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ABSTRACT

Physical modelling is a widely applied method for researching acoustical properties of mu-
sical instruments. In recent years the ever rising computational power of standard personal
computers and the accessibility of dedicated accelerating hardware has fuelled manifold de-
velopments in this field of research. Most physics based methods that directly solve the
underlying differential equations have the severe drawback of a high computational cost,
so many simplifications of the physical models are proposed and utilised to make physical
schemes faster or capable of real-time. But, with simpler descriptions of the modelled instru-
ments, less information about the actual physical behaviour can be gained from the model.
This, in turn, directly influences the sound quality of the physical model. A method that
could retain high structural accuracy while being capable of calculating and synthesizing
instrument models in real-time would be highly beneficial for several reasons:

« For musicological research of the influence of physical parameters on the timbre and
the radiated sound of the instrument.

« For instrument makers who could test the influence of geometrical alterations on the
vibrational behaviour of the respective instrument without the time delay of crafting
a new instrument.

« For musicians who are interested in physics based synthesis of musical instruments.

o For composers who want to compose and perform music for a new class of instru-
ments with changeable geometrical features in real-time. (Imagine a piano that can be
manipulated in size while playing.)

This thesis presents a methodology and working implementation of real-time physical mod-
els of four musical instruments. The models are developed by using measurements taken
on real instruments as a basis and implementing all acoustically relevant parts of the in-
struments in software and hardware. The physical models are computed using symplectic
and multi-symplectic time integration methods iterating Newton’s equation of motion in
time. All models are implemented in C/MATLAB and on Field Programmable Gate Array
Hardware. The final instrument models can be controlled from a Graphical User Interface
running on a standard PC.
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CHAPTER 1

INTRODUCTION

Physical modeling sound synthesis for musicological applications is a current and active field
of research at the intersection of musicology, electrical engineering, mathematics and com-
puter science. Even though the techniques applied for physical modeling are among the
oldest numerical mathematical methods, new technological advances over the past 50 years
have fueled manifold applications and research in the area of numerical (sound) synthesis
based on physical models. Because all physical modeling methods, utilising finite differences
to solve differential equations, are computationally very expensive, their real-time capabil-
ities were, until recently, limited to simple models or small problem sizes. Even though
modern personal computers have more computational throughput than high-performance
super-computer clusters of the early 1990s', it is still impossible to calculate full geometry
models of musical instruments in real-time or even close to real-time using standard com-
puting devices, if all subtleties of physical parameters are taken into account.

In recent years, specialised hardware devices are being utilised as co-processing units, accel-
erating the computations of large scale problems from weeks to mere minutes. Still, there are
only few treatises regarding the implementation of real-time models of musical instruments,
and, if a real-time solution is sought after, most publications concentrate on simulations of
single geometries? or physical models with simplifications or linearisation in the formulation
of the model®.

' A modern Intel Haswell i7-4770k has a theoretical throughput of 217,6 GFLOPs. This is almost four times
faster compared to the 59,7 GFLOPs of the fastest supercomputer of June 1993, the CM-5/1024. See: http:
//www.top500.0rg/lists/1993/06/.

*For the model of a string see: J.A. Gibbons, D.M. Howard, and A.M. Tyrrell: “FPGA implementation of
1D wave equation for real-time audio synthesis”, in: IEEE Proceedings, Computers and Digital Techniques
152.5 (2005): 619-631. For the model of a plate-like geometry see: Halil Erdem Motuk: “System-On-Chip
implementation of real-time finite difference based sound synthesis”, PhD thesis, Queen’s University Belfast,
2006.

*For the real-time model of a grand piano applying filter techniques to model the sound-board see: B. Bank, S.


http://www.top500.org/lists/1993/06/
http://www.top500.org/lists/1993/06/
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In this thesis, real-time implementations of four music instruments are presented. These
models incorporate the complete geometry with structural non-linearities and complex ex-
citation mechanisms, and are modeled with finite difference methods, computed on a Field
Programmable Gate Array (FPGA).

1.1 Background and motivation

Acoustic music instruments have been, and still are an important part of human culture
throughout recorded history. There are several examples of music instruments that have a
history spanning several hundred years or even thousands of years. This means they un-
derwent constant changes and improvements throughout their developing stages, with each
evolutionary step representing some sort of cultural or practical need. There are examples of
music instruments that have a written history spanning several hundred years which evolved
from archetypical instrument forms to highly valued masterpieces of craftsmanship.
Throughout their development, artisan music instrument makers have experimented with
different kinds of materials and different kind of structural features, many having a visible
influence on the form of the instrument as well as the sound and the timbre of the instrument.
Therefore, modern versions of traditional music instruments incorporate multiple different
structural features influencing their specific sound, characterising a certain manifestation of
a class of instruments.

This means, there can be a multitude of different variables that shape the sound or the specific
timbre of an instrument.

In many acoustic music instruments, the musically relevant part of the radiated sound is
represented in the fine structure of these instruments.

A violin for instance, with its highly complex geometrical structure could not be substituted
by a simple string coupled to a wooden plate without suffering loss of its characteristic sound.
Additionally, these fine structural features often depend on non-linear material properties
or small imperfections in the used material. This is complicated further by a coupling be-
tween different instrument parts and the interaction of different forms of acoustic vibrations,
depending on the respective geometry.

In summary it is safe to state that the sound of an instrument is subject to multi-factorial
influence parameters which depend on one or several of the aforementioned interactions,
which in most cases cannot be understood fully by only analysing the radiated instrument
sound.

Nevertheless, a very promising way to grasp the musical relevant parts of musical instruments

is by modeling their whole geometries applying numerical methods, simulate the resulting

Zambon, and F. Fontana: “A Modal-Based Real-Time Piano Synthesizer”, in: Audio, Speech, and Language
Processing, IEEE Transactions on 18.4 (May 2010): 809-821.
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models using a computer, and auralise and/or visualise the vibrations produced by the virtual
instruments.

As this can be accomplished in a completely controllable way, the geometrical or vibrational
reasons for musically interesting fine structures in the timbre can be researched systemati-

cally:

1. By changing the geometry.

[\

. By changing physical parameters.

w

. By changing the excitation of the respective instrument.

N

. By using different mathematical models.

However, a different problem arises here: Musical instruments have highly complex geome-
tries and interaction of the respective constituent parts. This implies that there are many
degrees of freedom and countless possibilities of changes in all aspects of the geometry, ma-
terial properties, couplings, etc. can arise.

Hence, to arrive at a correct formulation for an instrument model is a typical optimisation
problem of a system of nearly endless variability. Therefore, when such a model is imple-
mented it would be beneficial to be able to apply those changes easily and fast, to arrive at
estimations about the sound quality in reasonable time, preferably in real-time.

Still, the implementation of whole instrument bodies with complex interactions is very time
consuming because the computational cost to solve the differential equation system rises with
the complexity of the model. Solving a wind instrument with fluid dynamics, calculating 100
ms of sound may take several weeks, when implemented with FEM solvers and calculated
on a standard personal computer.

When it comes to structural mechanics, computation times are faster, but still take several
hours to days®.

Faster algorithms or methods in general would benefit the variability and applicability of
whole-body models and would make them usable under more realistic research settings as
well as in live music settings. At best, a real-time solution would be ideal. Then, even mu-
sicians could interact with a physical model in real-time, which would be comparable to
playing a digital keyboard or a synthesizer, and change geometrical features of the modelled
instrument while playing. Also, instrument makers could change design aspects of their
instrument and immediately listen to the sound produced by the altered instrument.

A real-time model would enable them to research a myriad of parameter changes and not

only small sets of variations, which would be feasible with non-real-time models. Instrument

“See: Juliette Chabassier, Antoine Chaigne, and Patrick Joly: “Modeling and simulation of a grand piano’, in:
The Journal of the Acoustical Society of America 134.1 (2013): 648-665. Here a 300 CPU Cluster calculates
24 hours, to synthesize one second of sound of a grand-piano physical model
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makers could test various aspects of the instruments geometry concurrently, while playing
in different registers and use realistic articulations.

For researchers in musical acoustics, who want to understand instruments and their acousti-
cally important aspects, a real-time implementation would be a great tool to parametrise sim-
ulations and compare them to measurements. Hence, a real-time solution for whole-body
implementations would make the whole potential of these models available to researchers,

instrument makers, and musicians.

In this thesis, a working real-time implementation for musical instruments is presented and
first results, new to the field, giving a new understanding to aspects of musical sound produc-
tion are presented. Furthermore, this work researches problems that can arise when compar-
ing measured data of musical instruments to calculated data synthesised by mathematically
derived models.

It is shown that the analytical models of instruments can explain effects of the vibrational
behaviour of musical instruments to high accuracy for some properties but fail to do so with
others.

In most cases this points to an incomplete formulation of the physical model, but there are
other cases where a physical effect can not be explained satisfactorily by strictly analytic
methods®.

In this thesis, some problems that can arise when modeling musical instruments based on
purely analytical approaches without comparing the results to measurements of real instru-
ments are highlighted.

This approach is comparable to the analysis by synthesis methodology used in linguistic sci-
ences.’

As shown in other works, a synthesis approach can lead to findings which extend the con-
ventional analytical formulation and lead to more accurate mathematical descriptions of a

certain problem.®

> One example is the radiated sound of a plain membrane. The analytical solution of the 2-dimensional wave
equation, describing the acoustical equations of motion of a membrane, is given by the zero-crossings of the
Bessel function. But comparisons between the mathematically correct, analytical solution and real measure-
ments reveal that there can be a discrepancy between a real, measured membrane and a mathematical mem-
brane. Even though modern membranes of snare drums or banjos have highly isotropic material properties
and very even tension distribution, the centre frequencies of the mode shapes differ considerably from the
analytically expected center frequencies. See for instance the research of timpani membranes by: Thomas
D. Rossing: Science of Percussion Instruments, World Scientific, 2008 or N. Fletcher and Th. Rossing: Physics
of Musical Instruments, Springer, 2000.

SThe synchronisation of organ pipes described in M. Abel, S. Bergweiler, and R. Gerhard-Multhaupt: “Syn-
chronization of organ pipes: experimental observations and modeling’, in: The Journal of the Acoustical
Society of America 119.4 (2006): 2467-2475 is a paragon example thereof.

7 Thomas G Bever and David Poeppel: “Analysis by synthesis: a (re-) emerging program of research for lan-
guage and vision’, in: Biolinguistics 4.2-3 (2010): 174-200.

8See for instance transversal to longitudinal vibration coupling in plates as proposed in: Rolf Bader: Com-
putational Mechanics of the Classical Guitar, Springer, Oct. 2005, pp. 73-93 or non-linear effects in strings
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1.1.1 Real-time physical modeling

In various areas of scientific research, the mathematical description and modeling of physical
structures is a key element for understanding the behaviour and properties of real world
objects. Especially in most fields of engineering, physical modeling in all its subsets is an
important technique for simulating, implementing and verifying the behaviour of diverse
devices and appliances. In structural mechanics, Finite Element Methods (FEMs) are used
to simulate phenomena like transient wave propagation, impacts, deformation or steady state
load distribution in large objects.’

The FEM is used in countless other fields of research, for instance electromagnetic simula-

0 11

tions!? as well as instrument acoustics !!.

Another widely applied method, which can be seen as a successor to FEM, is the Boundary
Element Method (BEM)!? used for instance in room acoustics calculations!?, electromag-

netic models'# or models for water waves 1°.

Even though there are several works using FEM or BEM for modeling the mechanical prop-

erties of musical instruments, '©

FEM or BEM has several drawbacks that limits their applicability for real-time!” synthesis.'8

described in: David R. Rowland and Colin Pask: “The missing wave momentum mystery’, in: American
Journal of Physics 67.5 (1998): 378-388.

®See the introductory chapter of: K.J. Bathe: Finite-Element Methoden, Springer, 2002.

"Nico Godel: “Numerische Simulation hochfrequenter elektromagnetischer Felder durch die Discontinuous
Galerkin Finite elemente Methode”, PhD thesis, Helmut-Schmidt-Universitit / Universitit der Bundeswehr
Hamburg, 2010.

"'M. J. Elejabarrieta, A. Ezcurra, and C. Santamaria: “Vibrational behaviour of the guitar soundboard analysed
by the Finite Element Method”, in: Acta Acustica united with Acustica 87.1 (2001): 128-136; N. Giordano:
“Simple model of a piano soundboard”, in: The Journal of the Acoustical Society of America 102.2 (1997):
1159-1168.

Stefan A. Sauter and Christoph Schwab: “Springer series in computational mathematics’, in: Boundary Ele-
ment Methods, ed. by R. Bank et al., Springer Verlag, 2011.

13’]oseph M. Corcoran and Ricardo A. Burdisso: “A diffusion boundary element method for room acoustics”,
in: 12th Pan-American Congress of Applied Mechanics, Port of Spain, Trinidad, 2012.

"“M.H. Lean and A. Wexler: “Application of the boundary element method to electromagnetic scattering
problems”, in: Antennas and Propagation Society International Symposium, 1981, vol. 19, 1981: 326-330.
15See: Frederic Dias and Thomas J Bridges: “The numerical computation of freely propagating time-dependent

irrotational water waves”, in: Fluid Dynamics Research 38.12 (2006): 803.

For a model of a piano sound-board see: Adrien Mamou-Mani, Joel Frelat, and Charles Besnainou: “Nu-
merical simulation of a piano soundboard under downbearing”, in: The Journal of the Acoustical Society of
America 123.4 (2008): 2401-2406; for the model of a base-drum see: Rolf Bader: “Finite-element calcula-
tion of a bass drum’, in: J. Acoust. Soc. Am. 119 (2006): 3290; or the model of a clapper see for instance:
Rolf Bader et al.: “Finite-element transient calculation of a bell struck by a clapper”, in: J. Acoust. Soc. Am.
119 (2006): 3290.

The term real-time in its different spelling realtime, real time and real-time is not really standardised. In
computer science real-time systems are systems with predictable time steps for every sub-step of the system.

'8 This may be due to the fact that finite element models are known to give errors for higher wavenumbers.
Another factor may be the grid construction, which can be very intricate. See Stefan Bilbao: Numerical
Sound Synthesis: Finite Difference Schemes and Simulation in Musical Acoustics. Chichester, UK: John Wiley
and Sons, 2009, pp. 16-20.
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Finite difference (FD) methods on the other hand do not suffer similar constraints and have
been shown to be very well suited for sound synthesis of physical models."’

In current music acoustics literature, the term physical modeling is associated with several
different ideas of sound synthesis methods, so a short clarification of the concept, utilised in
this thesis, is given here.

The term physical denotes a direct connection to the real physical system of the instrument.
The numerical solution method, based on the model, is adjusted to capture the physical prop-
erties to a high degree of accuracy, trying to capture all properties, at best. Next to others,
there are two methods that are commonly used in the field of music and acoustics. The fun-
damental idea behind both approaches is to solve the differential equation by discretising the
spatial and/or temporal domain and iterate this discretised system with a numerical method
in space or time.

One class of physical modeling methods has its roots in filter design methodology as com-

monly applied in signal processing applications.?

A well known and widely applied ap-
proach for instance is the digital waveguide synthesis or delay-line method.?! Physical mod-
els based on waveguides®? are commonly applied to solve linear differential equations, often
the 1-dimensional wave equation for strings or air-columns, or the 2-dimensional equation
for membranes and plates. The 1-dimensional version of this method is based on a discrete
version of the d’Alembert solution of the differential equation, describing two functions trav-
elling in both directions along a string or an air-filled tube using impedance filters at both
terminations to simulate losses at the boundaries.

One fundamental advantage of this method is its computational speed. Disadvantages can
arise when non-linearities must be included in a model due to coupling between geometries,
non-linear excitation or complex, time-varying boundary conditions. The waveguide, or
delay-line, approach is linked to filter design techniques because it is often used in combina-
tion with filters, representing the transfer-function of an instrument body or other resonator,
as applied in the work of Karjalainen, Vilimaki, and Janosy.??

Another approach to synthesize instrument sounds with filter techniques can be imple-
mented by approximating the transfer function of a vibrating object, like a linear string, with

a z-transformation and reordering the resultant IIR-filter to an explicit, space-forward step,

See Bilbao (S. Bilbao: “Robust Physical Modeling Sound Synthesis for Nonlinear Systems”, in: Signal Process-
ing Magazine, IEEE 24.2 [Mar. 2007]: 32-41) for an in depth consideration of the pros and cons of different
strategies for physical modeling including FD methods.

K. Kroschel K.-D. Kammeyer: Digitale Signalverarbeitung - Filterung und Spektralanalyse mit MATLAB-
Ubungen, 6th ed., Wiesbaden, Germany: Vieweg+Teubner-Verlag, Apr. 2006: 587.

*'Tt is utilised in many commercially available synthesizer by companies like Yamaha or Roland.

The concept is known as digital waveguide synthesis. JuliusO. Smith: “Digital Waveguide Architectures for
Virtual Musical Instruments”, in: Handbook of Signal Processing in Acoustics, ed. by David Havelock, Sonoko
Kuwano, and Michael Vorldnder, Springer New York, 2009: 399-417.

»Matti Karjalainen, Vesa Vilimaki, and Zoltan Janosy: “Towards High-Quality Sound synthesis of the Guitar
and String Instruments”, in: International Computer Music Conference, Tokyo, Japan, 1993.



1 Introduction

recursive algorithm or as an impulse response filter for different excitation forms.*

Other forms of Physical Modeling found in literature are often based on lumped models,
whole parts of instruments modeled as a single oscillator or other simplifications of instru-
ment parts.25

The physical modeling approach applied in this thesis utilises spatial finite difference discreti-
sation of the respective differential equations and explicit, symplectic or multi-symplectic
time integration methods. Because all important acoustical vibrations of the instruments,
modeled in this thesis, can be described mathematically by the wave equation, a partial dif-
ferential equation?%, the applied methodology is aimed at capturing its features as accurately
as possible, with the smallest possible abstraction overhead resulting from mathematical or

numerical methods.

Among other beneficial features of finite difference methods, they are well-suited to solve the
numerical problems posed in this thesis because they are easily adaptable to varying kinds
of problems, have the ability to produce stable results for various physical state variables of
the modeled system and can be expressed in a straightforward and easily comprehensible,
explicit form.”

Even though FEM and BEM are more popular for computational simulation of mechanical
problems as well as other fields, still, finite differences are used in various fields of numerical
research and have by far the longest history of all three methods.?

Additionally, a rising interest in the mathematical foundations of finite difference schemes
has led to various optimisations and a robust mathematical framework for various numerical

problems in the field of finite differences.

The driving force behind this thesis was the aspiration to model the chosen instruments with

the highest perceptual accuracy possible, without resorting to simplifications in the real-time

9

implementation due to computational restrictions?® as well as creating models of musical

#Robert J. Schilling and Sandra L. Harris: Fundamental of Digital Signal Processing using MATLAB, 2nd ed.,
Cengage Learning, 2012, pp. 500-503.

2 A perceptually reasonable simplification can be found in the physical model of a classical guitar in a Roland
V-Guitar synthesizer which allows to change the height of the guitar rim, which is achieved by tuning the
Helmholtz resonance using a bandpass filter, changing the center frequency of the filter.

% In the case of a simple harmonic oscillator it is an ordinary differential equation.

YFEM and BEM usually include the solution of a large equation system, or are solved by other implicit nu-
merical methods.See: Bathe, Finite-Element Methoden, 1002ff.

%8 An early account of finite difference methods can be found in Newton’s Principia Book 1 to solve Kepler’s
three body problem. See: Ernst Hairer, Christian Lubich, and Gerhard Wanner: Geometric numerical inte-
gration : structure-preserving algorithms for ordinary differential equations, Springer series in computational
mathematics ; 31, Berlin [u.a.]: Springer, 2002, pp. 6.

»This approach is utilised in several works focussing on sound synthesis. Basic parts of the model are for-
mulated and computed with finite difference methods, whereas other parts use simplified representations
for the numerical calculations to make the model capable of real-time. See for instance Teng Wei Jian: “Pi-
ano Sounds Synthesis with an emphasis on the modeling of the hammer and the piano wire”, MA thesis,
University of Edinburgh, 2012.
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instruments incorporating all physical and geometrical features that are important for the
characteristic sound of the respective instrument. To this end, alongside the numerical as-
pects of the implementation, the acoustical properties of the modelled instruments are of
substantial interest here because, as will be shown over the course of this work, the better
the underlying physical principles of a musical instrument are understood, the more accu-
rate a physical model can be formulated, and the more convincing the sound quality of the

auralisation is.

1.2 Physical modeling or mathematical modeling?

Before presenting the methodology in more detail, a consideration regarding the problem at
hand is of importance and shall be mentioned here. As stated before, the aim of this thesis
is to facilitate the use of physical models for musicians, researchers, and instrument makers.
This means that the physical model is designed to be as accurate as possible regarding its
structural features while yielding satisfying sound synthesis results in real-time for generic
as well as special cases.

In particular this means that the modeling approach used here is aimed at physically ac-
curate representations of acoustic musical instruments and the methodology is adapted to
accomplish this goal first and foremost.

Hence, the ground-truth to which the accuracy of the model is compared to, is not to a
mathematical-analytical solution of the sets of equations that describe the respective instru-
ment but physical measurements taken on real instruments.

This approach is taken because there is no guarantee that the mathematical model which is
used to represent a certain feature of an instrument is the correct one, and a refinement of
the numerical model towards an analytical accuracy is not goal-oriented to obtain a more
physically accurate formulation.

Throughout the course of this thesis, extensive research of the acoustical properties, with a
strong focus on the radiated sound of the presented instruments, as well as a comparison of
numerical methods for solving the governing equations of the acoustical vibrations of these
instruments, took place. And the steady comparison of the syntesis results of the physical

models with the measured instruments lead to the following rules of thumb:

The most benefit towards realistic acoustical behaviour in a physical model
can be reached if we do not strive for the most accurate numerical formulation
compared to an analytical solution, but if we try to implement all measurable

physical properties into the model as accurate as possible.

This fact gets immediately evident if we bear in mind that we are describing physical, not

mathematical systems, even though mathematical tools are used approach the problems in
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the first place.

Due to this numerical methods are applied that approximate the analytical equations only to
a certain order of mathematical accuracy. In most cases, a higher order of analytical accu-
racy was not needed or even beneficial for the resulting sound, as shown in chapter 4 - an
illustrative example of this is the model of a string. In this case it is quite simple to formulate
a finite difference model which yields analytical results, but as shown later, methods with a
lower analytical accuracy show better results when compared to the measured motion as well
as sound of a real string. This does not mean that accurate mathematical modeling for musi-
cal instruments is not a crucial part of physical modeling, it means that after a certain degree
of analytical accuracy is reached, the most gain in sound quality and vibrational accuracy is

achieved by optimising the physical model and not the numerical method.

1.3 Methodology of this thesis

The methodology applied in this thesis is mainly aimed at synthesising accurate physical
models of musical instruments in real-time. As a point of departure for all models, the dif-
ferential equations describing the acoustic wave properties of the instrument are discretised
using finite differences and coupled to form a basic model (a prototype) of the instrument. In
the next step, the synthesised sounds and motions are compared to simple audio recordings
of the instruments, and the models are adjusted towards a more exact representation of this
sound. In the next step, more accurate measurements, using different methods are taken
to compare the structural features of the modelled instruments with structural features of
the real instruments. At least from this step onwards, the initial formulation of the physical
model is extended to incorporate measured properties with higher accuracy. After the re-
formulation is implemented in the model, the synthesis results are compared again with the
measurements and the recorded sound of the instrument. This modelling-measuring-cycle is
repeated until the model of the instrument is optimised towards aural accuracy (having the
right timbre) and vibrational accuracy (showing the right (modal) patterns at the measured
frequencies). By fitting the numerical model of the instrument to the real instrument, much
insight into the vibrational properties of the instrument is gained, and many of the mecha-
nisms, leading to the specific timbre of an instrument, can be understood in greater detail.
In all example cases, this approach helped formulating accurate numerical representations

of the acoustic instruments.

This thesis commences with with a motivation and an overview on modeling and synthesis
techniques, commonly applied in (instrument) acoustics, followed by an introduction and
overview on the utilised methodology.

Chapter 2 starts with basic considerations regarding the instruments treated in this thesis.
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Alongside the historic developments of structural parts, physical measurements taken on
each instrument are presented along with an introduction to important historic stages in the
organological development of the respective instruments.

Chapter 3 is concerned with the mathematical and numerical methods applied in this thesis,
giving an overview on the applied algorithms.

In chapter 4, the physical models, implemented in MATLAB and C are presented with a focus
on the formulation of the models for the basic geometric parts of the instruments.

Chapter 5 Following that, an overview of the utilised hardware, an introduction to FPGA
technology and the hardware description language (VHDL) used in this work is given in
chapter 5.

Chapter 6 the implementation on the FPGA hardware and the specific structure of all final
real-time models is presented.

Chapter 7 closes this treatise with an overview on the results and findings of this thesis, a
conclusion and an outlook on possible future routes of research using the presented method-

ology and the implementation.

10



CHAPTER 2

HISTORY, ORGANOLOGY AND ACOUSTICS

Ut tensio, sic vis.

(As the extension, so the force)

(Hooke, 1678)

In this chapter, an introduction to the historic evolution influencing organological properties
of the instruments is presented. Acoustic properties of important singular instrument parts,
supported by measurements taken over the course of this thesis, are presented. A tentative
consideration of factors influencing the specific timbre and temporal vibration characteris-

tics of the respective instruments is given at the end of each section.

2.1 Preliminary Remarks

Alongside an overall knowledge of the instruments geometry as well as the basic physical
parameters, as for instance material properties or boundary conditions, there are many subtle
factors influencing the vibrational behaviour of musical instruments that must be taken into
consideration in the formulation of a physical model.

Ideally, a physical model would include all parameters and features that are representable
in a mathematical and/or computational way,if one strives for the most accurate simulation
results possible. This implies that verbal attributes like openness or attack of an instrument
can only be included into a physical formulation of an instrument if there are equivalent
physical parameters that are measurable physically and formulated in a mathematical way.

This requires an in-depth knowledge and understanding of underlying physical functionali-

11
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ties of singular instrument parts and, of equal importance, a comprehension of the interac-
tion between those singular physical structures.

Besides material dependent constants of singular instrument constituents the underlying
equations, describing the fundamental acoustic wave propagation in the respective parts are
presented. All conjoining components of the instruments are taken into consideration again
only if an important structural difference adds a substantial portion to the resulting acousti-
cal vibrations.

The measurements presented here are not aimed at providing a physical description for the
complete instrument class, because only one or two instruments of each family were mea-
sured. Hence, some acoustical properties may be specific to the particular instrument and
not a global property of the whole instrument class. The physical models, presented in chap-
ter 4 are based on the instruments measured in this section, and the synthesis results are
compared to the measurements. Hence, all of the following measurement results are used as

a ground-truth for the models.

In addition to the measurable, vibro-acoustic parameters, an additional contribution influ-
encing the acoustic properties of music instruments are organologic changes in the historic
development, and the effect those changes had on the timbre respectively. In accordance
with the methodology proposed in the introduction it means that for a classification of a
musical instruments, it is helpful to have an overview of its evolutionary steps and an insight
into mechanical changes as well as the influence those changes have (had) on the timbre of
the instrument sound.

In some cases, structural advancements of geometrical features were driven by practical
reasons—Ilike the C-bouts of the violin leading to a better playability of the outer strings, or
the membrane fixation of the banjo, leading to a higher tension of the membrane and thus
a higher radiated volume of the instrument—but all of these changes influenced the timbre
of the instrument as well. This organalogic-historic-acoustic research is one of the central

aspects that can be realised with the method presented in this thesis, as shown in chapter 4.

2.2 Applied Measurement Tools

The tools and methodology used in all acoustical measurements are presented in the follow-
ing section. All measurements were conducted at the Institute for Systematic Musicology at
the University of Hamburg.

2.2.1 Microphone Array

For detailed imaging of radiation patterns of acoustical vibrations from surfaces of musical

instruments a microphone array consisting of 128 microphones is used. The microphone
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array recordings are applied as a ground truth for a comparison of radiation patterns! of real
music instruments to the synthesised counterparts and their numerically simulated radiation

patterns.

The underlying principle and the mathematical method is published in by Bader?. The ra-
tionale behind this method makes use of the assumption that sound waves, radiated from
an instruments surface, can be expressed as a superposition of a finite number of monopole
radiators with frequency dependent radiation strength and radiation angles. Using a mi-
crophone array, sound pressure in the acoustic near-field of a sound radiating surface can
be measured at discrete points. It is assumed that for each frequency every monopole has a
distinct radiation characteristic, expressed as a specific radiation strength and radiation an-
gle. Hence, a system of linear equations can be formulated and solved for every hypothetical
point source on a measured surface. After propagating the measured sound pressure from
the recording position back to the surface of the instrument, the method is reconstructs the
distribution of the sound pressure level on the instruments surface.

For all lute instrument measurements, the array is arranged in a rectangular 11-11 grid with a
spacing of 3.9 cm between two adjacent microphones. The microphones used in this project
are self-assembled measurement microphones with an electret-capsule. All microphones are
battery powered, leading to a galvanic separation of the microphones and the microphone
preamplifier resulting in a better signal to noise ratio of the recorded time series. 16 RME
Mixtasy professional studio microphone pre-amplifiers and AD/DA converters, running at
a sample rate of 48,000 Hz, are used to amplify the microphone signal and for analog to
digital conversion of the signal. The resulting time series are evaluated in a Mathematica-
script, implementing the minimum energy method as described. All measurements were

performed in an anechoic chamber at the Institute of Systematic Musicology, Hamburg.

2.2.2 High-Speed Camera

A high-speed camera is used to qualitatively record visibly moving parts of the instrument,
as well as to track specific motions of the respective parts, like that of a string, a membrane, a
finger-pick string interaction or the motion of a banjo bridge. For all measurements, a Vision
Research Phantom V711 high-speed camera is applied. Recording and qualitative evaluation
of the high-speed movies is realised using the Vision Research Phantom Camera Control
software version 1.6 and 2.7. To facilitate further analysis applying external tools, all recorded
measurements are exported to an AVI-format, using the software-internal coder.

For a quantitative evaluation of the recordings, the Innovision Systems software MaxTraq2D

'Operating deflection shapes or mode shapes of the respective instruments and geometries.
Rolf Bader: “Reconstruction of radiating sound fields using minimum energy method’, in: The Journal of the
Acoustical Society of America 127.1 (2010): 300-308.
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is used for motion tracking.

The tracked trajectories are exported to an ASCII-format file, and analysed with MATLAB,
using the Wavelet-Toolbox for de-noising and bias-removal, and the Fourier-Transform
for spectral analysis of the recorded time-series. The wavelet de-noising is realised with
Daubechies-Wavelets of order 8,12, because this wavelet class is known for good de-noising

characteristics. 3

2.2.3 Impulse Hammer - Piezo Recordings

For researching material properties of the presented instruments, like the speed of sound in
an instruments front plate for instance, an impulse hammer and piezoelectric transducer are
used.

The impulse hammer, used for all measurements, is a Kistler Impulshammer 9722A2000, the
transducer is a Kistler micro-piezo 352c23. The preamp is a Kistler 4-channel piezoelectric
amplifier. All measurements are recorded using a PicoTech Picosope 5203 digital oscilloscope
and evaluated in a Mathematica-notebook and a MATLAB script using the Wavlet-Toolbox,

for de-noising and bias removal, and MATLABs internal ff#*()-function for spectral analysis.

2.2.4 Dummy Head Recordings

To measure the radiated sound of the instruments, dummy head recordings are taken with
a HEAD Acoustics dummy head, consisting of two measurement microphones and an ICP
preamp for the left and right channel. The instruments are recorded in an anechoic chamber
with the dummy head positioned approximately one meter in front of the primary sound
radiating component. The audio signals are recorded with the HEAD Acoustics front-end
audio recording software. All recordings are evaluated using spectral analysis methods in
MATLAB, as described before.

*Stephan Mallat: A Wavelet Tour of Signal Processing The Sparse Way, Elsevier, 2009, 535 fF.
*Fast Fourier Transform.
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2.3 American 5-String Banjo

In this section, an overview on the historic, organologic evolution as well as acoustic prop-
erties of the American 5-string banjo modelled in this work is given. Besides basic physical
properties of its structural parts, measurements, taken over the course of this thesis, are pre-
sented. The banjo, used for all measurements, is a Capek student model banjo with a Remo
weather king head and strung with D’Addario Light Gauge Phosphor Bronze strings. After an
overview on the historic development, an introduction to the known physical properties is

given, measurements taken over the course of this work are presented thereafter.

2.3.1 Historic Overview

The following overview is divided into three sub-sections each covering a part in the history
of the banjo. The first part, concerned with the pre-American and early American history is
considerably more detailed than the other two because this part of the banjos history is the

most vivid regarding the evolution of its idiosyncratic acoustical features.

Pre-Civil War History

The banjos history preceding the North American civil war (1861-1865), is closely linked to
the Transatlantic slave trade from the 16 century to the beginning of the 19" century.” This
is one of the reasons a linear history before this time is hard to draw, because of incomplete
historic sources due to excusatory ideologies and concealment of facts of historians of that

particular time period.

Two major forces affecting the literature of the banjo since the eighteenth century

were the controversy over slavery and evangelical religion.

The whole effect of this circumstance, and the arising problems will not be discussed here
because the subject area is so complex that it is far beyond the scope of this work. But due
to this, there are few definite facts that support a clear scientific classification of the early
evolution of the banjo and its structural parts. A well documented history began not until the
second half of the 19 century, the point of time where the banjo reached the consciousness
of a larger white class of population.”

But even since that time, far into the 20t

century, there were still many myths surrounding
the history and evolution of the 5-string banjo. One of the legends was that the 5-string
banjo was a strictly North American instrument, which was invented in the 1820’ by the

white minstrel musician Joel Walker Sweeney. The other and

*DenaJ. Epstein: “The Folk Banjo: A Documentary History”, in: Ethnomusicology 3 (1975), ed. by Ann Arbor.
STbid., p. 347.
"Karen Linn: That Half-Barbaric Twang, 5th ed., Urbana and Chicago: University of Illinois Press, 1994, p. 1.
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...most common and most confusing legend about the banjo: that it was unknown

to the plantation Negro.®

These two myths could be proven wrong by the work of Dena Epstein.? In her treatise, Ep-
stein shows that the modern 5-string banjo was a substitution of a known instrument with
deep roots in African-American slave culture. Epstein calls this instrument the Folk Banjo
or Calabash Banjo in differentiation to the modern 5-string banjo. Through a cumulative re-
search of historical documents from the 17 through the 19™ century Epstein brings to light
that the folk banjo was an essential part of North American slave culture. Epstein researches
literature sources on descriptions of instruments that resemble the banjo, and focuses on

three recurring features like a:

« skin covered body,
« guitar resemblance or a

 body made of gourd.

The earliest records of an instrument with comparable features on the American continent

is from Martinique in 1678, where it is called a banza:
(...) au son d’un tambour et d'un instrument qu’ils nomment banza.'°

Following this mentioning, Epstein presents over 30 autonomous sightings from the late
17 century to the middle of the 19™ century, linking the folk banjo directly to an African-
American culture of that particular time span.

From the same period of time, Epstein presents a series of paintings in which the banjo is
shown in an African-American cultural surrounding, e.g. the colour painting The Planta-
tion'! from the late 18" century, where a string instrument resembling a gourd banjo is
depicted at a gathering of African-Americans. Dena Epstein puts her main focus on sight-
ings and reports on the American continent but comes to the conclusion that the roots of
this folk instrument can only be found in the Old World, namely in Africa.

Even though the exact heritage of the banjo can not be cleared completely, as it is lost in the
mist of clouded historic transmission, it is indisputable that the banjo has its roots in African-
American culture.!? But according to Dena Epstein it is fruitless to search for a direct African

ancestor of the banjo:

8Linn, Barbaric Twang, p. 2.

9Epstein, “The Folk Banjo: A Documentary History”.

'%This earliest recorded account is taken from Adrien Dessalles and Pierre Regis Dessalles: Histoire general des
Antilles, 3rd ed., Not in copyright, 1847, p. 297.

"See Plate 1-2 in Philip F. Gura and James E. Bollman: America’s instrument. The banjo in the Nineteenth
Century, Chapel Hill and London: The University of North Carolina Press, 1999.

"2See for instance other important works regarding the history of the banjo following Epstein: Maximilian
Hendler: “Banjo. Altweltliche Wurzeln eines neuweltlichen Musikinstrumentes. Verschiittete Spuren zur
Vor- und Friiegeschichte der Saiteninstrumente’, in: Afro-Amerikanische Schriften, ed. by Alfons Michael
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(...) any attempt in associating it with an African prototype would be at best ten-
tative(...)"

because of the diverse and fragmentary documented musical culture of Africa.

Besides the culture historic approach of Dena Epstein and other researchers like Linn!# or
Conway,!®> Maximilian Hendler!® takes an organologic approach and researches music in-
struments from the Old World (meaning Africa and Europe) for similarities with the modern

banjo. He focusses his research on three constituent parts of the banjo:

+ The body and resonator with membrane cover.
o The neck.

o The strings and the adjustment of the strings.

According to Hendler, the body of the banjo has distinctive features commonly found in
ancient lute instruments, due to the fact that the oldest, historically documented lute in-
struments had membrane covered resonators. A wall painting from ancient Egypt shows a
lute instrument from the 14" century B.C..!7 Similar lutes can be found in Mesopotamian
paintings from approximately 3000 B.C..!® The geographic distribution of such instruments
range from Asia, the Arabic peninsula far into Africa. But because of the intensive contact
between the African continent and America, the most probable heritage for the skin covered
resonator of the banjo is Africa.

The biggest gap in the history of the banjo, according to Hendler, is the transition from the
round-neck, a feature that characterizes all African lutes,' to the flat neck that presumably
arose out of an European or Asian tradition. Furthermore, Hendler notes that

..it is not very likely that the round neck never reached America.*°

A notable fact is that there are no historic records of a round neck lute on the American

continent. But as Hendler states,

...a systematic research of round-neck lutes in North or Central America has never

been done yet, so one can only guess about the existence of such a instrument.*!

Dauer, vol. 1, Goettingen: Edition RE, 1995; Gura and Bollman, America’s instrument. The banjo in the
Nineteenth Century, pp. 11-75;Linn, Barbaric Twang; Bob Carlin: The Birth of the Banjo. Joel Walker Sweeney
an Early Minstrelsy, Wiesbaden: McFarland & Company, Inc., Publishers, 2007, pp. 3-5.

P Epstein, “The Folk Banjo: A Documentary History”.

"“Linn, Barbaric Twang.

Cecelia Conway: African Banjo Echoes in Appalchia, Knoxville: The University of Tennessee Press, 1995.

16Hendler, “Banjo”.

7Ulrich Wegner: Afrikanische Saiteninstrumente, Berlin: Staatlich Museen Preufischer Kulturbesitz, 1984,
p- %4.

BHendler, “Banjo”.

YWegner, Afr. Saiteninstrumente, 114 ff.

2Hendler, “Banjo”.

*'Ibid.
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The transition from the round-neck to a flat neck lute is an enormous progression in instru-
ment design. A flat neck has a different fixture at the body of the instrument, and therefrom
resulting, a modified contact area of the neck and the membrane. In the classical form of the
BinnenspiefSlaute,” the neck is in direct contact with the membrane. A flat neck attached at
the resonator, is on the same level as the membrane, but it has no direct contact with it.
Although this is a mechanical progression, an augmentation in technical effort, it highly
simplifies the playing technique, because the right and left hand coordination is not that
complex and subtle as with round necked instruments.?*

This can be explained by a practical reasons. Hendler suggests that enslaved Afro-Americans
had not enough time to learn and master an artistic instrument like the West African konting
or the Sudanese ngoni, which take year long practice to master. The African American slaves

were in need to

(...)play folksongs and dances(...)without the training of a professional art-

musician and for that a flat neck is better suited.**

Hendlers research of African string instruments shows that a flat neck is a totally atypical
feature for African lutes, so he concludes that the flat neck must be a mutation of prototype
lutes arising out of an European tradition.®

Finally, Hendler focuses on the strings and the fixation of the strings. He traces the history
of string from their earliest known manifestation, the music bow, probably the oldest form
of a musical instrument?® to highly evolved lutes of Arabic and North African origin, with
all their characteristic structural finesse.

Hendler states that most of these changes arose from practical requirements. The need for
polyphony, for instance, extended the one stringed musical bow to multiple strings®’. A
desired increase of loudness of the instrument lead to resonators in form of natural products,
like wood or calabash, as typically used for African lyres or lutes. But Hendlers main focus
lies on the fixation of the strings, and he develops a strong case that Sudanese lutes directly
inherited this feature from the oldest forms of lutes from Mesopotamia and Egypt because

they lack the evolutionary organologic step from the Spannbund to a Pflockwirbel. This is an

22Curt Sachs: Real-Lexikon der Musikinstrumente, zugleich ein Polyglossar fiir das gesamte instrumentengebiet,
(Reprint d. Ausg. Berlin 1913), Stuttgart: Olms, 1972.

BHendler, “Banjo”.

1bid., p. 18.

> A comparable instance that emerged from European and African interchange is the South African ramkie,
a string instrument with a membrane covered calabash, first mentioned in the early 18" century. The name
supposedly descends from the Portuguese rabequinha. The instrument itself is presumably an imitation
of an Iberian lute that originated from the contact of European slave traders and South African slaves in
Malabar, who brought it back to South Africa. See: Percival Robson Kirby: The Musical Instruments of the
Native Races of South Africa, second, Johannesburg: Witwatersrand University Press, 1965.

*$Paintings in the Le Trois Freres-cave, which are dated to 15000 B.C. show a music bow. See: Hendler, “Banjo”,
p-37.

*Hendler calls this a Pluriarc. See: ibid., p. 44.
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indication that this instrument (a round neck lute with a Spannbund) is
(...) in complete accordance with their [the Sudanese] sound-aesthetics

According to Hendler, an inevitable fact of the Spannbund, which arises out of instrument
manufacturing requirements, is the tuning of the strings. Because of the particular fixation
of the string, the tuning has to be in V-form (High-Low-High pitch). The resulting descant-
drone string of Spannbund-instruments is a very prominent feature of the modern 5-string

banjo. This is a strong indication of a Sudanese root of the banjo because

(...) from the [European] flat lute- or guitar-neck there is no route to the discant-

bordun string.*

Mainly Sudanese instruments are taken into account because, according to Hendler, it is this
area from where the main contingent of black slaves were deported during the period of the
Transatlantic slave trade [sic!]. But, the assumption of a connection from North America
to Sudan is an inexplicable misconception of Hendler, because at no point of history there
was slave trade between the area of Sudan and the Americas. Neither slave traders nor slaves
transported to the Americas came from a Sudanese area.”” Even though the Sudan has a
long history in slavery and slave trade, there are no records of slaves from the Sudan that
were deported to the Americas. It is unclear why Hendler is convinced of the important role
of the Sudan in the slave trade and in the evolution of the banjo. The only thing that can
be stated is that it is very likely that the Sudanese lute tradition, which in turn arose out of
Islamic traditions®® influenced a large area from East Africa to West Africa deep into Sub
Saharan Africa.’! But nonetheless, the organologic findings of Hendler are also applicable

to lutes from other African areas, strongly suggesting an African heritage of the banjo.

Over the last thirty years, manifold field research on finding an African prototype of the
American banjo was conducted. Among various other instruments, the West African gim-
bri*? or the Senegalese/Gambian akonting®® was proposed as an African banjo prototype.
Organologic features connecting both lutes with the banjo are the drone string and the skin

covered resonator.

*Hendler, “Banjo”.

*Ira Berlin: Generations of Captivity. A history of African-American Slaves, Cambridge, Massachusetts and
London, England: The Belknap Press of Harvard University Press, 2003; Jochen Meissner, Ulrich Muecke,
and Klaus Weber: Schwarzes Amerika. Eine Geschichte der Sklaverei, Muenchen: Verlag C. H. Beck, 2008.

Lois Ann Anderson: “The Interrelation of African and Arab Musics: Some Preliminary Considerations’, in:
Music and History in Africa, ed. by Klaus P. Wachsmann, Evanston: Northwestern University Press, 1971.

3! Gerhard Kubik: Africa and the Blues, Jackson: University Press of Mississippi, 1999, pp. 63-70.

32 A Mauretanian lute played by Griot musicians.Wegner, Afr. Saiteninstrumente, p. 136.

 Prominently featured in the film Throw Down Your Heart starring banjoist Bela Fleck. See: Sascha Paladino:
Throw Down Your Heart, Motion picture, 2009.
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The Minstrel Banjo

A written and well documented history of the modern banjo in North America began with
the emergence of minstrel theater shows, especially the rise of blackface minstrelsy in the
early 19" century.** The blackface minstrel theatre arose from a long theatre tradition of
portraying Africans and African-Americans. Its roots can be dated back to the Shakespearian
theatre in Great Britain®.

This early accounts of white actors portraying Africans had little in common with the later
minstrel theatre which based its acts on crude caricatures of African slave life.>® The southern
black slave and the northern black dandy were two recurring subjects of the minstrel shows
and the only two subjects in the early days of minstrelsy. The first known American blackface

minstrel performer was Andrew Jackson who performed

(...) the first black-dialect song known to have been published in the United
States(...)%"

around the year 18153 A number of other performers, including Thomas D. Rice, John
Smith, or Thomas Coleman, who were well known performers in the years from 1820-1840
adapted the black face act. But the most popular minstrel actor, and supposedly one of the
first white person who played the banjo®® was Joel W. Sweeney*’. The misconception that
he also was the inventor of the banjo has been refuted by D. Epstein. Nonetheless, the influ-
ence of ].W. Sweeney on the blackface minstrel was enormous and cannot be understated.*!
Most historians regard him as a prototype for the whole genre of minstrel banjo, because he
made the act of the black banjo player popular throughout the English speaking world.*? The
repertoire of J.W. Sweeney and other minstrel performers contained songs that rooted in the
Southern states of North America but also included adaption of Irish folk and dance tunes
like reels or jigs.*

A key element of these shows was the music, and a central instrument was the banjo. Or in
the words of Webb:**

(...)none of these travelling shows could be without a banjo player(...)*

*Carlin, Birth of the Banjo.

*Shakespeares Othello or Thomas Southern’s Oronooko are mentioned.See ibid., p. 6.

1bid., pp. 7-9.

1bid., p. 7.

*1bid., p. 7.

1bid,, p. 6.

“"The long held believe that the German immigrant Gottlieb Graupner performed a banjo accompanied black-
face act on new years eve of 1799 in Boston has been rebutted by H. Earl Johnson in his work Musical
Interludes in Boston, 1795-1830. Columbia University Press. New York. 1943.

' Carlin, Birth of the Banjo.

“Ibid.

“ibid.; Linn, Barbaric Twang; Conway, Banjo Echoes

“Robert L. Webb: “Ring the banjo!”, in: Canadian folk music bulletin 2.4 (1979).

“Ibid.
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This lead to the circumstance that banjo became the figurehead instrument for minstrelsy,
and the banjos popularity in North America and the whole English speaking world rose with
the rising popularity of minstrel shows.* In the early years of minstrel banjo there was little

doubt among the audience that the banjo was an instrument of African origin.
The idea of the banjo was so overwhelmingly Southern black (...)*

J. W. Sweeney always emphasized that he had learned the banjo playing from black slaves,*3

or in the words of Cecilia Conway:

Southern folk sources were most important to the first generations of minstrel,
who borrowed and introduced Negro dance, song, and especially banjo playing to

the American stage.*’

In this period, from 1830 to 1880, the banjo underwent several structural changes.”® It
evolved from a mostly home-made instrument with a fretless wooden neck, a wooden hoop
covered by a animal skin attached by nails and played with gut strings,”! to a more stan-
dardized instrument with a (metal) tension hoop for the membrane and more sophisticated
attachment of the, now fretted, neck.”> On one hand, these changes were forced by the per-
formers, who needed instruments with a stable pitch,53 on the other hand by instrument
builders who wanted to distinguish their work from amateur instruments by more advanced
designs.>* This progression in banjo manufacturing laid the foundation for the commercial
banjo and the banjo fad at the end of the 19 century.

Commercial Banjo

The history of the commercial® banjo is very well documented and begins with the appear-
ance of the banjo in minstrel shows. After the civil war, the banjo found its way from the
minstrel stages, which were mostly associated with a white working-class audience, to a more
elevated clientéle of Victorian America®®. The progression from the minstrel banjo to the

commercial banjo was strongly influenced by the (imposed)®’ changing image of the banjo:

The upper class had accepted the banjo into their parlours and parties...>

“Carlin, Birth of the Banjo.

“"Linn, Barbaric Twang, p. 8.

“8Carlin, Birth of the Banjo, p. 20.

*Conway, Banjo Echoes.

*Gura and Bollman, America’s instrument. The banjo in the Nineteenth Century.

>bid., pp. 48-49.

>21bid., pp. 49-55.

>1bid., p. 50.

**1bid., pp. 48-59.

>The term commercial is applied here because the also commonly used term Classical Banjo could be mis-
leading regarding the music repertoire of the instrument.Linn, Barbaric Twang; Carlin, Birth of the Banjo.

*%See ibid., pp. 149-151; Linn, Barbaric Twang, pp. 5-40.

*7Ibid., pp. 5-36.

**1bid., p. 36.
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This change was strongly promoted by a group of banjo players and manufacturers®® who
tried to elevate the banjo to an American made instrument put in an European music context.
Because of this, banjo makers introduced structural enhancements to the instrument, like the
addition of the tone ring,®® higher frets and improved tension hoops. Their foremost goal
was to change the banjos image from the plain, crude instrument of southern slaves to a

t.5! Another consequence of this elevation was a change in

modern, more artistic instrumen
the sound of the banjo. The minstrel banjos dark timbre and short sustain of the notes were
replaced by a brighter sound with a longer sustain®. At the end of the 19" century and the

beginning 20

century, the commercial banjo had its peak in popularity. A banjo orchestra
or banjo teachers could be found in almost every bigger town of North America. These
banjo orchestras were often the cornerstone for ragtime orchestras®® and the jazz orchestras

emerging some 20 years later.

*Linn, Barbaric Twang, p. 6.

Gura and Bollman, America’s instrument. The banjo in the Nineteenth Century, pp. 212-213.

61Linn, Barbaric Twang, pp. 15-16.

82ibid., p. 15; Gura and Bollman, America’s instrument. The banjo in the Nineteenth Century, pp. 212-213.
Linn, Barbaric Twang, pp. 81-82.
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2.3.2 Banjo Strings

In this section, the physical properties of banjo strings are presented. A focus is put on mod-

ern metal strings, as used for the instruments researched in this thesis.

String Material

The material of the banjo string was subject to changes forced by advancement in technology
and acoustical needs over the centuries. The first gourd or folk banjos were played with

strings made of animal gut®*. With the rise of the minstrel banjo, a silk string or wire wound

string became the standard®®. At the turn of the 20 century the standard string material
changed to metal, mainly due to the need for an increased loudness .

Today, materials used for banjo strings include nickel, phosphor bronze or steel. The different
metals and alloys influence the sound characteristic and rigidity of strings®’. The lowest
string of a standard 5-string banjo is a wound string with a steel kernel and an intermediate

layer of a material depending on the manufacturer and the sound preferences. The material

properties of the strings, used for the measured banjo are given in table 2.1.

String tune Material Diameter [mm] Tension [kg]

 swingtune
d ‘ Plain steel
B Plain steel 0.28 5.39
G| Plain steel 0.33 474
D) ‘ Bronze wound steel 0.51 439
g Plain steel 0.23 4.98

Table 2.1: Material and tension of banjo string used in this work. Values are taken from the
packaging of the D’Addario 5-sting Banjo strings.

String Adjustment

The strings of the banjo are fastened at the end of the neck (at the head), and at the lower
end of the resonator.%® The strings run over a wooden bridge, which is not fastened on the
membrane, and is held in place by the net force, acting in the normal direction of the mem-

brane. This force depends on the angle between the string under tension in normal position

84 four strings of silk or dried bird gut were raised on a bridge. Conway, Banjo Echoes, p. 162.

8ibid., p. 170: ...the use of violin gut strings and one silk string wound with silver wire for the banjo.

5 Linn, Barbaric Twang, p. 83: ...switched to metal strings, which are louder... than the gut or silk strings that
were used before.

%7 David M. Brewster: Introduction to Guitar Tone and Effects: A Manual for Getting the Sounds, Milwaukee:
Hal Leonard, 2003, p. 10.

%The attachment of the strings differs from banjo model to banjo model. On a modern banjo the strings are
fastened at the tail piece. This concept of fixation can be found in most banjos from the mid 19™ century to
the present day. Other techniques prior that time can only be speculated about.Gura and Bollman, America’s
instrument. The banjo in the Nineteenth Century, p. 82.
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and the bridge-elevated string under tension.

At the head, the strings run through the nut to the tuning pegs, where the strings are coiled
around the tuning pegs. A comparison of two measurements, one at the head of the instru-
ment and one at the bridge, shows that transport of the energy between the string and the
coupling point of the head is smaller than at the bridge, suggestion a high impedance at the
upper fixation point of the string.®

The energy transport from the string to the membrane is comparably larger, because of the
low impedance of the membrane, compared to a wooden top-plate and the flexible (not fixed)
bridge.

In physical models of string instruments, Dirichlet boundary conditions are often proposed
for the strings, but in real instruments the boundary conditions of strings can be considerably
more complex’’. In this regard, the banjo is as a special case because the non-rigid bridge
has a low impedance and performs rocking motions’! on the flexible membrane. This is due
to the excitation of the transversal motion of the string as well as the motion of the vibrating
membrane.”?

In addition to this, the position of the string at the bridge influences the strength of coupling

from the string to the membrane as shown in the measurements in section 2.3.3.

String Motion Measurements

The motion of a linear string can be described by the d’Alembert solution of the one dimen-
sional wave equation as two functions travelling in opposite directions on the string.

In an ideal, linear string without damping or dispersion, using a triangular deflection as
initial condition, we expect two symmetric functions travelling up and down the string as
depicted in Figure 4.2. A high-speed recording depicting a banjo string can be found in
appendix 3. As one can see, at time-step ¢ = 0 the string is deflected in a triangular shape.
When the string is released, one function moves towards the nut, the other function moves
in the direction of the bridge. Because a real string is subject to several kinds of losses, the
shape of the initial function on the string rapidly changes.

A second high-speed camera measurement, recording the deflection of the g-string of the
banjo above the 13" fret. The motion of the point is tracked using the set-up described
before. In Figure 2.1 the time series of the deflection of the string over the first 4 seconds are

shown. Shorter time intervals are of the deflection can be found in Figure 2.2a to 2.2c.

%See the measurements in section 2.3.2.

70 A description for a moving end support can be found in: Fletcher and Rossing, Physics of Instruments, p. 52.

7! A recorded image series is presented in appendix 2.

>The boundary conditions at the bridge can change from one banjo to the other due to different tension of
the membrane which leads to a different rigidity at feet of the bridge.
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Recorded deflection. 13.th fret.
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Figure 2.1: Transversal deflection of a plucked banjo string. Time in seconds on the abscissa
and tracked pixel range on the ordinate.
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(c) Partial time series III.
Figure 2.2: Normalised transversal deflection of a plucked banjo string with time in seconds

on the abscissa. (a)

As is visible in Figure 2.2a, the function, travelling up and down the string, looses its shape
after the first reflection at the respective boundaries. Dispersion and dissipation effects of the

string, due to material dependant non-linearities and bending stiftness, add to a increases
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the decay of higher partials of the string and thus adds to immediate rounding of the initially
sharp corners.”* The triangular deflection of the string, with two pulses travelling in opposite

directions, changes its shape to a quasi sinusoidal motion as visible in Figure 2.2c.

7> Anders Askenfelt and Erik V. Jansson: “From touch to string vibrations. III: String motion and spectra’, in:
The Journal of the Acoustical Society of America 93.4 (1993): 2181-2196.
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2.3.3 Banjo Bridge

The connecting part between banjo strings and membrane is bridge made of wood. Unlike
string attachment in guitars, banjo strings are not fixed at the banjo, instead they run through
carved shafts on the top-side of the bridge. The bridge is put loosely on the membrane held
in place by the net force of the strings, acting in the normal direction of the membrane. This
form of energy transfer from the string to the resonator can be found in many plucked lute
instruments from Africa’ as well as Asia”>.

Compared to string fixation in guitars, where the string is taut behind the immobile bridge,
a non-fixed bridge incorporates several specific traits. The bridge can be moved on the sur-
face of the membrane, thereby changing the coupling points between it and the membrane
which influences the spectrum and thus the timbre of the instrument. In addition to that,
it’s flexibility leads to different eigenmodes compared to a glued on bridge because it it has a
less rigid foundation. This in turn, influences the transmission characteristics of the bridge
and the motion at the string boundaries.

Besides the position, the mass of the bridge is important because it influences the transfer
characteristic as well.”S

The influence of the banjo bridge on the timbre of the banjo sound is subject to manifold
discussion among researchers, banjo builders and musicians.”” Two aspects recognized as
profoundly important by most are the geometry and the mass of the bridge. Both parame-
ters influence the quality of the transmitted sound to the membrane’® and audible effects on
the produced sound. Bluegrass banjo players prefer thinner, lighter bridges, as they have a
more direct , twangy sound characteristic.”. A difference of banjo bridges compared to other
instrument bridges is the existence of a third foot in the middle of the bridge, a structural fea-
ture that is not present in violin bridges or the bridge of the Chinese ruan. The middle foot of
the banjo has a rounded contact area and is slightly longer than the outer feet. This enhances
the rocking motion of the bridge, pivoting around the centre point of the bridge. The special
geometry of the bridge feet have an additional effect on its transmission characteristics as
shown in the measurement section below.

The bridge that is used in this thesis is a Grover 5-string maple bridge with an ebony top. The

"Wegner, Afr. Saiteninstrumente, pp. 114-158.

7>See section 2.5.1.

"Instruments like the akonting have a comparably larger bridge with a different geometry. This
is one of the reasons for the different timbre of the instrument. As already mentioned, the
folk-banjo presumably had a larger bridge and thus a darker timbre when compared to a
modern banjo. See for instance the video at: http://minstrelbanjo.ning.com/video/
calabash-dance-cotton-pod-walkaround-test-4-stringer2.

77 An extensive resource regarding the mechanics of the bridge is for instance http: //www.banjobridge.
com/.

78 The shape and quality of bridges can vary depending on its attributed characteristics. Some examples are:
more open, greater attack or melodious to name just a few.

7See http://www.banjoteacher.com/Gear/banjobridges/index . html for several examples.
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physical dimensions are given in Figure 2.3.

d h G D g
i B - —Ebony
h ——Maple
=
Tracking-point
212 ‘ ‘ 17.1 ‘ ‘ 19.8
77.5

Figure 2.3: Physical dimensions of the banjo bridge in [mm]. The black dot indicates the
measured point.

Measurements

The following high-speed camera recording of the banjo bridge was recorded under realistic
playing conditions of a banjo. The motion of a point at the left corner of a banjo bridge when
the lowest string is plucked was recorded. Figure 2 shows the rocking motion of the bridge

due to excitation by a string. The time series of a this point is shown in Figure 2.4.

Banjo bridge, left foot movement

0.6

0.3

0.0

-0.3

Deflection in mm

-0.9

30 60 90 120
Time in ms

Figure 2.4: Deflection of a banjo bridge normal to the membrane tracked at the left foot.
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The spectrum of the recorded time series, given in Figure 2.5, shows that the fundamental
frequency of the string as well as several harmonics are visible. In addition to this, two modes

of the membrane are visible, as indicated by the black triangles.3

Spectrum of tracked bridge motion
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Figure 2.5: Spectrum of the bridge foot motion.

This is a strong indication that the bridge vibrates in frequencies of the string and the mem-
brane, coupling the former to the latter and vice versa.

Figure 2.6 depicts the response to an impulse-hammer knock on the left and right top sides
of the bridge, recorded with a piezoelectric transducer attached under the right foot on the
back-side of the membrane, and the banjo completely assembled. As one can see, the first
impulse of the left sided knock yields a much stronger response than the knock on the right
side of the bridge.3! This effect is non intuitive at first, but when regarding the geometry of
the middle foot as well as its contact area with the membrane, it is obvious that the foot does

not pivot around its centre but around the edge on the opposite side of the excitation.

8 Compare the frequencies (290, 434) of the membrane in Figure 2.7.c.
8 The values on the y-axis can be compared because the impulse hammer has a similar amplitude.
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Right Knock / Piezo at Right Foot ——Piezo Signal

----Impulse Hammer Signal

Left Knock / Piezo at Right Foot ——Piezo Signal

----Impulse Hammer Signal

0 40 80

Time in ms

Figure 2.6: Acceleration at right bridge foot.
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2.3.4 Banjo Membrane

The membrane of the banjos is of central importance for its characteristic sound. It is re-
sponsible for the amplification of the acoustical vibrations produced by the string.> Due to
the low impedance of a banjos membrane, compared to a wooden front plate, the sound en-
ergy, transferred from the string, is radiated with a higher amplitude in the initial transient
phase of the sound, but has a shorter sustain®® when compared to string instruments with a

wooden front plate.

Material Properties

Analogous to the string, the properties of the membrane have undergone several changes in
the evolution of the banjo. In early accounts of banjos it is mentioned that the instrument is
covered by an animal skin like cat skin,® the skin of a ground hog® or sheep skin.® Cow
skin and sheep skin were the standard material for the minstrel banjo.®” It is widely accepted
knowledge among banjo players and makers that the brightness of the sound as well as the
loudness of a banjo correlates directly with the tension of the membrane. Hence, a driv-
ing force behind structural advancement of the banjo was the refinement of the membranes

adjustment.®®

In the old days, banjo players generally believed that the tighter you could get
the head of the banjo, the better it would sound. This was actually fairly true in
the old days of goat- or calf-skin head®*°

The sound quality improvement is characterised with a brightening of the sound resulting
from higher tension as well as the reduction of non-linear large deflection effect.”! Today,

the most common material for a banjo head is Mylar®. This material has a tensile strength

$2Laurie A. Stephey and Thomas R. Moore: “Experimental investigation of an American five-string banjo’, in:
The Journal of the Acoustical Society of America 124.5 (2008): 3276-3283.

8 Newer banjos have membranes made of Mylar. Compared to older instruments with animal skins as mem-
branes, they can withstand a much higher tension. Hence, newer banjos are louder and have a longer sustain
compared to older banjos.

$Epstein, “The Folk Banjo: A Documentary History”.

85 Conway, Banjo Echoes, p. 178.

81bid., p. 165.

¥ Gura and Bollman, America’s instrument. The banjo in the Nineteenth Century, pp. 51, 61.

81bid., p. 61.

%Bill Palmer: A Scientific Method for Determining the Correct Head Tension For Your Banjo, [Online; last
accessed 20-January-2014], 2006, URL: http://wuw.banjowizard.com/hedtens.htm.

**This also holds for guitar and violin gut strings, according to instrument builders and musicians in historical
performance practice, the best sound is achieved when string is under maximal tension, near its maximal
tensile strength (Instrument builder M. Wichmann, personal communication).

*'The more flexible a string is, the more audible a pitch-glide is. The same holds for membranes.

%2A brand name by Du Pont for a thermoplastic film made of ethylene glycol and dimethyl terephtha-
late.(Introduction to Mylar Polyester Films, DuPont Teijin Films, 2003)
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of 20 — 24%93. This is half of the tensile strength of mild steel.”
The banjo, used for the measurements consists of a Remo Weatherking drum head. It is made

of a single ply of Mylar with a thin layer of coating.”

ENEE] Coated Mylar

Radius 15cm
Mylar film thickness 0.36 mm

Table 2.2: Geometry parameters of banjo head membranes.

Adjustment

The membrane is attached at the rim and fastened by a tension hoop which can be tightened
by tuning brackets. Many mechanical design aspects of the modern banjo found its final form
at the turn of the 20 century.”® The membrane tensioning system hasn’t undergone major
changes since then. Due to the fact that a tight membrane was always associated with high
sound levels, mechanical enhancements make it possible to over tighten a banjo membrane®”

negatively influencing its sound characteristics.

Boundary Conditions

In correspondence to the string, the derivation of the differential equation for the membrane
poses boundary conditions that are never completely satisfied in reality, and, as is shown
later, is a crucial factor for realistic sounding membrane models. But for an initial analysis,
fixed boundary conditions (Dirichlet) are assumed.

Measurements

The following series of measurements show the radiation of the banjo membrane resulting

from a knock on a point near the left>® bridge foot. The banjo was measured with:
o A detached back (open back banjo), no strings. (M (a))
o A detached back, with strings. (M (b))
« A mounted back, without strings. (M (c))

« A mounted back, with strings. (M (d))

%3See (Mylar polyester film: Physical-Thermal Properties, DuPont Teijin Films, 2003)
*‘Hans-Jiirgen Bargel: Werkstoffkunde, ed. by Giinter Schulze, Springer, 2012, p. 132.

»See: http://www.remo.com/portal/products/3/11/92/130/banjo_coated_top.html.
%Linn, Barbaric Twang, pp. 81-115.

*7Tbid., pp. 81-115.

*When viewed from the front with the neck facing upward.
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If the banjo is open, it has no fundamental air frequency radiating frontward because the air
cavity beneath the banjos membrane is open and radiates towards its back. As depicted in
Figure 2.7 the spectral maxima of the sound radiation can be characterised by membrane

typical mode shapes.
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Figure 2.7: Absolute values of Banjo mode-shapes. Impulse-hammer excitation. a): Open
back, no strings. b): Closed back, no strings. ¢): Open back, strings. d): Closed
back, strings. Column a shows the position of the banjo during all measurements.
For mode-shapes (4,1) and (5,1) only imaginary or real part are used for the im-
ages due to their better structural resolution.
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The mode shapes and the ideal frequency ratios of an analytic membrane and the frequency

ratios of the measurements are given in Table 2.3.

Mode | Ratios | Ratiopsq) | Ratioys) | Ratiops() | Ratiops(g)
(0,1) 1 1 1 1 1
(1,1) 1.59 1.88 1.63 1.76 1.71
(2,1) 2.14 2.73 2.52 2.43 2.46
0,2) | 2.30 — — — —
(3,1) 2.65 3.52 3.26 3.31 3.33
(1,2) 2.92 — — — —
(4,1) 3.16 4.27 3.95 3.96 4.02
2,2) | 3.50 — — — —
0,3) | 3.60 — — _ —
(5,1) 3.65 5.03 4.64 4.65 4.71

Table 2.3: Measured vs. analytic frequency ratios of a round banjo membrane. The mode
numbers indicate (axial, radial) nodal lines. Blanks indicate an absence of the
mode shape. M (x) are the respective measurements shown in Figure 2.7.

As shown in Table 2.3, in comparison to the analytical solution where the frequency ratios
between the higher modes and fundamental membrane mode are given by the zero crossings
of the real part of the Bessel function, often denoted as .J(z), the measured membrane un-
der different conditions does not exhibit a comparable order. What can be stated is the fact
that the influence of the bridge is much stronger on the position of the frequencies than the
influence of the open or closed back. Comparing measurement M (c¢) with M (d) and M (a)
with M (b) shows that the higher tension of the membrane due to the additional bridge force,

makes it more impervious towards a changed boundary condition due to the air volume.
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2.3.5 Banjo Body

African-American instruments, which influenced structural constituents of the banjo often
have a body made from a hollow gourd,99 or, more frequently, a wooden box of various kind
(cigar boxes, cheese boxes...).!% Because in its earliest stages the banjo was a handcrafted
instrument build by musicians themselves, it can only be speculated about the knowledge
about the acoustical influence of the body the builders of these instruments had.!%! It is rea-
sonable to suppose that the body was initially designed to fulfil load bearing functionality
and wasn’t designed to influence the fine structure of the banjos timbre.

As mentioned above, an important motivation of early banjo designs was the aim to produce

102 was needed. As

areasonably high membrane tension and thus a stable fixation at the body
is shown in the work of Linn,!?® the banjos rise to popularity was followed by many structural
changes and the elevation of the banjo, as shown in Gura and Bollman!® led to advancements

in fundamental parts of the banjo, the body for instance.!%

(...) a group of players and makers of the banjo proposed a new set of ideas
about what the banjo should be. The banjo needed ’elevation”, they believed, to a

higher class of musical practice and a better class of people.

This was one of the main factors fuelling a redesign of several aspects of the banjos body.
The wooden rim of the banjo was fitted with a metal top and metal tension screws to add
more stability to the rim and the complete banjo body. Most of the features found in modern
banjos were first developed around that time, as for instance the tone ring or the tension
hoops with the tension screws 9. A modern 5-string banjo consists of a tension hoop and
a metal ring to support the tension hoop. There still is discussion about the influence of the
fastening of the membrane at the rim of the banjos body.

Similar to snare drums, the tension hoop can be tightened by tension screws placed equidis-

tant around the rim.

2.3.6 Banjo Playing Styles

In traditional country music there are two schools of banjo playing styles. On the one hand

there is the old-time playing style with its playing technique frailing or claw-hammer style, a

% Conway, Banjo Echoes.

'%Tbid.

1% Cecelia Conway: “Black banjo songsters in Appalachia’, in: Black music research journal 23.1-2 (2003).

'2The round design in the banjos body could largely be due to a better distribution on the rim compared to a
quadratic wood rim.

1031 inn, Barbaric Twang.

' Gura and Bollman, America’s instrument. The banjo in the Nineteenth Century.

% Especially the attachment of the membrane changed fundamentally.

1%Some examples of the various different stages of the membrane attachment can be found in: Gura and
Bollman, America’s instrument. The banjo in the Nineteenth Century.
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more modern banjo style, arising in the 1920 to the 1930, is the bluegrass of finger picking
style. Clawhammer banjo is played with the bare hand (the backside of the nail acts as an
plectrum) whereas bluegrass banjo is played with finger picks for the thumb, the index and
the middle finger. Both styles can be discerned by a different playing technique and by the
instrument. Modern bluegrass style is usually played with a closed back banjo. Old-time

k.19 The detachable resonator of the banjo

banjos are traditionally played with an open bac
is made out of wood and is fastened at the bottom of the instrument under the membrane.
This produces an air filled cavity behind the membrane of the banjo influencing the radiated
sound and the vibrational behaviour. Because the air in the cavity can radiate through small
openings around the tension hoop, the radiated sound of the banjo shows a low air/cavity

mode as shown in section 2.3.4.

2.3.7 Open Questions

Even though many acoustic properties of the banjo can be explained satisfactorily, there are
several open questions regarding its acoustic vibrations, which could not be cleared com-
pletely in the scope of this thesis. One physical mechanism that can be found in most
membrane covered instruments is the interaction of the enclosed air volume with the mem-
brane.!® There is always a low air-cavity resonance which can be classified as a Helmholtz
frequency. But, the classical Helmholtz is only defined for cavities with rigid walls, with in-
finite impedance compared to the air volume and the opening of the cavity. In membrane
covered lutes, the effect of the air cavity with an orifice is also present but an exact description
of the physical mechanism should include the influence of the non-stiff boundary, the mem-
brane, with finite impedance and under transient conditions.!? As we will see in section
2.5.5, higher air-modes are also present in the radiated instrument sound.

The exact influence of the bridges fine structure (weight and geometry) on the radiated banjo
sound could not be cleared completely in the scope of this work. An extended research re-
garding the influence of the bridges eigen-vibrations could elucidate the possibility of similar

effects as found in violin bridges, especially the presence of a characteristic bridge hill.'*0

7Dan Levenson: Clawhammer Banjo From Scratch A Guide for the Claw-less!, MELBAY, 2003, p. 14.

198 Extensive research on this matter can be found about the kettle-drum. Several publications show the in-
fluence of the air volume on the membrane of the timpani. See: Rossing, Science of Percussion Instruments,
pp. 5-15.

% Nonetheless, the basic Helmholtz formula for cavity modes can be applied for a first approximation of the
lowest air-mode as shown in: Florian Pfeifle: “Systematic Musicology: Empirical and theoretical Studies”,
in: ed. by Albrecht Schneider and Arne von Ruschkowsky, Frankfurt am Main, Germany: Peter Lang Verlag,
2011, chap. Air Modes in Stringed Lute-like Instruments from Africa and China. 137-152.

"9Erik Jansson: “On the Prominence of the Violin Bridge Hill in Notes of Played Music”, in: Journal of the
Violin Society of America 22.1 (2009): 169-176 for the influence of the bridge hill on the perceived quality
of the instrument.
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2.4 Violin

The classical violin is among the most researched instruments in musical acoustics as well as

Sth

instrument historic organology. The vast amount of publications starting in the 15" century

to today includes over ...books, papers, thesis’ and other forms of literal sources.!!!
Thus, the literary review given in this section focusses In this section, physical properties
and an overview of the violins history as well as measurements taken over the course of this

thesis are presented.

2.4.1 Historic Overview

It is assumed that the history of bowed instruments began in the 9! century A.D. in Central
Asia where nomadic tribes supposedly began to use a horse hair stringed bow to excite the
strings of lute instruments. These early accounts are not well documented, but the fast dis-
tribution of the bow among several cultures in the Middle East and in East Europe make a
Central Asian heritage very likely.!!> Many figurative and pictorial sources show that bowed

1th

instruments were adopted and used in Western Europe by the 11" century.

For the next three centuries many different types of bowed instrument, with a be-

wildering variety of names, were in common use throughout Europe.''®

The violin as it is played today could be recognized as an individual instrument as early as
1500 and can be discerned from other classes of bowed instruments, like the viols. The

characteristic waist of the instrument that
(...) gave the bow access to the outer strings (...)!!°

was one of the multiple organologic evolutions of the instrument that led to the design
of master violins by Italian instrument makers like Antonio Stradivarius (1644-1737) or
Giuseppe Guarneri del Gesu (1698-1744) which are still highly valued and played today. Be-
sides several minor structural alterations like a higher bridge, a longer neck or higher string
tension that lead to a higher volume, which is required in modern concert hall acoustics,

today’s violins are designed after their 17 century counterparts in most regards.

See:

"Brigitte Geiser: “Studien zur Frithgeschichte der Violine”, in: Publikationen der Schweizerischen Musik-
forschenden Gesellschaft : Serie 2, Bern: Gemeinsamer Bibliotheksverbund (GBV) / Verbundzentrale des
GBV (VZG), 1974, p. 28.

"Murray Campbell and Patsy Campbell: “The Science of String Instruments’, in: ed. by Thomas D. Rossing,
Springer, 2010, chap. 17: 301-315.

H4See for instance the painting of The Madonna of the Orange Trees by Gaudenzio Ferrari from 1529 - 1530

in: D.D. Boyden: The History of Violin Playing from Its Origins to 1761, and Its Relationship to the Violin and

Violin Music, Oxford University Press, 1967: Plate I.

Joseph Curtin and Thomas D. Rossing: “The Science of String Instruments’, in: ed. by Thomas D. Rossing,

Springer, 2010, chap. 13: 209-244.
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2.4.2 Acoustical Research History

Compared to other string instruments, the violin is a rather small in size, nonetheless it is ca-
pable of producing sound loud enough to be audible even in large concert halls. It is probably
because of its difficile structure that it exhibits very complex physical-acoustical behaviour

and a complex interaction between its constituent parts. In Schellengs words:

The violin family presents many unsolvable problems; its shape and the pecu-
liarities of its materials were certainly not selected with regard to convenience in

analysis.''6

Regardless of this fact, there is a long list of publications considered with acoustic and phys-
ical properties of violins.

Felix Savart was the first researcher who discussed basic features of some of the structural and
acoustic interactions. He suggested that the soundpost stiffens the treble side of the violin,
transforming the rocking motion of the bridge, which excites a dipole mode of the top-plate,
into a monopole mode by this unilateral stiffening of the geometry.!'” Since a monopole
radiates more effectively compared to a dipole, the violin gets louder when the soundpost is
attached, especially in the low frequency range of the top plate dipole resonances. The effect
of changing sound quality if the soundpost is detached is known among most professional
violin players and instrument makers. In another work, Savart suggests that good violins
have a special relation of top plate and back plate tap-tone resonances. In his measurements
he compared disassembled font- and backplates of these instruments and found that Gesu
Guaneri or Antonio Stradivari violins the fundamental resonance of both parts was between
a whole tone apart whereas violins of lower quality showed intervals of a third up to a fourth.
By applying his findings to violin making, he tried to develop a mathematical violin having
a trapezoidal shape which showed symmetric body resonances at the fundamentals of the
strings (Re, Mi, La, Sol).

One century later, C. Hutchins followed the work of Savart and suggested that if the top
plate eigen-frequencies were slightly higher than the ones of the back plate, the violin sounds
brighter, otherwise it sounds duller.!'®

A sophisticated discussions about the structural-acoustical interactions of the violin can be
found in Bissinger'!? . There, the mechanisms of vibrational interactions leading to the violin

typical radiations of the f-holes and lower body modes are discussed in a technical manner

18y C. Schelleng: “The violin as a circuit’, in: J. Acoust. Soc. Am. 35 (1963): 326-338.

WDjeter Ullmann: Chladno und die Entwicklung der Akustik von 1750-1860, Birkhauser Verlag, 1996, pp. 165-
166.

"8C. M. Hutchings: “Klang und Akustik der Geige’, in: Spektrum der Wissenschaft 2 (1981), original: Scientific
American, October 1981: 112-122.

" George Bissinger: “The Science of String Instruments’, in: ed. by Thomas D. Rossing, Springer, 2010,
chap. 18: 317-345.
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for the whole class of the Hutchins-Schelleng Violin Octet!%’.

Contemporary violin research tries to find relations between the violin quality, as resulting
from listening tests, and its physical properties.'?! Interestingly, parameters of articulation
not depending on material or geometrical properties of the instrument are found to influ-
ence the perceived quality of the instrument much more than the physical parameters. This
means, the proficiency of the player has a great influence on the sound of the instrument.
Still, players can tell great differences between violins and report that with some violins they
are not able to perform with the same artistic intention and expression as with others. This
leads to the assumption that physical parameters of the instrument are important for the
interaction between the players and the instrument, and only indirectly important for the

listeners.

Since a great violinist can make a bad violin sound good, while a bad violinist
cannot make a great violin sound good (...)the violinist’s ability to manipulate the
relative harmonic strength in the driving force, which does not in any way affect

the violin itself, clearly can compensate for perceived acoustic deficiencies.'??

The vocal quality of violins is discussed in Mores.!?*> Often players reproduce the sound of a
tone with their voice by choosing a vowel (a, ¢, i, 0, u or intermediate). Mores analysis violin
tones in terms of formant regions and identifies vocality by calculating height and backness,
similar to speech. He finds that Stradivarius and Guaneri violins have a profound difference
in their vocal quality compared to other violins. Still, the vowels perceived in listening tests
are not as clear as in speech, indicating that the vocality of violin tones need to be measured
with other methods and the underlying effect is not yet fully understood.

The importance of the interaction of the musician with the instrument stressed in the works
by Bissinger is in accordance with multiple research over the last decade focussing on describ-
ing the non-linear interaction between the bow and the string, and a physical description of
the mechanism based on measurements. Florens'** presents a hardware design for inter-
acting with a virtual model of a violin bow showing realistic simulation results. A virtual

interaction model with digitized gesture data of bowing is presented in the work of Matthias

20For a list of the Hutchins-Schelleng octet, see table 10.2 in: Fletcher and Rossing, Physics of Instruments,
p- 325.

2! Claudia Fritz, Amélie Muslewski, and Daniéle Dubois: “A situated and cognitive approach of violin quality”,
in: Proceedings of the 20th international Symposium on Music Acoustics (2010).

'22George Bissinger: “Structural acoustics model of the violin radiativity profile’, in: J. Acoust. Soc Amer. 124.6
(Dec. 2008).

125Robert Mores: “Vowel Quality in Violin Sounds’, in: ed. by R. Bader, C. Neuhaus, and U. Morgenstern,

Peter Lang, 2010, chap. 6.

Jean-Loup Florens: “Expressive Bowing on a Virtual String Instrument’, in: Gesture-Based Communication

in Human-Computer Interaction, ed. by Antonio Camurri and Gualtiero Volpe, vol. 2915, Lecture Notes in

Computer Science, Springer Berlin Heidelberg, 2004: 487-496.
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Demoucron'?® . Based on this work Esteban Maestre!2°

shows an implementation of a sim-
ilar methodology with a high level front-end. Beside the bow motion, another important
factor influencing the distinct sound of the violin is the characteristic motion of the bridge,
and the therefrom arising transfer function. The bridge of the violin exhibits several distinct
eigen-oscillations (modes of vibration)'?”. In addition to that, the geometry of the violins
front-and back plate, as well es the enclosed air-volume radiating through the f-holes, play
an important part in the violin specific timbre as shown in Bissinger, Williams, and Val-

divia.!28

2.4.3 The Violin String

The organologic features of the violin have undergone several changes and the utilised ma-
terials and production techniques changed throughout history.!?* Early violin strings were
made from animal gut, horsehair or silk. In Central Asian or Chinese bowed string instru-
ments, these materials are still utilised today. '** There are three different kinds of violin
strings used for modern violins. Violins played for early music are often equipped with gut
strings, but most strings are partially made of gut and are wrapped with silver or copper.
Another kind of strings are steel core strings wound with varying material, depending on
the manufacturer. The most common form of strings used today, are synthetic core strings
wrapped with different metals or alloys. Compared to strings of other instruments violin
strings have a carefully tuned internal damping quality, to achieve a specific sound charac-
teristic of the string. According to string manufacturers and violinists, the specific internal
damping can lead to a more controllable sound and a more easily achievable Helmholtz mo-
tion when bowing the string.!*! Other important property that can be tuned by a specific
string design are the brightness or the decay of a string.

In the case of upright-bass strings, this leads to the common practice of using different strings
depending on the musical setting. If the instrumentalists wants to achieve a stable bowing
sound and needs the best possible response from the string regarding the bow interaction,
strings with higher internal damping are used. If the instrument is played in a musical setting

where pizzicato notes are played, the internal damping of the string must be smaller so the

12>Matthias Demoucron: “On the control of virtual violins”, PhD thesis, School of Computer Science and
Communication, 2008.

126Esteban Maestre: “Analysis/synthesis of bowing control applied to violin sound rendering via physical mod-
els”, in: Proceedings of Meetings on Acoustics 19.1 (2013).

2"Lothar Cremer: Physik der Geige, Stuttgart, Germany: Hirzel, 1981, pp. 185-187.

' George Bissinger, Earl G. Williams, and Nicolas Valdivia: “Violin f-hole contribution to far-field radiation
via patch near-field acoustical holography”, in: The Journal of the Acoustical Society of America 121.6 (2007):
3899-3906.

12 Campbell and Campbell, “The Science of String Instruments”.

"% The Chinese erhu is one of the instruments that is still played with a horsehair bow and silk strings.

B1For a comparison of violin strings from different manufacturers see: http://www.violinist.com/
wiki/violin-strings/.
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vibrational energy of the string is preserved longer and a plucked note has a longer sustain!32.

Transverse Motion of the Violin String

The transversal motion of a string was described in section 2.3.2. As mentioned before, an
important difference between violin strings and other lute instrument strings is the internal

damping. The internal damping influences the transverse motion of the string in two regards:

1. The higher the internal damping, the more high partial of the string are damped, re-

sulting in a duller, softer sound.

2. The higher the internal damping, the shorter the string vibrates due to more internal

loss.

There is one important additional factor that contributes to the specific sound of the violin
string: The boundary conditions. When the string is open, one boundary is the nut, which is
very rigid compared to the other boundary: the bridge, which is not not as rigid but vibrates
in several eigen-modes, as discussed below. When a note on a non-open string is played
on the violin, the string is depressed by a finger, changing the freely vibrating length of the
string and adding another boundary condition at the contact point between string, neck
and finger. Because there are no frets on the neck of the violin, the boundary posed by the
finger is not completely rigid, as for instance in guitars necks, and adds additional loss at the
boundary due to an additional velocity damping at that point. This leads to different sustain
characteristics of violin notes played on open strings compared to the same note produced

by a pressed string.

Torsional Movement of the String

Among the other two modes of vibration, the longitudinal and the transversal, a violin string
can exhibit a considerable amount of torsional vibrations. The physical properties of the tor-
sional movement of the violin string was researched and described mathematically in Cre-
mer,'?? he states the the torsional wave velocity is between two (for gut strings) and five (for
steel strings) times faster than the transversal wave velocity.134 Bavu, Smith, and Wolfe!3?
shows that the torsional motion of a bowed strings is excited by the movement of the bow
over the string in a direction orthogonal to the string. Even though they concluded that this
effect is measurable, the motion is not transferred to the sound radiating front plate of the

violin because the coupling of the strings torque movement to the violin bridge is too small.

132 As for instance an upright-bass in a Jazz or Rock’n Roll ensemble.

33 Cremer, Physik der Geige.

B4ibid., p. 103.

B5E Bavuy, J. Smith, and J. Wolfe: “Torsional Waves in a Bowed String”, in: Acta Acustica united with Acustica
91.2 (2005): 241-246.
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Nonetheless, further research showed that the torsional movement has an important impact
on the interaction of the violin bow and the violin string. Bavu, Smith, and Wolfe'*® con-
cluded that a skilled violinist instinctively adapts the pressure and the velocity of the violin
bow in way that the transversal wave and the torsional wave of the string have rational pro-
portion, whereas an amateur player does not have the necessary control over the bow, which
leads to an unstable sound with inharmonic parts in the spectrum, audible as noise. Even
though the torsional motion of the string is important for the interaction of the violinist with

the instrument, it is only of marginal importance for the radiated sound of the violin.

Measurements

A tracked high-speed camera recording of the transversal deflection of a plucked violin string

is shown in Figure 2.8.

1

0.5

-0.5

0 02 04 06 0.8 1 1.2 14 16 18 2 22 24

Figure 2.8: Normalised transversal deflection of a plucked violin string (280 Hz) with time
in seconds on the x-axis.

136Bavu, Smith, and Wolfe, “Torsional Waves in a Bowed String”.
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(c) Partial time series III.
Figure 2.9: Normalised transversal deflection of a plucked violin string (280 Hz) with time

in seconds on the x-axis.

As visible in Figure 2.9a to 2.9c the initial shape of the plucked string looses its shape after
the first reflection at the respective boundary.

Figure 2.10 shows the measured velocity of a bowed violin string (293 Hz/d-String).
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Figure 2.10: Measured velocity of a bowed violin string.

Figure 2.11 shows the deflection of a bowed violin string at the beginning of a stable

Helmholtz motion.

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000

Figure 2.11: Measured deflection of a bowed violin string. Discrete sample points on the
abscissa.

2.4.4 The Bow/String Interaction

The most salient feature of the violin, regarding its specific sound, is the bow/string inter-
action. Fundamental research regarding the bow/string interaction and the resulting wave
form of the violin string was conducted by Hermann von Helmholtz'*” To research the mo-
tion of the violin string Helmholtz utilised a Vibrationsmikroskop, which enabled him to vi-
sualise Lissajou figures of a bowed violin string and sketch the resulting motion by hand.!*8
In 1918, Raman'®® researched string vibrations and body vibrations of the cello and pro-
vided a detailed analysis of the dynamical properties of bowed strings. In 1920'%° published

experimental data, done with a mechanical bowing machine that showed the influence of

Y"Hermann von Helmholtz: Die Lehre von den Tonempfindungen als psychologische Grundlage fiir die Theorie
der Musik, Vieweg, 1870, 595 ff.

8The characteristic motion of a bowed a violin string is called Helmholtz-motion in honour of Hermann von
Helmboltz.

9C. V. Raman: “On the mechanical theory of vibrations of bowed strings”, in: Indian Assoc. Cult. Sci. Bull.
15 (1918): 243-276.

19C. V. Raman: “Experiments with mechanically played violins”, in: Proc. Indian Association for the Cultiva-
tion of Science 6 (1920): 19-36.
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different bowing velocities and changing distances of the bow to the bridge. EG. Friedlan-
der'! showed the importance of the dissipation of energy for the production of a stable
Helmbholtz motion by deducing a mathematical formulation for a string bowed at its centre.
In his work, Friedlander assumes a perfectly sharp Helmholtz corner, an assumption that is
not met in real strings because of the bending stiffness of the string and losses at the bound-

142

aries. Lothar Cremer'** shows the effects of a rounded Helmholtz corner on the stick-clip

circle of a bow/string interaction. More recent research on the interaction between the bow

and the violin string tries to include additional effects, like the motion of the bow-hairs!**,

the torsional motion of the string!** or the frictional behaviour of rosin!*°.

2.4.5 Violin Bridge

In accordance to the function of the banjo bridge, the violin bridge transmits the vibrations
of the four bowed strings to the soundboard of the instrument. As is shown in Cremer,140
the bridge of the violin shows distinct vibrational modes which are important for the spe-
cific sound production of the violin and other bowed string instruments. As the figures in
Cremer'¥ indicate, in addition to its rocking motion, transferring the transversal pulses of
the violin string, the violin bridge shows distinct eigen-oscillations. This adds to the spe-
cific transfer characteristics of the violin bridge which results in an important violin specific
acoustic feature known as the bridge hill that can be identified as a peak in the radiated spec-

trum around a frequency of 2.5 kHz.Woodhouse!*?

2.4.6 Violin Front/Back Plate

Acoustical properties of the violins front- and back plate were subject to research in a mul-
titude works over the past 200 years. One of the earliest acoustic research on violins was
performed by Felix Savart who compared disassembled front- and backplates working with
the violin maker There are several works that measure front plate modes with time-averaged

holographic interferometry, like the work of Hutchins, K.A., and P.A.,'* who visualises tap

"IEG. Friedlander: “On the oscillations of a bowed string”, in: Proceedings of the Cambridge Philosophical
Society 49 (1953): 516-530.

"2Cremer, Physik der Geige, pp. 79-83.

'R, Pitteroff and J. Woodhouse: “Mechanics of the contact area between a violin bow and a string. Part I
Reflection and transmission behaviour”, in: Acta Acustica united with Acustica (1998): 543-562.

144 Bavu, Smith, and Wolfe, “Torsional Waves in a Bowed String”.

1457, Woodhouse and PM. Galluzo: “The bowed String As We Know It Today’, in: Acta Acustica united with
Acustica 90 (2004): 579-589.

16Cremer, Physik der Geige, pp. 171-203.

Ibid., p. 185.

87 Woodhouse: “On the ”Bridge Hill” of the Violin, in: Acta Acustica united with Acustica 91 (2005).

9C.N. Hutchins, Stetson K.A., and Taylor P.A.: “Clarification of fiee plate tap tonesbi holographic interfer-
ometry., in: Catgut Acoust. Soc. Newsletter 16.15 (1971).
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150 151

tones " of violins front and backs, or in the work of Saldner, Molin, and Jansson.">" As shown

in these publications, the violin exhibits complex radiation patterns from the front and the
back plate mainly due to its intricate structure. Figure 2.12 shows mode shapes published in
Hutchins, K.A., and P.A.">

TOP PLATE

888 & Li
LLLLOSS

BACK PLATE

Figure 2.12: Free front plate / back plate holographic interferograms.!>* .

Material and Geometry Parameters

Because of its intricate geometry, it is cumbersome to find an exact description of the front
plate and back plate of the violin. A description of the violin's body as a decomposition into a

154 js capable to capture acoustic

system of only few degrees of freedom proposed in Cremer
features of a violin in the low frequency range. As an extension to this model, the front plate

and back plate can be realised by implementing them as thin plates.!>

130Tap tones are commonly used by violin builders by holding the violin back or front softly, and tapping them
with two fingers. By that, plate modes can be made audible.Curtin and Rossing, “The Science of String
Instruments”

IS O. Saldner, N.E. Molin, and E.V. Jansson: “Vibration modes of the violin forced via the bridge and action
of the soundpost’;, in: J. Acoust. Soc. Am. 100 (1996): 1168.

*2Hutchins, K.A., and P.A., “Clarification of e plate tap tonesb¥ holographic interferometry.”

154 Cremer, Physik der Geige, 2051t

1%5This approach is also proposed in: ibid., 2371F.

48



2 History, organology and acoustics

2.5 Ruan and Yueqin

The yueqin and ruan are two traditional Chinese lutes that share parts of their historic evolu-
tion and organologic features. After the organologic classification scheme of Sachs,!* they
can be classified as plucked round body lutes.'”” According to Shen,'® the history of both
instruments is closely connected and they play a central role in the history of Chinese lute
instruments as a whole. The instruments measured in this thesis are shown in Figure 2.13
and 2.14. As one can see, comparable attributes of both lutes are the round body, the tuning
mechanism as well as the wood for the front- and backplates which are made of Paulownia

wood.

Figure 2.13: Chinese ruan.

A distinguishing feature is the string to soundboard coupling and there from arising a differ-
ent string fixation. In the case of the ruan, the strings run over a two-footed bridge and are
fastened at a tail piece. The strings of the yueqin however are fastened at a glued on bridge
by a sling-knot fixation. Another discerning property is are the air holes of the ruan and
the glued-on frets on the yueqin’s soundboard. Other structural differences are explained in

more detail below.

2.5.1 Historic Overview

The history of Chinese plucked lute instruments comprises a time span of at least 2000
years.!® But, comparable to other areas of Chinese history, it is difficult to draw a straight

line in the historic-organologic development of Chinese lutes instruments because

136Sachs, Real-Lexikon der Musikinstrumente, zugleich ein Polyglossar fiir das gesamte instrumentengebiet.

'*’John Myers: The Way of the Pipa, Kent, Ohio: Kent State University Press, 1992.

'*¥Sin-Yan Shen: Chinese Music and Orchestration: A Primer on Principles and Practice, Chicago: Chinese
Music Society of North America, 1991.

1% Myers, Pipa, pp. 6-31.

49



2 History, organology and acoustics

Figure 2.14: Chinese yueqin.

[A]an all-embracive periodization of China’s long history is difficult and definitely

controversial, as evidence by the number of different styles in scholarly practice.'®®

Hence, there are stages in the history of the ruan and the yueqgin that escape a scientific,
historic classification. A prime example would be the development of the string attachment
and the already mentioned differences between both fixations. Even though the ruan counts
as the predecessor of the yuegin, the organologic differences of both instruments make this
claim doubtful.

Traditionally, Chinese instruments were classified by the utilised acoustical material or the
sort of music that could be performed on a certain instrument. Depending on the era and
the respective scholar, music instruments were classified into different classes influenced by
spiritual, religious as well as social factors.'®!

This is one of the reasons, that organologic changes are not as well documented as in classical
European instruments like for instance the well documented organologic history of the guitar
or the piano.

Among historians, it is a widely accepted fact that the ruan is the oldest Chinese lute:
The ruan is said to be the ancestor of other Chinese plucked lutes.'%?

It is associated with a lute mentioned first in the Qin '®* period where it was known as the
qin pipa.

1See the complete paragraph in: Liang Mingyue: Music of the Billion, ed. by Ivan Vandor, New York: Hein-
richhofen Edition, 1985, pp. 12-13

'$'MLJ. Kartomi: On Concepts and Classifications of Musical Instruments, Chicago Studies in Ethnomusicology,
University of Chicago Press, 1990, pp. 37-54. For an overview of a classification system consisting of 9 classes
see Shen, Chinese Music and Orchestration: A Primer on Principles and Practice, p. 146.

2 Mingyue, Music of the Billion, p. 272.

'%The first Chinese dynasty from 221 B.C. to 206 B.C.. See (ibid., p. 16).
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.... This gin pipa ( ...) was created by applying strings to the taogu, a (membrane

covered) percussion instrument (.. .)1o4

The instrument described here, was also known by the name xiantao which, literally means:

(...) to stretch strings across the surface of the drum, and play it.'s>

Due to its membrane covered resonance body this instrument maybe also an ancestor of
the sanxian, a python skin covered long-neck lute used in modern Chinese orchestral music
as well as a solo instrument.!%® The transition from a membrane covered lute to a wooden
round body lute is not described in the accessible sources of Chinese lute instruments history.
Nonetheless, it is an accepted assumption that the modern ruan is similar to the instrument
the musician Ruan Xian, who lived approximately 300 C.E. and who was one of the Seven
sages of the bamboo grove'®’, played. In honour of Ruan Xian the instrument was named
ruanxian or in short form ruan.'

From the known pictorials and written accounts, it is not conclusively observable, if the ruan
of that time was similar to the modern ruan or if it was a prototype of a stringed lute instru-
ment from which several other lutes arose of.

The same Ruan Xian was accredited with the invention of the yuegin,

The yueqin which has a short neck, was said to be made by Ruan Xian (...). Sin-
Yan Shen: Chinese Music and Orchestration: A Primer on Principles and Practice,
Chicago: Chinese Music Society of North America, 1991, p. 108

In modern Chinese orchestral music, the ruan is often played as a bass instrument and the
yueqin as a higher melody instrument.Liang Mingyue: Music of the Billion, ed. by Ivan Van-
dor, New York: Heinrichhofen Edition, 1985, pp. 272-273

Remarks

The differences of both instruments in their timbre and their radiated sound quality, due
to their structural differences, like the presence of large sound holes or the fastening of the
strings, is not part of the known and accessible historical consideration. These two superficial
differences sets both instruments apart from each other and leads to the presumption, which
can not be verified or falsified at this point, that both instruments have a different organologic
origin. The evolution from an unmounted bridge to a glued on bridge as the primal string

attachment, and from a front plate with sound holes to a front plate without sound holes is

1% Myers, Pipa, p. 7.

15Shen, Chinese Music and Orchestration: A Primer on Principles and Practice, pp. 103-104.

1The role of the instrument in the various Chinese operas can be found in table 1 in Shen (ibid., pp. 26-27)

167 A group of artists, musicians and literates that lived in a bamboo grove to flee the restrictive politics at that
time.Myers, Pipa.

168 Shen, Chinese Music and Orchestration: A Primer on Principles and Practice, p. 102 or Myers, Pipa, p. 7.
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very unlikely to be the manifestation of an organic and linear process. The known history
of both instruments is likely to be shaded by mythical influences as is the case in other his-
toric traditions related to Chinese instrument organology. Hence, using accessible historic
sources, an exact classification of relevant evolutionary steps can not be reconstructed here

and could be part of further investigations.

2.5.2 Acoustical Properties of the Ruan

In this section, an overview on the acoustical properties of the Chinese lute ruan is given.
Even though the ruan is played in similar musical idioms like the yuegin, both instruments

differ in certain aspects of playing style and qualitative sound features.

2.5.3 Ruan Strings

The strings of the ruan traditionally were made of silk. Today, ruan strings are made of
metal wound nylon for the lowest string or nylon for all higher strings. Compared to the
strings of the banjo, ruan strings are thicker and much shorter. They exhibit a faster decay of
higher partials, resulting in a darker timbre and a more percussive sound. The instrument is
played with a plectrum made of animal bone!®’ or plastic utilising a playing technique that is
based in the tantiao plucking technique, similar to many Chinese lutes.!”® Other commonly
utilised techniques are tremolo techniques, resembling the playing technique of the Italian

mandolin.

String Fixture

The fixation of the strings at the head of the ruan is similar to the fixation of the banjo string.
The strings run over the nut and are wound around wooden tuning pegs. The tuning pegs
are similar to tuning pegs of other Chinese string instruments. The mechanical principle of
the tuning pegs is comparable to the tuning pegs of European bowed instruments, they differ
in size and shape but are conceptually friction pegs as found in violins, violoncellos, or other
stringed lutes like the Georgian panduri. Comparable to the banjo, the ruan has a moveable
wooden bridge, which is held in position by the downward force exerted by the tightened

strings.

Measurements

A high-speed camera recording of the transversal deflection of a plucked ruan string is shown

in Figure 2.16.

' Due to the instruction booklet that came with the author’s ruan, it traditionally was made from swan bone.
7"The word tantiao is synonymous to the word Pi'Pa and means leftward rightward (downward upward).
Shen, Chinese Music and Orchestration: A Primer on Principles and Practice, pp. 102-103.
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Tracked deflection. 13.th fret.

Transversal Deflection

Time in s

Figure 2.15: Normalised transversal deflection of a plucked ruan string (104 Hz) with time
in seconds on the abscissa.
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Tracked deflection. 13th fret.
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Figure 2.16: Normalised transversal deflection of a plucked ruan string (104 Hz) with time
in seconds on the abscissa.
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2.5.4 Ruan Bridge

Similar to the bridge of the banjo, the bridge of the ruan carved out of wood. It is made of
two separate sorts of wood. The upper part, the contact point with the strings, is made of
hardwood or ebony, depending on the quality of the instrument. The lower part of the bridge
is generally made of maple.

In contrast to the banjo it only has two foots. It is considerably bigger and heavier than a
standard bluegrass banjo or violin bridge. Both feet have 2.121.3 cm large contact areas

with the front plate of the instrument.

2.5.5 Ruan Body
Material properties

The front and back plate of the ruan is made of Paulownia spruce, a wood which is relatively
unknown to western luthiers'”!. Its material properties taken from the wood database'”? are
listed in table 2.4.

Scientific name Paulownia tomentosa

Average Dried Weight: 280 X4
Elastic Modulus: 4.28 GPa

Table 2.4: Engineering constants of Paulownia wood.

Paulownia is utilised in many Asian lutes as the wood for the whole body or for the sound-
board. The pi’pa, the gingin, the liugin or the yueqin are all Chinese lutes with Paulownia

front plates.

The front plate

The two large orifices on the front plate act as sound-holes having a comparable acoustical
function as the sound-hole of the classical guitar, enhancing the radiation of lower register of
the instrument. The effect of the air volume radiating through the openings can be described

by the extended Rayleigh-Helmholtz formula:

o Ao
fH_Z-ﬂ\/V-(lo+2~5R)’ @D

7Ipersonal communication with a local guitar builder. But it is used as wood for custom guitars. See: Ron
Kirn: Paulownia research, [Online; accessed 5-October-2013], 2013, URL: http://www . tdpri. com/
forum/tele-home-depot/173208-paulownia-research.html.

172The Wood Datatbase: Paulownia, [Online; accessed 5-October-2013], 2013, URL: http://www.wood~-
database.com/lumber-identification/hardwoods/paulownia/.
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with 0p = 0 - 7o, Ap the area and /o the height of the opening and r( the radius of the
orifice.!”? The Volume V' can be calculated by using the volume formula for an equivalent

cylinder which is given by 7 - 72 - h with r and h the radius and height respectively.

EIEINISES Physical values
Radius of body:
Height of body:
Height of opening

Area of opening:

Table 2.5: Geometry parameters of the ruan.

Inserting all values given in Table 2.5 to equation 2.1 yields a Helmholtz frequency of ~ 147.8

Hz, which is in very good concordance with the measured frequency as visible in Figure 2.7.

Measurements

The following measurements of the ruan front plate are conducted with the microphone array
as descibed in section 2.2.1. The focus of the measurements is put on the radiated spectrum
of the front plate and the coupling between the enclosed air volume inside the wooden res-
onating body. Both orifices on the front plate of the ruan influence the radiated timbre of
the instrument due to the interaction between the front plate and the enclosed air. The mea-
surements shown in Figure 2.17 are radiation patterns of the ruan resulting from a single

impulse-hammer knock on the front plate of the instrument near the left foot of the bridge.

173§ is the end correction of the Helmholtz formula and has a value of 0.85. See: Fletcher and Rossing, Physics
of Instruments, p. 16.
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A S A/S

148 Hz 406 Hz 336 Hz

578 Hz 317 Hz 451 Hz

Figure 2.17: Ruan radiation patterns — Impulse-hammer excitation. Column A): Air modes.
S): Structural modes. A/S): Coupled Air - Structure modes.

The radiation patterns of the ruan show radiation from the front plate as well as from the

174

orifices. In Pfeifle’’® it was shown that the radiation of the ruan is a mixture of front plate

modes, air-modes and back plate-modes radiating through the orifices.

2.5.6 Acoustical Properties of the Yueqin

In this section, an overview of the physical properties of the yueqin is presented.

Strings Material

The strings of the yueqin used for the measurements in this thesis, have the same material
properties as the strings of the ruan. The lower string, tuned to a G1 is a steel-wound string

with a nylon kernel, the two higher strings, tuned to D2 and G2, are nylon strings.

String Fixature

Compared to the other string instruments modeled in this thesis, the yueqin is the only in-
strument that does not have a separated bridge and fixture of the strings. The mechanism of
the energy transfer from the string to the top-plate differs from the other instruments as it is

transmitted at the tail-piece of the instrument, the point where the strings are fastened. The

174pfeifle, “Systematic Musicology: Empirical and theoretical Studies”.
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elliptic quarter shell formed tail piece is glued directly onto the top-plate of the instrument
as shown in Figure 2.14.
Measurements

A high-speed camera recording of the transversal deflection of a plucked yuegin string is

shown in Figure 2.18 and Figure 2.19.

400

200

”

-2
000 0.2 0.4 0.6 0.8 1 1.2 14

Figure 2.18: Transversal deflection of a plucked yuegin string (181 Hz), time in seconds on
the abscissa.
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(a) Partial time series L.
1 i
0 [
71 [ |
| | | | | | | |
0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54
(b) Partial time series II.
1 [ |
0
1k N
| | | | | | |
1.28 1.29 1.3 1.31 1.32 1.33 1.34

(c) Partial time series IV.

Figure 2.19: Transversal deflection of a plucked yuegin string (181 Hz), time in seconds on
the abscissa.
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Yueqin Body

The body of the yuegin is round and consists of a front and backplate with an enclosed air
volume. Contrary to the ruan it has no orifices on the front plate but has one 21217mm
small opening located directly under the tail-piece. The front and back plate of the yueqin

are made of Paulownia wood similar to the ruan.

Parameters Physical values

Radius of body:
Height of body:

Table 2.6: Geometry parameters of the yueqin.

Microphone Array Measurements

The following measurements are performed with a similar set-up as the microphone array
measurements shown before. The results shown in Figure 2.20 are recorded from a single
impulse-hammer knock on the front plate of the instrument in the left'”> center of the front

plate.

a) 233 Hz b) 397 Hz ¢) 420 Hz d) 684 Hz

Figure 2.20: Radiation patterns of the yueqin’s front-plate — Impulse hammer excitation.

2.6 Pick/String Interaction

The interaction between a plectrum or a finger pick, as commonly utilised by string instru-
ment players, and the string of an instrument adds a high frequency slipping noise to the
sound of the string. Besides the excitation point, the position of the pick/string interaction),
the material parameters and plucking velocities have an influence on the timbre of the slip-

177

ping noise. Similar effects have been found in harps!’® and guitars!”’. Measurements of a

banjo-pick string interaction are presented here.

7>With the neck facing upward and viewed from the front.

'7Mentioned in Delphine Chadefaux et al.: “Experimentally based description of harp plucking’, in: The
Journal of the Acoustical Society of America 131.1 (2012): 844-855.

177 Bader, Computational Mechanics of the Classical Guitar, pp. 161-166.
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2.6.1 High-Speed Camera Recordings

The interaction between a banjo pick and a banjo string is researched using high-speed cam-
era recordings and qualitatively evaluating the measurements!’8. By analysing the recorded

interaction, three phases can be discerned that can be categorised as:

1. Phase 1: The string sticks to the finger pick and is deflected towards the direction of

the finger movement.

2. Phase 2: When the restoring force of the string gets larger than the force exerted by
the finger and the string, it starts to perform a slipping (gliding) motion on the surface

of the finger-pick.

3. Phase 3: The string slips over the edge of the plectrum, is released from the sticking
Phase 2 and starts to vibrate freely without the influence of the finger-pick.

There are three physical parameters that influence and control the progression of this three
phase model, the velocity of the finger, the force exerted by the finger and the net force of
the string, depending on the position of the interaction. This model resembles the model of
the bow-string interaction but it is different in one regard: The pick, plectrum or finger has
a finite length. Hence, the interaction between it and the string ceases once the plectrum,

finger-pick or finger has lost contact with the string.!”®

2.6.2 Spectral Components

Figure 2.21 shows the time-series of damped banjo string, excited with a metal finger pick
and plucked at different positions, starting from the bridge to the string centre above the 12t
fret. The sound is recorded with a piezoelectric transducer, mounted at the bridge in direct

contact with the plucked string.

'78The image series is attached in appendix 2.

7% In contrast to the violin bow/string interaction, this model has a higher accuracy. Due to the fact that a
metal finger pick has no motion of its own, unlike the hairs of a violin bow, a linear approximation as a
completely rigid object is more feasible than in the case of the violin bow.
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[ [ [
fo = 2100 fo = 1378 fo = 1291 fo = 950

Figure 2.21: Piezoelectronic recording of the pick/string interaction measured at the banjo
bridge.

As indicated by the arrows, the slipping sound produced by the metal pick can be seen in the
spectrogram containing of a fundamental note and several partials. This points to the fact
that the frequency content of the slipping sound is highly dependent on the position of the
plectrum on the string. At the moment of contact, the plectrum adds an additional boundary
condition, separating the string into two parts. The part between finger pick and bridge
determines the fundamental of the perceived slipping-sound. This means that if the string is
plucked directly over the 12" fret, the slipping sound has strong frequency components one
octave above the fundamental frequency of the string. The farther the contact point moves
towards the bridge, the higher the fundamental frequency fj of the slipping sound is. This
effect is audible in the acoustic near-field of the banjo and has an influence on the vibration

of the string.

2.6.3 Tremolo Model Extension

The ruan and the yueqin are traditionally played with a tremolo technique!8® comparable to
the playing style of the Italian mandolin. The interaction of a ruan plectrum with a string is
modelled as an extension to the model of the banjo string/pick interaction. One difference
between both models that plays a role in the excitation of the string is the fact that the plec-
trum has a very short contact time with the string. After phase III of the model the excitation

is repeated after a short pause, depending on the speed of the tremolo.

2.7 Intermediate Results

The measurements presented in this section show basic physical properties of the four string
instruments researched in this thesis. On the one hand, the measurements act as a founda-

tion for the physical models presented in chapter 4, on the other hand they help to stress the

8'Myers, Pipa.
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importance of incorporating geometrical features of an instrument into a numerical formula-
tion as exact as possible because every specific part influences the radiated acoustic vibration
of the respective instrument and its specific timbre.

A significant example is the motion of the string. Even though the description of the
transversal movement of the string is well understood mathematically, the string motion
of each instruments differs in basic qualities. Like for instance the shape of the pulse after
several periods or the decay characteristics of the sound. Hence, predicting the string motion
without taking other information into account is impossible.

A second finding supporting the argument are the measurements of the banjo membrane.
They show that the effects acting on the membrane can not be modelled by an analytical
membrane and by linear adaptations. The banjo bridge and the back of the banjo have a
non-linear influence on the frequency position of the visible mode shapes. Hence, both ef-
fects have to be implemented in a physical model, including the coupling of the bridge to the
membrane as well as the air volume beneath the membrane. The measurements of the banjo
bridge show that fine structure elements, like the special form of the bridge feet, have to be
included in a numerical formulation. Due to the fact that the geometrical form influences the
mechanical behaviour, the bridge influences acoustical vibrations of the banjo. Additionally,
the measurements of the ruan show that geometrical constituents which supposedly are of
minor importance, like the back plate of the instrument, have to be included in a formu-
lation, because they can add spectral information to the radiated sound of the instrument.
These arguments support the approach of this thesis: To model every specific feature of each
instrument with greatest care. Only then, physically plausible results can be expected. This
includes correct material properties and correct boundary conditions as well as couplings
between the singular parts.

The two lessons that can be learned from the presented findings are 1) that it is impossible to
model the string or the membrane but rather a string or a membrane, but 2 show us that the
characteristic vibration responses of the respective instruments can aid us at the development
of geometrically and acoustically correct formulations for one instrument. Because the string
vibrations, membrane modes or soundboard radiations show such distinct characteristic for
each instrument, it is possible to use these informations as ground truths and steady control

items in the development of the models.
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CHAPTER 3

NUMERICAL METHODS

zl =21 — 22
2 =uxl1+ 22

(Iteration)

Physical modeling sound synthesis differs from other synthesis techniques in central aspects
because laws of physics are applied to describe a system and, often using an iterative process,
calculate its evolution over time by discretising one or several physical parameters charac-
terising the system.

To this end, there exist a large variety of numerical methods that are used in physical mod-
elling problems. In this section numerical methods that can be applied to compute physical
models are presented and compared.

Before starting the considerations of numerical methods, a set of guidelines is developed to
act as basis for decision-making for the selection of feasible methods for simulating musical
instruments with finite differences in real-time on a FPGA or as close to real-time as possible
ona PC.

As a point of departure, the 0-dimensional coupled mass-spring oscillator, also known as
simple harmonic oscillator SHO, is chosen.!

Thereafter, the method is exemplified on more complex models, like a stiff string with internal
damping or a wooden plate with buckling and orthotropic material properties.

The numerical methods used in this thesis are derived in two ways: a), from a mathematical

point-of-view, in the form of a finite difference approximation of the analytic, continuous

"The simple harmonic oscillator is the canonical introductory example for harmonic vibrations. See for in-
stance: Fletcher and Rossing, Physics of Instruments, p. 4 or Hermann Haken: Synergetik, 2nd ed., Berlin,
Heildelberg, New York, Tokio: Springer-Verlag, 1983, 115 ff. and multiple others.
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representation of the governing equation. b), a physically motivated derivation of the method
is developed, by discretising the Newtonian and/or Hamiltonian equations of motion. This
leads to a system of coupled ODEs comparable to a finite particle system.

Approach a can be labeled as the classical finite difference approach?. For electromagnetic
simulation this algorithm is known as the finite difference time domain approach (FDTD)?
Approach b is comparable to a lumped-system synthesis approach? or particle method ap-
proach®

Even though both approximation methods make use of different assumptions in the deriva-
tion, they yield comparable numerical algorithms with differences mostly in regards to nota-
tion of variables. Thus, both approaches can be expressed in nearly identical form, as will be
shown further below. After an introduction to finite difference methods, several time step-
ping methods, also known as time integrators, or simply integrators®, that are applied in this
work to compute the evolution of finite difference approximations in time, are presented.
Following this, basic properties of symplectic and multi-symplectic integrators (SI/MSI) are
presented and a short on the mathematical background is given. After an error analysis of the
numerical methods and some considerations regarding the stability of coupled problems, the
basic form of the algorithm is extended to a Pseudo-Spectral finite difference formulation.

The final form of the algorithm that is used for all real-time models is presented thereafter.

? Bilbao, Numerical Sound Synthesis. for a complete methodology for musical sound synthesis applications
implementing this method.

? See: Kane Yee: “Numerical soution of initial boundary value problems involving maxwell’s equations in
isotropic media’, in: IEEE Transaction on Antennas and Propagation 14.3 (1966): 302-307 for an early work.

* Bilbao, Numerical Sound Synthesis. pp. 9-10.

® Donald Greenspan: “Discrete Mathematical Physics and Particle Modeling?, in: IMACS European Simulation
Meeting, 1984: 39-46.

8 See: Hairer, Lubich, and Wanner, Geometric numerical integration. pp. 27ff.
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3.1 Numerical Methods for Physical Modeling

Physical modeling (PM) for acoustical engineering applications can be classified by a com-
parison of their underlying rationale. Ideally, PM methods are a direct mapping of a certain
object, which in this thesis are musical instruments, to a physical system which obeys our
perceivable laws of classical mechanics, or Newtonian mechanics, and are describable by a
set of equations, in most cases partial differential equations PDEs.

Because an analytical solubility of such a complex system is only given for simple cases, nu-
merical methods are applied to solve the problem.

For modeling and synthesizing musical instruments, there are two differing methods com-

monly applied to solve the equations characterising a physical system numerically.

Type I methods : The first, and older methodology, works by discretising and iterating the
state variables of a physical system, for mechanical problems this is mostly the deflection,
stress-strain relationships or other forms of deformation. This approach is used in finite
difference methods, finite element methods, boundary element methods to mention just a

few.

Type Il methods : These approaches can be labeled as traveling wave methods or scattering
method. Instead of discretising the physical object, they aim at discretising a solution of
the wave-equation, for instance the d’Alembert equation, which consists of two travelling
waves in opposite directions, and iterate this solution in time. Among the most commonly
used methods for physical based sound synthesis there are digital waveguide methods, digital
filter methods and transmission line methods.”. An introduction and comparison of both
methods is published in Bilbao.?

In this thesis, only methods of type I are employed, thus, the numerical schemes regarded in
this thesis are just a small part of the multitude of numerical methods and schemes used in
other works to discretise and iterate differential equations.

Even though the rationale behind most type I methods is comparable, there are several differ-
ent classes of algorithms, that can be employed for similar numerical problems as presented
in this thesis, having different characteristic properties. A short overview on several standard

methods is presented in the following.

7 Another not so common method is the wave digital filter method proposed by Alfred Fettweis, See: A. Fet-
tweis: “Wave digital filters: Theory and practice’, in: Proceedings of the IEEE 74.2 (Feb. 1986): 270-327.
They are mentioned here because they can be used to efficiently compute digitised versions of analog cir-
cuits on FPGA hardware.

3Stefan Bilbao: “Wave and Scattering Methods for the Numerical Integration of Partial Differential Equation’,
phd, Stanford, California: Department of Electrical Engineering, Stanford University, May 2001.
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3.1.1 Single-Step Methods

A widely applied class of methods to solve differential equations numerically are known as
Runge-Kutta (RK) methods or RK schemes. RK schemes are named after the German mathe-
maticians Carl Runge and Martin Wilhelm Kutta who developed the method at the beginning
of the 20 century.’ The RK method is an umbrella term for a family of multiple schemes
differing in their order. RK methods can be formulated explicitly as well implicitly to solve
initial value problems of differential equations.
An extension to RK methods was developed by C. Butcher, who proposed the Butcher tableau
as a tool to efficiently represent the coefficients of a RK scheme.!® The rationale behind RK
methods draws on the idea that values on discrete grid points in an interval [y, Y, + A, can
be calculated by values from given grid points wuy, 1, A, as well as s intermediate steps by
evaluating
5
Yot Az = Yo + DT> biki (Yo, Yoy Ax)- (3.1)
i=1

The coefficients b are the weights for the intermediate values &£ which are given as

s
ki=f <t$+Axci,yw—|—AxZailkl> ,i=1,..., 5. (3.2)
=1

Schemes that can be classified as RK methods can be subdivided further into explicit and
implicit methods. Explicit schemes with adaptable step size are the Fehlberg!! scheme or the
Heun-Euler scheme!2. Implicit methods that can be classified as RK schemes are Lobatto-
Gauss!? schemes or Radau methods!4.

A widely applied method in FEM computations is the Newmark-beta (N3) scheme, an im-
plicit solution scheme. It is often utilised to compute the responses of structural mechanics
problems.!® The idea of the N3 scheme is that the velocity (v) and the deflection (u)in the

equations of motion can be computed as:

v(t+ At) = v(t) + At[(1 — y)ve(t) + yoe(t + At)
— 28 (3.3)
20)0,(0) + B + At

u(t + At) = u(t) + Ato(t) + At?[( !

The accuracy and the stability can be aligned by parameters 5 and y. A N/3-scheme with a

? Hans Rudolf Schwarz and Norbert Kockler: Numerische Mathematik, 6., Wiesbaden: Treubner Verlag, 2006.

OvWalter Zulehner: Numerische Mathematik, Mathematik Kompakt, Basel: Birkhauser Verlag, 2011, pp. 58-60.

"ibid., p. 67.

'2MS Chandio and AG Memon: “Improving the Efficiency of Heun’s Method”, in: Sindh University Research
Journal (Science Series) 42.2 (2010): 85-88.

BA. Aydin and B. Karasézen: “Symplectic and multisymplectic Lobatto methods for the 'good’ Boussinesq
equation’, in: Journal of Mathematical Physics 49.8 (2008): NA.

Y“http://www.springerreference.com/docs/html/chapterdbid/333757 .html.

'5Bathe, Finite-Element Methoden, pp. 930-932.
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constant acceleration can be constructed by setting § = i, a linear acceleration scheme is

1

achieved by setting (5 = %). In both cases the other constant is set to y = 3.

3.1.2 Multi-Step Methods

All previously mentioned methods are single step methods, meaning that only the calcu-
lated values of one preceding grid point (¢ — 1) and the grid point itself (¢) are used for
the calculation of the actual values of grid point (¢). Multi-step methods, like the explicit
Adams-Bashforth (AB) method or the implicit Adams-Moulton method, use the informa-
tion of several previous steps in the calculation of a new grid value. Hence, the first iterated
values of the algorithm are approximated by a different scheme!®, until the number of grid
points, depending on the order of the scheme, are calculated. The explicit AB method can

be expressed in the following form

s—1
y(@ + Az) = y(@) + Az S b f(tz — i), y(z — i), (3.4)
=0

with the coefficients b; for the previous steps. The coeflicients can be computed by using a

Lagrange interpolation as

(-1 b . .
b= T e =0, 35)

J=0,571

!Mostly the Euler scheme is applied for the initial step of the method.

68



3 Numerical methods

3.2 Finite Difference Methods

The basic rationale behind finite difference methods is among the oldest techniques to solve
analytical mathematics problems numerically. The idea can be found as early as 1687 in
Newton’s Principia'’, works of Euler'® as well as other important works throughout the last
350 years.!” In this thesis, finite difference methods are used to solve Ordinary Differen-
tial Equations (ODE) and Partial Differential Equations (PDE) numerically using explicit
schemes.

The numerical computation of structural mechanics problems that are expressible as PDEs or
ODEs, is a central field of research in theoretical physics?® and applied mathematics?!. This
means there is a large body of work regarding numerical solution methods for problems that
can be solved with finite difference methods.

Canonical formulations of finite difference operators used in numerical mathematics and
the appertaining calculus were formulated as early as 1860%2. A notable work, that is often
cited as the cornerstone of modern finite difference methods,?? is the publication by Courant,
Friedrichs, and Lewy. It summarises basic properties of finite difference methods and for-
malises several traits of numerical schemes for DEs. In that treatise, a method for discretis-
ing continuous wave equations is presented and a convergence condition, later named CFL
(Courant-Friedrich-Lewy) condition or CFL constant, is developed for spatial and time dis-
cretisation step widths. The CFL number (\) can be defined as % = )\, with ¢ the wave
velocity in the medium, & the discrete time-step and A the discrete spatial step-width. This
number can be applied as a condition for stability and convergence properties of numerical
finite difference schemes and is commonly used as an initial tool for assuring a valid selection
of time and spatial step width sizes. A more thorough explanation follows below.

A step forward in the development of finite difference methods was the invention of the

computer:

7See the historical remark in: Hairer, Lubich, and Wanner, Geometric numerical integration. P. 402 or lan
tweddle: James Stirling’s Methodus Differentialis: An Annotated Translation of Stirling’s Text, Springer Verlag,
2003, p. 2.

'8 Leonhard Euler and John D. Balnton: Foundations of Differential Calculus, springer verlag, 2000.

See the introduction of: Charles Jordan: Calculus of Finite Differences, new york, n.y.: Chelsea Publishing
Company, 1950 or ibid., 1 ff. Ernst Hairer, Christian Lubich, and Gerhard Wanner: “Geometric numerical
integration illustrated by the Stormer/Verlet method”, in: Acta Numerica 12 (2003): 399-450, p. 402.

Bathe, Finite-Element Methoden.

U Hairer, Lubich, and Wanner, Geometric numerical integration.

22A first treatise regarding the calculus of finite differences is the first edition of: George Boole: A Treatise
on the Calculus of Finite Differences -, 3rd ed., London: MacMillan and Company, 1880. Other works are
mentioned in the introduction of: Jordan, Calculus of Finite Differences.

2 See the introduction of: Vidar Thomee: “From finite differences to finite elements: A short history of numer-
ical analyses of partial differential equations’, in: journal of computational and applied mathematics 128.1-2
(2001): 1-54.

#R. Courant, K. Friedrichs, and H. Lewy: “Uber die partiellen Differenzengleichungen der mathematischen
Physik’, in: Mathematische Annalen 100.1 (1928): 32-74.
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For time-dependent problems considerable progress in finite difference methods
was made during the period of, and immediately following, the Second World War,

when large-scale practical applications became possible with the aid of computers.
25

Since that time, there has been very active research regarding properties and the applicability
of finite difference methods. A dominating interest in early works was a thorough definition
of stability conditions for finite difference schemes?®. From this time on, finite difference

methods have proven to be a stable tool for solving linear and non-linear?” DEs.

Today, finite difference methods are applied in various areas of science to solve numerical
problems. These range from medical engineering®®, to molecular dynamics®. Finite differ-

ence methods are applied in fluid simulations®® or physically based graphics simulations®?,

they are applied for simulations in Nanotechnology and Optoelectronics*2.

One important factor fuelling the increasing usage of finite difference methods in the last
decade is the rising computational power and the steadily advancing computational through-
put in the giga-FLOP/tera-FLOP?® range, on easily accessible, conventional personal com-
puters.>* A trend that is still continuing, even though the focus of current research lies more
on developing dedicated co-processor platforms or parallel structures than on the mere ac-
celeration of CPUs.>® This lead to an increasing research interest in stable and robust finite

36

difference algorithms over the last twenty years®®. In musical acoustics, FD methods are

utilised as a numerical tool since the late 1950s 37 at least.

B Thomee, “Short history of finite differences”.

26 As for instance in the works of Lax and Wendroff P.D. Lax and Richtmyer R.D.: “Survey of the stabiity of
linear finite difference equations.} in: Communications on Pure and Applied Mathematics 9 (1956): 267-293
or the works of Richtmyer, who formalised the CFL condition as a stability analysis measure.

’For instance the Korteweg-de-Vries equations as found in: B. Fornberg: A practical guide to pseudospectral
methods, vol. 1, Cambridge university press, 1998, p. 130.

287 Jackiewicz, B. Zubik-Kowal, and B. Basse: “Finite-Difference and Pseudo-Spectral Methods for the Nu-
merical Simulations of In Vitro Human Tumor Cell Population Kinetics”, in: Mathematical Biosciences and
Engineering 6.3 (2009): 561-572.

»Loup Verlet: “Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-
Jones Molecules”, in: Phys. Rev. 159.1 (July 1967): 98-103.

%N. Foster and D. Metaxas: “Realistic animation of liquids’, in: Graph. Models Image Process. 5.58 (1996):
471-483.

*!See the section on finite difference methods in: Andrew Nealen et al.: “Physically Based Deformable Models
in Computer Graphics’, in: Computer Graphics Forum 25.4 (Dec. 2006): 809-836.

%2 Fernando L. Teixeira: “FDTD/FETD Methods: A Review on Some Recent Advances and Selected Applica-
tions”, in: J. of Microwaves and Optoelectronics 6.1 (2007): 83-95.

3 Floating Point Operations per Second. See: R. Woitowitz and K. Urbanski: Digitaltechnik, 5th ed., Berlin,
Heidelberg: Springer, 2007, p. 352.

3 A current consumer graphics card, a Nvidia GeForce GTX 770 has a theoretically processing power of 3,3
tera-FLOPS which is in the range of supercomputers of the late 90s. See: http://www.top500.0rg/
lists/1999/06/.

**More on this in chapter 5.

36 Hairer, Lubich, and Wanner, Geometric numerical integration.

%7 Bilbao, Numerical Sound Synthesis. P. 2.
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An overview of physical modeling and related signal processing applications is presented in
the works of Zélzer et al.,*® Bilbao,*® K.-D. Kammeyer*® or in Vilimiki et al.*!

An early treatise in the field of musical acoustics and musical sound synthesis is the work of
Hiller and Ruiz (1971)*2. In their work, a finite difference method is applied to solve the wave
equation for sound synthesis. Following their work, throughout the 1970s and 1980s, there
were several works in the field of musical synthesis or musical acoustics that utilised finite
difference methods comparable to the earlier attempts by Hiller and Ruiz. Notable works
include Bacon and Bowsher,*> who presented a model of a struck string solved with finite
differences or Boutillon,** who presented a physical model of a piano hammer. A work,
which can be viewed as a stepping stone in regards to model accuracy and refinement of
the physical parameters is the work by Askenfeld and Chaigne (1994) 4. Since that time,
the increasing number of publications shows the rising interest in finite difference methods
for physical models of musical instruments. These works include physical models for such
diverse instruments as the guitar46, pian047, banj048, ruan®, trumpetsso and others.

An analysis and comparison of the results of the mentioned works shows some recurring

statements which can be summarised as follows’!:

1. Finite difference models are straight-forward to implement, compared to other nu-

merical methods like finite element methods or boundary element methods.

3¥Udo Zolzer et al.: DAFX:Digital Audio Effects, ed. by Udo Zélzer, John Wiley & Sons, May 2002.

¥ Bilbao, Numerical Sound Synthesis.

K -D. Kammeyer, Digitale Signalverarbeitung.

*Vesa Vilimiki et al: “Model-Based Sound Synthesis”, in: EURASIP Journal on Applied Signal Processing,
Hindawi Publishing Corporation, 2004.

2 Lejaren Hiller and Pierre Ruiz: “Synthesizing Musical Sounds by Solving the Wave Equation for Vibrating
Objects: Part 17, in: J. Audio Eng. Soc 19.6 (1971): 462-470; Lejaren Hiller and Pierre Ruiz: “Synthesizing
Musical Sounds by Solving the Wave Equation for Vibrating Objects: Part 2, in: J. Audio Eng. Soc 19.7
(1971): 542-551.

“R. A.Bacon and J. M. Bowsher: “A Discrete Model of a Struck String”, in: Acta Acustica united with Acustica
41.1(1978): 21-27.

*Xavier Boutillon: “Model for piano hammers: Experimental determination and digital simulation”, in: The
Journal of the Acoustical Society of America 83.2 (1988): 746-754.

*> Antoine Chaigne and Anders Askenfelt: “Numerical simulations of piano strings. 1. A physical model for
a struck string using finite difference methods”, in: The Journal of the Acoustical Society of America 95.2
(1994): 1112-1118; Antoine Chaigne and Anders Askenfelt: “Numerical simulations of piano strings. II.
Comparisons with measurements and systematic exploration of some hammer-string parameters”, in: The
Journal of the Acoustical Society of America 95.3 (1994): 1631-1640.

“Rolf Bader: “Complete Geometric Computer Simulation of a Classical Guitar”, in: Lay-Language paper of
the American Acoustical Society 05 (2005), http://www.aip.org/149th/bader_Guitar.htm.

“Boutillon, “Model for piano hammers: Experimental determination and digital simulation” or more recently
Juliette Chabassier and Antoine Chaigne: “Modeling and numerical simulation of a nonlinear system of
piano strings coupled to a soundboard’, in: Proceedings of 20th International Congress on Acoustics, 2010.

8, Pfeifle and R. Bader: “Musical Acoustics, Neurocognition and Psychology of Music”, in: Frankfurt am
Main, Germany: Rolf Bader, 2009: 71-86

“F, Pfeifle and R. Bader: “Measurement and physical modelling of sound hole radiations of lutes, in: J. Acoust.
Soc. Am. 130.4 (2011): 2507-2507.

0Bilbao, Numerical Sound Synthesis.

S'The following list is mainly based on: ibid., pp. 17-18; Vélimaiki et al., “Model-Based Sound Synthesis”.
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2. Finite difference models can yield realistic sound quality and accurate motion simu-

lations.
3. Finite difference formulations are intuitive.

4. Finite difference models have a high computational cost compared to other physics
based methods like filters.

5. The Stability of finite difference algorithms is an important criterion regarding the us-

ability of the method for the problem under consideration.

Based on these findings, several requirements for real-time physical modeling sound syn-
thesis of musical instruments, and the demands it poses on a numerical method shall be

formulated in the following:

1. The error must be reasonably small over the audible frequency range:

Because the ear is proficient in detecting subtle differences and errors in time varying
signals, it is important that there are no artificial components in the spectrum added

by a numerical method.
2. Solutions to long-time behaviour must be as accurate as possible:

A numerical method should be able to produce results that are accurate for arbitrarily

long simulation times, at best.
3. The algorithm should be stable over a large time and frequency range:

A numerical method should produce stable results over the audible frequency range

and ideally an infinitely long simulation time.
4. All physical parameters should be accessible at any point of the simulation:

A numerical method should facilitate the possibility to interact with important pa-

rameters of the model, like coupling or internal material constants.

5. The computational cost should be as small as possible and assessable up front in terms

of resource utilisation an timing constraints:

Real-time implementations of numerical methods require an accurate knowledge of

the internal timing and an overview on the required hardware resources.

With this set of requirements, purposeful guidelines to find a feasible method for modelling
the acoustically relevant properties of musical instruments are given. To add one more re-
quirement to the numerical method, one has to recapitulate the basic physical principles of

Newtonian mechanics.

72



3 Numerical methods

Most musical instruments can be described in terms of classical mechanics as coupled (linear
or non-linear) system governed by coupled ODEs and PDEs>?>. Compared to other, more
advanced mechanical systems, they can be described using Newtons equation of motion to
a high degree of accuracy™, because the defining physical parameters are directly accessible
and are well understood regarding their influence on the acoustic vibrations of the respective
instrument.

In most cases, acoustical phenomena can be described by one of the various forms of the
wave equation of differing order and dimension, and the equations of motion are directly
deducible from these equations, using Newton’s fundamental theorems. Newton’s second
axiom states that forces are only dependent on the position and on the velocity>*. Thus,
we can describe the underlying system by using the equations of motion to a high degree of
accuracy if we know these two physical values. To summarise this thought: it is favourable to
use numerical schemes which include formulations for the deflections, velocities and forces

in an explicit form for every discrete sampling point in space and time.

3.2.1 Finite difference approximations

Finite difference approximations can be derived by using a Taylor series approach, which
follows the assumption that any point f(z;) of a function f(x), given that the function is
well-defined, can be approximated by a Taylor series expansion. Using this series, finite dif-
ference expressions for differential terms can be deduced by approximating a continuous
function with a Taylor series expansion, which allows us to approximate the value of a func-

tion f(z) at position z = x + h by

2
Fleo+ 1) = fao) + b flzohe o Fw0)es
h3 h4 '
+g f(z0)3e + T f(z0)az + O(RY) (3.6)

with the Landau Symbol O, approximating the remainder term and the subscript , indicating
a derivation by x. For now, we are only interested in the linear terms, so we strip equation
3.6 and reorder it to f(xo), to get

f (o) = —110) +hf(x0 R om). (3.7)

>2 Philip M. Morse and K. Uno Ingard: Theoretical Acoustics, Princeton University Press, 1968; Fletcher and
Rossing, Physics of Instruments; Bader, “Complete Geometric Computer Simulation of a Classical Guitar”.

>*Some musical instruments show effects that can only be explained by statistical methods, like the synchro-
nisation of organ pipes. See: Abel, Bergweiler, and Gerhard-Multhaupt, “Synchronization of organ pipes:
experimental observations and modeling”.

*In the case of a conservative field-the velocity. See: F. Kuypers: Klassische Mechanik, 8th ed., Weinheim:
Viley-VHC, 2008, p. 6.
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This is called a forward approximation of the derivative f(z(), at the point z. Approximating

f(zo — h) in the same manner gives an expression for a backward difference of derivative

f(w0)e
f(xo) — f(xo — h)
h

If equations 3.7 and equation 3.8 are combined, we obtain an expression for centered finite

f(x0)z = +O(h). (3.8)

differences around point

f(x(])x _ f(l‘o +h

— f(xo—h
Tl o), (3.9)
It is important to note that the order of the error is quadratic instead of linear when using
centered finite difference approximations.® In the remainder of this work, centered finite
difference approximations are used if applicable because of the smaller error term introduced
by the discretization. The approximation of a derivative of a continuous function at a given
grid (sample) point, presented here, is the basic rationale behind all finite difference schemes

used in this thesis.

3.2.2 Finite Difference Operators

There are several standard finite difference operators which are commonly used in many
works as well as in this thesis. A classical central difference approximation of a first order
differential expression was presented above. The notation of finite difference approxima-
tions can be condensed to an operator notation. This generalized operator notation is ap-
plied throughout the remainder of this thesis. It is based on the notation used in works like
Jordan,?® Strikwerda®” and Bilbao.”®

A discrete shift operator acting on a 1-dimensional function y at position = and time instant

t is indicated by 7 with

- (y(t, ) = yly — At z)or
To—(y(t,z)) = y(t,x — Ax) (3.10)

and At, Ax the discrete step width in the temporal or spatial dimension respectively. A
difference approximation in the forward (+) and backward (—) direction at discrete position

1 can thus be written as

>*For first derivatives employing a two-point stencil, the centered finite difference approximation has a fre-
quency limitation, reducing the usable bandwidth as shown in: Terry A. Bahill, Jeffrey S. Kallman, and Jon
E. Liberman: “Frequency Limitations of the Two-Point Central Difference Differentiation Algorithm”, in:
Biological Cybernetics 45 (1982): 1-4.

*$Jordan, Calculus of Finite Differences.

7. Strikwerda: Finite difference schemes and partial differential equations, 2nd ed., Philadelphia: SIAM, 2005.

*$Bilbao, Numerical Sound Synthesis.

74



3 Numerical methods

1 1

dutyli = E(?J(i + Ax) —y(i)) = E(Tw-i- -1y, (3.11)
1 1

Oo-yli = E(y(i) —y(i— Ax)) = E(l — T )y . (3.12)

Higher order operators can be derived by combining first order operators as

Opz = Op4 - O— (3.13)
Expanding both operators leads to
1 1
(53393 = 5x+'6x7—E(Tx+—1)‘fm(1—Tx,)
1
= A—xz(—l + Toe + Tot — To—Tat) (3.14)

with 7,7, = 1 this can be rewritten as

O Toe — 2+ Tat) (3.15)

= a2

which is a second order centered difference in operator notation. Higher order operators can
be constructed in a similar fashion.

Finite difference operators can also be thought of as weights at the respective grid locations.
Meaning, for an approximation of a differential function the actual grid node, where the
derivative is calculated, is taken into account as well as several adjacent grid points to cal-
culate the derivative, depending on the order of the approximation and the order of the dif-
ferential operator. These weights can be calculated using the discrete grid and the respective

order of differential equation.

Taylor Series Derivation

All finite difference operators used in this thesis can be derived from a Taylor series expansion
around a point 7 or as a series of first order differences. Take for example the second derivative
of y in respect to =, remember that we can write the second derivative of a function at point

i as two first derivatives®®

Yoz|i = (Ya)y li- (3.16)

Now it is possible to combine the first order backward difference (equation 3.8) and the first

order forward difference (equation 3.7) to get the centered finite difference expression of

**We suppose the function is analytic, meaning continuous and well defined around i.
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second order. Replacing the differential with a finite difference expression we obtain

—y(i—Az)+y(i) —y(i—Az)+y(i)
— i+ it Az
(Yz), li = Az | A Az e (3.17)

If we now reorder this equation we get

1
(), i % oy (00— D7) =20 y(0) + 90+ Ba) = boas (19)

which is the finite difference equation for the second order differential equation in standard
notation. Higher order approximations can be derived by taking higher order terms of the

t60

Taylor expansion into account®. Difference operators of higher dimension can be approxi-

mated accordingly by a Taylor series expansion.5!

Padé/Lagrange Series Derivation

Even though the derivation with Taylor series is a robust method for calculating finite dif-
ference weights, it has one drawback. It can only be applied for regular, equidistantly
spaced grids. As an extension to this basic derivation of finite difference weights, Fornberg®

presents an algorithm, based on a Padé approximant®?

and Lagrange interpolation polyno-
mial which can be used to calculate finite difference weights of arbitrary order and accuracy,
only limited by the lower bounds of the digital number representation. This algorithm is
published in FORTRAN®* and translated to C and MATLAB over the course of this thesis.
All finite difference weights used in this work are calculated with these functions.

The idea of this algorithm is to approximate the finite difference weights by either a Padé
polynomial approximant® or a Lagrange interpolation polynomial®®.

A Padé series can be used to approximate a function f that can be approximated by a power

series

f(z) = i cp2” (3.19)
k=0

%0 A one-dimensional second order centered finite difference stencil is presented in 3.6, higher order weights
can be derived in a similar way.

61 Higher order finite difference operators are derived in: Bathe. (Bathe, Finite-Element Methoden, p. 159)

62B. Fornberg: “Calculation of weights in finite difference formulas”, in: SIAM Rev. 40.3 (1998): 685-691.

83 A Padé approximation is also derived from a Taylor approximation.

4B, Fornberg: “Generation of finite difference formulas on arbitrarily spaced grids, in: Math. Comput 51.184
(1988): 699-706.

For the case of equispaced grids

SFor arbitrarily spaced grids.
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3.3 Finite Difference Time Domain Methods

In this section, a short introduction to the Finite Difference Time Domain (FDTD) method
is given. It is commonly used in room acoustics®” and implemented as solution method in
many other fields of numerical simulations. In instrument acoustics, it is applied in the works
of Askenfelt and Jansson®®, Boutillon® or, most prominently, in works like Bilbao,”® Bilbao”*
and Bilbao.”? At first, the numerical solution for a simple harmonic oscillator is presented.
Afterwards this method is applied to solve the differential equation of a damped linear string

numerically.

3.3.1 0-dimensional Wave Equation

In mechanical physics, a simple example of a harmonic oscillator is a 0-dimensional (point-)
mass m coupled to a massless spring with a spring constant %, indicating the linear stiffness
of the spring. This system is often referred to as a mass-spring model 7* or a simple har-
monic oscillator’4. The governing equation for the force acting on the oscillating mass can
be written as

Foooe = —k-x (3.20)

with Fls. the restoring force of the system, k the stiffness of the massless spring and z the
deflection of the mass relative to equilibrium as depicted in Figure 3.1. Equation 3.20 is
also known as Hookes Law”” and is a one of the fundamental laws of physics, which finds

application in such diverse fields as molecular dynamics’.

%71t is used since the late 1960s and was first proposed by Yee, “Numerical soution of initial boundary value
problems involving maxwell’s equations in isotropic media” to solve Maxwell’s equation for electro-magnetic
waves.

% Anders Askenfelt and Erik V. Jansson: “From touch to string vibrations. II: The motion of the key and
hammer”, in: The Journal of the Acoustical Society of America 90.5 (1991): 2383-2393.

%Boutillon, “Model for piano hammers: Experimental determination and digital simulation”.

"%Bilbao, “Robust Physical Modeling Sound Synthesis for Nonlinear Systems”.

"1 Bilbao, Numerical Sound Synthesis.

72Stefan Bilbao: “Conservative numerical methods for nonlinear strings’, in: The Journal of the Acoustical
Society of America 118.5 (2005): 3316-3327.

73 Kuypers, Klassische Mechanik

7#See chapter 3 (pp. 45-77) of:Bilbao, Numerical Sound Synthesis.

”The dictum at the beginning of this chapter was first published by Hooke as an Latin anagram ceiiinosssttuv
in 1660. The solution of the anagram was published in 1678.

76 Massimo Blasone and Petr Jizba: “Quantum mechanics of the damped harmonic oscillator”, in: Can. J. Phys.
80 (2002): 645-660 or solid mechanics Vitali F. Nesterenko: Dynamics of Heterogeneous Materials, ed. by
Lee Davidson and Yasuyuki Horie, Springer-Verlag, 2001.
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u(t) =|sin(z)

\ |
VIRYERYEY

Figure 3.1: Oscillating mass-point.

To derive the equations of motion, Newton’s second axiom F' = p; can be applied. p is the
impulse (or the momentum) of mass m, the subscript ; denotes a derivation by time 77, If

the mass is constant over time, one can rewrite equation 3.20 into following form:
Fosce=pr=m-a=—k-x. (3.21)

From classical physics, we know that the acceleration a is the second derivative of the deflec-

tion by time. With this, equation 3.21 can be written as:

Fose=m-a=-k-2Szy=——"m. (3.22)
m

From basic analysis, we know that an analytical solution to this Ordinary Differential Equa-
tion (ODE) can be a trigonometric function. If we set z = sin(w - t), we get the expected
solution

Ty = —w3z. (3.23)

A comparison of coeflicients shows that the right hand side multiplicand is % = w2,

A straight-forward way to find a numerical solution to this problem is the approximation
of the differential expression on the left hand side of equation 3.22 with a centered finite

difference term”® as developed in section 3.2:
x(t — At) — 2 - 2(t) + z(t + At)
At?

7In most classical physics textbooks the derivative by time is indicated by a dot superscript. In this work we
follow the index notation which is commonly used in the scope of finite difference related work Jordan,

. (3.24)

Ty ~

Calculus of Finite Differences. The notation for derivatives can be written as v, = ¢ = %1” = 9 The
last two cases are the differential operators for partial differential equations (PDE) and ordinary differential

equations (ODE).
78Schwarz and Kockler, Numerische Mathematik, Bilbao, Numerical Sound Synthesis.
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Inserted into equation 3.22 yields

x(t — At) — 2 - x(t) + z(t + At)
A = . (3.25)

with ¢ =/ % Now one can rewrite equation 3.25 into the recursive form
T(t+ At) = —Chee - x(t) - A —2(t — At) +2-2(t) = k- 2(t) — x(t — At)  (3.26)

with acc = —c? - At? + 2. The values for (¢ + At) depend only on the values of x(t), x
and x(t — At). This means, the deflection of the oscillating mass-point can be calculated
by applying an constant deflection for the time steps t = 0 — At and t = 0. Rewritten in a
computable pseudo-code the algorithm looks like:

1. With the given constant « and the deflection of the mass at point of time ¢ and t — At,

compute the next time step ¢ + 1.

2. Set the value of the calculated deflection x (¢ + 1) to the variable x(¢) and the value of
x(t) to the variable (¢ — 1). Then return to step 1.

Resulting Waveforms

A plot of the deflection over time is shown in Figure 3.1. As expected, the deflection has a

sinusoidal characteristic.

Analysis of the Algorithm

A short analysis of algorithm 3.26 shows that an explicit expression for the deflection at each
discrete instant of time is computed. The two terms on the right side x(t) — z(t — At) are
related to a backward finite difference approximation of the velocity’”® and the other term
—Cacer(t) is related to the force expression of the SHO®, This shows that the deflection, the
velocity and the acceleration are represented in this equation, but are not explicitly given.
Regarding the set of rules, developed at the beginning of this chapter, this poses one funda-
mental problem when using this algorithm: The physical values velocity and acceleration are
not accessible in an explicit way

In the scope of physical modeling of musical instrument acoustics, this is the main drawback
of the FDTD method. Mechanically coupled systems can be fully described by the equations
of motion and Newtonian mechanics, by a coupling of impedances or a coupling of acting

forces, omitting the need for finding a monolithic formulation of the whole geometry. In the

z(t)—xz(t—1) )

79 .
Velocity v = x4 =~ ~

8wWith Foee = —k -z
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presented form of the FDTD algorithm, despite its simplicity and elegance, a straight forward

coupling of singular parts is not possible.

3.3.2 1-Dimensional Wave Equation

In this section a FDTD scheme for the 1-dimensional wave equation for a linear, velocity

damped string is presented.

Numerical Solution of a Linear String

As seen in chapter 2, the differential equation of the linear string is a partial differential
equation of the following form

uy = ugy, (3.27)

with the already introduced constant ¢ = \/g . As before, both differential terms can be dis-
cretised by finite difference approximations. For this example, second order centered finite
differences are used, yielding following equation

u(z, t + At) — 2 - u(x,t) + u(t — At) o u(x+ Az, t) — 2 u(z,t) + u(z — Az, t)

At? Ax?

(3.28)

Rearranging this equation into a recursive form yields:

u(z, t+ At) = caee - [u(z+ Az, t) —2-u(z, t) +u(z — Az, t)|+2 - u(x, t) —u(x, t — At),

(3.29)

A2
N

with cgee =

Resulting Time Series

The algorithm is iterated in time, utilising the same method as presented before. More pre-
cisely, calculating the value for ¢ + 1, reassigning the values for ¢ and ¢ — 1 and continuing the
computation. Figure 4.2 shows the movement of the string for several time steps resulting
from a triangular deflection. Figure 4.3 shows a time series of the string over five seconds.
In the next Figure 4.4, the spectrum of the time series is shown. In Figure 4.5, one can see a
moving Gauss impulse starting at a centered position. In Figure 4.6, time series of different

damped strings are shown.

Analysis of the Algorithm

An analysis of the algorithm reveals three terms that are related to physical properties. A

formulation for the acceleration is recognisable in the term cqe. - [u(x + Az, t) —2-u(z, t) +
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u(x — Ax,t)] 8. The other terms are related to a backward approximation of the velocity.
82 In concordance to the algorithm of the 0-dimensional harmonic oscillator, all physical
quantities represented in the equations of motion are recognisable, but only the deflection is

computed explicitly.

3.3.3 Considerations Regarding the FDTD Method

In contrast to many positive features of FDTD methods, like the intuitive formulation and the
explicit formulation for the deflection, there is a drawback: Two physical quantities that are
important to describe the equations of motion in Newtonian mechanics are not calculated
explicitly: The acceleration and the velocity. This limitation coerces one to find formulations
for a complete instrument body in monolithic form, which, in most cases, proves to be chal-
lenging or even impossible. As already stated, the coupling of the instruments parts can be
described by Newtonian forces. This means, if one can calculate these quantities explicitly,
one can describe complete instruments as a system of coupled differential equations. As we
will see in this chapter, it is easier to find formulations for coupled geometry models, when
these properties are know. This is the main reason why for most parts of the physical models,
the method described in the next section is applied. As we will see later in this chapter, using
another time discretisation and time iteration method for finite difference models, results in

a compact formulation of finite difference physical models of musical instruments.

3.4 Discretising the Equations of Motion

In the next section, a finite difference time stepping algorithm is derived taking basic physical
laws into account. It is built upon the discretisation of Newton’s equation of motion and
integrating them numerically. This method is directly linked to the earliest known methods
applied to solve the equations of motion.®?

As shown in section , one way of discretising a PDE with a finite difference approximation in
dimensions > 0 can be achieved, when the differential expressions of the PDE are replaced
by difference expressions. At this point, a different route is taken, by starting with a discrete
expression to derive the equations of motion for a discrete point (mass point) and a quasi

particle on a 1-dimensional string.34

8! Comparing the linear undamped wave equation for the string wy = c*uzy & Spat.

82Veloci'[y =Tt ~ Op—.

8 Newton used the method to solve the three body problem for planetary movement, known as the Kepler
problem, in his Principae. See: Hairer, Lubich, and Wanner, Geometric numerical integration.

$The 1-dimensional wave equation can be derived in this manner as shown by Lagrange and many others in
Pierce (A.D. Pierce: Acoustics, New: McGraw, 1981) by taking the limit of the discrete formulation for the
1-dimensional wave equation.
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3.4.1 0-Dimensional Equations of Motion

In this section, a time stepping algorithm for the 0-dimensional oscillating mass point is de-
rived from the Newtonian equations of motion. For this, we use the assumption that acous-
tical vibrations fundamentally obey Newton’s second law of motion. Under the premise that

the force is a function of deflection, velocity and time
F = f(x,z4,t). (3.30)

we can formulate the equations of motion for a mechanical system by considering the acting
forces and integrate the resulting function in time by employing an appropriate (numerical)
integration method. Using a Hamiltonian formalism, the globalised position coordinate ¢

and the globalised impulses p, the equations of motion can be written in the following form

pe = —Hy(p,q)
@ = Hpy(p,q). (3.31)

with H),, H, a differentiation by p or ¢ respectively. Inserting the Hamiltonian H for the
oscillating mass-point, H = T'(p) + V (q) = % + 1k - ¢%, to equation 3.31 yields following
equation

pt =

q = (3.32)

s L

Comparing equations 3.32 with 3.34 one can see that the formulation for the acceleration a
is comparable to the formulation of the time differentiated global impulse p;, only differing

in the inclusion of the mass in the Newtonian formulation.

Discretising the Newtonian Equations of Motion

The discretisation of equation 3.34 is straightforward. The velocity of can be approximated

by a backward step as the limit

z(t + At) — x(t) '

t+ At) =1i 3.33
v(t + At) tMAt—0 Al ( )
The same can be done for the acceleration with a forward step
t+ At) —o(t
a(t) = limasso vt + A —v(t). (3.34)

At
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1

Letting the time step At = be a discrete value > 0, equation 3.33 can be

Sample Frequency
reordered to
ot + At) = v(t) + (1), (3.35)
and equation 3.34 to
v(t+ At) = v(t) + a(t). (3.36)

With this two steps we can rewrite the continuous algorithm, using the basic equations of

motion for Newtonian systems into the following form

a(t) = —k - x(t)
v(t+ At) = v(t) +a(t) - At (3.37)
z(t+ At) = z(t) +v(t + At) - At.

When algorithm 3.53 is implemented numerically, it yields an output for the deflection
(blue), velocity (black) and the acceleration (red) given in Figure 3.2, as expected, all three
physical values show sinusoidal behaviour. The phase between all three is 90 degrees . The

acceleration is 90 degrees behind the velocity which is 90 degrees behind the deflection.

—— Deflection
«=+= Velocity
- - - Acceleration

0.5

Normalised Amplitude

—0.5 N

0.0 0.2 0.4 0.6 0.8 1.0
Time in seconds

Figure 3.2: Output of algorithm 3.53.

As visible in Figure 3.2, the three-step algorithm 3.37 calculates three physical parameters:
The acceleration, the velocity and the deflection of the oscillating mass-point explicitly for
every sample point. In the presented form, the algorithm is also known as Symplectic Euler
algorithm and is a mixture of the explicit Euler time step for the deflection, and an implicit
Euler time step for the velocity . In difference to the explicit Euler, which has an growth in
energy over time, and the implicit Euler, which looses energy over time, the symplectic Euler

does not vary in its energy balance as further elucidated in section 3.5. Another multi-step
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method which computes the velocity and the deflections from Newton’s equations of motion,

is known as Beeman'’s algorithm®, which can be formulated as

w(t+ A = u(t)+ ot AL+ é(zla(t) ~ a(t - A1) AR -
v(t+ At = v(t) + %(Qa(t + At) +5a(t) - alt — At)) At.

Here u, v are the deflection and velocity respectively and a is the acceleration.

This algorithm is comparable to the Velocity-Verlet algorithm, presented in this section be-

cause it computes the deflection and the velocity explicitly. In contrast to the NVS scheme,

it has a higher computational complexity as will be elucidated further below.

Algorithms applied to compute the equations of motion are used in various fields of physical

simulations like for instance in molecular dynamics®®, fluid dynamics or particle-simulation
87

D. Beeman: “Some multistep methods for use in molecular dynamics calculations’, in: Journal of Computa-
tional Physics 20.2 (1976): 130-139.

83.K. Gray, D.W. Noid, and B.G. Sumpter: “Symplectic integrators for large scale molecular dynamics simu-
lations: A comparison of several explicit methods’, in: The Journal of chemical physics 101 (1994): 4062.

¥ Verlet, “Computer "Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones
Molecules”.
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Discretising the Hamiltonian Equations of Motion

Similar to the discretisation of the Newtonian equations of motion, the continuous Hamil-
tonian system can be discretised by applying a finite difference approximation. Equation
3.32 can be discretised by applying a midpoint approximation for the time derivative of the

velocity and the deflection

p(t + At) — p(t — At)

2. Al = —k-alt)
q(t + At) —q(t —At) _ p(t)
2-At oom (3.39)
or reorganised
p(t+At) = —2-At-k-q(t)+p(t — At)
gt + At) = Py ar+ q(t — At), (3.40)
m

Applying a central difference discretisation around ¢ + % for the time derivative of the ve-

locity, leads to the well established Leap-Frog algorithm given as

A A
P+ 50 = —keal) At 4p(t— 5)
At
gt + At) = W-Aqu(t). (3.41)

Both time integrators capture the Hamiltonian properties of the DE, describing the harmonic

oscillator as shown in Hairer, Lubich, and Wanner.58

3.4.2 Derivation of the 1-Dimensional Wave Equation

In the following section, the oscillating mass-point is used as a starting point to develop a
finite difference approximation of the equation of motion of a 1-dimensional structure (a taut
string). Unless mentioned otherwise, the spring is massless and has a linear stiffness k. The
mass m is a point-mass without air friction, the deflection of the mass is denoted as u[m] and
the acceleration as us [m]. A simple extension of the oscillating mass-point can be achieved

by adding a second spring to the mass, as depicted in Figure 3.4.

8 Hairer, Lubich, and Wanner, Geometric numerical integration. Pp. 4-9.
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Figure 3.3: Oscillating mass-point with two springs.

With the proposition that the mass m only moves in x-direction and the stiffness of both

springs is linear, then the equation of motion for the mass can be written as
m - ug[m] = — (k1 + k2) - u[m]. (3.42)

This (analytical) ODE is similar to equation 3.22 and can be solved as with the methodology
presented above. If we extend this model to two mass-points, as depicted in Figure 3.3, we

now have three springs and the equation of motion for

A
Y
A
Y

k3

Figure 3.4: Two oscillating mass-points with three springs.
mass-point m; can be written as
m - uy [m2] = —(ks + k2) - w[m2] + ko - u[ml]. (3.43)

The next example consists of three masses coupled by four springs as is shown in Figure 3.5.
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Figure 3.5: Three oscillating mass-points with four springs.

Here, the equation of motion for mass m1 is given as
m - uy [(m2] = — (ks + k2) - w[m2] + ko - w [ml] + ks - u[m3]. (3.44)

If we now say that all string constants are equal and linear, k = k; = ko = k3 = k4 then we

can rewrite equation 3.44 to
m - uy [(m2] = k- (=2 - u[m2] + u[ml] + u[m3]). (3.45)
Equation 3.46 is an explicit formulation of the acceleration and can be recast to
ug [m2] = ¢ (=2 - u [m2] 4+ u[m1] + u[m3]), (3.46)

with ¢ = % Up to this point, we are only looking at longitudinal oscillations of the mass

point. If we extend our model to allow movement in the y-direction, as depicted in Figure 3.6
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Figure 3.6: Three oscillating mass-points with four springs longitudinal/transversal motion.

In this example, we propose that the spring k1 and k4 are coupled to a solid object. All
springs are extended to an equilibrium-state with force Fj acting in the horizontal direction.
If the vertical deflection is small, we can say that the acting force on mass-point m?2 is ap-

proximataly Fi,0 = Fiopt + Frigns with

Flerp = —Fy-Sin(a
feft o - Sinfa) (3.47)
Fright = —F() . Sin(ar).
The values for o can be written as
A

o= ArcSin(KyZ). (3.48)

with
Ay (urest) = ufm2] - ufm1]
(3.49)

Ai(uegt) = VAZ 4+ AZ

If we combine equation 3.47 and equation 3.48, the Sinus and ArcusSinus functions cancel

t89

each other out®, yielding following equation

u[m?2] — u[ml]

F1left = _FO '
\/ Agu? + Ayu?
3.50
—u[m3] + u[m2] (3.50)
Fright = —Flp-

\/ Agu? + Ayu? .

¥The ArcusSinus is only bijective over the interval [—1; 1], so the angle between two adjacent points can’t

be larger than than [—F; Z]. For a physically plausible problem, this constraint is met, because the angle
between two points in the same dimension must be always smaller than 7, if we have a Cartesian coordinate

system.
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For small deflections, we can say that A; ~ A, Using this inequality, we obtain the equation
of motion for the deflection in the y-direction of mass point m?2

m - uy [m2] = Fy - (=2 - u[m2] + u[ml] +u[m3]) - (3.51)

Al‘o ’
Now, we can replace the globally acting force Fj with the local force, which is the spring
constant k, divided by Az that acts between two masses in the horizontal (direction): F =
& and replace the discrete points u[m] with the continuous variable , to obtain

k u(x + Az, t) —u(x,t)  u(x,t) —u(z — Awy, t)

( Ao - Are ). (3.52)

u(x,t)y = Azom .

With equation 3.52, we now have a finite difference expression for the acceleration at one
point of the string. If we want to iterate the deflection of the point on the string, we can

combine time stepping equation 3.53 with 3.52

afm?] (1) = &+ 5y - (<2 ulm2] (1) + ulm] (1) + ulm3] (1)

v[m2] () +a[m2] (t) - At (3:53)
w[m2] (t) + v [m2] (t + At) - At

v [m2] (t + At)
u[m2] (t + At)

with ¢? = % The time integrator uses a finite difference approximation of the equations of
motion in space and time and calculates all three physical parameters explicitly. The motion
of the complete string can be calculated by integrating the motion of every virtual quasi-
particle over the complete string, as shown in section 3.7 and to a greater extend in chapter
4.

3.5 Symplectic and Multi-Symplectic Methods

In recent years, a paradigm for the classification of numerical time integrators has become
an actively researched area in numerical mathematics and physics especially in molecular
dynamics simulations.

Symplectic integrators (SI) and multi-symplectic integration (MSI) methods are researched
extensively because they possess several advantageous features, when compared to non-
symplectic methods. The methodology is derived from a Hamiltonian formalism, show-
ing that SI and MSI preserve the Hamiltonian flow of a system more accurately, in other
words, they preserve the geometrical features of the Hamiltonian more precisely than non-

symplectic methods. In several publications®® it was shown that

*When Az — 0, equation 3.52 becomes the continuous (analytic) wave equation.
*'D.W. Markiewicz: “Survey on symplectic integrators’, in: Preprint Univ. California at Berkeley, Spring
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(...) [S]symplectic integrators have a remarkable capacity for capturing the

long-time dynamics of Hamiltonian systems correctly and easily.”?

Initially, symplectic properties were only formulated for non-dispersive, linear ODEs**, but
later extended to linear PDEs and dispersive ODEs and PDEs. ** To define symplectic prop-
erties of a method, a generalised position ¢ and the generalised velocity p = ¢; is introduced.

Using both variables to construct a continuous-time Hamiltonian system

@ = +VpH(q,p)
pr = —VgH(q,p)labeleq : Hamilt (3.54)

If we propose a numerical scheme (numerical method) ® that maps a Hamiltonian flow in a

way that
(qt+17 Q£+1) =¢ (q7 Qt) ) (355)

it is called symplectic if P satisfies

/ 0 1 / 0 1
o (q, b (q,q1) = 3.56
(qqt)[_l()] (4, 4t) [_10] (3.56)
with @ = the Jacobian of ®.%° A qualitative representation of a symplectic and non-

symplectic method for a first order ODE is shown in Figure 3.7.

(1999); Brian E. Moore: “Conformal multi-symplectic integration methods for forced-damped semi-linear
wave equations”, in: Mathematics and Computers in Simulation 80.1 (2009): 20-28; Hairer, Lubich, and
Wanner, Geometric numerical integration. Ernst Hairer, Christian Lubich, and Gerhard Wanner: “Geomet-
ric numerical integration illustrated by the Stoermer-Verlet method’, in: Acta Numerica 12 (2003): 399-
450.

2Robert Mclachlan: “Symplectic Integration of Hamiltonian Wave Equations’, in: Numer. Math 66 (1994):
465-492.

%Hairer, Lubich, and Wanner, Geometric numerical integration. P. 54.

*Mclachlan, “Symplectic Integration of Hamiltonian Wave Equations”; Moore, “Conformal multi-symplectic
integration methods for forced-damped semi-linear wave equations”.

% For a mathematical derivation and proof see: (Hairer, Lubich, and Wanner, Geometric numerical integration.
Pp. 182-187).
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Comparison of first-order integrators
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Figure 3.7: Symplectic vs. non-symplectic integrator.

As shown in Figure 3.7, symplectic methods are closer to the real Hamiltonian flow than
non-symplectic methods, with a similar discretisation step width. Before an overview on the
most frequently utilised SIs and MSIs is given, it is shown that the basic formulation of all of

these methods can be derived in a physical way.

3.5.1 Comparison of Several Algorithms

The main feature of a symplectic algorithm is that it conserves the Hamiltonian flow of a
system. Therefore, stability problems, arising from energy fluctuations of the numerical
method, have a smaller impact here. This is only true, when the appropriate stability proper-
ties for the numerical integrator are chosen. This feature is crucial for long time simulation
of musical instruments”®. To gain more insight into this feature, the non-symplectic version

of the Explicit Euler algorithm is presented here. For the simple harmonic oscillator, the

%1In the scope of numerical simulation, a few seconds of sound can already have calculation step counts in
hundreds of thousands or even millions. This means, even five seconds of a simulated string is a long-time
simulation.
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non-symplectic Euler algorithm can be written as follows

a(t) = —k - x(t)
v(t+ At) = wv(t) +a(t) - At (3.57)
z(t+ At) = z(t) +v(t) - At.

The difference compared to equation 3.53 is that the deflection x (¢ + At) is calculated as the
sum of z(¢) and v(t). This minimal change in the algorithm results in an method which has
different stability conditions, as shown in the figures on pages 105-106 of this work.””

Another symplectic integrator that is widely applied in numerical simulations of different
kinds, is the Stoermer-Verlet scheme. It can be composed of two symplectic Euler schemes”®

and can be written as

a(t+ %) = —k - x(t)

At At At

v(t+7): v(t)+a(t+7)‘7

x(t—{—%): x(t)-l—v(t-ﬁ-%)-%
Al (3.58)

v(t+ At) = o(t+ %)+a(t+At) : %
A
ult + Af) = u(t)+u[t+m]-7t.

Comparing algorithm 3.58 and 3.57, one sees that the Stérmer- Verlet scheme has an addi-
tional calculation for the acceleration of the simple harmonic oscilator. It is noticeable that
this algorithm is comparable to the leap-frog algorithm, which is also symplectic. Higher or-
der symplectic integrators can be developed by different means®® and are a direct extension
of lower order methods. A fourth-order symplectic integrator, as presented by Omelyan,
Mryglod, and Folk,!? called *position extended Forest-Ruth like algorithm (PEFRL)’ can be

written in the following form

The explicit euler is of first order and non-symplectic, as shown in: Hairer, Lubich, and Wanner, Geometric
numerical integration. P. 3.

%ibid., p. 189.

% See for instance: Quandong Feng et al.: “Implementing arbitrarily high-order symplectic methods via krylov
deferred correction technique’, in: International Journal of Modeling, Simulation, and Scientific Computing
01.02 (2010): 277-301; Wei Sha et al.: “Survey on Symplectic Finite-Difference Time-Domain Schemes for
Maxwell’s Equations”, in: IEEE Transactions on Antennas and Propagation 56.2 (Feb. 2008): 493-500 or Jing
Shen et al.: “High-order symplectic FDTD scheme for solving a time-dependent Schrodinger equation”, in:
Computer Physics Communications (2012).

%Igor Omelyan, Thor Mryglod, and Reinhard Folk: “Optimized Forest-Ruth- and Suzuki-like algorithms for
integration of motion in many-body systems”, in: Computer Physics Communications 146.188 (2001).
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xl = x(t) +v(t)EAL
al = —k-zl
vl = v(t)+a1(1—2)\)g
x2 = xl +vl(t)ZAt
a2 = —k-zl
v2 = vl 4 a2Ah
3= 224 02(1-2(E+4¢))At (3.59)
a3 = —k-x3
v3 = v2 + a4\h
x4 = x3 + v3EAL
a(t + At) = —k- x4
v(t+ At) = v3+a(t+ At)(1 —2)\)%
z(t+ At) = x4+ o(t + At) - EAL,

with the constants!'?!

0.1786178958448091EF + 00,
—0.2123418310626054E + 00, (3.60)
—0.6626458266981849F — (1.

3
A

—
(=
—

The time stepping algorithm 3.60 requires four acceleration calculations per time step.

Comparison of Different Time-Stepping Methods

All presented time stepping algorithms are compared regarding their stability, accuracy and
computational cost. For this, the presented methods are implemented in MATLAB solving
the ODE of an oscillating mass-point. Figure 6.10 shows phase plots of five algorithms for
different ratios of w? - At. The sample rate is fixed to SR = 216 50 we have a At = 2% The

green line is a phase plot of an analytical solution of a harmonic oscillator.

Discussion

As one can see in Figure 3.8a and Figure 3.8b, the accuracy and speed of convergence for
the presented integrators directly depends on the number of force evaluations per time-step.

If the algorithms are analyzed in terms of resource utilisation, i.e. computational cost per

" These values are taken from Omelyan, Mryglod, and Folk, “Optimized Forest-Ruth- and Suzuki-like algo-
rithms for integration of motion in many-body systems”.
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algorithmic step, one finds that an increasing number of force evaluations means an increase

in arithmetic function utilisation, as shown in table 3.1.102

Integrator | Add. Subt. | Mul.

Sym. Euler 2 3

Vel. Verlet 4 6
PERFL 9 12

Table 3.1: Arithmetic resources of integrators.

19211 divisions and multiplications of constant values are not included in the table. They do not impact the
computation time inside the main loop of the algorithm because they can be calculated outside the larger
time loop.
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Non-Symplectic Euler
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PEFRL-algorithm

PEFRL-algorithm
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Interim Conclusion

As shown in the preceding sections, one can minimize the error of the presented integrators
by increasing the number of force evaluations, which in turn means an approximately linear
increase in computational cost. This leads to a lower discretisation error in the time axis,
meaning, we could implement larger time steps for the same order of accuracy compared to
a method of lower order. But in an audio application we are bound by a (positive) restriction,
the sample rate. In modern synthesis applications, a sample rate of at least 44,100 Hz is
needed.!%® This means that we have a discretisation step wide of at least At,;, = m =
.22676 E —06. With an error of order (At?), we would get an error of € ~ At? = 5.1410E —
10. Taking this into consideration, we can conclude that the error introduced by the time
discretisation is negligibly small and a higher order time integrator is not needed for the

presented methods.

3.5.2 Multi-Symplectic Schemes

Asan extension to symplectic algorithms for ODEs, the same concept can be applied to PDEs.
The requirement developed in section 3.5 is now called multi-symplecticness and is defined
by similar conditions as symplecticity. 1%

A simple multi-symplectic scheme for PDEs is the Euler-Box scheme. For a linear first order

wave equation, it can be written in the following form:1%

a(t) = — 040 - x(t)
v(t+ At) = v(t) +a(t) - At (3.61)
x(t+At) = x(t) + v(t+ At) - At,

which is of similar form as the symplectic integrator for the harmonic oscillator. The only
difference is that the values for the deflection, velocity and acceleration are now vectors, as
indicated by the bold notation. If the expression for the acceleration (3.52) developed in sec-
tion 3.4.2, is inserted into line 1 of equation 3.61, the algorithm has the same form as equation
3.53 that was developed by discretising the equations of motion in section 3.4. As presented

106

in Gotay and Isenberg, ™ the equations of motion for the simple oscillator are symplectic,

1% For the real-time models the sample rate lies between 2*¢ and 2'8.

'%The mathematical derivation of multi-symplecticity can be found in the works of: Brian Moore and Se-
bastian Reich: “Backward error analysis for multi-symplectic integration methods’, in: Numerische Math-
ematik 95.4 (2003): 625-652; Brian E. Moore and Sebastian Reich: “Multi-symplectic integration methods
for Hamiltonian PDEs”, in: Future Generation Computer Systems 19.3 (2003): 395-402 or Uri M. Ascher
and Robert I. McLachlan: “Multisymplectic box schemes and the Korteweg-de-Vries equation’, in: Applied
Numerical Mathematics 48.34 (2004), Workshop on Innovative Time Integrators for PDEs: 255-269.

1% Moore and Reich, “Backward error analysis for multi-symplectic integration methods”.

1%Mark J. Gotay and James A. Isenberg: “The symplectization of Science’, in: Gazette des Mathématiciens 54
(1992): 59-79.
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hence it is beneficial to solve the equations of motion with symplectic methods.!?”

3.5.3 Implicit Algorithms

Up to this point, only explicit algorithms were presented. Implicit algorithms are applied
in numerical computations to a greater extend than their explicit counterparts. Most im-
plicit algorithms have the advantage that they have superior stability conditions compared
to explicit ones.!®® One drawback of implicit methods in the scope of real-time, or close to
real- time, physical modeling is their numerical structure. Because implicit methods must
be solved by a linear equation system, some of the strength of the aforementioned algo-
rithms, like accessibility of physical parameters or intuitive representation of the underlying
equations, are lost. Another drawback of implicit methods is the vulnerability to numerical
instabilities, due to sparsely populated or ill-posed matrices. In some cases, these numerical
instabilities may become larger than the influence by the discretisation error of the initial
problem.!? All presented methods can also be formulated in an implicit form, but in this

work we only apply explicit versions of the presented algorithms.

3.6 Pseudo-Spectral Finite Differences

As mentioned before, one of the drawbacks of finite difference methods is their computa-
tional cost, especially in higher dimensions. One solution to approach this problem is to
minimize the discretization step width in the temporal or the spatial domain. This directly
influences the accuracy and stability of a finite difference scheme and antagonizes the max-
imal frequency resolution of the discretised problem!!°. In this section, a method that sim-
plifies several aspects of finite difference methods and enhances the geometrical accuracy,
only limited by the spatial grid size, is presented. Finite difference methods known as pseudo
spectral (PS) methods are an extension to finite difference methods can be applied in various
fields of numerical mathematics'!!.

Even though PS methods are used in other fields of research, there are only a few published

works considering the subject for modeling of musical instruments. 2

197 The symplecticness of the equations of motion is known in physics and is explored in mathematics exten-
sively for at least 50 years. See Gotay and Isenberg, “The symplectization of Science”.

'%n many cases, implicit time stepping algorithms are unconditionally stable.

19 Eventhough there are highly optimised versions of solvers like BLAS, LAPACK, Armadillo and many others,
the transition of an implicit time stepping method from a high level language, like C++ or MATLAB, to a
hardware language (VHDL) is much more complex than the implementation of direct, explicit methods.

1% This effect can often be neglected in steady state calculations because only the first few eigenmodes of a sys-
tem are of interest. In musical applications, on the other hand, it is important to have a frequency resolution
that matches at least twice the human hearing range (Nyquist theorem).

"Fornberg, A practical guide to pseudospectral methods.

2T the best of my knowledge, there is only one paper regarding instrument acoustics applying a PS-
approach see: G. Sathej and R. Adhikari: “The eigenspectra of Indian musical drums”, in: arXiv preprint
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In the following section properties and applications of PS methods are shown. It is shown
how they can be applied to optimise and enhance several aspects of more conventional fi-
nite difference schemes for physical modeling. An introduction of the mathematics of this
method and several results are given, showing the equivalence of PS methods to finite dif-
ference methods on bounded grids. A comparison of the computation time is given at the

end.

3.6.1 Finite Difference Grids as Convolution Kernels

There are at least two ways of deriving Pseudo Spectral methods which can be found in lit-

erature:

1. A derivation by global interpolation functions.!!?

2. A derivation by the equivalence with finite difference grids. !4

In this work, the derivation of the method is connected to the second approach, but is devel-
oped by using the convolution theorem. We are starting with a discrete, numerical solution
method of the PDE of the linear string as presented in section 3.3.2. As shown above, the
finite difference approximation for the acceleration of the linear string can be calculated nu-
merically by discretising the second derivative in space with a finite difference approximation
and multiplying it with a constant that depends on the wave velocity in the medium and the
discretisation step widths in space and time

9 oo ouli—Awx,t) —2-u(i,t) +u(i + Ax, 1)
a(t)]; = ¢ ugy = - N

. (3.62)

For reasons of brevity, the right hand multiplicand is set to AC—;Q = 1. To solve equation
3.62 numerically, one would at first discretise the string into a number of finite points. The

acceleration at every point of the string can now be calculated as follows

arXiv:0809.1320 (2008) besides the authors work published in: Florian Pfeifle: “Multisymplectic Pseudo-
Spectral Finite Difference Methods for Physical Models of Musical Instruments”, English, in: Sound - Per-
ception - Performance, ed. by Rolf Bader, vol. 1, Current Research in Systematic Musicology, Springer In-
ternational Publishing, 2013: 351-365. Other work concerned with the applicability of PS methods for
musical instrument simulation and synthesis was a research project at the University of Edinburgh. The
research team concluded that the method is not suited for musical acoustics but didn’t publish any of their
findings.

U3 This approach is utilised in works like: L.N. Trefethen: Spectral methods in MATLAB, vol. 10, Society for
Industrial Mathematics, 2000, pp. 41 ff. or Miguel Hermanns and Juan Antonio Hernandez: “Stable high-
order finite-difference methods based on non-uniform grid point distributions’, in: International Journal
for Numerical Methods in Fluids 56 (2007): 233-255.

"*This approach is taken in the works of Bengt Fornberg: B. Fornberg: “High-order finite differences and the
pseudospectral method on staggered grids”, in: SIAM Journal on Numerical Analysis 27.4 (1990): 904-918
or Fornberg, A practical guide to pseudospectral methods.
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Listing 3.1: Pseudocode for acceleration calculation

for (t=0:SampleLength)
for(i=1:stringPoints —1)
Acceleration[i] = u[i—1]—-2 u[i]+u[i+1];

The operation at the right-hand side of line 3 can also be written as a convolution of the vector

of defletions u with a convolution kernel
Spe=1[1 —2 1],
for every timestep

a= 0, *U (3.63)

With the convolution theorem and the properties of the Fourier Transform, we can calcu-
late this time domain convolution (configuration space) as a multiplication in the frequency
domain

O ¥ =F " {F {6} - F{u}}. (3.64)

Equation 3.64 states that both calculations (time domain and frequency domain) are equiv-
alent. But at this point, the computational cost of the Fourier transform is higher than the
formulation in the time domain and there is no real advantage in transferring the convo-
lution operation to the frequency domain. This changes if the order of the finite difference
approximation is increased. As we have seen in section 3.2, the error of the second order
central finite difference approximation is dependant on O(Ax?), so to minimise this error,
we can use higher order approximations for the spatial finite differences. A fourth order

finite difference approximation of the second derivative can be written as

1

Ugz|i & m( u(i — 2Ax) + 16u(i — Ax) — 30u; . ..

+ 16u(i + Az) — u(i + 2Az)) + O(Az?), (3.65)

The order can be increased to the maximal number of discrete node points N on the string,
minimising the spatial discretisation error to order O(Az™ — 1). This means, if a finite
difference interpolation function for the whole string is used as a convolution kernel, this
error is only dependant on the discrete step-width Az.!!> As stated before, the convolution
with the resulting kernel can be computed in the time or in the frequency domain which gets

computationally more efficient when simulating higher order geometries or large problems

5 Again, if Az — 0 one gets an expression for the analytical, continuous case.
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with a high number of grid-points.

An equivalent formulation can be achieved by regarding basic equalities of the Fourier-
Transform which state that a derivative in the time domain can be calculated in the frequency
domain as!!®

Uy = F i w- F{u}}. (3.66)

If the Fourier transform of the vector u is known, one can calculate the analytical derivative
of the vector in frequency domain and transform the result back to the time domain to get

ug. Extending this to a second order differentiation, we can write
e = FH {0 - Flu}} . (3.67)

With this equivalence one can either perform the differentiation directly in the frequency
domain or calculate high order finite difference weights d,,, and transform the calculated
weights of the differentiation function to the time domain. Because both approaches yield
identical results, choosing the appropriate approach depends only on the respective prob-
lem and geometry and on the performance of the Fourier-Transform on the computation

platform.

3.7 Final High Level Algorithm

In this section, the final algorithms for the high level (HL) and the low level (LL) models are
presented. In their basic formulation, they are identical, but the HL models are discretised
in the spatial domain with pseudo-spectral weights, whereas the LL model utilises second

order central differences.

3.7.1 Introduction

To complete the analysis of the presented algorithm, and to substantiate the decision for the
method applied in this work, the central findings regarding our set of rules developed in the

introduction of this chapter, are summarised up front:

« The most straigh-forward way of implementing physical models with finite differenct
approximations is achieved, when the Newtonian equations of motion are discretised

and solved.

« For audio applications, the minimum temporal sampling rate of 44100 Hz is so high

that basic second order time discretisation yields sufficiently accurate results.

"Mallat, A Wavelet Tour of Signal Processing The Sparse Way, p. 38.
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« The spatial discretisation introduces larger error than the temporal discretisation, so a

high order method spatial discretisation benefits the accuracy of the models.
« Symplectic methods are capable of computing stable long-term simulations.

« Explicitness of all physical quantities is given when applying the Explicit Euler or sim-

ilar algorithms.

These main findings lead to the conclusion that explicit symplectic/multi-symplectic meth-
ods with high order spatial discretisation are well suited to describe the acoustic-mechanical
vibrations of musical instruments. Even though, other methods have advantages in sev-

eral domains'!”

. The only algorithm that incorporates all of the mentioned requirements is
the Explicit Euler or similar higher order algorithms, like the Velocity-Verlet or the PERFL

method.

3.7.2 Basic Formulation

The basic features of the final algorithm can best be illustrated by a finite difference solution
to a 0-dimensional oscillating mass point. As presented in section 3.5, the algorithm solving

the ODE of a mass point, coupled to a spring can be written as

a(t) = —k - x(t)
v(t+ At) = v(t) +a(t) - At (3.68)
z(t+ At) = z(t) +v(t + At) - At.

The equation system can be formulated in one line as
x(t+ At) = x(t) + [v(t) — k- x(t) - At] - At = x(t) + [v(t) - At — k- 2(t)]  (3.69)

with x = k- At%. Because At is constant for all time steps, a normalised velocity is proposed

here
v
U= —— 3.70
U= (3.70)
as well as a normalised acceleration
_ a
Rearranging 3.69 using 3.70 and 3.71 into the three step formulation we get
at) = —k - x(t)
o(t + At) = o(t) + a(t) (3.72)
x(t+ At) = z(t) + 0(t + At)

"7 The unconditional stability of implicit methods for instance.

101



3 Numerical methods

_k_
At2®

Now we can rewrite equation 3.72 to a global form with 7 = the discrete time-shift operator,

with Kk =

as introduced before and | the Hutchinson operator!!® we obtain

A T —KT—U
Vi i=U{ nvta . (3.73)
u =l n_u o

With A, V, U, the acceleration, velocity and deflection over the complete time range, a, v, u
In this form, one has an explicit formulation for the acceleration, the velocity and the de-
flection of an oscillating mass-point. Extending this to higher dimensions and including the
multi-symplectic Euler-box scheme and pseudo-spectral approximation of the spatial dis-

cretisation as shown in section 3.6, we can rewrite equation 3.72 to

A s [ F [K g - f[Tt_U_]}
y = U w_V+a . (374)
u =1 T_u+ V.

In equation 4.34 the pseudo-spectral FD operator and grid constant Az, timing constant At,

as well as the material dependent wave velocity c are written in condensed form as
0w = Ops - fracAt? - 2Az? (3.75)

combining several multiplicands into one.

3.8 Final Low Level Algorithm

In this section, the basic optimisations for the presented algorithm as well as the modifica-
tion for the implementation on the parallel hardware platform are described. After a short
overview on the basic steps, more specific details of the implementation follow in chapter
6, specifically the sections about the layer model and the complete instrument geometries.
The starting point is a simple formulation to exemplify the basic properties of the algorithm
and all applied optimisations for the hardware model. The LL algorithm implemented in
VHDL is different from the HL algorithm in several regards. First, and most importantly,
the pseudo-spectral discretisation in space is not implemented directly. Second, all multipli-
cations by two or powers of two are performed as shift operations. And third, the multiplica-
tion with damping terms is implemented by rewriting the damping constant multiplication

by a finite sum of shift operations.

"8This operator is adapted from John E. Hutchinson: “Fractals and Self Similarity’, in: Indiana Mathematics
Journal 30 (1981): 713-747 and denotes a for loop from¢ = 1tot = T witht € N.
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3.8.1 Model of a Linear String

With equation 3.73 and a formulation for the 1-dimensional string, we have developed in
section 3.3.2, the time stepping algorithm for an elastic linear string can be approximated

with a symplectic time integrator and a finite difference in space formulation in the following

form
al= k- xul
ViTAL — vt 4+ al (3.76)
WAt gt AL

If we now use a sample rate (S R) with the properties SR = 2V with N = 1,2, 3..., meaning

SR is power of two, the multiplication with At? = ﬁ can be implemented as rightshifts''?,

and the multiplication by two as leftshifts at the respective position of the string ¢
a'li = ((k) >>16) * (—(((u) << 2)|; + (ulis1 + uli—1)) >>16)  (3.77)
’Ut+1|i = Ut‘i + at|¢ (3.78)
ut+1|¢ = ut|i + Ut+1|i (3.79)
with ((.) >> C) indicating a rightshift'?’ by a constant C' and ((.) << C) indicating a left
shift by a constant. The shift operation can only be applied if we use a fixed point or an integer

data type'?!. As one can see, the final formulation is similar to the version of the algorithm

derived in section 3.7.

3.8.2 Approximating Damping Parameters

Damping of physical systems, expressed in mathematical form, whether velocity or internal

(force dependant) damping, has the following structure

gdamped = 5 — Q- €a (380)

with £ an arbitrary damped value and 0 < o < 1, a damping constant, we can reformulate

the same equation as follows

N
gdamped = f - Z 657 (3-81)
n=1

where § = v - 2% and v € [—1,0,1]. With this sequence, every arbitrary constant can be

approximated. Because of the fixed point data type applied for the real-time models on the

"9This enables us to write the division, which is a very resource consuming operation in hardware, as a shift
operation, which is easier to implement and has a lesser resource utilisation.

12For the data type applied in this work with the most significant bit at the left-side of an vector, this represents
a downshift.

121 A more thorough explanation of this is presented in section 6 of this work.
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FPGA, we can express every operation of the form A * 2% as shift operations, depending on
the sign of . This allows us to perform multiplications with constants smaller than one or
divisions, with constants larger than one, as shift operations. This technique can be extended
to machine precision. The only drawback of this approximation is that at this point, values
have to be approximated manually. This is only a minor flaw of this technique because exact
damping parameters are unknown for most materials, and manual a approximation (Ad hoc)

is common practice in many works.

3.8.3 Linear Velocity Damped String

As an example for the aforementioned optimisation techniques, a linear velocity damped
string is implemented on hardware. A fixed point data-type with a bit depth of 32 bit for
the deflection, velocity and 64 bit for the acceleration is used here. The calculation for the

equations of motion for one point can be written as

At|i = (CQ >> 16) * (—(S << 2)|z + (S‘i+1 + S|i71) >> 16)
Vi = Vi + AT — (V] >> 13) 4+ (V]; >> 15) (3.82)
S| = Utl; + Vi,

with S the deflection, V' the velocity and A the acceleration of a discrete node-point and C'Q)
the normalised and squared wave velocity. The resulting time series of a velocity damped

string calculated on hardware is presented in chapter 6.

3.9 Error and Stability Analysis

This section gives an overview on the possible errors of numerical methods as well as stability
considerations regarding the time integration schemes applied in this thesis. Due to the fact
that all numerical methods are only approximations of continuous differential equations,
they are susceptible to various kinds of errors when compared to the analytical, continuous
solution of a given problem. The most palpable error influencing the stability properties
of the numerical solution is the discretisation error, which directly depends on the applied
discretisation of the independent variables, in this thesis space and time. As shown in section

3.2.1, these errors are quantifiable by an error estimate of the truncated Taylor series term
indicated by O(-). 122

21n explicit finite difference implementations, without algorithmic optimisations, the computational cost
depends on the step width of the discretisation, hence this error was of great concern in the beginning of
computational finite difference methods in the 1950s, see: Thomee, “Short history of finite differences”. But
even on modern computers, with their high data throughput and larger instruction-sets, the spatial grid
size and temporal stride width is the main limiting factor. The computational complexity of an explicit 1-
dimensional finite difference solution, comparable to the method presented here, scales with (F'.S?), with
FS the sample rate. See: Bilbao, Numerical Sound Synthesis. P. 146.
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A second class of errors is introduced by truncation and rounding errors due to finite length
number representation in the digital domain. These errors are not as easily assessable up-
front compared with the discretisation errors. When using a floating point number repre-
sentation, a rounding error can become as large as the data bit-width itself'?*. This class of
error is known to cause instabilities when implementing signal processing algorithms with
IR filters!** or by implicit methods,'?> but is not as critical for the algorithm and specific
data type applied in this work, as will be shown in chapter 6.

A third class of errors can be present in a physical model from incomplete or wrongfully
modeled physical behaviour or missing information regarding the modeled problem, like for
instance an inaccurate modeling of boundary conditions of membranes or strings, unrealistic
damping parameters or false coupling parameters. Because the last error is harder to assess
in a mathematical sense, only the first two errors are discussed here!2°,

Because all of the mentioned errors can lead to instabilities in the numerical schemes, it is
indispensable to have a sound error prediction for these problems before implementing the
models on a dedicated hardware platform to perform in real-time.

A sound error prediction makes it possible to establishing bounds in which a numerical
method yields accurate and stable results. Several sources of errors can be ruled out at the
beginning, simplifying the debugging procedure in later stages of the implementation. For
most basic finite difference schemes, stability analyses can be found in literature, starting with
the fundamental works of Courant, Friedrichs, and Lewy,127 to the works of Neumann and
Richtmyer,'?® Lax and R.D.,'* Lax!* or Kreiss,'*! to more recent publications like Strik-
werda and Wade,'?> Moore and Reich!3® or Ehlers, Zinatbakhsh, and Markert.!** In the
following sections, an overview on the mathematical tools for error prediction and stabil-

ity analysis is given and the applicability of the respective method for the whole geometry

12 An exacter analysis of this error can be found in chapter 5.

124Gee for instance: Uwe Meyer-Baese: Digital Signal Processing with Field Programmable Gate Arrays, 2nd ed.,
Berlin, Heidelberg: Springer, 2007 or K.-D. Kammeyer, Digitale Signalverarbeitung. Pp. 109-136.

'Here, the solution of a system of linear equations depends on matrix inversion operations, an operation
highly susceptible to numerical noise produced by rounding errors.

26More thoughts on the error introduced through wrongful physical assumptions can be found in section 4.

' Courant, Friedrichs, and Lewy, “Uber die partiellen Differenzengleichungen der mathematischen Physik”.

2John von Neumann and R. D. Richtmyer: “A Method for the Numerical Calculation of Hydrodynamic
Shocks”, in: Journal of Applied Physics 21 (1950).

'»Lax and R.D., “Survey of the stabiity of linear finite difference equations.”

B0Peter D. Lax: “On the stability of difference approximations to solutions of hyperbolic equations with vari-
able coefficients”, in: Communications on Pure and Applied Mathematics 14.3 (1961): 497-520.

"!'Heinz-Otto Kreiss: “Uber die Stabilititsdefinition fiir Differenzengleichungen die Partielle Differentialgle-
ichungen approximieren’, in: Nord. Tidskr. Inf. (BIT) 2 (1962): 153-181.

2John Strikwerda and Bruce Wade: “A survey of the Kreiss matrix theorem for power bounded families of
matrices and its extensions”, in: Banach Center Publications 38.1 (1997): 339-360.

3 Brian Moore and Sebastian Reich: “Backward error analysis for multi-symplectic integration methods’, in:
Numerische Mathematik 95.4 (2003): 625-652.

34W. Ehlers, S. Zinatbakhsh, and B. Markert: “Stability analysis of finite difference schemes revisited: A study
of decoupled solution strategies for coupled multifield problems”, in: International Journal for Numerical
Methods in Engineering 94.8 (2013): 758-786.
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models of musical instruments, implemented in this work, is discussed.

3.9.1 Discretisation Error

Before several methodologies for error and stability analysis are presented, there are two pre-
requisites of the method which must be considered upfront. On the assumption that we are
only interested in explicit algorithms with directly accessible calculation parameters, the er-
ror and stability conditions are directly dependant on the spatial and temporal discretisation
step-width.

Two restraining factors regarding the step width, when modeling applications for sound syn-
thesis, are the human hearing range and the fundamental spatial frequency as well as the
highest spatial frequency of the modeled instrument geometries. In practice, this means
that one has to have a temporal sampling rate that is twice the highest humanly percepti-
ble frequency’> and a spatial sampling rate that must be able to represent the full spectral
informations from the lowest to the highest partial inside this frequency range.

In most modern audio applications, the minimal temporal sampling rate is 44,100 Hz!'%®,
Because the hardware implementation of the real-time algorithm requires the sampling rate
to be a power of two, the sampling rate for all model parts is at least 2!6, for some geome-
tries 217 or 2!8. The minimum spatial sampling frequency'?” can best be illustrated at the
discretisation of a linear string. The speed of sound c on a low banjo string, a D3 with the

fundamental frequency f ~ 147 Hertz, can be calculated by the simple equivalence
c=Ff-\ (3.83)

with A = the wave length. From classical mechanics we know that the fundamental fre-
quency on a string vibrates with a wave length of % Inserting the length of the banjo string,

which is approximately 0.67 meters, into equation 3.83 we obtain
m
c=f A~ 147-0.67-2~ 199]—], (3.84)
s
If we now propose a maximal spatial frequency of f,,, = 20 kHz that must be representable

by a grid, and reinsert the values into equation 3.83 we get a \,;,, of

c 199

~ ~
~ ~

Amin = 57— .01[m]. 3.85
Foe 20000 [m] (3.85)

If one wants to model a banjo string with a correct A, we have to take into account that a

13 Because of the Nyquist sampling theorem.
136 Sampling rate of the Red Book Compact Disc standard.

137 s s _ 1
Spatlal samphng frequency T discrete spatial step width *
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sine wave of an arbitrary A must be discretised with two points at least'*8, we have a A\, =

0.005m. The discrete number of points N on the banjo string can now be calculated by

N length _ 0.67

~ = 134. 3.86
Amin 0.005 3 (3.86)

A discretised string with this IV is capable of capturing all spatial frequency features on the
string. With these quantities, the CFL condition can be estimated with the spatial and tem-

poral step widths. Including the wave velocity ¢, we obtain

c-Az 199 % 0.005

At 516 = 1.5182F — 5, (3.87)

KCFLstTi?’Lg =

139

which is almost five magnitudes smaller than the theoretical CFL-number*>”of 1 for an ex-

plicit numerical scheme like FDTD or the symplectic Euler scheme. Hence, choosing viable

L140

psychoacoustic requirements leads to an inherently low CFL**” number for most geometries.

3.9.2 Stability and Error Measures

In this section, we present methods that can be utilised to check the stability conditions for
numerical schemes and algorithms.

All final models in this work are whole geometry formulations of the musical instruments im-
plemented as coupled problems. Hence, these models can not be described easily as mono-
lithic systems with only one governing differential equation. Therefore, several of the pre-
sented stability measurements are not applicable for the whole system, but yield assessments
for stability conditions of the uncoupled problems. In some cases, the uncoupled stability
analysis can be extended to the coupled problems.

Even though the error analysis in this work is not aimed at comparing the numerical solution
to the analytical solution, we are interested in a robust measure of errors which could lead to

an instable numerical simulation of an instrument model.

CFL Stability Condition

The Courant-Friedrichs-Lewy condition formulated in Courant, Friedrichs, and Lewy,'*!
poses a basic stability condition for explicit as well as implicit difference schemes. In its

generalized form for n dimensions and with ¢ the maximal group-velocity of information

138 For a reasonably good representation a discretisation step width between 6 and 10 points is practical. But
due to the fact that the higher frequencies of strings are often damped and only important in the first mil-
liseconds of the sound, a coarser discretisation is viable.

$see section 3.9.2.

"The CFL number gives a necessary condition for stability.

' Courant, Friedrichs, and Lewy, “Uber die partiellen Differenzengleichungen der mathematischen Physik”.
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transport in the medium, it can be written as
K=AtY 1< Kcpp. 3.88
; A, = Korr (3.88)

Even though the CFL-condition was developed as an upper limit for convergence of a nu-
merical method at first, it was shown by Lax and Richtmyer that the convergence criterion
can be extended to a necessary stability criterion. A fact that is formulated in the basic Lax

equivalence theorem which states that

(G)given a linear hyperbolic partial differential equation. Then a consistent fi-

nite difference scheme is stable if and only if it is convergent.'4?

This means, a scheme is stable, if it converges to the analytical solution. Unfortunately, we can
only use this measure, if an analytical solution exists and the problem is linear, well posed and
consistent. For other cases, like coupled problems or PDEs with non-constant coefficients,
we need to facilitate other stability measures. In addition to that, the CFL number Kcpy,
depends on the numerical method but for most explicit schemes we utilise in this work it is
1.

Expressed in a more intuitive form, the CFL-condition states that the velocity of information
that can travel on a given discrete grid in space and time, has to be equal or greater than the
maximal physical velocity of the respective differential equation it represents. This conditions

is necessary but not sufficient.!43

Von Neumann Stability Analysis

The Von Neumann stability analysis was proposed by the American physicist John von Neu-
mann in the 1950s. It was developed to analyze the stability of early finite difference schemes
on the first computers in the research facilities of Los Alamos.!** The Von Neumann stabil-
ity criterion for finite difference schemes researches the stability of a scheme that iterates the

variable I/ in time, by introducing an amplification matrix G in the frequency domain as
Ut = (AL, Az, (3.89)

The hat symbol (") indicates a Fourier transform. The von Neumann stability criterion states

145

that if the spectral radius p'* of the amplification matrix G is bounded by a constant C' € R,

the scheme is stable. This criterion is necessary and sufficient for stability. As shown by

'2 Lax and R.D,, “Survey of the stabiity of linear finite difference equations””

' ibid.

44 Thomee, “Short history of finite differences”.

'*>The spectral radius of a matrix is defined as the maximum absolute value of its eigenvalues.
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Kreiss, this form it is only applicable for differential equations with constant coefficients. 146
An extension of the spectral stability analysis *’ to problems with variable coefficients!*3
can be formulated by using properties of the Kreiss matrix theorem!4?. This theorem can
be summarized as follows: For finite difference problems with variable coefficients, the Von
Neumann stability or the Lax/Richtmyer stability criterion can be satisfied at every discrete
point, but the global difference scheme can produce unstable solutions nonetheless. A suffi-

cient stability criterion for a finite difference scheme with variable coeflicients is given by

Theorem 1. Kreiss Matrix Theorem. There exists a real number C > 0 such that ||G"|| < C
forall Gwithn € N.

Compared to the von Neumann stability criterion, this means that the amplification matrix
G must to be power-bound for all simulation time-steps. This means, if all values of the
variable constants are known, the amplification matrix can be calculated for these respective

values.

Stability Analysis Using Energy Methods

Energy methods estimate the total energy of a continuous system that can be expressed in the
form of H; = [T —V]; = 0. With H the Hamiltonian, 7 the kinetic, and V the potential en-
ergy of the system. The conservation of energy in finite difference schemes can be calculated
via the same relation by employing a discrete version of the kinetic and the potential energy
of a vibrating system.!*® This energy analysis is based on the Hamiltonian formalism that is
based on the law of conservation of energy, which states that energy is not lost, but transfered
from one form to another.!>! Because musical instruments are always subjected to energy
loss, in the form of sound radiation, internal damping!*? and damping due to friction losses
at interaction points between different geometries, this method can only be applied to inves-
tigate a energy gain or loss in a numerical scheme, and artificial losses (numerical damping)

that a scheme adds to an otherwise lossless system. A variational formulation for physical

6K reiss, “Uber die Stabilititsdefinition fiir Differenzengleichungen die Partielle Differentialgleichungen ap-
proximieren”.

147 Also known as energy analysis Peter D. Lax: “The scope of the energy method, in: Bulletin of the American
Mathematical Society 66.1 (1960): 32-35.

43K reiss, “Uber die Stabilitdtsdefinition fiir Differenzengleichungen die Partielle Differentialgleichungen ap-
proximieren” showed that local stability is not synonymous with global stability in variable coeflicients
problems.

'Strikwerda and Wade, “A survey of the Kreiss matrix theorem for power bounded families of matrices and
its extensions”.

%°Bilbao, Numerical Sound Synthesis. pp. 38-40.

"> An interesting side-note is the historic fact that Hermann von Helmholtz was the first to give a for-
malised description and a proof for the conservation of energy presented in a work from 1843. http:
//www-history.mcs.st-and.ac.uk/Biographies/Helmholtz.html.

'**Transfer of mechanical energy to thermal energy in the material.
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systems with losses is cumbersome to formulate with a Hamiltonian formalism,!>* but by
researching an idealised system without loss, this method can be applied successfully to find
stability conditions for finite difference time stepping schemes or to find formulations for

new, stable finite difference schemes, as shown for instance in works of Stefan Bilbao!>4.

Stability Analysis of Coupled Problems

The models presented in this work are all coupled problems, which have a non-linear exci-
tation mechanism in the form of time varying exitation, changing boundary conditions due
to interaction with the structure and variable coupling constants.

For these sorts of problems, analytical stability conditions are impossible to formulate by the
mentioned stability measures.

A methodology for coupled dynamical systems, as presented in Ehlers, Zinatbakhsh, and
Markert!>> can be applied to coupled problems of differential equations. In this publica-
tion, an algorithm for the stability analysis of coupled problems s developed. It makes use
of the Neumann stability criterion, using the amplification matrix G and the appertaining
amplification polynomial G, (¢) of the numerical scheme. The amplification polynomial is
analyzed using the Schur-Cohn stability criterion, the Roth-Hurwitz criterion and finally the
Liénart-Chipart criterion to analyze the algorithm.

A final remark on the stability analysis of coupled PDEs stresses the intricacy of finding ex-

plicit stability conditions for arbitrary schemes:

It is worth mentioning that to achieve an analytical critical value for the time-
step size is not always feasible. In fact, the complexity of the coefficients of the
Hurwitz polynomial may hinder establishing the conditions under which all the
corresponding parameters of the Li ®nard-Chipart criterion are positive. In such
cases, a numerical experiment can be used in order to find the critical size of the

time step (...)

3.9.3 Stability Analysis Used in this Thesis

Because of the mentioned problems regarding the stability analysis for coupled numerical
schemes used in this thesis, analytical stability conditions are not formulated for whole ge-
ometry physical models of the musical instruments. Hence, the stability conditions of the
coupled models could only be gained by a numerical simulation of the problems. Nonethe-

less, an initial stability measure was applied for the uncoupled problems, as they could be

'3* One can apply an extended Hamiltonian or Lagrangian formulation Vikas Rastogi, Amalendu Mukherjee,
and Anirban Dasgupta: “A Review on Extension of Lagrangian-Hamiltonian Mechanics’, in: Journal of the
Brazilian Society of Mechanical Science and Engineering 18.1 (2011): 22-33.

'** Bilbao, Numerical Sound Synthesis. Bilbao, “Conservative numerical methods for nonlinear strings”.

155Ehlers, Zinatbakhsh, and Markert, “Stability analysis of finite difference schemes revisited: A study of de-
coupled solution strategies for coupled multifield problems”.
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analyzed by the mentioned techniques. For the single geometries, the CFL condition was
the most applicable stability measure, and an analysis of the undamped system yielded a

clear stability range.
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cHAPTER 4

PHYSICAL MODELS

In this chapter, MATLAB and C programming language implementations of the modelled
instruments are presented. These non-real-time versions of the physical models are devel-
oped to be compared to the real-time implementations described in section 6.

Another motivation for implementing the instrument models in C/MATLAb before port-
ing them to a hardware programming language was the possibility to examine the signif-
icance of particular physical parameters, like for instance coupling strength between two
geometries, non-linearities in material properties and the influence of those parameters on
the synthesized sound as well as the overall simulation results. In many cases, this helped de-
ciding which parameters were deemed important and which parameters could be left out of
a model without noticeably impacting the simulation results regarding the physical accuracy
and synthesis quality.

Besides characteristic, instrument specific features like a special excitation mechanism of the
string (violin-bow) or a special sound-radiation (orifices of the ruan), the coupling between
the singular instrument parts and the external excitation of the models are of special interest
here.

Therefore, the high level models are developed to act as benchmark and test implementations
for the final low level implementations and to validate the aptness of the underlying physical

assumptions. This includes an examination regarding:
1. the stability of the numerical models,
2. the resource utilisation (computational cost) of the methods and

3. quality of the synthesis results,

the high level code is translated to low level hardware description language VHDL!.

"Very Large Scale Integrated Circuit Hardware Description Language. Properties of VHDL are discussed in
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All following sections start with basic formulations of the singular instrument parts, before
more complex geometries and coupled systems are introduced. The models of the singular
parts of the instruments act as building blocks for the final instrument models. At the end
of each section, the simulation results for the implemented models are presented.

As shown in chapter 3, the mathematical algorithm used for all modelled instruments as
well as their structural parts is comparable. For 0-dimensional problems, coupled or uncou-
pled, the symplectic Euler integration scheme is applied. For higher dimensions, the multi-
symplectic Euler box scheme is utilised. In the latter case, pseudo-spectral finite difference

(PSFD) approximations for the spatial discretisation are applied.

4.1 1-dimensional wave equation models

The 1-dimensional wave equation, in all its subsets, is of fundamental importance in instru-
ment acoustics. All important modes of vibrations of strings can be modelled by applying
the 1-dimensional wave equation as the governing PDE. Transversal, longitudinal and tor-
sional motion of strings are the basic modes of musical string vibrations. All three can be
described by the 1-dimensional wave equation.?.

In the following subsections, model equations for vibrating strings with different material
properties and boundary conditions are presented. In all instances, the underlying PDE is
the wave equation in one dimension.

There are two general assumptions regarding the attributes of vibrating strings in musical

instruments which are used in this thesis:

1. Strings are fastened under very high tension, sometimes near the maximal tensile

strength.
2. The transverse motion of the string is the principal sound generating effect.

By applying these two fundamental principles, a focus is put on the transverse motion of
the string initially, leaving longitudinal and torsional motion out of the consideration until
later. Furthermore, focussing the attention to strings under high tension permits it to leave

non-linear effects, that can arise in freely hanging wires for instance aside.?

Research history

The research of the vibrating string supposedly began with Pythagoras who

more detail in section 5.

? See: Fletcher and Rossing, Physics of Instruments, pp. 35-68 or Morse and Ingard, Theoretical Acoustics,
pp. 95-143.

? For a consideration of freely hanging wires see: Herb Bailey: “Motion of a hanging chain after the free end
is given an initial velocity”, in: American Journal of Physics 68.8 (2000): 764-767.
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>

’ ...is said to have observed how the divisions of a stretched string into two seg-
ments gave pleasing sounds when the length of this two segments had a simple
ratio (2:1,3:1,3:2, etc.).*

There still is an ongoing debate amongst scholars about whether Pythagoras made his find-
ings systematically, as suggested by the legend of the Pythagorean hammer>, or if he reached

his conclusions empirically. It is very likely that:
(..) Pythagoras von den Erfahrungen an Instrumenten ausgegangen sein [wird].®
An accepted historic fact is that the

(...)ratios of pitches, which are inversely as the ratios of the lengths of the
strings(...)”

were denominated as such by scholars following the Pythagorean school.®

During the year 1625, Marin Mersenne® published the observation that there is a correlation
between the frequency: f, the tension 7, the length L, and the cross-sectional area A of a
string, and formulated the law f ~ %\/g . A rule that was generalised by Galileo in 1638 by
replacing the cross-sectional area A with the weight per unit length as p - g'°. Brooke Taylor
extended this formula and arrived at a formulation for the fundamental frequency of a string

using the aforementioned properties

1 T
fo= Q-L\/;'H (4.1)

A mathematical derivation of the 1-dimensional wave equation and the motion of a string
was proposed by Jean-Baptiste le Rond d’Alembert in 1747 (section 4.1) 12
Lagrange derived a differential equation of the string by starting from a sonorous line model,

known today as a coupled mass-spring system.!® In that manner, he developed a solution of

*Neville H. Fletcher and Thomas D. Rossing: The Physics of Musical Instruments, Springer Verlag, 1998, p. 36.
> The Pythagorean hammer legend was refuted by many researchers as it is founded on non-physical assump-
tions. It is most likely due to false translation of ancient sources by medieval scholars. See: Barbara Miinxel-
haus: Pythagoras musicus: Zur Rezeption der pythagoreischen Musiktheorie als quadrivialer Wissenschaft im
lateinischen Mittelalter, Verlag fiir Systematische Musikwissenschaft Bonn-Bad Godesberg, 1976, pp. 36-42.

$1bid., p. 54.

’C. Truesdell: “Outline of the History of Flexible or Elastic Bodies to 1788” in: The Journal of the Acoustical
Society of America 32.12 (1960): 1647-1656.

*ibid.

"Marin Mersenne: Harmonie universelle: Contenant la théorie et la pratique de la musique. (Paris 1636),
Reprint Centre nat. de la recherche scientifique, Paris: Springer, 1965.

"Truesdell, “Outline of the History of Flexible or Elastic Bodies to 1788”.

"ibid.

2 In honour of dAlembert, the one-dimensional wave equation is also known as the dAlembert equation.See:
G. E Wheeler and W. P. Crummett: “The vibrating string controversy’, in: American Journal of Physics 55
(Jan. 1987): 33-37.

BPierce, Acoustics.
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as sum of sinus-functions. When taking the limit, Lagrange’s solution is similar to an (odd)
Fourier series.!* The solution methods proposed by d’Alembert on the one hand, and La-
grange’s on the other are the most commonly applied solution methods for the 1-dimensional
wave equation for linear strings.!” Even though the findings of Euler, Lagrange, or Daniel
Bernoulli were based on meditations on real strings, some important physical properties
eluded those early models. The bending stiffness of a string was included to the description
of the string not until the laws of elasticity and flexibility were formulated.!® Non-linear ef-
fects arising from high amplitude deflection, leading to a pitch glide were described by Kirch-
hoff'”. A comparable integro-differential equation for high string deflection was formulated
by Carrier.!® Over the last years, several treatises suggest extensions for the accepted mod-
els including further physical properties of strings. In Rowland and Pask!® the presence of a
second longitudinal wave motion in the string that is not included in the model of earlier lin-
ear strings is shown. Other findings include systems of coupled strings®®. Modern acoustic
research of strings often focusses on effects distinct to the respective instrument and type of
string. See for instance: Bader?! for guitar strings, Cremer? for violin strings or Askenfelt*?

for piano strings.

Mathematical description of a linear string

A linear string without damping, losses or stiffness is a canonical example for showing basic
properties of the 1-dimensional wave equation?*. A derivation of the PDE of the string can be
achieved by using a Hamiltonian formalism?®, approximating the equations of motion using
the action principle. A more classical way of derivation is a geometrical approach, taken for
instance by Fletcher and Rossing.2¢

Consider a linear string?” under tension 7', fixed at two points 2 and z1.. At both points (the

boundary), the displacement of the string is set to zero u(z) = 0 for {x € 0V L}. Suppose

"“Wheeler and Crummett, “The vibrating string controversy”.

"*The Lagrange solution method is also known as the Bernoulli solution. See: Kuypers, Klassische Mechanik,
pp. 250-252.

1Truesdell, “Outline of the History of Flexible or Elastic Bodies to 1788”.

'7Li-Qun Chen and Hu Ding: “Two nonlinear models of a transversely vibrating string”, English, in: Archive
of Applied Mechanics 78.5 (2008): 321-328.

8G.F. Carrier: “On the non-linear vibration problem of the elastic string”, in: Quarterly of Alpplied Mathe-
matics 3 (1945): 157-165.

YRowland and Pask, “The missing wave momentum mystery”.

»Chabassier and Chaigne, “Modeling and numerical simulation of a nonlinear system of piano strings coupled
to a soundboard”.

' Bader, “Complete Geometric Computer Simulation of a Classical Guitar”.

2(Cremer, Physik der Geige, pp. 29-170.

2 A. Askenfelt: Five Lectures on the Acoustics of the Piano, Publications issued by the Royal Swedish Academy
of Music, Kungl. Musikaliska Akademien, 1990.

24 Kuypers, Klassische Mechanik, pp. 237-261.

»Michael E. Taylor: Partial Differential Equations I, Berlin and Heidelberg: Springer, 1996, p. 116.

*Fletcher and Rossing, Physics of Instruments, p. 22.

Linear material properties and total elasticity is assumed.
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we take a small part of the string from z to  + Az in the domain « € [0, L]. If this small
part is displaced from equilibrium then the force, acting on this segment, can be written as

the deflection difference between two points x and x + Az. See figure 4.1.

Figure 4.1: String segment displaced from equilibrium.

The restoring force acting on the small portion of the string, is the difference

Fr =Tsin(¢ping) — T sin(¢y). (4.2)
By applying the Taylor’s formula

0f (z)

dr +--- (4.3)
to the first term on the right-hand side, keeping only the linear terms we can rewrite equation
4.2 to

Osin(¢y) Jsin(¢z)

Fr =Tsin(¢z) + TTdm — T'sin(¢,) = TT. (4.4)

For a small displacement of the string we can state that: sin(¢,,) ~ tan(¢,) 2%. The tangent

of an angle can be rewritten as

ou
tan(d,) = —. 45
an(¢;) = 5 (45)
Using equation 4.4 and 4.5 we can state
O sin(¢p;) 0 tan(¢y) 8‘3—“ 0’u
Fr=T——de =T——de =T-2de =T—dx. 4.6
R ox . ox v ar ° a2 ™ (4.6)
With Newtons second law of motion
2
F=ma= mgtl;, (4.7)

8 A significant difference between the tangent and sinus starts at angles > than 40 degrees. As is depicted in
the first image in Appendix 2, the angle between the banjo string and the bridge when initially deflected is
about 30 degree.
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we can say
0%u
FR = de.%'
0%u 0%u

The mass m is given as m = pAx? with p is the density of the string. When we let dz — 0
we can set dz = Az. This results in the well known formulation of the 1-dimensional wave

equation
0%u B T 0*u

W — ;@. (4.9)

Numerical Model of a Linear String

In this model only the transversal motion in one polarisation of the string is regarded here.
The time integrator, as presented in section 3.7, based on the PDE, presented in chapter 2

using equation 4.9 can be written as

A T F1 [&x - F [Tt_u]}
v = nv+ta , (4.10)
U =1 T—u+V

with A, V, U the total acceleration, velocity and deflection over the spatial domain 0, ..., L

and the time interval 1 < ¢ <= T 7 is the time shift operator, 8xx the Fourier transformed,
weighted central differences operator of order NV = ﬁ defined in equation 3.75,and a, v, u

the acceleration, velocity and deflection in vector representation over the spatial domain.

Simulation Parameters:

The following model of the linear string is simulated with the parameters given in Table 4.1.

Parameters

Sample frequency
At
Discrete points N
Length of the string in meters
Ax

Wave propagation speed ¢

Table 4.1: Values for the linear string model.

*This can be assumed if we neglect the changing length of the string and work under the assumption that the
deflection is small.
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Simulation Results

The numerical results of the linear string model are depicted in 4.2, which depicts the mo-
tion of the whole string over time resulting from a symmetric triangular excitation. In the
next series of figures, one can see the movement of a string exited by a Gaussian pulse with
Neumann boundary conditions. In figure 4.4, the spectrum of the string with a triangular

deflection is depicted.

t=0ms t=0.2ms t=0.4ms

Figure 4.2: Time series of a linear string, deflected in triangular shape at ¢ = 0.

Figure 4.3 shows the deflection of a point on the string with a shifted triangluar deflection as

initial condition.,

Linear string

0.5

-0.5

0 0.5 1
Time in s 104

Figure 4.3: Simulation of linear string with triangular deflection.
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w0
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§D Spectrum of a linear string with triangular deflection.
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Figure 4.4: Spectrum of the string vibration shown in Figure 4.3.

Boundary conditions

The 1-dimensional wave equation, used to model the motion of an instrument string, can ex-
hibit different boundary conditions. For a completely rigid string fixation Dirichlet bound-
ary conditions can be applied. They are defined as u(0) = u(L) = 0.
Even though the derivation of equation 4.9 assumes fixed boundary conditions, realistic
strings are never completely fixed at their boundaries. Especially in lute instruments, there
is an considerable amount of energy transfer at the coupling points between strings, bridge,
and soundboard.
Depending on the rigidity of the fixation, the string boundaries exhibit a finite impedance
when attached to an instrument body or other kind of resonator. A first approximation for
this effect can be developed by supposing that the bridge acts as a mass, connected to the
boundary point of the string. For small deflections and a bridge mass that is large compared
to the mass of the string point, the slope of the string at the boundary B exerts the force
Fp = Tug|p.*® In this assumption, only the restoring force due to the tension 7 is taken
into account. To extend this model by including more realistic conditions, the force resulting
from the bending stiffness of the string can be added. Taking the same point at the interaction
between string and bridge, the shear force exerted by the string can be written as Fp; =
Eluge.|B.
Combining both forces results in an approximation of the transversally acting force at the
coupling point

. Py, ou

*This expression can be derived by using Taylor’s formula similar to the derivation of equation 4.9.

119



4 Physical models

with B the bending stiffness*!and T the tension of the string. This consideration only holds
if the deflection of the string is small, which is usually the case for the instruments under
consideration.

A second boundary condition that can be used in the model of a linear strings is the Neumann
boundary conditions, named after the German mathematician Carl Gottfried Neumann.32

Using finite differences, the Neumann boundary condition can be approximated as

—Ui—1 + U

N =0—u; =uj_1. (4.12)

A temporal evolution of a string excited by a Gaussian pulse at time-step ¢ = 0 is depicted

in Figure 4.5.
t=0ms t=2ms t=4ms
t=6ms t=10ms

Figure 4.5: Time series of a linear string with Neumann boundary conditions, deflected with
a Gaussian bell shape at ¢t = 0.

Along with these boundary conditions there are Robin boundary conditions which use the
proposition that the strings are fixed at an elastic boundary modelled as a spring. They can

be written as
ou B

on

with a, b constants depending on the boundary, u the deflection, % a first derivative in the

a-u+b C, (4.13)

normal direction, and C' a constant boundary value. Other boundary conditions, imple-
mented in later models of whole geometry simulations are described in the following sub-

sections.

*!"The bending stiffness is defined as before B = EI = ESK? with E the Young’s modulus, S the cross-
sectional area and K the radius of gyration.

*2 They are not named after the American mathematician John von Neumann. In some publications they are
called von Neumann boundary conditions. See for instance: Francisco M Ferndndez and Eduardo A Castro:
“Hypervirial analysis of enclosed quantum mechanical systems. II. von Neumann boundary conditions and
periodic potentials’, in: International Journal of Quantum Chemistry 19.4 (1981): 533-543.
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Discussion

As one can see from figure 4.3 and 4.4, if one chooses the right ratio for Az and At, the
simulation yields analytic results of the wave equation. There is no visible dispersion or losses,
and the spectrum shows an ideal % for N € 1,..., Number of partials. The influence of
an different ratio of At and Az is shown by Bilbao,** and he develops a methodology for

approximating an ideal ratio to build schemes with a small numerical error.

4.1.1 Linear string with damping

To model a vibrating string more realistically, losses can be added to the linear non-dispersive
1-dimensional string. Dispersion, or energy losses, can be modelled by different means, and

as the result of the following physical parameters:
« Velocity damping due to external (air) friction.

« Internal damping due to losses in the material because of non-linearities>*.

« Damping due to losses at the boundaries. *°

Velocity damping

Velocity damping can be modelled by adding a damping term with the dimensionless con-
stant o € (0. .. 1) to the linear wave equation. In real strings the acting air friction is negli-
gibly small in most cases because of the small circumference and the resulting small surface
of the string. Nevertheless, of It is one of the standard techniques to model losses in strings®¢
by adding a friction damping term, resulting in an exponential decay of a string. The linear

DE with an additional velocity damping term can be written as
Uy — 2 Uy, +a-u; =0. (4.14)

With v = uy, the time stepping scheme can be rewritten to

~

A T F1 {&m . F[Tt,uﬂ — Q- TV
v|=U nvta . (4.15)
u =1 Tt_u+V

33 Bilbao, Numerical Sound Synthesis. Pp. 135-136.

**This exact mechanism of internal damping is still under heavy research in various fields of nano-mechanics.

»Numerical damping, or numerical viscosity, as used in fluid dynamic simulations is not mentioned here
because there is only partial physical reasoning behind this technique. It goes back to the work of Neumann
and Richtmyer (Neumann and Richtmyer, “A Method for the Numerical Calculation of Hydrodynamic
Shocks”) and is applied in computational fluid dynamics since that time. See: E.J. Caramana, M.]. Shashkov,
and P.P. Whalen: “Formulations of Artificial Viscosity for Multi-dimensional Shock Wave Computations’,
in: Journal of Computational Physics 144 (1998): 70-97.

*Bilbao, Numerical Sound Synthesis. pp. 153 ff.
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All other constant and variable names are inherited from equation 4.34.

Simulation Results
Figure 4.6 and Figure 4.7 show the time evolution of a simulated string with different values
of velocity damping factor 3. Figure 4.8 shows the spectrum of a linear string with different

velocity damping factors.

Linear String with Damping
T

.1073

\
0 0.5 1

Time in s

Figure 4.6: String with different damping factors 5 from undamped to highly damped.
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Damped String with 8 = 0.001
1 T

Time in ms

Figure 4.7: Enlarged part of damped string with 5 = 0.001.

Spectrum of Damped String

il

Normalised Amplitude

0 2 4 6 8 10 12 14 16
Frequency in kHz

Figure 4.8: Spectrum of a string with different damping factors 3 from undamped to highly
damped.

Review
Figure 4.6 to Figure 4.7 show the influence of velocity damping on the vibration of a linear
string model. The exponential decay does not influence the peaks of the strings’ partials.

Thus, its initial shape remains unchanged only the strings amplitude decreases exponentially.
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Internal damping

The exact physical mechanisms of internal damping of acoustic materials are not as well un-
derstood as the mechanisms of velocity dependent damping. But to simulate internal damp-
ing one can propose a damping that is dependant on the acceleration of the string at the
respective point®’. It is proposed that internal losses account for frequency dependent losses
of the string. Based on this preliminary assumption, one can use the method presented by
Hong and Lee®® and extended by Bavu®®, to find values for internal damping coefficients.

The DE for a string with frequency dependent losses can be written as
Uy = 62 cUgy + Q@ Ugyp = 0. (416)

The third order term on the right side can be interpreted as a time derivative of the acceler-
ation of the linear string. So one can rewrite equation 4.16 into the following time stepping
form
F o Flnu](1—a-8)]

w_Vv+a . (4.17)

A
V pu—
U U+ Vv

TC

Simulation Results
Figure 4.9 shows two sections of the time evolution of a simulated string with different values
of internal damping factor cv. Figure 4.9 a shows the first 15 milliseconds of the simulated

string, Figure 4.9 b shows the deflection of the string at around 5 seconds simulation time.

This kind of damping was proposed for physical models of strings by: Chaigne and Askenfelt, “Numerical
simulations of piano strings. I. A physical model for a struck string using finite difference methods”.

3$(S.-W. Hong and C.-W. Lee: “Frequency and time domain analysis of linear systems with frequency depen-
dent parameters, in: Journal of Sound and Vibration 127.2 [1988]: 365-378).

*Julien Bensa et al.: “The simulation of piano string vibration: From physical models to finite difference
schemes and digital waveguides”, in: The Journal of the Acoustical Society of America 114.2 (2003): 1095-
1107.
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String with Internal Damping
1 T

i \

—0.5 | |

0.5

1 |
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Figure 4.9: String with different internal damping factors o from undamped to highly
damped.

Review

As visible in figure

Damping at the boundaries

Damping due to losses at the boundaries can be modelled be either adding a virtual
impedance at one end point of the string?’, by increasing the velocity damping at the bound-
ary or simulating a moving endpoint. A virtual impedance at point L of the string is pro-

posed, leading to a formulation of the force at the end point

Z v
mr,

Fr=7-v—a= (4.18)

“"This is an easy formulation for moving string adjustments (Fletcher and Rossing, Physics of Instruments).
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with my, the mass of the string portion and the virtual mass attached at point L. A higher
velocity damping is straight-forward to implement by applying open boundary conditions
and changing the damping coefficients at the respective points 0 and L. A moving end-point
can be modelled by adding either a mass or a spring with a higher stiffness at the end points.
A simplified version of a slightly loose endpoint can be modelled by setting the deflection at

the boundary points of the string to a value between free and fixed boundary conditions.

4.1.2 High Deflection String

Instrument strings can be subject to various non-linear effects, like for instance the special
boundary conditions of sitar strings*! or the non-linear excitation of violin strings. A non-
linear effect that directly influences physical properties of the string is a changing length, due
to high amplitude vibrations or in situ tuning of the string. There are several ways to model
these effects with physical methods. A commonly utilised approach for including non-linear
effects due to large amplitudes can be described by adding a non-linear duffing term to the

linear wave equation. This yields
Us — - Uy, — Q- u’ = 0. (4.19)

The Duffing equation, developed by the German engineer Georg Duffing and named after
him, can be applied to model non-linear stiffness effects in varying fields, as shown in Bren-
nan and Kovacic.*? By analysing equation 4.19, one finds that the non-linear Duffing-term
adds a deflection dependent restoring force, which can be reasoned as a higher stiffness in
the extremal ranges of the string deflection. By adding this term to a time stepping method,
one can simulate pitch glides in strings and membranes*’. A second method of modelling a

deflection dependent tension modulation, is by integrating over the length of the string

1
puy — — - (To + u?)u,, =0, (4.20)

pA

T—

L3
2L

with T the tension in the rest position of the string, p the density, £’ the Young’s modulus

and A the cross section respectively. This equation is also known as the Kirchhoff equation.*

#!Chandrika P. Vyasarayani, Stephen Birkett, and John McPhee: “Modeling the dynamics of a vibrating string
with a finite distributed unilateral constraint: Application to the sitar”, in: The Journal of the Acoustical
Society of America 125.6 (2009): 3673-3682.

“Michael J. Brennan and Ivana Kovacic: “Examples of Physical Systems Described by the Duffing Equation”,
in: The Duffing Equation, John Wiley & Sons, Ltd, 2011: 25-53.

“For membranes see section 4.2.2.

*1t was first derived by: Gustav Kirchhoft: Vorlesungen iiber mathematische Physik. Mechanik, H. G. Treubner,
1876, p. 446.
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Later, Carrier* derived a similar equation that can be written in the form

Er
puy — Ty - (1+ ITo / u2)um =0, (4.21)
r=1

with r the diameter of the cross-section.
Another way of including the influence of changing length of a string that is applied in sev-
eral works concerned with non-linear string motion, can be derived by using the general

1-dimensional wave equation of the form

Ut = [C($> : um]x> (4.22)

with ¢ = %. With the proposition that the tension is time dependent®, one can rewrite

equation 4.22 to
T(z,t)

p

In equation 4.23, one directly sees how the changing deflection (curvature) has an immediate

influence on the tension of the string.

Another way to take the changing length of the string into account, as proposed by Vargas-
Jarillo and Gonzalez-Santos*” or Bader,*® is to formulate a non-static finite difference grid. In
these works, this method is described as a straight-forward way of coupling the longitudinal
motion of the string to the transversal motion, and vice versa. If one takes a finite point
on a string, one can include the longitudinal deflection of the finite points directly in the
formulation of the finite differences terms. Equation 3.50 gives a formulation for the exact
force acting on a quasi-particle in transversal direction. The longitudinal movement can be

added to the string by rewriting equation 3.50 to

Fiegs = — Fo - (1= /I + (ulm2lpo — sl ]10)? + (ulm2ler — 1] )?)
. u[m2ly — ulml]y,
Vi + (u[m2];, — ulm1]i,)? + (u[m2]y — u[mlly)?
Fright = — Fo - (1 — \Jlo + (u[m2)io — u[m1]i0)? + (ulm2]s, —ulm1]er)?)
. —u[m3e + u[m2]y,
Vio + (ulm2io + u[m3Ji)? + (u[m2]er — u[m3]er)?

(4.24)

49

“Carrier, “On the non-linear vibration problem of the elastic string”.

1t depends on the change of deflection over time or the changing in curvature.

¥ C. Vargas-Jarillo and G. Gonzalez-Santos: “A Numerical Study of Discrete Nonlinear Elastic Strings in Two
Dimensions”, in: Proceedings of the CCE 2010 (2010): 400-405.

8 Bader, Computational Mechanics of the Classical Guitar.

*Similar formulations can be found in several works like for instance: Rowland and Pask, “The missing wave
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An analysis of equation 4.24 shows that this formulation leads to paradoxical results. If the
string is deflected and thus has a high extension, Az gets larger, but, as Ax gets larger, the
pitch of the modelled string must go down because the pitch is inversely proportional to Ax
in the formulation of finite differences. Hence, this scheme can not be applied to model non-

linear effects due to longitudinal - transversal coupling with satisfactory, realistic results.

Numerical results

The following figure depicts the spectrum of a non-linear restoring force, modelled by adding

a Duffing term to the linear wave equation.
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Figure 4.10: Spectrogram of string with non-linear Duffing-term. a = 0.001

Figure 4.11 show the spectrum of a simulations using equation 4.24.

momentum mystery”.
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Figure 4.11: Spectrogram of string with non-linear geometric coupling.

The next figure shows the spectrum of a string with Kirchhoft-Carrier term added to model
the effects of high-deflection pitch glides.
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Figure 4.12: Spectrogram of string with Kirchhoff-Carrier-type term.
Discussion

An analysis of pitch glides found in real strings shows that a changing length has a greater
influence on the tension T of the string, but not as much on the density p°. A question
that arises is: Does the changing length of the string act locally or globally on the tension?
If one analyses PDE 4.22 one finds that the tension should act globally and only due to the

*The changing density can be neglected only for metal strings and maybe nylon strings. For rubber strings
made of polyisoprene, it must be taken into consideration.
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effects of the strings overall deflection. But if the difference equation is analysed, one can
ask how the information of the changing length should be propagated instantaneously over
the whole domain of the string without violating the speed of information transport in a
string. The proposed models of the wave equation for a taut string reveal that the longitudinal
movement could transport this kind of information. But then again, how is the changing
length transferred to all segments of the string immediately, and why does the longitudinal
motion, which also has a wave like characteristic, and thus should travel up and down the
string, transport the changing length instantaneously?

When modelling the influence of the changing length, as proposed in equation 4.24, one is
confronted with a paradox: If the longitudinal interval of two adjacent quasi-particles gets
smaller, the pitch of the modelled string rises because of the inversely quadratic influence
of the step width on the pitch. In a real string, the exact opposite is the truth: If a string
is relaxed, the pitch is lowered. This means, in a physical model of the string, the influence
of a changing length onto the tension must be much stronger than the local influence of
changing quasi-particle distance. In conclusion: With this knowledge the only reasonable
way of modelling the effect of changing length is by including a Kirchhoff-Carrier like term
to the wave equation.

It is supposed that the changing tension is not transported via an acoustical longitudinal
wave, but a different material property not coupled to the acoustical transversal motion of

the string.

4.1.3 String with Bending Stiffness

Equation 4.9 describes the transverse motion of strings accurately if all assumptions, made
in the derivation are met to a certain degree. The hypothesis of total elasticity, used in deriva-
tion of the PDE is a simplification of physical properties of real strings used in banjos and
most other lute instruments as they have an inherent stiffness. Even nylon strings, used in
classical guitars, have a finite bending stiffness which is considerably smaller than that of
metal strings but influences the strings vibration nonetheless. The effects of bending stiff-
ness can be included into the mathematical formulation of a string by adding beam like term
to equation 4.9. It can be modelled as
0*u 0*u 0*u

=T~ —EI

o = Tomz ~ Plopa (4:25)

with E the Young’s modulus and I the second moment of area, which is %ir‘l, with 7 the
circumference of the string, for round strings. The inclusion of bending stiffness into the PDE
of a string influences its spectral properties, because the additional beam-like characteristics
of a stiff string has an influence on the position of the partials in the spectrum and, depending

on the circumference of the string in relation to its length, adds frequencies to the spectrum of
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the string. The perceptual importance of bending stiffness for the lower tones of a piano was
shown in Anderson and Strong.! In violin strings, bending stiffness influences the rounding
of the Helmholtz motion corners.>?

Up to this point of the work, the presented string models were based on the (linear) 1-
dimensional wave equation that is valid for completely elastic strings and motion in one
direction. In real strings, however, one finds that the larger the circumference compared
to the length of the string is, the more important the influence of bending stiffness on the
vibration and the resulting sound of the string is. The inharmonicity in piano strings, es-
pecially important in the lower register™ of the piano or large bowed instruments, as cellos
or contrabasses, can be modelled by adding beam-like characteristics to the model of the
string. The physical motivation for the inclusion of bending stiffness into the model of a
string is explained in section 4.1.3. As shown there, adding a beam-like term>* to the linear

1-dimensional wave equation55, we obtain the following PDE

Ut — - Uy — & ugy =0, (4.26)
with £ = % The time stepping algorithm can be extended to
AT g [ F G = Oa2) - Flrul]
v |=U fvta . (4.27)
U =1 T u+v

Simulation Results
Figure 4.13 shows a string with added bending stiffness modelled as an Euler-Bernoulli-like

beam-like term.

*!Brian E. Anderson and William J. Strong: “The effect of inharmonic partials on pitch of piano tones’, in: The
Journal of the Acoustical Society of America 117.5 (2005): 3268-3272.

2Cremer, Physik der Geige, p. 38.

>3 Balazs Bank and Heidi-Maria Lehtonen: “Perception of longitudinal components in piano string vibrations”,
in: The Journal of the Acoustical Society of America 128.3 (2010): EL117-EL123.

>* A fourth order differential term from the Euler-Bernoulli beam equation.

>Fletcher and Rossing, Physics of Instruments, p. 43.
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String with Euler-Bernoulli Term
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Figure 4.13: Time series and spectrogram of stiff string with Euler-Bernoulli term.

Timoshenko beam

Besides the presented Euler-Bernoulli beam, there are other formulations for beams that can
be used for modelling the dynamic behaviour of stift strings. One example is the Timo-
shenko beam, successfully applied to model lower piano strings®®. The Timoshenko beam
theory adds a deflection dependent shearing and rotational inertia to the Euler-Bernoulli

beam theory. The coupled differential equations can be written as

pAutt = (HAG(UI - ¢))5€

(4.28)

As before, velocity dependent and frequency dependent damping can be added to equation

4.28, to yield a more realistic decay characteristic.

*$Tuliette Chabassier: “Modélisation et simulation numérique d’un piano par modéles physiques”, PhD thesis,
2012.
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Simulation Results

Figure 4.14 shows a string with added bending stiffness modelled with a Timoshenko beam-

like term.
String with Timoshenko Term
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Figure 4.14: Time series and spectrogram of stiff string with Timoshenko term.

4.1.4 Stiff string with damping and end support losses

The final string model incorporates all of the presented features. The end support losses are
modelled by an additional mass, attached at the boundary points, for the model of a singular
string. When more than one strings, coupled to a resonator are modelled, the end support

loss are modelled by the impedance relation developed in 4.4.

Numerical results

Figure 4.15 shows the modelled time series of a string with bending stiftness, velocity and
acceleration damping and losses at the boundaries. The figure shows the simulated deflection

of one point near the middle of the string over the first four seconds.
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Figure 4.15: Deflection over time of single point.

4.1.5 Discussion

As shown in chapter 3, choosing the right values for At and Az leads to a numerical solu-
tion which yields analytical results for the linear wave equation. Choosing both constants
differently adds dispersion to the string that rises with simulation time. As shown in chapter
2, this effect is present in real strings. Hence, an analytic solution to the wave equation on
the string is not necessary because it does not reproduce the physical reality. The addition
of losses, stiffness and changing length results in a model of the string that exhibits realistic

motion when compared with the measured strings, presented in section 2.

134



4 Physical models

4.2 2-dimensional wave equation models

To model acoustical phenomena in higher dimensions, the 1-dimensional wave equation
can be extended to the 2-dimensional wave equation. Besides the linear case of elastic mem-
branes or plates, even more complex geometrical structures, like plates with buckling and or-
thotropic material properties or plates with orifices can be described with the 2-dimensional
wave equation. All plate-like and membrane-like components of the musical instruments
modelled in this work are described with the 2-dimensional wave equation®’. At first, lin-
ear cases of the 2-dimensional wave equation are presented and used as the foundation for

models of more intricate geometrical problems.

Research history

Analogue to the string, the membrane is a thoroughly researched object in physics and in
mathematics. Research can be found in such various fields as classical mechanics®, acous-
tics® or topology in mathematics®®. The equations of motion of an ideal membrane can be
described by the two dimensional wave equation. A solution to this equation on the surface
of the membrane is the Bessel function®!. In many traditional skin covered lute instruments,
the membrane acts as an amplification device for the sound of the plucked or bowed string
coupled to the membrane®?. In some Brazilian percussion instruments like the cuica or the
chicken, the membrane amplifies the sound of a scrubbing sound produced by a stick-slip
motion of fingers or a rosin covered cloth moved over a rough surface.

Because of the vast distribution of membrane covered string instruments an exhaustive
organologic research history of membrane covered instruments is far beyond the scope of

this work.%3

Mathematical description of the linear membrane.

The motion of a round membrane can be described by the solution of the 2-dimensional

wave equation. The 2-dimensional wave equation can be deduced in a purely mathematical

*7 The formulation of a 3-dimensional geometry as a 2-dimensional problem is feasible for most instruments,
because the sound producing or sound radiating plates or membranes have small heights compared to their
extent in the other two spatial dimensions.

58Kuypers, Klassische Mechanik, p. 254.

**Fletcher and Rossing, Physics of Instruments, pp. 70-99

Taylor, Partial Differential Equations I, 126{f

' Developed By Friedrich Wilhelm Bessel as a mathematical tool for geodesic problems. ibid.

52 Among countless others, some illustrative examples are the Afghan rabob, the Mali ginbri or the Chinese
sanxian.

One interesting trivia can be noted, there are vanishingly few accounts of European string instrument with a
membrane covered body. An European string instrument with a membrane as a resonator is the bumbass,
also known as the devils-violin or buhai in Romania. Another skin covered instruments is the Georgian
chuniri found in remote mountain regions of Svenetia.
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manner or by a physically motivated point of view similar to the derivation of the first order
wave equation on a string. Again, the basic assumption is that the forces acting on a linear
membrane, due to the tension at the boundaries and a deflection at a specific point lead to
an acceleration in the opposite direction of the curvature of the membrane.

In a Cartesian coordinate system in the membrane plane, the forces in the x- and y-directions

acting on a 2-dimensional section with the edges dy, dz and the deflection u can be written

as:
ou ou
Tdy[(%)x—‘rdx - (%)x]» (4.29)
ou ou
Td%[(@)ﬁdy - (@)y] (4.30)
or more conveniently as:
T@d d (4.31)
8%2 € y7 .
T@d d (4.32)
Ox? ray. )

Following Newton’s second law, the sum of these forces is equal to the acceleration times the
elements mass m = dxdyp, with p the density.®* Thus, the governing differential equation

of a linear membrane can be written as:

Pu 5, 0’u  P*u

S = 5t 87/2]’ (4.33)

; _ /T
w1thc-,/p.

4.2.1 Linear membranes

Alinear, elastic membrane can be modelled by the 2-dimensional wave equation in a straight-
forward manner. The numerical integration scheme for the 2-dimensional wave equation for

transient motion (equation 4.33) can be written as

Fl [Szxgy - F [Tt,u]]
_v-+a . (4.34)

T—u~+V

T <
Il
IC~

Boundary conditions

Boundary conditions for membranes are a highly delicate matter influencing the vibration
of the membrane substantially. As shown in chapter 2, the radiated mode shapes are quali-

tatively comparable to the analytical solution of the membrane. But quantitatively they dif-

%Morse and Ingard, Theoretical Acoustics.

136



4 Physical models

fer considerably. Among other influencing variables, the boundary conditions are known
to have a huge impact on the radiated mode shapes and the acoustical spectrum of mem-
branes.®®> In this initial model of the membrane, two standard boundary conditions are
utilised, Dirichlet and Neumann boundary conditions, as presented in section 4.1. The
Dirichlet boundary can be implemented in the same way as before, by setting the deflec-
tions of points on the boundary to zero. The Neumann boundary condition can again be
modelled by a virtual node outside the domain of the membrane. The calculation for the

acceleration at the boundary (2 thus gives
Alzyg = ¢ (=4~ u(z;y) +u(z + Ly) +ule — Ly) + 2+ u(z;y — 1)), (435)

Geometrical shape

The shape of any 2-dimensional structure can be formulated by applying the boundary condi-
tions at designated points. The implementation of the resulting mesh grid can be formulated

by a conditional statement. If the values are defined as:

Inside Domain I
Dirichlet boundary | D
Neumann boundary | N

Table 4.2: Mesh grid values for arbitrary shapes.

they can be used to model a rectangular membrane with Dirichlet boundary conditions on
the rim and a circular orifice in the middle. This leads to a grid dependent acceleration cal-
culation of
F1 {nggy - Fm— u]} for I

0 for D . (4.36)
L F? [Smyg - F [Tt,u]} for N

s

A=

t

The values for the acceleration at the boundaries can be calculated either in the time domain

or in the frequency domain.

Numerical results

In the following membrane models, damping is included in the calculation because real
membranes, just like real strings, are always subject to losses. The fundamental frequency of
the membrane can be calculated by The simulation parameters are given in table 4.3.

The first figure depicts the transient motion of a linear membrane due to an excitation with

a stiff hammer force.

Fletcher and Rossing, Physics of Instruments, pp. 602-615.
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Membrane radius 15 cm
Grid size 64264 points
Fundamental frequency 200 Hz

Table 4.3: Simulation parameters for the round membrane.
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Figure 4.16: Deflection of a linear damped membrane over time.
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Figure 4.17: Deflection of a linear membrane with opening.

Figure 4.17 shows the same membrane with Dirichlet boundary conditions applied in the

centre of the membrane.
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4.2.2 Tension modulated membranes

Tension modulation in membranes is used as a musical effect or stylistic device, compara-
ble to pitch bend effects in in string instruments®®. An illustrative example of such playing
techniques is the pitch bend drumming technique for snare drums and tom toms. Another
example of a musical instrument that utilises tension modulation is the West-African talking
drum® . In accordance with the three models for 1-dimensional tension modulated strings, it
is possible to use different approaches for modelling the effects of changing tension in mem-
branes. Similar to the 1-dimensional case, a non-linear Duffing term can be included, to add
a deflection dependent, non-linear spring stiffness constant. A deflection dependent pitch
modulation, due to changing tension in a membrane can also be modelled via 2-dimensional
version of a Kirchhoff-Carrier equation. The deflection dependant tension can be computed
in the form of a 2-dimensional tension distribution summation over the domain of the mem-

brane
NX NY

Tyu=To+ Y > u’ (4.37)

i=1j=1
with u the deflection of the membrane, VX, NY the number of grid points in the 2 and
y direction respectively, and 7},; the non-linear tension on the membrane. The geometrical
approach proposed in section 4.1.2 can be extended to the 2-dimensional case, but also leads

to unphysical simulation results as shown in figure 4.19.

Numerical results

The effect of the pitch-glide effects in a simulated membrane is shown in the next figures.
Figure 4.18 shows the spectrum of a Kirchhoft-Carrier-like modelled membrane. Figure
4.19 shows the spectrum of a pitch glide, modelled by geometrical longitudinal transversal

coupling.

%The pitch bend is often used as an expressive effect in blues guitar playing. One fundamental playing tech-
nique of the Chinese zither ghu-zheng is based on bended strings.

Gerhard Kubik: “Theory of African Music’, in: Intercultural Music Studies 7, ed. by Max Peter Baumann,
Wilhelmshafen: Florian Noetzel Verlag, 1994.
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Figure 4.18: Spectrogram of membrane with Kirchhoff-Carrier like tension change.
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Figure 4.19: Spectrogram of membrane with geometrical coupling between longitudinal and
transversal motion.

Discussion

As one can see in figures 4.18 and 4.19, the Kirchhoff-Carrier-like tension modulation yields
plausible results. Whereas the geometrical coupling between longitudinal and transversal
motion leads to a paradoxical simulation results: The larger the deflection, the lower the

pitch [sic!]. Similar to the 1-dimensional case, this result is not physical.

4.2.3 Plates

The time stepping algorithm for a vibrating plate with fixed boundary conditions is similar

to the time stepping algorithm of other 2-dimensional structures, like the model of the linear
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membrane. The difference between both algorithms is the form of the difference operator.

The fourth order difference operator for the spatial discretisation of a plate can be written as
8y = D(-040 + 04y + 2 - 6222y). (4.38)

A central difference approximation yields a 2-dimensional operator with the following

weights
0O 0 1 0 0
0 2 -8 2 0
bp=|1 -8 20 -8 1% (4.39)
0 2 -8 2 0
0O 0 1 0 0

Higher order operators can be found by approximating the grid values with spectral methods

or by a Taylor series approximation as presented in chapter 3.

Boundary conditions

Boundary conditions for plates are more intricate to model than boundary conditions for
membranes or strings. This is mainly because of the higher order of the differential equa-
tion. In the models applied here, either fixed boundary conditions ®, or free boundary con-

0

ditions”® are applied. As before, free boundary conditions can be modelled by relation 4.12

and fixed can be implemented by setting z € 2 = 0 with (2 the boundary points of the plate.
Numerical results

A modelled time series of a clamped plate, excited by an elastic hammer impact can be seen

in figure 4.20

8Bathe, Finite-Element Methoden, p. 159.
%The ruan or the yuegin for instance
The boundaries at the orifices on the top-plate of the ruan are modelled with free boundary conditions.
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Figure 4.20: Time series of plate model excited by elastic hammer.

4.2.4 Stiff membranes

Comparable to the string, real membranes used in musical instruments have a finite flexibil-

ity, thus have a bending stiffness. In concordance with the model of the stiff string, this effect
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can be achieved by adding a plate-like term to the linear and completely elastic membrane.

The time stepping scheme can be written as

Hv+a . (4.40)

v [ F[(Gouny +3p) - Flreu]]
=1 T—u+V

t

A
V —
U

Numerical examples

In figure 4.21 the deflection for several time steps of a round membrane with the inclusion

of stiffness is shown.
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Figure 4.21: Deflection for several time steps of a membrane with stiffness excited by an elas-

tic hammer.
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4.2.5 Frequency dependent damping

To model a wooden plate with realistic decay characteristics, velocity dependent damping as
well as frequency dependant damping must by added to the model of a wooden sound board.
The damping can be implemented by adding a two terms to the plate equation, similar to the

damping terms added to the PDE of the string. The complete equation can be written as
g — V2V2u + B-ur +a-uge = 0. (4.41)

For reasons of brevity we have set V2V2 = uyp + Ugy + 2 - Ugz2y. ovand 3 are dimensionless

damping coeflicients.

4.2.6 Wooden orthotropic plates

As mentioned in section 4.2.6, most resonance wood used for soundboards have orthotropic
material properties and as a consequence different wave speeds in the respective grain direc-

tions’!.

Mathematical description

The theory of plate and shells is used in many fields of structural mechanics and numerical
simulation techniques. Fundamental concepts of free vibrating thin plates were formulated
by Euler and extended by Bernoulli’2. After several attempts to find a formulation for bend-
ing in plates, Kirchhoff proposed a consistent formulation.”> Important additions to the plate
theory were developed by Timoshenko at the beginning of the 20" century, mainly driven by
changing material utilisation in the shipbuilding industry.”* This thesis is mainly concerned
with plates that can be described by the classical Kirchhoff plate theory.

The differential equation for the transversal deflection u as a result to bending waves”” on a

2-dimensional, isotropic plate in x, y is given as:

o*u ot o*u 9%u

D&Y o 9u [ Tuy U
02t T on20 T ogi| T o

(4.42)

with D = 2(%&2) The variables are:

"'Ulrike G. K. Wegst: “Wood for sound”, in: Am. J. Bot. 93.10 (2006).

?Eduard Ventsel and Theodor Krauthammer: Thin Plates and Shells: Theory, Analysis and Applications, Marcel
Dekker, 2001, p. 16.

3G. Kirchhoff: “Uber das Gleichgewicht und die Bewegung einer elastischen Scheibe?, in: Journalfiir die reine
und angewandte Mathematik 40 (1850): 51-88.

"Ventsel and Krauthammer, Thin Plates and Shells: Theory, Analysis and Applications, p. 17.

”>The bending waves are the main cause of sound radiation on plates.
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E :  Young’s modulus in [%
h:  Height of the plate in [m].

Poisson’s ratio.

Table 4.4: Isotropic plate theory constants.

Because most wood used in instrument making has orthotropic material properties’®, the
PDE for the plate can be extended to incorporate these features. Following the laws of elas-
ticity, wood has three different Young’s moduli, three shear moduli as well as six Poisson
ratios, for the respective grain directions: longitudinal, transversal and radial and their cross
terms.””

The wood, used for front- and back plates of violins is in most instruments a longitudinal-

radial cut of the tree. Hence, the parameters of interest are:

Er, :  The Youngs modulus in the longitudinal grain direction.
EpR: The Young’s modulus in the radial grain direction.
vrr : The Poisson ratio in the longitudinal/radial grain direction.

vrr © The Poisson ratio in the radial/longitudinal grain direction.

Table 4.5: Orthotropic constants for wood plate.

Using these parameters, we can apply the PDE for orthotropic plates’®:

o D D o o4 0?
T;-F(%%-Dsh)iu—FD -

D, - =
0x20y? Yoyt o2

(4.43)

with the following material dependent constants:

_ Er 54
D$_1—VLRVRL 12
_ Er 54
Dy_l—I/RLVLR 12
D.. =-ELVRL h3
YT 1—vrpvrp 12
D, —=-ErviRr h3
yx_lfuLLV?f;’R 12
_Gh
Dsh_ 12 >

Table 4.6: Constants for orthotropic plates.

with G the shear modulus and A the height of the plate orthogonal to the x — y plane. For

Sitka spruce, those values are:

76Wegst, “Wood for sound”.

”Voichita Bucur: “Springer Series in Wood Science’, in: Acoustics of Wood, 2nd ed., Springer, 2006, p. 47.

78See equation 7.31 in:Ventsel and Krauthammer, Thin Plates and Shells: Theory, Analysis and Applications,
p. 210.

147



4 Physical models

EL = 13.5E09
FEr= 1.3E09
v = 0.33
VR = 0.029
G— \ﬂELL*ERR)
- 2*(1+\/VLL*VRR)

Table 4.7: Material properties for Sitka spruce. Values from table 7.2 in: Bucur.”® And table
4.1B in: Bucur.®

The PDE for an orthotropic plate is given as

Dyy+ D,

Dy - ugy + 2( 5 L+ Dgp)uggay + Dy - ugy = 0. (4.44)

Numerical examples

In figure 4.23, the spectrum of an orthotropic wooden plate in comparison to the spectrum

of an isotropic wooden plate is shown.

Normalised Amplitude

—— Isotropic
- - - Orthotropic

-_—
Frequency in Hz

Figure 4.22: Simulated spectrum of a wood plate with orthotropic and isotropic material
properties.

4.2.7 Wooden orthotropic plate with buckling

In several instruments, the resonance boards are subject to in-plane tension leading to a
buckling of the plate. Some examples include: The back-plate of a classical guitar®!, front-
and back plates of violins and the sound board of grand pianos®? The PDE of plates with

8This depends on the quality of the instrument.
82In grand pianos this is known as crowning.
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buckling can be written as

D,,+ D
Dx-u4x+2(% + Dsp)u2zay + Dy ttay + Nytigy +2Nyy gy + Nyt = 0, (4.45)

with constants depending on the internal forces due to an in-plane load:

N, = External force acting in the z-direction
N, = External force acting in the y-direction
N, = Combination of both forces.

Table 4.8: Force constants for plates under buckling.

Numerical examples

Figure 4.23 depicts the spectrum of an wooden plate with and without buckling.
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Figure 4.23: Simulated spectrum of a wood plate with orthotropic and isotropic material
properties.

4.3 3-dimensional wave equation models

Finite difference methods for modelling the wave equation in three spatial dimensions are
commonly utilised in room acoustics®® or electromagnetic field calculations®$. In this sec-

tion, two models for 3-dimensional air vollumes are presented.

83 Carlos Spa, Adan Garriga, and Jose Escolano: “Impedance boundary conditions for pseudo-spectral time-
domain methods in room acoustics’, in: Applied Acoustics 71.5 (2010): 402-410.
#Yee, “Numerical soution of initial boundary value problems involving maxwell’s equations in isotropic me-

dia”.
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4.3.1 Closed air cavities

Finite difference methods have one drawback: The computational cost rises with (QP#mension
with the grid size. Hence, for large numerical room acoustic problems, like concert halls,
these methods are impracticable when utilising un-optimised explicit finite difference for-
mulations and real-time simulations are striven for. Air cavities in musical instruments, like
the air volume in the banjos resonator for instance, are considerably smaller, and the result-
ing mesh grid of discrete points are several orders of magnitude smaller than mesh grid sizes
used in room acoustics. The 3-dimensional wave equation is a straight-forward extension of

the lower-dimensional wave equations and can be written as

Pt = pxyz, (4.46)

with p the pressure, XY Z the second derivatives in the respective directions x, y, z, and

2 _ 1385 1 86
= R P

and P = the normal pressure. In many works concerned with finite difference methods for

c with p = the density of air, k = with v = the adiabatic index of air
room acoustic, this equation is solved numerically using a FDTD approach, based on the
Yee discretisation scheme®”. In this work, the symplectic Euler scheme, utilised for the other
geometries presented in this work, can be applied for 3-dimensional schemes as well, and the

time stepping algorithm can be written in the known form as

A + [ F [SXYZ . f[thPﬂ
v i=U P+ P : (4.47)
P = T-P + P

Aand V are the second and first derivative of the pressure by time respectively. Similar to the
formulation of the solid structure time integrators, both variables comprise the simulation

results for the entire spatial- and time domain.

Boundary conditions

Boundary conditions for all closed surfaces €2 are implemented as Neumann boundary con-
ditions by setting: % = 0; % = 0; % = 0 for boundaries in the x, y, z direction. These
boundary conditions can be implemented by using a mirror point, as presented before. For

the basic case of a centred second order finite difference stencil, the boundary values of the

% Morse and Ingard, Theoretical Acoustics, p. 233

8 (ibid., p. 230)

%(Yee, “Numerical soution of initial boundary value problems involving maxwell’s equations in isotropic me-
dia”).
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acceleration at point x € ) can be computed by
Alijkg = ¢+ (5 Diji + Pit1jk + Die1jk + Pij+1k + Dij—1k + Dijk—1)- (4.48)

These boundary conditions can be applied for all back- and front plate boundaries in the

presented instrument models.

4.3.2 Air cavities with orifices

The wooden resonators of three of the modelled instruments have air filled cavities with
orifices. The openings change the boundary conditions of the air volume at the respective
position of the air volume mesh grid. Instead of an air-structure interaction, the air is con-
nected to the surrounding free field, enabling the air to radiate into the normal direction of
the orifice. Hence, Sommerfeld radiation conditions can be applied for the orifices extending
to a virtual room.®¥ The boundary conditions at the respective points can be implemented
by applying the Sommerfeld radiation condition in the z-direction of the domain. For the
1-dimensional case, the Sommerfeld radiation conditions can be expressed by following re-
lation

(gj +ec- g;)uzc>o = 0. (4.49)
This leads to the following condition for the first time derivative of the pressure at the open-
ings (2 in the z—direction

ptloo = —¢ P, (4.50)

the right side of equation 4.50 can then be discretised with one-sided finite differences.

8The virtual room around the instruments is not modelled in this thesis. The acoustical near-field of the
instruments is assumed to be free of reflections from a virtual room, meaning free-field conditions are
implied.
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4.4 Coupled geometries

In this section, the singular geometry models presented before are coupled, resulting in in-
strument geometries consisting of their constituent acoustical parts. As will be shown below,
coupling between singular vibrating geometries can be modelled in different ways, depend-
ing on the interacting parts and the physical properties at the interaction point between the

geometries.

4.4.1 Elastic spring coupling

A point-blank way to model interactions of linearly coupled vibrating systems can be
achieved by implementing the coupling as an elastic spring between two interacting points
on the respective geometries. If one point of one geometry u1 is coupled with another point
on a second geometry u2, one can write the equation of motion for the coupled point as a
set of ODEs as

uly — kfv(ul) —kig-u2= 0
w2y — kfv(u2) —kig-ul= 0,

(4.51)

with x a constant depending on the respective geometry, fv a potential function depend-
ing on the geometry and the interaction point, and * a coupling constant depending on the
interaction strength and the respective geometry at the coupling point. This results in an
interaction between both geometries, depending on the respective deflections at the cou-
pling point and the spring constant (stiffness) of the virtual spring. Similar coupling is often

applied in vibrational analysis of coupled structural mechanics.®’

4.4.2 Impedance coupling

Another way of coupling geometries implemented in this work is modelled by a coupling via

the impedances at the interaction point. This can be achieved by following the relation®

Z=—, (4.52)
v

with Z the real impedance, F’' the acting force and v the velocity at the interaction point.

With the proposition that the impedance is constant and purely real during one time step,

L. Cremer, M. Heckl, and B.A.T. Petersson: Structure Borne Sound, 3rd ed., Springer, 2010, pp. 434-437.
“Fletcher and Rossing, Physics of Instruments, p. 52.
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equation 4.52 can be rewritten to

F= v-Z=
m-a= v-Z= (4.53)
v
a= —-
m

for the acceleration at the interaction point. To calculate the acting force at a coupling point
Fcp between to geometries (1 and G2, one can express this as the sum of the force Fi;, and
the external force that acts on this point F'px7,,,. To calculate the force for a finite time step,

this can be rewritten into following equations
) 12
Fop = Fg, + AL /FEXngdt
t1

t2
1
= —VV—i—m-At[adt
¢
= —-VV+m-(v+c) (4.54)

with V' = potential energy and v, c the velocity and an integration constant, which is propor-
tional to the acceleration at the beginning of the integration time. This method of coupling
is applied in several sections of the instrument models, for instance the coupling between an
air volume and an adjacent radiating surface or the coupling between the membrane and the

resonator of the banjo.

4.4.3 Structural coupling

A coupling of strings and a resonating body is achieved by regarding the acting forces at the
bridge. With the proposition that the string is attached at the interaction point, the bridge,
the acting force is equal to the shear force of the string giving the following formulation for
the force’!

Fy. = Bug, + Tuy, (4.55)

with B the bending stiffness and T the tension of the string. The bending stiftness B is defined
as
B—FE.-A. K2 (4.56)

' Matthew David Tuttle: “Plucked Instrument Strings: A Combined Frequency - Time Domain Wave Ap-
proach to Investigate Longitudinal forces at the Bridge Support”, Master’s Thesis, Chalmers University of
Technology, 2007, pp. 29-30.
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with the elastic modulus E, the area of the string cross section and K the radius of gyration
defined as /2 for a cylindrical string. As shown by Bank and Sujbert,’? the acting force at

the bridge due to the longitudinal motion of the string can be written as®

1
F, = —[T 4+ EA&,|p, + 5EAz~/ﬂBr2 (4.57)

with ¢ the longitudinal displacement of the string. The coupling of the resonance body’s
motion back to the string depends on the attachment of the string. If the string is fastened
at the bridge, like the strings of the yueqin, the motion of the bridge has a direct influence
in the longitudinal direction of the string, i.e. making the string shorter and longer while
in motion.* If the strings run over a bridge, and are not fastened there otherwise, as is the
case in the banjo, the violin, and the ruan, the influence of a moving bridge acts more in the

transversal polarisations of the string.

%2Balazs Bank and Liszl6 Sujbert: “Generation of longitudinal vibrations in piano strings: From physics to
sound synthesis”, in: The Journal of the Acoustical Society of America 117.4 (2005): 2268-2278.

%*Here, an uniform tension distribution over the string is proposed.

*'This is similar to the effects found in the Finnish Kantele. See:C. Erkut et al.: “Acoustical Analysis and
model-based sound synthesis of the kantele”, in: J. Acoust. Soc. Am. 112.4 (2002): 1681-1691.

154



4 Physical models

4.5 American 5-string banjo model

In this section, an overview on the physical model of the North-American 5-string banjo,
implemented in this thesis, is presented.

The first model incorporates two parts of the banjo, which are of fundamental importance
for the distinct timbre of the instrument and are the basic parts responsible for the sound
production: A string coupled to a membrane.”® An archaic prototype of a banjo could be
constructed, using only a string coupled to a membrane. Hence, at first, the focus is put on an
accurate model for a banjo-string, a membrane and the coupling between both geometries.
In an additional step, this basic model is extended in several ways to include all five strings, a
wooden bridge, more realistic boundary conditions of the membrane, the air volume beneath
the membrane and a model for the finger-pick string interaction. One of the differences of
both models is the coupling between the banjo string and the membrane. It is implemented

as:

1. TypeI: One string is coupled directly to the membrane, and the influence of the bridge

is only approximated linearly.

2. Type II: Five strings are coupled to a model of a wooden banjo bridge which is coupled

to the membrane.

For the type I model, the coupling between the end-point L of the string and the membrane
is approximated by an impedance coupling as shown in section 4.4. Due to the fact that the
bridge of the banjo moves when excited by string pulses, it can be approximated as a moving
end support.”® With the relations developed in section 4.4, the acting force at the interaction
point can be written as

F=7Zxuvyr. (4.58)

Hence, the acting force at the coupling point can be written as
Fop = Fy + Fsyp. (4.59)

Another approach of modelling two coupled geometries can be the achieved by following the
assumption that the sum of the forces, acting at the bridge must be zero. The force that acts
at the contact point of the string (S) and the membrane (M) can be written via a Newtonian
force relation

Fop = f(up + us) (4.60)

%The other components of the banjo also influence the acoustical vibrations as well, but are not as fundamen-
tally crucial for the timbre of the banjo as the string and the membrane.
%Fletcher and Rossing, Physics of Instruments, p. 52.
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The membrane is modelled utilising a finite difference approximation for the spatial differ-

ential as before. This yields following conditions at the coupling points

1
Acp = bazoyu + EULFL. (4.61)

It is presumed that the coupling constant  depends on the mass ratio between the string,

the bridge and the membrane.

4.5.1 Banjo string model

The material properties, like the thickness of the string and the applied tension are listed in
table 2.1. Exact material properties regarding the internal damping of the strings are not
quantifiable exactly for the used strings. Hence, in this work, the material properties, influ-
encing the internal damping, like the Young’s modulus are approximated with values taken
from literature initially and modified Ad hoc to improve the model of the strings and add
more variability to the sound. The spatial domain is discretised with a pseudo spectral grid
approximation, taking the stiffness of the string into account. The equations of motion for
the string are discretised in time and solved with a multi-symplectic time integrator as pre-
sented in chapter 3. For practical reasons, only first order integrators are used for the whole
geometry models because they are applied in the real-time models as well. As already shown,
the error introduced by the time discretisation is small compared to the spatial discretisation.
The time stepping algorithm for the model of the banjo string with velocity and internal,
frequency dependant damping, changing length and coupling at the end point of the string

is shown in equation 4.62

A T
y | =U.
t=1
U
FHA+ R ru)d Flru](1-a-6)—B-nv] z#£0VL
0 r=0VL
F1 [Sm Flrn—u](l—a-0) — B+ Tt_v} — Zvy T =Tp
Tt,V—Fa
T—u—+V

(4.62)
To start the time stepping algorithm, the initial deflection and velocity of the string is needed
to calculate the acceleration at t = 1. A simple triangular deflection for the string is used as

starting condition for the string. The velocity is zero.”” As mentioned in section 2, the strings

*’The triangular shape of the excitation function is a feasible approximation for most plucked string instru-
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of the banjo can be subject to non-linear effects, due to high amplitude deflection. These
effects are included in equation 4.62 with the Kirchhoff-Carrier-like term and the constant
Kk = % The coupling of the acoustical vibrations from the membrane back to the string
is modelled by an impedance formulation presented in section 4.4 and denoted by the term

2Zv)r, with vy the velocity of the membrane at the virtual coupling point.

4.5.2 Banjo membrane model

The membrane of the banjo is modelled as a round membrane with stiffness and non-linear
tension distribution. The banjo membrane presented in section 2 are used as a guide line for
the physical parameters applied in this model. The material properties are given in table 2.2.
The membrane is approximated by a rectangular 64 - 64 grid with a round sub grid of a 30
grid points radius. The boundary conditions are realised by a higher velocity damping at the

respective points.

A
T
V| =U.
t=1
U
F1 {SXy-]:[Tt,u] (1—oz~6t)} -1 (B-v+vy-u) u# QVxe
Ft [Sﬁy-}"[n_u](l—a-ét)} — 71— (Ba - V) u=190Q
F o oxy Flnul(l—a-8)] —n (8 v+y-u)— Ag u=acps
Tt—V+a
T—u+V

(4.63)
The impedance interaction at the coupling point is indicated by the term Zvg. The boundary
conditions of the membrane are modelled by applying different damping at the boundary
points u = u(x,y) € 2. For reasons of brevity, the difference operator of the membrane is
condensed to dxy = 0222y — Dd4z4,, adding a plate-like stiffness to the membrane with
D = 3527_’152) (E= Young’s Modulus and v the Poisson ratio). The term «y - u is added to
simulate the effects of a Winkler bed, as described in section 4.5.4. The type II model of the
banjo does not include the formulation for the Winkler bed. Hence, in the type II model

membrane the value v = 0.

Membrane boundary conditions

The boundary conditions of the membrane were initially set to Dirichlet boundary con-

ditions. During the work with the banjo model, the boundary conditions were extended

ments because it approximates the shape of the string before its release from a finger or plectrum.
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to boundary conditions that influence the damping at the boundary points as well as the
impedance of the membrane at these specific points. To this end, the membrane was im-
plemented with Neumann boundary conditions. To fix the membrane at the rim, a virtual
weight, indicated by €2 in equation 4.63, was added to the grid points at the boundary, as well
as specific velocity damping, indicated by 3¢ in equation 4.63. By changing the weight at the
rim of the membrane, the pitch of membrane could be tuned, by changing the damping, the
mode shapes of the membrane could be tuned. Only by applying these measures, the sim-
ulated membrane yielded a spectrum that is comparable to the measurements presented in

section 2.3.4.

4.5.3 Model of the bridge

The bridge of the banjo is modelled as a two-dimensional plate with forces acting only in the

in-plane direction. The PDE”® can be written as
Ut = Ny - Uz + Ny - Uyy + 2Ny - Ugy (4.64)

The coupling at the interaction point between the membrane and the bridge is modelled by

the interacting impedance relations, as presented in section 4.4.

F1 {(Sm + Syy + &cy) Flr—u](l—a-6)—p- Tt,v} Y # Qu Vxep
F1 [(Sm + Syy + 3xy)Q cFlr—al(1—a-d) — Bq- Tt_V} —Zvy u=Quy
Fl [(&m + Syy + 3$y) cFln—u](l—a-0;)— - Tt_v} —2Zvg  X=zxcp

T(—V +a

T—u + v
(4.65)

The coupling between the string and the bridge is modelled in three ways following equations
4.54,4.51 and 4.55.

4.5.4 Model of the air cavity

In the type I model of the banjo, the influence of the air volume was realised by incorporating

a Winkler bed” to the formulation of the membrane. The influence of a Winkler bed can be

%This equation is taken from: Ventsel and Krauthammer, Thin Plates and Shells: Theory, Analysis and Appli-
cations, p. 98. Omitting the load in the normal direction of the plate.
9 Cremer, Heckl, and Petersson, Structure Borne Sound, pp- 119-120.
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included to the formulation of a membrane by adding an amplitude dependant stiftness.

Figure 4.24 give a schematic overview of the mechanical principle of the Winkler bed.

| Membrane |

EEEEEEEEETEE]

Figure 4.24: Mechanical principle of Winkler bed.

To include the Winkler bed into the formulation of the banjo membrane, a deflection depen-
dant term with can be added to equation 4.33
o*n 5, 0*u  O%u

=C

Gz =" gt (4.66)

with v a uniform stiffness per area coeflicient. Applying this extension to the membrane
model, the lower membrane modes can be tuned to approximate the spectrum of a real banjo
membrane more precisely, as shown in figure 4.27. The membrane equation for the type I
model is given in equation 4.63.

In the type II model, the air under the membrane is modelled as a 3-dimensional air vol-
ume coupled to the membrane. Modern 5-string banjos have a detachable back. Therefore,
the boundary conditions of the air volume changes from Neumann boundary conditions
to Sommerfeld radiation conditions, when the back is removed. % The boundary condi-

tions of the air at the contact point with the resonator are modelled as Neumann boundary

1% Because the banjo is pressed against the torso when played, the back of the banjo is never really open in
a realistic playing setting. Hence, the effect of the open back is diminished. In the model of the banjo
presented here, the open open back is modelled for comparison of the banjo measurements, presented in
chapter 2.

159



4 Physical models

conditions. The time stepping algorithm can be written as

[ A
T
Vi i=U.
t=1
| P
F oxyz  Flnu-pl(1—a &) P # QVpl.—oVP|:=n
F U0y, Flrn-pl(1—a-d) p=0
F {SXY Flrn-pl(l-a- 5t)} —Zvm P = Pla=0
FUy - Flnpl(l—a-5)]  p=pl=n
T-P + P
Tt-P+ P 1
(4.67)
4.5.5 Numerical results
Simulation results for the type I banjo model are depicted in figure 4.25.
2
1.5
1
0.5
0
—-0.5
-1
—1.5
-2
0 1 2 3 4 5 6 7

Figure 4.25: Single string coupled to membrane.

Figure 4.27 depicts the simulated mode shapes of an open back banjo membrane, excited by

an elastic hammer impact.
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10

0 1 2 3 4 ) 6 7 8 9 10

Figure 4.26: Model II five strings plucked consecutively.

Figure 4.28 shows the time series of a banjo resulting from a knock on the membrane near
the bridge.

4.5.6 Discussion

The steady comparison with the measurements led to a model of the banjos membrane in-
cluding the air volume under the membrane, a non-linear tension distribution across the
membranes surface and specially matched boundary conditions. The simulations of the
banjo model show that the air volume under the membrane can be approximated by a Win-
kler bed, yielding good results for frequencies under 1kHz. Including all proposed modifica-
tions in the model of the membrane resulted in comparable spectral information in the sub 1
kHz range. The final membrane, modified to approximate the measurements more correctly,

includes:

« A non-linear tension distribution over the membrane, taking the net-force of the banjo

bridge acting in the normal direction of the membrane into account.
« Boundary conditions that act on the damping and the impedance at the rim.

o A Winkler bed formulation for an initial model of the membrane.

161



4 Physical models

261 Hz

714 Hz

[908 Hz
1109 Hz

1312 Hz
L L
A
.- -
.‘ »

Figure 4.27: Model II knock on membrane. No strings/open back.

« The air volume inside the banjo, modelled by 3-dimensional finite differences.

The mode shapes of the simulated banjo membrane shown in figure 4.27 exhibits following

ratios.
The frequency ratios of the simulated type I banjo membrane are in good concordance with

the ratios of the measured banjo membrane.
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0 02 04 06 08 1 12 14 16 18 2 22 24 26 28 3

Figure 4.28: Model II knock on membrane. Resonating strings.

Mode | Ratiopseqs | Ratiogi,
(0,1) 1 1
(1,1) 1.88 1.91
2,1) 2.73 2.74
(0>2) - —
(3,1) 3.52 3.48
(1,2) — —
(4,1) 4.27 4.25
(2,2) — —
(0,3) = =
(5,1) 5.03 5.03

Table 4.9: Measured vs. simulated frequency ratios of a round banjo membrane without
strings. The mode numbers indicate (axial, radial) nodal lines.
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4.6 Yueqin model

The model of the yueqin consists of the following parts:
« Four linear strings with velocity and frequency dependent damping.
» A wooden front- and back-plate.
+ An enclosed air volume.
« A model for the pluck string interaction.

This models extends the banjo model in two areas. The front plate, which is now a round,
orthotropic wood plate, and the attachment of the strings. As already mentioned in chapter
2, the strings of the yueqin transmit the vibration energy directly at their fixation. Due to

this, there is no bridge and no additional end fixture of the string.

4.6.1 String model

The string model of the yueqin is comparable to the model of the banjo string, with different
boundary conditions and different damping parameters. Because modern instruments have
strings made of nylon, the internal damping of the string is higher compared to the metal
strings of the banjo. The simulated yueqin string includes a model for tension modulation,
Dirichlet boundary conditions at the head, impedance boundary conditions at the fixture,
velocity damping and internal damping. The time integrator for the string of the yueqin can

be written as

A

V| =

u

F1 {Sm-}"[ﬁ,u] (1—a-6t)—[3~7t,v} forx A0V L
- 0 forx =L
U F1 {5”-}"[7},u] (1—a-5t)—ﬁ-rt,v} — Zvpp forz =0 ,
= T+—V+a
Tt-u—+V ]
(4.68)

with the already known damping constants «, 3 and the characteristic impedance at the

coupling point of the string.

String fixture

The string fixture is modelled by the coupling relations presented in section 4.4. The static

force due to the tension of the strings, acting at the bridge, is not included into the model of
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the yueqin because the force does not act in the normal direction of the front plate. Addi-
tionally, the bridge is glued onto the sound-board of the yueqin, which leads to a coupling,
acting on the sheer moment of the wooden front plate. This coupling is approximated by an
impedance coupling at the fixation points of the string, acting on several node points on the

front plate in contact with the affixed bridge.

4.6.2 Model of the front- and back-plate

The front- and back plate of the yueqin are modelled as 2-dimensional, orthotropic Kirchhoff
plates with velocity and frequency dependent damping. The boundary conditions of both

plates are modelled as Dirichlet boundary conditions.

Fi {3Xy-.7-'[7t,u} (1—a-d) —ﬂ'Tt,V} for x # QV x¢p
Oforxz =QOp

;l _ LTJ .7::1 {ng{}-}_[n_u} (1—05-515)—5'7}_V} foru= Qo

U —1 Fi [5Xy cFlr—u](1—a-d) —ﬁ-Tt,V} — Zvpgforx = zcp
TV +a
-+ Vv

(4.69)
The front and back plate are modelled with finite differences on a rectangular grid of 64264
points. The round geometry is approximated by computing the vibrations on a round sub-
grid with a 15 point radius. Thus, at the boundaries two points of the grid remain, to represent

the boundary conditions.

4.6.3 Model of the enclosed air

The enclosed air volume of the yueqin is modelled as a 3-dimensional air volume with a
grid of 64x64x15 in the z, y, z directions respectively. The coupling of the air volume to the
front plate and the back plate is modelled by the impedance relation given in equation 4.53.
The boundaries in x and y plane are modelled as Neumann boundary conditions. The time

integrator of the air volume can be written as:
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A

T

vi|i=U.
=1
| P

./—" 6XYZ F[Tt p} (1—Oé'6t)

F 108y, Flrep| (1 —a-d)
F1oxy - Flr-pl (1 —a-6)| — Zvep
]: 5XY ]:[Tt p](l—a 51‘,) —ZVBP

T-p+P
Tt-p+P

4.6.4 Numerical results

|Y 7£ Qv p|z=0 \ p|z:H
p=1{

P = P|:=0

P= p’z:H

(4.70)

Figure 4.29 shows a time series of the yueqin model and the spectrum of the same recording.
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Figure 4.29: Simulation results of the yueqgin. Four consecutively plucked strings. 4.29a:
Time series, left and right channel. 4.29b: Spectrum.
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4.7 Ruan model

The model of the ruan consists of the following parts:
« Four strings with velocity and frequency dependent damping.
+ A wooden front plate and back plate.
« An enclosed air volume.
+ A model for a wooden bridge.
« A model for the pluck string interaction.

This model extends the banjo and yueqin model in two ways. The front plate has two orifices,
the attachment of the strings and a wooden bridge that is larger than the bridge of the banjo
model. Another feature of the ruan model is the tremolo excitation of the string, realised by

a plectrum-string interaction model.

4.7.1 String model

The string model of the ruan is comparable to the model of the banjo string with different
damping parameters and slightly altered boundary conditions because of the larger bridge.
Comparable to the strings of the yueqin, ruan strings are made of nylon, thus having other
internal damping characteristics compared to the banjos metal strings. The time integrator

for the string of the ruan looks like

A

V| =

Uu

F1 {Sm'}'[n_u](l—a-ét)—6-Tt_v} forx #0V L
T 0 forz =L ’
U F! {3M~J-"[Tt_u] (l—a-dt)—ﬂ-rt_v} —2Zvg forz =0
= T+—V+a
T—u+V

(4.71)
with the already introduced damping constants «, 3 and the characteristic impedance at the
coupling point of the string with the bridge.

String fixture

The string fixture of the ruan is modelled like the string fixture of the banjo. The coupling to

the bridge is implemented as presented in section 4.4.
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4.7.2 Model of the front- and back plate

Analogous to the yueqin, the front plate of the ruan is modelled as a 2-dimensional, or-
thotropic Kirchhoft plate with velocity and frequency dependent damping. The boundary
conditions of both plates are modelled as Dirichlet boundary conditions. The only differ-
ence are the two orifices on the front plate of the ruan. Here, Neumann boundary conditions

are applied at the edge of the opening.

Fi {SXy-]-"[Tt_u} (1 —a-dy) —B'Tt_V} for x # QV x¢p
O0forz = Qp

';l _ LTJ ]-:_1 {5%{,-]—"[7't_u} (1—a~5t)—ﬂ-7't_v} foru= Qo

Y — F [5Xy cFlm—u] (1 —a-d) —B-Tt_v} — Zvpgforx = zcp
T~V +a
Ti—u+ Vv

(4.72)
The same rectangular 64264 grid with a round sub-grid, as applied in the yueqin model, is

used here.

4.7.3 Model of the bridge

In the model of the ruan, the bridge approximated with the same scheme as the bridge of the
banjo. In contrast to the bridge of the banjo, the ruan is modelled with two feet and different

material properties, resulting in different wave propagation speeds in the x and y directions.

4.7.4 Model of the enclosed air

The enclosed air is modelled as a 3-dimensional air volume with a grid of 64x64x15 in the
x,y, z directions respectively. The coupling of the air volume to the front plate is modelled
by the impedance relations presented in section 4.4. The boundaries in x and y plane are
Neumann boundary conditions. The boundary condition at the orifice is implemented as
a Sommerfeld radiation condition in the z direction. The time stepping method of the air

volume can be written as:
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A T

y | =U.
=1

_77
F 6m Flr-pl(l—a-d) P#QVplmoVplmp |
F Yy, Flru-pl(1—a- &) p=Q
F U oxy - Flmp|(1—a-68)| — Zvep P = pl.mo
]

(
oxy - Flrp|(1—a-6)| — Zvgp P =Dpl.=n
{ 5x7p P= p|z=0 A QO

]:

T-P+D PF#Pl—0AQo
T-p+Vv

(4.73)

4.7.5 Numerical results

Figure 4.30 shows a time series of the ruan model and the appertaining spectrum of the same

recording.
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Figure 4.30: Simulation results of the ruan. Four consecutively plucked strings. 4.30a: Time
series, left and right channel. 4.30b: Spectrum.
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4.8 Violin model

A finite difference physical model of a complete violin geometry was presented by Bader!%!.
The string/bow, model implemented in this thesis is loosely based on the same model. It

consists of:
« Four strings with velocity and frequency dependent damping.
« A wooden bridge.
» A wooden front- and back-plate with orifices.
+ The enclosed air volume.
« A model for the bow string interaction.

At this point, it is necessary to point out that a complete and exhausting physical model of
the violin is not the aim of this work and the model presented here is valid up to a certain
point of accuracy. None the less, this model shows the feasibility of the approach even for

more subtle, intricate instruments compared to the banjo.

4.8.1 Violin string model

The time stepping method for the four violin strings is a composite of equation 4.15 and
equation 4.17. The fixation of the string at the nut is modelled as Dirichlet boundary condi-
tions. The coupling between the string and the bridge is modelled by relation 4.52. As already
discussed in chapter 2, open strings and pressed strings of the violin have differing boundary
conditions. The interaction between the finger and the string depends on the rigidity of the
finger tip and the applied finger force at that point. The changing boundary conditions can
be modelled as a change in damping characteristics at the interaction point and the neigh-
bouring points. A boundary dependent damping coefficient of the string ap acting at the

boundary can be expressed as

0.999 if string open,
apli=r, = ¢ (4.74)
0.993 if string pressed.

4.8.2 Violin bridge model

As argued in section 2.3.3, the bridge of the banjo has such high eigen-frequencies that it is

reasonable to omit it in a model of a complete banjo and approximate the force transmission

IRolf Bader: “Whole geometry Finite-Difference modeling of the violin”, in: Proceedings of the Forum Acus-
ticum 2005 (2005): 629-634.

172



4 Physical models

from the string to the membrane with relation 4.53192, The bridge of a violin on the other
hand, has an impact on the vibration of the string and the radiated sound as well. Wood-

house!??

identified a distinct bridge hill in the spectrum of the violin between 3 and 5 kHz.
Hence, a finite difference model of the violin bridge is implemented in this work. There are
several modes of motion for violin bridges!®* in the horizontal and vertical directions or-
thogonal to the string. Comparable to the model of the banjo bridge, the violin bridge is

approximated by a 2-dimensional plate model with in-plane forces.!?.

4.8.3 Violin top plate model

The front plate and back plate of the violin are fixed under tension and exhibit buckling.
Hence, the front- and back plate are modelled as plates with buckling, and velocity as well as
frequency dependent losses. The front- and back plates are coupled at the rim, simulating the
presence of ribs. The orifices on the front plate of the violin are modelled as rhombus-like
openings!®. Free boundary conditions are applied at the points on the plate surrounding

the orifices.

F1 {Sxy-}_[n_u} (1 —a-dy) —B-Tt_v} for x # QV x¢p
Oforxz =QOp

';l _ LTJ .7-":1 {Sﬁﬁ-fht_u} (l—a-ét)—ﬁ-n_v} foru= Qo

U —1 Fl [5}(}/ cFln—u] (1 —a-d) —ﬁ-Tt,V} — Zvpgforx = zcp
T+—V+a
Ti—u—+V

(4.75)

4.8.4 Air cavity

The air filled cavity is modelled as a three dimensional air volume coupled to the front and
backplate via relation 4.53. At the orifices, Sommerfeld radiation conditions are utilised.
The time integration scheme is similar to the scheme of the ruan given in equation 4.73. The
only difference are the material parameters of the wood and the different geometry of the

instrument.

1%2This was implemented in the first model of the banjo.(F. Pfeifle and R. Bader: “Real-time virtual banjo model
and measurements using a microphone array?’; in: J. Acoust. Soc. Am. 125.4 [2009]: 2515-2515)

193Woodhouse, “On the ”Bridge Hill” of the Violin”.

1%3ee the figures in (Cremer, Physik der Geige, 184F.)

195 A structural description on the bridge forces is presented in: ibid., p. 193.

1% The shape of the orifices does not influence the cavity frequency if an equivalent area of the openings is
used. A technique applied in: ibid., p. 216.
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4.8.5 Bow string model

The bow string interaction model is based on the model presented in Bader!?” and the as-
sumptions presented in section 2.4.4. It is extended in several regards and includes the fol-

lowing controllable parameters:

The number of contact points.

o The bow-velocity.

L]

The bow-pressure.

L]

The position of the bow on the string.

« The amount of rosin on the bow.

The iterative process of the model can be described in pseudo-code as'%%:

Listing 4.1: Pseudo-code of bow/string model.

state = glue:

if deflectionContacPoint+1> deflectionContactpoint
state = glide

else if netForceString > bowPressure

state = glide

end

state = slip:

if abs(velocityContactPoint) < velocityBow

state = glue

end
if state == glue
velocityContactPoint = velocityBow
else

Normal string calculation with friction damping
at bow/string interaction point.

end

A schematic block diagram is shown in figure 4.31.

17Bader, “Whole geometry Finite-Difference modeling of the violin”.
198 Stick/slip is denoted as glue/glide.
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Contact Points
Position on the string Position on the neck
Plucking / Bowing

Bowing Velocity

Glue

FALSE

SpPoint < SPoint+1 Apoint < BowPress

TRUE

friction glide

TRUE
FALSE

StringVel<Bow Vel

Figure 4.31: Bow string interaction model.

Mathematical formulation

Figure 4.32 illustrates the basic principle of an idealised interaction between a violin bow
and a violin string. The mathematical description of the bow/string interaction formulates
the relation between the stick-slip cycle of the bow/string interaction and the motion of the

string.
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Deflection
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time
|
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time
Figure 4.32: Idealised Helmholtz motion of a bowed string.

The process of the idealised stick-slip model can be summarized as follows:

« The bow, which is in contact with the string at a certain point has a certain velocity
vp. Due to the friction of the bow, the string starts to stick to the bow, thus having the

same velocity as the bow.

o Ifthe bowing pressure py, is to small, or the net force of the string acting in the opposite
direction of the string extension, or a reflected wave exerts a force larger than the force

of the bow. The string starts to slip.

« This leads to a condition where the string oscillates back to its neutral position. The

friction between the bow and the string leads to a large damping at the bow point.

o Ifthe string velocity is smaller than a certain value, the string sticks to the string again,

repeating the cycle.

This model leads to the following requirements: When the string sticks to the bow the con-

dition at the contact point C' P must be:
VCp = UB, (4.76)

When the model is in the slipping phase the PDE of the string can be extended to:

2 2 4
Ou _ p0u g0 5(@.%,

Poiz Ox? oxt “77)
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with 3(z) a position dependent damping coeflicient that has a large value at the contact point

between bow and string due to the friction between both.

Discussion

The model described above is able to simulate various effects of a bow/string interaction with
satisfactory results. In the real-time implementation, this model is modified in one central
point: If the bow sticks to the string the velocity of the interaction point is not strictly set
to the bow velocity, but the bow velocity is added to the string velocity at that point. At this
moment, I don’t have a reasonable, physically justifiable explanation for this modification
of the standard model, but the simulation results of the violin are more realistic when the
bow/string model is implemented in this way. Further research will be conducted at the
Institute of Systematic Musicology to elucidate the possibility of such an effect in real violin

strings.

4.9 Sound integration over surfaces

Because this work is mainly concerned with acoustical parameters of instruments, all models
are calculated as autonomous geometries, omitting influences of room acoustic parameters
and the influence of air movement in the far field. For auralisation of the acoustical vibra-
tions of the instruments, the sound radiation is integrated to two points into a virtual room
above the instrument. The radiating points are weighted depending on the distance to the
respective sound radiating parts. Additionally, the difference in arriving sound due to the
finite speed of sound in air is also taken into account. A certain distance to a sound radiating
surface leads to a specific delay that rises with the distance from the sound radiating surface.
A short outline shall exemplify the applied method: If we have a sound receivers in a centred
position 1 meter in front of a banjo, which has a membrane diameter of approximately 30
cm, the distance of the receiver to a point on the rim of the membrane can be calculated

using Pythagoras’ theorem by the equation

Azpim = \J D22 eger + AYMazd o prane = V12 152m] = 1.0112[m]  (4.78)

Hence, the difference between the centre-point and a point on the rim is 1.12 cm. With
a sample rate of 2! Hz and a velocity of sound of 3432, we get a maximal spatially rep-
resentable delay of approximately 343/2'7[m] a 2.27mm. Thus, the membrane sound,
radiated from node-points near the boundary are approximately 4 sample steps behind the
sound produced at the membrane centre.

This effect can be included by implementing a sample delay, depending on the position of the

virtual listener. This sample delay can be included in the sound integration model straight-
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forward.

Figure 4.33: Integration delays for round membrane and centred receiver.
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CHAPTER B

FPGA - A STRUCTURAL OVERVIEW

Metal on Metal...

(Anvil,1982)

In this chapter, a structural overview on the FPGA devices used in this thesis is given. After
an overview of several features of the specific hardware, used for all hardware designs, an
introduction to two FPGA boards used as development platforms for the designs, is given.
In the following sections concerned with structural properties, a focus is put on specific fea-
tures of FPGA devices that sets them apart from CPUs of standard PCs and the advantages
and disadvantages of an FPGA for implementing numerical methods in general and the phys-
ical modeling problems regarded in this thesis in special.

To this end, the parallel hardware properties and the input/output structure are of special
interest in this chapter. Furthermore, particular features like the on-board AC-97 AD/DA
converter on the Virtex-2 development board, as well as special functional blocks like the
DSP-48 block on the development board consisting of the Virtex-6, that are used for the
real-time models are explained in more detail.

All on-board communication protocols, which are utilised in the final models presented in
chapter 6, are explained and exemplified with a data transmission instance.

This chapter ends with a short introduction to the PCle communication protocol that is used
for data transfer in 2nd generation design models. This includes a basic example of a host-

device data transport and communication is presented.
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5.1 History of FPGAs

The historic development of FPGA devices is closely linked to the evolution of integrated
digital circuits in the late 1960s, the 1970s and early 1980s. The development of logic devices
of that time period was mainly driven by the manifold advances in transistor and integrated

circuit technology, or in the words of C. Maxfield:

The late 1960s and 1970s were rampant with new developments in the digital

IC arena.!

Custom logic devices of that time period can roughly be divided into two categories:
1. Progammable Logic Devices (PLDs).

2. Non-programmable devices like Application Specific Integrated Circuits (ASICs) or
Application Specific Standard Parts (ASSPs).

The main difference between both device classes can be found in their basic structure. PLDs
are only partially wired to perform certain binary logic functions, whereas ASICs are hard-
wired during the initial production state. This means, a specific function of an ASIC is fixed
and can not be altered by an end-user after the production state, a PLD on the other hand
can.

These fundamental differences lead to differing design and implementation practices and
thus to differing fields of applications. In comparison to PLDs, ASICs have a higher logic gate
count and are mainly used to implement highly specialised functions, but have the drawback
of long production cycles for implementation, prototyping and debugging. If an ASIC has
inherent design errors, they often surface after a first prototype is manufactured and the ap-
pliance is running under realistic conditions in the respective field of application. PLDs and
Programmable Read Only Memory (PROMS) devices can be programmed after the produc-
tion state, which has the advantage that a faulty chip design does not lead to an complete er-
roneous production charge. Still, compared to most ASICs, PLDs have considerably smaller
logic capabilities.

The first programmable devices had a transistor array structure that could be flashed with
different logic circuit designs by adding connections (anti-fuse technology) Clive Maxfield:
The Design Warriors Guide to FPGAs, Elsevier, 2004, p. 12, or removing connections (fusible
link technology) ibid., p. 10. The added or removed links were permanent, so the devices
could only be programmed once. Due to that, they were capable of performing specially
designed tasks with very high clock rates but they could not be reconfigured after a design

was implemented on the device.

'Clive Maxfield: The Design Warriors Guide to FPGAs, Elsevier, 2004, p. 28.
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Further advances in the field of programmable integrated circuits lead to technologies that
made it possible to erase an initial design and re-program the device. The most prominent
technology among these devices are Erasable Programmable Read Only Memory (EPROM)
or the Electrically Erasable PROM (EEPROM). Devices incorporating these technologies
could be programmed and reprogrammed multiple times by removing the connections of the
design on the metal layer by exposing it to ultra-violet light or a certain voltage respectively.
Up to this point of programmable hardware evolution, there always existed a gap between
the two clusters of hardware device classes. On the one hand there were PLDs, which were
highly configurable but only consisted of a small amount of logic facilities, and ASICS on the
other hand that could perform highly complex logic circuits but were not (re-)configurable
and were expensive and elaborate to develop for.

The next large leap in the evolution of freely programmable hardware was sparked by research
done by Ross Freeman and Bernard Vonderschmitt, the founders of XILINX, who were the
first to develop and produce freely programmable hardware-gate logic on a large scale.?

In 1985, the first commercially available programmable logic chip was the XC2064, called
a Field Programmable Gate Array (FPGA)?. The first FPGA device had 64 programmable
and freely connectible Logic Blocks (CLB’s) and an aggregate gate count of 1200 logic gates®.
FPGAs were developed as a device to combine programmability of PLD’s, reconfigurability
of EEPROMS and high logic gate count of ASICS Maxfield, The Design Warriors Guide to
FPGAs, pp. 49ff. This period of time is often regarded as the starting point for the develop-
ment of more advanced FPGA devices by XILINX and other vendors. At the present day,
the biggest FPGA chip vendors are XILINX and Altera among other smaller companies as
Lattice Semiconductor or Microsemi ibid., pp. 161 ft.

In this work, XILINX hardware is used exclusively, but the presented models could be are

not bound to a specific vendor and could be implemented on other FPGA devices as well.

Zhttp://www.edn.com/electronics-blogs/fpga-gurus/4306558/Remembering-Ross-Freeman.

*Field Programmable literally means, programmable in the field, outside of the laboratory, where a logic func-
tion is programmed onto the device. The name FPGA is still used today for logic devices of similar design
structure and logic capabilities.

*Modern FPGAs like the Virtex-7 have around 2 Million logic gates.
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5.2 Features and properties of FPGAs

In the following section, features and properties of the FPGA devices used in this work are
presented. On a fundamental level, modern FPGAs are comparable to earlier FPGA chips,
but special device features can change from generation to generation. Hence, only a portion
of the capabilities of FPGAs are presented here and a focus is put on structural parts used

during this thesis.

5.2.1 Structure of FPGAs

As stated before, the hardware structure of FPGAs are influenced by PLDs, EEPROMs and
ASICs. Depending on the device generation, basic logic gates are realised by different tech-
niques.

In a large fraction of older FPGAs, the basic logic functions are implemented with logical
gates comparable to SRAM-cells.”

In modern FPGA devices logic gate functionality is realized by look-up tables (LUTs)® which
are, in a sense, addressable function generators. This means that they can be programmed to
perform different logic functions on a set of inputs.

These basic logic cells are part of a larger logic conjunction which is called a slice in Xilinx
devices. All slices contain one LUT, eight storage elements, multiplexers and carry logic
Virtex-6 FPGA Configurable Logic Block User Guide, version 1.2, Xilinx, 2012. Some Xilinx
slices, called slicemibid., additionally contain functions to store data as distributed RAM?
and have 32-bit wide shift registers.

Two slices form a configurable logic block (CLBs), as is depicted in Figure 5.1. It depicts
a (LUT)-based CLB, as commonly found in XILINX FPGAs. Earlier Xilinx FPGAs, as the
Virex-II pro, contained LUTs with 4 inputs. Newer Virtex-7 devices have configurable 6-
input LUTs. LUT-based CLBs are used in all the XILINX FPGAs applied in this work, there-
fore only LUT-based CLBs are considered here.

>Maxfield, The Design Warriors Guide to FPGAs, 57 ff.

SLUTs are also called Logic Function GeneratorsXILINX: Configurable Logic Block User Guide, XILINX, 2010,
p. 2 ff.

"Random Access Memory.
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Figure 5.1: Schematic overview of a Virtex-6 CLB, the programmable interconnect network
and a special function block.

The LUTs inside a CLB can operate in several different input/output modes depending on
the device class and generation. In addition to being connectible as 6-input 2-output LUTs,
they can be configured as shift registers, RAM blocks or first-in/first-out memory. In some
CLBs there are additional latches, in other are Flip-Flop cellsVirtex-6 FPGA Configurable
Logic Block User Guide which can be used as asynchronous or synchronous registers.

The outputs of the single CLBs are connected to a programmable interconnection network,
which is attached to a multiplexer on the output stages, multiplexing output signals to input
stages of other CLBs. This cascading of CLBs allows for more complex logic functions, larger
RAM blocks or longer shift register.

A structural overview of a SLICEM is shown in figure 5.2.
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Figure 5.2: Schematic overview of a slicem with additional shift and distributed RAM capa-
bilities. Taken from Virtex-6 FPGA Configurable Logic Block User Guide.?

The single CLBs are connected with an interconnection network, which is attached to a mul-

tiplexer on the output stages, multiplexing output signals to input stages of other CLBs.

5.2.2 Special function blocks

Besides basic logic cells, XILINX FPGAs contain other functional logic blocks, that can differ
from device generation to device generation. Some additional logic blocks which are used
in the presented designs, are memory blocks in the form of random access memory (RAM)
and first in/first out (FIFO) memory blocks. A logic blocks that extends basic FPGA logic
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by an integrated circuit implementation of arithmetic function is the DSP48el block with
integrated Multiply-and-Accumulate (MAC) circuitry. All special function blocks are on
the FPGA die close to the logic gate resources and can be connected to the same high-speed
interconnection network the core logic is connected to as is shown in Figure 5.1.

In modern Xilinx FPGAs the CLBs and the special function blocks are arranged in a column
layout. Figure 5.3 depicts a schematic overview of the arrangement of DSP48el, BRAM and

logic slices.

FPGA

=== [ogic slices
= DSP

=== Memory

Figure 5.3: Schematic overview of Xilinx column design.

DSP blocks

Most modern FPGAs by the vendors Xilinx or Altera have special logic blocks that are de-
signed to perform DSP typical operations. They are implemented on the same structural
level as CLBs, this means that the data transfer between gate based logic and DSP cores can

be realised by the high-speed interconnect network.
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Figure 5.4: Schematic overview of a Virtex-6 DSP48el. Blue blocks are registers.

Figure 5.4 depicts a schematic overview of a DSP48el slice which is part of most modern
Xilinx FPGAs. It consists of four inputs, a pre-adder, a 25bit x 18bit multiplier, a 48bit accu-

mulator and a pattern detector that can be used to efficiently compare values.

RAM blocks

In the Xilinx devices used for this thesis RAM can either be implemented by combining
several CLBs, this is called distributed RAM or DisRAM. Another sort of dedicated RAM
on Virtex FPGAs is called block RAM (BRAM). It can be configured to different sizes and
different function modes. Every BRAM block can perform in dual-port mode facilitating
36Kb of memory.

Both memory blocks can be used as memory of variable bit width and depth. Similar to
the DSP blocks, the special RAM blocks are located on the FPGA chip and are connected
to the CLBs via the internal routing network, which makes the communication and data
transfer faster, when compared to a communication with a peripheral RAM which can be
implemented on a hardware board connected to the FPGAs IOs, see Figure 5.3. The resources
of the Virtex-6 VLX240T FPGA are listed in table 5.4.

5.2.3 Hardware Description Language

A common trait of modern programmable logic devices is that functional logic is designed
using a Hardware Description Language (HDL). In the early days of hardware design, the

commonly used method was paper and pencil based, drawing schematics of connected logic
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registers, a technique comparable to modern CAD® based RTL!? design tools. To overcome
limitations of this design practice for growingly large ASIC designs the first HDLs were in-
troduced during the 1960s to describe functional parts of logic devices on a abstraction level
higher than the gate level'!. In the late 1980s, the use of HDLs started to replace the pro-
cess of the schematic based design methodology.!? During the first years of its development,
HDLs were not standardised, and most functions were vendor- and application-specific.
Today, there are two HDLs commonly used to program FPGAs, Verilog and VHDL.

Both languages incorporate similar concepts, which can be categorised into low-level features
like:

« bitwise declaration of signals,
« control over electronic signal levels,

« adirect access to signals via physical input and output ports of the hardware develop-

ment board
and high-level constructs like for instance:
« object oriented programming techniques,
« pointer data types

o and procedural programming

among other features.'*

A central difference of a HDL, compared to other programming languages is that it en-
ables the developer to directly design hardware functionality using software statements. This
means that every logical instruction must be representable by an equivalent formulation in
gate logic.

A second difference is the fact that all code written in a HDL instruction file is evaluated con-
currently. This means that instead of sequential code evaluation like in a compiled high-level
language (C,C++ or Java ...) all code that is translated into a hardware function is evaluated
at the same time, if not specifically designed otherwise. Sequential code can be implemented

by designing a finite state machine (FSM).

®Computer Aided Design.

!%Register Transfer Level.

"'The gate-level is the level of the underlying transistor logic
2Maxfield, The Design Warriors Guide to FPGAs, p. 153.

BVery Highspeed Integrated Circuit Hardware Description Language.
"In this work only VHDL is applied.
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5.2.4 Finite State Machine

Because all logical statements expressed in VHDL are evaluated concurrently, sequential
code must be implemented with a Finite State Machine (FSM), which controlls the singular
steps of the calculation which need to be evaluated successively and synchronised!®. There
are three standard versions of FSMs that are commonly used in various applications. The

two most prominent are known as:

1. Moore Finite State Machine

A state machine where the output only depends the state.

2. Mealy Finite State Machine

A state machine where the output depends on the state and the input.'6

The FSM implementation, depicted in figure 6.6, is reused for all models of the musical in-
struments. Because some state outputs of the FSM implemented in this thesis depend on the
input!’, the utilised FSM is a mixed Mealy and Moore state machine. '® Table 5.1 shows the

states of the models and the corresponding assignment. The 6 finite states control the arith-

State Task
1 Load values
Calculation step I
Calculation step 1T
Calculation step III
Write values to the respective memory position
Write stable output data

AN U WD

Table 5.1: States for the harmonic oscillator.

metic flow of the math entity!® through the control signals as shown in figure 6.8. A Root
Transfer Level (RTL) structure the of the model including both entities is shown in figure 6.7

and the simulation results from Modelsim can be found in figure 6.8.

Development Environment

The Integrated Development Environment (IDE) applied in this work is ISE, a software IDE
supplied by XILINX, the vendor of the utilised FPGA chips. Besides the logical constructs
of the VHDL standard, there are additional hardware specific features incorporated into ISE,

15 This includes the calculation for all values which are dependant on values from previous time steps.

'(Peter J. Ashenden: The Designer’s Guide to VHDL, 2nd, San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc., 2002).

17 Because of the possibility to change values of external variables while the computation is running,

8 A technical definition of both state machines is given in Ashenden. (ibid.)

It would also be possible to implement the FSM directly in the same entity as the mathematics, but for the
sake of brevity, both functional parts are implemented in separate structures.
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like hardware specific macros and simulation libraries. To make use of the XILINX simu-
lation primitives, it is necessary to use a VHDL specific data type. The most fundamental
data-type in VHDL is a BIT, having two possible values: one or zero. To represent longer
numbers several bits can be combined to a BIT_VECTOR with a specific length. An exten-
sion to this basic binary number representation, STD_LOGIC or STD_LOGIC_VECTOR

can be used. Besides binary one and zero values it can take the following values:
+ ’U’:= uninitialized. This signal hasn't been set yet.
o ’X’:= unknown. Impossible to determine this value/result.
« ’0":=logic 0.
1= logic 1.
« ’Z’:= High Impedance.
» "W’:= Weak signal, can't tell if it should be 0 or 1.
« ’L:= Weak signal that should probably go to 0.
 "H’:= Weak signal that should probably go to 1.
o ’-:=Don't care.

STD_LOGIC is used in most XILINX simulation libraries and thus is needed when us-

ing hardware specific XILINX macros. Another VHDL data type utilised in this work is

N . .4 —1]in 2 complement for-

SIGNED. This data type represents numbers from [—5 ... 5

mat, with NV the number of bits.

Design flow

The design flow for the hardware models can be summed-up in 6 steps:
» Development of the low level model in VHDL.
« Synthesize the model.

o Perform a functional simulation of the synthesized system with a VHDL simulation

environment?’.
« Debug the code using the simulation tool and the synthesis reports. 2!

« Place and route the code and generate a bit-file.

*YMentor Modelsim is used in this work.
?'The functional simulation can be extended with a timing simulation of the routed design.
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o Flash the bit-file to the specific hardware.

Besides the functional description of the model, in the VHDL source code, the Place&Route
process routes external ports to internal buses via a list of I/O-ports.

The declaration for the signal ports is put into a *.ucf-File, a User Constraint File. Here all
input and output signals are routed to the respective hardware addresses of the respective
FPGA board. The router reads the constraint file and connects the hardware ports to the
internal signals. The FPGA devices used in this work can all be programmed from a PC via

a programming interface and a hardware-specific flash tool called iMPACT by XILINX.
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Logic Cells 30816

Slices 13696

Total Block Ram (KB) | 2448
Multiplier Blocks 136

Table 5.2: Logic resources of a Virtex-2 XC2VP30 device.

5.3 XUP Virtex-II Pro Development System

The XUP Virtex-II Pro Development System is an FPGA application development board,
which consists of a Virtex-II FPGA Chip surrounded by other hardware components and

devices. In this work, four of the on-board components are utilised:
1. The Virtex-II Pro FPGA.
2. The AC 97 Audio CODEC*.
3. User Switches.

4. 1/O Ports for transmitting and receiving data via a I2S protocol.

5.3.1 Virtex-2 FPGA

The Virtex-2 FPGA was first released in 1998. The main difference, compared to other de-
vices of that time period, was the possibility of programming the chip via an USB-Port from
a standard Personal Computer with an point-to-point flash protocol (JTAG). The logic re-

sources of a Virtex-1I are presented in table 5.2

5.3.2 LM4550-AC’97 CODEC

In the first hardware models, the on-board audio CODEC chip LM4550 is used as part of
the FPGA hardware design. The data communication is realised with a serial communica-
tions protocol, the AC’97 Rev. 2.1 specification protocol. Basic functional properties of the
CODEC are depicted in figure 5.5. As is shown there, the converter is build around a 18-bit
Sigma-Delta ADC/DAC and has multiple input and output signal lines. For the implemented
models, one stereo input without amplification and one stereo output is implemented. Table

5.3 gives an overview over the signals connected to the hardware models.

Interface protocol

A serial data transaction of the AC ’97 interface can best be illustrated by showing the dif-

ferent phases of data processing and transmission as standardised in the AC ’97 Rev. 2.1

22CODEC=Coder Decoder.

191



5 FPGA - A structural overview

1
1 \ :
mict O o GAIN: D6,0Eh * POWER SUPPLY CODEC < ¢
™ *0i8, 2008 D> & IDENTITY 0o#
micz Q—> | » (:) wono | ¢ REFERENCES SELECT _[¢—Q b1¥
! MIX c 1
: Ms al 0 1
i 1
AUX > 1Ch - 18
D W le——0 xan
voeo & > o 22 '
. é | MUTE i EF |——»O xTAL_out
T 1 EL g & 1
LINE_IN O » t 55 |
1 > ¢ 88 |
| T <=y CIN
PHONE ‘ Yy vYyy y M I _* :
" n AN 8 p
Fepee Bt |l | | B l: AC 97 15 fE Lé SDATA_IN
& sl e REGISTERS [ > 5 -
A all A Z le—>»0
M wllm] L =] -
Q 1
MONO_OUT MONO VOLUME gs 2 <—OI SYNC
8
‘Atten Mute 18h 1| 2 N Q SDATA_OUT
oA A DAC SE l——0 reser#
HEADPHONE | 31 [ e 3 z i
HP_OUT ; 18] S
VOLUME: 04h 9 573, 5% —>0 ar0
Atten Mute 2 1
5 NATIONAL 1
= 3D SOUND :
MASTER
LINE_OUT VOLUME: 0zh [ STERED ] !
Atten Mute MIX 3D 1
MIX2 !
|
<= STEREO SIGNAL PATH NN NN (HEX) Address of Analog Input Volume % Asterisk denotes default
— MONOSIGNAL PATH thibd Control Register setting after Cold Reset
G i Control Register with
Gain Attenuation Mute ontrol Register wi
«— DIGITAL SIGNAL PATH nAll GAM  Mite s default) NNN- | exadecimal address NV
Control bit m in Register with

Drm, b hexadecimal address NN

Figure 5.5: Schematic overview of audio CODEC LM4550. Taken from LM4550 AC '97 Rev
2.1 Multi-Channel Audio Codec with Stereo Headphone Amplifier, sample Rate
conversion and National 3D Sound.*

SDATA_IN | Signal from the microphone/line input of the converter
BIT_CLK The clock signal of the serial data
SYNC Synchronisation bit to synchronise the data frames
SDATA_OUT Data to the output of the converter
RESET System wide reset signal for cold and soft reset

Table 5.3: Signals connected to the model.

specification. The AC link serial interface protocol is used as a communication interface to
the LM4550 converter. All digital signals are processed in serial with a clock speed of 12,288
Mhz for the link clock signal BIT_CLOCK. The SYNC signal divides the transmission pro-
tocol line into frames of 20.8.5** length with one tag slot of 16 bit length and 12 data slots
of 20 bit length for every frame. A decomposed serieal data frame is depicted in figure 5.6.
Depending on the direction of the SDATA signal, slot number 1 and 2 contain command
and status signals respectively, the following two slots contain PCM coded data. Depending
on the transmission mode and the implementation of the AC ’97 protocol, the slots named
RSV, which stands for reserved, contain PCM, status or control data.

The serialisation of the parallel data is performed pipelined in the core module of the AC’97

2920.8us = T(lJoon
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Slot No. o 1 2 3 4 5 6 T 8 9 10 11 12
BIT.CLK [l « o mn
SYNC [

SDATA_OUT ‘TAG |CMD |CMD |PCM|PCM | RSV |PCM |PCM|PCM| PCM| RSV |RSV |RSV ‘

SDATA_IN ‘TAG |STAT|STAT|PCM|PCM| RSV |RSV |RSV |RSV |RSV | RSV | RSV | RSV ‘

Figure 5.6: AC 97 protocol signal overview.
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Figure 5.7: 12S system configuration consisting of one transmitter and one receiver. The tim-
ing diagram illustrates the serial data transmission of a stereo signal.

interface design. The BIT_CLOCK signal is responsible for the timing of the parallelization,

as well as the serialisation of the data.

5.3.3 I2S interface

The first hardware implementations of the violin and the banjo, consists of a Virtex-II Pro
and a ML-605 XILINX development board that are connected using an 12S protocol. The
strings of the instrument are computed on the Virtex-II board (B1), the remaining geometry
is computed on the ML-605 board (B2). The bidirectional data transmission between B1 and
B2 contain computed sound data of the strings and calculated sound data from the body of
the instrument. Again the AC’97 CODEC on B1 is used for auralisation of the synthesized
sound.”

On each board, a transceiver circuit is implemented to route and process the data stream
from one device to the other device. The design of the I2S is implemented following the
design specification by Philips Semiconductors as depicted in figure 5.7.

Compared to the AC’97 protocol, the 12S protocol is a more simplistic protocol thus less

»The ML-605 development board does not consist of an audio CODEC.

193



5 FPGA - A structural overview

Logic Cells 241152

Slices 37680

Total Block Ram (KB) | 14976
DSP48 Blocks 768

Table 5.4: Logic resources of a Virtex-6 XC6VLX-240t device.

demanding on the hardware resources, because of its smaller protocol overhead. In the im-
plemented designs, the transmitter functions is the master. A schematic overview of a trans-
mitter and receiver interaction can be found in figure 5.7 in the upper left corner with the

signal timing at the bottom.

5.4 The ML-605 Evaluation Board

The ML-605 Evaluation Board is a development platform for high speed communication and
signal processing appliances built around a Virtex-6 chip. The built-in features that are of

interest in this work are include:
o The Virtex-6 XC6VLX240T FPGA.
« Two Mezzanin expansion ports.
o A PCle Gen.1 8x interface / Gen.2 4x interface.
o An IEEE 1394 ethernet IO port.

« Four general purpose IO ports for high speed communication.

5.4.1 Virtex-6 FPGA

As an extension to the instrument models implemented on the Virtex-II chip, a Virtex-6
device was utilised to calculate whole geometry models of instruments, like the model of
a violin including the front plate, back plate and the enclosed air in the violin body. The
logic resources available on a Virtex-6 VLX-240T device that are utilised in this work, are

summarised in table 5.4.

5.5 PCle interface

Besides multiple other In/Out-ports, which are available on the XILINX ML-605 develop-
ment board, a host-device communication port, used in this thesis, is the Peripheral Com-

ponent Interface express (PCle) interface. In the present stage of the application design, the
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PCle-port is used to transfer data between the interface layer of the instrument model, cal-
culated on the FPGA-Board (Device), and a Graphical User Interface (GUI) running on a
Personal Computer (Host). In this section, an introduction to the basic functionalities of the
PCle protocol and a short overview on the implemented model, including the communica-

tion protocol, is given.

5.5.1 PCle fundamentals

In 2002, the PCI interest group, the PCI-Sig consortium?®, published the first specifications
of the PCle protocol, as an extension to the, already established PCI and PCI-X protocolls.?’
To this day, the basic protocol has undergone several revisions and currently has the ver-
sion number 3.0%8. Today, the PCle interface is a de-facto standard interface for high data
throughput communication of peripheral devices, exchanging data with the central process-
ing unit in Personal Computers®. One of the most notable differences of the PCle interface,
compared to the older PCI and PCI-X protocols is the serial structure of the data transfer
lanes, instead of the prior parallel structure. Another feature that discernes the protocols
is the Point-to-Point communication of PCle, enabling the bus to handle higher clock rates
without protocoll overhead of bus arbitration, found for instance in the original PCI proto-
coll specification®?. The maximum data transfer rates that can be achieved with a PCle 3.0
interface are ~ 16GTB.31 In the presented models, the utilised PCle interface is a version 2.1
revision with a 4x lane interface configuration. The maximal data rate including the 10b/8b
protocol overhead is approximately Q%b. The communication with the GUI running on the
personal computer is achieved by implementing a windows RAM driver writing configura-
tion data to the FPGA board and receiving sound data from the FPGA board.

5.5.2 PCle layer communication

132

Following the Open Systems Interconnection (OSI) model®” standard, the PCle communi-

cation protocol implements the three bottommost layers:
1. The Transaction Layer (TL).

2. The Data Link Layer (DLL).

26 A consorium of 900 hardware and software companies.A.H. Wilen, J.P. Schade, and R. Thornburg: Intro-
duction to Pci Express: A Hardware and Software Developer’s Guide, Engineer to Engineer Series, Intel Press,
2003, p. 16.

¥ibid.

28 Some specifications for Revision 4.0 were published in August 2012.See: http://www.pcisig.com/news_
room/Press_Releases/November_29_2011_Press_Release_/.

»Wilen, Schade, and Thornburg, Introduction to Pci Express: A Hardware and Software Developer’s Guide.

0y, Liebig, Thomas Flik, and M. Menge: Mikroprozessortechnik und Rechnerstrukturen, Springer London,
Limited, 2005, pp.134.

3'Wilen, Schade, and Thornburg, Introduction to Pci Express: A Hardware and Software Developer’s Guide.

**The ISO number is: ISO/IEC 7498-1.

195


http://www.pcisig.com/news_room/Press_Releases/November_29_2011_Press_Release_/
http://www.pcisig.com/news_room/Press_Releases/November_29_2011_Press_Release_/

5 FPGA - A structural overview

Host Device

PCle core Interface to Application PCle core Interface to Hardware

i i

Transaction Layer Transaction Layer
Data Link Layer Data Link Layer
Physical Layer Physical Layer

Physical Connection

Figure 5.8: PCle layer model.

3. The Physical Layer (PL).

As depicted in figure 5.8, every layer communicates with the other layer via communication
ports. The data is transported in layer specific packets, which have a specific header struc-
ture, which is updated for every layer it passes. The topmost layer, viewed from the user
application, is the transaction layer. The data presented to the TL is packed into a Trans-
action Layer Packet(TLP). The TLP consists of the data, also called payload, and TP-header.
The TLP is transmitted downstream to the next layer, the Data Link Layer (DLL). In this layer
the payload (TLP) is packed into a Data Link Layer Packet (DLLP), adding information to
the packet header. The DLLP is then transmitted to the physical layer (PL). In the PL, the
logic signal is transferred to an electric signal. Before the physical transmission is realised,
the signal is coded to a 8b/10b data protocol to minimize the error-proneness of the physical

transmission and enable a better clock recovery.*

5.5.3 Implemented design

The implemented design is based on a XILINX Core Designer Project for the ML-605 FPGA
Development-Board, which utilised four Block-RAM’s with 2048 KByte each. The PCle end-
point device implements four addressable RAM-Blocks, that act as Memory-Spaces*.

3The encoding minimizes the DC-offset in the signal. This is achieved by coding the transmitted signal to
allow only five consecutive ones or zeros at most. (Liebig, Flik, and Menge, Mikroprozessortechnik und
Rechnerstrukturen, p. 285).

**The RAM-blocks could also be implemented as IO-Spaces but in this design, the host protocol is crafted
to work with Memory-Spaces.For the definition of Memory Spaces see: Wilen, Schade, and Thornburg,
Introduction to Pci Express: A Hardware and Software Developers Guide, p. 122.
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5.6 Final design consideration

Two of the goals of the implemented design is a fast reconfigurability and a fast communi-
cation between a front-end and the modelled instrument for a direct interaction and thus
good playability in a musical setting. The design methodology for reconfigurable models
is presented in chapter 6. The influence of the protocol timing on design considerations is

presented in the following section.

5.6.1 PCle protocol timing

The timing of the PCle protocol depends on the type of PCle connection type and the version.
The bandwidth for the PCle 2.0 implementation used in this work has a link speed of approx-
imately 16% for a 16x connection. The ML605 board has a PCle 2.0 8x link with a maximal
transmission speed of 8%.35 Because the real system has additional overhead added by the
operating system driver and PCle protocol overhead, the raw bit rate considerably smaller.
At this point of the work, it is not possible to assess the overhead of the operating system
because of the lack of PCle debug hardware. But at this stage of the development, the syn-
thesised sound from several points are integrated on the hardware, so only one audio sample
per time step is transferred from the device to the host. 3

In the current design, the control-data from the host to the device is written to the hardware
model every 20 milliseconds. Hence, the timing for the upstream data from the host to the

device is not critical.

This means, the protocol could be implemented to transmit the calculated audio data from the model, with
a bit depth of 24 bits per sample and a sample rate of 2'® with a maximal data transfer rate of ~ 5080 data
points per second.

3 An implementation of the newer and more powerful PCle 3.0 with a 16x link would enhance the data rate
to ~ 32% which would mean in an ideal case around 20000 data-points of a model on a FPGA could be
transferred in real-time.
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CHAPTER 6

REAL-TIME FPGA MODELS

Il semble que la perfection soit
atteinte non quand il n'y a plus
rien a ajouter, mais quand il n'y
a plus rien a retrancher.

(Antoine de Saint-Exupéry)

This chapter is concerned with FPGA real-time hardware implementation of the physical
models presented in chapter 4. It gives a step by step description of optimisations applied
in the final hardware models. First, all necessary adoptions for the FPGA implementation
are shown with a focus on the data path as well as a classification of used data types. There-
after, a layer model and a corresponding communication protocol is presented, classifying
every block of the implementation according to its functionality and control path. Then,

implementations for four complete geometry models are presented.

6.1 Introduction

When using FPGA hardware as a high performance computing platform to enhance existing
algorithms in regards to computational speed and throughput there are different strategies
that are applicable to improve existing algorithms. When optimizing hardware logic circuits
on devices like FPGAs, a central design goal is perfectly summarized by Antoine de Saint-

Exupery’s citation in the dictum!. Applied to hardware design methods it can be translated

"Translated to English it reads: Perfection is achieved, not when there is nothing more to add, but when there is
nothing left to take away.
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as: The more an algorithm is condensed to its core functionality, the more efficient a hardware
model is and the faster and more effective the tasks are performed on the specific hardware.?
There are several different techniques typically used to optimised numerical methods on
FPGAs, but two central techniques which are crucial for FPGA based acceleration of an

algorithm are a) parallelization and b) data-type related optimisations.

6.1.1 Parallelization Considerations

The technique of parallelization has been proven successful for a wide range of different ap-
plications, like real-time noise source identification* or high speed direction of- arrival algo-
rithms® or delay-sum beam forming®. Other works using the FPGA for Digital Signal Pro-
cessing (DSP) applications are published by Madanayake et al.,” where 2D/3D Plane Wave
Filters are realized by IIR/FIR-Filters or the work by Shuang et al.,} who focuses on con-
verting analog controllers to digital controllers using filter-design techniques. Similar to the
mentioned work, there are several papers proposing methods of implementing DSP filter de-
signs (IIR/FIR) on a FPGA chip®. The parallel processing capabilities predestine the FPGA
to be used in real-time applications. As shown for example for particle track recognition'?,
high speed cross correlation!! digital beamforming!? among other applications. In all men-
tioned works it was shown that algorithms could be speed-up considerably, or even com-
puted in real-time for the first time, utilising the parallel processing capabilities of modern
FPGA chips. Besides the mentioned papers, focussing on highly specialised topics of signal

processing, there are several works using FPGAs to calculate various acoustical phenomena

2Andrew B. Kahng et al.: VLSI Physical Design: From Graph Partitioning to Timing Closure, Springer, 2011,
pp-20ff.

? For a comprehensive list of acceleration strategies see:Herbordt et al. (Martin C. Herbordt et al.: “Achieving
high performance with FPGA-based computing’, in: Computer 40 [2007]: 50-57)

K. Veggeberg and A. Zheng: “Real-time noise source identification using programmable gate array FPGA
technology”, in: Proceedings of Meetings on Acoustics 5 (2009)

>C Hao and W. Ping: “The High Speed Implementation of Direction-of-Arrival Estimation Algorithmo’, in:
International Conference on Communication, Circuits and Systems and West Sino Expositions 2 (2002): 922—
925

P, Chen et al.: “Delay-sum Beamforming on FPGA’, in: ICSP 2008 Proceedings (2008): 2542-2545

7 A. Madanayake et al.: “FPGA Architectures for Real-Time 2D/3D FIR/IIR Plane Wave Filters’, in: Proceedings
of the 2004 International Symposium on Circuits and Systems ISCAS 2004 3 (2004).

8Kai Shuang et al.: “Converting Analog Controllers to Digital Controllers with FPGA’, in: (ICSP2008) Pro-
ceedings (2008).

®0. Maslennikow and A Sergiyenko: “Mapping DSP Algorithms into (FPGA)”, in: Proceedings of the Interna-
tional Symposium on Parallel Computing in Electrical Engineering (2006); T. Brich et al.: “The Digital Signal
Processing Using FPGA, in: ISSE 2006, 29th International Spring Seminar on Electronics Technology (2006):
322-324

M. Liu et al.: “System-on-an-FPGA Design for Real-Time Particle Track Recognition in Physics Experi-
ments”, in: 11th Euromicro Conference on Digital System Design Architectures, Mthods and Tools (2008).

"'B. Von Herzen: “Signal Processing at 250 Mhz Using High-Performance FPGAS’, in: IEEE Transactions
onvery large scale integration (VLSI) Systems 6.2 (1998)

127. Wang et al.: “FPGA implementation of Downlink DBF Calibration’, in: Antennas and Propagation Society
International Symposium (2005)
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applying finite differences. Among the earliest publications using an FPGA to solve a 2-
dimensional wave equation with a FDTD!® method on a FPGA is the work by Chen et al.!*
A physical model of a string implemented on a FPGA was proposed by Gibbons, Howard,

and Tyrrell.

Other notable publications, regarding numerical computations of the wave
equation using finite difference methods, are the works of Erden Motuk as for instance Mo-
tuk, Woods, and Bilbao'® or Motuk et al.!” Here, as well as in his thesis'®, Motuk utilises a

FDTD algorithm to solve the 2-dimensional wave equation for membranes or plates.

6.1.2 Data Type Considerations

As mentioned in section 5, when designing hardware logic, a fundamental design decision
is the choice of an appropriate data type for a given algorithm. The most commonly used
data types for numerical computations are floating-point and fixed-point. Both data types
differ in their effective number representation in the digital domain. Besides a different bit
encoded representation of numbers, they have different algebraic rules.

Even tough modern DSP applications almost exclusively work with floating-point represen-
tation making use of hardware implemented arithmetic units of modern DSPs or CPUs, a
fixed-point Q.X data type is used in this work for the central arithmetic functions. In this
section, the reasoning for the choice of data type is presented.

There are several important selection criteria influencing the choice of the data type in a

hardware design.
« The data type of the input and output signals.
« The flexibility expected from the data type regarding its range and resolution accuracy.
« Applicability of data type dependent benefits and algebraic optimisations.
« Internal algorithmic structure of the design.

In this work, a fixed-point data type is chosen because it has several advantageous features
for the presented hardware designs on a FPGA, compared to a floating-point implementa-
tion. The final low-level algorithm, as presented in section 3.8, is already tailored versus a

fixed-point data type because in its basic form it has only one multiplication compared to at

UFinite Differences in the Time Domain.

"“Wang Chen et al: “An FPGA implementation of the two-dimensional finite-difference time-domain
(FDTD) algorithmy’, in: Proceedings of the 2004 (ACM/SIGDA) 12th international symposium on Field pro-
grammable gate arrays, New York, USA: ACM, 2004: 213-222.

“Gibbons, Howard, and Tyrrell, “Real-time FPGA”.

16E, Motuk, R. Woods, and S Bilbao: “Implementation of Finite-Differece Schemes for the Wave Equation on
FPGA’, in: IEEE International Acoustics Speech and Signal Processing ICASSP 2005 3 (2005).

E. Motuk et al.: “Design Methodology for Real-Time FPGA-Based Sound Synthesis”, in: IEEE Transactions
on signal processing 55.12 (2007).

'8 See: Motuk, “System-On-Chip implementation of real-time finite difference based sound synthesis”
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least 4 additions/subtractions. One of the advantages of a floating-point data type is that a
multiplication can be realised by a only a few logic instructions if some preliminaries are met,
one drawback of floating-point is that additions/subtractions are more costly to implement
compared to a fixed-point implementation. Because the core algorithm consists of more ad-
ditions/subtractions compared to multiplications, it is beneficial to use a data type that is
optimised towards these arithmetic operations.

Another important feature of fixed-point data types is that multiplications or divisions by
numbers expressible as powers of two can be implemented as left- or right-shift operations.
A comparable trick is not applicable when using a floating-point data type.'’

A third point that supports the decision for a fixed-point data type is that binary scaling
can be applied by normalising the acceleration to the square of the sampling frequency, and
the velocity to the sampling frequency, which is a power of two in the presented design.
Hence, the scaling can be performed by a shift operation. The final time stepping method,
derived in chapter 3, inherently contains this normalisation in the factor At? or At. Hence,
no additional scaling must be applied besides the re-normalisation of the velocity and the
acceleration when quantitative results are needed.

Another consideration regarding the data type decision is the fact that floating-point is op-
timised towards a large range of representable values, whereas fixed-point is optimised to-
wards resolution inside a given range. As already argued in chapter 2, if we are interested in
physical properties of musical instruments, we need explicit expressions for the deflection,
velocity and the acceleration. For all signals one can define a physically reasonable maxi-
mum value, including a safety margin and a digital range that is larger than the humanly
perceivable signal to noise ratio.?’

For the modelled musical instruments, all observable signals are dissipative. This means, all
signals have values inside well defined numerical boundaries. Regarding this property, one
can state that the resolution inside this range should be as high as possible. 2! Therefore, a
data type optimised towards resolution is suited better than a data type optimised towards
range. Finally, the first FPGA implementation used a 20 bit fixed-point DAC?2, hence, ap-
plying a fixed-point data type was additionally motivated by practical reasons because no
additional data type conversion entity had to be implemented.

All mathematical operations are performed using a 2’s complement Q0.31 data type with

' There exist operations that can be computed by exploiting properties of floating-point bit representation
as is shown in J. E Blinn: “Floating-point tricks”, in: IEEE Computer Graphics and Applications 17.4 (July
1997): 80-84.

%9 A dynamic range higher than the human hearing range of ~ 130—140[d B] can be achieved by implementing
an accordingly large bit depth of the signals. The theoretical dynamic range for the 32 bit deep signals used
in this work is DR[dB] = 20 * logi0(2*') ~ 187dB. This range is larger than needed because most
DA-converters are capable of converting with 24 bit using a fixed-point or quasi fixed-point representation.

*! This can be achieved by normalisation and re-normalisation of the physical values to the maximal numerical
value.

*’Digital Analog Converter.
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left aligned MSB?3. The data types in other parts of the hardware design are bit vectors or
the IEEE data type std logic vector** Besides these arguments for using a fixed-point data
representation, there is one additional factor that supports the decision.

As is shown Goldberg,? floating-point number representation can be sensitive to rounding
errors. In extreme cases, these rounding errors of floating-point computations can lead to
unstable solutions of otherwise stable methods.?® As already mentioned in chapter 3, a long-
term stability of a real-time synthesis depends on the stability of the underlying algorithm
and data type. The maximal rounding error of the presented method using a fixed-point
implementation is bound to the least significant bit and averages to zero over time, when

implementing the algorithm in the way described in section 6.4.

**Most Significant Bit.

**This data type incorporates several special signal conditions like high impedance or weak signals.(Ashenden,
The Designer’s Guide to VHDL, pp. 45).

**David Goldberg: “What Every Computer Scientist Should Know About Floating-Point Arithmetic”, in: ACM
Computing Surveys 23 (1991): 5-48.

2R.D. Skeel: “Symplectic integration with floating-point arithmetic and other approximations”, in: Applied
numerical mathematics 29.1 (1999): 3-18 for stability considerations regarding symplectic methods.

202



6 Real-time FPGA models

6.2 Routing Layer Model

To ensure an inter-model connectivity and transportability of interchangeable design fea-
tures, and to make the design of the finite difference models more transparent, a layer model
is developed to classify each specific functional part of the models and assort them according
to their respective functionality. The applied model is inspired by the OSI-layer model and
adjusted in several regards to fit the needs of this work.

All functional parts of the FPGA implementations are categorised into five different sub-
layers, each encapsulating a specific functionality, specific data types, specific communica-
tion protocols as well as data transport signals. An overview on the names, data types and

functions for each specific layer is given in table 6.1.

Layer Function Signals I/ 0 ports

1. Arithmetic Layer | Core calculations | Arithmetic signals | Model algorithm
(AL) of the model constraint and
boundary values,
algorithm results

2. Math Routing | Routing of parallel | Routing  signals; | Routing signals /

Layer (MRL) AL algorithms Control Signals Status signals

3. Control Circuit | Internal timingand | Timing  signals; | Control signals/-

Layer (CCL) control signal de- | Data signals Data signals
coding

4. Model Routing | Global timing / | Timing  signals; | Control signals/-

Layer (MoR) Routing  signals | Data signals Timing signals
between CCL
instantiations

5. Interface Layer | I/O communica- | Routing signals/- | Control data in-

(IL) tion with external | Control signals put for model
devices algorithm  from

external  device/
Model algorithm
results output

Table 6.1: Layer model signal description.

Applying the proposed layer model approach for real-time hardware implementations of mu-
sical instruments on FPGAs results in a data- and communication protocol structure which
is incorporated at the core level of the design. One benefit of this approach is the modu-
larity of the implemented designs, whereby all singular instrument parts can be organized,
connected and rewired, without a complete re-design of the complete model. This follows
a recommended design practice for hardware designs,?” and can be compared to an object

oriented design approach, a commonly used approach in high-level languages like C++ or

z Synthesis and Simulation Design Guide (UG626), version 13.2, Xilinx, 2011, p. 41.

203



6 Real-time FPGA models

Java to ensure higher re-usability of implemented code?®. The singular layers and their func-

tionalities are presented in the following sections.

6.2.1 Arithmetic Layer

All numerical computations of the hardware models are performed on this layer. It is the
bottommost layer for all FD implementations because it implements the fundamental func-
tions of all numerical calculations. The arithmetical processing is controlled by a Finite State
Machine (FSM), which ensures a signal validity and synchronisation of each time- and com-

putation step. A schematic overview of the arithmetic layer (AL) is given in figure 6.1.

Arithmetic Layer
Input stage Arithmetic stage Output stage

AL Step |
Data Data
— AL Step Il -
AL Input Routing Routing AL Output
AL Step Il

T
1

4
4

Finite State Machine

Figure 6.1: Schematic overview of the Arithmetic Layer.

In the first step of the AL, all input variables are routed to their appertaining internal signals.
In the following time steps, the specific arithmetic tasks are performed corresponding to the
underlying order of the equation and structure of the finite difference algorithm. In the last

state of the AL all calculated output signals are routed to their respective output signals.

Input/Output Data Types

The data type of all input- and output signals is STD_LOGIC_VECTOR, ensuring a data
compatibility to XILINX-simulation and implementation libraries®. In the first stage of the

arithmetic layer, all external input signals are converted to the internal Q0.31 data format.

Internal Signals Data Type

All internal signals are signed 2’s complement Q0.31 data type. The physical parameters
computed in the AL are the deflection, velocity and acceleration for structural mechanics
and pressure, particle velocity and the change of the particle velocity in the model of the

enclosed air volume.

2Ulla Kirch and Peter Prinz: C++ Lernen und professionell anwenden, 5th, mitp, 2010.
Synthesis and Simulation Design Guide (UG626).
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Shared Resources

The AL is designed towards resource sharing functionality with a focus on optimizing the
use of multiply and add units. Where applicable, only one multiplier is used per FD grid
cell and all remaining arithmetical functions are divided among the FSM states for maximal

possible resource sharing.

6.2.2 Math Routing Layer

In the math routing layer (MRL), all processes running in the AL are routed, configured
and connected according to their assigned function. All parallelization of mathematical re-
sources is implemented in this layer. The initial and boundary values are routed to their
respective calculation kernels in the AL. Additionally, all memory resources for the parallel
parts of the calculation are implemented and controlled here. Another function of the MRL
is the processing and routing of externally applied physical constraints, like for instance con-
tact point switching between a bow and a string or switching the coupling point between a

string and a membrane in the banjo model. A structural overview is depicted in figure 6.2.

Math Routing Layer

Decoder | - | Memory Resources | - | Encoder —— MRL Output

MRL Input

T T T T 1
[ [ T T L ]
\ \ \ \ \ \

Figure 6.2: Math Routing Layer (MRL).

Data type

The data type used in this layer is exclusively Std_Logic_Vector.*® If not noted otherwise, all
following layers have a Std_Logic_Vector data type.

6.2.3 Control Circuit Layer

In the control circuit layer (CCL) all control data is routed to the respective receiver and the

resulting audio data is accumulated and transported to higher and lower layers. Another

30 As already mentioned, this is due to constraints posed by Xilinx simulation libraries, which explicitly need
Std_Logic_vector data types and not Bit_Vector signals, which would be sufficient for the communication
protocol and internal data transport of all presented models and layers.
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functional part of the CLL is the provision of a timing and synchronisation protocol for real-
time parameter changes. The CCL-decoder controls the transfer of parameter signals, like
for instance the excitation points of the string, or the coupling points between the strings and

a front plate. An overview of the CCL is shown in figure 6.3

Control Circuit Layer

(MRL)

_—
tat.-D.

CCL Input @—» AL | AL —— CCL Output
AL|AL

LA

Figure 6.3: Control Circuit Layer (CCL).

6.2.4 Model Routing Layer

In this layer, the actual model of the instrument is routed and all different parts of the mod-
elled geometries are connected to yield the final system. All calculated values that are cou-
pled to other parts of the instrument are routed here. Control data is transferred to the

corresponding part of the model, which is indicated by a specific bit code.

Model Routing Layer

Input stage Output stage
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Figure 6.4: Model Routing Layer overview.
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6.2.5 Interface Layer

The Interface Layer is the topmost layer in the model. Here, all external data input and out-
put is managed, decoded and routed. It is the interaction layer with all input and output
devices, such as the PCle interface, the AC97 interface or the I2S interface for data transport

as described in section 5. A block diagram of the IL is shown in figure 6.5.

INTERFACE LAYER

INSTRUMENT MODEL
INPUT MODEL ROUTING LAYER OUTPUT
Decode Encode
—» PCle PCle |
e J ._
—» AC'97 2 2] AC97 4
—» 125 125 ——»

Figure 6.5: Block diagram of the Interface Layer.

Depending on the model either the PCle, AC’97 or the 12S interface is used for communica-
tion and data transfer. Models of singular geometries are implemented with the AC’97 and
the I2S protocol. For the complete geometry models the PCle interface is applied.

In the IL, the data from the respective transmitter is decoded and then routed to the instru-
ment model, the MoR. Status and synthesised data from the MoR is packed into packages of

the data transfer type, and send to the receiver.
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6.3 Hardware Operator Notation

To facilitate a clear overview on the hardware implementations of proposed models, a set of
digital operators are introduced in this section. They are intended to act as an extension to
the well-established FD operator notation used in chapter 3 and 4.

Similar to the notation introduced there, the proposed operators allow to abstract several
mathematical operation into a simpler notation. In the following, this concept is extended to
a lower abstraction level by resolving the underlying mathematical operations to the specific

operations assuming a fixed point data-type and a typical binary logic hardware structure.

6.3.1 Operator Definition

As developed in section 3, there are four basic arithmetic operations used for the core algo-

rithm and a number of register read and write operations.

Left/Right Shifts These operations are used to replace divisions or multiplications with
base-2 numbers by a left- or right-shift.
A left-shift by integer IV bit positions is indicated by << N, a right shift by >> V.

Addition/Subtraction Both operations are implemented using the arithmetic circuitry of
the DSP48el circuitry of Xilinx FPGA hardware.

Multiplication A multiplications is implemented using the DSP48el multiplication cir-

cuitry.

Register Read and Write Both operations are realised using (BRAM) resources on the
FPGA hardware chip. The order of the difference equation determines the number of read
operations. The number of dependent variables in the difference equation determines the
numbers of write operations. A read operation from a register of a value Ax strides away rel-
ative to the centred point is written as € A1 /rAz—» @ Write operation is written as ey (a) [b],

with a the destination register and b the source register or function.

6.3.2 Combined Operations

Using the introduced operations, a centred finite difference operator for a first order differ-

ence can be written as

02 = TA - [€ERAz+> —€RAZ—) (6.1)
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Shift Op. Add./Sub.
5 2 0 1 1
0x 2 0 1 1
b2z 3 1 1 2
duz 5 4 1 4
202y 5 1 1 4
dga 13 10 1 12
52123,2: 7 2 1 6

Table 6.2: Digital operations for FD operators used in this work.

with T'A a multiplicand which depends on the stride of the discrete grid in the spatial domain.

A second order centred FD operator in vector notation can be written as

0ze = T - [(€rAz-), €r(< 1), (€RAZ+)] (6.2)

with Tp = ALI. A higher order digital FD-operator used for the fourth order differential
equation of the beam can be constructed by a convolution of two second order digital FD
operators

04z = Ogg * Op (6.3)
This can be extended to higher spatial order difference operators leading to a specific num-
bers of digital operations for the respective operator given in Table 6.2.

Using the values given in Table 2, approximate the used resources of a model before imple-

menting it in hardware.

6.3.3 Damping Approximation by Shifts

The following assumptions are based on the prerequisite that the damping coeflicients are
heuristically approximated values. A multiplication with a value 3 can be approximated by

a finite sum of left-/right- shifts using
deg

Ud:v~(1—2ak2ik) (6.4)
k=0

with v, an arbitrary damped quantity, deg the order of approximation of the damping and a
multiplicand o € (—1, 0, 1). In this way, arbitrary damping coefficients can be approximated

by a number of shifts.
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6.4 VHDL Translation of the Algorithm

To benefit from the features of FPGA hardware, it is necessary to adopt the algorithm to this
specific hardware architecture. The parallel processing capabilities of FPGAs, compared to
serial processing hardware, can only be utilised completely when an implementation makes
use of parallelism. To this end, it is important to get an in-depth overview of the data path,
the data processing structure, the control structure and data dependencies of the numerical
method applied. In this section, the algorithm is analysed in these regards and the findings
are applied to formulate an optimised version of the hardware implementation. As before,
the basic properties of the method are exemplified at a hardware implementation of a simple
harmonic oscillator. Following this, the analysis is extended to implementations of more

complex structures of whole geometry designs.

6.4.1 0-dimensional Simple Harmonic Oscillator

The numerical methods utilised for the low-level models were tested and analysed regard-
ing their stability and robustness for long time simulations, as presented in chapter 3. The
model of the 0-dimensional oscillating mass point does not include geometrical concurrency.
Due to this, no geometrical concurrency is utilised in the hardware version of the algorithm.
Nonetheless, several properties of the FPGA implementation, which are applied in the other

models of musical instruments as well, can be exemplified at this model.

Algorithm Analysis

As shown in section 3.8, the algorithm can be simplified to a three-step time integrator for

every discrete point. The dependencies of the variables are:

ad = f (ut)
ot = f (at’ Ut)
Wt = f (vt+17 ut) . (6.5)

Equation 6.5 shows, that the velocity and the deflection depend on results of the time-step
t + 1 as well as time step t. For uncoupled problems, the explicit computation of the accel-
eration can be included into the calculation of the velocity as v'*! = f (uf, v?). For coupled
problems, where an explicit formulation of the acceleration can be employed for a straight-
forward way of coupling two geometries via the interaction forces, it is advantageous to com-

pute the three physical quantities acceleration, velocity and deflection independently. Hence,
F

a direct evaluation of the acceleration, which is related to the force by equation a = o is

indispensable.
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Time step Shift Op. Add./Sub.
0

1 0
0 0
1 1

N||—= —

|

Table 6.3: Digital operations for SHO implementation.

The arithmetic requirements of algorithm 6.5 in its basic form, as developed in section 3.8

can be assessed by rewriting it using the introduced digital operator notation to

cw(a) [—er(k) - er(u)]
ew(v) [er(as>16) + €pai—(v)]
ew(u) [er(v) + erar—(u)] . (6.6)

Hence, for the implementation of a harmonic oscillator, all basic calculations can be per-
formed by one multiplier, two adders and a shift operation. A hardware resource analysis
shows that only one instance of the respective hardware function is used per time step. This
means, the algorithm can be implemented with only one adder that is used twice: In time
step 2 and time step 3. This adds routing overhead to the design, but minimises the area

utilization on the FPGA chip because only one binary adder must be implemented.

Arithmetic Layer

Applying the previous analysis, performed to simplify the algorithm, the AL can be imple-
mented as depicted in the ASMD?! chart in figure 6.6.

3! Algorithmic State Machine with Data path (ASMD).
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Figure 6.6: ASMD chart of the SHOs AL.
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In addition to the physical values a = the acceleration, v = the velocity and v = the de-
flection, the signal £, a value proportional to the spring stiffness normalised by the sampling
frequency, can be changed in real-time while the hardware model is running.

The external value K XT is routed from an input-port of a push button, implemented as
an input-buffer, sending signal changes to the buffered input signal in the AL, to the internal
value K N.

Using the value of K7 N and the deflection S the acceleration is computed in state P2. The
new velocity VIV is computed in state 3 and the new deflection in state P4. State 5 and state
6 are used to overwrite the old the values of the deflection and velocity the new computed

values.

Math Routing Layer

As mentioned in chapter 5, to calculate sequential code on a FPGA, it is necessary to imple-
ment a Finite State Machine that controls each sequential step of the calculation and guar-
antees stable signals for the input values and for the output values.

The connection of the AL with the FSM is realised in the MRL, where both entities are de-
clared and instantiated. Here, the coupled signals of both entities are connected and routed
as well. The input signal K_IN is routed from the IL to the AL, the output signal is routed
from the AL to the IL. The register transfer level of the MRL is shown in figure 6.7.

Top entity / IL

In the top entity, all input signals are routed from the physical inputs of the development
board to the CM layer. The output signals are routed to the AC97 entity of the board.

AC97 entity

The AC97 entity implements the communication protocol necessary for the data transfer

between the hardware model and the on-board AC97 codec, as described in section 5.

Simulation Results

In the following figures, the results of the functional simulation of the SHO are shown. Figure
6.7 shows the Register Transfer Level (RTL) schematic of the Finite State Machine (FSM)
and the math kernel of the oscillator. As one can see, both blocks are driven by the same
clock signal and have the same reset signal. The start signal only controls the FSM to pause
and restart a running calculation without loosing the values of the last calculation step. The
control and status signals of the single FSM steps of the calculation are PX_G and PX_OK

respectively.
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Figure 6.8: Timing diagram of the core functionality of the SHOs AL.
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Tunable Oscillator with Reset

k x08000 X x00400

Figure 6.9: Timing diagram with analog output signal.

6.4.2 Structurally Parallel 1-dimensional Wave Equation

In this section, a hardware implementation of the 1-dimensional wave equation is presented.
The numerical solution of the linear wave equation used to model a string is translated to
VHDL and computed on an FPGA. As is shown in section 3, the local structure of the al-
gorithm is similar to the algorithm of the SHO. Hence, the underlying arithmetic and the
control circuit that is used for the SHO is reused for the 1-dimensional string and is extended
to account for additional requirements of the string computation. Additional prerequisites
arise due to the parallel structure of the string computation. Compared to the SHO, this
hardware model utilises the parallel structure of the FPGA hardware based on its geometri-
cal parallelism. Following the presented methodology developed above, the string is imple-
mented as a series of coupled discrete points on the string. The local computations for each
time-step and each virtual node-point depend on the values of the velocity and deflection
from the previous time step. The calculation of the acceleration additionally depends on the
deflection of the adjacent points.

In digital operator notation, equation 4.34 for one time-step can be rewritten to

ew(a) [—€r(K) - Opz(u)]
cw(v) [er(a>>16) + €rar—(v)]
ew(u) [er(v) + erar—(u)] . (6.7)

Compared to 6.6, equation 6.7 has comparable requirements for the time integration but
additional hardware requirements due to the extension to a 1-dimensional problem. A sum-

mary of the hardware resources of a linear string is given in Table 6.4.

The parallel implementation of the linear strings uses 10 parallel node-points that are eval-

uated concurrently. The parallel nodes are instantiated and routed in the MRL. All signals
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Shift Op. Add./Sub.

Local Total \ 12 2
Parallel Total \ 120 20 10 40

Table 6.4: Digital operations for linear string implementation.

shared between adjacent mass-points are schematically depicted in figure 6.10 as left/right

arrows 6.10.
k-1 k k+1
- Sl.in & i _ S!.aut Sr.out ‘ 61""’ Sr.in _
_ Si.omf Sr.ﬂut ‘ Szm Sr in _ Sx‘.om ‘Smuz -
n:sk—1_3*5+sk+1 nislk—l_z*s+5'k+l ?_sk,172*s+sk,”
AR, Sl e Wl e S
dx* P vl
y= v= v=...
s 5= s=
To/From FSM CLK To/From FSM  pA-U CLK To/From FSM CLK

Figure 6.10: Parallel structure of the 1-dimensional wave equation at a random point k ¢
OA L.

Arithmetic Layer

In its fundamental structure, the AL of the linear string is comparable to the structure of the
SHO. The ASMD of the linear string AL is depicted in figure 6.11. The only changes in the AL
of the string, compared to the SHO, are present in the FSM-states P1 and P2. The remaining

calculation steps are similar.
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Math Routing Layer

The linear string is discretized with 10 node-points, which are calculated in parallel. Besides
the signal routing of the connected node points, the initial deflection of one or several points
is routed in the MRL implemented in the initial RAM positions. Figure 6.12 shows an extract

of the parallel RTL implementation.>?

32 Because of the limited space due to the DIN-A4 format, only four of the ten AL blocks are shown. The
functional block of the FSM is the center block.
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6.4.3 Parallel/Serial 1-dimensional Wave Equation

In the larger model designs of the musical instruments it is not possible to implement all
portions of the geometry in parallel because of limited hardware resources. The string model
consisting of 10 node-points is extended to the model of a larger string by implementing

additional sequential logic in the CCL of the string.

Control Circuit Layer

The fundamental string model, used for all instruments, is composed of a parallel imple-
mentation of 10 coupled node-points, which are computed eight times serially, yielding the
model of a string with 80 discrete node-points. Hence, for one update of a complete string,
the parallel kernels are evaluated eight times sequentially. Because the algorithm requires the
evaluation of the velocity and the deflection from the current time step and the preceding
time step, it is necessary to save the values for v and v, so they can be accessed at the next
time step of the calculation.

The model of the string discretised with 80 node-points instantiates as many memory blocks
as parallel kernels (in this case 10) with a bit-width of (32 bit) for both variables and a depth
of at least: RAM-depth = % Hence, in this example the RAM has a depth of at least
8.

The dynamic memory model is controlled by three additional outer states: a write state, a
read state and a count state. During the read state, the information from the parallel kernel
computation from time-step ¢t — 1 is read and routed to the respective values of the kernel.
The calculate step consists of the six AL states, which calculite the values for time-step ¢.
In the write state, the output values of the parallel computation kernels are written to the

associated RAM positions. Figure 6.13 shows and overview in the form of a block diagram.

6.4.4 String with Damping

As shown in section 3.8.2, the force damping can be approximated by a series of shift, ad-
ditions, and subtraction operations. This property is applied to simulate velocity and accel-
eration dependent damping without the need to implement an additional multiplication or
division circuitry, which would be necessary if the algorithm was implemented with a un-
optimised finite difference scheme. In the case of the velocity damped string, the operation
is performed directly in the time-step of the velocity calculation. The computation for the

velocity from equation 6.7 can now be written as:

ew(V)[er(as>16) + €rar— ((v)(1 + (>> 13) + (>> 15))] (6.8)
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Figure 6.13: Serial/Parallel structure of the 1-dimensional wave equation for 80 node-points.

Compared to the model of linear string without damping, this is the only change in the hard-
ware implementation. The same technique can be applied for acceleration dependent damp-

ing and is used in all real-time models.

6.4.5 Bowed String

In this section, the hardware model of a string/bow interaction, as shown in chapter 4, is
presented. In the following, a focus is put on the differences compared to the HL model. In
addition to the changes for force damping, mentioned in section 6.4.4, the string entity has
several other differences compared to the linear string. To control the parameters that guide
the bow/string interaction in real-time, it is necessary to route signals from the physical I/O
port of the FPGA to the string entity, especially to the math entity. This is realised by adding
a controlling and routing circuit to the existing model of the string. There are four global

control parameters that guide the behaviour of the string:
1. Bowing - Plucking.
2. Position on the string.
3. Position on the neck.

4. Number of contact points.
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When these three parameters are set, there are additional parameter that guide the acoustical

vibrations of the string:

1. The bow velocity.
2. The bow force.

3. The amount of rosin.

Implementation

For the implementation of the bow/string interaction, the initial model of the string is ex-
tended in several ways. First, a PCle communication protocol, as presented in chapter 5,
is added to the existing model. Using this implementation, it is possible to read data from
the model and write parameter changes to the model via a PCle interface. The implemented
communication protocol sends new controller data to the model every 800 sample clock
cycles. Theses are expressed in address and associated data words. For the bow-string inter-

action, these values are decoded in 8 data words as follows:

Adress Payload Mask Controller Value
0h00000001 0h000000ff String tension
0h00000001 | 0h0000£t00 Bow Pressure
0h00000001 0h00£f0000 Bow Velocity
0h00000001 | Ohff000000 | Bow/String Interaction Point
0h00000002 | 0h000000ft String Length

Table 6.5: Controller data words.

All data words are decoded in the top entity of the model, at the connection between the
transaction layer and the top-entity of the FPGA model. After the controller data is decoded,
it is transmitted as status signal payload to the next layer of the model, the CCL.

6.4.6 Stiff String

To extend the model of the linear string with velocity and acceleration damping, bending
stiffness is added to account for acoustically relevant effects of stift strings. Therefore, the
string model is extended to incorporate two additional I/O signals in the AL, as indicated in

equation 6.9.

Arithmetic Layer

The AL of the stiff string with damping is similar to the string without bending stiffness

with the inclusion of two additional points on the string. In digital operator notation, the
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Shift Op. Add./Sub.

Local Total
Parallel Total |

Table 6.6: Digital operations count for a stiff string implementation.

computation of the acceleration of a stiff string can be written as

ew(a)[—€r(k) - (Sm - 54x)(“)]

The operation count for a stiff string discretised with 80 node points is given in Table 6.6.
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6.4.7 2-dimensional Wave Equation

The presented methodology for 1-dimensional problems is extended to higher dimensional
problems, like a 2-dimensional wave equation modelling the motion of a membrane. In
the following section, a real-time implementation of a membrane, modelled using a linear

2-dimensional differential equation, is presented.

Arithmetic Layer

The basic structure of the AL for the 2-dimensional wave equation is comparable to the
already presented models of the 1-dimensional wave equation. The difference of the 2-
dimensional AL, in comparison to the 1-dimensional AL, is an additional dependency of
the force calculations on four surrounding grid nodes, which can be seen directly in the for-

mulation of the second order 2-dimensional centered FD operator approximation

0222y = TaleRAz—+ €RAY—+ (<< 2), €RAY+: €RAGH] - (6.9)

In addition to the deflections from the left and right grid nodes, the deflections from the
points above and below the center point®® are needed for the FD formulation. The multipli-
cations can be performed as shift operations. A graphical representation of a digital FD shift

stencil is given in figure 6.14.

Figure 6.14: FD-shift stencil for the 1-dimensional plate operator. The points indicate that
no shift operation is performed at this node. The partial black filling indicates a
multiplication by —1 of the respective cell.

Math Routing Layer

The MRL of a 2-dimensional geometry has the same structure as the 1-dimensional MRL of
the string with additional BRAM blocks as well as additional signal routing resources. Figure

6.15 shows an extract of the whole 2-dimensional MRL.

3This is true for Cartesian grids with a five point stencil discretisation. If other grids or higher stencil approx-
imations are used, the operator arithmetic changes.
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Figure 6.15: MRL of the membrane.

226



6 Real-time FPGA models

6.4.8 2-dimensional Plate

The 2-dimensional plate equation is used in the model of the violin, the runa and the yue-
qin. Similar to the HL model, the LL plate equation can be deduced by extending the linear
2-dimensional wave equation of the membrane. In the first case, a linear plate on a Carte-
sian grid is implemented. As the difference operator of the plate equation shows, the force
calculation of one mass point now depends on a 5x5 stencil with values from 12 neighbour-
ing points. In a stencil with weighted points, the plate operator is given in equation 4.39 in

chapter 3.

Arithmetic Layer

The structure of the plate AL is similar to the AL of the membrane. There are only a few
modifications in the AL for the implementation of a plate. An analysis of the plate stencil®*
reveals that all weights can be expressed by multiplications by powers of two or a composition

of it®

. Hence, the weighting of the stencil can be achieved by taking several left-shifts and
additions consecutively. This simplifies the algorithm and saves resources in the final hard-
ware implementation. A shift stencil formulation of the plate hardware implementation is

given in figure 6.16.

<4
HOOE
DOC

Figure 6.16: FD-shift stencil for the 2-dimensional plate operator. The points indicate that
no shift operation is performed at this node. The partial black filling indicates a
multiplication by —1 of the respective cell.

*The plate stencil is given in equation 4.39.
#20 = 2% 4+ 22,
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Math Routing Layer

The MRL follows the modifications made in the AL. The acceleration calculation of every
discrete node point on a plate requires the values of twelve neighbouring points. Hence,

every discrete node point has twelve inputs, receiving the deflections of the node points.
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6.4.9 The Violin Bridge

The acoustical relevant vibrations of the violin bridge are modelled by incorporating its ge-
ometry as presented in chapter 2. In this formulation, it is necessary to calculate the forces
in two directions to include the rocking motion of the violin bridge into the model. Besides
changes in the AL, the most prominent difference of the violin bridge implementation is the
additional memory requirement. Opposed to the other geometries, every point of the violin

bridge needs four memory locations to save the values of:
« the velocity of the discrete point in x direction,
« the velocity of the discrete point in y direction,
o the deflection of the discrete point x direction and
« the deflection of the discrete point y direction.

In addition to that, there are two acceleration computations necessary for every discrete
point.

Arithmetic Layer

The AL is similar to the other geometries with the exception, that force calculations in two
directions are necessary now.

Math Routing Layer

The MRL incorporates two additional memory blocks, now four in total, to save the values
Vg, Vy, Uy and u,. Besides this change, the routing is not different from the MRLs of the

other instruments.
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6.4.10 3-dimensional Air Volumes

All final hardware instrument models consist of an air volume enclosed in the resonance
body of the respective instrument. As shown in section 2, the air volume plays an important
role in the radiated sound of the respective instruments, either influencing the front plate
modes or adding independent frequency information to the radiated sound. The air volume
is implemented in two ways, first, as an independent entity with the same layers and ports
as used for the other geometry models. But as the LL implementations of the musical in-
struments grew in node size and routing complexity, the transport protocol between the air
volume and the other geometry parts lead to a performance bottleneck. A redesign of the
3-dimensional air volume integrated the air entity directly into the model block of the instru-
ments front plate and back plate. The reduction in routing complexity and signal overhead

made the model computationally more efficient.

Arithmetic Layer

The finite difference approximation of the 3-dimensional wave equation is an extension of
the 2-dimensional wave equation. Because air has no sheering, the movement of sound in air
can be approximated by a 7-point stencil as 3-dimensional version of the membrane stencil
depicted in figure 6.14. The AL block is depicted in figure 6.17. A description of the func-

tional properties of the signals is given in table 6.7.

Math Routing Layer

The MRL of the air volume is a simple extension of the 2-dimensional models. There are two
additional deflection signals that are routed to the AL to calculate the force of each node:
S_FRONT and S_BACK, as well as additional BRAMs.
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RESET —— S_MEMBRAN_OUT
CLK ——] V_MEMBRAN_OUT
. PT OK
PLG — . P2 OK
P2 G — L . P3OK
P3G — P4 OK
P4 G — . P5 OK
PS5 G — . P6_OK
P6 G —
OVER — |
LUFT ——
SCHICHT ——
LUFTOUT ——]
CQM_IN — ]
S MUP IN —.| MATHMEMBRAN

S MUP_INL —

S MUP_INR — |
S_MUP_INA — ]
S_MDOWN_IN — ]
S_MDOWN_INL —— |
S_MDOWN_INR — |
S_MDOWN_INA — ]
S_MLEFT_IN — ]
S_MLEFT_INA — ]
S_MRIGHT _IN — ]
S_MRIGHT _INA — ]
S_BACK_IN — ]
S_FRONT_IN — ]

VN —

SIN —

Figure 6.17: Logic block of the air/plate AL.
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Signal Name Function

RESET Global reset signal

CLK Global clock signal

PX G Status signals from FSM

PX OK Status signals to FSM

S_MUP_IN Upper deflection signal for air/plate/membrane stencil.
S_MUP_INL Upper-left deflection signal for plate stencil.
S_MUP_INR Upper-right deflection signal for plate stencil.
S_MUP_INA Second upper deflection signal for plate stencil.

S MDOWN_IN Lower deflection signal for air/plate/membrane stencil.

S_MDOWN_INL

Lower left deflection signal for plate stencil.

S_MDOWN_INR

Lower right deflection signal for plate stencil.

S_MDOWN_INA

Second lower deflection signal for plate stencil.

S_MLEFT_IN Left deflection signal for air/plate/membrane stencil

S_MLEFT INA Second left deflection signal for plate stencil.

S_ MRIGHT_IN Right deflection signal for air/plate/membrane stencil

S_MRIGHT_INA Second right deflection signal for plate stencil

S_BACK _IN Back deflection signal for air stencil

S_FRONT_IN Front deflection signal for air stencil

S_IN Deflection from prior time step.

V_IN Velocity from prior time step.

OVER Coupling point with string (true/false).

LUFT Air/plate (true/false)

SCHICHT Index of layer in the instrument body in the orthogonal
plate direction.

LUFTOUT Orifice on the front plate (true/false).

CQM_IN Tunable wave-velocity factor.

S_MEMBRAN_OUT

Output signal for calculated deflection.

V_MEMBRAN_OUT

Output signal for calculated velocity.

Table 6.7: Air-plate logic block signal description.
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6.5 Instrument Models

In this section, the complete FPGA instrument models are presented in detail. All described
models are fully functional real-time implementations on FPGA development boards and
can be played and modified via pushbuttons, dip-switches or from a personal computer via
a control software implemented in C#. All models are constructed from the basic parts pre-

sented in the sections above.

6.5.1 Banjo Model

The hardware implementation of the banjo consists of a model for one string, a wooden
bridge and a membrane, including the air volume under the membrane. The real-time model
of the banjo is implemented utilising the basic building blocks presented in this chapter. The
IL receives data words containing information for the position of the plectrum on the string
(BOW_POINT), the force (BP_IN) and the velocity (BV_IN) of the plectrum. Additionally,
the length (PR_POINT) and tune (CQ_IN) of the string are transferred from the control

software to the hardware board.

Model Routing Layer

The MoR implements three CCLs of the respective geometries, as shown in figure 6.19°°. The
instance SAITELNEW receives the de-serialised values from the IL, the calculated deflection
of the string CCL, as a result to the excitation of the string is transferred to the bridge entity
called STEG. The outputs of the bridge entity are linked to the inputs of the front plate/air
entity called LUFT. In the LUFT entity, the calculated particle velocities are integrated over
several points and transferred to the IL as the signal S_ MEM_OUT.

Banjo String CCL

The string control circuit layer of the banjo is composed of ten parallel ALs, which are cal-
culated eight times to yield a total string node count of eighty points. The math routing layer
routes ten parallel 1-dimensional ALs. The AL of the banjo string calculates the model of a

string with damping and a non-linear excitation model.

Banjo Bridge CCL

The control circuit layer of the bridge implements the model of a three footed banjo bridge.

3Because of the interchangeable model design, the CCL entities for all models have the same name. Because
the violin model supersedes the other instrument models in complexity, all entity names are violin related
(in German).
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Banjo Membrane CCL

The membrane of the banjo is modelled using a linear 2-dimensional differential equation
with velocity and internal damping. The air volume below the membrane is implemented as

a three dimensional volume with damping losses at the geometry boundaries.
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Figure 6.18: Partial CCL of the complete geometry implementations.
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6.5.2 Yueqin Model

The model of the yueqin is a direct extension of the banjo model. Among several conjoining
geometrical features like the round body there are two very important properties discerning
the yueqin from the banjo. First and most importantly, the round body of the yueqin has a
wooden soundboard instead of a membrane. And secondly, the strings have a different fas-
tening mechanism. Hence, the model of the wooden bridge is not included in the model of
the yueqin. Instead, the strings are fastened at the tailpiece of the instrument, which trans-
mits the acoustical vibrations of the string to the front plate. This mechanism is implemented
via an impedance coupling between the last point of the string and the coupling point on the
membrane. The communication between the IL and the MoR is similar to the model of the

banjo.

Yueqin MoR

In the MoR layer of the yueqin, only the string CCL and the front plate/air CCL are instan-
tiated.

Yueqin String AL

The basic calculations of the strings are similar to the calculations of the banjo string.

Yueqin Front Plate AL

The front plate of the yueqin is modelled in the AL, as described in section 6.4.8, as a plate
with velocity and internal damping. The damping parameters for the wood are approximated
with Ad-hoc values.
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6.5.3 Ruan Model

The real-time model of the ruan is a mixture of the model of the yueqin and the model of
the banjo. The geometric features of the body are similar to that of the yueqin, the wooden
bridge is a implemented as in the banjo model. One extension of the yueqin model, is the
presence of orifices on the front plate, enabling the enclosed air volume to radiate.

Ruan MoR

The model routing layer is similar to the model routing layer of the banjo.

Ruan front plate MRL

The math routing layer of the front plate implements the orifices as a conditional query,
implemented in the LUFT entity, and described in table 6.7 via the signal LUFTOUT. The

initial position of the orifices is saved in a ROM, which is initiated at cold start of the model.
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6.5.4 Violin Model

The physical model of the violin supersedes the model of the other instruments because it
incorporates all of the mentioned building blocks including several extensions of the basic
structures. This is mainly due to the more difficile geometry of the violin, the asymmetric
orifices as well as the non-linear bow/string interaction model. In the real-time model of
the violin all of these factors are taken into account and are implemented according to the
physical model as presented in section 4.8.

The hardware implementation of the violin consists of four strings, a wooden bridge, a
wooden front plate, a wooden back plate and an air volume within the body.

As described in section 6.4.5, the IL receives data words containing information for the po-
sition of the bow on the string (BOW_POINT), the applied force (BP_IN), the velocity
(BV_IN) and the number of contact points of the bow (SC_IN). Additionally, the length
(PR_POINT) and tune (CQ_IN) of the string are transferred from the PC host to the hard-

ware board.

Model routing layer

The MoR implements the three CCLs of the respective geometries as shown in figure 6.19%”
The instance SAITELNEW receives the de-serialised values from the IL, the calculated de-
flection of the string CCL, due to the excitation of the string is transferred to the bridge entity
called STEG. The two output signals of the bridge entity are connected to the inputs of the
front plate/air/back plate entity called LUFT. In the LUFT entity, the calculated velocity is
integrated from several points on the front plate, and then transferred to the IL via the signal
S_MEM_OUT.

Violin string CCL

The string control circuit layer of the violin is composed of ten parallel ALs which are cal-
culated eight times. Hence, the string of the real-time violin is discretised by eighty node
points. The math routing layer routes ten parallel 1-dimensional ALs. The AL of the violin

string calculates the model of a string with damping and the bow/string interaction model.

Violin body CCL

The body of the violin, consisting of a front/back plate and the air volume, is implemented
in a single CCL. The AL for the front plate and back plate are described in section 6.4.8, the

enclosed air is modelled as shown in section 6.4.10.

*’Because of the interchangeable model design, the CCL entities for all models have the same name.
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Figure 6.19: MoR of a complete geometry implementations.
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6.6 Simulation Results

The following figures show several recordings from the real-time implementation of the in-
struments. The respective models are controlled via the control GUI described in section 6.7.
The synthesised sound of the instruments is transmitted to the host PC via the PCle interface
and recorded there with the audio software Samplitude. An wav-File of every sounds can be
found on the attached CD in Appendix 5. The bit-Files of the respective models are included
on the CD as well.

6.6.1 Banjo

Figure 6.20 shows the detail of a banjo string/finger pick interaction with clearly audible
slipping sound of the metal pick over the string. The slipping sounds are indicated in the

figure. The complete recording can be found on the CD under the name: Banjo_Plucked.wav.

mm Slipping Noise
0.5 | |

\\
il

-0.5 + =

8.55 8.6 8.65 8.7 8.75 8.8 8.85 8.9 8.95

Figure 6.20: Detail of banjo recording.

A sound of some randomly played notes on one string of the banjo model can be found on

the CD under the name: Banjo_Random.wav.

Discussion

As visible in figure 6.20 and audible on the supplementary sound files, the interaction with
the model allows to play expressively on the virtual instrument. At this point of the work,
the interaction of the GUI with the FPGA only allows for simple lines, or arbitrary, chaotic
playing.

Figure 6.20 shows the effects of the finger pick/string interaction model.
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6.6.2 Violin

Figure 6.21 shows the velocity of a bowed violin string. The clearly visible negative spikes

have a large variance in their minima, pointing to a sound with lots of bow noise.

0.4

Normalised Amplitude

0.0 0.1 0.2 0.3 0.4
Time in seconds

Figure 6.21: Detailed velocity of a bowed violin string.
The next figure (fig. 6.22) shows a single violin note played with varying bow veloc-

ity. The recording of the time series can be found on the CD under the name: Vio-

lin_BowVelocity.wav.
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Figure 6.22: Single bowed note with varying bow velocity.

Discussion

The recorded time series show that it is possible to play variable notes on the virtual violin
by applying different start values. The depicted velocity on the string is in good accordance

with the measured string (see figure 2.10) velocity of a violin.
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6.6.3 Ruan

Figure 6.23 shows a fast sequence of notes, played on the virtual ruan. While the notes are
playing, the thickness of the front plate is changed, influencing the radiated sound of the
instrument. The recording of this time series can be found on the CD under the name:
Ruan_LineTune.wav.

have a large variance in their minima, pointing to a sound with lots of bow noise.

1 2 3 4 5 6 7 8 9 10 11

Figure 6.23: Fast sequence of notes, changing the height of the front plate.

The next figure (fig. 6.24) shows an excerpt of a ruan note sequence, played with a tremolo.
The figure clearly shows that the tremolo is not static, meaning the vibration on the string
influences the shape of the next plucked note. The recording of the time series can be found

on the CD under the name: Ruan_TremoloLine.wav.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 6.24: Sequence of notes played with a tremolo technique.
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Discussion

The first time series of the virtual ruan shows, that it is possible to play with material prop-
erties while playing the instrument. Figure 6.24 shows that rapidly plucked notes have a
different shape each time because the initial state of the string is different every time due to

the fact that it still has vibrational energy stored from the preceding pluck.
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6.7 GUI for the Model

The Graphical User Interface (GUI) to control the models is coded in the C#, utilising a
memory-write and memory-read driver to communicate with the FPGA board.

The software interface is designed to control parameters of the FPGA models. The number
and sort of parameters depends on the implemented hardware model. At boot time, a short
handshake configures the FPGA to receive PCle data from the host PC to interact with the
respective model.

At current stage of development, the GUI has basic functionality and is more a proof-of-

concept than a readily usable interface. As is shown in figure 6.25, the GUI has several

Physical Address Strings

O T R -
O
O T ] -

Controls

O e )
O ]
CO—

5]

5]

y

Com—

5}

5

7 i & & = 5 B OB B s

[
—
—

O )
[ s | se ] Ren |

Figure 6.25: Host GUI for controlling the low level models.

assignable linear sliders. Each of the sliders can have a different functionality depending
on the device address it writes to. At this moment the GUI can be used to change physi-
cal properties of the strings, membrane and soundboards of all instruments in real-time. In
addition to that, it is possible to interact with the strings either plucking at a certain posi-
tion or bowing the strings using one of the presented interaction models, allowing it to play

monophonic melodies or single notes.
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CHAPTER /

RESULTS, CONCLUSION AND OUTLOOK

To conclude this thesis a look back on the work done and a look forward to the work to be
done is at place here. In retrospect, this thesis seems unfinished and the author’s felling is
that there are more questions that were raised than questions that were answered. This is
partially due to the interdisciplinary approach of this thesis focussing on several aspects of
acoustics and trying to combine historic research with current research.

There are multiple loose ends that, in the eyes of the author at least, have to be tied up to be
finished.

In this thesis, a methodology for modelling and synthesizing physical models of musical
instruments, discretised with finite differences computed in real-time on FPGA hardware
was presented. A derivation of the underlying algorithm for all models and presented high
level models in MATLAB and C as well as real-time models implemented in VHDL and
computed on a FPGA.

Additionally, algorithmic properties were researched resulting in a stable and flexible method

to auralise physical models of musical instruments for many diverse applications and settings.

7.1 Central Achievements

The central achievement of this work is the development and implementation of a real-time
synthesis methodology for physical models of musical instruments. Besides an identification
of robust algorithms for real-time physical modelling, the methods were optimised for an
implementation on parallel hardware devices.

It was shown that the proposed method is not only applicable for single geometries, but for
coupled systems resulting in complete instrument models as well.

Additionally, it was shown that besides linear problems, even highly non-linear problems can
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be synthesised and auralised in real-time.

The real-time prototypes for the banjo, violin, ruan, and yueqin are the first complete geom-
etry real-time physical models of their kind.

Besides the possibility of changing physical parameters like internal damping, velocity damp-
ing, coupling constants, and radiation properties while playing the instrument in real-time,
the FPGA implementation led to several findings of mathematical and numerical nature re-
garding the implementation of such models.

Additionally, the detailed occupation with mentioned instrument models lead to several in-
sights into vibro-acoustical properties of the instruments that had not been discussed in lit-

erature before for the respective instruments.

7.2 Findings of Numerical Nature

The methodology utilising a normalised fixed-point data type to compute real-time repre-
sentations for the defining physical parameters of the equations of motion was applied for
physical modelling and real-time auralisation of musical instruments for the first time.

The importance of an explicit calculation of the acceleration, velocity and deflection was
stressed. Related works, regarding the simulation of mechanical and vibro-acoustic prob-
lems, most often apply different numerical methods to find an expression only for the de-

flection?.

A method to approximate arbitrary terms in the form of 7 with a finite series of terms, ex-
pressible as left and right shift operations, is proposed and applied in the real-time models.
It is a novel approach to approximate arbitrary divisions when using a fixed point data-type.
It is highly applicable to find ad-hoc-values for damping parameters, without the effort of

implementing a division logic circuit, which is very area- and time expensive in hardware.

The method of coupling pseudo-spectral methods with symplectic and multi-symplectic in-
tegrators is proposed here for musicological problems. Even though an exhaustive presenta-
tion of the mathematical foundation was beyond the scope of this thesis, important features
of both methods could be shown numerically and advantages of the coupled methods were
stressed. Their benefits for physical models of musical instruments were exemplified at sev-

eral high level models.

7.2.1 Layer model

A novel layer model for a convenient implementation of hardware models of musical instru-

ments was developed and implemented in this thesis. Benefits were shown to be the easy

"The FDTD method, applied in the works of Stefan Bilbao are one example.
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scalability and interconnectivity of the singular layers, as well as the interchangeability of

core parts of the design.

7.3 Findings Acoustical Nature

7.3.1 Banjo

In this thesis, it was shown that the adjustment of the banjos membrane, leading to specific
boundary conditions, is of central importance for the timbre of the instrument. Only when
applying exact boundary conditions for the membrane, the characteristic ringing sound of
the banjo is achieved.

The adjustment of the banjos membrane was always subject to diverse theories among mu-
sicians instrument makers and historians. It is widely assumed that the specific boundary
conditions are only responsible for the high tension of the membrane, and a there from re-
sulting higher volume of the instrument.

But as presented in section 2.3.4, the fastening of the membrane also influences the spectrum,
specifically the positions of the mode shapes of a membrane.

It was shown that the analytical mode shapes can be found in the radiated modes, but at other
frequencies as expected. A peculiar finding of the measurements was that there are several
equidistant peaks in the frequency range between 500 and 2000 Hz.

This effect is not explained by any theory but has been found in all banjo membranes mea-
sured over the course of this thesis. A possible explanation for this effect is the influence of
the boundary condition on the radiation patterns of the membrane.

In this thesis, special boundary conditions were applied to model this effect correctly.

modelling an air volume as a Winkler bed

In section 4, it was shown that the influence of the air volume can be approximated by a Win-
kler bed coupled to the membrane. The influence of the Winkler bed results in a heightened
net force acting on the membrane, depending on the deflection of the membrane. It was
shown that this is an easy measure to implement the influence of an air volume coupled to a
membrane. This method can easily be extended to other instrument models like snares or a

timpani.

Influence of the nonlinear tension distribution

The influence of the non-linear tension distribution on the membrane, produced by the force
of the bridge, acting in the normal direction to the membrane, was shown in measurements

in chapter 2.
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It was shown that the modes do not rise uniformly when the bridge is attached to the mem-
brane.

The model of the membrane included the non-linear tension distribution with a varying
tension distribution on the membrane. The modeled instrument can be configured with
different settings and it was shown that the non-linear effects have an impact on the timbre

of the auralised banjo sound.

Non-linear effects due to high deflected strings

The banjo string is deflected comparatively far from its equilibrium position, even under
normal playing conditions.

This gives rise to non-linear effects as a result from non-linear restoring forces which can
be expressed by adding a Duffing term or a Kirchhoft-Carrier like term to the fundamental
partial differential equation of the string.

In this thesis it was argued that the deflection non-linearity can only be modeled by a Duffing
term or a Kirchhoft-Carrier-like term.

It was shown that the non-linear term not only accounts for a pitch glide, an effect that is
present in loudly played banjo strings, but it also adds non-linear decay characteristic to
some higher partials of the banjo, an effect that can be found in real banjo strings as well.
The approach of longitudinal-transversal coupling, as proposed in other works had to be dis-
missed for the cases of the string and the membrane. It was shown that it leads to unphysical

results, at least in the presented cases.

Excitation

The importance of a correct excitation mechanism model for the respective instrument was
stressed. It was found that the initial excitation directly influences the overall sound quality
of the model and the perceived accuracy of the formulation, hence, it was argued that this is

a central part for any physical model.

7.3.2 Ruan

The model of the ruan was developed as an extension to the model of the banjo.

There were two important questions regarding a physical model of the ruan:

1. What role plays the Helmholtz frequency, and how do the air modes influence the

overall radiated spectrum of the instrument?
2. How does the back plate of the ruan radiate through the sound holes on the front?

3. How important are these effects for the auralisation of the final model?
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As shown in section 2, the air-modes play an important role in the sound radiation properties
of the ruan and also the frequencies of the backplate play a role in the radiated sound of the

instrument radiating through the orifices.

Importance of the ruan’s air cavity

The importance of the Helmholtz frequency for lute-like instruments has been emphasized
many times in literature, but the exact behaviour of the interaction of an instrument body
with the enclosed air volume has only been described in a few and only simple linear cases,
like for instance the ideal Helmholtz resonators or simple cylinders with orifices. In this
thesis, the importance of the air volume inside the body of the ruan was emphasized and the

influence of the air volume on the radiated sound was shown by simulations and auralisation.

Orthotropic qualities in wood

It was shown that orthotropic material properties in wood plates have to be modeled with
great care.

There are still many open questions regarding the exact influences of material properties of
non-isotropic material in musical instruments. In this thesis, it was shown that an inclusion
of orthotropic material properties had a strong impact on the spectrum of the respective
wood plate and the whole instrument.

Hence, besides the internal damping of wood, the exact Young’s moduli and Poisson ratios

are important for the numerical model of a wooden structure like a front plate or back plate.

7.3.3 Violin

The model of the violin has revealed several interesting properties in the interaction of the
bow with the string.

It was proposed that to produce a lively violin sound not only an interface for controlling the
bow velocity and the bow pressure is important, but also the form coupling of the violin bow
to the strings influences the quality of the synthesised sound.

The traditional way to model the interaction between a violin bow and the string, applied in

several other publications is implemented by stating the following rules:

o If the bow sticks to the string, the string has the same velocity as the bow at the contact

point.

« If the bow does not stick to the string, the string can vibrate with a friction dependent

influence at the bow point.

If the violin string is modeled in the way presented in chapter 4, the sound of the model is

more realistic and lively, although it is physically not completely clear why this is the case.
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Further research on this matter is still in progress at the Institute of Systematic Musicology,

at the University of Hamburg.

Internal damping of strings

Modern violin strings are designed with a special focus on their internal damping character-
istics because of the playability and the attack of the strings. Contrabass players use different
sets of strings for different musical settings. When the instrument is played in an orches-
tral setting, strings with a higher internal damping are preferred. In a musical setting where
strings are plucked, the damping is lower because the strings need longer sustain. With the
proposed methodology, different damping coefficients can be tested and used, depending
on the musical settings and the personal preferences of the player. Changing the internal

damping is also possible when playing the virtual instrument in a live setting.

7.4 Future Research

The instrument models, proposed in this work are not strictly bound to the specific hardware
used here, but could also be implemented on other hardware devices with some adjustments.
To fully benefit fully from the proposed methodology, there are several lines of research that

can be performed using the proposed methodology as a foundation. This includes:

o The implementation of larger instrument geometries, like models of a grand-piano or

upright bass.

« A solution of other physical problems, like the solution for the Navier-Stokes equation
for fluid dynamics to simulate non-linear effects in air present in most wind instru-

ments and that also could play a role in air filled instruments like two-headed drums.

o A refined model for wood and metal plates, like for instance the sound board of a
grand piano or a cymbal using non-linear plate equation like the von-Kérman equation

would be of interest to extend the simulation capabilities of the proposed method.

« Research of internal damping and a characterisation of different parameters influenc-

ing the damping of strings or other complex meterials.>

« Another important part in future research will be the development of refined version
of the user interface as well as the implementation of an inter-FPGA communication

protocol using other high-speed buses.

*This could be achieved by simulating nano-mechanical properties of the materials applied in musical instru-
ments. Because symplectic time integration methods are used for molecular simulations since the 1950s the
methodology presented in this work can easily be extended to simulate molecular structures and properties
of polymers or wood.
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« The implementation of a more user friendly GUI including the possibility to control
the models via MIDI or OSC?.

« In addition to the more technical aspects mentioned above, the quality of synthesised
sounds should be confirmed in a larger set of listening tests, performed with musicians,
instrument builders as well as non-professional musicians as test subjects. This could
help defining a better classification of the influence of certain parameters on the sound

quality.

As a final remark regarding the research presented in this thesis is the hope that it can be used
as a basis for further research in systematic musicology, aid instrument makers in design-
ing new instrument features and musicians feeling inspired by the possibilities of real-time

physical models.

*Open Sound Control.
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APPENDIX I

1 High-speed recordings of banjo pick

Table 1: Excitation of the string with metal pick I
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Appendix I

2 High-speed recordings of banjo bridge

Table 2: Rocking motion of the bridge I

3 High-speed recordings of banjo string
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Table 3: Rocking motion of the bridge II
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Table 4: Rocking motion of the bridge III
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Table 5: String movement I

256



Appendix I

R

ﬂ@m}mh omg

Table 6: String movement II
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Table 7: String movement II
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APPENDIX II

1 CD contents.
CD File-List

Audiofiles:

1.

7.

8.

Banjo_Pluck.wav: Banjo string with finger-pick interaction model. The slipping noise
is audible between the single notes.

. Banjo_Random.wav: Random banjo notes played.

Violin_BowVelocity.wav: Changing playing paramters of the extended bow model.
Ruan_LineTune.wav: A simple sequence of notes, real-time change of the ruans front
plate thickness.

Ruan_TremoloLine.wav: A line of ruan notes played with a tremolo plectrum tech-
nique.

RuanNoOrifices.wav: A HL model of the ruan without orifices.
RuanOrifices.wav: A HL model of the ruan with orifices.
Yuegin.wav: Complete yueqin model.

Banjo_Knock.wav: Knock on the membrane of the banjo, resonating strings.

Bit-files. ROM-files for ML605 include *.mcs, *.prm, *.cfi:

1.

2.

3.

4.

violin.*
banjo.*
ruan.*

yueqin.*
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