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Abstra
tHydro
arbon reservoirs are usually lo
ated in geologi
al stru
tures that are di�
ult toimage with the 
onventional seismi
 methods, parti
ularly if a high resolution is desired.One 
ommon 
hara
teristi
 of seismi
 re
orded wave�elds are s
attered waves. At abruptdis
ontinuities in interfa
es, or small-s
ale stru
tures whose radius of 
urvature is shorterthan the wavelength of in
ident waves, Snell's law of re�e
tions no longer applies. Su
hphenomena s
atter the in
ident energy in all dire
tions, leading to better illumination,whi
h is known as di�ra
tion. Nevertheless, standard seismi
 data pro
essing methods havebeen tuned to enhan
e re�e
tions, implying that other re
orded wave�elds are 
onsideredto be noise in pro
essing. However, the importan
e of di�ra
tions has been re
ognized inre
ent years sin
e they 
arry useful information about the subsurfa
e.In this thesis, I present a new method for presta
k di�ra
tion separation and imagingusing the 
ommon-re�e
tion-surfa
e (CRS) wave�eld attributes. Di�ra
tion separation inthe full presta
k data volume is of great importan
e in di�ra
tion imaging sin
e it providesenhan
ed resolution, espe
ially in sparsely illuminated regions su
h as subsalt areas.However, presta
k di�ra
tion pro
essing is a 
hallenge due to the fa
t that di�ra
tionsin the full presta
k data volume are heavily masked by re�e
tions and noise be
ause oftheir weak amplitudes. While di�ra
tions in the zero-o�set (ZO) domain are far easier to
hara
terize and distinguish, the proposed method bene�ts from the the stability of zero-o�set pro
essing 
ombined with the improved illumination of �nite-o�set (FO) pro
essingto improve di�ra
tion separation and subsequent imaging. To establish a dire
t 
onne
tionbetween zero-o�set and �nite-o�set pro
essing, I 
hange the kernel of an existing CRS-based extrapolation method to generate a full presta
k di�ra
tion-only data volume. Thedi�ra
tion extrapolation from ZO to FO using the proposed method 
omprises a presta
kdata summation within a small surfa
e around ea
h �nite-o�set sample, leading to asigni�
ant in
rease in the signal-to-noise ratio of di�ra
tion-only data.If di�ra
tion-only data are available, the resulting sta
king velo
ities are dip-independentand thus do not need updates to remove the e�e
t of the dip. Therefore, after presta
kdi�ra
tion separation, time migration velo
ity analysis 
an dire
tly use sta
king velo
ities.A

ordingly, I present a method for di�ra
tion-based presta
k time migration velo
itymodel building. The data examples demonstrate the good potential of di�ra
tions fortime imaging using the proposed method. I also extend the proposed work�ow to the 3Din order to over
ome the problem of out-of-plane s
atterers and dis
uss the 
hallenges of3D di�ra
tion imaging. Finally, to further enhan
e di�ra
tion imaging, I present a newdi�ra
tion weight fun
tion based on the 
ombination of the width of the proje
ted Fresnelzone (PFZ) with an existing weight. Several data example, in
luding simple and 
omplexsyntheti
 and �eld data support the appli
ability of the proposed methods.i



ii



ZusammenfassungKohlenwassersto� Reservoire be�nden si
h in der Regel in komplexen geologis
henStrukturen, die s
hwierig mit konventionellen seismis
hen Methoden darzustellen sind,insbesondere wenn eine hohe Au�ösung erforderli
h ist. Eine häu�ge Charakteristik vonaufgezei
hneten seismis
hen Wellenfeldern sind gestreute Wellen. Sie treten an abruptenauftretenden Diskontinuitäten und kleinskaligen Strukturen deren Radius kleiner ist alsdie vorherrs
hende Wellenlänge auf. In diesen Fällen gilt ni
ht mehr Snellius Gesetzder Re�ektion und Refraktion. Diese Phänomene streuen die einfallende Energie inalle Ri
htungen. Man nennt sie Di�raktionen. Dieses Ereignis ist sehr wi
htig für dieEntwi
klung von Methoden, die in der Lage sind, mithilfe von seismis
her Prozessierung,komplexe Strukturen darzustellen. Herkömmli
he seismis
he Methoden allerdings sinddarauf ausgelegt re�ektierte Wellenfelder abzubilden. Das bedeutet andere aufgezei
hneteWellenfelder werden als unerwüns
htes Raus
hen in der Prozessierung unterdrü
kt.In den letzten Jahren wird die Bedeutung von Di�raktionen immer mehr bea
htet.Die Separation von Di�raktionen und ihre Abbildung is eine herausfordernde Aufgabe,da Di�raktionen meist von stärkeren Re�ektionen maskiert werden und auf Grund ihress
hwa
hen Signals als Raus
hen wahrgenommen werden. In dieser Arbeit präsentiere i
heine neue Methode um Di�raktionen von Re�ektionen vor der Stapelung zu separieren.Die vorges
hlagene Methode basiert auf den sogenannten 
ommon-re�e
tion-surfa
e (CRS)Wellenfeldattributen, die es erlauben Di�raktions- und Re�ektionslaufzeiten genau zubestimmen. Die Summation vor der Stapelung entlang einer Di�raktionslaufzeitkurveunterdrü
kt Raus
hen, was zu einer verbesserten Di�raktionsseparation führt. Es erlaubtzudem sogenannte gather, die nur Di�raktionen enthalten, die einige spannende An-wendungsmögli
hkeiten bieten, wie zum Beispiel Migrationsges
hwindigkeitsbestimmung.Die Separation vor der Stapelung wird mit Hilfe der partial CRS Stapelungsmethodeumgesetzt. Es ist eine robuste Te
hnik in der seismis
hen Datenbearbeitung, die esermögli
ht die Qualität der Daten zu verbessern und Spuren zu interpolieren.In Datensätzen die nur Di�raktionen enthalten hängen die Stapelges
hwindigkeitenni
ht länger von der Neigung ab. Daher können sie direkt als root-mean-square (RMS)Ges
hwindigkeiten angesehen werden, die für eine Zeitmigration benutzt werden können.In dieser Arbeit wende i
h eine Zeitmigration mit diesen bestimmten Ges
hwindigkeiten aufden kompletten Datensatz und die separierten Di�raktionen an. Weiterhin erweitere i
h dieMethodik auf den dreidimensionalen Fall. Weiterhin diskutiere i
h auftretende Problemein 3D Medien. Am Ende führe i
h ein neues Gewi
ht für die Di�raktionsseparation ein, dasdie Qualität der Separation verbessert. Es basiert auf der projizierten ersten Fresnelzone,die mit einem bereits existierendem Gewi
ht kombiniert wird. Dadur
h werden mehrDi�raktionen erkannt. Vers
hiedene Datenbeispiele, einfa
he und komplexe synthetis
heiii



ivund Felddaten, veri�zieren die Anwendbarkeit der vorgestellten Methoden in zwei und dreiDimensionen.
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Chapter 1
Introdu
tion
1.1 Overview of di�ra
tion imagingRe�e
tion seismology is a powerful method in oil and gas exploration whi
h uses theprin
iples of seismology to estimate the properties of the Earth's subsurfa
e from re�e
tedseismi
 waves. The method requires a sour
e of energy, su
h as dynamite or a vibrator inland data a
quisition, or an airgun in marine a
quisition. The seismi
 sour
e sends seismi
waves in all dire
tions. They propagate in the subsurfa
e and hit di�erent geologi
alfeatures in the earth. The geologi
al stru
tures re�e
t the down-going wave to themeasurement surfa
e. Pro
essing and imaging te
hniques are then applied to the re
ordeddata in order to 
reate an image of the subsurfa
e. This image is used for interpretationto estimate and evaluate 
hara
teristi
s of the hydro
arbon reservoir.Over de
ades, standard pro
essing methods have been tuned to re�e
ted waves. Thedi�ra
ted 
omponent of the wave�eld is not widely used. Nevertheless, the importan
eof di�ra
tions has been re
ognized in re
ent years sin
e the medium to small-s
alestru
tural details and heterogeneities, e.g., faults, pin
h-outs, tin lenses, fra
turinget
. are of 
ru
ial importan
e for prospe
ting and development of fra
tured reservoirs (see,e.g. Khaidukov et al., 2004; Sava et al., 2005; Fomel et al., 2007; Landa et al., 2008;Dell and Gajewski, 2011). Su
h stru
tures that s
atter an in
ome wave to all dire
tions,are a sour
e of non-Snell s
attering or seismi
 di�ra
tion. Di�ra
ted signals travel toall dire
tion, leading to better illumination 
ompared to re�e
tions. Di�ra
tions are alsolinked to the high-resolution imaging of elements with sub-wavelength s
ale or Rayleighlimit (Khaidukov et al., 2004). However, di�ra
tion imaging is a di�
ult task sin
edi�ra
tions are usually masked by re�e
tions and noise in the data be
ause of their weakamplitudes.In this thesis, a method for presta
k di�ra
tion separation based on the 
ommon-re�e
tion-surfa
e (CRS) sta
k (Müller et al., 1998; Jäger et al., 2001; Mann, 2002) is presented. TheCRS is a multi-parameter sta
king method that belongs to the 
lass of ma
ro model1



2 CHAPTER 1. INTRODUCTIONindependent imaging te
hniques. It makes use of the neighboring 
ommon midpoint(CMP) gathers during sta
king to sum up the data 
oherently in both midpoint ando�set dire
tions. The CRS method provides not only a sta
ked se
tion but also additionalsta
king attributes (known as kinemati
 wave�eld attributes) that 
an be utilized forvarious appli
ations, in
luding the 
al
ulation of geometri
al spreading (Hubral, 1983), thedetermination of the approximated proje
ted Fresnel zone (Mann, 2002), depth velo
itymodel building (Duvene
k, 2004), limited aperture depth migration (Jäger, 2004), CRS-based time migration (Spinner, 2007), presta
k data regularization and enhan
ement(Baykulov and Gajewski, 2009), multiple suppression (Dümmong, 2010) or post- andpresta
k di�ra
tion imaging suggested by Dell and Gajewski (2011).Di�ra
tion separation 
an be 
arried out in either zero-o�set (ZO) or �nite-o�set (FO)domain. ZO di�ra
tion pro
essing is fast, but less reliable sin
e for instan
e, the sta
kingby itself is harmful to weak di�ra
tions. Moreover, the di�ra
tions interfered with
ontinuous re�e
tions, e.g., edge di�ra
tions, are suppressed during the sta
king (see,e.g. Sun, 1994; Khaidukov et al., 2004). In addition, in poststa
k pro
essing of a seismi
image, dis
ontinuities in the seismi
 images 
an appear for a variety of reasons other thandi�ra
tions, e.g., errors in the velo
ity model that is used to obtain the image. Finite-o�setpro
essing in 
ontrast may provide improved resolution, espe
ially in sparsely illuminatedregions su
h as subsalt areas (Spinner, 2007). However, due to the larger number ofparameters the problem is of higher dimensionality, whi
h makes pro
essing less stableand 
omputationally more expensive than in the ZO setting (Bauer et al., 2015).In order to 
ombine the stability of ZO CRS with the improved illumination ofFO pro
essing, I present a CRS-based extrapolation method to e�e
tively separatedi�ra
tion from re�e
tions. The new method is mainly based on the partial CRS sta
kmethod (Baykulov and Gajewski, 2009) 
ombined with a ZO threshold di�ra
tion fun
tionintrodu
ed by Dell and Gajewski (2011). In the presented work�ow, the partial CRSsta
king te
hnique, whi
h is a robust te
hnique in seismi
 data pro
essing for presta
k dataenhan
ement and tra
e interpolation, is modi�ed in order to isolate di�ra
tions in the fullvolume of the presta
k data. By partially sta
king amplitudes only along the di�ra
tiontraveltimes, random noise is heavily attenuated, signal-to-noise ratio (SNR) of the presta
kdata is thus in
reased and the di�ra
tion-only gathers are generated a

ordingly.The di�ra
tion gathers have ex
iting appli
ations in data pro
essing. In re
ent years,migration velo
ity analysis tuned to di�ra
tion velo
ities has gained interest (see, e.g.Sava et al., 2005; Fomel et al., 2007; Landa et al., 2008; Dell and Gajewski, 2011) sin
e itprovides the proper velo
ity attribute for time migration. Presta
k di�ra
tion separationis also advantageous in this respe
t. The velo
ity spe
tra determined after presta
kdi�ra
tion separation show 
learer and better fo
used pi
ks (Bakhtiari Rad et al., 2014;Bakhtiari Rad and Gajewski, 2015). In addition, the subtra
tion of di�ra
ted noise inthe shallow water environments from the whole data 
an signi�
antly improve velo
ityanalysis (Ne
ati et al., 2005).Presta
k di�ra
tion separation 
an be extended to the 3D 
ase. However, di�ra
tionpro
essing in 3D media is a 
hallenge sin
e a di�ra
tion by itself is a 3D phenomenon. Three



CHAPTER 1. INTRODUCTION 3dimensional di�ra
tion pro
essing te
hniques must deal with the problem of the traveltimevariations along di�erent azimuths (Moser, 2011). The fa
t that di�ra
tion behavior
hanges in di�erent azimuths poses another 
hallenge to separate them (Keller, 1962;Klem-Musatov et al., 2008). To over
ome this issue, all separation methods should 
onsiderall possible azimuths for 
al
ulation of a di�ra
tion response, whi
h is 
omputationallyexpensive. The 3D presta
k di�ra
tion separation method suggested in this thesis assumessome limitations, e.g., limited azimuth sear
h to ease the pro
ess of the determination ofthe 3D CRS attributes.In 2D, the i-CRS operator (Vanelle et al., 2010; S
hwarz et al., 2012) whi
h is a double-square-root (DSR) expression is used in the work�ow to sum up the data along di�ra
tiontraveltimes. However, in 3D, the 
lassi
al CRS operator (Müller, 2003; Bergler, 2004) isused for sta
king. The 3D DSR CRS-type sta
king operator is under 
onstru
tion at thetime of writing this thesis.Another aspe
t of di�ra
tion separation is whi
h type of di�ra
tion 
hara
teristi
s are
onsidered in order to distinguish them in the data. Di�erent solutions based on thekinemati
 or dynami
 features of di�ra
tions were suggested (see, e.g. Sava et al., 2005;Moser and Howard, 2008; Klokov and Fomel, 2012). In the 
ontext of the CRS attributes,the absolute equality of two prin
iple 
urvatures allows to identify di�ra
tions in thedata. However, in reality a threshold should be 
hosen to 
ontrol the separation progress.Dell and Gajewski (2011) suggested an exponential fun
tion to evaluate the threshold. Thefun
tion takes values between 0 and 1. The value of the fun
tion is 
lose to one in 
ase ofdi�ra
tions. The robustness of the fun
tion by Dell and Gajewski (2011) is de
reased inhigher times (see, e.g. S
hwarz, 2015). It is vulnerable to the presen
e of noise as well. Itherefore suggest an extended fun
tion based on the 
ombination of the existing fun
tionby Dell and Gajewski (2011) with the width of proje
ted �rst Fresnel zone (see Mann,2002). Although in theory a Fresnel zone is not de�ned (respe
tively in�nite) for pointdi�ra
tors, however in pra
ti
e, su
h di�ra
tors are the highly-
urved re�e
tors with radiusmu
h smaller than the dominant wavelength (R ≪ λ). In 
onsequen
e, the width of theproje
ted Fresnel zone for a di�ra
tion is mu
h larger than for a re�e
tion, the di�eren
e
an be used as a 
onsistent attribute to better identify di�ra
tions in the data and enhan
ethe separation.1.2 Stru
ture of this thesisChapter 2 gives an overview about the theory of the CRS sta
king method as a frameworkof presta
k di�ra
tion separation. Physi
al interpretation of CRS attributes and the CRSimplementation are reviewed afterward. Some general remarks about di�erent aspe
t ofthe CRS whi
h in�uen
e di�ra
tion separation follow at the end of that 
hapter.In Chapter 3, I review the main properties of di�ra
tions and the role of di�ra
tionsin seismi
 imaging. After a brief dis
ussion about di�erent di�ra
tion traveltimeapproximations, I develop a work�ow for presta
k di�ra
tion separation and imaging.



4 CHAPTER 1. INTRODUCTIONThe velo
ity model building uses a semblan
e based analysis of di�ra
tion traveltime indi�ra
tion gathers. Appli
ation to two 
omplex syntheti
 and �eld data sets in order toevaluate the performan
e of the proposed approa
h is shown as well.Afterwards in Chapter 4, I extend the proposed approa
h to three dimension. Some
hallenges and limitations about di�ra
tion pro
essing in 3D are dis
ussed beforehand.Afterward, the appli
ation to a simple model as well as a 
omplex data set is shown. Theresults are 
ompared to the existing method of di�ra
tion separation. Finally, I propose anautomated work�ow for applying presta
k time migration tuned to di�ra
tion velo
ities.To further improve di�ra
tion imaging, in Chapter 5, I fo
us on the di�ra
tion weightfun
tion. After a brief review of the proje
ted Fresnel zone, I present an extendeddi�ra
tion weight based on the 
ombination of the width of the proje
ted Fresnel zone andthe existing fun
tion by Dell and Gajewski (2011). To evaluate the potential of the newfun
tion, I will in
orporate it in the pre- and poststa
k di�ra
tion separation work�ows.Appli
ation to a gradient model as well as a 
omplex data set are shown in the 
hapter.Finally in Chapter 6, I summarize the results of the thesis and present some outlooks.



Chapter 2
Data-driven seismi
 imaging
In this 
hapter, I brie�y dis
uss a number of important seismi
 
on
epts mostly relatedto the data-driven 
ommon-re�e
tion-surfa
e (CRS) sta
king te
hnique that forms theframework of the proposed methods in this thesis. I start with the CRS 
on
ept, thedi�eren
e between the CRS and the 
onventional sta
king methods, the CRS traveltimeand the physi
al meaning of the CRS wave�eld attributes. Finally, the 
onventional CRSattribute-sear
h strategy and some important issues regarding the CRS implementationare addressed.
2.1 Exploration seismologySeismology is the study of seismi
 waves, 
aused by ro
k suddenly breaking apart withinthe earth or the slipping of te
toni
 plates on the o
eani
 or 
ontinental s
ale. We knowthese as events as earthquakes. They 
an also be 
aused by explosions from vol
ani
eruptions and testing of nu
lear bombs. Seismologists study earthquakes and their results,like tsunamis, and landslides. They may also monitor a
tive vol
anoes for tremors andsigns of an impending eruption. They use seismographs and 
omputer equipment to
olle
t and analyze data on seismi
 events. In general, all seismi
 events 
ontain thevaluable information about the Earth's interior and pro
esses going on inside. Therefore,the obje
t of modern seismology is to extra
t as mu
h information as possible from thesesurfa
e re
ords about the nature of the seismi
 wave propagation and seismi
 parameterdistribution in the Earth and the sour
e whi
h generated the waves to analyze di�erentparts of the Earth's interior, e.g., the 
rust, mantle and 
ore (Figure 2.1).However, some seismologists study the earth on the lo
al s
ale, e.g., the near-surfa
eregime, by deliberately indu
ed by 
ontrolled explosions to sear
h for underground sour
esof petroleum and natural gas. This method whi
h is known as exploration seismology isa major tool to sear
h for hydro
arbon resour
es and seems to have no strong rival. It5
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mantle

Focus of

earthquake

Figure 2.1: A typi
al global-s
ale (earthquake) seismology: a 
ross-se
tion of the Earthshowing the propagation of seismi
 waves (red lines) after an earthquake.
an give the best image of the subsurfa
e and very detailed information about types of thero
ks and geologi
al setting whi
h are of great importan
e for reservoir 
hara
terization. Aseismi
 experiment 
onsists of di�erent stages from data a
quisition to data pro
essing andinterpretation. Seismi
 data a
quisition involves applying a seismi
 energy sour
e, su
h asa vibroseis tru
k or shot-hole dynamite at a dis
rete surfa
e lo
ation. The resulting energyis re�e
ted ba
k from interfa
es where ro
k properties 
hange (see Figure 2.2). After datais re
orded, pro
essing te
hniques in
luding denoising, sta
king and migration te
hniquesare applied using di�erent 
omputer fa
ilities to obtain a reliable subsurfa
e image forgeologi
al interpretation.
2.2 Data redundan
ySta
king has been one of the most important seismi
 te
hnique that still plays a key role indata pro
essing. A sta
ked se
tion is the �rst reliable image from the subsurfa
e. Moreover,sta
king allows a 
onsiderable redundan
y of data and results in an improved signal-to-noiseratio. In prin
iple, sta
king means to sum up data over a line or a surfa
e of re�e
tion (ordi�ra
tion) impulse responses. Sta
king operators represent an approximation of traveltimemove-out and 
an be parameterized with one or several parameters. A multi-parametersta
king operator performs the summation in two dire
tions (i.e., midpoint and o�set),whereas a single-parameter sta
king operator performs the summation only in one dire
tion(i.e., o�set). The well-known CMP sta
king method (see, e.g. Mayne, 1962) uses a single-parameter operator whi
h relies only on sta
king velo
ities. In 
ontrast, the CRS sta
kmethod employs a multi-parameter operator whi
h uses kinemati
 wave�eld attributes toapproximate the summation surfa
e.
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source

array of receivers

Figure 2.2: A typi
al lo
al-s
ale seismi
 data a
quisition: on
e a seismi
 sour
e isex
ited, the seismi
 wave�elds are generated and propagated to the subsurfa
e. There�e
ted wave�elds are re
orded at the measurement surfa
e by re
eivers. If the wave�elds
hara
teristi
s, e.g., rays (bla
k) and wavefronts (red dotted) are in
luded and modeledappropriately in pro
essing, it leads to obtaining useful information about the subsurfa
e.
2.3 The 
ommon-re�e
tion-surfa
e (CRS) sta
kThe CRS sta
king operator (Jäger et al., 2001; Müller, 2003) 
onsiders the re�e
tionresponse that stems from a re�e
tor element in the subsurfa
e while the CMP sta
kingoperator only 
onsiders an individual re�e
tion point. Therefore, the CMP operator is aspe
ial 
ase of the CRS sta
king operator. The both sta
king methods yield a simulatedzero-o�set (ZO) se
tion without any ray tra
ing or expli
it velo
ity model. The CRSoperator usually sums up the presta
k data in midpoint and half-o�set 
oordinates. Usingan entire sta
king surfa
e rather than a traje
tory in the time-midpoint-o�set spa
e impliesthat the 
onsidered re�e
tion events are 
ontinuous over several neighboring midpointgathers. This does not only lead to a stabilization in the determination of the sta
kingparameters but also over
omes the problem that a CMP gather may 
ontain informationfrom more than one re�e
tion point in depth. In 
onventional pro
essing, an additionaldip-move-out (DMO) 
orre
tion is therefore required to transform the 
ommon midpointpositions to the true 
ommon re�e
tion points (CRP) whi
h provide dip-
orre
ted sta
kingvelo
ities (Deregowski and Ro

a, 1981). The CRS te
hnique, however, does not requirean additional DMO 
orre
tion.Figure 2.3 illustrates the CRS sta
king operator and CMP sta
king traje
tory in the time-midpoint-o�set volume for a 2D model (the gray plane). The bla
k 
urves represent the
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t0

x0

CMP gather

CRP trajectory

Time

Depth

Midpoint

OffsetReflector (a)

Reflector

x0

t0

CRS surface

Midpoint

Offset

Depth

Time

(b)Figure 2.3: CRS sta
king operator and CMP traje
tory in the time-midpoint-o�set volumein 2D 
ase (modi�ed after Müller, 2003). The bla
k 
urves in both �gures represent thetraveltime impulse response of the re�e
tor in depth. (a) The red line in the upper partof the pi
tures represents the CMP sta
king path for �xed sour
e-re
eiver o�sets. Theblue line indi
ates the CRP sta
king traje
tory for the ZO sample x0. (b) The red surfa
eindi
ates the CRS summation surfa
e.



CHAPTER 2. DATA-DRIVEN SEISMIC IMAGING 9traveltime impulse response of the re�e
tor in depth. The red line represents the CMPsta
king path for �xed sour
e-re
eiver o�sets. The blue line indi
ates the CRP sta
kingtraje
tory for the ZO sample x0. The red surfa
e indi
ates the CRS summation surfa
e.Summation not only takes pla
e in o�set but also in midpoint dire
tion. Extension inmidpoint dire
tion allows to take re�e
tor dip and 
urvature into a

ount. In addition, itleads to a higher signal-to-noise ratio. Through di�erent appli
ations on real data sets,Mann (2002) showed that the CRS sta
k o�ers an ex
iting approa
h to 
onstru
t a highquality sta
ked se
tion.
2.3.1 Approximation of the CRS traveltimeThe traveltime approximation whi
h de�nes the sta
king surfa
e for the CRS method isderived from the paraxial ray theory (e.g. �Cervený, 2001). In this theory, the 
on
epts ofrays and wavefront are equally important and they both provide a 
ombined view on thepropagation of wave�elds. Rays and wavefronts are generally 
oupled to ea
h other and inan isotropi
 medium and rays are always perpendi
ular to the wavefront. The traveltimes ofpropagating wave�elds are then approximated using neighboring rays in the vi
inity of the
entral ray. Parameters des
ribing a paraxial ray are its distan
e to the 
entral ray and thedeviation of its slowness ve
tor from that of the 
entral ray. Paraxial ray theory implies thatthe values of the parameters at any point of a paraxial ray are linearly dependent on those atits initial point (Hubral et al., 1992). This dependen
y is des
ribed by di�erent propagatormatri
es (suggested by, e.g. �Cervený, 1987; Bortfeld, 1989) from whi
h, the se
ond-orderderivative matri
es of the traveltime 
an be obtained. Bortfeld (1989) introdu
ed a
4 × 4 propagator matrix for so-
alled seismi
 systems, i.e., homogeneous isotropi
 mediaseparated by smoothly 
urved interfa
es and generalized by Hubral et al. (1992) to laterallyinhomogeneous layered media with an arbitrary (transmitted or re�e
ted) 
entral raytogether with a paraxial ray in its 
lose vi
inity. For a detailed des
ription of the raymethod, I refer to Bortfeld (1989), Hubral et al. (1992) and �Cervený (2001).The following derivations are based on a 3D inhomogeneous layered isotropi
 mediumwith smooth interfa
es as shown in Hubral et al. (1992). The rays pass through thismedium originating from an initial surfa
e and ends in a �nal surfa
e. The des
riptionof displa
ement and ray slowness ve
otors as well as the 
oordinate systems on the initial(or the anterior) and the �nal (or posterior) surfa
es are reviewed in Figure 2.4. Bortfeld(1989), Hubral et al. (1992) and S
hlei
her et al. (1993) demonstrated that a relationshipbetween the 
entral ray and an arbitrary paraxial ray 
an be expressed by means of the
4× 4 ray propagator matrix

T (G,S) =

(

A B

C D

)

, (2.1)where A, B, C and D are 2×2 submatri
es of T. A linear relationship between the ve
tor
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p

p'Figure 2.4: A 
entral ray from S to G and a paraxial ray from S to G links the initialand the �nal surfa
e 
utting through a laterally inhomogeneous medium, modi�ed afterHubral et al. (1992). The two rays are de�ned by 3D displa
ement ve
tors and ray slownessve
tors at the initial and the �nal surfa
e.pairs (x,p− p0)
T and (x′,p′ − p′

0)
T 
an be established by

(

x′

p′ − p′
0

)

= T (G,S)

(

x

p− p0

)

. (2.2)Above equation des
ribes a �rst order relationship of a paraxial ray at its initial and �nalpoints by means of the propagator matrix of the 
entral ray T. Solving equation 2.2 for pand p′ leads to the following system of equations (e.g. Hubral et al., 1992)
p = p0 +B−1x′ −B−1Ax (2.3a)
p′ = p′

0 +DB−1x′ −DB−1Ax+Cx , (2.3b)The ray slowness ve
tors of a paraxial ray at the initial and �nal surfa
e 
an be 
al
ulated,if the 
orresponding 
entral ray (i.e. A, B, C, D and p0, p′
0) and the lo
ation of the startand the �nal point of the paraxial ray is known (Müller, 1999).



CHAPTER 2. DATA-DRIVEN SEISMIC IMAGING 112.3.2 Traveltime equations in 3DThe traveltime along the ray from S to G 
an be spe
i�ed in terms of the ray propagatormatrix and ray slownesses along the 
entral ray, only (e.g. Müller, 2003; Bergler, 2004).Hamilton's equation des
ribes the traveltime di�eren
e between a 
entral ray (SG) andparaxial ray (SG). Thus, for transmitted rays from the initial surfa
e to the �nal surfa
eit reads (Bortfeld, 1989)
dt = t

(

S,G
)

− t (S,G) = p′dx′ − pdx. (2.4)Substitution of equations 2.3a and 2.3b into equation 2.4 and subsequent integration yieldsa paraboli
 traveltime formula for the paraxial ray (see, e.g. Ursin, 1982; Bortfeld, 1989;Hubral et al., 1992; S
hlei
her et al., 1993)
tpar

(

S,G
)

= t0 − p0x+ p′
0x

′ − xB−1x′ +
1

2
x′DB−1x′ +

1

2
xB−1Ax, (2.5)where t0 is the traveltime along the 
entral ray. It is valid up to the se
ond-order terms in

x and x′. S
hlei
her et al. (1993) introdu
ed the 2× 2 se
ond-derivative matri
es as
NG

S =

(

∂2t

∂ (xS)i ∂ (xS)j

)

i,j=1,2

= B−1A, (2.6)
NS

G =

(

∂2t

∂ (xG)i ∂ (xG)j

)

i,j=1,2

= DB−1, (2.7)
NSG =

(

∂2t

∂ (xS)i ∂ (xG)j

)

i,j=1,2

= B−1. (2.8)Ursin (1982) and S
hlei
her et al. (1993) demonstrated that another se
ond-order travel-time formula 
an be obtained from paraboli
 traveltime approximation. Squaring equation2.5 and retain only se
ond-order terms in x and x′, and inserting equations 2.6 to 2.8 intoequation 2.5 yields a hyperboli
 traveltime form
t2hyp =

(

t0 − p0x+ p′
0x

′
)2

+ t0
(

−2xNSGx
′ + xNG

Sx+ x′NS
Gx

′
)

. (2.9)
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Figure 2.5: Relation between midpoint and half-o�set 
oordinates (blue), displa
ementve
tors (red), and position ve
tors (dotted). Modi�ed after Müller (2003)2.3.3 Midpoint and o�set 
oordinatesIn re�e
tion seismology, sour
es and re
eivers are usually lo
ated on the same surfa
e, i.e.,the anterior and posterior surfa
es 
oin
ide (Bortfeld, 1989). This allows to in
orporatepra
ti
ally more useful 
oordinates, midpoint and half-o�set. In order to transformfrom sour
e and re
eiver 
oordinates to the new 
oordinates, in the following, a planarmeasurement surfa
e whi
h 
oin
ides with the (x, y)-plane of the general Cartesian
oordinate system is 
onsidered. Ea
h sour
e and re
eiver with 
oordinates x and x′
an be des
ribed by 2D position and displa
ement ve
tors (see Figure 2.5). With simple
al
ulations, midpoint and half-o�set 
oordinates are obtained via (see, e.g. Müller, 2003)
m =

1

2

(

x′ + x
)

, h =
1

2

(

x′ − x
)

. (2.10)Inserting these de�nitions into equation 2.9 yields hyperboli
 traveltime approximation interms of midpoint and half-o�set 
oordinates
t2hyp (m,h) =

(

t0 +
∂t

∂m
m+

∂t

∂h
h

)

− t0

(

mMmhh+
1

2
hMhh+

1

2
mMmm

)

,

(2.11)where
Mh = B−1A+DB−1 +B−1 +

(

B−1
)T

, (2.12)
Mm = B−1A+DB−1 −B−1 −

(

B−1
)T

, (2.13)
Mmh = DB−1 −B−1A−B−1 +

(

B−1
)T

, (2.14)
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ond-order derivatives matri
es of the traveltime with respe
t to midpoint and half-o�set 
oordinates (e.g. S
hlei
her et al., 1993; Müller, 1999, 2003).Equation 2.11 de�nes a �nite-o�set sta
king operator in midpoint and half-o�set 
oor-dinates with a total of 14 independent parameters. In the 
ase when initial and �nalsurfa
e as well as the initial point S and the �nal point G are 
oin
ident, the 
entral raypropagates through an arbitrary inhomogeneous medium and is re�e
ted in itself at thenormal-in
ident-point (NIP) on a 
hosen re�e
tor. In the 
ase of monotypi
 waves, the
entral ray is identi
al with the zero-o�set ray (Hubral, 1983) and, thus
∂t

∂h

∣

∣

∣

∣

h=0

= 0. (2.15)In addition, it follows that the mixed se
ond-order derivatives of the traveltime vanishMüller (2003)
Mmh = 0. (2.16)Making use of the simpli�
ations and the symple
ti
ity relationships (des
ribed in, e.g.S
hlei
her et al., 1993; Müller, 1999, 2003; Bergler, 2004), the hyperboli
 zero-o�settraveltime approximation 
an express in mu
h more 
ompressed form:

t2hyp (m,h) =
(

t0 − 2pT

0 ·m
)2

+ 2t0
(

mTMmm+ hTMhh
)

, (2.17)where the ve
tor pT

0 de�nes the horizontal proje
tion of the slowness ve
tor. Here, thenumber of independent variables has been redu
ed from 14 to 8 (Müller, 2003; Bergler,2004). Equation 2.17 represents the zero-o�set CRS sta
king surfa
e, whi
h expands ino�set and midpoint 
oordinates in an arbitrary 3D medium.2.3.4 Kinemati
 wave�eld attributesThe CRS traveltime derivatives are expressed in terms of physi
al properties of wavefrontsrelated to the in
ident/emerging wave�elds. In 3D medium, the parameter pT
0 
ontainsinformation about the azimuth and the emergen
e angle (dip) of the emerging 
entral ray.It also in
ludes near surfa
e velo
ity (Müller, 2003; Bergler, 2004).The matri
es Mm and Mh 
an be related to the wavefront 
urvatures of two hypotheti
alwaves, namely the so-
alled NIP and normal wave (Hubral, 1983). These wavefronts are
reated by two arti�
ial seismi
 experiments. Figure 2.6 illustrates the experiments.
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NIP

KNIP

KN

CRSFigure 2.6: The wavefronts of the NIP (left) and normal (right) wavefront propagatingalong the 
entral ray (blue) are depi
ted. The NIP wave is emitted by a �
titious pointsour
e at the normal in
iden
e point (NIP) (Hubral, 1983), whereas the normal wave isemitted by a 
urved exploding re�e
tor element, the so-
alled 
ommon re�e
tion surfa
e(CRS). Both parameters are measured at the surfa
e.The �rst one, the so-
alled NIP wave experiment, whi
h is emitted from a �
titious pointsour
e on the re�e
tor. The ex
ited wave propagates upward along the 
entral ray and ismeasured on the surfa
e. The lo
al 
urvature of the wavefront 
an be expressed by meansof a 2 × 2 matrix KNIP . Hubral (1983) showed that the matrix Mh 
an be expressed interms of the 
urvature of the NIP wavefront by
Mh =

2

v0
HKNIPH

T , (2.18)where H is the upper left 2 × 2 submatrix of the transformation matrix from the ray-
entered Cartesian to the global Cartesian 
oordinate system (Spinner, 2007).The se
ond experiment is the normal wave experiment, in whi
h a whole 
urved re�e
torsegment in the vi
inity of the NIP is assumed to be densely 
overed with point sour
es. Ifall these sour
es are ex
ited at the same time, a wave is generated with a lo
al wavefront
urvature equal to the one of the re�e
tor. The 
orresponding rays are normal to there�e
tor and the asso
iated wave is 
alled normal wave (Hubral, 1983). The wave emergesat the measurement surfa
e with the wavefront 
urvature de�ned by a 2 × 2 matrix KN .As only normal rays are involved in the 
onsiderations, the experiment equals a zero-o�setexperiment. The 
urvature matrix KN of the normal wave 
an be related to the matrix
Mm via

Mm =
2

v0
HKNHT . (2.19)



CHAPTER 2. DATA-DRIVEN SEISMIC IMAGING 15The two angles α and φ together with the six independent elements of the symmetri
matri
es KNIP and KN are summarized as kinemati
 wave�eld attributes in threedimensional spa
e. In 
ase of an homogeneous overburden, the attributes 
an be dire
tlyrelated to properties of the re�e
tor: α and φ 
orrespond to the dip and orientation of there�e
tor element at the NIP . It is evident that KN 
arries information about the re�e
tor
urvature, whereas KNIP 
arries information about the overburden and depth (Mann,2002).After simple substitution of equations 2.18 and 2.19 into the traveltime approximation 2.17and 
onsidering ∆m = m−m0, it reads (e.g. Müller, 2003; Bergler, 2004)
t2hyp (∆m,h) = (t0 + 2pm ·∆m)2

+
2t0
v0

(

∆m ·HKNHT∆m+ h ·HKNIPH
Th
)

.
(2.20)The equation above is the 
onventional form of the hyperboli
 sta
king operator used inthe 3D CRS approa
h.The redu
tion from 3D to 2D models is straightforward. In a 2D model the materialparameters depend only on x- and z-
oordinates. The initial surfa
e and the ending surfa
eredu
e to 
urves. Thus, the two-
omponent ve
tors be
ome s
alars and the 4×4 propagatormatri
es redu
e to 2× 2 matri
es (see, e.g. Müller, 1999, 2003; Bergler, 2004).

2.3.5 The 2D 
aseS
hlei
her et al. (1993) followed Shah (1973) and Hubral and Krey (1980) in order toexpress the paraboli
 and hyperboli
 paraxial traveltime equations in terms of midpointand half-o�set 
oordinates. Afterwards, Tygel et al. (1997) 
ombined that result with theformulation of the propagator matrix in terms of wavefront 
urvatures a

ording to Hubral(1983). Their 
ombination allows to a paraboli
 paraxial traveltime approximation in 2Din terms of the CRS sta
k parameters:
tpar (∆m,h) = t0 +

2 sinα

v0
∆m+

cos2 α

v0

(

KN∆m2 +KNIPh
2
)

. (2.21)For simple layered media, Ursin (1982) showed that the hyperboli
 traveltime formulabetter des
ribe near-verti
al re�e
tions. If Equation 2.21 is squared and only the termsup to se
ond-order in midpoint and half-o�set are retained (S
hlei
her et al., 1993), thehyperboli
 traveltime equivalent is obtained via
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t2hyp (∆m,h) =

(

t0 +
2 sinα

v0
∆m

)2

+
2t0 cos

2 α

v0

(

KN∆m2 +KNIPh
2
)

. (2.22)Assuming that the 
orre
t CRS sta
king parameters are known for every time sample in theZO se
tion as well as near surfa
e velo
ity (v0), the presta
k data 
an be summed up alongthe sta
king surfa
es (extended in the both midpoint and half-o�set dire
tions) de�nedby the parameter triplets (α,KNIP and KN ). The summation result is then assigned tothe spe
i�
 zero-o�set time sample in the time domain. Sin
e the subsurfa
e stru
ture isin general unknown, the 
orre
t CRS sta
king parameters are unknown, too. Therefore,the important part of the CRS sta
king pro
edure is the determination of the sta
kingparameters whi
h is brie�y reviewed in the next se
tion.
2.4 CRS implementationThe CRS wave�eld attributes for ea
h ZO lo
ation are determined automati
ally bymeans of 
oheren
e analysis, e.g., the semblan
e norm (Taner and Koehler, 1969) alongthe sta
king operator

S =

∑W/2
j=−W/2

(

∑N
i=1 fi,j+k(i)

)2

N
∑W/2

j=−W/2

∑N
i=1 f

2
i,j+k(i)

, (2.23)where fi,j denotes the amplitude of the jth sample of the ith tra
e of N tra
es. A timewindow of width W is de�ned around the CRS operator at sample k(i). A good 
hoi
efor the length of the time window is the dominant period in the data (see Figure 2.7).Whenever the 
oheren
y is maximized, an optimal parameter set is found. It is optimalin the sense that its asso
iated hyperboli
 traveltime surfa
e �ts an event in the presta
kdata best. The data is then summed up along this sta
king surfa
e. The summation resultis pla
ed into the respe
tive ZO time sample.However, the sear
h for all CRS parameters at the same time is a 
umbersome and time-
onsuming pro
ess whi
h requires large 
omputational resour
es. To avoid 
omputational
osts, Müller et al. (1998) suggested that the sear
h for the sta
king parameters 
an besplit up into three one-parametri
 independent sear
hes in the 2D CRS. Ea
h sear
h isperformed in a lower dimension subset of data, e.g., in CMP or ZO domain. Thus, itredu
es the number of parameters to determine and speeds up the 
al
ulation. Thisapproa
h is 
alled the pragmati
 sear
h strategy and allows to obtain initial values forCRS parameters. However, sin
e the initial wave�eld attributes are determined in threeone-parametri
 sear
hes, it 
annot be expe
ted that the three one-parametri
 sear
hesyield the same results as the multi-parameter sear
h. Therefore, in order to �nd the best
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Figure 2.7: The semblan
e S for a sample k is evaluated from a multitude of time shiftedCRS operators within a time window that is disposed symmetri
ally around the test samplein CMP 
on�guration (modi�ed after Müller, 2003).possible sta
king parameters, the initial values serve as input to an optimization algorithm.The optimization will in most 
ases not only enhan
e the quality of the sta
k se
tion, butalso of the determined parameters. This is of great importan
e when applying subsequentappli
ations based on these CRS attributes. A large variety of optimization algorithms isavailable in literature and ranges from the �exible polyhedron sear
h (Nelder and Mead,1965) to the simulated annealing algorithm (Press et al., 2002).In the same fashion with 2D, the eight kinemati
 wave�eld attributes of the 3D CRSsta
king operators are determined by means of a 
oheren
e analysis. In order to obtaine�
ient sear
h strategies, Müller (2003) and Bergler (2004) suggested a solution usingthe split sta
king operators and a 
ombination of two te
hniques: a linear sear
h de�ninginitial attributes and a simulated annealing method for the �nal results. In the 
ontext ofthis thesis, I do not use the re�ned attributes to keep 
omputational 
osts low.
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onsiderationsThe spatial extent of the CRS sta
king operator is 
alled aperture. The aperturesize in midpoint and o�set dire
tions must be 
hosen appropriately to obtain optimalCRS parameters and sta
ked se
tions. For large apertures, the hyperboli
 traveltimeapproximation may no longer be valid, whereas a small aperture may de
rease the qualityof the CRS parameter estimation. The proper 
hoi
e of the o�set and midpoint aperturesdepends on the 
hara
teristi
s of the data set under 
onsideration, and is usually doneafter performing some numeri
al tests with the data. Furthermore, apertures for theCRS parameter sear
h and for the a
tual sta
king might be 
hosen independently. Thesize of o�set aperture is often determined by the o�set-to-target ratio. This is a goodapproximation be
ause for a strati�ed medium the assumption of a hyperboli
 traveltime
urve is valid in that range. The target depth 
an be estimated with a starting velo
ityand the ZO traveltime (Bobsin, 2014). The midpoint aperture is not as easily determinedas the o�set aperture. Many authors, like Hertwe
k et al. (2003); S
hlei
her et al. (1997);Mann (2002), suggested the size of the proje
ted Fresnel zone as the optimal midpointaperture.2.5.2 Spread-length biasAn important issue related to the reliability of the parameter sear
h routines is that fornon-hyperboli
 events, the 
oheren
e analysis yields se
ond-order sta
king parameters andtraveltimes that are biased by higher-order 
ontributions. This e�e
t whi
h is proportionalto the size of the sear
h aperture is termed as spread-length bias and is also well knownfrom 
onventional sta
king analysis (Al-Chalabi, 1973; Hubral and Krey, 1980). The biasedattributes determined in this way no longer represent se
ond-order but best-�t parameters.Thus, they are not optimal for further se
ond-order appli
ations. The impa
t of thespread-length bias 
an be redu
ed by 
hoosing small sear
h apertures. However, the stableevaluation of normal and NIP wavefront 
urvatures requires su�
iently large move-out inthe data.2.5.3 Con�i
ting dipsMost 
urrent implementations of the CRS operator, e.g., the pragmati
 approa
h, su�erfrom the o

urren
e of 
on�i
ting dip situations in the a
quired data. In the 
ase ofa 
on�i
ting dip situation, where a strong unwanted event 
rosses a weak wanted eventrespe
tively, e.g., a re�e
tion and a di�ra
tion event, the latter may not be imaged very well.Con�i
ting dips may happen frequently in 
omplex and semi-
omplex stru
tures where theseismi
 events are faulted or pulled up by a salt dome or anti
lines. The 
urrent 2D strategyto handle 
on�i
ting dips is equivalent to sta
king data with di�erent emergen
e angles
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α(i), where index i denotes the di�erent 
ontributing events (see, e.g. Soleimani et al.,2009; Walda and Gajewski, 2015). This strategy has some advantages that improve the
ontinuity of re�e
tion events as well as di�ra
tions in the presen
e of 
on�i
ting dipsituations.Handling of 
on�i
ting dips in 3D still is a 
umbersome task and needs to be addressedmore. Müller (2009) suggested a modi�ed work�ow that utilizes the path summationte
hnique to obtain an improved input for the 
on�i
ting dip sear
h in the zero-o�setdomain. The a
tual dete
tion is done by means of an adapted peak dete
tion algorithm.For ea
h dete
ted event 
onsistent sets of attributes are obtained by a newly introdu
edsear
h step.In the 
ontext of this thesis the 
on�i
ting dips are not handled.
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Chapter 3
Presta
k di�ra
tion separation andimaging
The CRS attributes approximate the kinemati
 re�e
tion response of a re�e
tor segmentas well as the response of a di�ra
tion. Di�ra
tions and re�e
tions 
an thus be separatedby means of the CRS attributes. I start this 
hapter with the importan
e of di�ra
tions forthe dete
tion of small-s
ale heterogeneities. Afterwards, I present a method to e�e
tivelyseparate di�ra
tions from re�e
tions before sta
king. The new method is based on the
ombination of an existing threshold fun
tion by Dell and Gajewski (2011) and the partialCRS sta
k te
hnique by Baykulov and Gajewski (2009). The existing threshold fun
tionmakes use of CRS attributes to identify di�ra
tions in the data. The partial CRS sta
k isa robust te
hnique for data regularization and enhan
ement. �Both methods are explainedin detail in the following. Afterwards, I present a di�ra
tion-based method for migrationvelo
ity analysis. Subsequently, I apply time migration tuned to di�ra
tion velo
ities onthe di�ra
tion-only data. To examine the performan
e of the proposed method, it is testedon a 
omplex syntheti
 as well as a �eld data.3.1 Di�ra
tions and resolution in data pro
essingDi�ra
ted waves are a dire
t indi
ator of small to medium s
ale heterogeneities in thesubsurfa
e and of the presen
e of faults, karsts, fra
turing, lo
al stru
tures, lithologi
alelements and stru
tural 
hanges. Therefore su
h waves 
arry useful information about thesubsurfa
e and 
an play a signi�
ant role in the geologi
al interpretation of hydro-
arbonateenvironments. For example, the identi�
ation of fra
ture density and orientation allowsreservoir engineers to design an optimal well pla
ement program that targets importantspots, areas with in
reased produ
tion, and minimizes the number of wells used for aprospe
tive area (Sturzu et al., 2014).From a physi
al point of view, di�ra
tions allow to distinguish obje
ts with typi
al sizes21



22 CHAPTER 3. PRESTACK DIFFRACTION SEPARATION AND IMAGINGthat are signi�
antly smaller than the dominant wavelength. This fa
t links them tosuper-resolution. Most of suggested methods to in
rease the seismi
 resolution involvethe image pro
essing be
ause they are only applied to seismi
 images, e.g, de
onvolutionte
hniques (see, e.g. Yilmaz, 2001). These methods might be e�e
tive in the dete
tionof some details, but their resolution is limited to the Rayleigh 
riterion. With thesemethods, elements that are smaller than half of the wavelength 
an not be interpreted
onsistently. On the other hand, de
reasing the wavelength of the seismi
 waves re�e
tedat the target is almost impossible sin
e in addition to the earth e�e
t as a low pass�lter, the high frequen
ies that are present in the data are often lost during standardpro
essing (Khaidukov et al., 2004).To see the in�uen
e of di�ra
tions in the data, spe
ial 
are should be taken into a

ountduring the a
quisition, pro
essing and interpretation in order to preserve su
h weak signals:� data a
quisition in a dense grid with short re
eiver spa
ing, high fold, and with asu�
iently high signal-to-noise ratio.� preservation of all di�ra
ted energy during pro
essing.� di�ra
tion separation should be performed without harming the frequen
y 
ontentof the signals (see e.g., Grasmue
k et al., 2013).However, di�ra
tion data 
an be used as a supplement to the stru
tural images produ
edby re�e
tion imaging. In fa
t, the goal of di�ra
tion imaging is not to repla
e thesetraditional te
hniques, but rather to provide interpreters with an additional image withstru
tural details.3.1.1 Di�ra
tion 
hara
teristi
sDi�ra
tions are typi
ally one or two orders of magnitude weaker than spe
ular re�e
tionsfrom the same depth (Krey, 1952; Landa et al., 1987). Di�ra
tion tails are espe
iallyweak signals. Khaidukov et al. (2004) dis
ussed the 
on
ept of super-resolution a
hievedthrough di�ra
tion imaging, whi
h is de�ned as the re
overy of smaller details beyondthe seismi
 wavelength, or sub-wavelength. In general, a re�e
tion 
an be de�ned asa seismi
 response from smooth interfa
es if the wavelength is signi�
antly lower thanthe boundary 
urvature radius. On the other hand, if the 
urvature radius is redu
edand be
omes 
omparable to the wavelength, Snell's law be
omes inappli
able. A seismi
response from su
h a 
urved interfa
e is te
hni
ally 
alled di�ra
tion (see, e.g. Landa et al.,1987; Kanasewi
h and Phadke, 1988)Although dynami
 features of various types of di�ra
tions are di�erent, their kinemati
sfollow the same laws (Keller, 1962; Berryhill, 1977; Klem-Musatov, 1995; Landa, 2013).Figure 3.1 illustrates a point and an edge di�ra
tion model and their seismi
 response in
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tions. Point di�ra
tion (left) and edgedi�ra
tion (right). Top: amplitude along the two di�ra
tions. Middle: di�ra
tiontraveltimes in a 
ommon-o�set gather. Bottom: depth model and rays. One 
an seethat the edge di�ra
tion exhibits a 180 degrees 
hange in the polarity whi
h di�erentiatesit from the point di�ra
tion. In this 
ase, the maximum amplitude in a 
ommon-o�setse
tion o

urs where the di�ra
tion meets the re�e
tion.
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tion undergoes a phase 
hange of 180 degrees
ompared to the re�e
tion. This implies that the edge di�ra
tion hyperbola is dividedinto two regions in whi
h the algebrai
 signs of the amplitudes are opposite. The forwards
attered part of the hyperbola that stems from the asso
iated re�e
tion has the samepolarity, while the ba
kward s
attered part beneath the re�e
tion has the opposite polarity.In 
ontrast, the point di�ra
tion does not exhibit any phase reversal. In the 
ase of anedge, a horizontal re�e
ting trun
ated layer is tangent to the di�ra
tion hyperbola at itsapex. The amplitude of the edge di�ra
tion hyperbola is half the absolute value of theamplitude of the re�e
tion from the trun
ated layer. The maximum amplitude o

urs ina seismi
 sta
ked se
tion where the di�ra
tion meets the re�e
tion. This position in notequal to the apex of the di�ra
tion hyperbola if the re�e
tor is dipping (Dell, 2012).In general, a di�ra
tion event is a symmetri
 
urve with the apex over the point di�ra
toror exa
tly at the top of an edge. However, di�ra
tion events might look di�erent in variousseismi
 referen
e systems, e.g., 
ommon-shot (CS) 
on�guration. Therefore, they are noteasy to re
ognize among other wave�elds. On the other hand, sin
e traveltime 
urvesof re�e
tions and di�ra
tions 
oin
ide in a CMP gather, it again leads to di�
ulties todistinguish di�ra
tions. In 
ontrast, di�ra
tions are often visible in brute sta
ks be
ausetheir traveltime move-out is mu
h higher in 
ommon-o�set (CO) se
tions. Considering thisfa
t, di�ra
tion dete
tion is mu
h easier in the 
ommon-o�set domain.Dete
tion of di�ra
tions based on their dynami
 properties is very 
hallenging. Forinstan
e, the phase of an edge di�ra
tion in CMP gathers does not show any 
hangein the polarity. This e�e
t 
an lead to a smeared image after sta
king sin
e phase-reversedamplitudes 
an
el out ea
h other. Moreover, some di�ra
tions, e.g., point di�ra
tion, as itwas mentioned above, do not exhibit any phase reversal. Thus the kinemati
 features ofdi�ra
tions are preferable for their identi�
ation and subsequent separation (Landa et al.,1987).3.1.2 Dete
tion and separation of di�ra
tionsAs it is outlined in the introdu
tion, the importan
e of di�ra
ted waves in re�e
tionseismology has long been re
ognized. Primarily, the obje
tive was to dete
t di�ra
tedwaves in data. Hubral (1975) studied the determination of the di�ra
tor lo
ation in a
onstant velo
ity medium with dipping layers. Klem-Musatov et al. (2008) developed thetheory of an asymptoti
 des
ription of seismi
 di�ra
ted waves in stru
turally 
omplexmedia.Over re
ent years, di�ra
tion separation and imaging in the presta
k domain has beenpartially studied. Khaidukov et al. (2004) proposed a re�e
tion-sta
k type of migration ofpresta
k shot gathers to fo
us re�e
tions to a point and smear di�ra
tions over a large area.Muting the re�e
tion fo
us and defo
using the residual wave�eld results in a shot gatherthat 
ontains di�ra
tion-only data. Kozlov et al. (2004) presented di�ra
tion imaging indepth using a modi�ed Kir
hho� migration, where the migration aperture was tapered
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ular energy. Fomel et al. (2007) developed a method for wave�eldseparation and di�ra
tion imaging based on the so-
alled plane-wave destru
tor. Thismethod 
an be applied to 
ommon o�set gathers and used to obtain a migrated se
tionbased on the optimally fo
used di�ra
ted 
omponent of the wave�eld. Moser and Howard(2008) proposed a method for di�ra
tion imaging in the depth domain in the 
ontext ofpresta
k depth migration. The idea behind this is that a general migration pro
ess 
anbe divided into two stages: one that utilizes spe
ular re�e
tions and one that suppressesthem. Building a spe
ial weight fun
tion in the migration operator that suppresses theplane 
omponent of the wave�eld allows to generate di�ra
tion-only data.More re
ently, di�ra
tion separation in 
ommon-image-gathers (CIG) has be
ome inter-esting. The analysis of a CIG in the 
oordinates of stru
tural angles has shown signi�
antdi�eren
es in the behavior of re�e
ted and di�ra
ted waves and this phenomenon 
ouldbe thus used for their separation (see e.g., Landa et al., 2008; Reshef and Landa, 2009).In this domain the re�e
tions are always 
onvex, while the di�ra
tions are straight lines.Landa et al. (2008) and Klokov and Fomel (2012) suggested a separation method based on�ltering in the Radon transformed image using the o�set vertex of a paraboli
 
urve toparameterize the re�e
ted wave and a quasi-linear parameterization for the di�ra
ted one.However, these methods are only based on the suppression of the re�e
tion, and theassumption that what remains after re�e
tion suppression are di�ra
ted wave �elds. Theydo not 
onsider the kinemati
 or dynami
 
hara
teristi
s of di�ra
tions. In an attemptto isolate di�ra
tions based on the kinemati
 
hara
teristi
s, Berkovit
h et al. (2009)presented a method to dete
t lo
al heterogeneities in a medium using a new kinemati

orre
tion for di�ra
ted waves. This 
orre
tion is based on the multifo
using method (seee.g., Gel
hinsky et al., 1999) and has a very high a

ura
y to des
ribe the kinemati
sof di�ra
ted waves for arbitrary sour
e and re
eiver positions. In a similar kinemati
-based approa
h, Dell and Gajewski (2011) proposed a method to separate re�e
tions anddi�ra
tions by using the CRS attributes. The pro
ess 
onsists of sta
king the 
oherentevents with a CRS-based operator followed by the attenuation of re�e
ted events in thepoststa
k domain with a new type of di�ra
tion-�lter. The �lter is based on the CRSattributes and 
an distinguish di�ra
tions from re�e
tions.In the 
ontext of this thesis, I fo
us on the kinemati
 features of di�ra
tions using theinsightful CRS wave�eld attributes whi
h have a physi
al interpretation and a

ount fordi�ra
tion identi�
ation best. Therefore in the next se
tion, I brie�y review the kinemati

hara
teristi
s of di�ra
tions and I 
ontinue with two important di�ra
tion traveltimeapproximations, the double-square-root (DSR) and the CRS-based di�ra
tion operator(Soleimani et al., 2009) equations.3.1.3 Di�ra
tion Kinemati
sThe basi
 idea of the Kir
hho� di�ra
tion sta
k is that a re�e
tor 
an be seen as anensemble of di�ra
tors, ea
h of them representing a se
ondary sour
e or Huygens sour
e in
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h of a point di�ra
tor in a homogeneous spa
e with the geometry ofsour
e and re
eiver (left). The 2D di�ra
tion traveltime response due to the point di�ra
tor(
ommonly known as Cheops pyramid) equivalent to the DSR equation in midpoint-o�setspa
e (right).the subsurfa
e. The re�e
tive response is then the superposition of elementary di�ra
tionsfrom these points and the re�e
tion traveltime surfa
e is the envelope of the elementarydi�ra
tion traveltime surfa
es (Dell, 2012). In this sense, a real s
atterer or di�ra
tor isusually a small obje
t in 
omparison to the dominant wavelength whi
h 
an be understoodas a small re�e
tor with an in�nite 
urvature and unde�ned orientation (Mann, 2002).Based on the Kir
hho� integral method, the elementary 2D di�ra
tion traveltime equationis given by (Claerbout, 1985)
tD =

√

t20
4
+

(

xm − h

v

)2

+

√

t20
4
+

(

xm + h

v

)2

, (3.1)
where t0 is the zero-o�set time, h is the half-o�set, xm is the midpoint and, v is the mediumvelo
ity.Figure 3.2 displays a traveltime surfa
e whi
h is the di�ra
tion impulse response from apoint di�ra
tor in midpoint-o�set 
oordinates. Although the Kir
hho�-type traveltimeequation is derived using the straight-ray assumption, it 
an be generalized to a hyperboli
relationship by a Taylor series expansion for an arbitrary medium (see, e.g., Geiger, 2001;Vanelle and Gajewski, 2002). However, DSR has better a

ura
y (see, e.g. Vanelle et al.,2010; S
hwarz et al., 2012)
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Figure 3.3: Illustration of the CRS approa
h for di�ra
ted events. Red lines delineate theNormal waves, blue lines delineate the NIP waves. With de
reasing re�e
tor 
urvature,the radii of RN and RNIP be
ome 
loser. As opposed to re�e
tions, for di�ra
tions anydire
tion des
ribes a possible zero-o�set ray along whi
h the NIP- and normal wave 
anbe 
onsidered.3.1.4 CRS for di�ra
tionsAlthough Equation 2.22 was initially derived for re�e
tions, it 
an also be applied fordi�ra
tions sin
e, a

ording to Mann (2002), a di�ra
tor 
an be des
ribed by a re�e
tor ofunde�ned orientation and in�nite 
urvature. The latter property implies that the 
ommon-re�e
tion-surfa
e shrinks into a point and thus for di�ra
tions RN = RNIP . This 
on
eptis illustrated in Figure 3.3, showing that with de
reasing re�e
tor 
urvature, the radii of
RN and RNIP be
ome 
loser. Therefore, in the di�ra
tion 
ase, Equation 2.22 is simpli�edto

t2CRSD(∆xm, h) =

(

t0 +
2 sinα

v0
∆xm

)2

+
2t0 cos

2 α

v0RNIP

(

∆x2m + h2
)

, (3.2)where v0 is the near surfa
e velo
ity. The ZO traveltime is t0. The midpoint displa
ementand o�set are∆xm and h, respe
tively. The CRS parameter RNIP is the radius of 
urvatureof the wavefront of the NIP wave and α is the in
iden
e angle.Equation 3.2 represents the CRS-based di�ra
tion operator whi
h approximates thedi�ra
tion response up to se
ond-order (Mann, 2002). If it is applied as a sta
king operator,the sta
king will enhan
e the di�ra
tions and suppress the re�e
tions, ideally resulting indi�ra
tion-only data.As it was mentioned before, the radii of 
urvature of the NIP- and N-wave 
oin
idefor di�ra
tions. Thus, the ratio of RNIP and RN 
an be a good 
riterion to separatedi�ra
tions from re�e
tions. In the ideal 
ase, a di�ra
tor should yield a ratio of RNIP /RNequal to one. However, in pra
ti
e, we �nd that for di�ra
tions RN will be 
lose to RNIP ,but the values will generally not 
oin
ide exa
tly. This is due to the band-limited natureof the data. In order to ensure a reliable dete
tion, Dell and Gajewski (2011) proposed thefollowing exponential threshold fun
tion for di�ra
tion dete
tion
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WD = exp

(

−
|RN−RNIP |

|RN+RNIP |

)

. (3.3)If RNIP and RN are 
lose to ea
h other, i.e., for di�ra
tions, the fun
tion WD will be 
loseto one. The fun
tion value will be 
lose to zero for re�e
tions. Therefore a user-
hosenthreshold 
an be applied to identify di�ra
tions: If the value of WD is above the threshold,the data is sta
ked and if it is below, the data is not sta
ked. By this weighting pro
edure,re�e
tion energy 
an e�e
tively be removed. However, the 
hoi
e of the threshold 
an beproblemati
. If the threshold is 
hosen too low, re�e
tion events are not fully suppressed.An overestimated 
hoi
e of the threshold, on the other hand, 
an suppress di�ra
ted energyas well.Guntern (2013) and Voss (2013) have investigated the in�uen
e of the threshold fun
tionby Dell and Gajewski (2011) on syntheti
 and �eld data. They found that the 
hoi
e of thethreshold determines the amount of residual re�e
ted energy in the aimed-for di�ra
tion-only sta
k. In 
on
lusion, the threshold is heavily sensitive to the 
omplexity of themedium and the data quality. E�e
tiveness of the threshold fun
tion in pre- and poststa
kdi�ra
tion separation is further dis
ussed in the 
hapter 5.Sin
e poststa
k di�ra
tion separation has been proven to be vulnerable to the presen
eof strong noise (see, e.g. Dell and Gajewski, 2011; Bakhtiari Rad and Gajewski, 2015;Bakhtiari Rad et al., 2015b; Bauer et al., 2015; S
hwarz, 2015), I suggest to separatedi�ra
tions from re�e
tions in the whole volume of presta
k data by 
hanging the kernel ofthe partial CRS introdu
ed by (Baykulov and Gajewski, 2009) whi
h is a robust te
hniquefor presta
k data enhan
ement and regularization.3.1.5 Partial CRS sta
kThe Partial CRS method is derived from the ZO CRS sta
k, where the same parametersare used as in the CRS sta
k, i.e., no additional sta
king parameter is required. Thepartial CRS surfa
e is used to sum up the �nite-o�set data 
oherently within an apertureexpanded in both midpoint and half-o�set 
oordinates without any further 
ommon-o�set(CO) pro
essing. The CO CRS sta
k te
hnique (Zhang et al., 2008) may provide morea

urate 
ompared to the partial CRS espe
ially in 
omplex media. However, due to thelarge number of the CO CRS parameters, the problem is of higher dimensionality, whi
hmakes pro
essing less stable and 
omputationally more expensive (Bauer et al., 2015). Infa
t, the partial CRS te
hnique 
ombines the stability of zero-o�set pro
essing with theimproved illumination of 
ommon-o�set pro
essing.As it is illustrated in Figure 3.4, partial CRS sta
king is 
arried out over a redu
ed aperture
entered on the �nite-o�set position instead of a full sta
king. A

ordingly, the sta
kingresult is written not to the zero-o�set 
oordinate (x0, th, h = 0) but to a �nite-o�set positionwith the 
oordinates (x0, th, h 6= 0). Therefore, it allows to generate a new tra
e at thisposition with an in
reased signal-to-noise ratio. The new tra
e 
an therefore be 
onsidered
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Figure 3.4: Sket
h of a 2D model and the resulting data (modi�ed after Müller, 2003;Baykulov and Gajewski, 2009): the bla
k lines represent the multi-
overage data in themidpoint and half-o�set domain. The red surfa
e is the CRS sta
king surfa
e 
orrespondingto an arbitrary point on the re�e
tor. In the 
ase of the CRS sta
k, the summation resultis assigned to a ZO point with 
oordinates (x0, t0, h = 0). However, in the 
ase of partialsta
king for a �nite-o�set point with 
oordinates (x0, tA, h 6= 0), the tra
es are sta
kedalong the blue surfa
e and assigned to the same �nite-o�set point.equivalent to a presta
k tra
e. Repeated appli
ation for all o�sets thus provides enhan
edpresta
k data.However, in the proposed work�ow for presta
k di�ra
tion separation, the di�ra
tionweight fun
tion initially evaluates every ZO sample whether the sample belongs to adi�ra
tion or not. If not, nothing is extrapolated for re�e
tions. If yes, in the next step, theZO CRS attributes related to every �nite-o�set di�ra
tion sample should be determined viaa best-�tting sear
h pro
ess. Here I use the solution suggested by Baykulov and Gajewski(2009) to determine the attributes for the related ZO attributes. It reads as des
ribed bythe ZO time to:
t0 = −

h2A cos2 α

v0RNIP
+

√

(

h2A cos2 α

v0RNIP

)2

+ t2A, (3.4)where tA is the �nite-o�set traveltime of the di�ra
tion sample under 
onsideration, hA isthe �nite-o�set (hA 6= 0).In the following, I dis
uss the a

ura
y of di�erent types of the traveltime approximations
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Figure 3.5: Double-square-root (DSR) and CRS-based di�ra
tion (CRSD) operator for a2D homogeneous model with a single point di�ra
tor at a depth of 1 km. The modelparameters were taken a

ording to Dell (2012). The velo
ity is 1500 m/s. The operators
oin
ide in the planes de�ned by xm = 0 and h = 0. The larger the o�set, the more theoperators deviate from ea
h other.for di�ra
tions.3.1.6 CRSD versus DSR approximationsIn a homogeneous medium, where the rays are straight lines, the di�ra
tion traveltime 
anbe 
omputed by the double-square-root (DSR) operator. In 
ontrast, the CRSD operatoris a single-square root operator whi
h 
oin
ides with the DSR operator for zero-o�set,i.e., for h = 0. For o�sets higher than zero, the DSR traveltime surfa
e and the CRSDtraveltime surfa
e deviate from ea
h other. This fa
t is investigated for a simple pointdi�ra
tor in depth as seen in Figure 3.5. For larger o�sets, the DSR operator approximatesthe di�ra
tion traveltime better than the hyperboli
 CRS (see, e.g. Dell, 2012). Thus, Isuggest to use a double-square-root-based CRS operator to sta
k di�ra
tions properlywhi
h is presented in the next se
tion.
3.1.7 The impli
it CRS (i-CRS)The 
onventional CRS operator may exhibit a suboptimal �t to non-hyperboli
 events,e.g., di�ra
tions. Hen
e, it 
an be shown that the hyperboli
 CRS expression is not ideallysuited for imaging di�ra
tions or re�e
tors of high 
urvature (see, e.g. Vanelle et al., 2010;S
hwarz et al., 2012). However, be
ause the imaging of small obje
ts plays an important
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Figure 3.6: i-CRS geometry after S
hwarz et al. (2012). The 
ir
le is des
ribed by its
enter point (xc, H) and the radius R. The 
onstant velo
ity is denoted by V . The angle
θ 
an be determined in an impli
it way by evaluating Snell's law (Vanelle et al., 2010).role in a 
omplex geologi
 setting, double-square-root-based approximations have gainedin
reasing attention in re
ent years. The 
onventional CRS operator 
an be modi�edto �t events with a high 
urvature. The impli
it CRS (or i-CRS) method introdu
edby Vanelle et al. (2010) and its opti
ally shifted version (S
hwarz et al., 2012) are DSR-based CRS-type operators whi
h are designed as a sum of two single square roots. AnotherDSR-based CRS-type sta
king operator is multifo
using method whi
h is not 
onsideredin the 
ontext of this thesis. For a detailed des
ription of the multifo
using method, I referto Gel
hinsky et al. (1999).The i-CRS approa
h results from Fermat's prin
iple and represents an impli
it method to�nd the best sta
king operator. The i-CRS operator represents a sum of two square rootsand for an isotropi
 homogeneous 2D medium is expressed as

t = ts + tg, (3.5)where ts and tg are the traveltimes from the sour
e and re
eiver to the re�e
tion point,respe
tively. Thus they are equal to
ts =

1

V

√

(x− h−∆xc −R sin θ)2 + (H −R cos θ)2 (3.6)and
tg =

1

V

√

(x+ h−∆xc −R sin θ)2 + (H −R cos θ)2. (3.7)The following relationship between CRS and e�e
tive i-CRS parameters was derived andthroughly investigated by S
hwarz et al. (2012):
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V =

vNMO
√

1 +
v2
NMO

v2
0

sin2 α

, (3.8a)
∆xc =

−RN sinα

cos2 α
(

1 +
v2
NMO

v2
0

sin2 α
) , (3.8b)

H =
v0RN

vNMO cos2 α
(

1 +
v2
NMO

v2
0

sin2 α
) , (3.8
)

R =

v0RN

vNMO cos2 α
− vNMOt0

2
√

1 +
v2
NMO

v2
0

sin2 α

, (3.8d)with the normal moveout velo
ity
vNMO =

√

2v0RNIP

t0 cos2 α
. (3.9)The i-CRS parameters are shown in Figure 3.6. The angle θ is the 
ommon o�set re�e
tionangle, whi
h for an arbitrary 
ommon o�set 
an be determined iteratively as

tan θ = tan θ0 +
h

H

ts − tg
ts + tg

, (3.10)where θ0 is the ZO re�e
tion angle. Numeri
al studies revealed that the appli
ation ofthe re�e
tion angle updated by more than one iteration does not lead to an in
rease ina

ura
y (Vanelle et al., 2010; S
hwarz et al., 2012).For the spe
ial 
ase of di�ra
tions, the number of wave�eld attributes needed to properlyapproximate the 
orresponding di�ra
tion response redu
es to two (R=0). Therefore weend up with the following expli
it expression
ti−CRSD = ts + tg , (3.11a)

ts =
1

V

√

(x− h−∆xc)
2 +H2 , (3.11b)

tg =
1

V

√

(x+ h−∆xc)
2 +H2 , (3.11
)Figure 3.7 displays the 
oheren
e se
tions of the hyperboli
 CRS and i-CRS operators fora simple model with an approximated point di�ra
tor (R = 10m) and overburden velo
ityof 1500 m/s in a depth of 1 km, and a planar re�e
tor in a depth of 2 km. One 
an observe
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(b)Figure 3.7: Coheren
y se
tion for a simple point di�ra
tor and a planar re�e
tor in ahomogeneous medium obtained by (a) the 
onventional hyperboli
 CRS and (b) the i-CRS operator. It is evident that the i-CRS operator gives 
onsiderably higher values ofsemblan
e espe
ially in the 
ase of the di�ra
tion.that the appli
ation of the i-CRS leads to 
onsiderably higher values of semblan
e andhen
e, has a better sta
king result in terms of 
oheren
e and a

ura
y. I use i-CRS topartially sta
k the data along the di�ra
tion travetimes in the proposed work�ow.
3.2 Work�ow for presta
k di�ra
tion separationIn order to 
ombine the features of the di�ra
tion weighting fun
tion with the partial i-CRSsta
k method, I suggest the following strategy to obtain di�ra
tion-only data:1. Determination of the CRS / i-CRS parameters (e.g., Mann, 2002; Müller, 2003;Vanelle et al., 2010; S
hwarz et al., 2012).2. Evaluation of the separation 
riterion (a

ording to Equation 3.3) for every ZOsample with proper 
hoi
e of the threshold based on the 
omplexity of the subsurfa
e.3. Finding the related ZO time and i-CRS parameters for ea
h sample in di�erent o�setsusing the solution suggested by Baykulov and Gajewski (2009).4. Exe
ution of the partial i-CRS sta
k with an optimal aperture in both h and xmdire
tions.
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Input data

Perform CRS/i-CRS attributes search

Choose the first sample in ZO trace

Is the separation criterion fulfilled?

Perform partial i-CRS stack 

Assign zero and do not stack

Calculate the weighting function

Output 

Advance to next CMP 

yes

Choose CMP gather 

no

Advance to next sample Figure 3.8: A �ow
hart whi
h expresses the pro
edure of the 2D presta
k di�ra
tionseparation.Figure 3.8 shows the above work�ow for presta
k di�ra
tion separation in a �ow
hart.After the determination of the wave�eld attributes for ea
h ZO sample, the partial i-CRSsta
k is implemented for the ZO samples whi
h belong to di�ra
ted events. Consequently,the presta
k di�ra
tion-only data are obtained whi
h 
an have ex
iting appli
ations, e.g.,in time migration velo
ity model building, whi
h is explained in the following.3.2.1 Di�ra
tion-based migration velo
ity analysisMigration velo
ity analysis (also known as MVA) is based on the analysis of 
ommon imagegathers (CIG) that represent migrated images obtained from di�erent o�sets Yilmaz (2001);Robein (2003). Migration with 
orre
t velo
ity produ
es CIGs with horizontally-alignedevents, whereas velo
ity errors lead to visible di�eren
es between 
ommon-o�set images.The sta
king velo
ities are usually used as input for migration velo
ity model building.Residual move-out 
orre
tion is subsequently required to 
orre
t the e�e
t of the re�e
tordip in the CIGs (Robein, 2003).However, di�ra
tions 
an be used in migration velo
ity model building as well (see,e.g. Landa et al., 2008; Reshef and Landa, 2009). The MVA using di�ra
ted events is
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on
ept. Harlan et al. (1984) addressed this problem and proposed methodsto isolate di�ra
tion events around faults. They quanti�ed fo
using using statisti
altools and introdu
ed the MVA te
hniques appli
able to simple geology, e.g., 
onstantvelo
ity. Söllner and Yang (2002) used fo
using of simulated di�ra
tions using data-derivedparameters to estimate interval velo
ities. Dell (2012) suggested a migration velo
ity s
anroutine applied to poststa
k di�ra
tion-only data based on the semblan
e norm. In hismethod, the velo
ity is 
onsistent with the data whi
h gives the best fo
used di�ra
tion.I propose to use di�ra
tion-only gathers to generate di�ra
tion-only velo
ity spe
tra. It isassumed that only di�ra
tion pi
ks are present in these velo
ity spe
tra. Thus, they allowto build a time migration velo
ity model sin
e sta
king velo
ities are dip-independentafter presta
k di�ra
tion separation. Therefore, these velo
ities 
an be dire
tly used tomigrate data. I use the semblan
e norm (Taner and Koehler, 1969) as the measure of
oheren
y. The novelty of the proposed approa
h lies in the integration of two essentialsteps: di�ra
tion separation and imaging using di�ra
tion-only information.In the following se
tion, I demonstrate the potential and e�e
tiveness of the CRS-basedpresta
k di�ra
tion separation by applying it to a syntheti
 data set of a salt model.Di�ra
tions 
an help estimate more a

urate velo
ities at the top of salt, parti
ularly inthe 
ases of rough salt bodies.3.3 Appli
ation to the Sigsbee-2A data setThe �rst example 
on
erns the Sigsbee-2A data set whi
h represents a deepwater setting ofthe Sigsbee es
arpment in the 
entral Gulf of Mexi
o. The data was produ
ed by SMAARTJV. The key feature of the model is a large salt body with a very 
omplex geometry. Thedata does not 
ontain multiples. Some normal and thrust faults are present in the data.The Sigsbee model often serves as a ben
hmark model for migration algorithms. Thetopography of the top of salt is the 
ause of many strong di�ra
tions and bowties. Twohorizontal 
hains of di�ra
tors are also lo
ated in the model that 
an be seen at about 5and 7.5 km depth. An ideal migration algorithm should handle these problems and redu
ethe artifa
ts.Figure 3.9 displays the general stratigraphy of the model along with the interval velo
itydistribution. The presta
k data volume was simulated by means of a �nite-di�eren
e (FD)approximation of the a
ousti
 wave equation. The data set features almost 8 km of o�setwith a shot interval of 45 m and a re
eiver spa
ing of 23 m and a fold of 87. All a
quisitionparameters are given in Table 3.1. Noise with S/N ratio of 10 was added to the data.Most of the CMPs ranging from 25 to 2069 are sta
ked by the CRS method. Firstly,the CRS attributes are found by the pragmati
 sear
h approa
h (see, e.g. Müller et al.,1998). If attributes are re�ned by means of the di�erent type of optimization methods (see,e.g., Müller et al., 1998; Mann, 2002; Walda and Gajewski, 2015), di�ra
tion separation isenhan
ed. However, in order to keep 
omputational 
osts low and to speed up the pro
ess,
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quisition geometryNumber of shots 496Shot interval 45.72 mMinimum o�set 0 mMaximum o�set 7932 mNumber of re
eivers 348Maximum fold 87CMP interval 11.43 mCMP range 25-2069 mRe
ording parametersRe
ording time 11 sSampling interval 8 msFrequen
y 
ontentDominant frequen
y 20 HzTable 3.1: The Sigsbee-2A model: modeling parameters used for the generation of the dataset.the re�ned attributes were not used here.I use a midpoint aperture of 300 m at the top and 500 m at the bottom. The o�setaperture is 1000 m at the top and 4000 m at the bottom. ZO CRS attributes were thendetermined. The ZO sta
ked se
tion is displayed in Figure 3.10. As expe
ted, around thesalt body a lot of di�ra
tion patterns o

ur. Tripli
ations, 
aused by syn
lines, are alsopresent. Moreover, 
on�i
ting dips o

ur in the salt body. Above the salt an approximatehorizontal layering of sediments 
an be seen. The left part without the salt body alsoshows a layering whi
h is partially tilted.The proposed method for presta
k di�ra
tion separation is then 
arried out on the dataset. The threshold for di�ra
tion separation is set to 0.9. Be
ause of the 
omplexity ofthe subsurfa
e, the partial CRS sta
king apertures in midpoint and o�set dire
tions were
hosen as small as possible. Figures 3.11 and 3.12 display di�ra
tion-only data as a resultof post- and presta
k di�ra
tion separation, respe
tively. Through a 
omparison, it isapparent that the presta
k di�ra
tion separation leads to a better di�ra
tion separation aswell as data enhan
ement 
ompared to the poststa
k method. The poststa
k separationis vulnerable to the presen
e of strong noise, whereas the presta
k di�ra
tion separationmethod exhibits good performan
e in the 
ase of noisy data sin
e it bene�ts from the dataenhan
ement fa
ility of the partial CRS sta
k (Bakhtiari Rad and Gajewski, 2015). Thered arrows indi
ate some di�ra
tions that were better separated using presta
k di�ra
tionseparation.In addition to the di�ra
tion separation, presta
k di�ra
tion separation allows to generatepresta
k di�ra
tion gathers. Four CMP positions of 250, 700, 1250, 1600 and their
orresponding di�ra
tion gathers from di�erent stru
tural features to investigate thepotential of the new method are dis
ussed here. Figure 3.13 displays the CMP gather 250



CHAPTER 3. PRESTACK DIFFRACTION SEPARATION AND IMAGING 37in the left part of the salt model before and after presta
k di�ra
tion separation. Sin
e thedi�ra
tions in this region do not stem from the salt topography, they have low amplitudesand are masked by the stronger re�e
tions and noise. In the respe
tive di�ra
tion-onlygather, these weak di�ra
tions have been well separated and the data is heavily enhan
ed.However, some residual re�e
tion energy still is present.Figure 3.14 displays the CMP gather 700 and the 
orresponding di�ra
tion gather inthe region where the strata and the salt body 
oin
ide. Again, the weak di�ra
tionshave been separated as well as the strong ones. Figure 3.15 displays CMP gather 1250,whi
h is lo
ated at the top of the salt and above one of the steep �ank of the salt dome.Some artifa
ts are still present, e.g., at 1000m o�set and 6 s , where 
on�i
ting dips 
anbe re
ognized in the se
tion prior to separation. In order to su

essfully apply the newwork�ow to su
h regions, 
on�i
ting dip pro
essing is required, whi
h is not 
onsidered inthe 
ontext of this thesis be
ause of its 
omputational 
osts. Finally, Figure 3.16 displaysthe CMP position of 1600 above a di�ra
tion stemming from the salt body. Again, thesame results as before for di�ra
tion separation as well as data enhan
ement are a
hieved.3.3.1 Di�ra
tion imaging of the Sigsbee-2AAs it was mentioned in the last se
tion, an important appli
ation of the presta
k di�ra
tionseparation is its interesting role in time migration velo
ity model building. I thereforetake a 
loser look at the velo
ity spe
tra resulting from CRS sta
king before and afterdi�ra
tion separation for CMP lo
ations 250, 700, 1250 and 1600 (Figure 3.17 to 3.20) tofurther evaluate the performan
e of the proposed method. Higher 
oheren
e values as wellas better fo
using 
an be a
hieved by 
onsidering di�ra
tion-only data. As pointed outabove, sta
king velo
ities do not depend on the re�e
tor dip after di�ra
tion separationand therefore they 
an immediately be applied for time migration. Here, the di�ra
tion-based time migration velo
ity model were built using automati
 pi
king of high 
oheren
esfor all CMPs.Figure 3.21(a) displays the time-migrated se
tion of the Sigsbee-2A using normal velo
ityanalysis and, Figure 3.21(b) displays the time-migrated se
tion of the di�ra
tion-only datausing di�ra
tion velo
ities. I observe that the strong top-of-salt di�ra
tions as well asweak di�ra
tions from the non-salt part of the data are generally well-imaged, validatingthe 
orre
tness of the estimated time migration velo
ities. Moreover, no re�e
tion is presentand the data are enhan
ed. Red arrows indi
ate the events that were better imaged as aresult of di�ra
tion-based migration velo
ity analysis.
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Figure 3.9: Sigsbee-2A velo
ity model. The model features a realisti
 geologi
al 
omplexityfound at the Sigsbee es
arpment in the gulf of Mexi
o. The 
omplex geometry of the saltbody generates numerous di�ra
tion patterns and bow-tie stru
tures.
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Figure 3.10: ZO sta
ked se
tion of the Sigsbee-2A model.
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Figure 3.11: Sigsbee-2A model: the ZO di�ra
tion-only se
tion obtained via poststa
kdi�ra
tion separation.
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Figure 3.12: Sigsbee-2A model: the ZO di�ra
tion-only se
tion obtained via presta
kdi�ra
tion separation. The red arrows indi
ate the di�ra
tions that were better separatedafter presta
k di�ra
tion separation.
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(b)Figure 3.13: CMP 250 of the Sigsbee-2A model: (a) before and (b) after presta
k di�ra
tionseparation.
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(b)Figure 3.14: CMP 700 of the Sigsbee-2A model: (a) before and (b) after presta
k di�ra
tionseparation.
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(b)Figure 3.15: CMP 1250 of the Sigsbee-2A model: (a) before and (b) after presta
kdi�ra
tion separation.
2

4

6

8

10

T
W

T
 [

s
]

2000 4000 6000
Offset [m]

(a)

2

4

6

8

10

T
W

T
 [

s
]

0 2000 4000 6000
Offset [m]

(b)Figure 3.16: CMP 1600 of the Sigsbee-2A model: (a) before and (b) after presta
kdi�ra
tion separation.
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ity spe
tra for CMP 250: (a) before and (b) afterpresta
k di�ra
tion separation.
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(b)Figure 3.18: Sigsbee-2A model, the velo
ity spe
tra for CMP 700: (a) before and (b) afterpresta
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tion separation.
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(b)Figure 3.19: Sigsbee-2A model, the velo
ity spe
tra for CMP 1250: (a) before and (b)after presta
k di�ra
tion separation.
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(b)Figure 3.20: Sigsbee-2A model, the velo
ity spe
tra for CMP 1600: (a) before and (b)after presta
k di�ra
tion separation.
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CHAPTER 3. PRESTACK DIFFRACTION SEPARATION AND IMAGING 453.4 Appli
ation to �eld dataIn order to further evaluate the performan
e of the new method, I 
hoose a 2D marine�eld data from the 
entral Levantine Basin lo
ated in the Eastern Mediterranean Sea. Thedata was provided by TGS-NOPEC. The line extends from the Israeli shelf towards the
entral part of the Levantine basin and the Eratosthenes Seamount. I pro
essed a subsetof the line (around 2500 CMPs) whi
h represents roughly 30 km of the pro�le. Figure 3.22shows the approximate position of the pro�le. The Levantine basin is lo
ated in the easternMediterranean Sea and is lo
ally 
on�ned by the 
oast lines of Lebanon, Israel and Egyptto the east and south. To the north it is limited by Cyprus, whereas the Eratosthenesseamount together with the Herodotus basin mark the limit towards the west.Netzeband et al. (2006) des
ribe in detail the evolution of the salt 
omplex in the Levantinebasin. Figure 3.23 provides a stru
tural overview of the seismi
 line. Above the salt, parallelprete
toni
 units are identi�able. They are separated from the divergent synte
toni
 unitsby a slump 
omplex. The slide of the slump 
omplex 
ould be 
aused by over steepeningor initial salt te
toni
s for example.A

ording to Netzeband et al. (2006), the deformation pattern of the intraevaporiti
sequen
e in
ludes folds and thrust faulting, whi
h gives eviden
e for extensive salt te
toni
and shortening during the depositional phase. Postdepositional gravity gliding 
ausedsalt rollers in the extensional marginal domain, 
ompressional folds, and faults within theLevantine Basin. More details 
an be found in Netzeband et al. (2006). The high numberof re
eivers results in a very high fold of 288. An overview of the a
quisition parameters isgiven in the table 3.2.I pro
essed the data with the CRS method to obtain the wave�eld attributes. The CMPA
quisition geometryNumber of shots 1077Shot interval 45.72 mMinimum o�set 150 mMaximum o�set 7338 mNumber of re
eivers 576Maximum fold 288CMP interval 12.5 mCMP range 2351-4793 mRe
ording parametersRe
ording time 9.2 sSampling interval 2 msFrequen
y 
ontentDominant frequen
y 20 HzTable 3.2: A
quisition parameters for the �eld data.



46 CHAPTER 3. PRESTACK DIFFRACTION SEPARATION AND IMAGINGinterval was 12.5m with o�sets between 150 and 7338m. I use a midpoint aperture of260m at the top and 1000 m at the bottom. The minimum and maximum o�set aperturesare 2000 m and 6000 m. The sta
ked se
tion is shown in �gure 3.24. As it is evident inthe �gure, the water depth in
reases from left to right. The sediments under the sea�oorare layered partly divergent and partly horizontal. On the left, starting at 2.1 s, a re�e
tordips downward. Multiples are also present in the data and 
an be seen around 3 to 4 sespe
ially in the right part of the se
tion.Di�ra
tions are present mostly in the left part, from 2 to 3 s. These are 
aused bysalt rollers. An approximately horizontal parallel layering o

urs above the triangularstru
tures on the right. The stru
ture between the upper divergent layers and the lowerparallel layers is not 
lear. Some di�ra
tion hyperbolas are visible on the left but a 
haoti
pattern on the right is also visible. Be
ause of the 
omplex geologi
al features of the area,out-of-plane di�ra
tions are expe
ted to be present espe
ially mostly in the right part.After the CRS attributes were determined, the pre- and poststa
k di�ra
tion separationmethods are applied to the data set. I 
hose 0.8 as the threshold for both separations
enarios. The results of the di�ra
tion separation are shown in Figure 3.25. By
omparison, I observe that the di�ra
tions are better separated via presta
k di�ra
tionseparation. The data are also enhan
ed and less residuals are present.The di�ra
tion separation in the right part is 
hallenging sin
e a lot of out-of-planedi�ra
tions and multiples are present there. Some gaps and terminations present in thedi�ra
tion-only sta
ked se
tion are due to the 
on�i
ting dips whi
h are not handledin the proposed work�ow sin
e it is 
omputationally very expensive. If 
on�i
tingdips are handled, di�ra
tion separation exhibits signi�
ant improvements (see, e.g.Walda and Gajewski, 2015).I 
hose four CMPs for a more detailed investigation. Figure 3.26 shows the results forCMP 2500 before and after di�ra
tion separation. The strong di�ra
tions, mostly around2.3 s TWT, are 
aused by the rugged top of salt. A number of weaker di�ra
tions is alsopresent. Figure 3.27 shows CMP 2900 before and after presta
k di�ra
tion separation.Strong di�ra
tion events 
an be re
ognized between 2.5 and 3 s TWT after the separation.The CMP gathers at positions 3200 and 3800 are displayed in Figures 3.28 and 3.29. Again,they exhibits the robustness of the proposed method to generate di�ra
tion gathers. In allCMPs, the data are also enhan
ed.As a �nal investigation of the �eld data, velo
ity spe
tra prior to and after di�ra
tionseparation are generated. Four examples are shown in Figures 3.30 to 3.33 for CMPlo
ations 2500, 2900, 3200 and 3800 respe
tively. I re
ognize higher 
oheren
y maximathat are well-fo
used after the separation. The di�ra
tion-only sta
ks lead to spe
tra that
ontain distin
t maxima at higher times, whi
h 
annot be identi�ed in the spe
tra priorto the separation.
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tion imaging of the �eld dataDi�ra
tion imaging for this data is a 
hallenge sin
e only few strong di�ra
tions are presentmostly in the left part of the se
tion, between 2 to 3 s. Moreover, the 
on�i
ting dips areheavily present almost everywhere. Di�ra
tion imaging using the separated di�ra
tionswith high threshold leads to a poor result. Thus, I lowered the threshold value from 0.8to 0.5, aiming to improve the subsequent di�ra
tion imaging. In other words, di�ra
tionsby themselves are not 
apable to give a good imaging in this data. Therefore, the residualre�e
tions present in data after di�ra
tion separation 
an improve time imaging togetherwith di�ra
tions.To evaluate the appli
ability of the proposed method for di�ra
tion imaging, I used theresults of the presta
k time migration of the whole wave�eld as a ben
hmark. Figure 3.34displays the presta
k time migrated se
tion from the di�ra
tion predominant part of thedata, i.e. from CMP position 2500 to 3400 and from 2 to 3 s in time. The migrationvelo
ity model was obtained using the i-CRS attribute-based method suggested by Bobsin(2014). Note that the 
on�i
ting dips are handled in the ben
hmarked se
tion based on asolution proposed by Walda and Gajewski (2015). Figure 3.35 displays the time migrationresults of the di�ra
tion-only data using the di�ra
tion velo
ities from the same area. The
on�i
ting dips are not handled in this se
tion. Comparing the results, I observed thatdi�ra
tions from the top of salt are well-
ollapsed, validating the velo
ities. The red arrowsindi
ate the events that were better imaged. However, as expe
ted, residual re�e
tions arepresent be
ause of too low threshold.3.4.2 General remarksDi�ra
tion-based imaging may fail and lead to blurred images in regions without enoughdi�ra
tions. In addition, 
on�i
ting dips and out-of-plane di�ra
tions due to the 
omplexstru
tures of the region may also deteriorate di�ra
tion velo
ity model building andsubsequent imaging. In the next 
hapter, I will extend the work�ow to 3D in order toover
ome the problem of out-of-plane di�ra
tions.Di�ra
tion separation and imaging 
an be further improved by using better weightingfun
tion. Re
ently, a variety of new weighting fun
tion based on the CRS attributesfor di�ra
tion separation was suggested (see, e.g. Wissmath., 2016; S
hwarz, 2015;Bakhtiari Rad et al., 2016). In the 
hapter 5, I will fo
us on di�erent types of the di�ra
tionweight and subsequently I propose a new di�ra
tion weight based on the Fresnel zone whi
h
an be in
orporated in the both pre- and poststa
k di�ra
tion separation work�ows.
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 units (dark green) areidenti�able. They are separated from the divergent synte
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(b)Figure 3.26: CMP lo
ation 2500 of the �eld data: (a) before and (b) after presta
kdi�ra
tion separation.
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(b)Figure 3.27: CMP lo
ation 2900 of the �eld data: (a) before and (b) after presta
kdi�ra
tion separation.
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(b)Figure 3.28: CMP lo
ation 3200 of the �eld data: (a) before and (b) after presta
kdi�ra
tion separation
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(b)Figure 3.29: CMP 3800 of the �eld data: (a) before and (b) after presta
k di�ra
tionseparation.
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(b)Figure 3.30: Velo
ity spe
tra for CMP lo
ation 2500 of the �eld data (a) before and, (b)after presta
k di�ra
tion separation.
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(b)Figure 3.32: Velo
ity spe
tra for CMP lo
ation 3200 of the �eld data (a) before and, (b)after presta
k di�ra
tion separation.
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(b)Figure 3.33: Velo
ity spe
tra for CMP lo
ation 3800 of the �eld data (a) before and, (b)after presta
k di�ra
tion separation.
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Figure 3.34: The �eld data: the time-migrated se
tion of the whole data used as aben
hmark.
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Figure 3.35: The �eld data: the time-migrated se
tion of the di�ra
tion-only data. Thered arrows indi
ate the events that were better imaged using the proposed method.



Chapter 4
3D di�ra
tion-based time imaging
2D imaging of 
omplex geologi
al features, e.g., salt bodies, irregular boundaries, faultplains whi
h serve as the main sour
es of di�ra
tions, are less a

urate in 
ontrast tothe 3D te
hniques. As a general rule, out-of-plane events are imaged 
orre
tly only in3D. Sin
e a di�ra
tion by itself is inherently a 3D phenomenon, 3D seismi
 methodsare ne
essary for 
orre
t di�ra
tion imaging. In this 
hapter, I dis
uss the possibility ofthe CRS-based di�ra
tion separation in 3D. Afterwards, I extend the presta
k di�ra
tionseparation work�ow to 3D and in the �nal step, I perform time migration velo
ity analysistuned to di�ra
tions. The data examples 
omprise a simple syntheti
 data as well as a
omplex syntheti
 data set.
4.1 2D versus 3D seismi
 imagingFor a long time only 2D pro
essing methods were applied to the seismi
 data. 2D dataare a
quired using sour
es and re
eivers laid out along a (more and less) straight line onthe earth's surfa
e. Most of 2D seismi
 imaging te
hniques assume that all signals areoriginated from the plane exa
tly under the pro�le. If this assumption is ful�lled, the2D seismi
 image obtained after migration 
an represent a true se
tion of the subsurfa
e.However, in reality most of the seismi
 energy are re�e
ted from di�erent planes and thus,in-plane assumption of 2D seismi
 migration may lead to a distorted image of the surfa
eand a subsequent misinterpretation. Moreover, 2D seismi
 images have been proven thatthey la
k the detail obtained from the 3D methods (see, e.g. Yilmaz, 2001).In re
ent years, 3D re�e
tion seismi
 te
hniques have be
ome powerful tools in the worldof seismi
 exploration. Only 3D imaging 
an provide the detailed knowledge of reservoirfeatures and handle out-of-plane re�e
tions. The advent of 3D seismi
 has transformed theupstream oil industry be
ause it enabled exploration in areas with 
omplex stru
tures lyingbelow 
omplex overburden. The imaging de�
ien
ies of 2D seismi
 pro�ling were remedied55
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hFigure 4.1: A topview of geometri
 relationships between the �eld 
oordinate ve
tors inthe o�set-midpoint 
oordinate ve
tors (∆xm and h). The 
ir
led S and G denote sour
eand re
eiver, respe
tively.by the implementation of 3D seismi
 data a
quisition whi
h allows data pro
essing tomigrate re�e
tions to their 
orre
t image 
oordinates in 3D spa
e. Data examplesemphasizing the improvements of the �nal subsurfa
e image due to the use of 3D seismi
imaging are shown in, e.g., Yilmaz (2001) or Biondi (2004).4.1.1 3D seismi
 geometryA typi
al 3D seismi
 data a
quisition is a grid of 
losely spa
ed seismi
 lines, 
rossingea
h other and provide densely sampled measurements of the subsurfa
e re�e
tivity. Ea
hseismi
 tra
e is 
hara
terized by the 
orresponding positions of the sour
e and re
eiver.The 
oordinates of sour
e and re
eiver are de�ned a

ording to a preferably orthogonal
oordinate system. The so-
alled in-line is a seismi
 line parallel to the x-axis dire
tionin whi
h the data is re
orded. Lines whi
h are perpendi
ular to in-lines are 
ommonlyreferred to as 
ross-lines (or x-lines). If the properties of the subsurfa
e do not 
hange inthe 
ross-line dire
tion, all rays remain within the verti
al observation plane de�ned bythe a
quisition line and the geometry shrinks into a 2D seismi
 survey for ea
h y position.In 3D, the midpoint and half-o�set 
oordinates are ve
tors, whereas in 2D, they redu
eto s
alars. The azimuth is the angle between the verti
al proje
tion of a line of interestand true north. If the sour
es and re
eivers are aligned along one dire
tion, as they arefor marine surveys, it is assumed that the x-axis is aligned with this dire
tion. In this 
asemost of the o�sets are distributed in a narrow range of azimuth.Many of the basi
 
on
epts that have been developed for 2D seismi
 imaging are still validfor 3D imaging. Ea
h seismi
 tra
e is again 
hara
terized by the 
orresponding positionsof the sour
e and re
eiver. 3D seismi
 presta
k data is assumed to be a 5D hyper-volumeof data in
luding two o�set in x- and y-axis of the global Cartesian 
oordinate system, and
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tion (see Figure 4.1) and the time axis.4.1.2 3D CRS for point di�ra
tionsA

ording to the CRS theory, for a 3D di�ra
ted event from a point di�ra
tor, the matri
esof wavefront 
urvature be
ome identi
al, implying 
omponent-wise equality of the two. Inthis 
ase, equation (2.17) 
an be simpli�ed to (e.g. Müller, 2003; Bergler, 2004)
t2D(∆xm,h) = (t0 + 2p∆xm)2 + 2 t0

(

∆xT

mMNIP∆xm + hTMNIPh
)

= (t0 + 2p∆xm)2 + 2 t0 (∆xm + h)TMNIP (∆xm + h) .This equation represents the 3D CRS-based di�ra
tion sta
king operator.As mentioned in the previous 
hapter, for a point s
atterer, the equality of the 
urvaturematri
es allows to identify the di�ra
ted events and separate them from re�e
tions.However, this equality 
ondition is barely ful�lled in pra
ti
e. Therefore, a weightingfun
tion as a �lter for di�ra
tion separation is required. I extended the 2D di�ra
tionweight proposed by Dell and Gajewski (2011) to three dimensions without signi�
antmodi�
ations:
WD = exp

{

−
1
∑

i=0

1
∑

j=0

∣

∣

∣

∣

Kij
N −Kij

NIP

Kij
N +Kij

NIP

∣

∣

∣

∣

}

, (4.1)where Kij
N and Kij

NIP are 
omponents of the 
orresponding matri
es of the wavefront
urvature. Again, like in the 2D 
ase, if these 
omponents are 
lose to ea
h other, i.e.,for point di�ra
tions, the fun
tion WD will be 
lose to one. For re�e
tions, the fun
tionvalue will be far from one. If the fun
tion WD is above the threshold, the data are sta
kedand, if WD is below, data are not sta
ked. The 
hoi
e of the threshold depends on the
omplexity of the subsurfa
e (Dell and Gajewski, 2011).
4.2 Edge di�ra
tion separationThe sub-surfa
e dis
ontinuities 
an be 
ategorized either as surfa
es, edges, or isolated tipsand points. For a smooth surfa
e re�e
tor, the planar surfa
es generate spe
ular (re�e
ted)events, meaning that they stri
tly obey Snell's law (Keller, 1962). Events ba
k-s
atteredfrom all other types of dis
ontinuities are di�ra
tions that do not obey Snell's law (see
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Figure 4.2: Surfa
e re�e
tion (left), edge di�ra
tion (middle) and tip di�ra
tion (right)(modi�ed after Moser, 2011). The blue ray denotes the spe
ular re�e
tion and the greenray indi
ates di�ra
tion. The di�ra
tion due to a tip of a surfa
e (or the end of an edge)does not follow Snell's law. The radiation pattern of edge di�ra
tions depends on theazimuth of sour
e and re
eivers line.
45

90
o

o

o

0

Figure 4.3: An edge model. The lines above indi
ate the CRS azimuthal attribute-sear
hpro
ess in the 3D spa
e. The green line is aligned with the strike of the edge, the red line isnormal to it and, the blue line is in 45 degrees o� the angle to the edge. In the 
ase of edgedi�ra
tion separation using the CRS attributes, only if the strike of the edge di�ra
tor isaligned to one of the CRS attribute-sear
h azimuths (for instan
e, the green line here), theedge di�ra
tion is separated.
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tions in three dimensions appear as dipping events asthey obey Snell's law only along the edge, but not transversely to it (Klem-Musatov et al.,2008).Azimuth dependen
y of three dimensional edge di�ra
tions is another 
hallenge indi�ra
tion imaging (see, e.g. Klokov et al., 2011). In 2D CRS, any type of di�ra
tion
an be separated using the CRS-based weighting fun
tion. In 3D, the 
lassi
al strategy to�nd the wave�eld attributes 
omprises 3-sear
h in three azimuths to keep 
omputational
ost reasonable, i.e., individual sear
h pro
ess along one in-line, one x-line and an extra linewith 45 degrees of azimuth (see Müller, 2003; Bergler, 2004). A

ordingly, the CRS-baseddi�ra
tion weighting fun
tion 
an identify point di�ra
tions best. However, in 
ase of anedge di�ra
tor, only if the strike is aligned to one of the CRS azimuthal sear
h-lines, it isseparated (note the green line in the Figure 4.3), however, in the other azimuths, the edgedi�ra
tion is partly separated and may lead to a smeared and less reliable image. Therefore,in most di�ra
tion separation works, re�e
tions are fully suppressed, edge di�ra
tions arepartly suppressed, while tip and point di�ra
tions stand out unsuppressed.4.3 3D time imaging tuned to di�ra
tionsTime migration still serves as the �rst reliable tool for seismi
 imaging. It is fast androbust espe
ially in the 
ase of voluminous 3D data sets. However, time migration velo
itydetermination in areas with steep dips fa
es 
hallenges and requires several updates ofsta
king velo
ities in order to remove the e�e
t of the dip.If di�ra
tion-only data are available, the resulting sta
king velo
ities are dip-independentand thus do not need updates to remove the e�e
t of the dip. Therefore, in the 
ase ofdi�ra
tion data, sta
king velo
ities 
an immediately be used as time migration velo
ities.In order to 
ombine the features of di�ra
tion pro
essing with the CRS method, I suggestthe following strategy to obtain time-migration velo
ities tuned to di�ra
tion-only data1. Determination of the 3D CRS wave�eld attributes by implementation of the 
odedeveloped by Müller (2003); Dell (2012); Ahmed et al. (2015); Bakhtiari Rad et al.(2015b)2. Evaluation of the separation 
riterion with proper 
hoi
e of the separation thresholdbased on the 
omplexity of the subsurfa
e.3. Finding the CRS attributes for ea
h o�set sample using a 3D extension of the solutionsuggested by Baykulov and Gajewski (2009).4. Exe
ution of a partial CRS sta
k (Baykulov and Gajewski, 2009) in 3D for di�ra
-tions with an optimal aperture in both h and ∆xm dire
tions to generate di�ra
tion-only gathers.
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 time migration velo
ity analysis (MVA) for ea
h di�ra
tion gather basedon the semblan
e norm (Taner and Koehler, 1969).6. Presta
k time migration using velo
ities determined from di�ra
tion-only data.If there is a large number of di�ra
tion in the data, they allow more a

urate di�ra
tion-based MVA. On the 
ontrary, la
k of enough di�ra
tions or a poor di�ra
tion separationdeteriorates migration velo
ity model building, leading to smear the �nal image.To evaluate the performan
e of the work�ow, data examples in
luding a simple and 
omplexdata are shown in the following. In order to keep the 
omputational 
osts low, the non-point di�ra
tions as well as 
on�i
ting dips are not handled in the proposed work�ow.4.4 Simple syntheti
 data exampleI start the data example with a 3D simple syntheti
 model 
onsisting of three homogeneouslayers and a sphere with diameter of 100 m (see Figure 4.4). The velo
ity in the �rst layeris 1500 m/s, in the se
ond layer is 1700 m/s, 1800 m/s in the third layer and in the sphere,velo
ity is 3000 m/s. The shot and re
eiver intervals are 25 m and the fold is 80. The o�setrange is 25 to 2000 m. The dominant frequen
y of the Ri
ker-wavelet is 20 Hz. Noise withS/N ratio of 5 was added to the data. Figure 4.5 displays the 3D CRS sta
ked se
tion ofthe data for the 9 sele
ted in-lines with the interval of 100 m. Note that the Norsar 3Draytra
er software whi
h is used in this experiment 
onsiders only high-
urved re�e
tors assour
es of di�ra
tions even though the 
ondition, R ≪ λ, is not ful�lled. However, sin
ethe generated di�ra
tion event still follows the di�ra
tion traveltime and the CRS-basedseparation 
riterion (RN ≈ RNIP ) is valid for this event, I de
ided to use the data set fordi�ra
tion separation studies presented in the following.4.4.1 Pre- and poststa
k di�ra
tion separation resultsThe tasks of pre- and poststa
k di�ra
tion separation are then 
arried out to generatedi�ra
tion-only data. Figures 4.6(a) and 4.6(b) display the ZO di�ra
tion only dataobtained via the post- and presta
k di�ra
tion separation methods, respe
tively. I used0.85 as the threshold in both 
ases. Although the re�e
tions are attenuated very wellusing both methods, the presta
k method demonstrates advantages over the poststa
kseparation. The di�ra
tion-only data obtained via the proposed work�ow exhibits higherS/N ratio be
ause of the data enhan
ement fa
ility of the partial CRS sta
king method.Nevertheless, some artifa
ts are still present in both se
tions (e.g., at about 0.7 s) whi
hare due to boundary e�e
ts as a result of the limited operator size at the end of the re�e
torboundary (Hertwe
k et al., 2003). The modeling parameters are given in Table 4.1.In another attempt to evaluate the performan
e of the new work�ow, I take a 
loser
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quisition geometryShot interval 25 mRe
eiver interval 25 mMinimum o�set 25 mMaximum o�set 2000 mNumber of re
eivers 348Maximum fold 80Bin size 50× 25 m2Re
ording parametersRe
ording time 2 sSampling interval 4 msFrequen
y 
ontentDominant frequen
y 20 HzTable 4.1: Parameters used for the generation of 3D simple syntheti
 data set.look to an individual CMP gather before and after the presta
k di�ra
tion separation.Figure 4.7(a) displays the CMP gather #40 of the in-line #4 before presta
k di�ra
tionseparation. To evaluate the robustness of the proposed work�ow in di�ra
tion separationand data regularization, I simulated a sparse data set with a 250 m gap in o�set and 100 min midpoint dire
tion. The di�ra
tion event at about 1.1 s is masked by noise. Figure 4.7(b)displays the same CMP after presta
k di�ra
tion separation. One 
an observe that, afterapplying presta
k di�ra
tion separation not only the di�ra
tion event is separated wellbut the data is enhan
ed and the gap is �lled, implying that the three tasks of wave�eldseparation, data enhan
ement and interpolation 
an be 
arried out simultaneously in onestep (see, e.g. Bakhtiari Rad et al., 2015b,a).4.4.2 Di�ra
tion imaging resultsIn the next step, I perform time migration of the presta
k di�ra
tion-only data usingdi�ra
tion velo
ities, i.e., the MVA applied here is tuned only to di�ra
tions. I use thesemblan
e norm as a measure of 
oheren
y. In addition to data enhan
ement, the presta
kdi�ra
tion separation turns out to be advantageous in the 3D velo
ity model building. Asit is shown in Figure 4.8, higher 
oheren
e values as well as better fo
using is a
hievedvia the new work�ow. As I des
ribed before, di�ra
tion velo
ities 
an immediately beapplied for time migration sin
e sta
king velo
ities after presta
k di�ra
tion separation aredip-independent.Figure 4.9 displays the time-migrated image of the di�ra
tion-only data. The di�ra
tionis well-fo
used, validating the 
orre
tness of the estimated time migration velo
ities.However, due to aforementioned aperture e�e
t on boundaries, the migration operatordoes not sum up all the data ne
essary for 
omplete destru
tive interferen
e. As a result,migration artifa
ts appear, resulting in a smeared image (e.g., at around 0.7 s).
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Figure 4.9: The 3D simple model: The time-migrated se
tion of the di�ra
tion-only data.The di�ra
tion is well-fo
used to its apex (at the in-line #5). Some artifa
ts due to theresidual re�e
tion are also present, e.g. at around 0.7 s.
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ation to the 3D SEG/EAGE salt modelIn order to evaluate the performan
e of the work�ow, I 
hoose the SEG/EAGE wideazimuth (WAZ) 
omplex data set. The data was introdu
ed by Sandia National Library(SNL). The model des
ribes a 
omplex salt body in the Gulf of Mexi
o. The top of thesalt is rugged and generates di�erent patterns of di�ra
tion events. I 
hose a portion ofthe data over the salt body for pro
essing with in-line ranges from 94 to 286 and 
ross-lineranges from 43 to 428. The CMP bin size is 40 × 20 m2 in in- and x-line dire
tions, leadingto a maximum fold of 18. The o�set ranges from 0 to 2680 m.The modeling and a
quisitionparameters are given in Table 4.2.Figure 4.10 displays the general view of the salt model in a 3D 
ross-plot in the top. Inaddition, two arbitrary in-line and x-line planes whi
h 
ross the 
enter of the salt body
an be seen in the bottom. Figure 4.11(a) displays the sta
ked se
tion of the in-line 200from a lo
ation at the 
enter of the salt body prior to di�ra
tion separation. It exhibitsdi�erent di�ra
tion patterns, as expe
ted, as well as 
on�i
ting dips, where di�ra
tionsand re�e
tions interse
t. A
quisition geometryNumber of sailline 26Number of shot 96Re
eiver interval 40 mShot interval 80 mMinimum o�set 0 mMaximum o�set 2680 mNumber of re
eivers 348Maximum fold 20Inline interval 40 mXline interval 20 mRe
ording parametersRe
ording time 5 sSampling interval 4 msFrequen
y 
ontentDominant frequen
y 18 HzTable 4.2: Parameters used for the generation of 3D SEG/EAGE syntheti
 model.4.5.1 Pre- and poststa
k di�ra
tion separation resultsFigures 4.11(b) and 4.11(
), respe
tively, display ZO di�ra
tion-only data as a result ofpost- and presta
k di�ra
tion separation. I use the same separation threshold in both 
ases.By 
omparison, it is evident that the presta
k di�ra
tion separation leads to a better resultthan the poststa
k di�ra
tion separation: Not only are the di�ra
ted events 
onsiderably



CHAPTER 4. 3D DIFFRACTION-BASED TIME IMAGING 67better separated but the data quality was also enhan
ed. However, some residual re�e
tionenergy is still present in both se
tions. Figure 4.12(a) to 4.12(
) show a

ording results forx-line 300. Again, the presta
k di�ra
tion separation exhibits higher potential regardingdi�ra
tion separation and data enhan
ement 
ompared to the poststa
k method.For further evaluation, I 
hoose a time sli
e through the 
enter of the data set at about2.5 s. Figure 4.13(a) to 4.13(
) display the sta
ked se
tion, post- and presta
k separateddi�ra
tion-only data, respe
tively. Although most of the di�ra
ted energy is separatedwell, some residual re�e
tions are still present in the data. Furthermore, some gaps andterminations are present in both se
tions sin
e 
on�i
ting dips are not handled in thework�ow and thus lead to di�
ulties in su
h regions.4.5.2 Di�ra
tion-based whole data imagingFinally, I determine time migration velo
ities from the di�ra
tion-only data obtained in theprevious step. Figure 4.14(a) and 4.14(b) displays a 
ommon data point gather from in-line130 and the 
orresponding velo
ity spe
tra before and after presta
k di�ra
tion separation,respe
tively. By 
omparing the results, I 
ould 
on�rm that indeed mostly di�ra
tions arepresent in the di�ra
tion-only data and only few residuals of re�e
tions remain. I observethat, despite the low quality of the data (e.g., the low fold, the low SNR and the lowmaximum o�set), 3D presta
k di�ra
tion separation leads to higher 
oheren
y and betterfo
used pi
ks for time migration velo
ity analysis. Note that the semblan
e based analysisis usually a�e
ted by the poor S/N ration. However, the ratio 
an be improved with thehelp of presta
k di�ra
tion separation, therefore, more reliable velo
ities 
an be extra
ted.Figure 4.15(a) and Figure 4.15(b) display the same pro
edure for time migration velo
itymodel building tuned to di�ra
tions in x-line 300. Most of di�ra
tions are presentin di�ra
tion-only gather after presta
k di�ra
tion separation and, only few re�e
tionresiduals remain. Subsequently, as it is seen in the velo
ity spe
tra, the presta
k di�ra
tionseparation leads to higher maximum 
oheren
e as well as better fo
used pi
ks. Here, thedi�ra
tion-based time migration velo
ity model were built using automati
 pi
king of high
oheren
es for all CMPs.Figure 4.16 displays presta
k time migration results before and after presta
k di�ra
tionseparation for in-line 130, Figure 4.17 for x-line 300 and Figure 4.18 for a time sli
e at2.5 s. I observe that the top-of-salt is imaged well and the di�ra
tions are generally better
ollapsed after presta
k di�ra
tion separation, as outlined by the red arrows in the �gure,suggesting that di�ra
tion velo
ities 
an be a good supplement in regions where migrationvelo
ities are otherwise hard to obtain. However, di�ra
tion-based imaging may fail andlead to blurred images in regions without enough di�ra
tions. In addition, 
on�i
tingdips and unfo
used di�ra
tions due to more 
omplex di�ra
tor geometry than the point-type 
onsidered in this work may also deteriorate di�ra
tion velo
ity model building andsubsequent imaging.
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(
)Figure 4.11: SEG/EAGE salt model, the in-line 200: (a) sta
ked se
tion prior to di�ra
tionseparation, (b) ZO di�ra
tion-only data after poststa
k di�ra
tion separation, (
) ZOdi�ra
tion-only data after presta
k di�ra
tion separation. Red arrows indi
ate events thatwere better fo
used after presta
k di�ra
tion separation.
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)Figure 4.12: SEG/EAGE salt model, the x-line 300: (a) sta
ked se
tion prior to di�ra
tionseparation, (b) ZO di�ra
tion-only data after poststa
k di�ra
tion separation, (
) ZOdi�ra
tion-only data after presta
k di�ra
tion separation. Red arrows indi
ate events thatwere better fo
used after presta
k di�ra
tion separation.
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)Figure 4.13: SEG/EAGE salt model, time sli
e at 2.5 s: (a) sta
ked se
tion prior di�ra
tionseparation, (b) ZO di�ra
tion-only data after poststa
k di�ra
tion separation, (
) ZOdi�ra
tion-only data after presta
k di�ra
tion separation. Red arrows indi
ate events thatwere better fo
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(b)Figure 4.14: SEG/EAGE salt model: Results for a 
ommon-data-point (CDP) gatherfrom in-line 130 and the 
orresponding velo
ity spe
trum (a) before and (b) after presta
kdi�ra
tion separation.
0

1

2

3

4

T
W

T
 [
s
]

2000 3000 4000 5000
Velocity [m/s]

0

0.2

0.4

0.6

0.8

1.0

S
e
m

b
la

n
c
e

0

1

2

3

4

T
W

T
 [
s
]

2000
Offset [m]

(a)

0

1

2

3

4

T
W

T
 [
s
]

2000 3000 4000 5000
Velocity [m/s]

0

0.2

0.4

0.6

0.8

1.0

0

1

2

3

4

T
W

T
 [
s
]

2000
Offset [m]

S
e
m

b
la

n
c
e

(b)Figure 4.15: SEG/EAGE salt model: Results for a 
ommon-data-point (CDP) gatherfrom x-line 300 and the 
orresponding velo
ity spe
trum (a) before and (b) after presta
kdi�ra
tion separation.



CHAPTER 4. 3D DIFFRACTION-BASED TIME IMAGING 73
1

2

3

T
W

T
 [
s
]

100 200 300 400
X-line number

(a)
1

2

3

T
W

T
 [
s
]

100 200 300 400
X-line number

(b)Figure 4.16: SEG/EAGE salt model, the in-line 130: Presta
k time migration using thevelo
ity model obtained from data (a) before and (b) after presta
k di�ra
tion separation.Red arrows indi
ate events that were better fo
used using time migration velo
itiesobtained from di�ra
tion-only data.
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(b)Figure 4.17: SEG/EAGE salt model, the x-line 300: Presta
k time migration using thevelo
ity model obtained from data (a) before and (b) after presta
k di�ra
tion separation.Red arrows indi
ate events that were better fo
used using time migration velo
itiesobtained from di�ra
tion-only data.
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(b)Figure 4.18: SEG/EAGE salt model, the time sli
e at 2.5 s: Presta
k time migrationusing the velo
ity model obtained from data (a) before and (b) after presta
k di�ra
tionseparation. Red arrows indi
ate events that were better fo
used using time migrationvelo
ities obtained from di�ra
tion-only data.



Chapter 5
Improved di�ra
tion weight
In the previous 
hapters, I have presented a new approa
h for di�ra
tion separation andimaging based on the partial CRS sta
k te
hnique. I have 
ompared the result of the newapproa
h with an existing poststa
k method. The new method for presta
k di�ra
tionseparation demonstrated advantages over the poststa
k approa
h. The presta
k dataenhan
ement fa
ility of the proposed method allows a better di�ra
tion separation andimaging. Moreover, the work�ow for presta
k di�ra
tion separation provides a velo
itymodel for time migration.In this 
hapter, I fo
us on the di�ra
tion threshold fun
tion and propose a new fun
tionbased on the proje
ted Fresnel zone (PFZ) to improve di�ra
tion separation and thesubsequent imaging. The Fresnel zone is not only important in seismi
 resolution studiesor 
orre
t determination of migration aperture but also, as I show in the following, indi�ra
tion separation. Furthermore, the resulting weight fun
tion 
an be in
orporated inboth pre- and poststa
k di�ra
tion separation work�ows. To evaluate the performan
e ofthe new fun
tion, it is applied to a gradient as well as a 
omplex data set.
5.1 Di�ra
tion weightingA

ording to the 2D CRS theory, the radii of 
urvature of the NIP- and N-wave
oin
ide for di�ra
tions. Thus, the ratio of RNIP and RN 
an be used to identifydi�ra
tions. Dell and Gajewski (2011) formulated a CRS-based exponential fun
tion toidentify di�ra
tions in the data (see Equation 3.3). This fun
tion allows a smooth andfast de
ay in transition from re�e
tions to di�ra
tions for a band-limited seismi
 data.However, sin
e the radii of 
urvature may slightly di�er for a di�ra
ted event, a thresholdis required to stabilize the separation pro
ess. The 
hoi
e of threshold heavily dependson the subsurfa
e 
omplexity. The lower the threshold, the more residual re�e
tions willremain in the data. 75



76 CHAPTER 5. IMPROVED DIFFRACTION WEIGHTThe existing fun
tion by Dell and Gajewski (2011) provides a good dis
rimination betweenre�e
tions and di�ra
tions espe
ially in shallow parts of the data. However, the separationpotential of the existing fun
tion de
reases for higher times (S
hwarz, 2015). Moreover,it may fail in the 
ase of the subsurfa
e stru
tures with small radii of 
urvature. Su
hdi�ra
tion-like stru
tures will pass the �ltering pro
ess and interfere with real di�ra
tionsespe
ially in deeper parts. In addition, the existing fun
tion is vulnerable to the presen
eof strong noise, whi
h lead to a poor di�ra
tion separation (see, e.g. Voss, 2013; Guntern,2013; Wissmath., 2016; Bakhtiari Rad et al., 2016).In a re
ent attempt to improve the CRS-based di�ra
tion weight fun
tions, S
hwarz (2015)proposed an angle-based di�ra
tion weight based on the di�eren
e in the emergen
e angleestimation of the time- and velo
ity-shifted versions of the i-CRS operator. The newweight by S
hwarz (2015) allows sharper distin
tion between di�ra
tions and re�e
tionsespe
ially in higher times, however, sin
e there is no emergen
e angle di�eren
e in thedi�ra
tion api
es, it may lead to insu�
ient separation. On the other hand, the proposedangle-based solution may fail in the separation of the di�ra
tions with short or missingtails, sin
e tails of di�ra
tions play a key role in the di�ra
tion identi�
ation. To solvethese issues, S
hwarz (2015) suggested to 
ombine the angle-based weight with the existingthreshold fun
tion by Dell and Gajewski (2011). In another attempt, Wissmath. (2016)suggested to use CO CRS attributes to improve di�ra
tion separation in 
ommon-o�sets.In the following, I present a new di�ra
tion weight to enhan
e di�ra
tion separation andthe subsequent imaging. I 
ompare performan
e of the proposed weight with the existingfun
tion by Dell and Gajewski (2011).5.2 The PFZ-based di�ra
tion identi�
ationThe 
on
ept of the Fresnel zone was initially introdu
ed in seismi
 data pro
essing as ameasure for lateral resolution. The Fresnel zone is a frequen
y dependent volume on there�e
tor within most of the wave energy is interfering 
onstru
tively (Yilmaz, 2001). Theenergy is added 
onstru
tively in the �rst Fresnel zone. The energy is added destru
tivelyfor the se
ond Fresnel zone and added 
onstru
tively again for the third Fresnel zone andso on. The determination of the Fresnel zones 
an be di�
ult and 
annot be 
al
ulatedexa
tly. There are a number of di�erent approximations to determine the Fresnel zonewhi
h most of them require the knowledge of the subsurfa
e model (Yilmaz, 2001).Hubral et al. (1993) introdu
ed the 
on
ept of the proje
ted (�rst) Fresnel zone as atime domain 
ounterpart to the �rst interfa
e Fresnel zone in the depth domain (seeFigure 5.1). This implies that the major 
ontribution stemming from a parti
ular re�e
torsegment in the depth domain 
an be found inside the asso
iated proje
ted (�rst) Fresnelzone. Thus, the proje
ted (�rst) Fresnel zone represents an optimum size of aperturefor sta
king pro
edure. Hubral et al. (1993) also demonstrated that the proje
ted (�rst)Fresnel zone 
an be estimated from traveltime measurements based on the paraxial raytheory. S
hlei
her et al. (1997) generalized the approa
h by Hubral et al. to any arbitrarya
quisition geometry.
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Figure 5.1: The proje
ted (�rst) Fresnel zone for 
ommon-shot 
on�guration (modi�edafter S
hlei
her et al., 1997). It is 
onstru
ted by proje
ting the a
tual Fresnel zone at Malong paraxial rays into the o�set-midpoint plane.In theory, the �rst Fresnel zone 
an be dire
tly determined from the di�eren
e of there�e
tion and di�ra
tion traveltime as follows:
|tD (x)− tR (x)| ≤

T

2
. (5.1)where x denotes the shot and re
eiver 
oordinates for an arbitrary a
quisition geometryand, T denotes the prevailing period of sour
e signal. For a 2D ZO 
ase, x simplyredu
es to the midpoint displa
ement (xm − x0). The true di�ra
tion and re�e
tiontraveltimes, tD and tR, depend on the subsurfa
e model whi
h is hard to obtain. However,the CRS attributes provide a good approximation for the re�e
tion as well as di�ra
tiontraveltimes (in terms of Equations 2.22 and 3.2). Therefore, for the analyti
 des
riptionof the traveltimes, the borders of the proje
ted (�rst) Fresnel zone are simply given by

|tD (xm − x0, h)− tR (xm − x0, h)| = T/2. Mann (2002) solved the equation and obtainedthe following analyti
al solution for the ZO 
on�guration:
RPFZ =

2

cosα

√

v0 T

2 |KN −KNIP |
, (5.2)where RPFZ denotes the width of the PFZ. Equation 5.2 is derived using a paraboli
traveltime approximation sin
e the Equation 5.1 
annot be solved analyti
ally usinghyperboli
 approximation. However, Mann (2002) numeri
ally showed that both paraboli
and hyperboli
 approximations give very similar values in 
ase of typi
al frequen
y 
ontentof seismi
 data.



78 CHAPTER 5. IMPROVED DIFFRACTION WEIGHTAlthough in theory a Fresnel zone is not de�ned (respe
tively in�nite) for point di�ra
tors,in pra
ti
e, di�ra
tors have a spatial extent. In 
onsequen
e, a Fresnel zone 
an be assignedto the resulting events. Sin
e its width, and therefore the width of the PFZ is mu
h largerthat the PFZ for a re�e
tion, the di�eren
e 
an be used as a 
onsistent attribute to identifydi�ra
tions in the data (see, e.g. Bakhtiari Rad et al., 2016). Sin
e, the existing fun
tionstill performs 
onsistently in api
es (S
hwarz, 2015), I suggest to 
ombine the existingfun
tion by Dell and Gajewski (2011) with the width of the PFZ to enhan
e separation ofdi�ra
tion api
es as well as tails via:
W = R̂PFZ ·WD . (5.3)Here R̂PFZ denotes the normalized width of the PFZ and WD is the existing weight(Equation 3.3). Both are evaluated for every ZO sample.As I will demonstrate with examples in the following, this fun
tion 
an be dire
tly appliedas a weight in 
ontrast to using a threshold as was ne
essary for (Equation 3.3).5.3 Appli
ation to a gradient modelFigure 5.2(a) illustrates the 
onstant velo
ity gradient model. The model 
omprises severaldi�ra
tors of di�erent type in
luding edges and a point. Syntheti
 seismograms weremodeled with the Seismi
 Un*x routine susynlv for a velo
ity at the surfa
e of 2000 m/swith a verti
al gradient of 0.5 s−1. Noise with S/N ratio of 10 was added to the data. Thea
quisition parameters are given in Table 5.1.A
quisition geometryNumber of CMP bins 451Maximum fold 80CMP interval 25 mMinimum o�set 0 mMaximum o�set 7932 mNumber of re
eivers 201Re
ording parametersRe
ording time 5 sSampling interval 4 msFrequen
y 
ontentDominant frequen
y 30 HzTable 5.1: Parameters used for the generation of the 2D gradient model.The CRS sta
king method is then applied to the data. Figure 5.2(b) displays the
orresponding ZO sta
ked se
tion of the data set. Di�erent di�ra
ted events as well as
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(b)Figure 5.2: Gradient model: (a) the velo
ity model and (b) the ZO sta
ked se
tion.re�e
tions are present in the se
tion. Con�i
ting dips are also present, e.g., in CMP about250 and 2.7 s TWT. Figure 5.3(a) shows the width of the PFZ. One 
an see that thedi�ra
tions have very high width 
ompared to the re�e
tions. Figure 5.3(b) and 5.3(
)display the existing fun
tion by Dell and Gajewski (2011) and the new weight se
tion,respe
tively. In the both se
tions, di�ra
tions show in red 
olor with values 
lose toone, whereas blue 
olors indi
ate re�e
tions and noise. The new weight is by far less
ontaminated with noise. Moreover, it is also less sensitive to the value of the sele
tedseparation threshold, whi
h allows for a better separation.The new weight 
an be in
orporated in both the pre- and poststa
k di�ra
tion separationwork�ows. Figure 5.4(a) and Figure 5.4(b) display di�ra
tion-only data as a result ofpoststa
k di�ra
tion separation using the existing and the new weight, respe
tively. In
ontrast, Figure 5.5(a) and Figure 5.5(b) display di�ra
tion-only data as a result ofpresta
k di�ra
tion separation using the existing and the new weight, respe
tively. The newweight is advantageous over the existing weight in the both pre- and poststa
k di�ra
tionseparation work�ows. The di�ra
tion tails as well as the api
es are better separated bythe new weight. Moreover, less residual re�e
tions are present.The improved di�ra
tion separation using the new weight therefore allows to enhan
e thequality of subsequent di�ra
tion imaging. Figure 5.6(a) and �Figure 5.6(b) show the time-migrated se
tion of the di�ra
tion-only data separated by the existing and new weight,respe
tively. The migration velo
ity model is the same in the both experiment. It impliesthat the di�ra
tions separated by means of the new weight are 
onsiderably better fo
usedand less re�e
tion residuals are present.
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(
)Figure 5.3: Gradient example: (a) the width of the proje
ted �rst Fresnel zone, (b) theexisting weight fun
tion by Dell and Gajewski (2011) and (
) the new weight se
tion.
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(b)Figure 5.4: Gradient model: poststa
k di�ra
tion separation using (a) the existing weightand (b) the new weight. Red arrows indi
ate events that were better separated by the newweight. Note the same 
lip in both se
tions.
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(b)Figure 5.5: Gradient model: presta
k di�ra
tion separation using (a) the existing weightand (b) the new weight. Red arrows indi
ate events that were better separated by the newweight. Note the same 
lip in both se
tions.
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(b)Figure 5.6: Gradient model: time-migrated se
tion of the di�ra
tion-only data separatedby means of (a) the existing weight and (b) the new weight. Note the same 
lip in bothse
tions.



CHAPTER 5. IMPROVED DIFFRACTION WEIGHT 835.4 Appli
ation to the BP 2004 Velo
ity Ben
hmarkIn the next example, I 
hoose the 2004 BP velo
ity ben
hmark model to test the newmethod in a 
omplex setting. Figure 5.7 displays the velo
ity model of the data. It
onsists of a 
omplex salt body regime and 
an be divided into di�erent distin
t parts, ea
hfo
using on di�erent 
hallenges for velo
ity estimation methods. The data was generatedwith a 15 km streamer with 12.5 m group interval and a 50 m shot interval. O�set rangeis 0 to 15 km (see, Billette and Brandsberg-Dahl, 2005). The modeling and a
quisitionparameters are given in Table 5.2.A
quisition geometryNumber of shots 1340Number of re
eiver 1200Shot interval 50 mRe
eiver interval 12.5 mStreamer length 15 kmMinimum o�set 0 mMaximum o�set 15000 mCMP range for pro
essing 500-7500Re
ording parametersRe
ording time 12 sSampling interval 6 msFrequen
y 
ontentDominant frequen
y 27 HzTable 5.2: A
quisition and parameters of the 2004 BP velo
ity ben
hmark data (afterBillette and Brandsberg-Dahl, 2005).Over 7000 CMPs are sele
ted for pro
essing. Figure 5.8 displays the ZO CRS sta
kedse
tion of the data. Various patterns of di�ra
tions and tripli
ations due to the salt and
omplex stru
tures are present in the sta
ked se
tion. Figure 5.9 display the 
orrespondingPFZ se
tion. The di�ra
tions in this se
tion are marked by red 
olor sin
e they have a veryhigh width of proje
ted Fresnel zone. The bluish parts, in 
ontrast, indi
ate the re�e
tionsand noise whi
h have low values of the width of the proje
ted Fresnel zone.Figure 5.10 and Figure 5.11 display the existing and the new weight se
tion, respe
tively.The di�ra
tions in the new weight se
tion are better distinguishable 
ompared to theexisting weight. From the �gures it is suggested that, the new weight is less sensitive tothe separation threshold sin
e the di�eren
e between the width of the PFZ for re�e
tionsand di�ra
tions is signi�
antly higher. Moreover, the new weight is by far less noisy,implying that the di�ra
tion separation is less a�e
ted by the ba
kground noise. As aresult, most of the re�e
tions and noise are highly attenuated by the new weight.To better evaluate the performan
e of the new weight, I 
ompare the result of pre- andpoststa
k di�ra
tion separation using both fun
tions. Figure 5.12 and 5.13 display the
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Figure 5.7: The 2004 BP velo
ity ben
hmark model.
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Figure 5.9: BP model: The width of the PFZ se
tion.poststa
k di�ra
tion separation using the existing and the new weight, respe
tively. Figure5.14 and 5.15 in 
ontrast display the presta
k di�ra
tion separation using the existing andthe new weight, respe
tively. The new weight is advantageous over the existing weight inboth of the pre- and poststa
k di�ra
tion separation work�ows: The di�ra
tion tails aswell as the api
es are better separated than for the weight by Dell and Gajewski (2011).
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Figure 5.10: BP model: The existing weight by Dell and Gajewski (2011).
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Figure 5.11: BP model: The new weight se
tion.
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Figure 5.12: BP model: Poststa
k di�ra
tion separation using the existing weight.
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Figure 5.13: BP model: Poststa
k di�ra
tion separation using the new weight.



90 CHAPTER 5. IMPROVED DIFFRACTION WEIGHT
4 6 8

1
0

TWT [s]

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

C
M

P
 n

u
m

b
e

r

Figure 5.14: BP model: Presta
k di�ra
tion separation using the existing weight.
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Figure 5.15: BP model: Presta
k di�ra
tion separation using the new weight.
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Chapter 6
Summary and Outlook
In this thesis, I have presented a new work�ow to enhan
e 
ommon-re�e
tion-surfa
e (CRS)based di�ra
tion imaging. Sin
e a key step to improve di�ra
tion imaging is to enhan
edi�ra
tion separation (from re�e
tions), in the �rst and major stage, I have fo
used ondi�ra
tion separation method by Dell and Gajewski (2011). A

ordingly, I have presenteda new approa
h to separate di�ra
tions in the full presta
k data volume whi
h is ofgreat importan
e in di�ra
tion imaging sin
e it provides enhan
ed resolution, espe
iallyin sparsely illuminated regions. I have presented an extrapolation-based approa
h bymodifying the kernel of the partial CRS sta
k te
hnique (Baykulov and Gajewski, 2009)to establish a dire
t 
onne
tion between zero-o�set (ZO) to �nite-o�set (FO) di�ra
tionpro
essing. Sin
e di�ra
tions in the ZO domain are far easier to 
hara
terize anddistinguish, the proposed work�ow bene�ts from the the stability of zero-o�set pro
essing
ombined with the improved illumination of �nite-o�set pro
essing to improve di�ra
tionseparation and subsequent imaging.However, presta
k di�ra
tion pro
essing is a 
hallenge due to the fa
t that di�ra
tionsin the full presta
k data volume are heavily masked by re�e
tions and noise be
ause oftheir weak amplitudes. To over
ome this issue, the work�ow takes advantage of the dataenhan
ement fa
ility of the partial CRS sta
k whi
h 
omprises a presta
k data summationwithin a small surfa
e around ea
h �nite-o�set sample, leading to a signi�
ant in
reasein the signal-to-noise ratio. In addition to data enhan
ement, the other two importantfeatures of the partial CRS sta
k in
luding data interpolation and o�set regularization 
analso be 
arried out simultaneously in one step. The �nal output of the proposed work�owis a presta
k di�ra
tion-only data volume.The presta
k di�ra
tion-only data 
an be further sta
ked to obtain an improved ZOdi�ra
tion se
tion. I used the 2D i-CRS di�ra
tion operator for ZO to FO di�ra
tionextrapolation and sta
king in the presta
k domain. The 2D i-CRS as a double-square-root(DSR) traveltime expression has been proven to be 
onsiderably more a

urate than thehyperboli
 CRS for very high 
urvatures. Therefore, the 2D i-CRS is most suitable toapproximate di�ra
tion traveltimes. Moreover, it allows a higher o�set-to-target ratio.93



94 CHAPTER 6. SUMMARY AND OUTLOOKHowever, to avoid the far-o�set operator deviations, spe
ial 
are to 
hoose a properaperture size for sta
king should be taken.A 
omparison of the new ZO di�ra
tion-only sta
ked se
tion with the results of the existingpoststa
k approa
h by Dell and Gajewski (2011) demonstrates superiority of the proposedpresta
k method. The di�ra
tion separation potential of the poststa
k method turned outto de
rease in presen
e of strong noise. In 
ontrast, presta
k di�ra
tion separation, as itwas shown in several data examples in this thesis, 
an 
onsiderably enhan
e di�ra
tionseparation.A di�ra
tion-only gather represents mostly di�ra
ted events, whi
h means that di�ra
tionpi
ks are predominant in the respe
tive velo
ity spe
trum. It implies that di�ra
tion data isavailable for time migration velo
ity model building sin
e sta
king velo
ities after presta
kdi�ra
tion separation are dip-independent. As a result, there is no need for further updatesof sta
king velo
ities to remove the e�e
t of the dip. I also have observed that presta
kdi�ra
tion separation leads to less noisy velo
ity spe
tra, higher 
oheren
y values, andbetter fo
used pi
ks 
ompared to the 
onventional sta
king velo
ity spe
tra.I have then in
orporated di�ra
tion imaging in the proposed work�ow and implementeda di�ra
tion-based fully automated migration velo
ity analysis (MVA) to build a timemigration velo
ity model. As a general rule, if there is no su�
ient number of di�ra
tionsin the data, the resulting velo
ity model will be poor. However, �eld data usually 
ontainlarge amount of di�ra
tions distributed along the seismi
 line.Con�i
ting dip situations where di�erent seismi
 events 
ross ea
h other, are very
hallenging for any imaging te
hniques in
luding the CRS-based di�ra
tion imaging. Inthis 
ase, the CRS sta
k may not provide the best �t to di�ra
tions, leading to a poordi�ra
tion separation. Con�i
ting dips are not handled in the proposed work�ow to keep
omputational 
osts low. I did not re�ne the initial CRS attributes be
ause of samereason. However, in order to exploit the full potential of the pre- and poststa
k di�ra
tionseparation methods, attribute re�nement te
hniques as well as 
on�i
ting dips pro
essingshould be in
luded in spite of the high 
omputational 
osts (see Walda and Gajewski,2015).Di�ra
tion separation in the time domain for media with moderate lateral velo
ityvariations is robust with respe
t to the quality of the velo
ity model. In 
ontrast, di�ra
tionseparation in the depth domain is most suitable for 
omplex media. Although depthvelo
ity model building using di�ra
tions is not investigated in this thesis, but it 
an beimplemented in the same manner (see, e.g., Bauer et al., 2015). In the 
ase of di�ra
tion-based depth imaging, the di�ra
tion traveltimes are 
al
ulated by ray tra
ing or otheradvan
ed te
hniques instead of using an analyti
al di�ra
tion operator. However, a verywell determined velo
ity model is required. A new di�ra
tion-based approa
h to build adepth velo
ity model is the appli
ation of the NIP-wave tomography (Duvene
k, 2004)to the ZO di�ra
tion-only data. In this s
enario, the depth velo
ity model is 
onsistentwith data if the NIP-waves (or di�ra
tions) are ba
k-propagated to the depth points.For a detailed des
ription of this re
ently introdu
ed method, I refer to S
hwarz (2015);



CHAPTER 6. SUMMARY AND OUTLOOK 95Bauer et al. (2015).Another issue in 2D di�ra
tion separation is problem of out-of-plane s
atterers whi
h makesthe 3D di�ra
tion pro
essing inevitable. On the other hand, a di�ra
tion is inherently a 3Dphenomenon. To ta
kle these issued, I have extended the proposed work�ow for presta
kdi�ra
tion separation and imaging to 3D. An extended 3D di�ra
tion threshold fun
tionby Dell and Gajewski (2011) was also used. Again, like in the 2D 
ase, I took advantage ofthe partial CRS sta
k to extrapolate di�ra
tion traveltimes from ZO to FO. As expe
ted,data enhan
ement and regularization features of the partial 3D CRS demonstrated goodpotential for presta
k di�ra
tion enhan
ement. I used the 
lassi
al 3D hyperboli
 CRSoperator sin
e 3D DSR CRS-type operator was not available at the time of writing thisthesis. The developed method exhibited a very fast and robust appli
ability to builda 3D time migration velo
ity model, whi
h is a 
umbersome task using 
onventionalmethods. Subsequently, the applying of di�ra
tion-based time-imaging to a 3D simpleas well as a 
omplex syntheti
 data showed a promising outlook for further studies. Asexpe
ted, presta
k di�ra
tion separation leads to improved di�ra
tion-based migrationvelo
ity analysis in terms of better fo
used pi
ked, higher 
oheren
e and less noise velo
ityspe
tra.The proposed work�ow for 3D di�ra
tion imaging is purely based on the assumption ofpoint di�ra
tions. Therefore, separation of edge di�ra
tions using 3D CRS attributes wasnot 
onsidered in the 
ontext of this thesis. On the other hand, 
on�i
ting dips are notresolved in 3D to speed up the pro
ess of presta
k di�ra
tion separation. However, if
on�i
ting dips are handled and non-point di�ra
tions are taken into 
onsideration, thefull potential of the work�ow 
an be exploited.In the se
ond step, in the aim to further enhan
e di�ra
tion separation, I have fo
used onthe 2D di�ra
tion weight fun
tion. I have reviewed the potential of the existing di�ra
tionthreshold fun
tion by Dell and Gajewski (2011) in order to improve its performan
e. Theexisting weight has been proven to be vulnerable to the presen
e of noise. Moreover, theseparation potential de
reases for higher times. To manage this issue, I have proposed to
ombine the existing weight by Dell and Gajewski with the width of the proje
ted (�rst)Fresnel zone (PFZ). Although in theory a Fresnel zone is not de�ned (respe
tively in�nite)for point di�ra
tors, however in pra
ti
e, di�ra
tors have a spatial extent. In 
onsequen
e,the width of the proje
ted Fresnel zone for a di�ra
tion is mu
h larger that the one fora re�e
tion, the di�eren
e 
an thus be used as a 
onsistent attribute to better identifydi�ra
tions in the data and enhan
e the separation. Appli
ation of the new weight to agradient syntheti
 as well as a 
omplex data sets demonstrated better pre- and poststa
kdi�ra
tion separation.Seismi
 di�ra
tions have a signi�
ant potential for seismi
 imaging. In this thesis only thekinemati
 features were 
onsidered. A shift to the dynami
 features (e.g., amplitude andphase) will open the way for di�ra
tion imaging in 
orre
t amplitudes and quantitativeanalysis of the results.
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Used software
During the resear
h work, di�erent types of operating systems have been used, whi
h areLinux (Debian and CentOS) free version li
enses.The di�ra
tion separation method is based on the 2D ZO CRS sta
k 
ode by Jürgen Mann(2002) and its 3D extension is based on the 3D ZO CRS sta
k 
ode written by Alex Müller(2007) and modi�ed by Parsa Bakhtiari Rad.For syntheti
 data generation, Seismi
 Un*x (Colorado S
hool of Mine) and Norsar 3D(NORSAR Innovation AS) were used.For visualization, Seismi
 Un*x (Colorado S
hool of Mine) and Matlab were used.Four types of hardware ma
hines have been used:1. Desktop ma
hine 
ore i5 based.2. Thunder (little endian) 
luster 32
ores based.3. Laptop 
ore i5 based.The thesis is written on laptop and desktop based OS in LATEX.
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