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Abstract

Based on recent advances in dynamical system theory, we re-examine the variabil-
ity in the mid latitudes induced by large scale baroclinic and barotropic processes.
Classical approaches for investigating variability define an idealized background
state and assess the stability of linear fluctuations in its vicinity or use the purely
correlation based empirical orthogonal functions. Undoubtedly, these approaches
have a great value for elucidating the relevant physical processes but they can not
follow the evolution of a chaotic/turbulent atmosphere. The so-called covariant
Lyapunov vectors (CLVs) provide a covariant basis which describes the directions
of exponential expansion and decay of linear perturbations on a non-linear chaotic
background. Their average growth rates equal the Lyapunov exponents (LE). We
apply this extension of the classical stability analysis for the first time to a non-
linearly evolving quasi-geostrophic (QG) model of the mid latitudes to re-examine
the basic barotropic and baroclinic processes of the atmosphere. This QG model
is a beta-plane two-layer model in a periodic channel driven by a forced merid-
ional temperature gradient ΔT . We vary ΔT , representative for turbulence from
relatively weak over intermediate to well-developed conditions.
By constructing the Lorenz energy cycle for each CLV, we identify a positive baro-
clinic conversion rate as a necessary but not sufficient condition of instability.
Barotropic instability is present only for few very unstable CLVs for large values of
ΔT . Slowly growing and decaying Lyapunov modes closely mirror some barotropic
and baroclinic properties of the background flow. Following classical necessary con-
ditions for barotropic/baroclinic instability, we find a clear relationship between
the properties of the eddy fluxes of a CLV and its instability. CLVs with positive
baroclinic conversion are potentially a useful set of modes which could be employed
to construct a reduced model of the atmosphere dynamics.
In the next step, we extend the QG model by orography, in order to study fluc-
tuations of the background state based on the emergence of blocking-like events.
Blocking events in the mid latitudes atmosphere constitute a persistent deviation
from the approximately zonally symmetric jet stream to the emergence of so-called
blocking patterns. Such configurations are usually connected to exceptional local
stability properties of the flow which are accompanied by an improved local forecast
skill during the phenomenon. Yet, it is extremely hard to predict onset and decay
of the pattern. Hence, we examine whether CLVs feature a signature of the blocking
events and exploit that they are sensitive to orographic forcings.
Using a Tibaldi-Molteni scheme to detect blockings, we find that the global finite
size LEs of the fastest growing CLVs are significantly higher than their long term
averages. Thus, against intuitive expectations, the circulation is globally more
unstable in blocked phases due to stronger barotropic and baroclinic conversion in
the case of high temperature gradients. For low values of ΔT , the effect is only
due to stronger barotropic conversion. In order to determine the localization of the



ii Abstract

CLVs, we compare the meridionally averaged variance of the CLVs during blocked
and unblocked phases. We find that on average the variance of the CLVs is clustered
around the center of blocking. These results show that the blocked flow affects all
time scales and processes described by the CLVs.
Our findings show that CLVs have a meaningful physical interpretation and provide
a link between rather mathematical properties concerning the local direction of the
stable and unstable manifold in autonomous system and the energetics of baroclinic
and barotropic conversions. This opens new possibilities for exploiting dynamical
system theory for applications in meteorology and geosciences regarding data as-
similation, the correlations across multiple scales of motions and the partitioning of
phase space with respect to their linear stability properties.
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Zusammenfassung

Basierend auf neuen Entwicklungen in der Theorie der dynamischen Systeme,
analysieren wir die Variabilität der mittleren Breiten der Erdatmosphäre, die durch
großskalige barotrope und barokine Prozesse erzeugt wird. Klassische Methoden um
diese Variabilität zu untersuchen basieren entweder darauf, einen Hintergrundzu-
stand auszuwählen und die lineare Stabilität kleiner Störungen, beziehungsweise
schwach nicht linearer Fluktuationen um diesen Zustand, zu bestimmen. Darüber-
hinaus, können die auf Korrelationen beruhenden, empirischen Orthogonalfunktio-
nen untersucht werden. Es ist unbestreitbar, dass diese Methoden einen großen
Anteil daran hatten und haben die relevanten physikalischen Prozesse zu erfassen.
Jedoch besteht ein eher schwacher Zusammenhang der Dynamik der dort verwen-
deten Objekte mit der chaotischen/turbulenten Atmosphäre.
Die sogenannten kovarianten Lyapunov Vektoren (KLVs/CLVs) sind eine kovariante
Basis des tangentiallinearen Raumes. Sie beschreiben die Richtungen des expo-
nentiellen Wachstums und Abfalls einer linearen Störung auf einer nicht-linearen
Lösung im Phasenraum. Die mittleren Wachstums-/Abfallraten entsprechen den
Lyapunov Exponenten (LE). Diese Arbeit soll ein erstes Beispiel sein und demon-
strieren, wie die hier vorgeschlagene Erweiterung der klassischen Stabilitätsanal-
yse angewandt wird auf ein sich nicht linear entwickelndes quasi-geostrophischen
(QG) Modell der mittleren Breiten. Mit Hilfe der KLVs untersuchen wir dann die
wesentlichen barotropen und baroklinen Prozesse in der Atmosphäre. Das QGMod-
ell ist ein Zweischichtenmodel auf einem periodischen β Kanal und wird angetrieben
durch einen vorgeschriebenen meridionalen Temperaturgradienten ΔT . Wir unter-
suchen verschiedene ΔT , welche das gesamte Spektrum der großskaligen Turbulenz
abdecken von relativ schwachen bis hinzu gut entwickelten Bedingungen.
Wir entwickeln den Lorenz Energiezyklus für jeden KLV. Dieser beschreibt die En-
ergieumwandlungen, die durch den Hintergrundzustand verursacht werden, als auch
die Dissipation und Reibung, welche zum Verlust von Energie führen. Eine posi-
tive barokline Umwandlungsrate is eine notwendige aber nicht hinreichende Bedin-
gung für Instabilität. Barotrope Instabilität wird nur für wenige KLVs beobachtet,
wenn ΔT groß ist. Langsam wachsende und schrumpfende KLVs weisen in viel-
erlei Hinsicht ähnliche Eigenschaften wie der Hintergrundzustand auf. Klassischen
notwendigen Bedingungen entsprechend für barokline/barotrope Instabilität, stellen
wir eine klare Beziehung zwischen den Eigenschaften der Eddyflüsse der KLVs und
deren Instabilität. KLVs mit positiver barokliner Energieumwandlung rekonstru-
ieren verlässlich die Variabilität des Models und sind daher potentiell interessant
um ein reduziertes Model der atmosphärischen Dynamik zu entwickeln.
Wir lassen dann die Analyse der langfristigen Variabilität hinter uns und erweitern
das QG Model mit Orographie um Fluktuationen des Hintergrundzustandes an
Hand von blockierten Großwetterlagen zu untersuchen. Die gaußförmige Orographie
verstärkt die Entstehung von lokalisierten blockierten Lagen. Blockierte Lagen
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sind eine persistente Abweichung von dem mehr oder weniger zonal symmetrischen
Jetstream. Solche Muster sind für gewöhnlich mit einer erhöhten lokalen Stabilität
des Flusses verbunden, welche mit einer erhöhten Vorhersagequalität einhergeht.
Allerdings ist es besonders schwer den Anfang und das Ende der blockierten Lage
vorherzusagen. Deswegen ist es vielversprechend zu untersuchen, ob KLVs eine
Signatur der blockierten Lagen aufzeigen, da sie sensitiv auf orographische Einflüsse
reagieren.
Wenn die verwandte Tibaldi-Molteni Methode eine blockierende Lage detektiert, er-
höht sich die Wachstumsrate der am schnellsten wachsenden KLVs signifikant. Dass
heißt, entgegen der intuitiven Erwartungen, ist die globale Zirkulation instabiler
während eines Blocks. Demzufolge erhöhen sich die lokalen LE im Vergleich zu den
gemittelten LE. Dies wird verursacht durch eine erhöhte barokline und barotrope
Umwandlungen im Falle höherer ΔT und alleinig durch die barotrope Umwand-
lung für niedrige ΔT . Um die Lokalisierung der KLVs zu untersuchen, bestimmen
wir ihre meridional gemittelte Variabilität während der Blocks. Im Mittel sind sie
verstärkt, um den Block herum lokalisiert. Wir schließen daraus, dass blockierte
Lagen einen Zustand darstellen, der sich auf allen Zeitskalen und Prozessen, welche
durch die KLVs beschrieben werden, auswirkt.
Die Ergebnisse dieser Arbeit zeigen, dass die KLVs sinnvoll physikalisch interpretiert
werden können. Es kann eine Verbindung hergestellt werden zwischen einerseits
den mathematischen Objekten (den KLVs), welche die stabile und instabile Man-
nigfaltigkeit tangential aufspannen und andererseits, der Energetik der baroklinen
und barotropen Umwandlungen. Dies eröffnet neue Möglichkeiten dynamische Sys-
temtheorie innerhalb der Meteorologie und Geowissenschaften anzuwenden hin-
sichtlich Datenassimilation, der Korrelationen hinweg über verschiedene zeitliche
und räumliche Skalen der Dynamik und der Aufteilung des Phasenraums anhand
der linearen Stabilitätseigenschaften.
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Chapter 1

Introduction

1.1 Motivation and Background

In geophysics and meteorology in particular, we are almost exclusively confronted
with high dimensional and chaotic systems. Predicting and understanding such
systems has a high benefit for society when determining the influence of human
activities and forecasting the huge variety of interconnected compartments of the
earth system. Obviously, such an undertaking requires on the one hand obser-
vations of the real world and on the other hand theoretical investigations using
computer simulations. Regarding the latter part, the increasing complexity and the
vast number of coupled sub models make it increasingly hard to understand the
mechanisms behind such systems (Held, 2005). It is therefore common scientific
practice to employ a hierarchy of models from e.g. idealized models to full earth
system models to investigate processes in the atmosphere, on the ocean or on land.
For example, earth system models of intermediate complexity allow for demonstrat-
ing basic thermodynamic principles, study bi-stability of the climate and conduct
broader surveys of climate impacts in various scenarios of climate change (see, e.g.
Lucarini et al. (2010); Boschi et al. (2013); Holden et al. (2013)). Such results can
then be used to substantiate results from the next level in the hierarchy, e.g. state-
of-the-art earth system models. Moreover, a deeper understanding of the climate
system is also offered by selecting tools and methods based on more mathemati-
cal concepts originating in dynamical system theory (Dymnikov and Filatov, 1996;
Lucarini et al., 2014). Given that many methods, that dynamical system theory
employs, are computationally expensive, we have to climb the hierarchy from below.

For these reasons, this thesis is not concerned with a model of the atmosphere that is
realistic. Instead, we choose a model which captures essential processes in the large
scale mid latitudes circulation and that is similar to the very old ”general circulation
model” by Phillips (1956). Famously, in such simple quasi geostrophic (QG) models,
the growth of small disturbances - the so-called normal modes - were investigated
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on idealized backgrounds of the mid latitudes atmosphere (Charney, 1947; Eady,
1949). Further studies of normal modes also included time-varying basic-states
(Frederiksen, 1997) and more general but nevertheless fixed backgrounds (Eliassen,
1983). Different types of non-modal growth were also unraveled. Such can be cre-
ated by superposition of modes (Cash and Lee, 2001) and non-hermitian Jacobians
in e.g. shear flows (Volponi, 2005). These are unquestionable reasonable approaches
to study stability of fixed states. In this thesis, we will instead investigate the prop-
erties of disturbances when growing on the asymptotic long term dynamics. This
is an important improvement - as we will discuss further in this thesis - because
small disturbances in fact grow on highly chaotic backgrounds instead of only feed-
ing from energy of the already mentioned idealized states, like it is implied in e.g.
Simmons and Hoskins (1978). In order to investigate such dynamics, we have to
employ novel tools from dynamical system theory which allow for an investigation
of the tangent linear dynamics on non-linearly evolving backgrounds. This was pre-
viously not possible, since no algorithms existed which could efficiently compute the
so-called Covariant Lyapunov Vectors (CLVs) (Wolfe and Samelson, 2007; Ginelli
et al., 2007). This basis of the tangent space is the only basis that can be inter-
preted in a physical way and their application is rather new for the meteorological
community. Nevertheless, some results regarding Lorenz 96 models and the weakly
non-linear QG model of Pedlosky (1987) already exist but they lack a thorough
interpretation in terms of their physical interpretation (Wolfe and Samelson, 2007;
Pazó et al., 2010). CLVs allow to access detailed information about the structure of
the long-term statistically stationary climate of a dynamical system, the so called
attracting set (Ruelle, 1980). They potentially allow for determining whether the
long term dynamics can be embedded in an inertial manifold (Yang et al., 2009).
Hence, CLVs have - apart from their mathematical value - high potential for appli-
cations in data assimilation and model reduction. Moreover, further benefits can
be expected in ensemble predictions schemes (Pazó et al., 2010).

In order to contribute to the establishment of CLVs in meteorology, we will focus on
the properties of CLVs from the perspective of meteorology. Aiming at this, we will
generalize the concept of baroclinic and barotropic stability of normal modes follow-
ing Eady and Charney and apply this to CLVs which growing on the non-linearly
fluctuating atmosphere. We will explain in the remainder of this introduction in
more detail the relation of CLVs to classical linear stability theory and what ques-
tions they can address beyond the classical approaches. More specifically, we will
assess how this thesis will improve the understanding of the linear processes which
contribute to creating the long-term variability in the mid latitudes (see Section 1.2)
and how they characterize weather regimes like blocking events (see Section 1.3).
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1.2 The Mid Latitudes Variability and Covariant
Lyapunov Vectors

A classical example of dynamical meteorology and climate dynamics is the study
of mid-latitude atmospheric variability and the investigation of the unstable eddies
responsible for the synoptic weather. These unstable eddies affect predictability
on time scales of the order of a few days and on spatial scales of the order of
a few hundreds kilometers (Kalnay, 2003). They play a crucial climatic role of
transporting heat poleward, therefore their accurate characterization is of utmost
importance. Classical attempts at understanding their properties are based on
linearization of some basic state and normal mode analysis, possibly extended to
weakly non-linear regimes (Pedlosky, 1987) and on the provision of simple climatic
closures (Stone, 1978), with stochastic models trying to fill the gap (Farrell and
Ioannou, 1993). Two types of energy conversion between the background state
and the fluctuations have been proposed. The first type, the barotropic instability,
converts energy between the kinetic energy of the background state and the eddy
field. As a result the momentum gradients in the background profile are reduced by
an unstable barotropic process (Kuo, 1949). The second type of instability is related
to the presence of a sufficient vertical shear in the background state (Charney, 1947;
Eady, 1949; Kuo, 1952). The energetics of the so-called baroclinic instability is
dominated by the following processes. The available potential energy of the zonal
flow is converted into available potential energy of the eddy field, which is then
converted into eddy kinetic energy. As a result of these processes, the center of
mass of the atmosphere is lowered and heat is transported against the temperature
gradient. Necessary instability conditions for the linear stability of generic zonal
symmetric states are given by the Charney-Stern theorem (Charney and Stern,
1962; Eliassen, 1983). The baroclinic and barotropic energy conversions between the
zonal mean and the eddies underpin the Lorenz energy cycle (LEC), thus providing
the link between weather instabilities and climate (Lorenz, 1955; Lucarini, 2009;
Lucarini et al., 2014), seen as a non-equilibrium steady state. Simple two layer QG
models (Pedlosky, 1964; Phillips, 1954) provide a qualitative correct picture of the
synoptic scale instabilities and energetics of the mid-latitude dynamics (Oort, 1964;
Li et al., 2007).

The above described approaches study atmospheric variability based on defining a
background state and studying the linear stability of the small fluctuations around
such a state. Weakly non-linear theories can be constructed using higher order ex-
pansions terms. While these approaches provide useful insight into the mechanisms
responsible for instabilities and the non-linear stabilization, they miss the crucial
point of allowing for the investigation of the actual properties of the turbulent
regimes, where the system evolves with time in a complex manner, and is far from
being in the idealized base state considered in the instability analysis (Speranza



4 Introduction

and Malguzzi, 1988; Hussain, 1983).

This thesis approaches the problem of studying the instabilities of the atmosphere
in a turbulent regime by taking advantage of some recent tools of dynamical sys-
tems theory and statistical mechanics, namely the CLVs (Ginelli et al., 2007; Wolfe
and Samelson, 2007). These allow for studying linear perturbations of chaotic at-
mospheric flows and investigating the dynamics of the tangent space. In the past,
Lyapunov vectors were proposed as bases to study the growth and decay of lin-
ear perturbations and to associate such features to the predictability of the flow
and use them in data assimilation, see (Legras and Vautard, 1996; Kalnay, 2003).
Ruelle (1979) first proposed the idea of a covariant splitting of the tangent linear
space (see also Trevisan and Pancotti (1998)). The covariance of this basis is the
critical property for a linear stability analysis, since the basis vectors can be seen
as actual trajectories of linear perturbations. Moreover, the average growth rate of
each CLV equals one of the Lyapunov exponents (LE). Note that the LEs describe
the asymptotic expansion and decay rates of infinitesimal small perturbations of a
chaotic trajectory (Eckmann and Ruelle, 1985) and have been studied extensively
in meteorology . The CLVs provide explicit information about the directions of
asymptotic growth and decay in the tangent linear space. For stationary states the
CLVs reduce to the normal modes. In the case of periodic orbits the CLVs coincide
with the Floquet vectors which for example have been obtained for the weakly un-
stable Pedlosky model (Samelson, 2001a). Samelson also extended this analysis to
unstable periodic orbits (Samelson, 2001b).

Recently, new methods to compute CLVs for arbitrary chaotic trajectories have
been developed by Ginelli et al. (2007) as well as Wolfe and Samelson (2006, 2007,
2008). We will give a short introduction to the theory of CLVs in Chapter two.
For a comprehensive introduction we refer to Kuptsov and Parlitz (2012). These
methods allow for computing CLVs for high dimensional chaotic systems and have
led to a renewed interest in the related theory. CLVs have been successfully ob-
tained for one and two dimensional systems (Yang et al., 2009; Yang and Radons,
2010; Takeuchi et al., 2011). Moreover, they have been studied for simple models
of geophysical relevance (Pazó et al., 2010; Herrera et al., 2011) elucidating the
potential benefits of CLVs in Ensemble Prediction Systems over bred vectors and
orthogonal Lyapunov vectors. Note that by spanning the tangent space of the at-
tractor, CLVs allow in principle a precise calculation of the response operator to
an arbitrary perturbation of a dynamical system (Lucarini et al., 2014; Lucarini
and Sarno, 2011; Ruelle, 2009). In Chapter four, we construct CLVs for the sim-
ple two layer QG model introduced by Phillips (1956) and consider three values
of the equator-to-pole relaxation temperature difference ΔT , corresponding to low,
medium, and high baroclinic forcing, and correspondingly developed turbulence
(see Section 3.2.1). This is intended as a first step in the direction of studying a
hierarchy of more complex models of geophysical flows. The model is introduced
and its use justified in Chapter three.
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It is of great interest to link the mathematical properties of the various CLVs to
their energetics. Hence, a straightforward generalization of the concepts concern-
ing baroclinic and barotropic conversions as part of a LEC developed for normal
modes is desired. Thanks to covariance, we are able to construct the Lorenz energy
cycle for each CLV, and then deduce the rate of barotropic and baroclinic energy
conversion, as well as of frictional dissipation (see Section 4.2). In this way, we are
able to associate the overall asymptotically growing or decaying property of each
CLV to specific physical processes (see Section 4.3).
In Section 4.4, as a preliminary idea we take a first step towards a comparable
concept employing CLVs. We investigate how much variance of the background
trajectories can be explained by the CLVs. Usually, explaining the variability based
on correlations employs Empirical Orthogonal Functions (EOFs) (Peixto and Oort,
1992) which can be used to construct models of reduced complexity (Selten, 1995;
Franzke et al., 2005) because they are optimal vectors in phase space to explain
the variance. The downside of this approach is that the EOFs are solely based on
correlations and are not related to the actual dynamics of the flow. Therefore, CLVs
are a much more interesting choice for this.

The study of the mid latitudes in a long term statistical sense is only the one part
of this thesis. In the next subsection, we will therefore introduce how the CLVs can
be employed to characterize persistent fluctuations of the background state as well.

1.3 Weather Regimes and the Localization of Co-
variant Lyapunov Vectors

The study of weather regimes in the atmosphere is a key topic in meteorology and
geosciences. In particular, blocking highs have been early on identified as persistent,
large scale deviations from the zonally symmetric general circulation (Baur, 1947;
Rex, 1950). Traditionally, the detection and description of these events employs
objective indicators based on pressure anomalies in the atmosphere obtained from
observational data or output of general circulation models (Lejenäs and Økland,
1983; Tibaldi and Molteni, 1990; Schalge et al., 2011). Such blocking events and
related large scale weather regimes provide an important contribution to the low
frequency variability of the atmosphere. In particular, one can interpret the mid-
latitude atmosphere as jumping between a zonal regime and a blocked regime, or,
more in general, a regime where long waves are strongly enhanced (Benzi et al.,
1986; Sutera, 1986; Molteni et al., 1988; Ruti et al., 2006; Majda et al., 2006;
Franzke et al., 2008). One needs to remark that the so-called bi-modality theory
as well as the analyses which have confirmed - at least partially - its validity have
been criticized in the literature, see e.g. Nitsche et al. (1994) and Ambaum (2008).
Charney and DeVore (1979) and Charney and Straus (1980) have speculated that
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the existence of multiple stationary equilibria in simple models of the atmospheric
circulation is the root cause for weather regimes. In their investigation of highly
truncated QG models, several stationary states exist due to an orographic forcing.
Different weather regimes are then associated with the neighborhood of the various
stationary states. Contrary to this theory of multiple equilibria, it was found that in
less severely truncated models, which adopted realistic forcings, stationary states
are far away from the attractor (Reinhold and Pierrehumbert, 1982; Tung and
Rosenthal, 1985) and/or only one stationary state exists, as we have already pointed
out in the previous section (Speranza and Malguzzi, 1988).

Coming from a dynamical system theory, the attempt to define atmospheric weather
regimes is based on investigating the density of the attractor of a dynamical system.
It is not surprising that in highly chaotic systems, a characterization of the full
statistics of an attractor is not possible using a few stationary points. Therefore,
the concept of switching between the neighborhood of unstable stationary states,
can be generalized to the neighborhood of weakly unstable orbits to define weather
regimes (Gritsun, 2013). Also, heteroclinic connections between unstable stationary
states were found in a highly truncated barotropic model (Crommelin, 2003). In
models with higher complexity ”ruins” of these structures are found and correlate
with transitions between different weather regimes (Kondrashov et al., 2004; Sempf
et al., 2007). In a reduced model phase space, this allows for identifying different
dynamically stable weather regimes and less stable transitions paths between them
(Tantet et al., 2015).

In this thesis, we will build upon the classical point of view on the dynamics of
blocking, which focuses on the analysis of the linear instabilities of low-order models.
Thus, we consider more earth-like - at least, qualitatively - background turbulent
atmospheric conditions. While the attractors we consider are strange geometrical
objects, we follow a mathematical approach such that we are able to stick to the
investigation of linear stability properties. This allows for a relatively easy inter-
pretation of the underlying physical mechanisms. Ever since Lorenz (1963), it is
clear that linear stability is a measure of predictability of the atmosphere. There-
fore, the difficulty of predicting - in time - the onset and decay of weather regimes
and their persistence should be reflected in local stability properties. Consequently,
blocking patterns have been assessed in regard of their linear stability properties in
various bases. It is important to note, that for an analysis of linear perturbations a
meaningful basis has to be chosen (Pazó et al., 2010). The analysis of optimal per-
turbations indicated that the leading optimal perturbation localizes where blocking
occurs (Buizza and Molteni, 1996). In a study by Frederiksen (1997) normal modes
for a time varying basic state were investigated. It was also found that blocking
can only be explained by accounting for non-linear effects if linear perturbations of
single states of the atmosphere are considered (Naoe and Matsuda, 2002).

In Chapter five, we will use CLVs to investigate this problem. Investigating linear
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stability of weather regimes with CLVs combines the benefits of the various men-
tioned approaches to linear stability. First, they possess the already mentioned
benefits of covariance and they generalize the classical normal modes. Second and
more importantly for models employing orographic forcings, the CLVs will respond
to orographic disturbances (Szendro et al., 2008). Taking these points into consid-
eration, it is suggestive to consider CLVs as a superior choice over other orthogonal,
hence norm-dependent Lyapunov vectors for the studies of weather regimes en-
hanced by orographic forcings.

The analysis of a weather regime like blocking will complete the investigation of
Chapter four. There, we will address how the average energy and momentum
transports of the CLVs are related to their growth and decay in respect to the back-
ground state and how they explain the variance of the background state. This will
provide a bridge between the growth rate of the CLVs and the physical mechanisms
of instability of the quasi-geostrophic flow, namely the barotropic and baroclinic
instability, as components of a detailed analysis of the Lorenz Energy cycle of each
CLV. We note that our focus there will be exclusively on the long-term properties
of the flow, of its CLVs, and of the corresponding LEs. Instead for the analysis
of blocking events in Chapter five, we will be concerned with weather regimes in
the background state, hence we will study the fluctuations of the CLVs and look
at some properties of finite-time LEs. The rationale for the study of blockings is
then the following. Using the classical Tibaldi-Molteni scheme blocking detection,
we will determine when the flow is unblocked and when/where the flow switches to
a blocked state (Tibaldi and Molteni, 1990). We will then address two questions.
First, how do the growth rates of the linear perturbations change during blocked
phases with respect to the regular zonal flow conditions and second, how does the
localization of the CLVs change during blocking in the background state. Note that
the second question is different from the average localization of the CLVs investi-
gated in Szendro et al. (2008). In order to enhance blocking events, we will add
an orographic forcing to our QG model (following (Charney and Straus, 1980), see
Section 3.1). The orography in our investigation is a Gaussian bump in the middle
of the domain with horizonal scale of O(1000) km. We explore the sensitivity of the
problem by considering multiple setups featuring different heights of the gaussian
bump and different values of ΔT of the baroclinic forcing, parameterized through
a the relaxation temperature gradient (see Section 3.2.2). Again, every setup will
exhibit chaotic conditions with many positive LEs.

Let us summarize how we continue after this introductory chapter. In Chapter two,
we will explain the more precise mathematical background of the CLVs in order to
show explicitly how they differ from other approaches and how they are applied in
dynamical system theory. In Chapter three, we describe the QG model used in our
studies and introduce the experimental setup. We then continue with the analysis
of the mid latitudes variability and the energetics of the CLVs in Chapter four
featuring a setup without orography. After this, in Chapter five, we use the model
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extended by an orographic forcing to investigate blocking events with the CLVs. In
Chapter six, the thesis will be finished with a summary and concluding remarks
which point towards future work.
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Chapter 2

Covariant Lyapunov Vectors and
Linear Stability Analysis

We start the chapter be laying a foundation for understanding the CLVs and their
importance for characterizing the tangent linear dynamics. Before presenting the
model used in our study in Chapter three and before beginning a detailed investi-
gation of the model with the CLVs, we recapitulate the mathematical background
of the CLVs in Section 2.1. Being a basis of all linear perturbations to a given
background trajectory of a dynamical system, they fulfill two important proper-
ties. First, they are covariant, hence each element of the basis is a time-dependent
solution to the tangent linear equation (see below Equation (2.3)). This means
the basis vectors are linearized approximations of nearby evolving trajectories and
we can identify physical processes between them and the background state1. Sec-
ond, the long-term time average of the growth rates of the single CLVs is equal to
the Lyapunov exponents. Consequently, they explore the whole tangent space of a
dynamical system. This makes them extremely valuable in many fields of dynam-
ical system theory which are also of interest in meteorology (see Section 2.2). In
Section 2.3, we will then also explain in some more detail the algorithm used to
compute the CLVs.

2.1 Theory of Covariant Lyapunov Vectors

Let us look at the mathematical concepts necessary to understand CLVs in some de-
tail. For a much more complete and thorough discussion, we refer to a review paper
on CLVs by Kuptsov and Parlitz (2012). We consider covariant linear perturbations
of the non-linear autonomous dynamical system

d

dt
x = f(x), (2.1)

1An example of this is the LEC between the CLVs and the background state described in
Section 4.2.
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where x ∈ Rn. We perform a linear stability analysis by studying the evolution of
an infinitesimal perturbation v to a solution xB of equation 2.1. This means, that
two assumptions are made. First, we assume xB + v is a solution of equation (2.1)
and, second, we assume v to be small at all times. This allows for a first order
expansion of the tendency equation around xB.

d

dt
(xB + v) = f(xB + v)

≈ f (xB) +
∑

i

∂fj

∂ xi

(xB) vi

(2.2)

Therefore, in the limit, where v is infinitesimal, v obeys the tangent linear equation.

d

dt
vj(t) =

∑

i

∂fj

∂ xi

(xB(t)) vi(t) =:
∑

i

Jji (xB(t)) vi(t). (2.3)

Here, J is called the tangent linear operator or Jacobian of the system evaluated
at xB(t). Solutions of equation 2.3 are linear representations of nearby trajectories
of xB.

We now would like to construct a covariant basis of n vectors and explain how they
are able to span the tangent space, each associated to a specific Lyapunov exponent.
For this we first define the propagator F which evolves linear perturbations through
time if they are solutions of equation 2.3.

v(t2) = F(t2, t1) v(t1) (2.4)

Considering the asymptotic far future and far past of F , bases of the tangent
space can be constructed. The commonly used orthogonal forward and backward
Lyapunov vectors (FLV, BLV) are derived from these limits and are the eigenvectors
of the far past operator W−(t) (BLV) and the far future operator W+(t) (FLV).

W− (t) = lim
t′→−∞

[
F (t, t′)

−T F (t, t′)
−1
] 1

2(t−t′)

W+ (t) = lim
t′→+∞

[
F (t′, t)

T F (t′, t)
] 1

2(t′−t)

(2.5)

Note that often the BLV are also called Gram-Schmidt vectors or just Lyapunov
vectors. In the course of this thesis, we will refer to them mainly as BLV because
this expression is much more precise. The eigenvectors of the far past operator
are the BLV Bj(t) and the eigenvalues are given in the form e−λj , which means
they have an asymptotic growth rate of λj in the interval [−∞, t]. For the sake
of simplicity we assume the multiplicity of all eigenvalues to be one. The λj are
the LEs in descending order. We can span the so called backward subspaces in the
following way V −

j (t) = span{B1(t), ..., Bj(t)} (Osedelec, 1968). The meaning of the
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BLV can be understood by the following examples. Starting at a time t at ”minus
infinity” with an arbitrary phase space volume dvk(t = −∞) of dimension k, the
final phase space volume at time t, the volume dvk(t), is a subset of the backward
subspace V −

k (t). The average growth rate of the volume is proportional to the sum
of the first k Lyapunov exponents.

lim
t′→−∞

F(t, t′)dvk(t
′) ⊂ V −

k (t) (2.6a)

lim
t′→−∞

vol(F(t, t′)dvk(t
′)) ∝ e

∑k
j=1 λj ∙(t−t′) (2.6b)

For the far future operator the relations are similar. The new eigenvectors Fj are
the FLV and span the forward subspaces V +

j . We have V +
j = span{Fn−j+1, ..., Fn}

and the eigenvalues are eλn−j+1 which means they have an asymptotic growth rate
of λn−j+1 in the interval [t,∞]. The interpretation is similar to the BLV.

lim
t′→+∞

F(t′, t)−1dvk(t
′) ⊂ V +

n−k+1(t) (2.7a)

lim
t′→+∞

vol(F(t′, t)−1dvk(t
′)) ∝ e

∑k
j=1 λj ∙(t−t′) (2.7b)

These two kinds of bases are not covariant with equation 2.3. Nevertheless, the
backward and forward subspaces are covariant.

Bj(t2) 6= F(t2, t1)Bj(t1) V −
j (t2) = F(t2, t1)V

−
j (t1)

Fj(t2) 6= F(t2, t1)Fj(t1) V +
j (t2) = F(t2, t1)V

+
j (t1)

(2.8)

Fortunately, we can use them to find a covariant basis (the CLVs). The easiest
way to understand this is to rewrite the definition of the forward and backward
subspaces by characterizing their elements with respect to their growth rates.

V −
j (t) =

{

v

∣
∣
∣
∣ limt′→∞

1

t′
log (||v(t + t′)||) ≥ λj

}

(2.9a)

V +
n−j+1(t) =

{

v

∣
∣
∣
∣ limt′→∞

1

t′
log (||v(t + t′)||) ≤ λj

}

(2.9b)

We know that the cut of covariant subspaces is covariant as well. Therefore, the cut
of the subspaces V −

j (t) and V +
n−j+1(t) contains only vectors which have an asymp-

totic grow rate of λj on the interval [−∞,∞]. The cut should be exactly one
dimensional if degeneracy is neglected and consistently the dimension of V −

j (t) is
j and the dimension of V +

n−j+1(t) is n − j + 1. Hence, the cut is a one dimen-
sional subspace described by normalized vectors {cj (t)}j=1...n. These vectors are
the CLVs.

Let us summarize some important properties of the CLVs and explain how we re-
fer to them throughout this study. Since the CLVs are covariant, they cannot be
orthogonal in general. Additionally, the covariance forces them to be norm inde-
pendent. Note that the BLV and FLV are dependent on the chosen norm, because
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they are orthogonal. We also emphasize that there is a one-to-one relationship be-
tween the normalized vector cj (t) (the CLV) and a time series of growth rates λj(t)

whose average is equal to the jth LE with λj = limT→∞
1
T

∫ T

0
dtλj(t). A solution

v of equation 2.3 at time t with the initial condition v(t0) = cj(t0) has then the
following form.

v(t) = e
∫ t

t0
dt′λj(t

′) cj(t) (2.10)

The normalized CLVs cj(t) solve the following slightly altered equation.

ċj(t) = J (xB(t))cj(t) − λj(t)cj(t) (2.11)

Imagine now, we chose an arbitrary initial condition x0 at time t0, hence a super-
position of possibly all CLVs

x0 =
∑

j

cj(t0)Aj.

Consequently, the solution x for Equation (2.3) with x(0) = x0 has the following
form in the basis of the CLVs.

x(t) =
∑

j

e
∫ t

t0
dt′λj(t

′) cj(t)Aj

This means the expansion of perturbations into the basis of CLVs allows it to
investigate also very slow growing linear perturbations without interference of the
fast growing directions (see Section 2.2). Following Szendro et al. (2008), we also
expect that in the specific case where the system is prepared in such a way that
a localized perturbation breaks otherwise symmetric boundary conditions, one can
observe localization phenomena (not exclusively in the vicinity of the perturbation)
for the CLVs of the system. This last property is extremely attractive for the
problem of blocking events studied in Chapter five. These properties are unique
to CLVs. Other Lyapunov vectors (e.g. Gram-Schmidt vectors; see (Kuptsov and
Parlitz, 2012)) are not solutions of Equation (2.3) and are norm dependent which
means they are confined by orthogonality. In contrast to those bases, CLVs describe
- to first order - solutions of Equation (2.1) that are nearby to xB. Consequently,
they have a straightforward physical interpretation. Moreover, energy conversions
and feedbacks of the CLVs connected to the background can be obtained (shown in
Sections 4.2 and 4.3). It is also possible to explain the variance of the background
in a meaningful way similar to EOFs (see Section 4.4).

The CLVs relate to other bases in the tangent linear space. They are a generalization
of the classical normal modes of stationary solutions. It is well known that if xB

is a stationary solution, the CLVs are identical to the eigenvectors of the time
independent tangent linear operator J from Equation (2.3) (Wolfe and Samelson,
2007). For periodic background they coincide with the Floquet vectors (Floquet,
1883; Samelson, 2001a; Wolfe and Samelson, 2006, 2008).

After having clarified these basic definitions, let us explain in the upcoming section
how CLVs are used in the context of dynamical system theory.
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2.2 Application Of Covariant Lyapunov Vectors in
Dynamical System Theory

We would like to give some examples for applications of CLVs outside of the field
of geophysics and the scope of this thesis.

For many autonomous - time independent - dynamical systems, an attracting set
exists which ”attracts” almost all points in the phase space. These sets are a well
researched topic in the framework of Axiom A dynamical systems. The concept of
an attracting set can be compared to the general observation of the spin up time
in climate models after which the flow converges to a well defined ”climate’ if no
time dependent forcing is imposed. For the precise mathematical details, we refer
to Ruelle (1980) and Eckmann and Ruelle (1985). These attracting sets possess a
stable and unstable manifold. Simply said, such manifolds are the sets of points in
phase space that either converge exponentially fast to points on the attracting set
(called the stable manifold) or have diverged exponentially fast in the past from
points on the attracting set (called the unstable manifold). There is a noteworthy
subtlety about the definition of the unstable manifold. A point belongs to the
unstable manifold if it has diverged exponentially fast during the time frame [−∞, t].
However, this does not imply that it will continue in this fashion. Thus, all points
on the attracting set belong to the unstable manifold. For points on the attracting
set the CLVs are locally tangent to the different directions of exponential growth
or decay within these manifolds. Regarding research in geophysics, the question
might be asked why it is relevant to investigate such structures beyond the scope
of this thesis. It is well known that attractors have a fairly complicated structure.
In certain directions, they are smooth manifolds, in other directions they exhibit
a fractal and discontinuous structure. In fact, the smooth part of the attractor
is equal to the unstable manifold. Therefore, knowing exactly which directions in
the phase space span locally the unstable manifold is potentially very beneficial,
especially in applications to data assimilation (Pazó et al., 2010; Palatella et al.,
2013).

Furthermore, the CLVs can be used to determine the angle between the unstable
and the stable manifold. A dynamical system is called hyperbolic if the angle
between the stable and unstable manifold is non zero and has a minimum finite
size. This is an important requirement for a special group of dynamical systems
called Axiom A systems. For such systems many useful mathematical theorems
are known. Unfortunately, almost all dynamical systems of physical interest are
non-hyperbolic. Therefore, they can not be strictly considered Axiom A systems.
Nevertheless, computing the degree of hyperbolicity of a system is interesting when
considered in the context of the chaotic hypothesis. This hypothesis states that
for macroscopic observables most dynamical systems behave in an ”Axiom A” like
fashion (Gallavotti and Cohen, 1995). This might explain why some rigorous results
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in Axiom A systems can therefore be applied also in non-hyperbolic systems (e.g.
in the context of linear response theory (Ruelle, 1998; Ragone et al., 2015)).

Furthermore, in terms of model reduction, the knowledge about the angles between
the different directions of the unstable and stable manifold can be beneficial beyond
such purely mathematically motivated goals. In Yang et al. (2009) and Takeuchi
et al. (2011), the CLVs of several 1D and 2D dynamical systems were investigated.
They found that for a sufficiently high resolution, the CLVs can be separated into
two categories. First, there are the so-called physical modes which include unstable
as well as parts of the least stable CLVs. These CLVs are frequently almost collinear.
Second, there are the spurious modes. They are the remaining very stable CLVs.
In contrast to the physical CLVs, spurious CLVs are more or less plane waves that
are hyperbolically isolated from all other CLVs. They conjecture that the physical
modes are a local approximation of the inertial manifold. This manifold is the
”smallest” smooth manifold in which the attracting set can be embedded. Proving
the existence and finite dimension of the inertial manifold has potentially important
applications for defining a ”sufficient” resolution of a model and for a systematic
approach to model reduction (Foias et al., 1988; Dymnikov and Filatov, 1996).

In the last section of this chapter, we will complete the general discussion of CLVs
by explaining the method developed by Ginelli et al. (2007) to obtain them.

2.3 How to Compute Covariant Lyapunov Vectors

Figure 2.1: A schematic view of the algorithm proposed by Ginelli et al. (2007). The
picture is inspired by Kuptsov and Parlitz (2012)

In order to compute the CLVs, we use the algorithm proposed by Ginelli et al.
(2007). A detailed explanation is also found in Kuptsov and Parlitz (2012). Fig-
ure 2.1 gives a schematic view of the algorithm. A, B and C mark three points on
a long integration of the dynamical system of interest that is statistically station-
ary. First, the algorithm computes the backward vectors and the corresponding
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backward subspaces (with the classical method of Benettin steps (Benettin et al.,
1980)). After the convergence of the BLVs (see Equation (2.6)), the BLVs are ob-
tained on the background trajectory between A and B. It is this time frame where
the CLVs are later obtained. We then continue with Benettin steps until C. Here,
at the end of this forward integration, we stop and start a backward iteration in
the tangent linear model along the trajectory of the forward steps. Note that we
choose a new set of initial vectors. This initial choice is random, but each vector
lies in one of the backward spaces

{
V −

j (C)
}

j=1∙∙∙n
. Additionally, the coordinate

system of the tangent space is changed to the backward vector basis Bj(t) for all t

between A and C. In this basis, the propagator F as well as the chosen initial ran-
dom vectors have a upper triangular shape. The propagator in this basis is called
R and had been already obtained as a byproduct of the Benettin steps. The upper
triangularity of R ensures algebraically that the vectors stay in their initial back-
ward subspaces. This is necessary, since otherwise any vector would align with the
fastest growing direction of the backward dynamics due to the finite computational
accuracy. Moreover, also from a mathematical perspective, vectors of one backward
subspace should always stay in the corresponding subspace (see equation 2.8). The
backward iteration leads to a vector which aligns with the fastest growing vector of
the backward dynamics in the respective backward subspaces. The time between B
and C should be sufficiently large to ensure this. Note that the backward iterated
vector is covariant to equation 2.3 and converges towards a vector, with a growth
rate equal to the respective Lyapunov exponent (see equation 2.9) which depends
on the initial backward subspace. Hence, during the backward iteration between B
and A the desired CLVs are obtained. Note that this algorithm already encodes a
fundamental difference to how normally a convergent algorithm is defined. In many
applications there is a convergence for a limit going to infinity. Instead, the CLVs
converge on the interval [A,B] and there is a convergent process coming from the
before and after the interval. For example, in order to assess the convergence of the
CLVs a cascade of nested intervals of [A,B] would be necessary.

This chapter has mainly dealt with the mathematical definition of CLVs and how
they are obtained. Before, starting with the detailed numerical analysis of the CLVs,
the next chapter will introduce in detail our QG model and the experimental setup.
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Chapter 3

The Model and the Experimental
Setup

This is the first time that CLVs are computed for a meteorological model, in order to
study the properties of linear perturbations of its chaotic solutions. Of course, it is
necessary to conduct such studies in more sophisticated models of the atmosphere,
but as a first step, we have chosen a quasi-geostrophic two layer model which we
will further explain in Section 3.1. In Sections 3.2.1 and 3.2.2, we explain the
experimental setups used in Chapters 4 and 5.

3.1 Description of the Model

Our model is a spectral version of the classical model introduced by Phillips (1956).
Such a model uses the quasi-geostrophic approximation which is obtained from the
Navier-Stokes equation by conducting a scale analysis in respect to the temporal
and spatial scales of the free atmosphere in the mid latitudes. This means a small
Rossby number is assumed, R = U

Lf
. U is the typical velocity scale, L the typi-

cal length scale and f the Coriolis parameter. This approximation means that the
atmosphere is not in a simple geostrophic balance between pressure gradient and
coriolis force. Instead, a small ageostrophic velocity is allowed, but assumed to be
much smaller than the geostrophic velocity. Furthermore, the advection term is
approximated with the geostrophic velocity which is an important difference to the
semi-geostrophic equations (Chynoweth and Sewell, 1991) and allows for determin-
ing the state of the system with the geostrophic stream function alone. The other
approximation concerns the coriolis parameter f which is linearly approximated
at 45◦ N by the β parameter, f(y) ≈ f0 + βy. For more details, we refer to the
textbook literature on this subject, e.g. Holton (2004). Our model contains further
constraints. The domain is rectangular and only two vertical layers are resolved.
We would like to stress that this model does not attempt to be realistic but instead
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(a) Vertical Structure (b) Horizontal Domain

Figure 3.1: The domain of the QG model. The right panel shows in dashed lines a potential
orographic forcing imposed on ω2.5

represent the very basic large scale behavior of the jet stream created by baroclinic
and barotropic processes (Phillips, 1954, 1956).

Let us turn to the details of the model. As mentioned before, the horizontal domain
is rectangular (x, y) ∈ [0, Lx]× [0, Ly]. Also, it is periodic in the x-direction and a no
flux condition is imposed at y = 0, π (see Figure 3.1b). In the vertical, two layers are
resolved (see Figure 3.1). We are solving the quasi-geostrophic vorticity equation
at the two pressure levels p2 = 750hPa and p1 = 250hPa and the thermodynamic
equation at p1.5 = 500hPa (see Figure 3.1a).

In this setting, the hydrostatic equation also gives a simple expression for the tem-
perature by employing the geostrophic stream function ψ.

T1.5 =
f0

R
(ψ1 − ψ2) =

2f0

R
ψT (3.1)

The evolution equations are expressed in form of a partial differential equations
(PDE) and are given by

d

dt
Δψ1 = −V1 ∙ ∇ (Δψ1 + f0 + βy) + f0

ω1.5 − ω0.5

Δp
+ khΔ

2ψ1 (3.2a)

d

dt
Δψ2 = −V2 ∙ ∇ (Δψ2 + f0 + βy) + f0

ω2.5 − ω1.5

Δp
+ khΔ

2ψ2 (3.2b)

d

dt
ψT = −

V1 +V2

2
∙ ∇ψT + Spω +

J

cp

+ κΔψT . (3.2c)

Equations (3.2a) and (3.2b) describe the dynamics of the vorticity at the pressure
levels 1 and 2 respectively and Equation (3.2c) describes the evolution of the tem-
perature field (Holton, 2004). At the top-level (p0.5) the vertical velocity ω is set
to zero. The lowest sub layer accounts for Ekman pumping and orography h via
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the vertical p-velocity ω2.5 = Δp
f0

2rΔψ2 −
Δp
H

J(ψ2, h) (e.g. (Charney and Straus,
1980)). H is the height of the atmosphere (7.3km). Note that for this implementa-
tion of orography we have to ensure that h/H is small. We express the advection
in terms of the Jacobian J(A, B) = ∂A

∂ x
∂B
∂ y

− ∂A
∂ y

∂B
∂ x
using the geostrophic stream

function ψ. The geostrophic velocity V = (u, v) is given by (−∂yψ, ∂xψ). The forc-
ing to the models comes from diabatic heating J given by the newtonian cooling
term cprR (ψe − ψT ). ψe accounts for diabatic heating and cooling and provides the
baroclinic input into the system. We consider ψe = RΔT

4f0
cos( yπ

Ly
) where ΔT is the

equator-to-pole temperature difference the system is relaxed to by fast processes
such as radiation and convection. As it is commonly known, if ΔT is low, the
stationary solution is stable. Respectively, for higher values of ΔT baroclinic insta-
bility kicks in, so that when increasing ΔT , through various bifurcations, we reach a
state of turbulent motion. Of course it is possible to conduct a sensitivity analysis
on ΔT (e.g. (Lucarini et al., 2007)), but we will focus solely on three scenarios
where the stationary solution is unstable and the steady state of the system is tur-
bulent (see Figure 3.2 and table Table 3.1). The full equations of motion in terms
of the baroclinic field ψT = 1

2
(ψ1 − ψ2) and the barotropic field ψM = 1

2
(ψ1 + ψ2)

have then the following form:

d

dt
ΔψM = − J(ψM , ΔψM + βy) − J(ψT , ΔψT ) − rΔ(ψM − ψT )

+ khΔ
2ψM +

1

2
J(ψ2, h)

(3.3a)

d

dt
ΔψT = − J(ψT , ΔψM + βy) − J(ψM , ΔψT ) + rΔ(ψM − ψT )

+ khΔ
2ψT −

1

2
J(ψ2, h) +

f0

Δp
ω

(3.3b)

d

dt
ψT = − J(ψM , ψT ) + S

f0

Δp
ω + rR (ψTe − ψT ) + κΔψT . (3.3c)

Note that S = Sp
RΔp
2f2

0
. The choice of parameters will be based on Phillips (1956)

and Lucarini et al. (2007). A list of all parameters and their values is given in Table
3.1.

Note that besides the already mentioned boundary conditions, a second boundary
condition is necessary ∫ Lx

0

dx
∂ψ

∂y

∣
∣
∣
∣
y=0,Ly

= 0, (3.4)

since a secondary PDE is solved (ageostrophic boundary condition) (Pedlosky,
1987). The adimensionalization is performed according to table 3.1. In the fol-
lowing, we will only use the adimensional model equations. The newtonian cooling
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stream function in the adimensional form is ψTe = ΔT
2

cos(y).

d

dt
ΔψM = − J(ψM , ΔψM + βy) − J(ψT , ΔψT ) − rΔ(ψM − ψT )

+ khΔ
2ψM +

1

2
J(ψ2, h)

d

dt
ΔψT = − J(ψT , ΔψM + βy) − J(ψM , ΔψT ) + rΔ(ψM − ψT )

+ khΔ
2ψT −

1

2
J(ψ2, h) + ω

d

dt
ψT = − J(ψM , ψT ) + Sω + rR

(
1

2
ΔTcos(y) − ψT

)

+ κΔψT .

(3.5)

With the boundary conditions and the adimensionalization, the stream function
has the following form in spectral space.

ψ(x, y, t) =

Nx, Ny∑

k,l=1

(
ψr(k, l, t) cos (akx) + ψi(k, l, t) sin (akx)

)
sin (ly)

+

Ny∑

l=1

ψr(0, l, t) cos (ly)

(3.6)

Where the spectral cutoff is in the zonal direction at Nx and in the meridional
direction at Ny. The total dimension of the model phase space is 2Ny(2Nx + 1).

3.2 The Experimental Setup

For later reference in the Chapters 4 and 5, this section what the experimental
setup of the model is in the respective chapters.

3.2.1 Experiments without Orography in Chapter Four

For the study in Chapter four, we will investigate the model without orography.
This means h = 0. Furthermore, we choose Nx = 10 and Ny = 12 giving a total
phase space dimension of 504. The meridional resolution is chosen to accurately
approximate the Jacobian J in spectral space. Since its spectral representation
requires a projection along the meridional direction we need a sufficiently high Ny.
The zonal resolution is chosen to include at least all classically unstable normal
modes for similar setups of two layer QG models (Holton, 2004). ΔT will be chosen
in order to cover a weak, medium and chaotic behavior of the model (39.81K,
49.77K and 66.36K). The integrations are performed in spectral space using a 4th

order Runge-Kutta-Scheme with a fixed time step of 1 (2.78 hours). In Chapter four
all results are obtained using a 80000 (25 years) long time series.
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Figure 3.2: These snapshots show the stream function fields for the upper and lower layer.
The upper is on the left side and the lower layer is found on the right side. Note that
in order to use a grey scale, the scale of the colorbars is different in every panel. The
flow shows a clearly baroclinically unstable and barotropically stable configuration (see
Section 4.1)

The resolution in chosen studies regarding solutions of a closely related two layer
QG models is significantly higher (Wolfe and Samelson, 2006, 2008). They obtained
Floquet vectors, which are a special case of CLVs obtained if the background state is
periodic. In our study, we are obtaining the CLVs for aperiodic background states
over a much longer time period of ca. 25 years after a spin up time of ca. 30
years. Hence, due to our lower resolution we will not be able to study the turbulent
cascade, but we will be able to study the behavior of the large scale baroclinic and
barotropic processes. Clearly, it would be desirable to use higher resolution, but the
fundamental aspects we want to emphasize in this study can already be captured
with the current setting. This is also suggested by Figure 3.2, which shows the
snapshots of the stream functions. The fields show baroclinically unstable eddies
moving eastward which can be seen from the phase shift between the upper and
lower layer. At the same they are barotropically stable, which can be seen from the
angle of the stream function iso lines in regard to the zonal flow. We will discuss
this classical large scale description of the mid latitude dynamics represented by an
eddy field and a zonal mean in Section 4.1.
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3.2.2 Experiments with Orography in Chapter Five

In Chapter five, we will study blocking events in the model which are enhanced by
orography (see Section 5.2). The orography is an idealized Gaussian bump designed
to resemble loosely the scales of the Rocky Mountains placed in the middle of the
horizontal domain. Hence, we choose

h = h0e
−(x−Lx

σx
)
2
−
(

y−Ly
σy

2
)

,

with σx = 1000 km and σy = 2000 km. We will use the same spectral cutoff as in the
case without orography, hence Nx = 10 and Ny = 12. We perform a spin up run of
30 years. All results will be based on a time series of 31 years, except the control runs
which have a length of 25 years. We investigate three different mountain heights h0

(1.48 km, 2.96 km and 4.44 km) and four different meridional temperature gradients
ΔT (40 K, 50 K, 66 K and 76 K). This ensures the investigation of different states
of large scale turbulence and the assessment of the impact of orography. In control
runs, the experiments are repeated without orography. The implemented 4th order
Runge-Kutta-Scheme uses a fixed time step of 1 (2.78 hours) except for the highest
ΔT = 76K. Here, we chose 0.25 (0.67 hours). The analysis of the data is then
sampled every 2.77 hours.
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Chapter 4

Instabilities and Feedbacks of
Covariant Lyapunov Vectors2

After having introduced our model and the CLVs in the previous chapters, this
chapter deals with the LEC of the CLVs and their ability to explain the variability
of the flow. A brief summary of the most important aspects of the classical LEC
describing the energy conversions between the eddy field and the zonal mean is
presented in Section 4.1. In Section 4.2, we construct a LEC for each of the CLVs
describing the energy conversions to the CLVs imposed by the background state
and discuss its relation to the transports of heat and momentum. We have already
described the experimental setup in Section 3.2.1. In Section 4.3, the main results of
our experiments are discussed. We present the properties of the Lyapunov spectrum
followed by the results for the LEC of the CLVs. Furthermore, we draw connections
between the background state and the stable and unstable processes described by
the CLVs. Finally, in Section 4.4, we report on the reconstruction of the variance of
the background trajectories using CLVs, comparing the efficiency of using unstable
versus stable modes. We conclude the chapter with a summary.

4.1 Atmospheric Circulation and the Lorenz En-
ergy Cycle

We recapitulate here the essentials of the classical understanding of the mid-
latitudes atmosphere and its turbulent features based on a separation of the tra-
jectory into a zonal mean field ([ψ] = 1

Lx

∫ Lx

0
dx ψ) and an eddy field (ψE =

ψ − 1
Lx

∫ Lx

0
dx ψ) (Saltzman and Vernekar, 1968) making reference to our model.

2Schubert, S., & Lucarini, V. (2015). Covariant Lyapunov vectors of a quasi-geostrophic
baroclinic model: analysis of instabilities and feedbacks. Quarterly Journal of the Royal Meteo-
rological Society, doi:10.1002/qj.2588
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Figure 4.1: The mean state of the trajectory (averaged over a period of 25 years) for the
three forced meridional temperature gradients ΔT (dotted: 39.81K , dashed: 49.77K,
solid: 66.36K). The superscript E indicates the eddy terms.
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We refer to this approach as the eddy-mean decomposition (EMD). We study such
a decomposition for three different values of the forced meridional temperature gra-
dient ΔT (dotted: 39.81K , dashed: 49.77K, solid: 66.36K). All setups feature an
unstable stationary solution and an attractor corresponding to a turbulent solution.

The stationary state is unstable and therefore never observed in the turbulent flow.
It is an idealized Hadley equilibrium (Held and Hou, 1980) which describes a balance
of diffusion and newtonian cooling. Recalling the equations of motion (see equation
3.5), the stationary state is the following

ψS
M = ψS

T ∙

(
1

1 + kh

r

)

(4.1a)

ψS
T =

(rR + κ)

(rR + κ) + S kh

r+kh
+ Skh

ψTe. (4.1b)

Here, ΔT is almost equal to the observed temperature difference between the y = π

and y = 0 boundary, except for the kh

r
correction term (see Figure 4.1 c). The

upper layer features a broad baroclinic jet, the lower layer features a small easterly
flow (see Figure 4.1 b). In the turbulent solution, eddies are transporting heat
northward and momentum to the middle of the channel (see Figure 4.1 d, e). This
feedbacks on the zonal mean state creating a sharper baroclinic jet with higher
velocity gradients than in the stationary state (see Figure 4.1 a, b, d). In the lower
layer, a small eastward jet emerges in the middle of the channel. North and south of
the westerly jet, westward return flows are present in the lower layer balancing the
long-term average momentum budget. The transports do not depend qualitatively
on ΔT and are intensified with a higher ΔT .

We can further study the turbulence by decomposing the kinetic and potential en-
ergy into the zonal mean and eddy contributions. The conversions of energy between
these energy reservoirs and the energy losses constitute the Lorenz energy cycle
(LEC). Note that here we use the convention

∫
dσ = 1/(LxLy)

∫ Lx

0

∫ Ly

0
d(x, y) . . . .

Ekin =
1

2

∫
dσ (∇ψ1)

2 + (∇ψ2)
2

=

[Ekin]
︷ ︸︸ ︷
1

2

∫
dσ ([∇ψ1])

2 +

∫
dσ ([∇ψ2])

2 +

EE
kin︷ ︸︸ ︷

1

2

∫
dσ (∇ψE

1 )2 +

∫
dσ (∇ψE

2 )2

(4.2)

Epot =
1

S

∫
dσ ψ2

T =
1

S

∫
dσ (ψE

T )2

︸ ︷︷ ︸
[Epot]

+
1

S

∫
dσ [ψT ]2

︸ ︷︷ ︸
EE

pot

(4.3)

The LEC is obtained by decomposing the equations of motion into a system of
coupled tendency equations for the zonal mean and the eddies (Phillips, 1956).
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The resulting energy conversions and sinks can then be labeled in the following
way. 3

d

dt
EE

kin = CZK→EK + CEP→EK + SEEF + SEKD

d

dt
EE

pot = CZP→EP − CEP→EK + SENC + SEHD

d

dt
[Ekin] = −CZK→EK + CZP→ZK + SZEF + SZKD

d

dt
[Epot] = −CZP→EP − CZP→ZK + SZNC + SZHD

(4.4)

The conversions are the following.

Baroclinic Conversion CZP→EP = −
∫

dσ
2

S
[vE

MψE
T ] [∂yψT ] (4.5a)

Conversion Of Eddy Energy CEPEK = −
∫

dσ 2ωEψE
T (4.5b)

Conversion of Zonal Energy CEK→ZK = −
∫

dσ 2 [ω] [ψT ] (4.5c)

Barotropic Conversion CZPEP = −
∫

dσ
2∑

i=1

[∂yui]
(
vE

i uE
i

)
(4.5d)

The long-term averages of these energy conversions are shown in Figure 4.2 and
are intimately linked to the transports of heat and momentum of the eddies as
we will describe in the following. The baroclinic conversion CZP→EP quantifies the
exchange between the potential energies of the mean and the eddy fields. In our
model, the baroclinic conversion is positive, hence the eddies transport heat against
the temperature gradient in the zonal mean state (see also figures 4.1 c,e). The
barotropic conversion CZK→EK quantifies the exchange between the kinetic energy
of the mean and the eddy fields and is negative. This means the eddies transport
momentum intensifying velocity gradients in the zonal mean state (see Figure 4.1
a,b). There are conversions from potential to kinetic energy for the zonal mean
CZP→ZK as well as for the eddy field CEP→EK . CEP→EK is more relevant and is
positive. Hence, on average warmer air (ψT > 0) rises or colder air (ψT < 0) sinks
and thereby lowering the center of mass of the atmosphere. As a result kinetic
energy is produced. There are also sinks of energy related to the various terms of
friction, diffusion and newtonian cooling. Note that all of them are positive sinks
of energy whereas the newtonian cooling of the zonal mean is the main input of

3Z stands for zonal, E for eddy. P is potential energy, K is kinetic energy. NC is newtonian
cooling, EF is Ekman friction and KD and HD are kinetic and heat diffusion.
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Figure 4.2: Flow Chart of the Lorenz energy cycle for three ΔT (Units of Conversions
are 105m2/s3). The arrows indicate the average sign of the energy conversions, sinks and
sources of the zonal and eddy energies. For every temperature gradient (ΔT1 = 39.81K,
ΔT2 = 49.77K and ΔT3 = 66.36K) the dominant source of energy is Newtonian cooling,
which inputs energy to the zonal mean potential energy. The important conversions are
the baroclinic conversion which is related to the northward heat transport (see Figure 4.1
c) and the barotropic conversion related to the center pointed momentum transport (see
Figure 4.1 d). The main energy losses occur by converting the potential energy of the
eddies into kinetic energy, where it is lost mainly due to kinetic diffusion and Ekman
friction. We observe an intensification of the cycle for a larger meridional temperature
gradient ΔT .

energy to the LEC.

Eddy Kinetic Diffusion Eddy Ekman Friction

SEKD = −
∫

dσkh

2∑

i=1

(
ΔψE

i

)2
SEEF =

∫
dσrψE

2 ΔψE
2

Eddy Heat Diffusion Eddy Newtonian Cooling

SEHD =

∫
dσ2

κ

S
ψE

T ΔψE
T SENC = −

∫
dσ2

rR

S

(
ψE

T

)2

Zonal Kinetic Diffusion Zonal Ekman Friction

SZKD = −
∫

dσkh

2∑

i=1

(
∂2

y [ψi]
)2

SZEF =

∫
dσr [ψ2] ∂

2
y [ψ2]

Zonal Heat Diffusion Zonal Newtonian Cooling

SZHD =

∫
dσ2

κ

S
(∂y [ψT ])2 SZNC = −

∫
dσ2

rR

S
[ψT ]2

(4.6)
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Energy is mainly lost by kinetic diffusion and Ekman friction. The variation of the
imposed meridional temperature gradient ΔT does not change the overall picture
of the decomposition into eddy and zonal mean flows. Furthermore, also the heat
and momentum transports and the LEC are not changing qualitatively. Overall,
eddy energy is gained by baroclinic processes which tends to equilibrate the system,
while barotropic processes create a "pointy" jet.

After this short review of the classical concept of the LEC, we continue in the next
section by describing the growth and decay of the CLVs by a LEC between the
background state and the CLVs.

4.2 The Lorenz Energy Cycle of Covariant Lya-
punov Vectors

Classical stability analysis interprets the growth of the normal modes by introducing
a Lorenz energy cycle between the normal modes and the zonal background state
(see, e.g. Holton (2004)). This is based on the classical LEC described in the
previous chapter. We apply this methodology for studying the energy exchange
between the CLVs and the turbulent background flow.

In order to derive a meaningful definition of a LEC between the background tra-
jectory and the CLVs, it is necessary to bring together the mathematical and the
physical perspective on the evolution of the non-linear trajectory and the CLVs.
The growth/decay and correlations in the phase space are measured with the help
of norms and scalar products. We can connect growth and decay to physical pro-
cesses when considering a suitable physical norm. In our model, this role is played
by the total energy Etot. We can decompose Etot into a sum of kinetic energy Ekin

and potential energy Epot
4.

Etot =
1

2

2∑

i=1

∫
dσ (∇ψi)

2 +
1

S

∫
dσ ψ2

T (4.7)

Ekin =
1

2

2∑

i=1

∫
dσ (∇ψi)

2 (4.8)

Epot =
1

S

∫
dσ ψ2

T (4.9)

Note that in our case, besides Etot, the kinetic energy is a (squared) norm as well,
whereas the potential energy is not a norm. Nevertheless, we will use the po-
tential energy here like a norm and use it to define a "scalar product". This is
then basically a "correlation like" bilinear form which gives the correlation be-
tween two states with respect to the potential energy. Thus, we can use these

4 For the averages over the horizontal domain we define a
2π2

∫ 2π/a

0
dx
∫ π

0
dy ∙ ∙ ∙ =

∫
dσ ....
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norms (meaning the square root of the energies) to define a bilinear scalar prod-
uct 〈A, B〉 = 1

4

(
||A + B||2 − ||A − B||2

)
. The average growth rates of the CLVs

measured in these or any other norms is equal to the Lyapunov exponents. This
can be seen by a simple calculation. Let || ∙ || be an arbitrary norm, cj(t) the jth
CLV and λj(t) the corresponding time series of the local Lyapunov exponent (for
more details see the solution along one CLV in Equation (2.10)). Then the average
growth rate r is given in the following way.

r = lim
T→∞

1

T

∫ T

0

dt

d

dt
||cj(t)e

∫ t
0 dt′λj(t

′)||

||cj(t)e
∫ t
0 dt′λj(t′)||

= lim
T→∞

1

T

∫ T

0

dt
d

dt
log
(
||cj(t)e

∫ t
0 dt′λj(t

′)||
)

= lim
T→∞

1

T

{
log
(
||cj(T )e

∫ T
0 dt′λj(t

′)||
)
− log (||cj(0)||)

}

(4.10)

Since our model has a finite dimensional phase space, all norms are equivalent.
Hence, for an arbitrary number of vectors with the same length in one norm possess a
universal finite upper and lower bound for their length in any other norm (MacCluer,
2009). Therefore, the norm of cj(t) is always smaller then a constant K > 0:
||cj|| < K, because its euclidean norm is one. Therefore, the growth rate r can be
explicitly calculated.

r = lim
T→∞

1

T

∫ T

0

dtλj(t). (4.11)

Hence, the average growth rate of a CLV computed in an arbitrary norm equals
always the respective Lyapunov exponent. Since Etot = Ekin + Epot, the same is
valid for the average growth rate of potential energy ”norm”. In our calculations,
we have verified that all three rates equal the doubled Lyapunov exponents given
the numerical accuracy. This means that while a CLV is growing or decaying, the
ratio of its potential versus kinetic energy is approximately (in a logarithmic sense)
constant.

Let us now consider a linearized solution. Such a solution is the sum of a linear
perturbation (ψ′

T , ψ′
M ), a solution of Equation (2.3) composed by one CLV and the

corresponding local growth time series λ(t), and the chaotic background solution
(ψB

M , ψB
T ) (see Equation (2.10)). The energy of this superposition is the sum of

the individual energies of the background state and the linear perturbation and an
interference term.

Etot =Ekin + Epot

Ekin =
∑

i

∫
dσ (∇ψB

i )2 +
∑

i

2

∫
dσ∇ψB

i ∇ψ′
i +
∑

i

∫
dσ (∇ψ′

i)
2

Epot =
1

S

∫
dσ (ψB

T )2 +
2

S

∫
dσ ψB

T ψ′
T +

1

S

∫
dσ (ψ′

T )2

(4.12)
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Figure 4.3: The graphs show the modulus of the average correlation <ψB ,ψ′>
||ψB ||||ψ′|| between

the background state and the CLVs, where the bilinear product < ∙, ∙ > is defined via the
kinetic, potential and total energy. The grey shaded areas are the 3 σ confidence intervals.
We estimated the effective number of degrees of freedom by dividing the time series into
blocks corresponding to the e folding time of the autocorrelation function (Leith, 1973).
The x axis indexes the CLVs. Similar results have been obtained for non zonal stationary
states (Niehaus, 1981)

We are interested in the long-term average behavior of these terms. A non vanishing
long term averaged interference term means that the CLVs evolve ”towards” the
trajectory. Mathematically, this is equal to a non vanishing average correlation
between the linear perturbation and the background state. This is not the case
for any of the three defined energies (see the average correlations in Figure 4.3).
By estimating the effective number degrees of freedom, we can show that with a
significance level of 3 σ the correlations can be estimated to be zero. In fact, this
is a necessary prerequisite, because a non vanishing correlation would imply that
the background trajectory is not in a non-equilibrium steady state. This means the
trajectory is in a steady state where no growth or decay occurs on average. Note
that this is also fulfilled by the CLVs with zero LE. This is expected, because the
zero growing CLVs are spanned by the tendency d

dt
ψ and the meridional velocity

∂xψ.

What leads linearized solutions to either converge to the background state, to stabi-
lize or to grow infinitely? In order to answer this question, we have to consider the
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average derivative of energy (by applying d
dt
to Equation (4.12)). First, the energy

of the background state does not grow or decay, therefore it cannot contribute to
the linearized solution growing or decaying on the average. Second, even tough the
interference term is linearly dependent on ψ′, it is not contributing to the long term
energy growth or decay either, since we showed that the correlation with the back-
ground state vanishes (see Figure 4.3). Thus, we are left with the time derivative
of the third term of Equation (4.12) which only depends on the linear perturbation
ψ′.

d

dt
E ′

kin = −
∫

dσ

(

ψ′
1

d

dt
Δψ′

1 + ψ′
2

d

dt
Δψ′

2

)

d

dt
E ′

pot =
2

S

∫
dσ

(

ψ′
T

d

dt
ψ′

T

) (4.13)

From here on we can use the tangent linear equations. The physical interpretation
of these terms is then inspired by the classical Lorenz energy cycle used for the EMD
picture (see Section 4.1). The equations of motion of the tangent linear model are
the following.

d

dt
Δψ′

M = − J(ψ′
M , ΔψB

M + βy) − J(ψB
M , Δψ′

M ) − J(ψ′
T , ΔψB

T )

− J(ψB
T , Δψ′

T ) − rΔ(ψ′
M − ψ′

T ) + khΔ
2ψ′

M

d

dt
Δψ′

T = − J(ψB
T , Δψ′

M ) − J(ψ′
T , ΔψB

M + βy) − J(ψB
M , Δψ′

T )

− J(ψ′
M , ΔψB

T ) + rΔ(ψ′
M − ψ′

T ) + khΔ
2ψ′

T + ω′

d

dt
ψ′

T = − J(ψ′
M , ψB

T ) − J(ψB
M , ψ′

T ) + Sω′ − rRψ′
T + κΔψ′

T .

(4.14)

By using the boundary conditions of the model and some algebraic rearrangements
we get the following.

d

dt
E ′

kin =

∫
dσ
[
Δψ′

1v
′
1 ∙ ∇ψB

1 − kh

(
ψ′

1Δ
2ψ′

1

)
+ 〈1 ↔ 2〉

−2ψ′
T ω′ + 2rψ′

2Δψ′
2]

(4.15)

d

dt
E ′

pot =

∫
dσ

[

−
2

S
ψ′

Tv
′
M ∙ ∇ψB

T + 2ψ′
T ω′ + 2

κ

S
ψ′

T Δψ′
T

−2
rR

S
ψ

′2
T

] (4.16)

The interpretation of terms in Equation (4.15) to (4.16) is similar to what was
reported in Section 4.1. In Section 4.1, we studied the exchange of energy between
the zonal mean state and the eddies. Using the above equations, we study the
energy conversion between a full non-linear background state and the CLVs.

The conversion from the background potential energy to the perturbation potential
energy is the baroclinic conversion CBC .

CBC =

∫
dσ

[

−
2

S
ψ′

Tv
′
M ∙ ∇ψB

T

]

(4.17)
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After applying integration by parts, this term equals the negative correlation be-
tween the convergence of heat transport of the CLV (−∂y(v

′
Mψ′

T )− ∂x(u
′
Mψ′

T )) and
the temperature of the background state. Hence, a positive rate means a transport
of heat against the temperature gradient in the background state. The conversion
of potential into kinetic energy is described by CPK .

CPK = −2

∫
dσ ψ′

T ω′ (4.18)

Barotropic processes are contained in the remaining conversion term. This term
converts energy to the perturbation kinetic energy, the barotropic conversion CBT .

CBT =

∫
dσ
[
Δψ′

1v
′
1 ∙ ∇ψB

1 + Δψ′
2v

′ ∙ ∇ψB
2

]
(4.19)

We can rewrite this term to explicitly see the connection to the momentum transport
of the CLVs and the horizontal divergences in the background flow.

CBT =

∫
dσ

[

−v′
1u

′
1

∂vB
1

∂ x
− v′

1v
′
1

∂vB
1

∂ y
− u′

1u
′
1

∂uB
1

∂ x
− v′
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A positive rate means that the CLVs equilibrate the momentum distribution in the
background state. Note that by defining a momentum transport matrix M
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(4.21)

We then get

CBT =
∑

i
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The other terms are the sinks of the energy cycle due to eddy and heat diffusion,
newtonian cooling and Ekman friction and each of them can be correspondingly
related to their counterparts in the LEC of the eddies.

Eddy Diffusion DE =

∫
dσ
[
−2kh

(
ψ′

T Δ2ψ′
T + ψ′

P Δ2ψ′
P

)]
(4.23)

Ekman Friction FE =

∫
dσ rψ′

2Δψ′
2 (4.24)

Heat Diffusion DH =

∫
dσ
[
2
κ

S
ψ′

T Δψ′
T

]
(4.25)

Newtonian Cooling NC =

∫
dσ
[
−2

rR

S
ψ

′2
T

]
(4.26)

Due to the fact that the CLVs are growing and decaying asymptotically, it is useful
to consider rates instead of time derivatives. Therefore, we normalize all the terms
of the LEC by the total energy of the CLVs (at every instant of time). In this way,
we will obtain the exponential growth/decay rates of all quantities of the LEC. In
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Table 4.1: Properties of the attractor

ΔT Positive Kaplan Yorke Metric Entropy
in [K] Exponents Dimension in [1/day]

39.81 17 35.83 0.25

49.77 55 125.82 3.15

66.36 88 206.80 12.51

general, the mean rate of an energy norm or energy conversion observable A will be
the following.

lim
T→∞

1/T

∫
dt

d

dt
A

Etot

After having introduced, the basic ideas on the LEC and the CLVs, we continue in
the next section by presenting the results for our experimental setup and show in
detail the relationship between the various constituents of the LEC.

4.3 Physical Properties of Covariant Lyapunov
Vectors

In this section, we present the actual features of the LEC and the associated trans-
ports for the CLVs. Additionally, we show the properties of chaoticity that can be
derived from the Lyapunov spectrum.

4.3.1 The Lyapunov Spectra

The properties of the Lyapunov spectra are presented in this section. We further
assume that the system at hand is ”Axiom A”-like and a Sinai-Ruelle-Bowen measure
exists in our model which describes its asymptotic statistical properties (Gallavotti
and Cohen, 1995). All three cases correspond to settings of strong chaos with many
positive Lyapunov exponents. This is also reflected in the Kaplan-Yorke dimension
and the metric entropy production (see Figure 4.4 and Table 4.1). The Kaplan-

Yorke dimension is defined as DKY = k +
∑k

i=1 λi

|λk+1|
, where k is chosen in such a way,

that the sum of the first k Lyapunov Exponents is positive and the sum of the first
k + 1 is negative. This dimension is an upper bound of the fractal dimension of the
attractor of the system. The metric entropy describes the information creation of
the model and is given by the sum of the positive Lyapunov exponents (Eckmann
and Ruelle, 1985). With increasing ΔT the Kaplan Yorke dimension and the metric
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Figure 4.4: Lyapunov Exponents [1/day] for three meridional temperature gradients (dot-
ted: 39.81K , dashed: 49.77K, solid: 66.36K)

entropy grow monotonically as it was reported by Lucarini et al. (2007). While
the observed motions are indeed chaotic for the three studied values of ΔT , we can
clearly see from these dynamical indicators that turbulence is much better developed
for higher values of ΔT .

4.3.2 Results for the Lorenz Energy Cycle of Covariant Lya-
punov Vectors

Energy Conversion Terms and Sinks

Now we can unravel the connection of the physics of the CLVs captured by the
LEC to their stability properties. The LEC of the CLVs is given by the long-
term averages of the energy budget - normalized to the total energy of the CLV -
between a single CLV and the background trajectory (see Section 4.2). With an
abuse of language we will refer to a conversion as ”unstable” if it is positive and
”stable” if it is negative. The barotropic and baroclinic stability properties of the
conversions of the LEC versus the value of the corresponding LE for all considered
values of ΔT are shown in Figure 4.5. The baroclinic conversion is positive for
roughly half of the CLVs independently of ΔT . This includes all growing CLVs
and part of the decaying CLVs. The barotropic conversion on the other hand is
only positive for some unstable CLVs in the case of intermediate/large ΔT . Instead
for low ΔT the barotropic conversion is always negative. Hence, with increasing
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Figure 4.5: Left Side: The three figures show the dependence of the inputs and the
conversion of the Lorenz energy cycle on the corresponding Lyapunov exponent for each
of the three meridional temperature gradients (dotted: 39.81K , dashed: 49.77K, solid:
66.36K). The magnified view (right side) shows the CLVs with near zero growth rate
including the corresponding average eddy observables from the classical Lorenz energy
cycle (gray horizontal lines). The y axis units are in 1/day.

ΔT , the barotropic conversion of all unstable CLVs turns from negative to positive
values for the fast growing CLVs. Additionally, the conversion of the perturbation
energy CPK follows the sign of the baroclinic conversion CBC . We can also observe
that being baroclinically unstable is not sufficient to let the CLVs grow because of
the effects of friction and diffusion. This result should be considered in respect to
findings in more complex models: Here, a high baroclinicity does not always lead
to a baroclinic unstable energy growth of the eddies, because a certain threshold of
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baroclinicty has to be passed (Ambaum and Novak, 2014).

Figure 4.6: Left Side: The four figures show the dependence of the different sinks of
the Lorenz energy cycle on the corresponding Lyapunov exponent for each of the three
meridional temperature gradients (dotted: 39.81K , dashed: 49.77K, solid: 66.36K).
The magnified view (right side) shows the CLVs with near zero growth rate including
the corresponding average eddy observables from the classical Lorenz energy cycle (gray
horizontal lines). The y axis units are in 1/day.

Let us now look at the energy sinks of the LEC (see Figure 4.6). Newtonian cooling,
kinetic and heat diffusion show little dependence on the CLVs and ΔT . The energy
loss rate by Ekman friction is large for very stable CLVs (low Lyapunov exponents).
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Since the Ekman friction (see Equation (4.24)) is proportional to the kinetic energy
of the lower layer of the model, this corresponds to a localization of the flow in the
lower layer. CLVs with the lowest LEs are stable through losses of kinetic energy
through CPK and Ekman Friction.

The slow growing CLVs are of particular interest (see Figure 4.5), because they
are related to the hydrodynamic Lyapunov modes (HLM) discovered in other non-
linear system (Yang and Radons, 2008; Posch and Hirschl, 2000). Note that CLVs
are superior to orthogonal Lyapunov vectors for finding significant HLMs due to
their norm independence (Romero-Bastida et al., 2012). Such CLVs are covariantly
evolving solutions of the full non-linear equations which decorrelate very slowly with
the background trajectory due to the slow growth rate. Therefore, it is expected
that they might closely represent the properties of the large-scale dominating eddies
resulting from removing the mean flow from the actual trajectory of the system. We
compare the slow growing/decaying CLVs with the decomposition of the flow into
zonal mean and the eddies (see Section 4.1) in the magnified view on the right side
of the Figures 4.5 and 4.6. They show that the sign and magnitude of conversions
from the classical Lorenz energy cycle are comparable to the LEC conversions of
these CLVs. We also see a shift in the behavior of the fast growing CLVs which
become barotropically unstable for higher ΔT and are less comparable to the LEC
conversions of the EMD.

We note that the CLVs with corresponding LEs between -1.8 1/day and -3.8 1/day
have properties which depend less regularly on the ordering number. This effect
results from the fact that these CLVs are quasi-degenerate because of the small
difference between the LEs of consecutive CLVs (Kuptsov and Parlitz, 2012).

Convergence of Heat and Momentum Transport and Vertical Velocity

The previously discussed energy conversion (CBC , CBT and CPK) shown in Figure 4.5
are intimately related on the heat transport v′MT ′, the momentum transport ten-
sor u′v′ and the vertical heat transport Sω′ of the CLVs (see Equations (4.18),
(5.3) and (5.4), respectively). Table 4.2 shows systematically the connection be-
tween the eddy transports of the CLVs and the gradients of the background state.
If the transports and corresponding gradients have a negative correlation, then a
corresponding conversion is positive. If CBC (CBT ) is positive, v′MT ′ (u′v′) trans-
ports heat (momentum) against the gradient of temperature (momentum) in the
background state. If CPK is positive, warmer air rises and colder air sinks (see
Section 4.2). We report on the convergence of momentum transport −∂y

∑
i u

′
iv

′
i

(see Figure 4.7 a,c,e), the convergence of heat transport −∂yv
′
MT ′ (see Figure 4.7

b,d,f) and the vertical advection Sω′ (see Figure 4.8 a-c). An integration by parts
of Equations (5.3) and (5.4) shows that the convergence terms describe the spatial
structure of the redistribution of momentum and heat (see Section 4.2). We restrict
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Figure 4.7: Left (a, c, e): The mean zonal profiles of Convergence of Momentum Transport.
Right (b, d, f): Northward Heat Transport (b, d, f). The x axis indicates the jth CLV.
In (a, c, e) the solid lines indicate the sign switch of the barotropic conversion CBT from
positive to negative. In (b, d, f) the dash-dotted lines indicate the sign switch of the
baroclinic conversion CBC from positive to negative. The black dotted lines show the CLV
with smallest positive LE. The y axis shows the distribution in the meridional direction
in 103km.

ourselves to zonally averaged quantities, because long-term averages converge to
zonally symmetric fields which is due to the zonal symmetry of the model.

For CLVs with positive baroclinic conversion CBC , we have northward heat trans-
port (see Figure 4.7 b,d,f), while a reversed transport is found for CLVs featuring
a negative value of CBC . For lower values of ΔT, the convergence of heat transport
is largest near the center of the channel. As ΔT increases, the area affected by the
transport is extended in the north and south of the channel. The larger the baro-
clinic forcing, the more efficient are the CLVs with positive baroclinic conversion in
transporting heat northwards, thus reducing substantially the meridional tempera-
ture gradient. Since heat is removed from the very low latitudes and deposited in
the very high latitudes, one expects a flattening of the temperature profile. Note
that the near zero CLVs are qualitatively similar, in terms of heat transports, to
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Figure 4.8: The mean zonal profiles of the conversion of heat Sω for the three meridional
temperature gradients plotted for every CLV ((a) ΔT = 39.81 K, (b) ΔT = 49.77 K and
(c) ΔT = 66.36 K). The black vertical dash-dotted lines indicate the change of sign from
positive to negative of the baroclinic conversion CBC . The dashed lines indicate the change
of sign in the conversion from potential to kinetic energy CPK . The black dotted lines
show the CLV with the smallest positive LE. The y-axis shows the distribution in the
meridional direction in units of 103 km. The x-axis indicates the jth CLV.

the most unstable CLVs (see position of the zero LE).

We recall that the barotropic conversion is related to the momentum transport. As
discussed before, in the case of the lowest considered temperature gradient, no CLV
features a positive barotropic conversion. Correspondingly, the momentum trans-
ports of the CLVs cause a convergence of momentum in the center of the channel,
resulting a pointier jet (see Figure 4.7 a). Things get more complicated when larger
values of ΔT are considered. In this case, the first CLVs are barotropically unstable,
and, in fact, the implied momentum transport (see Figure 4.7 c,e) of these CLVs
causes a depletion on the jet at the center of the channel. This is possible because
the horizontal velocity gradients in the background state become sufficiently large
(see Figure 4.1 b). For the more turbulent cases, the slow CLVs still feature mo-
mentum transport profiles which, instead, support momentum transport towards
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Quantity Conversions Transport Gradients

Zonal Potential to
CBC v′MT ′ ∇ΨB

TEddy Potential Energy

Zonal Kinetic to
CBT u′.v′ ∇.

(
uB

i , vB
i

)T
Eddy Kinetic Energy

Eddy Potential to
CPK Sω ψB

TEddy Kinetic Energy

Table 4.2: Transports and Conversions - The conversion is positive if the correlation
between gradient of the background state and eddy transport of the CLVs is negative. Note
that for CPK the baroclinic stream function ψT is proportional to the vertical gradient of
the stream function.

the center of the channel. This results into the fact that we do observe a pointy
jet as mean state of the system (see also Figure 4.1 a, b). Note that most decaying
CLVs feature a positive convergence of momentum transport in the middle and on
the flanks of the channel. This is connected to the smaller secondary jets on the
flanks visible in the mean background state (see Figure 4.1 b).

In Figure 4.8 a-c, we explore the vertical heat transport Sω′ caused by the CLVs.
We immediately recognize the signature of baroclinic processes. The CLVs with
positive baroclinic conversion feature upward and northward heat transport, while
the opposite holds for the CLVs with negative baroclinic conversion rate. This
corresponds exactly to the process of release (or creation, in the second case) of
available potential energy.

After having presented the central results of the LEC for the CLVs, the next section
will explore how the CLVs are able to explain variance of the background state in
relation to their respective growth rates and the sign of the baroclinic conversion.

4.4 Explaining the Variability of the Background
Flow

So far, we have studied the linear stability of our model by determining physical
properties of CLVs (see Section 4.3). This is equivalent to the physical properties
of nearby trajectories to the background trajectory. We can utilize these results to
investigate the background state. Their divergent (convergent) evolution is directly
linked to the variability of the background state, since the variability in a chaotic
solution is caused by the divergence and convergence of nearby trajectories. It is
expected that the diverging nearby trajectories dominate the variability over con-
verging nearby trajectories. A classical example for this relation of linear stability
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Figure 4.9: The panels show the average correlation (solid lines) of the subspaces spanned
by the n fastest growing CLVs (a) and the n fastest decaying CLVs (b) with the considered
trajectories of ΔT (dotted: 39.81K , dashed: 49.77K, solid: 66.36K). The parameter n is
indicated on the x axis. The average is done over the mean correlation for different refer-
ence points of the CLVs (41 reference points, equally distributed over a 12 years period).
The corresponding σ area is indicated by the grey shaded regions. The vertical dashed
dotted lines indicate where the expansion includes exactly all baroclinically unstable CLVs
(a) or all baroclinically stable CLVs (b). (b) also shows the expansion into a randomly
chosen basis (almost diagonal dashed lines). The comparison of both panels shows the
higher explanatory power of CLVs with a higher LE.

and variance can be found interpreting the results of the Eady (1949) model. The
linear instability analysis of the Eady model gives as a result modes and corre-
sponding growth/decay rates. The most unstable modes explain qualitatively the
variability of the mid latitudes atmosphere to a larger extent. Also, the length scales
and growth rates of these modes are comparable to the typical scales of cyclones
when reasonable parameters are inserted in the model. Moreover, the Eady modes
grow (decay) similar to cyclones due to a vertical westward (eastward) tilt of the
troughs and lows which induces a positive (negative) baroclinic energy transfer to
the modes from the respective zonal background state and a northward (southward)
eddy heat transport. Correspondingly, the CLVs gain (lose) energy by a northward
(southward) heat transport

∫
dσ v′T ′ and the positive (negative) baroclinic con-

version CBC = − 2
S

∫
dσ (ψ′

Tv
′
M ∙ ∇ψB

T ). Note that our model features horizontal
velocity divergences and therefore the stability of the CLVs is also dependent on
the barotropic conversion (see Section 4.2). Having the Eady model in mind, we
want to address two questions. First, what is the relation between the Lyapunov
exponents and the explained variance of the respective CLVs? Second, how well do
baroclinically unstable versus baroclinically stable CLVs explain the variance of the
background trajectory? In contrast to other Lyapunov bases of chaotic trajectories
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the latter question can only be addressed with CLVs due to their covariance. Note
that single CLVs are not correlated with the background trajectory (see Section 4.2),
therefore we will consider subspaces spanned by multiple CLVs.

We address first how these subspaces of CLVs are constructed. If we consider the
CLVs at a reference time tR as a basis, we have to shift the center of our coordinate
system to the corresponding point on the trajectory (xR = (ψM (tR), ψT (tR))). Note
that the CLVs {cj(tR)} always form a basis, since they are linear independent by
construction. For our purposes, we choose the following two cascades of sets spanned
by CLVs. The first cascade

Bun
n (tR) = span {cj(tR)|j = 1, . . . , n}

contains the CLVs with the n highest LE, the second cascade

Bs
n(tR) = span {cj(tR)|j = d − n + 1, . . . , d}

contains the CLVs with the n lowest LE (d is the total phase space dimension). The
correlation with the subspaces is then defined in the following way. For each cascade
Bun/s

n (tR) the Gram Schmidt algorithm gives an orthogonal basis
{

un/sOn
j (tR)

}
1≤j≤n

at the reference point xR. Hence, the projection of the normalized state vector at
time t onto the subspace is

pun/s
n (t, tR) =

n∑

j=1

un/sOn
j (tR)

〈
un/sOn

j (tR),
x(t)

||x(t)||

〉

. (4.27)

The scalar product 〈. . . , . . . 〉, is defined in the spectral representation of our model,
where x is represented by (ψr

M(k, l), ψi
M(k, l), ψ′r

T (k, l), ψ′i
T (k, l)) and the scalar prod-

uct of is defined in the following way.

〈(ψM , ψT ), (ψ′
M , ψ′

T )〉 =

Ny∑

l=1

{(
Nx∑

k=1

ψr
M(k, l)ψ′r

M (k, l) + ψi
M (k, l)ψ′i

M (k, l) + ψr
T (k, l)ψ′r

T (k, l) + ψi
T (k, l)ψ′i

T (k, l)

)

+ψr
M (0, l)ψ′r

M (0, l) + ψi
M(0, l)ψ′i

M(0, l) + ψr
T (0, l)ψ′r

T (0, l) + ψi
T (0, l)ψ′i

T (0, l)

}

The correlation of x with a subspace Bun/s
n (tR) at the chosen reference point is then

lim
T→∞

1

T

∫ T

0

〈
x(t)

||x(t)||
,pun/s

n (t, tR)

〉

. (4.28)

The average correlation is one if the trajectory lies completely in the subspace
defined by Bun/s

n (tR). For the average, we sample the trajectory every 24 hours over
a period of 25 years.
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Figure 4.9 shows the average correlation as a function of n for the mean and standard
deviation of Bun/s

n (tR) obtained from a series of 41 equally distributed reference
points over 12 years. In this figure we also compare the Bs

n cascade with a randomly
chosen basis. For the same n the correlation of Bun

n is always higher than the
correlation of Bs

n. Hence, CLVs with higher LEs tend to explain the variance of
the background trajectory better than CLVs with lower LEs. Nevertheless, the
expansion into Bs

n is performing better than a random basis with the same size.
This means the explanatory power of the CLVs is related to their stability as we
expected it from the Eady model. For the second question, we can use the cascades
for comparing the baroclinically stable versus the baroclinically unstable CLVs. The
baroclinically unstable CLVs are one of the cascades Bun

n , whereas the baroclinically
stable CLVs are one of the cascades Bs

n (see vertical lines in Figure 4.9). The
expansion into the baroclinically unstable CLVs correlates highly with the trajectory
(≈ 0.94), whereas the expansion into the baroclinically stable CLVs has a lower
correlation with the trajectory (≈ 0.66). The randomly chosen basis of the same
size has a correlation of approximately 0.5 because its size is about half of the
full phase space dimension (see Figure 4.9 b). Thus, the baroclinically unstable
CLVs have a significantly higher correlation than the baroclinically stable CLVs.
Baroclinic instability does not determine the overall stability of the CLVs, but
baroclinically unstable CLVs dominate the explanation of the variance of the non
linear flow. Moreover, while the Eady modes are rather idealized linear modes, the
CLVs are a more general characterization of the flow since they are trajectories of
nearby trajectories.

This allows to suggest a path for further studies of CLVs. The high quality of
the reconstruction variance with the baroclinically unstable CLVs and the weak
dependence on ΔT suggests that this might be a robust way to construct a reduced
order model. Traditionally, empirical orthogonal functions of the trajectory are
used to construct such a model of the underlying dynamical system (Holton, 2004;
Franzke et al., 2005). The main limitation of these methods is that they rely solely
on correlations of the trajectory and are not connected to the equations of motion
or to the tangent linear dynamics which are intimately related to the stable and
unstable processes. Due to their explanatory power and their covariance CLVs could
provide a useful tool for further studies in this direction.

4.5 Summary and Discussion

Our objective in this chapter was to determine the physical properties of the tangent
linear space of a quasi-geostrophic model of the mid latitudes atmosphere. Aiming
at this, we made use of new tools (Covariant Lyapunov Vectors) which allow for
obtaining a covariant basis of this space and allow for investigating linear stability
far away from the stationary state of the flow. Traditional linear stability analysis of
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the atmosphere investigates normal modes which define the linear stability of typi-
cally stationary or zonally symmetric states. This understanding of the dynamics is
linked to the decomposition of the atmospheric flow into a zonal mean state and an
eddy field. For our stability analysis of a turbulent background flow, we studied the
evolution of non-linear flows close to a turbulent non-linear background. This was
described by a superposition of the background and linear perturbations. The insta-
bilities and stabilizations of these linear perturbations along the background cannot
be reduced to the tangent linear dynamics of a mean profile. We then studied the
physical mechanisms responsible for growth and decay of the small perturbations,
by focusing on their energy exchange with the background trajectory using an anal-
ysis similar to the traditional Lorenz energy cycle. Furthermore, we investigated
baroclinic and barotropic conversion processes and then study the feedbacks.

The CLVs provide the appropriate mathematical tool to conduct such an analysis.
They span the tangent space in the asymptotic time limit, and they are covariant
with the tangent linear dynamics so that they represent actual perturbations to
the background trajectory (Ruelle, 1979). This allowed to examine the link be-
tween the stability of the CLVs and their energetic properties given by the energy
exchange between the background state and the CLV. We obtained the CLVs with
the algorithm proposed by Ginelli et al (Ginelli et al., 2007).

As a first step towards more sophisticated geophysical models we used a QG two
layer model in a periodic channel of the Phillips type (see Section 3.1). It features
the basic baroclinic and barotropic processes of the mid-latitudes and is computa-
tionally feasible. Three experiments were conducted with a varying forced merid-
ional temperature gradient ΔT (39.81K, 49.77K, 66.36K). These three turbulent
regimes feature an increasing Kaplan-Yorke-Dimension and an increasing number of
positive LE, thus chaoticity is enhanced. These properties of the LE are consistent
with previous findings in a QG model (Lucarini et al., 2007). All setups feature
a baroclinic jet in the upper layer which becomes pointier while increasing ΔT .
We can further characterize the chaotic and turbulent behavior by a decomposi-
tion of the flow into a zonal mean and an eddy field. The Lorenz energy cycle of
this system features a positive baroclinic conversion accompanied by a northward
heat transport and a negative barotropic conversion accompanied by a transport of
momentum to middle of the channel. Hence, the turbulent flow reduces the tem-
perature gradients, but intensifies the velocity gradients in the mean state via the
meridional transports of the eddies. These processes intensify with increasing ΔT .

The CLVs have a one-to-one relationship to the Lyapunov exponents which are the
average growth rates of the CLVs in the euclidean norm. Given that the average
growth rates of the CLVs are the same in any norm, a link is provided between
physical properties and mathematical properties. Consequently, an energy cycle can
be defined between the CLVs and the background flow similar to the classical LEC
of the decomposition into eddy field and zonal mean. This allows for connecting
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baroclinic and barotropic processes and the closely connected heat and momentum
transports of the CLVs to their stability properties. Roughly half of the CLVs have
a positive baroclinic conversion and a northward heat transport against the average
temperature gradient of the background state. As for the barotropic conversion,
only fast growing CLVs in the two cases with a higher ΔT have a positive rate.
Hence, they equilibrate the momentum gradients in the background state, if the
jet of the background state has a sufficiently high meridional velocity gradient.
All unstable CLVs have a positive baroclinic conversion, yet this is not sufficient
for a growing CLV, since friction caused by Ekman pumping and kinetic diffusion
counteract this input of energy. The barotropic conversion depends largely on
ΔT . Unstable CLVs have a positive barotropic conversion, if the background state
features a baroclinic jet with sufficiently large velocity gradients.

In Section 4.3, we systematically compared the conversions, sinks and transports
of the LEC of the CLVs with the classical LEC obtained by decomposition of the
background trajectory into eddy and a zonal mean field. The slowly growing and
decaying CLVs exhibit similar properties as they all feature terms of a positive
baroclinic conversion and a negative barotropic conversion including the associated
momentum transport to the middle of the channel and the northward heat trans-
port. This is due to the slow decorrelation of the slow growing/decaying CLVs with
the background trajectory. In the case of low forcing (low ΔT ), we saw a corre-
spondence between the classical linear stability analysis (Pedlosky, 1964) and our
generalized stability analysis with CLVs. In this case even the fastest growing CLVs
are slow growing and the mean state is close to the stationary state. Therefore, the
most unstable directions exhibit properties similar to the normal modes.

In Section 4.4, we tried to ”close the cycle” and use the CLVs to construct a reduced
basis for describing the dynamics of the system, taking into consideration that they
describe the unstable and stable modes of variability. This approach differs from
EOF-based approaches because the latter use basis that are only loosely related to
the dynamics. Instead, the CLVs are covariant and therefore linked to the dynamics
of the turbulent motion. CLVs with positive baroclinic conversion deliver a signif-
icantly better explanation of the variance (≈ 0.94) then the CLVs with a negative
baroclinic conversion (≈ 0.65). This is a robust qualitative and quantitative result
regardless of the value of ΔT . Moreover, CLVs with a higher growth rate explain on
average the variance of the background trajectory better than a CLVs with a lower
growth rate. This agrees with the general notion that in the end the divergence
of nearby trajectories creates the variability found in chaotic models. This reflects
e.g. the classical interpretation of the Eady model, where the most unstable linear
modes are considered representative of the actual observed variability of the fields.
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Chapter 5

Looking at Blocking Events Using
the Formalism of Covariant
Lyapunov Vectors5

After having analysed the energetics of the CLVs and their ability to represent
in the variability in detail in the last chapter. We continue employing the same
model extended by orography (see Section 3.2.2) to investigate blocking events.
This means instead of only focusing on the long-term average properties of the flow
we investigate the fluctuations of the background state and in consequence also the
fluctuations of the CLVs and the respective LE. We structure the chapter in the
following way. The blocking detection method is described in Section 5.1. In Sec-
tion 5.2, we discuss the resulting blocked and unblocked regimes. In Sections 5.3.1
to 5.3.3, we present the results of our investigation of the linear stability and the
localization of the CLVs. Finally, we will summarize the findings and point the
reader towards future work on this topic (in Section 5.4).

5.1 Blocking Detection

We describe briefly the adapted Tibaldi-Molteni scheme (Tibaldi and Molteni, 1990)
for detecting blocking highs in our model. Since the model is spectral, we are using
a fft-algorithm to transform the spectral fields to a [64 × 32] grid (64 grid points
in the x direction, 32 grid points in the y direction). Note that in the y-direction
we use the fft by doubling the domain in the y-direction by using the prescribed
basis functions in this direction (see Equation (3.6)). We consider a particular
coordinate x blocked if the blocking lasts at least two days. We will consider only
blocking in the barotropic stream function ψP , since it is the best representation

5Schubert, S., & Lucarini, V. (2015): Dynamical Analysis of Blocking Events: Spatial and
Temporal Fluctuations of Covariant Lyapunov Vectors, submitted.
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of the 500 hPa layer in our model discretization. In order to detect blocking high
anomalies, we study the occurrence at some longitude of reversals in the direction of
the zonal wind with respect to normal conditions. We construct the average zonal
wind in the northern and southern sector by constructing the quantities uN(x, Δ) =

−δψN (x, Δ)/(yN − y0) and uS(x, Δ) = −δψS(x, Δ)/(y0 − yS), where δψN (x, Δ) =

ψP (x, yN + Δ) − ψP (x, y0 + Δ) and δψS(x, Δ) = ψP (x, y0 + Δ) − ψP (x, yS + Δ).

A blocking event is said to occur if at a particular coordinate x uS is negative
and uN is sufficiently positive. We also allow for a deviation Δ from the chosen
y-coordinates. Summarizing this we have the following criteria.

uN (x, y0 + Δ) > 9 m/s

uS(x, y0 + Δ) < 0 m/s

yN = 8437 km; y0 = 6250 km; yS = 4375 km

Δ = (−940 km 0 km 940 km)

(5.1)

A word of caution is needed at this point since the Tibaldi-Molteni index was
originally developed for a spherical geometry and considered either observational
data or more realistic data taken from GCMs. However, we still think the use of
this index is meaningful because of its straightforward interpretation and because
it describes the presence of an non-zonal deviation from the usually fluctuating,
but zonally symmetric jet stream. We will show that the detected blocking events
are indeed meaningful, hence a blocked and an unblocked weather regime can be
determined (see the following discussion in Section 5.2).

5.2 Blocking Events

Let us first look at the blocking rate. Comparing the different setups with the
control runs (without orography), we can also assess the impact of the orography
on the blocking. For reasons of symmetry, in absence of orography, the statistics of
blocking does not depend on x.

The blocking rate (see Figure 5.1) kicks off when ΔT is larger than 50 K (even
without orography). The orographic forcing creates two to three local maxima in
the blocking rate downstream of the peak of orography. These maxima intensify for
higher h0 and for higher ΔT , but in the range of values considered here the impact
of h0 seems to be higher.

As mentioned before, two main configurations of the flow are identified. This can be
further substantiated by considering the mean states of the unblocked and blocked
flow (e.g. ΔT = 66K and h0 = 4.44km in Figure 5.2). In this way, we treat the
unblocked and blocked phases as separate weather regimes and determine the "cli-
mate" of the two, respectively. Note that we divide the blocked regime again into
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Figure 5.1: The number of blocked days is the highest behind the peak of the orography.
The vertical black line indicates the peak of the orography. Downstream two secondary
maxima can be identified. The x axis indicates the x coordinate where we detect blocking.
The y axis shows the frequency of blocking in percent. The grey shaded area shows the
range of the blocking rate along the x direction without orography.

"sub regimes" by computing the mean state of the flow if a particular x coordinate
is blocked. Since the days where blocking is present are relatively rare, the mean
state over the complete time series is more or less identical to the mean taken over
days where no blocking is observed. Close to the blocked area a clear deviation
from the zonal symmetric jet of the mean flow can be seen (the blocking high).
We also see that the observed blocking is local and the regions far away from the
blocked coordinate seem to converge towards the unblocked flow. The unblocked
flow is more zonally symmetric then the blocked flow. Nevertheless, there is a non
zonal disturbance with wave number four. This shows the presence of topographic
Rossby waves induced by the orography (Holton, 2004). Note that the breaking
of Rossby waves is intimately connected to the emergence of blocking events and
the meandering of the jet fits roughly to the maxima of the blocking rate (Berris-
ford et al., 2007). The results shown in Figure 5.2 do not change significantly for
the other setups and other locations, besides the shift of the blocking high to the
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Figure 5.2: As an example of the observed blocking events, the mean blocked state at
x = 15859 km and the unblocked state for ΔT = 66 K and h = 4.44 km is shown. The
left panels show the averaged stream function during blocking. The right panels show the
average stream function for unblocked periods. The upper panels show the upper layer,
the lower panels show the lower layer. The dashed lines show the position of orography.
The blocking is affecting the flow only locally because, far from the blocking, the flow is
the mean unblocked flow. We get similar results for blockings at different x coordinates
and different values of ΔT and h0.

corresponding x coordinate.

Let us turn our attention towards the number of blockings and their duration. We
show the results for the position of the maximum of the blocking rate (see Figure 5.3)
but the findings are similar at other x coordinates. The average blocking length
(lifetime) changes only marginally, whereas the total number of blockings increases
significantly by orography.

For the blocking rate and length (see Figures 5.1 and 5.3), it appears that as afore-
mentioned, adding orography creates preferential geographical locations for the oc-
currence of blocking. Looking at the global statistics, we observe that, for a given
value of ΔT , indeed, the number of blocking events and the number of blocked days
increase with h0, even if the catalyzing effect of orographic disturbances is relatively
weaker when ΔT is large enough. The effect of ΔT on the blocking rate and the
number of blockings is also found in observations since the meridional temperature
gradient is higher in winter and is associated with a higher blocking rate (Tibaldi
and Molteni, 1990). The blocking length are, to a good approximation, exponen-
tially distributed, as opposed to the heavy tail properties found in Pelly and Hoskins
(2003). Since we are using an extremely simple model of the atmosphere, it is not
surprising, that the blocking rates and lengths do not match quantitatively with
observations. The lack of many dynamical and physical ingredients in our model
is likely to be responsible for this mismatch. Nevertheless, we conclude that the
blocking index allows a meaningful definition of a blocked and an unblocked regime
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Figure 5.3: The distribution of blocking lengths at x = 15859 km with Orography in
comparison to the control run without orography (light grey). The legends show also the
lifetime τ of the blocking events and the number of blocked days per year nb. The y-axis
has a log scaling. The total length of the time series is 115705 days (31.7 years).

and blocking is enhanced if orography is added.

After having discussed the properties and quality of the detected blocking events,
we will present in the next section the properties of the CLVs during these phases.

5.3 Properties of Covariant Lyapunov Vectors dur-
ing Blocking

In this section, we will use the in Section 5.2 established blocked and unblocked
phases of the flow to assess the properties of the CLVs during these phases. In
Section 5.3.1, the linear stability in terms of the Lyapunov spectrum will be investi-
gated. In Section 5.3.2, we will use the LEC of the CLVs with the background state
(see Section 4.2) to explain the changed growth rates of the CLVs during blocking.
Also, since blocking is a local change in the flow pattern, we will then continue by
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analysing the localization of the CLVs during blocking in Section 5.3.3.

5.3.1 Linear Stability of Blocking States

After having clarified in Section 5.2 that indeed we observe blocking events induced
by orography, we will now evaluate the characteristics of the CLVs during blocked
and unblocked phases. We follow up from the previous section and use the distinc-
tion between occurrence of blocking events and regular conditions to partition the
attractor of the system. Then, we compute separately the statistical properties of
CLVs and LEs in the two regions.

Table 5.1: Properties of the attractor without Orography

ΔT [K] Positive Kaplan-Yorke Metric 1/λ1

Exponents Dimension Entropy [1/day] [day]

39.81 17 35.8 0.25 28.8

49.77 55 125.8 3.15 6.8

66.36 88 206.8 12.51 2.6

76.31 98 232.1 18.66 1.9

Table 5.2: Properties of the attractor with Orography

ΔT [K] Height [km] Positive Kaplan-Yorke Metric 1/λ1

Exponents Dimension Entropy [1/day] [day]

1.48 18 38.1 0.29 26.8

39.81 2.96 19 41.5 0.35 24.5

4.44 19 41.2 0.34 24.5

1.48 55 126.9 3.23 6.6

49.77 2.96 55 129.6 3.42 6.4

4.44 56 131.6 3.56 6.2

1.48 88 207.1 12.61 2.55

66.36 2.96 88 207.5 12.72 2.54

4.44 89 207.9 12.85 2.51

1.48 98 232.2 18.76 1.89

76.31 2.96 99 232.2 18.82 1.89

4.44 99 232.4 18.88 1.88

Let us start by examining basic dynamical and geometrical properties of the at-
tractor, as we did in Section 4.3.1. Starting from the Lyapunov exponents we can
derive the Kaplan-Yorke dimension and the metric entropy, see Tables 5.1 and 5.2.
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Table 5.3: Metric Entropy during the blocked and the unblocked phase. This is the sum
of the in the long term averaged positive LEs averaged during the blocked and unblocked
phases, respectively.

ΔT [K] Height [km] Metric Entropy Metric Entropy
during blocking [1/day] no blocking [1/day]

1.48 - 0.26
39.81 2.96 - 0.35

4.44 - 0.35

1.48 3.37 3.20
49.77 2.96 3.63 3.37

4.44 3.80 3.54

1.48 12.79 12.53
66.36 2.96 12.87 12.70

4.44 12.96 12.79

1.48 18.84 18.66
76.31 2.96 18.84 18.75

4.44 18.92 18.84

Again, we find that with increasing ΔT the Kaplan-Yorke dimension and the metric
entropy grow monotonically. While the observed motions are indeed chaotic for the
studied values of ΔT and h0, we can clearly see from these dynamical indicators
that turbulence is much better developed for higher values of ΔT . The impact of
the orography on these numbers is small but it shows a small upward trend for
larger h0. This tendency shows that predicting weather (regimes) become(s) more
complicated if orography is added because the characteristic predictability time de-
creases. We take the inverse of the leading LE λ1 (in Tables 5.1 and 5.2) as a
rough measure for predictability since the rapid divergence of nearby trajectories is
a necessary ingredient for having a fast error growth. Note that different dynamical
indicators are better suited to study the actual predictability of a system. A better
evaluation of the time scales of the system and the associated predictability could
be obtained by studying systematically finite time/finite size LEs and the related
multi-fractal properties (Boffetta et al., 1998, 2003), which is outside the scope of
this study.

Let us now turn the focus on the average growth rates during the blocked phases and
the unblocked phases. Since blocking conditions are relatively rare, this corresponds
to comparing the finite time LEs computed during the blocked phase to the actual
long-term LEs at all practical levels. The growth rates of the ten leading CLVs
increase significantly during blocking for the two largest ΔT (see Figure 5.4). h0

does not have an effect on the observed average growth rates. The ten fastest
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Figure 5.4: For the nine setups where we observe blocking (see Figure 5.1), the figure
shows the differences in the growth rates during blocking (in blue color) versus unblocked
phases (in black color). We additionally show the 3 σ bars of confidence estimated by
computing the degrees of freedom of the time series (shaded areas). For ΔT = 66K, 76K

we can clearly estimate that for the CLVs with highest/lowest LEs the baroclinic conversion
increases/decreases significantly. Such a tendency can not be clearly verified for ΔT =
50K .

decaying CLVs have significantly higher decay rates during the blocked phase. The
statistical significance is determined by considering the 3 σ confidence interval which
is obtained by computing the degrees of freedom for each time series of the unblocked
and blocked growth rates (Leith, 1973). This indicates that the unstable CLVs grow
faster globally. The question remains whether this is due to changes in the CLVs
near or far away from the blocked region. This question will be partly answered
in the next Section 5.3.3 where we will be looking at spatial patterns. Considering
that the Lyapunov exponents can be seen as a measure of predictability, the higher
values of the positive LEs during blocking suggest that it is hard to predict the
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decay and onset of a blocked state. See also Table 5.3, where we loosely define
a finite time metric entropy evaluated as the sum of the positive LEs taken over
the time span where blocking occurs (or not). We would like to remark that while
considering larger values of h0 leads to more frequent blocking events, no significant
effect is instead found on the average growth rate of the disturbances. Orography
plays an important role as a catalyzer for blocking events. Interestingly, the role is
bigger than influencing substantially their properties once they are realized.

5.3.2 Lorenz Energy Cycle during Blocking

In Section 4.3, we explained the growth and decay rate of the CLVs by looking at
their Lorenz energy cycle, and studying each term responsible for energy conversions
and sinks obtained from the tangent linear equations. Thus, we can provide a
physical interpretation of the changes in the growth rates in the phases where
blocking is present versus regular conditions (see Section 5.2) by examining the
details of the Lorenz energy cycle. We focus here on the budget of the total energy
of the jth CLV (ψ′

1,j , ψ
′
2,j) resulting from the interaction with the background state(

ψB
1 , ψB

2

)
and from dissipative processes. For ease of notation, we will use the

barotropic stream function ψP = ψ1+ψ2

2
and the baroclinic stream function ψT =

ψ1−ψ2

2
as well as the respective geostrophic velocities v = (u, v) = (−∂yψ, ∂xψ) for
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∫
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Since the CLVs are growing/decaying perturbations, we normalize all the following
energy conversion terms and sinks by the total energy (in the same manner as
discussed in Section 4.2). We decompose the energy rate into the conversions of
energy resulting from the coupling with the background state and the energy sinks.
The baroclinic and barotropic energy conversion terms are defined as

CBC =

∫
dσ

[

−
2

S
ψ′

T,jv
′
P,j ∙ ∇ψB

T

]

(5.3)

and

CBT =
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dσ
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Δψ′
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2

]
, (5.4)

respectively. The energy loss is the sum of newtonian cooling, Ekman friction, and
eddy diffusivity.

S =
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Figure 5.5: For the nine setups where we observe blocking (see Figure 5.1), this figure
compares the baroclinic conversion CBC during blocking (in blue color) versus unblocked
phases (in black color). We additionally show the 3 σ bars of confidence estimated by
computing the degrees of freedom of the time series (shaded areas). For ΔT = 66K, 76K

we can clearly estimate that for the fastest growing CLVs, the baroclinic conversion in-
creases significantly. For the fastest decaying CLVs, a negative tendency can be observed
yet with weaker statistical significance. Such a tendency can not be clearly verified for
ΔT = 50K.

A positive average value for the baroclinic term CBC implies that available potential
energy of the background flow is converted into available potential energy of the
jth CLV. The corresponding thermal fluctuations are then converted into kinetic
energy of the CLV. Instead, an average positive value of the barotropic term CBT

implies a direct transfer of kinetic energy from the background flow to the jth CLV.
As we know from the previous Section 4.2, a positive rate of baroclinic (barotropic)
energy conversion rate is associated to a heat (momentum) flux opposite to the
temperature (zonal momentum) gradient of the background flow, thereby clarifying
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Figure 5.6: For the nine setups where we observe blocking (see Figure 5.1), the figure
shows the differences in the barotropic conversion CBT during blocking (in blue color)
versus unblocked phases (in black color). We additionally show the 3 σ bars of confidence
estimated by computing the degrees of freedom of the time series (shaded areas). For ΔT =
66K, 76K we can clearly estimate that for the CLVs with the highest/lowest LEs, the
barotropic conversion increases/decreases significantly. For ΔT = 50K, such a tendency
can not be clearly verified.

the presence of negative feedbacks. Clearly, it is a necessary condition for the LE
corresponding to a CLV to be positive that at least one of the two terms CBC or
CBT to be positive on the average.

We can now study how the baroclinic and barotropic energy conversion rates are
influenced by the presence of blocked flow conditions. The results are shown in Fig-
ures 5.5 and 5.6 for barotropic and baroclinic processes, respectively. For complete-
ness, we have also plotted the result for the energy sinks of the CLVs in Figure 5.7.

For all analyzed configurations and for all CLVs, blocked conditions support smaller
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Figure 5.7: The energy losses of the CLVs are the sum of the Ekman Friction, the heat and
eddy diffusivity and newtonian cooling (see Section 4.2). For the nine setups where we
observe blocking (see Figure 5.1), the figure shows the sum of these terms during blocking
(in blue color) versus unblocked phases (in black color). We additionally show the 3 σ bars
of confidence estimated by computing the degrees of freedom of the time series (shaded
areas). For all ΔT we can clearly estimate that for the CLVs with the highest/lowest LEs,
the energy losses decrease significantly.

rates of energy dissipation than regular conditions. Nonetheless, such changes are
numerically rather small and can be disregarded in the following discussion.

In the case of weak baroclinic forcing (ΔT = 50K), the difference in the energetics
of the CLVs between blocked and normal conditions is borderline or not statistically
significant for most CLVs. Despite the lack of strong statistical evidence, some useful
indications can be provided. Looking at the unstable CLV, we observe that during
blocked phases the baroclinic conversion is lower than in usual conditions, whereas
the opposite holds for the barotropic conversion. Therefore, we observe that the
(modest) enhanced growth rate of the unstable CLVs observed in blocked conditions
(see Figure 5.4) can be attributed to a more efficient barotropic conversion. Looking
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at the most stable CLVs, the situation is reversed, with barotropic (baroclinic)
conversion rates being reduced (increased) in blocked conditions.

The situation changes when considering conditions where stronger baroclinic forcing
is imposed on the system (ΔT = 66K and ΔT = 76K). Blocked conditions are
accompanied by stronger baroclinic and stronger barotropic conversion rates for
the unstable CLVs, while, conversely, the both conversion rates are reduced when
looking at the most stable CLVs.

These results seem to suggest that the energetics of blocking events is fundamen-
tally different in background states featuring weak versus strong Equator to Pole
temperature differences. In the former case, blocking is eminently related to modi-
fications to the barotropic instability of the flow, while in the latter case, it results
from modifications of both barotropic and baroclinic instabilities. The synergy be-
tween the two forms of instability is likely to be responsible for the increase in the
number of blocking events for larger values of ΔT . Note that a strong sensitivity of
the properties of the low-frequency variability on the intensity of the jet was already
envisioned in Benzi et al. (1986) and verified by Ruti et al. (2006).

The properties of the blocked states in terms of the Lorenz energy cycle of the
CLVs are weakly dependent on the value of the perturbation orography h0, which
confirms in physical terms the eminently catalyzing role of orography for blocking.

5.3.3 Localization of Covariant Lyapunov Vectors

In Section 2.1, we commented on the benefits of CLVs for investigating the tangent
linear dynamics, that is the linear stability of the flow. Other Lyapunov bases
describing linear perturbations are not actual trajectories evolving according to the
tangent linear equations and they are constraint by the definition of a norm (Pazó
et al., 2010). Also, as mentioned before, it has been shown that they are sensible to
orographic disturbances (Szendro et al., 2008). Therefore, they are a good choice
for finding the signature of blocking in the tangent linear dynamics.

For this, we will assess the localization of the CLVs during blocking conditions and
compare it with what observed in normal unblocked phases. A measure for the
localization is given by the temporal variance of the CLVs at the grid points on the
domain. In the control runs without orography, the variance of the CLVs does not
depend on x. If the zonal symmetry is broken due to orography, the CLVs will be
localized in the x direction (Szendro et al., 2008). In Figure 5.8, we show, as an
example, the variance of three CLVs in the blocked phase and the unblocked phase
for the blockings shown previously in Figure 5.2 (for ΔT = 66 K and h0 = 4.44 km

and blocking at xb = 15859 km). Figure 5.8 shows a clear impact of the blocking
on the variance of the CLVs. Overall, the variance is localized in the meridional
direction due to the symmetry break associated with the boundary conditions at
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(a) The first CLV

(b) The 10th CLV

(c) The 100th CLV

Figure 5.8: Variance of selected covariant Lyapunov vectors (1st (a), 10th (b), 100th (c)).
The stream function is shown (left side: ψ1, right side: ψ2). The blocked state, which is
blocked at the vertical black line, is shown in the upper parts. The unblocked phase is
shown in the lower parts. The orography is shown by dashed lines.

y = 0, π, but at the location of the blocking the variance is shifted northward. In the
zonal direction, the variance has a weak x-dependence (even if we have no reasons
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to expect zonal symmetry) during the unblocked phase. Away from the blocking,
we see again a non zonal disturbance with wave number four in both phases (see
Section 5.2). Note that at the location of the block in the background state, the
CLVs show a minimum of the variance (see Figure 5.2).

Before we discuss the implications of these results, we would like to analyze the
variance for all CLVs by slightly reducing the complexity of the data. We average
the variance along the meridional direction and focus on the x-dependence only.
Furthermore, we do not analyze the average localization of the CLVs, but instead
track the variations of the localization. Hence, we compute the ratio of the merid-
ional average of the variance of the stream function of the CLVs (upper and lower
layer) during blocking at a particular xb

σ1/2
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1

|Txb
|

∫

t∈Txb

dt

∫
dy
(
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We define the set Txb
to contain all time steps where the flow is blocked at xb

and Tunbl to contain all time steps which are not blocked. |T | is the length of the
respective phases. Our measure for the change of localization ΔL in the zonal
direction has then the following form.

ΔL(x) =
σ

1/2
xb (x)

σ
1/2
unbl(x)

(5.6)

Note that 〈∙ ∙ ∙ 〉 is the average along the complete time series. If ΔL > 1, then a
higher activity of the CLV (y-axis) during blocking at a particular zonal coordinate
(x-axis) is implied. The vertical dashed line is a reminder for the position of the
peak of orography along the channel. We show the results for the upper layer stream
function ψ1 (left panel) and the lower layer stream function ψ2 (right panel). We
see that the activity of almost all CLVs is higher close to the blocking and lower in
the rest of the channel. As an example, Figure 5.9 shows the results of the above
Equation (5.6) for the three local maxima of the blocking rate for ΔT = 66 K and
h0 = 4.44 km (see Figure 5.1). The other setups show similar results. The CLVs
cluster around the region where blocking is detected. Note that the clustering
occurs almost regardless of growth rate of the CLVs. Moreover, the localization in
the lower layer is less strong, which explains the reduction in the dissipation during
the blocked phases discussed before. The variance of the CLVs at the center of the
blocking is lower. This indicates that stability is higher in the center of the blocking
compared to its borders. In order to clarify unambiguously this point, the adjoint
CLVs would have to be considered. These allow for projecting in a meaningful way
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Figure 5.9: Since the localization of the CLVs is similar for the different setups with
blocking events, we show here only results for ΔT = 66K and h = 4.44 km. For every
CLV (y-axis) we show the quotient of the meridionally averaged variance during blocking
at a particular x coordinate (vertical solid black lines) and unblocked phases (ΔL in
Equation (5.6)).

an arbitrary perturbation onto the non-orthogonal basis given by the CLVs. For
a given time horizon, one could then obtain a characteristic growth/decay rate of
linear perturbations in an arbitrary region of the flow. Note that using orthogonal
Lyapunov vectors for this analysis would change the results. We can illustrate this
by considering the example of optimal perturbations by Buizza and Molteni (1996).
Here, only the first optimal perturbation localizes close to the blocking, because it
converges for long optimization times towards the first CLV. The remaining optimal
perturbations can not behave in this way (see comments in Section 2.1). The results
obtained using the physically relevant CLV basis underline that a transition to
a blocked state is a change in the flow regime which effects all time scales and
processes. Hence, the linear dynamics of blocking events can not be reduced to a
small number of changes on certain time scales and consequently, the detection of
blocking events should take this into account.

We think these results encourage to search for a blocking detection scheme based on
criteria employing all CLVs. This definition of blocking would have the advantage
of clearly linking the local stability to the presence of a blocking regime. Moreover,
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such an approach would also allow for a more natural and intuitive definition of
blocking because linear stability is directly tied to the persistence of a regime.

5.4 Summary and Discussion

In this chapter, we studied blocking events in a very simplified atmospheric model
of the mid-latitudes. Blocking events are persistent deviations of the jet stream in
the mid latitudes from the usual quasi zonal symmetry. Naturally, blocked states
possess very unusual properties in terms of weather forecast and it is especially
difficult to predict the onset and decay of blocking events. It is well known that
orography plays a major role in fostering the occurrence of blocking. Thus, contrary
to the experimental setup from Chapter four and in the spirit of previous analyses
of blocking, we added an orographic forcing in order to produce enhanced blocking
events in the flow (Charney and Straus, 1980). As orography, we used a Gaussian
bump placed in the middle of the channel. We investigated four different values of
ΔT (40 K, 50 K, 66 K and 76 K) in order to assess different degrees of large scale
turbulence. The impact of orography was investigated with three different heights
h0 (1.48 km, 2.96 km and 4.44 km).

While such a setting is outdated and insufficient in terms of providing a realistic
statistics of blocking events, it provides qualitatively meaningful results and con-
tains some of the essential physical and mathematical ingredients. We wanted to
consider, namely the possibility of having a turbulent state featuring a convincing
Lorenz energy cycle fuelled by barotropic and baroclinic instabilities and damped
by a variety of dissipative effects.

The main plus of such a simple model is that we are able to construct the CLVs,
which are the covariant unstable and stable modes of the turbulent flow and provide
a physical representation of the natural fluctuations of the flow. CLVs provide a
complete description of the dynamics and geometry of the attractor of the system
and are useful for providing a new characterization of the properties of blocked
versus regular conditions. Consequently, as we pointed out throughout this thesis,
CLVs are the suitable choice for such an investigation (see Section 2.1). We want
to emphasize that our model is only a first step towards identifying the signature
of the blocking events in the CLVs for a variety of models.

We detected the blocking events with an Tibaldi-Molteni scheme (Tibaldi and
Molteni, 1990). Given the simplicity of the model we adopted, it is no surprise that
the statistics of the events we label as blocking are only in qualitative agreement
with what found in observations for all configurations we consider. Nevertheless, we
show that the detected events are indeed blocking highs which divert the jet stream
from its zonal symmetry. In the unblocked phase, it is also comforting to see that,
the flow is more zonally symmetric and its mean state exhibits topographic Rossby
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waves. For higher meridional temperature gradients ΔT presence of the blocking
rates increased, accompanied by a modest increase of its life time. The orogra-
phy created localized regions of high blocking rates. Such regions were located
downstream of the orographic disturbance and their prominence was more evident
when higher mountains are considered. The orographic influence was weaker when
adopting a stronger baroclinic forcing.

Each CLV is associated to a LE, which measures its average growth (for unstable
CLVs) or decay (for stable CLVs) rate. Therefore, we have analyzed separately
the growth rate of the various CLVs during the blocked and regular regimes. Fur-
thermore, the spatial variance during the blocked and unblocked phases is used for
the localization of the CLVs. Our results show a significant increase of the growth
rate of the leading CLVs during blocked phases. Thus, the flow is more unstable
during blocking. This might be interpreted as a trade off effect between increased
stability in the blocked regions and less instability elsewhere in the flow. The in-
creased instability also indicates that the transition from the blocked regime is in
general difficult to predict. We have complemented the analysis of the instabilities
by investigating the Lorenz energy cycle of the various CLVs and looking at the
baroclinic and barotropic conversion rates. The enhancement of the growth rate
in the blocked phase for the leading unstable CLVs is due to a strengthening of
both barotropic and baroclinic conversion rates for intermediate and high values
of ΔT . Instead, for low values of ΔT , enhanced instability of the unstable CLVs
during blocked phase results from an enhancement of barotropic instability only.
This clarifies that the dynamical processes behind blocking events are not the same
in conditions of low versus high baroclinicty of the background flow. The localiza-
tion of the CLVs is clustered around the blocked area. This hints for an increased
instability at the boundaries of the detected blocking events and possibly, for more
stable conditions at the center of the blocking. Given the fact that it is possible
to find signatures of blocking across all CLVs, we think the results encourage to
create a blocking definition which employs information from the various different
processes on all time scales described by the CLVs.
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Chapter 6

Conclusion and Outlook

Before we make our final concluding remarks and give an outlook for future research,
we would like to give a short overview of the results. In this thesis, we extended
classical linear stability analysis to chaotic non-linearly evolving flow of the mid
latitudes atmosphere. The appropriate basis in tangent linear space to conduct such
an investigation are the CLVs because they are the only Lyapunov vectors that are
non-orthogonal and covariant with the tangent linear dynamics, thus they can be
identified with nearby trajectories (see Chapter two). Note that the CLVs reduce
to the classical normal modes when computed for fixed states. As a first step in a
hierarchy of models, we chose to obtain the CLVs for a two-layer QG model featuring
the basic baroclinic and barotropic processes commonly observed in the mid latitude
atmosphere. The model is driven by a meridional temperature gradient ΔT and
is dissipating energy via Ekman friction (see Chapter three). In Chapter four, we
investigated three different ΔT representing different stages of well developed chaos
(see Section 3.2.1) and we first demonstrated a straightforward generalization of the
classical concept of a LEC for normal modes to the CLVs. This means the CLVs
are subject to barotropic and baroclinic conversions imposed by the background
state and they loose energy via dissipation and friction. This generalized LEC for
CLVs is closely related to the classical LEC between the zonal mean and the eddy
field featuring similar relations between transports of heat and momentum and the
energy conversions (see Section 4.2). The energy growth described by the LEC of the
CLVs can be connected to their euclidean norm growth rate because the euclidean
norm and the energy norm are equivalent norms. We observe that CLVs with higher
LEs gain energy via the baroclinic conversion, while energy is mainly lost by friction
and diffusion. This is accompanied by a northward heat transport, while warm air
rises in the south and cold air sinks in the north of the channel. For the lower
negative LEs these processes are inverted. These qualitative features do not depend
on ΔT . For the barotropic conversion, the fastest growing CLVs (for the two largest
values of ΔT ) gain energy by transporting momentum away from the baroclinic jet
of the background trajectory. For slow growing CLVs and all decaying CLVs the
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barotropic conversion is always negative. It was not surprising to find that a positive
baroclinic conversion was not a sufficient condition for a growing CLV. Instead,
the sum of baroclinic and barotropic conversion minus dissipation determined the
respective growth rates of the CLVs. Nevertheless, all growing CLVs were always
baroclinically unstable. We then reconstructed the variance of the background state
in a similar fashion to the application of EOFs. Here, the baroclinically active CLVs
reconstruct reliably the variance of the background state with 95% for all setups.
In Chapter five, we aimed at studying the fluctuations of the background state
instead of the long term behavior. Therefore, we investigated blocking events as an
example for a typically observed weather regime. In order to enhance the emergence
of blocking, we added an orographic forcing with the shape of a Gaussian bump to
our model and varied besides ΔT also the height h0 of orography. Despite the weak
manifestation of blocking events in the model, we can detect reasonable blocked and
unblocked phases by employing a Tibaldi-Molteni detection scheme (Tibaldi and
Molteni, 1990). Using this separation, the properties of the CLVs can be analyzed,
respectively. We find in Section 5.2 that blocking increases with a higher meridional
temperature gradient ΔT and is additionally enhanced by orography, which, by
breaking the zonal symmetry, contributes as a catalyst to the process through a
phase lock mechanism that allows standing perturbations to grow, as envisioned
in Benzi et al. (1986). The spatial variance of the CLVs is dominantly located
around the region where blocking occurs when compared to the average variance
during unblocked phases (see Section 5.3.3). Furthermore, the growth rates of the
fastest growing CLVs are higher during blocked phases, pointing at the fact that the
system has globally a lower predictability during blocked phases. Possibly, this is as
a result of the difficulty of predicting the onset and decay of the blocking events (see
Section 5.3.1). We explain the changed growth behavior by using a generalization
of the Lorenz energy cycle between the CLVs and the background state introduced
in Section 4.2. We find that the increased instability is dominantly caused by an
increased input of energy to the CLVs by baroclinic and barotropic conversions for
high values ofΔT , while, for weakly baroclinic flows, the intensification of barotropic
instability is the only active mechanism (see Section 5.3.2).

The results of this thesis show that the mean and the fluctuations of the CLVs’
growth rate can be understood in terms of the LEC and the associated transports.
It is remarkable that they can be used to characterize the linear stability of the
background state over arbitrary long time intervals but also with respect to rela-
tively short lived deviations (weather regimes). Therefore, the CLVs are not just an
abstract mathematical tool. They offer two benefits at the same time: the physical
interpretation in terms of nearby trajectories and the explanatory power for the
observed variability. In contrast, the traditional stability analysis of single states or
the use of other Lyapunov bases for chaotic/turbulent flows are not able to provide
a comparable coherent connection between the linear stability and a physical inter-
pretation. This connection is missing in both cases because they are not a solution
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of the tangent linear equation for such flows.

As we discussed in Section 2.2, the future potential of the CLVs lies in their efficient
description of the stable and unstable manifold. The findings presented give us
confidence that using CLVs in the context of earth system modeling and meteorology
is of significant value and may offer valuable insight in future research. Therefore,
we would like to proceed by proposing some directions of possible future research.

As we repeatedly stated in this thesis, we considered a minimal model of the mid
latitudes atmosphere. This should only be a first step within a hierarchy of meteoro-
logical and earth system models for obtaining the CLVs. It seems promising to em-
ploy models featuring multiple temporal and spatial scales. Results from Posch and
Hirschl (2000) support this stance. They found Hydrodynamic Lyapunov Modes
(HLMs) which are very slow growing backward Lyapunov vectors that posses a large
scale structure describing macroscopic processes, whereas the fast growing BLVs de-
scribe small scale instabilities. Interestingly, an unambiguous characterization and
detection of HLMs is provided by the CLVs (Romero-Bastida et al., 2012). Clearly,
our QG model was not suitable for investigating these interesting aspects of multi
scale systems. In fact, analyzing the spectral density of the CLVs, we find that they
do not differ in terms of their spatial or temporal scales. Moreover, we find that
they have very broad spectral structures which is in agreement with the findings by
Herrera et al. (2011) who observed that the CLVs rather possess heavily localized
wave-like features which locally convert and dissipate energy. In our analysis of
blockings in Chapter five, we also found that all CLVs have similar spatial scales
and that the LEs, apart from those very close to zero, are similar. Hence, it seems
worthwhile to follow the more specific ideas by Gallavotti (2014) who suggested
that in multiscale systems, it should be possible to associate the different spatial
and temporal scales of motion (e.g. macroscopic, mesoscopic and microscopic) to
specific subsets of CLVs and related LEs. In particular, there is reason to expect
that highly localized (extended) unstable CLVs might be associated to large (small)
growth rates resulting from local (global) instabilities. Thus, our results are an "a
posteriori" confirmation of the self-consistency of the scale analysis leading to the
QG approximation.

It is tempting to follow this idea of investigating the vast amount of meteorological
instabilities, but as mentioned before one needs to consider more complex models
than the one adopted here. In particular, in a primitive equation model one could
see whether it is possible to recognize small scale CLVs with high growth rate asso-
ciated to mesoscale instabilities, while additionally, CLVs associated to convective
events should be found when non-hydrostatic models are adopted. Potentially, these
models would also allow for an analysis of the aforementioned HLMs. The HLMs
could then maybe used to derive a parameterization from the respective statistics
of the different scales which is similar to the approach of Majda et al. (2001).

Besides a primitive equation model, another possibility is to use the formalism of
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CLVs and associated LEs to study a fluid model encompassing regions with differ-
ent inertia and thermal inertia. A conventional method would be to use a coupled
atmosphere-ocean model, which would allow to rigourously define and study, e.g.,
coupled modes of variability. Recently, Vannitsem and De Cruz (2013) have pro-
posed a low-order atmosphere-ocean model which is a perfect candidate for this sort
of studies. In such a model, the advantage of computational feasibility and captur-
ing important aspects of the earth system dynamics would remain. It might be even
beneficial to study the already mentioned approaches in a Lorenz 96 model featur-
ing a coupling which allows to control the multiscale separations directly (Lorenz,
1996; Wilks, 2005).

It is also promising to study higher resolutions of a simple model of the atmosphere
given the discovery of wave-dynamical and damped-advective Floquet vectors by
Wolfe and Samelson in a high resolution QG two layer model (Wolfe and Samelson,
2006, 2008). We speculate that this might be related to the splitting of the CLVs
into subsets of spurious and physical modes found by Yang et al. (2009) which
we discussed in Section 2.2. The physical modes might allow for constructing the
inertial manifold. This is a very promising approach for constructing reduced models
in a rigorous way. In the context of the reduction of complexity, we speculate that
the surprising efficiency of the baroclinically active CLVs in explaining the variability
of the background might be another way to construct a reduced model without this
splitting (see Section 4.4).

Moreover, the CLVs should be considered in the context of Ruelle’s linear response
theory (Ruelle, 1998; Lucarini and Sarno, 2011; Lucarini et al., 2014; Ragone et al.,
2015) because they are a basis for the linear response operator of an arbitrary
perturbation to a dynamical system. This means, the knowledge of CLVs for an
unperturbed system would allow to construct the response of the ensemble mean
to an arbitrary perturbation of the equations of motion. This would also allow
for studying which type of perturbations lead to a large non-linear response. This
could be a way for rigourously defining whether tipping points are close to the
unperturbed dynamics.

This thesis shows that the CLVs provide a link between rather mathematical prop-
erties and the energetics of baroclinic and barotropic conversions. Given the po-
tential of the above outlined suggestions for applications of CLVs, such connections
between dynamical system theory and geosciences should be even more exploited.
Both fields can benefit from this exchange: The geosciences by getting more rigor-
ous objective tools for understanding climate models and dynamical system theory
by getting a real world test case for studying high dimensional chaos.
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