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Introduction

The global financial crisis has had profound effects on macroeconomics. It highlighted a mag-

nitude of challenges for the profession. On the one hand, the turmoil emphasized the absence

of important characteristics in standard models. On the other hand, the sheer magnitude of the

shocks, combined with policy changes, unconventional measures, and new regulations, induced

a shift in many macroeconomic variables. These structural breaks, along with the breakdown of

standard transmission mechanisms and newly binding constraints, accentuated the importance of

non-linearities in macroeconomic models. While non-linear models were not uncommon before,

the arsenal of many macroeconomists was dominated by linearised general equilibrium models,

Vector Autoregressive Models (VARs), and Error Correction models.

Consequently, the workhorse modelling technique—DSGEmodelling—was the primary candi-

date in need to adapt to the new environment. A multitude of newmethods and additions were

introduced: partially binding constraints to tackle the zero lower bound, higher order perturbations

to approximate wider area around a steady state, transmissions between several steady states, and

time-varying parameters, either gradual or sudden, to reflect the new state of the system.

The first half of this thesis falls into this last category, as it examines the effects of rare events such

as financial and currency crises through the lens of regime shifting DSGEmodels. By introducing

non-linearities in the form of time-varying parameters that follow a stochastic process, these models

show how similar shocksmay have different effects on the economy, since agents may react otherwise

even under similar circumstances simply due to a different state of the economy.

This is achieved through a novel class ofDSGEmodels—Markov-switchingDSGE (MS-DSGE) that

aim at capturing the aforementioned non-linearities. These models assume that the economy may

take a number of different states, each associated with a set of parameters. In every representation,

the relationships between macroeconomic variables are given; however, the economy is allowed to
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transition between these regimes following a stochastic Markov process. Therefore, even similar

shocksmay have different effects across the states of the economy. Furthermore, the economic agents

are aware that such transitions may occur and take this into account when making their decisions,

which introduces further non-linearities in the form of precautionary behaviour.

The introductory chapter presents a small open economy (SOE) model for the Estonian economy,

which has had a fixed exchange rate regime (FER) for over two decades. The peg was in the form

of a currency board— a special form of a FER where the base money is fully covered by foreign

reserves, eliminating the option of the central bank to act as a “lender of last resort”. Under the

peg, domestic interest rates are expected to converge to the rates of the foreign currency, due to the

unlimited convertibility of bills.

Empirically, however, the rates are never a simple identity as it is often assumed in the standard

DSGE literature. It is evident from the data that a substantial spread may exist as a consequence

of problems in the banking sector or the exchange rate system. This spread may have substantial

effects on the economy through abnormally high interest rates.

Therefore, in this model the spread is modelled explicitly and further examined from two perspec-

tives. On the one hand, it may arise from endogenous factors, such as through the international

financial position of the country. An indebted country might be demanded a premium when

issuing more debt. On the other hand, it may also arise from exogenous factors, such as a financial

or currency crisis. Were the economy in financial distress, even small shocks could be amplified and

much more pronounced. These features are added by modelling stochastic volatility of the interest

rate spread in a regime switching framework. While the standard model would average out periods

with abnormally high rates and times with low interest rates, the Markov-switching extension is

aligned with the data. The model is estimated with Bayesian techniques. The main findings are

that financial shocks play a minor role when the banking sector is stable, whereas in the other case

these shocks are large and potentially detrimental to the economy, suggesting how important the

credibility of the exchange rate systemmay be.

The second chapter of this thesis, titled “The regime-dependent evolution of credibility: A fresh

look at Hong Kong’s linked exchange rate system”, builds on that very issue. How important can

the effects of loss of credibility be? It estimates a model for the Hong Kong economy, which has had

a currency board for almost three decades. This is one of the longest running FER systems, and it has

had its share of speculative attacks over the years. If the traders assume that the currency board will

not hold, they take positions against it that are shaped by their expectations, whether the currency
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would appreciate or depreciate following the abandonment of the peg. The pressure on the spot

markets induces a premium on the interest rates through the exchange rate parity. Thus, spreads

between foreign and domestic interest rates can be positive, even if the financial system is under no

scrutiny. Therefore, we can judge the perceived credibility of the currency board by incorporating

financial information in the form of the interest and spot rates. We estimate a structural MS-DSGE

model and quantify the effects of loss of credibility of the system. Applying the same framework

developed for the previous work, we can estimate the size of the shocks driving the interest rate

differential. The main finding is that monetary shocks are amplified and may be up to five times

as large if the credibility of the board is put into question when compared to a stable FER, which

indicates the importance of tackling currency crises swiftly.

The second half of this thesis takes a different approach. It moves away from structural modelling

and ventures into the empirical realm of data-driven models, where non-linearities are once more

introduced by means of time-varying parameters. Chapter three, titled “The credibility of Hong

Kong’s currency board system: Looking through the prism of MS-VARmodels with time-varying

transitionprobabilities”, is a natural continuationof the issue of credibility by addressing a limitation

of the MS-DSGE models. Due to their complexity, the probabilities governing the switching

parameters have to be constant. This drawback has yet to be resolved in the literature and imposes a

serious limitation in scenarioswhere self-fulfilling expectations fuel the crises. Believing that a regime

change may be near could very well influence the likelihood of a shift. This calls for endogenising

the transition probabilities between states, which can be achieved in a Markov-switching VAR

framework (MS-VAR). The advantage of this setup is that one can pose a set of questions: What

captures a loss of credibility in a system? Which are the trigger variables? Does the damage to the

confidence in the exchange rate regime stem from fears of the global financial market’s or is it solely

coming from domestic volatility? In this chapter, we construct a conditional volatility index for

Hong Kong and show that uncertainty on the domestic stock markets, as well as the swings of the

foreign exchange market for domestic currency, have predictive power over the investor’s confidence.

Moreover, global uncertainty indicators remain uninformative.

The final chapter on non-linearities in macroeconomics retains the spirit of time varying parameters

in Markov-switching models, yet ventures away from the SOE setting of the previous sections. It is

titled “Modelling the time variation in Euro area lending spreads” and investigates the apparent

divergence of lending rates across the Eurozone in recent years. Governed by commonmonetary

policy, European interest rates exhibited similar trends before and even during the financial crisis,
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but developed rather peculiarly after 2011. Italy, Spain, Portugal, and Ireland experienced surges

in their lending rates, while the policy rate was near zero levels — the transmission of monetary

policy has been impaired. While the breakdown in the interest rate pass-through has already been

documented in the literature, very little has been found regarding its triggers. This chapter builds an

MS-VARmodel with time-varying transition probabilities and applies it to the lending rates of Italy,

Spain, Ireland, and Portugal relative to Germany’s. Under the assumption of no breakdown of the

interest rate pass-through, the interest rate differential should react similarly following a common

monetary policy shock. By introducing two regimes and endogenous transition probabilities, the

model captures the heterogeneity and country specifics of the member states. We find that global

risk factors have contributed to higher lending rates in Italy and Spain, and that problems in the

banking sector further explain the impairment in Spain, whereas fiscal problems and contagion

effects have contributed in Italy and Ireland. We also find that the ECB’s unconventional monetary

policy announcements have had temporary positive effects in Italy. Due to the zero lower bound,

these findings are amplified if EONIA is used as a measure of the policy rate. For Portugal, we do

not detect any changes in the pass-through.
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1
Financial crises and time-varying risk premia:

AMarkov-switching DSGEmodel for Estonia

A key factor in a currency board mechanism is the inherent link between the interest rates of the

pegged currency and the foreign rates. While in theory the rates should converge and eventually

become identical, in practice they are not always equal. A multitude of factors could influence

investor confidence, which forms pressure on the spot markets. For example, the country’s financial

position, agents’ expectations and speculations against the board, or a partial financial collapse

can contribute to a persistent interest rate differential. The literature on exchange rate pegs largely

ignores this issue. In DSGE models, in absence of money, the mechanism is simulated using a

short-cut by closing the exchange rate channel. This leads to a one-to-one relationship between

domestic and foreign interest rates [Galí andMonacelli (2005)]. This setup, however, is at odds

with empirical evidence. A prime example is the Estonian economy. It has had its former currency,

the kroon, first pegged to the German mark and then to the Euro up until 2011 when it joined the

European monetary union. Throughout this period the economy has had a multitude of internal
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and external financial shocks such as banking and financial crises. Figure 1.1 shows the main three-

month interbank rate of Estonia, the TALIBOR, introduced in 1996, along with its European

counterpart LIBOR.

1998 2000 2002 2004 2006 2008 2010

0% 

5% 

10%

15%

20%

 

 

TALIBOR

EURIBOR

Figure 1.1: TALIBOR and EURIBOR, annualized three-month interbank Estonian and European interest rates from
1996 to 2012.

It is evident that for prolonged periods the two rates have been close to an identity, yet have also

had times with a fair share of positive interest rate differential. 1997 saw the onset of the Asian crisis

that spread to Russia in 1998. Through exposure to Russian assets and investments the Estonian

economy experienced an interest rate surge and a credit crunch, which turned into a full-fledged

domestic banking crisis that had long-lasting effects up until 2001. The second significant spread is

associated with the global financial turmoil, rising sharply in the third quarter of 2008 and lasting

until the introduction of the euro in 2011.

Since the devaluation option is relinquished under a currency board, the economy is more sensitive

to financial shocks and macroeconomic variables may react differently to economic disturbances.

Chapter one builds a DSGE model for the Estonian economy based on Justiniano and Preston

(2010) that departs from the literature by deriving the domestic interest rate not only as a function

of its foreign counterpart, but also as a function of two additional components.
1
The first one is

an endogenous component, which can be interpreted as “debt sensitivity”. If domestic agents are

heavy borrowers, the spread opens up and it becomes more costly to borrow further. This allows

for an endogenous discrepancy between the interest rates. The second component, an external risk

premium shock, aims to capture the exogenous part of the spread.

The time-variation present in the development of the interest rates is modelled by means ofMarkov-

switching. The main implications are that a strong currency board helps to stabilize the economy

by mitigating the effects of financial shocks. However, a strained mechanism amplifies the financial

1
The idea is based on Benigno (2001) and Schmitt-Grohé and Uribe (2003), who introduce it in a floating exchange

rate framework and Gelain and Kulikov (2009), who estimate a standard DSGEmodel for Estonia.
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disturbances during economic hardship, which puts additional pressure on the economy under

distress.
2
These results are based on Bayesian estimation of a Markov-switching DSGE model

(MS-DSGE) for the Estonian economy. In contrast, a standard linear DSGEmodel cannot capture

these particular features of a currency board.

The chapter is organised as follows. The next section presents the baseline theoretical model and

Section 1.2 introduces the Markov-switching extension and deals with its solution and estima-

tion. Section 1.3 discusses the main findings and Section 1.4 presents alternative specifications for

robustness purposes. The final section concludes.

1.1 Model setup

The baselineDSGEmodel is based on Justiniano and Preston (2010): it features a SOE a láMonacelli

(2005) with incomplete markets, hybrid inflation dynamics, and a multitude of structural shocks.

To accommodate the currency board the model is closed via one of the methods outlined in Schmitt-

Grohé and Uribe (2003), namely, through the exchange rate channel.

On the demand side, consumersmaximize utility by choosing the optimal allocation of consumption

and labour, subject to a budget constraint:

E0

∞∑
t=0

βtϑt

{
C1−σ
t

1− σ −
N1+ϕ
t

1 + ϕ

}
, (1.1)

whereCt denotes consumption— a bundle of domestic and foreign goods,Nt denotes labour, and

the utility is subject to preference shocks ϑt. The parameters β, σ, andϕ denote the discount factor,

the risk-aversion coefficient, and the Frisch elasticity of labour supply, respectively.

Apart from consuming, the economic agents can invest their income in either domestic bondsBt

or foreign bondsB∗t , that are Arrow-Debrew securities.
3
The foreign bonds are purchased abroad

and denominated in domestic currency through the bilateral exchange rate Et. The individuals

finance their expenditures through several channels. They own firms, which either produce goods

for domestic and foreign consumption, or import goods from abroad. Thus, the total income at

time t comprises the wageWtNt, the profits of domestic producers ΠH,t and those of importers

ΠF,t, and the returns on domestic and foreign bonds from the previous period,Bt−1 and EtB∗t−1

2
The model presents an alternative method to Justiniano and Primiceri (2008) in dealing with time-variation in the

volatility of macroeconomic shocks.

3
Following the convention of the open-economy literature the foreign variables are denoted by an asterisk (*) and logs

of the variables — with lower-case letters.
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respectively. Denoting the CPI by Pt, the formal nominal budget constraint is

PtCt +Bt + EtB∗t =WtNt + ΠH,t + ΠF,t + ...

+Bt−1(1 + it−1) + EtB∗t−1(1 + i∗t−1)Φ(Dt, φt).
(1.2)

Domestic bonds pay a nominal return (1 + it) and foreign bonds are remunerated with an interest

(1 + i∗t ) and augmented by a debt elastic risk premium Φ(Dt, φt), which is given by

Φ(Dt, φt) = e−χ(Dt+φt)
with Dt = EtB

∗
t−1

Ȳ Pt−1
. (1.3)

The term Φ(Dt, φt) is a function adopted from Benigno (2001), Schmitt-Grohé and Uribe (2003),

and Gelain and Kulikov (2009). The first argument,Dt, is the real quantity of the consumer’s net

foreign asset position in relation to steady state output Ȳ . The intuition behind it is that domestic

agents face a cost when participating in world markets. As lenders (Dt > 0), the households receive

a lower remuneration than the market rate. As borrowers (Dt < 0), they pay an endogenous

premium over the interest rate. The parameter χ controls the debt sensitivity of the international

markets. The second argument, φt, is an exogenous shock that captures forces outside the model,

such as a financial or a currency crisis, that may lead to a risk premium.

Log-linearizationof the first order conditions leads to theusual Euler equation and leisure-consumption

trade-off:

ct = Et{ct+1}+ 1
σ

(Et{πt+1} − it) + 1
σ

(1− ρϑ)ϑt, (1.4)

where ct denotes the log of consumption, πt the inflation rate, and it denotes the domestic interest

rate.

On the supply side, firms employ labour and maximize profits subject to costs and demand. There

exist two types of firms: producers and importers. Producers’ prices are determined in a hybrid

manner— in every period a share of all firms (1− δH) set their price based on expectations about

future demand a lá Calvo (1983), while the rest use past information. Denoting the marginal costs

bymct, the inflation dynamics for domestic goods are given by

(1 + βδH)πH,t = βEt{πH,t+1}+ δHπH,t−1 + λHmct + µH,t, (1.5)

with µH,t being a stable AR(1) process that describes exogenous cost-push shocks. Import firms buy

foreign goods at the world market price P ∗t and sell them domestically at PF,t. Given the bilateral

exchange rate, any discrepancyψt between the two is a deviation from the “law of one price” defined

8



in logs as

ψt ≡ et + p∗t − pF,t. (1.6)

Thus the inflation dynamics of import prices are

(1 + βδF )πF,t = βEt{πF,t+1}+ δFπF,t−1 + λFψt + µF,t, (1.7)

where δF and µF,t are defined analogously to the producers’ case. CPI inflation πt is a weighted

average of domestic and foreign inflation weighted by their respective share, which, in turn, can be

interpreted as the openness of the economy α:

πt = (1− α)πH,t + απF,t. (1.8)

Furthermore, st denotes the terms of trade, while the bilateral real exchange rate is given by qt. In an

economy with a floating exchange rate the dynamics of the nominal exchange rate are determined

by the dynamics of the real exchange rate and the inflation rates. In mathematical terms this means

4et = et − et−1 = qt − qt−1 + πt − π∗t . (1.9)

Similarly, the uncovered interest rate parity (UIP) condition under incomplete asset markets is

(it − Et{πt+1})− (i∗t − Et{π∗t+1}) = 4et − χdt − φt, (1.10)

where dt is a log-linear approximation ofDt around the steady state. In the context of the SOE

literature with floating exchange rate [Kollmann (2002), Schmitt-Grohé and Uribe (2003), Justini-

ano and Preston (2010)], dt and φt can be interpreted as deviations form the interest rate parity

[Benigno (2001), p.12]. Under flexible exchange rates, the model would be closed by choosing a

monetary policy rule that pins down the interest rate it. However, in the fixed exchange rate setting

the UIP equation will appear as an endogenous monetary policy rule where the domestic interest

rate it is a function of the foreign interest rate i
∗
t , the debt positionDt, and the risk premium shock

φt. Introducing a fixed exchange rate by

4et = 0, (1.11)

and substituting (1.9) in (1.10) leads to the following endogenous interest rate rule:

it = i∗t − χdt − φt. (1.12)
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Here, the risk premium component (χdt + φt) allows for discrepancy between the rates. The debt

sensitivity χ is assumed to be strictly positive. If domestic households are net borrowers on the

world financial market, they have to pay a premium over the world interest rate it−χdt > i∗t , which

is determined endogenously. Furthermore, the domestic rate it may be subject to an exogenous

shock φt which could also allow for an interest rate differential.

Finally, the evolution of the net foreign asset position, which may be interpreted as the current

account, is defined by

dt −
1
β
dt−1 = yt − ct − α(qt + αst). (1.13)

It follows from the optimisation problem of the agents, which may invest either in domestic bonds

Bt or foreign bondsB
∗
t , yielding an Euler equation for dt.

The rest of the world is modelled as a collection of AR(1) processes for foreign output y∗t , foreign

inflationπ∗t , and foreign interest rate i
∗
r as inLubik andSchorfheide (2007) andChen andMacdonald

(2012). Thus, in total there are eight exogenous variables, governed by eight innovations: technology

εat , preferences ε
ϑ
t , domestic cost-push shock ε

µH
t , import cost-push shock εµFt , risk premium shock

εφt , world output shock ε
y∗

t , world cost-push shock επ
∗
t , and world monetary policy shock εi

∗
t :

at = ρaat−1 + εat with εat ∼ N(0, σ2
a), (1.14)

ϑt = ρϑϑt−1 + εϑt with εϑt ∼ N(0, σ2
ϑ), (1.15)

µH,t = ρµHµH,t−1 + εµHt with εµHt ∼ N(0, σ2
µH

), (1.16)

µF,t = ρµFµF,t−1 + εµFt with εµFt ∼ N(0, σ2
µF

), (1.17)

φt = ρφφt−1 + εφt with εφt ∼ N(0, σ2
φ), (1.18)

y∗t = cy∗y
∗
t−1 + εy

∗

t with εy
∗

t ∼ N(0, σ2
y∗), (1.19)

π∗t = cπ∗π
∗
t−1 + επ

∗

t with επ
∗

t ∼ N(0, σ2
π∗), (1.20)

i∗t = ci∗i
∗
t−1 + εi

∗

t with εi
∗

t ∼ N(0, σ2
i∗). (1.21)

Themainmodel consists of equations (1.4) through (1.21) and it will be taken as the baseline scenario

M1.
4
The next section deals with the Markov-switching extension.

1.2 TheMS-DSGEmodel

The time variation in the interest rate risk premium is modelled by the means of stochastic volatility.

Equation (1.18) is augmented with a regime-dependent variance term σ2
φ(st) under the assumption

4
A detailed list of the equations can be found in Appendix A.1.
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that the state parameter st can take two distinct values st = {1, 2} :

φt = ρφφt−1 + εφt with εφt ∼ N(0, σ2
φ(st)). (1.22)

The transition between the regimes is governed by the probability matrix

P =

p11 p12

p21 p22

 , (1.23)

where pij = Prob(st+1 = j|st = i) is the transition probability from state i to state j.5 The

MS-DSGE model,M2, can be cast in a state-space form by collecting all endogenous variables

in a vectorX := [c, y, i, q, s, ψ, π, πH , πF , d,mc]′ and all exogenous variables in a vector Z =

[µH , µF , φ, y∗, π∗, i∗]′:

B1(st)Xt = Et{A1(st, st+1)Xt+1}+B2(st)Xt−1 + C1(st)Zt. (1.24)

Zt = R(st)Zt−1 + εt with εt ∼ N(0,Σ(st)), (1.25)

where thematricesA1(st),B1(st),B2(st),C1(st) andR(st) are functions of themodel parameters.

The solution of this system is presented next.

1.2.1 Solution method

A large body of theMS-DSGE literature is devoted to the technical aspects of solving the state-space

system, e.g. Farmer et al. (2008), Farmer et al. (2011), Foerster et al. (2013), Miah (2014), and Cho

(2015). Familiar DSGE solution algorithms of Sims (2002) or Schmitt-Grohé and Uribe (2004) are

not applicable. For example, a model where each state has a unique and stable equilibrium, yet the

Markov-switching system jumps “too often” between the regimes could become unstable. This is

referred to as “stability in the secondmoments” and in contrast to non-switchingmodels, stability in

the first moments of the Markov-switching model does not imply stability in the second moments.

This is a critical assumption for the standard solution techniques. Consequently, the available

solution concepts forMS-DSGEmodels are mainly centred around stability in the secondmoments.

Davig and Leeper (2007a) show that if the shocks have bounded variance, a stable solution to the

Markov-switching system might exist. Farmer et al. (2011) and Cho (2015) deal with the concept of

5
The literature does not follow a single convention. Hamilton (1989) and Kim and Nelson (1999), for example, use

pij = Prob(st+1 = i|st = j), so that p21 is the transition probability from state 1 to state 2.
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mean-square stability with unbounded shocks. The algorithm of Farmer et al. (2011) utilises the idea

of a minimum state variable solution (MSV) in the sense of McCallum (1983). The method would

find all existing solutions, yet the question remains— how to choose among them? Farmer et al.

(2011) propose a maximum likelihood test and suggest choosing the solution with the lowest test

statistic. Cho (2015), on the other hand, derives conditions for determinacy and provides rationale

why only one of the MSV solutions is relevant to the economic problems at hand by introducing

the so-called “non-bubble condition”, which rules out all but one possible solutions, provided

it exists.
6
Cho (2015) shows that for several models both methods find the exact same solution.

Hence, this chapter adopts the solution strategy of Cho (2015).
7
The method yields the following

regime-dependent solution:

Xt = Ω∗(st)Xt−1 + Γ∗(st)Zt. (1.26)

1.2.2 Data

The model features eleven endogenous and eight exogenous variables in total. For the estimation

stage, the solution to the state-space form (1.24) is taken as a transitional equation in conjunction

with a measurement equation that relates the model variables to a set of observables denoted by Yt,

namely:

Yt = HXt. (1.27)

With eight exogenous variables up to eight observables are allowed in the likelihood function

without the need to introduce measurement errors. For the main modelsM1 andM2 the vector

of observables Yt consists of: Estonian real output per capita, real per capita consumption, inflation

and the nominal interest rate, European per capita real output, inflation, and interest rate. RealGDP

and real consumption per capita are derived by dividing the original series by the active population.

Labour is measured by employment among the individuals from 16 to 64 years of age. Inflation

rate is based on quarterly HICP data. The nominal interest rate for Estonia is the three-month

TALIBOR and for Europe — the 3-month EURIBOR, both converted to quarterly frequency.

The data has been collected from Eurostat. The series are expressed as percentage deviations from

trend, where the detrending has been carried out by an HP filter with λ = 1600.8

6
A technical discussion of the solution method can be found in Appendix A.2.

7
Due to having the switching component in the volatility, the steady state is the same for each regime. This avoids

issues that are yet to be resolved in the literature, such as transitions between different steady states.

8
Both TALIBOR and EURIBOR exhibit non-stationary behaviour. Nevertheless detrending of the interest rate is

not a standard practice in the literature. Therefore, several models are estimated, with and without detrending, and
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Figure 1.2: Detrended and seasonally adjusted quarterly data. Blue line (—) is Estonian data, red line (—) is European
data. Source: Eurostat.

1.2.3 Estimation procedure

Model estimation is carried out by Bayesian methods— assuming a prior on the parameters and

combining it with the likelihood function yields the posterior distribution, which is simulated

through a Markov-Chain Monte Carlo (MCMC) algorithm. Similar to the solution difficulties,

estimation ofMS-DSGEmodels is not straightforward either. This is due to the likelihood function

being dependent on the history of the states. Therefore, the Kalman filter is inapplicable, since the

number of possible paths grows exponentially with the number of observations. Two approaches are

taken in the literature to solve this problem. One possibility is to construct the likelihood function

through Gibbs sampling [Kim and Nelson (1999) ch. 9, Bianchi (2012)]. The other option, which

is pursued here, is to use Kim’s Filter — a combination of Kalman and Hamilton filters, where the

possible paths are collapsed through averaging at each step [Kim and Nelson (1999), ch. 5]. This

keeps the computation of the likelihood tractable. Let θ collect all the parameters of the model,

S be the history of the realised states, and Y — the data matrix, then the posterior distribution

the results remain qualitatively the same. In the main section the model is estimated with an HP-filtered series. The

robustness section 1.4 discusses further models.
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p(θ, P, S|Y ) can be evaluated using Bayes’ rule:

p(θ, P, S|Y ) = p(Y |θ, P, S) p(S |P ) p(θ, P )∫
p(Y |θ, P, S) p(S |P ) p(P, θ) d(θ, P, S)

. (1.28)

p(Y |θ, P, S) is the likelihood of the data conditional on the states, the parameters θ, and the

Markovian probability matrix P . p(S|P ) is the density of the states conditional on P and p(θ, P )

is the marginal density of the parameters and the transition probabilities. The denominator is the

marginal density p(Y, θ, P, S) given by the law of total probability.

Farmer et al. (2009) point out that the posterior distribution might be highly non-Gaussian and

the mean values of this distribution may actually lie in a region where the support is flat. Hence,

it is of interest to search for the posterior mode rather than the mean. This task, however, may be

computationally intensive, as the posterior is often multi-modal and the optimization algorithm

may get stuck at a local mode. Farmer et al. (2009) propose a specific block-wise optimization

algorithm to deal with the problem, while Sargent et al. (2009) use a Gibbs sampling version of

Chris Sims’ CSMINWEL routine, followed by a combination of the BFGSQuasi-Newton algorithm

and Fortran’s IMSL routine. Nevertheless, Liu andMumtaz (2011) and Chen andMacdonald (2012)

report successful usage of CSMINWEL alone. For the estimation at hand, Sims’ routine faced

particular difficulties finding the global mode and often got stuck at local maxima with a high

likelihood value (as the procedure is actually a minimization algorithm, high values are undesirable).

For maximization of the likelihood function the Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) has been employed, particularly its extension for DSGEmodels byMartin Andreasen

[Andreasen (2008)]. The procedure is based on evolution strategy algorithms, which do not

calculate gradients or approximate numerical derivatives. This is a considerable advantage when the

target functions have discontinuities, ridges, or local optima. [Hansen (2006)].

1.2.4 Prior information

The choice of priors is of primary importance when it comes to Bayesian estimation. Unfortunately,

only few Estonian micro-studies exist. Gelain and Kulikov (2009) estimate a medium-sized DSGE

model, where most priors are, in turn, taken from Smets andWouters (2003). Here, the parameters

are set at standard values for the SOE literature borrowing from Smets andWouters (2003), Gelain

and Kulikov (2009), and Justiniano and Preston (2010). Table 1.1 summarises the first twomoments

of the parameters.
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Distribution Mean Std.Dev.

p11 Beta 0.9 0.1

p22 Beta 0.9 0.1

β PM 0.995 —

ϕ Gamma 2 0.25

θH Beta 0.75 0.1

θF Beta 0.5 0.1

α PM 0.5 —

σ Gamma 1 1

η Gamma 2 0.25

δH Beta 0.5 0.15

δF Beta 0.5 0.15

χ Gamma 0.01 0.01

ρa Beta 0.7 0.1

ρµF Beta 0.7 0.1

Distribution Mean Std.Dev.

ρµH Beta 0.7 0.1

ρν Beta 0.7 0.1

ρφ Beta 0.7 0.1

cy∗ Beta 0.85 0.1

cπ∗ Beta 0.85 0.1

ci∗ Beta 0.85 0.1

σµF IGamma 1 ∞
σµH IGamma 1 ∞
σa IGamma 1 ∞
σν IGamma 1 ∞
σφ IGamma 1 ∞
σy∗ IGamma 1 ∞
σπ∗ IGamma 1 ∞
σi∗ IGamma 1 ∞

Table 1.1: Prior distributions and basic moments. PM denotes point mass and IGamma— inverse Gamma.

The discount factor β is fixed at 0.995, implying an annual interest rate of about 4%; the coefficient

of openness α is set at 0.5. The inverse elasticity of substitution 1/σ is set to unity. Frisch elasticity

of labour supply ϕ and the elasticity between home and foreign goods η have means of 2 and a

standard deviation of 0.25, followingGelain andKulikov (2009). The Calvo parameter for domestic

prices θH is chosen to be 0.75, providing an average duration of price contracts of one year. The

share of forward- and backward-looking firms and the debt elasticity χ are taken from Justiniano

and Preston (2010). The autoregressive coefficients for the shocks hitting the Estonian economy are

set at 0.7 and for the European AR(1) processes at 0.85, as in Smets andWouters (2003). All shocks

are of size 1 with an unbounded variance.

Combining the data with the prior and the methods of this section provides the following roadmap

for the estimation. Themodel is solved using an initial set of parameters and the likelihood function

is approximated by Kalman’s filter forM1 or by Kim’s filter forM2. The posterior density is then

minimized to find the posterior mode using the CMA-ES algorithm with a cut-off criterion for the

minimization at 10−16
. Since the evolutionary algorithm uses the variance-covariance matrix and

evaluates a random number of possible paths at each point, it is less dependent on initial values.

The minimization algorithm always converged to the same mode. Once a minimum is obtained, a

MCMC procedure is initiated with the inverse Hessian estimated at the posterior mode. Altogether

4 blocks of 375 000 draws are estimated, with the first 75 000 discarded and every 30-th draw

afterwards saved for a total volume of 10 000 observations per block. The Metropolis-Hastings

constant is tuned to attain an acceptance ratio of roughly 20%. EachMCMC block converged to

the same mean.
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Distribution Prior Mean M1 M2 : st = 1 M2 : st = 2

p11 Beta 0.900 —
0.936

[0.862, 0.984]
—

p22 Beta 0.900 —
0.942

[0.852, 0.993]
—

β PM 0.995 0.995 0.995 —

ϕ Gamma 2.000
1.985

[1.608, 2.404]

1.982

[1.598, 2.399]
—

θH Beta 0.750
0.910

[0.880, 0.938]

0.912

[0.882, 0.939]
—

θF Beta 0.500
0.631

[0.544, 0.717]

0.645

[0.556, 0.733]
—

α PM 0.500 0.500 0.500 —

σ Gamma 1.000
2.339

[1.371, 3.694]

2.424

[1.434, 3.800]
—

η Gamma 2.000
2.366

[2.011, 2.760]

2.411

[2.062, 2.781]
—

δH Beta 0.500
0.215

[0.094, 0.371]

0.217

[0.096, 0.369]
—

δF Beta 0.500
0.590

[0.386, 0.786]

0.594

[0.395, 0.788]
—

χ Gamma 0.010
0.028

[0.014, 0.043]

0.017

[0.006, 0.029]
—

ρa Beta 0.700
0.698

[0.520, 0.851]

0.703

[0.526, 0.854]
—

ρµF Beta 0.700
0.700

[0.531, 0.847]

0.708

[0.537, 0.853]
—

ρµH Beta 0.700
0.650

[0.480, 0.807]

0.670

[0.499, 0.821]
—

ρν Beta 0.700
0.697

[0.531, 0.842]

0.695

[0.523, 0.841]
—

ρφ Beta 0.700
0.640

[0.474, 0.789]

0.646

[0.487, 0.792]
—

cy∗ Beta 0.850
0.884

[0.790, 0.968]

0.883

[0.786, 0.969]
—

cπ∗ Beta 0.850
0.545

[0.379, 0.722]

0.548

[0.382, 0.722]
—

ci∗ Beta 0.850
0.861

[0.783, 0.933]

0.857

[0.782, 0.925]
—

σµF IGamma 1.000
1.225

[0.857, 1.673]

1.159

[0.799, 1.618]
—

σµH IGamma 1.000
0.458

[0.326, 0.620]

0.425

[0.298, 0.586]
—

σa IGamma 1.000
0.855

[0.209, 2.358]

1.060

[0.205, 3.474]
—

σν IGamma 1.000
11.265

[7.040, 17.150]

11.438

[7.154, 17.458]
—

σφ IGamma 0.800
0.472

[0.406, 0.548]

0.119

[0.090, 0.156]

0.665

[0.533, 0.831]

σy∗ IGamma 1.000
0.684

[0.592, 0.791]

0.685

[0.593, 0.795]
—

σπ∗ IGamma 1.000
0.375

[0.321, 0.438]

0.376

[0.321, 0.440]
—

σi∗ IGamma 1.000
0.100

[0.086, 0.116]

0.100

[0.086, 0.116]
—

M: -430.723 -405.5175

Table 1.2: Estimated coefficients at the posterior mean.M1: Model with fixed parameters,
M2: MS Model. M denotes the marginal data density estimate. The 95% probability interval is given in brackets.
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1.3 Estimation results

This section lays out the main findings regarding the conventional modelM1 and the MS-DSGE

versionM2. At large the parameters are consistent with economic theory. They are aligned with

the main results of Gelain and Kulikov (2009) and are representative for a small open economy.

Table 1.2 summarises the coefficients.

1.3.1 M1: A standard DSGEmodel for Estonia

Beginning with the utility function coefficients, the elasticity of substitution between foreign and

home goods η is 2.366, with its posterior density shifted to the right of the prior. This suggests good

integration between Estonian and European markets. Indeed, Estonia’s exports and imports each

have a share of over 50% of GDP. The risk-aversion/inverse elasticity of substitution σ is 2.4, which

is a standard value in the absence of capital [Justiniano and Preston (2010)]. Indeed, Gelain and

Kulikov (2009) report a value of 1.33 and they do accommodate for capital formation. Since no

labour data has been used in the estimation, the Frisch elasticity of labour supply ϕ is not identified

— the posterior density closely overlaps with the prior one at a mean of 2.
9

Estonia is regarded as a competitive economy and therefore the duration of price contracts θH is

expected to be low [Randveer and Dabusinskas (2006), Schwab (2011)]. However, the estimate for

the Calvo parameter is θH = 0.9, which is rather large compared to the literature. It corresponds to

price contract duration of over two years. This might be due to weak identification, since the model

uses the CPI inflation rate — a composite bundle of domestic and foreign good prices. The HICP

series have to identify both θH and θF . Using the GDP deflator series to approximate inflation,

or estimating the model with the terms of trade or with the real exchange rate did not lead to any

significant improvement. Nevertheless, as long as CPI inflation is well accounted for, this should

not pose a problem. In fact, the simulated model matches the volatility of inflation (see Table 1.3).

The duration of price contracts in Europe is estimated around three quarters with θF = 0.631,

which is similar to the findings in Smets andWouters (2003).

The values of the autoregressive coefficients match the findings of Gelain andKulikov (2009), where

the prior plays a more important role and the persistence of almost all shocks is around 0.6–0.7. The

data seem informative about the volatility of all exogenous variableswith the exception of technology.

Notably, the volatility of the Estonian structural shocks is higher than that of the European ones,

9
The prior and posterior distributions for the parameters ofM1 are plotted in the Appendix A.3.
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which is an expected feature of smaller economies. The volatility of the risk premium σφ is estimated

at 0.472 and the debt elasticity χ is 0.028. The latter coincides with the value of Gelain and Kulikov

(2009), who report a risk premium sensitivity of 0.029. The standard deviation of the risk premium

is 0.472, which also is a plausible result: it implies a volatility of the interest rate around 2% on

an annual basis. The model scores a marginal data density ofM1 = −430.723, which has been

estimated using the Modified Harmonic Mean (MHM) estimator.

Convergence is assessedusingboth graphicalmethods and formal tests, followingAnandSchorfheide

(2007). Section A.3 in the Appendix contains the figures and tables for the standard DSGEmodel

M1. Figure A.1 depicts the prior and posterior densities ofM1’s estimated parameters. Figure

A.2 plots the recursive means, while figure A.3 shows the trace plots. All parameters converge

within 5000 draws. Table A.1 in Appendix A.3 shows the Raferty-Lewis diagnostics (1.612) and the

autocorrelation among the draws. The latter dies out by the 10-th lag for all but the technology and

preference shocks.M1 will be the baseline scenario. The next section presents theMarkov-switching

extension.

1.3.2 M2: TheMarkov-switching case

ModelM2 requires the estimation of three more parameters: p11, p22 and σφ(st). In contrast to

M1, the likelihood value is obtained by Kim’s filter. Most of the parameters coincide with the

non-switching specification with largely overlapping distributions.
10
Differences are usually in the

second or third digit after the decimal, with a few exceptions such as the technology shock volatility

parameter.

The maximum likelihood procedure estimates two significantly different coefficients for the risk

premium volatility: σφ(1) = 0.119 and σφ(2) = 0.665. Both are distinct from theM1 value

of 0.472 [0.406, 0.548], which falls in-between. The high volatility, σφ(2) = 0.665, translates

into a standard deviation of the risk premium component of almost 2.5% annually. Meanwhile,

the uncertainty around the low-volatility state is around 11 basis points quarterly, or about half a

percentage point annually — only a fifth compared to the high volatility regime.

The probability of being in the high risk premium volatility state is 0.942. This corresponds to

roughly 17 quarters or four years on average. The realised states are derived through Hamilton’s

filter, with Kim’s smoothing algorithm employed recursively afterwards to take into account the

complete history. The top graph of Figure 1.3 depicts the prevalence of the high volatility state. The

10
Distribution plots and convergence diagnostics for this specification may be found in Section A.4 of the Appendix.
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second regime has been in place from the second quarter of 1997 until the beginning of 2001, and

then again for a year during the global financial crisis (2008–2009).
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Figure 1.3: Regime probabilities and interest rates. Top panel: Estimated probability of the high risk premium volatility
regime forM2. Values below 0.5 indicate a realisation of the first regime and values above 0.5 — a realisation of the
second regime. Bottom panel: Annualized three-month interbank interest rates.

The model captures the dynamics of the Estonian interbank interest rate well. The positive differen-

tials between TALIBOR and EURIBOR stand for several important events: a domestic banking

and financial crisis, and the global financial turmoil. The interest rate spread between the second

quarter of 1997 and 2001 was marked by the Asian and Russian crises and a following banking crisis,

which strained the currency board. The former affected investor confidence as the Estonian TALSE

index lost over 60% of its value in the third quarter of 1997. Speculations against the currency board

emerged and the banking system was put under pressure. The onset of the Russian crisis dealt a

huge blow to an already weakened economy. The sharp devaluation of the rouble and exposure to

the Russian markets had profound effects on Estonia’s economic activity and banking sector. Five

out of twelve banks, which held more than 40% of all deposits, experienced heavy distress [Chen

et al. (2006)]. Between 1996 and 1998 the number of credit institutions went from 15 down to

6. The banks either consolidated, went insolvent or were acquired by large foreign institutions.

These events revealed many flaws in the banking sector. As sources of the quake were cited lack

of professional know-how, inadequate risk-management, risky portfolios, overexposure to foreign

markets, insufficient capital adequacy, weak supervision and ill-practices.

Between the end of 1997 and the beginning of 2002, the central bank (Eesti Pank) took an array

of actions to stabilize the banking sector. It introduced a minimum capital requirement, a cap on
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the amount of loans to a single borrower, and put limits on the allowed foreign exchange exposure.

Several laws, such as the Credit Institutions Law and the Law on the Estonian Financial Supervision

Agency (EFSA),were amended. The latter came in effect in 2001, while EFSA itself started operations

in 2002, which coincides with the return to the first regime predicted by the model.
11

The global financial crisis met amuch stronger banking sector. The 2008 turmoil saw the acquisition

ofmany banks by larger foreign entities, primarily from Sweden, which helped strengthen the sector.

No credit institutions went insolvent throughout the downturn. To face any potential runs, Eesti

Pank secured an agreement with the Swedish Riskbank for liquidity support that was in place in

March-December 2009 [Purfield and Rosenberg (2010)]. As the currency board was in place, the

Estonian central bank could not act as a lender of last resort and therefore turned to the parent

banks for cooperation in case of liquidity shortage. This is in line with the model’s estimation that

higher risk was present in the period from 2008Q3 to 2009Q3. The spread between TALIBOR and

EURIBOR lasted longer, yet the model identifies that this did not stem from exogenous factors.

1.3.3 Impulse responses

Figure 1.4 shows the impulse responses following a risk premium shock under the standard model

M1 and the two regimes of the mainMarkov-switching specificationM2. In essence, during stable

times the domestic rates do not deviate far from their foreign counterparts as risk premium shocks

are small. On the other hand, in stressful times, such as the Estonian banking crisis, the markets and

the economy as a whole are much more sensitive to disturbances in the banking sector.

The short run implications of each regime are quite distinct from each other and, as suggested,

the static DSGE specification produces a mix of both: it overestimates the effects of shocks to the

interest rate during quiet periods and understates the impacts during crises. The reactions of the

macroeconomic variables to a shock of the size from the first state are almost negligible. When

the currency board is stable, domestic agents have high confidence in the system, which stems in

part from the macroeconomic conditions and in part from the reputation of the parent monetary

authority. Output and consumption fall only slightly with a fast return to the steady state — in

about two quarters. Inflation hardly reacts and so do the terms of trade. Due to the absence of

capital in the model, the response of marginal costs is more pronounced. In contrast to the first

regime ofM2,M1 overestimates the fluctuations of the variables. Output and inflation responses

overshoot by far the actual responses. The model also suggests worsening of the terms of trade and

11
For a detailed timeline of the events see Adahl (2002).
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Figure 1.4: Impulse responses following a risk premium shock for state one σφ(1) (- -), state two σφ(2) (-.-), and the
non-switching versionM1 (—) .

a real exchange rate depreciation after six quarters.

The responses in the high state are more pronounced. High risk premium shocks have long-lasting

effects on the economy. Apart from consumption, almost no other variable returns to its steady state

level within the first three years. A notable implication of the model is that stronger risk premium

shocks lead to cyclical behaviour of many macroeconomic variables. A sharp monetary tightening

leads to a decrease in the price level only temporarily — for about three quarters — and is then

followed by an increase in inflation. This is an important finding: in a currency board scenario

interest rate-related shocks during a crisis not only decrease output, but also put inflationary pressure

on the economy. Notably, this result is also a product of the estimated high persistence of domestic

price contracts θH , so it can be seen as an upper bound. Similar cyclical behaviour is also observed

in the terms of trade and the real exchange rate.

The long-run implications of the model are further explored by means of variance decomposition.

Consumption is mainly driven by preferences, which is a standard result, especially in the absence

of habit formation. About 70% of the variance of consumption is explained by preference shocks.

Interest rate shocks play almost no role in the volatility of consumption in the long run, conditional

on the first state, yet amount to almost 2% in the second regime. Inflation is mainly driven by

foreign price shocks (75%) and then domestic prices (17%), which is not a surprising result for

Estonia, considering its trading background. Output volatility is affected by domestic price shocks,
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while technology shocks do not play an important role. However, the high coefficient of the price

stickiness θH overestimates the effects of cost-push shocks. It is interesting to note that during

normal times, risk premium shocks do not induce any volatility of output (0%), which suggests

that the stable currency board can act as a monetary stabilizer in the long run.
12

Figure 1.5 shows the decomposition of the interest rate series for 12 periods ahead. Its volatility

is largely influenced by risk premium shocks (63%) and foreign monetary policy shocks (30%) in

the first regime (left panel). However, in the second regime (right panel), it is dominated by the

risk premium volatility. While in the first state the effects of the two shocks diminish over time,

in the second one, even after five years, risk premium shocks explain up to 80% of the volatility in

the series. This illustrates the sensitivity of the interest rate differential to such shocks and their

persistence. Hence, in the event of crisis it is important that the authorities act swiftly and step in to

calm the markets in order to reduce the risk premium.
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Figure 1.5: Variance decomposition of the interest rate in state one σ2
φ(1) and state two σ2

φ(2).

The model is able to match the volatility of the data. Table 1.3 displays the standard errors of the

actual variables and the moments based on 5000 draws from the posterior distribution. In the

data output has a standard deviation of 4.5%, while the model would generate a value of 3.5%.

Consumption is matched well with an estimated standard error of 4.2% compared to the actual

4.05%. Inflation volatility is also matched and in crisis times the interest rate is estimated to have

more than twice the volatility.

12
The variance decomposition of output, consumption, inflation, and interest rate can be found in Appendix A.5.
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y c π i y∗ π∗ i∗

data 4.5103 4.0453 0.8323 0.4635 1.3184 0.3754 0.2169

M2 : State 1 3.4937 4.1860 0.8307 0.2480 1.2781 0.4434 0.1710

M2 : State 2 3.5142 4.2666 0.8291 0.6966 1.2705 0.4443 0.1708

Table 1.3: Actual and model implied second moments of the data based on 5000 simulations.

1.4 Robustness checks

This section evaluates three additional Markov-switching specifications to test the robustness of the

main results. The first one,M3, allows for regime shifts in the volatilities of all Estonian shocks

to ensure that the switching coefficients inM2 do not pick up other peculiarities of the data. The

next model,M4, deals with the second determinant of the interest rate spread— the debt elasticity

χ. It is allowed to switch along with the volatility of the exogenous component σφ. Finally,M5

follows a common path in the literature, where the interest rates series are taken in levels. Table 1.5

provides a summary of all models.
13

M1: No regime shifts

M2: Switching in the volatility of the risk premium σ2
φ

M3: Switching in the volatility in other structural shocks: σ2
a, σ

2
ϑ, σ

2
µH
, σ2

µF
, σ2

φ

M4: Switching in σ2
φ and χ

M5: Switching in σ2
φ where the interest rate data is not detrended

Table 1.5: Robustness checks: Additional model specifications.

1.4.1 M3: Simultaneous switching in all shocks

In a general equilibriummodel, the flexibility of a Markov-switching framework holds a caveat —

peculiarities of one time series my propagate through several variables and end up in the additional

parameters. Time-variation is a standard feature in macroeconomic and financial data and it might

be that any extra parameter acts as a “pressure valve” to the model. If that is the case, allowing more

parameters to switch simultaneously would distort the estimates of the risk premium volatility.

13
Two further robustness checks have been carried out— a linear detrending and amodel with a VAR representation.

The results are similar across all specifications.
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Hence, in this exercise, regime-dependence of all Estonian shocks σ2
a(st), σ2

ϑ(st), σ2
µH

(st), σ2
µF

(st),

and σ2
φ(st) is allowed for. The prior distributions of the parameters are left identical in both states.

Table 1.4 displays the estimated coefficients for all models. Columns five to seven present the results

forM2 andM3.

Overall, forM3, the estimates are highly similar to those of theM2 specification and few are worth

noting. The estimates of the risk premium’s stochastic volatility inM3 are σ
2
φ(1) = 0.121 and

σ2
φ(2) = 0.673, respectively, evaluated at the mean and are thus almost identical to the values

reported forM2; the estimated distributions are mostly overlapping as well. Therefore, the main

findings are a feature of the interest-rate series alone. From the non-switching parameters, only

the risk aversion coefficient is higher at the mean and the distribution is slightly shifted to the

left: σ = 2.1 compared to 2.4 inM2 . This differnece is complemented by a smaller volatility of

the preference shock — higher intertemporal substitution leads to a lower impact of shocks on

consumption. The marginal density of this model isM3 = −409.2437, which is worse than the

reported valueM2 = −405.5175 in the original specification.

1.4.2 M4: Markov-switching debt elasticity

The interest rate equation (1.12) describes the spread between the two rates as a composition of

an exogenous and an endogenous part. Europe is currently experiencing severe difficulties with

public debt levels and worsening debt positions are being watched closely. Estonia’s public debt

has been kept small (about 6% to 7% of GDP), however, before and during the financial crisis,

Estonia’s net external debt fell to almost -40% of GDP before returning to zero levels in 2012. If the

sensitivity towards indebtedness has increased and the parameter χ is constant, the model might be

misspecified. Therefore, in modelM4 both the debt elasticity parameter χ and the volatility of risk

premium are allowed to switch:

it = i∗t − χ(st)dt − φt, (1.29)

φt = ρφφt−1 + εφt with εφt ∼ N(0, σ2
φ(st)). (1.30)

The third- and fourth-to-last columns of Table 1.4 present the parameter estimates at the mean

with 95% probability intervals forM4. Again, most non-switching parameters are equal across the

models up to the second or third digit after the decimal. The risk premium volatility in the first state

σφ(1) = 0.119 is identical for bothmodels, while the second state parameter has closely overlapping
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distributions with σφ(2) = 0.665 and σφ(2) = 0.680 forM2 andM4, respectively. This suggest,

that the estimates are robust to this alternative model specification. The other important parameter

in the model χ takes the values χ(1) = 0.014 and χ(2) = 0.024 at the mean. The probability

intervals, however, reveal that the distributions of χ(1) and χ(2) overlap and therefore there is

no conclusive evidence regarding the existence of two significantly different values. The marginal

density ofM4 isM4 = −405.0004, which is close to the originalM2 = −405.5175.

1.4.3 M5: No detrending of the interest rate

In this specification the interest rate series are taken without detrending. Therefore, the spread

between the domestic and the foreign series is larger, which is reflected in the estimated coefficients

of σφ(1) = 0.05 and σφ(2) = 1.2 (last two columns of Table 1.4). Figure 1.6 plots the probability

of the second regime, which does not differ from that of the main model — the second regime

prevails only two quarters later. The main findings are robust, as both the banking crisis and the

global financial turmoil have been characterized by a higher risk premium. The estimated duration

of the second regime is shorter compared to the baseline case due to the larger volatility of the

interest rate differential. Most estimates are comparable, and in terms of marginal density the model

cannot be preferred over the others. It rather ranks as second worst withM5 = −415.88.
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Figure 1.6: Regime probabilities and interest rates. Top panel: Estimated probability of the high risk premium volatility
regime forM5. Values below 0.5 indicate a realisation of the first regime and values above 0.5 — a realisation of the
second regime. Bottom panel: Annualized three-month interbank interest rates.
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1.5 Concluding remarks

In a standardDSGEmodel of an economywith a currency board, foreign and domestic interest rates

are typically modelled as an identity. In reality the rates converge, yet in times of crises a persistent

spread may open. When risk premium shocks are studied, the responses of the variables may not

represent the reality properly. If the currency board is stable, innovations to the interest rates are

rather small and do not have an effect on the economy. In stressful times, however, the system is

much more sensitive to financial disturbances.

In this chapter, these issues are addressedbydeveloping amodelwhere the interest rate is a functionof

several endogenous and exogenous variables, utilizing a Markov-switching framework that captures

the periods of persistent spread and increased sensitivity. The domestic interest rate is derived

as a function of the foreign rate and a risk premium. The latter is composed of two parts: an

endogenous function that represents the indebtedness of the country and an exogenous component.

The volatility of the exogenous part is then allowed to switch between two regimes to reflect

significant changes in the premium. The model is applied to Estonia, a small open economy with

a currency board, which is very suitable for the exercise, having experienced a banking crisis, a

financial crisis and booming periods in-between. The stressful periods are well identified as the

model captures the time-variation in the volatility of the risk premium. The impulse responses show

that the static DSGE model would under-perform its Markov-switching counterpart as it tends

to average the volatility of the series. Stronger shocks produce a cyclical behaviour in many series,

most notably in inflation, where a sudden sharp increase in the interest rates leads temporarily to

deflation and then to inflation. In the long run, the stable currency board minimizes the effects of

risk premium shocks — in Estonia, during the booming periods these shocks did not contribute to

the volatility of output at all.

While theMarkov-switching framework is able to identify the non-linearities of the data, it operates

under severe limitations. Due to the “curse of dimensionality” the number of parameters grows

disproportionally with the model size. More importantly, the lack of endogeneity in the switching

mechanism is a major limitation in any context with self-fulfilling expectations, especially rare events

such as a currency or a banking crisis. Many questions arise for potential future research. Whatmight

influence the transition mechanism? What triggers the changes in regimes? Recent advancements

in the field as in Miah (2014) pave the way for exploring such topics in greater detail.
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2
The regime-dependent evolution of credibility:

A fresh look at Hong Kong’s linked exchange

rate system

Recent years have seen a resurgence of interest in exchange rate regimes. In the aftermath of the

1997–1998 Asian crisis and the global recession of 2008–2009, “crisis prevention” came to be viewed

as a key criterion in choosing an exchange rate regime. With the partial collapse of the European

exchange rate mechanism in September 1992, the notion that corner solutions such as free floats

and super-strict pegs were preferable to intermediate regimes became widespread. The thinking

was that they were less crisis-prone in the context of today’s huge and volatile financial markets on

the assumption that investors will otherwise overwhelm intermediate regimes like band systems.

Put more bluntly, the options for exchange rate regimes were assumed to have hollowed out to the

point where the only choices left to policymakers were whether to let exchange rates float or fix

them permanently via a currency board or a monetary union.

This chapter has been co-authored with Prof. DrMichael Funke.
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Consistent with this bipolar view, Hong Kong’s currency board system appears to be a textbook

corner solution. To pre-empt the weakening of confidence during the Sino-Anglo dispute on the

return of Hong Kong’s sovereignty to China after 1997, the Hong Kong government adopted a

linked exchange rate system on 17 October 1983, a.k.a. the “Black Saturday Crisis”. Under this

system, the money supply in Hong Kong was fully backed up by US dollars (USD), and the HK

dollar (HKD) effectively fixed at a rate of USD/HKD 7.8. Any one of the three note-issuing banks

in this system wishing to print HKD notes would have to surrender an equivalent amount of USD

(at the official rate) to the Hong KongMonetary Authority (HKMA) in exchange for “Certificates

of Indebtedness” that entitled the note-issuing bank to print a corresponding amount of HKD.

Conversely, note-issuing banks could use their Certificates of Indebtedness in HKD to redeem an

equivalent amount of USD from the HKMA. A distinctive feature of the system up toMay 2005

was that no strong-side boundary existed, meaning that the currency board system was asymmetric.

InMay 2005, however, the HKMA introduced a symmetric target zone with a HKD/USD band of

7.75 to 7.85.

A common argument for placing restraints on a currency board system is that it confers credibility in

the spheres of exchange rate andmonetary policy by relinquishing the devaluationoption.
2
However,

this is not always true. One can point to numerous historical episodes where currency boards have

failed to enhance the credibility of the monetary authority. This is because the government retains

its right to abandon the scheme and renege on its institutional commitments. In other words,

political uncertainty about the preferences of current and future governments can erode credibility.
3

Thus, we ask: howmuch credibility do policymakers gain by implementing a currency board and

what are the effects of losing said credibility?

This paper investigates the notion of credibility by exploiting a key feature of the currency board

— the link between domestic and foreign interest rates under a fixed exchange rate. In its simplest

form it is given by the textbook version of the uncovered interest rate parity (UIP), which relates

the spot exchange rate St, the expectation over future exchange ratesEt{St+1}, and the interest

rates between two countries i and i∗: (1 + it) = Et{St+1}
St (1 + i∗t ). Within the fixed exchange rate

framework this boils down to an equality between domestic and foreign interest rates. However, if

the agents expect an appreciation or depreciation of the currency, i.e. a change in the exchange rate

2
Currency boards have been found to perform better than soft pegs in terms of economic growth. A growing body of

macroeconomic evidence suggests that volatility is detrimental to economic growth, especially when financial oppor-

tunities are limited. See, for example, Aghion and Howitt (2009), pp. 329–339.

3
Oliva et al. (2001) present a signalling model to consider the choice between a currency board and a traditional peg.
The model shows that the currency board’s effectiveness and welfare effects hinge on its credibility.
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regime, a spread between the rates will open as they take positions against the board.
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Figure 2.1:HKDHIBOR and USD LIBOR, annualized three-month interbank interest rates from 1986Q1 to 2012Q4.
Sources: Eurostat and Datastream.

A closer look at the HKD and USD interbank interest rates motivates the UIP theory quite well.

Figure 2.1 shows that the HK rate tends to align with the US rate during booming periods, but the

forward premia shed light into the time-varying nature of credibility. There is a notable spread after

the events of the “Black Monday”— a stock market crash in 1987. Afterwards, with the exception

of some small and short-lived discrepancies in 1991 and another one during theMexican crisis in

1995, the spreads relative to the US were close to zero for most of the 1989–1997 period. The 1997

Asian crisis and its associated turbulence, however, altered the pattern dramatically. The HKD

faced speculative pressure and capital outflows as HKD forward rates depreciated. The strategy of

market participants was to bid up Hong Kong’s interbank rate to benefit from short positions in

the futures market. In this acute episode of loss of credibility interest rate differentials surged. In

1998 they began a slow return towards near-zero levels, attained in 2000.

In contrast, financial markets in Hong Kong stayed remarkably calm during the SARS (severe acute

respiratory syndrome) outbreak in 2003. If anything, confidence in the linked exchange rate system

strengthened. Mirroring this, the interest rate differential between theHKD and the USD remained

negligible. Moreover, the global financial crisis of 2008–2009 raised no doubts as to the credibility

of Hong Kong’s linked exchange rate system. These sharp differences in spread movements between

the Asian crisis and the global recession are quite striking given the extreme limits on Hong Kong’s

policy instruments.

The profile in Figure 2.1 suggests what it might take to call the credibility of Hong Kong’s exchange

rate system into question. We illustrate this by first drawing on financial market information

captured by the behaviour of interest rates in the US andHong Kong. We take a more sophisticated

parity rule and first examine whether we can interpret the spread as coming from endogenous
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factors (such as changing real exchange rate or price level differences) or stemming from exogenous

factors (e.g. as a currency board crisis), and then look at the implications of changing credibility. We

develop a full-fledged DSGEmodel withMarkov-switching (MS-DSGE) to identify and interpret

time-varying credibility more precisely and utilise it to study the effects of loss and gain of trust in

the exchange rate system. The main appeal of the structural approach is that it allows for a direct

economic interpretation of observed movements in the data and fully exploits economic priors.
4

The remainder of this chapter is organised as follows. The next section lays out the theory, followed

by Section 2.2 that deals with the solution and estimation technicalities of MS-DSGE models.

Section 2.3 discusses the data used at the estimation stage, which is the main topic of Section 2.4.

Section 2.5 presents the economic implications of themodel and Section 2.6 discusses the robustness

of the results. Finally, Section 2.7 concludes.

2.1 The model

We use a Markov-switching DSGEmodel to study the credibility of Hong Kong’s linked exchange

rate system. It is based on the seminal works of Monacelli (2005) and Justiniano and Preston (2010)

in combinationwith a fixed exchange rate and aMarkov-switching component in the volatility of the

interest rate risk premium.
5
In this section we briefly present the key equations of the log-linearised

system.

On the demand side, consumers choose the optimal amount of consumption ct following the usual

Euler equation with habit formation:

ct − hct−1 = (Et{ct+1} − hct) + 1− h
σ

(Et{πt+1} − it) + 1− h
σ

(1− ρϑ)ϑt, (2.1)

ϑt = ρϑϑt−1 + εϑt with εϑt ∼ N(0, σ2
ϑ). (2.2)

Consumption ct is a bundle of domestic and foreign items, πt stands for CPI inflation, it denotes

the nominal interest rate, and ϑt is a preference shock that follows an AR(1) process with normal

innovations εϑt and standard deviation σϑ. The parameters in the Euler equation are: h, which

represents the habit parameter; σ— the risk-aversion/inverse of the elasticity of substitution, and

4
In recent years, the popularity of DSGE models with tight theoretical restrictions has gained ground. The trick is

to make a model that closely approximates reality. The dominant pre-recession 2008–2009 DSGE paradigm viewed

financial factors and/or credibility issues largely as a sideshow. The rapidly growing DSGE literature now seeks to

remedy these known weaknesses, so the value of this line remains contested, see Caballero (2010).

5
Liu andMumtaz (2011) provide an extension of Justiniano and Preston (2010) to a Markov-switching DSGE frame-

work from a floating exchange rate perspective.
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ρϑ— the autoregressive coefficient of the preference shock.

On the supply side, there are two types of producers: domestic firms, which satisfy the demand

for domestic goods, and import firms that introduce foreign goods to the domestic market. Each

type of firm sets the price for its respective good a lá Calvo (1983) in a hybrid manner, i.e. firms are

forward looking but have a degree of past indexation. This setup leads to the following dynamics of

home goods inflation πH,t and foreign goods inflation πF,t:

(1 + βδH)πH,t = βEt{πH,t+1}+ δHπH,t−1 + λH(θH)mct, (2.3)

(1 + βδF )πF,t = βEt{πF,t+1}+ δFπF,t−1 + λF (θF )ψt + µF,t, (2.4)

where δH and δF denote the indexation parameters for the home and foreign economy, β is the the

discount factor, and λH and λF are both functions of the Calvo parameters θH and θF , respectively.

These parameters govern the duration of price contracts. The higher the parameters θH and θF , the

longer prices remain unchanged, while low values are associated with higher competition as firms

adjust their prices more frequently. The final determinant of domestic goods inflation πH,t is the

marginal costs of the the firmsmct.

We assume that the prices of foreign goods abroad and the prices of foreign goods at home do not

necessarily have to be identical, i.e. the “law of one price” does not have to hold. The deviations

from the law are represented by ψt. In particular, this assumption relaxes the potentially tight link

between the real exchange rate qt and the terms of trade vt [Monacelli (2005)]:

ψt = qt − (1− α)vt, (2.5)

withα denoting the share of foreign goods in the consumption basket— ameasure for the openness

of the economy.

Both πH,t and πF,t are subject to exogenous shocks. The marginal costsmct are driven by a technol-

ogy process at with innovations ε
a
t , while foreign prices are subject to cost-push shocks µF,t with

innovations εµFt :

at = ρaat−1 + εat with εat ∼ N(0, σ2
a), (2.6)

µF,t = ρµµF,t−1 + εµFt with εµFt ∼ N(0, σ2
µF

). (2.7)

Exchange rate dynamics in SOEmodels are determined by the uncovered interest rate parity relation.
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In a floating exchange rate setup, the UIP is given by

(it − Et{πt+1})− (i∗t − Et{π∗t+1}) = 4et − χdt − φt. (2.8)

Following Benigno (2001), Schmitt-Grohé andUribe (2003), and Justiniano and Preston (2010), the

exchange rate dynamics are not only affected by inflation and interest rate differentials, (Et{π∗t+1}−

Et{πt+1}) and (it − i∗t ), respectively, but also by two additional components. The term dt repre-

sents the net foreign asset position. In an open economy, the agents may either borrow and save

domestically or tap into international markets. The net amount invested in foreign assets dt evolves

according to

dt = yt − (ct + α(qt + αvt)) + 1
β
dt−1, (2.9)

where yt denotes domestic output. The intuition behind this equation is that the difference be-

tween actual production and domestic consumption plus the trade balance can be invested into, or

borrowed from, international markets.

The last term in equation (2.8), φt, is an exogenous AR(1) process, driven by innovations ε
φ
t that

can be interpreted as a UIP shock in the floating exchange rate literature:

φt = ρφφt−1 + εφt . (2.10)

The distributional assumption over εφt will be discussed shortly.

DSGEmodels are typically closed by a Taylor rule. Since Hong Kong has a currency board, we close

the model by introducing a pegged exchange rate in accordance with Schmitt-Grohé and Uribe

(2003) and Galí andMonacelli (2005):

4et = 0. (2.11)

Substituting through the UIP (2.8), we derive an important relationship between domestic and

foreign interest rates, and namely, that domestic rates it are an endogenous function of the foreign

rates i∗t , the net foreign asset position dt, and the exogenous process φt:

it = i∗t − χdt − φt. (2.12)

This derivation introduces several appealing properties to the model. First, the interest rates are not

modelled as an identity as in Galí andMonacelli (2005), which is not supported by the data (see

Figure 2.1). Furthermore, an interest rate differential might arise from endogenous factors— an

indebtedness of the domestic agents, dt < 0, would induce a premium over the foreign interest rate
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i∗t . Hence it would be more costly for the agents to borrow further. Finally, the component φt can

capture exogenous events such as speculations against the board.

In order to model the credibility of the Hong Kong’s linked system, we allow for time variation in

the risk premium by introducing regimes into the variance of the innovation εφt .
6

φt = ρφφt−1 + εφt with εφt ∼ N(0, σ2
φ(st)). (2.13)

Here, σ2
φ(st) is modelled as a regime dependent variable through aMarkov-switching process with

states st = {1, 2} and a transition matrix

P =

p11 p12

p21 p22

 , (2.14)

where pij is the transition probability from state i to state j. The argument is that lower credibility

of the system should lead to a risk premium and higher volatility of the interest rates [Genberg and

Hui (2011)].

By construction, we impose a rather strong assumption that the economymay only fall into specific

(and a finite number of) regimes. This choice requires further motivation. From a technical point

of view if the data do not support two distinctive cases — if the estimated distributions of the

coefficients overlap — additional regimes are inappropriate. Moreover, introducing more cases

greatly increases the computational burden at the estimation stage.
7

Two theories have been put forward to explain regime switches in the risk premium. The first one

relates the concept of sunspot shocks to agents’ expectations. Here, sunspot shocks cause multiple

equilibria (a low-risk premium equilibrium if rational agents are not worried about sunspot shocks,

and a high-risk premium equilibrium if agents believe such shocks to be bad). Thus, if for some

reason the markets believe a currency crisis to be underway, it happens. Jeanne andMasson (2000)

propose an empirical test of sunspot-driven multiple equilibria in the currency crisis context. They

6
Engel and Hamilton (1990) and Engel (1994) have modelled exchange rates alternating between appreciation and

depreciation regimes in aMarkovian fashion. Their approach has amodicum of success in capturing the nonlinearity

and regime shifts of the underlying time series and in forecasting. In contrast, Marsh (2000) shows that the Markov-

switching modelling approach offers sound in-sample fit but usually fails to deliver a superior out-of-sample forecast

due to parameter instability over time.

7
Themain pitfall is the “curse of dimensionality.” A three-stateMarkov-switchingmodel requires the identification of

six coefficients in the probability matrix. The fact that the last column is a linear combination of the other two poses

a significant problem at the estimation stage when the posterior mode is maximized. Furthermore, the Hessian at the

posteriormode grows by almost three hundred elements (from 729 to 1024). These have to be estimated numerically,

which greatly increases the margin for error. Moreover, the posterior distribution of a multi-state model may be

highly non-Gaussian, which complicates the exploration of the posterior space for the Markov-Chain Monte Carlo

procedure [Sims et al. (2008)].
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prove that the effects of sunspot shocks are absorbed by discrete jumps in the intercept of a regression

of the currency devaluation probability on fundamental variables. Therefore, a Markov regime-

switching test can be used as a test for sunspot equilibria, as illustrated inMouratidis (2008).

The second theory for regime-switching uses the “animal spirits” concept of De Grauwe (2010) and

De Grauwe and Kaltwasser (2012). Here, boundedly rational and imperfectly informed agents use

heuristics tomake decisions in the foreign exchangemarket. Again, agents’ psychologicalmovements

are self-fulfilling as waves of optimism and pessimism lead to fluctuations of the exchange rate even

if the underlying fundamentals are unaltered by an exogenous shock. The theory of animal spirits

shaping exchange rates is also consistent with a two-state regime-switching model. Finally, since

reduced exchange rate volatility might translate into higher interest rate volatility, modelling the

dynamics of the exchange rate through the interest rate in more detail is of particular interest.

The small open economy is represented by equations (2.1) through (2.14). We introduce three

further AR(1) processes to describe the dynamics of the foreign variables output y∗t , inflation π
∗
t

and interest rate i∗:

y∗t = cy∗y
∗
t−1 + εy

∗

t with εy
∗

t ∼ N(0, σ2
y∗), (2.15)

π∗t = cπ∗π
∗
t−1 + επ

∗

t with επ
∗

t ∼ N(0, σ2
π∗), (2.16)

i∗t = ci∗i
∗
t−1 + εi

∗

t with εi
∗

t ∼ N(0, σ2
i∗). (2.17)

We are now ready to solve the model. First, we collect all endogenous variables in the vectorX and

the exogenous variables inZ . The state-space representation of a MS-DSGEmodel can be written

in the general form as

B1(st)Xt = Et{A1(st, st+1)Xt+1}+B2(st)Xt−1 + C1(st)Zt, (2.18)

Zt = R(st)Zt−1 + εt with εt ∼ N(0,Σ(st)). (2.19)

The matricesB1(st),A1(st),B2(st),C1(st) andR(st) are functions of the model parameters. In

the next section, we discuss how to solve and estimate (2.18) and (2.19) with actual data.

2.2 Solution and estimation

Introducing Markov-switching to DSGE models is a relatively new research area. There is yet

no established way to solve and approximate these models. Several solution methods have been

proposed by Davig and Leeper (2007b), Farmer et al. (2011), Foerster et al. (2013), Miah (2014),
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and Cho (2015). Notably, all revolve around the idea of a Minimal-State Variable (MSV) solution

introduced byMcCallum (1983) but explore different avenues. Davig and Leeper (2007b) use the

notion of bounded shocks, while the latter three employ the concept of Mean Square Stability

(MSS). As MS-DSGE models may have more than one stable solution, each method needs to

offer a way for choosing among them. In models where the shocks are unbounded Farmer et al.

(2011) and Cho (2015) provide checks for uniqueness and determinacy.
8
The former propose a

test to choose among several solutions, while the latter introduces the concept of a “no-bubble

condition”. Intuitively, this concept is based on forward-solving the state-space system. It can be

shown that in the limit, only one of the multiple solutions leads to a non-explosive path and thus

can be economically relevant.
9
Due to this appealing property we choose the algorithm of Cho

(2015) to solve our model.

The solution takes the form

Xt = Ω∗(st)Xt−1 + Γ∗(st)Zt, (2.20)

where Ω∗(st) and Γ∗(st) are functions of the parameters and the states.

Equation (2.20) may be combined with a measurement equation for likelihood-based estimation.

In standard DSGE models the likelihood function can be evaluated by means of the Kalman

filter. However, due to the Markov-switching extension, the filter is not operable. Therefore

to approximate the likelihood value we use Kim’s filter, as laid out in Kim and Nelson (1999),

which combines the Kalman filter with Hamilton’s filter as in Hamilton (1989). The intuition

behind Kim’s filter is as follows. At any given point in time t, using Kalman’s filter we evaluate the

likelihood function for each possible state transition. Since we may switch between k states, we

have k2
possible paths that give k2

likelihood values. As the number of paths grows exponentially,

computation quickly becomes intractable. Therefore at each t, we use Hamilton’s filter to evaluate

the transition probabilities across all state combinations and use these probabilities as weights for

the individual likelihood values. Essentially, at each time point we collapse k2
likelihood values into

one by weighted averaging.

The model is estimated via Bayesian methods. We evaluate the posterior distribution by imposing a

prior distribution on the parameters, including the coefficients of the transition matrix P . Let θ

collect all the parameters of the model, S be the history of the realised states and Y the data matrix,

8
Foerster et al. (2013) follow Farmer et al. (2011), while the method of Miah (2014) does not guarantee the finding of

all stable solutions.

9
For a detailed explanation see Cho (2015).
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then the posterior p(θ, P, S|Y ) can be evaluated using Bayes’ rule:

p(θ, P, S|Y ) = p(Y |θ, P, S) p(S |P ) p(θ, P )∫
p(Y |θ, P, S) p(S |P ) p(P, θ) d(θ, P, S)

. (2.21)

Here, p(Y |θ, P, S) is the likelihood of the data conditional on the states S, the parameters θ and

the Markovian probability matrix P . Furthermore, p(S|P ) denotes the marginal density of the

states conditional on P and p(θ, P ) is the marginal density of the parameters and the probabilities.

The denominator is the marginal density p(Y, θ, P, S), given by the law of total probability.

We maximize the posterior using the Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

of Andreasen (2008). This strategy uses a variance-covariance matrix to search for the maximum.

Thus, it avoids the need to calculate numerical derivatives and has an advantage when the function

has discontinuities, ridges, or local optima, which is more likely in the Markov-switching case

compared to a standard DSGEmodel [Hansen (2006), Van Binsbergen et al. (2012)]. We employ a

Markov-ChainMonte Carlo (MCMC) procedure to approximate the posterior distribution. For

each model we initiate four runs of 250 000 draws, from which the first 50 000 are discarded and

the rest are thinned by saving every 20th draw to reach a sample of 10 000 per batch. In all cases, the

parameters converge to the same means.
10

2.3 Data

We have seven variables that are driven by exogenous innovations: technology at, preferences ϑt,

import pricesµF,t, risk premiumφt, foreign demand y
∗
t , foreign inflation π

∗
t the foreign interest rate

i∗t . Thus, we can use up to seven series at the estimation stage. In the baseline scenario we choose five

variables to represent the domestic economy and two variables for the world economy. We useHong

Kong data on output, inflation, consumption, terms of trade, and theHIBOR series. For the foreign

variables we take US data on output and the USD LIBOR. Output is measured in real per-capita

terms, where the trend component has been removed via an HP filter with a smoothing parameter

of 1600. The inflation rate is the log difference of quarterly CPI. Consumption is measured as

HP-filtered real consumption per capita. Terms of trade are given in logs and we add ameasurement

errorRν as is common in the literature. Both interest rate series are taken in levels. All variables have

been seasonally adjusted. The data spans from the first quarter of 1986 to the last quarter of 2012,

10
An alternative approach to the MCMC method is to use a Gibbs sampler, or more precisely “Metropolis within

Gibbs” as in Bianchi (2012). This method, however, can be computationally more intensive.
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altogether 108 observations. Hong Kong data has been collected from the HKMA and the Hong

Kong statistical office. US data has been obtained through Datastream. We have the following

measurement equation: 

4GDPt
4CONSt
INFLt
HIBORt

TOTt
4GDPUS

t

LIBORt


=



yt
ct

π(q) + πt
i(q) + it
vt +Rv

y∗t
i(q)∗ + i∗t


, (2.22)

where π(q)
, i(q), and i(q)∗ denote the means of the variables. As a benchmark we estimate a standard

DSGE model with no regime switching, labelled asM1, and then a Markov-switching versionM2.

Next we turn to the prior that we impose on the parameters and present the main findings.

2.4 Priors and posterior estimates

Table 2.1 presents the parameters of the model. The second and third column present the prior

distributions and means, while the last three columns show the posterior estimates. The 95%

probability intervals for each parameter are shown in brackets.

The prior calibration is based on several studies of the Hong Kong economy. We follow Funke et al.

(2011) and Funke and Paetz (2013) for the parameters for which their model and ours imply coherent

dynamics: the Frisch elasticity of labour supply ϕ, the elasticity of substitution between domestic

and foreign goods η, the intertemporal elasticity of substitution σ, the habit formation parameter

h, and the persistence and variance of shocks. Due to the absence of a financial sector and capital,

which imply different price dynamics, we look toward other studies for the price rigidity parameters

θH and θF . The estimates seem to vary quite a bit. Genberg and Pauwels (2005) suggest a rather

short price stickiness of about two to three quarters, while the findings of Razzak (2003) and Cheng

and Ho (2009) correspond to seven to eight quarters of constant prices. We set the prior on price

contracts fairly low, θH = θF = 0.375, based on Genberg and Pauwels (2005) and the degree of

backward-looking agents δH and δF at 0.2 in the baseline case. We set the debt sensitivity parameter

χ at 0.01 as in Justiniano and Preston (2010). We fix the discount factor β and the coefficient of

openness α. The former is calibrated to match the steady state annual interest rate of 4.06% and

the latter is set at 0.5, implying that domestic and foreign goods have equal shares in the consumer

basket.
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Distribution Prior Mean M1 M2 : st = 1 M2 : st = 2
p11 Beta 0.950 —

0.961

[0.904, 0.993]

—

p22 Beta 0.950 —
0.964

[0.925, 0.991]

—

β PM 0.983 0.983 0.983 —

ϕ Gamma 2.000
2.010

[1.625, 2.431]

2.029

[1.639, 2.458]

—

θH Beta 0.375
0.861

[0.834, 0.887]

0.854

[0.825, 0.881]

—

θF Beta 0.375
0.843

[0.812, 0.874]

0.846

[0.814, 0.878]

—

α PM 0.500 0.500 0.500 —

σ Gamma 1.000
2.684

[1.752, 3.809]

2.524

[1.564, 3.752]

—

η Gamma 2.000
2.282

[1.895, 2.701]

2.412

[2.026, 2.815]

—

h Beta 0.200
0.565

[0.459, 0.666]

0.575

[0.461, 0.682]

—

δH Beta 0.200
0.422

[0.281, 0.564]

0.426

[0.291, 0.567]

—

δF Beta 0.200
0.712

[0.602, 0.811]

0.706

[0.603, 0.802]

—

χ Gamma 0.010
0.014

[0.009, 0.019]

0.017

[0.013, 0.021]

—

ρa Beta 0.700
0.908

[0.777, 0.975]

0.905

[0.777, 0.973]

—

ρµF Beta 0.700
0.918

[0.830, 0.972]

0.894

[0.790, 0.962]

—

ρν Beta 0.700
0.546

[0.381, 0.713]

0.541

[0.374, 0.703]

—

ρφ Beta 0.700
0.705

[0.531, 0.857]

0.697

[0.524, 0.844]

—

cy∗ Beta 0.850
0.900

[0.825, 0.968]

0.891

[0.820, 0.957]

—

cπ∗ Beta 0.850
0.649

[0.543, 0.743]

0.661

[0.562, 0.745]

—

ci∗ Beta 0.850
0.923

[0.894, 0.951]

0.931

[0.898, 0.959]

—

σµF IGamma 2.000
0.264

[0.202, 0.342]

0.273

[0.208, 0.354]

—

σa IGamma 2.000
5.459

[4.216, 7.002]

5.142

[3.984, 6.628]

—

σν IGamma 2.000
11.001

[8.370, 14.300]

10.869

[8.290, 14.233]

—

σφ IGamma 2.000
0.292

[0.260, 0.329]

0.101

[0.082, 0.126]

0.511

[0.418, 0.629]

σy∗ IGamma 1.000
0.550

[0.492, 0.615]

0.546

[0.488, 0.614]

—

σπ∗ IGamma 1.000
1.540

[1.322, 1.797]

1.486

[1.282, 1.725]

—

σi∗ IGamma 1.000
0.134

[0.119, 0.150]

0.133

[0.119, 0.150]

—

Rv Normal 0.000
-0.001

[-0.298, 0.296]

-0.000

[-0.117, 0.116]

—

Table 2.1: Estimated coefficients at the posterior mean. M1: Model with fixed parameters;M2: Markov-switching
model; 95% credible interval in brackets. PM indicates “point mass”, IGamma denotes the inverse Gamma distribu-
tion.

The persistence of the foreign variables is centred around 0.85, which we obtain by fitting an AR(1)

model to the series. The variance of all domestic innovations is chosen so that it is smaller in the US
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compared to Hong Kong. Finally, we assume that the probability of switching between regimes has

a mean of 0.95, which implies an average duration of each regime of about 5 years with a standard

deviation of 2.5 years.

The posterior estimates are in line with the literature on Hong Kong. The risk aversion coefficient

σ is around 2.6, which is a typical value for a small open economy. The Frisch elasticity of labour

supplyϕ is not identified due to the absence of labour series and is therefore centred around the prior

distribution. The habit parameter h = 0.56 shows that consumption smoothing is an important

factor in Hong Kong. The data supports rather sticky prices with θ = 0.86. This is also evident

in the backward-looking component δH = 0.4, which is in line with Razzak (2003) and Cheng

and Ho (2009), even though we impose a smaller value as a prior. This finding is robust even if

the inflation rate is approximated by the GDP deflator instead of the CPI. Technology and import

shocks are relatively persistent with ρa = 0.91 and ρµF = 0.92, respectively. The preference shock

has a moderate persistence of ρν = 0.5. We now turn to the time-varying coefficients.

2.5 Assessing the credibility of Hong Kong’s exchange rate system

Wemodel the credibility of the Hong Kong exchange regime as a two-state process, allowing the

volatility of the risk premium σ2
φ to vary over time. Our hypothesis is that if the credibility of the

system is low, agents would be willing to take positions against it. Such short or long positions on

the stock market would pressure the fixed exchange rate regime and in turn increase the volatility

of the interest rate differential. We estimate two distinct parameter values with non-overlapping

posterior distributions (plotted on Figure 2.2), suggesting heteroskedasticity of the risk premium.

The means of σφ(1) and σφ(2) lie at 0.101 and 0.511, respectively.
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Figure 2.2: Posterior densities of the switching parameter σφ(st) under the first (—) and second regime (- -).

Using the Hamilton filter we estimate the occurrence probability of each regime throughout the

sample. We plot the probability for the second state in Figure 2.3. The bottom plot depicts the US

andHong Kong interest rates. The figure clearly indicates time variation in the risk premium on
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HIBOR. Three episodes are of particular interest. In the first, the probability peaks to one in the

third quarter of 1987 and drops back after the third quarter of 1990. Next, we see a similar pattern

throughout the Asian crisis, particularly between 1997Q2 and 1999Q2. Finally, there is a lone spike

right before 2005 with a value of 0.8. We consider each episode in turn.

1990 1995 2000 2005 2010
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Estimated probability of the second regime
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Figure 2.3: Regime probabilities and interest rates. Top panel: Estimated probability of the second state. Values below
0.5 indicate a realisation of the first regime and values above 0.5 — a realisation of the second regime. Bottom panel:
Annualized three-month interbank interest rates.

The Hong Kong stock market crashed on October 19, 1987 with shares losing almost half of their

value.
11
The crisis spread quickly to other Asian markets, Europe and the US. Major indices such

as the FTSE and Dow Jones lost over 20% of their value in a matter of days. The crash put severe

pressure on Hong Kong’s currency board. This is captured in the model by a switch in the risk

premium volatility exactly in the third quarter of 1987. Even though the interest rates converged

back two quarters later, the credibility of the board could not be restored as easily. The second

regime prevailed for two more years. This finding exploits the rich structure of the DSGEmodel.

The economy went into a recession as GDP shrank for six consecutive quarters. With the economy

recovering throughout 1992 and interest rates declining, trust in the mechanism restored. Over the

following seven years, the HIBORwas almost identical to the LIBOR, with the exceptions of two

minor discrepancies in 1991 and the Mexican crisis in 1995.

The Asian crisis provoked considerable speculation against the HKD in futures markets. The 3-

monthHIBOR reached an all-time high, rising evenmore than during the BlackMonday aftermath,

11
There is a vast body of literature documenting the events and the aftermath of the BlackMonday. See e.g. Roll (1988),

Malliaris and Urrutia (1992), and Carlson (2006).
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while daily levels jumped to 16%–18% as speculators bet against the currency board on futures

markets. The credibility of the linked exchange rate system was again put into question as interest

rates surged. TheHKMA responded in September 1998with seven technical measures to strengthen

the mechanism.
12
Those measures included a weak-side commitment against speculative attacks

and depreciation and easing the borrowing conditions for the banks. The interest rate differential

fell from 5% in the second quarter of 1998 down to 0.8% in the third before returning to almost

zero levels towards the end of 1999. Our findings suggest an almost immediate reaction to the stance

taken by the HKMAwith a delay of only one quarter. A similar result has been found in Genberg

and Hui (2011), who assess the credibility of the linked exchange rate system with a reduced-form

model, and in Kwan et al. (2001), who look at credibility from a target-zone model perspective.

The third episode appears to have been short lived. In 2004, the HKDwas put under appreciation

pressure. The futures market drove the interest rates down over the expectation that the HKMA

would follow potential moves from the mainland for appreciation against the dollar [Genberg and

Hui (2011), p. 289]. As the technical measures of 1998 introduced only a weak-side commitment,

the system was ill-prepared to cope with pressures on the strong side. Therefore, the currency board

was modified to create a symmetric band around the rate of USD/HKD 7.8 in May 2005. This

helped calm the markets and narrow the interest-rate differential.

We find no evidence of a regime change throughout the financial crisis of 2008–2009, even though

there seems to be a negative differential similar to the appreciation pressures in 2004. Hence, the

spread is stemming from endogenous factors. In fact, the stability of the mechanism was never

questioned throughout the crisis and the monetary authority was never pushed to act.

Our framework allows us to analyse responses of the macroeconomic variables in each regime sepa-

rately. Figure 2.4 plots the impulse responses following a risk premium shock for the standardDSGE

model and the MS-DSGE version. When agents trust the currency board, the risk premium is small

to non-existent. Consequently, risk premium shocks play a negligible role for the macroeconomic

variables, both real and nominal. Consumption and output fall slightly on impact. Due to the habit

formation, consumption declines further before slowly returning to the steady state. Falling demand

and prices force the firms into an internal devaluation, as they reduce marginal costs. The lower

prices of domestic goods, lower production costs, and the fixed exchange rate lead to a temporary

upswing in GDP growth. The economy becomes more competitive with falling domestic prices

and the terms of trade improve.

12
The official press release is available at the HKMA website: http://www.hkma.gov.hk/eng/key-information/press-

releases/1998/980905.shtml.
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Figure 2.4: Impulse responses following a risk premium shock for state one: “high credibility” σφ(1) (- -), state two: “low
credibility” σφ(2) (-.-), and the no-switching versionM1 (—) .

As evident from Figure 2.4, the standard DSGE model covers a “middle-ground” scenario. The

impulse responses overestimate the reactions of macroeconomic variables during times when the

board is perceived as credible and underestimate the nature of interest rate shocks during the “non-

credible” regime. In the second regime all variables exhibit strong cyclical behaviour. Larger risk

premium shocks translate in higher macroeconomic uncertainty and volatility. Consumption falls

much lower compared to the first regime and the temporary spike in output growth is mitigated by

a GDP contraction in the medium run. The crisis is associated with large capital outflows as agents

divert investments into foreign assets.

Themain takeaway is that crisis periods in particular have non-linear effects on the economy because

they can induce an adverse feedback loop. A low credibility regime leads to a widening of interest

rate spreads, which in turn leads to a contraction of GDP that worsens financial market conditions

and widens interest rate spreads even further. This leads to a further contraction of GDP, and so

on. Faced with the possibility of an adverse feedback loop, the HKMA likely needs to aggressively

pursue a transparent and credible commitment to a specific exchange rate target.
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Further insight into the nature of exchange rate credibility can be inferred from a variance decom-

position analysis. We estimate the determinants of the interest rate volatility conditioning on each

state and present the results in Figure 2.5.
13

The left panel plots the variance decomposition of the interest rate it associated with the high

credibility state over time. On impact, the variance of the domestic interest rate is mainly driven by

the variation in the foreign rate, up to 55%, while the rest is mostly attributed to the risk premium

shock. However, both of these determinants are prominent only in the short run until the main

drivers technology and preference kick in.

The right panel, associated with the low credibility state, paints a different picture. The main driver

behind the variance of domestic rates is not the dynamics of the foreign rates. Over 90% of the

variance is explained by the risk premium shock. Moreover, this finding is highly persistent — even

after three years the explained volatility is over 60%. This implies that once a risk premium forms, it

remains present for prolonged periods unless the HKMA intervenes. The interpretation is that it

takes time for trust in the linked exchange rate system to be restored.
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Figure 2.5: Variance decomposition of the interest rate for state one: “high credibility” σφ(1) and state two: “low credi-
bility” σφ(2). The X-axis shows the variance decomposition horizon in quarters, the Y-axis is in per cent.

2.6 Robustness checks

We perform two types of robustness checks to test the sensitivity of the results. The first one is

to estimate the sameM2 model specification, but with different data series. We explore several

strategies: (i) using the GDP deflator as a proxy for inflation; (ii) substituting the terms of trade

with US inflation; (iii) substituting the real exchange rate for the terms of trade. In all cases, the

identified time-varying coefficients are similar and the endogenously estimated regime probabilities

13
The full tables with all variables may be found in Section B.1 in the Appendix.
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do not change.

In the second type of checks, we keep the dataset as in the mainMS specification and allow more

coefficients to switch. The need for this comes from the nature of general equilibrium models,

where all variables are interlinked. The more flexible Markov-switching specification may allow for

peculiarities of one time series to propagate through the model.

We therefore estimate a third model,M3, where we allow for heteroskedasticity in all exogenous

variables, that is, we allow for time-variation in σφ (the risk premium), σa (technology), σµF (in-

flation of imports), and σν (preferences). The key results are plotted in Figure 2.6. The four plots

depict the posterior densities of the switching parameters. Our findings remain unchanged. The risk

premium coefficient is around 0.1 for the “high credibility regime” and 0.5 for the “low credibility

regime”, exactly as in the core modelM2. Switching in other parameters cannot be detected as the

posterior densities largely overlap. This supports our modelling strategy in two ways. First, its serves

as evidence that the captured heteroskedasticity is indeed a product of the interest rate and does not

feed in from other variables in the structural model. Second, it shows that no additional switching

parameters for the volatilities are needed, as they do not provide further insight. The estimates of

the remaining parameters in the extended model are also similar to those inM2.
14
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Figure 2.6:M3: Posterior densities of the switching parameters technology σa, the risk premium σφ, import cost-push
shock σµF

, and preferences σν . Regime one (—) and regime two (- -).

14
Section B.3 in the Appendix presents a full table with the estimated parameters of this model.
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2.7 Concluding remarks

This chapter provides a fresh look at the credibility of Hong Kong’s linked exchange rate system

through the lens of a structural model with stochastic volatility. Utilizing a novel Markov-switching

DSGE approach, we extract evidence from financial information that the currency board has faced

a loss of credibility during several prolonged periods, and even during times when interest-rate

differentials have otherwise been negligible.
15

We are essentially modelling the exchange rate regime credibility as a non-linear process with two

distinct regimes. In this setup, we can see that in periods of high credibility the economy barely

reacts to interest-rate shocks, yet in times of speculation against the exchange rate mechanism the

economic system is much more sensitive than a standard model without time-varying parameters

would predict. Through conditional variance decomposition we show that the loss of credibility

may have prolonged effects before trust in the system is restored. Indeed, after the Asian crisis and

during the appreciation pressure in 2005, the HKMA had to step up and strengthen the currency

board before credibility could be restored.

A drawback of the proposed models is that they are not able to capture the endogeneity of regime

shifts. The switching parameters are exogenous, so the analysis does not allow for counterfactual

policy analysis. To capture the effects of policy, one needs to know how the parameters of the

Markov-switching process would have evolved for other policies. This, of course, is the Lucas

critique and requires endogenisation of the switching parameters in the tradition in Filardo (1994).

While MS-DSGEmodels are not yet able to address this critique, a handful of reduced-formmodels

have incorporated endogenous transition probabilities and this is the main focus of the next chapter.

15
The ability of Markov-switching frameworks to generate non-trivial connections between the dynamics of the en-

dogenous variables and the level of uncertainty is particularly intriguing in light of the attention that uncertainty has

recently received, see Bloom (2009).

47





3
The credibility of Hong Kong’s currency

board system: Looking through the prism of

MS-VARmodels with time-varying transition

probabilities

In order to overcome financial crisis episodes, currency board exchange rate regimes have been

implemented with success in countries such as Argentina, Bulgaria, Estonia, and Hong Kong as a

tool to safeguard external financial stability. HongKong introduced a currency board system in 1983.

Against the background of severe crises, Argentina and Estonia adopted currency board systems

in 1991 and 1992, respectively, and Bulgaria in 1997. Under the arrangement the monetary base is

fully backed by foreign currency reserves. Typically, changes in the monetary base are fully matched

by corresponding changes in foreign reserves at the fixed exchange rate of the reserve currency, i.e.

there exists 100% reserve backing.

This chapter has been co-authored with Prof. DrMichael Funke.
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The recent revival of interest in currency board systems originates from the “hollowing out of the

middle” exchange rate regime literature [Fischer (2001)], as well as the experience of the global

financial crisis. The rationale for the bipolar view is that corner solutions such as free floats and

super-strict pegs are preferable to intermediate regimes because they are less crisis-prone in the

context of today’s volatile financial markets, on the assumption that investors will otherwise sooner

or later overwhelm intermediate regimes like band systems. Bluntly, the exchange rate regime policy

options were assumed to have hollowed out to the point where the only choices left to policymakers

were whether to let exchange rates float or fix them permanently via a currency board or a monetary

union.
2

The Hong Kong government adopted the currency board system on October 17, 1983 during

the “Black Saturday Crisis”. Under the board, the money supply in Hong Kong is fully backed

up by US dollars (USD), and the HK dollar (HKD) is effectively fixed at the rate of USD/HKD

7.80. Any one of the three note-issuing commercial banks wishing to print HKD notes would

have to surrender an equivalent amount of USD (at the official rate) to the Hong KongMonetary

Authority (HKMA) in exchange for so-called “Certificates of Indebtedness”, which entitle the bank

to print a corresponding amount of HKD. Conversely, note-issuing banks can use their certificates

of indebtedness in HKD to redeem an equivalent amount of USD from the HKMA. A distinctive

feature of the system up toMay 2005 was that no strong-side boundary existed, i.e. the currency

board system was asymmetric. InMay 2005, however, there was a sweeping transformation. The

HKMA introduced a symmetric target zone with a narrowHKD/USDband of [7.75, 7.85].
3
While

exchange rate interventions at the boundaries of the band are automatic, the HKMA also reserves

the right to inject or withdraw liquidity intra-marginally.

The default view on a currency board system is that it lends credibility to the exchange rate and

monetary policy by relinquishing the devaluation option. However, this is not always the case, as

one can point to numerous historical episodes where currency boards fail to enhance the credibility

of the monetary authority. This is because the government retains its right to abandon the scheme

and renege on its institutional commitments. In other words, political uncertainty about the

preferences of current and future governments can erode credibility. With respect to Hong Kong’s

currency board system, we illustrate this by drawing on financial market information captured by

2
Williamson (1995) explains what a currency board is and discusses the pros and cons of the exchange rate regime.

The author emphasizes that currency board systems may be quite attractive to small, open economies and a useful

monetary arrangement for countries emerging from a very deep macroeconomic crisis, but that their disadvantages

outweigh these advantages in large open economies.

3
For a thorough review of the advancement towards a symmetric system see Chen et al. (2013).
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the behaviour of interest rates in the US and Hong Kong. Because currency board rigidity ties the

hands of HKMA, the system aligns Hong Kong’s interest rates to the US ones.
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Figure 3.1: HKD HIBOR and USD LIBOR, annualized 3-month interbank rates from 1986Q1 to 2012Q4. Source:
Eurostat and Datastream

Figure 3.1 reveals that interest rates have been on equal levels in normal periods, but the interest

parity has broken down in turbulent times. The task, therefore, is to account for a succession of

higher credibility periods, followed by sub-periods of lower credibility.
4
It is apparent that the

stock market crash at the end of the 1980s put severe pressure on Hong Kong’s currency board.

The system was again put to the test by the Asian financial crisis of 1997 – 1998, when the HKD

suffered a series of attacks from speculators and an acute episode of credibility loss. This contagion

effect was caused by speculative attacks on other Asian currencies and forced various countries

to abandon their linked exchange rate systems (LERS). The third noteworthy episode appears to

have been short lived. Subsequently, the HKDwas subject to appreciation pressure in 2004. The

futures market drove the interest rates down in the expectation that the HKMA would follow

potential moves from the mainland for appreciation against the USD. Finally, a striking feature that

merits recognition is that, despite the great turmoil, Hong Kong’s currency board system did not

suffer from risk-aversion-induced capital outflows in the wake of the global financial crisis. Instead,

after the collapse of Lehman Brothers and during the broadening and deepening global financial

crisis, an unwinding of carry trade occurred. In this context, investors liquidated their offshore

investments and repatriated funds to Hong Kong. This was further strengthened by that fact that

the HKD’s hard peg to the USD made it a safe-haven choice in times of market turbulence. As

might be expected, these inflows put upward pressure on the HKD/USD exchange rate, quickly

pushing it towards the strong-side limit. Moreover, in the further course of the global financial

4
The empirical research investigating the credibility of pegged exchange rate systems was initiated by Svensson (1991)

and Svensson (1993). He develops various techniques to extract devaluation expectations from interest rate differen-

tials. De Grauwe (1994) also uses interest rate differentials to shed light on time-varying credibility.
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crisis abundant liquidity provided by advanced economies’ central banks and optimism about the

Chinese economy led to an increasing demand for HKD assets by foreign investors.

Given the above, the question arises as to what has triggered the occasional scepticism over the

suitability and/or sustainability of Hong Kong’s currency board system? Since the inception of the

global financial crisis of 2008 – 2009, which brought financial markets into turmoil, we now have

extensive theoretical research suggesting that the pricing of assets, including exchange rates, may

be non-linear. Recent papers have stressed the importance of non-linear effects and amplification

dynamics during financial crises. The theory suggests that relatively small shocks can have large

spillover effects [Brunnermeier and Pedersen (2008)]. Moreover, Brock et al. (2009) have shown

that hedging instruments may produce non-linear dynamics and destabilize markets. Bianchi (2011)

and Jermann and Quadrini (2012) have formalised the idea of a regime-dependent role of financial

markets. Looking at exchange rates, Jeanne and Masson (2000) have addressed sunspot-driven

multiple equilibria in the exchange rate context. They prove that the effects of sunspot shocks are

absorbed by discrete jumps in the intercept of a regression of the currency devaluation probability on

fundamental variables. Therefore, a Markov regime-switching test can be used to identify sunspot

equilibria. An alternative theory for regime-switching uses the “animal spirits” concept of De

Grauwe (2010) and De Grauwe and Kaltwasser (2012). Here, boundedly rational and imperfectly

informed agents use heuristics to make decisions in the foreign exchange market. Again, agents’

psychological movements are self-fulfilling, as waves of optimism and pessimism lead to fluctuations

of the exchange rate even when the underlying fundamentals are unaltered by an exogenous shock.

However, it should be noted that different authors point to a variety of causal mechanisms. A

number of studies have examined the idea of regime-switching credibility in exchange rate dynamics.

See, for example, Sarantis and Piard (2004), Arestis and Mouratidis (2005), Chen (2006) and

Altavilla and De Grauwe (2010). One way to capture (albeit in a reduced-form way) the impact of

financial factors shaping credibility is to employMarkov-switching VAR (MS-VAR) models with

time-varying transition probabilities. In our view, such models have much to contribute and offer

us a promising avenue of empirical research.
5

Even though the currency board system has a long history in Hong Kong, empirical evidence on its

perceived sustainability and credibility remains scant. However, three papers have recently addressed

the issue head-on. Genberg andHui (2011) have provided econometric evidence using option-based

5
While MS-VAR models with endogenous switching are capable of providing information on the mechanism trig-

gering regime changes, they come at the price of considerable added complexity compared to traditional Markov-

switching models with exogenous jumps.
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measures. Blagov and Funke (2013) have analysed the time-varying credibility of Hong Kong’s

currency board system employing a structural open-economyMS-DSGEmodelling frameworkwith

conventional New Keynesian foundations. Finally, Chen et al. (2013) have modelled the revamping

of Hong Kong’s currency board system in 2005 as a symmetric two-sided system with a narrow

exchange rate band. Our non-linear modelling approach complements and extends these lines of

enquiry by highlighting the mechanism triggering time-varying credibility. We create a volatility

index, based off of the Hang Seng Index, that proves informative for Hong Kong’s currency board

perception.

The remainder of the chapter is organised as follows. In the next section we describe how to think

about the time-varying changes in credibility from a conceptual standpoint. In Section 3.2we discuss

the model’s estimation methods. Section 3.3 presents the data introduces the trigger variables, while

Section 3.4 discusses the empirical results. Section 3.5 deals with the robustness checks and the final

section concludes.

3.1 Theoretical specification

Tomodel the time-varying credibility of Hong Kong’s currency board we turn to the theoretical

framework of Filardo (1994). Using Bayesian methods, we estimate a VAR model with regime-

dependent parameters and time-varying transition probabilities (henceforth MS-BVAR). The

advantage of this model is that it allows us to endogenise the probabilities associated with the regime

switching. The structural MS-BVAR of order l can be written in the general form as

A0(st)yt = a0(st) + A1(st)yt−1 + ...+ Al(st)yt−l + εt, (3.1)

where yt is a (N × 1) vector, t = 1, ..., T , and the intercept a(st) and the (N × N) coefficient

matricesAj(st), j = 1, ..., l, are subject to regime shifts with st denoting the corresponding state.

The (N × 1) vector of i.i.d. structural innovations εt follows a normal distribution with state-

dependent variance: ε ∼ N(0,Ψ(st)). Assuming thatA0(st) is known and invertible the model

can be rewritten in the following reduced form:

yt = c(st) +B1(st)yt−1 + ...+Bp(st)yt−p + ut, (3.2)

where c(st) = A−1
0 (st)a0(st) and Bj(st) = A−1

0 (st)Aj(st), j = 1, ..., l. The reduced form

residuals are given by ut = A−1
0 (st)εt ∼ N(0,Σ(st)), where Σ(st) = A−1

0 (st)Ψ(st)A−1
0 (st)

′
.
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The state dependence is modelled as a stochastic Markov process with transition matrix

P =

 p(z) 1− p(z)

1− q(z) q(z)

 . (3.3)

The transition probability from state one to state one is given by p(z) and the transition probability

from state two to state two— by q(z). In contrast to a fixed transition probability model, both

p(z) and q(z) are functions of a leading variable z and are determined by a latent variable model as

in Filardo (1994) and Filardo and Gordon (1998):

s∗t = γ0 + γ1zt−m + γ2(st−1 − 1) + ωt, (3.4)

where s∗t is unobserved, ωt ∼ N(0, 1) w.l.o.g [Filardo and Gordon (1998), p. 104], andm denotes

the lag of zt, which is required to avoid potential endogeneity issues as well as to accommodate the

fact that the information for the leading variable is only available end-of-period. We use one, two,

three and four lags at the estimation stage. The observable state variable st is defined as:

st =


1, if s∗t < 0,

2, if s∗t ≥ 0.
(3.5)

The transition probabilities across regimes p(z) and q(z) are obtained by transformation through

the cumulative distribution function (CDF) of the standard normal distribution:

p(z) = Prob(st = 1|st−1 = 1) = Φ(−γ0 − γ1zt−m), (3.6)

q(z) = Prob(st = 2|st−1 = 2) = 1− Φ(γ0 − γ1zt−m − γ2). (3.7)

The parameter γ1 allows us to evaluate the informativeness of the leading variable zt and measure

its influence on the frequency of regime switches. The model nests the fixed probabilities case if

γ1 = 0. Hence, it can be tested whether the indicator variable contains any information regarding

the probability of switching between the regimes.

TheVARmodel given in (1) – (4) provides a parsimoniousway to capture the non-linearmomentum

of shocks resulting from a complicated structure of lagged interdependencies. In general, the

presence of time-variation in the coefficients adds to the curse of dimensionality and some creativity

is required to obtainmeaningful parameter estimates and responses to the underlying shocks, which

is the main topic of the next section.
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3.2 Statistical inference

The model is estimated using Bayesian methods. We combine the likelihood function with prior

information to evaluate the posterior distribution using a Gibbs sampler. Inference can be divided

in two stages: (i) estimating the VAR, given the path of observed states and (ii) estimating the

transition probabilities and the trajectory of the regimes, given the VAR coefficients.

We begin by expressing equation (3.2) as a VAR(1):

Y = XB + U. (3.8)

A common way to introduce prior information in a BVAR is via the dummy observations strategy

of Theil and Goldberger (1961) as outlined in Banbura et al. (2010). This approach introduces

priors on the autoregressive coefficients through a matrix Yd, and on the variance-covariance matrix

and the intercept through a matrixXd. The strategy is equivalent to introducing a Minnesota prior.

The matrices of the dummy observations are:

Yd =



diag(δ1σ1,...,δNσN )
λ

0N(l−1)×N

.........

diag(σ1, ....., σn)

.........

01×N

diag(δ1µ1,...,δNµN )
τ



, Xd =



Jl⊗diag(δ1σ1,...,δnσn)
λ

0Nl×1

0N×Nl 0N×1

........... ........

01×Nl ε

1⊗diag(δ1µ1,...,δNµN )
τ

0N×1


. (3.9)

Above, δ1, ..., δN control the tightness of the prior on the first lag, while σ1, ..., σN are the diagonal

elements of the estimated reduced form variance-covariance matrix Σ̂. The means of the time-

series in the vector yt are denoted by µ1, ..., µN . The parameters λ and τ control the long-range

dependence of the VAR process and the prior on the sum of coefficients, respectively and ε denotes

the prior for the constant. We follow Banbura et al. (2010) and set λ = 0.2, τ = 5λ, and impose a

flat prior on the constant ε = 0.001. Defining Y ∗ = [Y ′, Y ′d ]′, andX∗ = [X ′, X ′d]′ the VAR boils

down to

Y ∗ = X∗B∗ + U∗. (3.10)
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It follows that the OLS parameter estimates are given by:

B∗ = (X∗′X∗)−1(X∗′Y ∗), (3.11)

Σ̃ = (Y ∗ −X∗B∗)′(Y ∗ −X∗B∗). (3.12)

Letting β = vec(B∗), the posterior distributions of the estimatesB∗ and the residual variance-

covariance matrix Σ̃ are:

p(β|Σ̃) ∼ N(β, Σ̃⊗ (X∗′X∗)−1), (3.13)

p(Σ̃|β) ∼ iW (Σ̂, T ∗ + 2 + (1 +Nl)), (3.14)

where iW denotes the inverse Wishart distribution and T ∗ is the length of Y ∗. Finally, we impose

an uninformative prior on the parameters in the transition probability equations (3.6) and (3.7) to

infer from the data whether our indicator variable zt is predictive for the regime changes.

Inference on this form of theMS-VAR is straightforward once the vector of realised states ST =

[s1, ..., sT ]′ is known, as the model collapses to ns linear Bayesian VARs. The vector of regimes may

beobtained through theHamilton filter. LettingP = [p1(Z), ..., pT (Z)]′,Q = [q1(Z), ..., qT (Z)]′,

and k denoting the iteration number, estimation is done via the Gibbs sampler as follows:

0. Set initial conditions for the parameters of interest {β̃0, Σ̃0,Γ0,P0,Q0}.
1. Draw ST,k using the Hamilton filter conditional on β̃k−1, Σ̃k−1,Γk−1,Pk−1, andQk−1.

2. Draw β̃k conditional on Σ̃k−1 and ST,k, eq. (3.13).

3. Estimate Σ̂ and draw Σ̃k conditional on β̃k, eqs. (3.2) and (3.14).

4. Estimate the probit model using ST,k and obtain Γk,Pk, andQk, eq. (3.4).
5. Set k = k + 1. Go back to step 1.

Following the roadmap specified above, we run the Gibbs sampler 30 000 times. We discard the first

25 000 as a burn-in period, leaving us with 5000 draws in total.
6
We assess the convergence using

standard methods as presented in An and Schorfheide (2007), such as recursive means and trace

plots (see Appendix C.6). In the following section we lay out the data and apply the estimation

procedure to Hong Kong’s currency board system.

6
We confine ourselves to two-state MS-VARmodels. This makes the approach amenable to applied work. Estimating

more than two states greatly reduces the sample size and increases the number of coefficients exponentially.
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3.3 Data and identification

Due to the added complexity from the Markov-switching specification we try to keep the set of

variables in theVAR small. We choose three core variables: per capita real quarterlyGDP growth rate

(expressed in log differences), the quarterly CPI inflation rate and the spread between the 3-month

HIBOR and the 3-month LIBOR. The Hong Kong data, presented on Figure 3.2, consist of 100

quarterly observations from 1987Q2 to 2012Q4.
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Figure 3.2: Data for the VAR variables. GDP growth rate, CPI inflation rate, and the HIBOR-LIBOR spread. Quar-
terly data from 1986Q1 to 2012Q4. Source: The Hong Kong census and statistics department.

Within the MS-BVAR framework with time-varying transition probabilities the choice of the

indicator variable z is of primary importance. The chosen series should have a leading property

and be representative of the expectations of the economic agents. Moreover, it should capture the

uncertainty in the economy. Equitymarkets provide an informative gauge of the price of uncertainty.

They reveal investors’ assessments of how risks affect economic decisions, conveniently summarised

in present value terms. For example, a surge in stock market volatility reflects the uncertainty over

future growth, and the unpredictability of the associatedHKMApolicy response and governments.
7

Hence, it is natural to start with an equity volatility index. In order to capture the uncertainty of

Hong Kong’s financial markets, we turn to the Hang Seng index (HSI), which starts in 1969. We

estimate the daily return on the HSI and then use a GARCH(1,1) model to extract the conditional

volatility. The aggregated quarterly Hang Seng Volatility Index (HSVI) is depicted in Figure 3.3

against the Chicago Board Options ExchangeMarket Volatility Index (VIX) and the Financial Stress

Index of the Federal Reserve Bank of St. Louis. It is evident that the development of the HSVI

captures the swings of the global financial markets. Moreover, one can identify several spikes which

7
An obvious concern, however, is over-causality. Since stock markets are forward looking and respond to economic

forecasts, the MS-VAR-based results might simply reflect a tendency for financial markets to become more volatile

and unpredictable when an economic downturn looms on the horizon.
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are unique for the Hong Kong economy.
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Figure 3.3: HSVI, VIX, and the St.Louis Financial Stress Index. Rescaled for comparison. Source: Author’s own
calculations, Bloomberg, and the Federal Reserve Bank of St. Louis.

We use a standard Cholesky decomposition for the VAR identification. We follow the literature in

ordering the nominal variables last, assuming no contemporaneous response of the real variables to

changes in the nominal variables in the current period.

In order to study the potential trigger variables regarding loss and gain of credibility we need to be

able to identify the states of the credible versus the non-credible regime. From a technical point of

view, we also need a strategy to deal with the problem of state labelling. Stemming from the theory

of the uncovered interest rate parity, domestic and foreign interest rates should align if the exchange

rate expectations of the economic agents coincide with the current rate, i.e. if the agents believe that

the LERS would stand, there should be no spread between HIBOR and LIBOR. Be that not the

case the agents could take a long or a short position against the board putting pressure on the system.

This would lead to a negative or a positive spread, respectively. Therefore, we pursue a solution to

the state labelling problem through the HIBOR-LIBOR spread equation in the VAR.We propose

two regime identification strategies: according to (i) the conditional mean of the interest rate spread,

where the higher conditional mean is attributed to state two, and according to (ii) the reduced

form variance of the interest rate, such that higher variance of the interest rate spread is attributable

to the second regime.

Note that while this does solve the state labelling problem, it does not impose the regimes ex-ante. If

there are no distinct regimes, the estimated posterior distributions of the model coefficients would

overlap and the associated impulse responses would be similar.
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3.4 Baseline estimation results

Figure 3.4 presents the state-contingent impulse responses following a one standard deviation shock.

We assume that once a shock is realised, the system cannot switch between regimes. The impulse

responses are plotted with the standard 68% probability intervals from the posterior distribution.

The blue lines represent the system dynamics in the first regime, which we will explore first. The

red lines depict the reactions of the variables in the second state.
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Figure 3.4: State-contingent impulse responses to one standard deviation shock for regime one (blue) and regime two (red)
with standard 68% probability intervals. MS-BVAR with the HSVI as leading variable.

The first column of Figure 3.4 plots the impulse responses of the variables to an unexpected shock

in GDP. Inflation reacts pro-cyclically — the rising demand gradually pushes prices up. Over the

first twelve quarters inflation rises by more than one and a half per cent. The interest rate spread

does rise with confidence bands above zero, yet the magnitude is quite low— about a hundredth of

a percentage point on impact. These dynamics replicate a standard supply shock.

The responses of the variables following an inflation shock are depicted in the second column

of Figure 3.4. There is no effect on output in the first state and the interest rate differential does

not react to price changes in the first regime. This behaviour can be explained by the absence of

autonomous monetary policy, which does not allow the monetary authority to interact and adjust

the interest rates. Moreover, GDP growth does not react significantly to inflation movements.
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Finally, investigating the effects of an interest rate differential shock (Figure 3.4, third column),

we see that an opening of the spread does not seem to have a significant effect on output growth.

Moreover, the standard deviation of interest rate shocks is low, about 0.05 per cent. While GDP

does not move significantly, inflation reacts strongly— at twice the magnitude of the shock.

On first glance, the system behaves similarly in the second state, yet there are also several important

differences. Both the supply shock and the inflation shock have comparable effects. Moreover, the

size of both the GDP shock and the inflation shock is similar to that of their counterparts in the

first state — the model does not identify heteroskedasticity in GDP or inflation.
8

The notable difference between the two regimes lies in the interest rate differential. Following a

supply shock in the second regime the spread closes, albeit also marginally. Inflation shocks seem to

have a short-lived negative impact. Furthermore, the responses of GDP and inflation are also distinct

following a heterogenous development of the domestic and foreign interest rates. The variance

of the interest rate differential is about four times as large as in the first state. Most importantly, a

positive HIBOR-LIBOR spread leads to a twice as large drop in output. An unexpected rise of 0.2

per cent would curb GDP growth by 0.4 per cent within a year. This suggests that a two per cent

difference, as experienced throughout the Asian crisis, has had detrimental effects on the economy.

Inflation does not react significantly at first but begins a gradual decline after about four quarters.

While the empirical nature of the estimation method does not allow us to attach a structural

interpretation to the regimes, the dynamics coincide with the economic theory of a low and high

credibility state of the linked exchange rate system. If the currency board is stable, unexpected

movements of the spread are low in magnitude and the economy hardly reacts to them. On the

other hand, the spread could have large effects on the economy if the market does not perceive the

currency board as credible. Agents put enormous pressure on the interest rates by taking positions

against the fixed exchange rate system. This increases uncertainty, which in turn takes its toll on

the economy as GDP and inflation fall. The inverse relation between the spread movement and

a positive supply shock further conforms to this hypothesis, as rising demand improves financial

conditions and hence stabilizes the economy. Naturally, the switching in all variables captures more

than just the perceptions toward the currency board.
9
Even if the regime identification strategy

does not completely isolate the credibility issue due to the reduced-form nature of the model, it still

8
The reduced-form variance-covariance matrices are presented in Appendix C.1.

9
It should be stressed that reverse causation may lead to an attenuation bias in the present context, since reduced

perceived sustainability of the currency board may shape the Markov-switching trigger variable. Therefore, any sig-

nificant coefficient should provide a lower bound for the absolute value of the “true” coefficient.
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identifies the heterogeneity in interest rate dynamics, which is of major interest for one of the main

questions: what is driving the regime changes?
10

Figure 3.5 depicts the estimated probability of the realised state in the top panel, along with the

time-varying transition probabilities p(z) and q(z) from equations (3.6) and (3.7) in the bottom

panels. The system switches to the second regime after the stock-market crash in 1987, where it

remains until 1991. Then, its probability peaks at one again during the Asian and Russian crises, as

well as around the dot-com bubble. The next switch to the second regime is in the middle of 2003.

This reflects the lagged economic effects of the severe acute respiratory syndrome (SARS) epidemic

that began in Hong Kong and China. The epidemic had a considerable impact, especially in the

services sector, increasing costs and sharply curbing demand, mostly in tourism-related businesses.
11

Moreover, the second state is prevalent during the appreciation pressures on the Renminbi prior to

2005 and all the way up to the global financial crisis at the end of 2008.
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Figure 3.5: Estimated regimes and transition probabilities. Top panel: Estimated probability of the second state. Values
below 0.5 indicate a realisation of the first regime and values above 0.5 — a realisation of the second regime. Middle
panel: Probability to stay in regime one p(z). Bottom panel: Probability to stay in regime two q(z).

The time-varying transition probabilities provide additional insight into the nature of regime

10
The estimation results provide an explanation for asymmetries in business cycles in the spirit of Van Nieuwerburgh

and Veldkamp (2006). In bad times agents react faster to shocks than in good times.

11
For detailed surveys on the economic impacts of the SARS epidemic in Hong Kong, see WHO (2003) and Knobler

et al. (2004).
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switching. It is evident from Figure 3.5 that the HSVI is informative. Moreover, the parameter

estimate γ̂1 is significantly different from zero.
12
The probability p(z) — associated with lower

volatility of the spread and pro-cyclical relation between output and inflation— varies much more

compared to the second state. The second regime is more persistent, suggesting that credibility is

harder to gain than to lose. The probability of staying in the first regime is at its lowest following the

1987 stock market crash, and picks up only after the end of the crisis in 1990. We can also observe

a steady decline after 1995 leading all the way up to the Asian crisis. Furthermore, we observe

anticipatory signals in the transition probability for the second state, which declines at the end of

1998, signalling the recovery and the end of the contagion effects from the Asian and Russian crises.

The appreciation pressures in 2004 were accompanied by a steady decline in the probability for the

first state, which implies that there actually was predictive information contained in the HSVI. Sim-

ilar to the findings of chapter two, we note that the financial crisis was not particularly burdensome

for the currency board, as evidenced by the strong rise in p(z) after 2006— the economy switched

back to the first regime in 2009.
13

Overall, these results highlight that short-lived volatility shocksmay lead to a significant propagation

and amplification with medium term impacts upon the perceived sustainability of the exchange

rate regime. In the next section we enrich the benchmark model and discuss alternative channels

that may give rise to time-varying credibility.

3.5 Robustness checks

We run a multitude of alternative models to asses the robustness of our results. We first explore

the effect of other financial indicators on the switching mechanism in order to better understand

what has driven the changes in regimes. Then, we turn to the assumption of heteroskedasticity and

reduce the number of parameters that take regime-dependent values in our model.

Wewill look at several different indicators and checkwhetherwe can gain additional insight regarding

the Hong Kong economy. These variables, plotted on Figure 3.6, are: the Chicago Board Options

Exchange Market Volatility Index (VIX), the Equity Market Uncertainty Index (EMUI) developed

by Baker et al. (2015), the St. Louis Financial Stress Index (STLOU), and the spread between the

1-year HKD forward rate and the spot rate (FDmS).

12
Table C.1 in the Appendix provides the estimates from the probit regression for several specifications of the trigger

variable.

13
Hong Kong’s financial institutions have coped relatively well with the global financial crisis due to their high capital

adequacy ratios and their minimal exposure to securitised products.
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Figure 3.6: Alternative trigger variables. Rescaled for descriptive purposes.

3.5.1 VIX as trigger variable

VIX is a broad index derived from S&P500 options. It has the appealing property for a leading

variable of incorporating the one month ahead expectations of agents regarding stock market

volatility. Therefore, it is a natural starting point for our robustness analysis. Figure 3.6 displays the

VIX for the period from 1987 to the end of 2012. We plot the transition probabilities of the model

on Figure 3.7. As evident, with minor exceptions, they are flat. Therefore, VIX is uninformative for

the Hong Kong economy. Indeed, as the probability intervals for γ̂1 contains the zero, the model

is reduced to a fixed probabilities case.
14
This is an important finding— having a peg to the U.S.

dollar, one might expect the Hong Kong market sentiment to be influenced by the swings of U.S.

financial markets. However, domestic financial conditions appear more informative regarding the

dynamics of the interest rate differential.

In terms of prevalence of the second regime, the VIX does not offer additional insight compared to

the HSVI, with some minor exceptions around the dot-com bubble and the boom in the middle of

the nineties (see Figure 3.7). The model still identifies the stock-market crash of 1987, the Asian

crisis and the Russian crisis as the periods of increased interest rate spread rate volatility, along with

the 2004–2008 period.

While the stock market volatility of the S&P500 options might not be directly informative for the

currency board of Hong Kong, other types of uncertainty may play an important role. We look at

the perceptions of the public captured by economic news next. Scott Baker, Nicholas Bloom and

Steven Davis have developed the Equity Market Uncertainty Index, which analyses the narrative

structure and specific keywords from a broad selection of newspaper articles on financial news to

14
See Table C.1 in the Appendix for details.
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Figure 3.7: Regime switching and transition probabilities (VIX). Top panel: Estimated probability of the second state.
Values below 0.5 indicate a realisation of the first regime and values above 0.5 — a realisation of the second regime.
Bottom panel: Time-varying transition probabilities p(z) and q(z).

gauge the uncertainty in the macroeconomy [Baker et al. (2015)].

3.5.2 EMUI as trigger variable

One rationale for choosing the EMUI as a trigger variable is that agents may be highly uncertain

about the sustainability of the exchange rate regime, even though volatility of economic aggregates is

still low. In other words, direct measures of subjective uncertainty rather than measures of volatility

may be better suited to capture the full amount of uncertainty in the economy. Figure 3.8 shows

the transition probabilities implied by the model with the EMUI as the leading variable. As evident

by the bottom graph, uncertainty on the equity markets has only a minimal effect on the variation

of the transition probabilities. The credible interval for γ̂1 again contains zero. Similarly to VIX,

it does not bring additional insight regarding the switching mechanism. The probabilities are flat

around 0.8, which implies on average longer and approximately equal durations for both regimes.

So far, both robustness check specifications confirm the estimated regime switches of the main

model and the macroeconomic system, depicted by the impulse response functions, behaves as

before.
15
The crisis periods are associated with higher volatility of the spread and lower volatility of

output and inflation. Shocks to the interest rate spread in the first regime have no significant effect

on output or inflation, while the system reacts negatively in the second regime, where both output

15
See Figures C.2 and C.3 for the impulse responses under VIX and EMUI in the Appendix.
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Figure 3.8: Regime switching and transition probabilities (EMUI). Top panel: Estimated probability of the second state.
Values below 0.5 indicate a realisation of the first regime and values above 0.5 — a realisation of the second regime.
Bottom panel: Time-varying transition probabilities p(z) and q(z).

and inflation contract for prolonged periods after an opening of the spread. Nevertheless, the global

volatility variables bring no additional information regarding the regime-switching behaviour.

3.5.3 St. Louis Financial Stress Index as trigger variable

Next we turn our attention to the St. Louis Financial Stress Index, composed by the Federal Reserve

Bank of St. Louis. It is a composite index comprised of a multitude of financial time series such as

six yield spreads, eighteen weekly financial series and other macroeconomic indicators. Therefore, it

differs from the EMUI, being based on raw data, and it provides different information than the VIX,

which is based solely on S&P500 options. The index, presented in Figure 3.6, is centred around zero,

that represents the average financial stress on the markets. Positive and negative values represent

above average and below average financial stress, respectively. STLOU is only available from 1993

onwards, which reduces our sample by 24 observations.

The model with the financial stress indicator presents interesting and different results compared to

the other estimations. It is informative for the Hong Kong economy, as γ̂1 is significantly different

from zero and the most variation in the transition probabilities is around the periods following the

SARS outbreak in 2003 to the end of the global financial crisis (see Figure 3.9, bottom panel). Due

to data availability constraints, there is nothing we can say regarding the stock market crash in 1987

and its aftermath. The transition probability p(z) declines somewhat from 0.85 to 0.8 prior to the
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Asian and Russian crises and rises only after 1998. This means that the probability of switching to

the second regime (1− p(z)) is increasing. The index shows a steady decline in p(z) beginning in

2004 and leading all the way up to the global financial crisis, reaching its lowest levels during the

appreciation pressure in 2004 and once more in the middle of 2007. Furthermore the estimates

for q(z) are on rather high, around 0.9, implying a long average duration of the second regime.

Consequently, the economy was much longer in the state of high interest rate volatility. After a

brief stint during 1995, the realised probability of the second state reaches one at the onset of the

Asian crisis and remains high throughout the turbulent period all the way up to 2001, except for a

minor fall below 0.5 in the beginning of the new century.
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Figure 3.9: Regime switching and transition probabilities (STLOU). Top panel: Estimated probability of the second
state. Values below 0.5 indicate a realisation of the first regime and values above 0.5 — a realisation of the second regime.
Bottom panel: Time-varying transition probabilities p(z) and q(z).

The next switch to the second regime is in the middle of 2003, similar to our main indicators. The

economy does not return to the first state until 2009. This model also associates higher volatility of

output with the first regime, which explains the sharp rise in the transition probability of the first

regime throughout the financial crisis, when demand declines sharply.

The model does not imply highly different macroeconomic dynamics compared to the baseline

case. Figure 3.10 presents the impulse responses from both states. Notably, the spread closes faster

following a positive output growth shock— a fall of about 0.1 per cent, with a cumulative effect

of about half a percentage point over the course of one year. In the second regime the spread

immediately reacts positively to a rise in prices and inflation, in contrast to the gradual rise in the

baseline scenario. Another difference is themarginally significant positive response of output growth
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following a shock to the spread.
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Figure 3.10: State-contingent impulse responses to one standard deviation shock for regime one (blue) and regime two
(red) with standard 68% probability intervals. MS-BVAR with the STLOU index as leading variable.

3.5.4 HKD 1Y forward premium over the spot rate as trigger variable

Aswe are interested in the credibility of the exchange rate system, it is natural to look at the dynamics

of theHongKongdollar. We estimate the forwardpremiumon the one-yearHKDforward exchange

rate and use it as a leading variable in the model. The series starts from 1991Q1 and supposedly

captures the depreciation pressures of theAsian and theRussian crisis and the appreciation pressures

of 2004–2005 and is thus relevant for our analysis.

Estimating the model with the forward premium yields similar quantitative results, with the two

states characterised by a varying degree of interest rate differential volatility and dissimilar covariances

between the variables. Figure 3.11 presents the transition probabilities and the estimated regimes.

The spot market premium is especially informative around the Russian crisis — there is a sharp rise

in the transition probability from the first to the second regime (1− p(zt)) beginning from 1998

and, analogously, an increase in the q(z). On the other hand, there is not much variation in the

transition probability around the end of 2004, even though the model identifies a regime change.

Hence, the appreciation pressures on the spot market were not well captured. This implies that a

positive forward premium is more influential for the interest rate differential, than a negative one.
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This is in line with the textbook case of a fixed exchange rate system, where the monetary authority

can defend against appreciation pressures easier than against depreciation pressures.
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Figure 3.11: Regime switching and transition probabilities (FDmS). Top panel: Estimated probability of the second state.
Values below 0.5 indicate a realisation of the first regime and values above 0.5 — a realisation of the second regime.
Bottom panel: Time-varying transition probabilities p(z) and q(z).

Figure 3.11 echoes the empirical finding of the second chapter, where the regime of low credibility

of the currency board is prevalent from the end of the 1987 until 1992 and from the second quarter

of 1997 to the end of 1999 with a lone spike around 2005. The forward premium on the HKD as a

trigger variable leaves us with a similar picture as Figure 2.3 from the previous chapter, with the

minor exception of a drop in the first quarter of 1998. Compared to theHSVI findings, Figure 3.11 is

starkly different. Particularly the 2003–2008 period, which has been identified as the second regime

in the model with the HSVI as a trigger variable, is attributed to the first state here. This suggests

that the our own index contains more information than the forward premium on the HKD.

The current model exhibits different behaviour in terms of impulse responses as well, due to the

much smaller sample size for the second regime. We observe a stronger response of the spread

following a supply shock, compared to the baseline model. After an inflation shock, GDP falls

in the second regime, while the spread rises instantly, neither of which was as pronounced in the

baseline model. The explanation for this lies in the fact that the second state is less persistent here

and the impulse responses are driven by the turbulent Asian and Russian crises.

68



5 10 15 20

−0.5

0

0.5

1

1.5

GDP to a shock in GDP

5 10 15 20

−0.4

−0.2

0

0.2

GDP to a shock in INF

5 10 15 20

−0.6

−0.4

−0.2

0

0.2

GDP to a shock in SPR

5 10 15 20

0

0.2

0.4

0.6

0.8

INF to a shock in GDP

5 10 15 20

−0.2

0

0.2

0.4

0.6

INF to a shock in INF

5 10 15 20

−0.4

−0.2

0

INF to a shock in SPR

5 10 15 20

−0.3

−0.2

−0.1

0

SPR to a shock in GDP

5 10 15 20

0

0.05

0.1

0.15

SPR to a shock in INF

5 10 15 20

−0.05

0

0.05

0.1

0.15

SPR to a shock in SPR

Figure 3.12: State-contingent impulse responses to one standard deviation shock for regime one (blue) and regime two
(red) with standard 68% probability intervals. MS-BVAR with the FDmS as leading variable.

3.5.5 Markov-switching coefficients and homoskedasticity

Finally, we want to check whether our findings are driven by heteroskedasticity. We therefore

abandon the assumption of state-dependent variance and rather estimate the VARmodel

A0(st)yt = c0(st) + A1(st)yt−1 + ...+ Ap(st)yt−p + εt, (3.15)

where ε ∼ N(0,Σ).16 As the shocks of the variables are equalised across states we cannot use the

regime identification strategy based on different variances and are thus confined to identification via

the conditional mean strategy. The impulse response functions are presented in Figure 3.13, while

the estimated transition probabilities and realised states in Figure 3.14.

The system dynamics are highly similar to the baseline case. Again, output growth does not react to

spread shocks in the first regime, yet it declines sharply in the second. The most notable difference

to the heteroskedastic model is the response of the spread to inflation shocks, which picks up

immediately, in contrast to the delayed response in the main model (see Figure 3.4) and the similar

movement of output growth following a shock to inflation.

16
We augment the standard model following Krolzig (1997). A roadmap for the estimation of a MS-BVAR with in-

variant variance-covariance matrix is provided on p. 187.
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Figure 3.13: State-contingent impulse responses to one standard deviation shock for regime one (blue) and regime two
(red) with standard 68% probability intervals. Homoskedastic MS-BVAR with the HSVI as leading variable.
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Figure 3.14: Regime switching and transition probabilities (HSVI with homoskedasticity). Top panel: Estimated proba-
bility of the second state. Values below 0.5 indicate a realisation of the first regime and values above 0.5 — a realisation
of the second regime. Bottom panel: Time-varying transition probabilities p(z) and q(z).

The estimated realisations of the two states (Figure 3.14) are also notmuch different than the baseline

case (Figure 3.5). In the current model the second regime is less persistent after the stock-market

crash of 1987, and there are no regime changes around the dot-com bubble or the SARS outbreak
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in 2003. This finding is analogous to the finding in the previous section with the forward premium

as a leading variable. It leads us to conclude that the SARS outbreak was not associated with a loss

of credibility for the board. As in all other robustness exercises, the homoskedastic model does not

identify the global financial crisis as a special event for the fixed exchange rate system.

3.6 Concluding remarks

Hong Kong is an economy heavily involved in trade, and the Hong Kong dollar is one of the most

traded currencies, hence a stable exchange rate is of high importance. A key feature of the HKD is

that it is pegged to the U.S. dollar via a currency board. As a result, the domestic interbank interest

rates tend to align with the U.S. rates. Stable currency board and financial sector ensure the stability

of the financial system as a whole. However, in turbulent times, currency boards also come under

scrutiny, which can lead to abnormally high or low interest rates and wide spreads with respect to

foreign rates — a direct consequence of agents taking positions against the board in accord with

their expectations.

Precisely this non-linear feature of currency boards is the motivation for this chapter to employ a

Markov-Switching VARwith time-varying transition probabilities to study the effects of currency

board credibility on Hong Kong’s economy. What exactly does exchange rate regime credibility

mean? Which economic policy tools are available, and what challenges do they pose for policy

makers? These issues are still open for debate. Furthermore, the global financial crisis highlighted

the crucial role and the non-linear nature of economic and financial shocks. We believe that our

MS-VAR framework makes a useful step towards a more complete understanding of the role of

uncertainty and volatility shocks on time-varying exchange rate regime credibility.

We turn to the framework of Filardo (1994) and Filardo and Gordon (1998) where regime switching

is governed by macroeconomic fundamentals. To address the non-linear nature of the data, we

allow for switching in all coefficients and estimate two regimes which are quite distinct from each

other. The first one is associated with a low interest rate spread volatility, higher inflation volatility,

and largely positive covariances between output, inflation and interest rate spread. The second

state is characterised by negative covariances between the variables, as well as an interest rate spread

volatility of much higher magnitude. In other words, using the reduced form approach, we are able

to capture the dynamics of Hong Kong’s economy, whose properties are similar to those observed

in recessions with the interest rate differential playing an important role. Most notably, in the first
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regime the spread has almost non-existent pro-cyclical effect on output and inflation, while in the

second a positive differential is found to be detrimental to the economy.

We employ an array of indicators to examine the trigger variables that influence the regime switching

behaviour. We find that important global indicators such as VIX or the Equity Market Uncertainty

Index do not seem to provide additional information regarding the transition between regimes,

while the St. Louis Financial Stress Index does prove informative for the regime-switching around

the time of the global financial crisis. We conclude that volatility in the global financial markets

does not affect the stability of the Hong Kong exchange rate system. We create our own volatility

index, the HSVI, based off of the conditional volatility of the Hang Seng Index and find that swings

in the domestic financial markets and the forward premium on the Hong Kong dollar provide

anticipatory signals and interesting insights on Hong Kong’s linked exchange rate system.
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4
Modelling the euro area lending spreads

The events triggered by the global financial crisis 2008 – 2009 have proved to be some of the most

significant economic phenomena observed in recent decades. The costs of the downturn have far

exceeded that of any previous post-WWII recession. Moreover, not only did financial developments

trigger the downturn, but as events unfolded, the financial sector found itself at the epicentre of

the crisis. The collapse of major financial institutions, reduced asset values, the interruption of

credit flows, the loss of confidence in bond and credit markets, and the fear of default by euro

area countries, were all extraordinary economic occurrences. In addition, aggressive monetary

interventions during the crisis charted new ground both in scale and in scope.

Although unconventional monetary policy was intended to ease funding conditions for firms and

ultimately boost investment and growth as a result, a divergent development of sovereign and

corporate bond yields occurred. The reason is that liability-driven investors — those who invest in

order to earn enough of a return to pay future obligations, such as insurers — which own about a

This chapter has been co-authored with Prof. Dr Michael Funke and Richhild Moessner. The views expressed here

do not represent the views of the Bank for International Settlements.
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quarter of euro-denominated sovereign debt, have bid up bond prices despite vanishing yields partly

because they are obliged to do so by regulators. An unintended consequence of the new regulatory

regime has been to entice firms into so-called safe havens amid falling yields.

For economists, the consequence of these events has been a revival of the macro-finance nexus, as

well as a growing interest in non-linear modelling approaches. The analytical models that have

become standard in the field over the last generation seem to have been unsuited to explaining what

was occurring during this unusually significant episode, and are now unable to incorporate most of

the widely accepted accounts of it. If the economy is subject to important non-linearities, certain

results that derive from linear models do not carry over, with major implications for the monetary

policy transmission channel.

Interest rate pass-through is of central importance for monetary policy. With the adoption of a

common currency, the euro area was faced with the challenge that a single policy had to account

for the heterogeneity among its members. As such, the transmission of monetary policy of the

European Central Bank (ECB) has been an important topic for researchers. Before the financial

crisis, many studies found that while interest rates appear to be sticky in the short run, there exists

complete long-term pass-through, and the adoption of a single monetary policy has improved the

transmission and the velocity of the short-run pass-through [Bindseil and Seitz (2001), Angeloni

et al. (2003), Sander and Kleimeier (2004), De Bondt (2005), Affinito and Farabullini (2006),

Gambacorta (2008)]. However, the recent crises — the global financial turmoil and the euro area

sovereign debt crisis — have put the banking systems under severe stress. Interest rates far higher

than in Germany and the associated credit squeeze are threatening one of the fundamental aims of

the euro area: to create a single market with an integrated economy. This may also perpetuate the

euro area’s two-speed recovery with higher growth in countries like Germany and Austria compared

with the southern tier. There is mounting evidence that the fragmentation of financial markets

has increased, and that lending and policy rates in the euro area have diverged significantly. This,

in turn, has had heterogeneous effects on the monetary policy transmission across the different

member states [Cihak et al. (2009), Gambacorta andMarques (2011), Ciccarelli et al. (2013), Al-eyd

and Berkmen (2013), Illes and Lombardi (2013), Paries et al. (2014), Hristov et al. (2014a)].

While the breakdown in the pass-through has been documented thoroughly, numerous questions

remain unanswered. What has driven the change in the interest rate pass-through among euro area

member countries during the crisis? What were the trigger variables? Are there country-specific

fundamentals that affect lending spreads or is it a matter of flight-to-quality and flight-to-safety
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concerns? We consider the hypothesis that non-linear dynamics have driven lending spreads during

the crisis. Initial shocks to economic fundamentals may have been exacerbated by endogenous

mechanisms. How does the pricing of risk take place and can we identify endogenous factors

triggering amplification? The answers will assist in the monitoring and pricing of risk, as well as in

the prevention of financial fragmentation. This work joins a growing literature that has centred on

identifying non-linearities using formal statistical methods.
2

We investigate the heterogeneous effects of monetary policy across several euro area countries

through the lens of a quasi-non-linear Vector Autoregressive model (VAR) subject to regime shifts

with endogenous transition between the states. We incorporate the switching mechanism through

time-varying transition probabilities that help us identify potential triggers.
3
In this set up, model

uncertainty takes the form of different models that follow aMarkov process. It can be thought of as

a setup encompassing a number of possible representations of the world.

A few studies have investigated the joint variation of macro fundamentals and credit spreads by

incorporating the possibility of regime shifts [e.g. David (2008)], and a handful have documented

the change in interest rate pass-through. Cihak et al. (2009) use a standard bi-variateVAR in the spirit

of De Bondt (2005) and a general equilibrium framework to show a slowdown in the pass-through.

They also analyse unconventionalmonetary policymeasures and demonstrate that to a certain extent

they have helped alleviate the problem. Ciccarelli et al. (2013) quantify the heterogeneous effects of

monetary policy on GDP across the member states by means of a recursive VAR and document

the time-variation in interest rate pass-through. Furthermore, they show that the effect on GDP of

monetary policy shocks is amplified through the credit channel, and that the bank-lending channel

has been non-existent due to unconventional monetary policy measures of the ECB. Hristov et al.

(2014b) examine the effectiveness of the Outright Monetary Transmission Program (OMT) of the

ECB by means of a time-varying parameter VAR (TVP-VAR) based on Primiceri (2005), and Paries

et al. (2014) capture the breakdown in interest rate pass-through by a single equation framework.

The model is extended to account for bond yields, which partly explain the lending spreads. Hristov

et al. (2014a) document the incompleteness of the pass-through after the crisis using a panelVARand

aDSGEmodel. Aristei andGallo (2014) also use the simple bi-variate framework ofDeBondt (2005)

2
See Silvestrini and Zaghini (2015) for an up-to-date survey of the theoretical and empirical contributions exploring

the linkages between financial factors and the real economy in non-linear frameworks.

3
Evidence that macroeconomic time series follow a Markov process has led macroeconomists to develop monetary

policy frameworks with regime shifts. For example, Svensson andWilliams (2009) have developed a general form of

model uncertainty that remains tractable, using so-called Markov-jump-linear-quadratic models. There is a growing

body of Markov-switching DSGE and VAR models [Sims et al. (2008), Farmer et al. (2009), Farmer et al. (2011),
Bianchi (2012), Davig and Doh (2014) among others].
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in the context of a Markov-switching VAR (MS-VAR) and aMarkov-switching Error Correction

Model (VECM) with exogenous probabilities, and establish lower efficiency and time-variation in

the transmission of monetary policy. Our study differs significantly from Aristei and Gallo (2014)

since our framework has the important addition of endogenous transition probabilities to address

the question at hand.

There are a couple of novel studies that argue that if one takes several considerations into account,

the high lending rates might be explained even in the face of near zero policy rates. Ciccarelli et al.

(2013) and Illes et al. (2015) suggest that after the crisis the interbank rate might not be a good proxy

for bank funding costs and thus should not be taken as a major determinant for the lending rates,

because access to funds was impaired after the meltdown. Illes et al. (2015) create a benchmark

for bank funding costs for each country both in the short and the long-term, which accounts for

the levels of the lending rates. They construct a weighted average cost of liabilities (WACL), which

consists of several components including covered bonds, five-year credit default swaps, deposit

liabilities and open market operations. Von Borstel et al. (2015) utilise a factor-augmented VAR

(FAVAR) model to incorporate sovereign and bank funding risk, conventional and unconventional

monetary policy, and argue that it is not the interest rate pass-through that has changed, but rather

its composition. Our results hold even if we account for the zero lower bound and the impairment

in the bank funding channel.

This chapter is organised as follows. The next section introduces the key data in our study, namely

lending rates and sovereign bond yields. Section 4.2 presents the econometric methodology, Sec-

tion 4.3 lays out the central results, and discusses potential problems and extensions to the main

specification. Finally, Section 4.4 concludes.

4.1 Lending spreads and sovereign bond spreads

We consider the heterogeneous time-variation across the euro area of long-term lending rates to non-

financial firms. We use monthly data from the ECB for interest rates on loans over €1 million, other

than revolving loans and overdrafts, convenience and extended credit card debt to non-financial

firms for new businesses, with maturities over one year [ECB (2003)]. We examine four countries

in this study: Italy, Spain, Ireland, and Portugal and consider the spread of the long-term lending

rate to Germany, rht = Rh
t −RDE

t , whereRh
t is the long-term lending rate in country h at time t.4

4
Since the Markov switching estimator performs better for long time series, Greece has not been considered due to

data availability issues. On the contrary, the longer time series for the other countries fit suit.
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All countries are identified by the respective two-letter ISO code. As a link between the short-term

policy rate and the long-term lending rate we include 10-year government bond yield spreads relative

to Germany as an endogenous variable, ght = Gh
t − GDE

t , which reflect country specific market

sentiment. Monthly data for the evolution of lending rate spreads and government bond yield
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Figure 4.1: Government bond spread (gt) versus lending rate spread (rt), relative to Germany. in per cent. Source:
Author’s own calculations.

spreads over time (with evolution over time denoted by different colours) is shown in Figure 1 for

each of the four euro area countries. We can see that at the beginning of the sample period, in

2004, government bond yield spreads tended to be close to zero for all four countries. Lending rate
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spreads for Italy, Spain, and Ireland were even negative in many instances in 2004. At the height

of the euro area sovereign debt crisis, government bond yield spreads rose to much higher values

than the lending spreads, before falling back considerably towards the end of the sample period.

Although lending rate spreads did not rise as much as government bond spreads, they tended to

remain elevated towards the end of the sample period.

4.2 Econometric methodology

To study the changes in the interest rate pass-through we assume the following data generating

process of a structural VARwith time-varying parameters:

A0(st)yt = a(st) + A1(st)yt−1 + ...+ Al(st)yt−l + εt, (4.1)

where A0(st), ..., Al(st) are coefficient matrices, a(st) is a vector of constants, and the struc-

tural innovations εt follow a normal distribution with mean zero and stochastic volatility: εt ∼

N(0,Ψ(st)). Each set of coefficients is associated with the respective state st = {1, ..., ns}, where

ns is the number of regimes.5 The vector yt contains n endogenous variables and l denotes the lag

order, selected according to standard information criteria. We use three lags for Spain, four for Italy,

two for Ireland and two for Portugal. To determine the maximum lag length for the tests, we follow

Schwert (1989). We assume endogeneity of all variables in the system and estimate the dynamics of

purely exogenous shocks.
6
Assuming a two-state stochastic Markov process (ns = 2), the shifts

across regimes are governed by transition probabilities given by the probability matrix

P =

 p(Z) 1− p(Z)

1− q(Z) q(Z)

 . (4.2)

Instead of assuming an exogenous switching mechanism, we set both p and q as the outcome of a

probit model with regressors collected in the vector of trigger variablesZt = [1, z1,t, ..., zk,t]. Let

5
Jovanovic (1989) has shown that in case of sunspots it is necessary to distinguish the dynamics of the fundamentals

process from the sunspot process. A Markov regime-switching model provides a flexible framework that allows to

distinguish between the two processes. The regime shifts can then be interpreted as jumps betweenmultiple equilib-

ria.

6
TheMarkov-switching framework poses complications for empirical work that attempts to estimate how interest rate

spreads respond to changes in monetary policy. The complications arise due to the non-linearity in the decision rule,

implying that the interest rate pass-through is a function of the regime. Borrowing language from Leeper and Zha

(2003), an interest rate pass-throughwithin the bandwhere the decision rule is approximately linear can be referred to

as a “modest”monetary policy intervention. A “non-modest” policy intervention causes agents to alter their inference

regarding the current regime, resulting in a response that is greatly at oddswith the predictions of fixed-regimemodels.
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s∗t be a latent variable determined by the following regression:

s∗t = γ0 + γ1z1,t−m + ...+ γkzk,t−m + ωt. (4.3)

The error term in equation (3) follows a standard normal distribution ωt ∼ N(0, 1) and we set

the lag of the trigger variablesm to 1 to address potential endogeneity problems. The vector of

coefficients Γ = [γ0, γ1, ..., γk]′ is of primary interest for this study, as the variables governing

the transition probabilities would prove crucial for describing the nature of the euro area crisis.

Moreover, statistically significant effects of contagion variables on transition probabilities would lead

to the conclusion that lending spreads are not only driven by fundamentals but also by contagion,

e.g. due to confidence effects. Significance of both fundamentals and contagion variables would

indicate that various crisis models are not mutually exclusive.

Under the assumption of two regimes the threshold for the observable counterpart st of the latent

variable s∗t is defined as:

st =


1, if s∗t < 0,

2, if s∗t ≥ 0.
(4.4)

Therefore, the transition probabilities are determined by the following probit model:

p(Z) = P (st = 1|st−1 = 1) = P (ωt ≤ −Zt−mΓ) = Φ(−Zt−mΓ), (4.5)

q(Z) = P (st = 2|st−1 = 2) = P (ωt ≥ −Zt−mΓ) = 1− Φ(−Zt−mΓ). (4.6)

The complete model, given by equations (4.1) – (4.6), is based on Goldfeld and Quandt (1973),

Filardo (1994), and Filardo andGordon (1998) and nests the case of fixed probabilities if the variables

inZ are not informative for the probit regression.

The assumption of the existence of two states is not innocuous. In general, specifying a Markov

regime-switching model requires a test to confirm the presence and the number of multiple regimes.

The first step is to test the null hypothesis of one regime against the hypothesis ofMarkov switching

between two regimes. If the null hypothesis can be rejected, then one can proceed to estimate

the Markov regime-switching models with two or more regimes. Conducting proper inference,

however, is exceptionally challenging. In particular, testing for the number of regimes requires the

use of nonstandard test statistics and critical values that may differ across model specifications. Cho

andWhite (2007) demonstrate that because of the unusually complicated nature of the null space,

the appropriate measure for a test of multiple regimes is a quasi-likelihood-ratio (QLR) statistic.

They provide an asymptotic null distribution for this test statistic from which critical values can be
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calculated. Unfortunately, Carter and Steigerwald (2012) establish that the estimator computed

using the QLR-likelihood is inconsistent if the covariates include lagged dependent variables. Thus,

this test cannot be applied to our modelling setup.

As we cannot pin down the amount of regimes by statistical inference, we have to take another

approach. We choose two-states for the data generating process in (4.1). Our choice is motivated

by the main question — has there been a change in interest rate pass-through, and if so, what

has been driving it? One approach to answer the question would be to use a gradual change in

the model parameters as Ciccarelli et al. (2013) and Hristov et al. (2014a). The other extreme is

modelling a binary outcome. Even though we cannot test for the presence of two regimes directly,

the advantage of the Bayesian approach lies in the fact that it does not impose that regimes be

significantly different from one another as we use the same prior in both states. If the data do not

support distinct parameters, we would find overlapping posterior distributions of the coefficients

and similar impulse responses. On the other hand, if there are more than two regimes and there is

even higher fragmentation among euro area members, our results will average the multiple states in

two distinct sets and may be interpreted as a lower bound, i.e. the “true” impulse responses would

be even more pronounced.
7
A final consideration is the computational efficiency and the curse of

dimensionality. Every additional state reduces the sample size proportionally, while increasing the

number of parameters to be estimated exponentially, which speaks against additional states.

4.2.1 Bayesian analysis

We cast the model of equation (4.1) in a reduced form by pre-multiplying the structural form with

the impact matrixA0(st)−1
and redefining all coefficient matrices accordingly

yt = b(st) +B1(st)yt−1 + ...+Bl(st)yt−l + ut. (4.7)

The residuals ut ∼ N(0,Σ(st)) in equation (4.7) and their connection to the structural shocks is

of primary interest in any VAR study. For this link we choose a standard Cholesky decomposition,

which is consistentwith the pass-through literature. This choice ismotivated by the economic theory

that policy rates determine lending rates and can do so instantaneously, but not vice versa. The

reduced-form VAR(l) model may be rewritten in its VAR(1) form by imposing Y = [y1, ..., yT ]′,

7
For an application of two state models to monetary policy, term structure and bond/CDS spreads see, for example,

Amisano and Tristani (2009), Lanne et al. (2010), and Blommestein et al. (2012).
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X = [X1, ..., XT ]′ withXt = [y′t−1, ..., yt−l, 1]′, U = [u1, ..., uT ]′, and β = [B1, ..., Bl, b]′:

Y = XB + U. (4.8)

For the estimation we employ Bayesian methods and incorporate the priors following Banbura et al.

(2010). This is achieved by augmenting the vectors of endogenous and exogenous variables by the

following matrices:

Yd =



Λ · Σ̂/λ

0n(l−1)×n

.........

Σ̂

.........

01×n

Λ ·M/τ



, Xd =



Jl ⊗ Λ · Σ/λ 0nl×1

0n×nl 0n×1

........... ........

01×nl ε

1⊗ Λ ·M/τ 0n×1


. (4.9)

Here, Σ̂ = diag(σ1, ..., σn) is the estimated variance-covariance matrix of the residuals from

equation (4.7), which we weigh by a matrix Λ = diag(δ1, ..., δn). The weights δ control how

informative more recent lags are compared to older periods. Since our system is generally short,

these parameters are not of crucial interest. M = diag(µ1, ..., µn) are the average levels of the

endogenous variables yt, and Jl = diag(1, ..., l). The parameter λ is the overall tightness of the

prior, which ranges in [0,∞], with 0 being a pure random walk and infinity — the OLS estimates;

ε denotes the prior on the constant. Furthermore, we incorporate Bayesian shrinkage by means of

the hyperparameter τ . Finally, the operator “·” denotes elementwise multiplication. For the choice

of these parameters we follow Banbura et al. (2010) and set λ = 0.1, ε = 0.01, τ = 10λ, and µi
equal to the mean of the yi vector.

Combining (4.8) with (4.9) leads to the following specification:

Y ∗ = X∗β̃ + U∗, (4.10)

where Y ∗ = [Y ′, Y ∗′d ]′,X∗ = [X ′, X∗′d ]′, and U∗ = [U ′, U∗′d ]′. Taking the OLS estimate of β̃ in

(4.10) as β̃ = (X∗′X∗)−1X∗
′
Y ∗, we impose an inverse Wishart prior on its variance

Σ̃ ∼ iW
(
Σ̂, T ∗ + 2 + (1 + nl)

)
, (4.11)

where T ∗ denotes the number of rows in Y ∗. Therefore, the posterior distribution of interest

81



becomes

vec(β̃)|Σ̃, Y ∗ ∼ N
(
vec(β̃), Σ̃⊗ (X∗′X∗)−1

)
. (4.12)

Inference on this form of theMS-VAR is straightforward once the vector of realised states ST =

[s1, ..., sT ] is known, as the model collapses to ns = 2 linear Bayesian VARs. The vector of regimes,

in turn, may be obtained through the Hamilton filter. Letting P = [p1(Z), ..., pT (Z)]′ and

Q = [q1(Z), ..., qT (Z)]′, estimation is carried out via the Gibbs sampler in the following order of

events. Given initial conditions for the parameters of interest {β̃0, Σ̃0,Γ0,P0,Q0} and denoting

an arbitrary iteration number by k, we:

1. Draw ST,k using the Hamilton filter conditional on β̃k−1, Σ̃k−1,Γk−1,Pk−1, andQk−1.

2. Draw β̃k conditional on Σ̃k−1 and ST,k, eq. (4.12).

3. Estimate Σ̂ and draw Σ̃k conditional on β̃k, eqs. (4.7) and (4.11).

4. Estimate the probit model using ST,k to obtain Γk,Pk, andQk, eq. (4.3).

5. Set k = k + 1. Go back to step 1.

We employ 50 000 iterations and discard the first 35 000 as a burn-in phase. In Section D.7 in the

Appendix we present the trace and recursive means plots to assess convergence in the spirit of An

and Schorfheide (2007).

4.2.2 Explanatory variables in the regime-switching VAR

The interest-rate pass through consists of two stages. In the first stage, the ECB lends funds to

financial institutions in its openmarket operations at the policy rate which determines the interbank

rate. The second stage is the transmission from the interbank rate to the lending rates for non-

financial institutions. The ECB sets a corridor for the policy rate and adjusts it several times a

year, which makes the official policy rate a step-wise function— unsuitable for empirical analysis.

Typically, the literature assumes that the first-stage transmission is always perfect in the sense that

interbank rates such as the overnight EONIA rate or the EURIBOR are a good proxy for the policy

rate. Nevertheless, recent studies have noted that this may not be an appropriate choice any more.

On one hand, Hassler and Nautz (2008) document that the link in the first stage has broken down.

On the other, the zero lower bound plays an important role in studying interest rate pass-through,

because the lending rates move freely evenwhen this constraint is binding for themoneymarket rate.

Thus, empirical models might “capture” a breakdown in the pass-through solely due to the flatness
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of the proxy for the policy rate. As an alternative the literature has suggested using a different proxy

for the policy rate, namely a shadow short rate (SSR) [Wu and Xia (2014), Krippner (2014), Pericoli

and Taboga (2015) and von Borstel et al. (2015)]. This shadow rate is derived from non-linear term

structure models and is allowed to take negative values, which alleviates the problem of the zero

lower bound. Unfortunately, this does not come without a cost. Since the shadow rate series are

rather a theoretical construct, they do not represent interest rates at which economic agents can

transact [Krippner (2014)]. Hence they do not reflect the banks’ funding costs.

Thus, choosing a proxy for the policy rate is not a straightforward task. To this end, we explore

several different specifications. In themain section we employ the EONIA as the policy rate it, while

in the robustness section we estimate the model using alternative measures — the shadow estimates

of Wu and Xia (2014), Krippner (2014), and Pericoli and Taboga (2015).

To summarise, in our model long-term lending rate spreads rht are explained by the policy rate it,

approximated by EONIA or a shadow short rate, and the 10-year government bond yield spread ght ,

which we use as a proxy for market expectations and a link between short-term and long-term rates.

Therefore, the vector of endogenous variables yht for country h at time t is given by

yht =
[
it ght rht

]′
. (4.13)

We plot the time series for each country in Figure 4.2.
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Figure 4.2: VAR variables for Italy, Spain, Ireland, and Portugal: EONIA, the 10-year government bond spread
between each country and Germany ght , and the long-term lending rate spread between each country and Germany rht .
Source: ECB’s MFI monetary statistics and the FRED database.
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4.2.3 Choosing the trigger variables

The choice of trigger variables in the probit stage is of crucial importance. Omitting relevant

explanatory variables increases the variance of the error term, which potentially biases the estimates.

Therefore, care should be taken when specifying equation (4.3) of the regime-switching VAR.

We use a multitude of macro and financial variables as trigger variables and test each one for the

informational content regarding the switching mechanism.

Macroeconomic developments are among themain determinants of interest rate spreads. To capture

the impact of macroeconomic fundamentals, three main types of variables will be considered in this

study. The full set of variables including data sources is listed in Appendix D.2.

The first type groups country specific variables: broad macroeconomic indicators (e.g. production

growth, HICP and debt-to-GDP ratio), financial market information (e.g. bank stock indices and

CDS spreads), as well as information regarding the banking sector (e.g. the volume of ECB’s main

refinancing operations (MROs) and long-term refinancing operations (LTROs)).

Apart from domestic macroeconomic developments, interest rate spreads are also influenced by

global conditions and contagion. For example, tighter global liquidity and/or contagion might lead

to fund outflows from countries, resulting in larger spreads. This is captured in the second group

of trigger variables. There are several price-based or quantity-based measures of global liquidity

and contagion in the literature. We take the VSTOXX and the MOVE indices to represent market

sentiment about global financial conditions, as well as the European Economic Policy Uncertainty

index developed by Baker et al. (2015). To assess the issue of contagion, we also incorporate lending

rate spreads of different countries as potential trigger variables.

Finally, we introduce two dummy variables that aim to capture the effects of policy announcements

from the ECB. The first one incorporates the LTRO announcements from July, October, and

December 2009. The second variable captures several monetary policy announcements from July,

August, and September of 2012. In a panel discussion in July 2012,the president of the ECBMario

Draghi communicated the ECB’s support for the euro.
8
In September 2012 the ECB announced

the Outright Monetary Transactions (OMT) programme. Altavilla and De Grauwe (2010) find

that these measures alone have reduced sovereign bond yields in Italy and Spain by more than two

percentage points.

8
The speech has been often labelled in the media as the “Whatever-it-takes speech”. De Grauwe and Ji (2013) have

shown empirically that the temporary disconnect of market expectations from fundamentals and the existence of

jumps between multiple equilibria was an important element of the euro area crisis.
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4.2.4 Time series properties

Typically, in time series analysis the question of stationarity is meticulously discussed. Testing

the VAR variables with an ADF test reveals that most variables are stationary with the exception

of the government bond spreads of Spain and Ireland and the lending rate spread in Ireland.

Nevertheless, in MS-VAR models, the stationarity assumption is not needed for the dependent

and the independent variables. These models rely upon an assumption quite a bit stronger than

stationary residuals, and namely, that the true residuals (if the regime were known) are independent

and normal. Because the regime is not known, that is not really a testable hypothesis. All one can

test is whether the standardised residuals are uncorrelated and have constant variance. Note that

passing those tests does not make the model valid, just not rejectable. We present tests for normality

of the estimated residuals in Appendix D.3.

Turning to the probit model, the stationarity issue is not as simple. We test all variables for a unit-

root with the ADF and Pierre-Perron tests. Since many of the variables appear non-stationary, there

might be several pitfalls. Park and Phillips (2000) have shown that while the estimator in binary

dependent variable models is consistent even with integrated regressors, it has special asymptotic

properties. Riddel (2003) has documented that the explanatory variablesmight fail to pass the t-tests

for coefficient diagnostics even when they are indeed informative. Therefore we rely on our use of

Bayesian techniques and the consistency of the estimator to alleviate the problem—we use credible

(probability) intervals of the posterior distribution instead of asymptotic intervals. Informally, to

assess significance one can also look at the estimated transition probabilities, since the model should

reduce to the fixed probability case (flat probabilities) if the variables are insignificant. Furthermore,

as is standard practice, we estimate the models with the variables in first differences as a separate

case. This brings the total amount of trigger variables per country up to twenty five. To address

potential multicollinearity issues at the estimation stage we do not choose any pair of variables with

a correlation coefficient greater than 0.5 in absolute value. Correlation matrices may be found in

Appendix D.5.

Another potential issue associated with probit models is the inclusion of dummy variables. This

may lead to the problem of quasi-complete separation, which arises when the explanatory variable

has too much predictive power over the dependent variable. In the case of binary variables, too

many coinciding “ones” or “zeroes” on both sides of the regression might distort the estimator.

Gelman et al. (2008) suggest the use of Bayesian estimation to remedy the situation over the standard

maximum likelihood estimator, or, if the former is undesirable, to drop the variables in question.
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Therefore, when setting the prior for the trigger variables regression, we omit the dummies at

the maximum likelihood stage. For brevity, we report the results only for the regressors that are

significantly different from zero for each country with the exception of the policy announcement

variables, which are included in all regressions. Nevertheless, we would emphasize that the empirical

model description is illustrative and does not try to incorporate all the technical elements that can

be found in the literature on the subjects that are addressed.

4.2.5 Regime identification

Finally, we turn our attention to the regime identification scheme. How does one identify periods

with breakdown in the pass-through? This question requires thorough deliberation. In a single

equation framework, where lending rates are explained through policy rates, one may order the

states by imposing that the lower regression coefficient of the policy rate is attributed to the first state.

In a VAR framework, regime ordering is not as straightforward. Moreover, we model the lending

rate spread across two countries instead of the lending rates per se. In this setup, if monetary policy

transmission has become heterogeneous, unexpected movements of the policy rate should affect the

two counties differently, whereas if both lending rates react in similarmanner one should not observe

any difference in the spread. Hence, we propose three different regime identification strategies:

(i) impulse response identification (IR); (ii)Markov-switching constant; (iii)Markov-switching

conditional mean.

The first identification scheme orders the regimes by calculating the impulse responses of the lending

rate spread to a shock in the policy rate for each state and imposing the “stronger” IR as the second

regime. We define “stronger” by comparing the cumulative responses across regimes for twelve

months ahead.
9
The second strategy allocates the regimes according to the size of the constant in the

lending rate VAR equation— the higher constant is allocated to the second regime. The economic

intuition is that if the homogeneity across countries has changed, this might be reflected in a level

shift of the lending rate. In the third strategy we calculate the conditional mean of the lending

rate VAR equation at each iteration and allocate the higher of the two to the second regime. The

rationale is similar to the second regime identification strategy— a level shift of the lending rate

is an indication of heterogeneous transmission of monetary policy. The difference to the regime

identification strategy above is that using the conditional mean controls for additional information

through the other explanatory variables.

9
For robustness we also consider 9 to 18 months ahead, and the findings remain unchanged.
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Note that neither of these strategies imposes any regimes ex-ante. They separate the data based

on parameter mean values, which does not ensure that the posterior distributions do not overlap.

Simply put, ordering by the cumulative IRFs, for example, does not guarantee that the difference

between the responses will be statistically significant. Therefore, we do not assume a priori that

there has been any change in the pass-through. This can be examined in our model only after we

plot the actual impulse responses ex-post.

4.3 Estimation results

In the following sections we present the estimation results for Italy, Spain, Ireland, and Portugal

individually, as different risk assessment across countries may give rise to potentially different

movements of the interest rate spreads. For example, even when the spreads of all countries respond

to the same set of economic news, e.g. about macroeconomic data and/or monetary policy, the

spreads in some countries may react more strongly when there are concerns over the pace and

sustainability of reforms. At the same time, different countries may be more or less exposed to

global factors when cross-border flows differ across countries. For each state we will look at the

transmission of monetary policy to the lending rates via impulse response functions, examine the

regime probabilities and inspect the trigger variables. Per country we focus on a representative set of

the significant trigger variables out of the full list given in Appendix D.2.

4.3.1 Italy

The top panel of Figure 4.3 presents the estimated regimes. FollowingHamilton (1989) we interpret

a value below 0.5 as the economy being in the first regime, and above 0.5 as a realisation of the

second regime. In the bottom panel we analyse the state-contingent impulse response of the lending

rate spread.
10
We normalise the EONIA shock across the states. If the monetary policy transmission

is homogeneous across countries, the lending rates in the different countries should not react

differently to a monetary policy shock.

10
The full set of impulse responses is available in the Appendix.
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Figure 4.3: Regime probabilities and IRFs. Top panel: Estimated probability of the second state. Values below 0.5 indicate
a realisation of the first regime and values above 0.5 — a realisation of the second regime. Bottom panel: State-contingent
impulse responses of the lending rate spread to a shock in each variable.

For Italy, however, this is not the case. A 100 basis point increase in EONIA leads to a significant

opening of the lending rate spread in the second regime in contrast to the first, which indicates

that the lending rates rise higher than in Germany.
11
Confusing as the estimates might appear, they

have a clear economic interpretation— in regime one, market participants behave as if they are in a

comfort zone and do not feel compelled or encouraged to pull the lending rates further away from

the German rates. However, in the second regime, market participants anticipate a “dark corner”

and act to increase the lending rate spreads vis-à-vis Germany.

The second regimewas prevalent during the outbreak of the financial crisis 2008 – 2009, between the

months of August 2011 and 2012, and throughout the first half of 2013— the latter two associated

with the euro area sovereign debt crisis. Rising fiscal imbalances and weak demand took a toll on

Italy with the crisis escalating in the autumn of 2011, leading to political turmoil with government

bond yields increasing to an all-time high. Following a political change, Italian bond yields stabilized

for a short time, but in the beginning of 2013 fears grew again. The economy started to recover

slightly in 2013, with a major contributor being an improvement in the current account deficit,

which turned positive in 2014.

11
These results are amplified by the presence of the zero lower bound. With EONIAbeing flat after themiddle of 2012,

the response of the spread is characterised by the persistence of the policy rate. This can be observed in the reaction

of EONIA to a shock in EONIA for the second regime, and also in the residuals for the policy rate, which are plotted

in Figure D.1 in the Appendix. To deal with this problem we also explore using shadow rate estimates for the euro

area instead of EONIA, which are discussed in detail in the next section.
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What contributed to the regime shifts? We examine the trigger variables whose coefficients in the

probit regression are significantly different from zero. A positive coefficient decreases the probability

of staying in the first regime and increases the switching probability to the second regime. We

plot a representative set of trigger variables in Figure 4.4. The bottom panel shows the transition

probability for the first state.
12
One of themain obstacles for the recovery of the Italian economy has

been a fiscal burden. Lower tax income and weak demand have put a large strain on the government

finances. A rising nominal debt-to-GDP ratio and worsening net foreign asset position have been

important developments, and are a natural choice for trigger variables. The debt-to-GDP ratio

increased steadily over the past years, reaching 160% in 2014. The net foreign asset position fell to

minus five per cent of GDP in 2011. Both prove to be important indicators associated with a higher

probability of switching to the regime of impaired monetary policy transmission. Among global

financial variables, both the VIX and the Economic Policy Uncertainty index are significant, while

the MOVE index does not contain information regarding the regime switching. Monetary policy in

the form of actual borrowing in the MROs and LTROs did not alleviate the problems either, as

both variables do not influence the transition probabilities.
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Figure 4.4: Trigger variables and transition probabilities. Top panel: Representative trigger variables for Italy. VSTOXX
and Debt-to-GDP have been rescaled for expositional clarity. Bottom panel: Transition probabilities for staying in the
first regime. A falling probability indicates higher change to switch to the second state and vice versa.

The unconventional monetary policy announcements of the ECB have had a temporary positive

effect. The dummy variables for the LTRO announcements as well as the “whatever-it-takes” speech

and the OMT announcements have strong negative coefficients. Their effects are evident in the

12
Note that the transition probabilities are symmetric, as evident from eq. (4.6).
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transition probabilities — they contribute to the spikes in the middle of 2009 and 2012. The model

suggests that through the strong influence on the transition probabilities, the ECB announcements

played a major role in the actual regime switches in August 2009 and August 2012.
13

Another potential matter is the issue of contagion— spillover effects of the sovereign debt crisis

across euro area countries were a major concern for the commonmonetary policy. The anecdotal

evidence suggests that the increasing lending rate spreads originated in certain countries before

spreading to further countries. To model this diaspora, we estimate the probit regression adding

lagged lending spreads of Spain, Ireland and Portugal. In Italy, market sentiment towards the

development of lending rates in other debt-ridden countries influenced the domestic lending rates

adversely, with Spain being themost important contributor. An interesting point about this finding

is that the inverse is not true, as there were no signs of contagion effects from Italy to Spain. Next

we turn to the explanation for this phenomenon, which is related to the specifics of the Spanish

economy.

4.3.2 Spain
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Figure 4.5: Regime probabilities and IRFs. Top panel: Estimated probability of the second state. Values below 0.5 indicate
a realisation of the first regime and values above 0.5 — a realisation of the second regime. Bottom panel: State-contingent
impulse responses of the lending rate spread to a shock in each variable.

13
We present the distributions of the estimated parameters from the probit model in Appendix D.6.
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The model for Spain exhibits both remarkable similarities and notable differences compared to that

for Italy. On the surface, the impulse response estimates seem equivalent, while the realised states

have a higher persistence, with the second regimebeinghighly dominant after September of 2008 (see

Figure 4.5). This suggests a longer duration of the pass-through breakdown in Spain. The impulse

response of the lending rate spread exhibits similar dynamics to the Italian one. However, the drivers

of the endogenous transition probabilities uncover stark heterogeneity across both countries. The
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Figure 4.6: Trigger variables and transition probabilities. Top panel: Representative trigger variables for Spain. VS-
TOXX and Bank Stocks have been rescaled for expositional clarity. Bottom panel: Transition probabilities for staying
in the first regime. A falling probability indicates higher change to switch to the second state and vice versa.

policy announcements by the ECB did not strengthen the monetary policy transmission or alleviate

the rising spread between the Spanish and German lending rates. The main drivers behind the

persistence of the second state seem to have been problems in the Spanish financial sector. After

the near collapse of several banks, the Spanish central bank requested funds from the European

Financial Stability Facility in June 2012.
14
This is reflected in the model by a significant negative

coefficient of the Spanish bank stocks indicator (see Appendix D.6). A rising index implies higher

valued banks, and a negative coefficient affects positively the probability of switching from the

second to the first regime. Hence, a banking crisis reflected in falling bank stock prices would

lengthen the state of impaired pass-through.

Moreover, the main refinancing operations of the ECB do not appear to have alleviated the problem

either. Thenotion that the problems in Spainwere coming fromwithin the country are strengthened

by the fact that the lending rate spreads of other countries are not statistically significant, implying

14
For an overview of the distress in the financial sector, see International Monetary Fund (2013).
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no contagion effects. In terms of estimation, including the nominal debt-to-GDP ratio turned out

to be problematic, as the model did not exhibit convergence using the Gibbs sampler even with

long chains of 100 000 draws. On the other hand, the issue of the zero lower bound does not seem

to be of high importance— the EONIA residuals pass all normality tests (see Appendix D.3).

4.3.3 Ireland

Next we turn our attention to Ireland, where a breakdown in interest rate pass-through similar

to that of Italy and Spain is also identified. Figure 4.7 shows that, on average, the reaction of the

lending rate spread is similar, and there is a clear overreaction of the spreads to a tightening in the

policy rate. The realisation and the persistence of the second regime are similar to those in Italy

during the outbreak of the financial crisis in 2008 and in the periods associated with the euro area

sovereign debt crisis in 2010, 2011, and 2012, before the monetary policy transmission returns to

normal in 2013.

Notably no global variables deliver information regarding regime the switching. Neither VSTOXX,

nor the MOVE index, or the European policy uncertainty index have any predictive power over the

regimes. This points to somewhat different financial conditions in Ireland than in Italy or Spain.

Similar to Italy, Ireland’s debt burden has played an important role in the impairment of the

monetary policy transmission — the estimated coefficient in the probit model is significant and

positive. In contrast to Spain, the banking indicators are not informative, from which it can be

inferred that the state of the banking sector was not the source of the pass-through breakdown.

The ECB’s monetary policy announcements are insignificant. Thus, they did not contribute to the

return to the first state in the middle of 2012.

The other significant trigger variable is the volume of ECB’s main refinancing operations, which

enters the model with a positive coefficient, implying that an increase in these operations leads to a

rising probability of transitioning to the second regime of heterogeneous pass-through. This might

seem counterintuitive, but the MROs can be seen as an indicator for the state of the economy; in a

“bad state” the ECB provides greater liquidity assistance, and as the economy recovers the volumes

decrease. If instead of the MROs one uses CDS spreads between Ireland and Germany, the results

remain similar, since the variables exhibit high positive correlation (Appendix D.5).
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Figure 4.7: Regime probabilities and IRFs. Top panel: Estimated probability of the second state. Values below 0.5 indicate
a realisation of the first regime and values above 0.5 — a realisation of the second regime. Bottom panel: State-contingent
impulse responses of the lending rate spread to a shock in each variable.
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Figure 4.8: Trigger variables and transition probabilities. Top panel: Representative trigger variables for Ireland. The
MRO variable has been rescaled for expositional clarity. Bottom panel: Transition probabilities for staying in the first
regime. A falling probability indicates a higher chance for a regime shift.

4.3.4 Portugal

The last country to be examined is Portugal. We donot find a change in the interest rate pass-through.

Therewas no setup inwhich theGibbs samplermanaged to identify different reactions of the lending

rate spread to an unexpected shock in EONIA.Most impulse responses also show no significant
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interaction across the VAR variables, as is evident from Figure 4.9. Since the model does not identify

two distinct regimes, the estimated states are arbitrary, as they do not carry dissimilar information.

The realised states in the top panel of Figure 4.9 were not robust to the prior specification, in

contrast to all the other countries. In all cases the estimated impulse responses of the lending rate

spread turned out to be insignificant, irrespective of the regime estimation.

Notably the lending rates of Portugal exhibit high volatility (see Figure 4.2). Surprisingly, they fail

to pass a no-seasonality test, which is not expected from long-term rates, as it clashes with standard

economic intuition. Furthermore, coupled with a flat policy rate, the residuals of the model also

reject the normality tests (see Appendix D.3). Due to these issues, and specifically because of the

lack of regime identification, we refrain from examining any potential trigger variables.
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Figure 4.9: Regime probabilities and IRFs. Top panel: Estimated probability of the second state. Values below 0.5 indicate
a realisation of the first regime and values above 0.5 — a realisation of the second regime. Bottom panel: State-contingent
impulse responses of the lending rate spread to a shock in each variable.

So far we have presented the baseline results, where EONIA is used as a proxy for the policy rate.

This setup presents one potential challenge— the existence of the zero lower bound. The literature

provides several other proxies for the policy rate, and we shall explore them in detail in the next

section.
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4.3.5 Dealing with the zero lower bound

Recently, a number of researchers have used shadow rate models to characterise the term structure

of interest rates and/or to quantify the stance of monetary policy, e.g. Wu and Xia (2014), Krippner

(2014), Pericoli and Taboga (2015). The fictitious shadow short rate is a measure for the stance of

monetary policy in a zero lower bound environment, summarizing the joint impact of conventional

and unconventional monetary policy in a parsimonious manner. Unlike the observed short-term

interest rate, the shadow rate is not bounded below by zero per cent, dampening its historical

correlation with macroeconomic time series.

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

−8%

−6%

−4%

−2%

0% 

2% 

4% 

6% 
Comparison between alternative Shadow Short Rates (SSR)

 

 

EONIA

SSR
WX

SSR
LK

SSR
TP

Figure 4.10:Di�erent shadow EONIA estimates. SSRWX was taken fromWu and Xia (2014), SSRLK from Kripp-
ner (2014) andSSRTP from Pericoli and Taboga (2015). The latter was interpolated from quarterly data by a quadratic
method (match average).

There are various approaches in the literature to estimating a shadow rate. Wu and Xia (2014)

construct the rate as a linear function of three latent variables (factors), which follow a VAR(1)

process. The latent factors and the shadow rate are estimated with an extended Kalman filter based

around forward rates for n = 0.25, 0.5, 1, 2, 5, 7, and 10 years ahead. These forward rates are

constructed with end-of-month Nelson-Siegel-Svensson yield curve parameters. Whenever the

Wu-Xia shadow rate is above 0.25 per cent, it is exactly equal to the model implied one-month

interest rate. Krippner (2014), in turn, has suggested a modification to the Black (1995) approach

to allow for closed-form solutions to the option pricing problem. This allows for considerable

simplification when estimating the shadow rate. Pericoli and Taboga (2015) also use a modification

of the approach of Black (1995). However, they employ an exact Bayesian method for their shadow

short rate estimation. This method relies on discretizing the pricing equation, effectively discretizing

the state space of the model, without introducing too high numerical errors.
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Figure 4.10 reveals a large discrepancy between the different shadow rates at the end of the sample

period. According to Krippner (2014), the shadow rate has been negative since 2011, falling tominus

five per cent in 2014 and 2015, much further below the estimate of Wu and Xia (2014), which was

around zero to minus one per cent. For the same period, Pericoli and Taboga (2015) estimate values

lower than minus six per cent. Considering the disagreement between the three rates, one has to

take these estimates with a grain of salt.

Another issue that has to be taken into account is the different sample sizes of the SSR estimates.

For example, the shadow rate of Wu and Xia starts in June 2004, while the estimates provided by

Krippner date back to 1995. We control for that by estimating bothmodels starting in June 2004, yet

this is also an imperfect solution. First of all, the results are not directly comparable to the previous

section, because the sample size is significantly shorter. Second, the SSR is model dependent, and

extending the dataset forward or backward would also alter the original estimates. Hence, a shadow

rate that starts in 1995, and is truncated to June 2004, would not be equal to the same rate estimated

by the same model with data starting in June 2004.

In the following graphs, for each country we plot the estimated realised regimes for the shadow

rates, and the impulse responses of the lending rate spread to a shock to the policy rate. Note that

we do not estimate the models with the rate of Pericoli and Taboga (2015) due to the drawback that

it is only available at a quarterly frequency.

Themain findings are that underWu andXia’s estimates our results remain qualitatively unchanged

for all countries. Quantitatively the responses of the lending rate spread to a 100 basis point increase

in the policy rate are smaller, as evident from the figures below— about a quarter of the estimated

responses with the EONIA rate in the second state, while in the first regime there is no significant

effect suggesting that monetary policy shocks affected all countries equally. We still do not find

distinct states with Portuguese data. One can conclude that using EONIA as a proxy for the policy

rate amplifies the results, yet the findings are not driven by the zero lower bound.

By contrast, if one uses the shadow short rate of Krippner (2014), the estimates paint a different

picture for Italy and Spain, while they produce similar responses to Wu and Xia’s short rate and

EONIA for Portugal and Ireland. For Italy (Figure 4.11, right panel) the model does not identify

different responses of the lending rate spread initially. However, three months later, the spread

reacts by becoming negative following a tightening of the short rate, which is at odds with the

other two rates. This feature is also evident in Spain (Figure 4.12, right panel), where it is more

pronounced— after the fourth month the second state is associated with a negative spread, while
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Figure 4.11: Alternative model estimates for each shadow rate as the policy variable for Italy. SSRWX has been taken
from Wu and Xia (2014), SSRLK from Krippner (2014). Top panel: Estimated probability for regime two under each
SSR. Bottom panels: Impulse response function of the lending rate to a unit shock in the policy variable for regime one
(blue) and regime two (red). SSRWX shown left and SSRLK right. For the models to be comparable, the estimation
sample has been constrained to the shortest data series and the lag length has been kept constant across the SSR models.
The model setup is identical to the EONIA scenario.

the first state is associated with a positive spread following a policy rate shock. Comparing the results

for Italy and Spain, it is fair to say that the estimation results with SSR are less robust. One reason

for this could be the sharp decrease of the shadow rate of Krippner (2014), which falls below zero

in 2011 and never turns positive, with values reaching minus five per cent. This coincides with the

whole period of the lending rate spread being positive, hence a downward movement of the policy

rate is associated with an upward movement of the lending rate, which is exactly what we find—

following a positive shock, the spread closes and following a negative shock the spread opens.

The results for Ireland, and Portugal appear to be robust. They differ mostly in the size of the

estimated confidence intervals of the responses, nevertheless carry the same economic interpretation.

The monetary policy transmission has recovered for Ireland following the middle of 2013, and we

do not identify any breakdown in pass-through during the financial crisis for Portugal. It is notable

that in all models the estimated realisation of the first and second regime is highly similar, which

is encouraging. One drawback of the shadow rates is that they are not existing interest rates, and

banks do not have access to funds at these rates. They remain a theoretical construct. Therefore we

also conduct robustness checks using the measure by Illes et al. (2015) for banks’ weighted average

cost of liabilities, and our findings remain largely unchanged (see Appendix D.8).
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Figure 4.12:Alternative model estimates for each shadow rate as the policy variable for Spain. SSRWX has been taken
from Wu and Xia (2014), SSRLK from Krippner (2014). Top panel: Estimated probability for regime two under each
SSR. Bottom panels: Impulse response function of the lending rate to a unity shock in the policy variable for regime one
(blue) and regime two (red). SSRWX shown left and SSRLK right. For the models to be comparable the estimation
sample has been constrained to the shortest data series and the lag length has been kept constant across the SSR models.
The model setup is identical to the EONIA scenario.
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Ireland: Estimated Probability of Regime 2. Both Shadow Rates.
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Figure 4.13: Alternative model estimates for each shadow rate as the policy variable for Ireland. SSRWX has been
taken from Wu and Xia (2014), SSRLK from Krippner (2014). Top panel: Estimated probability for regime two
under each SSR. Bot-tom panels: Impulse response function of the lending rate to a unity shock in the policy variable for
regime one (blue) and regime two (red). SSRWX shown left and SSRLK right. For the models to be comparable the
estimation sample has been constrained to the shortest data series and the lag length has been kept constant across the
SSR models. The mod-el setup is identical to the EONIA scenario.
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Figure 4.14: Alternative model estimates for each shadow rate as the policy variable for Portugal. SSRWX has been
taken from Wu and Xia (2014), SSRLK from Krippner (2014). Top panel: Estimated probability for regime two
under each SSR. Bot-tom panels: Impulse response function of the lending rate to a unity shock in the policy variable for
regime one (blue) and regime two (red). SSRWX shown left and SSRLK right. For the models to be comparable the
estimation sample has been constrained to the shortest data series and the lag length has been kept constant across the
SSR models. The model setup is identical to the EONIA scenario.

4.4 Concluding remarks

The effect ofmonetary policy on lending rates is central in the policy debate on the design of optimal

euro area monetary policy. This topic has received renewed interest among economists and policy

makers in the aftermath of the global financial crisis and the euro area sovereign debt crisis. Monetary

policy and lending rates are endogenous variables, determined, possibly, by various economic shocks.

Can any causal link between the two be established? How do monetary policy and lending rates

interact? In this chapter we strive to better understand these mechanisms by revisiting the question

whether Italy, Spain, Ireland, and Portugal have experienced heterogeneity in the transmission of

the commonmonetary policy, and investigate what the triggers of these changes were. We approach

the question individually for each country through the lens of a Markov-switching VAR with

endogenous transition probabilities.
15

15
Although the time series specifications dealwithnon-linearity andheterogeneity, they donot allow for cross-sectional

dependence. By way of qualification, it therefore must be conceded that we need to be cautious when interpreting

these results. There may be spillover effects from one country to another magnifying at times of financial crisis, due

to exposures to common shocks, or simply due to the stance of the global financial cycle that could invalidate the

cross-sectional independence assumption. These global factors are mostly unobserved. Furthermore, we are aware

that there are limitations to the use of switchingmodels for forecasting. AlthoughMSmodels fit well in-sample they
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Through endogenising the transition probabilities between different regimes, we find that the debt

burden has played an important role for the impairment of the pass-through in both Italy and

Ireland, with Italy also being affected by global risk factors, measured by euro area-wide implied

volatility indices. Moreover, ECBmonetary policy announcements, such as the OMT and LTRO

announcements, have had a temporary positive effect for Italy, and also an important positive, albeit

smaller effect for Spain.
16
In contrast to the other countries, we cannot identify any significant

change in the interest rate pass-through for Portugal. Following the most recent debates in the

literature, we address the potential pitfall of using EONIA as a proxy for the policy rate of the ECB

by looking at alternative estimates such as shadow rates and proxies for bank funding conditions.

Alternative shadow rate estimates derived from dynamic factor models provide a remedy for the

issue of the zero lower bound, yet come at the cost that different models yield different shadow rate

estimates. We conclude that the flatness of EONIA as the main policy rate amplifies the results, but

does not alter the key findings.

do not necessarily generate superior out-of-sample forecasts [Ferrara et al. (2012)].
16
What else can the ECB do to fix the wedge in the relationship between policy and lending rates hampering growth

in the euro area periphery? Recently the ECB has unveiled a targeted offer of four-year loans designed to encourage

banks to lend more to small- and medium-sized enterprises. To take advantage of the facility, which are available at

a cheap fixed rate, banks must sign up commitments to business lending, similar in design to the Bank of England’s

Funding for Lending Scheme [ECB (2014)].
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A
Appendix to chapter 1

A.1 Log-linearized system of equations

Endogenous equations:

Euler equation:

ct = Et{ct+1}+ 1
σ

(Et{πt+1} − it) + 1
σ

(1− ρϑ)ϑt. (A.1)

Domestic price inflation:

(1 + βδH)πH,t = βEt{πH,t+1}+ δHπH,t−1 + λHmct + µH,t. (A.2)

Import price inflation:

(1 + βδF )πF,t = βEt{πF,t+1}+ δFπF,t−1 + λFψt + µF,t. (A.3)

Market clearing:

yt − (1− α)ct − αη(st + qt) = αy∗t . (A.4)
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Law of one price:

ψt = qt − (1− α)st. (A.5)

Terms of trade:

4st = πF,t − πH,t. (A.6)

Nominal exchange rate:

4et = 0. (A.7)

Interest rate parity:

π∗t − πt = 4qt. (A.8)

Marginal cost:

mct = σct + ϕyt + αst − (1 + ϕ)at. (A.9)

CPI:

π = (1− α)πH,t + απF,t. (A.10)

Foreign asset budget constraint:

ct + dt + α(qt + αst)−
1
β
dt−1 = yt. (A.11)

Interest rate reaction function:

it = i∗t − χdt − φt. (A.12)

Exogenous processes:

Domestic shocks:

at = ρaat−1 + εat with εat ∼ N(0, σ2
a), (A.13)

ϑt = ρϑϑt−1 + εϑt with εϑt ∼ N(0, σ2
ϑ), (A.14)

µH,t = ρµµH,t−1 + εµHt with εµHt ∼ N(0, σ2
µH

), (A.15)

µF,t = ρµµF,t−1 + εµFt with εµFt ∼ N(0, σ2
µF

), (A.16)

φt = ρφφt−1 + εφt with εφt ∼ N(0, σ2
φ). (A.17)
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World variables:

y∗t = cy∗y
∗
t−1 + εy

∗

t with εy
∗

t ∼ N(0, σ2
y∗), (A.18)

π∗t = cπ∗π
∗
t−1 + επ

∗

t with επ
∗

t ∼ N(0, σ2
π∗), (A.19)

i∗t = ci∗i
∗
t−1 + εi

∗

t with εi
∗

t ∼ N(0, σ2
i∗). (A.20)

A.2 Solving a MS-DSGEModel

This section will sketch the solution method employed in the paper. For details and proofs, see Cho

(2015). The model is cast in the following state-space form:

Xt = Et{A(st, st+1)Xt+1}+B(st)Xt−1 + C(st)Zt, (A.21)

withZt following an AR(1) process.
1
From the perspective of time point t by forward iteration the

model at time t+ k may be represented by

Xt = Et{Mk(st, st+1, ..., st+k)Xt+k}+ Ωk(st)Xt−1 + Γk(st)Zt, (A.22)

where Ω1(st) = B(st), Γ1(st) = C(st) and for k = 2, 3, ... :

Ωk(st) = Ξ−1
k−1(st)B(st), (A.23)

Γk(st) = Ξ−1
k−1(st)C(st) + Et{Fk−1(st, st+1)Γk−1(st+1)}R, (A.24)

Ξk−1(st) = (In − Et{A(st, st+1)Ωk−1(st+1)}), (A.25)

Fk−1(st, st+1) = Ξ−1
k−1(st)−1A(st, st+1). (A.26)

It may be shown that given initial values, under some regularity conditions such as invertibility of

Ξk ∀k, the sequenceEt{Mk(st, st+1, ...st+k)Xt+k} is well defined, unique and real-valued. In the

limit ask →∞, themodel (A.22) is said to be ForwardConvergent if the parametermatrices are con-

vergent, i.e. lim
k→∞

Ωk(st) = Ω∗(st); lim
k→∞

Γk(st) = Γ∗(st) and lim
k→∞

Fk(st, st+1) = F ∗(st, st+1).

If

lim
k→∞

Et{Mk(st, st+1, ..., st+k)Xt+k} = 0(n×1), (A.27)

then the solution is

Xt = Ω∗(st)Xt−1 + Γ∗(st)Zt. (A.28)

1
Note thatA(st, st+1) = B1(st)−1A1(st, st+1) in (A.21). B(st) andC(st) are similarly defined.
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Equation (A.27) is called the non-bubble condition and, if satisfied, implies the existence of a unique

solution to the model. As k tends to infinity, this condition should hold and all solutions, for which

it does not should be ruled out as they are not economically relevant. Thus, if the model is forward

convergent and eq. (A.27) is satisfied, then eq. (A.28) is the only relevant MSV solution to the

model cast in the form of (A.21).

The existence of (A.28) alone is a necessary but not sufficient condition for determinacy, due to

the volatility induced by the regime-switching feature. TheMSV solution is only the fundamental

part of the solution, but there may exist a non-fundamental part that is arbitrary, which leads to a

multiplicity of equilibria. Assuming the non-fundamental component takes the form

Wt = Et{F (st, st+1)Wt+1}, (A.29)

the concept for determinacy and indeterminacy deals with interaction of the matricesΩ∗j and F ∗j
when switching between states. Defining

ΨΩ∗×Ω∗ = [pijΩ∗j ⊗ Ω∗j ], ΨF ∗×F ∗ = [pijF ∗j ⊗ F ∗j ],

j = {1, 2}, mean-square stability is characterized by

rσ(ΨΩ∗×Ω∗) < 1, rσ(ΨF ∗×F ∗) ≤ 1, (A.30)

where rσ(·) represents the maximum absolute eigenvalue of the argument matrix. The intuition

behind these conditions is straightforward. The first one concerns the transition between the

matrices Ω∗(st) of the fundamental part of the solution (A.28). As long as the biggest absolute

eigenvalue is smaller than one, the system would be stable under regime-switching. The F ∗j matrix

governs the non-fundamental switching part and as long the biggest eigenvalue lies on or within the

unit-circle, the forward solution is the determinate equilibrium.
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A.3 M1: Convergence diagnostics – figures and tables

Lag 1 Lag 5 Lag 10 Lag 50

ϕ 0.615 0.104 0.008 0.009

θH 0.658 0.170 0.054 0.005

θF 0.630 0.095 0.035 0.010

σ 0.737 0.265 0.046 0.038

η 0.636 0.141 0.015 -0.002

δH 0.655 0.160 0.056 -0.008

δF 0.626 0.105 0.026 0.030

χ 0.617 0.084 -0.025 0.025

ρa 0.617 0.089 0.011 -0.011

ρµF 0.627 0.133 0.023 -0.005

ρµH 0.633 0.108 -0.003 -0.021

ρν 0.632 0.131 0.034 0.010

ρφ 0.615 0.088 0.013 -0.012

cy∗ 0.631 0.126 0.013 0.002

cπ∗ 0.643 0.106 -0.008 -0.016

ci∗ 0.636 0.114 0.007 -0.005

σµF 0.661 0.143 0.044 0.014

σµH 0.683 0.186 0.049 0.010

σa 0.924 0.740 0.604 0.126

σν 0.737 0.274 0.058 0.048

σφ 0.643 0.130 0.016 -0.019

σy∗ 0.626 0.114 0.028 0.005

σπ∗ 0.653 0.126 0.007 -0.003

σi∗ 0.644 0.088 0.015 -0.020

Thin Burn Total(N) Nmin I-stat

ϕ 1.000 5 1510 937 1.612

θH 1.000 5 1510 937 1.612

θF 1.000 5 1510 937 1.612

σ 1.000 5 1510 937 1.612

η 1.000 5 1510 937 1.612

δH 1.000 5 1510 937 1.612

δF 1.000 5 1510 937 1.612

χ 1.000 5 1510 937 1.612

ρa 1.000 5 1510 937 1.612

ρµF 1.000 5 1510 937 1.612

ρµH 1.000 5 1510 937 1.612

ρν 1.000 5 1510 937 1.612

ρφ 1.000 5 1510 937 1.612

cy∗ 1.000 5 1510 937 1.612

cπ∗ 1.000 5 1510 937 1.612

ci∗ 1.000 5 1510 937 1.612

σµF 1.000 5 1510 937 1.612

σµH 1.000 5 1510 937 1.612

σa 1.000 5 1510 937 1.612

σν 1.000 5 1510 937 1.612

σφ 1.000 5 1510 937 1.612

σy∗ 1.000 5 1510 937 1.612

σπ∗ 1.000 5 1510 937 1.612

σi∗ 1.000 5 1510 937 1.612

Table A.1: Left: Autocorrelation among the draws, based on a sample of 10000. Right: Raferty-Lewis convergence
diagnostics with q=0.025, r=0.1, s=0.95. An I-statistic less than 5 indicates convergence.
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Figure A.1:M1: Prior (- -) and posterior (—) distributions of the parameters.
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Figure A.3:M1: Trace plots of the parameters.
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A.4 M2: Convergence diagnostics – figures and tables

Lag 1. Lag 5 Lag 10 Lag 50

p11 0.616 0.131 0.014 0.001

p22 0.548 0.072 -0.002 -0.008

ϕ 0.593 0.071 -0.018 0.001

θH 0.640 0.139 0.024 0.011

θF 0.612 0.135 0.063 -0.002

σ 0.650 0.175 0.064 0.031

η 0.583 0.067 -0.004 -0.021

δH 0.602 0.111 0.033 -0.006

δF 0.597 0.120 0.022 0.016

χ 0.632 0.144 0.024 -0.008

ρa 0.568 0.036 -0.016 0.018

ρµF 0.582 0.085 -0.011 -0.018

ρµH 0.580 0.086 -0.006 0.005

ρν 0.607 0.116 0.026 0.027

ρφ 0.556 0.047 -0.004 -0.013

cy∗ 0.581 0.075 -0.002 0.030

cπ∗ 0.577 0.074 0.031 -0.018

ci∗ 0.600 0.086 0.034 0.009

σµF 0.667 0.187 0.055 -0.012

σµH 0.668 0.195 0.086 0.051

σa 0.976 0.920 0.874 0.584

σν 0.675 0.214 0.087 0.036

σφ 0.636 0.152 0.042 -0.013

σy∗ 0.602 0.098 0.020 -0.019

σπ∗ 0.619 0.100 0.035 -0.004

σi∗ 0.613 0.089 -0.013 -0.010

σφ 0.508 0.058 -0.004 0.002

Thin Burn Total(N) Nmin I-stat

p11 2.000 14 3642 937 3.887

p22 2.000 14 3642 937 3.887

ϕ 2.000 14 3642 937 3.887

θH 2.000 14 3642 937 3.887

θF 2.000 14 3642 937 3.887

σ 2.000 14 3642 937 3.887

η 2.000 14 3642 937 3.887

δH 2.000 14 3642 937 3.887

δF 2.000 14 3642 937 3.887

χ 2.000 14 3642 937 3.887

ρa 2.000 14 3642 937 3.887

ρµF 2.000 14 3642 937 3.887

ρµH 2.000 14 3642 937 3.887

ρν 2.000 14 3642 937 3.887

ρφ 2.000 14 3642 937 3.887

cy∗ 2.000 14 3642 937 3.887

cπ∗ 2.000 14 3642 937 3.887

ci∗ 2.000 14 3642 937 3.887

σµF 2.000 14 3642 937 3.887

σµH 2.000 14 3642 937 3.887

σa 2.000 14 3642 937 3.887

σν 2.000 14 3642 937 3.887

σφ 2.000 14 3642 937 3.887

σy∗ 2.000 14 3642 937 3.887

σπ∗ 2.000 14 3642 937 3.887

σi∗ 2.000 14 3642 937 3.887

σφ 2.000 14 3642 937 3.887

Table A.2: Left: Autocorrelation among the draws, based on a sample of 10000. Right: Raferty-Lewis convergence
diagnostics with q=0.025, r=0.1, s=0.95. An I-statistic less than 5 indicates convergence.
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Figure A.4:M2: Prior (- -) and posterior (—) distributions of the parameters.
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Figure A.5:M2: Recursive means of the parameters calculated over the draws from the posterior distribution.
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Figure A.6:M2: Trace plots of the parameters.
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A.5 M2: Variance decomposition tables

t+ h εy∗ επ∗ εi∗ εµF εµH εa εν εφ

1 0.06 0.72 0.13 0.40 5.70 0.03 92.87 0.09

4 0.11 1.00 0.16 0.25 14.96 0.09 83.36 0.07

8 0.15 1.12 0.15 0.34 23.40 0.14 74.64 0.06

12 0.16 1.14 0.14 0.69 26.59 0.16 71.06 0.06

20 0.17 1.13 0.14 1.04 28.21 0.17 69.08 0.06

40 0.18 1.13 0.15 1.13 28.55 0.17 68.64 0.06

∞ 0.18 1.13 0.15 1.13 28.55 0.17 68.63 0.06

Table A.3: Forecast error variance decomposition of consumption
for horizon h = {1, ...,∞}. State 1: σφ(low), in per cent.

t+ h εy∗ επ∗ εi∗ εµF εµH εa εν εφ

1 0.06 0.71 0.13 0.39 5.56 0.03 90.54 2.59

4 0.10 0.98 0.15 0.25 14.65 0.08 81.61 2.16

8 0.14 1.10 0.14 0.34 22.96 0.13 73.24 1.94

12 0.16 1.12 0.14 0.68 26.11 0.15 69.79 1.85

20 0.17 1.11 0.14 1.02 27.72 0.16 67.88 1.79

40 0.18 1.11 0.14 1.11 28.06 0.17 67.46 1.77

∞ 0.18 1.11 0.15 1.11 28.06 0.17 67.46 1.77

Table A.4: Forecast error variance decomposition of consumption
for horizon h = {1, ...,∞}. State 2: σφ(high), in per cent.

t+ h εy∗ επ∗ εi∗ εµF εµH εa εν εφ

1 0.03 5.31 0.00 73.85 19.33 0.09 1.38 0.00

4 0.03 7.85 0.00 74.69 16.24 0.08 1.10 0.00

8 0.03 7.10 0.00 75.69 15.85 0.08 1.26 0.00

12 0.03 6.83 0.00 75.38 16.35 0.08 1.32 0.00

20 0.03 6.80 0.00 75.28 16.47 0.08 1.32 0.00

40 0.03 6.80 0.00 75.27 16.47 0.08 1.34 0.00

∞ 0.03 6.80 0.00 75.26 16.47 0.08 1.34 0.00

Table A.5: Forecast error variance decomposition of inflation
for horizon h = {1, ...,∞}. State 1: σφ(low), in per cent.
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t+ h εy∗ επ∗ εi∗ εµF εµH εa εν εφ

1 0.03 5.30 0.00 73.83 19.32 0.09 1.38 0.03

4 0.03 7.85 0.00 74.68 16.23 0.08 1.10 0.03

8 0.03 7.10 0.00 75.66 15.84 0.08 1.26 0.03

12 0.03 6.83 0.00 75.35 16.35 0.08 1.32 0.03

20 0.03 6.80 0.00 75.26 16.46 0.08 1.32 0.03

40 0.03 6.80 0.00 75.24 16.47 0.08 1.34 0.03

∞ 0.03 6.80 0.00 75.24 16.47 0.08 1.34 0.03

Table A.6: Forecast error variance decomposition of inflation
for horizon h = {1, ...,∞}. State 2: σφ(high), in per cent.

t+ h εy∗ επ∗ εi∗ εµF εµH εa εν εφ

1 1.07 5.88 0.02 6.51 43.62 0.22 42.64 0.04

4 0.41 4.07 0.01 8.34 76.00 0.40 10.75 0.01

8 0.28 3.39 0.01 6.17 82.23 0.46 7.45 0.01

12 0.27 3.26 0.01 6.37 82.53 0.47 7.09 0.01

20 0.29 3.22 0.01 6.96 81.67 0.46 7.37 0.01

40 0.30 3.20 0.01 7.07 81.27 0.46 7.68 0.01

∞ 0.30 3.20 0.01 7.07 81.26 0.46 7.69 0.01

Table A.7: Forecast error variance decomposition of output
for horizon h = {1, ...,∞}. State 1: σφ(low), in per cent.

t+ h εy∗ επ∗ εi∗ εµF εµH εa εν εφ

1 1.06 5.81 0.02 6.43 43.09 0.22 42.13 1.24

4 0.41 4.06 0.01 8.32 75.77 0.40 10.72 0.31

8 0.28 3.38 0.01 6.16 82.06 0.46 7.44 0.21

12 0.27 3.25 0.01 6.36 82.37 0.47 7.07 0.20

20 0.29 3.22 0.01 6.95 81.51 0.46 7.36 0.21

40 0.30 3.19 0.01 7.06 81.11 0.46 7.67 0.21

∞ 0.30 3.19 0.01 7.06 81.10 0.46 7.68 0.21

Table A.8: Forecast error variance decomposition of output
for horizon h = {1, ...,∞}. State 2: σφ(high), in per cent.
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t+ h εy∗ επ∗ εi∗ εµF εµH εa εν εφ

1 0.24 0.01 30.44 0.23 0.16 0.00 5.73 63.19

4 0.58 0.23 23.93 7.70 6.70 0.03 28.36 32.47

8 0.62 0.55 12.15 16.06 19.16 0.10 37.36 14.00

12 0.59 0.69 8.07 16.96 26.38 0.14 38.09 9.08

20 0.58 0.76 5.97 16.07 31.98 0.18 37.76 6.70

40 0.58 0.78 5.51 15.60 33.66 0.19 37.53 6.16

∞ 0.58 0.78 5.50 15.58 33.69 0.19 37.53 6.15

Table A.9: Forecast error variance decomposition of the interest rate
for horizon h = {1, ...,∞}. State 1: σφ(low), in per cent.

t+ h εy∗ επ∗ εi∗ εµF εµH εa εν εφ

1 0.01 0.00 1.52 0.01 0.01 0.00 0.29 98.16

4 0.05 0.02 2.22 0.71 0.62 0.00 2.63 93.74

8 0.12 0.11 2.33 3.08 3.67 0.02 7.16 83.52

12 0.16 0.18 2.16 4.54 7.06 0.04 10.20 75.66

20 0.19 0.25 1.98 5.32 10.59 0.06 12.51 69.09

40 0.20 0.27 1.93 5.46 11.78 0.07 13.14 67.15

∞ 0.20 0.27 1.93 5.46 11.81 0.07 13.15 67.11

Table A.10: Forecast error variance decomposition of the interest rate
for horizon h = {1, ...,∞}. State 2: σφ(high), in per cent.
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B
Appendix to chapter 2

B.1 M2: State-contingent variance decomposition tables

t+ h εy∗ επ∗ εi∗ εµF εa εν εφ

1 0.02 7.97 0.42 3.41 10.77 77.35 0.06

4 0.04 10.31 0.60 3.35 29.74 55.91 0.05

8 0.05 8.47 0.53 2.57 46.47 41.87 0.04

12 0.05 7.05 0.45 2.19 55.08 35.15 0.03

20 0.06 5.78 0.38 2.06 62.51 29.17 0.03

40 0.06 5.05 0.41 2.86 65.94 25.65 0.03

∞ 0.06 4.97 0.43 3.05 66.21 25.25 0.03

Table B.1: Forecast error variance decomposition of consumption
for horizon h = {1, ...,∞}. State 1: “high credibility” σφ(1), in per cent.
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t+ h εy∗ επ∗ εi∗ εµF εa εν εφ

1 0.02 7.85 0.42 3.36 10.61 76.20 1.55

4 0.04 10.17 0.59 3.30 29.34 55.17 1.38

8 0.05 8.38 0.53 2.55 46.00 41.45 1.04

12 0.05 6.99 0.45 2.17 54.61 34.85 0.88

20 0.06 5.74 0.38 2.05 62.07 28.96 0.74

40 0.06 5.02 0.41 2.85 65.52 25.49 0.66

∞ 0.06 4.94 0.43 3.03 65.80 25.09 0.65

Table B.2: Forecast error variance decomposition of consumption
for horizon h = {1, ...,∞}. State 2: “low credibility” σφ(2), in per cent.

t+ h εy∗ επ∗ εi∗ εµF εa εν εφ

1 0.04 57.80 0.05 31.08 8.01 3.01 0.00

4 0.02 52.01 0.02 42.50 4.37 1.08 0.00

8 0.01 54.49 0.02 40.24 4.03 1.21 0.00

12 0.01 53.28 0.02 41.20 4.31 1.17 0.00

20 0.01 50.40 0.02 44.18 4.27 1.11 0.00

40 0.02 49.79 0.02 44.85 4.23 1.10 0.00

∞ 0.02 49.77 0.02 44.86 4.23 1.10 0.00

Table B.3: Forecast error variance decomposition of inflation
for horizon h = {1, ...,∞}. State 1: “high credibility” σφ(1), in per cent.

t+ h εy∗ επ∗ εi∗ εµF εa εν εφ

1 0.04 57.75 0.05 31.06 8.01 3.01 0.08

4 0.02 52.00 0.02 42.48 4.37 1.08 0.03

8 0.01 54.47 0.02 40.22 4.03 1.21 0.04

12 0.01 53.26 0.02 41.19 4.30 1.17 0.04

20 0.01 50.38 0.02 44.17 4.27 1.11 0.04

40 0.02 49.77 0.02 44.83 4.23 1.10 0.04

∞ 0.02 49.75 0.02 44.84 4.23 1.10 0.04

Table B.4: Forecast error variance decomposition of inflation
for horizon h = {1, ...,∞}. State 2: “low credibility” σφ(2), in per cent.
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t+ h εy∗ επ∗ εi∗ εµF εa εν εφ

1 0.66 45.73 0.26 0.32 50.67 2.36 0.00

4 0.10 12.54 0.33 0.05 82.94 4.03 0.01

8 0.07 7.13 0.29 0.20 89.86 2.45 0.00

12 0.07 6.19 0.27 1.20 89.83 2.43 0.00

20 0.08 5.81 0.27 4.61 86.41 2.81 0.00

40 0.09 5.45 0.37 7.87 83.29 2.92 0.01

∞ 0.09 5.36 0.41 8.21 83.04 2.89 0.01

Table B.5: Forecast error variance decomposition of output
for horizon h = {1, ...,∞}. State 1: “high credibility” σφ(1), in per cent.

t+ h εy∗ επ∗ εi∗ εµF εa εν εφ

1 0.66 45.72 0.26 0.32 50.66 2.36 0.02

4 0.10 12.52 0.33 0.05 82.82 4.03 0.16

8 0.07 7.12 0.29 0.20 89.76 2.45 0.11

12 0.07 6.19 0.27 1.20 89.74 2.43 0.10

20 0.08 5.81 0.27 4.61 86.30 2.81 0.13

40 0.09 5.45 0.37 7.86 83.18 2.91 0.14

∞ 0.09 5.35 0.41 8.20 82.93 2.88 0.14

Table B.6: Forecast error variance decomposition of output
for horizon h = {1, ...,∞}. State 2: “low credibility” σφ(2), in per cent.

t+ h εy∗ επ∗ εi∗ εµF εa εν εφ

1 0.14 0.03 57.44 0.01 0.13 1.53 40.73

4 0.33 0.03 57.40 0.23 7.94 9.58 24.50

8 0.36 0.02 36.19 3.99 34.11 13.78 11.55

12 0.30 0.02 21.41 9.35 51.26 11.43 6.24

20 0.22 0.01 10.95 14.82 63.20 7.69 3.10

40 0.17 0.01 6.96 16.91 68.47 5.52 1.96

∞ 0.16 0.01 6.63 17.02 69.07 5.26 1.85

Table B.7: Forecast error variance decomposition of the interest rate
for horizon h = {1, ...,∞}. State 1: “high credibility” σφ(1), in per cent.
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t+ h εy∗ επ∗ εi∗ εµF εa εν εφ

1 0.01 0.00 5.22 0.00 0.01 0.14 94.61

4 0.05 0.00 8.18 0.03 1.13 1.37 89.23

8 0.09 0.01 9.43 1.04 8.89 3.59 76.94

12 0.12 0.01 8.46 3.69 20.25 4.52 62.96

20 0.12 0.00 6.22 8.41 35.87 4.37 45.01

40 0.11 0.00 4.70 11.42 46.24 3.73 33.79

∞ 0.11 0.00 4.56 11.71 47.53 3.62 32.46

Table B.8: Forecast error variance decomposition of the interest rate
for horizon h = {1, ...,∞}. State 2: “low credibility” σφ(2), in per cent.

128



B.2 M2: Convergence diagnostics – figures and tables

This section contains additional material for the mainMS specificationM2.

Lag 1 Lag 5 Lag 10 Lag 50

p11 0.537 0.134 0.059 0.007

p22 0.661 0.192 0.058 -0.001

ϕ 0.738 0.236 0.054 -0.017

θH 0.753 0.298 0.107 -0.023

θF 0.739 0.252 0.054 -0.005

σ 0.784 0.387 0.183 -0.053

η 0.724 0.236 0.055 0.008

h 0.751 0.272 0.098 0.008

δH 0.749 0.253 0.067 -0.016

δF 0.717 0.220 0.049 0.008

χ 0.723 0.260 0.086 -0.014

ρa 0.881 0.630 0.460 -0.023

ρµF 0.815 0.441 0.242 -0.009

ρν 0.721 0.241 0.076 0.006

ρφ 0.727 0.223 0.044 -0.009

cy∗ 0.730 0.233 0.075 0.011

cπ∗ 0.759 0.302 0.091 -0.009

ci∗ 0.733 0.258 0.074 0.013

σµF 0.788 0.362 0.169 -0.020

σa 0.815 0.417 0.217 -0.024

σν 0.801 0.397 0.197 -0.040

σφ 0.780 0.372 0.176 0.022

σy∗ 0.733 0.221 0.077 0.022

σπ∗ 0.751 0.261 0.064 0.057

σi∗ 0.729 0.203 0.044 -0.005

Rv 0.709 0.206 0.071 0.008

σφ 0.739 0.398 0.247 0.002

Thin Burn Total(N) (Nmin) I-stat

p11 2 12 3124 937 3.334

p22 2 12 3124 937 3.334

ϕ 2 12 3124 937 3.334

θH 2 12 3124 937 3.334

θF 2 12 3124 937 3.334

σ 2 12 3124 937 3.334

η 2 12 3124 937 3.334

h 2 12 3124 937 3.334

δH 2 12 3124 937 3.334

δF 2 12 3124 937 3.334

χ 2 12 3124 937 3.334

ρa 2 12 3124 937 3.334

ρµF 2 12 3124 937 3.334

ρν 2 12 3124 937 3.334

ρφ 2 12 3124 937 3.334

cy∗ 2 12 3124 937 3.334

cπ∗ 2 12 3124 937 3.334

ci∗ 2 12 3124 937 3.334

σµF 2 12 3124 937 3.334

σa 2 12 3124 937 3.334

σν 2 12 3124 937 3.334

σφ 2 12 3124 937 3.334

σy∗ 2 12 3124 937 3.334

σπ∗ 2 12 3124 937 3.334

σi∗ 2 12 3124 937 3.334

Rv 2 12 3124 937 3.334

σφ 2 12 3124 937 3.334

Table B.9: Left: Autocorrelation among the draws, based on a sample of 10,000. Right: Raferty-Lewis convergence
diagnostics with q=0.025, r=0.1, s=0.95. An I-statistic less than 5 indicates convergence.
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Figure B.1:M2: Prior (- -) and posterior (—) parameter distributions.
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Figure B.2:M2: Recursive means of the parameters calculated over the draws from the posterior distribution.
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Figure B.3:M2: Trace plots of the parameters.
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B.3 M3: Convergence diagnostics — figures and tables

This section contains additional material for the main robustness specificationM3.

Dist. Prior Mean M1 M2 : st = 1 M2 : st = 2 M3 : st = 1 M3 : st = 2

p11 Beta 0.950 —
0.961

[0.904, 0.993]
—

0.952

[0.889, 0.990]
—

p22 Beta 0.950 —
0.964

[0.925, 0.991]
—

0.968

[0.932, 0.992]
—

β PM 0.983 0.983 0.983 — 0.983 —

ϕ Gam 2.000
2.010

[1.625, 2.431]

2.029

[1.639, 2.458]
—

2.036

[1.652, 2.455]
—

θH Beta 0.375
0.861

[0.834, 0.887]

0.854

[0.825, 0.881]
—

0.844

[0.814, 0.871]
—

θF Beta 0.375
0.843

[0.812, 0.874]

0.846

[0.814, 0.878]
—

0.838

[0.803, 0.871]
—

α PM 0.500 0.500 0.500 — 0.500 —

σ Gam 1.000
2.684

[1.752, 3.809]

2.524

[1.564, 3.752]
—

2.304

[1.450, 3.397]
—

η Gam 2.000
2.282

[1.895, 2.701]

2.412

[2.026, 2.815]
—

2.426

[2.044, 2.839]
—

h Beta 0.200
0.565

[0.459, 0.666]

0.575

[0.461, 0.682]
—

0.569

[0.455, 0.679]
—

δH Beta 0.200
0.422

[0.281, 0.564]

0.426

[0.291, 0.567]
—

0.437

[0.305, 0.573]
—

δF Beta 0.200
0.712

[0.602, 0.811]

0.706

[0.603, 0.802]
—

0.723

[0.615, 0.819]
—

χ Gam 0.010
0.014

[0.009, 0.019]

0.017

[0.013, 0.021]
—

0.017

[0.013, 0.021]
—

ρa Beta 0.700
0.908

[0.777, 0.975]

0.905

[0.777, 0.973]
—

0.901

[0.763, 0.974]
—

ρµF
Beta 0.700

0.918

[0.830, 0.972]

0.894

[0.790, 0.962]
—

0.886

[0.769, 0.961]
—

ρν Beta 0.700
0.546

[0.381, 0.713]

0.541

[0.374, 0.703]
—

0.520

[0.359, 0.693]
—

ρφ Beta 0.700
0.705

[0.531, 0.857]

0.697

[0.524, 0.844]
—

0.685

[0.515, 0.834]
—

cy∗ Beta 0.850
0.900

[0.825, 0.968]

0.891

[0.820, 0.957]
—

0.889

[0.817, 0.957]
—

cπ∗ Beta 0.850
0.649

[0.543, 0.743]

0.661

[0.562, 0.745]
—

0.645

[0.547, 0.731]
—

ci∗ Beta 0.850
0.923

[0.894, 0.951]

0.931

[0.898, 0.959]
—

0.926

[0.896, 0.954]
—

σµF
IGam 2.000

0.264

[0.202, 0.342]

0.273

[0.208, 0.354]
—

0.298

[0.228, 0.384]

0.318

[0.227, 0.433]

σa IGam 2.000
5.459

[4.216, 7.002]

5.142

[3.984, 6.628]
—

4.469

[3.467, 5.779]

5.614

[4.122, 7.577]

σν IGam 2.000
11.001

[8.370, 14.300]

10.869

[8.290, 14.233]
—

9.782

[7.511, 12.636]

10.113

[7.246, 13.855]

σφ IGam 2.000
0.292

[0.260, 0.329]

0.101

[0.082, 0.126]

0.511

[0.418, 0.629]

0.109

[0.088, 0.135]

0.527

[0.415, 0.682]

σy∗ IGam 1.000
0.550

[0.492, 0.615]

0.546

[0.488, 0.614]
—

0.546

[0.489, 0.612]
—

σπ∗ IGam 1.000
1.540

[1.322, 1.797]

1.486

[1.282, 1.725]
—

1.474

[1.270, 1.696]
—

σi∗ IGam 1.000
0.134

[0.119, 0.150]

0.133

[0.119, 0.150]
—

0.134

[0.119, 0.151]
—

Rv Norm 0.000
-0.001

[-0.298, 0.296]

-0.000

[-0.117, 0.116]
—

-0.002

[-0.118, 0.117]
—

Table B.10: Parameter estimates for modelM3 compared toM1 andM2. PM indicates point mass,Gam denotes the
Gamma distribution, IGam denotes the inverse Gamma distribution, andNorm stands for the Normal distribution.
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Figure B.4:M3: Prior (- -) and posterior (—) parameter distributions.
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Figure B.5:M3: Recursive means of the parameters calculated over the draws from the posterior distribution.
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Figure B.6:M3: Trace plots of the parameters.
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C
Appendix to chapter 3

C.1 Supplementary tables and figures

z Variable Coefficient Std. deviation 95% Probability Interval

HSVI -0.7030 0.2973 [-1.2132; -0.2401]

VIX -0.0117 0.0197 [-0.0449; 0.0203]

EMUI 0.0021 0.0026 [-0.0017; 0.0068]

STLOU -0.5859 0.3189 [-1.1532; -0.1544]

FDmS 1.7024 1.7089 [-1.0911; 4.5511]

Table C.1: Estimates for γ̂1 under the di�erent specifications.
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σ2
y σy,π σy,spr

σ2
y

2.066

[1.260, 3.115]

0.085

[-0.088, 0.256]

0.013

[0.001, 0.025]

σy,π
0.085

[-0.088, 0.256]

0.397

[0.303, 0.504]

0.004

[-0.001, 0.009]

σy,spr
0.013

[0.001, 0.025]

0.004

[-0.001, 0.009]

0.002

[0.001, 0.003]

σ2
y σy,π σy,spr

σ2
y

1.903

[1.147, 2.711]

-0.065

[-0.213, 0.071]

-0.057

[-0.109, -0.008]

σy,π
-0.065

[-0.213, 0.071]

0.202

[0.147, 0.263]

-0.016

[-0.033, 0.001]

σy,spr
-0.057

[-0.109, -0.008]

-0.016

[-0.033, 0.001]

0.041

[0.031, 0.053]

Table C.2: Reduced form variance-covariance matrices for the heteroskedastic VARmodel with HSVI as trigger variable.
First regime (left) and second regime (right). 95% credible intervals in brackets.

σ2
y σy,π σy,spr

σ2
y

2.464

[1.341, 3.571]

0.063

[-0.134, 0.249]

0.010

[-0.002, 0.023]

σy,π
0.063

[-0.134, 0.249]

0.397

[0.301, 0.508]

0.005

[0.000, 0.011]

σy,spr
0.010

[-0.002, 0.023]

0.005

[0.000, 0.011]

0.002

[0.001, 0.002]

σ2
y σy,π σy,spr

σ2
y

1.685

[1.067, 2.543]

-0.036

[-0.179, 0.088]

-0.054

[-0.103, -0.008]

σy,π
-0.036

[-0.179, 0.088]

0.203

[0.148, 0.266]

-0.017

[-0.035, -0.001]

σy,spr
-0.054

[-0.103, -0.008]

-0.017

[-0.035, -0.001]

0.041

[0.030, 0.052]

Table C.3: Reduced form variance-covariance matrices for the VAR model with VIX as trigger variable. First regime
(left) and second regime (right). 95% credible intervals in brackets.

σ2
y σy,π σy,spr

σ2
y

2.135

[1.259, 3.264]

0.091

[-0.088, 0.268]

0.012

[0.000, 0.023]

σy,π
0.091

[-0.088, 0.268]

0.394

[0.301, 0.502]

0.005

[0.000, 0.011]

σy,spr
0.012

[0.000, 0.023]

0.005

[0.000, 0.011]

0.002

[0.001, 0.002]

σ2
y σy,π σy,spr

σ2
y

1.883

[1.132, 2.688]

-0.065

[-0.211, 0.068]

-0.055

[-0.106, -0.007]

σy,π
-0.065

[-0.211, 0.068]

0.207

[0.154, 0.266]

-0.016

[-0.033, -0.000]

σy,spr
-0.055

[-0.106, -0.007]

-0.016

[-0.033, -0.000]

0.041

[0.030, 0.052]

Table C.4: Reduced form variance-covariance matrices for the VAR model with EMUI as trigger variable. First regime
(left) and second regime (right). 95% credible intervals in brackets.

σ2
y σy,π σy,spr

σ2
y

3.384

[2.436, 4.469]

-0.236

[-0.478, -0.012]

-0.012

[-0.021, -0.002]

σy,π
-0.236

[-0.478, -0.012]

0.351

[0.219, 0.492]

0.000

[-0.003, 0.004]

σy,spr
-0.012

[-0.021, -0.002]

0.000

[-0.003, 0.004]

0.001

[0.000, 0.001]

σ2
y σy,π σy,spr

σ2
y

1.772

[1.274, 2.358]

-0.045

[-0.269, 0.169]

-0.147

[-0.224, -0.079]

σy,π
-0.045

[-0.269, 0.169]

0.588

[0.414, 0.793]

0.047

[0.010, 0.088]

σy,spr
-0.147

[-0.224, -0.079]

0.047

[0.010, 0.088]

0.058

[0.041, 0.078]

Table C.5: Reduced form variance-covariance matrices for the VAR model with STLOU as trigger variable. First regime
(left) and second regime (right). 95% credible intervals in brackets.

σ2
y σy,π σy,spr

σ2
y

2.252

[1.764, 2.783]

-0.013

[-0.152, 0.128]

0.002

[-0.012, 0.016]

σy,π
-0.013

[-0.152, 0.128]

0.369

[0.298, 0.448]

-0.002

[-0.007, 0.003]

σy,spr
0.002

[-0.012, 0.016]

-0.002

[-0.007, 0.003]

0.004

[0.003, 0.005]

σ2
y σy,π σy,spr

σ2
y

2.511

[1.468, 3.878]

-0.153

[-0.332, -0.001]

-0.406

[-0.630, -0.222]

σy,π
-0.153

[-0.332, -0.001]

0.086

[0.049, 0.132]

0.056

[0.025, 0.093]

σy,spr
-0.406

[-0.630, -0.222]

0.056

[0.025, 0.093]

0.112

[0.069, 0.167]

Table C.6: Reduced form variance-covariance matrices for the VAR model with FDmS as trigger variable. First regime
(left) and second regime (right). 95% credible intervals in brackets.
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C.2 VIX as trigger variable
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Figure C.1: Regime switching and transition probabilities (VIX). Top panel: Estimated probability of the second state.
Values below 0.5 indicate a realisation of the first regime and values above 0.5 — a realisation of the second regime.
Bottom panel: Time-varying transition probabilities p(z) and q(z).
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Figure C.2: State-contingent impulse responses (VIX). Regime one (blue) and regime two (red) with standard 68% prob-
ability intervals.
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C.3 Equity Market Uncertainty Index as trigger variable
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Regime switching and transition probabilities (EMUI). Top panel: Estimated probability of the second state. Values
below 0.5 indicate a realisation of the first regime and values above 0.5 — a realisation of the second regime. Bottom
panel: Time-varying transition probabilities p(z) and q(z).
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Figure C.3: State-contingent impulse responses (EMUI). Regime one (blue) and regime two (red) with standard 68%
probability intervals.
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C.4 St. Louis Stress Index as trigger variable
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Figure C.4: Regime switching and transition probabilities (STLOU). Top panel: Estimated probability of the second
state. Values below 0.5 indicate a realisation of the first regime and values above 0.5 — a realisation of the second regime.
Bottom panel: Time-varying transition probabilities p(z) and q(z).
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Figure C.5: State-contingent impulse responses (STLOU). Regime one (blue) and regime two (red) with standard 68%
probability intervals.

141



C.5 FDmS as trigger variable
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Figure C.6: Regime switching and transition probabilities (FDmS). Top panel: Estimated probability of the second state.
Values below 0.5 indicate a realisation of the first regime and values above 0.5 — a realisation of the second regime.
Bottom panel: Time-varying transition probabilities p(z) and q(z).
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Figure C.7: State-contingent impulse responses (FDmS). Regime one (blue) and regime two (red) with standard 68%
probability intervals.
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C.6 Convergence diagnostics

Trace plots of the VAR coeffcients in the first regime
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Figure C.8: Trace plots of the VAR coefficients in the first regime with HSVI as trigger variable.
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Trace plots of the VAR coeffcients in the second regime
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Figure C.9: Trace plots of the VAR coefficients in the second regime with HSVI as trigger variable.
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Recursive means of the VAR coefficients in the first regime
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Figure C.10: Recursive means and parameter mean values of the VAR coefficients in the first regime with HSVI as trigger
variable.
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Recursive means of the VAR coefficients in the second regime
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Figure C.11: Recursive means and parameter mean values of the VAR coefficients in the second regime with HSVI as
trigger variable.
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D
Appendix to chapter 4

D.1 Data sources

Data for EONIA, as well as data on long-term lending spreads have been obtained through the ECB

statistical warehouse. Data for the shadow short rate (SSR) has been kindly provided byMarcello

Pericoli andMarco Taboga from their paper Pericoli and Taboga (2015), and obtained through Prof.

Jing Cynthia Wus website and from the website of the Reserve Bank of New Zealand. The data on

government bond yields has been obtained from the FRED database.

Data on the weighted average cost of liabilities was kindly provided by Anamaria Illes, Marco

Lombardi and Paul Mizen from their paper Illes et al. (2015). Data on the CDS was obtained from

Makrit. The VIX, MOVE and EUROSTOXX indices were obtained from Bloomberg.

Data on the variables for the probit model have been kindly provided by Anamaria Illes and Diego

Urbina at the Bank for International Settlements. All series are at a monthly frequency, with the

longest data spanning the period from January 2003 toMarch 2015.
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D.2 List of the trigger variables

Country specific variables:

• European policy uncertainty index [Baker et al. (2015)]

• Bank stocks index

• CDS spreads

• Main Refinancing Operations (MROs)

• Long-Term Refinancing Operations (LTROs)

• Industrial production growth

• HICP

• Net-foreign asset position expressed as a percentage of nominal gross domestic product.

• Debt-to-GDP ratio measured as general government gross debt as a percentage of nominal

gross domestic product

• Non-Performing loans

Contagion variables:

• VSTOXX financial volatility indicator

• VIX financial volatility indicator

• MOVE financial volatility index

Policy announcement variables

• Dummy variable for the announcements of the LTROs. June, September, November 2009 -

Fixed Rate Full Allotment programme.

• Dummy variable for ECB announcements: June, July and August 2012 - “Whatever it takes

speeches” and OMT announcements.
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Country Italy Italy Spain Spain Ireland Ireland Portugal Portugal

Regime (1) (2) (1) (2) (1) (2) (1) (2)

0.03* 0.50 0.30 0.10 0.02* 0.50 0.04* 0.00*

p-value 0.00* 0.08 0.05 0.02* 0.18 0.50 0.00* 0.50

0.20 0.50 0.50 0.42 0.50 0.17 0.00* 0.03*

Table D.1: Jarque-Bera Test. Null Hypothesis: “The residuals are normally distributed with unspecified mean and
standard deviation”.

Country Italy Italy Spain Spain Ireland Ireland Portugal Portugal

Regime (1) (2) (1) (2) (1) (2) (1) (2)

0.92 0.72 0.76 0.89 0.99 0.79 0.96 0.79

p-value 0.93 0.78 0.55 0.71 0.89 0.91 0.81 0.96

0.89 0.90 0.48 0.66 0.81 0.88 0.96 0.99

Table D.2: T-test for zero means. Null Hypothesis: “The residuals have a mean di�erent from zero”.

D.3 State-contingent residual diagnostics
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Figure D.1: Italy: Residuals for regime one (top) and regime two (bottom).
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Figure D.2: Spain: Residuals for regime one (top) and regime two (bottom).
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Figure D.3: Ireland: Residuals for regime one (top) and regime two (bottom).
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Figure D.4: Portugal: Residuals for regime one (top) and regime two (bottom).

D.4 Impulse responses for the EONIA specification
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Figure D.5:Normalized state-contingent impulse responses for the first (blue) and second (red) regime. The interest rate
pass-through may be inferred from the lower left corner, which plots the response of the lending spread to a shock in
EONIA. Italy exhibits a change in the monetary policy transmission to lending rates, since the spread reacts di�erently
across regimes. These findings are amplified due to the zero lower bound, which is evident from the response of EONIA
to a shock in itself in the second regime.
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Figure D.6:Normalized state-contingent impulse responses for the first (blue) and second (red) regime. The interest rate
pass-through may be inferred from the lower left corner, which plots the response of the lending spread to a shock in
EONIA. Italy exhibits a change in the monetary policy transmission to lending rates, since the spread reacts di�erently
across regimes.

10 20 30

0

1

2

EONIA to shock in EONIA

10 20 30

−0.2

0

0.2

EONIA to shock in g

10 20 30

−0.4

−0.2

0

EONIA to shock in r

10 20 30

−2

−1

0

1

g to shock in EONIA

10 20 30

0

0.5

1

g to shock in g

10 20 30

−1

−0.5

0

g to shock in r

10 20 30

0

1

2

r to shock in EONIA

10 20 30

0
0.2
0.4
0.6
0.8

r to shock in g

Ireland

10 20 30

0

0.5

1
r to shock in r

Figure D.7: Normalized state-contingent impulse responses for the first (blue) and second (red) regime. The interest
rate pass-through may be inferred from the lower left corner, which plots the response of the lending spread to a shock in
EONIA. Ireland exhibits a change in the monetary policy transmission to lending rates, since the spread reacts di�erently
across regimes.
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Figure D.8:Normalized state-contingent impulse responses for the first (blue) and second (red) regime for Portugal. The
model does not identify distinctive responses of the lending rate spread to a shock in the policy rate.

D.5 Correlation tables for the Z variables
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S
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E

r
I
T

VSTOXX 1

Pol. Unc. 0,45 1

MOVE 0,69 0,04 1

Bank Stocks -0,35 -0,71 -0,07 1

CDS Spreads 0,2 0,79 -0,18 -0,69 1

Ind.Prod. -0,27 -0,13 -0,25 0,17 -0,12 1

MRO 0,03 -0,05 -0,04 0,14 0,16 -0,06 1

LTRO 0,12 0,1 0,01 0,08 0,19 -0,16 0,71 1

NFA-to-GDP -0,43 -0,07 -0,45 -0,2 0,1 0,08 -0,11 -0,1 1

Debt-to-GDP -0,2 0,42 -0,44 -0,57 0,51 0,07 -0,32 -0,24 0,5 1

rPT 0,1 0,53 -0,17 -0,56 0,63 0,04 0 0,05 0,07 0,52 1

rES -0,14 0,5 -0,4 -0,31 0,63 -0,03 -0,05 0,01 0,38 0,59 0,47 1

rIE -0,16 0,49 -0,44 -0,41 0,65 -0,02 0,08 0,1 0,5 0,58 0,54 0,81 1

rIT -0,14 0,45 -0,35 -0,33 0,63 -0,08 0,03 0,11 0,5 0,61 0,43 0,84 0,82 1

Table D.3: Correlation among the trigger variables for Italy.

153



V
S
T
O
X
X

P
o
l
.
U
n
c
.

M
O
V
E

B
a
n
k
S
t
o
c
k
s

C
D
S
S
p
r
e
a
d
s

I
n
d
.
P
r
o
d
.

M
R
O

L
T
R
O

N
F
A
-
t
o
-
G
D
P

D
e
b
t
-
t
o
-
G
D
P

r
P
T

r
E
S

r I
E

r
I
T

VSTOXX 1

Pol. Unc. 0,44 1

MOVE 0,71 0,06 1

Bank Stocks -0,32 -0,75 -0,04 1

CDS Spreads 0,23 0,84 -0,17 -0,78 1

Ind.Prod. -0,37 -0,16 -0,33 0,1 -0,06 1

MRO 0,07 0,32 -0,07 -0,31 0,37 -0,06 1

LTRO 0,01 0,65 -0,28 -0,7 0,77 -0,02 0,31 1

NFA-to-GDP -0,04 0,63 -0,32 -0,84 0,71 0,09 0,22 0,83 1

Debt-to-GDP -0,1 0,61 -0,4 -0,75 0,67 0,08 0,18 0,8 0,94 1

rPT 0,14 0,58 -0,13 -0,64 0,65 -0,08 0,15 0,53 0,62 0,64 1

rES -0,09 0,54 -0,37 -0,39 0,58 0,03 0,34 0,7 0,55 0,68 0,46 1

rIE -0,16 0,5 -0,43 -0,44 0,6 0,01 0,34 0,7 0,58 0,72 0,54 0,82 1

rIT -0,08 0,47 -0,31 -0,42 0,51 0 0,33 0,73 0,57 0,69 0,42 0,82 0,83 1

Table D.4: Correlation among the trigger variables for Spain.
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VSTOXX 1

Pol. Unc. 0,43 1

MOVE 0,7 0,02 1

Bank Stocks -0,33 -0,7 -0,06 1

CDS Spreads 0,32 0,67 -0,01 -0,55 1

Ind.Prod. 0,02 -0,03 -0,1 0 -0,02 1

MRO 0,48 0,31 0,34 -0,25 0,53 -0,01 1

LTRO 0,41 0,64 0,15 -0,49 0,73 -0,04 0,46 1

NFA-to-GDP NA NA NA NA NA NA NA NA NA

Debt-to-GDP 0,05 0,76 -0,31 -0,74 0,58 0,04 0,13 0,61 NA 1

rPT 0,12 0,57 -0,16 -0,58 0,53 0,04 0,21 0,4 NA 0,68 1

rES -0,1 0,55 -0,39 -0,34 0,25 0,06 -0,07 0,18 NA 0,71 0,46 1

rIE -0,16 0,51 -0,44 -0,41 0,3 0,02 -0,2 0,09 NA 0,71 0,54 0,81 1

rIT -0,11 0,49 -0,35 -0,35 0,18 0,04 -0,15 0,16 NA 0,69 0,43 0,83 0,83 1

Table D.5: Correlation among the trigger variables for Spain.
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D.6 Empirical distributions of representative Z variables
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FigureD.9:Histogram of the γ̂ coefficients in the probit equation for Italy. The vertical lines indicate the 95% probability
intervals. Positive coefficient increases the probability to switch from the first to the second regime. Negative coefficient
increases the transition probability to switch from the second to the first regime.
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FigureD.10:Histogram of the γ̂ coefficients in the probit equation for Spain. The vertical lines indicate the 95% probabil-
ity intervals. Positive coefficient increases the probability to switch from the first to the second regime. Negative coefficient
increases the transition probability to switch from the second to the first regime.
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Figure D.11: Histogram of the γ̂ coefficients in the probit equation for Ireland. The vertical lines indicate the 95%
probability intervals. Positive coefficient increases the probability to switch from the first to the second regime. Negative
coefficient increases the transition probability to switch from the second to the first regime.
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D.7 Convergence diagnostics for the EONIA specification

Italy: Trace plots of the VAR coeffcients in the first regime
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Figure D.12: Trace plots for the VAR coefficients in the first regime.
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Italy: Trace plots of the VAR coeffcients in the second regime
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Figure D.13: Trace plots for the VAR coefficients in the second regime.
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Spain: Trace plots of the VAR coeffcients in the first regime
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Figure D.14: Trace plots for the VAR coefficients.
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Spain: Trace plots of the VAR coeffcients in the second regime
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Figure D.15: Trace plots for the VAR coefficients.
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Ireland: Trace plots of the VAR coeffcients in the first regime
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Figure D.16: Trace plots for the VAR coefficients.
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Ireland: Trace plots of the VAR coeffcients in the second regime
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Figure D.17: Trace plots for the VAR coefficients.
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Portugal: Trace plots of the VAR coeffcients in the first regime
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Figure D.18: Trace plots for the VAR coefficients.
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Portugal: Trace plots of the VAR coeffcients in the second regime
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Figure D.19: Trace plots for the VAR coefficients.
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Italy: Recursive means of the VAR coefficients in the first regime
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Figure D.20: Recursive mean plots of the VAR coefficients over draws from the posterior distribution.
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Italy: Recursive means of the VAR coefficients in the second regime
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Figure D.21: Recursive mean plots of the VAR coefficients over draws from the posterior distribution.
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Spain: Recursive means of the VAR coefficients in the first regime
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Figure D.22: Recursive mean plots of the VAR coefficients over draws from the posterior distribution.
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Spain: Recursive means of the VAR coefficients in the second regime
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Figure D.23: Recursive mean plots of the VAR coefficients over draws from the posterior distribution.
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Ireland: Recursive means of the VAR coefficients in the first regime

7500 15000
1.05

1.1

1.15

1.2

7500 15000
−0.01

0

0.01

0.02

7500 15000
−4

−2

0

2
x 10

−3

7500 15000
−0.15

−0.1

−0.05

7500 15000
−0.02

−0.01

0

0.01

7500 15000
−0.015

−0.01

−0.005

0

7500 15000
0

0.02

0.04

7500 15000
0

0.2

0.4

7500 15000
0.9

1

1.1

7500 15000
−0.02

−0.01

0

0.01

7500 15000
−0.4

−0.2

0

7500 15000
−0.1

0

0.1

7500 15000
−0.03

−0.02

−0.01

0

7500 15000
−0.06

−0.04

−0.02

7500 15000
−0.5

0

0.5

7500 15000
−0.1

0

0.1

7500 15000
0.7

0.8

0.9

7500 15000
−0.5

0

0.5

7500 15000
−0.1

0

0.1

7500 15000
0

0.1

0.2

7500 15000
0

0.05

0.1

Figure D.24: Recursive mean plots of the VAR coefficients over draws from the posterior distribution.
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Ireland: Recursive means of the VAR coefficients in the second regime
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Figure D.25: Recursive mean plots of the VAR coefficients over draws from the posterior distribution.
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Portugal: Recursive means of the VAR coefficients in the first regime
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Figure D.26: Recursive mean plots of the VAR coefficients over draws from the posterior distribution.
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Portugal: Recursive means of the VAR coefficients in the second regime
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Figure D.27: Recursive mean plots of the VAR coefficients over draws from the posterior distribution.
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D.8 Robustness check using the WACLmeasure

Illes et. al. (2015) suggest that since the outbreak of the crisis the interbank market rates might

not be a good approximation for bank funding costs. Therefore they create a benchmark for

the bank funding costs for each country, both in the short and the long term, and show that

when this is taken into account there is no breakdown in the interest rate pass-through. They

construct a weighted average cost of liabilities (WACL), which consists of several components of

bank funding including covered bonds, five-year credit default swaps, deposit liabilities and open

market operations. Therefore, this variable can be used to address two issues at hand, since it

incorporates changes in bank funding costs and market expectations indirectly through its building

blocks. In the following robustness exercise we introduce WACL as a VAR variable in place of

sovereign bond yields, to act both as a connection between short-term and long-term rates, and to

approximate bank funding conditions. Since the variable is available by country, we calculate the

long-term funding costs relative to Germany: rWACLht = WACLht −WACLDEt .

Largely our findings remain unchanged. For Italy and Ireland we again identify a change in interest

rate pass-through. The identified second regime has a lower persistence than in the EONIA case for

Italy, and a longer persistence for Ireland. For Spain we also identify the same impulse responses of

lending rate spreads as in the baseline scenario. A difference to the government bond yield scenario

is that the realisation of the second regime also appears before 2008. We also find a breakdown of

the pass-through in Portugal, although the results are not robust.
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FigureD.28:Normalized state-contingent impulse responses for the first (blue) and second (red) regime using the weighted
average cost of liabilities as an explanatory variable in place of the sovereign bond yields. After controlling for the banks’
funding conditions the model identifies di�erent responses of the lending rate to a shock in the policy rate (lower left
corner).
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Spain: Estimated probability of the realised state
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FigureD.29:Normalized state-contingent impulse responses for the first (blue) and second (red) regime using the weighted
average cost of liabilities as an explanatory variable in place of the sovereign bond yields. After controlling for the banks’
funding conditions the model identifies di�erent responses of the lending rate to a shock in the policy rate (lower left
corner).
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Ireland: Estimated probability of the second regime
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FigureD.30:Normalized state-contingent impulse responses for the first (blue) and second (red) regime using the weighted
average cost of liabilities as an explanatory variable in place of the sovereign bond yields. After controlling for the banks’
funding conditions the model identifies di�erent responses of the lending rate to a shock in the policy rate (lower left
corner).
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Portugal: Estimated probability of the second regime

 

 

Regime 2

Regime 1

10 20 30
-5

0

5

10
rPT to a shock in EONIA

10 20 30
-4

-2

0

2
rPT to a shock in rWACL LT

10 20 30
-0.5

0

0.5

1
rPT to a shock in rPT

FigureD.31:Normalized state-contingent impulse responses for the first (blue) and second (red) regime using the weighted
average cost of liabilities as an explanatory variable in place of the sovereign bond yields. After controlling for the banks’
funding conditions the model identifies di�erent responses of the lending rate to a shock in the policy rate (lower left
corner).
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Zusammenfassung

Die globale Finanzkrise war von einer großen Bedeutung für die Wirtschaft und somit für die

Volkswirtschaftslehre. Sie hat zur Folge erhebliche Struktur- und Durchbrüche der gewöhnlichen

Übertragungsmechanismen. Die Unfähigkeit der linearen Modelle den Umfang der Krise zu

prognostizieren hat die Bedeutung der Nichtlinearitäten in der Forschung stark betont. Eine

bestimmte Klasse vonModellen – die Markov-switching DSGEModelle (MS-DSGE) - abzielt die

oben genannten Nichtlinearitäten zu erfassen. Bei diesen Modellen wird es davon ausgegangen,

dass die Wirtschaft eine Reihe verschiedener Zustände annehmen kann, die jeweils mit einem Satz

von Parametern charakterisiert werden. In jeder Darstellung werden die Beziehungen zwischen

makroökonomischen Variablen gegeben, jedoch wechselt die Wirtschaft zwischen den Regimen

nach einem stochastischenMarkov-prozess. Deshalb können die gleichen Schocks unterschiedliche

Auswirkungen auf derWirtschaft haben. Darüber hinaus sind diewirtschaftlichenAkteure bewusst,

dass solche Übergänge auftreten können und dies berücksichtigen. Die Akteure bilden deren

Erwartungen mit der Sicht, dass ein Regimeweschel möglich wäre, was zu weitere Nichtlinearitäten

führt und dadurch werden der vorbeugende Effekt einer drohenden Krise modelliert.

Das einleitende Kapitel präsentiert eine kleine offene Volkswirtschaft, die nach der Eigenschaften

der estnischen Wirtschaft modelliert wird. Estland hatte mehr als zwei Jahrzehnten einen festen

Wechselkurssystem (FWK). Das System ist ein Währungsamt (Currency Board) - eine spezielle

Form eines FWK, beidem das Basisgeld zu 100% durch Währungsreserven gedeckt ist und die

Möglichkeit der Zentralbank als “lender of last resort” zu dienen abschafft. Mit einem FWK ist es

zu erwarten, dass die inländischen Zinsen sich an den ausländischen Zinsen durch eine Arbitrageop-

portunität anpassen und dadurch konvergieren die beiden Zeitreihen. Empirisch jedoch sind die

Zinsen nie identisch, wie es oft in der DSGE Literatur angenommen wird. Aus den Daten ist es

offensichtlich, dass eine erhebliche Risikoprämie aufbauen kann die auch eine negative Auswirkung



auf die Wirtschaft hat. Diese Zinspanne kann aus verschiedenen Gründe, wie z.B. eine Banken-

oder Finanzkrise, erscheinen und dadurch verschlechtert sich die wirtschaftliche Lage weiter.

Daher wird in diesem Modell diese Nichtlinearität der Risikoprämie explizit mit einer Markov-

prozess modelliert und mit Bayesianische Methoden geschätzt. Die Hauptergebnisse zeigen, dass

finanzielle Schocks eine untergeordnete Rolle spielen im Fall der Bankensektor stabil ist und eine

großeAuswirkung haben können im Fall dieWirtschaft sich in einer Krise befindet, eine Eigenschaft

die in der linearenModellen nicht erfassen wird.

Das zweite Kapitel dieser Arbeit, mit dem Titel “The Regime-Dependent Evolution of Credibil-

ity: A Fresh Look at Hong Kong’s Linked Exchange Rate System” baut auf diesem Modell auf

und untersucht wie wichtig die Glaubwürdigkeit des Wechselkurssystems für eine kleine offene

Wirtschaft ist. Das Modell wird für Hong Kong geschätzt, ein Land das ein Currency Board seit

fast drei Jahrzehnten besitzt. Dies ist eine der am längsten laufenden FWK-Systeme und es hat eine

gewisse Anzahl von spekulativen Attacken überstanden. Gehen die Händler davon aus, dass das

feste Wechselkurssystem aufgehoben wird, werden sie eine Position gegen das System halten, wo sie

die Währung verkaufen und Nachfrage nach ausländische Währung generieren. Um die Regierung

denWechselkurs behalten zu können, muss sie (i) genug Reserven ausländischer Währung halten

und (ii) die Kapitalabwanderung vermeiden. Dies führt zu erhöhende Zinsen (um dieWährung

attraktiver zu halten) und wieder zu einer Leitzinsspanne. Diese Zinspanne wird mit dem MS-

DSGEModell aus dem ersten Kapitelgeschätzt und durch Varianzzerlegung und Impuls-Antwort

Funktionen wird die Transmission der Zinsschocks bei “normalen” Zeiten und in Perioden der

Glaubwürdigkeitsverlusts.

Die zweite Hälfte der Dissertation versucht die Themen des ersten Teils durch empirische Modelle

zu vertiefen. Das dritte Kapitel “ The Credibility of Hong Kong’s Currency Board System: Looking

Through the Prism of MS-VAR Models with Time-Varying Transition Probabilities ” ist eine

natürliche Fortsetzung der Frage der Glaubwürdigkeit des Wechselkurssystems. Mit Hilfe eine

Markov-switching Vektorautoregression (MS-VAR) wird einen gewissen Nachteil des MS-DSGE

Modelle überwunden – die Annahme, dass die Wahrscheinlichkeiten für den Regimewechsel kon-

stant und exogen sind. Diese Annahme wird bei den DSGE Modellen getroffen nur wegen der

Komplexität der Modelle. Dennoch, ist die Annahme Kritsch bei der Modellierung von Krisen, wo

selbsterfüllende Erwartungen eine wichtige Rolle spielen können. Durch die Endogenisierung von

der Regimewahrscheinligkeiten wird es in diesem Kapitel untersucht was den Verlust der Glaub-

würdigkeit des Wechselkurssystems beeinflussen kann. Welche Variablen können ihn „triggern“?



Wir entwickeln einen eigenen Index für die Hong Kong Finanzmärkte und zeigen, dass Turbulenz

auf die Heimfinanzmärkte einen Einfluss auf die Glaubwürdigkeit haben, wobei die Volatilität bei

den globalen Finanzmärkten keine „spillover“ Effekts haben.

Das letzte Kapitel “Modelling the Time Variation in Euro Area Lending Spreads” untersucht die

Divergenz zwischen denKreditzinsen imEuroraum, besonders Irland, Italien, Spanien undPortugal.

In den letzten Jahren hat die EZB der Leitzins niedrig gehalten, indessen die Darlehenszinsen in

den o.g. Ländern gestiegen sind was auf eine Veränderung bei der Transmission der Geldpolitik

hindeutet. Im viertenKapitel wird es wiedermitHilfe einesMS-VARModelles untersucht was dazu

eingelegt hat. Wir finden heraus, dass globale Risikofaktoren und Volatilität auf den Finanzmärkten

zu höheren Kreditzinsen in Italien und Spanien beigetragen haben und dass die Probleme im

Bankensektor der Erhöhung der Darlehenszinsen in Spanien beeinflusst haben. Die Fiskalkrise hatte

einen Einfluss auf derDynamik der Kreditzinsen in Irland, wobei in Portugal wir keine Veränderung

der Transmission der Geldpolitik identifizieren können. Die unkonventionelle Geldpolitik der ECB

hatte kurzfristige positive Effekte in Italien bezüglich der Transmission der Geldpolitik.




