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Abstract

Socially assistive robotics has experienced a steadily growing
interest over the last decade. Mobile robots with sensors and
external sensing devices, which may also be integrated synergi-
stically, enable a human-like interaction with the environment.
As a precondition for assisting a person, a robot needs to na-
vigate to the position of the person first. To achieve this, the
robot needs to localize the target person and itself; calculate
an optimal trajectory; and adapt its motion in real time during
navigation. Despite advances in mobile robotics, autonomous
indoor robot navigation is still challenging. Due to the high
complexity of the real world and possible dynamical changes,
it is hard to localize a person or a robot robustly in an uncons-
trained environment. Sophisticated sensor systems can impro-
ve the localization, but will increase the system costs signifi-
cantly and require a person with expert knowledge for setup.
On the other hand, although it is a mature research field, robot
autonomous navigation still relies on artificial landmarks and
the accuracy of sensor signals. This limits the flexibility and
the robustness of robot navigation as well. In addition to na-
vigation in cluttered environments, a robot needs to cope with
dynamic conditions while taking into account the presence of
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its human companion.
This thesis presents a novel framework for vision-based per-

son/robot localization and navigation. A hybrid neural proba-
bilistic architecture is developed to localize a service robot and
a person in a home-like environment using a ceiling-mounted
camera. Considering that an integration of multiple visual cues
can increase the detection reliability, multiple visual cues are
employed and combined with a Sigma-Pi network. Through
fast adaptation, parts of the visual cues can be learned during
tracking, which increases the system robustness.

Taking into account the latest research insights into the
neural mechanisms of decision-making during goal-directed na-
vigation, we developed a neural-inspired system for robot navi-
gation based on learning the spatial information. A spatial me-
mory is built to represent the environment and a sensorimotor
representation to learn control signals of the robot’s navigation
behavior. Based on learned spatial and sensorimotor informa-
tion, a robot can reach arbitrary target positions by real-time
motion planning. As one of the advantages of our navigation
system, the motion signal is processed by a fast combination of
the sensorimotor memory information instead of being calcu-
lated according to the current position and the map informa-
tion. This fast combination accelerates the computation and
ensures a real-time behavior during the robot’s navigation. In
addition, considering the fact that a person could move around
in a room without colliding with objects, we have developed
the system to learn the spatial information by observing the
person’s movements. Through an integration of reactive beha-
viors with the motion planning, the robot is able to adapt its
spatial representation and avoid obstacles proactively.
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A camera integrated into the head of the robot is used to
learn the appearance of the environment during navigation.
Visual features of the current camera view are extracted and
associated with the state of the robot in the spatial memory,
which builds up a view-based memory of the environment con-
text. This memory, together with the cognitive map, provides
the robot with the ability to solve complex cognitive tasks such
as fetching an object observed during previous navigation.

Experimental evaluations of the localization and the navi-
gation models are conducted in a home-like laboratory as well
as through field trials of the KSERA project. A humanoid Nao
robot is used to test the navigation, obstacle avoidance, and
the learning of the appearance of the environment. Through
analysis of the results, we show that through tracking a person
with integration of adaptive visual cues, the localization sy-
stem is able to learn the environment, which enables the robot
to navigate to target positions robustly. When the environ-
ment changes, the robot can adapt its behavior autonomously
and learn to avoid the obstacles in the future.

In conclusion, our research presents a novel neural proba-
bilistic robot localization and navigation system that provi-
des a mere concept while enabling far-reaching functionality.
Through emulating several basic functionalities of the brain–
for example, the spatial cognition and redundant informati-
on representation for target recognition–the system is able to
achieve complex tasks such as robust target tracking, environ-
ment learning through observation, and flexible robot naviga-
tion in a home-like environment. The concept of our work is
implemented and evaluated using a robot platform in a home-
like environment, and the experimental results show that our
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neural system helps a robot to realize different functions suc-
cessfully. We believe that through the further development of
artificial intelligence, robotic sensors, and robotic hardware,
highly intelligent functions will be realistic and assist people
in their daily lives.
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Kurzfassung

Sozial-assistive Robotik hat ein stetig wachsendes Interesse im
letzten Jahrzehnt erfahren. Mobile Roboter mit Sensoren und
externen Erfassungsvorrichtungen, welche auch synergistisch
integriert werden können, ermöglichen eine menschenähnliche
Wechselwirkung mit der Umgebung. Als Voraussetzung zur
Unterstützung einer Person, muss ein Roboter zuerst zu der
Position der Person navigieren. Um dies zu erreichen, muss der
Roboter die Zielperson sowie sich selbst lokalisieren, eine opti-
male Trajektorie berechnen, und seine Bewegung während der
Navigation in Echtzeit anpassen. Trotz der Fortschritte im Ge-
biet der mobilen Robotik, ist die autonome Indoor-Navigation
immer noch eine Herausforderung. Aufgrund der hohen Kom-
plexität der realen Welt und auch aufgrund der möglich dy-
namischen Änderungen der Umgebung, ist es schwierig, eine
Person oder einen Roboter robust in einer ungezwungen Umge-
bung zu lokalisieren. Ausgefeilte Sensorsystemene können die
Lokalisierung verbessern, jedoch können sie die Systemkosten
deutlich erhöhen und benötigen eine Person mit Expertwissen
für die Einrichtung. Auf der anderen Seite, trotz ausgereif-
ter Forschung, ist autonome Roboter-Navigation immer noch
auf künstliche Landmarken und die Genauigkeit der Sensor-
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signale angewiesen. Dies begrenzt insbesondere auch die Fle-
xibilität und die Robustheit der Roboter-Navigation. Neben
der Roboter-Navigation in schwierigen Umgebungen, muss ein
Roboter dynamische Bedingungen bewältigen, aber auch die
Anwesenheit des menschlichen Partners berücksichtigen.

Diese Arbeit präsentiert einen neuartigen Ansatz für die
Bildverarbeitung-basierte Person / Roboter Lokalisation und
Navigation. Eine hybride neuronale Wahrscheinlichkeitssystem
wurde entwickelt, um einen Serviceroboter bzw. eine Person
in einer hausähnlichen Umgebung mittels einer Deckenkame-
ra zu lokalisieren. Damit die Integration von mehreren visu-
ellen Signale die Detektionsrobustheit erhöhen kann, sind in
unserem System mehrere visuelle Signale verwendet und mit
einem Sigma-Pi-Netzwerk kombiniert. Teile der visuellen Si-
gnale können während der Verfolgung durch eine schnelle An-
passung erlernt werden, welche die Robustheit des Systems
weiterhin verbesseren.

Unter Berücksichtigung der neuesten Forschungseinblicke
in die neuronalen Mechanismen der Entscheidungsfindung für
die zielgerichtete Navigation, haben wir ein neuroinspiriertes
System für Roboternavigation basierend auf dem Erlernen der
räumlichen Informationen entwickelt. In diesem System ist ein
räumliches Gedächtnis eingebaut, um die Umgebungsinforma-
tion darzustellen und eine sensomotorische Repräsentation für
die Steuersignale des Roboter-Navigationsverhaltens zu ler-
nen. Basierend auf der gelernten räumlichen und sensomo-
torischen Informationen, kann ein Roboter beliebige Zielpo-
sitionen durch Bewegungsplanung in Echtzeit erreichen. Als
einer der Vorteile unsereres Navigationssystems, wird das Be-
wegungssignal durch eine schnelle Kombination der sensomo-
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torischen Speicherinformationen verarbeitet, statt dass die Si-
gnale gemäß der aktuellen Position und der Karteninforma-
tion berechnet werden muss. Diese schnelle Kombination be-
schleunigt die Berechnung, und gewährleistet ein Echtzeitver-
halten während der Roboternavigation. Darüber hinaus, unter
Berücksichtigung der Tatsache dass eine Person sich in einem
Raum ohne Kollision mit Objekten bewegen könnte, haben wir
ein System entwickelt, um die räumliche Information durch
die Beobachtung der Bewegung der Person zu lernen. Durch
eine Integration von reaktiven Verhaltensweisen mit der Be-
wegungsplanung, ist der Roboter in der Lage, die räumliche
Darstellung nach der Detektion der Hindernissen anzupassen
und solchen gelernten Hindernissen proaktiv auszuweichen.

Eine in den Kopf des Roboters integrierte Kamera wird
verwendet, um das Aussehen der Umgebung während der Na-
vigation zu lernen. Visuelle Merkmale des aktuellen Kamera-
bildes werden extrahiert und mit dem Zustand des Roboters
im räumlichen Gedächtniss verbunden, welches einen Sicht-
basierten Speicher für den Umwelt-Kontext aufbaut. Dieser
Speicher, zusammen mit der kognitiven Karte, stattet den Ro-
boter mit der Fähigkeit aus, komplexe kognitive Aufgaben wie
das Abrufen eines in früheren Navigations beobachteten Ob-
jekts, zu lösen.

Experimente der Lokalisierung sowie der Navigationsmo-
delle werden sowohl in einem heimähnlichen Labor als auch
durch Feldversuche des KSERA Projektes durchgeführt. Ein
humanoider Nao Roboter wird verwendet, um die Navigation,
die Hindernisvermeidung und das Lernen des Erscheinung der
Umgebung zu testen. Durch Analyse der Versuchsergebnisse
wird gezeigt, dass durch die Verfolgung einer Person mittels
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Integration von adaptiven visuellen Signale, unser System in
der Lage ist, die Umgebung zu lernen. Dies ermöglicht dem Ro-
boter zur Zielposition robust zu navigieren. Wenn die Umge-
bung sich ändert, kann der Roboter sein Verhalten selbständig
anpassen und lernen, die Hindernisse in der Zukunft zu ver-
meiden.

Zusammenfassend, zeigt unsere Forschung ein neuartiges
Neuro-Wahrscheinlichkeitssystem für die Roboter-Lokalisation
und -Navigation. Durch die Emulation mehrere Basisfunktio-
nalitäten des Gehirns - zum Beispiel die Raumkognition und
redundante Informationsdarstellung für Zielerkennung - ist das
System in der Lage, komplexe Aufgaben wie beispielsweise ro-
buste Zielverfolgung, Lernen der Umwelt durch Beobachtung,
und flexible Roboternavigation in einer heim-ähnlichen Umge-
bung zu erreichen. Das Konzept unserer Arbeit wird mit Hil-
fe einer Roboter-Platform in einer heimähnlichen Umgebung
durchgeführt und evaluiert, und die experimentellen Ergebnis-
se zeigen, dass unser neuronales System helfen kann, um ver-
schiedene Roboter-Funktionen erfolgreich zu realisieren. Wir
glauben, dass durch die Weiterentwicklung der künstlichen In-
telligenz, der Roboter-Sensoren, und der Roboter-Hardware,
hoch intelligente Funktionen realistisch sein werden, welche
das tägliche Leben der Menschen unterstützen.
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Chapter 1

Introduction

With the enormous developments in the field of robotics and
computer science, robots have become more intelligent and are
capable of accomplishing more complex tasks. They are not re-
stricted to industrial usage anymore, which is well-constructed,
and could be applied in the field of medical care and artificial
assistants. In particular, socially assistive robotics has received
more attention in the last decades. Considering that the world-
wide population aging problem that will become more severe
over time, socially assistive robots could be companions to as-
sist the elderly and improve their quality of life eliminating the
need for caretakers. According to statistical analysis (Hoot-
man and Helmick, 2006; Steg et al., 2006), the proportion of
the elderly is growing quickly and there will be a large demand
for working-age persons to support persons over 65 years of age
in the future, even through the manpower of those of working
age is decreasing steadily.

This challenge motivates researchers to find new solutions
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Chapter 1. Introduction

to assist elderly persons. Intelligent home-care systems, which
could monitor the health statuses of elderly persons and re-
act when needed, have received more attention during the
last decade. Progress in artificial intelligence (AI) (Wermter
et al., 2005, 2014) shows that these new technologies will ex-
tend the functionalities of traditional domestic automation de-
vices, which will benefit the elderly to improve their quality
of life (Steg et al., 2006). Based on state of the art AI, such
a system can monitor and diagnose the health state of users
and provide active assistance with a domestic automated sys-
tem. For example, through integration of ubiquitous mon-
itoring and intelligent actuation systems in a home-care sys-
tem, an ambient assisted living system (AAL) can support the
user’s daily activity and increase his life independence signif-
icantly (O’Grady et al., 2010). The AAL system can adjust
the environment condition based on the sensor measurement.
For example, it can control the room temperature, and mon-
itor the user’s health status (e.g., blood pressure and heart
beat ratio) by analyzing signals from sensors to provide cor-
responding medical advice. In case of emergency, such as if
the user falls, the system will detect the danger, monitor the
user’s status, assist the user and eventually contact the health
organization when needed.

However, since these ubiquitous domestic systems are usu-
ally fixed in the home, they cannot provide active assistance,
for example, bringing a medicament to the user. Compared
with a fixed system, a mobile robotic system provides an at-
tractive alternative based on its high mobility and multiple
functionalities. Recent advancements of robotics show that
robots will not only be used in industry but also become a com-
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panion of humans in their daily lives in the near future (Brox-
vall et al., 2006; Louloudi et al., 2010). A robot could perceive
the environment, realize cognitive behavior, and accomplish
complex tasks using state-of-the-art artificial intelligence. A
robot would be capable of performing in an environment made
for humans, providing assistance, and interacting with the
user. It could assist the elderly effectively in daily tasks like
communicating with the external world, providing medicine
and health check reminders in a proactive fashion, and demon-
strating physical exercises. Because a robot, in particular a
humanoid robot, would behave similarly to human beings and
could interact with users through verbal or nonverbal com-
munication, users might accept these new robotic technologies
more readily (Torta et al., 2011b).

The combination of a service robotic system and an AAL
system shows a promising way to realize a more intelligent
service robot. As a common robot perceives information with
integrated sensors, which have a limited sensor range, it may
not detect objects when they are outside of the sensor range.
Therefore, it is hard for a robot to learn the surrounding en-
vironment properly. Sensors of an AAL system distributed in
the home environment could help the robot, in this case, to
perceive the environment more precisely and quickly. With the
new information acquired from these sensors, the robot could
detect events outside of its sensor range and react correspond-
ingly. On the other side, the mobile robot platform can act as
an active actuator of the AAL system. The ambient environ-
ment will not only respond passively to a change of a situation
but can also provide active help with a service robot. Accord-
ing to the request to the AAL system, the robot can record the
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Chapter 1. Introduction

health status of the user, check the environment status, and
send real-time data to medical organizations (e.g., hospitals
or medical teams that take care of the patient), which helps
the doctors in diagnosing the patient and adjusting the envi-
ronment. When an accident happens, the robot can send an
alarm signal to the medical team on time and act like the first
aid for rescue. As this combination could improve the robot’s
service quality significantly and benefit the elderly’s life, many
research projects towards this new combination have been con-
ducted. A summary of the recent relevant research projects
will be given in the following section.

The concept of combining a robot with an AAL system
arouses great interest in research communities due to the enor-
mous potential social impact and benefit for the elderly. As
more advanced functions can be achieved by such a networked
system, research has been conducted to develop service assis-
tive robots in the last decade. For example, within the research
project Companionable1 (Integrated Cognitive Assistive & Do-
mestic Companion Robotic Systems for Ability & Security), an
innovative architecture was developed that integrates robotics
and ambient intelligence technologies synergistically to sup-
port elderly in their daily lives. A mobile companion robot
platform (Hector) was designed to assist the user with an in-
novative way of interaction. The Hector robot could move
automatically in the home environment based on its wheeled
platform and respond to the user based on voice inputs. As a
part of the smart home, the robot was equipped with a large
touchscreen that could display environment information and
control the home system based on the touch commands. The

1http://www.companionable.net/
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robot also assisted the user to improve his social activities. It
could easily establish communication, using the touchscreen
and microphones, with friends, health carers, etc.

Similar research projects, such as Florence2, and project
ROBO M.D.,3 developed different robot platforms for person
assistance. Through semantic cooperation with a smart-home
system, a robot could provide a reliable and efficient health
monitor of users and improve their quality of life. A robot
could recognize critical situations (e.g., fall detection) based
on its sensor inputs and assist a medical institute in diagnosing
the user at an early stage through remote communication.

Another research project which leads to the results of this
thesis is the KSERA project4. International partners worked
together to build up a novel system for serving the elderly,
in particular patients suffering from Chronic Obstructive Pul-
monary Disease. A humanoid NAO robot was employed to
support the activities of daily life, as well as the healthcare
needs of an elderly person. Through the integration of the
robot platform with an AAL system, an innovative architec-
ture was built which improves the functionalities of both. For
the AAL system, the NAO robot acted as a unique interface
between the user and the AAL system. On the other hand,
the ubiquitous monitoring of the AAL extended the view of
the robot, which helped it to extend its functionalities. For
example, a ceiling-mounted camera of the AAL system could
be helpful for the robot to localize the user’s location without
using any artificial landmarks enabling the robot to navigate

2http://www.florence-project.eu/
3http://www.innovation4welfare.eu/307/subprojects/robo-m-d.

html
4http://ksera.ieis.tue.nl/

5

http://www.florence-project.eu/
http://www.innovation4welfare.eu/307/subprojects/robo-m-d.html
http://www.innovation4welfare.eu/307/subprojects/robo-m-d.html
http://ksera.ieis.tue.nl/
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fully automatically towards the user.
As one of the most important research topics in KSERA,

the psychological impact of a service robot to the user’s daily
life has been studied deeply (Johnson et al., 2014). Through
investigation of users’ feedback, researchers had found that
users could accept service robotics more easily using verbal
and non-verbal interaction with the robot. For instance, users
could adopt medical advice and exercise physical activities
by following the demonstration of a friendly humanoid robot.
Compared with traditional methods, e.g., playing videos, the
interaction with a human-like robot could encourage users to
improve their lifestyles in a more active manner.

1.1 Challenges for Applying Robots in
Real Environments

As we have described in the last section, research on integrat-
ing robots into AAL systems is drawing more attention from
society, and robots are now providing a promising vision that
they can be companions (for humans) to assist us and improve
our lives in the future. However, the challenges of developing
robotic hardware (e.g., battery) and software still prevent their
application in our lives. While traditional machines need to
be controlled by users, a robot should reach a high degree
of autonomy in decision-making, interaction with users and
behavior adaptation when the environment changes. In this
case, artificial intelligence is crucial because it provides robots
with a human-like ability to learn and to react to unknown
conditions.
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(a) (b)

(c) (d)

Figure 1.1: Service robots.
1.1(a): A service robot is providing information to the user1.

1.1(b): A DarwinOP humanoid robot is stacking a towel2.

1.1(c): A roboter is assisting a doctor in an emergency. (Parisi et al.,

2014)

1.1(d): An ARMAR III robot is helping dish washing. (Bauer et al., 2010)3

1Source: a snapshot from a video of the European FP7 project “Com-
panionable” led by Professor Atta Badii.

2Source: an image from the project “Teaching With Interactive Rein-
forcement Learning” led by Professor Stefan Wermter, WTM, UHH.

3Source: an image from the research project “SFB 588: Humanoid
Robots - Learning and Cooperating Multimodal Robots”, KIT.
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A large number of research topics have been addressed to
develop different human-like robotic functionalities. Among
them, robotic mobile behavior (including localization and nav-
igation) is one of the most favorite topics because it addresses
the fundamental ability of humans for spatial cognition. Fur-
thermore, from an application point of view, the mobile behav-
ior is a precondition for realizing many other functions. When
a robot is requested to deliver medication, the robot needs
to determine the position of the target user and the medica-
tion, and maneuver itself to them without collision. In case of
emergency, the robot should move itself to the user to assist
a medical helper, for instance, to diagnose the user’s health
situation remotely.

A significant difference between an industrial robot and a
socially assistive robot is that while the traditional industrial
robots work in a well-constructed laboratory environment, a
socially assistive robot has to work in a real, homelike envi-
ronment. This environment increases the complexity of robot
navigation significantly because the home-like environment is
usually unknown and cluttered, and the robot has to share
space with users. Although many models for map-building and
planning exist, normal hand-defined methods may not cover all
possible situations and cause problems while running because
of the high complexity of a real environment. Robotic ap-
proaches with sophisticated sensors could overcome the prob-
lem of map building and localization by improving the data
precision and detection range. For instance, a laser scanner
could measure a large distance reliably with high accuracy,
which would help the robot to create a precise map. However,
the high cost of these sensors may be unaffordable for the
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end user. In contrast, simple sensors could reduce the system
price, but the limited functions of them may cause the problem
of their signals being too rough and unreliable. Furthermore,
due to the unpredictable situation in the real environment, the
robot needs to adapt its behavior according to the changes in
the environment. All these problems together obstruct the
usage of assistive robots in our daily life.

1.2 Contributions of this Work

Considering that humans and animals can achieve far more
complex tasks than robots, an intelligent system based on
human-like behavior and learning functionalities could accom-
plish more complicated cognitive tasks in home-like environ-
ments than industrial fields. In particular, the understanding
of how information is processed in the brain could be a key
to realizing a robust self-positioning and navigation. How the
brain works has been investigated deeply in the last decades.
Although many parts of the brain remain unknown, more
knowledge about the structure and the way of information pro-
cessing has been obtained. Because artificial neural networks
emulate the structure and function of the brain, they could be
a method to reproduce some functionalities of the brain such
as feature learning and recognition, spatial recognition, infor-
mation fusion and decision making. In this work, we focus on
the investigation of the neural mechanisms of spatial cognition
and develop an automatic intelligent navigation system based
on these insights.
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1.2.1 Indoor Localization based on a Hybrid Neu-
ral Probabilistic Model

Indoor person and robot localization is crucial for socially as-
sistive robots. A robot needs to know the position of the user
and navigate to him to provide service. Usually, since no wear-
able sensor is carried by the user for localization, the user or
target person needs to be detected by sensors, for instance us-
ing cameras, identified when multiple persons are in the room,
and must continue to be tracked without disturbance. How-
ever, a robust localization of the user is hard to obtain due to
the complexity of the real environment. For example, a vision-
based person localization could fail due to the image noise, the
dynamic of the light intensity, and/or the change of the target
person’s features. Considering that humans and animals rec-
ognize objects based on different features (e.g., color, shape,
size, etc.), a reliable information-fusion could help the system
improve the robustness of target detection. Hence, a hybrid
neural-probabilistic model is presented that integrates multi-
ple visual cues obtained from the ceiling-mounted camera to
detect and track the target person.

Traditional vision-based methods, such as motion detec-
tion and feature matching rely on a single type of information
and work well only in a constrained environment. For example,
as a motion detector is sensitive to objects that move, a user
may be missed when (s)he does not move. Feature matching
based on an object’s shape (e.g., SIFT) works well only when
the object is rigid, but due to the distortion of the lens, the per-
son’s shape may differ strongly when his position and pose are
changed. The clothes’ color pattern could be a strong evidence
for a person’s detection, but this pattern needs to be trained
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before use. Moreover, the learned color pattern may not work
and needs to be regenerated when users change their clothes
(which could frequently happen). Compared with these, while
some visual cues cannot provide useful information (e.g., no
motion is detected when the person sits on a chair), the re-
dundant target detection (e.g., from the shape cue and the
color cue) could help the system to detect the target further.
Therefore, as one of the key features of our model, our neural
model combines diverse information obtained from the ceiling-
mounted camera and is capable of compensating weaknesses
of visual features in different situations, which results in an
overall reliable detection rate.

In order to realize a real-time localization performance,
a particle filter is employed to detect the person based on
outputs of visual cues. The particle filter here resembles the
mechanism of visual attention: instead of processing the en-
tire image information, the particle filter first processes the
visual input with a uniform random sampling and then fo-
cuses on image areas that contain relevant information. With
this novel method, the computational effort of using multiple
methods decreases significantly, enabling the system to detect
the target person in real-time. Moreover, an adaptive learn-
ing scheme is developed to learn visual patterns (i.e., the color
and the shape cue) and to adjust the reliabilities of visual cues,
which improves the tracking quality online.

1.2.2 Indoor Robot Navigation based on Learn-
ing of Sensorimotor Representation

The navigation system uses the localization information and
controls the robot to walk to the target person. As the target
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person may walk to different places, no fixed target position
can be defined, and the robot should adapt its behavior in real
time when the person moves. Therefore, the navigation system
needs to have a high flexibility to respond to an environment
change instantly while keeping the robot safe. Sophisticated
path planning methods may be unsuitable for our requirements
because of the high computational complexity. In addition, the
well-planned trajectory may not fit the real situation because
the environment may change during planning. A human-like
behavior is desired, in which an abstractive planning (e.g., di-
rection to the target) should be computed quickly, while the re-
action to the details of the environment (e.g., obstacles) should
be calculated in real time during navigation. Study of the spa-
tial cognition ability of humans and animals is helpful, in this
case, to develop an intelligent navigation system.

Consistent with the suggestion that for humans and an-
imals, a spatial environment can be represented with senso-
rimotor features (Zetzsche et al., 2009), we present a neural
probabilistic model for the robot navigation based on learning
the sensorimotor representations of an indoor environment.
The neural model represents the environment at a high level
of abstraction–i.e., in a sensorimotor map that stores the spa-
tial information in a self-adaptive structure. The sensorimotor
map consists of a topological network, in our model a growing
when required network, to represent spatial features and rela-
tions of the environment. Based on the information stored in
the topological network, a strategic navigation plan is built,
which is computed efficiently and can be adapted based on the
change in the environment. By combining this strategic plan
with a reactive obstacle avoidance behavior, this model is ca-
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pable of navigating a robot in a real environment with high
complexity and dynamic changes.

The motor information of the state of transition is repre-
sented as connection weights in the network, which are used
to interpolate the control signal while navigating. During map
exploration, detailed actions of the sensorimotor are learned
through associating spatial status with the motor information
of the robot. This motor information is then reused during
robot navigation to generate corresponding motion signals.
For each navigation step, the corresponding motor informa-
tion is triggered and combined without extra geometry cal-
culation. With the help of this novel method, the robot can
handle complex situations while keeping high planning effi-
ciency using learned a-priori motion information. Compared
with methods that regenerate motion information in real time
during navigation, this combination of learned knowledge ac-
celerates the computation and ensures real-time planning.

The sensorimotor map can be learned based on the robot’s
exploration or through observation of the motion of others.
Considering that usually a person is moving in a room without
colliding with objects, a new training mechanism is presented
which learns the spatial knowledge by observing the person’s
movement using a ceiling-mounted camera. With the help of
this method, the learning phase of the environment can be
accelerated, and possible collisions during the robot’s explo-
rative movements are avoided. This novel method resembles
the principle of “latent learning” (Thorpe, 1956), i.e., learn-
ing the environment without an expressive response at that
time. When a target is given, the collected experience together
with the reward signals compose a model-based reinforcement

13



Chapter 1. Introduction

learning, which in our case guides the robot to maneuver to
the target position.

Moreover, because of the different sizes of a person and a
robot, the sensorimotor map learned from a person’s move-
ments may not be perfectly suited to the robot. Therefore,
an online adaptive learning mechanism is developed, which
adjusts the observed spatial knowledge (stored as connection
weights of the topological network) to the robot while maneu-
vering. A reflective behavior is defined for robot-environment
interaction during navigation, which quickly controls the robot
to avoid possible collisions based on the sensor signals of the
robot. Based on the adaptive learning and the reflective be-
havior, a robot can remember the obstacles in its sensorimotor
map and avoid them pro-actively in the future.

As one unique feature of our approach, during the robot’s
exploration in the room, the visual information extracted from
the robot’s head camera is associated with the location mem-
ory, which anchors the appearance features of the environment
with the states in the sensorimotor map. This technique al-
lows the robot to achieve complex tasks like fetching an object
by being shown an image of it. It shows another advantage of
our model that multiple sources of abstract information can
be used for environment representation, which is also a funda-
mental ability of human’s spatial cognition.

The localization method and the navigation method to-
gether build up a highly integrated system comprised of the
robot and the AAL system. It provides an effective way of en-
vironment learning, target person detection, and autonomous
navigation. With the help of the AAL system’s sensors, the
robot is capable of learning the environment without using
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sophisticated sensors, e.g., laser scanners, which reduces the
system cost and extends the capability of the robot to assist
a person. A socially assistive robot can be a unique interface
between the AAL system and the user which helps the medical
team to support the patient.

1.3 Structure of the Thesis

This thesis is organized as follows: in chapter 2 we review
the state of the art of indoor localization and robot naviga-
tion. We also discuss the relevant computational models of
neural representations and spatial cognition, which are helpful
for understanding the humans’ and animals’ navigation ability.
Then, in chapter 3, we present the hybrid probabilistic model
for indoor person/robot tracking using a ceiling-mounted cam-
era. The method of flexible robot navigation using a cognitive
map is described in chapter 4, and a model of visual anchor-
ing of the environment is explained in chapter 4.3, which helps
a robot to learn and to localize a specific object in the envi-
ronment. Methods for adaptive learning of the environment
dynamics are described in chapter 5. In the end, we summarize
this thesis with a discussion in chapter 6.
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Chapter 2

Related Work

Socially assistive robotics aims to move robots from well con-
trolled environments (such as laboratories or factories, where
robots operate under limited conditions), into real social en-
vironments (e.g., schools, hospitals and homes) to assist per-
sons in their daily lives. Among the many challenges this field
present, how a robot has to adapt its mobile behavior in a clut-
tered, unknown environment, possibly with dynamic changes
within a space, is one of the most crucial problems, and it
is closely related to the successful performance of the robot.
Fully programmed behaviors used for industry robots are not
realistic in this case. First, as the environment in which the
robot moves is unknown at the beginning, the navigation plan
cannot be computed without the a priori knowledge. Second,
the target position could be dynamic in a real-life scenario
(e.g., the target person could move), and the robot needs to
adjust its plan in real time instead of following the one pro-
grammed in advance. Therefore, a robot needs to explore its
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environment using its sensors, understand the situation, and
adjust the navigation towards the target position based on
its estimation. Computational intelligence plays an important
role in this field of research, particularly important is its work
on artificial neural networks based on studies on the learn-
ing mechanisms of the central nervous system of animals and
humans.

Recent research in robotics and computational intelligence
shows that socially assistive robots have made considerable
progress in the last decades. In this chapter, we will give an
overview of the state-of-the-art techniques for the robot local-
ization, navigation, and neural mechanisms of humans’ and
animals’ spatial knowledge. In section 2.1, we will review the
methods developed for localization, in particular, in an indoor
environment based on different sensors. Then, in section 2.2,
we will describe the current progress of autonomous robot nav-
igation, including mapping, planning, and interaction with the
environment. We will also review how a robot interacts with
the environment in section 2.3, and the biological findings of
spatial cognition as well as the related computational models
developed during recent years in section 2.4.

2.1 Localization

Localization refers to the techniques that determine the po-
sition of an object in space, which is one of the fundamental
problems in robotics. For a socially assistive robot, a robot
needs to identify its own position based on the internal or
external sensor inputs and use this information to plan its tra-
jectory to the target. The localization as well as the navigation
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?? 

Figure 2.1: Schema of outdoor and indoor localization

are preconditions to many other tasks, such as human-robot in-
teraction and providing medical assistance, because the robot
needs to reach the person first before providing any service.

2.1.1 Non-vision-based Localization

In general, the localization problem can be categorized as out-
door and indoor localization (see Figure 2.1). While outdoor
localization is well addressed using advanced signal processing
and satellite techniques, for example, the Global Positioning
System (GPS), the indoor localization remains challenging for
several reasons. First, as the satellite signals cannot pene-
trate the building structure, the GPS localization does not
work in an indoor environment. Second, the indoor localiza-
tion requires a much higher accuracy than the outdoor local-
ization because of the relatively small environment. Due to
the cluttered structure of the indoor environment, signals may
be distorted or reflected, which leads to a high signal-to-noise
ratio. The environment dynamics is another challenge for the
localization, which may cause a mislocalization due to the mis-
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matching of the current sensor data with any landmarks stored
in the map.

Many methods for indoor robot localization have been pro-
posed to overcome these challenges in the last decades. Non-
vision-based localization techniques, for example, radio-based
localization measurements (e.g., RFID tags (Koch et al., 2007;
Raoui et al., 2009), GSM networks (Varshavsky et al., 2006)
and wireless sensor networks (Mao et al., 2007)) have been
developed successfully. Within these methods, we can further
distinguish active models, where the target object collaborates
with the localization, for example, by transmitting a radio sig-
nal, and passive models, where objects are independent and
the system works based on the reflected signals (for example,
with a passive RFID). One drawback of radio-based localiza-
tion is the low accuracy of the calculation to determine position
because no direct distance measurement is conducted. Redun-
dant base stations such as wireless sensor networks have to be
built in order to obtain a relatively good precision.

Another localization strategy uses distance information di-
rectly measured by sensors. For instance, distance information
can be calculated with laser and ultrasonic sensors by estimat-
ing the difference of the time between the emission of a sig-
nal and its reception after being reflected by objects (Adams
et al., 2004; Drumheller, 1987; Hahnel et al., 2003; Kleeman
and Kuc, 1995). However, this measurement (usually called
time-of-flight technique) is very complicated. Laser scanners
provide great accuracy of distance measurement and a wide
detection range, but their price is so high that they are not
suitable for consumer applications. Ultrasonic sensors are rel-
atively cheap compared to laser scanners, but they provide a
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lower resolution measurement (i.e., a sonar sensor only mea-
sures the closest distance to obstacles in its detection range).

Since a robot needs to approach the target person before
providing assistance, the position information of the target
person is necessary for robot navigation planning. Although
the principle of person localization is the same as that of robot
localization, methods developed for mobile robots may not be
suitable for person localization. For example, unlike the robot
localization that can be obtained from the robot’s internal sen-
sors, which provide rich information based on a robot-centered
environment, this information is missing for person localiza-
tion, because these sensors cannot be fixed on the person’s
body. Although wearable sensors could be an alternative for
providing this information, and many methods based on them
have been proposed successfully in the last decades (e.g., using
infrared (Want et al., 1992) and radio frequency signals (Bahl
and Padmanabhan, 2000)), an extra sensor device has to be
carried by the user permanently, which is inconvenient for life-
long person tracking or not allowed for safety reasons. Further-
more, since wearable sensors need to stay active while tracking,
a power supplier is required to keep the sensor always active.

Another strategy of addressing the person localization prob-
lem is to use external sensors of the robot (e.g., a robot camera
that detects the person based on the feature matching) or the
AAL system to identify and track the target person, for ex-
ample, using a ceiling-mounted camera. These methods do
not require the user to carry any sensor, which is convenient
for the daily usage. However, since the localization with these
methods is based on feature detection and position estimation
rather than accurate measurement, challenges such as detec-
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tion robustness, detection range, and detection safety have to
be solved. For example, motion sensors (Barger et al., 2005;
Yang et al., 2009) can detect a person entering or leaving a
room, but they cannot provide the precise location informa-
tion due to their low resolution and short range. In addition,
these sensors cannot distinguish a moving person from other
objects. Laser sensors are capable of scanning the environ-
ment in a very detailed way and detecting a person at a long
distance. However, laser emitters are usually expensive and
may cause potential safety issues for a person. Moreover, as
laser sensors only provide distance information, it is hard to
identify a target person with them.

2.1.2 Vision-based Localization

Compared with non-vision-based localization models, a vision
system promises to provide reliable performance and a broad
functionality at a reasonable cost. Vision-based localization
determines the position of the object by analyzing the im-
age(s) from a camera, including person detection, segmenta-
tion, image registration, and reconstruction in real-time. As
a major branch of artificial intelligence, computer vision has
become one of the most important topics in computer science,
and is being widely applied in smart home systems, robotics,
etc. Vision systems use passive sensors, i.e., cameras to local-
ize the target person through person detection and tracking.
As stated before, these systems have a relatively low cost and
do not need the user to carry any sensors. The camera stream
provides far more information than the other kinds of sen-
sors: it can be assessed whether the person is standing, sitting
or moving, or whether it is an emergency situation such as a
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(a) (b)

Figure 2.2: Person tracking based on different sensors

Left: The gesture of the person is estimated based on a neural network

using a Kinect-like sensor1.

Right: View of a camera from a camera array. Multiple cameras are used

to track the person by information fusion2.

fall (Nait-Charif and McKenna, 2004). The target person/ob-
ject can be detected by texture, color, or motion information
extracted from images and reconstructed in the 3D environ-
ment based on different technologies such as the structure of
motion, epipolar geometry, etc. Privacy concerns of camera
surveillance can be addressed by not storing image informa-
tion if the person’s location is needed only for a short time.

There are many vision techniques developed for localiza-
tion based on different camera setups. For instance, stereo vi-

1Source: a snapshot from a video related to the article “Hierarchical
som-based detection of novel behavior for 3d human tracking”, (Parisi
and Wermter, 2013)

2Source: a snapshot from a video linked with the article “Multi-person
tracking strategies based on voxel analysis”, (Canton-Ferrer et al., 2008)
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sion systems (Bahadori et al., 2007; Muñoz-Salinas et al., 2007)
are used to reconstruct the 3D information based on the epipo-
lar geometry of two cameras and can detect persons based on
the shape segmentation using depth information. Similarly,
RGB-D sensors (e.g., Kinect and Xtion) (Luber et al., 2011)
use a combination of an infrared signal emitter (which creates
a known scattered point pattern) and a camera to calculate
the depth based on triangular geometry. With these cost-
effective sensors, a 3-D reconstruction can be achieved with a
decent resolution and an excellent real-time capability. The
drawbacks of these methods are the small detection range and
a narrow angular field of view, which obstructs the usage of
them. A Time-of-Flight (ToF) camera (Guomundsson et al.,
2008; Knoop et al., 2006) measures the time between emission
and reception of a signal to calculate the distance, which pro-
vides a high space resolution and can yield a very accurate 3D
reconstruction. A disadvantage of the ToF camera is the com-
plexity of the manufacture, which leads to high system costs.
An infrared camera (Kemper and Linde, 2008) is a particular
kind of camera used to localize the person by detecting a heat
source, which is natural for identifying a person or a robot
in the room because they usually emit heat. However, since
multiple heat sources could exist (e.g., television, microwave,
etc.), the sensor images may have a high signal-noise ratio.

Considering that a single camera may not cover the en-
tire observation space or may not provide accurate position
information, the fusion of multiple information may be help-
ful to improve the tracking quality. For example, a higher
tracking resolution than that available when using traditional
camera systems can be reached by registering motion informa-
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tion from an accelerator sensor (Bauer and Lukowicz, 2008) or
using a multiple-camera system. Person tracking with multiple
sensors (Demiroz et al., 2012; Fleuret et al., 2008; Kobilarov
et al., 2006; Nickel et al., 2005; Salah et al., 2008) can obtain
extra information, which can offset drawbacks like the narrow
field-of-view of a single camera (Lanz and Brunelli, 2008) and
overcome shadowing and occlusions (Kemmotsu et al., 2008).
However, these systems are rather complex and require expert
knowledge to be set up. For example, a camera system has to
be carefully calibrated using sophisticated methods not only
to eliminate the distortion effect of the lenses, but also to con-
struct accurately a 3D coordinate system based on different
camera views.

Compared with these methods, a single ceiling-mounted
camera provides a much simpler solution to person localiza-
tion. West et al. (2005) have developed a ceiling-mounted
camera model in a kitchen scenario to monitor the interac-
tion between a person and cooking devices. The single ceiling-
mounted camera can be calibrated easily or even be used with-
out calibration at all. With a wide-angle lens, for example, a
fish-eye lens, the ceiling-mounted camera could monitor an en-
tire room. In particular, a ceiling-mounted camera has the ad-
vantage, being able to observe any position in the room and to
track the target person without obstacles’ occluding its view.
The main issues of the single ceiling-mounted camera setup
are (1) the limited raw information extracted from the cam-
era and (2) the diverse body shapes of the person in the image
(e.g., Figure 2.3). Moreover, the need for detecting a person in
a realistic home environment without any modification makes
this task harder. Sophisticated algorithms are essential, in this
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Day 1 Day 2 Day 3

Figure 2.3: Person images from a ceiling-mounted camera
It is hard to recognize a person by a fixed shape pattern. Since the

person may change his clothes in daily life, it would be hard to assign a

color pattern for tracking.

case, to compensate for the drawback and to obtain a reliable
tracking performance.

In general, single-camera-based person localization consists
of two steps: detection, which finds the person using image
processing methods, and tracking, which keeps the localization
as good as possible by filtering out noise information (some-
times even when the detection is interrupted). Among the
various person detection methods, the most common technique
for detecting a moving person is background subtraction (Pic-
cardi, 2004), which finds the person based on the difference
between an input and a reference image. A moving object
can be found perfectly well with this simple technique; how-
ever, there is a strict constraint in that the background has
to be constant, because any change in the background (also
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the light condition) will result in a difference and disturb the
person tracking. Appearance-based models have been inten-
sively researched in recent years; these detect target objects by
analyzing their visual features. For example, principal com-
ponent analysis (PCA) (Jolliffe, 2005) and independent com-
ponent analysis (ICA) (Hyvärinen and Oja, 2000) represent
the original data in a low-dimensional space by keeping major
features. Through learning the major features, a pattern of
the target object (e.g., face) is built that can detect new in-
puts whose features match the pattern. Some other methods
such as scale-invariant feature transformation (SIFT) (Lowe,
2004) or speeded up robust features (SURF) (Bay et al., 2006)
detect interest points (for example using Harris corners (Har-
ris and Stephens, 1988)) for object detection, which have the
advantage of scale- and rotation invariance and are able to de-
tect similarities in different images. However, the computation
complexity of these methods is high, and they perform poorly
with non-rigid objects.

Vision-based methods using body part analysis (Frintrop
et al., 2010; Hecht et al., 2009; Ramanan et al., 2007) can
detect a person precisely by detecting the structure of the
skeleton and the motion of a body, but these methods re-
quire a precise body shape captured from a front view that
is not reliable in the real scenario. In order to improve the
tracking quality, a multiple-camera system could be installed
in a room environment to get the body shape correctly. How-
ever, the complexity of such a distributed detection system
will be increased significantly. Color-based methods use color
information obtained from clothes and skin as reliable tracking
features (Comaniciu et al., 2000; Muñoz-Salinas et al., 2007;
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Zivkovic and Krose, 2004). Other than shape detection that
requires the form of the target to be constant, a color-based
method has good generalization ability and can track a target
person with an arbitrary pose. However, since the cloth color
of the user cannot be predicted due to the daily change of the
clothes, no color pattern exists at the beginning of tracking as
the system does not know the cloth color, and it needs to be
adapted when the color changes.

Probabilistic models are widely used to improve the track-
ing robustness and to fuse multiple sensor inputs or visual cues.
As the person detection could be disturbed due to the image
noise, the current state of him could be estimated based on
the previous state and a dynamic model, and then corrected
using the new observation. The probabilistic models could be
used for different purposes, for example, localization, feature
estimation, etc. For example, as a kind of discrete probabilis-
tic model, particle filters are employed in a number of mod-
els (Canton-Ferrer et al., 2008; Isard and MacCormick, 2001;
Klein et al., 2010; Nummiaro et al., 2003) for tracking single or
multiple persons, and handling occlusion problem. It has been
shown that a reliable tracking performance can be reached by
combining probabilistic state estimation with vision detection
techniques. Knoop et al. (2006) present a model for person
detection and pose estimation. A human body model is rep-
resented as cylinders connecting with different types of joints.
The pose of the person is estimated by the state that matches
the visual inputs with the highest likelihood.
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2.2 Robot Navigation

As a fundamental research topic, autonomous indoor robot
navigation continues to be a challenge in unconstrained real-
world environments. A robot needs to (1) represent the spatial
knowledge of the environment, (2) determine its own position
(and orientation), (3) find the target, and (4) navigate to the
goal without injuring itself. This entire sequence of processes
for reaching the target position is for a human also a com-
plex cognitive task, because it involves various abilities such
as perception, recognition, and behavior control. Although
many models for map building and planning exist, it is still
hard to integrate them synergistically due to the strong sensor
noise, environment dynamics, and high complexity.

In general, robot navigation consists of three components:
Localization, Map building, and Path planning. The localiza-
tion determines the robot’s position based on the map infor-
mation, while the map building uses the robot’s localization
as well as sensor data to build an internal spatial represen-
tation. Because localization and map building are tightly re-
lated, these two parts usually are examined together with a
special name as simultaneous localization and automatic map-
ping (SLAM). The sensor information for map building can be
further categorized into two types: idiothetic information and
allothetic information. Idiothetic information refers to the in-
formation from self-positioning, which estimates the change of
the robot’s state via internal representations such as speed, ac-
celeration, or orientation of the robot. Allothetic information
refers to the state estimation of the robot based on external
information, for example, the visual perception of the envi-
ronment, the sound information, etc. Although the idiothetic
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information is easy to obtain, it is based on a robot-centered
space, and the error of the sensor signal may be accumulated
because of the lack of an absolute reference. For this reason,
it cannot be used to represent the robot’s position in a large-
scale environment. In contrast, the allothetic information is
extracted based on the environment perception, which does
not only rely on the previous state but also the external in-
formation. One problem of the allothetic-based localization
is that the quality of performance is influenced by the per-
ceptual aliasing and image variability problems (Kuipers and
Beeson, 2002), which refer to the fact that different positions
may look the same, or the same position may look different.
Consequently, both kinds of information are complementary
for their disadvantages, and the fusion of both sources of in-
formation could improve the localization and map building
significantly (Cox, 1991).

The path planning refers to the task of computing a se-
quence of actions to guide the robot to the goal based on the
learned map, which is also called path-based navigation. Based
on the map information, a trajectory is calculated where col-
lisions with obstacles are considered and prevented. Typical
methods are widely used for indoor and outdoor navigation,
such as Voronoi diagrams (Aurenhammer, 1991) and visibil-
ity graph (Lozano-Pérez and Wesley, 1979). The drawback of
the path-based navigation is that the robot can handle dy-
namic environments hardly based on the map information.
The planned trajectory may be blocked due to a change of
obstacles, and the robot will not be able to achieve the nav-
igation when no more free path is available based on the old
map information. Compared with this, a behavior-based navi-
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gation controls the robot’s motion in a more flexible way based
on sensor feedbacks. In particular, when the environment fre-
quently changes (for example with other moving objects), the
robot can adapt its motion quickly to avoid collisions. The
problem of behavior-based methods is that the performance
of obstacle avoidance depends on the quality of sensors and
the speed of the motion response. Particularly, as behavior-
based methods do not calculate a global plan, the robot may
not be able to reach any goal in a complex environment. For
example, the frequent triggering of the reactive behavior for
obstacle avoidance in a cluttered environment could disturb
the normal navigation behavior.

Considering that humans and animals can learn their spa-
tial environments and plan their path toward destinations eas-
ily, how information is processed in the brain is key to creating
an intelligent robot (Burgess et al., 2002a). Therefore, the un-
derstanding of the biological principle of navigation is very
appealing to researchers involved in the development of navi-
gation systems for robots. For example, the discovery of place
cells in the hippocampus of rats has been seen as essential for
internal spatial representation. Place cells were discovered in
1971 by O’Keefe and Dostrovsky (1971), who saw that the ac-
tivity rate of these neurons is strongly related to rats’ location
in the environment. A model based on spatial representation
has a high robustness to sensor noise, good adaptation capa-
bilities, and is highly efficient. With the help of these features,
a robot could overcome challenges of indoor navigation such as
high complexity of environment and possible dynamic changes.
Because of these advantages, biologically-inspired navigation
methods are attractive to service robotics, which support the
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development of an assisted robot in an ambient assistant living
(AAL) setup.

2.2.1 Map Building

Before a robot reaches a target, a representation of its envi-
ronment is needed to determine its location and that of its
goal. Although an accurate map is required for the robot lo-
calization, such a map is hard to obtain when the robot is
in an unknown environment. Due to the lack of the a priori
knowledge, the robot’s location, as well as the structure of
the environment can only be estimated. To build an accurate
map becomes a challenging task, because the coordinate infor-
mation of the environment can be partially computed based
on the robot’s current location estimation. The noise of the
environment information will be added up during navigation,
and the global mapping could be messed up easily. As ac-
cumulative error of the path integration (also known as dead
reckoning (Reinstein and Hoffmann, 2013) that estimates the
current position based on the previous position and the new
observation) is hard to avoid, external information, e.g., from
laser scanner (Guivant et al., 2002), sonar (Diosi et al., 2005),
and vision (Karlsson et al., 2005) are often used to generate
landmarks for environment representation. These landmarks
will be stored and associated with the corresponding states
on the map, which helps the robot to estimate its position
when these landmarks are observed during the navigation of
the robot.

The map representations of the environment can be split
roughly into two groups: metric maps and topological maps
(see Figure 2.4). The metric map represents the environment
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Figure 2.4: Schema of a metric map and topological map

Left: Metric map. The position of the robot is represented based on the

coordinate information.

Right: Topological map. The position of the robot is represented by nodes

of the map.

with coordinate information based on a reference system. In
order to reduce the map complexity, the environment is usually
discretized, and then such a resulting map is also called a grid
map (Thrun, 2003). With the help of allothetic information
from the internal sensors, the metric map can be built easily,
and it can compute the optimized navigation path based on
the map geometry. However, methods based on the metric
map are inefficient for planning, and the required accurate
positioning of the robot is hard to obtain.

In contrast, the topological map represents the environ-
ment as a set of nodes, which contain features of distinctive
places, and a set of connections, which show the relations be-
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tween different nodes (Thrun, 1998). Since the position of a
robot can be determined based on the features stored in the
nodes rather than using allothetic information, accumulative
errors of the distance sensing will not disturb the environ-
ment representation. Therefore, robust robot localization can
be achieved in a large-scale environment using the topolog-
ical map. In addition, since the environment is discretized
as a set of nodes and connections, the topology-based meth-
ods are efficient for planning and can be potentially combined
with other cognitive tasks. The disadvantages of topological
map-based methods are that they are difficult to use for repre-
senting details of a large-scale environment and localizing the
robot exactly on the map due to the limit of the map reso-
lution. Furthermore, since details (i.e., distance information)
are missing in the topological map, the accurate maneuver
behavior cannot be computed based on the topological map
information alone.

Methods for Learning Metric Maps

Many methods have been proposed in recent years for solving
the metric mapping problem (more precisely called the simul-
taneous localization and mapping (SLAM) problem) using the
range sensors, and the most popular methods are based on
probabilistic modeling (Bailey et al., 2006; Durrant-Whyte and
Bailey, 2006; Montemerlo et al., 2002). Probabilistic SLAM
represents the states of the robot via a probability distribution,
as the state of the robot cannot be determined accurately. The
location of the robot is not represented by a single position,
but a set of states with corresponding probabilities. This rep-
resentation is helpful to increase the system robustness, which
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can avoid mislocalization due to defective sensor input. Filter
techniques such as Kalman Filter (Bailey et al., 2006) and Par-
ticle Filter (Fox et al., 2001) are often integrated to estimate
the states of the robot based on allothetic and idiothetic infor-
mation. During the exploration, the state of the robot will be
predicted via a transition model and corrected with the new
observation from the robot sensors. Methods based on other
techniques have been developed, for example, using Fuzzy
Logic (Oriolo et al., 1998), which represents the uncertainty
of the states of the robot with a fuzzy set. Moreover, artifi-
cial neural networks have been used to learn the environment.
For example, Krose and Eecen (1994) presented a method that
represents the environment using a self-organizing map, which
learns the sensor input and identifies the robot’s position based
on the activity of the self-organizing map. Duckett and Nehm-
zow (1999) used a pre-trained multilayer perceptron network
to detect unknown space based on a set of sensor signals and
learn this area automatically. In order to compensate for the
accumulative errors of the metric map-based methods during
exploration, loop closing methods are used, which recover the
map when a place is visited twice (Newman and Ho, 2005;
Williams et al., 2009). Allothetic information is usually used
for the relocalization because it is based on the environment’s
space and is independent of the robot’s position representa-
tion.

Methods for Learning Topological Maps

Because the topological map represents the environment ab-
stractly, landmarks rather than detailed position information
are stored. Within these landmarks, visual features are com-
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monly used for representing the observation of the environment
where the corresponding nodes are built in the topological
map (Gaspar et al., 2000; Matsumoto et al., 1996). A robot can
determine its position on the map by finding the node whose
visual features match the current visual input best. While vi-
sual landmarks have the advantage that they are based on the
environment without having the accumulative error problem,
they may not be detected well due to the different view an-
gle and sensor noise. Hence, redundant landmark detection
is often employed to improve the robustness. Various strate-
gies can be used for robot positioning based on the topological
map, such as winner-takes-all, which estimates the robot po-
sition by the best matching feature. Other methods use a
probabilistic distribution of the possible robot position based
on the feature matching. When features are observed from
different positions, the robot’s location will not be determined
uniquely but be represented by multiple states in the topolog-
ical map. This distributed representation is useful to improve
the localization in the reality by estimating the robot’s state.
Moreover, as a topological map is a discrete map with nodes,
the redundant state detection helps the robot to determine
its position precisely between two states. However, since the
position cannot be determined uniquely, multiple states have
to be considered and a sophisticated planning method (e.g., a
partially observable Markov decision model (Kaelbling et al.,
1998)) is needed to integrate different states and make an ef-
ficient decision.
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Figure 2.5: Schemata of path planning

Left: Single path planning. Only the trajectory from the current position

to the goal position is considered.

Right: Universal path planning. All possible positions are considered.

2.2.2 Path Planning

Path planning refers to techniques of trajectory planning that
enable robots to reach targets from a starting position based on
an environment representation. A set of discrete movements
is calculated, which guide a robot step by step in moving in its
environment and helps it avoid obstacles. The planned trajec-
tory is usually optimized, which allows the robot to navigate
to the target using the shortest path. Choosing the right path
is a fundamental ability for service robots to assist persons.

In general, robot path planning can be classified into two
categories: single path planning and universal path planning
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(Meyer and Filliat, 2003). For single path planning, a robot
computes a path from its current position to the target, which
consists of a sequence of movements to be executed. Once the
route is planned, the robot will follow the path to reach its
goal. As all the obstacles registered on the map have been
considered and excluded from the path, the robot does not
need to calculate a reaction to them, which makes navigation
efficient. However, single path planning has the drawback that
new computation is required when a change of the environment
is detected. In particular, when the robot is in a dynamic
environment (e.g., with other moving objects), the continuous
regeneration of a path may lead to inefficient behavior or even
to a navigation problem.

Compared with this, universal path planning is a more
complex method, which builds up a motion plan for each pos-
sible position on the map to reach the goal. When a robot
is located at one position, the motion associated with this
position will be executed, which leads the robot to move to
another position. Through continuous interaction with the en-
vironment, the robot repeats the localization and action phase
until it reaches the goal position. Because multiple paths lead-
ing to the goal will be planned, the robot’s motion can be not
only deterministic, i.e., based on the best motion as done by
the single path planning, but also through combining different
motions. When the environment is changed, the correspond-
ing motion plan can be adapted as well. This method could
overcome the challenge of a dynamic environment that allows
the robot to work with other moving objects (e.g., another
robot) together.

Navigation planning has a high computational complex-
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ity, particularly when the robot is in a large-scale environ-
ment. Therefore, methods to reduce the computational ef-
fort are important to ensure a real-time navigation capability.
Many methods have been developed for this reason. For ex-
ample, the free space in an environment can be represented
as a topological map to realize the path-planning easily using
graph-searching methods (Barr et al., 1981). The free space
in an environment can be separated into subregions, which
allow the system to extract a topological map from a metric
map by labeling the subregions and their relations with topo-
logical nodes and connections. The free space can be decom-
posed exactly to cover it entirely, for example, using convex
polygons (Latombe, 1990), or be represented in an approxi-
mate manner that covers it roughly with simple geometries
(i.e., a grid map) to have a better planning efficiency (Thrun,
1998). Since the discretization error may influence the motion
accuracy, methods for meshing the subregions with variable
sizes have been presented to improve the map accuracy (Ar-
leo et al., 1999). Furthermore, meshing with a hierarchical
structure (Estrada et al., 2005; Lisien et al., 2003) has been
proposed to build up accurate metric maps of the environment.

Another group of widely-used discretization techniques,
which is known as roadmap methods (Latombe, 1990), com-
pute a list of possible local paths on the map based on a set
of keypoints of the environment. A global path can be gener-
ated by combining possible local paths to reach the goal from
the start position using these methods. The path planning,
in this case, is very efficient because all local paths have been
pre-calculated, and no extra moving planning is needed here.
Different concepts can be used to construct keypoints. For in-
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stance, a visibility graph chooses the obstacle corners as key-
points and connects these keypoints with straight lines when
they are visible to each other. Based on the target position as
well as the robot’s current position, it will calculate the tra-
jectory by searching the graph. The advantage of the visibility
graph is that the robot can plan and adjust its navigation ef-
fectively using an efficient graph search algorithm. However,
the paths generated by this method are line-based and not
smooth, which may cause turning difficulty when the orienta-
tion towards the next node changes a lot. Another well-known
method, the Voronoi diagrams (Aurenhammer, 1991) tackles
this problem by maximizing the distance between paths from
obstacles to avoid possible collisions.

An efficient path searching algorithm plays another vital
role to achieve real-time navigation planning. For example, us-
ing an A∗ algorithm (Barr et al., 1981), a robot can calculate
a path from its current position to the goal quickly by filtering
out bad options using a knowledge-plus-heuristic evaluation.
Reward spreading (Murphy, 2000; Yan et al., 2012b) can be
used for universal planning that spreads out a reward value
from the goal position iteratively with a discount factor. A
robot always moves towards the neighborhood node with the
highest reward value during navigation until reaching the goal
position. Dynamic programming (Bertsekas et al., 1995) is a
useful strategy for robot navigation in a large-scale environ-
ment. A large environment is split into several subregions with
this method to reduce the planning complexity. Local optimal
paths of subregions are calculated and combined to generate
the global path of navigation.

Due to the discretization error of the space representation,
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actions calculated between two adjacent states may not match
the environment well. If the robot is controlled deterministi-
cally by following the action signal accurately, this disconti-
nuity of action signals may lead to collision with obstacles or
difficulty of maneuver, because the robot may not be able to
respond so quickly due to the motion inertia. Additionally,
as the robot may not perceive the environment precisely due
to the sensor noise, a robot may behave incorrectly based on
the wrong localization. For these reasons, deterministic action
planning may not be suitable for navigation in a real environ-
ment, and a probabilistic method (Smith and Simmons, 2012)
could help a robot to improve the robustness of navigation
by estimating its state with a redundant representation. The
state of the robot will not be represented by a single node, but
with a probabilistic distribution over the map based on the
current and the previous position. Then, based on the cur-
rent state distribution, multiple actions will be triggered, and
smooth motion will be computed by combining corresponding
actions. However, the main disadvantage of the probabilistic
model is its high computational complexity, which requires a
costly hardware.

2.3 Interaction with the Environment

As a service robot aims at assisting the daily life of persons,
it needs to work in reality and face the challenge of the real
world. One typical problem is that rather than in a simulated
environment where the robot can plan its route purely based
on the map, a robot shares its environment with persons, pets
or possibly other robots. The obstacle avoidance in cluttered
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environments, in particular, with other moving objects, be-
comes a crucial topic for robot navigation.

Interaction with the environment is a tough task for a
robot. As the environment changes are unpredictable, the
robot needs to detect them through interaction with the envi-
ronment during navigation and reorganize its path according
to the change of the environment. This detection-and-reaction
loop increases the complexity of navigation planning signifi-
cantly. On the other hand, the recalculation must be fast,
especially with other moving objects, to ensure that the robot
can always respond correctly to the change in real time to avoid
injuring persons or damaging itself. The interaction also needs
to be intelligent. Since the interaction with the environment
needed by the robot to detect and response to changes is time-
consuming, a robot should be able to update its map through
detecting a temporary obstacle and a structure change of the
environment.

In general, there are two strategies of navigation around
obstacles (see Figure 2.6): path-based approaches, in which col-
lisions are prevented through global navigation planning based
on the known environment, and behavior-based approaches,
where a robot avoids obstacles based on reactive behavior us-
ing sensor inputs. During behavior-based navigation, a rough
path (e.g., using the topological map) without detailed ma-
neuver control is planned that guides the robot to move to-
wards the target position. Then, the robot interacts with
the environment based on its real-time environment percep-
tion and adjusts its motion steadily to avoid obstacles. As
this interaction-based control is similar to human and animal
behavior in that people do not calculate their motions exactly,
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Figure 2.6: Schemata of obstacle avoidance during navigation
towards the goal

Left: Path-based approach. Global navigation planning is computed to

avoid collisions based on the map information.

Right: Behavior-based approach. The robot adapts its behavior based on

sensor inputs during navigation

behavior-based navigation is more biologically plausible and
requires far less computation for position control. As meth-
ods of path-based navigation have been briefly described in
the previous chapter (see Section 2.2.2) and in this section, we
will focus on behavior-based methods.

Behavior-based navigation systems with diverse concepts
have been developed in recent decades. Early research mod-
els navigation behaviors with a set of preprogrammed rules,
which are triggered according to sensor information (Brooks,
1986; Connell, 1990). In order to reduce complexity, differ-
ent statuses are defined to which the sensor data clusters. The
drawbacks of these methods are the inflexibility and the incom-
pliance of the state representation. All the statuses have to be
defined manually, which may not cover all the possible situa-
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tions. A multi-layer control architecture is built to decompose
a complicated cognitive task into a list of subtasks, which is
sorted from abstract, complex (high-layer) to basic (low-layer)
behavior. With the help of this architecture, a robot can react
quickly based on the low-layer behaviors and execute complex
tasks through the high-layer behaviors. Seraji and Howard
(2002) developed a method based on fuzzy logic which as-
sesses the environment information with a set of fuzzy rules.
Based on this information, navigation behaviors are activated
and integrated based on the corresponding behavior weights,
which generates a more general and smooth motion. Neural
networks (Gavrilov and Lee, 2007; Pomerleau, 1991) are an-
other option for robot control in which the response behavior
can be learned automatically using supervised learning. For
example, Echo State Networks (Hartland and Bredeche, 2007)
are employed to adjust the navigation behavior based on not
only the current sensor value but also the history, which helps
the robot to identify the obstacles more precisely.

As one of the advantages of behavior-based approaches,
the robot can detect and handle unknown obstacles based on
the feedback of the sensors, which is appropriate for dealing
with environment dynamics. However, one problem is that it
may perform poorly within a complex room since too many
reactive behaviors will be triggered, which will prevent the
robot from navigating to the target successfully. The qual-
ity of sensors (e.g., detection range, accuracy, etc.) and the
speed of the motion response may influence the navigation be-
havior strongly. Moreover, the strength of the behavior-based
approaches is also their weakness: as the accurate environ-
ment information (e.g., distance) is not considered during path

44



2.3. Interaction with the Environment

planning, these navigation methods may result in suboptimal
solutions (Borenstein and Koren, 1991). Compared with this,
path-based methods may optimize the navigation trajectory
(see Section 2.2.2), but they need a complete representation
of the environment. That is hard to maintain when the envi-
ronment changes. Adaptive learning is necessary in this case,
and hybrid architecture promises to be a nice solution that
combines path-planning and behavior-based control in a com-
plementary manner.

With the information acquired from the behavior control
(e.g., obstacle avoidance), the robot can adapt its internal en-
vironment representation and avoid obstacles’ positions proac-
tively in the planning phase. In addition, from the biologi-
cal point of view, as the dorsolateral striatum generates au-
tomatic behavior, and the dorsal striatum coordinates the
goal-directed behavior (Balleine et al., 2007), these co-existing
mechanisms are important for animals to produce flexible navi-
gation behaviors. Many computational models based on adap-
tive learning have been presented. For example, Donnart and
Meyer (1996) present a control architecture, MonaLysa, which
consists of a planning module that generates sequences of ac-
tions for reaching goals and a reactive module for avoiding
dangerous situations. Salient states are extracted during the
navigation, which help the robot remember the obstacles and
avoid them when repeating the same navigation task (i.e., from
the same starting position to the same goal). Based on Hid-
den Markov models, Bennewitz (2004) develops methods for
adaptive learning of robot navigation in a dynamic environ-
ment populated by humans and robots. Knudson and Tumer
(2011) approach a neuro-evolutionary algorithm for robot nav-
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igation in a cluttered environment. Combinations of behav-
iors are generated in the redundant neural network system
and, through a cost function, optimized automatically based
on evaluations of the results of their actions.

Because assistive robots in homes must be efficient in serv-
ing users and avoiding collisions, they should perform path
planning and reactive behavior calculations at the same time.
For this reason, we developed a hybrid control system that in-
tegrates synergistically a reflex-like behavior for obstacle avoid-
ance with plan-based navigation (Yan et al., 2013). A spatial
representation of the environment is built, which allows the
robot quickly to adapt the navigation path towards a target
during walking and guides the robot by showing the direc-
tion in which the movements have to be made. In addition,
a reactive model evaluates input from sensors to control the
robot’s actions and avoid (moving) obstacles. By analyzing
sensors’ feedback, the system detects permanent changes in the
environment, and the corresponding spatial memory weights
of state transitions are adapted, which adjusts the decision-
making during navigation. Details of the system’s architecture
will be described in the following chapters.

2.4 Neural Mechanism of Spatial Cogni-
tion

Human-like intelligent navigation ability is an ultimate goal
of robot navigation. While the robot navigation methods are
still based on a very detailed environment representation and
confront the challenge of computational complexity, a human
can easily abstract the environment with significant features,
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find the way to the destination and react to unplanned situa-
tions spontaneously. In order to rebuild these functionalities
in a robot, it is necessary to understand how position informa-
tion is processed and stored in the brain. In this section, we
will briefly review the neural mechanism of spatial cognition in
the brain, which provides a theoretical basis for spatial learn-
ing and spatial cognition. Computational models based on
these theories, in particular, artificial neural network models,
will be introduced, which enable a robot to learn the spatial
information and realize autonomous decision-making.

Spatial cognition refers to humans’ and animals’ ability
to gather information about the environment, organizing and
using the spatial knowledge, and revising it when the envi-
ronment changes (Montello, 2001). It is a fundamental abil-
ity of humans, which helps us to achieve different tasks like
navigation and grasping. As proposed as a “cognitive map”
by Tolman (1948), the spatial information of an environment
is presented with features and relationships in the cognitive
map, which enables an animal to navigate flexibly based on
the abstract information in the cognitive map and to make
detours by adjusting the map structure when an obstacle ap-
pears. The spatial information is represented in an abstract
fashion because usually a person does not measure distances to
the environment but describes the surrounding features (even
with just a few symbols). On the other side, the location is en-
coded redundantly in a set of features, which helps the person
to locate his position even when the environment has changed
a lot.

Recent advances in neuroscience provide insight into the
neural mechanisms of spatial cognition in humans and ani-
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Figure 2.7: Hippocampus and place cells

Left: The position and shape of the hippocampus in the brain1.

Right: Hippocampal neurons’ activity at distinct place fields while a rat

is moving in a maze2. The colors of dots index neurons that are active

when the rat visits different areas, and the current position of the rat is

labeled with the green circle.

mals (Burgess et al., 2002b; Maguire et al., 1998). An impor-
tant finding is the place cell in the hippocampus of rats by
O’Keefe and Dostrovsky (1971) and Andersen et al. (2006).
Their activity rate is strongly related to the rat’s location in
the environment. Later, head direction cells were found in the
rat’s brain, first in the postsubicular cortex of the hippocam-
pus (Taube et al., 1990), then in other related brain areas, e.g.,
lateral mammillary nucleus, posterior cortex, lateral dorsal nu-
cleus and ventral striatum (Blair et al., 1998; Chen et al., 1994;

1Source: Image from Gray’s Anatomy. http://www.bartleby.com/

107/illus739.html
2Source: Snapshot from a video by Dr. Fabian Kloosterman. http:

//kloostermanlab.org/research/spatial-code/
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Cho and Sharp, 2001; Lavoie and Mizumori, 1994; Mizumori
and Williams, 1993; Taube, 1995). These cells fire selectively
when the rat faces a specific orientation, and provide a signal of
the rat’s heading direction during navigation (Pennartz et al.,
2011). Moreover, anticipatory head direction signals are found
in the anterior thalamus (Blair and Sharp, 1995; Taube and
Muller, 1998). Another important discovery is the grid cell in
the entorhinal cortex (Hafting et al., 2005), which fire with a
periodic hexagonal pattern in enclosed spaces. Together, these
cells constitute a coordinate system that provides a represen-
tation of the location based on the animal’s internal position
sense in the environment and forms the basis of a cognitive
map.

A cognitive map can be represented in different ways; for
example, as a topological map (Cuperlier et al., 2007; Martinet
et al., 2011), a continuous attractor network (Milford et al.,
2004; Samsonovich and McNaughton, 1997; Samsonovich and
Ascoli, 2005), etc. Toussaint (2006) developed a model using a
self-growing mechanism (Fritzke, 1995) that forms a map with
a dynamic size, which is flexible for exploring an unknown en-
vironment. However, this model does not provide an efficient
way of handling (moving) obstacles in a real world. The RAT-
SLAM model developed by Milford and Wyeth (2010) pro-
vides a nature-inspired way for mapping, which represents the
spatial information in its pose cells by combining the internal
sensing and the external visual perception. However, the expe-
rience map in RATSLAM builds mainly line-like trajectories
in space rather than mesh-like representations of space due to
a strict rule to connect cells, which constrains the generation
of flexible navigation.
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To acquire robust robot navigation, Weiller et al. (2010)
proposed an unsupervised learning method to learn naviga-
tion behavior associated with state transitions automatically
and control the robot during navigation by selecting the ac-
tion with the highest value. Weber and Triesch (2008) and
Witkowski (2007) present neural network models that learn as-
sociations between adjoining states and actions that link them.
In addition, closed-loop control models for other behaviors,
e.g., arm reaching, apply similar methods of planning (Her-
bort et al., 2010). A drawback of these models is that the
representation of the state space is hardwired, which means
that they only work in a well-defined environment. The action
model in these models is discrete, and the robot is controlled
by a winner neuron’s action signal. Hence, the executed action
might not be accurate in the continuous real world because of
the discretization error, or a fine-meshed action space would
be required, which increases the learning effort strongly.

Given a population code for state estimation, there will
be different actions suggested by the network for the robot
to take. As the robot needs to be controlled by a concrete
motion signal, a synergistic method is required to generate
motion behavior based on the multiple inputs. In addition,
the method should also consider the system dynamics of the
robot in order to provide a smooth motion control and avoid
sudden changes of the movement, which requires the system
to perceive the actual action inputs, memorize the previous
actions, and coordinate them properly for decision making.

Based on the current neural finding and understanding of
the working principle of neurons in the brain, a neural field
theory (Wilson and Cowan, 1973) has been drawing more at-
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tentions in cognitive science and robotics. For example, Erlha-
gen and Bicho (2006) achieved a goal-directed robot navigation
behavior with real-time obstacle avoidance with dynamic neu-
ral fields. Because of the distributed information encoding,
i.e., neural population coding, the dynamic neural fields can
generate stable signals by updating the activation patterns,
while also canceling noise. Therefore, the dynamic neural field
model has been seen as a simple but effective way to model
motion perception (Giese, 1999), and has been widely used
for robot control because of its distributed representation and
the dynamic integration of information (Cuperlier et al., 2005;
Torta et al., 2011a; Toussaint, 2006).

2.5 Summary

In this chapter, we reviewed the state-of-the-art localization
and navigation technologies for socially assistive robots that
allow robots to detect and to approach people in a real envi-
ronment. Related backgrounds have been introduced, such as
the person/robot localization, robot navigation, and robot-
environment interaction. Due to the high complexity of a
real-life environment, a robot needs to realize intelligent au-
tonomous behaviors based on its limited sensor signals. Al-
though these behaviors are hard to be computed, we consider
that they can be achieved by human beings and animals, and
a model that emulates human’s behavior, or information pro-
cessing could be useful. Therefore, we summarized the neu-
ral principle of spatial cognition and computational models
of them, which are helpful for robotics to generate intelligent
human-like behavior. These approaches are an important ba-
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sis for further development and based on them, we will present
our methods of person and robot localization and navigation
in an ambient intelligent environment. We will describe details
of our architecture in the following chapters.
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Indoor Person and
Robot Localization

Despite numerous approaches, indoor (person) localization is
still a challenging task in a real, cluttered home environment,
which needs to cover all different situations in daily life. Most
tracking methods are reliable under a certain condition. For
example, a motion detector based on background subtraction
is a good tracking indicator by finding movement information,
which is typically provided by the person’s motion. On the
contrary, when a person does not move when he or she is sit-
ting on a sofa, no motion information will be detected. In this
case, the motion detector cannot localize the person correctly.
On the other hand, the motion detector may be distracted
by the change of light conditions or image noise because the
difference of background appearance can be recognized as mo-
tion information. The color obtained from the clothes and
skin can be a reliable tracking feature. However, the color
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pattern needs to be frequently adapted in a real-life scenario.
For example, when a person changes his clothes, the old color
information will be irrelevant, and we have to learn the color
pattern again. A feature-based recognition method may not
be appropriate for real scenarios due to the lack of the pattern
information (e.g., a face may not be recognized when only part
of it is observed). Other features such as clothing color have
to be frequently adapted when the person changes his or her
clothes, which makes it unrealistic for daily usage. Body shape
or skeleton-based techniques could provide robust person de-
tection, but both require the camera to be placed in front of
the user. A multiple-camera array is therefore needed to cover
the entire space, which increases the complexity of the sys-
tem. On the contrary, a ceiling-mounted camera can observe
the whole environment, but people’s shape varies when they
are at different positions in the room.

We dedicated ourselves to developing a general model that
can cover as many situations in an environment as possible
to achieve reliable indoor person and robot tracking. As the
model developed by Triesch and Malsburg (2001) showed that
the integration of different sources of information can cope
with complex perceptual tasks, which is supported by biologi-
cal evidence (Murphy, 1996), we consider that multiple visual
information sources can be used in combination to reliably
detect and localize a person’s position in diverse situations.
Hence, a hybrid probabilistic neural architecture for multiple
visual cue integration is developed where each visual cue pro-
cesses the image data separately and returns a detection value,
which is combined using a majority voting scheme based on an
adaptive Sigma-Pi network (Weber and Wermter, 2007). By
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combining the results of different visual cues, the target can
be detected reliably under certain conditions. Diverse envi-
ronment situations could be covered, which results in an over-
all good tracking performance. For example, our approach
can track a person with or without motion information and
is robust against environment noise such as moving furniture,
changing light conditions, and interactions with other persons.
The target person can be learned through the adaptivity of the
cues, which acts as a memory and helps the system track the
person robustly.

In order to improve the tracking robustness, we consider
probabilistic filter techniques (Khan and Shah, 2009; Lanz and
Brunelli, 2008; Qian et al., 2007; Smith et al., 2005) and use
particle filters to model the person’s and the robot’s move-
ment, as well as to filter out noise information. Our localiza-
tion model uses a ceiling-mounted camera to locate the target
person and the robot. To cover the entire room, a fish-eye lens
without calibration is applied to obtain a wide-range view,
which simplifies the system installation. The system should
detect a person under various conditions, i.e. while a person is
walking, sitting, or lying, and be robust against image noise.
Although the system is designed initially for tracking a person
when (s)he is alone in the room, it should avoid mislocalization
when a distracting person is in the room as well. In addition,
the system should distinguish the robot and the target person
when the robot is navigating to the person and estimate the
orientation of the robot because it is important for the robot’s
control. Since the pose and color (e.g., the clothes’ color) of
the person cannot be estimated, it increases the difficulty of
detecting the person. Details of the system architecture and
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the models will be described in the following sections.

3.1 General Approach

The general approach of our model is illustrated in Figure 3.1.
Based on the input from the ceiling-mounted camera, the vi-
sual information is processed by the following three models:
(1) a probabilistic model using a particle filter for tracking and
decision-making, (2) a set of visual cues that detect a target
person based on different visual features and (3) an adaptive
polynomial cue combination architecture, which uses a Sigma-
Pi network to update these cues and their reliabilities during
tracking.

The person’s position is estimated using the distribution of
particles based on system dynamics and the current observa-
tions using results of the multiple cues. Each particle contains
coordinate information: for a person tracking, it is the coor-
dinate information x, y of the center of a bounding box (with
respect to the image frame), and for the robot localization,
the orientation information o is also included. Image patches
around particles are selected and processed using the image
input of the camera, whose results are used to estimate the
position of the target and update the tracking system at the
same time.

The entire process of particle filtering is split into two
phases: prediction and adaptation. In the prediction phase
(black arrows in Figure 3.1), the particle filter estimates the
state of the target object, here the position of the target per-
son based on the current state. A bounding box is defined
around each of the particles with a constant width and height.
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Figure 3.1: Architecture of the localization model.

The image input is segmented with these bounding boxes, and
the image patches are processed with visual cues. As only
these images’ patches around particles are processed instead
of the entire image, the computation is simplified significantly,
which helps the system to obtain real-time ability. Values
of the visual cues are further processed with the polynomial
combinations, and the weights of the particles are changed and
the particles are re-sampled (see green arrows). Based on the
change of the particles’ distribution, the position estimation
of the person is updated.

The adaptation phase works similar to the prediction phase.
However, the main task is to validate the tracking perfor-
mance, learn the visual features and adapt the correspond-
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ing reliabilities of them. After the prediction phase, an im-
age patch around the estimated position is segmented and
processed by the visual cues (see red dashed arrows in Fig-
ure 3.1). According to the output of these cues, the results
of the polynomial combination cues are calculated. When the
tracking results of cues agree with each other, results of the
corresponding combination cues increase. Then, reliabilities
of visual cues will be adapted using these findings. For ex-
ample, when the target is detected by the motion and color
information at the same time, the reliabilities of both cues
will be increased. When the sum of the reliabilities is higher
than a threshold, the memory of these cues will be updated
(labeled with the blue dashed lines). This is important for
visual cues that need to be learned at first, because after ini-
tialization, these cues cannot provide useful information at the
beginning, and the reliabilities indicate how well these features
are learned.

The polynomial combinations use a high-order feed-forward
neural network (a sigma-pi network) to compute the correla-
tion of visual cues, which consists of not only a linear com-
bination, but also uses high-order multiplication to generate
virtual cues between different inputs to enhance the likelihood
when several cues coincide with their detection. Each cue ex-
tracts specific visual information based on computer vision,
and the activities of visual cues are generated via activation
functions and scaled by their connection weights, which are
called reliabilities (see αc1 and αc1c2c3 in Figure 3.1). Because
no shape and color pattern exist at the beginning of tracking,
shape memory and color memory cues are gathered during
tracking and an adaptive learning mechanism is used to ad-
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just the reliability of visual cues. The reliabilities of these
cues are low at the beginning of tracking, which means they
do not contribute to the decision-making, and their values in-
crease when the features of the target object are learned. The
output of the Sigma-Pi network is passed to the particle filter.
With the collaborative contribution of each cue, the tracking
performance can be improved significantly.

Multiple visual cues produce detection results using indi-
vidual techniques. These visual cues can be applied where
each of them focuses on the person detection based on spe-
cific features (e.g., motion, color, shape, etc.), and together
they support the person detection in various situations. This
process provides a flexible way of information fusion in a syn-
ergistic manner, which is useful to cover different environment
situations and improve the tracking robustness by ensuring
that parts of feature cues work properly while the others are
distracted. In our model, we first use the following cues for
development the person localization model, while other visual
cues can be integrated easily using the same principle:

• Motion detection

As a basic but efficient method, the motion detection is
robust to find an arbitrary moving target without the
need for training. However, it cannot provide informa-
tion when the person is not moving and is sensitive to
noise (e.g., blinking of a television). This method can
also be distracted when the environment (background)
is changed because the motion information is detected
by comparing the actual image with a reference image.
Therefore, a dynamic lighting condition could distract
the tracking result significantly.
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• Color memory

The clothes and skin’s color of the target is a feature
that contains rich information, which is independent of
the environment. A single color or a distribution of mul-
tiple colors (e.g., using a histogram backprojection) can
be used for tracking the skin’s/clothes’ color of the user.
Compared with the motion information, color is more
stable under various lighting conditions and is irrelevant
to the form of the object, which is helpful to track an
object or a person with a strong change in form. The
main problem of the color information with respect to
our problem is how to obtain the color information at
first. Because the user may change clothes daily, the
color information of the person needs to be learned be-
fore tracking. Hence, an automatic learning process is
required to update the color memory.

• Static shape recognition

Shape recognition has the advantage that it is irrelevant
to the color and intensity information that helps it to
be very robust under different environment conditions.
Some methods, such as the Hu moments extracted from
the image provide a shift, rotation and scale invariant
property, which helps the system to obtain a better gen-
eralization ability to detect a person with a pose that has
not been stored. One problem is that the classifier of the
shape recognition has to be trained decently before us-
ing these features. For this reason, in our work we use a
static shape recognition model based on a multilayer per-
ceptron network to detect the shape of the person. The
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shape information is stored in the neural network after
using supervised learning, and the detection is processed
based on the output of the network. The main drawback
of the static shape recognition is that a large data set is
required for training, and the recognition may be failed
when the form of the person differs from the training
data significantly.

• Short-term shape memory

A short-term shape memory is robust against changes
of environment conditions. Compared with the static
shape recognition, it does not need the intensive training
phase and can detect the target simultaneously by find-
ing the similarity of the current pose of the target with
the stored features. However, similar to the color mem-
ory, as the first pattern of the shape has to be trained
before tracking, an online learning method is needed. A
temporary shape memory cue is built based on SURF
features. During person tracking, features of the current
tracking object are memorized, which evaluate the shape
consistency over a small-time window.

We will describe the details of particle filter in section 3.2, the
details of visual cues will be presented in section 3.3 and the
sigma-pi network in section 3.4.

3.2 Particle Filter

The particle filter, also known as sequential Monte Carlo method,
is an approximation method for representing probabilistic dis-
tributions with a density estimation based on Bayesian rules
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Figure 3.2: Visualization of particle filter weights
The radius of a circle denotes the particle’s weight.

(Fox et al., 2001). The method was firstly applied in control
systems and was proven that it is an efficient filter/estima-
tion technique without the need of an assumption of the state
transition as well as the noise model (Gordon et al., 1993).
Nowadays, the particle filter becomes an important method
in robotics, and is widely used for noise canceling, state esti-
mation and decision-making (Lanz and Brunelli, 2008; Qian
et al., 2007; Smith et al., 2005). In our work, we applied par-
ticle filters to represent the location of the target.

3.2.1 Background of the Particle Filter Algorithm

The particle filter is based on the Bayesian filter, which esti-
mates a posterior probability based on the a prior probability
and the current observation. Unlike the Kalman filter that
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has a form of Gaussian distribution, the particle filter aims
at dealing with arbitrary distributions for a set of samples,
i.e. particles and estimate a density function. Assume that
s0:t = {s0, s1, . . . , st} is the time sequence of an agent’s state
that is described by dynamic equations:

st = gt(st−1, ut) (3.1)

where ut denotes noise signals of the state transition, and
z0:t = {z1, z2, . . . , zt} is a time sequence of the corresponding
observations of the agent which is described by:

zt = ht(st, vt) (3.2)

where vt denote noise signals of the observation. Then, the
posterior of the agent’s state can be estimated as follows ac-
cording to the Bayesian filter (Fox et al., 2001):

P (st|z0:t) = ηP (zt|st)
∫
P (st−1|z0:t−1)P (st|st−1)dst−1 (3.3)

where P (st|st−1) denotes the probability of the state transition
from st−1 to st at time t, P (zt|st) is the observation model,
and P (st|z0:t) is the probability of a state given all previous
observations from time 0 to t. The η is a normalization con-
stant. Because P (st|z0:t) describes “what the state looks like”,
it is also called the belief of the state.

In a discrete computing model, the belief of the state st at
time t under the observation z0:t can be computed according
to the previous distribution P (st−1|z0:t−1):

P (st|z0:t) ≈ ηP (zt|st)
∑
i

π
(i)
t−1P (st|s(i)

t−1) (3.4)
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where the probability distribution of the states is represented
by a set of particles {i}, which contain the state information.
Because the beliefs of the states are expressed by correspond-
ing weight values π(i), the probability distribution can be ap-
proximated in the following form:

P (st|z0:t) ≈
∑
i

π
(i)
t−1δ(st − s

(i)
t−1) (3.5)

where π denotes the weight factor of each particle with
∑
π=1

and δ denotes the Dirac impulse function. As shown in Fig-
ure 3.2, a distribution can be represented by the state of parti-
cles and their weights. The higher the weight value, the more
important this particle is in the entire distribution. The mean

value of the distribution is computed as
∑

i π
(i)
t−1st and can be

used to estimate the state of the agent, if the distribution is
unimodal.

Different particle filter models have been proposed (Doucet
et al., 2000; Gordon et al., 1993; Green, 1995), among them the
sequential importance resampling (SIR) algorithm has been
widely used. The algorithm of SIR shown in Algorithm 1,
which consists of three phases: prediction, update, and resam-
pling. The iteration steps of the SIR algorithm are illustrated
in Figure 3.3. In the prediction phase, the SIR first predicts
the current probability distribution of the agent based on the
previous state and the transition. The states of particles are
updated according to the transition model and the action, and
a new distribution of particles is computed. After the pre-
diction, the new distribution is validated in the update phase
based on the new observation and particle weights are adapted
using Bayesian filter.
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Algorithm 1 Sequential Importance Resampling (SIR)

Draw samples for N particles from the proposal distribution q:

s
(i)
t ∼ q(st|s

(i)
0:t−1, z0:t)

where s
(i)
t denotes the state of the particle i.

For all particles from 0 to N , update their importance weights

π
(i)
t :

π
(i)
t = π

(i)
t−1P (zt|s(i)

t )

Normalize the importance weights π
(i)
t :

π
(i)
t =

π
(i)
t∑

j π
(j)
t

Compute the effective number of particles:

N̂eff =
1∑N

i=1

(
π

(i)
t

)2

If N̂eff is less than a threshold, resample the particles with the
probabilities proportional to their weights and reset the weight
values:

s
(i)
t ∝ π

(i)
t

π
(i)
t =

1

N
, for i = 1 . . . N
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Figure 3.3: Schema of the particle filter update
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The particle resampling is a useful technique to avoid the
degeneration problem, which means that particle weights con-
verge potentially to a single state. In this case, most of the
particles have low values that cannot represent the state space
correctly. During resampling, a number Neff is calculated to
evaluate how many particles are effective. When Neff is small,
the resampling process will be triggered that replaces parti-
cles according to the state’s weights and averages the parti-
cles’ weights. More particles will be moved to the area with
higher value, which helps to represent the distribution more
accurately because the low-value areas do not contain useful
information. The concrete system modeling will be described
in the next section.

3.2.2 Using Particle Filter for Person and Robot
Localization

Particle filters are used in our work for an indoor person and
robot tracking based on a camera view. Compared with other
state estimation techniques, such as a Kalman filter, particle
filters can represent a more generic distribution and accelerate
the state estimation significantly by using random sampling.
Each particle contains position information. In the person
tracking system, the person’s state is represented by the x-
and y- coordinates in the image, i.e. sp = {x, y}. The direction
of a person’s motion is hard to predict, because, for example,
an arm movement during rest could be wrongly perceived as a
body movement into the corresponding direction. Hence, we
do not use the direction of movement information, but describe

the transition model P (sp,t|s(i)
p,t−1, ap,t−1) of the person with
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a Gaussian distribution:

P (sp,t|s(i)
p,t−1, ap,t−1) =

1√
2πσ(ap)2

e
−

(s
(i)
p,t−1−s

(i)
p,t)

2

2σ(ap)2 (3.6)

where σ(ap)2 is the variance, s
(i)
p,t−1 are the previous states,

s
(i)
p,t are the current states and ap,t−1 is the executed action.

Movement information from the motion cue (see section 3.3) in
the action variable ap,t, however, is informative for the person’s
movement distribution that we account for by increasing σ(ap)
when motion is detected. The σ(ap) is then set to either of
two values:

σ(ap) =

{
v1 if motion detected

v2 else
(3.7)

where v1, v2 are constant parameters with v1 > v2. When
there is no motion detected, the probabilistic distribution will
shrink to a small area that allows the particles only to move
close around the previous position. This method affects the
behavior in a way that when an object is identified, a human
would remember its position when the object does not move.

In contrast, since the robot’s motion can be estimated
based on the given motion command, we define the transition
model of the robot according to the robot’s motion signal. For
this reason, the robot’s state consists of a three-dimensional
feature vector: the x, y position and the orientation θ, i.e.
sr = {x, y, θ}. While the robot walks, the state of the robot is
first predicted with a dynamic model:

s
(i)′

r,t = g(s
(i)
r,t−1, ar,t) (3.8)
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The new position prediction is calculated according to the
given rotation and the walking speed command using triangle
calculation. Then, the probability distribution is computed
with a Gaussian distribution:

P (sr,t|s(i)
r,t−1, ar,t−1) =

1√
2πσ(ar)2

e
−

(s
(i)′
r,t −s

(i)
r,t )

2

2σ(ar)2 (3.9)

Similar to the person’s particle, the variance of the Gaussian is
controlled by the motion command of the robot. For example,
when the robot turns quickly, the variance of the orientation
will be larger which results in a higher uncertainty of the ori-
entation.

The particles are initialized randomly in the image at the
beginning of the tracking. Then, image patches around parti-
cles, which could cover the view of the robot and the person,
are taken and processed with visual cues to detect the target
person/robot. This strategy accelerates the system compared
with traditional pixel-wise search window methods, since the
search space now is proportional to the number of particles.
The particle weights are computed based on the output of
the visual cues using the Sigma-Pi network. Where the sum
of weighted cues returns a large value, the particles will get
larger values and increase the probability of them in the dis-
tribution, which shows that a person is more likely to be in
this position. The position of the person/robot is finally esti-
mated as the mean of the distribution. In order to keep the
network exploring, we take randomly 5% particles with low
weights and replace them to random positions at each step to
search actively for a possible position of a person.
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3.3 Visual Cues

Compared with some other range sensors, a vision system uses
camera sensors that provide rich information through a se-
quence of images. By analyzing with different algorithms, vi-
sual features such as color, motion, etc. can be detected, which
helps the system to localize the target based on specific infor-
mation. For example, the motion cue segments a person via
comparing the current image frame with a background frame,
which works while the person walks. The shape memory cue
considers the consistency of the person’s shape and detects a
person using a short-term memory. These visual cues help the
system to detect the target under diverse situations.

The following visual cues are covered in our work:

• Motion cue

• Color memory cue

• Shape cue

• Shape memory cue

The motion cue and the shape cue are predefined without the
need of online adaptation while the color memory cue and the
shape memory cue learn detection patterns based on the track-
ing results. The combination of predefined and adaptive cues
helps the system to improve the robustness during tracking.
We will explain each of these cues in the coming sections.

3.3.1 Motion Cue

Finding a moving object in a video sequence is regarded as
a fundamental function in computer vision. Among various
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tracking methods, the background subtraction seems to be one
of the simplest but most powerful methods. The basic idea of
background subtraction is as follows: assume that a camera is
statically mounted in a room, we can determine the change of
the camera image by comparing the current image I from the
camera view with a static background image B. As furniture
is placed statically and the lighting condition in an indoor
environment is usually stable, the change of camera view could
contain the motion information of objects.

The image difference between two frames M(x, t) can be
computed as follows:

M(x, t) = |I(x, t)−B(x)| (3.10)

where I(x, t) is the value of the pixel x of the frame t, B(x) is
the value of the pixel x of the background image. The value of
M(x, t) is compared with a threshold h and the motion area
is labeled with a step function:

f(M(x, t)) =

{
0, if M(x, t) < h

1, otherwise
(3.11)

Through this computation, the pixels where the current frame
is not equal to the background image are labeled as 1 and the
rest as 0.

Various methods for person detection based on background
subtraction have been developed and the most important meth-
ods have been reviewed in (Benezeth et al., 2008; Piccardi,
2004). For example, simple methods like running average
provide an acceptable tracking accuracy with limited mem-
ory requirement, while complex methods such as Mixture of
Gaussian (Stauffer and Grimson, 1999) and Kernel Density
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Subtraction 

Thresholding 

Detection 

Figure 3.4: Schema of the motion detection through back-
ground subtraction
Through comparing the current frame (a person is moving in the room)

with a reference background frame (before the person enters the room),

the pixels different to the background are determined. The difference

image is converted to a black-white image by thresholding. Blob detection

is performed, and a bounding box of the detected area is labeled in the

current frame.

Estimation (Elgammal et al., 2000) are robust against image
noise but need more computational power. It has also been
pointed out that the different background subtraction meth-
ods are difficult to compare, and the choice of the method
should be based on the content of the scenario. For example,
a basic method could provide a sufficient detection result in an
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indoor environment with well-controlled light conditions, but
will fail if used in an outdoor environment. The background
subtraction method can be combined with other techniques
to increase the robustness (for example with a Kalman fil-
ter (Zhong and Sclaroff, 2003)), but a major assumption of
this method is that the tracked object is moving, which may
not hold in the real situation.

In our work, we use the basic background subtraction be-
cause it is simple but fulfills the requirement of motion de-
tection well. The concept of the implemented algorithm is
shown in Figure 3.4. A condition of the background sub-
traction method is that the background needs to be constant.
However, this condition is hard to be realized, because the
lighting situation in a real environment changes frequently. A
slight change of the light condition will be recognized as a
movement, which can distract the detection results. In order
to solve this problem, a common technique is used that es-
timates the background with the help of a running average
method:

B(x, t) = (1− α)B(x, t− 1) + αI(x, t) (3.12)

The background image is now not constant but dynamic ac-
cording to the previous frame and the current frame. When
the lighting condition changes, the background image will be
adapted, which eliminates the disturbance over time.

3.3.2 Color Memory Cue

Color tracking is another important method for object detec-
tion in computer vision. Different from background subtrac-
tion methods, which are based on comparing image differences,
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color tracking methods work by finding image parts that have
the same/similar color as a template. Considering that color
features such as a person’s skin or clothes’ color is stable, color
tracking is capable of detecting a person easily by filtering out
unrelated colors. Color detection by defining the target’s color
explicitly with several conditions is a simple but useful method
for object tracking. For example, Kovac et al. (2003) defined
a skin color classifier with combined rules, and Jordao et al.
(1999) developed an adaptive mechanism for calibrating the
target feature automatically. A color memory is therefore used
in our model to detect the target based on the stored color pat-
tern. As the appearance of the target (e.g., the clothes of the
user) may be changed, the color memory needs to be learned
during tracking.

Color Space

Color space is a special definition of colors that represents the
color information with a set of digital or analog values. It is
essential for visual object tracking, because the color informa-
tion could be encoded in diverse spaces, which have different
properties. Many color spaces have been designed and among
them, the RGB space, HSV/L and YCrCb are the widely used.
RGB refers to a three-dimensional color space of the red, green
and blue primary colors (see Figure 3.5 left). It is extensively
used for displaying and processing digital images. However,
due to the correlation between different color channels, mixing
of chrominance and luminance information, it is inconvenient
for selecting and recognizing specific colors (Kakumanu et al.,
2007).

The HSV color space (see Figure 3.5 right) is another
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Figure 3.5: Visualization of the color space
Left: RGB-Space; Right: HSV-Space

The RGB color space is shown as a cube where dimensions are defined by

three primaries: the Red, the Green, and the Blue. Compared with this,

the HSV color space is visualized as a cone with three channels: the Hue

(angle of the cone circle that represents the pure color), the Saturation

(distance of the color to the axis of the central axis of the cone) and the

Value (the height information that represents the brightness of the color).

popular color representation in computer vision. Compared
with the RGB space, HSV represents the color information in
three channels: Hue defines the dominant color, Saturation
describes the colorfulness in proportion to its brightness and
Value measures the luminance (Kakumanu et al., 2007). The
clear discrimination of the luminance and chrominance proper-
ties is helpful for tracking color robustly. As the Value channel
stores the luminance information, which can be related to the
brightness of the environment, the influence of the change of
the light can be easily compensated by neglecting the Value
information. Another advantage of the HSV is its simple struc-
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ture and the transformation of the HSV space from the RGB
space can be processed as follows:

H = arccos
0.5 ((R−G) + (R−B))√

((R−G)2 + (R−B)(G−B))
(3.13)

S = 1− 3
min(R,G,B)

R+G+B
(3.14)

V =
1

3
(R+G+B) (3.15)

Another commonly used color space is the YCrCb space,
which is a non-linear encoding of the RGB information based
on gamma-corrected RGB primaries. The Y-channel repre-
sents the luminance information by a weighted sum of the RGB
information, and the Cr and Cb represent the blue-difference
and red-difference color information. Because the luminance
and the chrominance information are separated explicitly, this
color space is also suitable to present features for color track-
ing (Hsu et al., 2002; Phung et al., 2002). One particular
property of the YCrCb space is that it is not an absolute color
space, but depends on the used RGB primaries. Since we want
the tracking system to be robust under different lighting situ-
ations, we choose the HSV space for tracking a target object.

Single Color-based Tracking

Single color-based tracking is a simple method that detects a
target with the help of reference color information. When the
reference color represents the target well and is distinct from
other colors, the single-color tracking can detect the object
robustly by filtering out irrelevant colors. Basically, it can be
processed with three steps:
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1. Converting the example image and the camera image
frame from RGB color space to HSV space.

The HSV space has a clear separation of the brightness
(V channel) and color (H and S channels), which is use-
ful to improve the tracking robustness by neglecting the
image brightness. Therefore, in our work we only use
the H and S channel for color representation.

2. Filtering out pixels from the camera image, when their
H and S value are not similar to those of the example
image.

A difference between the image pixel values and the ref-
erence value is calculated. The pixels whose difference
value is greater than a threshold are set to 0 and the
others are set to 1, which builds up a black-and-white
image.

3. Compute the center of mass of the remaining pixels.

Here we use an image moment for processing the center
of image mass, which will be described in details in the
following section.

Several experiments are conducted with this method. As
shown in Figure 3.6, we select the part of a pink ball and draw
the trajectory of its movement. The success rate of tracking
under a well-constructed environment is high. However, it
becomes unstable if the environment is cluttered. Another
disadvantage is that this method uses a single, or a small range
of color as a pattern. Since the clothes of a person may consist
of multiple colors, only a part of them can be detected in this
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case. Many approaches use distributed color to address this
problem, which will be described in the next section.

Figure 3.6: Example of tracking a ball
Left: The initial frame. Center: The ball detection based on pink color.

Although the person’s hand also moves, since its color is not equal to the

ball, it will not be detected. Right: The trajectory of the movement of

the ball.

Tracking based on Distributed Color

The general idea of distributed color modeling is simple: since
a single color may not represent the object completely, an
estimation of the desired object by combining a set of color
features could increase the tracking performance. For person
tracking in an indoor environment, the target person can be
found by analyzing image patches that contain combined color
information with known percentages. It is useful for clothes
color tracking because clothes may have multiple colors.

The color information can be represented in different ways,
for example using histograms (Novak and Shafer, 1992) (de-
scribe the color with a list of numbers that indicate how many
pixels have the color within an interval), neural networks (Dong
and Xie, 2005; Rowley et al., 1998) (color information stored
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in the connection weights of the network), fuzzy logic (Chen
et al., 1995) (describing the color with linguistic terms), etc. In
addition, it can also be combined with Bayesian filter (Swain
and Ballard, 1991) to increase the robustness. Moreover, the
color template can be represented with parametric models, for
example, with single (Hsu et al., 2002) or mixture (Mckenna
et al., 1998) Gaussian distributions, which has the advantage
of less memory requirement and the ability of generalization
of the color information from the training data. However, as
parametric models are an approximation of the color distribu-
tion, poor sampling may influence the detection rate signifi-
cantly.

Since in our scenario, a user can wear different clothes in
daily life, the color of his appearance will change. Therefore,
approaches that require a long training time are not appropri-
ate in this case. A rapid construction of the color template
is required, and for this reason, we focus on the study of the
histogram-based approach using Bayesian filter. The color his-
togram is a statistical representation of the color information
of an image. It consists of a list of bins and each of them rep-
resents a range of colors. Values of these bins are computed by
counting the number of pixels that have the color within the
ranges assigned to these bins. These values provide a unique
index of the image which is relatively invariant to translation
and rotation (Stockman and Shapiro, 2001). Due to these
advantages, the histogram becomes an important feature for
computer vision.

The calculation can be explained with the following exam-
ple. Given a grey-scaled image with a size of 10 × 10 pixels
(see Figure 3.7 left), the value of each pixel is a single value
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Figure 3.7: Example of computing a histogram

Left: an example image with the size of 10× 10 pixels.

Right: The computed 8-bin histogram. The x-axis denotes the interval of

the intensity of the gray image, and the y-axis denotes how many pixels

are counted in the corresponding area. Because most of the pixels in the

image are white (i.e. intensity = 255), a long bar is built in the area

[224, 255].

in the range of [0, 255]. If we compute a histogram with eight
uniformly distributed bins, the range of the brightness values
can be segmented like:

Brightness = [0, 31] ∪ [32, 63] ∪ . . . ∪ [224, 255]︸ ︷︷ ︸
8 bins

(3.16)

An 8-bin histogram can then be calculated by counting the
number of pixels that belong to the corresponding bins. For
example, the icon shown in Figure 3.7 left can be represented
with a histogram value {22, 0, 0, 7, 0, 0, 5, 66}.

The detection of similarity of two images can be processed
as follows. Assume that we have a reference image IE and a
testing image IT with the same size, we calculate first n−bin
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Figure 3.8: Experiment of histogram backprojection

Left: The image frame from a ceiling-mounted camera.

Right: The back projection image of the ratio histogram R based on the

person’s clothes color. Brighter pixels indicate a higher probability of a

skin-colored object (at that corresponding position).

histograms of both, i.e. HE and HT. The similarity of the
histogram (SHist) is calculated as follows:

SHist =

∑n
i=1 min(HE(i),HT(i))∑n

i=1 HE(i)
(3.17)

As for images with the same size, they have the same number of
pixels and the sum

∑n
i=1 H(i) is constant. Hence,

∑n
i=1 HE(i) =∑n

i=1 HT(i) and
∑n

i=1 min(HE(i),HT(i)) ≤
∑n

i=1 HE(i). The
higher SHist is (max SHist = 1), the closer is the color of the
test image to the example image.

Image areas that have the similar color in comparison to
the reference can be found by detecting areas with high SHist.
To visualize these results efficiently and to use them to lo-
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calize the position of the target, a technique with the name
backprojection (Swain and Ballard, 1991) has been developed
and proven to be a very powerful method. The backprojection
builds up a grey-scaled image that indicates the color likeli-
hood ratio to the reference image. A “ratio histogram” R is
defined as follows:

Ri = min

(
Mi

Ii
, 1

)
(3.18)

where Mi is the value of the bin i of the target image’s his-
togram, and Ii is the value of the corresponding bin i of the
current image’s histogram.

The backprojection image uses the ratio histogram values
to visualize the color similarity, which can be used to esti-
mate the location of the target by selecting pixels with high
intensity. For example, a demonstration of the person track-
ing based on skin color is shown in Figure 3.8. Based on the
current image view and color information of the clothes of the
sitting person (see Figure 3.8 left, the clothes’ color is selected
with the red bounding box). The ratio histogram of the target
image patch and the entire image is calculated. Then, for each
pixel in the current image, the corresponding histogram bin i
of the pixel’s color is determined and the color information of
this pixel is replaced by the values Ri of the ratio histogram.
Based on the clothes’ color, the position of the person is la-
beled with lighter pixels.

Since the color information of the target person cannot
be defined in advance, in our system we use the color cue to
memorize the clothes’ and the skin’s color of the tracked per-
son online. A small detection range is defined with a bounding
box with the size of 50×50 pixels around each particle. During
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tracking, a small image patch (with the size of 50× 50 pixels)
around the estimated position of the target person is selected
and the histogram of it is learned. Then, a backprojection im-
age of the entire image is built, and for each particle the color
cue is computed by counting the pixels within the detection
range around it.

3.3.3 Static Shape Cue

Shape detection refers to the techniques that find a target us-
ing specific shape features (e.g., edge and corner detection fil-
ters). Unlike the color cue, which is sensitive to light changes,
the shape tracking is robust against changes of the light condi-
tion (no color information is required), and against image noise
and is capable of detecting unknown objects via pattern gen-
eralization. Successful shape detection approaches have been
developed in the last decades, for example, for face and gesture
detection (Zhang et al., 1997).

We choose image moment features (the Hu-Moments) in
our work to represent the object’s shape features. The Hu-
Moments (Hu, 1962) are a special kind of image moment that
is invariant to image rotation, translation and scale. This gives
us a good generalization ability to detect unknown targets. A
multilayer perceptron (MLP) network is employed to store the
Hu-Moments values using supervised learning and to classify
the new image input to detect the target.

The process of calculating the Hu-Moments is shown in
Figure 3.9. It consists of three steps: preprocessing, Hu-
Moments calculation and detection using an MLP network.
In the preprocessing step, image patches around particles are
segmented using the same detection range (i.e. a bounding box
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Figure 3.9: Schema of computing the shape cue based on Hu-
Moments

with the size of 50 × 50 pixels, which is used for calculating
the histogram), and filtered with a Laplace of Gaussian (LoG)
filter (with a 3× 3 pixel kernel) to detect edge information in
the image. The LoG filter is an image filter that processes the
input image by convoluting with a filter kernel. In general, an
image filter with a size of m× n pixels is defined as:

g(x, y) =
a∑

i=−a

b∑
j=−b

f(i, j)I(x+ i, y + j) (3.19)

where a = m−1
2 and b = n−1

2 . The function f(i, j) denotes
the kernel function of the convolution and I(·) denotes the im-
age matrix. Features with different properties can be filtered
out using specific kernel functions, for example, a Sobel filter,
Gaussian-blur filter, etc. Because a Sobel filter is direction-
sensitive according to the chosen Sobel kernel function, edges
in the corresponding orientation to the kernel function will be
detected more easily than edges vertical to the orientation.
To overcome this weakness, we use a Laplacian operator with
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second-order derivatives defined as follows:

f(·)Laplacian =

 1 1 1

1 −8 1

1 1 1

 (3.20)

The Laplacian operator is able to detect edges in horizontal,
vertical and diagonal directions simultaneously. In order to
reduce the noise signal further, a Gaussian-blur operator is
applied before using Laplacian filtering:

f(·)Gaussian =
1

16

 1 2 1

2 4 2

1 2 1

 (3.21)

This sequence calculation of Gaussian-blur and Laplacian fil-
tering is together known as the LoG filter. Based on the re-
sulting edge image, we detect the counters of the person and
the 7 values of the Hu-Moments are computed based on them.
The MLP network is trained using these seven moments and
classifies whether the image patch contains the target person.
Details of the Hu-Moments as well as the MLP network will
be introduced in the following sections.

Image Moments

One of the simplest ways of comparing the shape of two im-
ages is to compute their image moments. Generally speaking,
the image moments refer to the features processed by integrat-
ing the image pixels in the horizontal and the vertical direc-
tion (Hu, 1962). A generic definition of moment can be given
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as:

Mpq =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)xpyqdxdy (3.22)

where f(x, y) is a function of x and y, and p, q are the order
of the moment. As for digital image processing, Mpg can be
rewritten as:

Mpq =
∑
x

∑
y

xpyqI(x, y) (3.23)

here I(x, y) is the value of pixel (x, y) in the image I. The
image moment can present diverse information depending on
the chosen order. For example, for a binary-color image, the
zero-order moment M00 is computed as follows:

M00 =
∑
x

∑
y

I(x, y) (3.24)

Through summarizing the pixel values (here constant 1 for
white pixels and 0 for black pixels), the area of the white
pixels is obtained. Similarly, after calculating the M01 and the
M10:

M01 =
∑
x

∑
y

yI(x, y) (3.25)

M10 =
∑
x

∑
y

xI(x, y), (3.26)

we can obtain the center of the mass immediately by dividing
them with M00:

x =
M10

M00
(3.27)

y =
M01

M00
(3.28)
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With this simple moment, it is possible to locate the position
of the target. For example, in Section 3.3.2, the center of the
pink ball is determined by calculating the center of the mass
of the threshold image using above equations.

There are many variants of image moments, and the most
widely used are the Hu-Moments (Hu, 1962), which define
seven values to present the rotate-, scale- and shift-invariant
features of images. The computation of Hu-Moments can be
done with simple arithmetic calculations. First of all, we cal-
culate the center moment µpq based on the raw image:

µpq =
∑
x

∑
y

(x− x)p(y − y)qI(x, y) (3.29)

After normalizing them with the following equation, we obtain:

ηpq =
µpq

µ
(1+ p+q

2 )
00

(3.30)

The seven Hu-Moments are calculated based on ηpq as follows:

M1 = (η20 + η02) (3.31)

M2 = (η20 − η02)2 + 4η2
11

M3 = (η30 − 3η12)2 + (3η21 − η03)2

M4 = (η30 + η12)2 + (η21 + η03)2

M5 = (η30 − 3η12)(η30 + η12)
(
(η30 + η12)2 − 3(η21 + η03)2

)
+(3η21 − η03)(η21 + η03)

(
3(η30 + η12)2 − (η21 + η03)2

)
M6 = (η20 − η02)

(
(η30 + η12)2 − (η21 + η03)2

)
+4η11(η30 + η12)(η21 + η03)

M7 = (3η21 − η03)(η30 + η12)
(
(η30 + η12)2 − 3(η21 + η03)2)

)
−(η30 + 3η12)(η21 + η03)

(
3(η30 + η12)2 − (η21 + η03)2

)
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As these values are scale, shift and rotation invariant, re-
sults of these values could be very similar, even if the target
person is at different positions. Hence, the Hu-Moments are
applied in our work to represent the shape of the target object.
One problem of the Hu-Moments is that they are sensitive to
deformation. In order to remedy this, an MLP network is
employed as a classifier that is trained through a supervised
learning method. Details of the network structure as well as
the learning method will be described in the following section.

Classification via Multilayer Perceptron Network

In order to identify the image Hu-Moments that belong to the
target person, a classifier based on a multilayer perceptron
network (Terrillon et al., 1998) is used in our work. A mul-
tilayer perceptron (MLP) is a feed forward neural network,
which is a standard technique for pattern recognition based
on supervised learning. An MLP network is able to approx-
imate extremely complex functions and to solve classification
problems. Successful applications such as speech recognition,
image recognition, etc., have been developed and widely used.
The network consists of multiple layers of neurons, which are
connected fully with their neighbor layers in a directed graph.
Diverse activation functions can be applied, for example, a
linear function with two parameters a and b:

y = ax+ b (3.32)

Alternatively, a non-linear function such as a sigmoid function
as follows:

y =
1

1 + e−ax−b
(3.33)
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A connection weight w is assigned to each connection in the
network, which is trained to learn the significant features of
the target. The target information is stored redundantly in
the connection weights, which allows the network to detect
the target with good generalization ability.

Figure 3.10: Schema of MLP network for shape classification

A schematic diagram of MLP-classifier using Hu-Moments
is illustrated in Figure 3.10. Seven input neurons connect di-
rectly with the Hu-Moments. In the middle layer, we use 30
neurons with the sigmoid activation function. Three output
neurons are defined with three detection categories, i.e. the
image of the robot, the person and otherwise from the camera
view. During the supervised learning phase, the example im-
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ages are labeled with reference outputs. The training data set
of each category contains 1500 images for learning and 500 for
testing. The output of the neural network can be intuitively
interpreted as “whether the image segment looks like a person
or a robot”. During the training phase, according to the im-
ages’ category, the activity of the corresponding neuron will
be set as 1 and the other two as 0.

The MLP network is usually trained with supervised learn-
ing methods that use a set of training data for training the
connection weights of the network, and in our work we use the
standard back-propagation learning. For each training step,
an error value between the desired activities of the output
neurons of the example data and the actual activities of the
output neurons of the MLP. In our work, we use the seven
values of the Hu-Moments (M1−M7) as the input of the MLP
network. Then, the difference between the network output and
the desired output is calculated as follows:

E =
1

2

∑
i

(yout
i − di)2 (3.34)

where yout
i denotes the output of the neuron i in the output

layer, and di denotes the desired output. A learning rule is
applied for updating the connection weights in the network:

w(t) = w(t− 1) + ∆w(t) (3.35)

with

∆w(t) = −η ∂E

∂w(t)
+ α∆w(t− 1) (3.36)

The connection weights between the output layer and the hid-
den layer as well the connection weights between the hidden
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layer and the input layer are updated. After the training, the
network is able to classify the input image by generating activ-
ities of the output neurons. Because the supervised learning
generalizes the detection from the training data, the MLP net-
work is able to detect a person in unknown images.

3.3.4 Short-term Shape Memory

The short time shape memory detects the target object via
evaluating the shape consistency over a small time-window
under the assumption that the change of shape is slow. During
the object tracking, the shape memory is updated based on
the features of the current tracking object, which is used to
detect the future objects. Besides the advantage of the shape
features that they are robust against intensity changes, a short-
term shape memory can detect a target in different situations
without the need for training a classifier in advance based on
the online learning. This is useful to compensate the failure of
the static shape cue, which cannot learn all the shapes of the
target. In a sequence of image frames, the shape of a target
should be similar in adjacent frames. The similarity of shapes
provides a possibility of tracking by rapidly memorizing the
object features and using them for detection thereafter.

Two shape features are experimented with our work for
building the shape memory: the scale invariant feature trans-
formation (SIFT) (Lowe, 2004) and the Speeded Up Robust
Feature (SURF) (Bay et al., 2006). Both features can be cal-
culated instantly during image processing and used for detec-
tion in real time. Furthermore, they have the advantage that
they are scale, rotation and transformation invariant, which
provides a robust tracking ability under different conditions
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(including rotation, shift, slight deformation, etc.). We will
compare the performance of both methods and describe both
methods briefly in the following sections.

Scale Invariant Feature Transformation

The scale invariant feature transformation (SIFT) is a widely
used method in computer vision for object recognition through
feature matching, which was developed by Lowe (1999). As in
the real world it is hard to recognize a target object in dif-
ferent images of the target because of different camera views
and scale, invariant features are very useful for object recog-
nition by filtering out influences of image shift and rotation.
The SIFT algorithm addresses this problem and successfully
solved it by extracting distinctive invariant features from im-
ages, which are invariant to image orientation and image scale,
and are robust to affine transformation, image distortion and
illumination changes from different camera views.

The SIFT algorithm combines different techniques to re-
alize a robust recognition function. For example, the image
scale invariance is achieved by scaling the input image repeat-
edly to build up an image pyramid structure, and the rotation
invariance is realized by assigning the dominant orientation of
the features. Moreover, the SIFT algorithm is developed under
consideration of efficiency problem and is optimized to be used
in the real application. It uses a Difference-of-Gaussian (DoG)
filter to determine interesting points in the image, which ap-
proximates a Laplace-of-Gaussian filter without the need of
image convolution. Also, through a fast feature matching tech-
nique the algorithm can match features rapidly. Overall, the
SIFT algorithm is able to recognize objects robustly under
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Image Pyramid 

Octave 3 

Octave 2 

Octave 1 

Convolution with Gaussian 
kernel repeatedly 

Difference of adjacent 
Gaussian image 

Figure 3.11: Schema of building up the difference of Gaussians
pyramid

various situations, and reaches the speed requirement for real
usages. Details of description and experiment results are ex-
plained in original papers (Lowe, 1999, 2004).

In order to obtain scale invariant features, SIFT uses a
method for getting the position of the features, i.e. the scale
invariant interest points from the image space. As shown in
Figure 3.11, an image pyramid is first built that scales the raw
image to different octaves. For each octave, the input image
is repeatedly filtered by Gaussian kernels to blur the image at
different levels. The Difference of Gaussian pyramid is then
constructed by subtracting the adjacent image layers within
the same octave, which results in images that approximate
edge information. An interest point is determined by find-

93



Chapter 3. Indoor Person and Robot Localization

Figure 3.12: Schema of the SIFT feature

Left: Detecting an interest point by finding the extreme value.

Right: Schema of SIFT descriptor. Arrows here show the magnitude and

the orientation of the image gradient within the subregions.

ing the extreme value in the difference of Gaussians pyramid,
which is the local maximal value in the current spatial space
as well as in the scale space (see Figure 3.12). This provides
significant corner information that can be detected easily from
different views.

Based on the position of the image interest points, fea-
ture descriptors that represent significant image information
for recognition are generated. In the SIFT algorithm, fea-
ture descriptors around interest points are built which are 128-
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dimensional vectors of the local gradient directions around the
interest points. They describe the major orientation informa-
tion of pixels around the interest points, which is shown in
Figure 3.11. As corners and edges may have different orienta-
tions, the SIFT descriptors provide a rich feature pattern that
can be used for recognition.

In order to describe the image feature on a scale- and
orientation-invariant manner, the SIFT features are normal-
ized as follows:

• Estimating the descriptor size of the interest point

For each of the interest points, a rectangle area around
the interest point with the size of s×sizec is determined,
where s is the scale level of the interest point and sizec
is a constant.

• Estimating the dominant orientation

A local histogram for representing the image gradient di-
rections is summarized over the pixels around the inter-
est point. Then, the (multiple) peak(s) of the histogram
is detected as the primary orientation of the image.

• Calculating the feature representation

The above-determined area around the interest point
is rotated based on the dominant orientation and then
meshed. For each of these grids, we calculate the gra-
dient magnitude and orientation of the image inside the
grid. After filtering with a Gaussian kernel around the
interest point, the results are summarized in an orientation-
based histogram (for example with 8 bins, each of them
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contains a range of 45◦) over 4 × 4 subregions. The fi-
nal feature descriptor contains then these values, i.e. an
8× 4× 4-dimensional vector.

The interest point and the feature descriptor together con-
struct the SIFT-feature. Because the 128−dimensional vectors
of descriptors estimate the orientation of the image gradient
within the subregion accurately, SIFT features usually pro-
vide an excellent recognition quality. However, due to the
high complexity of the algorithm, the performance of SIFT
feature computation is low, and it is challenging to achieve a
real-time ability (especially using a resource-limited device).
Approximation methods are applied to tackle this problem,
and among them the Speeded Up Robust Features (SURF)
becomes a successful method that accelerates the calculation
significantly. Details of the SURF will be described in the next
section.

Speeded Up Robust Features

Because of the repeated filtering and scaling of the raw image,
the high computational complexity of SIFT features prevents
the use of this method in an application with a high real-time
requirement. To improve it, Bay et al. (2006) present another
feature, which merges the concept of SIFT and the Haar-like
features. One key technique for accelerating the computation
is the integral image (Viola and Jones, 2001) which is used for
pre-processing. The integral image is a novel representation
of images by summing up the pixel values over the image as
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Figure 3.13: Schema of Haar-like features

Left: Integral Image; Right: A set of basic Haar-like features

The surface area of D can be processed by the position of points: (4 +

1)− (2 + 3).

follows:

s(x, y) = s(x, y − 1) + I(x, y) (3.37)

II(x, y) = II(x− 1, y) + s(x, y) (3.38)

where (x, y) indicates the pixel position of an image, s(x, y) is
the cumulative row sum with s(x,−1) = 0, I(x, y) is the pixel
value and II(x, y) is the value of the integral image. With
the help of the integral image, any integration operation of
the sub-area (or the entire) original image can be converted
to simple linear operation. As shown in Figure 3.13 left, the
value of an integral image at location 1 is the sum of the pixel
intensities in rectangle A, and the value at location 2 is the
sum of pixels intensities in the rectangle (A + B). Similarly,
the sum within area D is processed as 4 + 1 − (2 + 3) (Viola
and Jones, 2001).

The detection of interest points is processed with an ap-
proximated Harris-corner detector using Haar-like features (Fig-
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Figure 3.14: Image pyramid of SURF Features.

Other than the SIFT pyramid, which scales the image to detect interest

points, SURF uses Haar-like features with different scales to detect ex-

treme values. Then, the feature descriptor of the interest points is defined

as a string of values: dx,dy, |dx|, |dy|. Compared with the SIFT feature

descriptor, the SURF feature descriptor is constructed compactly as a

4× 4× 4 vector.

ure 3.13 right). Haar-like features are digital image features
with a similar shape of a Haar-wavelet signal. A typical Haar-

98



3.3. Visual Cues

wavelet signal can be written as:

φ(x) =


1 0 ≤ x ≤ a/2,
−1 a/2 ≤ x ≤ a,
0 otherwise

(3.39)

Similarly, the Haar-like features are represented by a set of
rectangles and pixels. Inside, these rectangles are assigned
with different values (for example 1 for the white area and -1
for the black area in Figure 3.13 right). The output of a simple
rectangle Haar-like feature is the difference of the sum of pixels
within two (the black and the white) rectangle areas (Viola and
Jones, 2001). Although these operations are consuming on the
original image, it can be achieved easily by processing a few
linear operations on the integral image.

Another improvement of the SURF feature is instead of
scaling down the raw image in the SIFT, the SURF constructs
the image pyramid by scaling up the Haar-like features. Small
edge features will then be filtered out by a larger Haar-like
feature. Although the filtering needs an image convolution,
it can be significantly simplified with the help of the integral
image (Figure 3.14). Based on the output, the locations of the
interest points are detected by searching the extreme value
using a 3 × 3 × 3 searching window in the image and scale
space.

The feature descriptor of SURF uses the distribution of the
first-order Haar-wavelet response in the x− and y−axis, which
consists of a 64-dimensional feature vector. To determine the
dominant orientation, an area around the interest point with a
radius of 6s is selected, where s is the scale level of the Haar-
wavelets. The response of Haar-wavelets along the x− and
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the y−direction with a size of 4s is computed and weighted
with a Gaussian filter whose mean is at the interest point.
Then, the dominant orientation is estimated by determining
the orientation with the highest sum of the responses inside a
sliding orientation window. A feature descriptor is extracted
by summing up the responses of the Haar-wavelets. A square
window, which is centered on the interest point and aligned to
the dominant orientation, is defined with a side length of 20s.
This square window is meshed with 4× 4 grids and for each of
these grids the wavelet responses are calculated. After that,
the wavelet responses are accumulated in the way of

∑
dx,∑

dy,
∑
|dx| and

∑
|dy|, which constructs a four dimensional

vector. Consequentially, each of the SURF features is built
with 64 values that contain not only the magnitude (

∑
|dx|

and
∑
|dy|) but also the sign information (

∑
dx,

∑
dy). This

allows the fast feature matching of this method by only consid-
ering the features with the same type of sign features, which
reduces the computational complexity further.

We examined SIFT and SURF features and found that
the SURF features provide a better performance while they
keep a good detection accuracy for tracking the person while
the person is moving in the room. Because for surveillance
and also robot navigation, it is important to have a real-time
tracking performance, we applied SURF features for modeling
shape memory cues after evaluation. The experiments as well
as results will be described in the successive section.

Structure of Shape Memory for Person Tracking

In order to improve the tracking performance using the consis-
tency of the shape feature of the target person, we developed a
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Figure 3.15: Structure of the shape memory cue

system to learn the temporary shape memory while tracking.
The system structure, which is shown in Figure 3.15, consists
of a feature buffer F1 . . . Fn to store the temporary features of
the target person, and a negative data set O1 . . . Om to store
features of the background. The feature buffer is defined to
store image features of the last 30 frames. When the target
person is localized by other cues, features of the target will
be extracted and pushed into the buffer. Since the change of
the person’s shape is continuous and slow, the features of pre-
vious frames from a recent time are similar. Therefore, the
output of the shape memory is calculated based on the corre-
lations between the new input image feature and the features
in the buffer. The higher the correlation is, the higher the
output of the shape memory cue is. We also consider features
of the background and a negative dataset is defined to store
features from the static background such as from sofas, tables
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and chairs, which could help particles to avoid mislocalization
in these areas proactively. When a particle is located in the
furniture area, the negative data set will be activated, and a
negative value will be added to the output. The output of the
shape memory cue is processed by summing up of values, and
higher value is produced when a strong correlation between the
current image feature and the stored previous target’s features
is found.

3.4 Visual Cues Integration

In the last section, we introduced visual cues that detect the
target using diverse algorithms. Each of the visual cues is able
to detect the target with individual features, which provides
a good tracking/detection performance under a certain con-
dition. One research question here is which one among these
outputs from visual cues should be more trustworthy. For
example, the color memory needs to be learned before using
because the person may change his clothes. At the beginning
of tracking, the output of the color memory could not provide
useful information and should not distract the general track-
ing. For this reason, results from the visual cues need to be
combined synergistically to improve the overall detection rate.

We consider that for perfectly built multiple visual cues,
these visual cues should agree with their detections during the
target object tracking. In other words, a correlation of outputs
of visual cues could help to increase the detection robustness.
In our work we use a polynomial high-order network, which
is inspired by a Sigma-Pi network (Zhang and Muhlenbein,
1994) for multiple cue integration. The sigma-pi network uses
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First-order value 
 
Second-order value 
 
Third-order value 
 

Activities of 
visual cues 

Importance weight 
of particles 

Figure 3.16: Schema of a Sigma-Pi network

outputs of visual cues as well as further generated cues as
neural input (see the first-order, second-order and third-order
values in Figure 3.16). A connection weight is assigned to
each of these combinations, and the output of the network
is processed by multiplication of the connection weights with
corresponding neural activities. The output of the network
shows a majority voting of results of visual cues, which is used
for particle weights’ calculation. Here a higher value indicates
the higher probability that the image patch belongs to the
target, which increases weights of particles within these areas
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and changes the particle distributions. For each particle i, the
particle weight π(i) is calculated based on the output of the
Sigma-Pi network as follows:

π(i) =

4∑
c

αl
c(t)Ac(s

(i)
t−1)+

4∑
c1>c2

αq
c1c2(t)Ac1(s

(i)
t−1)Ac2(s

(i)
t−1)+

4∑
c1>c2>c3

αc
c1c2c3(t)Ac1(s

(i)
t−1)Ac2(s

(i)
t−1)Ac3(s

(i)
t−1)

(3.40)

where Ac(s
(i)
t−1) ∈ [0, 1] is the activity of cue c at the position

of particle i which can be thought of as taken from a saliency
map over the entire image (Itti et al., 1998). As said, a higher
activity shows that the image patch contains features of the
target, which affects the particle filter update and particles in
this area acquire higher particle weights. We use a sigmoid
activation function to process the neuron activities, which can
be described by Eq. (3.41):

A(yc) =
1

1 + e−(g·yc)
(3.41)

where yc is the output of the visual cues and g is a selected
scale factor. The activity of each cue is scaled by the relia-
bility α, which represents “how plausible” this cue is. This is
important because at the beginning of tracking, no color in-
formation is learned, and therefore the output of the color cue
should be ignored. The coefficients of the polynomial cues, i.e.
the network weights αlc(t) denote linear reliabilities, αqc1c2(t)
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quadratic and αcc1c2c3(t) cubic combination reliabilities of vi-
sual cues. The quadratic and cubic combinations of the four
basic cues yield the further ten combination cues. Compared
with traditional multi-layer networks, the Sigma-Pi network
contains the correlation and higher-order correlation informa-
tion between the input values.

The reliability of some cues, like motion, is non-adaptive,
while others, like color, need to be adapted on a short timescale.
This requires a mixed adaptive framework, as inspired by mod-
els of combining different information (Bernardin et al., 2008;
Triesch and Malsburg, 2001). An issue is that an adaptive cue
will be initially unreliable, but when adapted it may acquire
high quality in predicting the person’s position. To balance the
changing qualities between the different cues, the reliabilities
α will be evaluated with the following equation:

αi(t) = (1− ε)αi(t− 1) + εf(s′t) + β,∀α (3.42)

where ε is a fixed learning rate and β is a constant value.
f(s′t) denotes an evaluation function and is computed by the
combination of visual cues’ activities:

fc(s
′
t) =

n∑
i 6=c

Ai(s
′
t)Ac(s

′
t) (3.43)

where s′t is the estimated position and n is the number of the
reliabilities. In this model n is 14 and contains 4 linear, 6
quadratic and 4 cubic combination reliabilities. When more
cues are active at the same time, the combination of cues pro-
vides a higher output that leads to the increase of the corre-
sponding active cues’ reliability α.
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3.5 Experiments

Experiments for person and robot tracking are conducted in
a home-like laboratory environment with a single room. As
shown in Figure 3.17, a ceiling-mounted camera is used for
observing the target person. In order to cover the entire room
with a single camera, a fish-eye camera lens is applied, which
causes a strong image distortion. For this reason, the shape of
the target person could be entirely different when (s)he stands
at different positions in the room (e.g., Figure 2.3 in Chap-
ter 2), which distracts the person tracking using traditional
shape-based methods.

The goal of our experiments is to track a person (or a
robot) in real-life-like scenarios. Different situations, such as
static situations (such as when the person is sitting or standing
on a spot) as well as dynamic situations (such as when the
person is walking in the room) are tested. Besides, different
disturbances such as moving furniture and changes in lighting
conditions are tested. A distracting person who has a similar
shape feature but differs by color should be ignored. Therefore,
a list of tasks is defined, which includes:

• Moving person

• Sitting person

• Distracting person

• Changing light condition

• Changing furniture position

• Distracting person using CLEAR 07 data set (Bernardin
and Stiefelhagen, 2008)

106



3.5. Experiments

Camera Microphone

Figure 3.17: A home-like experimental environment

Furniture is observed by the ceiling-mounted camera that is shown in the

left lower inset in the image.

All these tests have been carried out in our ambient labo-
ratory. A similar room or data set can also be used to evalu-
ate the algorithm, but the calibration of the camera setup in
the new room and the training data of the MLP network are
needed because the shape of the person may be different due to
the change in the camera view. A particle filter with 30 parti-
cles is used for tracking, and according to the approximate size
of the tracked object, we define a segmentation area of 60×60
pixels around particles for image processing. A reference image
is captured at the beginning to obtain the initial background
model. The SURF features of the initial background model
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are extracted and stored as a negative dataset. When a per-
son is moving in the room without a known color pattern, the
shape and motion cues will detect the person, and the particles
will merge to the position of the person. The histogram of the
image patch around the estimated position of the person will
be updated, and the SURF features of this image patch will
be extracted and be pushed into the memory buffer. Based on
the output of the visual cues, the corresponding reliabilities of
visual cues are adapted according to Eq. (3.42). The details of
the scenarios, as well as the corresponding results, are shown
in the following sections.

3.5.1 Test Scenarios

Moving Person

Tracking a moving person is a basic task in the experiment,
and it can be achieved using motion information. A test ex-
ample of tracking a moving person is visualized in Figure 3.18.
At the beginning of tracking, all particles are initialized at ran-
dom positions, with uniform weight in the image (see frame
5). When a person enters the room (frame 100), the movement
of the person is detected by the motion cue. The particles in
the detection area receive a positive value from the motion
cue, thus, their particle weights will be increased. According
to the updating and resampling of the particle filter, particles
close to the person get higher values, and the distribution of
particles will then move towards the detection area. While the
person is moving, the motion cue will provide activities at the
person’s location, and particles around the person will increase
their weights. By repeating these processes, the particle filter
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Frame 5 Frame 100

Frame 102 Frame 149

Figure 3.18: Tracking a person while moving in the room

estimation will then converge to the person’s position. After
the person is localized (frame 149), the shape features, as well
as the color histogram, are learned and the reliabilities of vi-
sual cues (e.g., the shape memory cue and the color cue) are
adapted accordingly to improve the tracking robustness.

Sitting Person

Although motion information is robust and easy to be de-
tected, a pure motion tracking system only works while the
target person moves. In the case that no motion is detected,
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for example, when the person stays in a position for a long
time, the system has to rely on other cues in order to main-
tain localization. Since some cues (e.g., the color and the shape
memory cue) need to be trained before being used, the features
of color and the shape memory cues should be learned during
tracking, which helps the system track the target robustly.

In this test scenario, we demonstrate person tracking of
a person with a static pose (e.g., while sitting). Since motion
may not be sufficient for tracking, other features such as shape
and color memory are learned and used for person detection.
A test scenario is shown in Figure 3.19: a target person is
first localized based on motion detection during walking, and
then the shape as well as clothes’ colors are learned during
tracking. After that, the target person moves to a sofa and
sits there (frame 401). Although no motion information is
obtained at this moment, the particle filter keeps tracking the
person successfully based on the information on other cues,
e.g., the color and the shape memory cue. The learned features
provide a strong signal to localize the target person, which
could also avoid a mislocalization caused by wrong motion
estimation. For example, when a distracting person close to
the target person moves, which provides a noise motion signal,
the particles are still locating the target person robustly based
on the results of the decision-making (See frame 420 and frame
423: some of the particles move away from the target person
due to the noise motion signal and then come back after a
short time).
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Frame 386 Frame 401

Frame 420 Frame 423

Figure 3.19: Tracking a person while sitting close on a sofa

Walking with Distracting Persons

As the system learns the features of the target person while
tracking, rather than specifying them manually, the movement
of another person may also be detected by the motion cue,
which could disturb the localization. Therefore, it is important
to evaluate the performance of tracking a single target person
among other persons in the room. In this task, we test the
possibility of tracking a target person when another person
is in the room. Both persons may walk separately or cross
each other, which could lead to an overlap of their shapes
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Frame 317 Frame 324

Frame 332 Frame 342

Figure 3.20: Tracking a person while crossing a distracter per-
son

and disturb the color memory and the shape memory feature
for a short time. The system should be robust against these
disturbances (also the motion, which can provide strong noise
information) and localize the target person successfully.

In Figure 3.20, we show a test scenario of person tracking
while a distracter person traverses. In the beginning, we first
let the system track a target person successfully (see frame
317). During tracking, features such as color and shape in-
formation of the target are learned, which could increase the
tracking robustness. After that, a distracting person enters
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the image and walks around the target person (frame 324).
When two persons come very close to each other, motion in-
formation of both persons will be merged, and parts of the
features of the distracting person may be memorized. In this
case, the tracking system is still able to filter out the noisy
information (frame 332). Moreover, while the target person
stands and the distracting person provides lots of motion in-
formation, the system is capable of detecting the target person
using the learned color and shape information.

In the previous test scenario, shown in Figure 3.19, the
target person sits first on the sofa close to another person
(frame 386). Since the target person does not move after that
(frame 401), no motion information from the target person is
detected. When the other person stands up and moves, some
particles are disturbed due to the wrong motion information
(frame 420). However, the color and the memory cue are still
capable of recovering the system quickly, and the particles will
come back to the target person again (frame 423).

Changing Light Condition

The lighting condition of a real environment changes steadily.
Although slow changes could be compensated with algorithms
(e.g., the moving average of the motion detection), a quick
and significant change may cause problems for object track-
ing. The large difference between the previous and the cur-
rent image frame could be recognized as motion information.
In addition, low brightness could also disturb the color and
feature detection. The clothes or skin color may change under
a different light source, and parts of the shape features may
be difficult to detect in a dark environment.
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In this section, we challenge the person localization by
changing the light condition in a short time, which will dis-
turb the target detection of multiple visual cues. In this case,
the localization may fail and feature learning of the shape and
the color memory will be paused when the sum of the relia-
bilities is below a threshold. After resuming the good light
condition, the system should recover the tracking as soon as
possible with the help of the learned features. When the bad
light condition keeps for a long time (e.g., more than 5 sec-
onds), the wrong color information may be learned and the
color memory cue may distract the tracking system. In this
case, the reliability of the color cue will drop because the out-
put of it disagrees with the other (e.g., the motion cue could
track the person again when the dark light condition becomes
stable) until the new color information is learned correctly. A
test scenario is shown in Figure 3.21. After a person is located
by the particle filters (frame 85), we first switch the lights off
to build a darker environment and switch the lights on again.
Due to the dramatic change of the intensity, the particles lose
the target person (frame 105), and the distribution of particles
becomes wider. Note that due to the change of intensity, the
motion cue provides only noise signals here. In this case, the
color and shape memory helps the system detect the person.
The recovery is shown in frame 115, where, after a short time,
the particles converge to the person again.

Changing Furniture Position

Besides moving persons, moving chairs, as well as a blinking
television, may be detected wrongly based on the motion cue,
which disturbs the person tracking. Therefore, it is impor-
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Frame 85 Frame 95

Frame 105 Frame 115

Figure 3.21: Tracking a person while changing light condition

tant to test the tracking under a changing environment. The
experiments with changing furniture position are conducted
similarly as experiments with distracting persons. Compared
with the experiments with distracting persons, one significant
difference is that while a distracting person moves indepen-
dently to the target person, the change of the furniture would
be done by the target person. For example, when a person
grasps a chair and brings it somewhere else, the first motion
of the chair will happen where the person grasps it, which
causes a merged motion blob, and parts of the chair’s features
could be learned while the person is moving together with the
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Frame 858 Frame 938

Frame 1410 Frame 2294

Figure 3.22: Tracking a person while changing objects’ posi-
tions

chair. Since the motion detector cannot distinguish between
the furniture and the person (the motion information of both
is merged), the motion cue may determine the target person
incorrectly, and the features of the furniture, together with
the features of the moving person, may be learned wrongly.
The tracking system needs to be robust in order to filter out
these pieces of noise information based on other visual cues,
for example, using the learned shape and color information.

We experiment with the person tracking in a cluttered
room environment, and a test scenario is shown in Figure 3.22.
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Frame 2450 Frame 3290

Frame 3990 Frame 4490

Figure 3.23: Test with the “CLEAR 07” data set

The shape and the color information of the target person is
learned when the person is moving in the room. After that,
the person moves some objects in the room (cf. the chair, the
plant, etc.). Although a motion cue may provide incorrect in-
formation, and particles may follow the movement of objects
wrongly, the learned color and shape cues could still detect
the person, which helps the particles to recover the tracking
quickly.
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Distracter Person Using CLEAR 07 Data Set

We conducted a set of experiments based on the fish-eye cam-
era video of the CLEAR 07 short sample data set to evaluate
tracking performance based on external data. The idea of our
system is to monitor a target person who is alone in the room.
Since the “CLEAR 07 multiple persons tracking” data set is
designed for evaluating tracking performance for multiple per-
sons, our current system will rely on selecting a target person.
Therefore, we can only evaluate the system when one of the
people is tracked. The experiment is shown in Figure 3.23.
We select the person at the middle left position as the target
person and the others as distracting persons. While several
persons may be moving at the same time, the selected tar-
get person is tracked successfully based on the combination of
cues.

3.5.2 Evaluation

We refer to the CLEAR MOT Metrics (Bernardin and Stiefel-
hagen, 2008) to calculate the tracking performance. This Met-
rics is a method for evaluating the tracking performance of a
multiple-target tracking system based on multiple cameras.
Two large data sets are used (i.e., CLEAR 2006 and CLEAR
2007) with the CLEAR MOT metrics to compare the track-
ing quality to various methods. The CLEAR MOT Metrics
considers different errors during tracking: missing m (target
cannot be detected any more), false positive fp (localization
goes to wrong place) and mismatching mme (tracking of multi-
ple objects works, however, targets are wrongly labeled). The
tracking accuracy MOTA is then computed according to these
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three failure values as follows:

MOTA = 1−
∑

t(mt + fpt +mmet)∑
t gt

(3.44)

where gt refers to the frames that the target objects can be
found in the image.

Since in our work only a single person is tracked in the sys-
tem, we slightly adapt the method so that only the frame num-
ber of missing m and of false positives fp have been counted to
calculate the object tracking accuracy (OTA). The threshold
distance of a false positive was defined as 40 pixel: the target
person is labeled as localized when the distance between the
center of the bounding box of person tracking, and the center
of the target person is smaller than this distance. In addition,
since the video data from the ceiling camera belongs to the
evaluation of 3D person tracking using multiple sensors, the
results of the person tracking will not be compared with our
method because we only use one camera.

11 videos were evaluated, and the results are summarized
in Table 3.1. As we can see, 89.96% of the images on average
have a correct tracking result. The best case is the changing
light condition in the day scenario which indicates that a slight
change of light under sufficient sunshine does not disturb the
tracking system at all. The worst case is the changing light
condition in the night scenario. However, it is also the hardest
test, because the lights are the only light source. The light con-
dition is changed totally when most of the lamps are switched
off and a person can hardly be observed from the camera video
(see frame 95 in Figure 3.21). In comparison, the success rate
of tracking a person based on single motion detection could
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Figure 3.24: Computational time for different number of par-
ticles

reach 69% on average, and the color and memory cue alone
could not achieve the tracking task.

Real-time Capability

A real-time capability is desired for a tracking system that
works in a real environment. Therefore, we investigate the
computational complexity of our model qualitatively as well as
quantitatively. Among the used visual cues, the shape mem-
ory cue using SURF has the highest computation complexity
O(wh), where w denotes the width of the image and h de-
notes the height of the image. Since these visual cues are
computed for each particle, the cost of computing visual cues
of all particles is then O(pmn2), where m denotes the number
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of particles, p the number of linear visual cues and n denotes
the small detection window. To assign the reliabilities it takes
O(p2) and to resample the particle costsO(m). Thus, the total
computational effort is O(pmn2) +O(p2m) +O(m). Because
the number of visual cues is constant, for example here p = 4,
the total cost is then O(mn2). For each step, only small im-
age patches are processed, which is much more efficient than
the global searching methods. As n is far smaller than w and
h, n2 << wh and the computational complexity is controlled
by selecting the number of particles m. Through controlling
the number of particles, the total resulting computational time
will be different. As we can see, the growth of the computa-
tional time is approximately linear to the increase of particle
numbers, which fulfills our expectation.

A set of speed test has been made and visualized in Fig-
ure 3.24. For each test we process 100 frames of images. Al-
though a very large m may even slow down the computation
(e.g., see Figure 3.24 when more than 1000 particles are used),
by choosing an appropriate m, the system could work much
faster than processing the entire image while keeping a good
tracking quality. Figure 3.25 shows the tracking quality of a
target person using different number of particles. Through se-
lecting an appropriate particle number (in our work 30 - 50),
a good tracking quality can be achieved with a sufficient real-
time capability.

Reliabilities of linear cues

The contribution of visual cues can be evaluated by their re-
liability values. The more often a visual cue helps to find the
person, the higher the reliability of this cue will get. The re-
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Figure 3.25: Tracking quality using different number of parti-
cles

liabilities of linear visual cues are displayed in Figure 3.26,
which are important to visualize the adaptation of reliabilities
of the motion, the shape, the color memory and the shape
memory cues. The x-axis of the diagram denotes the frame
number and the y-axis the weight values. For example, at the
beginning of the tracking, the color cue has a small reliability
value since the histogram has not yet been learned. When the
color information is trained (for example after frame 300), the
reliability of the color cue increases to a high value and the
color cue becomes more important for the target detection.
The shape memory cue usually has a high value because this
cue memorizes the shape of the target person that is very re-
liable. The motion cue provides a high value at the beginning
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Figure 3.26: Reliabilities of linear cues

and supports the other cues (e.g., the memory cue) to learn
features. The shape cue has a lower value than the others, be-
cause the shape of a person is always changing and is hard to
be classified continually. Moreover, we can see that at certain
point the reliabilities of all cues drop off together (e.g., around
frame number 600). This could happen when the particle filter
misses the target person, for example, when the person moves
out of the image. One problem that may arise is that when
all the cues fail, the reliabilities could be very low and need
longer time to recover. One possible way to improve this is
that we could set up the β value in Eq.(3.42) differently for
visual cues so that the reliabilities of them could converge to
different level when they fail. For example, the motion cue
could have a higher β value than the other so that the motion
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Frame 725 Frame 735

Frame 744 Frame 747

Figure 3.27: Experiment with the CAMshift algorithm

information could dominate the localization when no other
useful information is available.

3.5.3 Comparison with other Algorithms

Experiments are conducted in our laboratory environment to
compare the tracking performance of our system with other
algorithms. Here, we provide the results of two state-of-the-
art feature-based tracking methods: Continuously Adaptive
Meanshift (CAMshift) (Bradski, 1998) and the Tracking-Learning-
Detection (TLD) algorithm (Kalal et al., 2012). Both algo-
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Frame 394 Frame 405

Frame 425 Frame 443

Figure 3.28: Experiment with our tracking algorithm

rithms and our tracker run with the same video resources, and
the results will be analyzed in the following sections. Other
methods (e.g., motion detection) will not be tested here, as
their drawbacks are known.

CAMshift

The CAMshift algorithm is a popular method for tracking ob-
jects based on color information1. It uses histogram color in-

1Source code for experiments: Example code from OpenCV, http:

//opencv.org/.
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formation to represent the target object and determines the
target by finding the area with the highest probability (the
density of pixels that contain the desired color). The method
could precisely estimate the position, as well as the size of the
target, using an adaptive searching window, and since only the
color information is required, the method is able to deal with
target deformation. It has also been seen a successful tracking
method, for example, for face tracking.

However, since the tracking is based on pure color represen-
tation, the distribution of the color of the target has to remain
stable. As shown in Figure 3.27, based on the target’s color
representation, the target person is labeled with a red ellipse.
When the color of the target changes quickly during tracking
(frame 735 and frame 744), noise information may be adapted,
and the target will be lost (frame 747). Compared with this,
our tracking system provides a robust detection result during
the entire video (see Figure 3.28).

Tracking-Learning-Detection (TLD)

The Tracking-Learning-Detection algorithm is a novel method
developed by Kalal et al. (2012) that aims at tracking unknown
objects in real time through long-term feature learning. The
algorithm consists of three parts: a tracker that estimates the
target position based on the motion information; a detector
that recognizes the target based on the learned features in the
past, and a learning that estimates the false negatives and false
positives of the detection using a novel P-N learning method
and generates features of the target as well as image noises
to be learned. Given the initial position and the size of the
target, the TLD algorithm is able to track the target based on
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Frame 518 Frame 532

Frame 555 Frame 559

Figure 3.29: Experiment with the TLD algorithm

the motion information, learn new features of the target and
the noise information from the background, and detect the
target using the learned pattern without the need for extra
information.

We test the TLD algorithm2 by evaluating the previous
video file, and the results are shown in Figure 3.29. As we
can notice here, the TLD is unable to track the target person
successfully. After a short tracking period (from frame 518 to
frame 555), when the target person turns up, the model cannot

2Source code: http://www.gnebehay.com/tld/
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find any known features and loses the person. As the P-N
learning measures the similarity of the current image patch
with the learned positive and the negative image patches, a
quick change of the shape of the target person observed by
the ceiling-mounted camera view may provide a low similarity
and cannot be classified. In addition, the tracker of the TLD,
based on median flow, may not estimate the new position of
the target person correctly, because the shape of the person
deforms significantly using the fish-eye lens and the ceiling-
mounted camera view. The performance of TLD, in this case,
is worse than our algorithm.

3.6 Discussion

In this chapter, we presented a real-time person tracking sys-
tem using a ceiling-mounted camera. A hybrid probabilistic
algorithm is proposed for localizing the person based on dif-
ferent visual cues. A particle filter is developed in our model
to detect the target person effectively using the small image
patches around particles, estimate the new position of the tar-
get person, and update the reliabilities of the visual cues based
on the position estimate. We apply a high-order combination
network (i.e. the Sigma-Pi network) to integrate the results
of different cues with corresponding reliability weights. This
model indicates a human’s ability to recognize objects based
on different features. When some of the features are strongly
disturbed, e.g., by the noise of motion information, the sys-
tem is capable of providing a robust tracking by recovering
the detection with other features. The particle filter resembles
an active attention selection mechanism, which allocates most
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processing resources to positions of interest. It delivers a ro-
bust object tracking quality while keeping the real-time ability.
Nevertheless, since some visual cues (e.g., the shape and the
color memory) need to be learned during tracking, they could
only provide useful information after the features are learned
correctly.

Advantages of this combined multiple-cue system are that
it provides a flexible architecture for multiple-cue integration,
which is easily extendable by adding other features. (In our
work we also included the entire TLD algorithm as a visual
cue.) In addition, non-visual cues (e.g., audio) could be used to
enhance the tracking accuracy. Based on an adaptive learning
method, features such as color histogram and shape features
can be adapted online to improve the robustness of person
identification. With this short-term memory mechanism, the
system could master the challenge of an unstructured envi-
ronment, as well as moving objects in an ambient intelligent
system. Accordingly, our model has the potential to be further
developed as a robust method for object detection and track-
ing in complex conditions. Though the initial design of the
tracking system is to monitor a single person when the per-
son is alone at home, the system is scalable to track multiple
persons through a dynamic management of particle filters.
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A Neurocognitive
Model for Robot
Navigation

Robot navigation is an important core function of socially as-
sistive robotics that guides a robot to move to the target posi-
tion to accomplish its tasks. Although it is a well-established
research topic, the navigation has similar problems as the per-
son localization described in the previous chapter: Among
many existing methods, it is still hard to achieve a robust,
flexible navigation behavior in a cluttered, dynamic environ-
ment with limited representation. Most of the state-of-the-art
SLAM algorithms use expensive sensors (e.g., laser scanners)
for environment perception, which greatly increases the system
cost. Nevertheless, the measurement failure, due to the sig-
nal noise, makes it difficult to obtain a correct representation
of space, which could distract from the navigation planning.
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Although a concrete path planning is helpful in acquiring an
optimized navigation trajectory, it is laborious and insufficient
when the environment changes (e.g., when objects move). An-
other disadvantage of the state-of-the-art SLAM is that it is
only limited to mapping the room and solving path planning.
Further cognitive functions, such as environment understand-
ing, are hard to extend.

To overcome these challenges, we developed a novel navi-
gation system that combines the robot navigation system with
an ambient intelligent environment to extend the sensor range
of the robot and use a ceiling-mounted camera in a room, as
the sensor input, to detect the position of the robot, as well as
the target person. The ambient sensors can extend the view
of the robot with this integration. For instance, during the
robot’s navigation towards a target person, the ceiling camera
can help the robot to locate the person when (s)he is out of
the range of the robot’s sensor. This little external support
could help the entire navigation system significantly to realize
complex behavior with a low-cost hardware system.

Another research question we tried to answer is how to
achieve a decent trajectory planning while keeping high effi-
ciency and flexibility for dealing with new situations. Con-
sidering that human beings and animals could reach the tar-
get position in a large scaled environment easily, guided by
a spatial feeling and without very detailed motion for each
step, the understanding of the spatial relation and real-time
action for fast maneuvering is crucial to accomplishing this
task. Our navigation system, therefore, integrates planning
and reflex-based obstacle avoidance to adapt the navigation
behavior during environment changes while maintaining effi-
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Figure 4.1: General architecture

ciency based on the optimized planning trajectory. Inspired
by the animal’s spatial cognition ability, we use a sensorimo-
tor map to represent the environment, the relation between
spatial states, and the corresponding actions that lead to the
states’ transfer. Details of the system will be described in the
following chapters.

4.1 Approach

The architecture of our navigation framework is shown in Fig-
ure 4.1. Three sensors are applied: (1) a robot camera fixed
on the robot’s head for extracting the visual features of the
environment, (2) a ceiling-mounted camera of the ambient in-
telligent system to localize the person and the robot, and (3)
sonar sensors installed on the robot’s chest for detecting ob-
stacles. The visual features and the localization information
are used for building up a spatial cognition functionality of the
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robot, in our model with a sensorimotor map, and the sonar
signals are used for obstacle detection and avoidance, which
also helps the robot adapt to its sensorimotor map.

Two kinds of navigation behavior have been developed in
our model: a planning-based behavior that guides the robot
strategically based on the spatial knowledge stored in the sen-
sorimotor map and a reflex-based behavior that interacts with
the environment in real time and reacts to the unknown ob-
jects to ensure the safety of the robot. As the core compo-
nent of the entire system, the sensorimotor map stores the
spatial information and the corresponding motor information
during the change of spatial status. A path planning can be
processed based on the sensorimotor map that results in mo-
tion information, in our model a desired orientation towards
the target. Meanwhile, the reflex-based behavior controls the
maneuvering of the robot in real time, which generates the
detailed robot motion and avoids dangerous areas. Hence, a
flexible and efficient navigation control is realized through a
synergetic combination of these two behaviors.

As a person usually does not collide with obstacles while
(s)he is walking, the position information of the person is use-
ful to represent the free space in the room, and in our system,
this location information is used for building up the sensori-
motor map and planning navigation. Through the integration
of the localization and the navigation system, the robot is
able to detect the target person and navigate towards him au-
tonomously. While a reflex-based behavior is activated, feed-
back of the interaction with the environment will be sent to
the sensorimotor map and adapt to the corresponding state
automatically. This adaptation is important for the robot to
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move in a dynamic environment and helps the robot avoid
potential danger position proactively. The visual features are
used for gathering the appearance information of the environ-
ment, which is anchored on the robot’s position on the map.
Through the integration of appearance features, the robot is
able to process more cognitive tasks, such as localizing an ob-
ject, which is observed during the robot’s movement. The
details of each component will be described in the following
sections.

4.1.1 Sensorimotor Map

The sensorimotor map is the core of the navigation system.
As shown in Figure 4.2, it consists of three components: (1) a
spatial memory that learns the structure and the appearance
of the environment, (2) an action memory that learns an in-
verse control model, and (3) an action layer for robot control.
The spatial memory layer represents the spatial information of
an environment. It contains two types of spatial information:
states that present the features and connections that present
the relations between different features. When a person, as
observed by the ceiling-mounted camera, or a robot visits a
novel location, the features of this location and the relation
with neighboring places will be stored. When the robot is at
a specific position, the neurons whose features match the ones
obtained from the current position will be activated. This re-
sembles the neural activity of the place cells in the hippocam-
pus, whose firing rate is dependent on the current location.
The spatial memory is represented by a Growing When Re-
quired (GWR) network (Marsland et al., 2002). Compared
with the Growing Neural Gas model (Fritzke, 1995) that we
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Action  
Layer 

Action  
Memory 

Spatial  
Memory 

Position 
Information 

Appearance 
Memory 

Interaction with 
Obstacles 

Figure 4.2: Architecture of the navigation model

used in Yan et al. (2012b), GWR does not grow over time, but
only when the novelty is detected. When the entire space is
explored and no change happens, no neuron and connection
of the GWR network will be updated, which provides better
convergence properties.

The network consists of a set A of neurons, each associ-
ated with feature vectors v, and a set N of connections to
describe the relations (i1, i2) between neurons i1 and i2 in A.
Different features can be represented in the neurons, for ex-
ample the x, y coordinate information of the robot and the
visual landmark information, which resembles the visuospa-
tial perception (which will be described in chapter 4.3). These
features are used to determine the position of the robot as well
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as the target. Neurons and connections will be allocated or up-
dated dynamically using a competitive Hebbian learning rule.
A connection weight ci1i2 ∈ [0, 1] is defined for each connection
(i1, i2) to indicate how “easily” a robot can move along this
connection. The higher ci1i2 is, the easier the robot can walk
through the link. When a connection is created, its connec-
tion weight ci1i2 will be initialized to 1 and adapted during the
robot navigation.

During navigation, the desired next state will be estimated
in the spatial memory layer to guide the robot to the target
position (see Section 4.2). A reward signal is set at the tar-
get neuron and is broadcasted through the network, and the
desired next state according to the robot’s current state is esti-
mated. As an output of the spatial memory layer, the activity
signal of the present state of the robot, i.e., qc (the red line in
Figure 4.2), and the desired next state, i.e., qn (the blue line
in Figure 4.2), will be sent to the action memory layer.

The motion of the next step is planned according to the
current and the next desired robot status. In order to convert
the state transition to a concrete motion control, an action
memory that represents the action information of each state
transition is employed. Motions are combined and updated in
the action layer with a ring-form dynamic neural field (DNF),
which shows the desired orientation of the robot. Details of
the computation of qc and qn, as well as the action memory,
are described in the following sections.

Learning Position Information

The map building is based on the position information ξ =
{x, y} from the person or the robot localization and orienta-
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tion model using the ceiling-mounted camera (for details about
the person- and robot localization please see Yan et al. (2011,
2012a)). At the beginning, the GWR network is initialized
with two randomly placed neurons that are linked to each
other. Then, based on the new input, the network will be
updated, and new neurons are created to learn the new data
distribution. This growing feature is essential to achieve a
good data representation while keeping resource usage opti-
mized.

During position information learning, the winner neuron i∗

and the second winner neuron i∗∗ are first found by calculating
the map activity s (later we will use sp to indicate a person
and sr to indicate a robot in Section 4.2) based on ξ and the
coordinate information of the neurons vci with the following
equation:

si = e
−
||vci − ξ||2

2σ2 (4.1)

where σ is a constant parameter and the index of the winner
and the second winner neuron is computed as follows:

i∗ = arg max
i
si (4.2)

i∗∗ = arg max
i 6=i∗

si (4.3)

These two neurons are important for network growing, and
a new node will be added between neurons i∗ and i∗∗ when the
following two conditions hold:

1. The activity of the winner neuron si∗ is smaller than a
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threshold activity at, which means that the person is far
from the position represented by any map unit, and

2. the firing counter hi∗ has become smaller than ht, which
means this neuron cannot move a lot anymore.

When these conditions match, a new neuron is inserted in
the GWR with the following steps:

1. Insert a new neuron r with the average weights of the
winner neuron and the current position:

A ← A ∪ {r} (4.4)

vcr =
1

2
(vci∗ + ξ) (4.5)

where A denotes the list of the neurons and vcr the coor-
dinate information of the new neuron.

2. Insert links between r and i∗ as well as between r and
i∗∗

N = N ∪ {(r, i∗), (r, i∗∗)} (4.6)

where N denotes the list of the connections.

3. Remove the current connection between i∗ and i∗∗

N = N/{(i∗, i∗∗)} (4.7)

The coordinate information of the winner neuron (i.e., vci∗) as
well as its neighborhood neurons (vci for all directly adjacent
neurons of i∗) is updated based on the input. Each neuron is
assigned an age factor agei, which can increase incrementally,
and a firing counter h to control the adaptation efficiency. In
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order to improve the convergence of the network and to have
a homogeneous distribution of the neurons, the adaptation is
as follows:

∆vci∗ = εi∗hi∗(ξ − vci∗) (4.8)

∆vcn = εnhn(ξ − vcn). (4.9)

where εi∗ and εn are the fixed learning rates of the winner
and the neighborhood neurons, and hi∗ and hn are the corre-
sponding firing counters. The firing counters (initialized with
h0 > 0) are calculated as follows:

∆hi∗ = τb (µh0 − hi∗) (4.10)

∆hn = τn (µh0 − hn) (4.11)

where τb, τn and µ are constant parameters for controlling
the adaptation. The firing counters indicate how “active” a
neuron is. When a neuron is added to the network, its firing
counter is initialized as a high value h0, which allows it to
adapt its features quickly. During the iteration, h decreases
towards a small value µh0 and the neuron loses its mobility,
which ensures that the neuron’s positions become stable. After
adaptation, we increase the age of all edges that connect with
neuron i∗:

age(i∗,n) = age(i∗,n) + 1, (4.12)

and delete the connection whose age is over a threshold agem.
Isolated neurons that have no neighborhood will be deleted as
well. For details of parameter setting, please see Table 4.1.

4.1.2 Forward and Inverse Model

The forward and inverse model represents the robot control
signals coupled with the state transition in the spatial mem-
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Table 4.1: Parameter table of the sensorimotor map building

σ 20 εi∗ 0.05

εn 0.02 τb 0.165

τn 0.066 µ 0.09

h0 1 agem 50

at 0.7 ht 0.5

ory layer. The action information is learned in the weights
wki1i2 that connect fully with the neurons k in the action layer.
Depending on the way of controlling the robot, the action in-
formation can be presented in a different form, for example
as force, velocity, angle value, etc. In our case the robot is
controlled by adjusting its heading direction. We use a ring-
form dynamic neural field, which will be described in the next
section. During map building, when a robot is moving in a
room and its spatial representation changes from i1 to i2, the
action executed at that time will be associated with this state
transition. The robot memorizes actions for state transitions
and is able to navigate through recalling appropriate memo-
ries. Instead of calculating action online, the motion control is
achieved by combining action behaviors, which increases the
computational efficiency significantly.

We use second order weights {wki1i2} (also called Sigma-
Pi weights (Weber and Wermter, 2007)) to store the action
information associated with the state transfer in the spatial
memory. When the robot moves from i1 to i2 in the spatial
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memory, the corresponding second order weight will be acti-
vated with the input signal sri1 of the current state i1 and qdi2
of the desired next state i2, and the output Ik towards unit k
in the action layer will be computed as follows:

Ik =
∑
i1,i2

wki1i2s
r
i1q

d
i2 (4.13)

where the value of qdi1 is calculated based on the reward spread-
ing from the target, which will be described in section 4.2.
Eq. (4.13) sums up those inputs because multiple connections
may be activated at the same time using the distributed repre-
sentation of the robot’s position. The neural field of the action
layer has 36 nodes, hence k ∈ {1, 2, . . . , 36}. Assuming that
there are m neurons in the spatial memory layer, the total
number of connection weights wki1i2 are 36m2, which grows
quadratically according to the number of spatial memory neu-
rons. However, most of the weights are close to 0 since the
action layer is sparsely connected with the spatial memory
layer.

The connection weights of the DNF can be learned based
on the observation of the person’s movement, or based on the
robot’s location and motion information. Here, we describe
the method of action learning regarding the observation of the
person’s movement, because the action learning based on the
robot’s movement is the same in principle. Based on the per-
son’s location, the winner neurons with respect to the person’s
position will be determined at first and all the connections ci1i∗

between the winner neuron i∗ and its neighborhood neurons
(indexed with i1) will be adapted. Assuming that a connection
ci1i∗ is active, the direction associated with this connection is
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calculated, and the corresponding weights wki1i∗ are trained.
Since there are two possible walking directions for every con-
nection (from i1 to i2 and from i2 to i1), we train both weights
at the same time as follows:

1. According to the position (xi1 , yi1) of neuron {i1} and
(xi∗ , yi∗) of neuron {i∗} of the spatial memory, we cal-
culate the possible orientation oi1i∗ of connection ci1i∗

using inverse trigonometric functions:

∆x = xi∗ − xi1
∆y = yi∗ − yi1

oi1i∗ = arcsin

(
∆x√

∆x2 + ∆y2

)
oi1i∗ = π − oi1i∗ if ∆y < 0 (4.14)

And then we calculate the opposite orientation oi∗i1 :

oi∗i1 = oi1i∗ + π (4.15)

2. Two bumps of activation with the size of the DNF are
being created in the shape of a circular normal distribu-
tion, one around the link orientation:

pki1i∗ =
eκ cos( k·10π

180
−oi1i∗ )

2πJ0(κ)
(4.16)

and the other around the opposite orientation:

pki∗i1 =
eκ cos( k·10π

180
−oi∗i1 )

2πJ0(κ)
(4.17)
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where pki1i∗ is the k-th connection weight of the action
memory for orientation oi1i∗ , κ is a constant and J0(κ)
is the modified Bessel function of order 0 (Abramowitz
and Stegun, 1965):

J0(κ) =
1

π

∫ π

0
eκ cos(θ)dθ (4.18)

3. We minimize the errors between the current activation p
and the second order weights w, i.e., 1

2 ||pki1i∗ −wki1i∗ ||
2.

Here we use a gradient method for learning. The equa-
tion is shown as follows:

∆wki1i∗ = η(pki1i∗ − wki1i∗)
∆wki∗i1 = η(pki∗i1 − wki∗i1) (4.19)

where η is a fixed learning rate.

Note that the learning of the sensorimotor map (including the
spatial map as well as the forward and inverse model) here is
based on the pure position observation of the moving person
as the person’s motion is unknown. Compared with this, in
case of learning the cognitive map by observing the robot’s
movement, the forward and inverse model can be built based
on the robot’s action signal and the learning method remains
the same.

4.1.3 Action Layer

The action layer generates robot control signals based on the
active action units during navigation. A DNF model is used
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to merge these action signals and to adjust the robot’s walk-
ing orientation by showing the desired robot orientation. The
DNF is a biologically-inspired model of the neural dynamics
in cortical tissues (Amari, 1977) to represent information with
activities of a population (or field) of neurons (which is also
called population coding). It is widely used in robotics to
generate dynamic behavior (Cuperlier et al., 2005; Erlhagen
and Bicho, 2006), which is useful to model a flexible naviga-
tion strategy. The model provides an activation bump that
is stabilized with the neuron association. Each neuron in the
network is associated with its neighborhood neurons, which is
stimulated by the close neighborhood neurons and, inhibited
by the neurons far from it. Based on this method, noise signals
that appear randomly can be filtered out automatically with
the help of the inhibitory connections. Because the target is
not represented by a single output but a bunch of neurons, it
resembles a probability distribution and DNF is robust against
noise signals while keeping high efficiency.

A DNF is capable of integrating the multiple action codes
received by the action layer and adjusting the robot’s motion
with smooth orientation behavior. It can be constructed with
an arbitrary form based on the requirement and in our work
a one-dimensional ring-form DNF with 36 neurons is imple-
mented to represent the desired robot orientation in 10◦ incre-
ments. As shown in Figure 4.3, each neuron k of the DNF has
a membrane potential uk that represents the activity and lat-
eral connections nkj with other neighbor neurons j. Through
the following updating rule (Eq. (4.20)), the DNF generates
an activation bump dynamically to show the suggested orien-
tation for the next step.
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1                         -0.3 
Lateral connection weights 

Figure 4.3: Schema of a ring-form dynamic neural field

τ∆uk = −uk +

36∑
j=1

nkjf(uj) + Ik + h (4.20)

where h is a rest potential, τ is a temporal decay rate of the
membrane potential, and Ik is the input stimulus of the k-
th neuron received from the second order weights that encode
the desired robot orientation. We use here a Gaussian function
with negative offset as the function nkj (Figure 4.4) to describe
the lateral interaction of neurons:

nkj = βe
−

(k − j)2

2σ2 − c (4.21)

where β is a scaling factor, σ2 a variance, k, j the index po-
sitions of neurons and c a positive constant. Each neuron in
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Figure 4.4: Schema of the Gaussian function for lateral inter-
action

the neural field receives positive stimuli from neighborhood
neurons close to it while neurons far from it provide negative
stimuli to inhibit its activity. The function f(u) is a sigmoid
transfer function of a single neuron with a constant offset g:

f(uj) =
1

1 + e−(uj−g)
(4.22)

The robot’s desired orientation Od is obtained based on
the neuron activities of the neural field, where each neuron
represents a specific direction. The orientation Od is computed
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through a weighted average of the activities as follows:

v̂ =

(
v̂x

v̂y

)
=

( ∑
k uk sin(10k

180π)∑
k uk cos(10k

180π)

)
(4.23)

Od =



arctan

(
v̂y
v̂x

)
if v̂x > 0 and v̂y > 0

arctan

(
v̂y
v̂x

)
+ π if v̂x < 0

arctan

(
v̂y
v̂x

)
+ 2π if v̂x > 0 and v̂y < 0

(4.24)

The control signal of the robot is computed by the differential
of Od and the actual orientation of the robot Op estimated
by the localization model (for details please see Yan et al.
(2012a)), which is described as follows:

∆O =


−co if Od −Op > d

co if Od −Op < −d
0 else

(4.25)

where c is a constant rotation speed parameter and d is a
constant threshold. Through experiments with the robot in
the home-like environment we detected suitable parameters
which are listed in Table 4.2.

4.2 Planning and Navigation

As described in section 4.1.2, the input signal of the action
layer is computed based on the connection weights w of the
DNF, the activity of the current state qc and the activity of the
next desired state qd. These values are important to update
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Table 4.2: Parameter table of the forward and inverse model

κ 0 η 0.2

σ 2 g 3

d 0.3 c 0.3

co 0.3

the activity of the DNF and to control the robot’s motion. Be-
cause the connection weights w are trained during map build-
ing and qc are computed with respect to the robot’s position,
the remaining qd that determine the next desired state of the
robot is crucial for path planning.

In order to compute it, we assign each neuron of the spatial
memory a reward value that spreads from the target state rep-
resentations iteratively with an exponential decrease. Seeds of
the reward signals are placed on the position of the target,
which is determined first in the spatial memory. The localiza-
tion of the target can be detected differently depending on the
navigation task. For example, we can use coordinate informa-
tion vc or appearance memory feature vr as initial signals to
define the target. Once the target position is known, an ini-
tial reward ri(0) at the target location is calculated with the
following steps:

1. Calculate the input signals mi of the neuron i in the
spatial memory. For approaching a person, we calculate
the signals m based on the distance between the person’s
position ξ and the neuron’s coordinate vc. Assume that
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the person’s position is distributed with a position list ξs
(indexed in s) with corresponding probabilities ws where∑

sws = 1, m is computed as:

mi =
∑
s

wse
−
||vci − ξs||2

2σ2 (4.26)

This means, the closer vci of neuron i is to ξs, the higher
is the activity of this neuron. Another possible method
of calculating mi for example based on feature matching
is described in the following sections.

2. Normalize the match signals with a softmax function:

m̃i =
emi∑
i′ e

mi′
(4.27)

where small activities are depressed after the normaliza-
tion.

3. Assign mi to initial reward signals with a threshold filter:

rpi (0) =

{
m̃i, if m̃i > thresholdm,

0, else
(4.28)

where p indices the neuron of the initial reward signal.

After the initialization, seeds of the reward signals are
placed in a small area around the target position. Multiple
units will contribute to localize the target object/person since
the person’s location is presented with a probabilistic distri-
bution and the object features may be represented at different
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positions. For each rpi (0) > 0, the reward signal will spread
separately to the neurons connecting to the neuron i (listed in
nl) iteratively:

rpj (t+ 1) = λcijr
p
i (t), for j ∈ nl(t) and rpj (t) < rpi (t) (4.29)

where λ here is a discount factor and cij is the corresponding
connection weight. The neighborhood list nl will be updated
for each iteration as follows:

n′ ← i if i connects with neuron j ∈ nl(t)
and rpi (t+ 1) < rpj (t), i /∈ nl(t) (4.30)

nl(t+ 1) = n′

After the spreading phase, the final signal rj of each neuron
{j} will be calculated by summing up all the reward signals
from the target’s location distribution:

rj =
∑
p

rpj (4.31)

Based on these reward signals, the robot plans its action
by calculating the next position it should reach. Assuming
that the robot’s position is represented by a group of neurons
α in the spatial memory, the next possible position should be
among the neighborhood neurons that connect with neurons
in α directly. The activity qdi2 of these neighborhood neurons
i2, which connect with neurons i1 ∈ α, is computed as follows:

qdi2 =
∑
i1∈α

ci1i2s
r
i1ri2 (4.32)

where sri1 is the neuron activity of the robot detection (cf.
Eq. (4.1)) and ci1i2 is the connection weight (cf. Eq. (5.5)).
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The higher qdi2 is, the more desirable it is for the robot to be

at this position. We scale qdi2 to the range of [0, 1] by divid-

ing all the qdi with the maximal value maxi(q
d
i ). Theoretically,

the distance of reward spread is unlimited, but the strength
of the signal decreases exponentially with a constant discount
factor, which leads to small gradients at large distances. For
decision-making, the robot only evaluates the states around
the current location and uses a soft-max function to retrieve
those with highest reward value. Neuronal noise would im-
pose a limit at which the gradient towards the goal cannot be
evaluated, but in the computer implementation, the limit will
occur when the computer cannot distinguish the higher value
due to the precision of the double float value. However, during
our experiments this situation never appears.

4.3 Environment Grounding via Anchor-
ing Visual Features

Localization and navigation of a robot towards the target per-
son is essential for assistive robots to support patients’ daily
lives. However, in order to really service patients, more cogni-
tive tasks have to be achieved. How a robot can help a person
(especially who is mobility-impaired) to manipulate objects
remotely is an important but challenging task. For example,
a robot needs to find a blood oxygen measurement and fetch
it to a user when the device is required. Since in real life
the device can be placed at any arbitrary position, which can-
not be pre-programmed, the robot has to analyze information
gathered from the environment and determine the location of
it. In order to realize this, a robot needs to not only represent
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the spatial information of the environment for localization and
navigation, but also understand the environment.

Inspired by biological evidences (e.g., visual landmarks help
desert ants to return home (Collett et al., 1998)), we consider
solving this problem by learning the appearance features of the
environment, which can be integrated with the spatial mem-
ory. A further feature of our system is therefore developed that
by anchoring the appearance features of the environment with
the states in the spatial memory, visual associations are linked
to specific locations in the map. A robot head camera is used
to observe the environment while the robot navigates in the
room, which extracts visual information and associates them
with the spatial knowledge. These features allow the robot to
learn the appearance of the environment to the correspond-
ing neuron in the cognitive map during its navigation, which
simulates the visuospatial perception and enables the robot to
combine the cognitive tasks of locating and navigating to an
object held in memory. Together with the spatial features that
describe the location of the object, the visual anchoring allows
the robot to achieve complex tasks such as fetching an object
by showing an image of it.

4.3.1 Learning Appearance Features

Recalling the spatial memory described in section 4.1.1, the
cognitive map contains states and connections information
that represents the features and the corresponding relations
between these features. As features of the cognitive map can
be presented in arbitrary forms, for example the reading of a
laser scanner or position information, combined sensory cues
can be integrated into the states. In our case, we extend
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the previous model that contains position information (“tells
where the robot is”) by combining it with visual feature infor-
mation (“tells what the robot sees”) that is observed by the
robot’s camera. Two kinds of features are presented in the neu-
rons of the spatial layer: (1) the x, y coordinate information
on the image from the ceiling-mounted camera, vc = {x, y},
and (2) the appearance memory, which resembles the visu-
ospatial perception, based on visual keypoints extracted from
the robot’s camera vr = {k1, k2, . . . }.

While the robot is walking during or after map building,
the visual stream of the robot’s head camera is captured and
visual features are extracted. Based on the location of the
robot, the neuron i∗ closest to the robot’s location will be
active using the spatial information (cf. Eq. (4.1)). The visual
features extracted from the robot’s camera will be assigned to
vri∗ when the winner neuron (i.e., i∗) changes:

knew{·} = Extract Features()

vri∗ ← knew (4.33)

A buffer is defined for each neuron to store the last 64 vi-
sual features when the robot visits the corresponding place,
irrespective of its orientation. We use SURF features (Bay
et al., 2006) to present the information of keypoints (see Fig-
ure 4.5). The reason for choosing these features is because
that the SURF features are scale-, shift- and rotation invari-
ant, and they are robust against a change in light conditions
while keeping the real-time ability. This is important because
the example image of the target object may be different from
what is observed while the robot is walking. Each keypoint
contains the x, y position of the feature point in the image of
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the robot camera and a 64-dimensional vector that represents
the image gradients. As a result, the robot learns a memory
by associating the extracted visual features with its current
location in the spatial memory during navigation. When the
robot visits the same place in the map again with a different
orientation, the features from the new point of view will be in-
serted to the same neuron corresponding to this location. This
memory is used for locating an observed object by comparing
the similarity between the features extracted from an image
of the target and the visual features stored in the appearance
memory. For details of the SURF features and feature match-
ing please read the original paper (Bay et al., 2006).

A demonstration of learning appearance features is shown
in Figure 4.5. While the Nao robot walks in the room, the ex-
tracted SURF features from the robot’s camera (plotted as red
circles in the upper left subfigure) are stored at the correspond-
ing state in the spatial memory (left under subfigure). After
that, the robot is able to locate a target object by comparing
features of a shown image with the stored visual features.

4.3.2 Object Finding and Path Planning Using
Example Image

After the robot learns appearance information of the environ-
ment through its explorative navigation, it can determine the
position of a target object by features matching of the example
image with its visual appearance features stored in the spatial
memory. Recalling from section 4.2 that the target position
is estimated with the goodness-of-match signals, for the ob-
ject finding task we redefine the term mi of the neuron i in
the spatial memory by comparing the similarity between vri of
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Feature Learning Object Finding 

The robot determines the 
position of the target 
when seeing an image of 
it, and spreads out reward 
signals from where the 
object was observed.  

 
 
 
 
 
 
 

Visual Features 

Figure 4.5: Schema of anchoring appearance features

neuron i and the features vobj of the target object as follows:

mi = feature match(vri , vobj) (4.34)

where vri are the learned keypoint features (cf. Eq. (4.33)) and
vobj are the keypoint features extracted from the target ob-
ject. The more visual keypoints of the test object match vri of
neuron i, the higher is the activity of this neuron. Since the
object may be observed from multiple positions (for example
a few cans of soft drinks are placed in the room), a distribu-
tion rather than a single position will be labeled as the target.
These facilities help the robot to choose a better route to ap-
proach the target. If no matched feature is found, mi = 0.
Based on these seed signals m, rewards are spread and the
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path planning is processed in the same way as described in
section 4.2. The robot can then navigate to the corresponding
positions and process further tasks such as object grasping.

4.4 Experiments for Map Learning and
Navigation

In order to evaluate the performance of our model, we im-
plemented a simulator1 to demonstrate the map building and
the navigation functionality. The graphical user interface of
the simulator is shown in Figure 4.6. A test environment is
created automatically by clicking the “Generate Map” but-
ton, and a rectangle mazelike map is built in the main window
where the white area denotes free spaces and the black areas
represent the obstacles. Multiple robots can be inserted in the
map with different colors, which is visualized as a triangle in
the test environment (see the yellow robot).

A cognitive map is built while a robot/person explores the
room, which is used for navigation planning. In the simula-
tor, the position of the person can be controlled by moving the
mouse inside the test environment through the “Move Person”
function, placed randomly by using the “Random Position”
function or moved with random velocity using the “Random
Velocity” function. To interact with the environment, two
sonar sensors for each robot are simulated, which are placed
on the front side of the robot and can be visualized by choos-
ing the “Sonar Sensor” option. The robot can be controlled
manually by clicking the arrows in the control panel area or

1Source code available at: http://journal.frontiersin.org/file/

downloadfile/18094/octet-stream/Data%20Sheet%201.ZIP/13/1/56899
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Figure 4.6: User interface of the simulator

autonomously by clicking the navigation button. When the
robot reaches the target position or the stop button is clicked,
the robot stops moving.

4.4.1 Map Building through Exploring the Envi-
ronment

Figure 4.7 shows a test scenario for map building. At the
beginning of map learning, the spatial memory is initialized
with two neurons linked with each other with a connection
(see Figure 4.7(a)). While the agent explores the environ-
ment, the closest neuron to the agent (winner neuron in red)
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and the second closest neuron (second winner neuron in green)
will be selected. The states of the winner and its neighbor-
hood neurons will be updated to the person’s position using
the Hebbian-learning rule, and new neurons will be inserted
when conditions match (see Figure 4.7(b)). Through repeat-
ing the map updating and neuron adding, the spatial memory
will grow automatically and cover the entire free space in the
room when all of the free space is visited by the person (Fig-
ure 4.7(d)). Since neurons are updated based on the agent’s
exploration and the agent cannot enter the space of obstacles
(i.e., the black areas) in the simulation, only the traversable ar-
eas are learned and the obtained map represents the free space
properly with a safe distance to obstacles. Moreover, because
the free space clusters with a uniformly distributed network,
it helps the robot to plan the optimal navigation trajectory.

4.4.2 Robot Navigation

The robot navigation uses the learned map for path planning
while avoiding obstacles in real time, based on feedbacks of
the simulated sonar sensors. Based on the spatial knowledge,
a goal-directed plan towards an arbitrary goal position is com-
puted. As shown in Figure 4.8(a), a reward signal spreads out
from the neuron closest to the target position (labeled as the
red dot) through the entire map with an exponential decrease
(cf. Eq. (4.29)). Each neuron obtains a reward value, which is
visualized with the brightness of the neuron (see Figure 4.8).
The brighter the neurons are, the higher the reward they have.
During the navigation, the robot looks for the state with higher
rewards (i.e., neurons with higher brightness), according to its
current state, and activates action memories that are stored
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(a) (b)

(c) (d)

Figure 4.7: Cognitive map learning in the simulator
(a): the initial status of the cognitive map, the person’s position is simu-

lated with mouse input. Black blocks denote obstacles in the environment;

(b) and (c): a cognitive map is growing based on the person’s position;

(d): a completed cognitive map of the traversable area is built, and the

robot starts navigating to the target position labeled in red. The radius

of the red circle denotes the activities of the DNF.
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(a) (b)

(c) (d)

Figure 4.8: Robot navigation using the cognitive map in the
simulator
(a) - (c): Different position during robot navigation. (d): Trajectory of

the entire navigation process. The red circle denotes the activities of the

DNF with different radius. The larger the radius, the higher the activity

of the neuron.
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in the corresponding connection between the current and the
desired states.

The action memory, together with the robot’s state and
the desired state information, is sent to the action layer to
compute the motion signals for navigation. As multiple ac-
tion memories are active at the same time, these signals are
merged in the DNF, and the activities of the neurons of the
DNF are updated (cf. Eq. (4.20-4.22)), which builds up an
activation bump to determine the desired orientation for nav-
igation. Figure 4.8 illustrates a demonstration of robot nav-
igation after the map building. During the navigation, the
robot plans actions for the next step according to the reward
signals of the map and its actual state. The robot moves to-
wards states with higher rewards (i.e., neurons with brighter
color) in order to reach the goal position. New actions are
calculated based on the activated action memories, which are
used to update the neural field for motion control. We visu-
alize the output of the DNF with a red circle surrounding the
robot’s position. The basic radius of the circle is set to 15
pixels where activations are zero, and the larger the radius,
the stronger activations the corresponding neurons have. By
repeating the decision-making, the robot updates the DNF,
which indicates the desired orientation of navigation at differ-
ent positions (See Figure 4.8(a)-Figure 4.8(c).) until the robot
reaches the target position. Because the robot’s action is com-
puted based on multiple action memories rather than a single
command, the robot does not follow lines of the map and pro-
vides a smooth movement. Finally, the entire trajectory of
this navigation is shown in Figure 4.8(d). Since the robot only
concerns the action of the next step based on its current state,
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this dynamic planning simplifies the trajectory computation
and enables the robot to reconfigure its route rapidly when
the environment changes.

4.4.3 Experiments in a Real Environment

In order to test the navigation system in a real-life environ-
ment, experiments of map building and robot navigation are
conducted in a laboratory, shown in Figure 4.9. In order to re-
semble a cluttered home environment, furniture such as a tea
table, two sofas, as well as a few plants are placed in the room.
Similar to the localization, the ceiling-mounted camera is used
to locate the person’s position and the robot’s position. While
in the simulator, the position of the person and the robot are
estimated with a Gaussian distribution using the mouse input;
the position of the person is represented by the particle filter
of the localization model. When the target person is moving
in the room, the position is updated and used to learn the
spatial information. Because a person does not usually collide
with furniture, the position that he or she can reach will be
considered as free space for the robot.

A Nao robot is chosen as the experimental platform in our
work. The Nao robot is a programmable child-size humanoid
robot, whose hardware was developed by Aldebaran Robotics.
It has two arms and two legs with 21 to 25 degrees of free-
dom, and has an inertial measurement unit with gyroscope
and accelerometer. 8 pressure sensors and 2 bumps are fixed
to the leg and foot of the robot to control the walking behavior,
and 2 pairs of ultrasonic sensors are fixed to the chest of the
robot’s body to measure the distance to the obstacles in front
of the robot. The robot is also equipped with 2 loudspeak-
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Figure 4.9: Test environment of the robot navigation

ers for audio playing and text-to-speech synthesis, as well as
4 microphones for voice recognition and sound localization. 2
HD cameras are installed on the robot’s head to percept the
visual information of the environment using computer vision
techniques. Using its onboard Linux system, the robot is able
to process complex tasks such as speech recognition, text-to-
speech, object tracking, grasping, etc. The robot can walk
autonomously and turn flexibly during walking, and is able to
adapt its walking behavior to a different ground surface based
on sensor feedbacks. In our experiments, we defined three ac-
tions: walking forwards, turning left, and turning right.

One of the test cases is shown in Figure 4.11. As we can
see, similar to the experiments in the simulator, the map is first
initialized as two neurons connecting with each other with a
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2x head cameras 

2x sonar sensors 

2x infrared sensors 

IMU 

8x pressure sensors 

2x bump sensors 

Figure 4.10: The humanoid Nao robot

link (see Figure 4.11(a)). When the person moves, the map
adapts itself based on the observation of the person’s posi-
tion, and if the person visits a new position in the room, new
neurons will be added autonomously (Figure 4.11(b)). The
map grows and converges when most of the traversable area
is visited by the person 4.11(c). The brightness of neurons in
the map denotes reward signals spreading out from the target,
i.e., the person’s position. During robot navigation, the robot
determines the next action according to its position and the re-
ward signals of the map. The desired orientation is computed
based on the activities of the DNF, which are visualized as the
red circle around the robot. The short red bar with different
orientation shows the estimated direction of the robot with
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(a) (b)

(c) (d)

Figure 4.11: Cognitive map learning via observing a person’s
movement
The DNF is stimulated and produces the desired robot orientation, which

is visualized by a red circle surrounding the robot. The estimated orien-

tation of the robot is displayed with a short red bar from the center of the

circle. Based on the estimated and desired orientation, the robot controls

then its walking direction and approaches the person.
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the particle filter. The walking direction of the robot is cal-
culated based on the estimated and desired orientation, which
guides the robot to walk autonomously towards the person.
During robot’s navigation, two sonar sensors detect obstacles
that help the robot to avoid any danger area in a reflexive way,
which will be described in the following chapter.

Figure 4.12: Test environment for object finding
Furniture (coffee table, sofas, etc.) is placed in the laboratory to simulate

a real-home scenario. We placed several objects (a mug, an empty bottle

and a book) on the coffee table to let the robot memorize them while

it is moving in the room. After finishing the learning, the robot will be

requested to find the object by showing it an image of the target object.
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Figure 4.13: Result of object finding

4.4.4 Experiments for Object Finding

To evaluate the performance of object finding, experiments are
conducted in a really home-like laboratory. Several objects are
placed on the coffee table for testing feature anchoring, includ-
ing a book, a cup, and a bottle (see Figure 4.12). After the
cognitive map is built via observing a person’s movement, the
robot will firstly explore the room itself actively. The visual
information of the environment around the robot is memorized
while the robot is walking, and the extracted visual features
are associated with the corresponding neurons in the map. Af-
ter that, we show an image of an object to the robot, and the
robot searches its visual memory to find the states that con-
tain the visual features resembling the features of the target
object.
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Twenty experiments are conducted for locating different
objects. Objects are placed in different positions each time and
are observed by the robot during navigation. After learning of
the appearance of the environment during the robot’s walking,
we check if the robot can find the correct position of each
object by showing a picture of it. The object is considered to
be identified correctly if the distance between the target node,
i.e., the neuron with the highest reward in the spatial memory
(see the brightness of neurons in the map), and the object is
smaller than 30 pixels.

A demonstration of these experiences is shown in Figure 4.5.
According to matching features extracted from the shown im-
age and the features vr of neurons (cf. Eq. (4.33)), reward
signals m are set in the spatial memory, and they are spread
across the entire network (cf. Eq. (4.28)-(4.31)). Then, based
on these reward signals, as well as the robot’s actual location,
the robot decides its navigation behavior iteratively until it
reaches the object’s position.

The results of the experiments are summarized in Fig-
ure 4.13. As we can see, the success rate varies with the ob-
jects. For example, the docking station has the lowest success
rate because the docking station has a simple structure and
few features can be extracted. Due to the constraints of the
robot’s hardware, it can provide images with only 10 frames
per second (fps), and features may be missing because of the
image blur, which distracts from feature matching and object
finding. On other hand, the book and the bottle can be local-
ized easily because the cover of the book and the logo of the
bottle contain rich, sharp features, which can be extracted and
detected. In addition, poor lighting conditions could influence
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the experiments and distract from feature learning. When the
image is observed under a shadow, the features of the object
may not be learned (e.g., the tree in Figure 4.13 with dark
color) and may affect future detection as well.

4.5 Discussion

In this chapter, we presented a neurocognitive model for robot
navigation based on spatial knowledge learning. Our neu-
rocognitive architecture models the spatial context, the re-
ward signal, the decision-making, and the action response as a
whole. The spatial knowledge of the environment is modeled
with an internal representation, i.e., the cognitive map, which
allows the robot to select actions dynamically and to adapt its
strategy when the environment changes. Not only the state
transition but also the actions corresponding to them are rep-
resented on the map. In order to accelerate learning and to
avoid possible danger caused by the robot’s active exploration,
the map is built by observing the movement of a person using
our localization method with a ceiling-mounted camera (Yan
et al., 2011). This design has been chosen in the context of a
setup that uses a small socially assistive robot as a communi-
cation interface to the person (KSERA).

Our model meets the challenge of applying a neural sys-
tem in realistic settings and uses a humanoid Nao robot as
an experimental platform. Other than pure simulation models
that simplify the environment or model the system dynamics
exactly without considering noise, our robot needs to navigate
by finding a moving direction among 360◦ in our home setup,
which requires further refinement to match the requirements
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of a real application. For example, in order to obtain a con-
tinuous robot control, our model represents the individual ac-
tion for each state transition to get high control accuracy with
minimal memory requirement and uses a population code to
represent the state in a probabilistic manner. Using this dis-
tributed representation, multiple state transitions are active
at the same time, and the corresponding action signals are
merged via a ring-form neural field. This results in a smooth
and continuous action control, where actions are generated
that did not occur during map learning. Moreover, the cog-
nitive map does not need to predefine its state space because
it adapts itself using latent learning while a person explores
the unknown environment. As no goal is needed here, the
path planning is not learned for a specific target, which per-
mits flexible navigation behavior towards an arbitrary possibly
moving target.

The ceiling camera presents an affordable and minimal in-
trusive solution to localize a person anywhere within a larger
room, even when the small robot cannot directly see the per-
son. The camera supplies high-level visual input about the
robot location in allocentric coordinates, which bypasses the
need for learning a visual system that localizes from the robot’s
camera image, as has been done by Wyss et al. (2006). The
localization input, which comes via particle filters (Yan et al.,
2011), is compatible with distributed neural coding (Deneve,
2005; Huang and Rao, 2009; Wilson and Finkel, 2009). The
map building itself resembles “latent learning”, where there
is no task done during the exploration of the room by a per-
son. When the navigation task is active, the cognitive map,
together with the reward signals from the target position, com-
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poses a model-based reinforcement learning, which guides the
robot in maneuvering to the target. As the robot control is
not programmed but learned, the model can be applied easily
in different rooms without camera calibration.

According to the cognitive maps introduced by Tolman
(1948), animals and humans use internal spatial representa-
tion for path planning rather than purely following environ-
ment sensing during navigation. Our system fits this concept
in the sense that the robot uses the internal state representa-
tion for path planning and navigation instead of reading the
sensor input directly. The system consists of multiple layers
of neural networks, which combine map building and local-
ization with planning and navigation. The spatial memory is
represented by a GWR network with self-organizing learning,
which is related to the dynamic (e.g., cell growth (Eriksson
et al., 1998)) place cells in the hippocampus (Gorchetchnikov
and Grossberg, 2007). The ceiling-mounted camera simulates
a high-level visual perception model not only for robot local-
ization and map building but also for person detection from
an arbitrary position in the room, which replaces an internal
perception model.

The navigation is planned in real time on the basic of
the reward signal spread through the spatial memory network
from the target position. Since there is activity away from the
robot’s actual location, this could correspond to the activation
patterns observed in hippocampal cells, which do not strictly
encode the current position of a rat but represent places the
rat is considering visiting in the near future (Van Der Meer
and Redish, 2010). Different actions weighted with their cor-
responding activities are fused to generate actions that are
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more precise and robust with respect to the discretization of
the grid of the spatial map. As a result, our model is able to
perform flexible navigation to reach an arbitrary target with-
out pre-training with a fixed goal position.

A method for environment grounding by anchoring visual
appearance features to achieve complex cognitive tasks is also
presented in this chapter. The appearance is represented by
the visual features and associated with the corresponding states
in the spatial memory. When an object is required, the robot
is able to locate the position of the target object by comparing
its visual appearance memory with the features of the target.
This allows the robot to complete complex tasks by showing it
an image of the object, such as fetching this object, and helps
to extend the functionality of socially assistive robots. The
method is evaluated using real scenarios, and complex tasks
such as environment learning, object finding, approaching, and
retrieving are demonstrated successfully.

Because the appearance memory is discreet (i.e., extracted
when the robot visits a node in the spatial memory), the res-
olution of the tested object depends on the distance between
the robot and the object at that time. The appearance feature
is represented with SURF features that are rotate, shift, and
scale-invariant. This is necessary because the example image
shown by the user may not fit exactly with the stored appear-
ance memory (e.g., due to the different distance and pose).
Moreover, the closer the robot to the object, the higher the
resolution of the object in the camera, which provides more
features for feature matching. This permits the robot to lo-
cate the object correctly on the spatial memory. When the
robot revisits the same place, new visual features of the po-
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sition are learned in the corresponding node, which helps the
robot learn the environment from different views. Because the
target object may be observed from different positions, the
target location can be represented by multiple states in the
spatial memory. With this distributed target representation,
the robot is able to plan an efficient trajectory according to
its current position.

The appearance features can be used not only to locate the
object but also to determine the location of the robot itself. In
future work, we will explore the robot localization based on the
visual features captured from the robot’s camera. Moreover,
the localization using the robot’s camera is useful to extend
the working space of the robot when an ambient sensor is not
available. Comparing the object-finding scenario where the
object and the environment are represented by scale-invariant
features to the robot localization using appearance landmarks,
the features need to be scale variant in order to be sensitive to
distance changes. The major challenge here is that when the
position is observed from different view angles, the visual ap-
pearance may be totally different. How to find the association
of different appearances and identify the same object will be
an interesting research topic for future development.
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Chapter 5

Adaptive Learning of
Dynamic Environment

The change of environment is common in the real-life space,
since furniture may be replaced, objects may be moved, and
persons may go to different places. In this case, a robot needs
to consider all these factors and avoid possible collisions during
navigation, which increases the difficulty of robot navigation
compared to a laboratory environment. A robot should de-
tect these changes and react to them quickly in order to avoid
danger situations to survive in the real scenario. Because the
existing map does not fit the current situation anymore and
also to keep the obstacle avoidance intelligent and efficient, an
adaptation learning of the environment and a quick replanning
based on the new map is required. Moreover, quick replanning
is important for coordination of the mobile behavior of mul-
tiple robots that can be used for teamwork e.g., robot soccer,
swarm, etc.

175



Chapter 5. Adaptive Learning of Dynamic Environment

In this chapter, we present an interaction mechanism that
provides a reflex behavior to protect the robot passively during
navigation and adapt the navigation strategy online based on
the reflex feedback. A simple obstacle avoidance method is
developed based on two sonar sensors for detecting objects
close to the robot to maneuver the robot in a danger area.
Based on the detection results of the obstacles, an adaptation
of the spatial knowledge will be conducted by adjusting the
connection weights in the spatial memory, which helps the
robot to improve its navigation behavior. Considering that
connection weights ci1i2 in the spatial memory play a central
role in path planning (cf. Eq. (4.29)), which indicates how
“easily” the robot can follow that link), two parts of connection
weights with distinct functions are defined as follows:

cr
∗
i1i2 = cgi1i2 +

∑
r

ctri1i2 , r = 1, 2, . . . ; r 6= r∗ (5.1)

where cgi1i2 denotes global weights and ctri1i2 denotes the tem-
porary connection weights of the robot r with respect to the
states of other robots. The higher the connection weight is,
the easier can the robot access this connection. When the
robot detects obstacles during navigation, the corresponding
connection will decay until the weights decrease to zero and
the connection will be mentally cut off. The global connec-
tion weights represent the status of the traversable environ-
ment based on the robot environment interaction. Based on
the feedback of the sonar sensors, the robot detects obstacles
and adapts the global weights correspondingly. The tempo-
rary connection weights are computed based on the localiza-
tion of multiple robots. We consider that for each robot, the
other robots are recognized as moving obstacles. Therefore,
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for multiple robot navigation, the awareness of other robots
with respect to one robot is useful to coordinate pro-actively
their moving behavior. In the following sections, we describe
the mechanism of obstacle avoidance as well as learning both
kinds of connection weights in detail.

5.1 Method

5.1.1 Reflex-like Obstacle Avoidance

Beside the path planning that guides the robot strategically
towards the target, an efficient, real-time obstacle avoidance
method is useful to adapt the robot’s behavior for avoiding
danger situations, which are not estimated during planning or
appear suddenly due to environment changes. Therefore, we
developed a simple reflex-like method for obstacle avoidance
based on the sonar sensor signals of the Nao robot. For each
step, we compute a signal G(s1, s2) according to the sonar
sensor signals s1 and s2 with a nonlinear function:

G(s1, s2) =
a

1 + e−b(s1+s2−c)
(5.2)

where constant parameters a scales the output signal, b ad-
justs the sensitivity of the output according to the input sig-
nals, and c controls the threshold of the signal response. The
further the robot is to an object, the larger is value s1 (or s2).
Two kinds of obstacle avoidance strategies will be triggered
based on G(s1, s2). When G(s1, s2) is below a threshold, i.e.,
G(s1, s2) < γ, the robot will turn away from the obstacle based
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on the sonar signals:

∆O =

{
−co if s1 > s2

co else
(5.3)

where co is a defined turning speed of the robot (in our ex-
periments co = 0.3. When G(s1, s2) < 0.8γ, the robot will
walk slowly backward while turning. The reflex-like obstacle
avoidance helps the robot to keep a safe distance to obstacles,
where the feedback from sensors G(s1, s2) is transferred back
to the spatial memory to adapt the connection weights, which
resembles an “error-based” learning of the environment. When
an obstacle is unexpectedly detected, the corresponding con-
nection will be weakened, which prevents the robot to choose
this connection again in the future. Details of learning these
connection weights will be described in the next section.

In order to incorporate reflex-like obstacle avoidance be-
havior in the simulator, we model two sonar sensors on the
front side of the robot that resemble the sonar sensors of the
Nao robot. Figure 5.1 shows the detection range of the simu-
lated sonar sensor, where the green area shows the detection
range that objects are close to the robot and the red area
shows the detection range that objects are very close to the
robot. Mathematically, a threshold γ is defined for the range
detection, where the green area is active when G(s1, s2) < γ,
and the red area is active when G(s1, s2) < 0.8γ. In the simu-
lator, the sonar area can be visualized by choosing the “Sonar
Sensor” option.
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Figure 5.1: Simulated sonar sensor

5.1.2 Learning Global Connection Weights

The global connection weights represent the traversability of
the static environment. When objects are moved, or a new
obstacle is put into the environment, the previous traversable
area will be blocked. In order to adapt the robot’s path plan-
ning when the environment changes, an “error-based” learn-
ing method of the global connection weights cgi1i2 is processed
based on the feedback of the obstacle avoidance. A new ob-
stacle is detected when the sensor feedback is smaller than
a threshold, i.e., G(s1, s2) < γ. Then, the connection i1i2

∗

with the highest value of sri1q
d
i2

, which plays a central role in
decision-making for navigation, will be updated as follows:

i1i2
∗ = arg max

i1,i2
sri1q

d
i2 (5.4)

∆cgi1i2 ∗ = τ1(G(s1, s2)− cgi1i2 ∗) (5.5)
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where τ1 is a learning rate. Here, we use the “winner-takes-
all” strategy that each time only one winner connection will
be weakened. When the robot approaches an obstacle, the
connection weight c i1i2 ∗ will be decreased. The adaptation of
the connection weight affects the reward spreading as reward
signals will be strongly weakened through this connection (cf.
Eq. (4.29) and Eq. (4.32)). By repeating this process, the con-
tribution of this connection to the navigation becomes smaller
until a new winner connection appears which guides the robot
with other motion signals.

Since obstacles may also be removed from the environment,
we consider the following method for recovering the connection
weights in this case. When G(s1, s2) > γ, all the connection
weights around the current robot position are adapted with
Eq. (5.6):

∆cgi1i2 = τ2(G(s1, s2)− cgi1i2) ∀sri1 > e (5.6)

where e is a threshold of the distance and τ2 is a learning rate
smaller than τ1.

5.1.3 Learning Temporary Connection Weights

Other than the global connection weights that learn through
interaction with the environment, in other words learn through
experience from the past, the temporary connection weights
here present positions of moving robots with their active sense
and help the robots to prevent collision with each other in ad-
vance. Because the others can be regarded as moving obstacles
from the view of a robot (e.g., robot r), inhibitory connection
weights around them will be built in the map with respect to
robot r. These negative connections close to the other robots
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will affect the planning of robot r so that it will avoid moving
to the corresponding areas. The building of these inhibitory
weights is inspired by the reward spreading while the itera-
tion steps are constrained to keep the planning efficiency. The
computation can be described as follows:

1. Initialize all weights of ctri1i2 of the robot r as zero.

2. Determine the states of other robots i∗ with the highest
activity (cf. Eq. (4.26)) in the spatial layer. For each of
them, we add a seed with an initial weight ct = −1 where
r denotes the index of the distracting robot. The index
of the current state will be appended to a list nl(0):

nl(0)← i∗ (5.7)

3. Spread the weights with a limited iteration loop p. For
each loop, run:

(a) Update the connection weights ctri1i2 for connections
that link to neurons in nl:

∆ctri1i2 = ct, for ctri1i2 > ct ∧ (i1||i2 ∈ nl(t)) (5.8)

(b) Update the list of nl:

n′ ← i if i connects with neuron j ∈ nl(t)
and rpi (t+ 1) < rpj (t), i /∈ nl(t)

nl(t+ 1) = n′ (5.9)

(c) Decrease ct = λtct with a constant factor λt.
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The temporary connection weights together with the global
connection weights will be used for path planning and further
motion control. Because the decision-making of navigation is
based on dynamic planning, the robot only concerns the next
action for each step. When the connection weights change, the
next action will be adapted without sophisticated reconfigu-
ration of the entire route, which helps the robot to adapt its
navigation behavior efficiently.

5.2 Experimental Evaluation

In this section, we describe experiments of robot-environment
interaction. Similar to the previous chapter about robot navi-
gation, the experiments here are first conducted in the imple-
mented simulator, then in a home-like lab environment. We
first demonstrate how a robot reacts when a connection is
blocked and how it adapts its behavior after the interaction.
Then, we also show how robots navigate towards a target while
preventing collisions with other robots actively. Experiences
in a real-life scenario are being presented and evaluated at the
end of this chapter.

5.2.1 Adaptive Learning through Interaction

The algorithm of robot reaction behavior and adaptive learn-
ing of the environment is firstly experimented in our simulator
(see Figure 4.6). A demonstration of map adaptation based on
reactive behavior is illustrated in Figure 5.2. At the beginning
of the experience, a robot (the blue triangle) is placed in the
position shown in Figure 5.2(a) and the target position is de-
fined by the position of the red dot on the map. After the map
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Map adaptation via interaction with the environ-
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building, the traversable space of the maze is represented by
the spatial memory that is visualized as the GWR network.
As we can see, there is a connection through the wall that
makes the robot “believe” that there is a corridor through the
obstacle. Obviously, this ghost connection provides a shortcut
towards the target, and the robot attempts to move towards it
according to the results of reward spreading. However, when
the robot arrives at this area (as shown in Figure 5.2(b)), the
wall will be detected by the sonar sensors which alarms the
robot that this area is not blocked. The reactive behavior will
then be triggered, and a maneuver action is done to avoid
colliding with the wall.

Meanwhile, based on the feedback of the sensor, the con-
nection weights of the corresponding link through the wall is
decayed (see Figure 5.2(b) that the color of the ghost con-
nection becomes darker). The decrease of connection weights
affects the reward spreading that the reward signal will be
dramatically weakened by transferring through this connec-
tion hence the path planning will be reconfigured. After this
change, the robot makes a detour and finds an alternative
route to reach the goal position (see Figure 5.2(c) and Fig-
ure 5.2(d)). After this first experiment, we place the robot
back to the starting position and test the same task again.
Since the robot adapts the environment knowledge using the
obtained experience from the previous trail, the ghost connec-
tion is strongly weakened to a very low value (see Figure 5.2(b)
that the connections close to the wall turn into black). This
connection is then “ignored”, which can be seen when, after
the start of the navigation (Figure 5.2(e)), the robot chooses a
distinct path immediately. The trajectories of both trails are
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visualized in Figure 5.2(f) where the initial trail is marked red
and the second trail blue. As we can see, the robot reaches the
target position much faster the second time than the first time.
Consequentially, the adaptation does help the robot to avoid
danger areas pro-actively and optimizes the path towards the
goal.

5.2.2 Coordination of Multiple Robot Navigation

Figure 5.3 shows a test case of dynamic planning of multiple
robots’ navigation. In order to show the different navigation
behavior, we first conduct the task with a single robot. As
visualized in Figure 5.3(a), a robot (a) is placed in the start-
ing position and navigates to the target that is marked with
the red dot on the map. Based on the spatial memory, the
robot walks directly southwards and reaches the target eas-
ily. The navigation trajectory for this is shown as the blue
line in Figure 5.3(b). Then, we repeat the experiment and
add another robot (b), which is placed on the path between
the robot (a) and the goal position (see Figure 5.3(c)). If the
robot (a) chooses the same route as before, it may collide with
the robot (b) and trigger the reactive behavior to prevent the
collision. However, in this case, our method helps both of the
robots to detect this danger in advance and coordinate their
path planning to avoid this situation pro-actively.

As robots can determine their positions on the map, each
of them is aware of the location of the others and can treat
them as moving obstacles. Using the method described in
section 5.1.3, inhibitory connection weights will be added to
the current map (see Figure 5.3(c) from the opinion of the red
robot (b) and Figure 5.3(d) from the view of the yellow robot
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Navigation planning of multiple robots
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(a). When the connections are occupied by the other robot, the
decayed connection weights will prohibit the reward spreading
through them which helps the robot to replan its navigation
before the potential collision occurs. For this reason, the robot
(a) chooses an alternative route towards the target. As we can
see, the possible collision is solved successfully based on the
learning of the temporary connection weights. The trajectories
of both robots are illustrated in Figure 5.3(f) where the blue
line is the trajectory of the robot (a) and the red one of the
robot (b).

A further advantage of this method is its excellent real-
time planning ability. The dynamic change of the environ-
ment is represented by the adaptation of connection weights,
which can be processed easily based on the obtained location of
the robot in the spatial memory using the localization model.
After this computation, the path planning for each robot is
done individually without further consideration of the other
robots. The computational complexity of the path planning
for multiple robots could be downscaled to the same level for
a single robot planning. Using this dynamic planning during
navigation, robots only need to decide the action for the next
step without global trajectory replanning, which helps them
to update their path according to new positions of the oth-
ers quickly. Consequently, the described method provides an
efficient way of multiple robots dynamic planning.

5.2.3 Experiments in a Real Environment

We use a small humanoid Nao robot for evaluating the adap-
tive learning of the environment during robot navigation. As
shown in Figure 5.4, the robot is equipped with various sen-
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Figure 5.4: The NAO robot’s sensors and their ranges

The robot uses a head camera (red circle) and two sonar sensors (orange

circles on the chest). The detection ranges of the sonar sensors are illus-

trated in red and green. Within the dark red line, the robot only knows

that an object is present. Here, the robot cannot see the open space in

front of it.

sors, among them we use one camera in the head to observe the
environment and the two pairs of sonar sensors for detecting
obstacles during walking. Both sensors can detect the distance
to obstacles robustly between 30 and 80cm. A higher sensor
value indicates a larger distance. Because the robot cannot
measure the distance when the obstacle is closer than 30cm
(see the red area in Figure 5.4), the robot will not be able to
maneuver through a narrow corridor for safety reasons.
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Figure 5.5: Trajectories of robot navigation before and after
the map adaptation

The green circle denotes the target position. The area marked in red with

a red ban sign shows the narrow path of 25 cm width, where the robot

cannot walk through. The red and blue trajectories show how the robot

navigates before and after the map adaptation.

Figure 5.5 illustrates a test scenario of adaptive map learn-
ing through interaction with the environment. The robot
should navigate to the target position based on the map learned
from observing the movement of the person. Among the con-
nections in the map, the route marked red seems better for
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Figure 5.6: A subset of experiments for map adaptation

navigation, and the robot attempts to choose this way. How-
ever, some routes learned from observing the person may be
difficult for the robot to walk through. For example, although
the narrow path with a width of only 25cm (shown in Fig-
ure 5.4 and Figure 5.5 between the sofa and the coffee table) is
no problem for a person to walk through, it is hard for the Nao
robot because of the detection range of the sonar sensor. When
the robot arrives at this area, obstacles will be detected, which
triggers the reactive behavior of the robot and the correspond-
ing connection weights in the spatial memory is decreased. At
a certain point, when the connection weight is small enough,
the robot’s behavior is changed and the newly generated plan
guides the robot with an alternative route. As the trajectory
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Figure 5.7: Results of the map adaptation

in Figure 5.5 shows (see the red curve), the robot walks around
the table, and finally reaches the target person. After the first
experiment, we repeat the task with the adapted spatial mem-
ory. As the new trajectory (in blue) in Figure 5.5 shows, the
robot chooses directly the alternative path after starting to
avoid obstacles pro-actively and approaches the person with
a smoother curve. The difference in behavior shows that the
map adaptation helps the robot to find a suitable trajectory
to approach the target position successfully.

We evaluate the performance of the navigation from dif-
ferent positions, and a subset of the experiments is displayed
in Figure 5.6. A map is built first using the person’s local-
ization for each test, and then we let the robot navigate from
its position (shown as circles) to the person’s position (shown
as squares). During the robot navigation, obstacles are being
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detected by sonar sensors that help the robot to keep a cer-
tain distance to the barriers. As the robot and the person may
have a different motion behavior, the planned navigation paths
are often blocked by corners of furniture that are easy for a
person to avoid (see Test 1, 2 and 3). Moreover, new obsta-
cles could be placed in the room that was not present during
mapping (cf. Test 4 that a black box is placed between the
start and the target position). During the robot’s exploration,
the robot should detect the new object and adapt the map by
deactivating the connections close to them automatically.

The results of the navigation time analysis are shown in
Figure 5.7. Comparing the navigation time before and af-
ter adaptation, the time consumed for avoiding obstacles de-
creases dramatically. During the first trail of navigation, the
robot detects the obstacles and adapts the map by deactivat-
ing the connections close to them. After the adaptation, when
starting the same navigation task, the robot could choose a
safer route for approaching the target and less reactive behav-
ior would be activated. In some cases (e.g., Test 3) the time
for normal navigation behavior increases, because the robot
may choose a longer path to avoid obstacles. However, regard-
ing safety as well as general performance, the map adaptation
helps to improve the navigation behavior significantly.

5.3 Discussion

In this chapter, we describe the developed method for adaptive
learning of the navigation behavior by adjusting the connec-
tion weights of the cognitive map. Because the mobility of a
person is different from a robot’s mobility, the map learned
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by observing the person’s movement may not be suitable for
robots. Therefore, we approach a reflex-like behavior to avoid
obstacles in real time and adapt the environment based on
the feedback from the robot sensors. This adaptation helps
the robot to memorize the environment change and avoid the
same obstacle pro-actively when the robot revisits the posi-
tion. From the biological point of view, the learning through
interaction resembles the principle of error-based learning of
sensorimotor map (Wolpert et al., 2011). Because the connec-
tion weights can decay but also grow again, the regenerated
path planning based on the updated connection weights al-
lows the robot to learn the environment perceptually which is
required in the dynamic environment.

A temporary connection weight is imported to coordinate
the navigation behavior of multiple robots. A robot is aware
of the position of other robots and manages to adjust its mo-
tion pro-actively during navigation. As here only the location
of robots is needed, and the reconfiguration is integrated nat-
urally in the path planning phase, the replanning is efficient
and is capable of coordinating motions of robots in real time.
We validate this model in a real environment and show that
the combined reflex-based and path-based obstacle avoidance
provides an efficient and robust way of navigation in a dynamic
environment.

193



Chapter 5. Adaptive Learning of Dynamic Environment

194



Chapter 6

Conclusion

In this thesis, we present a neurocognitive architecture for in-
door localization and robot navigation using computational
neuron models. We considered the requirements and chal-
lenges of developing socially assistive robots to serve users in
their daily lives. Unlike the laboratory experiments that are
conducted in a well-constructed environment, the real robotic
application in daily life has to confront an unknown, cluttered,
and dynamic environment. Due to the complexity of this situ-
ation, which is hard to predict perfectly, an intelligent learning
ability is essential to allow the system to adapt its behavior
to the new environment automatically. For this reason, our
research focused on developing adaptive learning mechanisms
for localization and navigation. We consider that humans can
accomplish various cognitive tasks easily, for example, object
recognition, environment perception, etc. The mechanism of
information processing in the brain could be a potentially rele-
vant inspiration to improve the performance and functionality

195



Chapter 6. Conclusion

of the robot. Therefore, our research took inspiration from
the neural models and developed neural models for person lo-
calization using multiple-cue integration and robot navigation
based on sensorimotor map learning.

The localization model is based on a hybrid neural and
probabilistic framework using multiple visual cues. While purely
robotic models of navigation use sophisticated sensors such as
laser scanners, our approach uses a simple ambient sensor, i.e.,
a ceiling-mounted camera, to localize the robot and the tar-
get person. The ceiling camera presents a simple, low-cost,
and efficient solution to localize a person anywhere in a larger
room. It enables the robot to locate the position of the target
person as well as to know when (s)he is out of the detection
range of the robot’s sensors (for example when the robot can-
not see the person from its camera). We employed a Sigma-Pi
network to integrate the output of different cues together with
their corresponding reliability factors, which adjusts the im-
portance of different cues and improves the tracking robust-
ness. The model is to some extent indicative of a human’s
ability to recognize objects based on different features. When
some of the features are strongly disturbed, detection recovers
by the integration of other features. The particle filter par-
allels an active attention selection mechanism that allocates
most processing resources to the potential positions where the
target may be. Therefore, the system has a high performance
in detecting complex objects that move relatively slowly in real
time. Advantages of this system are that the feature patterns
used for one cue, such as the color histogram, can adapt online
to provide a more robust identification of a person. With this
short-term memory mechanism, the system masters the chal-
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lenge of an unstructured environment and is able to detect
moving objects in a home-like environment. The system is
highly flexible for integrating different streams of information.
Depending on the requirement, the system can be adapted eas-
ily by adding specific information channels. In principle, the
more cues there are, the better tracking performance we could
get. Overall, our model has potential as a robust method for
object detection and tracking in complex conditions.

The presented neural framework for robot navigation is
inspired by the sensorimotor map learning of animals and hu-
man beings. By combining path planning with the real-time
handling of obstacles, the system realizes a human-like navi-
gation behavior that builds up an abstract navigation strat-
egy with spatial memory while avoiding obstacles in real time
based on close spatial perception. The system consists of mul-
tiple layers of neural networks that combine map building and
localization with planning and navigation. A distributed neu-
ral coding is used (i.e., multiple hypotheses) to represent the
positions of the robot and the target. This helps the naviga-
tion system to handle sensor and actuator noise in the real
environment. Besides bringing the model closer to the spik-
ing and redundant population coding of real neurons, this is
useful for representing the locations from which the robot can
see an object, which may be observed from different positions.
Based on these distributed representations in the spatial mem-
ory, multiple action memories associated with state transitions
combine in the competitive action layer, which yields a robust
and smooth control signal for navigation.

A reflex-like behavior is developed in our model to handle
the dynamics of a real environment. When an obstacle is de-
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tected by the robot’s sensors, the reflex-like behavior guides
the robot to avoid it and reduces the corresponding action
memory weights at the same time. The robot can remember
the obstacles in its spatial memory of the sensorimotor map
using this method and avoid them pro-actively in the future.
Weight reduction and recovery, together with dynamic space
representations, enable life-long model adaptation. The path
planning of multiple robots can be achieved efficiently in the
system based on the individual robot location in the spatial
memory, which supports the system to avoid collisions with
other moving robots pro-actively. This method can be also
extended to avoid moving persons when the location of them
is determined. A further unique feature of our approach is
that by anchoring the appearance features of the environment
with the states in the spatial memory, visual associations are
linked to specific locations on the map, which enables a robot
to find a target object by comparing its visual memory with
the features of the target object.

The map learning and adaptation is inspired by the princi-
ples of sensorimotor learning (Wolpert et al., 2011): (1) obser-
vational learning that develops the map and the corresponding
motor skills by watching a moving person, and (2) error-based
learning during navigation that adapts the map, and hence its
navigation strategy, based on interaction with obstacles. On
the other hand, the robot uses the internal state representation
for path planning and navigation instead of reading the sen-
sor input directly, which resembles the property of cognitive
maps introduced by Tolman (1948) in which a rat uses some
form of internal spatial representation for navigation rather
than following cue stimuli directly. As a result, robots can
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realize complex cognitive behavior using biologically inspired
methods. Through embedding of the sensorimotor map into a
system architecture that integrates planning and reflex-based
behavior, the robot achieves highly flexible navigation behav-
ior and perpetual learning of the spatial knowledge of the en-
vironment.

We have tested the localization as well as the navigation
model in a home-like laboratory environment. Experimental
results show that our method is capable of tracking the target
person and the robot in an uncontrolled environment through
combining different visual cues, and the robot is able to nav-
igate to the target person, avoid obstacles, and adapt its tra-
jectory autonomously in a cluttered environment. It is shown
that cognitive tasks such as object finding and bringing back
to the target person by a robot can be realized. Nevertheless,
further developments are still required to extend functionali-
ties of the system to help a robot to assist persons in the real
life. Currently, the localization model is constrained to track-
ing a single person in the room because the system is initially
designed to serve the target person when he or she is alone
at home. However, multiple persons may need to be detected
in a real-life scenario, for example for robot navigation and
avoiding moving persons. Therefore, further development of
this model for multiple person tracking is important. Through
the experiments, our system has been shown to track a spe-
cific person while other persons are in the room, which means
that our hybrid system can distinguish different persons and
has the potential to achieve multiple person tracking as well.
Necessary improvement will be considered for future work. For
example, the particle filter framework will be adapted for mul-
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tiple person tracking, for example using the RJMCMC algo-
rithm (Green, 1995).

Our navigation architecture learns a sensorimotor map by
observing the movement of a person in a room in order to ac-
celerate the mapping phase. However, it might not be suitable
for a person to explore some places for safety reasons (e.g., a
room with a high temperature). Accelerating the room map-
ping without support from a person is essential in this case.
In future work, we plan to focus therefore on learning a sen-
sorimotor map via observing the active exploration movement
of a robot. The ceiling-mounted camera is an efficient exter-
nal sensor that needs to be installed, but it also constrains
the flexibility of the system. We will use biologically plausible
methods (e.g., stereo vision) to solve this problem by model-
ing how information is processed in the brain. Moreover, as
we have shown in the previous chapter, our system has the
potential to control the trajectory planning of multiple robots
based on the sensorimotor map. Therefore, it would be inter-
esting to extend the system from a single robot navigation to
the coordination of multiple robots.

In conclusion, our neural-based system provides a compre-
hensive method for indoor robot localization and navigation.
The key achievement of this work is that intelligent functions
such as indoor robot navigation, visual appearance anchor-
ing, and adaptive learning of environmental changes are devel-
oped successfully based on the study of the brain’s structure.
Compared to traditional robotic approaches that rely on accu-
rate measurements for trajectory planning, a neurally inspired
method provides self-learning abilities with a redundant infor-
mation representation. This results in robust, efficient navi-

200



gation ability and is capable of achieving cognitive functions
such as environment understanding. Experimental findings in
a home-like environment show that neural networks are power-
ful methods for helping an assistive robot accomplish complex
cognitive tasks such as finding an object and approaching it
automatically.
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In Mira, J. and Álvarez, J., editors, Mechanisms, Sym-
bols, and Models Underlying Cognition, volume 3561 of Lec-
ture Notes in Computer Science, pages 147–152. Springer
Berlin / Heidelberg, 2005. ISBN 978-3-540-26298-5. doi:
10.1007/11499220 36.

Cuperlier, N., Quoy, M., and Gaussier, P. Neurobiologically
inspired mobile robot navigation and planning. Frontiers in
Neurorobotics, 1(0), 2007. ISSN 1662-5218. doi: 10.3389/
neuro.12.003.2007.

Demiroz, B., Ari, I., Eroglu, O., Salah, A., and Akarun,
L. Feature-based tracking on a multi-omnidirectional cam-
era dataset. In Proceedings of the 5th International Sym-
posium on Communications Control and Signal Processing
(ISCCSP), pages 1–5, May 2012. doi: 10.1109/ISCCSP.
2012.6217867.

Deneve, S. Bayesian inference in spiking neurons. Advances
in neural information processing systems, 17:353–360, 2005.

Diosi, A., Taylor, G., and Kleeman, L. Interactive SLAM us-
ing Laser and Advanced Sonar. In Proceedings of the 2005
IEEE International Conference on Robotics and Automa-
tion, pages 1103–1108. IEEE, 2005. doi: 10.1109/ROBOT.
2005.1570263.

211



Bibliography

Dong, G. and Xie, M. Color clustering and learning for image
segmentation based on neural networks. IEEE Transactions
on Neural Networks, 16(4):925–936, July 2005. ISSN 1045-
9227. doi: 10.1109/TNN.2005.849822.

Donnart, J.-Y. and Meyer, J.-A. Learning reactive and plan-
ning rules in a motivationally autonomous animat. IEEE
Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, 26(3):381–395, 1996. ISSN 1083-4419. doi:
10.1109/3477.499790.

Doucet, A., De Freitas, N., Murphy, K., and Russell, S. Rao-
Blackwellised particle filtering for dynamic Bayesian net-
works. In Proceedings of the 16th conference on Uncer-
tainty in artificial intelligence, pages 176–183. Morgan Kauf-
mann Publishers Inc., 2000. URL http://dl.acm.org/

citation.cfm?id=2073946.2073968.

Drumheller, M. Mobile robot localization using sonar. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
PAMI-9(2):325–332, 1987. ISSN 0162-8828. doi: 10.1109/
TPAMI.1987.4767907.

Duckett, T. and Nehmzow, U. Exploration of unknown envi-
ronments using a compass, topological map and neural net-
work. In Proceedings of the 1999 IEEE International Sym-
posium on Computational Intelligence in Robotics and Au-
tomation, pages 312–317. IEEE, 1999. doi: 10.1109/CIRA.
1999.810067.

Durrant-Whyte, H. and Bailey, T. Simultaneous localization
and mapping: part I. IEEE Robotics Automation Magazine,

212

http://dl.acm.org/citation.cfm?id=2073946.2073968
http://dl.acm.org/citation.cfm?id=2073946.2073968


Bibliography

13(2):99–110, 2006. ISSN 1070-9932. doi: 10.1109/MRA.
2006.1638022.

Elgammal, A., Harwood, D., and Davis, L. Non-parametric
model for background subtraction. In Vernon, D., edi-
tor, Computer Vision ECCV 2000, volume 1843 of Lec-
ture Notes in Computer Science, pages 751–767. Springer
Berlin Heidelberg, 2000. ISBN 978-3-540-67686-7. doi:
10.1007/3-540-45053-X 48.

Eriksson, P. S., Perfilieva, E., Björk-Eriksson, T., Alborn, A.-
M., Nordborg, C., Peterson, D. A., and Gage, F. H. Neuro-
genesis in the adult human hippocampus. Nature medicine,
4(11):1313–1317, 1998. doi: 10.1038/3305.

Erlhagen, W. and Bicho, E. The dynamic neural field approach
to cognitive robotics. Journal of Neural Engineering, 3(3):
R36, 2006. URL http://stacks.iop.org/1741-2552/3/

i=3/a=R02.

Estrada, C., Neira, J., and Tardos, J. Hierarchical SLAM:
Real-Time Accurate Mapping of Large Environments. IEEE
Transactions on Robotics, 21(4):588–596, 2005. ISSN 1552-
3098. doi: 10.1109/TRO.2005.844673.

Fleuret, F., Berclaz, J., Lengagne, R., and Fua, P. Mul-
ticamera people tracking with a probabilistic occupancy
map. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 30(2):267–282, 2008. ISSN 0162-8828. doi:
10.1109/TPAMI.2007.1174.

Fox, D., Thrun, S., Burgard, W., and Dellaert, F. Particle fil-
ters for mobile robot localization. In Doucet, A., de Freitas,

213

http://stacks.iop.org/1741-2552/3/i=3/a=R02
http://stacks.iop.org/1741-2552/3/i=3/a=R02


Bibliography

N., and Gordon, N., editors, Sequential Monte Carlo Meth-
ods in Practice, pages 499–516. Springer New York, 2001.
ISBN 978-1-4419-2887-0. doi: 10.1007/978-1-4757-3437-9
19.

Frintrop, S., Königs, A., Hoeller, F., and Schulz, D.
A component-based approach to visual person tracking
from a mobile platform. International Journal of Social
Robotics, 2:53–62, 2010. ISSN 1875-4791. doi: 10.1007/
s12369-009-0035-1.

Fritzke, B. A growing neural gas network learns topologies.
In Advances in Neural Information Processing Systems, vol-
ume 7, pages 625–632. MIT Press, 1995.

Gaspar, J., Winters, N., and Santos-Victor, J. Vision-based
navigation and environmental representations with an om-
nidirectional camera. IEEE Transactions on Robotics and
Automation, 16(6):890–898, 2000. ISSN 1042-296X. doi:
10.1109/70.897802.

Gavrilov, A. and Lee, S. Usage of hybrid neural network
model MLP-ART for navigation of mobile robot. In Huang,
D.-S., Heutte, L., and Loog, M., editors, Advanced In-
telligent Computing Theories and Applications. With As-
pects of Artificial Intelligence, volume 4682 of Lecture Notes
in Computer Science, pages 182–191. Springer Berlin Hei-
delberg, 2007. ISBN 978-3-540-74201-2. doi: 10.1007/
978-3-540-74205-0 21.

Giese, M. A. Dynamic Neural Field Theory for Motion Per-
ception, volume 469 of The Springer International Series

214



Bibliography

in Engineering and Computer Science. Springer US, 1999.
ISBN 0792383001. doi: 10.1007/978-1-4615-5581-0.

Gorchetchnikov, A. and Grossberg, S. Space, time and learn-
ing in the hippocampus: How fine spatial and temporal
scales are expanded into population codes for behavioral
control. Neural Networks, 20(2):182–193, 2007. ISSN 0893-
6080. doi: 10.1016/j.neunet.2006.11.007.

Gordon, N., Salmond, D., and Smith, A. F. M. Novel approach
to nonlinear/non-gaussian bayesian state estimation. IEE
Proceedings F (Radar and Signal Processing), 140(2):107–
113, April 1993. ISSN 0956-375X. doi: 10.1049/ip-f-2.1993.
0015.

Green, P. Reversible jump Markov chain Monte Carlo compu-
tation and Bayesian model determination. Biometrika, 82
(4):711, 1995. ISSN 0006-3444. doi: 10.1093/biomet/82.4.
711.

Guivant, J. E., Masson, F. R., and Nebot, E. M. Simulta-
neous localization and map building using natural features
and absolute information. Robotics and Autonomous Sys-
tems, 40(2–3):79–90, 2002. ISSN 0921-8890. doi: 10.1016/
S0921-8890(02)00233-6.

Guomundsson, S., Larsen, R., Aanaes, H., Pardas, M., and
Casas, J. TOF imaging in Smart room environments to-
wards improved people tracking. In IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recogni-
tion Workshops, pages 1–6, 2008. doi: 10.1109/CVPRW.
2008.4563154.

215



Bibliography

Hafting, T., Fyhn, M., Molden, S., Moser, M., and Moser, E.
Microstructure of a spatial map in the entorhinal cortex. Na-
ture, 436(7052):801–806, 2005. doi: 10.1038/nature03721.

Hahnel, D., Burgard, W., Fox, D., and Thrun, S. An effi-
cient fastSLAM algorithm for generating maps of large-scale
cyclic environments from raw laser range measurements. In
Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, volume 1, pages 206–211
vol.1, 2003. doi: 10.1109/IROS.2003.1250629.

Harris, C. and Stephens, M. A combined corner and edge
detector. In Alvey vision conference, volume 15, page 50,
Manchester, UK, 1988.

Hartland, C. and Bredeche, N. Using echo state networks for
robot navigation behavior acquisition. In Proceedings of the
IEEE International Conference on Robotics and Biomimet-
ics, pages 201–206, Sanya, December 2007. IEEE. doi:
10.1109/ROBIO.2007.4522160.

Hecht, F., Azad, P., and Dillmann, R. Markerless human mo-
tion tracking with a flexible model and appearance learning.
In Proceedings of the 2009 IEEE International Conference
on Robotics and Automation, pages 3173–3179. IEEE, May
2009. doi: 10.1109/ROBOT.2009.5152494.

Herbort, O., Butz, M., and Pedersen, G. The SURE REACH
model for motor learning and control of a redundant arm:
From modeling human behavior to applications in robotics.
In Sigaud, O. and Peters, J., editors, From Motor Learning
to Interaction Learning in Robots, volume 264 of Studies in

216



Bibliography

Computational Intelligence, pages 85–106. Springer Berlin /
Heidelberg, 2010. ISBN 978-3-642-05180-7. doi: 10.1007/
978-3-642-05181-4 5.

Hootman, J. and Helmick, C. Projections of US prevalence
of arthritis and associated activity limitations. Arthritis &
Rheumatism, 54(1):226–229, 2006. ISSN 1529-0131. doi:
10.1002/art.21562.

Hsu, R.-L., Abdel-Mottaleb, M., and Jain, A. Face detection
in color images. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 24(5):696–706, May 2002. ISSN
0162-8828. doi: 10.1109/34.1000242.

Hu, M.-K. Visual pattern recognition by moment invari-
ants. IRE Transactions on Information Theory, 8(2):179–
187, February 1962. ISSN 0096-1000. doi: 10.1109/TIT.
1962.1057692.

Huang, Y. and Rao, R. Neurons as Monte Carlo Sam-
plers: Sequential Bayesian inference in spiking neural popu-
lations. Frontiers in Systems Neuroscienc, Conference Ab-
stract: Computational and systems neuroscience, 2009. doi:
10.3389/conf.neuro.06.2009.03.048.

Hyvärinen, A. and Oja, E. Independent component analy-
sis: algorithms and applications. Neural networks, 13(4-
5):411–430, 2000. ISSN 0893-6080. doi: DOI:10.1016/
S0893-6080(00)00026-5.

Isard, M. and MacCormick, J. BraMBLe: A Bayesian
multiple-blob tracker. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, volume 2, pages 34–

217



Bibliography

41, Vancouver, BC, July 2001. IEEE. doi: 10.1109/ICCV.
2001.937594.

Itti, L., Koch, C., and Niebur, E. A model of saliency-based
visual attention for rapid scene analysis. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 20(11):1254–
1259, November 1998. ISSN 0162-8828. doi: 10.1109/34.
730558.

Johnson, D., Cuijpers, R., Juola, J., Torta, E., Simonov, M.,
Frisiello, A., Bazzani, M., Yan, W., Weber, C., Wermter,
S., Meins, N., Oberzaucher, J., Panek, P., Edelmayer, G.,
Mayer, P., and Beck, C. Socially assistive robots: A com-
prehensive approach to extending independent living. In-
ternational Journal of Social Robotics, 6(2):195–211, 2014.
ISSN 1875-4791. doi: 10.1007/s12369-013-0217-8.

Jolliffe, I. Principal Component Analysis. John Wiley & Sons,
Ltd, 2005. ISBN 9780470013199. doi: 10.1002/0470013192.
bsa501.

Jordao, L., Perrone, M., Costeira, J., and Santos-Victor, J.
Active face and feature tracking. In Proceedings of the In-
ternational Conference on Image Analysis and Processing,
pages 572–576, 1999. doi: 10.1109/ICIAP.1999.797657.

Kaelbling, L., Littman, M., and Cassandra, A. Planning and
acting in partially observable stochastic domains. Artificial
Intelligence, 101(1–2):99–134, 1998. ISSN 0004-3702. doi:
10.1016/S0004-3702(98)00023-X.

Kakumanu, P., Makrogiannis, S., and Bourbakis, N. A sur-
vey of skin-color modeling and detection methods. Pattern

218



Bibliography

Recognition, 40(3):1106–1122, 2007. ISSN 0031-3203. doi:
10.1016/j.patcog.2006.06.010.

Kalal, Z., Mikolajczyk, K., and Matas, J. Tracking-learning-
detection. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 34(7):1409–1422, 2012. ISSN 0162-8828.
doi: 10.1109/TPAMI.2011.239.

Karlsson, N., Di Bernardo, E., Ostrowski, J., Goncalves, L.,
Pirjanian, P., and Munich, M. The vSLAM Algorithm for
Robust Localization and Mapping. In Proceedings of the
2005 IEEE International Conference on Robotics and Au-
tomation, pages 24–29. IEEE, 2005. doi: 10.1109/ROBOT.
2005.1570091.

Kemmotsu, K., Koketsua, Y., and Iehara, M. Human behavior
recognition using unconscious cameras and a visible robot
in a network robot system. Robotics and Autonomous Sys-
tems, 56(10):857–864, 2008. doi: DOI:10.1016/j.robot.2008.
06.004.

Kemper, J. and Linde, H. Challenges of passive infrared in-
door localization. In Proceedings of the 5th Workshop on
Positioning, Navigation and Communication, pages 63–70,
March 2008. doi: 10.1109/WPNC.2008.4510358.

Khan, S. M. and Shah, M. Tracking multiple occluding people
by localizing on multiple scene planes. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 31:505–519,
2009. ISSN 0162-8828. doi: 10.1109/TPAMI.2008.102.

Kleeman, L. and Kuc, R. Mobile robot sonar for target
localization and classification. The International Journal

219



Bibliography

of Robotics Research, 14(4):295–318, 1995. doi: 10.1177/
027836499501400401.

Klein, D. A., Schulz, D., Frintrop, S., and Cremers, A. B.
Adaptive real-time video-tracking for arbitrary objects. In
Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 772–777.
IEEE, 2010. doi: 10.1109/IROS.2010.5650583.

Knoop, S., Vacek, S., and Dillmann, R. Sensor fusion for 3D
human body tracking with an articulated 3D body model.
In Proceedings of the 2006 IEEE International Conference
on Robotics and Automation, pages 1686–1691. IEEE, 2006.
doi: 10.1109/ROBOT.2006.1641949.

Knudson, M. and Tumer, K. Adaptive navigation for au-
tonomous robots. Robotics and Autonomous Systems, 59
(6):410–420, 2011. doi: 10.1016/j.robot.2011.02.004.

Kobilarov, M., Sukhatme, G., Hyams, J., and Batavia, P.
People tracking and following with mobile robot using an
omnidirectional camera and a laser. In Proceedings of the
2006 IEEE International Conference on Robotics and Au-
tomation, pages 557–562. IEEE, May 2006. doi: 10.1109/
ROBOT.2006.1641769.

Koch, J., Wettach, J., Bloch, E., and Berns, K. Indoor local-
isation of humans, objects, and mobile robots with RFID
infrastructure. In Proceedings of the 7th International Con-
ference on Hybrid Intelligent Systems, volume 0, pages 271–
276, Los Alamitos, CA, USA, 2007. IEEE Computer Society.
ISBN 0-7695-2946-1. doi: 10.1109/HIS.2007.25.

220



Bibliography

Kovac, J., Peer, P., and Solina, F. Human skin color clustering
for face detection. In Proceedings of the IEEE Internetional
Conference on Computer as a Tool, EUROCON, volume 2,
pages 144–148, September 2003. doi: 10.1109/EURCON.
2003.1248169.

Krose, B. and Eecen, M. A self-organizing representation of
sensor space for mobile robot navigation. In Proceedings of
the IEEE/RSJ/GI International Conference on Intelligent
Robots and Systems, volume 1, pages 9–14 vol.1, 1994. doi:
10.1109/IROS.1994.407415.

KSERA. The KSERA project (Knowledgeable SErvice Robots
for Aging). http://ksera.ieis.tue.nl/.

Kuipers, B. and Beeson, P. Bootstrap learning for place recog-
nition. In Proceedings of the 18th National Conference on
Artificial Intelligence, pages 174–180. MIT Press, 2002.

Lanz, O. and Brunelli, R. An appearance-based particle fil-
ter for visual tracking in smart rooms. In Stiefelhagen, R.,
Bowers, R., and Fiscus, J., editors, Multimodal Technologies
for Perception of Humans, volume 4625 of Lecture Notes in
Computer Science, pages 57–69. Springer Berlin / Heidel-
berg, 2008. doi: 10.1007/978-3-540-68585-2 4.

Latombe, J.-C. Robot Motion Planning, volume 124 of
The Springer International Series in Engineering and
Computer Science. Springer US, 1990. doi: 10.1007/
978-1-4615-4022-9.

Lavoie, A. and Mizumori, S. Spatial, movement- and reward-
sensitive discharge by medial ventral striatum neurons of

221



Bibliography

rats. Brain Research, 638(12):157–168, 1994. ISSN 0006-
8993. doi: 10.1016/0006-8993(94)90645-9.

Lisien, B., Morales, D., Silver, D., Kantor, G., Rekleitis, I.,
and Choset, H. Hierarchical simultaneous localization and
mapping. In Proceedings of the 2003 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, vol-
ume 1, pages 448–453. IEEE, 2003. doi: 10.1109/IROS.
2003.1250670.

Louloudi, A., Mosallam, A., Marturi, N., Janse, P., and Her-
nandez, V. Integration of the Humanoid Robot Nao in-
side a Smart Home: A Case Study. In The Swedish AI
Society Workshop. Uppsala University, May 2010. URL
http://www.ep.liu.se/ecp/048/008/.

Lowe, D. Object recognition from local scale-invariant fea-
tures. In Proceedings of the Seventh IEEE International
Conference on Computer Vision, volume 2, pages 1150–
1157, 1999. doi: 10.1109/ICCV.1999.790410.

Lowe, D. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision, 60:
91–110, 2004. ISSN 0920-5691. doi: 10.1023/B:VISI.
0000029664.99615.94.
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