the triplet (see Fig. 4.10). The scattering channels between singulets and
triplets does not scale with U , but with JH = U/5 and the triplet is the lowest
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Figure 4.10: Time-dependent local occupation probability |φ|2 at Uf = 3.0 with
JH = 0.2U (left). Right panel displays time-averaged triplet occupa-
tion (JH = 0.2U) compared to twoparticle-sector for JH = 0 and linear
fits as dashed lines. Colored arrows mark equilibrium values.

energy state. This means the triplet is the highest occupied state at large Uf and
the decrease with Uf is smaller. This results in a delay of frozen dynamics for the
triplet to higher Uf compared to the doublons in the single-orbital case or the two-
particle-sector in the JH = 0 case (see Fig. 4.10). While the twoparticle-sector for
JH = 0 has reached its initial occupation already at Uf = 5.0, the triplet needs
Uf > 5.0 to reach it. Therefor JH discriminates the triplet state from all other
local states regarding the freezing of dynamics in strong-coupling. The fluctuations
and linear increase of T2 could be related to the unfrozen triplet, as in the JH = 0

case with local states closer to the frozen dynamic limit the higher period is already
saturated (compare Fig. 4.4 and 4.8). Note that the strong-coupling metastable
state is not similar to the equilibrium insulating state. While in the former finite
singlet occupation are visible, the latter is characterized by a vanishing singulet and
an only occupied triplet state.

4.4 Summary of this chapter

This chapter deals with an interaction quench in the canonical two-orbital Hubbard
model at half-filling restricted to paramagnetic states. The non-interacting state
is the initial state. When weak interaction quenches are applied the time-averaged
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local occupation probabilities coincide with the equilibrium values. Furthermore the
non-equilibrium time-averaged quasiparticle weight is reduced twice with interaction
compared to the equilibrium value. These are the characteristics of the single-orbital
weak-coupling metastable state (prethermalization state) and even with interorbital
interactions, they still apply with or without JH. This is surprising as interorbital
interactions lead to one (JH = 0) or multiple (JH 6= 0) low frequencies, which al-
ready for JH = 0 and weak quenches show frequency splitting meaning non-trivial
behavior. Additionally the high frequency known from the single-orbital case is still
present, but is only equal to the single-orbital values for small interaction quenches.
The deviation to single-orbital values increases with stronger quenches. Increas-
ing the interaction quench to intermediate values leads not to a sharp dynamical
Mott transition, but a broadened extended dynamic Mott transition (EDMT). In
the finite JH case results are focused on the lowest and highest dominant frequency
determined at small interaction. As a continuous dependence of these two frequen-
cies on the final interaction is assumed, they can easily be traced. With JH = 0

interorbital interactions have the energy scale U , however with finite JH the lowest
energy scale is JH introduced by spin-flip and pair hopping. As the lowest frequency
decreases by the factor JH/U , when going from the former to the latter case, a clear
relation between lowest frequency and lowest energy scale of interorbital interac-
tions can be extracted. A divergence of the lowest frequency signals the transition
into the EDMT. The EDMT is characterized by a low frequency switching between
metallic and insulating state, so the insulating state appears only after an extended
period of time. Another indicator are the noisy Fourier spectra. Compared to van-
ishing Hund’s coupling a broadening of the EDMT appears with finite JH. For even
stronger interaction quenches a clear structure of Fourier spectra can be derived
again and the insulating state appears already after small times giving rise to a
strong-coupling region. In this region the highest frequency approaches indepen-
dent of JH the atomic limit Uf/2π like in the single-orbital case. Similarly to the
single-orbital case time-averaged local occupation probabilities approach their initial
value and freeze out then (vanishing amplitude). In contrast to the orbitally decou-
pled case there is effectively not only one local state and the interaction quench
scale to reach the initial state depends on the local state. The highest occupied
state reaches its initial state at considerably higher interaction quenches than other
states. In the JH = 0 case this affects the two-particle-sector and for finite Hund’s
coupling the local triplet state. As the finite JH triplet needs an even higher Uf than
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the two-particle-sector in the JH = 0 case one can see that the introduction of an
additional low energy scale delays the freezing of the highest occupied state. In the
end the highly affected regions by interorbital coupling are the former dynamical
Mott transition and the strong-coupling regime.



5 Charge fluctuations in a realistic
model for V2O3

Vanadium sesquioxide (V2O3) has fascinated researchers for decades [41, 42, 46, 89,
91, 114] and the reason for its popularity is mainly the Metal insulator transition
with Chromium doping, which is the archetypical Mott transition in the Hubbard
model picture (see Fig. 5.1). For the Mott insulating state only three orbitals are

Figure 5.1: Experimental phase diagram of V2O3 [89, 91].

important, one a1g and two energy degenerate e′g [46]. The characteristics of the Mott
insulating state in V2O3 are a non-occupied a1g orbital with two electrons for the
other two e′g orbitals per atom [114]. A recent study showed that the Mott insulating
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character of V2O3 in equilibrium is driven by a correlation enhanced crystal field
splitting between a1g and e′g orbital [114]. Additionally up to now unpublished
experimental results show that a femtosecond laser excitation is able to turn the
unoccupied a1g orbital in the Mott insulating ground state to a finite occupied state
[40]. On this way V2O3 is turned into a metal. This chapter is intended as a small
example that TD-SBMFT is not limited to model calculations, but can also describe
non-equilibrium physics in real materials. The focus lies on a simple modeling of
the effect of the laser excitation by a crystal field quench.

5.1 Setting up the realistic model

Details to the equilibrium modeling of paramagnetic V2O3 can be found in [39],
here just some important facts are stated. The crystal structure is depicted in Fig.
5.2. Density functional theory (DFT) leads to the following density of states (DOS)

Figure 5.2: Crystal structure of paramagnetic V2O3 seen along the z-axis (left) and
along the y-axis (right). The larger blue spheres symbolize Vanadium,
the smaller red spheres symbolize Oxygen atoms. Images taken from [39].

depicted in Fig. 5.3. The challenge is now to find a minimum number of orbitals,
which describe the low energy part of this DOS sufficiently. Important is that the
low energy part of the DOS can not be simply described by cubic harmonics as
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Figure 5.3: Total one-particle density of states of V2O3 from LDA at the equilibrium
volume and local density of states of Vanadium projected onto symmetry-
adapted l = 2 cubic harmonics. Image taken from [39].

nearly all of them have non-negligible weight. Instead, these orbitals have to be
projected [2] onto the following effective t2g orbitals, which have the same symmetry
as normal t2g orbitals [41]

t12g = d3z2−r2 t22g =

√
2

3
· dxy ±

√
1

3
· dxz

t32g = −
√

2

3
· dx2−y2 ∓

√
1

3
· dyz. (5.1)

The signs in Eq. 5.1 are related to the multiple Vanadium atoms in the unit cell. In
the following t12g is named as a1g and the other t22g and t32g are two energy degenerate
e′g. These three orbitals are also depicted in Fig. 5.3 and reproduce the low energy
DOS quite well. The unit cell of the crystal structure (Fig. 5.2) can be modeled
as four symmetry-equivalent Vanadium atoms with each having two electrons and
three orbitals, one a1g and two e′g.

5.2 Non-equilibrium results

The multi-orbital Hubbard model with Hubbard U and Hund’s coupling JH is used
depicted in Eq. 2.4. The hopping term τ is computed by the DFT results and
includes many hopping orders (not only nearest-neighbor) to get a close to material
dispersion. To model the Mott insulating ground state, which will be the initial
state of the non-equilibrium study, the parameters U = 5.0 and JH = 0.93 taken
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∆add(eV ) occupation (e′g) occupation (a1g) Z (e′g) Z (a1g)
0.00 0.38 0.24 0.34 0.56
0.35 0.46 0.08 0.14 0.61

Table 5.1: Orbital occupation and quasiparticle weight Z at U=5.0 and JH=0.93
depending on the additional crystal field ∆add. ∆add = 0.00 means only
DFT crystal field is used.

from a previous study [46] are used. As the ground state of Cr-doped V2O3 is a
Mott insulator with zero a1g orbital occupation [114], the Hamiltonian parameters
has to be chosen accordingly. For this reason the DFT crystal field is increased by an
additional crystal field ∆add, which mimics the expected correlation enhancement
[114]. As depicted in Tab. 5.1, ∆add =0.35 is inducing a state with very small
quasiparticle weight of 0.14 in e′g and a near vanishing occupation of 0.08 in the a1g

orbital, so very close to the real ground state. Note that SBMFT can only describe
a paramagnetic close to Mott insulating state, not the Mott insulating state itself
[77]. The idea is to quench ∆add=0.35 to lower values to induce charge fluctuations

∆add = 0.25
∆add = 0.20
∆add = 0.15

∆add = 0.10
∆add = 0.05
∆add = 0.00

Figure 5.4: Impact of quench in additional crystal field ∆add ≡ ∆add,f (initial value
0.35) on time-dependent orbital occupation and quasiparticle weight. (a)
total electron occupation of one atom ntot, (b) orbital occupation nα and
(c) quasiparticle weight Zα.
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and with these a metallic state displaying an occupation of the a1g orbital greater
than the equilibrium value of 0.08. The results are depicted in Fig. 5.4. As expected
the quench to lower crystal fields induces time-dependent charge transfer from the
e′g to the a1g orbital as the total number of electrons per atom is unchanged. Shortly
after the quench the orbital occupations displays large fluctuations, which quickly
stabilizes to a quite time-independent value. The same behavior can also be seen in
the quasiparticle weight Z, where the increased number of electrons in the before
almost empty a1g orbital leads to an increase of correlations. Similarly the decrease
of electrons in the e′g orbital induces a decrease of correlations. This proportional
relation is expected as both orbitals are less than half-filled. Note that a higher
∆add,f − ∆add increases the fluctuations shortly after the quench and the charge
transfer between the orbitals.

5.3 Summary of this chapter

This chapter focuses on the Mott insulating state of V2O3. The low energy density
of states can be reproduced using a projection on three effective t2g orbitals in a
four atom unit cell. The three orbitals are two energy degenerate e′g and one a1g.
The Mott-insulating state has the characteristic property of vanishing quasiparticle
weight and vanishing a1g orbital occupation. SBMFT is able to approximate this
state by a finite but very small quasiparticle weight and very small occupation in the
a1g orbital. To reach this, a three-orbital Hubbard model with interaction parame-
ters of a previous study [46] and an increased crystal field with respect to the DFT
value is considered. The crystal field increase is expected as correlations enhance
the crystal field [114]. An up to now unpublished experiment uses a femtosecond
laser to induce a Mott insulating to metal transition in which course the a1g orbital
obtains a finite occupation [40]. Increased occupation in the a1g orbital is induced
by quenching the correlation enhanced crystal field splitting to lower values within
TD-SBMFT. This leads to a charge transfer from the e′g orbitals to the a1g orbital
decreasing correlations e.g. a weaker correlated metallic state. One should stress the
fact that TD-SBMFT is able to handle this complex realistic model. The complexity
is expressed by the four (symmetry-equivalent) atoms per unit cell and three orbital
per atom. For this close to material model results with excellent numerical quality
are derived. An example is the well conserved total charge during the course of the
time evolution.
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6 Impact of hole doping on magnetic
fluctuations in the t2g-shell

The importance of orbital degrees of freedom and the Hund’s rule coupling for
magnetism is already explained in chapter 4. In ultracold gases the interest for
multiorbital physics includes magnetic phenomena. Models like the Kondo Lattice
model [3, 68] can be experimentally realized in ultracold gases [34]. The Kondo
Lattice model hosts not only paramagnetic (PM) phenomena like Kondo singlet for-
mation, but also antiferromagnetic (AFM) or ferromagnetic (FM) phases. However
the experimental realization has not been done so far, as it is a serious challenge
to obtain ultralow temperatures and entropies [36]. These are needed to observe
exchange-driven spin ordering effects. Still progress has been made by for example
establishing short-range AFM ordering with a single orbital degree of freedom [36] or
setting up spin-exchanging contact interactions with two orbital degrees of freedom
[124]. This arises the impression, that it is only a matter of time until multior-
bital magnetic phenomena will be accessible in ultracold gas systems. Conversely
in solid state systems since the discovery of ultrafast demagnetization of ferromag-
netic Nickel [11] multiorbital magnetic phenomena and especially demagnetization
in ferromagnets are accessible and have attracted wide interest [62–64, 139]. A focus
lies on switching spin orientations in a deterministic way on shortest (femtosecond)
time scales. This is critical for data storage as it sets the bit-recording time limit in
magnetic memory devices [106]. Many theoretical mechanisms have been proposed
to explain the ultrafast demagnetization and a way to control FM order. These
include the Elliot-Yafet mechanism [69, 132], superdiffusive spin transport [10] and
processes driven by the Coulomb interaction [71]. As the exchange-bias effect can
be used to employ ultrafast FM order via manipulation of an adjacent antiferromag-
net [74], addressing ultrafast dynamics in antiferromagnets prove relevant. Often
AFM order is tied to strong correlations inducing AFM tendencies via superex-
change. A basic question is, if Coulomb interactions are enough to obtain ultrafast
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demagnetization in antiferromagnets. From a model point of view this question has
recently been addressed in a single-orbital Hubbard model concerning demagnetiza-
tion of an AFM state after an interaction quench [123, 138]. In this chapter the t2g

(three-orbital) Hubbard model with a general dispersion, chosen as simple cubic is
considered. Additionally a wide range of fillings is investigated. Accounting in the
modeling for the t2g shell the investigation is relatively close to real materials like
high-Néel-temperature SrTcO3 [117] (half-filled N = 3), nearly-AFM SrCrO3 [105]
(N = 2) and PM Sr2MoO4 [52] (N = 2). Note that for the last two materials there is
no crystal field in the t2g shell in agreement with the model in this chapter [53, 105].
To be specific, the three-orbital Hubbard model is investigated using t2g orbital

degrees of freedom on a three-dimensional cubic lattice with rotational-invariant
Coulomb interaction in Slater-Kanamori parametrization as stated in Eq. 2.4. A
two-site unit cell is utilized to be able to model AFM order. In the following a
bandwidth of 2 eV is used, therefore the half-bandwidth W sets the energy scale.
Using an interaction quench the initial state has Ui and JH,i and the final state Uf
and JH,f . As the ratio q is utilized as q ≡ JH/U , q = qi = qf holds in the following.
In the single-orbital case at half-filling time-dependent Gutzwiller approximation
(TD-GA) has proven to recap qualitatively the AFM demagnetization dynamics
with critical points obtained with time-dependent dynamical mean-field theory (TD-
DMFT) [123, 138]. This holds not only for non-thermal but also thermal critical
points [122, 144]. The focus in this chapter lies on non-equilibrium magnetization
dynamics and non-thermal critical points in a wide range of hole dopings after an
interaction quench. In section 6.1 equilibrium properties like the magnetic phase
diagram are revealed. Afterwards an interaction quench from an initial AFM state
at Ui = 2.0 to Uf < Ui in a wide range of hole-dopings is discussed in section 6.2.
Then a kind of vice versa scenario is considered starting from an initial PM state and
performing interaction quenches to Uf > Ui in section 6.3. The total energy before
and shortly after the quench is the matter of interest in section 6.4 and is checked
for a relation to the observed time-dependent phenomena. Finally the results will
be summarized in section 6.5.

6.1 The equilibrium case

First the equilibrium magnetic phase diagram is the focus of attention. In Fig. 6.1
the magnetic phase diagram obtained by equilibrium SBMFT utilizing hole-doping
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Figure 6.1: Equilibrium SBMFT magnetic phase diagram for the hole-doped three-
orbital Hubbard model on the cubic lattice with q = 0.2. Black crosses
mark stable AFM solutions within DMFT using an CT-QMC impurity
solver [16, 43, 107] at βτ = 50 and q = 0.167U .

and q = 0.2 is shown. N = 3 marks half-filling and black crosses mark stable AFM
solutions within DMFT using an continuous-time quantum Monte Carlo (CT-QMC)
impurity solver [16, 43, 107] at βτ=50 and q = 0.167U (with β inverse temperature).
A previous study [24] found no AFM order away from half-filling at same β, q and
U using a Bethe lattice in contrast to our 3D simple cubic dispersion. Within our
setup we are able to stabilize AFM order in the hole-doped regime (see Tab. 6.1 and
Fig. 6.1). For the DMFT calculations we use U = 15τ , which equals 2.5D as the
band width is 12τ . The equilibrium phase diagram in Fig. 6.1 determined by free-
energy comparison of the competing phases, consists of a FM, PM and AFM phase.
The FM phase is only the ground state for high interaction values and moderate
hole-doping, conversely the AFM phase is stable over a wide range of fillings. Of key
interest is the AFM-PM phase boundary as the used Hamiltonian (Eq. 2.4) in the
two-site unit cell conserves the total spin Sz (summed over both sites). Therefore

N 3.0 2.9 2.8 2.7
Sz -1.45 -1.24 -0.94 -0.12

Table 6.1: Total Sz (summed over orbitals) for appropriate filling N in a 3D simple
cubic lattice with βth = 50, q = 0.167 and U = 2.5D derived by DMFT
using an CT-QMC impurity solver [16, 43, 107].
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q = 0
q = 0.2
q = 0.3

Figure 6.2: Equilibrium quasiparticle weight for different U , q, and fillings N =1,2,3.
Grey shaded areas mark the interaction regime covered by the non-
equilibrium study in the subsequent quench scenarios.

no transition between FM and one of the other phases is observable.
The Hund’s rule coupling JH is known to be a key feature in the three-orbital t2g
Hubbard model. It substantially effects the stability of magnetic phases [6, 120, 149]
and is for example needed to trigger ferromagnetism away from half-filling [47].
Additionally it has substantial influence in the PM state onto the Mott transition
at half-filling [66, 148]. In the half-filled case N = 3 the Mott transition is shifted
towards lower values by increasing JH contrary to lower integer fillings, where it is
shifted to higher values by increasing JH. This Janus-faced behavior [92] is accessible
within SBMFT and can be observed in Fig. 6.1. The non-equilibrium studies are
restricted to Uf ≤ 2.0, where the AFM state is the stable groundstate over a wide
range of dopings (2.2 ≤ N ≤ 3.0). So no strong influence of the Janus-faced behavior
onto non-equilibrium physics is expected. Note that it is an open question so far, in
which way this Janus-faced physics effect magnetic states.

6.2 Interaction quenches from an antiferromagnetic
state

An initial AFM state at Ui = 2.0 is quenched to lower interaction values at different
fillings in the range of 2.0 ≤ N ≤ 3.0. Looking at the equilibrium phase diagram
in Fig. 6.1 the expectation is that at a specific Uf a transition into a paramagnetic
state occurs as the equilibrium phase boundary is crossed. To connect with previous
single-orbital studies [123, 138, 150], the half-filled case is considered first. The
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Ui − Uf=0.1
Ui − Uf=0.3
Ui − Uf=0.5

(a) q = 0

Ui − Uf=0.7
Ui − Uf=0.9
Ui − Uf=1.1

(b) q = 0.2

Ui − Uf=1.3
Ui − Uf=1.5
Ui − Uf=1.7
Ui − Uf=1.9

(c) q = 0.3

Figure 6.3: Time-dependent magnetization for different q at half-filling after the
quench. The chosen Ui ensure equal initial magnetization: (a) Ui = 3.0,
(b) Ui = 2.0, (c) Ui = 1.6.

result is shown in Fig. 6.3, depicting the time-dependent magnetic moment m (t)

for weak quenches (small ∆U = |Ui − Uf |) in green to high quenches (∆U ∼ 2.0)
in black. The three panels denote different q. Zero Hund’s rule coupling establishes
the transition to a PM non-equilibrium state (∆(3,PM)

fc = Ui − U (3,PM)
fc ) already at

very weak quenches. Increasing q to q = 0.2 considerably increases ∆
(3,PM)
fc , which is

lowering a bit going to q = 0.3. The equilibrium phase diagram (Fig. 6.1) suggests
that ∆

(3,PM)
fc is lowered by decreasing the filling N , assuming that ∆

(3,PM)
fc follows

the equilibrium phase boundary. Consequently the state with highest ∆
(3,PM)
fc is

taken, q = 0.2 to be able to witness an AFM-PM non-equilibrium transition in a
wide filling range. Changes observed by using q = 0.3 are also discussed.
The quench scenario depicted in Fig. 6.3 at half-filling is now extended to the

hole-doped case. The AFM ground state at Ui = 2.0 is utilized at all fillings and
quenched to lower interaction values keeping q = 0.2. The occurring non-equilibrium
demagnetization response is plotted as a color coded square at the corresponding Uf
in Fig. 6.4 (a), where a comparison to the equilibrium magnetic phases at U = Uf
is drawn in (b). Furthermore the quench setup is sketched for three examples in (c).
For each non-equilibrium response small graphs depict the magnetization dynamics
at both sites of the unit cell (with straight and dotted lines) and below each graph
the spin dynamic is sketched in the unit cell. U

(3,PM)
fc increases with hole-doping

as expected by the equilibrium phase diagram. It is located near the equilibrium
AFM-PM phase boundary, when going to lower fillings. However at N = 2.6 and
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below until the AFM equilibrium state breaks down at N < 2.3 a new kind of non-
equilibrium response shows up, a spin oscillation. This can be analyzed by taking
into account the case N = 2.4, where the time-dependent magnetic moment for
different Uf is depicted in Fig. 6.5 (b). For small ∆U an AFM non-equilibrium
state is discovered, where neighboring sites of the unit cell (denoted by straight and
dotted lines) have the same absolute value of magnetic moment m (t) but opposite
signs. m (t) shows small oscillations but remains finite. The oscillation’s amplitude
and period increases by increasing ∆U until around ∆U = 0.9, where the amplitude
is large enough to reverse the sign at each site periodically leading to a spin oscil-
lation. Increasing ∆U further decreases the amplitude and period of the oscillation
resulting in the transition to a PM non-equilibrium state. This is reminiscent of a
non-thermal critical point found in the single-orbital case, where the frequency of
the amplitude mode tends to zero from above [123, 138]. Note that thermalization is
delayed near such a (non-thermal) critical point in the single-orbital case [138]. The
Uf range, where the spin oscillations occur, broadens towards N = 2.3. Looking
at the time-averaged quasiparticle weight Z shown in Fig. 6.5 (a) renders two as-

AFM

Spin osc. PM

PM

Figure 6.4: (a) Non-equilibrium demagnetization response diagram for q = 0.2. Type
of response is color-coded and corresponding magnetization dynamics are
depicted for one example each in seperate graphs. Dynamics of spins in
unit cell is also sketched below the corresponding graphs. Comparison to
equilibrium phases seperated by full lines and described by labels in (b).
Sketch of the utilized interaction quench in (c), where filled circles mark
fixed Ui = 2 and squares the different Uf indicating the position in (a).
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pects clear. On the one hand equilibrium AFM states lift the spin degeneracy of the
quasiparticle weight and correlations increase linearly with U . The transition to PM
states for Uf = 0.9 marks the point, where spin degeneracy is established. On the
other hand only the non-equilibrium AFM state shows a time-averaged quasiparti-
cle weight with linear dependence on Uf (with closest resemblance to equilibrium
Z at U = Uf ). In contrast spin oscillation and PM state have a time-averaged
quasiparticle weight with a nearly constant value with strong difference from the
equilibrium Z at U = Uf . The resemblance to equilibrium correlation values at high
Uf is expected as higher Uf means also lower ∆U in this quench setup. So Uf =1.9
is effectively the weak quench limit, where Z(Uf ) ∼ Z(U=Uf ) is retained. Addition-
ally the spin degeneracy in Z is established already, when spin oscillations occur.
This is before the PM state at lower Uf is observed in the non-equilibrium case.
Therefore spin oscillations resemble the non-equilibrium PM state correlation-wise
and can be regarded as fluctuations around the latter.
To get a grip on these spin oscillations the dominant local multiplets prove in-

sightful. From Tab. 6.2 the conclusion can be drawn, that only two multiplets
expressed in eigenvalues of the squared angular momentum L̂2 and spin operator Ŝ2

dominantly contribute. To be precise near half-filling the maximal S state (L = 0,
S = 3

2
), a spin-quartet, is the highest occupied state. Considering the Sz eigenvalue

the maximal value obtains all occupation indicating a high magnetic polarization.
Increasing the hole-doping decreases the spin-quartet’s occupation (three-electron
state) and increases the (L = S = 1) spin-triplet’s (two-electron state) occupation.
This induces a decrease in magnetic polarization. Below N = 2.5 the occupation
hierarchy of spin-triplet and spin-quartet reverses.
One thus can define a threshold parameter η via ratios between the maximal ampli-
tude of the TD magnetic fluctuations for the spin triplet (φLz ,1,Sz) /quartet (φ 3

2
,Sz

)

{L, S} (Sz) N=2.3 N=2.5 N=2.8 N=3.0

{1,1} (1) 0.50 (0.32) 0.41 (0.35) 0.22 (0.21) 0.05 (0.05)

{0, 3
2
} (3

2
) 0.31 (0.17) 0.44 (0.35) 0.69 (0.66) 0.88 (0.88)

Table 6.2: Initial occupation at t = 0 of selected single-site multiplets for different
fillings N and U = 2.0 with q = 0.2.
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and the initial (equilibrium) spin polarization, i.e.

η =
w1 · (A1

1 − A1
0)

|φ(t=0)
1,1 |2 − |φ(t=0)

1,0 |2
+
w 3

2
·
(
A

3
2
3
2

+ A
3
2

− 3
2

)
/2

|φ(t=0)
3
2
, 3
2

|2 − |φ(t=0)
3
2
,− 3

2

|2
, (6.1)

wS =
∑

Sz=±S,±S−1

|φ(t=0)
S,Sz
|2 , ASSz = Max

(
|φ(t)
S,Sz
|2
)
.

As the spin triplet is Lz degenerate, the Lz-summed values φ1,Sz=
∑

Lz=±1,0 φLz ,1,Sz
are the focus of attention. The maximum amplitudes A are computed from the
maximum value (Max) of the slave bosons in the time interval [10, 250] beyond the
initial drop inm from dephasing. The first term in Eq. (6.1) arises from the difference
in A between Sz = 1 and Sz = 0 of the triplet. As the quartet has no Sz = 0 state,
the second term originates from the average amplitude of states with largest Sz
difference, since those are most susceptible to magnetic fluctuations. In order to
normalize the different filling scenarios, both contributions are weighted with the
initial multiplet occupation. Therefore Eq. 6.1 provides a measure of magnetic
fluctuations, whereby a value of η ≥0.5 indicates the onset of spin oscillations. In
Figure 6.5 η is plotted dependent on Uf with different colors from blue to green

Uf = 0.9 Uf = 0.7 Uf = 0.5

Uf = 1.5 Uf = 1.3 Uf = 1.1

Z̄

Figure 6.5: Time-averaged Z as straight lines and equilibrium values as dotted lines
(a) and magnetisation dynamics at N = 2.4 (b). Spin oscillation thresh-
old η for various Uf and fillings N =3.0,. . . ,2.3 (from blue to green) for
the quenched AFM state (c).
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denoting the fillings N from 3.0 to 2.3. As one can see these two multiplets are able
to signal the onset of spin fluctuations for all calculated fillings, meaning Eq. 6.1
provides a consistent measure of magnetic fluctuations for all considered fillings. A
quick look at Tab. 6.2 confirms that an equal share of occupation regarding spin
triplet and quartet or lesser share of spin quartet seems to be needed to establish
spin oscillations. Considering q =0.3 leads to small shifts of the spin oscillation’s
region of appearance with qualitative identical filling dependence.

6.3 Interaction quenches from an initial
paramagnetic state

A kind of vice versa quench scenario is considered now. Starting from an equi-
librium paramagnetic state close to the equilibrium PM-AFM phase boundary an
interaction quench to higher interaction values at fixed q is performed. As this
phase boundary is filling dependent the Ui becomes Ui = Ui (N) (see Tab. 6.3). Ui
increases linear with hole-doping except for N =2.9. This is in contrast to the pre-
vious quench scenario, where Ui remained constant. The occurring non-equilibrium
demagnetization response is plotted as a color coded square at the corresponding Uf
in Fig. 6.6 (a). The equilibrium phase boundaries are plotted as straight red lines
and labeled for U = Uf in Fig. 6.6 (b). Additionally the quench setup is sketched
for N =2.9 in Fig. 6.6 (c). For each non-equilibrium response small graphs depict
the magnetization dynamics at both sites of the unit cell (with straight and dotted
lines) and below each graph the spin dynamics is sketched in the unit cell. Only
initial interaction values close to the equilibrium AFM-PM phase boundary lead to
a finite time-dependent magnetic moment indicating a relation between the non-
equilibrium magnetic fluctuations and the equilibrium phase boundary. Small ∆U

result in a non-equilibrium AFM state with Z̄ close to equilibrium correlation values
as can be seen in Fig. 6.7. High ∆U triggers a highly correlated PM non-equilibrium
state reasoned by the large energy transfer, which puts the system’s energy above
any reasonable Néel scale. At intermediate quenches transient spin oscillations ap-

N=2.3 N=2.4 N=2.5 N=2.6 N=2.7 N=2.8 N=2.9
Ui(N) 0.9 0.7 0.6 0.5 0.4 0.3 0.2

Table 6.3: Ui(N) in PM → AFM interaction quench setup.
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AFM

PM

PM

PM PM

Trans. Spin osc.

PM
{ }

0<t<t′

Figure 6.6: (a) Non-equilibrium magnetization response diagram for q =0.2. Type of
response is color-coded and corresponding magnetization dynamics are
depicted for one example each in seperate graphs. Dynamics of spins in
unit cell is also sketched below the corresponding graphs. Comparison to
equilibrium phases seperated by full lines and described by labels in (b).
Sketch of the utilized interaction quench in (c), where filled circles mark
Ui(N=2.9) = 0.2 and squares the different Uf indicating the position in
(a).

pear. They show for a limited period of time the periodic sign changes at each site
known from the spin oscillations of the previous quench scenario. However then
result ultimately into a non-equilibrium AFM state. Their occurrence is different
from the spin oscillations in the AFM to PM quench case. They appear also at low
hole doping values and remain vital in the whole filling range showing no obvious
dependence thereof. Additionally there is no striking relation to the equilibrium
AFM-PM phase boundary. Turning to the non-interacting ground state for small
hole doping (2.6 ≤ N ≤ 2.9) reveals a hidden dependence. In this non-interacting
ground state case the Uf displaying transient spin oscillations are lying on top of the
equilibrium AFM-PM phase boundary. This indicates that finite Ui and qi for these
small hole dopings shift the transient spin oscillations away from the equilibrium
phase boundary.

The influence of thermalization onto these transient spin oscillations can be es-
timated from a paramagnetic single-orbital TD-DMFT study [29]. There, weak
interaction quenches from a noninteracting initial state lead to no thermalization on
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Z̄

Figure 6.7: Top left: Non-equilibrium magnetization response diagram for q = 0.2 as
in Fig. 6.6. Black crosses denote Ui. Top right: Time-averaged Z denoted
by straight and equilibrium values by dotted lines at N = 2.8. Bottom
panels depict magnetization dynamics for different Uf at N = 2.8.

intermediate time scales. This suggests that the present transient spin oscillations
should be observable shortly after the quench, before thermalization sets in.
The threshold parameter η derived in the previous section is not applicable here,
as there is no initial spin polarization. Looking again at the same multiplets as
considered in the previous quench case provides helpful to distinguish between three
different types of spin oscillations. In Fig. 6.8 the types are denoted by magenta
symbols and the lower panels depict the time-dependent multiplet occupation to
distinguish them. Let us focus on the states with extremal Sz to make it obvious.
For N = 2.4, the spin quartet has a higher maximal time-dependent occupation as
the spin triplet. As the former has only finite Sz projections, it is more susceptible
to net spin polarization since the triplet has one nonmagnetic state (Sz = 0). So
the dynamic change in occupation amplitude triggered by magnetic fluctuations has
to be higher for a dominant spin quartet than for the spin triplet. Thus, a quench
strength Uf−Ui = 0.4 is sufficient for N = 2.4. Instead for N = 2.8 an amount
Uf−Ui = 0.7 is necessary to render the system susceptible to these transient states.
The near-degenerate case at N = 2.6 demands an even higher quench strength.
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|φ
|2

Figure 6.8: Top: Distinction between three types of transient spin oscillations when
quenching the PM phase. Bottom: Time-dependent slave boson oc-
cupations for local spin quartet and triplet within these types: (1)
|φt|2 > |φq|2, (2) |φt|2 ∼ |φq|2 and (3) |φq|2 < |φt|2, with t: triplet
and q: quartet. All other markers/labels as Fig. 6.6.

6.4 Total energy considerations

In this section, a closer look is taken at the interplay between the initial total en-
ergy Etot

i :=〈i |H (Ui)| i〉 and the final total energy one time step after the quench
Etot
f in view of the obtained physics. The time evolved parameters (slave bosons

φ and eigenvectors νka ) have only acquired changes way below accuracy in the first
time step. So, Etot

f is a good approximation to 〈i |H (Uf )| i〉, namely, the total en-
ergy of the Hamiltonian after the quench in the initial state. Note that when the
Coulomb interaction is quenched Hloc

i 6= Hloc
f holds. Hence the potential energy

changes abruptly Epot
f 6= Epot

i . In contrast, the kinetic energy is time dependent
via the renormalization matrix R. The latter is a functional of the time-dependent
slave bosons, and evolves from the initial value Ekin

i [77]. This means that one time
step after the quench Ekin

f has acquired only changes way below accuracy leading to
Ekin
f = Ekin

i . Note that these considerations are only valid one time step after the
quench and that the total energy remains conserved during the time evolution after
the quench.
First, let us inspect the evolution of both total energies with Uf and filling for
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(a) AFM → PM (b) PM → AFM

Figure 6.9: Total energies Etoti (N) and Etotf (N) dependent on filling N and Uf with
q = 0.2. For Etotf (N) < −Etoti (N) spin oscillations set in as long as AFM
fluctuations are present in AFM→PM case and for Etotf (N) ≈ −Etoti (N)
transient spin oscillations for N = 2.7−2.9 in PM→AFM case.

the quench scenario AFM→PM in Fig. 6.9(a). Etot
f exhibits a linear dependence

on Uf , where the slope of the curve decreases with lower fillings N . Note that
Etot
i = Etot

f (Uf=2.0) holds. Due to the setup of the quench (Uf < Ui) the final total
energy is always lower than the initial. A peculiarity is arising as spin oscillations
occur, when Etot

f < −Etot
i is reached and an AFM magnetic response is still present

(beside the case N = 2.6). This is not surprising as the kinetic energy remains un-
changed Ekin

i = Ekin
f , but the potential energy is lowered by decreasing Uf leading

to phase instability. This behavior appears reminiscent of physics contained in the
virial theorem, which is, however, not strictly applicable to Hubbard models [21].
Nonetheless, it is intuitive to assume that a strongly lowered potential energy with
unchanged kinetic energy eventually drives the system towards instabilities. Now a
straightforward correspondence between spin oscillation frequencies and total ener-
gies is investigated (see Tab. 6.4). This could prove a simple picture describing these
spin oscillation in terms of energy scales introduced by both of the total energies.
Extraction of the frequencies uses a nonuniform Fourier-transform scheme [35, 78],
where the frequency resolution is limited by the maximum time of 250. All spin
oscillations lie between 0.10 ± 0.03 and 0.20 ± 0.03, which equals 18 to 51 fs (as
natural units are utilized). This corresponds to frequencies in the THz regime. The
frequency decreases linearly with increasing Etot

f at N = 2.3 with ωosc/Etot
f ∼ −0.15.
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(N,Ui) =
(2.3,2.0) ωosc Tosc (fs) Etot

i Etot
f

Uf = 1.3 0.10±0.03 41±10 0.39 -0.67
Uf = 1.1 0.15±0.03 27±5 0.39 -0.97
Uf = 0.9 0.20±0.03 21±3 0.39 -1.27
(2.4,2.0)
Uf = 1.1 0.13±0.03 33±7 0.69 -0.80
Uf = 0.9 0.20±0.03 21±3 0.69 -1.13
(2.5,2.0)
Uf = 0.9 0.18±0.03 24±3 1.00 -0.98
(2.6,2.0)
Uf = 0.9 0.13±0.03 33±7 1.32 -0.83

Table 6.4: Spin oscillation frequencies and their period compared to initial and final
total energy in the AFM→PM quench scenario. Frequencies calculated by
nonuniform Fourier transform [35, 78].

But, already at N = 2.4 no linear behavior can be derived. Furthermore, the fre-
quency decreases with increasing filling (Etot

i ) at constant Uf . Here again, ωosc/Etot
f

or ωosc/(Etot
f − Etot

i ) behave nonlinearly. To conclude, the spin oscillations cannot
be explained solely by linear behavior upon Etot

f or Etot
f − Etot

i .
Let us now turn to the case of quenches from the PM phase. Looking at Fig. 6.9
(b), Etot

f exhibits again a linear dependence on Uf , where the slope of the curve
decreases with lower fillings. As Uf is higher than Ui, Etot

f > Etot
i holds in this

case. For fillings close to half-filling (N ∈ [2.7, 2.9]) transient spin oscillations near
Etot
f = −Etot

i are observed, indicating like in the other quench case a phase instabil-
ity upon increasing the potential energy above a critical value. Again, linking the
occurring frequencies (transient and oscillatory) as well as the transient length to
Etot
i and Etot

f provides additional insight into the importance of these energy scales.
Transient spin oscillations are evolving into stable AFM oscillations (see Fig. 6.6).
The number of periods of both oscillations is in most cases not sufficient to get an
accurate Fourier transform. Instead, the frequencies are derived by inspecting the
time-dependent magnetization m (t) and counting the number of periods (Tab. 6.5,
6.6 and 6.7). Error estimation is done by considering the largest deviation of m(t)

from a sine function (A sin (ω(x−B))) with the stated frequency. The transient
spin oscillations have in most cases much lower frequencies than the following stable
counterpart (compare Tab. 6.5 and 6.6). The transient length is varying between
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(N,Ui) =
(2.4,0.7) ωtr Ltr (fs) Etot

i Etot
f

Uf = 1.1 0.05±0.00 77±3 -0.81 0.12
(2.6,0.5)
Uf = 1.5 0.04±0.00 98±4 -0.97 1.97
Uf = 1.7 0.02±0.00 92±7 -0.97 2.56
(2.7,0.4)
Uf = 1.0 0.08±0.00 25±1 -1.08 0.88
(2.8,0.3)
Uf = 1.0 0.10±0.01 60±8 -1.24 1.30
Uf = 1.2 0.07±0.00 64±3 -1.24 2.02
(2.9,0.2)
Uf = 1.0 0.11±0.00 19±1 -1.46 1.74

Table 6.5: Transient AFM spin oscillation frequencies and transient length compared
to initial and final total energy in the PM→AFM quench scenario. Fre-
quency derived by inspecting m (t).

(N,Ui) =
(2.4,0.7) ωosc Tosc (fs) Etot

i Etot
f

Uf = 1.1 0.11±0.02 36±8 -0.81 0.12
(2.6,0.5)
Uf = 1.5 - - -0.97 1.97
Uf = 1.7 - - -0.97 2.56
(2.7,0.4)
Uf = 1.0 0.22±0.09 19±7 -1.08 0.88
(2.8,0.3)
Uf = 1.0 0.23±0.07 18±5 -1.24 1.30
Uf = 1.2 0.13±0.03 32±7 -1.24 2.02
(2.9,0.2)
Uf = 1.0 0.27±0.08 15±5 -1.46 1.74

Table 6.6: Stable AFM spin oscillation frequencies and period compared to initial and
final total energy in the PM→AFM quench scenario. Frequency derived
by inspecting m (t). ’-’ indicates that frequency could not be measured
due to too long transient length.

18 and 102 fs (if one does not respect the defined transient oscillation types of Fig.
6.8). However, there seems to be a link to these different types as it is easier to spin
polarize a dominant spin triplet (N ∈ [2.7, 2.9]) as a roughly equal populated spin
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triplet and quartet (N = 2.6). Thus resulting in much lower transient lengths in the
former case. For the same initial conditions, the transient lengths depend differently
on Etot

f according to the spin oscillation type. For type 3 (N = 2.7 to N = 2.9) there
is a proportional behavior and for type 2 an antiproportional behavior. The stable
oscillations are given by periods between 12 and 44 fs, so the spin oscillation period
region is shifted to lower values compared to the AFM→PM case. Furthermore,
the qualitative behavior of the stable oscillations with filling is different. Increasing
the filling (increasing Etot

f ) at constant Uf = 1.0 increases ωosc instead of decreasing
it. To clarify the influence of different initial states onto transient and oscillatory
behavior, let us look at Tab. 6.7. Starting from an initial noninteracting state the
transient behavior moves to quenched interaction values right on top of the equilib-
rium AFM-PM phase boundary. This reveals an intricate connection between this
phase boundary and the transient fluctuations. It is not possible to estimate ωosc
in two of the three cases here, as the number of periods is too low. The transient
length lies between 50 and 181 fs. Comparing these to Tab. 6.5, there are drastic
changes for N = 2.6 and N = 2.9 leading to an increased transient length moving
towards half-filling. This is the opposite behavior for N = 2.8 to N = 2.9 and the
case Ui 6= 0, which shows that initial correlations and generally speaking the initial
state have a high influence onto the transient length.

(N,Ui) =
(2.6,0.0) ωtr Ltr (fs) ωosc Etot

i Etot
f

Uf = 0.8 0.04±0.00 52±5 0.12±0.02 -1.90 0.80
(2.8,0.0)
Uf = 0.6 0.07±0.01 140±23 - -1.95 0.40
(2.9,0.0)
Uf = 0.6 0.05±0.01 181±20 - -1.98 0.54

Table 6.7: Transient and stable AFM spin oscillation frequencies and transient length
compared to initial and final total energy in the PM→AFM quench sce-
nario. Initial state is non-interacting (Ui = 0). Frequency derived by
inspecting m (t). ’-’ indicates that frequency could not be measured due
to too long transient length.
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6.5 Summary of this chapter

This chapter considers two types of interaction quenches at half-filling and with
hole-doping for the t2g-shell (three-orbital) Hubbard model with a two-site unit
cell. One of the two types addresses a strongly correlated antiferromagnetic (AFM)
ground state quenched to lower interaction values. This eventually results in a
non-equilibrium paramagnetic (PM) state. The other addresses the vice versa sce-
nario starting from an PM state close to the AFM-PM phase boundary quenched
to higher interaction values. By this eventually an AFM non-equilibrium state is
reached. The calculated equilibrium phase diagram reveals the wide filling range,
in which the AFM-PM phase boundary is present. The famous Janus-face of the
Hund’s rule at integer fillings in the considered Hubbard model is accessible within
SBMFT. However, the interaction values used for interaction quenches are too low
to expect a pronounced influence on the results. At half-filling quenching from an
AFM state to lower interaction values, previous results from the single-orbital case
are qualitatively reproduced. A finite Hund’s rule coupling is obligatory to inves-
tigate the shift of the non-equilibrium AFM-PM state boundary with hole-doping.
At zero Hund’s rule coupling the magnetic fluctuations are unstable and damped
towards a non-equilibrium PM state already for small interaction quenches. Extend-
ing now the view to all accessible values of hole-dopings leads to two main results in
this AFM to PM quench scenario. First, as expected non-equilibrium AFM states
are retrieved for small interaction quenches and non-equilibrium PM states for high
interaction values. The boundary of these two types of states is filling-dependent
and lies close to the equilibrium counterpart. Second, at high hole doping near the
non-equilibrium AFM-PM state boundary a new non-equilibrium state appears char-
acterized by large-amplitude spin oscillations. This new state covers a higher range
of final interaction values as hole doping is increased. To get a better understanding
of these large-amplitude spin oscillations a threshold parameter is introduced. This
signals the appearance of this state, when exceeding a critical value. This parameter
is defined solely in terms of the two dominantly populated local states, a spin triplet
and a spin quartet. The spin quartet has the highest occupation close to half-filling
and the spin triplet close to the maximal considered hole-doping. Turning to the
other quench scenario (PM to AFM) small interaction quenches not exceeding the
equilibrium AFM-PM phase boundary result in no magnetic response. This means
the non-equilibrium PM state remain paramagnetic. High interaction quenches re-
sult again in the same state as the transferred energy into the system is higher than
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any Néel scale. Intermediate interaction quenches lead to a non-equilibrium AFM
state or a new non-equilibrium state called transient large-amplitude spin oscilla-
tions. It has the same physical appearance as the large-amplitude spin oscillations
from the first quench scenario but only for a limited period of time. Afterwards it
changes to a non-equilibrium AFM state. In this way it is a transient state. This
state shows no obvious filling dependence in contrast to the large-amplitude spin
oscillation. It is vital over the full filling range. The threshold parameter can not
been applied here as the initial spin polarization is zero, which acts as a weight factor
in the denominator. But the considered multiplets for this parameter can be used
to distinct between three types of transient spin oscillations taking into account,
which of both has the higher maximal value of time-dependent occupation. Addi-
tionally a hidden relation to the equilibrium AFM to PM phase boundary can be
found. Looking at the non-interacting ground state as the initial state for small hole
doping shifts the final interaction values, where the transient spin oscillations occur,
onto this equilibrium AFM-PM phase boundary. This leads to the conclusion that
in both quench scenarios non-equilibrium state and equilibrium phase are intimately
linked. Some conclusions can be drawn, when comparing equilibrium total energy to
the total energy shortly after the quench. Then the kinetic energy is unchanged and
only the potential energy has greatly changed due to the interaction quench. The
frequency of the spin oscillation has no simple relation to the mentioned total ener-
gies. This means in neither of the quench scenarios (AFM→PM, PM→AFM) the
frequencies scale with the total energy after the quench or the difference of the latter
to the equilibrium total energy. However, in both quench cases spin oscillations and
transient spin oscillations occur near the point, when both total energies are equal
in absolute value with opposite sign. This is reminiscent of the virial theorem, which
is, however, not strictly applicable to Hubbard models.



7 Influence of oxygen vacancies on
the LaAlO3/SrTiO3 interface

After the discovery of the electron gas at the LaAlO3/SrTiO3 (LAO/STO) het-
erostructure interface [104] a vast number of experiments revealed phenomena like
superconductivity [23, 79, 116], magnetism [8, 17, 79] and high mobility [104]. Yet,
the question why there is a conducting layer between two insulating compounds is
an outstanding puzzle. It is known, that growth conditions are severely impact-
ing the oxide interface conductivity [100, 137, 145]. As oxygen vacancies (OVs) are
known to act as electron donors in SrTiO3 [58], the mentioned growth sensitivity
supports the fact that OVs play a crucial role for interface conductivity. A general
agreed mechanism to explain the conducting layer is coined polar-catastrophe [58],
which basically means that charge transfer is preventing a strong polar disconti-
nuity at the oxide interface. Another astonishing fact is the magnetism revealed
at the LAO/STO interface, especially as both parent compounds do not share this
property [17]. Studies revealed for example ferromagnetic (FM) hysteresis up to
room temperature and coexisting with paramagnetic and diamagnetic susceptibili-
ties indicating multiple coexisting phases [8] and coexistence of magnetic order and
superconductivity [79]. Up to now two scenarios exist explaining the emergence of
FM moments at the interface [134]. In the first scenario a special t2g(xy) energy band
is split off to lower energies and is more localized than the other interface bands.
It resides only in the first TiO plane adjacent to the interface [112]. This band is
expected to accommodate most of all carriers. As the polar catastrophe leads to 0.5
electrons per Ti atom at the interface, this band turns into a quarter filled band in-
sulator. The susceptibility of the localized carriers towards spin-polarization is then
explained by a Stoner-like mechanism [112] or interaction with conduction electrons
[95]. In the other scenario OVs are the main actors giving rise to magnetic phenom-
ena. Supporting this scenario are facts like the observation of randomly distributed
FM patches within the sample [13], high sensitivity to strain [59], large variability



Page 80

between samples [13, 59] and dependence on oxygen growth pressure [8, 17]. Indeed
density field theory (DFT) results show that Ti atoms around OVs develop large
magnetic moments [111]. In DFT an OV induces a crystal-field lowered eg-like state
on neighboring Ti atoms. One can now think of two limiting scenarios. In the
dilute defect limit with only few OVs eg-like local moments form on Kondo impu-
rities [84, 85]. These couple ferromagnetically via Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction mediated by t2g electrons. In the dense defect limit the physics
is close to a minimal two-orbital (eg,t2g(xy)) Hubbard model near quarter-filling
[76, 110]. In a recent DFT+dynamical mean field theory study [76] it was shown,
that Zener double-exchange [156, 157] can be held responsible for FM order at the
interface. In this chapter the focus lies on exchange processes induced by OVs at
the LAO/STO interface in a broad concentration range. To allow for an arbitrary
number and ordering of OVs the real-space formulation of slave boson mean-field
theory (SBMFT) is employed (see section 2.3). This has the advantage compared to
usual DFT studies, that it incorporates several many-body hallmarks as quasipar-
ticle (QP) formation, paramagnetic local moments and band narrowing. In general
DFT+DMFT would be the best method, but a unit cell like the here considered
10x10 one is numerically at present out of reach using that method. To start the
real-space formulation of SBMFT is tested in section 7.1 on a homogeneous example
(section 7.1.1) and an inhomogeneous one in section 7.1.2. Afterwards the problem
of oxygen vacancies at the LAO/STO interface can be studied. This is initiated
with a previous DFT+DMFT investigation, which reveals the impact of Hund’s
coupling JH on the magnetic order in the n-type LAO/STO interface [49] in the
limit of high OV concentration in section 7.2. Based on this a real-space model can
be constructed in the next section 7.3, which is applied first to the dilute defect limit
in section 7.4. According to the results two other OV concentration regions can be
discriminated discussed in section 7.5 and 7.6. In section 7.2 until section 7.6 all
energies are given in electron volts. Finally the section 7.7 summarizes this chapter.

7.1 Testing real-space slave boson mean-field theory

In the real-space SBMFT the lattice size is directly related to the dimension of the
hopping matrix and therefore influences the precision of the obtained results. This
is evident in the homogeneous example depicted in the following section 7.1.1.
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7.1.1 Lattice size dependence of metal to insulator transition

As a simple example a single-orbital Hubbard model is considered (Eq. 2.3) at half-
filling with a two-dimensional simple cubic dispersion. The hopping is chosen such
that the half-bandwidth W is the energy unit and the aim is to resolve the metal to
insulator (Mott) transition for various real-space lattices (with periodic boundary
conditions) compared to the momentum space formulation. Therefore the same Hloc

is applied to each atom of the lattice. In momentum-space formulation a grid of
50x50 k-points is used and a single atom in the unit cell. In Fig. 7.1 the behavior of
quasiparticle weight Z, local spin-spin correlations and free energy Ω with interaction
U can be seen. To compare the free energy Ω for different lattice sizes and numbers
of electrons corresponding to half-filling the normalization (Ω + µN)/M is chosen,
where µ is the chemical potential, N the number of electrons per unit cell and
M the total number of atoms per unit cell. In general the result is as expected,
the difference to the k-space results shrinks the larger the real-space lattice. For
a 10x10 lattice the Mott critical interaction value is in close agreement with the
k-space value. In contrast a 2x2 lattice predicts a critical value of about 2.0, which
is 50 % off. It is interesting to see that small real-space lattices tend to overestimate
the influence of correlations, which is surely related to the fact that the density
of states is poorly reproduced by the small number of eigenvalues. For example a
2x2 lattice has four sites. When including spin-degrees of freedom this means only
eight states (including energy degenerate ones) are available to approximate the two-
dimensional simple cubic density of states in the whole energy range of 2 eV . The
dependence of the number of energy eigenvalues on the lattice size in the real-space
formulation is depicted in Tab. 7.1. In principle this testing case is quite artificial
as this is a purely homogeneous case, where the k-space formulation is better suited
than using large lattices with periodic boundary conditions in real-space. To account
for this in the following section an inhomogeneous testing case is exploited with a
(non-magnetic) defect in the middle of the lattice.

2x2 4x4 6x6 8x8 10x10
NEV 8 32 72 128 200

Table 7.1: Number of energy eigenvalues NEV to approximate density of states with
lattice size in real-space.
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Figure 7.1: Dependence of various physical quantities on real-space unit cell size
(with periodic boundary conditions) and interaction U . (a) Quasipar-
ticle weight and position of Mott transition (right), where tail has been
fitted linearly denoted by dotted points. (b) Local spin-spin correlation
with maximum value 0.75 depicted by dotted points. (c) Free energy
Ω + µN per atom with zero value denoted by dotted points, which is
the asymptotic value in k-space reached at the Mott transition. µ is the
chemical potential and N the number of electrons per unit cell.

7.1.2 Charge oscillations induced by non-magnetic defect

As in the previous section a single-orbital Hubbard model is considered. This time
a little twist is added.

H =
10∑

i,j=1

∑

σ

(
τiσjσc

†
iσcjσ + h.c.

)
+
∑

i

Uni↑ni↓ + V0

∑

σ

n1σ. (7.1)

At the first site (origin) of the lattice the energies are shifted by the spin-independent
potential V0. This is a simple modeling of a non-magnetic impurity. A 10x10 simple
cubic lattice with in total 83 electrons is utilized with a bandwidth of 8 eV . These
parameters are chosen to be in line with a previous study [159]. In the following
some of the results of this study are reproduced. The impurity at the origin attracts
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charge, when V0 < 0 is set and leads to charge oscillations in the lattice. In Fig. 7.2
the radial modification of the charge density induced by the δ potential is visible for
different V0. The results are in good agreement with [159]. Decreasing V0 increases

Figure 7.2: Radial modification of the charge density caused by a δ-potential with
different V0 at r = 0. All sites have U = 4. a is interatomic distance.

the amplitude of the charge oscillations and attracts more charge to the impurity
site (r=0) until the impurity is filled (N = 2). Conversely a positive V0 corresponds
to an energy penalty for electrons at the impurity, which leads to a charge decrease
at the impurity. Finally another central result of the study [159] is captured in
Fig. 7.3, namely the charge density and the local magnetic moment (=local spin-
spin correlation as we are in the paramagnetic case) at the impurity for different
V0. This figure is again in good agreement with Fig. 7 from [159]. It displays the
tendency of the system to form a magnetic state at V0 ∼ −1.0, where the impurity
is half-filled and the local magnetic moment is maximal. In this calculation it is not
exactly at V0 = −1.0 like in [159], but at a slightly higher value.
To summarize, also in a inhomogeneous setting our real-space SBMFT formalism
is able to reproduce results of a previous study. Minor differences could be related
for example to the usage of a different dispersion, where the study to which we
compared our results did not mention their lattice geometry.
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Figure 7.3: Charge density and local magnetic moment at the impurity for different
δ-potentials. All sites have U = 4.

7.2 Dense-defect limit of oxygen vacancies as
starting point

(a)

Ti1

Ti2

O

OV

(b)

xy

ge
~

Figure 7.4: (a) TiO2 interface layer of n-type LAO/STO with 25% oxygen vacancies
(OV) utilized in supercell DFT+DMFT calculations [76]. Ions Ti1 and
Ti2 form the basis in the

√
2×
√

2 primitive cell. (b) minimal relevant Ti
orbitals with |ẽg〉∼ 0.55|z2〉 ± 0.84|x2−y2〉 [76].

The results of a charge self-consistent DFT+DMFT work [76] provide the start-
ing point for the real-space model of OVs at the LAO/STO interface. The setting
and results are shortly recapped in this section. The DFT+DMFT study has been
performed in the limit of 25% OVs in the TiO2 interface layer [76]. The OVs are
solely located in the interface and within this chapter there are only Ti atoms with
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a maximum of one OV as neighbor considered. For 25% OVs each Ti atom has
one OV as neighbor (see Fig. 7.4). For the DFT part a mixed basis pseudopoten-
tial framework is utilized and continuous-time quantum Monte Carlo (CT-QMC)
solves the DMFT impurity problem. Two orbitals (ẽg, t2g (xy)) with U = 2.5 and
JH = 0.5 are taken within a Slater-Kanamori parametrization. A variation of JH is
utilized to consider the importance of double-exchange-like effects. For LAO/STO
a Hund’s coupling of JH = 0.5-0.6 is expected. Figure 7.5(a) depicts the spin and
orbital dependent occupations in the magnetically ordered phase with JH. The Ti
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Figure 7.5: DFT-DMFT results depending on JH for the dense-defect LAO/STO
interface with magnetic order (T=180K) [76]. (a) Orbital occupations
(left) and Ti magnetic moment (right). (b) total (left) and local (right)
spectral function.

atoms at the interface layer are quarter filled (nT i1,nT i2 ∼ 1). At JH = 0.7 the less
occupied xy orbital has a higher spin polarization than the dominantly occupied ẽg
orbital and the system is ferromagnetically ordered. In contrast the case JH = 0.0

reveals the vice versa case in respect to spin polarization and the xy is nearly empty.
For JH = 0.0 the system is antiferromagnetically ordered. This non-trivial Hund’s
coupling dependence indicates a double-exchange-like mechanism stabilizing FM or-
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der at JH = 0.7. Furthermore Fig. 7.5(b) shows the k-integrated spectral function
Aσ (ω) =

∫
dkAσ (k, ω) for the limits JH = 0.0, 0.7, as well as its orbital contri-

butions. The correlation strength reproduces the known Janus-faced influence of
JH with filling in two-orbital model systems [92]. At quarter-filling lesser Hund’s
coupling increases correlation strength, resulting in a prominent Hubbard Peak at
∼ −1.4 at JH = 0.0. Only the ẽg orbital contributes to this incoherent excitation
and the Hubbard peak resembles photoemission data [88, 93]. The low metallicity
of the system is provided by sites far from the interface. Going to JH = 0.7 the
interface has a prominent quasiparticle peak indicating pronounced metallic behav-
ior, but a lower Hubbard band is missing. For intermediate values both features,
Hubbard peak and quasiparticle peak are seen [76].
Keeping these results in mind the perspective is broadened to lower OV concen-
trations in the TiO2 interface layer. As this requires a sufficient large enough unit
cell, calculations are nowadays still to numerical expensive to be treated within
DFT+DMFT. Instead, the DMFT results will provide a basis for a model Hamilto-
nian investigated within the real-space formulation of SBMFT.

7.3 Modelling arbitrary numbers of oxygen
vacancies in real-space

A two-orbital Hubbard Hamiltonian based on the vacancy-induced effective ẽg state
and the in-plane t2g(xy) state, is acting on a 10×10 square lattice with NTi=100
titanium ions, mimicking the interface TiO2 layer (see Fig. 7.6). Only the Ti sub-
lattice is treated explicitly and the oxygen degrees of freedom are integrated out
within the chosen Hamiltonian form. Only intraorbital NN hoppings are considered
in the model and periodic boundary conditions are applied. To explain the model,
the dense-defect limit is the focus of attention first. In this limit each Ti site is
affected by a nearby OV. In line with Ref. [76], the NN hoppings tẽg=txy=0.2 are
used. In contrast to a different modeling by Pavlenko et al. [110] the hoppings from
the projected-local-orbitals method [2] for larger OV concentration are not strongly
orbital dependent. The crystal-field splitting ∆ between xy and vacancy-induced ẽg
is the key-parameter from a noninteracting point of view. Note that ∆ is not the
usual octahedral crystal-field splitting, which although vital in the stoichiometric
compound is not part of the present defect model. From Ref. [76] ∆=0.3 is utilized.
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xy

ẽg
∆

Figure 7.6: Real-space two-orbital modeling on a 10×10 TiO2 square lattice for the
n-type LAO/STO interface.

When applying Coulomb interaction via Hubbard U and Hund’s coupling JH at all
Ti sites the interacting Hamiltonian reads (similar to Eq. 2.4)

H = −τ
∑

〈i,j〉ασ
c†iασcjασ −∆i

∑

iσ

(ni,β,σ − ni,xy,σ) + U
∑

iα

niα↑niα↓ +

+
1

2

∑

i,α 6=α′,σ

{
U ′ niασniα′σ̄ + U ′′ niασniα′σ + (7.2)

+ JH

(
c†iασc

†
iα′σ̄ciασ̄ciα′σ + c†iασc

†
iασ̄ciα′σ̄ciα′σ

)}
,

i, j are site indices, α, α′=β,xy and σ=↑, ↓ marks the spin projection, using U ′=U −
2JH, U ′′=U − 3JH. For the same Hubbard U , the strength of electronic correlations
is usually weaker within slave boson theory than within CT-QMC. If not otherwise
stated the Hubbard U is thus set to U=3 in all calculations. The Hund’s coupling is
set to JH=0.55, again with variations to smaller/larger values to trace its relevance.
In the dense-defect limit β = ẽg and the same crystal field can be applied at all Ti
sites meaning ∆i = ∆. By reducing the number of OV Ti ions without neighboring
OV come into play. In that case the eg orbitals are strongly bound to O(2p) and
don’t contribute to neither states at the Fermi level nor to local moment formation.
So defect-free Ti sites (having no neighbored OV) have no eg contribution to the low-
energy model of Eq. 7.2. To keep the modeling simple the following approximations
are utilized:
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(i) the model Hamiltonian (Eq. 7.2) is used for the whole lattice
(ii) ∆i is parametrized in the following way

∆i =

{
∆ , β = ẽg : if OV nearby
0 , β = xz/yz: if no OV nearby

(7.3)

(iii) multiple OV around a Ti site are forbidden

The second aspect can be justified by the considerable hybridization between ẽg and
xz,yz in the dense-defect case [76], meaning the ẽg degree of freedom takes the role
of an additional t2g orbital for Ti sites without nearby OV. The hoppings are neither
dependent on the number of OV nor dependent on being neighbor to an OV or not.
Such parametrization are not easy to setup and in this study a quite canonical set-
ting should be utilized. Last but not least the OV concentration dependent electron
filling needs to be fixed. The electron count considers only the interface layer, the
model is not able to describe charge fluctuations to other distant layers. In the
dense-defect limit DFT+DMFT retrieved a filling of one electron per Ti site in the
interface layer. The defect free case resulted within DFT in 0.5 electrons per Ti site
in the interface layer [76], in line with polar-catastrophe avoidance. Putting these
two numbers into a linear interpolation scheme yields ntot = NT i/2 +Nvac with Nvac

the number of OVs and NT i = 100 the number of Ti sites. Note that the vacancy
concentration c is defined as c = Nvac/NO, where NO is the number of oxygen sites
(NO = 200).
In the following, the ordered magnetic moment m, the orbital moment υ, the para-
magnetic local spin moment mPM and the orbital polarization ζ are defined as

m =
∑

α

mα =
∑

α

(n̄α↑ − n̄α↓) , υ =
∑

σ

(n̄ẽg ,σ − n̄xy,σ)

mPM =

(∑

α

Sα

)2

, ζ =

∑
σ n̄ẽg ,σ∑
σ n̄xy,σ

, (7.4)

where S denotes the local spin operator and Ō=〈O〉. Lattice-averaged values Qlat

of these quantities Q are computed by Qlat=Q/NTi. The results indicate that three
OV concentration regions has to be discriminated.
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Figure 7.7: Site-resolved quantities of interest for one OV (left) and five OVs (right)
in the TiO2 layer. (a) PM orbital moment υ at JH = 0.55, (b) PM local
spin moment mPM at JH = 0.55 and (c) ordered magnetic moment m at
JH = 0.55. (d) depicts distance-dependent averaged magnetic moment
for single defect at r = 0 with a interatomic distance.

7.4 Small numbers of oxygen vacancies

It proves instructive to consider first the case of few OVs placed on the lattice. In
Fig. 7.7 (a)-(c) important physical quantities are depicted for one OV (left) and five
OVs (right). Additionally the radial distance-dependent averaged magnetic moment
m(r) is shown in Fig. 7.7 (d) for the single OV case, where the OV is placed at
r = 0. Already with only one OV oscillations of υ and local spin moment in the PM
state or ordered magnetic moment show up on the lattice depending on the distance
to the OV. As expected the OV induced crystal field leads to an increased υ at the
OV neighbored sites. Furthermore the OV induced crystal field attracts charge in
the energy-lowered ẽg orbital. This leads to a higher filling, moving the affected sites
closer to half-filling increasing mPM . In close distance to the OV the magnetic order
favors antiferromagnetic (AFM) alignment due to the strong correlation induced
kinetic exchange τ 2/U . In contrast, the long-range order is ferromagnetic (FM).
The exchange order switches from FM to AFM at r ∼ 2.5. Assuming a Fermi-wave
vector kF modulated RKKY exchange with J (d) ∼ cos (2kFd) in the low-density
limit for the conduction electrons [95], kF ∼ π/10 is retrieved. This is more or less in
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Figure 7.8: Site-averaged orbital-resolved quantities of interest per site type. Dis-
criminated are Ti sites with (straight line) and without neighboring OV
(dotted line) as well as xy (blue) and ẽg orbital (red). (a) Average occu-
pations (PM state), (b) average quasiparticle weight (PM state) and (c)
average ordered magnetic moment (magnetic state).

agreement with the 1/8 filling. As the local moments are small for a single OV this
type of RKKY-like exchange is non-standard. Fig. 7.7 for the five OV setup shows
that between the OVs regions form with decreased υ or m. Regarding m two types
of OV-neighbored sites magnetic orderings can be identified, namely sites order-
ing antiferromagnetically or ferromagnetically. It proves instructive to discriminate
OV-neighbored sites and sites away from OV. The orbital-resolved occupation n̄α,
quasiparticle weight Z̄α and magnetic ordered moment m̄α are averaged regarding
these two types of sites and shown in Fig. 7.8 (a), (b) and (c), respectively. We
focus on c ≤ 0.08. As expected the crystal field drastically increases the ẽg orbital’s
occupation of OV-neighbored sites. Finite interactions transfer this effect also to
sites away from OVs in the considered concentration range c ≤ 0.08. In contrast,
without interaction the orbital occupation away from OVs is degenerate and equal to
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the xy occupation near OVs. Because without interaction no exchange mechanism
is available, the energy-lowered ẽg orbital drains the same amount of electrons from
the xy orbital near OV as from each orbital away from the OV. Due to the initial
low number of electrons without OVs (50 electrons or 1/8 filling) Z̄α starts near the
uncorrelated value 1.0. Increasing c, meaning the number of OVs, the number of
electrons is increased and more electrons are attracted to the ẽg orbital near OVs.
This results in an increased correlation in this orbital, while correlations in the xy
orbital near OVs and the other orbitals away from OVs are rather concentration
independent. The small number of OVs is not enough to see an effect of JH on Z̄α.
Fig. 7.8 (c) shows that the ẽg orbital near OVs carries the dominant contribution to
the magnetic moment on the lattice. To estimate now the influence of OVs on the
lattice orbital moment υlat, quasiparticle weight Zlat and ordered magnetic moment
mlat these are depicted in Fig. 7.9. Again the focus lies on c ≤ 0.08. Increasing the
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Figure 7.9: Lattice-averaged quantities of interest. (a) Averaged orbital moment υlat
(PM state), (b) averaged orbital-resolved quasiparticle weight Zlat (PM
state) and (c) averaged ordered magnetic moment mlat (magnetic state).
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number of OVs leads to a monotonically increase of υlat as more sites are affected by
the crystal field. Interestingly, the mentioned fact of JH counteracting the crystal
field is already visible for small c in υlat and Zlat. The difference in correlations
between orbitals is small in Zlat due to the small number of crystal field affected
sites. Regardless the small number of OVs a sizeable FM state arises on the lattice
with maximum mlat at c = 0.045. Apparently, the RKKY-like mechanism is strong
enough to induce a FM state on the whole lattice given only few OVs with preferred
FM long-range ordering. Now Fig. 7.8 and 7.9 are used also to understand the other
concentration regions in section 7.5 and 7.6.

7.5 Medium number of oxygen vacancies

As before it proves instructive to look at the real-space picture for two concentrations
in this regime. In Fig. 7.10 υ (a), mPM (b) and m (c) are shown like in Fig. 7.7
before, but now for 18 (left) and 25 OVs (right). At 18 OVs (c = 0.09) the transfer of

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 0.35 0.45 0.55 0.65
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(a) (b)

(c)

Figure 7.10: Site-resolved quantities of interest for 18 OVs (left) and 25 OVs (right)
in the TiO2 layer. (a) PM orbital moment υ at JH = 0.55, (b) PM local
spin moment mPM at JH = 0.55 and (c) ordered magnetic moment m
at JH = 0.55.

the crystal-field induced υ > 0 to sites away from OVs is still active. Increasing the
number of OVs further to 25 (c = 0.125) leads to dramatic changes. The lattice is
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almost bipartite in the sense that only sites near OVs have υ > 0 and all other υ < 0.
The number of OVs is large enough and the number of electrons small enough that
all ẽg near OVs are preferably occupied. This qualitative change can also be seen
in Fig. 7.8 (a), where away from OVs now the xy orbital has a higher occupation
than the other orbital for c > 0.08. This leads to a shoulder in the lattice-averaged
orbital moment (see Fig. 7.9 (a)). Additionally in this concentration region the
local spin moment mPM becomes quite homogeneous discriminating only sites near
and away from OVs as expected. Most interestingly the lattice displays only a very
weak FM state (see Fig. 7.9 (c)), due to the dominating AFM kinetic exchange.
This exchange turns nearly all sites near OVs into AFM pairs (see Fig. 7.10 (c)).

7.6 High numbers of oxygen vacancies

Finally turning to the dense OV case, starting as before with a real-space picture
for two selected OV configurations, this time 30 and 35 OVs are shown in Fig. 7.11.
The local spin moment away from OV is even higher than in the concentration
region before (compare 7.11 (b) and Fig. 7.10 (b)). Differences in υ and m between
these two OV numbers are small and subtle. Above c = 0.125 non-local double
exchange between ẽg orbital near OVs and xy orbital away from defects (see Fig.
7.8 (c)) leads to a FM state with sizeable mlat. The latter is depicted in Fig. 7.9
(c). Between 30 and 35 OVs (for JH = 0.55) the kinetic exchange is restrengthened
as filling gets closer to half-filling. This leads to a formation of additional AFM
pairs, decreasing mlat, as can be also revealed by closer inspection of Fig. 7.9 (c).
Considering JH = 0.7 in Fig. 7.9 (c) shifts the minimum inmlat to higher c. Again as
Fig. 7.8 (c) reveals, the competition between non-local double-exchange and kinetic
exchange can be held responsible. The higher JH enforces the double-exchange and
the kinetic exchange has to be even closer to half-filling to induce the reformation of
some AFM pairs. Additionally in this concentration region the competition between
JH and the crystal field also becomes obvious in the quasiparticle weight Z̄α (see
Fig. 7.8 (b)) or lattice-averaged orbital moment (see Fig. 7.9 (a)). This is due to
the fact that in this region most of the sites of the lattice are neighbored to an OV
and therefore affected by a crystal field.
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Figure 7.11: Site-resolved quantities of interest for 30 OVs (left) and 35 OVs (right)
in the TiO2 layer. (a) PM orbital moment υ at JH = 0.55, (b) PM local
spin moment mPM at JH = 0.55 and (c) ordered magnetic moment m
at JH = 0.55.

7.7 Summary

Charge self-consistent DFT+DMFT for LAO/STO supercells depicts the competi-
tion of magnetic processes related to the orbital fillings of ẽg and xy orbital. Using
JH = 0 an AFM state is obtained at the interface induced by a dominant ẽg orbital,
where the xy orbital is nearly empty. Conversely at JH = 0.7 the xy orbital shows
a higher spin polarization inducing a FM state, although it is still weaker popu-
lated then the ẽg orbital. This already shows the importance of double-exchange
(DE) processes to induce FM. Note that the system remains itinerant regardless JH,
where metallicity is provided by sites far from the interface for vanishing JH and by
sites at the interface at finite Hund’s coupling. Additionally the strongly correlated
dense-defect limit is depicted by a lower Hubbard band of ẽg kind. Considering now
a broad range of oxygen vacancy (OV) concentrations on a 10x10 TiO2 model inter-
face renders further magnetization processes induced by Coulomb interactions clear.
Relevant for the discussion of these processes is the distinction of Ti sites near and
away from OVs. Already a single defect induces oscillations in magnetic and orbital
moment throughout the lattice. The distance-dependent magnetic moment can be
explained in a RKKY-like picture, where a standard application is not possible due
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Figure 7.12: Rough sketch of a finite-temperature (T ) magnetic phase diagram for
OV-concentrations c based on the real-space slave boson mean-field the-
ory modeling of the LAO/STO interface.

to small local moments. One or five vacancies are already enough to impose a weak
FM state, where the stoichiometric interface does not show magnetic order. The five
OV case also displays AFM ordering on Ti sites neighboring OVs induced by kinetic
exchange due to strong correlations. So far this means two types of Ti sites near OVs
are revealed, one favors AFM and the other FM alignment. Going from the dilute
to the dense-defect limit Fig. 7.12 summarizes the main results. For small amounts
of OVs the RKKY-like mechanism weakly FM polarizes the lattice. The expected
Curie temperature Tc is rather low due to the delicate exchange mechanism. Above
cp = 0.08 pairs of AFM aligned Ti sites near OVs dominate the lattice and no spin
polarization is present on Ti sites away from OVs. Increasing the concentration of
OVs further above cp ∼ 0.13 strengthens DE local processes to switch these AFM
pairs to FM alignment. DE non-local processes are also enforced inducing FM spin-
polarization in the ’interstitial’ region (Ti sites without near OV). This robust FM
order has supposedly a relatively high Tc. The Hund’s coupling influences the com-
petition between AFM-like kinetic exchange and DE processes near OVs. Possible
phase transitions between these three phases were not considered in this study. Hav-
ing no coherent order parameter and symmetry distinction first-order (-like) phase
transitions with coexistence regions are expected. The obtained behavior with OV
concentration agrees with several features from experimental results. Generally it
is in line with the found key-dependence of magnetism on electron doping in STO-
based materials. Interplay of AFM and FM tendencies has recently been identified
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in Bi et al. [14]. Experimentally LAO/STO ferromagnetism has been observed in
different ranges of temperature. This may be linked to substantial differences in the
number of vacancies in the respective samples. While low defect numbers are impos-
ing RKKY-like FM low Tc behavior [32, 118], high defect concentrations stabilize the
DE-FM phase with high Tc near room temperature [8, 14]. Another explanation to
such different types of ferromagnetism could be inhomogeneous samples. This would
need theoretical treatment by even larger supercells, which is numerically hard to
achieve. From a theoretical point of view this chapter shows that real-space SBMFT
can not only be applied to single-orbital homogeneous and single defect cases, but
also to a complex three-orbital Hamiltonian on a large lattice. The application leads
to a physical sound description sharing experimentally observed features, where the
used setup is at present numerically out of reach for technically more advanced
methods like DFT+DMFT.



8 Real-space magnetization
dynamics

The Hubbard model [48] contains two approaches towards magnetism in solid state
systems. The first is the explanation of magnetism as induced by local magnetic
moments on atoms first expressed in the Langevin-Weiss theory and described in the
Weiss model for ferromagnets [73, 147]. Quantum mechanics is necessary to reason
the occurrence of these local moments (Bohr-van Leewen theorem, [140]). This first
approach is contained in the Hubbard model, as the large interaction limit leads to
a spin Hamiltonian [109], the Heisenberg Hamiltonian with the Weiss model being
its mean-field approximation [103]. The second approach towards magnetism is
itinerant electron focused. A central result of this approach is the Stoner model [133],
which has found numerous quite successful applications to ferromagnets like Iron and
Nickel (among them [31, 87]). However the model is not constrained to explaining
ferromagnetic (FM) order, it can also describe for example antiferromagnetic (AFM)
order. The Stoner model is the mean-field approximation of the Hubbard model
[109], which is a reasonable approximation for small interaction. Both limits Stoner
and Heisenberg model (called in the following also Stoner and Heisenberg limit)
suffer from limitations. The former contains only longitudinal magnetic excitations
[109] leading to problems like overestimation of Curie temperatures [103]. The latter
contains only transversal magnetic excitations [109] and can’t describe for example
magnetic order in some transition metals [1]. So in principle the Hubbard model has
the ingredients to provide a complete picture of for example magnetic excitations
in an arbitrary sufficiently correlated solid state system. The problem is, that there
are only few exact solutions like for example the magnetic excitation spectrum of an
one-dimensional Hubbard chain [9, 155], obtained by using the Bethe ansatz [82]. In
this chapter the focus lies on magnetic excitations in the two-dimensional Hubbard
model, where up to now no exact solution is available. TD-SBMFT in its real-
space formulation is utilized. First the equilibrium (section 8.1) and non-equilibrium
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setup (section 8.2) is explained. Then in section 8.3 real-space TD-SBMFT is tested
by computing magnetic excitations of an AFM ground state in the Stoner limit
(small U , section 8.3.1) and Heisenberg limit (large U , section 8.3.2). The results
are compared to the well-known collective spin excitations (magnons) of an AFM
ground state in the Heisenberg model [50, 51, 131] and the electron-hole excitations
of the Stoner model known as Stoner excitations [65, 98, 130, 142]. Even though
the Stoner model is primarily used to describe ferromagnets, Stoner excitations
are known to occur also in antiferromagnets [130]. Afterwards two strengths of
real-space TD-SBMFT are revealed in section 8.4. Magnetic excitations between
Stoner and Heisenberg limit are addressed and the results are connected to the
both interaction limits in section 8.4.1. As real-space TD-SBMFT operates on the
Hubbard model also intermediate interaction values can be considered. As a second
strength going away from linear response the influence of a pulsed stronger magnetic
field onto the magnon dispersion is revealed in section 8.4.2. The chapter concludes
with a summary in section 8.5.

8.1 Equilibrium setup

We operate on the generic single-orbital half-filled Hubbard model on a two-dimensional
6x6 or 8x8 simple cubic lattice. Periodic boundary conditions and units of half-
bandwidth W are used. In addition to hopping τ and Hubbard-U a site-dependent
magnetic field B(r) is utilized. This leads to the following Hamiltonian

H =
∑

i,j

∑

σ

τiσjσd
†
iσdjσ + h.c.

︸ ︷︷ ︸
Hkin

+
∑

i

U ni↑ni↓ −
∑

i

B(ri) · Sp

︸ ︷︷ ︸
Hloc

, (8.1)

where i,j label sites, σ is a spin index and Sp the spin operator. B(r) is needed to
enforce the AFM ground state at different U depicted in Fig. 8.1 or 8.2. Note that
numerical calculations indicate that the AFM state is indeed the ground state of the
two-dimensional Hubbard model at half-filling [18, 152]. However a small magnetic
field of |B(r)| = 0.002 is sufficient to establish this. In the following the short-hand
notation site 1=(0,1,1) and 2=(0,2,1) for (x,y,z) in Fig. 8.1 is used. Important
physical quantities from the equilibrium AFM results are shown in Tab. 8.1. Note
that |m| is equal at each site. If not mentioned otherwise, the 6x6 lattice is used. At
U = 0.4 a band magnetism Stoner limit is observed, in which magnetic moment and
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local spin-spin correlation are quite small. For U = 0.4 instead of Fig. 8.1 the Fig.
8.2 describes the emerging AFM order. The exchange interaction splits the density

Figure 8.1: Sketch of the antiferromagnetic ground state as spin state in the Heisen-
berg limit. Blue arrows indicate spins, red balls atoms. Note that the
x-axis is pointing out-of-plane, while y- and z-axis are residing in plane.

Lattice U |〈m〉| (max. 1.0) 〈S2〉 (max. 0.75) Energy gap
6x6 0.4 0.39 0.46 0.06

1.0 0.62 0.56 0.33
2.0 0.86 0.67 2.40
3.0 0.94 0.71 3.22

8x8 0.4 0.34 0.45 0.06

Table 8.1: Important quantities from equilibrium antiferromagnetic results with
equal |m| for each site of the lattice. In detail, Hubbard-U , magnetic mo-
ment m, local spin-spin correlation S2 and energy-gap around the Fermi
level are listed.
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EF

Figure 8.2: Sketch of the antiferromagnetic ground state as itinerant electron state
of a two-atom unit cell in the Stoner limit. Half-circles denote spin-
dependent density of states and EF denotes Fermi level shown as dotted
line.

of states into two spin-dependent parts, which are shifted with respect to each other.
Therefore more spin-up than spin-down states are occupied on atom 1 and vice versa
on atom 2 leading to an AFM state. Increasing U increases magnetic moment and
local spin-spin correlation until at U = 3.0 the spins are almost full polarized and
the Hamiltonian can be approximated by a Heisenberg model of spins. In this limit
Fig. 8.1 describes the ground state in an exact way. Note that for all values of U a
finite energy gap at the Fermi level persists, meaning the equilibrium ground state
is an AFM insulator [151]. As the paramagnetic Mott transition is at about 3.05,
the value of U = 3.0 resides in the highly correlated limit of the Hubbard model
supporting the approximation by a Heisenberg model. The shift of the paramagnetic
Mott transition in contrast to chapter 4 can be explained solely by the fact, that
here a two-dimensional lattice is used, where in chapter 4 a three-dimensional lattice
is utilized.

8.2 Non-equilibrium setup

The focus lies on the recovery of linear-response results obtained at large U (Heisen-
berg limit) and small U (Stoner limit) especially the corresponding magnetic exci-
tations. To stay within the linear-response regime, when exciting the system, a kick
instead of a quench is used (see Fig. 8.3 (c)). In the quench case there is a sudden
switch of the equilibrium Hamiltonian Hi to Hf at t > 0 and then Hf acts for all
t > 0. Contrary in the kick case Hf acts for all t′ > t > 0 with kick time t′ and for
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t > t′ the Hamiltonian is switched back to Hi. The expectation is that tuning the
kicktime a smooth transition from linear-response to non-linear response regime can
be obtained. The aim is now to find a suitable Hf to destroy the high equilibrium
symmetry of the lattice (effective two-atom unit cell, see Fig. 8.1) and generate all
possible magnetic excitations in one calculation. A kick of the system to a state,
where to each site i a random magnetic field vector Bf (ri) in y-z plane is applied
with zero x component and fixed absolute value |Bf | = |Bf (ri)| ∀i should induce
all possible magnetic excitations. As a finite lattice is considered, it is beneficial to
consider only a discrete number of magnetic field Bf (ri) configurations in the y-z
plane for each site i. We consider the angle α to the y-axis in the y-z plane and the
discrete configurations α = m · 2π

n
, where n is the number of total configurations

and m ∈ {1,2, . . . , n}. In the following a on this way generated Bf (r) is character-
ized by n and |Bf |. In Fig. 8.3 (a) is sketched, which magnetic field configurations

B f

α

|B f
|

Bc1
f

Bc2
f

Bc3
f

Bc4
f

tt = 0

Hi

Hf

tt = 0 t = t′

Hi

Hf

Hi

quench kick

Figure 8.3: (a)Sketch of the possible magnetic field configurations (Bc1
f , . . . ,B

c4
f ) of

n = 4 applied during the kick in Hf at one given site. (b) Definition of
the angle α and the magnetic field Bf . (c) Sketch of a quench and a kick
with kick time t′.

(Bc1
f , . . . ,B

c4
f ) are possible for n = 4 at one site and in (b) the definition of α and

the corresponding Bf (ri). Furthermore in (c) the difference between quench and
kick is sketched. Again as the linear-response regime is most interesting at first,
small magnetic fields |Bf | are considered. To compute the magnetic excitations of
a system the Fourier transform

∼
m of the magnetic moment m (r, t) is computed via

∼
m (q, ω) =

1

(2π)3

∫
dr

∫
dtm (r, t) e−iqre−iωt, (8.2)



Page 102

where q is a point in momentum space. Note that the vector structure is left intact
by this Fourier transform, meaning

∼
m has like m a x-, y- and z-component. This

enables a separation of longitudinal (x-direction) and transverse (y- and z-direction)
modes (compare Fig. 8.1). The real-space grid limits the resolution in q = (qy, qz)

and leads to the following sampling of the Brillouin zone shown in Fig. 8.4. In the
following

∼
m (q, ω) is depicted along the shown way through the Brillouin zone with

high symmetry points Γ = (0,0), X = (π,0) and M = (π, π). Until stated otherwise
the time evolution captures times until ttot=1800. This provides a suitable high
energy resolution of the magnetic excitations of ∆ω = 0.003.

Γ
X

M

Γ
X

M

Figure 8.4: Accessible q = (qy, qz)-point in simple cubic Brillouin zone denoted as
black circles for 6x6 (left) and 8x8 lattice (right). Arrow indicate the
way through the Brillouin zone with high-symmetry points Γ = (0,0),
X = (π,0), M = (π, π) used for plotting

∼
m (q, ω) (see Eq. 8.2).

8.3 Testing the real-space time-dependent slave
boson mean-field theory

8.3.1 Results in the Stoner limit (weak interaction)

To obtain results in the Stoner limit U = Ui = Uf = 0.4 is selected. The AFM
ground state (Fig. 8.2) is kicked using Bf (r) with n = 4, |Bf |=0.002 and a small
kicktime t′=5.0 to be in the linear-response regime. The obtained magnetization
dynamics at site 1 and 2 are shown in Fig. 8.5 (left) and (right), respectively. As
these sites are neighbored the magnetization along x has opposite sign. The ob-
served dynamics render no clear picture if there is a longitudinal mode excited or
not. In all components the amplitudes are really small. So all components of

∼
m have

to be checked now. Looking at
∼
mx in the Brillouin zone in Fig. 8.6, we see that the

magnetic excitations cover a broad range of energies up to ∼ 2.0. Note that the left
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m
(1
,t
)

m
(2
,t
)

Figure 8.5: Magnetization dynamics at site 1 (left) and 2 (right) at U=0.4, n=4 with
kick time 5.0 and |Bf |=0.002.

image has a smaller energy range than the right one to increase visibility of the mag-
netic excitations. As the spin nature of the electrons at 0.4 is weak (compare section
8.1) and the itinerant nature strong the magnetic excitations are not describable by
magnon formation. Instead electron-hole excitations arise called Stoner excitations
[65, 98, 130, 142], which can have a high energy in the order of eV . In contrast
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Figure 8.6:
∼
mx along a path through the Brillouin zone with the high symmetry
points Γ, X and M at U=0.4, n = 4 with kick time 5.0 and |Bf |=0.002.
The left image is just a blowup of the right image indicated by the boxed
area.
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magnons have smaller energies. In the non-equilibrium setup a magnetic field in
the y-z plane is applied during the kick, meaning transverse modes are the primary
focus. Non-surprisingly, this non-equilibrium setup destabilizes the AFM longitu-
dinal order seen in the strong incoherent excitation at the M -point, which is just
the magnetic order symmetry of the system. In contrast the magnetic excitations
at all other q-points are only weakly contributing as the transverse focused setup
only weakly affects the x-component. With this in mind, we can turn now to

∼
my

and
∼
mz depicted in Fig. 8.7. In

∼
my the magnetic excitations have stronger weight

at q-points away from q = M compared to
∼
mx due to the chosen non-equilibrium

setup. There is initially no q = M ordering mode in y-direction, consequently no
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Figure 8.7:
∼
my (top) and

∼
mz (bottom) along a path through the Brillouin zone with

the high symmetry points Γ, X and M at U=0.4, n=4 with t′=5.0 and
|Bf |=0.002. The left image in each row is just a blowup of the right
image indicated by the boxed area.
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inhomogeneous excitation shows up at q = M . The distribution of magnetic excita-
tions over the same energy range of ∼ 2.0 eV is similar to

∼
mx, yet not identical. As

the non-equilibrium setup prefers transverse modes, while the system is close to the
Stoner limit preferring longitudinal modes, an anisotropy regarding longitudinal (x)
and transversal (y,z) direction is expected. Due to the used small magnetic field and
kicktime to remain in linear-response the anisotropy is small. Finally

∼
mz renders

the same results as
∼
my apart from a inhomogeneous excitation at q = M similar but

weaker as seen in
∼
mx. This is due to a numerical reason. TD-SBMFT is only able

to time-evolve matrix elements, which are at equilibrium non-zero. Due to this fact
at equilibrium also a very small (1 % of x-component) magnetic field in z-direction
is applied to make sure that the matrix elements are generated such that magnetic
order in z-direction can show up for t > 0. This generates a very weak AFM order
also in z-direction (m ∼ 0.003), which induces this weak inhomogeneous excitation
(compare to

∼
mx, which is about 10 orders of magnitude higher). In general the dis-

covered magnetic excitations are in qualitative agreement with Stoner excitations
observed in magnetic systems [65, 98, 130, 142]. Additionally the evolution of the
maximum magnetic excitation energy along Γ−M is in agreement with a previous
study [152]. A crucial point however is that Stoner excitations show up in energy
bands meaning a quasi-continuum of states in a certain energy range. So the ques-
tion is, whether more magnetic excitations in the same energy range are seen for a
larger lattice. This would indicate a quasi-continuum of states in the thermodynamic
limit. It is also possible to compute

∼
m for a 8x8 lattice using the same equilibrium

and non-equilibrium setup. As depicted in Tab. 8.1 the equilibrium state at U = 0.4

on the 8x8 lattice shows a slightly smaller magnetic moment then the 6x6 lattice, all
other physical quantities are very similar. Additionally the Brillouin zone is slightly
better resolved (see Fig. 8.4) than on the 6x6 lattice. Turning now to

∼
m shown in

Fig. 8.8 proofs the Stoner excitations picture. An increased number of magnetic
excitations show up in an unchanged energy range of maximal ∼ 2.0. Additionally a
weak inhomogeneous excitation at the M point is present for

∼
my. As no AFM order

occurs in my at equilibrium, only in the other components, this result indicates that
dynamically an inhomogeneous excitation in the y-direction evolves. Such dynami-
cal evolution could also be supported by the increased number of Stoner excitations
strengthening fluctuations in the system. Note that another Bf (r) was generated
for the 8x8 lattice compared to the 6x6 lattice indicating that qualitatively the same
results can be obtained regardless the concrete structure of Bf (r) used during the
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kick. Furthermore in the appendix section A.2.1 qualitatively the same magnetic
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Figure 8.8:
∼
mx (top),

∼
my (middle) and

∼
mz (bottom) along a path through the Bril-

louin zone with the high symmetry points Γ, X and M at U=0.4, n=4
with t′=5.0 and |Bf |=0.002 for 8x8 lattice. The left image in each row is
just a blowup of the right image indicated by the boxed area.
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excitations are retrieved using another Bf (r) with n = 6. Finally, it is interesting
how much the results depend on the fact, that Bf (r) is applied in the y-z plane (see
section 8.2). As the AFM order is established along the x-direction in equilibrium
and the Stoner limit favors longitudinal modes the y-z plane magnetic field is not
optimal to generate longitudinal magnetic excitations. For this reason the same
setup as described in section 8.2 is used with the difference of applying the mag-
netic field in the x-z plane. The results are depicted in the appendix section A.2.2.
They show that the small kicktime and small magnetic field during the kick are not
sufficient to generate locally longitudinal magnetic excitations. Additionally the

∼
m

retrieved by kicking in the x-z plane qualitatively agrees with the
∼
m kicked in the

y-z plane previously discussed. So also globally no additional longitudinal magnetic
excitations are generated. All components show Stoner excitations in the range of
up to ∼ 2. The AFM order is destabilized into an inhomogeneous excitation for

∼
mx.



Page 108

8.3.2 Results in the Heisenberg limit (strong interaction)

As the Heisenberg limit is considered, U = Ui = Uf = 3.0 is utilized. The AFM
ground state (Fig. 8.1) is kicked with Bf (r) (not the same as in the Stoner limit)
with n = 4, |Bf |=0.002 and a kicktime t′=5.0 to be in the linear-response regime.
The obtained magnetization dynamics for n = 4 at site 1 and 2 are shown in Fig. 8.9
(left) and (right), respectively. These two sites are neighbored leading to opposite
sign in the AFM order direction x. There is no visible dynamics in the x-component
only small numeric deviations over the whole time frame. The dynamics in y- and
z-direction are expected as in the Heisenberg Limit only transverse modes can be
excited. Additionally the absolute value |m| does nearly not change over time as
my and mz show only small amplitudes. This is also in good agreement with using

m
(1
,t
)

m
(2
,t
)

Figure 8.9: Magnetization dynamics at site 1 (left) and 2 (right) at U=3.0, n = 4
with t′=5.0 and |Bf |=0.002.

a Heisenberg spin Hamiltonian, because there the spin is constant over time. Thus
transverse modes can be focused, when computing

∼
m. Accordingly in Fig. 8.10

∼
my

(top) and
∼
mz (bottom) are depicted in the Brillouin zone. Note the different energy

ranges used in the left compared to the right image to enhance the visibility of the
low energy magnetic excitations. One can recognize in both figures the low energy
magnetic excitations known as magnon excitations from spin-wave theory [50, 51].
The height of 0.175 eV is in agreement with previous model works [51], where the
result was ∼1.0 τSz leading here to a value of 0.20. Note that the displacement
from zero is consistent with a small energy scale Jexc/ζ, where Jexc is the exchange
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coupling and ζ the correlation length. Due to the Goldstone theorem [101], magnons
must have zero energy at q = Γ. It is important to note, that the so far discussed
results do not depend on the choice of Bf (r) (see section 8.2). Of course, the
magnetization dynamics are changed at a given site, when changing Bf (r), but the
magnon dispersion remains the same. This can be seen in the Appendix A.2.3, where
the same magnon dispersion and qualitative magnetization behavior is retrieved
using another Bf (r) with n = 6 and |Bf |=0.002.
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Figure 8.10:
∼
my (top) and

∼
mz (bottom) along a path through the Brillouin zone with

the high symmetry points Γ, X and M at U=3.0, n = 4 with t′=5.0
and |Bf |=0.002. The left image in each row is just a blowup of the right
image indicated by the boxed area.



Page 110

8.4 Revealing strengths of real-space
time-dependent slave boson mean-field theory

8.4.1 Magnetic excitations between Stoner and Heisenberg
limit

As the Hubbard model is not only able to reproduce the Stoner and Heisenberg
models in the appropriate small and large U limit, but to handle also intermediate
U values, TD-SBMFT is also able to address these. An interesting question is
now, how the magnetic excitations from the Stoner limit computed in section 8.3.1
evolve into the magnon dispersion of the Heisenberg limit of section 8.3.2, when
intermediate U values are considered. The same setup as explained in section 8.1
and 8.2 is used. Therefore the limits U = 0.4 and U = 3.0 are just the previous
results shown in section 8.3.1 and 8.3.2 and additionally U = Ui = Uf = 1.0 and
U = Ui = Uf = 2.0 are investigated. As depicted in Tab. 8.1 the U = 1.0 ground
state is an intermediate state between Stoner and Heisenberg limit, having only
medium spin polarization and medium local spin-spin correlation. This indicates
that the itinerant as well as the spin-nature of electrons are important. In contrast,
the U = 2.0 ground state is already quite close to full spin polarization and maximum
local spin-spin correlation. Hence a mixture of Stoner and Heisenberg magnetic
excitations for U = 1.0 is expected and qualitative similar magnetic excitations of
U = 2.0 compared to U = 3.0. The non-equilibrium setup triggers in the Heisenberg
limit only transverse modes, so only these are considered now. Due to the fact that
∼
my and

∼
mz display the same results only

∼
my is shown in Fig. 8.11 and

∼
mz in the

appendix section A.2.4 for completeness. Note that each column displays the same
data only in different energy ranges. Again the time evolution is performed until
ttot=1800, with a suitable high energy resolution of ∆ω = 0.003. Fig. 8.11 shows a
couple of intriguing features. In principle the magnetic excitations can be visually
decoupled into a Heisenberg part in the energy range of 0 to 0.5 (top row), where
the magnon dispersion at U = 3.0 is excellently visible and a Stoner part in the
energy range of 0 to 2.2 (middle row), where the Stoner excitations at U = 0.4 are
recognizable. The bottom row is only to show that there are no other magnetic
excitations above 2.2. Of course, one can not speak of a magnon dispersion at
U = 0.4 or 1.0 in the energy range of 0 to 0.5, still this visual decoupling is useful
to see how the magnon dispersion at U = 3.0 evolves.
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Figure 8.11:
∼
my along a path through the Brillouin zone with the high symmetry
points Γ, X and M , n = 4 with t′=5.0 and |Bf |=0.002. Note that each
column displays the same data at different interactions U .
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Let us focus first on the Γ − X − M direction and the energy range 0 to 0.5.
At U = 1.0 even though far away from the spin limit of the Hubbard model a
Heisenberg-magnon-like dispersion is discovered with X at ∼ 0.4. Increasing U

to 2.0 and then to 3.0 decreases the energy of the magnetic excitations along this
direction and X moves to ∼ 0.25 at U = 2.0 and then to ∼ 0.175 at U = 3.0.
This reminds of a similar shift in the energy of magnetic excitations with U in a
half-filled Hubbard chain (1D) [9, 155], obtained by an analytical solution using the
Bethe ansatz [82]. In contrast to the half-filled Hubbard chain this shift depends
on q, as can be seen for example by looking at the direction M − Γ. Indeed the q

values (π/3, π/3) and (2π/3, 2π/3) are only weakly shifted between U = 1.0 and
2.0 and stronger when turning to U = 3.0. This behavior seems to be qualitative
the same to the points closest to the X point. Before analyzing the q-dependence
of the shift further, a closer look at the energy range 0.5 to 2.2 is performed. As
expected U = 1.0 shows also Stoner excitations, while U = 2.0 does not. But the
Stoner excitations at U = 1.0 are not the same as for U = 0.4 as they are partially
restructured and disappear. Let us now turn to the q-dependent influence of U on
the lowest energy magnetic excitations between 0 and 0.5 and obtain a quantitative
picture. Fig. 8.12 depicts the U -dependent positions of the lowest energy magnetic
excitations of

∼
my at all symmetry-inequivalent points of the Brillouin zone. The

positions are determined by analyzing the Fourier transform and the error is the full
width at half maximum. As one can see in Fig. 8.11, there are multiple symmetry-
equivalent points for example in Γ−X and X −M direction. The used 6x6 lattice
equals six symmetry-inequivalent Brillouin points, where in Fig. 8.12 apart from
the high-symmetry points q1 =(π/3, 0), q2 =(2π/3, 0) and q3 = (2π/3, 2π/3) are
displayed. First of all a comparison to a previous study of Seibold et al. [128] is
drawn using the right side of Fig. 8.12. In that study Gutzwiller with fluctuations in
random phase approximation (GA+RPA, see section 2.4.1) is used on a 4x4 lattice to
compute magnetic excitations. This gives rise to two symmetry inequivalent q-points
apart from the antiferromagnetic wave vector q = M and high symmetry point Γ.
The depicted results in Fig. 8.12 are in good agreement with that study observing
the same transition from a spin-density wave gap in the order of U between the two
depicted q-points at small U to the low lying energy excitations of the Heisenberg
model at large U . In contrast to Seibold et al. [128], real-space TD-SBMFT is not
focused on low energy magnetic excitations and has a more consistent formalism,
addressing the time evolution of local and itinerant degrees of freedom on equal
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Γ
X
M

q1

q2

q3

Figure 8.12: Positions of lowest energy magnetic excitations in
∼
my for all (left) and

selected two (right) symmetry inequivalent q with U . Lines are only as
guide to the eye for better comparison with [128]. Errors determined
by full width at half maximum and are equal or less the marker size.
Again n = 4 with t′=5.0 and |Bf |=0.002 is utilized. q1 =(π/3, 0),
q2 =(2π/3, 0) and q3 = (2π/3, 2π/3) is used. Γ and M are energy
degenerate.

footing (see section 2.4.1). Therefore the influence of Stoner excitations on the
qualitative behavior of the low energy excitations is addressed by looking at the left
side of Fig. 8.12 and Fig. 8.11. The influence of U is twofold. One the one hand
it just decreases the energy at X and q2 similar to the effect observed in Hubbard
chains [9, 155]. On the other hand it increases first the energy between U = 0.4 and
U = 1.0 at the other q-points and then decreases it, when increasing U further. This
different behavior generates low energy Heisenberg-like magnetic excitations already
at U = 1.0. The behavior of the excitation spectrum between U = 1.0 and U = 3.0

indicates, that high energy Stoner and low energy magnetic excitations do not mix
and the high energy Stoner part just disappears. In this way, the excitations can
then just act like in the Hubbard Chain [9, 155]. Furthermore it also means that
the decoupling of these two parts of the excitation spectrum happens just between
U = 0.4 and U = 1.0 visible as q-dependent magnetic excitation change.



Page 114

8.4.2 Instability of magnons out of equilibrium

Another strength of TD-SBMFT is, that it is not limited to small magnetic fields
|Bf | and small kicktimes t′ studied previously. In fact, this section is devoted to
the investigation of a higher magnetic field and longer kicktimes. On this way, the
linear-response regime is left. As the focus lies on changes in the magnon dispersion
the Heisenberg limit U = Ui = Uf = 3.0 is considered with the same ground state
used before (Tab. 8.1). Furthermore the same non-equilibrium setup as described in
section 8.2 is used even the same Bf (r) with n = 4 is utilized as before for U = 3.0.
The only notable difference is the increased magnetic field amplitude by a factor of
10 resulting in |Bf | = 0.020. Fig. 8.13 depicts the influence of kicktime t′ onto the
magnon dispersion

∼
mz. Same qualitative behavior can be seen also in

∼
my, which is

depicted in the appendix section A.2.5 for completeness. Simply increasing |Bf | by
a factor of 10, but keeping the small kicktime t′ = 5 does not modify the magnon
dispersion (compare Fig. 8.10), as can be seen in the leftmost column. Increasing t′

affects the magnon dispersion drastically. At t′ = 40 each magnon at every q-point
aside from q = Γ acquires multiple sidebands reminiscent of Zeeman splittings,
where the splitting scales with 1/t′. At t′ = 80 almost all q-points aside from Γ and
M display a broadened, quite featureless distribution of energy around their original
peaks. Turning to even higher kicktimes t′ = 320 the original magnon dispersion is
retrieved again, but with splittings. However with the used energy resolution of ∆ω

= 0.003 induced by ttot = 1800, it is unclear if the splitting still scales with 1/t′.
This feature of a broadening (destruction) of magnons and then reformation was
first seen by Zhitomirsky et al. [158], when they investigated the non-equilibrium
AFM magnon spectrum using self-consistent Born approximation in a Heisenberg
model subject to a high magnetic field. To be able to compare with this study even
better

∼
my is depicted in Fig. 8.14 at the four q-points also computed in that study

for t′ = 80 (destruction of magnons) and t′ = 320 (reformation). Additionally the
sharp magnon peaks at t′ = 5 are shown as grey lines for better comparison. The
results are in good agreement to Zhitomirsky et al. [158], where betweeen Γ −M
the magnon peak is first destroyed at t′ = 80 and then reformed at t′ = 320. As a
slight difference in the depicted results a splitting of the peak at Γ and M is visible
at t′ = 80, which turns into a single peak at t′ = 320. A double-peak structure was
also seen in another study of the high-field magnon behavior in equilibrium [135]
at q = (π/2, π/2), which is not accessible in the used lattice as it lies between (b)
and (c) of Fig. 8.14. They interpreted this two-peak structure at two edge states
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Figure 8.13:
∼
mz along a path through the Brillouin zone with the high symmetry
points Γ, X and M at U=3.0, n = 4 with different t′ and |Bf |=0.020.
Note that each column display the same data, only in different energy
ranges.

of a continuum, where the role of the magnetic field is the transfer of weight from
the lower to upper edge. This is also in line with Fig. 8.14 looking at t′ = 80

and t′ = 320 for q = Γ and q = M . The destruction and reappearance of the
magnon peaks at equilibrium was explained by field-induced hybridization of single
magnon states and two-magnon continuum [158]. Looking at Fig. 8.14, the results
indicate that an increase of t′ with the same magnetic field |Bf | during the pulse,
has the same effect. Therefore a hybridization of single and two-magnon state can
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Figure 8.14:
∼
mz along a path through the Brillouin zone with the high symmetry
points Γ, X and M at U=3.0, n = 4, |Bf |=0.020 for t′ = 5 (left) and
for four selected q-points at t′ = 80 and t′ = 320 in black (right). Grey
lines indicate

∼
mz at t′ = 5.

also be induced by pulsed magnetic field and is maybe already visible there at
smaller magnetic fields when using large kicktimes. Note that in linear spin-wave
theory magnons are stable at any momentum and any magnetic field as it does not
describe the decay of single-magnon states into two magnon states [86].

8.5 Summary of this chapter

This chapter concerns the real-space magnetization dynamics of the single-orbital
Hubbard model at half-filling. Focus of attention is an antiferromagnetic (AFM)
insulating ground state at different interaction values. The real-space formulation
of TD-SBMFT is employed to access first the well-known magnetic excitations in
linear-response in the small interaction and large interaction limit. This is modeled
by utilizing a site-dependent magnetic field with small amplitude, which excites the
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system during a short pulse (called kick). On this way at small interaction electron-
hole (Stoner) excitations are retrieved in agreement with the small interaction ap-
proximation of the Hubbard model, the Stoner model. These excitations have the
characteristic tendency to form a quasi-continuum of states in the thermodynamic
limit and range up to energies of the order of electron volts. At large interaction
collective spin excitations (magnons) in agreement with the large interaction limit of
the Hubbard model, the Heisenberg model, are discovered. They display the char-
acteristic dispersion known for linear spin-wave theory. After these testing cases
magnetic excitations between Stoner and Heisenberg limit are revealed. Starting at
the small interaction limit displaying Stoner excitations an increase in interaction
separates the magnetic excitations in a Stoner-like high energy and magnon-like low
energy part. At the same time q-dependent energy shifts of the magnetic excitations
appear. Increasing the interaction further the low energy part is renormalized similar
to magnetic excitations in a 1D Hubbard chain, while Stoner excitations disappear.
The low energy magnetic excitation behavior is in agreement with a previous study
[128], but could before not related to its high energy counterpart. Finally as another
strength of real-space TD-SBMFT, the Hubbard model is kicked out of equilibrium
with a site-dependent magnetic field. A higher magnetic field and longer kicks are
utilized to observe effects on the magnon dispersion of the Heisenberg limit. With
increasing kick a magnon decay (broadening of magnon peaks) and reformation is
encountered. This is reminiscent of a non-equilibrium Heisenberg Spin model study
utilizing self-consistent Born approximation, where similar features are seen, when
increasing the magnetic field. The explanation in equilibrium is that the magnetic
field induces a hybridization of single magnon states with the two magnon contin-
uum opening decay channels. This indicates that real-space TD-SBMFT is able
to describe this hybridization, which is out of reach of linear spin-wave theory. It
would be interesting to look at larger lattices or utilize more kicks to see if the
momentum-dependence of the magnon decay stated in a recent study [86] can be
retrieved.
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9 Conclusion

In this work the time-dependent extension to slave boson mean-field theory (TD-
SBMFT) was introduced and applied in a wide range of applications using the
fermionic multi- and single-orbital Hubbard model. As TD-SBMFT is based on
the time-dependent Gutzwiller approximation (TD-GA), it was tested on interac-
tion quenches in the single-orbital Hubbard model to recover TD-GA results. At and
away from half-filling TD-GA results are regained, which are in very good agreement
to the numerical more intricate time-dependent dynamical mean-field theory (TD-
DMFT). In detail, TD-SBMFT was able to reproduce qualitatively the metastable
states encountered, when quenching from a noninteracting state to weak or strong
interactions at half-filling. Furthermore it was also able to reveal the dynamical
metal insulator (Mott) transition in between. However as semi-classical method it
does not contain quantum fluctuations and is therefore not able to display ther-
malization. On the other hand the small numerical footprint is an advantage as it
allowed to cover a wide range of applications, where the focus then lied on the dis-
covered metastable states and not their thermalization. Most of these applications
are up to now numerical inaccessible for methods like TD-DMFT. A first example
in the single-orbital case was the investigation of the dynamical Mott transition
away from half-filling, where TD-GA (TD-SBMFT) predicted a vanishing of the
dynamical transition similar to the behavior of the equilibrium Mott transition with
doping.

Another example was the consideration of additional orbital degrees of freedom
and magnetic states. The influence of an additional orbital coupled to the other via
interorbital coupling with or without Hund’s coupling was considered regarding its
effects on the dynamical Mott transition. The critical influence of Hund’s coupling
on the Mott transition in equilibrium was recapped. Then interaction quenches from
the noninteracting state with or without Hund’s coupling but in any case a finite
interorbital coupling were considered. Excitations of the system were slightly more
complicate than in the single-orbital case consisting now of at least two modes and
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superpositions instead of only a single mode. Still interaction quenches to small in-
teraction values left the single-orbital prethermalized state description qualitatively
intact. The same held for one of the modes for quenches to strong interaction. There
it displayed again oscillations expected in the atomic limit. However the freezing
was revealed to be dependent on the local state. This dependence is not accessible
in the single-orbital case as due to the high symmetry only one effective state exists.
The biggest change is certainly the broadening of the dynamical Mott transition
into a region of critical behavior seen as strong incoherent excitation. Finite Hund’s
coupling left the metastable state description quite intact, but the broadening of the
dynamical Mott transition was enhanced.

Afterwards magnetic states were the focus of interest looking at the orbitals of the
t2g shell, which are known to host already a plethora of intriguing physical effects in
equilibrium [92, 99, 141]. Starting from a well-established point with considering a
highly correlated antiferromagnetic (AFM) ground state at half-filling and quench-
ing to lower interaction values single-orbital results [123, 138] were generalized to
three-orbitals. Additionally a wide range of hole-dopings was considered. The dy-
namical transition between an AFM and paramagnetic (PM) non-equilibrium state
was discovered in three-orbitals under moderate hole doping. Even stronger doping
unveiled a longitudinal large amplitude spin oscillation replacing this transition. As
a new viewpoint the vice versa case was investigated meaning the interaction quench
from a PM ground state close to the equilibrium AFM-PM phase boundary to higher
interactions. On this way not only an AFM state appears out of equilibrium, but
also a transient spin oscillation, which displays periodic AFM spin switching for
a limited period of time. This transient spin oscillation was vital for nearly all
considered fillings, which could hint on experimental realization in a broad class of
materials close to the utilized ground states and dominating t2g shell.

To show that TD-SBMFT is not restricted to a model context, a small application
regarding the Mott transition in Chromium doped V2O3 was done. The Mott tran-
sition in Chromium doped V2O3 is an archetypical example, as it display features
predicted by the Hubbard model. To get a good material description the density field
theory (DFT) results were projected onto an unit cell with four atoms having each
three-orbitals. This projection was incorporated in the hopping term of the used
Hubbard model. Unpublished experimental results [40] display that a femtosecond
laser excitation is able to populate a in the Mott insulating state unoccupied orbital.
On this way an insulator to metal transition is induced. TD-SBMFT was able to
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approximate the Mott insulating ground state. It described the Mott insulator to
metal transition as an effect of a quenched correlation enhanced crystal field. This
quench led to charge transfer and correlation changes in qualitative agreement with
the experiment.

Translational symmetry is one of the basic symmetries in solid state systems, but
there are circumstances, where this symmetry is broken for example when vacan-
cies come into play. As a testing case of the capabilities of real-space SBMFT the
influence of oxygen vacancies in the metallic interface of LaAlO3/SrTiO3 was re-
vealed. For this a model Hamiltonian was developed first, approximating an oxygen
vacancy by a modified electron number on the lattice and a crystal field on neighbor-
ing atoms. With this approach an intricate magnetic phase diagram was unfolded
crafted from the competition among Ruderman-Kittel-Kasuya-Yosida(RKKY)-like,
non-local double-exchange-like and superexchange interactions. This magnetic phase
diagram was in qualitative agreement with experimental findings. It would be in-
teresting to expand this investigation by considering even larger lattices. On this
way the effects of clustered vacancies could be investigated, as here only one atom
was neighbored to a single vacancy. Additionally a cluster formalism would allow to
treat also singlet states regarding two coupled sites, which could replace the AFM
coupled neighboring sites observed here.

Finally this work climaxed in the description of real-space magnetism in the
single-orbital Hubbard model with real-space TD-SBMFT. The real-space formu-
lation established an access to real-time momentum dependent magnetic excitations
in linear-response and away from linear-response. Utilizing an AFM ground state
and a pulsed site-dependent magnetic field linear-response results could be recovered
in the limit of small pulse length and small magnetic field. To be specific, in the
weak interaction limit Stoner (electron-hole) excitations of the Stoner model and
in the strong interaction limit collective spin excitations (magnons) of the Heisen-
berg model were encountered. As real-space TD-SBMFT operates on the Hubbard
model intermediate interactions could be investigated. The momentum-dependent
magnetic excitation change with interaction could be related to the decoupling of
Stoner-like and magnon-like excitations. Additionally the evolution of the low en-
ergy magnetic excitations with interaction is in agreement with a previous study
[128]. Afterwards the non-equilibrium setup was changed to address effects away
from linear response. With a higher magnetic field the effect of the pulse length
on the magnon dispersion in the strong interaction limit was the focus of attention.
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Thus magnon decay and magnon reformation depending on the applied magnetic
field first revealed in a non-equilibrium self-consistent Born approximation study
of the Heisenberg Spin model in high magnetic fields [158] could be qualitatively
recovered using magnetic field pulses. To achieve this in the non-equilibrium setup
only an increase of pulse length at constant magnetic field was necessary. Very high
magnetic fields of orders of multiple 10 T are required to display the magnon decay
in some of the materials displaying Heisenberg model physics [26, 154]. Therefore
it is interesting to answer the question in the future whether a smaller magnetic
field with longer pulse length out of equilibrium could display the same effect. This
would make this type of magnon decay also available in other materials previously
not accessible. Especially as the needed magnetic fields in high temperature su-
perconductor parent compounds are unaccessible high (order of 1000 T ) [26], this
approach seems to be worth pursuing. Another interesting result was the observation
of edge states at high symmetry points of the Brillouin zone, which were previously
only seen at non high symmetry points [135]. In this respect it is also interesting
to investigate the importance of these edge state onto magnetization dynamics in
the system. Another intriguing possibility opens by utilizing doping. As the AFM
ground state is insulating, this would induce metallicity leading to an interplay of
correlations and magnetic excitations especially interesting in the high interaction
case.



A Appendix

A.1 Runge-Kutta theory

In the following section A.1.1 explicit Runge-Kutta methods are introduced, which
are used to solve non-linear differential equations. In this work the non-linear dif-
ferential equations describe the time evolution within time-dependent slave boson
mean-field theory (TD-SBMFT) and are depicted for example in Eqs. 2.41 and 2.42.
Furthermore in section A.1.2 error estimation of Runge-Kutta solutions is described.

A.1.1 Explicit Runge-Kutta methods

Starting point are the differential equations 2.41 and 2.42 (or in real-space formu-
lation Eqs. 2.48 and 2.50). Explicit examples in this and the next section refer to
the first two equations, the other two can be handled in the same way. To solve
these ordinary first-order non-linear differential equations, one option is an explicit
Runge-Kutta (RK) method [44]. Having a differential equation (DE) of the form
ẏ (t) = f (t, y (t)) the central idea is to obtain a solution y (tn+1) by interpolating
m known slopes of y (ki) with ki ∈ [tn, tn+1). The number m is called the or-
der of the RK method. The classic RK method of order 4 works in the following
way. Let tn+1 − tn = h and f (tn, y (tn)) := K1 be known. Then the second slope
f
(
tn + h

2
, y1

)
=: K2 is computed at the point y1 = y (tn) + h

2
· K1. So the initial

slope is used to linear interpolate to the half of the time interval and compute a
new slope K2 there. With K2 this process is repeated to compute a more precise
value, meaning K3 := f

(
tn + h

2
, y2

)
with y2 = y (tn) + h

2
·K2. Finally K3 is used to

interpolate to the end of the time interval and compute K4 there K4 := f (tn + h, y3)

with y3 = y (tn) + h · K3. To obtain y (tn+1) a weighted average is performed by
y (tn+1) = y (tn) + 1

6
·K1 + 1

3
·K2 + 1

3
·K3 + 1

6
·K4. As already mentioned this is the

classic order 4 RK method. There are different explicit RK methods. They differ in
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Table A.1: Butcher Array

0
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

2
6

2
6

1
6

Table A.2: Butcher array for classic RK
method of order 4 [44]

0
1
3

1
3

2
3
−1

3
1

1 1 -1 1
1
8

3
8

3
8

1
8

Table A.3: Butcher array for 3/8
method of order 4 [44]

order, choice of points where the slopes are computed

Ki = f

(
tn + h · αi, y (tn) + h ·

m∑

j=1

βijkj

)
(A.1)

and the weights when averaging at the end of one RK step are

y (tn+1) = y (tn) + h ·
m∑

i=1

aiKi . (A.2)

The characteristic coefficients ai, αi, βij are often represented in an object coined
Butcher array (Tab. A.1, with α = (α1, . . . , αm),a = (a1, . . . , am) and B = [βij]).
In Tab. A.2 and A.3 the just explained classic RK method of order 4 and the more
precise 3/8 method of same order are shown, respectively. Note that to evaluate
a time step with the shown RK method of order 4 it is sufficient to compute the
right hand side of the differential equation at three points. To derive the DE (Eqs.
2.41 and 2.42), the present procedure has to be extended to more than one variable.
This is done by y (t)→ ~y (t) = (y1, y2, . . . , yn) and f (tn, y (tn))→ ~f (tn, ~y (tn)) with
~f = (f1 (tn, ~y (tn)) , . . . , fn (tn, ~y (tn)) .). The variables consist in this case of the
eigenvectors vKa for occupied Bloch orbitals a and momentum pointsK. Additionally
the non-zero slave boson amplitudes φAB are variables, too. Both form the vector
~y. However the stability and reliability of the results with RK methods depend
critically on the time step size h. This leads to the question, if there is a procedure
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to estimate the error of variables computed with a certain h and adapt it to keep
this error estimate below a specified tolerance. This is addressed in the next section
A.1.2.

A.1.2 Error estimation of Runge-Kutta variables

There are various ways to derive the error of one variable obtained with a Runge-
Kutta method [44]. One often used procedure is to derive the variable with two RK
methods of order m and m + 1. Hence two variables ym and ym+1 are obtained.
One approximation to the local error of ym is ym+1 − ym. But in many cases the
local error occurring at each time step is not related to the global error, which arises
after n time steps. This is the reason the local error is often only used to compute
an optimal time step size and the calculation is continued only with ym+1. This is
called local extrapolation. A good technique to get the results of two different RK
methods which differ only by one order, is to calculate the method of order m+ 1 in
the way already explained and to look for a RK method of order m, which uses the
Ki and results of the method of order m+ 1. To put it in other words to obtain the
RK method of order m just one additional Ki is needed compared to the calculation
of the RK method of orderm+1. As error estimate err is utilized from the following
formula [44]

err =

√√√√ 1

n

n∑

i=1

(
yi − ỹi
sci

)2

, (A.3)

sci = Atoli +max(yi (t0) , yi) ·Rtoli. (A.4)

Here yi and ỹi are the results from the order m + 1 and m method of the present
time step, respectively. sci specifies the upper limit of the difference of absolute
values of yi and ỹi. This value is composed of relative and absolute tolerances (Rtoli
and Atoli), which has to be set before starting the Runge-Kutta method. Applying
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Eq. A.4 to the mentioned variables (eigenvectors vKa and slave-bosons φ), results in

err =

√√√√√ 1

n


∑

A,B

(
|φAB − φ̃AB|

scAB

)2

+
∑

K,a

( |vKa − ṽKa |
scKa

)2

 (A.5)

scAB = AtolAB +max(|φAB (t0)|, |φAB|) ·RtolAB (A.6)

scKa = AtolKa +max(|vKa (t0)|, |vKa |) ·RtolKa . (A.7)

A nine stage RK method of order 6 and 5 called IIIXb+6(5) [143] is utilized within
TD-SBMFT and its real-space formulation. The Butcher array is displayed in Tab.
A.4.
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1
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1
16
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0 19504

30875
2377474
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7410
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−1393253
3993990
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72618

−135
49

15
22

1 11
144

0 0 256
693

0 125
504

125
528

5
72

1 28
477

0 0 212
441

−312500
366177

2125
1764

0 − 2105
35532

2995
17766

Table A.4: Butcher array for IIIXb+6(5), a robust nine stage RK method of order 6
and 5 [143] used in TD-SBMFT and its real-space formulation. The last
line depicts the a coefficients for the method of order 5 and the one before
for the one of order 6.
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A.2 Real-space magnetization dynamics-additional
material

In this section some additional results are depicted concerning the real-space mag-
netization dynamics of chapter 8. These additional results are not needed to under-
stand the discussion depicted in chapter 8, they are denoted here for completeness
and to provide an additional viewpoint.

A.2.1 Stoner limit n = 6

To obtain results in the Stoner limit U = Ui = Uf = 0.4 is selected. The AFM
ground state (Fig. 8.2) is kicked using Bf (r) with n = 6, |Bf |=0.002 and a kicktime
t′=5.0 to be in the linear-response regime. Concerning the local magnetization
dynamics small differences can be seen between n = 4 in Fig. 8.5 and n = 6 in Fig.
A.1. Still it has the same qualitative result that the observed dynamics render no

m
(1
,t
)

m
(2
,t
)

Figure A.1: Magnetization dynamics at site 1 (left) and 2 (right) at U=0.4, n = 6
with kick time 5.0 and |Bf |=0.002 for 6x6 lattice.

clear picture if there is a longitudinal mode excited or not. In all components the
amplitudes are really small. So all component of

∼
m has to be checked now. In Fig.

A.2
∼
mx (top),

∼
my (middle) and

∼
mz (bottom) are depicted in the Brillouin zone for

n = 6 and U = 0.4. This figure can be compared to its n = 4 equivalents in Fig.
8.6 and 8.7. It shows a strong inhomogeneous excitation for the x-component and a
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Figure A.2:
∼
mx (top),

∼
my (middle) and

∼
mz (bottom) along a path through the Bril-

louin zone with the high symmetry points Γ, X and M at U=0.4, n = 6
with kick time 5.0 and |Bf |=0.002 for 6x6 lattice. The left image is just
a blowup of the right image indicated by the boxed area.

weak inhomogeneous excitation for the z-component at the M point. The magnetic
excitations cover a broad energy range up to ∼ 2.0 eV , which can not be explained
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by magnon formation. Instead electron-hole excitations named Stoner excitations
arise. There is the quantitative agreement to Fig. 8.6 and 8.7, that almost all
components of

∼
m and q points have the same magnetic excitations. Only

∼
mx shows

some minor difference at two q points concerning additional magnetic excitations.

A.2.2 Stoner limit-alternative non-equilibrium setup

In this section a small modification of the kick setup explained in section 8.2 is
made. Namely, instead of the y-z plane, the x-z plane is used with n = 4 to apply
the site-dependent magnetic field. The angle α is in this section measured to the
x axis and the same α(r) configuration as in the calculations for n = 4 in the y-z
plane is utilized. This should address the question if such a modified setup is better
suited to generate longitudinal magnetic excitations (magnetic excitations along the
x-direction) expected to be dominant in the Stoner limit [109]. All other parameters
stay the same meaning U = Ui = Uf = 0.4 is selected. The AFM ground state (Fig.
8.2) is kicked using |Bf |=0.002 and a kicktime t′=5.0 to be in the linear-response
regime. In Fig. A.3 (compare to Fig. 8.5 for y-z plane) the local magnetization
dynamics at site 1 and 2 are depicted. The differences to the results of the previous

m
(1
,t
)

m
(2
,t
)

Figure A.3: Magnetization dynamics at site 1 (left) and 2 (right) at U=0.4, n = 4
with kick time 5.0 and |Bf |=0.002.

setup (Fig. 8.5) are really small, especially there is still no visible dynamic along
the x-direction. This indicates that the used magnetic field of 2 meV and small
kicktime is not sufficient to excite longitudinal modes.

∼
m for the changed setup
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shown in Fig. A.4 has the same qualitative features as for the previous setup (Fig.
8.6 and 8.7). All components show Stoner excitations in the range of up to ∼ 2.0.
The AFM order is destabilized into an inhomogeneous excitation for

∼
mx.
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Figure A.4:
∼
mx (top),

∼
my (middle) and

∼
mz (bottom) along a path through the Bril-

louin zone with the high symmetry points Γ, X and M at U=0.4, n = 4
with kick time 5.0 and |Bf |=0.002. The left image in each row is just a
blowup of the right image indicated by the boxed area. The magnetic
field during the kick is applied in the x-z plane instead of y-z plane.
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A.2.3 Heisenberg limit n = 6

The same discussion as done in section 8.3.2 can be repeated here using n = 6.
U = Ui = Uf=3.0 is utilized and the AFM ground state (Fig. 8.1) is kicked using
|Bf |=0.002 and a kicktime t′=5.0 to be in the linear-response regime. The obtained
magnetization dynamics for n = 6 at site 1 and 2 are shown in Fig. A.5 (left) and
(right), respectively. Again the x-component displays the AFM order with no visible
dynamic considering the computed time frame and only small numeric deviations.
The absolute value |m| remains nearly constant due to the small amplitudes in my

and mz. This enables us to restrict the discussion to the transverse modes. In

m
(1
,t
)

m
(2
,t
)

Figure A.5: Magnetization dynamics at site 1 (left) and 2 (right) at U=3.0, n = 6
with kick time 5.0 and |Bf |=0.002 for 6x6 lattice.

Fig. A.6
∼
my (top) and

∼
mz (bottom) are depicted. Again both figures display the

magnetic excitations known as magnon dispersion from spin-wave theory [50, 51].
Note that the position of the spin-excitations is exactly the same as in the n = 4

case (compare Fig. A.6 and 8.10). This renders clear that the specifics of the chosen
site-dependent magnetic field applied during the kick are not important to obtain
the magnon dispersion for the used small kicktime and weak magnetic field.
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Figure A.6:
∼
my (top) and

∼
mz (bottom) along a path through the Brillouin zone with

the high symmetry points Γ, X and M at U=3.0, n = 6 with t′=5.0
and |Bf |=0.002. The left image in each row is just a blowup of the right
image indicated by the boxed area.
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A.2.4 Magnetic excitations between Stoner and
Heisenberg-Limit

Note that exactly the same setup is used as in section 8.4.1. However instead of
∼
my,

∼
mz is depicted in A.7.

∼
mz displays the same features as

∼
my of Fig. 8.11.

So the discussion done in section 8.4.1 also holds for the picture of this section.
The only difference between the two figures is the U -independent inhomogeneous
magnetic excitation at q = M , which is due the small AFM equilibrium order in
the z-direction as explained in section 8.3.1.
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Figure A.7:
∼
mz along a path through the Brillouin zone with the high symmetry
points Γ, X and M n = 4 with kick time 5.0 and |Bf |=0.002. Note that
each column displays the same data at different interactions U .
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A.2.5 Instability of magnons in effective high magnetic fields

Here the same discussion as done in section 8.4.2 can be repeated using
∼
my instead

of
∼
mz. First the influence of kicktime t′ onto the magnon dispersion for n = 4,

|Bf |=0.020 and U = 3.0 is shown in Fig. A.8 and then a comparison to a pre-
vious non-equilibrium Heisenberg Spin model study utilizing self-consistent Born
approximation [158] can be drawn using Fig. A.9.
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Figure A.8:
∼
my along a path through the Brillouin zone with the high symmetry
points Γ, X and M at U=3.0, n = 4 with different t′ and |Bf |=0.020.
Note that each column display the same data, only in different energy
ranges.
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Figure A.9:
∼
my along a path through the Brillouin zone with the high symmetry
points Γ, X and M at U=3.0, n = 4, |Bf |=0.020 for t′ = 5 (left) and
for four selected q -points at t′ = 80 and t′ = 320 in black (right). Grey
indicates

∼
my at t′ = 5.
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