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Introduction

In this work we investigate shape optimization problems for the two-dimensional
Poisson equation with homogeneous Dirichlet boundary conditions.

In general the aim of shape optimization problems is as follows: Find the optimal
shape € such that a given functional J(u, ) is minimized while the state variable
solves a given state equation F(u,Q) =0, i.e.

min J (i, )
(_PQ) s.t. Q€ Oy,

E(u,Q)=0 1in Q,

In shape optimization, two approaches exist to characterize admissible domains,
namely domain variation approaches and boundary variation approaches. The do-
main variation approach is further classified by the perturbation of identity method
[MS76, BLUU09] and the velocity field method [SZ92]. In the boundary variation ap-

Figure 0.1.: A domain €2, characterized through the boundary parts I' and I,

proach, admissible domain are characterized via a boundary parametrization. Prob-
lems of this kind are considered in [KP98, KP01, GKMO00, Sla00, Sla03], where I', is
parametrized as a graph of a function ~.

In the present work we extend this approach to problems, where I', is parametrized
by smooth curves. In detail: given a physical domain 2, (see Figure 0.1), find I,
such that a given functional J(u,7) is minimized while the state variable u solves
the elliptic PDE

—Au=f, inQ,,
u=0 ondQ,  :=TUT,,



see Figure 0.1.
In this setting the set of admissible domains O,q is defined through a set of ad-
missible curves S,q, i.e.

Oad =1{Q, :==Q(y) CR*:9Q, =T UT,,7 € Sa}, (0.0.1)

where the set S,q is specified below.
The model problem can then be written in the form of an optimal control problem

min J(u,)
(Py) s.t. Y € Saq,
E(u,7) =0 in{,,

where the curve v is acting as the control variable. The objective functional J and
the state operator E are specified below.

We use a fictitious domain method (also referred to as embedding domain method)
[GPP94] to reformulate the state equation as an equivalent problem defined on a
simply shaped domain Q (called fictitious domain) in which the original domain (2,
is embedded (see Figure 1.1a).

This is done by extending the involved functions to functions defined on Q) and using
a boundary Lagrange multiplier technique to incorporate the boundary conditions
on the boundary part I', which now is located inside the fictitious domain Q.

This leads to the equivalent problem formulation

min J((4,G),7)
(]57) s.t. v € Saa,
E((@,9),7) =0 in,

which has computational advantages since the state equation has to be solved on the
fixed domain, €2, which does not change during the optimization process.

This work is structured as follows. In the first chapter we define the geometry of ad-
missible domains by introducing a set of admissible curves. Then we discuss a family
of elliptic partial differential equations, which are stated on the admissible domains
with homogeneous Dirichlet boundary conditions and serve as our state equation in
the shape optimization problem. In Chapter 2, we introduce the functional analytical
framework in order to use the fictitious domain method in our setting as described
above. Chapter 3 considers a class of shape optimization problems, on which we ap-
ply the fictitious domain method. Chapter 4 introduces the discretization via mixed
finite elements methods, approximation of the integral representations of the deriva-
tives and finite dimensional descent methods. In Chapter 5, we present numerical
experiments.



1. Characterization of admissible
domains

At the beginning we describe the geometry of admissible domains €2, € O,q. Then we
introduce the state equation which is later used in our shape optimization problem.

1.1. Admissible domains (), € Oy

We use admissible domains of the shape depicted in Figure 1.1a: The boundary 052,
of an admissible domain 2, € O,q is composed of the fixed part

= {0} x]ay, 1[U[0,1] x {1} U {1}x]54, 1],
and a variable part
L= {y(t) = (n(t), () €R*: t e I C R},

where ay, fi € [0,1] and v : I — R? is a smooth curve with 4(0) = (0, 1), (1) =
(1,81). We obtain 02, =I'UT, and {(0,a1),(1,8)} =I'NT.,.
We assume that all admissible domains (2, are embedded in the hold-all domain

~

Q= (0,1) x (0,1).

We denote by €25 the complement of €2, with respect to Q, ie. Q= O \ﬁv- With
the fixed fictitious boundary part

= {0}x]0,a7[U[0,1] x {0} U {1}x]0, Bi]

we have 0Q) = Iy I, and {(0,a1),(1,5)} = rn r,.
We impose several requirements on the set of admissible curves ~:

Assumption 1.1.1. The curve 7y characterizing the variable boundary part I,
1. connects the two endpoints (0,aq) and (1, 1),

18 contained in Q,

satisfies ~(t) # ~(s) fort # s,

behaves in such way that Q. and ), are Lipschitz-domains,



(0,1) (1,1) (0,1) (1,1)
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sponding boundary parts I'y, I' and r of fixed segments I'c, I'>. and a variable
part I'.

N

Figure 1.1.: Fictitious domain setting, {2 = (0,1) x (0,1)

5. is sufficiently smooth to guarantee H?-reqularity of the solution of the state
equation on §),.

The aim of the next section is to discuss some sufficient conditions to construct a
set S,q of admissible curves which fulfill Assumption 1.1.1.

1.2. Admissible curves v € Syq

Admissible curves v € S,q shall be parametrized over the interval I := (0,1). To
ensure Assumptions 1.1.1.2 and 1.1.1.4 we split the interval I for 0 < ¢ < 0.5 into

open intervals R
I.=(0,e), I=(1—¢), I.=(1—¢1).

The boundary part I', is then composed of fixed boundary segments I', I's, and a
variable boundary part I'5 (see Figure 1.1b), i.e.

[,=T.UTyUT..

Let S(I) := H3(I)?. We define the equivalence relation

~

v~ in S(I) = ~(I)=6(I),

and the related quotient space S(I) := S(I)/ ~. In this way all curves in H3(I)>2
that have the same image (and therefore shape an identical boundary part) are rep-
resented by one equivalence class.



For ay, 4 from above and as, (5 € [2e,1 — 2¢] we define

Saa = {7 = (1, 52)" € S+ Al < e (1.2.1)
A(e) = (e, )", (1.2.2)
Al —e)=(1—¢,p)", (1.2.3)
(g — 1) A1(€) — e92(€) = 0, (1.2.4)
(Ba — B) (1 — &) +e3a(1 — ) = 0, (1.2.5)
A(e) =4(1 —€) = (0,0)7, (1.2.6)
15(ta) = A(t1) |2 > erlta — 1] for all ty,ty € I, # to,
(1.2.7)
dist (T, 8) > a}. (1.2.8)
Finally we can compose the set of admissible curves
Definition 1.2.1.
(t,%(ag—OZl)t—’—Oél)T tel.
Sea =7 = (71,72)" : y(t) = { A(t) tel ,5€ 8w
L (BB (1=t +5)" tel

Remark 1.2.2. (i) Lety € S,q. Then ~y fulfills the Assumption 1.1.1.

(1i) We could achieve a less technical definition for the set of admissible curves
without splitting the parameter interval I and directly define

Sta = {7 = ()" € S0 Wy < s
7(0) = <Oa al)Ta

However, in this situation it is difficult to formulate a condition analogously to
condition (1.2.8) to ensure Assumption 1.1.1.2.

1.3. The state equation

For a function f € L2(Q) and v € S,q we set f, := f|qo, which defines a function in
L2(Q,)



We now consider the Poisson equation with homogeneous Dirichlet boundary values

—Au=f, in{,, (1.3.1)
u=0 on 0Q,,

and define the spaces

Z(Q'y) = H(%(Qv)* = Hil(Qw)-

The weak formulation of (1.3.1)-(1.3.2) is given by the following problem: Find
u € U(£2,) such that

(v, E(u,7))z

/Vu VIVo(x d:r;—/ fy(@)v(x)de =0 YveU(L,) (1.3.3)

This formulation defines the state operator
E:{(u,y) :ueU(Qy),y € Saal > {2:2€ Z(,),7 € Saa}-

Theorem 1.3.1 (Existence and uniqueness). The Poisson equation E(u,~y) =0 for
all v € Saq and f, € L*(Q,) admits a unique weak solution u € U(S),) which satisfies

lull 1,y < Cllfylleze,)

Here, the positive constant C depends on v but not on f,.
For later reference we note:

Remark 1.3.2. For v € S,q the following two assertions are equivalent:
1. w e U(S,) satisfies E(u,v) = 0.

2. u € U(Q,) minimizes the energy functional
1
Qv) = i(vva Vo) 29,2 — (f4:v) L2,

Theorem 1.3.3 (Regularity and uniform boundedness). The solution ., := u(y) of
the Poisson equation E(u,v) =0 satisfies u, € H*(Q,) for all vy € S,q, and the set

{||U'Y||H2(Q'v) }'yesad
1s uniformly bounded.

Proof. Since || f[[r20,) < [[fllz2(q) the claim follows from regularity theory of weak
solutions (see e.g. [Eva98]) together with our definition of S,q. The latter implies

10



that the domain €, is locally convex at (0, 1), (1,51), (0,1), and (1,1), and is of
class C%! uniformly in v, otherwise. O

11



2. The fictitious domain method

In this chapter we transform the Poisson problem given on €2, to an equivalent
problem posed on the fictitious domain 2. From Definition 1.2.1 we have

Q, C Q for all v € Saq-

Definition 2.0.4. For vy € S,q and v € L*(2,) we denote by
5. Jvomn Q,,
0 n QF,
the extension of v by zero onto Q.

2.1. Interpretation of the boundary condition as an
additional constraint

As already mentioned we have to impose the boundary condition u|p, = 0 on the
boundary part I', as a constraint, because I'y no longer is part of the boundary 0.
As an analogue of Remark 1.3.2 we study a constrained minimization problem on €:

A

. . A/ n I o . T
Q(i) = min Q(0) := §(Vv, V“)m(fm - (fva“)p(())

(\A/W) veHL ()
st. =0 onl,.

In the following we introduce the function spaces for a proper treatment of the equal-
ity constraint in a Lagrange multiplier framework. The following results are collected
from [KP98, Sla9d8, Sla00, KP01] and they are direct consequences of properties of
the trace operator, see e.g. [Eva98], combined with our assumptions on S,q.

Lemma 2.1.1. Let 'y be an open subset of 92, 08X or 0. Then, the space

l9(x) — g(y)?
To |f - y|2

HY*(Ty) = {g € L*(Ty) : /F dS(x) dS(y) < oo}

1s a Hilbert space with inner product

(97 h)Hl/Q(FO) _ (g7 h)LQ(Fo) _|_/F /F (g(fL‘) - g(y))(h(l’) - h(y)> dS(ZL’) dS(y)

|z —y|?

12



and the norm

g(x y)|?
191l rr1/2(r) = \/HgHLz(pO /’ ,x_ ,2 dS(z) dS(y).

Lemma 2.1.2. For every v € Sy the Lions-Magenes space

Hy = H(%Q(Fv)
= {h € HY*(T,) : there exists he HY2(00,) with }L/|p7 = h, hlp = 0}

1s a Hilbert space with the inner product

(.g) h)H'y = (57 }VL)HUQ(@Q,Y)a

and the norm
gl 2, = 191l 1200,

where §, h € HY2(0,) satisfy glr, = g, }LJ|F7 = h, lr = hlr = 0.
Lemma 2.1.3. Let v € S,4. The trace operator

TyU i= ulp,
is a linear continuous mapping from H*(Q,) onto HY/*(T,).
Lemma 2.1.4. Let v € Syq.

(1) The trace operator
Ty = dp,

N

is a linear continuous mapping from H'(Q) onto HY*(T'.) and from H}(Q)
onto H.,.

1) T~ 1S surjective.
v 7

(i) The family of trace operators {7, }cs,, is uniformly bounded in L(HY (), H,),
i.e. for all i € Hy () there holds

7yl < Cllll -
where C' 1s independent of v € S 4.
Theorem 2.1.5. For i € HY(Q) there holds:
@=0onl, < (h,7@)g:n =0 foralheH]

In a next step we use a pullback mapping to define our problems on spaces which
are independent of ~.

13



Lemma 2.1.6. The space

HY2(T) = {g € I2(I) : [/j%ds dt < oo}

1s a Hilbert space with inner product

(97h)H1/2(1) = (9, h)2() // )(h(s) = hD)) ds dt

s—t|2

and the norm

l9(s)
H9HH1/2(I \/H9HL2(I / tP d dt.

Lemma 2.1.7. The space

Hy = {g e HY(I) : /Itl(gl(?f) dt < oo}

18 a Hilbert space with the inner product

(9, )ity = (9, W)osnqr) + / g(t)h(t) n

rt(1—1)

l9(t)
e (e /

Lemma 2.1.8. The space Hy is dense in L*(I

and the norm

Since v € S.q is bijective, our assumptlons on S,q directly imply the following
results:

Lemma 2.1.9. For every v € Soq the mapping L, with Z,h := hory is an isomorphism
from L*(T,) onto L*(I), from HY*(T.,) onto HY*(I) and from H. onto H;. The
continuity of L, and of its inverse are uniform on S.q. Here, uniformness on Sqq
means that for all g € H, there holds

1Z591l ey < Cllglla,

where C' 1s independent of v € S 4.
Lemma 2.1.10. Let v € Sy4.

1. The trace operator
T, :=1,01,

is a linear continuous mapping from HY(Q) onto HY2(I) and from HE(Q) to
Hy.

14



2. T, is surjective.

3. The family of trace operators {T;}~es,, is uniformly bounded in L(HY (), Hy),
i.e. for all 4 € HJ(SY) there holds

1Tyl < Cllall g oy,

where C' is independent of v € S 4.

Theorem 2.1.11. For i, € HL(Q) there holds:

1=0onl, <= (H,Ty)uru, =0 foralH e H].

2.2. Existence and uniqueness result
We are now in the position to reformulate problem (VV):

Theorem 2.2.1. Let v € Sqq. The problem finding i, := u(v) € H}(Q) such that

. O(i,) = min Q V0,V0),, f D) o
gy [ Q= i Q)= S(9 0 — (P
s.t. (H, T,0)g:u, =0 for all H € Hj,

has a unique solution.
Furthermore there exists a unique G, := ) € Hj such that (4., G,) is the unique

gy
saddle point of the Lagrangian P - H}(Q) x Hf — R,
P(a,G) = Q(t) — (G, Tyt us 1,
over the set HY(Q) x H¥. The pair (ii,,G,) = (a(7),G(7)) is the unique solution of

{ (VQW,V'IA})L%QP - <g’y7 7@>Hf,HI = ( W’ﬁ)LQ(Q)’ Vo € HOI(Q)’ (2 2 1)

—(H, Ty bz, = 0, VH € Hj.

We call this system fictitious domain formulation of the Poisson problem. We
introduce the bounded linear operator A : Hj(Q) — H}(Q)* with

<Aa,@>HOI(Q)*,H3@) = (Va, VO) 12 1y2 = /Q Vi(x)'Vo(x) de,
and the bounded linear functional F, : H}(Q) — R,

By ) ey = (Fr) / £, (@)l

15



This allows us to rewrite (2.2.1) in the form

A _7;,* a'y _ ﬁfy
-7, O g, 0/’
and accordingly

B((2,,G,),7) = (“4“7 ‘_T;gv -7 7> _ <8> in (H)©) % H;) . (222)
Y
This defines the fictitious domain state operator
B (H&(Q) X H}‘) X Sad — <H§(Q) X H}‘) .

A

2.3. Equivalence of the problems on (), and (.

Theorem 2.3.1. Let v € Soq and f € L*(Q).

1. Let (i1y,G,) € HA(Q) x H} denote the solution of the fictitious domain formula-
tion of the Poisson problem (2.2.1) on Q. Then u., := tylo, € H*(Q,)NHj ()
is the unique solution of the weak formulation of the Poisson problem (1.3.3)
on Q. On QS we have 4, = 0 and the Lagrange multiplier G, satisfies

Ou(v(+)) .
Gt = (PP s en) vhem.
Ny L2(I)
Here, n.(t) := m (_Efii)) ,t €(0,1), denotes the unit outer normal

vector along the boundary part I,

2. Conversely, let u, € H*(Q,) N Hy () be the solution of (1.3.3). Then (2.3.1)
uniquely defines an element G, € Hf and (4, G,) with

0 Uy 0y,
v . Oe
0 n 2,

is the unique solution of (2.2.1).

Proof. (1) Let (u,G,) be the solution of (2.2.1). For u, := 1,|q, we have Tyu, =
T,ti, = 0 and therefore u,|so, = 0. Let ¥ denote the extension by zero of v € Hg(Q,)
onto ) which is in H{ (). From (2.2.1) we get

(VQV7V5)L2(Q)2 = (fwﬁ)m(()) + <gva7;§>H}2H, Vv e H5<Qv)-

16



Since Upq, = 0 and /1\)/|Q% = (0 we obtain
(Vﬂv, Vﬂ)Lg(Q)2 = (VUV, V’U)LQ(QW)Z = (ffy, U)LQ(QW) VU - H&(Q,y),

so that u, is the unique solution of (1.3.3).

Consider analogously uf, := U, |qc, any v € H&(Qi) and denote by v°¢ its extension by
zero onto 2. Then we get o € H(Q) and with Tl = Ty, = 0 also u € Hg ().
ac = 0. Hence we get from (2.2.1)

By definition we have f;

(Vui, Vo) =0 Yve H&(Qi),

12(Qg)?

and thus ug = 0 on Q.
The first equation of the fictitious domain problem (2.2.1) now reads

(Vuv, V@)LZ(QW)Q — (fy, @)L2(er) e (Q, TY@>vaHI Yo € Hg(@)
Since u, € H?({),) we can apply integration by parts and obtain

/ (—Auy — f,) ddr + / %@dS(x) = (G, T;0) s, Vo€ HUQ). (23.2)
Q, o9, Ony

We now choose v € HE(Q,) and test this equation with its extension 7 € HZ(Q)
which fulfills ¥]gq, = 0. Then we get

(—Auy — f1,0)120,) =0 Vo € Hy(Q,),
le.
—Au, — f,=0 in H(Q,).

Since all terms are in L*(f2,) this equation is also valid in this space. Now we test
(2.3.2) with an arbitrary o € Hg(€2). Then we have T,0 € Hy, d|r = 0, and (2.3.2)
implies

(Gys Ty0) 1 1, :/ag g—::ﬁdS(x):/F g—::@dS(x)
= [ syt = (M5 0 Te)

which is (2.3.1).

17



(2) From (2.3.1) it follows that G, € H}:

Gt < | (P25 1aun)

L2(I)
Ouy(7(4))
< vllwreen 787@ - 17l 2 r)
(1
Ouy (v(+))
< Vllwree(ryz || — 1P|, -
on L2(I) !

This means that G, is bounded since 7 € Sq is bounded in W>(I)2 by definition,
11l 2y < NIBll g, and

duy(1(4)) _ 1o
“h L.

Obviously ., satisfies 7,1, = 0, so it remains to show:
(Vity, V) poaye — (G Ty0) i, — (Frs ) ooy =0 Vo € HY(9). (2.3.3)

With the definition of @, and again by integration by parts we obtain for the left-hand
side

(vawv@)[ﬁ 9 <g77 "/U>H* (f% )
(VUV,VU)IQ(Q <g’y;TyU>H* (.f’ya )
ou
:/ (—Au, — f,)0dx +/ a—ﬁ dS(z) — <g»y,7jyf[)>H}‘,HI
Q, 80, Oy

The first term vanishes since
—Au, — f, =0 in L*(Q,).
Furthermore we have with o|p =0

s paste = [ P2sast - (220D on)

o0, On, on, L2(I)

and we get (2.3.3) from (2.3.1). O
Remark 2.3.2.

1. Since the right-hand side of equation (2.3.1) is defined for all h € H; and
by Lemma 2.1.8 the space Hy is dense in L*(I) we may uniquely extend the
functional G, € Hj onto L*(I) by the definition

G = (P5IPRORE) e 1)

18



2. Identifying L*(I) with its dual space, the Lagrange multiplier satisfies

g, = 20O 501, i 220,

on.,

2.4. Continuous dependence result
Lemma 2.4.1. Let v € Syq.

1. The trace operator

ou

an,

is a linear continuous mapping from H?*(2,) onto L*(T,).

iU =

2. The family of trace operators {T }es,, is uniformly bounded in L(H*(Q), L*(T,)),
i.e. for allu € H?(SY) there holds

[T yull 2, < Cllull g q),
where C' 1s independent of v € S 4.

Theorem 2.4.2. The family of solutions {(iy, Gy)}res,, C HE(Q) x Hf of (2.2.1)
satisfies

It G) L gyrs; < Ch.
Moreover, the Lagrange multiplier satisfies
1G22y < O
for all v € S,q. Both constants C, Cy are independent of v € S,q.

Proof. Since {||u, || 20 },ye 5., s uniformly bounded by Theorem 1.3.3 the same holds
for {|lu,|| H1(Q)}7€ s,,- By Theorem 2.3.1 we know that the corresponding solutions

of the fictitious domain problems ., are in H&(Q) and vanish on Q. This implies
@510y = sl o,y for all v € Saa.

Therefore {||ﬂ7|| H&(Q)} is uniformly bounded.
'YESad

To estimate the Hj norm of G, we use (2.3.1) and compute

Gy, hymz o, = Gy B2y S NGyl Pl ey < NGyl 1ol iy

which implies
1Gy |7 < 1G5 Ml 22y

19



The boundedness of {||G,||# }1es,, 18 now a consequence of the fact that

o (1)) ,.
16, 1y = ] 9GO sy,
! on, L2(I)
ou
< Il |2 (—)
(I Y a,rw L2
auy

< w2 1Zoll gy 2y H% 2(r,)
vllL2(r,

< Ol o

where we used Lemma 2.1.9, Lemma 2.4.1, and the boundedness of {HU,YHHQ(Q) }wes -
in

In the next chapter we apply the fictitious domain method to shape optimization
problems. In order to prove the existence of a solution we need a continuous depen-
dence result in the following way: For a given sequence {7 }ren that converges to a
curve v in W (I)? for k — oo, we obtain convergence of the state variables ., to
i, in HY(Q) and weak*-convergence of G, to G, in H} for k — co. The difficulty to
prove this result lies in stating appropriate Wh>-transformations that map €2, onto
2, for all k. On the other hand, to prove the derivative formulas of the reduced
objective functional, we need the following convergence result which is a special case
of the above mentioned conclusion: For a given curve v € S,q and an admissible
direction % specified below, we obtain convergence of the state variables .45 to i,
in H}(Q) and weal*-convergence of G455 to G, in Hj for § — 0, if the sequence
{v + 079} converges to v in WH>(I)? for § — 0.

In the following, we will prove the latter case by constructing appropriate domain
transformations. In the general case, we are not able to state transformations anal-
ogously to the special case.

We calculate shape variations of the reduced objective function in normal direc-
tion. Unfortunately, normal variations of a domain do not preserve its regularity (cf.
[BS98]), i.e. for v € Suq we obtain I, € C*', but for a smooth and scalar function
g : I — R the deformed boundary I'y, 5, = {7(t) + g(t)n,(t) : t € I} is in general
not of class 1.

Since we require H%-regularity of the solution of the state equation also on deforma-
tions €2, g, , we define a set of even more regular curves.

Definition 2.4.3. With S,4 from Definition 1.2.1 we set

S:d = Sad N {’}/ c H4([)2 : H"}/HHAL(I)Q S Cp} .
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Now we claim ~v € S}, and characterize admissible directions 5 = gn., through

S={yel— R? : there exists § € W (I) with ¥ = gn., and
there exists dg > 0 : 7y £ 05 € Sqa, V0 € [0, o]}

We clarify that v € S leads to n, € H*(I)? and for v € Sa.q we obtain in
general only n, € H*(I)?. The requirement v =+ 837 € S,q implicitly implies that the
function g has to be more smooth than W*"*(I). Furthermore, every 7 € S, satisfies
/7|]< = /7|I> = 0.

Definition 2.4.4. For v € ST, let ¥ = gn, € S! be an admissible direction. Then
we define

I_={tel:g(t) <0},
I, .={tel:g(t) >0}
For p € [—1,2] we define the open sets
Lyipey o= {y(t) + po7(t) : t € I},
F;—pdﬁ = {7(t) +poy(t) : t € I},
F;—i—pdf’y = {V(t) +p5’7(t) : t € I—}a

and for —1 < p < q <2 we define
Dy = I x (p6,q9),

and denote by Af{j][ the domain that is bounded by Pirpéﬁ and F,irq&;y,

1.€.
0+ . O O A
Ay = Qyiass \ (Qypss N Qs
éa_ P 0) ® ®
Ay = Qyipss \ (Qyapss N Qo) -
Finally we define
5.
Qp,q = Qypp65 N Qy47,
de .
Qp,fz T Q'CYHNW A Q'Cy+q5“7'
We introduce an appropriate coordinate transformation in the following:

Lemma 2.4.5. For v € S}, let ¥ = gn, € 5., be an admissible direction. For all
—1<p<q<2andd >0 small enough, the coordinate transformation
d,— . No,— 6,—
Cy Dy = Apys

(t,8) = (x(t, ), y(t, ) := () + Eg(t)ny (1),
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(0,1)

(0,0) (1,0)

Figure 2.1.: €0, and a shape variation €245

satisfies

det ((93,)' (1,6)) = = (1 +€g(t) (1) GO (D)

with the signed curvature k. (t) := W, and we can estimate
2

et ((#3)'(1.0))| < @
‘det (((bi’,;)/ @f))’ > Cylg(t)].

Similar estimates hold for
0,+ . o+ 6,4
(Dpﬂ ! Dpvq — AP:Q’

(t,8) = (2(t,€),y(t, €)) = (1) + Eg(t)n, (1)

Proof. Let v = (y1,72)", ny = (n1,n2)" and & := &2 We have

¥/(1,€) = (

22 Yoyl

TN

and calculate
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From

and

det(nf, ny) = (ny(t)na(t) — n5(t)na (t))
_ OOl = @& 1Ol —5 ()

17 @®)13 7)1l
N OOz = 1@ glyOll2 ()
15 ()13 15 ()12
C n®)%() — () ()
15(®)1I5
Cdet(9,9) _

Ol =k ()7 () |2

we finally obtain

det ®'(t,€) = g(t) (1 (t)na(t) — 2(t)ma (¢))
+E5°(1) (y()na(t) — na(t)na(t))
= —gO)[5®)l2 = €O r, A D)2
= = (14 &g(t)ry (1) (D) 17 (D)2,
With the help of Definition 1.2.1 and Definition 2.4.3 and the embedding H*(I)? —

W2><(I)? we can bound the W% (I)?-norm of v from above by ¢, and the 2-norm
of ¥ by ¢, from below. Therefore, we obtain

oy et (0,50
= RoR

[ (O[5 + [ @)][51(2)] < c .
- 15 ()15 T

Eventually, we estimate

| det @'(t,€)] < (1 + 0|7/l soimax) [19lloc V151 ]2 + IH2ll% < C1,
| det (2, €)] = (1 = 6[|7llocrimax) [7(t)|cr = Cal|g(t)].

]

Lemma 2.4.6. For v € S}, let ¥ = gn, € S be an admissible direction. Then we
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obtain
limy + 6y =~ in WH(I)2. (2.4.1)
6—0

Moreover, there exist transformations s : {0y = yi55, P51 Q5 = Q850 0 <01 <
0o, such that

lim 75 = idg in Whee(Q)?,

¢5($7y)7 (Ivy) S Q’Y

. TH(T) =T yse.
(. y), (w,y) €0 R

Ts: Q—Q, Ts(x,y) = {

Proof. For the first part we have

17 + 65 = Yllwroe(ry2 = [10G14 [[wr.oo (192

< 0|gllwre(n)

1 ( Fao(t) >
Va2 + 3262 \—()

S C(S”gnwl,oo(])||’7||W2,oo(1)2 — 0 for § — 0.

Wl,oo(I)Q

For the second part we construct a decomposition of the domains ., 5, €2, 55,
and €, 5. into disjoint domains which are transformed separately. The idea is to
let Ts behave mainly like the identity mapping and let the stretching/compression
happen locally around I';, and I';s5.

We can choose 4; in such way that for all p € [-1,2] and § < §;

dist (T g5, 9Q) > 0,

and such that we achieve for all —1 < p < ¢ < 2 one-to-one mappings @f;j, 0 <
with

0% Iy x (pd, qb) — AV,
(&) = (2(t,€),y(t. &) == (1) + £g(t)n, (D),
and
(®)5) "+ Ay = L x (05, 0),
(2,y) = (t(2,y),E(2.y)) = (v (Py(a,9)), || (2, 9)" = Py(a,y)]],)

where P,(x,y) is the orthogonal projection of (z,y) onto I',. This leads to the
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following decompositions:

Q _Q(§12UA(S OUAO27

Q= QY UAGT UAY
0 Q°, uA‘” UAYS

Y6y — 1,2 1,1 1,29
s, 5

ey = S 62UA UAT,

Now, for (z,y) € Q2 , and (z,y) € Q‘E‘iz the transformations s and 1§ are defined
as the identity mapping. Furthermore, the transformation 15 maps the domain A‘EJ{O
into the domain Aﬁil (stretching) and Ag:; into A‘f:g (compression). The transfor-
mation § maps Ag’; into A‘ls’;r (compression) and A(Eio into A‘iil (stretching).
We describe the stretching/compression process: With the definition of the mapping
2% we have for —1 < p < ¢ <2

Ay = {2y (1,€) « (1,€) € Le x (pd, 4d)}.
For —1 <r < s < 2 a transformation W2+ - A‘S’i A% can be described by the
concatenations U2* = ®2Fo @ (@g;) where qbf) ors 18 & smooth mapping

from R X (pd, ¢d) onto R x (7‘5 s9).

Here, the mapping \I/gqir s leads to a stretching for ¢ —p < s —r and to a compression

for ¢ — p > s — r. We are now able to state a formula for the transformation Tjy:

< CéHgHWLoo(I)H”)/HWQ,oo(])2 — 0 for 6 — 0.

' ((2.1). (2.y) €,
vs(,y), (2,y) €Qy vs(zy) = O 1 (2y), (2,9) € A%,
d, 5,—
T(S(ZL' y) = >\I/0,2,1,2(x7y)7 (w,y) € A§’27
(l‘,y), (ﬂf,y) 69_7012,
w§<$,y), (l’,y) € ny: wg(x,y) = \Ifg’;’l,z(x’y), (x,y) c Agg’
0,— 5
N \qlfl,O,fl,l(I?y)a (1373/) c A,10
Due to this construction, we finally obtain
— idg [l ()2 = [[¢s(x,y) — ida, [lwre(a,)2 + [[¢5(z, y) — idae [[wreo(e)2
. 6’_ .
= | 011 —id ||W1’°°(A(i1+,0)2 + [[Wg5q 0 —id HWLOO(ASEP
s, . 5— .
+ H\IIO,—?’:L? id ||W1v°°(Ag:;r)2 + ”\I}fl,o,fl,l —id ”WLOO(A(EI,O)Q
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Lemma 2.4.7. Let the assumptions of the previous lemma hold. Then
(lsi_r)% fyron =1y in L*(Q),
i Ty o = T, in £(HY(Q), Hy).
5

Proof. For the first statement we have with f € L>®(€),

~ in ., ~ in Q.. 4v,
fﬂ/ = {(J)C . 7 fw-l—dq‘/ = {f il

C
in Q, 0 inF -,

and with the coordinate transformation from Lemma 2.4.5 we obtain

1 Fess = Bll2ay = 1xas Py + ufoainm
= 112 +HfHL2 i

<1 ( [ vies /A 1dw>
<11y (/I /5 et ((@61)(1,9))| drde
//‘det @31 tg))‘dtdé)

<Cd—=0 for o6—0.

Now we show

| Ty+63 — 7;||£(H3(Q),HI) = sup ||Tys58 — Tty =0 for § — 0.
||72||H(%(Q):1

We have

t)+9 —a(y(t))|?
[Tt = Tl = Toaay = Tl + [ EO IO 20O 4
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With e from the Definition of S,4:
- 2
[0 510) SO,
t(1—1t)

/!u ) + 07( )) u(v(t)) dH/Iu ) +57(H) —a(@)

1—¢
|a(y ))—u (1)) |[a(y(t) + 07( )) u(y(t))]?

/ t ol dt+/ 1) — e ®)F 4,

. / = () + 530 — GO, / i)+ 550 aGOF

1—-t¢ 1—-1

The second and third integral are bounded from above by || 7,145 — 7;@”%2( 1) and
thus also by || T 4e50 — Tral2, s2(py- The other two integrals vanish. This implies

o 2\'? o
Tossi = Ty, < (1 +2) T = Tl (242

Now let {0 bneny © C2(9) N HA(Q) with

lim 0, =@ in H(Q).

n—oo

Since the family {7, },es,, is uniformly bounded in L£(Hg, Hy), we have for every
neN

T st — Tyl
<N Trssvt — TowsrOnll ey + 1 Thasy0n — Toonll ey + 17500 — Todl g
<N Towovll ooy, il = Bnll g gy
T30 — Tyonll ey + 1Tl 2z @), o0 190 = @l q)
< Cllin — il @y + 1T 5500 = Tobllngry (243
Let T5 be the transformation from Lemma 2.4.6. Then we have T35(I',) = ', s5.
Define ws := 0, o Ty, then we have ws(y(t)) = 0,(y(t) + 67(¢)) for all ¢ € I. This

implies

(To10s)(t) = (Ty46700)(t) forall ¢ € I,

and
ITst650n = Tyonll vz = T3 (@5 = 0n) ey < N5l oo @) i @5 = Onll 1 -
(2.4.4)
We now show that [|is— 0| g1q) = (02075 —0nll g1y — 0 for [|T5—id [[ 1,00 (g2 — 0.
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In the next steps we drop the index n and obtain

H@ oTs — @H?JI(Q) = Hﬁ ols — @”iz(Q) + HV({) oTs — @)HiQ(Q)z
~ ~ T ~ ~
= ||U 015 — UHiz(Q) + H (ng) (VU> oTs— VU||%2(Q)2

= [[o0T5 — 020
+ (T (Vi) o Ty = (id;) " (VD) 0idg 12 e
<160 T = 8ll3agy + I (T3 = idg) " (Vd) 0 Ty}
+ (i) ((V9) 0 Ts — (V) o idg)
< / (8(T3(x,y)) — o(a, ) d(z, y)
+ 1T = idg |21 02| (V9) 0 T2
+ [ 10Tite.) = o) d,)

n / 10,(T3 (2 9)) — b,(x ) d(z, )
= A+B+C+ D.

HL2(Q)2

We use the mean value theorem for the terms under the integrals and obtain with
€ (0,1):

= [ 10(Ts(e.w) - bGP dlz)
9]
— [ 19 (g +o(Ts ~ 10g)) . 0)" (T — dg) )P .
O
< ||T5 - idQ ||200(Q)2(||@x||200(()) + H@yHioo(Q))'
For B we have
175 = idg s eqs1(V9) © TolZaias < I1T5 — g 1n e e 180 e gy + 101y
For C' and D we obtain the estimates
C < |ITs — idg 17 2 (1002l T ) + 102y ll7 1))
D S ||T<5 - idfl HQoo(Q)z(Hvyl‘Hzoo(Q) + ||UyyH2<>o(Q))'
Altogether

[0, 0 T5 — UnHHl < |75 — idfz” loo(Q)QHUTLHWQOO(Q)
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Using this estimate in (2.4.4) we get
[T54550n = Tyl mraiy < T3l 2y @),00) 175 = 1dg lwrse(@pellOnllwzes 0)-
In (2.4.3) we obtain
HTwMﬁ_TyﬁHHW(I) < C”@n_aHHl(Q)—i_HﬂHL(H&(Q),HI)HT5—idQ ”WI’OO(Q)QH@HHWQ@O(Q)'
For € > 0 there exist ng € N and dy > 0 such that

Cllon = Al gaay < for all n > ny,

DO ™

and since [|T5 — idg [lyy1.0(q)2 tends to zero for § — 0 also

for all n > ng, 0 < dy.

DN ™

HTHL HE(Q),Hr) 175 — idg le»OO(Q)?”ﬁn”WZOO(Q) <

Passing to the limit n — oo and then 6 — 0 gives strong convergence of 7.5 to T,
in L(HL(Y), H?(I)) and because of (2.4.2) also in L£(H{(Q), Hy). O

Theorem 2.4.8. For~y € S}, let ¥y =gn, € S, be an admissible direction. Then the
solutions of the problem (2.2.1) for v + 67, v satisfy

lim G, 5 = G, in HY ()
550 Y407y Y 0( )7

* : . *
w* —1lmG 155 =G, n H7.
o R v I

Proof. Theorem 2.4.2 implies the existence of a subsequence of {uwﬂgm} denoted by
{t,x}, which converges weakly in H, 4(Q) to an element @ € HY(Q). We show that
7,4 = 0. Therefore, we estimate with 7, =7, o 7,

175t 2y < T30 = ) 2y + 1 (T = Tor) el

<Nyl eaay ez |7 (@ = o) 2y + 1T5 = Toell 2z @y, 1t N e

Both terms on the right hand side of the above inequality tend to zero for k — oc.
For the first term we note that .. converges weakly in H 1(Q) to u and therefore
the traces 7w« converge strongly to the trace 7,4 in L*(T,). For the second term
we use the fact that the sequence {@.+} is weakly convergent and therefore bounded.
The convergence follows with Lemma 2.4.7.

Next observe that for every & € HL(Q)

kli_{ilo<g7ka7;k@>H;‘,HI = 1}1_{20 {(V@ by V) 126y — (kavﬁ)LQ(fz)}

= (Vi, V) o) — (f: )

29



For arbitrary ¢ € Hy choose & € HZ () such that ¢ = 70 and calculate
<g,\/k, 90>H;7HI = <g,yk, 7;7?} — 7;’“/0>H}‘,HI + <g,yk, 7jykﬁ>H}‘,HI . (245)

The first term on the right tends to zero for & — oo since {G,x} is bounded (cf.
Theorem 2.4.2) and T.x — 7T, strongly (cf. Lemma 2.4.7). For the second term we
obtain:

JL%(%M@H;,HI = (Vi, V@)m((z) - (fm@)Lz(Q) = <g7<P>H;,HI-

It follows that (4, G) is the unique solution (4., G,) of (2.2.1) and that the original
sequence satisfies @155 — u, in H} () and G457 — G, in H} for § — 0. To show
strong convergence of {45} to @, in H}(2) we argue as follows: We have

(Vﬂwé%V@)L?(Qﬂ - (fw+6%77)L2(Q (gw+6w7:/+6 >H*H =0 and

Inserting ¢ = 14465 in the first and ¥ = 4, in the second equation we obtain the
relationships

N 2 2 N -2 s
’u’Y+5’7|H1(Q) = (fy+69: Uyts7) 20y and ’“7|H1(§2) = (f50y) 20

Subtracting these identities yields

|@v+67|ip |u’Y|H1 ‘ = ) f7+577u7+57)L2(Q (f%uv LQ(Q))
= ‘(ﬁy-ﬁ-é%uw—ﬁ)m(ﬂ - (f'yvu’y+57y)L2(Q + (fwuw&ﬁ)m(()) - (ﬁﬁw)m(@)‘
= ‘ f'y+6'y f’y:UerM)L?( (fwu7+57 ﬁw)ﬂ(fl)‘
< HJ}:/MW f'yHL2(Q ||u'y+57||L2 + ||f’Y||L2 HU'HM u7HL2 — 0 for 0 =0,

and hence lims o [@y455] g1 () = ly] g1 (qy- Since | - [ (g and [ || g, are equivalent

norms on HZ(Q) we also have lim;_0 HU’Y-HS'YHHI(Q = ||l@y [ 1) Together with the
weak convergence of {u,4s5} to u, this implies strong converges

'Zl»y+§7y — 'ljtfy in H[% (Q)

Furthermore, we assume that the following generalized version of Theorem 2.4.8
holds.

Assumption 2.4.9. Let {v;} C ST, be a sequence which converges to y in Wh>(I)2.
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Then the solutions of the problem (2.2.1) for o*, v satisfy

lim G = @, in HY(Q
k_mo’y Y O( )7

w* — lim G.» =G, in Hj.
k—o0
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3. Applying the fictitious domain
method to shape optimization

3.1. Shape optimization problem formulation

We consider the optimal control problem

min J(u,7y) = %/Q (u(z) — ug(x))? dx

s.t. v € Saa,
E(u,v) =0 in(,,

where Q7 C € is an observation domain and ug € L?(Q27) denotes a given desired
state in the tracking-type objective functional J : {(u,7) : u € U(Q,),7 € Saa} = R.
The set of admissible curves S,q is defined in Definition 1.2.1, and the operator E' is
defined in (1.3). We use the extension u of u, introduced in Definition 2.0.4, since
QS N Qp # () is possible in general.

As a consequence of Theorem 2.3.1, with the definition J((@, G), ) := J(t]q,,vy) and
the operator £ defined in (2.2.2) the optimization problem (P,) is equivalent to the
shape optimization problem

1

min J((i,6).7) = 5 / (ax) — ualx))? da

A

( 7) s.t. v € Sad,
E((2,6),7) =0 inQ.

Since for given v € S,q the pair (4,,G,) € U := H&(Q) x Hj is uniquely defined, the
reduced control problem

) { i ij(?é:d J((@,6,),7) (51.1)

is equivalent to (157)

Lemma 3.1.1. The objective functional J and the state operator E are Fréchet-
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differentiable with respect to u. The derivatives Jy(u,~y) and E,(u,) satisfy

Ju(u, y)v = (U — uq, V) 12000, for all v e Hy(S,),
Ey(u,7)v = (Vv,V")1200,2 for allv € Hi(Q,).

Proof. For every v € H}(2,) there holds

|
du (u,50) = lim = { T (u+6v,7) = J(u,7) |

N S URY e~ ~ -
= 61;1_13(1)2—5{(11—1—51) — Ug, U + OV — Uq) r2(0p) — (U — Uqg, U —ud)Lz(QT)}

= tim o {6 — e, D)oy + 00, T — wa)raan) + 5@ D)rzian) )
= (U — uq, V) r2(0p) = (U — Ua, V) L2002,
We show that the linear functional
Ju(u,7) 1 v (0 —ug, ) r20n0,), U € Hy(Qy),
is bounded: For all v € L*(€2,) we have

| Ju(u, Y)v| = [(u — ua, v) r2rn0y)| < llu— vl 20 [Vl 2@, -

Since u and uy are fixed the claim for J follows.
Furthermore, for every v € H}(f2,) there holds

1
dyE(u,~;v) = lim S{E(u +0v,7) — E(u, 7)} = (Vu, V)2,

6—0

Clearly, the functional E,(u,7) : v = (Vv,V-)2q )2, v € H(,), is linear and
bounded. O]

Lemma 3.1.2. The objective functional J and fictitious domain state operator E
are Fréchet-differentiable with respect to (u,G). The derivatives Jyg)((4,G),v) and

Eag ((1,G),7) satisfy

Ja)(,6),7) (0. H) ((“ - ”d;)“”mﬂ) for all & € H(S), H € Hj,

Bapworo = (5 T (5) foratoemy@.men;
v
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3.2. Existence result for the shape optimization
problem

Theorem 3.2.1. Under the Assumption 2.4.9 the domain optimization problem (157)
admits at least one solution (4*,G*) € U, v* € Syuq with E((a*,G*),~*) = 0.

Proof. We denote by
Foa = {((4,G),7) € (Hg(Q) x H) x Saa: E((4,G),7) = 0}

the feasible set. Since J > 0 and Fuq is nonempty,

A

J* = inf J((,G),7) >0,
((ﬁzg)vﬂf)eFad (( ) 7)

so that a minimizing sequence {((@*,G*),7*)} C F.q exists with

lim J((a*, G*),~%) = J*.
k—ro0
The sequence {7*} is bounded in H3(I)? since S,q is bounded in H3(I)? by definition.
Since H3(I)? is reflexive, there exists a weakly convergent subsequence {v*} C {v*}
and some v* € H3(I)? with 4% — v* in H?(I)? as i — co. We show that v* € S,q,
ie. ’3/* € S’adl
The fact that ||5%| weiy: < ¢ for all ¢ and the weakly lower semicontinuity of the
norm implies [|3*(| ys ;)2 < ¢;. From the compact embedding H*(I)? <> C%(I)? we
obtain strong convergence
li)m Ak =% in C*(I)? (3.2.1)
for a further subsequence. . .
Since #4() = (e,02)7, 34(1 — &) = (1 2, A)7, (a2 — ar)3(e) — e () = 0,
(B2 = BN (1 =€) + eR'(L—e) = 0, (e) = AM(1 — ) = (0,00, 3 (t2) —
ARi(t) e > cplta — t1| for all ty,ty € I, t; # ty and dist(I'4x,, 02) > € the same
properties hold for 4*. Therefore we have v* € S,q. The convergence in (3.2.1) in
particular implies
lim 4% = 5" in Wh(1)?,
since C%(I)? —— C%(1)? = W1*°(I)?, and
lim fon, = f,- in L*(Q).

1— 00

With Assumption 2.4.9 we then obtain 4" = 5, — i+ = 4" in Hj (Q) and GF =
G ki N G, = G* in H}. By the continuity of E we have that

0= E((a"%,G"),7") = B((@*,G"),7"),
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and thus ((a*,G*),v*) € Faq. Furthermore, by the continuity of J we obtain
J((@h, G4, 7)) — J((@°,6),7"),

and therefore A X .
J* = lim J((@",G"),~%) = J((a*,G*), 7).

1—>00

Hence, ((0*,G*),~*) is an optimal solution. O]

3.3. The adjoint equations

A

3.3.1. The adjoint equations associated with (P,) and (P,)

In this subsection we introduce the adjoint equation associated with the shape opti-

A

mization problem (F,). We define the spaces

U=1U, xUy:=HYQ) x H},
Z =7y x Zy = HYQ) x H,

and the Lagrange functional L:U X S x Z* > R,
L((@,G),7, (A7, M%) = J((8,G),7) = (W, M), E((8,6),7)) 2-,2-

Inserting (4, G) = (i, G,) for arbitrary (A%, M>) € Z* gives

A ~

L((ty,Gy) 7 (AZ, MP)) = (i1, G5), ) — (A, M), E((i1, G4), 7)) 202
J((tiy, Gy),7) = §(7)

Now we obtain the adjoint equation if we choose a special (A%, M=) = (X?,M?)
such that R )
L(fhg)((ﬁ’Wv g’\/)af% (A§7M§)) = 0.

The differentiability properties of J and E induce according differentiability proper-
ties of L. We have

(Liag)((@,G), 7, (A%, M), (8, 1))y v
- <j(ﬁ7g)((ﬁ> g)a ’7)7 ({)’ H)>U*,U - <(5‘E7 MZ)? E’(ﬁ,g)((a’ g)> ,7)(@7 %)>Z* Z
= (Jiao)(@,9),7) — Eag)((4,G),7) (A=, MZ), (6, H))v- 0.

Therefore,

~

Liag)((@5,G), 7, (W7, M) = Jag) (i, G,).7)
— Ea,6) (4, G),7) (AT, M3) = 0.
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This leads to the adjoint equation associated with the shape optimization problem
(P,): For v € Saq and @, (the solution of the state equation E((u,G),~v) = 0) find

(X?,M?) ‘= (A%(7), M®()) such that

{ (VAZ, VD) o — (M T ag i, = (b — 4, D) 20y, V0 € HY(Q), (331)

—(H, T A s, = 0, VH € H},

or equivalently

A

E(ﬁ»g)((ﬁw gv)’ 7)*(5‘§> M?) = j(ﬁ,g)(@% g'y>> v),

./Zt _TY* 5\,% _ (ﬁ'y — Ud, ')L2(QT)
o) o)

The main difference of this fictitious domain formulation for (5\77 M.,) compared to
(2.2.1) is that we expect 5\§|le # 0, since the difference @, — 44 in the right-hand
side of the first equation of (3.3.1) may be non-zero in Qr N Q<.

Now we derive the adjoint equation associated with the shape optimization problem
(Py). Therefore, let us define the Lagrange function L : U(£2,) X Saq x Z(2,)" = R,

which is

L(“? v )‘) = J(ua ’7) - <)‘> E(u’ 7))2(97)*72(97) :

We insert v = u, for arbitrary A € Z({2,)*and obtain the adjoint equation from
setting the derivative of L with respect to the state variable u equal to zero, i.e.
choose A = A, such that

L,(uy,7v,\y) =0.

Then we obtain: For v € S,q and u, (the solution of the state equation E(u,~) = 0)
find A, := A(y) € Z(€2,)* such that

(VA V) 202 = (U — tha, 0) p20pmy, V0 € U(Q), (3.3.2)

As a preparation of two following two theorems we state an equation on the comple-
mentary domain QS: Find A := X°(y) € Z(§%)* such that

(V)\i, V’UC)LQ(Q%)Q = (—ud,UC)Lz(QTmQ%), Yo € U(Qg) (333)

Theorem 3.3.1. Let for v € Sqq denote u, the solution of the Poisson equation
E(u,v) =0.

1. The adjoint equation (3.3.2) has a unique solution \, € H*(Q,) N H3($2,).

2. The equation (3.3.3) has a unique solution X, € H*(QS) N Hg ().

3. The sets {H)\fy“HQ(QW)}’YGSad and {||)\§HH2(Q%)}W€S are uniformly bounded.

ad
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Proof. Apply the same techniques as in the proofs of Theorem 1.3.1 and Theorem
1.3.3. O

Theorem 3.3.2. Let for v € Sqq denote u, the solution of the Poisson equation
E(u,v) = 0 and (u,,G,) the solution of the fictitious domain formulation of the
Poisson problem E((4,G),~y) = 0.

1. Let (;\§,M§) € (Hil(fl) X HI> denote the solution of the adjoint equation

(3.3.1) on Q. Then A, := 5\§|Q7 € H*(Q,)NHy(S2,) is the unique solution of the
Qe € H?(QS) N Hy ()
is the unique solution of (3.3.3) on S and the Lagrange multiplier /\/l,% satisfies

ONZ((:
(M2, h) s, = ([w] H"y(-)Hz,h) Vh € Hy, (3.3.4)
! L2(1)

adjoint equation (3.3.2) on §,. Furthermore, \S := 5\§

AT c
where [%} = <g%: — %) is the jump of the normal deriative at I,

2. Conversely, let A, € H*(Q,) N Hy(S,) be the solution of (3.3.2) and let X, €
H?(Q) N Hg (%) be the solution of (3.3.3). Then (3.3.4) uniquely defines an

element M’ € H} and (;\§,M§) with

v

XE . {)\7 m er,

S in Q,
is the unique solution of (3.3.1) in H () x H.

Proof. The proof is mainly carried out analogously to the proof of Theorem 2.3.1.

However, we recapitulate and extend a short part of the proof to demonstrate where
Az

the jump of the normal derivative [%} pops up.
The first equation of (3.3.1) reads

(VA’Y’ v@)L2(Q»Y)2 + (V)‘f/) V@)LQ(Q%)Q - (@7 — Uq, @)LQ(QTQQ.Y)

— (ity = ua, ) z2(@rng) = (M3, T,0)yr, Y0 € Hy(€).

Since A and A\ € H?(Q),) we can apply integration by parts and obtain

— / A)\’Y@ dCL’ - / A/\sf) d[L‘ — (’lAL,y — Ug, QAJ)L2(QTQQW) — (ﬂw — U, TA})LQ(QTQQ%)
Qy Q

c
5

OXS A
+/ %{; dS(x) +/ L6dS(x) = (M2, T,0) iz m, V0 € Hy(Q). (3.3.5)
o o0

C
, On, ng
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We now choose v € Hj(2,) and test the previous equation with its extension v €
Hy(§2) which fulfills 9]pq, = 0 and U]so; = 0. Then we get

_A)W = (u7 — Ug, ')LZ(QTOQ.Y) n LQ(Qv)-

We now choose v € H () and test equation (3.3.5) with its extension ¢ € H{ ()
which fulfills v°so, = 0 and v°[pqc = 0. Then we get

Now we test equation (3.3.5) with an arbitrary o € H2(Q). Then we have 7.0 € Hy,
0l = 0, and with n, = —nS we get

(ME, T 0., _/ g%dsu /m 2 ds(a)

/ a—mv dsS(x /FW gnwf& dS(x)
(2R PO o,

on., on.,
N O (~(-
= (P2 - S o)
OAZ(+(-
- ([%} HO ) ,
’ LA (D)
which is (3.3.4). O

Remark 3.3.3.

1. Analogously to the extension of G, in Remark 2.5.2 we extend ./\/l?/ € Hy onto
L3(I) by the definition

ONE (~(-
(M2 h) 2y r2ny = <[#] ||"Y(')||2,h> Vh € L*(I).
7 L2(1)

2. Identifying L*(I) with its dual space the (adjoint) Lagrange multiplier satisfies

e [am(-))

v on,

] 15 C)ll2 an L*(D).

Theorem 3.3.4. Fory € ST, let ¥ =gn, € S be an admissible direction.
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Then the solutions of (3.3.1) for v+ 6%, v satisfy

lim A”, ;- = A" in Hy(Q),

o0 o
w* — }SEI(I)M,%ZH;:Y =M in Hj.
Proof. Apply the same techniques as in the proof of Theorem 2.4.8. m

Assumption 3.3.5. Let {vx} C ST, be a sequence which converges to ~ in W (I)%.
Then the solutions of the problem (3.3.1) for o*, v satisfy

lim A% =AY in H(Q),

k—o00

w* — lim Mf = M% in Hj.

k—o0

3.3.2. Fictitious domain formulation of the adjoint equation
associated with (P,)

Since the adjoint equation (3.3.2) is the Poisson equation (1.3) in weak form with a
different but sufficiently regular inhomogeneity, we can apply the theory of Section
1.3.

We can also derive a fictitious domain formulation of the adjoint equation (3.3.2) by
introducing the additional (adjoint) Lagrange multiplier M € H7, like in Chapter 2.
We thus obtain: For v € S,q and @, (the solution of the state equation E((4,G),v) =

0) find (A, M) := (A(7), M(7)) such that

{ (VA V) ag@ye = My, o), = (it — a0, 9) 200, V0 € Hq(Q), (3.3.6)
pu— O | |
I Y

—<H,7;5\7>H;7H VH € H},

or equivalently

fl —7'7* 5\7 _ (a'y_uda')LQ(QTﬂQW)
-7, 0 M, 0 '

Furthermore, we obtain a fictitious domain formulation of (3.3.3): Find (S\E/, M) =

(A°(7), M<(7)) such that

{ (VAS, VD) 12 — (M To0) e, = (—tta, 9)2(@pnag), V0 € HY(Q), (33.7)

—<H,7—7/A\§>H}V’HI =0, VH € H;,

or equivalently
A —7;* 5@ _ (Uy — ug, ‘)L2(QTng)
-7, 0 M 0 '
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Lemma 3.3.6. We obtain

A A m .,
)‘7:{ v (M, W) m,

a)‘v(V(')) . )
————=4()|2, b Vh € Hy,
0 m Qg, ( on., IO !

L2(I)

(M

i) vhe

L2(1)

I

. 0 inQ
A = { ” (ME h)g= 1
Y ; v’ I

A5 an Q) 5
Moreover, we obtain

~

AE =\

v v

+AS, and  ME =M+ M.

v

Remark 3.3.7.

1. The authors in [KP98, Sla00] studied the case, where the observation domain
Qr is restricted by

Qr cc ), C O for all v € Sgq,i.e. dist(I'y, Qp) > 0 for all v € Syq.
(3.3.8)
In this case, we obtain Qr M QS = 0 and therefore /A\fy =0, M5 = 0. Fur-
thermore, the fictitious domain formulation (3.3.6) coincides with the adjoint
equation (3.3.1), i.e. 5\§ = 5\7 and M> = M.,. We note that (3.3.8) would
require further restrictions on S,q.

2. If it is possible from the application point of view, we recommend to track the
L?-error of 4 with respect to a desired state iy € L*(Qr) in the entire fictitious
domain Q, ie. Qp = Q.

The choice of the observation domain Qr has a huge influence on the optimiza-
tion process. If one chooses Qp with |Qp| small compared to |2, or QpNT, = 0
for some v € Syq, it is an easy exercise to construct examples where the se-
quence (4*(v*)) from an optimization process tends to ug in L?(Q7) as k tends
to 0o, but the sequence (Y*) converges to an optimal shape’, which significantly

deviates from the expected aim.

3.4. First derivative of the reduced objective function

In this section we prove that the reduced objective function 7,
j:SH =R,
v J((@),9(0), ),

from our problem (3.1.1) is Fréchet-differentiable with respect to . This result is
obtained even though the state equation operator E is not continuously Fréchet-
differentiable. This Fréchet-differentiability is a necessary condition if one derives

40



the derivative representation of 7'(7) via the adjoint approach, cf. [HPUUO0S, Section
1.6].

In Theorem 3.4.1 we show that the reduced objective function ) is directional
differentiable with respect to v € S, in all admissible directions 7 € S’. In addition
we obtain a suitable integral representation of the directional derivative dj(vy, 7). In
Theorem 3.4.2 we obtain the Gateaux- and Fréchet-differentiability of the reduced
objective function J.

The main key in the proof of the next theorem is to replace occurring (normal)
derivatives of the state @ by the Lagrange multiplier G using the relation (2 3. 1)
It turns out that occurring (normal) derivatives of the adjoint state A= = X 4+ A°
cannot be replaced by the adjoint Lagrange multiplier M*. But since derivatives
with respect to A¢ cancel out in the computation, we can replace the remaining
derivatives with respect to A by the Lagrange multiplier M. We obtain the following
result:

Theorem 3.4.1. The reduced objective function ) has a directional derivative with
respect to v € ST in all admissible directions 7§ € S% which is given by

() (1)
EO

1j(,7) = / M, (1)6, () '

Proof. The proof is structured as follows: In part 1 we show that the right-sided
directional derivative of j with respect to  in an admissible direction 7 € S is given
by

. 1y~ R 3
d*j(v,7) = 5hr(1)1+ 2_5{(f’y+57y — [y /\§+57)L2(Q) — (G, 7;)\%5@)1{;,}1,
+ <M§+5~7> Tyvovtiy) bz i, + (fraey = fro >‘§>L2(Q) + (G0, T“M)‘%)H?’HI

— (ME Tyt s}y, | = lim (Bi(0) + -+ Bs(9))
In part 2 we prove the following right-sided limits

. . 1 ~ ~
lim B4(5) = 5&% %(f’y-‘rtsﬂ_/ - fva )\’%)LQ(Q) = 0,

6—0t

. : ]' ra
52% Bi(0) = 515(% %UVHV fw >\’Y+5V)L2(Q) =0.
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In part 3 we obtain

lim By(d) = lim — <g7,ﬂA,,m> 5 H

50+ 5—0+ 1

gw(t)VM(v(t)) 7(t) di + gw( VAL (v(1)"(t) dt

"2
. 1 =
Jim By (d) = lim —%<M7>7:/uw+6v>H* =3, M)V, (4(1)) T A(t) dt.
In part 4 we find
: 1
615(% 35(6) - 611>I(§l+ 20 <g7+5w 7;+57)‘E>H*7H1
1 _
=3/ G, (VXS (4(1)) " (t) dt + Gw( VA, (v(1) "7 (#) dt,
.
: 1
i Bu(6) = Jim o (M T / MO0, (1(0) (1)

In part 5 we conclude that

i A — 7(t) n, (1)
d J(%V)—/IMA,(t)gy(t) oI dt.

Finally, in part 6 we find that the left- and right-sided directional derivatives of }
coincide, i.e.

d”j(v,3) = d*j(v,7) = /M )G, (1) H>()()dt.

t)]

Part 1: The right-sided directional derivative of j with respect to v in an admissible
direction 4 € 57 is given by

1
d*j(y,7) = lim = {j(v +67) — j
s y) = dim = {50y +0%) = j(0)}
.1 . _
= lim — {§||uv+6ﬁ - Ud||2L2(QT) - 5”% - ud”%Q(QT)}'

Using the identity (@ —c,a —c¢) — (b—¢,b—¢) = (a,a) — 2(a,c) — (b,0) + 2(b,c) =
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(a—b,a—c)+ (a—0b,b—c) we obtain

o 1(1 1.
d*j(v,7) = 51_1{(% 35 { [y 467 — UdH%Q(QT) - é”uv - udH%Q(QT)}
1 . . L
= 615& 2% {<U7+57 Uy, Uytoy — Ua)r2(p) + (Uyray — Uy, Uy — ud)LQ(QT)}

= lim (4(6) + 45(9))

For A, () we can use the first equation of the adjoint system (3.3.1) for v and v + 0%
with the test function ¥ := @455 — 4, € Hj(£2) and obtain

1 . L
A(0) = 2_5(Uv+6"7 — Uy, Uy 55 — Ud) L2(Q7)

25{(V)\'y+5'ya Vv <a7+5ﬁ7 - ﬁv))p(fz)? - <M§+5m 7;+5W(a7+5*7 - a'y»Hf,HI }

Since T,155Uy+55 = 0 we obtain

1 .
Ai(6) = %{(V(uvﬂw i), v/\’y—ﬁ-é'y)LQ( e + (M55, Travlin) i, } (3.4.1)

For the first term in (3.4.1) we use the state equation (2.2.1) for v and v + 6%,
respectively, in both cases with the test function v = )\7 ov € H} (). We obtain

1 . . o N
Ai(6) = 2_5{(v<u7+5“7 —1y), VAT 167) 122 T (MFisqs 7;+6WUW>H}7HI}

1
{(f’7+5’}/7 A'erJ'y)L2(Q <g’y+5’y? 7:/+57)‘7+§7>H* (f"ﬂ >\7+57)L2(Q)
— (G ToN sy mgn, + (M0 Tovontiy iy, }
Finally, with 7;+<W5‘§ 57 = 0 we have

1 ~ A
Al ((5) 26{(f'y+57 f’y’ )"zy:+67y)L2(Q)

— (G, 7'7)‘§+5W>vaH1 + <M§+5’Y’ Toovti) y m, }
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In a similar way we obtain for As(J) the expression

A2<6) = (a’ertVy - 7:577 ﬁ'y - ud)LQ(QT)

= = (VA V(55 = ) prgae = (M, Ty (3 — )z, |

{(f'y+5’77 /A\§>L2(Q) + <g'y+6'777;+§"y§\fzy:>H}*,HI - (f'ya /\'Zy:)LQ(Q)

(G TN )y, — (M3 i), -

5] -] -] -

1 s PN ~
— %{(f7+5’7 - f’Y7 A’?)LQ(Q) + <gfy+5»7’7ty+5,§/)\§>H;ﬂvHI

- <M§> 7'7727+57>H?ﬂ1 }

Altogether, using the expressions for A;(d) and As(J), we obtain

. Ly~
d+j(’}/, 7) 511%1+ %{(f%!—év f”m ,H_(;,Y)Lz <g'y; 7—7)\«,+57>H* H,
+ (M55 Tyrsylin) b 1, + (fossy = Fos )\V)Lz(ﬂ) + (Gy+09, 7;+5ﬁ3‘§>H1*,H1

— (M Ty, | =l (Bi(8) + -+ By(9))
Part 2: In this part we show the following right-sided limit

. . 1 ~ ~ .
lim By(0) = 513& %(fw(ﬁ — F A 2y = 0.

}," .: f iIl er, }," 5o i f in Q’Y+5’77
7Tl Qg 00 i Q8

and 5\§ is the solution of the adjoint equation (3.3.1) with 5\§ =\, in Q, and /A\,% = ¢
in Q5. We thus obtain®

1 ~ ~ .
B4((5) = %(fwréﬁ - f77 A%)LQ(Q)
1

=35 [, JOM @ do+ 5 /. @ (o) do = Baa(8) + Baalo).

'In this proof we have a slight change in the notation:

+ . AL +._ pdt — »oE
Ay :=Ap7, Dy =Dy, @i:=o5]
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We will see that both terms, By 1(0) and By (), tend to zero. We start with By (),
apply the coordinate transformation of Lemma 2.4.5 and get

1 11| e )
B = |55 [, S @ @) <=5 [ )
C é
= A (r(2) + €g (), (£)] |det O (£, €)| de dt.
I—-JO

Now we use the estimates of Lemma 2.4.5 and the fact that 7;5\2 =T\ =0, ie.
Ay(v(t)) =0 for a.e t € I. Therefore we obtain

1B (6 r<—//u 1) + €9(t)ns (1)) det & (1,€)] dé dt
¢, ,
<T(tr£ng§7‘det<b t§|/ / A (4(t) + €g(t)ns (1)) de dt

<@ [ [ 6w+ aonm-r 6ol

Using the identity
Ay (7(8) + €3 (t)ny (1)) / VA (3(1) +ng()n, (£) T (a(t)n, (1)) dip (3.4.2)

which is valid® for \, € H}(Q,) N H?*(£2,), we obtain

B, (6 \<—// /w 1)+ ng(t)ns (1) (@0 <>>dn'd§dt

/ (/ / V2 (3(t) + g ()ms (0) dnds)ng@)nv(t)ngdt
S%/ (//”W )+ ng(Om ()]l dﬁdf)lg(tﬂdt.

For t € I_ the function G(&) := A\, ((t) + £g(t)n,(t)) is differentiable on the interval (0,4) with

G'(€) = VA, (7(t) + €a()ny (1)) T (9(t)ny (1))

since A\, € H}(2,) N H%(Q,). We obtain due to the fundamental theorem of calculus

3
G(§) = G(0)= [ G'(n)dn.

0
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Using the identity

/ / n) dn dé = / n) dn, (3.4.3)

which is valid® for all F' € L'(a,b), we obtain

Bus( >|<—/ <//||w 1) +ng (s (1), dnds)|g<t>|dt

5 ) (/ IV A (7(t) + ng(t)n ()], (6 — 1) d >!§7(t)\dt.

The Holder’s inequality and Lemma 2.4.5 lead to

| Bia(0)] = — (/1_/ VA ((t) + ng(t)n ())Ilglg(t)ldndt)l/Q

([ [ 5= ana) .
< ([ [19x60+ et ())I|§|det<1>’_(tﬂ7)ldndt>1/2
[ [16—n§|g<t>|r:0 e

1/2
C! 5/
sg(/ 19 (@) d-r) ;
_(Dy)

1/2
< G502\ s lal AT

1/2

| iatolas

< C36' 2|\, ||HI(QW ||9||L1(1
= Cy6"* — 0 for 5 — 07"

For the second term B, 2(0) we use a similar argumentation as for By1(0). We just
replace Ay by A7, A, by XS, ®_ by &, Dy by DJ and I_ by I, and obtain

3For F' € L'(a,b) there exists an absolutely continuous function f, i.e. f'(z) = F(x) a.e., with
f(x) = fla) = f; F(n) dn. Using this identity and integration by parts we obtain

/ab (n)(b—n) dn = f)(b— ), — /f :f(a)(b_a)Jr/abf(f)df
:/af(ﬁ) e [ [Pl ane
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|Bia(8)] < C58" 2| X2 1 a I911 155, ) < Ced'/? —> 0 for 6 — 0T

Furthermore, the same techniques from above lead to

lim B (5) = 5li>I(I)l+ %(f'y—&-é'y fv: )"y+6’y)L2 = 0.

6—0t

Part 3: In the next step we show that

lim By(d) = lim — (QW,TW)\WM) 1

6—0+ §—0t
! %(t)%(v(t» (1) di + 3 [ 0,0vx 000 d

= 5 "
= BZ,l + 3272.

I

Let 6 > 0. We have )‘v+6'y Ayyoy on £, 155 and 5‘§+5ﬁ = ASisy on 20 5 and obtain

BQ((S) - <g'7’7:7)\7+57 Hi H = 2(5 /Q'Y )"H-M )) dt

1
~ =55 | 60N nts D)t = g5 [ G0 5,(1(0) dt = Ban(0) + Bl

Now we prove

lim (BQZ - BQ 1(5)) == O, 1= ]_, 2. (344)

6—0t

In the case ¢ = 1 we obtain with A, 57(v(t) +7(t)) = 0 a.e. in I and the differen-
tiability of G(§) := Ay1s7(Y(t) + £7(t)) for t € I in (0,6) the expression

B = —55 | G:ONisslata)

21(5 g’Y( ) ( 'H"S:V(’y(t) + 5/7(25)) - )\'y+5fy(’7(t))) dt

215/ gl (/ Vv (10 + €07 30) d ) .

Now, the identity

5 [ GO0 = 5 [ g ( / Vhsaas (1(0)7(0) )

Ly
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which follows from the equation 1 = % f05 d§, leads to

Boy — Box(89) = = | (1Y (4(6)75(1) dt

2/,

215 / G (1) ( / Vyay(V(8) + E3() () dg) dt

— > | G0 (Vs (1) = VA ()T A1) dt

2 /..

% / Gl >( / (Ve o0) + €50)

Vs () dg) i
=: By11(6) + B2,12(0).

We show that both terms, By ;1(0) and By 2(0), tend to zero for 6 — 0.
The first one can be estimated as

Basa®] = 5| [ G0 (Fhass00) = T () 500)
%ugum 1 [ 10 O1IVhs(0) = TN, (O, d
< 2 lallzen 16 s,
2 "
([ 19000 = D0 )
1

< Sl reeqn) ”g"/HL2 IV A 455 — V)WHB(F:,“)?

\)

with 'V == {(71(t),72(t)) : t € I;}. Because the first two terms are bounded we
just have to show that the last one tends to zero. The family {[|\ 157/ 20, ,5.)} and
thus also {[|V Ay s5/lm1(, 5,02} 15 bounded for & € [0,d] with some dy sufficiently
small. We consider the set €2 := 0, M€, 5,5 which is clearly contained in all Q. s5,
6 € [0, o). Thus the family {VA,1s5,0 € [0, 0]} is bounded in H'(€2). This implies
that for any sequence {0;} C [0, dp] with lim §; = 0 there exists a sub-sequence {9, }
such that we have weak convergence

V)\7+5i/'7 — w in H1<ny>2
Due to the compact embedding H'(2)¥ << L?(Q)* we obtain strong convergence

V)\'Y+5i/'7 — w in L2<Q;)2
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Sioy = X? in H'(Q) (see Theorem 3.3.4) which
implies VAZ Sise V)\§ in L2(Q)? for § — 0 we obtain w = V5\§|Q:W =V o
Thus the weak convergence of {VA, 55} in H'(€2)) is valid for the whole sequence

and not only for a sub-sequence. We consider the traces of the functions of any
sequence on the set I'T = ', N0Q, = {(71(t),72(t)) : t € I+}. The weak convergence

Because we already know that AZ

V459 = VA, in H'(€,)?
for § — 0" implies strong convergence
VAts3lne = VA |py in L*(T1)?,

which implies that By ;1(0) tends to zero for 6 — 0.
For the second term Bs2(d) we use analogously to equation (3.4.2) the identity

13
Vrass00) + €10) = Vhoasn(1(0) = [ 3O HA a5 (2(8) + )30

0

where H\, 55 = V?\, ;s is the Hessian matrix of \,s5. We obtain

Basal®) = 35 [ 6.0 ([ (Fhenla) + 650) = Phoass G0 5000 )

— 55 [ G0 ([ [ 50700+ w0 ante) o

Using for the inner two integrals the equality (3.4.3) we obtain

6
Baaa(0) = —3; | gm( [ A 00+ (0)30) 6 = ) ) .
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The inner integral of the previous equation is estimated as follows?:

| AOT A 00+ )30 6 - ) dn'

é
S/O V@2l H Ay p55(y (8) + 07 (@) £ 17 ()| 6 — 0l dn

é
S/O 1 X5 ((8) + 17 () | £lg(£)] /216 = nl lg(¢)[*2dn
1/2

< ( / A5 (108) + 3 O)I215(0) dn> N ( / 16— g dn)

6 1/2
< (/0 IIHAWM(V(t)+m(t))llfv|det<1>'+(t,n)|dn) (Blg(t)])*">.

The last estimation is done using the inequality |g(¢)| < |det @’ (¢,7)| from Lemma
2.4.5. We thus obtain

1

Baaal0) < 55 [ 1601|307 HA i) 5 )30 (6] a

< Cyd'/? i G, (D) g(®)[*?
+

5 1/2
( [ U004 ) det . 1) dn) i,
0

and furthermore, using Holder’s inequality, we have

1/2
|By.1.2(8)] < Cod"2|g132 ( / G, (1) dt)
+

(/f+ /06 A5 (7(8) + 07 (8)) 17 | det @, (8, 1) dn dt) 1/2

—_113/2
< o0 2(1gl1 2 1 ) 1931 2r, ) IAssall 2 < 0.0

_113/2
< C251/2”9”L/°°(I) ||g’Y”L2(I) ||)"Y+5W||H2(Qy+5ﬁ)'

“Here, we use the Frobenius norm

Al =

for (2 x 2)-matrices and the inequality

[Az]l2 < |A]|pll2]2-
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The boundedness of {[|\ | z2,)}yes.q (cf. Theorem 3.3.1) and {[|G, ||z2(1) }res,q (cf.
Theorem 2.4.2) now imply By 12(d) — 0 for 6 — 0.

To prove equation (3.4.4) for ¢ = 2, we use a similar argumentation as above. We
just replace Iy by I, Ayys3 by A 5, T by I = {(11(t),72(t)) : t € I} and &
by &_.

If we switch the role of G, and )\,y 57 With M? and 1455, respectively, and use the
fact that 457 = u, 5 =0 on QF ., we analogously obtain

. 1 _
Jim Bo(0) = lim — o (M, Ty, = 5 | MO 0) 50 de
(3.4.5)
Part 4: In this step we prove that
: 1 >
(}g& B;5(0) = 611%1 25 ~(Gy+6 7TY+5’Y)\ >H*,HI
1 1 _
=3/ Gy (VAL (v(#) (1) dt + 5 Q»y( VA, (7(1)"3(t) dt
+
=: Bs1 + §5,2.

Again, let 6 > 0. We use >‘7+5v = Ayqo5 on £, 455 and )‘v+6v = AS g5 on Q5 and
obtain

1
Ba(6) = 55(@rusn: TosssAhnn, = 55 [ Grasn (X0 + 63(0)
1
- = %W@WWHM®W+%/%W@MWHMWﬁ
Iy I_

= B5?1(5) + B572((5>.
We proceed in an analogous way as in the last part and show that

lim (B5,L — B5 z((S)) = O, 1= 1, 2. (346)

6—0t

To show (3.4.6) for i = 2, we use A, (7(t)) =0 a.e. in /_ and the differentiability of
G(&) == A\ (y(t) +&7(t)) for t € I_ in (0,0), and obtain

fﬁ@=§/%m@MwH@wﬁ
25/ Gy (1) (A (7(t) +67(2)) — A (y(2))) dt

25 | Green(t) ( / VA, (v() + €5(8) " 3(2) dg) dt.
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Using the equation 1 = % f06 d&, we obtain for the difference
— 1
Bsa = Bsa(0) = 5 | G,()VA(y()"5(1) dt
I

-3 [ G (9N () () d

+ 2% /I ) Gyr65(1) ( /0 5 VA (v(1)" (1) dg) dt
5 /f Grrinlt) ( /05 VA, (/1) + €7(6) (1) dg) dt,

where the difference of the second and the third term equals to zero. We then obtain

1

Bra = Baal0) = = [ (G1155(0) = G,(0) A, ()50

1)
— 55 [ G0 ([ (92000 + €30 — I3 00 00 ) a
=: B521(9) + Bs22(0).

We again show that both terms, Bs21(0) and Bs22(0), tend to zero for 6 — 0.
We may express Bj21(d) as

Bs2.1(6) = (Gy169, P(+)) L2(ry — (G, B(+)) L2(n)
= (Gy+s7 — Gys h()) L2(1),

where
—sVA () 3(), tel
h(t) =4 2 Z( ()7 (@), tel,
0, tel,,
is a L?(I)-function.
Since H; is dense in L?*(I) by Lemma 2.1.8 there exists a sequence {Hy}x in H such

that
lim H = h in L*(I).
k—o00

For fixed £ we may hence estimate

|Bs.2,1(0)] < (G167 = Gos h) 12|
< [(Gyssv, (h = Hi)) 2yl + Gy, (Hi — 1)) 2| + (G639 — Gy Hie) 1y 1, |-
The first two terms on the right-hand side tend to zero since Hy, — h in L*(I) and
the family {G,},es,, is uniformly bounded in L?(I). The third term tends to zero

since the Lagrange multipliers are weak-* convergent in H;.
For the term Bj 5 2(9) we use a similar argumentation as for By 2(d). We just replace
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Aoy by Ay, Iy by I_, G, by G157 and @, by ®_ and obtain

_113/2
|Bs.22(0) < 6211132 ) 1G5l o1y 1M N ar20_ 1< 0.8
< 051/2”5_7”3/2 ||g7+5ﬁ||L2(1) ||)‘v||H2(QW) — 0 ford — 0"

Lo (1)

In the same manner we prove equation (3.4.6) for i = 1. Eventually, if we switch
the role of G155 and /\§ with M?> ;. and 4., respectively, and use the fact that

. T+67
Uy = u5 = 0 on Qf, we obtain

Y
lim Bs(d) = li 1/\42 T s~ _ ! MZE(H)V NI~ (1) dt
6;% 3(0) = 5E(I)1+ %< V+6¥ o3l by i, = 92 ; 7( YV (v(£))"5(2) dt.

Part 5: Composing the results of parts 1-4, we obtain

P LU :
d+](777) = lim _{<f’y+57y - f’w )\'y+67y)L2(Q) - <g'ya 7;)\'y+57y>H}‘,HI

50+ 20

+ <M7+6~77 Ty+6'7a'y>H}*,HI + (fw+6~7 - fw /\w)m(ﬂ)

~

+ (Grto9, Trwos M) g 1, — <M777;ﬁ7+5ﬁ>H}‘7H1}

=3, SHOTROOT IO d+ | GOTEOOT 0 &

1
I 2
1

+3 | GOVNOOY A0ty | MOV (@) di

2 /i,

_ % / G, (1) (VA (1(8) + VX (v(1))) " 4(2) dt

+3 [ MEOV OO0 @

+5 | MIOVu,(v(8) (1) dt+ - i G, (VXS (v(1) A (t) dt
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We have

vy JAA((0),3() on I
VA (1) () = d* A (v(:),7(:)) on I_
')7 _F_Y()) on IJF
), ) on I_

1
|

Q|
—~
SH
Jr
>~

3
—
2
- —~
N

|

3

)
—~
SN—
SN—

@)

=
~

n’Y(')Tn'y(')
Ol
et s B0 )
= 0 mOIFOII
00 . 300

= on, PIRTREQ),

_ . 7() ()

= MO EO

and analogously

7() s ()

[H{O]IPan

Therefore, using the expressions from above and the identity M* = M + M¢, we

Vu, (7(-))"3() = G,()
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obtain

T

4'50:7) = 5 [ G0 (V260 + VA (4(0)

+ % /I M () Vus (v(8)"3(1) dt

V(#) 'y (1)
15 @)1l

1 ¢ 7(t)"n, (1)
+2/I(M7(t)+M7(t))gy(t) EGIE dt

_ (), (t)
- [ewmin G

Part 6: Eventually, we show that the left- and right-sided directional derivatives
of j coincide, i.e. dj(v,5) = d*j(v,%). This statement is not obvious, since the
right-sided limits in parts 3 and 4 exist, but they are in general different from the
left-sided limits. For example, in part 3 we found

() dt

=5 [ 9.0 (M) - 2500) @
1

1 “ 1
lim BQ((S) lim —2—5(9’7,7‘7)\?%@)1{;,}11 =3 g’y(t)v)‘7<7<t))T’7<t) dt7

507+ 5—07F 2,

but we get with the same techniques

. . 1 i 1 T—
51551— By(6) = 52%1— —%@7, T s H2 1, = 2/ Gy (VA (v(1)) (t) dt.
However, it turns out that
lim B = lim B lim B = lim By(d
Jg B2(0) = [, Bs(0), S Bs(0) = Jim Ba(0)
6113(?* Bs(0) = 51i>%1+ Bs (), 515(1)17 By(0) = JEI(I)L Bs ()

as well as limg_,o- B1(0) = lims_,o- B4(d) = 0. Therefore we obtain as in part 5

—r =N (), (1)
i) = [ GmoTeta,
i 7)

ie. d”)(v,7) = d*j(v,7) = dj, O
Theorem 3.4.2. Under Assumption 2.4.9 and Assumption 3.3.5 the reduced objec-

tive functional ] is Fréchet-differentiable with respect to vy € S},. The derivative j ()
satisfies

V() n,(t)

e shsns = [ M00,0 7,

dt forally € S.. (3.4.7)
gl
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Proof. The mapping
J(): 8 =R,

7 di) = [ M, (16,1

17 (®)]l2
is clearly linear on S!. We now show that it is also bounded on S’

45071 =| [0 mﬁi a

Wi /| R

H7||L
< —ngHL2 0 IM 2y < Ol L2

T

t

and C' is independent of 4. Therefore we have shown that j'(v) is a bounded linear
functional on S which implies that it is the Gateaux-derivative of v — j(v) at
v € Sh.
To prove that j() is the Fréchet-derivative of v — j(y) we have to show that the
mapping

v J () (3.4.8)
is a continuous operator from SJ; to £(S!,R).
The family {G, },cs,, is uniformly bounded in L*(I) (cf. Theorem 2.4.2). Hence for
Yn — v in S,q there exists a weakly convergent subsequence, i.e.

(Gos ) r2(ry = (g, h)z2(ry for all h € L*(I)

for n — oo with some g € LQ(I). On the other hand with Assumption 2.4.9 G,,
converges weak-* in Hj to G, which means

(Gons MWmz i, = (Gos M) L2y = Gy B b, = (G, )2y for all h € Hy

for n — co. Because Hj is dense in L*(I) we have g = G,. This implies that G, con-
verges to G, in L?*(I) and this shows that the mapping v — G, is continuous. Using
Assumption 3.3.5 the same arguments hold for the mapping v — M.,. Furthermore,
since I, is of class C™! uniformly in v, we have continuity of the mapping v — n.,.

Altogether, we obtain continuity of v — gw(-)MV(-)% and thus the continuity

of (3.4.8). O
Algorithm 3.4.3 (Compute the first derivative 7'(7)).

1. For v € S}, compute the solution (i.,G,) = (u(v),G(v)) of the fictitious do-
main formulation of the state equation (2.2.1).

2. Compute the solution (\y, M) = (A(7), M(7)) of the fictitious domain formu-
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lation of the adjoint equation (3.3.6).

3. Obtain the first derivative j () of the reduced objective functional j via the
integral representation (3.4.7).

3.5. Approximation of the second derivative of the
reduced objective function

In this section we discuss possibilities to derive a formula for the second derivative
of the reduced objective function j. According to the theory of optimal control prob-
lems, second derivatives are established if J and E are twice continuously Fréchet-
differentiable. In [HPUUOS8, Section 1.6.5] this is carried out using the Lagrange
function based approach. As mentioned in the last section, in our setting the state
equation operator E is not continuously differentiable with respect to 7. Therefore,
a reliable way to calculate a second derivative 7”(7) cannot be expected from the es-
tablished theory. If we formally differentiate the integral representation (3.4.7) once
again with respect to v, we find that the second derivative of j is directly coupled
with the derivatives of the Lagrange multipliers G(y) and M (). Unfortunately, we
obtain that for an admissible direction 4 € S! the directional derivative dj(v,¥)
does not exist in general, since the directional derivatives (du(v,%),dG(vy,7)) and
(d\(7,7),dM(7,7)) do not exist.

However, we can provide an appropriate approximation of the second derivative of ).
More precisely, for an admissible direction 7 € S/, we approximate operator-vector-
products 7”()7 by the symmetric directional derivative

1
+ N U 1 oA AN S vy
&7 (7, 73) = Jim o {7(v+67) =7 (v—09)} (3.5.1)

of the first derivative j'(7):
In Lemma 3.5.1 we show the existence of the one-sided directional derivatives

(031,04 G,) = (d"u(v,7).d*G(7,7)) and
(05 1y, 05 Gy) i= (d"(y,7),d"G(7,7))-
In Lemma 3.5.2 we conclude in a similar way that
(632,65 M) o= (dTA(7,79),d" M(v,7))  and
(05 Ay, 05 My) 1= (d-A(v,74),d” M(7,7))

exist. Finally, in Theorem 3.5.3 we prove that j possesses right- and left-sided di-
rectional derivatives d*(v,7) and d=7(v,7).

We note that if right- and left-sided derivatives exist, the symmetric derivative also
exists and is the arithmetic mean of the latter two quantities.
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Lemma 3.5.1. For v € SF, let (4,,G,) = (a(7),G(7)) € HLQ) x H} denote the
solution of the Poisson problem E((,G),y) = 0. Then the mapping v — (i, G,)
has a symmetrical directional derivative with respect to v in all admaissible directions
v € 5. This directional derivative, denoted by

( U’W(S:tg’y) : (dia<77§/)7dig<’}/7fy))a

18 the arithmetic mean of the right- and left-sided directional derivatives (5,3;117, 5,3;97)
and ((57_ (N G,) and can be computed by solving the following state sensitivity equa-
tion

( (W%/tﬁw V@)LZ(Q)Q - <§~igw 7@>H}“,H,
=/%®vww Uﬁ+F(f7v) i € Hy() (@),
1

<'H,77Y(5 Uy) | /’H )G+ (t) ( ) dt, YH € HynL*(I)*.
( HV( )2
(3.5.2)
Here, I (0, f,7,7) i= 5 (58, £,7,7) +17(0, f,7,7)) and

. - N . A ~
L0, f,7,79) = 515& g(fW-HS’Y f% )L2(Q) Vo € Hy(Q) N H*(Q), (3.5.3)

N - N . A 2
(0, f7.9) = 51351_ g(fv-&-h f% )L2(Q) Vo € Hy(Q) N H*($2). (3.5.4)

Proof. Let us define the reduced state operator
: o A, = TG, — F
) = B, 6. = (MM RE ) e sa
Iy Uy

For a given § # 0 we investigate the following difference quotient of é(vy)

Dsély; ) = 5 {ely +9) — é()}

— 1 (Aa'y—&-éi - Ty*-i-éfyg'y—&-ﬁ - Fw—i—é&) . (Aﬁ'y - 7;*97 - ]'_7) _ (0) .
0 ~Ty+650y465 ~ Ty 0
Our aim is to rearrange the terms in the foregoing equation to obtain a linear system

for Dst(7; ) = § {liy165 — Uy} and DsG(v;7) := 3 {Gy165 — G, }. In a first step we
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obtain

1 ((Ty*—i-&’y Ty ) Grroy + (~7:~/+5w -7:— ))
(Tytov — To) Giysoy

=T, 0 ) \DsG(7:7) R5(0) ' o
Here, we used the definitions

Rl((S) =

Sl

1 /- .
(Tiss = T7) Gresne Ral0) = 5 (Frss— 7).

1 .
Rs(0) := 5 (Tri3 = To) Uyt

We test the linear system (3.5.5) with test functions (0, H). If § tends to zero from
above we obtain on the right-hand-side of (3.5.5) limits similar to the ones in the
proof of Theorem 3.4.1. In order to be able to apply the same techniques as therein
we assume more regularity on the test functions, i.e. (0, 1) € HY{(Q)NH2(Q) x Hi N
L*(I)*. We obtain for the right-sided limits

" . . .
éliglJRl(fs) 0) 1@ mi @) = lim (Tss = T7) G539 0) 13 ()16

.1 )
= lim —<Qw+5% (Towo5 = T3) 0) g 1,
-0+ 0

~ lim - / G530 (01 (8) + 53(8)) — (1 (1))

50+ O

/g7 HVO(y()T3(t) dt,

1 .
lim (M, R3(6)) iy i, = lim ~(H, (To1s5 — T,) Uyysy) iy m

6—0t 50+ 0

1
= - 515(% 5<H7 Tyu'y+5v>H* H,

H(t)Vu, (v(1)"7(t) dt,

Iy

I
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and with the definition (3.5.3)

N A .
lim (Ry(d), v >H1(Q) HYQ) = lim —<<]:v+ﬁ _]—“7) 7U>H1( ), HL ()

d—0+
= lim (fvﬂh fwﬁ)mm)
—0t
=1 (0 f 7 73)-

We note that the limit I (9, f,~,7) exist, but we do not have an explicit formula.
Now, to compute the right-sided directional derivatives

(031,,05G,) == lim (Dsi(v;7), DsG (73 7)),

6—0t

we have to solve (3.5.5) for § — 0T, which is
( (Vé;r’llfy, V'ﬁ)LQ(Q)Q - <(5;rg7, 7;@>H?7HI
=[GV AW+ 16, £ 7). Vo e HYQ) N Q)
I

— (M, T 0% ) s /’H, )G, (1) Hi()ni)dt VH € Hi N L¥(I)".

Analogously, to compute the left-sided directional derivatives

\

(05 @y, 05 G,) := lim (Dsti(7;5), DsG(7:7)),

e
we have to solve (3.5.5) for § — 0~, which is
(V05 0y, V) 1oy — (05 Gy, To0) 1y,

Z/Igv(t)w(’y(t)) F()dt +17 (0, fv. ), Vo € Hy(Q) N HA(Q),

— (H, T,05 ) iz 1, = H(t)G, (1) (Ht>(7;ﬁ( ) dt, YH € Hyn L*(I)*.

We call attention to the subtle differences in the right-hand sides of the resulting
systems for (031,,05G,) and (05 iy, 05 G,).
Finally, for the symmetrical directional derivative

(551, 62G,) = Jim = ({aly + 69) iy = 09)} {6y + %) — G5 = 59)))

(( u775+g'y) (5:;@7,5;@7))
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which can be computed by (3.5.2). O

Lemma 3.5.2. Let the assumptions of the previous lemma hold. Let (5iu7, 5*97) be

the symmetrical directional derivative of v — (1, Gy) and (Ay, M) = (A(y), M(7))
denote the solution of the fictitious domain formulation of the adjoint equation (3.3.6).
Then the mapping v +> (5\7,/\/17) has a symmetrical directional derivative with re-
spect to v in all admissible directions 7 € S!. This directional derivative, denoted
by

(650, 02 M) = (d*A(v,7), d* M(y,7)),

is the arithmetic mean of the right- and left-sided directional derivatives (6;r5\7, 5&+Mw)
and (5;5\7, 05 M) and can be computed by solving the adjoint sensitivity equation

(va Ay, V6) 12y — (05 My, To0) s / M. ( )T A(t) dt
+ [ St (@) de — 56, u07,5,00), Vo € HY(O) N HA(Q),
Qp
(M, TN /% ”7)(7;'”'(2’5) dt, VM e Hin A1),

(3.5.6)
HGT@, l (U Uq, 7Y 77 QT) = 3 (l+<’U Ud, 7Yy VaQT) +l (U,Ud,’)/,ﬁ/, QT)) and

R B ) 1 —~— —~— R R N R
l;_(U7 Ud, Y, 7, QT) = 51i>%1+ S<ud|QTQQ’Y+5’Y - ud|QTﬂQa,7 U)LQ(QT) Vo S H& (Q) N HQ(Q)a

P

o - 1 . R A A
I5 (0, ug, 7,5, Qr) = 51_1%1_ S<Ud|QTﬁQ’Y+5,Y — Uglogne,, 0)r2m VO € Hy(Q) N H?(Q).

Proof. The proof of this lemma is almost identical to the proof of the previous lemma.
Let us define the reduced adjoint state operator

w(y) = (AS‘V —TiM, — (ﬁx— Ud, ')L2(QTHQW)>

. Y E Sad.
_Tv)‘v ! ‘

For Ds\(v;7) = %{)\,Hg:}, — 5\7} and DsM(7;7) = 3 {Myys5 — My}, § # 0, we
( A —’G*) (DaMw)) _ (R4<6> +R5<6>> (357
T, 0 J\DsM(v:7)) R () ’ o

1 . . 1
Ry(6) := 5 (Tisy — T7) Mayss,  Re(6) = 5 (Thrs5 — T7) Aysovs

where

L.
R5(5) = 5 ((Uwéa — Uq, ')Lz(QTmQWH;Y) - (Uy — Uq, ')L2(QTﬂQ,y)> .
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The limits of 124(d) and Rg(d) for § — 07 are obtained as in the proof of the previous
lemma with (@, G) interchanged by (A, M), i.e.

. N N Py « .
511%1+<R4(5)’ U)H(}(Q)*,Hg((z) = lim g<( vy — T3 ) MV+5’3’7U>H§(Q)*,H§(Q)

.1
lim <H, R6<5)>H}‘,HI = lim —<H, (7;+5’y — 7;) )"‘/+5’~Y>H}‘,HI

5—0+ 50t 0
= [ HOVA((1)T(t) dt
Iy
Furthermore we find
51_i>%1+<R5(5)7 @>H3(Q)*,H3(Q)

.1, R N .

= 513(% 5 ((uwﬁ — Ug, U)L?(QTnQWM) - (u«, — Ud, U)L2(QTOQW))
. 1 R R R . 1 —~— —~— R

= Jlim < (dyis5 — Uy, O) 20 — Hm g(udhmmm — Udlorna, s V) 2(0r)

- ((5;;7?67, @)LQ(QT) - l; (67 Ugq, 7Y, :)/7 QT)

The equation (3.5.7) for 6 — 07 leads to

(

(V83 A V) e = (05 Mo To0) i, = /I M, (O)Vo(y(t)5(t) dt
+ / 05 1t (2)0(2) dz — 15 (0, ua, 7,7, Q) Vi e HE () N H*(Q),
Qrp
3 () ', (t
— (H, Tyéxj)\ﬁﬂfﬂl = H(t)Mv(t)M dt, VH € Hy N L*(I)*.
\ I 7@l

For the left-sided directional derivatives we have

(V65 A, Vo) e — (65 My Ty, = / M, (Voo (1) 4(t) dt

+ / 6';ﬁ7($)ﬁ($) dr — 12_('&7 uda’%’?? QT)a Yo € H&(Q) N HQ(Q),
Qr
A g t T t
—(H, T,05 \y) iy, = H(t)/\/lw(t)% dt, VH € Hyn L*(1)*.
\ I 2
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After all,

(50, 62 M) = o (6 A, 67 M0) + (05 A, 85 M)

N | —

can be computed by (3.5.6). O

We are now able to prove the main result of this section.

Theorem 3.5.3. Let the assumptions of the previous lemma hold. Then the first
derivative of the reduced objective function j has a symmetrical directional derivative
with respect to v in all admaissible directions v € S;, v # 0, which is given by

Y@ (7is(t) — 2i, (1),

+ [ e M

Proof. For an admissible direction 4 we define the operator
N SH — L),

Ay o YO
o M= N = gy,

With the derivative

d . . d ,, . . , .
%”7 + &5 = P ((71 + .571.)2 + (92 + 872)2>
=2((+e7)n + e +e¥2)72), V€S,

the directional derivative of N with respect to 7 in an admissible direction 7 € S is
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given by

. d N d () e (0)
AIN(v,7) = =Ny +&y)| =+ = (3.5.9)
de o dE|AC) +ev()ll2 =g
_ 3 +€; _ 5 . L
dvT(ﬁ 73) VT(7§)||7+57||§
_ @ -—M — &N _ -N (3 5 10)
de |17+ 93 1Y + €713
e=0 e=0
_ 3 +€L . SN . JNES
g (_7; _ z;l) (G + ey + (2 + £72)72)
—2 — (3.5.11)
17 + €713
) e=0
vTQﬁ)Hw@—mT(?)(m%+%%)
4! 4!
= o : (3.5.12)
11]2
and therefore
AT = 2y Al A AT (s — 20,0715 (172
e - A = i ML
2 2

Now, we calculate the right-sided directional derivative of 7 with respect to v in an
admissible direction 7 € S/ using the integral representation (3.4.7). We obtain

(45 (1 7), Asrs = Tim < {7+ 69), )5 — (1), A)s.5)
= 52%& g{/gw&v Moy 15 ()N 155(t) di
/ g, (t) N, (t )dt}
= Jim 5 [ a0 = 6,00 Moo 0N 1)
+ [ 0,0 (Mrsan) = ML) Nyt
[ G,0M,0) W) ~ A1) .

The equation (3.5.13) and the right-sided directional differentiability of G, and M.,
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from Lemma 3.5.1 and Lemma 3.5.2 lead to

MOWACY

@70 Mss = [ 670,00+ 6, 05:,0) T D o
507 (5(8) — 20, () (T 7(0) 150
+ [ 60m0 REIE o

Clearly, for the left-sided directional derivative of 7 with respect to v in an admissible
direction ¥ € S/ we obtain

C M 2\ = _ _ y(t) 7, (t
@70 s = [ 676,00+ 6,05 M,0) T D a
YT (715 (t) — 27, (£)7, () T (1)) || (¢
—|—/g7(t)./\/l7(t)7( ) ( 7( ) ”/( ) 72( ) v( )) HV( )||2 dt,
I 17113
respectively. As a consequence the symmetrical directional derivative of 7 with
respect to v in all admissible directions 7 € S is given by 3.5.8. O]

We summarize our results in the following algorithm:
Algorithm 3.5.4 (Compute the approximation of the second derivative j”(7)7).

1. For~ € ST, compute the solution (i, G,) of the state equation and the solution
(Ay, M) of the adjoint equation (as in the algorithm of the first derivative).

2. Compute the solution ((5%“&, (5;%9) of the state sensitivity equation (3.5.2).

3. Compute the solution ((%ij\, 5%5/\/() of the adjoint state sensitivity equation (3.5.6).

4. Obtain the symmetric directional derivative d*7(v,7) as an approximation of
operator-vector-products 7" ()5 via the integral representation (3.5.8).

3.6. Descent methods in a Hilbert space setting

In this section we present iterative optimization methods to solve the shape optimiza-
tion problem (3.1.1) using the differentiability results from the previous sections. In
detail, we discuss the gradient method, the BFGS quasi-Newton method and an in-
exact Newton-like method.

We assume that the optimal solution v* € S,q of (3.1.1) is an interior point of S,q,
i.e. 7* € int(Saq). Moreover, we suppose that we start with a strictly feasible interior
point 7% € int(S,q) and maintain strict feasibility during the optimization process,
i.e. all iterates v* satisfy v € int(S,.q).

With this assumptions we can consider the unconstrained optimization problem

A

fensiﬁr) i) = J((ty,G5),7) (3.6.1)
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instead of (3.1.1), and we avoid the difficulty® to implement a projection operator
Ps , : S(I) = Saa. We recall that (4., G,) is the solution of (2.2.1).

The first-order optimality conditions for a local minimum +* € S(I) of (3.6.1) reads
as follows: v* € S(I) satisfies

7(v") =0, (3.6.2)
cf. [HPUUOS, Section 2.2.1].
Definition 3.6.1. An element s € S!, C S(I) is called descent direction of j at v, if
J(v + 0s) is decreasing at 6 =0, i.e.

d .
—Jj(vy+0s)| = (7),8)ss <0.
do 5o

The steepest descent directions of 7 at v are defined by s = ddsq, & > 0, where dgq
solves

min (7(7),d)s+ g.
nin (7(7), d)se.s

We state the following general descent method:

Algorithm 3.6.2 (General descent method).
0. Choose an initial curve v° € S(I)
For k=0,1,2,... (until convergence...):
1. If(v*) =0, STOP.
2. Choose a descent direction s € Sl € S(I) such that (7(v%), %) s+ 5 < 0.
3. Choose a step size oy, > 0 such that j(4* + oxs*) < 3(7%).
4. Set AR = Ak 4 o8,

Since S is a Hilbert space, we can choose S* = S and V) (7’“) is the Riesz-
representative of the Fréchet-derivative 7(7%), i.e

(G (), %) g5 = (Vj(7F), s")g, for all s* € Sl (3.6.3)
If Hy, € L(S) is a symmetric and positive definite operator and Vj(7*) # 0, then
s" = —H_'Vi(v") (3.6.4)
is a descent direction. Clearly, we directly obtain

<j/<’yk)7 Sk)S*,S - _(vj<7k)a Hk_IVJA(’Yk))S < 0.

5We note that S,q is non-convex, and projection points in non-convex sets may be non-unique.

66



Typical choices of Hy € L(S) are given below. First, we will provide a commonly

used step rule, see [HPUUO08, 2.2.1.1].

Armijo rule:

Given a descent direction s* of 7 at 7%, and a parameter p € (0,1), choose the

maximum oy € {1,1/2,1/4,...} such that
IO+ os®) = J(0F) < porli(9F), 8N s s
Gradient method/steepest descent:
Choose Hy = idg in (3.6.4) and obtain
st = —Vi(").

This is a steepest descent direction of j at v* since

min (7(7*), 8" g5 = min (Vj(7*), s")s

lls¥]ls=1 l|s*[ls=1
> —[IVi)lslls"l1s

_ SRy Vi(y")
- (W ) wa@us);

BFGS quasi-Newton method:

Choose Hy = idg and use the BFGS operator update formula
(wk’ ')S k (Hkvk’ ')5 k
H.,=H+ —%—w' — ———"H, 3.6.6
at which

Y
w* = Vi) = Vi(yh).

The operators Hy,; are clearly symmetric. They are also positive definite if the
necessary condition (w¥, v¥)g > 0 holds.

Inexact Newton-like method:

If we assume that j(vy) is twice continuously Fréchet-differentiable with respect to ~,

than G(v) :=

Vj(~) would be continuously Fréchet-differentiable with respect to ~.

The classical Newton method for (3.6.1) is obtained if Newton’s method is applied
to G(v) = Vj(v) = 0. Actually, this procedure corresponds to the scenario, in which
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we would choose Hy = G'(+*): Thus, (3.6.4) turns to

which yields the classical Newton direction. If we identify G’(v*)s* € S with

Al

7"(v*)s* € S* than the previous equation leads to

J'(Y")s*, ses = =(VI(F*), s (3.6.7)

Since j(7y) is not twice continuously Fréchet-differentiable with respect to 7 in our set-
ting, we can still try to solve equation (3.6.7) if we replace 7’(7*)s* by the symmetric
derivative d*7'(~*, s*). Thus, we obtain

<dij,<,yk7 Sk)a '>S*,S - _(vj(fyk% ')S- (368)
If we transfer the idea of inexact Newton methods, [DES82], we solve

Ir*11s

dE7(v*, 8", Vg s = —(VI(*), Vs + (7, )g, where ——1° ;
(7 (7,5, Yses = —(VIF), s + (7, )s VieHs =™

(3.6.9)

instead of (3.6.8). Here, {m;}, with , = nx(7*) > 0, is a sequence to control the level
of accuracy. Obviously, nx = 0 gives (3.6.8). Now we can apply iterative solvers that
excepts operator-vector-products to solve (3.6.9) and obtain an inexact Newton-like
(descent) direction.
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4. Discretization of the shape
optimization problem

In this chapter we follow the “first optimize, then discretize* approach to solve the
unconstrained optimization problem (3.6.1) numerically. Therefore, we discretize
everything related to the state (@, G), the control -, and to functionals, integrals
and dualities, see Section 4.1. Then, in Section 4.3 we present finite-dimensional
counterparts to the descent methods discussed in Section 3.6.

This approach differs from the “first discretize, then optimize®“ approach from a
structural point of view, where all quantities in problem (3.6.1) are discretized a-
priori, and one solves the resulting finite dimensional optimization problem. For
more details we refer to [HPUUO08, Chapter 3].

We recall that the underlying objective function J in problem (3.6.1) tracks the L2
error of & with respect to a desired state uy in an observation domain 27 C Q). For
simplicity we use Q7 := ) in the following.

4.1. Mixed finite element discretization

Our numerical realization is based on a mixed finite element method. We introduce
two independent meshes, namely for the fictitious domain 2 and for the interior
boundary I, see [KP01, Section 3.

A

4.1.1. Equidistant mesh on the fictitious domain ()

On the fictitious domain 2 we use a structured, uniform mesh. For N € N, N > 3,

and AV 1= 1, we set
_ (N-1)?
= U Qi7
i=1
where Q;, i = 1,..., (N — 1)?, are quadrilateral elements with N? equidistant mesh
points

(zi,y;) = (G—=DRY, (j — 1)AY), i,j=1,...,N.

We approximate functions 4 € H&(Q) by continuous and piecewise bilinear functions
"N . Therefore, we introduce

VN = {6V € C%Q) : 0V]g, € Py(Q;) for all 1 <4 < (N — 1)},
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where P; denotes the space of polynomials, in two variables, of degree less than or
equal to one, and

Vo= {0V e VN 1N |0 = 0} =2 (¢, .., dv_2)2) € HY(Q).

The resulting ansatz for 4 € U" then takes the form
(N-2)?
k=1

4.1.2. Equidistant partition of the interval /|

In this part, we set for M € N, M > 2, and hM := 21—,

M—1
M-1
= U I
i=1
where I; = (t;,t;41), i =1,..., M — 1, are subintervals with M grid points
ti=0G—-1DAM, i=1,...,M.
We approximate function G € H} by piecewise constant functions G| and define

HM = Span{Xk }k: 1

where xM|;, = O, k,i = 1,...,M — 1 denote the characteristic functions of our
partition. This leads for GM € H }W to an ansatz

Zgl xXi(

Finally, we approximate curves v € S(I) by piecewise linear curves v™. Here, we
introduce

S ={" =R %N e C)* 4, (L) forall j =1,2, 1<i< M—1}

. span{<(1)> BM .. (O) B, ((1)) BM @ Bﬁ},

where BM are piecewise linear hat functions with B (¢;) = &, k,i = 1,..., M. This
leads to an ansatz for v € S of the form

AM
ZvMBM M = ( 1M) i=1,..., M. (4.1.1)

Y2,i
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Moreover, we obtain an approximation of
e the admissible domain 2, denoted by 2.,n C Q,

e the curved boundary I'y, denoted by

e the trace operator 7., denoted by

Tow 0% — 0¥ (51(),

e and the extension fty, denoted by

f}b{ ‘: {va in QWM,
Ml

0 in QiM.

4.1.3. The discrete state equation

In the following we replace the continuous quantities in the state equation (2.2.1)
by their discrete counterparts introduced in Subsections 4.1.1 and 4.1.2. Then we
obtain: For v € S, find (afh, Gl,) = (™ (v™), GY (vM)) € UN x H}' with

{ (Ve Vo) paaye — (G0 Tonso™ ) e, = (Foaa, 0™) gy, VOV € UV, (4.1.2)

—(HM, Ty uz i, = 0, vHM € HM.

Matrix notation allows us to rewrite (4.1.2) in the from: For vM € SM  find
~ ~ _9)2 _ .
(e, g%%0) = @V (™), g™ (YM)) € RV 5 RM™ with

AV T (e _ (Y (4.13)
-7 0 gn) L0 ) -

)T

A

SN (~N N T M _ (M M
Here, do = (@7, ..., 4y _2)" and 9o = (9", 9n1

(ﬂiVM, %4) e UN x HM | the matrix AN = (df}[) with

are the node vectors of

i = / VO (2, ) VO (2 y) d(a,y)s i) = L., (N — 2,

is the finite element stiffness matrix. Moreover, Tﬁ’lM = (th) with

oM = M T @), i=1,0. M =1, j=1,...,(N —2)%,
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is called the trace matrix and the vector ij\fv}M = (fMM) is given by
i [ e )® ) dlay), i= T, (V-2
Q

Theorem 4.1.1. Let v € SM of the form (4.1.1) satisfies the two conditions

e= (O — WD+ (3 — D2 > 2VaRY, =1, M =1, (414)

<X£W7 TyM(I);V>H}*,HI # 0, <X]]g\/[7 7;M(I)§V>H;,H, # 0,k #1i

, , (4.1.5)
— k=i1—1Vk=1+1.

Then the discrete saddle point problem (4.1.3) is uniquely solvable.

Proof. The finite element stiffness matrix AN s symmetric and positive definite.
T
Therefore, (4.1.3) is uniquely solvable if and only if ker (Tﬁ;M> = {0}. We have

T T
ker (Té\]@M > = {0} = (TW%M > g"" = 0 implies g™ =0
M-1
= Z g,fw<Xl]-W,7;]\/I(I)§V>H;f’HI =0forj=1,...,(N —2)? implies g_]M = 0.
i=1

Since ¢; > 2v/2h there exists an index k € {1,..., (N — 2)?} such that

<X€J,7;M@2V>H;,HI#O and
M T ®Y Vs, =0 fori=2,3,..., M — 1.

We obtain
M—1
Z g O T @ e, = 0t A T @ ) grm, =0 = gt =0.
i=1
Proceeding by induction assume that g)/ = --- = g™ = 0 for some [ € {1,..., M —1}.

Then there exists an index k € {1,..., (N — 2)?} such that

X Ty @ Y uz i, # 0,
<Xl]\<{177ij(I)]kv>H}‘,HI #0 and
<X?477;M®£V>H;,HI =0 forallie{l,...,M —1}\{l,l+1}.
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Now we obtain with the induction hypothesis

M-—1
M M N M M N M M N
S g oM T ® ) i, = 9 O3 T @ Vs, + ity (s Ty @R Vi,
=1
M M N M
=g (X, T @ g, =0 = g4, =0.

It follows that g{’ = --- = g}{_; = 0 and therefore g™ = 0. O

In [GG95] the authors prove error estimates for a slightly different setting. The
result is mainly obtained by verifying a uniform inf-sup condition (also known as the
Ladyzenskaja-Babuska-Brezzi (LBB) condition) assuming that the mesh on I',ais
sufficiently large compared to the size of the grid on ). Due to our numerical com-
putations we suggest an even higher ratio N : M to avoid oscillations of the discrete
Lagrange multiplier GM. Full details are given in Chapter 5.

4.1.4. The discrete adjoint equation

In this subsection we state the discrete counterpart of the adjoint equation (3.3.6).
First of all, we rewrite the right hand side of the first equation of (3.3.6). Using
Qp := (), the notation

4w in 2
i Ry (@) = dlo, = v

and the fact that R, (4,) = i, = 0 we obtain

~

(ty = ua, D) r2(07n0,) = (Uy — Ug, 0)120,) = (Uy — Ry(ua), 0) r2(q)- (4.1.6)
Let

ul =Ny = Z udZ (x,y) (4.1.7)

be an approximation of ug on a fine grid (N > N), where IV : L2(Q) — U denotes
a continuous interpolation operator. )

In view of equation (4.1.6), we implement the following approximation RJWVMM (ud) of
R (uq): Set all coefficients u}; in (4.1.7) to zero, if the corresponding mesh points are

contained in 27,,. This modified coefficients are denoted by ul;|,m and we obtain

Iy

(N-2)?
N,M v
R»YM (uév) = Z udz|’qu)£v<x7y)'

=1
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Now, let

(N-2)?
)‘N(xvy) = Z /\zj‘v(sz'v(xay)v Zp“z Xz 7
i=1
and 4fy = S 2" 4NON be the solution of the discrete state equation (4.1.2).

The discrete form of the adjoint system (3.3.6) then reads: Find (XQVN[,M%U =
(AN (M), MM (3M)) € UN x H

(VS\,];ZM, V@N)LQ(Q <M M TM'IA}N>H;’HI

= (@ — RN (u)),0™) oy, VOV €UV, (4.1.8)
- <HM77;M/A\]7VM>H;,H, =0, vHM € HY.

Note that we have different ansatz functions for ﬂfYVM e UN and uév € UN. Let
N —1= (N —1)2! with [ > 0. For the ansatz functions on the resulting hierarchical

grids we can determine coefficients rNN, i=1,...,(N=22 j=1,...,(N —2)?
such that

N (z,y) = Z rNNON (2 y), i=1,..., (N —2)%

or equivalently o

oY = RNV QN (4.1.9)
with @~ := (&N (z,y),. ) CI)?][\,?Q)Q (z,y)T, Y == (®N(z,y), ... ,@36’{_2)2(@ y))* and
the matrix RNY = (TN’N).

)

If we test the first equation of (4.1.8) with o~ = ®¥

1 )

we obtain for the right hand

side
) (N-2)? (N-2)?
A N,M/ N A V V
(UZWVM - RVM (uilv)aq)iv)w((z) = ( Z ay o — Z uil\,[l"yM(I){V7q)z]'V)L2(Q)
k=1 =1
—2)2 (N-2)2 (N—Q)2 ) ) )
Z CI){4:\]7 q)N L2 Z Z uil\,[l”yM ((I){V7 q)j\[)LQ(Q)
k=1 =1

Together with the finite element mass matrices BY := (bN ),

by 22/9‘1% WO (@,y)d(z,y), iG=1.... (N2,
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by = /QCPN(I‘ WOY (z,y) d(z,y), i,j=1,....(N—2)

N
the equations (4.1.8) lead to the system: Find (/\ M,,uj\{w) = (A (M), pM(HM)) €

RWV-2% y RM—-1 with

AN (@MY (AL BVaY — RV (BN )
_T,YM 0 H,y]\/f 0
where i,]va = (AN, .. )\é\]]\, 2)? )7, and pM = (p’, ..., pj7_)" are the node vectors

of (S\iVM,M%[) = UN x HM and w) | o= (ufy|onr,. .. 7'1,L§7[(N72)2’7M)T is the node

vector of Rfky (u}). Clearly, (4.1.10) is uniquely solvable by Theorem 4.1.1.

4.2. Approximation with respect to the reduced
objective functional )

4.2.1. An approximation jV:M)

functional )

of the reduced objective

We set SM := HY(I)?. For given v™ € SM c SM let (i MGl € UN x HM be
the solution of the discrete state equation (4.1.2), and u} as in (4.1.7). Then, the
function

A SY o R,

1 X _
P 5 [ (@t — ) do ),

denote the discrete approximation of the reduced objective functional ).
Using the relation (4.1.9) given in the previous section, we can evaluate jV-M)(y
via

)

. L. X
](N7M)('7M) = §||U{yVM o NH%Z)(Q)
1. e _
- e - @ i

= —H( W)TRMNEN — (@) N7,
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With the definition PNV : (RN N )T we have

JEA (M)

1 o . _ R _
= SIPY AN TEY — (@ RV 2,

—H(PNN o = g )Tﬁ)NH

4.2.2. An approximation 7, of the outer unit normal vector 7,

For a discretized curve v = Zz AN BM € SM let i = (ng 4, ng )T denote
the approximation of the outer unit normal vector 7, along the boundary part I',.
In the first place we define unit vectors that are orthogonal to the line connecting
the points M and 7Y,

0 1\, -

n — —
1740 = 7M1,

Codi=1,...,M—1.

i

Now, we define the approximation 77, of the normal vector 7i,v at t;, i = 2,..., M —
1, i.e. in boundary points M of Y,
M aux —aUuxX
~ ni., 1+ n;
n’YM (tl) = ( }\’;) = —’aux —’aux ’
ndl) = e e
Moreover, we collect the components n%, n%, in vectors
M/ My . M M T M-2
m (") = (nl,za e ﬂh,M—l) eR ; (4.2.1)
My . M M T M—2
my (VM) = (n2, ooy y) €RYTE (42.2)
We approximate the set of admissible directions S’ by S; M= span(gpi M-y gpi\/]{{ b,

where '
@i (t) == (B)BY (), i=2,...,M—1.

An admissible direction ¥ ¢ S;M C SM can be written as

M-1 4
= > 3. (4.2.3)
j=2
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4.2.3. An approximation V) (yM) of the first derivative 7(7) of
the reduced objective functional )

For given M € SM < SM | let (u M QM ) € UN x HM be the solution of the discrete
state equation (4.1.2), and (A7 M) € UN x HM be the solution of the discrete
adjoint equation (4.1.8). Then, the function j™M'(yM): 8!, — R, with

o (t)TﬁvM (t)
15 @)1l
denotes the discrete approximation of the Fréchet-derivative j'(7y).

In the first place we evaluate ™M) (M) at the basis functions of S, therefore we
define the vectors

G0N, M)y = [ G103 1) at, v € S,

(GEAD! (M), (%)B%(SM)*,SM
FV (M) = e RY2,
<]( (M), (6

NM)/ ) ( é\/[> SMY)x gM
jQ(N’M)(’yM) — c RM-2,

(GNMY (M) (?)BM—1>(SM)*,SM

)BM 1) (SMy= sM
1)
1

Then we obtain the vector

N,M A A —
j,y(M ) = ((j(N’M)/<")/M), g0,2yM>(5M)*73M, RN <j(N’M)/(’yM), gof‘y{w 1>(s]\/1)*7slw>T (4.2.4)

as the sum of two Hadamard products!

N,M N,M N,M
T = T (M) ot (PM) + Z 0 (M) o my! ().

4.2.4. An approximation VjV:") (M) of the gradient Vj(v) of
the reduced objective functional )

The equation (3.6.3) in the finite-dimensional setting reads

<j(N7M)/(ﬁ)/M)’ 8M>(S]W)*,S]\/I = (Vj(N’M)( M) M)sM’ for all SM - S,/YA/I. (425)

v7)S

Let vectors A, B € R", and vectors #; = (v14,72,;)7 € R%, i = 1,...,n be given. Then, for
Z € R™ with Z; := (fT)T (gl) = xl,iAi + .'L‘Q,iBj,’ i=1,...,n, we obtain Z = Ao 61 + Bo 52,
where &1 = (z11,...,21.,)7 and & = (221,...,22,)T € R™. Here, - o - denotes the entrywise
product (Hadamard product) for matrices, i.e.: (Ao B);; = (A);j - (B)sj-
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M

Using the basis {¢2., ... ,gp%{l} of S/, the ansatz VN (M) = S g Y
leads to the following system of equations:

M—1
Z dZM((PfyM, SD?YM)SM = <j(N7M)/('7M)7 Soz/M>(SM)*,SMa J=2,...,M -1 (426)
=2

With the definitions (4.2.4) and

M-1

1,J=2

E% = <(90fyM, SOiNI)SAI>

we immediately obtain the following linear system to compute the node vector gl%l =
0V (M) = (@, )T of VI ()

DM, = g5 (4.2.7)
For the (i, j)-th entry of the matrix 5%4 we obtain

(D), = (oo

== (ﬁ,yM (tz)BM T_i M(tj

i 0]

oM = (BM BM) =2 M—1,
L2(I)
is the finite element stiffness matrix, and BM := (8}) with

M= (B, B}

y ) ey I =2 M-,
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is the finite element mass matrix. Therefore, we obtain?

Dl = (AM 4+ BM) o (n (y") (M) +m" M) (" ()T -

4.3. Finite-dimensional descent methods

In this section we investigate finite-dimensional approximations of Algorithm 3.6.2.
Algorithm 4.3.1.
Mo

0. Choose an initial curve (v € SM  and a symmetric, positive definite

operator HY € L(SM)
For k=0,1,2,... (until convergence...):
L If VA ((yM)F) = 0, STOP.

2. Compute a descent direction (s™)F € SévM)k c SM from
HY (s")F = =W (M), (4.3.1)
3. Choose a step size o, > 0 such that
FEM((ME 4 ai(sM)F) < JED ().
4. Set (yM)EHL = (yM)F 4 g (sM)E,

5. Choose a symmetric, positive definite operator Hﬁl € L(SM),

4.3.1. Finite-dimensional gradient method

In Algorithm 4.3.1 we choose HM = idgm for all k. To obtain the steepest descent
direction (s™)* in (4.3.1), we compute the gradient Vj-*)((+M)*) and set

(sM)F = =V ((M)E). (4.3.2)
Thus, using the ansatz (s™)* = Zi]\igl(sf”)kgozwf)k and equation (4.2.7), we obtain
the following relation to compute the node vector §%M)k = (3% ... (s _))F) of

2Let matrices A, B, C, D € R™ " and vectors & = (z14,72,) € R? i = 1,...,n be given.
Then, for Z € R™"*" with

=2\ T A'L] B’L] -
Zij = (T) (Cij Dy, ) i = ol + oBiee, £ w20t g + 220Dz,

we obtain Z = Ao (§(&)7) + Bo (&1(&)7) + C o (&2(6)") + Do (&(&)7), where & =
(11, 21)T and & = (221,...,22,)T € R™.
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the finite-dimensional steepest descent direction (s*)¥. We have

M _ M
Sy = ~dyanye
or equivalently, -
~ N,M
D%NI)kﬁ%lﬂ)k = —‘7(71\4);c . (433)

4.3.2. Finite-dimensional BFGS quasi-Newton method

In Algorithm 4.3.1 we choose H}! = idgn and use the discrete version of the BFGS
operator update (3.6.6), i.e

()" Jsr ey P o

M ?}M k 3.
™, (W) (HE (T, (o 0 ) (430

Hp'y = Hy' +

at which

(UM)k — (,YM)k—H _ (7M k

(W) = VM (M) — N (M),

At the kth iteration, we use the basis {gpaM)k, . @%A};k} of SE’YM)k and the ansatz

(sM)k = Zi]\igl(sy)kgpévjw)k. Then, with the relation (4.2.5) the equation (4.3.1) in
Algorithm 4.3.1 leads to the following system of equations:

M—-1
Z H/iWSO M)k,@z M)k)SM
=2
= =M, Gloprge) sy sms G =2, M =1 (4.3.5)

With (4.2.4) and the definition

ﬁ(]\fM)k = ((H]iwgpé,yju)k,SO{VN[)]C)SIVI>Z;: (4.3.6)

we obtain for (4.3.5) the linear system
st = =T 000 (4.3.7)
to compute the node vector sy := ((s3")", ..., (s37_1)")" of the finite-dimensional

quasi-Newton direction (s)*.
For k = 0 and Héw = idgm we obtain H(]\fM)O = D%M)O. In the following we describe

the update-process of the matrix H (J‘fM)k.
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First of all the update for the operator H leads to an update for the matrices

1= (Y (3) B () B s )y HY o= (Y () BY () BMsw) .
2

NBM, (9)BM)su):

7,j=2"
which are independent of (y*)¥. Indeed, the (i, j)-th entry of the matrix [AJ(J‘WJM),CH is
given by

. T (Hliil) (Hlifl) —
= 1 tz — 1 t 5
(7 yrryen (1)) ((Hiiﬁw (1122), Ty (t5)

i.e.

HM e = Hly o (" (™MD (" (M) )T)
+ Hy?y o (m" (M) (M)E)T)
+ Hyly o (m! (7 k*l)(n{”((vM)’““))T)
+ Hpl o (" (M) (M)H)T)

The choice of HM = idgum leads to Hy' = Hy? = AM + BM and H)> = HY' =0 ¢
RM=2)x(M=2) * With the update formula (4.3.4) we derive update formulas for the
matrices H,', H)®, H7' and Hp*. For the (i,7)-th entry of the matrix H,iil we
obtain
(H;il)w = (Hﬁl((l))Bz]WJ (%))BJJW)SM
= () B (3) B s+ W BB s (), (3) B )
S ’ (), (@M)F) g0
MR (8) B s (HE (0M)E, (§) B} 5o
(HR" (MR, (0M)F) o '

With the definitions

(@I = (™), () B )sar, .., (wM)F, (3)BM_)ear) "
(@I = (((™)*, (9) B )sar, ., (wM)F, () BY_ )gar) "
(M) = (HM (M), (5) B sor, -, (HM (0™, (§) B )su) "
WA = (M (M) () B sor, ..., (HM (0™, (9) B )su) "
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this leads to

o 1, (@DF (@) (D* ((4")

b = T (i ()R g (HY (M), (07 ) s

and analogously
A (e N e (C ol
vM))sa (HRT (0M)E, (0M)F) g’

(
E((wh))" W) ()"
(

()Y (HM (WM)E, (0M)F) g
WIF ((wh)F)" () (WA)*)"

b M) g (HY (MR, (0M)F)gur”

In the following, we provide formulas for the vectors (wM)* (WD), (vM)* and (v21)*,

as well as for the values ((w*)*, (vM)*)gn and (HM (vM)k, (vM)*)gn. We have

(@INF = (((™)*, () B s, ., (wM)F, (3)BM_)sur)

(v <NM<<7M B (VB sor, - (VM (M) (3) B ) o)

— (V3 ((y k>(>BM s (VI (M), (1) BY_)en)
= JM (MR — (4 M>k>,

(@3 = Z (M) = B (M),

M M

T

T

With (0M)f = ()54 = (1) = 0 (M) = 00 U5 (1)L ey we obtain

(2

W)F = ((HY M), (3)BE ) soe, -, (HY (0M)F, (§) By )sm) "

For the expression ((w™)* (v™)k)gu we get

(™) @) F)gn = (VI = VI, M) = (M) s
= ok ) (VI (M) = M), ) s

= o ((sM)9)" ((@)F o nl ()9 + (@b o md (7*)F).
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and finally we obtain

4.3.3. Finite-dimensional inexact Newton-like method

In this subsection we outline the procedure to compute the node vector of a descent
direction candidate based on the symmetric directional derivative d*j'(v,7), compare
(3.6.8). Therefore we write down discrete versions of the state sensitivity equation
(3.5.2) and the adjoint state sensitivity equation (3.5.6). Then, we formulate a
discrete approximation of d*7(7y,7) given in Theorem 3.5.3. This is carried out with
two s1mphﬁcat10ns On the one hand we neglect the terms (9, f,7,7) in (3.5.2)
and I3 (0, ug, v, 7, Qr) in (3.5.6) in our approximation, on the other hand we use the
same ansatz functions, namely (0%, HM) € UN x H M for the test functions as in
the discrete state equation from Subsectlon 4.1.3.

The discrete versions of the state sensitivity equatlon (3.5.2) and the adjoint state
sensitivity equation (3.5.6) read as follows: For v™ € SM, Qp = Q, let (u M %1) €

UN x HM be the solution of (4.1.2) and ()\]\Cu, M) € UN x HM be the solution of
(4.1.2). Then, for given 3" € S, find (4 MuNM,&MQ ) € UN x HM such that

(V(SiM ANM7 VﬁN)H(Q)? - <5ang%fv 7:yMﬁN>H}2HI
_ / GM, ()WY (VM (£)) T3 (2) dit, ol e OV,
1
6 (t
— (MM, Ty 05 adh) /HM M ( H(’y) (")” (®) dt, YHM € HM.
2

As well, find (5515\,%4, 5$MM%1) e UN x HM such that

" (V(S:t 5\ M,V{)N)LQ(Q <5 M M,TMU > ©H,
/ M AMENTAM(t) dt + / 0% e ()" () da, VN € UV,
AM(E) T (
— (MM, TM5 A NV /HM M )w dt, vHM ¢ oM.
\ Y 2
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Moreover, let the function d*j-M) (4 M FM) . S'w — R, with

(d= M (M OZMY AMY Garye gu
i M M i M FM(t T (t)
/ (GRG0 M3 1)+ G ()55, M (1) g
FM)T (7gar (t) — 20800 ()00 (£) Ttz (£) 7™M (8)]]2
1 CEAOOR EEOIE o
vt e S,

denote the discrete approximation of the symmetric directional derivative d*7'(vy,7)
(which itself is an approximation of operator-vector-products 7”(v)%).

In view of (3.6.8), the equation (4.3.1) in Algorithm 4.3.1 leads to the following
system of equations:

<dij(N’M)/((7M)k, (SM)k), SD‘Z,YM)}C>(S]\/[)*7SM
— _<j(N7M)/((ryM)k)’ 90] M)k>(SM)*,SM’ ] = 27 e M — 1. (438)

(v

Now, we define the vectors

(d=j M (M, ?M), (6)B2") sy s
A7 (M EM) = €RY™,
<di NM)/ ((1)) BM 1 Y
(=g AD (M M), (?) By! > 5y 5
a7 M EM) = ERY™,
(d*JA0 (M M ), (9)BA-1) (52 g1

similar to the case of the first derivative, cf Subsection 4.2.3. Then, as in (4.2.4) we
obtain the vector

<dij(N’M)’(’yM,ﬁ/M), 903M>(5M)*7SM
dg M) = : e RM~2
(d= M (M FM), I (sye g
N,M - N,M) -
= a7 MG 0! (M) + T (M EM) 0 ! ().
Finally, with the definition of the mapping

KM RM72 5 80, — RM2 (4.3.9)
P M dg G M), (4.3.10)
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the system of equations (4.3.8) can be rewritten as

o N,M
K%A{)k(é%M)k) = —g7((,yM)k). (4.3.11)
Iterative methods which can handle operator-vector-products K (J‘;IM) X (jM ) are applied
to solve (4.3.11) numerically. We summarize that at the kth iterate (v™)* we have
to solve the discrete state and adjoint equation once. Then, for each operator-vector-

product K (J‘fM)k(jM ) we have to solve the discrete state sensitivity and adjoint state
sensitivity equation once.
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5. Numerical experiments

5.1. Discrete fictitious domain formulation

We study the stability of the linear system (4.1.3) by numerical experiments. Given a
fixed discretization parameter N, we compute the numerical solutions (fLZWVM, g%) €

VN x HM for different values of M. With increasing values of M we improve the
approximation 7™ of ~, but we observe escalating oscillations of the Lagrange mul-
tiplier Q%, see Figure 5.1, cf. [KPO1].

\ FAIA A
| wm |

0 0.2 0.4 06 0.8 10 0.2 04 06 08 1

0 0.2 0.4 0.6 08 10 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 10 0.2 04 0.6 0.8 1

Figure 5.1.: The Lagrange multiplier g% for a fixed parameter NV and different values
of M.

As presented in Figure 5.2, the oscillations of g% do not only depend on the ratio

of N and M, but also on the intersection configuration of ¥ with the underlying
mesh for ﬂZWVM.

In general, for v € S,q the exact solution (4,,G,) is not known, although we
can easily construct an exact solution in the case where I', is the graph of a given
function, or v is a closed curve. According to [HPUUO8] we compute alternatively a
reference solution (@, GM) := (ﬁiVM, (]%) on a fine grid where no oscillations of G,

occur (N = 212 +1 = 4097 and M = 28 + 1 = 257). Then we evaluate the errors
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Figure 5.2.: Numerical solutions (ﬁJVVM, Q%) where v intersects the underlying mesh
in different angels.

y 0 o X y 0 o X y 0 o X

(a) N =65, M =5 (b) N =257, M =17 (¢) N = 1025, M = 65

Figure 5.3.: Error functions @Y — 4%, on different discretization levels.
d ¥

|ad — @ || and IgM — g% | for different norms. The error @} — ﬁnyM is maximal in

the neighborhood of I\, see Figure 5.3.

In the following we introduce the Ezperimental Order of Convergence (EOC). For
a function w and its numerical approximation w;, we assume an error estimation of
the form ||w, — w|| < Ch® in an appropriate norm || - || with a convergence rate a.
Now we can estimate the convergence rate a via

1 —wl|)) =1 -
a EOCw(hl,hQ) = Og(”whl w”) Og(Hth w“)7 (511)

log(hy) — log(hs)

where wy, and wy,, denote two numerical solutions for different discretization param-
eters h; and hy. We use the abbreviations EwL2 for the error in the L?norm, F,,
for the error in the L*®-norm and E for the error in the H'-seminorm.

Wsem

In Table 5.1 and Table 5.2 we present the EOCs of the state variables ﬂiVM and Q%
for two different examples of 7M.

sup
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N M Eu.,, BEOC Bu,,, EOC Bu.. BOC Eg, EOC Eg,, EOC

257 17 0.002191 - 0.008606 - 0.190050 - 0.4966 - 3.1315 -

513 33 0.001031 1.087 0.003072 1.486 0.128437 0.565 0.2615 0.925 1.9227 0.704
1025 65 0.000443 1.219 0.001326 1.212 0.083734 0.617 0.1330 0.975 1.0420 0.884
2049 129 0.000148 1.584 0.000569 1.222  0.048260 0.795 0.0616 1.111 0.4235 1.299

1%} 1.297 1.307 0.659 1.004 0.962

129 17 0.004571 - 0.013572 - 0.273752 - 0.5096 - 3.2372 -

257 33 0.002218 1.043 0.006560 1.049 0.188423 0.539 0.2702 0.915 2.0029 0.693

513 65 0.001035 1.099 0.003143 1.061 0.128101  0.557 0.1423 0.925 1.0971 0.868
1025 129 0.000444 1.222 0.001399 1.168 0.083671 0.614 0.0769 0.889 0.4424 1.310

%} 1.122 1.093 0.570 0.910 0.957

65 17 0.009383 - 0.026943 - 0.395202 - 0.5398 - 3.4111 -
129 33 0.004598 1.029 0.013459 1.001 0.272786 0.535 0.2852 0.921 2.1064 0.695
257 65 0.002222 1.049 0.006597 1.029 0.188227 0.535 0.1506 0.921 1.1602 0.860
513 129 0.001036 1.101 0.003125 1.078 0.128065 0.556 0.0832 0.856 0.5039 1.203

1%} 1.060 1.036 0.542 0.899 0.920

Table 5.1.: Errors and EOCs for 4, and GJ7, (first Example).

N M Eu,, EOC Eu.,, EOC Puy, BOC Eg, BEOC  Eg,  EOC

257 17 0.030079 - 0.179247 - 0.979726 - 3.0322 - 18.1031 -

513 33 0.007580 1.989 0.072414 1.308 0.469020 1.063 1.7365 0.804 12.5769 0.525
1025 65 0.001902 1.995 0.024563 1.560 0.214587 1.128 0.8847 0.973 7.0653  0.832
2049 129 0.000410 2.213 0.006368 1.948 0.090080 1.252 0.4087 1.114 2.8637 1.303

(%) 2.066 1.605 1.148 0.964 0.887

129 17 0.030286 - 0.176336 - 0.962182 - 3.0521 - 18.4418 -

257 33 0.007841 1.950 0.070859 1.315 0.455037 1.080 1.7513 0.801 12.9625 0.509

513 65 0.002102 1.899 0.023602 1.586 0.218911 1.056 0.8893 0.978 7.0590 0.877
1025 129  0.000550 1.934 0.005682  2.055 0.110024 0.993 0.4110 1.114 2.9266 1.270

%] 1.927 1.652 1.043 0.964 0.885

65 17 0.031141 - 0.168331 - 0.954532 - 3.1496 - 19.8796 -
129 33 0.008515 1.871 0.067720 1.314 0.469079 1.025 1.7697 0.832 13.2528 0.585
257 65 0.002707 1.653 0.021456 1.658 0.247158 0.924 0.9127 0.955 7.6771  0.788
513 129 0.000956 1.502 0.004863 2.141 0.148968 0.730 0.4341 1.072 3.2172  1.255

1%} 1.675 1.704 0.893 0.953 0.876

Table 5.2.: Errors and EOCs for ﬁfYVM and Q,%, (second Example).

5.2. Discrete shape optimization examples

5.2.1. Comparison of different descent directions

The crucial step in Algorithm 4.3.1 is the choice of the operator HM € £(S™) and
the computation of the resulting descent direction (s™)* Siyarye- In the following

example we compare and discuss the descent directions presented in Subsections
4.3.1-4.3.3.
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Figure 5.4.: Desired state 1297 (left) and initial state ﬂ% (right) from Example 5.2.1.

}( ) I ( )7 3 I ( )

and f(z,y) = 40. For N = 2'2 +1 = 4097 and M = 2% + 1 = 257 we compute an
approzimation vy := v} of v and a reference solution (4}, G}") = (ﬁiVM, Q%), which
serve as the desired shape and the desired state in our optimizatz'ondpmbgllem. The
optimization process is performed with N = 2% +1 = 1025 and M = 2° + 1 = 65.
As an initial quess v° we use

M
) =Y _FBME), M =(v(1) = ()t + 7(0), i = 1,..., M.

i=1
which is just the straight line between the points y(0) and (1). With ~° we compute
the initial solution (ﬁfy\ﬁ, g,%) The desired state @ and the initial state 11% as well
as the desired shape €., and the initial shape Q0,0 are visualized in Figure 5.4.
In the first test we study the Algorithm 4.3.1 using the steepest descent direction
computed via (4.3.3) (see Figure 5.5). Starting with the initial curve v° the algorithm
produces a sequence of curves {5} that converges to the desired shape v,.
In each iteration step we have to solve the state and the adjoint state equation. Since
N =~ 2*M we obtain non-oscillating Lagrange multipliers g,g{, Mf:{ in each iteration.
These functions can be seen in the left column of Figure 5.5 for selected iteration
numbers k (gﬁ{ in blue, /\/l% in red). With g% and M% we compute the derivative

GIM(NRY and the gradient ViNM(y*). As illustrated in the middle column of
Figure 5.5 we plot a piecewise linear function interpolating the points

(tj, (7 ) j=2...,M—1, (5.2.1)
J
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(blue curve) and a piecewise linear function interpolating the points
M -

(red curve) to visualize the derivative JNM(v%) and the gradient Vi) (4%) ) re-
spectively. We observe that the points in (5.2.1) are sensitively dependent from the
Lagrange multipliers. Instabilities in the Lagrange multipliers are immediately car-
ried over to the coefficients in Jv(,iv’M). Nevertheless, occurring roughness in (5.2.1)
is smoothed out in (5.2.2).

FEventually, in the right column of Figure 5.5 the desired shape 4 (red curve) is shown
together with the k-th iterate ¥* (blue curve). According to the descent direction, the
arrows indicate the direction of the movement from +* to the next iterate v*+1.

It turns out that the steepest descent direction is very inefficient. We obtain a small
decrease of the values j™M) (v*) in each step and a slow convergence of v* to v4. Af-
ter 8015 iterations, the optimization process terminates due to the stopping condition

™ = o, < VT 4+ ).

Next, we discuss the application of the BFGS quasi-Newton descent direction, which
we obtain by the update formula (4.3.4). The BFGS quasi-Newton method approx-
1mates the Newton descent direction, but it avoids to evaluate the second derivative
directly. Since the BFGS method performs well in practice, it is commonly used in
the optimization community. In our example, using the BFGS descent direction, we
observe a major improvement with respect to the convergence rate in comparison to
the steepest decent method. We emphasize that the matrix H(]\;[M)k in (4.3.6) can
be evaluated exactly without large numerical effort. The algorithm stops after 116
iterations with

9115 = 710l < VIOTE(L+ 911

The BFGS method stops at a function value of ™M) (4116) =~ 2.41-1077.

Regarding the iteration number and the decrease of the function value we can do bet-
ter, if we use an inexact Newton-like method, which we will describe in the following.
In this method we obtain the descent direction by solving the system (3.6.9) itera-
tively, and therefore only approximately. In our computation the iteration stops if
the relative residual achieves

% <0.1. (5.2.3)
IVI(v9)ls

Naturally, we need a sufficiently good initial guess v° to obtain a convergent inexact
Newton-like method. In our example we cannot compute the inexact Newton-like
descent direction for the given starting curve ¥°. Hence, we have to perform six
BFGS quasi-Newton steps until the algorithm switches to inexact Newton-like steps.
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Figure 5.5.: Numerical results for Example 5.2.1 (Gradient method). Left column:
Lagrange multipliers G.x (blue) and M.« (red). Middle column: Visu-
alization of the Fréchet-derivative (blue) and the gradient (red). Right
column: shape of the k-th iterate 4* (blue) and the desired shape 74
(red).
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Figure 5.6.: Numerical results for Example 5.2.1 (BFGS quasi-Newton method).
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Left column: Lagrange multipliers G.» (blue) and M.« (red). Middle
column: Visualization of the Fréchet-derivative (blue) and the gradient
(red). Right column: shape of the k-th iterate v* (blue) and the desired
shape 4 (red).
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At a total number of 22 iterations the optimization process terminates at jN-M) (7?%) ~
1.28 - 1077 with

17 = 7 oo < VI02(1 + [[77?]|o0)-

In Figure 5.8, the convergence history of all three methods can be seen.

Inexact Newton-like method
Y ——— BFGS quasi-Newton method
o 107F Gradient descent method 3
=
g
3

o 10
o
=
-~
2 4

107
£
=l
8 s
= 10
=l
&

10®

107 I . . L L

0 20 40 60 80 100 120

Iteration count

Figure 5.8.: Convergence history for the Gradient descent method, the BFGS quasi-
Newton method and the inexact Newton-like method performed in Ex-
ample 5.2.1

5.2.2. Convergence behavior of the control variable ~

In the following example we analyze the convergence behavior of the control variable
7.

Example 5.2.2. Let
Y1) = (n (), 2(0)",

where v, is the one-dimensional cubic spline for the data

1234
X = (0,— 25450 1), Y =~ (0.00,0.27,0.46, 0.35, 0.40, 0.75, 0.68, 1.00),

12 456
X=10-,=, §, =, §, =, 1), Y ~(0.69,0.73,0.67,0.39,0.06,0.23,0.49,0.64),
TTTTTT
and f(z,y) = 46. i
As in Ezample 5.2.1, we compute a desired shape 4 = VA and a desired state
(af,gih) = (ﬁiVM, %1) for N =22 +1=4097 and M = 2% +1 = 257.
d d
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Figure 5.9.: Convergence histories for the inexact Newton-like method performed in
Example 5.2.2 for different discretization levels (M, N;).

The optimization process is performed with the inexact Newton-like method for dif-
ferent discretization parameters Ny, M;:

Level I: N, =25t 41 M, =22 +1,1=1,2,3,4. (5.2.4)
As an initial guess v° in all discretization levels we use again the straight line be-
tween the points v(0) and ~v(1). On all discretization levels only inexact Newton-like
steps are performed. No BFGS quasi-Newton steps were necessary to obtain suitable
descent in the beginning of the optimization process. The convergence histories for
the state and control are given in Figure 5.9. The convergence behavior of the inexact
Newton-like method for level 4 is presented in Table 5.3. The evolution of the shapes
for level 4 are visualized in Figure 5.10 and Figure 5.11.
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koo ADGE) UMD (E)ls [lshfe cglt  cgRelRes  #S
0 2.1416128117E-02 3.0755351744E-02  7.781E-02 6 8.95E-02 27
1 1.7732189968E-02  2.0003957380E-02  2.789E-02 2 7.49E-02 38
2 1.6306948087E-02  9.5475986532E-03  2.979E-02 4 9.18E-02 57
3 1.5444428148E-02  7.8407829933E-03  3.113E-02 3 8.54E-02 72
4 1.4773879911E-02  4.9484075880E-03  2.967E-02 4 8.69E-02 91
5 1.4216280172E-02 4.3811871065E-03  3.300E-02 4 7.95E-02 110
6  1.3619236803E-02 4.0104701774E-03  3.545E-02 4 8.91E-02 129
7 1.2915677921E-02  4.2285894581E-03  3.755E-02 4 8.80E-02 148
8 1.2035071531E-02  4.9210464706E-03  4.281E-02 4 8.03E-02 167
9 1.0837916318E-02  5.9947471664E-03  4.157E-02 4 7.05E-02 186
10 9.3261122301E-03  7.3238034484E-03  4.192E-02 4 7.27E-02 205
11 7.5589990926E-03  7.9718500540E-03  4.262E-02 4 7.79E-02 224
12 5.5808323592E-03  8.9373701530E-03  4.093E-02 3 9.80E-02 239
13 3.7161643106E-03  8.6474820934E-03  3.825E-02 4 7.34E-02 258
14 2.0589778655E-03  7.3866393202E-03  4.089E-02 4 7.18E-02 277
15 8.8084920620E-04  4.9707172447E-03  3.095E-02 4 8.25E-02 296
16  3.1672775257E-04  2.7260369279E-03  2.222E-02 5 7.09E-02 319
17 9.9448247441E-05  1.3578309042E-03  1.663E-02 5 9.33E-02 342
18  2.8609233634E-05 5.6663371914E-04 1.176E-02 8 7.88E-02 377
19 6.1057836691E-06  2.1059779195E-04  7.206E-03 11 9.16E-02 424
20  3.0829407738E-06  3.8114505727E-04  1.114E-03 4 9.21E-02 443
21 1.2316970066E-06  3.9103851689E-05  4.566E-03 20 9.62E-02 526
22 2.5686115786E-07  7.2813779299E-05  2.888E-04 4 9.01E-02 545
23 2.4052865614E-07 6.9376401137E-06  1.547E-03 34 9.54E-02 684
24 1.7890994530E-07  8.1124518436E-06  5.551E-05 7 9.35E-02 755
25  1.7890994530E-07 8.1124518436E-06 5.551E-05 7 9.35E-02 830
26 1.7890994530E-07  8.1124518436E-06

Table 5.3.: The convergence behavior of the inexact Newton-like method from Ex-
ample 5.2.2.
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0.8

Figure 5.10.: Numerical results for Example 5.2.2. The snapshots are taken at iter-
ation numbers k =0, 2,4,6,8, 10,12, 14, 16, 18, 21, 26.

97



0.8 0.8 0.8

0.6 0.6 0.6

0.4 0.4 0.4

0.2 0.2 0.2

.
.

o

0.2 0.4 0.6 0.8

o

0.2 0.4 0.6 0.8

=

0.2 0.4 0.6 0.8

0.8 0.8 0.8

0.6 0.6 0.6

0.4 0.4 0.4

0.2 0.2 0.2

-
¥
c

o

0.2 0.4 0.6 0.8

=)

0.2 0.4 0.6 0.8

o

0.2 0.4 0.6 0.8

0.8 0.8 0.8

0.6 0.6 0.6

0.4 0.4 0.4

0.2 0.2 0.2

©
G
)

o

0.2 0.4 0.6 0.8

o

0.2 0.4 0.6 0.8

o

0.2 0.4 0.6 0.8

0.8 0.8 0.8

0.6 0.6 0.6

0.4 0.4

0.2 0.2 0.2

5
Sl
Sl

o

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
X X X

o
o

Figure 5.11.: Numerical results for Example 5.2.2. The snapshots are taken at iter-
ation numbers k = 0,2,4,6,8, 10,12, 14, 16, 18, 21, 26.
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A. Discretization: detailed
calculations

A.1. Knots and elements on ) and |

For the numerical realization the elements (); and the mesh points (z;,y;) are num-
bered as you see in Figure A.1. Create an index matrix with all mesh point numbers

1 N+1 -+ (N=-1)N+1
N 2 N+2 .-« (N—-1)N+2
tall™ = . : . :

N 2N ... N?

and an element matrix with the mesh point numbers for each element

1 N1 N +2 9
2 N +2 N+3 3
N1 ~_2N-1 2N N
N1 IN 1 IN + 2 N2
ETN = ON — 1 3N —1 3N ON

(N-1)N—-1  N2—1 N? (N —1)N
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Al i 12 18 24 30 36
Qs Q1o Q15 Q20 Qo5

0sl 0sl 11 17 23 29 35
Q4 Q9 Qu Q19 Q24

osl sk 10 16 22 28 34
Qs Qs Q13 Q1s Qo3

oal ol 9 15 21 27 33
Q2 Q7 Q12 Q17 Q2

oal wal 8 14 20 26 32
Q1 Qs Qu Q16 Q21

o ol 7 13 19 25 31

0 02 04 06 08 1 0 02 04 06 05 .

Figure A.1.: Numbering of Knots and Elements

A.2. Assembly of the finite element stiffness matrix
AN
The goal of this section is to assemble the finite element stiffness matrix AN := (aN)

ij
with

= [ VOX ) VY ) dlog), id = L N

In the first place we define a square reference element Q with coordinates

(21,91) :== (=1,=1), (22,02) == ( 1,-1),
(‘%37:&3) = ( ]-a 1)a <£4ag4) = (_17 1)7
and basis shape functions on Q:
N 1. . A 1 /(g—1
b= Je-nG-0.vh@a= 1(00]).
N U . N 7 |
(e =~ 0@ - 1. Ve =1 (071,
TP . oo Lfg+1
¢3(2,9) = Z(x"" (g +1), Vos(a,9) = 1 (j_{_ 1) )
N 1, ) A 1 (g+1
bia) =~ - 0+ 1. Vo = -1 (U1]).

Let Q; C Q) be a Quadrilateral element with coordinates: (7, y)), (2, 13), (xh,93),
(x4, vy}), then we define
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4

k

k=1
with
(Fyh(@,9) = 7 (2166 = )G = 1) — ad(@ +1)(5 - 1)
+ @+ D@+ ) - D@ - 1)@ +1)
1 . .
= 1 (—22(2 — 1) + 223(2 + 1))
_x%—x{A x§+x{
T T2 YT
and

For the inverse mapping

of F; we obtain

- 1 S
(Fj 1)1(x,y): j j (233—1’31—33;),
Ty — 27
- 1 . ,
(Fj I)Q(IL‘,y): P 7 (2y—y%_yij3)'
Ys — Y

With the help of Fj’1 and the basis shape functions on Q we define basis functions

7
k>

d(x,y) == O(F; H(z,y)), k=1,2,34,
on the quadrilateral element ();. We obtain
Ou(,9) = GL(F)(#.9)) = Von(,9) = (Fj(@.9)" VEL(Fj(#.9)

101



Furthermore we calculate

Y (1 0 2 (10
(3, §) = — /(5 4) "t =
Fj(xvy)_ ) (0 1)7 F](Z',y) hN (0 1)7

and
ooy (RN s e A (10
Now we are able to calculate the local stiffness matrix AY, := ((a{¥,)y) with

(afye )t = / Vér(z,y) Vel (v,y)d(z,y), k1=1,234,

Qj

by transforming the integrals to the reference element Q and using the upper results.
As we will see, the outcome is independent of @), and j:

| Vel e dey
Q;=Fj;(Q)

- /Q ((F.0) " Voued) ((F.5) " Vae.5)) [det(F)2.5)] d(z.9)
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For £k =1 =1 we obtain

Voo i)'V g) da gy =~ [ [ (77 (771 aeay
Q 1\, Y 1\, Y z,y 716 ) ‘,i._]_ i\_l T ay
1 1 1
:—//(g—1)2+(§:—1)2d:?;d3)
16 J_1 )1
1 ! )
= .2(1— (=1 P —1)2dg
G20 [ @-1ra
11 L9
= |=(z=1)?° =2

for k =1, | = 2 we have

/Q V(. §) Vo, §) d(i, §) =

and for k=1, [ = 3 we find

/Q Véi(,9) V(2. 9) d(&. ) =

LD (3

This leads to the following algorithm to assemble the stiffness matrix AN

Algorithm A.2.1.
1: function ASSEMBLESTIFFNESSMATRIX(N,ETN )

4 -1 -2 -1
v al-1 4 -1 -2
2: Ale < 5 o 1 4 1
-1 -2 -1 4
3: AN « sparse(N?, N?)
4: fori<+ 1,4 do
5: for j <+ 1,4do
6: AN AN 4 sparse(ETN(:,i), ETN(:, ), AN (i, ), N2, N?)
7 end for
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8: end for
9: return AV
10: end function

A.3. Assembly of the finite element mass matrix B~

To assemble the global mass matrix, we proceed as in the last section. We calculate

the local mass matrix BY_ := <(I;fgc)kl) with

(B{Xc)kl = 0 (Jﬁi(:ﬁ,y)#(x,y) d(l’,y), k7l = 17273747

and transform these integrals to the reference element Q. We obtain
| dewdly) dey)
Q;=rj(Q)

- /Q OL(F; (2, 9))01 (Fy (2. 9)) |det(EL (2, 9))]| d(&, )

0 4 16 /1)
(hY)* 1 ! 2 [1,. 3 ' -
= | @3- de
4 16 J_4 3 =1
VY2 1 !
= (h™) R, § —(z — 1)3
4 16 313 P

(h¥)2 1 8 8 (hM)?

4 16 33 36
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for k =1, | = 2 we obtain

(h4) /qul(f,@)czgz(i,g)d(@,g): (h7)°

Il
=
e~ =
e
/‘\/‘\/T\/\\
= =
cn|" <:rs|H
N~ N N~

- () (5) e
LW (LY ()50 N
4 16 3 3 36

and for k =1, [ = 3 we have

O e v =S [ [ 6w vas
- (hZ)Q ' % (‘%) /ll(as2 ~1)di
(-8

This leads to

4 2 1 2
v (W) 2 4 21
Bloc:
36 1 2 4 2
21 2 4
and an algorithm analogously to Algorithm A.2.1.

A.4. Assembly of the trace matrix TﬁgM

In this section we assemble the trace matrix TWNA}M = (tZM> with

NM
t = <Xz]'\/[77tyM(I)§'V>H}‘,HI

ij
:/X,f”(t)éjv(yM(t))dt, i=1,...,M—1, j=1,...,N%
I

Therefore, we consider a subdivision of the parameter interval I = |J,_, J; with
intervals J; := (7;, 7;,41) where

either  Jj:m =t;, ie. yM(7) =M (t;) =7
or  ~vM(7;) is an intersection point of ¥ with the mesh (z;,y;).
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We determine all intersection points and store all 7; in a vector

7_N7M — |:7—1 e Tn,ispj| .

To assemble the trace matrix correctly we also store index vectors i_isp®, i_isp™ €
RIxn-isp=1 with the corresponding element numbers for elements @, and I; respec-
tively. For the example in Figure A.2 we obtain

MM 100 0.14 020 029 0.37 040 0.54 0.60 0.71 0.80 0.86 1.0],
igspN=[4 9 9 14 13 13 12 12 17 17 22 |,
igspM=[1 1 2 2 2 3 3 4 4 5 5 ]

Fori=1,...,nisp—1let k = iisp (i), = iisp™(i). For j = 1,2, 3, 4 we calculate

0.8 [

0.6 [

04

0.2

L L L L L L
0 0.2 0.4 0.6 0.8 1

Figure A.2.: Intersection Points of ¥ and the mesh and vertices ijM .

Tit1

intisp(i.0) = [ OGO = [ deM )

By transforming these integrals to the interval (—1,1), substituting the basis func-
tions gbé- with the basis shape functions ¢; and using Gauss-Legendre quadrature with

106



ng Gauss nodes s,, and weights w,,, we obtain

Ti+1

int_isp(j,i) = @i (yM (1)) dt

Ti

1
Tit1 — T v v Tl T T Tit1 T T
S B : d
2 /_1%(7( 2 T ))S
1
Tit1 — Ti 2 af m (Tt —Ti | Tip1 T
-t [ (e (v (B e 2R ) )
Tiv1 — T; e A A M Ti+1 — T Tit1 + Ty
=T TS g (0 (T T |
n=1

We are now in the position to assemble the trace matrix via

Algorithm A.4.1.
1: function ASSEMBLETRACEMATRIX (VM i isp™, iispM)
2 int_isp < CALCINTEGRALSTRACEMATRIX (7'M i_isp™  i_isp™)
3 Tﬁ}M <+ sparse(M — 1, N?)
4 fori<+ 1,4 do
5: Tﬁ}M — Té\]{}M + sparse(iispM, ETN (i_isp™ ,4),int_isp(i,:), M — 1, N?)
6 end for
7 return Tﬁb}M
8: end function

A.5. Assembly of the vector F);"
y

Here, we assemble the vector FA/NA’IM = (fZ-N’M), i=1,...,N? with

M= /Q Foi (2, )@Y (2, y) d(z,y), i=1,...,N?

which is one part of the right hand side of the discrete state equation. Therefore,
we calculate on each element Q;, i =1,...,(N —1)? and for j = 1,2,3,4

o Fou (2, )¢ (2, y) d(z, y).

o Let i_omg™M be an index vector of element numbers 7 such that @, are com-
pletely contained in Q. (cf. the red colored elements in Figure A.3). Then
we obtain

/ Fooe ()6 (2, ) d(,y) = / fay)di@y) dey).  (ASD)
Qi Qi
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Figure A.3.: Red elements ();, which are completely contained in 2,» and Elements
(); with yellow intersection areas ();N€2,n~ and its blue marked centroids.

e Let i_caa™™ be an index vector of element numbers ¢ such that ); are devided
by v (cf. the elements with yellow intersection areas Q; N€2,x in Figure A.3).
Then we obtain

/ﬁwx,yw;(m,y)d(x,w: / fan)diey)dey).  (A52)
Qi

QiNQ ur

e All integrals on the remainder elements equal zero.

First of all we approximate the integrals |, o f(x, y)¢§(:v, y) d(x,y) on all elements Q;,
i=1,...,(N —1)2. This is obtained by Gauss-Legendre quadrature with ng Gauss
nodes (Z,, J,) and weights w,, i.e.

/ @) (e y) dz,y) = / F(EE, 9)) 6 (FA(, 9)) [det(EL(2, §))] d(2.9)
Q:i=Fi(Q) Q

SR /Q F(F G, 9))y (5, 9) d(i, 5)
(h4 )2 Z wnf(Fi(ina gn))é](i‘n’ gn)

n=1

Q

=:int_rhs(i, j)

The integrals in the matrix int_rhs are independent of ¥ and have to be evaluated
only once before the optimization process starts. The integrals in (A.5.1) are then
accessed by int_rhs(i_omg™M . j).

For an approximation of the integrals in (A.5.2) we calculate the areas A.q (i) and
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the centroids (%cea(), Yeaa (7)) of the polygonal intersection areas Q; N €2,ar and define

/Qﬂﬂ f(z, y)ﬁbz (2, y) d(2,y) = Acaa(i) f(Teaa (i), ycaa(i))ﬁﬁ;(xcaa(i)a Yeaa (7))
=:int_caa(i, j)

. ~N.M .
Finally we can assemble the vector F7 w via

Algorithm A.5.1.
1: function ASSEMBLERHS_STATEEQUATION (7VM i isp™ i isp™)
: i_caa™ M Acaa, Teaa, Yeaa < CALCCENTROIDANDAREA()
3 int_caa <— CALCINTEGRALSCENTROIDAREA ()
4 i_omg™M + ASSEMBLEKNOTS_OMG()
5 FNM  zeros(N2,1)
6: fori<+ 1,4 do
7. F%M — F’VNMM + sparse(ETN (i_caa™M i), 1,int_caa(:,i), N%,1)
8 +sparse(ETN (i_omg™™M i), 1,int_rhs(i_omg™M i), N 1)
9 end for
10: return ng}M
11: end function

A.6. Assembly of the finite element stiffness matrix
AM and the finite element mass matrix B

The goal of this section is to assemble the finite element stiffness matrix AM := (aﬁ‘f )

with
Ckij = < i 5 >L2(

i =2, M—1.
1)
Therefore we define a reference element I := (—1,1) and basis shape functions on I:

~

) b1<tA) - -

~

1), b(t) =

>
>
N — DN —
~ —
> >
+ |
[a—y
SN—
N — DO —

For the j-th subinterval I; = (¢;,t;41) we define
i ST C o b=t b+t
Gj: 1 — 1, ts by () + tj1bo(t) = ]+2 ifa g+2 i

1

Gl I — I, t= Gil(t) = ——— (2t —t; —tj11).
tiv1 —
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With the help of Gj_1 and the basis shape functions on I we define basis functions

by

b(t) = be(G; (1), k=12,

J

on the subinterval I; = (¢;,t;+1). We obtain

~ . ~ ~

be(t) = 0(G;() = b(l) = G;(D)b.(G;(H)).

We calculate the local stiffness matrix A, := ((apl)n) with

0= [ Bl

i=G;(I)

For k =1 =1 we obtain

2 NN 2 1 [ 2 1
—/bl(t)bl(t)dt _—_/ gio_ 2 1
tivi =1t Ji tiv =14 ) tip1 =152

and for £k =1, [ = 2 we have

2 ponE o 2 N [t 2 1
thrl - tj I tj+1 - tj 4 1 tj+1 — tj 2

This leads to the following algorithm to assemble the stiffness matrix AM

Algorithm A.6.1.

1: function ASSEMBLESTIFFNESSMATRIXM (M)

3. ETM <+ [(1:NG—-1),(2: NG)

1 -1
Aloe 7 (—1 1>

AM « sparse(M, M)
fori< 1,2 do
for j < 1,2 do
AM  AM + sparse(ETM (:,i), ETM(:, ), AM (i, ), M, M)
end for
10: end for
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11: AM — AM(2:end — 1,2 : end — 1)
12: return AM
13: end function

To assemble the global mass matrix BM we calculate the local mass matrix B, :=
((51](\)4‘3)190 Wlth

S AN CLOL
= [ WG, OM(G )G, di

_linl / be(£)b(7) di.
I

For k =1 =1 we obtain

tj+1—tj/A AL A ~ tj_H—tjl/l ~ 2 o~
— | bi(t)by(t) dt = ——— t—1) dt
5 [ b [ =)
tip—t; 11~ 5]
= - t—1
i EAUN
_ b —t2
2 3
For k =1, 1 = 2 we have
tii—t; [+ ap oo o tigr—t n [t . .
M/bl(t)bz(t)dt: as J( )/ (t—1) ((+1) at
2 i 2 4 -1

This leads to

and an algorithm analogously to Algorithm A.6.1.
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A.7. Details on evaluating the shape derivative
vectors 7. (4M) and FNM (4M)

The aim of this section is to assemble the vectors 7™ (v and SV (yM). For

the ith entry of J.") (vM) we obtain

(FE0GM) = G M), (5)BY sy
_ M M (((IJ)By(t))TﬁVM(t)
B / GrOMe O,

M gy T ()
- [ @i O Eror,

and
(F¥0GM)) = GO, (3) BY) sy s

Mgy P20 ()
= [ GO0 BY 0

To assemble these integrals we calculate contributions on each subinterval (¢;, ;1)
using the basis functions b%, b}. First we note that for t € (¢;,%;41) we have

M) =71 BM () + 7B () = 6 () + T (1)

= (M )(%‘+1— i )7
M@l = (M = 1152, = 52
= (M = 1)/ (01 — WD+ (330 — D2 = (M = 1)

Now we obtain for b;, j = 1,2, on the subinterval (¢;,%;11)

[ anoationn T

nguM titr

G

dt

M, M 1
9i Mty — ; ; Ny g7
= v L bl- G’L t M GrL t dt
Ciw(M _ 1) 2 /_1 ]( ( ))nL'Y ( ( ))

M, M 1
9i M tiv1 — 1 - Ny 7
— /_ by@)ms (G0 i

()

MMt —tins 5 R
~ TO-T) 2 Zanbj(tn)nL,yM(Gi(t )) =:int Impl(i, j),
g n=1
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and equivalently

TGN (M (10 ¢ )"“—M() dt

b ||7 ( )ll2

~ CM%MMZ Hl Z b (Fn)ng 0 (Gi(F,)) =1 int Imp2(i, §).

(2

Finally we can assemble the vectors jl(N’ )( My and J, (N, M)( MY via

Algorithm A.7.1.

1: function ASSEMBLESHAPEDERIVATIVE(yM,GM, MM)
2:  int_Impl,int_Imp2 < CALCINTEGRALSSHAPEDERIVATIVE(yM ,GM | MM)
3 TIM (MY o seros(M, 1)

4 TN (MY o seros(M, 1)

5: fori< 1,2 do

p jl(N’M) (’YM> « jl(N’M) (yM) + sparse(ETM(:,i),1,int_Impl(:,7), M, 1)
; jZ(N,M)wM) « jz(N’M)(fyM) + sparse(ETM(:,i), 1, int_Imp2(:,1), M, 1)
8 end for

9: return j(N M)(v ), jz(N’M)(VM>
10: end function

A.8. Solving the discrete state system

In our optimization process we have to repeatedly solve linear systems with the

matrix
AN (1M
v AS8.1
(-ﬂ% . (A81)

for different v
We describe the solution of (4.1.3) via the well-known Schur complement reduction,
cf. [BGLO5]. Since A" is nonsingular, by

AN (TN T 0\ (AN 0\ (T —(AV) TNy
-0 ST AN 1) Lo s) \o I ’

Y

the Schur complement S := —TVJ\IIQM(AN)_I(T%M)T is also nonsingular.

If we multiply the first equation of (4.1.3) from left by —T gv}M(AN )~! we obtain

Iy M
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N,M ~N

Using the second equation of (4.1.3), which is =T ;" @, = 0, we reach the following

algorithm: !

1. Compute Q% from

T’i\]fb}M(AN)fl(T’j\]f\;rM>TQ’]}\I{W _ _T%M(AN)flﬁwﬂ]{\;/}M' (ASQ)

2. Obtain gﬁw by solving

ANQ{Y\CM — F’j\]@M + (TWJ\JI\J[M)TQ%I
We note that building or factorizing the Schur complement S is too expensive, but
we can solve (A.8.2) by an iterative method, where S is only needed in the form of
matrix-vector products

"

of a linear system with the matrix AN , and a matrix-vector product with Tﬁ}M.

Every action of S on QM requires a matrix-vector product with ( , the solution

To solve the linear systems with coefficient matrix AN efficiently, we apply a precon-
ditioned conjugate gradient (PCG) method [Saa03, HS52] and the commonly used
incomplete Cholesky factorization with threshold dropping (ICT) [Man80] of AN as
a preconditioner. This procedure is realized with the MATLAB built-in functions
pcg and ichol. Depending on the available memory it is worthwhile to save the
incomplete Cholesky factor LY for a drop tolerance value as low as possible. This
increases the density of LN , but leads to significantly less PCG iterations in our com-
putations. Nevertheless, the crucial point is to construct a preconditioner to solve
(A.8.2) efficiently by an iterative method.

However, if enough memory is available, a sparse direct solver can be applied to solve
linear systems with (A.8.1). We use the MATLAB built-in backslash operator.
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Abstract

In the present thesis we deal with a class of shape optimization problems for the
two-dimensional Poisson equation with homogeneous Dirichlet boundary conditions.
We consider tracking-type objective functionals and characterize admissible domains
through admissible parametrizations of the boundary. These parametrizations serve
as the control variable in the optimization process. A fictitious domain method
is used to embed admissible domains into a larger, geometrically simpler reference
domain, on which the analysis and the computations are then performed. Shape
optimization problems of this kind were considered in [KP98, Sla00].

We generalize the problem setting from [KP98, Sla00] in the following way. On the
one hand, the extension to a wider class of admissible domains is established, this
means that the variable part of the boundary of admissible domains is not given as
the graph of an admissible function, but rather as the image of an admissible curve.
One the other hand, a more general class of objective functionals is considered. In
particular, we are able to discard previously necessary restrictions to the observation
domain, in which we track the L2-error of the state with respect to a desired state.
This substantially enhances the sensitivity of the objective functional with respect
to boundary variations.

To study the shape optimization problem in the generalized setting, we provide an
extended functional-analytic framework. The following results are then transferred
to and proven within this framework: the existence of a solution of the corresponding
shape optimization problem, Fréchet-differentiability of the reduced objective func-
tional and a resulting integral representation for the first derivative. As an approxi-
mation of the second derivative of the reduced objective functional, we furthermore
show the existence of the symmetrical directional derivative of its first derivative, for
which an elegant integral representation is also established.

The differentiability results are then used to solve the shape optimization problems
by iterative descent methods in an appropriate Hilbert space setting. On the one
hand we discuss the steepest descent method and the BFGS quasi-Newton method.
On the other hand, we are able to present an inexact Newton-like method using the
results of the approximation of the second derivative.

Moreover, a mixed finite element discretization and finite-dimensional descent meth-
ods corresponding to the continuous case are provided to solve the shape optimization
problem numerically. Eventually, the functionality and reliability of the developed
methods are presented in numerical experiments.
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Zusammenfasssung

Die vorliegende Arbeit behandelt eine Klasse von Gebietsoptimierungsproblemen fiir
die zweidimensionale Poisson-Gleichung mit homogenen Dirichlet Randbedingungen.
Dabei werden tracking-type Zielfunktionale betrachtet, und zuldssige Gebiete wer-
den durch zuldssige Parametrisierungen des Gebietsrandes charakterisiert. Solche
Parametrisierungen dienen als Kontrollvariable im Optimierungsprozess. Ein Ein-
bettungsverfahren fiir die Zustandsgleichung wird angewendet, um zuldssige Gebiete
in ein grofleres, geometrisch vereinfachtes Referenzgebiet zu integrieren, in welchem
dann die Analysis und die erwiinschten Berechnungen durchgefiihrt werden. Gebiet-
soptimierungsprobleme dieser Art wurden bereits in [KP98, Sla00] diskutiert.

Die Rahmenbedingungen der Probleme aus [KP98, Sla00] werden in dieser Disser-
tation auf folgende Weise verallgemeinert: Einerseits wird eine Erweiterung durch
eine groffere Klasse an zuldssigen Gebieten etabliert. Hier ist der variable Teil des
Randes zuléssiger Gebiete nicht mehr durch den Graph einer zuléssigen Funktion ge-
geben, sondern durch das Bild einer zuléssigen Kurve. Andererseits wird eine grofiere
Klasse von Zielfunktionalen betrachtet, genauer: auf die bisher notwendigen Ein-
schrinkungen hinsichtlich des Beobachtungsgebietes, in dem der L2-Fehler des be-
stehenden Zustandes im Vergleich zum gewiinschten Zustand gemessen wird, kann
nun verzichtet werden. Dadurch wird die Sensitivitit des Zielfunktionales in Bezug
auf Randvariationen erheblich erhoht.

Zur Untersuchung der Gebietsoptimierungsprobleme in dem nun verallgemeinerten
Setting wird zunéchst ein erweiterter funktionalanalytischer Rahmen bereitgestellt.
Darin werden dann die folgenden bekannten Resultate iibertragen und bewiesen:
die Existenz von Losungen des korrespondierenden Gebietsoptimierungsproblems,
Fréchet-Differenzierbarkeit des reduzierten Zielfunktionales, sowie eine daraus re-
sultierende Integraldarstellung der ersten Ableitung. Als Approximation der zweiten
Ableitung des reduzierten Zielfunktionales wird dariiber hinaus die Existenz der sym-
metrischen Richtungsableitung ihrer ersten Ableitung gezeigt. Auch hierfiir wird eine
elegante Integraldarstellung hergeleitet.

Die Differenzierbarkeitsaussagen finden Anwendung bei der Losung der Gebietsop-
timierungsprobleme durch iterative Abstiegsverfahren in einer geeigneten Hilbert-
Raum Konfiguration. Zunédchst werden das Gradientenverfahren und das BFGS Quasi-
Newton-Verfahren diskutiert, mit Hilfe der Ergebnisse zur Approximation der zwei-
ten Ableitung wird dariiber hinaus auch ein inexaktes, Newton-ahnliches Verfahren
prasentiert.

Es werden eine gemischte Finite-Elemente-Diskretisierung und zum kontinuierlichen
Fall korrespondierende, endlich-dimensionale Abstiegsverfahren bereitgestellt, um
das Gebietsoptimierungsproblem auch numerisch zu behandeln. Abschlieend wird
die Funktionalitdt und Zuverldssigkeit der entwickelten Verfahren anhand numeri-
scher Beispiele vorgestellt.
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