
Quantum phases and particle
correlations in a honeycomb lattice

D i s s e r t a t i o n

zur Erlangung des Doktorgrades
am Fachbereich Physik der Universität Hamburg

vorgelegt von

Dipl.-Phys. Eva-Maria Richter
aus Mechernich

Hamburg
2015



Gutachterin/Gutachter der Dissertation: Professor Dr. Daniela Pfannkuche
Professor Dr. Michael Potthoff

Gutachterin/Gutachter der Disputation: Professor Dr. Daniela Pfannkuche
Professor Dr. Klaus Sengstock

Datum der Disputation: 18.11.2015
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Abstract

In this thesis, one- and two-component ultracold bosonic quantum gases in honey-
comb optical lattices are examined. For simulations, the Bose-Hubbard model is
used in concert with an exact diagonalization method, to get access to correlations,
wavefunctions and energies of the discrete system.
Ultracold Bosons in two different hyperfine states, generated in an optical lattice
open the possibility to investigate short ranged two-particle correlations in the
Mott insulator phase. These correlations can be interpreted as next neighbor z-
correlations of iso-spins, associated with the different particle sorts. A manifold
phase diagram is analyzed, which shows both anti ferromagnetic and ferromag-
netic correlations. In the anti-ferromagnetic regime the groundstate of the system
never assumes a Néel state, which is in agreement with theoretical predictions.
In the ferromagnetic Mott insulator regime, for increasing cell sizes, increasing
domains can be identified, which allows for increasing ferromagnetic correlations.
In the superfluid regime we can investigate two special phases, depending on the
ratio of interaction between same and different kind of atoms. In the limit of small
interactions between different kind of particles the iso spins build up superposi-
tions on one lattice site to find a state where the on-site square of the in-plane
(xy) component reaches maximum. For increasing interactions this superposition
is transferred to a super-counter-fluid (SCF) phase. In the opposite limit of small
interactions between the same kind of particles, I identify a supersolid order. In
this phase, the system can be described by a nontrivial density-modulation. The
corresponding superlattice is four times bigger than the primary unit cell and
includes simultaneous solid and superfluid qualities, i.e. it is a supersolid. To sug-
gest an experimental method to detect the supersolid phase, the lattice symmetry
is broken by a spin-dependent lattice. This way a supersolid signal in the popula-
tion imbalance from site to site is identified. The important features of the phase
diagram are reproduced also for increasing cell sizes. This confirms that our small
size systems develop strong fingerprints of the physics emerging in macroscopic
systems.



Zusammenfassung

In der vorliegenden Arbeit werden ein- und zweikomponentige ultrakalte bosoni-
sche Gase in einem hexagonalen optischen Gitter untersucht. Das Hubbard Modell
wurde verwendet, um Korrelationen, Wellenfunktionen und Energien im diskreten
System mit exakten Methoden zu berechnen. Wird das System mit Bosonen un-
terschiedlicher Hyperfeinzustände geladen, treten kurzreichweitige Korrelationen
im Mottisolatorzustand auf. Diese lassen sich interpretieren als Korrelationen der
z-Komponenten des Isospins der unterschiedlichen Teilchensorten. Es zeigt sich
ein vielfältiges Phasendiagramm mit anti-ferromagnetischen oder ferromagneti-
schen z-Korrelationen. Der Grundzustand im anti-ferromagnetischen Mottisolator-
Regime nimmt, in Übereinstimmung mit der Theorie, für keine Systemgröße den
Néelzustand ein. Im ferromagnetischen Mottisolatorzustand ist zu größeren Zellen
hin eine klare Domänenstruktur erkennbar, die in zunehmenden Maße ferromagne-
tische Korrelationen liefert.
Im superfluiden Zustand bilden sich in Abhängigkeit der Wechselwirkungsparame-
tern zwischen gleichen und unterschiedlichen Bosonen zwei besondere Phasen aus.
Im antiferromagnetischen superfluiden Regime liegt im Grenzfall verschwindend
kleiner Wechselwirkung zwischen verschiedenen Teilchen eine Überlagerung der
Isospins an einem Gitterplatz vor. In dieser Phase ist das Quadrat der planaren
Am-Platz-Komponente des Isospins maximal, diese Überlagerung geht für wach-
sende Wechselwirkung in einen superfluid counterflow (SCF-Phase) über. Im an-
deren Grenzfall können wir ein Supersolid identifizieren. In dieser Phase kann das
System durch eine nichttriviale Dichtemodulation beschrieben werden. Diese Art
von Übergitter hat eine vierfach größere Einheitszelle als das ursprüngliche Gitter
und vereint somit superfluide sowie feste Eigenschaften zugleich, ein Supersolid.
Ein spezielles spinabhängiges optisches Gitter bricht die Symmetrie für eine Teil-
chensorte. Dies hat im Falle des supersoliden Zustandes für beide Teilchensorten
ein Besetzungsungleichgewicht benachbarter Gitterplätze zur Folge. Experimen-
tell lässt sich dies als Supersolid-Signal verwenden. Die Korrelationen bestätigen
sich für zunehmende Systemgrößen, dies ist ein deutliches Anzeichen dafür, dass
unsere Ergebnisse ebenso für makroskopische Systeme qualitativ gültig sind.
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Chapter 1

Introduction

Since the experimental realization of Bose-Einstein condensates (BEC) in 1995
[3, 19], the investigation of BEC has become a fascinating field of research. This
quantum phase has been theoretical predicted in 1925 by A. Einstein and S. Bose
[12, 23]. The macroscopic wavefunction of a BEC, its superfluid behaviour, and
the possibility to observe a special quantum state provides a connection between
the quantum system and our macroscopic world. In case of a big and homogeneous
system, this quantum state is well described by an effective single particle wave-
function. By considering the interaction between particles the Gross Pitaevskii
Equation, a nonlinear Schrödinger equation [32, 60] is derived. Today, the theoret-
ical and experimental investigations concerning Bose-Einstein condensates have
become manifold. One important field of research related to BEC is the investiga-
tion of Bose condensed atoms in an optical lattice. An optical lattice is generated
by counter propagating laser beams, which interferences build a crystal of light.
The tunneling strength, which depends on the lattice depth, can be controlled by
the laser intensity and the particle interaction can be controlled by using Feshbach
resonances [17, 40]. Thereby the most important system parameters can be tuned
very well. For an increasing lattice depth, the system performs a quantum phase
transition from the superfluid to the Mott insulator phase. For a deep optical
lattice the description of the system by an collective particle wavefunction is not
valid any more, the strong correlated regime is entered. Whereas ultracold atoms
in an optical lattice are well described by the Bose-Hubbard-Modell [26, 41] in
every regime, in the superfluid as well as in the Mott insulator phase. The first
experimental realization of superfluid to Mott insulator phase transition in an
optical lattice in 2002 [30] opened an interesting field of research with various
applications in different areas of science. By arranging laser beams in a special
geometric order, different lattice symmetries can be realized [42, 46, 59, 67, 73],
even spin-dependent lattices can be generated by using polarized laser beams [71].
By loading multicomponent Bose gases [2, 36, 39], Fermi gases [24, 29, 43] or even
Bose-Fermi mixtures [35, 56, 75], manifold quantum phases and extraordinary
phenomena have been explored. This all opens many new opportunities to inves-
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tigate the quantum behavior of many body systems in condensed matter physics
under ideal circumstances [4, 9, 10, 53]. Particularly with regard to the question of
magnetic ordering [15, 68], ultracold quantum gases represent a high grade model
system for strongly interacting many body systems. The investigation of iso mag-
netic ordering of a two component quantum gas in an optical lattice will be one
of the main focuses of this work in the regime of strong interactions. The second
main focus is the investigation of a striking supersolid and a supercounterfluid
phase in the superfluid regime.
In this thesis, an extended phasediagram of a two component gas in a honeycomb
optical lattices is explored. Until now approximative methods are used mostly in
theoretical studies to investigate whether the Mott insulator regime [22, 36, 37, 48]
or the superfluid regime [62]. In contrast, in this work one single method was em-
ployed to generate a full phase diagram, the exact diagonalization method. This
opens the possibility to compute many particles correlationfunctions and inves-
tigate their evolution exactly from weak to strong coupling. These many body
correlation functions are not accessible by using approximative methods.
In Chapter 2, the basic information about atoms in optical lattices, the Bose-
Hubbard Hamiltonian for two component gases, and their corresponding iso mag-
netism is given.
In Chapter 3, a short overview of the algorithms used in the simulation program
is given and the basic features of the system are studied in order to investigate
the crossover between the superfluid and the Mott insulator state.
In Chapter 4, iso magnetic correlations in the strong coupling regime are investi-
gated, in order to distinguish different ordered phases. By changing atomic and
lattice properties, the relative strength of the interactions can be changed and
the corresponding groundstate of the system can be described as ’ferromagnetic’
or ’anti ferromagnetic’. Calculations have been performed for different sized unit
cells in order to determine finite size effects.
In Chapter 5, the investigations of in- and out-of plane correlation functions for
the n-th nearest neighbor and higher order correlations allow even to explore the
superfluid regime. In this regime a conspicuous supersolid [44, 51, 57, 64, 75] and
a highly entangled in-plane iso magnetic state is found, which is transferred to a
super-counter-fluid phase (SCF) [37, 38, 48].



Chapter 2

Basics

In this chapter the basic background on one- and two-component Bose gases in
honeycomb optical lattices are given, to support the understanding of the follow-
ing work. Since we deal with bosons in laser fields, the atom-photon interaction
for an multilevel atom is explained. Further, a description of periodic optical
potentials is obtained, especially for the honeycomb (spindependent) lattice on
which this work focuses. The atom-atom interaction is discussed and reduced to
the s-wave scattering length. In the following the theoretical background for ex-
act diagonalization is elucidated in case of the finite system, a honeycomb lattice
with four, six, eight and ten sites. We derive the Bose Hubbard Hamiltonian
for a two component bosonic system. An introduction of the superfluid to Mott
insulator transition is given, to understand the behavior of atoms in flat lattices,
which behave superfluid, and in deep lattices, where all atoms are pinned at lattice
sites (Mott insulator). As the system is examined with respect to iso magnetic
correlations, we will also focus on site depended pair-correlation functions. A
short introduction to the supersolid phase is given, which is characterized by a
superfluid order and a coexisting spacial density modulation. For experts who are
experienced in this area I would advice to skip this chapter and start with the
first results in chapter 3.

2.1 Atom-photon interaction

To generate a Bose-Einstein condensate, atoms are trapped and cooled by laser
light. The colling requires absorption and spontaneous emission of photons [58].
This spontaneous force is connected to the imaginary part of the polarizability
of the atom α. The trapping is effected by the interaction of the light induced
dipole moment of the atom and the electric light field itself and it depends on
the real part of the polarizability α. If ωL is the frequency of the laser and ωA
the atomic resonance frequency, the detuning is given by ∆ = ωA − ωL. If the
resonance frequency of the atom is bigger than the laser frequency, the induced
dipole moment oscillates out of phase and the atom is pushed out of the region

7



with the higher laser intensity. If the resonance frequency is smaller, the induced
dipole oscillates in phase with the electric field and the atom is guided in direction
of higher field intensity by the dipole force. Using a spacial inhomogeneous laser
field I(r), atoms can be trapped in the region of highest intensity with ∆ < 0
which is called red detuned. In a blue detuned laser beam (∆ > 0) with a spatial
inhomogeneous laser beam the atoms are pressed out of the intensity maxima [7].
In the following the dressed atom approach is introduced, let me refer the reader
to [31] for a more detailed discussion. In case of multi-level atoms, we have to
implement a fully quantized model, also known as the dressed atom approach [13].
In the ideal case, the laser field consists of one single mode ωL, which is coupled to
the atom. This coupling is given by the dipole approximation. Although the laser
field is time dependent, thus we can treat this coupling time independently using
the Floquet theory [72]. This allows a time independent description of a period-
ically time dependent field. The Hilbert space of the atomic subsystem is given
by the ground state |g〉 and the exited state |e〉, with a transition energy of ~ωA.
The sub space of the laser field is given by the fock basis |N〉, which corresponds
to N photons in the mode ωL of the laser. With ĤL being the Hamiltonian of
the laser field and ĤA being the Hamiltonian of the atom, the Hamiltonian of the
atom and the laser field is given by ĤA + ĤL. Therefore the basis of the com-
bined, noninteracting system, is given by |g, 0〉 , |e, 0〉 , ..., |g,N〉 , |e,N〉. Without
an interaction, the energy eigenvalues are given by the combination of the two
eigenvalues for the laser and the atom

ĤA + ĤL |g,N + 1〉 = (N + 1)~ωL |g,N + 1〉 , (2.1)

ĤA + ĤL |e,N〉 = N~ωL + ~ωA |g,N + 1〉 . (2.2)

The dressed states are given by considering the atom-laser interaction in the dipole
approximation. Absorption and stimulated emission are considered in this way.
Denoting p̂ the dipole moment operator and ~E(~r) the electric field, the coupling
is given by [13],[31]

ĤAL = −d̂ ~EL (2.3)

stimulated emission : ĤAL |e,N〉 =
~
2

Ωgee
iφ |g,N + 1〉 (2.4)

absorption : ĤAL |g,N + 1〉 =
~
2

Ωgee
−iφ |e,N〉 (2.5)

with : Ωge =
~E(~r)

~

〈
g|d̂|e

〉
(2.6)

Ωge is the Rabi frequency which gives the strength of the coupling between |g〉
and |e〉. The coupling strength is huge if the detuning between laser and atom
∆ = ωA−ωL is small. Neglecting the energy non conserving matrix elements, the
corresponding Hamiltonian is given by



H =


... 0 0 0

0 ~ωA +N~ωL ~
2Ωgee

iφ 0

0 ~
2Ωgee

−iφ (N + 1)~ωL 0
0 0 0 ...

 . (2.7)

Therefore, the eigenvalues of the coupled system are given by

E(N) = N~ωL +
~
2

(ωA + ωL)±
~
√

∆2 + Ω2
ge

2
. (2.8)

The new eigenstates of the coupled system are superpositions of the unperturbed
states

|1, N〉 = sinθ |g,N + 1〉+ cosθ |e,N〉 (2.9)

|2, N〉 = cosθ |g,N + 1〉 − sinθ |e,N〉 . (2.10)

The angle θ is defined as tan 2θ = −Ωge/∆ with 0 ≤ 2θ ≤ π. Fig. 2.1 shows the

0

E_{0}

E
n

e
rg

y

h/2π (ω
L
−ω

A
)

|e,N>

|g,N+1>

|2,N>

|1,N>

Figure 2.1: The energies of the unperturbed states and the new coupled states.
The dashed lines show the energies of the unperturbed states |g,N + 1〉 and |e,N〉,
the solid lines present the energy of the dressed states.

energy levels of the dressed states in dependence of ~ωL. The dashed lines show
the energies of the unperturbed states |g,N + 1〉 and |e,N〉 and the solid lines
present the energy of the dressed states. Far from the resonance, an asymptotic
behavior can be observed, i.e. the eigenstates of the coupled system change into
the unperturbed eigenstates because the coupling is very small, ∆2 � Ω2

ge. For
resonant coupling (ωL = ωA) the eigenstates are superpositions and they are sep-
arated by an energy difference of ~ωge. As the Rabi frequency is a function of the
electric field E(~r) the energy eigenvalues lead to a spatially varying potential for



an atom at position ~r. In case of large detuning the potential can be approximated
in a tailor series

E(N) =
~
2

(ωA + ωL + 2NωL ± |∆|)±
~Ω2

ge

2∆
. (2.11)

Neglecting the constant terms and focusing to red detuning we obtain

V (~r) = −
~Ω2

ge

2∆
= −

~E2(~r)

2∆~
|
〈
g|d̂|e

〉
|2. (2.12)

The potential therefore depends quadratically on the electric field and the dipole
matrix element.

2.2 Periodic optical Potentials

As real atoms are presented by a multi level system, the dipole matrix element in
(2.12) can be derived by the Wigner-Eckart-Theorem〈

j|~dê|i
〉

= cij ||d||. (2.13)

Summing up the contributions of all coupled exited states by considering the
corresponding coupling strengths cij and detuning ∆ij , the energy shift of an
electronic ground state is given by

∆Ei =
3πc2Γ

2ω3
0

I ×
∑
j

cij
∆ij

, (2.14)

which also gives the dipole potential. In case of Rb87 respectively for alkali atoms
with nuclear spin I = 3

2 , only the D-line doublet has to be considered 2S1/2 →
2P3/2,

2P1/2. The quantum numbers mF = −1, 0, 1 are the hyperfine levels and P
denotes the laser polarization π, σ+, σ−. As the detuning is huge compared to the
hyperfine splitting of the exited states, equation (2.14) can be reduced to

Udip(~r) =
πc2Γ

2ω3
0

(
2 + PgFmF

∆2,F
+

1− PgFmF

∆1,F

)
I(~r). (2.15)

Further, if the fine-splitting of the exited states ∆′FS is very small compared to

the detuning ∆1,F ,∆F,2, the Udip can, with expansion in terms of
∆′FS

∆ till the first
order, further be reduced to

Udip(~r) =
3πc2Γ

2ω3
0

(
1 +

1

3
PgFmF

∆′FS
∆

)
I(~r). (2.16)

Where ∆ is the detuning to the center of the D line doublet. The zeroth order gives
the well known potential of a simple two level system. The first order contains
the dependence of the Polarization P and the mf -hyperfine-state.



2.2.1 Hexagonal lattices potential

In the following, an optical lattice will be generated by a set of monochromatic laser
beams. Our simulations focus on honeycomb lattices partially with a triangular
sub lattice structure. Those lattices have a six fold rotational symmetry and give
rise to multiple interesting features, which are discussed in this work. Fig. 2.2
a shows how laser beams have to be arranged to create those lattice structures.
We consider an ordering where the three laser beams and their polarizations both
are situated in the xy-plane (Fig. 2.2 b). The wave vectors and polarizations are
chosen as

~k1 =

(
0
1

)
, ~k2 =

(√
3

2
−1

2

)
, ~k3 =

(
−
√

3
2 ,
−1

2

)
(2.17)

~e1 =

(
1
0

)
, ~e2 =

(
−1

2√
3

2

)
, ~e3 =

(
−1

2 .√
3

2

)
(2.18)

Therefore, the electric field of this configuration is given by

~E =

(
ei(yk−ωt) − 1

2e
i((
√
3

2
x− 1

2
y)k−ωt) − 1

2e
i((−

√
3

2
x− 1

2
y)k−ωt)

√
3

2 e
i((
√

3
2
x− 1

2
y)k−ωt) −

√
3

2 e
i((−

√
3

2
x− 1

2
y)k−ωt)

)
. (2.19)

As we pointed out in the previous section, the dipole potential obeys 2.16 in our
case, with intensity

I(~r) =2cε0| ~E(~r, t)|2

=|E0|22cε0

(
3− cos(

√
3kx))− cos(

√
3

2
kx− 3

2
ky)− cos(

√
3

2
kx+

3

2
ky)

)
.

(2.20)

The polarization P, well discussed in [20], where σ± are the Jones vectors for
right- and left-hand polarization. For a wave propagating in z-direction, they are
given by

σ+ =
1√
2

(
1
i

)
, (2.21)

σ− =
1√
2

(
1
−i

)
. (2.22)

The Polarization is shown in (Fig.2.2b)

P =
| ~E~σ+|2 − | ~E~σ−|2

| ~E ~σ+|2 + | ~E~σ−|2

=
−
√

3 sin(
√

3kx) +
√

3 sin(
√

3
2 kx−

3
2ky) +

√
3 sin(

√
3

2 kx−
3
2ky)

3− cos(
√

3kx)− cos(
√

3
2 kx−

3
2ky)− cos(

√
3

2 kx+ 3
2ky)

.

(2.23)
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Figure 2.2: a) The laser configuration to create a spin-dependent hexagonal op-
tical lattice b) The polarization of the laser-field with σ+ (red) and σ−-(blue)-
polarization c) The unit cell of the spin dependent honeycomb lattice

2.2.2 Spin dependent lattice potential

Using the described laser beam configuration, a spin dependent optical lattice is
created and equation (2.14) gives the corresponding dipole potential for the differ-
ent mf -states. Those are shown in Fig. 2.3. The unit vectors of the honeycomb

a b c

Figure 2.3: The hexagonal lattice potential for bosons in different hyperfine-states
mf a) mf = −1 b) mf = 0 c) mf = 1.

lattice are

~a1 =
2

3
λL

(
0
1

)
, ~a2 =

2

3
λL

(√
3

2
1
2

)
. (2.24)

The unit cell consists of a two component basis, one basis point with σ+-polarization
and one with σ−-polarization, see Fig. 2.2 c. They are situated at

~aσ+ =
1

3
(~a1 + ~a2) and ~aσ− =

2

3
(~a1 + ~a2). (2.25)

in case of mf = 1. In case of mf = −1, it is the other way round. For mf = 0,
the polarization is zero for both basis points (see Fig. 2.3 b and a homogeneous



honeycomb lattice is created. With adding multiplies of the unitary cell, one can
build up several sized supercells, like the four, six, eight and ten sited sized cell.
Since my interest also focused on finite size effect, I investigated the groundstate
in the superfluid and Mott insulator for different sized supercells. See Chapter
2.4.5 for a detailed discussion.

2.3 Atom-atom interaction

As the groundstate of a many particle state has to be investigated, the scattering of
neutral atoms is introduced, [14]. The scattering of two particles can be described
by the sum of an incoming plane wave (e.g. for the propagation direction z) and
an outgoing scattered wave. The latter is spherical and depends on the angle
between the propagation directions of the atoms before the scattering event. For
large r the wave function is given by

Ψ = eikz + f(θ)
eikr

r
, (2.26)

where f(θ) is the scattering amplitude. The energy of the state in case of two
particles with the same mass (mr = m

2 ) is given by

E =
~2k2

m
. (2.27)

While in dilute ultra-cold gases the atoms only have very low energies, in the limit
for k → 0 the wave function becomes

Ψ = 1− a

r
(2.28)

[14]. The scattering amplitude a is constant and called s-wave scattering length. In
the first order, (also known as Born approximation), the s-wave scattering length
is given by

aborn =
m

π~2
U(0), (2.29)

where U is the Fourier transform of the bare atom-atom interaction and |~k−~k′| = 0.
In the case of low momentum k → 0, U can be treated as effective two particles
interaction

aborn =
m

π~2

∫
d~r Ueff (~r), (2.30)∫

d~r Ueff (~r) =
4π~2a

m
. (2.31)

In the coordinate space, as the two particle are situated at ~r and ~r′, this interaction
is very short ranged, which means it has the contact form, given by the δ-function;

U(~r, ~r′) =
4π~2a

m
δ(~r − ~r′). (2.32)



In case of low energies, this effective interaction provides good results and describes
the properties at the relevant densities sufficiently well, although the true inter-
atomic potential has a much more complicated structure.

2.4 Hamiltonian for multicomponent bosonic system

In this section, the Bose-Hubbard Hamiltonian for a two-component bosonic sys-
tem, is derived. First, i will consider the many particle formalism in case of one
and two particle operators. Subsequently in case of an optical lattice the Hamil-
tonian can be written as a Bose-Hubbard Hamiltonian, where the behavior of the
system is described in terms of inter-site tunneling of particles and the interaction
of particles at one site. I briefly introduce the reader to the exact diagonalization
method, the finite lattice structure of my system and its consequences for product
states and matrix elements of the Bose-Hubbard Hamiltonian.

2.4.1 Many particle formalism

In a quantum system of n particles a state is characterized by an n-tuple of
occupied states

A = (α1, α2, ...., αn). (2.33)

Considering the indistinguishability of the particles, all permutations must be
contained in the wave function; for bosons fully symmetric and for fermions anti-
symmetric

ψB(α1,...,αn)(x1, ..., xn) =
1√
N !

∑
P

φαp1(x1)...φαpn(xn) (2.34)

ψF(α1,...,αn)(x1, ..., xn) =
1√
N !

∑
P

(−1)Pφαp1(x1)...φαpn(xn). (2.35)

In the particle number representation, a state with n particles in state α is repre-
sented by

|n1, n2, ..., nn〉 . (2.36)

The creation operator a†α increases the particle number in state α by one particle

a†α |n1, n2, ..., nα, ..., nn〉 =
√
nα + 1 |n1, n2, ..., nα + 1, ..., nn〉 (2.37)

correspondingly, the anhillation operator aα decreases the particle number in state
α by one particle

aα |n1, n2, ..., nα, ..., nn〉 =
√
nα |n1, n2, ..., nα − 1, ..., nn〉 (2.38)



and

a†αaα |n1, n2, ..., nα, ..., nn〉 = nα |n1, n2, ..., nα, ..., nn〉 . (2.39)

The hermitian operator a†αaα is called the particle number operator because of
his eigenvector |n1, n2, ..., nα, ..., nn〉 and the corresponding eigenvalue nα. The
vacuum state is given by |0〉 and

aα |0〉 = 0 (2.40)

for all α. By successively applying the creation operator on the vacuum state, any
state of indistinguishable particles can be obtained

|n1, n2, ..., nn〉 =
1√

n1!n2!...nn!
(a†1)n1(a†2)n2 ...(a†n)nn |0〉 . (2.41)

The following commutation relations are obtained for bosons

[a†α, a
†
β] = a†αa

†
β − a

†
βa
†
α = 0 (2.42)

[aα, aβ] = aαaβ − aβaα = 0 (2.43)

[aα, a
†
β] = δαβ (2.44)

In the framework of second quantization, the field operator Ψ†(x) can be derived
by

Ψ̂†(x) =
∑
α

φ∗α(x)a†α (2.45)

Ψ̂(x) =
∑
α

φα(x)aα (2.46)

where φα(x) is a solution of the Schrödinger equation. Ψ†(x) creates a particle in
the state φ̂α(x) and Ψ̂(x) annihilates a particle in the state φ̂α(x). An operator
in second quantization can be obtained by field operators and it depends on the
number of particles the operator acts on. For a one particle operator we have

Ô1(x)→
∫
d3xΨ†σ(x)O(x)Ψσ(x) = (2.47)∑

ν,ν′

∫
d3xφ∗ν(x)O(x)φν(x)a†νaν′ =

∑
ν′,ν

Oν′,νa
†
νaν′ ,



where Oν′,ν is given by the scalar matrix element of the operator:

Oν′,ν =

∫
d3xφ∗ν(x)O(x)φν (2.48)

Therefore, the expectation values can be obtained by

〈O〉 = 〈n1, ..., nn|O|n1, ..., nn〉 = (2.49)∑
ν,ν′

Oν′,ν

〈
n1, ..., nn|a†νaν′,σ|n1, ..., nn

〉
︸ ︷︷ ︸

nνδνν′

=

∑
ν

Oνnν .

A two particle operator O(2) can be correspondingly obtained by

O(2)(x, x′)→
∑
σ,σ′

∫
d3xd3x′Ψ†σ(x)Ψ†σ′(x

′)O(2)(x, x′)Ψσ(x)Ψσ′(x
′) =

(2.50)∑
σ,σ′,νi

∫
d3xd3x′φ∗ν1(x)φ∗ν2(x′)O(2)(x, x′)φν3(x′)φν4(x)a†ν1,σa

†
ν2,σ′

aν3,σ′aν4,σ =

(2.51)∑
νi,σ,σ′

Oν1,ν2,ν3,ν4a
†
ν1,σa

†
ν2,σ′

aν3,σ′aν4,σ (2.52)

with

Oν1,ν2,ν3,ν4 =

∫
d3xd3x′φ∗ν1(x)φ∗ν2(x′)O(2)(x, x′)φν3(x′)φν4(x) (2.53)

and the expectation values are〈
O(2)

〉
=
〈
n1, ..., nn|O2|n1, ..., nn

〉
= (2.54)∑

σ,σ′,νi

Oν1,ν2,ν3,ν4

〈
n1, ..., nn|a†ν1,σa

†
ν2,σ′

aν3,σ′aν4,σ|n1, ..., nn

〉
. (2.55)

Since two basis states are equal or orthonormal, the last part in equation 2.55 only
gives a non-vanishing result if the operation

a†ν1,σa
†
ν2,σ′

aν3,σ′aν4,σ (2.56)

results in the same state as before. For instance, in case of σ = σ′ this means
the operation only acts on the boson A subspace, thus non-vanishing expectation
values only occur for

ν1 = ν4 and ν2 = ν3, (2.57)

or ν1 = ν3 and ν2 = ν4. (2.58)



Since bosons can occupy the same state also

ν1 = ν2 = ν3 = ν4 (2.59)

is a possible solution. In the case of σ 6= σ′, we only get a result unequal to zero if

ν1 = ν4 and ν2 = ν3. (2.60)

2.4.2 Hamiltonian

In this section, the Hamiltonian for a two-component bosonic system, is derived.
Previously, I derived the bosonic field operator Ψ†A which creates a boson of type
A at r. Respectively, ΨA(r) annihilates a boson of type A at location r. For bosons

of type B, corresponding field operators are Ψ̂†B(~r) and Ψ̂B(~r).
The Hamiltonian consists of the sum of the kinetic energies for the two bosons

Hkin =
p̂2

2mB/A
, (2.61)

the single particle potential Vdip of the optical lattice which is the spin dependent
honeycomb potential (2.16) in our case, and the interaction energy U . The two
particle-interacting potential is well approximated by

U(~r, ~r′) =
4π~2a

2mr
δ(~r − ~r′) =

g

2
δ(~r − ~r′), (2.62)

as discussed in section 2.2.1. In case of two different kind of bosons we usually
have to consider three different scattering possibilities: The scattering of two A-
bosons, the scattering of two B-bosons, and an A-B-scattering. These lead to
three corresponding scattering lengths. The interaction energy for two particles
of the same kind, one in ~r and one in ~r′ is then given by

HAA =

∫
d3(r)d3(r′)Ψ̂†A(~r)Ψ̂†A(~r′)

gA
2
δ(~r − ~r′)Ψ̂A(~r′)Ψ̂A(~r) (2.63)

and respectively

HBB =

∫
d3(r)d3(r′)Ψ̂†B(~r)Ψ̂†B(~r′)

gB
2
δ(~r − ~r′)Ψ̂B(~r′)Ψ̂B(~r).

The part of the Hamiltonian for one bosonic species (e.g. A) is therefore given by

HA =

∫
d3rΨ̂†A(~r)[

p̂2

2mA
+ Udip(~r) + Ψ̂†A(~r′)

gA
2

Ψ̂A(~r′)Ψ̂A(~r). (2.64)

An additional part arises from the scattering of the two different bosonic species

HAB =

∫
d3(r)d3(r′)Ψ̂†A(~r)Ψ̂†B(~r′)

gAB
2
δ(~r − ~r′)Ψ̂B(~r′)Ψ̂A(~r). (2.65)



Thus the complete Hamiltonian is given by the sum:

H = HA +HB +HAB. (2.66)

Now the field operators Ψ̂†A(~r) and Ψ̂†B(~r) can be expanded in a spatial part and
in the (creation)- and annihilation-operators for the A-bosons

Ψ̂†A(~r) =
∑
i

φA,i(~r)â
†
i (2.67)

and for the B-bosons.

Ψ̂†B(~r) =
∑
i

φB,i(~r)b̂
†
i . (2.68)

2.4.3 Bose-Hubbard Hamiltonian

In presence of an optical lattice the behaviour of the system can be described
in terms of inter-site tunneling of particles, from site to site and the interaction
of particles at the same site. The basis functions, which fulfill the condition to
be localized at the lattice site best, are the Wannier functions. Therefore, the
Wannier basis is chosen to derive the corresponding field operators and to expand

the full Hamiltonian derived in the last section. If ξ
(n)
q (z) are the Bloch functions,

the well localized Wannier-functions can be defined by

w(n)(x− xj) =
1√
NS

n∑
0

eiqxjξ(n)
q (x), (2.69)

[1]. For the lowest band with q ≈ 0 one can write the Hamiltonian within the
Wannier basis

H = −
∑
ij

JA,ij â
†
i âi −

∑
ij

JB,ij b̂
†
i b̂i +

∑
i,j,k,l

UA,ijkl
2

â†i â
†
j âkâl + (2.70)

∑
i,j,k,l

UB,ijkl
2

b̂†i b̂
†
j b̂k b̂l +

∑
i,j,k,l

VAB,ijklâ
†
i b̂
†
j b̂kâl,

with

UA/B,ijkl = g

∫
d3rw

(0)
A/B(r − ri)∗w(0)

A/B(r − rj)∗w(0)
A/B(r − rk)w

(0)
A/B(r − rl),

(2.71)

VAB,ijkl = g

∫
d3rw

(0)
A (r − ri)∗w(0)

B (r − rj)∗w(0)
B (r − rk)w

(0)
A (r − rl). (2.72)

and

JA/B,ij =

∫
d3w(0)(r − ri)[

p̂2

2mA/B
+ Udip]w

(0)(r − rj). (2.73)



If the lattice is sufficiently deep, the hopping of non-nearest neighbors is small
enough to be neglected. Also, the next neighbor interaction for different site
Uijkl is much smaller than Uiiii and therefore the sums only contains hopping for
next neighbors and the on-site interaction Ui. With the particle number operator
n̂i = a†iai for boson A and m̂i = b†b for boson B the Bose-Hubbard Hamiltonian
can be written as

HBH = −JA
∑
i,j

(â†i,âj + cc)− JB
∑
i,j

(b̂†i b̂j + cc)

+
UA
2

∑
i

n̂i(n̂i, − 1) +
UB
2

∑
i

m̂i(m̂i − 1)

+VAB
∑
i

n̂im̂i + εA
∑
i

n̂i + εB
∑
i

.m̂i

(2.74)

JA (JB) is the hopping for the A-Bose component (B-Bose component). The
operators b̂ and â are the annihilation operators for the B-boson and the A-boson,
b̂† and â† are the creation operators accordingly. The energy-shift εA/B for A and
B bosons can occur due to a confining or a spin-dependent potential which gives
a sublattice structure. The expectation values of the particles number operators
n̂i = a†a and m̂i = b†b give the numbers of A- respectively B-bosons at site i.

2.4.4 Exact diagonalization

Since the simulations are performed in the framework of exact diagonalization, we
are able to compute the complete wave functions and eigenvalues. All correlation
functions and expectation values can be calculated, even for the exited states in
every regime. In contrast to a meanfield approach, which only results in densities
and occupations of the groundstate. But unfortunately, performing exact diago-
nalization only allows to deal with small systems, due to the numerical effort. If
a supercell with n=8 sites and half filling for every kind of atom is choosen, the
dimension of the many particle basis amounts to the number of d = 108900. In the
case of twelve sites filled with six A- and six B-bosons the basis size increases to
d = 153165376, which exceeded my calculation capabilities. Therefore finite size
effects have to be considered, but they will be discussed in detail later in Chapter
4.3. In the following, a short recall of the method of exact diagonalization is given.
The time dependent Schrödinger equation in any basis is given by

i~
d

dt
|Ψ(t)〉 = H(t) |ψ(t)〉 . (2.75)

If H is time independent, the wave function can be factorized as

|Ψi(t)〉 = e
iEit

~ |Ψi〉 (2.76)

and the eigenvalue problem

〈n| Ĥ
∑
n′

n′
〉 〈
n′|Ψ

〉
= E 〈n|Ψ〉 (2.77)



can be solved in any basis |n〉 of our Hilbert space. This leads to a system of n
equations for coefficients and eigenvalues∑

n′

(H)nn′cn′ = Ecn, (2.78)

where (H)nn′ is the matrix element
〈
n|Ĥ|n′

〉
. Due to the hermiticity of H, the

matrix (H) can be diagonalized to DA. In the basis of its eigenvectors, H becomes
a diagonal matrix of eigenvalues. A matrix P exist for hermitian matrices, which
is invertible and solves the equation:

DA = P−1DP. (2.79)

In the columns the eigenvectors are inscribed. Thus, by diagonalizing (H), the
eigenvectors and eigenvalues are calculated. The Hamiltonian is constructed by
one- and two-particle operators. Since on-site interaction and nearest neighbor
tunneling is just considered, most matrix elements vanish and the sparse-matrix-
representation can be used [54]. The numerical diagonalization is done with the
Arnoldi package, which has been developed at the Rice University in Houston,
Texas [65]. Like mentioned in the beginning of this section, as the numerical diag-
onalization is associated with a high computational effort, i.e. the systems have
to be small enough. In case of two different sorts of bosons, the calculations have
been performed for supercells up to ten lattice sites. In case of a one component
system, the calculation have been done for a supercell with twelve sites filled with
twelve bosons. The different supercells and their periodicity will be discussed in
the following section.

2.4.5 Finite lattice structure and product states

Like described above, small systems only can be considered because of the huge
calculation effort in exact diagonalization of system with periodic boundary condi-
tions. In the honeycomb lattice, every lattice site has three next nearest neighbors.
If the system is filled with two different kinds of atoms, the smallest size of a su-
percell is the four sited cell. Also six-, eight- and ten-sited supercell are examined
to reduce and investigating finite size effects. In every case, the entire lattice can
be generated by tiling one supercell beneath another. The resulting wavefunction
is of course restricted to the chosen supercell, which is disscussed in Chapter 4.
In case of a six-sited supercell the site 3 has the nearest neighbors 0, 2 and 4
(see Fig. 2.4 a). The boundary conditions are considered such that the particles
which tunnels out of the unit cell, tunnels in again at the other side. As the first
example, the six-sited lattice cell is shown in Fig. 2.4. If the particle tunnels
from site 2 to site 5, it tunnels into the next cell, the upper left. In this case the
periodic boundary conditions make sure that it tunnels into the same cell again
at the lower right. To implement the tunneling in the program, the 2-dimensional
structure has been transferred in a one dimensional chain, see Fig. 2.4 b. The
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Figure 2.4: The periodic boundary condition for the six sited cell in the hexag-
onal lattice structure (a) and transfered in a chain with additional tunneling
terms. This can be considered as the Fockbasis (b). Where for example a state
|2, 0, 0, 1, 0, 0〉 would f.i. mean: two particles on site 0 and one particle on site 3
and the other sites are empty.

third nearest neighbor easily can be considered by the additional tunneling terms,
like it is depicted with different colors in Fig. 2.4 b. The red arrows denote the
neighbors inside the cell, and the blue arrows denote the tunneling which leads to
the next unit cell. In this way, the Fock states easily can be build. For instance,
the state |2, 0, 0, 1, 0, 0〉 would mean two particles on site 0 and one particle on
site 3 and the other sites are empty. As we want to investigate the behavior of two
sorts of bosons we have to build up a product space of the Fock basis of the two
bosonic species |n〉 = |nA〉 ⊗ |nB〉, where |nA〉 and |nB〉 are the A- and B-boson
subspace. Figure 2.5 illustrates this with a simple example. The dimension of the
basis therefore equals the number of product states

D(nAB) = D(nA) ×D(nB), (2.80)

with the dimension of the separated fockstates of the A, respectively B-bosonic
subspaces

DA,B =
(NA,B +Ns − 1)!

NA,B!(Ns − 1)!
, (2.81)

where Ns is the number of lattice sites and NA,B is the number of A- respectively
B-bosons [54]. Therefore the size of the Hamiltonian matrix is D2

nAB
.
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Figure 2.5: A state like depicted here consists
of parts of the two bosonic subspaces |nblue〉
and |nred〉 this state e.g. can be written as
|nblue,red〉 = |1, 0, 1, 0, 0, 1〉 |1, 0, 0, 1, 1, 0〉.

2.4.6 Matrixelements

To diagonalize the Hamilton matrix, the elements must be calculated, as discussed
in section 2.4.3. By using the Bose-Hubbard model, just one and two-particle
operators have to be calculated. As for the expectation values, most of the matrix
elements are zero. For the one particle operator〈

n1, ..., nn|O|n′1, ..., n′n
〉

=∑
ν,ν′,σ

Oν′,ν

〈
n1, ..., nn|a†ν,σaν′,σ|n′1, ..., n′n

〉
(2.82)

with

Oν′,ν =

∫
d3xφ∗ν(x)O(x)φν (2.83)

the expression gives a result unequal to zero if

|n〉 = |n′
〉

or if

|n〉 = |...., nν1 , ..., nν2 , ...〉

and

|n′
〉

= |...., nν1 + 1, ..., nν2 − 1, ...〉 .

The two-particle number operator gives matrix elements like:〈
n1, ..., nn|O2|n′1, ..., n′n

〉
=∑

σ,σ′,νi

Oν1,ν2,ν3,ν4

〈
n1, ..., nn|a†ν1,σa

†
ν2,σ′

aν3,σ′aν4,σ|n′1, ..., n′n
〉

(2.84)

with

Oν1,ν2,ν3,ν4 =

∫
d3xd3x′φ∗ν1(x)φ∗ν2(x′)O(2)(x, x′)φν3(x′)φν4(x). (2.85)



For the two particle operator only the matrix elements of following states give
non-vanishing result:

|n〉 =a†ν1a
†
ν1aν1aν1 |n

′〉
|n〉 =a†ν3a

†
ν1aν1aν2 |...., nν2 + 1, ..., nν3 − 1, ...〉

|n〉 =a†ν2a
†
ν2aν1aν1 |...., nν1 + 2, ..., nν2 − 2, ...〉

|n〉 =a†ν1a
†
ν2aν3aν3 |...., nν1 − 1, ..., nν2 − 1, .., nν3 + 2, ...〉

|n〉 =a†ν3a
†
ν3aν1aν2 |...., nν1 + 1, ..., nν2 + 1, ..., nν3 − 2, ...〉

|n〉 =a†ν4a
†
ν2aν3aν1 |...., nν1 + 1, ..., nν2 − 1, .., nν3 + 1, ..., nν4 − 1, ..〉

The algorithm therefore has to check if a pair of states correspond to these above,
in this case the matrix element has to be evaluated and added up.

2.5 Iso-Magnetism

A large part of this work deals with the investigation of isomagnetism. As our
lattice cell is filled with two kind of bosons, the question arises how do the atoms
arrange each other for a given ratio of interaction VAB (interaction between differ-
ent kind of atoms) and interaction UAA/BB (interaction between the same kind of
atoms). The ordering in the anti-ferromagnetic regime is expected to be a state
where boson A prefers to sit on a site next to a B-boson. In the ferromagnetic case
a ground-state is preferred where the same sort of atoms occupy adjoining sites.
This is due to the energy cost for virtual tunneling (see Fig. 2.8). Figuratively
spoken, in case of VAB > UAA,BB, a virtual tunnel process to the next neighbored
site which also is occupied by a particle, it energetically convenient for the sys-
tem, if the considered particles are of a same kind. In contrast, if UAA,BB > VAB
it would be better if the next neighbor site is occupied by the other kind. Our
system contains n particles by n sites, both n/2 for A- and B-bosons. Then, in
the localized phase, where the atoms are pinned at the lattice sites, one would
expect two different ordered groundstates depending on the ratio of interaction.
These two possibilities are depicted in Fig. 2.6 in case of a square lattice, the
corresponding ground-state of the system can be described as ’ferromagnetic’ or
’anti-ferromagnetic’. By computing different correlation-functions, we can read
out the quantum magnetic ordering, even in the superfluid regime..

2.5.1 Iso-spin Hamiltonian

In limit of t � VAB, UAA, UBB, i.e. in the localized phase, an effective spin-
Hamiltonian can be derived in second order perturbation theory. The hopping
term can be mapped onto an effective isospin Hamiltonian [22, 48]. If we have a
two level system, like bosons in two hyperfine states, they can be mapped on an
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Figure 2.6: (a) A ’ferromagnetic’ groundstate which is dominant for the case, that
UAA,BB < VAB. Due to virtual tunneling, the same sort of atoms are expected
to occupy adjoining sites. (b) In case of UAA,BB < VAB, the atoms prefer to sit
on a site next the other sort of atoms. This would end up in a state where the
staggered order is predominant.

iso spin system where boson A corresponds to spin-up (|A〉 → | ↑〉), and boson
B corresponds to spin down (|B〉 → | ↓〉). The on-site part of the Bose Hubbard
Hamiltonian is chosen to be the unperturbed H0 and the hoping term to be the
perturbation H1. The ground state in the Mott insulator is given by the state
where every single atom occupies one lattice site. The first exited state is given
by one double occupied state, the energy difference is U in case of two atoms of
the same kind. For atoms of different sorts it is given by VAB, see Fig. 2.7.

E0

Eex
V

E0

Eex
U

a b

Figure 2.7: Shown here is the energy spectrum in the Mott insulator phase. The
state of single occupations is the groundstate (bottom), whereas the state with
one double occupation is the first excited state (top). The energy difference
between these states is U in case of atoms of the same kind (b) and VAB in case
of different atoms (a).

HBH = H0 +Hhop, (2.86)

with

H0 =
∑
i

[
U

2
(n̂i(n̂i − 1) + m̂i(m̂i − 1)) + VABn̂im̂i

]
, (2.87)



and

Hhop = −J
∑
i,j

[
(â†i âj + cc) + (b̂†i b̂j + cc)

]
. (2.88)

In second order perturbation theory the energy shift compared to the groundstate
is by

E2
0 =

∑
e6=0

|
〈
e0|H1|0

〉
|2

E0
0 − E0

e

, (2.89)

where
〈
e0| is the exited state and 〈0| is the ground state. If higher excitations are

negligible and only double occupations are considered as virtual tunnel processes,
the two possibilities for the exited energy E0

e are U , in case of a AA-or BB-double
occupation (see Fig.2.7 b), and VAB, in case of AB-double occupation (see Fig.
2.7 a). Therefore

E2
0 = −

∑
e6=0

〈
0|H1|e0

〉 〈
e0|H1|0

〉
U

−
∑
e6=0

〈
0|H1|e0

〉 〈
e0|H1|0

〉
V

. (2.90)

is obtained. The expression
〈
e0|H1|0

〉
(
〈
0|H1|e0

〉
) means virtual tunneling in to

(out of) the excited state. We can add m = 0 to the sum, because the matrix
element 〈0|H1|0〉 is equal to zero. Therefore we obtain:

E2
0 = −

∑
e

< 0|H1|

1︷ ︸︸ ︷
e0 >< e0 |H1|0 >

U
−
∑
e

< 0|H1|

1︷ ︸︸ ︷
e0 >< e0 |H1|0 >

V
. (2.91)

Inserting the H1 hopping term, we obtain

E2
0 = −J

2

U

∑
ijkl

(â†i âj + cc) + (b̂†i b̂j + cc)− J2

VAB

∑
ijkl

(â†kâl + cc)− (b̂†k b̂l + cc).(2.92)

Using the isospin Ŝi,z =
ni,A−ni,B

2 , the commutation relations and the Swinger-
Boson representation [5]

S+ = a†b and S− = b†a, (2.93)

Equation (2.92) results in the anisotropic Heisenberg-spin-1/2 model [18]:

Hint = −J
2

2
(

1

U
− 1

VAB
)(σizσ

j
z − σi−σ

j
+ − σi+σ

j
−). (2.94)

Depending on the ratio of interaction VAB and interaction U the energy is min-
imized for the ferro- or anti-ferromagnetic ordering. I expect a ferromagnetic
order in the limit V > U >> t, since the prefactor of σizσ

j
z is positive whereas

in the regime of U > V >> t in contrast I expect an antiferromagnetic ordering,
(staggered order) because the prefactor changed its sign.
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Figure 2.8: Depicted here are the different contributions for the energy difference
of the tunnel processes for different situations

2.5.2 Correlation functions

By diagonalizing the Bose Hubbard Hamiltonian exactly we obtain all eigenvalues
and eigenvectors. The eigenvectors |Ψ〉 =

∑
N cN |N〉 contain a large number of

contributions and do not enable us to get asses to the physical properties of the
system easily. One possibility to characterize the system is computing expectation
values like the fluctuations on a site i 〈∆ni〉 or the particle occupation number
〈ni〉. But the most powerfull quantity, is computing several correlation functions
since they allow insight into the behavior of the system. A correlation function
can be developed by the general pair-correlation function:

gαβi,j =
〈

Ψ|a†i,αa
†
j,βaj,βai,α|Ψ

〉
. (2.95)

The lattice indices are i and j and α and β are the particle sorts. As I want to
investigate ’ferromagnetic’ or ’antiferromagnetic’ ordering for different parameter
regimes, I have to design different correlation functions which give a quantity to
measure ’ferromagnetic’ and ’anti-ferromagnetic’ ordering. In general ferromag-
netism means a long range phenomena which occurs even for two different points
being separated from each other by a long distance. In the Mott insulator phase
a ferromagnetic ordering especially considers the next neighbors, i.e. the interac-
tion is short range. As our model only considers nearest neighbor hopping and
on-site-interaction the ’magnetic’ behavior is certainly destined by virtual tun-
neling (see section 2.5.1) between nearest neighbors. The correlation function
gi,j = 〈Ŝi,zŜj,z〉 distinguishes between ferro- or anti-ferromagnetic behavior. If
gij ≤ 0, an anti-ferromagnetic ordering is dominant, for gij ≥ 0 a ferromagnetic
behavior is dominant. In case of two bosons, the corresponding iso spin operator
Ŝi,z can be derived by Ŝi,z = 1

2(ni,A − ni,B), which would result in Ŝi,z = 1
2 when

site i is occupied with boson A and Ŝi,z = −1
2 when site i is occupied with boson

B. Therefore gij is given by:

〈Ŝi,zŜi+1,z〉 = 〈ψ|(n̂i,An̂i+1,A + n̂i,Bni+1,B

− n̂i,An̂i+1,B − n̂i,Bn̂i+1,A)|ψ〉
= FM-AF

(2.96)



with AF being the anti-ferromagnetic part and FM the ferromagnetic.

|ψ〉 =
∑
N

|cN |N〉

AF =
∑
N

|cN |2(ni,Ani+1,B + ni,Bni+1,A)

FM =
∑
N

|cN |2(ni,Ani+1,A + ni,Bni+1,B).

(2.97)

As our system is finite, we have to consider finite size effects, which result from
small particle numbers and small lattice cells. So, if a particle of sort A occupy site
i, there are only (nA−1) A-particles of the total (2n−1) particles left to contribute
for ferromagnetic correlations. In contrast to the anti ferromagnetic case, if boson
A occupy site i there are n B-particles of the total (2n − 1) particles left to
allow for anti-ferromagnetic correlations. Therefore, the normalized correlation
functions for small systems and small particle numbers are given by

g =
∑
<i,j>

(2n−1
n−1 FM −

2n−1
n AF )

2× (FM +AF )
, . (2.98)

here, < i, j > stands for all next neighbored pairs. In the limit of an infinite
number of sites and particles (< i, j >→ ∞) this equation leads to the result in
equation (2.96). In the superfluid regime, the wave function broadens over the
entire lattice.
By computing the distance-correlation functions, which depend on the distance ∆
between the considered sites, I can do statements about long-range correlations.
To consider weights, the correlation functions are normalized. N is the number
of sites in the cell, NA (NB) gives the number of A-(B)-particles in the cell. For
different particles and different lattice sites, the pair correlation-function

gαβi,j =
〈

Ψ|a†i,αai,αa
†
j,βaj,β|Ψ

〉
=
〈
nαi n

β
j

〉
(2.99)

gABi,i+∆ =
N2

NANB

〈
nAi n

B
i+∆

〉
(2.100)

can be derived, as well as

gAAi,i+∆ =
N2

NA(NA − 1)

〈
nAi n

A
i+∆

〉
(2.101)

in case of same kind of particles and different lattice sites. I discuss these in more
detail in Chapter 5. Since in the superfluid regime, also high on-site occupations



are possible and probable, the on-site correlation functions play an important role,
they can be derived by

gAAi,i =
N2

NA(NA − 1)

〈
nAi (

〈
nAi
〉
− 1
)

gABi,i =
N2

NA(NA − 1)

〈
nAi n

B
i

〉
.

(2.102)

This will also be discussed in Chapter 5 together with the nontrivial multiple op-
erator correlations. Those play an important role when considering the supersolid
order.

2.6 Superfluid to Mott insulator transition

The superfluid to the Mott insulator transition is one of the most famous events
in the field of quantum optics [27, 28, 30]. Considering the Bose-Hubbard model
(2.12), only the ratio between the on-site interaction U and the hopping constant
J (kinetic energy) is responsible for the quantum phase of the system. Although
it is not an exactly solvable model, the superfluid Mott insulator transition is
a well understood feature. By changing the ratio U/J the system is driven to
the superfluid to Mott insulator transition. Next, I will briefly introduce the two
limiting regimes of vanishing on-site interaction U/J , and vanishing hopping con-
stant J , for a more detailed discussion see [10]. In the regime of vanishing on-site
interaction U/J , which means a flat lattice, the particles are delocalized and all
atoms are in the single particle ground state. This is the lowest Bloch state with
quasimomentum q = 0. The spatial particle distribution is completely disordered,
because of the Heisenberg’s uncertainty relation and the exact quasimomentum.
Therefore, this state is characterized by high particle fluctuations, gap less exci-
tations, and long-range order. The latter will play an important role in Chapter
5, which deals with distance depending correlation functions. For N,NS → ∞
the superfluid state corresponds to a coherent state and is similar to the Bose-
Einstein-condensate ground state in 3D. For N bosons in a lattice with Ns sites i
the superfluid wavefunction can be written as

|ΨSF 〉 =
1√
N !

(
1√
Ns

∑
i

â†i

)N
|0〉 . (2.103)

To get an idea of the multiple occupation, for example in the case of η = N
NS

= 1,

one will find more than one atom per site with the probability of 1 − 2
e = 0.27,

because every atom wants to occupy all lattice sites with the same probability [10].
For increasing U/J , the system underlies a phase transition to the other limiting
case, the Mott insulator. This state occurs for J → 0 which is equivalent to a deep



optical lattice. This can be reached easily in experiments and in case of integer
filling this state can be written as

|ψMI〉 =

(∏
i

a
† N
Ns
i

)
|0〉 . (2.104)

It is a pure product of local Fock states, characterized by bosons localized at single
lattice sites. Low (for small J) or even no particle fluctuations (J = 0) occur in
this phase and the on site correlation is equal to zero. This is investigated in
Chapter 3 in case of my system. One double occupied site (e.g. for integer filling
η = 1) costs the additional energy U . Therefore the Mott insulator is characterized
by gapped excitations. This means, for a given U , an energy gap occurs between
the ground and the first exited state. If one particle enters a site occupied by
another one (first excited state, see Fig. 2.7), this energy gap equals U , [30, 41].
This state is characterized by the loss of the long-range coherence, therefore the
nearest neighbor correlation function is usefull to characterize the isomagnetic
ground state in this regime, this will be carried out in Chapter 4. With increasing
J > 0, the atoms start hopping and double occupations occur, however they still
cost the double occupation energy U . The Mott insulating state will be reduced,
double occupancy occur. In case of J ≈ U the profit in kinetic energy dominate
the cost of double occupancy. Further decreasing U the system undergoes the
Mott insulator to superfluid transition. The atoms are delocalized over the whole
lattice. The phase transition from the superfluid to the MI-state can be described
by a mean-field approach [76] where the critical value of U/J for the occurrence
of phase transition can be obtained by

(U/zJ)c = 2η + 1 +
√

(2η + 1)2 − 1 (2.105)

with the number of nearest neighbors z and η the number of atoms per lattice site.
With the Gutzwiller ansatz [77] similar values can be derived. Both approaches
are valid for infinite sytems. For a hexagonal lattice, the best prediction for the
critical value for U/J is achieved by Teichmann et all. [73] using the process-chain
approach, which gives

(U/J)c = 11.6. (2.106)

Due to the finiteness of our system and the exact diagonalization method the
parameters to estimate the crossing regime from Superfluid to Mott insulator in
this work are the particle fluctuations, the on site correlations, and the energy
gap between the ground and the first exited state (see section 3.1). The resulting
superfluid state will be characterized by high fluctuations and high on-site corre-
lations and a long range order. The Mott insulator is characterized by vanishing
particle fluctuations, low on-site correlations and a loss of the long range order.
This will be examined in detail in Chapter 3. I find the criteria for the Mott
insulator and the superfluid regime related to our finite system. It remains to be
noted, that the value (U/J)c = 11.6, is very close to our calculations.



2.7 Supersolid order

A special quantum state, also known from the condensed matter physic, is the
supersolid state [25, 33, 34, 52]. A good introduction and overview is given by
[6, 11, 51]. The supersolid state is characterized by a superfluid order and a coex-
isting spacial density modulation. Although the wave-function of the particles is
extended over the whole lattice, the density is not uniformly distributed. Its den-
sity is modulated for a simple case schematically depicted in Fig. 2.9. The famous

Figure 2.9: Shown here is a simple case of a density modulation in a superfluid
regime, which indicates a supersolid. The density modulation lowers the symmetry
of the system, this is characteristic for a supersolid state.

experiment which demonstrate this phenomena is described in [45], where a ”Non-
Classical Rotational Inertia” of solid helium has been observed. This experiment
is still highly competitive, as it is not evidenced if the decrease of the inertia for
very low temperature really has been a proof of a supersolid structure [66]. The
increasing tunability of optical lattices and multiple atomic properties opens up
new opportunities to investigate quantum phases, for example the supersolid state.
Theoretically the occurance of a supersolid state has been investigated in multiple
ways. In case of one boson component by considering the offsite interaction in
an extended Bose-Hubbard Hamiltonian [69] or below Bose-Hubbard [21]. The
supersolid phase has been examined theoretically by addressing bipolar particles
[16] and in Bose-Fermi-mixtures [75]. A supersolid of two bosonic species with a
filling imbalance has been demonstrated by [44]. Since a supersolid state is hard
to imagine, a short introduction, is depicted here [11].

solid order

The solid order, like atoms in a crystalline structure, is characterized by a spa-
tial arrangement in ordered configurations; it does not even have to be periodic.
With the local density ρ(~r) of the particles in the crystal, the average density in
the crystal of the volume Γ can be written as:

ρ̄ =
1

Γ

∫
d3rρ(~r) and δρ(~r) = ρ(~r)− ρ̄ (2.107)

expressing the deviation of ρ at ~r. In a liquid or a gas ρ(~r) = ρ̂ and δρ = 0. In
a crystal, the translational symmetry is broken, therefore δρ does not vanish. In



the crystal order the density deviation is proceeded by

δρ(~r) = δρ(~r + ~T ) with ~T = c1~a1 + c2~a2 + c3~a3 ci = 0,±1,±2, ...

~ai are the lattice vectors and therefore ~T reaches any point of the lattice. For the
reciprocal lattice the lattice vector ~G fulfills the condition

~T ∗ ~G = 2πn with n ∈ N (2.108)

and the density in the k-space is given by the Fourier transform of δρ(~r)

ρ̃(~k) =
1

Ω

∫
d3rδρ(~r)ei

~k~r. (2.109)

S(~k) = |ρ̃(~k)|2 is known as the static structure factor. In a solid, S(~k) peaks pe-
riodically in the dependence of the wave vector G. Experimentally it is reflected
by intensity of Bragg peaks. This order is also called long range order (LRO).

superfluid order
The superfluid order is characterized by a density including two different parts,
one is the superfluid ρs and the other is the normal fraction ρn [74].

ρ(~r) = ρs(~r) + ρn(~r). (2.110)

Where the superfluid fractions is neither subjected to dissipation nor has entropy
in contrast to the normal component. For a translational invariant system, like a
fluid or a gas, the densities are not spacial variant

ρn = ρn(~r) and ρs = ρs(~r). (2.111)

Below a critical temperature Tc, the transition to the superfluid starts. The su-
perfluid part becomes nonzero and increases, until the whole system is in the
superfluid fraction at T = 0 and the density of the superfluid fraction becomes
the average density

ρs(T = 0) = ρ̄. (2.112)

The macroscopic wavefunction of the condensate fraction has the meaning of a
complex order parameter, which indicates the phase transition. The one-particle
density matrix can be derived by

n(~r, ~r′) =
〈

Ψ̂†(~r)Ψ̂(~r′)
〉
. (2.113)

In the case of superfluidity, where all boson are delocalized and the wavefunction
is extended over the whole system, the probability to detect a boson at a special
position ~r is equal at every position ~r, even for r →∞. That implies

n(~r, ~r′) = n(~r − ~r′) = n0 as r →∞. (2.114)



This means, because two indistinguishable particles can change places with each
other over a arbitrary large distance, each particle can be considered as delocalized
throughout the whole system. This order is called off diagonal long range order
(ODLRO) [47, 52].

supersolid order
For a superfluid system, which breaks translational symmetry, the density of the
superfluid fraction at T = 0 is smaller than the average density

ρs(T = 0) < ρ̄, (2.115)

because of the existence of the normal fraction [52]. This means, the superfluid
fraction ρs

ρ̄ never reaches unity in a supersolid, not even at T = 0. The super-
solid order is then characterized by the combination of the LRO and the ODLRO,
which occur simultaneously and for the same species of particles. The system is
superfluid, what means, that the particles are delocalized all over the whole system
(ODLRO) and additionally there is a non-vanishing density deviation δρ(~r) 6= 0
which depends on the position ~r and lowers the translational symmetry. Consid-
ering this work I found a phase where the system is described by a nontrivial
density-modulation. The corresponding superlattice period is two times bigger
than the primary unit cell and includes simultaneous solid and superfluid quali-
ties. This is discussed in Chapter 5.



Chapter 3

Ultracold bosons in honeycomb
lattices

In this chapter I give a short overview of the algorithm used in the simulation
program. I study the basic features of an one component system in order to
determine whether the system is superfluid or it is in the Mott insulator state. To
characterize the crossover regime, the particle fluctuations, the on-site correlation
function, and the first excitation energy is studied. The combined results caused
the crossover regime very well. Next, a one-component system in a honeycomb
lattice with a triangular lattice structure is described. The triangular sub-lattice is
shifted by an energy ε, which I discuss for varying lattice-depths and for different
particle numbers, generating several particle-distributions and crossovers between
superfluid and Mott insulator states in the different sub-lattices.

3.1 Algorithm and system

As mentioned above, this work has been done in the framework of exact diagonal-
ization with periodic boundary conditions, using the Bose-Hubbard model for a
one- and two-component bosonic systems. It is based on an algorithm developed
by Dr. Dirk-Sören Lühman [54] and was primarily designed to simulate Bose-
Fermi mixtures. For this project it was rebuild for a one- and two-component
Bose gas. I start by describing basic features to introduce the system in more
detail. Fig. 4.2 shows the cells we used for calculations (red areas) and their next
neighbors. Due to the periodic boundary conditions, atoms leaving the cell by
tunneling, automatically reenter the cell at the opposing side. To investigate the
crossover between the superfluid and the Mott insulator state in our system we
have to consider fluctuations, on-site correlation, as well as the energy eigenval-
ues. The Fock basis set |N〉 is generated by successively filling the states to the
maximum particle number. Then, only non-vanishing matrix elements have to be
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Figure 3.1: Visualization of the honeycomb unit cells used for calculations in this
work. a) The four-sited cell b) The six-sited cell c) The eight-sited sized cell d)
The ten-sites cell e) The twelve-sited sized cell

calculated 〈
N ′|H|N

〉
. (3.1)

have to be evaluated (see 2.4.6). After obtaining the eigenvalues and eigenvectors
of the Hamiltonian

Ei and |ψi〉 =
∑
n

cin |N〉 , (3.2)

the system can be described completely. Particle occupations 〈n̂i,n〉

〈n̂i〉 = 〈ψi|n̂i|ψi〉 (3.3)

and fluctuation 〈∆n〉 can be calculated for the ground and the exited states

〈∆n〉2 =
〈
n̂2
〉
− 〈n̂〉2 . (3.4)



Specific correlation-function can be derived, like e.g. the gAAij -correlation function,
which counts all contributions to the state |Ψn〉 that contains a particle A at site
i and a particle A at site j:

gAAi,j = 〈ĝi,Aĝj,A〉 = 〈Ψn|(ĝi,Aĝj,A)|Ψn〉. (3.5)

3.1.1 Fluctuations and On-site correlations

The particle number fluctuations is defined as

〈∆n〉2 =
〈
n̂2
〉
− 〈n̂〉2 . (3.6)

I gives information about the system, for example whether it is an a superfluid
phase (high particle fluctuations) or in a Mott insulator phase (no particle fluctu-
ations). See Section 2.6 for more background. Due to the finiteness of the system,
no critical value of U/J for the occurrence of phase transition can be obtaines, but
there is a finite cross-over regime between the superfluid and the Mott insulator
phase. To estimate whether the system is in the superfluid or in the Mott insula-
tor phase, the on-site correlations have to be considered as well. In the superfluid
regime, the on-site interaction is small compared to the kinetic energy. Therefore
the ground state contains Fock states with high particle numbers at one lattice site,
and the AA-on-site correlations are high. In the Mott insulator regime, where the
bosons are pinned at the sites and the high on-site interaction prohibits a higher
occupation than one particle per site, the AA-on-site correlations are low. Indeed
they converge to 1 at filling η = 1, i.e. one particle per site (see Fig. 3.2 b). The
AA-on-site correlation function for the ground-state is given by:

gAA =
1

n

n∑
i=0

〈Ψ0|n̂i,A(n̂i,A − 1)|Ψ0〉 . (3.7)

Shown in Fig. 3.2 a are the fluctuations for different sized unit cells with η =
1. We see that the less particle fluctuations in the Mott insulating regime for
increasing cell sizes. This corresponds to the fact, that in infinite systems the
superfluid to Mott insulator transition is prompt and prohibits fluctuations. The
AA on-site correlation functions show a similar behavior for increasing U/J ratio.
The larger the cell becomes, the faster the correlations decrease (see 3.2 b). In
case of the twelve-sited cell and increasing U/J , states with twelve particles at
on site are avoided immediately. However, in the crossover regime, many states
with similar energy contributes to the groundstate, which leads to a slow decrease
of particle number fluctuations and AA-on-site correlations. Above the threshold
of U ≈ 12J , the fluctuations and the AA-on-site correlations are suppressed for
increasing cell sizes. Figure 3.3 show the particle number fluctuations of an eight
sided cell for fillings η ∈ {1, 1.5, 2}. First we note the high fluctuations in case of
η = 1.5 and U/J ≥ 20, i.e. the system can not be driven in the Mott insulating
phase. For the example of an eight sided cell, η = 1.5 means we have 8 localized
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Figure 3.2: Shown here are the a) particle fluctuations and b) on-site correlations
for filling η = 1 and different sized cells: -four sites, -six sites, -eight sites, -ten
sites and twelve sites

atoms (η = 1) plus four extra atoms that are completely delocalized. Since all
lattice sites are equal, all sites have the same probability to be occupied by one
of the extra atoms. In this case four particles fluctuate between eight sites on
top of the uniformly insulating background. For non commensurate filling or in
disordered systems, no Mott insulator phase can be reached [55, 61].
In case of double filling (η = 2), a Mott insulating state can be formed by locating
exactly two bosons on every lattice site. The fluctuations decrease fast between the
superfluid and the crossover regime, but compared to η = 1 the systems reaches
the Mott insulating phase at higher lattice depths. Filling the system with η = 2
effectively causes a lowering of the lattice height and enables the particles to
tunnel even in deeper lattices. In the crossover regime many states with the same
energy occur (much more than for a system with η = 1). The transition to the
Mott state is reached for increasing U/J . Then basis states with many particles
at one site do not contribute to the ground state because of the additional cost
of energy. According to mean-field calculations [26, 76] the transition occurs at
(U/J)c ≈ z × 9.9 for filling η = 2 and at (U/J)c ≈ z × 5.83 for filling η = 1. The
quantity z is the number of next neighbors. In case of U = 0, the fluctuations
increase with the filling, they show a square root dependency on the filling factor
η (see Fig 3.3 b). Figure 3.4 shows the influence of the lattice cell size to the
fluctuations. For an eight sited cell filled with eight bosons (cyan dashed line),
the decrease of the fluctuations is more significant compared to six sites with six
particles (magenta dashed line). In the limit of an infinite lattice this would result
in a clear superfluid to Mott insulater transition at a certain (UJ )c. For filling
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Figure 3.3: Shown a) are the Particle fluctuations for different fillings of the eight
sited cell. The eight sited cell is filled with eight bosons (magenta line), with
twelve bosons (blue line) and with 16 bosons (green line) for increasing U . Shown
in b) are the fluctuations for U/J = 0 which show a square root dependency of
the filling factor η in case of an eight sited cell.

η = 2 (e.g. twelve particles in a six sited cell or sixteen particles in an eight sited
cell) we see a similar behavior as for η = 1. The fluctuations are decreasing for
increasing cell sizes. In case of incommensurate filling η = 1.5 no difference can be
seen above the threshold of U ≈ 3J between the blue dashed line (nine particles
by six sites) and the green dashed line (twelve particles by eight sites). In the
superfluid regime the fluctuations are higher for the eight sited cell, than for the
six sited cell. For increasing cell sizes the fluctuations increase and in the limit of
an infinite system it is expected to converge to 1 in case of U/J = 0 and filling
η = 1. Increasing the filling factor η also increases the particle fluctuations.

3.1.2 Energy gap

Another reference point for the phase transition from superfluid to Mott insulator
is the energy gap between the ground and the first exited state [30]. In the Mott
insulator phase, the excitations are discrete. Given a Mott insulator ground state,
a first excited state can be created by moving one atom to an already occupied
site. For example |11111102〉 is a lowest excitation state, separated by U from
the ground state |11111111〉. Therefore, the energy gap grows linearly with U
in the Mott phase. But since dealing with finite systems, there is always an
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Figure 3.4: The particle fluctuations
for a six-sited cell (magenta, blue and
red dashed lines) and for an eight
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two more sites cause already an de-
creasing effect on the fluctuations in
the Mott insulator regime for com-
mensurate filling.

energy gap, also deep in the superfluid regime, even for small on site interaction
U . This is a consequence of the finite number of possible excitations. The energy
quantization can be estimated by 1

L2 with L being the cell length, i.e. the energy
gaps become smaller for increasing sample size. Then, the excitations become
continuous in case of macroscopic samples in the superfluid regime. In Fig 3.5
a, the energy gap is shown for different cell sizes. For the six, the eight, and the
ten sited cell I find a particular kink around U/J ≈ 10. As shown in Fig. 3.5b,
the derivative of the energy gap is discontinuous for cells of more than 4 sites.
The four sited cell is simply too small to give reliable results. Another important
fact is that all derivatives reach a constant value, namely 1, this means a linear
increase with U , around U/J ≈ 20. For increasing cell sizes the linear regime is
reached at smaller values of U . The derivative of the energy gap in case of the ten
sited cell converge faster to the value 1 than the one corresponding to the eight
and the one corresponding to the six sited cell, see Fig. 3.5 b. So although we
only can investigate finite sized systems and therefore are not able to identify a
clear superfluid to Mott insulator transition, we have good reasons to get to the
conclusion that a system beyond U/J ≈ 20 with six or more sites and filling of
η = 1 is in the Mott insulator phase. Since we noticed the jump of the derivative
for all cell sized except for the 4 sited cell, we will focus the discussion on the eight
sited cell filled with eight particles from now. We already mentioned above that the
energy spectrum is discrete for finite sized systems, even in the superfluid regime.
Shown in Figure 3.6 a are the ground state energy E0 (blue line) and the four
lowest exited energies E1 (green), E4 (red), E7 (cyan), and E8 (magenta), with
increasing on-site interaction U . It has to be noted, that the energy eigenvalues
E2 and E3 (E5 and E6) are degenerated to the energy eigenvalue E1 (E4). The
kink in the energy gap results from the fact, that at a certain value U/J the
forth exited energy eigenvalue crosses the first exited energy eigenvalue. Even the
higher energy eigenvalues cross each other for smaller on-site interaction. In Fig.
3.6 b this can be evaluated further by following the Mott characteristic |11111111〉-
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Figure 3.5: a) The energy gap for filling η = 1 and different sized cells and b)the
derivatives dEgap/dU

contribution to the different eigenstates, where |11111111〉 means a state where
every lattice site is occupied with one single atom. As it can be identified in Fig.
3.6 b the |11111111〉-contribution to the groundstate ΨE0 increases for increasing
on-site interaction (blue line). The contribution of the Mott characteristic state
to the higher eigenstates increases first till U ≈ 8J and then it decreases. In
the regime 5 ≤ U/J ≤ 6 it contributes to ΨE8 (magenta line), in the regime
6 ≤ U/J ≤ 7 it contributes to ΨE7 (cyan line), in the regime 7 ≤ U/J ≤ 10
to ΨE4 (red line), and in the regime U/J ≥ 10 it contributes to ΨE1 (green
line). At the crossing point of the energy E4 and E1 the energy gap shows the
kink and for further increasing U/J the contribution of the Mott characteristic
state to the groundstate dominates the contribution of the Mott characteristic
state to the first exited state. In the regime of U/J ≥ 20 it amounts to 90%,
that denotes the crossover to the Mott insulator. For increasing number of sites,
the gap discontinuity becomes significantly smaller; considering that for growing
system sizes the energy splitting gets more and more finely graduated and ends up
in a continuous spectrum for infinite systems in the superfluid regime. Entering
the Mott insulater, the energy gap is given by U . In case of incommensurate
filling, the energy gap in dependence of U/J is depicted in Fig. 3.7 a for a filling of
η = 1.5. It is striking, that there is no kink and after a fast increase of the energy
gap, after U ≈ 10J it remains nearly the same; this means, the derivative is zero
(see Fig. 3.7b). Both is not astonishing, no Mott characteristic state can occur.
The dominating contribution in the Mott insulator is given by the superposition of
|121212〉 and |212121〉. It is clear, that the linear increase of the energy gap in the
Mott insulator regime does not occur because the system stays in the described
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Figure 3.6: a) The energy eigenvalues E0 (blue), E1 (green), E4 (red), E7 (cyan),
and E8 (magenta) for the eight sited cell filled with eight bosons. E2 and E3 (E5

and E6) are degenerated to the energy eigenvalue E1 (E4). At the crossing point
of E4 and E1 the energy gap shows the kink.
b) The contribution of the Mott characteristic |11111111〉-state to the differ-
ent eigenstates. Whereas the superfluid regime is characterized by a ”Mott”-
characteristic state with high energy (E8 → E1), in the Mott insulator this state
becomes the groundstate.

state with eight by eight and four additional particles which fluctuate between the
sites, regardless of the on-site-interaction. Notice, that it is the energy difference,
which is examined, therefore it does not depend on onsite U . Another interesting
case presents the double filled lattice η = 2, Fig. 3.8 displays (a) the energy
gap between the first exited state and the groundstate and (b) the derivative for
the case of twelve particles on six sites. As expected, the crossover regime from
the superfluid to the Mott insulator state starts, compared to the case η = 1,
for larger on-site-interaction. The |222222〉-state provides its largest contribution
to the exited states until U ≈ 16J . For increasing U the |222222〉-state heavily
contributes to the energy ground state, this denoted a macroscopic occupation of
the |222222〉-groundstate beyond U ≈ 17J . This can be identified directly in Fig.
3.8 , where the energygap denotes this transition. Furthermore, it is obvious that
the derivative reaches the constant value 1 for increasing lattice depth at U ≈ 40J .
In case of a double filled lattice, the density of states is much larger and therefore
more fluctuations occur even for increasing U/J , causing the shift of the crossover
to higher lattice depths. In mean-field calculations [26, 76] for a honeycomb lattice
(z = 3) at filling η = 2, the superfluid to Mott insulator transition would emerge
at (U/J)c ≈ 30.
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Figure 3.7: a) The energy gap for nine particles on six sites and b)the derivative
dEgap/dU . In case of incommensurate filling the system can not reach the Mott
insulating phase.
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Figure 3.8: a) The energy gap for twelve particles on six sites and b)the derivative
dEgap/dU . Since for an increasing filling factor, the Mott insulator is reached for
increasing values of U/J , the kink in the energy gap occurs also for increasing
values of U/J .

3.2 Ultracold bosons in honeycomb lattices with sub-
lattices structure

After investigating the basic features of our system, we study the groundstate
of a bipartite honeycomb lattice with a triangular sub-lattice structure and a



variable shift ε between the two sub-lattices (see Fig 3.9 a). This energyshift can
be implemented by a spin depending lattice potential as discussed in Chapter
2.2.2. In this section we use a unit cell of six sites. We only discuss filling with
one kind of bosons and we focus on fillings between η = 0.5 (three bosons) and
η = 2 (twelve bosons). The sub-lattice structure is depicted in Fig. 3.9 b, due
to an energy-shift of ε between the sub-lattices the bosons prefer the energetically
lower sub-lattice in general, until the on-site-interaction U/J is in the order of
ε. At this point an occupation of the energetically higher sub-lattice becomes
also convenient for the system, to avoid on-site interaction. The corresponding
Bose-Hubbard-Hamiltonian can be written as

HBH = − JA
∑

i,j(â
†
i,âj + cc) + UA

2

∑
i n̂i(n̂i, − 1) + ε

∑
i n̂i, (3.8)

where JA is the hopping, UA is the on-site interaction, and ε is the energy shift
between the sub-lattices, see Fig. 3.9 b. The particle number fluctuations in
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Figure 3.9: Shown here is (a) the six site unit cell with σ+ and σ− polarized sites
of the sublattice structure and (b) The Potential of the sub-lattice structure with
an energyshift ε.

the different sub-lattices are a a quantity to measure the localization of the parti-
cles and therefore allows for observing the superfluid to Mott insulator transition
(3.1.1):

〈∆n̂〉2 = 〈n̂2〉 − 〈n̂〉2. (3.9)

The Figures 3.10-3.17 display the particle fluctuations and the occupation number
per lattice site of a one-component Bose gas in a bipartite honeycomb lattice for
different filling factors. On the left side of each figure is the data of the energet-
ically higher sub-lattice (H-sub-lattice) and on the right side is the energetically
lower sub-lattice (L-sub-lattice) displayed. The x-axis denotes U/J , the interac-
tion strength relative to the lattice depth, and the y-axis denotes the energy-shift ε
between the two sub-lattices. Figure 3.10 shows the fluctuations in case of η = 0.5,



i.e. three particles in a lattice of six sites. As discussed in section 3.1.1, such a
system can not form a homogeneous Mott insulator phase. The red area in the
lower left corner indicates a homogeneous superfluid phase over the whole lattice.
For high energy differences and small on-site interaction we note a depopulation
of the higher sublattice and a superfluid phase with ηL = 1, in the energetically
lower sub-lattice. For on-site interaction U/J ≥ 20 and a high energy-shift ε the
energetically lower sub-lattice reaches the Mott insulator phase. For low energy
difference ε and increasing on-site interaction U the particles are delocalized due
to non-integer filling η = 0.5. This understanding is confirmed by the occupation
number, displayed in Figure 3.11. In case of vanishing energy difference the filling
is η = 0.5 in both sublattices. In case of high energy difference, the H-sublattice
is depleted, whereas in the L-sublattice emerge a filling η = 1. Figure 3.12 shows
the particle number fluctuations for a six sited cell at filling η = 1 (six particles
per cell). In both sub-lattices superfluid phase emerge at small energy shifts ε and
small on-site interactions U, the occupation number equals to 1 (see Fig. 3.13.
For an increasing energyshift the H-sublattice is depleted, the occupation number
converge zero. Moreover, a superfluid phase in the energetically lower sub-lattice
with filling ηL = 2, meaning six particles on three sites, can be observed. In-
creasing U/J at large sub-lattice splitting leads to a superfluid to Mott insulator
transition in the energetically lower sub-lattice with ηL = 2. The energetically
higher sub-lattice remains empty in this parameter area. For ε ≈ U , a crossover
regime can be identified where the energetically higher sub-lattice is re-populated
with ηH = 0.5 and ηL = 1.5 in the energetically lower sub-lattice. For U/J >> ε
and ε = 0 we observe both sub-lattices in a homogeneous Mott insulator phase
with ηH = ηL = η = 1 (one particle per site).



H-sub-lattice L-sub-lattice

Figure 3.10: Fluctuations of a one component Bosegas in a bipartite honeycomb
optical lattice for filling-factor η = 0.5. For high energy difference and small U/J
a superfluid phase in the L-sublattice occurred, this is driven to the Mott insulator
with ηL = 1 in the L-lattice for increasing values of U/J . In case of a small energy
difference, no Mott insulator can be reached, due to half filling.

H-sub-lattice L-sub-lattice

Figure 3.11: Occupation of a one component Bosegas in a bipartite honeycomb
optical lattice for filling-factor η = 0.5. In case of high energy difference, the
H-sublattice is depleted. For small on-site interaction a superfluid occurs in the
L-sublattice, that is transferred to the Mott insulator in case of increasing U/J
with filling η = 1. In case of vanishing energy difference the filling is η = 0.5 in
both sublattices.



H-sub-lattice L-sub-lattice

Figure 3.12: Fluctuations of a one component Bosegas for fillingfactor η=1. For
high energy difference and small U/J a superfluid phase in the L-sublattice oc-
curred, this is driven to the Mott insulator in the L-lattice for increasing values
of U/J . For high energy difference the Mott insulator occurs in the L- sublattice
and with filling η = 2. In case of a vanishing energy difference, a Mott insulator
with filling η = 1 emerge in the homogenous lattice.

H-sub-lattice L-sub-lattice

Figure 3.13: The corresponding occupations are shown here for filling-factor η=1.
In case of high energy difference, the H-sublattice is depleted. For small on-site
interaction a superfluid occurs in the L-sublattice, that is transferred to the Mott
insulator in case of increasing U/J with filling ηL = 2. In case of vanishing energy
difference the filling is η = 1 in both sublattices. In this case, for small on-site
U/J a superfluid emerge, this is transferred to the Mott insulator for increasing
U/J .



H-sub-lattice L-sub-lattice

Figure 3.14: Fluctuations of a one component Bosegas in a bipartite honeycomb
optical lattice for filling factor η = 1.5. For high energy difference and small
U/J a superfluid phase in the L-sublattice occurred, this is driven to the Mott
insulator in the L-lattice with ηL = 3 for increasing values of U/J . By lowering the
energy difference and high U/J the H-sublattice is repopulated, a Mott insulator
occurs in the H-sublattice with ηH = 1, three particles on three sites, and in the
L-sublattice with ηL = 2, six particles on three sites. In case of a small energy
difference, no Mott insulator can be reached, due incommensurate filling.

H-sub-lattice L-sub-lattice

Figure 3.15: The corresponding occupations are shown here. For high energy
difference the H-sublattice is depleted and in the L-sublattice every site is in
average occupied by three bosons ηL = 3. Lowering the energy difference, the
H-sublattice is repopulated, two different Mott insulators occur with ηH = 1,
and ηL = 2. In case of a small energy difference, the filling is η = 1.5 in the
homogeneous lattice.



H-sub-lattice L-sub-lattice

Figure 3.16: Fluctuations of a one component Bosegas in a bipartite honeycomb
optical lattice for filling-factor η=2. For high energy difference and small U/J a
superfluid phase in the L-sublattice occurred, this is driven to the Mott insulator
with ηL = 4 for increasing values of U/J , the H-sublattice is empty. Increasing
U/J leads to a repopulation of the H-sublattice with ηH = 1, and a Mott insulator
in the L-lattice with ηL = 3. In case of a vanishing energy difference, a Mott
insulator with filling η = 2 emerge in the homogenous lattice.

H-sub-lattice L-sub-lattice

Figure 3.17: The corresponding occupations are shown here. In case of high
energy difference, the H-sublattice is depleted and the L-sublattice is populated
by 12 bosons, ηL = 4. For small on-site interaction a superfluid occurs in the
L-sublattice, that is transferred to the Mott insulator in case of increasing U/J
with filling η = 4. Increasing U/J leads to a repopulation of the H-sublattice with
ηH = 1, and ηL = 3. In case of vanishing energy difference the filling is η = 2 in
both sublattices.



The non-integer filling of η = 1.5 in Figure 3.14 does not allow a homogeneous Mott
insulator phase of the homogeneous honeycomb lattice. By increasing the energy
difference, the particles move to the energetically lower sub-lattice and depopulate
the energetically higher lattice. For high energy differences and increasing U/J
ratios, the L-lattice does a superfluid to Mott insulator transition, which results
in a filling of ηL = 3. Then, all nine particles have moved to the three sites of the
L-sub-lattice. For further increasing values of U/J a crossover regime is reached,
where the energetically higher sub-lattice is re-populated with ηH = 0.5 and the
filling of the energetically lower lattice reduces to ηL = 2.5 . In case of an increased
U/J ratio a crossover to a Mott insulator phase with ηL = 2 (six particles on three
sites) in the energetically lower sub-lattice and ηH = 1 (three particles on three
sites) in the energetically higher sub-lattice can be observed. For small energy
differences we get a delocalization with η = 1.5 in both sub-lattices due to non
integer fillings. Figure 3.15 shows the occupation number of the L- and the H-
sublattice for a better understanding.
In Fig. 3.16 the filling is double, η = 2. In the lower left corner a superfluid
on the whole honeycomb lattice occurs with η = 2, which means twelve particles
on six sites. With an increasing energy difference ε between the sub-lattices, a
depletion of the energetically higher sub-lattice is emerged and a superfluid phase
with ηL = 4 (twelve particles on three sites) occurs in the energetically lower
sub-lattice, which is driven to the Mott insulator phase for increasing on-site
interaction. Further increasing the U/J ratio leads to a crossover regime with a
repopulation of the energetically higher sub-lattice. Then, the energetically higher
lattice has filling of ηH = 0.5 and the filling of the energetically lower sub-lattice
is reduced to ηL = 3.5, see Fig. 3.17. For increasing U/J , the system is driven
to a Mott-insulating phase with ηL = 3 and ηH = 1, i.e. nine particles are on
the three sites of the L-sub-lattice and three particles are on the three sites of
the H-sub-lattice. After crossing the regime with ηL = 2.5 in the energetically
lower and ηH = 1.5 in the energetically higher sub-lattice, the system changes
to a homogeneous Mott insulator with η = 2, which means twelve particles are
equally distributed on six sites.

3.3 Conclusion

The first part of this chapter focused on basic features of the homogeneous hon-
eycomb lattice with special attention to particle fluctuations, on-site correlations,
and energy gaps, for commensurate and incommensurate fillings. Furthermore,
we investigated the behavior of a system with a triangular sub-lattice structure
for different filling factors. We discussed five different cell sizes at filling η = 1 in
terms of particle fluctuations, on-site correlations and energies. The particle num-
ber fluctuations show a sharper step at the Mott insulator transition regime when
increasing the cell size (see Fig. 3.2 a). This observation is in agreement with
meanfield approximations of the superfluid to Mott insulator transition, which



show a prompt transition at the crossover point and vanishing particle fluctua-
tions. Likewise the particle fluctuations, the on-site correlation are reduced more
strongly, the bigger the corresponding cell is, see Fig. 3.2 b. In doubly filled
systems (for example 16 particles in a eight sited cell), the superfluid to Mott
insulator crossing is shifted to higher values of U/J in agreement with mean-field
calculations [26, 76]. We also investigated the case of incommensurate filling with
η = 1.5, where the redundant particles fluctuate on top of a uniformly insulating
background (see Fig. 3.3). Furthermore, we studied the states of lowest energies
in our finite systems and showed the decrease of the energy gap as the cell becomes
bigger. A clear indication for the superfluid to Mott insulator crossing is the level
crossing of the first exited state and the second exited state around U/J ≈ 10,
where the energy of the ”Mott” characteristic |11111111〉-state decreases. This
can be identified as a kink in the energygap. Simultaneously, the contribution of
the |11111111〉-state in the groundstate increases by more than 50% at U/J ≈ 12.
This could be examined in detail for the eight sited cell. Additionally, we could
identify a regime beyond U/J ≈ 20 where the derivative of the energy gap ar-
rives a constant value 1, which corresponds to a linear increase with U . This
denotes that we can expect our finite system to be in a Mott insulating phase at
U/J ≈ 20. Thus I am able to characterize the superfluid and the Mott insulating
phase. A superfluid phase implies high particle fluctuations (∆n ≥ 0.6), high
on-site correlations (AA-on-site correlations ≥ 0.5), and a ”Mott” characteristic
|11111111〉-state with high energy. The Mott insulater phase implies low particle
fluctuations (∆n ≤ 0.2), low on-site correlations (AA-on-site correlations ≤ 0.1),
and a ”Mott” characteristic |11111111〉-groundstate with exitations linear in U .
In case of the eight sited cell, this criteria leads to the conclusion, that we can
assume a superfluid regime for 0 ≤ U/J ≤ 5, a crossover regime for 5 ≤ U/J ≤ 20,
and a deep Mott insulater for U/J ≥ 20. We will use these limit in the following
chapters. In case of a sub-lattice structure like described in section 3.2, rich phase-
diagrams are derived (see Fig 3.10- Fig 3.17). By changing the ratio of U/ε the
system can be driven in the Mott insulator phase even for incommensurate filling.
In the limit of high a energy difference ε all particles occupy the energetically lower
sublattice with n/2 sites (n being the number of sites) and a filling of 2η. The
other sublattice is empty due to the energyshift, however it will be repopulated
in the case of increasing U/J , since the rate of repopulation depends on U/ε. We
could even archive two different Mott insulators in the lattice simultaneously: In
the energetically lower sublattice a Mott insulator with three bosons per site and
in the energetically higher sublattice a Mott insulator with one boson per site.





Chapter 4

Isomagnetism for bosonic
atoms in the Mott insulator
regime

While I investigated the groundstates and the superfluid to Mott insulator crossover
of a one-component Bose gas in a honeycomb lattice with and without sublattice
structure, in the last chapter, my interest is now focused on a mixture of two
bosonic species, which both are only subjected to the simple honeycomb struc-
ture. This would be valid for two bosons in the mf = 0 state, but in differing
F -states. The situation is shown in Fig. 4.1, where V = VAB denotes the interac-
tion between the different kinds of bosons, U denotes the interaction between two
bosons of the same kind, whereas U = UAA = UBB is chosen to be equal. Also
the hopping J is chosen to be equal (J = JA = JB) for both boson types. This
describe a system, where the scattering amplitude between same kind of atoms is
very similar for both atom sorts, whereas the scattering amplitude between differ-
ent kind of atoms can differ. To investigate finite size effects the system properties

J
UV Figure 4.1: Shown here is the above mentioned situ-

ation, two different kinds of atoms in a simple hon-
eycomb structure with the hopping J = JA = JB,
the interaction U = UAA = UBB and the interaction
V = VAB.

have been calculated on the four, the six, the eight, and the ten sited cell.

51



1 2

1

3

03

3

2

0

0
1 2

65

4

3

7

07

3

6

1

7

0

4

1 2

6

5

4

9

7

3

7

0

8

9

9

3 4

1

0

60

8

a b c d

Figure 4.2: Depicted here are the cells on which the calculations in this chapter
have been performed: a) the four-sited cell b) the six-sited cell c) the eight-sited
cell d) the ten-sited cell. The twelve-sited cell has not been considered in the two
component case, because of the length of the two component basis with 153.165.376
states.

The two-component basis is obtained as a product basis of the basis set for A and
B-bosons:

|Ni〉 = |Ni,A〉 ⊗ |Ni,B〉 . (4.1)

Accordingly the Hamilton matrix has the dimension

D(nAB) = D(nA) ×D(nB), (4.2)

which causes a high numerical effort to evaluate the matrix elements and find the
eigensystem. The following quantities characterize the two-component system:
The different particle occupations

〈n̂i,A〉 = 〈Ψ|n̂A,i|Ψ〉 (4.3)

and

〈n̂i,B〉 = 〈Ψ|n̂B,i|Ψ〉 (4.4)

as well as the density fluctuations,

〈∆n̂A,B〉 =
√
〈(n̂A + n̂B)2〉 − 〈n̂A + n̂B〉2 (4.5)

which will be evaluated in Section 4.1. In case of a two component Bosegas in a
honeycomb structure, it is also an interesting question of how the atoms arrange
themselves in the lattice; is there a special order, in particular is it possible to
identify quantum magnetic phases, like a ferro- or antiferro-magnetic ordering?
A quantum-magnetic correlation function gi,i+1 will be developed to study the
next neighbor ordering in detail in the Mott insulator as well as in the superfluid
phase. In the localized phase with half filling, the atoms are pinned at lattice sites



and one can e.g. distinguish different ordered phases, as depicted in Fig. 4.3, two
atoms in two hyperfine-states in an optical lattice can be mapped onto an effective
spin-system [22, 48]. Boson A corresponds to spin-up (|A〉 → | ↑〉), whereas boson
B corresponds to spin down (|B〉 → | ↓〉). This has been introduced in Section
2.5.1 and is taken up again in Section 4.2. In section 4.2, the magnetic correlations
will be calculated for differing cell sizes by evaluating the respective ground states
derived from the exact diagonalization of the Bose-Hubbard matrix. I will also
discuss the corresponding phase diagram. In section 4.3, the results for different
cell sizes are compared to apprehend finite size effects. By computing different
correlation functions, we can also, get access to the states and correlations and
therefore read out the quantum magnetic ordering, in the superfluid regime. See
chapter 5.

a b

Figure 4.3: (a) A ’ferromagnetic’ groundstate is preferred in case that UAA,BB <
VAB. Due to virtual tunneling, the atoms would, end up in a state where the same
kind of atoms occupy adjoining sites. (b) An antiferromagnetic order evolves, in
case of UAA,BB > VAB. The atoms preferentially occupy on a site next to the
other kind of atoms.

Quantum antiferromagnets are well known and thoroughly investigated also
in condensed matter physics. One can reach the classical ground state of an anti
ferromagnetic phase by dividing the lattice into two sublattices, so that every site
is only neighbored by sites of the other sublattice, this is called bipartite lattice.
The classical ground state would mean all spins with orientation ”up” are arranged
in one sublattice and all spins with orientation ”down” are arranged in the other
sublattice. This classical ground state is also called the ”Néel”-state [53]. Consider
that it is not an eigenstate of the Quantum Hamiltonian, like we will see in the
following.
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Figure 4.4: To compare the particle fluc-
tuations, in case of VAB = UA = UB:

•••• six A-bosons (magenta) or three A-
and three B-bosons (blue dashed)

• nine A-bosons (green) or five A-
and four B-bosons (red dashed)

• twelve A-bosons (cyan) or six A-
and six B-bosons (yellow dashed)

4.1 Fluctuations of a two component Bose-mixture in
a honeycomb lattice

To evaluating the behavior of a mixture of two kinds of bosons and investigate,
(for example the iso-quantum-magnetism in the superfluid and the Mott insulating
phase), we have to modify our operators for the two component case. Due to the
incommensurable filling of one boson sort, the single fluctuations are an insufficient
indicator for the superfluid to Mott insulator crossover. For a two component Bose
gas with half filling for both sorts, the particle fluctuations for each kind of bosons
never fall below ∆n = 0.5. As it is possible to reach an insulating phase by
distributing 4 + 4 particles on eight sites one has to consider a more appropriate
quantity. The density fluctuations can be determined by

〈∆n̂A,B〉 =
√
〈(n̂A + n̂B)2〉 − 〈n̂A + n̂B〉2. (4.6)

This expression counts the fluctuations of each sort, the fluctuations with the same
kind and the ones with the other kind. In Fig. 4.4, the fluctuations for the six
sited cell are evaluated by comparing a one component filling of six A-bosons with
a two component filling of 3 A and 3 B bosons. Obviously, the fluctuations in
both cases are the same, if VAB = UA = UB and JA = JB. Since the basis for a
two-component mixture is a product basis, consisting of the two basis sets for A-
and B- bosons, the number of basis states is much higher. Nevertheless, the count
of the particles is equal and with U = V they can be considered as the same sort,
producing same energies. With respect to the different particles, no ordering is
expected. Quantum magnetism, as described above, requires the distinguishability
of the two kinds of atoms. We choose JA = JB = J and UAA = UBB = U but
VAB 6= U to investigate the occurrence of ferro or anti-ferromagnetic regimes in
the superfluid and the Mott insulator phase. These two phases, the superfluid
and the Mott insulator, can, even in case of a multicomponent Bose-mixture, be
distinguished by their fluctuations (see 3.1.1). In Fig. 4.5, the density fluctuations



∆nAB are shown for the eight sited sized cell, filled with four A- and four B-
bosons for the parameter regime 0 ≤ U ≤ 60J and 0 ≤ VAB ≤ 60J . The density
fluctuations vary from 1 (superfluid regime) to zero (Mott insulator regime). For
U ≥ 7J and VAB ≥ 7J the fluctuations reach less than 50 % which means that
the crossing to the Mott insulator phase is reached. For small values of U and an
increasing V/, it strikes that the fluctuations are significantly higher than in the
regime for small values of V/J and an increasing U/J . This asymmetry is caused
by the different possibilities to build up states in the two limiting regimes. For
small values of U/J and increasing values of V/J states can be build with up to
four A- or B-particles per site. Only the configurations with AB-combinations
are avoided. For small values of V/J and an increasing U/J all configurations
which contain more than one A- (B-) particle per site are obviated. The AB-
combinations are enhanced, but finally there are much more configurations in case
of small U/J and increasing V/J , which effects more fluctuations in this regime.
And something else is standing out: For very small values of U and V/J around
the origin of the graph, very high fluctuations occur in the groundstate. For an
increasing U/J and small values of V/J , the fluctuations decrease, like explained
above, and gradually, all multi AA- or BB-occupied configurations are avoided.
But for small U/J and increasing V/J , the fluctuations are reduced around VAB ≈
5J and then they become stronger again. This is astonishing because an increase
of the interaction normally causes a reduction of the fluctuations. But as we will
further investigate in chapter 5. This regime is characterized by a special behavior.
For a certain value of V/J the reduction of the AB-occupations enhances the AA-
and BB-fluctuations again, the states with four or three A-bosons (B-bosons) per
site are found incrementally in the groundstate, which causes the re-rise of the
density fluctuation for small values of U/J and an increasing V/J .

4.2 Magnetic correlations

In Section 2.5.1, we derived an effective spin-Hamiltonian in second order pertur-
bation theory in the tunneling in the localized phase (J � VAB, UA, UB) [22, 48].
It is given by

Hint = −J
2

2
(

1

U
− 1

VAB
)(σizσ

j
z − σi−σ

j
+ − σi+σ

j
−) (4.7)

In this chapter, we focus on the z- correlations (out of plane correlations), which
are induced by the first part of the effective Spin Hamiltonian. In the regime
U > V � J , the prefactor is positive and an anti ferromagnetic ordering is
expected to minimize the energy. In the regime V > U � J , the prefactor is
negative and we expect ferromagnetic ordering to minimize the energy. Since this
is only valid in case of J � VAB, UA, UB it could not be used in the superfluid and
in the crossover regime. Since my focus is to examine the whole parameter regime
from weak to strong coupling with one single method, I introduced site depending
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Figure 4.5: The density fluctuations of the system ∆nA,B. If the fluc-
tuations are suppressed, the system is in the Mott insulator phase (blue
regime). High fluctuations advert to a superfluid (rainbow colored regime)
for small on-site interaction V/J or U/J .

correlation functions in 2.5.2, which allow insight into the behavior of the system in
the Mott insulator, as well as in the superfluid phase. The normalized correlation
functions for small systems and small particle numbers are given by

gzi,j =
∑
<i,j>

(2n−1
n−1 FM −

2n−1
n AF )

2× (FM +AF )
. (4.8)

With AF being the anti-ferromagnetic part and FM being the ferromagnetic part

|ψ〉 =
∑
N

cN |N〉

AF =
∑
N

|cN |2(ni,A,Nnj,B,N + ni,B,Nnj,A,N ),

FM =
∑
N

|cN |2(ni,A,Nnj,A,N + ni,B,Nnj,B,N )

(4.9)

here, < i, j > stands for all next-neighbor-pairs. Fig. 4.6 shows the phase dia-
gram obtained from the ’magnetic’ correlations and the density fluctuations for



the eight sited cell (see Fig. 4.6), filled with four A- and four B-bosons. The cor-
responding ground states are explained accurately in the next section considering
also the finite-size effects. It is obvious, that we can distinguish several ’magneti-
cally’ ordered states: In the upper left, a regime with ferromagnetic correlations
occur, connected with high density fluctuations. Here we find a supersolid phase
which is investigated further in chapter 5. In the lower right, high particle fluc-
tuations occur too, but the corresponding correlation function shows rather anti
ferromagnetic behavior. This will be also discussed in chapter 5. In the upper
middle, deep in the Mott insulator phase, the correlations are ferromagnetic and
it will be shown within the next section, that this regime is really characterized
by a ferromagnetic ground state. Although the state is influenced by finite size
effects the ferromagnetic correlations can clearly be identified. In contrast, the
regime in the middle right represents the anti-ferromagnetic Mott insulator which,
against all intuition, never reaches a pure Néel state like the one depicted in Fig.
4.3 b. Next neighbor correlations together with density fluctuations are able to
distinguish different regimes in the interaction phase diagram. Properties of the
different ”phases” will be discussed in detail in subsequent sections.
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Figure 4.6: The numerical results of the iso-magnetic z-
correlations as a function of U and V . The sign of gzi,j determine
the magnetic phases, blue, purple, and black denote ferromagnetic
ordering and red and yellow denote anti ferromagnetic ordering.
The different phases like FM MI (ferromagnetic ordered Mott in-
sulator), AFM MI (anti ferromagnetic ordered Mott insulator),
FM SF (ferromagnetic ordered superfluid), AFM SF (antiferro-
magnetic ordered superfluid), and SCF (supercounterflow) will
be discussed in detail in the the next sections.

4.3 Finite size effects

Since my calculations are restricted to small systems, due to the exact diagonal-
ization method, finite size effects are unpreventable. In the following section I will
evaluate these finite size effects for different sized unit-cells with four, six, eight,
and ten sites in detail. In all cases we examine a half filling for each bosonic
species. Generally speaking, for VAB < U a order is favored, where different atom
sorts sitting at adjoining sites, the gi,i+1-correlation function has negative values.
For U < VAB a ferromagnetic ordering is favored. Then the gi,i+1-function has
positive values and the groundstate is dominated by an ordering where adjoined
sites are occupied by the same sort of atoms. It will be shown, that the ferromag-
netic ground state order is explicitly dependent on the size and the geometry of
the cell, which influences the results in the ferromagnetic as well as in the anti-
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Figure 4.7: The phase-diagram in
case of four sites, the sharp transi-
tion is caused by the the small cell
size: There are only a few possi-
bilities to occupy the sites. The
anti-ferromagnetic correlations are
extraordinarily high. In a small
cell with four sites the quantum-
fluctuations are reduced.

ferromagnetic regime. Classically, one would expect an a staggered ground state
independent of the size and geometry of the unit cell in the regime for VAB < U .
But as the quantum fluctuations vary with an increasing number of lattice sites
the ground state varies with the cell size also in the anti-ferromagnetic regime.
Parts of the wavefunction occur where triples or dimers of the same sort of atoms
are embedded in the alternating structure.

4.3.1 The four sited cell

A cell with four sites, as depicted in Fig. 4.9 a, has been introduced in Chapter 3
where it has been shown, that the basic features like fluctuations and ,especially,
the jump in the energy gap are not reflected very well because of the small number
of sites. A similar problem arises considering the ’magnetic behavior’. Regarding
the phase diagram in this case (Fig. 4.7), it stands out, that the transition from
the ferro- to the anti-ferromagnetic regime is very sharp and it is situated along
the straight line U = VAB. In the Mott insulator regime are only six possibilities
to distribute two A- and two B-particles on four sites without a double occupation:
Two times a staggered lattice (see Fig 4.8 a), two times the chains (see Fig 4.8 b),
and two times the dimers (see Fig 4.8 c). Therefore the transition from the ferro- to
the anti-ferromagnetic regime is very sharp. Additionally the anti-ferromagnetic
correlation is much stronger than in cases of increasing number of sites. This is
also caused by the fact, that there are only a few configurations for the atoms to
occupy the sites, and hence much less quantum-fluctuations occur (see Fig. 4.9).
In the case of VAB > U , where gi,i+1 has positive values (red regime), the best
configuration for half filling are chains of A and B-bosons along the zig zag pattern,
see Fig. 4.9 b. Be reminded, that the requirement of zero total polarisation (equal
numbers of A- and B-bosons) does not allow for a single monodomain. In this
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Figure 4.8: Depicted here are the three possibilities in the Mott insulator phase
to distribute two A- and two B-bosons at four sites without a double occupation.
The staggered (a) and the dimers (c) correspond to the anti-ferromagnetic regime,
whereas the chains of A- and B-bosons along the zig-zag pattern (b) correspond
to the ferromagnetic regime.

regime the ground state, deep in the Mott phase is given by the superposition of

|Ψ〉 ≈ 1√
2
|1001〉A |0110〉B +

1√
2
|0110〉A |1001〉B . (4.10)

In the regime VAB < U , where the values of gi,i+1 are negative (blue regime) one
would naively expect an staggered ordered ground state. As this is not possible
due to quantum fluctuations the presence of non staggered parts of the ground
state wavefunction is given by a configuration of dimers (see Fig. 4.8 c) which
are embedded in the alternating structure. As it is shown in Fig. 4.10, this
configuration is important in the anti-ferromagnetic regime, providing nearly half
of the weight of the anti-ferromagnetic wave function. This will be increasingly
important for growing cell sizes. The four sited cell is the only one, where, in the
anti-ferromagnetic Mott insulator phase, the staggered parts of the wavefunction
provide about 50 %. This contribution decreases for increasing lattice cells. This
all shows that the four sited cell reflects insufficiently the behavior of a big sample.
Keep in mind that these contributions only consider states with single occupied
sites, which means this results are not valid in the superfluid regime.

4.3.2 The six sited cell

The six sited cell (see Fig. 4.12 a) has to be considered separately. Here two
special features occur because of its special geometry. First, it is not possible
to cluster more than three atoms in a chain. Second, occupation with dimers is
also impossible because of the odd particle number (three A- and three B-atoms).
Due to this properties some abnormalities occur in the gi,i+1-correlation diagram
(see Fig. 4.11). Overall, the ferromagnetic correlations are smaller, than for any



0

1 2

3

3

3

2

1

0

0

a b

Figure 4.9: Shown here is the unit cell with four sites with its nearest next
neighbors (a) and the lattice configuration in the ferromagnetic ’phase’ (b).

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

U/ J

c2

 

 

c
staggerd

c
dimers

c
chains

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

V/ J

c2

 

 

c
staggerd

c
dimers

c
chains

a b

Figure 4.10: (a) Shown here are the weights of the different contributions to the
wavefunction of the four sited cell during the transition to the anti-ferromagnetic
Mott insulator for VAB = 20J , (b) and to the ferro-magnetic Mott insulator for
U = 20J . As one can easily see, the contributions with dimers are very impor-
tant in the anti-ferromagnetic regime, in ferromagnetic regime the groundstate is
mainly given by the ferromagnetically ordered chains.
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Figure 4.11: The phase-diagram in
case of six sites. It is striking
that there are ferromagnetic correla-
tions in the regime for VAB << U
and anti-ferromagnetic correlations
in the regime U << VAB. This oc-
curs due to the special geometry and
the filling with three A- and three B-
bosons.

other cell size. This is caused by the triple structure. In the ferromagnetic regime
(Vab > U), a configuration is favored where the atoms arranged in triples of the
same sorts as the best ferromagnetic configuration in this parameter regime and
half filling. This is depicted in Fig. 4.12 b. The six sited cell is the smallest
one, which build laminar domains of A- and B- bosons, see Fig 4.11 a and Fig.
4.13 b. The ratio of the lengths of the domain wall and the domain bulk is so
huge, that the anti ferromagnetic correlations overbalance the ferromagnetic cor-
relations. Therefore, in average, the triple structure provides more next neighbors
of the other particle sort, than of its own sort. Two A-bosons are doubly neigh-
bored by B-bosons and single neighbored by their own kind (A-boson). Only one
A-boson is double neighbored by A-bosons and single neighbored by B-boson and
vice versa. In case of a pure domain structure, the correlations are FM= 8

3 and
AF= 10

3 , normalized this gives a z-correlation of gzi,j ≈ 0.093, which fits well to
the numerical results. Beneath the overall small ferromagnetic correlations in the
Mott insulator, also the correlations in the superfluid regime are particular. In
the ferromagnetic correlated superfluid, for U = 0 and V > 2J , the next-neighbor
correlations are rather anti-ferromagnetic and in the anti-ferromagnetic correlated
superfluid, for V < 3J and U > 2, the next-neighbor correlations are rather fer-
romagnetic. One has to remind, that in the superfluid regime configurations with
multi occupied sites are favored. For small U/J , atoms of the same kind favor
to sit on the same site, but this contributions will not be counted within the
next-neighbor correlations, although this would mean a ferromagnetic correlated
superfluid. In almost the same manner, the correlations in the superfluid regime
for small V neglect the AB-onsite correlations. This onsite correlations will be
evaluated in the case of an eight sited cell in chapter 5. The anti-ferromagnetic
correlations in the ferromagnetic regime appear due to the fact, that no chains
can be build. Therefore ferromagnetic correlations are missing to compensate the
reduction caused by multi-occupied sites, which are not ”counted” to be ferromag-
netic. In the other regime, ferromagnetic in the anti-ferromagnetic regime one



has to consider that it is not possible to have dimers of A- and B-atoms. It will
be shown in the next subsection (eight sited cell) that this contribution is very
important in the antiferromagnetic regime (see Fig. 4.16 a). The groundstate in
the anti-ferromagnetic regime in a cell with six sites consists only of the triple
and the staggered structure (see Fig. 4.13 a), whereas the staggered structure is
turned into the triple one by one single flip-flop jump in the case of a six sited
cell. At least, this explains the high occupation of the triple order even in the
anti-ferromagnetic case as well as the low ferromagnetic correlations in the regime
of VAB > U . The contribution of the domain structure to the groundstate in the
deep ferromagnetic Mott insulator amounts to 95% (see Fig. 4.13).
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Figure 4.12: The six sited unit-cell (a) and the special triple order in the ferro-
magnetic ’phase’ (b). In this triple order, the neighboring sites are, on average,
rather occupied with the other atoms of the other kind and it is reached from the
staggered order by one single flip-flop jump. This explains the high occurrence
of this state even in the antiferromagnetic regime (see Fig. 4.13) and the weak
ferromagnetic correlations in the regime for VAB > U
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Figure 4.13: Shown here are the weights of the different contributions to the
wavefunction in the antiferromagnetic regime for increasing values of U and VAB =
20J . These contributions are given by the staggered structure and the triple
structure (a). Depicted in (b) are the weights of the different contributions to
the wavefunction in the ferromagnetic regime for increasing V and U = 20J . It
can easily be seen, that the triple structure provides a contribution to the deep
anti ferromagnetic regime, as well as to the ferromagnetic regime. It is highly
noticeable that the sum of both weights stays much smaller than 1 in the superfluid.
This means, that in this regime other contributions, namely multi occupied states,
dominate the wave function, see chapter 5.



4.3.3 The eight sited cell

The cell with eight sites has been evaluated more deeply, being a reasonable com-
promise between the cell size and numerical effort. On the one hand, the eight
sited cell gives feasible results, since the finite size effects decrease and, unlike the
six sited cell, no special geometrical issues occur. On the other hand, the system
has a reasonable basis size of dimension d = 108900.
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sited cell. The light colored stripes for small V
and increasing values of U and for small U and
increasing values of V are caused by the high on-
site correlations in this superfluid regime. The
multiple occupation of one site reduces the site
to site correlations. This feature will be picked
up in the discussion of the correlations in the
superfluid regime, and we will get access to the
configuration in this regime by other correlation
functions.

Shown in Fig 4.14 are the nearest neighbor z-correlations for the eight sited cell.
It shows high ferromagnetic correlations in the regime V > U as one would expect
and anti ferromagnetic correlations in the regime U > V . In contrast to the six
sited cell no abnormalities occur due to the geometry, which allows to build larger
domains (chains), like we will see in the following. In the ferromagnetic regime
(Vab > U) a configuration is favored where the atoms are arranged in chains, along
the three cristallographic axes (see Fig. 4.15). A real phase separation in laminar
domains is not yet possible, because the cell is to small. However, these three
kinds of chains along the different axes represent a separation into two distinct
domains. The corresponding contributions of these states to the groundstate in
the ferromagnetic regime is depicted in Fig. 4.16 b. They tend to nearly one in
the deep Mott insulator phase. The anti-ferromagnetic order consists not only
of the staggered ordered groundstate, but also of an admixture of dimers and
triples. The different contributions to the groundstate wavefunction in the anti-
ferromagnetic regime is shown in Fig. 4.16 a. It seems astonishing, that the
structure which includes triples of same atoms the ”claw”-ordering, provides the
highest contribution to the wavefunction in the anti ferromagnetic regime. This
can be explained by Fig. 4.17 a,b, and c. By one single flip-flop hopping the dimer
structure and the staggered structure is transferred to the ”claw”-structure. In the
anti ferromagnetic regime, the prefactor is negative, therefore a flip-flop hopping
lowers the energy. That is the reason for the ground-state structure, consisting of
a staggered contribution, the dimers, and the ”claw”-structure. In chapter 5.2.1
it will be shown, that for this groundstate the next neighbor in-plane correlations
are maximal, revealing an in-plane state. It has to be considered, that there are
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Figure 4.15: The unit-cell with eight sites (a) and two of three possible lattice
configurations in the ferromagnetic regime (b). The chains of A- and B- bosons
along the three axes denote a spatial separation in A- and B-areas for increasing
cell sizes.
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Figure 4.16: Shown here are the weights of the different contributions to the
wavefunction in the antiferromagnetic regime for VAB = 20J (a), and in the ferro-
magnetic regime for (U = 20J) where the contribution of the chains tend to more
than 90% (b). Keep in mind, that this contributions only consider states with
single occupied sites, what means, this is not valid in the superfluid regime.



six possibilities to build the chains in the ferromagnetic regime. 24 possibilities
to build the ”claw”-configuration with triples and alternating areas. And six
possibilities to build up dimers and two of a pure staggered structure. Additionally
there are also contributions of four atoms in a chain, called the ”bowl” (see Fig.
4.17 d) or four atoms ordered like stars, ”stars” (see Fig. 4.17 e), and even a
small contribution of chains in the anti-ferromagnetic regime occur (see Fig. 4.17
f). This three additional parts supply the missing 20% of the contribution to
the groundstate wave function (Fig 4.16 a). Shown in Fig. 4.18 are all important
contributions during the crossing from the anti ferromagnetic to the ferromagnetic
regime in the Mott insulator phase (see Fig. 4.18 a) and in the crossover from the
ferromagnetic to the anti-ferromagnetic regime (see Fig. 4.18 b). As described
above, it is obvious, that the ferromagnetic order is robust in contrast to the anti
ferromagnetic order, which always contains ferromagnetic contributions. For an
eight-site unit-cell the number of possibilities to occupy the sites increases again,
therefore more quantum-fluctuations are generated and the heights of the anti-
ferromagnetic correlations decrease compared to the four sited cell.
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Figure 4.17: Depicted here are the admixtures to the groundstate in the anti-
ferromagnetic regime in case of eight sites in the cell: a) staggered, b) dimers,
c) claws, d) bowls , e) stars, and f) chains. Like depicted by circles and arrows,
one single flip-flop- hopping transfers the staggered- or the dimer-structure in the
claw-structure, which provides the highest contribution to the wavefunction in the
antiferromagnetic regime. This is consistent with an in-plane state, which includes
many contributions linked by one AB flip-flop. (see Fig. 4.16 a).
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Figure 4.18: Depicted here are the different contributions to the groundstate for
VAB : 0...60J and U = 30J (a) and the corresponding contributions for U : 0...60J
and VAB = 30J (b). The ferromagnetic groundstate is dominated by the chain
formation. Whereas the anti-ferromagnetic groundstate never assume a Neél-state,
see Fig. 4.17.



4.3.4 The ten sited cell

In the case of ten sites per unit cell the phase-diagram looks similar to the one of
the eight sited cell, but with stronger correlations and a reduce of finite size effects.
The influence of the quantum fluctuations in the anti-ferromagnetic regime is
stabilized, this is reflected by an enhancement of the anti-ferromagnetic correlation,
see Fig. 4.19. Giving attribute to the computational effort, the calculations are
performed with a truncated basis including only those Fock states with a maximum
of two atoms of the same sort per site. This specifically enhances the ferromagnetic
correlation for U = 0 and increasing values of V . Since states with more than 2
atoms of one kind per site are forbidden the site-to-site correlation are higher in
the feromagnetic superfluid regime. Consequently, the correlations deep in the
Mott insulator regime (U/J > 15) are authentic, where higher occupations of
one site are avoided by high on-site interaction anyway. The absence of the light
colored stripe in case of U = 0 is noticeable. In case of small V and increasing
U , which allows one A- and one B-atom per site, this is not the case. The light
colored stripe, which arises due to multi occupied sites, is visible. The on site
correlations, which examine the physics in this superfluid regime will be discussed
in the next chapter.
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Figure 4.19: The phase-diagram in the
case of ten sites. The magnetic corre-
lations become stronger again and the
transition from the ferro- to the anti-
ferromagnetic regime is pinched com-
pared to the eight sited cell. In the
regime for small U and increasing V
there is no light colored stripe because
multi-occupied sites are avoided by a
truncated basis.

For the ten-site sized unit cell a real separation of the two sorts of atoms can be
observed (connected areas of A- and areas of B-atoms occur, see Fig. 4.20). In con-
trast to the eight sited cell the transition from the ferro- to the anti-ferromagnetic
regime is more restricted towards the U = V -line. This could not be caused by
the truncated basis, considering, that in the crossover to the Mott insulator phase
higher occupations are rather avoided. Therefore, we could assume, that for in-
creasing cell sizes the transition from the ferromagnetic to the anti-ferromagnetic
regime will become sharper and quantum-fluctuations in the anti-ferromagnetic
regime will be stabilized.
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Figure 4.20: The unit unit-cell with ten sites (a) and the configurations in the fer-
romagnetic regime (b). The ten sited cell is the first one with an areal separation
of A- and B-atoms.

For further increasing cell sizes, in the ferromagnetic regime a spatial separation
of A- and B- atoms will occur for every cell size and the size of the domain
will increase. The ratio between domain wall and domain bulk in contrast will
become smaller what enhances the ferromagnetic correlations. Additionally it
must be considered, that the correlation function 4.8 only include next neighbor
correlations. If more than one atom occupy a site, in the superfluid regime, states
with two or more atoms of the same sort (or different sorts) at one site would
rather indicate ferromagnetic (anti-ferromagnetic) z-correlations. These on-site
correlations are not considered within our correlation function, it will be disscussed
in Chapter 5.

4.4 Conclusions

In Chapter 4 I investigated the short ranged ’magnetic z-correlations’ of the hon-
eycomb lattice filled with two sorts of bosons. In the limit of of U, VAB >> J
the system has been mapped onto a spin-1

2 -system in second-order perturbation
theory in the tunneling. As this is only valid in the deep Mott phase, I developed a
’magnetic’ correlation function for finite sized systems which can be applied to the
whole parameter regime. After an examination of the fluctuations of a Bose-Bose
mixture in an eight sited cell to determine the superfluid and the Mott insulating
regimes a phase-diagram was presented. I identified ferro- and anti-ferromagnetic
regimes in the Mott insulator as well as ferro- and anti-ferromagnetic correlations
in the superfluid phase, which will be investigated in more detail in the next
chapter. Furthermore I focused on finite size effects, by evaluating the ’magnetic’
correlations for different sized unit cells: the four, the six, the eight sited, and



the ten sited sized cell. I found, that there is a ferromagnetic ground state for
VAB < U which depends on the cell size but is robust against increasing cell sizes
and represents clearly the ferromagnetic regime with a domain structure. In the
case of the four sited cell and the eight sited cell, the A- and B-bosons are arranged
in chains along the different axes. Cells with six sites are the first one which allow
the creation of closed domains of one particle sort. Due to the huge ratio between
domain wall and domain bulk the ferromagnetic correlations are very small. In
case of the ten sited cell, the ratio of domain wall and bulk increases, therefore
high ferromagnetic correlations arise. The anti-ferromagnetic groundstate in con-
trast is not staggered (there is no Neél-state as a ground state) but always contains
claws, dimers, bowls, or stars of the same sort which are embedded in the stag-
gered pattern. This is caused by quantum fluctuations which also depend on the
size of the considered cell and it is consistent with the theoretical predictions, e.g.
[53]. For increasing cell sizes with ten or more sites the growth of the quantum
fluctuations seems to be stabilized and the transition between the two ’magnetic’
regimes is pinched to the VAB ≈ U -line.





Chapter 5

Unconventional magnetic order
in the Superfluid regime

The results of this chapter have been achieved in collaboration with M. Prada [63].
In the previous chapter I analyzed the phase diagram distinguishing the ferro- and
anti-ferromagnetic z-correlations in the Mott insulator phase and could identify
a correlated superfluid. In this chapter we will evaluate this superfluid regime,
expecting a phase, which is characterized by the co-existence of the off-diagonal-
long-range superfluid order and a solid order, what means a density imbalance,
i.e. a supersolid (2.7). Compared to the investigations in the previous chapter,
two characteristics have to be considered. First, multiple occupied states are not
considered sufficiently in the nearest-neighbor correlation function, although they
play a key role in the regime for small V or small U . Second, in a homogeneous
honeycomb lattice filled with A- and B-bosons (ηA = 0.5 and ηB = 0.5), the
average fillings per site are n̄A = 0.5 and n̄B = 0.5, in this case the population
imbalance from site to site vanishes in every case, due to the high symmetry
of the system. In experiments which deal with huge systems in contrast to our
eight or ten sited cell, a spontaneous symmetry break can easily be done. Even
in a mean-field approach, the symmetry break is given by dealing with a non-
linear differential equation where the nonlinear part is just given by the density
of the system. In contrast, by performing exact diagonalization we do not have
a spontaneous symmetry break. Apparently the density is not a good quantity
to analyze superfluid states, therefore we investigate the magnetic ordering in the
superfluid phase by means of different inter-site correlation functions which we
define below.

5.1 Distance-correlation functions

To investigate the iso spin correlations in the superfluid regime, I introduce dis-
tance correlation functions, which do not refer to a special site, but only consider
the distance, i.e. the number of sites between two bosons. Therefore the symmetry
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becomes irrelevant and we understand how the atoms arrange themselves due to
the interaction. The correlation functions can be defined in terms of the general
pair-correlation function:

gαβi,j =
〈

Ψ|a†i,αa
†
j,βaj,βai,α|Ψ

〉
. (5.1)

The lattice indizes are i and j and α and β are the particle sorts. To consider
the weights, the correlation functions are normalized. N is given by the number
of sites in the cell. NA and NB gives the number of A- respectively B-particles
in the cell. For different particles and different lattice sites we could derive the
pair correlation-functions for first nearest neighbor (NN), second NN and third
NN (j = i+ 1, j = i+ 2 and j = i+ 3) as:

gαβi,j =
〈

Ψ|a†i,αai,αa
†
j,βaj,β|Ψ

〉
=
〈
nαi n

β
j

〉
(5.2)

gABi,i+1 =
N2

NANB

〈
nAi n

B
i+1

〉
gABi,i+2 =

N2

NANB

〈
nAi n

B
i+2

〉
gABi,i+3 =

N2

NANB

〈
nAi n

B
i+3

〉
.

Figure 5.1: This picture shows the first
next neighbor correlations. The gi,i+1 is
unequal to zero, if the considered site i
and the nearest neighbored site i+ 1 is
occupied by a particle. There are three
sites for every site which contribute to
gi,i+1-correlations.

For same kind of atoms but different lattice sites, the corresponding pair
correlation-function e.g. for boson A are given by:

gAAi,i+1 =
N2

NA(NA − 1)

〈
nAi n

A
i+1

〉
see Fig 5.1

gAAi,i+2 =
N2

NA(NA − 1)

〈
nAi n

A
i+2

〉
see Fig 5.2

gAAi,i+3 =
N2

NA(NA − 1)

〈
nAi n

A
i+3

〉
see Fig 5.3

(5.3)



Figure 5.2: This situation visualize sec-
ond nearest neighbor correlations. The
gi,i+2- correlation would be unequal to
zero if the considered site i and a site
i+2, which is two sites away, is occu-
pied by a particle. In this case (a
cell with eight sites) there are also
three possibilities which sites give gi,i+2-
contributions.

Figure 5.3: Depicted here is the sit-
uation which gives gi,i+3-contributions.
The considered site is three sites away.
In every cell and for every site there
is only one site which produce gi,i+3-
correlations. Keep in mind that in the
eight sited cell the most possible dis-
tance is three sites.

If we consider on-site-correlation functions we end up with:

gAAi,i =
N2

NA(NA − 1)

〈
nAi (nAi − 1)

〉
see Fig 5.4

gABi,i =
N2

NANB

〈
nAi n

B
i

〉
(5.4)

For a better understanding the considered situations are illustrated in Fig. 5.1 -

Figure 5.4: : Shown here is what is
meant by a distance of zero. The on-
site correlation gii is unequal zero, if
the considered site is occupied by more
than one particle. There is one site,
which gives on-site correlations: only
the site itself.

Fig. 5.4.



5.2 Magnetic order in the superfluid phase

In the following chapter we will analyze the structure of the two special regimes
in the superfluid phase, within the framework of distance correlation functions.
In Fig. 5.5 the density fluctuations (a) and the z-correlations (b) are shown.

a b

Figure 5.5: (a) Shown here are the fluctuations to illustrate the superfluid to
Mott insulator transition. The deep blue colored regime corresponds to the Mott
insulator (∆n ≤ 0.2) and rainbow colored regime correspond to the superfluid
phase. (b) Shown here are the easy-axis pair (z)-correlations for nearest neighbors
which give a phasediagram we will fully examine in this chapter. As mentioned
above, we do not attempt to determine a sharp well-defined boundary between
the phases, as we are computationally limited to small systems.

The ferromagnetic regime in the Mott insulator phase is dominated by strong z-
correlations (see section 4.3.3), the black colored area in the phasediagram. The
configurations of the groundstate are given by chains of A- and B-atoms. In
the anti ferromagnetic Mott insulator-regime the z-correlations are comparatively
weak but negative, which means antiferromagnetic ordering (see section 4.3.3),
corresponding to the yellow colored area in the phasediagram. In the regime for
small on-site interaction V and strong on-site U we identify a superfluid phase with
rather antiferromagnetic correlations, regime I in Fig. 5.5 b. I will demonstrate
an in-plane correlated state implying superfluid counterflow. In this regime two
structures of A- and B-atoms can build an anti-ferromagnetic correlated superfluid,
but with small AA- and BB-fluctuations. This will be discussed in section 5.2.1.
In contrast in the ferromagnetic correlated superfluid, for small onsite U and
increasing onsite V (the purple area) a supersolid phase is identified, regime II in
Fig. 5.5 b. This will be discussed in section 5.2.2. By applying a spin-depending
lattice potential we break the symmetry in order to suggest an experimental setup,



to detect a supersolid signal, see section 5.2.3. In section 5.2.4, finite size effects
are discriminated by calculating the in- and out-of-plane correlations for a ten

sited cell. The in-plane-correlations (x-y) correlations (G
||
ij) for different distances

have been computed by M. Prada. They are given by a superposition of two
bosonic atom sorts with the iso spin | ↑> (boson A) and | ↓> (boson B) in site
i and j. Considering the effective Hamiltonian for the Mott insulator regime,
derived in section 2.5.1, the in-plane-correlations are given by the second part of
the Hamiltonian:

Hint =
∑
〈i,j〉

Tij ~Si~Sj

=
∑
〈i,j〉

E
′′
(σizσ

j
z − (σi−σ

j
+ + σi+σ

j
−))

E
′′

=− J2

2
(

1

U
− 1

VAB
)

(5.5)

The correlations can be calculated by

G|| =
1

Ωn

∑
<ij>n

g
||
ij =

1

Ωn

∑
<ij>n

〈
Ŝi+Ŝ

j
− + Ŝi−Ŝ

j
+

〉
(5.6)

with

Ŝi± = Ŝix ± iŜiy, Ŝi+ = â†i b̂i and Ŝi− = b̂†i âi
(5.7)

and Ωn being the normalization factor,

Ωn = ηn
(nA + nB)

2
. (5.8)

ηn is the number of the n-th next neighbor and the sum performed for all n-th
next neighbors. For a better understanding, the ”flip-flop” operator, which is used
to calculate the in-plane correlations is explained in the following, restricted to
single occupied sites. The ”flip-flop” operator Ŝi+Ŝ

j
− is not diagonal in the basis

of number states, in contrast to the z-correlation operator, I used in the previous
Chapter. But if a state is given by a superposition of e.g. two number states like

|Ψ〉 = α |a〉+ β |b〉 (5.9)

with

|a〉 = |..., Bi, ..., Aj , ...〉 and |b〉 = |..., Ai, ..., Bj , ...〉 ,
(5.10)

on obtain for the ”flip-flop” operator Ŝi+Ŝ
j
− employed on |b〉 and |a〉

Ŝi+Ŝ
j
− |a〉 = |b〉 and Ŝi+Ŝ

j
− |b〉 = 0,



(5.11)

and for the ”flip-flop” operator Ŝi−Ŝ
j
+ employed on |a〉 and |b〉

Ŝi−Ŝ
j
+ |a〉 = 0 and Ŝi−Ŝ

j
+ |b〉 = |a〉 .

(5.12)

Therefore the expectation value
〈
Ŝi+Ŝ

j
−

〉
is given by:

〈
Ψ|Ŝi+Ŝ

j
−|ψ

〉
= α∗β 〈a|

=0︷ ︸︸ ︷
Ŝi+Ŝ

j
− |b〉+β∗α 〈b|

|b〉︷ ︸︸ ︷
Ŝi+Ŝ

j
− |a〉 (5.13)

+|α|2 〈a| Ŝi+Ŝ
j
− |a〉︸ ︷︷ ︸

=0

+|β|2 〈b| Ŝi+Ŝ
j
− |b〉︸ ︷︷ ︸

=0

= β∗α

The expectation value in case of
〈
Ŝi+Ŝ

j
− + Ŝi−Ŝ

j
+

〉
then is given by〈

Ψ|Ŝi+Ŝ
j
− + Ŝi−Ŝ

j
+|ψ

〉
= β∗α+ α∗β (5.14)

This implies, that a groundstate which consist mainly of superpositions of states
which are linked by one A − B flip-flop between site i and j produce a large
contribution to the in-plane correlation function, and the iso spin lies mostly in
plane. The out-of-plane correlations for different next neighbors are given by the
z-correlations, derived in section 5.1. This z-correlations will be evaluate in the
following. Afterwards the in-plane correlations will be analyzed. Shown in Fig.
5.6 - Fig. 5.8 is the z-component of the correlation functions for the first, the
second and the third nearest neighbor.

Figure 5.6: Shown here is the gzi,i+1. The
nearest next neighbor z-correlations are
definitely large and positive in the regime
of small on-site U and increasing V . This
indicates a ferromagnetic order in respect
to the nearest next neighbor. In the
regime for V ≈ 0 and strong U , gzi,i+1 ≈ 0,
this implies the entanglement of different
iso spins at one site.

In the regime V >> U the easy axis component of the nearest neighbor correlations
(see Fig. 5.6) is very large, therefore neighboring sites are dominantly occupied by
the same sort of atoms. Apart from that, the on site square of the z spin compo-
nent has its maximum value, indicating multiple occupation, (see Fig. 5.12). In



Figure 5.7: Shown here are the z-
correlations for the second next neighbor,
this correlation is smaller than zero
in the regime of small on-site U and
increasing V , since this neighboring sites
are dominantly occupied with the other
atom sort. In the regime J � V < U
(blue region) the groundstate is rather
ordered anti ferromagnetic, see 4.3.3.

the Mott insulator regime for J � U < V (black regime) chains of one particle
sort arises, which enhances the ferromagnetic first-NN-correlations. Contrary the
second and third next neighbor correlations become negative, gzi,i+2 ≈ −0.35 and
gzi,i+3 ≈ −0.8 in the regime of small on-site U and increasing V , since this neigh-
boring sites are dominantly occupied with the other atom sort, (see Fig. 5.7- Fig.
5.8). This is consistent with the supersolid state I identified in this regime, since
the second but especially the third next neighbor is occupied by the other atom
sort, which is in contrast to the on-site and the nearest neighbor. In the Mott
insulator regime the second and the third neighbor z-correlation function is also
anti ferromagnetic, because in the chain formation the second and the third neigh-
bor is rather from the other kind of boson. In case of U ≈ V the z-correlations
are zero, because the ferromagnetic and anti ferromagnetic contributions are equal
and cancel each other. In the regime J � V < U (blue region) the groundstate
is rather ordered anti ferromagnetic, see chapter 4.3.3, therefore the second next
neighbor is rather from the same kind. Considering the third next neighbor cor-
relations in the regime J � V < U (light blue region) the correlation are very
low but also positive, keep in mind that in the anti ferromagnetic Mott insulator
regime the dimer- and the claw-structure provide the highest contribution to the
groundstate. Hence in the average the probability, that the third next neighbor is
from the same kind is a bit enhanced. In the upper left of Fig. 5.8 the anomalous
region can be identified, the gzi,i+3 peaks in this regime were the supersolid can be
identified. For further investigation we also consider the in-plane correlations for
all n-th next neighbors, see Fig. 5.9 - Fig 5.11. In the lower right of Fig. 5.9 (green
regime) an SCF phase can be identified, I discuss in the next section. The second
and the third next neighbor in-plane correlations in the superfluid regime in case
of V << U (red region in the lower right) and even the first neighbor in-plane
correlations (yellow regime in the lower right) implies an entanglement of different
iso spins at one site and next neighbored empty sites, see Fig. 5.10 and Fig. 5.11.
Since the flip-flop between an empty site and an empty site, an empty site and a
single or a double occupied site gives zero, the in-plane component is reduced to



Figure 5.8: Shown here are the z-
correlations for the third next neighbor,
this correlation is negative but strong in
the regime of small on-site U and increas-
ing V , since the third next neighbored
sites are dominantly occupied with the
other atom sort, this is connected to a
supersolid state, I evaluate in detail in
this section.

Figure 5.9: Shown here are the in plane
correlations for the first nearest neighbor.
In the lower right, we can confirm an easy
plane state with in-plane FM ordering,
see 5.2.1, which lowers the next neighbor
in plane correlations. In the regime, in
the regime V ≈ U A and B particles are
indistinguishable.

Figure 5.10: Shown here are the in-plane
correlations for the second nearest neigh-
bor, similar to the first next neighbor
correlations. In the regime, where the
supersolid is expected (in the upper left),

the g
||
i,i+2 shows a peak. The red region in

the lower right implies an entanglement
of different iso spins at one site and next
neighbored empty sites.

Figure 5.11: Shown here are the in-plane
correlations for the third nearest neighbor.
In the regime, where the supersolid is

expected (in the upper left), the g
||
i,i+3

particularly peaks, this peak is also repro-
duced in the gzi,i+3. The red region in the
lower right indicates an entanglement of
different iso spins at one site.



minimum. In the regime U ≈ V , A and B particles are indistinguishable. The
high in-plane correlations here imply that the system seems to contain only ”one”
particle sort. In the regime of V > U the in-plane correlations in respect to the
first and the second next neighbor are reduced to minimum by a ferromagnetic
order. In the upper left we can denote for the first, the second and particularly
for the third next neighbor correlation function an anomalous region, where es-

pecially the g
||
i,i+3 peaks, see Fig. 5.11. This feature is reproduced in the gzi,i+3

(yellow regime) in Fig. 5.8. This is an indication of the supersolid structure I will
discuss in the following.

5.2.1 The anti-ferromagnetic correlated regime

In the regime of V/J ≤ 7 and increasing U ≥ 20 the nearest neighbor in-plane
correlations amounts to 0.5 of the absolute value. By further decreasing V/J and
U/J ≥ 40, the in-plane correlations of the second and the third next neighbor are
reduced to less than 0.3 of the maximum, this implies an entanglement of different
kind of bosons in one site i and an empty site j, since a flip-flop expectation value
between site i and j which includes one empty site give a result equal to zero.
Also the light red colored stripe in the Gzij for small V/J and increasing U/J is an
indication for this entangled state. To investigate this further, the on-site-square
of the spin components has been computed by M. Prada. In Fig. 5.12 a, is shown

the on-site square of the z component
〈
Ŝ2
z

〉
, in b) the on-site square of the in-plane

component is shown
〈
Ŝ2
||

〉
with

〈
Ŝ2
||

〉
≡

∑
i

〈
(Ŝix)2 + (Ŝiy)

2
〉

N
(5.15)

and 〈
Ŝ2
z

〉
≡

∑
i

〈
(Ŝiz)

2
〉

N
. (5.16)

The on-site square of the z-component achieves its largest value in the regime of
V >> U and U < 7 J which is consistent with the occurrence of the superfluid-
phase. In this regime, double occupancies are allowed and, in the ferromagnetic
regime, where same sorts of atoms occupy one site, a large on-site spin-component
out of plane is produced. In the regime for small V/J and increasing U/J the on-
site square of the z-component is minimized. In contrast the in-plane-component

reaches the largest value
〈
Ŝ2
||

〉
= 3

4 for U >> V and V < 2 J .

For V/J = 0 we identify a phase, where the different iso-spins build superposi-
tions at one lattice site, an easy-plane state with in-plane ferromagnetic ordering.
Therefore the square of the on-site in-plane spin component has its maximum
value. This regime is the black region in the on-site square of the easy-plane spin
component (see Fig. 5.12 b).



σ||
2

σz
2

0

3/4

20 40 4020

b.

20

40

1/2

a.

1/4

1/2

U/J

20

40

V
/J

U/J

V
/J

SCF

a b

Figure 5.12: Shown here is the on-site square of the a) z-component and b) the
in-plane component. The on-site square of the in-plane-component reaches the
maximum for V << U , this is the entangled state for AB-pairs on one site. The
out of plane-component reaches the maximum in the regime U << V where the
same sorts of atoms rather occupy one site. This is connected to a supersolid
phase we will investigate in the next section.

Since the in-plane next neighbor correlations are reduced in this regime (see Fig.
5.9, yellow regime), this implies a phase, with a huge contribution of an AB-
occupied site which is next neighbored to a site which is rather not occupied. The

g
||
i,i+2 and the g

||
i,i+3 are reduced to minimum (see Fig. 5.10 and Fig. 5.11, the

red regions in the lower right) which also indicate this phase with entangled and
empty sites. If a huge contribution of the ground state includes empty sites, the〈
Ŝi+Ŝ

j
−

〉
is reduced since

Ŝi+Ŝ
j
−

∣∣∣∣∣∣...., 0︸︷︷︸
i

, ...., AB︸︷︷︸
j

, ...

〉
= 0 and Ŝi+Ŝ

j
−

∣∣∣∣∣∣...., AB︸︷︷︸
i

, ...., 0︸︷︷︸
j

, ...

〉
= 0,

as well as

Ŝi−Ŝ
j
+

∣∣∣∣∣∣...., 0︸︷︷︸
i

, ...., AB︸︷︷︸
j

, ...

〉
= 0 and Ŝi+Ŝ

j
−

∣∣∣∣∣∣...., AB︸︷︷︸
i

, ...., 0︸︷︷︸
j

, ...

〉
= 0.

This could be seen as an paired superfluid vacuum (PSF phase), representing
atomic (A+B) pairing at site i, neighbored to an empty site j. [37, 38, 49, 50]. A



PSF phase would require an effective attractive potential between different kinds
of bosons. This could not be conclusively clarified. In any case for increasing but
small V/J (2 ≤ V/J ≤ 5) this state is transferred to a super counterfluid (SCF
phase) [48]. In this regime states with A and B bosons at one site are reduced due
to increasing V/J and the groundstate is for simplicity given by a superposition
of two states, e.g.

|Ψ〉 = α |a〉+ β |b〉 (5.17)

with

|a〉 = |..., Bi, ..., Aj , ...〉 and |b〉 = |..., Ai, ..., Bj , ...〉 .
(5.18)

This results in a ”flip-flop”
〈
Ŝi+Ŝ

j
− + Ŝi−Ŝ

j
+

〉
6= 0 and the n-th nearest neighbor

in-plane correlations should be enhanced. This can be described by pairings of
particles A and hole B in site i, and pairings of particle B and hole A in site j.
This understanding is supported as the on-site square of the in-plane correlations
is strongly reduced where the next-neighbor in-plane correlations are enhanced,
which means the ground state involves many states which are linked by one A−B
”flip-flop” in respect to the first next neighbor.
For a better understanding, in order to avoid AB-on-site interaction, every second
site is occupied by one kind of boson (e.g boson A) and the site between is occupied
by the other kind of boson (boson B). These two structures are movable in respect
to each other and to the lattice, that produces high density fluctuations, which
monitor the superfluid state. The fluctuations and AB-occupations are displayed
in Fig. 5.13 in case of V = 0 (a) and V = 0.5J (b). For values of U/J > 9 the AA-
fluctuations and the BB fluctuations are avoided due to energy cost. The part of
the density fluctuations which are caused by AB-fluctuations stay unaltered high,
(see Fig. 5.13, magenta line). The density fluctuations are ∆n ≥ 0.7, which means
the system is still superfluid, but the A-particles avoid tunneling respectively to
each other, just as the B-particles. One has to keep in mind, that in case of
half filling, the fluctuations for the A bosons (B bosons) reach its minimum at
∆nA = 0.5 (∆nB = 0.5). We also plotted the n-th next-neighbor z-correlation
functions, see Fig. 5.15, for 0 ≤ V/J ≤ 50 and U = 50 J for the same kind of
bosons (a) and different kind of bosons (b). In case of V/J = 0 the 2nd and 3rd
next-neighbor z-correlation functions for the same kind of atoms are enhanced and
the first is suppressed and the on-site correlations of the same sorts are forbidden.
This supports the picture of a groundstate, when the first next neighbor is not
occupied by the same kind, but the second one is, apart from that there are also
many empty sites. For a small increase of V the second nearest neighbor AA-
correlation increases and the third- and first nearest neighbor correlations of AA
and BB decreases, which reveals the configuration described in detail above when
the two structures are shifted by one site. Entangled states and empty sites are
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Figure 5.13: (a) The different parts of the fluctuations and occupations for V = 0
and the density fluctuations (magenta) are shown here. As mentioned, in contrast
to the AA- (BB)- fluctuations, which are suppressed to the minimum which is
possible for half filling, the fluctuations of the density never undergoes 0.7 caused
by AB-fluctuations which are possible due to small interaction V between different
kind of atoms. (b) Shown here are the same fluctuations, but for V = 0.5J . The
small increase of the occupation nAB for very small interaction U results from the
fact, that for U = 0 the AB occupations are a bit suppressed, for growing U/J
they increase.

Figure 5.14: The different parts of the
fluctuations and occupations for U =
50J and V = 0 − 50J and the density
fluctuations (magenta) are shown here.
Due to large on-site U there are no AA
or BB fluctuations. The density fluctua-
tions are only given by AB fluctuations,
what reveals the configuration in the su-
perfluid, see Fig. 5.16 and implies the su-
perfluid counterflow, see Fig. 5.12. For
V > 5J the system is transferred to the
anti ferromagnetic Mott insulator.
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Figure 5.15: (a) Shown here is the z-component (out of plane component) of
the n-th next-neighbor-correlations for the same sort of atoms for U = 50J and
increasing V . The largest probability occurs for small V for a configuration with
one site spacing between two atoms of the same sort. (b) Shown here is the z-
component of the n-th-next-neighbor-correlations for different kind of atoms, for
V equals to zero the two atoms can entangled occupy the same sites. For increasing
V they order themselves rather in an staggered configuration due to large on-site
U which makes sure that the second next neighbor is occupied with the same sort
of atoms.

reduced and different kinds of atoms occupy adjoining but not the same site. The
AB-correlations show the same effect: the AB-first nearest neighbor correlation
increases strongly and also the AB-3rd nearest neighbor correlation shows a small
increase. The AB-2nd next neighbor correlation decreases and of course the on-site
AB-correlation is more and more suppressed by increasing V , see Fig. 5.15. The
fluctuations and occupations for this situation for U = 50 J and 0 ≥ V/J ≥ 20 are
illustrated in Fig. 5.14. The AA- and the BB-fluctuations are totally suppressed
for on-site U equals to 50 J but for small V the density fluctuations add up to 0.7,
considering, that the ∆nA and ∆nB never undergo 0.5 due to the half filling. We
stress that the density fluctuations can only consist of AB-fluctuations. To sum up
we give a sketch in Fig. 5.16 of the main components of the wavefunction in the anti
ferromagnetic superfluid regime. We investigated the Mott insulator phase, the
contributions of the wave functions with the staggered, the dimers, and the ”claw”
structure have the highest weight in the groundstate, see section 4.3.3. Keep in
mind, that these states are linked to each other by one AB ”flip-flop”, revealing an
in-plane groundstate. In case of strong on site interaction U for the same kind and
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Figure 5.16: The mainly structures of an in-plane correlated superfluid in the anti
ferromagnetic regime which can be derived from the correlation functions and the
fluctuations. If the A- and B-structures can be regarded to be ’fix’ they can tunnel
without changing the distances between the same sorts (AA-fluctuations and BB-
fluctuations are reduced) and therefore mainly providing AB-fluctuations. The
staggered, the dimer and the claw-structure are linked to each other by one AB
flip-flop, (see a) and b)). Since these states contribute the highest weight to the
groundstate in the Mott insulator regime, the nn in-plane component is maximal,
an in-plane state. Even in the superfluid the in-plane next neighbor correlations
amounts to 0.5 of the maximum for V ≥ 2J . For vanishing V the two structure
can additionally coexist on top of each other, revealing entangled boson states,
see c) and d). Therefore the in-plane next neighbor correlations are reduced and
the on-site square of the in-plane component reaches maximum.

V = 0 for different kind of atoms, the repulsive interaction keeps the same kind
of atoms away from each other, forming the ”anti-ferromagnetic” groundstate for
A-bosons (B-bosons), let me call it |AAF > (|BAF >). But, in contrast to the
Mott insulator the structures of A- and B-bosons can partly or fully coexist on
top of each other. In this regime, the Hilbert space can be reduced to the subspace
of all superpositions of |AAF > and |BAF >. The of-site in-plane correlation is
reduced by entangled AB occupations at one site and empty sites, whereas the
on-site square of the in-plane spin component is maximal. For increasing but
small V the Hilbert space is reduced in order to avoid A-B entangled pairs, to
give a simple picture the A- and B- structures are shifted by one site, but are
still movable in respected to the lattice and in respect to each other, implying
superfluid counter flow. In this regime the next neighbor in-plane correlations
increase and the on-site square of the in-plane spin component is reduced.



5.2.2 The ferromagnetic correlated regime

The ferromagnetic regime is characterized by a first neighbor easy axis correlation
function which has values bigger than zero. This means, that neighboring sites
prefer to be occupied by the same kind of atoms. If high fluctuations occur (see Fig.
5.5) combined with ferromagnetic correlations, the system is in a ferromagnetic
correlated superfluid state.
Remember, that we have N = 8, this d = 3 is the maximum distance in the unitary
cell, one could easily expect that for very big V/J and U = 0 the particles would
prefer a 4-times occupation of the two sites which have the largest possible distance
d = 3. However, we will see that this is not the case. The fluctuations for U = 0
and increasing V are shown in Fig. 5.17. The AA- and the BB-fluctuations are

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

∆ 
n 

, n
A

B

V/J

 

 

U/J=0

n
AB

∆ n
A

∆ n
B

∆ n
AB

Figure 5.17: (a) The different parts
of the fluctuations and occupations for
U = 0 and the density fluctuations (ma-
genta) are shown here. The suppress-
ing of the AB occupation increases the
AA- and BB- fluctuations, and there-
fore the density fluctuations increase.
That is connected to a special superfluid
ordering we will present in the follow-
ing, where AA- and BB fluctuations are
enhanced and BA fluctuations can be
avoided.

enhanced in contrast to the AB-occupations, which are avoided and are reduced
to half of the maximum for V = 3J . This is caused by high on-site-interaction
V for different kind of atoms. The AA- and the BB-fluctuations increase in this
region. Therefore the system stays superfluid: after a minimum at V ≈ 3J the
density fluctuations increase again (see Fig. 5.17, magenta line) and stay robustly
high even for very large V . The multiple occupation of the same sorts of atoms
begin to increase only when the occupation of A and B- bosons in one site is
reduced. To understand this, the basis has been truncated to single or double
occupied sites for both sorts of atoms. In this case the observed anomalies do not
occur. This indicates that the anomalies are linked to a supersolid formation with
multi occupied sites. To investigate this effect further, in Fig. 5.18 are shown
the z-component distance-correlation-functions in the superfluid regime in case of
U = 0 and increasing V/J . For V = 0 all correlations are equal, for increasing V/J
the 1st nn-AA and the on-site-AA increase and 2nd − nn-AA and 3rd − nn-AA
z-correlations decrease. The system prefers a configuration where the different
sorts of atoms are separated by several tunneling events. As multiple occupation
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Figure 5.18: (a) Shown here are the AA correlation for different distances for
U = 0. The gzii gives the multiple AA occupation, gz1ST−NNaa-AA corresponds to
the neighboring sites and so on (see 5.4-Fig. 5.3). The closer the corresponding
site, the higher the AA-correlations. (b) Shown here are the AB correlations for
different distances for U = 0. The closer the corresponding site, the smaller the
AB-correlations. Note: at V = U = 0 all correlations are equal, owing to the fact
that all particles are equal and not interacting.

is allowed for small U/J , the part of the wavefunction where a site is occupied
with two or more A-bosons increases and there is a decreasing probability for the
B-bosons to be nearest or second nearest neighbor and vice versa. On a fixed
site of an eight sited cell, there are three sites which are two distances away, and
one site which is three distances away. Atoms of one sort arrange themselves
around a multi-occupied site and as far as possible away from the other atom sort.
Considering the fluctuations this understanding is supported, see Fig. 5.17. In the
corresponding parameter regime the atoms in the lattice are forced in a confined
area in the cell to avoid interactions with the other particle sort. They can tunnel
between ’their’ sites and supporting multiple occupation. That enhances the AA-
and BB- fluctuations and therefore also the density fluctuations, the AB on-site
occupations are suppressed. To give a sketch of the supersolid configuration, which
support our understanding, it is depicted in Fig. 5.19 a. The blue bubbles mean
high B-boson probability and the magenta bubbles mean high A-boson probability.
The density wave for the A- and the B-bosons along the path which is denoted
by arrows is shown in Fig. 5.19 b. In this configuration, a multiple occupied
site is surrounded by at least one particle of the same specie. Concurrently at the
maximum distance, the other atom sort has ’its’ multiple occupied site, surrounded
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Figure 5.19: A sketch of the ferromagnetic correlated superfluid is shown in a), the
atoms can fluctuate between sites which are occupied with the same sort in a high
rate, supporting multiple occupation of the same sort and simultaneously avoiding
the interaction with the other sort of atoms. Clusters of fluctuating A-bosons and
B-bosons occur. In case of increasing U/J multi occupied sites are reduced and
the supersolid formation is dissipated. In b) is shown the density wave for the A-
(magenta) and the B-bosons (blue) along the path denoted by arrows in a).

by at least one particle of the same specie. Hence the particles are arranged in
clusters.

Higher order correlation functions - the supersolid formation

To proof the supersolid formation, a normalized four particle correlation-function
ζAA−BB is computed in case of V/J = 50 to demonstrate the formation of the
supersolid supercell. It is given by

ζAA−nBB =

〈
nAi (nAi − 1)nBj (nBj − 1)

〉
−
〈
nAi (nAi − 1)

〉 〈
nBj (nBj − 1)

〉
∆(nAi (nAi − 1))∆(nBj (nBj − 1))

(5.19)

and it shows the correlation between an at least double occupation of boson A
in site i and an at least a double occupation of boson B in site j. Site j is the
first, second or third next neighbored site. It is obvious, that this correlation
has its maximum value at U = 0 and for the third next neighbor, see Fig 5.20.
This is consistent with the supersolid structure and is a good indication, since
d = 3 is the maximum distance in an eight sited cell. The second next neighbor
function is nearly uncorrelated, despite a small increase around U/J = 2. The
first next neighbor correlation of double occupation is negative, meaning that the
contribution of the wavefunction, where a double occupation of A- atoms is nearest
next neighbor to a double occupation of B-atoms, is very unlikely. For very small
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U/J (nearly zero) the contribution of four- or three-occupations of one atom sort
at one site has its maximum value. If U/J increases, the four-times and the three-
times A- or B-occupations decrease very fast at U/J = 1 till U/J = 2. Therefore,
it gets more likely that a second nearest neighbored site contains two atoms of
the other specie, hopping around and in their ’supersite’. This small increase
of the second next neighbor double correlation function therefore represents the
broadening of the A and B- density wave and the increase of their overlap. For
very small U/J the system must be arranged in a state where AA- and BB-
fluctuations are supported and AB-occupation can be avoided. To get a direct
proof of our picture, we finally computed a normalized six particle correlation
function which indeed gives correlation of the following case: Besides an at least
double AA-occupied site i, surrounded by at least one atom of the same sort at
site i+1, we proof an at least double BB-occupied site in j, surrounded by at least
one B-boson in the next neighbored site. This correlation function ζAAiABBnB is
given by

ζAAiA−BBjB =

〈
nAAi nAi+1n

BB
j nBj+1

〉
−
〈
nAAi nAi+1

〉 〈
nBBj nBj+1

〉
∆(nAAi nAi+1)∆(nBBj nBj+1)

(5.20)

with

nAAi = nAi (nAi − 1) and nBBj = nBj (nBj − 1). (5.21)

The data of ζAAiA−BBjB is displayed in Figure 5.21. It has its maximum value for
U/J equal to zero and for the third next-neighbor and it is reduced to the half
of its maximum at U/J = 4, where I assume the supersolid breakdown, which is
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AAiA−2nd nn Figure 5.21: Shown here is the

ζAAiA−BBjB-correlation-function. It
proofs an at least AA-double occupied
site i, surrounded by at least one A
next nearest neighbor and vice versa for
the B-bosons in site i+2 and i+3. The
high correlations of the third neighbor for
small on-site U and V/J = 50 is a good
proof for the described supersolid. The
ζAAiA−BBjB for the second next neighbor
is nearly uncorrelated.

dicussed in the following. The maximum of the corresponding correlations for the
second next neighbor added only up to one-tenth of the value for the third next
neighbor, this is consistent with the described supersolid.

Higher order correlation functions - the supersolid breakdown

To investigate the breakdown of the supersolid for increasing U/J we again take a
look at the fluctuations and occupations in case of V/J = 50, i.e. the regime where
I identified the supersolid. In Fig. 5.22 the fluctuations and nAB-occupations are
shown. As V/J = 50 is very large, the fluctuations are given nearly only by the
AA- and BB-fluctuations. Figuratively spoken, the A- and B-bosons can, in the
supersolid formation, tunnel in and around ’their’ supersite. For U/J = 4 the nAB-
occupation peaks (see Fig. 5.22 b) indicating the breakdown of the supersolid. If
U/J increases the A- and the B-clusters have the biggest possible overlap before
the supersolid breakdown appears. To investigate this, the κn function is explored
which can be viewed as a ”flip-flop” to the n-th nearest neighbor, involving a triple
occupied site with at least two bosons of the same species. The κn function has
been computed by M. Prada.

κn =
1

Ωn

∑
<ij>n

〈
nAi (nAi − 1)(Ŝ−i Ŝ

+
j + Ŝ+

i Ŝ
−
j )
〉

(5.22)

with Ωn being the normalization factors,

Ωn = ηn
(nA + nB)

2
(5.23)

, ηn being the number of the n-th next neighbor and the sum performed for the
n-th next neighbor. The data of κn is shown in Fig. 5.23.
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Figure 5.22: Shown here (a), are the different fluctuations ∆nAB, ∆nA, ∆nB
and the on-site occupation of A- and B- particles nAB for V/J = 50. As the
on-site occupations of A-and B-particles are very low, the fluctuations are nearly
only given by AA- and BB-fluctuations. In the region for U/J ≈ 4 the onsite
A-B-occupation-function peaks (b), which is a indication of the breakdown of
the supersolid formation and a phasetransition towards the ferromagnetic ’chain’-
formation.

Figure 5.23: Shown is here the κn cor-
relation function. It can be viewed as a
”flip-flop” to the n-th nearest neighbor,
involving a triple occupied site with at
least two bosons of the same species. It
peaks for all nearest neighbors around
U ≈ 4J where the nAB peaks too, in-
dicating the biggest overlap of the two
structures and therefore the breakdown
of the supersolid.

The κn for the n-th nearest neighbor peaks around U ≈ 4J , where also nAB peaks,
even in the same order of magnitude. The κ3 shows the highest correlation, which
is consistent with the supersolid order. One has to keep in mind that κn only takes



into account those contributions which involve an AB entangled flip-flop state. For
simplification in case of a superposition of only two states e.g. |Ψ〉 = α|a > +β|b >
with

|a >=

∣∣∣∣∣∣...., AAB︸ ︷︷ ︸
i

, ...., A︸︷︷︸
j

, ...

〉
(5.24)

and

|b >=

∣∣∣∣∣∣...., AAA︸ ︷︷ ︸
i

, ...., B︸︷︷︸
j

, ...

〉
(5.25)

the expectationvalue of κn results in〈
Ψ|(nAi (nAi − 1)(Ŝ−i Ŝ

+
j + Ŝ+

i Ŝ
−
j )|Ψ

〉
= 2(α∗β + β∗α). (5.26)

In the regime V/J = 50 these states are not very likely, since an AB occupation
at one site is very improbable therefore the κn is very small. For increasing
U/J , (nAi (nAi − 1)) reduces κn, in contrast the nAB increases, the two clusters of
fluctuating bosons increase their overlap. This increasing overlap enhances the
nAB, and therefore κn peaks. At this point the supersolid phase is no longer
energetically convenient and the supersolid breaks down. Beyond the supersolid
breakdown, increasing U/J starts to force particles of the same specie to stay one
site apart and the particles begin to regroup in the ’chain’ formation, which will
build up the Mott insulator phase in the ferromagnetic regime. For very small
U/J , the part of the four A- or four B-particle chain in the wavefunction is very
small, see Fig 5.24. The increase of at least one particle-chain (A- or B-chain,
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see inset upper left in Fig 5.24) has its maximum value between U/J = 5 and
U/J = 7, after the maximum of the nAB-occupation where the supersolid breaks



down (see Fig. 5.22). From U/J ≈ 4 the ’chain’-formation increases fast, see Fig.
5.24. This means that the system is driven towards the Superfluid Mott insulator
crossing. At U/J = 6, the groundstate is given by 50% of chains of one particle
sort. For U/J = 8, the Mott insulator chain-formation (inset of Fig 5.24 lower
right) supply nearly 50 % to the groundstate configuration and the increase gets
weaker. In case of U/J = 15 the ”chain” contribution amounts to more than
80%. During the Mott insulator crossing the nAB is strongly reduced as well as
the double occupancy. These facts causes the extinction of the doubly occupied
flip-flop correlation function κ in this regime. To conclude, the z-correlations
for the n-th next-neighbor (see in Fig. 5.25) and the different fluctuations and
nAB-occupations (see Fig. 5.26) are shown during the whole transition from the
supersolid towards the ferromagnetic Mott insulator in case of V/J = 50 and
increasing U/J . In the regime of 0 ≤ U/J ≤ 4 high density fluctuation, which
consist of AA- and BB-fluctuations, monitor a superfluid state, (see Fig. 5.26 a).
High on-site correlations of same kind of atoms and high correlations in respect to
the third next neighbor in case of different kind of atoms (see Fig. 5.25) indicate
the supersolid structure, which has been examined with higher order correlation
functions in the previous section. Increasing U/J leads to the breakdown of the
supersolid. This can be identified by the minimum of the 3rd-nn-AB correlation
function and the increased 1st-nn-AB correlations (see Fig. 5.25 b). The on-
site AA-correlations are strongly reduced due to increasing onsite U , one site
cannot be occupied by three or four atoms of same kind any more. This enhances
the 1st-nn-AA correlations as well as the 2st-nn-AA correlations (see Fig. 5.25
a). In case of U/J ≈ 4 the nAB occupation reaches maximum (see Fig 5.26
b), this is consistent with the picture of the overlap of the A-cluster and the B-
cluster. Due to the increase of the on site interaction the supersolid structure is
not longer energetically convenient. The supersolid formation breaks down. In
case of U/J ≥ 4 the density fluctuations are reduced to less than 0.6 (see Fig.
5.26 a) and an increasing contribution of the groundstate wavefunction is given
by the ”chain” formations (see Fig. 5.24). The increase of these contributions
reaches maximum in the regime of 5 ≤ U/J ≤ 8. In this regime the 1st nn
AA correlation function increase further, (see Fig.5.25 a). This is due to the
Mott insulator chains which provide mostly ferromagnetic correlation for the next
nearest neighbor. The probability for the same kind of boson being nearest next
neighbor is two-third whereas the probability is one-third for the different kind of
boson being nearest next neighbor. This is consistent with a chain formation, see
inset of Fig. 5.24. In contrast the ’chains’ let the 3rd-nn- AB-correlation increase
again, (see Fig.5.25 b). The 2nd-nn-AA correlation function stay smaller, since
in the chain formation the probability that the site, which is two sites away is
occupied with the same kind of boson is one-third compared to the probability
of two-third that it is occupied with the other kind of bosons. Additionally the
3rd− nn−AA z-correlation is suppressed, because of the ’chain’ formation, (see
Fig.5.25 a). In the regime around U/J ≈ 15 the system is driven towards the



ferromagnetic Mott insulator, where the contribution of A and B chains amount
to more than 80 % and the density fluctuations are reduce to less than 0.2, (see
Fig. 5.26 a). If the system is driven to the ferromagnetic to anti ferromagnetic
crossover, the correlations get assimilated, resuming, the A and B bosons to be
indistinguishable.
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Figure 5.25: (a) Shown here are the AA correlation for different distances for
V = 50J . The on site-AA z-correlation gives the multiple AA correlatations,
the 1st − NN − AA corresponds to the next neighbored sites and so on (see
Fig.:5.1-Fig.: 5.4). (b) Shown here are the AB correlation for different distances
in case of V = 50J , inscribed are the different phase-transitions, the supersolid,
the superfluid, where the chain formation starts, the ferromagnetic Mott insulator
and, in case of similar parameter U/J and V/J , there is the ferromagnetic to anti
ferromagnetic crossover, where all correlations assimilate.
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Figure 5.26: (a) Shown here are the different fluctuations for U = 0− 50J in case
of V/J = 50. Take into account, that the lowest AA or BB-fluctuations are given
by 0.5, due to half filling. (b) Shown here are the nAB on-site occupations. They
increase until the breakdown of the supersolid phase, then they decrease. Since
the increase of the contribution of the ”chains” in the wavefunction is maximum,
the MI phase-transition is entered. When the system crosses the ferromagnetic to
anti ferromagnetic regime, the nAB-occupation increase again.
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Figure 5.27: (a) To break the symmetry and investigate superfluid correlations a
spindependent lattice potential is implemented for the A-bosons, two sublattices
appear, characterized by σ+- and σ−-sites (c). For the B-bosons the lattice has a
homogeneous honeycomb structure (b).

5.2.3 Symmetry break

To explore the unconventional magnetic order further, I implement a small shift ε
for one sort of atoms in one half of the lattice, this corresponds to staggered sites
for the A-bosons. The B-bosons just can react on this by the interaction between
different particle sorts V . The corresponding Hamiltonian is given by:

H = −Ĵ + Û + V̂ + εA,σ+/σ−

This situation is shown in Fig. 5.27. For the ’blue’, the B bosons, the honeycomb
lattice is homogeneous (Fig. 5.27 b) and every site has equal depth, see Fig.
5.27 a (top). For the red, the A bosons two neighbored sites differ by a small
additional potential εA, see Fig. 5.27 a (bottom). This ends up in a situation
with two sub-lattices (Fig. 5.27 c) for the A-bosons. Experimentally this can be
done by using laser beams with a defined polarization [8],[70], as it was explained
in Section 2.2.2. The entire setting has been evaluated with half filling for both
bosonic species in the superfluid regime and in the crossover regime. I analyze the
population imbalance between two neighboring sites for both bosonic species, to
determine wether a supersolid phase can be identified in our system experimentally.
Shown in Fig. 5.28 are the occupation imbalance

∆nA,B =
〈
nA,(B),i − nA,(B),i+1

〉
(5.27)

between neighboring sites for A- and B-bosons. They denote the amplitudes of the
density modulation from site to site. The implemented shift between the two sub-
lattices for the A-bosons is ε = 0.1J . An occupation difference smaller than zero
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Figure 5.28: (a) Occupation-difference for neighboring sites for the B bosons, for
very small on-site-interaction U B bosons occupy also predominantly σ+ sites,
due to the supersolid-formation. It peaks around U/J ≈ 4, which denotes the
breakdown of the supersolid, where the clusters of A and B bosons have the largest
possible overlap. (b)Occupation-difference of neighboring sites for A bosons. In
the whole regime, A bosons prefer to sit on σ+ sites, for very small U/J they
prefer the multiple occupation of one σ+-site.

means a dominated occupation of the σ+-site, whereas an occupation-difference
which is bigger than zero means, the atoms prefer to sit at the σ−-site. On the
left, the occupation difference of the B bosons and on the right the occupation
difference of the A-bosons is depicted. However, the occupation difference of the
B-bosons peaks at U/J ≈ 4 due to the supersolid breakdown when the two clus-
ters of A and B bosons are broaden which results in an increasing overlap of A
and B bosons. As expected, the A bosons prefer to occupy the σ+-site in general.
For V = 0 no effect can be identified for the B-bosons, which are not subjected
to a sublattice structure, and cannot react on the A-bosons, since the interaction
between different particle sorts, V , is zero. Therefore, the occupation difference of
the B-bosons starts at V/J > 0. If we have a closer look at the B-bosons behavior,
we can identify a dark blue regime, for very small U and increasing V/J . Here
the occupation difference is smaller than zero, which means, that B-bosons seem
to occupy dominantly σ+-sites. Due to the supersolid-formation, the A-bosons
multiple occupy a σ+-site and the B-bosons therefore multiple occupy the site at
most distant d=3, which is a σ−-site. But, as it is surrounded by 3 dominantly
B-type nearest next neighbors which are σ+-sites, the average B-bosons favor an
occupation of σ+-sites, in case of very small U/J . This occupation reversal does
not happen for the A-bosons, due to the shift which appears only to the A-bosons.
They dominantly occupy σ+-sites for very small on site U/J , see scetch in Fig.
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Figure 5.29: Occupation-difference for
neighboring sites for the A- and B-bosons
in case of V = 50 J and U = 0 − 30 J .
The supersolid breakdown and the occu-
pation reversal can be detected. The oc-
cupation difference becomes symmetric
and has its maximum value in the anti-
ferromagnetic Mott insulator, where the
the A bosons are pinned at the σ+ - and
the the B-bosons at the σ− -sublattice.

5.30. For increasing U/J , the two clusters broaden and the overlap increases, the
occupation difference for the B-boson increase. After the breakdown of the su-
persolid formation, it decrease, when the system enters the ferromagnetic Mott
insulator transition and build up the A- and B- ”chains”. This peak in the popu-
lation imbalance can be identified as the supersolid signal. We therefore propose
a scheme for which a supersolid can be detected in experiments. In Fig. 5.29 the
occupation imbalance for V = 50 J and U = 0 − 30 J is shown. In the regime
0 < U/J < 16, the occupation difference decreases and later rerise for values of
U/J bigger than 16, shown in Fig. 5.29. This can be explained by the fact, that
for very small U the influence of the small shift εA is strong, therefore the occupa-
tion difference is remarkable. For increasing U/J the influence of εA decreases and
the high occupation of more than two atoms per site is reduced, the supersolid
structures are broaden and the system goes across the ferromagnetic Mott insula-
tor phase by building the A- and B-”chains”. Therefore the population imbalance
vanishes in the ”chain”-formation. For further increasing on site interaction U/J ,
the occupation difference increases due to the virtual tunneling. Neighboring sites
are rather not occupied by the same atoms, thus the crossover regime is entered.
In the anti ferromagnetic regime, the occupation difference is expected to be max-
imal as the A bosons are located in the energetically lower sublattice (σ+-sites),
see chapter 3.2. Due to U > V/J = 50 the B-bosons would prefer the other sublat-
tice (σ−-sites), see Fig. 5.29. The supersolid formation in case of an energy shift
would of course be nonsymmetric, the sketch in Fig. 5.30 gives an idea. The red
bubbles mean predominantly occupation of A bosons and the blue bubbles mean
predominantly occupation of B bosons. The A bosons accumulate a bit more in
the ”supersite” as they are subjected to an additional small potential.



Figure 5.30: One possible structure of a
ferromagnetic correlated superfluid in case
of a small shift ε between the two sublat-
tices. The structure is not symmetric, as
the B bosons occupy dominantly σ+-sites
for vanishing U/J , the occupation differ-
ence is smaller than zero.

5.2.4 Finite-size-effects

As I evaluate finite-size effects in the Mott insulator regime I will consider now the
ten sited cell, the data has been computed by M. Prada. In section 4.3.4 I found
that the ferromagnetic groundstate of the ten sites cell is not given by a ”chain”
structure like in the eight sited case. In the ferromagnetic ground state a domain
formation of the bosonic components is possible, see Fig. 5.31.
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Figure 5.31: The ferromagnetic groundstate in case of unitary cell with eight sites
(top left) is the ”chain”-formation (top right). In case of ten sites per unitary cell
(bottom left) a clear domain structure can be obtained (botton right).

The iso-magnetic correlations in the Mott insulator phase have been discussed in
section 4.3.4 in case of a ten sited cell. In Fig. 5.32 left, the in-plane correlations
of the n-th next neighbors are depicted. It strikes that in the superfluid regime for



Figure 5.32: Shown on the left are the numerical results for the in-plane corre-
lations of the first (a) the second (b) and the third(c) next neighbor. Shown on
the right are the z-correlations of the first (a) the second (b) and the third (c)
next neighbor. Compared to the correlations for the eight sited cell, first it strikes
also the absence of the supersolid-peak and second the ferromagnetic correlations
for the second next neighbor. The first is due to the fact, that N = 10 is not
commensurate with the supersolid structure and the second is due to the domain
formation in the ferromagnetic Mott insulator. In the domain formation, the sec-
ond next neighbor is dominated by the same kind of atom, providing ferromagnetic
correlations.



small U and increasing V the ”supersolid”-peak, is absent for all next neighbors.
Apart from that, the correlations are similar to the corresponding in plane correla-
tions of the eight sited cell. In Fig. 5.32 right, the z-correlations for the ten sited
cell are shown. We stress, that the supersolid formation can not occur, because
the cell with ten sites is incommensurate with the supersolid structure. It is strik-
ing, that the second nearest neighbor correlation-function is ferromagnetic, which
is consistent with the phase separation of the two bosonic species, see Fig. 5.31.
Concerning the nearest next neighbor correlations, there the absence of the super-
solid formation is reflected in an enhancement of the ferromagnetic correlations
in the deep superfluid regime for small U and increasing V/J . Additionally the
ferromagnetic correlations in the Mott insulator are stronger, due to the domain
structure of the ten sites system.

5.3 Conclusions

In the last chapter I investigated the superfluid regime of the honeycomb lattice
filled with two sorts of bosons. I obtained a rich phase diagram which has been
evaluated further by developing in-plane- and out-of-plane pair correlation func-
tions to explore the correlations in respect to the first, the second and the third
nearest neighbor. In the superfluid regime in case of V = 0 and strong U/J , a
phase has been identified where the particles of different sorts show high entan-
glement and the on-site square of the in-plane spin has its maximum value. The
reduce of the in-plane next neighbor correlation in this regime suggests that there
is an huge contribution of double (AB) occupied sites, next neighbored with empty
ones. For increasing but small V this is transferred to an SCF-phase. In the su-
perfluid regime where U is very small and V/J is large, I evaluate the ground
state as supersolid, meaning that a density modulation exist simultaneous with a
superfluid state. The supersolid formation lowers the translational symmetry. A
unit cell with eight sites is necessary to represent this supersolid, in contrast to
a unit cell of two sites for the honeycomb lattice. We get a direct proof of the
supersolid formation and the supersolid breakdown by computing three-, fourth-
and six-operator correlation-functions. We further explore the supersolid break-
down and its phase transition to the Mott insulator. Furthermore, we break the
symmetry with a spin-dependent lattice, therefore we could identify a supersolid
signal in the population imbalance from site to site. Hence, we suggest an exper-
imental method to detect a supersolid phase by implementing a spin depending
lattice potential. To conclude, finite size effects were explored in case of a ten sites
cell expecting the absence of a supersolid-signal due to the fact, that the N=10
cell is incommensurate with the supersolid-formation. The in-plane and out-of
plane correlations show the absence of this special phase. Apart from that, the
important features of the phase diagram were reproduced also for the ten sited cell.
This suggests that the results of the pair-correlation functions and the different
isomagnetic phases even are valid for larger systems.



Chapter 6

Summary

In this work, one and two-component ultracold quantum gases in optical lattices
has been studied in the superfluid and in the Mott insulator phase in an exact
diagonalization framework by computing particle occupations, fluctuations, site-
to-site, and higher order correlation functions for commensurate and incommensu-
rate fillings. In doubly filled systems, the superfluid to Mott insulator crossing is
shifted to higher values of U/J in agreement with mean-field calculations. For in-
commensurate fillings no Mott insulator can be reached in a homogeneous lattice.
Criteria were established to identify whether our system is in the superfluid or in
the Mott insulator state. In order to estimate finite size effects, we investigated
different sized lattice cells. For increasing cell sizes, the fluctuations and the on
site correlations decrease stronger in the regime of the Mott-insulator crossing.
This is in agreement with mean field calculation where the superfluid to Mott
transition is prompt at the critical value U/J . In contrary to the infinite case our
system showed gapped excitations even in the superfluid phase, however this gap
decreases for increasing cell sizes. The level crossing of the first and the second
exited state could be identified as a clear indication for the superfluid to Mott in-
sulator transition. This crossing is the reason for a kink in the energy gap. In the
case of the eight sited cell, in the regime above U/J ≈ 20, a Mott insulating phase
is observed which implies low particle fluctuations, low on-site-correlations and a
”Mott”-characteristic groundstate with excitations, linear in U . In this ground-
state every lattice site is occupied with one single atom in the case of a filling η = 1.
Contrarily the super fluid regime, which is assumed for 0 ≤ U/J ≤ 5 implies high
particle fluctuations, high on-site correlations, and a ”Mott”-characteristic state
with high energy. As one main issue the groundstate of a bipartite honeycomb
lattice with a triangular sub-lattice structure and a variable shift ε between the
two sub-lattices is studied. This has been studied for different fillings from η = 0.5
up to η = 2 and detail-rich phase-diagrams could be archived. By changing the
ratio of U/ε the system can be driven into the Mott insulator phase even for incom-
mensurate fillings. The particles occupy the energetically lower sublattice with a
filling of 2 · η. The energetically higher sublattice is depleted. For increasing U/ε it
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is repopulated with a repopulation rate which depends on the ratio of U/ε. There-
fore two different Mott insulators could be observed in the lattice simultaneously.
In Chap. 4 we investigated the short ranged ’magnetic correlations’ of the honey-
comb lattice filled with two sorts of bosons. The system has been mapped onto
a spin-1

2 -system in second-order perturbation theory in the tunneling in the limit
of U, VAB >> J . To explore the magnetic order in any regime we introduced the
z-correlation function. Depending on the ratio of interaction between same kind
and different kind of bosons the phase diagram shows both anti-ferro-magnetic and
ferro-magnetic correlations. First we focused on the Mott insulator regime. In the
anti-ferromagnetic regime the groundstate of the system never assumes the Neél
state, which is in agreement with theoretical predictions. Due to quantum fluctu-
ations the anti-ferromagnetic ground state always contains, besides the staggered
order, contributions where two (dimers) or even three (triples) adjoining lattice
site are occupied with the same kind of atoms. These structures are related by one
flip-flop hopping, revealing an in-plane (xy) groundstate. The ground state in the
Mott insulator regime for VAB < U is ferromagnetic. In this regime the system
builds two different domains each with one particle sort, independent on the cell
size. In the case of the four sited cell and the eight sited cell, the A- and B-bosons
are arranged in chains along the different symmetry axes. Cells with six sites and
ten sites allow the creation of enclosed domains. As the ratio of domain wall and
bulk increases for increasing cell sizes, increasing ferromagnetic correlations are
provided.
In Chap. 5 the superfluid regime is focused, where detail-rich phase diagrams are
obtained. This regime is investigated further by developing in-plane- and out-of-
plane pair correlation functions to explore the correlations with respect to the first,
the second, and the third nearest neighbor. In the superfluid regime for vanishing
V and strong on-site U/J a phase could be identified, where the different iso-spins
build up superpositions at one lattice site and the on-site square of the in-plane
correlations has its maximum value. This implies a phase, where double occupied
(AB)-sites alternate with empty sites, reducing the in-plane next neighbor corre-
lations. Whether this is a precursor for a paired superfluid vacuum (PSF phase)
could not be conclusively clarified. For increasing but small V/J this entangled
state is transferred to the super counter fluid phase (SCF) which describes pair-
ings of particles A and hole B in site i and pairing of particle B and hole A in the
nearest neighbored site. The on-site square of the in-plane correlations is strongly
reduced whereas the next-neighbor in-plane correlations are enhanced, this sup-
ported the assumption of a super counter fluid.
In the superfluid regime where U is very small and V/J increases, the ground state
is found to be supersolid. In this phase, the system can be described by a non-
trivial density-modulation which lowers the symmetry. The superlattice period is
four times bigger than the primary unit cell and includes simultaneous solid and
superfluid qualities and the on-site square of the easy-axis spin component has
it maximum value. We computed three-, four- and six-operator correlation func-



tions to get a direct proof of the supersolid formation. The development of these
correlation functions also allows to monitor the breakdown of the supersolid. The
transition to the ferromagnetic Mott-insulator is explored, where the groundstate
of the system is given by domains each with one particle sort. Hence, an experi-
mental method is suggested to detect a supersolid phase by implementing a spin
depending lattice potential. Finite size effects are discriminated by calculating the
in- and out-of-plane correlations for a ten sited cell, which is incommensurate with
the supersolid supercell and remark the absence of the supersolid features. Apart
from that, the phase diagram was reproduced also for the ten sited cell. This
suggests that the correlation functions allow to distinguish the different quantum
phases which also occur in macroscopic systems.
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