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To my lovely parents and my dear brother

Distance and nearness are attributes of bodies

The journeyings of spirits are after another sort.

You journeyed from the embryo state to rationality

without footsteps or stages or change of place,

The journey of the soul involves not time and place.

And my body learnt from the soul its mode of journeying,

Now my body has renounced the bodily mode of journeying.

It journeys secretly and without form, though under a form.

Jallaludin Rumi (1207-73), The Masnavi





Abstract

The quantization of the Teichmüller spaces of Riemann surfaces has found important

applications to conformal field theory and N = 2 supersymmetric gauge theories. We

construct a quantization of the Teichmüller spaces of super Riemann surfaces, using

coordinates associated to the ideal triangulations of super Riemann surfaces.

A new feature is the non-trivial dependence on the choice of a spin structure which

can be encoded combinatorially in a certain refinement of the ideal triangulation. We

construct a projective unitary representation of the groupoid of changes of refined ideal

triangulations. Therefore, we demonstrate that the dependence of the resulting quantum

theory on the choice of a triangulation is inessential.

In the quantum Teichmüller theory, it was observed that the key object defining the

Teichmüller theory has a close relation to the representation theory of the Borel half of

Uq(sl(2)). In our research we observed that the role of Uq(sl(2)) is taken by quantum

superalgebra Uq(osp(1|2)). A Borel half of Uq(osp(1|2)) is the super quantum plane. The

canonical element of the Heisenberg double of the quantum super plane is evaluated in

certain infinite dimensional representations on L2(R) ⊗ C1|1 and compared to the flip

operator from the Teichmüller theory of super Riemann surfaces.

vii





Zusammenfassung

Die Quantisierung der Teichmüller-Räume von Riemannflächen hat wichtige Anwendun-

gen in konformen Feldtheorien und inN = 2 supersymmetrischen Eichtheorien gefunden.

Wir konstruieren eine Quantisierung der Teichmüller-Räume von super-Riemannschen

Flächen, unter Verwendung von Koordinaten, die mit den idealen Triangulationen der

super-Riemannschen Flächen assoziiert sind.

Ein neues Merkmal ist die nichttriviale Abhängigkeit von der Wahl der Spinstruktur,

welche kombinatorisch in einer gewissen Verfeinerung der idealen Triangulationen kodiert

werden kann. Wir konstruieren eine projektive unitäre Darstellung des Gruppoids der

Änderungen der verfeinerten idealen Triangulationen. Dadurch zeigen wir, dass die

Abhängigkeit der resultierenden Quantentheorie von der Wahl der Triangulation nicht

wesentlich ist.

In der Quanten-Teichmüller-Theorie wurde beobachtet, dass der entscheidende Bestandteil

der Teichmüller-Theorie in enger Verbindung mit der Darstellungstheorie der Borelhälfte

der Uq(sl(2)) steht. Bei unserer Forschung haben wir beobachtet, dass die Rolle der

Uq(sl(2)) von einer Quanten-Superalgebra übernommen wird. Eine Borelhälfte der

Uq(osp(1|2)) ist die Quanten-Superebene. Das kanonische Element des Heisenbergdop-

pels der Quanten-Superebene wird in einer bestimmten unendlichdimensionalen Darstel-

lung auf L2(R)⊗C1|1 ausgewertet und mit dem Flip-Operator der Teichmüller-Theorie

von super-Riemannflächen vergleichen.
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Chapter 1

Introduction

Einstein’s theory of gravity and quantum field theory have proven to be appropriate

frameworks to explain some of the observed features of physics, from elementary particles

like electrons and protons to cosmology and the evolution of the universe. There remain

however unresolved fundamental problems. String theory may be offering answers to

many of these questions, such as the unification of all interactions, including gravity,

and the physics of strongly interacting quantum field theories.

Low-energy limits of string theory can often be identified with some quantum field

theories. One may expect the existence of a low-energy limit of string theory with

a certain amount of supersymmetry, but there is no known quantum field theory the

limit could correspond to. This expectation has led to a striking prediction in the

mid 1990’s: There exists a class of six-dimensional interacting conformal quantum field

theories known as (2, 0)-theories [3, 4]. Although little is known about these theories,

their existence leads to a geometric description of many supersymmetric field theories

in lower dimensions.

Families of four dimensional quantum field theories with N = 2 supersymmetry can

be described by means of compactification from the six-dimensional (2, 0)-theory on

spaces of the form M4 ×Σ, where Σ is a Riemann surface of genus g with n punctures.

This description allows us to relate the main features of the four-dimensional physics

to geometric structures on Σ. It seems supersymmetric field theories offer a promising

starting point to better understand the non-perturbative phenomena in quantum field

theory and by studying different choices of Σ, one can obtain a large class of four

dimensional quantum field theories and predict some results from their physics [5, 6].

In addition to the significance of the (2, 0)-theory for the study of quantum field the-

ories, this theory also plays a role in the remarkable duality conjecture proposed by

Alday, Gaiotto and Tachikawa (AGT) in 2009 [7]. AGT established a relation between

four-dimensional quantum field theory and correlation functions of a two-dimensional

quantum field theory, the so-called Liouville theory (see [8] for a review). Liouville the-

ory is a two dimensional non-rational conformal field theory, where conformal symmetry

implies that correlation functions can be represented in a holomorphically factorized

1
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form. Liouville theory has the following action 1

S =

∫
d2z(∂φ∂̄φ+ πµe2bφ), (1.1)

where, µ is a cosmological constant and b ∈ R is Liouville coupling constant.

Under the AGT correspondence, instanton partition functions [9], which encode non-

perturbative effects of N = 2 theories with SU(2) gauge groups, can be expressed

in terms of the conformal blocks, the holomorphic blocks of correlations functions, of

Liouville conformal field theory on Riemann surface Σ.

Furthermore, the expectation values of certain loop observables in four-dimensional

N = 2 supersymmetric gauge theories coincide with the expectation values of natu-

ral observables in the quantum theory of moduli spaces of flat connections2 (see [10] for

a review). On the other hand, Liouville conformal blocks are naturally related to certain

wave-functions in the quantum theory obtained by quantising the moduli spaces of flat

PSL(2,R)-connections on certain Riemann surfaces Σ [11]. To explain these relations

we need the proper mathematical terminology.

The Teichmüller spaces T (Σ) are the spaces of deformations of complex structures on

Riemann surfaces Σ. As there is a unique metric of constant curvature -1 associated

with each complex structure, one may identify the Teichmüller spaces with the spaces

of deformations of metrics with constant curvature -1. Such metrics naturally define

flat PSL(2,R)-connections on Σ, relating the Teichmüller spaces to the moduli spaces

Mflat(Σ) of flat PSL(2,R)-connections. The Teichmüller spaces appear as one of the

components in moduli of flat SL(2,R) connections [12, 13].

From classical uniformization theorem, there exists a unique constant negative curvature

metric on the Riemann surface Σ. In a complex coordinate z, such a metric has the

form ds2 = e2bφdzdz̄, with φ being a solution of the Liouville equation ∂∂̄φ = µe2φdzdz̄,

which coincides with the equation of motion for the Liouville equation (1.1)3. Due to the

close connections between Liouville theory and the theory of Riemann surfaces, quantum

Liouville theory turns out to have a geometric interpretation as describing the quantiza-

tion of theories of spaces of two-dimensional metrics with constant negative curvature.

Moreover, Verlinde conjectured that the space of conformal blocks in quantum Liou-

ville theory can be identified with the Hilbert spaces obtained by the quantization of

Teichmüller spaces of Riemann surfaces [14]. The relation between Liouville theory and

quantum Teichmüller theory was established by Teschner in [15, 16]4. Therefore, there

exist relations between quantized moduli spaces of flat PSL(2,R)-connections, quantum

Teichmüller theory and conformal field theory.

At this point we continue the motivation for studying the supersymmetric version of the

picture we outlined above and replace all the basic ingredients by the theories which

1This theory has central charge c = 1 + 6Q2, where Q = b+ b−1.
2The space of isomorphism classes of flat G-bundles modulo gauge transformations.
3This is the classical equivalence between Liouville and Teichmüller theory.
4One can show that the Hilbert spaces of two theories and the mapping class group actions are

equivalent.
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are established on super Riemann surfaces. It was shown recently that there are gen-

eralizations of AGT where super Liouville theory appears instead of ordinary Liouville

theory [17]. It seems likely that such generalizations are related to the quantum theory of

super Riemann surfaces in a way that is analogous to the relations between gauge, Liou-

ville and the quantum Teichmüller theories [10]. This bring us to the strong motivation

to focus our attention on the quantization of super Teichmüller spaces.

Beyond the motivation arising from the supersymmetric gauge theory, topological quan-

tum field theories (TQFT’s) are another important motivation for the research presented

in this thesis. They give an example for a fruitful interplay between mathematics and

physics. TQFT’s basic concepts formalize properties that one can expect for a quantum

field theory defined by some path integral. Chern-Simons theory is a prominent exam-

ple of a topological quantum field theory5. It describes a non-abelian gauge theory on

a three dimensional space manifold. There exists a partial equivalence between Chern

Simons theory on three manifolds with boundary and a certain conformal field theory,

the so-called WZW model, living on the boundary of these three manifolds 6. The

Chern-Simons theory on a compact spatial manifold gives rise to a finite dimensional

Hilbert space which turns out to be isomorphic to the space of conformal blocks of a

WZW model.

For Chern-Simons theory on a three-dimensional manifold of the form M = R×Σ, where

R is the time line, the classical phase space is the space of flat connections on Σ. Chern-

Simons theory with a compact gauge group G is well studied because of its applications

to knot theory and three dimensional topology. Further interesting examples of 3d

TQFTs arise from Chern-Simons theories having a non-compact gauge group. The

relation between Chern-Simons theories and moduli spaces of flat connections becomes

richer when the holonomy of the flat connections takes values in non-compact groups

like G = SL(2,R) or G = SL(2,C). The relevant conformal field theories are then

non-rational, having continuous families of primary fields (see [20] for a recent review

of some of these relations, and [21, 22] for recent progress on Chern-Simons theory

with a complex gauge group). Also, the study of Chern-Simons theories associated

to non-compact groups appears to have various profound links with three-dimensional

hyperbolic geometry [11, 23], [24–26].

Quantum Chern-Simons theory is obtained by quantizing the phase space and therefore

quantum Teichmüller theory is a useful tool for studying the quantization of SL(2,R)

Chern-Simons theory [27]. In the case which is currently best understood one is dealing

with a connected component of the moduli space of flat PSL(2,R)-connections on Σ

which is isomorphic to the Teichmüller space of Riemann surfaces [12, 13]. Relevant

observables acquire the geometric interpretation of quantized geodesic length functions.

5It has the action S = (k
∫

Σ
tr(A ∧A+ 2

3
A ∧A ∧A), where k is related to the coupling constant. A

is a gauge field, a Lie algebra valued one form.
6Ref [14, 18] argued that physical wave functions obeying Gauss law constrains of SL(2,R) Chern

Simons theory are Virasoro conformal blocks and provide the quantization of the Teichmüller space of
the surface Σ in [15, 19].
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Our motivation is to expand the resulting picture to the cases where the groups are

replaced by supergroups and to find the quantum super Teichmüller theory. The con-

structed quantum super Teichmüller would be a starting point for finding the quantiza-

tion of super Chern-Simons theory for the non-compact supergroup G = OSp(1|2).

Witten realized the relation between non-compact Chern-Simons theory and 2+1 quan-

tum gravity [28]7. Moreover, the relation of Teichmüller theory with (2+1)-dimensional

gravity with negative cosmological constant has been already discussed in literature

[14, 29]. Such a relation indicates that the super Teichmüller theory may also play

an analogous role for (2 + 1)-dimensional supergravity and it would be an interesting

direction of research.

Another motivation for the study of super Teichmüller theory comes from super string

perturbation theory. Understanding super string perturbation theory requires the un-

derstanding of subtleties of the superalgebraic geometry of super Riemann surfaces. The

Teichmüller theory has an interesting and rich generalization provided by the deforma-

tion theory of super Riemann surfaces. Initially motivated by superstring perturbation

theory, there has been a lot of research (reviewed in [30]) on the complex analytic theory

of super Teichmüller spaces. There exists a uniformization theorem for super Riemann

surfaces, describing super Riemann surfaces as quotients of the super upper half plane

by discrete subgroups of OSp(1|2) [31]. This provides us with an alternative picture

of super Teichmüller theory similar to the perspective on ordinary Teichmüller theory

offered by hyperbolic geometry. The theory of super Riemann surfaces should lead to

interesting generalizations of two and three dimensional hyperbolic geometry, currently

much less developed than the corresponding theories for ordinary Riemann surfaces.

This may be expected to lead to a new class of invariants of three manifolds in the

future.

Before explaining our approach for the quantization of super Teichmüller theory, we

now give some background about quantum Teichmüller theory and the role of quantum

groups in this subject.

Quantum Teichmüller theory

Quantization of Teichmüller spaces is a deformation of the algebra of functions on these

spaces. Teichmüller spaces of punctured surfaces have been quantized during the 1990s

in two different but essentially equivalent ways by Fock and Chekhov [32, 33] and in

parallel by Kashaev [34].

Ordinary Teichmüller theory is based on a suitable collection of coordinates associated

to the triangles forming a certain type of triangulation8 of the Riemann surface. One

essential ingredient in this theory are the coordinates associated to the triangles. The

7Three dimensional Einstein gravity with negative cosmological constant can be performed as a Chern
Simons gauge theory with gauge group SL(2,R)× SL(2,R).

8This type of triangulations is called ideal triangulations. Such a triangulation can be defined by
a maximal set of geodesic arcs intersecting only at the punctures of Σg,n representing their start- and
end-points. Such a collection of arcs decomposes the surface Σ into a collection of triangles.
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spaces of functions on Teichmüller spaces have natural Poisson structures which can be

used to formulate quantization problems.

This quantized theory leads to projective infinite dimensional unitary representations

of the mapping class groups of punctured surfaces [35], where the projective factor is

related to the Virasoro central charge in quantum Liouville theory [36]. The mapping

class group is a discrete group of symmetries of the Teichmüller spaces. The action of

operators generating the mapping class groups can be constructed using quantum groups

as the mathematical tools. Quantum groups have been found to be relevant in conformal

field theory, where fusion matrices are realized as 6j symbols for representations of the

associated quantum groups. The quantum group structure of Teichmüller theory is

consistent with the representation theoretical approach to quantum Liouville theory

[37, 38].

At this point we want to comment on the role of quantum groups, as algebraic tools

to reach the goal of this thesis. Afterwards, we will continue the details of construct-

ing quantum Teichmüller theory by defining appropriate coordinates on the Riemann

surfaces.

Drinfeld [39] and Jimbo [40] have defined certain types of Hopf algebras 9, known as

quantum groups, for any finite dimensional complex simple Lie algebra g and more

generally for any Kac-Moody algebra. The quantum group Uq(g) is a deformation of

the universal enveloping algebra U(g) for a nonzero complex parameter q. The methods

coming from the representation theory of quantum groups have found a wide range of

applications in mathematical and theoretical physics.

Moreover, quantum groups are quasi-triangular Hopf algebras. A Hopf algebra A is

called quasi-triangular if there exists an element R ∈ A ⊗A, the so-called universal R-

matrix. Initially, this element has been developed in the context of quantum integrable

systems, where it was shown that the R matrix satisfies the so-called Yang-Baxter equa-

tion [41, 42]

R12R13R23 = R23R13R12. (1.2)

The universal R-matrix is a canonical element of quantum groups and can be obtained

using the Drinfeld double construction. The Drinfeld double construction takes an arbi-

trary Hopf algebra and its dual and creates a quasi-triangular Hopf algebra which has a

R-matrix. From a given Hopf algbera one can make another double construction, called

Heisenberg double construction [43]. It admits a canonical element S ∈ A ⊗ A similar

to the R matrix. However,it satisfies not the Yang-Baxter equation, but the pentagon

equation

S12S13S23 = S23S12. (1.3)

Using Heisenberg doubles one can obtain the representations of Drinfeld doubles, because

one can embed the elements of the Drinfeld double into a tensor square of the Heisenberg

9A Hopf algebra is a bialgebra which satisfies particular axioms.
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double [43]. In our research, Heisenberg doubles appear in the context of quantum

Teichmüller theory of Riemann surfaces.

Now we return to the Teichmüller theory and explain the suitable coordinates with the

aim of quantizing such spaces. As mentioned, there exist useful systems of coordinates

associated to a triangulation of Σ, if Σ has at least one puncture. Kashaev assigned a

pair of variables (pi, qi) to each triangle i, the so-called Kashaev coordinates. The space

of these coordinates is equipped with a Poisson structure.

One can transform any two triangulations to each other by a finite composition of

elementary transformations ωij . The flip transformation ωij changes a quadrilateral,

which is formed by two triangles, by replacing the common edge by the opposite diagonal

of the quadrilateral as it is illustrated in figure 1.1.

i j
 ωij

j

i

Figure 1.1: The flip transformation ωij rotates clockwise the diagonal.

In quantum Teichmüller theory, Kashaev assigned a Hilbert space Hi w L2(R) to each

triangle of the triangulation. In this theory, Kashaev coordinates become operators pi,qi
which are the position and momentum self adjoint operators respectively and satisfy

the Heisenberg commutation relation [p, q] = 1
2π . The classical transformations ωij is

represented by a flip operator which is denoted by Tij : Hi ⊗Hj → Hi ⊗Hj . The role

of this operator is to describe how the coordinates change at the quantum level.

A basic issue to address in any approach based on triangulations is to demonstrate the

independence of the resulting quantum theory from the choice of triangulation. This can

be done by constructing unitary operators relating the quantum theories associated to

any two given triangulations. Being unitary equivalent, one may identify the quantum

theories associated to two different triangulations as different representations of one and

the same quantum theory.

Let us finally note that the flip operators T
(i)
12 have an interesting interpretation within

the Heisenberg double construction. The canonical element of Heisenberg double of

the Borel half of Uq(sl(2,R)) [44] in quantum groups language can be identified with

the flip operator Tij . The constructed operator is unitary and it generates a projective

representation of the Ptolemy groupoid describing the transition between different trian-

gulations. The Ptolemy groupoid includes a particular relation, called pentagon [34, 44],

TjkTikTij = TijTjk. (1.4)

According to Kashaev, each operator Tij is expressed as follows:
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Tij = eb(qi + pj − qj)e
−2πipiqj , (1.5)

where the Faddeev’s quantum dilogarithm eb [45, 46] is a particular special function

defined as

eb(z) = exp

(∫
C

e−2izw

sinh(wb) sinh(w/b)

dw

4w

)
, (1.6)

and which can be regarded as a quantization of the Roger’s dilogarithm. Faddeev’s

quantum dilogarithm [47] finds its origins and applications in quantum integrable sys-

tems [15, 48–50] and it has already been used in formal state-integral constructions of

invariants of three manifolds in the following works [23, 25, 26, 51, 52]. The Faddeev’s

quantum dilogarithm also found applications in conformal field theory, topological field

theory and hyperbolic geometry.

Super Teichmüller theory and quantum supergroup

The super Teichmüller theory is the Teichmüller theory of super Riemann surfaces. For

the classical super Teichmüller theory, Penner and Zeitlin [53] recently provided a super

symmetric version of the so-called Penner-λ-length coordinate [54] which has a connec-

tion to super Minkowski geometry. Bouschbacher [55] provided other coordinates by

using a different treatment of spin structures and based upon quite a different approach

using so-called shear coordinates (Fock coordinates). He constructed shear coordinates

for punctured super Riemann surfaces equipped with an ideal triangulation and defined

a super Poisson structure on this space using these coordinates.

In the super Teichmüller spaces, in addition to even coordinates associated to edges of

the underlying triangulation one may define additional odd coordinates associated to the

triangles. Assigning the so-called Kasteleyn orientations to the edges of a triangle allows

one to parametrize the choices of spin structures on super Riemann surfaces. The addi-

tional orientation data assigned to a triangulation are used to provide an unambiguous

definition of the signs of the odd coordinate.

We used shear coordinates as our coordinates on super Teichmüller space. Our approach

for quantizing is similar to the one used by Kashaev [34] for the case of ordinary Te-

ichmüller theory based on a suitable collection of coordinates associated to the triangles

forming an ideal triangulation of the surface. As for the ordinary case, the super flip

operator Tij also has a quantum groups meaning. Our main idea is to replace the Borel

half of Uq(sl(2,R)) of the ordinary case, by a suitable quantum superalgebra, the Borel

half of Uq(osp(1|2)) and establish the quantization.

Before explaining our approach to quantization and presenting our main results, we

briefly give a background of the superalgebra osp(1|2) and its role in super Liouville

theory.

The superalgebra osp(1|2) is a graded extension of the sl(2) algebra and was first in-

troduced by Kulish in [56]. The simplest non-rational supersymmetric CFT theory is

N = 1 supersymmetric Liouville theory, which is related to the superalgebra osp(1|2).

This algebra appears as part of N = 1 super conformal symmetry.
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The finite dimensional representations of superalgebra osp(1|2) and Racah-Wigner coef-

ficients have already been studied in the literature [57]. Also, super conformal symmetry

can be realized in terms of free fields [58–60]. This free fields representation can be used

to construct conformal blocks and their behavior under braiding and fusion can be ex-

pressed by a quantum deformation of the universal enveloping algbera of osp(1|2). For

the series of representation, the Clebsch-Gordan and Racah-Wigner coefficients for the

quantum deformed algebras Uq(osp(1|2)) have been determined in [61]. Here, it was

shown that the associated Racah-Wigner coefficients agree with the fusion matrix in the

Neveu-Schwarz sector of N = 1 supersymmetric Liouville field theory.

Approach and summary of main results

Same as for the ordinary case, the symplectic structure of super Teichmüller spaces gives

the possibility of canonical quantization [33, 34]. In what follows, we will present our

approach for quantizing super Teichmüller theory and summarize our main results.

An important new feature is the dependence of the super Teichmüller theory on the

choices of spin structures. Following the approach of Cimansoni and Reshetikhin [62, 63],

we encode the choices of spin structures into combinatorial data, Kasteleyn orientations,

suitably adapted to the triangulations of our interest.

We assign the Hilbert space Hi w L2(R)⊗ C1|1 to each triangle. Therefore, the Hilbert

space associated to the entire super Riemann surface is the tensor product of the spaces

for each triangle. In addition to a pair of even variables (qi, pi) assigned to each ideal

triangle, we introduce an odd variable ξi. The collection of these variables is called super

Kashaev coordinates. The super Kashaev coordinates get quantized to linear operators

on the Hilbert spaces Hi. The coordinates pi and qi are replaced by operators satisfying

canonical commutation relations and are represented on L2(R) as multiplication and

differentiation operators. The odd coordinate ξi becomes an operator acting on Hi of

the form

ξi =

√
q

1
2 − q−

1
2κi, κ =

(
0 1

1 0

)
∈ C1|1, (1.7)

where q = eiπb
2

and the quantization constant ~ is related to b as ~ = 4πb2.

The unitary operators representing changes of triangulations, generate a projective rep-

resentation of the super Ptolemy groupoid describing the transitions between suitably

refined triangulations equipped with Kasteleyn orientations. Suitable choices of orien-

tation on the triangulations lead to different types of super flip operators.

In our results there exist eight possible superflips T
(1)
ij . . . T

(8)
ij and they can be related to

each other. The superflip T
(1)
ij is the one which satisfies the pentagon relation by itself

and has the following form

T
(1)
ij =

1

2

[
f+(qi + pj − qj)I⊗ I− if−(qi + pj − qj)κ⊗ κ

]
e−iπpiqj , (1.8)

where, p,q are the position and momentum self adjoint operators respectively and sat-

isfy the Heisenberg commutation relation [p, q] = 1
2π . The two functions f+, f− are
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constructed out of quantum dilogarithm functions and κ is a two by two matrix in C1|1.

We also generalize the Ptolemy groupoid relations, including the pentagon relation to

the supersymmetric case.

In a similar manner, as for the ordinary case, the flip operator T
(1)
ij is found to coincide

with the canonical element of the Heisenberg double of the Borel half of Uq(osp(1|2)),

which is evaluated in certain infinite dimensional representations on L2(R) ⊗ C1|1. An

ongoing project is to construct the basis and dual basis of Heisenberg double and check

the identification of the canonical element S with the super flip operator T
(1)
ij .

There exists also another related project to this thesis regarding the Drinfeld double

of Uq(osp(1|2)). Using the structure of quantum super Teichmüller theory, we already

derived the braiding operator and related R matrix for the quantum groups, Borel half

of Uq(osp(1|2)). The ongoing project is to check the properties of the R matrix and find

the canonical element of Drinfeld double and identify that with our proposed R matrix.

Overview

This thesis is based on the preprint [1] and forthcoming [2] and it is organized as follows.

In Chapter 2, we review ordinary Teichmüller theory of Riemann surfaces and its

quantization. First we discuss how to parametrize the Teichmüller space using sets of

coordinates associated to a triangulation. This triangulation has natural analogues in

the case of super Teichmüller theory. Afterwards, we proceed to discuss the quantization

of this theory and the projective representation of the Ptolemy groupoid relating the

Hilbert spaces assigned to different triangulations.

Chapter 3 includes the introduction of the fundamentals of quantum groups. We intro-

duce the basic notions of Drinfeld and Heisenberg doubles. We use this background for

understanding the construction of the flip operator in the ordinary Teichmüller theory.

This knowledge will be also useful for calculating the R matrix in chapter 8.

In Chapter 4 we introduce the notion of a quantum plane and the Heisenberg double

of the Borel half of Uq(sl(2)). We study the Kashaev representation of the latter. This

representation has been shown to be relevant in the quantization of the Teichmüller

theory. We explain the steps of an ongoing project to find the basis of the continuous

version of the Heisenberg double of the Borel half of Uq(sl(2)).

In Chapter 5, we discuss classical super Teichmüller theory. In order to encode the

choices of spin structure we refine the triangulations into graphs called hexagonalizations.

Such graphs with chosen Kasteleyn orientations can be used to define super analogues

of the shear coordinates. Changes of hexagonalizations define an analogue of the super

Ptolemy groupoid which can be characterized in terms of generators and relations.

Chapter 6 describes the quantization of the classical super Teichmüller theory. We

define operators representing analogues of the coordinates used in the work of Fock and

Kashaev, respectively. These operators generate the super Ptolemy groupoid describing
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changes of triangulations. The relations of the super Ptolemy groupoid follow from

identities satisfied by suitable variants of Faddeev’s quantum dilogarithm.

In Chapter 7 our goal is to generalize the construction involving Heisenberg double

algebras (which allowed us to obtain the canonical element identified with a flip oper-

ator of the Teichmüller theory) to the case of the super Teichmüller theory. We start

with an introduction to quantum supergroups and we focus on the quantum super-

group Uq(osp(1|2)). We explain the steps of an ongoing project to find the basis of the

continuous version of the Heisenberg double of the Borel half of Uq(osp(1|2)).

Chapter 8 starts with a review of how one can derive the R matrix in the ordinary

Teichmüller theory from a geometric point of view and how to check the defining its

properties. Then we explain the geometric aspect of R matrix in super Teichmüller the-

ory.



Chapter 2

Ordinary Teichmüller theory

The problem of classifying different structures on Riemann surfaces was of interest from

the early on. Bernhard Riemann stated that for a compact Riemann surface of genus

g ≥ 2 the space Mg,0 of different conformal structures has a complex dimension 3g− 3,

where the space Mg,n is the Riemann’s moduli space of flat connections on punctured

Riemann surfaces Σg,n. Given that Riemann surfaces can be equivalently defined using

either complex analytic or algebra-geometric methods, the Riemann’s moduli spaces can

be studied in terms of generators and relations extensively from an algebraic geometry

point of view. During the late 1930s, Teichmüller followed an analytic approach by

using quasiconformal mapping and he defined new, but closely related, spaces called the

Teichmüller spaces Tg,n.

In order to prepare for the case of super Teichmüller theory, we found it useful to briefly

review relevant background on the Teichmüller spaces of deformations of complex struc-

tures on Riemann surfaces in this chapter. In the first section we describe relevant

background on the classical Teichmüller space. We define ideal triangulations of Rie-

mann surfaces and, within this combinatorial framework, we study Penner coordinates

[54], Fock coordinates [32] and Kashaev coordinates [34], which provide us with different

parametrizations of the Teichmüller space and the symplectic structure on that. We also

study how those coordinates transform under the changes of triangulations of Riemann

surfaces, like flips and rotations. For a more comprehensive review we reference [16].

Later in the second section, we study the quantization of Teichmüller theory. We present

the operatorial realization of Kashaev and Fock coordinates, as well as the transfor-

mations of them under the change of triangulations. We also present the quantum

generators of Ptolemy groupoid.

11
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2.1 Classical Teichmüller theory

In the following we will consider two-dimensional surfaces Σg,n with genus g ≥ 0 and

n ≥ 1 punctures having 2g − 2 + n > 0. Useful starting points for the quantization of

the Teichmüller spaces are the coordinates introduced by Penner [54], and their relatives

used in the works of Fock [32], Chekhov and Fock [33] and Kashaev [34]. Using these co-

ordinates one may define an essentially canonical quantization of the Teichmüller spaces

which will be expressed in section 2.2.

2.1.1 Riemann surfaces

Here we will shortly recall some facts about Riemann surfaces. A Riemann surface

Σg,n is a 1-dimensional complex connected manifold with genus g and n punctures (i.e.

the holes with vanishing length) with biholomorphic transition functions. Equivalently,

one can define Riemann surfaces as 2-dimensional manifolds equipped with a conformal

structure, that is an equivalence class of metrics identified by the property of being

related by conformal transformations. We will be interested in a particular sub-class of

Riemann surfaces — those having a hyperbolic structure, i.e. those with a metric of

constant negative curvature equal to −1.

It is a well known result (dating back to Koebe and Poincaré) that every Riemann sur-

face is conformally equivalent to either the Riemann sphere, the unit disk or the upper

half-plane, depending on its curvature, known as a uniformization theorem. The uni-

formization theorem states that Riemann surfaces Σg,n can be represented as quotients

of the upper half-plane H = {z ∈ C : Im(z) > 0} equipped with the Poincaré metric

ds2 = dydȳ
(Im(y))2 by discrete subgroups Γ of PSL(2,R) called Fuchsian groups1

Σg,n ≡ H/Γ. (2.1)

We may represent the points on Σg,n as points in a fundamental domain D in the upper-

half plane on which Γ acts properly discontinuously. The n punctures of Σg,n will be

represented by a collection of points on the boundary of H which can be identified with

the projective real line RP1. Figure 2.1 illustrates the uniformization of a once-punctured

torus Σ1,1.

X 1 X 2
X 3 X 4

P

e

e

H

Figure 2.1: Realization of a quadrilateral laying on a Riemann surface on the upper
half plane.

1Discrete subgroups of PSL(2,R) having no elliptic elements.
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The Teichmüller space Tg,n of Riemann surfaces Σg,n can be identified with the connected

component in

T (Σg,n) = Tg,n = {ψ : π1(Σg,n)→ PSL(2,R)}/PSL(2,R), (2.2)

that contains all Fuchsian representations ψ. The group PSL(2,R) acts on representa-

tions ψ by conjugation,

H/Γ ' H/Γ′, iff Γ′ = gΓg−1, g ∈ PSL(2,R).

2.1.2 Ideal triangulations and fat graphs

In order to study Teichmüller spaces, we need to define local coordinates. There are

several ways to do that. Useful sets of coordinates for the Teichmüller spaces can be

associated to ideal triangulations of Σg,n. Such a triangulation can be defined by a

maximal set of geodesic arcs intersecting only at the punctures of Σg,n representing

their start- and endpoints. Such a collection of arcs decomposes the surface Σg,n into a

collection of triangles. An ideal triangulation τ of Riemann surface Σg,n is defined by

3(2g − 2 + n) arcs, called edges, and has 2(2g − 2 + n) triangles.

The examples of 4-punctures sphere Σ0,4 and of 1-punctured torus Σ1,1 are illustrated

in figures 2.2 and 2.3.

A
B

CD

C0,4

A B

CD

Figure 2.2: An ideal triangulation of
Σ0,4.

P

C1,1

P

PP

Figure 2.3: An ideal triangulation of
Σ1,1.

We will consider ideal triangulation τ of Riemann surfaces and associated to them a

dual tri-valent graph, the so-called fat graphs ϕ(τ) and assign coordinates in a manner

such that they transform appropriately under the change of triangulation. An example

of a fat graph is illustrated in figure 2.4 and 2.5.
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v
e1
v

e2
v

e3
v

τ

Figure 2.4: An ideal triangle with a
dual fat graph.

 

e

b

c

a

d
τ1 τ2

Figure 2.5: Two adjacent triangles
and the dual fat graph.

2.1.3 Penner coordinates

We want to parametrize Tg,n using ideal triangulations of Riemann surfaces. In order

to do that we will take a point p in Tg,n and a triangulation τ and assign coordinates to

the edges of triangulation. Penner [54] first introduced such coordinates.

For any surface Σg,n with n ≥ 0, take the trivial R>0 bundle over Tg,n called decorated

Teichmüller space and denoted by T̃g,n.

Given any point p in the decorated Teichmüller space and ideal triangulation on Σ, the

Penner coordinate le(p) is defined as the hyperbolic length of the segment δ of each

edge e that lies between two horocycles h surrounding the punctures p that e connects.

Triangulation of once puncture torus is illustrated in figure 2.6.

b

e

P
a

h

Figure 2.6: Triangulation of once-
puncture torus.

δ

p1 p2

Figure 2.7: Length of geodesy be-
tween two horocycles.

Then l(e) = e±δ/2, while the plus sign is for the case that two horocycles do not intersect

and minus sign otherwise (figure 2.7). There are variants of the Penner coordinates

which were introduced by Fock and Kashaev in terms of the Penner coordinates as we

will discuss next.

2.1.4 Shear coordinates (Fock coordinates)

Let us consider a model of the Riemann surface Σg,n on the upper-half plane. Then, the

ideal triangulation will be given by hyperbolic triangles with vertices on the boundary

of the upper-half plane.
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Useful sets of coordinates may be assigned to the edges of an ideal triangulation by

assigning to an edge e separating two triangles as illustrated in figure 2.1 the cross-ratio

e−ze =
(x1 − x2)(x3 − x4)

(x1 − x4)(x2 − x3)
, (2.3)

formed out of the points x1, x2, x3, x4 on representing the corners of the quadrilateral

decomposed into two triangles by the edge e. The resulting set of 6g−6+3n coordinate

functions may be used to get a system of coordinates for Teichmüller space by taking

into account the relations
∑

e∈E(Pi)
ze = 0, where E(P ) is the set of edges ending in

puncture P . This combination is in fact a conformal invariant, i.e. is invariant under

the action of the PSL(2,R) on the upper half plane H given by Möbius transformations(
a b

c d

)
: z → az + b

cz + d
. (2.4)

Moreover, if one uses the action of PSL(2,R) to transform points with coordinates

x1, x2, x3, x4 in a way such that three of them are mapped to the points 0,−1,∞, then

the last one is mapped to the point with coordinate given by equation (2.3).

We can assign those coordinates to the edges of triangulations in the following way:

the quadrilateral composed of points x1, . . . , x4 can be triangulated into two triangles,

with a common edge e connecting the points x1 and x3. We can assign to this edge a

conformal cross-ratio given by (2.3)

e→ ze. (2.5)

This assignement gives us the Fock coordinates.

For an ideal triangulation of a Riemann surface Σg,n we have 3(2g−2+n) edges, therefore,

we have the same number of coordinates ze assigned to the edges of the triangulation,

or, equivalently, the edges of the fat graph dual to this triangulation. However, not all of

those coordinates are independent of each other — there are in fact constraints imposed

on them. In order to specify them, we consider paths along the edges of the fat graph.

Through the properties of the spaces with constant, negative metrics each closed curve

can be homotopically deformed into a closed geodesic, and that one can be related to

a curve of minimal length along the edges of the fat graph. For every closed curve c,

corresponding to a sequence of edges e1(c), . . . , emc(c) on the fat graph, the following

combination of Fock coordinates is not linearly independent

fϕ,c =

mc∑
i=0

zei(c) = 0. (2.6)

As already mentioned, Fock coordinates are a variant of Penner coordinates. The de-

pendence of the Penner coordinates on the choice of horocycles drops out in the Fock

coordinates. For two adjacent triangles, Fock coordinate ze is defined by the following
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equation, where the labeling follows figure 2.5

ze = la + lc − lb − ld. (2.7)

2.1.5 Weil-Petersson form

A set of Fock coordinates assigned to an ideal triangulation of a Riemann surface

Σg,n subjected to the constraints parametrises the Teichmüller space Tg,n. The Te-

ichmüller space provided a symplectic structure described by a Weil-Petersson form.

This Poisson bracket on the space of unconstrained Fock coordinates reduces to the

Weil-Petersson one under the imposition of those constraints. It has however a particu-

larly simple description

{, }WP =
∑
e,f∈E

ne,fzezf
∂

∂ze

∂

∂zf
, (2.8)

where n = ±2,±1, 0 and E is the set of edges of the ideal triangulation under consider-

ation. The number ne,f depends on the mutual position of the edges e and f inside the

fat graph. If those edges do not share a common vertex or one of them is a loop, then

ne,f = 0. If that is not the case and the edges meet at two vertices, then if the edge f

is the first one to the right of the edge e with respect to the orientation to the surface

then ne,f = 2; if it is to the left — ne,f = −2; if any of those is not the case — ne,f = 0.

Otherwise, if the edge f is the first one to the right of the edge e at the common vertex

then ne,f = 1; if it is to the left — ne,f = −1. Shortly, where nef is the number of times

e and f meet in a common end-point P , counted positively if f is the first edge reached

from e upon going around P in clockwise direction, counted negatively otherwise. We

can write the Poisson bracket among the coordinate functions as

{ze, zf}WP = ne,f . (2.9)

2.1.6 Changes of triangulations and the flip map

We used the ideal triangulations of Riemann surface in defining the coordinates on Te-

ichmüller space Tg,n. Definition of Teichmüller space does not involve triangulations,

therefore, it is necessary to connect the parametrizations based on different triangu-

lations of the same Riemann surface to each other. It can be shown that two ideal

triangulations of the same Riemann surface can be connected by a sequence of elemen-

tary moves, which are permutations (vw) and flips ωvw.

A permutation (vw) just exchanges the labels of triangles dual to vertices v and w of the

associated fat graph. The flip ωvw changes the triangulation of a quadrilateral composed

of two triangles dual to v and w. We illustrate this map in figure 2.8.

The definition of the shear coordinates ze was based on the choice of an ideal trian-

gulation and changing the ideal triangulation defines new coordinates z′e that can be
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i

j

i j

 ωij

Figure 2.8: A flip map ωij .

expressed in terms of the coordinates ze. Indeed, using the explicit expression (2.3), the

change of triangulation induces the following change of coordinates

ez
′
1 = ez1(1 + eze),

ez
′
4 = ez4(1 + e−ze)−1,

ez
′
e = e−ze ,

ez
′
2 = ez2(1 + e−ze)−1,

ez
′
3 = ez3(1 + eze),

(2.10)

leaving all other coordinates unchanged. The notation, involving the numbering of the

edges of quadrilaterals, is explained in figure 2.9.

 

x5
x1

x6

x4

x7

x2

x8
x3

ez 1

ez 4

ez 2

ez 3

ez e

x5 x6

x2x4

x8x7
x3

x1

ez ' 1 ez ' 2

ez ' 4 ez ' 3

ez ' e
Flip

Figure 2.9: A transformation of Fock coordinates under a flip.

2.1.7 Kashaev coordinates

Up to this moment we considered the Fock coordinates, attached to the edges of an

ideal triangulation, to parametrize Teichmüller space. However, as we have seen, the

symplectic form of those coordinates is not particularly suitable when it comes to the

quantization. As a particularly useful starting point for quantization it has turned out to

be useful to describe the Teichmüller spaces by means of a set of coordinates associated

to the triangles (or, alternatively, to the vertices of the associated fat graph) rather than

the edges of an ideal triangulation, called Kashaev coordinates [34].

We shall label the triangles ∆v by v = 1, . . . , 4g− 4 + 2n and in order to define them, it

is necessary to consider a refined version of triangulations, which we will call decorated

triangulations. In every triangle of an ideal triangulation τ we distinguish one partic-

ular vertex, called a marked corner. To this decorated triangualation τ we associate a

decorated fat graph ϕ(τ), that is a dual tri-valent graph with a cyclic ordering on the
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half-edges incident on each vertex, fixed by the decorated corners. An example of a

decorated fat graph is illustrated in figure 2.10.

*
v

e1
v

e2
v

e3
v

τ

Figure 2.10: A decorated triangle with a dual fat graph.

According to figure 2.10 we label the edges that emanate from the vertex v by evi ,

i = 1, 2, 3. Kashaev introduced pairs of variables (qv, pv) for each vertex v of a decorated

fat graph ϕ(τ), as

(qv, pv) = (l3 − l2, l1 − l2). (2.11)

As we have 2(2g − 2 + n) of those vertices in our fat graph, in total there will be

4(2g − 2 + n) Kashaev coordinates, parametrising a space isomorphic to R4(2g−2+n),

which we will call a Kashaev space.

A pair of variables (pv, qv) were assigned to each triangle (Kashaev coordinates ) allowing

us to recover the variables ze (Fock variables). The Fock coordinate associated to an

edge e of a fat graph is expressed in terms of Kashaev coordinates associated to vertices

v, w of that fat graph, where the edge e connects the vertices v and w. Explicitly, we

can write

ze = z̃e,v + z̃e,w, z̃e,v =


pv if e = ev1,

−qv if e = ev2,

qv − pv if e = ev3.

(2.12)

where evi are the edges surrounding triangle ∆v counted by i = 1, 2, 3 in counter-clockwise

order such that e3
i is opposite to the distinguished corner, as illustrated in figure 2.10.

The space R4(2g−2+n) will be equipped with a Poisson structure defined by

{pv, pw} = 0,

{qv, qw} = 0,
{pv, qw} = δv,w. (2.13)

It can be shown that the Poisson structure of Kashaev coordinates given by (2.13)

induces the Poisson structure on shear coordinates (2.9) via (2.12). However, it is

clear that there is substantially too many Kashaev coordinates when compared with the

dimension of Teichmüller space.

One may then describe the Teichmüller space using the Hamiltonian reduction of R4(2g−2+n)

with Poisson bracket (2.13) with respect to a suitable set of constraints hγ labeled by

γ ∈ H1(Σg,n,Z), and represented as linear functions in the (pv, qv) [34]. The functions

ze defined via (2.12) satisfy {hγ , ze} = 0 for all edges e and all γ ∈ H1(Σg,n,Z) and may

therefore be used to get coordinates for the subspace defined by the constraints.
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More extensively, every graph geodesic can be represented as a sequence of edges, but

since each edge is an ordered pair of vertices of the fat graph, it can be just as well

represented by an ordered sequence of vertices. For a closed curve γ we will denote the

corresponding vertices as vi, i = 0, . . . ,mγ where v0 = vmγ , and corresponding edges as

ei, i = 1, . . . ,mγ . Then to the closed curve γ ∈ H1(Σg,n,Z) we can assign a combination

of Kashaev variables:

hγ =

mγ∑
i=1

ui, (2.14)

where

ui = ωi


−qvi if {ei, ei+1} = {evi3 , e

vi
3 }

pvi if {ei, ei+1} = {evi2 , e
vi
3 }

qvi − pvi if {ei, ei+1} = {evi1 , e
vi
2 },

(2.15)

with the numbering of edges which is given according to figure 2.10, and ωi = +1 if

the arcs connecting edges ei and ei+1 turn around the vertex vi in the counterclockwise

fashion (with respect to the orientation of the surface) and ωi = −1 if not. Then, the

constrains which described the embedding of the Teichmüller space into R4(2g−2+n) are

hγ = 0, for every curve γ.

Change of Kashaev coordinates under the change of triangulation

One may define changes of Kashaev coordinates associated to any changes of ideal trian-

gulations preserving the Poisson structure, and inducing the changes of shear coordinates

(2.10) via (2.12). Having equipped the ideal triangulations with an additional decoration

represented by the numbering of the triangles ∆v and the choice of a distinguished cor-

ner in each triangle forces us to consider an enlarged set of elementary transformations

relating arbitrary decorated ideal triangulations. Elementary transformations are the

flips ωvw, the rotations ρv and the permutations (vw).

Flips ωvw, change the triangulation of a quadrilateral composed of two triangles dual

to v and w — this flip however differs from the undecorated type by the fact that

the triangles have distinguished vertices. The rotations ρv rotate the marked corner in

a counter-clockwise fashion by 120◦ in a triangle dual to the vertex v. The first two

are illustrated in figures 2.11 and 2.12, respectively, while the permutation (uv) simply

exchanges the labels of the triangles u and v.

v

w
v w

 ωvw

*

*

*

*

Figure 2.11: The transformation ωvw.
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v ρv
*

*
v

Figure 2.12: The transformation ρv.

The change of coordinates associated to the transformation ρv is given as

ρ−1
v : (qv, pv)→ (pv − qv,−qv), (2.16)

while under a flip ωvw the transformation of Kashaev coordinates is realized by

ω−1
vw :

{
(Uv, Vv)→ (UvUw, UvVw + Vv),

(Uw, Vw)→ (UwVv(UvVw + Vv)
−1, Vw(UvVw + Vv)

−1),
(2.17)

where we denote Uv ≡ eqv and Vv = epv .

2.1.8 Classical Ptolemy groupoid

The transformations between decorated ideal triangulations generate a groupoid that

can be described in terms of generators and relations. As we mentioned above, any

two decorated triangulations of the same Riemann surface can be related by a finite

sequence of permutations (vw), flips ωvw and rotations ρv. Any sequence of elementary

transformations returning to its initial point defines a relation. A basic set of relations

implying all others is known to be the following

ρv ◦ ρv ◦ ρv = idv, (2.18a)

(ρ−1
v ρw) ◦ ωvw = ωwv ◦ (ρ−1

v ρw), (2.18b)

ωwv ◦ ρv ◦ ωvw = (vw) ◦ (ρvρw), (2.18c)

ωv1v2 ◦ ωv3v4 = ωv3v4 ◦ ωv1v2 , vi 6= vj , i 6= j, (2.18d)

ωvw ◦ ωuw ◦ ωuv = ωuv ◦ ωvw. (2.18e)

The first equation implies simply that the threefold application of the rotation ρv on

the same triangle returns the decorated vertex to the same position while, the second

expresses the fact that the flips for unconnected quadrilaterals commute. The pentagon

relation (2.18e) illustrated in figure 2.13 is of particular importance, while the relations

(2.18a)-(2.18c) describe changes of the decorations. The other two equations are shown

in figures 2.14 and 2.15, respectively.
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Figure 2.13: The pentagon equation.
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Figure 2.14: A pictorial representation
of the 2nd equation of (2.18).

 ω ji

(12)∘ρ1×ρ2

 ωij

ρ1

2

2
2

2
1

1

1
1

*
*

*

*

*

**
*

Figure 2.15: A pictorial representation
of the 3th equation of (2.18).

2.2 Quantum Teichmüller theory

In section 2.1.4 we studied Fock coordinates, defined in term of conformal cross-ratios,

and their properties. We introduced another useful set of coordinates which parametrise

the Teichmüller spaces, called Kashaev coordinates in section 2.1.7. In this section we

aim to provide a quantization of Teichmüller in terms of those coordinates.

Quantization of the Teichmüller theory of punctured Riemann surfaces was developed

by Kashaev in [34] and independently by Fock and Chekhov in [32, 33], and utilized the

Faddeev’s quantum dilogarithm function in an essential way. Because of the functional

relations of the quantum dilogarithm, the rational transformations of the Fock coordi-

nates are ensured on the quantum level. A representation of mapping class groups can be

constructed using the realization of the elementary Ptolemy groupoid transformations

relations (2.1.8) and are expressed in terms of self adjoint operators (check [16, 34–36, 44]

for more details).
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2.2.1 Canonical quantization of Kashaev coordinates

The idea of quantization comes from theoretical physics. Quantizing a symplectic man-

ifold, one considers a 1-parameter family of deformations of the algebra of functions

on this manifold, which is called algebra of observables. This deformed algebra is non-

commutative in general and realized as an algebra of operators on some Hilbert space,

and a deformation parameter (denoted usually ~ or h) is known as Planck constant.

If the classical space is realized as a larger manifold subjected to constraints, it is possible

to either first execute the constraints and then quantise the theory, or to quantise the

unconstrained theory and impose the constraints directly on the quantum level.

Now, we want to perform a quantization of Teichmüller space. The quantization is

particularly simple in terms of the Kashaev coordinates, because they are canonically

conjugate. We will associate a Hilbert space Hv = L2(R) with each face of a decorated

triangulation and a Hilbert space associated to the entire triangulation is a multiplication

of N = 2(2g − 2 + n) of those spaces

H =

4g−4+2n⊗
v=1

Hv. (2.19)

Then, the Kashaev coordinates, which previously were just canonically conjugate vari-

ables on R4(2g−g+n), get quantized to a set of self adjoint operators (pv, qv), v = 4g − 4 + 2n,

have the following commutation relations

[pv, qw] =
1

2πi
δvw,

[qv, qw] = 0,

[pv, pw] = 0,
(2.20)

and act on the Hilbert space as multiplication and differentiation.

Then, we can immediately introduce the quantized version of coordinate functions hγ
and Fock coordinates ze as the self-adjoint operators hγ and ze on H respectively.

The result would be very similar to the classical one in (2.14) and (2.12) and is obtained

by just replacing classical Kashaev coordinates with their quantum counterparts in those

expressions. It can be shown that the resulting commutation relation satisfies,

[
ze, z

′
e

]
=

1

2πi

{
ze, z

′
e

}
WP

. (2.21)

A quantum version of the Hamiltonian reduction procedure can be defined describing

Hilbert space and algebra of observables of the quantum theory of Teichmüller spaces in

terms of the quantum theory defined above. There exists a way to impose the constrains

in the quantum theory. One can use those constrains to define the physical Hilbert space

out of the tensor product Hilbert space introduced in (2.19). The treatment to produce

the physical space discussed in the following references [16, 34].
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2.2.2 Changes of triangulations and quantum Ptolemy grupoid

Here, we will consider a quantized realization of maps changing the triangulation τ of

a Riemann surface Σ. The move ρv rotating the distinguished vertex of a triangle v is

realized by an operator Av : Hv → Hv

Av = eiπ/3e−i3πq
2
ve−iπ(pv+qv)2

. (2.22)

One can show that it, as expected, cubes to the identity operator

A3
v = idv.

Operator A is unitary and is characterized by the equations

AqA−1 = −p, A−1qA = p− q, (2.23)

ApA−1 = q− p, A−1pA = −q. (2.24)

The flips get represented by unitary operators Tvw : Hv ⊗Hw → Hv ⊗Hw defined as

Tvw = eb(qv + pw − qw)e−2πipvqw , (2.25)

where b is a parameter such that Planck’s constant ~ = 2πb2, and eb is a quantum

dilogarithm function defined as

eb(x) = exp

[∫
Ri0

dw

w

e−2ixw

4 sinh(wb) sinh(w/b)

]
, (2.26)

and it is related to the Double sine function as it is explained in appendix A.

In the literature, the T operator is expressed in terms of the function gb, which is related

to eb as

gb(e2πbz) = eb(z). (2.27)

The quantized version of the transformation of the shear coordinates takes the form

T−1
vwe

2πbz′1Tvw = eπbz1(1 + e2πze)eπbz1 ,

T−1
vwe

2πbz′2Tvw = eπbz2(1 + e−2πze)−1eπbz2 ,

T−1
vwe

2πbz′3Tvw = eπbz3(1 + e2πze)eπbz3 ,

T−1
vwe

2πbz′4Tvw = eπbz4(1 + e−2πze)−1eπbz4 ,

T−1
vwe

2πbz′eTvw = e−2πbze ,

(2.28)

assuming that Tvw represents the flip depicted in figure 2.9 with decoration introduced

in figure 2.11. The equations (2.28) provide the quantization of (2.17), and we can

recover the classical transformation by taking the limit q = eiπb
2 → 1.
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The operators Tuv and Av generate a projective representation of the Ptolemy groupoid

characterized by the set of relations

A3
1 = id1, (2.29)

T23T13T12 = T12T23, (2.30)

A2T12A1 = A1T21A2, (2.31)

T21A1T12 = ζA1A2P(12), (2.32)

where, ζ = eπicb
2/3 and cb =

i

2
(b+ b−1). The permutation P(12) : H1 ⊗H2 → H2 ⊗H1

is defined as the operator acting as P(12)(v1 ⊗ v2) = v2 ⊗ v1 for all vi ∈ Hi.

In the following we show the proof of quantum Ptolemy groupoid.

proof of equation (2.30): After substituting the operator T12, the right- and left-hand

side has the form:

RHS = T12T23 = eb(q1 + p2 − q2)e−2πip1q2eb(q2 + p3 − q3)e−2πip2q3

= eb(q1 + p2 − q2)eb(q2 + p3 − q3)e−2πip1q2e−2πip2q3

= eb(P )eb(X)e−2πip1q2e−2πip2q3 ,

LHS = T23T13T12 = eb(q2 + p3 − q3)e−2πip2q3eb(q1 + p3 − q3)e−2πip1q3eb(q1 + p2 − q2)e−2πip1q2

= eb(X)eb(q1 + p3 − q3 + p2)e−2πip2q3eb(P − q3)e−2πip1q3e−2πip1q2

= eb(X)eb(X + P )eb(P ) e−2πip2q3e−2πip1q3e−2πip1q2︸ ︷︷ ︸
e−2πip1q2e−2πi(p2−p1)q3e−2πip1q3

,

where P = q1 + p2 − q2, X = q2 + p3 − q3. As we see these equations reduce to the

pentagon for quantum dilogarithm with X,P such that [P,X] = 1
2πi . The proof of

pentagon relation for quantum dilogarithm is explained in appendix A.

proof of equation (2.31): It is straight forward by inserting the operators.

proof of equation (2.32): This equation can be written as

A−1
2 A−1

1 T21A1T12 = ζP(12). (2.33)

By using equations (2.23),(2.24) in the left hand side of the above equation and then

inserting A and T we get the first line of the following relation and then by using the

properties of eb functions we have,

LHS =eiπ/3e−iπ(p2+q2)2
e−3πiq2

2e2πi(p1−q1)p2e2πip2q1g−1
b (e2πb(−p1+q1−q2))g−1

b (e2πb(q2+p1−q1))

=eiπ/3eiπ/6eiπcb
2/3 × e−iπ(p2+q2)2

e−3πiq2
2e2πi(q1−p1)q2e2πip2q1e−πi(q2+p1−q1)2

.

Using the evaluation of the matrix element of the exponential part we obtain,

LHS = e
iπ
3 e

iπ
6 e

iπcb
2

3 < x1, q2 | e−iπ(p2+q2)2
e−3πiq2

2e2πi(q1−p1)q2e2πip2q1e−πi(q2+p1−q1)2 | x1
′, q′2 >

= e
iπ
3 e

iπ
6 e

iπcb
2

3

∫
dx1
′′dq′′2e

−3πiq′′22 e2πiq′′2 x
′′
1 < x1q2|e−iπ(p2+q2)2 |x1

′′q′′2 >︸ ︷︷ ︸
I

< x′′1q
′′
2 |e2πip2q2|x′1q′2>︸ ︷︷ ︸

II

,
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where the details of the calculation of part I and II are explained as follows.

By using e−πiq
2
pe−πiq

2
= p+ q first and later

∫
dke−πik

2
e2πixk = C1e

πix2
we can write

I =< x1q2|e−iπ(p2+q2)2 |x1
′′q′′2 >= e−iπ(q22−q′′2

2) < q2|e−iπp2
2 |q′′2 >

= C1e
−iπ(q22−q′′2

2)eπ(q2−q′′2
2) = C1e

−2iπq′′2
2

e−2πiq2q2′′
2

,

where C1 = e
−πi

4 because if we identify e
πi
4 q
′′
2 ≡ k then we have dq

′′
2 = e

−πi
4 dk.

For part II we need to use the fact that < x′′1, q
′′
2 |q1, p2 >= eπi(2x

′′
1 q1−q12)e2πiq′′2 p2 and

also < q1, p2|x′1, q′2 >= eπi(q
2
1−2x1q1)e−2πip2q′2 .

So we derive:

II =< x′′1q
′′
2 |e2πip2q2 |x′1q′2 >=

∫
dp2dq1e

2πip2q1 < x′′1q
′′
2 |q1p2 >< q1p2|x′1q′2 >

=

∫
dq1e

2πi(x′′1−x′1)

∫
dp2e

2πip2(q1+q′′2−q′2)︸ ︷︷ ︸
δ(q1+q′′2−q′2)

= e2πi(q′2q
′′
2 )(x′′1−x′1).

Therefore, we have the result for the exponential part of the left hand side of the equation

(2.33) by using Gaussian integral in the second line:

LHS = eiπ/3eiπ/6eiπcb
2/3 × e2πiq′2(x1−x′1)e−πi(q

′
2−x′1)2

∫
dq′′2e

−πq′′2 e2πiq′′2 (x1−q2−(x1−x′1))︸ ︷︷ ︸
e−πi(q

′′
2−(x′1−q2))2−(x′1−q2)2

= eiπ/3eiπ/6eiπcb
2/3C2

1︸ ︷︷ ︸
constant=ζ

eπi(q
2
2−q′2

2)e2πi(q′2x1−q2x′1).

For the right hand side of the equation (2.33) we have:

RHS = < x1q2|P (12)|x′1q′2 >=< x1|q′2 >< q2|x′1 >= e2πi(x1q′2−q2x′1)eπi(q
2
2−q′2

2).

Comparison of LHS and RHS completes our proof.

The quantized flip transformation has an interesting relation with quantum groups the-

ory. Kashaev [44] has shown that one can identify the flip operator T with the canonical

element of the Heisenberg double of the quantum plane, the Borel half of Uq(sl(2)),

evaluated on particular infinite-dimensional representations. Moreover, the rotation op-

erator Av is an algebra automorphism of this Heisenberg double. In chapter 4 we will

show these relations more extensively but before that, in the next chapter we will give

the basic definitions of quantum groups theory.





Chapter 3

Quantum groups, Drinfeld double

and Heisenberg double

The ideas of symmetry and invariance play a very important role in mathematics and

physics, and group theory structure is the most natural language for describing sym-

metries. Quantum groups and Hopf algebras are the natural generalizations of groups.

Quantum groups first appeared in the ” Inverse scattering method ”, exactly solvable

lattice models and low dimensional topology, developed by Fadeev and his collaborators

in Leningrad school (for historical remarks look at [64]).

Beyond the physical models, quantum group was realized independently by V. G. Drin-

feld [39] and M. Jimbo [40] as a Hopf algebra. Drinfeld also showed that quantum groups

have the universal R-matrix which establishes a relation with the representation of braid

groups, the so-called Yang-Baxter equation. The universal R-matrices for all quantum

groups have been obtained in explicit form by Krillov and Reshetikhin [65].

Quantum groups provide a systematic way to construct the solution of Yang-Baxter

equation and consequently build the new integrable lattice model. Quantum groups

also have a significant contributions in conformal field theory [66] and they also play an

important role in the recent developments in knot theory.

In this chapter we give a brief review of quantum groups. Afterwards, we present the

Drinfeld double construction of quasi-triangular Hopf algebra and Heisenberg double

related to that and present few examples. More details about these topics explained in

many nice references such as [67–69].

3.1 Quantum groups

In this section after a brief explanation about algebra and coalgebra, we present the

necessary notation for Hopf algebras and focus on the quasi-triangular Hopf algebra,

called quantum group.

27



Chapter 3. Quantum groups, Drinfeld double and Heisenberg double 28

3.1.1 Algebras, bialgebras and Hopf algebras

In definitions of algebra, coalgebra and Hopf algebra we will consider the ground field

k, where k can be considered to be field C of complex number or R of real number.

Definition 1. Considering k as a field and A as a vector space, the unital associative

algebra is a triple (A,m, η), where m : A ⊗ A → A is the multiplication map and

η : k → A is the unital map and they satisfy the axioms of associativity and unitality

m(m⊗ id) = m(id⊗m), (3.1)

m(η ⊗ id) = id = m(id⊗ η). (3.2)

Each element of algebra A can be expressed as a linear combination of basis element ei.

For any two elements ei and ej we can define their multiplication in the form

m : A⊗A→ A⇒ ei.ej = mk
ijek,

where mk
ij is certain set of complex numbers with the condition that ml

ijm
n
lk = mn

ijm
l
lk ≡

mn
ijk, which is equivalent to the condition of associativity for the algebra A as (eiej)ek =

ei(ejek). The axioms of associativity and unitality can also be summarized by the

following commutative diagrams, respectively,

A⊗A⊗A

A⊗A

A

A⊗A

m
⊗
id m

m

id⊗
m

,

k ⊗A A A⊗ k

A⊗A

∼= ∼=

m

id
A
⊗
ηη ⊗

id
A

.

One of the advantages of the diagrammatic language used here is that for the coalgebra

definition one can reverse the direction of all arrows.

Definition 2. For comultiplication map ∆ : A → A ⊗ A and counital map ε : A → k,

coassociative coalgebra is defined as a triple (A,∆, ε), such that the following axioms

are satisfied

(∆⊗ id)∆ = m(id⊗∆), (3.3)

(ε⊗ id)∆ = id = (id⊗ ε)∆. (3.4)

For ei ∈ A, there is a notation for ∆, ∆(e) = Σi,jei ⊗ ej , where the right hand side is

the formal sum denoting an element of A⊗A.

The axioms of coassociativity and counitality can also be summarized by the following

commutative diagrams
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A⊗A⊗A

A⊗A

A

A⊗A

∆
⊗
id ∆

∆

id⊗
∆

,

k ⊗A A A⊗ k

A⊗A

∼= ∼=

∆

id
⊗
εε⊗

id

.

Now we are prepared to introduce the main concept in the theory of quantum group,

namely Hopf algebra.

Definition 3. By considering (A,m, η) as an unital algebra and (A,∆, ε) as a couni-

tal coassociative coalgebra, a bialgebra is a collection (A,m, δ, η, ε) where algebra and

coalgebra are compatible with each other by holding the following axioms:

∆m = (m⊗m)(id⊗ σ)(∆⊗∆), (3.5)

∆η = η ⊗ η, (3.6)

εm = ε⊗ ε, (3.7)

εη = id. (3.8)

A⊗A⊗A⊗A

A⊗A

A

A⊗A

A⊗A⊗A⊗A ,

∆⊗∆

m ∆

m⊗m

id⊗ S ⊗ id

,

k ⊗ k

A⊗A A

k ,

η ⊗ η

∆

η , k

A

k

η ε

These axioms state that ∆ and ε are homomorphism of algebras (or m and η are homo-

morphism of coalgebras) so it means

(g ⊗ h)(h′ ⊗ g′) = gg′ ⊗ hh′, (3.9)

∆(gh) = ∆(g)∆(h), ∆(1) = 1⊗ 1, (3.10)

ε(gh) = ε(g)⊗ ε(h), ε(1) = 1, (3.11)

for all g, g′, h, h′ ∈ A. ε(1) = 1 is automatic as k is a field.

Definition 4. By considering (A,m, δ, η, ε) as a bialgebra, a Hopf algebra can be defined

as a collection (A,m, η,∆, ε, S), where the linear antipode map S : A → A satisfies an

extra axiom as,
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A

A⊗A A⊗A

AC

A⊗A A⊗A

∆

id⊗ S

m
ηε

∆

S ⊗ id

m

m(S ⊗ id)∆ = m(id⊗ S)∆ = ηε. (3.12)

The antipode of Hopf algebra is unique and has the properties,

S(gh) = S(h)S(g), S(1) = 1, (3.13)

(S ⊗ S)∆h = σ∆Sh, εSh = εh, (3.14)

where the tensor flip σ will be used as the operator of transposition, σ(g ⊗ h) = h ⊗ g
for all g, h ∈ A.

3.1.2 Duality

We mentioned that the axioms of coalgebra can be derived by inversing the arrows and

interchanging ∆, ε with m, η. From the symmetry we can consider the dual linear space

and conclude that for every Hopf algebra A, there is a dual Hopf algebra A∗ built on

the dual vector space.

Definition 5. Two Hopf algebras A,A∗ are dually paired by a map 〈, 〉 : A⊗A∗ → k if

〈φψ, h〉 = 〈φ⊗ ψ,∆h〉, 〈φ, hg〉 = 〈∆φ, h⊗ g〉, (3.15)

〈Sφ, h〉 = 〈φ, Sh〉, (3.16)

ε(h) = 〈1, h〉, ε(φ) = 〈φ, 1〉, (3.17)

for all g, h ∈ A and φ, ψ ∈ A∗.

A Hopf algbera is commutative if it is commutative as an algbera and it is cocommuta-

tive if it is cocommutative as a coalgbera. The dual of commutative (cocommutative)

Hopf algebra is commutative (cocommutative) and vice versa. For commutative or co-

commutative Hopf algbera, we have S2 = id. Here we express two examples of Hopf

algebras for finite group G which are dual to each other.

Example 1(Functional algebra F(G)): Let G be a finite group with identity e and

F(G) = {f : G → k} denote the set of functions on G with values in k. This has the

structure of a commutative Hopf algebra with algebra structure:

(λ.φ)(u) = λ.(φ(u)),

m(φψ)(u) = φ(u)ψ(u),

η(λ)(u) = λ1,
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where, φ, ψ ∈ k(G), u, v ∈ G,λ ∈ k with following properties

(∆φ)(u, v) = φ(uv), ∆ : F(G)→ F(G)×F(G),

ε(φψ)(u) = φ(u)ψ(u), ε : F(G)→ k

(Sφ)(u) = φ(u−1).

Example 2 (Group algebra k[G]): Let G be a finite group and k[G] generated by G,

i.e. {a =
∑

u∈G a(u)eu} where {eu} denotes the basis and λ ∈ k. Where u, v ∈ G ⊂ k[G]

we have the following list of properties:

• Product: (
∑
u

λ1u)(
∑
v

λ2v) =
∑
u,v

λ1λ2(uv),

• Coproduct: ∆ : k[G]→ k[G]× k[G]), ∆(u) = u⊗ u,
• Counite: ε : k[G]→ k, ε(u) = 1 = e,

• Antipode : S(u) = u−1.

The Hopf algebras F(G) and k[G] are dual to each other such that 〈, 〉 : F(G)⊗k[G]→ k,

where φ, ψ ∈ F(G), h ∈ k[G], u ∈ G ⊂ k[G]. Thus one can shows

〈φ, u〉 = φ(
∑
u

h(u)u) =
∑

h(u)φ(u),

〈φ⊗ ψ,∆(u)〉 = 〈φ⊗ ψ, u⊗ u〉 = φ(u)ψ(u) = (φψ)(u) = 〈φψ, u〉.

Therefore, we have F(G)∗ = k[G], k[G]∗ = F(G) and it follows that one’s algbera

structure corresponds to the other’s coalgebra.

3.1.3 Quasi-triangular (braided) Hopf algebras and universal R- ma-

trix

Quantum groups have an additional important structure which is not present in a general

Hopf algebra, called the quasi triangular structure.

Definition 6. For a bialgebra (A,m, η,∆, ε) we call an invertible element R ∈
∑

i ai⊗bi ∈
A⊗A a universal R-matrix if it satisfies

∆op(a) = R∆(a)R−1, (3.18)

(id⊗∆)R = R13R12, (3.19)

(∆⊗ id)R = R13R23, (3.20)
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where ∆op = σ∆, a ∈ A and σ is a flip map. Also we have

R12 =
∑
i

ai ⊗ bi ⊗ 1 = R⊗ 1,

R23 =
∑
i

1⊗ ai ⊗ bi = 1⊗R, (3.21)

R13 =
∑
i

ai ⊗ 1⊗ bi.

A Hopf algbera A with a quasi triangular structure is called a quasi-triangular Hopf

algbera. The universal R-matrix satisfies the following identities

(ε⊗ id)R = (id⊗ ε)R = 1, (3.22)

(S ⊗ id)R = (id⊗ S−1)R = R−1, (3.23)

(S ⊗ S)R = R. (3.24)

Also the element Rop = σR is a universal quantum R-matrix for the Hopf algbera A∗.

Proposition 1. Universal R-matrix satisfies the quantum Yang-Baxter equation

R12R13R23 = R23R13R12. (3.25)

which can be proven by using properties (3.18)-(3.20) in one line. Where σ12 = σ ⊗ id
we have

R12R13R23 = R12(∆⊗ id)R = (∆op ⊗ id)(R)R12 (3.26)

= σ12(R13R23)R12 = R23R13R12.

A Hopf algebra A is called a quasi-triangular Hopf algebra, if for A⊗A there exists the

universal R-matrix R. The main definition of this chapter is the definition of quantum

group which is defined as a non-cocommutative quasi-triangular Hopf algebra.

Definition 7. Let g be Lie algebra with universal algebra U(g). The quantum enveloping

algebra Uq(g) is an associative algebra generated by xi, yi,Ki,K
−1
i with relations

KiK
−1
i = K−1

i Ki = 1, (3.27)

[Ki,Kj ] = 0, (3.28)

[xiyj , yjxi] = δi,j
K2
i −K

−2
i

qi − q−1
i

, (3.29)

Kixj = q
Aij

2 xjKi, Kiyj = q−
Aij

2 yjKi, (3.30)

1−Aij∑
k=0

(−1)k
(

1−Aij
k

)
q

x
1−Aij−k
i xjx

k
i = 0, i 6= j, (3.31)

1−Aij∑
k=0

(−1)k
(

1−Aij
k

)
q

y
1−Aij−k
i yjy

k
i = 0, i 6= j, (3.32)
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where
(
n
k

)
q

=
[n]q !

[k]q ![n−k]q !
is a q-binomial coefficient and also

[n]q! = [n]q[n− 1]q . . . [2]q[1]q, (3.33)

[n]q =
qn − q−n

q − q−1
. (3.34)

Theorem 1. Let Uq(g) be an algebra generated by xi, yi,Ki,K
−1
i with appropriate rela-

tions. Then (Uq(g),∆, ε, S) with

∆(Ki) = Ki ⊗Ki, (3.35)

∆(xi) = xi ⊗Ki +K−1
i ⊗ xi, (3.36)

∆(yi) = yi ⊗Ki +K−1
i ⊗ yi, (3.37)

ε(Ki) = 1, ε(xi) = ε(yi) = 0, (3.38)

S(Ki) = K−1
i , S(xi) = −qixi, S(yi) = −q−1

i yi, (3.39)

is a non-cocommutative Hopf algebra.

One can easily show that ∆xi,∆Ki,∆yi satisfy the defining relations of Uq(g) and the

axioms for the generators are verified. We know that for any Lie algebra g, we can present

it by the generators and relations between them. The (Uq(g),∆, ε, S) is a quantum group

as expressed above and there exists the universal R-matrix R for that (For reference

consult [67]).

3.2 Drinfeld double and Heisenberg double

Drinfeld double

We already explained the quasi-triangular (braided) Hopf algebras which satisfy Yang

Baxter equation and we want to find such Hopf algebras. There exists a quantum

double construction [39, 70, 71] presented by Drinfeld which builds a quasi triangular

Hopf algebra out of an arbitrary Hopf algebra. We can consider Hopf algbera A and its

dual A∗ with opposite comultiplication. The algebraic tensor product of them can be

made into a quasi-triangular Hopf algebra.

Definition 8. Let A be a Hopf algebra with base element Eα and A∗ be its dual Hopf

algebra with base element Eα with multiplication and comultiplication as

EαEβ = mγ
αβEγ , EαEβ = µαβγ Eγ , (3.40)

∆(Eα) = µβγα Eβ ⊗ Eγ , ∆(Eα) = mα
γβE

β ⊗ Eγ , (3.41)

S(Eα) = SβαEβ, S(Eα) = (S−1)αβE
β. (3.42)

As a remark regarding the notation, for reasons of simplicity we will write the elements

1⊗ Eα and Eα ⊗ 1 of Drinfeld double double as Eα and Eα, respectively.
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Drinfeld double is defined as a vector space D(A) = A⊗A∗ which satisfies

EαEβ = mγ
αβEγ , (3.43)

EαEβ = µαβγ Eγ , (3.44)

µσγα mβ
γρEσE

ρ = mβ
ργµ

γσ
α EρEσ. (3.45)

The two initial Hopf algebras are two subalgebras of the larger Hopf algebra which can

be constructed from them. The new Hopf algebra has universal R-matrix because of the

existence of the multiplication of algbera and comultiplication of its dual. Moreover, the

canonical element R = Eα ⊗Eα satisfies Yang-Baxter relation (3.25) and can be shown

as

R12R13R23 = (Eα ⊗ Eα ⊗ 1)(Eβ ⊗ 1⊗ Eβ)(1⊗ Eδ ⊗ Eδ) =

= EαEβ ⊗ EαEδ ⊗ EβEδ = Eσ ⊗mσ
αβµ

βδ
ρ E

αEδ ⊗ Eρ =

= Eσ ⊗mσ
βαµ

δβ
ρ EδE

α ⊗ Eρ = mσ
βαEσ ⊗ EδEα ⊗ µδβρ Eρ =

= EβEα ⊗ EδEα ⊗ EδEβ = (1⊗ Eδ ⊗ Eδ)(Eβ ⊗ 1⊗ Eβ)(Eα ⊗ Eα ⊗ 1) =

= R23R13R12.

Heisenberg double

As we explained, the Drinfeld double construction takes an arbitrary Hopf algebra and a

Hopf algebra dual to it and produce a quantum group. There exists another construction,

the so-called Heisenberg double [43]. The pentagon equation in Heisenberg, as it is shown

below, has the similar role as Yang Baxter equation has in the Drinfeld double.

S12S13S23 = S23S12, (3.46)

It was shown in [43] that the solution for Yang Baxter equation (3.25) can be obtained

from solutions for pentagon equation (3.46).

Definition 9. Lets consider a bialgebra A spanned by the basis vectors eα and the

bialgebra A∗ spanned by the basis vectors eα.

The Heisenberg double H(A) is an algebra as a vector space H(A) ∼= A ⊕ A∗ with

multiplication and comultiplication on subalgebras A,A∗ as

eαeβ = mγ
αβeγ , eαeβ = µαβγ eγ (3.47)

∆(eα) = µβγα eβ ⊗ eγ , ∆(eα) = mα
βγe

β ⊗ eγ (3.48)

and

eαe
β = mβ

ργµ
γσ
α eρeσ. (3.49)

As a remark regarding the notation, for reasons of simplicity we will write the elements

1⊗ eα and eα ⊗ 1 of Heisenberg double as eα and eα, respectively.
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Bialgbera A∗ is dual to A under the duality bracket 〈, 〉 : A × A∗ → C defined on the

basis by

〈eα, eβ〉 = δβα.

This bracket exchange product and coproduct as follows:

〈eα, eβeγ〉 = µβγτ 〈eα, eτ 〉 = µβγτ δτα = µρσα δ
β
ρ δ

γ
σ = µρσα 〈eρ ⊗ eσ, eβ ⊗ eγ〉

= (∆(eα), eβ ⊗ eγ〉,
〈eαeβ, eγ〉 = 〈eα ⊗ eβ,∆(eγ)〉.

Indeed, in the case of Heisenberg algebras there is no comultiplication that would be

compatible with the product defined above and at the same time agree with comultipli-

cation ∆ and ∆∗ on subalgebras A and A∗, respectively.

Therefore, our Heisenberg double is only an algebra and not a Hopf algebra. The

canonical element S = eα ⊗ eα satisfies equation (3.46), and can be shown as

S12S13S23 = (eα ⊗ eα ⊗ 1)(eβ ⊗ 1⊗ eβ)(1⊗ eγ ⊗ eγ) = eαeβ ⊗ eαeγ ⊗ eβeγ =

= mρ
αβeρ ⊗ e

αeγ ⊗ µβγσ eσ = eρ ⊗mρ
αβµ

βγ
σ eαeγ ⊗ eσ = eρ ⊗ eσeρ ⊗ eσ =

= (1⊗ eρ ⊗ eρ)(eσ ⊗ eσ ⊗ 1) = S23S12.

Examples

Here we want to make few examples about the Heisenberg double and Drinfeld double

[43]. For finite group G we have group algbera k[G] as a Hopf algebra denoted by A.

For {eg} as the basis we have multiplication and comultiplications

m(eg, eh) = egh ⇒ mγ
αβ = δγα·β, egeh = µghγ e

γ = egδgh,

∆(eg) =
∑
h∈G

eh ⊗ eh−1g, ∆(eg) = eg ⊗ eg ⇒ µβγα = δβαδ
γ
α,

ege
h = δhρ·γδ

γ
g δ
σ
g e

ρeσ = δhρ·ge
ρeg = ehg

−1
eg.

Then multiplicative unitary is given by S =
∑

α eα ⊗ eα.

As the second example we consider polynomial ring C[x] by em = xm

m! as a normalized

basis and en = x̄n as a dual basis. Therefore,

enem =
(n+m)!

n!m!
en+m =

(
n+m

n

)
en+m ⇒ mγ

n,m =

(
n+m

n

)
δγn+m,

enem =

∞∑
s=m

δns−me
s = en+m,

∆(en) =
n∑
k=0

en−k ⊗ ek ⇒ µk,ln = δkn−lΘ(n− l)Θ(l),

∆(en) =

n∑
k=0

(
n

k

)
en−k ⊗ ek,



Chapter 3. Quantum groups, Drinfeld double and Heisenberg double 36

where Θ =

{
δkn−l, 0 ≤ l ≤ n
0, l > n

, and the coproduct are ∆(x) = x ⊗ 1 + 1 ⊗ x and

follows up that ∆(xn) =
∑n

k=0

(
n
k

)
xn−k ⊗ xk.

The Heisenberg double has en ⊗ em as basis and one can find

ene
m =

n∑
s=0

(
m

n− s

)
em−n+ses,

xx̄ = e1e
1 = e0e0 + e1e1 = 1 + x̄x⇒ xx̄− x̄x = 1,

and the canonical element encodes as

S = em ⊗ em =
∞∑
m=0

1

m!
xm ⊗ x̄m = exp(x⊗ x̄).

Relation of Drinfeld double and Heisenberg double

Using Heisenberg doubles one can find the representations of Drinfeld doubles, because

one can embed the elements of the Drinfeld double into a tensor square of Heisenberg

double [43]. As we mentioned before the coproduct of the Hopf algebra structure of

A and its dual A∗ are not algebra homomorphism of the multiplication on H(A). Let

us have a Heisenberg double H(A) defined as before. Moreover, we define another

Heisenberg double H̃(A) generated by basis vectors {ẽα, ẽβ} with

ẽαẽβ = mγ
αβ ẽγ , ∆(ẽα) = µβγα ẽβ ⊗ ẽγ , (3.50)

ẽαẽβ = µαβγ ẽγ , ∆(ẽα) = mα
βγ ẽ

β ⊗ ẽγ , (3.51)

ẽβ ẽα = µσγα mβ
γρẽσ ẽ

ρ, (3.52)

with canonical element S̃ = ẽα ⊗ ẽα, which satisfies the reversed pentagon equation:

S̃12S̃23 = S̃23S̃13S̃12. (3.53)

Using H(A) and H̃(A) one can define Drinfeld double D(A), which as a vector space

D(A) ⊂ H(A)⊗ H̃(A) has the elements

Eα = µβγα eβ ⊗ ẽγ , Eα = mα
γβe

β ⊗ ẽγ . (3.54)

They satisfy the following defining relations

EαEβ = mγ
αβEγ , EαEβ = µαβγ Eγ , µσγα mβ

γρEσE
ρ = mβ

ργµ
γσ
α EρEσ. (3.55)

The first two statements can be easily proven by using the compatibility condition:

∆ ◦m = (m⊗m)(id⊗ σ ⊗ id)(∆⊗∆), mγ
αβµ

σρ
γ = µδεα µ

ηξ
β m

σ
δηm

ρ
εξ, (3.56)
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one can show

EαEβ = µπρα µ
στ
β (eπ ⊗ ẽρ)(eσ ⊗ ẽτ ) = µπρα µ

στ
β mµ

πσm
ν
ρτeµ ⊗ ẽν = mγ

αβµ
µν
γ eµ ⊗ ẽν = mγ

αβEγ ,

EαEβ = µαβγ Eγ ,

and in addition using associativity and coassociativity

(∆⊗ id)∆ = (id⊗∆)∆, µγβα µρσγ = µργα µ
σβ
γ , (3.57)

m(m⊗ id) = m(id⊗m), mδ
αβm

σ
δγ = mσ

αδm
δ
βγ , (3.58)

one shows

µσγα mβ
γρEσE

ρ = µσγα mβ
γρµ

ab
σ (ea ⊗ ẽb)mρ

dc(e
c ⊗ ẽd) =

= µσγα mβ
γρµ

ab
σ m

ρ
dcm

c
rgµ

gs
a e

res ⊗ ẽbẽd = (µσγα µabσ )(mβ
γρm

ρ
dc)m

c
rgµ

gs
a e

res ⊗ ẽbẽd =

= (µaσα µ
bγ
σ )(mβ

ρcm
ρ
γd)m

c
rgµ

gs
a e

res ⊗ ẽbẽd = µaσα m
β
ρcm

c
rgµ

gs
a e

res ⊗ (µbγσ m
ρ
γdẽbẽ

d) =

= (µaσα µ
gs
a )(mβ

ρcm
c
rg)e

res ⊗ ẽρẽσ = (µgaα µ
sσ
a )(mβ

cgm
c
ρr)(e

r ⊗ ẽρ)(es ⊗ ẽσ) =

= µgaα m
β
cg(m

c
ρre

r ⊗ ẽρ)(µsσa es ⊗ ẽσ) = µgaα m
β
cgE

cEa.

Now, we can consider the canonical element R = Eα ⊗ Eα which is said to satisfy

Yang-Baxter relation

R11̃,22̃R11̃,33̃R22̃,33̃ = R22̃,33̃R11̃,33̃R11̃,22̃, (3.59)

It can be shown that one can express the R-matrix by canonical elements S, S̃, S′,S′′,

R12,34 = S′′14S13S̃24S
′
23 where, S′ = ẽα ⊗ eα, S′′ = eα ⊗ ẽα.

We contribute a short proof of Kashaev’s machinery here

S′′14S13S̃24S
′
23 = (eα ⊗ 1⊗ 1⊗ ẽα)(eβ ⊗ 1⊗ eβ ⊗ 1)(1⊗ ẽγ ⊗ 1⊗ ẽγ)(1⊗ ẽδ ⊗ eδ ⊗ 1) =

= eαeβ ⊗ ẽγ ẽδ ⊗ eβeδ ⊗ ẽαẽγ = ma
αβea ⊗mb

γδ ẽb ⊗ µβδc ec ⊗ µ
αγ
d ẽd =

= µαγd µβδc m
a
αβm

b
γδea ⊗ ẽb ⊗ ec ⊗ ẽd = mγ

dcµ
ab
γ ea ⊗ ẽb ⊗ ec ⊗ ẽd = (3.60)

= (µabγ ea ⊗ ẽb)⊗ (mγ
dce

c ⊗ ẽd) = Eα ⊗ Eα = R12,34.

3.3 Uq(sl(2)) as an example

We consider Uq(sl(2,R)) as an example of quantum groups. Uq(sl(2)) is generated by

K,K−1, E, F and satisfies the relations

KK−1 = K−1K = 1,

[E,F ] = −K
2 −K−2

q − q−1
,

KE = qEK, KF = q−1FK,

(3.61)
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and with coproduct and unitality such that

∆(K) = K ⊗K,
∆(x) = E ⊗K +K−1 ⊗ E, ∆(y) = F ⊗K +K−1 ⊗ F,

ε(K) = 1, ε(E) = ε(F ) = 0,

(3.62)

and following antipode

S(K) = K−1, S(E) = −qE, S(F ) = −qF. (3.63)

The Casimir operator C has the following form

C = FE − qK2 + q−1K−2 − 2

(q − q−1)2
, (3.64)

and it can be shown easily that [C,K] = [C,E] = [C,F ] = 0.

One can consider U(sl(2)) as a classical limit of Uq(sl(2)). We can take K = ehH , q = eh

and take the limit q → 1, which gives the following relations:

[E,F ] = −2H, [H,E] = E, [H,F ] = −F, (3.65)

which are the relations for algbera U(sl(2)). The other structures have the limits as

follows

∆(u) = u⊗ 1 + 1⊗ u, ε(u) = 0, S(u) = −u,

where u = H,E, F .

Heisenberg double of Uq(sl(2,R))

We want to construct Drinfeld double of the algebra, Borel half Uq(B)) of Uq(sl(2)).

This algbera has two generators H and E with the following relations

[H,E] = E, (3.66)

∆(H) = H ⊗ 1 + 1⊗H, (3.67)

∆(E) = E ⊗ ehH + 1⊗ E, (3.68)

Considering q = e−h we can have the relation K = ehH and it brings the following basis

element for the algebra

em,n =
1

m!(q)n
HmEn, (3.69)

where (q)n is q-factorial as defined in equation (3.70)

(q)n = (1− q)...(1− qn), n > 0, (q)0 = 1 (3.70)
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and we can compute multiplication of the generators as

• EnK = qnKEn,

• EnHm = (H − n)mEn,

∞∑
m=0

1

m!
hmEnHm =

∞∑
m=0

1

m!
hmHmEn

∞∑
k=0

1

k!
(−nh)k =

=

∞∑
m=0

1

m!
hm

m∑
k=0

(
m

k

)
(−n)m−kHkEn =

∞∑
m=0

1

m!
hm(H − n)mEn,

• HmEnH lEk =

l∑
j=0

(
l

j

)
(−n)l−jHm+jEn+k.

It brings us to the multiplication for the basis elements

em,nel,k =
l∑

j=0

(
m+ j

j

)(
n+ k

k

)
q

(−n)l−j

(l − j)!
em+j,n+k, (3.71)

where
(
n
k

)
q

= (q)n
(q)k(q)n−k

. One can also find the comultiplication

• ∆(Hn) =

n∑
k=0

(
n

k

)
Hn−k ⊗Hk,

• ∆(En) =

n∑
k=0

f(n, k)En−k ⊗ e(n−k)hHEk,

and for one higher order we have

• ∆(En+1) =
n+1∑
k=0

f(n+ 1, k)En+1−k ⊗ e(n+1−k)hHEk =

=
n∑
k=0

f(n, k)En−k ⊗ e(n−k)hHEk(E ⊗ ehH + 1⊗ E) =

= f(n, 0)En+1 ⊗ e(n+1)hH + f(n, n)1⊗ En+1+

+
n∑
k=1

En+1−k ⊗ e(n+1−k)hHEk(f(n, k)qk + f(n, k − 1)).

Therefore, f(n + 1, 0) = f(n, 0), f(n + 1, n + 1) = f(n, n), f(n + 1, k) = f(n, k)qk +

f(n, k − 1), for 0 < k < n+ 1. These properties are satisfied by q-symbol.
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Therefore,

• ∆(En) =

n∑
k=0

(
n

k

)
q

En−k ⊗ e(n−k)hHEk,

• ∆(HnEm) =

n∑
k=0

(
n

k

)
Hn−k ⊗Hk

m∑
l=0

(
m

l

)
q

Em−l ⊗ e(m−l)hHEl =

=

n∑
k=0

m∑
l=0

(
n

k

)(
m

l

)
q

Hn−kEm−l ⊗Hke(m−l)hHEl =

=
n∑
k=0

m∑
l=0

∞∑
p=0

(
n

k

)(
m

l

)
q

1

p!
(m− l)phpHn−kEm−l ⊗Hk+pEl,

and it gives the comultiplication as

∆(en,m) =

n∑
k=0

m∑
l=0

∞∑
p=0

(
k + p

k

)
(m− l)phpen−k,m−l ⊗ ek+p,l. (3.72)

Now we consider the dual algebra A∗, which is generated by the elements H̄ and F

[H̄, F ] = −hF, (3.73)

∆(H̄) = H̄ ⊗ 1 + 1⊗ H̄, (3.74)

∆(F ) = F ⊗ e−H̄ + 1⊗ F, (3.75)

K̄ = ebH̄ , K̄F = q̃F K̄, q̃ = e−hb. (3.76)

The multiplication and comultiplication has the form

Em,nEl,k =
l∑

j=0

(
l

j

)
(n)l−jhl−jEm+j,n+k, (3.77)

∆(En,m) =

n∑
k=0

m∑
l=0

∞∑
p=0

(
n

k

)(
m

l

)
q

(−m+ l)p

p!
En−k,m−l ⊗ Ek+p,l. (3.78)

It is clear that we can identify

en,m = H̄nFm. (3.79)

Since the bases are dual to each other by comparing multiplications and comultiplications

we have

mr,s
m,n;l,k =

l∑
j=0

(
m+ j

j

)(
n+ k

k

)
q

(−n)l−j

(l − j)!
δr,m+jδs,n+k =

=

(
r

r −m

)(
n+ k

k

)
q

(−n)l−r+m

(l − r +m)!
Θ(r −m)Θ(l − r +m)δs,n+k,
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and

µm,n;l,k
r,s =

l∑
j=0

(
l

j

)
(n)l−jhl−jδr,m+jδs,n+k =

=

(
l

r −m

)
(n)l−r+mhl−r+mΘ(r −m)Θ(l − r +m)δs,n+k.

By using equation (3.47) we can check the permutation relations for Heisenberg double

H(Uq(B)),

HH̄ = e1,0e
1,0 = m1,0

a,b;c,dµ
c,d;e,f
1,0 ea,bee,f = m1,0

a,0;c,0µ
c,0;e,0
1,0 ea,0ee,0 =

= m1,0
0,0;1,0µ

1,0;0,0
1,0 e0,0e0,0 +m1,0

1,0;0,0µ
0,0;1,0
1,0 e1,0e1,0 = 1 + H̄H,

EH̄ = e0,1e
1,0 = m1,0

a,b;c,dµ
c,d;e,f
0,1 ea,bee,f = m1,0

a,0;c,0µ
c,0;e,1
0,1 ea,0ee,1 =

= m1,0
1,0;0,0µ

0,0;0,1
0,1 e1,0e0,1 = e1,0e0,1 = H̄E,

and in the same way

HF − FH = −F, EF − FE = (1− q)q−H .

Now we can consider the canonical element:

S =
∑
n,m

en,me
n,m =

∑
n,m

1

n!(q)m
HnEm ⊗ H̄nFm =

∑
n,m

1

n!(q)m
(H ⊗ H̄)n(E ⊗ F )m =

= exp(H ⊗ H̄)(E ⊗ F ; q)−1
∞ ,

which follows from q-binomial formula (see appendix E). We used the fact that, (x; q)−1 =∑∞
k=0

xk

(q)k
, the proof of that can be found in appendix E.

In the next chapter we will show how one can consider a bialgebra A spanned by the

basis vectors {e(α)}, where the basis is of infinite dimension. Afterwards, we will define

all the objects in analogous way as in the finite dimensional case, replacing all sums with

integrals over the spectrum. ∑
α

→
∫

dα.





Chapter 4

Non-compact quantum groups

The basic language of functional analysis is assumed as a background knowledge for

this chapter. We start with a brief explanation of the quantum plane which is the

simplest example of a non-compact quantum group. By taking complex powers of the

generators as unbounded operators, we can define a C*-algebraic version of the Drinfeld-

Jimbo quantum groups. Afterwards, we consider the non-compact version of Heisenberg

double of the Borel half of Uq(sl(2)). We use the self dual representations of Heisenberg

double and evaluate the canonical element which in particular satisfies the pentagon

equation.

The discussion of entities that we provide in this chapter will be a introduction to the

supersymmetric case discussed in chapter 7.

4.1 Quantum plane

A quantum plane Aq is a Hopf *-algebra which is the Borel half of a q-deformed universal

enveloping algebra Uq(sl(2)). It is generated by elements A,A−1, B such that they satisfy

q commutation relation

AB = q2BA, (4.1)

where, the deformation parameter is q = exp[iπb2], with a real *-structure

A∗ = A, B∗ = B.

In addition, one has a compatible coproduct,

∆(A) = A⊗A, ∆(B) = B ⊗A+ 1⊗B, (4.2)

counit and antipode

ε(A) = 1, ε(B) = 0, (4.3)

S(A) = A−1, S(B) = qB. (4.4)

43
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Furthermore, to deal with non-compact quantum groups, we are interested in a normed

*-algebra, the so called C*-algebra. We also need language of multiplier C*- algebra to

define a natural coproduct.

A Banach space is a vector space V over the field of real or complex numbers, which is

equipped with a norm and which is complete1 with respect to that norm. This means

that for every Cauchy sequence xn in V , there exists an element x in V such that

lim
n→∞

‖xn − x‖ = 0.

A Banach algebra is a algebra which is a Banach space under a norm such as

‖ xy ‖≤‖ x ‖‖ y ‖ .

An C*-algebra is a Banach *-algebra A satisfying the C*-axiom:

‖ xx∗ ‖= ‖ x ‖2 for all x ∈ A.

For a compact group G, any function on G can be approximated, with respect to sup

norm, by polynomial functions in the generators. But in the non-compact case, functions

vanishing (decay) at infinity are not well approximated (with respect to sup norm) by

polynomial generators. In both cases the convergence is defined using the sup-norm.

In the non-compact case we need to deal with unbounded operators and functional

calculus for self-adjoint operators is the main technical tools. The operators A and B

of the quantum plane will be represented as unbounded operators π(A) and π(B). We

impose that operators π(A) and π(B) be positive self-adjoint to avoid the problems

related to the self-adjointness of the coproduct and well-definedness of the algebra on

C∗-algebra level which are discussed in the literature.

Definition 10. let X, Y be positive self-adjoint operators. According to [72], an inte-

grable representation for the relation XY = q2Y X means that for every real number s

and t, we have XisY it = q−2stY itXis, as the relation between the unitary operators.

One can realize operators mentioned above by means of an integrable representation π

using the pairs of canonically commuting operators.

π(A) = e2πbx = X, π(B) = e2πbp = Y, (4.5)

which act on H = L2(R) and p = 1
2πi

d
dx , so Xib−1sf(x) = e2πisxf(x), Y ib−1tf(x) =

e2πiptf(x) = f(x+ t).

For positive, unbounded operators on L2(R), the domain for X is given by

DX ={f(x) ∈ L2(R) : e2πbxf(x) ∈ L2(R)},
1In analysis, a space M is called complete (or a Cauchy space) if every Cauchy sequence in M converges

in M.
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and the domain for Y is given by the Fourier transform of DX . Therefore, we can

obtain various functions in X and Y . For any function defined on x > 0 ∈ R such that

|f(x)| = 1, f(X) will be a unitary operator [72].

Every commutative algebra of operators on a Hilbert space can be represented as the

algebra of functions. By considering positive operators we can define a broad class of

functions on Aq by using Mellin transform2, and in this way we can define the C∗-algebra

of “functions on the quantum plane vanishing at infinity” for Aq , which is expressed as,

C∞(Aq) :=
{
A∞(Aq)

}norm closure
, (4.6)

where

A∞(Aq) = Linear span of
{
f(X,Y )

}
, (4.7)

and

f(X,Y ) =

∫
R

∫
R+i0

F1(s)F2(t)Xib−1sY ib−1tdsdt
}
,

where F1(s) is entire analytic in s and F2(t) is meromorphic in t with possible simple

poles at

t = −ibn− im
b
, n,m = 0, 1, 2, . . . (4.8)

and norm given by

‖ f(X,Y ) ‖2 =

∫
R

∫
R

+i0 | F1(s)F2(t) |2 dsdt. (4.9)

According to [73] by using Mellin transform, the space A∞(Aq) can be written as,

A∞(Aq) := Linear span of g(logX)

∫
R+i0

F2(t)Y ib−1tdt,

where g(x) is entire analytic and it has a rapid decay in x ∈ R. F2(t) is a smooth

function in t with rapid decay.

In addition to algebra of functions, we need to know how to find the coproduct for an

arbitrary, non-algebraic element in the noncompact case and hence we need to introduce

an additional object, called multiplicative unitary. Multiplicative unitaries are funda-

mental object in the theory of quantum groups in C∗-setting. Multiplicative unitary is

the map which encode all the structure maps of quantum group. The Possible difficul-

ties dealing with non-integer powers of generators are avoided by using multiplicative

unitary. According to Woronowicz [74], multiplicative unitary is defined as follows

2Let f(x) be a continues function on the half line. The Mellin transform of f(x) is defined as,
(Mf)(s) =

∫∞
0
xs−1f(x)dx.
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Definition 11. A unitary element S ∈ A ⊗ A is called a multiplicative unitary if it

satisfies pentagon equation

S12S13S23 = S23S12, (4.10)

multiplicative unitary encodes the the information of coproduct as

S∗(1⊗ x)S = ∆(x) x ∈ A. (4.11)

The pentagon equation implies the coassociativity of the defined coproduct. We refer

to [75] for more extended discussions.

According to a proposition 6.7 in [73] and [74] the multiplicative unitary for quantum

plane is given by,

S = g−1
b (Y −1 ⊗ sq−1Y X−1)elog(qXY

−1)⊗logX−1 ∈ C∞(Aq)⊗ C∞(Aq), (4.12)

where gb is Fadeev’s quantum dilogarithm function as it is defined in equation (2.27).

4.2 Heisenberg double of Uq(sl(2)) with continuous basis

In this chapter we aim to introduce a continuous version of the Heisenberg double of

the Borel half of Uq(sl(2)). We want to introduce it and consider a particular infinite-

dimensional integrable representation thereof, with a special focus on the canonical

element S. We describe this particular Heisenberg double keeping in mind the fact

that in previous chapters some elements of it, as well as the canonical element S have

shown up in the study of the Teichmüller theory of Riemann surfaces as an operatorial

representations of shear variables and flip operator T.

The Heisenberg double construction give a particular algebra from two copies of a Hopf

algebra in a specific way. Indeed, one can find two mutually dual subalgebras of Heisen-

berg double, which are isomorphic as algebras to the initial pair of Hopf algebra. This

two subalgebras are algebras, but not Hopf algebras.

Kashaev has shown that the Heisenberg double of the Borel half B(Uq(sl(2))), which we

will be denoting by HD(B(Uq(sl(2)))), can be defined as an algebra generated by the

four elements. The HD+ subalgebra is generated by H and E+ and HD− subalgebra

generated by Ĥ and E−. They satisfying commutation relations as follows

[H, Ĥ] =
1

2πi
, [E+, E−] = (q − q−1)e2πbH ,

[H,E±] = ∓ibE+, [Ĥ, E+] = 0, [Ĥ, E−] = +ibE−,
(4.13)

where q = eiπb
2

for a parameter b such that b2 ∈ R/Q, with the real *-structure, i.e.

H∗ = H, Ĥ∗ = Ĥ, (E±)∗ = E±. (4.14)
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In addition, the coproduct for the generators H, Ĥ,E± can presented as

∆(H) = 1⊗H +H ⊗ 1,

∆(Ĥ) = 1⊗ Ĥ + Ĥ ⊗ 1,

∆(E+) = E+ ⊗ e2πbH + 1⊗ E+,

∆(E−) = E− ⊗ e−2πbĤ + 1⊗ E−.

(4.15)

The canonical element S can be written in terms of the generators of HD

S = exp(2πiH ⊗ Ĥ)g−1
b (E+ ⊗ E−), (4.16)

This canonical element is expressed in terms of Faddeev’s quantum dilogarithm in the

same way as the multiplicative unitary (4.12) of the quantum plane.

gb(x) =
ζ̄b

Gb(Q2 + 1
2πib log x)

,

where, ζ̄b = exp[ iπ4 + iπ
12(b2 + b−2)] and we have the following properties,

gb(e2πbr) =

∫
dt e2πitr e−iπt

2

Gb(Q+ it)
, g−1

b (e2πbr) =

∫
dt e2πitr e−πtQ

Gb(Q+ it)
.

We can make those subalgebras into two mutually dual Hopf-subalgebras by assigning

a coproduct in the following way by using a canonical element S

∆(u) = S−1(1⊗ u))S, where u = H,E+, (4.17)

∆(v) = S(v ⊗ 1)S−1, where v = Ĥ, E−. (4.18)

Kashaev representation

Here we review the representations of the Heisenberg double HD(B(Uq(sl(2)))) consid-

ered in [44], that have been shown to be relevant in the quantization of the Teichmüller

theory. We introduce the infinite dimensional representations π : HD(B(Uq(sl(2)))) →
Hom(L2(R)) with the action of the generators given by

H = p, E+ = e2πbq, (4.19)

Ĥ = q, E− = e2πb(p−q),

where [p, q] = 1
2πi are operators on L2(R). All of them are positive self-adjoint operators

on L2(R). The canonical element S (4.16) evaluated on this representation is as follows

S = exp(2πiH ⊗ Ĥ)g−1
b (E+ ⊗ E−) = e2πip1q2g−1

b (e2πb(q1+p2−q2)). (4.20)

Using the quantum dilogarithm properties, one can easily confirm that this canonical

element bring us to the same coproduct as expressed in relations (4.15), which is shown
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here

∆(H) = Ad(S−1)(1⊗H) = S−1(1⊗H)S =

= gb(E+ ⊗ E−)e−2πiH⊗Ĥ(1⊗H)e2πiH⊗Ĥg−1
b (E+ ⊗ E−) =

= gb(E+ ⊗ E−)(1⊗H +H ⊗ 1)g−1
b (E+ ⊗ E−) = 1⊗H +H ⊗ 1,

∆(E+) = Ad(S−1)(1⊗H) = S−1(1⊗ E+)S =

= gb(E+ ⊗ E−)(1⊗ E+)g−1
b (E+ ⊗ E−) =

= gb(e2πb(q1+p2−q2))e2πbq2g−1
b (e2πb(q1+p2−q2)) =

= eπbq2gb(e−iπb
2
e2πb(q1+p2−q2))g−1

b (e+iπb2e2πb(q1+p2−q2))eπbq2 =

= eπbq2(1 + e2πb(q1+p2−q2))eπbq2 =

= e2πbq2 + e2πb(q1+p2) = 1⊗ E+ + E+ ⊗ e2πbH ,

∆(Ĥ) = Ad(S)(Ĥ ⊗ 1) = S(Ĥ ⊗ 1)S−1 =

= e2πiH⊗Ĥg−1
b (E+ ⊗ E−)(Ĥ ⊗ 1)gb(E+ ⊗ E−)e−2πiH⊗Ĥ =

= e2πiH⊗Ĥ(Ĥ ⊗ 1)e−2πiH⊗Ĥ = 1⊗ Ĥ + Ĥ ⊗ 1,

∆(E−) = Ad(S)(E− ⊗ 1) = S(E− ⊗ 1)S−1 =

= e2πiH⊗Ĥg−1
b (e2πb(q1+p2−q2))e2πb(p1−q1)gb(e2πb(q1+p2−q2))e−2πiH⊗Ĥ =

= e2πiH⊗Ĥeπb(p1−q1)g−1
b (e+iπb2e2πb(q1+p2−q2))gb(e−iπb

2
e2πb(q1+p2−q2))eπb(p1−q1)e−2πiH⊗Ĥ =

= e2πiH⊗Ĥ(e2πb(p1−q1) + e2πb(p1+p2−q2)))e−2πiH⊗Ĥ =

= e2πiH⊗Ĥ(E− ⊗ 1 + e2πbH ⊗ E−)e−2πiH⊗Ĥ = 1⊗ Ĥ + Ĥ ⊗ e−2πbĤ ,

where we used the properties of quantum dilogarithm

gb(e2πbx) = eb(x), gb(e−iπb
2
x) = (1 + x)gb(e+iπb2x). (4.21)

In addition, there exists an algebra automorphism A which is also an operator in Te-

ichmüller theory. It is an operator for changing the place of decorated corner of the

triangle in Teichmüller context (read more about in [44]) and it was defined as

A = e−iπ/3e3πiq2
eiπ(p+q)2

. (4.22)

This automorphism acts in particular on the momentum and position operators as

AqA−1 = (p− q), ApA−1 = −q. (4.23)

By the adjoint action of this automorphism one can define new elements ũ = AuA−1 ∈
Hom(L2(R)) which generate another representation of the Heisenberg double in ques-

tion.

H̃ = −q, ˜̂
H = (p− q),

Ẽ+ = e2πb(p−q), Ẽ− = e−2πbp.
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Basis elements of the Heisenberg double of the Borel half of Uq(sl(2))

This section is part of a ongoing project and our goal is to introduce the continuous

version of Heisenberg double of the Borel half of Uq(sl(2)) by finding the appropriate

bases. Because we are taking a complex power of the generators for defining the bases,

we present them in a form that makes explicit their positive and negative definite parts,

H = +H+ −H=
∑

ε={+,−} εHε.

We have the following candidate as the possible bases for subalgebras HD+ and HD−

e(s, t, ε) =
1

2π
Γ(−is)Gb(−it)q−(ib−1t)2

eεπs/2(2π|H|)isΘ(εH)(E+)ib
−1t, (4.24)

ê(s, t, ε) = e−πsδε,− |Ĥ|isΘ(εH)(E−)ib
−1t. (4.25)

where Θ(x) =

{
1 x ≥ 0

0 x < 0
and the special function Gb.

The bases should satisfy the duality relation between them and they normalized such

that

〈e(s, t, ε), ê(s′, t′, ε′)〉 = δ(s, s′)δ(t, t′)δε,ε′ ,

As we see, our algebra has an infinite number of basis elements. The multiplication of

those elements is

e(s, t, ε)e(s′, t′, ε′) =
∑
ω

∫
dσdτm(s, t, ε, s′, t′, ε′;σ, τ, ω)e(σ, τ, ω), (4.26)

ê(s, t, ε)ê(s′, t′, ε′) =
∑
ω

∫
dσdτµ(σ, τ, ω; s, t, ε, s′, t′, ε′)ê(σ, τ, ω). (4.27)

Now, given that one has the following

e(s, t, ε)ê(s′, t′, ε′) =
∑

ω,ω′,ω′′

∫
dσdσ′dσ′′dτdτ ′dτ ′′m(σ, τ, σ′, τ ′; s′, t′)µ(s, t;σ′, τ ′, σ′′, τ ′′, ε)×

× ê(σ, τ, ε)e(σ′′, τ ′′).

The canonical element of Heisenberg double which satisfies pentagon equation (4.10)

can be expressed as

S =
∑
ε

∫
dsdt e(s, t, ε)⊗ ê(s, t, ε). (4.28)

As we defined only multiplication of those elements (by means of the commutator), the

subalgebras HD± are algebras, but not Hopf algebras. However, we can make those

subalgebras into two mutually dual Hopf-subalgebras by assigning a coproduct in the

following way by using a canonical element S

∆(e(s, t, ε)) = S−1(1⊗ e(s, t, ε))S, (4.29)

∆(ê(s, t, ε)) = S(ê(s, t, ε)⊗ 1)S−1. (4.30)





Chapter 5

Classical super Teichmüller spaces

In the previous chapter we reviewed the Teichmüller theory of Riemann surfaces. The

aim of this chapter is to present the basics of super Teichmüller theory, the Teichmüller the-

ory of super Riemann surfaces. Of particular importance will be the coordinates for the

super Teichmüller spaces introduced in [55]. These coordinates are closely related to the

analogue of Penner’s coordinates recently introduced in [53].

In this section, following [55], we will first review the basic notions of super Riemann

surfaces and super Teichmüller spaces. We will then consider the definition of two sets

of coordinates on this space, called Fock coordinates and Kashaev coordinates.

In order to define such coordinates we will need to refine the triangulations used to define

coordinates for the ordinary Teichmüller spaces into certain graphs called hexagonaliza-

tions. Assigning the so-called Kasteleyn orientations to the edges of a hexagonalization

allows one to parametrise the choices of spin structures on super Riemann surfaces. In

addition to even coordinates associated to edges of the underlying triangulation one may

define additional odd coordinates associated to the triangles. The additional orientation

data assigned to a hexagonalization are used to provide an unambiguous definition of

the signs of the odd coordinates. We can use the edges and faces of the hexagonaliza-

tion with those additional structures to assign the supersymmetric analogues of Fock

coordinates.

We will discuss the transformations of coordinates induced by changes of hexagonaliza-

tions. The result of the elementary operation of changing the diagonal in a quadrangle

called flip will now depend on the choice of Kasteleyn orientation. We will furthermore

need to consider an additional operation relating different hexagonalizations called push-

out. This operation relates different Kasteleyn orientations describing the same spin

structure. The relations that have to be satisfied by these transformations define a

generalization of Ptolemy groupoid that will be called super Ptolemy groupoid.

51



Chapter 5. Classical super Teichmüller spaces 52

5.1 Super Riemann surfaces

The concept of supermanifolds was settled by mathematicians after several years. This

new concept got more attention from physicists after Wess and Zumino presented their

famous first supersymmetric field theories, which was the starting point for the applica-

tion of supergeometry in physics. The most famous applications are superstring theory

and supergravity.

The supermanifolds are a generalization of ordinary manifolds in which the notion of

variables has been extended to include the anti-commutative, Grasmannian variables,

θiθj = −θjθi, (5.1)

which imply θi
2 = 0. There are many ways in which that kind of local description

can be incorporated into the picture of differential geometry, which were shown to be

equivalent to each other, like DeWitt’s approach which mimics ordinary differential

geometry, swapping Rn spaces with graded Rn|m, or the one based on sheaves of functions

on non-graded manifolds [76, 77]. Here, we will use the former.

Our goal for this section is to study super Riemann surfaces, and in order to do that let

us start with the notion of a particular case of G-graded vector spaces, that is Z2-graded

vector spaces, called super vector spaces. An object of this kind V, besides having the

normal axioms of a vector space, is endowed with grading, i.e. it decomposes into a

direct sum of subspaces,

V = V0 ⊕ V1. (5.2)

The elements belonging to V0 are called even, and those belonging to V1 called odd.

Moreover, there exist a function || : V → G, called a degree, assigning a group element

α ∈ G to each homogeneous element v ∈ Vα:

|v| = α. (5.3)

This naturally extends to the notion of a G-graded algebra A — A is endowed with a

multiplication that is compatible with the grading in the following way the multiplication

of two homogeneous elements a, b ∈ A of degrees |a| = α, |b| = β will have a degree being

the sum of the degrees of the constituents, i.e. |ab| = α+ β, and

AαAβ ⊂ Aα+β (5.4)

In particular, we are interested in the case when the group G is Z2, then those Z2-graded

vector spaces are called super vector spaces and Z2-graded algebras (superalgebras),

which naming convention we will use from this point on. Moreover, we call the elements

a such that |a| = 0 mod 2 even, and those such that |a| = 1 mod 2 called odd. A

superalgebra is super commutative if

ab = (−1)|a||b|ba for a, b ∈ A. (5.5)
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The basic example of a superalgebra is an algebra of Grassmanians Gn(R) generated by

anti-commutative elements θi,

Gn(R) = {θ1, . . . , θn, |∀i, j : θiθj = −θjθi} , n ∈ N (5.6)

which decomposes into the even and odd subspaces,

Gn(R) = (Gn(R))0 ⊕ (Gn(R))1. (5.7)

We can define a superspace Rn|m defined as a product of Rn and Rm as even and odd

subspaces generated by elements z1, . . . , zn, θ1, . . . , θm,

Rn|m = {z1, . . . , zn, θ1, . . . , θm, |∀i, j : zizj = xjzi, ziθj = θjzi, θiθj = −θjθi} . (5.8)

We can also define a reduction ] : Rn|m → Rn which maps the superspace into an even

subspace by setting all odd generators θi to 0, i.e. the image (z]1, · · · , z
]
n) of an element

of Rn|m is defined as follows:

(z1, · · · , zn|θ1, · · · , θm) 7→ (z]1, · · · , z
]
n). (5.9)

The superspace Rn|m can be endowed with a topology, known as DeWitt topology, using

the reduction map: the subset U ⊆ Rn|m is open if and only if there exists an open subset

V ⊆ Rn such that one is an image of another through the reduction map U = ]−1(V ).

Then one can define a n|m-(real-)dimensional supermanifold M using the superspaces

Rn|m in the same way as one uses Rn to define n-dimensional manifolds in ordinary

differential geometry.

5.1.1 The super upper half plane and its symmetries

We will begin by introducing the basic group-theoretic and geometric background for the

definition of the super Teichmüller spaces and for constructing convenient coordinates

on these spaces.

The coordinates on the two-dimensional super plane R2|1 can be assembled in column

or row-vectors (x1, x2|θ) with xi ∈ R, i = 1, 2, and θ being an element of a Grassmann

algebra satisfying θ2 = 0. The elements of the subgroup OSp(1|2) of the group of linear

transformations of R2|1 may be represented by (2|1)× (2|1) matrices of the form

g =

 a b γ

c d δ

α β e

 . (5.10)
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When the matrix elements are elements of a Grassmann algebra, they satisfy the rela-

tions

ad− bc− αβ = 1, (5.11)

e2 + 2γδ = 1, (5.12)

αe = aδ − cγ, (5.13)

βe = bδ − dγ. (5.14)

A natural map from OSp(1|2) to SL(2,R) may be defined by mapping the odd generators

to zero. The image of g ∈ OSp(1|2) under this map will be denoted as g] ∈ SL(2,R).

The super upper half-plane is defined as H1|1 =
{

(z, θ) ∈ C1|1 : Im(z) > 0
}

. OSp(1|2)

acts on the super upper half plane H1|1 by generalized Möbius transformations of the

form

z −→ z′ =
az + b+ γθ

cz + d+ δθ
, (5.15)

θ −→ θ′ =
αz + β + eθ

cz + d+ δθ
. (5.16)

The one-point compactification of the boundary of H1|1 is the super projective real line

denoted by P1|1. Elements of P1|1 may be represented as column or row vectors (x1, x2|θ)
with xi ∈ R, i = 1, 2 modulo overall multiplication by non-vanishing real numbers.

Considering vectors (x1, x2|θ) with xi ∈ R, i = 1, 2 modulo overall multiplication by

non-vanishing positive numbers defines a double cover S1|1 of P1|1.

There are two types of invariants generalising the cross-ratio present in the ordinary

case. To a collection of four points with coordinates Pi = (xi|θi), i = 1, . . . , 4 one may

assign a super conformal cross-ratio

e−z =
X12X34

X14X23
, (5.17)

where Xij = xi − xj − θiθj . To a collection of three points Pi = (xi|θi), i = 1, 2, 3 one

may furthermore be tempted to assign an odd (pseudo-) invariant via,

ξ = ±
x23θ1 + x31θ2 + x12θ3 − 1

2θ1θ2θ3

(X12X23X31)
1
2

, (5.18)

where xij = xi− xj . Due to the appearance of a square-root one can use the expression

in (5.18) to define ξ up to a sign. 1

1 Alternatively, we can use the infinitesimal action, using the form of generators H,E±, F± of osp(1|2)
Lie superalgebra:

πh(E+) = ∂x, πh(E−) = −x2∂x − xθ∂θ + 2xh,

πh(F+) =
1

2
(∂θ + θ∂x), πh(F−) = −1

2
x(∂θ + θ∂x) + θh,

πh(H) = −x∂x −
1

2
θ∂θ + h,
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In order to arrive at an unambiguous definition one needs to fix a prescription for the

definition of the sign of ξ. A convenient way to parametrize the choices involved in the

definition of the odd invariant uses the so-called Kasteleyn orientations of the triangles

in H1|1 with corners at Pi, i = 1, 2, 3. A Kasteleyn orientation of a polygon embedded in

an oriented surface is an orientation for the sides of the polygon such that the number

of sides oriented against the induced orientation on the boundary of the polygon is odd.

A Kasteleyn orientation of triangles with three corners at Pi ∈ P1|1, i = 1, 2, 3 may

then by used to define lifts of the points Pi ∈ P1|1 to points P̂i of its double cover

S1|1 for i = 1, 2, 3 as follows. We may choose an arbitrary lift of P1, represented by

a vector (x1, y1|θ1) ∈ R2|1. If the edge connecting Pi to P1 is oriented from P1 to

Pi, i = 2, 3, we will choose lifts of Pi represented by vectors (xi, yi|θi) ∈ R2|1 such

that sgn
(
det
( x1 xi
y1 yi

))
= −1, while in the other case Pi will be represented by vectors

(xi, yi|θi) ∈ R2|1 satisfying sgn
(
det
( x1 xi
y1 yi

))
= 1. By means of OSp(1|2)-transformations

one may then map P̂i, i = 1, 2, 3 to a triple of points Qi of the form Q1 ' (1, 0|0),

Q3 ' (0,−1|0), and Q2 ' ±(1,−1|ξ). This allows us to finally define the odd invariant

associated to a triangle with corners Pi, i = 1, 2, 3, and the chosen Kasteleyn orientation

of its sides to be equal to ξ if Q2 ' (1,−1|ξ), and equal to −ξ if Q2 ' −(1,−1|ξ).

5.1.2 Super Teichmüller spaces

After this summary of basic notions of supergeometry, in the following we can discuss

the notion of super Riemann surfaces. Analogously to the non-graded case, a super

Riemann surface Σg,n is a 1-dimensional complex supermanifold with g denoting the

genus and n the number of punctures.

For our goals it will be most convenient to simply define super Riemann surfaces as

quotients of the super upper half plane by suitable discrete subgroups of Γ of OSp(1|2).

This approach is related to the complex-analytic point of view reviewed in [30] by an

analogue of the uniformization theorem proven in [31].

We will use a supersymmetric equivalent of the uniformization theorem, which holds for

super Riemann surfaces. To do that however we will use not the upper-half plane as a

model surface, but a supersymmetric version: a super upper half-plane H1|1.

A discrete subgroup of Γ of OSp(1|2) such that Γ] is a Fuchsian group is called a super

Fuchsian group. Super Riemann surfaces of constant negative curvature will be defined

with h = 0, that generate the OSp(1|2) group and satisfy defining (anti-)commutation relations

[H,E±] = ±E±, [H,F±] = ±1

2
F±,

[E+, E−] = 2H, [E±, F∓] = −F±,

{F+, F−} =
1

2
H, {F±, F±} = ±1

2
E±.

It is clear that OSp(1|2) has PSL(2,R) as a subgroup generated by the even generators H,E±.
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as quotients of the super upper half-plane H1|1 by a super Fuchsian group Γ,

Σg,n ≡ H1|1/Γ. (5.19)

In fact, a super Fuchsian group is a finitely generated discrete subgroup of OSp(1|2)

which reduces to a Fuchsian group. OSp(1|2) is the group of automorphisms of H1|1

under which the metric is invariant.

The points of a super Riemann surface may be represented by the points of a fundamental

domain D on the super upper-half plane on which Γ acts properly discontinuous. Super

Riemann surfaces with n punctures have fundamental domains D touching the boundary

P1|1 of H1|1 in d distinct points Pi, i = 1, . . . , d.2

We can finally define the super Teichmüller space ST g,n of super Riemann surfaces Σg,n

of genus g with n punctures. It can be represented as the quotient

ST g,n =
{
ρ : π1(Σg,n)→ OSp(1|2)

}
/OSp(1|2), (5.20)

where ρ is a discrete representation of fundamental group π1(Σg,n) into OSp(1|2) whose

image is super Fuchsian.

There is always an ordinary Riemann surface Σ]
g,n associated to each super Riemann

surface, defined as quotient of the upper half plane H by Γ]. Notions like ideal tri-

angulations will therefore have obvious counterparts in the theory of super Riemann

surfaces.

Interestingly, while the Teichmüller is connected, the super Teichmüller space has mul-

tiple connected components, whose number is given by the number of spin structures

(which will be discussed in the subsequent section) that a super Riemann surface admits.

Moreover, each of those components is diffeomorphic to R6g−6+2m|4g−g+2m+mR , where

mR is a number of Ramond punctures and mNS = m−mR is a number of Neveu-Schwartz

punctures.

5.2 Hexagonalization and Kasteleyn orientations

Similarly to the ordinary Teichmüller spaces, the parametrization of super Teichmüller spaces

introduced in [55] relies on ideal triangulations of super Riemann surfaces. It will be

based on the even and odd invariants of the group OSp(1|2) that we defined in Section

5.1.1. However, as noted there, one needs to introduce additional data to define the

odd invariants unambiguously. The extra data must allow us to define the lifts of the

punctures Pi ∈ P1|1 to points P̂i on its double cover S1|1. Note that the even part of P1|1

is the real projective line RP1 with group of automorphisms PSL(2,R), while the even

part of S1|1 is a double cover of RP1 with group of automorphisms SL(2,R). Lifting the

vertices of a triangulation of H1|1 to S1|1 should therefore be accompanied with a lift of

the Fuchsian group Γ] ⊂ PSL(2,R) to a subgroup of SL(2, R). It is known that the

2When pairs of points get identified by the action of the group Γ we will have d 6= n.
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definition of such a lift depends on the choice of a spin structure on Σ [78]. Therefore,

we need to introduce a suitable refinement of an ideal triangulation which will allow us

to encode the extra data defining a spin structure.

The parametrization of spin structure on Riemann surfaces used in [55] is based on

results of Cimasoni, Reshetikhin [62, 63] using Kasteleyn orientations. To begin with,

let us first introduce the notion of a hexagonalization. The starting point will be an

ideal triangulation of a surface Σ. Around each puncture let us cut out a small disc,

giving a surface Σb with n holes. The parts of any two edges bounding a triangle in Σ

which are contained in Σb will then be connected by an arc in the interior of Σb. The

resulting hexagon has a boundary consisting of ”long” edges coming from the edges of

the original triangulation, and ”short” edges represented by the arcs connecting the long

edges. The procedure is illustrated in figure 5.1.

Figure 5.1: Hexagonalization.

Let us finally introduce another set of edges called dimers connecting the vertices of

the hexagons with the boundary of Σb. The dimers are represented by dashed lines

in Figure 5.1. The resulting graph will be called a hexagonalization of the given ideal

triangulation.

The next step is to introduce a Kasteleyn orientation on the hexagonalization defined

above. It is given by an orientation of the boundary edges of the hexagons such that for

every face of the resulting graph the number of edges oriented against the orientation

of the surface is odd. It then follows from Theorem 1 in [63] that the choice of the spin

structure can be encoded in the choice of a Kasteleyn orientation on a hexagonalization.3

Different Kasteleyn orientations may describe the same spin structure. Two Kasteleyn

orientations are equivalent in this sense if they are related by the reversal of orientations

of all the edges meeting at the same vertex, as illustrated in Figure 5.2.

The equivalence classes of Kasteleyn orientations related by this operation are in one-

to-one correspondence to the spin structures on Σ.

In order to represent a hexagonalization with Kasteleyn orientation graphically we will

find it convenient to contract all short edges to points, and marking the corners of the

resulting triangle coming from short edges with orientation against the orientation of

3 The hexagonalizations constructed above are special cases of what is called surface graph with
boundary in [62, 63]. The formulation of Theorem 1 in [63] makes use of the notion of a dimer config-
uration on a surface graph with boundary. In our case the dimer configuration is given by the set of
edges connecting the corners of the hexagons with the boundary shown as dashed lines in Figure 5.1.
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Figure 5.2: Equivalence between the Kasteleyn orientations.

the underlying surface by dots. An illustration of this procedure is given in Figures 5.3

and 5.4 below.

Figure 5.3: A hexagon with
Kasteleyn orienations.

Figure 5.4: A representation of
the figure 5.3 by a dotted triangle.

This amounts to representing the data encoded in a hexagonalization with Kasteleyn

orientations in a triangulation carrying an additional decoration given by the choice of

orientations for the edges, and by marking some corners with dots. The data graphically

represented by dotted triangulations will be referred to as oriented hexagonalizations in

the rest of this text.

As a final remark for this part, for dotted triangles the move reversing the orientation

of all edges which meet in the same vertex has a direct generalization, as pictured in

figure 5.5. In this picture we have the short edges of few hexagons next to each other.

The short edges can collapse to the common projected vertex.

5.3 Coordinates of the super Teichmüller spaces

In order to define coordinates for the super Teichmüller spaces let us consider super

Riemann surfaces Σg,n ≡ H1|1/Γ with n ≥ 1 punctures. Σg,n can be represented by a

polygonal fundamental domain D ⊂ H1|1 with a boundary represented by a collection

of arcs pairwise identified with each other by the elements of Γ. The corners of the

fundamental domains Pi = (xi|θi), i = 1, . . . , d of D will be located on the boundary

P1|1 of H1|1. An ideal triangulation of the underlying Riemann surface Σ]
g,n induces

a triangulation of the super Riemann surface with vertices represented by the corners

Pi = (xi|θi), i = 1, . . . , d. Following [55] we will in the following assign even coordinates

to the edges of a dotted triangulation, and odd variables to the triangles themselves.
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Figure 5.5: Equivalence between the Kasteleyn orientations for hexagons sharing the
same projected vertex.

In order to define the coordinates associated to edges let us assume that the edge e

represents the diagonal in a quadrangle with corners at Pi = (xi|θi) ∈ P1|1, i = 1, . . . , 4

connecting P2 and P4. One may then define the even variable ze assigned to the edge e

to be given by the even super conformal cross-ratio defined in (5.17).

In order to define the odd Fock variables let us consider a hexagonalization decorated

with a Kasteleyn orientation. We may triangulate each hexagon as shown in Figure 5.6.

Figure 5.6: A hexagon and its underlying triangle.

Note that the orientation on the sides of the hexagon induces a canonical Kasteleyn

orientation on each of the triangles appearing in this triangulation of the hexagon. We

may therefore apply the definition of odd invariant given in Section 5.1.1 to the corners

of the inner triangle drawn with blue, dashed sides in Figure 5.6. As the hexagons of

the considered hexagonalization are in one-to-one correspondence with the triangles ∆

of a dotted triangulation we will denote the resulting coordinates by ξ∆.
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Poisson structure A super Poisson algebra is a superalgebra A with grading of x ∈ A
denoted as |x|, which has a super Poisson bracket {., .}ST : A×A→ A which satisfies:

• {x, y}ST = −(−1)|x||y|{y, x} graded skew-symmetric,

• {x, {y, z}}+ (−1)|x|(|y|+|z|){y, {z, x}}+ (−1)|z|(|x|+|y|{z, {x, y}} super Jacobi identity,

• {x, yz} = {x, y}z + (−1)|x||y|y{x, z} super Leibniz’s rule,

The super Teichmüller space is parametrized by 3(2g − 2 + n) even coordinates and

2(2g − 2 + n) odd coordinates. As in the non-graded case, the super Teichmüller space

furnishes a symplectic structure given by a super Poisson bracket [79],

{, }ST =
∑

i,j∈E(η(Σ))

εijxixj
∂

∂xi

∂

∂xj
− 1

2

∑
k∈F (η(Σ))

←−
∂

∂ξk

−→
∂

∂ξk
, (5.21)

where the numbers εij are defined in the same way as in the non-graded case, and depend

on the way the edges ei and ej meet with each other. Moreover, the odd differentials

act as follows on the coordinates

←−
∂ ξj
∂ξi

=

−→
∂ ξj
∂ξj

= δij ,

←−
∂ xj
∂ξi

=

−→
∂ xj
∂ξi

= 0, (5.22)

and anticommute with the odd coordinates

−→
∂

∂ξi
(ξ1 . . . ξi . . . ξk) = (−1)i−1(ξ1 . . . ξi−1ξi+1 . . . ξk), (5.23)

←−
∂

∂ξi
(ξ1 . . . ξi . . . ξk) = (−1)k−i(ξ1 . . . ξi−1ξi+1 . . . ξk). (5.24)

For comparing with the ordinary case we can write the super Poisson structure [55] with

non-trivial Poisson brackets among the coordinate functions as

{ze, zf}ST = nef , {ξv, ξw}ST =
1

2
δvw , (5.25)

where the numbers nef are defined in the same way as in ordinary Teichmüller theory.

This defines the Poisson-structure we aim to quantise.

5.4 Super Ptolemy groupoid

The coordinates that we use to parametrise the super Teichmüller space depend on the

choice of the dotted triangulation. It is therefore necessary to determine how those

coordinates transform under the moves that change the dotted triangulations of the

Riemann surfaces. In addition to the supersymmetric analogue of the flip operation

changing the diagonal in a quadrilateral we now need to consider an additional move

describing a change of Kasteleyn orientation which leaves the spin structure unchanged.
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The groupoid generated by the changes of dotted triangulations will be called super

Ptolemy groupoid. We will now offer a description in terms of generators and relations.

5.4.1 Generators

Push-out As we discussed previously, the reversal of Kasteleyn orientations of all the

edges that meet in the same vertex encodes equivalent spin structure to the beginning

one. Therefore, we can consider a pair of two hexagons that meet along one long edge,

and study a move that applies this orientation reversal on one of the vertices common

to both hexagons, as in figure 5.7. We will call this move a (left) push-out. As for the

action on the odd invariants, a push-out leaves the one of the left hexagon unchanged,

but it changes the sign for the one on the right, and it does not change any of the even

invariants.
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β12

Figure 5.7: A (left) push-out.

To make this figure more clear we should explain that the notation εi on each edge means

the correspondence edge i can have any orientation: clockwise or counterclockwise One

should consider that εi has to be chosen in such way that the Kasteleyn orientation is

satisfied. The reason for choosing this notation is that we show how the orientations

change after the action of the generators.

In terms of dotted triangles, one can pictorially represent this move as in figure 5.8. As

we see, we can interpret the push-out as a change of Kasteleyn orientation that moves

dots (or equivalently, short edges oriented against the orientation of the surface) from one

dotted triangle to another. Therefore, we can obtain the transformations of coordinates

assigned to dotted triangles by composing the transformations of coordinates of triangles

without any dots with an appropriate sequence of push-outs.

Moreover, we can define an inverse of a (left) push-out, which we will call a right push-

out. We represent it in figure 5.9. On the odd invariants, it acts in the same way as

the left push-out: the invariant of the left hexagon stays the same, while the invariant

of the right changes sign.

If one would consider dotted triangles instead of hexagons, one can represent the right

push-out as in figure 5.10.
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Figure 5.8: The pictorial representation of a (left) push-out on triangles with one dot.
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Figure 5.9: A right push-out.

ξ1
β12

−1

ξ2 ξ1 −ξ2

Figure 5.10: The pictorial representation of a right push-out on triangles with one
dot.

Superflips We furthermore need to consider the flip operation describing the change

of diagonal in a quadrilateral. The effect of this operation will in general depend on the

assignment of Kasteleyn orientations. An example is depicted in Figure 5.11.

ez 1

ξ1

ez 2

ez 3ez 4

 ω12
(1 )

ez ' 2ez ' 1

ez ' 3ez ' 4

ez e ez ' e
ξ2

ξ ' 1

ξ ' 2

Figure 5.11: The flip ω
(1)
12 .
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The change of even Fock coordinates may be represented as [55]

ez
′
e = e−ze ,

ez
′
1 = e

z1
2 (1 + eze − ξ1ξ2e

ze
2 )e

z1
2 ,

ez
′
2 = e

z2
2 (1 + e−ze − ξ1ξ2e

− ze
2 )−1e

z2
2 ,

ez
′
3 = e

z3
2 (1 + eze − ξ1ξ2e

ze
2 )e

z3
2 ,

ez
′
4 = e

z4
2 (1 + e−ze − ξ1ξ2e

− ze
2 )−1e

z4
2 ,

(5.26)

As we mentioned superflip is a map which relates two different ways of triangulating

a quadrilateral. In the case of super Teichmüller theory, the triangles here should be

interpreted as dotted triangles, that is hexagons with Kasteleyn orientations. To reduce

the number of cases to be considered in the statement of the transformation of the odd

coordinates one may first note that the push-out operation allows one to reduce the

most general case to the case of undotted triangles. There are different ways of assign-

ing Kasteleyn orientations to the long edges. It is easy to check that there are 8 possible

ways of assigning Kasteleyn orientations in this case. In figure 5.12 we present the full

list of all of possible superflips.
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Figure 5.12: Superflips for quadrilaterals without dots; cases 1-8.
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As a remark when we consider Kashaev type coordinates (in 5.5) it is necessary to use

the decorated version of dotted triangulations. In the case of the quadrilaterals relevant

for the flip map, decorated vertices should be chosen always as in figure 5.18.

Let us begin by considering the operation ω(1) depicted in Figure 5.11. One then finds

the following change of coordinates [55]

e
z′1
2 ξ′1 = e

z1
2 (ξ1 + ξ2e

ze
2 ),

e
z′1
2 ξ′2 = e

z1
2 (−ξ1e

ze
2 + ξ2).

(5.27)

µ operator As a useful book-keeping device for generating the expressions in the other

cases let us introduce an operation µv that reverses the orientations of the two long

edges entering a common vertex of a dotted triangulation. This operation is graphically

represented in Figure 5.13. It is easy to see that this will induce a sign change in the

definition of the odd invariant.

ξ

 μ
−ξ

Figure 5.13: The operation µ.

The coordinate transformations induced by flips with other assignments of Kasteleyn

orientations can then be obtained from the case of ω(1) with the help of the operations

µv. An example is represented by Figure 5.14.
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Figure 5.14: Different flips are related by application of transformations µ.
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5.4.2 Relations

The changes of oriented hexagonalizations define a groupoid generalising the Ptolemy

groupoid. In the following we are going to discuss the relations characterising this

groupoid which will be called super Ptolemy groupoid.

It is clear that all relations of the super Ptolemy groupoid reduce to relations of the

ordinary Ptolemy groupoid upon forgetting the decorations furnished by the Kasteleyn

orientations. This fact naturally allows us to distinguish a few different types of relations.

To begin with, let us consider the relations reducing to the pentagon relation of the

Ptolemy groupoid. The super Ptolemy groupoid will have various relations differing by

the choices of Kasteleyn orientations. Considering first the case where all short edges

are oriented with the orientation of the surface we have 16 possible pentagon relations:
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(7)
12 ω

(2)
23 = ω

(5)
23 ω

(2)
13 ω

(7)
12 ,

ω
(5)
12 ω

(6)
23 = ω

(3)
23 ω

(7)
13 ω

(6)
12 , ω

(3)
12 ω

(5)
23 = ω

(2)
23 ω

(8)
13 ω

(3)
12 ,

ω
(1)
12 ω

(3)
23 = ω

(6)
23 ω

(3)
13 ω

(7)
12 , ω

(4)
12 ω

(4)
23 = ω

(4)
23 ω

(4)
13 ω

(1)
12 .

(5.28)

The remaining cases can always be reduced to the cases listed above using the push-out

operation. In Figure 5.15 we present graphically one of the 16 possibilities listed above.

1 2

3 2

1

3

2

1

3

1 3

2

2

31

ω12
(1 )

ω23
(6)

ω23
(6)

ω12
(4)

ω13
(6)

Figure 5.15: An example of one of the possible superpentagon relations.

Other relations reduce to trivial relations upon forgetting the orientation data. Some of

these relations describe how the push-out operations relate flips with different orientation

data. Such relations are

(ω
(i)
23 )−1β43β32β21 = β42β21(ω

(j)
23 )−1, (5.29)
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where i, j can be the following pairs (5, 8), (8, 5), (6, 7), (7, 6), (1, 2), (2, 1), (3, 4), (4, 3) and

ω
(i)
23 β43β32β21 = β43β31ω

(j)
23 , heorem (5.30)

where i, j can be the following pairs (5, 4), (4, 5), (1, 6), (6, 1), (2, 7), (7, 2), (8, 3), (3, 8).

An example for this type of relation is illustrated in Figure 5.16.
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2

β21

β32

β43

β31

β43

ω23
(3)

ω23
(8 )

Figure 5.16: First type of relation between a flip and a push-out.

There are further relations reducing to the commutativity of the flip operations applied

to two quadrilaterals which do not share a triangle, including

ω
(i)
34 β23(ω

(j)
12 )−1β−1

23 = β24(ω
(j)
12 )−1β−1

24 ω
(i)
34 , (5.31)

(ω
(i)
34 )−1β13ω

(j)
12 β

−1
23 = β13ω

(j)
12 β

−1
23 (ω

(i)
34 )−1, (5.32)

(ω
(i)
34 )−1β23(ω

(j)
12 )−1β−1

23 = β23(ω
(j)
12 )−1β−1

23 (ω
(i)
34 )−1, (5.33)

ω
(i)
34 β13ω

(j)
12 β

−1
23 = β14ω

(j)
12 β

−1
24 ω

(i)
34 , (5.34)

where the i, j = 1, . . . , 8 depends on the Kasteleyn orientation of the graph from which

the relation has been derived. Examples of these relations are represented in Figure

5.17.
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ω12
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1

Figure 5.17: Second type of relation between a flip and a push-out.

It seems plausible that the completeness of the relations discussed above can be reduced

to the corresponding result for the ordinary Ptolemy groupoid. This result, as pointed

out in [33], follows from the cell decomposition of the Teichmüller space which can be

defined with the help of Penner’s coordinates [54].

5.5 Kashaev type coordinates

It will furthermore be useful to introduce analogues of the Kashaev coordinates in the

case of super Teichmüller theory. Such coordinates will be associated to oriented hexag-

onalizations carrying an additional piece of decoration obtained by marking a distin-

guished short edge in each hexagon. Oriented hexagonalizations equipped with such a

decoration will be called decorated hexagonalizations in the following.

In addition to a pair of even variables (qv, pv) assigned to each ideal triangle ∆v, we

now need to introduce an odd variable ξv. The collection of these variables parameter-

izing points in R4(2g−2+n)|2(2g−2+n), which we will name super Kashaev space, will be

called super Kashaev coordinates. The non-trivial Poisson brackets defining the Poisson

structure on this space are

{pv, qw}ST = δv,w, {ξv, ξw}ST =
1

2
δv,w, (5.35)
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with all other Poisson brackets among the variables (qv, pv, ξv) being trivial.

The super Teichmüller spaces can be characterized within R8g−8+4n|4g−4+2n by using

the Hamiltonian reduction with respect to a set of constraints that is very similar to

the one used in ordinary Teichmüller theory described in [34]. One may, in particular,

recover the even Fock coordinates in a way that is very similar to (2.12), while the odd

variables simply coincide.

The transformations relating different decorated hexagonalizations will induce changes

of super Kashaev coordinates. Such transformations will generate a decorated version

of the super Ptolemy groupoid. The set of generators becomes as in the case of ordinary

Teichmüller theory enriched by the operation (vw) exchanging the labels associated to

two adjacent triangles, and the rotations ρv of the distinguished short edge. The rotation

ρv will be represented as

ρ−1
v : (qv, pv, ξv)→ (pv − qv,−qv, ξv). (5.36)

The operation (vw) maps (qv, pv, ξv) to (qw, pw, ξw) and vice-versa. The flip ω
(1)
vw , pre-

sented in the figure 5.18, is realized by

(ω(1)
vw)−1 :


(Uv, Vv)→ (UvUw, UvVw + Vv − U

1
2
v V

1
2
w V

1
2
v ξvξw),

(Uw, Vw)→ (UwVv(UvVw + Vv − U
1
2
v V

1
2
w V

1
2
v ξvξw)−1,

Vw(UvVw + Vv − U
1
2
v V

1
2
w V

1
2
v ξvξw)−1),

(5.37)

for the even variables and

(ω(1)
vw)−1 :


ξv → V

1
2
v ξv+U

1
2
v V

1
2
w ξw√

Vv+UvVw−U
1
2
v V

1
2
w V

1
2
v ξvξw

,

ξw → V
1
2
v ξw−U

1
2
v V

1
2
w ξv√

Vv+UvVw−U
1
2
v V

1
2
w V

1
2
v ξvξw

,

(5.38)

for the odd ones, where we denote Uv ≡ eqv and Vv ≡ epv . The action of the rest of

flips 4 can be obtained by the application of appropriate operations µv, as explained

previously.

ez 1

ξ1 ξ2

ez 2

ez 3ez 4

 ω12
(1 )

ez ' 2ez ' 1

ez ' 3ez ' 4

ξ ' 1

ξ ' 2
*

*

*

*

ez e
ez ' e

Figure 5.18: A flip ω(1) on decorated triangulation.

4The flips transforming Kashaev coordinates relate decorated versions of quadrilaterals. Therefore,
to represent flips of Kashaev coordinates one should add decoration to all the figures in 5.12 in the same
places as in the figure 5.18.



Chapter 6

Quantization of super

Teichmüller theory

In this section we will consider the quantization of the Teichmüller spaces of super

Riemann surfaces. The coordinate functions defined in chapter 5 will become linear

operators acting on a Hilbert space. The transformations which relate different hexag-

onalizations, like flips and push-outs, will be represented by linear operators T and B,

respectively. We are going to discuss the relations satisfied by these operators, defining

a projective representation of the super Ptolemy groupoid. We take a collection of equa-

tions (6.26), (6.32)-(6.37), (6.38)-(6.40) as the defining relations for the quantum super

Ptolemy grupoid.

6.1 Quantization of super Kashaev space

The Hilbert space associated to a decorated hexagonalization of a super Riemann surface

will be defined as follows. To each hexagon ∆v (or equivalently each dotted triangle) we

associate a Hilbert space Hv ' L2(R)⊗C1|1. Then, the Hilbert space associated to the

entire super Riemann surface is the tensor product of the spaces for each hexagon:

H =
⊗
v∈I
Hv. (6.1)

We will frequently use the corresponding leg-numbering notation: If O is an operator on

L2(R)⊗C1|1, we may define Ov to be the operator Ov = 1⊗ · · · ⊗ 1⊗ O
v−th
⊗ 1⊗ · · · ⊗ 1 .

The super Kashaev coordinates get quantized to linear operators on the Hilbert spaces

Hv. The coordinates pv and qv are replaced by operators satisfying canonical commu-

tation relations

[pv, qw] =
1

πi
δvw, [qv, qw] = 0, [pv, pw] = 0, (6.2)

69
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and are represented on L2(R) as multiplication and differentiation operators. In the

classical limit b→ 0, the operators 2πbp and 2πbq give their classical counterparts p and

q appropriately. The odd coordinate ξ becomes an operator acting on H of the form

ξi =

√
q

1
2 − q−

1
2κi, (6.3)

where κ is a (1|1)× (1|1) matrix acting on C1|1

κ =

(
0 1

1 0

)
, (6.4)

and where q = eiπb
2

and the quantization constant ~ is related to b as ~ = 4πb2.

Note that ξ satisfies ξ2 = q
1
2 −q−

1
2 = iπb2 +O(b4), thereby reproducing both the relation

ξ2 = 0 and the Poisson bracket {ξ, ξ} = 1
2 in the classical limit b→ 0.

Moreover, the formula (2.12), with the super coordinates replacing the ordinary ones,

has an obvious counterpart in the quantum theory, defining self-adjoint even operators

ze satisfying

[ze, ze′ ] =
1

πi
{ze, ze′}ST . (6.5)

The operators 2πbze give in the classical limit the even shear coordinates ze.

The redundancy of the parametrization in terms of Kashaev type coordinates can be

described using a quantum version of the Hamiltonian reduction characterising the super

Teichmüller spaces within R8g−8+4n|4g−4+2n. This procedure is very similar to the case

of the usual Teichmüller theory described in [34, 36], as explained in chapter 2.

6.2 Generators of the super Ptolemy groupoid

We will now construct a quantum realization of the coordinate transformations induced

by changing the decorated hexagonalization η of a super Riemann surface Σg,n. The co-

ordinate transformations will be represented by operators Uη′η : Hη → Hη′ representing

the change of the hexagonalization η to η′ in the following way. Let {wı; ı ∈ Iη} be a

complete set of coordinates defined in terms of a hexagonalization η. If η′ is another

hexagonalization one may in our case express the coordinates {w̃;  ∈ Iη′} associated

to η′ as functions w′ = W 
η′η({w

ı; ı ∈ Iη}) of the coordinates wı. If wı and w′ are the

operators associated to wı and w′, respectively, we are first going to define quantized

versions of the changes of coordinate functions W
η′η({wı; ı ∈ Iη}) which reduce to the

functions W η′η
 in the classical limit. Unitary operators Uη′η representing these changes

of coordinates on the quantum level are then required to satisfy

U−1
η′η · w

′ · Uη′η = W
η′η({wı; ı ∈ Iη}) . (6.6)

This requirement is expected to characterize the operators Uη′η uniquely up to normal-

ization. We are now going to construct the operators Uη′η for all pairs η and η′ related

by generators of the super Ptolemy groupoid.
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6.2.1 ”Flip” operator T

Of particular interest are the cases where η and η′ are related by the flip operation

changing the diagonal in a triangulation. We will begin by constructing operators T
(i)
vw :

Hv⊗Hw → Hv⊗Hw, i = 1, . . . , 8 representing the super flips of hexagonalizations listed

in chapter 5, with decorated vertices placed in appropriate places. In order to cover the

remaining cases one may use the push-out operation, as will be discussed later. A useful

starting point will be the operator T
(1)
12 corresponding to the operation ω

(1)
12 depicted in

figure 5.18. Following the discussion around (6.6) above, we will require the following

for the even coordinates

T
(1)
12

−1
e2πbz′1T

(1)
12 = eπbz1(1 + e2πbze − eπbzeξ1ξ2)eπbz1 ,

T
(1)
12

−1
e2πbz′2T

(1)
12 = eπbz2(1 + e−2πbze − e−πbzeξ1ξ2)−1eπbz2 ,

T
(1)
12

−1
e2πbz′3T

(1)
12 = eπbz3(1 + e2πbze − eπbzeξ1ξ2)eπbz3 ,

T
(1)
12

−1
e2πbz′4T

(1)
12 = eπbz4(1 + e−2πbze − e−πbzeξ1ξ2)−1eπbz4 ,

T
(1)
12

−1
e2πbz′eT

(1)
12 = e−2πbze ,

(6.7a)

and for the odd ones we require

T
(1)
12

−1
eπbz

′
1ξ1
′T

(1)
12 = e

1
2
πbz1(ξ1 + eπbzeξ2)e

1
2
πbz1 ,

T
(1)
12

−1
eπbz

′
1ξ2
′T

(1)
12 = e

1
2
πbz1(−eπbzeξ1 + ξ2)e

1
2
πbz1 .

(6.7b)

The labelling of variables is the one introduced in Figure 5.18, and the definition of

the variables ze in terms of the Kashaev type variables uses the same conventions as

introduced in Section 2.1.7 above.

An operator T
(1)
12 satisfying (6.7) can be constructed as follows

T
(1)
12 =

1

2

[
f+(q1 + p2 − q2)− if−(q1 + p2 − q2)κ1 κ2

]
e−iπp1q2 . (6.8)

The operator T
(1)
12 is unitary and satisfies (6.7) if f±(x) := eR(x) ± eNS(x) with eNS(x)

and eR(x) being special functions satisfying |eNS(x)| = 1 and |eR(x)| = 1 for x ∈ R,

together with the functional relations

eR

(
x− ib±1

2

)
= (1 + ieπb

±1x)eNS

(
x+

ib±1

2

)
,

eNS

(
x− ib±1

2

)
= (1− ieπb±1x)eR

(
x+

ib±1

2

)
.

Functions eNS(x) and eR(x) satisfying these properties can be constructed as

eR(x) = eb

(
x+ i(b− b−1)/2

2

)
eb

(
x− i(b− b−1)/2

2

)
, (6.9)

eNS(x) = eb

(
x+ cb

2

)
eb

(
x− cb

2

)
, (6.10)
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where eb(x) is Faddeev’s quantum dilogarithm function defined by the following integral

representation

eb(x) = exp

[∫
R+i0

dw

w

e−2ixw

4 sinh(wb) sinh(w/b)

]
. (6.11)

In the following some details on the verification of the quantized coordinate transforma-

tions (6.7) are given here.

First, we present the transformations of the quantized shear coordinates under the flip

that is given by the map T(1). For the quadrilaterals on the figure 5.18, the even shear

coordinates assigned to the edges are expressed as the operators on the (L2(R)⊗C1|1)⊗2

Ze = e2πb(qv−pv+pw)I2, Z′e = e2πb(−qv+qw−pw)I2, (6.12)

Z1 = e2πbpvI2, Z′1 = e2πbpvI2, (6.13)

Z2 = e2πb(qw−pw)I2, Z′2 = e2πb(qv−pv)I2, (6.14)

Z3 = e−2πbqwI2, Z′3 = e−2πbqwI2, (6.15)

Z4 = e−2πbqvI2, Z′4 = e2πbpwI2, (6.16)

and the odd coordinates

ξ1 =

√
q

1
2 − q−

1
2κ⊗ I2, ξ′1 =

√
q

1
2 − q−

1
2κ⊗ I2, (6.17)

ξ2 =

√
q

1
2 − q−

1
2 I2 ⊗ κ, ξ′2 =

√
q

1
2 − q−

1
2 I2 ⊗ κ. (6.18)

Those operators satisfy the algebraic relations as follows

[Ze,Z1] = (1− q−4)ZeZ1, [Ze,Z2] = (1− q+4)ZeZ2,

[Ze,Z3] = (1− q−4)ZeZ3, [Ze,Z4] = (1− q+4)ZeZ4,

[Z1,Z4] = (1− q−4)Z1Z4, [Z2,Z3] = (1− q+4)Z2Z3,

[Z1,Z2] = [Z1,Z3] = [Z2,Z4] = [Z3,Z4] = 0, [Zα, ξi] = 0,

{ξ1, ξ2} = 0, {ξi, ξi} = 2

√
q

1
2 − q−

1
2 1⊗ 1.

Setting q = ei~/4 one can see that those commutation relations reproduce the classical

Poisson bracket given by equation (5.25).
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As an example, let us consider the transformation of the even variable Z′1 = e2πbz′1 :

T(1)−1
vw Z′1T

(1)
vw =

=
1

4
eπbpv [(e−1

NS(u+ ib) + e−1
R (u+ ib))I2 ⊗ I2 − i(e−1

R (u+ ib)− e−1
NS(u+ ib))κ⊗ κ]×

× [(eNS(u− ib) + eR(u− ib))I2 ⊗ I2 − i(eR(u− ib)− eNS(u− ib))κ⊗ κ]eπbpv =

=
1

2
eπbpv

{
[e−1

NS(u+ ib)eNS(u− ib) + e−1
R (u+ ib)eR(u− ib)]I2 ⊗ I2+

−i[e−1
R (u+ ib)eR(u− ib)− e−1

NS(u+ ib)eNS(u− ib)]κ⊗ κ
}
eπbpv =

= eπbpv
{

[1 + e2πb(qv+pw−qw)]I2 ⊗ I2 + (q−
1
2 − q

1
2 )eπb(qv+pw−qw)κ⊗ κ

}
eπbpv =

= Z
1
2
1

{
(1 + Ze)I2 ⊗ I2 + (q−

1
2 − q

1
2 )Z

1
2
e κ⊗ κ

}
Z

1
2
1 =

= Z
1
2
1

{
(1 + Ze)I2 ⊗ I2 − Z

1
2
e ξ1ξ2

}
Z

1
2
1 ,

where we denoted u = qv +pw−pv and used two times the shift relation of the quantum

dilogarithm

eR(x− ib) = (1− i(q
1
2 − q−

1
2 )eπbx + e2πbx)eR(x+ ib),

eNS(x− ib) = (1 + i(q
1
2 − q−

1
2 )eπbx + e2πbx)eNS(x+ ib).

We can obtain the transformation property of the odd variable ξ′1

T(1)−1
vw Z′

1
2
1 ξ
′
1T

(1)
vw =

√
q

1
2 − q−

1
2T(1)−1

vw (eπbpvκ⊗ I2)T(1)
vw =

1

4

√
q

1
2 − q−

1
2 eπbpv×

× [(e−1
NS(u+ ib) + e−1

R (u+ ib))I2 ⊗ I2 − i(e−1
R (u+ ib)− e−1

NS(u+ ib))κ⊗ κ]×
× [(eNS(u) + eR(u))I2 ⊗ I2 − i(eR(u)− eNS(u))κ⊗ κ]κ⊗ I2 =

=
1

2

√
q

1
2 − q−

1
2 eπbpv

{
[e−1

NS(u+ ib)eR(u) + e−1
R (u+ ib)eNS(u)]I2 ⊗ I2+

−i[e−1
R (u+ ib)eNS(u)− e−1

NS(u+ ib)eR(u)]κ⊗ κ
}
κ⊗ I2 =

=

√
q

1
2 − q−

1
2 eπbpv

{
I2 ⊗ I2 − q

1
2 eπb(qv+pw−pv)κ⊗ κ

}
κ⊗ I2 =

= Z
1
2
1 (ξ1 + q

1
2Z

1
2
e ξ2) = Z

1
4
1 (ξ1 + Z

1
2
e ξ2)Z

1
4
1 .

In this case we used the shift property of the quantum dilogarithm as well. In the

analogous way, one can obtain the transformation properties of the rest of Fock variables.

The appearance of Z1 in the transformation property of odd coordinates is just illusory,

and it is caused by our choice of using square roots of operators. Indeed, we can rewrite
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the square root as(
e
√

2πbz1(1 + e2
√

2πbze − (q
1
2 − q−

1
2 )−1e

√
2πbzeξ1ξ2)e

√
2πbz1

)− 1
2

=

=
1

2

{
[e−1

NS(ze)eNS(ze + ib) + e−1
R (ze)eR(ze + ib)]+

− i

q − q−1
[e−1

R (ze)eR(ze + ib)− e−1
NS(ze)eNS(ze + ib)]ξ1ξ2

}
e−
√

2πbz1 .

It is clear that even coordinate z1 cancels out from the transformations if we use this

formula for the square root. However, the quantum transformations are written in terms

of quantum dilogarithms, and their behaviour in the classical limit is less clear in this

form.

Moreover, using the facts from the functional analysis the inverse of the square root of

this variable is given by

T (1)−1
vw Z ′

− 1
2

1 T (1)
vw =

(
Z

1
2
1

{
(1 + Ze)I2 ⊗ I2 − (q

1
2 + q−

1
2 )−1Z

1
2
e ξ1ξ2

}
Z

1
2
1

)− 1
2

.

Using this fact, we can obtain the transformation property of the odd variable ξ′1

T (1)−1
vw ξ′1T

(1)
vw =

√
q − q−1T (1)−1

vw Z ′
− 1

2
1 T (1)

vw T
(1)−1
vw (e

√
2πbpvξ ⊗ I2)T (1)

vw =

=
1

4

√
q − q−1

(
Z

1
2
1

{
(1 + Ze)I2 ⊗ I2 − (q

1
2 + q−

1
2 )−1Z

1
2
e ξ1ξ2

}
Z

1
2
1

)− 1
2

e
√

2πbpv×

× [(e−1
NS(u+ ib) + e−1

R (u+ ib))I2 ⊗ I2 − i(e−1
R (u+ ib)− e−1

NS(u+ ib))ξ ⊗ ξ]×
× [(eNS(u) + eR(u))I2 ⊗ I2 − i(eR(u)− eNS(u))ξ ⊗ ξ] ξ ⊗ I2 =

=
1

2

√
q − q−1

(
Z

1
2
1

{
(1 + Ze)I2 ⊗ I2 − (q

1
2 + q−

1
2 )−1Z

1
2
e ξ1ξ2

}
Z

1
2
1

)− 1
2

e
√

2πbpv×

×
{

[e−1
NS(u+ ib)eR(u) + e−1

R (u+ ib)eNS(u)]I2 ⊗ I2+

−i[e−1
R (u+ ib)eNS(u)− e−1

NS(u+ ib)eR(u)]ξ ⊗ ξ
}
ξ ⊗ I2 =

=
√
q − q−1

(
Z

1
2
1

{
(1 + Ze)I2 ⊗ I2 − (q

1
2 + q−

1
2 )−1Z

1
2
e ξ1ξ2

}
Z

1
2
1

)− 1
2

e
√

2πbpv×

×
{
I2 ⊗ I2 − q

1
2 eπb

√
2(qv+pw−pv)ξ ⊗ ξ

}
ξ ⊗ I2 =

=

(
Z

1
2
1

{
(1 + Ze)I2 ⊗ I2 − (q

1
2 + q−

1
2 )−1Z

1
2
e ξ1ξ2

}
Z

1
2
1

)− 1
2

Z
1
2
1 (ξ1 + q

1
2Z

1
2
e ξ2).

In this case we used the shift property of the quantum dilogarithm as well. In the

analogous way, one can obtain the transformation properties of the rest of Fock variables

in question.
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6.2.2 ”Change of orientations” operator M

As a useful tool for describing the definition of the remaining operators T
(i)
12 , i = 2, . . . , 8,

we will introduce an operator Mv : Hv → Hv representing the change of orientations

µv in an undotted triangle shown in the figure 5.13. The operator Mv is associated by

our conventions concerning tensor products introduced above to the operator M on C1|1

which can be represented by the matrix

M =

(
1 0

0 −1

)
. (6.19)

The operator Mv squares to identity M2
v = idv and acts on the odd invariant as

M−1
v · ξv ·Mv = −ξv. (6.20)

One should note that the operation µv relates Kasteleyn orientations describing inequiv-

alent spin structures, in general.

It is easy to see that the flips ω
(i)
12 , i = 2, . . . , 8 can be represented as compositions of the

flip ω
(1)
12 with operations µv. We will define the corresponding operators T

(i)
12 , i = 2, . . . , 8

by taking the corresponding product of the operators Mv with the operator T
(1)
12 . To

give an example, let us note that the flip ω(2) can be represented by the sequence of

operations shown in figure 6.1. This leads us to define the operator T
(2)
12 as

T
(2)
12 = M1M2T

(1)
12 M1. (6.21)

 T 12
(2 )

M 1 M 1M 2

ez 1

ξ1 ξ2

ez 2

ez 3ez 4

 T 12
(1)

*
*

*
*

*

*

*

*
ez 3ez 4

ez 2ez 1

ez ' 1 ez ' 2

ez ' 3ez ' 4

ez ' 3ez ' 4

ez ' 2ez ' 1

ξ1

ξ ' 1

ξ ' 1
ξ2

ξ ' 2

ξ ' 2

ez e

ez e

ez ' e

ez ' e

Figure 6.1: By using operators M we can find the map between the second superflip
and the first one.
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All other operators T
(i)
12 , i = 3, . . . , 8 associated to the flips ω(i), i = 3, . . . , 8 can be

defined in the same way.

T
(3)
12 = T

(1)
12 M1M2 T

(4)
12 = M1M2T

(1)
12 M2

T
(5)
12 = M1T

(1)
12 M1 T

(6)
12 = M2T

(1)
12 M1M2 (6.22)

T
(7)
12 = M1T

(1)
12 M2 T

(8)
12 = M1T

(1)
12 M1M2.

The operations considered up to now were associated to triangles that do not have

corners marked with dots. As noted above, one may always locally reduce to this case

by using the push-out operation. The push-out β will be represented by an operator

Buv : Hu ⊗Hv → Hu ⊗Hv defined as follows

Buv = iduMv. (6.23)

With the help of the operator Buv one may now define all operators associated with the

flips relating dotted triangles.

6.2.3 ”Super permutation” operator Π
(i)
(12)

We furthermore need to define operators Π
(i)
(12), i = 1, . . . , 8 representing the exchange

(uv) of labels assigned to two adjacent triangles when the Kastelyn orientation is the

one of the initial configurations of the flips ω
(i)
12 depicted in Figure 5.12. By using the

operators Mv one may reduce the definition to the case i = 1 in a way closely analogous

to the definition of the T
(i)
12 , i = 2, . . . , 8 in terms of T

(1)
12 . In order to define the operator

Π
(1)
(12) let us represent H1 ⊗H2 as L2(R2)⊗ C1|1 ⊗ C1|1, and let

Π
(1)
(12) = (Pb ⊗ I2 ⊗ I2)(id⊗ Pf) , where Pf = (I2 ⊗M)(I2 ⊗ I2 + κ⊗ κ), (6.24)

with respect to this factorization, where Pb acts on functions of two variables as Pbf(x1, x2) =

f(x2, x1). One may note that Pf is not the standard permutation operator on C1|1⊗C1|1

satisfying Pf(η1⊗ η2)Pf = η2⊗ η1 for arbitrary η1, η2 ∈ End(C1|1) (one can find this cal-

culation in appendix D).

However, the operator Pf squares to the identity and satisfies Pf(ξ ⊗ I2)Pf = I2 ⊗ ξ

and Pf(I2 ⊗ ξ)Pf = ξ ⊗ I2. This means that the operator Pf correctly represents the

permutation on the the sub-algebra of End(C1|1 ⊗C1|1) generated by I2 ⊗ ξ and ξ ⊗ I2.

This is the algebra of operators on C1|1 ⊗ C1|1 relevant for the quantization of the

super Teichmüller theory. The reason for adopting a non-standard representation of the

permutation on this sub-algebra will become clear when we discuss the relations of the

super Ptolemy groupoid.
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6.2.4 ”Rotating the distinguished vertex” operator A

We finally need to define an operator Av representing the move rotating the distinguished

vertex of a dotted triangle as shown in figure 2.12. The operator Av : Hv → Hv will be

defined as

Av = eiπ/3e−i3πq
2
v/2e−iπ(pv+qv)2/2I2. (6.25)

Let us finally note that the flip operators T
(i)
12 have an interesting interpretation within

the representation theory of the Heisenberg double of the quantum super plane, which

will be elaborated in chapter 7. The flip operator T
(1)
12 is found to coincide with the

canonical element of the Heisenberg double of the quantum super plane (which is a

Borel half of Uq(osp(1|2))), evaluated in certain infinite-dimensional representations on

L2(R)⊗ C1|1.

6.3 Quantum super Ptolemy groupoid

We are now going to describe essential steps in the verification that the operators defined

previously generate a representation of the super Ptolemy groupoid.

6.3.1 Superpentagon equation

Of particular interest are the generalizations of the pentagon relation. Using the push-

out operation one can always reduce to relations involving only undotted triangles. As

noted previously, one needs to check the following set of relations,

T
(1)
12 T

(1)
23 = T

(1)
23 T

(1)
13 T

(1)
12 , T

(6)
12 T

(2)
23 = T

(2)
23 T

(1)
13 T

(6)
12 ,

T
(5)
12 T

(8)
23 = T

(8)
23 T

(5)
13 T

(5)
12 , T

(6)
12 T

(7)
23 = T

(7)
23 T

(6)
13 T

(5)
12 ,

T
(2)
12 T

(1)
23 = T

(1)
23 T

(2)
13 T

(2)
12 , T

(8)
12 T

(8)
23 = T

(1)
23 T

(8)
13 T

(8)
12 ,

T
(4)
12 T

(5)
23 = T

(5)
23 T

(5)
13 T

(4)
12 , T

(5)
12 T

(3)
23 = T

(3)
23 T

(4)
13 T

(6)
12 ,

T
(3)
12 T

(4)
23 = T

(7)
23 T

(3)
13 T

(2)
12 , T

(7)
12 T

(7)
23 = T

(4)
23 T

(7)
13 T

(8)
12 ,

T
(1)
12 T

(6)
23 = T

(6)
23 T

(6)
13 T

(4)
12 , T

(7)
12 T

(2)
23 = T

(5)
23 T

(2)
13 T

(7)
12 ,

T
(5)
12 T

(6)
23 = T

(3)
23 T

(7)
13 T

(6)
12 , T

(3)
12 T

(5)
23 = T

(2)
23 T

(8)
13 T

(3)
12 ,

T
(1)
12 T

(3)
23 = T

(6)
23 T

(3)
13 T

(7)
12 , T

(4)
12 T

(4)
23 = T

(4)
23 T

(4)
13 T

(1)
12 .

(6.26)

One may first observe that all of these relations follow from the pentagon equation that

involves only T(1). As an example let us consider the pentagon equation represented by

Figure 6.2, corresponding to the equation

T
(6)
12 T

(2)
23 = T

(2)
23 T

(1)
13 T

(6)
12 .
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Figure 6.2: One of the pentagon equations.

Using the relations between T(1) and other flips, we can rewrite it

(M2T
(1)
12 M1M2)(M2M3T

(1)
23 M2) = (M2M3T

(1)
23 M2)T

(1)
13 (M2T

(1)
12 M1M2),

which is just a pentagon for T(1), given the fact that M1M2T
(i)
12M1M2 = T

(i)
12 for all i.

In order to verify the pentagon equation for T(1) one may note that by straightforward

calculations one may reduce the validity of this relations to the following identities

f+(p)f+(x) = f+(x)f+(x + p)f+(p)− if−(x)f−(x + p)f−(p), (6.27a)

f+(p)f−(x) = −if+(x)f−(x + p)f−(p) + f−(x)f+(x + p)f+(p), (6.27b)

f−(p)f+(x) = f+(x)f+(x + p)f−(p)− if−(x)f−(x + p)f+(p), (6.27c)

f−(p)f−(x) = if+(x)f−(x + p)f+(p)− f−(x)f+(x + p)f−(p), (6.27d)

with x and p being self-adjoint operators satisfying the relations

[p, x] =
1

iπ
.

The relations (6.27) follow from integral identities satisfied by the special functions

eNS(x) and eR(x). Here we provide a proof of them and will show that theses equations

are equivalent to the analogs (B.19) of the Ramanujan summation formula which have

been derived in [80].
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These formulae can be rewritten in terms of eNS(x) and eR(x) as follows,∫
dxe−πix(u+cb)

(
eNS(x+ cb)

eNS(x+ v)
+
eR(x+ cb)

eR(x+ v)

)
= 2χ0

eNS(v + u+ cb)

eNS(v)eNS(u)
, (6.28a)∫

dxe−πix(u+cb)

(
eNS(x+ cb)

eNS(x+ v)
− eR(x+ cb)

eR(x+ v)

)
= 2χ0

eR(v + u+ cb)

eNS(v)eR(u)
, (6.28b)∫

dxe−πix(u+cb)

(
eNS(x+ cb)

eR(x+ v)
+
eR(x+ cb)

eNS(x+ v)

)
= 2χ0

eR(v + u+ cb)

eR(v)eNS(u)
, (6.28c)∫

dxe−πix(u+cb)

(
eNS(x+ cb)

eR(x+ v)
− eR(x+ cb)

eNS(x+ v)

)
= 2χ0

eNS(v + u+ cb)

eR(v)eR(u)
, (6.28d)

where χ0 = e−iπ(1−c2b)/6. Taking the limit v → −∞ we can obtain the Fourier transforms

f̃+(u) =

∫
dxe−πixu(eR(x) + eNS(x)) = e−iπcbu

2χ0

eNS(u− cb)
=

= 2χ−1
0 e−iπu

2/2eNS(cb − u),

f̃−(u) =

∫
dxe−πixu(eR(x)− eNS(x)) = −e−iπcbu 2χ0

eR(u− cb)
=

= 2iχ−1
0 e−iπu

2/2eR(cb − u).

Then, we can consider the matrix elements of the operators fr(X)fs(P + X) between

(generalized) eigenstates 〈p| and |p′〉 of the operator P with eigenvalues p and p′, respec-

tively:

Ξrs = 〈p|fr(X)fs(P + X)|p′〉, (6.29)

for r, s = +,− and [P,X] = 1
iπ . We have

〈p|fr(X)fs(P + X)|p′〉 =

∫
dp′′〈p|fr(X)|p′′〉〈p′′|fs(P + X)|p′〉 =

=

∫
dp′′eiπ(p′′2−p′2)/2f̃r(p− p′′)f̃s(p′′ − p′),

where we used the identity between the matrix element of an arbitrary function g and

its Fourier transform g̃

〈p|g(X)|p′〉 = g̃(p− p′) ,

and the fact that

g(X + P) = e
iπ
2
P2
g(X)e−

iπ
2
P2
.

Let us consider in detail the case r = +, s = +. Then we can write, using (6.28),

Ξ++ =

∫
dp′′e

iπ
2

(p′′2−p′2) eNS(p′ − p′′ + cb)

eNS(p− p′′ − cb)
e−

iπ
2

(p′′−p′)2
e−iπcb(p−p′′) =

= e−iπcb(p−p′)
∫

dxe−iπx(p′+cb) eNS(x+ cb)

eNS(x+ p− p′ − cb)
=

= χ0e
−iπcb(p−p′) 1

eNS(p− p′ − cb)

(
eNS(p)

eNS(p′)
+
eR(p)

eR(p′)

)
.
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Therefore

f+(X)f+(X + P) = eNS(P)f+(X)e−1
NS(P) + eR(P)f+(X)e−1

R (P).

If one repeats the calculations for other possibilities, the case r = −, s = − gives

f−(X)f−(X + P) = −i(eNS(P)f+(X)e−1
NS(P)− eR(P)f+(X)e−1

R (P)),

while r = +, s = −

f+(X)f−(X + P) = −i(eR(P)f−(X)e−1
NS(P)− eNS(P)f−(X)e−1

R (P)),

and r = −, s = +

f−(X)f+(X + P) = eR(P)f−(X)e−1
NS(P) + eNS(P)f−(X)e−1

R (P).

Combining those relations one can easily obtain the system

f+(P)f+(X) = f+(X)f+(X + P)f+(P)− if−(X)f−(X + P)f−(P), (6.30a)

f+(P)f−(X) = −if+(X)f−(X + P)f−(P) + f−(X)f+(X + P)f+(P), (6.30b)

f−(P)f+(X) = f+(X)f+(X + P)f−(P)− if−(X)f−(X + P)f+(P), (6.30c)

f−(P)f−(X) = if+(X)f−(X + P)f+(P)− f−(X)f+(X + P)f−(P), (6.30d)

Combining these relations one can easily obtain the system (6.27) which was observed to

imply the pentagon equation satisfied by T
(1)
12 . One can also see another way for proving

these equations following the approach in [50] in appendix C.

6.3.2 Relations between push-outs and superflips operators

The quantum Ptolemy groupoid is defined by relations besides the superpentagon. There

is an equation satisfied by a push-out

Bn,1B1,2 . . .Bn−1,n = M1M2 · · ·Mn, (6.31)

for all n ≥ 2, which comes from figure 6.3, where we consider a collection of hexagons

meeting in the same vertex (a collection of vertices in S1|1 that project to the same

point in P1|1). Then, we can move the dot around this vertex until we arrive at the

same hexagon, and then relate this hexagonalization to the initial one by reversing the

orientation on the edges. This relation is an easy consequence of the definitions.

Further relations involve both flips and push-outs. It suffices to consider relations in-

volving only triangles with one dot as other cases can be reduced to this one using

push-outs. We found that the following relations between operators T
(i)
23 and T

(j)
23 for

different values of i and j are satisfied:

(T
(i)
23 )−1B43B32B21 = B42B21(T

(j)
23 )−1, (6.32)
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Figure 6.3: Relation for push-out.

where the pairs (i, j) = (5, 8), (8, 5), (6, 7), (7, 6), (1, 2), (2, 1), (3, 4), (4, 3),

T
(i)
23B43B32B21 = B43B31T

(j)
23 , (6.33)

where the pairs (i, j) = (5, 4), (4, 5), (1, 6), (6, 1), (7, 2), (2, 7), (3, 8), (8, 3).

Another set of relations involves the operators T
(i)
34 and T

(j)
12 associated to two different

pairs of triangles:

T
(i)
34B23(T

(j)
12 )−1(B23)−1 = B24(T

(j)
12 )−1(B24)−1T

(i)
34 , (6.34)

(T
(i)
34 )−1B13T

(j)
12 (B23)−1 = B13T

(j)
12 (B23)−1(T

(i)
34 )−1, (6.35)

(T
(i)
34 )−1B23(T

(j)
12 )−1(B23)−1 = B23(T

(j)
12 )−1(B23)−1(T

(i)
34 )−1, (6.36)

T
(i)
34B13T

(j)
12 (B23)−1 = B14T

(j)
12 (B24)−1T

(i)
34 , (6.37)

where the i, j, k, l,m = 1, . . . , 8 depends on the Kasteleyn orientation of the graph from

which the relation has been derived. Examples of these relations are represented dia-

grammatically in figures 5.16 and 5.17, with decorated vertices assigned appropriately.

All the relations (6.34) can be reduced to the obvious identity T
(i)
34T

(i)
12 = T

(i)
12T

(i)
34 .

6.3.3 Relations between superflips and A operator

We finally need to discuss the relations of the super Ptolemy groupoid involving the

operator A. We find that the following relations are satisfied

A3
1 = id1, (6.38)

A2T
(i)
12A1 = A1T

(i)
21A2, (6.39)

T
(j)
21 A1T

(k)
12 = ζs A2A1Π

(k)
(12), (6.40)
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where i = 1, . . . , 8, the pairs (j, k) = (4, 1), (7, 2), (2, 3), (5, 4), (8, 5), (3, 6), (6, 7), (1, 8),

and ζs = e
πi
4 e−iπ(1+c2b)/6. It is the operator Π

(1)
(12) defined in (6.24) which appears in

(6.40) for i = 1, explaining why we adopted this definition for Π
(1)
(12).

Here I provide a computation of (6.40) for (j, k) = (4, 1), which involves the operator

Π(1) permuting our observables. Explicitly, we consider the relation

ζsΠ
(1)
(12) = A−1

2 A−1
1 T

(4)
21 A1T

(1)
12 . (6.41)

The relation between two superflips is as follows

T
(4)
12 = M1M2T

(1)
12 M2. (6.42)

Let us denote α = q1 + p2− q2 and β = q2 + p1− q1. Using that, the flips are expressed

as

T
(1)
12 =

1

2
[(eR(α) + eNS(α))I2 ⊗ I2 − i(eR(α)− eNS(α))κ⊗ κ]e−πip1q2 ,

T
(1)
21 =

1

2
[(eR(β) + eNS(β))I2 ⊗ I2 + i(eR(β)− eNS(β))κ⊗ κ]e−πip2q1 .

In addition, lets recall that A acts on p and q as

A−1qI2A = (p− q)I2, A−1pI2A = −qI2.

Using those formulas, we can evaluate the right hand side of (6.41)

RHS =
1

4
A−1

2 A−1
1 M2M1[(eR(α) + eNS(α))I2 ⊗ I2 + i(eR(α)− eNS(α))κ⊗ κ]×

×M1e
−πip1q2A1[(eR(β) + eNS(β))I2 ⊗ I2 − i(eR(β)− eNS(β))κ⊗ κ]e−πip1q2 =

=
1

4
A−1

2 M2[(eR(q2 − p1) + eNS(q2 − p1))I2 ⊗ I2 − i(eR(q2 − p1)− eNS(q2 − p1))κ⊗ κ]×

× [(eR(p1 − q2) + eNS(p1 − q2))I2 ⊗ I2 − i(eR(p1 − q2)− eNS(p1 − q2))κ⊗ κ]

× e−πip2(p1−q1)e−πip1q2 =

=
1

2
A−1

2 M2[(eNS(q2 − p1)eNS(−q2 + p1) + eR(q2 − p1)eR(−q2 + p1))I2 ⊗ I2+

− i(−eNS(q2 − p1)eNS(−q2 + p1) + eR(q2 − p1)eR(−q2 + p1))κ⊗ κ]×

× e−πip2(p1−q1)e−πip1q2 =

=
1

2
eiπc

2
b/2e−π(1+2c2b)/3A−1

2 M2[(eiπ(−q2+p1)2/2 + ieiπ(−q2+p1)2/2)I2 ⊗ I2+

− i(−eiπ(−q2+p1)2/2 + ieiπ(−q2+p1)2/2)κ⊗ κ]e−πip2(p1−q1)e−πip1q2 =

=
1 + i

2
eiπc

2
b/2e−iπ(1+2c2b)/3M2[I2 ⊗ I2 + iκ⊗ κ]×

× A−1
2 eiπ(−q2+p1)2/2e−πip2(p1−q1)e−πip1q2︸ ︷︷ ︸

e−iπ/3eiπ/2Pb

=

= e
iπ
4 e−iπ(1+c2b)/6M2[I2 ⊗ I2 + κ⊗ κ]Pb = ζsPfPb = ζsΠ

(1)
12 = LHS,

which gives us the left hand side of the formula.
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Quantum supergroups,

Heisenberg double and Drinfeld

double

In chapters 3 and 4 we have seen how to construct the Heisenberg double for non-graded

case with finite and infinite basis. In this chapter we aim to generalize that for the

graded case. We prove that the canonical element of the Heisenberg double of the Borel

half of Uq(osp(1|2)) evaluated on the self-dual representations can be identified with the

flip operators of the quantized super Teichmüller theory of super Riemann surfaces. The

details for calculating the flip operators of the quantized super Teichmüller theory of

super Riemann surfaces were explained in the previous chapter. Finding the basis of

Heisenberg double of Uq(osp(1|2)) is part of an ongoing project which we will partially

explain.

7.1 Quantum supergroups

Quantum supergroups are the generalizations of quantum groups [81–83]. They have a

natural connection with supersymmetric integrable lattice models and super conformal

field theories. We give some basic definitions related to the quantum supergroup in this

section.

Let us choose a field K. A Z2 graded vector space A over K is the direct sum of two

vector spaces,

A = A0 ⊕A1. (7.1)

To each element a ∈ Ai ⊂ A, i = 0 or 1, we assign a grading |a|, we call a even if

|a| = 0 and odd if |a| = 1. We call A0 and A1 even and odd subspaces of A, respectively.

Suppose A = A0 ⊕ A1 is superalgebra or Z2 graded algebra. We call A ⊗ B tensor

83
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product of superalgebras A and B with the multiplication defined as,

(a1 ⊗ b1)(a2 ⊗ b2) = (−1)|b1||a2|a1a2 ⊗ b1b2, ai ∈ A, bi ∈ B. (7.2)

Definition 12. The unital associative Z2 graded algebra is a triple (A,m, η) where A =

A0⊕A1 is a vector space. m is multiplication map and η is unital map and they satisfy

m(m⊗ id) = m(id⊗m),

m(η ⊗ id) = id = m(id⊗ η).

if a ∈ Ai, b ∈ Aj then m(a, b) ∈ Ai+j , where i, j ∈ Z2. They are similar axioms as the

axioms in the non-graded case (equations (3.1), (3.2)).

Definition 13. The counital coassociative Z2 graded coalgebra is a triple (A,∆, ε) where

A = A0 ⊕ A1 is a vector space. ∆ is comultiplication map and ε is counital map and

they satisfy the same axioms

(∆⊗ id)∆ = m(id⊗∆),

(ε⊗ id)∆ = id = (id⊗ ε)∆.

and |a| = |∆(a)|. They are similar axioms as the axioms in the non-graded case (equa-

tions (3.3), (3.4)).

Definition 14. Let A be a Z2 graded algebra with multiplication m and unit η, and at

the same time a Z2 graded coalgebra with comultiplication ∆ and counit ε. A is called

Z2 graded bialgebra when one of the following condition is satisfied; m and η are Z2

graded algebra homomorphism or ∆ and ε are Z2 graded coalgebra homomorphism.

A Z2 graded bialgebra become a Hopf algebra if includes homomorphism S : A → A

with following axiom

m(id⊗ S).∆ = m(S ⊗ is).∆ = ηε, (7.3)

with some properties such as,

∆S = Σ(S ⊗ S)∆, Sη = η, (7.4)

m(S ⊗ S)Σ = Sm, εS = ε, (7.5)

where Σ : A⊗A→ A⊗A, Σ(α⊗ b) = (−1)|a||b|b⊗ a.

Definition 15. A Lie superalgebra is a superalgebra with commutator bracket [, ] which

follows axioms,

[a, b] = −(−1)|a||b|ba, (anticommutativity) (7.6)

[a, [b, c]] = [[a, b], c] + (−1)|a||b|[b, [a, c]], (Jacobbi identity) (7.7)

A Lie superalgebra is called commutative if [a, b] = 0 (more details about Lie superal-

gebra can be found in [57, 84–86]).
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Let g be a Lie superalgebra, the Z2 graded Hopf algebra U(g) admits one-parameter

deformation namely the quantum supergroups [82, 87]. The Uq(g) is a superalgebra

generated by xi, yi,Ki,K
−1
i with appropriate relations [82, 87].

7.2 Graded Drinfeld double

As we explained in chapter 3, the quantum double construction takes a Hopf algbera

A with a bijective antipode and provides the quasi-triangular Hopf algbera D(A) which

includes A and its dual A∗, as two Hopf subalgebras. This new Hopf algbera can be also

built from non-commutative and non-cocommutative Hopf algebras. It also provides the

universal R-matrices which are the solution of Yang-Baxter equation. Here we explain

the generalized Drinfeld’s quantum double construction for the graded case.

Lets have a bialgebra A with multiplication m and comultiplication ∆ and basis {Eα},

EαEβ = mγ
αβEγ , (7.8)

∆(Eα) = µβγα Eβ ⊗ Eγ . (7.9)

Additionally, we define a dual bialgebra A∗ which is isomorphic to A as a vector space

and with multiplication and co-multiplication given below. By using the bracket 〈, 〉 :

A×A∗ → C we have

〈m(a, b), c〉 = 〈a⊗ b,Σ∆∗(c)〉, (7.10)

〈∆(a), c⊗ d〉 = 〈a,m∗(c, d)〉, (7.11)

〈a⊗ b, c⊗ d〉 = (−1)|b||c|〈a, c〉〈b, d〉, (7.12)

where a, b ∈ A, c, d ∈ A∗ and Σ(a ⊗ b) = (−1)|a||b|b ⊗ a. Using the dual basis {Eα} on

A∗ defined such as

〈Eα, Eβ〉 = δβα,

one can write

EαEβ = (−1)|α||β|µαβγ Eγ , (7.13)

∆(Eα) = mα
γβE

β ⊗ Eγ . (7.14)

Then, one can define Drinfeld double D(A) ∼= A ⊕ A∗ as a vector space, with multipli-

cation and comultiplication given as above on the subspaces A,A∗. One can extend the

bracket in the following way:

〈a, c〉 = (−1)|a||c|〈c, a〉,
〈a, b〉 = 〈c, d〉 = 0, a, b ∈ A, c, d ∈ A∗.
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In order to make D(A) into a bialgebra one has to define a product between Eα’s and

Eβ’s, which can be done in the following way

(−1)|γ||σ|+|ρ||σ|µσγα mβ
γρEσE

ρ = (−1)|ρ||γ|mβ
ργµ

γσ
α EρEσ.

Theorem 2. Let A be a proper Z2 graded Hopf algebra then R = Eα ⊗ Eα defines a

universal R matrix for the double D(A), which is said to satisfy

Σ∆(a)R = R∆(a), (7.15)

(∆⊗ id)R = R13R23, (7.16)

(id⊗∆)R = R13R12, (7.17)

(T∆⊗ id)R = R23R13, (7.18)

(id⊗ Σ∆)R = R12R13, (7.19)

The equation (7.15) can be proven as follows

R∆(Ei) = (Eα ⊗ Eα)µβγi Eβ ⊗ Eγ = (−1)|β||α|µβγi EαEβ ⊗ EαEγ =

= Eδ ⊗ ((−1)|β||α|µβγi mδ
αβE

αEγ) = Eδ ⊗ ((−1)|β||γ|+|α||γ|µγβi mδ
βαEγE

α) =

= (−1)|β||γ|+|α||γ|µγβi EβEα ⊗ EγEα = (−1)|β||γ|µγβi (Eβ ⊗ Eγ)(Eα ⊗ Eα) =

= Σ(µγβi (Eγ ⊗ Eβ))R = Σ∆(Ei)R,

and analogously for a = Ei. The rest can be easily proven as,

(∆⊗ id)R = (∆⊗ id)(Eα ⊗ Eα) = µβγα Eβ ⊗ Eγ ⊗ Eα =

= Eβ ⊗ Eγ ⊗ µβγα Eα = (−1)|β||γ|Eβ ⊗ Eγ ⊗ EβEγ =

= (Eβ ⊗ 1⊗ Eβ)(1⊗ Eγ ⊗ Eγ) = R13R23,

(id⊗∆)R = (id⊗∆)(Eα ⊗ Eα) = EγEβ ⊗ Eβ ⊗ Eγ =

= (Eγ ⊗ 1⊗ Eγ)(Eβ ⊗ Eβ ⊗ 1) = R13R12,

(Σ∆⊗ id)R = (Σ∆⊗ id)(Eα ⊗ Eα) = (Σ⊗ id)(µβγα Eβ ⊗ Eγ ⊗ Eα) =

= Eγ ⊗ Eβ ⊗ (−1)|β||γ|µβγα Eα = Eγ ⊗ Eβ ⊗ EβEγ =

= (1⊗ Eβ ⊗ Eβ)(Eγ ⊗ 1⊗ Eγ) = R23R13,

(id⊗ Σ∆)R = (id⊗ Σ∆)(Eα ⊗ Eα) = (−1)|β||γ|mα
βγEα ⊗ Eβ ⊗ Eγ =

= (−1)|β||γ|EβEγ ⊗ Eβ ⊗ Eγ = (Eβ ⊗ Eβ ⊗ 1)(Eγ ⊗ 1⊗ Eγ) = R12R13.

From above, it follows that the Yang-Baxter relation is satisfied

R12R13R23 = R23R13R12,
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with the following proof

R12R13R23 = (Eα ⊗ Eα ⊗ 1)(Eβ ⊗ 1⊗ Eβ)(1⊗ Eγ ⊗ Eγ) =

= (−1)|β||γ|+|α||β|EαEβ ⊗ EαEγ ⊗ EβEγ = (−1)|β||γ|+|γ||α|mσ
βαEσ ⊗ EγEα ⊗ µγβρ Eρ =

= (1⊗ Eγ ⊗ Eγ)(Eβ ⊗ 1⊗ Eβ)(Eα ⊗ Eα ⊗ 1) =

= R23R13R12.

7.3 Graded Heisenberg double

In this section we explain the generalized Heisenberg double construction for the graded

case. Lets take a bialgebra A with multiplication m and comultiplication ∆ and basis

{eα},

eαeβ = mγ
αβeγ , ∆(eα) = µβγα eβ ⊗ eγ .

Additionally, we define a dual bialgebra A∗ which is isomorphic to A as a vector space

and with multiplication and comultiplication given using the bracket 〈, 〉 : A×A∗ → C

〈m(a, b), c〉 = 〈a⊗ b,∆∗(c)〉,
〈∆(a), c⊗ d〉 = 〈a,m∗(c, d)〉,

〈a⊗ b, c⊗ d〉 = (−1)|b||c|〈a, c〉〈b, d〉,

where a, b ∈ A, c, d ∈ A∗. Using the dual basis {eα} on A∗ defined by

〈eα, eβ〉 = δβα,

one can write

eαeβ = (−1)|α||β|µαβγ eγ , ∆(eα) = (−1)|β||γ|mα
βγe

β ⊗ eγ .

Then, one can define Heisenberg double H(A) ∼= A⊕ A∗ as a vector space, with multi-

plication and comultiplication given as above on the subspaces A,A∗. One can extend

the bracket in the following way

〈a, c〉 = (−1)|a||c|〈c, a〉,
〈a, b〉 = 〈c, d〉 = 0,

where a, b ∈ A, c, d ∈ A∗. In order to make H(A) into bialgebra one has to define a

product between eα’s and eβ’s, which can be done in the following way

(−1)|α||β|eαe
β = (−1)|ρ||γ|mβ

ργµ
γσ
α eρeσ.

As previously, there is no coproduct compatible with the above. Then canonical element

S = eα ⊗ eα satisfies pentagon relation

S12S13S23 = S23S12,
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7.4 Relation of graded Drinfeld double and graded Heisen-

berg double

After this brief reminder on Heisenberg and Drinfeld double, we are prepared to define

an algebra map between tensor square of Heisenberg double and Drinfeld double. Let us

have a Heisenberg double H(A) defined like previously. Moreover, let us define another

Heisenberg double H̃(A) generated by basis vectors {ẽα, ẽβ} with

ẽαẽβ = mγ
αβ ẽγ , ẽαẽβ = (−1)|α||β|µαβγ ẽγ ,

∆(ẽα) = µβγα ẽβ ⊗ ẽγ , ∆(ẽα) = (−1)|β||γ|mα
βγ ẽ

β ⊗ ẽγ ,

ẽβ ẽα = (−1)|σ||ρ|+|σ||γ|µσγα mβ
γρẽσ ẽ

ρ,

which canonical element S̃ = ẽα ⊗ ẽα satisfies “reversed” pentagon equation:

S̃12S̃23 = S̃23S̃13S̃12.

Using H(A) and H̃(A) one can map elements of Drinfeld double D(A), which as a vector

space D(A) ⊂ H(A)⊗ H̃(A) in the following way

Eα = µβγα eβ ⊗ ẽγ , Eα = mα
γβe

β ⊗ ẽγ ,

which satisfy the relations

EαEβ = mγ
αβEγ , EαEβ = (−1)|α||β|µαβγ Eγ ,

which can be easily proven by using the compatibility condition

∆ ◦m = (m⊗m)(id⊗ T ⊗ id)(∆⊗∆),

which in terms of coordinates is

mγ
αβµ

σρ
γ = (−1)|ε||η|µδεα µ

ηξ
β m

σ
δηm

ρ
εξ.

One shows:

EαEβ = µπρα µ
στ
β (eπ ⊗ ẽρ)(eσ ⊗ ẽτ ) =

= (−1)|ρ||σ|µπρα µ
στ
β eπeσ ⊗ ẽρẽτ = (−1)|ρ||σ|µπρα µ

στ
β mµ

πσm
ν
ρτeµ ⊗ ẽν = mγ

αβµ
µν
γ eµ ⊗ ẽ =

= mγ
αβEγ ,

EαEβ = mα
ρπm

β
τσ(eπ ⊗ ẽρ)(eσ ⊗ ẽτ ) = (−1)|ρ||σ|mα

ρπm
β
τσe

πeσ ⊗ ẽρẽτ =

= (−1)|ρ||σ|+|π||σ|+|ρ||τ |mα
ρπm

β
τσµ

πσ
µ µρτν e

µ ⊗ ẽν = (−1)|α||β|mγ
νµµ

αβ
γ eµ ⊗ ẽν =

= (−1)|α||β|µαβγ Eγ .

It can be shown that one can express the R matrix by canonical elements S, S̃, S′ =

ẽα ⊗ eα, S′′ = eα ⊗ ẽα:

R12,34 = S′′14S13S̃24S
′
23
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which goes in the following way

S′′14S13S̃24S
′
23 = (eα ⊗ 1⊗ 1⊗ ẽα)(eβ ⊗ 1⊗ eβ ⊗ 1)(1⊗ ẽγ ⊗ 1⊗ ẽγ)(1⊗ ẽδ ⊗ eδ ⊗ 1) =

= (−1)(|γ|+|δ|)(|β|+|α|)+|α||δ|eαeβ ⊗ ẽγ ẽδ ⊗ eβeδ ⊗ ẽαẽγ =

= (−1)(|γ|+|δ|)(|β|+|α|)+|α||δ|+|β||δ|+|α||γ|ma
αβea ⊗mb

γδ ẽb ⊗ µβδc ec ⊗ µ
αγ
d ẽd =

= (−1)|γ||β|µαγd µβδc m
a
αβm

b
γδea ⊗ ẽb ⊗ ec ⊗ ẽd = mγ

dcµ
ab
γ ea ⊗ ẽb ⊗ ec ⊗ ẽd =

= (µabγ ea ⊗ ẽb)⊗ (mγ
dce

c ⊗ ẽd) = Eα ⊗ Eα = R12,34,

Our copies of Heisenberg double differ only when it comes to the product between A
and A∗, and not on the grading. Therefore, we make an assumption that |eα| = |ẽα| in

the above equation. This calculation is a generalization of equation (3.60).

7.5 Heisenberg double of the Borel half Uq(osp(1|2))

We reviewed the supersymmetric extension of quantum group in the previous sections.

In this section we consider the Heisenberg double of the Borel half of Uq(osp(1|2)) and

a class of its self-dual representations. We start from the compact case and move to

the non-compact version of Heisenberg double. We prove that the Heisenberg double

canonical element evaluate on these representations can be identified with flip operator

of qunatized Teichmüller theory of super Riemann surface which we already derived in

equation (6.8).

7.5.1 Supergroup Uq(osp(1|2))

We call osp(1|2) the simplest rank-one orthogonal symplectic Lie superalgebra. osp(1|2)

is special among superalgebras due to its similarity to Lie algebra sl(2) ⊂ osp(1|2). It

contains three even K,E± and two odd generators v± with following relations

[H,E(±)] = ±E(±), [E+, E−] = 2K,

[H, v(±)] =
1

2
v(±), [E±, v(∓)] = v(±), [E±, v(±)] = 0 (7.20)

{v(+), v(−)} = −1

2
H, {v(±), v(±)} = ±1

2
E±

The quantum superalgebra Uq(osp(2|1)) studied in [86] and [56]. It is generated by

K,K−1, v(+), v(−) satisfying relations:

Kv(±) = q±
1
2 v(±)K,

{v(+), v(−)} = −K
2 −K−2

q
1
2 − q−

1
2

,
(7.21)

with the comultiplication

∆(K) = K ⊗K, ∆(v(±)) = K ⊗ v(±) + v(±) ⊗K−1. (7.22)
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There is a grading as explain in equation (7.2) and in this case degK = 0, degv(±) = 1.

One can check the comultiplication preserves the algebra structure:

∆(K)∆(v(±)) = Kv(±) ⊗ 1 +K2 ⊗Kv(±) = q±
1
2 ∆(v(±))∆(K),

Then by easy calculation one can check

{∆(v(+)),∆(v(−))} = K2 ⊗ {v(+), v(−)}+ {v(+), v(−)} ⊗K−2 =

= − 1

q
1
2 − q−

1
2

(∆(K)2 −∆(K)−2).

One can check the classical limit of Uq(osp(2|1)) when we take the limit q → 1, brings

us to algbera (7.20). The self dual conjugate series of representations of this group are

studied in [88], [61].

7.5.2 Heisenberg double of the Borel half of Uq(osp(1|2))

The Borel half of Uq(osp(1|2)) has H, v(+) as generators

[H, v(+)] = v(+),

∆(H) = H ⊗ 1 + 1⊗H, ∆(v(+)) = v(+) ⊗ ehH + 1⊗ v(+),

We have q = e−h, K = ehH and therefore, it is easy to see Kv(+) = q−1v(+)K. Therefore,

we can check

v(+)nK = qnKv(+)n, v(+)nHm = (H − n)mv(+)n,

and it is easy to get

Hmv(+)nH lv(+)k =

l∑
j=0

(
l

j

)
(−n)l−jHm+jv(+)n+k

.

As for the coproduct

∆(Hn) =
n∑
k=0

(
n

k

)
Hn−k ⊗Hk,

∆(v(+)n) =
n∑
k=0

(
n

k

)
−q
v(+)n−k ⊗ e(n−k)hHv(+)k.
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Here we explain briefly how to find the coproduct explicitly

∆(v(+)n) =

n∑
k=0

f(n, k)v(+)n−k ⊗ e(n−k)hHv(+)k,

∆(v(+)n+1
) =

n+1∑
k=0

f(n+ 1, k)v(+)n+1−k ⊗ e(n+1−k)hHv(+)k =

=
n∑
k=0

f(n, k)v(+)n−k ⊗ e(n−k)hHv(+)k(v(+) ⊗ ehH + 1⊗ v(+)) =

= f(n, 0)v(+)n+1 ⊗ e(n+1)hH + f(n, n)1⊗ v(+)n+1
+

+

n∑
k=1

v(+)n+1−k ⊗ e(n+1−k)hHv(+)k(f(n, k)(−q)k + f(n, k − 1)).

Therefore, by comparing the factors we get f(n, k) =
(
n
k

)
−q. The algbera A will have

the basis as follows

ẽm,n =
1

m!(−q)n
Hmv(+)n, where (q)n = (1− q)...(1− qn)

for having the exact basis we still have to fix the normalization, as explained later in

this chapter.

The multiplication and comultiplication for those elements are

ẽm,nẽl,k =
l∑

j=0

(
m+ j

j

)(
n+ k

k

)
−q

(−n)l−j

(l − j)!
ẽm+j,n+k,

∆(ẽn,m) =

n∑
k=0

m∑
l=0

∞∑
p=0

(
k + p

k

)
(m− l)phpẽn−k,m−l ⊗ ẽk+p,l.

On the other hand we have the dual algebra A∗ which is generated by H̄, v(−) with

following relations

[H̄, v(−)] = −hv(−),

∆(H̄) = H̄ ⊗ 1 + 1⊗ H̄, ∆(v(−)) = v(−) ⊗ e−H̄ + 1⊗ v(−).

We know q̃ = e−hb and we have K̄ = ebH̄ so it is easy to check K̄v(−) = q̃v(−)K̄ and one

can compute the multiplication

v(−)nH̄m = (H̄ + hn)mv(−)n,

H̄mv(−)nH̄ lv(−)k =
l∑

j=0

(
l

j

)
(n)l−jhl−jH̄m+jv(−)n+k

,
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and the coproduct

∆(H̄n) =

n∑
k=0

(
n

k

)
H̄n−k ⊗ H̄k,

∆(v(−)n) =

n∑
k=0

(
n

k

)
−q
v(−)n−k ⊗ e−(n−k)H̄v(−)k.

We identify the dual basis as

en,m = H̄nv(−)m. (7.23)

Now, we have to find our duality bracket and, after that, fix the normalization to obtain

orthonormal basis on the dual. Suppose

〈ẽn,m, ek,l〉 = g(n,m)δknδ
l
m.

Then,

〈ẽm,nẽl,k, ea,b〉 =

(
a

a−m

)(
n+ k

k

)
−q

(−n)l−a+m

(l − a+m)!
δbn+kΘ(a−m)f(a, b),

〈ẽm,n ⊗ ẽl,k,∆(ea,b)〉 =

(
a

a−m

)(
b

k

)
−q

(−b+ k)l−a+m

(l − a+m)!
δb−kn Θ(a−m)(−1)k(b−k)f(m,n)f(l, k),

So by comparing these two we can get the normalization as

em,n =
1

g(m,n)
ẽm,n = (−1)−n

2/2 1

m!(−q)n
Hmv(+)n. (7.24)

Now by having two bases 7.23 and 7.24 in hand we can consider the canonical element:

S =
∑
n,m

en,me
n,m =

∑
n,m

(−1)−m
2/2 1

n!(−q)m
Hnv(+)m ⊗ H̄nv(−)m =

=
∑
n,m

(−1)−m
2/2 1

n!(−q)m
(H ⊗ H̄)nv(+)m ⊗ v(−)m =

= exp(H ⊗ H̄)

∞∑
n=0

(−1)−
n2

2 (−1)
n(n−1)

2
1

(−q)n
(v(+) ⊗ v(−))n =

= exp(H ⊗ H̄)
∞∑
n=0

(−1)−
n
2

1

(−q)n
(v(+) ⊗ v(−))n =

= exp(H ⊗ H̄)(−iv(+) ⊗ v(−);−q)−1
∞ .

In this example we had the basis of infinite dimension. In the next section we consider

a Z2-graded bialgebra A spanned by the basis vectors {e(α)}, where the basis is of

infinite dimension. From this we define all the objects in analogous way as in the finite

dimensional case, replacing all sums with integrals over the spectrum.∑
α

→
∫

dα.



Chapter 7. Quantum supergroups, Heisenberg double and Drinfeld double 93

7.5.3 Heisenberg double of the Borel half of Uq(osp(1|2)) with continu-

ous basis

This section is devoted to the study of the Heisenberg double of the Borel half of

Uq(osp(1|2)) (which we will be calling a quantum superplane). It will be shown later that

this Heisenberg double is related to the quantization of the Teichmüller theory of super

Riemann surfaces. We will consider infinite dimensional representations of the aformen-

tioned algebra on L2(R) ⊗ C1|1 with focus on canonical element S. Moreover, we will

present the way how Uq(osp(1|2)) can be embedded in the tensor square of Heisenberg

doubles.

We want to introduce the Heisenberg double of the Borel half of Uq(osp(1|2)), with

an intention to study the infinite dimensional representations thereof. The Heisenberg

double of B(Uq(osp(1|2))), which will be denoted HD(B(Uq(osp(1|2)))) (or SHD from

now on), can be defined as an algebra generated by the even elements H and Ĥ and the

odd elements v(+) and v(−) satisfying (anti-)commutation relations

[H, Ĥ] =
1

πi
, {v(+), v(−)} = eπbH(eπib

2/2 + e−πib
2/2)

[H, v(+)] = −ibv(+), [H, v(−)] = ibv(−), (7.25)

[Ĥ, v(+)] = 0, [Ĥ, v(−)] = +ibv(−),

where q = eiπb
2

for a parameter b such that b2 ∈ R/Q.

Moreover, this algebra is equipped with the real *-structure, i.e.

H∗ = H, Ĥ∗ = Ĥ, v(+)∗ = v(+), v(−)∗ = v(−). (7.26)

As usual, there are two interesting subalgebras to consider. We can define two mu-

tually dual subalgebras SHD+ and SHD−, which are isomorphic to the Borel half of

Uq(osp(1|2)). We define SHD+ as being generated by the generators {H, v(+)} with

the basis elements e(s, t, ε, n). Moreover, we define SHD− as being generated by the

generators {Ĥ, v(−)} with the basis elements ê(s, t, ε, n).

For the purposes of defining the basis elements, we would like to decompose the odd

generators v(+), v(−) into even and odd parts

v(+) = V +X, v(−) = V −Y,

where V +, V − are graded even, X,Y are graded odd, and they satisfy following com-

mutation relations

[V +, X] = 0, [V +, Y ] = 0,

[V −, X] = 0, [V −, Y ] = 0.



Chapter 7. Quantum supergroups, Heisenberg double and Drinfeld double 94

Then, we have the candidates for the basis elements of the Heisenberg double as

e(s, t, ε, n) = N(s, t, ε, n)(|H|)isΘ(εH)(V +)ib
−1tXn, (7.27)

ê(s, t, ε, n) = e−πsδε,−(|Ĥ|)isΘ(εĤ)(V −)ib
−1tY n, (7.28)

where N(s, t, n) is the normalization such that

N(s, t, ε, n) =
1

2π

ζ−1
0

2
Γ(−is)eεπs/2(π)ise−

1
2
πbtQiG−1

n+1(Q+ it), (7.29)

and H = H+ − H− and Ĥ = Ĥ+ − Ĥ− is a decomposition of generators H, Ĥ into

positive operators Hε, Ĥε for ε = ±.

One can make those subalgebras into two mutually dual Hopf-subalgebras by assigning

a coproduct using the adjoint action of the element S,

∆(e(s, t, ε, n)) = S−1(1⊗ e(s, t, ε, n))S, (7.30)

∆(ê(s, t, ε, n)) = S(ê(s, t, ε, n)⊗ 1)S−1, (7.31)

where S is a canonical element defined as

S =
∑
ε=±

∑
n=0,1

∫
dsdt e(s, t, ε, n)⊗ ê(s, t, ε, n). (7.32)

As the coproduct of the arbitrary element of subalgebras can be derived from the co-

products form the generators, we present them below

∆(H) = 1⊗H +H ⊗ 1,

∆(Ĥ) = 1⊗ Ĥ + Ĥ ⊗ 1,

∆(v(+)) = v(+) ⊗ eπbH + 1⊗ v(+),

∆(v(−)) = v(−) ⊗ e−πbĤ + 1⊗ v(−).

(7.33)

Moreover, the canonical element S satisfies the graded pentagon equation

S12S13S23 = S23S12. (7.34)

There is an ongoing project to fix these basis elements and find the normalization.

7.5.4 Representations of the Heisenberg double of the Borel half of

Uq(osp(1|2))

In this section, we want to introduce the infinite dimensional representations π : HD →
Hom(L2(R) ⊗ C1|1) of the Heisenberg double of quantum superplane. The generators

are represented as the following operators

H = pI2, Ĥ = qI2, (7.35)

v(+) = eπbqκ, v(−) = eπb(p−q)κ,
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where [p, q] = 1
πi are operators on L2(R), I2 is a (1|1)× (1|1) identity matrix and

κ =

(
0 1

1 0

)
.

The canonical element S in equation (7.32) evaluated on the representation (7.35) has

the form

S =
1

2

{
[e−1

R (q1 + p2 − p1) + e−1
NS(q1 + p2 − p1)]I2 ⊗ I2+

−i[e−1
R (q1 + p2 − p1)− e−1

NS(q1 + p2 − p1)]κ⊗ κ
}
eiπpvqw .

(7.36)

Comparing this result with superflip operators in super Teichmüller theory (6.8) shows

that we can identify this canonical element with the flip operator of quantized Te-

ichmüller theory of super Riemann surfaces.

We have the candidate for the basis elements

e(s, t, ε, n) = N(s, t, ε, n)(|p|)isΘ(εp)(eπbq)ib
−1tκn, (7.37)

ê(s, t, ε, n) = e−π
s
2
δε,−(|q|)isΘ(εq)(eπb(p−q))ib

−1tκn, (7.38)

and N(s, t, ε, n) = eεπs/4 1
2π

ζ−1
0
2 Γ(−is)(π)ise−

1
2
πbtQiG−1

n+1(Q+ it) is the normalization.

The problem of finding the coproduct of the Cartan part of the algebra is of the same

type as in the non-supersymmetric case. But we are able to find the coproduct of the

odd generators as it is explained below.

Let define es as follows for simplicity of our calculations

es(x) =
1

2
[(eR(x) + eNS(x))1⊗ 1− i(eR(x)− eNS(x))κ⊗ κ]. (7.39)

One can define the coproduct

∆((eπbq)itκ) = S−1(1⊗ (eπbq2)itκ)S = es(q1 + p2 − q2)(eπbq2)it(1⊗ κ)e−1
s (q1 + p2 − q2) =

=
b2

4

∫
dτ1dτ2e

−iπb2τ2
1 /2

{
1⊗ 1

GNS(Q+ ibτ1)
+

κ⊗ κ
GR(Q+ ibτ1)

}
eiπbτ1(q1+p2−q2)×

× (eπbq2)it(1⊗ κ)e−πbτ2Q/2
{

1⊗ 1

GNS(Q+ ibτ2)
+

iκ⊗ κ
GR(Q+ ibτ2)

}
eiπbτ2(q1+p2−q2)

reflection
=

ζ−2
0 b2

4

∫
dτ1dτ2e

πb(τ1−τ2)Q/2 {GNS(−ibτ1)1⊗ 1 + iGR(−ibτ1)κ⊗ κ}×

× (1⊗ κ)

{
1⊗ 1

GNS(Q+ ibτ2)
+

iκ⊗ κ
GR(Q+ ibτ2)

}
eiπbτ1(q1+p2−q2)(eπbq2)iteiπbτ2(q1+p2−q2) =

=
ζ−2

0 b2

4

∫
dτ1dτ2e

πb(τ1−τ2)Q/2

{(
GNS(−ibτ1)

GNS(Q+ ibτ2)
− GR(−ibτ1)

GR(Q+ ibτ2)

)
1⊗ κ+

−i
(
GNS(−ibτ1)

GR(Q+ ibτ2)
− GR(−ibτ1)

GNS(Q+ ibτ2)

)
κ⊗ 1

}
eiπbτ1(q1+p2−q2)(eπbq2)iteiπbτ2(q1+p2−q2)

τ2 → τ, τ1 → t+ τ by using reflection formula and using Ramanujan formula we get
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∆((eπbq)itκ) =
ζ−3

0 b

2

∫
dτeπbτ(Q+2ibt)/2−iπb2τ2/2

{
GNS(−ibτ)GR(Q+ ibt)

GR(−ibτ +Q+ ibt)
1⊗ κ+

+i
GR(−ibτ)GR(Q+ ibt)

GNS(−ibτ +Q+ ibt)
κ⊗ 1

}
(eπbq2)i(t−τ)(eπb(q1+p2))iτ =

=
ζ−1

0 b

2

∫
dτeiπb

2τ(t−τ)

{
GR(Q+ ibt)

GNS(Q+ ibτ)GR(−ibτ +Q+ ibt)
1⊗ κ+

+
GR(Q+ ibt)

GR(Q+ ibτ)GNS(−ibτ +Q+ ibt)
κ⊗ 1

}
(eπbq2)i(t−τ)(eπb(q1+p2))iτ

Now, one can repeat this computations for the even elements as shown

∆((eπbq)it) = S−1(1⊗ (eπbq2)it)S = es(q1 + p2 − q2)(eπbq2)ite−1
s (q1 + p2 − q2) =

=
ζ−1

0 b

2

∫
dτeiπb

2τ(t−τ)

{
GNS(Q+ ibt)

GNS(Q+ ibτ)GNS(−ibτ +Q+ ibt)
1⊗ 1+

+
GNS(Q+ ibt)

GR(Q+ ibτ)GR(−ibτ +Q+ ibt)
κ⊗ κ

}
(eπbq2)i(t−τ)(eπb(q1+p2))iτ .

We present generators in a form that makes explicit their positive and negative definite

parts as p = p+ − p− =
∑

ε=± εpε and q = q+ − q− =
∑

ε=± εqε.

The goal is to find the coproduct for the Cartan part and derive the normalization.

In order to find the normalization one should compute the multiplication and comul-

tiplication of a basis elements and compare the multiplication coefficients m, m̂ and

comultiplication coefficients µ, µ̂ and require that the normalization factor ensures that

µ(s, t, ε, n;σ, τ, ω, ν, σ′, τ ′, ω′, ν ′) = (−1)|ν||ν
′|m̂(σ, τ, ω, ν, σ′, τ ′, ω′, ν ′; s, t, ε, n), (7.40)

µ̂(s, t, ε, n;σ, τ, ω, ν, σ′, τ ′, ω′, ν ′) = (−1)|ν||ν
′|m(σ, τ, , ω, ν, σ′, ω′, τ ′, ν ′; s, t, ε, n). (7.41)

In addition, there exists an algebra automorphism A

A = e−iπ/3e
3
2
πiq2

e
1
2
iπ(p+q)2

U, (7.42)

with a matrix U such that [U, κ] = 0. This automorphism acts in particular on the

momentum and position operators

A(qI2)A−1 = (p− q)I2, A(pI2)A−1 = −qI2.

Then, by the adjoint action of this automorphism one can define new elements ẽ(s, t, ε, n),̃̂ e(s, t, ε, n) ∈
Hom(L2(R)⊗ C1|1)

ẽ(s, t, ε, n) = Ae(s, t, ε, n)A−1, ˜̂e(s, t, ε, n) = Aê(s, t, ε, n)A−1

which generate another representation of the Heisenberg double,

H̃ = −qI2, ˜̂
H = (p− q)I2,

ṽ(+) = eπb(p−q)

(
0 1

1 0

)
, ṽ(+) = e−πbp

(
0 1

1 0

)
.



Chapter 8

Braiding and R-matrices

In this chapter we explain how to derive the R-matrix in the Teichmüller theory and

define the associated quantum group structure introduced by Kashaev. In the first part,

we start with the ordinary case. It contains derivation of the R matrix, while revealing

the associated quantum group structure and proving the properties of the R-matrix.

The goal is to generalize it in the supersymmetric case. The results obtained in this

chapter are part of the ongoing project. We explain our Ansatz for the R matrix for

super Teichmüller theory. Our goal is to check the properties of R-matrix for our result

and show that it is the canonical element of the Drinfeld double Uq(osp(1|2)).

8.1 Non-supersymmetric case

We consider a compact connected orientable Riemann surface Σ. Let Homeo(Σ, ∂Σ)

denote the group of orientation-preserving homeomorphisms restricting to the identity

on the boundary ∂Σ, and let Homeo0(Σ, ∂Σ) denote the normal subgroup of homeo-

morphisms that are isotopic to the boundary.

Definition 16. The mapping class group of Σ is the quotient group

MCG(Σ) := Homeo(Σ, ∂Σ)/Homeo0(Σ, ∂Σ) (8.1)

Briefly, the mapping class group is a discrete group of symmetries of the space. Mapping

class groups are generated by Dehn twists along simple closed curves. A Dehn twist is

a homeomorphism Σ → Σ. A Dehn twist on a surface obtained by cutting the surface

along a curve giving one of the boundary components a 2π counter-clockwise twist, and

gluing the boundary components back together is illustrated in figure 8.1.

In variant literatures, there are other notations for the mapping class group, for instance:

MCG, and Γg,n. As a general rule, mapping class group refers to the group of homotopy

classes of homeomorphisms of a surface, but there are plenty of variations.

97
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cut

twist

reglue

Dehn twist

α

Figure 8.1: Dehn twist homeomorphism.

Kashaev showed [44] how the braiding of triangulations of a disk with two interior and

two boundary marked points can be derived by a sequence of elementary transformations.

Let α be a simple closed curve on Σ. Moreover, square of the braiding is Dehn twist

along the associated contour like α.

By using the construction which explained in chapter 2 and considering operators A and

T, the corresponding quantum braiding operator is shown in figure 8.2.

* * * * *
*
*
* *

*
**

*
**

**

**

*

*

*

* *

1 2 3 4

1 1

1

1

1

2 2

2

2
2

3

3
3

3 3

4 4

4

4

4

Bα
−1 A3

−1

A1×T 23

α

T 13×T 24T 14

P(24)(13)(A3×A1
−1

)

Figure 8.2: Braiding along contour α followed by a sequence of transformations brings
one back to the initial triangulation τ .

The corresponding quantum braiding operator has the following form:

Bα w P(13)(24)R1234, (8.2)



Chapter 8. Braiding and R matrices 99

with

R12,34 = A−1
1 A3T41T31T42T32A1A

−1
3 . (8.3)

where the q-exponential property of the quantum dilogarithm

gb(u)gb(v) = gb(u+ v), (8.4)

for uv = q2vu, q = eiπb
2
, and

eb(x) = gb(e2πbx). (8.5)

We can write R12,34 as follows,

R12,34 = A−1
1 A3e

2πip4q1e−1
b (q4 + p1 − q1)e2πip3q1e−1

b (q3 + p1 − q1)× (8.6)

× e2πip4q2e−1
b (q4 + p2 − q2)e2πip3q2e−1

b (q3 + p2 − q2)A1A
−1
3 =

= A−1
1 A3e

2πip4q1e2πip3q1e−1
b (q4 + p1 − q1 + p3)e−1

b (q3 + p1 − q1)×
× e2πip4q2e2πip3q2e−1

b (q4 + p2 − q2 + p3)e−1
b (q3 + p2 − q2)A1A

−1
3 =

= A−1
1 A3e

2πip4q1e2πip3q1e2πip4q2e2πip3q2e−1
b (q4 + p1 − q1 + p3 − q2)×

× e−1
b (q3 + p1 − q1 − q2)e−1

b (q4 + p2 − q2 + p3)e−1
b (q3 + p2 − q2)A1A

−1
3 =

(8.4)
= A−1

1 A3e
2πi(p4+p3)(q1+q2)×

× g−1
b (e2πb(q4+p1−q1+p3−q2) + e2πb(q3+p1−q1−q2) + e2πb(q4+p2−q2+p3) + e2πb(q3+p2−q2))A1A

−1
3 =

= e2πi(p4−q3)(−p1+q2)g−1
b

(
e2πb(q4+q1−q3−q2) + e2πb(p3−q3+q1−q2) + e2πb(q4+p2−q2−q3) + e2πb(p3−q3+p2−q2)

)
,

where, A and T are defined in (2.22), (2.25) respectively.

As an outcome of Ptolemy groupoid relations, R ∈ L2(R) solves the Yang-Baxter equa-

tion,

R1234R1256R3456 = R3456R1256R1234. (8.7)

R1234 can also be written as follows

R1234 = R = T14̌T13T42T3̂2. (8.8)

The following convention introduced by Kashaev will help us for further calculations:

ak̂ ≡ AkakA
−1
k , aǩ ≡ A−1

k a
k
Ak, (8.9)

and some properties follow up:

ak = aˆ̌k
= aˇ̂

k
, aˆ̂

k
= aǩ, aˇ̌k

= ak̂ (8.10)

T12 = T2̂1̌, T1̂2 = T2̂1 (8.11)

T12T21̂ = ζP(121̂) (8.12)

P(kl...mk̂) ≡ AkP(kl...m), P(kl...mǩ) ≡ A−1
k P(kl...m) (8.13)

where (kl . . .m) : k → l→ . . .→ m→ k is cyclic permutation.
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By using three times the pentagon relation such as T12̂T14̌T2̂4̌ = T2̂4̌T12̂ and T2̂4̌T2̂3T4̌3 =

T4̌3T2̂4̌ we get,

R = (T12̂)−1(T12̂)T14̌T13T42T3̂2 = T−1
12̂

T12̂T14̌T2̂4̌T13T2̂3 = (8.14)

= T−1
12̂

T2̂4̌T12̂T13T2̂3 = T−1
12̂

T2̂4̌T2̂3T12̂ = T−1
12̂

T2̂4̌T2̂3T4̌3T4̌3
−1T12̂ =

= Ad(T−1
12̂

T4̌3)T2̂4̌.

Comparing this result with equation (8.6), one can see how the R matrix which was

derived from four T operators can be written in terms of five T operators by using the

adjoint of two operators on the third one. Also comparing this result with equation

(3.60) shows the relation with the canonical elements of Heisenberg double.

We conclude that the R matrix can be written as

R =
∑
a

Ea ⊗ Ea (8.15)

where,

Ea = Ea ⊗ 1 = Ad(A2T
−1
12 )(1⊗ ea) = Ad(A2)∆(ea), (8.16a)

Ea = 1⊗ Ea = Ad(A2T
−1
21 )(1⊗ ea) = Ad(A−1

2 )∆′(ea). (8.16b)

This bring us to the fact that Drinfeld double basis elements can be built from the

Heisenberg double’s basis elements eα and eα.

Drinfeld double of the Borel half of Uq(sl(2))

We already mentioned how to get R matrix from basis elements in equations (8.16).

There exists the Hopf algebra Gϕ which is composed of those elements and we want to

connect it to the quasi-triangular Hopf algebra of Uq(sl(2)).

For the Hopf algebra Gϕ we have generators

g12 = p1 − q2, g21 = p2 − q1, (8.17)

f12 = e2πb(q1−q2) + e2πb(p2−q2), f21 = e2πb(q2−q1) + e2πb(p1−q1), (8.18)

that satisfy the commutation relations

[gnm, fnm] = −ibfnm, [gmn, fnm] = ibfnm,

eiαgnmfnm = fnme
iαgnmeib(−iα), eiαgmnfnm = fnme

iαgmneib(+iα),

and have the coproduct

∆(g12) = g12 ⊗ 1 + 1⊗ g12, ∆(g21) = g21 ⊗ 1 + 1⊗ g21, (8.19)

∆(f12) = f12 ⊗ e2πbg12 + 1⊗ f12, ∆(f21) = e2πbg21 ⊗ f21 + f21 ⊗ 1.
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Using (8.15) we can write the R-matrix as follows

R12,34 = e−2πig12⊗g21g−1
b (f12 ⊗ f21). (8.20)

The coproduct on Gϕ can be defined using a twist as follows,

∆ϕ = Ad(eiϕ(g21⊗g12−g12⊗g21))∆. (8.21)

Using this definition, we can define the new coproduct on generators,

∆ϕ(g12) = ∆(g12), ∆ϕ(f12) = f12 ⊗ e2πbg12e−ϕb(g12+g21) + eϕb(g12+g21) ⊗ f12,

∆ϕ(g21) = ∆(g21), ∆ϕ(f21) = e2πbg21e−ϕb(g12+g21) ⊗ f21 + f21 ⊗ eϕb(g12+g21).

There exists an algebra homomorphism Uq(sl(2)) −→ Gϕ such that,

K = eπb(q12−g21/2), (8.22)

E = e−πb(cb+g21) f21

q − q−1
, F =

f12

q − q−1
eπb(cb−g12).

We can check that this gives a proper representation of Uq(sl(2)) and they satisfy the

commutation relations.

Then, using the algebra map that expresses the generators of Uq(sl(2)) in terms of

generators of Gϕ we get

∆ϕ(K) = K ⊗K,

∆ϕ(E) = e−πbg21e2πbg21e−ϕb(g12+g21) ⊗ E + E ⊗ e−πbg21eϕb(g21+g12),

∆ϕ(F ) = F ⊗ e2πbg12e−ϕb(g12+g21)e−πbg12 + eϕb(g12+g21)e−πbg12 ⊗ F.

For ϕ = π
2 the algebra map becomes the Hopf algebra map and

∆π
2
(K) = K ⊗K, ∆π

2
(E) = K−1 ⊗ E + E ⊗K, ∆π

2
(F ) = F ⊗K +K−1 ⊗ F.

(8.23)

It is easy to check that, since ∆(gnm) = gnm ⊗ 1 + 1 ⊗ gnm and ε(gnm) = 0. The twist

F = eiϕ(g21⊗g12−g12⊗g21) satisfies properties in below,

(F ⊗ 1)(∆⊗ 1)F = (1⊗ F )(1⊗∆)F, (ε⊗ id)F = (id⊗ ε)F = 1.

and the twisted R-matrix is as follows

RF = F tRF−1. (8.24)

If one show that R satisfies the R-matrix properties, then it immediately follows that

the twisted R-matrix also satisfies them. Therefore, in the following we examine the

properties of the R-matrix, such as quasi -triangularity and transposition of the coprod-

uct.
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First, lets consider the quasi-triangularity property

(∆⊗ 1)R = R13R23. (8.25)

We have two ways of proving this property. The first approach is straightforward by

using the q-binomial formula for u = f12 ⊗ e2πbg12 ⊗ f21 and v = 1 ⊗ f12 ⊗ f21. Since

uv = q−2vu we have,

(∆⊗ 1)R = (∆⊗ 1)e−2πi(g12⊗g21)g−1
b (f12 ⊗ f21) = e−2πi(∆(g12)⊗g21)g−1

b (∆(f12)⊗ f21) =

= e−2πi(g12⊗1+1⊗g21)⊗g21g−1
b (f12 ⊗ e2πbg12 ⊗ f21 + 1⊗ f12 ⊗ f21) =

= e−2πi(g12⊗1+1⊗g21)⊗g21g−1
b (u+ v)

(8.4)
= e−2πi(g12⊗1+1⊗g21)⊗g21g−1

b (u)g−1
b (v) =

= e−2πi(g12⊗1⊗g21)g−1
b (ue2πb(1⊗g12⊗1))e−2πi(1⊗g12⊗g21)g−1

b (v) =

= e−2πi(g12⊗1⊗g21)g−1
b (f12 ⊗ 1⊗ f21)e−2πi(1⊗g12⊗g21)g−1

b (1⊗ f12 ⊗ f21) =

= R13R23,

As the second proof, one can use the Fourier transform of the quantum dilogarithm,

b

∫
dte2πibtr e−πbtQ

Gb(Q+ ibt)
= g−1

b (e2πbr).

Then by considering the fact that the coproduct is given as follows,

∆(f it12) = b

∫
dτ

Gb(Q+ ibt)

Gb(Q+ ibτ)Gb(−ibτ +Q+ ibt)
f iτ12 ⊗ (e2πbg12f12)i(t−τ),

Therefore, we can check the quasi-triangularity properties,

(∆⊗ 1)R = (∆⊗ 1)e−2πi(g12⊗g21)g−1
b (f12 ⊗ f21) =

= e−2πi(∆(g12)⊗g21)(∆⊗ 1)g−1
b (f12 ⊗ f21) =

= e−2πi(g12⊗1+1⊗g21)⊗g21(∆⊗ 1) b

∫
dt(f12 ⊗ f21)it

e−πbtQ

Gb(Q+ ibt)
=

= e−2πi(g12⊗1+1⊗g21)⊗g21 b

∫
dt

e−πbtQ

Gb(Q+ ibt)
∆(f it12)⊗ f it21

= e−2πi(g12⊗1+1⊗g21)⊗g21 b2
∫

dtdτ
e−πbtQ

Gb(Q+ ibτ)Gb(−ibτ +Q+ ibt)
f iτ12 ⊗ f

i(t−τ)
12 (e2πbg12)iτ ⊗ f it21 =

t→t+τ
dt→dt= e−2πi(g12⊗1+1⊗g21)⊗g21

∫
dτbe−πbτQ

Gb(Q+ ibτ)
(f iτ12 ⊗ (e2πbg12)iτ ⊗ f iτ21)

∫
dtbe−πbtQ

Gb(Q+ ibt)
(1⊗ f it12 ⊗ f it21) =

= e−2πi(g12⊗1+1⊗g21)⊗g21 g−1
b (f12 ⊗ e2πbg12 ⊗ f21) g−1

b (1⊗ f12 ⊗ f21) =

= e−2πi(g12⊗1⊗g21)g−1
b (f12 ⊗ 1⊗ f21)e−2πi(1⊗g12⊗g21)g−1

b (1⊗ f12 ⊗ f21) = R13R23.

The other quasi-triangularity equation (1⊗∆)R = R12R13 goes analogously.

The other important property of the R-matrix is the following one

R∆(u) = ∆′(u)R, (8.26)
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where u is arbitrary generator. The equation is obviously satisfied for u = g12 or g21.

In order to prove it for other generators, we need to find their appropriate representa-

tions.

f12 = wb(−q1 + p2)eπb(q1+p2−2q2)wb(q1 − p2) =

= e
πb
2

(q1+p2−2q2)wb(−q1 + p2 +
ib

2
)wb(q1 − p2 +

ib

2
)e

πb
2

(q1+p2−2q2) =

= e
πb
2

(q1+p2−2q2)2 cosh(πb(q1 − p2))e
πb
2

(q1+p2−2q2) =

= e
πb
2

(q1+p2−2q2)(eπb(q1−p2)) + e−πb(q1−p2)))e
πb
2

(q1+p2−2q2) =

= e2πb(q1−q2) + e2πb(p2−q2),

where the quantum dilogarithm wb defined as

wb(x) := e
πi
2

(Q
2

4
+x2)Gb(

Q

2
− ix)

The properties of special function is shown in appendix A. In the same way one can find

f21 = wb(−q2 + p1)eπb(p1+q2−2q1)wb(q2 − p1) = e2πb(q2−q1) + e2πb(p1−q1).

Then we can compute

[f12, f
α
21] = [wb(−q1 + p2)eπb(q1+p2−2q2)wb(q1 − p2), wb(−q2 + p1)eαπb(p1+q2−2q1)wb(q2 − p1)] =

=
wb(−q1 + p2)wb(−q2 + p1 + ib)

wb(−q1 + p2 − ib)wb(−q2 + p1)
eπb(g12+g21)fα−1

21 +

− wb(−q2 + p1 − ib(α− 1))

wb(−q2 + p1 − ibα)

wb(−q1 + p2 + ibα)

wb(−q1 + p2 + ib(α− 1))
eπb(g12+g21)fα−1

21 =

=

(
wb(−q2 + p1 + ib)wb(−q1 + p2)

wb(−q2 + p1)wb(−q1 + p2 − ib)
− wb(−q2 + p1 − ib(α− 1))wb(−q1 + p2 + ibα)

wb(−q2 + p1 − ibα)wb(−q1 + p2 + ib(α− 1))

)
eπb(g12+g21)fα−1

21 =

= (2 sin(πb2))2

(
[
Q

2b
− i(−q2 + p1)

b
]q[
Q

2b
+
i(−q1 + p2)

b
]q+

−[
Q

2b
− α− i(−q2 + p1)

b
]q[
Q

2b
− α+

i(−q1 + p2)

b
]q

)
eπb(g12+g21)fα−1

21 =

= (2 sin(πb2))2[α]q[
Q

b
− α+

i

b
(−q1 + p2 − (−q2 + p1))]qe

πb(g12+g21)fα−1
21 =

= (2 sin(πb2))2[α]q[α− 1 +
1

ib
(−q1 + p2 + q2 − p1)]qe

πb(g12+g21)fα−1
21 =

= (2 sin(πb2))2[α]q[α− 1 +
1

ib
(g21 − g12)]qe

πb(g12+g21)fα−1
21 ,

where we used the properties of q-numbers,

[t]q =
sin(πb2t)

sin(πb2)
, [−t]q = −[t]q, [t+ b−2]q = −[t]q,

[x]q[y]q − [x− α]b[y − α]q = [α]q[x+ y − α]q.
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Now, as a check, we can look what kind of identity we get for Uq(sl(2)) from the above.

First, let us note that

(e−πbg21f21)α = q−
α(α−1)

2 e−απbg21fα21.

Then,

[F,Eα] =
e−πbcb(α−1)

(q − q−1)α+1
[f12e

−πbg12 , (e−πbg21f21)α] =

= −[α]q[α− 1 +
1

ib
(g21 − g12)]qE

α−1 = [α]q[−α+ 1 + 2H]qE
α−1,

where we identify H = − 1
2ib(g21 − g12) and K = qH and one can follow the proof of

theorem 3 in [89]. The difference in sign can be explained by noticing that our definitions

of E and F differ from those by [89] which we denote here as Ẽ, F̃ , in the following way

E = −iẼ, F = +iF̃ .

Therefore, one will get

R∆(Ẽ)−∆′(Ẽ)R = R(Ẽ1K2 +K−1
1 Ẽ2)− (Ẽ1K

−1
2 +K1Ẽ2)R = 0

and the proof of equation (8.26) is complete.

Coproduct of Drinfeld double

We want to find an operatorial expression for the coproduct of the Drinfeld double

defined in terms of Heisenberg double. The basis elements Eα, Eα of Drinfeld double

are defined in terms of the generators eα, e
α of the Heisenberg double as follows

Ea = Ad(A2T
−1
12 )(1⊗ ea), Ea = Ad(A−1

2 T21)(1⊗ ea).

The coproducts of both Heisenberg double and Drinfeld double agree with each other,

and are defined in terms of coefficients m,µ as

∆(ea) = µbca eb ⊗ ec, ∆(Ea) = µbca Eb ⊗ Ec,
∆(ea) = ma

bce
b ⊗ ec, ∆(Ea) = ma

bcE
b ⊗ Ec.

In these section we use the Einstein summation convention, since we consider the con-

tinuous basis, we insert an integral instead of a summation over the variables.

We can calculate the coproduct of the basis of Drinfeld double in two ways, first expand-

ing the Ea element on the left hand side, and after that expanding elements Eb⊗Ec on
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the right hand side

∆(Ea) = µbca Eb ⊗ Ec = µbca Ad(A2T
−1
12 A4T

−1
34 )(1⊗ ea ⊗ 1⊗ eb)

= µbca Ad(A2A4)∆(ea)⊗∆(eb) = (∗)
∆(Ea) = ∆(Ad(A2T

−1
12 )(1⊗ ea)) =

= ∆(Ad(A2)∆(ea)) = µbca ∆(Ad(A2)(eb ⊗ ec)) = (∗∗)

Then, setting both sides to be equal (∗) = (∗∗) we get

∆(Ad(A2)(eb ⊗ ec)) = Ad(A2A4)∆(ea)⊗∆(eb).

We know that the coproduct on one half of Heisenberg double is defined in terms of the

canonical element T

∆H(u) = T (1⊗ u)T−1, u ∈ {ea}.

Then, we want to find an operator U which encodes the coproduct on the half of the

Drinfeld double

∆D(u1 ⊗ u2) = U(1⊗ u1 ⊗ 1⊗ u2)U−1, u ∈ {Ea}.

We see that for U = A2A4T
−1
12 T

−1
34 A

−1
4 we get the right coproduct

∆D(Ad(A2)eb ⊗ ec) = A2A4T
−1
12 T

−1
34 A2(1⊗ eb ⊗ 1⊗ ec)A−1

2 T12T34A
−1
4 A−1

2

= A2A4∆(eb)⊗∆(ec)A
−1
4 A−1

2 .

The calculation for the other half of the Drinfeld double, i.e. the generators Ea, gives

∆(Ad(A−1
2 )(ec ⊗ eb)) = Ad(A−1

2 A−1
4 )∆′(eb)⊗∆′(ec) =

= A−1
2 A−1

4 P(12)(34)∆
′(ec)⊗∆′(eb)A4A2P(12)(34).

Therefore, we have

∆D(X(1) ⊗X(2)) = Ad(A2A4T
−1
12 T

−1
34 A

−1
4 )(1⊗X(1) ⊗ 1⊗X(2)),

∆D(X̂(1) ⊗ X̂(2)) = Ad(A−1
2 A−1

4 T12T34A1)(X̂(1) ⊗ 1⊗ X̂(2) ⊗ 1),

where Ea = X(1) ⊗X(2), E
a = X̂(1) ⊗ X̂(2) (we suppress the sum over terms here).

8.2 Supersymmetric case

In the supersymmetric case in order to find braiding one needs to consider Kasteleyn

orientations on the edges. We can classify the braiding depending on the type of two

interior vertexes. Following the rule we explained in chapter 5 for distinguishing the type

of puncture as Ramond (R) or Neveu-Schwartz (NS), if two punctures are Ramond, then

there is no dot next to them. If one puncture is R and the other one is NS, it means there

is one dot next to the NS punctures. For the remaining case that the two punctures are
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NS, there will be one dot next to each of them. The last case is the only one where the

homogeneous Yang-Baxter equation has the possibility to be satisfied . By homogeneous

Yang-Baxter we mean just one type of R matrix can be involved in the equation.

We summarize the 8 possible starting points for finding the braiding in figure 8.3, where

decorated vertex have the same place as it was shown in figure 8.2. Figure 8.4 (which

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

(1) (2) (3) (4) (5) (6) (7) (8)

Figure 8.3: Eight possible orientations to find braiding with two NS-punctures.

presents one of the possible cases) shows how the braiding of triangulation of a disk with

two interior and two boundary marked points can be removed by a sequence of elemen-

tary transformations of the graded Ptolemy groupoid. Using the operators T
(i)
mn, Av, Bkl

the corresponding quantum braiding operator has the form

B(i)
α ≡ Π(13)(24)R

(i), where i = 1, . . . , 8 (8.27)

One can consider all the braiding for orientations different than the one in figure 8.4

and show that

R(1) =A−1
1 A3B34T

(8)
41 B21T

(2)
42 B21B34T

(8)
31 B21T

(2)
32 B21A1A

−1
3 (8.28)

R(2) =A−1
1 A3B34T

(6)
41 B21T

(6)
42 B21B34T

(4)
31 B21T

(4)
32 B21A1A

−1
3

R(3) =A−1
1 A3B34T

(3)
41 B21T

(7)
42 B21B34T

(7)
31 B21T

(3)
32 B21A1A

−1
3 U1U2U3U4

R(4) =A−1
1 A3B34T

(1)
41 B21T

(1)
42 B21B34T

(1)
31 B21T

(1)
32 B21A1A

−1
3 U1U2U3U4

R(5) =A−1
1 A3B34T

(4)
41 B21T

(4)
42 B21B34T

(6)
31 B21T

(6)
32 B21A1A

−1
3 U1U2U3U4

R(6) =A−1
1 A3B34T

(2)
41 B21T

(8)
42 B21B34T

(2)
31 B21T

(8)
32 B21A1A

−1
3 U1U2U3U4

R(7) =A−1
1 A3B34T

(7)
41 B21T

(3)
42 B21B34T

(3)
31 B21T

(7)
32 B21A1A

−1
3

R(8) =A−1
1 A3B34T

(5)
41 B21T

(5)
42 B21B34T

(5)
31 B21T

(5)
32 B21A1A

−1
3 ,

Using the construction described in chapter 6 and rewriting Bij = 1⊗Uj one can rewrite

(8.28) in the adjoint form as

R(1) = Ad(A−1
1 A3U2)T

(1)
41 T

(1)
42 T

(1)
31 T

(1)
32 R(2) = Ad(A−1

1 A3U2)T
(1)
41 T

(1)
42 T

(1)
31 T

(1)
32

R(7) = Ad(A−1
1 A3U3)T

(1)
41 T

(1)
42 T

(1)
31 T

(1)
32 R(8) = Ad(A−1

1 A3U3)T
(1)
41 T

(1)
42 T

(1)
31 T

(1)
32 ,

Yang-Baxter One can find the pictorial representation of the Yang-Baxter equation.

It is obvious that we always have the equation with the form

R
(i)
12R

(j)
13 R

(i)
23 = R

(j)
23 R

(i)
13R

(j)
12 , (8.29)



Chapter 8. Braiding and R matrices 107

* * * * *
*
*
* *

*
**

*
**

**

**

*

*

*

* *

1 2 3 4

1 1

1

1

1

2 2

2

2
2

3

3
3

3 3

4 4

4

4

4

Bα
−1 A3

−1

A1 B21×T 23
(2)

×B21

α

T 24
(2 )

×B21 B34×T 13
(8)

Π(24)(13)(A3 A1
−1

)

B34×T 14
(8 )

×B21

Figure 8.4: Braiding along contour α followed by a sequence of transformations brings
one back to the initial triangulation τ .

We still focus on the case when both puncture are NS. There are few combinations of

i and j can satisfy the Yang-Baxter equation. Between all the possible equations there

are just four cases that i can be equal to j–one example is illustrated in figure 8.5.

1 2 3 4 5 6

R(34)(56)
(1) 1 2 5 6 3 4 5 6 1 2 3 4

R(12)(56)
(1)

R(12)(34)
(1)

R(12)(34)
(1)

3 4 1 2 5 6 3 4 5 6 1 2
R(12)(56)

(1)

R(34)(56)
(1)

1 2 3 4 5 6

Figure 8.5: One possible Yang-Baxter equation with two NS-punctures.

The possible pairs for two NS punctures are

(i, j) = (1, 1), (2, 2), (7, 7), (8, 8), (3, 4), (3, 2), (4, 1), (4, 3), (5, 7), (5, 6), (6, 8).





Chapter 9

Conclusions and outlook

We used a similar approach to that of Kashaev [34] in the case of ordinary Riemann sur-

faces and generalized this result to the supersymmetric case to construct a quantization

of the Teichmüller theory of super Riemann surfaces. The independence of the resulting

quantum theory with respect to changes of triangulations was demonstrated by con-

structing a unitary projective representation of the super Ptolemy groupoid including

superpentagon relations.

We identified coordinates on the quantum super Teichmüller space with elements of the

Heisenberg double. The resulting quantum theory is identified with the quantum theory

of the Teichmüller spaces of super Riemann surfaces. The goal of an ongoing project is

to construct bases of the canonical element of the Heisenberg double.

The canonical element of the Heisenberg double is expressed in terms of particular func-

tions called supersymmetric quantum dilogarithm. These resulting functions are of the

same type as those in the 6j symbols of super Liouville theory. We anticipate that

this similarity brings the possibility of a correspondence between quantum super Te-

ichmüller and conformal blocks of super Liouville theory.

Kashaev derived the R-matrix, associated with braidings in the mapping class groups,

in terms of the non-compact quantum dilogarithm, which first has been suggested by

Faddeev as the universal Uq(sl(2)) R-matrix for the corresponding modular double.

Kashaev established that the more general formula directly follows from the embedding

of the Drinfeld doubles of Hopf algebras into tensor product of two Heisenberg doubles in

[43] and he presented a geometrical interpretation [44]. In the super Teichmüller theory

we already derived the geometrical view of the R matrix associated with braidings in

the mapping class groups. The R matrix is derived in terms of the non-compact super

quantum dilogarithm. The goal of an ongoing project is to find how this R matrix

follows from the canonical embedding of the Drinfeld doubles Hopf superalgebras.

There are a number of issues which would be interesting to investigate as follow up work.

It is known that ordinary Teichmüller theory is closely related to non-supersymmetric

Liouville theory [20]. In particular, the spaces of Liouville conformal blocks and the

spaces of states of Teichmüller theory of Riemann surfaces can be identified [14] and carry

109
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unitary equivalent representations of the mapping class group. In the case of N = 1

supersymmetric Liouville theory, the mapping class group representation for genus 0

can be represented using the fusion and braiding matrices,and has been investigated

in [90, 91]. It would be interesting to study more closely the mapping class group

representation defined by the representation of the super Ptolemy groupoid constructed

in this text, and relate it to N = 1 supersymmetric Liouville theory.

Moreover, ordinary Teichmüller theory is the connected component of the space of

SL(2,R)-valued flat connections on a Riemann surface Σ, and therefore closely related

to SL(2,R)-Chern-Simons theory on Σ × R. The goal of one ongoing project is to in-

vestigate the connections between the quantum super Teichmüller theory described here

and the quantum OSp(1|2)-Chern-Simons theory. One can note that a topological field

theory on a 3-dimensional manifold can be constructed by using Teichmüller theory

[92]. One can associate the flip operator of Teichmüller space to a tetrahedron of the

triangulated 3 manifold. Since the flip operator is the canonical element of Heisenberg

double, it satisfies the pentagon relation. Therefore, the partition function obtained

by gluing tetrahedra together does not change by choosing a different triangulation of

the three-manifold. This means that there exists an invariant under the 2-3 Pachner

move, which follows from the pentagon like identity. An important implication of this

thesis is that, one can use the supersymmetric flip operator to derive the invariant of

spin three-manifolds from super Teichmüller theory. We can further anticipate that the

recent work of Kapustin and Gaiotto [93] and also Petronio and Benedetti [94] might

help us to find the proper way of encoding the spin structure. Then, one needs to show

that the partition function is invariant under different ideal triangulations of hyperbolic

spin three-manifolds.

Another direction where one may use the result which was presented here, is the study of

integrability and quantum discrete super Liouville model. Liouville theory is interesting

due to its connection with noncritical string theory [95] and two-dimensional quantum

gravity [96]. It is an example of nonrational CFTs [8, 97] and has relation to the quan-

tized Teichmüller spaces of Riemann surfaces [15, 98]. Integrable lattice regularization of

quantum Liouville theory has been studied in the ’80 [98], and later on in [99, 100]. The

model was developed more recently by Kashaev and Faddeev [50]. According to [50],

the model describes the region corresponding to the strongly coupled regime (1 < c < 25

where, c is the Virasoro central charge of the Liouville theory). Then, in the context of

the discrete Liouville model, it was shown that the N-th power of the light-cone evolution

operator of the model can be interpreted in pure geometrical terms within quantum Te-

ichmüller theory as the Dehn twist operator. Another possible research direction based

on this dissertation can be understanding the geometric realization of Dehn twist in the

formalism of super Teichmüller theory and derive the light-cone evolution operator in

the super case.



Appendix A

Non-compact quantum

dilogarithm

Quantum dilogarithm plays a key role in this project. Here we review the non-compact

quantum dilogarithm and its most important properties. We collected the different

definitions of relative special functions which the reader may face in the related references

of this thesis.

The basic building block for the class of special functions to be considered is the Double

Gamma function introduced by Barnes [101]. The Double Gamma function is defined

as

logΓ2(z|ω) :=
( ∂
∂s

∑
m1,m2∈Z≥0

(z +m1ω1 +m2ω2)−s
)
s=0

,

and there exists the definition:

Γb(x) := Γ2(x|b, b−1).

For Rex > 0 it admits an integral representation

log Γb(x) =

∫ ∞
0

dt

t

 e−xt − e−
Q
2
t

(1− e−tb)(1− e−
t
b )
−

(
Q
2 − x

)2

2et
−

Q
2 − x
t

 ,
where Q = b + 1

b . One can analytically continue Γb to a meromorphic function defined

on the entire complex plane C. The most important property of Γb is its behavior with

respect to shifts by b±,

Γb(x+ b) =

√
2πbbx− 1

2

Γb(bx)
Γb(x) , Γb(x+ b−1) =

√
2πb−

b
x

+ 1
2

Γb(xb)
Γb(x) . (A.1)
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These shift equations allow us to calculate residues of the poles of Γb. When x→ 0, for

instance, one finds

Γb(x) =
Γb(Q)

2πx
+O(1). (A.2)

From Barnes’ Double Gamma function we can build other important special functions,

Υb(x) :=
1

Γb(x)Γb(Q− x)
, (A.3)

Sb(x) :=
Γb(x)

Γb(Q− x)
, (A.4)

Gb(x) := e−
iπ
2
x(Q−x)Sb(x), (A.5)

wb(x) := e
πi
2

(Q
2

4
+x2)Gb(

Q

2
− ix), (A.6)

gb(x) :=
ζb

Gb(Q2 + 1
2πib logx)

, (A.7)

We shall often refer to the function Sb as double sine function. It is defined by the

following integral representation,

logSb(x) =

∫ ∞
0

dt

it
(

sin 2xt

2 sinh bt sinh b−1t− x
t

) (A.8)

The Sb function is meromorphic with poles and zeros in

Sb(x) = 0⇔ x = Q+ nb+mb−1, n,m ∈ Z≥0 ,

Sb(x)−1 = 0⇔ x = −nb−mb−1, n,m ∈ Z≥0 .

Other most important properties for this text are as follows:

Functional equation(Shift): Sb(x− ib/2) = 2 cosh (πbx)Sb(x+ ib/2) (A.9)

Self-duality: Sb(x) = S1/b(x) (A.10)

Inversion relation(Reflection): Sb(x)Sb(−x) = 1 (A.11)

Unitarity: Sb(x) = 1/Sb(x) (A.12)

Residue: resx=cbSb(x) = e−
iπ
12 (1− 4cb

2)(2πi)−1 (A.13)

In addition, from the definition of Gb (A.5) and the shift property of Barnes’ double

Gamma function it is easy to derive the following shift and reflection properties of Gb,

Gb(x+ b) = (1− e2πibx)Gb(x) , (A.14)

Gb(x)Gb(Q− x) = eπix(x−Q) . (A.15)

The Fadeev’s quantum dilogarithm function is defined by the following integral repre-

sentation

eb(x) = exp

[∫
Ri0

dw

w

e−2ixw

4 sinh(wb) sinh(w/b)

]
, (A.16)
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and it is related to the Double sine function in a way as follows

eb(x) = e
πi
2
x2
e
−πi
24

(2−Q2)Sb = AG−1
b (−ix+

Q

2
), (A.17)

where

A = e−iπ(1−4c2b)/12 , cb = iQ/2 . (A.18)

The function eb(x) introduced by the name of ”quantum dilogarithm” in [45], ”quantum

exponential function” in [102] and Hyperbolic G function in [103]. This function has

similar properties like shift and reflection relations. The properties which it satisfies are

as follows:

Simple poles and zeros:

poles ={iQ/2 + imb+ inb−1, m, n ∈ Z≥0}
zeros ={−iQ/2− imb− inb−1, m, n ∈ Z≥0}

The asymptotic behavior of the function eb along the real axis

eb(z) =

{
1 , x→ −∞
e−iπ(1+2c2b)/6eiπx

2
, x→ +∞

(A.19)

Functional equation(Shift): eb

(
x− ib±1

2

)
= (1 + e2πb±1x)eb

(
x+

ib±1

2

)
, (A.20)

Inversion relation(Reflection): eb(x)eb(−x) = e−iπ(1+2c2b)/6eiπx
2
, (A.21)

Residue: resx=cbeb = (2πi)−1 (A.22)

Product representation eb(z) =
(−qe2πzb; q2)∞

(−q̃e2πzb−1 ; q̃2)∞
, Imb2 > 0

(A.23)

where q = eiπb
2
, q̃ = e−iπb

−2
, (x, q)∞ = Π∞k=0(1− qkx).

One can find the graphs of quantum dilogarithm and visualization of its analytic and

asymptotic behaviors in [104].





Appendix B

Supersymmetric non-compact

quantum dilogarithm

When discussing the supersymmetric Teichmüller theory we need the following addi-

tional special functions

Γ1(x) = ΓNS(x) = Γb

(x
2

)
Γb

(
x+Q

2

)
, (B.1)

Γ0(x) = ΓR(x) = Γb

(
x+ b

2

)
Γb

(
x+ b−1

2

)
. (B.2)

Furthermore, let us define

S1(x) = SNS(x) = ΓNS(x)
ΓNS(Q−x) , G1(x) = GNS(x) = ζ0e

− iπ
4
x(Q−x)SNS(x),

S0(x) = SR(x) = ΓR(x)
ΓR(Q−x) , G0(x) = GR(x) = e−

iπ
4 ζ0e

− iπ
4
x(Q−x)SR(x),

(B.3)

where ζ0 = exp(−iπQ2/8). As for Sb, the functions S0(x) and S1(x) are meromorphic

with poles and zeros in

S0(x) = 0⇔ x = Q+ nb+mb−1, n,m ∈ Z≥0,m+ n ∈ 2Z + 1,

S1(x) = 0⇔ x = Q+ nb+mb−1, n,m ∈ Z≥0,m+ n ∈ 2Z,
S0(x)−1 = 0⇔ x = −nb−mb−1, n,m ∈ Z≥0,m+ n ∈ 2Z + 1,

S1(x)−1 = 0⇔ x = −nb−mb−1, n,m ∈ Z≥0,m+ n ∈ 2Z.

As in the previous subsection, we want to state the shift and reflection properties of the

functions G1 and G0,

Gν(x+ b±1) = (1− (−1)νeπib
±1x)Gν+1(x), (B.4)

Gν(x)Gν(Q− x) = e
iπ
2

(ν−1)ζ2
0e

πi
2
x(x−Q) . (B.5)

where ν = 0, 1.
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We define the supersymmetric analogues of Fadeev’s quantum dilogarithm function as

eR(x) = eb

(
x+ i(b− b−1)/2

2

)
eb

(
x− i(b− b−1)/2

2

)
, (B.6)

eNS(x) = eb

(
x+ cb

2

)
eb

(
x− cb

2

)
, (B.7)

and relate them to the double sine function in a way as follows

eν(x) = A2G−1
ν (−ix+

Q

2
), (B.8)

with a constant A as defined in eq. (A.18). The shift and reflection relations that it

satisfies are as follows

eR

(
x− ib±1

2

)
= (1 + ieπb

±1x)eNS

(
x+

ib±1

2

)
, (B.9)

eNS

(
x− ib±1

2

)
= (1− ieπb±1x)eR

(
x+

ib±1

2

)
, (B.10)

eNS(x)eNS(−x) = eiπc
2
b/2e−iπ(1+2c2b)/3eiπx

2/2, (B.11)

eR(x)eR(−x) = eiπ/2eiπc
2
b/2e−iπ(1+2c2b)/3eiπx

2/2. (B.12)

Asymptotically, the functions e1 and e0 behave as

eNS(z) =

{
1 , x→ −∞
eiπc

2
b/2e−iπ(1+2c2b)/3eiπx

2/2 , x→ +∞
(B.13)

eR(z) =

{
1 , x→ −∞
eiπ/2eiπc

2
b/2e−iπ(1+2c2b)/3eiπx

2/2 , x→ +∞
(B.14)

Also, we know that for non-commutative variables P,X such that [P,X] = 1
πi they satisfy

four pentagon relations

f+(P)f+(X) = f+(X)f+(X + P)f+(P)− if−(X)f−(X + P)f−(P), (B.15)

f+(P)f−(X) = −if+(X)f−(X + P)f−(P) + f−(X)f+(X + P)f+(P), (B.16)

f−(P)f+(X) = f+(X)f+(X + P)f−(P)− if−(X)f−(X + P)f+(P), (B.17)

f−(P)f−(X) = if+(X)f−(X + P)f+(P)− f−(X)f+(X + P)f−(P), (B.18)

where f±(x) = eR(x)±eNS(x). Those pentagon equations can be equivalently expressed

as the supersymmetric analogues of Ramanujan summation formulae

∑
σ=0,1

∫ i∞

−i∞

dτ

i
(−1)ρβσeπiτβ

Gσ+ρα(τ + α)

Gσ+1(τ +Q)
= 2ζ−1

0

Gρα(α)G1+ρβ (β)

Gρα+ρβ (α+ β)
. (B.19)

which have been derived in [80].
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One can use the connection between eR, eNS and GR, GNS to prove the Ramanujan

formulae based on the results from [80]. Here we show the details for the proof of one

of those equations

LHS =

∫
R

(
eNS(x+ u)

eNS(x+ v)
+
eR(x+ u)

eR(x+ v)

)
eπiwxdx =

=

∫ (
GNS(−i(x+ v) +Q/2)

GNS(−i(x+ u) +Q/2)
+
GR(−i(x+ v) +Q/2)

GR(−i(x+ u) +Q/2)

)
eπiwxdx =

=

∫
iR

(
GNS(τ − iv +Q/2)

GNS(τ − iu+Q/2)
+
GR(τ − iv +Q/2)

GR(τ − iu+Q/2)

)
eπiτ(iw) dτ

i
=

=

∫
iR

(
GNS(τ + (Q/2− iv) + (Q/2 + iu))

GNS(τ +Q)
+
GR(τ + (Q/2− iv) + (Q/2 + iu))

GR(τ +Q)

)
×

× eπiτ(iw)eπi(Q/2+iu)(iw) dτ

i
=

= 2e−iπc
2
b/2

GNS(iw)GNS(Q+ iu− iv)

GNS(Q+ iu− iv + iw)
e−πw(Q/2+iu) =

= 2e−iπc
2
b/2

A4

A2

eNS(iQ− u+ v − w − cb)

eNS(−w − cb)eNS(iQ− u+ v − cb)
e−πw(Q/2+iu) =

= 2e−iπc
2
b/2A2 eNS(−u+ v − w + cb)

eNS(−w − cb)eNS(−u+ v + cb)
e−πw(Q/2+iu) =

=
eNS(−u+ v − w + cb)

eNS(−w − cb)eNS(−u+ v + cb)
e−πiw(u−cb)

(
2e−iπc

2
b/2A2

)
= RHS,

where B̄ = 2e−iπc
2
b/2A2 and B = 2eiπc

2
b/2A−2.





Appendix C

Pentagon and superpentagon

relation

In the first part of this appendix we explain the proof of the pentagon relation which was

explained in [50] more extensively. In the second part we follow their line for proving

superpentagon relations.

C.1 Pentagon identity

In appendix A we explained the properties of quantum dilogarithm functions. In this

part first we express the Ramanujan formula based on which, we find the Fourier trans-

formation of the quantum dilogarithm. The Fourier transformation will help us prove the

pentagon relation afterwards. At the very end we explain the proof of the Ramanujan

formula.

According to [44], the Ramanujan summation formula states that∫
dxe2πix(w−cb) eb(x+ a)

eb(x− cb)
= eiπ(1−4c2b)/12 eb(a)eb(w)

eb(a+ w − cb)
. (C.1)

First by complex conjugating we have∫
dxe−2πix(w−cb) eb(x+ cb)

eb(x+ ā)
= e−iπ(1−4c2b)/12 eb(ā+ w̄ + cb)

eb(ā)eb(w̄)
,

with the use of the fact that eb(x) = e−1
b (x̄) and change of variables x → x − cb + u

,w → −w + cb and ā→ v − u+ cb on can rewrite the formula as∫
dxe2πixw eb(x+ u)

eb(x+ v)
= e−iπ(1−4c2b)/12e−2πiw(u−cb) eb(v − u− w + cb)

eb(v − u+ cb)eb(−w − cb)
, (C.2)
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Fourier transform

By using the Ramanujan formula (C.2), taking a limit v → −∞ one gets∫
dxe2πixweb(x+ u) = e−iπ(1−4c2b)/12e−2πiw(u−cb) 1

eb(−w − cb)
,

and after setting u = 0:∫
dxe2πixweb(x) = e−iπ(1−4c2b)/12e2πiwcb

1

eb(−w − cb)
.

Then, Fourier transform of the quantum dilogarithm is [50]

φ+(w) =

∫
eb(x)e2πiwxdx = (C.3)

= e−1
b (−w − cb)e2πiwcbe−iπ(1−4c2b)/12 =

= eb(w + cb)e−π(w+cb)2
e+iπ(1+2c2b)/6e2πiwcbe−iπ(1−4c2b)/12 =

= eb(w + cb)e−iπw
2
eiπ(1−4c2b)/12. (C.4)

Then, the inverse transform is

eb(x) =

∫
dyφ+(y)e−2πixy.

Moreover, one can take the limit u→ −∞ of (C.2),

φ−(w) =

∫
e−1

b (x)e2πiwxdx = eiπw
2−iπ(1−4c2b)/12 1

eb(−w − cb)
.

The inverse transform is

(eb(x))−1 =

∫
dyφ−(y)e−2πixy.

Pentagon identity

Consider operators X,P which canonically commute [P,X] = 1
2πi . The pentagon iden-

tity states that

eb(P )eb(X) = eb(X)eb(X + P )eb(P ). (C.5)
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In order to prove that, one first performs a Fourier transform

LHS = eb(P )eb(X) =

∫
dxdyφ+(x)e−2πixPφ+(y)e−2πiyX =

=

∫
dxdyφ+(x)φ+(y)e−2πixP e−2πiyX =

∫
dxdyφ+(x)φ+(y)e−2πiyXe−2πixP e2πiyx

RHS = eb(X)eb(X + P )eb(P ) =

=

∫
dxdydzφ+(x)φ+(z)φ+(y)e−2πiyXe−2πiz(X+P )e−2πixP =

=

∫
dxdydzφ+(x− z)φ+(z)φ+(y − z)e−2πi(y−z)Xe−2πiz(X+P )e−2πi(x−z)P

=

∫
dxdydzφ+(x− z)φ+(z)φ+(y − z)e−2πiyXe−2πixP eiπz

2
.

Now we try to show the left and right hand side are equal.∫
dxdyφ+(x)φ+(y)e−2πiyXe−2πixP e2πixy =

∫
dxdydzφ+(x− z)φ+(z)φ+(y − z)e−2πiyXe−2πixP eiπz

2
.

We can drop first the integrations and then multiply by e−2πiyu and integrate over y.

φ+(x)φ+(y)e−2πiyXe−2πixP e2πixy =

∫
dzφ+(x− z)φ+(z)φ+(y − z)e−2πiyXe−2πixP eiπz

2
.∫

dyφ+(x)φ+(y)e2πiy(x−u) =

∫
dydzφ+(x− z)φ+(z)φ+(y − z)eiπz2

e−2πiyu.

We can use the identities for the inverse Fourier transforms for φ+(y) and φ+(y − z).
Therefore, we have

φ+(x)eb(u− x) =

∫
dzφ+(x− z)φ+(z)eb(u)eiπz

2
e−2πizu. (C.6)

Next, we use the Fourier transforms (C.4) for all φ+ functions on the LHS and RHS of

(C.6)

eb(u− x)

eb(−x− cb)
e2πixcbe−iπ(1−4c2b)/12 = eb(u)

∫
dze−2πiuze2πi(x−z)cb eb(z + cb)

eb(z − x− cb)

eb(u− x)

eb(−x− cb)eb(u)
e−iπ(1−4c2b)/12 =

∫
dze−2πiz(u+cb) eb(z + cb)

eb(z − x− cb)

If we rewrite u→ cb, v → −x−cb and w → −u−cb then we derivethe Ramanujan sum-

mation formula (C.2). Therefore, we observe that pentagon and Ramanujan summation

can be derived from each other.
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C.2 Super pentagon identity

In this section we want to generalize the supersymmetric equivalents of pentagon. We

start from the Ramanujan summation formula and the Fourier transforms of super

dilogarithm functions and by using them we will be able to prove the superpentagon

relation.

Ramanujan summation formulae

Being inspired by [80], the Ramanujan summation formulae state that∫
dxeπix(w−cb)

(
eNS(x+ a)

eNS(x− cb)
+
eR(x+ a)

eR(x− cb)

)
= B

eNS(a)eNS(w)

eNS(a+ w − cb)
(C.7)∫

dxeπix(w−cb)

(
eNS(x+ a)

eNS(x− cb)
− eR(x+ a)

eR(x− cb)

)
= B

eNS(a)eR(w)

eR(a+ w − cb)
(C.8)∫

dxeπix(w−cb)

(
eR(x+ a)

eNS(x− cb)
+
eNS(x+ a)

eR(x− cb)

)
= B

eR(a)eNS(w)

eR(a+ w − cb)
(C.9)∫

dxeπix(w−cb)

(
eR(x+ a)

eNS(x− cb)
− eNS(x+ a)

eR(x− cb)

)
= B

eR(a)eR(w)

eNS(a+ w − cb)
, (C.10)

where

B = 2eiπc
2
b/2eiπ(1−4c2b)/6.

As in the non-supersymmetric case, we can use complex conjugation and use such

relations as eR(x) = e−1
R (x̄) and eNS(x) = e−1

NS(x̄) . Next, by changing variables

x → x − cb + u, w → −w + cb and ā → v − u + cb one can rewrite the Ramanu-

jan summation as∫
dxeiπxw

(
eNS(x+ u)

eNS(x+ v)
+
eR(x+ u)

eR(x+ v)

)
= B̄e−πiw(u−cb) eNS(v − u− w + cb)

eNS(v − u+ cb)eNS(−w − cb)∫
dxeiπxw

(
eNS(x+ u)

eNS(x+ v)
− eR(x+ u)

eR(x+ v)

)
= B̄e−πiw(u−cb) eR(v − u− w + cb)

eNS(v − u+ cb)eR(−w − cb)∫
dxeiπxw

(
eNS(x+ u)

eR(x+ v)
+

eR(x+ u)

eNS(x+ v)

)
= B̄e−πiw(u−cb) eR(v − u− w + cb)

eR(v − u+ cb)eNS(−w − cb)∫
dxeiπxw

(
eNS(x+ u)

eR(x+ v)
− eR(x+ u)

eNS(x+ v)

)
= B̄e−πiw(u−cb) eNS(v − u− w + cb)

eR(v − u+ cb)eR(−w − cb)
,

Fourier transform

The Fourier transforms of quantum dilogarithm are

φNS
+ (w) =

∫
eNS(x)eπiwxdx, φR

+(w) =

∫
eR(x)eπiwxdx. (C.11)
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By using the Ramanujan formula (C.11), taking a limit v → −∞ one gets∫
dxeiπxw (eNS(x+ u) + eR(x+ u)) = B̄e−πiw(u−cb) 1

eNS(−w − cb)
,∫

dxeiπxw (eNS(x+ u)− eR(x+ u)) = B̄e−πiw(u−cb) 1

eR(−w − cb)
,

and after setting u = 0:∫
dxeiπxw (eNS(x) + eR(x)) = B̄eπiwcb

1

eNS(−w − cb)
,∫

dxeiπxw (eNS(x)− eR(x)) = B̄eπiwcb
1

eR(−w − cb)
,

and by summing and reducing them

2

∫
dxeiπxweNS(x) = B̄eπiwcb

(
1

eNS(−w − cb)
+

1

eR(−w − cb)

)
,

2

∫
dxeiπxweR(x) = B̄eπiwcb

(
1

eNS(−w − cb)
− 1

eR(−w − cb)

)
.

Additionally, one can rewrite

φNS
+ (w) =

1

2
B̄eπiwcb

(
1

eNS(−w − cb)
+

1

eR(−w − cb)

)
=

=
1

2
B̄eiπ(1−c2b)/3e−iπw

2/2 (eNS(w + cb)− ieR(w + cb)) ,

φR
+(w) =

1

2
B̄eπiwcb

(
1

eNS(−w − cb)
− 1

eR(−w − cb)

)
=

=
1

2
B̄eiπ(1−c2b)/3e−iπw

2/2 (eNS(w + cb) + ieR(w + cb)) .

By taking the limit u→ −∞ we can get

φNS
− (w) + φR

−(w) =

∫
eiπwx

(
e−1

NS(x) + e−1
R (x)

)
= B̄eiπw

2/2e−1
NS(−w − cb),

φNS
− (w)− φR

−(w) =

∫
eiπwx

(
e−1

NS(x)− e−1
R (x)

)
= iB̄eiπw

2/2e−1
R (−w − cb),

which can be rewritten

φNS
− (w) =

∫
eiπwxe−1

NS(x) =
1

2
B̄eiπw

2/2
(
e−1

NS(−w − cb) + ie−1
R (−w − cb)

)
,

φR
−(w) =

∫
eiπwxe−1

R (x) =
1

2
B̄eiπw

2/2
(
e−1

NS(−w − cb)− ie−1
R (−w − cb)

)
.

The inverse transforms are

(eb(x))±1 =

∫
dyφ±(y)e−πixy.
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Pentagon identity

We want to reverse engineer the pentagon from the Ramanujan summation formulae.

Lets start with the first equation (C.7):∫
dzeiπzw

(
eNS(z + cb)

eNS(z − x− cb)
+

eR(z + cb)

eR(z − x− cb)

)
= const

eNS(u− x)

eNS(−x− cb)eNS(u)
.

Using the Fourier transform of the inverse, we get

LHS = const eNS(u− x)[φNS
+ (x) + φR+(x)],

RHS = const eNS(u)

∫
dzeiπzw

(
[φNS

+ (z) + φR
+(z)][φNS

+ (x− z) + φR
+(x− z)]+

−i[−φNS
+ (z) + φR

+(z)][φNS
+ (x− z)− φR

+(x− z)]
)
.

Therefore, we have an equation

φNS
+ (u− x)[φNS

+ (x) + φR+(x)]eiπxy = const

∫
dzφNS

+ (u)
(
[φNS

+ (z) + φR
+(z)][φNS

+ (x− z) + φR
+(x− z)]+

−i[−φNS
+ (z) + φR

+(z)][φNS
+ (x− z)− φR

+(x− z)]
)
eiπz

2/2.

The exponentials are half of those of the non-supersymmetric case, and since we want

to use the formula

eλxP eλyX = eλ(y−z)Xeλz(X+P )eλ(x−z)P e
−λ2k
4πi

(2xy−z2),

where [P,X] = k
2πi . To have appropriate exponentials to take the inverse of the Fourier

transform, we have to choose k = 2 and λ = −iπ. Therefore, the first equation is of the

form

[eNS(P ) + eR(P )]eNS(X) = const eNS(X) ([eNS(X + P ) + eR(X + P )][eNS(P ) + eR(P )]+

−i[−eNS(X + P ) + eR(X + P )][eNS(P )− eR(P )]) ,

(C.12)

where the constant can be determined exactly. Therefore, summarizing all the rest of

pentagons we have

[eNS(P ) + eR(P )]eR(X) = const eR(X) ([eNS(X + P ) + eR(X + P )][eNS(P ) + eR(P )]+

+i[−eNS(X + P ) + eR(X + P )][eNS(P )− eR(P )]) ,

(C.13)

[eNS(P )− eR(P )]eR(X) = const eNS(X) (−i[−eNS(X + P ) + eR(X + P )][eNS(P ) + eR(P )]+

+[eNS(X + P ) + eR(X + P )][eNS(P )− eR(P )]) ,

(C.14)

[eNS(P )− eR(P )]eNS(X) = const eR(X) (−i[−eNS(X + P ) + eR(X + P )][eNS(P ) + eR(P )]+

−[eNS(X + P ) + eR(X + P )][eNS(P )− eR(P )]) .

(C.15)
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C.3 Proof of Ramanujan formulas

Ordinary case In order to prove Ramanujan formulas, let us define

Ψ(a,w) =

∫
dxe2πix(w−cb) eb(x+ a)

eb(x− cb)
, Φ(a,w) =

eb(a)eb(w)

eb(a+ w − cb)
. (C.16)

One can consider the shift equations

Ψ(a− ib

2
, w) =

∫
dxe2πix(w−cb) eb(x+ a− ib

2 )

eb(x− cb)
= Ψ(a+

ib

2
, w) + e2πabΨ(a+

ib

2
, w − ib).

Ψ(a+
ib

2
, w)−Ψ(a+

ib

2
, w − ib) =

∫
dxe2πix(w−cb)(1− e2πbx)

eb(x+ a+ ib/2)

eb(x− cb)
=

=

∫
dxe2πix(w−cb) eb(x+ a+ ib/2)

eb(x− cb + ib)
= e2πb(w−cb)Ψ(a− ib

2
, w),

since

e−1
b (x− cb) = (1 + e2πb(x−cb+ib/2))−1e−1

b (x− cb + ib) = (1− e2πbx)−1e−1
b (x− cb + ib).

So, eventually

(1 + e2πb(w+a−cb))Ψ(a− ib

2
, w) = (1 + e2πab)Ψ(a+

ib

2
, w),

(1 + e2πb(w+a−cb))Ψ(a+
ib

2
, w − ib) = (1− e2π(w−cb))Ψ(a+

ib

2
, w).

On the other hand, it is easy to check that

Φ(a− ib

2
, w) =

eb(a− ib/2)eb(w)

eb(a+ w − cb)
=

1 + e2πab

1 + e2πb(a+w−cb)
Φ(a+

ib

2
, w),

Φ(a+
ib

2
, w − ib) =

eb(a+ ib/2)eb(w − ib)
eb(a+ w − cb − ib/2)

=
1− e2πb(w−cb)

1 + e2πb(a+w−cb)
Φ(a+

ib

2
, w).

Taking b → b−1 one gets an additional set of shift equations. Given that one has

two doubly periodic functions with the same equations, they have to be equal up to

a constant Ψ(a,w) = CΦ(a,w). Then, one can fix C by evaluating the expression on

particular a and w.

Moreover, on can use the connection between eb and Gb to prove the Ramanujan formula

based on the results from [37].

LHS =

∫
R

eb(x+ u)

eb(x+ v)
e2πiwxdx =

∫
Gb(−i(x+ v) +Q/2)

Gb(−i(x+ u) +Q/2)
e2πiwxdx =

=

∫
iR

Gb(τ − iv +Q/2)

Gb(τ − iu+Q/2)
e2πiτ(iw) dτ

i
=
Gb(iw)Gb(Q+ iu− iv)

Gb(Q+ iu− iv + iw)
e−2πw(Q/2+iu) =

=
A2

A

eb(iQ− u+ v − w − cb)

eb(−w − cb)eb(iQ− u+ v − cb)
e−2πw(Q/2+iu) =

=
eb(−u+ v − w + cb)

eb(−w − cb)eb(−u+ v + cb)
e−2πiw(u−cb)e−iπ(1−4c2b)/12 = RHS,

where, Ae−2πw(Q/2+iu) = e−2πiw(u−cb)e−iπ(1−4c2b)/12.



Appendix C. Pentagon and superpentagon relation 126

Supersymmetric case : In order to prove the Ramanujan formulas in the supersym-

metric case , let us define

Φ+
NS(a,w) =

eNS(a)eNS(w)

eNS(a+ w − cb)
, Φ−NS(a,w) =

eNS(a)eR(w)

eR(a+ w − cb)
,

Φ+
R(a,w) =

eR(a)eNS(w)

eR(a+ w − cb)
, Φ−R(a,w) =

eR(a)eR(w)

eNS(a+ w − cb)
.

Ψ+
NS(a,w) =

∫
dxeπix(w−cb)

(
eNS(x+ a)

eNS(x− cb)
+
eR(x+ a)

eb(x− cR)

)
,

Ψ−NS(a,w) =

∫
dxeπix(w−cb)

(
eNS(x+ a)

eNS(x− cb)
− eR(x+ a)

eb(x− cR)

)
,

Ψ+
R(a,w) =

∫
dxeπix(w−cb)

(
eR(x+ a)

eNS(x− cb)
+
eNS(x+ a)

eb(x− cR)

)
,

Ψ−R(a,w) =

∫
dxeπix(w−cb)

(
− eR(x+ a)

eNS(x− cb)
+
eNS(x+ a)

eb(x− cR)

)
,

One can consider the shift equations (omitting intermediate steps)

Ψ±NS(a− ib

2
, w) = ±Ψ±R(a+

ib

2
, w)±ieπabΨ∓R(a+

ib

2
, w − ib),

Ψ±R(a+
ib

2
, w) + Ψ∓R(a+

ib

2
, w − ib) = eπb(w−cb)Ψ±NS(a− ib

2
, w),

Ψ±R(a− ib

2
, w) = ±Ψ+

NS(a+
ib

2
, w)± ieπabΨ∓NS(a+

ib

2
, w − ib),

Ψ±NS(a+
ib

2
, w)−Ψ∓NS(a+

ib

2
, w − ib) = eπb(w−cb)Ψ±R(a− ib

2
, w).

since

e−1
NS(x− cb) = (1− ieπb(x−cb+ib/2))−1e−1

R (x− cb + ib) = (1− eπbx)−1e−1
R (x− cb + ib),

e−1
R (x− cb) = (1 + ieπb(x−cb+ib/2))−1e−1

NS(x− cb + ib) = (1 + eπbx)−1e−1
NS(x− cb + ib).

So, eventually

(1∓ieπb(w+a−cb))Ψ+
NS/R(a− ib

2
, w) = (1∓ieπab)Ψ+

R/NS(a+
ib

2
, w),

(1±ieπb(w+a−cb))Ψ−NS/R(a− ib

2
, w) = −(1− ieπab)Ψ−R/NS(a+

ib

2
, w),

(1∓ieπb(w+a−cb))Ψ∓R(a+
ib

2
, w − ib) = −(1∓eπ(w−cb))Ψ±R(a+

ib

2
, w),

(1±ieπb(w+a−cb))Ψ∓NS(a+
ib

2
, w − ib) = (1∓eπ(w−cb))Ψ±NS(a+

ib

2
, w),
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On the other hand, it is easy to check that

Φ+
NS/R(a− ib

2
, w) =

1∓ieπab

1∓ieπb(a+w−cb)
Φ+

R/NS(a+
ib

2
, w),

Φ−NS/R(a− ib

2
, w) = − 1∓ieπab

1±ieπb(a+w−cb)
Φ−R/NS(a+

ib

2
, w),

Φ±NS(a+
ib

2
, w − ib) =

1±eπb(w−cb)

1∓ieπb(a+w−cb)
Φ∓NS(a+

ib

2
, w),

Φ±R(a+
ib

2
, w − ib) = − 1±eπb(w−cb)

1±ieπb(a+w−cb)
Φ∓R(a+

ib

2
, w),

Taking b → b−1 one gets an additional set of shift equations. Given that one has

two doubly periodic functions with the same equations, they have to be equal up to a

constant:

Ψ±NS(a,w) = CΦ±NS(a,w), Ψ±R(a,w) = CΦ±R(a,w),

Then, one can fix C by evaluating the expression on particular a and w.

Moreover, on can use the connection between eR, eNS and GR, GNS to prove the Ra-

manujan formulae based on the results from [80].

LHS =

∫
R

(
eNS(x+ u)

eNS(x+ v)
+
eR(x+ u)

eR(x+ v)

)
eπiwxdx =

=

∫ (
GNS(−i(x+ v) +Q/2)

GNS(−i(x+ u) +Q/2)
+
GR(−i(x+ v) +Q/2)

GR(−i(x+ u) +Q/2)

)
eπiwxdx =

=

∫
iR

(
GNS(τ − iv +Q/2)

GNS(τ − iu+Q/2)
+
GR(τ − iv +Q/2)

GR(τ − iu+Q/2)

)
eπiτ(iw) dτ

i
=

=

∫
iR

(
GNS(τ + (Q/2− iv) + (Q/2 + iu))

GNS(τ +Q)
+
GR(τ + (Q/2− iv) + (Q/2 + iu))

GR(τ +Q)

)
×

× eπiτ(iw)eπi(Q/2+iu)(iw) dτ

i
=

= 2e−iπc
2
b/2

GNS(iw)GNS(Q+ iu− iv)

GNS(Q+ iu− iv + iw)
e−πw(Q/2+iu) =

= 2e−iπc
2
b/2

A4

A2

eNS(iQ− u+ v − w − cb)

eNS(−w − cb)eNS(iQ− u+ v − cb)
e−πw(Q/2+iu) =

= 2e−iπc
2
b/2A2 eNS(−u+ v − w + cb)

eNS(−w − cb)eNS(−u+ v + cb)
e−πw(Q/2+iu) =

=
eNS(−u+ v − w + cb)

eNS(−w − cb)eNS(−u+ v + cb)
e−πiw(u−cb)

(
2e−iπc

2
b/2A2

)
= RHS,

where

B̄ = 2e−iπc
2
b/2A2, B = 2eiπc

2
b/2A−2,

Three additional equations can be proven in the same way.





Appendix D

Permutation

In section 6.2.3 we mentioned that the Pf in equation (6.24) is not the standard per-

mutation operator on C1|1 ⊗ C1|1 satisfying Pf(η1 ⊗ η2)Pf = η2 ⊗ η1 for arbitrary

η1, η2 ∈ End(C1|1). In this appendix we want to show how to calculate the standard

permutation operator on C⊗ C in the supercase.

One can use the Pauli matrices as the bases : Hom (C1|1) = span(σi) =span(I, σi)

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (D.1)

We consider permutation as

P (12) = Σaijσi ⊗ σj (D.2)

while the bases have grading as : | σ1 |=| σ4 |= 0, | σ2 |=| σ3 |= 1, (−1)δi,2 = (−1)|i| and

satisfy the following relations:

σ1ei = ei, σ2ei = ei+1, σ3ei = i(−1)δi,2ei+1, σ4ei = (−1)δi,2ei,

We can choose the basis for calculating P (12) depending on the Pauli’s matrices as

σ1 = I, σ2 = σ1, σ3 = σ2, σ4 = σ3.

The permutation can be calculated as

Σaijσi ⊗ σj = Σklakl(σk ⊗ σl)(ei ⊗ ej) = (−1)|i||j|(ej ⊗ ei) i, j = 1, 2

129



Appendix D. Permutation 130

then we get:

Σklakl(σk.ei)⊗ (σl.ej)(−1)|ei||σl| = a11(ei ⊗ ej) + a12(ei ⊗ ej + 1)(−1)|ei|+

a13(ei ⊗ i(−1)|j|ej+1)(−1)|ei| + a14(ei ⊗ (−1)|j|ej) + a21(ei+1 ⊗ ej) + a22(ei+1 ⊗ ej+1)(−1)|ei|+

a23(ei+1 ⊗ i(−1)|j|ej+1)(−1)|ei| + a24(ei+1 ⊗ (−1)|j|ej) + a31((−1)|i|iei+1 ⊗ ej)+

a32((−1)|i|iei+1 ⊗ ej+1)(−1)|ei| + a33((−1)|i|iei+1 ⊗ i(−1)|j|ej+1)(−1)|ei|+

a34((−1)|i|iei+1 ⊗ (−1)|j|ej) + a41((−1)|i|iei ⊗ ej) + a42((−1)|i|ei ⊗ ej+1)(−1)|ei|+

a43((−1)|i|ei ⊗ (−1)|j|iej+1)(−1)|ei| + a44((−1)|i|ei ⊗ (−1)|j|ej)

we have 16 equations for different choices of i and j. By solving these equations we get

the following non zero coefficients: a14 = 1/2, a23 = i/2, a32 = −i/2, a41 = 1/2.

Then, the permutation it found to be

2P (12) = σ1 ⊗ σ4 + iσ2 ⊗ σ3 − iσ3 ⊗ σ2 + σ4 ⊗ σ1

= I⊗

(
1 0

0 −1

)
+

(
1 0

0 −1

)
⊗ I +

(
0 −1

1 0

)
⊗

(
0 1

1 0

)
−

(
0 1

1 0

)
⊗

(
0 −1

1 0

)
.

By knowing that

(
a b

c d

)
⊗

(
α β

γ δ

)
=


aα aβ bα bβ

aγ aδ bγ bδ

cα −cβ dα −bβ
−cγ cδ −dγ bδ

 . (D.3)

Then permutation is

P (12) =


1 0 0 0

0 0 −1 0

0 −1 0 0

0 0 0 −1

 , (D.4)

and satisfies the necessary properties

P (12)e1 ⊗ e1 = e1 ⊗ e1,

P (12)e2 ⊗ e2 = e2 ⊗ e2,
P (12)2 = 1,

P (12)e3 ⊗ e3 = e3 ⊗ e3,

P (12)e4 ⊗ e4 = −e4 ⊗ e4.
(D.5)



Appendix E

q-binomial

We introduce and prove some formulas for the so called q-analysis, which are useful for

the construction of quantum group, Drinfeld double and Heisenberg double of Uq(sl(2)),

Drinfeld double and Heisenberg double of Uq(osp(1|2)).

Lemma 1. q-binomial formula: If A and B are elements of an algebra obeying BA = qAB

then

(A+B)n =

n∑
m=0

(
n

m

)
q

AmBn−m,

where (
n

m

)
q

=
(n)q!

(m)q!(n−m)q!
, (n)q =

1− qn

1− q
.

We suppose that the q-integer (m)q is non zero for 0 < m < n. By convention
(
n
0

)
q

= 1

Proof. Assuming the result for (A+B)n−1 we have

(A+B)n−1(A+B) =
n−1∑
m=0

(
n− 1

m

)
q

AmBn−1−m(A+B)

=
n−1∑
m=0

qn−1−m
(
n− 1

m

)
q

Am+1Bn−1−m +
n−1∑
m=0

(
n− 1

m

)
q

AmBn−m

=

n∑
m=1

qn−m
(
n− 1

m− 1

)
q

AmBn−m +
n−1∑
m=0

(
n− 1

m

)
q

AmBn−m

= An +Bn +
n−1∑
m=1

(
qn−m

(
n− 1

m− 1

)
q

+

(
n− 1

m

)
q

)
AmBn−m

Then by using the identity qn−m(m)q+(n−m)q = (n)q we can see the proof is complete.
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We present a short proof of (
n

k

)
q

=
(q)n

(q)k(q)n−k
, (E.1)

where, (q)n = (1− q)...(1− qn).

where we use the fact that

(x; q)−1 =
∞∏
k=0

1

1− xqk
=
∞∏
k=0

∞∑
l=0

(xqk)l =

= (1 + x+ x2 + ...)(1 + xq + x2q2 + ...)...(1 + xqk + x2q2k + ...)... =

= 1 + x(1 + q + q2 + ...) + x2(1 + q + ...+ qk + ...+ q2 + q3 + ...+ q4 + q5 + ...) + ... =

= 1 +
x

1− q
+ x2 1

1− q
(1 + q2 + q4 + ...) + ... = 1 +

x

1− q
+ x2 1

1− q
1

1− q2
+ ... =

= 1 +
∞∑
k=1

xk∏k
l=1(1− ql)

=
∞∑
k=0

xk

(q)k
.

q-binomial in terms of Gb functions In the non-supersymmetric case, we have the

following form of the Ramanujan summation formula∫
dτe−2πτβ Gb(α+ iτ)

Gb(Q+ iτ)
=
Gb(α)Gb(β)

Gb(α+ β)
. (E.2)

From this we can get the Fourier transforms. First, by taking α→ +∞ and using

Gb(x)→ ζ̄b, =(x)→ +∞, (E.3)

where ζ−1
b = ζ̄b (because ζb is a pure phase), we get∫

dτe−2πτβ ζ̄b

Gb(Q+ iτ)
= Gb(β),∫

d(bt)e−2π(bt)(Q
2
−ir) 1

Gb(Q+ ibt)
= ζbGb(

Q

2
− ir),

b

∫
dte2πibtr e−πbtQ

Gb(Q+ ibt)
= ζbGb(

Q

2
− ir) = g−1

b (e2πbr) = e−1
b (r).

Now, using the complex conjugation property of the Gb

Gb(x) = e−iπx̄(x̄−Q)Gb(x̄), (E.4)

we can complex conjugate the previous expression to get

b

∫
dte−2πibtr e−πbtQ

Gb(Q+ ibt)
= ζ̄bGb(

Q

2
− ir),

b

∫
dte−2πibtr e−πbtQ

Gb(Q− ibt)
e−iπ(Q−ibt)(Q−Q+ibt) = ζ̄bGb(

Q

2
+ ir)eiπ(Q

2
+ir)(Q−Q

2
−ir),

b

∫
dte2πibtr e−iπb

2t2

Gb(Q+ ibt)
= ζ̄b

1

Gb(Q2 − ir)
= gb(e2πbr) = eb(r).
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Now, we can proceed with the calculation. We start from the shift property

eb(x− ib

2
) = eb(x+

ib

2
)(1 + e2πbx).

Using that, we define u = e2πbq, v = e2πbp such that uv = q2vu with q = eiπb
2
. Then

eb(p− q)ue−1
b (p− q) = eπbq(1 + e2πb(p−q))eπbq = u+ v.

Therefore,

(u+ v)it = eb(p− q)uite−1
b (p− q) = b2

∫
dτ1dτ2e

−iπb2τ2
1
e2πibτ1(p−q)

Gb(Q+ ibτ1)
uite−πbτ2Q

e2πibτ2(p−q)

Gb(Q+ ibτ2)
=

= b2
∫

dτ1dτ2e
−iπb2τ2

1Gb(−ibτ1)e−iπ(Q+ibτ1)(Q+ibτ1−Q)e−πbτ2Q
e2πibτ1(p−q)uite2πibτ2(p−q)

Gb(Q+ ibτ2)
=

= b2
∫

dτ1dτ2e
−πb(τ2−τ1)Q Gb(−ibτ1)

Gb(Q+ ibτ2)
e2πibτ1(p−q)e2πibtqe2πibτ2(p−q) = (∗)

and because e2πibτ1pe−2πibτ1q = e
−(2πibτ1)2

4πi e2πibτ2(p−q) = e−πib
2τ2

1 e2πibτ2(p−q) and similar

expression for τ2 we have

(∗) = b2
∫

dτ1dτ2e
−πb(τ2−τ1)Qe−πib

2(τ1+τ2)2
e2πib2tτ1 Gb(−ibτ1)

Gb(Q+ ibτ2)
ui(t−τ1−τ2)vi(τ1+τ2)

and after the change of the integration variable τ = τ1 + τ2, Therefore,

(∗) = b2
∫

dτdτ2e
−2πbτ2(Q+ibt)+πbτ(Q+2ibt)−πib2τ2Gb(−ibτ + ibτ2)

Gb(Q+ ibτ2)
ui(t−τ)viτ

Now, using the Ramanujan summation formula with α = −ibτ and β = Q+ ibt we get

(∗) = b

∫
dτeπbτ(Q+2ibt)−πib2τ2Gb(−ibτ)Gb(Q+ ibt)

Gb(−ibτ +Q+ ibt)
ui(t−τ)viτ =

= b

∫
dτe2πib2tτ−2πib2τ2 Gb(Q+ ibt)

Gb(Q+ ibτ)Gb(−ibτ +Q+ ibt)
ui(t−τ)viτ = b

∫
dτ

(
t

τ

)
b

ui(t−τ)viτ ,

where we set (
t

τ

)
b

= b

∫
dτe2πib2τ(t−τ) Gb(Q+ ibt)

Gb(Q+ ibτ)Gb(−ibτ +Q+ ibt)
.
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