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Summary 

In recent years, the interest in bioenergy crop production as a renewable energy source 

increased substantially because it may contribute to the reduction of greenhouse gas 

emissions and the satisfaction of the ever increasing worldwide energy demands. 

Combustion is not the only way of gaining energy from biomass, but also anaerobic 

digestion or pyrolysis can be used. During the thermochemical decomposition (pyroly-

sis) of biomass in an oxygen free and high temperature environment, pyrolyzed bio-

mass or biochar is produced together with the two co-products energy and syn-gasses. 

Biochar, being a carbonaceous material, is known to have the potential to improve soil 

conditions, reduce greenhouse gas emissions and, most importantly, to improve the 

long-term carbon storage in soil. However, there still are many unanswered questions 

about biochar itself, its potential performance as a soil amendment, its influence on 

terrestrial carbon sequestration, and its behavior in the ecosystems. For this reason, this 

study was done with the overall objective to better understand the impact of biochar as 

a soil amendment on terrestrial carbon sequestration, soil quality, crop productivity, 

and greenhouse gas fluxes. 

A field experiment was established at two sites in Drage, Schleswig-Holstein, Germa-

ny, with bioenergy crops (crop rotation of Zea mays L., Secale cereale L. and Triticum 

aestivum L.). The sites represented two different sandy soils: Gleyic Podzol and Gleyic 

Anthrosol, which were amended with a total of five different treatments in a random-

ized complete block design with three replicates. Gleyic Podzol was amended with 

biochar (5 t biochar ha
-1

), respectively not amended in the control plots. Gleyic Anthro-

sol had already been amended with digestate at 0.15 kg C m
-2

, and was used unaltered 

for the control plots. To other plots, biochar was added to establish 1:1 and 1:5 mix-

tures of the existing digestate and the added biochar (5 and 24 t biochar ha
-1

 resp.). The 

biochar was produced from dry solid biogas digestate at 650 °C, and was mixed into 

the topsoils (0 - 0.2 m). Data were collected in all seasons over a two year period. In 

addition, an aerobic incubation experiment was conducted, investigating the interac-

tions between amended organic matter (digestates and biochar) and inherent soil or-

ganic matter, using samples from Gleyic Podzol with control, digestate only, biochar 
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only, and 1:1 and 1:5 mixtures of digestate:biochar treatments. During the 133 day in-

cubation period, the CO2 production was determined, and on selected days samples of 

the produced CO2 were analyzed for δ
13

C. 

The results of the field experiment showed that biochar had positive effects on the soil 

physico-chemical properties in both soils. In the first season after the application, the 

biochar amended plots had increased soil moisture content, soil reaction, TOC, TN, 

C/N ratio, inorganic nitrogen, plant available-P and -K, CEC and exchangeable cations 

(Ca, Mg, Na, K). The values of TOC, CEC, plant available-P and -K, and inorganic 

nitrogen were significantly higher in biochar amended soils compared to the control 

soils. Over the next seasons, the positive effects were diminishing, but the effects on 

CEC and plant available-P and -K remained significant even after two years. In con-

trast to soil nutrients, a negative effect was detected on soil microbial carbon and ni-

trogen just after amending the soil with biochar, but in the next seasons the biochar 

treated plots showed significantly higher microbial carbon, and nonsignificantly higher 

microbial nitrogen contents. The plots amended with biochar only and with both mix-

tures of digestate and biochar had a significantly higher crop biomass production in 

comparison to the control plots. The field experiment did not show a clear relationship 

between greenhouse gas emissions and organic matter amendments. This may be due 

to the low application rates of biochar. However, during the whole experimental period 

the application of biochar to these sandy soils only nonsignificantly increased CO2 

emissions. In the aerobic incubation experiment, all amendments accelerated carbon 

mineralization during the first phase of the incubation. However, over the whole period 

of 133 days, the biochar only treatment showed less loss of carbon, thus proving the 

potential of biochar to increase carbon sequestration. 

Overall, the results of this study lead to the conclusion that charred digestate (biochar) 

is more stable than digestate, and can be used to enhance the sustainability of bioener-

gy crop production agro-ecosystems with sandy soils, increase their agricultural 

productivity, and mitigate the impact on climate change. 
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Zusammenfassung 

In den letzten Jahren ist das Interesse an der Biomasseproduktion als Quelle erneuer-

barer Energie erheblich gestiegen, da diese zur Reduktion der Freisetzung von klima-

wirksamen Spurengasen und zur Sicherung des immer weiter ansteigenden globalen 

Energiebedarfs beitragen kann. Verbrennung ist nicht die einzige Möglichkeit, aus 

Biomasse Energie zu gewinnen, sondern dies kann auch durch anaerobe Gärung oder 

durch Pyrolyse geschehen. Bei der thermo-chemischen Zersetzung (Pyrolyse) von 

Biomasse in einer sauerstofffreien Hochtemperatur-Umgebung wird pyrolisierte Bio-

masse (Biokohle) erzeugt, sowie als Nebenprodukte Energie und Synthesegase. Es ist 

bekannt, dass die kohlenstoffreiche Biokohle in der Lage ist, die Bodenqualität zu ver-

bessern, die Emission von Treibhausgasen zu verringern und vor allem auch die lang-

fristige Speicherung von Kohlenstoff im Boden zu verbessern. Dabei gibt es noch viele 

offene Fragen im Hinblick auf die Biokohle an sich, ihre Wirksamkeit als Bodenver-

besserer, ihren Einfluss auf die Kohlenstoffbindung im Boden und ihr Verhalten in 

Ökosystemen. Diese Arbeit wurde mit der Zielsetzung durchgeführt, den Einfluss von 

Biokohle als Bodenverbesserer auf die Kohlenstoffbindung im Boden, die allgemeine 

Bodenqualität, den Ernteertrag und die Freisetzung von klimawirksamen Spurengasen 

besser zu verstehen. 

Dazu wurde ein Feldversuch an zwei Standorten mit Bioenergiepflanzungen in Drage, 

Schleswig-Holstein, Deutschland durchgeführt (Fruchtfolge mit Zea mays L., Secale 

cereale L. und Triticum aestivum L.). Die sandigen Böden dieser Standorte (Gley Po-

dsol/Gleyic Podzol und Gley-Plaggenesch/Gleyic Anthrosol), erhielten insgesamt fünf 

verschiedene Be-handlungen in einem vollständig randomisierten  Block-Design mit 3 

Replikaten. Der Gley Podsol wurde mit 5 t Biokohle ha-1 behandelt, bzw. blieb ohne 

Zusatz in den Kontrollfeldern. Der Gley-Plaggenesch enthielt einen Zusatz von Gär-

rückstanden mit 0.15 kg C m-2 bzw. blieb ohne Behandlung in den Kontrollen. Andere 

Plots erhielten Zusätze von Biokohle, so dass Mischungen der bereits vorhandenen 

Gärreste mit der hinzugefügten Biokohle im Verhältnis von 1:1 und 1:5 erreicht wur-

den (5 bzw. 24 t Biokohle ha-1). Die verwendete Biokohle wurde aus trockenen, festen 

Gärrückständen bei 650 °C hergestellt und in den Oberboden (0 – 0.2 m) eingearbeitet. 

Daten wurden über einen Zeitraum von zwei Jahren zu jeder Jahreszeit ermittelt. Zu-
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sätzlich wurde ein Inkubations-Experiment mit Proben des Gleyic Podsol und den fünf 

Zusätzen Kontrolle, nur Gärreste, nur Biokohle, und 1:1 und 1:5 Mischungen von Gär-

resten und Biokohle durchgeführt, um die Beziehung zwischen zugesetztem Kohlen-

stoff und Bodenkohlenstoff zu ermitteln. Die CO2 Emissionen wurden während der 

gesamten Inkubationszeit von 133 Tagen ermittelt, und die δ
13

C-Signaturen des emit-

tierten CO2 bestimmt.  

Die Ergebnisse des Feldversuchs zeigten, dass Biokohle positive Auswirkungen auf 

die physikalisch-chemischen Eigenschaften beider Böden hatte. In den ersten Monaten 

nach der Anwendung hatten die Plots mit zugefügter Biokohle höhere Werte für Bo-

denwassergehalt, pH-Wert, Gesamtkohlenstoff, Gesamtstickstoff, C/N-Verhältnis, an-

organischen Stickstoff, pflanzenverfügbares Phosphor (P) und Kalium (K), Kationen-

austauschkapazität und austauschbare Kationen (Ca, Mg, Na, K). Dabei waren die 

Werte für Gesamtkohlenstoff, Kationenaustauschkapazität, pflanzenverfügbares P und 

K sowie anorganischen Stickstoff in den Böden mit zugefügter Biokohle signifikant 

höher als in den Kontrollen. In der Folgezeit  nahmen diese Effekte ab, aber die Aus-

wirkungen auf Kationenaustauschkapazität und pflanzenverfügbares P und K waren 

auch nach zwei Jahren noch signifikant. Im Gegensatz zu den Nährstoffgehalten wurde 

unmittelbar nach dem Zusatz von Biokohle eine negative Auswirkung auf den mikro-

biellen Bodenkohlenstoff und -stickstoff festgestellt. Danach hatten die Plots jedoch 

signifikant höhere Werte für mikrobiellen Bodenkohlenstoff, und nicht-signifikant hö-

here mikrobielle Stickstoffgehalte. Die mit Biokohle bzw. einer Mischung aus Biokoh-

le und Gärresten behandelten Böden zeigten einen signifikant höheren Ernteertrag als 

die Kontrollen. Aus dem Feldversuch ergab sich keine klare Beziehung zwischen dem 

Ausstoß von Treibhausgasen und dem Zusatz von organischer Substanz. Dies kann an 

den niedrigen Applikationsraten der Biokohle liegen. Während der gesamten Dauer 

des Experiments erhöhte der Zusatz von Biokohle auf diesen sandigen Böden die CO2 

Emissionen. Diese Erhöhung war jedoch nicht signifikant. In dem aeroben Inkuba-

tionsexperiment beschleunigten alle Bodenzusätze die Kohlenstoffmineralisation wäh-

rend der ersten Phase der Inkubation. Über die gesamte Dauer von 133 Tagen zeigte 

der ausschließliche Zusatz von Biokohle geringere Kohlenstoffverluste als die anderen 
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Behandlungen. Somit konnte die Fähigkeit von Biokohle, die Kohlenstoffbindung im 

Boden zu erhöhen, bestätigt werden. 

Insgesamt führen die Ergebnisse dieser Studie zu dem Schluss, dass Biokohle im Bo-

den stabiler ist als Gärreste und verwendet werden kann, um die Nachhaltigkeit von 

Agrar-Ökosystemen zur Erzeugung von Bioenergiepflanzen auf sandigen Böden zu 

verbessern, die Anbauleistung zu erhöhen, und die Auswirkungen auf den Klimawan-

del zu vermindern. 
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1. Introduction  

Today, the balance between nature and human is at risk with many problems and chal-

lenges which are driven by each other: increasing human population, increasing global 

food and energy demand, industrial and green revolutions, fossil fuel burning, increas-

ing concentrations of greenhouse gases in the atmosphere, global climate change, de-

mand for renewable energy sources, etc. The renewable energy concept is one of the 

key issues in the diverse plans which are necessary to cope with those challenges. One 

of the recent developments in the renewable energy concepts is the use of biomass, 

which already contributes significantly to the energy supply in the European Union 

(EU) as a whole, and in Germany in particular. The use of biomass, be it for combus-

tion, or for producing biogas, needs to be developed further with respect to efficient 

and sustainable land use considering food security, securing soil fertility, and mitigat-

ing climate change by reducing greenhouse gas (GHG) emissions and sequestering 

atmospheric carbon in terrestrial systems (Lal, 2004, 2007, 2010).  

To overcome soil nutrient and carbon losses caused by intensive agriculture and to im-

prove soil quality, the addition of organic matter has been a common agricultural prac-

tice from the middle ages to the present. Sewage sludge, or digestate can supply soil 

nutrients and improve soil quality, but traditional organic materials like manures or 

composts have relatively short half-lives in soil (in compost up to 10 - 14 weeks: 

Butler and Hooper, 2010, and in sewage sludge 39 - 330 days: Ajwa and Tabatabai, 

1994). Terra-preta soils, also called Amazonian dark earth or Terra preta de índio, are 

anthropogenic soils rich in organic carbon in the Amazonian basin. Contrary to other 

highly weathered tropical soils, Terra-preta soils remain fertile for several centuries 

(Lehmann et al., 2003b; Sombroek et al., 2003). After it became clear that the amend-

ment of charcoal and other organic residues from settlements caused the increased or-

ganic matter content and the high fertility of these soils, charcoal gained immense sci-

entific interest again, eventually leading to the development of pyrogenic carbon or 

biochar (Lal, 2005, 2010; Lehmann and Joseph, 2009), and the re-evaluation of tradi-

tional organic amendments.  
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The current study investigates the effect of organic soil amendments on the sustainabil-

ity of bio-energy crop production agro-ecosystems depending on the type of amend-

ment. Therefore, two different organic amendments were added to arable soils used for 

bioenergy crop production. One amendment was the waste products from biogas pro-

duction plants, the digestate, which, under the current land use praxis, is applied to the 

field in liquid form. The second amendment was thermally treated (pyrolyzed) diges-

tate that was converted to charred digestate or biochar. Rather than just burning the 

biomass, pyrolysis is a process which produces energy in the form of heat, bio-

syngases and biochar. 

Biochar is chemically similar to charcoal, but has its own distinguished features 

(Woolf et al., 2010). Biochar is not only important because it contains carbon with a 

relatively high residence time in soil, which plays a role in soil terrestrial carbon se-

questration (Hammes et al., 2009; Johannes and Joseph, 2009), but also because it can 

have positive effects on soil structure (Jha et al., 2010), water retention (Glaser et al., 

2002), soil pH (Major et al., 2010b), availability and concentration of nutrients in soil 

(Chan et al., 2008; Glaser et al., 2002; Steiner et al., 2009), nutrient retention (Chan et 

al., 2008; Glaser et al., 2002; Steiner et al., 2009), and the soil micro-fauna (Lehmann 

et al., 2011), and increases the retention time  of soil pollutants and agrochemicals 

(Graber et al., 2011; Jones et al., 2011a; Mesa and Spokas, 2011; Spokas et al., 2009). 

Even though biochar has a long list of potential benefits and only few potential risks, 

all those highly depend on many parameters of both the biochar itself, and of the soil 

to which biochar is to be applied. Because of this, the results of previous researches 

were inconsistent, and leave room for many discussions and future research. There still 

are many knowledge gaps about how biochar is best used as a soil amendment in a 

specific agro-ecosystem. Thus, the current study is important for better understanding 

the impact of biochar on soils used for bio-energy crop production in Northern Germa-

ny, and for encouraging the use of biochar to meet global climate and carbon seques-

tration goals. 
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1.1 Objectives 

The general objective of this study is to evaluate how digestate and charred-digestate 

(biochar) can be used as organic soil amendments to increase bioenergy crop produc-

tivity, soil quality, and terrestrial carbon sequestration in bioenergy crop production 

systems in Northern Germany.  

With this main objective, the study focused on evaluating the behavior of both biochar 

and digestate in soil ecosystems with the following research questions:  

1. Does biochar or the combination of biochar and digestate have a synergistic 

effect on above ground biomass production that is greater than the effect of 

digestate only?  

2. Can biochar or the combination of biochar and digestate sustain soil nutrients 

over multiple growing seasons?  

3. How does biochar or the combination of biochar and digestate affect soil mi-

crobial biomass?  

4. Do biochar or the combination of biochar and digestate affect soil organic 

carbon turnover, terrestrial carbon sequestration and greenhouse gas emis-

sion? 

To answer and evaluate research questions 1 and 2, the following two hypotheses were 

formulated:  

H1. Biochar application will significantly increase above ground biomass pro-

duction of bioenergy crops.  

H2. Biochar application will significantly increase the availability of soil micro- 

and macro-nutrients.  

The following two hypotheses were formulated to evaluate research questions number 

3 and 4:  

H3. Soil amended with a mixture of digestate and biochar will have a signifi-

cantly higher soil microbial activity than soil amended with digestate only. 

H4. The mineralization of soil inherent organic carbon and the greenhouse gas 

fluxes will significantly increase with increasing amount of biochar.   

To answer the research questions, the above mentioned hypotheses were tested by 

conducting a field experiment and an aerobic incubation experiment.  
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The field trial was conducted at two bioenergy crop production sites and used five dif-

ferent treatments containing digestate, biochar (charred digestate), and their mixtures. 

The chemical parameters of topsoil (0 - 0.2 m) and the emission fluxes were measured 

monthly, and at the end of each growing season, the above ground biomass was deter-

mined. The data was used to evaluate the effects of digestate and biochar on soil quali-

ty including the soil micro- and macro-nutrients content and availability, crop produc-

tivity, soil microbial biomass carbon and nitrogen, soil respiration and other trace gas 

emissions.  

The aerobic incubation experiment was done with the same treatments that were used 

in the field trail, and CO2 production data and the isotope ratio (δ
13

C) of the produced 

CO2 were measured. The data were used to evaluate the effects of digestate and bio-

char and their mixtures on the potential mineralization of both soil organic matter and 

amended organic matter.  
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2. State-of-the-art 

2.1 Renewable energy in Germany 

In the era of renewable energy, bio energy is considered one of the key options to miti-

gate climate change and reduce anthropogenic trace gas emissions. Consequently, both 

the European Union as a whole, and the German government in particular started de-

veloping strategies and political agendas to make use of renewable energies for replac-

ing fossil fuels and reducing greenhouse gas emissions in both short- and medium-

term planning (Faaij, 2006; Bosch, Johnson, Clément, Mertens & Roubanis, 2009; 

FNR, 2013). In 2010, the main sources of renewable energy in Germany were wind 

power, which produced 36.5 billion kilo-watt hours (kWh), followed by hydropower 

(19.7 billion kWh), biomass (33.5 billion kWh), photovoltaics (12.2 billion kWh), and 

geothermal energy (< 0.1 billion kWh) (Böhme, et al., 2010). 

The United Nations World Commission on Environment and Development (UN-

WCED) concept which was published as the Brundtland Report in 1987 (WCED, 

1987) demands that the present generation satisfy its needs without endangering the 

ability of future generations to meet theirs. Following this concept, the sustainable de-

velopment of the renewable energy sector, and the environmental, social and economic 

sustainability of the industry became one of the main research areas of the German 

Federal Ministry of Food, Agriculture and Consumer Protection (Bundesministerium 

für Ernährung und Landwirtschaft, BMELV) with the goal to test new approaches in 

research projects. The results shall be used to develop strategies to ensure the biodiver-

sity of energy crops and ecosystems, to breed new plant varieties, to establish new cul-

tural practices for bioenergy crops reducing the use of pesticide and fertilizer, to pro-

vide a year round vegetative cover to reduce soil erosion, to increase the efficiency of 

energy conversion processes, to improve the cascading use of renewable resources 

(first being used as a material and then being used as an energy source), and to re-use 

residual materials as fertilizer (FNR, 2013). In the EU, anaerobic digestion plants or 

biogas production plants commonly use three different input substrates: landfill waste, 

sewage sludge, and agricultural residues. But Germany decided to encourage the plant-

ing of bioenergy crops to be used as substrate in digestion plants (FNR, 2014). Even 
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though the concept and technique of producing biogas have been familiar for a long 

time already, energy production from biogas did not play a significant role compared 

to all other energy sources before the 1990s (FNR, 2013).  
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Figure 1: Number of biogas plants in EU member states in 2012 (modified graph 

from EBA, 2012) and development of the number of biogas plants and their elec-

tricity production capacity in Germany (modified graph from FNR, 2015). 
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2.2 Development of biogas in the German renewable energy sector  

According to the German Agency for Renewable Resources (Fachagentur für na-

chwachsende Rohstoffe; FNR, 2014), the agricultural sector, including all bioenergy 

crops, agricultural by-products, and animal waste, plays the dominant role in Germa-

ny’s biogas production. According to FNR (2013), over 7,515 biogas plants had the 

capacity to generate approximately 3,352 megawatts (MW) of electricity (FNR, 2013). 

The steady increase in agricultural anaerobic digesters in Germany can be directly at-

tributed to a supportive national legal framework coupled with the tariffs paid for re-

newable energy. The German Renewable Energy Act (Erneuerbare Energien Gesetz, 

EEG) which was introduced in 2000 and its 2004, 2009, and 2012 amendments were 

able to generate a massive boost in the development of biogas in Germany (FNR, 

2014).  

In 2012, biogas generated from biomass or agricultural waste and by-products contrib-

uted 15 % to the electricity generation, and 8 % to the supply of heat produced by us-

ing renewable energies (FNR, 2013). When adding biogas from bio-waste fermenta-

tion, landfills, and sewages, the total contribution of biogas was 20 % for electricity 

and 15 % for heat (FNR, 2013). Biomass, including wood, bioenergy crops, straw and 

animal excrement, will play a significant role in the future for a sustainable and envi-

ronmentally friendly energy supply nationwide.  

Biogas produced from biomass is suitable for the simultaneous production of electrici-

ty and heat, and can be used as a substitute for fuel and natural gas (see Figure 2). The 

main limitation of biogas to use as a stable energy source is the production fluctuation 

which depends on the time of the year, time of the day, and weather. In comparison to 

other renewable energy sources, biogas is flexible to use and easy to store (FNR, 

2013). According to FNR (2013) and the Federal Ministry for the Environment, Nature 

Conservation, Building and Nuclear Safety (Bundesministerium für Umwelt, Na-

turschutz, Bau und Reaktorsicherheit, BMUB), in Germany approximately 54 % of 

biogas is produced by using bioenergy crops, and 50 % of the biogas produced in this 

way is used for electricity production. 
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Biogas significantly reduces the burden on the environment. The greatest potential for 

CO2 savings lies in the reduced energy expenditure for bioenergy crop production and 

the installation of anaerobic digesters, compared to the energy gain from anaerobic 

digestion of the bioenergy crop, slurry, manure and other biomass as input substrates. 

A list of the environmental advantages of biogas should also include the utilization and 

reduction of waste and the reduction of methane emissions from slurry and manure, 

and the usage of digestate as a fertilizer after being processed properly (FNR, 2013). 

The decentralized nature of energy production from biogas is not only improving the 

income of rural farmers, but also entails follow-on investments that lead to the 

strengthening of rural areas in economic terms. In 2012, the renewable energy sector in 

Germany employed almost 380,000 people, and the biogas sector represented 13 % or 

50,000 employees according to FNR (2013).  

Biogas offers a diversity of options for use, including the decentralized production of 

electricity and heat using CHP (Combined Heat and Power) production unit places in 

the close proximity of the   biogas production plant, the feeding into the national pow-

er grid using the benefits granted from the EEG, the feeding of upgraded biogas into 

the natural gas grid, and its use as a substitute for natural gas for energy production, as 

fuel, or in the chemical industry (Figure 2). However, the main objective is utilizing it 

as an energy source in an efficient way. 
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Figure 2: Flow chart of inputs and outputs of agricultural biogas plants in Ger-

many’s bioenergy production system. 

 

2.3 Agricultural anaerobic biogas digesters 

Anaerobic digestion of organic matter takes place naturally in the absence of oxygen in 

different habitats: at the bottom of lakes, in swamps, in the stomach of ruminants, in 

landfills, volcanic hot springs, submerged rice fields, etc. Normally there are four steps 

in anaerobic digestion: hydrolysis, acidification, acetic acid formation, and methane 

formation, which all take place simultaneously. During complete anaerobic digestion, 

different species of microorganisms are involved depending on the processing stage. 

Those microorganisms produce different kind of gases. Generally, this mixture of gas 

is known as biogas and includes methane (50 - 75 %), carbon dioxide (25 - 45 %), wa-

ter vapor (2 - 7 %), oxygen (< 2 %), nitrogen (< 2 %), ammonia (< 1 %), hydrogen 

sulphide (< 1 %) and other trace gases (< 2 %) (FNR, 2013). Anaerobic digesters in 

biogas production plants facilitate the anaerobic microbial decomposition of organic 

matter in a moist environment and temporarily store the biogas. The total biogas yield 
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and the composition of the gas mixture highly depend on several parameters, e.g. the 

composition of the input substrates (supply of nutrients), and the biological key figures 

of the fermentation process including sensitivity of the microorganisms to the different 

environmental conditions of the medium including temperature and pH (Al-Seadi and 

Lukehurst, 2012). 

A large number of organic substrates can be used to obtain biogas, but in an agricultur-

al installation the most commonly used substrates are animal excrements (e. g. slurry 

from cattle and pigs), by-products from the food and timber processing industries (e.g. 

vegetable waste from wholesale markets, food waste from restaurants, lawn cuttings, 

material from landscape conservation, or organic waste from municipal disposals), and 

bioenergy crops grown especially for this purpose. In 2012, bioenergy crop was the 

most popular substrate (54 %) in Germany, followed by livestock excrement (41 %), 

bio-waste (4 %) and industrial and harvest residues (1 %)  according to the monitoring 

report of EEG (FNR, 2013). Among the bioenergy crops, maize is very popular be-

cause of its high dry matter and energy yields, and because it provides the best techno-

logical suitability and cost structure, and only requires a small amount of fertilizer and 

plant-protection products. Examples for other substrates are grain, grasses, and sugar 

beet (FNR, 2013). However, there also are some negative consequences of the usage of 

maize as a bioenergy crop, for example on soil fertility, biodiversity, and available land 

for food supply. In Germany, there are numerous ongoing research projects focusing 

on bioenergy crops for advancing the further development of existing bioenergy crops, 

investigating the potentials of other bioenergy crop species, introducing new bioenergy 

crops, and cultivating mixes of bioenergy crops and wild flowers (FNR, 2013).  

 

2.4 Digestate from agricultural anaerobic biogas digesters 

A mixture of partially digested or indigestible materials of the biodegradable substanc-

es, mineralized or live microbial cells, and mineralized inorganic molecules left after 

anaerobic digestion is called digestate, which is a nutrient-rich liquid-solid suspension 

(5 % to 10 % dry mass) (Domínguez, 2012; FNR, 2013; Madan and Mandan, 2015; 

Makádi et al., 2012; Möller and Müller, 2012). Lignin, which cannot be biodegraded 
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by the microorganisms involved in the anaerobic digestion process, comprises a signif-

icant portion of this solid (Madan and Mandan, 2015). Digestate contains more than 90 

% of the nutrients entered to the digester (OECD, 2010), but the final quality of the 

digestate does not only depend on the nutrient value but also on other qualities of the 

initial substrate including initial C/N ratio, dry matter content, as well as on the micro-

environment of the anaerobic digester, and  the duration and intensity of the digestion 

process (Domínguez, 2012; Smith et al., 2007). Due to the production of ammonium 

substances,  the average pH value of the digestate is higher than that of its initial sub-

strate (Brenner, 2008; Domínguez, 2012). Some of the phosphorus is converted into a 

readily available form, but potassium and magnesium contents do not change signifi-

cantly during anaerobic digestion (FNR, 2013). 

 

2.5 Application of digestate to agro-ecosystems: limitations and regulations 

With the increasing number of large scale agricultural biogas plants, the way of han-

dling and the quality of digestate can have a significant impact on both the human 

health, and the quality and sustainability of ecosystems especially in the agricultural 

areas. The digestate produced by most of the agriculture based biogas digesters is di-

rectly used as a soil amendment acting as an organic fertilizer with or without pre-

application treatments, and bears a low risk of containing hazardous materials like 

trace metals or harmful pathogens, contrary to the digestate coming out from industrial 

and other kinds of anaerobic digesters (Evans, 2013; Lukehurst et al., 2010; Möller et 

al., 2009). The quality of the digestate coming out from the digester solely depends on 

the micro environment in the digester tank, the original nutrient value of the substrate, 

and the pre-application handling (Möller et al., 2009). Taking all these facts into ac-

count, regulating and monitoring of digestate application to the soil are important. In 

Germany, there are several regulations about monitoring the quality and disposal pro-

cess of digestate (BMJV, 2012; Dittrich, 2006; FNR, 2014; Lukehurst et al., 2010; 

Schneider and Mastel, 2008b).      

The use of digestate as an organic soil conditioner is mainly governed by § 3 No. 1 and 

2 of the German Fertilizer Law 1977 (Düngemittelgesetz - 1977) which cover the im-
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pacts on soil fertility, health of humans and domestic animals, food crops, and the sus-

tainability in the ecosystems (Dittrich, 2006). Application is forbidden when the soil is 

frozen with more than 5 cm snow layer, or when it is flooded and saturated. The max-

imum application rate of organic fertilizer allowed in the EU is 170 kg N ha
-1

 yr
-1

, but 

in Germany there is a maximum permissible excess of 60 kg N ha
-1

 yr
-1

 with 20 kg 

P2O5 ha
-1

 yr
-1

 as long as the soil has less than 20 mg  P2O5 per 100 g of soil 

(Domínguez, 2012; German Advisory Council on the Environment, 2013; Schneider 

and Mastel, 2008b).  

 

2.6 Effect of digestate on agro-ecosystems 

In order to understand the effects of digestate on agricultural production, several stud-

ies were conducted in different locations in Germany. Most of the studies focused on 

the effects of wet digestate from agricultural biogas plant as a liquid fertilizer on crops 

(wheat, maize, rapeseed and rye), which were shown to be quite comparable to the 

effects of mineral fertilizer (Schneider and Mastel, 2008a; Schneider-Götz, 2007; 

Wenland et al., 2006). The significantly increased biomass productivity was docu-

mented by Stinner et al. (2005; for spring and winter wheat with wet digestate), and 

Schneider-Götz (2007; winter wheat and maize with wet digestate). However, 

Pacholski et al. (2011) and Kautz and Rauber (2007) showed in their studies that the 

dry-matter yield of maize did not significantly increase by only using digestate from 

agriculture based biogas plants as fertilizer. Besides its effects on biomass yield, diges-

tate from agricultural biogas production also has an effect on the soil quality which is a 

fundamental component of agro-ecosystems.  

Digestate, which is rich in labile organic matter, can create a favorable environment 

for both macro and micro soil organisms. Several researches showed that the effect of 

digestate from agricultural biogas production on the population of earthworms, which 

is a well-known bio-indicator for the assessment of soil quality, is similar to the effect 

of applying liquid manure (Elste et al., 2010; Hans-Jörg Brauckmann et al., 2009; 

Sensel et al., 2009). 
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2.7 Charred digestate (biochar) and its application  

2.7.1 What is biochar?  

The black to dark brown soil in the Amazon River Basin was discovered in 1870. After 

Wim Sombroek gave an explanation for that special soil in 1966, biochar gained its 

first interest from the scientific community (Lehmann and Joseph, 2009; Lehmann, 

2007; Lehmann et al., 2006; Schmidt, 2013; Sombroek et al., 2003; Woods and 

Winklerprins, 2009; World Bank Carbon Finance Unit, 2011). The interest in biochar 

was uplifted again when soil carbon sequestration was recognized as a potential con-

tribution to mitigating global climate problems. Biochar is a solid carbon rich com-

busted organic material produced by complete thermal decomposition of biomass by 

heating it up to a high temperature in the absence of or with only a limited supply of 

oxygen, in nature or with specialized pyrolysis technologies (Hammes et al., 2009).   

 

Figure 3: O/C spectrum of the products of  thermo-chemical conversion of bio-

mass (modified: Spokas, 2010). 

 

Spokas (2010) summarized how biochar differed from other traditional carbon rich 

combusted products like graphite, soot, charcoal, char and pure biomass after studying 

their oxygen to carbon ratio (O/C ratio or black carbon continuum in Figure 3). He 

further described the relationship between the O/C ratio and the stability of those 

products in soils. Graphite, the product with the lowest ratio has the highest stability, 

and the lowest stability is shown by pure biomass.  
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Several authors tried to give a definition for biochar including chemical and physical 

characteristics, production conditions and usage (Table 1). The earlier definitions in-

clude only chemical and physical characteristics, but the later ones also give details 

about the usability of biochar and even include specific production conditions for spe-

cific uses. Pyrogenic carbonaceous material (PCM), black carbon, and hydrochar are 

more often discussed together with biochar in the literature, but Lehmann and Joseph 

(2009) showed those materials are clearly different from each other. PCM is the com-

mon term for all materials which are produced by thermochemical conversion and con-

tain some organic carbon, like charcoal, biochar, char, black carbon, soot, or activated 

carbon. Black carbon is a PCM which originating from wildfires or fossil fuel combus-

tion, and dispersed in the environment. Hydrochar is a solid product produced by hy-

drothermal carbonization (HTC) and differs from biochar both in the way it is pro-

duced and in its properties. Hydrochar has higher hydrogen to carbon (H/C) ratio than 

biochar, and in contrast to biochar has little or no fused aromatic ring structures.  
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Table 1: Available definitions for biochar 

Year Definition Author/Institute 

2009 “biochar is the C-rich product obtained when biomass, 

such as wood, manure or leaves, is heated in a closed 

container with little or no available air” 

Lehmann and 

Joseph 

2010 “charcoal (biomass that has been pyrolyzed in a zero or 

low oxygen environment) for which, owing to its inher-

ent properties, scientific consensus exists that applica-

tion to soil at a specific site is expected to sustainably 

sequester carbon and concurrently improve soil func-

tions (under current and future management), while 

avoiding short- and long-term detrimental effects to the 

wider environment as well as human and animal 

health” 

Verheijen et al. for  

European Com-

mission 

2010 “biochar is the porous carbonaceous solid produced by 

thermo-chemical conversion of organic materials in an 

oxygen-depleted atmosphere which has physicochemical 

properties suitable for the safe and long-term storage of 

C in the environment and, potentially, soil improvement” 

Simon and Sohi   

2012 “biochar is defined as char produced by pyrolysis for 

use in agriculture (and other non-thermal applications) 

in an environmentally sustainable manner” 

EBC - European 

Biochar Certificate  

2012 “biochar is produced by biomass pyrolysis, a process 

whereby organic substances are broken down at tem-

peratures ranging from 350 to 1000 °C in a low-oxygen 

(<2 %) thermal process” 

IBI - International 

Biochar Initiative 
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2.7.2 Characteristics of biochar 

Many authors documented characteristics of biochar in relation to feedstock, produc-

tion techniques and temperature, retention time, and post-production handling. Both 

chemical and physical properties of biochar mainly depend on the feedstocks, with the 

chemical properties having a higher dependency than the physical ones according to 

available literature (Abdullah et al., 2010; Brewer et al., 2011; Bridgwater, 1999; 

DeLuca et al., 2006; Liang et al., 2006; Mohan et al., 2006; Novak et al., 2014; 

Raveendran et al., 1995; Warnock et al., 2007; Yang and Lua, 2003). The chemical 

characteristics change with the feedstocks (Abdullah et al., 2010), the production tech-

nology and conditions (Novak and Busscher, 2013) including temperature and resi-

dence time (Bridgwater, 1999), and the cooling technique (Mohan et al., 2006; Yang 

and Lua, 2003; Zhao et al., 2013).  

Biochar produced from woody feedstock rich in lignin has a high carbon and a low ash 

content compared to switchgrass and corn stove biochar (Brewer et al., 2011; 

Raveendran et al., 1995). The chemical structure of the carbon in the feedstock decides 

the final aromatic carbon groups in biochar depending on the production temperature 

(Brewer et al., 2011; Kwapinski et al., 2010; Luo et al., 2011). The common structural 

groups in biomass are hemicellulose, cellulose and lignins, which require different 

temperature ranges in order to be completely pyrolyzed: 200 - 260 °C, 240 - 350 °C, 

and 280 - 500 °C respectively (Mohan et al., 2006). The surface chemical characteris-

tics of biochar are determined by those aromatic carbon groups which give highly het-

erogeneous and not well defined surfaces which can have hydrophobic, acidic and 

basic characteristics (Amonette and Joseph, 2009; Brennan et al., 2001; Hedges et al., 

2000; Preston and Schmidt, 2006; Schmidt and Noack, 2000; Spokas, 2010; 

Trompowsky et al., 2005). Due to its high carbon and low nitrogen content, biochar 

has highly variable C/N ratio with a maximum value of 400 (Chan and Xu, 2009). 

Cheng et al. (2008) explained that the high cation exchange capacity (CEC) of biochar 

is caused by the presence of negatively-charged functional groups. Novak et al. (2009) 

discovered the relationship between pyrolysis temperature and CEC of biochar: an in-

crease in pyrolysis temperature decreases biochar CEC. This negatively-charged  sur-

face of biochar not only adsorbs cations and increases CEC but also is able to adsorb 
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other organic and inorganic compounds (Abebe et al., 2012; Buss et al., 2015; Graber 

et al., 2011; Kwon and Pignatello, 2005; Lucchini et al., 2014; Mesa and Spokas, 

2011; Pignatello et al., 2006; Zhu and Pignatello, 2005). The porosity and surface area 

of biochar correlates with a mass loss during the pyrolysis (Amonette and Joseph, 

2009), and when the production temperature is less than 450 ºC, the porosity is low 

due to the accumulation of volatile organic compounds inside the pores, and reduces 

the adsorption capacity (Kwon and Pignatello, 2005; Pignatello et al., 2006).  

 

2.7.3 Significance of applying biochar to soil in agro-ecosystems  

The use of charcoal, biochar or biomass-derived black carbon in agriculture is not a 

new technique, but this has been done by indigenous farmers in many parts of the 

world including South America, South and South East Asia for a long time already. 

Besides anthropogenic influences, naturally produced biomass-derived black carbon 

(e.g. from wild fires) can be found in soil carbon pools (Grossman et al., 2010; 

Sombroek et al., 2003; Swami et al., 2009; Woods and Winklerprins, 2009). With the 

developing interest in biochar and all biomass-derived black carbon, those recently 

started to be manufactured commercially with four main objectives: soil amelioration 

to improve agricultural productivity, proper waste management, climate change miti-

gation, and energy production (Johannes and Joseph, 2009). According to Forbes et al. 

(2006), the worldwide production of biochar was 0.05 - 0.27 Gt per year. Compared to 

the terrestrial net primary productivity of 60 Gt/yr this was very small (IPCC, 2005, 

2007), but all this black carbon makes up one third of soil organic carbon in the major-

ity of soils globally (Major et al., 2010a). Since more than a decade scientists have 

been discussing the stability of biochar and other char products in soil, and their ability 

to enhance the carbon sequestration. Those qualities are much higher when biochar is 

produced at higher temperature (graphite stability: Shneour, 1966, biochar stability: 

Baldock and Smernik, 2002; Bird et al., 1999; Brodowski et al., 2005; Glaser et al., 

2000; Hamer et al., 2004; Kawamoto et al., 2005; Lehmann et al., 2006; Pessenda et 

al., 2001; Shindo, 1991). On the other hand, higher production temperature will give 

nutrient losses and a small mass turnover (Bolan et al., 2012; Bruun et al., 2011; 

Calvelo Pereira et al., 2011; Özçimen and Karaosmanoğlu, 2004). 
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2.7.3.1  Effects of biochar on soil physical properties 

The effects of biochar on soil physical properties are based on its porosity, high surface 

area, lower bulk density, and water repellency. Only a small number of researches have 

been conducted on the effect of biochar on soil physical properties compared to re-

searches on biochar’s effects on soil chemical properties, but there were some interest-

ing findings. According to Lehmann et al. (2003a, 2003b), Liu et al. (2015) and Novak 

et al. (2012) biochar increases the water holding capacity of soil because of its in-

creased particle surface area and the water storage within the porous structure, and in-

directly increases mycorrhizal fungi and microbial biomass. There was evidence from 

the studies done by Verheijen et al. (2009) and Liu et al. (2015) that biochar applica-

tion significantly improves aggregate stability. Atkinson et al. (2010) and Hammes and 

Schmidt (2009) investigated the influence of biochar on soil erodability. However, 

there also are studies showing little effect on soil physical properties, and often even 

conflicting evidences to the above positive effects. For example, Busscher et al. 

(2010), Peng et al. (2011), and Eastman (2011) reported that biochar had no significant 

effect on aggregate stability. Many studies and review articles showed the effects of 

biochar on soil physical properties for specific soils which are of little relevance for 

agricultural soils such as ancient anthropogenic soils  (Atkinson et al., 2010; Ayodele 

et al., 2009; Glaser et al., 2002; Mukherjee et al., 2014; Sohi et al., 2009, 2010; 

Verheijen et al., 2010) or with non-agricultural soils (Belyaeva and Haynes, 2012; 

Jones et al., 2011b; Uzoma et al., 2011). Other studies used disturbed soils, or did not 

perform in situ soil experiments at the fields (Belyaeva and Haynes, 2012; Kameyama 

et al., 2012; Liu et al., 2012; Pan et al., 2009; Streubel et al., 2011; Tryon, 1948; 

Uzoma et al., 2011; Van-Zwieten et al., 2010).  

 

2.7.3.2  Effects of biochar on soil chemical properties  

Contrary to the soil physical properties, many studies have been done concerning the 

effects of biochar on soil chemical properties (Busscher et al., 2010; Chan et al., 2007; 

Deenik et al., 2010; Van-Zwieten et al., 2010). The promising results with highly 

weathered tropical soils with poor chemical properties (Iswaran et al., 1980; Jeffery et 
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al., 2011; Liang et al., 2006) drew the attention of biochar research to tropical climate 

(Glaser et al., 2002; Jeffery et al., 2011; Verheijen et al., 2010; Xie et al., 2015), but 

recently the research interest has extended to subtropical areas with a growing interest 

in the application of biochar to increase terrestrial carbon sequestration (Kimetu and 

Lehmann, 2010; Tejada and Gonzalez, 2007; Trompowsky et al., 2005). As an attrac-

tive soil amendment, biochar significantly increases pH (EBC, 2012; Glaser et al., 

2002; IBI, 2012; Lehmann et al., 2003b; Major et al., 2009, 2010b; Yamato et al., 

2006), CEC (Alling et al., 2014; EBC, 2012; Glaser et al., 2002; Hale et al., 2013; IBI, 

2012; Lehmann et al., 2003b; Major et al., 2009, 2010b; Yamato et al., 2006), overall 

sorption capacity (Sohi et al., 2010), availability of major plant nutrients (Jeffery et al., 

2011, 2015; Verheijen et al., 2010), base saturation (BS) (Glaser et al., 2002; Lehmann 

et al., 2003a, 2003b; Major et al., 2009, 2010b; Schulz and Glaser, 2012; Yamato et al., 

2006), and available P (Chidumayo, 1994; Yamato et al., 2006).    

 

2.7.3.3  Effects of biochar on agricultural crop productivity 

There was much research on the effects of biochar on agricultural soil and agronomic 

performance. The results of those studies are varied and depend on feedstock, produc-

tion conditions, rates and procedure of biochar application, soil properties, crop prop-

erties, and cultural practices of production systems, but the majority of those studies 

showed a positive plant response to biochar application (Jeffery et al., 2011; Jha et al., 

2010). The literature shows that the influence of biochar on plant biomass can be phys-

ical, chemical and biological, by increasing the water holding capacity (Glaser et al., 

2002; Laird et al., 2010), affecting the soil pH (Major et al., 2009, 2010b), directly in-

fluencing the supply of plant nutrients (Chan et al., 2008), indirectly influencing the 

availability of plant nutrients (Chan et al., 2007; Pessenda et al., 2001), and affecting 

the interactions with the soil micro-fauna (Hammes et al., 2009; Ruivo et al., 2009).  
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2.7.3.4  Effects of biochar on soil microbial biomass 

Because the behavior of soil microbial biomass in biochar amended soils highly varied 

in past studies (Grossman et al., 2010; Khodadad et al., 2011; O’Neill et al., 2009), 

there are many controversies on how biochar effects soil biological processes, and this 

still is not well understood (Lehmann et al., 2011). It is clear that biochar application 

rates and soil type also affect the soil microbial biomass (Lehmann et al., 2011). Bruun 

et al. (2011), Luo et al. (2011), Steinbeiss et al. (2009), and Zimmerman et al. (2011) 

documented a higher amount of labile C fractions in biochar amended substrates than 

in their non-charred feedstocks. Lehmann et al. (2011) explained the positive effect of 

biochar on the soil microbial biomass (SMB) by its ability to increase the concentra-

tion of dissolved organic matter and soil nutrients (N, P, Ca and K), to remove toxic 

compounds from soil solution by adsorption, and to change the quality of soil water 

and its pH. Due to fresh biochar’s recalcitrance (Kuzyakov et al., 2009), water repel-

lence (Blackwell et al., 2009), and toxicity (Hale et al., 2011; Liu et al., 2008; 

Zimmerman et al., 2011) some studies report no effect of biochar on soil microbial 

biomass (Castaldi et al., 2011; Rutigliano et al., 2014; Zavalloni et al., 2011). Accord-

ing to Dempster et al. (2012) and Liu et al. (2008) the toxic effect of biochar due to its 

polycyclic aromatic hydrocarbons (PAHs) and some highly volatile organic compound 

substances caused soil microbial biomass to decrease. The ability of biochar to supply 

a protective environment by avoiding grazers (Pietikainen et al., 2000), and its storage 

capacity for labile carbon and nutrients (Saito and Marumoto, 2002; Warnock et al., 

2007) which is associated with the high internal porosity of biochar, may be the reason 

for the positive effects of biochar on SMB. 

 

2.7.3.5  Effects of biochar on greenhouse gas emissions and climate change 

Applying different organic fertilizers, returning crop residues to the soil, decreased or 

even zero tillage, and increasing the soil cover are the traditional ways of enhancing 

the capability of soils in agricultural ecosystems to act as a carbon sink (Lal, 2004, 

2007; Lorenz and Lal, 2014). The impacts of these methods on soil carbon storage 
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highly depend on the contribution of the organic amendments to the readily available 

carbon and to soil nutrients which can boost carbon mineralization, soil respiration and 

GHG emissions (Oelbermann and Voroney, 2007). Therefore, it is important to find 

ways to reduce these contributions in order to increase the efficiency and effectiveness 

of bioenergy production systems as a renewable energy source (Woolf et al., 2010). 

Incorporating biochar into the soil in bioenergy crop production systems alters the bio-

chemical pathways of carbon and other elements, and increases the net withdrawal of 

atmospheric carbon (Woolf et al., 2010). However, many controversial results were 

reported by previous studies in both tropical and temperate regions: amending soil 

with biochar may either increase (Deenik et al., 2010; Luo et al., 2011; Scheer et al., 

2011) or decrease (Bolan et al., 2012; Dempster et al., 2012; Knoblauch et al., 2011; 

Liu et al., 2011; Malghani et al., 2013; Rondon et al., 2005; Zhang et al., 2010a, 

2012b; Zimmerman, 2010) emission of CO2, N2O and CH4. 

In 2011, an estimate was made by Matovic (2011) claiming that by converting 10 % of 

the global net primary production to biochar and adding it to the terrestrial carbon se-

questration has the potential to reduce fossil fuel emissions by 4.8 Gt C/yr. The Global 

Warming Potential (GWP) cannot only be reduced by reducing the CO2 emission, but 

also by reducing N2O and CH4, which have an even higher GWP than CO2 (Bijay-

Singh et al., 2008; Singh and Cowie, 2014; Singh et al., 2010; Spokas et al., 2009). In 

addition to the direct impacts on GHG emissions, more indirect ways to fix atmospher-

ic carbon into the soil by biochar were documented by researchers: by making soils 

more resistant to microbial and physical  degradation (Major et al., 2010a), by provid-

ing a habitat for soil microorganisms which leads to the fixation of carbon in under-

ground fungal networks (Warnock et al., 2007), by producing co-products like bio-oil 

and bio-syngases which are energy sources and can replace fossil fuel (McCarl et al., 

2009). Kammann et al. (2012) and Zhang et al. (2012, 2011) reported no effect on 

GHG gas emissions after soil was amended with biochar. The internal porosity of bio-

char together with its water repellence may change soil aeration and water status 

(Karhu et al., 2011; Zhang et al., 2012a, 2011) and alter the soil microbial community 

and activity (Feng et al., 2012; Lehmann et al., 2011), which may finally affect soil 

CH4 emission. 
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3. Investigation Area 

3.1 Schleswig-Holstein 

Schleswig-Holstein (SH) lies between the North Sea in the west and the Baltic Sea in 

the east. The terrestrial borders of SH are with Denmark in the north, Mecklenburg-

Western Pomerania in the east, and Hamburg and Lower Saxony in the south (Figure 

4). Looking at the geomorphological landscape, three regions can be identified in SH: 

eastern, central, and western. The eastern region of SH has bays and fjords along the 

coastline of the Baltic Sea. This part of SH is rich in natural landscape, including lakes 

and hilly areas formed during the last European Ice Age (the Weichselian glaciation). 

Geest, a slightly elevated land surrounded by plains and marshlands, is the common 

landscape in the central area. The Geest acts as a bridge between the marshes and the 

hills, and contains poor soils belonging to different ages and diverse origins like Saali-

an moraines, and fluvio-glacial deposits from the Weichselian period. Drage, where the 

experimental sites are located, lies on the west side of the central region close to Sta-

pelholm (Figure 4). The area where young marine sediment was deposited during the 

Holozene represents the marshlands in the western region. This western region has 

heavy, fertile soils and is intensively used for livestock grazing. It was easily exposed 

to the high tides and storm floods before those were controlled by manmade dikes (al-

so see land use and vegetation in 3.5). These natural events limit the full utilization of 

the fertile soil for crop production and the development as an urban area (Becker & 

Kaster, 2005; Behre, 2008; Schleswig-Holstein, 2014).  
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Figure 4: The location of Schleswig-Holstein with its borders and the natural 

landscapes based on geomorphology: the red circle shows the area of the experi-

mental sites. (Source: www.de.wikipedia.org/wiki/Schleswig-Holstein, accessed on 

19.03.2014) 

 

3.2 Regional geomorphology of SH  

From a geological perspective, the surface landscape of SH was mainly shaped by the 

most recent ice age. The greater part of SH, including Stapelholm and Drage where the 

experimental sites are, has its origins in the ice ages of the Quaternary geological era 

(2.6 Ma to 12 ka ago) and its interglacial periods (ICS, 2014). The Weichselian 

(115,000 - 10,600 a ago) and Saalian (300,000 - 130,000 a ago) glacial periods also 

had an influence on the landscape genesis of SH (Ehlers, 2011). But the development 

of the SH landscape mainly occurred in the Holocene era (from 11,700 a ago until to-
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day; Ehlers, 2011; ICS, 2014; Langheld, 2013; Schmidtke, 1995). The Eemian inter-

glacial period and the Holocene, the two most recent warm periods of the geological 

history, contributed to the conversion of former glacial valleys of SH into today’s 

marshes and moors (Becker and Kaster, 2005). The development of marshes in the 

western part of SH was associated with the rising sea levels after the ice age, the con-

tinuous influence of the tide and flooding by the North Sea, and the simultaneous rise 

of the groundwater level. All those activities helped to deposit marine-clay-organic 

sediments as marine and fluvial deposits in the lowland of west SH. But the Eider-

Treene depression (Eider-Treene-Sorge) and the mudflats of the North Sea are mainly 

influenced by marine rather than by river sediments (Becker and Kaster, 2005).  

 

3.3 Soils around Drage and Stapelholm 

The parent materials of Stapelholm and Drage are sand and drifted sand formed during 

the glacial era, which belongs to the Saale glacial period. (Langheld, 2013). Soils of 

the Stapelholm area, Drage and their immediate neighborhood, are Podzols, Cambi-

sols, Gleysols, Anthrosols and marsh soils (Fluvisols) or combinations of two of those 

soils, or of one of those soils with another soil type. In west Stapelholm, in the Eider-

Treene-Depression and directly next to the Geest border, there are Fluvisols, and in the 

far north-eastern part of Stapelholm and Drage there are Stagnosols and Planosols 

(Langheld, 2013).  

Cambisols (WRB, 2006) can be identified by a cambic diagnostic horizon, but some-

times a mollic horizon also can be found. The low temperature limits the weathering of 

medium- and fine-textured parent materials, and therefore the young soils still are in 

the beginning stage of their horizon differentiation. Because of the slow weathering 

process and the high precipitation throughout the year, the profile is not rich with illu-

viated clay and other ion compounds like aluminum and iron. Furthermore, the low 

temperature regime and the reduced microbial activities lead to the accumulation of 

lignin rich organic litter coming from acidophilic vegetation during the soil formation 

process (Stahr et al., 2012; USDA, 2010; WRB, 2006). Podzol (WRB, 2006) has both 
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eluvial and illuvial horizons as subsurface diagnostic horizons because of the podsoli-

zation process. The podsolization process is intensified by the acidic condition of the 

soil, high precipitation, little evapotranspiration, low temperatures, acidic parent mate-

rials, and acidophillic vegetation including Ericaceae species, oaks and conifers. A 

natural, non-cemented subsurface layer is common in between the eluvial and the illu-

vial horizons. Subsurface horizons enriched with the sesquioxides of iron and alumi-

num are common in Podzol (Scheffer & Schachtschabel, 2010; Stahr et al., 2012; Ad-

hoc-Arbeitsgruppe Boden, 2005; WRB, 2006). 

The Eider-Treene depression is an area rich with Gleysols (WRB, 2006). Groundwater 

governs most of the characteristics of the Gleysols profile. A year-round high ground-

water level generates an environment lacking oxygen, which leads to the development 

of Gleysols with the typical diagnostic oxidized horizon and the lower adjacent re-

duced horizon. The oxygen lacking environment induces iron and manganese to stay in 

their reduced state in which they are easily soluble in water and can therefore move 

through the soil profile giving it the typical grey and pale grey color (USDA, 2010; 

WRB, 2006; Scheffer & Schachtschabel, 2010; Stahr et al., 2012). The north-eastern 

part of Stapelholm has Pseudogley (WRB, 2006). In contrast to Gleysols, Pseudogley 

is not governed by the groundwater, but by the water added to the soil from above by 

rainfall or thawing of snow. Pseudogley is characterized by redoximorphic features 

with or without concretions, and a temporary but periodic water stagnation zone (Ad-

hoc-Arbeitsgruppe Boden, 2005; Scheffer and Schachtschabel, 2010; Stahr et al., 

2012).  

In the area around Drage and Stapelholm, there also are young, organic soils associat-

ed with bog, fens, and peat lands (marsh soil). The organic matter content of those 

soils exceeds 30 % by weight and the profile has features of horizon differentiation, 

stratification, sometimes a distinct topsoil horizon, and the lower part of the profile can 

have redoximorphic features. Several types of marshes can be distinguished, depend-

ing on their development from their original sediments (Ad-hoc-Arbeitsgruppe Boden, 

2005; Scheffer and Schachtschabel, 2010; USDA, 2010; WRB, 2006). The decomposi-

tion of organic matter is slowed down due to anaerobic conditions in water saturated 
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soils. Usually the marshes and fens around Stapelholm and Drage (the Eider-Treene 

depression) are characterized by a low nutrients content which is caused by a rapid 

flow of groundwater through the sandy materials. Some of those marshes also have an 

influence from brackish water and the deposition of very fine-grained marine and flu-

vial sediments (Stahr et al., 2012).  

Anthrosol (in German Plaggenesch; Ad-hoc-Arbeitsgruppe Boden, 2005; WRB, 2006) 

can also be found in the vicinity of settlements in the study area. . The diagnostic hori-

zons of Anthrosol include an anthropogenic E-horizon and a thick A-horizon (Ad-hoc-

Arbeitsgruppe Boden, 2005; USDA, 2010; WRB, 2006). Anthrosol soils have been 

transformed by anthropogenic activities, which added carbon and nutrients rich animal 

manure or organic materials to the soil. Organic matter has been regularly added to the 

topsoil and mixed with the subsurface horizons during the land preparation for crop 

establishments. This procedure is common in SH where agriculture has a long history, 

and was intensified after the increased availability of organic waste produced by bio-

energy plants (Langheld, 2013; LLUR, 2012).  

 

3.4 Climate 

Schleswig-Holstein has a wet humid climate which is affected by the maritime climatic 

conditions of the Atlantic Ocean and the North Sea, limiting extreme temperature fluc-

tuations, and resulting in mild year-round temperatures. According to Strahler & 

Strahler (2005), a main meteorological characteristic of SH is sufficient precipitation 

in all months. The favorable temperature combined with the high precipitation and 

humidity stimulates a strong development of vegetation (Schmidtke, 1995; Wagner, 

1998). According to Wagner (1998), the weather in Stapelholm and Drage, including 

the experimental sites, is mainly governed by the direction of the wind, the main air 

flows, and the adjacent higher elevation lands. The main wind direction is from west to 

east and has a great influence on SH weather. Two prominent air flows, the cold polar 

air flow, and the tropical warm air flow caused by the Gulf Stream meet over SH 

(Strahler and Strahler, 2005; Wagner, 1998). Stapelholm and Drage are subject to re-
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ceive orographic rainfall resulting from the adjacent high Geest area (Wagner, 1998).  

For SH, the average monthly air temperature is 11.8 
°
C (- 4.0 °C to 27.7 °C), and the 

monthly average precipitation is 74.1 mm (ranging from 1.3 mm to 275.4 mm) based 

on long term historical climate data (from 1947 to 2014; DWD, 2014). The respective 

values for the experimental sites, as gathered by the Erfde weather station which is 

situated 14 km away from the field sites over a 50-year period (1965 - 2014), are a 

monthly average air temperature of 8.7 °C, and an average monthly precipitation of 70 

mm (DWD, 2014).  

 
 

Figure 5: Map of mean annual precipitation (mm) in SH. The red circle indicates 

the experimental site (source: www.schleswig-holstein.de, accessed on 10.11.2013)  

 

 

3.5 Land use and vegetation 

Except in the salt affected marshes in the south and west and in the fens, initially natu-

ral cold-loving arctic woody vegetation developed on the glacial deposits and perma-

frost soils. Later, with increasing temperatures, this cold-loving vegetation gradually 

converted into heat-loving trees such as oak, alder, ash, hazel, lime and elm (Behre, 
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2008). Vegetation changes were not only caused by the thawing of glacial ice and per-

mafrost soils, but also by the competition among vegetation and by human impact 

from the Neolithic up to the agro-industrial age in the 20
th

 century. In most regions of 

SH, the natural landscape and original vegetation has been transformed into a man-

made cultural landscape (Becker and Kaster, 2005). According to Behre (2008) and 

Becker & Kaster (2005), Stapelholm and the adjacent high Geests were originally 

dominated by nutrient-poor acidic soils. Before mid-19
th

 century, there were several 

attempts to cultivate the marshes and bogs in SH, but the levees were not strong 

enough to withstand the storm surges. After those unsuccessful attempts in the marshes 

and bogs, people once again considered the hill Geests for use as arable land (Becker 

and Kaster, 2005). The original forests in many parts of the high Geest areas in SH 

were deforested to obtain timber and firewood and later were used as farm land for 

agriculture. After several years, those lands were no longer productive and were ne-

glected as marginal land with highly degraded soil. Some of the present natural forest 

areas of SH include the forests originating from re-growth of natural vegetation in 

those neglected marginal lands (Becker and Kaster, 2005; Behre, 2008). Only small 

primary forest areas remained untouched including hedges and hedgerows which were 

originally planted to mark the borders of fields and pasture lands, to procure firewood, 

and to be used as windbreaks (Becker and Kaster, 2005). Re-forestation activities were 

started after a comprehensive agrarian reform in 1850, but despite intensive planting of 

fast growing tree species such as pine and spruce primarily for use as timber, Schles-

wig-Holstein still is the state with the smallest area of primary forest (10 %) in Germa-

ny where the national average of forest land is 31 % (Behre, 2008; BMELV, 2011; 

Liedtke and Marcinek, 2002; Statistikamt Nord, 2012). In 2011, the land use statistics 

of SH showed that 70 % of the land in SH was used as agricultural land (BMELV, 

2011; Statistikamt Nord, 2012), and 73 % in Stapelholm and Drage (Statistikamt Nord, 

2012). 

Agriculture was again intensified responding to the demand that was generated by in-

creasing population, which caused the agro-socio-economical soil degradation in 

northern Germany. With the availability of powered pumping stations, it became easy 

to drain the diked areas, thus reducing the flooding impacts, and continuous develop-
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ment of increasingly strong and efficient new levees stopped the devastating influence 

of tides and storm surges on the marshes of Stapelholm during the 20
th

 century (Becker 

& Kaster, 2005; Behre, 2008). This huge anthropogenic development is still visible in 

some places in SH, the most prominent example being the development of the city 

Heide. 

 

3.6 Experimental sites 

SH was chosen to carry out the field experiments because of its significant role in 

Germany’s renewable energy production through biomass. According to the 

Statistikamt Nord 2012-2, in 2011, 38.6 % of the electricity supplied by SH to the na-

tional electricity grid came from renewable energy sources. The highest portion of this 

contribution is wind energy (25.3 %). Biogas was used to produce 7.7 % of the elec-

tricity in SH, while this contribution in all of Germany is only 6 %. SH utilized 19.8 % 

of its biogas to generate electricity which was higher than the average in Germany: 5.4 

% (Statistikamt Nord, 2013). In 2011, SH had 742 biogas plants producing electricity 

out of biogas, and nearly 24 % of the arable land was used for energy crop production 

(DBFZ, 2012; MELUR, 2012). The increased demand for biomass by biogas plants 

converts many pasture lands into bio energy crop production land which is continuous-

ly altering the regional agricultural land use pattern.  

The field experiments were established at two locations, which were 1.4 km apart from 

each other in the bioenergy production area in Drage in SH (54° 35′ 41.18″ N, 9° 17′ 

27.16″ E and 54° 36′ 43.31″ N, 9°15′25.18″E) between the river Eider in the south and 

the river Treene in the north and northwest (Figure 6). Site 1 is a flat land very close to 

the bottom of a sloping land (< ≈ 2 % slope) with a depressed area between the bottom 

of the slope and the experimental plot. Site 1 did not receive any additional organic 

matter before, nor was it used for bio-energy crop production or any other agricultural 

purposes recently. Site 2 is in a bio-energy crop production field, which had regularly 

received biogas digestate (42 L m
-2

) at the beginning of each cropping season as organ-

ic matter for many years already.  
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Figure 6: Aerial and ground views of the study sites in Drage. The arrows show 

where the experimental plots were in the two sites. 
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4. Materials and Methods  

4.1 Production of biochar 

The biochar we used in the field experiments was produced by the fast thermal com-

bustion of the dried solid portion of biogas digestate (average particle size < 20 mm) 

by a bioenergy plant in northern Germany (Biogasvertrieb Nord GmbH & Co.KG in 

Drage, Germany), which used a mixture of bioenergy crop and animal waste as a sub-

strate for the biogas production. This biogas plant used different crops as feedstock 

depending on the seasons of the year, e.g. sweet corn, winter wheat and winter rye.  

The pyrolysis process was done at PYREG
®
 GmbH in Dörth, Germany, using the 

PYREG
®
 500 multi-purpose dry, continuous flow pyrolysis unit at 650 °C temperature. 

The pyrolysis unit contains a feeder to feed the feedstock to the reactor, a PYREG
®

 

reactor where feedstock is pyrolyzed into biochar, and a FLOX
®
 combustion chamber 

which heats up to 1,250 °C to completely burn synthesis-gases generated during the 

pyrolyzing process. Some portion of the heat generated in the FLOX
®

 combustion 

chamber is used by the PYREG
®
 reactor to carry out the pyrolyzing process, and some 

other portion is used by the combi-dryer to dry the biomass before feeding it to the 

reactor. The production flow chart of the PYREG
®
 biochar production process is 

shown in Figure 7.  

The thermal decomposition zone operates as an oxygen free environment and under a 

small to a negative pressure (1.5 mbar or less) to ensure safety by preventing the leak-

ing of flammable gases from the gasification zone. Two contra-rotating, interlocked 

helical screws are placed inside the PYREG
®

 reactor and are driven by a motor. There-

fore, during the pyrolyzing process, both feedstock and biochar are subjected to being 

physically broken down into smaller particles. The biochar production unit does not 

have a specific cooling chamber or any air flow going through the warm and fresh bio-

char. The discharge pipe is equipped with a middle vertical screw leading to an upward 

flow of the warm fresh biochar. The biochar is cooled down gradually inside this dis-

charge pipe while approaching the collecting container. After that, the biochar gradual-

ly is cooled down to room temperature inside the collecting container. The whole re-

tention time of the production process was 30 - 40 minutes. 
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Figure 7: Biochar production process at PYREG
®
 (source for (A)- http://www.pyreg.de, 

2012)  

 

4.2 Field experiment: Soil treatments and crop management 

A completely randomized block design with three replicates was used in both experi-

mental sites. Site 1 had two treatments, biochar (B) and control (C), and site 2 had 

three treatments, digestate only (D), and two different mixtures of digestate and bio-

char: 1:1 (BL) and 1:5 (BH). Table 2 shows more details about those treatments. Each 

experimental plot was 9 m
2
 (3 m x 3 m) in size, separated by 3 m wide buffer zones 

between the plots, and between the plots and the main field Figure 9.  

Table 2: Treatment mixture and resp. soil type and added amount of carbon  

Site Soil type Treatment Added amount of carbon 

Site 1 Gleyic Podzol Control (C) No amendment 

 Gleyic Podzol Biochar (B) 0.15 kg C m
-2

 

Site 2 Gleyic Anthrosol  Digestate (D) 0.15 kg C m
-2

 

 Gleyic Anthrosol  Digestate:biochar 1:1 (BL) 0.15 + 0.15 kg C m
-2

 

 Gleyic Anthrosol  Digestate:biochar 1:5 (BH) 0.15 + 0.75 kg C m
-2

 

 

Field site 2 with Gleyic Anthrosol was used continuously to produce biomass for bio-

energy production with crop rotation between maize (Zea mays L.), winter wheat (Trit-

icum hybernum L.), and winter rye (Secale cereale L.). During our experiment, both 

site 1 and site 2 had crop rotation with the same crops mentioned above. More details 

(A) (B) 

Feeder 

PYREG
®
Reactor 

FLOX
® 

Combustion 

Chamber 
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about crop management practices are shown in Figure 8 and Table 3. After harvesting 

maize (Zea mays L.) as a summer crop in October 2012, the soil was chisel ploughed 

down to 0.20 - 0.30 m depth before seeding winter wheat (Triticum hybernum L.) in 

the 2012/13 winter season. 

 

Figure 8: Crop rotation plan  

 

Before seeding was done in the ploughed and pulverized soil, the biochar was incorpo-

rated into the soil as a fresh biogas digestate, up to a depth of 20 cm. The lowest appli-

cation rate used in the experiment (0.15 kg C m-2) represents the amount of carbon 

applied as digestates by the farmer under normal agricultural praxis. To ensure the 

equal distribution of biochar, we divided the experimental plot (9 m
2
) into 9 smaller 

sub plots (1 m
2
), added the needed amount of biochar onto the soil surface of those 

small sub plots manually, and distributed the biochar on the soil surface equally by 

using wooden hand-rakes. Soon after, the biochar was mixed into the 0 - 0.2 m soil 

layer using a rotary tiller fixed to a single-axle tractor (see Figure A 14 in the annex). 

More details about the cropping seasons and crops are shown in Table 3.  

   2012/13 W                 2013 S                     2013/14 W                 2014 S 
  Winter Wheat              Maize                      Winter Rye                  Maize 
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Table 3: Crop rotation  

Crop* Season 
Date 

Spacing**** 
Seeding Harvesting 

Winter wheat (Triticum aes-

tivum L.)  

Winter 

2012/13 

October 2012 June 2013 100 kg seeds ha
-1

 

(10 g m
-2

) 

Maize (Zea mays L.) Summer 2013 June 2013** October 2013 250 kg seeds ha
-1 

(10 seeds m
-2

) 

Winter rye (Secale cereale L.)  Winter 

2013/14 

November 2013 May 2014 100 kg seeds ha
-1

 

(10 g m
-2

) 

Maize (Zea mays L.) Summer 2014 May 2014*** September 

2014 

250 kg seeds ha
-1

 

(10 seeds m
-2

) 

* Variety information unavailable ** For site 2: Fertilizer application rate 25 g of Calcium 

Ammonium Nitrate (CAN or Kalkammonsalpeter KALKAMON Dünger in German) m
-2 

*** 

25 g of CAN m
-2 

plus liquid digestate 42 L m
-2

 as a surface application ****Maize: row seed-

ing, wheat and rye: broadcasting 

 

After seeding in each cropping season, two soil collars (Ø = 20 cm and height = 20 

cm, LI-COR Biosciences) were randomly placed inside each experimental plot to use 

for future gas emission measurements. The soil collars were inserted into the soil (ap-

proximately 15 cm to 18 cm deep), and stayed in the same place for the whole growing 

season (see Figure 9 and Figure 10).  
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Figure 9: Overview of the plots and the treatment distribution of the field exper-

iment for field sites, site 1 with Gleyic Podzol and site 2 with Gleyic Anthrosol. The 

number and the letters indicate the plot number and the treatment for a respec-

tive plot. The blue circles indicate the soil collars. Note: the diagram is not to 

scale. 
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4.3 Total biomass production 

At the end of every growing season, a randomly selected 1 m
2
 (1 m x 1 m) area was 

used to collect a total biomass of the crop. The crop was harvested at a height of ≤ 10 

cm above the soil surface. The collected samples were weighed, stored in polyethylene 

bags, and sealed. The root was uprooted with the rest of the stem and the soil particles 

were removed by shaking. Before obtaining the fresh weight of the root samples, all 

soil particles were washed with tap water, and excess water was drained at room tem-

perature. Randomly selected, representative above and below ground biomass samples 

(100 g) were oven dried at 70 ± 1 °C for ≥ 48 hours to determine the dry mass of bio-

mass. The same sample was used to determine the total carbon and nitrogen content as 

described in subsection 4.7.4. 

  

4.4 In situ chamber measurements of greenhouse gases 

At each treatment plot, soil respiration, N2O and CH4 emissions on the soil surface 

were determined by using the technique of closed chamber (CO2 by using Automated 

Soil CO2 Flux System - LI-8100 survey chamber Ø = 20 cm, LI-COR Biosciences, 

USA; and N2O and CH4 by using Acryl transparent chamber, Ø = 20 cm, University of 

Hamburg, Germany: Figure 10). The closed chambers were placed on the soil collars 

(Ø = 20 cm) which were installed at the beginning of each growing season. Both 

chambers were equipped with a groove together with a rubber sealer to prevent gas 

exchange with the surrounding environment. Gas flux measurements were carried out 

over two years, including the crop rotation between winter and summer, from Novem-

ber 2012 to September 2014, except in December 2012 and January 2013 due to the 

frozen soil collars. Inside the soil collars, the soil surface was cleaned by removing 

litter material and vegetation at least 30 minutes before starting the monthly chamber 

measurements to minimize the error caused by soil distraction. 
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4.4.1 Soil respiration measurements 

The emission of CO2 from the soil surface was measured monthly using a LI-COR
®
 

closed chamber. In each plot, measurements were taken at two different places which 

remained fixed over the whole experimental period. Therefore, for each type of treat-

ment six measurements were taken on each measurement day. The times of the meas-

urements were spread over the day (10:00 to 15:00), but for each plot, the measure-

ments were always taken at the same time of the day. 

Many authors discussed the pros and cons of closed chamber measurements. Kutzbach 

et al. (2007) discussed various errors which are related to chamber measurements that 

might cause differences to the natural emission fluxes. The placement of the chamber, 

the pressure gradient between the inside chamber and the ambient atmosphere at  the 

closure time, and the volume of the chamber can alter the result of the chamber meas-

urements (LI-COR Biosciences, 2007; Xu et al., 2006; Conen and Smith 1998). The 

LI-COR Biosciences Automated Soil CO2 Flux System was carefully designed to min-

imize those errors by using the following provisions: a top pressure vent to balance the 

pressure during the measuring time, an automated slow closing of the chamber to pre-

vent pressure spikes at the chamber closing time and keep equal pressure inside and 

outside the chamber during chamber closure, a volume of the chamber of 4843 cm
3 

which allows to measure small fluxes with higher accuracy, etc. (LI-COR Biosciences, 

2007). To further minimize those errors, the automated calculation includes continuous 

changes of temperature and pressure of the micro-environment inside the chamber dur-

ing the measurement (Biosciences, 2007).  
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Figure 10: Setup for trace gas measurement and gas sample collection in the field. 

(A) Acryl transparent chamber and (B) LI-COR Biosciences chamber (Source for 

(B): www.licor.com). 

 

4.4.2 N2O and CH4 measurements 

The fluxes of both N2O and CH4 were calculated using the gas concentrations meas-

ured with gas chromatographs (GC) of gas samples collected from the closed chamber 

head space via the vent during the chamber closure. Five samples were taken using 60 

ml plastic syringes (Omnifix 60 mL, BRAUN Melsungen AG, Melsungen, Germany) 

equipped with three-way-stopcocks. The first sample was taken just after the chamber 

closed, and the remaining four samples were taken at intervals of approximately ten 

minutes. The collected gas samples were analyzed on the following day at the Institute 

of Soil Science, Hamburg. Both N2O and CH4 fluxes were determined using the GC 

fitted with both a flame ionization detector (FID) and an electron capture detector 

(ECD) operating at 280 °C and 300 °C respectively (7890, Agilent Technologies, 

Germany). To ensure the accuracy of the GC measurements, prior to measuring the 

samples, standard gas samples (0.29, 1.05 and 1.55 ppm for N2O, and 1.7 and 200 ppm 

for CH4) were measured following the same injection procedure. The N2O and CH4 

A B 
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fluxes were calculated using the respective gas concentrations and time intervals, pres-

sures, and temperatures of chamber head space with a modified and updated version of 

the MATLAB script developed by Kutzbach (Kutzbach, et al., 2007). A linear flux cal-

culation was used. 

 

4.5 Soil microbial biomass carbon (MBC) and nitrogen (MBN) 

Soil microbial carbon and nitrogen (MBC and MBN resp.) were measured using a 

fresh soil sample collected from the experimental field in a monthly interval. After re-

moving organic litter materials from the fresh soil sample by hand, and sieving through 

a 2 mm sieve, the chloroform-fumigation-extraction method (CFE) was performed 

(Brookes et al, 1985, Vance and Brookes, 1987). For fumigation, 30 g of sieved fresh 

soil was weighed into a 50 ml glass beaker and fumigated with chloroform for 24 

hours at 25 °C under low pressure (- 600 mbar). The fumigated soil sample was shaken 

for 30 min at 200 rpm with 20 ml of 0.05 M K2SO4 solution. The mixture was filtered 

(Whatman 595 ½ filter papers) before quantifying the carbon and nitrogen content. For 

another part of the same soil sample, total organic C and N content was determined in 

the same way but without fumigation. Carbon and nitrogen in the soil microbial bio-

mass were calculated using the following equations (Joergensen, 1995, 1996; Wu et 

al., 1990).  

𝐌𝐁𝐂 =
(𝐂𝐟𝐮𝐦−𝐂𝐧𝐨𝐧)

𝟎.𝟒𝟓
  and  𝐌𝐁𝐍 =  

(𝐍𝐟𝐮𝐦−𝐍𝐧𝐨𝐧)

𝟎.𝟓𝟒
 

where Cfum and Nfum are the organic carbon and organic nitrogen extracted from the 

fumigated soil, and Cnon and Nnon stand for the respective values of non-fumigated soil, 

all in µg g
-1

. The extractable part of the soil microbial biomass is used as the denomi-

nator which is 0.45 for carbon and 0.54 for nitrogen (Brookes et al, 1985, Vance and 

Brookes, 1987). The selected samples from May, August and November 2013, and 

March, May and July 2014 were analyzed by Paulina Reimers, and the data was used 

for her bachelor thesis. 
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4.6 Potential carbon mineralization of digestate and biochar 

4.6.1 Aerobic incubation experiment  

To study potential mineralization of digestate and biochar, an aerobic incubation ex-

periment was conducted using two different soils and five different treatments with 

three replicates each as a part of the master thesis work of Magdalena von Leliwa (von 

Leliwa, 2014). Three Gleyic Podzol topsoil (0 - 0.2 m) samples were collected from 

three different places of the experimental field site 1 in Drage. Those soil samples 

were collected along the transit which runs diagonally across the site. 

For the laboratory incubation experiment, soil treatments similar to the ones used for 

the field experiment were used (see Table 1 in 4.2.2). Homogenized and litter free soil 

(25 g) was incubated using airtight glass jars (500 ml) with lids containing butyl rub-

ber stoppers. The soil was treated with the following amendment mixtures: control (C, 

soil without amendments), biochar only (B), digestate only (D), digestate:biochar 1:1 

mixture (D:B 1:1), and digestate:biochar 1:5 mixture (D:B 1:5). The water content of 

the soil was adjusted to 40-60 % of its maximum water holding capacity by adding the 

necessary amount of water. The incubation bottles were placed in a dark incubator at a 

temperature of 22 ± 1 °C. Head space CO2 concentration was measured by collecting 

an air sample through the butyl rubber stopper with gradually increasing measuring 

intervals at the gas chromatograph (Agilent Technologies 7890 A GC system, 

Böblingen, Germany). When the head space CO2 concentration exceeded 3 % of the 

total volume, those samples were flushed with synthetic air to prevent disturbances 

caused by excess CO2 in the head space on the new production of CO2 from the soil. 

For this purpose, hypodermic needles connected to a vacuum pump were inserted 

through the butyl rubber stopper in the bottle and the bottle was evacuated for 6 

minutes. This was followed by the addition of synthetic air that flowed through the 

incubation vessels. The synthetic air had a composition of 79.5 % nitrogen, and 20.5 % 

oxygen. The CO2 content in the incubation bottles was determined again after one 

hour.  
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4.6.2 δ
13

C signatures of CO2 

The δ
13

C values of CO2 produced from the incubated soil samples were analyzed twice 

using a gas chromatograph connected to an isotope ratio mass spectroscope (Ther-

moQuest Finnigan Delta Plus/GC Combustion III). With the previously measured CO2 

concentration, the injection volume was calculated for each sample, and injected sam-

ple volumes varied from 0.01 - 0.3 ml. Values are expressed relative to VPDB using 

the reference standards LSVEC (δ
13

C VPDB -46.6 ‰) and IAEA B7 (δ
13

C VPDB -3.0 

‰). The standard deviations of duplicate measurements were less than 0.2 ‰.  

 

4.6.3 δ
13

C signatures of soil organic matter, digestate and biochar 

The δ
13

C signatures of digestate, biochar and soils were determined to quantify the 

different sources of carbon in the CO2 produced from the incubated soil. The calculat-

ed amount of finely ground and dried samples was weighed into tin cups and measured 

at a mass spectrometer (Flash 2000, Delta V Plus). 

 

4.7 Analysis of soil, digestate and biochar  

4.7.1 Soil profiles and soil sampling 

For the soil survey, samples were taken from every diagnostic horizon from soil pits 

which had been dug in both study sites till meeting the groundwater table. Soil classi-

fications were done with reference to the German soil classification (Ad-hoc-

Arbeitsgruppe Boden, 2005), and the World Reference Base for Soil Resources 

(WRB, 2006). Soils were described according to the characteristics of the diagnostic 

horizons including soil texture, organic matter content, moisture content, and ‘in situ‘ 

observations, with reference to the German Soil Classification System (Ad-hoc-

Arbeitsgruppe Boden, 2005). Collected soil samples were stored in polyethylene-

bags, and frozen at -5 °C to minimize biological activities prior to performing the la-

boratory physico-chemical analysis. Undisturbed soil core samples were collected 

from each diagnostic horizon of the soil pit using a standard metal core (Ø = 5 cm, h = 
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5 cm) to determine soil water retention (pF). The top and bottom surface of the soil 

core were trimmed and covered by polyethylene layer and a plastic cap to prevent wa-

ter losses by evaporation, and disturbances during transportation to the laboratory. The 

soil core samples were stored at 4 °C temperature in the cool room until starting the 

laboratory analysis. During the first year of the experiment, mixed soil samples from 0 

- 20 cm depth were collected in a monthly interval. During the second year, mixed soil 

samples were collected seasonally. After the summer crop was harvested in 2013, soil 

samples were collected from different depths (0 - 0.2, 0.2 - 0.4, 0.4 - 0.6 m) using a 

soil auger. In September 2014, at the end of the experiment, mixed soil samples and 

undisturbed soil core samples were collected from all three different treatments in field 

site 2. Those samples were collected from the uppermost three horizons (Ap, E, GBv) 

of the soil profiles which were opened inside the treatment plots. All the mixed soil 

samples were stored in polyethylene-bags under frozen condition until the beginning 

of the analysis.   

 

4.7.2 Soil texture  

The grain size distribution of the collected soil samples was determined according to 

DIN ISO 11277 (2002). Before the analysis started, the composite samples were dried 

at room temperature, sieved using a 2 mm sieve, and treated with H2O2 when a sample 

had high organic carbon (> 2%) content. None of the samples needed to be treated for 

calcium carbonate. For the wet sieving, 30 g of each sample were mixed with 100 ml 

of water and 25 ml of 0.4 M Na4P2O7 (sodium-pyrophosphate) and shaken for 18 hours 

to disperse the clay minerals. The sand fraction of the pre-treated soil sample was sep-

arated from the clay and silt fraction by flushing through a 63 µm sieve and washing 

with water until the washing water was clear. After drying the sand fraction at 105 °C 

in the oven, a dry sieve set was used to separate fine, medium and coarse sand. The 

fraction flushing through the 63 µm sieve was collected into a 1000 ml cylinder and 

the volume was filled up to 1000 ml before fractioning clay and silt using the Köhn 

pipette method according to DIN ISO 11277 (2002) using a SEDIMAT 4 - 12 analyzer 

(UGT GmbH, Müncheberg, Germany).  
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4.7.3 Soil water retention  

The soil water retention curves were determined for the soil horizons of both experi-

mental sites before starting the field experiment in September 2012. Five undisturbed 

soil core samples were collected from each soil horizon using metal rings (see 4.7.1 on 

page 43). After determination of the fresh weight, the soil cores were slowly saturated 

and weighed again. Then, the saturated soil cores were transferred into a pressure plate 

extractor, the soil water retention was determined gravimetrically at 20, 60, 300, and 

1000 mbar pressure, and volumetric water content was calculated using those values 

(Richards and Fireman, 1943).  

 

4.7.4 Soil chemical properties 

Prior to performing the soil chemical analysis, all litter materials, living plants and 

plant roots, and animals were removed from the mixed samples. The fresh samples 

were sieved to ≤ 2 mm before getting sub samples, subsequently dried at 105 ± 1 °C 

for ≥ 24 hours, and milled to use for necessary analysis.  

The gravimetric water contents were determined by using 10 g of fresh soil, after keep-

ing them in an oven at 105 ± 1 °C for ≥ 24 hours and then cooling them down to room 

temperature in a humidity free environment. The amount of water loss due to the oven 

drying process was used to calculate the gravimetric water content (VDLUFA, 1991).  

For the determination of the soil pH and the electrical conductivity (EC), 10 g of fresh, 

sieved soil samples were mixed with 50 ml distilled water (specific conductivity not 

higher than 0.2 mS/m at 25 °C) and shaken using a horizontal shaker for 30 minutes. 

The soil-water suspensions were kept for one hour, then agitated again for five minutes 

before reading the value using a pH meter (CG 820, Schott, Germany) according to 

DIN ISO 10390 (2005). The same soil-water suspensions were used to determine the 

EC  according to DIN ISO 11265 (1997), using a glass single-rod electrode conductivi-

ty meter (LF 90, WTW, Germany). Both, pH meter and conductivity meter, were cali-

brated with standard buffer solutions (pH 4 and pH 7 and 0.2 mS m
-1

 at 25 °C) before 

taking measurements.  
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The total carbon (TOC) and total nitrogen (TN) content were determined according to 

DIN ISO 10694 (1996) with an elemental analyzer (Vario MAX Elementar, Hanau, 

Germany). The soil sample was finely ground using a vibration disk mill with tung-

sten-carbide-coated walls and oven-dried at 105 ± 1 °C for ≥ 24 hours before using for 

analysis. The amount of sample that was used for the elemental analyzer depended on 

the nature of the sample, e.g. 0.3 - 0.7 g for mineral soil samples, 0.245 - 0.280 g for 

organic rich soil and plant samples. The samples were combusted at a temperature of 

900 ºC, and released gases were passed through a copper oxide catalyst after having 

been dried. During this passage, CO was oxidized to CO2 and mono-nitrogen oxides 

(NOx) were reduced to N2, and both gases were separated using a CO2 adsorption tube. 

The quantitative amount of CO2 and N2 were measured separately using a thermal 

conductivity detector. 

Following VDLUFA (1991), a double-lactate extraction was used to determine plant 

available potassium and phosphorus. The samples were shaken with double-lactate 

solution (0.04 N with respect to Calcium and 0.02 N with respect to HCl; Riehm, 

1942) for 90 minutes, and the filtrates were analyzed for potassium in an atomic ab-

sorption spectrometer (ASS; type 1100B, Fa. Perkin-Elmer, USA). After adding fresh-

ly prepared color indicator solutions, the amount of phosphate molybdenum-complex 

which was produced in the solution was used to determine the plant available phospho-

rus using a spectral photometer at 660 nm (DR 5000, Hach Lange).  

Depletive extraction with ammonium chloride solution was used to determine the cati-

on exchange capacity (CEC), the amount of exchangeable basic cations, and the base 

saturation (BS) (DIN ISO 11260, 2011, Blume et al. 2010 SL ). Air dried and finely 

ground 5 g of soil materials were mixed with 25 ml of 1 M ammonium chloride solu-

tion. The mixture was shaken for 10 minutes, followed by 10 minutes of centrifugation 

at 30,000 rpm. Afterwards, the supernatant was decanted into a 200 ml volumetric 

flask. After repeating this step three times, 25 ml of 1.25 M NH4Cl2 solution was add-

ed to the sample and centrifuged and stored overnight. On the following day, the su-

pernatant was decanted into the same volumetric flask. The volume was adjusted of the 

volumetric flask, the solution was filtered, and the filtrate was used to determine the 

concentration of the exchangeable cations Na
+
, K

+
, Mg

++
 and Ca

++
 using an atomic 
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absorption spectrometer (ASS; type 1100B, Fa. Perkin-Elmer, USA). The CEC was 

calculated as the sum of the concentrations of the exchangeable cations. BS was given 

as a percentage taken up by the sum of the concentrations of base cations (Na
+
, K

+
, 

Mg
++

 and Ca
++

) in CEC.  

Inorganic nitrogen compounds (nitrate/nitrite and ammonium), dissolved organic car-

bon (DOC) and dissolved organic nitrogen (DON) were determined using 0.0125 M 

CaCl2 extraction. Sieved (2 mm), fresh 30 g of soil were weighed into 100 ml polyeth-

ylene bottles, 60 ml of 0.0125 M CaCl2 was added and shaken in a vertical rotating 

shaker at 120 rpm for 30 minutes, and then filtered through ash free filter paper 

(Whatman 595 ½, 12-25 μm filter papers). For nitrite and nitrate, 0.6 ml of the extract 

was used and measured by high-performance liquid chromatography (HPLC, Agilent 

1200, Hannover, Germany). In order to determine the amount of ammonium, the sam-

ple was analyzed with a spectro-photometer (Hach, Lange, type 5000). DOC and DON 

in the filtrate were measured using a TOC Analyzer 5050 (Shimadzu TE 2009AH, Ja-

pan).  

 

4.7.5 Digestate and biochar  

Fresh biochar and dry digestate samples were analyzed to determine water content, 

pH, EC, bulk density, TOC, TN, C/N ratio, exchangeable cations (K
+
, Ca

++
, Mg

++
, 

Na
+
), CEC, and BS (TMECC, 2002).  pH and EC were determined in an 1:10 (w/v) 

water extract after shaking the mixture mechanically for one hour, using a pH meter 

(CG 820, Schott, Germany) and a glass single-rod electrode conductivity meter (LF 

90, WTW, Germany). For biochar, the bulk density was calculated by weighing 10 ml 

of milled sample, and the ash content of biochar was determined by a muffle furnace at 

550 °C (TMECC, 2002).  
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4.8 Statistical analysis 

Sigmaplot 12.5
®

 (Systat Software, Inc., USA) was used for performing statistical anal-

ysis. The significance of the seasonal variations of gathered data from the field exper-

iments were tested separately for the two soils using one-way ANOVAs. The signifi-

cance of the differences between treatments were tested using either the Tukey or the 

Holm-Sidak post-hoc test, depending on the nature of the data sets. Both Sigmaplot 

12.5 and OriginPro 8.1G
®
 (OriginLab Corporation, USA) software packages were 

used to generate the graphs to present the experimental results.   
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5. Results  

5.1 Environmental parameters and crop rotation 

The annual total precipitation in 2012, 2013 and the first nine months of 2014 was 

967.3, 802.8 and 643.3 mm respectively, according to the weather data collected by 

Erfde meteorological station (Deutscher Wetterdienst or DWD). The average annual 

rainfall for a 30 year period (1981 - 2010) was 857 mm, hence the average monthly 

rainfall was 71 mm, ranging from 40 mm (in April) to 95 mm (in October). In all 

years, February, March and April were dry months compared to the rest of the months 

of the year (Figure 11and Figure 12). In 2013 from May to June, during the time of the 

maize crop establishment in the experimental plots, the seedling emergence, and the 

very young seedling stage, precipitation was less compared to the previous and follow-

ing years, even though the total annual precipitation value was close to the long term 

average (Figure 11 and Figure 12).  

The long term data gathered from the Erfde weather station shows that the annual av-

erage air temperature was 8.7 °C, with monthly values ranging from 1.3 °C (in Janu-

ary) to 17.1 °C (in July). The average annual air temperature in 2013 was 8.7 °C. The 

coldest month was March (- 0.3 °C), and the warmest month was August (17.5 °C). In 

comparison to 2012 and 2013, the beginning of 2014 was warmer (Figure 11 and Fig-

ure 12).  
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Figure 11: Smoothed monthly mean air temperature, and monthly precipitation, together with changing of crops over the exper-

imental period from September 2012 to September 2014. Also shown are the monthly mean values of maximum and minimum 

temperatures. Note the different scales for the y-axis. Data source: Erfde meteorological station.  
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Figure 12: Smoothed monthly precipitation (A) and smoothed mean daily air 

temperatures (B) in the years 2012, 2013 and 2014, plotted in comparison to the 

long term values. Data source: Erfde meteorological station. 

 

5.2 Characteristics of biochar and biogas digestate 

The biochar was produced by fast thermal combustion at 650 °C and had a finer and 

more homogeneous texture compared to its original feedstock (Figure 13). The thermal 

decomposition process resulted in an 87 % weight loss, while the density increased by 

20 %. The elemental mass losses of carbon and nitrogen were 86 % and 92 % respec-

tively. The C/N ratio increased from 20 ± 0.2 to 37 ± 1.5 (Table 4). Biochar was more 

alkaline compared to the original digestate. The elemental compositions of biochar and 

digestate are shown in Table 4. The total and exchangeable concentrations of Ca
++

, 

Mg
++

, K
+
 and Na

+
 cations were noticeably higher in biochar, but the CEC of digestate 

was higher compared to biochar.  
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Table 4: Selected chemical characteristics of digestate and fresh biochar: the 

mean values with standard deviations (n = 3) and without standard deviations 

when the number of samples is two or less.  

Characteristic Unit Digestate Biochar 

pH  6.6 8.00  

Bulk Density  g cm
-3

 n.a. 0.49 

Moisture (dry 

wt.) 
% 21.46 ± 1.3 20.66 ± 5.3 

TOC  % 39.46 ± 0.3 43.89 ± 2.8 

TN  % 2.02 ± 0.04 1.19 ± 0.1 

C/N  20 ± 0.4 37 ± 1.5 

Total Na* g kg
-1

 1.16 ± 0.0 2.63 ± 0.1 

Total K* g kg
-1

 19.14 ± 0.1 41.67 ± 3.3 

Total Ca* g kg
-1

 12.48 ± 1.3 38.68 ± 100 

Total Mg* g kg
-1

 11.14 ± 0.1 29.30 ± 1.6 

CEC  mmolc kg
-1

 387.73  282.4 

BS  % 52.12 100.0 

Exch. Na g kg
-1

 7.61 9.21 

Exch. K  g kg
-1

 4.37 7.10 

Exch. Ca  g kg
-1

 1.85 2.07 

Exch. Mg  g kg
-1

 1.13 1.45 

Ash   % n.a. 0.45 

n.a. = not analyzed, * HNO3 extraction and n=2 

 

Figure 13: Physical appearance of biochar (left) prepared from dry biogas diges-

tate (right) used as a feedstock; pyrolyzed at 650 °C with a retention time of 30 - 

40 minutes. 
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5.3 Total biomass production  

The total biomass productions of each treatment during two winters and two summers 

are shown in Figure 14 for site1 and site 2 separately. In both site 1 and 2, adding bio-

char produced higher total above ground biomass. Site 1, which was not used before 

for continuous agricultural crop production, just after biochar application showed sig-

nificantly higher total biomass (ANOVA, p < 0.001, n = 3) without any other addition-

al chemical or organic fertilizer application. The positive effect of biochar on biomass 

production was most prominent in summer 2014. Site 1 with biochar treatment (B) 

produced 40.6 % higher biomass which was significantly different from the perfor-

mance of control treatment (C) in summer 2014 (ANOVA, p = 0.009, n = 3). Even 

though the biochar application rate was low, it already enhanced the total biomass pro-

duction in summer 2013 and winter 2013/14 (26.1 ± 2.4 t ha
-
1 and 0.74 ± 0.08 t ha

-1
 

respectively), but the increments were nonsignificant (ANOVA, summer 2013: p > 

0.05, n = 3; winter 2013/14: p = 0.083, n = 3).  

In site 2, which was intensively used for mono-cropping and continuously received 

biogas digestate during past years, the application of biochar as a soil amendment had 

a result similar to site 1 (Figure 14). In the BH treatment, the total above ground bio-

mass increased by approximately 18 % in winter 2012/13 (p = 0.005, n = 3) and 47 % 

in winter 2013/14 (p = 0.037, n = 3) compared to the soil with digestate only. In the 

summer growing seasons, the highest biomass yields were shown with the BH treat-

ment (19.1 ± 2 and 54.6 ± 1 t ha
-1

 for 2013 and 2014 respectively), and was signifi-

cantly higher compared to digestate only (ANOVA, 2013: p = 0.006, 2014: p < 0.001, 

n = 3).  
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Figure 14: Total biomass production in winter and summer seasons for both ex-

perimental sites. Vertical error bars represent ± one standard deviation of the 

means (n = 3). The different letters near to the error bars indicate significant dif-

ferences of the mean values. Letters are not shown when differences between 

means are not significant. C: control, B: biochar, D: digestate only, BL: diges-

tate:biochar 1:1, BH: digestate:biochar 1:5. Note the different scales on the y-axis. 

Crop specification: winter wheat and winter rye in winter 2012/13 and 2013/14 

respectively, maize for all summer seasons.   
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5.4  Soil characteristics and classification 

The soils in both sites developed from glacial sediments, and were later affected by 

human activities. According to the German soil classification system, the soil in site 1 

was classified and described as Gley-Podsol (Ad-hoc-Arbeitsgruppe Boden, 2005) and 

is shown in Table 5. This Gley Podsol is named Gleyic Podzol according to the World 

Reference Base soil classification (WRB, 2006). In site 1, the Gleyic Podzol did not 

receive additional organic or inorganic amendments in the past several years and was 

not used for agricultural crop production.  

 After modifying the centuries-old soils in order to increase the agricultural productivi-

ty, the soil in site 2 developed into a soil with thick Ap and E horizons (≈ 40 cm). The 

soil in site 2 was classified as Gley-Plaggenesch (German classification; Ad-hoc-

Arbeitsgruppe Boden, 2005) or Gleyic Anthrosol (WRB, 2006) and is shown in Table 

6. The soil profile had features of podsolization, providing enough evidence to say that 

the Anthrosol emerged and developed from Podzol. According to the visual observa-

tion of profiles, both soils displayed old Podzol characteristics.  

Gleyic Anthrosol had a sandy texture with 3.20 % clay, 3.23 % silt, and 92.59 % sand. 

Gleyic Podzol  had 1.96 % clay, 8.11 % silt, and 89.92 % sand, and hence belonged to 

the same soil textural class as Gleyic Anthrosol in the Site 2. The clay fraction of Gley-

ic Podzol decreased with increasing profile depth, but the deepest horizon had an in-

creasing trend again (Figure 15). The clay fraction showed only a very slight increase 

with increasing depth in the Gleyic Anthrosol profile, and the silt fraction of the third 

horizon (GBv) was noticeably higher compared to the upper horizons (Figure 15). In 

both sites, the sand fraction dominated in the whole profile. Small stones were ran-

domly distributed among the whole depth of the Gleyic Podzol profile.  
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Figure 15: Vertical distribution of clay, silt, and sand fractions in Gleyic Podzol 

and Gleyic Anthrosol  

In Gleyic Podzol, the Ap horizon showed higher medium and fine sand content com-

pared to the lower horizons, and hence had higher soil water content (see Figure 20 in 

4.5.1 on page 68). The Ap and E horizons in Gleyic Anthrosol had a similarly sandy 

texture with the same particle density (2.5 g cm
-3

). The E horizon of Gleyic Anthrosol 

had a slightly lower matrix potential than Ap, which led to quicker drainage of water 

from the E horizon (see Figure 20 in 4.5.1 on page 68). The last two horizons (GBv 

and Gro) showed a higher fine sand fraction which resulted in more micro pores com-

pared to the horizons dominated by coarse sand particles.  
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In their chemical properties, the soil profiles of the two sites were not very similar to 

each other (Table 7). The upper horizons of the soil which were affected by the vegeta-

tion in both sites, in addition to the human activities in site 2, and the water in site 1, 

differed from each other more in their chemical properties than in their physical ones. 

In particular, the TOC of the surface Ap horizon of Gleyic Anthrosol was more than 

twice as high compared to TOC in the same horizon in Gleyic Podzol. Table 5 and Ta-

ble 6 show the differences of the TOC, TN and C/N ratios of Gleyic Anthrosol and 

Gleyic Podzol throughout the whole profile depth. The lower horizons of both soils 

had fewer differences compared to the upper two horizons. Gleyic Anthrosol was 

slightly acidic with higher EC compared to Gleyic Podzol. The differences between the 

two soil profiles of the cation concentrations, CEC and BS were not as high as those of 

the TOC, TN, DOC and DON values. However, the higher cation concentrations, CEC, 

and BS values for Gleyic Anthrosol are giving evidence of the human activities. High 

root density and surface litter were more prominent in the undisturbed Gleyic Podzol 

compared to Gleyic Anthrosol which was used for a monocrop with a deep plough lay-

er during the last several years. 
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Table 5: Profile characteristics and soil classification of site 1 - Gleyic Podzol 

 
        

Profile details* 

Location: Centre of the experimental site in Drage 

Geographic coordinates: 54° 36′ 43.31″ N, 

9°15′25.18″E  

Date of profile acquisition: 25.05.2012 

Remarks:  
Surface was covered slightly by grass and had signs 

of recent disturbances in the surface. 

Adjacent to the waterlogged area and the sloping 

land small stones were scattered randomly among 

the whole profile.  

Depth 

(cm) 

Horizon  

denotation** 

Soil color TOC 

 (%) 

TN 

(%) 

C/N Bulk density 

(g cm
-
³) 

pH Soil texture 

0 - 20 Ap 10YR3/1 0.68 0.07 10 1.54 4.45 Sandy loam  

20 - 55 Go-Bh 10YR5/8 0.67 0.01 67 1.67 5.00 Sand  

55 - 65 II Bhs 5YR5/2 0.06 0.01 6 1.70 5.29 Sand  

> 65 Cv 10YR6/4 0.04 0.01 4 1.74 6.21 Sand  

German Classification (Ad-hoc-Arbeitsgruppe Boden, 2005): Gley-Podsol  World Reference Base Classification (WRB, 2006): Gleyic Podzol 

*See the profile description sheet (Aufnahmeformblatt) in Table A 1 in the Annex on page 141 **according to US Soil Taxonomy  

Ap 

Go-Bh 

IIIBhs 

Cv 

20 cm 

55 cm 

65 cm 
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Table 6: Profile characteristics and soil classification of site 2 - Gleyic Anthrosol 

               

Profile details
*
 

Location: Centre of the experimental site in  

Stapelholm 

Geographic coordinates: 54° 35′ 41.18″ N, 9° 17′ 

27.16″ E  

Date of profile acquisition: 25.05.2012 

Remarks:  
No surface ground cover vegetation found. Detri-

tus originated from clay bricks. 

Well decomposed organic layer. 

Much lower root density (3 to 4 fine roots dm
-3

), 

and water table at depth 75cm at the end of 

spring 2012. 

Depth 

(cm) 

Horizon  

denotation** 
Soil color 

TOC 

(%) 

TN 

(%) 
C/N 

Bulk density 

(g cm
-
³) 

pH Soil texture 

0 - 20 Ap 10YR2/1 1.37 0.01 137 1.44 5.33 Sand 

20 - 40 E 10YR3/1 1.37 0.11 12 1.42 5.78 Sand 

40 - 70 GBv 5YR3/2 0.49 0.03 16 1.65 5.73 Sandy loam 

> 70 Gro 7.5YR5/8 0.22 0.01 22 1.70 6.08 Sand 

German Classification (Ad-hoc-Arbeitsgruppe Boden, 2005):  

                                                                                              Gley-Plaggenesch 

World Reference Base Classification (WRB, 2006):  

                                                                                 Gleyic Anthrosol 

*See the profile description sheet (Aufnahmeformblatt) in Table A 2 in the Annex on page 142 **according to US Soil Taxonomy  

Ap 

E 

GBv 

Gr

20 cm 

40 cm 

75 cm 
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Table 7: Selected chemical properties of Gleyic Podzol and Gleyic Anthrosol before applying biochar in October 2012. The aver-

age values of the respective horizons are given in the table without standard deviations (n=2). 

Soil and 

site 

Depth Horizon
*
 EC DOC DON NO3

-
-N NH4

+
-N Avail. K Avail.P Exchangeable Cations 

Ca         Mg          K         Na 

CEC BS 

(cm) (µS cm
-1
) (mg kg

-1
) (µM) (mg kg

-1
) (mg kg

-1
) (mmolc kg

-1
) (mmolc kg

-1
) (%) 

Gleyic 

Podzol  
0 - 20 Ap 37.7 14.0 5.6 86.1 n.a. 40.4 156.8 3.9 0.8 1.5 0.3 22.2 29 

(Site 1) 20 - 55 Go-Bh 19.0 12.7 2.5 25.6 n.a. <15 46.7 1.8 0.3 0.4 0.2 6.3 44 

 55 - 65 II Bhs 18.2 8.5 0.7 6.3 n.a. 26.4 38.5 3.3 0.8 0.7 0.3 7.5 66 

 > 65 Cv 18.3 11.0 0.6 0.0 n.a. 38.4 14.1 5.5 1.1 0.9 0.2 6.8 100 

Gleyic  

Anthrosol  
0 - 20 Ap 76.3 25.5 33.1 481.4 0.50 69.9 147.4 23.9 1.6 1.7 0.2 26.6 100 

(Site 2) 20 - 40 E 158.6 27.2 36.7 532.4 0.56 192.9 186.5 32.9 4.6 4.5 0.6 33.8 100 

 40 - 70 GBv 58.2 26.7 7.4 113.2 0.19 51.9 49.9 11.3 2.3 1.4 0.2 15.3 99 

 > 70 Gro 32.8 25.9 1.3 10.5 0.21 51.9 < 10 4.6 1.0 1.3 0.1 8.3 83 

n.a. = not analyzed; pH - 1:1 soil H2O suspension/slurry; *according to US Soil Taxonomy   
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5.4.1 Effect of biochar on homogeneity of soil  

Though the soils in both sites (Gleyic Podzol and Gleyic Anthrosol) showed similari-

ties in the soil texture, the huge differences of the chemical properties of the two soil 

profiles and the different usage of the lands do not allow presenting and discussing the 

experiment results together. Therefore, the results will be presented and discussed sep-

arately for site 1 and site 2.  

For site 1, two treatments were applied: control (C) without any soil amendment, and 

application of biochar at 0.15 kg C m
-2

 (B). Site 2 had three different treatments with 

0.15 kg C m
-2

 as a minimum organic carbon input rate: digestate only (D), and two 

different mixtures of digestate and biochar, 1:1 (BL) and 1:5 (BH).  A control site 

could not be established in site 2 since this site had received digestate regularly over a 

longer period of time prior to the start of our field experiment. The distribution and 

identification of the treatment plots in both sites were already shown in Figure 9 (on 

page 37) in the chapter Materials and Methods.  

Before applying biochar to site 1, TOC and TN were not significantly different be-

tween the rest of the experimental plots at p = 0.05 level, except for plot number 1 

(ANOVA, p = 0.005, n= 3). Plot number 1 showed the lowest TOC level (0.06 ± 

0.0008 %), and the rest of the plots had a TOC of 0.08 ± 0.006 % (n = 15). The added 

amount of biochar (application rate was 0.15 kg C m
-2

) to plots number 2, 4 and 6 was 

enough to increase TOC significantly compared to the initial TOC in all the plots 

(ANOVA, p < 0.001). After biochar was added, plot number 4 had the highest TOC 

amount (1.2 ± 0.002 %), which significantly differed from plot number 6’s TOC (1.1 ± 

0.02 %) at p = 0.03. The group of plots used for control (C) continued to exhibit the 

same significant difference of TOC as in the initial measurements.  

Before being amended with biochar, the TN content of Gleyic Podzol in site 1 had a 

similar variation to that of TOC: only TN of plot number 1 significantly differed from 

the rest of the plots (ANOVA, p < 0.05). After applying biochar, TN significantly 

increased in plots 4 and 6 (4B and 6B in Figure 16) at p < 0.05 (ANOVA. n = 3). 
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However, the increase of TN in plot number 2 was non-significant from the initial TN 

of plot numbers 2, 3, 4 and 5 (ANOVA, p > 0.05).   
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Figure 16: Variation of TOC and TN of Gleyic Podzol in site 1 before and after the 

application of biochar. (A) Variability before applying biochar and (B) variability 

after applying biochar to plots number 2, 4 and 6. The vertical error bars repre-

sent ± one standard deviation of the mean (n = 3); the level of significance be-

tween the mean values is indicated by different letters: uppercase letters for be-

fore the application, and lowercase letters for after the application. B indicates 

the biochar amended plots (0.15 kg C m
-2

). 

 

The TOC contents of the experimental plots in Gleyic Anthrosol in site 2 were 58.33 % 

significantly different before applying biochar and digestate into the surface layer (0 - 

0.2 m; ANOVA, Duncan's multiple comparison, p = 0.05). These initial significant 

differences of TOC values were randomly distributed among the plots that were later 

used for the treatments (symbols without filling color in Figure 17). Within the group 

treated with digestate only (section A in the graph; plot numbers 7, 11 and 13), there 

was a significant difference in TOC (ANOVA, p ≤ 0.001, n = 3).   
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Figure 17: Variation of TOC and TN in Gleyic Anthrosol in site 2 before and after 

application of soil amendments. The symbols without filling color in (A), (B) and 

(C) show the variability before application, the symbols with filling color in (B) 

and (C) show the variability after application of digestate:biochar (1:1 for BL, 1:5 

for BH). The vertical error bars represent ± one standard deviation of the mean 

(n = 3); Different letters indicate the level of significance between the mean values 

- uppercase for before application and lowercase for after application. Letters are 

not shown when the differences of means are not significant. 

 

Among the plots which received biochar low amount (BL plots), number 12 initially 

had a significantly higher TOC than the other two plots (8 and 14 plots; ANOVA, p ≤ 

0.001, n = 3) but after application the significant difference was gone. Among the plots 

which received biochar high amount (BH plots), there initially were significant 

differences between the TOC of all the plots (ANOVA, p = 0.015, n = 3). After 

application, there was no significant difference between plots 9 and 15, but plot 

number 10 had 19 % significantly higher TOC compared to both plots number 9 and 

15 (ANOVA, p = 0.002, n = 3). 
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Before application of biochar and digestate to the topsoil (0 - 0.2 m) in Gleyic Anthro-

sol, the TN content was not significantly different between plots except for number 9 

and 7. Plot number 9 had significantly higher TN compared to all other plots 

(ANOVA, p ≤ 0.01, n = 3), whereas the number 7 plot had significantly lower TN 

compared to plot number 15 (ANOVA, P = 0.047, n = 3). After the soil was amended 

with biochar and digestate, only the number 10 plot showed significantly lower TN 

among the plots with high amount of biochar (ANOVA, p ≤ 0.05, n = 3). 

The topsoil (0 - 0.2 m) of plot number 5 in site 1 had low DOC (1.45 g DOC per kg 

soil per m
3
) but not significantly different from the rest of the plots (see Table A 4 on 

page 144  in the Annex). The plots at the edge of the slope where water had accumu-

lated had higher concentration of DON in the surface horizon (0 - 0.2 m) than the ones 

close to the road. Other chemical properties, including pH, EC, CEC, BS and ex-

changeable cation concentrations in the topsoil (0 - 0.2 m) of site 1 and 2 showed non-

significant variations between mean values of the plots (see Table A 4 on page 144 in 

the Annex).  

Biochar and digestate both are porous media, rich in elements (see Table 4 on page 52 

in 5.2). Therefore, adding them to the soil can be expected to considerably alter the 

chemical composition of soil solid and pore water. In fact, the experiment showed that 

after adding biochar into the topsoil (0 - 0.2 m) of site 1 and 2, the concentration of 

some selected soil elements changed (see Table A 5 on page 144 in the Annex). In site 

1, all chemical properties increased after biochar was incorporated into the topsoil (0 - 

0.2 m) except for DON and Na
+
. However, DOC, BS, Ca

++
, Mg

++
, and K

+
 content did 

not significantly change after the plots had been treated with biochar (ANOVA, p > 

0.05, n = 3), but CEC significantly increased (ANOVA, p ≤ 0.05, n = 3). Also in site 2, 

DON did not increase by adding biochar to the soil which already contained digestate 

(see Table A 5 on page 144 in the Annex). After adding biochar in low concentration to 

site 2 (BL plots), there were significant differences of Ca
++

, K
+
, and Na

+
 cation con-

centrations, and in the CEC and BS values between the treated plots (ANOVA, p ≤ 

0.05, n = 3). With the high biochar application rate (BH plots), only DON and Mg
++

 

did not show any significant changes between the treated plots (ANOVA, p > 0.05, n 

= 3), while all other parameters showed significant variation (ANOVA, p ≤ 0.05, n = 
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3; see Table A 5 on page 144 in the Annex). 

 

5.4.2 Mass losses of TOC during the biochar application  

Because of the technique we used for biochar incorporation (see 4.2 on page 34 in Ma-

terials and Methods), there was a possibility of not having an equal distribution of the 

added biochar throughout the topsoil (0 - 0.2 m) of the experimental plots. Therefore, 

assuming that the added biochar was stored in the whole soil mass in the depth of the 

topsoil (0 - 0.2 m), the application losses were calculated as mass losses of TOC (C kg) 

to mass of soil (kg of soil in 1 m
3
) using the bulk density (Gleyic Anthrosol: 1.543 g cm

-3
; 

Gleyic Podzol: 1.438 g cm
-3

) and the thickness of the soil layer (0 - 0.2 m). 

Before applying digestate and biochar to site 1, except for plot one, TOC did not show 

significant differences (see Figure 16 and Table A 1 on page 141  in the Annex; ANO-

VA, p = 0.45, n = 3), so it was to be expected that the TOC values would not differ 

significantly after applying biochar either. However, after the application the measured 

TOC values were significantly different among the various plots (ANOVA, p = 0.008, 

n = 3). Plot number 4 had the highest TOC (1.85 ± 0.0 kg C per kg soil per m
3
), fol-

lowed by plot 6 and plot 2 (1.75 ± 0.05, and 1.70 ± 0.05 kg C per kg soil per m
3
 resp.). 

Concerning the mass losses of TOC among the three plots with Gleyic Podzol in site 1, 

there were no significant differences, and the average loss of TOC was 0.35 ± 0.1 kg C 

kg soil
-1
 m

-3
 (ANOVA, p = 0.5, n = 3). 

The mean values of lost TOC in the BL plots in site 2 were not significantly different, 

and the average loss of TOC was 0.60 ± 0.15 kg C per kg soil per m
3
 (ANOVA, p > 

0.05). Plot number 12 had the highest loss of TOC, while number 14 showed the low-

est one. The BH plots showed a different behavior. The lost amounts of TOC between 

the BH plots were significantly different, and the loss was higher than in the BL plots 

(Figure 18). Hence, the application losses increased with increasing amount of biochar 

applied, but there was no clear and significant correlation between losses and applied 

amount of biochar. 
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Figure 18: Available and lost TOC during the application of biochar, calculated as 

% out of excepted TOC content after adding biochar. The olive green and black 

colored parts of the bars represent available TOC in treated soils in site 1 and site 

2 respectively, and the grey parts show the lost TOC.  

 

Adding biochar into Gleyic Anthrosol in site 2 showed larger losses compared to Gley-

ic Podzol in site 1 where the experimental plot had a much closer (5.4 ± 0.37 m) thick 

live fence along the road which acted as a wind-break (see Figure 9 on page 37 in Ma-

terials and Methods for the layout of the field and the experimental plots for both 

sites). Site 2 had an open border along the road, where wind entered to the field with-

out any disturbances. Figure 19 shows how wind and precipitation acted on site 2 dur-

ing the crop establishment time and the young seedling stage.  
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Figure 19: The deposited sand particles around the soil collar show the effects of 

wind and precipitation on the land when there were no or fewer crop canopies 

and wind-breaks in site 2. 

 

5.5 Effect of biochar and digestate on soil physico-chemical properties  

5.5.1 Soil moisture and matrix potential  

Soil texture, organic matter content, precipitation rate, and evapotranspiration rate are 

primary factors which can influence soil moisture, which in turn is a key factor for de-

termining agricultural productivity of a given soil. Hence, adding highly porous organ-

ic material like biochar and digestate to the soil may alter the soil water availability. 

The application of biochar and digestate to Gleyic Podzol and Gleyic Anthrosol did not 

significantly effect the seasonal variation in soil water content (ANOVA, p > 0.05, n = 

3; see Table A 6). The BH treatment in site 2 resulted in a slightly, but nonsignificantly 

higher soil moisture content throughout the experimental period except in summer 

2013.  The volumetric water content and matrix potential of both sites are shown in 

Figure 20. Figure 21 shows the same parameters two years after biochar application to 

the field in site 2. 
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Figure 20: Soil moisture characteristic curves for each soil horizon of both site 1 

and site 2 before applying soil amendments in October 2012. 
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Figure 21: Soil moisture characteristic curves for Ap, E and GBv soil horizons of 

Gleyic Anthrosol, two years after biochar application of D, BL and BH treatments. 
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5.5.2  Soil reaction (pH) and electrical conductivity (EC) 

The effect of the application of digestate and biochar on soil pH and EC of the topsoil 

(0 - 0.2 m) in both sites is shown in Table 8 and Table A 6 in the Annex on page 145. 

In site 1, the mean values of soil reaction and EC in the topsoil (0 - 0.2 m) did not sig-

nificantly increase during the first season after amending the soil with biochar (winter 

2012/13; ANOVA, for pH: p = 0.331, n = 6; for EC: p = 0.139, n = 6). The first five 

seasons showed higher EC with biochar amended soil, but after that, EC values of the 

biochar treated plots and the control plots were quite similar in site 1.  

Table 8: Seasonal variation of soil acidity in the topsoil (0 - 0.2 m) in site 1 and site 

2 after establishment of the experiment at both sites in October 2012. Shown are 

mean values and the respective standard deviations (n = 3 to 9). 

 Soil amendments 

pH * Site 1 Site 2 

 C B D BL BH 

Winter 2012/13 4.4 ± 0.6 4.8 ± 0.8 5.2 ± 0.8 5.4 ± 0.8 5.9 ± 0.8 

Spring 2013 4.0 ± 0.1 4.4 ± 0.1
a
 4.6 ± 0.1 4.7 ± 0.2 5.4 ± 0.6

a
 

Summer 2013 3.9 ± 0.2 4.2 ± 0.2
a
 4.5 ± 0.1 4.5 ± 0.3 5.2 ± 0.5

a
 

Autumn 2013 4.1 ± 0.1 4.2 ± 0.1
a
 4.4 ± 0.1 4.6 ± 0.3 5.2 ± 0.3

a
 

Winter 2013/14 4.2 ± 0.2 4.3 ± 0.2 4.3 ± 0.1 4.4 ± 0.2 5.0 ± 0.3 

Spring 2014 4.1 ± 0.2 4.3 ± 0.1 4.3 ± 0.1 4.5 ± 0.2 4.9 ± 0.2
a
 

Summer 2014 3.8 ± 0.0 3.9 ± 0.1
a
 4.1 ± 0.1 4.2 ± 0.2 4.7 ± 0.3

a
 

* H2O suspension. For each field site, values followed by the different letters are significant-

ly different at p ≤ 0.05. Letters are not shown when differences of means are nonsignificant. 

C: control, B: biochar, D: digestate only, BL: digestate:biochar 1:1, BH: digestate:biochar 

1:5  

 

In site 2, the increase of the soil reaction in the BH treated plots was significant in all 

seasons, except in both winter seasons (2012/13 and 2013/14). Even after seven sea-

sons since the experiment started in 2012, conditioning Gleyic Anthrosol in site 2 with 

the slightly alkaline biochar in addition to digestate had a positive effect on soil reac-

tion compared to application of digestate only (Table 8). BH treatment also had signif-

icantly higher soil pH (ANOVA, p < 0.05, n = 3 to 6), except in the two winter sea-

sons. However, there were no significant differences between digestate only treatment 

and BL treatment (ANOVA, p < 0.05, n = 6 to 9). In the seventh season after starting 
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the experiment in 2012, the soil reaction finally had decreased by 20 % for all the 

treatments in site 2. 

 

5.5.3 Soil organic carbon and nitrogen  

The effects of biochar as a soil amendment to Gleyic Podzol in site 1 and as a mixture 

with digestate to Gleyic Anthrosol in site 2 on TOC, TN, C/N, DOC and DON concen-

tration in the topsoil (0 - 0.2 m) are shown in Table 9 and Table A 7 in the Annex on 

page 145. TOC concentrations of both soils significantly increased after adding bio-

char (p < 0.05). In site 1, after mixing biochar at 0.15 kg C m
-2

 rate, TOC concentra-

tion in the topsoil (0 - 0.2 m) increased by 30 % (ANOVA, p < 0.024, n = 6). In site 2, 

BH treatment increased TOC by 20.5 % (ANOVA, p < 0.030, n = 6), and BL treat-

ment increased it by 4.5 % (ANOVA, p = 0.790, n = 6) compared to the digestate only 

treatment. At the end of the experiment, TOC in topsoil (0 - 0.2 m) had increased by 

3.29 % resp. 1.3 % for BH resp. digestate only treatment, and decreased by 3.2 % for 

BL treatment.  

Site 1 showed only slightly higher TN concentration in the topsoil (0 - 0.2 m) of bio-

char treatment compared to the control treatment. For site 2, after the application of 

biochar in October 2012, TN concentration did not clearly change in the first season 

(winter 2012/13), and the same result showed at the end of the experiment in Septem-

ber 2014.  

In site 1, adding 0.15 kg C m
-2

 to the topsoil (0 - 0.2 m) in the form of biochar (B) in 

September 2012 significantly increased the C/N ratio by 12 % (ANOVA, p < 0.001, n 

= 6). The following spring season did not show clear differences of C/N ratios be-

tween biochar treated and untreated plots. However, summer and autumn 2013 again 

showed significant differences (ANOVA; summer: p = 0.003, n = 9; autumn: p = 

0.016, n = 9). Two years after biochar application to Gleyic Podzol, the influences of 

biochar on the C/N ratio nearly had vanished, and with 5 % there only was an insignif-

icantly higher value in the biochar plots (p > 0.05).  
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Table 9: Seasonal variation of TOC, TN, and C/N in the topsoil (0 - 0.2 m) in site 1 

and site 2 after establishment of the experiment in October 2012. Shown are mean 

values and the respective standard deviations (n = 3 to 9).  

 Soil amendments 

 Site 1 Site 2 

 C B D BL BH 

TOC (%)      

Winter 2012/13 0.83 ± 0.1 1.08 ± 0.2
a
 1.51 ± 0.2

a
 1.58 ± 0.1

ab
 1.82 ± 0.3

b
 

Spring 2013 0.84 ± 0.1 1.01 ± 0.2
a
 1.45 ± 0.1 1.60 ± 0.2 1.89 ± 0.3

a
 

Summer 2013 0.86 ± 0.1 1.02 ± 0.2 1.56 ± 0.1 1.62 ± 0.1 1.86 ± 0.3
a
 

Autumn 2013 0.73 ± 0.1 0.89 ± 0.1
a
 1.51 ± 0.1 1.57 ± 0.1 1.75 ± 0.3

a
 

Winter 2013/14 0.76 ± 0.0 0.94 ± 0.0
a
 1.46 ± 0.1 1.56 ± 0.1 1.86 ± 0.3

a
 

Spring 2014 0.83 ± 0.1 0.90 ± 0.1 1.50 ± 0.2 1.51 ± 0.1 1.74 ± 0.2 

Summer 2014 0.82 ± 0.1 1.09 ± 0.1
a
 1.53 ± 0.1 1.53 ± 0.1 1.88 ± 0.2

a
 

TN (%)      

Winter 2012/13 0.08 ± 0.01 0.10 ± 0.01 0.11 ± 0.01 0.11 ± 0.01 0.11 ± 0.01 

Spring 2013 0.08 ± 0.01 0.09 ± 0.03 0.10 ± 0.04 0.11 ± 0.00 0.12 ± 0.01 

Summer 2013 0.09 ± 0.01 0.09 ± 0.04 0.12 ± 0.00 0.12 ± 0.01 0.12 ± 0.01 

Autumn 2013 0.08 ± 0.01 0.09 ± 0.01
a
 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.01 

Winter 2013/14 0.08 ± 0.01 0.09 ± 0.00
a
 0.11 ± 0.00 0.11 ± 0.00 0.12 ± 0.01 

Spring 2014 0.09 ± 0.01 0.09 ± 0.01 0.12 ± 0.01 0.11 ± 0.01 0.12 ± 0.01 

Summer 2014 0.09 ± 0.01 0.10 ± 0.01 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.01 

C/N      

Winter 2012/13 10.05 ± 0.1 11.25 ± 0.6
 a
 13.5 ± 0.5 14.1 ± 0.5 15.9 ± 1.1

 a
 

Spring 2013 10.16 ± 0.9 10.35 ± 1.9
 
 13.3 ± 1.0

 a
 14.2 ± 1.8 15.7 ± 1.3 

Summer 2013 9.43 ± 0.7 10.55 ± 0.7
 a
 13.1 ± 0.7 13.7 ± 0.8 15.3 ± 1.2

 a
 

Autumn 2013 9.44 ± 0.5 9.96 ± 0.4
 a
 13.0 ± 0.8  13.5 ± 0.4 14.7 ± 1.1

 a
 

Winter 2013/14 9.72 ± 0.4 10.04 ± 0.6 13.3 ± 0.7 14.0 ± 0.8 15.2 ± 1.0 

Spring 2014 9.47 ± 0.4  9.80 ± 0.4 12.9 ± 1.0 13.6 ± 0.8 13.8 ± 1.1 

Summer 2014 9.14 ± 0.9 9.60 ± 0.8 12.5 ± 0.6 15.2 ± 4.2 14.2 ± 1.4 

For each field site, values followed by the different letters are significantly different at p ≤ 

0.05. Letters are not shown when differences of means are nonsignificant. C: control, B: 

biochar, D: digestate only, BL: digestate:biochar 1:1, BH: digestate:biochar 1:5.  

 

 

In site 2, amending Gleyic Anthrosol topsoil (0 - 0.2 m) with biochar and digestate in-

creased the C/N ratio by 17 % for the BH treatment (ANOVA, p = < 0.001, n = 9), 

and 4 % for the BL treatment (ANOVA, p > 0.05, n = 9). In spring 2013, the D treat-

ment had a significantly lower C/N compared to the BL and BH treatments (ANOVA, 

p = 0.009, n = 9). During the whole experimental time, the BH treatment showed a 

higher C/N than the BL and the D treatments, but the differences were only significant 
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in summer 2013 and autumn 2013 (ANOVA; summer: p = < 0.001, n = 9, autumn: p 

= < 0.001, n = 9).  

The influences of digestate and biochar on inorganic nitrogen in site 1 and 2 soils are 

shown in Figure 22. The ammonium nitrogen content in the topsoil (0 - 0.2 m) was not 

significantly influenced by any of the treatments in site 1 or 2 (ANOVA, p > 0.05, n = 

3 to 9). However, site 1 showed higher ammonium nitrogen with the biochar treatment. 

Both in site 1 and 2, the ammonium nitrogen data showed high standard deviations 

caused by the highly varying data inside the treatment group.  

Nitrate nitrogen content was significantly influenced by all soil amendments over the 

whole experimental period (ANOVA, p < 0.009, n = 3 to 9). Except for the winter 

2013/14 season, nitrate nitrogen in topsoil (0 - 0.2 m) of B treatment in site 1 was sig-

nificantly higher compared to the untreated soil (p < 0.05, n = 3 to 9). In the first win-

ter (2012/13) after application of biochar in October 2012, 57 % higher nitrate nitrogen 

showed from the BH treatment (ANOVA; p < 0.05, n = 3 to 9), but only a 7 % nonsig-

nificant increase from the BL treatment (p > 0.05, n = 3 to 9), both compared to treat-

ment D. In the next spring season (2013), nitrate nitrogen content decreased drastically 

by 69 %, 81 %, and 87 % for the BH, BL and D treatments respectively, and remained 

like that without big fluctuations during the rest of the seasons (Figure 22). Through-

out the whole experimental time period, the BH treatment reported the significantly 

highest nitrate nitrogen content compared to BL and D treatments (ANOVA; p < 0.05, 

n = 3 to 9), but in summer 2013 the difference between BH and D was only small 

(ANOVA; p > 0.05, n = 3 to 9). 
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Figure 22: Seasonal variation of ammonium-nitrogen and nitrate-nitrogen con-

centration in the topsoil (0 - 0.2 m) in site 1 and site 2 after establishment of the 

experiment in October 2012. Shown are mean values for each treatment. The ver-

tical error bars represent ± one standard deviation of the mean (n = 3 to 9); Dif-

ferent letters of the respective groups indicate the level of significance. Letters are 

not shown when the differences of means are not significant. Note the different 

scales in the Y-axis of the Nitrate graphs. 
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5.5.4 CEC, BS and exchangeable cation concentration 

In site 1, most of the seasons showed nonsignificant higher CEC with biochar treated 

plots (B) (ANOVA, p > 0.05; Figure 23). The winter 2012/13 season, right after the 

application, showed 65 % significant increment of CEC in the B treatment compared 

to the control (ANOVA, p < 0.001, n = 3). During the following spring season, CEC in 

both B and C treatments increased with different rates, but a significant difference was 

not detected (ANOVA, p = 0.31, n = 3). 

In site 2, which has a higher content of organic carbon than site 1, the result was dif-

ferent. Amending Gleyic Anthrosol in site 2 with biochar increased CEC significantly 

(ANOVA, p ≤ 0.05; Figure 23). No significant differences were found between the BH 

and BL treatments (p > 0.05, n = 6 and n = 3) except in autumn 2013 (p = 0.009, n = 

6). Independent of the application rate, adding biochar to site 2 significantly increased 

CEC by approximately 31 % (33.1 % for BH, and 29.5 % for BL; p <0.001, n = 3) in 

winter 2012/13, and very similar values in the following spring 2013 season (p 

<0.001, n = 3). After the first main growing season (summer 2013), CEC decreased in 

the biochar treated plots (BH and BL), and remained the same with little fluctuation. 

But, one year later, in winter 2013/14, BH treatment showed 36 % higher CEC com-

pared to the D treatment, but because of the high variation of measured values this dif-

ference was nonsignificant (ANOVA, p = 0.20, n = 3). Two years after the application 

of mixture of digestate and biochar, CEC was still increased in site 2. 

In site 1, BS ranged from 14.8 % to 51.4 % over all seasons and both treatments 

(Figure 23). Treatment B showed nonsignificantly higher BS compared to C from 

spring 2013 to autumn 2013 (p > 0.05, n = 3 to 6). In the rest of the seasons, BS val-

ues of C and B treatments in site 1 were significantly different (ANOVA, p < 0.05, n = 6).  

Site 2 showed a similar pattern to site 1 (Figure 23), but the BS values had a higher 

variability within the treatment. Therefore, no statistically significant differences (p > 

0.05) were observed for BS in site 2 except in winter 2012/13 (ANOVA, p < 0.002, n 

= 3) and spring and summer 2014 (spring: p < 0.001, n = 3; summer: p = 0.01, n = 3). 

The spring 2013 season showed 92 % higher BS in the BH treatment than in the D 
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treatment (p = 0.06, n = 3). At the end of the experiment in summer 2014, BS was still 

33 % higher in the BH treatment (p = 0.01, n = 3). 
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Figure 23: Seasonal variation of CEC and BS in the topsoil (0 - 0.2 m) of site 1 

and site 2 after establishment of the experiment in October 2012. Shown are mean 

values for each treatment for each season (n varies from 3 to 6). Different letters 

indicate significant differences between means. Letters are not shown when dif-

ferences of means are not significant. 
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Table 10: Seasonal variation of the exchangeable cation concentrations in the top-

soil (0 - 0.2 m) for selected cations in site 1 and 2 after establishment of the exper-

iment in October 2012. Shown are mean values and the respective standard devi-

ations (n = 3 to 9) for each treatment.  

 Soil amendments 

 Site 1 Site 2 

 C B D BL BH 

Ca
++

      

Winter 2012/13 100.20 ± 4 81.87 ± 71 387.0 ± 30 466.9 ± 47 483.7 ± 72 

Spring 2013 152.17 ± 22 155.36 ± 54 384.5 ± 8 514.5 ± 123 575.8 ± 149 

Summer 2013 106.84 ± 11 156.39 ± 19
b
 405.0 ± 83 437.3 ± 128 501.8 ± 150 

Autumn 2013 135.27 ± 35 125.80 ± 40 505.7 ± 107 432.1 ± 105 346.3 ± 68 

Winter 2013/14 101.47 ± 25 121.58 ± 4 293.7 ± 44 423.6 ± 135 430.8 ± 119 

Spring 2014 95.39 ± 17 147.03 ± 27 325.4 ± 23 367.0 ± 61 434.8 ± 124 

Summer 2014 100.20 ± 11 120.91 ± 26 329.3 ± 38 332.6 ± 91 432.5 ± 134 

 Mg
++

      

Winter 2012/13 15.47 ± 1 49.07 ± 42
a
 30.80 ± 8 58.67 ± 10 254.40 ± 97

a
 

Spring 2013 17.07 ± 4 43.33 ± 6
a
 20.00 ± 2 54.27 ± 12 170.27 ± 33

a
 

Summer 2013 12.07 ± 2 70.00 ± 9
a
 30.13 ± 12 48.07 ± 15 188.53 ± 56

a
 

Autumn 2013 23.20 ± 19 31.13 ± 19 86.93 ± 70 65.40 ± 63 84.87 ± 85 

Winter 2013/14 14.26 ± 3 39.37 ± 4
a
 21.83 ± 7 35.72 ± 12 134.78 ± 63

a
 

Spring 2014 12.47 ± 4 43.34 ± 8
a
 10.27 ± 11 20.13 ± 22 69.64 ± 79

a
 

Summer 2014 12.03 ± 4 37.38 ± 8
b
 26.28 ± 7 34.38 ± 13 133.61 ± 4

a
 

 K
+
      

Winter 2012/13 70.57 ± 7 139.44 ± 20
b
 101.91 ± 65 105.11 ± 33 254.44 ± 24

a
 

Spring 2013 37.81 ± 10 62.81 ± 5
b
 43.30 ± 10 54.12 ± 5 114.45 ± 31

a
 

Summer 2013 46.87 ± 16 96.35 ± 28
b
 49.11 ± 16 41.92 ± 7 104.04 ± 26

a
 

Autumn 2013 68.73 ± 21 75.53 ± 14 99.07 ± 42 89.80 ± 34 112.19 ± 49 

Winter 2013/14 50.18 ± 4 69.60 ± 33 40.40 ± 3 43.27 ± 6 93.58 ± 21
a
 

Spring 2014 43.27 ± 19 72.47 ± 18 28.93 ± 2 28.54 ± 6 71.55 ± 31
a
 

Summer 2014 40.14 ± 12 47.05 ± 12 61.13 ± 7
a
 42.23 ± 4 60.61 ± 7 

 Na
+
      

Winter 2012/13 3.36 ± 1 2.95 ± 3 5.62 ± 3 6.34 ± 1 8.43 ± 0 

Spring 2013 4.88 ± 2 6.34 ± 1 0.29 ± 0
a
 2.01 ± 1 4.42 ± 3 

Summer 2013 17.18 ± 3 19.49 ± 3 18.18 ± 4 16.80 ± 3 21.65 ± 6 

Autumn 2013 18.93 ± 2 19.80 ± 2 18.73 ± 5 22.47 ± 11 18.00 ± 1 

Winter 2013/14 15.33 ± 2 18.39 ± 1 11.57 ± 0 11.95 ± 1 15.71 ± 3
a
 

Spring 2014 10.27 ± 5 13.79 ± 4 6.21 ± 2 7.05 ± 1 9.73 ± 1
a
 

Summer 2014 7.13 ± 1
a
 10.19 ± 0

b
 9.58 ± 3 7.74 ± 1 8.43 ± 2 

Values followed by the different letters are significantly different at P ≤ 0.05. Letters are not 

shown when differences of means are not significant, C: control, B: biochar, D: digestate 

only, BL: digestate:biochar 1:1, BH: digestate:biochar 1:5  
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The seasonal variation of exchangeable cation concentrations in the topsoil (0 - 0.2 m) 

is shown in Table 10. There was an initial increase of exchangeable Ca
++

 and ex-

changeable Na
+
 in site 2, which, however, was nonsignificant (p > 0.05, n = 3 to 6), 

but no increase in site 1. For exchangeable Mg
++

 and exchangeable K
+
, there was a 

clear increase in both soils. Exchangeable Mg
++

 and exchangeable K
+
 concentrations 

were significantly higher in B treatment compared to C treatment in site 1, and in BH 

treatment compared to D in site 2 (ANOVA, p < 0.05), except Mg
++

 in autumn 2013 (p 

= 0.8 for site 1 and p = 0.4 for site 2). For site 2, exchangeable Mg
++

 and K
+
 concentra-

tions increased in the order of D < BL < BH (except for exchangeable K
+
 in spring 

2014). 
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Figure 24: Seasonal variation of plant available K (DL - K in the top row) and P 

(DL - P in the bottom row) in the topsoil (0 - 0.2 m) of site 1 and site 2 after estab-

lishment of the experiment in October 2012. Shown are mean values for each 

treatment for each season (n varies from 3 to 6). Different letters indicate signifi-

cant differences between means. Letters are not shown when differences between 

means are not significant. 
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5.6 Effect of biochar on soil microbial carbon and nitrogen 

Microbial carbon (MBC) and nitrogen (MBN) concentrations showed fluctuations 

caused by the responses of microbial growth to temperature and crop management ac-

tivities for both sites. Generally, biochar had a positive effect on MBC and MBN dur-

ing the whole experimental period, but occasionally also showed a small negative one.  

 

5.6.1 Soil microbial carbon  

Except for the winter season 2012/13 just after amending Gleyic Podzol in site 1 with 

biochar, MBC always increased compared to the plots without biochar (Figure 25). In 

winter 2012/13, MBC was nonsignificantly lower (p = 0.201, n = 6). Application of 

biochar stimulated MBC significantly in the subsequent winter season (winter 

2013/14; ANOVA, p = 0.020, n = 6), and in spring 2013 (ANOVA, p = 0.003, n = 6), 

autumn 2013 (ANOVA, p = 0.002, n = 6) and summer 2014 (ANOVA, p = 0.007, n = 

6). 

The seasonal variability of MBC in D treatment and with different rates of biochar ad-

dition to site 2 is shown in Figure 26. There were significant treatment effects on MBC 

in all winter and summer seasons (winter 2012/13: p ≤ 0.001, n = 6; winter 2013/14: p 

≤ 0.001, n = 6; summer 2013: p = 0.02, n = 6; summer 2014: p = 0.016, n = 6). Bio-

char with higher application rate enriched MBC content in site 2 in all seasons except 

in autumn 2013 and spring 2014 before reapplication of digestate in summer 2014. In 

autumn 2013, both D and BH treatments showed the same amount of MBC (62.4 ± 15 

and 62.3 ± 11 mg kg
-1

 respectively). In spring 2014, for all treatments in site 2, MBC 

ranged between 72.39 ± 17 and 79.78 ± 14 mg kg
-1

. In winter seasons, MBC in the BH 

treatment significantly increased by 47 % (2012/13: p < 0.001, n = 6) resp. 82 % 

(2013/14: p < 0.001, n = 6), while in the BL plots MBC only showed a nonsignificant 

increase by 13 % (2012/13: p = 0.280, n = 6) resp. 28 % (2013/14: p = 0.162, n = 6) 

compared to the digestate only treatment. 
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Figure 25: Influence of biochar application on MBC in site 1. Vertical error bars 

represent ± one standard deviation of the means (n varied between 6 and 12). The 

different letters close to the error bars indicate significant differences of the mean 

values. Letters are not shown when differences between means are not significant. 
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Figure 26: Influence of biochar and digestate application on MBC in site 2. Verti-

cal error bars represent ± one standard deviation of the means (n varied between 

6 and 12). The different letters near to the error bars indicate significant differ-

ences of the mean values. Letters are not shown when differences between means 

are not significant. D: digestate only, BL: digestate:biochar 1:1, BH: diges-

tate:biochar 1:5. 
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5.6.2 Soil microbial nitrogen  

The amendment of biochar increased MBN in site 1 (Figure 27). However, the first 

significant increase of MBN only appeared in summer 2013 when MBN increased by 

100 % (ANOVA, p < 0.001, n = 12), followed by 81 % in autumn 2013 (ANOVA, p < 

0.001, n = 12), and 179 % in summer 2014 (ANOVA, p < 0.001, n = 6). In the rest of 

the seasons during the total experimental period from October 2012 to September 

2014, addition of biochar into site 1 increased MBN only non-significantly.  

Higher contents of MBN in site 2 were found in the treatment with digestate only, ex-

cept in the two summer seasons (Figure 28). In summer 2014, the highest content of 

MBN was found in the plots treated with BH (7.53 ± 1.8 mg kg
-1

), while MBN in the 

D treatment plots was 4.39 ± 1.5 mg kg
-1

. This 72 % increase significantly differed 

from the plots which were treated with D (ANOVA, p = 0.017, n = 6). In summer 

2013, the highest MBN was found in the BH treatment (3.9 ± 1.1 mg kg
-1

), followed 

by the BL treatment (3.6 ± 0.8 mg kg
-1

) and the D treatment (3.0 ± 1.1 mg kg
-1

). In 

winter 2012/13, the digestate only treated plots (D) contained 24 % and 34 % higher 

amounts of MBN compared to the BH and BL treatments respectively, but the differ-

ences were not significant. In the next winter season (2013/14), there again was a sig-

nificantly higher MBN in the D treatment, with a 163 % resp. 177 % increase of MBN 

compared to BH and BL (ANOVA, p = 0.003, n = 6 and p = 0.002, n = 6 respective-

ly). During autumn 2013, plots without biochar (D) showed the significantly highest 

MBN (1.82 ± 1.0 mg kg
-1

), a 57 % increase compared to the BL plots (ANOVA, p = 

0.012, n = 12), and a nonsignificant 41 % increase compared to the BH plots (ANO-

VA, p > 0.05, n = 12). 
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Figure 27: Influence of biochar application on MBN in site 1. Vertical error bars 

represent ± one standard deviation of the means (n varied between 3 and 6). Bars 

with different letters indicate significant differences of the means. Letters are not 

shown when differences between means are not significant. C: control, B: biochar 

application.  
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Figure 28: Influence of biochar and digestate application on MBN in site 2. Verti-

cal error bars represent ± one standard deviation of the means (n varied between 

3 and 6). The different letters near to the error bars indicate significant differ-

ences of the mean values. Letters are not shown when differences between means 

are not significant. D: digestate only, BL: digestate:biochar 1:1, and BH: diges-

tate:biochar 1:5.  

  



Results 

83 

5.7 Effect of biochar and digestate on soil carbon turnover 

5.7.1 Influence of biochar and digestate on soil carbon mineralization 

An aerobic incubation experiment was conducted using the surface soil (0 - 0.2 m) of 

Gleyic Podzol collected from site 1 in 2014. Before collecting the soil samples, a new 

soil profile was opened for the soil description. The physical and chemical parameters 

were slightly different from those of the profile opened in May 2012 (see Table 5 on 

page 58 in 4.4 and Table A 11 on page 148 in the Annex). Non-treated surface soil 

samples were collected from three different places which were distributed diagonally 

within the site. These three different sub samples of Gleyic Podzol were labelled as 

4394-GP, 4395-GP and 4627-GP. For the incubation experiment, the soil was treated 

with the following amendment mixtures: control (C, soil without amendments), bio-

char only (B), digestate only (D), digestate:biochar 1:1 mixture (D:B 1:1), and diges-

tate:biochar 1:5 mixture (D:B 1:5). The incubation period was 133 days and δ
13

CO2 

values were measured on days 16, 52, 93 and 133.  

 

5.7.1.1  Cumulative CO2 production 

The aerobic cumulative CO2 productions of all three sub samples of the topsoil of 

Gleyic Podzol increased over the whole incubation time (Figure 29). The aerobic cu-

mulative CO2 production from all treatments of Gleyic Podzol varied from 32.2 to 

124.5 μmol CO2 gdw
-1

. The biochar only treatment (B) produced the lowest cumula-

tive CO2 emission (54.8 ± 1, 80.7 ± 2 and 33.0 ± 1 µmol CO2 gdw
-1

 for the three sam-

ples 4394-GP, 4395-GP and 4627-GP resp.). The effects of the biochar only treatment 

(B) on cumulative CO2 production within the three soil samples were significant 

(ANOVA, p ≤ 0.016, n = 3). In addition to the treatment effect on cumulative CO2 

productions, there were clear and significant sub soil sample effects and interaction 

effects between soil and treatment (see Figure A 6 on page 150 in the Annex; two-way 

ANOVA, p < 0.001, n = 44). Independent of the particular treatment, sub sample 4395-

GP always showed the significantly highest cumulative CO2 production, followed by 

sub samples 4394-GP and 4627-GP (95.8 ± 13, 61.1 ± 6, and 38.6 ± 5 µmol CO2 gdw
-1

 

resp.; ANOVA, p < 0.001, n = 15).  
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Figure 29: Cumulative CO2 production during an aerobic soil incubation experi-

ment of Gleyic Podzol amended with biochar (B), digestate (D), digestate bio-

char1:1 (D:B 1:1) and 1:5 (D:B 1:5) mixtures and without any amendments (C). 

The vertical error bars represent ± one standard deviation of the mean (n = 3). 
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The carbon turnover rates of the different treatments decreased with incubation time 

except for the control treatment in the 4395-GP sub sample which had a higher rate 

after 60 days (Figure 30). The treatments with high organic carbon contents had higher 

turnover rates than those with a low one and control (see Table A 11 on page 148 in the 

Annex for TOC data). The effect of added organic carbon disappeared after 60 days, 

and afterwards the turnover rates were similar for all the treatments except for the con-

trol treatment in the 4395-GP sub sample. The highest and the lowest turnover rates 

were both shown by the D:B 1:5 treatment (2.6 ± 0.1 on day 2 for 4394-GP and 0.07 ± 

0.1 on day 105 for 4627-GP). 
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Figure 30: Carbon turnover rates during an aerobic soil incubation experiment of 

Gleyic Podzol amended with biochar (B), digestate (D), digestate biochar 1:1 (D:B 

1:1) and 1:5 (D:B 1:5) mixtures and without any amendments (C). The vertical 

error bars represent ± one standard deviation of the mean (n = 3). 

 

5.7.1.2  Isotopic ratio and fractionation of carbon in the emitted CO2  

The stable carbon isotope values were measured not only for Gleyic Podzol but also 

for pure digestate, pure biochar, and Gleyic Anthrosol. The δ
13

C value of digestate was 

-19.2 and was not significantly different from the value -19.5 for biochar (ANOVA, p 

= 0.37, n = 4), but significantly different from the δ
13

C value of Gleyic Podzol (ANO-

VA, p < 0.001, n = 6). The highest stable carbon isotope value was found in Gleyic 

Anthrosol and the lowest in Gleyic Podzol (δ
13

C values: -25.23 ± 0.3 and -27.56 ± 0.6 

resp.; ANOVA, p < 0.001, n = 6).  
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Figure 31: Variation of δ
13

C (‰ VPDB) values of produced CO2 from the differ-

ent treatments for the three different Gleyic Podzol topsoil samples (0 - 0.2 m) on 

days 16, 52, 93 and 133. The vertical error bars represent ± one standard devia-

tion of the mean (n = 3).  

 

There were significant differences between the δ
13

C values of the emitted CO2 be-

tween the control treatment (C) and the other treatments (B, D, D:B 1:1, D:B 1:5) dur-

ing the whole incubation experiment (see Table A 12 on page 149 in the Annex). The 

δ
13

C signature values of CO2 respired from the control treatment was the lowest with a 

few exceptions (measurements on days 93 and 133 for the 4395-GP sub sample). 
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Figure 32: Cumulative amount of CO2 emitted from specific carbon pools on days 

16, 52, 93 and 133 of the aerobic incubation experiment of Gleyic Podzol with 

treatments: control (C), digestate only (D), biochar only (B), digestate:biochar 1:1 

(D:B 1:1) and 1:5 (D:B 1:5). The different colors indicate the amount of CO2 

emitted from specific soil carbon pools: grey for the soil inherent carbon (Corg), 

and orange for the amendments’ carbon (Camend). Vertical error bars represent ± 

one standard deviation of the mean (n = 3). 

 

The proportions of soil organic carbon and amendment carbon in the emitted CO2 from 

Gleyic Podzol during the incubation experiment are shown in Figure 32. The amount 

of CO2 emitted from soil organic carbon was reduced by biochar only in soil samples 

4395-GP, and 4394-GP, except on day 16 when the data also showed a lower amount 

of CO2 derived from the soil organic carbon pool with the control treatment. At the end 

of the incubation experiment, the CO2 produced by soil organic carbon in the diges-
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tate:biochar 1:5 treatment did not show a significant difference compared to the values 

in the control treatment for all three soil samples. The biochar only treatment showed a 

significantly lower release of amendment’s carbon as CO2 from both sub soil samples 

4394-GP and 4627-GP, and a nonsignificantly lower amount in the 4395-GP sub soil 

sample. The emitted CO2 from the amendment’s carbon in the BL and BH treatments 

was not significantly different on all four measurement days and for all sub soil sam-

ples with the exception of sample 4627-GP on day 16.   

 

5.7.2 Influence of biochar on in situ soil respiration and trace gas production 

5.7.2.1  Average daily in situ soil respiration  

During the experimental period from November 2012 to August 2014, the changes of 

the daily soil respiration values for Gleyic Podzol and Gleyic Anthrosol followed the 

changes of the temperature throughout the year (Figure 33). However, the soil temper-

ature had a higher influence on the daily in situ CO2 emission fluxes than the air tem-

perature. The highest emission was in summer, followed by autumn and spring sea-

sons. 

For Gleyic Podzol, the CO2 emission from the soil surface ranged from -1.4 ± 1.5 g m
-2

 

d
-1

 (March 2014, n = 4 ) to 22.9 ± 5.2 g m
-2

 d
-1

 (May 2013, n = 4 ) for the biochar 

amended plots and -0.129 ± 0.5 g m
-2

 d
-1

 (February 2014, n = 4 ) to 16.0 ± 0.8 g m
-2

 d
-1

 

(May 2013, n = 4 ) for the control plots (Figure 33). For Gleyic Anthrosol , the highest 

amount of CO2 emitted from the BL plots in August 2014 (27.5 ± 12 g m
-2

 day
-1

, n = 

4), and the lowest emission was 54 mg m
-2

 day
-1

 occurring in both the digestate and the 

BH plots in April 2014.  
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Figure 33: Daily average of in situ soil respiration (CO2 mg m
-2

 day
-1

) of different 

soil treatments from November 2012 to August 2014. The vertical error bars rep-

resent ± one standard deviation of the mean (n = 12). Treatments are control (C), 

Biochar (B), digestate (D), digestate:biochar 1:1 (BL) and digestate:biochar 1:5 

(BH).  
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5.7.2.2  Seasonal variation of in situ CO2 emission  

For Gleyic Podzol, the seasonal variations of the measured daily values of CO2 result-

ing from the soil ecosystem respiration process during the experimental period were 

not significantly influenced by biochar application (Figure 34; ANOVA, p > 0.05, n = 

24 to 48). However, the addition of biochar produced more CO2 in the spring and 

summer seasons of both 2013 and 2014. During winter and autumn 2013, both Gleyic 

Podzol and Gleyic Anthrosol with and without biochar emitted approximately equal 

amounts of CO2 (Figure 34 and Figure 35). In Gleyic Podzol, the amounts of CO2 pro-

duced over the whole experimental period in the biochar treated and the untreated plots 

were nearly equal (121.8 ± 19 and 122.2 ± 15 g CO2 m
-2

 resp.). The emitted CO2 per 

season was less in 2013 than in 2014, except in spring. 
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Figure 34: Seasonal variation of in situ soil respiration in Gleyic Podzol for control 

(C) and biochar (B) treatments after starting the experiment in September 2012. 

In the boxplot diagrams, the central line shows the median, the lower/upper hori-

zontal bars are minimum and maximum, outliers (values between 1.5 and 3 times 

the interquartile range from a quartile) are marked by circles within the plot, and 

by asterisks together with values outside the plot area. Extreme data points were 

removed before plotting the data, and n = 24 to 48.  
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The seasonal soil respiration values for Gleyic Anthrosol were not significantly influ-

enced by biochar application (ANOVA, p > 0.05, n = 24 to 48; Figure 35), except in 

winter 2012/13 and autumn 2013 (ANOVA, p = 0.023, n = 48 and p ≤ 0.001, n = 48 

resp.; Figure 35). More CO2 was released from the BH treatment than from the diges-

tate only treatment, except in summer 2014, when after reapplication of digestate to all 

treatment plots in site 2 the digestate only plots produced a higher amount of CO2 

compared to both BL and BH (29 % and 5 %, respectively).  
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Figure 35: Seasonal variation of in situ soil respiration in Gleyic Anthrosol after 

starting the experiment in September 2012 for digestate (D), digestate:biochar 1:1 

(BL) and digestate:biochar 1:5 (BH) treatments. In the boxplot diagrams, the cen-

tral line shows the median, the lower/upper horizontal bars are minimum and 

maximum, outliers (values between 1.5 and 3 times the interquartile range from a 

quartile) are marked by circles. Extreme data points were removed before plot-

ting the data. Different letters indicate the level of significance, and n = 73 to 109.  
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5.7.2.3  Seasonal variation of CO2 emission rates from the top soil  

In summer, the maximum gas emission rates were observed, whereas the winter sea-

sons showed the lowest rates (Figure 36). For both soils, the seasonal mean values of 

calculated emission rates between treatments did not show significant differences at p 

= 0.05 level, due to high variability within the specific seasons, except in autumn 2013 

for Gleyic Podzol (ANOVA, p < 0.002, n = 3). Addition of biochar to Gleyic Podzol 

topsoil (0.2 m) reduced the CO2 emission rate during the whole experimental period. 

The CO2 emission rates ranged from 0.08 to 8.5 mg CO2 g TOC
-1

 d
-1

 in Gleyic Podzol 

(Figure 36). In summers 2013 and 2014, the control plots showed 10 % and 8 % higher 

CO2 emission rates respectively, compared to the biochar amended ones.  
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Figure 36: Seasonal variation of in situ CO2 emission rates from Gleyic Podzol for 

control (C) and biochar only (B), and from Gleyic Anthrosol for digestate only (D), 

digestate:biochar 1:1 (BL) and digestate:biochar 1:5 (BH) applications after 

starting the experiment in September 2012. The vertical error bars represent ± 

one standard deviation of the mean, and the letter indicates the level of signifi-

cance of the means (n = 3 to 9). 
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The positive effect of biochar on CO2 emission from Gleyic Anthrosol which contained 

digestate was not as clear as the effect on Gleyic Podzol. Only in winters 2012/13 and 

2013/14 and autumn 2013, BH had higher CO2 emission rates compared to the BL and 

D treatments. Winter 2012/13 showed the lowest CO2 emission for all treatments in 

Gleyic Anthrosol. However, in the following winter 2013/14, the emission rates in-

creased by 675 %, 434 % and 507 % compared to winter 2012/13 for digestate only, 

BL and BH treatments respectively, and those were significant increases (ANOVA, p = 

0.01, p = 0.049, p < 0.001 for digestate only, BL and BH resp., n = 3). In both spring 

seasons (2013 and 2014), the BL treatment showed nonsignificantly higher CO2 emis-

sion rates compared to the two other treatments.  

 

5.7.2.4  Seasonal variation of in situ methane (CH4) and nitrous oxide (N2O) 

emissions 

Over the whole two year period (September 2012 until August 2014), both N2O and 

CH4 gas emissions from both experimental sites were measured and fluxes were calcu-

lated. Analysis of data revealed that the majority of N2O and CH4 flux curves was bet-

ter described by a linear regression than by an exponential model. Therefore, linear 

fluxes were used for both N2O and CH4. Some of the measured data for N2O and CH4 

emissions from the soil surfaces had a large standard deviation (Figure 37 and Figure 

38). Mostly, CH4 fluxes varied around zero (Figure 38). In winter 2012/13 and in the 

beginning of spring 2013 for both Gleyic Podzol and Gleyic Anthrosol, frozen soil, and 

soil collars covered by an ice layer did not allow to take all monthly measurements. 

Therefore, there were not enough samples (n ≤ 2) for statistically analyzing the differ-

ences between means. Hence, the seasonal variations of N2O fluxes are shown in Fig-

ure 37 only from spring 2013 to summer 2014.  

In Gleyic Podzol, the biochar treated plots emitted less N2O from the soil surface com-

pared to the control plots (Figure 37). However, only spring 2013 showed significantly 

lower N2O fluxes in the biochar treated plots (ANOVA, p = 0.031, n = 3). In all other 

seasons, the difference of means of the two treatments was not significant at p = 0.05. 

In summer 2014, there was a large difference between the means of emitted N2O for 
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control and biochar (321.5 ± 182 and 15.7 ± 81 mg N2O m
-2

 d
-1 

resp.), but the variation 

of the measured data values was very high (ANOVA, p = 0.057, n = 3).  

Amending Gleyic Anthrosol with biochar did not show a significant effect on N2O 

emission (ANOVA, p > 0.05, n = 3). However, there was a reduction of N2O emissions 

from both BL and BH treatments compared to the D treatment. Both summers (2013 

and 2014) showed a considerable increase of N2O from the digestate only plots com-

pared to both biochar treatments.  
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Figure 37: Seasonal variation of in situ N2O emissions in Gleyic Podzol (top row) for control (C) and biochar (B), and of Gleyic 

Anthrosol (bottom row) for digestate (D), digestate:biochar 1:1 (BL) and 1:5 (BH) after starting the experiment in September 

2012. The vertical error bars represent ± one standard deviation of the mean (n = 6 to 12 measurements per treatment per sea-

son). The bars with a * sign indicate that the standard deviation is not shown because n < 3. 
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Figure 38: Seasonal variation of in situ CH4 emission in Gleyic Podzol (top row) for control (C) and biochar (B), and of Gleyic An-

throsol (bottom row) for digestate (D), digestate:biochar 1:1 (BL) and 1:5 (BH) after starting the experiment in September 2012. 

The vertical error bars represent ± one standard deviation of the mean (n = 6 to 12 measurements per treatment per season). The 

bars with a * sign indicate that the standard deviation is not shown because n < 3. 
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Methane showed both negative and positive fluxes for both Gleyic Podzol and Gleyic 

Anthrosol during the experimental period (Figure 38). The lowest CH4 flux was - 0.03 

± 0.0 µg CH4 m
-2

 s
-1

 in the control treatment in spring 2013. The highest value was 

0.04 µg CH4 m
-2

 s
-1

 in the same treatment in winter 2012/13 (n = 2). When considering 

all positive CH4 fluxes, added biochar nonsignificantly reduced the emission of CH4 in 

Gleyic Podzol, except in autumn 2013 and summer 2014. In both autumn 2013 and 

summer 2014, this reduction was significant (ANOVA, p = 0.003, n = 3 and p = 0.003, 

n = 3 resp.). Adding biochar to Gleyic Anthrosol produced results similar to those in 

Gleyic Podzol. Both positive and negative fluxes were produced, but the majority of 

fluxes were negative. Most of the time, the BH treatment produced nonsignificantly 

lower CH4 fluxes than both D and BL treatments, but differences between fluxes were 

significant in summer 2013, autumn 2013 and spring 2014 (ANOVA, p < 0.001, p = 

0.008, p < 0.001 resp., n = 3; Figure 38). 

 

5.8 Carbon balance in the topsoil  

During the whole experimental period, TOC in the different soil depths did neither 

show a consistent accumulation nor a consistent depletion (Table 11). Two years after 

adding the amendments to Gleyic Anthrosol, TOC in the surface layer (0 - 0.2 m) of 

the digestate only plots had increased by 19 % compared to TOC in the same depth 

before the start of the experiment (June 2012). The two treatments with biochar in ad-

dition to digestate showed higher TOC content in top soil (0 - 0.2 m) than the digestate 

only treatment (20 % and 34 % for BL and BH resp.). Also the sub-surface soil layer 

(0.2 - 0.4 m) had higher TOC compared to the value in June 2012. The highest accu-

mulation showed with the BL treatment. The accumulation of TOC in the lower soil 

layers/depths did not show clear differences even after two years from the biochar ap-

plication. Considering Gleyic Podzol, TOC in the control treatment decreased by 13% 

after one year of the experiment. The biochar treatment did not show changes of TOC 

in the surface soil layer, but in the soil depths 0.2 - 0.4 m and 0.4 - 0.6 m where it sig-

nificantly increased the TOC (by 229 % and 2871 % resp.). 
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Table 11: Means of TOC in Gleyic Podzol and Gleyic Anthrosol at the end of main 

cropping harvests after biochar addition in October 2012 together with the values 

before applying biochar (June 2012).  

Soil Treatment 
Depth 

(cm) 

TOC (%) 

2012  

June* 

2013  

October 

2014  

May 

2014  

October* 

Gleyic 

Anthrosol 

D 0-20 1.37 1.46 ± 0.1 1.42 ± 0.3 1.63 

 20-40 1.37 1.51 ± 0.2
a
 0.54 ± 0.1

b
 1.50 

  40-60 0.49 0.62 ± 0.3 0.46 ± 0.3 0.61 

 BL 0-20 1.37 1.57 ± 0.1 1.46 ± 0.2 1.65 

  20-40 1.37 1.31 ± 0.2 1.04 ± 0.5 1.57 

  40-60 0.49 0.63 ± 0.3 0.92 ± 0.3 0.47 

 BH 0-20 1.37 1.75 ± 0.1 1.77 ± 0.5 1.83 

  20-40 1.37 1.61 ± 0.3 1.20 ± 0.5 1.40 

  40-60 0.49 0.82 ± 0.4 0.67 ± 0.2 0.18 

       

Gleyic 

Podzol 

C 0-20 0.68 0.64 ± 0.1 0.59 ± 0.1 - 

 20-40 0.07 0.44 ± 0.2 0.25 ± 0.2 - 

  40-60 0.06 n.a. n.a. - 

 B 0-20 0.68 0.79 ± 0.0
a
 0.68 ± 0.1

b
 - 

  20-40 0.07 0.44 ± 0.3 0.23 ± 0.2 - 

  40-60 0.06 0.35 ± 0.3 2.08 ± 2.8 - 

Different letters indicate significant differences between treatment means in the same depth 

(n=3). Letters are not shown when differences are not significant. *Standard deviations are 

not shown when n < 3. n.a.: not analyzed. 
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6. Discussion 

6.1 Characteristics of digestate and biochar 

The solid digestate which was used as feedstock for our biochar was a byproduct of an 

agricultural biogas plant which uses a mixture of cattle manure and bioenergy crop 

biomass as feedstock. It had TOC, TN and C/N values of 39 %, 2 % and 20 resp., all of 

which were close to the value ranges documented by Möller and Müller (2012) for 

solid digestate originating from cattle manure and agricultural residue (39.6 - 40.0 %, 

2.2 - 3.0 % and (11.2 - 19.3 resp.). The biochar had a fine and homogeneous texture, 

caused by the texture of the fermented and chopped maize biomass feedstock, and due 

to the way it was produced could easily be broken down into smaller pieces    

The biochar produced for this study had a lower TOC content (39 %) and lower carbon 

recovery (12 %) compared to biochar originating from wood or unfermented grass or 

waste. Lehmann (2007) discussed the relationship between carbon recovery and 

production temperature of biochar. According to their data, biochar produced from 

corn cob at 400 - 800 °C showed 35 to 40 % carbon recovery. The C/N ratios of 

charred  materials can vary within a huge range from 7.3 to 700, depending on TOC in 

the feedstock and production temperature (Krull et al., 2009; Liu et al., 2015). For our 

biochar, the low TOC and a comparatively little higher TN content gave a low C/N 

ratio (20 ± 0.4). This low C/N ratio is favorable for plant growth as was discussed by 

Haefele et al (2011). 

The nutrient content of biochar originating from maize stalk and cob was much lower 

than in our biochar originating from an anaerobically fermented mix of the whole 

biomass of maize with animal excretion (Amonette and Joseph, 2009). According to 

unpublished work done by Schröder (2013), the heavy metals in our biochar did not 

exceed the values allowed by German authorities in order to protect environmental and 

human health. All those prove that our biochar and its feedstock were not exceptional, 

but had normal and acceptable physico-chemical characteristics making them suitable 

for being used as an organic soil amendment. 
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6.2 Effect of biochar on above ground biomass production  

The mean values of annual precipitation (822 mm) and daily temperature (8.6 °C) 

within the experimental period were very close to the long term averages from 1981 to 

2010 (857 mm and 8.7 °C resp.), so the experimental time represented average 

climatic conditions for the region. However, the distribution of rainfall was different in 

2013 (see Figure 12), which had an influence on the early growth rate and the later 

development of the maize crop. When later more precipitation occurred, weed 

flourished in the field. This abiotic stress influenced the total biomass production of 

the maize in summer 2013 (see Figure 14). The maize in the grower’s field did not 

have a water stress and subsequent weed problem because of an earlier crop 

establishment and of chemical weeding. Nevertheless our study supported the working 

hypothesis (H1) that the application of biochar positively influences the production of 

biomass. All plots with biochar applications yielded higher biomass production in both 

soils compared to the control plots in site 1 (Gleyic Podzol), respectively the digestate 

only plots in site 2 (Gleyic Anthrosol).  

The crop response to biochar amended soil  is a synergistic effect of various factors: 

chemical and physical properties of biochar, the rate and frequency of biochar 

application, the way of application, soil conditions, climate conditions, crop type, and 

management of the crop, as has been documented by several authors (Asai et al., 2009; 

Gaskin et al., 2010; Haefele et al., 2011; Major et al., 2010b; Van-Zwieten et al., 2010; 

Yamato et al., 2006).  Although there have been no previous studies that discussed the 

effect of biochar on the biomass of maize which was grown for bioenergy production 

in the field trails, there have been many experiments which discussed the responses of 

grain yield of cereal crops including maize (Grassini and Cassman, 2013; Liu et al., 

2015; Major et al., 2010b; Martinsen et al., 2014; Ndor et al., 2015; Zhang et al., 

2012b) .  

Chan et al. (2007, 2008b) and Zhang et al. (2010a, 2010b, 2011) explained the 

increased yield of maize after applying biochar derived from greenwaste and wheat 

straw as a result of increased nutrient availability, decreased soil bulk density and 

improvement of other soil physical properties. Pan et al. (2009) showed that high crop 
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productivity and nitrogen efficiency result from the accumulation of high amounts of 

soil organic carbon due to biochar addition. Zhang et al. (2012b) reported higher 

nitrogen use efficiency, and maize yield increased by 16 resp. 7 % without N fertilizer, 

and 9 resp. 12 % with N fertilizer when biochar was applied at 20 t biochar ha
-1

 resp. 

40 t biochar ha
-1

 for a Calcareous loamy soil with poor soil organic carbon content in 

the central plain in China. Few discussions exist on below-ground biomass yield, and a 

meta-analysis was done by Biederman and Harpole (2012), showing that below ground 

biomass in perennial crop plants did not significantly respond to biochar, but the 

annual crop did show significant responses with or without fertilizer addition. 

 

Lehmann et al. (2003b) found both positive and negative responses in their study, and 

also there was no proportional relationship between biochar application rate and 

increased yield. They also documented that higher rates of biochar application could 

decrease the nitrogen availability. Similar findings were documented by Major et al. 

(2010b), showing no change of maize yield in the first year, whereas the following 

three years had significant yield increases after one time application of wood biochar 

at 20 t ha
-1

 into an Oxisol in the Colombian savanna. However, with the degraded and 

less productive Ultisol in Kenya, biochar increased the cumulative maize yield by 100 

% after repeated application in a two year period at 7 t biochar ha
-1

 (Kimetu et al., 

2008). 

Gleyic Podzol, which had relatively poor physico-chemical properties, showed similar 

results to Gleyic Anthrosol, increasing biomass in the biochar amended plots by by 72 

% and 47 % for the winter and summer seasons respectively during the first year of the 

experiment (see Figure 14). Asai et al. (2009) reported the opposite to our results when 

studying the effects of biochar on the yield of rice paddy: the yield of upland rice 

(Oryza sativa L.) decreased after application of biochar with no nitrogen fertilization 

in a nitrogen deficient soil. But Zhang et al. (2010a) reported a higher rice productivity 

and an increased agronomic nitrogen use efficiency in an acidic organic carbon rich 

paddy soil with biochar application at 10 t biochar ha
-1

 and 40 t biochar ha
-1

. In our 

study, the above ground total biomass of the bioenergy maize crop increased during 

four consecutive cropping seasons after one time application of biochar at 5 t ha
-1

 with 
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no additional NPK fertilizer to Gleyic Podzol with its poor physical properties and low 

TOC content.  

 

6.3 Effects of biochar on soil physico-chemical properties 

Many biochar field trials were carried out all around the world in different climate and 

agro-ecological zones, however the studies in the tropics were dominating among them 

(Blackwell et al., 2009; Schulz and Glaser, 2012). Generally, those studies proved 

positive effects of biochar on the concentration of nutrients, their retention and their 

availability, which in turn increase soil fertility and thereby plant growth (Bélanger et 

al., 2004; Glaser et al., 2002; Lehmann et al., 2003b; Major et al., 2010b; Novotny et 

al., 2009; Rondon et al., 2007). Furthermore, increases in CEC (Glaser et al., 2002; 

Mikan and Abrams, 1995; Topoliantz et al., 2002), water-holding capacity (Glaser et 

al., 2002), soil microbial and mycorrhizal activity (Thies et al., 2009; Warnock et al., 

2007), soil acidity (Chan and Xu, 2009), and electric conductivity (Asai et al., 2009) 

have been reported after biochar application to soils. There was one study with 

negative effects on crop productivity and chemical properties (ryegrass with biochar 

from biosolids), and some with no significant effect of biochar addition (Jeffery et al., 

2011). 

The above mentioned studies mainly considered the effect on soil during the main 

cropping season. This study incorporated the behavior of biochar in the soil 

ecosystems during both active (summer crop) and inactive (winter crop) times in detail 

for four consecutive cropping seasons. The second working hypothesis (H2), that the 

application of biochar increases soil macro- and micro-nutrients, was confirmed by the 

results of our study.   

 

6.3.1 Soils in the two fields 

As mentioned earlier, the soils in the two field experimental sites represent two 

different soil ecosystems in SH, Germany. Site 1 represents the abandoned land which 

has not been treated by biogas digestate before, and has not been used for an intensive 

monoculture system. In contrast, the land utilization and management of site 2 were 
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different: this site has been intensively used to produce biomass for agricultural biogas 

plants during the past years, and received an amendment of digestate at a rate of 42 

Lm
-2

 at the beginning of each cropping season. The chemical and physical properties 

of Gleyic Anthrosol in site 2 have development and chemical characteristics closely 

similar to those of the uppermost layer of Plaggic Anthrosol described by Meuser and 

Blume (2001) for Osnabrück in Northwest Germany. The soil characteristics of the 

experimental plots of site 2 were representative for the soils in the adjacent arable land 

(Langheld, 2013; Rössler, 2013). There are no studies about the soils of the adjacent 

fields in site 1, and hence there is no information available to compare in how far the 

experimental plots represent the Gleyic Podzol soils of the surrounding area and fields. 

 

6.3.2 Initial changes of soil chemical properties  

Before applying biochar to both experimental sites, the experimental plots did not 

show significant heterogeneity of TOC and TN.  Our biochar application rates (5 and 

24 t biochar ha
-1

) were high enough to produce initial significant changes in the topsoil 

(0 - 0.2 m) of Gleyic Podzol and Gleyic Anthrosol. The amendment of those sandy 

soils with biochar derived from anaerobic biogas digestate significantly increased soil 

pH, EC, TOC, TN, as well as other chemical properties including cations, CEC and 

BS. As a porous substance with high surface area and many nutrients, biochar can alter 

the soil nutrient status just after application as well as in the long run. Because our 

biochar was alkaline compared to its feedstock material, it increased the alkality of the 

soil. While adding biochar did not significantly influence TN, DON and ammonium, it 

had significant influences on nitrate in both soils. We found high values of nitrate and 

ammonium which shows that there is an indirect influence of biochar on the 

mineralization of organic matter in the soil.  All these initial changes of the 

investigated ecosystems mainly depend on the quality of the biochar and much less on 

the soil texture and agricultural use of the ecosystem. Our results clearly showed the 

fertilizing effect of biochar on soils in bio energy crop production ecosystems. 
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6.3.3 Seasonal changes of soil chemical properties 

The initial detrimental effects of biochar on soil chemical properties changed with the 

following spring season when the vegetation period started. The values of all soil 

chemical properties which we determined in our study significantly decreased in 

spring 2013. After that the decline continued with less fluctuation, never totally 

disappeared, but the differences of soil pH, TOC, TN, DOC and DON were no longer 

significant. The reason behind these changes may have been the stabilization of 

biochar within the ecosystems while it was aging in the soil. At the end of the 

experiment, the plots in Gleyic Anthrosol treated with a high amount of biochar 

showed higher values compared to the other treatments. The rest of the soil chemical 

properties (CEC, BS, plant available-P and -K) showed clear effects of biochar 

application in all seasons, but those only were significant for the plots treated with a 

high amount of biochar in Gleyic Anthrosol, and for the biochar treatment in Gleyic 

Podzol. The positive effects of the low application rates of biochar were smaller than 

those of the high application rate. The ups and downs of our results may have been 

caused by the fact that biochar undergoes continuous aging and oxidation processes 

influenced by soil-plant-biochar interactions and other environmental parameters of 

the soil ecosystems (Cheng et al., 2006; Spokas, 2013).   

  

6.4 Effects of biochar on soil microbial biomass 

6.4.1 Review of the CHCl3 extraction procedure  

MBC and MBN indirectly reflect soil microbial growth and activities, production of 

CO2 in the soil, and soil organic matter degradation (Zhang et al., 2014). We used the 

CHCl3 fumigation method to determine soil microbial biomass. Badalucco et al. 

(1990) and Kuzyakov et al. (2009) showed that fumigating soil with CHCl3 can 

solubilize both living microbial cells and a small amount of dead soil organic matter 

(0.2 - 0.4 % of total carbon content). Therefore, when the measured MBC is low, the 

results must be interpreted with special caution.  Liang et al. (2010) showed that 

biochar may adsorb DOC, thereby affecting microbial biomass measurements in 

biochar amended soil. But Durenkamp et al. (2010) and Dempster et al. (2012) both 



Discussion  

105 

proved by using the recovery result of 
14

C experiments that the adsorption of DOC to 

biochar had no effects on the extraction efficiency of soluble carbon.  

 

6.4.2 Effects of biochar on soil microbial carbon and nitrogen 

Generally, our research proved that biochar addition influenced both MBC and MBN 

in both tested soil ecosystems, showing that under the temperate climatic conditions in 

Northern Germany, biochar accelerates microbial activities and growth thus confirm-

ing our working hypothesis H3. Previous studies showed that the effects of biochar on 

soil microbial biomass were quite inconsistent: several studies found that soil microbi-

al biomass in biochar amended soils showed no differences from the control soil 

(Bruun et al., 2011, 2012; Kuzyakov et al., 2009; Zavalloni et al., 2011), other studies 

reported either an increased (Bruun et al., 2008; Kolb et al., 2009) or a decreased 

(Dempster et al., 2012) soil microbial biomass after biochar application.  

Several explanations for the positive response of soil microbial biomass in biochar 

amended soils have been given. One explanation is that biochar causes increasing con-

centrations of labile organic carbon compounds, which derive from biochar (Bailey et 

al., 2010; Bruun et al., 2011, 2012, 2008; Smith et al., 2010). Furthermore, biochar has 

been shown to add nutrients directly to the soil nutrient pool, to increase the retention 

of nutrients because of the larger surface area and highly porous structure of biochar 

(Cheng et al., 2008; Masiello et al., 2013). Also, biochar applications may increase the 

habitat for microbes by providing physical protection (Cheng et al., 2008; Pietikainen 

et al., 2000), or by generating a chemically more favorable environment for the mi-

crobes due to the alkalinity of biochar (Lehmann et al. 2011). There also were reports 

showing the ability of biochar to increase the decomposition of soil organic matter 

which stimulates microbial activity (Wardle et al., 2008) and the sorption and retention 

of organic carbon (Lehmann et al., 2011), which helps to increase microbial biomass. 

However, also negative effects of biochar application on microbial abundance and ac-

tivity have been reported. Some studies showed that biochar was able to release some 

harmful highly volatile organic compounds (VOCs) and polycyclic aromatic hydrocar-

bons (PAHs) which can inhibit microbial growth and activities (Buss et al., 2015; 
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Deenik et al., 2010). Also, biochar trapped essential nutrients inside of its pores which 

reduced the availability of nutrients in the soil solution temporarily or permanently 

(Dempster et al., 2012), and this in turn reduced the activity of soil microbes, soil or-

ganic matter decomposition, and N mineralization.  

Our research showed that biochar which was produced at high temperatures from nu-

tritionally rich feedstock reduced MBC by 9 % just after applying it to Gleyic Podzol. 

This can be caused by initial fixation of nutrients inside the biochar, and VOCs and 

PAHs in the biochar (Blackwell et al., 2009; Buss et al., 2015; Downie et al., 2012; 

Zimmerman et al., 2011). However, MBN in Gleyic Podzol did not have an initial de-

pletion effect by applying biochar, but showed an increase in the first winter season. 

The next three seasons showed both significant and nonsignificant increases of MBC 

and MBN in the relatively unfertile and coarse-textured Gleyic Podzol. This result 

even remained in the next winter, when Gleyic Podzol amended with biochar had a 

larger active soil microbial community (Figure 25).   

Those results suggest that biochar supplied a livable and protective habitat for micro-

organisms in soil. During the winter season, the growth of microorganisms can be 

stimulated by biochar because of the albedo effects of biochar (Liang et al., 2014; 

McCormack et al., 2013) which have a direct influence on the soil temperature. How-

ever, with our low application rate of biochar, the albedo effects were less important 

than the effect on protective habitat.  

 

6.5 Response of soil ecosystems to the application of biochar: soil carbon 

turnover 

In addition to studying the influences of biochar and digestate on soil nutrients, anoth-

er major goal of this research was to understand how charred (biochar) and non-

charred biogas digestate affect the soil carbon pool and soil carbon mineralization. 

This goal represents the final hypothesis (H4) of our study. The results prove that the 

CO2 production did not significantly increase after adding organic carbon as biochar to 

the soil, but the effects on the other two gases that we measured were not clear from 

our set of data.  
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The results of our incubation experiment help to improve the understanding of how 

biochar alters the potential carbon turnover in Gleyic Podzol, and the field gas flux 

measurements of both Gleyic Podzol and Gleyic Anthrosol are used to improve the 

understanding of the behavior of biochar, digestate and their mixture in the soil carbon 

pool. 

 

6.5.1 Influence of biochar and digestate on soil carbon mineralization: an 

incubation experiment 

In incubation experiments, the preparation of the samples has an effect on the results, 

especially on the measurements taken on the initial days. During sample preparation, 

removing plant roots, stones and macro organisms causes physical damages to the soil 

matrix and soil aggregates, and alters the biological processes (Subke et al., 2010). In 

addition to the treatment effects, those disturbances can result in initial mineralization 

of soil carbon (Knoblauch et al., 2013; Subke et al., 2010). In our study, several of the 

samples had high standard deviations between the replicates. This may be due to the 

above mentioned disturbances, or to insufficient homogenization of the initial bulk 

surface soil samples, or of the soil-amendment mixtures, even though we took great 

care to homogenize the samples. 

In an aerobic incubation experiment, CO2 concentration in the head space can inhibit 

the activities of aerobic microorganisms. Knoblauch et al. (2013) showed the necessity 

of flushing the head space with synthetic air when the CO2 concentration in the head-

space reaches ≥ 3 %. On the other hand, there is the possibility to get underestimated 

cumulative CO2 and in turn carbon turnover due to the flushing. Also, the flushing can 

affect the measurements of the post flushing mineralization rates which can occur due 

to adjusting the equilibrium between partial pressure of CO2 in the head space and the 

concentration of CO2 in the soil solution. However, our soil with sandy texture and 

with a water holding capacity at 60 % of its field capacity (FC) was not affected as 

heavily as clay soils with higher water holding capacities.  

In the incubation experiment, the substantial differences between the δ
13

C-signatures 

of the organic amendments, whose source was a C4 plant like maize, and those of the 
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soil organic matter were used to identify the contribution of the different carbon 

sources (soil organic matter or organic amendment) to the overall released CO2. Our 

amendments (digestate and biochar) had a significantly higher δ
13

C value (-19.35 ‰) 

compared to the soil (-27.56 ‰) used for the incubation experiment. At the beginning 

of the incubation experiment, the δ
13

C values of emitted CO2 from the amended soil 

samples were significantly different from the control samples. But at the end of the 

experiment these differences had disappeared.  This gives evidence that a labile frac-

tion of the organic matter that was added to the soil as digestate and biochar was min-

eralized to CO2, in particular at the beginning of the experiment.    

In all treatments, the CO2 emission went up just after adding the amendments, showing 

that carbon mineralization was triggered. In this initial phase, the treatment with the 

mixture of digestate and a high amount of biochar emitted significantly higher 

amounts of CO2 than the digestate only and biochar only treatments.  

After this initial phase, biochar had a negative effect on carbon mineralization in both 

carbon pools, the carbon in the amendments and the carbon in the soil organic matter 

pool. Some researchers found and discussed both positive and negative priming effects 

of biochar on the soil organic carbon pool (Knicker et al., 2008; Kuzyakov et al., 2009; 

Nguyen et al., 2008). 

For each treatment, the measured values of produced CO2 were highly variable be-

tween the three soil sub samples; therefore it is difficult to draw a definite conclusion 

based on those results. However, for each of the sub samples, the CO2 emissions of the 

five different treatments basically showed the same behavior. Those three sub samples 

had differences in their TOC, TN and CEC, but those were not statistically tested for 

their significance because of lack of data points (Table A 11).  

 

6.5.2 Influence of biochar and digestate on greenhouse gas emissions 

Most studies leave the question of GHG emissions from biochar amended soils open, 

in particular under field conditions, but a few field measurements of GHG emissions 

from biochar amended soils have been performed (Castaldi et al., 2011; Karhu et al., 
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2011; Knoblauch et al., 2011; Scheer et al., 2011; Zhang et al., 2012a). In our experi-

ments, we studied the GHG emissions from the soil surface after amending the sandy 

soil in a bio energy crop production system with biochar and digestate.   

Our results showed that adding more carbon in the form of biochar to Gleyic Podzol 

did not increase the CO2 emission from the soil surface compared to the control. In all 

seasons, there were no significant differences between the biochar treated plots and the 

control plots. The emission of CO2 from Gleyic Anthrosol topsoil (0 - 0.2 m) also did 

not show significant differences, except just after adding biochar to the soil and in au-

tumn 2013. Similar to the incubation experiment, just after adding biochar and in au-

tumn 2013, the plots with a high amount of biochar emitted the significantly highest 

amount of CO2, followed by the low amount of biochar plots and the digestate only 

plots. We also calculated the carbon turnover rates based on CO2 emission and TOC in 

the topsoil layer (mg of CO2 emitted per g of TOC per day). The results showed that 

the plots with biochar high amount had lower turnover rates compared to the digestate 

only and low biochar plots. In both soils CH4 and N2O emissions decreased after bio-

char application, but not significantly. Our results showed that it is necessary to study 

the emission of these two gases from soils in bioenergy production agro-ecosystems 

more intensively. 

Earlier research mainly investigated the influence of biochar on GHG emissions and 

soil organic matter in soil ecosystems associated with co-metabolic reactions (Cheng et 

al., 2006; Hamer et al., 2004; Keith et al., 2011; Khodadad et al., 2011; Kuzyakov et 

al., 2009), and the positive priming effect together with enhanced microbial activity 

and labile fraction of C in biochar (Czimczik and Masiello, 2007; Wardle et al., 2008). 

However, most of those works were not done in the field and did not identify the dif-

ferent origins of carbon in the emitted CO2 and (Lehmann and Sohi, 2008; Wardle et 

al., 2008). 
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6.5.3 Influence of biochar and digestate on soil organic carbon balance 

After harvesting the 2013 and 2014 summer crops and the 2013 winter crop, we de-

termined TOC in the different soil layers, and later compared the values with those 

obtained before starting the experiments. The TOC values of the uppermost layer var-

ied with the growing season, probably due to the mineralization of carbon and its 

transport to lower soil horizons. In Gleyic Anthrosol, the lower horizons showed a 

higher accumulation of TOC in all plots with low and high biochar than in the diges-

tate only plots. The TOC values of lower horizons nonsignificantly increased with 

time, and with the amount of biochar applied, but we did not analyze the contribution 

of biochar carbon to this TOC increase. Some authors who studied the stability of bio-

char in the soil showed that biochar in the subsurface soil layers was more stable than 

in the topsoil (Major et al., 2010a; Masiello, 1998). 

 

6.6 Methodological limitations in the field experiment  

6.6.1 Treatment mixtures and biochar application rates   

Site 2 had three different treatments but there was no control treatment without 

amendment of digestate since the soil had already been enriched with digestate at a 

rate of 0.15 kg C m
-2 

(roughly 42 L m
-2

, personal communication with the grower Mr. 

Kai Spangenberg). Therefore, for Gleyic Anthrosol in site 2 the digestate only 

treatment (D) was used as a basic reference plot. 

For our study, two biochar application rates were used: 0.15 and 0.75 kg C m
-2

, which
 

means roughly 5 and 24 t biochar ha
-1 

respectively. Gleyic Anthrosol received both 5 

and 24 t biochar ha
-1

,
 
whereas Gleyic Podzol received 5 t biochar ha

-1
 only. As an 

experiment which was conducted as part of a grower’s field, we determined the 

application rates based on the organic carbon input rate from the grower’s application 

of digestate which was 0.15 kg C m
-2

. This is the limit allowed by authorities in SH 

and Germany as regulated by DüMG 1977 (§1 and §2) (Dittrich, 2006; Domínguez, 

2012; Schneider and Mastel, 2008b). Our application rates were low (5 and 24 t 

biochar ha
-1

 corresponding to 1.5 and 7.5 t C ha
-1

) compared to the application rates 

used by previous studies (0.38 - 135 t C ha
-1

 for a pot experiment by Lehmann and 
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Rondon in 2006; 8 - 30 t C ha
-1

 for a field experiment by Lehmann and Rondon in 

2006 and Lehmann et al. in 2006). 

According to Haefele et al. (2011) and Lehmann and Joseph (2009), low input rates of 

biochar allow studying the effects on biomass production together with other effects on 

the ecosystem. The effect of biochar on crop yield is one of the important aspects when 

developing recommendations on how to improve the sustainability of agricultural 

production ecosystems. On the other hand, the low application rates can aggravate the 

evaluation of the effect of biochar on the terrestrial carbon sequestration of the soil 

ecosystem (Haefele et al., 2011; Lehmann et al., 2006).  

 

6.6.2 Carbon losses during the application 

The biochar used for this study had a low
 
bulk density of 0.49 gcm

-3 
and contained a 

considerable amount of dust particles. Therefore, the biochar could very easily be 

blown away by the wind while it was lying on the soil surface before being 

incorporated into the surface soil layer (0 - 0.2 m). There were significant and high 

losses of TOC during the application, especially with the high biochar application rate 

in site 2 where there is no wind barrier along the site. The efficiency and practicability 

of the field application of biochar are a rarely investigated area in biochar experiments. 

There were some experiments which studied the effectiveness of solo application, 

mixed application with compost, animal manure or mineral fertilizer, but very few 

discussed the effectiveness and practicability of different types of incorporation such 

as deep vs. surface and banded vs. surface application, or the technical and economic 

feasibility concerning losses during the application, or safety concerns (Blackwell et 

al., 2009).   

6.6.3 Chamber measurements 

The closed chamber is the most commonly and frequently used method in gas 

emission studies to determine the gas exchange between soil surface and atmosphere. 

But chamber measurements are greatly influenced by many parameters and sometimes 

underestimate fluxes. There were several improvements in the chambers which were 
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used for our measurements and flux calculations to minimize the errors associated with 

the chamber measurements (Davidson et al., 2002; LI-COR Biosciences, 2007; 

Pihlatie et al., 2013; Xu et al., 2006). In our experiments, the measured concentrations 

of N2O and CH4 were small. Those small concentrations may alter easily during the 

time between air sample collection from the chamber head space and the laboratory 

measurements. Those limitations could have some influence on the assessment of the 

fluxes and the variability of different treatments. 
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7. Conclusion and Outlook  

This study has advanced the understanding of some basic aspects of the soil-plant-

biochar interactions after amending soil in bio energy plantation ecosystems in SH, 

Germany with biochar produced from anaerobic biogas digestate. We used two field 

sites with different soil types, Gleyic Podzol and Gleyic Anthrosol which have different 

physico-chemical attributes and management conditions to investigate the potential 

benefits of biochar amendment for bioenergy crop production, soil nutrient recycling, 

climate change mitigation and reduction of greenhouse gas emissions from arable 

soils. 

The soil chemical properties pH, EC, TOC, TN, DOC, DON, inorganic nitrogen, cati-

on concentration, CEC, and plant available-P and -K increased after applying biochar. 

The positive effects on TOC, inorganic nitrogen, CEC, and plant available-P and -K 

were significant and remained so over four consecutive growing seasons. Also, biochar 

significantly increased the microbial growth in the soils. The additional carbon which 

was received from the biochar increased greenhouse gas emissions only slightly, but 

this small increase was nonsignificant. The incubation experiment neither showed a 

clear increasing nor a clear decreasing effect of biochar on the mineralization of the 

soil organic carbon pool.  

The results obtained from this study showed that a single application of biochar from 

biogas digestate at low rates increased the crop biomass production in both Gleyic 

Podzol (without inorganic fertilizer) and Gleyic Anthrosol (with minimal application of 

inorganic fertilizer) during four consecutive growing seasons. This biomass increase 

can be explained as a synergy of the effects of biochar on the nutrient concentrations 

and availability in the soil, which are further increased by the high surface area and 

porous nature of the biochar which give it the capacity to act as a nutrient holder and 

medium for microorganisms. 

The size of the plots and their position inside the grower’s field were chosen in the best 

possible way, but there were some unexpected external disturbances which affected the 

quality of the soil samples a few times and also affected plant growth of some plots. 
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Those effects could only be noticed after the data were statistically analyzed long after 

the plot establishment.  

While already providing many insights into how biochar can reduce GHG fluxes from 

arable fields and improve the sustainability of bio energy production agro-ecosystems, 

our study also raises a set of questions to be answered in the future, and thus opens 

new room for further research.  Additional field and laboratory studies on both short- 

and long-term basis are needed to answer those questions and further deepen the un-

derstanding before being able to gain those benefits at a commercial level and on a 

large scale. 

Outlook: Need for future research 

There are a number of areas concerning the application of biochar or charred digestate 

to soil in bio energy production agro-ecosystems which still require further investiga-

tion: 

o Find out the contribution of different carbon pools to emitted CO2 under field con-

ditions which are more complex than in an incubation experiment, in order to gain 

insight into soil-plant-biochar interactions in a more realistic situation.  

o Deepen the knowledge about gas emissions. Our study showed interesting data 

about the emission of N2O and CH4 under field conditions, but those need further 

clarification to be able to draw valid conclusions. Therefore, future experiments 

should collect a more representative and extensive set of data with more frequent 

measurements under field conditions. 

o Study the influence of the application of biochar on the energy value of biomass in 

bioenergy crop production systems. This requires interdisciplinary studies and 

needs to be done before using biochar in commercial agriculture on a large scale.  

o Investigate the impact of biochar on the quality of DOC. This research is im-

portant to gain the understanding which is necessary for predicting the effects of 

biochar on the ground water.  Also, it is important to evaluate the potential risks 

associated with the sorption capacity of biochar and certain organic compounds 
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such as pesticides which are often used in bioenergy crop production agro-

ecosystems.  

o Deepen the knowledge about soil microbial activities, focusing on diversity and 

population changes, in particular the changes of ectomycorrhizal fungi.   

o Design a more realistic field lysimeter experiment with undisturbed soil which 

completely covers all the pathways in which biochar can get lost after adding it to 

the ecosystem, with the goal of developing a model which can be used in future 

studies.  
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Figure A 1: In October 2012: (A) mixing biochar with the soil using a single axle 

tractor, (B) digestate only plot, (C) digestate:biochar 1:1 plot and (D) diges-

tate:biochar 1:5 plot 

 

 

 

Figure A 2: In October 2012 just after winter wheat establishment (A) Site 1 with 

Gleyic Podzol and (B) Site 2 with Gleyic Anthrosol   

 

 

Figure A 3: Vegetative stage of winter season crops: (A) winter rye in April 2014 

and (B) winter wheat in April 2013 
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Figure A 4: Vegetative stage of summer season crops: maize (A) in June 2013 and 

(B) in June 2014 

 

Figure A 5: At harvest time, winter and summer crops: (A) winter wheat in June 

2013, (B) maize in October 2013, (C) winter rye in May 2014 and (D) maize in 

August 2014 
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                                                          BB-PP  

Substratsystematische Einheit 132,289,296  
                                                                           pfl/pky-(v)ls(Sp-qp)/fg-ss(Sgf-qp) 

Bodenform  

                      BB-PP: pfl/pky-(v)ls(Sp-qp)/fg-ss(Sgf-qp))  

 

Kurzbeschreibung der wichtigsten Prozesse       - Humusanreicherung, verbraunung und vergleyung 

 

Humusform 298               (vmu) 

 
Wasserstand u GOF, 310 Bemerkungen, 320 
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Table A 2: The profile description sheet (Aufnahmeformblatt) for Gleyic Anthrosol  

Aufnahmeformblatt für bodenkundliche Profilaufnahmen nach KA 5 (mit Seitenzahlenangabe) 

Standort: Süderstapel Grünlandfläche von Bauer Spangenberg 

Titeldaten  TK-Nr. 

55  

Projekt,  

55  

Spez.  Profil-Nr., 

55  

Datum  Bearbeiter, 55  Rechtswert,  

55  

Hochwert, 

55  

Höhe über NN  Aufschl.Art  

55,56  

Bemerkungen, 55  

 1621 Dock. arbeit  -------  S2 15.05.2012  R. Suddapuli  3511303  6024891 7m  GS  ---------------  

Aufnahme-

situation  

Neigung  

57,58  

Exposition  

59  

Wölbung  

59  

Relieffor-
mtyp  

63  

Mikro-
relief  

69  

Lage- 
im 

Relief 

69  

Bodenab-
/-auftrag 

69  

Nutzungsart  

71  

Vegetation  

73  

Witterung  

74  

anthropogene 
Veränderungen 

74  

Bodenorganismen  

76  

Bemerkungen  

79  

 N 1  N  WS 1  KH  RW  K  AY  A  HF  WT 4  DG, O  -----------------  
Mais für Bio-

gasanlage  

Horizontdaten 

Lfd 

Nr.  

 

Hori-

zont/ 

Schicht 
Ober-/ 

Unter 

grenze 
(cm) 

79  

Hori-

zontsy

mbol  

83  

Pedogene und biogene Merkmale  
 

Merkmale der Substratzusammensetzung  
 

Boden-

art/  
Torfart  

141,148, 

157  

Boden-

farbe  

108  

Hu-

mus-
ge-

halt  

110  

Hydro-

mor-
phie-

merk-

male  

112  

Bo-

den-
feuc

hte  

114  

son-

stige 
Mer

k-

male  

114  

Gefü-

ge-
form 

und 

Größe  

117,1

21  

Hohl-

räume 
(Risse,  

Poren 

Röhren) 

123  

Lager-

ungs-
dichte 

Zer-

setz-
ungs-

stufe  

124  

Durchw-

urzelun-
gsintens-

ität  

129  

Substr-

atgenese  

135  

Grob-

boden-
frakt-

ionen 

und 
Anteil-

klassen  

148  

Summe  

Skelett 
(%)  

150  

Carbo-

nat-  
gehalt  

168  

Boden-

aus-
gangs-

gestein  

172  

Strati-

graphie  

187  

Bemer-

kungen  

1  0 - 20  Ap  
Ss 

(mSfs) 

10YR 

2/1  

(h4)

h2  
--------  feu 2  -----  

sub- 

ein  
gri4 f3  Ld1  Wf3  om fGr1  < 2 % c0  Yj - Sp  qh ---------- 

2  20 - 40  E  
Ss 
(mSfs)  

10YR 
3/1  

(h3)
h2  

-------- feu 2  
teils 
sgb 

sub- 
ein 

gri4  f2  Ld2  Wf2 om  mG1  < 2 % 
c0 

Yj - Sp qh 
---------- 

3  40 - 70  GBv Su2  5YR 3/2 h1  -------- feu 3  -----  kit-ein  gri2 f3  
Ld3-

Ld2  
Wf0  pfl 

fO2 

mG2 
2 - 10 % 

c0 
Sp  qp  

---------- 

4  > 70 Gro  
Ss 
(fSms) 

7.5YR 
5/8  

h0 eh / rb  feu 5  -----  ein  gri2 f2  Ld3 Wf0  fg  -------- 0  % 
c0 

Sgf  qp  
---------- 

Bodensystematische Einheit 190  
                                                            GG-YE 

Substratsystematische Einheit 132,289,296  
                                                                           om-(z1)ss(Yj-Sp-qh)/pfl-(k2/w2)ss(Sp-qp)//fg-ls(Sgf-qp) 

Bodenform  

                      GG-YE: om-(z1)ss(Yj-Sp-qh)/pfl-(k2/w2)ss(Sp-qp)//fg-ls(Sgf-qp) 

 

Kurzbeschreibung der wichtigsten Prozesse       - Plaggendüngung (om) 

 

Humusform 298               (mu) 

 
Wasserstand u GOF, 310       GWO ~75cm Bemerkungen, 320 
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Table A 3: Variation of TOC and TN content in the top soil (0 - 0.2 m) in Gleyic 

Podzol and Gleyic Anthrosol before and after biochar application. Shown are 

mean values and respective standard deviations (n = 3).  

Soil type Plot   TOC TN 

 
 

kg m
-3

  

Gleyic Podzol 1 1.08 ± 0.00  0.10 ± 0.001 

 3 1.44 ± 0.05 0.13 ± 0.001 

 5 1.36 ± 0.05 0.13 ± 0.002 

 2 1.39 ± 0.00 0.13 ± 0.002 

 4 1.37 ± 0.05 0.13 ± 0.006 

 6 1.27 ± 0.20 0.12 ± 0.019 

 2B 1.75 ± 0.05 0.14 ± 0.004 

 4B 1.85 ± 0.00 0.17 ± 0.002 

 6B 1.69 ± 0.05 0.27 ± 0.022 

Gleyic Anthrosol 7 1.69 ± 0.05 0.133 ± 0.030 

 11 2.15 ± 0.10 0.149 ± 0.005 

 13 1.90 ± 0.05 0.143 ± 0.005 

 8 2.15 ± 0.05  0.155 ± 0.035 

 12 2.25 ± 0.10 0.150 ± 0.005 

 14 2.00 ± 0.10 0.152 ± 0.005 

  8BL 2.27 ± 0.10 0.166 ± 0.015 

 12BL 2.31 ± 0.15 0.150 ± 0.005 

 14BL 2.28 ± 0.15 0.155 ± 0.010 

 9 2.39 ± 0.00 0.216 ± 0.015 

 10 2.00 ± 0.20 0.161 ± 0.020 

 15 2.20 ± 0.15 0.171 ± 0.025 

 9BH 2.91 ± 0.25 0.201 ± 0.030 

 10BH 3.48 ± 0.00 0.156 ± 0.020 

 15BH 2.95 ± 0.20 0.174 ± 0.010 

B: biochar, BL: digestate:biochar 1:1, BH: digestate:biochar 1:5.    
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Table A 4: Selected soil chemical properties in the topsoil (0 - 0.2 m) for all the 

treatment plots before applying biochar for both Gleyic Podzol and Gleyic Anthro-

sol. Shown are mean values and respective standard deviations (n = 3).   

Soil 

type 
Plot DOC DON Ca++ Mg++ K+ Na+ CEC BS 

 
 

g m
-3 

 mmolc kg-1 % 

GP 1 2.35 ± 0.5 0.45 ± 0.1 18.6 ± 1.5 1.85 ± 0.0 10.4 ± 0.5 0.60 ± 0.0 21.43 ± 1 42.7 ± 2 

 2 2.05 ± 0.5  0.50 ± 0.1 19.1 ± 2.5 1.75 ± 0.0 10.5 ± 1.2 1.00 ± 1.0 22.23 ± 0 41.6 ± 3 

 3 2.40 ± 0.5  0.60 ± 0.1 21.2 ± 3.0 1.90 ± 0.5 10.0 ± 2.0 0.30 ± 0.0 21.79 ± 1 45.6 ± 6 

 4 2.45 ± 0.5 0.45 ± 0.1 32.2 ± 23 2.10 ± 0.5 9.40 ± 0.0 0.30 ± 0.0 22.07 ± 0 60.9 ± 33 

 5 1.45 ± 0.0
a
 0.40 ± 0.1 15.9 ± 4.0 2.00 ± 0.5 9.60 ± 3.0 0.25 ± 0.0 21.58 ± 1 37.0 ± 7 

 6 1.95 ± 0.5 0.40 ± 0.0 16.9 ± 3.5 2.05 ± 0.5 9.70 ± 2.5 1.95 ± 2.5 22.18 ± 1 37.8 ± 6 

             

GA 7 3.8 ± 0.5 1.10 ± 0.0 61.70 ± 5 3.25 ± 0.5 7.95 ± 1.0 0.60 ± 0.0 21.64 ± 1 114.6 ± 3 

 8 2.4 ± 0.5 1.35 ± 0.0 83.50 ± 5 3.95 ± 0.5 8.50 ± 0.5 1.00 ± 1.0 27.09 ± 1 121.9 ± 4 

 9 3.0 ± 0.5 0.95 ± 0.5 102.6 ± 5 5.70 ± 0.5 8.85 ± 1.0 0.30 ± 0.0 33.88 ± 2 119.4 ± 4 

 10 2.1 ± 0.0 1.05 ± 0.0 56.95 ± 10 2.65 ± 0.5 6.95 ± 0.5 0.30± 0.0 22.67 ± 1 99.2 ± 13 

 11 1.7 ± 0.0
 a

 0,95 ± 0.0 65.4 ± 10 3.40 ± 0.5 8.40 ± 1.0 0.25 ± 0.0 24.27 ± 3 107.6 ± 7 

 12 2.1 ± 0.5 0.85 ± 0.0 60.3 ± 10 2.85 ± 0.5 7.30 ± 2.0 1.95 ± 2.5 24.77 ± 2 98.4 ± 7 

 13 1.8 ± 0.0
 b

 1.05 ± 0.0 49.6 ± 10 2.85 ± 0.5 13.8 ± 0.5 0.20 ± 0.0 20.16 ± 1 105.6 ± 11 

 14 2.0 ± 0.0 0.85 ± 0.5 58.2 ± 5 3.30 ± 0.5 12.7 ± 1.0 0.55 ± 0.0 23.10 ± 1 105.1 ± 5 

  15 2.1 ± 0.0 0.95 ± 0.0 63.1 ± 10 2.80 ± 0.5 13.3 ± 1.0 0.65 ± 0.0 24.41 ± 1 106.4 ± 11 

For a chemical property, values followed by the different letters are significantly different at P ≤ 0.05. Letters 

are not shown when differences of means are nonsignificant. GP: Gleyic Podzol, GA: Gleyic Anthrosol.  

 

Table A 5: Changes of selected soil chemical properties in the topsoil (0 - 0.2 m) 

for all treated plots just after applying soil amendments (biochar, and mixtures of 

digestate and biochar). Shown are mean values and respective standard devia-

tions (n = 3).   

Soil 

Type 
Plot DOC DON Ca Mg K Na CEC BS 

  g  m
-3

  mmolc kg-1 % 

GP 2B 2.80 ± 0.5 0.46 ± 0.1 32 ± 1.5 13.7 ± 2 34.4 ± 6 0.2 ± 0 26.26 ± 1
a
 92.3 ± 5 

 4B 3.55 ± 0.5 0.55 ± 0.1 26 ± 3.0 12.3 ± 6 30.7 ± 11 0.55 ± 0 24.69 ± 1
b
 83.5 ± 23 

 6B 3.40 ± 0.5 0.45 ± 5.1 26 ± 1.5 12.4 ± 2 31.3 ± 1 0.65 ± 0 25.05 ± 1
ab

 83.2 ± 5 

GA 8BL 3.35 ± 1.5 0.55 ± 0.0 84 ± 10
a
 11.2 ± 3 23.2 ± 10

a
 1.8 ± 0.1

a
 32.26 ± 1 124.2 ± 18a 

 12BL 2.70 ± 0.5 0.60 ± 0.0 63 ± 5
b
 7.95 ± 2 102.1 ± 55 6.25 ± 0.6 47.36 ± 4

a
 169.5 ± 32 

 14BL 3.50 ± 0.5 0.70 ± 0.0 71 ± 15
ab

 11.9 ± 3 106.8 ± 40 6.40 ± 0.4 35.18 ± 5 184.4 ± 31 

 9BH 5.45 ± 3.5
b
 0.65 ± 0.0 104 ± 5

a
 43.5 ± 22 19.3 ± 3.5 1.90 ± 0.5 27.25 ± 2 111.5 ± 5 

 10BH 8.10 ± 0.5 0.80 ± 0.0 64 ± 10 39.9 ± 15 35.1 ± 7 1.70 ± 0.5 28.54 ± 3 132.9 ± 13 

 15BH 8.65 ± 1.0 0.90 ± 0.0 68 ± 5 38.4 ± 9 101 ± 25
a
 5.20 ± 1

a
 40.26 ± 3

a
 160.7 ± 16a 

For a chemical property, values followed by the different letters are significantly different at P ≤ 0.05. Letters 

are not shown when differences of means are nonsignificant. GP: Gleyic Podzol, B: biochar, GA: Gleyic An-

throsol, BL: digestate:biochar 1:1, BH: digestate:biochar 1:5.  
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Table A 6: Seasonal variation of soil moisture and EC in the topsoil (0 - 0.2 m) in 

site 1 and site 2 after establishment of the experiment in October 2012. Shown are 

mean values and the respective standard deviations (n = 3 to 9).  

 Soil amendments 

 Site 1 Site 2 

 C B D BL BH 

Soil Moisture (%)      

Winter 2012/13 18.8 ± 9 20.6 ± 8 19.3 ± 4 20.2 ± 6 20.9 ± 9 

Spring 2013 16.9 ± 5 16.4 ± 8 13.1 ± 8 14.2 ± 4 14.9 ± 7 

Summer 2013 8.2 ± 3 7.0 ± 2 8.6 ± 4 8.5 ± 3 8.3 ± 6 

Autumn 2013 13.6 ± 3 16.3 ± 3 13.0 ± 3 12.5 ± 2 13.9 ± 1 

Winter 2013/14 22.8 ± 2 23.6 ± 1 17.0 ± 1 17.8 ± 3 19.4 ± 1 

Spring 2014 16.7 ± 4 18.4 ± 1 13.2 ± 3 12.2 ± 1 13.8 ± 1 

Summer 2014 11.6 ± 1 10.6 ± 1 7.1 ± 1 8.9 ± 2 9.1 ± 5 

EC* (µS cm
-1

)       

Winter 2012/13 29.3 ± 5 40.8 ± 17 43.2 ± 7 49.9 ± 23 60.8 ± 14 

Spring 2013 18.3 ± 3 23.7 ± 4 33.3 ± 15 35.3 ± 5 73.3 ± 15
a
 

Summer 2013 32.2 ± 19 41.9 ± 23 41.7 ± 8 44.9 ±1 6 59.9 ± 15
a
 

Autumn 2013 16.6 ± 5 19.3 ± 5 34.5 ± 10 32.2 ± 7 44.7 ± 17 

Winter 2013/14 16.1 ± 4 23.2 ± 7 24.5 ± 2 23.4 ± 1 31.5 ± 17 

Spring 2014 9.6 ± 7 9.5 ± 6 10.8 ± 7 12.8 ± 8 13.2 ± 17 

Summer 2014 60.0 ± 2 60.0 ± 13 80.3 ± 15 74.0 ± 3 78.3 ± 15 

* H2O suspension. For each field site, values followed by the different letters are significantly dif-

ferent at p ≤ 0.05. Letters are not shown when differences of means are nonsignificant. C: control, 

B: biochar, D: digestate only, BL: digestate:biochar 1:1, BH: digestate:biochar 1:5  

 

Table A 7: Seasonal variation of DOC and DON in the topsoil (0 - 0.2 m) in site 1 

and site 2 after establishment of the experiment in October 2012. Shown are mean 

values and the respective standard deviations (n = 3 to 9).  

 Soil amendments 

 Site 1 Site 2 

 C B D BL BH 

DOC (mg kg
-1

)      

Winter 2012/13 9.0 ± 6 9.2 ± 8 10.6 ± 10 8.2 ± 7 10.2 ± 10  
Spring 2013 13.7 ± 5 13.3 ± 6 13.1 ± 8 12.8 ± 6 20.2 ± 10  
Summer 2013 12.0 ± 9 11.8 ± 5 14.7 ± 6 11.9 ± 4 10.9 ± 8 
Autumn 2013 7.5 ± 3 6.7 ± 2 9.2 ± 2 10.1 ± 2 9.9 ± 2 
Winter 2013/14 8.8 ± 5 8.9 ± 2 7.8 ± 1 8.3 ± 1 7.9 ± 3 
Spring 2014 9.6 ± 6 9.3 ± 6 11.9 ± 7 11.1 ± 8 11.8 ± 3 
Summer 2014 15.2 ± 0 15.9 ± 1 17.6 ± 3 16.6 ± 2 16.1 ± 5 
DON (mg kg

-1
)      

Winter 2012/13 0.7 ± 1 1.0 ± 1 1.3 ± 1 1.1 ± 1 1.4 ± 1 
Spring 2013 2.6 ± 1 2.5 ± 1 3.7 ± 2 3.3 ± 1 3.5 ± 1 
Summer 2013 1.4 ± 0 2.8 ± 2 2.2 ± 1 2.3 ± 1 2.5 ± 1 
Autumn 2013 1.3 ± 1 1.4 ± 1 1.8 ± 0

a
 2.5 ± 1

b
 2.5 ± 0

b
 

Winter 2013/14 0.8 ± 1 1.0 ± 0 0.9 ± 0
a
 1.1 ± 0

ab
 1.6 ± 1

b
 

Spring 2014 2.1 ± 1 2.1 ± 1 2.7 ± 1 2.4 ± 1 2.8 ± 1 
Summer 2014 3.3 ± 1 3.4 ± 1 3.2 ± 1 2.8 ± 0 2.9 ± 0 

For each field site, values followed by the different letters are significantly different at p ≤ 0.05. Letters are not 

shown when differences of means are nonsignificant. C: control, B: biochar, D: digestate only, BL: diges-

tate:biochar 1:1, BH: digestate:biochar 1:5.  
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Table A 8: Seasonal variation of ammonium nitrogen and nitrate nitrogen in the 

topsoil (0 - 0.2 m) in Gleyic Podzol and Gleyic Anthrosol after establishment of the 

experiment in October 2012. Shown are mean values and the respective standard 

deviations (n = 3 to 9). 

 Soil amendments 

 Site 1 Site 2 

 C B D BL BH 

NO3 - N (µmol Nitrate 100 g of dry soil-1)     

Winter 2012/13 45.48±13
a 106.45±26

b 415.11±26
a 444.26±52

a 651.31±262
b 

Spring 2013 28.45±10
a 42.39±14

b 55.88±48
a 85.61±25

a 205.03±66
b 

Summer 2013 27.62±7
a 67.89±10

b 128.19±30
a 93.81±38

b 146.30±33
a 

Autumn 2013 18.77±8
a 51.28±13

b 150.44±76
a 138.70±34a

b 194.98±39
b 

Winter 2013/14 19.38±3 27.83±0 41.00±4
a 83.74±15

a 145.88±37
b 

Spring 2014 27.98±6
a 48.65±13

b 68.68±37
a 89.81±19

a 187.31±34
b 

Summer 2014 12.60±2
a 47.47±10

b 119.38±10
a 140.12±26

a 195.76±45
b 

NH4 - N (mg kg
-1

)      

Winter 2012/13 2.64±2.1 4.91±3.3 4.55±2.4 3.96±2.0 4.61±1.9 
Spring 2013 1.88±0.5 2.68±2.0 2.27±2.6 1.97±0.9 2.05±0.9 
Summer 2013 1.67±0.6

a 3.76±1.8
b 1.98±1.0 2.75±2.1 2.59±1.5 

Autumn 2013 1.03±0.4 1.12±0.5 1.87±0.6 1.50±0.2 1.79±0.3 
Winter 2013/14 0.96±0.8 0.89±0.7 0.56±0.0 0.72±0.3 0.60±0.2 
Spring 2014 1.95±0.6 2.62±1.0 2.26±0.7

a 1.94±1.1
a 3.37±0.4

b 
Summer 2014 2.06±1.0 3.28±0.2 2.23±0.4 1.32±0.5 1.72±0.8 

For each soil type, values followed by the different letters are significantly different at P ≤ 0.05. Letters are 

not shown when differences of means are nonsignificant. C: control, B: biochar, D: digestate only, BL: diges-

tate:biochar 1:1, BH: digestate:biochar 1:5  

 

Table A 9: Seasonal variation of CEC and BS in the topsoil (0 - 0.2 m) in Gleyic 

Podzol and Gleyic Anthrosol after establishment of the experiment in October 

2012. Shown are mean values and the respective standard deviations (n = 3 to 9). 

 Soil amendments 

 Site 1 Site 2 

 C B D BL BH 

CEC (mmolc kg-1)      

Winter 2012/13 31.5±1
a 52.1±1

b 41.0±2
a 53.1±2

b 54.6±3
b 

Spring 2013 51.7±3 58.8±10 35.6±1
a 53.2±1

b 54.2±1
b 

Summer 2013 24.2±3 23.8±3 22.5±4
a 32.9±4

b 34.6±1
b 

Autumn 2013 16.7±3 18.3±2 19.1±4
a 25.5±7

b 33.8±3
c 

Winter 2013/14 21.5±2 23.8±2 22.3±5 24.0±2 30.3±8 
Spring 2014 17.7±3 22.7±2 22.0±2

a 21.2±3
a 31.1±6

b 
Summer 2014 20.9±2 21.7±3 23.2±1 22.8±3 29.2±5 
BS (%)      

Winter 2012/13 14.8±3
a 25.7±1

b 43.6±8
a 49.1±5

a 87.9±12
b 

Spring 2013 16.3±4 19.2±6 42.3±11 45.8±10 81.3±25 
Summer 2013 32.0±10 38.4±11 78.7±13 68.4±17 73.8±17 
Autumn 2013 27.7±4 31.6±6 67.3±25 60.8±24 55.8±15 
Winter 2013/14 30.0±5

a 39.4±1
b 64.7±9 83.6±15 91.7±6 

Spring 2014 36.1±4
a 51.4±6

b 75.7±5
a 93.8±3

b 98.8±0
b 

Summer 2014 27.9±2
a
 39.4±3

b
 70.8±2

a
 72.5±11

a
 94.2±5

b
 

For each soil type, values followed by the different letters are significantly different at P ≤ 0.05. Letters are 

not shown when differences of means are nonsignificant. C: control, B: biochar, D: digestate only, BL: diges-

tate:biochar 1:1, BH: digestate:biocha r 1:5  
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Table A 10: Seasonal variation of plant available-P and -K in the topsoil (0 - 0.2 

m) in Gleyic Podzol and Gleyic Anthrosol after establishment of the experiment in 

October 2012. Shown are mean values and the respective standard deviations (n = 

3 to 9) . 

 Soil amendments 

 Site 1 Site 2 

 C B D BL BH 

DL-P (mg P2O5/100 g)      

Winter 2012/13 37.5±4.1 47.6±1.8 32.0±2.5
a 66.7±3.5

b 64.0±3.4
b 

Spring 2013 33.6±2.5
a 43.2±3.4

b 30.2±2.5
a 64.8±3.5

b 62.6±3.4
b 

Summer 2013 46.0±3.4
a 50.0±3.9

b 37.8±5.1
a 46.2±13.1

b 66.9±11.9
b 

Autumn 2013 39.9±0.6
a 42.0±0.4

b 38.5±0.8
a 42.8±1.2

b 57.3±1.3
c 

Winter 2013/14 30.2±2.8 32.6±2.6 20.8±1.7
a 22.8±3.6

ab 36.0±9.6
b 

Spring 2014 24.3±2.3
a 35.3±3.2

b 20.3±1.5
a 22.7±5.4

a 38.2±10.1
b 

Summer 2014 28.5±2.0
a 35.9±2.4

b 22.5±3.0
a 28.3±6.3

a 40.1±2.3
b 

DL - K (mg K2O/100g)      

Winter 2012/13 2.3±1.0
a 14.6±0.7

b 6.9±9.1
a 7.7±5.1

a 35.0±6.0
b 

Spring 2013 10.9±8.1 8.4±1.5 6.2±1.8
a 8.4±2.6

a 25.9±2.2
b 

Summer 2013 8.7±1.2
a 21.4±2.5

b 10.4±2.8
a 10.5±4.3

a 27.9±8.1
b 

Autumn 2013 5.8±1.2
a 12.9±0.8

b 10.6±2.3
a 10.6±2.9

a 25.8±0.9
b 

Winter 2013/14 8.0±1.1
a 14.3±2.5

b 8.2±0.8
a 8.4±0.4

a 17.8±3.7
b 

Spring 2014 10.5±4.3 18.3±3.9 8.5±0.4
a 8.2±1.4

a 15.7±2.9
b 

Summer 2014 8.0±1.2
a
 11.3±1.5

b
 11.8±1.7

a
 12.6±0.7

a
 17.4±1.0

b
 

For each soil type, values followed by the different letters are significantly different at P ≤ 0.05. Letters are not 

shown when differences of means are nonsignificant. C: control, B: biochar, D: digestate only, BL: diges-

tate:biochar 1:1, BH: digestate:biochar 1:5  
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Table A 11: Selected physico-chemical characteristics of the topsoil (0 - 0.2 m) in Gleyic Podzol. 

Depth 

 (cm) 

Horizon 

denotation 

Sand 

(%) 

Silt 

 (%) 

Clay  

(%) 
pH 

EC 

 (µS cm
-1

) 

TC  

(%) 

TN 

 (%) 
C/N 

CEC 

(mmolc kg
-1

) 

BS  

(%) 

δ
13

C   

(‰) 

0 - 10 Ah 81.1 11.6 7.4 5.1 47 0.91 0.10 9.19 26.7 55 n.a. 

10 - 35 rAp 80.5 12.5 7.1 5.1 47 0.69 0.08 8.33 27.6 423 n.a. 

35 - 50  Ap-Bv 69.6 21.3 9.1 5.4 40 n.a. n.a. n.a. 35.1 84 n.a. 

50 - 85  Bv-Go 81.8 10.3 7.9 5.7 40 n.a. n.a. n.a. 38.7 81 n.a. 

85 - 110  IIGo1 87.2 7.7 5.1 6.3 38 n.a. n.a. n.a. 31.0 97 n.a. 

110 - 145 Go2 75.6 16 8.4 6.6 57 n.a. n.a. n.a. 40.7 99 n.a. 

> 145 Gro 88.1 8.7 3.2 6.6 31 n.a. n.a. n.a. 26.8 101 n.a. 

0 - 20 *4394 (P1) n.a. n.a. n.a. n.a. n.a. 1.35 0.13 10.10 26.6 71 -28.8 

0 - 20 *4395 (P2) n.a. n.a. n.a. n.a. n.a. 1.64 0.16 10.10 34.1 313 -28.8 

0 - 20 *4627 (P3) n.a. n.a. n.a. n.a. n.a. 0.85 0.09 9.47 24.3 61 -27.8 

Source: Magdalina von Leliwa (von Leliwa, 2014) 

 

*Sample notation, n.a: not analyzed  
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Table A 12: Isotope signature (‰ VPDB) of emitted CO2 from the different treat-

ments on different days for the aerobic incubation experiment (n = 3). 

Sample Treatment 

δ
13

C  (‰) 

Time (d) 

16 54 93 133 

GP-4394 C -29.8 ± 0.2
a
 -30.0 ± 0.3

a
 -30.0 ± 0.1

a
 -29.9 ± 0.1

ac
 

 
D -28.6 ± 0.3

b
 -29.0 ± 0.2

b
 -29.2 ± 0.2

b
 -29.1 ± 0.1

cb
 

 
B -29.5 ± 0.2

a
 -29.6 ± 0.1

ab
 -29.6 ± 0.1

ab
 -29.6 ± 0.1

c
 

 
D:B 1:1 -28.5 ± 0.6

b
 -28.8 ± 0.1

ab
 -28.9 ± 0.5

b
 -28.9 ± 0.4

b
 

 
D:B 1:5 -28.2 ± 0.1

b
 -28.9 ± 0.1

b
 -29.0 ± 0.1

b
 -29.0 ± 0.1

c
 

GP-4395 C -29.8 ± 0.2
a
 -29.9 ± 0.1

a
 -29.2 ± 0.3 -29.1 ± 0.4

b
 

 
D -29.1 ± 0.2

b
 -29.3 ± 0.3

b
 -29.0 ± 0.1 -29.2 ± 0.2 

 
B -29.7 ± 0.0

a
 -29.7 ± 0.1

ab
 -29.3 ± 0.1 -29.4 ± 0.1 

 
D:B 1:1 -29.0 ± 0.2

b
 -29.2 ± 0.1

b
 -28.9 ± 0.1

a
 -29.2 ± 0.2 

 
D:B 1:5 -28.9 ± 0.1

b
 -29.4 ± 0.1

b
 -29.1 ± 0.0 -29.3 ± 0.0 

GP-4627 C -28.2 ± 0.0
a
 -28.7 ± 0.0

a
 -28.5 ± 0.0

a
 -28.8 ± 0.2

a
 

 D -26.6 ± 0.2
b
 -27.2 ± 0.1

b
 -26.8 ± 0.2

b
 -27.0 ± 0.1

b
 

 B -28.0 ± 0.1
ac

 -28.6 ± 0.1
a
 -28.0 ± 0.1

c
 -28.4 ± 0.0

c
 

 D:B 1:1 -26.2 ± 0.2
bd

 -27.0 ± 0.2
b
 -26.8 ± 0.1

b
 -27.1 ± 0.1

b
 

 D:B 1:5 -25.5 ± 0.3
e
  -27.2 ± 0.3

b
 -27.2 ± 0.2

bd
 -27.3 ± 0.1

b
 

Values followed by the different letters are significantly different at P ≤ 0.05. Letters are not shown 

when differences of means are nonsignificant. C: control, B: biochar; D: digestate only, D:B 1:1: diges-

tate:biochar 1:1, D:B 1:5: digestate:biochar 1:5  
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Figure A 6: Cumulative CO2 production during an aerobic soil incubation experiment of Gleyic Podzol amended with biochar, 

digestate, biochar digestate 1:1 and 1:5 mixtures and without any amendments (Control). The vertical error bars represent ± one 

standard deviation of the mean (n = 3). The letters close to the respective graphs show significant differences of the cumulative 

CO2 production between the different soil sub samples (von Leliwa, 2014). 

 

 

 


