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Abstract
The aim of the current thesis is to investigate algebraic and topological properties
encoded in cohomology classes of locally continuous group cohomology, and also
in which cases LHS-style spectral sequences exist for this model. One of the three
main results of the current thesis shows, for a large class of topological groups,
that each cohomology class has a cocycle representative whose restriction to an
open and dense subset is continuous. The second main result relates to lifting
obstructions on principal bundles. If P → X is a principal G-bundle and we have a
topological central extension K of G by some abelian group Z, one might ask when
we can lift P to a K-bundle over X. We show that, under reasonable assumptions
on the spaces involved, we can always have such a lift if K is topologically the
product Z × G. The third result relates to LHS spectral sequences. We prove a
generalization to the locally continuous group cohomology of the classical result
of Lyndon, Hochschild and Serre, in the case of finite quotients.

Abstract
Ziel der vorliegenden Arbeit ist es, die in Kohomologieklassen lokal-stetiger Grup-
penkohomologie enkodierte algebraische und topologische Information zu unter-
suchen und zu verstehen, in welchen Fällen LHS-ähnliche Spektralsequenzen ex-
istieren. Eines unserer drei Hauptresultate zeigt, für eine grosse Klasse von topol-
ogischen Gruppen, dass jede Kohomologieklasse, einen Repräsentanten hat, der,
eingeschränkt auf eine offene dichte Teilmenge, stetig ist. Das zweite Hauptresul-
tat betrifft Obstruktion von Prinzipalbündel. Ist P → X ein G-Prinzipalbündel
und K eine zentral Erweiterung von G durch eine abelsche Gruppe Z, dann ist
es eine natürliche Frage, ob sich P zu einem K-Prinzipalbündel über X hocheben
lässt. Wir zeigen, dass unter milden Bedingungen eine solche Hochhebung immer
existiert, solange K topologisch das Produkt Z × G ist. Unser drittes Resultat
betrifft LHS Spektralsequenzen. Wir zeigen eine Verallgemeinerugnen klassischer
Resultate von Lyndon, Hoschschild and Serre zu lokal-stetigen Gruppenkohomolo-
gie unter der Annahme endlicher Quotienten.
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Introduction

Topological groups are objects of interest in mathematics and its applications.
Together with continuous actions they describe continuous symmetries, so for ex-
ample they have applications to physics. Actually Lie groups (the smooth analogue
of topological groups) play a central role in modern theoretical physics. This re-
lates to a theorem by Noether which gives a one to one correspondence between
symmetries and conserved quantities.

So it is of interest to have tools to help in the study of topological groups.
Since they are groups we have in our disposal group cohomology but the latter is
blind to the topological structure. On the other hand they are topological spaces
so we could study cohomology theories that relate to them like sheaf cohomology,
but those are blind to their algebraic structure. So it is obvious that one should
look for some refinement of either or both which incorporates both data. We will
refer to such a theory as topological group cohomology.

There have been many approaches for defining topological group cohomology
in the past ([Hu52], [vE58], [HM62], [Seg70], [Moo76], [Cat77], [Del74], [Fla08],
[KR12]), all with their advantages and shortcomings. The most common approach
was to start with group cohomology and refine it to include also topological in-
formation. In abstract terms, group cohomology is defined as the right derived
functors of the G-invariance functor on G-modules. Although it is possible to de-
rive results using such an abstract definition, usually people prefer working with
an explicit complex the so called bar resolution. The latter is defined as a complex
whose nth degree consists of functions from Gn into A, for G a group and A a
G-module1 ([Wei94, Application 6.5.5]).

Now assume that G is a topological group and A a continuous G-module. We
return to our question of what should be a cohomology theory for G. The most
widely used approaches consisted of refining the bar complex by using functions
with some topological properties. Let us see the reason why this actually makes
sense. To this end we will discuss a bit about the interpretation of low degree
cohomology, so that we get a bit of intuition of what properties our topological

1i.e. an abelian group with a left G-action which commutes with group multiplication in A

ix



x Introduction

group cohomology should satisfy. The 0 degree cohomology is isomorphic to the
G-invariant subgroup of the G-module A. The first degree cohomology classifies
crossed homomorphisms modulo principal ones. Of particular importance is the
second degree group cohomologyH2

gr (G,A) since it related to the question of Schur
about when projective representations lift to honest ones. So we recall ([Wei94,
Theorem 6.6.3]) that H2

gr (G,A) is in one to one correspondence with equivalence
classes of extensions

0→ A→ E → G→ 0. (1)

In the topological world we would like also that E → G is a locally trivial
bundle. Such extensions are of interest also in physics. In quantum mechanics the
symmetries of a physical system are described as a representation G→ U (PH) of
G on a projective Hilbert space. Such a representation cannot in general be lifted
to a representation on the Hilbert space, but due to a theorem of Wigner (appeared
in [Wig59], and more recently reviewed in [TW87]) one can get a representation
G̃ → U (H) on the entire Hilbert space for some G̃ which is a central extension
of G by U(1) such that G̃ → G is a principal U(1)-bundle. Now to see why
it is reasonable to refine the bar complex by functions with "nice" topological
properties we need to quickly recall the identification of H2

gr (G,A) with classes of
extensions of the form (1). Starting with a group cocycle f : G2 −→ A one twists
the group multiplication on the product A×G by

(a, g) (a′, g′) := (a+ g.a′ + f (g, g′) , gg′) ,

call this group E := A of G. So in the topological world if one asks for E to
have continuous multiplication it is obvious that f should have some topological
regularity.

Unfortunately the obvious choice for f to be continuous makes the bundle
Aof G topologically trivial. Nevertheless, if A is a vector space this is reasonable
and people have extensively investigated (the first known to the author appear-
ance of such theories was in [Hu52], later on the smooth case was discussed in
more detail in [vE58], both continuous and smooth were investigated in detail in
[HM62] and [BW00]) the cohomology of continuous cocycles which we denote by
Hn

c (G,A). For the current thesis the model that was of main importance was the
so-called locally continuous group cohomology. This is defined as the subcomplex
of the Bar complex which contains functions f : Gn −→ A for which there exists
an open neighborhood of (e, . . . , e) such that their restriction to it is continuous. In
the following we denote this model by Hn

lc (G,A). This was introduced in [Cat77],
used in the study of projective representations in [TW87] and lately investigated
extensively in [Nee02, FW12, WW15].
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The aim of the current thesis was to shed some more light on certain properties
of Hn

lc (G,A). Topics that were covered are the following:

• Locally continuous functions are not very well documented. We study basic
properties of them and also investigate if there are reasonable topologies on
the space of locally continuous functions between two topological spaces.

• In the case of discrete groups Hn
gr (G,A) can be computed with cocycles

defined on any free G-set. Is there a corresponding result in the locally
continuous model?

• Are there phenomena that further exhibit the interplay between algebraic
and topological information in Hn

lc (G,A)? To this end we investigate the
following

– Does the process of going to cohomology produce representatives with
better regularity properties?

– If Z → G̃→ G is a central extension of G, then for a principal G-bundle
P → X one could ask whether we can lift it to a principal G̃-bundle.
This was investigated in [Gro55] and more recently in [NWW13], and
it was shown that it relates to the class in H2

lc (G,Z) that classifies the
extension. Here we will see that this obstruction vanishes if the bundle
G̃→ G is topologically trivial.

• A powerful tool to compute group cohomology is the so called LHS spectral
sequence2 which relates the cohomology of G with that of N and G

/
N for any

normal subgroup of G. Is there a corresponding result for locally continuous
group cohomology and under which assumptions on N?

We take now some space to give a short outline of the thesis.

Chapter 1 The first chapter is meant as a reminder/quick introduction to the
basic facts of homological algebra that will be used throughout. We introduce
chain and double complexes in abelian categories. Then follows a short
exposition of derived functors and with them we recall the definition of group
cohomology. In the second section spectral sequences are introduced with a
specialization towards bounded ones. After that the reader is reminded of
how to construct a convergent spectral sequence from a bounded filtration
on a chain complex ([Wei94, Section 5.4]). This construction of course gives
two spectral sequences from each bounded double complex and both of them
converge to the cohomology of the total complex. Finally, this result, with

2named after R. Lyndon, G. Hochschild and J.-P. Serre
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the help of the language of delta functors, gives the well-known Grothendieck
spectral sequence. Examples of the latter include the Leray-Serre spectral
sequence for singular cohomology and the LHS spectral sequence for group
cohomology.

Chapter 2 In this chapter, models of topological group cohomology are reviewed
with an emphasis on the locally continuous one. There are number of rea-
sons for us to be interested in this particular model. To name a couple, it
has an easy explicit description and the very definition of locally continuous
functions relates straightforwardly to the local triviality of bundles ([Nee04,
Proposition 2.6]). Also, there is a locally smooth version of it for Lie groups,
which has been known to have a close relation to Lie algebra cohomology
([Nee04]). In this chapter we start with some first basic facts about locally
continuous functions. In particular, we introduce a possible topology on
the set of locally continuous functions between two spaces, which makes the
evaluation function locally continuous. The locally continuous model is in-
troduced afterwards. More precisely, if X and Y are two pointed topological
spaces, denote by Maplc• (X, Y ) pointed functions from X to Y such that f
is continuous on a neighborhood of the base of X. Then Hn

lc (G,A) is de-
fined as the cohomology of the complex Maplc• (G∗+1, A)

G with differential
the same as in the bar resolution in the group cohomology case. The locally
smooth version for Lie groups is denoted by Hn

ls (G,A). Our first result refers
to the fact that locally continuous group cohomology of a topological group
G can be computed via cocycles defined on any free G-space, a well-known
fact for group cohomology ([HS53], [Wei94]) but it was missing so far in the
case of locally continuous group cohomology. The result reads

Proposition (Cohomology of free G-spaces.). Let G be a topological
group, A a continuous G-module and X a G-space. Assume that there exists
a pointed locally continuous function ψ : X −→ G that is G-equivariant.
Then

Hn
lc (G,A) ∼= Hn

(
Maplc•

(
X∗+1, A

)G)
.

This implies that locally continuous group cohomology of any subgroup K
for which the projection G → K \G has a local section, can be computed
with cocycles defined on the total space.
After that we take a moment to review other models that were proposed for
topological group cohomology in the past. There are two other refinements
of the classical bar complex, the continuous group cohomology (in [HM62]
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using continuous functions) and the measurable model ([Moo76] using mea-
surable functions). Another proposal for topological group cohomology was
made by Segal and Mitchison ([Seg70]) via a notion of "derivable functors",
which are computed by a special kind of resolution called "soft", utilizing
Segal’s construction of universal bundles. Another way to define topological
group cohomology is via sheaf cohomology of a simplicial construction of BG
([Del74]). All but the continuous model have been shown in the past to be
isomorphic for a large class of topological groups, while recently ([WW15])
all the models were put into a unified framework via a Comparison Theorem.

Chapter 3 In the third chapter we talk about the interplay between topological
and algebraic information contained in the classes of Hn

lc (G,A). The first
result shows that under nice assumptions on G each cohomology class is rep-
resented by a cocycle with some regularity properties which are much better
than expected when seeing the definition of locally continuous functions.

Theorem. Assume G is a topological group such that all Gn are paracompact
for each n. If there exists a good, countable and locally finite cover U• on
BG• then any class on Hn

lc (G,A) is represented by a cocycle continuous on
an open and dense subset. Furthermore if G is a Lie group then every class
in Hn

ls (G,A) is represented by a cocycle smooth on an open and dense subset.

Which gives as a Corollary the following.

Corollary. If G is a finite-dimensional second countable Lie group then each
class of Hn

lc (G,A) is represented by a cocycle which is continuous on an open
and dense subset. Furthermore each class in Hn

ls (G,A) is represented by a
cocycle smooth on an open and dense subset.

The second result in this chapter discusses obstruction classes in low-degree
Čech cohomology. It is well-known that a topological central group extension

0→ Z → K → G→ 0

gives a short exact sequence of the corresponding shaves of continuous func-
tions on any spaceX, and this gives an exact sequence of the low-degree Čech
cohomology ([Gro55]). Now the above extension is classified by H2

lc (G,A).
If G is connected there is a direct generalization from group cohomology (e.g.
[Wei94, Theorem 6.6.3]) to locally continuous group cohomology (in the same
way as in [Nee04, Section 2]), if G is not connected the relation of H2

lc (G,A)
and extensions becomes more obscure but their equivalence still holds due to



xiv Introduction

[Seg70, Proposition 4.3] and [WW15, Teorem 4.5]. So identifying topological
central extensions with H2

lc (G,A) one can define a function

obs : Ȟ1 (X,G)×H2
lc (G,Z) −→ Ȟ2 (X,Z) ,

which in some sense describes the obstruction of lifting a principal G-bundle
to a principal K-bundle. In [Gro55, Proposition 5.7.2] it is shown that the
lift exists if and only if obs vanishes. In the current work we show that the
kernel of obs contains the continuous group cohomology. For the following
result we assume that all the underlying spaces are CW-complexes and are
compactly generated. Explicitly, we show the following.

Theorem (Vanishing obstruction classes). Let Z be either discrete or
an Eilenberg-Maclane space for a discrete group. Let

0→ Z → K → G→ 0

be a central group extension and P → X a principal G-bundle. If the above
topological group extension is represented by a globally continuous group co-
cycle then

obs ([P ] , [K → G]) = 0 ∈ Ȟ2 (X,Z) .

To show the previous we show that obs can be fully characterized by

Ȟ1 (X,G)×H2
lc (G,Z)→ [X,BG]×

[
BG,B2Z

]
→
[
X,B2Z

]
,

where the first arrow assigns to a Čech cocycle a classifying map for its
associated G-bundle and to each central extension of G by Z the class of Bf
where f is a classifying map for the extension K → G (and which can be
chosen to be also a group homomorphism). Then we show that under the
assumptions above, if f is null-homotopic then so is Bf .

Chapter 4 Our initial point of interest in locally continuous group cohomol-
ogy was whether there are constructions of LHS spectral sequences. In
this chapter we present results that were derived in that initial direction.
We start by reviewing the classical result for discrete group cohomology of
Lyndon/Hochschild-Serre. Then we recall similar results of Moore’s for the
measurable group cohomology and of Hochschild-Mostow’s for the contin-
uous group cohomology. The main result of this chapter is the following.
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Theorem (LHS spectral sequences for finite quotients). Assume
that N is an open normal subgroup of an arbitrary topological group G. As-
sume that A is an arbitrary topological G-module. Then we have the follow-
ing:

1. There is a spectral sequence

Ep,q
2 := Hp

gr

(
G
/
N,Hq

c (N,A)
)
⇒ Hp+q

c (G,A) .

2. If
∣∣G/N ∣∣ <∞, then there is a spectral sequence

Ep,q
2 := Hp

gr

(
G
/
N,Hq

lc (N,A)
)
⇒ Hp+q

lc (G,A) .

3. Assume further that G is a Lie group and A a smooth G-module. If∣∣G/N ∣∣ <∞, then there is a spectral sequence

Ep,q
2 := Hp

gr

(
G
/
N,Hq

ls (N,A)
)
⇒ Hp+q

ls (G,A) .

Examples to which this proposition can be applied include relating the co-
homology of the identity component to that of the total space.
To prove this result we use a construction similar to the Grothendieck spec-
tral sequence and try to deal with the extra problems introduced due to
topology and continuity. More explicitly, we use a double complex and re-
late the two spectral sequences derived from it. The one will collapse be-
cause Hp

gr

(
G
/
N,Maplc (Gq+1, A)

n) vanishes for p > 0 due to the finiteness
condition, and so the cohomology of the double complex is isomorphic to
the cohomology of G. The other spectral sequence will give the required
E2-term.

In the appendix we present some technical results and definitions.

Conventions
We will use some conventions throughout. If X is either a pointed topological
space or a pointed set then we will denote by ∗X the distinguished (or base)
point of X. If {Ui}i∈I is a collection of subsets of some set X, then we will

denote Ui0,i1,...,in :=
n⋂
n=0

Uin . Also commonly we will use pri :
∏
i∈I

Xi −→ Xi for

the projection to the i-th factor and maybe sometimes even drop the i from the
subscript of pri if it is obvious to which factor we are projecting. Similarly we will
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use ii for the "inclusions" into a coproduct. If x is an element of
∏
i∈I

Xi, where

of course we will be talking about some category whose objects will have some
underlying set, like abelian groups, topological spaces and so on, we will denote
by xi or xi the element pri (x). If I is a set whose elements are tuples of other
elements, we will never write pr(i0,...,in) but rather pri0,...,in and similarly xi0,...,in for
the elements. All those conventions are quite common but we felt they should be
included to avoid possible confusion.



Chapter 1

General Background

In this first chapter we will recall some basic notions of general homological algebra
and spectral sequences. Most of the material covered should be familiar to the
reader. The purpose of the chapter is to fix notation. The references we are using
are [Wei94], [KS06], [McC01].

1.1 Homological Algebra

1.1.1 Cochain Complexes in Abelian Categories

In this section we will always assume that A is a category with a 0 object unless
explicitly stated otherwise.

Definition 1.1.1. We denote by Ch (A) the category with

Objects families C• = {Cn}n∈Z of objects of A together with morphisms dnC• :
Cn −→ Cn+1 such that dn+1

C• ◦ dnC• = 0 for all n,

Morphisms families f • = {fn ∈ A (Cn, Dn)}n∈Z , such that fn+1 ◦dnC• = dnD• ◦fn
for all n.

The objects of Ch (A) will be called cochain complexes or simply complexes,
while for each complex the morphisms dn : Cn −→ Cn+1 will be called differentials.
The object Cn will be called the n-th degree of the complex C•. If A is also abelian
we will use common notations for images, kernels and cohomology. So for each n
in Z we define the following functors Bn, Zn, Hn : Ch (A) −→ A, given on objects
by Bn (C•) = im

(
dn−1
C•

)
, Zn (C•) = ker (dnC•) and

Hn (C•) = coker (Bn (C•)→ Zn (C•)) ,

1



2 Chapter 1. General Background

while if f • : C• −→ D• is a morphism of cochain complexes then Bn(f •),
Zn(f •) and Hn(f •) are the morphisms induced by the universal properties of
Bn(D•), Zn(D•) and Hn(C•) respectively. Easily one sees that if A admits injec-
tive or projective limits indexed by some category I so does Ch (A). Explicitly
let α : I −→ Ch (A) be a functor, then we find its limit degree-wise

(colimα)n ∼= colimαn.

If A is abelian, one can easily check the fact that monomorphisms and epimor-
phisms in Ch (A) are normal, which together with the above comment shows that
the category of cochain complexes of A is additive (resp. abelian) if A is additive
(resp. abelian).

Remark 1.1.2. We will denote by Ch∗ (A) with ∗ in {b,+,−}, the full subcate-
gories of Ch (A) that consist of: a) for ∗ = b complexes C• for which all but finitely
many Cn vanish and call them bounded complexes, b) for ∗ = + complexes C• for
which there exists a in Z such that Cn = 0 for all n < a, and call those complexes
bounded below1 and c) for ∗ = − complexes C• for which there exists an a in Z
such that Cn = 0 for all n > a and call them bounded above complexes.

Definition 1.1.3. In an abelian category a complex C• is called acyclic if,Hn(C•) =
0 for all n 6= 0.

We assume now that A is abelian. Cochain complexes are rarely useful them-
selves, one is usually more interested in their cohomology. If f : C• −→ D• is a
cochain morphism such that Hn (f) is an isomorphism for all n, then f is called a
quasi-isomorphism and the two complexes are called quasi-isomorphic. A way to
check if f is a quasi-isomorphism is the notion of homotopies.

Definition 1.1.4. Let f, g be two cochain morphisms between C• and D•. A
cochain homotopy (or simply homotopy) between them s is a collection of mor-
phisms {sn : Cn −→ Dn−1}n∈Z such that fn − gn = dn−1

D• ◦ sn + sn+1 ◦ dnC• for all
n. If such a homotopy exists we call f and g homotopy equivalent or homotopic.
A morphism f will be called null-homotopic if f is homotopic to the zero mor-
phism. If s is a homotopy between f and the 0 morphism then s is also referred
to as a cochain contraction for f . If s is a cochain contraction of the identity idC• ,
then s is called a cochain contraction of the complex C•.
A complex C• is called split if we are given a family of morphisms sn : Cn −→ Cn−1

such that dn = dn ◦ sn+1 ◦ dn for all n. It is called split exact if idC• is homotopic
to the 0 morphism.

1if we are considering a subcategory of Ch+ (A) for which all complexes have a common such
a we will write Ch≥a (A) to denote it
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The following is obvious.

Lemma 1.1.5. If two cochain morphisms f and g are homotopic then Hn (f) =
Hn (g) for all n.

We will use the notion of double complexes later on, we recall their definition
in order to fix some notation.

Definition 1.1.6. Let A be category with a 0 object. A double complex is an
object of the category Ch (Ch (A)).

Remark 1.1.7. Explicitly a double complex is a family {Cp,q}p,q∈Z, of objects of
A, and families of morphisms{

dp,qh ∈ A
(
Cp,q, Cp+1,q

)}
p,q∈Z

and {
dp,qv ∈ A

(
Cp,q, Cp,q+1

)}
p,q∈Z ,

satisfying

dp,qh ◦ d
p−1,q
h = 0 , dp,qv ◦ dp,q−1

v = 0, and
dp,q+1
h ◦ dp,qv = dp+1,q

v ◦ dp,qh ,

for all p and q in Z. The morphisms dh will be called horizontal differentials
and the dv vertical differentials. In case A is additive (in fact in most cases it will
be abelian) we can perform the following total complex constructions. Assume
that A admits countable products, then we denote by

tot
∏

: Ch (Ch (A)) −→ Ch (A) (1.1)

the functor, which assigns to a double complex C a complex tot
∏

(C) whose
n-degree is tot

∏
(C)n :=

∏
p+q=n

Cp,q, and the differentials Dn : tot
∏

(C)n −→

tot
∏

(C)n+1 are determined by demanding

prp,n+1−p ◦Dn = dp−1,n−p+1
h ◦ prp−1,n−p+1 + (−1)p dp,n−pv ◦ prp,n−p. (1.2)

If the category admits countable coproducts we can define a similar functor
tot

∐
. We will make use of a bounded version of them. We will denote by tot the

functor

tot : Ch+
(
Ch+ (A)

)
−→ Ch+ (A) , (1.3)



4 Chapter 1. General Background

given by tot (C•,•)n :=
⊕
p+q=n

Cp,q and differentials as in (1.2).

In some cases double complexes are defined in another way. That is instead of
commuting, the differentials anticommute. Then the definition of the total com-
plex is the same as above without the (−1)p factor in its total differential (1.2).
Both definitions though are equivalent since we can switch from commuting to
anticommuting differentials by simply multiplying the horizontal differentials by
(−1)p.

1.1.2 Derived Functors

Definition 1.1.8. A cohomological δ-functor T : A −→ B between two abelian
categoriesA and B is a collection of additive functors {T n : A −→ B}n∈Z, together
with morphisms {

T δ
n
A,B,C : T n (C) −→ T n+1 (A)

}
n∈Z ,

for each short exact sequence 0→ A→ B → C → 0, natural in the sense that
if we have a morphism of short exact sequences

0 // A //

��

B //

��

C //

��

0

0 // A′ // B′ // C ′ // 0

, (1.4)

then the diagram

T n (C) //

��

T n+1 (A)

��
T n (C ′) // T n+1 (A′)

(1.5)

commutes. A morphism of delta functors φ : S −→ T is a collection of natural
transformations φn : T n −→ Sn, commuting with the morphisms δ.
A δ-functor T is called universal if, given another one S and a natural transfor-
mation f : T 0 −→ S0, there exists unique morphism of δ-functor φ : T −→ S
such that φ0 = f .

Definition 1.1.9. An object I in a category C is called injective if, given a mor-
phism f : A −→ I and a monomorphism g : A −→ B, there exists a morphism
f̃ : B −→ I such that f = f̃ ◦ g. Diagrammatically we have the following
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0 // A
g //

f

��

B

∃f̃~~|
|

|
|

I .

(1.6)

Definition 1.1.10. A (right) resolution of an object A of an abelian category A
is an acyclic complex R• of Ch≥0 (A) together with a morphism ε : A −→ R0,
such that the following sequence is exact

0 //A
ε //R0 //R1 . (1.7)

An injective resolution of A is a right resolution for which all Ri are injective
objects of A.

Remark 1.1.11. We will use sometimes the notation A
ε // R• to encode the

information of Definition 1.1.10.

We will give some technical lemmas which will ensure that our definition of
derived functors later on is sound.

Lemma 1.1.12 ([KS06] Lemma 13.2.4). Let f be a morphism between an ex-
act complex X• and a bounded below complex of injectives I•. Then f is homotopic
to 0.

Corollary 1.1.13. Assume A,B are objects of an abelian category A and f a

morphism between them. Let A
iR // R• be a right resolution of A, let I• be a

complex of injectives in Ch≥0 (A) and let l be a morphism l : B −→ I0. Then
there exists a cochain complex morphism F from R• to I•, which is unique up to
homotopy, such that l ◦ f = F 0 ◦ iR.

Corollary 1.1.14. Exact bounded below complexes of injectives are split.

Definition 1.1.15. A category A has enough injectives if for each object A there
exists a monomorphism A→ I into an injective object.

Injective objects of A and Ch (A) are related as follows.

Lemma 1.1.16. An object in Ch (A) is injective if and only if it is a split exact
complex of injectives. It follows that if A has enough injectives so does Ch (A).

With the help of Corollary 1.1.13, we can now define right derived functors.
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Definition 1.1.17. Let F : A −→ B be a left exact functor between abelian
categories. Assume that A has enough injectives. We define the functors RiF :
A −→ B, to be given on an object A of A by

RiF (A) := H i (F (I)) (1.8)

where A→ I• is an injective resolution of A. RiF are called the right derived
functors of F .

Remark 1.1.18. Definition 1.8 is sound since by Corollary 1.1.13 if A
ε′ // J•

is another injective resolution of A, then Hn (F (I•)) ∼= Hn (F (J•)) for all n.
Actually those isomorphisms are natural in the following sense. Since the category
A has enough injectives we can make a choice of an injective resolution I (A) for
each object A in A and by Corollary 1.1.13 we can also make a choice of a cochain
morphism I (A)→ I (B) for each morphism between two objects A and B, so we
get a functor I (−) : A −→ Ch≥0 (A). If J (−) represents another such choice of
injective resolutions the functors Hn◦F ◦I and Hn◦F ◦J are naturally isomorphic
by Corollary 1.1.13 (see also [Wei94] Lemma 2.4.1).

Example 1.1.19. Let A be an abelian category and assume both A and its oppo-
site category have enough injectives and A and B are objects of A. The functors
A (A,−) : A −→ Ab and A (−, B) : Aop −→ Ab are left exact. One can show2

that their right derived functors are isomorphic on objects, those derived functors
are usually called Ext functors and are denoted by

ExtnA (A,B) := RiA (A,−) (B) ∼= RiA (−, B) (A) . (1.9)

Since we will use it later on to define explicitly group cohomology, we will take
some space here to explain how one can compute Rn (A (−, B)) (A). By defini-
tion RnA (−, B) (A) = Hn (A (I∗, B)) where A → I• is an injective resolution of
A in Aop. Note that such a resolution is equivalent to a sequence of morphisms
∂n : In −→ In−1 for n bigger than 0, which is exact except in degree 0 where
coker (∂1) ∼= A, and now both morphisms and colimits are considered in A. Since
the objects In are injective in Aop they are projective in A, i.e. for each epimor-
phism B′ → B′′ and each morphism In → B′′ there is a morphism completing the
following diagram

In

��}}{
{

{
{

B′ // B′′ // 0.

(1.10)

2we will outline one of the possible proofs in the section on spectral sequences
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Examples of projective objects are free modules in categories of modules over
rings. So to compute Ext∗A (A,B) we can do either of the following. We can
find an injective resolution B

e // I• of B in A and compute the cohomology
of the complex A (A, I•). The other option is to find projective objects Pn and
morphisms ∂n : Pn −→ Pn−1 for all naturals n which satisfy the conditions written
above and then compute the cohomology of the complex A (P•, B).

Remark 1.1.20. It is known that right derived functors form universal cohomo-
logical δ-functors (e.g. [Wei94] Theorem 2.7.4). In the next section we review the
main example that is interesting for the current work.

1.1.3 Group Cohomology

Throughout this section G will be a group and G-Mod will denote the category
with objects G-modules, i.e. abelian groups with a left G-action by group auto-
morphisms, and morphisms G-equivariant group homomorphisms. As is common,
if A is a G-module we will denote by A also its underlying abelian group and
implicitly assume some action is given. Trivially G-Mod is abelian.

Definition 1.1.21. Define by −G : G-Mod −→ Ab the functor given on objects
by AG :=

{
a ∈ A

∣∣g.a = a, ∀g ∈ G
}
. It is trivially left exact. Its right derived

functors are called the group cohomology of G

Hn
gr (G,A) := Rn

(
−G
)

(A) . (1.11)

Theorem 1.1.22. We consider Z as a trivial G-module, i.e. g.z := z for all g
and z.

a) Let A be a G-module, then:

AG ∼= G-Mod (Z, A) . (1.12)

The following natural isomorphisms follow from the universality of delta func-
tors

Hn
gr (G,A) = Rn

(
−G
)

(A) ∼= Rn (G-Mod (Z,−)) (A)

= ExtnG-Mod (Z, A)

= Rn (G-Mod (−, A)) (Z) .
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b) Let X be a set with a left free action of G. Consider the following complex of
G-modules

{
BX
n := spanZ

{
(x0, . . . , xn)

∣∣xi ∈ X}}n∈N , (1.13)

with differentials dn (x0, . . . , xn) :=
n∑
i=0

(−1)i (x0, . . . , x̂i, . . . , xn) and each BX
n

is endowed with the G-module structure generated by

g. (x0, . . . , xn) := (gx0, . . . , gxn) .

This gives a resolution of Z in the category of G-modules. Since each BX
n is

a free abelian group, it is also a projective G-module. So we get an injective
resolution Z→ BX

• in G-Modop (by Example 1.1.19).

Example 1.1.23. a) The most usual example is the case that X = G, and then
BG
n is called the bar resolution.

b) Let G, G̃ be two groups such that G is a normal subgroup of G̃, then to compute
Hn

gr (G,A) via some BX
n as above, set X = G̃.

Let X be a G-space. We endow Set (Xn, A) with a G-module structure defined
via

(g.f) (x1, . . . , xn) := g.f
(
g−1x1, . . . , g

−1xn
)

(1.14)

Corollary 1.1.24 (Explicit definition of group cohomology). Let G be a
group and A be a G-module. Denote by C• the complex whose n-degree is 0 for
n < 0 and Set (Gn+1, A)

G (homogeneous cochains) for n ≥ 0, and its differentials
are

df (g0, . . . , gn) :=
n∑
i=0

(−1)i f (g0, . . . , ĝi, . . . , gn) . (1.15)

Then

Hn
gr (G,A) ∼= Hn (C•) . (1.16)

Proof. Simply one notes that Set (Gn+1, A)
G ∼= G-Mod

(
BG
n , A

)
. �
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Corollary 1.1.25. Let N be a normal subgroup of G. N acts freely on G, and
since N-Mod

(
BG
n , A

) ∼= Set (Gn+1, A)
N , we have

Hn
gr (N,A) ∼= Hn

(
Set

(
G•+1, A

)N) (1.17)

1.2 Spectral Sequences

1.2.1 Basic Definitions

Spectral sequences are closely related to the notion of filtrations. So we quickly
recall them here. A filtration of an object A in a category A is family FA :=
{F nA}n∈Z of objects of A, each coming with a monomorphism in : F nA −→ A
and another one in−1

n : F nA −→ F n−1A, s.t. in−1◦ in−1
n = in for all n in Z. We will

call the filtration bounded if there exists integers nb and na for which F nbA = 0
and in = idA for all n ≤ na. A filtration of a complex C• in Ch≥0 (A) will be
called canonically bounded if for all degrees n of C•, F n+1Cn = 0 and im = idCn

for all m ≤ 0. In this section A will always denote an abelian category.

Definition 1.2.1. 1. A (cohomological) spectral sequence E in A consists of
the following piece of data

(a) a family {Ei,j
r } of objects of A, with i, j in Z and r in N3.

(b) morphisms di,jr : Ei,j
r −→ Ei+r,j−r+1

r for all i, j in Z and r in N, which
we will call differentials and satisfy

di+r,j−r+1
r ◦ di,jr = 0,

(c) isomorphisms

Si,j : Ei,j
r+1 −→ ker

(
di,jr
) /

im
(
di−r,j+r−1
r

)
.

2. A morphism of spectral sequences is a family of morphisms fp,qr : Ep,q
r −→

E ′p,qr , such that (d′)p,qr ◦ fp,qr = fp+r,q−r+1
r ◦ dp,qr and for each r, fp,qr+1 are the

maps which are induced in cohomology from fp,qr .

There is another description of a spectral sequence which will come in handy
later on. Assume that we have a spectral sequence E. For each a and r in N we
can get a tower of subobjects

3if we are given such objects only of r ≥ a for some natural a, then we say that the spectral
sequence starts at a
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0 = Bp,q
a ⊆ Bp,q

a+1 ⊆ . . . Bp,q
a+r ⊆ Zp,q

a+r ⊆ · · · ⊆ Zp,q
a+1 ⊆ Zp,q

a = Ep,q
a , (1.18)

which satisfy Ep,q
n
∼= Zp,q

n

/
Bp,q
n for all n ≥ a and

Zp,q
n

/
Zp,q
n+1
∼= Bp+n,q−n+1

n+1

/
Bp+n,q−n+1
n . (1.19)

More useful is that the converse also holds. So assume that for some a in N we
are given a tower of subobjects as in (1.18), and also isomorphisms as in (1.19).
Then defining Ep,q

n := Zp,q
n

/
Bp,q
n and

dp,qr : Ep,q
r = Zp,q

r

/
Bp,q
r � Zp,q

r

/
Zp,q
r+1

∼= Bp+r,q−r+1
r+1

/
Bp+r,q−r+a
r

↪→ Zp+r,q−r+1
r

/
Bp+r,q−r+1
r = Ep+r,q−r+1

r

give a spectral sequence starting at a.

Remark 1.2.2. We will never refer to the isomorphisms Si,j of Definition 1.2.1
explicitly. We will always implicitly assume a "canonical" identification of Er+1

with the cohomology of dr.

Example 1.2.3. Let C• be a complex in A, and assume it has a filtration FC•.
We will see later on that from that data one can derive a spectral sequence starting
at degree 1 with Ep,q

1 = Hp+q
(
F pC•

/
F p+1C•

)
.

Definition 1.2.4. 1. A spectral sequence is called bounded, if for each r there
are only finitely many terms Ep,q

r 6= 0. In that case for each pair (p, q) there
exists a in N such that Ep,q

r+1
∼= Ep,q

r for all r ≥ a. This stable value will be
denoted by Ep,q

∞ .

2. Let {Hn}n∈Z be a family of objects of A. We say that a bounded spectral
sequence E converges to H•, if for all n we are given a finite filtration

0 = F sHn ⊆ · · · ⊆ F tHn = Hn

and isomorphisms Ep,q
∞
∼= F pHp+q

/
F p+1Hp+q. In that case we will write

Ep,q
a ⇒ Hp+q.
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Remark 1.2.5. This is a good point for a comment on usual notation of spectral
sequences and some ambiguities that occur. The usual jargon in results about
spectral sequences reads usually roughly as follows "There is a spectral sequence
starting at degree a converging to the cohomology H". Clearly this statement
does not include enough information to define a spectral sequence. Knowing the
Ea term does not give us the differentials da, and even if we had them, we could
compute the Ea+1-term but at this stage again we have no information about
the differentials. So this statement is a bit problematic at first glance. What
people actually mean by statements of the previous type is the following, "There
is a procedure, to start from the Ea term and iteratively build a spectral sequence,
which in the end converges toH". The main point here is that there is a procedure.
So if one needs differentials or higher degree terms he has to go through the proof
of the above result and see how the differentials are constructed. Having made this
remark we will also use the above abusive jargon, but the reader should always
have in her/his mind that the actual definition of the spectral sequence exists in
the proof of the result and not on its statement.

Remark 1.2.6. In general spectral sequences can be unbounded and their con-
vergence becomes a more subtle issue. In the current work this generality is not
necessary since we will be mainly interested about "first quadrant" spectral se-
quences, i.e. Ep,q

r = 0 for all r and p, q < 0. So in the following by spectral
sequence we will always mean a bounded one and we will not mention it.

1.2.2 Spectral Sequence of filtration

The most usual short description of spectral sequences is "algorithms for comput-
ing cohomology". In this paragraph we will see how this can be made concrete.
The introduction of spectral sequences was done by Jean Leray, when he tried to
compute sheaf cohomology by using filtrations. Until today the most commonly
used (and maybe only) way for one to construct a spectral sequence is via filtration
of complexes. As we mentioned we will only consider bounded spectral sequences,
so we will assume that the filtrations on the complexes will always be bounded.
We have the following well-known theorem.

Theorem 1.2.7 ([Wei94] Theorem 5.5.1). Let A be an abelian category. Con-
sider a filtered complex FC• in A. Assume that the filtration is bounded, then there
is a bounded convergent spectral sequence

Ep,q
1 := Hp+q

(
F pC•

/
F p+1C•

)
⇒ Hp+q (C•) . (1.20)

Proof. As remarked earlier such a statement does not make sense by itself, but
rather should be accompanied with the construction of the spectral sequence. We
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will only mention the construction here for completeness. We will not repeat the
proof that the construction actually gives the result since this can be found in
many places, e.g. [Wei94], [McC01].
We define

ηp,n : F pCn −→ F pCn
/
F p+1Cn =: Ep,n

0

Ap,nr := F pCn ×Cn+1 F p+rCn+1

Zp,n
r := ηp,n (Ap,nr )

Bp+r,n+1
r+1 := ηp+r,n+1 (d (Ap,nr ))

Ep,n
r := Zp,n

r

/
Bp,n
r .

Zp,n
r and Bp,n

r give a tower of submodules as in (1.18), one can show that

Zp,n
r

/
Zp,n
r+1
∼= Bp+r,n+1

r+1

/
Bp+r,n+1
r .

It should be noted that this last isomorphism is induced by the differential
on C•. The filtration of Hp+q (C•), which provides the isomorphism with the
E∞-terms, is the one induced on cohomology from the one on C•. �

Remark 1.2.8. The idea, behind the construction of the spectral sequence in
the proof of Theorem (1.2.7), is basically that we step by step "approach" the
cohomology of C•, by considering not exactly cocycles, but rather cochains that
are iteratively included in smaller subsets F p+rC•. We will not repeat the details
here, but we should point out that this construction is as in the book of Weibel,
even though his proofs use modules, each step in the proof can be carried out
exactly in any abelian category in an element free way using the technical facts
presented in Appendix A.

An interesting source of such spectral sequences is double complexes.

Corollary 1.2.9. Let C•,• be a first quadrant double complex in A. Then there
are two spectral sequences converging to the cohomology of the total complex

IIEp,q
2 := Hp

∗H
q
×
(
C∗,×

)
⇒ Hp+q (tot (C•,•)) (1.21)

and

IEp,q
2 := Hp

∗H
q
×
(
C×,∗

)
⇒ Hp+q (tot (C•,•)) (1.22)
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Proof. This follows from the Theorem (1.2.7), by simply noticing that a double
complex gives rise to two filtrations. We will describe only one here, the other is
exactly the same. We consider the filtration

F p (tot (C•,•))n :=
n⊕
i=p

Ci,n−i.

It is clearly an increasing filtration of tot (C•,•)n, and is compatible with the
total differential. We apply Theorem (1.2.7) to this filtration to get a spectral
sequence as in (1.20). Let us compute the E2-term. Clearly

F p (totC)n
/
F p+1 (totC)n ∼= Cp,n−p.

Then Ep,q
1 = Hp+q (Cp,•−p) ∼= Hq (Cp,•). The d1 differential is induced from the

total differential. Clearly it is the map that the horizontal differential induces in
cohomology4. �

Remark 1.2.10. We will give an intuitive more explicit description of the two
spectral sequences in Corollary (1.2.9). For simplicity we consider that A is the
category of modules over some ring R. We will give only a rough outline skip-
ping many technical and bookkeeping details. Up to equivalence we can describe
elements of Ep,q

r by tuples a ∈ Cp,q
⊕

Cp+1,q−1
⊕
· · ·
⊕

Cp+r−1,q−r+1, such that
dva

p,q = 0, dhap,q = dva
p+1,q−1, . . . dhap+r−2,q−r+2 = dva

p+r−1,q−r+1. While the dif-
ferential dp,qr is induced on classes by the assignment a 7→ (dha

p+r−1,q−r+1, 0, . . . , 0).
The "up to equivalence" part gives the convergence. Many of the relations come
from moding out classes coming from the total differentials and only make sure
that things are well defined. It is only a matter of bookkeeping to write it explicitly
so we will avoid it. There is an important relation though, which is that a v 0
if ap,q = 0. That means that even though the term E0,n

n+2, has classes represented
by cocycles of the total differential, it is only a quotient of the cohomology of the
total complex by exactly F 1Hn (totC). Similarly for the other E∞-terms we see
the usual isomorphism about convergence as in part (2) of Definition (1.2.4).

Example 1.2.11. As an example use of Corollary 1.2.9, we will outline a possible
proof of the fact that Rn (A (−, B)) (A) ∼= Rn (A (A,−)) (B). Pick an injective
resolution I• inA of B and an injective resolution P • of A inAop. We can get a first
quadrant double complex Cp,q = A (P p, Iq) with differentials the obvious ones. The
spectral sequences coming from filtering either by columns or rows will collapse.
To see that note that in the E1-page for one of them we get Hq (A (P p, I∗)) =

4Note that this is a bit wrong since we consider commuting double complexes so the total
differential is (dv, (−1)p dh), so more precisely the d1 differential in the spectral sequence is
((−1)p dh)∗



Rq (A (P p,−)) (B). But since each P p is a projective object in A it is clear that
A (P p,−) are exact functors so their derived functors vanish except in degree 0.
So the E2-page of the spectral sequence will be 0 except from when q = 0 when
we will have

Ep,0
2 = Hp (A (P ∗, B)) = Rp (A (−, B)) (A) .

So we already know that the cohomology of the total complex is isomorphic to
Rq (A (−, B)) (A). If we filter in the other way we will see that the cohomology of
the entire complex is isomorphic to Rq (A (A,−)) (B).

An important application of Corollary (1.2.9), is the so called Grothendieck
spectral sequence. This is quite well-known but it relates to our construction of
LHS spectral sequences, so it is quickly recalled here. The following is part of
[Wei94, Theorem 5.8.3].

Theorem 1.2.12 (Grothendieck Spectral Sequences). Let

C F //

G◦F ��?
??

??
??

D

G~~~~
~~

~~
~

A

,

be left exact functors between abelian categories. Assume that C and D have
enough injectives, and that F (I) is G-acyclic if I is injective. Then for all objects
A of C there exists a convergent spectral sequence

Ep,q
2 = RpGRqF (A)⇒ Rp+q (G ◦ F ) (A) . (1.23)



Chapter 2

Topological Group Cohomology

In Subsection 1.1.3 we saw the definition of group cohomology. Moving to topolog-
ical groups one might ask what should be a cohomology theory for them. This is
not straightforward since the category of topological abelian groups is not abelian.
So there is no obvious abstract way to define cohomology for topological groups as
is the case with discrete groups. One has to create models by hand and maybe in
an ad hoc way. This was done by many people in the past (e.g. [HM62], [Moo76],
[Cat77], [Seg70]). We will review some properties that such a cohomology theory
should satisfy. Assume that G is a topological group and A a topological abelian
group with a continuous left action of G by group automorphisms. The latter
will be called continuous G-module. Assume that Hn

tgc (G,A) are the cohomology
groups of G with values in A. We would like first of all that Hn

tgc (G,−) are δ-
functors (in the sense of Definition A.1.15). Distinguished composable morphisms
in the category of continuous G-modules will be considered sequences

0→ A′ → A→ A′′ → 0

which are in any case short exact as abelian groups, and also satisfy some
topological condition, e.g. it is a trivial or a locally trivial bundle. Another
property that the groups Hn

tgc should satisfy is the interpretation of the low degree
terms. We recall that in the discrete group theory caseH0 (G,A) is the G-invariant
subspace of A, H1 (G,A) are equivalence classes of crossed homomorphisms (or
derivations) and H2 (G,A) are equivalence classes of extensions A → E → G1.
We would like to have similar interpretations in the topological case. Something
useful for example would be ifH2

tgc (G,A) classifies extensions of topological groups
A→ E → G which are locally trivial bundles.
In the first section we will spend some time investigating one of them, the so called

1actually equivalence classes of such extensions for which conjugation of elements of A in E,
is the same as the action of G.

15
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locally continuous model. In the second section we will review some of the other
models that were proposed by people over the years in an attempt to create such
a cohomology theory and the classification theory of them that was discovered
recently in [WW15].

2.1 Locally Continuous Model

The locally continuous model we will discuss in this section is defined as the
cohomology of a generalized bar complex. But instead of using arbitrary functions
we use the so called locally continuous. Before we introduce the model we take a
moment to discuss those weird functions.

2.1.1 Locally Continuous Functions

Locally continuous functions are not very well documented and unfortunately have
some very bad properties (e.g. they do not compose). We will mention a few
properties of them before introducing locally continuous group cohomology. Let
us fix some notation first. Let X, Y be two topological spaces. We denote by
Maplc (X, Y ) the set functions f : X −→ Y , whose restriction to some non-empty
open subset U of X is continuous. In case the space X is pointed and the subsets
U are also neighborhoods of the base point of X, we denote the corresponding
set of functions by Map′lc (X, Y ). Assuming that Y is also pointed, the subset of
Map′lc (X, Y ) containing pointed functions is denoted by Maplc• (X, Y ). Functions
belonging to any of those sets will be called in general locally continuous functions,
and if f is one, the open subset U such that f

∣∣
U
is continuous will be called its

neighborhood of continuity.
Composing locally continuous functions is a bit tricky. In essence they compose
if the image of the first intersects non-trivially the neighborhood of continuity of
the second. We state a proposition to clarify that.

Proposition 2.1.1. Let X, Y , Z be topological spaces, and f : X −→ Y ,
g : Y −→ Z two functions of the underlying sets. Assume f

∣∣
U

and g
∣∣
V

are
continuous, with U, V (possibly empty) open subsets of X and Y respectively. Then
g ◦ f

∣∣
U∩f−1(V )

, is continuous.

The proof is elementary and straightforward. Note that the result is not very
interesting because empty functions are continuous. Let us see some interesting
specific situations.

Corollary 2.1.2. i) If g is continuous and f is locally continuous then g ◦ f is
locally continuous.
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ii) If g
∣∣
V
is continuous for V open, f is continuous and f−1 (V ) 6= ∅ then g ◦ f

is locally continuous.

iii) If g
∣∣
V

is continuous for V open, f
∣∣
U

is continuous for U open and V ∩
f−1 (U) 6= ∅ then g ◦ f is locally continuous.

Assuming further that X, Y, Z are pointed, we get the following.

iv) If g
∣∣
V
is continuous for V an open neighborhood of ∗Y , f

∣∣
U
is continuous for

U an open neighborhood of ∗X and V ∩ f−1 (U) 6= ∅ then g ◦ f is an element
of Map′lc (X,Z).

iiv) If g, f are locally continuous on open neighborhoods of the base points and
pointed then g ◦ f is pointed and locally continuous on a neighborhood of the
base point of X.

We see that we can form a category LTop•, by considering objects pointed
topological spaces and morphisms between X and Y the set Maplc• (X, Y ). It is
usually of interest in a category C if the hom-functor of the category can be turned
into an endofunctor, and it is even more interesting if this endofunctor becomes
right adjoint to the product in the category. This is true for example for the
category of sets, certain interesting subcategories of topological spaces (pointed
and not), and many other examples. Stated in explicit terms, assume we are in a
subcategory of topological spaces and continuous functions between them, we want
morphisms f : X ×Y −→ Z, to be in one to one correspondence with morphisms
F : X −→ Hom (Y, Z)2, via the assignment F (x)(y) = f(x, y). For topological
spaces this holds if Y is locally compact and one endows Hom (Y, Z) with the
compact open topology. We will see in the following, that such a result will always
fail for locally continuous functions (at least in some reasonable generality, because
of course if X, Y , Z are discrete, such a result holds trivially).
An interesting tool concerning morphisms and mapping spaces is the evaluation
map, i.e. ev : Maplc (X, Y )×X −→ Y , (f, x) 7→ f (x). Clearly there is no topology
on Maplc (X, Y ) making ev continuous. To argue for that one simply notes that
each function of the underlying sets f : X −→ Y , between two topological
spaces can be written as f = ev |F ◦ (if × idX), where F is a subset of Set (X, Y ),
ev |F : F×X −→ Y defined as above, and if×idX : {f}×X −→ F×X the obvious
inclusion map. Clearly if ev |F is continuous then f is continuous, and so F contains
only continuous functions. In the following we will turn ev into a locally continuous
function. Denote by Maplc (U ;X, Y ), the subset of Maplc (X, Y ), having functions
f such that f

∣∣
U

is continuous. Denote also COlc (K,O), the locally continuous
functions such that f (K) ⊆ U .

2we will use the generic notation Hom(−,−), for subfunctors of Set (−,−) when we are
dealing with topological spaces
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Definition 2.1.3. We denote by τ co+lc the topology on Maplc (X, Y ), generated
by the union of

{
Maplc (U ;X, Y )

∣∣ U open in X
}

and

{
COlc (K,V )

∣∣ K compact in X and V open in Y
}
.

So τ co+lc is a refined version of the usual compact open topology. The interest-
ing fact about it, is the following result.

Proposition 2.1.4. Let X and Y be topological spaces with X being locally com-
pact. For any open subset U ⊆ X, ev

∣∣
Maplc(U ;X,Y )×U is continuous.

Proof. Let (f, u) be a tuple in Maplc (U ;X, Y ) × U . Since X is locally compact
and U is open in X, it follows that U is also locally compact. By assumption
f
∣∣
U

is continuous, so for each neighborhood N of f (u), there exists a compact
neighborhood K ⊆ U of u, such that f

∣∣
U

(K) ⊆ N . Clearly f is in COlc (K,N).
And finally we deduce

ev ((CO (K,N) ∩Maplc (U ;X, Y ))×K) ⊆ N.

And so ev
∣∣
Maplc(U ;X,Y )×U is continuous. �

It is clear that Maplc (X, Y ) with topology τ co+lc is Hausdorff if Y is so.

Proposition 2.1.5. The following injections

(
Maplc (X, Y ) , τ co+lc

)
↪→ (Maplc (X, Y ) , τ co) ↪→ (Maplc (X, Y ) , τ pc) ,

are continuous, where τ co denotes the compact-open topology and τ pc the topol-
ogy of point-wise convergence. So if Y is Hausdorff the above three spaces are
Hausdorff.

Proof. τ pc is the topology induced by Y X . A subbasis for Y X is given by all sets of
the form CO ({x} , N), which are all included in τ co, and by definition τ co+lc ⊇ τ co,
so the above functions are continuous. The Hausdorff property results from the
fact that products of Hausdorff spaces are Hausdorff. �
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Let Hom be any of Maplc, Map′lc or Maplc• and ⊗ either the product of
topological spaces or the smash product of pointed topological spaces in the re-
spective cases. We will close this subsection with some arguments that the sets
Hom (X ⊗ Y, Z) and Hom (X,Hom (Y, Z)) cannot be identified in general for ar-
bitrary topological spaces (or pointed topological spaces in the appropriate cases)
, for any topology on Hom (Y, Z). We denote by

φ : Hom (X ⊗ Y, Z) −→ Set (X,Set (Y, Z))

the function defined by φ (f) (x) (y) := f (x⊗ y), and we denote by

ψ : Hom (X,Hom (Y, Z)) −→ Set (X ⊗ Y, Z)

the function defined by ψ (F ) (x⊗ y) := F (x) (y). Also denote by

for1 : Hom (X ⊗ Y, Z) −→ Set (X ⊗ Y, Z)

and

for2 : Hom (X,Hom (Y, Z)) −→ Set (X,Set (Y, Z))

the functions associating to some continuous function f its underlying function
on sets. We have the following easy lemma which exhibits that φ and ψ cannot
provide lifts which are inverse isomorphisms, which in turn means that the sets
Hom (X ⊗ Y, Z) and Hom (X,Hom (Y, Z)) cannot be identified in the usual way.

Lemma 2.1.6. There is no topology on Hom (R,R), such that φ factors through
for2.

It is actually obvious that something stronger holds, namely that there is a
subset U ⊆ Hom (R⊗ R,R) such that for−1

2 (φ (U)) = ∅. This is pretty straight-
forward since there are locally continuous functions which have restrictions to some
subsets which are nowhere continuous.

Proof. An easy contradiction to the existence of such a lift is provided by the
following function. Define f : R ⊗ R −→ R, given by f (x⊗ y) := xy for
x2 + y2 ≤ 1, and f (x⊗ y) := 1 − D

(xy
2

)
otherwise, where D is the Dirichlet

function. Clearly f is locally continuous but φ (f) (2) is nowhere continuous so
not locally continuous and not an element of Hom (R,R). �

Lemma 2.1.6 is the main reason for restricting to finite quotients in our attempt
to derive an LHS result for the locally continuous group cohomology in Subsection
4.2.
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2.1.2 Locally Continuous Group Cohomology

Locally continuous group cohomology was first introduced by Cattaneo in [Cat77],
while first used in applications (in physics in fact) by Tuynman and Wiegerinck in
[TW87]. Recently, the locally smooth case was studied by Neeb (e.g. in [Nee02]),
while (as we will see in the next paragraph) their relation to other cohomology
theories for topological groups was studied by Wagemann and Wockel in [WW15].
We will give a short recap of it in this section.
First let us fix some notation. Assume G is a topological group, X and Y are
G-spaces and F be a subset of Set (X, Y ). Denote by

FG :=
{
f ∈ F

∣∣ such that g.f (x) = f (g.x)
}
, (2.1)

in some sense the "invariant" functions of F 3. Let A be a continuous G-module.
We define the following families of abelian groups

Cn
lc (G,A) := Map′lc

(
Gn+1, A

)G
, (2.2)

and

Cn
lc• (G,A) :=

{
Map′lc (G,A)G for n = 0

Maplc• (Gn+1, A)
G for n > 0

. (2.3)

Remark 2.1.7. If we have defined (2.3) as Maplc• (Gn+1, A)
G, for all n, we would

get cohomology groups isomorphic except in degree 0, where they would be trivial.
But it is desirable for group cohomology theories to have H0 (G,A) ∼= AG. So we
had to introduce this "non-homogeneity".

The assignment

dn (f) (g0, . . . , gn+1) :=
n+1∑
i=0

(−1)i f (g0, . . . , ĝi, . . . , gn+1) , (2.4)

makes both (2.2) and (2.3) complexes of abelian groups.
The most commonly used is the first one but the second has functions with nicer
properties as is revealed by Corollary 2.1.2. Nevertheless they have the same
cohomology.

Proposition 2.1.8. The cohomology of the complexes (2.2) and (2.3) is isomor-
phic.

3Note that it might be that the set F might not be a G-space via an action of the form
(g.f) (x) = gf

(
g−1x

)
, this is why the previous will not be the G-invariance functor applied to

some G-set, and one needs a notation as above.
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Proof. This follows from the dual Dold-Kan correspondence, since the complex of
"normalized" cochains, i.e. f (g0, . . . , gn) = 0 if for some i, gi = gi+1, injects to both
and by the Dold-Kan correspondence those inclusions are quasi-isomorphisms. �

Definition 2.1.9. The locally continuous group cohomology of G with values in
A, is defined for n in N as

Hn
lc (G,A) := Hn (C∗lc• (G,A)) . (2.5)

From now on we also denote by Map∆c (Xn, Y ) the set of functions f : Xn −→
Y such that there exits some open neighborhood U of the diagonal ofXn, such that
f
∣∣
U
is continuous. We call those functions "diagonally continuous". In the previous

definitions of locally continuous group cohomology (e.g. in [WW15]) people have
used those functions instead. The cohomology is canonically isomorphic though.
The easy way to see that is to simply notice that the assignments

φ : Map′lc (Gn, A) −→ Map∆c

(
Gn+1, A

)G
: f 7→ F,

with F (g0, . . . , gn) := g0.f
(
g−1

0 g1, . . . , g
−1
n−1gn

)
, and

ψ : Map∆c

(
Gn+1, A

)G −→ Map′lc (Gn, A) : F 7→ f,

with f (g1, . . . , gn) := F (1, g1, g1g2, . . . , g1 . . . gn), which are isomorphisms, im-
ply actually that Map′lc (Gn, A) ∼= Map′lc (Gn+1, A)

G. But we will get this isomor-
phism as a corollary of a somewhat stronger statement.

Lemma 2.1.10. Let f be in Map′lc (Xn, Y )G. Then there exists an open neighbor-
hood U of

⋃
g∈G

(g.∗X , . . . , g.∗X), such that f
∣∣
U
is continuous.

Proof. By assumption f
∣∣
V

is continuous, where V is an open neighborhood of
(∗X , . . . , ∗X). We denote Vg := g.V for g in G. Note that

f−1 (W )
⋂

g.Ω = g.
(
f−1

(
g−1.W

)⋂
Ω
)
, (2.6)

holds for all subsets W ⊆ Y and Ω ⊆ Xn.
Denote by U :=

⋃
g∈G

Vg and for all subsets W using (2.6) one gets

f |−1
U (W ) =

(⋃
g∈G

g.
(
f |−1
V

(
g−1.W

)))⋂
U. (2.7)

Now for any element g ∈ G and any G-space X the assignment x 7→ g.x is
a homeomorphism, and arbitrary unions of open subsets are open so U is open
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and furthermore it contains
⋃
g∈G

(g.∗X , . . . , g.∗X). Also f |V is continuous, g−1.W

are open and so the right hand side of (2.7) is an open subset of U . So f |U is
continuous, and the claim is proven. �

We can define now the complex
{

Map∆c (Gn+1, A)
G
}
n∈N

, with the same differ-
ential as in (2.4). The homology of this complex is the one that was used so far.
But as a corollary of the above one gets:

Proposition 2.1.11. By Lemma 2.1.10 we deduce that

Map′lc
(
Gn+1, A

)G ∼= Map∆c

(
Gn+1, A

)G
. (2.8)

Now in the case of group cohomology, the bar resolution can be constructed
by any set on which G acts freely. We now show a similar version in the case of
locally continuous group cohomology.

Proposition 2.1.12. Let G be a topological group, A a continuous G-module and
X a G-space. Assume that there exists a pointed locally continuous function ψ :
X −→ G that is G-equivariant. Then:

Hn
lc (G,A) ∼= Hn

(
Maplc•

(
X∗+1, A

)G)
. (2.9)

Proof. Note that the assumption gives straight on that the action is free. To see
that let us assume that for some g ∈ G and x ∈ X we have g.x = x. Then

ψ(x) = ψ(g.x) = g.ψ(x),

so g = e. Now let us proceed to prove the main claim. We define

φ : G −→ X,

i : Maplc•
(
Xn+1, A

)G −→ Maplc•
(
Gn+1, A

)G
,

l : Maplc•
(
Gn+1, A

)G −→ Maplc•
(
Xn+1, A

)G
,

where φ (g) := g.∗X , i (f) := f ◦ φn and l (f) := f ◦ ψn. By assumptions
they are well-defined and they commute with the differentials. Easily one gets
i ◦ l = idMaplc•(G

n+1,A)G . So i∗ ◦ l∗ = id∗ in cohomology. In the other direction we
are not so lucky and have to find a homotopy. We define

s (f) (x0, . . . , xn) :=
n∑
i=0

(−1)i f (φ (ψ (x0)) , . . . , φ (ψ (xi)) , xi, . . . , xn) . (2.10)
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One computes

d ◦ s (f) (x0, . . . , xn)

=
n∑
i=0

(−1)i s (f) (x0, . . . , x̂i, . . . , xn)

=
n∑
i=0

(−1)i
(

i−1∑
j=0

(−1)j f (φ (ψ (x0)) , . . . , φ (ψ (xj)) , xj, . . . , x̂i, . . . , xn)︸ ︷︷ ︸
B′

−
n∑

j=i+1

(−1)j f
(
φ (ψ (x0)) , . . . , ̂φ (ψ (xi)), . . . , φ (ψ (xj)) , xj, . . . , xn

)
︸ ︷︷ ︸

A′

)
,

and

s ◦ d (f) (x0, . . . , xn)

=
n∑
j=0

(−1)j df (φ (ψ (x0)) , . . . , φ (ψ (xj)) , xj, . . . , xn)

=
n∑
j=0

(−1)j
(

j−1∑
i=0

(−1)i f
(
φ (ψ (x0)) , . . . , ̂φ (ψ (xi)), . . . , φ (ψ (xj)) , xj, . . . , xn

)
︸ ︷︷ ︸

A

+ (−1)j f (φ (ψ (x0)) , . . . , φ (ψ (xj−1)) , xj, . . . , xn)

+ (−1)j+1 f (φ (ψ (x0)) , . . . , φ (ψ (xj)) , xj+1, . . . , xn)

−
n∑

i=j+1

(−1)i f (φ (ψ (x0)) , . . . , φ (ψ (xj)) , xj, . . . , x̂i, . . . , xn)︸ ︷︷ ︸
B

)
.

Notice that in (d ◦ s+ s ◦ d) (f) (x0, . . . , xn), A will cancel A′ and B will cancel
B′. So finally
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(d ◦ s+ s ◦ d) (f) (x0, . . . , xn)

=
n∑
j=0

(−1)2j

(
f (φ (ψ (x0)) , . . . , φ (ψ (xj−1)) , xj, . . . , xn)

− f (φ (ψ (x0)) , . . . , φ (ψ (xj)) , xj+1, . . . , xn)

)

=
n∑
j=0

f (φ (ψ (x0)) , . . . , φ (ψ (xj−1)) , xj, . . . , xn)

−
n+1∑
j=1

f (φ (ψ (x0)) , . . . , φ (ψ (xj−1)) , xj, . . . , xn)

=f (x0, . . . , xn) +
n∑
j=1

f (φ (ψ (x1)) , . . . , φ (ψ (xj−1)) , xj, . . . , xn)

−
n∑
j=1

f (φ (ψ (x1)) , . . . , φ (ψ (xj−1)) , xj, . . . , xn)

− f (φ (ψ (x0)) , . . . , φ (ψ (xn)))

=id (f) (x0, . . . , xn)− (l ◦ i) (f) (x0, . . . , xn)

= (id− l ◦ i) (f) (x0, . . . , xn) .

Which means that

(l ◦ i)∗ = l∗ ◦ i∗ = id∗. (2.11)

Which shows the claim. �

We can adapt slightly the previous to get the following for diagonally continuous
cochains.

Corollary 2.1.13. With X, G and A defined as above, further assume that there
exists a pointed continuous G-equivariant function ψ : X −→ G. Then it follows
that

Hn
lc (G,A) ∼= Hn

(
Map∆c

(
X∗+1, A

)G)
. (2.12)

Proof. The proof of the previous Proposition can be carried over word by word.
The only interesting check is the well-definiteness of l. If f |U is continuous on a
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neighborhood of the diagonal of Gn+1, then by Proposition 2.1.1, one easily sees
that f ◦ ψn+1 is continuous on (ψn+1)

−1
(U) ⊇ ∆n+1 (X). �

Corollary 2.1.14. Let K be a closed subgroup of G, such that the projection
G −→ K\G has a local section. Then

Hn
lc (K,A) ∼= Hn

(
Maplc•

(
G∗+1, A

)K)
. (2.13)

Proof. Since the bundle is locally trivial, take a local split and extend it non-
continuously to K \G. Call this function σ in Maplc• (K\G,G). Note that σ
can be chosen to be pointed. The assignment ψ (g) := g · σ (p(g))−1, gives ψ in
Maplc• (G,K)K . �

Remark 2.1.15. Note that the proof of Proposition 2.1.12 is a bit sloppy in one
point. The 0 degree cochains are not pointed. But still l (f) defined as in the
proof above is locally continuous since ψ is. In general an easy criterion for locally
continuous functions to compose is that the first functions is pointed. The last
doesn’t need to satisfy that criterion, so since in our case f will be post-composed
with pointed locally continuous we get again locally continuous (but not necessarily
pointed).

Remark 2.1.16. The above lemma is one more hint that the locally continuous
cohomology is the correct one. The above is a known statement for group coho-
mology, but in the case of continuous group cohomology it holds only for very
particular cases. For example Corollary 2.1.14 has been proven in the continuous
setting only for vector space coefficients, G locally compact and G

/
K paracompact

[HM62, Lemma 3.4].

Finally we give some usual identification between the so called homogeneous
and inhomogeneous cochains which will be used in the Chapters 3 and 4.

Lemma 2.1.17. Consider the complex

Cn
inhmg := Maplc (Gn, A) , (2.14)

with differential

dn (f) (g1, . . . , gn+1) :=g1.f (g2, . . . , gn+1)

+
n∑
i=1

(−1)i f (g1, . . . gigi+1, . . . , gn+1)

+ (−1)n+1 f (g1, . . . , gn) .

Then this complex is isomorphic to the complex (2.2).
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Proof. Let us call the cochains in (2.2) homogeneous and in (2.14) inhomogeneous.
If f is a homogeneous cochain, then

(g1, . . . , gn) 7→ f (e, g1, g1g2, . . . , g1 . . . gn)

defines an inhomogeneous cochain. While if F is an inhomogeneous cochain
then the assignment

(g0, . . . , gn) 7→ g0.F
(
(g0)−1 g1, . . . , (g0)−1 gn

)
defines a homogeneous cochain. The two constructions are inverse to each other

and give an identification of the two complexes. �

Remark 2.1.18. By Proposition 2.1.11 and Lemma 2.1.17, the complex defined
in (2.3) agrees with the ones used in [Nee02], [WW15], [Cat77], [FW12] and other
similar approaches.

Remark 2.1.19. In the next section we will talk about other topological group
cohomology models. Most of them are defined in a similar fashion. One takes
the bar complex and considers a subcomplex of functions with certain properties
(measurable, continuous and so on). In most of those models the above lemma
still works and we will use it in some places later on, using the jargon that we
move from homogeneous to inhomogeneous cochains.

2.2 Review of other models

There were other approaches towards defining topological group cohomology. We
will take a short time reviewing them.

1. Continuous Group Cohomology

The most straightforward way to generalize group cohomology is obviously to
consider a short of "continuous bar complex". Assume that G is a topological
group and A a continuous G-module, then the continuous group cohomology
of G with values in A is defined as

Hn
c (G,A) := Hn

(
Top

(
G•+1, A

)G)
, (2.15)

where the differential of Top (G•+1, A)
G is defined as in (2.4). The proof of

Proposition 2.1.12 can be adapted to the continuous case as well.
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Proposition 2.2.1. Let X be a continuous G-space, and assume that there
exists a continuous G-equivariant function ψ : X −→ G. Then

Hn
c (G,A) ∼= Hn

(
Top

(
X•+1, A

)G)
. (2.16)

The proof is the same as in Proposition 2.1.12 where we simply do not have
to worry about local continuity. And also as in Corollary 2.1.14 we get that
if G ∼= K ×G

/
K topologically for some closed subgroup K, then

Hn
c (K,A) ∼= Hn

(
Top

(
G•+1, A

)K)
. (2.17)

When this model appeared it was defined for the case that G is locally com-
pact Hausdorff and A a Hausdorff topological (real) vector space. Since the
category of topological G-modules is not abelian, one is faced with the prob-
lem of how to define cohomology in those categories. In [HM62] they tried
to reproduce the setting of defining cohomology via a special kind of reso-
lutions which they called strongly injective. They show that the modules
Top (Gq, A) are strongly injective and so they use that explicit model when
necessary.
This model however has quite a few drawbacks. We mentioned in the in-
troduction to the chapter what properties a topological group cohomology
theory should possess. Unfortunately continuous group cohomology lacks
most of them. More precisely H2

c (G,A) classifies group extensions

0→ A→ E → G→ 0

which are topologically trivial as bundles. It also behaves badly as a "δ-
functor". To get a long exact sequence in cohomology from a short exact
sequence of topological G-modules

0→ A′ → A→ A′′ → 0

it is required that that sequence is topologically trivial. For example we
do not get a long exact sequence for Z → R → S1. The model has its
uses though when one is primarily interested for vector space coefficients.
For example for finite dimensional vector spaces it is obvious that there are
long exact sequence in cohomology. But since people are interested also in
the case that the coefficient module is not a vector space there were other
approaches to define topological group cohomology.
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2. Measurable Group Cohomology

In [Moo76] Moore introduces and studies extensively another model. The
idea was to replace continuous with measurable functions. To quickly recall
the setup, let X be a measurable space, and A a complete metrizable space.
We define then

U (X,A) :=
{
f : X −→ A

∣∣ f is measurable
}/
∼ (2.18)

where the equivalence relation is generated by identifying functions which are
the same almost everywhere. The measurable group cohomology is defined
for a locally compact Hausdorff group G with values in a Polish G-module
A4 as

Hn
µ (G,A) := Hn

(
U
(
G•+1, A

)G) (2.19)

with the usual differential. In [Moo76] it is shown that the groups Hn
µ (G,A)

have all the desirable properties mentioned in the introduction.

3. Segal Mitchison Model

From a homotopy theoretic point, arbitrary topological spaces, are not very
well behaved. The category of compactly generated spaces seems to behaving
much better so people tried to focus more on them. While other usual sub-
categories of Top, like locally compact Hausdorff and so on, have a product
isomorphic to the usual product in Top, the product in the category of com-
pactly generated spaces has a topology which is finer than the usual product
topology. So taking groups internal to the category of compactly generated
spaces give objects that are not topological groups in the classical sense,
since the multiplication needs only be continuous for the compactly gener-
ated topology on the product. We will call groups internal to compactly
generated Hausdorff spaces, k-groups. Segal and Mitchison5 introduced a
group cohomology theory for those groups in [Seg70]. We will call this (not
very creatively) the Segal-Mitchison model. To define it, let G be a k-group
and A a locally contractible abelian k-group. We denote by EA the universal
bundle of A and we define

4i.e. a separable, completely metrizable topological abelian group with a continuous left
G-action

5In the paper only G. Segal appears as an author but in the very first line of the paper he
explicitly says that it was joint work with G. J. Mitchison.
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E(G) (A) := Top (G,EA) (2.20)
B(G) (A) := Top (G,EA)

/
A (2.21)

which gives an exact complex

0 // A // E(G) (A) // E(G)B(G) (A) // E(G)B
2
(G) (A) // . . .

(2.22)

and the Segal Mitchison cohomology of G with values in A is defined as

Hn
SM (G,A) := Hn

((
E(G)B

•
(G) (A)

)G)
. (2.23)

Again in [Seg70] they proved that it has the correct low degree interpreta-
tion and that it behaves like a delta functor for short exact sequences of
topological G-modules which are locally trivial bundles.

4. Simplicial Group Cohomology

Another approach to define topological group cohomology is via cohomology
of simplicial spaces. An approach to define the latter was given by Deligne
in [Del74], Friedlander in [Fri82] and more recently by Joshua in [Jos02].
The upshot of the method is that we get to work with abelian categories so
there are a lot of tools available in our disposal, the downside is that explicit
constructions in those categories are prohibitively difficult. Let us quickly
recall the setup.
Denote by kTop the category of compactly generated Hausdorff spaces6. Let
X• : ∆op −→ kTop be a simplicial k-space. To X• we associate a small site
Top (X•) as follows

(a) Objects are open subset inclusions U ↪→ Xn for all n in N,
(b) morphisms between U ↪→ Xn and V ↪→ Xm are arrows U → V such

that the diagram

U //
� _

��

V � _

��
Xn

// Xm

(2.24)

commutes, where Xn → Xm is a structure map of X•,
6we call them k-spaces
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(c) coverings for each U ↪→ Xn are usual coverings {Va → U}, when we
view U as an open subset of Xn.

We denote by Ab (X•), the category of abelian sheaves on Top (X•). In
[Del74] and [Fri82] it is shown that Ab (X•) is an abelian category.

Remark 2.2.2. It can easily be seen that objects of Ab (X•) have the fol-
lowing explicit description. We denote by dip := X• (δpi ) and sip := X• (σpi ).
A sheaf E• on a simplicial space X• is uniquely determined by a family
of sheaves {En}n∈N on the spaces Xn together with morphisms of sheaves
Dp
i : dip

∗Ep−1 −→ Ep and Spi : sip
∗Ep+1 −→ Ep, satisfying a certain long list

of compatibility equations ([WW15, Chapter 2]). Clearly each sheaf En is
defined by En (U ↪→ Xn) := E• (U ↪→ Xn). To see how the Dp

i and Spi arise
note that if an open subset V of Xp−1 contains dip (U), where U is an open
subset of Xp then there exists a unique lift of dip between U → V , giving a
morphism in Top (X•). We remember also that

dip
∗ (Ep−1

)
(U) = lim

−→
Ep−1 (V )

where the limit runs over all open subsets V which contain dip (U). By the
argument above we get morphisms

E•


U //

� _

��

V � _

��
Xp

// Xp−1

 : E•


V � _

��
Xp−1

 −→ E•


U� _

��
Xp

 . (2.25)

Then Dp
i (U) is simply the universal morphism out of dip∗ (Ep−1) (U). The

Spi have a similar description. The compatibility conditions can be derived
by using the fact that E• is a functor. On the other direction assume we
are given sheaves En over each space Xn together with morphisms Dp

i and
Spi satisfying certain compatibility conditions. We can define the sheaf on
Top (X•) to be E• (U ↪→ Xn) := En (U ↪→ Xn) on objects and the Dp

i ’s and
Spi ’s can be used to define what E• assigns to morphisms.

Definition 2.2.3. The sheaf cohomology of X• is defined as the δ-functor

Hn
Sh (X•,−) : Ab (X•) −→ Ab (2.26)

given by
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Hn
Sh (X•, A

•) := ExtnAb(X•) (Z, A•) , (2.27)

where Z denotes the constant abelian sheaf on Top (X•).

Assume that G is a k-group, BG• denotes the simplicial k-space given by
BGn := Gn, for face maps δni : [n− 1] −→ [n]

BG• (δni ) (g1, . . . , gn) := (g1, . . . , gigi+1, . . . , gn) , 1 < i < n

BG• (δni ) (g1, . . . , gn) := (g2, . . . , gn) , i = 1

BG• (δni ) (g1, . . . , gn) := (g1, . . . , gn−1) , i = n

and for degeneracy maps σni : [n+ 1] −→ [n]

BG• (σni ) (g1, . . . , gn) := (g1, . . . , gi, e, gi+1, . . . , gn) .

Let A be a continuous G-module. We consider the sheaf

A•glob,c : Top (BG•)
op −→ Ab, (2.28)

given by

A•glob,c (U ↪→ Gn) := Top (U,A)

and for any morphism f of Top (BG•), A•glob,c (f) is constructed from

A•glob,c (BG• (δni )) (f) := f ◦BG• (δni ) , i > 0

A•glob,c (BG• (δni )) (f) := Lg0 ◦ f ◦BG• (δni ) , i = 0

A•glob,c (BG• (σni )) (f) := f ◦BG• (σn) , ∀i.

Definition 2.2.4. The (continuous) simplicial group cohomology of G with
values in A is defined as

Hn
simp,c (G,A) := Hn

Sh

(
BG•, A

•
glob,c

)
. (2.29)
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This model is shortly discussed in Section II of [WW15], for example it is
proved thatHn

simp,c (G,−) is a δ-functor with respect to short exact sequences
A′ → A→ A′′ which are locally trivial bundles ([WW15, Lemma II.11]).

Remark 2.2.5 (Čech Cohomology). Classical sheaf cohomology is usu-
ally computed via Čech cohomology. A generalization of what Čech coho-
mology should be for abelian sheaves on sites has been worked out in several
places (e.g. [KS06, 18.7]). In the case of sheaves on simplicial spaces we
can use the following explicit description following [WW15, III] or [Bry00].
A cover of a simplicial space X• is determined by a simplicial set I• and a
family of coverings

U• :=
{
Up := {Up

i }i∈Ip
}
p∈N

for each space Xp such that

X• (δpi )
(
Up
j

)
⊆ Up−1

I•(δpi )(j)
(2.30)

and

X•
(
σp−1
i

) (
Up−1
j

)
⊆ Up

I•(σp−1
i )(j)

. (2.31)

We will say that a cover U• is good (resp. countable/locally finite/finite) if
each of Up is good (resp. countable/locally finite/finite). For simplicity we
will sloppily denote by dip or sip any of the simplicial maps for X• or I• i.e.
we will write dip

(
Up
j

)
⊆ Up−1

dip(j)
7. We consider now the bigraded object in Top

Čp,q (U•, E•) :=
∏

i0,...,iq∈Ip

Ep
(
Ui0,...,iq

)
, (2.32)

which we turn into a double complex with the following maps. The vertical
differential is the Čech differential, i.e.

(dp,qv (x))i0,...,iq+1
:=

q+1∑
j=0

(−1)jxi0,...,îj ,...,iq+1
. (2.33)

7Examples of such covers can be obtained from the covers as defined in [WW15, Definition
3.1] by further assuming that each open set Up

i is connected. In particular good such covers.
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To describe the differential in the other direction first note that by the as-
sumption (2.30)

dip+1

(
Up+1
i0,...,iq

)
⊆

q⋂
k=0

dip+1

(
Up+1
jk

)
⊆

q⋂
k=0

Up

dip+1(jk)
, (2.34)

which shows that we have the following composition of maps

(dp,qi )i0,...,iq :
∏

j0,...,jq∈Ip

Ep
(
Uj0,...,jq

) pr
dip+1(i0),...,d

i
p+1(iq)−−−−−−−−−−−−→ Ep

(
Up

dip+1(i0),...,dip+1(iq)

)
−−−−−−−−−−−−→ lim−→

V⊇dip+1

(
Up+1
i0,...,iq

)Ep (V )

Dp+1
i

(
Up+1
i0,...,iq

)
−−−−−−−−−−−−→ Ep+1

(
Up+1
i0,...,iq

)
.

Then the horizontal differential of (2.32) is defined by requiring

pri0,...,iq ◦ d
p,q
h =

p+1∑
i=0

(−1)i+q (dp,qi )i0,...,iq . (2.35)

Note that the q in the exponent of (−1) is superfluous, it ensures that the
differentials anticommute so the total differential is the sum of the vertical
and the horizontal differential. We could skip it and introduce a (−1)p in the
total differential as we mentioned in Remark 1.1.7. The Čech cohomology of
U• with values in E• is defined as

Ȟn (U•, E•) := Hn
(
tot Č•,• (U•, E•)

)
. (2.36)

Some of the above models were know to be isomorphic but a general classifica-
tion was missing for a long time. That was remedied in [WW15, Theorem IV.5].
We recall it here along with some important corollaries. The notion of δ-functors
used in the theorem is given in Definition A.1.15 (see also [WW15, Definition
VI.1]). We denote by G-Mod the category of continuous G-modules in the realm
of k-spaces.

Theorem 2.2.6. Let (Hn : G-Mod −→ Ab)n∈N be a δ-functor such that

1. H0 (A) ∼= AG
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2. Hn (A) ∼= Hn
c (G,A) for contractible A,

then (Hn)n∈N is equivalent to (Hn
SM (G,−))n∈N as a δ-functor. Moreover each

morphism between δ-functors with properties 1 and 2, that is an isomorphism for
n = 0, is an isomorphism of δ-functors.

Also as a corollary one gets ([WW15, Corollaries IV.7, IV.8 and Remark
IV.13]).

Corollary 2.2.7. 1. If Gn is paracompact then Hn
SM (G,A) ∼= Hn

simp,c (G,A).

2. If furthermore we are given a god cover U• of BG• then Hn
SM (G,A) ∼=

Ȟn
(
U•, A•glob,c

)
.

3. If the product topology on the set theoretic product Gn is compactly generated
for all n, then Hn

lc (G,A) ∼= Hn
SM (G,A).

4. If furthermore G is locally compact Hausdorff and A a Polish G-module, then
Hn

lc (G,A) ∼= Hn
µ (G,A).

Remark 2.2.8 (Lie group cohomology). Lie groups in many cases are more
important than topological groups8, so people have tried to define cohomology
theories for Lie groups as well. Most of the models that appeared in this section
have their counterparts in the smooth world. So there is smooth group cohomol-
ogy as a counterpart to the continuous one, also for the simplicial case one could
take the sheaf of smooth instead of continuous functions and of course there is a
locally smooth group cohomology. We will not review any of them here, this is
done quite extensively elsewhere (e.g. [WW15], [Nee02], [HM62], [vE58], [SP11]).
We will say a few words only for the locally smooth group cohomology.
We will use the conventions from [WW15], i.e. G is a group object in the category
of manifolds modelled on locally convex spaces and A is a G-module in this cate-
gory. We can again define locally continuous functions between smooth manifolds
as in Subsection 2.1.1, i.e. a function f : M −→ N of the underlying sets between
two manifolds is called locally smooth if there is an open neighborhood U of M
such that f |U is smooth. We will use the notation Mapls (M,N), Map′ls (M,N),
Mapls • (M,N) and Map∆s (Mn, N) for the "smooth counterparts" of the sets of
locally continuous functions appearing in Subsection 2.1.1. Locally smooth group
cohomology is defined obviously as

Hn
ls (G,A) := Hn

(
Map∆s

(
G•+1, A

)G)
. (2.37)

8Although by Hilbert’s 5th problem for "sufficiently nice" spaces the distinction is unnecessary



2.2 Review of other models 35

By [WW15, Proposition I.7] locally smooth and locally continuous group co-
homology groups are isomorphic if G is finite-dimensional and A ∼= a

/
Γ where a is

quasi-complete locally convex space on which G acts smoothly and Γ is a discrete
submodule. All the results of Subsections 2.1.1 and 2.1.2 have equivalent ones
in the locally smooth setting (except from the continuity of the evaluation map).
In particular Proposition 2.1.1 and Corollary 2.1.2 hold by changing everywhere
the word continuous with smooth, Lemma 2.1.10 and Propostion 2.1.11 still hold
trivially for locally smooth functions. There is also an equivalent of Proposition
2.1.12 with G a Lie group A a smooth G-module and X a manifold with a smooth
G-action assuming that ψ is locally smooth and of course equivalent of Corollaries
2.1.13 and 2.1.14 for the locally smooth cohomologies. We will make use of those
in Chapter 4 to derive a spectral sequence also for Lie group cohomology. We will
use the generic term "Lie group" to refer to a group object in some appropriate
category of manifolds and smooth functions and then a smooth G-module will
be an abelian Lie group with a smooth G-action (in the appropriate category).
Note that the above comments hold in a wide variety of choices for a category of
manifolds.
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Chapter 3

Properties of topological group
cohomology

As we argued before, a model of topological group cohomology should encapsulate
in some way topological and algebraic information in a non-trivial way. We present
two results in this chapter which exhibit exactly this non-trivial interplay for the
locally continuous model. The first relates to regularity properties of cocycle rep-
resentatives of classes in Hn

lc (G,A). To make this somewhat precise we mention
that Theorem 3.1.2 tells us that if G and its products admit good, countable and
locally finite covers then each class of Hn

lc (G,A) is represented by a cocycle con-
tinuous on an open and dense subset.
The second result exhibiting the interplay between topological and algebraic infor-
mation relates to obstruction classes in low degree Čech cohomology. Roughly we
recall ([Gro55], or a more recent exposition can be found for example in [NWW13])
that if Z → K → G is a central topological group extension and P → X is a prin-
cipal G-bundle, then a natural question that arises is if there is a lift P̂ → X to
a principal K-bundle. It has been shown that the obstruction to the existence of
such a lift is described by the kernel of a function δ̌1

k : Ȟ1 (X,G) −→ Ȟ2 (X,Z).
If K and G are abelian this is simply the connecting homomorphism of Čech
cohomology related to the short exact sequence

Z → K → G

of sheaves of continuous functions. It is shown (e.g. in [Gro55]) that even
when K and G are not abelian, there is a construction of such a δ̌1

K which is
almost identical to the usual connecting homomorphism of the abelian case. It is
known that the above lifting exists if and only if δ̌1

K ([P ]) vanishes. In this chapter
we show that this class always vanishes if K → G is topologically trivial. But such
classes [K] of H2

lc (G,Z) are described by the purely topological requirement that

37
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there is a representing cocycle which is globally continuous.

3.1 Regularity properties of cocycles

We will use the isomorphism between locally continuous group cohomology and the
Čech cohomology of the sheaf of continuous functions on BG• (Corollary 2.2.7) to
investigate regularity properties of representatives of classes of locally continuous
group cocycles. We will use a third cohomology theory as a tool to relate the first
two. To this end we introduce the sheaf of locally continuous functions. Let X be
a pointed topological space. We denote by AXloc,c the sheaf on X defined on open
subsets by

U 7→

{
Map′lc (U,A) if ∗X ∈ U
Set (U,A) otherwise

(3.1)

and on morphisms by the usual restriction of functions. It is more or less
obvious that this sheaf is acyclic, but we give below a Lemma with a more refined
statement. To further fix some notation, we will call a cochain x in Čn

(
U , AXloc,c

)
continuous on an open and dense subset if there exists an open and dense subset
of X such that the restriction of each of the xi0,...,in to it is continuous. We will
also give results in the smooth case, so if X is a smooth manifold and A an abelian
Lie group then we will denote by AXloc,s the sheaf as above with functions being
locally smooth, and a cochain x is smooth on an open and dense subset if there is
an open and dense subset of X such that the restriction of each of the xi0,...,in to
it is smooth. The first technical Lemma is the following.

Lemma 3.1.1. Assume U is a countable and locally finite cover of X. Then the
Čech complex Čn

(
U , AXloc,c

)
is homotopy equivalent to the one with degree 0 equal

to Ȟ0
(
U , AXloc,c

)
and 0 everywhere else. Furthermore, the contracting homotopy

can be chosen such that it carries cochains continuous on an open and dense subset
to ones which are also continuous on an open and dense subset. Furthermore, if
X is a smooth manifold and A an abelian Lie group the respective assertions hold
for Č

(
U , AXloc,s

)
.

Proof. Since the cover is countable we can, without loss of generality, assume
that U is indexed by the naturals1 such that ∗X ∈ U0. If the cover is actually finite
we will assume that it is indexed by all the naturals up to #(I). We construct

1of course we always assume the AoC
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now a sort of a partition of unity2. We consider the locally continuous functions
{λi : X −→ {0, 1}}i∈N defined by

λ0(x) :=

{
1 if x ∈ U0

0 otherwise
(3.2)

and

λn+1(x) :=

1 if x ∈ Un+1 \

(
n⋃
i=0

Ui

)
0 otherwise

. (3.3)

It is obvious that
∑
i∈N

λi = 1. It is well known that the existence of such

functions makes the Čech complex collapse. Let us quickly review how. If f is a
function defined on a subset of X denote by [f ]0 the one extended by 0 outside
this subset. We define now the contracting homotopy hq : Čq

(
U , AXloc,c

)
−→

Čq−1
(
U , AXloc,c

)
by

hq (x)i0,...,iq−1
:=
∑
i∈N

λi
[
xi,i0,...,iq−1

]
0
. (3.4)

It is well-defined and straightforward calculations show that

δ̌q−1 ◦ hq + hq+1 ◦ δ̌q = idČq(U ,AX
loc,c)

.

This shows the first part so let us proceed to the second part. To make things

a bit more presentable we denote by Ũn := Un \

(
n−1⋃
i=0

Ui

)
. By the definition of the

λi’s we see immediately that

hq(x)i0,...,iq−1

∣∣
Ũn

= xn,i0,...,iq−1 . (3.5)

Now assume that x is a cochain continuous on an open and dense subset V ,
meaning that hq(x)i0,...,iq−1 is continuous on Ũn ∩ V for all n. We recall that a
function which is continuous on open subsets is continuous also on their union.
This shows that the restriction of hq(x)i0,...,iq−1 to

2the functions will not be continuous
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UV :=
⋃
n∈N

int
(
Ũn ∩ V

)
=
⋃
n∈N

(
int
(
Ũn

)
∩ int (V )

)
=

(⋃
n∈N

int
(
Ũn

))
∩ V

is continuous. The finite intersection of open and dense subsets is open and
dense. By assumption V is open and dense and

U :=

(⋃
n∈N

int
(
Ũn

))
(3.6)

is open. So if U is dense, so is UV . Clearly
{
Ũn

}
n∈N

is a cover of X and each

point of X is contained in exactly one Ũn. So all the points not in U are contained
in ⋃

n∈N

∂
(
Ũn

)
.

We assume now that U is not dense. Then there exists a point w not in U
and a neighborhood W of w (which without loss of generality can be chosen to be
open) such that W ∩ U is empty. This implies the following

W ⊆
⋃
n∈N

∂
(
Ũn

)
⊆
⋃
n∈N

∂ (Un) .

Now since by assumption the cover is locally finite there is an open neighbor-
hood Ω of w such that Ω ∩ Un is empty for all but finitely many Un. Now the
points in Ω can belong only on finitely many boundaries otherwise Ω will intersect
non-trivially infinitely many Un. This shows that there is a finite subset I of N
such that

W ∩ Ω ⊆
⋃
n∈I

∂ (Un) .

Since all Un are open, each ∂
(
Ũn

)
has empty interior and since the boundaries

are closed they are nowhere dense. Now the finite union of nowhere dense subsets
is nowhere dense. This means that
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∅ = int

(
closure

(⋃
n∈I

∂ (Un)

))
= int

(⋃
n∈N

closure (∂ (Un))

)
.

And finally our assumption is contradicted since W ∩Ω lies within the interior
of
⋃
n∈I

∂ (Un) and contains w. This means that all neighborhoods of w intersect U

non-trivially. Since this holds for all points of X it follows that U is dense. And
finally hq (x) is continuous on an open and dense subset, as asserted. The proof
in the smooth case works word by word by replacing any instance of the word
"continuous" with "smooth". This concludes the proof. �

Theorem 3.1.2. Assume G is a topological group such that all Gn are paracom-
pact for each n. If there exists a good, countable and locally finite cover U• on BG•
then any class in Hn

lc (G,A) is represented by a cocycle continuous on an open and
dense subset. Furthermore, if G is a Lie group and there exists U• as above, then
every class in Hn

ls (G,A) is represented by a cocycle smooth on an open and dense
subset.

Proof. First we note that there is a canonical identification for each p and each
cover V• of BG• of the complex Čp,∗ (V•, A•loc,c

)
with the complex Č∗

(
Vp, AG

p

loc,c

)
.

So by the existence of U• we can apply Lemma 3.1.1 to each Gp to get contracting
homotopies of the complexes Čp,∗ (V•, A•loc,c

)
which in turn implies that we can

use the staircase Lemma A.1.12. Very easily one notes that ker d∗,0v is canonically
isomorphic with Map′lc (G∗, A)3. So Ȟn

(
U•, A•loc,c

)
is isomorphic to Hn

lc (G,A). To
write the isomorphism, recall the notation from the Appendix A of the "total
horizontal differential" Dn

h : tot (C)n −→ tot (C)n+1 and the "total column-wise
homotopy" Mn : tot (C)n −→ tot (C)n−1. Then the isomorphism is provided at
the level of cocycles by sending a cocycle x of tot

(
Č∗,∗

(
U•, A•loc,c

))
to

n∑
i=0

(
−Dn−1

h Mn
)n−i

xi,n−i.4

Now assume that each xi,n−i is continuous on an open and dense subset. When
Dn−1
h and Mn are applied to an element of the product which has non-vanishing

components on only one spot they become the normal horizontal differential dp,qh
and the usual homotopy hp,q. Since their superscripts become redundant once we
know to which xp,q we want to apply them we drop the bookkeeping subscripts of
the morphisms.
By Lemma 3.1.1, to show that (−dhh)n−i xi,n−i is continuous on an open and dense

3note we are using here the inhomogeneous cocycles introduced in 2.14
4of course we introduce some sloppiness to ease notation by not writting the inclusion maps
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subset it is enough to show that all horizontal differentials send cochains that are
continuous on an open and dense subset to ones that are continuous on an open
and dense subset. This follows from simply unwinding the definitions, but let us
see explicitly why.
We resume the shorthand notation dip := BG• (δpi ) from Remark 2.2.5. Note that
for i = 0, p it is simply a projection so in particular open. Otherwise it is group
multiplication, which is also open. The pullback sheaf under an open map has a
simpler description which in our case reads(

dip
)−1 (

A•loc,c

)
(U) ∼= A•loc,c

(
dip (U)

)
.

This means that the (dp,qi )i0,...,iq have a simpler description (since the Dp
i are

simple precomposition with the dip), i.e. if x is an element of
∏

j0,...,jq∈Ip

A•loc,c

(
Uj0,...,jq

)
then

(dp,qi )i0,...,iq (x) = xdip+1(i0),...,dip+1(iq) ◦ dip+1

∣∣
U
dip+1(i0),...,d

i
p+1(iq)

.

Now by assumption all xj0,...,jq are continuous on an open and dense subset.
Denote this subset by V . Then Corollary 2.1.2 implies that (dp,qi )i0,...,iq (x) is

continuous when restricted to
(
dip+1

)−1
(V ). The latter is open and dense since

dip+1 is continuous and open. This shows that each pri0,...,iq ◦ d
p,q
h , restricted to

p+1⋂
i=0

(
dip+1

)−1
(V ), is continuous. The latter is a finite intersection of open and

dense subsets so it is open and dense.
This shows that each term (−dhh)n−i xi,n−i is continuous on an open and dense
subset if xi,n−i is so. The above sum is continuous on the intersection of the subsets
that each term is continuous on. This intersection is a finite intersection of open
and dense subsets. So the entire sum is continuous on an open and dense subset
under our assumption.
So far we did not use the assumption on U• being a good cover. Under this as-
sumption now by [WW15, Comparison Theorem and Proposition 3.4] the inclusion
of continuous functions on locally continuous ones induces an isomorphism

Ȟn
(
U•, A•glob,c

) i∗−→ Ȟn
(
U•, A•loc,c

)
.

Thus each class of Ȟn
(
U•, A•loc,c

)
is represented by a cocycle c for which all

ci,n−i are continuous on an open and dense subset (namely the entire space). Since
the staircase argument gives an isomorphism, it follows that each class ofHn

lc (G,A)
is represented by a cocycle continuous on an open and dense subset.
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Finally, all the arguments carry over to the smooth case by simply changing the
word continuous to smooth. �

Remark 3.1.3. Note that starting from a good, countable and locally finite cover
U• of BG•, one can possibly in a straightforward but very tedious way describe the
subset ofGn, for which the restriction of a cocycle under the maps Ȟn

(
U•, A•glob,c

)
→

Ȟn
(
U•, A•loc,c

)
→ Hn

lc (G,A), is continuous. Or one could also describe the disconti-
nuities. Both can be achieved by going through the proof. We will give a rough de-
scription for the discontinuities. It is obvious from the proof that each application
of the homotopy we constructed creates discontinuities contained in

⋃
n∈N ∂

(
Ũp
n

)
(recall Proof of Lemma 3.1.1). Then the discontinuities will be transferred by the
face maps of BG•. In the end we will have a countable union of preimages of
boundaries.

Remark 3.1.4. Lemma 3.1.1 and Theorem 3.1.2 show that the existence of nice
covers on G ensure that the cohomology classes of Hn

lc (G,A) can be represented by
cocycles with good regularity properties. Lemma 3.1.1 can be applied for example
to locally compact, Hausdorff and second countable spaces. The requirement for
G to have good, countable and locally finite covers restricts a bit the class of
the examples. Note that the assumption on the cover to be good has nothing
to do with the constructed cocycle but only relates to whether or not classes in
Ȟn
(
U•, A•loc,c

)
have a representative with nice properties. If the cover is good, we

can use [WW15, Remark 4.11] to obtain such ones from the globally continuous
Čech model. In spite of this restriction, some of the most interesting topological
groups have such covers as we note in the following Corollary.

Corollary 3.1.5. If G is a finite-dimensional second countable Lie group, then
each class of Hn

lc (G,A) has a cocycle which is continuous on an open and dense
subset.
Similarly, each class in Hn

ls (G,A) is represented by a cocycle smooth on an open
and dense subset.

Proof. The result follows simply from the fact that a second countable finite-
dimensional manifold M admits good, countable and locally finite refinements for
each open cover. This can be found in many places (e.g. it is included in [Pet06,
Proof of Theorem 89]), but let us outline the idea. Firstly there is a compact
exhaustion {Ki}i∈N ofM since it is in particular second countable, locally compact
and Hausdorff5. For each point g in G denote by ig := min

{
i ∈ N

∣∣g ∈ Ki

}
. Since

M can be endowed with a Riemannian metric, for each point g in M we can pick
5this can be constructed for example as in [War83, Lemma 1.9]
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a geodesic ball Vg around it which is contained in
(
int
(
Kig+1

)
\Kig−1

)
∩Uj where

Uj is an open set belonging to the original cover. Since each Ki is compact we can
pick for each i finitely many gj such that the corresponding Vgj cover Ki. Clearly
this is a good, countable and locally finite refinement of the original cover.
To construct a good, countable and locally finite cover on BG• take one on G pull
it back with the face maps to G2, refine it to one with such properties. Continuing
this procedure for all n we get a good, countable and locally finite cover U• on
BG•. This means that we can apply Theorem 3.1.2 to get the claim. �

3.2 Lifting Obstructions

We turn now our attention to the second advertised result of this chapter, the
relation of properties of H2

lc (G,Z) with lifting obstruction classes. The material
in this section is closely related to (and mostly inspired by) the work in [NWW13],
so we will also adopt some of their notation.
We will use the following assumptions throughout this section without further
mentioning. All spaces6 will be CW-complexes, X will be a paracompact Hausdorff
space, G will be a k-group7, Γ is a discrete abelian group, Z is a topological abelian
group such that its identity component Z0 is an Eilenberg-Maclane space K (Γ, 1)
and is considered as a G-module with the trivial action. The latter means that
H2

lc (G,Z) classifies equivalence classes of central extensions of G by Z.

Remark 3.2.1. We should make a short comment on the last statement. Let us
denote by Ext (G,Z) the equivalence classes of all extensionsK ofG by Z for which
the projection K → G is a Z-principal bundle. There are two subtleties involved
in relating the latter with classes in H2

lc (G,Z). The first involves a subtlety that
already appears in classical group cohomology. The second cohomology group
classifies those classes of group extensions for which conjugation in K of elements
z of Z, agrees with the action of G on Z. So if Z is not a trivial G-module then
H2

lc (G,Z) will classify no central extension. The second subtlety relates to G
being connected or not and how to give the equivalence. If G is connected as we
mentioned in the introduction the classical methods of creating extensions from
group cocycles follow in exactly the same way using in essence [Bou98, I.2], as is
done in [Nee04, Section 2] in the smooth case. If G is not connected it is not so
straightforward how to associate group cocycles to extensions but still H2

lc (G,Z)
classifies topological extensions of G by Z (for which conjugation in the extension

6including the underlying topological space of topological groups
7we are also assuming that the product topology and the k-product topology on all Gn agree,

examples of such behaviour include locally compact Hausdorff topological groups



3.2 Lifting Obstructions 45

agrees with the action of G on Z) as follows from [Seg70, Proposition 4.3] and the
comparison theorem [WW15, Theorem 4.5].
In this section the results relate only to central extensions so we will put all the
above under the rug. We have to note though that by [Gro55] the function obs can
be defined on Ȟ1 (X,G)×Ext (G,Z) but for the current work this is not necessary.

To state the main theorem we will quickly recall some constructions from
[NWW13] (or [Gro55]). We recall the construction of a function

obs : Ȟ1 (X,G)×H2
lc (G,Z) −→ Ȟ2 (X,Z) . (3.7)

From now one let Z ↪→ K → G be a topological central group extension.
This induces an exact sequence of the Čech cohomology groups of the sheaves of
continuous functions [Gro55]

Ȟ1 (X,Z) // Ȟ1 (X,K) // Ȟ1 (X,G)
δK1 // Ȟ2 (X,Z) .

The morphism δK1 is described in a similar way as in the case of the long
exact sequence for abelian coefficients. We quickly recall it here. Since X is
paracompact by [Gro55, Lemma 5.7.1] a class in Ȟ1 (X,G) is represented by an
open cover U := {Ui}i∈I of X and a collection of continuous functions

c := {ci,j : Ui ∩ Uj −→ G}i,j∈I
satisfying

ci,kck,jc
−1
i,j = e

for all i, j, k in I. Furthermore, by the same Lemma the cover U and the
collection c can be chosen such that there exist a continuous lift c̃i,j : Ui∩Uj −→ K
for each of the ci,j. Then

δK1 ([{ci,j}]) :=
[{
c̃i,kc̃k,j c̃i,j

−1}]
is well-defined, independent of the choice of the representative {ci,j} and the

lifts [Gro55]. In the same paper it is shown that δK1 depends only on the class
of the extension in H2

lc (G,Z). So if P → X is a principal G-bundle we define
obs ([P ] , [K]) := δK1 ([P ]).
The aim of this section is to show that obs vanishes on classes in H2

lc (G,Z) which
are in the image of the natural inclusion H2

c (G,Z) → H2
lc (G,Z). We make it

precise in the following Theorem.
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Theorem 3.2.2. Let Z be either discrete or an Eilenberg-Maclane space for a
discrete group. Let

0→ Z → K → G→ 0 (3.8)

be a topological central group extension and P → X be a principal G-bundle.
If (3.8) is represented by a globally continuous group cocycle then

obs ([P ] , [K]) = 0 ∈ Ȟ2 (X,Z) . (3.9)

Theorem 3.2.2 will follow from some simple lemmas.
We recall the construction of a function

Ψ : H2
lc (G,Z) −→

[
BG,B2Z

]
, (3.10)

outlined for example in [MS00, Section 7.1]. Let a topological group extension
(3.8) represent a class in H2

lc (G,Z). In [Seg70, Appendix A] it is shown that the
geometric realization of K gives a universal bundle for K if the latter is locally
contractible8. Since Z → K is injective the restriction of the free action of K on
EK gives a free action of Z on EK. EK is contractible so by [Swi75, Theorem
11.35] EK is also a universal bundle for Z and BZ is homotopy equivalent to
EK

/
Z. Also since Z is central in K, it is also central in EK, so EK

/
Z is a

topological group. Clearly

G ∼= coeq (prK , µK ◦ (iZ × idK))

where prK : Z×K −→ K is the projection toK and µK◦(iZ × idK) : Z×K −→
K is the group multiplication of K post-composed by the obvious inclusion into
K × K. The continuous function f : G −→ EK

/
Z which factorizes K →

EK → EK
/
Z is easily seen to be a classifying map for K. The latter composition

is a group homomorphism, the bundle projection K → G is a surjective group
homomorphism and the diagram

K //

��

EK

��

G
f // EK

/
Z

8which is the case for us since we are assuming it is in particular a CW-complex
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commutes, so f is a group homomorphism as well. So by [Swi75, 11.37] f gives
rise to a continuous function

Bf : BG −→ B2Z (3.11)

which is unique up to homotopy, such that the diagram

[−;BG] ∼=
ψ //

Bf◦
��

Ȟ1 (−, G)

f∗
��

[−;B2Z] ∼=
φ // Ȟ1 (−, BZ)

(3.12)

commutes9. It is also obvious that the construction depends only on the class
of the extension K so we finally define

Ψ ([Z → K → G]) := [Bf ] . (3.13)

Lemma 3.2.3. Left f : G −→ BZ be a classifying map of a topological group ex-
tension (3.8), constructed as above. Denote by δ : Ȟ1 (BG,BZ) −→ Ȟ2 (BG,Z)
the connecting homomorphism of the long exact sequence coming from the coeffi-
cient sequence Z → EZ → BZ. Then

obsK ([EG]) = δ ([Bf ∗ (EBZ)]) . (3.14)

Proof. First we note that since EZ is contractible δ is an isomorphism. Let ci,j :
Ui ∩Uj −→ G be a cocycle representing the class of [EG]. Since f is a continuous
group homomorphism fci,j : Ui ∩ Uj −→ BZ is a cocycle representing a class in
Ȟ1 (BG,BZ). We will write δ1 for obsK . As we discussed in the beginning of the
section δ ([{fci,j}]) is constructed by finding continuous lifts f̃ ci,j : Ui ∩ Uj −→
EBZ and then

δ ([{fci,j}]) =
[{
f̃ ci,kf̃ ck,j f̃ c

−1

i,j

}]
.

Also
9Recall f∗ ([P ]) = [(P ×BZ) /G] where G acts on P × BZ on the right as (p, z) .g =(

p.g, f (g)
−1

z
)
.
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δ1 ([{ci,j}]) =
[{

c̃i,kc̃k,j c̃
−1
i,j

}]
where c̃i,j are continuous lifts of the ci,j’s to K ∼= G×BZ EZ. The functions

ai,j : Ui ∩ Uj −→ G× EZ, b 7→
(
ci,j(b), f̃ ci,j(b)

)
restrict to K since

fci,j = pf̃ci,j.

Those restrictions clearly give lifts of the ci,j’s. But

c̃i,kc̃k,j c̃
−1
i,j =

(
e, f̃ci,kf̃ ck,j f̃ c

−1

i,j

)
so δ ([{fci,j}]) = δ1 ([{ci,j}]). Let l : BG −→ B2Z be a classifying map for

the bundle constructed with cocycle {fci,j}. By [Swi75, Theorem 9.13] Bf is the
unique up to homotopy map that makes the diagram (3.12) commute. Note now
that φ ([l]) = l∗ (EBZ), which by definition is the bundle constructed from cocycle
data fci,j. So

l∗ (EBZ) ∼= f∗ (EG) = f∗ (ψ (idBG)) .

So [l] = [Bf ] and Bf ∗ (EBZ) ∼= l∗ (EBZ). Finally

obsK ([EG]) = δ1 ([{ci,j}]) = δ ([{fci,j}]) = δ ([l∗ (EBZ)]) = δ ([Bf ∗ (EBZ)]) .

�

Denote by φ1 : Ȟ1 (X,G) −→ [X,BG] the inverse natural isomorphism of
taking pullbacks. Note also that EZ is contractible so the long exact sequence in
cohomology gives natural isomorphisms Ȟn (−, Z) → Ȟ1 (−, Bn−1Z), and com-
posing those with the natural isomorphisms which are inverse to taking pullbacks,
we get natural isomorphisms ψn : Ȟn (−, Z) −→ [−, BnZ].

Lemma 3.2.4. The diagram

Ȟ1 (X,G)×H2
lc (G,Z)

obs //

φ1×Ψ
��

Ȟ2 (X,Z)

ψ2(X)∼=
��

[X,BG]× [BG,B2Z] // [X,B2Z]

(3.15)

commutes, where the bottom arrow is composition.
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Proof. Let P → X be a G-principal bundle. We choose a representative l of
φ1

(
[G→P→X]

)
. Going through the lower side of diagram (3.15)

Ψ
(

[Z→K→G]
)
◦φ1

(
[G→P→X]

)
= [Bf ] ◦ [l] = [Bf ◦ l]

We also note that

[P ] = [l∗ (EG)]

and by [NWW13, Lemma 2.2]

δ1 ([P ]) = l∗δ1 ([EG]) .

Denote also by φ2 := ψ2 (X) and φ′2 := ψ2 (BG). It follows by Lemma 3.2.3
that φ′2 (δ1 ([EG])) = [Bf ]. We compute the upper side of diagram (3.15)

φ2

(
obs

(
[G→P→X], [Z→K→G]

))
=φ2

(
l∗δ1

(
[EG]

))
=φ′2

(
δ1

(
[EG]

))
◦ [l]

(By Lemma 3.2.3) = [Bf ◦ l]

And the claim is proven. �

Lemma 3.2.5. Assume f classifies a topologically trivial bundle. Then if Z is a
discrete group Γ or an Eilenberg-Maclane space K (Γ, n) Bf is homotopic to 0.

Proof. Since f classifies a trivial bundle it is homotopic to 0 (since 0∗ (EZ) ∼=
G × Z). By [Bre97, Theorem II.11.12] the induced function Hq

Sh (fp) between
Hq

Sh (BZp,Γ) and Hq
Sh (Gp,Γ) vanish. By [Fri82, Proposition 2.4] there are spectral

sequences

Ep,q
1 = Hq

Sh (BZp,Γ)⇒ Hp+q
Sh

(
B (BZ)• ,Γ

•
glob,c

)
and

Ep,q
1 = Hq

Sh (Gp,Γ)⇒ Hp+q
Sh

(
BG•,Γ

•
glob,c

)
and their constructions are natural both for the simplicial space and the sheaf.

So Hq
Sh (fp) are maps of spectral sequences and the induced map on the coho-

mology of the simplicial spaces are Hq
Sh (Bf). By [WW15, Cor IV.8] and [Seg70,

Proposition 3.3] there are natural isomorphisms
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Hn
Sh

(
B (BZ)• ,Γ

•
glob,c

)
=: Hn

simp,c

(
B2Z,Γ

) ∼= Hn
Sh

(
B2Z,Γ

)
since Γ is discrete. So the induced morphism

Hn
Sh (Bf) : Hn

Sh

(
B2Z,Γ

)
−→ Hn

Sh (BG,Γ)

vanishes. Since our spaces are locally contractible sheaf cohomology is naturally
isomorphic to singular cohomology. Also Hn

sing (−,Γ) is naturally isomorphic to
[−,K (Γ, n)], so by the commutativity of

Hn
sing (B2Z,Γ)

∼= //

Hn
sing(Bf)

��

[B2Z,K (Γ, n)]

(◦[Bf ])

��
Hn

sing (BG,Γ)
∼= // [BG,K (Γ, n)]

(3.16)

and the vanishing of Hn
sing (Bf) from above, we deduce that the morphism

(◦ [Bf ]) vanishes.
Let now Z = Γ then

[Bf ] = (◦ [Bf ])
(
idK(Γ,2)

)
= 0.

If instead we have that Z = K (Γ, n) then

[Bf ] = (◦ [Bf ])
(
idK(Γ,n+2)

)
= 0.

And the claim is proven. �

Finally Theorem 3.2.2 follows from Lemmas 3.2.4 and 3.2.5.
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The LHS Spectral Sequence

We already mentioned that Hn
∗ (G,−) has usually the property of being a "delta-

functor", i.e. to sent specific classes of short exact sequences

0→ A′ → A→ A′′ → 0

to long exact sequences. A natural question is whether or not Hn
∗ (−, A) has a

similar property. To be more specific, let A be a G-module, if N ↪→ G� G
/
N is a

short exact sequence of groups1, the N -invariant subgroup of A, which we denote
by AN , comes with a canonical G

/
N -module structure. Do the cohomology groups

Hn
∗ (G,A), Hn

∗ (N,A) and Hn
∗
(
G
/
N,AN

)
fit into a long exact sequence? The

answer is negative in most cases. The relation between those groups, in the case
of discrete groups was first investigated by Lyndon ([Lyn48]) and shortly after
fully described by Hochschild and Serre ([HS53]). They found that the natural
morphisms

Hn
gr

(
G
/
N,AN

)
→ Hn

gr (G,A)→ Hn
gr (N,A) (4.1)

do not fit into a long exact sequence, but are part of the information (the edge
homomorphisms) of a spectral sequence of the form

Ep,q
2 := Hp

gr

(
G
/
N,Hq

gr (N,A)
)
⇒ Hp+q

gr (G,A) . (4.2)

Because of the people that derived it, it is in the literature more commonly
referred to as the LHS spectral sequence. If instead of groups we have topological
groups, and instead of group cohomology we have some model for topological group
cohomology, we will call such a result (not very creatively) as LHS result.
Note that (4.2) is a special case of a Grothendieck spectral sequence. In the first
section we will recall the classic result in the case of discrete groups and also

1clearly in that case N is normal in G

51
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recall some results derived by Hochschild/Mostow and Moore for the continuous
and measurable cases respectively [HM62], [Moo76]. In the second section we will
derive a LHS results for the locally continuous and locally smooth model, as well
give results on the continuous and smooth case for arbitrary coefficients but with
restrictions on G and G

/
N .

Since we will deal in this chapter with relations between cohomology groups of
different groups let us take a moment to fix some notation. Let ρ : G −→ K be
a group homomorphism (in the topological cases also continuous). If A is a G′-
module with an action µ, then µ◦ (ρ× idA) defines an action of G on A. It is easy
to see that this assignment gives a well defined functor ρ∗ : K-Mod −→ G-Mod
which is exact. If H is a subgroup of a group G then we will use iH for the
inclusion. In the latter cases if A is a G-module we will abusively also write A for
(iH)∗ (A).

4.1 Classical LHS results

The classical LHS result first appeared in the PhD thesis of Lyndon in [Lyn48]
and was later discussed in full by Hochschild and Serre in [HS53]. Here we follow
Weibel’s exposition in [Wei94]. The main theorem is the following.

Theorem 4.1.1. Let N be a normal subgroup of a group G and A be a G-module.
Then there exists a convergent spectral sequence of the form

Ep,q
2 := Hp

gr

(
G
/
N,Hq

gr (N,A)
)
⇒ Hp+q

gr (G,A) (4.3)

Proof. We denote by p : G −→ G
/
N the obvious projection. The functor

−G : G-Mod −→ Ab decomposes as

G-Mod
−N

G //

−G
$$IIIIIIIIII G

/
N-Mod

−G/N
yyssssssssss

Ab

,

where ANG is the N -invariant subgroup of A, with G
/
N -module structure given

by gN.a := g.a (the latter is well defined since we consider the N -invariant
subgroup). We denote it like that to distinguish it from the functor −N :
N-Mod −→ Ab. It is easy to see that −NG is right adjoint to the exact func-
tor p∗ : G

/
N-Mod −→ G-Mod, so −NG preserves injectives. So we can apply
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Theorem 1.2.12 to get a spectral sequence

Ep,q
2 := Rp

(
−G
/
N

)(
Rq
(
−NG
)

(A)
)
⇒ Rp+q

(
−G
)

(A) = Hp+q
gr (G,A) (4.4)

Denote for : G
/
N-Mod −→ Ab the obvious forgetful functor. Now it is

obvious that for ◦−NG ∼= −N ◦ (iN)∗, but since for and (iN)∗ are exact it follows
that

for ◦Rn
(
−NG
)

(A) ∼= Hn
gr (N,A) . (4.5)

And the claim is proven. �

Similar results do not follow so easily for topological group cohomology. To get
them one has to take the construction of a Grothendieck spectral sequence and
check which steps can still be carried out in the respective models.
We will first discuss the measurable model. Moore managed to get an LHS result
in a quite decent generality for his setup. We recall [Moo76, Theorem 9].

Theorem 4.1.2. Let G be a locally compact Hausdorff group, N a closed normal
subgroup and A a Polish G-module. If Hn

µ (N,A) is Hausdorff for all n in N, then
there is a convergent spectral sequence of the form

Ep,q
2 := Hp

µ

(
G
/
N,Hq

µ (N,A)
)
⇒ Hp+q

µ (G,A) . (4.6)

Proof. We will not rewrite the proof here. We will simply give a quick sketch of
a construction. Recall the definition of U (X,A) in (2.18). Let us start with the
double complex

Cp,q ∼= U
((
G
/
N
)q+1

,U
(
Gp+1, A

)N)G/N (4.7)

with the obvious differentials. We recall that by Corollary 1.2.9 we get two
spectral sequences by filtering by columns and by rows. The one of them will
collapse because of [Moo76, Theorem 1] (the reason might be obscure now but
we have a similar proof later on for the continuous case) and the cohomology of
the total complex is identified with Hn

µ (G,A). By [Moo76, Proposition 4] one can
deduce that

Hq

(
U
((
G
/
N
)p+q

,U
(
G∗+1, A

)N)G/N) ∼= U
((
G
/
N
)p+1

, Hq
µ (N,A)

)G/N
,

and the result follows. Again the computation is roughly straightforward and
we will present a similar one later on. �
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Remark 4.1.3. The assumption in Theorem 4.1.2 that Hq
µ (N,A) is Hausdorff

stems from one of the major problems in defining cohomology theories for topo-
logical modules. If the groups one considers are restricted to some subcategory of
Top, it may happen (especially in the case of the Hausdorff condition) that a cok-
ernel of a continuous linear map does not exist. To see that, let i : A −→ B be a
monomorphism between two topological modules. The quotient, in the category of
say Hausdorff spaces, is B

/
i (A). This has the correct topological structure but the

wrong algebraic structure. Usually people prefer to consider the correct algebraic
quotient and endow the space with the topology induced by p : B −→ B

/
i (A).

The problem is that this space is in general not Hausdorff2 and so it will not be
a cokernel in our category of topological groups. The assumption Moore makes
reflects this problem.

The continuous case is more problematic. A result appears in the proof of
[HM62, Theorem 7.1] for vector space coefficients. We recall the notion of contin-
uously injective objects and resolution from [HM62, Section 2].

Proposition 4.1.4. Let N be a closed normal subgroup of a locally compact Haus-
dorff group G, A a finite-dimensional Hausdorff real vector space with a continuous
left G-action. Assume further that A has a continuously injective G-module res-
olution that is also continuously injective as an N-resolution. Assumer further
that Hq

c (G,A) is a finite-dimensional Hausdorff real vector space. Then there is a
convergent spectral sequence

Ep,q
2 := Hp

c

(
G
/
N,Hq

c (N,A)
)
⇒ Hp+q

c (G,A) . (4.8)

Proof. We will not rewrite the proof but give a short sketch of the construction
though. Consider the continuously injective G-resolution A → X• from the as-

sumption. The double complex Cp,q = Top
((
G
/
N
)q+1

, (Xp)N
)G/N

gives as usual

two spectral sequences by Corollary 1.2.9. One collapses by the fact that (Xp)N

are continuously injective as G
/
N -modules3, and one gets

Hp+q (tot (C•,•)) ∼= Hp+q

((
(Xp)N

)G/N) ∼= Hp+q
c (G,A) . (4.9)

Note that we did not use any of the two technical assumptions we made to
derive the above isomorphisms. Both assumptions are there to refine the E2-term

2for instance if i (A) is dense (but not closed) in B
3The reason for that is the same as in the discrete case. Simply note that the N -invariance

functor on continuous G-modules is right adjoint to the forgetful functor and the latter clearly
preserves strong exactness in the sense of [HM62, Section 2].
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of the other spectral sequence. Since by assumption A→ X• is strongly injective
also as an N -resolution we get that

Hq
c (N,A) ∼= Hq

(
(X•)N

)
. (4.10)

Since continuous linear surjections to finite-dimensional spaces are split, the
assumption on Hq

c (N,A) gives that

Hq

(
Top

((
G
/
N
)q+1

, (X•)N
)G/N) ∼= Top

((
G
/
N
)p+1

, Hq
c (N,A)

)G/N
. (4.11)

So the claim follows. �

Remark 4.1.5. A slightly extended result of Proposition (4.1.4) was given in
[BW00, Theorem IX.4.3]. In the next section we will give an LHS result for the
continuous case for arbitrary coefficient modules but only if the sequence N ↪→
G� G

/
N is topologically trivial.

4.2 LHS results for discrete and finite quotients

In this section we will discuss the locally continuous case and also some result
in the continuous case for arbitrary coefficient modules. Unfortunately the nasty
behaviour of locally continuous functions does not allow for a general result for that
model. We will also give a result for the locally smooth model. We recall that a Lie
group will be a group object in some category of manifolds. For the next theorem
to be applicable the only assumption on this category is that it has finite products
and coproducts and that if Γ is a discrete space then Γ ×M ∼=

∐
γ∈Γ

Mγ, where M

is manifold in this category and Mγ
∼= M . Our main result is the following.

Theorem 4.2.1. Assume that N is an open normal subgroup of an arbitrary topo-
logical group G. Assume that A is an arbitrary topological G-module. Then we have
the following:

1. There is a spectral sequence

Ep,q
2 := Hp

gr

(
G
/
N,Hq

c (N,A)
)
⇒ Hp+q

c (G,A) . (4.12)
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2. If
∣∣G/N ∣∣ <∞, then there is a spectral sequence

Ep,q
2 := Hp

gr

(
G
/
N,Hq

lc (N,A)
)
⇒ Hp+q

lc (G,A) . (4.13)

3. Assume further that G is a Lie group and A a smooth G-module. If again∣∣G/N ∣∣ <∞, then there is a spectral sequence

Ep,q
2 := Hp

gr

(
G
/
N,Hq

ls (N,A)
)
⇒ Hp+q

ls (G,A) . (4.14)

We will break the proof down into two technical lemmas. We will use the
following three double complexes

Ap,qc := Set
((
G
/
N
)p+1

,Top
(
Gq+1, A

)N)G/N (4.15)

Ap,qlc := Set
((
G
/
N
)p+1

,Map∆c

(
Gq+1, A

)N)G/N (4.16)

Ap,qls := Set
((
G
/
N
)p+1

,Map∆s

(
Gq+1, A

)N)G/N (4.17)

with differentials given by the same formulas

dp,qv (f) (g0N, . . . , gp+1N)
(
g′0, . . . g

′
q

)
:=

p+1∑
i=0

(−1)i f
(
g0N, . . . , ĝiN, . . . , gp+1N

) (
g′0, . . . , g

′
q

)
(4.18)

and

dp,qh (f) (g0N, . . . , gpN)
(
g′0, . . . g

′
q+1

)
:=

q+1∑
i=0

(−1)i f (g0N, . . . , gpN)
(
g′0, . . . , ĝ

′
i, . . . , g

′
p+1

)
(4.19)

in cases (4.15), (4.16) and (4.17) respectively.

Lemma 4.2.2. Under the assumptions of Theorem 4.2.1 we have that

Hp (A•,qc ) ∼= 0, p > 0, (4.20)
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Hp (A•,qlc ) ∼= 0, p > 0 (4.21)

and

Hp (A•,qls ) ∼= 0, p > 0 (4.22)

in the respective cases.

Proof. The proof is in principle the same in all cases. Let Hom denote Map∆c or
Map∆s or Top. In all cases we claim that if

f ∈ Set
((
G
/
N
)p+1

,Hom
(
Gq+1, A

)N)G/N
,

then

h (f) (g0N, . . . , gp−1N)
(
g′0, . . . , g

′
q

)
:=

(−1)p f (g0N, . . . , gp−1N, g
′
0N)

(
g′0, . . . , g

′
q

)
(4.23)

defines an element in Set
((
G
/
N
)p
,Hom (Gq+1, A)

N
)G/N

. Clearly the only

non-trivial check is that for all elements (g0N, . . . , gp−1N) of
(
G
/
N
)p, the function

h (f) (g0N, . . . , gp−1N) is an element of Hom (Gq+1, A).
Let us not consider the invariant subspaces for now since the arguments work
also without considering the equivariance of functions. Let f be an element of
Set

((
G
/
N
)p+1

,Hom (Gq+1, A)
)
. Denote by N o

e (Gq+1) the set of open neighbor-
hoods of the diagonal of Gq+1. In the three cases we are considering there is always
a function

l :
(
G
/
N
)p+1 −→ N o

diag

(
Gq+1

)
such that f (g0N, . . . , gpN) |l(g0N,...,gpN), has the "global property for functions

in Hom (Gq+1, A)". To explain what we mean by that if Hom denote locally contin-
uous functions then the previous restriction of f is continuous and the equivalent
for smooth. Clearly if Hom = Top then the function l can be chosen to be constant
and assign to all tuples in

(
G
/
N
)p+1 the entire space Gq+1. Under the respective

assumptions of Theorem 4.2.1 the space
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V :=
⋂

c∈(G
/
N)p+1

l(c)

is open. This is so in the locally continuous and smooth cases due to the
finiteness conditions and in the continuous case due to the fact that all l(c) = Gq+1

for all c so V = Gq+1. Now we denote by GHom the space of functions having
the global property corresponding to the local property that the functions of Hom

have4. Clearly f (g0N, . . . , gpN)
∣∣∣
V

is always an element of GHom (V,A). So we

have an element f̃ of Set
((
G
/
N
)p+1

,GHom (V,A)
)
defined by

f̃ (g0N, . . . , gpN) := f (g0N, . . . , gpN)
∣∣∣
V
.

But by the definition of the coproduct we have the following isomorphism

Set
((
G
/
N
)p+1

,GHom (V,A)
)
∼= GHom

 ∐
c∈(G

/
N)p+1

Vc, A


where Vc = V for all c. Also we have assumed that in the underlying category

of spaces we are working in, coproducts of some fixed space V indexed by some
small set I are isomorphic to the product V × I. So

Set
((
G
/
N
)p+1

,GHom (V,A)
)
∼= GHom

((
G
/
N
)p+1 × V,A

)
. (4.24)

Call p : G −→ G
/
N the natural projection and p0 : Gq+1 −→ G the projec-

tion to the first factor. We can define a function ∆̃ : V −→ p (p0 (V )) × V by
∆̃ (v0, . . . , vq) := (v0N, v0, . . . , vq). Clearly ∆̃ is an element of GHom (V, p (p0 (V ))× V ).
We note that clearly equation (4.24) holds if we replace

(
G
/
N
)p+1 with any discrete

space, in particular with
(
G
/
N
)p. Denote by h̃ the following composition

Set
((
G
/
N
)q+1

,GHom (V,A)
) ∼=−→GHom

((
G
/
N
)q+1 × V,A

)
(restriction of functions) −→GHom

((
G
/
N
)q × p (p0 (V ))× V,A

)
◦∆̃−→GHom

((
G
/
N
)q × V,A)

∼=−→Set
((
G
/
N
)q
,GHom (V,A)

)
.

4Clearly GHom = Hom if Hom = Top
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Clearly now

h (f) (g0N, . . . , gp−1N)
∣∣
V

= (−1)p h̃
(
f̃
)

(g0N, . . . , gp−1N) .

This implies that h (f) (g0N, . . . , gp−1N) is an element of Hom (Gq+1, A).
It is a trivial check to see that h (f) has the correct equivariant properties, i.e.
that for all elements of

(
G
/
N
)p+1 the function h (f) (c) is N -equivariant and that

h (f) is G
/
N -equivariant.

So in either case we get a well defined group homomorphism

hp,q : Set
((
G
/
N
)p+1

,Hom
(
Gq+1, A

)N)G/N −→
Set

((
G
/
N
)p
,Hom

(
Gq+1, A

)N)G/N
.

But a straightforward check reveals that

dp−1,q
v ◦ hp,q + hp+1,q ◦ dp,qv = id for p > 0. (4.25)

This shows the claim. �

The previous result dealt with the convergence of (4.12), (4.13) and (4.14). We
now turn to the E2-term.

Lemma 4.2.3. Assume that the bundle N ↪→ G � G
/
N is topologically trivial.

Then

Hq (Ap,•c ) ∼= Set
((
G
/
N
)p+1

, Hq
c (N,A)

)G/N
, (4.26)

Hq (Ap,•lc ) ∼= Set
((
G
/
N
)p+1

, Hq
lc (N,A)

)G/N
(4.27)

and

Hq (Ap,•ls ) ∼= Set
((
G
/
N
)p+1

, Hq
ls (N,A)

)G/N
. (4.28)
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Proof. Recall the usage of the generic symbol Hom from the Proof of Lemma
4.2.2. Note that the functor

Set
((
G
/
N
)p
,−
)

: Ab −→ Ab

is exact. This implies that

Hq
(
Set

((
G
/
N
)p
,Hom

(
G•+1, A

)N))∼=Set
((
G
/
N
)p
, Hq

(
Hom

(
G•+1, A

)N))
.

Also by Lemma 2.1.17 we have the following isomorphisms

Set
((
G
/
N
)p
,Hom

(
G•+1, A

)N) ∼= Set
((
G
/
N
)p+1

,Hom
(
G•+1, A

)N)G/N
as double complexes. So there is an induced isomorphism of the spectral se-

quences they produce. So

Hq

(
Set

((
G
/
N
)p+1

,Hom
(
G•+1, A

)N)G/N)
∼=Hq

(
Set

((
G
/
N
)p
,Hom

(
Gq+1, A

)N))
∼=Set

((
G
/
N
)p
, Hq

(
Hom

(
G•+1, A

)N))
∼=Set

((
G
/
N
)p+1

, Hq
(

Hom
(
G•+1, A

)N))G/N
.

Now the bundle N ↪→ G � G
/
N is topologically trivial, so by Corollary

(2.1.14) and the comment under Proposition 2.2.1 we get

Hq
c (N,A) ∼= Hq

(
Top

(
G•+1, A

)N) (4.29)

Hq
lc (N,A) ∼= Hq

(
Map∆c

(
G•+1, A

)N)
, (4.30)

and

Hq
ls (N,A) ∼= Hq

(
Map∆s

(
G•+1, A

)N)
. (4.31)

And the claim is proven. �



4.2 LHS results for discrete and finite quotients 61

The proof of Theorem 4.2.1 is already laid out so let us finalize the

Proof (of Theorem 4.2.1). Again we will use the generic expression Hom for
either Top or Map∆c to deal with both cases at once. We also denote by Cp,q the
complexes Ap,qc or Ap,qlc or Ap,qls . From Cp,q we can get due to Corollary (1.2.9) two
spectral sequences

IEp,q
2 = Hp

×H
q
∗
(
C∗,×

)
⇒ Hp+q (tot (C•,•)) , (4.32)

IIEp,q
2 = Hp

×H
q
∗
(
C×,∗

)
⇒ Hp+q (tot (C•,•)) . (4.33)

By Lemma 4.2.2 we have that Hq
∗ (C∗,p) vanishes for q > 0, and obviously for

q = 0

H0
∗ (C∗,p) ∼= Hom

(
Gp+1, A

)G
. (4.34)

Also since IE collapses, we compute

IEp,q
2
∼= IE

p,q

∞
∼= Hp+q (tot (C•,•)) ∼= Hp+q

∗ (G,A) , (4.35)

where ∗ is either c or lc or ls. Also by Lemma 4.2.3 we get that

Hq
• (Cp,•) ∼= Set

((
G
/
N
)p+1

, Hq (N,A)
)G/N

. (4.36)

Which means that in all cases

IIEp,q
2
∼= Hp

gr

(
G
/
N,Hq (N,A)

)
. (4.37)

Finally (4.35) and (4.37) proves Theorem 4.2.1. �

Let us give a slightly more general result of Theorem 4.2.1 for the continuous
model.

Proposition 4.2.4. Assume that N is a closed normal subgroup of a locally com-
pact Hausdorff topological group G, such that topologically G ∼= N × G

/
N . Let A

be an arbitrary topological G-module. Assume that

Zq
(
Top

(
G•+1, A

)N)→ Hq
(
Top

(
G•+1, A

)N)
has a global topological section for all q. Then there exists a spectral sequence

Ep,q
2 := Hp

c

(
G
/
N,Hq

c (N,A)
)
⇒ Hp+q

c (G,A) . (4.38)
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Proof. The proof is the same as in the previous theorem with a couple of small
tweaks. We start with a double complex similar to Ap,qc ,

Cp,q := Top
((
G
/
N
)q+1

,Top
(
Gp+1, A

)N)G/N (4.39)

with differentials as before. The proof of Lemma 4.2.2 works in a similar way.
To see that note that the contracting homotopy h we constructed there, in the
current case is the composition of the "exponential law" isomorphisms i.e.

Top (X,Top (Y, Z)) ∼= Top (X × Y, Z)

and the continuous function(
g0N, . . . , gq−1N, g

′
0, . . . g

′
p

)
7→ (g0N, . . . , gq−1N, g

′
0N, g

′
0, . . . , gp) .

So one of the two spectral sequences associated to (4.39) collapses and so the
cohomology of the total complex is identified with that of Hp

c (G,A). Clearly
Top

((
G
/
N
)p
,−
)
is exact for topologically trivial bundles, and so by our assump-

tion of the existence of a global section for Hq
(
Top (G•+1, A)

N
)
, we get that

Hq

(
Top

(
(G
/
N)p+1,Top

(
G•+1, A

)N)G/N)

∼= Top

(
(G
/
N)p+1, Hq

(
Top(G•+1, A)N

)G/N
.

By Proposition (2.2.1) Hq
(
Top (G•+1, A)

N
)
∼= Hq

c (N,A).
The result then follows exactly as in the Proof of Theorem 4.2.1. �

We close by mentioning some easy examples of Theorem 4.2.1. Note that the
main examples are in the case of N = G0, the connected identity component of G.

Example 4.2.5. Let S be a surface. We denote by Homeo+ (S, ∂S) the group
of orientation preserving homeomorphisms which restrict to the identity on the
boundary. Also, let Homeo0 (S, ∂S) denote the connected component of the iden-
tity of Homeo+ (S, ∂S). The mapping class group is defined as (e.g. in [FM12])

Mod (S) := Homeo+ (S, ∂S)
/

Homeo0 (S, ∂S) (4.40)

i.e. homotopy classes of orientation preserving homeomorphisms. Clearly the-
orem 4.2.1 is applicable and we get
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Ep,q
2 = Hp

gr (Mod (S) , Hq
c (Homeo0 (S, ∂S) ,Z))⇒ Hp+q

c

(
Homeo+ (S, ∂S) ,Z

)
For example when S is the annulus it is known that Mod (S) ∼= Z. The

cohomology groups of Z is computed in [Wei94] Example 6.14. So we get short
exact sequences5

0→ Hp
c (Homeo0 (S, ∂S) ,Z)Mod(S) → Hp

c

(
Homeo+ (S, ∂S) ,Z

)
→

→ Hp
c (Homeo0 (S, ∂S) ,Z)Mod(S) → 0.

In [FM12] it is shown that if S is either the twice or thrice punctured sphere
Mod (S, ∂S) is finite (Proposition 2.3), so we get also spectral sequences for the
locally continuous model by Theorem 4.2.1.

Remark 4.2.6. An LHS look-alike result for topological group cohomology can be
derived for the simplicial group cohomology model we discussed in Subsection 2.2
Part 4. Note that Ab (BG•) is abelian and the section functor Γ : Ab (BG•) −→
Ab factors as

Ab (BG•)
p∗ // Ab

(
B
(
G
/
N
)
•

) Γ // Ab .

So for any G, any normal closed subgroup N and any continuous G-module A,
we get by (1.2.12) a spectral sequence

Ep,q
2 := Hp

Sh

(
B
(
G
/
N
)
• , R

qp∗
(
A•glob,c

))
⇒ Hp+q

simp,c (G,A) . (4.41)

The identification of the stalks of Rqp∗
(
A•glob,c

)
is extremely difficult. An at-

tempt was made in [Jos02]. In [Jos02, Section 5] an LHS result for algebraic groups
is presented, but as in part 2 of Theorem 4.2.1, a restriction has to be made to∣∣G/N ∣∣ <∞.

Remark 4.2.7. As a closing remark to the chapter (and to some extent to the
thesis), we will discuss a bit the reasons for the restriction to finite quotients.
We saw hints of this reason throughout, but to try to make it a bit concrete, it
relates to the fact that there is not a very good notion of what Hn

lc (G,A) is as a
topological space. Actually something somehow more general happens. If we pick

5if A is G-module we denote, as is common, by AG the quotient group of A by the submodule
generated by elements of the form g.a− a.
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a category C, and we consider group objects over it, it is not straightforward how
to define a cohomology theory of them, and even if we find a way to generalize
the classical notions, usually the cohomology groups will have a not very easily
accessible structure as objects in C. In our discussion of locally continuous group
cohomology for example we found a way to define a group cohomology theory
for group objects in an appropriate category of spaces, but, as was outlined in the
subsection on locally continuous functions, the sets Maplc • (Gn+1, A) do not have a
topological structure which is easy and useful to work with. This problems appear
also in other setups. For example in the previous Remark 4.2.6, we mentioned
that in the case of algebraic groups an LHS result is derived only in case G

/
N is

finite. This allows the author there to identify the stalks of Rqp∗
(
A•glob,c

)
with the

cohomology of N .
Going back to topological groups, there is another model of topological group
cohomology, introduced in [Fla08], defined via sheaf cohomology. What he does is
to view topological groups by the Yoneda embedding as sheaves and then consider
the cohomology of the abelian ones. By the Comparison Theorem this is again
isomorphic with the Segal-Mitchison cohomology [WW15, Remark 4.12]. In [Fla08,
Corollary 6] he gives an LHS spectral sequence result for arbitrary G

/
N but he

fails to identify the coefficient modules of the E2-term with the cohomology of N .
In applications he does so by assuming that the quotient is finite. But an "honest"
LHS result should have the following properties, the E2-term should involve in a
clear way the cohomology of G

/
N and the cohomology of N , and the spectral

sequence should converge to the cohomology of G. The problem is that usually
by making the convergence part correct we create difficult to work with E2-terms
(as happened in [Jos02] or [Fla08]), or we could get easily accessible E2-terms but
then we do not know where they converge.
Note that we could change our exposition to fall in the first case as well. One can
show that there is actually a spectral sequence, for all closed normal subgroups
of G, which converges to the locally continuous group cohomology of G, and the
E2-term involves information about G

/
N and N but not in a straightforward way.

The way is very similar to what we did, but now starting from the double complex

Maplc•

((
G
/
N
)p+1 ×Gq+1, A

)G
. Following similar steps as above we would obtain

a spectral sequence

Ep,q
2 := Hp

×H
q
∗

(
Maplc•

((
G
/
N
)×+1 ×G∗+1, A

)G)
⇒ Hp+q

lc (G,A) .

We see that the E2-term is definitely not easy to work with. The reason that
the E2-term has this unpleasant form relates to the fact that Maplc (X,−) fails to
be right adjoint to the product in any reasonable category of topological spaces.
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A setup, where the above problems are solved, is described in [Ram08], where he
discusses bornological spaces. In his thesis he actually makes very explicit that
the LHS result he gets is closely related to the fact that there is a nice bornology
on the set of bounded functions which makes this bornological space in the usual
sense adjoint to taking products.
We said in the introduction that a topological group cohomology should have
classes which correctly incorporate topological and algebraic information about
the group G. Having now such theories, we know further that they contain also
interesting algebraic information about how their classes are related (being abelian
groups). It seems that it will be of interesting further research if one could find a
way to make the cohomology groups contain information about how their classes
are related topologically.
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Appendix A

Appendix

This appendix is a collection of various technical facts we used in various parts of
the thesis. No authenticity is claimed, everything in this appendix has definitely
appeared in one place or another in the past. We include it here so we can make
the exposition a bit self-contained.
In the following C will be a category and c an object of it. We give the following
definitions.

Definition A.1.8. 1. Sub (c) is the category with objects monomorphisms is :
s −→ c, in C, and morphisms the obvious commutative diagrams.

2. Assume that s and s′ are subobjects of c. If their product exists in Sub (c),
then it will be denoted as s ∩ s′, and called their intersection. If their co-
product exist in Sub (c) it will be denoted as s ∪ s′, and called their union.

Remark A.1.9. Usually we will be sloppy and identify the monomorphism with
its source object, which will imply that we view some canonical monomorphism
attach to it. An important thing to observe is that this notion is not refined
enough. To give an example if C is topological spaces, then this definition would
give as "subspaces" all continuous injections, while only embeddings actually make
sense as "subspaces" in the classical sense. So people sometimes refine this notion
to regular monomorphisms1, or strong monomorphisms e.t.c. We will only use
the language for abelian categories so there such confusion does not occur because
monomorphisms are normal and all those notions coincide.

Intersections and unions do not always exists. In fact unions might not exist
even if the category admits arbitrary limits. Let us see reasonable cases in which
they do.

1equalizers of a pair of arrows

67
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Proposition A.1.10. Assume that C admits pullbacks, then the intersection of
two subobjects s and s′, always exists and s ∩ s′ ∼= s ×c s′. Assume that C is an
abelian category, then their union exists and s ∪ s′ ∼= s

∐
s×cs′

s′.

Proof. The case of intersections is trivial. We will prove the second part. Let
s and s′ be subobjects of c′ and c′ a subobject of c. We need to show that the
unique morphism s

∐
s×cs′

s′ → c′, is mono. Since such a morphism will factorize
m : s

∐
s×cs′

s′ −→ c, it is enough to show that m is mono. Consider a morphism

L
l // s

∐
s×cs′

s′ such that ml = 0. We remember that in abelian categories the

pullback of B
g // C A

foo exists and is ker (fpra − gprB), while the pushout of

B C
goo f // A is coker (iaf − iBg). By [KS06, Lemma 8.3.2] we can complete

the following diagram

L′′
p′′ // //

η

''NNNNNNNNNNNNNNNNN

η

��=
==

==
==

==
==

==
==

==
==

==
==

==
L′

p′ // //

l′

��

L

l

��
s×c s′

(isprs−is′prs′ )k //

ω=id

��

s⊕ s′
p // //ids 0

0 −ids′


��

s
∐

s×cs′
s′

m

��
s×c s′ �

� k // s⊕ s′
fprs−gprs′ // // c

. (A.1)

ω and m exists since

(fprs − gprs′)
(
ids 0
0 −ids′

)
(isprsk − isprs′k) = fprsk − prs′k = 0.

By assumption ml = 0. L′ = L×s∐s×cs′ s
′ (s
⊕

s′). While L′′ exists by [KS06,

Lemma 8.3.2] , since k = ker (fprs − gprs′), and (fprs − gprs′)
(
ids 0
0 −ids′

)
l′ =

mpl′ = mlp′ = 0. And l′p′′ = (isprsk − is′prs′k) η, but then

lp′p′′ = pl′p′′ = p (isprsk − is′prs′k) η = 0.

But p′p′′ is an epimorphism so l = 0 and m is mono. �

Let s � � is // c be a subobject of c, s′ �
� is // c′ be a subobject of c′ and consider

f in C (c, c′). We will denote by f (s) := im (fis) if the latter one exists. While
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the "preimage" of a subobject is defined as f−1 (s′) := c×c′ s′ supposing the latter
one exists. In abelian categories one can show that the usual identities hold, i.e.

f−1 (s ∩ s′) ∼= f−1 (s) ∩ f−1 (s′)

f−1 (s ∪ s′) ∼= f−1 (s) ∪ f−1 (s′)

f (s′′ ∪ s′′′) ∼= f (s′′) ∪ f (s′′′) .

Now assume that S
� � iS // M is a subobject in an abelian category A. We

will denote by M
/
S := coker (iS). Usual results that concern subobjects and

quotients that hold in some category of modules also hold in an arbitrary abelian
category, using the above definitions of them. For example the proof of existence of
spectral sequences in Weibel can be carried out step by step in arbitrary abelian
categories, since he is only making use of the above definitions and results as
well as the Noether isomorphism theorems. The latter ones also hold in arbitrary
abelian categories. The result appears in many places (e.g. in [BP09]) but for
completeness we repeat it here.

Proposition A.1.11 (Noether’s Isomorphism Theorems). 1) Assume f is
a morphism between A and A′ then by definition ker (f)→ A and im (f)→ A′

are monomorphisms and A
/

ker (f) ∼= im (f).

2) Let S, T in Sub (M). Then S ∩ T and S ∪ T are in Sub (M) and also

(S ∪ T )
/
S ∼= T

/
(S ∩ T ) .

3) Assume that T ↪→ S ↪→ M . Then S
/
T in Sub

(
M
/
T
)
. Moreover every object

of Sub
(
M
/
T
)
is isomorphic to S ′

/
T with T ↪→ S ′ ↪→M . Also

(
M
/
T
) / (

S
/
T
) ∼= M

/
S.

Proof. 1) Follows from definitions and basic properties of abelian categories.

2) By the definition of S ∪ T , the diagram

S ×M T � � //
� _

��

T� _

��

S
� � // S

∐
S×MT T

(A.2)

Is pushout. So opposite arrows have isomorphic cokernels.
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3) Let L′ be a subobject of M
/
T . We have the following diagram

T� _

��
L′

l′ //

p′

����

M

p

����

L
� � l // M

/
T

(A.3)

Since the square is pullback, L′ is a subobject of M . Also p and p′ have
isomorphic kernels, and L′ ∼= L

/
ker (p′) ∼= L

/
T .

For the other part we have the following diagram

T� _

iST

��

T� _

iT

��
S

� � iS //

pST

����

M
pS // //

pT

����

M
/
S

(pT )∗

��

S
/
T � � // M

/
T // //

f

88pppppppppppppppppppppppp (
M
/
T
)/(

S
/
T
)
.

f∗

OO (A.4)

f exists since pSiT = pSisi
S
T = 0. But then

f (iS)∗ p
S
T = fpT iS = pSiS = 0,

and psT is an epimorphism so we get f∗. Trivially it is inverse to (pT )∗. �

To write the isomorphism between Čech cohomology and locally continuous
group cohomology we used the so-called staircase argument. Even though it is
quite well-known we thought to present here a formal proof of it for the sake
of completeness. One can carry out all the following arguments in any abelian
category in an element free way using matrix notation for morphisms between
direct products. But to save some space and make the proofs more readable we
will only present it for some category of modules over a ring R. So the setup is
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the following, let C be a first quadrant double complex in the category R−Mod.
We use the convention that the differentials anticommute. We assume that there
is a given homotopy for the vertical differential, i.e. we are given a collection of
morphisms hp,q : Cp,q −→ Cp,q−1 such that

dp,q−1
v ◦ hp,q + hp,q+1 ◦ dp,qv = idCp,q ,

for all p in N and q > 0. Before we present the Lemma, let us fix some
notation. We denote by Mn : tot (C)n −→ tot (C)n−1 the unique morphism
between products such that

prp,n−1−p ◦Mn ◦ ip,n−p = hp,n−p

for all p less or equal than n−1. We also define the "total horizontal differential"
Dn
h : tot (C)n −→ tot (C)n+1 to be the unique map between products such that

prp+1,n−p ◦Dn
h ◦ ip,n−p = dp,n−ph

for p greater than 0 and pr0,n+1 ◦Dn
h = 0.

We recall the following Lemma.

Lemma A.1.12 (Staircase argument). Under the above assumptions the in-
clusion ker dn,0v ↪→ Cn,0, induces an isomorphism in cohomology

Hn (totC) ∼= Hn
(
ker d•,0v

)
. (A.5)

The inverse of the inclusion can be described on the cocycle level by sending a
cocycle x of totC to the element

i−1
n,0

(
n∑
i=0

(
−Dn−1

h Mn
)n−i (

ii,n−i
(
xi,n−i

)))
. (A.6)

Remark A.1.13. We will make a couple of remarks before we give a proof. First
of all Lemma A.1.12 is making an implicit claim, namely that if x is a cocycle of
the total complex then formula (A.6) actually defines an element of ker dn,0v . This
might not be obvious at this stage2, it is though a straightforward result included
in the proof. Actually there is a much stronger statement, which usually goes by
the name acyclic assembly lemma. Under the assumptions of the previous Lemma
the inclusion of ker (d∗,0v ) in the total complex is a homotopy equivalence. But it
is not true that the formula we gave provides the homotopy inverse. One of the
reasons is that if x is only a cochain of the total complex the formula will not
give something in the required kernel. One needs to include an extra term (one

2in fact it is not obvious to the author without the proof
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similar to the second sum in equation [BT82, Proposition 9.5]) to the formula A.6
to make it a homotopy inverse to the inclusion, but this term will always vanish on
cocycles of the total complex so we can describe the isomorphism in cohomology
without this term.

Proof. We give an outline of one of the possible tedious proofs. We define the
following complexes for all natural numbers p

F p (totC)n =


n⊕
i=p

Ci,n−i if 0 ≤ p ≤ n

0 otherwise
(A.7)

and each has differential the restriction of the differential on the total complex.
For p ≤ n we define morphisms

Inp : F p (totC)n −→ F p+1 (totC)n (A.8)

by

Inp
(
xp,n−p, . . . , xn,0

)
:=
(
xp+1,n−p−1 − dp,n−p−1

h hp,n−p
(
xp,n−p

)
, xp+2,n−p−2, . . . , xn,0

)
They commute with the differential for n ≥ p+ 2, i.e.

In+1
p Dn = DnInp (A.9)

for n ≥ p + 1, so they induce morphisms in cohomology for n ≥ p + 2. It is
trivial that Inp is left inverse to the inclusion of F p+1 (totC)n in F p (totC)n. We
define now morphisms

snp : F p (totC)n −→ F p (totC)n−1 (A.10)

for n ≥ p+ 2 by

snp
(
xp,n−p, . . . , xn,0

)
:=
(
hp,n−pxp,n−p, 0, . . . , 0

)
(A.11)

and straightforward calculations show that for n ≥ p+ 2 we get that

idF p(totC)n − i ◦ Inp = Dn−1 ◦ snp + sn+1
p Dn (A.12)

and so the induced morphism in cohomology of Inp is right inverse as well to
the inclusion and so they are both isomorphisms for n ≥ p + 2. This shows that
we have a chain of isomorphisms

Ĩn :=
(
Inn−2

)
∗ ◦
(
Inn−1

)
∗ ◦ · · · ◦ (In0 )∗ : Hn (totC) −→ Hn

(
F n−2 (totC)

)
(A.13)
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for all n ≥ 2. Finally we argue that the morphism

l : F n−2 (totC) −→ Cn,0 (A.14)

given by

l (x) := xn,0 − dhh
(
xn−1,1

)
+ dhhdhh

(
xn−2,2

)
3 (A.15)

induces an isomorphism in cohomology

l∗ : Hn
(
F n−2 (totC)

)
−→ Hn

(
ker d•,0v

)
. (A.16)

The first part of this last claim is that l induces a morphism in cohomol-
ogy. This follows from straightforward calculations since if x is a cocycle of
F n−2 (totC)n, then

dhl (x) = dhx
n,0 (A.17)

since dh is a differential, and this last term vanishes because x is a cocycle.
Also after some calculations, using the fact that dv and dh anticommute and the
fact that h is a homotopy for dv, one can show that dvl (x) also vanishes for x a
cocycle. Also l sends images of Dn−1 to images of dn−1,0

h |ker dn−1,0
v

. To see that note
that

lD (x) = dh
(
xn−1,0 − hdhxn−2,1 − hxvxn−1,0 + hdhhdvx

n−2,1 − dhhxn−2,1
)
(A.18)

where the last term does not follow exactly from the computation of lD(x) but
it can be added since it is trivially 0, and the reason we added it is because the
rest of the terms inside the parenthesis do not vanish under dv, so they would not
belong to ker dv. But a simple computation shows that dv applied on them gives
dvdhhx

n−2,1, which is then counterbalanced by the addition of the extra 0 term
above. So finally, l does gives a morphism in cohomology as asserted. Furthermore,
clearly

l ◦ i (k) = k (A.19)

and if x is a cocycle of F n−2 (totC)n

il(x) =
(
0, 0, xn,0 − dhhxn−1,1 + dhhdhhx

n−2,2
)

=
(
xn−2,2, xn−1,1, xn,0

)
−
(
xn−2,2, xn−1,1, dhhx

n−1,1 − dhhdhhxn−2,2
)
.

3from now we start dropping some tedious bookkeeping indices
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But the last line is equal to

D
(
hxn−2,2, hxn−1,1 − hdhhxn−2,2

)
,

i.e. il (x) is cohomologous to x for all cocycles of F n−2 (totC)n. This finally
shows that l∗ is inverse to the inclusion Hn (ker d•,0v )→ Hn (F n−2 (totC)).
Finally, putting everything together we get an isomorphism

l∗ ◦ Ĩn : Hn (totC) −→ Hn
(
ker d•,0v

)
. (A.20)

By the construction above it is exactly described on the cocycle level by formula
(A.6) �

Remark A.1.14. Note that the above construction is using one of the filtrations
to obtain the usual spectral sequences from the double complex C. Of course the
above isomorphism follows directly by a spectral sequence argument as we did in
the proof of Theorem 4.2.1. It is obvious that the above isomorphism and the one
coming from the spectral sequence argument are the same.

We used the notion of "generalized δ-functors" in a couple of places. Note that
in Definition 1.1.8 the abelian group structure of the source category was only very
"lightly" used. Let us recall a more general definition (e.g. [WW15, Definition
VI.1] ).

Definition A.1.15. 1. A category with short exact sequences, is a category
C together with a collection of composable morphisms A → B → C in C
called short exact sequences. A morphism between short exact sequences
A → B → C and A′ → B′ → C ′ are morphisms A → A′, B → B′ and
C → C ′ such that the diagram

A //

��

B //

��

C

��
A′ // B′ // C ′

(A.21)

commutes.

2. Let C be a category with short exact sequences and A an abelian category.
A δ-functor from C to A is a collection of functors

{T n : C −→ A}n∈Z (A.22)
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such that for each short exact sequence A
f // B

g // C of C there is a
long exact sequence in A

. . . // T n (A)
Tn(f) // T n (B)

Tn(g) // T n (C)
δnA,B,C// T n+1 (A) // . . . (A.23)

and the morphisms δnA,B,C are natural in the sense that for each morphism
of short exact sequences as in (A.21), the diagram

T n (C)
δnA,B,C //

��

T n+1 (A)

��
T n (C ′)

δn
A′,B′,C′ // T n+1 (A′)

commutes.

Remark A.1.16. Morphisms between δ-functors are defined similarly as in Def-
inition 1.1.8.

Example A.1.17. The functors H•∗ (G,−) for ∗ in {gr, lc, c, SM} are δ-functors.
Note that the notion of delta functor depends on the choice of short exact sequences
in the source category. For the group cohomology case of course the choice is short
exact sequences of G-modules. For the case of continuous group cohomology the
choice is short exact sequences of topological G-modules for which the underlying
bundle is topologically trivial. For the other models the choice is short exact
sequence of topological G-modules for which the underlying bundle has a local
section.

Example A.1.18. A cohomological functor H : D −→ A between a triangulated
category D and an abelian category A defines a delta functor H ◦ T n, where T is
the translation automorphism of D. Of course as short exact sequences in D we
consider A → B → C, such that there exists a distinguished triangle A → B →
C → TA.
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