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To my lovely parents and my dear brother

Distance and nearness are attributes of bodies

The journeyings of spirits are after another sort.

You journeyed from the embryo state to rationality

without footsteps or stages or change of place,

The journey of the soul involves not time and place.

And my body learnt from the soul its mode of journeying,
Now my body has renounced the bodily mode of journeying.
It journeys secretly and without form, though under a form.

Jallaludin Rumi (1207-73), The Masnavi






Abstract

The quantization of the Teichmiiller spaces of Riemann surfaces has found important
applications to conformal field theory and N' = 2 supersymmetric gauge theories. We
construct a quantization of the Teichmiiller spaces of super Riemann surfaces, using

coordinates associated to the ideal triangulations of super Riemann surfaces.

A new feature is the non-trivial dependence on the choice of a spin structure which
can be encoded combinatorially in a certain refinement of the ideal triangulation. We
construct a projective unitary representation of the groupoid of changes of refined ideal
triangulations. Therefore, we demonstrate that the dependence of the resulting quantum
theory on the choice of a triangulation is inessential.

In the quantum Teichmiiller theory, it was observed that the key object defining the
Teichmiiller theory has a close relation to the representation theory of the Borel half of
Uq(sl(2)). In our research we observed that the role of U,(sl(2)) is taken by quantum
superalgebra U, (osp(1]2)). A Borel half of U,(osp(1]2)) is the super quantum plane. The
canonical element of the Heisenberg double of the quantum super plane is evaluated in
certain infinite dimensional representations on L?*(R) ® C!I* and compared to the flip
operator from the Teichmiiller theory of super Riemann surfaces.
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Zusammenfassung

Die Quantisierung der Teichmiiller-Raume von Riemannflachen hat wichtige Anwendun-
gen in konformen Feldtheorien und in A/ = 2 supersymmetrischen Eichtheorien gefunden.
Wir konstruieren eine Quantisierung der Teichmiiller-Rdume von super-Riemannschen
Flachen, unter Verwendung von Koordinaten, die mit den idealen Triangulationen der

super-Riemannschen Flachen assoziiert sind.

Ein neues Merkmal ist die nichttriviale Abhéngigkeit von der Wahl der Spinstruktur,
welche kombinatorisch in einer gewissen Verfeinerung der idealen Triangulationen kodiert
werden kann. Wir konstruieren eine projektive unitdre Darstellung des Gruppoids der
Anderungen der verfeinerten idealen Triangulationen. Dadurch zeigen wir, dass die
Abhéngigkeit der resultierenden Quantentheorie von der Wahl der Triangulation nicht
wesentlich ist.

In der Quanten-Teichmiiller-Theorie wurde beobachtet, dass der entscheidende Bestandteil
der Teichmiiller-Theorie in enger Verbindung mit der Darstellungstheorie der Borelhélfte
der Uy(sl(2)) steht. Bei unserer Forschung haben wir beobachtet, dass die Rolle der
Uq(sl(2)) von einer Quanten-Superalgebra itbernommen wird. Eine Borelhilfte der
U,(0sp(1]2)) ist die Quanten-Superebene. Das kanonische Element des Heisenbergdop-
pels der Quanten-Superebene wird in einer bestimmten unendlichdimensionalen Darstel-
lung auf L?(R) ® C'' ausgewertet und mit dem Flip-Operator der Teichmiiller-Theorie

von super-Riemannflachen vergleichen.
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Chapter 1

Introduction

Einstein’s theory of gravity and quantum field theory have proven to be appropriate
frameworks to explain some of the observed features of physics, from elementary particles
like electrons and protons to cosmology and the evolution of the universe. There remain
however unresolved fundamental problems. String theory may be offering answers to
many of these questions, such as the unification of all interactions, including gravity,
and the physics of strongly interacting quantum field theories.

Low-energy limits of string theory can often be identified with some quantum field
theories. One may expect the existence of a low-energy limit of string theory with
a certain amount of supersymmetry, but there is no known quantum field theory the
limit could correspond to. This expectation has led to a striking prediction in the
mid 1990’s: There exists a class of six-dimensional interacting conformal quantum field
theories known as (2,0)-theories [3, 4]. Although little is known about these theories,
their existence leads to a geometric description of many supersymmetric field theories
in lower dimensions.

Families of four dimensional quantum field theories with N' = 2 supersymmetry can
be described by means of compactification from the six-dimensional (2,0)-theory on
spaces of the form M* x ¥, where ¥ is a Riemann surface of genus ¢ with n punctures.
This description allows us to relate the main features of the four-dimensional physics
to geometric structures on Y. It seems supersymmetric field theories offer a promising
starting point to better understand the non-perturbative phenomena in quantum field
theory and by studying different choices of 3, one can obtain a large class of four
dimensional quantum field theories and predict some results from their physics [5, 6].

In addition to the significance of the (2,0)-theory for the study of quantum field the-
ories, this theory also plays a role in the remarkable duality conjecture proposed by
Alday, Gaiotto and Tachikawa (AGT) in 2009 [7]. AGT established a relation between
four-dimensional quantum field theory and correlation functions of a two-dimensional
quantum field theory, the so-called Liouville theory (see [8] for a review). Liouville the-
ory is a two dimensional non-rational conformal field theory, where conformal symmetry
implies that correlation functions can be represented in a holomorphically factorized
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form. Liouville theory has the following action !

S = /d2z(8¢8¢)+71',ue2b¢)7 (1.1)

where, p is a cosmological constant and b € R is Liouville coupling constant.

Under the AGT correspondence, instanton partition functions [9], which encode non-
perturbative effects of N/ = 2 theories with SU(2) gauge groups, can be expressed
in terms of the conformal blocks, the holomorphic blocks of correlations functions, of
Liouville conformal field theory on Riemann surface 3.

Furthermore, the expectation values of certain loop observables in four-dimensional
N = 2 supersymmetric gauge theories coincide with the expectation values of natu-
ral observables in the quantum theory of moduli spaces of flat connections? (see [10] for
a review). On the other hand, Liouville conformal blocks are naturally related to certain
wave-functions in the quantum theory obtained by quantising the moduli spaces of flat
PSL(2,R)-connections on certain Riemann surfaces ¥ [11]. To explain these relations
we need the proper mathematical terminology.

The Teichmiiller spaces 7 (X) are the spaces of deformations of complex structures on
Riemann surfaces Y. As there is a unique metric of constant curvature -1 associated
with each complex structure, one may identify the Teichmiiller spaces with the spaces
of deformations of metrics with constant curvature -1. Such metrics naturally define
flat PSL(2,R)-connections on ¥, relating the Teichmiiller spaces to the moduli spaces
M14:(2) of flat PSL(2,R)-connections. The Teichmiiller spaces appear as one of the
components in moduli of flat SL(2,R) connections [12, 13].

From classical uniformization theorem, there exists a unique constant negative curvature
metric on the Riemann surface . In a complex coordinate z, such a metric has the
form ds? = e?*?dzdz, with ¢ being a solution of the Liouville equation 00¢ = pue??dzdz,
which coincides with the equation of motion for the Liouville equation (1.1)3. Due to the
close connections between Liouville theory and the theory of Riemann surfaces, quantum
Liouville theory turns out to have a geometric interpretation as describing the quantiza-
tion of theories of spaces of two-dimensional metrics with constant negative curvature.
Moreover, Verlinde conjectured that the space of conformal blocks in quantum Liou-
ville theory can be identified with the Hilbert spaces obtained by the quantization of
Teichmiiller spaces of Riemann surfaces [14]. The relation between Liouville theory and
quantum Teichmiiller theory was established by Teschner in [15, 16]*. Therefore, there
exist relations between quantized moduli spaces of flat PSL(2, R)-connections, quantum
Teichmiiller theory and conformal field theory.

At this point we continue the motivation for studying the supersymmetric version of the
picture we outlined above and replace all the basic ingredients by the theories which

!This theory has central charge ¢ = 1 + 6Q?, where Q =b+b""'.

2The space of isomorphism classes of flat G-bundles modulo gauge transformations.

3This is the classical equivalence between Liouville and Teichmiiller theory.

4One can show that the Hilbert spaces of two theories and the mapping class group actions are
equivalent.
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are established on super Riemann surfaces. It was shown recently that there are gen-
eralizations of AGT where super Liouville theory appears instead of ordinary Liouville
theory [17]. It seems likely that such generalizations are related to the quantum theory of
super Riemann surfaces in a way that is analogous to the relations between gauge, Liou-
ville and the quantum Teichmiiller theories [10]. This bring us to the strong motivation
to focus our attention on the quantization of super Teichmiiller spaces.

Beyond the motivation arising from the supersymmetric gauge theory, topological quan-
tum field theories (TQFT’s) are another important motivation for the research presented
in this thesis. They give an example for a fruitful interplay between mathematics and
physics. TQFT’s basic concepts formalize properties that one can expect for a quantum
field theory defined by some path integral. Chern-Simons theory is a prominent exam-
ple of a topological quantum field theory®. It describes a non-abelian gauge theory on
a three dimensional space manifold. There exists a partial equivalence between Chern
Simons theory on three manifolds with boundary and a certain conformal field theory,
the so-called WZW model, living on the boundary of these three manifolds 6. The
Chern-Simons theory on a compact spatial manifold gives rise to a finite dimensional
Hilbert space which turns out to be isomorphic to the space of conformal blocks of a
WZW model.

For Chern-Simons theory on a three-dimensional manifold of the form M = R x X, where
R is the time line, the classical phase space is the space of flat connections on 3. Chern-
Simons theory with a compact gauge group G is well studied because of its applications
to knot theory and three dimensional topology. Further interesting examples of 3d
TQFTs arise from Chern-Simons theories having a non-compact gauge group. The
relation between Chern-Simons theories and moduli spaces of flat connections becomes
richer when the holonomy of the flat connections takes values in non-compact groups
like G = SL(2,R) or G = SL(2,C). The relevant conformal field theories are then
non-rational, having continuous families of primary fields (see [20] for a recent review
of some of these relations, and [21, 22] for recent progress on Chern-Simons theory
with a complex gauge group). Also, the study of Chern-Simons theories associated
to non-compact groups appears to have various profound links with three-dimensional
hyperbolic geometry [11, 23], [24-26].

Quantum Chern-Simons theory is obtained by quantizing the phase space and therefore
quantum Teichmiiller theory is a useful tool for studying the quantization of SL(2,R)
Chern-Simons theory [27]. In the case which is currently best understood one is dealing
with a connected component of the moduli space of flat PSL(2,R)-connections on 3
which is isomorphic to the Teichmiiller space of Riemann surfaces [12, 13]. Relevant
observables acquire the geometric interpretation of quantized geodesic length functions.

°It has the action S = (k [, tr(AA A+ ZAAN AN A), where k is related to the coupling constant. A
is a gauge field, a Lie algebra valued one form.

SRef [14, 18] argued that physical wave functions obeying Gauss law constrains of SL(2,R) Chern
Simons theory are Virasoro conformal blocks and provide the quantization of the Teichmiiller space of
the surface ¥ in [15, 19].



Chapter 1.Introduction 4

Our motivation is to expand the resulting picture to the cases where the groups are
replaced by supergroups and to find the quantum super Teichmiiller theory. The con-
structed quantum super Teichmiiller would be a starting point for finding the quantiza-
tion of super Chern-Simons theory for the non-compact supergroup G = OSp(1]2).

Witten realized the relation between non-compact Chern-Simons theory and 2+1 quan-
tum gravity [28]”. Moreover, the relation of Teichmiiller theory with (2+ 1)-dimensional
gravity with negative cosmological constant has been already discussed in literature
[14, 29]. Such a relation indicates that the super Teichmiiller theory may also play
an analogous role for (2 4 1)-dimensional supergravity and it would be an interesting
direction of research.

Another motivation for the study of super Teichmiiller theory comes from super string
perturbation theory. Understanding super string perturbation theory requires the un-
derstanding of subtleties of the superalgebraic geometry of super Riemann surfaces. The
Teichmiiller theory has an interesting and rich generalization provided by the deforma-
tion theory of super Riemann surfaces. Initially motivated by superstring perturbation
theory, there has been a lot of research (reviewed in [30]) on the complex analytic theory
of super Teichmiiller spaces. There exists a uniformization theorem for super Riemann
surfaces, describing super Riemann surfaces as quotients of the super upper half plane
by discrete subgroups of OSp(1]2) [31]. This provides us with an alternative picture
of super Teichmiiller theory similar to the perspective on ordinary Teichmiiller theory
offered by hyperbolic geometry. The theory of super Riemann surfaces should lead to
interesting generalizations of two and three dimensional hyperbolic geometry, currently
much less developed than the corresponding theories for ordinary Riemann surfaces.
This may be expected to lead to a new class of invariants of three manifolds in the
future.

Before explaining our approach for the quantization of super Teichmiiller theory, we
now give some background about quantum Teichmiiller theory and the role of quantum
groups in this subject.

Quantum Teichmiiller theory

Quantization of Teichmiiller spaces is a deformation of the algebra of functions on these
spaces. Teichmiiller spaces of punctured surfaces have been quantized during the 1990s
in two different but essentially equivalent ways by Fock and Chekhov [32, 33] and in
parallel by Kashaev [34].

Ordinary Teichmiiller theory is based on a suitable collection of coordinates associated
to the triangles forming a certain type of triangulation® of the Riemann surface. One
essential ingredient in this theory are the coordinates associated to the triangles. The

"Three dimensional Einstein gravity with negative cosmological constant can be performed as a Chern
Simons gauge theory with gauge group SL(2,R) x SL(2,R).

8This type of triangulations is called ideal triangulations. Such a triangulation can be defined by
a maximal set of geodesic arcs intersecting only at the punctures of ¥, , representing their start- and
end-points. Such a collection of arcs decomposes the surface X into a collection of triangles.
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spaces of functions on Teichmiiller spaces have natural Poisson structures which can be
used to formulate quantization problems.

This quantized theory leads to projective infinite dimensional unitary representations
of the mapping class groups of punctured surfaces [35], where the projective factor is
related to the Virasoro central charge in quantum Liouville theory [36]. The mapping
class group is a discrete group of symmetries of the Teichmiiller spaces. The action of
operators generating the mapping class groups can be constructed using quantum groups
as the mathematical tools. Quantum groups have been found to be relevant in conformal
field theory, where fusion matrices are realized as 6j symbols for representations of the
associated quantum groups. The quantum group structure of Teichmiiller theory is
consistent with the representation theoretical approach to quantum Liouville theory
[37, 38].

At this point we want to comment on the role of quantum groups, as algebraic tools
to reach the goal of this thesis. Afterwards, we will continue the details of construct-
ing quantum Teichmiiller theory by defining appropriate coordinates on the Riemann
surfaces.

Drinfeld [39] and Jimbo [40] have defined certain types of Hopf algebras ?, known as
quantum groups, for any finite dimensional complex simple Lie algebra g and more
generally for any Kac-Moody algebra. The quantum group U,(g) is a deformation of
the universal enveloping algebra U(g) for a nonzero complex parameter q. The methods
coming from the representation theory of quantum groups have found a wide range of
applications in mathematical and theoretical physics.

Moreover, quantum groups are quasi-triangular Hopf algebras. A Hopf algebra A is
called quasi-triangular if there exists an element R € A ® A, the so-called universal R-
matrix. Initially, this element has been developed in the context of quantum integrable
systems, where it was shown that the R matrix satisfies the so-called Yang-Baxter equa-
tion [41, 42]

RiaR13R23 = RozR13R12. (1.2)

The universal R-matrix is a canonical element of quantum groups and can be obtained
using the Drinfeld double construction. The Drinfeld double construction takes an arbi-
trary Hopf algebra and its dual and creates a quasi-triangular Hopf algebra which has a
R-matrix. From a given Hopf algbera one can make another double construction, called
Heisenberg double construction [43]. It admits a canonical element S € A ® A similar
to the R matrix. However,it satisfies not the Yang-Baxter equation, but the pentagon
equation

512513523 = S23512. (1.3)

Using Heisenberg doubles one can obtain the representations of Drinfeld doubles, because
one can embed the elements of the Drinfeld double into a tensor square of the Heisenberg

9A Hopf algebra is a bialgebra which satisfies particular axioms.
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double [43]. In our research, Heisenberg doubles appear in the context of quantum
Teichmiiller theory of Riemann surfaces.

Now we return to the Teichmiiller theory and explain the suitable coordinates with the
aim of quantizing such spaces. As mentioned, there exist useful systems of coordinates
associated to a triangulation of ¥, if ¥ has at least one puncture. Kashaev assigned a
pair of variables (p;, ¢;) to each triangle i, the so-called Kashaev coordinates. The space
of these coordinates is equipped with a Poisson structure.

One can transform any two triangulations to each other by a finite composition of
elementary transformations w;;. The flip transformation w;; changes a quadrilateral,
which is formed by two triangles, by replacing the common edge by the opposite diagonal
of the quadrilateral as it is illustrated in figure 1.1.

i

Z' _—>
\ J

FIGURE 1.1: The flip transformation w;; rotates clockwise the diagonal.

In quantum Teichmiiller theory, Kashaev assigned a Hilbert space H; = L?(R) to each
triangle of the triangulation. In this theory, Kashaev coordinates become operators p;,q;
which are the position and momentum self adjoint operators respectively and satisfy
the Heisenberg commutation relation [p,q] = # The classical transformations wj; is
represented by a flip operator which is denoted by T;; : H; ® H; — H; ® H;. The role

of this operator is to describe how the coordinates change at the quantum level.

A basic issue to address in any approach based on triangulations is to demonstrate the
independence of the resulting quantum theory from the choice of triangulation. This can
be done by constructing unitary operators relating the quantum theories associated to
any two given triangulations. Being unitary equivalent, one may identify the quantum
theories associated to two different triangulations as different representations of one and
the same quantum theory.

Let us finally note that the flip operators ng) have an interesting interpretation within
the Heisenberg double construction. The canonical element of Heisenberg double of
the Borel half of U,(sl(2,R)) [44] in quantum groups language can be identified with
the flip operator T;;. The constructed operator is unitary and it generates a projective
representation of the Ptolemy groupoid describing the transition between different trian-

gulations. The Ptolemy groupoid includes a particular relation, called pentagon [34, 44],

T TaTiy =TTk (1.4)

According to Kashaev, each operator T;; is expressed as follows:



Chapter 1.Introduction 7

Tij = en(q; +pj — g;)e 2P, (1.5)
where the Faddeev’s quantum dilogarithm ey, [45, 46| is a particular special function

defined as —2izw
ep(z) = exp / ¢ dw (1.6)
b ¢ sinh(wb) sinh(w/b) 4w )’ '

and which can be regarded as a quantization of the Roger’s dilogarithm. Faddeev’s

quantum dilogarithm [47] finds its origins and applications in quantum integrable sys-
tems [15, 48-50] and it has already been used in formal state-integral constructions of
invariants of three manifolds in the following works [23, 25, 26, 51, 52]. The Faddeev’s
quantum dilogarithm also found applications in conformal field theory, topological field
theory and hyperbolic geometry.

Super Teichmiiller theory and quantum supergroup

The super Teichmiiller theory is the Teichmiiller theory of super Riemann surfaces. For
the classical super Teichmiiller theory, Penner and Zeitlin [53] recently provided a super
symmetric version of the so-called Penner-A-length coordinate [54] which has a connec-
tion to super Minkowski geometry. Bouschbacher [55] provided other coordinates by
using a different treatment of spin structures and based upon quite a different approach
using so-called shear coordinates (Fock coordinates). He constructed shear coordinates
for punctured super Riemann surfaces equipped with an ideal triangulation and defined
a super Poisson structure on this space using these coordinates.

In the super Teichmiiller spaces, in addition to even coordinates associated to edges of
the underlying triangulation one may define additional odd coordinates associated to the
triangles. Assigning the so-called Kasteleyn orientations to the edges of a triangle allows
one to parametrize the choices of spin structures on super Riemann surfaces. The addi-
tional orientation data assigned to a triangulation are used to provide an unambiguous
definition of the signs of the odd coordinate.

We used shear coordinates as our coordinates on super Teichmiiller space. Our approach
for quantizing is similar to the one used by Kashaev [34] for the case of ordinary Te-
ichmiiller theory based on a suitable collection of coordinates associated to the triangles
forming an ideal triangulation of the surface. As for the ordinary case, the super flip
operator T;; also has a quantum groups meaning. Our main idea is to replace the Borel
half of U,(sl(2,R)) of the ordinary case, by a suitable quantum superalgebra, the Borel
half of U,(0sp(1]2)) and establish the quantization.

Before explaining our approach to quantization and presenting our main results, we
briefly give a background of the superalgebra osp(1|2) and its role in super Liouville
theory.

The superalgebra osp(1|2) is a graded extension of the sl(2) algebra and was first in-
troduced by Kulish in [56]. The simplest non-rational supersymmetric CFT theory is
N = 1 supersymmetric Liouville theory, which is related to the superalgebra osp(1|2).
This algebra appears as part of N/ = 1 super conformal symmetry.
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The finite dimensional representations of superalgebra osp(1|2) and Racah-Wigner coef-
ficients have already been studied in the literature [57]. Also, super conformal symmetry
can be realized in terms of free fields [58-60]. This free fields representation can be used
to construct conformal blocks and their behavior under braiding and fusion can be ex-
pressed by a quantum deformation of the universal enveloping algbera of osp(1]2). For
the series of representation, the Clebsch-Gordan and Racah-Wigner coefficients for the
quantum deformed algebras Uj,(osp(1]2)) have been determined in [61]. Here, it was
shown that the associated Racah-Wigner coeflicients agree with the fusion matrix in the
Neveu-Schwarz sector of N' = 1 supersymmetric Liouville field theory.

Approach and summary of main results

Same as for the ordinary case, the symplectic structure of super Teichmiiller spaces gives
the possibility of canonical quantization [33, 34]. In what follows, we will present our
approach for quantizing super Teichmiiller theory and summarize our main results.

An important new feature is the dependence of the super Teichmiiller theory on the
choices of spin structures. Following the approach of Cimansoni and Reshetikhin [62, 63],
we encode the choices of spin structures into combinatorial data, Kasteleyn orientations,
suitably adapted to the triangulations of our interest.

We assign the Hilbert space H; « L?(R) ® C!! to each triangle. Therefore, the Hilbert
space associated to the entire super Riemann surface is the tensor product of the spaces
for each triangle. In addition to a pair of even variables (g;, p;) assigned to each ideal
triangle, we introduce an odd variable &. The collection of these variables is called super
Kashaev coordinates. The super Kashaev coordinates get quantized to linear operators
on the Hilbert spaces H;. The coordinates p; and q; are replaced by operators satisfying
canonical commutation relations and are represented on L?(R) as multiplication and
differentiation operators. The odd coordinate &; becomes an operator acting on H; of

1
=\ —q i R= ((1) . ) ecth, (1.7)

where g = '™ and the quantization constant % is related to b as h = 4mb?.

the form

The unitary operators representing changes of triangulations, generate a projective rep-
resentation of the super Ptolemy groupoid describing the transitions between suitably
refined triangulations equipped with Kasteleyn orientations. Suitable choices of orien-
tation on the triangulations lead to different types of super flip operators.

In our results there exist eight possible superflips Ti(jl) . E(J-S) and they can be related to

(1)

each other. The superflip 15" is the one which satisfies the pentagon relation by itself

and has the following form
1 . i . X
Tz(';) =3 [f—i—(qi +pi—g)I®l—if_(qi+pj—qj)k® ,i}e mPid; (1.8)

where, p,q are the position and momentum self adjoint operators respectively and sat-

isfy the Heisenberg commutation relation [p,q] = % The two functions f, f_ are
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constructed out of quantum dilogarithm functions and & is a two by two matrix in CI*,
We also generalize the Ptolemy groupoid relations, including the pentagon relation to
the supersymmetric case.

In a similar manner, as for the ordinary case, the flip operator TZ(-JI-) is found to coincide
with the canonical element of the Heisenberg double of the Borel half of U,(osp(1]2)),
which is evaluated in certain infinite dimensional representations on L*(R) ® C!I'. An

ongoing project is to construct the basis and dual basis of Heisenberg double and check
the identification of the canonical element S with the super flip operator ngl-).

There exists also another related project to this thesis regarding the Drinfeld double
of Uy(osp(1]2)). Using the structure of quantum super Teichmiiller theory, we already
derived the braiding operator and related R matrix for the quantum groups, Borel half
of Uy(0sp(1]2)). The ongoing project is to check the properties of the R matrix and find

the canonical element of Drinfeld double and identify that with our proposed R matrix.

Overview
This thesis is based on the preprint [1] and forthcoming [2] and it is organized as follows.

In Chapter 2, we review ordinary Teichmiiller theory of Riemann surfaces and its
quantization. First we discuss how to parametrize the Teichmiiller space using sets of
coordinates associated to a triangulation. This triangulation has natural analogues in
the case of super Teichmiiller theory. Afterwards, we proceed to discuss the quantization
of this theory and the projective representation of the Ptolemy groupoid relating the
Hilbert spaces assigned to different triangulations.

Chapter 3 includes the introduction of the fundamentals of quantum groups. We intro-
duce the basic notions of Drinfeld and Heisenberg doubles. We use this background for
understanding the construction of the flip operator in the ordinary Teichmiiller theory.
This knowledge will be also useful for calculating the R matrix in chapter 8.

In Chapter 4 we introduce the notion of a quantum plane and the Heisenberg double
of the Borel half of U,(sl(2)). We study the Kashaev representation of the latter. This
representation has been shown to be relevant in the quantization of the Teichmiiller
theory. We explain the steps of an ongoing project to find the basis of the continuous
version of the Heisenberg double of the Borel half of U,(sl(2)).

In Chapter 5, we discuss classical super Teichmiiller theory. In order to encode the
choices of spin structure we refine the triangulations into graphs called hexagonalizations.
Such graphs with chosen Kasteleyn orientations can be used to define super analogues
of the shear coordinates. Changes of hexagonalizations define an analogue of the super
Ptolemy groupoid which can be characterized in terms of generators and relations.

Chapter 6 describes the quantization of the classical super Teichmiiller theory. We
define operators representing analogues of the coordinates used in the work of Fock and
Kashaev, respectively. These operators generate the super Ptolemy groupoid describing



Chapter 1.Introduction 10

changes of triangulations. The relations of the super Ptolemy groupoid follow from
identities satisfied by suitable variants of Faddeev’s quantum dilogarithm.

In Chapter 7 our goal is to generalize the construction involving Heisenberg double
algebras (which allowed us to obtain the canonical element identified with a flip oper-
ator of the Teichmiiller theory) to the case of the super Teichmiiller theory. We start
with an introduction to quantum supergroups and we focus on the quantum super-
group Uy(osp(1|2)). We explain the steps of an ongoing project to find the basis of the
continuous version of the Heisenberg double of the Borel half of Uj,(0sp(1]2)).

Chapter 8 starts with a review of how one can derive the R matrix in the ordinary
Teichmiiller theory from a geometric point of view and how to check the defining its
properties. Then we explain the geometric aspect of R matrix in super Teichmiiller the-
ory.



Chapter 2

Ordinary Teichmuilller theory

The problem of classifying different structures on Riemann surfaces was of interest from
the early on. Bernhard Riemann stated that for a compact Riemann surface of genus
g > 2 the space M, o of different conformal structures has a complex dimension 3g — 3,
where the space M, is the Riemann’s moduli space of flat connections on punctured
Riemann surfaces ¥, ,. Given that Riemann surfaces can be equivalently defined using
either complex analytic or algebra-geometric methods, the Riemann’s moduli spaces can
be studied in terms of generators and relations extensively from an algebraic geometry
point of view. During the late 1930s, Teichmiiller followed an analytic approach by
using quasiconformal mapping and he defined new, but closely related, spaces called the
Teichmiiller spaces Tg.,.

In order to prepare for the case of super Teichmiiller theory, we found it useful to briefly
review relevant background on the Teichmiiller spaces of deformations of complex struc-
tures on Riemann surfaces in this chapter. In the first section we describe relevant
background on the classical Teichmiiller space. We define ideal triangulations of Rie-
mann surfaces and, within this combinatorial framework, we study Penner coordinates
[54], Fock coordinates [32] and Kashaev coordinates [34], which provide us with different
parametrizations of the Teichmiiller space and the symplectic structure on that. We also
study how those coordinates transform under the changes of triangulations of Riemann
surfaces, like flips and rotations. For a more comprehensive review we reference [16].

Later in the second section, we study the quantization of Teichmiiller theory. We present
the operatorial realization of Kashaev and Fock coordinates, as well as the transfor-
mations of them under the change of triangulations. We also present the quantum
generators of Ptolemy groupoid.

11
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2.1 Classical Teichmiiller theory

In the following we will consider two-dimensional surfaces X, , with genus g > 0 and
n > 1 punctures having 2g — 2 +n > 0. Useful starting points for the quantization of
the Teichmiiller spaces are the coordinates introduced by Penner [54], and their relatives
used in the works of Fock [32], Chekhov and Fock [33] and Kashaev [34]. Using these co-
ordinates one may define an essentially canonical quantization of the Teichmiiller spaces
which will be expressed in section 2.2.

2.1.1 Riemann surfaces

Here we will shortly recall some facts about Riemann surfaces. A Riemann surface
Ygn is a 1-dimensional complex connected manifold with genus g and n punctures (i.e.
the holes with vanishing length) with biholomorphic transition functions. Equivalently,
one can define Riemann surfaces as 2-dimensional manifolds equipped with a conformal
structure, that is an equivalence class of metrics identified by the property of being
related by conformal transformations. We will be interested in a particular sub-class of
Riemann surfaces — those having a hyperbolic structure, i.e. those with a metric of
constant negative curvature equal to —1.

It is a well known result (dating back to Koebe and Poincaré) that every Riemann sur-
face is conformally equivalent to either the Riemann sphere, the unit disk or the upper
half-plane, depending on its curvature, known as a uniformization theorem. The uni-
formization theorem states that Riemann surfaces ¥, can be represented as quotients
of the upper half-plane H = {z € C: Im(z) > 0} equipped with the Poincaré metric

ds? = % by discrete subgroups I' of PSL(2,R) called Fuchsian groups'

Ygn =H/I. (2.1)
We may represent the points on X, ,, as points in a fundamental domain D in the upper-
half plane on which I' acts properly discontinuously. The n punctures of X, will be

represented by a collection of points on the boundary of H which can be identified with
the projective real line RP'. Figure 2.1 illustrates the uniformization of a once-punctured

H
X, X, X, X,

FIGURE 2.1: Realization of a quadrilateral laying on a Riemann surface on the upper
half plane.

torus X1 1.

'Discrete subgroups of PSL(2,R) having no elliptic elements.
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The Teichmiiller space 7y, of Riemann surfaces ¥, ,, can be identified with the connected

component in
T(3gn) =Tgn ={¢ :m(Egn) = PSL(2,R)}/PSL(2,R), (2.2)

that contains all Fuchsian representations . The group PSL(2,R) acts on representa-
tions ¥ by conjugation,

H/T ~ H/I", iff TV=gl'g~!, ge PSL(2,R).

2.1.2 Ideal triangulations and fat graphs

In order to study Teichmiiller spaces, we need to define local coordinates. There are
several ways to do that. Useful sets of coordinates for the Teichmiiller spaces can be
associated to ideal triangulations of ¥,,. Such a triangulation can be defined by a
maximal set of geodesic arcs intersecting only at the punctures of X, , representing
their start- and endpoints. Such a collection of arcs decomposes the surface ¥, into a
collection of triangles. An ideal triangulation 7 of Riemann surface ¥, , is defined by
3(2g — 2+ n) arcs, called edges, and has 2(2g — 2 + n) triangles.

The examples of 4-punctures sphere ¥4 and of 1-punctured torus X ; are illustrated
in figures 2.2 and 2.3.

Cl,l
P + P
4 L
P ! P
FIGURE 2.2: An ideal triangulation of FIGURE 2.3: An ideal triangulation of
2074. 2171.

We will consider ideal triangulation 7 of Riemann surfaces and associated to them a
dual tri-valent graph, the so-called fat graphs ¢(7) and assign coordinates in a manner
such that they transform appropriately under the change of triangulation. An example
of a fat graph is illustrated in figure 2.4 and 2.5.
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v
v e,

FIGURE 2.4: An ideal triangle with a FIGURE 2.5: Two adjacent triangles
dual fat graph. and the dual fat graph.

2.1.3 Penner coordinates

We want to parametrize 7, using ideal triangulations of Riemann surfaces. In order
to do that we will take a point p in 7, and a triangulation 7 and assign coordinates to
the edges of triangulation. Penner [54] first introduced such coordinates.

For any surface ¥, with n > 0, take the trivial R>? bundle over Tgn called decorated
Teichmiiller space and denoted by Ty ..

Given any point p in the decorated Teichmiiller space and ideal triangulation on X, the
Penner coordinate l.(p) is defined as the hyperbolic length of the segment ¢ of each
edge e that lies between two horocycles h surrounding the punctures p that e connects.
Triangulation of once puncture torus is illustrated in figure 2.6.

F1GURE 2.7: Length of geodesy be-
FIGURE 2.6: Triangulation of once- tween two horocycles.

puncture torus.

Then I(e) = e*%/2, while the plus sign is for the case that two horocycles do not intersect
and minus sign otherwise (figure 2.7). There are variants of the Penner coordinates
which were introduced by Fock and Kashaev in terms of the Penner coordinates as we
will discuss next.

2.1.4 Shear coordinates (Fock coordinates)

Let us consider a model of the Riemann surface X, ,, on the upper-half plane. Then, the
ideal triangulation will be given by hyperbolic triangles with vertices on the boundary
of the upper-half plane.
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Useful sets of coordinates may be assigned to the edges of an ideal triangulation by
assigning to an edge e separating two triangles as illustrated in figure 2.1 the cross-ratio

e _ (@1 —mo)(w3 — 14)

¢ T (@ —aa) (@ —a3)

(2.3)

formed out of the points x1,xs,x3, x4 on representing the corners of the quadrilateral
decomposed into two triangles by the edge e. The resulting set of 6g — 6 + 3n coordinate
functions may be used to get a system of coordinates for Teichmiiller space by taking
into account the relations } cpp)ze = 0, where E(P) is the set of edges ending in
puncture P. This combination is in fact a conformal invariant, i.e. is invariant under
the action of the PSL(2,R) on the upper half plane H given by Mébius transformations

a b az+b
: . 2.4
(c d) Z_>cz+d (2:4)

Moreover, if one uses the action of PSL(2,R) to transform points with coordinates

r1,%2,x3, x4 in a way such that three of them are mapped to the points 0, —1, oo, then
the last one is mapped to the point with coordinate given by equation (2.3).

We can assign those coordinates to the edges of triangulations in the following way:
the quadrilateral composed of points x1,...,x4 can be triangulated into two triangles,
with a common edge e connecting the points x; and z3. We can assign to this edge a
conformal cross-ratio given by (2.3)

e — Ze. (2.5)
This assignement gives us the Fock coordinates.

For an ideal triangulation of a Riemann surface ¥, ,, we have 3(29—2+n) edges, therefore,
we have the same number of coordinates z. assigned to the edges of the triangulation,
or, equivalently, the edges of the fat graph dual to this triangulation. However, not all of
those coordinates are independent of each other — there are in fact constraints imposed
on them. In order to specify them, we consider paths along the edges of the fat graph.

Through the properties of the spaces with constant, negative metrics each closed curve
can be homotopically deformed into a closed geodesic, and that one can be related to
a curve of minimal length along the edges of the fat graph. For every closed curve c,
corresponding to a sequence of edges ej(c),...,en.(c) on the fat graph, the following
combination of Fock coordinates is not linearly independent

me
f%c = Z Zei(c) =0. (2.6)
=0

As already mentioned, Fock coordinates are a variant of Penner coordinates. The de-
pendence of the Penner coordinates on the choice of horocycles drops out in the Fock
coordinates. For two adjacent triangles, Fock coordinate z. is defined by the following
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equation, where the labeling follows figure 2.5

Ze =g+ 1. — 1y — lg. (2.7)

2.1.5 Weil-Petersson form

A set of Fock coordinates assigned to an ideal triangulation of a Riemann surface
Y4n subjected to the constraints parametrises the Teichmiiller space 7, ,. The Te-
ichmiiller space provided a symplectic structure described by a Weil-Petersson form.
This Poisson bracket on the space of unconstrained Fock coordinates reduces to the
Weil-Petersson one under the imposition of those constraints. It has however a particu-
larly simple description

o 0
{,}wp = Z Ne, f2eZf 75— 7 (2.8)
efeE 825 8Zf

where n = £2,+1,0 and F is the set of edges of the ideal triangulation under consider-
ation. The number n. y depends on the mutual position of the edges e and f inside the
fat graph. If those edges do not share a common vertex or one of them is a loop, then
ne ¢ = 0. If that is not the case and the edges meet at two vertices, then if the edge f
is the first one to the right of the edge e with respect to the orientation to the surface
then n. y = 2; if it is to the left — n. y = —2; if any of those is not the case — n, ; = 0.
Otherwise, if the edge f is the first one to the right of the edge e at the common vertex
then n y = 1; if it is to the left — n, y = —1. Shortly, where n.; is the number of times
e and f meet in a common end-point P, counted positively if f is the first edge reached
from e upon going around P in clockwise direction, counted negatively otherwise. We
can write the Poisson bracket among the coordinate functions as

{ze, 27 }wp = ne s (2.9)

2.1.6 Changes of triangulations and the flip map

We used the ideal triangulations of Riemann surface in defining the coordinates on Te-
ichmiiller space 7,,. Definition of Teichmiiller space does not involve triangulations,
therefore, it is necessary to connect the parametrizations based on different triangu-
lations of the same Riemann surface to each other. It can be shown that two ideal
triangulations of the same Riemann surface can be connected by a sequence of elemen-
tary moves, which are permutations (vw) and flips wyy,.

A permutation (vw) just exchanges the labels of triangles dual to vertices v and w of the
associated fat graph. The flip w,,, changes the triangulation of a quadrilateral composed
of two triangles dual to v and w. We illustrate this map in figure 2.8.

The definition of the shear coordinates z., was based on the choice of an ideal trian-
gulation and changing the ideal triangulation defines new coordinates z. that can be
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FIGURE 2.8: A flip map w;;.

expressed in terms of the coordinates z.. Indeed, using the explicit expression (2.3), the
change of triangulation induces the following change of coordinates

e (1+ %), , e?(1+e7) 7, (2.10)
ee =e , .

e (1+e %)L €% = e%(1 4 e),

!
e

leaving all other coordinates unchanged. The notation, involving the numbering of the
edges of quadrilaterals, is explained in figure 2.9.

FIGURE 2.9: A transformation of Fock coordinates under a flip.

2.1.7 Kashaev coordinates

Up to this moment we considered the Fock coordinates, attached to the edges of an
ideal triangulation, to parametrize Teichmiiller space. However, as we have seen, the
symplectic form of those coordinates is not particularly suitable when it comes to the
quantization. As a particularly useful starting point for quantization it has turned out to
be useful to describe the Teichmiiller spaces by means of a set of coordinates associated
to the triangles (or, alternatively, to the vertices of the associated fat graph) rather than
the edges of an ideal triangulation, called Kashaev coordinates [34].

We shall label the triangles A, by v =1,...,49 —4 4+ 2n and in order to define them, it
is necessary to consider a refined version of triangulations, which we will call decorated
triangulations. In every triangle of an ideal triangulation 7 we distinguish one partic-
ular vertex, called a marked corner. To this decorated triangualation 7 we associate a
decorated fat graph ¢(7), that is a dual tri-valent graph with a cyclic ordering on the
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half-edges incident on each vertex, fixed by the decorated corners. An example of a
decorated fat graph is illustrated in figure 2.10.

F1GURE 2.10: A decorated triangle with a dual fat graph.

According to figure 2.10 we label the edges that emanate from the vertex v by e?,
i = 1,2,3. Kashaev introduced pairs of variables (g,, py,) for each vertex v of a decorated
fat graph (1), as

(quspo) = (I3 — l2, 11 — I2). (2.11)

As we have 2(2g — 2 + n) of those vertices in our fat graph, in total there will be
4(2g — 2 + n) Kashaev coordinates, parametrising a space isomorphic to R4(2g—2+n)
which we will call a Kashaev space.

A pair of variables (py, ¢,) were assigned to each triangle (Kashaev coordinates ) allowing
us to recover the variables z. (Fock variables). The Fock coordinate associated to an
edge e of a fat graph is expressed in terms of Kashaev coordinates associated to vertices
v, w of that fat graph, where the edge e connects the vertices v and w. Explicitly, we
can write

Do if e=ef,

Ze = 2671) + 267“)7 2671} = _q'U if €= eg? (2'12)

Qv — P if e=es.

where e} are the edges surrounding triangle A, counted by ¢ = 1, 2, 3 in counter-clockwise
order such that e? is opposite to the distinguished corner, as illustrated in figure 2.10.
The space R429-2+1) will be equipped with a Poisson structure defined by

{p’uapw} = 07

{q g }: 0 {pv7Qw} - 5U,w- (213)

It can be shown that the Poisson structure of Kashaev coordinates given by (2.13)
induces the Poisson structure on shear coordinates (2.9) via (2.12). However, it is
clear that there is substantially too many Kashaev coordinates when compared with the
dimension of Teichmiiller space.

One may then describe the Teichmiiller space using the Hamiltonian reduction of R*(29—2+7)
with Poisson bracket (2.13) with respect to a suitable set of constraints h, labeled by
v € Hi(X4n,Z), and represented as linear functions in the (p,,qy) [34]. The functions
2z defined via (2.12) satisfy {h., 2z} = 0 for all edges e and all v € Hi(¥,,,Z) and may
therefore be used to get coordinates for the subspace defined by the constraints.
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More extensively, every graph geodesic can be represented as a sequence of edges, but
since each edge is an ordered pair of vertices of the fat graph, it can be just as well
represented by an ordered sequence of vertices. For a closed curve v we will denote the
corresponding vertices as v;, ¢ = 0,...,m, where vy = vy, and corresponding edges as
ei,i=1,...,m,. Then to the closed curve v € H{(2,,Z) we can assign a combination
of Kashaev variables:

M~y
hy =Y uj, (2.14)
i=1

where
—Qu; if {ei,ei1} = {eg', ey’
Ui = Wi 4 Py, if {ei, e} = {ey', 3’ (2.15)
Qu; — Pu; if {eiv 6i+1} = {611)i7 61221' )

with the numbering of edges which is given according to figure 2.10, and w; = +1 if
the arcs connecting edges e; and e;11 turn around the vertex v; in the counterclockwise
fashion (with respect to the orientation of the surface) and w; = —1 if not. Then, the

(2g—2+4n)

constrains which described the embedding of the Teichmiiller space into R* are

h, =0, for every curve .

Change of Kashaev coordinates under the change of triangulation

One may define changes of Kashaev coordinates associated to any changes of ideal trian-
gulations preserving the Poisson structure, and inducing the changes of shear coordinates
(2.10) via (2.12). Having equipped the ideal triangulations with an additional decoration
represented by the numbering of the triangles A, and the choice of a distinguished cor-
ner in each triangle forces us to consider an enlarged set of elementary transformations
relating arbitrary decorated ideal triangulations. Elementary transformations are the
flips wyw, the rotations p, and the permutations (vw).

Flips wyy, change the triangulation of a quadrilateral composed of two triangles dual
to v and w — this flip however differs from the undecorated type by the fact that
the triangles have distinguished vertices. The rotations p, rotate the marked corner in
a counter-clockwise fashion by 120° in a triangle dual to the vertex v. The first two
are illustrated in figures 2.11 and 2.12, respectively, while the permutation (uv) simply
exchanges the labels of the triangles v and v.

w vw v

FIGURE 2.11: The transformation wy..
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FIGURE 2.12: The transformation p,.

The change of coordinates associated to the transformation p, is given as

plTl : (QUapv) - (pv — Qu, _Qv)a (2.16)

while under a flip w,,, the transformation of Kashaev coordinates is realized by

W

Uy, Vo) = (UpUu, UpViy + Vo),
_1,{< )= ( + V) o

N U, Vi) = (U V(U Vi 4 Vi) ™1, Vi (U Vi + Vi) 1),

where we denote U, = e?* and V,, = ePv.

2.1.8 Classical Ptolemy groupoid

The transformations between decorated ideal triangulations generate a groupoid that
can be described in terms of generators and relations. As we mentioned above, any
two decorated triangulations of the same Riemann surface can be related by a finite
sequence of permutations (vw), flips wy,, and rotations p,. Any sequence of elementary
transformations returning to its initial point defines a relation. A basic set of relations
implying all others is known to be the following

Do © Py © Py = id,y, (2.18a)
(Py pw) © Wow = W © (05 puw), (2.18b)
Wy © Py © Wy = (VW) 0 (pPypw), (2.18c¢)
Woyy © Woguy = Wogvg © Worug, Vi 7 Vg, 1 7 J, (2.18d)
Wy © Wy © Wy = Wiy © Wy - (2.18e)

The first equation implies simply that the threefold application of the rotation p, on
the same triangle returns the decorated vertex to the same position while, the second
expresses the fact that the flips for unconnected quadrilaterals commute. The pentagon
relation (2.18e) illustrated in figure 2.13 is of particular importance, while the relations
(2.18a)-(2.18c) describe changes of the decorations. The other two equations are shown
in figures 2.14 and 2.15, respectively.
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FIGURE 2.14: A pictorial representation FIGURE 2.15: A pictorial representation
of the 2°¢ equation of (2.18). of the 3* equation of (2.18).

2.2 Quantum Teichmiiller theory

In section 2.1.4 we studied Fock coordinates, defined in term of conformal cross-ratios,
and their properties. We introduced another useful set of coordinates which parametrise
the Teichmiiller spaces, called Kashaev coordinates in section 2.1.7. In this section we
aim to provide a quantization of Teichmiiller in terms of those coordinates.

Quantization of the Teichmiiller theory of punctured Riemann surfaces was developed
by Kashaev in [34] and independently by Fock and Chekhov in [32, 33|, and utilized the
Faddeev’s quantum dilogarithm function in an essential way. Because of the functional
relations of the quantum dilogarithm, the rational transformations of the Fock coordi-
nates are ensured on the quantum level. A representation of mapping class groups can be
constructed using the realization of the elementary Ptolemy groupoid transformations
relations (2.1.8) and are expressed in terms of self adjoint operators (check [16, 34-36, 44]
for more details).
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2.2.1 Canonical quantization of Kashaev coordinates

The idea of quantization comes from theoretical physics. Quantizing a symplectic man-
ifold, one considers a l-parameter family of deformations of the algebra of functions
on this manifold, which is called algebra of observables. This deformed algebra is non-
commutative in general and realized as an algebra of operators on some Hilbert space,
and a deformation parameter (denoted usually & or h) is known as Planck constant.

If the classical space is realized as a larger manifold subjected to constraints, it is possible
to either first execute the constraints and then quantise the theory, or to quantise the
unconstrained theory and impose the constraints directly on the quantum level.

Now, we want to perform a quantization of Teichmiller space. The quantization is
particularly simple in terms of the Kashaev coordinates, because they are canonically
conjugate. We will associate a Hilbert space H, = L*(R) with each face of a decorated
triangulation and a Hilbert space associated to the entire triangulation is a multiplication
of N =2(2g — 2+ n) of those spaces

49—4+2n

H= (K H. (2.19)
v=1

Then, the Kashaev coordinates, which previously were just canonically conjugate vari-
ables on R*29-977) oot quantized to a set of self adjoint operators (Pv, @), v =49 — 4+ 2n,
have the following commutation relations

1 [qU7 qw] =0,
Pv, Quw] = 7.61)11)7 2.20
[ ] 2mi [pU7 pw] = 07 ( )

and act on the Hilbert space as multiplication and differentiation.

Then, we can immediately introduce the quantized version of coordinate functions h,
and Fock coordinates z. as the self-adjoint operators h, and z, on H respectively.

The result would be very similar to the classical one in (2.14) and (2.12) and is obtained
by just replacing classical Kashaev coordinates with their quantum counterparts in those
expressions. It can be shown that the resulting commutation relation satisfies,

1
ze, 2, = 3 {ze;ze by - (2.21)

A quantum version of the Hamiltonian reduction procedure can be defined describing
Hilbert space and algebra of observables of the quantum theory of Teichmiiller spaces in
terms of the quantum theory defined above. There exists a way to impose the constrains
in the quantum theory. One can use those constrains to define the physical Hilbert space
out of the tensor product Hilbert space introduced in (2.19). The treatment to produce
the physical space discussed in the following references [16, 34].
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2.2.2 Changes of triangulations and quantum Ptolemy grupoid

Here, we will consider a quantized realization of maps changing the triangulation 7 of
a Riemann surface . The move p, rotating the distinguished vertex of a triangle v is
realized by an operator A, : H, — Hy

A, = ¢im/3 13Ty g—im(Putau)? (2.22)
One can show that it, as expected, cubes to the identity operator
A3 = id,.
Operator A is unitary and is characterized by the equations

AgA™! = —p, A"'qA =p —q, (2.23)
ApA~t=q—p, A~pA = —q. (2.24)

The flips get represented by unitary operators Ty, : Heo @ Hey — Ho @ Hoy defined as
Tow = eb(qv + Pw — qw)e—Zﬂ'ipvqw7 (225)

where b is a parameter such that Planck’s constant A = 27b?, and e, is a quantum
dilogarithm function defined as

dw 672i:pw
_ dw 2.26
ep(r) = exp |:/Ri0 w 4sinh(wb) sinh(w/b) |’ (220

and it is related to the Double sine function as it is explained in appendix A.

In the literature, the T operator is expressed in terms of the function gy,, which is related
to ey as

gb(e%bz) =ep(z2). (2.27)

The quantized version of the transformation of the shear coordinates takes the form

_ !
Tv 1627rbz1 TU ewbzl (1 627rze)e7rbzl,
— / — —
TvulJ 627rb22 va eTI'bZQ (1 e 271'25) 1e7l'b22 ’
_ /
Tmi 6271’623 va e7rbZ3 (1 e?Trze )ewbzg , (228)

T;llljeQﬁbzﬁlva _ 6Trb24(1 + 6727rze)7167rb24’
T;u1}€27rbz’e-|—vw _ e—27rbz67
assuming that T,,, represents the flip depicted in figure 2.9 with decoration introduced

in figure 2.11. The equations (2.28) provide the quantization of (2.17), and we can
recover the classical transformation by taking the limit ¢ = ™ 5 1.
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The operators T,, and A, generate a projective representation of the Ptolemy groupoid
characterized by the set of relations

A} = idy,

T23T13T12 = Ti2Tas,
AaTi2A1 = A1T21A,
T21A1T12 = CA1A2P 12y,

where, ( = e’ /3 and ¢ = %(b +b~1). The permutation Pa2) : H1 @ Ha — Ha @ Hy
is defined as the operator acting as P(lg) (v1 ® v2) = vo ® vy for all v; € H,;.

In the following we show the proof of quantum Ptolemy groupoid.

proof of equation (2.30): After substituting the operator Ti2, the right- and left-hand
side has the form:

RHS = T12Ta3 = ep(q1 + p2 — q2)e """ ey, (g2 + p3 — gg)e 272
= ep(q1 + P2 — q2)en(qa + ps — qg)e 2TPLI2 g 2mP203
= ep(P)ep(X)e 2miP1az=2mip2as
LHS =To3T13T12 = ep(q2 + p3 — g3)e " Bey(q1 + p3 — g3)e "7 Bey(qy + pa — go)e TP
=ep(X)en(q1 +p3 — g3 —i—pg)e_?”ip?%eb(p _ q3)e—2mp1q3e_2mp1q2
= ep(X)ep(X + P)ep(P) ¢~ 2P0 2mip14s o= 2Wip102

e—2mip142 ¢—27i(P2—P1)43 ¢ —27iP143

where P = ¢ +p2 — g2, X = g2 + p3 — q3. As we see these equations reduce to the

pentagon for quantum dilogarithm with X, P such that [P, X]| = ﬁ The proof of

pentagon relation for quantum dilogarithm is explained in appendix A.
proof of equation (2.31): It is straight forward by inserting the operators.

proof of equation (2.32): This equation can be written as
A;lAfnglAlTlg = CP(12)' (233)

By using equations (2.23),(2.24) in the left hand side of the above equation and then
inserting A and T we get the first line of the following relation and then by using the
properties of e, functions we have,

LHS —ei™/3¢—im(p2+42)* —3miq3 2mi(p1—q1)p2 27ip201 gb—l (627"{’(*?1 +qrq2))gb—1 (627rb(q2+p1*q1))

:6i7r/36i7r/66i7rcb2/3 > e*iﬂ'(p2+qg)2€73ﬂ'iq§ 627ri(q1 —p1)q2 e?ﬂ'ipgql e*ﬂ'i(q2+p17q1)2 )

Using the evaluation of the matrix element of the exponential part we obtain,

i iwch

il K imCy s 2 _ . 2 . _ . _ . _ 2
LHS =e5ebe 3 <ap,q2|e im(p2+q2)” o —3miq; 27i(q1—P1)q2  2Tip2q1  —Ti(g2+P1—q1) | x1’,q’2 >

. . ; 2
iw  im  UTCh

im i i l12 Iy . 2 : ’ o
—e¢3¢b6e 3 /d:vl”dqge 3miqs e?mq2:c1 < 1‘1(]2’6 im(p2+q2) |x1/lqé/ > <xlllqé/’627rzp2q2|a:1q2>7

I 11
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where the details of the calculation of part I and II are explained as follows.

By using 6_7”‘12}7(3_7“‘12 = p + ¢ first and later [ dke= ik g2mizk — C’lem‘”"2 we can write

s 2 s 2_ 12 . 2
I =< z1qole™mP2H@)" ) gl > — 7@ =027) < gy |27 gl >

. 2 "2 12 s 112 - "2
_ —1m(q2°—q 7(q2—q _ —2imq —2miq2q2
= (Cie ( 2)6( 2)—016 2 e R

where C1 = e 74" because if we identify e%iqg = k then we have dqg — e dk.

For part I we need to use the fact that < =, ¢|qi, py >= e™@{n—a1®)2misp2 5pq
also < q1, pala, gh >= e™iai—201a1) g~ 2mipags

So we derive:
IT =< 2} qy|e®™P292 | ¢! ¢y >= /c1l]92(11,c11627”7’2‘11 < 2 |qpa >< qupo|2idh >

_ / dgp 27— / dpye2T P2+ =) _ 2milaha)(af —al)

d(q1+q5 —aq5)

Therefore, we have the result for the exponential part of the left hand side of the equation
(2.33) by using Gaussian integral in the second line:

LHS = 6i7r/36i7r/661'7r052/3 « 627riqé(:p1—zﬁ)e—wi(qé—x/l)Q /dqge—wqé/627riqé’(:r1—q2—(x1—m/1))

g

. 2 2
o~ i(aY — (2] —42))" — (=) —a2)

. . . 2 2 2 S0 ] _ /
_ ez7r/3€z7r/6617rcb /3012 e7r7,(q2 a5 )627rz(q2:1:1 q2$1).

constant=_

For the right hand side of the equation (2.33) we have:
RHS = < x1q2|P(12)|2 ¢ >=< z1|¢) >< @]z >= 2mi(e1dy =) omi(a3—a5")
Comparison of LHS and RHS completes our proof.

The quantized flip transformation has an interesting relation with quantum groups the-
ory. Kashaev [44] has shown that one can identify the flip operator T with the canonical
element of the Heisenberg double of the quantum plane, the Borel half of U,(sl(2)),
evaluated on particular infinite-dimensional representations. Moreover, the rotation op-
erator A, is an algebra automorphism of this Heisenberg double. In chapter 4 we will
show these relations more extensively but before that, in the next chapter we will give
the basic definitions of quantum groups theory.






Chapter 3

Quantum groups, Drinfeld double
and Heisenberg double

The ideas of symmetry and invariance play a very important role in mathematics and
physics, and group theory structure is the most natural language for describing sym-
metries. Quantum groups and Hopf algebras are the natural generalizations of groups.
Quantum groups first appeared in the ” Inverse scattering method ”, exactly solvable
lattice models and low dimensional topology, developed by Fadeev and his collaborators
in Leningrad school (for historical remarks look at [64]).

Beyond the physical models, quantum group was realized independently by V. G. Drin-
feld [39] and M. Jimbo [40] as a Hopf algebra. Drinfeld also showed that quantum groups
have the universal R-matrix which establishes a relation with the representation of braid
groups, the so-called Yang-Baxter equation. The universal R-matrices for all quantum
groups have been obtained in explicit form by Krillov and Reshetikhin [65].

Quantum groups provide a systematic way to construct the solution of Yang-Baxter
equation and consequently build the new integrable lattice model. Quantum groups
also have a significant contributions in conformal field theory [66] and they also play an
important role in the recent developments in knot theory.

In this chapter we give a brief review of quantum groups. Afterwards, we present the
Drinfeld double construction of quasi-triangular Hopf algebra and Heisenberg double
related to that and present few examples. More details about these topics explained in
many nice references such as [67-69].

3.1 Quantum groups

In this section after a brief explanation about algebra and coalgebra, we present the
necessary notation for Hopf algebras and focus on the quasi-triangular Hopf algebra,
called quantum group.

27
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3.1.1 Algebras, bialgebras and Hopf algebras

In definitions of algebra, coalgebra and Hopf algebra we will consider the ground field
k, where k can be considered to be field C of complex number or R of real number.

Definition 1. Considering k as a field and A as a vector space, the unital associative
algebra is a triple (4, m,n), where m : A® A — A is the multiplication map and
7 : k — A is the unital map and they satisfy the axioms of associativity and unitality

m(m ® id) = m(id ® m), (3.1)
m(n ®id) =id = m(id @ n). (3.2)

Each element of algebra A can be expressed as a linear combination of basis element ;.
For any two elements e; and e; we can define their multiplication in the form

m:A®A—>A:ei.ej:mfjek,

k
ij
which is equivalent to the condition of associativity for the algebra A as (elej)ek =

l

where m£. is certain set of complex numbers with the condition that m My, = mgmy =

mijk’
ei(ejer). The axioms of associativity and unitality can also be summarized by the
following commutative diagrams, respectively,

AR A koA =2 A =2 A®k

WA
2

One of the advantages of the diagrammatic language used here is that for the coalgebra
definition one can reverse the direction of all arrows.

Definition 2. For comultiplication map A : A — A ® A and counital map ¢ : A — k,
coassociative coalgebra is defined as a triple (A4, A, ¢), such that the following axioms
are satisfied

(A id)A = m(id® A), (3.3)
(e®id)A = id = (id ® ¢)A.

For e; € A, there is a notation for A, A(e) = ¥; je; ® e;, where the right hand side is

the formal sum denoting an element of A ® A.

The axioms of coassociativity and counitality can also be summarized by the following

commutative diagrams
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AR A ke A

\

&
g X

ARAR A A

% /

&) v
X

AR A

Now we are prepared to introduce the main concept in the theory of quantum group,
namely Hopf algebra.

Definition 3. By considering (A, m,n) as an unital algebra and (A, A, €) as a couni-
tal coassociative coalgebra, a bialgebra is a collection (A, m,d,n, €) where algebra and
coalgebra are compatible with each other by holding the following axioms:

Am=(mem)(id®o)(A®A), (3.5)
An=n®mn, (3.6)
em =e€Qe, (3.7)
en = id. (3.8)
A q A
,((\J
/ \ AR A A A y \
ARQA AR A
nen n k
A®A mem
ko k k
ARARA®A AQRARARA
d®S®id

These axioms state that A and e are homomorphism of algebras (or m and 1 are homo-
morphism of coalgebras) so it means

(g@h)(M ©d')=gg @hl, (3.9)
A(gh) = A(g)A(h),  A(l)=1®1, (3.10)
e(gh) = e(g) @e(h), (1) =1, (3.11)

for all g,¢',h,h/ € A. (1) =1 is automatic as k is a field.

Definition 4. By considering (A, m,d,n, €) as a bialgebra, a Hopf algebra can be defined
as a collection (A,m,n, A, €, S), where the linear antipode map S : A — A satisfies an

extra axiom as,
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d® S

A® A A® A
Al lm
Aoy m(S @ id)A = m(id ® S)A = ne. (3.12)
al |
A A — AR A
X1

The antipode of Hopf algebra is unique and has the properties,

S(gh) = S(h)S(g),  S(1) =1, (3.13)
(S®S)Ah = ocASh, eSh = eh, (3.14)

where the tensor flip o will be used as the operator of transposition, oc(g ® h) =h ®@g
for all g,h € A.

3.1.2 Duality

We mentioned that the axioms of coalgebra can be derived by inversing the arrows and
interchanging A, e with m, 7. From the symmetry we can consider the dual linear space
and conclude that for every Hopf algebra A, there is a dual Hopf algebra A* built on
the dual vector space.

Definition 5. Two Hopf algebras A, A* are dually paired by a map (,) : A® A* — k if

(@0, h) = (¢ @1, Ah), (9. hg) = (Ag,h®g),  (3.15)
(S¢,h) = (&, Sh), (3.16)
e(h) = <17 h>’ 6((;5) = <¢7 1)? (317)

for all g,h € A and ¢, 1) € A*.

A Hopf algbera is commutative if it is commutative as an algbera and it is cocommuta-
tive if it is cocommutative as a coalgbera. The dual of commutative (cocommutative)
Hopf algebra is commutative (cocommutative) and vice versa. For commutative or co-
commutative Hopf algbera, we have S? = id. Here we express two examples of Hopf
algebras for finite group G' which are dual to each other.

Example 1(Functional algebra F(G)): Let G be a finite group with identity e and
F(G) ={f : G — k} denote the set of functions on G with values in k. This has the
structure of a commutative Hopf algebra with algebra structure:
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where, ¢,1 € k(G),u,v € G, \ € k with following properties

(A@)(u,v) = ¢(uv), A: F(G) = F(G) x F(G),
(oY) (u) = d(w)(u),  €: F(G) =k
(S¢)(u) = dp(u™").

Example 2 (Group algebra k[G]): Let G be a finite group and k[G] generated by G,
ie. {a=),cqalu)e,} where {e,} denotes the basis and A € k. Where u,v € G C k[G]
we have the following list of properties:

e Product: (Z Alu)(z Aov) = Z A2 (uv),

e Coproduct: A k[G] — K[G] x K[G]), A(u) =u®u,
e Counite: € k[G] =k, €(u)=1=e,

e Antipode : S(u) =u"t.

The Hopf algebras F(G) and k[G] are dual to each other such that (,) : F(G)Qk[G] — k,
where ¢,¢ € F(G), h € k[G], u € G C k[G]. Thus one can shows

(f.u) = (> h(wu) = h(u)(u),
(0 @b, Alw) = (p @9, u@u) = p(u)p(u) = (¢)(u) = (¢, u).

Therefore, we have F(G)* = k[G], k[G]* = F(G) and it follows that one’s algbera
structure corresponds to the other’s coalgebra.

3.1.3 Quasi-triangular (braided) Hopf algebras and universal R- ma-
trix

Quantum groups have an additional important structure which is not present in a general
Hopf algebra, called the quasi triangular structure.

Definition 6. For a bialgebra (A, m,n, A, €) we call an invertible element R € ), a;®b; €
A ® A a universal R-matrix if it satisfies

A(a) = RA(a)R™?, (3.18)

(id @ A)R = RizRa2, (3.19)
(A®id)R = Ri3Ra3, (3.20)
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where A? = gA, a € A and o is a flip map. Also we have
R12:Zai®bi®1:R®1,
R23:21®ai®bi:1®R, (3.21)

R13220i®1®bi'

(]

A Hopf algbera A with a quasi triangular structure is called a quasi-triangular Hopf
algbera. The universal R-matrix satisfies the following identities

(e®id)R = (id®€)R =1, (3.22)
(S®id)R=(id® S™" R= R, (3.23)
(S®S)R =R. (3.24)

Also the element R’ = ¢ R is a universal quantum R-matrix for the Hopf algbera A*.

Proposition 1. Universal R-matrix satisfies the quantum Yang-Baxter equation

RiaR13R23 = RogR13R12. (3.25)

which can be proven by using properties (3.18)-(3.20) in one line. Where 019 = 0 ® id
we have

RisR13R93 = ng(A ® ld)R = (AOP &® Zd) (R)ng (3.26)
= 012(R13R23)R12 = Ra3Ri3R12.

A Hopf algebra A is called a quasi-triangular Hopf algebra, if for A ® A there exists the
universal R-matrix R. The main definition of this chapter is the definition of quantum
group which is defined as a non-cocommutative quasi-triangular Hopf algebra.

Definition 7. Let g be Lie algebra with universal algebra U(g). The quantum enveloping
algebra U, (g) is an associative algebra generated by z;,y;, K;, K ;1 with relations

KK '=K 'K =1, (3.27)
K2 _ K2
[ﬂfiyja Z/jl“z'] = 52',]'#7 (3-29)
Aij l _ Ay
Kixj =q72 0,;K;, Kyj=q 2 yK;, (3.30)
1-—A;; A
. <—1>’“< K ]> m T el =0, i (3.31)
k=0 q
1—Aij\ 1-4,,—k .
(—1)’“< P j) v Uyl =0, A, (3.32)
k=0 q



Chapter 3. Quantum groups, Drinfeld double and Heisenberg double 33

where (Z)q = m is a g-binomial coefficient and also

[n]q! = [n]g[n — g ... [2]4[1]4, (3.33)
[n)g = %- (3.34)

Theorem 1. Let Uy(g) be an algebra generated by x;, y;, K;, K, Z-_l with appropriate rela-
tions. Then (U,(g), A, €, S) with

A(K;) = K; ® K;, (3.35)
Alz) =2 @ K; + K" @, (3.36)
Aly) =y @ K + K, ' @y, (3.37)
e(Ki) =1, e(x;)=e(yi) =0, (3.38)
S(Ki) =K', S(wi) = —qiwi, S(yi) = —4; ‘i, (3.39)

is a non-cocommutative Hopf algebra.

One can easily show that Axz;, AK;, Ay; satisfy the defining relations of U,(g) and the
axioms for the generators are verified. We know that for any Lie algebra g, we can present
it by the generators and relations between them. The (U,(g), A, €, S) is a quantum group
as expressed above and there exists the universal R-matrix R for that (For reference
consult [67]).

3.2 Drinfeld double and Heisenberg double

Drinfeld double

We already explained the quasi-triangular (braided) Hopf algebras which satisfy Yang
Baxter equation and we want to find such Hopf algebras. There exists a quantum
double construction [39, 70, 71] presented by Drinfeld which builds a quasi triangular
Hopf algebra out of an arbitrary Hopf algebra. We can consider Hopf algbera A and its
dual A* with opposite comultiplication. The algebraic tensor product of them can be
made into a quasi-triangular Hopf algebra.

Definition 8. Let A be a Hopf algebra with base element F, and A* be its dual Hopf
algebra with base element E“ with multiplication and comultiplication as

EaEﬁ = 7’)’L'70[5Ej,},7 EOéEﬁ — ,U,(;C’BEFY, (340)
A(Eq) = ng B ® By, A(E®) = mS,E° @ BV, (3.41)
S(Ea) = S4Eg, S(E*) = (513 E”. (3.42)

As a remark regarding the notation, for reasons of simplicity we will write the elements
1® E, and E* ® 1 of Drinfeld double double as E, and E¢, respectively.
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Drinfeld double is defined as a vector space D(A) = A ® A* which satisfies

EoEg =m] 3B, (3.43)
E°E’ = pPE", (3.44)
pSmb EgEBP = mb pl° EPE,. (3.45)

The two initial Hopf algebras are two subalgebras of the larger Hopf algebra which can
be constructed from them. The new Hopf algebra has universal R-matrix because of the
existence of the multiplication of algbera and comultiplication of its dual. Moreover, the
canonical element R = E, ® E* satisfies Yang-Baxter relation (3.25) and can be shown
as

RisRi13Ro3 = (B, @ E°® 1)(E3 @ 1@ EP)(1® E; @ E°) =
= EoEs ® E*Es ® EPE® = E, @ mlgul’ E°Es ® EF =
= B, @ Mol EsE® ® EF = m$,E, @ EsE* ® p) BP =
= BB, @ EE* @ E°E = (10 Es @ E°)(Es @ 1@ EP) (B, @ E°® 1) =

= RozR13R12.

Heisenberg double

As we explained, the Drinfeld double construction takes an arbitrary Hopf algebra and a
Hopf algebra dual to it and produce a quantum group. There exists another construction,
the so-called Heisenberg double [43]. The pentagon equation in Heisenberg, as it is shown
below, has the similar role as Yang Baxter equation has in the Drinfeld double.

512513523 = 523512, (3.46)
It was shown in [43] that the solution for Yang Baxter equation (3.25) can be obtained

from solutions for pentagon equation (3.46).

Definition 9. Lets consider a bialgebra A spanned by the basis vectors e, and the
bialgebra A* spanned by the basis vectors e®.

The Heisenberg double H(A) is an algebra as a vector space H(A) = A & A* with
multiplication and comultiplication on subalgebras A, A* as

€alp = mlﬁe,},, e%ef = ,u;’ﬂe7 (3.47)
Aleq) = uff’eg ® ey, Ae™) = m%‘,yeﬁ ® e’ (3.48)

and
eae’ = mgwugj’epeg. (3.49)

As a remark regarding the notation, for reasons of simplicity we will write the elements
1 ® ey and e* ® 1 of Heisenberg double as e, and e®, respectively.
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Bialgbera A* is dual to A under the duality bracket (,) : A x A* — C defined on the
basis by
(eq,€P) = 6P,

This bracket exchange product and coproduct as follows:

(eq, €€ = u67<ea, T) = 675; = g"égé;’ = ub’ (e, ® eq P ®e)
= (Alea), e’ ® €7),
(eatp, €”) = (ea ® €5, A(€7)).

Indeed, in the case of Heisenberg algebras there is no comultiplication that would be
compatible with the product defined above and at the same time agree with comultipli-
cation A and A* on subalgebras A and A*, respectively.

Therefore, our Heisenberg double is only an algebra and not a Hopf algebra. The
canonical element S = e, ® e satisfies equation (3.46), and can be shown as

512513523 = (ea @ e* @ 1)(ep ® 1 ® 66)(1 Rey,®eT) =eqep®e‘ey ® ePer =
= maﬁep ®e%e, ® e’ = =€, ® mgﬁucﬁﬂeo‘&Y ®e” =e, e’ ®el =

= (1®6p®6 )(€g®€ ®1) = S93512.

Examples

Here we want to make few examples about the Heisenberg double and Drinfeld double
[43]. For finite group G we have group algbera k[G] as a Hopf algebra denoted by A.
For {e4} as the basis we have multiplication and comultiplications

m(eg,en) = egn = m,, 535, edel = ,u‘ZYheV =967,
1
A(eg) = eh @ 6h a A(eg) - 69 ® eg = Hﬂ’y = 55535
heG
h h hg~!
eg = (5p 753536p60 = 5 e eg=¢€" eq4.

Then multiplicative unitary is given by S =) eq ® e®.

As the second example we consider polynomial ring C[z] by e, = % as a normalized
basis and e" = " as a dual basis. Therefore,

(n+m)! n+m . n+m\
Enem = —————€nim = " Cntm = M)y = O tms

nlm! n
e — Z 5;L7mes — en+m,
Ale Zen k@ e = pkt=6% 0(n-16(),
k=0

= Z <Z> en_k ® ek,
k=0



Chapter 3. Quantum groups, Drinfeld double and Heisenberg double 36

sk, 0<i<n
l , and the coproduct are A(z) = x® 1+ 1 ® x and
0, >n

follows up that A(z™) =), (Z)ﬂ:"_k ® k.

where © = {

The Heisenberg double has e, ® €™ as basis and one can find

n
m _
epe” = E em N Tse,
n—s

s=0
- 1_.0 1. - o
T =ee =eeyt+ee =14+Tr=2x—Tr=1,

and the canonical element encodes as

o0

1
S=en®e" = Z mmm@)jm:exp(x@f).
m=0

Relation of Drinfeld double and Heisenberg double

Using Heisenberg doubles one can find the representations of Drinfeld doubles, because
one can embed the elements of the Drinfeld double into a tensor square of Heisenberg
double [43]. As we mentioned before the coproduct of the Hopf algebra structure of
A and its dual A* are not algebra homomorphism of the multiplication on H(A). Let
us have a Heisenberg double H(A) defined as before. Moreover, we define another
Heisenberg double H(A) generated by basis vectors {é,, &5} with

Calp = Mgsey, A(Ea) = 11385 ® &y, (3.50)
ee’ = pahen, A(e*) =mf,e’ @ &, (3.51)
%80 = puimb é,e’, (3.52)

with canonical element S = é, ® &%, which satisfies the reversed pentagon equation:
S12823 = S23513512. (3.53)

Using H(A) and H(A) one can define Drinfeld double D(A), which as a vector space
D(A) ¢ H(A) ® H(A) has the elements

Eo=pDes ¢, E* =me’ @& (3.54)
They satisfy the following defining relations
EoEg =m],E,, E°E’ = pPEY,  pfmb E,EP =ml i) E’E,.  (3.55)
The first two statements can be easily proven by using the compatibility condition:

Aom=(mem)(id®c®id)(A®A), mlﬁ/fyp = ,ugfuggmgnmfg, (3.56)
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one can show

EoEp = 115”1 (ex ® &) (eq ® ér) = pgf g myymy e, ® &, = mygue, ® &, = myzEy,

ECES — Mgﬁ E7,
and in addition using associativity and coassociativity

(A®@id)A = (id® A)A, el b = s, (3.57)
m(m ® id) = m(id @ m), miﬂmg7 = mgémgw (3.58)
one shows
ugﬂmngng = ugﬂmfp,ugb(ea ® ép)mh, (e‘ ® e
- “gé’ymgﬁugbmgcmig/‘gsges ® &pe? = (ug e’

_ ao b p c s_r ~ ~d __  aoc c s_r b P = =dy _
- (/-‘Loz MU,Y)(mgcmfyd)mrgug €esQepe = Ko m/ﬁ)cmrg:u“g €es® (Ma,ymfydebe ) -

)
(mZ mf, YmS, pd*e e, @ e =
Yp' ' de rgﬂa s b

= (e’ 1) (mpemsy)e"es © &8y = (Ui us?) (migmg,)(€" @ &) (es @ &) =

= Mgamfg(szeT X ép)(,uiaes ® éo‘) — u&“mngCEa.

Now, we can consider the canonical element R = E, ® E“ which is said to satisfy
Yang-Baxter relation

By1 9501 330895 33 = 193 331011 33101 955 (3.59)
It can be shown that one can express the R-matrix by canonical elements S, S, S’,5",
Ri234 = 874513524555 where, S’ = &, @ e, S = e, ® &%
We contribute a short proof of Kashaev’s machinery here

571513592483 = (ea @1 @12 (@10 @1) (106,212 (10é e @1) =
= eaey ® 6485 @ e’ @ 8¢ = ml ge, @ mbsép @ ple” @ pi' e =
= ugyuf‘smgﬁm%ea RéEReE R = m}cuibea Qe el = (3.60)

= (u:bea X éb) X (mgcec &® éd) =F,® EY = R12,34.

3.3 U,(sl(2)) as an example

We consider Uy(sl(2,R)) as an example of quantum groups. U,(sl(2)) is generated by
K,K~! E, F and satisfies the relations

KK '=K 'K =1,
K2 o K—2
q—q!
KE =qFK, KF =q 'FK,

[E,F] = — (3.61)
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and with coproduct and unitality such that

AK)=K®K,
Alz)=FE®9K+K '®oE, Alyy=FK+K '®F, (3.62)
e(K)=1, €(E)=¢F)=0,

and following antipode
S(K)=K™', S(E)=—qE, S(F)=—qF. (3.63)
The Casimir operator C' has the following form

qK2+q_1K_2—2
(¢—q 1 7

and it can be shown easily that [C, K| = [C, E] = [C, F] = 0.

C=FF—

(3.64)

One can consider U(sl(2)) as a classical limit of U, (sl(2)). We can take K = e g = et
and take the limit ¢ — 1, which gives the following relations:

[E,F]=-2H, [HE|=E, [HF]=-F, (3.65)

which are the relations for algbera U(sl(2)). The other structures have the limits as
follows

Alu) =u®1+1®u, e(u) =0,  S(u) =—u,

where u = H, E, F.

Heisenberg double of U/, (sl(2,R))

We want to construct Drinfeld double of the algebra, Borel half U,(B)) of Ugy(sl(2)).
This algbera has two generators H and F with the following relations

[H,E]=E, (3.66)
AH)=Ho1+1®H, (3.67)
AE)=E@M 110 E, (3.68)

h

Considering ¢ = e~" we can have the relation K = " and it brings the following basis

element for the algebra

_ 1 m n
emn = — (q)nH E", (3.69)

where (q),, is g-factorial as defined in equation (3.70)

(@Dn=01-¢q)..1-¢"),n>0, (go=1 (3.70)
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and we can compute multiplication of the generators as
e F"K=q"KFE",
o oo o0 1
_ _ k _
e E"H™=(H-n)"E",) m'hmE”Hm => m'hmHmE” > = ()t =
m=0 m=0 k=0
o0 1 m o
Z ﬁ Z < )(_n)m—szkEn _ Z 7hm( _ n)mEn7
m=0 k=0 m= O
!
o« H"E"H'EF=Y" (l> (—n) = H I R,
— \J
7=0
It brings us to the multiplication for the basis elements
! . ;
m+4\ (n+k\ (—n)~
= — ; 3.71
€m,n€lk Z < ] ) ( L >q (l 7 j)‘ Cm+jn+k> ( )

J=0

where (Z)q = %. One can also find the comultiplication

o A(H") = zn: (Z) H" %@ HF,

k=0

an k‘En k®e(n k)hHEk
k=0

and for one higher order we have

n+1
o A(E"™) =" f(n+1,k)E"TFgntImhhHpE -

k=0
n

=> fnk)E"F @M ENEg M + 18 E) =
_ f(n,O)E”"H ® e(n+1)hH + f(’fl, n)l Q En+1_|_

n ZEn—I-l B emtI=RhH Rk k)g* + f(n,k —1)).

Therefore, f(n+1,0) = f(n,0), f(n+1,n+1)= f(n,n), f(n+1,k) = f(n k)" +

fn,k—1), for 0 <k < n+ 1. These properties are satisfied by g-symbol.
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Therefore,

° A(En) _ <n> En—k ® e(nflc)hHEwk7
q

« AH'E™) = Z( )H" . sz< )Eml Sm—DRH gl _
=

_ Zn:i (”) (m> gk pm—l g frke(m=DhH p
k=0 1=0 k l q
n m o0 1
k=0 1=0 p=0 k ; P

and it gives the comultiplication as
Alenm) =33 < . p) (m — D)PhPen_jm—t ® Chipi- (3.72)

Now we consider the dual algebra A*, which is generated by the elements H and F

[H,F] = —hF, (3.73)
AH)=H®1+1®H, (3.74)
AF)=FeeT+1®F, (3.75)
K= KF=GrK, g=e", (3.76)
The multiplication and comultiplication has the form
Lol
Em,nEl,k‘ — ( > n l—jhl—jElm-‘rjﬂ-‘rk" 3.77
Z_% j (n) (3.77)
]_
n m o0 _ P
A(En’m) = <Z> (7) ( m ;'_ l) En—k,m—l ® Ek+p’l. (378)
k=0 =0 p=0 q P
It is clear that we can identify
em™ = HF™, (3.79)

Since the bases are dual to each other by comparing multiplications and comultiplications
we have

l 1—j
7,5 m+]> <’I’L+k‘> (*TL) /
m,’ = ; 57“m '5sn =
m,n;l,k Z( j k q(l_])! ,m+jYsn+k

J=

_ ( r > (" ‘]'; ’“) W@(r —m)O( — 1+ M)y sk,

_ — |
r—m  (L=r+m)!
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and
Lot .
Jj=0 J
[
_ < > (n)lfr+mhlfr+m@(r _ m)@(l —-7r+ m)5s,n+k'

T—m

By using equation (3.47) we can check the permutation relations for Heisenberg double
H(Uq <B> )7

Hﬁ:elOelo—m}zgcd“idef e p = igcoﬂigeo “ee =

(1)8,1,0:‘&800 00800+m1800N(1)810 10610:1+HH,

EH:eOleLO:mclzgcdu(C)?ef abeeyf :m(lzgc(]:uggel aoeeJ =
= m} 8 ooﬂggo fel: 060,1 = 61’060,1 = HE,

and in the same way
HF —-FH=-F, EF-FE=(1-¢q)q .

Now we can consider the canonical element:

_ n,m _
S = E €n,me = g
n,m

n,m

_ 1
e =Y s e py -

n!(q)m (q)m

=exp(H® H)(E® F;q)5,

n,m

which follows from g-binomial formula (see appendix E). We used the fact that, (z;¢) " =

Yoo (q , the proof of that can be found in appendix E.

In the next chapter we will show how one can consider a bialgebra A spanned by the
basis vectors {e(a)}, where the basis is of infinite dimension. Afterwards, we will define
all the objects in analogous way as in the finite dimensional case, replacing all sums with

;%/da.

integrals over the spectrum.






Chapter 4

Non-compact quantum groups

The basic language of functional analysis is assumed as a background knowledge for
this chapter. We start with a brief explanation of the quantum plane which is the
simplest example of a non-compact quantum group. By taking complex powers of the
generators as unbounded operators, we can define a C*-algebraic version of the Drinfeld-
Jimbo quantum groups. Afterwards, we consider the non-compact version of Heisenberg
double of the Borel half of U,(sl(2)). We use the self dual representations of Heisenberg
double and evaluate the canonical element which in particular satisfies the pentagon

equation.

The discussion of entities that we provide in this chapter will be a introduction to the

supersymmetric case discussed in chapter 7.

4.1 Quantum plane

A quantum plane A, is a Hopf *-algebra which is the Borel half of a q-deformed universal
enveloping algebra U, (sl(2)). It is generated by elements A, A~!, B such that they satisfy

q commutation relation

AB = ¢°BA, (4.1)

where, the deformation parameter is ¢ = explimb?], with a real *-structure
A*¥=A, B* = B.

In addition, one has a compatible coproduct,

A(A)=A® A, AB)=B®A+1®B, (4.2)
counit and antipode
€e(A) =1, e(B) =0, (4.3)
S(A)=A"1, S(B) =q¢B

43
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Furthermore, to deal with non-compact quantum groups, we are interested in a normed
*_algebra, the so called C*-algebra. We also need language of multiplier C*- algebra to
define a natural coproduct.

A Banach space is a vector space V over the field of real or complex numbers, which is
equipped with a norm and which is complete! with respect to that norm. This means
that for every Cauchy sequence z,, in V', there exists an element x in V such that

lim ||z, —z| = 0.
n—oo

A Banach algebra is a algebra which is a Banach space under a norm such as

ley <l =yl

An C*-algebra is a Banach *-algebra A satisfying the C*-axiom:

| z2* ||= | ||? for all z € A.

For a compact group G, any function on G can be approximated, with respect to sup
norm, by polynomial functions in the generators. But in the non-compact case, functions
vanishing (decay) at infinity are not well approximated (with respect to sup norm) by
polynomial generators. In both cases the convergence is defined using the sup-norm.

In the non-compact case we need to deal with unbounded operators and functional
calculus for self-adjoint operators is the main technical tools. The operators A and B
of the quantum plane will be represented as unbounded operators m(A) and w(B). We
impose that operators m(A) and 7(B) be positive self-adjoint to avoid the problems
related to the self-adjointness of the coproduct and well-definedness of the algebra on
C*-algebra level which are discussed in the literature.

Definition 10. let X, Y be positive self-adjoint operators. According to [72], an inte-
grable representation for the relation XY = ¢?Y X means that for every real number s
and t, we have X®Y# = =25ty X5 a5 the relation between the unitary operators.

One can realize operators mentioned above by means of an integrable representation
using the pairs of canonically commuting operators.

m(A) =™ = X, 7(B) =P =Y, (4.5)

which act on # = L*(R) and p = 5= so Xl f(g) = e2misTf(g), YT f(z) =
et () = flz +1),

For positive, unbounded operators on L?(R), the domain for X is given by

Dx ={f(z) € L*(R) : ™ f(z) € L*(R)},

In analysis, a space M is called complete (or a Cauchy space) if every Cauchy sequence in M converges
in M.
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and the domain for Y is given by the Fourier transform of Dx. Therefore, we can
obtain various functions in X and Y. For any function defined on x > 0 € R such that
|f(x)] =1, f(X) will be a unitary operator [72].

Every commutative algebra of operators on a Hilbert space can be represented as the
algebra of functions. By considering positive operators we can define a broad class of
functions on A, by using Mellin transform?, and in this way we can define the C*-algebra
of “functions on the quantum plane vanishing at infinity” for A, , which is expressed as,

Coo(-Aq) — {AOO(AQ)}HOI‘IH closulre7 (46)
where

A>(Ay) = Linear span of{ f(X,Y)}, (4.7)

and
fX,Y) = / / Fi(s)Fa(t) XY™ dsdt ),
R+:0

where F)(s) is entire analytic in s and F(t) is meromorphic in ¢ with possible simple
poles at

t=—ibn—iZ,  nm=0,1,2,... (4.8)

and norm given by

| F(X,Y) //—1—20 | Fy(s)Fu(t) |2 dsdL. (4.9)

According to [73] by using Mellin transform, the space A*°(A,) can be written as,

A% (A,) := Linear span of g(logX)/ By ()Y 1z,
R-+i0
where g(z) is entire analytic and it has a rapid decay in x € R. Fy(t) is a smooth
function in ¢ with rapid decay.

In addition to algebra of functions, we need to know how to find the coproduct for an
arbitrary, non-algebraic element in the noncompact case and hence we need to introduce
an additional object, called multiplicative unitary. Multiplicative unitaries are funda-
mental object in the theory of quantum groups in C*-setting. Multiplicative unitary is
the map which encode all the structure maps of quantum group. The Possible difficul-
ties dealing with non-integer powers of generators are avoided by using multiplicative
unitary. According to Woronowicz [74], multiplicative unitary is defined as follows

*Let f(x) be a continues function on the half line. The Mellin transform of f(z) is defined as,

(Mf)(s) = [;7 % f(a)da.
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Definition 11. A unitary element S € A ® A is called a multiplicative unitary if it
satisfies pentagon equation

S12513523 = S23512, (4.10)
multiplicative unitary encodes the the information of coproduct as
S*lex)S=A(x) zeA (4.11)

The pentagon equation implies the coassociativity of the defined coproduct. We refer
to [75] for more extended discussions.

According to a proposition 6.7 in [73] and [74] the multiplicative unitary for quantum
plane is given by,

S = g7 (Y @ sq 1Y X1)eloo@XY TH0IaX "1 ¢ 0 (A1) ® Coo(Ay), (4.12)

where g, is Fadeev’s quantum dilogarithm function as it is defined in equation (2.27).

4.2 Heisenberg double of U,(sl(2)) with continuous basis

In this chapter we aim to introduce a continuous version of the Heisenberg double of
the Borel half of U,(sl(2)). We want to introduce it and consider a particular infinite-
dimensional integrable representation thereof, with a special focus on the canonical
element S. We describe this particular Heisenberg double keeping in mind the fact
that in previous chapters some elements of it, as well as the canonical element S have
shown up in the study of the Teichmiiller theory of Riemann surfaces as an operatorial
representations of shear variables and flip operator T.

The Heisenberg double construction give a particular algebra from two copies of a Hopf
algebra in a specific way. Indeed, one can find two mutually dual subalgebras of Heisen-
berg double, which are isomorphic as algebras to the initial pair of Hopf algebra. This
two subalgebras are algebras, but not Hopf algebras.

Kashaev has shown that the Heisenberg double of the Borel half B(Uy(sl(2))), which we
will be denoting by HD(B(U,(sl(2)))), can be defined as an algebra generated by the
four elements. The HD" subalgebra is generated by H and ET and HD~ subalgebra
generated by H and E—. They satisfying commutation relations as follows

- 1
H H| =—, E+,E_ — _ 1 627rbH’

[H, H] = o [ A J=(a—q A) (4.13)
[H, E*] = FibE™, [H,E*] =0, [H,E~] = +ibE~,

where ¢ = ™ for a parameter b such that b> € R/Q, with the real *-structure, i.e.

H*=H, H*=H, (E*)*=EFE* (4.14)
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In addition, the coproduct for the generators H, H,E* can presented as

AH)=1H+H®1,
AH) =10H+H®1,
4.15
A(ET)=E" @™ 11 BT, (4.15)
AE)=E ®e 2™ L1 E".
The canonical element S can be written in terms of the generators of HD
S = exp(2miH @ H)gy ' (EY @ E7), (4.16)

This canonical element is expressed in terms of Faddeev’s quantum dilogarithm in the
same way as the multiplicative unitary (4.12) of the quantum plane.

Cb
Go(§ + go logz)’

gv(T) =

where, ¢, = exp[Z + (b2 4 b~2)] and we have the following properties,

—imt? —7tQ

27br oritr € —1/ 27br oritr €
= [ dt - = [ dt -
n(@) = faen oty e = faet

We can make those subalgebras into two mutually dual Hopf-subalgebras by assigning
a coproduct in the following way by using a canonical element S

A(u) =S 11 ®u))S, whereu=H,E™T, (4.17)
Aw)=Sw®1)S™!, wherev=H,E". (4.18)

Kashaev representation

Here we review the representations of the Heisenberg double HD(B(U,(sl(2)))) consid-
ered in [44], that have been shown to be relevant in the quantization of the Teichmiiller
theory. We introduce the infinite dimensional representations m : HD(B(U,(sl(2)))) —
Hom(L*(R)) with the action of the generators given by

H = p, ET = ¢, (4.19)
o= q, B — €2Wb(p—q)’
where [p, q] = 2%” are operators on L?(IR). All of them are positive self-adjoint operators

on L%(R). The canonical element S (4.16) evaluated on this representation is as follows

S = exp(2miH ® I_})ggl(E—i- QFE7) = €2m'p1q29];1(627rb(q1+p2—q2))‘ (4.20)

Using the quantum dilogarithm properties, one can easily confirm that this canonical
element bring us to the same coproduct as expressed in relations (4.15), which is shown
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here

AH)=Ad(SHQ e H)=S"'12 H)S =
= go(Et @ E7)e 72mH®H(1 ® H)e 2mH®H (E* QET) =
=g(Et®E ) (1®H+H®1)g, (E+®E )=1®H+H®]I,
A(ET) =Ad(SH(1eH)=S'1®E"S =
— (BT E) (10 ENg (BT @ E7) =
_ gb(627rb(q1+p2—q2))e%quggl(627Tb(ql+p2—q2)) —

mbqa

—e —imh? e27rb(q1+p2—q2)) 71(6+i7rb2 627rb(q1+p2—q2))e7rbq2 _

gbl(e 9y
— ewqu(l + 627Tb(q1+p2*q2))e7rqu —
— 6271‘1)(]2 + 627rb(q1+p2) — 1 ® E+ + E+ ® 627TbH,
A(H) = Ad(S)(H®1)=SH®1)S™ =
_ 62m’H®ﬁgg1(E+ R E)H®g(ET ® E—)€f2m'H®H _
_ esz‘H@ﬁ(ﬁ@ e —2miH@H _ oH+Ho1,
AET)=Ad(S)(E-®1)=S(E-®1)S™! =
_ eQﬂiH@ﬁggl(627rb(q1+p2—q2))627rb(p1—q1)gb(627rb(q1+p2—q2))6—27riH®H _

— eQﬂiH@I:Ieﬂb(plfql)gb—l(eJriﬂ-b? 6271-b(q1+p27q2))gb(67i7rb2 e27rb(q1+prq2))67rb(p1 fq1)6727TiH®I:I —

_ 627rzH®H(627rb(p1—q1) + 627rb(p1+p2—q2))) —2miH®H _

_ eQm’H@H(Ef ®1+ e2™H @ E)e —2miHelH _ 1 o 14+ Foe 27rbH
where we used the properties of quantum dilogarithm
g (e2™7) = ey (), go(e ™ 2) = (1 + 2)gy (e T 2). (4.21)

In addition, there exists an algebra automorphism A which is also an operator in Te-
ichmiiller theory. It is an operator for changing the place of decorated corner of the
triangle in Teichmiiller context (read more about in [44]) and it was defined as

A = e~ im/3g3mia” gim(p+a)? (4.22)
This automorphism acts in particular on the momentum and position operators as
AgA™ = (p—q), ApA~! = —¢. (4.23)

By the adjoint action of this automorphism one can define new elements @ = AuA~! €
Hom(L*(R)) which generate another representation of the Heisenberg double in ques-
tion.

T

=(—q),

— 6727rbp.

H =
E* 27Tb(p 0

m‘z
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Basis elements of the Heisenberg double of the Borel half of U,(sl(2))

This section is part of a ongoing project and our goal is to introduce the continuous
version of Heisenberg double of the Borel half of U,(sl(2)) by finding the appropriate
bases. Because we are taking a complex power of the generators for defining the bases,
we present them in a form that makes explicit their positive and negative definite parts,
H=+H,—-H-% _( _yeH.

We have the following candidate as the possible bases for subalgebras HD™ and HD~

1 o . .
e(s,t,€) = gF(—is)Gb(—it)q_(lb 0% /297 | H|) ¥ O (e H) (BT, (4.24)
é(s,t,€) = e ™0 | [0 (eH) (B, (4.25)
1 x>0 . .
where O(x) = {0 0 and the special function GY,.
xr <

The bases should satisfy the duality relation between them and they normalized such
that
(e(s,t€),e(s' 1, €))y = (s, 8)(t, )0 e,

As we see, our algebra has an infinite number of basis elements. The multiplication of
those elements is

e(s,t,e)e(s t' €)= Z/dadTm(s,t,e,s',t',e’;a, T,w)e(o, T,w), (4.26)
w

é(s,t,e)é(s ', €)= Z/dadT,u(o, T,w; st e 8t )e(o,,w). (4.27)
w

Now, given that one has the following

e(s,t,e)é(s ' €)= Z /dada'da"deT’dT’/m(a,T,U’,T’;s’,t/),u(s,t;J’,T’,U”,T”,e)x

wyw! W'

x é(o,1,€)e(a”, 7).

The canonical element of Heisenberg double which satisfies pentagon equation (4.10)
can be expressed as

S = Z/dsdt e(s,t,e) ®@eé(s,t,e). (4.28)

As we defined only multiplication of those elements (by means of the commutator), the
subalgebras HDT are algebras, but not Hopf algebras. However, we can make those
subalgebras into two mutually dual Hopf-subalgebras by assigning a coproduct in the
following way by using a canonical element S

Ale(s,t €)= STH1 @ e(s, t,¢€))S, (4.29)
A(é(s,t€)) = S(é(s,t,e) ®1)S™ L (4.30)






Chapter 5

Classical super Teichmiiller spaces

In the previous chapter we reviewed the Teichmiiller theory of Riemann surfaces. The
aim of this chapter is to present the basics of super Teichmiiller theory, the Teichmiiller the-
ory of super Riemann surfaces. Of particular importance will be the coordinates for the
super Teichmiiller spaces introduced in [55]. These coordinates are closely related to the
analogue of Penner’s coordinates recently introduced in [53].

In this section, following [55], we will first review the basic notions of super Riemann
surfaces and super Teichmiiller spaces. We will then consider the definition of two sets
of coordinates on this space, called Fock coordinates and Kashaev coordinates.

In order to define such coordinates we will need to refine the triangulations used to define
coordinates for the ordinary Teichmiiller spaces into certain graphs called hexagonaliza-
tions. Assigning the so-called Kasteleyn orientations to the edges of a hexagonalization
allows one to parametrise the choices of spin structures on super Riemann surfaces. In
addition to even coordinates associated to edges of the underlying triangulation one may
define additional odd coordinates associated to the triangles. The additional orientation
data assigned to a hexagonalization are used to provide an unambiguous definition of
the signs of the odd coordinates. We can use the edges and faces of the hexagonaliza-
tion with those additional structures to assign the supersymmetric analogues of Fock
coordinates.

We will discuss the transformations of coordinates induced by changes of hexagonaliza-
tions. The result of the elementary operation of changing the diagonal in a quadrangle
called flip will now depend on the choice of Kasteleyn orientation. We will furthermore
need to consider an additional operation relating different hexagonalizations called push-
out. This operation relates different Kasteleyn orientations describing the same spin
structure. The relations that have to be satisfied by these transformations define a
generalization of Ptolemy groupoid that will be called super Ptolemy groupoid.

51
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5.1 Super Riemann surfaces

The concept of supermanifolds was settled by mathematicians after several years. This
new concept got more attention from physicists after Wess and Zumino presented their
famous first supersymmetric field theories, which was the starting point for the applica-
tion of supergeometry in physics. The most famous applications are superstring theory
and supergravity.

The supermanifolds are a generalization of ordinary manifolds in which the notion of
variables has been extended to include the anti-commutative, Grasmannian variables,

0,0; = —0,0;, (5.1)

which imply 6;2 = 0. There are many ways in which that kind of local description
can be incorporated into the picture of differential geometry, which were shown to be
equivalent to each other, like DeWitt’s approach which mimics ordinary differential
geometry, swapping R” spaces with graded R”™, or the one based on sheaves of functions
on non-graded manifolds [76, 77]. Here, we will use the former.

Our goal for this section is to study super Riemann surfaces, and in order to do that let
us start with the notion of a particular case of G-graded vector spaces, that is Zs-graded
vector spaces, called super vector spaces. An object of this kind V), besides having the
normal axioms of a vector space, is endowed with grading, i.e. it decomposes into a
direct sum of subspaces,

V=V V. (5.2)

The elements belonging to 1y are called even, and those belonging to V; called odd.

Moreover, there exist a function || : V — G, called a degree, assigning a group element
a € G to each homogeneous element v € V:

lv| = a. (5.3)

This naturally extends to the notion of a G-graded algebra A — A is endowed with a
multiplication that is compatible with the grading in the following way the multiplication
of two homogeneous elements a,b € A of degrees |a| = a, |b| =  will have a degree being
the sum of the degrees of the constituents, i.e. |ab] = a + 3, and

Ao Ag C Aasp (5.4)

In particular, we are interested in the case when the group G is Zso, then those Zs-graded
vector spaces are called super vector spaces and Zg-graded algebras (superalgebras),
which naming convention we will use from this point on. Moreover, we call the elements
a such that |a| = 0 mod 2 even, and those such that |a| = 1 mod 2 called odd. A
superalgebra is super commutative if

ab = (=1)llpg  for a,b € A. (5.5)
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The basic example of a superalgebra is an algebra of Grassmanians G, (R) generated by
anti-commutative elements 6;,

Gn(R) = {91, ceey O, |VZ,] : 9193 = —Hjt%} , neN (5.6)
which decomposes into the even and odd subspaces,
Gn(R) = (Gn(R))o & (Gn(R))1. (5.7)

We can define a superspace R™™ defined as a product of R” and R™ as even and odd
subspaces generated by elements z1,..., 25,01, ...,0m,

Rn\m = {21, cee ,Zn,gl, ceey 9m7 ’VZ,] LRy = XTjzy, Ziej = 9]'21‘, 919] = —9]'0,‘} . (58)

We can also define a reduction # : R”™ — R™ which maps the superspace into an even
subspace by setting all odd generators 6; to 0, i.e. the image (z?, e ,zg) of an element

of R™™ is defined as follows:
(21, s 2nl01, - 5 Om) = (25, 20). (5.9)

The superspace R™™ can be endowed with a topology, known as DeWitt topology, using
the reduction map: the subset U C R™™ is open if and only if there exists an open subset
V C R"™ such that one is an image of another through the reduction map U = #~(V).
Then one can define a n|m-(real-)dimensional supermanifold M using the superspaces
R™™ in the same way as one uses R" to define n-dimensional manifolds in ordinary
differential geometry.

5.1.1 The super upper half plane and its symmetries

We will begin by introducing the basic group-theoretic and geometric background for the
definition of the super Teichmiiller spaces and for constructing convenient coordinates
on these spaces.

The coordinates on the two-dimensional super plane R2* can be assembled in column
or row-vectors (z1,x2|0) with z; € R, ¢ = 1,2, and 6 being an element of a Grassmann
algebra satisfying #2 = 0. The elements of the subgroup OSp(1|2) of the group of linear
transformations of R?* may be represented by (2|1) x (2|1) matrices of the form

(5.10)

Q

|
Q o
= o
D O 2
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When the matrix elements are elements of a Grassmann algebra, they satisfy the rela-
tions

ad —bc—af =1,
e +2y0 =1,
ae = ad — ¢,
Be = bd — dy.

A natural map from OSp(1]2) to SL(2,R) may be defined by mapping the odd generators
to zero. The image of g € OSp(1|2) under this map will be denoted as g# € SL(2,R).

The super upper half-plane is defined as H'' = {(z,0) € C!I' : Im(2) > 0}. OSp(1]2)
acts on the super upper half plane H!/! by generalized Mobius transformations of the

form
,  az+b+~0
= 5.15
& i cz+d+ 80’ ( )
+ 5+ eb
s =22 5.16
cz+d+ 60 ( )

The one-point compactification of the boundary of H'" is the super projective real line
denoted by P!, Elements of P!I* may be represented as column or row vectors (1, x2|0)
with z; € R, + = 1,2 modulo overall multiplication by non-vanishing real numbers.
Considering vectors (z1,x2|0) with x; € R, ¢ = 1,2 modulo overall multiplication by
non-vanishing positive numbers defines a double cover S'I of P11,

There are two types of invariants generalising the cross-ratio present in the ordinary
case. To a collection of four points with coordinates P; = (;]0;), i = 1,...,4 one may
assign a super conformal cross-ratio

_ X12X34
X14X03’

e—z

(5.17)

where X;; = x; — x; — 6;0;. To a collection of three points P; = (z;|6;), ¢ = 1,2, 3 one
may furthermore be tempted to assign an odd (pseudo-) invariant via,

301 + w3102 + 21203 — 5610205
1
(X12X23X31)2

£=1 , (5.18)

where x;; = x; — x;. Due to the appearance of a square-root one can use the expression
in (5.18) to define £ up to a sign. !

! Alternatively, we can use the infinitesimal action, using the form of generators H, E* F*of osp(1]2)
Lie superalgebra:

TFh(E+) = Oy, m(E™) —228, — 200y + 2zh,

1 _ 1
Th(FT) 5(39 +68,), an(F7) = —ix(ae + 600;) + 0h,

TI'h(H) = —20, — %969 + h,
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In order to arrive at an unambiguous definition one needs to fix a prescription for the
definition of the sign of £&. A convenient way to parametrize the choices involved in the
definition of the odd invariant uses the so-called Kasteleyn orientations of the triangles
in H'I" with corners at P;, i = 1,2,3. A Kasteleyn orientation of a polygon embedded in
an oriented surface is an orientation for the sides of the polygon such that the number
of sides oriented against the induced orientation on the boundary of the polygon is odd.

A Kasteleyn orientation of triangles with three corners at P; € P =1,2.3 may
then by used to define lifts of the points P; € P!I' to points P; of its double cover
SU for i = 1,2,3 as follows. We may choose an arbitrary lift of P;, represented by
a vector (z1,y1101) € R21. If the edge connecting P, to P; is oriented from P to
Pi, i = 2,3, we will choose lifts of P; represented by vectors (z;,;]6;) € R such
that Sgn(det(ﬂ g;)) = —1, while in the other case P; will be represented by vectors
(z4,yi|6;) € R satisfying sgn(det(y} 3! )) = 1. By means of OSp(1]2)-transformations
one may then map P;, i = 1,2,3 to a triple of points Q; of the form @Q; ~ (1,0]0),
Q@3 ~ (0,—-1|0), and Q2 ~ £(1, —1|¢). This allows us to finally define the odd invariant
associated to a triangle with corners P;, ¢ = 1,2, 3, and the chosen Kasteleyn orientation
of its sides to be equal to £ if Q2 ~ (1, —1|¢), and equal to —¢& if Q2 ~ —(1, —1]¢).

5.1.2 Super Teichmiiller spaces

After this summary of basic notions of supergeometry, in the following we can discuss
the notion of super Riemann surfaces. Analogously to the non-graded case, a super
Riemann surface ¥, is a 1-dimensional complex supermanifold with g denoting the
genus and n the number of punctures.

For our goals it will be most convenient to simply define super Riemann surfaces as
quotients of the super upper half plane by suitable discrete subgroups of I' of O.Sp(1]2).
This approach is related to the complex-analytic point of view reviewed in [30] by an
analogue of the uniformization theorem proven in [31].

We will use a supersymmetric equivalent of the uniformization theorem, which holds for
super Riemann surfaces. To do that however we will use not the upper-half plane as a
model surface, but a supersymmetric version: a super upper half-plane H'I.

A discrete subgroup of T' of OSp(1]2) such that I'f is a Fuchsian group is called a super
Fuchsian group. Super Riemann surfaces of constant negative curvature will be defined

with A = 0, that generate the OSp(1]2) group and satisfy defining (anti-)commutation relations
1
[H,E*) = +E*, [H, F*) = igFi7
[E+7E7]:2H7 [Ei>FjF]:_Fi7
{FT . F} = %H, {Fi,Fi}:i%Ei.

It is clear that OSp(1|2) has PSL(2,R) as a subgroup generated by the even generators H, E*.
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as quotients of the super upper half-plane H'* by a super Fuchsian group T,

Syn = HIY/T. (5.19)

In fact, a super Fuchsian group is a finitely generated discrete subgroup of OSp(1|2)
which reduces to a Fuchsian group. OSp(1|2) is the group of automorphisms of H'!
under which the metric is invariant.

The points of a super Riemann surface may be represented by the points of a fundamental
domain D on the super upper-half plane on which I' acts properly discontinuous. Super
Riemann surfaces with n punctures have fundamental domains D touching the boundary
P! of H!I' in d distinct points P;, i =1,...,d.2

We can finally define the super Teichmiiller space ST 4, of super Riemann surfaces ¥,
of genus g with n punctures. It can be represented as the quotient

STgn={p:m(Zgn) = OSp(1]2)} / OSp(1]2), (5.20)

where p is a discrete representation of fundamental group m1(2,,,) into OSp(1]2) whose
image is super Fuchsian.

There is always an ordinary Riemann surface Eg,n associated to each super Riemann
surface, defined as quotient of the upper half plane H by I'!. Notions like ideal tri-
angulations will therefore have obvious counterparts in the theory of super Riemann
surfaces.

Interestingly, while the Teichmiiller is connected, the super Teichmiiller space has mul-
tiple connected components, whose number is given by the number of spin structures
(which will be discussed in the subsequent section) that a super Riemann surface admits.
Moreover, each of those components is diffeomorphic to R69—6+2ml4g—g+2mtmr  where
mpg is a number of Ramond punctures and mys = m—mpg is a number of Neveu-Schwartz
punctures.

5.2 Hexagonalization and Kasteleyn orientations

Similarly to the ordinary Teichmiiller spaces, the parametrization of super Teichmiiller spaces
introduced in [55] relies on ideal triangulations of super Riemann surfaces. It will be
based on the even and odd invariants of the group OSp(1]2) that we defined in Section
5.1.1. However, as noted there, one needs to introduce additional data to define the
odd invariants unambiguously. The extra data must allow us to define the lifts of the
punctures P; € P to points P, on its double cover S!'. Note that the even part of Pt
is the real projective line RP! with group of automorphisms PSL(2,R), while the even
part of S'! is a double cover of RP! with group of automorphisms SL(2,R). Lifting the
vertices of a triangulation of H!I' to S!I' should therefore be accompanied with a lift of
the Fuchsian group I'* ¢ PSL(2,R) to a subgroup of SL(2,R). It is known that the

2When pairs of points get identified by the action of the group I" we will have d # n.
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definition of such a lift depends on the choice of a spin structure on 3 [78]. Therefore,
we need to introduce a suitable refinement of an ideal triangulation which will allow us
to encode the extra data defining a spin structure.

The parametrization of spin structure on Riemann surfaces used in [55] is based on
results of Cimasoni, Reshetikhin [62, 63] using Kasteleyn orientations. To begin with,
let us first introduce the notion of a hexagonalization. The starting point will be an
ideal triangulation of a surface . Around each puncture let us cut out a small disc,
giving a surface ¥y, with n holes. The parts of any two edges bounding a triangle in X
which are contained in 3}, will then be connected by an arc in the interior of ;. The
resulting hexagon has a boundary consisting of ”long” edges coming from the edges of
the original triangulation, and ”short” edges represented by the arcs connecting the long
edges. The procedure is illustrated in figure 5.1.

o
- o Do
O

FI1cURE 5.1: Hexagonalization.

Let us finally introduce another set of edges called dimers connecting the vertices of
the hexagons with the boundary of . The dimers are represented by dashed lines
in Figure 5.1. The resulting graph will be called a hexagonalization of the given ideal
triangulation.

The next step is to introduce a Kasteleyn orientation on the hexagonalization defined
above. It is given by an orientation of the boundary edges of the hexagons such that for
every face of the resulting graph the number of edges oriented against the orientation
of the surface is odd. It then follows from Theorem 1 in [63] that the choice of the spin
structure can be encoded in the choice of a Kasteleyn orientation on a hexagonalization.?

Different Kasteleyn orientations may describe the same spin structure. Two Kasteleyn
orientations are equivalent in this sense if they are related by the reversal of orientations
of all the edges meeting at the same vertex, as illustrated in Figure 5.2.

The equivalence classes of Kasteleyn orientations related by this operation are in one-
to-one correspondence to the spin structures on .

In order to represent a hexagonalization with Kasteleyn orientation graphically we will
find it convenient to contract all short edges to points, and marking the corners of the
resulting triangle coming from short edges with orientation against the orientation of

3 The hexagonalizations constructed above are special cases of what is called surface graph with
boundary in [62, 63]. The formulation of Theorem 1 in [63] makes use of the notion of a dimer config-
uration on a surface graph with boundary. In our case the dimer configuration is given by the set of
edges connecting the corners of the hexagons with the boundary shown as dashed lines in Figure 5.1.
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FIGURE 5.2: Equivalence between the Kasteleyn orientations.

the underlying surface by dots. An illustration of this procedure is given in Figures 5.3
and 5.4 below.

N

FIGURE 5.4: A representation of
the figure 5.3 by a dotted triangle.

FIGURE 5.3: A hexagon with
Kasteleyn orienations.

This amounts to representing the data encoded in a hexagonalization with Kasteleyn
orientations in a triangulation carrying an additional decoration given by the choice of
orientations for the edges, and by marking some corners with dots. The data graphically
represented by dotted triangulations will be referred to as oriented hexagonalizations in
the rest of this text.

As a final remark for this part, for dotted triangles the move reversing the orientation
of all edges which meet in the same vertex has a direct generalization, as pictured in
figure 5.5. In this picture we have the short edges of few hexagons next to each other.
The short edges can collapse to the common projected vertex.

5.3 Coordinates of the super Teichmiiller spaces

In order to define coordinates for the super Teichmiiller spaces let us consider super
Riemann surfaces ¥, , = M1 /T with n > 1 punctures. ¥,, can be represented by a
polygonal fundamental domain D ¢ H'' with a boundary represented by a collection
of arcs pairwise identified with each other by the elements of I'. The corners of the
fundamental domains P; = (z;]0;), i = 1,...,d of D will be located on the boundary
P of H'. An ideal triangulation of the underlying Riemann surface Zg,n induces
a triangulation of the super Riemann surface with vertices represented by the corners
P, = (z4]0;),i=1,...,d. Following [55] we will in the following assign even coordinates
to the edges of a dotted triangulation, and odd variables to the triangles themselves.
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—€p

FIGURE 5.5: Equivalence between the Kasteleyn orientations for hexagons sharing the
same projected vertex.

In order to define the coordinates associated to edges let us assume that the edge e
represents the diagonal in a quadrangle with corners at P; = (x;|0;) € P i=1,...,4
connecting P, and P4. One may then define the even variable z. assigned to the edge e
to be given by the even super conformal cross-ratio defined in (5.17).

In order to define the odd Fock variables let us consider a hexagonalization decorated
with a Kasteleyn orientation. We may triangulate each hexagon as shown in Figure 5.6.

FIGURE 5.6: A hexagon and its underlying triangle.

Note that the orientation on the sides of the hexagon induces a canonical Kasteleyn
orientation on each of the triangles appearing in this triangulation of the hexagon. We
may therefore apply the definition of odd invariant given in Section 5.1.1 to the corners
of the inner triangle drawn with blue, dashed sides in Figure 5.6. As the hexagons of
the considered hexagonalization are in one-to-one correspondence with the triangles A
of a dotted triangulation we will denote the resulting coordinates by &a.
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Poisson structure A super Poisson algebra is a superalgebra A with grading of x € A
denoted as |z|, which has a super Poisson bracket {.,.}s7 : A x A — A which satisfies:

o {z,y}sr= —(—1)|””Hy|{y,x} graded skew-symmetric,
o {z,{y, 2} + (—)FIWIHD Gy o 2}y 4 (- 1) {2y} super Jacobi identity,

o {z,y2} ={z,y}z+ (—1)"Wy{z, 2}  super Leibniz’s rule,

The super Teichmiiller space is parametrized by 3(2g — 2 + n) even coordinates and
2(2g — 2 +n) odd coordinates. As in the non-graded case, the super Teichmiiller space
furnishes a symplectic structure given by a super Poisson bracket [79],

= =

o 0

y o J 1
_ § : Ui _Z E _— 21
{7 }ST N ety aﬂ?z 8I‘j 2 ('“){k 3& (5 )
i,jEE(n(E)) keF(n(%))

where the numbers €/ are defined in the same way as in the non-graded case, and depend
on the way the edges e; and e; meet with each other. Moreover, the odd differentials
act as follows on the coordinates

9g T 91, Oy
85: = aé] = dij, 8{: = 85; =0, (5.22)
and anticommute with the odd coordinates
Fl |
87@(51 G &) = (DTG ki &), (5.23)
P |
a?i(ﬁl &) = (CDMT G Gl &) (5.24)

For comparing with the ordinary case we can write the super Poisson structure [55] with
non-trivial Poisson brackets among the coordinate functions as

1
{267 zf}ST = Nef {51}7 gw}ST = §5vw y (525)

where the numbers n.y are defined in the same way as in ordinary Teichmiiller theory.
This defines the Poisson-structure we aim to quantise.

5.4 Super Ptolemy groupoid

The coordinates that we use to parametrise the super Teichmiiller space depend on the
choice of the dotted triangulation. It is therefore necessary to determine how those
coordinates transform under the moves that change the dotted triangulations of the
Riemann surfaces. In addition to the supersymmetric analogue of the flip operation
changing the diagonal in a quadrilateral we now need to consider an additional move
describing a change of Kasteleyn orientation which leaves the spin structure unchanged.
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The groupoid generated by the changes of dotted triangulations will be called super
Ptolemy groupoid. We will now offer a description in terms of generators and relations.

5.4.1 Generators

Push-out As we discussed previously, the reversal of Kasteleyn orientations of all the
edges that meet in the same vertex encodes equivalent spin structure to the beginning
one. Therefore, we can consider a pair of two hexagons that meet along one long edge,
and study a move that applies this orientation reversal on one of the vertices common
to both hexagons, as in figure 5.7. We will call this move a (left) push-out. As for the
action on the odd invariants, a push-out leaves the one of the left hexagon unchanged,
but it changes the sign for the one on the right, and it does not change any of the even

invariants.

FIGURE 5.7: A (left) push-out.

To make this figure more clear we should explain that the notation ¢; on each edge means
the correspondence edge ¢ can have any orientation: clockwise or counterclockwise One
should consider that ¢; has to be chosen in such way that the Kasteleyn orientation is
satisfied. The reason for choosing this notation is that we show how the orientations

change after the action of the generators.

In terms of dotted triangles, one can pictorially represent this move as in figure 5.8. As
we see, we can interpret the push-out as a change of Kasteleyn orientation that moves
dots (or equivalently, short edges oriented against the orientation of the surface) from one
dotted triangle to another. Therefore, we can obtain the transformations of coordinates
assigned to dotted triangles by composing the transformations of coordinates of triangles
without any dots with an appropriate sequence of push-outs.

Moreover, we can define an inverse of a (left) push-out, which we will call a right push-
out. We represent it in figure 5.9. On the odd invariants, it acts in the same way as
the left push-out: the invariant of the left hexagon stays the same, while the invariant
of the right changes sign.

If one would consider dotted triangles instead of hexagons, one can represent the right
push-out as in figure 5.10.
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o
( Ez [312

FIGURE 5.8: The pictorial representation of a (left) push-out on triangles with one dot.

—

g

FIGURE 5.9: A right push-out.

—

/ g, BIzl > E, A_Ez

g

FIGURE 5.10: The pictorial representation of a right push-out on triangles with one
dot.

Superflips We furthermore need to consider the flip operation describing the change
of diagonal in a quadrilateral. The effect of this operation will in general depend on the
assignment of Kasteleyn orientations. An example is depicted in Figure 5.11.

FIGURE 5.11: The flip wg).
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The change of even Fock coordinates may be represented as [55]

/
. —=z
e“e = e ¢

el = e%l(l +e* — {1526%)6%1,

e% =3 (1+e % — & e 3) les, (5.26)
e =eF(1+e* —6&eT)e?,

Fh=ed (e —&Ge 1) 7,

As we mentioned superflip is a map which relates two different ways of triangulating
a quadrilateral. In the case of super Teichmiiller theory, the triangles here should be
interpreted as dotted triangles, that is hexagons with Kasteleyn orientations. To reduce
the number of cases to be considered in the statement of the transformation of the odd
coordinates one may first note that the push-out operation allows one to reduce the
most general case to the case of undotted triangles. There are different ways of assign-
ing Kasteleyn orientations to the long edges. It is easy to check that there are 8 possible
ways of assigning Kasteleyn orientations in this case. In figure 5.12 we present the full
list of all of possible superflips.

(1) 5)
Wy 03[12

—_— L d
(2) (6)

Wy, UJ]£
- —
(3) (7)
(O Wy
_— >
4) (8)

(0(12 Wy
T e B

FIGURE 5.12: Superflips for quadrilaterals without dots; cases 1-8.
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As a remark when we consider Kashaev type coordinates (in 5.5) it is necessary to use
the decorated version of dotted triangulations. In the case of the quadrilaterals relevant
for the flip map, decorated vertices should be chosen always as in figure 5.18.

Let us begin by considering the operation w(!) depicted in Figure 5.11. One then finds
the following change of coordinates [55]

ot 21

1 operator As a useful book-keeping device for generating the expressions in the other
cases let us introduce an operation u, that reverses the orientations of the two long
edges entering a common vertex of a dotted triangulation. This operation is graphically
represented in Figure 5.13. It is easy to see that this will induce a sign change in the
definition of the odd invariant.

FIGURE 5.13: The operation p.

The coordinate transformations induced by flips with other assignments of Kasteleyn
orientations can then be obtained from the case of w®) with the help of the operations
ty. An example is represented by Figure 5.14.

F1GURE 5.14: Different flips are related by application of transformations pu.
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5.4.2 Relations

The changes of oriented hexagonalizations define a groupoid generalising the Ptolemy
groupoid. In the following we are going to discuss the relations characterising this

groupoid which will be called super Ptolemy groupoid.

It is clear that all relations of the super Ptolemy groupoid reduce to relations of the
ordinary Ptolemy groupoid upon forgetting the decorations furnished by the Kasteleyn
orientations. This fact naturally allows us to distinguish a few different types of relations.

To begin with, let us consider the relations reducing to the pentagon relation of the
Ptolemy groupoid. The super Ptolemy groupoid will have various relations differing by
the choices of Kasteleyn orientations. Considering first the case where all short edges
are oriented with the orientation of the surface we have 16 possible pentagon relations:

(1), (1) (1, (1), (1) (1), .(6) (6) ,(6), (4)

Wig Wog = Waz Wiz Wiy,
wipwsy = whywiyw)y,
ool = ol
oAl = ulduld
oeld = ulduld
oAold = Bulbld
ofld) = DD

(1) .(3) (6) ,(3), (7)

Wig Wo3z = Wog W3 Wiy,

Wig Wag = Woz Wiz Wiy,
Wiyl = widwiywly,
ol = oD,
oAol) = ottty
oold = oty
oold = Buldul]
o) = D

4) (4 4) 4
W%z)wés,) = W§3)w§3)°"§2)'

(5.28)

The remaining cases can always be reduced to the cases listed above using the push-out
operation. In Figure 5.15 we present graphically one of the 16 possibilities listed above.

(6)
W3

FIGURE 5.15: An example of one of the possible superpentagon relations.

Other relations reduce to trivial relations upon forgetting the orientation data. Some of
these relations describe how the push-out operations relate flips with different orientation
data. Such relations are

(w§?)71543532521 = ﬁ42ﬁ21(w§?)’1, (5.29)
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where i, j can be the following pairs (5, 8), (8,5),(6,7), (7,6), (1,2),(2,1),(3,4), (4,3) and
W§QB43532521 = 5435310J§?a heorem (5.30)

where 4, j can be the following pairs (5,4),(4,5),(1,6),(6,1),(2,7),(7,2),(8,3),(3,8).
An example for this type of relation is illustrated in Figure 5.16.

2
U)(283)
=
I 4
le V
B3
102 V
3
4 1 2
Bs, \Il o3
4
3
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4 Vv
Bas |
(3) 1 2
W53
3 - 3
@
4 4

FIGURE 5.16: First type of relation between a flip and a push-out.

There are further relations reducing to the commutativity of the flip operations applied
to two quadrilaterals which do not share a triangle, including

w34 523(0012 )" 1523 = ﬁ24(w12 )" 1524 W34)v

(5.31)
(W:(’,Z) 1/313% ﬂ23 *513“) 523 (w34) Y (5.32)
(5.33)
(5.34)

(w34) 1523(“12 ) 1523 = /323(0012 )~ 1523 (W34) )
W34 513“12 52_3 = 514%2 Ba4 W34)v
where the 7,7 = 1,...,8 depends on the Kasteleyn orientation of the graph from which

the relation has been derived. Examples of these relations are represented in Figure
5.17.
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FIGURE 5.17: Second type of relation between a flip and a push-out.

It seems plausible that the completeness of the relations discussed above can be reduced
to the corresponding result for the ordinary Ptolemy groupoid. This result, as pointed
out in [33], follows from the cell decomposition of the Teichmiiller space which can be
defined with the help of Penner’s coordinates [54].

5.5 Kashaev type coordinates

It will furthermore be useful to introduce analogues of the Kashaev coordinates in the
case of super Teichmiiller theory. Such coordinates will be associated to oriented hexag-
onalizations carrying an additional piece of decoration obtained by marking a distin-
guished short edge in each hexagon. Oriented hexagonalizations equipped with such a
decoration will be called decorated hexagonalizations in the following.

In addition to a pair of even variables (gy,p,) assigned to each ideal triangle A,, we
now need to introduce an odd variable £,. The collection of these variables parameter-
izing points in R*(29-24m)12(29-24+n) " which we will name super Kashaev space, will be
called super Kashaev coordinates. The non-trivial Poisson brackets defining the Poisson
structure on this space are

1
{pU7 qw}ST = 5U,IU7 {€v7 gw}ST = iév,wy (535)
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with all other Poisson brackets among the variables (g, py, &) being trivial.

The super Teichmiiller spaces can be characterized within R39—8+4nldg—4+2n 1y yging
the Hamiltonian reduction with respect to a set of constraints that is very similar to
the one used in ordinary Teichmiiller theory described in [34]. One may, in particular,
recover the even Fock coordinates in a way that is very similar to (2.12), while the odd
variables simply coincide.

The transformations relating different decorated hexagonalizations will induce changes
of super Kashaev coordinates. Such transformations will generate a decorated version
of the super Ptolemy groupoid. The set of generators becomes as in the case of ordinary
Teichmiiller theory enriched by the operation (vw) exchanging the labels associated to
two adjacent triangles, and the rotations p, of the distinguished short edge. The rotation
py will be represented as

,0;1 : (prvagv) — (pv — Qu, _wav)- (5.36)

The operation (vw) maps (qy, Pv, &) 0 (qu, Pw,&w) and vice-versa. The flip wﬁ,B, pre-
sented in the figure 5.18, is realized by

11 1
(Uv> VYU) — (Uvaa Uva + Vvv - UU2 VU? ‘/1)2511511))7
1 1 1
@) ™1+ § (Ui, Vi) = (U Vo UV + Vi = UZ ViZVi? €60) (5.37)

1 1 1
Vw<Uva + Vv - UUQ Vw2 V1)2 gvgw)il)a

for the even variables and

1 1 1
é‘v N V'U?gv"l‘Uv? ng f’w
1 1 1 ?
— _772yv2vy2
(wid) ™ W”U”%Vw ohde (5.38)
Vi* &w=Uy' V5 &
é’ — v_Sw v Vw Sv ,

w 1 1 1
\/VU+UU waU'L? V’UJ2 V’U2 E'ufw

for the odd ones, where we denote U, = e¢? and V,, = eP». The action of the rest of
flips 4 can be obtained by the application of appropriate operations u,, as explained
previously.

FIGURE 5.18: A flip w") on decorated triangulation.

4The flips transforming Kashaev coordinates relate decorated versions of quadrilaterals. Therefore,
to represent flips of Kashaev coordinates one should add decoration to all the figures in 5.12 in the same
places as in the figure 5.18.



Chapter 6

Quantization of super
Teichmuller theory

In this section we will consider the quantization of the Teichmiiller spaces of super
Riemann surfaces. The coordinate functions defined in chapter 5 will become linear
operators acting on a Hilbert space. The transformations which relate different hexag-
onalizations, like flips and push-outs, will be represented by linear operators T and B,
respectively. We are going to discuss the relations satisfied by these operators, defining
a projective representation of the super Ptolemy groupoid. We take a collection of equa-
tions (6.26), (6.32)-(6.37), (6.38)-(6.40) as the defining relations for the quantum super
Ptolemy grupoid.

6.1 Quantization of super Kashaev space

The Hilbert space associated to a decorated hexagonalization of a super Riemann surface
will be defined as follows. To each hexagon A, (or equivalently each dotted triangle) we
associate a Hilbert space H, ~ L?(R) ® C''. Then, the Hilbert space associated to the
entire super Riemann surface is the tensor product of the spaces for each hexagon:

H =) Ho. (6.1)

vel

We will frequently use the corresponding leg-numbering notation: If O is an operator on
L2(R)®(Cm, we may define O, to be the operator O, =1®---®1® Oth®1®---®1.
o

The super Kashaev coordinates get quantized to linear operators on the Hilbert spaces
H,. The coordinates p, and q, are replaced by operators satisfying canonical commu-

tation relations

1
[pUa qw] = Eévuh [qU7 qw] =0, [pw pw] =0, (6'2)

69
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and are represented on L?(R) as multiplication and differentiation operators. In the
classical limit b — 0, the operators 2mwbp and 27wbq give their classical counterparts p and
q appropriately. The odd coordinate & becomes an operator acting on H of the form

&= g7 —q 2k, (6.3)

where x is a (1]1) x (1]1) matrix acting on C!!!

K:(? é) (6.4)

and where ¢ = ¢ and the quantization constant A is related to b as h = 47wb?.

Note that ¢ satisfies £2 = q% — q_% = imb?+O(b*), thereby reproducing both the relation
€2 = 0 and the Poisson bracket {¢,¢} = % in the classical limit b — 0.

Moreover, the formula (2.12), with the super coordinates replacing the ordinary ones,
has an obvious counterpart in the quantum theory, defining self-adjoint even operators

z. satisfying
1
[Ze,Ze/] = E {zeaze’}ST’ (65)

The operators 27wbz, give in the classical limit the even shear coordinates z..

The redundancy of the parametrization in terms of Kashaev type coordinates can be
described using a quantum version of the Hamiltonian reduction characterising the super
Teichmiiller spaces within R39-8+4n149—4+2n  This procedure is very similar to the case
of the usual Teichmiiller theory described in [34, 36], as explained in chapter 2.

6.2 Generators of the super Ptolemy groupoid

We will now construct a quantum realization of the coordinate transformations induced
by changing the decorated hexagonalization 7 of a super Riemann surface X, ,,. The co-
ordinate transformations will be represented by operators U, : H,, — H,, representing
the change of the hexagonalization 7 to 7’ in the following way. Let {w';: € Z,} be a
complete set of coordinates defined in terms of a hexagonalization n. If 7' is another
hexagonalization one may in our case express the coordinates {w’;) € Z,/} associated
to ' as functions w'’? = Wg,n({wl; v € I, }) of the coordinates w'. If w* and w"’ are the
operators associated to w, and w’,, respectively, we are first going to define quantized
versions of the changes of coordinate functions Wf] 1y({we; 2 € Zp}) which reduce to the

functions W]"," in the classical limit. Unitary operators Un,T7 representing these changes
of coordinates on the quantum level are then required to satisfy

U;,}7 w U,y = me({wl; 1€ 1y}). (6.6)

This requirement is expected to characterize the operators Un’n uniquely up to normal-
ization. We are now going to construct the operators Un’n for all pairs  and 1’ related
by generators of the super Ptolemy groupoid.
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6.2.1 ”Flip” operator T

Of particular interest are the cases where n and 7’ are related by the flip operation
changing the diagonal in a triangulation. We will begin by constructing operators T( D
Ho@Hyw = HoyR@Huw, t =1,...,8 representing the super flips of hexagonalizations listed
in chapter 5, with decorated vertices placed in appropriate places. In order to cover the
remaining cases one may use the push-out operation, as will be discussed later. A useful
starting point will be the operator TEQ) corresponding to the operation wgz) depicted in
figure 5.18. Following the discussion around (6.6) above, we will require the following

for the even coordinates

T%) 27rbz1 T(l — bz (1 + e2mbze 7rb25§ & ) 7sz1
T%) 27rb22-|-(1 _ 7rb22 (1 + 6—27rbze _ e—wbze 5162)—167rb22’
T%) 27rbz3-|-(1) 7rb23 (1 + 627rbze _ e7rbze ‘£-1é~2)e7rb237 (673)

1 1 — — _
ng) e27rbz4-]-§2) _ eﬂ'b24<1 +e 2mbze e ﬂbzeélfQ) 1€7rb24’

T%) —legwbz;-l—%) — o 2mbze

)

and for the odd ones we require

-1 ,
T§12) 67rbzlé-1/-|-§12) — G%szl (5 + ewbzeg )627rb21

_ egﬂbzl( ﬂbzeé-l + 52)e§7rb21'

L (6.7b)
T(112) eﬂbzl §2/Tg )

The labelling of variables is the one introduced in Figure 5.18, and the definition of
the variables z. in terms of the Kashaev type variables uses the same conventions as
introduced in Section 2.1.7 above.

(1)

An operator T3y satisfying (6.7) can be constructed as follows

1 . —T
TE? =3 (a1 +p2 —a2) —if-(q1 + p2 — q2) k1 K2 | P92, (6.8)

(1 .

The operator T, is unitary and satisfies (6.7) if fi(z) := er(z) + enxs(z) with exs(z)
‘ =

and er(x) being special functions satisfying |exs(z) 1 nd ler(z)] = 1 for x € R,

together with the functional relations

-bil ‘bil
o) o).

'bzl:l ~b:t1
(o) i 1)

Functions exg(x) and eg(z) satisfying these properties can be constructed as

en () = e <x +z’(b2b_1)/2> o <33 —i(b ; b—l)/2> , (6.9)

exs(z) = ep <x J;cb> ep (w _2Cb> : (6.10)
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where ey, (x) is Faddeev’s quantum dilogarithm function defined by the following integral

dw ef2i:pw
_ dw ) 6.11
ep(z) = exp [ /R 4io w 4sinh(wb) sinh(w/b) (o1

representation

In the following some details on the verification of the quantized coordinate transforma-
tions (6.7) are given here.

First, we present the transformations of the quantized shear coordinates under the flip
that is given by the map T(). For the quadrilaterals on the figure 5.18, the even shear
coordinates assigned to the edges are expressed as the operators on the (L%(R) @ C!)®2

Z, = 2@ =potpu)], 7!, = ?™(=GutauPu)], (6.12)
7, ng, 7l e, (6.1

Zy = AP, 7 = 2(av P, (6.14)
Z5 = e 20w, Zh = e 2mbau, (6.15)

Zy = e Zmhav], Z), = e*mPu,, (6.16)

and the odd coordinates

& = \/q% —q kD, &= \/q% — ¢ 2r® ]y, (6.17)
£y =/ r—q i ®k &= \/q% —q 2L ® k. (6.18)

Those operators satisfy the algebraic relations as follows

(Z.,Z1] = (1 —q 1HZ.Z4, (Z.,25) = (1 — ¢4 Z.Z5,
(Ze,Z5] = (1 — ¢ ") Z.Zs, [Ze,Z4) = (1 — ¢™)ZcZ4,
(21,Z4) = (1 — ¢ ") Z1Z4, [22,Z3] = (1 — ¢™)Z,Z3,
(21,2Z5] = [21,Z3] = [Z2,Z4] = [Z3,24] = 0, [Zo, &) =0,

{51752} = Oa {&,fz} = 2\/@1 ® 1.

Setting g = ¢/4 one can see that those commutation relations reproduce the classical

Poisson bracket given by equation (5.25).
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As an example, let us consider the transformation of the even variable Z) = €271

Tz -
- ieﬂbpv [(ens(u +ib) + eg (u+ib))To ® Iy — i(eg (u + ib) — exg(u + b))k @ K] x
X [(ens(u — ib) + er(u — ib))le @ Iy — i(er(u — ib) — ens(u — b))k ® K]eﬂ’bpv _

= %6’”’"” {leng(u + ib)ens(u — ib) + eg' (u + ib)er (u — ib)]ly @ Ip+

—ileg!(u + ib)er (u — ib) — exg(u + ib)ens(u — )|k ® K} e™PY =

— TP {[1 + 2@ tPu—aw)]L, @ I, + (qfé _ q%)ewb(qﬁpwqu)ﬂ 2 ﬂ} TPy —

Ll ST

1 1
Z? {(1 +Z)L @Iy + (g2 — qé)Zgli@n} Z

Ll SIS

1 1
=Z {(1 +Z)h®Ih - 235152} Zt,

where we denoted u = g, + pw — Py and used two times the shift relation of the quantum
dilogarithm
%)eﬂ'bfﬂ + eQrbm)eR(x + ’Lb),

—4q
— ¢ 2)e™ 4 2™ eng (2 + ib).

M\»—‘

We can obtain the transformation property of the odd variable &}

1 1
TR Z36T0 = Va2 —a TR e R @ ) TO) = 12 — g 2™

x [(eng(u + D) + eg (u+ib))ls @ In — i(eg ' (u + ib) — exg(u + ib))k @ K] x
X [(ens(u) + er(u))Ip @ Iy — i(er (u) — ens(u))k ® k] k ® Iy =

1
5\/ % q —3 ¢mbPu {[eié(u +ib)er(u) + eﬁl(u +ib)ens(u)]lz ® Do+
—ileg

Y(u+ ib)ens(u) — exg(u + ib)er(u)|k @ k} k@ Iy =
_ ’/q§ _ q—Eeﬂva {Hg ® HZ _ q%eﬁb(QU"FPw—Pv)KJ ® H} r® ]12 —
1 1 1 1
= Zp6 + 0 Zi6) = Z{ (6 + 287

In this case we used the shift property of the quantum dilogarithm as well. In the
analogous way, one can obtain the transformation properties of the rest of Fock variables.

The appearance of Z; in the transformation property of odd coordinates is just illusory,
and it is caused by our choice of using square roots of operators. Indeed, we can rewrite
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the square root as

[un

— (g2 - qfé)fleﬁ”bze&&z)eﬂ”bzl>_§ =

eﬁﬂbzl(l 4 62\/§7Tb26
1, o |
= 5 {lend(ze)ens(ze + i) + g (zeJen (= + b))+
1

qa—4q

] [ef_{l(ze)eR(Ze + Zb) — 6&%(2’6)61\]3(26 + Zb)]§1§2} e*\/iﬂ'bzl )

It is clear that even coordinate z; cancels out from the transformations if we use this
formula for the square root. However, the quantum transformations are written in terms
of quantum dilogarithms, and their behaviour in the classical limit is less clear in this

form.

Moreover, using the facts from the functional analysis the inverse of the square root of
this variable is given by

N|=

_1 1 1 -
Tz ) — (Zf {(H—Z Mo @1y — (g2 + ¢ 2)~ 1225152} >

Using this fact, we can obtain the transformation property of the odd variable &}

T)=ter q—q T2 2Tv(w)Tv(w) (e Vambpoe & 1, )T =
1 1 1 1t 1\ "3 o
Z\/T ZP U+ Z)h ol —(q2 +q72)  Zeakp 27 | eVPPx

x [(e é(u +ib) + eg Y+ b)) @ Iy — z(eR (u+1ib) — eNS(u + b)) ® &]x
x [(ens(u) + er(u))l2 @ I —i(er(u) — ens(u))§ @ ] E @ I =

1
1 1 1 1\ -3
= iﬁ <Zl2 {(1 + Ze)]IQ ®Q Iy — (q% + qé)1Ze2§1€2} Z12> e\/iﬂbpv %
x {lexd(u + ib)er(u) + e (u + ib)ens (u)]ly @ Lo+

—ileg ! (u+ib)ens(u) — exg(u+ib)er(u)€ ® £} €@ 1p =
= W(ZE {(1+Z )]12@]12— (q2 +q- 2) 1225152} lé) Eex/iﬁbpvx

% {]12 ® ]12 _ q%eﬂ'b\/i(‘h)"!‘pw_pv)g ® &'} é’@ ]12 —

[NIE

1 1
= (Zf {(1 + Z) ® T — (g% +q 2)" 1225152} zp > Z2(& +q2 28 52)
In this case we used the shift property of the quantum dilogarithm as well. In the
analogous way, one can obtain the transformation properties of the rest of Fock variables

in question.
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6.2.2 ”Change of orientations” operator M

As a useful tool for describing the definition of the remaining operators T%), 1=2,...,8,
we will introduce an operator M,, : ‘H, — H, representing the change of orientations
1y in an undotted triangle shown in the figure 5.13. The operator M, is associated by
our conventions concerning tensor products introduced above to the operator M on cli
which can be represented by the matrix

M — ( (1) _01 ) (6.19)

The operator M, squares to identity M? = id, and acts on the odd invariant as

v
One should note that the operation pu, relates Kasteleyn orientations describing inequiv-
alent spin structures, in general.

It is easy to see that the flips w%), 1 =2,...,8 can be represented as compositions of the
(1)

flip wlé with operations u,. We will define the corresponding operators Tg, 1=2,...,8

by taking the corresponding product of the operators M, with the operator T§12). To
give an example, let us note that the flip w® can be represented by the sequence of

operations shown in figure 6.1. This leads us to define the operator T%) as

T = MM, M. (6.21)

FIGURE 6.1: By using operators M we can find the map between the second superflip
and the first one.
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All other operators ng), i = 3,...,8 associated to the flips w®, i = 3,...,8 can be

defined in the same way.

T =1UMM, T = MM, TM,
T =MTEM T = MyTH MM, (6.22)
T =MTOM, T = M TEM M,

The operations considered up to now were associated to triangles that do not have
corners marked with dots. As noted above, one may always locally reduce to this case
by using the push-out operation. The push-out S will be represented by an operator
Buv : Hou ® Hy — Hy @ H, defined as follows

Buy = idy M. (6.23)

With the help of the operator By, one may now define all operators associated with the
flips relating dotted triangles.

(4)

6.2.3 ”Super permutation” operator H(12)

We furthermore need to define operators Hgg),

(uv) of labels assigned to two adjacent triangles when the Kastelyn orientation is the
one of the initial configurations of the flips wg

i =1,...,8 representing the exchange

depicted in Figure 5.12. By using the
operators M, one may reduce the definition to the case i = 1 in a way closely analogous
to the definition of the TSZQ), 1=2,...,8in terms of T%). In order to define the operator
Hﬁ%) let us represent H; ® Hy as L*(R?) @ CH' @ CH', and let

M) = (Py@lh®h)(id@Pr), where Pr=(aM(Lbol+ror), (6.24)

with respect to this factorization, where Py, acts on functions of two variables as Py, f (x1, x2) =
f(z2,2z1). One may note that Pt is not the standard permutation operator on cltgcii
satisfying Pg(11 @ n2)Py = m @y for arbitrary 0,12 € End(C!") (one can find this cal-
culation in appendix D).

However, the operator Pt squares to the identity and satisfies P¢(§ @ I9)Py = I ® &
and P¢(Io ® §)P; = £ ® [5. This means that the operator Ps correctly represents the
permutation on the the sub-algebra of Emd((C”1 ® (C1|1) generated by I ® & and & ® Is.
This is the algebra of operators on C!I' @ C!! relevant for the quantization of the
super Teichmiiller theory. The reason for adopting a non-standard representation of the
permutation on this sub-algebra will become clear when we discuss the relations of the
super Ptolemy groupoid.
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6.2.4 ”Rotating the distinguished vertex” operator A

We finally need to define an operator A, representing the move rotating the distinguished
vertex of a dotted triangle as shown in figure 2.12. The operator A, : H, — H, will be

defined as

A, = ei™/3¢=i3ma3 /2 —im(Putan)/2], (6.25)
Let us finally note that the flip operators ngz) have an interesting interpretation within
the representation theory of the Heisenberg double of the quantum super plane, which
will be elaborated in chapter 7. The flip operator T%) is found to coincide with the
canonical element of the Heisenberg double of the quantum super plane (which is a
Borel half of U,(0sp(1]2))), evaluated in certain infinite-dimensional representations on

L*(R) @ C'I,

6.3 Quantum super Ptolemy groupoid

We are now going to describe essential steps in the verification that the operators defined
previously generate a representation of the super Ptolemy groupoid.

6.3.1 Superpentagon equation

Of particular interest are the generalizations of the pentagon relation. Using the push-

out operation one can always reduce to relations involving only undotted triangles. As

noted previously, one needs to check the following set of relations,
T S THTHTY,  TOTE =TTy
THTE =TRTETE. TR = TETETY.
AT TR, TOTY =TTy
T S THTETY,  THTY =TTy
THTY =T THTE,  THTY = T Ty,
THTY =TETHTY,  TOTE = TTE T,
THTE =TRTHTY,  THTY =TE T,
TRTE =T THTE,  TRTE =TT Ty

(6.26)

One may first observe that all of these relations follow from the pentagon equation that
involves only T(). As an example let us consider the pentagon equation represented by
Figure 6.2, corresponding to the equation

6)(2 2) (1) (6
ng)ng) = T§3)T§3)T§2)~
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-

(4)
le T(z?

FIGURE 6.2: One of the pentagon equations.

Using the relations between T and other flips, we can rewrite it
(Mo T3 MiMa) (MaMs TS My) = (MM TS M) T (Mo T M M),
which is just a pentagon for T, given the fact that MlMQT(i)MlMQ — T for all 4.
12 12

In order to verify the pentagon equation for T one may note that by straightforward
calculations one may reduce the validity of this relations to the following identities

f+(P) f+(x) = f+ () f+(x+p) f+(p) —if- (X)f (x+p)f-(p), (6.27a)
fr(P)f=(x) = —ifr () f-(x+p) f=(P) + [-(X) [+ (x + P) f+(P), (6.27b)
f-(P)f+(x) =f ( )f+(x+p)f-(p) — if-(x)f~(x+ p)f+(P), (6.27¢)
f-(P)f=(x) = if+(x) f-(x+p) f+(p) — [-(X) [+ (x + P) f-(P); (6.27d)

with x and p being self-adjoint operators satisfying the relations

1

[p,X] = E

The relations (6.27) follow from integral identities satisfied by the special functions
exs(z) and eg(z). Here we provide a proof of them and will show that theses equations
are equivalent to the analogs (B.19) of the Ramanujan summation formula which have
been derived in [80].
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These formulae can be rewritten in terms of exg(z) and er(x) as follows,

/dxe‘””(““b) (eNs(a: + cb) rR(z + cp > _ eNS v+u+cp) : (6.28a)
eNs(JZ—I—U) eR (x +v) ens(v)ens(u)
/dwe—m'x(u-i-a)) <eNS(x + cp) _ R(Z + ) = eR vrut Cb), (6.28Db)
ens(z +v) er(z +v) ens(v)er(u)

/dxe””(“*cb) (eNs(a: + cb) er(x + Cb)> _ €R v —|— U+ Cb) ’ (6.28¢)
R(Z + ) s (z +v) er(v)ens(u)

/dxe””(“*%) <eNS(x +cp) B er(x + Cb)> o eNS(v +u+cp) (6.28d)
er(z 4+ v) ens(z +v) er(v)er(u)

where xg = e=im(1=c})/6, Taking the limit v — —oo we can obtain the Fourier transforms

Folw) = [ dne o en(a) + exs(o) = et 2O

ens(u — cp)
=2y e ™ 2exs(cp — u),

N . i 2x0
f-(u) = /dxe T (e (z) —eng(x)) = —e TP ————— =
(w) (en(2) — exs () e

= QiXale_i”“2/2eR(cb —u).

Then, we can consider the matrix elements of the operators f,.(X)fs(P + X) between
(generalized) eigenstates (p| and [p/) of the operator P with eigenvalues p and p’, respec-
tively:

Ers = (pfr(X) fs(P + X)), (6.29)

for 7, s = 4+, — and [P,X] = -L. We have

WU, ) £o(P + X)) = / ap" (ol £, 1) (0| o (P + Y1) =
= / dp"e™ @2 (p — (0 — 1),

where we used the identity between the matrix element of an arbitrary function g and
its Fourier transform g
{plgX)Ip') = g(p - p'),

and the fact that
im p2

g(X+P) = TP g(X)e

Let us consider in detail the case r = +,s = +. Then we can write, using (6.28),

Epy = /dp” iz 2y ens(p —p" + c) e~ 5 0" =P)? gmimen(p—p") —
ens(p — " — cv)

— e—iTer(p—p') /dxe—iﬂaz(p’-',-cb) ENS (33 + Cb) _
exs(z +p—p' —cp)
—imey (p—p' 1 ens(p) | er(p)

— e—imen(0—1) ( N '
Xo exs(p —p' —cp) \lens (p’) eR(p’)
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Therefore
f+(X) f+ (X + P) = ens(P) f+ (X)exs (P) + er(P)f+ (X)eg ' (P).
If one repeats the calculations for other possibilities, the case r = —, s = — gives
F-(R)f-(X+ P) = —i(ens(P) f+(X)exd (P) — er(P).f+ (X)eg ' (P)),
while r = +,5 = —
F+(R)f-(X+ P) = —i(er(P) - (X)exs (P) — ens(P).f- (X)eg (P)),
and r = —, 5 = +

F-(X) f+(X+P) = er(P)f- (X)exs(P) + exs(P).f- (X)eg (P).

Combining those relations one can easily obtain the system

f+(P)f+(X) = f+(X) f+(X+ P) f1-(P) — i f- (X) f- (X + P) f-(P), (6.30a)
f+(P)f-(X) = =i f1- (X) f- (X + P) f- (P) f-(X)f+(X+P) f4(P), (6.30b)
f-(P)f+(X) = f+(X) f+(X+ P) f-(P) — i f-(X) f- (X + P) f1.(P), (6.30c)
f—(P)f—(X):if+(x)f—(X+P)f+(P)—f—( )+ (X +P)f-(P), (6.30d)

Combining these relations one can easily obtain the system (6.27) which was observed to
(1)

imply the pentagon equation satisfied by T}, . One can also see another way for proving
these equations following the approach in [50] in appendix C.

6.3.2 Relations between push-outs and superflips operators

The quantum Ptolemy groupoid is defined by relations besides the superpentagon. There
is an equation satisfied by a push-out

Bn1B12...Bnotn = MMy M,, (6.31)

for all n > 2, which comes from figure 6.3, where we consider a collection of hexagons
meeting in the same vertex (a collection of vertices in S 11 that project to the same
point in IP’1|1). Then, we can move the dot around this vertex until we arrive at the
same hexagon, and then relate this hexagonalization to the initial one by reversing the
orientation on the edges. This relation is an easy consequence of the definitions.

Further relations involve both flips and push-outs. It suffices to consider relations in-
volving only triangles with one dot as other cases can be reduced to this one using
push-outs. We found that the following relations between operators T(:,z and Tég) for
different values of 7 and j are satisfied:

(Tg)_1343532521 = 842521(T§J3))_1, (6.32)
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FIGURE 6.3: Relation for push-out.

where the pairs (7,7) = (5,8),(8,5),(6,7),(7,6),(1,2),(2,1),(3,4), (4, 3),
Tg:%) B43B32Boy = B43831T%)7 (6.33)

where the pairs (i, j) = (5,4), (4,5), (1,6),(6,1),(7,2),(2,7),(3,8), (8,3).
Another set of relations involves the operators T32 and T%) associated to two different
pairs of triangles:

T5iBas(T15) ™" (Bas) ™ = Baa(T1) ™ (Boa) ' THY, (6.34)
(TS 'BusTH (Bag) ™ = By T (Byy) ' (TE)) ™, (6.35)
(T5) " Bas(T15) ™" (Bas) ™" = Bas(T15) ™" (Bos) (T4, (6.36)
Tg,zl)BlsT(j)(st)fl = BI4T§2)(BQ4)7 T&)’ (6.37)
where the i, j,k,[,m =1,...,8 depends on the Kasteleyn orientation of the graph from
which the relation has been derived. Examples of these relations are represented dia-

grammatically in figures 5.16 and 5.17, with decorated vertices assigned appropriately.
All the relations (6.34) can be reduced to the obvious identity TZ(,QT%) = T(IZQ)TZ(Q.

6.3.3 Relations between superflips and A operator

We finally need to discuss the relations of the super Ptolemy groupoid involving the
operator A. We find that the following relations are satisfied

A3 =id;, (6.38)
AsTOA; = A TA,, (6.39)
TSHAITE =G AATI, (6.40)
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where i = 1,...,8, the pairs (j,k) = (4,1),(7,2),(2,3), (5,4), (8,5), (3,6), (6,7), (1,8),

and (s = e e mH+)/6 Tt is the operator HE12) defined in (6.24) which appears in
(1)

(6.40) for i = 1, explaining why we adopted this definition for H(12)‘

Here I provide a computation of (6.40) for (j,k) = (4,1), which involves the operator
M permuting our observables. Explicitly, we consider the relation

Gl = AT TATI TSV AT (6.41)

The relation between two superflips is as follows
T = MMy T M, (6.42)

Let us denote a = q1 + p2 —q2 and 8 = g2 + p1 — q1. Using that, the flips are expressed
as

T§12) = %[(QR(Q) + ens(@))lp ® Iy —i(er(a) — eng(@))k ® K]eﬂriqu’
Téll) = %[(QR(ﬁ) + ens(B)2 @ Iz +i(er(B) — ens(B))k @ K]e™ P21,
In addition, lets recall that A acts on p and q as
A7'ql A= (p—q)ls, A 'plA = —qls.

Using those formulas, we can evaluate the right hand side of (6.41)

RHS = EAEIAIIM2M1[(€R(Q) + ens(@))lz ® Ix + i(er () — ens(a))r ® K] x
x Mie ™ P12 A [(er (B) + ens(B))2 ® Iy — i(er(B) — ens(B))k ® Kle” ™P192 =
= 3A2_1M2[(6R(Q2 —p1) +ens(az — p1))la ® Iy — i(er(q2 — p1) — exs(q2 — p1))k ® K] x
x [(er(p1 — a2) + ens(p1 — 92))I2 ® I> —i(er(p1 — g2) — ens(p1 — d2))x ® ]
« e~ TP2(P1—a1) o —TiP192 _
= %A51M2[(€NS(Q2 —p1)ens(—qz2 + p1) + er(gz2 — p1)er(—az + p1))lr ® Do+

—i(—ens(q2 — p1)ens(—a2 4 p1) + er(d2 — p1)er(—az + p1))r ® K] X
X 6_7rip2(p1_q1)e_ﬂ-ip1q2 frd

_ leiwcﬁ/Qeffr(1+2cﬁ)/3A2—1 M2[(eiﬂ(*Q2+Pl)2/2 + Z‘@i“(*%*pl)z/z)b ® Ix+

— (e (9 HP)?/2 | ein(a2tp1)?/2) 0 ) ol TiP2(P1—a1) g TiPLG>

_ %e”cﬁ/Ze_”(IHC%)/?’MQ[]I2 ® Iy + ik @ K] ¥

y A2—1€z‘7r(—q2+p1)2/26—7rip2(p1—q1)e—ﬂiqu _

e*irr/3e7l7r/2pb

= e T e mIHD/OMy [T, © Iy + £ @ K]P, = (PiPy, = (11 = LHS,

which gives us the left hand side of the formula.



Chapter 7

Quantum supergroups,
Heisenberg double and Drinfeld
double

In chapters 3 and 4 we have seen how to construct the Heisenberg double for non-graded
case with finite and infinite basis. In this chapter we aim to generalize that for the
graded case. We prove that the canonical element of the Heisenberg double of the Borel
half of U, (0sp(1]2)) evaluated on the self-dual representations can be identified with the
flip operators of the quantized super Teichmiiller theory of super Riemann surfaces. The
details for calculating the flip operators of the quantized super Teichmiiller theory of
super Riemann surfaces were explained in the previous chapter. Finding the basis of
Heisenberg double of U,(osp(1|2)) is part of an ongoing project which we will partially
explain.

7.1 Quantum supergroups

Quantum supergroups are the generalizations of quantum groups [81-83]. They have a
natural connection with supersymmetric integrable lattice models and super conformal
field theories. We give some basic definitions related to the quantum supergroup in this

section.

Let us choose a field K. A Z, graded vector space A over K is the direct sum of two
vector spaces,

A=Ay A (7.1)

To each element a € A; C A, i = 0 or 1, we assign a grading |a|, we call a even if
|a| = 0 and odd if |a| = 1. We call Ap and A; even and odd subspaces of A, respectively.
Suppose A = Ag @ A; is superalgebra or Zs graded algebra. We call A ® B tensor

83
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product of superalgebras A and B with the multiplication defined as,
(a1 ® bl)(ag ® bg) = (—1)|b1”a2|a1a2 QR biby, a; € A, b; € B. (72)

Definition 12. The unital associative Zy graded algebra is a triple (A, m,n) where A =
Ap @ Aq is a vector space. m is multiplication map and 7 is unital map and they satisfy

m(m ® id) = m(id ® m),
m(n ®id) = id = m(id ® n).

if a € A;,b € Aj then m(a,b) € A;1j, where i,j € Zy. They are similar axioms as the
axioms in the non-graded case (equations (3.1), (3.2)).

Definition 13. The counital coassociative Zg graded coalgebra is a triple (A, A, €) where
A = Ay ® Ay is a vector space. A is comultiplication map and € is counital map and

they satisfy the same axioms

(A®id)A =m(id® A),
(e®id)A = id = (id ® €)A.

and |a| = |A(a)|. They are similar axioms as the axioms in the non-graded case (equa-
tions (3.3), (3.4)).

Definition 14. Let A be a Zo graded algebra with multiplication m and unit 7, and at
the same time a Zs graded coalgebra with comultiplication A and counit €. A is called
Zo graded bialgebra when one of the following condition is satisfied; m and 7 are Zo
graded algebra homomorphism or A and € are Zy graded coalgebra homomorphism.

A Zs graded bialgebra become a Hopf algebra if includes homomorphism S : A — A

with following axiom
m(id ® S).A =m(S ®is).A = ne, (7.3)
with some properties such as,

AS =3(S®S5)A, Sn=mn, (7.4)
m(S®S)X = Sm, €S =,

where X: A® A = A® A, S(a®b)=(-1)llboa.

Definition 15. A Lie superalgebra is a superalgebra with commutator bracket [,] which

follows axioms,
[a,b] = —(—=1D)!Plpq,  (anticommutativity) (7.6)

[a, [b,¢]] = [[a,b],d + (—=1)1W[b, [a,c]], (Jacobbi identity) (7.7)

A Lie superalgebra is called commutative if [a,b] = 0 (more details about Lie superal-
gebra can be found in [57, 84-86]).
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Let g be a Lie superalgebra, the Zgo graded Hopf algebra U(g) admits one-parameter
deformation namely the quantum supergroups [82, 87]. The U,(g) is a superalgebra
generated by x;, y;, K, K ! with appropriate relations [82, 87].

7.2 Graded Drinfeld double

As we explained in chapter 3, the quantum double construction takes a Hopf algbera
A with a bijective antipode and provides the quasi-triangular Hopf algbera D(A) which
includes A and its dual A*, as two Hopf subalgebras. This new Hopf algbera can be also
built from non-commutative and non-cocommutative Hopf algebras. It also provides the
universal R-matrices which are the solution of Yang-Baxter equation. Here we explain
the generalized Drinfeld’s quantum double construction for the graded case.

Lets have a bialgebra A with multiplication m and comultiplication A and basis {E,},
EoEjs = m] 4B, (7.8)

A(E,) = Es ® E,. (7.9)

Additionally, we define a dual bialgebra A* which is isomorphic to A as a vector space
and with multiplication and co-multiplication given below. By using the bracket (,) :
A x A* — C we have

(m(a,b),c) = {(a®b,XA*(c)), (7.10)
(Aa),c®d) = (a,m*(c,d)), (7.11)
(a®b,c®d) = (—1)Plla, c) (b, d), (7.12)

where a,b € A, ¢,d € A* and L(a ® b) = (—1)1?Plp © a. Using the dual basis {E*} on
A* defined such as

<EOM Eﬁ> = 557
one can write
EO‘E’B — (_1)|‘3/||5|/’L$16’E”Y7 (7.13)
A(E*) =mSs B @ BV, (7.14)

Then, one can define Drinfeld double D(A) =2 A @ A* as a vector space, with multipli-
cation and comultiplication given as above on the subspaces A, A*. One can extend the
bracket in the following way:

<a7c> - (_1)|a||c|<c7 CL),
(a,b) = (c,d) =0, a,be A, c,de A"
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In order to make D(A) into a bialgebra one has to define a product between E,’s and

EB’s, which can be done in the following way

_1\llel+lellel B —(— [,
(=1)hlle IplvﬂgvmeUEp_( 1)‘P“meungpEg.

Theorem 2. Let A be a proper Zo graded Hopf algebra then R = E, ® E* defines a

universal R matrix for the double D(A), which is said to satisfy

YA(a)R = RA(a),

(A ®id)R = Ri3Ra3,
(id ® A)R = Ri3R12,
(TA ®id)R = RozRy3,
(id ® EA)R = Ry12R13,

The equation (7.15) can be proven as follows

RA(E;) = (Bo @ E*) " Eg ® By = (1)l B, By © BB, =

=E5® ((—1)‘B”a|ufvmigEQE7) =Es® ((_1)\ﬂl\v\+lallvluzﬁmgaE7Ea) —
— (_1)|5||7|+|QH'Y|M;YBEﬁEa ® E-yEa — (_1)|5||7|H;75(EB ® E’y)(Ea ® Ea) —

= 2(u]"(E, ® Eg))R = SA(E)R,

and analogously for @ = E?. The rest can be easily proven as,

(A®id)R=(A®id)(Ey® E*) = i By @ B, @ B* =
—F3®E,® pES = (_1)|5||7|EB R E,® EBEY —
= (B321® E®)(1® B, ® E") = Ri3Ra3,

(id® A)R = (id® A)(Ey ® E*) = EyEs @ E° @ 7 =
=(E,®1® E")(Es ® B’ ®1) = Ri3R12,

(ZA®id)R = (BA ®id)(Ey ® E*) = (2 ®id) (' Es ® E, @ E*) =
—E,QE3® (_1)|BHW|M§WE0¢ —E,QE3® EPEY —
=(1® Es® E°)(E,®1® EY) = RygR3,

(id ® SA)R = (id ® SA)(Eq ® E%) = (-1)/INm§ B, © B° @ B =

= (-1)PINMEE, @ BP @ BY = (Es @ B° ©1)(E, ® 1® EY) = RyaRy3.

From above, it follows that the Yang-Baxter relation is satisfied

Ri2R13R23 = RozR13R12,
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with the following proof

Ri9R13R93 = QE*® 1)(125 ®1® f?ﬁ)(],éé 127 &® I;V) =

(Ea
= (~1)BInHelBl B, By @ BB, @ BPEY = (—1)/fl+hlielme B o B B @ 1P B =
—(1Q9E,QE")(E31® E?)(E, @ E*®1) =

= RogR13R12.

7.3 Graded Heisenberg double

In this section we explain the generalized Heisenberg double construction for the graded
case. Lets take a bialgebra A with multiplication m and comultiplication A and basis

{ea}’
eqls = mlﬁev, Alen) = pes @ e,

Additionally, we define a dual bialgebra A* which is isomorphic to A as a vector space
and with multiplication and comultiplication given using the bracket (,) : A x A* — C

(m(a,b),c) = (a @b, A%(c)),
(A(a),c® d) = (a,m"(c,d)),
(a®b,c®d) = (—1)"1Ua,c)(b,d),

where a,b € A, ¢,d € A*. Using the dual basis {e®*} on A* defined by
(eae”) = 83,
one can write
QB — (_1)|04|\ﬁ|,u’0;5677 Ae®) = (—1 )IBH'YI Fel.

Then, one can define Heisenberg double H(A) = A @ A* as a vector space, with multi-
plication and comultiplication given as above on the subspaces A, A*. One can extend
the bracket in the following way

(=Dl e, a),

—~

8
2

~
Il

where a,b € A, ¢,d € A*. In order to make H(A) into bialgebra one has to define a
product between e,’s and e”’s, which can be done in the following way

(=1)lelBle P = (-1 )\p\lvl Wl ePe,

As previously, there is no coproduct compatible with the above. Then canonical element
S = e, ® e” satisfies pentagon relation

512513523 = S23512,
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7.4 Relation of graded Drinfeld double and graded Heisen-
berg double

After this brief reminder on Heisenberg and Drinfeld double, we are prepared to define
an algebra map between tensor square of Heisenberg double and Drinfeld double. Let us
have a Heisenberg double H(.A) defined like previously. Moreover, let us define another
Heisenberg double H(A) generated by basis vectors {€4,é5} with

Caby =m] 46y, ge? = (—1)ledlfl2fer,

AGa) = ues @6, A@) = (~1)Plmg & @ &,

ke, = (_1)Iffllp\+|0llvlugvmgpégép7
which canonical element S = &, ® &% satisfies “reversed” pentagon equation:

512523 = 523§13512~

Using H(A) and H(A) one can map elements of Drinfeld double D(A), which as a vector
space D(A) € H(A) ® H(A) in the following way

E, = ,ugveg ® €, E® = m%e’g ®e,
which satisfy the relations
EoEp = mlﬁEw EYEB — (_1)\aIIﬁIM$ﬁEW’
which can be easily proven by using the compatibility condition
Aom=mem)(id®T ®id)(A® A),

which in terms of coordinates is

msns? = (=)W g mg, m.

One shows:

EoEp = MZPMET(‘QW ®ep)(es ®er) =
= (_1)\p\|0\ugﬁ'“g%ﬂea ® eper = (_1)\P\|0\ugpug7mﬁam;e“ ® ey =mggph’e, ® € =
=misEy,

EYEP = TnZ‘w?nfg(e7r ®eP)e ®eT) = (—1)|p“g‘mz‘ﬂmfge”e” ® ePe" =

— (_1)\p\IU\HWI|0|+IPIIT|mgﬂmfguzaﬂﬁfBM Qe = (—1)‘0‘”ﬁ|mzuyfjﬁe“ Qe =
— (_1)\aIIBIM3BE~/.
It can be shown that one can express the R matrix by canonical elements S, 5,5’ =

€a ®e*, 8" =e, @ e

" & /
Ri2.34 = 574513524593
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which goes in the following way

5,5135945h = (ea ® 1@ 1@ &) (es010P 0 1)(10e, 01081060 ®1) =
_ (—1)(PIHIDAB el o @ éé %P @ e —

)Ivl+\5| (BI+|al)+lel|81+18l16]+|el 7] 1, ysd _

3€a @ m? 5€b®M 8c @ g

)Mw muﬂ‘sm apm, 5ea®éb®e ® &% :mdc:uv be, @ 6p @ et ® et =

= (-1
= (-1
= (eq ® &) ® (M6 ® é%) = Eo ® B* = Ry,

Our copies of Heisenberg double differ only when it comes to the product between A
and A*, and not on the grading. Therefore, we make an assumption that |eq| = |€4] in
the above equation. This calculation is a generalization of equation (3.60).

7.5 Heisenberg double of the Borel half U,(osp(1|2))

We reviewed the supersymmetric extension of quantum group in the previous sections.
In this section we consider the Heisenberg double of the Borel half of U, (osp(1|2)) and
a class of its self-dual representations. We start from the compact case and move to
the non-compact version of Heisenberg double. We prove that the Heisenberg double
canonical element evaluate on these representations can be identified with flip operator
of qunatized Teichmiiller theory of super Riemann surface which we already derived in
equation (6.8).

7.5.1 Supergroup U,(osp(1]2))

We call 0sp(1]2) the simplest rank-one orthogonal symplectic Lie superalgebra. osp(1|2)
is special among superalgebras due to its similarity to Lie algebra sl(2) C osp(1|2). It
contains three even K, E* and two odd generators v* with following relations

[H,E®)] = £ E®) [ET,E7] = 2K,
[H, 0] = S0, B*,0P)] = o), [B%, 0] = 0 (7.20)
(o), )} = _%H, (@), )} = %Ei

The quantum superalgebra U (osp(2|1)) studied in [86] and [56]. It is generated by
K, K=, o) v satisfying relations:

Ko = qiév(i)K
 K?-K? (7.21)

)

{fo) ()} =

_1
2

N[

qz —¢q

with the comultiplication

AK)=K®K, A®) = K @ o® +o® g K7L, (7.22)
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There is a grading as explain in equation (7.2) and in this case degK = 0, degv®) = 1.
One can check the comultiplication preserves the algebra structure:

AF)AWH)) = Ko@) @1+ K2 @ Ko@) = ¢*2 A(w®)A(K),
Then by easy calculation one can check

{AET), AN} = K2 @ (v 0} + o) 0} K2 =

One can check the classical limit of U, (osp(2|1)) when we take the limit ¢ — 1, brings
us to algbera (7.20). The self dual conjugate series of representations of this group are
studied in [88], [61].

7.5.2 Heisenberg double of the Borel half of U,(0osp(1|2))

The Borel half of U,(0sp(1]2)) has H, v(*) as generators

0] = o),
A(H) =H®1+1® H, A®) = @ e 1100,

We have ¢ = e ", K = " and therefore, it is easy to see Kv(t) = ¢~ 1ot K. Therefore,
we can check

v K = " KoH", o™ = (H — n)mv(+)n,

and it is easy to get

l
H™y (+) Hl Z( > l ]Hm‘f‘ﬂ (+)n+k_
=0

.

As for the coproduct

A(H™) = (”) H" %@ HF,
0
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Here we explain briefly how to find the coproduct explicitly

=3 f(n, k)" @ en=RH (1)

n+1

A" =3 fn+ Lk (MR o cnri—k)hH (HF _
k=0
=3 f(n, k™" " @ e (F (,(+) @ MH |1 g (1)) =
k=0
= f(n, 000" @ eHDRE 4 p(y )1 g (D"

Z DR o =R (DR (o 1y (—)F + f(n, k- 1)).
k=1

Therefore, by comparing the factors we get f(n,k) = (}) L The algbera A will have
the basis as follows

—— H™M" where (q)n = (1 —q)...(1 = ¢")

Emn =
for having the exact basis we still have to fix the normalization, as explained later in

this chapter.

The multiplication and comultiplication for those elements are

I ‘ .
- . m+j\/n+k (—n)l_J~
ente=32 (") ("1F) e
) m. o i i i
Aénm) = Z Z < I p) (m —DPRPén km—1 @ Eipy-

On the other hand we have the dual algebra A* which is generated by H, v(~) with

following relations

[H, v ] = —ho),
AH)=H®1+1®H, AW =) e 41000,

We know § = e~ and we have K = b so it is easy to check Kv(-) = gu(-) K and one

can compute the multiplication

l
A O Z 3 (Z) (n)/ =143 Fmti ()"
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and the coproduct

We identify the dual basis as
e = {p()"™, (7.23)

Now, we have to find our duality bracket and, after that, fix the normalization to obtain
orthonormal basis on the dual. Suppose

<én,m7 ek7l> = g(”? m)(s?]iéfn
Then,
- a n+k —p)l-atm
(Emmbrr, e™?) = (a B m) ( I )_q((l—c)t4—771)!52+k®(a —m)f(a,b),

a _ l—a+m
i@y = () (1) G e - m) ()M fm ()

So by comparing these two we can get the normalization as

1

2
émn =(-™" /2
g(m,n) (=1)

H™ )", (7.24)

em7n =

m!(—q)n

Now by having two bases 7.23 and 7.24 in hand we can consider the canonical element:

1 m — m
= St = Y 0 A

n,m : _Q)m
2 1 _ m m

= —1)"™ 2 (H® H)"oM" 0" =
=exp(H @ H) i(—n—%(_ )nm;m 1 (v @ vy =

n=0 —@)n
=exp(H ® ﬁ) Z(l)_g(l)(v(-&-) Q U(—))n _

—q)n
n=0

= exp(H ® H)(—iv™® @ v); —g)2L.

In this example we had the basis of infinite dimension. In the next section we consider
a Zo-graded bialgebra A spanned by the basis vectors {e(«)}, where the basis is of
infinite dimension. From this we define all the objects in analogous way as in the finite
dimensional case, replacing all sums with integrals over the spectrum.

Za:—>/da.
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7.5.3 Heisenberg double of the Borel half of U,(0sp(1]2)) with continu-
ous basis

This section is devoted to the study of the Heisenberg double of the Borel half of
Uq(0sp(1]2)) (which we will be calling a quantum superplane). It will be shown later that
this Heisenberg double is related to the quantization of the Teichmiiller theory of super
Riemann surfaces. We will consider infinite dimensional representations of the aformen-
tioned algebra on L?(R) ® C'' with focus on canonical element S. Moreover, we will
present the way how U,(0sp(1|2)) can be embedded in the tensor square of Heisenberg
doubles.

We want to introduce the Heisenberg double of the Borel half of U(osp(1]2)), with
an intention to study the infinite dimensional representations thereof. The Heisenberg
double of B(U,(0sp(1]2))), which will be denoted HD(B(Uy(0sp(1|2)))) (or SHD from
now on), can be defined as an algebra generated by the even elements H and H and the
odd elements v(+) and v(~) satisfying (anti-)commutation relations

[H,H] = ii’ {o) ()} = €7rbH(€Mb2/2 + e—m'b2/2)

™
[H7U(+)] = _ibU(Jr)v [Hav(i)] = ’L'bU(i)7 (725)
[‘EI? U(+)] =0, [ﬁv U(i)] = +7;b1)(7)7

where ¢ = ™ for a parameter b such that v € R/Q.

Moreover, this algebra is equipped with the real *-structure, i.e.
H*=H H=H, oM =y® "=y, (7.26)

As usual, there are two interesting subalgebras to consider. We can define two mu-
tually dual subalgebras SHD" and SHD~, which are isomorphic to the Borel half of
U,(0sp(1]2)). We define SHD* as being generated by the generators {H,v(*)} with
the basis elements e(s,t,€,n). Moreover, we define SHD™ as being generated by the
generators { H,v(7)} with the basis elements é(s, ,¢,n).

For the purposes of defining the basis elements, we would like to decompose the odd
generators v v(5) into even and odd parts

o) = vtXx, v = vy,

where VT, V™ are graded even, X,Y are graded odd, and they satisfy following com-
mutation relations
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Then, we have the candidates for the basis elements of the Heisenberg double as
es,t,6,n) = N(s,t,e,n)(|H|)*O(H)(VF)* X", (7.27)

é(s,t,e,n) = e ™0 (|H|)5O(eH)(V )P ty™, (7.28)
where N (s,t,n) is the normalization such that
N(s,t,e,n) = —CO—F(—z's)e“rsm(ﬂ)ise_%ﬂthiG;il(Q +it), (7.29)
and H = H — H_ ar}d H = ﬁhr — H_ is a decomposition of generators H, H into
positive operators H,, H, for e = +.

One can make those subalgebras into two mutually dual Hopf-subalgebras by assigning
a coproduct using the adjoint action of the element S,

Ale(s,t,e,n)) = STH1 ®e(s,t,e,n))S, (7.30)
A(é(s,t,e,n)) = S(é(s,t,e,n) @ 1)S1, (7.31)

where S is a canonical element defined as

S = Z Z /dsdt e(s,t,e,n) ® é(s,t,e,n). (7.32)

e=+n=0,1

As the coproduct of the arbitrary element of subalgebras can be derived from the co-
products form the generators, we present them below

AH)=1® H+ H®1,
AH) =10H+H®o1,
7 (7.33)
A(U(Jr)) =P @™ 4 1@yt
AT =0 g e 41 gy
Moreover, the canonical element S satisfies the graded pentagon equation
512513523 = S23512. (7.34)

There is an ongoing project to fix these basis elements and find the normalization.

7.5.4 Representations of the Heisenberg double of the Borel half of
Uqg(osp(1]2))

In this section, we want to introduce the infinite dimensional representations 7 : HD —
Hom(L?*(R) ® CH') of the Heisenberg double of quantum superplane. The generators
are represented as the following operators

A~

H = ply, H = ql,, (7.35)

o) = ™4y, v(7) = emP—a)
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where [p, q] = X are operators on L?(R), I is a (1|1) x (1|1) identity matrix and

(00)

The canonical element S in equation (7.32) evaluated on the representation (7.35) has
the form

1 _ _
S = 3 {le" (a1 +p2 — p1) + exg(q1 +p2 — p1)]la ® I+

—iler (g1 + P2 — p1) — eng(q1 + 2 — p1)]k @ K} TP

(7.36)

Comparing this result with superflip operators in super Teichmiiller theory (6.8) shows
that we can identify this canonical element with the flip operator of quantized Te-
ichmiiller theory of super Riemann surfaces.

We have the candidate for the basis elements
e(s,t,e,n) = N(s,t,¢, n)(|p[)is@(ep)(e”bq)ib_ltﬁ", (7.37)
é(s,te,n) = e 30 (|q|) " O (eq) (e™P= D) i, (7.38)
and N(s,t,e,n) = e“rs/4iQF(—is)(w)ise_%”thiG_l (Q + it) is the normalization
1 by € 27 2 n+1 :

The problem of finding the coproduct of the Cartan part of the algebra is of the same
type as in the non-supersymmetric case. But we are able to find the coproduct of the

odd generators as it is explained below.

Let define e, as follows for simplicity of our calculations
1 .
ea(r) = 5 l(en(a) + ens(2)1 © 1~ i(en(x) — exs(a))r @ . (7.39)
One can define the coproduct

A((e™) k) = STHL @ (€™2)"k)S = es(qr +p2 — ¢2)(€™2) (L@ K)eg (a1 + 2 — @2) =

b2 1292 I1®1 KQK .
_ 2 drd —imb* Ty /2 imbT1(q1+p2—q2)
1 / e {GNS(Q Tibn) | Gr(Q + ibm) } ‘ 8

) 1®1 IKQ® K .
wbqa \it 1 —bT2Q/2 imbra(q1+p2—q2)
< (7)1 @ ke {GNs(Q+ing) * GR(Q+z'b72)}6

/d7’1d7'267rb(“_72)@/2 {Gng(—ibm)1 ® 1 4+ iGRr(—ibm )k @ K} X

reﬁeg:ion gg_zbZ
N 4
1®1 1K QK
X (1®k - + -
( ) {GNS(Q+Zb7'2) GR(Q+Zsz)

C[;QbQ / b( _ )Q/2 { < GNS(*/Lle) GR(*ZbT]_) )
_ Ay (T2 _ 1
1 Tidne Cns(Q+ibm)  Gr(Qtibmy) ) EFF

—1

Gr(Q +ibr)  Gns(Q + ibm)

T — 7,71 — t + 7 by using reflection formula and using Ramanujan formula we get

} eimbTi(q1+p2—q2) (eﬂqu )it eimbr2(q1+p2—q2)

. < GNS(—ile) GR(—ile) > Kk ® 1} €7L7rb'r1(q1+p2—q2)(eﬂbqg)iteiwbrg(m—i-pz—qg)
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1® k+

: b : 1229 [ Gns(—ibT)GR(Q + ibt)
A mwhqyit .\ _ CO / wbr(Q+21bt) /2—imb*T2 /2 NS R
((€7)%r) = =5~ [ dre Gr(—ibr + Q + ibt)

.GR(—ibT)GR(Q + ibt) b i (f— .
1 wbq2 \i(t—7) ( ,7b(q1+p2)\iT _
" ans(—ibr + Q +ibt) "% (e™ )T e )

C()_lb / imb2T(t—T) GR(Q + 7'bt)
- - 1
5 | dre Cns(Q + b ) Gr(—ibr + Q +ibt) =1
GRr(Q + ibt)

1 mbqa i(t—7) (,7b(q1+p2) )it
TR QF ) Grs(—ibr + Qb } (e™2) 7 (e )

Now, one can repeat this computations for the even elements as shown
A((e™)™) = STH1 @ (€™2))S = es(qr + p2 — @2)(€72) e (1 + p2 — @2) =

Qolb/ imb?r(t—7) Gns(Q + ibt)

— d b T T 1 1

2 | 4T¢ Gns(Q + ib7)Gns (—ibr + Q + bty =
GNs(Q + ibt)

T GR(Q + ibr)Cr(—ibT + Q + ibt)

k® /i} (eﬂ'bqg )i(t—‘r) (errb(q1 +p2) )iT.

We present generators in a form that makes explicit their positive and negative definite
partsasp=py —p- =), _epeand ¢ =g —q- =) _, €.

The goal is to find the coproduct for the Cartan part and derive the normalization.
In order to find the normalization one should compute the multiplication and comul-
tiplication of a basis elements and compare the multiplication coefficients m,m and
comultiplication coefficients p, i and require that the normalization factor ensures that

wu(s,te,nyomw,v,0 7 W V) = (—1)"’””/‘7%(0, rw, v, o T W Vst en),  (7.40)

v||V|

IEL(S’ t? 67 n; O" 7—7 w? y? 0-/7 7—,7(4.),, V,) = (_1)| m(U’ 7—770‘}’ V’ 0-/7(’0,7 T’? V/; 87 t’ 67 n)' (7'41)

In addition, there exists an algebra automorphism A
A = e7™/3e3mia o3 (p ) (7.42)

with a matrix U such that [U, k] = 0. This automorphism acts in particular on the
momentum and position operators

A(gl) A7 = (p - g)I, A(pla) AT = —ql.

Then, by the adjoint action of this automorphism one can define new elements é(s, t, e, n),e(s, t,e,n) €
Hom(L*(R) @ C'I")

é(s,t,e,n) = Ae(s,t,e,n) AL, ‘e(s,t,e,n) = Aé(s,t, e,n)A™!
which generate another representation of the Heisenberg double,

H = —qls, H = (p—q)l,

50 — gmbo—g) [ 01 () b [ O 1)
10) 10

S



Chapter 8

Braiding and R-matrices

In this chapter we explain how to derive the R-matrix in the Teichmiiller theory and
define the associated quantum group structure introduced by Kashaev. In the first part,
we start with the ordinary case. It contains derivation of the R matrix, while revealing
the associated quantum group structure and proving the properties of the R-matrix.

The goal is to generalize it in the supersymmetric case. The results obtained in this
chapter are part of the ongoing project. We explain our Ansatz for the R matrix for
super Teichmiiller theory. Our goal is to check the properties of R-matrix for our result
and show that it is the canonical element of the Drinfeld double U,(osp(1]2)).

8.1 Non-supersymmetric case

We consider a compact connected orientable Riemann surface ¥. Let Homeo(X, 0%)
denote the group of orientation-preserving homeomorphisms restricting to the identity
on the boundary 9%, and let Homeog(X,0%) denote the normal subgroup of homeo-
morphisms that are isotopic to the boundary.

Definition 16. The mapping class group of X is the quotient group

MCG(X) := Homeo(X,0%)/Homeoy (%, 0%) (8.1)

Briefly, the mapping class group is a discrete group of symmetries of the space. Mapping
class groups are generated by Dehn twists along simple closed curves. A Dehn twist is
a homeomorphism ¥ — X. A Dehn twist on a surface obtained by cutting the surface
along a curve giving one of the boundary components a 27 counter-clockwise twist, and
gluing the boundary components back together is illustrated in figure 8.1.

In variant literatures, there are other notations for the mapping class group, for instance:
MCG, and Iy ,,. As a general rule, mapping class group refers to the group of homotopy
classes of homeomorphisms of a surface, but there are plenty of variations.

97
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(03
‘ cut
PR
l Dehn twist
- reglue
' -

FI1GURE 8.1: Dehn twist homeomorphism.

Kashaev showed [44] how the braiding of triangulations of a disk with two interior and
two boundary marked points can be derived by a sequence of elementary transformations.
Let a be a simple closed curve on Y. Moreover, square of the braiding is Dehn twist

along the associated contour like a.

By using the construction which explained in chapter 2 and considering operators A and
T, the corresponding quantum braiding operator is shown in figure 8.2.

a 5
* 2|3 *E: 4| —»
T P(241(13;(A3XA;1) A, XT l
| .

i

FIGURE 8.2: Braiding along contour « followed by a sequence of transformations brings
one back to the initial triangulation 7.

The corresponding quantum braiding operator has the following form:

Ba = P13)(24) Ru234, (8.2)
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with
Ri231 = AT A3 T T3 Taa TaaA1 AL L (8.3)

where the g-exponential property of the quantum dilogarithm

gb(u)gb(v) = gv(u + ), (8.4)
for wv = ¢®vu, ¢ = ei”bz, and
ep(z) = gp(e2™). (8.5)
We can write Ry2 34 as follows,
Rig34 = AT T Ase®™ P40 gy + p1 — q1)e* ™% e; (g3 + p1 — q1) X (8.6)

% 627r1p4qze (C]4 _|_p2 o Q2) 27r1p3¢Z2€b (Q3 +p2 _ QQ)AlA
= A]t AP 2Ts0 e (gq + py — g1 + p3)ey (g3 + p1 — q1) ¥
% 627rzp4qz 27rzp3q26 (Q4 +p2 — ¢ +p3)€b (q3 +po — qg)AlAfl —

1
=A'A; e2TP4q1 2TIP3q1 o 2TIPag2 (2TIP3q2 <q4 +p1—q+Dp3— @)X

x eyt (g3 +p1—q1 — @)ey (g1 +p2 — g2 +p3)ey (g3 + p2 — ) AIA; ! =

(8. 4)A 1 fge2mi(patps)(a1taz)

X gy (62ﬂb(q4+prq1+p3*q2) + e2mblastpi—a1—a2) 4 2mb(aat+p2—ga+ps) | 627rb(q3+p27q2))A1A§1 —

— 62ﬂi(p4—q3)(—p1+q2)gg1< e2mb(aa+q1—g3—q2) + e2mb(P3—a3+q1—q2) + e2mb(aa+p2—g2—q3) + e2frb(p3—q3+p2—q2))’

where, A and T are defined in (2.22), (2.25) respectively.

As an outcome of Ptolemy groupoid relations, R € L?(R) solves the Yang-Baxter equa-

tion,
Ri234R1256R3456 = R3a56R1256R1234. (8.7)
Ri234 can also be written as follows
Riosa = R=Ty3T13T42T;5,. (8.8)
The following convention introduced by Kashaev will help us for further calculations:
aj, = ArapALt,  ap = A,;lakAk, (8.9)

and some properties follow up:

ap = a; =az, a; =ag, 4 =a; (8.10)
Tia =Ty, Tip=Ty (8.11)
TiaTos = CP i) (8.12)
Pkt miy = AP Gim)s Pl mity = A% Pkt m) (8.13)

where (kl...m):k—1— ... - m — k is cyclic permutation.
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By using three times the pentagon relation such as T,5T15T55 = T5;T 15 and T5;T53T 53 =
Ti3Ts; we get,

R = (Tlﬁ)_l(Tlé)T14T13T42T32 = Tl_QlTlﬁlelTQZLTl?’TQ:‘ = (814)
-1 -1 ! -1
=T 5 TaaTaTusTay =T 5 TaiTas Ty =T 5 TosTogTusTus™ Tys =
= Ad(T [ Ty3) Ta.

Comparing this result with equation (8.6), one can see how the R matrix which was
derived from four T operators can be written in terms of five T operators by using the
adjoint of two operators on the third one. Also comparing this result with equation
(3.60) shows the relation with the canonical elements of Heisenberg double.

We conclude that the R matrix can be written as

R=> E,0FE (8.15)

where,
Eo =E.®1 = Ad(AT)(1 ®eq) = Ad(A2)Ale,), (8.16a)
E* = 1 ®E* = Ad(ATo ) (1 ®@ ) = Ad(A; 1) A(e). (8.16b)

This bring us to the fact that Drinfeld double basis elements can be built from the
Heisenberg double’s basis elements e, and e®*.

Drinfeld double of the Borel half of U,(sl(2))

We already mentioned how to get R matrix from basis elements in equations (8.16).
There exists the Hopf algebra G, which is composed of those elements and we want to
connect it to the quasi-triangular Hopf algebra of U,(sl(2)).

For the Hopf algebra G, we have generators

912 =1 — @2, 921 = D2 — qu, (8.17)
fi2 = 627rb(q1—q2) + e27rb(p2—q2)7 for = 627rb(q2—q1) + 627rb(p1—q1)’ (818)

that satisfy the commutation relations

[gnm7 fnm] = _ibfnmy [gmnv fnm] = ibfnm’

eiagnm fnm _ fnmeiagnm eib(fl'a)7 eiagmn fnm — fnmeiagmn eib(+ia)7
and have the coproduct

A(g12) = 912 @ 1+ 1 ® g12, A(g21) =921 ® 1+ 1 ® gau, (8.19)
A(f12) = fi2 ® €2™912 L 1 ® fio, A(fa1) = €221 @ fo; + fo; @ 1.
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Using (8.15) we can write the R-matrix as follows

R12734 _ e_2ﬂi912®g2lgg1(f12 ® f21)- (820)

The coproduct on G, can be defined using a twist as follows,
Ay, = Ad(eiso(gm@gl?’g”@g?l))A. (8.21)
Using this definition, we can define the new coproduct on generators,

Ap(g12) = Ag12), Ap(fi2) = f12® 2912 = pb(gr124021) 4 o@blo12t921) @ £,
A¢(921) = A(g21), Ago(le) — 2mbg21 o —wb(g12+921) ® fo1 + fo1 ® e¥b(g12+g21)

There exists an algebra homomorphism Uy (sl(2)) — G, such that,

K = m™(@12-921/2) (8.22)

E = ¢~ m(cotg21) for -, F = fi2 - emb(cb—g12)
q—q q—q

We can check that this gives a proper representation of U,(sl(2)) and they satisfy the
commutation relations.

Then, using the algebra map that expresses the generators of Uy(sl(2)) in terms of
generators of G, we get

AV’(K) =K by K’
A¢(E) — e~ Tbg21 ,2mbga1 ,—pb(g12+921) QE+E® e—ﬁbgzle@b(gm-i-gm)’

A, (F)=F® e2mbg12 ,—b(g12+921) , —Tbg12 + ePb(912+921) o —Tbg12 ®F.

For ¢ = 5 the algebra map becomes the Hopf algebra map and

A-(K)=K@K, Az(E)=K '®QE+E®K, A:(F)=F@K+K '®F.
(8.23)

It is easy to check that, since A(gnm) = gnm @ 1 + 1 ® gnm and €(gnm) = 0. The twist
F = ¢P(9218912=9128921) gatisfies properties in below,

(FR1)A®1)F =1 F)(1® A)F, (e®id)F = (id®e)F = 1.
and the twisted R-matrix is as follows
Rp = F'RF™L. (8.24)
If one show that R satisfies the R-matrix properties, then it immediately follows that
the twisted R-matrix also satisfies them. Therefore, in the following we examine the

properties of the R-matrix, such as quasi -triangularity and transposition of the coprod-
uct.
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First, lets consider the quasi-triangularity property
(A®1)R = Ri3Ros3. (8.25)

We have two ways of proving this property. The first approach is straightforward by
using the g-binomial formula for u = fio ® e2mbo2 g for and v = 1 ® f1o ® fo1. Since

wv = ¢~ 2vu we have,

(A®1)R=(A®1)e —2mi(g12®921) *1(]012 ® fo1) = e—QWi(A(912)®921) ( (f12) ® fo1) =
—2m(912®1+1®921)®921 (f12 ® 627rb.912 ® f21 +1® f12 ® f21)

e*2ﬂi(g12®1+1®921)®92191: (u—i—v) (8:4) 727rz(g12®1+1®921)®g219 ( )gb ( )_

_27m(g12®1®gz1) (f12 ®1® far)e 27ri(1®g12®921)gg1(1 ® flo ® fo1) =
= Ri3Ros3,

727ri(g12®1®g21) —1( 2ﬂ'b(1®912®1)) —27i(1Q9912®g21) _1(1)) _
9b v

As the second proof, one can use the Fourier transform of the quantum dilogarithm,

—7htQ
b [ die2ribtr € _ 27br
/ c Gy (Q + ibt) =9 ( ):

Then by considering the fact that the coproduct is given as follows,

d Gp(Q + ibt)
T Go(Q + ibr) Gy (—ibr + Q + ibt)

l5) =b fi @ (270012 f15) 0T,

Therefore, we can check the quasi-triangularity properties,

(A®1R=(A® 1)6_2m(912®921)gg1(f12 ® fo1) =
e—QWi(A(gm)@gm)(A ® 1)91;1(]012 ® fo1) =

) ) —7btQ
_ ef2m(g12®1+1®921)®921 (A ® 1) b / dt(fn ® f21)zt Gb?@ - ibt) _
—2m(g12®1+1®g21)®921 e e it it
b dt LQF bt)A( 12) ® f31

—7h
6727ri(g12®1+1®gz1)®921 b2 / dtdr : € t? :
Gp(Q + 1b7)Gr(—1bT + Q + ibt)

t—t+T ) d befﬂ'bTQ ) ) )
dt=dt —27mi(g12014+1®g21)®g21 T iT 2mbgi2 \iT T
=" e ; ® (e ®
Go(Q + ibr) (fiz®( ) f31)

—2m(912®1+1®921)®921 (fl ® 627Tb912 ® f21) gb (1 ® f12 ® f21)
672m(912®1®921)91;1(f12 R1® for)e 2 (1891289021) =1(1 @ f15 @ for) = RizRos.

3@ fiy V(@0 @ £ =

dthe 0@
G (Q + ibt)

(1® fh® fih) =

The other quasi-triangularity equation (1 ® A)R = Rj2R13 goes analogously.

The other important property of the R-matrix is the following one

RA(u) = A'(u)R, (8.26)
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where u is arbitrary generator. The equation is obviously satisfied for u = g2 or go;.

In order to prove it for other generators, we need to find their appropriate representa-
tions.

fi2 = wp(—q1 + pa)e™ BTP220) 0y (g — po) =
n ib b, =«
= 67b(th+p2—2q2)wb(_q1 +po + %)wb(ql —po + %)eg(q1+p2—2q2) —
— o R(a+p2—2a2)9 cosh(mb(q1 — pQ))e%b(qlerz—zqz) _
— e%b(ql+pz—2q2)(enb(ql—pz)) + 6—7rb(q1—p2)))e%b(q1+p2—2q2) _

= e2mblai—a2) 4 eQWb(pz—qz)’

where the quantum dilogarithm wy, defined as

. 2
wn(@) 1= ¥ F 6,2 _in)

The properties of special function is shown in appendix A. In the same way one can find
for = wp(—qo _|_p1)e7fb(P1+Q2—2¢J1)wb(q2 —p1) = e2mb(92—q1) + 2mb(P1—q1)
Then we can compute

[f12, f51] = [wp(—q1 + p2)e™@FP27202) 0y (g1 — po) wp,(—go + p1)e@™P1HR=20qy () — py)] =
_ wy(—q1 + p2)wy(—q2 + p1 +ib) emb(gi2ta21) po—1
wy(—q1 + p2 — ib)wp(—q2 + p1) 21
~wh(—g2+p1 —ib(a—1))  wp(—q1 + p2 + iba)
wp(—q2 +p1 —iba)  wp(—q1 + p2 +ibla — 1))
_ <wb(—q2 +p1 +ib)wy(—q1 +p2)  wp(—q2 + p1 —ib(a — 1))wp(—q1 + p2 + z‘ba)> o1z o) o

wb(g12+ge1) pa—1 _
e fa

wp(—q2 + p1)wp(—q1 +p2 —ib)  wp(—q2 + p1 — iba)wy(—q1 + p2 + ib(a — 1))

— osin(mp2n? (1€ _ e tp), @ i(-a+p)
Q i(—q2+p1),  Q i(—q1 +p 7b(g12-4g21) pa—

gy e (21;1)]q[zb —at (1192>]q> evntom) farl =

_ (2sin(wb2))2[a]q[% —a+ %(—ql +p2 = (—q2 + p1))ge™ 912020 fo 1 =
. 1 T a—

= (2sin(nb*))*[algla — 1+ = (=g +p2 + g2 = pr)] ™20 [0 =
. ]' U 12 21 a—

= (2sin(wb))*[algler — 1+ = (g21 — gra)lge™ 20 fii71,

where we used the properties of g-numbers,

sin(7b?
O e

[2]q[ylg — [z — albly — alg = [a]g[z +y — .
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Now, as a check, we can look what kind of identity we get for Ug,(sl(2)) from the above.
First, let us note that

_ a(a—1)
2

(e7™921 f51)* = ¢ e~ Ombo o

Then,
e*ﬂ'bcb(afl) . b
R B = s e ™0, (e )] =
1 _ _
= —[a]gla =1+ %(921 — g12)] E” f= [a]q[—a+ 1+ 2H],E L
where we identify H = —ﬁ(gzl —g12) and K = ¢/ and one can follow the proof of

theorem 3 in [89]. The difference in sign can be explained by noticing that our definitions
of E and F differ from those by [89] which we denote here as E.F,in the following way

E=—iE, F =+iF.
Therefore, one will get
RA(E) — A'(E)R = R(F1 Ko + K{'Ey) — (E1 Ky ' + K1E)R =0

and the proof of equation (8.26) is complete.

Coproduct of Drinfeld double

We want to find an operatorial expression for the coproduct of the Drinfeld double
defined in terms of Heisenberg double. The basis elements E, F, of Drinfeld double
are defined in terms of the generators e,, e of the Heisenberg double as follows

E, = Ad(A TN (1 @ ey), E® = Ad(A5'To1)(1 ® €%).

The coproducts of both Heisenberg double and Drinfeld double agree with each other,
and are defined in terms of coefficients m, i as

Alea) = pifer ® ec, A(E,) = i By ® Ee,

A(e?) = miLe’ ® e, A(E*) = m{,E* @ E°.

In these section we use the Einstein summation convention, since we consider the con-

tinuous basis, we insert an integral instead of a summation over the variables.

We can calculate the coproduct of the basis of Drinfeld double in two ways, first expand-
ing the E, element on the left hand side, and after that expanding elements Fy ® E. on
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the right hand side

A(E,) = pllEy ® B, = pl Ad(AsT5 AT (1 ® e @1 ¢p)
= 1ot Ad(As As)A(eq) @ Ale) = (%)

A(Eq) = A(Ad(AT1,") (1 @ eq)) =
= A(Ad(A2)A(eq)) = i A(Ad(As) (ep @ ec)) = (%)

Then, setting both sides to be equal (x) = (x*) we get
A(Ad(Ag)(eb & ec)) = Ad(A2A4)A(€a) & A(eb).

We know that the coproduct on one half of Heisenberg double is defined in terms of the
canonical element T’

Ag(u) =TA@u)T ' uc {e.}.

Then, we want to find an operator U which encodes the coproduct on the half of the
Drinfeld double

Ap(u @up) =U1@u; @ 1@ up)U tu € {E,}.
We see that for U = Ay ATy, Ty, A we get the right coproduct

Ap(Ad(Az)ey @ e.) = AgAgT ' Tt As(1 ® ey ® 1 ® e.) Ay 'Tio T34 Ay A
= Ay A4A(ep) @ Ale) AL AL

The calculation for the other half of the Drinfeld double, i.e. the generators E%, gives

A(A(ATYY (e @ ) = Ad(A7 A7 )A'(e") © A'(ef) =
= A2_1A21P(12)(34)A,(€C) & A/(eb)A4A2P(12)(34).

Therefore, we have

Ap(X(1) ® X(9)) = Ad(A AT Ty AT (190 X1y ® 1@ X)),
Ap(X1) ® X2)) = Ad(A7 AT T1o T30 A1) (X (1) @ 1@ X(g) @ 1),

where F, = X1y ® X(9), B = X(l) ® X(z) (we suppress the sum over terms here).

8.2 Supersymmetric case

In the supersymmetric case in order to find braiding one needs to consider Kasteleyn
orientations on the edges. We can classify the braiding depending on the type of two
interior vertexes. Following the rule we explained in chapter 5 for distinguishing the type
of puncture as Ramond (R) or Neveu-Schwartz (NS), if two punctures are Ramond, then
there is no dot next to them. If one puncture is R and the other one is NS, it means there
is one dot next to the NS punctures. For the remaining case that the two punctures are
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NS, there will be one dot next to each of them. The last case is the only one where the
homogeneous Yang-Baxter equation has the possibility to be satisfied . By homogeneous
Yang-Baxter we mean just one type of R matrix can be involved in the equation.

We summarize the 8 possible starting points for finding the braiding in figure 8.3, where
decorated vertex have the same place as it was shown in figure 8.2. Figure 8.4 (which

1((.23)0)4 1(do 23 yo)s 1( {o 2|3 4 1( 4o 2|3 4 1((.23>.)4 1(4o 2l3 pe)s 1({o 23 yo)s 1(4o 2fs peo)s

(1) (2) 3) (4) (5) (6) (7)
FiGURE 8.3: Eight possible orientations to find braiding with two NS-punctures.

presents one of the possible cases) shows how the braiding of triangulation of a disk with
two interior and two boundary marked points can be removed by a sequence of elemen-
tary transformations of the graded Ptolemy groupoid. Using the operators T, ,53“ Ay, By
the corresponding quantum braiding operator has the form

BY) =300 RY,  wherei=1,...,8 (8.27)

«

One can consider all the braiding for orientations different than the one in figure 8.4
and show that
RW =A7' A3 By T By T2 Byy By TS By T2 Byy A1 A5 (8.28)
R® =A7' A3 B3y T\Y By T By By TS By TS Byy A1 A5
R® =A7 A3 By T By T\ By By TsD By TS Boy Ay A5 UL UL U U
RW =A7' A3 B3y T By TY Byy Bay TS By TSY Boy Ay A3 ' UL UL UsU
RO) —AT A3 Boy T\ Boy TSy Boy BaaTeY Boy Tse) By Ay A3 UL UsUsUs
RO —AT A3 Boy T Boy T Boy BaaTSY) By Ty Bay Ay Az UL UsUs Uy
R™ =A7 A3 BT\ By T\ Byy By TS By TS Byy Ay A3
R® :AIIABB?ATAE?)BQng)leBMTS)leTég)BmAlAil7
Using the construction described in chapter 6 and rewriting B;; = 1®U; one can rewrite
(8.28) in the adjoint form as
KO = Ada AT T R = A A T T
R~ Ada AT T TVTY RO = AT T T T,

Yang-Baxter One can find the pictorial representation of the Yang-Baxter equation.
It is obvious that we always have the equation with the form

RS RY = R RO, 529
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| a a

(2)
My 13; (4, A 4, By XTyy X By, l

.4 By XT1yX By 2 XBIBJXT
*

F1GURE 8.4: Braiding along contour « followed by a sequence of transformations brings
one back to the initial triangulation 7.

(2

We still focus on the case when both puncture are NS. There are few combinations of
1 and j can satisfy the Yang-Baxter equation. Between all the possible equations there
are just four cases that i can be equal to j—one example is illustrated in figure 8.5.

(IJ
" 0 Ri1a)s6)
‘

(1)
R(]Z)(S()J (]
4

(1)

R
.2 3 \ium

R ——

R(l\

(34)(56)

FIGURE 8.5: One possible Yang-Baxter equation with two NS-punctures.

The possible pairs for two NS punctures are

(1,5) = (1,1),(2,2),(7,7),(8,8),(3,4), (3,2), (4, 1), (4,3), (5, 7), (5,6), (6,8).






Chapter 9

Conclusions and outlook

We used a similar approach to that of Kashaev [34] in the case of ordinary Riemann sur-
faces and generalized this result to the supersymmetric case to construct a quantization
of the Teichmiiller theory of super Riemann surfaces. The independence of the resulting
quantum theory with respect to changes of triangulations was demonstrated by con-
structing a unitary projective representation of the super Ptolemy groupoid including
superpentagon relations.

We identified coordinates on the quantum super Teichmiiller space with elements of the
Heisenberg double. The resulting quantum theory is identified with the quantum theory
of the Teichmiiller spaces of super Riemann surfaces. The goal of an ongoing project is
to construct bases of the canonical element of the Heisenberg double.

The canonical element of the Heisenberg double is expressed in terms of particular func-
tions called supersymmetric quantum dilogarithm. These resulting functions are of the
same type as those in the 6j symbols of super Liouville theory. We anticipate that
this similarity brings the possibility of a correspondence between quantum super Te-
ichmiiller and conformal blocks of super Liouville theory.

Kashaev derived the R-matrix, associated with braidings in the mapping class groups,
in terms of the non-compact quantum dilogarithm, which first has been suggested by
Faddeev as the universal U,(sl(2)) R-matrix for the corresponding modular double.
Kashaev established that the more general formula directly follows from the embedding
of the Drinfeld doubles of Hopf algebras into tensor product of two Heisenberg doubles in
[43] and he presented a geometrical interpretation [44]. In the super Teichmiiller theory
we already derived the geometrical view of the R matrix associated with braidings in
the mapping class groups. The R matrix is derived in terms of the non-compact super
quantum dilogarithm. The goal of an ongoing project is to find how this R matrix
follows from the canonical embedding of the Drinfeld doubles Hopf superalgebras.

There are a number of issues which would be interesting to investigate as follow up work.
It is known that ordinary Teichmiiller theory is closely related to non-supersymmetric
Liouville theory [20]. In particular, the spaces of Liouville conformal blocks and the
spaces of states of Teichmiiller theory of Riemann surfaces can be identified [14] and carry
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unitary equivalent representations of the mapping class group. In the case of N' = 1
supersymmetric Liouville theory, the mapping class group representation for genus 0
can be represented using the fusion and braiding matrices,and has been investigated
in [90, 91]. It would be interesting to study more closely the mapping class group
representation defined by the representation of the super Ptolemy groupoid constructed
in this text, and relate it to A/ = 1 supersymmetric Liouville theory.

Moreover, ordinary Teichmiiller theory is the connected component of the space of
SL(2,R)-valued flat connections on a Riemann surface 3, and therefore closely related
to SL(2,R)-Chern-Simons theory on 3 x R. The goal of one ongoing project is to in-
vestigate the connections between the quantum super Teichmiiller theory described here
and the quantum OSp(1|2)-Chern-Simons theory. One can note that a topological field
theory on a 3-dimensional manifold can be constructed by using Teichmiiller theory
[92]. Onme can associate the flip operator of Teichmiiller space to a tetrahedron of the
triangulated 3 manifold. Since the flip operator is the canonical element of Heisenberg
double, it satisfies the pentagon relation. Therefore, the partition function obtained
by gluing tetrahedra together does not change by choosing a different triangulation of
the three-manifold. This means that there exists an invariant under the 2-3 Pachner
move, which follows from the pentagon like identity. An important implication of this
thesis is that, one can use the supersymmetric flip operator to derive the invariant of
spin three-manifolds from super Teichmiiller theory. We can further anticipate that the
recent work of Kapustin and Gaiotto [93] and also Petronio and Benedetti [94] might
help us to find the proper way of encoding the spin structure. Then, one needs to show
that the partition function is invariant under different ideal triangulations of hyperbolic
spin three-manifolds.

Another direction where one may use the result which was presented here, is the study of
integrability and quantum discrete super Liouville model. Liouville theory is interesting
due to its connection with noncritical string theory [95] and two-dimensional quantum
gravity [96]. It is an example of nonrational CFTs [8, 97] and has relation to the quan-
tized Teichmiiller spaces of Riemann surfaces [15, 98]. Integrable lattice regularization of
quantum Liouville theory has been studied in the ’80 [98], and later on in [99, 100]. The
model was developed more recently by Kashaev and Faddeev [50]. According to [50],
the model describes the region corresponding to the strongly coupled regime (1 < ¢ < 25
where, ¢ is the Virasoro central charge of the Liouville theory). Then, in the context of
the discrete Liouville model, it was shown that the N-th power of the light-cone evolution
operator of the model can be interpreted in pure geometrical terms within quantum Te-
ichmiiller theory as the Dehn twist operator. Another possible research direction based
on this dissertation can be understanding the geometric realization of Dehn twist in the
formalism of super Teichmiiller theory and derive the light-cone evolution operator in
the super case.



Appendix A

Non-compact quantum
dilogarithm

Quantum dilogarithm plays a key role in this project. Here we review the non-compact
quantum dilogarithm and its most important properties. We collected the different
definitions of relative special functions which the reader may face in the related references
of this thesis.

The basic building block for the class of special functions to be considered is the Double
Gamma function introduced by Barnes [101]. The Double Gamma function is defined
as

0 —s
lOgFQ(Z’CU) = (% Z (Z + miwi + m2w2) )8:07

m1,m2€ZL>0

and there exists the definition:

Ly(z) :=To(z|b,b7h).

For PRex > 0 it admits an integral representation

Q Q 2 Q
® Jt —axt _ —5t (5—1’) x _r

log 'y () —/ — L 2
0

t|(1—e)(1—eb) 2¢t t ’

where Q = b + %. One can analytically continue I'}, to a meromorphic function defined
on the entire complex plane C. The most important property of I'}, is its behavior with
respect to shifts by b*,

Vi 9rhbT—3
Iy (bz)

RV 27Tb_g+%

Iy(z) Fb(SL‘—Fb_l): Fb(%)

Ty(z +b) = Ty(z) . (A1)
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These shift equations allow us to calculate residues of the poles of I',, When z — 0, for
instance, one finds

I'n(@)
2rx

From Barnes’ Double Gamma function we can build other important special functions,

Ty(z) = +0(1). (A.2)

1

T = B R - (4.3)
Sy(x) = F}jé’)%, (A1)
Gp(z) == e 3@ G, (1), (A.5)
wy () = egi(QTQHQ)Gb(% i), (A.6)
gv(x) = L (A.7)

Gb(% + 271z‘bl09x>’

We shall often refer to the function S}, as double sine function. It is defined by the
following integral representation,

oo gt sin 2zt
| e A
og Sp(x) /0 it (2sinh bt sinh b=t — %> A

The S}, function is meromorphic with poles and zeros in

Sp(x) =0 2=0Q +nb+mb 1 n,m € Zx ,
Sp(x) ' =0 1=—nb—mb n,m € Lo .

Other most important properties for this text are as follows:

Functional equation(Shift): Sp(x —ib/2) = 2 cosh (wbx) Sy (x + ib/2) (A.9)
Self-duality: Sp(x) = S1p(x) (A.10)
Inversion relation(Reflection): Sp(x)Sp(—z) =1 (A.11)
Unitarity: Sp(z) = 1/5,(T) (A.12)
Residue: reSg—c, Sp(T) = %(1 — 4¢?)(2mi) 7t (A.13)

In addition, from the definition of Gy, (A.5) and the shift property of Barnes’ double
Gamma function it is easy to derive the following shift and reflection properties of Gy,

Gp(z +b) = (1 — 2" Gy () , (A.14)
Go(2)Gh(Q — ) = e™(@=@) (A.15)

The Fadeev’s quantum dilogarithm function is defined by the following integral repre-

dw 6721':1:111
_ dw A.16
ep(z) = exp [/Rio w 4sinh(wb) sinh(w/b) |’ A0

sentation
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and it is related to the Double sine function in a way as follows

ep(x) = e5ee 3 -G = AG (—iz + %), (A.17)

where

A= e m(AR)12 02 (A.18)

The function ep(z) introduced by the name of ”quantum dilogarithm” in [45], ”quantum
exponential function” in [102] and Hyperbolic G function in [103]. This function has
similar properties like shift and reflection relations. The properties which it satisfies are
as follows:

Simple poles and zeros:

poles ={iQ/2 + imb +inb™, m,n € Z>o}

zeros ={—iQ/2 —imb —inb~', m,n € Z>o}

The asymptotic behavior of the function e}, along the real axis

1 , X — —00
€b(Z) - { e_iﬂ(l‘i‘?CZ)/Geiwa T — +00 (Alg)
ibtl ot ibtl
Functional equation(Shift): ép <ZL‘ - 2) =147 ey <£L‘ + 2) , (A.20)
Inversion relation(Reflection): ep(x)en(—z) = e~ im(142c})/6 gima® (A.21)
Residue: resp—c, e = (2mi) " (A.22)
. .27zb. 2
Product representation ep(z) = ( qu 7’1q~)°° , Imb* >0
(—=qe*™ " %) oo
(A.23)
where g = e”bQ, qg= e‘”b_Q, (%, q)o0 = M2 (1 — ¢ x).

One can find the graphs of quantum dilogarithm and visualization of its analytic and
asymptotic behaviors in [104].






Appendix B

Supersymmetric non-compact
quantum dilogarithm

When discussing the supersymmetric Teichmiiller theory we need the following addi-
tional special functions

i) = Tas(o) =T (3) 1 (“59) (B.1)
Poe) = i) = 1 (252 ) 1 (25 (B.2)
Furthermore, let us define
$ie) =Sl = iy O = Grsle) =G PO Ss@),
So(x) = Sk(@) = gy Golw) =Grlx) = e TGe  T7Q0Sp(@),

where (o = exp(—imQ?/8). As for Sy, the functions Sp(z) and Si(z) are meromorphic
with poles and zeros in

So(z) =0 2=Q+nb+mb !, n,m € Zxg,m~+n € 2Z + 1,

Si(z)=0c2=Q+nb+mb"', n,méeZsy,m+n €27,
So(z) t=0ox=—-nb—mbt, n,me Z>o,m+mn€2Z+1,
Si(z) =0 x=—nb—mb', n,mecZso,m+nc2Z.

As in the previous subsection, we want to state the shift and reflection properties of the
functions G and Gy,

Gz +b*1) = (1= (=1)"e™ )G,y (2), (B.4)
G,(2)G,(Q —x) = e%("—”gge?ﬂ”(“@ . (B.5)

where v =0, 1.
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We define the supersymmetric analogues of Fadeev’s quantum dilogarithm function as

z+i(b—b"1)/2 z—i(b—b"1)/2
er(x) = ep ( )/ ep ( )/ , (B.6)
2 2
T +c Tr—c
eNS(:r)—eb< > b)eb< 2 b), (B.7)
and relate them to the double sine function in a way as follows
A2, Q
ev(x) = A°G, (—iz + 5), (B.8)

with a constant A as defined in eq. (A.18). The shift and reflection relations that it
satisfies are as follows

'b:I:I 'b:tl
eR (:v — 12> = (14 i™ ' )exs <x + 22> , (B.9)
pEl pEl
R e
ens(z)ens(—z) = eiﬂcﬁ/2e—i7r(1+2c§)/Beiwx2/2’ (B.11)
er(z)er(—1) = 6i7r/26i7rc%/2efiw(1+263)/3€i7r:v2/2' (B.12)
Asymptotically, the functions e; and ey behave as
)1 , X — —00 B.1
ens(z) = eimen 2 —im(14+2c}) /3 gima? /2 2 — +00 (B.13)
1 , X — —00
er(2) = { eI /2l 2o —im(1426]) [3gima®/2 4y Lo (B.14)

Also, we know that for non-commutative variables P, X such that [P, X] = % they satisfy
four pentagon relations

J+(P)f+(X) = [+ (X) [+ (X + P) f+-(P) — ( ) ~(X+P)f-(P), (B.15)
f+(PYf-(X) = —if+-(X) f-(X + P) f- (P) (X) f+(X+P) f4(P), (B.16)
f-(P)f+(X) = f+(X) [+ (X + P) f-(P) — ( )[-(X+P)f+(P), (B.17)
f-(P)f-(X) = i f+ (X) f-(X+ P) f4(P) — f—( )f+(X+P)f-(P), (B.18)

where fi(x) = er(z) £ eng(x). Those pentagon equations can be equivalently expressed
as the supersymmetric analogues of Ramanujan summation formulae

Z /zoo dT ﬂﬁaewwﬂw = 2(51 Coe(©) G100 (5) (B.19)

0=0,1 Goy1(T+Q) G potps(a+ ) '

which have been derived in [80].
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One can use the connection between eg,ens and Gr,Gns to prove the Ramanujan
formulae based on the results from [80]. Here we show the details for the proof of one
of those equations

LHS = / <€Ns T+ u) _i_eR(x—i-u))em-wxdx:
ens(z +v) (x +v)

(S QD) | Gt ) 01D

Grs(—i(z +u) + Q/2) (—i(z +u) +Q/2)

:/ (GNS(T—WJFQ/?) N GR(T—WJFQ/Q)) orir(iw) 97 _
Gns(T—iu+Q/2)  Gr(r —iu+Q/2)

)
_ / <GNS(T +(Q/2 — i) + (Q/2+iw)) | Gr(T+(Q/2— i) +(Q/2+ iu))> "
iR GNS (T + Q) GR(T + Q)
i (iw) wi(Q/2- i) (iw) dj _
i
—imc? /2 Grs(1w)Gns (Q + du — ZU) —mw(Q/24iu) _
Gns(Q + iu — v + iw)
_ 267i7rct2)/2A74 eNS(lQ —utv—w-— Cb) e*ﬂw(Q/QJriu) _
A? ens(—w — cp)ens(iQ — u+v — cp)
_ 267”’0%/2142 eNS(iu tv—w+ Cb) efﬂw(Q/ZJr’iu) _
ens(—w — cp)ens(—u + v +cp)
ens(—utv—w+a)

— —miw(u—cp) 2 71'71'0%/2142 — RHS
ens(—w — ep)ens(—u + v + cb)e ( ¢ ) ’

X e

= 2e

where B = 2e=%/2A2 and B = 2¢™h/2 A2,






Appendix C

Pentagon and superpentagon
relation

In the first part of this appendix we explain the proof of the pentagon relation which was
explained in [50] more extensively. In the second part we follow their line for proving
superpentagon relations.

C.1 Pentagon identity

In appendix A we explained the properties of quantum dilogarithm functions. In this
part first we express the Ramanujan formula based on which, we find the Fourier trans-
formation of the quantum dilogarithm. The Fourier transformation will help us prove the
pentagon relation afterwards. At the very end we explain the proof of the Ramanujan
formula.

According to [44], the Ramanujan summation formula states that

/derWix(wcb) ep(z +a) _ eiﬂ'(174c%)/12 ep(a)en(w) (C 1)
ep(z — cp) en(a+w—cp) .

First by complex conjugating we have

/dxe_%w(w_cb)%(ﬂﬂrc—b) _ e-m(1—4cg)/12w
en(z +a) ep(a@)en(w)

with the use of the fact that ey(z) = e;'(#) and change of variables z — = — ¢}, +u
W — —w + ¢y and @ — v — u + ¢p, on can rewrite the formula as

/dxezmxweb@m — o—im(1-4)/12 ,—2miw(u—cy) ei(v —Uu—w f Cbz . (C.2)
ep(z +v) ep(v —u+ cp)ep(—w — cp)
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Fourier transform
By using the Ramanujan formula (C.2), taking a limit v — —oco one gets
/dxe%im’eb(x tu) = e—m(1—4cg)/126—2mw(u—cb) 1 7
ep(—w — cp)
and after setting u = 0:
/derﬂiazweb(m) _ efiﬂ’(lf4c%)/12€27riwcb 1 .
ep(—w — ¢p)
Then, Fourier transform of the quantum dilogarithm is [50]
b(w) = [ en(w)emivrda = (©3)
_ egl(—w - cb)QQﬂ'iwcbe—iw(l—Alcﬁ)/lQ _
_ €b(w + Cb)e—ﬂ(w+cb)2€+i7r(1+20%)/6627riwcbe—i7r(1—4cf))/12 _
= ep(w + Cb)e—iww2€i7r(1—4c%)/12. (C.4)

Then, the inverse transform is

evla) = [y (e
Moreover, one can take the limit v — —oo of (C.2),
4 . . 1
¢_(w) _ /eg1($)62ﬂzwxdx _ 617Tw27z7r(174c%)/12

The inverse transform is

(en(z)) = / dyo_(y)e=2m.

Pentagon identity

en(—w —cp)’

Consider operators X, P which canonically commute [P, X] = Qim The pentagon iden-

tity states that
ep(P)en(X) = ep(X)en(X + Pen(P).

(C.5)
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In order to prove that, one first performs a Fourier transform
LHS = ep(P)en(X) = / dady¢y (x)e ™oy (y)e ?TWX =

— /dxdy¢+($)¢+(y)e_2”ixpe_2ﬂiyx — /dxdy¢+(m)¢+(y)e—Qm'yXe—Qﬂ-ixPe%riyz

RHS = ey (X)en(X + P)ep(P) =
= /dxdydz¢+(x)¢+ (Z)¢+(y)€727rin€*27TiZ(X+P)6727rizP _
= /dxdydzq§+(x —2)p4(2)d4(y — z)€_27"i(y—z)Xe—27riz(X+P)e—27ri(:c—z)P

= /dxdydz¢+(x — )4 (2) s (y — Z)e—zmyxe—zmmpemﬁ
Now we try to show the left and right hand side are equal.
/ dadyds ()d (y)e 2TV X e 2mel 2miny — / dzdydzé (z — 2)4 (2)¢ (y — 2)e 2 gm2minP eins?,
We can drop first the integrations and then multiply by e 2"¥* and integrate over .

¢+ (.7})(;5+ (y)e—meXe—meP€27ria:y _ /dz¢+ (w B z)¢+(z)¢+(y o z)e_meXe_mePem’ZQ,

2

/dygﬁ.;.(a:)qf)_,_(y)e%iy(r_u) _ /dydz¢+(a: — )by (2)bs (y — Z)ez'wz o 2miyu

We can use the identities for the inverse Fourier transforms for ¢ (y) and ¢4 (y — z).
Therefore, we have

b1 (z)ep(u — ) = / Az (2 — 2) (2)ep (w)e™ e 270, (C.6)

Next, we use the Fourier transforms (C.4) for all ¢4 functions on the LHS and RHS of
(C.6)

€b (U - -TJ) 627Ti$cbe—i7r(1—40%)/12 =ep (U) /dze—Qﬂ'iuzeQWi(cc—z)cb €b(2’ + Cb)
ep(—x — cp) ep(z —x — cp)
ep(u — ) e—m(1—4c§)/12 _ /dze—Qﬂiz(u—i—cb) ep(z + cp)
ep(—x — cp)ep(u) ep(z —x — ¢p)

If we rewrite u — ¢, v & —x—c¢p and w — —u—c¢p, then we derivethe Ramanujan sum-
mation formula (C.2). Therefore, we observe that pentagon and Ramanujan summation
can be derived from each other.
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C.2 Super pentagon identity

In this section we want to generalize the supersymmetric equivalents of pentagon. We
start from the Ramanujan summation formula and the Fourier transforms of super
dilogarithm functions and by using them we will be able to prove the superpentagon

relation.

Ramanujan summation formulae

Being inspired by [80], the Ramanujan summation formulae state that

er(x eNs(az +a
ens(x —cp)  er(x—op

/dxemw(w o) < ens(x + a) eR rT+a > B ens(a)ens(w) (C.7)
eNgm—cb) €R I—Cb eNs a—i—w—cb)
/dxemx w—cp) ens(z + a) B er(z +a) _ g ensla)er(w) ens(a)er(w) (C.8)
eNs(ZU—Cb er(x — ¢ eRrR a—l—w—cb)
/dxe’”x w—cp) ( er(z + eNS (z+a > B—————— aJens(w) (C.9)
( eR a —|- w — Cb)
Jasee (Gat
(

)
)
eNs x—cb eR (x — cp)
)
)

eNg(a—i-w — Cb)’

where
B— 262’#0%/281'#(17405)/6.

As in the non-supersymmetric case, we can use complex conjugation and use such
relations as ep(r) = eg'(Z) and enxs(r) = exs(Z) . Next, by changing variables
r—Tr—c+u w— —w-+c, and a > v — u + ¢, one can rewrite the Ramanu-
jan summation as

/dxeiﬂxw <€NsEx +u; N eREx +u
( ; (

exs(v —u—w+cp)

ens ens(v —u+ cp)ens(—w — cp)

/dxei”w (eNS r+u er(v —u—w+cp)
ens(z +v ens(v —u + cp)er(—w — cp)

/dxeiwxw <6NS(;U + u) + €R($ + u) > _ Be—mw(u—cb) eR(U —u—w+ Cb)

— Befrriw(ufcb)

_ Be—ﬂ'iw(u—cb)

er(z+v)  ens(z+0) er(v —u+ cp)ens(—w — ¢p)
/dxei”w <€Ns(l’ +u) B er(z +u) ens(v —u —w+ cp)
er(z +v)  ens(z+0) er(v —u+cp)er(—w — cp)’

_ Be—ﬂiw(u—cb)

Fourier transform

The Fourier transforms of quantum dilogarithm are

¢4Nrs(w) = /eNs(x)emw”"dx, PN (w) = /eR(x)emwxdx. (C.11)
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By using the Ramanujan formula (C.11), taking a limit v — —oo one gets

1

ens(—w —cp)’
1

er(—w —¢cp)’

/dxeimcw (eNs(x + u) + @R(x + u)) — Be—mw(u—cb)

/dxeiwxw (eNs(x + u) — @R(x + u)) — Be—mw(u—cb)

and after setting v = O:

1

ens(—w —¢p)’
1

er(—w —cp)’

/dxeimw (ens(x) +er(z)) = Be™web
/dxeimw (ens(z) — er(z)) = Be™we

and by summing and reducing them

) . 1 1
Z/dxem":weNS(w) = Be™"% ( + ) ,

ens(—w —¢p)  er(—w —cp)

) . 1 1
2 | dze™ e (x) = Be™"P — .
/ r(2) <eNS(—w—cb) eR(—w—cb)>

Additionally, one can rewrite

1 . 1 1

NS Tiwe

w) = —Be™ + =
+ (w) 2 <€Ns(—w —¢cp)  er(—w— cb)>

1_ . .
_ 5Bem‘(l—c%)/36—171-11;2/2 (eNS(w + Cb) _ ieR(w + Cb)),

R _ 1 TIWC 1 _ 1 _
Prlw) =5 B¢ <€Ns(—w —cp)  er(—w— Cb)> a

1. . .
= EBGZ”(I_Cﬁ)/3e_Z”w2/2 (ens(w + cp) + teg(w + cp)) .

By taking the limit © — —oco0 we can get
() + o (w) = [ (ed(a) + 7' (@) = BT el (- - ),
¢NS«U>—-¢R<w>::j/e“““(eﬁé@»——egloﬂ)::iée”“gﬂeglt—w——cb»
which can be rewritten

i — 14 W — - =
NS (w) = /e”wxeNé(x) = §Be ’/2 (eng(—w — cp) +ieg' (—w — b)),

o™ (w) = /ei”wxeﬁl (x) = %Beimﬁ/2 (exs(—w —cp) —ieg' (—w —cp)).

The inverse transforms are

@wmﬂ—/@%@fm%
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Pentagon identity

We want to reverse engineer the pentagon from the Ramanujan summation formulae.
Lets start with the first equation (C.7):

/dzeiwzw < eNS(Z + Cb) + eR(Z + Cb) ) — const eNS(’U — -75) .
ens(z =z —cp)  er(z —a—op) exs(—z — cp)ens(u)

Using the Fourier transform of the inverse, we get
LHS = const exs(u — z)[Y5 (z) + ¢% ()],
RHS = constexs(u) [ dze™ ((65(2) + 6805 — 2) + oo = )+
=N (2) + 6B @ — ) — R (a — 2)])

Therefore, we have an equation

NS (u — 2)[¢N5 (x) + ¢ ()™ = const / dzgXS () (N3 (2) + OB ()65 (x — 2) + ¢% (& — 2)]+
—i[- Y3 (2) + SR (2[NS (z — 2) — R (x — 2)]) €7 /2,

The exponentials are half of those of the non-supersymmetric case, and since we want

to use the formula

2
eAxPe)\yX _ eA(y—z)XeAz(X+P) eA(x—z)Pe 74>;”.k (2:cy—z2)’
where [P, X] = QLM To have appropriate exponentials to take the inverse of the Fourier
transform, we have to choose k = 2 and A = —im. Therefore, the first equation is of the

form

[ens(P) + er(P)]ens(X) = constens(X) ([ens(X + P) + er(X + P)][ens(P) + er(P)]+

—i[—exs(X + P) + er(X + P)][ens(P) — er(P)]),
(C.12)

where the constant can be determined exactly. Therefore, summarizing all the rest of
pentagons we have

[ens(P) + er(P)ler(X) = conster(X) ([exns(X + P) + er(X + P)|[ens(P) + er(P)]+
+i[—exs(X + P) + er(X + P)l[exs(P) — er(P)]) ,
(C.13)
[ens(P) — er(P)]er(X) = const exs(X) (—i[—exs(X + P) + er(X + P)|[ens(P) + er(P)]+
+lens(X + P) + er(X + P)][ens(P) — er(P)]) ,
(C.14)
[exs(P) — er(P)]ens(X) = const er(X) (—i[—ens(X + P) + er(X + P)][ens(P) + er(P)]+
—lexs(X + P) +er(X + P)llexs(P) — er(P)]) .
(C.15)
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C.3 Proof of Ramanujan formulas

Ordinary case In order to prove Ramanujan formulas, let us define
(a,w) /dme%m(w Cb)ieb(x +a) d(a,w) = —eb(a)eb(w) . (C.16)
en(r —cp)’ ’ ep(a+w—cp)
One can consider the shift equations

ib

b ‘ +a—73 b b
U(a — Z—, w) = /dxe%”(“’_cb)eb(ajw =U(a+ Z—,w) + 2P (q + %,w —ib).

2 ep(r — cp) 2
ib ib , i (— ep(x 4+ a+1ib/2)
\j b _ _ _ 2miz(w—cp) (] _ 2mbx b
(a+2,w) (a+2,w ib) /dxe (1 —e™7) Y Fa—

_ /dxe%riac(w—cb) €b($ +ta+ Zb/Q) _ eQWb(w—cb)\I,( ib

ep(x — cp +ib) a—g,w),

e (x—cp)=(1+ 62”1’("”7%“{’/2))716];1@ —cp +ib) = (1 — ¥ ey Ha — e, + ib).

So, eventually

b b
(1+ eQWb(w+a_cb))\I’(a — %, w) = (1+ e%ab)\ll(a + %, w),
2wb(w+a—cy) ib h) — 27 (w—cp) ib
(1+e )\I/(a+§,w—zb)—(1—e )\I/(a+§,w).
On the other hand, it is easy to check that
b ep(a —ib/2)ep(w) 1 + e2mab ib
d(a — =, w) = — ) =
(a 2 ) ep(a+w — cp) 1 + e2mb(atw—cp) (a+ 2 ),
ib , ep(a+ib/2)ep(w —ib) 1 — e2mblw=cv) ib
@ — — et e @ —
(a+ 27" i) ep(a+w—c, —ib/2) 1+ e2mblatw—cy) (a+ 2 )

Taking b — b~' one gets an additional set of shift equations. Given that one has
two doubly periodic functions with the same equations, they have to be equal up to
a constant ¥(a,w) = C®(a,w). Then, one can fix C' by evaluating the expression on
particular @ and w.

Moreover, on can use the connection between ey, and G}, to prove the Ramanujan formula
based on the results from [37].

LHS — / ep(T + u) 2w g, Gp(—i(z +v) +Q/2) 2T J

€ph x—l—'u N Gb(—i(:v+u)—|—Q/2)
Gb(T =1+ Q/2) orir(in) AT _ Gu(iw)Gu(Q + iU — ) _sri(qy2+iu) _
r Gp(T —iu+Q/2) i Gp(Q +iu — v + iw)

_ A e(iQ-utv—w—c)  aru@/arin _
A ep(—w —cp)ep(iQ —u+v —cp)
_ ep(—u+v—w+o) o 2miw(u—cp) —in(1-4¢2)/12 _ RII 9
en(—w — ep)en(—u + v +cp) 7
where, A6727rw(Q/2+zu) 6727r1w(u cb) —im(1— 4cb)/12
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Supersymmetric case : In order to prove the Ramanujan formulas in the supersym-
metric case , let us define

_ exs(olenst oy _Exs(@en)

s, w) = ens(a+w —cp)’ Pxs(a:w) = er(a+w—cp)’

by _0exs() en(@en(w)
R\" BR((I—FQU—Cb), eNs(a—l—’w—Cb)‘

Wt (a, w) = dl‘emm w—ecp) eNS x4+ a) €R(QC + a)
NS exs(z —cp) eb@ — CR)

bt = [ e (emm )
NS Ns(T —ep)  en(T —cr)
W (a, w) = dme’”x w—e) er(xz + a) eNs x4+ a)
ens(x — cp) eb T — CRr)

er(z + a) ens(z +a

U (a,w) /d:vemw w—cp) < r(z + + ns(@ + >>
exs(z —cp)  ep(r —cRr)

One can consider the shift equations (omitting intermediate steps)

ib ib
Usla— Fow) = +0E(a+ %,w)iiemb\l@;(a + %,w —ib),
ib
Ui(a+ 5 w) + U (a+ 5w —ib) = U (a - %,w),
ib b ib
‘liﬁ(a - Z§,w) = +Ul(a+ ZE,w) + iemb\lfﬁs(a + %,w —ib),
ib

— —,w).

_ wb(w—cp)\ gyt
ib) = Ui (a 5

b i
Uigla+ -, w) — ¥ig(a+ —

2

since

eng(@ — cp) = (1 — et e (g — ¢ +4b) = (1 — e™*) eg!(z — cp +ib),

egt(z —cp) = (1+ ie”b(‘”’cb”b/m)’leﬁé(w —cp +ib) = (14 ™) Leng(z — ep +ib).

So, eventually

- _mo(w+a—c Zb a Zb
(1Fiemt (vt b))\I/JNrS/R( §,w) = (1Fie b)\IIJP:/NS(a + E,w),
mo(w+a—c — lb ma b
(1tiem™ Wt b))\I/NS/R( g,w) =—(1—ie b)\I/R/NS(a—i— 5 w),
b ib
(1Fiemtwtae) )y (g + 5w —ib) = —(1Fe™ )W (a + % w),

ib b
(1il—e7rb(w+afcb))\ll§5(a + %, w — ib) = (1:F€7T(“’*Cb))\11§8(a 4 %’ w)7
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On the other hand, it is easy to check that

; . mab
n b - 1Fie™
PNg/r(a— §>w) =

_ ib 1Fiemab N ib
/(07 50 = T ety PR/ (0 )

b 1tem(w=cb) ib
@ﬁs(a—l—%,w—ib): ¢ R !

1Fiemblatw—cy) Prsla+ 27 w),

LA, = L
liFieWb(a-‘rw—cb) R/Ns(a+ 5 ,w),

1ie7rb(w—cb)

+ By 1EeTETR o w
o (a+ 5 W ib) = T p—" L(a+ 2,w),

Taking b — b~! one gets an additional set of shift equations. Given that one has

two doubly periodic functions with the same equations, they have to be equal up to a
constant:

\Illjfls(a,w) = C@ﬁs(a,w), \Ilﬁ(a,w) = C@ﬁ(a,w)

Then, one can fix C' by evaluating the expression on particular ¢ and w

Moreover, on can use the connection between eg, ens and Gr,Gns to prove the Ra-
manujan formulae based on the results from [80].

LHS — / <eNg x4 u) +6R(x+u)>emwxdx:

exs(z +v) (z+v)

B / <GNS( i(x+v) +Q/2) N Gr(—i(z +v) +Q/2)> Qi g
Grs(—i(z +u) +Q/2)  Gr(—i(zr+u)+ Q/2)

:/ <GNS(T—W+Q/2) n GR(T—’WJFQ/?)) orir(iw) 47 _

Gns(T—iu+Q/2)  Gr(T —iu+ Q/2) i
_ / <GNS(T +(Q/2 —iv) + (Q/2 + iu)) N Gr(T+ (Q/2 —iv) + (Q/2 + zu))) .
iR Gns(7+ Q) Gr(T+ Q)
" eﬂiT(iw)eﬂ(Q/%m)(m)di _
(3
_ 9p—imc/2 Gns (1w)Gns(Q + iu — iv)
Gns(Q + iu — v + fw)

e—ﬂ'w(Q/Q—‘riu) _

— % —wrcb/QA ens(iQ —u+v—w—c) e~ Tw(Q/24iu) _
A? eNs( — Cb)eNs(iQ —u+v— Cb)
_ 2€_i7r0%/2A2 eNS(_u tv—w+ Cb) e—ww(Q/Q-{-iu) _

ens(—w — ep)ens(—u + v + ¢p)
ens(—u+v—w+ap)

e—wiw(u—cb) <2€—i7rcg/2A2) _ RHS,
ens(—w — ep)ens(—u 4+ v + ¢p)

where

B = 2e—iwcg/2A2’ B = 2€i7rc%/2A—2’

Three additional equations can be proven in the same way.
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Permutation

In section 6.2.3 we mentioned that the P¢ in equation (6.24) is not the standard per-
mutation operator on CH' @ C'I' satisfying Pe(m @ m2)Ps = n2 @ mp for arbitrary
n,MN2 € End((Cm). In this appendix we want to show how to calculate the standard
permutation operator on C ® C in the supercase.

One can use the Pauli matrices as the bases : Hom (C!I') = span(a;) =span(I, o;)

a-(03) == (07) == (3 ) 1)

We consider permutation as
P(12) = ECL@'OT‘@O?’ (D.Q)

while the bases have grading as : | o7 |=| 71 |= 0, | 73 |=| 73 |= 1, (=1)%2 = (1)l and
satisfy the following relations:

_ __ __ . Y _ 5
o1€; = €;, 026, =¢€;11, 036 = Z(—l) 1‘2(3%‘_;,_1, oq€; = (—1) 1’261’7

We can choose the basis for calculating P(12) depending on the Pauli’s matrices as
o1 =1 o3 = 01, 03 = 02, 04 =03.
The permutation can be calculated as

Ya;j0; ® 05 = Spar (0 @ 07)(e; ® e5) = (_1)|i|\j\(ej ® ;) ij=1,2

129
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then we get:

Yok (Tg.€;) ® (W.ej)(—l)lei‘l?l‘ =aji(e; ® 6]') + a2(e; ® e; + 1)(—1)'6”4—
arz(e; @ i(—1)Vej 1) (=) + ara(e; @ (=1)71ej) + azi (eip1 @ €5) + as(er @ ej11)(—

ags(eip1 @ i(=1)ej) (=) + aga(eir ® (=1)Ve)) + agi (1) iess @ e;)+
az((—1)iei1 @ ej11) (1)1 + ags((—1)ieis @ i(=1)Vej ) (— 1)+
aza((—D)1ie 11 ® (—1)7ej) + aan ((=1)ie; @ e5) + asa((—1)"e; ® €;11)(—1) 1+
azs((—1)1e; @ (=1)liej 1) (—1)141 + aga ((—1)e; ® (—1)lley)

we have 16 equations for different choices of i and j. By solving these equations we get
the following non zero coefficients: a4 = 1/2, a9 =1i/2, ass = —i/2, agy =1/2.

Then, the permutation it found to be
2P(12) = 01 ® 04 +i02 ® 03 — 103 ® 03 + 04 ® 01
_H®1O+1O®H+O—1®Ol_01®0—l
- 0 —1 0 -1 1 0 10 10 1 0/
By knowing that
ac a8 ba  bB
a b - a B I ad by bd ' (D.3)
c d v 9 ca —cf da —bS
—cy ¢d  —dy b

Then permutation is

1 0 0 0
0O 0 -1 0

Pa =, 2 o o | (D.4)
00 0 -1

and satisfies the necessary properties

P(12)61®€1 =e1 ®eq, P(12)63®63 = e3 ® eg,
P(12)ea ® 9 = €3 ® ea, P(12)es ® e = —e4 ® e4.
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q-binomial

We introduce and prove some formulas for the so called g-analysis, which are useful for
the construction of quantum group, Drinfeld double and Heisenberg double of U, (sl(2)),
Drinfeld double and Heisenberg double of U,(osp(1]2)).

Lemma 1. g-binomial formula: If A and B are elements of an algebra obeying BA = ¢AB
then

(A+B)" = i (;) Ampr—m,

m=0

where

(n)q: (Lo

m (m)gl(n —m),! 1—gq

We suppose that the g-integer (m), is non zero for 0 < m < n. By convention (g)q =1
Proof. Assuming the result for (4 + B)""! we have

B n—1 n—1 L
(A+B)" 1(A+B):Z< ) AMB"IT™(A 4+ B)

m=0 m
n—1 n—1
_ Z qnflfm (n - 1) Aeranflfm + Z <n - 1) Ampn—m
m=0 m q m=0 m q
- n—m | 0~ 1 m pn—m - n—1 m pn—m
=> ¢ ) ATBTT > A™B
m=1 m q m=0 m q
—1
:An—i-Bn-i-nZ: qn—m<n_1> +<n_1> A™ Bn—m
m=1 m—1/, m- /g

Then by using the identity ¢"~™(m),+ (n—m), = (n), we can see the proof is complete.
U
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We present a short proof of

n (Dn
= _\Un E.1
(k) @@ (EL
where, (¢), = (1 —¢q)...(1 — ¢").
where we use the fact that
B o0 1 o o0
(@) =[5 =[] D_(wd")' =
k=0 q k=0 1=0

=(l4z+22+.)A+zq+ 22 +..).(I+z¢" + 22 +..)... =
=1+z(l+q+@ 4. )+2204+q+ ..+ 4+ +P+E+ .+ + P+ )+ =

T 5 1 9 4 T 5 1 1
SR e s U A A LR e Wt e g
S 0-d) =@k

g-binomial in terms of GG, functions In the non-supersymmetric case, we have the
following form of the Ramanujan summation formula

—onr Gb(a+i7) _ Gb(a)Gb(ﬁ)
/ dre @+ i)~ Goa+h) (E:2)

From this we can get the Fourier transforms. First, by taking o — +o00 and using

Gb(a:) — Eb, %(1‘) — +00, (E3)

where ¢ 1 = §, (because ¢, is a pure phase), we get

=278 Eb _
/dm G0t - @0
1

d(pt)e-2r®(F—ir) ____~
/()e ©Gu(Q+bt)

b | dpe2mivtr e e e Q 1 ombey -1
€ Gb(Q“‘th) _Cb b(2 /Lr)_gb (6 >_€b (7‘)

= Cbi(% —ir),

Now, using the complex conjugation property of the Gy,

Gy(z) = e ™M@= Gy (7), (E.4)

we can complex conjugate the previous expression to get

‘ —7btQ s
b / are i g% i,
Gp(Q + ibt) 2
e—wth

—2mibtr —in(Q—ibt)(Q—Q+ibt) _ = Q i (L4ir)(Q—- Y —ir)
b/dte Gb(Q—ibt)e Cbi(Z + ir)e'™2 2 )

—imh2t2
) _ 1
b/dt627rzbtr € i 627rbr en(r).

G (Q + ibt) Cbi(% —ir) gu(e™™) = en(r)
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Now, we can proceed with the calculation. We start from the shift property

b b
en(z = 3) = eplw + ) (1 +€>™).

Using that, we define u = €>™7, y = 2™ such that uwv = ¢?vu with ¢ = ¢™” | Then

ep(p — q)uegl(p — q) = eWbCI(l + 627717(10—11))6775‘1 =u+w.

Therefore,
2mibr (p—q) 2mibr2 (p—q)
it _ it _—1 _ 2 —imb272 € it —mbrQ € _

= en(p — )= [ dnd A 2Q &

(u+v)" =ep(p—que, (p—q) / midrae R (@1 )
. . . , 2mibT1 (P—q) 40t c2mibT2(P—q)
— 2 | drd —’L7Tb27'12G —ib —im(Q+ibr1 ) (Q+ibr —Q) ,—7b2Q € _
/ T1AT2€ b( 2 Tl)e e Gb(Q—i-isz)
_ b2 /dTldee—ﬂb(TQ—Tl)Q Gb(_ile) 627r7;b7'1(p—q)€27ribtqe27rib7'2(p—q) _ (*)
Gb(Q + ing)
7(27r7lb7'1)2

A o —@mibr)? B oo o 3 o
and because e2T0TIPe=2mibTIq — o — g 2mibT2(p—q) — —wib T} 2mibT2(P—4) gand similar

expression for 75 we have

_ _ i ; G (—ib]l) YV ;
_ b2 drd (o —711)Q ,—mib% (11 +72)2 2mib%tT) b i(t—m1—72),,i(T1+72)
(*) / ! 2 ¢ c Gb(Q+ZbTQ)u v

and after the change of the integration variable 7 = 71 4+ 79, Therefore,

Gp(—ibT +ib72) ii—r) 4
=2 [ drd —27bTo (Q+ibt)+mbT(Q-+2ibt) —mib> T2 i(t—7), it
(%) / Tdme Go(Q £ ibm) u v

Now, using the Ramanujan summation formula with o« = —ibr and § = @ + bt we get

s Gy (—ibT) G (Q + ibt) sy
_ d b1 (Q+2ibt) —mwib?r2 Ub i(t—T1), it
b/ e Go(—ibr +Q +ibt) =~ "

_ 2mib%tT —2mib2 12 Gb(Q + ’th) z(t 7') T / i(t— T) iT
- b/dTe Go(Q + ib7) Gy (—ibr + Q + ibt) =0 [dr :

where we set

t _ b/d7_€27rib2‘r(t‘r) Gb(Q + th)
T/ Gp(Q + ib7) Gy (—ibT + Q + ibt)
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