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Chapter 1

Synopsis

This cumulative dissertation consists of three individual essays that are generally
concerned with the following two, broader topics: financial risk management and
derivative pricing. Within part I, the first two essays (i.e., chapters 2 and 3) focus
on financial risk management in the shipping industry. Within part II, the third
essay (i.e., chapter 4) focuses on derivative pricing for Asian options. The first two
essays have a clear focus on shipping markets, whereas the third essay is generally
applicable to a broad set of market settings (including shipping markets). However,
the numerical example within this essay relies on model parameters estimated from
shipping market data. Not only that the two parts, financial risk management and
derivative pricing, are anyway intimately connected with each other, but all three
essays also share at least a partial connection to shipping markets. The following
sections elaborate on the general motivation for the dissertation as well as on the
motivation, research questions, approach, results, and contribution to the academic
literature of the three individual essays.

1



Chapter 1 Synopsis

1.1 General motivation

Concerning part I of the dissertation, financial risk management refers to identifying
exposure to risk factors, such as market or credit risk, and managing (i.e., hedging)
this exposure using financial instruments, such as derivatives. Financial risk manage-
ment and the potential associated benefit for corporations are the subject of numerous
efforts in the academic literature following the fundamental work of Smith and Stulz
(1985) who study the question whether risk management does add value for a com-
pany. They conclude that a value-maximizing corporation may decide to hedge for
three reasons – namely, costs of financial distress, managerial risk aversion, and taxes.
Smithson and Simkins (2005) provide a comprehensive overview on recent studies
whether there is a relation between active risk management and firm value. They find
empirical evidence for reduced risk for derivative-using financial institutions and in-
dustrial firms as well as a positive effect on firm value for industrial firms using interest
rate and currency derivatives. Concerning commodity price risks, hedging is appar-
ently only beneficial for commodity users but for not producers. Stulz (1996) adds
another perspective to the classical ‘minimum-variance’ approach in risk management
by rather focusing on the prevention of lower-tail outcomes that increase financial
distress cost as primary goal of risk management. Active financial risk management
reduces the expected cost of financial distress and thus, may help corporations to
attain their preferred capital and/or ownership structure. Shleifer and Vishny (1992)
find that distressed companies receive only substandard prices in liquidation or fire
sales of assets to improve their liquidity situation due to the fact that their industry
peers and potential asset buyers are also suffering from the same unfavorable market
conditions. As a result, illiquid market conditions cause asset prices to plummet in
bad times which in turn increase the cost of financial distress.

With respect to the shipping industry, it should be noted that the industry is his-
torically characterized by comparatively high volatility of both freight rates as well
as ship prices. Albertijn et al. (2011) offer a broad perspective on risk management
practices within the industry, especially in the light of the recent financial crisis. For
listed shipping companies, they foresee the increasing need to comply with latest ac-
counting standards (e.g., fair value accounting) making the volatility of asset prices
(i.e., the company’s ships or fleet in their balance sheet) more transparent. This
might force shipping companies to recognize considerable impairment losses in bad
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times that potentially threaten the financial stability of the company. Simultaneously,
financial institutions providing funds for the industry are expected to hold substan-
tially more equity for their comparatively risky shipping loans under the new Basel III
regulations. Consequently, these institutions probably either tighten their loan com-
mitment in the shipping industry or increase their demands with respect to securities
or collaterals of their loans. Altogether, this urges shipping companies to practice
diligent financial risk management in this new environment (Albertijn et al., 2011).
Another complicating factor in this context is the typically relatively high leverage
ratio of shipping companies leaving only little potential to cover extreme losses which
increases financial distress cost (Drobetz et al., 2013).

The first and second essay address this issue and examine the hedge effectiveness of
freight derivatives to cross-hedge dry bulk Capesize ship price risks in order to protect
the shipping company’s balance sheet from impairment losses through adverse ship
price fluctuations. Unfortunately, no direct, liquid hedge instruments on ship prices
currently exist. As a consequence, shipping companies are limited to cross-hedging
ship price risks using freight derivatives. The first essay focuses on Forward Freight
Agreements (FFAs) as hedge instruments, while the second essay concentrates on
freight options exploiting their asymmetric payoff structure. Both the first and the
second essay rely on a structural pricing model (SPM) estimated from past vessel
transactions in order to determine the desired hedge exposure. For a little more
detailed perspective on the individual motivation, research questions, approach, re-
sults, and contribution to the academic literature, please see the following sections 1.2
and 1.3.

Concerning part II of the dissertation, successful hedging of market or price risks
using derivative instruments requires a sound understanding of fair prices for such
instruments. Otherwise, the chosen hedging strategy might turn out as less effective
than intended. Accordingly, the two parts of the dissertation are intimately connected
with each other as initially stated. The asymmetric payoff structure of options renders
them somewhat more difficult to price than forwards or futures. Additionally, options
come in different styles with respect to their exercise modalities. Typically, three broad
categories are distinguished: classical European or ‘plain vanilla’ options, American
options, and so-called ‘exotic’ options. European options may only be exercised at the
maturity date, while American options may be exercised at any point in time before
the maturity date. The category of ‘exotic’ options comprises the set of options with
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more complex payoff profiles, such as, for instance, Asian options (Hull, 2012).

Asian options are path-dependent options where the payoff is not determined by the
price of the underlying at the maturity date alone but determined by the average of
the underlying price within the delivery period (i.e., from a certain period of time
prior to the maturity date until the maturity date) (Hull, 2012). This type of option
allows companies to hedge continuous risks or exposures, such as the average interest
rate or average cost across the accounting year. According to Longstaff (1995), an
option on average interest rates is far more cost-effective for hedging purposes than
a set of individual, standard interest rate options. Accordingly, they offer a cheaper
way to hedge regular, periodic cash flows (Zhang, 1998). Additionally, these kind of
options are usually preferred in less liquid markets (e.g., commodities) to prevent any
price manipulations of the underlying close to maturity, while European and Ameri-
can option are typically preferred in classical, liquid financial markets (e.g., equities,
bonds, or currencies). As a consequence of these characteristics, Asian options have
gained much interest by market participants in terms of traded volume over the years
(Zhang, 1998).

Due to the inherent challenges to accurately price them, Asian options have also
caught some attention in the academic literature over the years. Black and Scholes
(1973) provide a paradigm shift with their closed-form solution for European options
under their Black and Scholes (1973) price dynamics assuming that the spot price
follows a geometric Brownian motion (GBM). This liberated market participants from
the need to apply complex and, at that time, computationally demanding numerical
methods, such as Monte Carlo (MC) simulations. Since then, numerous studies on
more complex price dynamics than the GBM describing the spot price as well as on the
valuation of options of different types under such price dynamics have been published
(see, for instance, Heston (1993), Schwartz (1997), or Schwartz and Smith (2000)).
However, closed-form solutions remain often restricted to options of European type
or to comparatively simple price dynamics assumed for the underlying spot price.
For Asian options, Kemna and Vorst (1990) find a closed-form solution for geometric
Asian options (i.e., the average within the delivery period is computed as geometric
average) under Black and Scholes (1973) price dynamics. For the more common
arithmetic Asian options (i.e., the average within the delivery period is computed as
arithmetic average), they propose a MC control variate simulation approach. This
variance-reduction technique for MC simulations reduces the computational effort
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considerably due to the almost perfect correlation between arithmetic and geometric
average. Alternatively, market participants can also apply semi-analytical solutions
relying on numerical methods (see, for instance, Carverhill and Clewlow (1990) or
Geman and Yor (1993)), approximate closed-form solutions (see, for instance, Turnbull
and Wakeman (1991)), or partial differential equation (PDE) methods using finite
differences (see, for instance, Rogers and Shi (1995), Alziary et al. (1997), or Zhang
(2001)).

The third essay extends the approach of Kemna and Vorst (1990) – developing a
closed-form solution for a geometric Asian option which then is applied as control
variate in a MC simulation – to certain other class of price dynamics of the underly-
ing spot price. A general pricing framework for geometric Asian options is proposed
that is applicable to the entire set of affine n-factor Gaussian diffusions. The fact that
the geometric average of a normally distributed variable is itself normally distributed
allows to find closed-form solutions for geometric Asian options for affine Gaussian
diffusions (see, for instance, Hull (2012), Kemna and Vorst (1990), or Zhang (1998)).
Besides, the almost perfect correlation of the arithmetic and geometric average predes-
tines the application of a MC control variate simulation approach to price arithmetic
Asian options. For a little more detailed perspective on the motivation, research ques-
tion, approach, results, and contribution to the academic literature of the third essay,
please see the following section 1.4.

1.2 Hedging Capesize ship price risks using
Forward Freight Agreements

The first essay is concerned with hedging dry bulk Capesize ship price risks using
FFAs. As already mentioned, the shipping industry is historically known for the
volatile nature of freight rates and also second-hand ship prices. Together with the
increasing need to comply with fair value accounting principles that might cause the
recognition of impairment losses on their balance sheets, shipping companies need
effective strategies to hedge against such adverse ship price fluctuations. The aim of
the first essay is to examine potential hedging approaches and empirically assess their
hedge effectiveness.
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As no direct, liquid hedge instruments for ship prices exist, shipping companies are
restricted to using freight derivatives, such as FFAs, as cross-hedge instruments. With
respect to deriving the desired hedge exposure, two different approaches are compared
within the study. On the one hand, the idea of Alizadeh and Nomikos (2012) is
translated into a minimum-variance cross-hedging model (MVCHM) basically relying
on weekly time series data of panelists’ estimations of second-hand prices for dry bulk
Capesize reference vessels. On the other hand, a SPM based on the idea of Adland
and Koekebakker (2007) is estimated from real dry bulk Capesize sale and purchase
transactions for the competing hedging approach. The model includes ship-specific,
deterministic factors as well as market-driven or risk factors, such as the FFA rate or
slope of the FFA curve as well as interaction terms. Both approaches are empirically
tested for their hedge effectiveness in two different hedging set-ups as well as in further
robustness checks. Following the well-known effort of Ederington (1979), the hedge
effectiveness is measured in terms of variance reduction.

The results suggest that the MVCHM achieves empirically only a hedge effectiveness
of about 67 % variance reduction over a time horizon of one year, whereas Alizadeh
and Nomikos (2012) claim variance-reduction levels of more than 85 %. Concerning
the SPM, the second-hand price of dry bulk Capesize vessels may be well described by
market-driven explanatory variables, such as the FFA+1CAL1 rate as well as the slope
between the FFA+2CAL and FFA+1CAL rate, and deterministic, ship-specific ex-
planatory factors, such as the age, deadweight tons (DWT), speed, and consumption
of the individual vessel. In terms of hedge effectiveness, the SPM-based approach con-
sistently outperforms the MVCHM-based approach and achieves a variance reduction
of about 77 % over a time horizon of one year.

The first essay contributes to the academic literature in various ways. This is the
first empirical study testing the MVCHM-based approach suggested by Alizadeh and
Nomikos (2012). Moreover, the study first considers additional explanatory variables
other than simple FFA rates, vessel age, or size in DWT in a SPM. Finally, the study
shows that the proposed SPM-based approach consistently outperforms the MVCHM-
based approach in terms of variance reduction and thus, provides shipping companies
with more a effective way to determine the desired hedge exposure and hedge their
ship price risks.

1 FFA+1CAL contracts, for instance, are next calendar-year FFA contracts.
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1.3 Hedging Capesize ship price risks using freight
options

The second essay is concerned with hedging dry bulk Capesize ship price risks using
freight options. The basic motivation for the study is largely similar to the one of
the first essay. However, the second essay focuses more on eliminating downside
risks rather than trying to completely offset ship price fluctuations via FFA-based
cross-hedging. Accordingly, the aim of this paper is to empirically assess the hedge
effectiveness of different freight option-based cross-hedging strategies using several
risk-, downside-risk-, as well as return-based measures.

With respect to deriving the desired hedge exposure, a SPM-based approach is chosen
again estimated from real dry bulk Capesize sale and purchase transactions. The
hedge effectiveness of different freight option hedging strategies (i.e., long at-the-
money put, long 10 % out-of-the-money put, replicated FFA, and zero-cost collar) is
empirically tested in a hedging set-up over a fixed time horizon one year prior to the
sale for the same dry bulk Capesize sale and purchase transactions. The simple FFA-
based hedging strategy serves as reference. In terms of hedge-effectiveness measures,
the pure variance-reduction perspective of Ederington (1979) fails to accurately assess
the one-sided option-based hedging strategies as they only eliminate downside risk and
still allow for positive variation. Accordingly, additional measures based on the risk-
return perspective (i.e., the revised measure of Howard and D’Antonio (1987) which
is largely based on the concept of the Sharpe (1966) ratio), downside-risk perspective
(i.e, lower partial moment (LPM) measures which were brought to portfolio theory by
Bawa (1975), Bawa and Lindenberg (1977), Fishburn (1977), and Bawa (1978)), and
combined perspective of downside risk and return (i.e., the Sortino ratio developed
by Sortino and Price (1994)) are computed. This broad set of hedge-effectiveness
measures allows to reflect different risk and return preferences of shipping companies.
The robustness of the presented results and findings is checked for two subsets of the
data set as well as in an alternative hedging set-up.

The results suggest that freight options generally qualify quite well as cross-hedge in-
struments for dry bulk Capesize ship price risks. Specifically, one-sided option-based
hedging strategies show no inferior performance from a pure risk or downside-risk
perspective. From a risk-return perspective as well as from a combined perspective
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of downside risk and return, they perform worse than the classical two-sided hedging
strategies. This, however, turns out to be somewhat caused by the data set of trans-
actions used within the study consisting of relatively few vessels that would benefit
from the the one-sided, option-based hedging strategies. In a robustness check, the
opposite hedging position is considered and the beneficial mechanics of the one-sided,
option-based hedging strategies are shown in this alternative hedging set-up. Conse-
quently, one-sided, option-based hedging strategies prove to be beneficial compared to
classical two-sided hedging strategies in case the market development does not require
any downside-risk protection.

The second essay also contributes to the academic literature in various ways. This
is the first effort investigating whether freight options generally qualify as hedge in-
struments for dry bulk Capesize ship price risks and empirically assesses the hedge
effectiveness of different one- and two-sided option-based hedging strategies. Finally,
the study shows that one-sided option-based hedging strategies present a viable al-
ternative to FFA-based hedging strategies and might be even a superior choice for
shipping companies with certain risk, downside-risk, or return preferences.

1.4 Pricing of Asian options for affine Gaussian
diffusions

The third essay is concerned with pricing of Asian options for affine Gaussian diffu-
sions. As already outlined, Asian options have gained some popularity among both
market participants and researchers. Their pricing, however, can be a challenging task
at times as it requires quite some mathematical effort to either grasp the distribution
of the average value at maturity in closed form or to numerically evaluate it. For ge-
ometric Asian options, closed-form solutions can luckily be found for affine Gaussian
diffusions as the distribution of the geometric average of an exponential of a Gaussian
random process is itself lognormal. For arithmetic Asian options, however, the dis-
tribution of the arithmetic average is even unknown for an exponential of a Gaussian
random process and thus, closed-form solutions cannot be found. The aim of third
essay is threefold. Firstly, a general pricing framework for continuously monitored
geometric Asian call options for affine n-factor Gaussian diffusions is developed. Sec-
ondly, closed-form solutions for geometric Asian call options for three mean-reversion
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commodity pricing models are practically derived. Their accuracy is examined via
MC simulation in a numerical example. Thirdly, the geometric Asian call option is
used as control variate in a MC simulation in order to price an arithmetic Asian call
option under these pricing dynamics. Finally, an extension to forward-start Asian
options is outlined as these are quite common in commodity markets.

The general pricing framework is applicable to affine n-factor Gaussian diffusions and
relies on the concept of the characteristic function. The latter allows to determine
the distribution of the geometric average rather easily and the required mathemat-
ical theory for treating affine processes is provided in an excellent effort by Duffie
et al. (2003). The general pricing framework provides a closed-form solution for con-
tinuously monitored geometric Asian call options. Subsequently, the general pric-
ing framework is applied to three mean-reversion pricing models (i.e., the Schwartz
(1997) one-factor model, the Schwartz and Smith (2000) two-factor model, and the
Korn (2005) two-factor model) and specific closed-form solutions for geometric Asian
call options are derived. For the sake of completeness, a closed-form solution for
the Black (1976) one-factor model is also derived which can be rather simply con-
verted to the result of Kemna and Vorst (1990) for classical Black and Scholes (1973)
price dynamics. Afterwards, the accuracy of the developed closed-form solutions is
examined via MC simulation in a numerical example relying on model parameters
of Prokopczuk (2011). He estimated model parameters for the four price dynamics
considered within the study for four different dry bulk freight futures. Furthermore,
the geometric Asian call option is applied as control variate in a MC simulation in
order to price an arithmetic Asian call option.

The results show that the derived closed-form solutions are accurate and that the MC
control variate simulation approach for arithmetic Asian options yields considerable
variance reduction of more than 97 %. This can be translated into substantial savings
in computation time and allows market participants to quickly price such derivative
instruments. The developed general approach and the presented results are neither
prone to changes in model selection nor prone to changes in model parameters. There-
fore, the applicability of the general pricing framework is by no means limited to the
mean-reversion models or commodity markets considered within this study.

The third essay contributes to the academic literature three important ways. This
is the first effort providing a general pricing framework for continuously monitored
geometric Asian call options for affine n-factor Gaussian diffusions as well as stating
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specific closed-form solutions for the three considered mean-reversion commodity pric-
ing models. The effort extends Kemna and Vorst (1990) to affine n-factor Gaussian
diffusions but remains a special case of Hubalek et al. (2014) as they develop a pric-
ing framework for continuously monitored geometric Asian options for general affine
stochastic volatility models with jumps. However, Hubalek et al. (2014) are limited
to semi-analytical solutions for this general model class. Furthermore, the geometric
Asian call option is used as control variate in a MC simulation in order to price an
arithmetic Asian call option. Finally, an extension of the MC simulation to forward-
start Asian options is outlined. The findings for valuing geometric and arithmetic
Asian options are widely applicable (i.e., to the entire set of affine Gaussian diffusions
as well as in a broad set of markets).
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Chapter 2

Hedging Capesize ship price risks
using Forward Freight

Agreements

Abstract

The shipping industry is historically known for its volatile nature of freight rates
and second-hand ship prices. The aim of this paper is to examine potential hedging
approaches and empirically assess their hedge effectiveness in order to provide the
shipping industry with guidance on effective measures to counter the recognition of
threatening impairment losses on their fleet in their balance sheets. Firstly, the idea of
Alizadeh and Nomikos (2012) to use Forward Freight Agreement (FFA) contracts as
hedging instruments for entire dry bulk Capesize vessels is translated into a minimum
variance cross-hedging model that can be applied to real Capesize sale and purchase
transactions. Secondly, a structural pricing model (SPM) for dry bulk Capesize vessels
following the effort of Adland and Koekebakker (2007) is developed that serves as basis
of a competing hedging approach. The empirical findings suggest that the hedging
approach based on the developed structural pricing model consistently outperforms
the minimum variance cross-hedging approach with respect to hedge effectiveness. At
the same time, the associated cost of the hedges based on the structural pricing model
turn out to be lower. The presented results show robustness to different subsets of
the sample size as well as to different hedging set-ups.
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2.1 Introduction

With approximately 9.2 billion tons of goods loaded in 2012, more then 90 % of the
world’s merchandise trade was handled by sea and thus, seaborne transportation is
an integral part and driving force of the global economy (UN, 2013; UNCTAD, 2013).
Transportation of dry bulk goods accounted for roughly 69 % of the total volume
loaded and therefore, represents the most important sector of the shipping industry
(UNCTAD, 2013). The global financial crisis of 2008-2009 and the resulting declining
demand for maritime transportation had a severe impact on the shipping market
concerning the level of ship prices and freight rates. Especially, as the industry was
booming in the years prior to the financial crisis, many orders for new vessels had been
placed prior to the financial crisis. The resulting overcapacity in terms of number of
ships and loading capacity in the years following the breakout of the financial crisis
significantly worsened the situation and the shipping industry has been facing a severe
recession since.

The shipping industry has always been rather volatile compared to other industries.
Albertijn et al. (2011), for instance, found the annualized volatility between January
1990 and April 2011 of the Baltic Dry Index (BDI) and of the Bulker Second-Hand
Price Index to be 53 % and 32 %, respectively. Furthermore, the shipping industry
is, on the one hand, very capital intensive and highly leveraged compared to other
industries with more than 80 % of all external funding needs being prevailingly covered
by debt financing (Drobetz et al., 2013). On the other hand, the asset side of a
shipping company largely consists of the carrying amounts of the company’s vessels
(Stopford, 2009). According to Albertijn et al. (2011), listed shipping companies will
also increasingly face the need to comply with the fair value accounting principles1

defined by the International Financial Reporting Standards (IFRS). Accordingly,
the ship price fluctuations will become more visible. These particular characteristics
of the shipping industry imply that shipping companies exhibit a higher exposure
towards large or extreme losses due to negative ship price fluctuations, but only have
a comparatively small portion of equity in order to potentially cover such losses.
As a result, protection of the company’s balance sheet against adverse ship price

1 According to International Accounting Standards (IAS) rule 36, these carrying amounts are
subject to regular impairment tests. If the recoverable amount of the ship (the higher of value
in use and fair value less cost to sell) is less than the carrying amount, the difference needs to
be recognized as an impairment loss (Deloitte, 2009; KPMG, 2012; PwC, 2005).
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fluctuations by hedging the exposure may be desirable for shipping companies.

Unfortunately, there are currently no direct liquid instruments available for hedging
ship prices. In the mid-2000s, Clarkson Securities Limited (CSL) tried to launch
Forward Ship Value Agreements (FoSVAs). These are cash-settled forward contracts
on the Baltic Sale and Purchase Assessment (BSPA)2 (Adland et al., 2004). The
liquidity of these instruments, however, has been extremely limited (Alizadeh and
Nomikos, 2009). Jallal (2013) even stated that ‘so far no paper trade on the BSPA
has been reported.’

A first effort on hedging ship price risks was conducted by Alizadeh and Nomikos
(2012) using Forward Freight Agreement (FFA) contracts. In their effort, they stud-
ied how much of the price fluctuations in the BSPAs for selected dry bulk vessel
classes (i.e., Capesize, Panamax, and Supramax) may be explained by the respective
price fluctuations of the corresponding FFA+2CAL contracts.3 They found that up
to 93 % of the second-hand ship prices may be explained by these FFA contracts using
minimum variance hedge ratios and suggested that FFAs may serve as valid, alterna-
tive cross-hedging instruments to FoSVAs for second-hand ship prices (Alizadeh and
Nomikos, 2012).

From a practical financial risk management perspective, shipping companies will be
most of the time confronted with situations when their ship specifications, such as
age, size and configuration vary significantly from the generic reference vessels used
in the BSPAs. Adland and Koekebakker (2007) estimated ship values with a non-
parametric multivariate pricing model using cross-sectional data on Handysize bulk
carriers from actual sale and purchase transactions in the second-hand market. They
identified three relevant factors in the second-hand price determination of dry bulk
ships: size (measured in deadweight tons (DWT)), age and 1-year time charter freight
rates. However, they also argue that this three-factor model is not fully capable of
explaining the observed vessel prices in the market (Adland and Koekebakker, 2007).

The aim of this paper is to test whether the suggested hedging performance by Al-
izadeh and Nomikos (2012) does hold up for data from real sale and purchase trans-
actions in the second-hand market for Capesize vessels. Furthermore, a structural

2 BSPA is a second-hand ship price estimation by panelists of certain 5-year old reference vessels
provided on a weekly basis by The Baltic Exchange.

3 FFA+2CAL contracts are second-next calendar-year FFA contracts.
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pricing model (SPM) for dry bulk Capesize vessels is developed using various indi-
vidual ship specifications of real sale and purchase transactions based on the efforts
of Adland and Koekebakker (2007). This model allows to separate deterministic and
risky or market-driven factors of second-hand ship prices and offers another approach
to determine hedging exposures than the minimum variance hedging approach sug-
gested by Alizadeh and Nomikos (2012). It is empirically investigated which of the
two hedging approaches offers a superior hedge effectiveness in a one-year fixed time
horizon prior to the sale for available real dry bulk Capesize sale and purchase trans-
actions as well as between available real dry bulk Capesize sale and resale transactions
of individual vessels.

The remainder of the paper is structured as follows. Section 2 reviews the academic
literature on the formation of second-hand ship prices as well as hedging of these.
Section 3 elaborates on the methodology applied within this study. Section 4 provides
a thorough description of the data used within this study. Section 5 presents the
empirical results, an interpretation of these results as well as further robustness checks
of the presented results. Finally, section 6 concludes the findings of this study and
provides an outlook on further research opportunities in this area.

2.2 Review of academic literature

As this paper is concerned with the hedging of second-hand vessel prices, knowledge
on the formation of second-hand ship prices, on properties of the hedging instruments
itself (i.e., FFAs), and on hedging is essential. There has been a considerable amount
of research in the existing academic literature on the aforementioned topics.

With respect to ship price determination or formation, early efforts in the area of
maritime economics focused on comprehensive econometric models of the shipping
industry in order to model ship prices as well as demand for shipping or transportation
services. An early effort that specifically stated equations on ship prices was by
Charemza and Gronicki (1981). They developed an econometric model in which
ship prices gradually adjust to freight and activity rates. Beenstock (1985) argued
that classical demand and supply analysis is not sufficient to determine ship prices
as vessels are to be considered as capital assets with an economic life of significant
duration. He, for instance, developed an econometric model that explains ship prices
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using world wealth, fleet size, interest rates, and expectations on operation income
and second-hand ship prices. In the following, many general and partial equilibrium
models have been developed (see, among others, Beenstock and Vergottis (1989a),
Beenstock and Vergottis (1989b), Beenstock and Vergottis (1993a), Beenstock and
Vergottis (1993b), Dikos and Marcus (2003), Kalouptsidi (2014), Strandenes (1984),
Tsolakis et al. (2003), and Tvedt (2003). Glen (2006) provided an excellent overview
on these efforts.

Another prominent line of research concerning the formation of ship prices focused
on investigating whether the Efficient Market Hypothesis (EMH) introduced by Fama
(1970) does hold for ship prices. Ship prices would be efficient according to the defi-
nition by Fama (1970) if they already incorporate all currently available information.
Hale and Vanags (1992), for instance, studied the market efficiency of dry bulk second-
hand ship prices using the cointegration technique based on monthly ship price data
from October 1979 to July 1988. They found no support for the EMH which has
been assumed for shipping markets in many models. These results have been further
supported by Glen (1997) and Alizadeh and Kavussanos (2002). The latter attributed
the failure of the EMH to existing time-varying risk premiums that connect excess
returns to the investors’ perception of risk. More recent efforts in this area are, for
instance, Adland and Koekebakker (2004) or Sødal et al. (2009).

Volatility dynamics of dry bulk second-hand ship prices were studied by Kavussanos
(1996) using ARCH/GARCH models. He found that shipping companies operating
in the timecharter market face higher risks or volatilities than shipping companies
operating in the spot market as well as higher risks or volatilities for larger vessels due
to less flexibility in trades or loaded goods and draft restrictions limiting the number
of accessible ports. In another effort, Kavussanos (1997) confirms and complements
these findings. He found that volatility largely depends on the vessels classes or
sizes and in particular that second-hand price of smaller vessels are characterized by
lower volatility than larger vessels. Concerning price and volume dynamics of second-
hand ship prices, Syriopoulos and Roumpis (2006) found that price changes have
an impact on trading volume reflecting that higher possibility of capital gains cause
higher activity in the sale and purchase market for ships. Furthermore, they found a
negative relationship between trading volume and the volatility of ship prices in the
dry bulk market. They argued that new information seems to flow sequentially to all
market participants in the shipping market due to low trading volume, transparency,
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and lack of official price quotes rather than simultaneously as in other classic capital
markets.

A present value perspective on ship prices was suggested by Alizadeh and Nomikos
(2006) and Psaraftis et al. (2012). They argued that shipping companies are econom-
ically entitled to the presented value of operating income generated by the respective
ship as well as any capital gains or losses of the ship itself. Expectations on future
freight rates for the remaining economic life as well as expectations on future second-
hand ship prices allow to determine the respective second-hand price of a ship of
certain age (Alizadeh and Nomikos, 2006; Psaraftis et al., 2012). Deviations of dry
bulk Capesize second-hand ship prices from underlying fundamentals (i.e., freight and
newbuilding markets) were studied by Adland et al. (2006). They found second-hand
prices to be closely cointegrated with these fundamentals and did not find any support
for an asset bubble in the boom time from 2003 to 2005 in the dry bulk market.

So far, the aforementioned studies and efforts mostly relied on time series data of
second-hand prices, such as the BSPA or Clarksons Shipping Intelligence Network
(SIN) second-hand time series. However, these time series are panelists’ estimations
of second-hand ship prices for certain reference vessels of a particular age (e.g., 5-
year old ships in the case of the BSPA). Pruyn et al. (2011), for instance, highly
doubt whether these panelists’ estimation time series accurately reflect the true market
dynamics of second-hand ship prices. Besides, they provide a comprehensive overview
on second-hand ship valuation related research in the past 20 years in their effort. As
already stated in section 1, Adland and Koekebakker (2007) were one of the first to
provide a multivariate, nonparametric analysis of second-hand ship valuation based
on cross-sectional real sale and purchase transaction data. They found that a partially
nonlinear function of DWT, age, and the state of the freight market (i.e., one-year
timecharter rates) is able to describe second-hand ship prices quite accurately.

In terms of FFAs, research in the academic literature on their statistical properties,
volatility dynamics, and predictive power has found quite some interest. Kavussanos
and Visvikis (2006) provide a comprehensive summary of the development, use and
market perception, and research on pricing, volatility dynamics, and forecasting per-
formance of FFAs. Interestingly, Kavussanos et al. (2007) found that understanding
of and practical hedging with FFAs has only reached an early stage of development
within the Greek shipping industry despite the high volatility of freight income and
ship prices. An early effort on testing the unbiasedness hypothesis for FFAs was made
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by Kavussanos and Nomikos (1999). They found that futures prices with only one
or two months remaining until maturity provide unbiased forecasts of realized spot
prices, although forward rates are not tied to spot rates by a classical arbitrage re-
lationship as they are nonstorable goods. Kavussanos and Visvikis (2004) identified
that FFA prices are relevant in the price formation of spot prices and Kavussanos
et al. (2004) argued that the validity of the unbiasedness hypothesis for FFAs is sub-
ject to the time to maturity of the contract, specific market characteristics, and the
trading route.

Concerning the hedging of ship price risks, Adland et al. (2004) studied the pricing of
at that time recently introduced FoSVAs as well as the term structure of second-hand
vessel prices. As already pointed out in section 1, however, Alizadeh and Nomikos
(2009) and Jallal (2013) emphasized the nonexistent liquidity of these instruments,
so that other hedging instruments need to be considered. As outlined in section 1,
Alizadeh and Nomikos (2012) applied the concept of a minimum variance hedge devel-
oped by Ederington (1979) to the dry bulk second-hand-ship prices using FFA+2CAL
contracts as hedging instruments. Their approach suggested a hedging effectivenesses
of up to 93 % and successfully established FFAs as alternative hedging instruments
to FoSVAs.

This paper contributes to the existing academic literature in three important ways.
Firstly, the cross-hedging performance of the suggested reduced form model by Al-
izadeh and Nomikos (2012) is tested in an empirical setting using real sale and pur-
chase transaction data for dry bulk Capesize vessels. Secondly, a structural pricing
model for dry bulk Capesize vessels is developed using additional deterministic, ship-
specific factors other than DWT and age as well as incorporating the forward curve
as additional factor to capture the state of the freight market. Thirdly, the afore-
mentioned structural pricing model is used as alternative approach to determine the
hedging exposure and the hedging effectiveness of both approaches is tested in two dif-
ferent settings using real sale and purchase transaction data. Moreover, the research
findings will have relevant implications for the risk management practice of shipping
companies operating in the dry bulk market.
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2.3 Empirical methodology

With respect to the empirical methodology, the following paragraphs elaborate on
the classical cross-hedging approach suggested by Alizadeh and Nomikos (2012), the
developed structural pricing model for second-hand dry bulk Capesize vessels, and
the two settings in which the hedging effectiveness of both approaches are tested.

2.3.1 Minimum variance cross-hedging model

In their effort, Alizadeh and Nomikos (2012) applied the concept of minimum vari-
ance hedge ratios based on the principles of classical portfolio theory developed by
Ederington (1979). Accordingly, they used a simple linear regression set-up in or-
der to determine the minimum variance hedge ratio, h∗ as shown in the following
equation (2.1):

∆pt = α + β∆ft + εt with εt
iid∼ (0, σ2). (2.1)

In the regression above, the log ship price return between time t and t− 1 is denoted
by ∆pt, the constant of the regression by α, the log FFA rate return between time t
and t−1 by ∆ft, and the error term at time t by εt. The time index, t, corresponds to
weeks here. β is equivalent to the unconditional variance between changes in spot and
futures prices over the unconditional variance of changes in futures prices which is the
the minimum variance hedge ratio, h∗, as defined by Ederington (1979). The R2 of
the regression reflects the hedge effectiveness (i.e., percentage of the variability in ship
price returns eliminated through hedging with FFAs). Alizadeh and Nomikos (2012)
used 52-week log differences within their regression set-up as they considered a hedg-
ing period of one year that corresponds to the time frame of the calender-year FFA
contracts (i.e., the FFA+2CAL contract for the second-next calendar year). Accord-
ingly, the regression set-up changes to the following form as shown in equation (2.2)
below:

∆52pt = α52 + β52∆52ft + ηt. (2.2)

Within equation (2.2) above, the 52-week ship price log return, ∆52pt, is equal to
pt − pt−52 and the 52-week FFA log return, ∆52ft, is equal to ft − ft−52, respectively.
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Alizadeh and Nomikos (2012) elaborated on the potential issues with the error term,
ηt, caused by the use of overlapping observations which result in ηt following a moving
average (MA) process of order 51. This creates inefficient standard errors as well as
an incorrect R2 of the regression as ηt is no longer iid. Nevertheless, the coefficient
estimates for the minimum variance hedge ratio is unbiased and consistent. Unfortu-
nately, using nonoverlapping 52-week log difference observations is not possible as the
FFA price quotes are only available roughly from 2005 onwards and this would leave
only a few nonoverlapping annual return observations for the analysis.

In order to operationalize the suggested minimum variance hedging approach by Al-
izadeh and Nomikos (2012) for the empirical testing of the hedge effectiveness, the
following adjustments were made. Alizadeh and Nomikos (2012) estimated a mini-
mum variance hedge ratio and an associated hedge effectiveness of 5-year old reference
vessels as they used BSPA time series data for ship prices within their analysis. In
the real world, dry bulk vessels usually have an economic life of approximately 30
years until they are scrapped and sale and purchase transactions of second-hand dry
bulk vessels occur seldom exactly when the vessel is 5 years old (Stopford, 2009). The
suggested approach of Alizadeh and Nomikos (2012) was complemented by estimating
minimum variance hedge ratios for all Capesize second-hand ship price time series of
differently-aged reference vessels available (i.e., 5-year old ships: BSPA time series
data and 10-, 15-, and 20-year old ships: SIN time series data). For new or zero-year
old ships and 30-year old ships, SIN time series for Capesize newbuilding and scrap
rates were used. The used data is more accurately described in section 4. This allows
to estimate minimum variance hedge ratios for Capesize vessels at exactly six, specific
age points of a vessels lifetime using the regression set-up as shown in equation (2.3)
below:

∆52pt,Age = α52,Age + β52,Age∆52ft + ηt with Age ∈ {0, 5, 10, 15, 20, 30}. (2.3)

In order to overcome the problem of ηt following a MA process of order 51, Alizadeh
and Nomikos (2012) generated a larger data set using the stationary bootstrap re-
sampling technique of Politis and Romano (1994) and found only marginal differences
in their results using this larger, generated data set. As only the minimum hedge
ratios from the regression in equation (2.3) were used and the hedging performance
empirically tested using real sale and purchase transaction data, this issue should not
distort the results of the empirical analysis within this effort. Nevertheless, the sta-
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tionary bootstrap procedure by Politis and Romano (1994) was also used in order to
get a perspective on the accuracy of the estimated β52,Age-coefficients. Therefore, n
resampled data sets of 52-week log returns were generated and the initial experiment
(i.e., the regression based on overlapping 52-week log returns of equation (2.3)) was
repeated n times. Subsequently, the mean β52,Age-coefficients, β̄52,Age, as well as a
95 % confidence interval based on the empirical distribution of the β52,Age-coefficients
of the regressions performed on the resampled data sets was derived. A detailed de-
scription of the algorithm that was applied for the stationary bootstrap can be found
in the appendix A.1 on page 63. Finally, linear interpolation was used to derive the
respective minimum variance hedge ratios for Capesize ship ages other than the six,
specific age points from 0 to 30 years.

2.3.2 Structural pricing model

As ships in the dry bulk Capesize vessel class are quite heterogeneous in terms of
specifications, such as size (e.g., length, DWT, breadth, or loading capacity), en-
gine, speed, consumption, or yard built, ships in real second-hand sale and purchase
transactions are rarely comparable to the reference vessels underlying the panelists’
estimations of second-hand ship prices. Therefore, the analysis followed the inten-
tion of Adland and Koekebakker (2007) and a structural pricing model for dry bulk
Capesize vessels was estimated from real sale and purchase transactions of the form
as shown in equation (2.4) below:

pi,t = α + β1x1,i + ...+ βnxn,i + βn+1xn+1,i,t + ...+ βn+mxn+m,i,t

+ βn+m+1xn+m+1,t + ...+ βn+m+kxn+m+k,t + εi,t
(2.4)

Within the model in equation (2.4), the price or value of vessel i at time t is repre-
sented by pi,t and the constant of the regression by α. The ship-specific, time-invariant
characteristics of vessel i, such as length, beam, DWT, loading capacity, speed, con-
sumption, or engine are denoted by x1,i to xn,i, the ship-specific, time-varying charac-
teristics of vessel i, such as age at time t by xn+1,i,t to xn+m,i,t, and the time-varying
explanatory variables that are not ship specific, such as the FFA rate or slope of the
FFA curve at time t by xn+m+1,t to xn+m+k,t. The respective slope coefficients for the
explanatory variables are denoted by β1 to βn+m+k and εi,t represents the pricing error
term of the model for vessel i at time t. One benefit of the model structure is that
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it allows to separate the deterministic and risky or market-driven factors of second-
hand ship prices, such as FFA prices or slope of the FFA curve. Together with their
estimated coefficients, these can be directly translated to the vessel-specific exposure
towards these factors and used for hedging purposes. Within the empirical analysis
in section 5.2, various combinations of deterministic and risky or market-driven ex-
planatory variables of Capesize dry bulk second-hand prices were tested optimizing
the explanatory power of the model subject to the constraint of explanatory variables
that can be used for hedging purposes (e.g., FFA+1CAL and FFA+2CAL contracts
as well as the slope of the FFA curve which is the difference between a FFA+2CAL
and FFA+1CAL contract). This means that the risky or market-driven explanatory
variables need to be tradeable in order to hedge the exposure towards them. Using
timecharter or spot rates as explanatory variables might enhance the explanatory
power of the structural pricing model. However, these cannot be used as hedging
instruments without having a vessel that physically meets the contractual obligations
of the desired hedging position.

2.3.3 Hedging set-up

In order to assess the hedge effectiveness of the two previously described approaches
(i.e., the minimum variance cross-hedging model and the developed structural pricing
model), the approaches were empirically tested in two different hedging set-ups. On
the one hand, a fixed hedging time horizon of one year prior to the sale of the vessel
was considered and, on the other hand, the analysis specifically looked at vessels that
have been sold two or more times within in the data set and considered the time
period between those sales as individual hedging horizons. Both approaches as well
as the methodology of measuring the hedge effectiveness are explained in detail in the
following paragraphs.

2.3.3.1 Fixed time horizon of one year

Within the hedging set-up of a fixed time horizon of one year, it was assumed that a
shipping company owning a particular vessel i knows ex ante that it wants to sell the
vessel i at a certain date in the future, ti. The time index, ti, corresponds to vessel-
specific sales dates here. Besides, it was assumed that the shipping company wants to
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hedge against any vessel price fluctuations for a period of li trading days prior to the
planned sales date, ti. Accordingly, the hedge for the vessel i is initiated at ti− li. As
the time horizon was fixed to one year (i.e., 252 trading days or 52 weeks) within this
first hedging set-up, li is equal to 252 for all i.4 The shipping company does not know
the real sales or transaction price of the vessel i until the sales or transaction date,
ti. Nevertheless, the shipping company is able to estimate a value or price of vessel i
at time ti − 252. As the shipping company already knows the sales or transaction
date, ti, the value or price of vessel i at time ti − 252 is estimated using the age of
the vessel at the sales or transaction date, ati . Hence, the aging-related loss of value
of the vessel within the hedging period is factored in. The shipping company would
have to account for depreciation of the vessel within this time period anyway and does
only want to hedge vessel price fluctuations besides this normal aging-related loss of
value. For the minimum variance cross-hedging approach, the model value or price,
m̂i,ti−252,ai,ti , can be derived using a linear interpolation between the different new,
second-hand, and scrap ship price quotes by panelists’ which is shown equation (2.5)
below:

m̂i,ti−252,ai,ti = qal,ti−252 + ai,ti − al
au − al

(qau,ti−252 − qal,ti−252) (2.5)

with al < ai,ti < au

and (al, au) ∈ {0, 5, 10, 15, 20, 30}.

Within equation (2.5), the estimated model price of vessel i at time ti − 252 using
the age of vessel i at time ti, ai,ti , is denoted by m̂i,ti−252,ai,ti . The new, second-hand,
and scrap ship price quotes by panelists’ for the differently aged reference vessels
at time ti − 252 are represented by qa. For the rare occasions in which the price
for 5-year-old vessels exceeds the price for new vessels or the price for scrap vessels
exceeds the price for 20-year old vessels, the interpolation between these values was
adjusted accordingly in order to ensure positive estimated second-hand model prices
of vessel i. Concerning the structural pricing model approach, the value can be derived
using equation (2.4). The resulting values reflect the physical position of the shipping
company that it wants to hedge.

Concerning the corresponding hedge position, the respective hedge ratios for the min-
imum variance cross-hedging approach were derived based on the linear interpolation
4 Within the hedging set-ups, the perspective was changed to trading days as daily margining for

the hedge positions was considered. This is explained later in this section.
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between the six hedge ratios resulting from equation (2.3). The desired hedge expo-
sure is given by multiplying the estimated physical position of vessel i at time ti−252
by the corresponding interpolated hedge ratio, βi,ti−252,ai,ti . As the typical lot size of
dry bulk Capesize FFAs is one day and these contracts are quoted in United States
Dollar (USD) per day, the FFA quotes were first transformed in USD million per day
and then, the number of FFA contracts or days that need to be shorted was calcu-
lated (i.e., the negative sign indicates the short position) at time ti − 252, di,ti−252,
by dividing the desired hedge exposure, βi,ti−252 · m̂i,ti−252,ai,ti , by the respective FFA
contract price, fti−252, as shown in equation (2.6) below:

di,ti−252 = −βi,ti−252,ai,ti
m̂i,ti−252,ai,ti
fti−252

. (2.6)

With respect to the hedging approach based on the structural pricing model, the
desired hedge exposure is given by the respective coefficients of the time-varying,
market-driven explanatory variables or risk factors, such as the FFA rate or slope
of the FFA curve, in equation (2.4). Obviously, the hedge exposure needs to be ag-
gregated across hedging instruments if the structural pricing model contains multiple
time-varying, market-driven explanatory variables or cross-terms of these variables
with ship-specific, time-invariant characteristics of vessel i, such as length or con-
sumption, or ship-specific, time-varying characteristics of vessel i, such as age.

Furthermore, the following additional assumptions regarding divisibility of the hedg-
ing instruments, margining, rollover dates were made within the hedging set-up. For
the purpose of the study, unlimited divisibility of the hedging instruments was as-
sumed. The calendar-year FFA contracts used as hedging instruments are rolled over
once per year, typically around December 22nd or 23rd. As FFA contracts are typi-
cally cleared, interest effects on any accumulated gains or losses on the margin account
were accounted for using continuously compounded USD London Interbank Offered
Rate (LIBOR) overnight rates. As a consequence to the interest effect, the initial
hedge position was adjusted by applying a tailing factor, bti−252, to the initial number
of days shorted for each hedging instrument as shown in equation (2.7) below:

bti−252 = e−rti−252
(ti−(ti−252))

252 = e−rti−252 . (2.7)

As the fixed hedging horizon was set to one year or 252 trading days, each hedge
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encounters a rollover date during the hedging horizon. Therefore, the hedge is split
into two consecutive hedges for practicality reasons and also to be consistent with the
second hedging set-up considered. Accordingly, the first hedge covers the time period
from ti− 252 until the rollover date and the second hedge from the rollover date until
the transaction date, ti. Just before the rollover date, the first hedge is closed out
and just after the rollover date, the second hedge is initiated. The age effect on the
physical position, hedge ratio, and tailing factors were adjusted accordingly for the
two hedges. For instance, the age effect for the entire year was proportionally split
across the two consecutive hedges.

The aim of the shipping company’s hedging effort is minimizing the variation or
fluctuation of the aggregated portfolio over the time period from ti−252 to ti, ∆252vi,
consisting of the physical position in the vessel i and the hedge position as shown in
equation (2.8) below:

∆252vi = (pi,ti,ai,ti − m̂i,ti−252,ai,ti )

+
252∑
j=1

(wi,ti−j+1 − wi,ti−j)
j−1∏
k=0

erti−k·
1

252 − 1
 . (2.8)

Within equation (2.8), the fluctuations of the ship price or physical position is given
by the difference between the transaction price at time t, pi,ti,ai,ti , and the estimated
value or price at time ti − 252, m̂i,ti−252,ai,ti . The initial hedge position, wi,ti−252, is
determined by number of days shorted according to equation (2.6) for the minimum
variance cross-hedging approach as well as according to the exposure to risk factors
in equation (2.4) for the hedging approach based on the structural pricing model.
Accordingly, wi,ti−j+1 − wi,ti−j represents the daily difference of the aggregated or

netted hedge position which is multiplied by
j−1∏
k=0

erti−k·
1

252 − 1 in order to account for
the interest effect on any accumulated gains or losses on the margin account.

Finally, the hedge effectiveness of both hedging approaches was measured in percent-
age reduction of variance between aggregated portfolios and simple physical positions
across n Capesize vessels as shown in equation (2.9) below:

HEED = 1− Var [y]
Var [x] (2.9)

with x = (p1,t1,a1,t1
− m̂1,t1−252,a1,t1

, ..., pn,tn,an,tn − m̂n,tn−252,an,tn )
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and y = (∆252v1, ...,∆252vn).

The measure for the hedge effectiveness in equation (2.9) is largely based on Eder-
ington (1979). However, the suggested measure was slightly adjusted in order to fit
the context of the effort. Several transactions of one and the same vessel take place
rather seldom. As a result, time series of real second-hand prices of individual vessels
are not available, not to mention in regular frequency. Hence, the variance of phys-
ical positions and portfolio positions consisting of the physical and hedge position
was measured between two specific, individual points in time across different vessels,
whereas Ederington (1979) measured the variance of one unhedged and one hedge
position over time.

2.3.3.2 Between sale and resale

The measurement of fluctuations of the physical position in the hedging set-up with
a fixed time horizon of one year might be biased because the value of the physical
position or vessel i at the initiation of the hedge at time ti − 252 is implied by the
respective model. For this reason, it was decided to test both hedging approaches in
another hedging set-up between two real sale and purchase transactions of one and
the same vessel i. Accordingly, the time horizon of the hedge of vessel i is no longer
fixed and changes from 252 to li trading days. It was assumed that the shipping
company does not know ex ante the exact date of the resale, ti, if the time horizon of
the hedge, li, is larger than 252 trading days. If li is less than or equal to 252 trading
days, it was assumed that the date of the resale, ti, is known to the shipping company
and it directly engages in a hedge for the time period li. If li is greater than 252,
it was assumed that the shipping company first engages into a hedge until the next
rollover date and subsequently, engages in consecutive hedges until the next rollover
date again until the remaining time until the resale date, ti, is less than or equal to
252 trading days.

In order to factor in the usual depreciation in this hedging set-up as well, the value of
the physical position or vessel i at the initiation of the hedge, p̂i,ti−li,ai,ti , was set to
the transaction price at ti − li, pi,ti−li,ai,ti−li , less the model implied aging-related loss
between ti − li and ti if li is less than or equal to 252 trading days. This relationship
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is shown in equation (2.10) below:

p̂i,ti−li,ai,ti = pi,ti−li,ai,ti−li − (m̂i,ti−li,ai,ti−li − m̂i,ti−li,ai,ti ). (2.10)

In case li is greater than 252 trading days, the aging-related loss from ti − li to ti
was proportionally spread across the consecutive hedges and adjusted the value of
the physical position of vessel i at the initiation of the consecutive hedges accord-
ingly. The assumptions and formulas on the hedge ratio, number of days shorted
per hedging instrument, and tailing factor largely stayed the same, except for the
change from li = 252 to li being vessel-specific in this hedging set-up. So, the hedge
ratio picked from the linear interpolation of equation (2.3) changes to βi,ti−li,ai,ti and
equations (2.6) and (2.7) change to equations (2.11) and (2.12) as shown below:

di,ti−li = − βi,ti−li,ai,ti
p̂i,ti−li,ai,ti
fti−li

(2.11)

bti−li = e−rti−li
(ti−(ti−li))

252 = e−rti−li
li

252 . (2.12)

Again, the aim of the shipping company is to minimize the variation or fluctuation
of the aggregated portfolio over the time period from ti − li to ti changes from equa-
tion (2.8) to equation (2.13) and the hedge effectiveness for both hedging approaches
across n Capesize vessel resales from equation (2.9) to equation (2.14) as shown below:

∆livi = (pi,ti,ai,ti − p̂i,ti−li,ai,ti )

+
li∑
j=1

(wi,ti−j+1 − wi,ti−j)
j−1∏
k=0

erti−k·
1

252 − 1
 (2.13)

HEED = 1− Var [y]
Var [x] (2.14)

with x = (p1,t1,a1,t1
− p̂1,t1−l1,a1,t1

, ..., pn,tn,an,tn − p̂n,tn−ln,an,tn )

and y = (∆l1v1, ...,∆lnvn).

2.4 Description of the data

As already stated in section 1, the focus of this effort lies on the dry bulk Capesize
vessel class which is defined as dry bulk vessels larger than 100,000 DWT in size.
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Capesize vessels are almost exclusively engaged in the transport of iron ore, coal,
and grain from Southern America to Northern America, and Europe as well as from
Australia to Asia (Alizadeh and Nomikos, 2009; Stopford, 2009). There is no official
upper size boundary and recent launches of so called ‘Valemax’ vessels by the Brazilian
mining company Vale S.A. passed the 400,000 DWT mark. These very large Capesize
vessels belong to the Capesize subcategory of very large ore carriers (VLOCs). On
the contrary, the size of the current Capesize reference vessel as defined by The Baltic
Exchange, which is the underlying vessel panelists’ estimations of the BSPA, is 172,000
DWT.

As this study focuses, on the one hand, on estimating a structural pricing model for
second-hand dry bulk Capesize vessel prices and, on the other hand, on assessing
the hedge effectiveness of the minimum variance hedging approach as well as the
hedging approach based on the exposure derived by the structural pricing model, the
considered time frame within the empirical analysis starts from January 2005 onwards
as FFA time series data has only been available since then.

Real sale and purchase data were obtained from SIN consisting of 646 dry bulk Cape-
size vessel transactions for the time period ranging from March 1995 until October
2013. Next to the transaction date and transaction price, the gathered data set in-
cludes the following other ship specifications: vessel name, age at transaction, DWT,
gross tonnage, length over all, length between perpendicular, beam, draft, speed, con-
sumption, engine, horse power, bunker capacity, holds, hatches, grain capacity, yard,
and International Maritime Organization (IMO) number as unique ship identifier.
After excluding any transactions that took place prior to the time frame of consider-
ation or before the ship building was completed5, have been part of an ‘en bloc’ sale6,
or had missing entries in the above mentioned specifications, 206 dry bulk Capesize
vessel transactions remain in the data set. Clearly, a larger number of transactions
would have been conducive for the robustness of the developed structural pricing
model. However, the Capesize vessel class is characterized by the smallest fleet size
in the dry bulk sector and accordingly, the number of second-hand vessel transactions
is also lower than for other dry bulk vessel classes, such as Panamax, Handymax,
5 The data set contained several transactions that took place before the ship building was com-

pleted, notably in the years 2006 and 2007. As these transactions were considered incomparable
to classical second-hand transactions, these observations were excluded from the analysis.

6 ‘En bloc’ sales are transactions in which two or more ships are sold for a consolidated price.
Unfortunately, breakdowns of the consolidated prices or allocations to individual vessels are not
available.
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and Handysize. Nevertheless, studying the second-hand price dynamics of Capesize
vessels and possibilities to hedge associated price risks was deemed as of particular
importance for the following three reasons: firstly, Capesize vessels are economically
the most important vessel class in the dry bulk sector with roughly 41 % loading
capacity in deadweight tons (DWT); secondly, these ships are more capital-intensive
than smaller dry bulk vessels and thus, the associated price risks are analogously
larger; and finally, the vessel class shows by far more pronounced heterogeneity in
terms of size than other dry bulk vessel classes and thus, deviations from available
second-hand price time series, such as the BSPA, are larger lowering the transparency
on fair second-hand prices for shipping companies for their vessels.

Table 2.1: Descriptive statistics of second-hand Capesize vessel transac-
tions 2005-2013

Price in USD million Age in years DWT in metric tonnes

Year # Avg. Min. Max. Avg. Min. Max. Avg. Min. Max.

2005 23 40.77 12.50 80.30 14.16 0.67 24.25 160,388 129,237 194,941
2006 26 38.73 11.00 73.50 13.98 1.67 24.25 164,331 141,014 275,616
2007 35 59.56 9.00 152.00 16.35 1.92 26.17 157,032 105,496 188,334
2008 13 58.57 25.00 130.00 16.46 2.83 26.00 157,885 136,999 184,403
2009 32 30.07 3.65 62.00 14.59 2.67 25.00 165,338 128,826 233,016
2010 19 29.00 10.50 84.90 16.08 0.33 25.25 174,363 148,982 275,616
2011 17 24.51 14.50 58.00 13.93 0.50 27.58 164,796 148,535 180,265
2012 21 15.09 6.65 38.00 14.67 0.25 22.08 170,351 147,048 322,457
2013 20 20.19 7.50 36.00 11.91 3.42 18.92 174,237 149,396 180,310

Total 206 36.12 3.65 152.00 14.71 0.25 27.58 164,939 105,496 322,457
The table shows selected descriptive statistics of the remaining second-hand Capesize vessel sales for the time
period ranging from January 13th, 2005 to October 30th, 2013 in the data set.

Table 2.1 shows selected descriptive statistics of the second-hand transactions in the
considered data set. The mean sales price was USD 36.12 million, the mean vessel
age at transaction 14.71 years, and the mean vessel size in DWT 164,939 metric
tonnes. The least expensive sale was settled at USD 3.65 million, whereas the most
expensive sale was settled at USD 152.00 million. The youngest vessel sold had an age
of 0.25 years and the oldest vessel sold an age of 27.58 years. The above mentioned
heterogeneity in terms of size in DWT can be also seen by means of minimum and
maximum vessel size of 105,496 and 322,457 DWT, respectively.

Additionally, weekly second-hand Capesize sale and purchase assessment time series
data was retrieved from The Baltic Exchange (i.e., BSPA for 5-year old Capesize
vessels of 172,000 DWT size) for the time period ranging from January 4th, 2005
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to June 30th, 2014 as well as from SIN (i.e., for 10-, 15-, and 20-year old Capesize
vessels of 170,000, 170,000, and 150,000 DWT size) from January 7th, 2005 to June
27th, 2014. For zero- and 30-year old Capesize vessels, weekly newbuilding as well as
weekly scrap price time series data was collected from SIN for the time period ranging
from January 7th, 2005 to June 27th, 2014 and December 31st, 2004 to June 30th, 2014,
respectively.

Figure 2.1: Capesize ship price time series 2005-2014
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The graph shows weekly new, second-hand (i.e., for 5-, 10-, 15-, and 20-year old ships), and
scrap time series based on panelists’ estimations for the time period ranging from January 7th,
2005 to June 27th, 2014.
Source: own graph based on weekly data from The Baltic Exchange and SIN

Figure 2.1 shows a plot of these time series. The graph clearly illustrates the boom
in the shipping industry from mid-2006 until mid-2008, the sharp decline in ship prices
at the end of 2008 caused by the financial crisis, and the severe recession that the
shipping industry has been facing since then. Interestingly, the newbuilding prices
for dry bulk Capesize vessels exhibit less fluctuations than the second-hand prices
for 5-, 10-, or 15-year old vessels and the second-hand prices for 5- and 10-year old
vessels even exceeded the price for new vessels for short periods within the boom
phase. At that time, the order books of yards were full and placing an additional
order for a Capesize vessel would have prevented shipping companies to benefit from
the extraordinary freight rates. Consequently, shipping companies were willing to pay
premiums on second-hand vessels that could be delivered immediately compared to
new vessels with a construction time of two or more years at that time. This effect is
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less prominent in older vessels or vessels that were close to scrapping as the remaining
economic life of these vessels is rather short and their prices are rather influenced by
the dynamics of the world steel price.

Table 2.2: Descriptive statistics for Capesize ship price time series

Capesize

Statistic Type New 5 years 10 years 15 years 20 years Scrap

Mean (in USD m) Level 63.977 63.958 47.518 34.104 21.547 9.152
Mean (in %) Log ret. -1.291 -3.150 -3.520 -6.187 -7.453 2.415
Stand. dev. (in %) Log ret. 6.035 17.202 22.691 26.586 29.430 41.887
Skewness Log ret. -1.490 -5.085 -1.212 -0.903 -0.868 -10.189
Kurtosis Log ret. 13.788 57.531 28.816 19.171 16.928 189.793
Jarque-Bera Log ret. 2,578*** 63,337*** 13,839*** 5,450*** 4,055*** 726,733***
ADF Level -1.031 -1.603 -1.853 -1.753 -1.869 -2.498
ADF Log ret. -6.243*** -6.604*** -7.789*** -7.731*** -8.062*** -22.160***
PP Level -0.917 -1.389 -1.623 -1.524 -1.780 -2.633*
PP Log ret. -17.512*** -10.374*** -16.845*** -17.612*** -16.366*** -22.200***

The table shows descriptive statistics for weekly Capesize ship price time series for new, 5-, 10-, 15-, 20-year old, and
scrap vessels over the period from January 4th, 2005 to June 30th, 2014. This leaves 495 weekly level observations and
494 log return observations. The mean is given for level data and log returns and the mean and standard deviation of
the log returns are annualized based on an average of 52 weekly observations per year in the considered time frame. The
remaining statistics are based on log returns. The kurtosis measure states the estimated centralized fourth moment,
not the excess kurtosis. The Jarque and Bera (1980) test statistic for normality is χ2(2) distributed with critical
values of 4.60, 5.99, and 9,21 at the 10 %, 5 %, and 1 % level, respectively. ADF refers to the Augmented Dickey-
Fuller (ADF)-test developed by Dickey and Fuller (1981) and PP refers to the Phillips-Perron (PP)-test developed by
Phillips and Perron (1988). The lag length was chosen by minimizing the SBIC criterion. The 10 %, 5 %, and 1 %
critical values for the ADF- and PP-tests are -2.570, -2.867, and -3.443, respectively.

Table 2.2 shows the corresponding descriptive statistics for these ship price time
series. The mean price for a new Capesize vessel in the considered time frame was
USD 63.977 million. Due to the overshooting of the second-hand prices for 5-year old
vessels as shown in Figure 2.1, the mean price of such vessels of USD 63.958 million
was almost as high as the average for new vessels. With respect to log returns, 20-
year old vessels showed the lowest performance with a mean annualized log return of
-7.453 %, whereas the mean annualized log return for scrap vessels was even slightly
positive (i.e., 2.415 %). Concerning the volatility, the annualized standard deviation
of the log return time series increases from 6.035 % for new vessels to 41.887 % for
scrap vessels. All six log return time series exhibit left-skewness, significant excess
kurtosis, and are significantly different from a normal distribution. The unit root
tests indicate that all level series are non-stationary, whereas the log differences of
these series are stationary. Only the Phillips-Perron-test finds the level scrap price
time series to be stationary at the 10 % significance level.

With respect to FFA data, daily time series data was collected for dry bulk Capesize
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FFA+1CAL and FFA+2CAL contracts for the average of the four mostly used trip
charter routes (i.e., so called 4TC-FFA+1CAL and 4TC-FFA+2CAL) from The Baltic
Exchange for the time period ranging from January 4th, 2005 to June 30th, 2014. The
FFAs are quoted in USD per day for the entire ship. The slope of the forward curve
was derived by calculating the difference between the FFA+2CAL and FFA+1CAL
contract price quote for each day.

Figure 2.2: Capesize FFA price time series 2005-2014
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The graph shows daily 4TC FFA+1CAL, FFA+2CAL, and the slope between FFA+2CAL and
FFA+1CAL price time series for the time period ranging from January 4th, 2005 to June 30th,
2014.
Source: own graph based on daily data from The Baltic Exchange

Figure 2.2 shows a plot of these time series. Similarly to the plot of the ship price
time series, the graph indicates the strong increase of FFA rates in the shipping boom
period from mid-2006 until mid-2008, the sharp decline in FFA rates at the end of
2008 caused by the financial crisis, and the severe recession that the shipping industry
has been facing since then. Furthermore, the plot shows the development of the slope
of the FFA curve or difference between the FFA+2CAL and FFA+1CAL price. The
FFA+1CAL price was in 64.5% of the observations larger than the FFA+2CAL price
and thus, the difference between the two prices was negative reflecting that expected
future spot prices for longer term contracts (e.g., FFA+2CAL) are lower than for
shorter term contracts (e.g., FFA+1CAL). This spread significantly widened during
the boom period in the shipping industry from mid-2006 until mid-2008 and fluctuated
closely around zero after the boom period.
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Table 2.3: Descriptive statistics for Capesize FFA price time series

4TC FFAs

Statistic Type +1CAL +2CAL

Mean (in USD) Level data 36,384.905 29,878.332
Mean (in %) Log returns -10.942 -5.608
Standard deviation (in %) Log returns 50.914 35.438
Skewness Log returns -3.155 -2.841
Kurtosis Log returns 56.290 47.163
Jarque-Bera Log returns 286,765.911*** 197,433.943***
ADF Level -2.198 -2.114
ADF Log returns -38.973*** -36.463***
PP Level -1.724 -1.491
PP Log returns -39.628*** -36.869***

The table shows descriptive statistics for daily Capesize 4TC FFA+1CAL and FFA+2CAL price
time series for the time period ranging from January 4th, 2005 to June 30th, 2014. This leaves
2,391 daily level observations and 2,390 log return observations. The mean is given for level data
and log returns and the mean and standard deviation of the log returns are annualized based
on an average of 252 trading days in the considered time frame. The remaining statistics are
based on log returns. The kurtosis measure states the estimated centralized fourth moment, not
the excess kurtosis. The Jarque and Bera (1980) test statistic for normality is χ2(2) distributed
with critical values of 4.60, 5.99, and 9,21 at the 10 %, 5 %, and 1 % level, respectively. ADF
refers to the Augmented Dickey-Fuller-test developed by Dickey and Fuller (1981) and PP refers
to the Phillips-Perron-test developed by Phillips and Perron (1988). The lag length was chosen
by minimizing the SBIC criterion. The 10 %, 5 %, and 1 % critical values for the ADF- and
PP-tests are -2.570, -2.867, and -3.443, respectively.

Table 2.3 shows the corresponding descriptive statistics of these FFA price time
series. The mean prices per day for FFA+1CAL and FFA+2CAL contracts in the
considered time frame were USD 36,385 and USD 29,878, respectively. The mean
difference per day between the FFA+2CAL and FFA+1CAL contract or slope of the
FFA curve was USD -6,507. Both FFA contracts showed negative annualized log
returns with -10.942 % and -5.608 % for the FFA+1CAL and FFA+2CAL contract,
respectively. The volatility expressed as standard deviation was 50.914 % for the
FFA+1CAL contract and 35.438 % for the FFA+2CAL contract. The log return time
series of the two FFA contracts also exhibit left-skewness, significant excess kurtosis,
and are significantly different from a normal distribution. As it was the case for the
ship price time series, the results of the unit root tests indicate that the level series
are non-stationary, whereas the log differences of these series are stationary.

As different time series and regression analyses are going to be performed jointly on
weekly data for Capesize ship prices based on panelists’ estimations as well as on
FFA+2CAL rates for the time period ranging from January 4th, 2005 to October
28th, 2013, unit root tests were also performed for these time series. The results
of these tests as shown in Table 2.4 confirm the findings that were already shown
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Table 2.4: Results of further unit root tests

Ship prices FFA

Statistic Type New 5 years 10 years 15 years 20 years Scrap +2CAL

ADF Level -1.031 -1.603 -1.853 -1.753 -1.869 -2.498 -2.498
ADF Log ret. -6.243*** -6.604*** -7.789*** -7.731*** -8.062*** -22.160*** -22.160***
PP Level -0.917 -1.389 -1.623 -1.524 -1.780 -2.633* -2.633*
PP Log ret. -17.512*** -10.374*** -16.845*** -17.612*** -16.366*** -22.200*** -22.200***

The table shows descriptive statistics for weekly Capesize ship price time series for new, 5-, 10-, 15-, 20-year old, and
scrap vessels as well as for FFA+2CAL price time series over the period from January 4th, 2005 to October 28th,
2013. This leaves 454 weekly level observations and 453 log return observations. ADF refers to the Augmented Dickey-
Fuller-test developed by Dickey and Fuller (1981) and PP refers to the Phillips-Perron-test developed by Phillips and
Perron (1988). The lag length was chosen by minimizing the SBIC criterion. The 10 %, 5 %, and 1 % critical values
for the ADF- and PP-tests are -2.570, -2.867, and -3.443, respectively.

for the longer time horizon for the weekly ship price time series as well as for the
daily FFA+2CAL price time series. The time series are non-stationary in levels but
stationary in log differences.

Besides, daily USD LIBOR overnight rates were collected from Datastream for the
time period from January 3rd, 2005 to June 30th, 2014. These interest rates were used
for determining appropriate tailing factors as well as the accumulated interest on the
margin account in the empirical analysis of the hedging performance.

2.5 Estimation results

In this section, the results of the conducted empirical analyses are presented and in-
terpreted. First, the estimation results of the underlying models for the two different
hedging approaches (i.e., minimum variance cross-hedging approach and the hedg-
ing approach based on the structural pricing model) is discussed. Subsequently, the
paragraphs elaborate on the performance of both hedging approaches in two different
set-ups (i.e., over a fixed time horizon of one year and between sale and resale) as well
some further robustness checks.

2.5.1 Minimum variance cross-hedging model

In order to obtain age-dependent minimum variance hedge ratios required for the
minimum-variance cross-hedging model (MVCHM), 402 overlapping 52-week log dif-

39



Chapter 2 Hedging Capesize ship price risks using FFAs

ferences of the relevant time series of panelists’ estimations for the differently-aged
Capesize reference vessels (i.e., new (0-), 5-, 10-, 15-, 20-year old and scrap (30-year
old)) as well as for the corresponding Capesize FFA+2CAL time series were first de-
rived. Afterwards, six regression models of the form as shown in equation (2.3) were
estimated, each based on 52-week log returns of one ship price time series and the
FFA+2CAL time series.

Table 2.5: Estimates for the minimum variance cross-hedging model

∆52pt,Age = α52,Age + β52,Age∆52ft + ηt with Age ∈ {0, 5, 10, 15, 20, 30}

0-year old 5-year old 10-year old 15-year old 20-year old 30-year old
(new) (scrap)

α -0.0160 -0.0321 -0.0313 -0.0484 -0.0327 0.0542*
(0.0194) (0.0207) (0.0253) (0.0292) (0.0380) (0.0304)
[-0.8233] [-1.5542] [-1.235] [-1.6589] [-0.8609] [1.7827]

βAge 0.2650*** 0.8146*** 0.8223*** 0.9673*** 0.9565*** 0.4451***
(0.0407) (0.0464) (0.0570) (0.0676) (0.0772) (0.0681)
[6.5046] [17.5587] [14.4153] [14.3097] [12.3853] [6.5342]

R2 0.4384 0.8293 0.7764 0.7816 0.6954 0.4035

The table shows regression estimates for the β52,Age-coefficients as well as corresponding R2-values for
the minimum variance cross-hedging model based on 402 weekly 52-week log differences of the respective
underlying time series for Capesize vessels (i.e., SIN newbuilding, BSPA 5-year old, SIN 10-, 15-, and
20-year old, and SIN scrap) and FFA+2CAL time series from January 9th, 2006 to October 28th, 2013.
The standard errors have been corrected for autocorrelation and heteroscedasticity using the method by
Newey and West (1987). Figures in () and [] reflect the corresponding standard errors and t-statistics,
respectively. * indicates significance at the 10 % level, ** at the 5 % level, and *** at the 1 % level.

Table 2.5 shows the respective regression estimates. The β52,Age-coefficients increase
from 0.2652 for new vessels to 0.9677 for 15-year old vessels and decrease to 0.4425
for scrap vessels. This implies that the desired hedge exposure in FFA+2CAL con-
tracts increases up to almost 100 % of the vessel price from new to 15- or 20-year old
vessels. Once the vessel has passed the age of 20-years, the desired hedge exposure
in FFA+2CAL contracts significantly declines again as there is continuously less eco-
nomic life of the vessel remaining and the price dynamics of these kind of vessels cannot
be adequately mirrored using FFA+2CAL contracts. Similarly, the price dynamics of
new vessels are also relatively different from the ones of FFA+2CAL contracts. The
corresponding R2 is highest for 5-year old vessels with 82.82 % followed by 15-, 10-,
and 20-year old vessels with 78.10 %, 77.58 %, and 69.49 %, respectively. There is
again a considerable difference for new and scrap vessels as the R2s are significantly
lower with 43.87 % and 40.55 %, respectively.
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As already mentioned in subsection 2.3.1, the use of overlapping observations for
the 52-week log returns causes the error term, ηt, to follow a MA process of order
51 rather than being iid. Accordingly, the regression estimates contain inefficient
standard errors as well as an incorrect R2s. Alizadeh and Nomikos (2012) found
that the resulting coefficients or hedge ratios of such a regression are nevertheless
consistent and unbiased. The stationary bootstrap technique developed by Politis
and Romano (1994) was used to generate n = 1, 000 resampled data sets of 52-week
log returns and the initial experiment (i.e., the regression based on overlapping 52-
week log returns) was repeated n times. Therefore, the stationary bootstrap algorithm
was applied jointly over 402 52-week log returns of dry bulk Capesize new, 5-, 10-,
15-, 20-year old, and scrap price time series as well as the Capesize FFA+2CAL time
series for the time period ranging from January 10th, 2005 to October 28th, 2013.
The mean block length was selected as q = 0.005 reflecting a mean block length of
200. As 52-week log returns exhibit significant autocorrelation, q was chosen based on
an inspection of the autocorrelation functions of the original 52-week log returns as
Politis and White (2004) suggested. Subsequently, the regressions of equation (2.3)
were performed again for each resampled data set and the mean β52,Age-coefficients
determined as well as 95 % confidence intervals based on the empirical distributions
of the β52,Age-coefficients.

Table 2.6: Results of regressions on bootstrapped 52-week log returns

Original Stationary bootstrap

Mean Median 95 % confidence interval

Age β52,Age β̄52,Age β̄med52,Age Lower bound Upper bound

0-year old (new) 0.2650 0.2540 0.2650 [ 0.0821 - 0.3764 ]
5-year old 0.8146 0.8032 0.8146 [ 0.6678 - 0.8759 ]
10-year old 0.8223 0.8140 0.8223 [ 0.6233 - 0.9177 ]
15-year old 0.9673 0.9519 0.9673 [ 0.6948 - 1.0633 ]
20-year old 0.9565 0.9220 0.9565 [ 0.5225 - 1.0916 ]
30-year old (scrap) 0.4451 0.4287 0.4451 [ 0.0279 - 0.6488 ]

The table shows aggregated regression estimates using 1,000 resamples using the stationary bootstrap
technique by Politis and Romano (1994) of the original underlying, overlapping 52-week log return time
series for Capesize vessel prices and FFA+2CAL prices from January 4th, 2005 to October 28th, 2013.
The ‘smoothing parameter’, q, was chosen 0.005 reflecting a mean block length of 200. The lower and
upper bounds of the 95 % confidence interval refer to the 2.5 %- and 97.5 %-quantiles of the empirical
distributions of the βAge-coefficients.

Table 2.6 shows the mean and median β52,Age-coefficients, β̄52,Age and β̄med52,Age, of the
bootstrapped, resampled data sets of 52-week log returns as well as the 95 % confi-
dence intervals based on the empirical distribution for each of the six βAge-coefficients.
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The results indicate that the 95 % confidence intervals based on the empirical dis-
tributions of estimated β52,Age-coefficients contain the estimated β52,Age-coefficients
based on the original data and that the mean β52,Age-coefficients, β̄52,Age, of the boot-
strapped, resampled data sets are only negligibly different from the β52,Age-coefficients
from the initial regressions. The median β52,Age-coefficients, β̄med52,Age, are even similar to
the β52,Age-coefficients from the regressions using the original data set. Furthermore,
the width of these bootstrapped confidence intervals is larger than the width of clas-
sical confidence intervals based on the standard errors of the initial regressions. This
confirms that the standard errors from the initial regressions are in fact inefficient
and tend to underestimate the true standard errors of the β52,Age-coefficients. It was
also tested for the sensitivity of these results towards a change of the ‘smoothing pa-
rameter’, q, corresponding to a mean block length of 1/q in the stationary bootstrap,
but found the results to be relatively robust towards changes in the choice of q. The
results of the sensitivity analysis can be found in the appendix A.2 on page 64. How-
ever, as the β52,Age-coefficients from the initial regressions are consistent estimators of
the true coefficients and are contained in the bootstrapped confidence intervals, these
coefficients were used as minimum variance hedge ratios for 0-, 5-, 10-, 15-, 20-, and
30-year old vessels. As indicated in subsection 2.3.1, linear interpolation was used
to derive the respective minimum variance hedge ratios for Capesize ship ages other
than the six, specific age points from 0 to 30 years.

2.5.2 Structural pricing model

Numerous combinations of explanatory variables were tested from the available ship-
specific data mentioned in section 2.4, FFA rates containing freight market information
data that may be used as hedging instruments, and cross-terms between pairs of these
variables to estimate Capesize second-hand ship prices in a SPM of the form as shown
in equation (2.4).

One model in particular and two variations of it turned out to yield a balanced trade-
off between pricing accuracy and suitability as basis for hedging efforts. Concerning
the freight market information or market-driven explanatory variables, two compo-
nents were relied on: the FFA+1CAL rate and the slope or difference between the
FFA+2CAL and FFA+1CAL rate on the respective transaction date both transformed
in USD million per day. Future earnings from freight rates are the major component

42



2.5 Estimation results

of a vessels second-hand price from a discounted cash flow perspective. Accordingly,
the model incorporates information on expected freight rate levels over the next cal-
endar year as well as information on the expected price trend from the next calendar
year until the second-to-next calendar year. Further out maturity FFA contracts are
less liquid and price data is only available for a shorter time horizon, so the focus
was on the most liquid of these instruments which additionally nicely fit the hedging
horizon of one year that was considered within the analysis of the performance of both
hedging approaches.

Concerning vessel-specific or deterministic risk factors, the age at transaction as well
as the consumption of the vessel were included in the model. As other efforts have
already shown, the ship’s age at transaction possesses considerable explanatory power
because it determines the remaining economic life in which the vessel is still able to
generate earnings in the future (Adland and Koekebakker, 2007). The consumption of
a vessel is usually measured in metric tonnes per day. However, Capesize vessels are
quite heterogeneous with respect to size measured in DWT as was shown and besides
also with respect to speed measured in knots per hour. The individual consumption in
metric tonnes per day value was deemed as distortive in terms of bunker cost per DWT
that are comparable across differently-sized vessels. Adland and Koekebakker (2007)
already identified the vessel size as another important driver of the ship’s second-hand
price. Alternatively, the vessel’s size or DWT as well as the vessel’s speed were used to
derive a value for the vessel’s consumption per 1,000 metric tonnes of DWT per 1,000
nautical miles7 which is appropriate for fair comparisons across vessels. Bunker costs
reflect a major part of the respective voyage costs for shipping companies (Stopford,
2009). Consequently, an appropriately comparable measure for the vessel’s bunker or
fuel efficiency is also a reasonable driver of second-hand ship prices as efficient ships
operate at a lower cost base and shipping companies are willing to pay more for such
vessels than for inefficient vessels.

Moreover, cross-terms between the FFA+1CAL and the vessel’s age, the FFA+1CAL
and the derived comparable consumption, and vessel’s age and the derived comparable
consumption were included in order to account for interaction effects between these
variables. For the FFA+1CAL and the vessel’s age, for instance, the influence of
the FFA+1CAL rate on the second-hand price of the vessel decreases with increasing
age of the vessel as the lower remaining economic life of the ship does only allow to

7 Voyaging at one knot per hour corresponds to a travelled distance of one nautical mile per hour.

43



Chapter 2 Hedging Capesize ship price risks using FFAs

generate future earnings from freight rates for a shorter amount of time. The resulting,
considered models are shown in equations (2.15), (2.16), and (2.17) below:

SPM 1: pi,t = α + βf · ft + βsl · slt + βAge · Agei,t + βConsum · Consumi

+ βf ·Age · ft · Agei,t + βf ·Consum · ft · Consumi

+ βAge·Consum · Agei,t · Consumi + εi,t

(2.15)

SPM 2: pi,t = α + βf · ft + βsl · slt + βAge · Agei,t + βConsum · Consumi

+ βf ·Age · ft · Agei,t + βf ·Consum · ft · Consumi + εi,t
(2.16)

SPM 3: pi,t = α + βf · ft + βsl · slt + βAge · Agei,t + βf ·Age · ft · Agei,t
+ βf ·Consum · ft · Consumi + εi,t.

(2.17)

Within equations (2.15), (2.16), and (2.17) above, the price or value of vessel i at
time t in USD million is referred to by pi,t and to the constant of the regression
by α. The price of the FFA+1CAL contract at time t in USD million is denoted
by ft and the slope of the FFA curve or difference between the FFA+2CAL and
FFA+1CAL contract at time t in USD million by slt. The age of vessel i at time t
is represented by Agei,t and the derived comparable consumption per 1,000 metric
tonnes of DWT per 1,000 nautical miles of vessel i by Consumi. The coefficients
of the respective corresponding explanatory variables are denoted by βf , βsl, βAge,
βConsum, βf ·Age, βf ·Consum, and βAge·Consum. The error term of the structural pricing
model is represented by εi,t.

Table 2.7 shows the estimation results of the three structural pricing models of
equations (2.15), (2.16), and (2.17) and indicates that the coefficient estimates are
mostly significant at the 1 % level, some are only significant at the 5 % level. The
estimates for the βf -coefficient of 1,980.7053 in the SPM 1, for instance, implies to
the vessel’s exposure to the FFA+1CAL contract within this model. As the lot size
of the FFA+1CAL contract is one day, the value 1,980.7053 can be directly inter-
preted as days of FFA+1CAL exposure. Moreover, the signs of the coefficients are
also largely in line with what one would expect from economic theory. Accordingly,
positive coefficient signs for βf and βsl, on the one hand, correspond to higher es-
timated vessel prices if the freight rates increase or the slope of the FFA curve or
difference between the FFA+2CAL and FFA+1CAL contract widens. On the other
hand, negative coefficient signs for βAge, βConsum, βf ·Age, and βf ·Consum correspond to
lower estimated vessel prices if the vessel’s age or consumption is higher or interac-
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Table 2.7: Estimates for different Capesize structural pricing models

SPM 1:
pi,t = α+ βf · ft + βsl · slt + βAge ·Agei,t + βConsum · Consumi + βf ·Age · ft ·Agei,t

+ βf ·Consum · ft · Consumi + βAge·Consum ·Agei,t · Consumi + εi,t

SPM 2:
pi,t = α+ βf · ft + βsl · slt + βAge ·Agei,t + βConsum · Consumi + βf ·Age · ft ·Agei,t

+ βf ·Consum · ft · Consumi + εi,t

SPM 3:
pi,t = α+ βf · ft + βsl · slt + βAge ·Agei,t + βf ·Age · ft ·Agei,t

+ βf ·Consum · ft · Consumi + εi,t

SPM 1 SPM 2 SPM 3

Coefficient p-value Coefficient p-value Coefficient p-value

α 74.4084*** 0.0006 24.0854** 0.0346 30.0874*** 0.0000
(21.2165) (11.3193) (4.7346)
[3.5071] [2.1278] [6.3547]

βf 1,980.7053*** 0.0000 1,862.9160*** 0.0000 1,782.7990*** 0.0000
(253.2217) (253.8745) (213.2596)

[7.8220] [7.3379] [8.3598]
βsl 1,554.1709*** 0.0005 1,538.7278*** 0.0007 1,549.7201*** 0.0006

(437.3689) (444.7028) (443.5717)
[3.5535] [3.4601] [3.4937]

βAge -4.8208*** 0.0000 -1.9483*** 0.0000 -1.9470*** 0.0000
(1.0529) (0.2173) (0.2169)
[-4.5787] [-8.9659] [-8.9750]

βConsum -45.6605** 0.0365 6.5018 0.5599
(21.6886) (11.1338)
[-2.1053] [0.5840]

βf ·Age -12.0131*** 0.0051 -10.8958** 0.0119 -11.1348*** 0.0098
(4.2425) (4.2947) (4.2681)
[-2.8316] [-2.5371] [-2.6089]

βf ·Consum -652.9065*** 0.0010 -552.1529*** 0.0050 -459.7032*** 0.0001
(194.7444) (194.5819) (112.9465)
[-3.3526] [-2.8376] [-4.0701]

βAge·Consum 2.9481*** 0.0059
(1.0581)
[2.7862]

R2 0.7872 0.7788 0.7785
Adj. R2 0.7797 0.7722 0.7729
Log likelihood -796.7559 -800.7170 -800.8933
SBIC criterion 7.9424 7.9550 7.9308
Akaike criterion 7.8132 7.8419 7.8339
Standard error 11.8061 12.0050 11.9852

The table shows linear regression coefficient estimates for three different SPMs based on data for 206 Capesize vessel
transactions and corresponding FFA time series data from January 13th, 2005 to October 30th, 2013. pi,t refers to
the price of vessel i at time t in USD million, f to the price of a FFA+1CAL contract at time t in USD million, sl
to the slope of the forward curve between a FFA+2CAL and FFA+1CAL contract at time t in USD million, Age to
the age of vessel i at time t in years, and Consum to the consumption per 1,000 nautical miles per 1,000 DWT of
vessel i in metric tonnes. Figures in () and [] reflect the corresponding standard errors and t-statistics, respectively.
* indicates significance at the 10 % level, ** at the 5 % level, and *** at the 1 % level.
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tion term of freight rate and age or consumption is higher. The latter of the two
captures the joint dynamics and is rather of corrective nature to the individual single
coefficients. The only coefficient sign that is not economically intuitive is the one
for βAge·Consum. One would expect that a larger value for this interaction term (i.e.,
an older and more inefficient vessel) would cause the estimated vessel price to fall.
However, the positive sign of the coefficient indicates an increasing relationship. An
outlier analysis was performed on the 10 largest observations of the interaction term
Age ·Consum in the data set of 206 real Capeseize sale and purchase transactions and
found that these extreme values for the interaction term are not evenly distributed
across the time period considered. Nine out of 10 of the largest observations for the
interaction term Age ·Consum occurred before the shipping crisis and seven of these
nine largest observations within the boom period from mid-2006 until mid-2008. The
age of these 10 largest observations lies between 24 and 28 years and the consumption
between 1.21 and 1.63 metric tonnes per 1,000 DWT per 1,000 nautical miles which
both are at the higher end of all observations within the data set. It seems likely
that the positive sign is caused by the relatively expensive sales of old and inefficient
ships prior to the shipping crisis. A model-implied pricing surface with changing
age and consumption values and fixed FFA+1CAL and slope between FFA+2CAL
and FFA+1CAL values was plotted confirming this hypothesis. The 3D plot of the
pricing surface can be found in Figure 2.4 in the appendix A.3 on page 65. As a
consequence, the interaction term Age · Consum was eliminated from the model and
estimated the model SPM 2. As the βConsum-coefficient is not significant and the sign
of the coefficient not economically intuitive in the SPM 2, a third structural pricing
model, SPM 3, was estimated in which the plain consumption value as explanatory
variable was eliminated.

From a model selection perspective, the SPM 1 shows the highest adjusted R2 of the
three models with 0.7797. The SBIC criterion prefers the SPM 3, whereas the Akaike
criterion prefers SPM 1. As the models are nested, a log likelihood ratio test whether
SPM 1 is significantly better than SPM 2 was performed. It found that SPM 1 is
better at the 1 % level with a log likelihood test statistic of 7.9222 against the 1 %
critical value of 6.6349 of the chi-square distribution with one degree of freedom.
Similarly, SPM 1 was tested against SPM 3 and it was found that SPM 1 is better
at the 5 % level with a log likelihood test statistic of 8.6748 against the 5 % critical
value of 5.9915 of the chi-square distribution with two degrees of freedom. From a
log likelihood ratio test perspective, SPM 2 and SPM 3 are not significantly different.
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However, SPM 2 is strictly dominated by either SPM 1 or SPM 3 in all the other test
statistics. The standard errors of the models is lowest for SPM 1 with USD 11.8061
million followed by SPM 3 with USD 11.9852 million. The standard error of SPM 1,
however, is still of considerable size in light of the mean transaction price in the data
set of USD 36.12 million. Consequently, SPM 1 is considered as the preferred model,
although the positive sign of the β-coefficient of the interaction term Age · Consum
likely seems to be a result of overfitting the model to the particular data set.

Subsequently, all three structural pricing models were tested against the time series
of panelists’ estimations of second-hand prices for differently-aged reference vessels.
In order to do so, the three structural pricing models were evaluated every week
from January 4th, 2005 until June 30th, 2014 using the vessel specifications of the
reference vessels underlying the respective panelists’ estimation time series as well as
the respective FFA+1CAL and FFA+2CAL rates at that time. Figure 2.3 shows
plots of model-implied ship prices vs. the panelists’ estimations for new, 5-, 10-, 15-,
20-year old and scrap vessels. The plots reveal that the structural pricing models are
not able to accurately capture the price dynamics of new and scrap vessels as was
already presumed. For new vessels, there are considerable deviations in the boom
period. The model-implied prices show a stronger price increase within this period
due to the increase in FFA rates. As prices for new vessels are rather driven by the
demand for new vessels, costs of raw materials, yard-utilization, and development
costs than by FFA rates, the panelists’ estimations for new vessels did not react so
strongly within the boom period as well as during the breakout of the crisis.

For the 5-, 10-, 15-, and 20-year old vessels, the structural pricing models capture
the overall price dynamics rather accurately. Major deviations only occurred within
the boom period where the model-implied prices already exhibit a considerable price
decline in late 2007 when the financial crisis has not hit until later in the following
year 2008 and within the breakout of the financial crisis where the model-implied
prices seem to react faster to the breakout of the crisis. This is actually interesting as
the panelists’ estimations for the second-hand ship prices are claimed to be provided
by experts of the dry bulk shipping industry. Nevertheless, the panelists’ estimations
did not show a noticeable reaction to the already prominent declines in freight and
FFA rates in late 2007. Moreover, the delayed reaction of the panelists’ estimations
to the breakout of the financial crisis might be a sign for an underlying MA process
in the derivation of the panelists’ estimations. Besides, the suggested structural pric-
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Figure 2.3: Model-implied prices vs. panelists’ estimations for differ-
ently-aged Capesize reference vessels 2005-2014
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The graphs show weekly comparisons of panelists’ estimation time series for new, 5-, 10-, 15-,
20-year old, and scrap Capesize reference vessels with respective model-implied ship prices
from SPM 1 to SPM 3 for the time period ranging from January 4th, 2005 to June 30th, 2014.
Source: own graph based on weekly data from The Baltic Exchange and SIN
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ing models do not even include all available information. Certain information, such
as spot freight rates, newbuilding price quotes, or scrap price quotes, have been ex-
cluded as market-driven explanatory variables from the models as exposure to these
factors cannot be simply created from a hedging perspective. Consequently, includ-
ing these additional factors would even result in a more accurate structural pricing
model outperforming the panelists’ estimations even more. Additionally, the price
quotes provided by the panelists’ have two further significant drawbacks. Firstly, the
price quotes are only available for six selected age points and secondly, each of these
price quotes refers only to a certain reference vessel. As the Capesize dry bulk vessel
class is characterized by considerable heterogeneity with respect to size in DWT, the
information provided by these price quotes might only be of limited use for a ship
owner with a vessel of an age that is between two of the six specific age points and is
significantly smaller or larger in terms of size in DWT.

With respect to scrap vessels, the model-implied prices show considerable deviations
from the panelists’ estimations across the entire time period considered as well as even
negative prices for a considerable amount of time. These negative implied prices are
obviously not meaningful. Accordingly, the structural pricing models are less reliable
for extremely young and old vessels because the vast majority of transactions in the
data set were vessels aged between 2.5 and 25 years.

2.5.3 Hedging results

With respect to the hedge effectiveness, both approaches based on the models dis-
cussed above were tested in two different hedging set-ups according to the method-
ology as described in subsection 2.3.3 (i.e., over a fixed time horizon of one year
and between sale and resale of one and the same vessel). The following paragraphs
elaborate on the results of these tests as well as on further robustness checks.

2.5.3.1 Fixed time horizon of one year

In this first hedging set-up, a fixed hedging time horizon of one year or 252 trading days
prior to the transaction date requires that FFA rates have already been available at the
initiation of the hedge. Accordingly, only Capesize sale and purchase transactions that
occurred later than January 4th, 2006 were considered as The Baltic Exchange started
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quoting FFA rates on January 4th, 2005 and 23 transactions had to be eliminated from
the initial data set of 206 Capesize sale and purchase transactions. Moreover, another
three transactions were eliminated because the vessel’s age would have been lower
than zero at the initiation of the hedge. This left 180 Capesize sale and purchase
transactions for which the hedge effectiveness of the two different hedging approaches
was tested over the course of the fixed hedging period of one year or 252 trading days.
The analysis followed the methodology described in subsection 2.3.3.1.

In order to apply the structural pricing models in this hedging set-up, the aggregated
exposure to each of the FFA contracts needs to be determined. As the slope of the
FFA curve is nothing else than the difference between FFA+2CAL and FFA+1CAL
contract, the resulting exposure to this explanatory variable can be replicated by
taking a long position of βsl = 1, 554.1709 FFA+2CAL days together with a short
position of βsl = 1, 554.1709 FFA+1CAL days for the SPM 1, for instance. As the
analysis is concerned with hedging the respective exposure, the contrary position needs
to be taken. So, within the SPM 1, a shipping company would want to short 1,554.1709
days of FFA+2CAL contracts. As the model-implied, aggregated exposure towards
the FFA+1CAL contract is determined by various β-coefficients, the aggregated short
exposure towards the FFA+1CAL contract in days can be determined in the following
way for all three structural pricing models as shown in equation (2.18) below. As
already indicated above, the short exposure towards the FFA+2CAL contract in days
for all three structural pricing models is given by the respective negative βsl-coefficient
as shown in equation (2.19) below:

di,ti−252,FFA+1CAL = − (βf + βf ·Age · Agei,ti + βf ·Consum · Consumi − βsl) (2.18)

di,ti−252,FFA+2CAL = − βsl. (2.19)

Table 2.8 shows the results of both hedging approaches within this first hedging
set-up over a fixed time horizon. The mean values for the model-implied physical
positions including the total age effect at the hedging start date, ti − 252, indicate
that the MVCHM tends to estimate model-implied physical positions that are about
USD 2.0 million higher compared to the model-implied physical positions by the three
SPMs. Accordingly, the mean delta or loss from the physical position is about USD
2.0 million larger for the MVCHM. With respect to the initial hedge exposure, the
results show that the desired exposure is about USD 3.0 million lower for the MVCHM
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Table 2.8: Hedging results over fixed time horizon of one year

Physical position in MVCHM SPM 1 SPM 2 SPM 3

Start (age effect incl.) Mean USD m 39.0540 37.0162 37.0166 36.9187
End (transaction price) Mean USD m 35.1450 35.1450 35.1450 35.1450

Hedge exposure in MVCHM SPM 1 SPM 2 SPM 3

Start Mean USD m -32.7414 -35.7461 -35.6310 -35.6992
End Mean USD m -39.1678 -34.3159 -34.3539 -34.5134

Delta/change in values or profit/loss in MVCHM SPM 1 SPM 2 SPM 3

Physical position

Mean USD m -3.9090 -1.8712 -1.8716 -1.7737
Median USD m -1.8968 -2.4995 -2.3760 -2.6078
Variance USD m 981.3950 760.6406 749.2735 749.0990
Stand. dev. USD m 31.3272 27.5797 27.3729 27.3697
Skewness -0.5876 -0.2831 -0.2173 -0.2085
Kurtosis 3.7132 3.9087 3.7222 3.7003

Hedge

Mean USD m -1.5855 0.0114 -0.1792 -0.2808
Median USD m 0.5553 1.4129 1.4205 1.4620
Variance USD m 612.7425 691.3574 687.7393 685.6391
Stand. dev. USD m 24.7536 26.2937 26.2248 26.1847
Skewness -0.0012 0.4953 0.4751 0.4693
Kurtosis 4.1321 3.7163 3.5830 3.5432

thereof: interest effect Mean USD m -0.1506 -0.1511 -0.1539 -0.1556

Hedged position (phys-
ical position + hedge)

Mean USD m -5.4945 -1.8598 -2.0508 -2.0545
Median USD m -1.5517 -1.1274 -1.0606 -1.4934
Variance USD m 321.8105 171.2304 173.8485 174.8681
Stand. dev. USD m 17.9391 13.0855 13.1852 13.2238
Skewness -2.0567 -3.2952 -3.3760 -3.4043
Kurtosis 11.4808 22.8123 22.8226 23.0600

Hedge effectiveness in MVCHM SPM 1 SPM 2 SPM 3

Reduction of Variance % 67.2089 77.4887 76.7977 76.6562
Stand. dev. % 42.7365 52.5539 51.8313 51.6846

The table shows selected descriptive statistics for the start and end values as well as for the delta of the physical
position, hedge exposure, and portfolio position over the fixed hedging horizon of one year prior to the individual
vessel transaction. The considered sample size is 180 vessel transactions as transactions in 2005 had to be excluded
due to unavailability of FFA time series data prior to 2005 as well as vessels that would have been negatively aged at
the initiation of the hedge. Furthermore, the results for the hedge effectiveness for the different hedging approaches
are displayed.
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compared to the three SPMs. From a practical perspective, the shipping company
would have to deposit higher initial margins at the clearing house if they applied the
hedging approach based on the SPM. Although the mean hedge exposure is initially
lower for the MVCHM, the mean loss from the hedge is about USD 1.3 to 1.6 million
higher for the MVCHM. The displayed mean end values for the hedge exposures show
that the exposure at the end of the hedge is about USD 4.5 to 4.7 million larger for the
MVCHM than for the SPMs. The reported hedge profits, however, cannot be directly
derived from subtracting the start values from the end values as the hedge is set up in
two stages (i.e., from hedging start date, ti − 252, to the next rollover date and from
the rollover date to the hedging end date, ti). The first hedge is closed out just before
the rollover date and the second hedge is set up from scratch using the model-implied
physical position adjusted for the remaining age effect from rollover date to hedging
end date, ti. Accordingly, the initial hedge exposure cannot be directly compared
to the final or end hedge exposure in order to derive the hedge profit or loss. The
hedge profit or loss is aggregated across the two consecutive hedges. Typically, one
would expect a profit from the hedge effort if the vessel prices declined and vice versa.
However, this seems not to be the case here as the mean hedge profit is negative (i.e.,
a loss), although the physical position also incurred a loss. This picture, however, is
largely caused by the aggregation across different hedges. Looking at hedge results for
individual vessels reveals that the hedge profit is positive for the vast majority of the
observations if the physical position incurred a loss. The interest effect on the margin
account seems to play an insignificant role. Although the mean cost of the hedge
or loss is considerably lower for the SPMs, the hedge effectiveness of the approaches
based on these models turns out to be significantly better than for the MVCHM.
The SPM 1 achieves a hedge effectiveness of 77.49 % variance reduction, whereas the
MVCHM only achieves a hedge effectiveness of 67.21 % variance reduction. The SPM
2 and the SPM 3 show only slightly lower hedge effectiveness compared to the SPM 1
with 76.80 % and 76.66 %, respectively. Consequently, the empirical analysis shows
consistently superior results of the SPMs in terms of hedge effectiveness at lower costs
(i.e., losses from the hedge positions) in this first hedging set-up.

Concerning the number of days shorted of the individual hedging instruments in
both hedging approaches, the MVCHM suggests as mean a number of about 1,025
FFA+2CAL days shorted at the initial set-up of the hedge. On the contrary, the
SPMs suggest an additional mean long position of about 354 to 363 FFA+1CAL days
and a mean short position of about 1,515 to 1,530 FFA+2CAL days at the initial
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set-up of the hedge depending on the respective SPM.

Figure 2.6 in the appendix B.1 on page 68 shows histogram plots of the individual
physical position as well as hedged position outcomes for the MVCHM as well as
the SPM 1. From visual inspection, the shape of the hedged position histograms
clearly become more leptokurtic than the shape of the physical position histograms.
Moreover, the effect also seems to be larger for the SPM 1 than for the MVCHM.
One detailed hedge example of the ship ‘Partagas’ can be found in the appendix B.2
on page 69. Ship-specific details as well as transaction details are provided and the
cumulative development of the hedge position is shown in plot over time.

2.5.3.2 Between sale and resale

In this second hedging set-up, only vessels that have been sold twice in the data
set were considered and the hedging horizon was changed from a fixed time period
of one year to the vessel-specific time period between sale and resale. Accordingly,
134 transactions had to be eliminated from the initial data set of 206 Capesize sale
and purchase transactions. 36 transaction pairs (i.e., 72 transactions in total) of
corresponding sale and resale of one and the same vessel remained. Of the 36 resale
pairs, six vessels have been sold twice, so that a total of 72 transactions or 36 individual
resale pairs remained. The mean hedge duration (i.e., time between sale and resale,
li) of the these vessels was 2.51 years or 632 trading days. The shortest hedge covered
a time period of 0.32 years or 80 trading days, whereas the longest hedge covered
a time period of 7.79 years or 1,962 trading days. Again, the hedge effectiveness of
the two different hedging approaches was tested for these transactions following the
methodology as described in subsection 2.3.3.2.

Table 2.9 shows the results of both hedging approaches within this second hedging
set-up between sale and resale of one and the same vessel i. Contrary to the first
hedging set-up, the mean values for the physical position at the hedging start date,
ti − li, are roughly similar for the MVCHM, SPM 2, and SPM 3. Only the SPM 1
slightly differs from the other models suggesting a model-implied physical position at
hedging start date which is about USD 0.4 million lower than the values for the other
models. This, however, results from the fact that the basic physical position at the
hedging start date, ti − li, is largely driven by the observed transaction price of the
first sale of of vessel i in this second hedging set-up. The physical positions only differ
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Table 2.9: Hedging results between sale and resale

Physical position in MVCHM SPM 1 SPM 2 SPM 3

Start (age effect incl.) Mean USD m 37.4065 37.0050 37.4087 37.3806
End (transaction price) Mean USD m 35.4694 35.4694 35.4694 35.4694

Hedge exposure in MVCHM SPM 1 SPM 2 SPM 3

Start Mean USD m -34.5153 -38.6890 -38.7551 -38.9178
End Mean USD m -39.6569 -38.4402 -38.7171 -38.3178

Delta/change in values or profit/loss in MVCHM SPM 1 SPM 2 SPM 3

Physical position

Mean USD m -1.9371 -1.5355 -1.9393 -1.9111
Median USD m 0.4588 4.1322 3.9630 3.9711
Variance USD m 945.6753 1,009.11012 1,038.2353 1,036.7972
Stand. dev. USD m 30.7518 31.7664 32.2217 32.1993
Skewness -0.3062 -0.4448 -0.5051 -0.5034
Kurtosis 4.1047 3.9733 4.0541 4.0518

Hedge

Mean USD m -12.5407 -7.9770 -8.1718 -8.1862
Median USD m -17.8551 -9.3927 -10.6074 -11.0172
Variance USD m 1,380.5035 954.2877 942.3268 927.7435
Stand. dev. USD m 37.1551 30.8915 30.6973 30.4589
Skewness 1.5566 0.4762 0.4921 0.5107
Kurtosis 8.4748 4.0358 3.8837 3.7816

thereof: interest effect Mean USD m -1.2746 -1.0776 -1.0744 -1.0713

Hedged position (phys-
ical position + hedge)

Mean USD m -14.4778 -9.5125 -10.1110 -10.0973
Median USD m -2.4673 -7.7468 -7.2825 -6.1319
Variance USD m 856.5239 481.3571 489.3534 486.7741
Stand. dev. USD m 29.2664 21.9399 22.1213 22.0630
Skewness -0.9421 0.5642 0.5727 0.6115
Kurtosis 3.5008 4.9665 4.7860 4.8967

Hedge effectiveness in MVCHM SPM 1 SPM 2 SPM 3

Reduction of Variance % 9.4273 52.2984 52.8668 53.0502
Stand. dev. % 4.8303 30.9337 31.3464 31.4801

The table shows selected descriptive statistics for the start and end values as well as for the delta of the physical
position, hedge exposure, and portfolio position between sale and resale transactions. The considered sample size is
36 individual sale and resale transaction pairs (i.e., 72 transactions in total). The remaining 134 vessel transactions
in the data set occurred without corresponding resale within the time frame and therefore, had to be neglected in this
second hedging set-up. Furthermore, the results for the hedge effectiveness for the different hedging approaches are
displayed.
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in the model-implied adjustment for the age effect. Concerning the hedge exposure,
the results are pretty similar compared to the first hedging set-up. The initial mean
hedge exposure in the MVCHM is about USD 4.2 to 4.4 million lower than for the
SPMs. Again, the shipping company would have to deposit higher initial margins at
the clearing house if they applied the hedging approach based on the SPM. The mean
hedge loss, however, is again considerably higher for the MVCHM than for the SPMs
with differences of about USD 4.4 to 4.6 million. The same limitations as in the first
hedging set-up concerning the derivation of the hedge profit by subtracting the end
hedge exposure from the initial hedge apply in this hedging set-up as multiple stage
hedges (i.e., even more than two-stage hedges) are considered if the hedge duration
is larger than one year or 252 trading days and thus, covers more than one rollover
date. This is the case for the vast majority of the considered 36 observations. Equally
to the first hedging set-up, one would expect profits from the hedge effort if vessel
prices declined and vice versa. In this case, however, the mean losses incurred from
hedging are even significantly larger with USD 8.0 to 8.2 million for the SPMs and
about USD 12.5 million for the MVCHM. On the hand, this may be caused by the
longer hedge horizons, so profits or losses from the hedge had more time to pile up.
On the other hand, the shipping industry experienced a boom period of about two
years in which freight rates and vessel prices significantly rose. When the financial
crisis hit the shipping industry, however, there was only one severe setback of freight
rates and second-hand prices that occurred in a rather short time horizon in late 2008.
Accordingly, there might be some hedges that actually ended before the crisis hit the
shipping industry and thus, accumulated considerable losses. Actually, 14 of the 36
considered resale pairs ended before the crisis hit the shipping industry, 16 covered
the outbreak of the shipping crisis, and six only started after the outbreak of the
crisis. Again, the interest effect on the margin account seems to play an insignificant
role compared to the overall size of hedge losses. Accordingly, the non-representative
sample of resales which disproportionally covered the boom period led to the result
of the rather high mean hedge losses in this hedging set-up. Similarly to the first
hedging set-up, the hedge effectiveness of the SPMs is significantly higher than for
the MVCHM. In this set-up, the SPM 3 achieves the highest hedge effectiveness with
53.05 % variance reduction, whereas the MVCHM only achieves a hedge effectiveness
of 9.43 % variance reduction. Generally, the level of hedge effectiveness is lower and the
associated mean losses from the hedging efforts or costs of hedging are considerably
larger in this second hedging set-up than in the first hedging set-up. Admittedly,
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this may result from the relatively low sample size in this hedging set-up of only 36
sale and resale transaction pairs in the data set. The larger associated losses partly
result from the fact that the majority hedges covered the boom period before the
breakout of the shipping crisis resulting in gains from the vessel itself and losses from
hedge. However, the empirical analysis again suggests consistently superior results of
the SPMs in terms of hedge effectiveness at lower costs (i.e., losses from the hedge
positions) in this second hedging set-up.

With respect to the number of days shorted of the individual hedging instruments
in both hedging approaches, the MVCHM suggests as mean a number of about 938
FFA+2CAL days shorted at the initial set-up of the hedge. On the contrary, the
SPMs suggest an additional mean long position of about 373 to 385 FFA+1CAL days
and a mean short position of about 1,503 to 1,518 FFA+2CAL days at the initial set-
up of the hedge depending on the respective SPM. Consequently, the overall short
exposures are slightly lower for both hedging approaches compared to the first hedging
set-up.

2.5.4 Robustness checks

The results so far suggest that a significant part of the fluctuations of dry bulk Cape-
size second-hand ship prices may be hedged using either a minimum variance cross-
hedging approach or a hedging approach based on a structural pricing model. The
latter approach, however, shows consistently better performance with respect to hedge
effectiveness in the so far considered hedging set-ups. In order to ensure robustness
of these research findings presented above, several checks with different subsets of
the initial sample size were performed. In particular, a subset of the data set was
considered from which we excluded multiply transacted vessels as well as a subset of
the data set from which vessels that were younger than five years and vessels that
were older than 20 years at the transaction date were excluded.

2.5.4.1 Excluding multiply sold vessels

Dry bulk Capesize vessels are typically assets that are held by shipping companies
for a considerable amount of time as the economic life of such a vessel may reach up
to 30 years for new vessels. Consequently, sale and resale of one and the same vessel
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within a short period of time (e.g., a few years as in the data set) may indicate that
the shipping company partly bought the vessel for speculative purposes. As already
stated, a considerable number of resale pairs ended before the crisis hit the shipping
industry and again a considerable number of resale pairs covered the outbreak of the
crisis. The former might have successfully made gain from speculating on rising vessel
prices in the boom period, whereas the latter might also just have bought the vessel
for speculative purposes but were surprised by the shipping crisis.

In order to eliminate any effects from speculative vessel trades, a robustness check
was conducted in which all vessels were excluded that have been multiply sold within
the sale and purchase transactions data set. 66 transactions belong to vessels have
been sold more than once in the data set. Accordingly, this left 140 transactions of
vessels that have been sold only once in the data set and the SPMs were re-estimated
using these transactions. The results are shown in Table 2.12 in the appendix C.1
on page 71. The estimations for the β-coefficients changed compared to the initial
estimations. In particular, the resulting exposures to FFA+1CAL rates as well as to
the slope between FFA+2CAL and FFA+1CAL rates are larger in all three SPMs.
Furthermore, the interaction term f ·Age turns insignificant in all three models. The
R2 and adjusted R2 values and standard errors remain fairly constant compared to
the initial estimations.

Subsequently, the linearly interpolated hedge ratios in the MVCHM as well as the
re-estimated SPMs were used to assess the hedge effectiveness of both approaches
again in the first hedging set-up over a fixed time horizon of one year or 252 trading
days. Another 17 transactions had to be eliminated from the considered sample as
they occurred prior to January 4th, 2006 and FFA rates would not have been available
at the initiation of the hedge one year or 252 trading days prior to the transaction
as well as another three transactions because the vessel’s age would have been lower
than zero at the initiation of the hedge. The results shown in Table 2.13 in the
appendix C.1 on page 72 with respect to the hedge effectiveness are even slightly
higher for the SPMs with close to 80 % variance reduction than the initial results
presented in subsection 2.5.3.1. On the contrary, the hedge effectiveness is slightly
lower for the MVCHM with about 66 % variance reduction. With respect to the cost
of hedging, the former losses from the hedge for the full sample decreased by USD 2.6
to 3.3 million when excluding the multiply sold vessels and turned into actual profits
from the hedge of USD 1.0 to 3.3 million. This is consistent with subsection 2.5.3.2
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which showed that the majority of resales occurred even before the breakout of the
shipping crisis resulting rather in gains from the vessel itself and losses from the
hedge. Consequently, the SPMs consistently outperform the MVCHM with respect
to the hedge effectiveness and these results increase the robustness of the findings
presented earlier.

2.5.4.2 Excluding vessels younger than five and older than 20 years

It was identified that the price dynamics for new and scrap vessels are quite differ-
ent from the price dynamics of typical second-hand vessels in the minimum variance
cross-hedging approach as well as that the structural pricing models do not necessar-
ily perform well for extremely young and extremely old vessels due to few extreme
transactions in the data set with respect to age.

Accordingly, a robustness check was conducted in which vessels were excluded from
the dry bulk Capesize sale and purchase transactions data set that were younger than
five years or older than 20 years at that the transaction date. This left 138 transactions
and the SPMs 1 to 3 were re-estimated using these transactions. The results are shown
in Table 2.14 in the appendix C.2 on page 73. In general, the estimations for the β-
coefficients changed quite a bit. The resulting exposures to FFA+1CAL rates as well
as to the slope between FFA+2CAL and FFA+1CAL rates are considerably larger.
This is intuitive though as vessels were eliminated from the data set whose prices
were not necessarily tied to the FFA rate dynamics as mentioned above and now, the
link of the second-hand price for vessels aged between five and 20 years to FFA rates
becomes more apparent. The consumption only remains significant in the interaction
term with the FFA+1CAL rate. Interestingly, the estimated β-coefficients show more
consistency across the three SPMs, although the sample size underlying the regressions
is considerably lower. The standard errors of the three SPMs and information criteria
are also lower than for the SPMs based on the entire data set, whereas the R2 and
adjusted R2 values are about 10 percentage points higher. Together, this indicates
increased robustness of the SPMs.

Subsequently, the linearly interpolated hedge ratios for 5- to 20-year old vessels in
the MVCHM as well as the re-estimated SPMs were used again to assess the hedge
effectiveness of both approaches again in the first hedging set-up over a fixed time
horizon of one year or 252 trading days. Another 14 transactions had to be eliminated
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from the considered sample as they occurred prior to January 4th, 2006 and FFA rates
would not have been available at the initiation of the hedge one year or 252 trading
days prior to the transaction. The results shown in Table 2.15 in the appendix C.2 on
page 74 are even more promising than the initial results presented in subsection 2.5.3.1
as the SPMs achieve a hedge effectiveness of more than 86.50 % variance reduction and
also consistently outperform the MVCHM with 79.63 % variance reduction. Again,
these results increase the robustness of the findings presented earlier.

2.6 Conclusion

The shipping industry is historically known for its volatile nature of freight rates and
second-hand ship prices. The boom period from mid-2006 until mid-2008 and the
following shipping crisis that lasts until today have even pronounced this characteristic
of the shipping industry. Together with the increasing need to comply with the IFRS
fair value accounting principles that cause ship price fluctuations to become more
visible, the need for effective hedging strategies arises. Unfortunately, no direct, liquid
hedging instruments on dry bulk Capesize ship values currently exist. The aim of this
paper was to examine potential other hedging approaches and empirically assess their
hedge effectiveness in order to provide the shipping industry with guidance on effective
measures to counter the recognition of threatening impairment losses on their fleet in
their balance sheets.

Within this study, the idea of Alizadeh and Nomikos (2012) to use FFA contracts
as hedging instruments for entire dry bulk Capesize vessels was first translated into
a minimum variance cross-hedging model that can be applied to real Capesize sale
and purchase transactions. Secondly, a structural pricing model was developed for
dry bulk Capesize vessels following the effort of Adland and Koekebakker (2007).
The model is based on ship-specific, deterministic factors from the data set of real
Capesize sale and purchase transactions as well as market-driven or risk factors, such
as the FFA rate or slope of the FFA curve as well as interaction terms. Thirdly, the
hedge effectiveness of the two different approaches (i.e., the minimum variance cross-
hedging approach and the hedging approach based on the structural pricing model)
was empirically studied in two different hedging set-ups. Finally, the robustness of
the presented results was checked.
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Firstly, it was found that the minimum variance cross-hedging approach suggested by
Alizadeh and Nomikos (2012) does not achieve the hedge effectiveness of more than
85 % variance reduction claimed by Alizadeh and Nomikos (2012) within the empirical
analysis of real dry bulk Capesize sale and purchase transactions. The estimated R2

values for the time period considered only reach close to 83 % variance reduction for
5-year old vessels. However, it was empirically found that the MVCHM only achieves
a hedge effectiveness of about 67 % variance reduction over a time horizon of one
year. Secondly, it was discovered that the second-hand price of dry bulk Capesize
vessels may be well described by a structural pricing model containing market-driven
explanatory variables, such as the FFA+1CAL rate as well as the slope between the
FFA+2CAL and FFA+1CAL rate, and deterministic, ship-specific explanatory fac-
tors, such as the age, DWT, speed, and consumption of the individual vessel. The
model was estimated using data from 206 real dry bulk Capesize sale and purchase
transactions. Such a model overcomes the problem of relying on panelists’ estimations
that only exist for a few specifically aged reference vessels. As dry bulk Capesize ves-
sels are quite heterogeneous, shipping companies often have vessels that are different
from the reference vessels and, in particular, have a different age at the transaction.
Furthermore, the structural pricing model shows faster reaction to changing market
circumstances than the panelists’ estimations even though not all available informa-
tion have been included as explanatory variables. Thirdly, it was found that the SPMs
consistently outperform the MVCHM with respect to the hedge effectiveness in two
different hedging set-ups (i.e., over a fixed time horizon and between sale and resale
of one and the same vessel). The SPMs achieve a hedge effectiveness of about 77 %
variance reduction over a fixed time horizon of one year. Fourthly, the results indicate
that the average cost of hedging or losses from the hedges are considerably lower for
the hedging approach based on one of the SPM. The only drawback of the hedging
approach based on the SPM is the apparently higher initial hedge exposures causing
the clearing houses to demand higher initial margins. Finally, the robustness of the
research findings stated above was confirmed by performing several checks with sub-
sets of the initial sample size. For instance, it was found that the SPMs even achieve
a hedge effectiveness of about 87 % variance reduction if vessels younger than five and
older than 20 years were excluded from the analysis.

With respect to limitations of this study, the short time frame of available data on
FFA rates from 2005 onwards is obviously a constraint. Furthermore, the overall
number of dry bulk Capesize transactions in the data set is rather low. Because of
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these constraints, the data at hand had to be used for both estimating the MVCHM
and the SPMs as well as assessing their hedge effectiveness in sample. Furthermore, it
was generalized to some extent by means of several assumptions on the circumstances
of the two hedging set-ups. The aim here was to test the hedging approaches in
set-ups that, on the one hand, reflect as much as possible the reality of shipping
companies as well as, on the other hand, treat each transaction in a similar way.
These circumstances, however, may be different for individual shipping companies
and the determined hedge effectiveness in this study may be exceeded or not achieved
in individual cases in the real world.

In terms of practicability of the discussed hedging approaches, sufficient liquidity of
the applied hedging instruments is crucial factor for the practical implementation of
the approaches. An average trading volume of about 11,000 days per week from July
7th, 2007 to June 30th, 2014 for the entire dry bulk Capesize FFAs clearly shows that
initiating a hedge for an entire vessel might be well feasible. However, simultaneously
initiating hedges for an entire fleet of a shipping company would probably need to be
staged or successively built up. Moreover, insufficient liquidity for the re-initiation
of multiple hedges at rollover dates clearly represents a bottleneck for a large scale
practical implementation. For further details on historical FFA trading volumes, see
appendix A.4 on page 67.

Accordingly, this paper contributes to the existing academic literature in various ways.
Firstly, the effort is the first empirical study of the hedge effectiveness of the minimum
variance cross-hedging approach for Capesize dry bulk vessels using FFA contracts as
suggested by Alizadeh and Nomikos (2012). Secondly, this effort is the first to consider
additional factors to simple FFA rates, age of the vessel, or size in DWT as explanatory
factors for dry bulk Capesize second-hand ship prices in a structural pricing model
that may well serve as basis for a competing hedging approach. Finally, the study
is the first to empirically test the hedge effectiveness of both approaches and found
that the effectiveness of the hedging approach based on the structural pricing model
consistently exceeds the effectiveness of the minimum variance cross-hedging approach
in different set-ups.

Concerning further research opportunities in this area, estimating and testing the
hedge effectiveness of both hedging approaches out-of-sample represents a valid ex-
tension of the presented research within this paper once a longer time horizon of
relevant data is available. Furthermore, investigating the hedge effectiveness of other
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hedging instruments, such as FFAs with different maturities or freight options, might
be another direction of impact for future research in this area. Especially the latter
are interesting instruments from a hedging perspective because freight options allow
to only eliminate the downside but to keep the upside potential of ship price fluctu-
ations. It would be interesting to examine whether the benefit of the asymmetrical
payoff structure of these instruments outweighs the cost of the hedge (i.e., the option
premiums that need to be paid at the initiation of the hedge).
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A Appendix A – Miscellaneous

A.1 The stationary bootstrap resampling technique

The stationary bootstrap developed by Politis and Romano (1994) is a time series re-
sampling technique with randomly varying block length that produces a pseudo-time
series that is stationary conditional on a strictly stationary and weakly dependent
original time series. The length of these randomly varying blocks follows a geometric
distribution (Politis and Romano, 1994). The description and notation of the station-
ary bootstrap algorithm below largely follow the efforts by Politis and Romano (1994)
and Sullivan et al. (1999).

At first, a ‘smoothing parameter’, q, is chosen a priori, such that q = qn, 0 < qn ≤
1, qn → 0, nqn → ∞ as n → ∞. Subsequently, the following steps are carried
out in order to resample the pseudo-time series, X∗t , from the original time series,
Xt with t = {1, ..., T}:

1. The first observation of the pseudo-time series, X∗1 with t = 1, is randomly
(i.e., independently and uniformly) selected from the original t observations of
Xt, so that X∗1 = XI1 .

2. Increment t by one. If t > T , stop the iterations. If t ≤ T , pick a standard
uniformly distributed random variable u which is independent from all other
variables.

a. If u < q, let X∗2 (or X∗t in later recursive rounds) be picked at random (i.e.,
independently and uniformly) from the original t observations of Xt.

b. If u ≥ q, continue the block by setting X∗2 = XI1+1 (or X∗t = XIt−1+1 in
later recursive rounds). Accordingly, X∗2 (or X∗t in later recursive rounds)
is the next observation following XI1 (or XIt−1 in later recursive rounds) in
the original time series. If It−1 + 1 > T , then reset It−1 + 1 to 1.

3. Repeat step 2 until t = T and a resampled value to X∗T has been assigned.

4. Repeat steps 1 to 3 n times in order to get n independently resampled pseudo-
time series of the original time series.

Following the algorithm above yields in a resampled pseudo-time series of varying
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block length which follows a geometric distribution with mean block length 1/q (Sul-
livan et al., 1999). Although the a priori choice of q seems to have a considerable
impact on the algorithm, Sullivan et al. (1999) found that the results of their study
on data snooping and technical trading rule performance are insensitive to the choice
of q. They stated that a larger q is more appropriate for data with little dependence,
whereas a smaller q is rather appropriate for for data with more dependence. Politis
and Romano (1995) and Politis and White (2004) studied the automatic block length
selection for bootstrapping methods for dependent data and suggested an inspection
of the autocorrelation function of the original data. They argued that looking for the
smallest integer, m̄, after which the correlogram turns insignificant, is a valid first
indication for the selection of the mean block length.

A.2 Sensitivity analysis with respect to the choice of q

A sensitivity analysis was performed with respect to the choice of the ‘smoothing
parameter’, q, which corresponds to the mean block length of 1/q. Besides the choice of
q = 0.005, the stationary bootstrap was rerun on the 52-week log returns additionally
for q = 0.001, q = 0.01, and q = 0.1 corresponding to a mean block length of 1,000,
100, and 10, respectively.

Table 2.10: Results of sensitivity analysis with respect to the choice of
q

q = 0.001 q = 0.01 q = 0.1

β52,Age 95 % CI β52,Age 95 % CI β52,Age 95 % CI

Age mean med. Low Up mean med. Low Up mean med. Low Up

0 0.262 0.265 [0.158 - 0.324] 0.253 0.262 [0.073 - 0.394] 0.267 0.267 [0.150 - 0.375]
5 0.810 0.815 [0.704 - 0.850] 0.797 0.814 [0.603 - 0.883] 0.809 0.813 [0.689 - 0.906]
10 0.819 0.822 [0.729 - 0.873] 0.809 0.823 [0.574 - 0.955] 0.821 0.825 [0.678 - 0.930]
15 0.962 0.967 [0.841 - 1.025] 0.944 0.967 [0.607 - 1.097] 0.962 0.968 [0.783 - 1.100]
20 0.944 0.957 [0.738 - 1.051] 0.908 0.957 [0.352 - 1.101] 0.945 0.948 [0.730 - 1.130]
30 0.438 0.445 [0.148 - 0.570] 0.415 0.452 [-0.066 - 0.681] 0.429 0.438 [0.176 - 0.614]

The table shows aggregated regression estimates using 1,000 resamples using the stationary bootstrap technique by
Politis and Romano (1994) of the original underlying, overlapping 52-week log return time series for Capesize vessel
prices and FFA+2CAL prices from January 4th, 2005 to October 28th, 2013 for different ‘smoothing parameters’, q.
The lower and upper bounds of the 95 % confidence interval refer to the 2.5 %- and 97.5 %-quantiles of the empirical
distribution of the β52,Age-coefficients.

The results in Table 2.10 show that the β52,Age-coefficients from the initial regres-
sions also lie within the other three confidence intervals and therefore, confirm the
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results presented earlier in subsection 2.5.1. The median β52,Age-coefficients, β̄med52,Age,
are negligibly different from each other with respect to the choice of q as well as from
the β52,Age-coefficients from the regressions using the original data set. By taking a
closer look, the results indicate that the width of the 95 % confidence intervals for
the estimated β52,Age-coefficients is smallest for q = 0.001. This is intuitive as the
mean block length of 1,000 exceeds the length of the original data set by more than
twice and thus, deviations in the resampled data sets from the original data set get
less likely. Interestingly, the width of the confidence intervals is largest for q = 0.01
and especially for the β52,Age-coefficients for new and scrap vessels. In this case, the
confidence interval for 30-year old or scrap vessels does contain zero and thus, the
corresponding β52,Age-coefficient is statistically not significantly different from zero.
However, this is the only case in which a confidence interval does contain zero. From
visual inspection, the empirical distributions of the β52,Age-coefficients exhibit signifi-
cant excess kurtosis or thick-tailedness for q = 0.001, less excess kurtosis and slightly
right-skewness for q = 0.01, and approach a rather normal distribution for q = 0.1.
The results of the initial choice of q = 0.005 are closest to the case of q = 0.01.
However, the 95 % confidence interval for the β52,Age-coefficient for scrap vessels does
not contain zero in that case. The overall differences in the 95 % confidence intervals
with respect to the choice of q, however, are so small that the results and inferences
presented earlier in subsection 2.5.1 are considered robust.

A.3 Pricing surface for SPM 1

In order to graphically illustrate the interaction of the variables age and consumption
in the SPM 1, a 3D plot of the corresponding pricing surface was drawn with respect to
changes in age or consumption values. As a 3D plot is limited to three dimensions and
the intention was to show the effect on the explained variable price, the additionally
required input factors FFA+1CAL and slope between FFA+2CAL and FFA+1CAL
were held constant at their mean in the considered time frame. The ranges of the
age and consumption values considered in the plot were largely selected based on
minimum and maximum observations in the dry bulk Capesize transactions data set.

Figure 2.4 shows the 3D plot containing the model-implied pricing surface of the
SPM 1. The shape of the surface indicates that the model-implied vessel price declines
with increasing age and consumption. For a combination of, for instance, extremely
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Figure 2.4: Pricing surface for SPM 1 with changing age and consump-
tion values
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The graph shows a fitted pricing surface for the SPM 1 for changing age (in years) and consump-
tion (in metric tonnes per 1,000 nautical miles per 1,000 DWT) values. For the FFA+1CAL
and the slope between FFA+2CAL and FFA+1CAL values, the mean values of all daily ob-
servations in the time frame ranging from January 4th, 2005 to June 30th, 2014 were used.
Source: own graph based on SPM 1 model estimations

high age values and extremely low consumption values, the model even gets negative
prices. This is similar for the case of extremely high consumption values and extremely
low age values. However, this changes for combinations of large age and consumption
values. In this case, the shape of the pricing surface is again upward sloping indicating
higher prices for extremely old and inefficient vessels of about USD 17.50 million in
the extreme end. As already discussed, the positive sign of the βAge·Consum-coefficient
is economically not intuitive and might be caused by overfitting to the biased sample
containing disproportionally many relatively expensive sales of old and inefficient ships
within the boom period prior to the shipping crisis.

In order to investigate whether the above described effect of implausibly rising prices
for old and inefficient ships gets intensified or attenuated for different FFA rates,
pricing surfaces for the SPM 1 were also estimated using extreme values for the
FFA+1CAL rate together with the corresponding slope between FFA+2CAL and
FFA+1CAL rate. Interestingly, the effect gets intensified when using the mini-
mum of the FFA+1CAL rates with the corresponding slope between FFA+2CAL and
FFA+1CAL rate and gets attenuated when using the maximum of the FFA+1CAL
rates with the corresponding slope between FFA+2CAL and FFA+1CAL rate.
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A.4 Historical FFA trading volumes

As sufficient liquidity of the applied hedging instrument is a crucial factor for the
practical implementation of the suggested hedging approaches, historical FFA volumes
for the dry bulk Capesize sector were studied. The Baltic Exchange started to publish
aggregated weekly FFA volumes for this sector on July 9th, 2007. Unfortunately, this
does not allow to examine volumes for specific contracts, such as the trip-charter
average FFA+1CAL or the trip-charter average FFA+2CAL contract.

Figure 2.5: Historical dry bulk Capesize FFA trading volumes 2007-
2014
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The graph shows weekly dry bulk Capesize FFA volumes from July 9th, 2007 to June 30th,
2014. As the lot size of these contracts is days, the weekly FFA volume shown here is also in
days.
Source: own graph based on weekly data from The Baltic Exchange

Figure 2.5 shows a plot of the weekly FFA trading volumes from July 9th, 2007
to June 30th, 2014. In 2007, the majority of the FFA contracts were still traded
over-the-counter (OTC) and thus, uncleared. This, however, changed in 2008 and
nowadays, FFAs are almost exclusively traded via hybrid exchanges and are cleared.
This significantly reduces the counterparty risk of hedging with FFAs. The mean
trading volume is 10,979 lots or days per week with a standard deviation of 5,274 lots
or days per week. In general, the trading volume fluctuates quite a bit and seemed to
be higher before the crisis hit the shipping industry.
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B Appendix B – Selected illustrative plots

B.1 Histogram plots

Figure 2.6: Histograms of MVCHM and SPM 1 physical position and
hedged position outcomes
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The graphs show individual physical position as well as hedged position (physical position +
hedge) outcomes for the 180 vessels for MVCHM approach as well as for the hedging approach
based on the SPM 1 over a fixed time horizon of one year.
Source: own graph based on hedging results

The histogram plots of Figure 2.6 show histograms the physical as well as hedged
position outcomes for the MVCHM and the SPM 1 over the fixed time horizon of
one year. The graphs clearly show that the distribution of the outcomes narrows for
the hedged position consisting of the physical position plus hedge. Furthermore, the
effect is stronger for the SPM 1 than for the MVCHM from visual inspection of the
graphs.
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B.2 Hedge example for one single vessel

In order to present one single, detailed hedge example, selected detailed facts on
the example vessel as well as on the corresponding hedge results are presented in
Table 2.11 below.

Table 2.11: Hedge example facts – ship ‘Partagas’

Fact Value Unit Fact Value Unit

Name Partagas Sales date 01/26/2006
IMO number 9272345 Transaction price 60.0000 USD m
Size 173,880 DWT Physical pos. profit/loss -5.8030 USD m
Age at sales date 1.67 years Hedge pos. profit/loss 6.3490 USD m
Speed 14.00 knots thereof: interest effect 0.0737 USD m
Consumption 54.70 mt per day Total profit/loss 0.5460 USD m
Consumption 0.94 mt per 1,000 nm

per 1,000 DWT
The table shows selected facts on the vessel of the example hedge as well as on the corresponding hedge results.

In order to illustrate the development of the hedge position for one single vessel based
on the MVCHM, Figure 2.7 shows the cumulative hedge profit/loss with and without
interest effect as well as the cumulative interest effect itself from hedging start (i.e.,
one year prior to the transaction) until hedging end (i.e., transaction date).

The plot shows that the hedge started to accumulate a loss during the first two months
of the hedge. Then, the market conditions changed, FFA prices fell, the cumulative
loss of the hedge reduced, and turned into a profit of about USD 6.35 million. The
cumulative interest effect curve follows the cumulative hedge profit/loss curve in a
lagged way. However, the overall size of the interest effect remained inconsiderable
with about USD 0.074 million. This is underlined by the fact that the cumulative
hedge profit/loss with interest effect curve shows hardly any deviation from the cu-
mulative hedge profit/loss without interest effect curve.

Together with the loss of USD 5.80 million on the physical position, the shipping
owner would have ended up with a profit of USD 0.55 million if he had chosen to
hedge the ship price one year prior to the sale using the MVCHM approach.
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Figure 2.7: Cumulative hedge profit/loss development for ship ‘Parta-
gas’
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The graph shows cumulative hedge profit/loss development of the hedge of one single vessel
from the start until the end of the hedge over a fixed time horizon of one year. The cumulative
profit/loss of the hedge both without and with interest effect itself is shown on the left y-axis
in USD million. The cumulative interest effect is separately shown on the right y-axis in USD
million as well.
Source: own graph based on hedging results
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C Appendix C – Robustness checks

C.1 Excluding multiply sold vessels

Table 2.12: Estimates for different Capesize structural pricing models

SPM 1 SPM 2 SPM 3

Coefficient p-value Coefficient p-value Coefficient p-value

α 61.6535** 0.0104 28.0677** 0.0427 31.3805*** 0.0000
(23.7116) (13.7136) (5.1387)
[2.6001] [2.0467] [6.1066]

βf 2,122.7471*** 0.0000 2,002.9422*** 0.0000 1,953.8393*** 0.0000
(319.9196) (314.6641) (251.1887)

[6.6353] [6.3653] [7.7784]
βsl 2,003.7934*** 0.0001 1,991.9051*** 0.0001 2,002.2326*** 0.0001

(479.3967) (482.9246) (479.6203)
[4.1798] [4.1247] [4.1746]

βAge -4.3111*** 0.0005 -2.2727*** 0.0000 -2.2788*** 0.0000
(1.2073) (0.2649) (0.2629)
[-3.5707] [-8.5788] [-8.6669]

βConsum -32.2696 0.1937 3.5393 0.7947
(24.7002) (13.5763)
[-1.3064] [0.2607]

βf ·Age -4.4363 0.4628 -2.3250 0.6963 -2.3207 0.6958
(6.0248) (5.9439) (5.9232)
[-0.7363] [-0.3912] [-0.3918]

βf ·Consum -759.8149*** 0.0048 -673.7581** 0.0113 -618.1367*** 0.0001
(265.0323) (262.2642) (151.9893)
[-2.8669] [-2.5690] [-4.0670]

βAge·Consum 2.1597** 0.0860
(1.2485)
[1.7299]

R2 0.7814 0.7764 0.7763
Adj. R2 0.7698 0.7663 0.7679
Log likelihood -533.4468 -535.0160 -535.0517
SBIC criterion 7.9030 7.8902 7.8554
Akaike criterion 7.7350 7.7431 7.7293
Standard error 11.2550 11.3390 11.2995

The table shows linear regression coefficient estimates for three different SPMs based on data for 140 Capesize vessel
transactions and corresponding FFA time series data from January 13th, 2005 to October 30th, 2013. Vessels that
have been multiply sold within the data set have been excluded from the analysis. Figures in () and [] reflect the
corresponding standard errors and t-statistics, respectively. * indicates significance at the 10 % level, ** at the 5 %
level, and *** at the 1 % level.
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Table 2.13: Hedging results over fixed time horizon of one year

Physical position in MVCHM SPM 1 SPM 2 SPM 3

Start (age effect incl.) Mean USD m 40.3371 38.7789 38.8807 38.8119
End (transaction price) Mean USD m 33.2354 33.2354 33.2354 33.2354

Hedge exposure in MVCHM SPM 1 SPM 2 SPM 3

Start Mean USD m -33.8736 -36.6701 -36.5106 -36.5496
End Mean USD m -39.3479 -32.3155 -32.2815 -32.4159

Delta/change in values or profit/loss in MVCHM SPM 1 SPM 2 SPM 3

Physical position

Mean USD m -7.1016 -5.5435 -5.6453 -5.5765
Median USD m -4.2041 -5.5149 -6.4832 -6.6402
Variance USD m 921.7994 742.1537 714.8575 713.6859
Stand. dev. USD m 30.3611 27.2425 26.7368 26.7149
Skewness -0.4628 -0.2700 -0.2175 -0.2028
Kurtosis 3.3547 3.6561 3.4220 3.4100

Hedge

Mean USD m 0.9818 3.3273 3.1774 3.0749
Median USD m 1.9754 2.3996 2.3959 2.4114
Variance USD m 631.9555 682.3050 678.5301 677.1443
Stand. dev. USD m 25.1387 26.1210 26.0486 26.0220
Skewness 0.0851 0.4938 0.4559 0.4389
Kurtosis 3.9391 3.6219 3.4887 3.4572

thereof: interest effect Mean USD m -0.1270 -0.1151 -0.1174 -0.1189

Hedged position (phys-
ical position + hedge)

Mean USD m -6.1199 -2.2162 -2.4678 -2.5016
Median USD m -2.3854 -1.6724 -1.4946 -1.6557
Variance USD m 313.0890 151.4174 152.2321 154.0489
Stand. dev. USD m 17.6943 12.3052 12.3382 12.4116
Skewness -1.6901 -3.0552 -3.4335 -3.4480
Kurtosis 11.1569 21.1281 22.7866 22.8296

Hedge effectiveness in MVCHM SPM 1 SPM 2 SPM 3

Reduction of Variance % 66.0350 79.5976 78.7045 78.4150
Stand. dev. % 41.7205 54.8309 53.8530 53.5404

The table shows selected descriptive statistics for the start and end values as well as for the delta of the physical
position, hedge exposure, and portfolio position over the fixed hedging horizon of one year prior to the individual
vessel transaction. The considered sample size is 120 vessel transactions. Transactions in 2005 had to be excluded
due to unavailability of FFA time series data prior to 2005 as well as transactions of vessels that would have been
negatively aged at the initiation of the hedge. Furthermore, the results for the hedge effectiveness for the different
hedging approaches are displayed.
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C.2 Excluding vessels younger than five and older than 20
years

Table 2.14: Estimates for different Capesize structural pricing models

SPM 1 SPM 2 SPM 3

Coefficient p-value Coefficient p-value Coefficient p-value

α 48.5424 0.1645 19.7831 0.1909 18.8586*** 0.0014
(34.7262) (15.0461) (5.7831)
[1.3979] [1.3148] [3.2610]

βf 2,874.2448*** 0.0000 2,859.7529*** 0.0000 2,872.9795*** 0.0000
(314.7620) (314.1803) (242.5463)

[9.1315] [9.1023] [11.8451]
βsl 2,037.1615*** 0.0000 2,018.4832*** 0.0000 2,018.5660*** 0.0000

(412.2773) (411.5318) (409.9751)
[4.9412] [4.9048] [4.9236]

βAge -3.5695* 0.0961 -1.6394*** 0.0000 -1.6322*** 0.0000
(2.1298) (0.3535) (0.3355)
[-1.6760] [-4.6372] [-4.8649]

βConsum -31.7494 0.3814 -0.8910 0.9470
(36.1469) (13.3778)
[-0.8783] [-0.0666]

βf ·Age -35.8552*** 0.0000 -35.5469*** 0.0000 -35.6027*** 0.0000
(7.1494) (7.1373) (7.0612)
[-5.0151] [-4.9804] [-5.0420]

βf ·Consum -986.3322*** 0.0002 -980.7313*** 0.0002 -993.9378*** 0.0000
(257.2336) (257.0088) (162.9047)
[-3.8344] [-3.8159] [-6.1013]

βAge·Consum 2.0856 0.3598
(2.2693)
[0.9190]

R2 0.8761 0.8753 0.8753
Adj. R2 0.8694 0.8696 0.8705
Log likelihood -500.9225 -501.3694 -501.3417
SBIC criterion 7.5454 7.5162 7.4805
Akaike criterion 7.3757 7.3677 7.3532
Standard error 9.4008 9.3952 9.3597

The table shows linear regression coefficient estimates for three different SPMs based on data for 138 Capesize vessel
transactions and corresponding FFA time series data from January 13th, 2005 to October 30th, 2013. Vessels younger
than five years and older than 20 years at the transaction date have been excluded from the analysis. Figures in ()
and [] reflect the corresponding standard errors and t-statistics, respectively. * indicates significance at the 10 % level,
** at the 5 % level, and *** at the 1 % level.
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Table 2.15: Hedging results over fixed time horizon of one year

Physical position in MVCHM SPM 1 SPM 2 SPM 3

Start (age effect incl.) Mean USD m 41.4580 39.9703 39.9641 39.9559
End (transaction price) Mean USD m 37.2242 37.2242 37.2242 37.2242

Hedge exposure in MVCHM SPM 1 SPM 2 SPM 3

Start Mean USD m -37.2431 -36.2615 -35.9642 -35.9529
End Mean USD m -44.2598 -33.6335 -33.4074 -33.4475

Delta/change in values or profit/loss in MVCHM SPM 1 SPM 2 SPM 3

Physical position

Mean USD m -4.2338 -2.7462 -2.7399 -2.7317
Median USD m -3.8083 -5.2518 -5.5722 -6.4593
Variance USD m 1,086.5196 778.4303 775.6993 774.2485
Stand. dev. USD m 32.9624 27.9004 27.8514 27.8253
Skewness -0.5605 0.0656 0.1194 0.1285
Kurtosis 3.6044 3.5891 3.5755 3.5750

Hedge

Mean USD m -0.8162 1.2362 1.1869 1.1573
Median USD m 1.8828 2.2727 2.3114 2.3121
Variance USD m 774.6261 692.3205 682.2251 678.0224
Stand. dev. USD m 27.8321 26.3120 26.1194 26.0389
Skewness -0.0039 0.3214 0.3129 0.3114
Kurtosis 3.5097 3.4046 3.3577 3.3407

thereof: interest effect Mean USD m -0.1600 -0.1345 -0.1343 -0.1346

Hedged position (phys-
ical position + hedge)

Mean USD m -5.0500 -1.5100 -1.5530 -1.5744
Median USD m -1.6517 -1.5108 -1.5530 -1.5744
Variance USD m 221.3359 99.3165 102.5720 102.4454
Stand. dev. USD m 14.8774 9.9658 10.1278 10.1215
Skewness -1.1121 -1.8619 -1.7825 -1.8012
Kurtosis 7.4026 16.4447 16.1403 16.1032

Hedge effectiveness in MVCHM SPM 1 SPM 2 SPM 3

Reduction of Variance % 79.6289 87.2414 86.7768 86.7684
Stand. dev. % 54.8656 64.2809 63.6363 63.6247

The table shows selected descriptive statistics for the start and end values as well as for the delta of the physical
position, hedge exposure, and portfolio position over the fixed hedging horizon of one year prior to the individual
vessel transaction. The considered sample size is 124 vessel transactions aged between five and 20 years. Transactions
in 2005 had to be excluded due to unavailability of FFA time series data prior to 2005. Furthermore, the results for
the hedge effectiveness for the different hedging approaches are displayed.
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Chapter 3

Hedging Capesize ship price risks
using freight options

Abstract

The nature of the shipping industry has been historically characterized by high volatil-
ity compared to other industries and downside-risk protection against adverse ship
price fluctuations may be beneficial for shipping companies from a risk management
perspective as well as from a cash/liquidity perspective. The aim of this paper is to em-
pirically assess the hedge effectiveness of different freight option-based cross-hedging
strategies using several risk-, downside-risk-, as well as return-based measures. The
results indicate that a one-sided, option-based cross-hedging strategy presents a rele-
vant alternative to the classical two-sided, Forward Freight Agreements (FFAs)-based
cross-hedging strategy providing similar downside-risk protection. Such a strategy,
however, allows to keep the upside potential in case no downside-risk protection is
required. The finding that a synthetically replicated FFA using options actually out-
performs the FFA-based reference strategy contradicts findings from other studies in
other financial markets and actually implies redundancy of FFAs. Given the compar-
atively low liquidity of freight options, this result should not be over-interpreted and
rather seen as a friction from a not yet fully developed freight option market.
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3.1 Introduction

With 3.1 % compound annual growth rate from 1970 until 2013 to a total of 9.5
billion tons of goods loaded in 2013, maritime transportation continuously played a
steady but crucial role in the growth of the global economy (UNCTAD, 2014). The
increasing level of globalized trade flows of raw materials, semifinished, and finished
goods has caused increasing demand for seaborne transportation. More than 90 % of
the global merchandise trade1 is nowadays handled by sea (IMO, 2012; UN, 2013).

In the past years, the maritime shipping industry has undergone remarkable highs
and lows. The Baltic Dry Index (BDI)2, for instance, rose from 2006 to early 2008 to
an all-time high of 11,793 index points on May 20th, 2008. With the outburst of the
financial crisis, the index plummeted to a low of 663 index points on December 5th,
2008. That is an incredible decline of more than 94 % in just over six months. Ever
since, the shipping industry has been facing a severe recession which was partly caused
by overcapacity resulting from newbuilding orders placed prior to the outburst of the
financial crisis. In early 2015, the BDI almost reached its all-time low of 554 index
points from July 31st, 1986. Although the shipping industry has been historically
known for its volatile nature of freight rates and second-hand ship prices, these past
years presented some very challenging market circumstances (Albertijn et al., 2011).

Besides the rather high volatility of freight rates and second-hand ship prices, some
further specific characteristics of the industry intensify the difficulties of being able
to cope with these market circumstances. Firstly, shipping companies typically have
a high asset concentration in the form of the carrying amount of the company’s fleet
in their balance sheets (Stopford, 2009). Secondly, shipping companies are commonly
highly leveraged compared to other industry sectors (Drobetz et al., 2013). Thirdly,
compliance with the fair value accounting principles3 of the International Financial
Reporting Standards (IFRS) will be an increasingly important topic for listed shipping
companies (Albertijn et al., 2011). Accordingly, shipping companies suffer not only

1 excluding intra-European Union (EU) trade
2 The BDI is an index provided by The Baltic Exchange measuring the cost for maritime trans-

portation of dry bulk goods (i.e., iron ore, coal, and grain) aggregated across different vessel
classes (i.e., Capesize, Panamax, Supramax, and Handysize) and shipping routes.

3 According to International Accounting Standards (IAS) rule 36, these carrying amounts are
subject to regular impairment tests. If the recoverable amount of the ship (the higher of value
in use and fair value less cost to sell) is less than the carrying amount, the difference needs to
be recognized as an impairment loss (Deloitte, 2009; KPMG, 2012; PwC, 2005).
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from operative losses in case of low freight rates but also from potentially considerable
impairment losses on the carrying amount of their fleet. Given their low share of
equity, such losses might be threatening and protection of the company’s balance sheet
by hedging the exposure to such adverse ship price fluctuations may be beneficial for
the shipping company. Finally, hedging at least the downside risk of ship prices might
also be beneficial from a liquidity perspective if the vessel itself is used as a collateral
for a granted loan to the shipping company with the additional covenant of increased
financing costs or an additional collateral if the ship looses in value.

Unfortunately, hedging ship prices directly is not possible as no direct liquid hedge
instruments on ship prices exist. Clarkson Securities Limited (CSL) tried to launch
Forward Ship Value Agreements (FoSVAs) in the mid-2000s. FoSVAs are cash-settled
forward contracts on the Baltic Sale and Purchase Assessment (BSPA)4 (Adland et al.,
2004). However, the liquidity these instruments is extremely low and Jallal (2013)
even stated that FoSVA have actually never been traded so far. Accordingly, cross-
hedging ship price risks using liquid hedge instruments with high correlation to ship
prices is the only viable alternative. Alizadeh and Nomikos (2012) were the first ones
to address the topic of hedging ship prices and suggested a minimum variance cross-
hedge using Forward Freight Agreements (FFAs). They found that up to 93 % of
the price fluctuations of the BSPA for selected dry bulk vessel classes (i.e., Capesize,
Panamax, and Supramax) can be explained by price fluctuations of the respective
FFA+2CAL contracts.5

In addition to FFAs, the freight derivatives market offers another instrument, freight
options, that might potentially serve for cross-hedging purposes. Freight options have
been launched in 2008 and the options are arithmetic Asian options on FFAs. The
asymmetric payoff structure of freight options allows for more flexibility in the hedging
strategy. For instance, using long put options rather than FFAs will only limit the
downside of the underlying position, but it allows to keep upside potential in case
freight rates and ship prices increase. Clearly, this benefit only comes at certain costs,
the option premium. Especially in light of the rather high volatility in the industry,
the feature of asymmetric protection could be of interest for shipping companies.

From a practical risk management perspective, a hedging strategy relying on panelists’

4 BSPA is a second-hand ship price panelists’ estimation of certain 5-year old reference vessels
provided on a weekly basis by The Baltic Exchange.

5 FFA+2CAL contracts are FFA contracts for the entire second-next calendar-year.
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estimations for reference vessels might be suboptimal as the company’s vessel speci-
fications might considerably differ from the assessed reference vessel by the panelists.
Adland and Koekebakker (2007) estimated a non-parametric, multivariate pricing
model based on real sale and purchase transaction data for second-hand Handymax
vessels. In their model, they used three relevant factors of dry bulk ships for the
second-hand price determination: size (measured in deadweight tons (DWT)), age
and 1-year time charter freight rates (Adland and Koekebakker, 2007). Such a struc-
tural pricing model (SPM) allows to determine the exposure of the value certain ship
to the freight market more accurately than the rather generic panelists’ estimations.

The aim of the paper is to examine whether freight options qualify as suitable hedge
instruments for dry bulk Capesize ship price risks. Firstly, a SPM is estimated using
real dry bulk Capesize second-hand transactions. The model is used to determine
the desired exposure to the respective hedge instruments and thus, serves as basis
of the hedging approach. Secondly, the hedge effectiveness of different freight option
hedging strategies (i.e., long at-the-money put, long out-of-the-money put, replicated
FFA, and zero-cost collar) is empirically tested in a hedging set-up over a fixed time
horizon one year prior to the sale for the same dry bulk Capesize transactions. Fur-
thermore, it is investigated whether using freight options rather than FFAs as hedge
instruments achieves superior hedge effectiveness for hedging dry bulk Capesize ship
price risks. The hedge effectiveness is evaluated using several, well-established risk and
downside-risk measures as well as risk- and downside-risk-adjusted return measures.
It is refrained from specifying a generalized utility function for shipping companies as
the risk preferences of shipping companies are assumed to be rather diverse.

The remainder of the paper is structured as follows. Section 3.2 reviews the relevant
academic literature. Section 3.3 elaborates on the methodology applied within this
empirical study. Section 3.4 provides a thorough description of the data used within
this study. Section 3.5 presents the empirical results, an interpretation of these results
as well as further robustness checks. Finally, section 3.6 concludes the findings of this
study and provides an outlook on further research opportunities in this area.
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3.2 Review of academic literature

The following review of the academic literature covers the subsequent topics: general
research on ship prices, FFAs, and freight options; research on hedging of ship price
risks; research on the pricing of freight options; as well as specific research on hedg-
ing using options (i.e., strategies and suitable measures to assess the effectiveness of
hedging strategies involving options).

Ship prices and second-hand ship prices in particular have found quite some interest
within the academic literature and the relevant studies can be largely classified in five
different categories. The first category of studies focused on econometrically model-
ing the dynamics of the shipping industry, including demand, freight rates, and ship
prices. An early, often-cited effort in this category is the work by Beenstock (1985)
who modeled ship prices using expectations on income operations, fleet size, world
wealth, and interest rates. Other general and partial equilibrium models have been
developed based on this effort (see, among others, Beenstock and Vergottis (1989a),
Beenstock and Vergottis (1989b), Beenstock and Vergottis (1993a), Beenstock and
Vergottis (1993b), Dikos and Marcus (2003), Kalouptsidi (2014), Strandenes (1984),
Tsolakis et al. (2003), and Tvedt (2003)) and Glen (2006) provides an almost compre-
hensive overview on these efforts. The second category of studies is concerned with
testing the market efficiency (i.e., the Efficient Market Hypothesis (EMH) developed
by Fama (1970)) for ship prices. Market efficiency is an assumption in many models,
Hale and Vanags (1992), however, found no support for an efficient market for dry
bulk second-hand ship prices using the cointegration technique. These results have
been underlined by Glen (1997) and Alizadeh and Kavussanos (2002). On the con-
trary, Adland and Koekebakker (2004) support the EMH for dry bulk second-hand
prices based on the absence of excess performance of technical trading rules in the
market and Sødal et al. (2009) also largely consider the market for dry bulk ships to
be efficient based on a real option approach indicating no excess profits of switching
between the tanker and dry bulk market. The third category of studies concentrate
on volatility and price-volume dynamics of second-hand ship prices. Using ARCH/-
GARCH models, Kavussanos (1996) found higher volatilities for shipping companies
acting in the timecharter marker rather than in the spot market as well as higher
volatilities for larger ships due to the operational limitations (i.e., less accessible ports
due to the higher draft). Syriopoulos and Roumpis (2006) studied the impact of price
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changes on the trading volume for the dry bulk and tanker market. They found a
positive relationship between price changes and trading volume resulting from higher
probability of capital gains causing higher trading activity. Besides, they found a
negative relationship between trading volume and price volatility of second-hand ship
prices for the dry bulk market. The fourth category takes the present value perspec-
tive on second-hand ship prices. Alizadeh and Nomikos (2006) as well as Psaraftis
et al. (2012) argue that owning a ship entitles to the present value of future income
from operating the ship as well as to any capital gains or losses from selling the ship at
a later point in time. The last category of studies questions the validity of the afore-
mentioned studies for the real market dynamics of second-hand ship prices. Previous
efforts exclusively relied on second-hand ship price time series data, either from the
BSPA or Clarksons Shipping Intelligence Network (SIN). Due to the relatively low
trading activity, these time series are panelists’ estimations for reference vessels of a
certain age and are not based on actual vessel transactions. In particular, Pruyn et al.
(2011) doubt whether these time series are a fair representation of the real market
dynamics of second-hand ship prices. As already stated in section 3.1, Adland and
Koekebakker (2007) were one of the first to work with actual dry bulk vessel trans-
action data. They estimated a multivariate, nonparametric model of second-hand
ship prices using age, size in DWT, and one-year timecharter rates as explanatory
variables.

The academic literature on FFAs mainly focuses on their statistical properties, volatil-
ity dynamics, and predictive power for future spot rates. An almost comprehensive
summary of research in these areas is provided by Kavussanos and Visvikis (2006).
Research on the unbiasedness hypothesis for FFAs, for instance, has been conducted
by Kavussanos and Nomikos (1999), Kavussanos and Visvikis (2004), and Kavussanos
et al. (2004). The latter found that the validness of the unbiasedness hypothesis de-
pends on the specific market characteristics, trading route, and maturity of the FFA.

With respect to freight options, the academic literature mainly focuses on the pricing
aspect of these instruments. The literature on pricing futures options starts with
Black (1976) who adjusted the Black and Scholes (1973) option pricing model to
accommodate futures options. Concerning Asian or average options, Kemna and Vorst
(1990) stated that exact pricing formulas only exist for geometric average options but
not for arithmetic average options as the distribution of the arithmetic average of a
lognormal process is unknown. Turnbull and Wakeman (1991) presented a closed-form
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solution for European geometric average options and an approximation for European
arithmetic average options which is still valued by researchers as well as practitioners
today. The approximation is based on the assumption of averaging in continuous
time. Levy (1997) and Haug et al. (2003), for instance, provided alternatives to
price Asian futures options in discrete time. For freight options in particular, Tvedt
(1998) developed a model to price freight options on the Baltic International Freight
Futures Exchange (BIFFEX) contract that existed at that time. The model is an
adapted version of the Black (1976) model which has been adjusted for the statistical
properties of the freight market. Another model was suggested by Koekebakker et al.
(2007). They also provided a model based on the Black (1976) framework assuming
that the price dynamics of FFAs are lognormal prior to the start of the settlement
or averaging period but not lognormal within the averaging period. More recently,
Nomikos et al. (2013) suggested a diffusion model overlaid with jumps of random
magnitude and timing to extend the lognormal representation for risk-neutral spot
freight rate dynamics as well as an option valuation framework to price the current
version of freight options that have been launched in 2008.

Turning to the hedging of ship price risks, FoSVAs have been studied by Adland et al.
(2004). They suggested a pricing methodology for these contracts as well as the unbi-
asedness of implied forward prices for second-hand ships. Unfortunately, these instru-
ments have never been really accepted by the market participants and Alizadeh and
Nomikos (2009) and Jallal (2013) raise the nonexistent liquidity of these instruments.
Alternatively, Alizadeh and Nomikos (2012) suggested using FFA+2CAL contracts in
a minimum-variance cross-hedging set-up. As already outlined in section 3.1, they
stated that variance reductions of up to 93 % for dry bulk second-hand ship prices
should be possible. A first empirical application of FFAs as cross-hedge instruments
for dry bulk Capesize ship prices is provided by Chapter 2 of this dissertation which
finds that a SPM-based approach to derive the desired hedge exposure is more effec-
tive than a minimum-variance approach. Freight options have not been considered so
far in the academic literature as potential hedge instruments for ship price risks.

However, the hedging performance of options in general has found some attention in
the academic literature. On the one hand, there are several efforts comparing the
hedge effectiveness of futures and option hedging strategies for different underlyings
(see, among others, Chang and Shanker (1986) on currencies, Cheung et al. (1990)
on currencies, Sakong et al. (1993) on farmers’ production risks, Whaley (1993) on
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volatility risks, Garcia et al. (1994) on hog production risks, Hancock and Weise
(1994), on the S&P500 index, Hsin et al. (1994) on currencies, Benet and Luft (1995)
on the S&P 500 index, Lien and Tse (2001) on currencies, or Wong (2003) on curren-
cies). On the other hand, there is an elaborate discussion in the academic literature on
how to fairly assess the effectiveness of hedging strategies involving options. Edering-
ton (1979) suggested the relative variance reduction of the hedged vs. the unhedged
position for minimum-variance futures hedges.

Given the asymmetric nature of options, Bookstaber and Clarke (1981) noted the im-
plications that options have on the return distributions of portfolios. Together with
underlying and options, almost any return characteristic can be created and thus,
the traditional mean-variance perspective developed by Markowitz (1952) leads to
suboptimal portfolio decisions. Consequently, the hedge effectiveness measure of Ed-
erington (1979) may also lead to wrong conclusion if options are involved. Bookstaber
and Clarke (1985) elaborated more closely on this issue. Some academic researchers
have subsequently turned to risk-return measures of hedge effectiveness starting with
Howard and D’Antonio (1984). They developed a measure largely based on the idea
of the Sharpe ratio (Sharpe, 1966) and suggested to use the ratio of the increase in
excess return (i.e., expected return exceeding the risk-free rate) per unit of risk with
hedge instruments additionally available and the increase in excess return per unit
of risk for investing in the spot alone. Chang and Shanker (1987) suggested an im-
provement of the measure by Howard and D’Antonio (1984) to eliminate ambiguous
results if the Sharpe ratio of the unhedged portfolio is negative and the Sharpe ratio
of the hedge portfolio is positive. Their improved measure of hedge effectiveness is
the increase in the Sharpe ratio from unhedged to hedged portfolio over the absolute
value of the Sharpe ratio of the unhedged portfolio. Howard and D’Antonio (1987)
suggested a further improvement to assess the hedge effectiveness by just simply tak-
ing the increase in the Sharpe ratio from unhedged to hedged portfolio. Kuo and
Chen (1995) and Satyanarayan (1998) added to this discussion.

Another direction is the downside-risk perspective that emerged with research on the
safety first principal developed by Roy (1952), semivariance and later on the lower
partial moment (LPM). Markowitz (1959) already acknowledged the importance of
the downside-risk perspective and defined the below-mean semivariance and below-
target semivariance. However, in his considerations about optimal portfolio selection,
he stayed with the simpler variance concept. The concept of the LPM emerged when
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Bawa (1975) proposed the third order stochastic domination rule as an optimal se-
lection rule for ordering uncertain prospects for agents with decreasing absolute risk
averse utility functions (i.e., von Neumann and Morgenstern (1947)-type utility func-
tions that correspond to observed economic behavior). He was the first one to define
the mean-LPM with varying degrees of risk aversion (i.e., the different moments).
Moreover, he introduced the mean-lower partial variance which he later uses to de-
velop a Capital Asset Pricing Model (CAPM) based on downside risk instead of the
classical mean-variance CAPM and studied optimal portfolio choice under the safety
first principle and stochastic dominance (Bawa and Lindenberg, 1977; Bawa, 1978).
Fishburn (1977) extended the LPM definition from Bawa (1975) to a general target-
LPM and proved the equivalence of the LPM measure with results from stochastic
dominance for all moments greater than zero. Bawa and Lindenberg (1977) already
suggested to use the risk-free rate as target return and Nantell and Price (1979) found
that equilibrium rates of return are the same for models based on variance or semivari-
ance notion of portfolio risk if the risk-free rate is used as target in the semivariance
case. They assumed the bivariate return distribution to be normal. Price et al. (1982)
extended this research to skewed, lognormal distributions and question the generally
accepted variance measure for systematic risk due to the violation of the restrictive
underlying assumptions. Concerning portfolio selection or choice, Nawrocki (1991)
developed two algorithms that can be tailored to the specific risk aversion of investors
using also higher moments of the n-degree LPM risk measure. He found that the two
algorithms are either equivalent or even superior to traditional covariance analysis
while allowing for a broader set of utility choices for the investor at the same time.
In another effort, Nawrocki (1992) studied the characteristics of portfolios selected
by the n-degree LPM compared to portfolios selected by traditional mean-variance or
covariance analysis. He discovered, for instance, that n-degree LPM portfolios con-
tain fewer securities, that the portfolio skewness increases with n, and that n-degree
LPM portfolios achieve superior risk-return performance. From a practitioner’s side,
Sortino and van der Meer (1991), Sortino and Price (1994), and Merriken (1994), for
instance, concentrated on the performance measurement using the LPM downside-
risk measure. Sortino and Price (1994) defined another downside-risk performance
measure, the Sortino ratio. It brings together the risk-return perspective with the
concept of downside risk and is a modification of the Sharpe ratio. It measures the
excess return above a certain target over the square root of the second-degree target-
LPM measure. Merriken (1994) particularly focused on assessing the downside risk
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of different hedging strategies involving stock options and interest rate swaps. A
comprehensive overview of the LPM-based research is provided by Nawrocki (1999).

This paper contributes to the existing academic literature in two important ways.
Firstly, the general suitability of freight options as hedge instruments for dry bulk
Capesize ship price risks is empirically assessed for real sale and purchase transactions.
Secondly, the hedge effectiveness of hedging strategies involving freight options (i.e.,
long at-the-money put, long out-of-the-money put, replicated FFA, and zero-cost
collar) is compared the hedge effectiveness of FFAs. Furthermore, the research findings
will have relevant implications for the risk management practice of shipping companies
operating in the dry bulk market.

3.3 Empirical methodology

With respect to the empirical methodology applied within this study, the following
subsections elaborate on the pricing model applied to value freight options, the de-
veloped SPM for second-hand dry bulk Capesize vessels to derive the desired hedge
exposure, the general hedge set-up in which the hedging effectiveness is empirically
tested, and the approach how to appropriately measure the hedge effectiveness for
strategies involving instruments with asymmetric payoff structures (e.g., options).

3.3.1 Freight option prices

Freight options belong to the category of Asian options and therefore, they are some-
what more complex than typical European options. The following paragraphs focus
on the specific nature of these instruments as well as on a suitable methodology to
price these instruments accurately.

Freight options are European-style arithmetic average options on FFAs and exist for
different dry bulk standard routes (e.g., individual routes as well as trip-charter av-
erage routes) and maturities (e.g., several months, quarters, or calendar years into
the future). The averaging period is typically one month and the averaging is done
discretely (i.e., once per day) (Alizadeh and Nomikos, 2009). With respect to avail-
able price quotes, The Baltic Exchange does not directly quote freight option prices

90



3.3 Empirical methodology

but only daily Baltic Option Assessments (BOAs) in the form of at-the-money im-
plied volatilities. For that matter, The Baltic Exchange assumes that the Turnbull
and Wakeman (1991) model holds as factual relationship between option prices and
volatility. Accordingly, freight option prices have to be computed first in order to use
these instruments in the empirical study of hedge effectiveness.

Currently, there is no closed-form solution for pricing European-style arithmetic av-
erage options. Turnbull and Wakeman (1991) developed a closed-form solution for
European-style geometric average options that may be used as approximation for
European-style arithmetic average options. Several relevant clearing houses (e.g.,
LCH.Clearnet or NOS Clearing) state that the industry standard formula being used
for pricing freight options is the Turnbull and Wakeman (1991) approximation. There-
fore, the Turnbull and Wakeman (1991) approximation is used to derive freight option
prices within this study. The description and notation of the approximation below
largely follow the efforts by Haug (2007) and Alizadeh and Nomikos (2009). The
approximation itself is shown below in equation (3.1):

C ≈ S · e(ba−r)·t · N (d1)−X · e−r·t · N (d2)

P ≈ X · e−r·t · N (−d2)− S · e(ba−r)·t · N (−d1)
(3.1)

with
d1 =

ln( S
X

) + (ba + σ2
a

2 ) · t
σa ·
√
t

d2 = d1 − σa ·
√
t.

Within equation (3.1), the approximated price of a call is denoted by C and the
approximated price of a corresponding put by P . The variables S and X refer to the
spot price of the underlying and the strike price of the option, respectively. The risk-
free interest rate is denoted by r and the time to maturity in years by t. The adjusted
volatility, σa, and adjusted mean, ba, are given by the formulas in equation (3.2)
below:

σa =
√

ln(M2)
t
− 2 · ba

ba = ln(M1)
t

.

(3.2)

The variables M1 and M2 refer to the first and second moment of the arithmetic
average under the condition of risk neutrality, respectively. They are defined in equa-
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tion (3.3) below:

M1 = eb·t − eb·t1
b · (t− t1)

M2 = 2 · e(2·b+σ2)·t

(b+ σ2) · (2 · b+ σ2) · (t− t1) + 2 · e(2·b+σ2)·t1

b · (t− t1)2 ·
(

1
2 · b+ σ2 −

eb·(t−t1)

b+ σ2

)
.

(3.3)

Within equation (3.3), t1 refers to the time to the start of the averaging period in
years and b to the cost of carry. As freight options are options on FFAs, the cost of
carry, b, is equal to zero and M1 and M2 can be derived according to the following,
simplified formulas as stated in equation (3.4) below:

M1 = 1

M2 = 2 · eσ2·t − 2 · eσ2·t1 · (1 + σ2 · (t− t1))
σ4 · (t− t1)2 .

(3.4)

AsM1 = 1 and b = 0, the adjusted volatility, σa, is the volatility of the average on the
underlying futures or FFA volatility, σ. If the averaging period has already started,
the strike price has to be replaced by X̂ and the option value has to be multiplied by
t/t2, where t2 refers to the length of the averaging period in years. The corresponding
formula for X̂ can be seen in equation (3.5) below:

X̂ = t2
t
·X − τ

t
· Sa. (3.5)

Within equation (3.5), τ reflects the already realized time in the the averaging period
in years and Sa the average asset price during the realized part of the averaging period
so far. Now, if τ > 0 and X̂ < 0, a call option will be exercised for certain and the
value of the call option can be derived according to the following formula as shown in
equation (3.6) below:

C ≈ (E(Sa)−X) · e−r·t (3.6)

with E(Sa) = Sa ·
t2 − t
t2

+ S ·M1 ·
t

t2
.

In this case, the corresponding put will be out of the money and will expire worthless.

Although the averaging of freight options is done discretely and the Turnbull and
Wakeman (1991) approximation assumes continuous averaging, the approximation is
nevertheless used within this effort as it is considered as the industry standard option
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pricing formula for freight options by the relevant clearing houses.6

Concerning volatility smiles of freight options to create moneyness (i.e., in- or out-of-
the-money options), the relevant clearing houses (e.g., LCH.Clearnet or NOS Clearing)
use the same implied volatility for all strike prices as the current liquidity of the freight
options market does not allow to determine a correct volatility smile. Within this
study, volatility smiles of freight options are equally handled and the same implied
volatility is used for all strike prices to derive the option price. Commodity options
usually exhibit a reverse smirk rather than the constant implied volatility assumed
within Black and Scholes (1973) or Turnbull and Wakeman (1991). Accordingly,
out-of-the-money put options and in-the-money call options should be cheaper in
practice than the model implies and in-the-money put options and out-of-the-money
call options should be more expensive in practice than the model implies (Bates,
1991).

Another specific characteristic of freight options is that after the purchase or sale of the
option, quarterly and calender year options are automatically equally split into three
or 12 monthly options, respectively (Nomikos et al., 2013). The individual options are
then settled as monthly options. Consequently, quarterly and calendar year options
are basket or strip options consisting of three or 12 individual monthly options and
need to be priced accordingly (Nomikos et al., 2013). Therefore, the most granular
level of implied volatility figures available for the respective individual monthly options
is used by the clearing houses to price these individual options. As dry bulk Capesize
FFAs are quoted in USD per day, prices of freight options on these FFAs are similarly
in USD per day. Hence, the price of a quarterly option is the trading day-weighted
average price of three individual options for the respective months of the quarter and
the price of a calendar year option is the trading day-weighted average price of 12
individual monthly options of the calendar year (Nomikos et al., 2013).

3.3.2 Structural pricing model

Dry bulk Capesize vessels are rather heterogeneous with respect to size (e.g., length,
DWT, breadth, or loading capacity) and also with respect to other ship specifica-

6 Levy (1997) or Haug et al. (2003), for instance, have developed discrete time approximations for
European arithmetic average options, but these approximations have apparently not yet gained
ground at the relevant clearing houses for freight options.
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tions (e.g., engine, speed, consumption, or yard built). Accordingly, individual vessels
might be quite different from the reference vessel underlying the panelists’ estimations
for second-hand ship prices. Hence, transparency on a fair and adequate second-hand
price for an individual vessel at a certain point in time is rather low. Adland and
Koekebakker (2007) had the idea of estimating a multivariate, non-parametric model
from past vessel transactions using a market indicator (i.e., the one-year timechar-
ter rate) as well as ship specific indicators (i.e., age in years and size in DWT) as
explanatory variables. This study follows the intention by Adland and Koekebakker
(2007). However, a parametric approach in the form of a multiple linear regression
has been chosen and a SPM is estimated based on real dry bulk Capesize sale and
purchase transactions. This allows to determine the desired exposure to the selected
hedge instruments (i.e., FFAs and options on these). The SPM follows the form as
shown in equations (3.7) and (3.8) below:

SPM 1: pi,t = α + βf,1CAL · f1CAL,t + βAge · Agei,t + βDWT ·DWTi

+ βConsum · Consumi + βf1CAL·Age · f1CAL,t · Agei,t
+ βf1CAL·DWT · f1CAL,t ·DWTi

+ βf1CAL·Consum · f1CAL,t · Consumi + εi,t

(3.7)

SPM 2: pi,t = α + βf,2CAL · f2CAL,t + βAge · Agei,t + βDWT ·DWTi

+ βConsum · Consumi + βf2CAL·Age · f2CAL,t · Agei,t
+ βf2CAL·DWT · f2CAL,t ·DWTi

+ βf2CAL·Consum · f2CAL,t · Consumi + εi,t

(3.8)

Within the equations (3.7) and (3.8), the price of vessel i at time t is denoted by pi,t.
The constant of the regression is represented by α. The prices of the FFA+1CAL
and FFA+2CAL contract at time t in USD million are denoted by f1CAL,t and f2CAL,t,
respectively. The age of vessel i at time t in years is represented by Agei,t, the size of
vessel i in DWT by DWTi, and the consumption of vessel i in metric tonnes per 1,000
DWT per 1,000 nautical miles7 by Consumi. Selected interaction terms were included
in the regressions to correct the exposure to the FFA contract for extremely young
and old as well as for extremely efficient and inefficient vessels. These are represented
by f1CAL,t · Agei,t, f1CAL,t ·DWTi, f1CAL,t · Consumi, f2CAL,t · Agei,t, f1CAL,t ·DWTi,
and f2CAL,t · Consumi. The corresponding regression coefficients for the explanatory

7 Voyaging at one knot per hour corresponds to a traveled distance of one nautical mile per hour.
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variables are denoted by βf,1CAL, βf,2CAL, βAge, βDWT , βConsum, βf1CAL·Age, βf2CAL·Age,
βf1CAL·DWT , βf2CAL·DWT , βf1CAL·Consum, and βf2CAL·Consum. The error term of the SPM
is represented by εi,t. So, equations (3.7) and (3.8) are actually identical except for
the FFA+1CAL vs. FFA+2CAL contract being used as plain explanatory variable as
well as in the interaction terms.

The consumption of dry bulk vessels is usually measured in metric tonnes per day. As
dry bulk Capesize vessels are quite heterogeneous with respect to size in DWT and
speed in knots per hour, the consumption measure, Consumi, in metric tonnes per
1,000 DWT per 1,000 nautical miles has been derived in order to allow undistorted
comparisons of fuel oil consumption across vessels. Bunker costs (i.e., costs for fuel
oil) account for a large share of a vessel’s voyage costs (Stopford, 2009). Accordingly,
fuel efficiency should be an important driver of second-hand ship prices.

The model allows to determine the exposure to the market-driven explanatory vari-
ables (i.e., FFA+1CAL or FFA+2CAL contracts) at time t for ships with specific
time-varying and deterministic vessel characteristics. As freight options are options
on FFAs, the model above is equally suited to determine the desired exposure to FFAs
or corresponding freight options as hedge instruments.

3.3.3 Hedging set-up

In order to fairly assess the hedge effectiveness of competing hedging strategies, the
hedging set-up in which the different strategies are tested needs to be well defined. The
following paragraphs elaborate on the chosen hedging set-up as well as the assumptions
made to create a set-up that is, on the one hand, close to reality for shipping companies
facing such hedging decisions and, on the other hand, allows adequate comparisons
across different vessels.

With respect to the general hedging set-up, it is assumed that a shipping company
owning a vessel i knows ex ante that it wants to sell the vessel i at a particular
date in the future, ti. Moreover, the shipping company seeks protection against ship
price risk for certain time period, li, before the vessel transaction. Specifically, the
time horizon of the hedge is set to one year for all vessels and thus, li corresponds
to 252 trading days. The length of the hedge time horizon has been set to one year
for convenience reasons as the considered hedge instruments (i.e., FFA+1CAL and
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FFA+2CAL contracts as well as corresponding options on these) cover a time frame of
one calendar year. Correspondingly, the hedge is initiated at ti−252 for vessel i. The
sales or transaction price, pi,t, of vessel i is not known to the shipping company until
the sales date, ti. Nonetheless, the SPM of equation (3.7) or (3.8) allows the shipping
company to estimate a model-implied value of vessel i at ti − 252, m̂i,ti−252,Agei,ti ,
using the age of vessel i at ti, Agei,ti . Taking the age at the sales date, Agei,ti , to
estimate the value of vessel i at ti corrects for the expected aging-related loss (i.e.,
depreciation) at time ti − 252 that the shipping company would have to account for
in any case. The shipping company’s objective rather is to hedge any downside vessel
price fluctuations besides the normal, expected depreciation. Of course, unexpected
additional or reduced aging-related loss may occur throughout the hedge from time
ti − 252 to ti if the market circumstances change. Accordingly, the aging-related loss
realized at the sales date, ti, is eventually market-driven. The model-implied value,
m̂i,ti−252,Agei,ti , corresponds to the value of the physical or unhedged position of vessel i
at the hedging start date, ti − 252, and its computation follows from equation (3.9)
below:

m̂i,ti−252,Agei,ti = α{·} + βf,{·} · f{·},ti−252 + βAge,{·} · Agei,ti + βDWT,{·} ·DWTi

+ βConsum,{·} · Consumi + βf{·}·Age · f{·},ti−252 · Agei,ti
+ βf{·}·DWT · f{·},ti−252 ·DWTi

+ βf{·}·Consum · f{·},ti−252 · Consumi

(3.9)

with {·} ∈ {1CAL, 2CAL}.

Regarding the corresponding hedge position that is taken at ti − 252, the desired
hedge exposure is determined using the SPM of equation (3.7) or (3.8). Aggregating
the exposure to f1CAL,t or f2CAL,t contracts yields the desired hedge exposure for
vessel i in number of lots. As FFAs are quoted in USD per day and the lot size is one
day, the FFA value is first transformed to USD million to match quoted vessel prices.
The desired hedge exposure in number of lots is shown in equation (3.10) below:

di,ti−252,{·} = βf,{·} + βf{·}·Age · Agei,ti + βf{·}·DWT ·DWTi

+ βf{·}·Consum · Consumi

(3.10)

with {·} ∈ {1CAL, 2CAL}.

For reasons of practicality, the result of equation (3.10) is rounded to two decimal
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digits as the minimum number of lots per contract for FFAs and freight options is
1

100 -th of a lot according to the product specifications provided by NOS Clearing.

In addition, the following general assumptions regarding the hedging set-up have
been made. Firstly, as the calendar-year FFA contracts and corresponding options
are rolled over once per year, typically around December 22nd or 23rd, the hedging
position is closed out on the last trading day before the rollover date and re-entered on
the first trading day after the rollover date. Secondly, transaction costs are considered
in the form of a fixed fee of USD 8 per lot or contract traded for both FFAs and freight
options8 plus half the mean estimated bid-/ask-spread for the respective hedging
instrument. Given the generally higher liquidity of FFAs compared to freight options
(see appendix A.2 on page 135 for details), hedging strategies involving freight options
usually face relatively higher transaction costs in the form of larger bid-/ask-spreads.
As no bid-/ask-spreads are available from The Baltic Exchange, the mean bid-/ask-
spreads for the individual instruments were estimated from the historical weekly log
return autocovariances using the method of Roll (1984). Accordingly, the differences in
bid-/ask-spreads between FFAs and freight options have been accounted for in order
not to distort any hedging results towards freight options. Details on the average
bid-/ask-spread estimations can be found in the appendix A.2 on page 135.

Finally, as FFAs are usually cleared and ‘marked to market’ by respective clearing
houses, the interest effect on any accumulated gains or losses on the margin account is
considered in the form of a daily margining using the USD London Interbank Offered
Rate (LIBOR) overnight rate. According to LCH.Clearnet, freight options are not
‘marked to market’ in a typical way. Nevertheless, these instruments are cleared as
well by clearing houses. The option premium is exchanged up-front and the margin
requirement is calculated using London Standard Portfolio Analysis of Risk (SPAN).
For long option positions, the net liquidation value (i.e., the amount of money required
to close out a position in case of default of one of the counterparties) is credited on the
margin account and this usually results in a close-out profit. For short options, the net
liquidation value is debited on the margin account besides the margin requirement.
Both margin requirement and net liquidation value are reassessed on a daily basis. For
reasons of simplification, the margining of option positions is done largely similarly

8 LCH.Clearnet and NASDAQ OMX reported a fixed transaction and margining fee of USD 8 per
lot or contract traded for FFAs and freight options for block trades. Due to the considerable
number of lots traded for each hedge, it is assumed that the trades considered within this
empirical study qualify as block trades.
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to FFAs by just deriving daily option prices for the margin account within this study.
However, for long option positions, only positive interest effects on cumulative gains
of the option position are considered as any potential losses have already been covered
by the payment of the option premium at the hedge initiation and no interest effect
on the cumulative losses of the position need to be considered on the margin account.
The contrary happens for short option positions. Only negative interest effects on
cumulative losses of the position are considered as any potential gains have already
been covered by the receipt of the option premium at the hedge initiation. Besides,
interest on the option premium itself is considered for both long and short option
positions on the margin account. As a result of the margining, the desired exposure
at the hedge initiation, ti − 252, is corrected using a tailing factor. The concept of
tailing a hedge has been developed by Figlewski et al. (1991). The tailing factor at
ti − 252, bti−252, is derived according to equation (3.11) as shown below:

bti−252 = e−rLIBOR-12M,ti−252
(ti−(ti−252))

252 = e−rLIBOR-12M,ti−252 . (3.11)

For the tailing factor, the USD LIBOR 12-month rate, rLIBOR-12M,ti−252, is used to
match the hedging time horizon of one year. The tailed number of lots is again
rounded to two decimal digits for reasons of practicality as stated earlier in this
subsection.

As already stated above, the considered hedge instruments are rolled over once per
year and thus, each hedge encounters such a rollover date. Accordingly, the hedge is
split into two consecutive hedges (i.e., from ti− 252 to the rollover date and from the
rollover date to ti). Accordingly, the expected age effect on the physical position, the
desired exposure, and the tailing factor are dynamically adjusted. The expected age
effect, for instance, is proportionally split across the two consecutive hedging periods.

The change in the physical position from ti−252 to ti, ∆252vPHYPOS,i, is the difference
between the sales price of vessel i at ti, pi,ti,Agei,ti , and the model-implied value for
vessel i at ti−252, m̂i,ti−252,Agei,ti , taking the age of vessel i at ti, Agei,ti . The formula
to compute ∆252vPHYPOS,i is shown in equation (3.12) below:

∆252vPHYPOS,i = pi,ti,Agei,ti − m̂i,ti−252,Agei,ti . (3.12)

The change in the hedge position from ti − 252 to ti, ∆252vHEPOS,i, consists of the
cumulative profit/loss of the position itself plus the interest effect on the margin
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account. The computation of ∆252vHEPOS,i for hedging strategies involving short FFAs,
long put, or short call freight options is shown in equations (3.13), (3.14), and (3.15)
below:

Hedging strategy involving short FFAs:

∆252vHEPOS,i = (wi,ti − wi,ti−252) +
251∑
j=1

 (wi,ti−252+j − wi,ti−252+j−1)
j−1∏
k=0

erLIBOR-ON,ti−252+k· 1
252 − 1

 (3.13)

Hedging strategy involving long put freight options:

∆252vHEPOS,i = (wi,ti − wi,ti−252)

+
251∑
j=1

(
1{xi,j>0} (xi,j) · xi,j

(
erLIBOR-ON,ti−252+j · 1

252 − 1
))

+
251∑
k=2

k−1∑
j=1

(
1{xi,j>0} (xi,j) · xi,j

(
erLIBOR-ON,ti−252+j · 1

252 − 1
)) (

erLIBOR-ON,ti−252+k· 1
252 − 1

)
− zi,ti−252

( 252∏
h=1

erLIBOR-ON,ti−252+h· 1
252 − 1

)

(3.14)

with xi,j = wi,ti−252+j − wi,ti−252

and 1{xi,j>0}(xi,j) =

1 if xi,j > 0

0 if xi,j ≤ 0
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Hedging strategy involving short call freight options:

∆252vHEPOS,i = (wi,ti − wi,ti−252)

+
251∑
j=1

(
1{xi,j≤0} (xi,j) · xi,j

(
erLIBOR-ON,ti−252+j · 1

252 − 1
))

+
251∑
k=2

k−1∑
j=1

(
1{xi,j≤0} (xi,j) · xi,j

(
erLIBOR-ON,ti−252+j · 1

252 − 1
)) (

erLIBOR-ON,ti−252+k· 1
252 − 1

)
+ zi,ti−252

( 252∏
h=1

erLIBOR-ON,ti−252+h· 1
252 − 1

)

(3.15)

with xi,j = wi,ti−252+j − wi,ti−252

and 1{xi,j≤0}(xi,j) =

1 if xi,j ≤ 0

0 if xi,j > 0
.

Within the equations (3.13), (3.14), and (3.15) above, the initial hedge position is
denoted by wi,ti−252 and results from multiplying the tailed number of lots of equa-
tion (3.10) (i.e., the desired exposure to the respective hedge instrument) by the
respective FFA or freight option price depending on the hedging strategy. The overall
change of the hedge position excluding interest effect is given by wi,ti −wi,ti−252. The
daily cumulative delta of the hedge position, wi,ti−252+j − wi,ti−252, is multiplied by
erLIBOR-ON,ti−252+j · 1

252 − 1, where rLIBOR-ON,ti−252+j denotes the USD LIBOR overnight
rate at time ti − 252 + j, to account for the daily interest effect on any accumulated
gains or losses on the margin account. The cumulative daily interest effect itself is
then multiplied by erLIBOR-ON,ti−252+k· 1

252 − 1 to account for compound interest. For the
case with freight options, the option premium, zi,ti−252, is paid initially for long put
freight options and received initially for short call freight options. The corresponding
interest effect on the option premium is computed using the USD LIBOR overnight
rate and is also considered in the hedge position delta from ti−252 to ti, ∆252vHEPOS,i.

The general goal of the shipping company is to minimize the variation of the ag-
gregated portfolio. The variation of the aggregated portfolio from ti − 252 to ti,
∆252vPORTF,i, consists of the change in the physical position and the change in the
hedge position. The computation of ∆252vPORTF,i for all hedging strategies is shown
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in equation (3.16) below:

∆252vPORTF,i = ∆252vPHYPOS,i + ∆252vHEPOS,i. (3.16)

In order to measure the hedge effectiveness of any hedging strategies later on, annu-
alized log returns of both the physical position and the aggregated portfolio need to
be derived first. The annualized log return of the physical position of vessel i from
time ti − 252 to ti, rPHYPOS,i,ti,ann., is computed according to equation (3.17) below:

rPHYPOS,i,ti,ann. = ln
(

pi,ti,Agei,ti
m̂i,ti−252,Agei,ti

)
· ti − (ti − 252)

252

= ln
(

pi,ti,Agei,ti
m̂i,ti−252,Agei,ti

)
.

(3.17)

Accordingly, the annualized log return of the aggregated portfolio of vessel i from time
ti − 252 to ti, rPORTF,i,ti,ann., is computed according to equation (3.18) below:

rPORTF,i,ti,ann. = ln
(

vPORTF,i,ti
vPORTF,i,ti−252

)
· ti − (ti − 252)

252 = ln
(

vPORTF,i,ti
vPORTF,i,ti−252

)
. (3.18)

Within equation (3.18) above, vPORTF,i,ti−252 and vPORTF,i,ti represent the value of the
aggregated portfolio at initiation of the hedge, ti−252, and at the end of the hedge, ti,
respectively. As it is assumed that the initial option premium is financed at the risk-
free rate, the initial portfolio value, vPORTF,i,ti−252, is equal to the physical position at
time ti − 252, m̂i,ti−252,Agei,ti .

As a reference, the annualized log risk-free return from time ti− 252 to ti, rRF,i,ti,ann.,
is computed by taking the log of the average daily USD LIBOR 12-month rate from
ti − 252 to ti.

The peculiarity of this empirical study is that transaction prices of one and the same
vessel cannot be observed in a regular frequency like other typical financial or asset
price time series. Accordingly, only one return observation per vessel of the physical
position as well as the portfolio from time ti− 252 to ti is observed. In order to draw
inferences on the hedge effectiveness of different, competing hedging strategies, an
aggregated perspective across vessels is taken for the purpose of this study. Aggregat-
ing across vessels yields the following mean log returns and variances for the physical
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position as well as the portfolio as shown in equations (3.19) to (3.23) below:

r̄PHYPOS = 1
i

i∑
j=1

rPHYPOS,j,tj ,ann. (3.19)

r̄PORTF = 1
i

i∑
j=1

rPORTF,j,tj ,ann. (3.20)

r̄RF = 1
i

i∑
j=1

rRF,j,tj ,ann. (3.21)

σ2
PHYPOS = 1

i− 1

i∑
j=1

(
rPHYPOS,j,tj ,ann. − r̄PHYPOS

)2
(3.22)

σ2
PORTF = 1

i− 1

i∑
j=1

(
rPORTF,j,tj ,ann. − r̄PORTF

)2
. (3.23)

3.3.4 Hedge effectiveness measures

Regarding the measurement of the hedge effectiveness, several measures are discussed
below and used to assess the hedge effectiveness within this empirical study. These
measure largely arise from the following three categories: variance perspective, risk-
return perspective, and downside-risk perspective.

3.3.4.1 Variance perspective

The classical variance perspective was developed by Ederington (1979). He suggested
to measure the hedge effectiveness of futures hedges by the variance reduction of the
hedge vs. the unhedged position’s log returns. The measure as defined by Ederington
(1979) is shown in equation (3.24) below:

HEED =
σ2
s − σ2

p

σ2
s

= 1−
σ2
p

σ2
s

. (3.24)

Within equation (3.24) above, σ2
s and σ2

p refer to the variance of the spot (unhedged)
and portfolio (hedged) log returns, respectively. Ederington (1979) observed spot and
portfolio positions over time in order to asses the variance of the positions.

Within the context of this empirical study, the measure needs to be slightly adjusted
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and equation (3.24) is changed to equation (3.25) as shown below:

HEED = 1− σ2
PORTF

σ2
PHYPOS

. (3.25)

As this measure does only take into account the reduction in variance, it is not ade-
quately suitable for measuring the effectiveness of hedging strategies involving options
because of the asymmetric payoff structure of options. Nevertheless, the measure is
computed within this empirical study for comparison purposes.

3.3.4.2 Risk-return perspective

Several alternatives combining the risk as well as return perspective have been pro-
posed within the academic literature. These measures are mainly based on the idea
of the Sharpe ratio (Sharpe, 1966). The revised measure by Howard and D’Antonio
(1987) was chosen as a representative for the risk-return perspective as it addresses
some flaws identified in the original measure by Howard and D’Antonio (1984). The
revised measure assesses the increase in the Sharpe ratio from unhedged to hedged
portfolio which is shown in equation (3.26) below:

HEHDA revised = rp − rrf
σp

− rs − rrf
σs

= θp − θs. (3.26)

Within equation (3.26) above, rs and rp refer to the log returns of the spot (unhedged)
and portfolio (hedged) position, respectively. The risk-free rate is denoted by rrf

and σs and σp refer to the standard deviation of the spot and portfolio log returns,
respectively. θs and θp denote the Sharpe ratio of the spot and portfolio position,
respectively.

Applied to the context of this empirical study, the measure also needs to be adjusted
slightly to the following form as shown in equation (3.27) below:

HEHDA revised = r̄PORTF − r̄RF
σPORTF

− r̄PHYPOS − r̄RF
σPHYPOS

. (3.27)

Accordingly, the measure provides a risk-adjusted perspective on the generated re-
turns. With the asymmetric payoff structure of option-based hedging strategies,
however, this measure may also not be adequately suitable for measuring the hedge
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effectiveness of the strategies considered within this study.

3.3.4.3 Downside-risk perspective

Turning to the downside-risk perspective, another approach to assess the hedge ef-
fectiveness of instruments with asymmetric payoff structures, such as options, is the
concept of the LPM. The concept has been initially brought to portfolio theory by
Bawa (1975), Bawa and Lindenberg (1977), Fishburn (1977), and Bawa (1978). The
LPM only considers deviations that are below a certain boundary, threshold, or tar-
get, c. The LPM of order m is defined for a continuous random variable, X, with
f(x) being the probability density function (PDF) of X as shown in equation (3.28)
below:

LPMm(c,X) = E(max(c−X, 0)m) =
c∫

−∞

(c− x)m · f(x) dx. (3.28)

The LPM is a family of risk measures specified by the boundary, threshold, or target,
c, and the order of the moment, m. The boundary, threshold, or target is often set to
the risk-free rate, the inflation rate, or simply to zero. By choosing the order of the
moment an investor can adjust the measure to suit his risk aversion level. Intuitively,
large values of m penalize larger deviations from the boundary or target more than
smaller deviations.

Applying equation (3.28) to the context of this study would require to estimate em-
pirical return distributions from the return outcomes of the physical position as well
as portfolio. Making distributional assumptions might be a source of error for the
results and corresponding interpretations and implications. As a consequence, sample
lower partial moments across all vessels from 1 to i of the following general form are
rather considered within the study as shown in equation (3.29) below:

LPMm(r̄RF, X) = E(max(r̄RF −X, 0)m) = 1
i

i∑
1

(max(0, r̄RF − xi))m. (3.29)

Within equation (3.29), the mean risk-free rate, r̄RF, has been selected as the bound-
ary, threshold, or target similar as in the HEHDA revised-measure. Accordingly, the
physical and portfolio position LPM of order m are computed according to the equa-
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tions (3.30) and (3.31) as shown below:

LPMm(r̄RF, rPHYPOS,i,ti,ann.) = 1
i

i∑
1

(max(r̄RF − rPHYPOS,i,ti,ann., 0))m (3.30)

LPMm(r̄RF, rPORTF,i,ti,ann.) = 1
i

i∑
1

(max(r̄RF − rPORTF,i,ti,ann., 0))m. (3.31)

The hedge effectiveness, HELPMm , is then measured as the reduction of the mth-
order LPM from the physical (unhedged) to the portfolio (hedged) position. The
computation of the measure is shown in equation (3.32) below:

HELPMm = 1− LPMm(r̄RF, rPORTF,i,ti,ann.)
LPMm(r̄RF, rPHYPOS,i,ti,ann.)

. (3.32)

With respect to the order, m, of the LPM-based hedge effectiveness measure, values of
2, 3, and 4 have been selected for m in order to reflect moderately risk-averse shipping
companies (i.e., m = 2) as well as strongly risk-averse shipping companies (i.e., m = 3
andm = 4). The latter two measures punish larger negative deviations from the target
return level (i.e., the risk-free rate) more than smaller negative deviations.

A combined perspective on downside risk and return was provided by Sortino and
Price (1994). They suggested to look at the excess return above the minimum accept-
able return (MAR) over the downside deviation (i.e., the deviations below the MAR),
which is also known as Sortino ratio. With respect to the context of this empirical
study, the MAR is set to the risk-free rate and the ratio is computed for the physical
and portfolio position according to equations (3.33) and (3.34) as shown below:

SRPHYPOS = r̄PHYPOS − r̄RF√
LPM2(r̄RF, rPHYPOS,i,ti,ann.)

(3.33)

SRPORTF = r̄PORTF − r̄RF√
LPM2(r̄RF, rPORTF,i,ti,ann.)

. (3.34)

The Sortino ratio is also used to derive a hedge effectiveness measure. Similarly to the
HEHDA revised-measure, the Sortino measure for hedge effectiveness proposed within
this paper looks at the simple increase in the Sortino ratio from physical (unhedged)
to portfolio (hedged) position. The measure is computed according to equation (3.35)
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as shown below:

HESR = SRPORTF − SRPHYPOS. (3.35)

The set of different hedge effectiveness measures introduced above allows to assess the
performance of the different hedging strategies tested within this empirical study from
different angles and different investors’ or shipping companies’ risk aversion levels.

3.3.5 Hedging strategies

The different, competing hedging strategies tested within this empirical study are
explained in more detail in the following paragraphs. The tested hedging strategies
are the five ones below:

A) short FFA strategy (as reference case),
B) long at-the-money put option strategy,
C) long 10 % out-of-the-money put option strategy,
D) replicated short FFA strategy using options, and
E) zero-cost collar strategy using options.

In order to have a reference strategy for the performance of option-based hedging
strategies, strategy A is a simple short FFA cross-hedge using either FFA+1CAL or
FFA+2CAL contracts and requires no up-front investment. The short FFA position
is intended to offset positive and negative ship price fluctuations.

Strategy B is a simple long at-the-money cross-protective put hedge using options on
either FFA+1CAL or FFA+2CAL contracts and requires an up-front investment of
the option premium. This strategy limits the downside risk of ship price fluctuations
at the cost of the option premium.

Strategy C is very similar to strategy B. However, the long put contracts are bought
10 % out-of-the-money. Accordingly, this reduces the initial investment but allows for
some downside variation up to the strike price at the same time.

Strategy D is intended to replicate the payoff of strategy A of either FFA+1CAL
or FFA+2CAL contracts by combining a long at-the-money put with a short at-the-
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money call. As a call option is usually slightly more expensive than the corresponding
put option, the proceedings from this strategy are invested at the risk-free rate (i.e.,
the USD LIBOR overnight rate on the margin account) to replicate the FFA payoff.

Strategy E is pretty similar to strategy D. Here, however, the put option is bought
at-the-money and the call option sold slightly out-of-the-money, such that the initial
investment is zero (i.e., the option premium received for the written call exactly
covers the amount required to buy the long put). The strategy is also called zero-
cost collar. The set-up of the strategy requires to solve the Turnbull and Wakeman
(1991) approximation on the individual monthly option level for the strike prices of
the individual monthly call options given the prices of the at-the-money monthly put
options at the hedge initiation for any subsequent valuation of the short call options.
As no closed-form solution exists for this problem, the individual call strike prices are
solved numerically using the strike prices of the put option as an initial guess. The
price for the basket or strip call option is then the trading day-weighted average of
the 12 individual monthly call options.

Consequently, strategies B and C only limit the downside risk, whereas strategies A, D,
and E limit both the risk of positive and negative ship price fluctuations. Strategies D
and E involve two different hedge instruments simultaneously. Accordingly, these two
hedge instruments always have to be aggregated with respect to current position,
accumulated gains or losses, and associated interest effects.

In terms of hypotheses on the performance of the different hedging strategies, one
would typically expect the two one-sided option strategies B and C to perform worse
from a pure variance perspective as they allow for upside variation. Moreover, as
options require the initial payment of the premium which leads to an interest effect
burden for these one-sided strategies, one would expect these strategies also to per-
form worse from a risk-return perspective. However, all five strategies are expected
to provide equally well downside-risk protection. From a combined perspective of
downside risk and return, the benefit of keeping the upside potential should lead to
superior results for the one-sided, option-based strategies B and C. For strategy D,
results from studies in other financial markets suggest that synthetic futures repli-
cated using options do not outperform the futures themselves, so that strategy A is
expected to be superior to strategy D (see, for instance, Chang and Shanker (1986)
and Hsin et al. (1994) on currencies or Benet and Luft (1995) on the S&P 500 index).
For strategy E, one would expect that the performance is very close to the perfor-
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mance of strategy D but might be slightly worse as the payoff of the strategy A is not
exactly replicated.

3.4 Description of the data

Concerning the data used within this empirical study, the following paragraphs provide
detailed descriptions of the different data sources as well as plots and descriptive
statistics of the data (i.e., where applicable and adequate). As already stated in
section 3.1, the research project focuses on the dry bulk Capesize vessel class. The
Capesize vessel class comprises vessels of 100,000 DWT in size and larger. The recent,
largest newbuildings in this class have exceeded the 400,000 DWT mark. Given their
size, Capesize vessels are almost exclusively engaged in the transport of dry bulk
goods that are traded in vast quantities, such as iron ore, coal, and partly grain.
Accordingly, the main trading routes of these vessels follow certain trade patterns (i.e.,
from Southern America to Northern America, and Europe as well as from Australia
to Asia) and seasonality is certainly an aspect for agricultural products, such as grain
(Alizadeh and Nomikos, 2009; Stopford, 2009). The current reference vessel, as defined
by The Baltic Exchange, has a size of 172,000 DWT and serves as underlying for
Capesize vessel price estimations by panelists (i.e., BSPA and SIN second-hand ship
price assessments).

Regarding the time horizon considered within this empirical study, the available data
suggest to concentrate on hedges from January 2008 until December 2014 as freight
options in their current version have only been launched in January 2008. Dry bulk
Capesize vessel transactions as well as FFA data is already available from January
2005 onwards. This already allows to calibrate the SPMs from January 2005 onwards.

Dry bulk Capesize sale and purchase transaction data were obtained from Clarkson
Research World Fleet Register (WFR) for the time period ranging from January 13th,
2005 until December 2nd, 2014. This data set includes 277 vessel transactions and
contains the following information on the individual sales transactions: transaction
date, transaction price, vessel name, age at transaction, DWT, speed, consumption,
and International Maritime Organization (IMO) number as unique ship identifier.
Transactions with negative age at the time of the sale were excluded from the analysis9

9 The data set contained several vessels that were sold before the ship building was completed,
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just as vessels that were sold as part of an ‘en bloc’ transaction.10

Table 3.1: Descriptive statistics of second-hand Capesize vessel transac-
tions 2005-2014

Price in USD million Age in years DWT in metric tonnes

Year # Avg. Min. Max. Avg. Min. Max. Avg. Min. Max.

2005 26 39.80 12.50 80.30 14.37 0.70 24.27 162,783 129,237 243,850
2006 32 42.12 11.00 81.00 12.88 0.32 23.99 171,548 141,014 275,616
2007 51 54.17 9.00 152.00 15.91 0.05 25.82 177,112 105,496 285,933
2008 18 51.80 18.00 130.00 16.71 2.85 25.56 172,453 100,314 290,160
2009 37 28.83 3.65 62.00 14.73 2.69 25.02 176,790 128,826 284,480
2010 20 29.02 10.50 84.90 16.05 0.41 25.35 174,066 148,982 275,616
2011 19 24.31 12.50 58.00 13.94 0.53 27.75 165,375 148,535 180,265
2012 25 14.48 6.65 38.00 15.40 0.32 22.14 176,146 147,048 322,457
2013 29 21.26 7.50 52.00 12.71 0.75 20.12 179,518 149,210 280,537
2014 20 32.75 8.30 55.00 9.85 0.02 22.53 173,912 150,966 184,744

Total 277 35.45 3.65 152.00 14.37 0.02 27.75 173,687 100,314 322,457
The table shows selected descriptive statistics of the remaining second-hand Capesize vessel sales for the time
period ranging from January 13th, 2005 to December 2nd, 2014 in the data set.

Table 3.1 shows selected descriptive statistics of the second-hand transactions in the
considered data set. The mean sales price was USD 35.45 million, the mean vessel
age at transaction 14.37 years, and the mean vessel size in DWT 173,687 metric
tonnes. The transaction prices ranged from a minimum of USD 3.65 million in 2009
to a maximum of USD 152.00 million in 2008. The age of the vessels sold ranged
from 0.02 years in 2014 for the youngest vessel to 27.75 years in 2011 for the oldest
vessel. The heterogeneity in terms of vessel size can been seen by means of the DWT
statistics. The smallest vessel sold had a size of 100,314 DWT, whereas the largest
vessel sold had a size of 322,457 DWT. This is more than three times the size of the
smallest vessel.

Additionally, daily dry bulk Capesize FFA price quote time series data were collected
from The Baltic Exchange for the time period ranging from January 4th, 2005 until
December 31st, 2014. The data set includes daily dry bulk Capesize FFA price quotes
for all available maturities up to FFA+7CAL contracts11 on the average of the four

especially in the years 2006 and 2007. These transactions were considered incomparable to
classical second-hand transactions and thus, were excluded from the analysis.

10 ‘En bloc’ sales are transactions in which two or more ships are sold for a consolidated price.
Unfortunately, breakdowns of the consolidated prices or allocations to individual vessels are not
available.

11 This means dry bulk Capesize 4TC FFA contracts with the following maturities: CURMON,
CURQ, +1MON, +2MON, +3MON, +1Q, +2Q, +3Q, +4Q, +1CAL, +2CAL, +3CAL, +4CAL,
+5CAL, +6CAL, and +7CAL.
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Chapter 3 Hedging Capesize ship price risks using freight options

mostly-used trip charter routes (i.e., 4TC contracts). The granularity of FFA price
quotes is required in order to accurately price calendar-year basket or strip freight
options.

Figure 3.1: Dry bulk Capesize FFA price time series 2005-2014
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The graph shows daily dry bulk Capesize 4TC FFA+1CAL and FFA+2CAL price time series
for the time period ranging from January 4th, 2005 to December 31st, 2014.
Source: own graph based on daily data from The Baltic Exchange

Figure 3.1 shows a plot of the dry bulk Capesize FFA+1CAL and FFA+2CAL time
series. The plot clearly depicts the rising freight rates and FFA prices from 2006 until
mid-2008, the prominent decline in late 2008 with the outburst of the financial crisis,
and the subsequent recession that the shipping industry has been facing ever since.
During the boom phase, the FFA+1CAL rate peaked at almost USD 145,000 per day
in late 2007 and the spread between FFA+1CAL and FFA+2CAL contracts consid-
erably widened reflecting a market in backwardation. During the ongoing recession,
the FFA rates fluctuated around USD 25,000 per day from 2009 to 2011 and the price
levels even fell after that.

Table 3.2 shows the descriptive statistics for daily FFA+1CAL and FFA+2CAL
time series. Within the time frame considered, the mean prices for the FFA+1CAL
and FFA+2CAL contracts were USD 35,354 and USD 29,189, respectively. Both
time series are characterized considerable negative annualized log returns of -15.18 %
and -9.00 %, respectively, as well as considerable volatility expressed as annualized
standard deviation of the daily log returns of 50.33 % and 35.28 %, respectively.
Furthermore, the two time series exhibit considerably left-skewness, excess kurtosis,
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3.4 Description of the data

Table 3.2: Descriptive statistics for dry bulk Capesize FFA price time
series 2005-2014

4TC FFAs

Statistic Type +1CAL +2CAL

Mean (in USD) Level data 35,353.607 29,188.647
Mean (in %) Log returns -15.175 -8.999
Standard deviation (in %) Log returns 50.331 35.280
Skewness Log returns -3.079 -2.692
Kurtosis Log returns 55.927 45.717
Jarque-Bera Log returns 297,995.835*** 194,565.451***
ADF Level -2.201 -2.099
ADF Log returns -40.071*** -37.560***
PP Level -1.718 -1.454
PP Log returns -40.720*** -37.932***

The table shows descriptive statistics for daily Capesize 4TC FFA+1CAL and FFA+2CAL price
time series for the time period ranging from January 4th, 2005 to December 31st, 2014. This
leaves 2,520 daily level observations and 2,519 log return observations. The mean is given for level
data and log returns and the mean and standard deviation of the log returns are annualized based
on an average of 252 trading days in the considered time frame. The remaining statistics are
based on log returns. The kurtosis measure states the estimated centralized fourth moment, not
the excess kurtosis. The Jarque and Bera (1980) test statistic for normality is χ2(2) distributed
with critical values of 4.60, 5.99, and 9,21 at the 10 %, 5 %, and 1 % level, respectively. ADF
refers to the Augmented Dickey-Fuller-test developed by Dickey and Fuller (1981) and PP refers
to the Phillips-Perron-test developed by Phillips and Perron (1988). The lag length was chosen
by minimizing the Schwarz-Bayes Information Criterion (SBIC) criterion. The 10 %, 5 %, and
1 % critical values for the ADF- and PP-tests are -2.570, -2.867, and -3.443, respectively.

and are significantly different from a normal distribution as the Jarque and Bera
(1980) test statistic for normality indicates. Unit root tests (i.e., ADF and Phillips-
Perron tests) of the time series indicate that the level time series are non-stationary,
whereas the log return time series are stationary.

Moreover, daily dry bulk Capesize BOA time series data in the form of at-the-money
implied volatilities were obtained from The Baltic Exchange for the time period rang-
ing from January 2nd, 2008 until December 31st, 2014. Freight options on 4TC FFAs
are called CTC option contracts. As for the FFA price quote time series, the data set
also includes similar maturities as for FFAs but only up to CTC+4CAL contracts.12

As already mentioned in subsection 3.3.1, these BOA quotes reflect implied volatility
assessments for at-the-money options. As the low liquidity within the freight option
market does not allow for accurate volatility smiles, the same implied volatilities are
used to compute prices for in-the-money and out-of-the-money options.

Figure 3.2 shows a plot of CTC+1CAL and CTC+2CAL BOA implied volatilities.

12 Further out maturities have not yet been launched for dry bulk Capesize freight option contracts.
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Figure 3.2: Dry bulk Capesize freight option BOA implied volatilities
2005-2014
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The graph shows daily dry bulk Capesize BOA implied volatilites for CTC+1CAL and
CTC+2CAL freight options for the time period ranging from January 4th, 2005 to Decem-
ber 31st, 2014.
Source: own graph based on daily data from The Baltic Exchange

The plot indicates that shorter maturity options exhibit higher implied volatility
figures as expected. Moreover, implied volatilities seem to rise throughout the year
as the time to maturity of the option decreases. At the rollover dates at the end of
the year, setbacks of the implied volatility levels can be seen reflecting the increased
time to maturity when the calendar-year options refer to the respective subsequent
calendar year. As already indicated in subsection 3.3.1, the implied volatility figures
plotted here are not used to price entire calendar-year freight options. The calendar-
year freight options are basket or strip options consisting of 12 individual monthly
options which are individually priced using the most granular implied volatility figure
available.

Besides, daily USD LIBOR 12-month and overnight rates were collected from Datas-
tream for the time period ranging from January 3rd, 2005 to December 31st, 2014.
These interest rates are used to determine appropriate tailing factors for the hedges
as well as for the margining to determine the interest effect in the empirical analysis.
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3.5 Estimation results

Within this section, the results of the empirical analyses are presented and interpreted.
Firstly, the model estimations for the SPMs that serve as basis for the subsequent
hedging strategies are presented and discussed. Secondly, the performance of the five
competing hedging strategies is presented and examined. Finally, several robustness
checks are performed in order to ensure the reliability of the presented results as well
as the drawn implications.

3.5.1 Structural pricing model

With respect to the SPMs, several combinations of explanatory variables have been
tested. However, the two model forms as presented in equations (3.7) and (3.8) in
subsection 3.3.2 yielded the best trade-off between explanatory power and suitability
for the subsequent hedging purposes. Including also spot freight market information
or non-linear FFA terms, for instance, would have improved the explanatory power
of the models. However, trading or replicating these positions for hedging purposes
is hardly possible and thus, not constructive for the intended study at hand.

Before estimating the coefficients or parameters of the two models, the FFA price
quotes corresponding to the respective vessel sales date have been first transformed
into USD million per day in order to match the unit of the vessel price quotes.

Table 3.3 shows the model estimations for the SPM 1 and SPM 2 of equations (3.7)
and (3.8). The estimation results indicate that the coefficients of the explanatory
variables are mostly significant at the 1 % level. Only the βDWT -coefficient is not
significant at the 10 % level in the SPM 1. However, the coefficient is significant at
the 5 % level in the SPM 2. The βConsum-coefficient is significant only at the 5 % level
in the SPM 1. The coefficient signs are generally in line with economically intuitive
expectations of the influence of the explanatory variable on the ship price. Only
the positive sign estimated for the βConsum-coefficient is economically not intuitive at
first glance as fuel inefficient vessels should be less worth than fuel efficient vessels.
However, the effect is offset on an aggregated level together with the negative sign
of the rather large βf ·Consum-coefficient of the interaction term between FFA and
consumption. For the respective means of the FFA+1CAL and FFA+2CAL price
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Table 3.3: Estimates for different Capesize structural pricing models

SPM 1:
pi,t = α+ βf,1CAL · f1CAL,t + βAge ·Agei,t + βDWT ·DWTi + βConsum · Consumi

+ βf1CAL·Age · f1CAL,t ·Agei,t + βf1CAL·DWT · f1CAL,t ·DWTi

+ βf1CAL·Consum · f1CAL,t · Consumi + εi,t

SPM 2:
pi,t = α+ βf,2CAL · f2CAL,t + βAge ·Agei,t + βDWT ·DWTi + βConsum · Consumi

+ βf2CAL·Age · f2CAL,t ·Agei,t + βf2CAL·DWT · f2CAL,t ·DWTi

+ βf2CAL·Consum · f2CAL,t · Consumi + εi,t

SPM 1 (FFA+1CAL) SPM 2 (FFA+2CAL)

Coefficient t-stat. p-value Coefficient t-stat. p-value

α 13.4143 0.9162 0.3604 -11.4413 -0.6718 0.5023
(14.6408) (17.0311)

βf 1,862.0948*** 7.5961 0.0000 3,120.4766*** 7.8519 0.0000
(245.1389) (397.4180)

βAge -1.8420*** -9.6673 0.0000 -1.7095*** -7.6353 0.0000
(0.1905) (0.2239)

βDWT 5.925·10−05 1.4802 0.1400 9.547·10−05** 2.0557 0.0408
(4.002·10−05) (4.644·10−05)

βConsum 20.2928** 1.9996 0.0465 31.2894*** 2.6484 0.0086
(10.1484) (11.8145)

βf ·Age -11.2887*** -3.0253 0.0027 -18.7948*** -3.1776 0.0017
(3.7315) (5.9147)

βf ·DWT -0.0022*** -3.2090 0.0015 -0.0040*** -3.6225 0.0003
(0.0007) (0.0011)

βf ·Consum -871.5250*** -5.3190 0.0000 -1,432.5039*** -5.3727 0.0000
(163.8518) (266.6249)

R2 0.7341 0.7425
Adj. R2 0.7272 0.7358
Log likelihood -1,085.3001 -1,080.8666
SBIC criterion 7.9985 7.9665
Akaike criterion 7.8938 7.8619
Standard error 12.3514 12.1552

The table shows linear regression coefficient estimates for two different SPMs based on data for 277 Capesize
vessel transactions and corresponding FFA time series data from January 13th, 2005 to December 2nd, 2014. pi,t
refers to the price of vessel i at time t in USD million, f1CAL to the price of a FFA+1CAL contract at time t in
USD million, f2CAL to the price of a FFA+2CAL contract at time t in USD million, Agei,t to the age of vessel i
at time t in years, DWTi to the size of vessel i in DWT, and Consumi to the consumption per 1,000 nautical
miles per 1,000 DWT of vessel i in metric tonnes. Figures in () reflect the corresponding standard errors.
* indicates significance at the 10 % level, ** at the 5 % level, and *** at the 1 % level.
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time series between 2005 and 2014, the mean aggregated influence of an increase of
one unit of Consum is USD -10.5592 million for the SPM 1 and USD -10.5397 million
for the SPM 2. This is again in line with the economic expectation of fuel inefficient
vessels being worth less than fuel efficient vessels.

The coefficient estimates for βf,1CAL and βf,2CAL indicate that a base level exposure
of 1,862.1 or 3,120.5 days is desired for the SPM 1 or SPM 2, respectively. The
aggregated desired exposure level is, of course, corrected downwards by the negative
coefficients of the included interaction terms (i.e., βf ·Age, βf ·DWT , and βf ·Consum) and
the corresponding Age, DWT, and consumption values of vessel i.

Overall, the two models show an explanatory power in form of adjusted R2 values of
72.72 % and 73.58 % for SPM 1 and SPM 2, respectively. The Akaike criterion, the
SBIC criterion, and the log likelihood tend to also slightly prefer the SPM 2. Both
models will be applied in the subsequent hedging efforts as basis to determine physical
positions as well as to determine the desired exposure to FFAs and freight options as
hedge instruments.

3.5.2 Hedging results

The five different hedging strategies described in subsection 3.3.5 (i.e., from A to
E) are empirically tested in the hedge set-up described in subsection 3.3.3 using the
two estimated SPMs. The hedge effectiveness has been measured according to the
methodology described in subsection 3.3.4. The following paragraphs elaborate on
the results of these empirical analyses.

Dry bulk Capesize freight options were launched and quoted by The Baltic Exchange
on January 2nd, 2008. As the initiation of the individual hedges in the hedging
set-up considered is one year or 252 trading days prior to the transaction date, ti,
only sale and purchase transactions that took place from January 2nd, 2009 onwards
were considered in the empirical analysis of hedge effectiveness. Accordingly, 127
transactions had to be eliminated from the initial sample of 277 sale and purchase
transactions in the data set. However, these transactions were used in the estimation
of the SPMs as the underlying of the freight options, FFAs, were already launched on
January 4th, 2005. This left 150 transactions for which the hedge effectiveness of the
different hedging strategies over a fixed time horizon of one year is examined.
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Table 3.4: Hedging results over fixed time horizon of one year (1/2)

SPM 1

Unit Statistic Physical position Reference return (rRF)

Start USD m Mean 36.3449 –
End Mean 24.9513 –

Change
in values

USD m

Mean -11.3936 –
Median -6.6571 –
Std. dev. 18.5330 –
Skewness -1.2586 –
Kurtosis 4.2808 –

Log
return
in %

Mean -31.6528 1.2894
Median -27.8532 0.9774
Std. dev. 65.9781 –
Skewness 1.9390 –
Kurtosis 18.8491 –

SPM 1

Hedge Unit Statistic A B C D E

Change
in values

USD m

Mean 8.2981 6.9183 6.5341 8.6442 8.6477
Median 1.3180 0.7850 0.6954 1.4926 1.4929
Std. dev. 18.5292 14.9708 14.0682 18.3994 18.4104
Skewness 1.6846 1.8739 1.8901 1.6898 1.6911
Kurtosis 4.6613 5.2970 5.3495 4.6574 4.6633

thereof: interest Mean 0.0263 -0.0012 0.0045 0.0233 0.0268

Portfolio (PhyPos+Hedge)

Start

USD m

Mean 36.3449 36.3449 36.3449 36.3449 36.3449
End Mean 33.2495 31.8697 31.4855 33.5955 33.5990
Init. opt. prem. Mean 0.0000 -3.9188 -2.8499 0.0000 0.0000
Transaction costs Mean -1.1539 -0.9160 -0.7490 -1.3939 -1.3939

Change
in values

USD m

Mean -3.0954 -4.4752 -4.8595 -2.7494 -2.7459
Median -3.6538 -5.2552 -5.5852 -3.3134 -3.3127
Std. dev. 6.1646 6.8556 7.2779 6.0969 6.0992
Skewness 1.3977 1.1246 0.9472 1.3613 1.3602
Kurtosis 8.3480 7.6525 6.9570 8.4347 8.4194

Log
return
in %

Mean -12.4228 -12.8767 -13.4122 -10.4835 -10.4803
Median -11.4680 -19.8232 -19.7812 -10.5282 -10.5246
Std. dev. 45.7878 46.3742 46.7910 44.3388 44.3381
Skewness 5.5805 6.1152 6.0486 6.3006 6.3004
Kurtosis 54.4037 52.2319 51.0203 59.8193 59.8211

The table shows selected descriptive statistics of the SPM 1 hedging results for the different hedging strategies (i.e.,
from A to E) over a fixed time horizon of one year prior to the vessel transaction. The included sample size is
150 vessels for all strategies with transaction dates from January 8th, 2009 to December 2nd, 2014. The kurtosis
measure states the estimated centralized fourth moment, not the excess kurtosis.
Strategies explained: A (short FFA), B (long at-the-money put option), C (long 10 % out-of-the-money put option),
D (replicated short FFA), and E (zero-cost collar).
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Table 3.5: Hedging results over fixed time horizon of one year (2/2)

SPM 2

Unit Statistic Physical position Reference return (rRF)

Start USD m Mean 36.2745 –
End Mean 24.9513 –

Change
in values

USD m

Mean -11.3232 –
Median -6.2950 –
Std. dev. 18.4552 –
Skewness -1.2711 –
Kurtosis 4.2796 –

Log
return
in %

Mean -31.7173 1.2894
Median -30.4117 0.9774
Std. dev. 61.2647 –
Skewness 1.1682 –
Kurtosis 14.8195 –

SPM 2

Hedge Unit Statistic A B C D E

Change
in values

USD m

Mean 8.4245 5.3908 5.0092 8.1381 8.1442
Median 1.3923 0.6200 0.5540 1.5471 1.5481
Std. dev. 17.3606 12.0706 11.1981 16.3302 16.3457
Skewness 1.7157 1.8869 1.9050 1.7144 1.7160
Kurtosis 4.8777 5.4985 5.5648 4.8813 4.8883

thereof: interest Mean 0.0371 -0.0183 -0.0109 0.0188 0.0249

Portfolio (PhyPos+Hedge)

Start

USD m

Mean 36.2745 36.2745 36.2745 36.2745 36.2745
End Mean 33.3758 30.3422 29.9605 33.0895 33.0955
Init. opt. prem. Mean 0.0000 -6.1242 -4.6836 0.0000 0.0000
Transaction costs Mean -1.2902 -0.8267 -0.6709 -1.3766 -1.3766

Change
in values

USD m

Mean -2.8987 -5.9323 -6.3140 -3.1850 -3.1790
Median -3.2356 -6.2549 -6.4248 -3.2911 -3.2905
Std. dev. 6.2220 8.1659 8.7858 6.2286 6.2273
Skewness 1.3618 0.3518 0.1333 1.3614 1.3618
Kurtosis 8.7015 5.6757 5.1134 9.1237 9.1211

Log
return
in %

Mean -10.8451 -16.0939 -16.7525 -10.1067 -10.0983
Median -10.7754 -22.5215 -23.6922 -12.2047 -12.2071
Std. dev. 43.5827 40.7877 41.3425 40.2679 40.2682
Skewness 3.3827 5.5275 5.3778 5.3383 5.3375
Kurtosis 40.4720 46.5273 44.6122 48.4148 48.4114

The table shows selected descriptive statistics of the SPM 2 hedging results for the different hedging strategies (i.e.,
from A to E) over a fixed time horizon of one year prior to the vessel transaction. The included sample size is
150 vessels for all strategies with transaction dates from January 8th, 2009 to December 2nd, 2014. The kurtosis
measure states the estimated centralized fourth moment, not the excess kurtosis.
Strategies explained: A (short FFA), B (long at-the-money put option), C (long 10 % out-of-the-money put option),
D (replicated short FFA), and E (zero-cost collar).
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Tables 3.4 and 3.5 show aggregated mean and median outcome, return, and log
return statistics on the individual hedges using SPM 1 and SPM 2, respectively. For
the SPM 1, the results indicate a mean loss of USD 11.39 million and a median loss
of USD 6.66 million on the vessel or physical position. The losses are left-skewed and
show some excess kurtosis. These losses correspond to a low mean log return figure
of the physical position of -31.65 %. The log returns of the physical position are
right-skewed and show considerable excess kurtosis. The mean reference log return or
risk-free rate, rRF, across all transactions considered was about 1.29 %. The different
hedging strategies yield a mean profit of USD 6.53 to 8.65 million for strategy C
(long 10 % out-of-the money put) and E (zero-cost collar), respectively. The hedge
profits are right-skewed and show excess kurtosis for all strategies. The interest effect
is lowest for strategy B (long at-the money put) with around USD 0.00 million and
largest for strategy E (zero-cost collar) with about USD 0.03 million. For strategies B
(long at-the money put) and C (long out-of-the money put), USD 3.92 million and
USD 2.85 million have been paid as initial option premium for the long put options.
The transaction costs range from about USD 0.75 million for strategy C (long 10 %
out-of-the money put) to about USD 1.15 million for strategy A (short FFA) due to
the higher transaction volume of FFAs. From a portfolio perspective, the hedging
strategies reduce the mean loss of the physical position to values ranging from USD -
4.86 million to USD -2.75 million for strategy C (long 10 % out-of-the money put)
and E (zero-cost collar), respectively. The associated mean log return values are
-13.41 % and -10.48 %, respectively. The portfolio losses and log returns are right-
skewed and show excess kurtosis for all strategies. For the SPM 2, the mean loss of
the physical position is slightly smaller with USD 11.32 million. However, the mean
log return is slightly lower with -31.72 % resulting from the slightly lower mean model-
implied value at the hedging start date. The mean profit for the different hedging
strategies is slightly lower for strategies B (long at-the money put), C (long 10 %
out-of-the money put), D (replicated short FFA), and E (zero-cost collar) and slightly
higher for strategy A (short FFA) compared to the results of SPM 1. The interest
effect is again lowest for strategy B (long at-the money put). However, it is highest
for strategy A (short FFA) for SPM 2. The transaction costs are slightly higher for
strategy A (short FFA) and slightly lower for all other strategies compared to SPM 1.
From a portfolio perspective, strategy A (short FFA) performs best with a mean loss
of USD 2.90 million and an associated log return of -10.85 %. For the other hedging
strategies, the mean losses are slightly higher for SPM 2 compared to SPM 1.
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Figure 3.3: Histograms of physical position and portfolio outcomes for
SPM 1
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The graph shows histogram plots of the physical position and portfolio outcomes for SPM 1 as
annualized log returns in % for transactions from January 8th, 2009 until December 2nd, 2014.
Strategies explained: A (short FFA), B (long at-the-money put option), C (long 10 % out-of-
the-money put option), D (replicated short FFA), and E (zero-cost collar).
Source: own graph based on hedging results
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Figure 3.4: Histograms of physical position and portfolio outcomes for
SPM 2
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The graph shows histogram plots of the physical position and portfolio outcomes for SPM 2 as
annualized log returns in % for transactions from January 8th, 2009 until December 2nd, 2014.
Strategies explained: A (short FFA), B (long at-the-money put option), C (long 10 % out-of-
the-money put option), D (replicated short FFA), and E (zero-cost collar).
Source: own graph based on hedging results
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Figures 3.3 and 3.4 show histogram plots of the physical position log returns as
well as of the portfolio log returns for the five different hedging strategies for both
SPMs. From visual inspection, the distributions of the portfolio log returns for the five
different strategies are clearly narrower than the distribution of the physical position
log returns and extremely negative outcomes seem to be mitigated apart from one
outlier for strategy A (short FFA) for both SPMs.

Table 3.6: Results for different hedge effectiveness measures

Hedging strategy

Model Measure Unit A B C D E

SPM 1

HEED % 51.84 50.60 49.71 54.84 54.84
HEHDA revised pp 19.98 19.38 18.51 23.38 23.38
HELPM2 % 75.59 79.54 78.72 81.03 81.03
HELPM3 % 87.61 93.66 93.41 93.48 93.48
HELPM4 % 93.11 98.39 98.33 98.12 98.12
HESR pp 8.57 2.68 1.77 9.77 9.78

SPM 2

HEED % 49.39 55.68 54.46 56.80 56.80
HEHDA revised pp 26.03 11.26 10.24 25.57 25.60
HELPM2 % 73.16 76.17 74.60 81.68 81.68
HELPM3 % 76.17 92.51 91.81 93.14 93.14
HELPM4 % 74.21 98.07 97.83 97.50 97.50
HESR pp 15.99 -4.34 -4.66 10.66 10.68

The table shows the results of the different hedge effectiveness measures for the five
different hedging strategies applied (i.e., from A to E) to both models SPM 1 and
SPM 2 over a fixed time horizon of one year. The included sample size is 150 vessels
for all strategies. For HEED, HELPM2 , HELPM3 , and HELPM4 , the result is given
in percent. For HEHDA revised and HESR, the result is given in percentage points.
Strategies explained: A (short FFA), B (long at-the-money put option), C (long 10 %
out-of-the-money put option), D (replicated short FFA), and E (zero-cost collar).

With respect to the hedge effectiveness of the different hedging strategies, Table 3.6
shows the results of the different hedge effectiveness measures defined in subsec-
tion 3.3.4 for SPM 1 and SPM 2. From a variance perspective, the results for HEED

suggest that strategies D (replicated short FFA) and E (zero-cost collar) achieve the
highest variance reduction with 54.84 % and 56.80 % for SPM 1 and SPM 2, respec-
tively. Interestingly, strategy A (short FFA) achieves the lowest variance reduction
for SPM 2. From a risk-return perspective, the results for HEHDA revised indicate that
strategies B (long at-the-money put option) and C (long 10 % out-of-the-money put
option) perform worst for SPM 1 with an increase of only 19.38 pp and 18.51 pp, re-
spectively. Strategies D (replicated short FFA) and E (zero-cost collar) show the best
performance with both an increase of 23.38 pp. From a downside-risk perspective, the
results for HELPM2 , HELPM3 , and HELPM4 show again that strategy A (short FFA)
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performs worst of the different hedging strategies. For HELPM2 , strategies D (repli-
cated short FFA) and E (zero-cost collar) perform best with 81.03 % downside-risk
reduction for SPM 1 and 81.68 % downside-risk reduction for SPM 2. For HELPM3

and HELPM4 , strategy B (long at-the-money put option) performs best for SPM 1.
For SPM 2, strategies D (replicated short FFA) and E (zero-cost collar) perform
best for HELPM3 and strategy B (long at-the-money put option) for HELPM4 . From
a combined perspective of downside risk and return, strategies D (replicated short
FFA) and E (zero-cost collar) perform best for SPM 1 and strategy A (short FFA)
for SPM 2. Strategies B (long at-the-money put option) and C (long 10 % out-of-the-
money put option) show considerably lower and even negative performance.

Referring to the initial hypotheses on the strategies’ performance stated in subsec-
tion 3.3.5, the results show that strategies D (replicated FFA) and E (zero-cost collar)
provide the best performance in terms of variance reduction. Strategies B (long at-
the-money put option) and C (long 10 % out-of-the-money put option) show the
lowest performance in this category for SPM 1. This is consistent with the initially
established hypotheses. For SPM 2, however, strategy A (short FFA) shows the lowest
performance in terms of variance reduction. This somewhat contradicts the initially
established hypotheses. Nevertheless, strategies A (short FFA), D (replicated short
FFA), and E (zero-cost collar) show superior results from a risk-return perspective as
expected. Besides, all five strategies more or less provide equally well downside-risk
protection as expected. The one-sided option strategies B (long at-the-money put
option) and C (long 10 % out-of-the-money put option) turn out to offer the high-
est protection with the higher order LPM moments, HELPM3 and HELPM4 . From a
combined perspective of downside risk and return, however, the benefit of keeping the
upside potential does not seem to have materialized in the results. This fact is quite
striking and needs some further investigation on the reasons why that is the case later
in this section. Concerning the performance of strategies D (replicated FFA) and E
(zero-cost collar), the results contradict the initially established hypotheses based
on findings from other financial markets. The results indicate that the two strategies
outperform the reference strategy A (short FFA) in almost all hedge effectiveness mea-
sures. Strategy A (short FFA) only outperforms strategies D (replicated short FFA)
and E (zero-cost collar) in the HEHDA revised and HESR-measures for the SPM 2. This
finding is again quite striking given the fact that these two strategies incur higher
transaction costs. Finally, contrary to the initial hypotheses, strategy E (zero-cost
collar) seems to be marginally better than strategy D (replicated short FFA) from a
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risk-return perspective as well as from a combined perspective of downside risk and
return.

Figure 3.5: Histograms of physical position outcomes
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The graph shows histogram plots of the physical position outcomes for SPM 1 and SPM 2 in
USD million for transactions from January 8th, 2009 until December 2nd, 2014.
Source: own graph based on hedging results

These findings might be caused by peculiarities of the data set used within this em-
pirical study. Therefore, the representativeness of the transactions considered in the
hedging analysis needs to be reviewed. Only vessels that were sold starting from Jan-
uary 8th, 2009 were included in the analysis and thus, the time period of the hedges
covers the years from 2008 until 2014. Accordingly, the considered time frame mostly
covers the shipping crisis period starting in September 2008. From visual inspec-
tion of Figure 3.1 on page 110, one can already infer that most of the individual
one year hedge time frames are confronted with a falling market and therefore, seek
downside-risk protection. Actually, 122 of the 150 transactions considered incurred
a loss and only 28 transactions realized a gain on the physical position for SPM 1.
For SPM 2, 117 incurred a loss and only 33 realized a gain on the physical position.
This can also be visually seen in Figure 3.5 and in the negative skewness figures for
the physical position outcomes in Tables 3.4 and 3.5 on pages 116 and 117. So, for
a vast majority of the transactions, the benefit of the keeping the upside potential
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of strategies B (long at-the-money put option) and C (long 10 % out-of-the-money
put option) cannot materialize. As a consequence, the data set was divided into two
groups based on the outcome of the physical position (i.e., one group with observa-
tions that incurred a loss or were equal to zero and one group that realized a gain on
the physical position). The hedging results were computed again separately for the
two groups and the hypothesis is that strategies B (long at-the-money put option)
and C (long 10 % out-of-the-money put option) show a considerably increased perfor-
mance from a risk-return perspective (i.e., the HEHDA revised-measure) for the group of
positive physical position outcomes. Unfortunately, the hedge effectiveness measures
based on downside risk (i.e., HELPM2 , HELPM3 , HELPM4 , and HESR) are not able to
provide any meaningful results for this group as the downside risk of the physical po-
sition is zero and a computation of the mentioned hedge effectiveness measures is not
possible. Nevertheless, the HEHDA revised-measure should provide meaningful insights
on whether the option-based strategies B (long at-the-money put option) and C (long
10 % out-of-the-money put option) show an increased performance for this group
of transactions. Table 3.7 shows the results for the HEHDA revised-measure for this

Table 3.7: Results for HEHDA revised-measure for group of positive phys-
ical position outcomes

Hedging strategy

Measure Model Unit A B C D E

HEHDA revised
SPM 1 pp -21.38 -8.30 -6.92 -18.26 -18.27
SPM 2 pp -29.93 -11.11 -9.39 -19.71 -19.72

The table shows results for the HEHDA revised-measure in percentage points for the group
of positive physical position outcomes for both models SPM 1 and SPM 2. The included
sample size is 28 transactions for SPM 1 and 33 transactions for SPM 2.
Strategies explained: A (short FFA), B (long at-the-money put option), C (long 10 %
out-of-the-money put option), D (replicated short FFA), and E (zero-cost collar).

group for both SPMs. For the strategies A (short FFA), D (replicated short FFA),
and E (zero-cost collar), the results show a decline of the Sharpe ratio. The results,
however, indicate that there is a considerably smaller decline in the Sharpe ratio for
the strategies B (long at-the-money put option) and C (long 10 % out-of-the-money
put option) from the physical position alone to the portfolio of physical position plus
hedge. Of course, not hedging at all would have been the best scenario for this group of
vessels. This is consistent with the initial hypothesis that the one-sided, option-based
strategies B (long at-the-money put option) and C (long 10 % out-of-the-money put
option) allow to keep the upside potential in case of favorable market circumstances.
However, these strategies do not come costless. The interest burden on the initial
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option premium cause the decline in the Sharpe ratio. The other strategies eliminate
both negative and positive fluctuations resulting in a stronger decrease of the Sharpe
ratio when implementing the hedge for the group consisting of only positive physical
position outcomes. This feature of the one-sided, option-based strategies seems to dis-
solve in the aggregated results given the higher number of negative physical position
outcomes in the entire data set as the higher initial cost of these two strategies at sim-
ilar downside-risk protection lead to lower performance from a risk-return perspective
as well as from a combined perspective of downside risk and return.

3.5.3 Robustness checks

The results and findings presented are obviously directly linked to the data set of this
empirical study and their representativeness strongly depend on the representativeness
of the empirical data set. Accordingly, further investigation of the data set as well as
the presented results is required in order to ensure the representativeness of both the
data set as well as the results and associated findings. Accordingly, two robustness
checks on subsets of the initial full sample of data set were performed as well as
one robustness check in an alternative hedging set-up. Firstly, vessels that were
multiply sold within the data set were excluded. Secondly, vessels that were younger
than five years and vessels that were older than 20 years at the transaction date
were excluded. Thirdly, an alternative hedging set-up was considered in which the
underlying assumption is not that a vessel shall be sold after a hedging time horizon of
one year but rather bought after one year and the purchase price shall be hedged over
the time horizon of one year prior to the purchase. The results of these robustness
checks are presented and discussed in the following subsections.

3.5.3.1 Excluding multiply sold vessels

Dry bulk Capesize vessels are typically assets of a considerable longevity and thus,
are usually also held for a considerable amount of time by shipping companies. As
the data set only covers transactions from 2005 until 2014, sale and resale of one and
the same vessel within this rather short period of time compared to the economic
life of a dry bulk Capesize vessel might indicate that the shipping company bought
and subsequently sold the vessel for speculative purposes. In order to correct for
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transactions done for speculative purposes, any vessels that were multiply sold within
the data set were excluded for this robustness check. Actually, 87 transactions pertain
to vessels that were sold more than once in the data set. Accordingly, this left 190
transactions in this subset of the data set and the SPMs were re-estimated using
these transactions. The results are shown in Table 3.10 in the appendix B.1 on
page 139. The estimations for the β-coefficients only marginally changed compared
to the initial estimations for both SPMs and especially the coefficient signs remained
the same. Only the βConsum-coefficient turned insignificant at the 10 % level for the
SPM 1. The R2 and adjusted R2 values marginally decreased.

Subsequently, the re-estimated SPMs were used to assess again the hedge effectiveness
of the five different hedging strategies. Another 78 transactions had to be eliminated
from the considered sample as these transactions occurred prior to January 8th, 2009.
The corresponding hedging results are shown in Tables 3.11 and 3.12 in the ap-
pendix B.1 on pages 140 and 141. The corresponding results for the different hedge
effectiveness measures are shown in Table 3.13 in the appendix B.1 on page 142.
The results largely show the same pattern as the results presented earlier in sub-
section 3.5.2. From a variance perspective, the HEED-measure suggests the highest
performance for strategies D (replicated short FFA) and E (zero-cost collar) for SPM 1
and SPM 2, respectively. From a risk-return perspective, strategies D (replicated short
FFA) and E (zero-cost collar) show the highest performance for SPM 1, whereas strat-
egy A (short FFA) performs best for SPM 2. Strategies B (long at-the-money put
option) and C (long 10 % out-of-the-money put option) show considerably lower and
partly even negative performance. From a downside-risk perspective, all five differ-
ent strategies achieve largely similar performances. From a combined perspective of
downside risk and return, strategies D (replicated short FFA) and E (zero-cost collar)
perform again best for SPM 1 and strategy A (short FFA) for SPM 2. Strategies B
(long at-the-money put option) and C (long 10 % out-of-the-money put option) show
once more considerably lower and even negative performance. Consequently, these
results confirm the initial results on the entire data set and increase the robustness of
the findings presented earlier.
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3.5.3.2 Excluding vessels younger than five and older than 20 years

Second-hand ship price dynamics are largely influenced by the development of the
underlying spot freight rates and FFA representing the current and future earnings
potential of such vessels. The price dynamics of new and extremely old vessels, how-
ever, are not so much driven by spot freight rates or FFA rates. For extremely old
vessels, for instance, the share of the scrap value (i.e., the metal price) in the remain-
ing vessel value increases with increasing age while the share of the spot freight rates
or FFA rates in the remaining vessel value declines. Consequently, a SPM with FFA
rates as explanatory variable might not be able to accurately capture these price dy-
namics. Furthermore, the data set contains only few transactions of extremely young
and extremely old vessels. Accordingly, vessels younger than five years and older than
20 years at the transaction date, ti, were excluded from the data set for this robustness
check. Actually, 92 transactions pertain to this category. This left 185 transactions in
this subset of the data set and the SPMs were re-estimated using these transactions.
The results are shown in Table 3.14 in the appendix B.2 on page 143. The estima-
tions for the β-coefficients seem to change quite a bit and especially the FFA-related
coefficients increased for both SPMs by about 70 %. As the aggregated exposure
to the FFA contract needs to be netted across all FFA-related coefficients, the de-
sired exposure does not necessarily increase that much. Nevertheless, an increase of
the desired exposure to the FFA contracts is intuitive though because vessels were
eliminated from the data set which prices were not necessarily tied to the FFA rate
dynamics as mentioned above. Now, the link of the second-hand price for the remain-
ing vessels to FFA rates becomes more apparent. Moreover, the βConsum-coefficient
also turned insignificant at the 10 % level for the SPM 1. The R2 and adjusted R2

values, however, increased by about 10 pp reflecting the above mentioned dynamics.

Similarly to the first robustness check, the re-estimated SPMs were used to assess
again the hedge effectiveness of the five different hedging strategies. Again, another
82 transactions had to be eliminated from the considered sample as these transactions
occurred prior to January 8th, 2009. The corresponding hedging results are shown in
Tables 3.15 and 3.16 in the appendix B.2 on pages 144 and 145. The corresponding
results for the different hedge effectiveness measures are shown in Table 3.17 in the
appendix B.2 on page 146. Once more, the results largely show the same pattern as
the results presented earlier in subsection 3.5.2 and as the results presented in the
first robustness check. Only the variance reduction measure, HEED, is now lowest
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for strategy A (short FFA) and the HELPM -measures show also relatively low values
for strategy A (short FFA) (with the HELPM4-measure being even negative for the
SPM 2). These results are, however, caused by one outlying observation for which
the physical position incurs a small profit, the hedge, however, incurs a comparatively
large loss. It is refrained from repeating any further detailed descriptions of the
results at this point. Consequently, these results further increase the robustness of
the findings presented earlier.

3.5.3.3 Alternative hedging set-up

As the data set of vessel transactions and the associated aggregated results within
the hedging set-up considered so far conceal the benefit of one-sided, option-based
hedging strategies in positive market circumstances, the considered hedging set-up
was changed in order to show the underlying mechanics using the same full data set.
It is rather assumed that a shipping company intends to buy a certain vessel and wants
to hedge the ship price over a fixed time horizon of one year prior to the transaction.
The transaction price for vessel i is again unknown to the shipping company at the
hedge initiation at time ti − 252, but the shipping company is able to estimate a
model-implied value of vessel i at ti − 252, m̂i,ti−252,Agei,ti , using the age of vessel i
at ti, Agei,ti . Accordingly, this changes the physical position from a long to a short
exposure and the hedging strategies are revised to the following five ones below:

A) long FFA strategy (as reference case),
B) long at-the-money call option strategy,
C) long 10 % out-of-the-money call option strategy,
D) replicated long FFA strategy using options, and
E) zero-cost collar strategy using options.

Beyond that, the remaining assumptions undertaken in subsection 3.3.3 also apply in
this alternative hedging set-up. The changes in the physical position, hedge position,
and portfolio as well as the corresponding log returns are computed reflecting the
physical exposure change as well as the change in the hedging strategies.

With respect to the SPM, the initial estimations based on the full data set of 277
transactions are still valid despite the change in the hedging perspective. Accordingly,
the hedging results were computed for the 150 transactions starting from January 8th,
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2009 onwards and are shown in the Tables 3.18 and 3.19 in the appendix B.3 on
pages 147 and 148. The corresponding results for the different hedge effectiveness
measures are shown in Table 3.20 in the appendix B.3 on page 149. The results
clearly show that strategies B (long at-the-money call option) and C (long 10 % out-of-
the money call option) outperform the other strategies from a risk-return perspective
as well as from a combined perspective of downside risk and return. The negative
signs for the HEHDA revised- and HESR-measures indicate that not hedging at all would
have resulted in a better outcome on an aggregated level for this data set. This,
however, is intuitive as the average physical position incurred a considerable profit.
For strategies B (long at-the-money call option) and C (long 10 % out-of-the money
call option), the implication is that even for the one-sided, option-based strategies
the benefit of keeping the upside potential did not pay off for the average vessel in
the considered data set. The gains in risk and downside-risk reduction were offset
at the same time by lower returns compared to the physical position alone. This
is largely caused by the non-negligible transaction costs of about USD 0.50 million
and the interest burden on the initial option premium for these strategies. From
the variance perspective, the HEED-measure shows that strategies A (long FFA), D
(replicated long FFA), and E (zero-cost collar) reduced the variance by about 55 %.
Strategies B (long at-the-money call option) and C (long 10 % out-of-the money call
option) show considerably lower variance reduction. This is caused by the fact that
the one-sided option-based strategies still allow for upside variation. For the HELPM -
measures, all strategies show a small downside-risk reduction for SPM 1 apart from
strategies B (long at-the-money call option) and C (long 10 % out-of-the money call
option) for the HELPM4-measure. For SPM 2, however, all strategies show a small
increase of downside risk. This is potentially caused by the left shift of the return
distribution from the transaction cost burden applied to all portfolios as well as from
the interest effect burden on the initial option premium for strategies B (long at-the-
money call option) and C (long 10 % out-of-the money call option). Nonetheless,
the one-sided, option-based strategies show hedge effectiveness gains compared to the
other strategies in this alternative hedging set-up, but insurance of any type (i.e.,
whether it is two-sided or only one-sided) always comes at certain costs causing the
HEHDA revised- and HESR-measures to be negative for all strategies.
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3.6 Conclusion

The nature of the shipping industry has been historically characterized by high volatil-
ity compared to other industries. The boom period prior to the outburst of the finan-
cial crisis and the severe recession that the shipping industry has been facing since is
a prime example for the challenging market circumstances that shipping companies
operate in. Along with the increasing need to comply with the IFRS fair value account-
ing principles that cause large ship price fluctuations to become more visible through
impairment tests or from a cash/liquidity perspective, the need for effective hedging
strategies for the shipping companies arises. Unfortunately, no direct, liquid hedge in-
struments on dry bulk Capesize ship values, such as FoSVAs currently exist. The aim
of this paper was to examine whether freight options qualify as suitable cross-hedge
instruments for dry bulk Capesize ship price risks and to empirically assess whether
option-based cross-hedging strategies may achieve superior hedge effectiveness than a
simple FFA-based cross-hedging strategy.

Within this study, a SPM was first estimated using actual dry bulk Capesize second-
hand transactions following the effort of Adland and Koekebakker (2007). The model
is based on ship-specific, deterministic factors from the data set of real Capesize sale
and purchase transactions as well as market-driven or risk factors, such as the FFA
rate and interaction terms. It serves as basis of the hedging approach and allows
to determine the desired exposure to the respective hedge instruments. Secondly,
the hedge effectiveness of different freight option hedging strategies (i.e., long at-the-
money put, long 10 % out-of-the-money put, replicated FFA, and zero-cost collar)
was empirically tested in a hedging set-up over a fixed time horizon one year prior
to the sale for the same dry bulk Capesize sale and purchase transactions. The
performance of these hedging strategies was compared against the reference case of
a simple FFA-based hedging strategy. The hedge effectiveness was assessed using
several measures (i.e., HEED, HEHDA revised, HELPM2 , HELPM3 , HELPM4 , andHESR)
reflecting different risk and return preferences of shipping companies. Finally, the
robustness of the presented results and findings has been checked for two subsets of
the data set as well as in an alternative hedging set-up.

Firstly, it was found that dry bulk Capesize second-hand prices may be rather well
described by a SPM containing market-driven explanatory variables, such as the
FFA+1CAL or FFA+2CAL rate, and deterministic, ship-specific explanatory factors,
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such as the age, DWT, and fuel efficiency of the individual vessel. The SPM was es-
timated from 277 actual dry bulk Capesize sale and purchase transactions. Given the
heterogeneity among dry bulk Capesize vessels, such a tailored model is beneficial for
shipping companies with respect to valuation and hedging purposes. Secondly, the re-
sults indicate that all five tested hedging strategies achieved a relatively similar hedge
effectiveness from a downside-risk perspective. Thirdly, the two-sided hedging strate-
gies (i.e., strategies A (short FFA), D (replicated short FFA), and E (zero-cost collar))
achieved superior results from a risk-return perspective as well as from a combined
perspective of downside risk and return. This, however, is somewhat caused by the
data set used within this empirical study consisting of relatively few vessels that would
benefit from the one-sided, option-based hedging strategies B (long at-the-money put
option) and C (long 10 % out-of-the-money put option). Fourthly, the replicated FFA
using options strategy as well as the zero-cost collar strategy using options outper-
form the FFA-based reference strategy. This contradicts findings from other studies in
other financial markets and actually implies redundancy of FFAs. Given the compar-
atively low liquidity of freight options, this result should not be over-interpreted and
rather seen as a friction from a not yet fully developed freight option market. Fifthly,
the robustness of the results was confirmed for two subsets of the data set (i.e., ex-
cluding multiply sold vessels as well as excluding vessels younger than five years and
older than 20 years). Finally, the beneficial mechanics of the one-sided, option-based
strategies B (long at-the-money put option) and C (long 10 % out-of-the-money put
option) were shown in an alternative hedging set-up. Consequently, one-sided, option-
based hedging proved to be beneficial compared to the classical two-sided hedging in
case the market development does not require any downside-risk protection. These
are relevant findings for the risk management practice of shipping companies.

With respect to limitations of this study, the short time frame covered caused by the
availability of freight options only from 2008 onwards obviously presents a constraint.
Besides, the number of dry bulk Capesize vessel transactions is generally quite low.
Taken together, the two constraints made solid testing of the presented results out-of-
sample rather difficult. Moreover, the considered hedging set-up generalizes to some
extent in form of certain assumptions in order to create a comparable environment
for different vessel transactions. Individual shipping companies may of course face
different set-ups, hedge horizons, and potentially hedging goals. Furthermore, the
computed freight option prices derived from the implied volatilities quoted by The
Baltic Exchange present another constraint. The absence of volatility smiling as well
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as the fact that these prices were synthetically computed rather than being actually
observed in the market are limitations that were difficult to overcome. Last but
not least, the historically estimated bid-/ask-spreads present only a rough indication
for the real transaction costs that a shipping company may face. The bid-/ask-
spreads may, of course, considerably deviate from the estimations at certain times.
Nonetheless, the empirical study has been conducted to the best of one’s knowledge
given these rather complicated market circumstances.

In terms of practicability of the discussed hedging approaches, sufficient liquidity of
the hedging instruments considered is essential for a successful implementation of the
suggested hedging approaches. Historical figures on dry bulk Capesize FFA and freight
option trading volumes indicate that FFAs are clearly the more liquid instrument of
the two. For FFAs, an average of 11,085 lots per week was traded in the time frame
from July 9th, 2007 to December 22nd, 2014. On the contrary, an average of only 2,875
lots per week was traded for freight options in the time frame February 24th, 2011 to
December 22nd, 2014. These numbers clearly show that initiating a hedge for an entire
vessel might be well feasible for a shipping company. Only the simultaneous initiation
of hedges for an entire fleet or the rollover dates present currently a bottleneck in
terms of liquidity. Nevertheless, such large scale hedging efforts would probably need
to be staged or successively built up anyways. For further details on historical trading
volumes, see a plot of weekly trading volumes in Figure 3.6 in the appendix A.1 on
page 134 as well as selected descriptive statistics of these weekly volume figure in
Figure 3.8 in the appendix A.1 on page 135.

Accordingly, this paper contributes to the existing academic literature in several ways.
Firstly, this is the first effort investigating whether freight options generally qualify
as hedge instruments for dry bulk Capesize ship price risks. Secondly, this paper
is also the first empirical study assessing the hedge effectiveness of different option-
based hedging strategies (i.e., long at-the-money put, long 10 % out-of-the-money put,
replicated FFA, and zero-cost collar). Finally, the study compares the performance
of the option-based hedging strategies with the performance of a classical FFA-based
hedging strategy and found that hedging strategies involving freight options present a
viable alternative to FFAs and might be even a superior choice for shipping companies
with certain risk, downside-risk, or return preferences.

Concerning further research opportunities in this area, out-of-sample tests of the hedge
effectiveness of the five different hedging strategies obviously present a valuable exten-

132



3.6 Conclusion

sion of the presented research within this paper once a longer time horizon of relevant
data is available. Besides, the presented research could be tested for other vessel
classes of the dry bulk sector with a larger number of sale and purchase transactions
(e.g., Panamax, Handymax, or Handysize) or even for vessel classes of the tanker
sector (e.g., VLCC, Suezmax, Aframax, or Handysize). Furthermore, investigating
the hedge effectiveness of the presented hedging instruments with different maturities
or the hedge effectiveness of other option-based strategies (e.g., strip, strap, straddle,
strangle, bull spread, bear spread, butterfly spread, or calendar spread) might be an-
other direction of impact for future research in this area. Alternatively, testing the
hedge effectiveness of the considered hedge instruments with altered parameters of
the hedging set-up (e.g., a different hedge time horizon, dynamic rebalancing of the
hedge, etc.) presents another valid extension of research in this area.
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A Appendix A – Liquidity and bid-/ask-spreads

A.1 Historical FFA and freight option trading volumes

With respect to the practical application of the suggested hedging strategies, sufficient
liquidity of the hedge instruments is essential. The Baltic Exchange started to publish
weekly dry bulk Capesize FFA volumes from July 9th, 2007 and dry bulk Capesize
freight option volumes from February 24th, 2011. Unfortunately, these volume fig-
ures represent aggregated numbers across all available contracts (i.e., across different
maturities) and a breakdown on individual contract volumes of the hedging instru-
ments used within this study, such as the FFA+1CAL, FFA+1CAL, CTC+1CAL, or
CTC+2CAL contract, is not available.

Figure 3.6: Historical dry bulk Capesize FFA and freight option trading
volumes 2007-2014
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The graph shows weekly dry bulk Capesize FFA and freight option volumes from July 9th,
2007 to December 22nd, 2014. Freight option volume data is only available from February
24th, 2011. As the lot size of these contracts is days, the weekly volume shown here is also in
days.
Source: own graph based on weekly data from The Baltic Exchange

Figure 3.6 shows a plot of these weekly volume figures. From visual inspection, the
plot indicates considerable volatility on the trading volume for both FFAs and freight
options. Moreover, FFAs seem to be clearly more liquid instruments than freight
options. Selected descriptive statistics of these weekly volume figures are presented in
Table 3.8. The numbers confirm the lower liquidity of freight options with a mean
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of only 2,875 lots traded per week compared to a mean of 11,805 lots traded per week
for FFAs.

Table 3.8: Selected descriptive statistics of trading volume figures

Instrument Mean Median Variance Stand. dev. Min. Max.

FFAs 11,085 9,939 27,508,749 5,245 480 32,348
Freigt options 2,875 2,360 4,464,089 2,113 0 13,805

The table shows selected descriptive statistics of weekly trading volume figures from July 9th,
2007 to December 22nd, 2014 for dry bulk Capesize FFAs and from February 24th, 2011 to
December 22nd, 2014 for dry bulk Capesize freight options. As the lot size of these contracts
is days, the weekly volume shown here is also in days.

Accordingly, it seems to be currently easier for shipping companies to set up a hedge
for an entire ship using FFAs due to the generally higher liquidity of these instruments.
Nevertheless, setting up a hedge for an entire ship using freight options should also
be possible given the historical liquidity levels. Only the rollover dates present a
bottleneck for the suggested hedging approach if entire fleets should be hedged as this
would involve closing out and re-initiating all positions across vessels simultaneously
around the rollover date.

A.2 Historical bid-/ask-spread estimation

Unfortunately, The Baltic Exchange does not provide data on daily, weekly, or average
bid-/ask-spreads for FFAs or freight options. Nevertheless, taking into account the
differences in liquidity of the two different hedging instruments and thus, the differ-
ences in bid-/ask-spreads is ultimately important in order not to distort any hedging
results towards freight options. Consequently, the method of Roll (1984) was applied
to historically estimate effective bid-/ask-spreads from daily and weekly log returns
for each of the hedging instruments.

In case a market maker is involved, transactions are usually not costless and the
market maker requires compensation in form of a bid-/ask-spread as lower liquidity,
higher volatility, or both for a financial asset causes the market maker to bear a
price risk. Furthermore, Niederhoffer and Osborne (1966) stated that in presence of
a market maker, negative serial dependence of price changes should be anticipated.
Under the assumptions of an informationally efficient market and of stationarity of the
probability distribution of observed price changes, Roll (1984) stated that the effective
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bid-/ask-spread faced by the dollar-weighted average investor trading at observed
prices can be determined according to equation (A.1) below:

Bid-/ask-spread = 2 ·
√
−Cov (∆pt,∆pt−1). (A.1)

Within equation (A.1) above, the bid-/ask-spread is given as a percentage of the price
level if ∆pt and ∆pt−1 are log returns and Cov (∆pt,∆pt−1) is the first-order auto-
covariance of these log returns. Roll (1984) computed the bid-/ask-spread measure
yearly from daily and weekly log returns for stocks listed on the New York and Amer-
ican Exchanges and found that the estimated spreads were strongly negatively related
to firm size (i.e., smaller firms having less liquid stocks and thus, larger associated
bid-/ask-spreads).

Among others, Harris (1990) noted the poor empirical performance of the Roll (1984)
serial covariance estimator when estimated yearly from daily or weekly log returns.
A major problem is that empirical first-order autocovariances are positive for many
financial assets and thus, the square root in equation (A.1) is not properly defined.
There are several approaches taken by researchers to deal with this problem. Roll
(1984), for instance, took the square root of the absolute value of the autocovariance
and preserved the sign of the autocovariance afterwards resulting in negative spreads
for these cases. Another common approach in the literature is setting the bid-/ask-
spread to zero. On the contrary, Lesmond (2005) and Kim and Lee (2014) simply
took the square root of the absolute value of the autocovariance and did not preserve
the sign of the autocovariance afterwards.

The question whether the underlying assumptions of the Roll (1984) measure are ful-
filled in the FFA or freight option market is, of course, highly doubtful. Nevertheless,
Harris (1990) stated that the Roll (1984) method is ‘very nearly the best serial covari-
ance spread estimator available’. Therefore, the historical mean bid-/ask-spreads for
the different hedging instruments were estimated based on the Roll (1984) measure
and used to reflect differences in transaction costs for the different hedging instru-
ments. In order to be conservative with respect to transaction costs, the approach
applied by Lesmond (2005) and Kim and Lee (2014) regarding the treatment of pos-
itive autocovariances was followed. The bid-/ask-spreads were estimated yearly for
each of the different hedging instruments based on daily and weekly log return auto-
covariances. Specifically, daily and weekly log returns were derived for FFA+1CAL,
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FFA+2CAL, CTC+1CAL, and CTC+2CAL contracts from the first date after the
rollover date until the first date before the subsequent rollover date. For the freight
options, an at-the-money put option was considered on the first date after the rollover
date and observed over the year.

Figure 3.7 shows plots of these yearly estimated bid-/ask-spreads both based on daily
and weekly log returns for FFA+1CAL, FFA+2CAL, CTC+1CAL, and CTC+2CAL
contracts from 2005 until 2014 for FFAs and from 2008 until 2014 for freight op-
tions. The plots indicate that the bid-/ask-spreads for freight options are generally
higher than for FFAs and that the bid-/ask-spreads based on weekly log return au-
tocovariances tend to be higher than the bid-/ask-spreads based on daily log return
autocovariances.

Table 3.9: Mean estimated bid-/ask-spreads for FFAs and freight op-
tions

FFAs Freight options

Mean Unit Frequency +1CAL +2CAL +1CAL +2CAL

Bid-/ask-spread % daily 2.60 2.00 4.20 2.62
weekly 4.76 3.45 8.75 5.83

The table shows the mean of the yearly estimated bid-/ask-spreads both based on daily and
weekly log returns for FFA+1CAL, FFA+2CAL, CTC+1CAL, and CTC+2CAL contracts from
2005 until 2014 for FFAs and from 2008 until 2014 for freight options.

Table 3.9 shows the mean of the yearly estimated bid-/ask-spreads. These results
largely confirm the initial implications from the plot (i.e., freight options have larger
bid-/ask-spreads and the bid-/ask-spreads based on weekly log return autocovariances
are larger). The fact that the mean estimated bid-/ask-spreads are lower for the
+1CAL contracts compared to the +2CAL contracts although their liquidity should
be theoretically lower may result from the considerably higher volatility of the +1CAL
contracts in the considered time frame.

As Harris (1990) concluded that the Roll (1984) measure is very noisy if estimated
from daily log return data as well as for the purpose of being conservative, the mean
of the yearly estimated bid-/ask-spreads based on weekly log return autocovariances
was used in order to determine transaction costs within this empirical study (see
Table 3.9, last row).
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Figure 3.7: Estimated bid-/ask-spreads for FFAs and freight options
2005-2014
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The graph shows yearly estimated bid-/ask-spreads in percent for FFA+1CAL, FFA+2CAL,
CTC+1CAL, and CTC+2CAL contracts from 2005 until 2014 for FFAs and from 2008 until
2014 for freight options.
Source: own graph based on daily data from The Baltic Exchange
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B Appendix B – Robustness checks

B.1 Excluding multiply sold vessels

Table 3.10: Estimates for different Capesize structural pricing models

SPM 1 (FFA+1CAL) SPM 2 (FFA+2CAL)

Coefficient t-stat. p-value Coefficient t-stat. p-value

α 15.1798 0.8692 0.3859 -6.6668 -0.3258 0.7449
(17.4640) (20.4599)

βf 1,825.5345*** 5.9810 0.0000 3,000.9018*** 6.0517 0.0000
(305.2212) (495.8789)

βAge -1.8763*** -8.3346 0.0000 -1.7910*** -6.6977 0.0000
(0.2251) (0.2674)

βDWT 6.445·10−05 1.3823 0.1686 9.215·10−05* 1.7089 0.0892
(4.663·10−05) (5.392·10−05)

βConsum 18.4936 1.5139 0.1318 29.0419** 2.0182 0.0450
(12.2162) (14.3902)

βf ·Age -11.0260*** -2.2861 0.0234 -16.8034** -2.2336 0.0267
(4.8231) (7.5231)

βf ·DWT -0.0021*** -2.7218 0.0071 -0.0037*** -2.9418 0.0037
(0.0008) (0.0012)

βf ·Consum -881.3063*** -4.3038 0.0000 -1,441.4829*** -4.3079 0.0000
(204.7747) (334.6122)

R2 0.7263 0.7351
Adj. R2 0.7157 0.7249
Log likelihood -736.8557 -733.7519
SBIC criterion 7.9773 7.9446
Akaike criterion 7.8406 7.8079
Standard error 11.9503 11.7567

The table shows linear regression coefficient estimates for two different SPMs based on data for 190 Capesize
vessel transactions and corresponding FFA time series data from January 13th, 2005 to December 2nd, 2014.
Vessels that were multiply sold have been excluded from the analysis. Figures in () reflect the corresponding
standard errors. * indicates significance at the 10 % level, ** at the 5 % level, and *** at the 1 % level.

139



Chapter 3 Hedging Capesize ship price risks using freight options

Table 3.11: Hedging results over fixed time horizon of one year (1/2)

SPM 1

Unit Statistic Physical position Reference return (rRF)

Start USD m Mean 37.4375 –
End Mean 26.4446 –

Change
in values

USD m

Mean -10.9929 –
Median -7.2386 –
Std. dev. 17.6589 –
Skewness -1.1721 –
Kurtosis 4.4225 –

Log
return
in %

Mean -35.6268 1.2816
Median -31.3665 0.9722
Std. dev. 51.6712 –
Skewness -1.2356 –
Kurtosis 8.2042 –

SPM 1

Hedge Unit Statistic A B C D E

Change
in values

USD m

Mean 7.7942 6.4887 6.1253 8.1288 8.1313
Median 1.3521 0.7365 0.6526 1.4309 1.4314
Std. dev. 17.2910 13.9822 13.1343 17.1959 17.2049
Skewness 1.6970 1.9013 1.9199 1.6982 1.6997
Kurtosis 4.8259 5.5709 5.6349 4.8120 4.8189

thereof: interest Mean 0.0218 -0.0021 0.0035 0.0198 0.0224

Portfolio (PhyPos+Hedge)

Start

USD m

Mean 37.4375 37.4375 37.4375 37.4375 37.4375
End Mean 34.2388 32.9334 32.5700 34.5734 34.5759
Init. opt. prem. Mean 0.0000 -3.6662 -2.6632 0.0000 0.0000
Transaction costs Mean -1.0876 -0.8598 -0.7025 -1.3076 -1.3076

Change
in values

USD m

Mean -3.1987 -4.5042 -4.8676 -2.8641 -2.8616
Median -3.5496 -5.5259 -5.9299 -3.3961 -3.3980
Std. dev. 6.4822 7.2082 7.5768 6.4828 6.4846
Skewness 1.4022 1.1114 0.9674 1.3356 1.3353
Kurtosis 8.2216 7.4585 6.9862 8.0120 8.0016

Log
return
in %

Mean -13.5610 -15.9599 -16.6157 -12.4468 -12.4441
Median -11.3477 -21.0249 -21.3702 -10.6583 -10.6520
Std. dev. 23.7128 24.6156 25.0441 23.4702 23.4714
Skewness 1.1472 1.4941 1.5489 1.1364 1.1360
Kurtosis 7.3884 7.8637 7.8556 7.3908 7.3886

The table shows selected descriptive statistics of the SPM 1 hedging results for the different hedging strategies (i.e.,
from A to E) over a fixed time horizon of one year prior to the vessel transaction. The included sample size is
112 vessels for all strategies with transaction dates from January 8th, 2009 to December 2nd, 2014. The kurtosis
measure states the estimated centralized fourth moment, not the excess kurtosis.
Strategies explained: A (short FFA), B (long at-the-money put option), C (long 10 % out-of-the-money put option),
D (replicated short FFA), and E (zero-cost collar).
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Table 3.12: Hedging results over fixed time horizon of one year (2/2)

SPM 2

Unit Statistic Physical position Reference return (rRF)

Start USD m Mean 37.4772 –
End Mean 26.4446 –

Change
in values

USD m

Mean -11.0325 –
Median -7.3899 –
Std. dev. 17.4765 –
Skewness -1.1515 –
Kurtosis 4.3521 –

Log
return
in %

Mean -35.5788 1.2816
Median -32.3172 0.9722
Std. dev. 51.3223 –
Skewness -1.2177 –
Kurtosis 8.0678 –

SPM 2

Hedge Unit Statistic A B C D E

Change
in values

USD m

Mean 8.0094 5.0707 4.7057 7.7207 7.7256
Median 1.3550 0.7716 0.7082 1.4747 1.4755
Std. dev. 16.1160 11.1706 10.3605 15.1231 15.1363
Skewness 1.7081 1.8924 1.9123 1.6991 1.7009
Kurtosis 4.9393 5.6640 5.7413 4.9277 4.9357

thereof: interest Mean 0.0304 -0.0182 -0.0110 0.0160 0.0210

Portfolio (PhyPos+Hedge)

Start

USD m

Mean 37.4772 37.4772 37.4772 37.4772 37.4772
End Mean 34.4541 31.5154 31.1504 34.1653 34.1703
Init. opt. prem. Mean 0.0000 -5.7407 -4.3879 0.0000 0.0000
Transaction costs Mean -1.2138 -0.7761 -0.6294 -1.2900 -1.2900

Change
in values

USD m

-3.0231 -5.9618 -6.3268 -3.3119 -3.3069
Median -3.3488 -6.8045 -6.6284 -3.3696 -3.3405
Std. dev. 6.6340 8.3038 8.8429 6.6679 6.6670
Skewness 1.3842 0.5385 0.3339 1.3641 1.3646
Kurtosis 8.6437 6.2584 5.6905 8.9262 8.9220

Log
return
in %

Mean -11.3313 -18.6730 -19.4968 -11.6374 -11.6295
Median -10.3856 -24.1879 -25.6976 -11.5264 -11.5484
Std. dev. 23.6673 25.0062 25.7469 23.4059 23.4071
Skewness 1.4528 1.6445 1.5851 1.5225 1.5216
Kurtosis 8.3758 8.4558 8.0296 8.6136 8.6096

The table shows selected descriptive statistics of the SPM 2 hedging results for the different hedging strategies (i.e.,
from A to E) over a fixed time horizon of one year prior to the vessel transaction. The included sample size is
112 vessels for all strategies with transaction dates from January 8th, 2009 to December 2nd, 2014. The kurtosis
measure states the estimated centralized fourth moment, not the excess kurtosis.
Strategies explained: A (short FFA), B (long at-the-money put option), C (long 10 % out-of-the-money put option),
D (replicated short FFA), and E (zero-cost collar).
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Table 3.13: Results for different hedge effectiveness measures

Hedging strategy

Model Measure Unit A B C D E

SPM 1

HEED % 78.94 77.31 76.51 79.37 79.37
HEHDA revised pp 8.84 1.39 -0.03 12.94 12.95
HELPM2 % 83.40 80.98 80.06 84.60 84.60
HELPM3 % 95.32 94.68 94.38 95.77 95.77
HELPM4 % 98.95 98.81 98.74 99.08 99.08
HESR pp 0.79 -4.28 -5.18 3.14 3.15

SPM 2

HEED % 78.73 76.26 74.83 79.20 79.20
HEHDA revised pp 18.53 -7.98 -8.88 16.63 16.66
HELPM2 % 86.03 77.51 75.78 86.06 86.06
HELPM3 % 96.32 93.48 92.72 96.40 96.40
HELPM4 % 99.22 98.48 98.23 99.26 99.26
HESR pp 5.11 -8.55 -8.78 3.71 3.74

The table shows the results of the different hedge effectiveness measures for the five
different hedging strategies applied (i.e., from A to E) to both models SPM 1 and
SPM 2 over a fixed time horizon of one year. The included sample size is 112 vessels
for all strategies. For HEED, HELPM2 , HELPM3 , and HELPM4 , the result is given
in percent. For HEHDA revised and HESR, the result is given in percentage points.
Strategies explained: A (short FFA), B (long at-the-money put option), C (long 10 %
out-of-the-money put option), D (replicated short FFA), and E (zero-cost collar).
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B.2 Excluding vessels younger than five and older than 20
years

Table 3.14: Estimates for different Capesize structural pricing models

SPM 1 (FFA+1CAL) SPM 2 (FFA+2CAL)

Coefficient t-stat. p-value Coefficient t-stat. p-value

α 10.7337 0.6214 0.5351 -34.4233* -1.7686 0.0787
(17.2727) (19.4634)

βf 3,185.9469*** 10.4784 0.0000 5,371.9995*** 11.2754 0.0000
(304.0483) (476.4368)

βAge -1.4020*** -4.2532 0.0000 -0.6584* -1.7225 0.0867
(0.3296) (0.3822)

βDWT 5.592·10−05 1.4856 0.1392 1.078·10−04** 2.5286 0.0123
(3.764·10−05) (4.262·10−05)

βConsum 13.4123 1.0946 0.2752 33.2725** 2.4200 0.0165
(12.2533) (13.7492)

βf ·Age -49.0855*** -7.4254 0.0000 -82.9450*** -7.9866 0.0000
(6.6105) (10.3855)

βf ·DWT -0.0032*** -4.7624 0.0000 -0.0057*** -5.5128 0.0000
(0.0007) (0.0010)

βf ·Consum -1,480.9109*** -6.9294 0.0000 -2,460.8855*** -7.3501 0.0000
(213.7153) (334.8115)

R2 0.8359 0.8495
Adj. R2 0.8229 0.8436
Log likelihood -682.7414 -674.7063
SBIC criterion 7.6067 7.5199
Akaike criterion 7.4675 7.3806
Standard error 9.9111 9.4899

The table shows linear regression coefficient estimates for two different SPMs based on data for 185 Capesize
vessel transactions and corresponding FFA time series data from January 13th, 2005 to December 2nd, 2014.
Vessels that were multiply sold have been excluded from the analysis. Figures in () reflect the corresponding
standard errors. * indicates significance at the 10 % level, ** at the 5 % level, and *** at the 1 % level.
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Table 3.15: Hedging results over fixed time horizon of one year (1/2)

SPM 1

Unit Statistic Physical position Reference return (rRF)

Start USD m Mean 35.2000 –
End Mean 22.4398 –

Change
in values

USD m

Mean -12.7602 –
Median -5.8700 –
Std. dev. 22.3791 –
Skewness -1.8989 –
Kurtosis 6.0302 –

Log
return
in %

Mean -32.5590 1.3090
Median -23.2083 0.9792
Std. dev. 41.4044 –
Skewness -0.6615 –
Kurtosis 3.0008 –

SPM 1

Hedge Unit Statistic A B C D E

Change
in values

USD m

Mean 10.7297 8.7821 8.2703 11.0499 11.0536
Median 1.5481 1.0348 0.9108 1.8845 1.8855
Std. dev. 23.6812 18.9351 17.8020 23.3394 23.3530
Skewness 1.9856 2.1160 2.1306 1.9489 1.9505
Kurtosis 6.1834 6.6048 6.6589 5.9808 5.9889

thereof: interest Mean 0.0301 -0.0027 0.0047 0.0268 0.0304

Portfolio (PhyPos+Hedge)

Start

USD m

Mean 35.2000 35.2000 35.2000 35.2000 35.2000
End Mean 33.1695 31.2219 30.7101 33.4897 33.4934
Init. opt. prem. Mean 0.0000 -4.6296 -3.3635 0.0000 0.0000
Transaction costs Mean -1.3047 -1.0891 -0.8936 -1.6248 -1.6248

Change
in values

USD m

Mean -2.0305 -3.9780 -4.4899 -1.7102 -1.7066
Median -2.4812 -3.6700 -4.2930 -2.1724 -2.1769
Std. dev. 4.4210 5.4208 6.1735 4.2260 4.2305
Skewness 0.3115 -0.1158 -0.3600 0.3257 0.3254
Kurtosis 3.0543 3.7152 3.8543 3.1941 3.1938

Log
return
in %

Mean -13.0291 -13.5844 -14.2848 -10.5199 -10.5174
Median -11.7086 -14.6289 -15.8237 -10.0723 -10.0655
Std. dev. 24.1916 18.2330 18.5813 19.0976 19.0998
Skewness -2.7653 0.3176 0.4446 -0.6467 -0.6468
Kurtosis 19.2948 3.1415 3.1637 4.4828 4.4829

The table shows selected descriptive statistics of the SPM 1 hedging results for the different hedging strategies (i.e.,
from A to E) over a fixed time horizon of one year prior to the vessel transaction. The included sample size is
103 vessels for all strategies with transaction dates from January 8th, 2009 to December 2nd, 2014. The kurtosis
measure states the estimated centralized fourth moment, not the excess kurtosis.
Strategies explained: A (short FFA), B (long at-the-money put option), C (long 10 % out-of-the-money put option),
D (replicated short FFA), and E (zero-cost collar).
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Table 3.16: Hedging results over fixed time horizon of one year (2/2)

SPM 2

Unit Statistic Physical position Reference return (rRF)

Start USD m Mean 35.1960 –
End Mean 22.4398 –

Change
in values

USD m

Mean -12.7562 –
Median -5.6381 –
Std. dev. 22.3451 –
Skewness -1.8861 –
Kurtosis 5.9436 –

Log
return
in %

Mean -32.1977 1.3090
Median -24.2915 0.9792
Std. dev. 41.3014 –
Skewness -0.7052 –
Kurtosis 3.0344 –

SPM 2

Hedge Unit Statistic A B C D E

Change
in values

USD m

Mean 10.8472 6.9895 6.4835 10.4086 10.4155
Median 1.6698 0.9486 0.7999 1.9104 1.9113
Std. dev. 22.3554 15.3010 14.1961 20.9203 20.9400
Skewness 2.0043 2.1434 2.1604 1.9850 1.9868
Kurtosis 6.2846 6.8239 6.8928 6.2243 6.2332

thereof: interest Mean 0.0423 -0.0237 -0.0142 0.0218 0.0286

Portfolio (PhyPos+Hedge)

Start

USD m

Mean 35.1960 35.1960 35.1960 35.1960 35.1960
End Mean 33.2870 29.4293 28.9233 32.8484 32.8553
Init. opt. prem. Mean 0.0000 -7.2320 -5.5267 0.0000 0.0000
Transaction costs Mean -1.4704 -0.9711 -0.7899 -1.5929 -1.5929

Change
in values

USD m

Mean -1.9091 -5.7667 -6.2727 -2.3476 -2.3408
Median -2.0064 -4.2452 -4.3546 -1.9031 -1.8999
Std. dev. 4.2563 7.9375 8.9106 4.2338 4.2306
Skewness -0.0102 -1.0979 -1.2072 -0.3086 -0.3079
Kurtosis 3.6762 4.2847 4.4370 3.9865 3.9914

Log
return
in %

Mean -11.7255 -16.2872 -17.0563 -10.3608 -10.3535
Median -8.9815 -16.8165 -18.8154 -9.8509 -9.8522
Std. dev. 29.8848 18.4550 19.2532 19.7494 19.7535
Skewness -5.6649 0.3602 0.4163 -1.8637 -1.8652
Kurtosis 48.0466 3.2482 3.1452 12.4269 12.4349

The table shows selected descriptive statistics of the SPM 2 hedging results for the different hedging strategies (i.e.,
from A to E) over a fixed time horizon of one year prior to the vessel transaction. The included sample size is
103 vessels for all strategies with transaction dates from January 8th, 2009 to December 2nd, 2014. The kurtosis
measure states the estimated centralized fourth moment, not the excess kurtosis.
Strategies explained: A (short FFA), B (long at-the-money put option), C (long 10 % out-of-the-money put option),
D (replicated short FFA), and E (zero-cost collar).
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Table 3.17: Results for different hedge effectiveness measures

Hedging strategy

Model Measure Unit A B C D E

SPM 1

HEED % 65.86 80.61 79.86 78.73 78.72
HEHDA revised pp 22.53 0.11 -2.12 19.86 19.88
HELPM2 % 72.90 81.85 80.77 83.39 83.39
HELPM3 % 74.15 93.32 92.94 92.38 92.38
HELPM4 % 66.12 97.56 97.44 96.07 96.07
HESR pp 12.04 -2.08 -3.23 9.23 9.24

SPM 2

HEED % 47.64 80.03 78.27 77.13 77.13
HEHDA revised pp 37.51 -14.22 -14.26 22.04 22.09
HELPM2 % 62.86 77.87 75.92 82.33 82.33
HELPM3 % 27.83 91.49 90.49 88.36 88.36
HELPM4 % -66.44 96.73 96.27 89.82 89.81
HESR pp 23.18 -7.46 -7.50 10.99 11.03

The table shows the results of the different hedge effectiveness measures for the five differ-
ent hedging strategies applied (i.e., from A to E) to both models SPM 1 and SPM 2 over
a fixed time horizon of one year. The included sample size is 103 vessels for all strate-
gies. For HEED, HELPM2 , HELPM3 , and HELPM4 , the result is given in percent. For
HEHDA revised and HESR, the result is given in percentage points.
Strategies explained: A (short FFA), B (long at-the-money put option), C (long 10 %
out-of-the-money put option), D (replicated short FFA), and E (zero-cost collar).
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B.3 Alternative hedging set-up

Table 3.18: Hedging results over fixed time horizon of one year (1/2)

SPM 1

Unit Statistic Physical position Reference return (rRF)

Start USD m Mean -36.3449 –
End Mean -24.9513 –

Change
in values

USD m

Mean 11.3936 –
Median 6.6571 –
Std. dev. 18.5330 –
Skewness 1.2586 –
Kurtosis 4.2808 –

Log
return
in %

Mean 31.6528 1.2894
Median 27.8532 0.9774
Std. dev. 65.9781 –
Skewness -1.9390 –
Kurtosis 18.8491 –

SPM 1

Hedge Unit Statistic A B C D E

Change
in values

USD m

Mean -10.6073 -2.6811 -2.1836 -11.4319 -11.4373
Median -2.7042 -1.3815 -1.2406 -2.8110 -2.8117
Std. dev. 19.6267 4.2117 3.4004 20.8982 20.9119
Skewness -1.7198 -0.8924 -0.7449 -1.7341 -1.7354
Kurtosis 4.7593 3.0261 2.9412 4.7638 4.7696

thereof: interest Mean -0.0276 -0.0241 -0.0194 -0.0233 -0.0287

Portfolio (PhyPos+Hedge)

Start

USD m

Mean -36.3449 -36.3449 -36.3449 -36.3449 -36.3449
End Mean -35.5586 -27.6324 -27.1349 -36.3832 -36.3886
Init. opt. prem. Mean 0.0000 -3.9188 -3.2345 0.0000 0.0000
Transaction costs Mean -1.1539 -0.4779 -0.4086 -1.3939 -1.3939

Change
in values

USD m

Mean 0.7863 8.7125 9.2100 - 0.0383 -0.0437
Median 1.5872 5.1620 5.5464 1.3231 1.3219
Std. dev. 6.5596 14.9706 15.7517 7.0420 7.0495
Skewness -1.1628 1.1813 1.2282 -1.0437 -1.0446
Kurtosis 6.1759 4.6477 4.6238 4.7822 4.7746

Log
return
in %

Mean 3.2134 20.1156 21.8398 1.5712 1.5636
Median 4.7494 22.0953 23.9843 3.6934 3.6904
Std. dev. 44.6691 53.7997 55.5360 44.2123 44.2125
Skewness -6.1882 -4.0951 -3.7162 -6.3031 -6.3025
Kurtosis 57.1677 33.3267 30.1299 58.0997 58.0950

The table shows selected descriptive statistics of the SPM 1 hedging results for the different hedging strategies (i.e.,
from A to E) over a fixed time horizon of one year prior to the vessel transaction. The included sample size is
150 vessels for all strategies with transaction dates from January 8th, 2009 to December 2nd, 2014. The kurtosis
measure states the estimated centralized fourth moment, not the excess kurtosis.
Strategies explained: A (long FFA), B (long at-the-money call option), C (long 10 % out-of-the-money call option),
D (replicated long FFA), and E (zero-cost collar).
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Table 3.19: Hedging results over fixed time horizon of one year (2/2)

SPM 2

Unit Statistic Physical position Reference return (rRF)

Start USD m Mean -36.2745 –
End Mean -24.9513 –

Change
in values

USD m

Mean 11.3232 –
Median 6.2950 –
Std. dev. 18.4552 –
Skewness 1.2711 –
Kurtosis 4.2796 –

Log
return
in %

Mean 31.7173 1.2894
Median 30.4117 0.9774
Std. dev. 61.2647 –
Skewness -1.1682 –
Kurtosis 14.8195 –

SPM 2

Hedge Unit Statistic A B C D E

Change
in values

USD m

Mean -11.0063 -3.8469 -3.3587 -10.8914 -10.8991
Median -3.3474 -1.7838 -1.6638 -3.2217 -3.2221
Std. dev. 18.2755 4.9672 4.2177 17.9822 17.9994
Skewness -1.7398 -1.0889 -0.9970 -1.7473 -1.7489
Kurtosis 4.9608 3.2586 3.0663 4.9755 4.9824

thereof: interest Mean -0.0386 -0.0369 -0.0317 -0.0188 -0.0265

Portfolio (PhyPos+Hedge)

Start

USD m

Mean -36.2745 -36.2745 -36.2745 -36.2745 -36.2745
End Mean -35.9576 -28.7982 -28.3100 -35.8427 -35.8504
Init. opt. prem. Mean 0.0000 -6.1242 -5.2888 0.0000 0.0000
Transaction costs Mean -1.2902 -0.5499 -0.4834 -1.3766 -1.3766

Change
in values

USD m

Mean 0.3169 7.4763 7.9645 0.4318 0.4241
Median 0.8777 4.4692 4.6251 1.1114 1.1112
Std. dev. 6.3714 14.3410 15.0433 6.2667 6.2699
Skewness -1.2189 1.0434 1.1014 -1.2767 -1.2749
Kurtosis 7.2342 4.4193 4.4098 7.5990 7.5794

Log
return
in %

Mean 0.0623 15.8439 17.4629 0.1758 0.1632
Median 2.5996 17.9851 18.7830 3.6064 3.6006
Std. dev. 39.8165 48.5054 49.9098 39.4041 39.4046
Skewness -5.4528 -3.4902 -3.1870 -5.6860 -5.6853
Kurtosis 48.2844 27.1848 24.8708 49.8488 49.8425

The table shows selected descriptive statistics of the SPM 2 hedging results for the different hedging strategies (i.e.,
from A to E) over a fixed time horizon of one year prior to the vessel transaction. The included sample size is
150 vessels for all strategies with transaction dates from January 8th, 2009 to December 2nd, 2014. The kurtosis
measure states the estimated centralized fourth moment, not the excess kurtosis.
Strategies explained: A (long FFA), B (long at-the-money call option), C (long 10 % out-of-the-money call option),
D (replicated long FFA), and E (zero-cost collar).
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Table 3.20: Results for different hedge effectiveness measures

Hedging strategy

Model Measure Unit A B C D E

SPM 1

HEED % 54.16 33.51 29.15 55.10 55.10
HEHDA revised pp -41.71 -11.03 -9.02 -45.38 -45.40
HELPM2 % 10.53 5.33 4.53 9.72 9.71
HELPM3 % 7.51 3.27 2.80 7.70 7.70
HELPM4 % 1.86 -0.03 -0.11 2.60 2.60
HESR pp -66.96 -26.03 -22.05 -71.06 -71.08

SPM 2

HEED % 57.76 37.32 33.63 58.63 58.63
HEHDA revised pp -52.75 -19.66 -17.26 -52.49 -52.52
HELPM2 % -2.57 -5.59 -5.69 -2.50 -2.51
HELPM3 % -2.30 -5.50 -5.53 -2.18 -2.18
HELPM4 % -7.36 -8.52 -8.29 -6.49 -6.50
HESR pp -88.84 -45.67 -41.27 -88.53 -88.56

The table shows the results of the different hedge effectiveness measures for the five dif-
ferent hedging strategies applied (i.e., from A to E) to both models SPM 1 and SPM 2
over a fixed time horizon of one year. The included sample size is 150 vessels for all strate-
gies. For HEED, HELPM2 , HELPM3 , and HELPM4 , the result is given in percent. For
HEHDA revised and HESR, the result is given in percentage points.
Strategies explained: A (long FFA), B (long at-the-money call option), C (long 10 % out-
of-the-money call option), D (replicated long FFA), and E (zero-cost collar).

Figure 3.8: Histograms of physical position outcomes
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The graph shows histogram plots of the physical position outcomes for SPM 1 and SPM 2 in
USD million for transactions from January 8th, 2009 until December 2nd, 2014.
Source: own graph based on hedging results
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Figure 3.9: Histograms of physical position and portfolio outcomes for
SPM 1
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The graph shows histogram plots of the physical position and portfolio outcomes for SPM 1 as
annualized log returns in % for transactions from January 8th, 2009 until December 2nd, 2014.
Strategies explained: A (long FFA), B (long at-the-money call option), C (long 10 % out-of-
the-money call option), D (replicated long FFA), and E (zero-cost collar).
Source: own graph based on hedging results
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Figure 3.10: Histograms of physical position and portfolio outcomes for
SPM 2
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The graph shows histogram plots of the physical position and portfolio outcomes for SPM 2 as
annualized log returns in % for transactions from January 8th, 2009 until December 2nd, 2014.
Strategies explained: A (long FFA), B (long at-the-money call option), C (long 10 % out-of-
the-money call option), D (replicated long FFA), and E (zero-cost collar).
Source: own graph based on hedging results
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Chapter 4

Pricing of Asian options for
affine Gaussian diffusions

with Alexander Szimayer

Abstract

We develop a general pricing framework for continuously monitored geometric Asian
call options for affine n-factor Gaussian diffusions and practically derive closed-form
solutions for geometric Asian call options for three prominent mean-reversion com-
modity pricing models. In a numerical example, we examine the accuracy of our
closed-form solutions via Monte Carlo (MC) simulation and use the geometric Asian
call option as control variate in order to price an arithmetic Asian call option. The
results confirm our closed-form solutions to be accurate and show that the MC control
variate simulation approach provides a considerable variance reduction. This can be
translated into substantial computation-time savings. Finally, we outline an exten-
sion to forward-start Asian options which are quite common in commodity markets.
Our general approach and the presented results are neither prone to changes in model
selection nor prone to changes in model parameters. Therefore, the applicability of
our general pricing framework is by no means limited to the mean-reversion models
or commodity markets considered within this study.
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4.1 Introduction

Asian options are path-dependent options where the payoff is determined by the av-
erage of the underlying price within the period [T0, T1]. Such options allow market
participants to hedge continuous risks or exposures (e.g., the average interest rate or
average cost across the accounting year) (Fusai and Meucci, 2008; Hull, 2012; Kemna
and Vorst, 1990). Longstaff (1995) states that an option on average interest rates is
far more cost-effective for hedging purposes than a set of individual, standard interest
rate options. Consequently, they provide a cheaper way to hedge regular, periodic
cash flows (Zhang, 1998). Furthermore, Asian options protect against potential mar-
ket manipulations of the underlying asset close to maturity and thus, are preferred in
markets with lower trading volume than classical financial markets (Fusai and Meucci,
2008; Hubalek et al., 2014; Kemna and Vorst, 1990). This option form is predomi-
nantly used in commodity and currency markets (Geman, 2005; Zhang, 1998). Asian
options typically come as arithmetic average or geometric average options and their
type can either be ‘fixed strike’ or ‘floating strike’1 (Hubalek et al., 2014). ‘Fixed strike’
Asian options are probably the most common from a trading volume perspective and
thus, we focus on this type of Asian options within this study. From a monitoring
basis of the average, Asian options can either be continuously or discretely monitored
(Hubalek et al., 2014). The former is often preferred from a pricing perspective as
the continuous average is, to a certain extent, mathematically easier to handle, while
discretely monitoring is what practically happens in derivative markets as continuous
prices rarely exist.

The pricing of Asian options can be a challenging task at times as it requires quite some
mathematical effort to either grasp the distribution of the average value at maturity
in closed form or to numerically evaluate it. For geometric Asian options, closed-form
solutions can luckily be found for affine Gaussian diffusions as the distribution of the
geometric average of an exponential of a Gaussian random process is itself lognormal.
For arithmetic Asian options, however, the distribution of the arithmetic average is
even unknown for an exponential of a Gaussian random process and thus, closed-form
solutions cannot be found (Kemna and Vorst, 1990; Zhang, 1998). For these kind of
options as well as for non-Gaussian diffusions, numerical methods remain as the only
measure to price Asian options.
1 ‘Fixed strike’ Asian call options have the payoff profile (AT −K)+, whereas ‘floating strike’

Asian call options have the payoff profile (ST −AT )+.
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The aim of the paper is threefold. Firstly, we develop a general pricing framework
for continuously monitored geometric Asian call options for affine n-factor Gaussian
diffusions. Secondly, we practically derive closed-form solutions for geometric Asian
call options for three prominent mean-reversion commodity pricing models. Finally,
we use the geometric Asian call option as control variate in a Monte Carlo (MC) sim-
ulation in order to price an arithmetic Asian call option under these price dynamics
and outline an extension to forward-start Asian options. The developed general pric-
ing framework uses the characteristic function of the joint stochastic process of the
underlying price dynamics and the geometric average to find the distribution of the
geometric average. The three mean-reversion commodity pricing models for which we
derive specific closed-form solutions for geometric Asian call options are the Schwartz
(1997) one-factor model, the Schwartz and Smith (2000) two-factor model, and the
Korn (2005) two-factor model. For the sake of completeness as well as to underline
the validity of our chosen approach, we also derive a closed-form solution for the Black
(1976) one-factor model. The obtained result can be rather simply converted to the
result for classical Black and Scholes (1973) price dynamics developed by Kemna and
Vorst (1990). Within the MC simulation, we examine the accuracy of the derived
closed-form solutions as well as apply the geometric Asian call option as control vari-
ate to price an arithmetic Asian call option. Concerning model parameters, we rely
on Prokopczuk (2011) as he estimated model parameters for the four price dynamics
mentioned above for four different dry bulk freight futures.2 Moreover, we outline an
extension of the MC simulation to forward-start Asian options. Note that neither is
our approach nor are our results prone to changes in model selection (as long as it
is an affine n-factor Gaussian diffusion) or model parameters. Consequently, the ap-
plicability of our general pricing framework is by no means limited to mean-reversion
models or commodity markets.

The remainder of the paper is structured as follows. Section 2 reviews the relevant
academic literature. Section 3 presents the general as well as specific model price
dynamics considered within the study. Section 4 develops the general pricing frame-
work for geometric Asian call options for affine Gaussian diffusions and states the
closed-form solutions (i.e., for the specific, considered model price dynamics). Sec-
tion 5 elaborates on a numerical example in which we examine the accuracy of the

2 We simply choose the Prokopczuk (2011) model parameters for pure convenience reasons as he
estimated a joint parameter set for the four price dynamics that we consider within this study.
See subsection 4.5.2 for details.
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developed closed-form solutions for geometric Asian call options in a MC simulation.
Furthermore, we price arithmetic Asian call options in a MC simulation using the
geometric Asian call option as control variate within the section. Finally, section
6 concludes the findings of this study and provides an outlook on further research
opportunities in this area.

4.2 Review of academic literature

Asian options and especially the pricing of these derivative instruments have found
quite some attention in the academic literature. The chosen pricing approaches can
be mainly classified in the following four broad categories: closed-form and semi-
analytical solutions,3 approximate closed-form solutions, partial differential equation
(PDE) methods and MC simulation. Note that the following literature review mainly
concentrates on ‘fixed strike’-type Asian options as this is the focus of our effort.

Concerning closed-form solutions, Kemna and Vorst (1990) develop a closed-form so-
lution for continuously monitored ‘fixed strike’ geometric Asian call options under
Black and Scholes (1973) price dynamics. Angus (1999) extends the solution to eval-
uation within the averaging period. With respect to semi-analytical solutions under
geometric Brownian motion (GBM) price dynamics, numerous efforts have been pub-
lished over the years in the academic literature (see, for instance, Carr and Schröder
(2004), Dufresne (2001), Dufresne (2005), Fu et al. (1999), Geman and Yor (1993),
Schröder (2008), and Yor (1992) for continuously monitored ‘fixed strike’ arithmetic
Asian options and Carverhill and Clewlow (1990) for discretely monitored arithmetic
Asian options). All of these efforts, however, rely on numerical methods, such as the
Laplace or Fourier transform, in order to compute option prices.

Leaving the world of Black and Scholes (1973) price dynamics but staying within the
field of semi-analytical solutions, Kim and Wee (2014) provide a semi-analytical solu-
tion for continuously monitored geometric Asian options under the stochastic volatility
price dynamics of Heston (1993). Wong and Cheung (2004) study the valuation of
continuously monitored geometric Asian options for an underlying where the constant
3 We define closed-form solution as mathematical expressions involving everything up to the eval-

uation of the normal cumulative distribution function. We consider mathematical expressions
requiring more complex numerical operations, such as the Laplace or Fourier transform, to be
evaluated as semi-analytical solutions.
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volatility of a GBM is replaced by stochastic volatility driven by a mean-reverting
process. Turning to Lévy-type models, Albrecher (2004) and Albrecher and Predota
(2004) study the pricing of discretely monitored arithmetic Asian options for exponen-
tial Lévy models and exponential Lévy models with normal inverse Gaussian (NIG)
log returns. Fusai and Meucci (2008) study discretely monitored Asian options when
the underlying follows a generic Lévy process. They find an semi-analytical solution
for geometric Asian options involving a Fourier transform and a recursive algorithm
for arithmetic Asian options. Concerning models incorporating stochastic volatility
and jumps, Hubalek and Sgarra (2011) find a semi-analytical solution for continuously
monitored geometric Asian options for Barndorff-Nielsen and Shephard (2001) price
dynamics.

With respect to the use of the characteristic function within option pricing, Carr and
Madan (1999) show how the Fourier transform can be used to value options if the
characteristic function is known analytically. Bakshi and Madan (2000) provide a
broader discussion on how the characteristic function is able to grasp the payoff range
of derivatives. Concerning concrete application to specific price dynamics, Heston
(1993) derives a semi-analytical solution for an European option under the stochas-
tic volatility price dynamics he proposes within his study. Turning again to Asian
options, Hubalek et al. (2014) develop a general pricing framework that yields a semi-
analytical solution for continuously monitored geometric Asian options for general
affine stochastic volatility models with jumps. Our effort can be considered as special
case of Hubalek et al. (2014) as we focus only on affine Gaussian diffusions. This
allows us to state closed-form solutions, whereas Hubalek et al. (2014) are limited to
semi-analytical solutions due to the more general class of affine stochastic volatility
models with jumps. Kyriakou et al. (2014) consider a mean-reversion model with sea-
sonality jumps and Heston-type stochastic volatility as well as three nested models for
energy commodities. They find a semi-analytical solutions for discretely monitored
geometric Asian options. These efforts, however, rely again on numerical methods an
thus, are also considered as semi-analytical solutions. Duffie et al. (2003) provide an
excellent discussion of the required mathematical theory to treat the general class of
affine stochastic processes including the derivation of the characteristic function for
single or joint processes.

In terms of approximate closed-form solutions for arithmetic Asian options, the most
well-known is the moment-matching approximation of Turnbull and Wakeman (1991)
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under Black and Scholes (1973) price dynamics for continuously monitored arithmetic
Asian options. Popular approximation for discretely monitored arithmetic Asian op-
tions include, for instance, Curran (1992) and Curran (1994) both conditioning on the
geometric average as well as Levy (1997) extending the Turnbull and Wakeman (1991)
approximation to discrete monitoring. Milevsky and Posner (1998) approximate the
distribution of the log arithmetic average by the reciprocal gamma distribution.

Concerning PDE methods, Kemna and Vorst (1990) explicitly state a PDE describing
the value of an Asian option. Rogers and Shi (1995), Alziary et al. (1997), and Zhang
(2001), among others, study numerical solutions of this PDE using finite differences.

With respect to MC simulation, Boyle (1977) is the first one to apply it to option
valuation. He also already applies the control variate as variance reduction tech-
nique. Kemna and Vorst (1990) are the first ones to apply the geometric Asian call
option as control variate to price an arithmetic Asian option using a MC simula-
tion. They achieve considerable variance reduction using the control variate due to
the almost perfect correlation of geometric and arithmetic average. A MC simula-
tion is nowadays one of the standard methods to price options and is also often used
as benchmark for any closed-form or semi-analytical solutions, closed-form approxi-
mations, or PDE methods (see, for instance, Albrecher and Predota (2004), Curran
(1994), Fu et al. (1999), Fusai and Meucci (2008), Kim and Wee (2014), Kyriakou
et al. (2014), Milevsky and Posner (1998), Rogers and Shi (1995), and Turnbull and
Wakeman (1991)).

With respect to the specific price dynamics we touch within this study, mean-reversion
is a characteristic often attributed to commodity markets and numerous studies on
the theoretical link as well as the empirical evidence have been performed. Mean-
reversion is theoretically induced by either the convenience yield or time-varying risk
premium existing in commodity markets, finds some empirical support, and several
corresponding one-, two-, or multi-factor pricing models incorporating mean-reversion
have been specified for commodity markets (see, among others, Bessembinder et al.
(1995), Brennan (1991), Casassus and Collin-Dufresne (2005), Cortazar and Schwartz
(1994), Cortazar and Naranjo (2006), Gibson and Schwartz (1990), Korn (2005), Lutz
(2010), Schwartz (1997), or Schwartz and Smith (2000)).

Our paper contributes to the existing academic literature in three important ways.
Firstly, we develop a general pricing framework for continuously monitored geometric
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Asian call options for affine n-factor Gaussian diffusions. Secondly, we practically
derive closed-form solutions for geometric Asian call options for three prominent mean-
reversion commodity pricing models. Finally, we use the geometric Asian call option
as control variate in a MC simulation in order to price an arithmetic Asian call option
under these price dynamics and outline an extension to forward-start Asian options.
Consequently, our findings for valuing geometric and arithmetic Asian call options are
applicable to the set of affine Gaussian diffusions in a broad set of markets.

4.3 Price dynamics

One the one hand, we consider the general class of affine n-factor Gaussian diffusions
within this effort in order to develop a general pricing framework for continuously
monitored geometric Asian call options. On the other hand, we specifically apply the
general pricing framework to four model price dynamics. The following subsections
introduce the general price dynamics as well as the specific model price dynamics.

4.3.1 General price dynamics

The general price dynamics considered within this study are affine n-factor Gaussian
diffusions. Consequently, we limit the general pricing framework of the subsequent
section to these kind of Gaussian diffusions. Firstly, we start off with a basic definition.

Definition 1 (Affine n-factor Gaussian diffusion): The underlying S with
starting value S(0) = s is given by

ln(S(t)) =
n∑
i=1

wi ·Xi(t) = 〈w,X(t)〉, for t ≥ 0, (4.1)

where X is an Rn-valued affine Gaussian diffusion with dynamics

dX(t) = (b+ β ·X(t)) dt+ Σ dW (t), for t ≥ 0, (4.2)

and starting value X(0) = x ∈ Rn (satisfying ln(s) = 〈w,x〉), where w is the vector
containing the weights for each of the n factors, b ∈ Rn is the constant component of
the drift, the matrix β ∈ Rn×n is the drift component that is linear in X, Σ ∈ Rn×d is
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the volatility matrix, andW is a d-dimensional Wiener process under the risk-neutral
measure Q. Denote by a = 1

2Σ ·Σᵀ the covariance matrix times 1
2 .

4.3.2 Specific model price dynamics

With respect to the specific model price dynamics considered within this study, we
focus on the same set of price dynamics as in Prokopczuk (2011). This includes two
one-factor and two two-factor models which are typically used for commodity pricing.
The one-factor models considered are the Black (1976) model and the Schwartz (1997)
one-factor model, whereas the two-factor models considered are the Schwartz and
Smith (2000) two-factor model and the Korn (2005) two-factor model. With respect
to notation, we largely follow Prokopczuk (2011). The price dynamics of the respective
models are explained in more depth in the following two subsections.

4.3.2.1 One-factor models

The first one-factor commodity pricing model is the model by Black (1976) which is
a variation of the well-known Black and Scholes (1973) option pricing model. Black
(1976) assumes that the log underlying price, St, follows an arithmetic Brownian
motion (ABM). Under the real probability measure, P, the price dynamics are the
following:

ln (St) ≡ ξt, (4.3)

dξt = a dt+ σξ dW P
ξ,t. (4.4)

Within equation (4.4) above, the stochastic process is governed by the drift parameter,
a, the volatility parameter, σξ, and is driven by a standard Brownian motion or
Wiener process, W P

ξ,t, with zero mean and unit variance rate. Under the risk-neutral
probability measure, Q, the price dynamics of equation (4.4) change to the following:

dξt = a∗ dt+ σξ dWQ
ξ,t, (4.5)

with a∗ = a− λξ. (4.6)
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Under risk-neutral valuation, the drift parameter, a, is reduced by the market price
of risk, λξ, yielding the risk-neutral drift parameter, a∗.

The second one-factor commodity pricing model is the Schwartz (1997) one-factor
model. Contrary to Black (1976), Schwartz (1997) assumes that commodity prices
show signs of mean-reversion and models the log spot price by means of an Ornstein-
Uhlenbeck (OU) process reverting to the long-term equilibrium log price level. Under
the real probability measure, P, the price dynamics are the following:

ln (St) ≡ ξt, (4.7)

dξt = κξ (a− ξt) dt+ σξ dW P
ξ,t. (4.8)

Within equation (4.8) above, the stochastic process is governed by the mean-reversion
parameter, κξ, the long-term equilibrium log price level, a, the volatility parameter,
σξ, and is again driven by a standard Brownian motion or Wiener process, W P

ξ,t, with
zero mean and unit variance rate. Under the risk-neutral probability measure, Q, the
price dynamics of equation (4.8) change to the following:

dξt = κξ (a∗ − ξt) dt+ σξ dWQ
ξ,t, (4.9)

with a∗ = a− λξ. (4.10)

Under risk-neutral valuation, the long-term equilibrium log price level, a, is reduced
by the market price of risk, λξ, yielding the risk-neutral long-term equilibrium log
price level, a∗.

4.3.2.2 Two-factor models

Empirical research has shown that a second stochastic factor enhances the pricing
accuracy in several commodity markets (e.g., Schwartz (1997), Schwartz and Smith
(2000), Korn (2005)). Consequently, we also include two two-factor models in the
study. The first one considered is the Schwartz and Smith (2000) two-factor model.4

The model assumes that the log spot price follows a linear combination of two stochas-
tic factors. The first stochastic factor, ξt, models the long-term equilibrium log price

4 Note that this model is equivalent to the Gibson and Schwartz (1990) two-factor model or the
Schwartz (1997) two-factor model because the stochastic factors of the model considered can be
represented by a linear combination of the stochastic factor of the respective other model.
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level by means of an ABM and the second stochastic factor, χt, models short-term de-
viation by means of an OU process reverting to zero. Accordingly, the price dynamics
under the real probability measure, P, are the following:

ln (St) ≡ ξt + χt, (4.11)

dξt = a dt+ σξ dW P
ξ,t, (4.12)

dχt = −κχ · χt dt+ σχ dW P
χ,t. (4.13)

Within equations (4.12) and (4.13) above, the long-term equilibrium log price level, ξt,
is governed by the drift parameter, a, the volatility parameter, σξ, and is driven by a
standard Brownian motion or Wiener process, W P

ξ,t, with zero mean and unit variance
rate. The short-term deviations, χt, are governed by the mean-reversion parameter,
κχ, the volatility parameter, σχ, and are driven as well by a standard Brownian motion
or Wiener process,W P

χ,t. The two Wiener processes,W P
ξ,t andW P

χ,t, are correlated with
dW P

ξ,tdW P
χ,t = ρξ,χ dt where ρξ,χ represents the instantaneous correlation. Under the

risk-neutral probability measure, Q, the price dynamics of equations (4.12) and (4.13)
change to the following:

dξt = a∗ dt+ σξ dWQ
ξ,t, (4.14)

dχt = (−κχ · χt − λχ) dt+ σχ dWQ
χ,t, (4.15)

with a∗ = a− λξ. (4.16)

Under risk-neutral valuation, the drift parameter of the long-term equilibrium, a, is
reduced by the market price of risk, λξ, yielding the risk-neutral drift of the long-term
equilibrium, a∗. The short-term deviations revert under risk-neutrality to −λχ

κχ
rather

than to zero. The two Wiener processes, WQ
ξ,t and WQ

χ,t, are again correlated with
dWQ

ξ,tdW
Q
χ,t = ρξ,χ dt.

The second two-factor model considered is the Korn (2005) two-factor model.5 The
model modifies the Schwartz and Smith (2000) two-factor model. Korn (2005) re-
placed the non-stationary long-term equilibrium log price level (i.e., which is driven
by an ABM in Schwartz and Smith (2000)) by an OU process reverting to the long-

5 Note that the version of the Korn (2005) two-factor model is slightly different as in the original
source. Korn (2005) rather assumes that the log spot price follows the following definition:
ln (St) ≡ κχ

κξ+κχ
ξt+χt− κξ·a

κξ+κχ
. We use the simplified definition as in Prokopczuk (2011) mainly

for convenience reasons for the later numerical example.
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term equilibrium log price level leading to stationary spot prices. Accordingly, the
price dynamics under the real probability measure, P, for this model are the following:

ln (St) ≡ ξt + χt, (4.17)

dξt = κξ (a− ξt) dt+ σξ dW P
ξ,t, (4.18)

dχt = −κχ · χt dt+ σχ dW P
χ,t. (4.19)

Within equations (4.18) and (4.19) above, the long-term equilibrium log price level, ξt,
is governed by the mean-reversion parameter, κξ, the long-term equilibrium log price
level, a, the volatility parameter, σξ, and is driven by a standard Brownian motion or
Wiener process, W P

ξ,t, with zero mean and unit variance rate. The short-term devia-
tions, χt, are governed by the mean-reversion parameter, κχ, the volatility parameter,
σχ, and are driven as well by a standard Brownian motion or Wiener process, W P

χ,t.
The two Wiener processes, W P

ξ,t and W P
χ,t, are correlated with dW P

ξ,tdW P
χ,t = ρξ,χ dt

where ρξ,χ represents the instantaneous correlation. Under the risk-neutral proba-
bility measure, Q, the price dynamics of equations (4.18) and (4.19) change to the
following:

dξt = κξ (a∗ − ξt) dt+ σξ dWQ
ξ,t, (4.20)

dχt = (−κχ · χt − λχ) dt+ σχ dWQ
χ,t, (4.21)

with a∗ = a− λξ. (4.22)

Under risk-neutral valuation, the long-term equilibrium log price level, a, is reduced
by the market price of risk, λξ, yielding the risk-neutral long-term equilibrium log
price level, a∗. The short-term deviations revert under risk-neutrality to −λχ

κχ
rather

than to zero. The two Wiener processes, WQ
ξ,t and WQ

χ,t, are again correlated with
dWQ

ξ,tdW
Q
χ,t = ρξ,χ dt.

4.4 Geometric Asian options

In order to price an arithmetic Asian call option in a MC setting using the geometric
Asian call option as control variate, closed-form solutions for geometric Asian call
options under the different pricing dynamics need to be derived. Firstly, we provide a
general pricing framework applicable to affine n-factor Gaussian diffusions including
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functional integrals of these diffusions, such as the geometric average. Secondly, we
apply this general pricing framework to the specific model price dynamics considered
within this study and provide individual closed-form solutions for geometric Asian
call options.

4.4.1 General pricing framework for Gaussian diffusions

As we set out to develop closed-form solutions for geometric Asian call options for
affine n-factor Gaussian diffusions, the distribution of the geometric average needs to
be determined. As already stated in subsection 4.1, the distribution of the geometric
average of a lognormally distributed variable is itself lognormal. As all price dynamics
considered within this study model log spot price, the log spot price as well as the log
of the geometric average is normally distributed. Accordingly, the mean and variance
parameters of the distribution of the log geometric average at the end of the averaging
period need to be derived. Once these two distribution parameters, µG and σ2

G, are
known, a specific, closed-form option pricing formula can be specified for a geometric
Asian call option.

The following paragraphs provide the required mathematical theory and explain the
derivation of the distribution parameters of the log geometric average using the con-
cept of the characteristic function. We start off with the payoff of the geometric Asian
call option on the underlying S which is described by the running average of the log
price of the underlying

G(t;T0, T1) = 1t≥T0

1
T1 − T0

t∫
T0

ln(S(u)) du = 1t≥T0

t∫
T0

〈v,X(s)〉 ds, (4.23)

for T0 = 0 ≤ t ≤ T1, with v = w

T1 − T0
.

Then, exp(G(T1;T0, T1)) is the geometric average of S over the interval [T0, T1].

The price of a geometric Asian call option on the underlying S with averaging period
[T0, T1], settlement date T , and strike price K is the risk-neutral expected payoff
discounted at the risk free rate, r. This is, for t ≤ T ,

CG(t,x, g;T0, T1, T ) = e−r·(T−t) · Et,x,g
[
(exp(G(T1;T0, T1))−K)+

]
, (4.24)
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4.4 Geometric Asian options

where T0 < T1 ≤ T and Et,x,g = E [ · |X(t) = x, G(t;T0, T1) = g] is the corresponding
conditional risk-neutral expectation. For t ≤ T0, it follows that G(t;T0, T1) = 0 and
thus, conditioning on G becomes redundant and we write Et,x [ · ] = E [ · |X(t) = x]
instead. For t = 0, we omit the time variable and write Ex [ · ] = E [ · |X(0) = x] and
Ex,g = E [ · |X(0) = x, G(0;T0, T1) = g], respectively.

The following Theorem 1, Corollary 1, and Corollary 2 provide closed-form
solutions for affine n-factor Gaussian diffusions for different points in time (i.e., at
inception of, within, and before the averaging period, respectively).

Theorem 1 (Price of a geometric Asian call option at inception of the
averaging period): The price of a geometric Asian call option on the underlying
S = e〈w,X〉 with averaging period [0, T1], settlement date T , and strike price K is at
time t = T0 = 0 given by

CG(0,x, 0; 0, T1, T ) = e−r·T
(

eµG+ 1
2σ

2
G · N

(
µG − ln(K) + σ2

G
σG

)

−K · N
(
µG − ln(K)

σG

))
,

(4.25)

where µG = 1
T1

〈
w,

T1∫
0

eβ·t dt · x
〉

+ 1
T1

〈
w,

T1∫
0

t∫
0

eβ·s ds dt · b
〉

(4.26)

σ2
G = 1

T 2
1

T1∫
0

∥∥∥∥∥∥Σᵀ

t∫
0

eβᵀ·s ds ·w

∥∥∥∥∥∥
2

2

dt. (4.27)

For the proof of Theorem 1, see appendix A.1.1 from page 199 onwards.

Corollary 1 (Price of a geometric Asian call option within the
averaging period): The price of a geometric Asian call option on the underly-
ing S = e〈w,X〉 with averaging period [T0, T1], settlement date T , and strike price K is
at time t ∈ [T0, T1) given by

CG(t,x, g;T0, T1, T ) = e−r·(T−t)
(

eµG+ 1
2σ

2
G · N

(
µG − ln(K) + σ2

G
σG

)

−K · N
(
µG − ln(K)

σG

))
,

(4.28)
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where µG = g + 1
T1 − T0

〈
w,

T1−t∫
0

eβ·u du · x
〉

+ 1
T1 − T0

〈
w,

T1−t∫
0

u∫
0

eβ·s ds du · b
〉
,

(4.29)

σ2
G = 1

(T1 − T0)2

T1−t∫
0

∥∥∥∥∥∥Σᵀ

u∫
0

eβᵀ·s ds ·w

∥∥∥∥∥∥
2

2

du, (4.30)

and g = G(t, T0, T1) = 1
T1 − T0

t∫
T0

ln(S(u)) du =
t∫

T0

〈v,X(s)〉 ds. (4.31)

For the proof of Corollary 1, see appendix A.1.2 from page 201 onwards.

Corollary 2 (Price of a geometric Asian call option before the
averaging period): The price of a geometric Asian call option on the underly-
ing S = e〈w,X〉 with averaging period [0, T1], settlement date T , and strike price K is
at time t ≤ T0 given by

CG(t,x, g;T0, T1, T ) = e−r·(T−t)
(

eµG+ 1
2σ

2
G · N

(
µG − ln(K) + σ2

G
σG

)

−K · N
(
µG − ln(K)

σG

))
,

(4.32)

where µG = 1
T1 − T0

〈
w,

T1−T0∫
0

eβ·(T0−t+u) du · x
〉

+ 1
T1 − T0

〈
w,

T1−T0∫
0

T0−t+u∫
0

eβ·s ds du · b
〉
,

(4.33)

σ2
G = 1

(T1 − T0)2

T1−T0∫
0

∥∥∥∥∥∥Σᵀ

u∫
0

eβᵀ·s ds ·w

∥∥∥∥∥∥
2

2

du

+ 1
(T1 − T0)2

T0−t∫
0

∥∥∥∥∥∥Σᵀ

T1−T0∫
0

eβᵀ·(u+s) ds ·w

∥∥∥∥∥∥
2

2

du.

(4.34)

For the proof of Corollary 2, see appendix A.1.3 from page 201 onwards.
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4.4 Geometric Asian options

4.4.2 Closed-form solutions for considered price dynamics

Now, we apply the developed general pricing framework for geometric Asian call
options presented above to the specific model price dynamics introduced in subsec-
tion 4.3.2. We first derive closed-form solutions using Theorem 1 for the case at the
inception of the averaging period (i.e., t = T0 = 0). For brevity of the notation, we
assume that the end of the averaging period coincides with the settlement date (i.e.,
T1 = T ).6 Note that we only provide the resulting closed-form solutions in the main
body of the paper due to the lengthiness of the required calculus. The structure of
the resulting closed-form solutions is basically equation (4.25) with varying terms for
µG and σ2

G.

For the case within the averaging period (i.e., t ∈ [T0, T1) = [T0, T )), the resulting
closed-form solutions using Corollary 1 are provided in the respective appendix sec-
tions. For the case before the averaging period (i.e., t ≤ T0), we leave the application
of Corollary 2 to the reader.

4.4.2.1 Black (1976) one-factor model

The closed-form solution price of a geometric Asian call option for the Black (1976)
one-factor model on the underlying S, at time t = T0 = 0 with averaging period
[T0, T1] = [T0, T ], settlement date T , and strike price K is given by

CG = eµG+ 1
2σ

2
G−r·T · N

(
µG − ln(K) + σ2

G
σG

)
− e−r·T ·K · N

(
µG − ln(K)

σG

)
, (4.35)

with µG = ξ0 + 1
2a
∗ · T,

and σ2
G = 1

3σ
2
ξ · T.

Note that equation (4.35) is equal to the one provided by Kemna and Vorst (1990) if
we set a∗ = r − 1

2σ
2
ξ .

For details on the derivation of equation (4.35) above as well as the closed-form
solution for the case within the averaging period (i.e., t ∈ [T0, T1) = [T0, T )), see
appendix A.2.1 from page 204 onwards.
6 This assumption can easily be relaxed by replacing T by T1 in the µG- and σ2

G-terms of the
closed-form solutions, respectively.
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Chapter 4 Pricing of Asian options for affine Gaussian diffusions

4.4.2.2 Schwartz (1997) one-factor model

The closed-form solution price of a geometric Asian call option for the Schwartz (1997)
one-factor model on the underlying S, at time t = T0 = 0 with averaging period
[T0, T1] = [T0, T ], settlement date T , and strike price K is given by

CG = eµG+ 1
2σ

2
G−r·T · N

(
µG − ln(K) + σ2

G
σG

)
− e−r·T ·K · N

(
µG − ln(K)

σG

)
, (4.36)

with µG = ξ0

κξ · T
(
1− e−κξ·T

)
+ a∗ − a∗

κξ · T
(
1− e−κξ·T

)
,

and σ2
G =

σ2
ξ

2 · κ3
ξ · T 2

(
2 · κξ · T + 4 · e−κξ·T − e−2·κξ·T − 3

)
.

For details on the derivation of equation (4.36) above as well as the closed-form
solution for the case within the averaging period (i.e., t ∈ [T0, T1) = [T0, T )), see
appendix A.2.2 from page 206 onwards.

4.4.2.3 Schwartz and Smith (2000) two-factor model

The closed-form solution price of a geometric Asian call option for the Schwartz and
Smith (2000) two-factor model on the underlying S, at time t = T0 = 0 with averaging
period [T0, T1] = [T0, T ], settlement date T , and strike price K is given by

CG = eµG+ 1
2σ

2
G−r·T · N

(
µG − ln(K) + σ2

G
σG

)
− e−r·T ·K · N

(
µG − ln(K)

σG

)
, (4.37)

with µG = ξ0 + χ0

κχ · T
(
1− e−κχ·T

)
+ 1

2a
∗ · T + λχ

κ2
χ · T

(
1− κχ · T − e−κχ·T

)
,

and σ2
G = 1

3σ
2
ξ · T + ρξ,χσξσχ

κ3
χ · T 2

(
κ2
χ · T 2 + 2 · κχ · T · e−κχ·T + 2 · e−κχ·T − 2

)

+
σ2
χ

2 · κ3
χ · T 2

(
2 · κχ · T + 4 · e−κχ·T − e−2·κχ·T − 3

)
.

For details on the derivation of equation (4.37) above as well as the closed-form
solution for the case within the averaging period (i.e., t ∈ [T0, T1) = [T0, T )), see
appendix A.2.3 from page 210 onwards.
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4.5 Numerical example

4.4.2.4 Korn (2005) two-factor model

The closed-form solution price of a geometric Asian call option for the Korn (2005)
two-factor model on the underlying S, at time t = T0 = 0 with averaging period
[T0, T1] = [T0, T ], settlement date T , and strike price K is given by

CG = eµG+ 1
2σ

2
G−r·T · N

(
µG − ln(K) + σ2

G
σG

)
− e−r·T ·K · N

(
µG − ln(K)

σG

)
, (4.38)

with µG = ξ0

κξ · T
(
1− e−κξ·T

)
+ χ0

κχ · T
(
1− e−κχ·T

)
+ a∗

κξ · T
(
e−κξ·T + κξ · T − 1

)
+ λχ
κ2
χ · T

(
1− e−κχ·T − κχ · T

)
,

and σ2
G =

σ2
ξ

2 · κ3
ξ · T 2

(
2 · κξ · T + 4 · e−κξ·T − e−2·κξ·T − 3

)
+ 2 · ρξ,χσξσχ
κ2
ξ · κ2

χ (κξ + κχ)T 2

(
κξ (κξ + κχ) e−κχ·T + κξ · κχ · T (κξ + κχ)

+κχ (κξ + κχ) e−κξ·T − κξ · κχ · e−(κξ+κχ)·T − (κξ + κχ)2 + κξ · κχ
)

+
σ2
χ

2 · κ3
χ · T 2

(
2 · κχ · T + 4 · e−κχ·T − e−2·κχ·T − 3

)
.

For details on the derivation of equation (4.38) above as well as the closed-form
solution for the case within the averaging period (i.e., t ∈ [T0, T1) = [T0, T )), see
appendix A.2.4 from page 216 onwards.

4.5 Numerical example

In order to test the accuracy of the developed closed-form solutions for geometric
Asian call options as well as to apply them in a MC control variate setting to price
arithmetic Asian call options, we conduct the following numerical example using model
parameters from Prokopczuk (2011).
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Chapter 4 Pricing of Asian options for affine Gaussian diffusions

4.5.1 Freight options

For the numerical example, we consider an arithmetic Asian call option that is writ-
ten on spot freight rates. Freight options are Asian options or, more specifically,
European fixed-strike, arithmetic average options on the underlying spot freight rate.
Alternatively, they can also be seen as plain European options on fixed-strike, arith-
metic average Forward Freight Agreements (FFAs) (as their maturity date is exactly
the same). FFAs are settled also against the arithmetic average of the spot freight
rate within the delivery period, which is typically one month for the relevant dry bulk
Capesize or Panamax contracts. As these contracts are cleared via clearing houses,
traded on hybrid exchanges, and also standardized to a certain extent, they can actu-
ally be seen as futures-like contracts. From a pricing perspective for freight options,
the model of Turnbull and Wakeman (1991) is quite heavily used among practitioners
and, for instance, The Baltic Exchange quotes at-the-money implied volatilities for
freight options based on the Turnbull and Wakeman (1991) model. The time to ma-
turity available of these kind of products reaches up to the seven next calendar-years.
For more information on FFAs or freight options in general, see, for instance, the com-
prehensive effort of Alizadeh and Nomikos (2009). For detailed product descriptions
of traded dry bulk freight options, see, for instance, Appendix 5 to the Rulebook of
NOS Clearing ASA7 (NOS, 2014).

4.5.2 Model parameters

Within the numerical example, we rely on model parameters estimated by Prokopczuk
(2011). As already indicated in section 4.1, we simply choose the Prokopczuk (2011)
model parameters for pure convenience reasons as he estimated a joint parameter
set for the four specific model price dynamics that we consider within this study.
This allows to compare the results across the four price dynamics. Obviously, we
could have estimated a joint parameter set for the four price dynamics for any other
commodity data set. However, we deemed this out of scope of our study as any joint
parameter set would serve equally well for the purpose of our numerical example and
the estimation procedure for these models has been extensively described, for instance,
in the respective original sources of the models.
7 NOS Clearing ASA (part of Nasdaq OMX) is a clearing house for over-the-counter (OTC)-

traded derivatives, such as freight options.
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Prokopczuk (2011) estimated model parameters for four dry bulk freight futures con-
tracts (i.e., Capesize routes C4 and C7 as well as Panamax routes P2A and P3A)
based on weekly data from January 2005 until December 2008. For a more detailed
discussion including summary statistics of the raw data, see the ‘data’ section in
Prokopczuk (2011). In order to estimate the model parameters, Prokopczuk (2011)
applied a Kalman filter maximum likelihood approach. The estimated model pa-
rameters are shown in Table 4.1.8 With respect to significance of the estimated
parameters, it should be noticed that only the estimations of the Schwartz (1997)
one-factor model are significant for all parameters for all routes. Each other model
has at least one parameter that is not significant for each route. This may either
result from the short time frame that has been used to estimate the models or from
the fact that the freight market experienced quite some turbulences in 2008. The
latter also becomes apparent in the rather high volatilities for the different models.
Nonetheless, this should not affect the validity of the conclusions we draw from our
numerical computations.

4.5.3 Monte Carlo simulation set-up

For the MC simulation, we have two objectives. Firstly, we want to test the accuracy of
the developed closed-form solutions from subsection 4.4.2 by comparing them against
a MC price of a geometric Asian call option. Secondly, we want to price an arithmetic
Asian call option using a MC simulation and show the benefit of using the geometric
Asian call option as control variate.

We assume that we are at the beginning of the averaging period, t = T0 = 0. The
option has a remaining time to maturity of T = T1 = 1

12 = 0.083 years or 1 month.
We simulate k = 100,000 paths with n = 21 time steps for each path. We choose
n = 21 in order to reflect one price per trading day as it is common for discretely
sampled Asian options in practice. Concerning our first objective, this induces, on the
one hand, a bias in form of a discretization error as our closed-form solution assumes
continuous monitoring. In this case, we define bias or discretization error as the
deviation of the MC price from the closed-form solution.9 This bias can be reduced

8 Note that we changed the sign of the parameter a∗ for the Black (1976) one-factor model for
route P2A as this is consistent with the other routes. We assume this to be a misprint in
Prokopczuk (2011).

9 Note that we anchor the bias at the continuously monitored closed-form solution although Asian
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by increasing the number of simulated time steps, n (Seydel, 2012). On the other
hand, our first objective also suffers from a simulation error as every MC simulation
does. This error can be measured by means of the MC standard deviation and can be
reduced by increasing the number of simulated price paths, k (Seydel, 2012). For our
first objective, the bias or discretization error is of utmost importance in judging our
results if k is selected sufficiently large. With respect to our second objective, bias or
discretization error is negligible as the continuously monitored closed-form solution
plays only a minor role in the MC control variate approach. Both normal MC and MC
control variate approach are subject to n time steps. The simulation error, however,
is a key criteria when comparing both approaches and judging the benefit of the MC
control variate approach.

The simulation is conducted inMatlab R2015a using seed 1 of the ‘Mersenne twister’
as random number generator. The standard normal random numbers are drawn in a
n× k matrix. For the two-factor models, the second, correlated standard normal ran-
dom number matrix is obtained using another independent standard normal random
number n×k matrix which is subsequently adjusted using the Cholesky factorization
(Glasserman, 2003). This gives us

Z1 = z1, (4.39)

Z2 = ρξ,χ(∆t) · z1 +
√

1− ρ2
ξ,χ(∆t) · z2, (4.40)

with z1 and z2 being two independent standard
normal random number n× k matrices.

As we discretely simulate the price paths, the instantaneous correlation, ρξ,χ, between
the two Wiener processes in the two-factor models needs to be adjusted to the chosen
length of the time step, ∆t = T

n
. The time step-dependent correlation, ρξ,χ(∆t), is

obtained for the

Schwartz and Smith (2000) two-factor model by

ρξ,χ(∆t) = Covξ,χ
σξ · σχ

= ρξ,χ√
∆t

√√√√ 2 (1− e−κχ·∆t)2

κχ (1− e−2·κχ·∆t) (4.41)

options are usually discretely monitored in practice. Our goal here is to examine the accuracy
of the developed closed-form solutions knowing that these have an inherent bias with respect to
the monitoring frequency of Asian options in practice. The closed-form solutions, however, focus
on a continuously monitored Asian options because these are mathematically easier to handle.
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and for the Korn (2005) two-factor model by

ρξ,χ(∆t) = Covξ,χ
σξ · σχ

= ρξ,χ ·

√√√√√√ 4 · κξ · κχ
(

1− e−(κξ+κχ·∆t)
)2

(κξ + κχ)2 (1− e−2·κξ·∆t) (1− e−2·κχ·∆t)
. (4.42)

For each model, we discretize the price dynamics using the Euler scheme for time
points T0 < T0+i < T0+n = T with i = (1, ..., n). This yields the following for the kth

price path for the four different models:

Black (1976) one-factor model:

Sti,(i,k) = exp
(
ξti−1 + a∗ ·∆t+ σξ ·

√
∆t · Z1,(i,k)

)
(4.43)

Schwartz (1997) one-factor model:

Sti,(i,k) = exp
ξti−1 · e−κξ·∆t + a∗

(
1− e−κξ·∆t

)
+ σξ ·

√√√√1− e−2·κξ·∆t

2 · κξ
· Z1,(i,k)

 (4.44)

Schwartz and Smith (2000) two-factor model:

Sti,(i,k) = exp
ξti−1 + a∗ ·∆t+ σξ ·

√
∆t · Z1,(i,k)

+χti−1 · e−κχ·∆t −
λχ
κχ

(
1− e−κχ·∆t

)
+ σχ ·

√√√√1− e−2·κχ·∆t

2 · κχ
· Z2,(i,k)


(4.45)

Korn (2005) two-factor model:

Sti,(i,k) = exp
ξti−1 · e−κξ·∆t + a∗

(
1− e−κξ·∆t

)
+ σξ ·

√√√√1− e−2·κξ·∆t

2 · κξ
· Z1,(i,k)

+χti−1 · e−κχ·∆t −
λχ
κχ

(
1− e−κχ·∆t

)
+ σχ ·

√√√√1− e−2·κχ·∆t

2 · κχ
· Z2,(i,k)

 .
(4.46)

For details on the exact updating formula for an OU process that we apply above, see
Gillespie (1996). For computational efficiency, we use vectorized versions of the above
discretizations as well as parallel computing in Matlab R2015a to simulate the price
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paths. The corresponding Matlab R2015a code including the main .m-file, the MC
functions, the simulation functions, as well as the closed-form solution functions are
provided in appendix C from page 237 onwards.

With respect to the initial value, S0, we choose S0 = 21 for the Capesize routes C4
and C7 and S0 = 45,000 for the Panamax routes P2A and P3A. For the two-factor
models, we split the initial value, ln(S0) = ξ0 + χ0, proportionally between the two
initial values of the two factors, ξ0 and χ0, based on their respective share of the
estimated initial value, ln(S0), from Prokopczuk (2011). Concerning the strike price,
K, we price at-the-money options (i.e., S0 = K) as well as 10 % and 20 % in-the-
money and out-of-the-money options. We assume an interest rate of 5 % in continuous
compounding.

In order to examine the accuracy of the developed closed-form solutions for geometric
Asian call options, we calculate the MC price of a geometric Asian call option with
payoff ΦMC G = max (G(0, T )−K, 0) for each model, route, and strike price combi-
nation. We determine the MC price by computing the discounted arithmetic mean of
the payoff for each of the k price paths. This is given by

CMC G = e−r·T
k

k∑
j=1

(max (Gj(0, T )−K, 0)) , with Gj(0, T ) =
(

n∏
h=1

Sh,j

)−n
. (4.47)

With respect to arithmetic Asian call options, we also determine the MC price for
each model, route, and strike price combination. We compute the MC price of an
arithmetic Asian call option with payoff ΦMC A = max (A(0, T )−K, 0) as well by
computing the discounted arithmetic mean of the payoff for each of the k price paths.
This is given by

CMC A = e−r·T
k

k∑
j=1

(max (Aj(0, T )−K, 0)) , with Aj(0, T ) = 1
n

n∑
h=1

Sh,j. (4.48)

Regarding the accuracy of the MC price, we determine the MC standard deviation
for each of the MC prices according to

sMC = e−r·T ·
√

1
k
Var [ΦMC]. (4.49)

Finally, we exploit our developed closed-form solutions for geometric Asian call options
as control variate in the MC simulation in order to reduce the variance of the obtained

185



Chapter 4 Pricing of Asian options for affine Gaussian diffusions

MC prices for arithmetic Asian call options. The MC control variate approach is a
rather simple but effective method for variance reduction in MC simulations if the
correlation between the MC estimator, CMC A, and the control variate, CMC G, is
sufficiently high and if we know the expected value of the control variate in closed-
form (i.e., CG in this case). Generally, the correlation between the geometric and
arithmetic mean is almost perfect and Kemna and Vorst (1990) show the effectiveness
of this method under Black and Scholes (1973) price dynamics. The following technical
description of the MC control variate approach largely follows Glasserman (2003).

For each path j with j = (1, ..., k), we compute the individual MC payoff for a
geometric Asian call option, ΦMC G,j, and an arithmetic Asian call option, ΦMC A,j,
and the individual MC prices, CMC G,j and CMC A,j, respectively. For the purpose of
simplified notation, we henceforth label

X = (CMC G,1, ..., CMC G,k) (4.50)

Y = (CMC A,1, ..., CMC A,k) (4.51)

X̄ = 1
k

k∑
j=1

Xj (4.52)

Ȳ = 1
k

k∑
j=1

Yj. (4.53)

Subsequently, we determine the control variate-adjusted value of each MC price for
the arithmetic Asian call option which is given by

Zj (βCV) = Yj + βCV (Xj − CG) . (4.54)

The MC control variate estimator, CMC AA CV (βCV) = Z̄ (βCV), for the arithmetic
Asian call option is then given by

Z̄ (βCV) = Ȳ + βCV
(
X̄ − CG

)
= 1
k

k∑
j=1

(
e−r·T · ΦMC A,j + βCV

(
e−r·T · ΦMC G,j − CG

))
.

(4.55)

According to Glasserman (2003), the resulting estimator, CMC AA CV, is unbiased and
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consistent. The variance of each Zj can be computed by

σ2
Zj

(βCV) = Var [Yj + βCV (Xj − CG)]

= σ2
Y + 2 · βCV · σXσY ρX,Y + β2

CV · σ2
X .

(4.56)

Hence, the simple MC estimator, Ȳ , with βCV = 0 has variance σ2
Ȳ

= Var
[
Ȳ
]

=
σ2
Y · k−1 and the MC control variate estimator, Z̄ (βCV), has variance σ2

Z̄
(βCV) =

Var
[
Z̄ (βCV)

]
= σ2

Z (βCV) · k−1. The condition for a variance reduction through ap-
plying the control variate is then βCV ·σX > 2 ·βCV ·σY ρX,Y . The variance of the MC
control variate estimator is minimized by optimally selecting β∗CV which is given by

β∗CV = −σY ρX,Y
σX

= −Cov [X, Y ]
Var [X] . (4.57)

The resulting variance reduction is eventually determined by

V R = 1−
Var

[
Z̄ (β∗CV)

]
Var

[
Ȳ
] = 1−

(
1− ρ2

X,Y

)
= ρ2

X,Y . (4.58)

As the true parameters for σX , σY , and ρX,Y are unknown, we use the corresponding
sample counterparts. This introduces some bias. However, the resulting optimal β̂∗CV
from the sample counterparts tends to the true β∗CV and thus, Z̄

(
β̂∗CV

)
is asymptot-

ically as precise as Z̄ (β∗CV). This holds because they satisfy the same central limit
theorem (see Glasserman (2003) for details).

The above described MC simulation approach can of course be easily adjusted to
price an arithmetic Asian call option within the delivery period (i.e., T0 < t < T ).
This simply requires to run an MC simulation from time t to T using the adjusted
closed-form solution as control variate as well as accounting for the deterministic part
of the average that already has materialized from time T0 to t.

4.5.4 Numerical results

The numerical results of the MC simulation for the Capesize routes C4 and C7 as
well as the Panamax routes P2A and P3A are shown in Tables 4.2, 4.3, 4.4, and 4.5,
respectively.
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Table 4.2: Numerical results of Capesize route C4 with T = 1
12 years

and n = 21

Black (1976) one-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

16.8 4.0163 (0.0055) 4.0224 -0.1522 4.0552 (0.0055) 4.0614 (0.0001) 99.9571
18.9 2.0258 (0.0050) 2.0337 -0.3886 2.0565 (0.0051) 2.0644 (0.0001) 99.9694
21 0.6197 (0.0032) 0.6289 -1.4671 0.6380 (0.0033) 0.6473 (0.0001) 99.9370

23.1 0.0976 (0.0013) 0.1019 -4.2062 0.1059 (0.0013) 0.1102 (0.0001) 99.5996
25.2 0.0081 (0.0003) 0.0086 -6.7184 0.0099 (0.0004) 0.0105 (0.0001) 97.8496

Schwartz (1997) one-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

16.8 4.0113 (0.0059) 4.0179 -0.1661 4.0553 (0.0059) 4.0621 (0.0001) 99.9524
18.9 2.0431 (0.0053) 2.0520 -0.4343 2.0775 (0.0054) 2.0865 (0.0001) 99.9652
21 0.6625 (0.0034) 0.6725 -1.4946 0.6835 (0.0035) 0.6937 (0.0001) 99.9296

23.1 0.1208 (0.0015) 0.1258 -3.9868 0.1309 (0.0016) 0.1360 (0.0001) 99.6054
25.2 0.0126 (0.0004) 0.0135 -6.4875 0.0153 (0.0005) 0.0162 (0.0001) 98.0615

Schwartz and Smith (2000) two-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

16.8 3.5058 (0.0068) 3.5133 -0.2133 3.5695 (0.0068) 3.5771 (0.0002) 99.9264
18.9 1.7138 (0.0057) 1.7277 -0.8037 1.7567 (0.0058) 1.7708 (0.0001) 99.9473
21 0.5870 (0.0036) 0.6013 -2.3774 0.6112 (0.0037) 0.6257 (0.0001) 99.9033

23.1 0.1365 (0.0017) 0.1439 -5.1150 0.1484 (0.0018) 0.1559 (0.0001) 99.6066
25.2 0.0221 (0.0007) 0.0243 -9.2942 0.0263 (0.0007) 0.0286 (0.0001) 98.4076

Korn (2005) two-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

16.8 4.5314 (0.0070) 4.5354 -0.0872 4.5947 (0.0071) 4.5987 (0.0002) 99.9379
18.9 2.5566 (0.0064) 2.5659 -0.3600 2.6110 (0.0065) 2.6204 (0.0002) 99.9450
21 1.0571 (0.0047) 1.0695 -1.1617 1.0976 (0.0049) 1.1103 (0.0002) 99.9018

23.1 0.2981 (0.0026) 0.3061 -2.6105 0.3235 (0.0027) 0.3316 (0.0002) 99.6153
25.2 0.0571 (0.0011) 0.0601 -4.9877 0.0678 (0.0012) 0.0708 (0.0002) 98.4606

The table shows the numerical results for the Capesize route C4 for all four models – with S0 = 21, r = 5 %,
and k = 100,000. MC refers to the Monte Carlo price, SE to the standard error, CFS to the closed-form
solution, ∆ % to the relative bias between MC price and closed-form solution, MC CV to the Monte Carlo
control variate price, and VR % to the variance reduction due to the control variate.
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Table 4.3: Numerical results of Capesize route C7 with T = 1
12 years

and n = 21

Black (1976) one-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

16.8 3.9941 (0.0051) 3.9996 -0.1363 4.0271 (0.0051) 4.0326 (0.0001) 99.9626
18.9 1.9800 (0.0047) 1.9869 -0.3459 2.0064 (0.0047) 2.0133 (0.0001) 99.9741
21 0.5513 (0.0029) 0.5596 -1.4864 0.5661 (0.0030) 0.5745 (0.0001) 99.9459

23.1 0.0686 (0.0010) 0.0718 -4.5107 0.0744 (0.0011) 0.0776 (0.0001) 99.5886
25.2 0.0038 (0.0002) 0.0041 -7.3401 0.0048 (0.0003) 0.0051 (0.0000) 97.5807

Schwartz (1997) one-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

16.8 3.9875 (0.0054) 3.9935 -0.1494 4.0254 (0.0054) 4.0314 (0.0001) 99.9579
18.9 1.9947 (0.0049) 2.0025 -0.3882 2.0245 (0.0050) 2.0323 (0.0001) 99.9703
21 0.5942 (0.0031) 0.6033 -1.5107 0.6116 (0.0032) 0.6208 (0.0001) 99.9388

23.1 0.0886 (0.0012) 0.0927 -4.3822 0.0961 (0.0013) 0.1002 (0.0001) 99.5984
25.2 0.0067 (0.0003) 0.0072 -7.0774 0.0083 (0.0003) 0.0088 (0.0001) 97.8076

Schwartz and Smith (2000) two-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

16.8 3.4422 (0.0062) 3.4481 -0.1706 3.4972 (0.0062) 3.5031 (0.0002) 99.9321
18.9 1.6141 (0.0052) 1.6261 -0.7396 1.6501 (0.0053) 1.6623 (0.0001) 99.9556
21 0.4920 (0.0031) 0.5044 -2.4631 0.5103 (0.0032) 0.5229 (0.0001) 99.9181

23.1 0.0925 (0.0013) 0.0979 -5.4828 0.1004 (0.0014) 0.1059 (0.0001) 99.6070
25.2 0.0109 (0.0004) 0.0123 -10.9817 0.0131 (0.0005) 0.0145 (0.0001) 98.2260

Korn (2005) two-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

16.8 5.1336 (0.0066) 5.1368 -0.0628 5.1971 (0.0067) 5.2004 (0.0002) 99.9342
18.9 3.0894 (0.0064) 3.0958 -0.2069 3.1490 (0.0065) 3.1555 (0.0002) 99.9382
21 1.3775 (0.0051) 1.3892 -0.8479 1.4274 (0.0052) 1.4394 (0.0002) 99.9019

23.1 0.4060 (0.0029) 0.4145 -2.0370 0.4399 (0.0031) 0.4485 (0.0002) 99.6279
25.2 0.0760 (0.0012) 0.0795 -4.4443 0.0907 (0.0014) 0.0942 (0.0002) 98.3976

The table shows the numerical results for the Capesize route C7 for all four models – with S0 = 21, r = 5 %, and
k = 100,000. MC refers to the Monte Carlo price, SE to the standard error, CFS to the closed-form solution,
∆ % to the relative bias between MC price and closed-form solution, MC CV to the Monte Carlo control variate
price, and VR % to the variance reduction due to the control variate.
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Table 4.4: Numerical results of Panamax route P2A with T = 1
12 years

and n = 21

Black (1976) one-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

36,000 8,558.51 (14.15) 8,575.47 -0.20 8,675.69 (14.23) 8,692.85 (0.34) 99.94
40,500 4,452.48 (12.52) 4,475.73 -0.52 4,541.99 (12.72) 4,565.54 (0.27) 99.96
45,000 1,603.92 (8.40) 1,628.17 -1.49 1,661.66 (8.67) 1,686.24 (0.25) 99.91
49,500 373.17 (4.06) 386.87 -3.54 404.64 (4.33) 418.53 (0.27) 99.61
54,000 57.10 (1.52) 60.81 -6.09 68.29 (1.72) 72.04 (0.22) 98.33

Schwartz (1997) one-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

36,000 8,487.06 (14.47) 8,504.75 -0.21 8,610.09 (14.56) 8,627.99 (0.36) 99.94
40,500 4,417.53 (12.73) 4,441.94 -0.55 4,510.58 (12.94) 4,535.32 (0.28) 99.95
45,000 1,614.85 (8.56) 1,639.90 -1.53 1,674.88 (8.84) 1,700.28 (0.26) 99.91
49,500 390.42 (4.22) 404.80 -3.55 423.49 (4.50) 438.08 (0.28) 99.61
54,000 63.71 (1.63) 67.80 -6.03 75.94 (1.84) 80.09 (0.23) 98.38

Schwartz and Smith (2000) two-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

36,000 8,619.77 (15.36) 8,636.85 -0.20 8,760.46 (15.48) 8,777.77 (0.40) 99.93
40,500 4,590.70 (13.49) 4,619.76 -0.63 4,698.62 (13.74) 4,728.12 (0.32) 99.95
45,000 1,787.86 (9.31) 1,821.25 -1.83 1,859.89 (9.64) 1,893.81 (0.30) 99.90
49,500 487.02 (4.90) 508.28 -4.18 528.65 (5.23) 550.26 (0.32) 99.61
54,000 94.65 (2.06) 101.91 -7.13 112.01 (2.32) 119.40 (0.28) 98.49

Korn (2005) two-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

36,000 7,348.27 (14.47) 7,361.36 -0.18 7,480.78 (14.51) 7,494.04 (0.39) 99.93
40,500 3,538.64 (12.02) 3,564.74 -0.73 3,624.74 (12.20) 3,651.20 (0.27) 99.95
45,000 1,188.79 (7.50) 1,210.97 -1.83 1,235.93 (7.74) 1,258.42 (0.23) 99.91
49,500 268.97 (3.52) 280.68 -4.17 291.96 (3.75) 303.83 (0.23) 99.61
54,000 42.04 (1.33) 45.70 -8.02 50.07 (1.49) 53.78 (0.19) 98.41

The table shows the numerical results for the Panamax route P2A for all four models – with S0 = 45,000,
r = 5 %, and k = 100,000. MC refers to the Monte Carlo price, SE to the standard error, CFS to the
closed-form solution, ∆ % to the relative bias between MC price and closed-form solution, MC CV to the
Monte Carlo control variate price, and VR % to the variance reduction due to the control variate.
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Table 4.5: Numerical results of Panamax route P3A with T = 1
12 years

and n = 21

Black (1976) one-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

36,000 8,576.79 (15.27) 8,595.99 -0.22 8,712.05 (15.38) 8,731.51 (0.39) 99.93
40,500 4,549.34 (13.39) 4,575.50 -0.57 4,652.39 (13.64) 4,678.93 (0.31) 99.95
45,000 1,756.95 (9.21) 1,783.55 -1.49 1,825.92 (9.53) 1,852.94 (0.30) 99.90
49,500 472.06 (4.81) 488.17 -3.30 512.30 (5.13) 528.67 (0.32) 99.61
54,000 89.89 (2.02) 95.24 -5.62 106.57 (2.28) 112.01 (0.28) 98.48

Schwartz (1997) one-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

36,000 8,448.57 (16.04) 8,469.57 -0.25 8,597.94 (16.18) 8,619.25 (0.43) 99.93
40,500 4,506.64 (13.92) 4,535.25 -0.63 4,619.00 (14.2) 4,648.08 (0.34) 99.94
45,000 1,802.26 (9.64) 1,830.64 -1.55 1,877.90 (10.00) 1,906.79 (0.33) 99.89
49,500 523.86 (5.24) 541.61 -3.28 569.15 (5.60) 587.22 (0.35) 99.61
54,000 112.93 (2.36) 119.49 -5.48 133.29 (2.65) 139.96 (0.32) 98.57

Schwartz and Smith (2000) two-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

36,000 8,203.34 (19.54) 8,236.99 -0.41 8,435.21 (19.87) 8,469.65 (0.66) 99.89
40,500 4,612.43 (16.58) 4,659.59 -1.01 4,787.17 (17.08) 4,835.54 (0.55) 99.90
45,000 2,160.13 (12.11) 2,208.78 -2.20 2,283.57 (12.69) 2,333.55 (0.52) 99.83
49,500 842.63 (7.67) 878.42 -4.07 924.16 (8.26) 960.97 (0.54) 99.57
54,000 279.49 (4.35) 298.12 -6.25 326.34 (4.88) 345.50 (0.53) 98.82

Korn (2005) two-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

36,000 10,690.35 (23.02) 10,726.03 -0.33 11,016.02 (23.71) 11,052.77 (0.91) 99.85
40,500 6,798.03 (20.79) 6,847.98 -0.73 7,082.42 (21.64) 7,134.05 (0.83) 99.85
45,000 3,787.32 (16.86) 3,843.95 -1.47 4,023.47 (17.83) 4,082.15 (0.81) 99.79
49,500 1,843.83 (12.20) 1,889.94 -2.44 2,028.36 (13.23) 2,076.22 (0.88) 99.56
54,000 787.31 (8.02) 820.87 -4.09 916.89 (9.02) 951.74 (0.93) 98.93

The table shows the numerical results for the Panamax route P3A for all four models – with S0 = 45,000, r = 5 %,
and k = 100,000. MC refers to the Monte Carlo price, SE to the standard error, CFS to the closed-form solution,
∆ % to the relative bias between MC price and closed-form solution, MC CV to the Monte Carlo control variate
price, and VR % to the variance reduction due to the control variate.
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The pattern of findings in the results is largely similar across routes. Firstly, the
accuracy of the closed-form solutions (CFSs) for geometric Asian call options seems
to be quite promising across routes and models. The relative bias between MC price
and closed-form solution, ∆ %, is always below 2 % for at-the-money options and even
considerably smaller for in-the-money options. Only for out-of-the-money options,
∆ % reaches values of up to 11 %. These cases, however, coincide with comparatively
low options prices. Accordingly, the relative bias seems to be of larger magnitude,
although the bias is consistently even smaller than for at-the-money or in-the-money
options. Expressed in terms of number of standard errors (SEs), the bias ranges from
-0.5 to -4.7 times the respective standard error. This seems somewhat high and results
largely from the discretization error due to the different monitoring frequencies. The
bias, however, is economically insignificant in relation to the option prices for the
Capesize routes C4 and C7 or at least the level of strike prices for the Panamax
routes P2A and P3A. Furthermore, the bias for the Schwartz (1997) one-factor model
is similar to the Black (1976) one-factor model, which is similar to the approved
closed-form solution of Kemna and Vorst (1990). For the two-factor models, the
bias is negligibly higher in some cases, but this is consistent with the expectation
for two-factor models. Hence, the closed-form solutions turn out be accurate in our
numerical example apart from a small discretization error which results from the
inherent difference in monitoring frequencies (i.e., continuously monitored closed-form
solution vs. discretely monitored MC price).

Secondly, the application of the closed-form solution for the geometric Asian call
option as control variate for the arithmetic Asian call option results in considerable
and consistent variance reduction levels of more than 97 % across routes and models.
This finding is consistent with the variance reduction levels of Kemna and Vorst (1990)
and originates from the almost perfect correlation between geometric and arithmetic
average. Consequently, the computation effort can be considerably reduced if the MC
control variate approach is chosen to price an arithmetic Asian call option. In order
to achieve the same pricing accuracy for the standard MC approach, the number of
generated MC paths, k, would need to be approximately increased by factor 1,050.10

Thirdly, the numerical results suggest that arithmetic Asian call option prices (i.e.,

10 The factor is approximated by the mean of
(

SE (MC)
SE (MC CV)

)2
across all computed prices presented

in Tables 4.2, 4.3, 4.4, and 4.5. The minimum and maximum of the individual factors are
approximately 40 and 3,850, respectively.
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MC or MC CV) are always slightly larger than geometric Asian call option prices (i.e.,
MC or CFS). This is consistent with mathematical theory stating that the arithmetic
average is greater than or equal to the geometric average of a list of non-negative
numbers (Beckenbach and Bellman, 1961). Accordingly, the closed-form solution for
the geometric Asian call option serves as lower boundary in the MC control variate
approach for the arithmetic Asian call option.

Finally, the general level of options prices varies quite significantly across models for
the individual routes. This, however, results most likely from the different parame-
ter estimates for the respective models and their partly low significance. Although
a comparison and interpretation of resulting option prices across the four different
models would have been interesting, the parameter circumstances do not allow to do
so in a meaningful way. As already stated, our primary objectives are examining the
accuracy of the developed closed-form-solutions for a geometric Asian call option as
well as pricing an arithmetic Asian call option using a MC simulation and showing
the benefit of using the geometric Asian call option as control variate. Thus, the lack
of comparability of the resulting option prices across the four different models should
not concern us any further.

Note that the computation for the all values of Tables 4.2, 4.3, 4.4, and 4.5 takes
about 23 seconds or 0.072 seconds on average for each of the four prices and standard
errors or deviations of the 80 chosen combinations of route, model, and strike price.
The computations are conducted inMatlab R2015a on a system with an Intel Core
i5-3570 CPU (4 cores with 3.40 GHz clock rate) and 8 GB RAM.

In order to be robust in the conclusions we draw from our numerical computations, we
repeat the numerical example in two alternative versions: increase the number of time
steps to n = 210 reflecting 10 prices per trading day and increase the time to maturity
of the option to T = 1 year with n = 252 time steps reflecting again one price per
trading day. The corresponding results are shown in appendices B.1 from page 226
onwards and B.2 from page 230 onwards. For the first alternative, the closed-form
solution prices are obviously the same. The MC price and standard errors are largely
similar as we did not increase the number of MC paths, k. The relative bias from
the closed-form solution, ∆ %, however, is considerably smaller as the discretization
is finer. Expressed in terms of number of standard errors, the bias consistently stays
clearly within the two-standard error barrier. For the second alternative, the level of
prices is obviously different and the MC standard errors are higher due the increased
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time to maturity. Interestingly, the relative bias from the closed-form solution, ∆ %,
is also considerably smaller, although the discretization is not finer. However, the
absolute number of elements comprising the discrete average increased considerably.
Expressed in terms of number of standard errors, the bias again consistently stays
clearly within the two-standard error barrier.

Figure 4.1: Impact of n on the discretization error for Capesize route
C4
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The graph shows the bias as well as the 90 % CI of an at-the-money geometric Asian call
option for different log numbers of discretization time steps (i.e., n = 21, 42, 84, 126, 210) for
the Capesize route C4 for all four models – with S0 = 21, r = 5 %, T = 1

12 years, and
k = 100,000.

Moreover, we examine the impact of increasing the number of discretizazion time
steps, n, on the bias or discretization error. Figure 4.1 shows the bias between the
MC price and closed-form solution as well as the 90 % confidence interval (CI) of an
at-the-money geometric Asian call option for different log numbers of discretization
time steps (i.e., n = 21, 42, 84, 126, 210) for the Capesize route C4 for all four models.
With a finer discretization, the bias get smaller for all models and the 90 % CIs start to
contain zero bias as well. As already stated above, the bias, however, is economically
insignificant, so that using a discretization of one price per trading day should be
sufficiently accurate. Similar plots with similar findings for the routes C7, P2A, and
P3A are shown in appendix B.3 from page 234 onwards.

Furthermore, we analyze the impact of increasing the number of generated MC paths,
k, on the simulation error. For the Capesize route C4 for all four models, Figure 4.2
shows the log standard error (SE) for the MC price as well as MC control variate price
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Figure 4.2: Impact of k on the simulation error for Capesize route C4
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The graph shows the log standard error (SE) for the MC price as well as MC control variate
price of an at-the-money arithmetic Asian call option for different log numbers of generated
MC paths (i.e., k = 100, 1,000, 5,000, 20,000, 100,000) for the Capesize route C4 for all four
models – with S0 = 21, r = 5 %, T = 1

12 years, and n = 21.

of an at-the-money arithmetic Asian call option for different log numbers of gener-
ated MC paths (i.e., k = 100, 1,000, 5,000, 20,000, 100,000). The benefit in variance
reduction due to applying the control variate is consistent across different numbers of
generated MC paths. In particular, the plot shows that the level of SE for the MC
control variate simulation approach is even lower with k = 100 than for the standard
MC simulation approach with k = 100,000. This reflects the above mentioned gener-
ated path increase factor of more than 1,000. Hence, MC control variate simulation
approach is very powerful for pricing arithmetic Asian call options. Similar plots with
similar findings for the routes C7, P2A, and P3A are shown in appendix B.4 from
page 235 onwards.

4.5.5 Extension to forward-start Asian options

In commodity or freight markets, Asian options with an averaging period limited
to a certain amount of time before maturity are quite common. Accordingly, the
averaging period does not cover the entire life of the option. These options are called
forward-start Asian options and the length of the averaging period typically ranges
from one week to several months prior to maturity. The life time of the option may,
however, extend to several years. The MC control variate simulation set-up can be
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rather simply adjusted in order to price these kind of Asian options when t < T0 < T .
We briefly outline the approach for forward-start Asian options below.

Firstly, we simulate again k price paths from time t to T according to equations (4.43),
(4.44), (4.45), or (4.46), respectively. It is possible to simulate from time t to T0 in
one step. From time T0 to T , however, we apply again an discretization scheme with
n steps, T0 < T0+i < T0+n = T with i = (1, ..., n). We choose n, such that we have
again at least one price per day.

Accordingly, the MC price for an arithmetic Asian call option at time t changes to

Ȳ = e−r·T
k

k∑
j=1

(max (Aj(T0, T )−K, 0)) , with Aj(T0, T ) = 1
n

n∑
h=1

Sh,j. (4.59)

With respect to the control variate, we cannot simply apply our develop closed-form
solution as it only provides valid prices at the inception of or within the averaging
period. Thus, we do not know the expected value of an geometric Asian call option at
time t. However, we can still leverage our closed-form solution at time T0, CG (ST0),
and apply the following as control variate:

X̄ = e−r·(T−T0)

k

k∑
j=1

(max (Gj(T0, T )−K, 0))− CG (ST0) , (4.60)

with Gj(T0, T ) =
(

n∏
h=1

Sh,j

)−n
, and ST0 = exp (ξT0 + χT0) .

The expected value of X̄ is zero and X̄ is still highly correlated with Ȳ . The MC
control variate estimator, Z̄ (βCV), for the price of an arithmetic Asian call option at
time t is then given by

Z̄ (βCV) = Ȳ + βCV
(
X̄
)
. (4.61)

The variance minimizing β∗CV, the MC standard errors, and the corresponding variance
reduction can be computed similarly as described in subsection 4.5.3.
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4.6 Conclusion

To summarize, we develop a general pricing framework for continuously monitored
geometric Asian call options applicable to affine n-factor Gaussian diffusions. The
pricing framework relies on the concept of the characteristic function which allows to
determine the distribution of the log geometric average rather easily. Furthermore,
we practically apply the developed general pricing framework to three mean-reversion
pricing models (i.e., the Schwartz (1997) one-factor model, the Schwartz and Smith
(2000) two-factor model, and the Korn (2005) two-factor model) and derive specific
closed-form solutions for geometric Asian call options. For the sake of completeness as
well as to underline the validity of our chosen approach, we also derive a closed-form
solution for the Black (1976) one-factor model. The obtained result can be rather
simply converted to the result for classical Black and Scholes (1973) price dynamics
developed by Kemna and Vorst (1990).

Moreover, we examine the accuracy of the derived closed-form solutions in a MC
simulation as well as apply the geometric Asian call option as control variate to
price an arithmetic Asian call option. Concerning model parameters in the numerical
example, we rely on Prokopczuk (2011) as he estimated model parameters for the
four price dynamics considered within the study for four different dry bulk freight
futures. The results show that our derived closed-form solutions for geometric Asian
call options are accurate as well as that the MC control variate simulation approach
to price arithmetic Asian call options allows for a considerable variance reduction of
more than 97 %. This can be translated into substantial savings in computation time.
Additionally, we outline an extension of the MC simulation to forward-start Asian
options as these are quite common in commodity markets. Our general approach and
the presented results are neither prone to changes in model selection (as long as it
is an affine n-factor Gaussian diffusion) nor prone to changes in model parameters.
Therefore, the applicability of our general pricing framework is by no means limited
to the mean-reversion models or commodity markets considered within this study.

With respect to further research opportunities in this area, a potential extension of the
presented research is to develop a general pricing framework for discretely monitored
geometric Asian call options. This allows to eliminate the inherent discretization error
of the closed-form solution in our developed general pricing framework compared to
the discrete monitoring of Asian options in practice. This would extend research
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along the lines of, for instance, Fusai and Meucci (2008) for the specific case of affine
Gaussian diffusions. Moreover, the general pricing framework can be rather simply
adjusted for ‘fixed strike’ geometric Asian put options. Another potential extension of
the presented research is to adjust the general pricing framework for ‘floating strike’
geometric Asian options. Perhaps, a closed-form solution would still be possible for
these kind of options. Finally, applying the developed general pricing framework to
other affine Gaussian diffusions to state specific closed-form solutions for these models
is another potential extension of research in this area.
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A Appendix A – Geometric Asian options

A.1 Proofs

A.1.1 Theorem 1

Proof. Include the process G(·; 0, T1) in the state vector to obtain the Rn+1-valued
enlarged state vector X̄ = (Xᵀ, G(·; 0, T1))ᵀ. Then,

dX̄(t) =
(
b̄+ β̄ · X̄(t)

)
dt+ Σ̄ dW (t), for 0 ≤ t ≤ T1, (A.1)

with starting value X̄(0) = x̄ = (xᵀ, 0)ᵀ, where b̄ = (bᵀ, 0)ᵀ,

β̄ =
β 0
vᵀ 0

 , and Σ̄ =
Σ

0

 . (A.2)

The characteristic function of X̄ follows from Theorem 2.7 of Duffie et al. (2003)

Ex̄
[
e〈u,X̄(t)〉

]
= exp

(
φ̄(t,u) +

〈
ψ̄(t,u), x̄

〉)
, for u ∈ i · Rn+1, (A.3)

where ψ̄(t,u) = eβ̄
ᵀ·t · u, (A.4)

φ̄(t,u) =
t∫

0

〈
b̄, eβ̄

ᵀ·s · u
〉

+ 1
2
∥∥∥Σ̄ᵀ · eβ̄

ᵀ·s · u
∥∥∥2

2
ds. (A.5)

To calculate the expectation of the option payoff, the last component of X̄, G(·; 0, T1),
is of interest. The characteristic function of G(T1; 0, T1) is obtained by setting t = T1

and u = i · q · en+1, where q ∈ R and en+1 = (0, ..., 0, 1)ᵀ ∈ Rn+1. Then,

Ex̄
[
ei·q·G(T1;0,T1)

]
= exp (φ(T1, q) + 〈ψ(T1, q), x̄〉) , (A.6)

where ψ(t, q) = i · q · eβ̄
ᵀ·t · en+1, (A.7)

φ(t, q) = i · q ·
t∫

0

〈
b̄, eβ̄

ᵀ·s · en+1
〉

ds

− 1
2q

2 ·
t∫

0

∥∥∥Σ̄ᵀ · eβ̄
ᵀ·s · en+1

∥∥∥2

2
ds.

(A.8)
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We can simplify the expression eβ̄
ᵀ·t · en+1 by using the power series representation

eβ̄
ᵀ·t · en+1 =

∞∑
n=0

tn

n! ·
βᵀ v

0 0

n · en+1

= en+1 +
∞∑
n=1

tn

n! ·
[βᵀ]n [βᵀ]n−1 · v

0 0

 · en+1

=


∞∑
n=1

tn

n! · [β
ᵀ]n−1 · v

1

 .
(A.9)

Denote F (t) =
∞∑
n=1

tn

n! · [β
ᵀ]n−1, then F (0) = 0 and F ′(t) = eβᵀ·t, for t ≥ 0. Thus,

∞∑
n=1

tn

n! · [β
ᵀ]n−1 = F (t) = F (0) +

t∫
0

F ′(s) ds =
t∫

0

eβᵀ·s ds, for t ≥ 0. (A.10)

Finally, the simplification becomes

ψ(t, q) = i · q · eβ̄
ᵀ·t · en+1 = i · q ·


t∫

0
eβᵀ·s ds · v

1

 . (A.11)

Noting that the last component of x̄ and b̄ is zero, and the last column of Σ̄ᵀ is zero
as well, we obtain

Ex̄
[
ei·q·G(T1;0,T1)

]
= exp (φ(T1, q) + 〈ψ(T1, q), x̄〉)

= exp

i · q · T1∫
0

〈
b,

t∫
0

eβᵀ·s ds · v
〉

dt

−1
2q

2 ·
T1∫
0

∥∥∥∥∥∥Σ̄ᵀ
t∫

0

eβᵀ·s ds · v

∥∥∥∥∥∥
2

2

dt


· exp

i · q · 〈 T1∫
0

eβᵀ·t dt · v,x
〉

= exp
(
i · q · µG −

1
2q

2 · σ2
G

)
,

(A.12)

where the last step follows from eβᵀ·s =
(
eβ·s

)ᵀ
and v = w

T1
. From the form of the

characteristic function, we see that G(T1; 0, T1) is normally distributed with mean
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µG and variance σ2
G. The option pricing formula follows by standard arguments for

pricing calls on a lognormal underlying.

A.1.2 Corollary 1

Proof. For t ∈ [T0, T1), the characteristic function of G(T1;T0, T1) conditioned on
X(t) = x and G(t;T0, T1) = g is given by

Et,x,g
[
ei·q·G(T1;T0,T1)

]
= Ex

[
ei·q(g+G(T1−t;0,T1−T0))

]
. (A.13)

The result follows then from the proof of Theorem 1.

A.1.3 Corollary 2

Proof. For t ≤ T0, the characteristic function of G(T1;T0, T1) given X(t) = x is

Et,x
[
ei·q·G(T1;T0,T1)

]
= Et,x

[
ET0,X(T0)

[
ei·q·G(T1;T0,T1)

]]
= Et,x

[
EX(T0)

[
ei·q·G(T1−T0;0,T1−T0)

]]
= Et,x

exp
i · q · 1

T1 − T0

〈
w,

T1−T0∫
0

eβ·u du ·X(T0)
〉

+ i · q · 1
T1 − T0

〈
w,

T1−T0∫
0

u∫
0

eβ·s ds du · b
〉

−1
2q

2 1
(T1 − T0)2

T1−T0∫
0

∥∥∥∥∥∥Σᵀ

u∫
0

eβᵀ·s ds ·w

∥∥∥∥∥∥
2

2

du




= Ex

exp
〈i · q · 1

T1 − T0

T1−T0∫
0

eβᵀ·u du ·w,X(T0 − t)
〉

· exp
i · q · 1

T1 − T0

〈
w,

T1−T0∫
0

u∫
0

eβ·s ds du · b
〉

· exp

−1
2q

2 1
(T1 − T0)2

T1−T0∫
0

∥∥∥∥∥∥Σᵀ

u∫
0

eβᵀ·s ds ·w

∥∥∥∥∥∥
2

2

du

 ,

(A.14)

where we have used the original Theorem 1 in the third step.
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We have to compute the characteristic function of X and evaluate it at u0 = i · q ·
1

T1−T0

T1−T0∫
0

eβᵀ·u du ·w. Using once more Theorem 2.7 of Duffie et al. (2003) gives

Ex
[
e〈u,X(t)〉

]
= exp (φ(t, u) + 〈ψ(t, u),x〉) , for u ∈ i · Rn, (A.15)

where ψ(t, u) = eβᵀ·t · u, (A.16)

φ(t, u) =
t∫

0

〈
b, eβᵀ·s · u

〉
+ 1

2
∥∥∥Σᵀ · eβᵀ·s · u

∥∥∥2

2
ds. (A.17)

Using the equations above, we see that

Ex

exp
〈i · q · 1

T1 − T0

T1−T0∫
0

eβᵀ·u du ·w,X(T0 − t)
〉

= exp
 T0−t∫

0

〈
b, eβᵀ·s · u0

〉
+ 1

2
∥∥∥Σᵀ · eβᵀ·s · u0

∥∥∥2

2
ds


· exp
(〈

eβᵀ·(T0−t) · u0,x
〉)
.

(A.18)

Plugging in u0 = i · q · 1
T1−T0

T1−T0∫
0

eβᵀ·u du ·w gives

Ex

exp
〈i · q · 1

T1 − T0

T1−T0∫
0

eβᵀ·u du ·w,X(T0 − t)
〉

= exp
i · q · 1

T1 − T0

〈
w,

T0−t∫
0

T1−T0∫
0

eβ·(u+s) du ds · b
〉

· exp

−1
2q

2 · 1
(T1 − T0)2

T0−t∫
0

∥∥∥∥∥∥Σᵀ

T1−T0∫
0

eβᵀ·(u+s) du ·w

∥∥∥∥∥∥
2

2

ds


· exp

i · q · 1
T1 − T0

〈
w,

T1−T0∫
0

eβ·(T0−t+u) du · x
〉 .

(A.19)
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Checking that

T1−T0∫
0

u∫
0

eβ·s ds du+
T1−T0∫

0

T0−t∫
0

eβ·(u+s) ds du

=
T1−T0∫

0

u∫
0

eβ·s ds+
T0−t+u∫
u

eβ·s ds du =
T1−T0∫

0

T0−t+u∫
0

eβ·s ds du

(A.20)

gives the claimed result.
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A.2 Closed-form solutions

A.2.1 Black (1976) one-factor model

For the Black (1976) one-factor model, we consider the stochastic process X = ξt with
n = d = 1, w = 1, and starting value X(0) = x = ξ0 = ln (S0). The corresponding
diffusion parameters are

b =
(
a∗
)
, (A.21)

β =
(
0
)
, (A.22)

Σ =
(
σξ
)
, (A.23)

a =
(

1
2σ

2
ξ

)
. (A.24)

First, we consider the case at inception of the averaging period (i.e., t = T0 = 0) and
assume that the end of the averaging period coincides with the settlement date (i.e,
T1 = T ). Now, we apply Theorem 1 and determine the distribution parameters of
G(T ; 0, T ), µG and σ2

G. This gives us

µG = 1
T

T∫
0

eβ·t dt · x+ 1
T

T∫
0

t∫
0

eβ·s ds dt · b

= 1
T

T∫
0

1 dt · ξ0 + 1
T

T∫
0

t∫
0

1 ds dt · a∗

= ξ0 + 1
T

T∫
0

t dt · a∗ = ξ0 + 1
T

[1
2a
∗ · t2

]T
0

= ξ0 + 1
2a
∗ · T,

(A.25)

σ2
G = 1

T 2

T∫
0

∥∥∥∥∥∥Σᵀ

t∫
0

eβᵀ·s ds

∥∥∥∥∥∥
2

2

dt = 1
T 2

T∫
0

‖σξ · t‖2
2 dt

= 1
T 2

T∫
0

σ2
ξ · t2 dt = 1

T 2

[1
3σ

2
ξ · t3

]T
0

= 1
3σ

2
ξ · T.

(A.26)

Accordingly, the log geometric average, G(T ; 0, T ), is normally distributed with the
following mean and variance

G ∼ N
(
ξ0 + 1

2a
∗ · T, 1

3σ
2
ξ · T

)
. (A.27)
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Inserting the two distribution parameters into equation (4.35) yields the desired
closed-form solution for a geometric Asian call option.

Secondly, we consider the case within the averaging period (i.e., t ∈ [T0, T1)) and
assume again that the end of the averaging period coincides with the settlement
date (i.e, T1 = T ). Now, we apply Corollary 1 and determine the distribution
parameters of G(T ;T0, T ), µG and σ2

G, conditioned on X(t) = x = ξt = ln (St) and
G(t;T0, T ) = g. This gives us

µG = g + 1
T − T0

T−t∫
0

eβ·u du · x+ 1
T − T0

T−t∫
0

u∫
0

eβ·s ds du · b

= g + 1
T − T0

T−t∫
0

1 du · ξt + 1
T − T0

T−t∫
0

u∫
0

1 ds du · a∗

= g + ξt · (T − t)
T − T0

+ 1
T − T0

T−t∫
0

u · a∗ du

= g + ξt · (T − t)
T − T0

+ 1
T − T0

[1
2u

2 · a∗
]T−t

0

= g + ξt · (T − t)
T − T0

+ a∗ · (T − t)
2 (T − T0) ,

(A.28)

σ2
G = 1

(T − T0)2

T−t∫
0

∥∥∥∥∥∥Σᵀ

u∫
0

eβᵀ·s ds

∥∥∥∥∥∥
2

2

du = 1
(T − T0)2

T−t∫
0

‖u · σξ‖2
2 du

= 1
(T − T0)2

T−t∫
0

u2 · σ2
ξ du = 1

(T − T0)2

[1
3u

3 · σ2
ξ

]T−t
0

=
σ2
ξ · (T − t)3

3 · (T − T0)2 .

(A.29)

Accordingly, the log geometric average, G(T ;T0, T ), is normally distributed with the
following mean and variance

G ∼ N
(
g + ξt · (T − t)

T − T0
+ a∗ · (T − t)

2 · (T − T0) ,
σ2
ξ · (T − t)3

3 · (T − T0)2

)
. (A.30)

Inserting the two distribution parameters into equation (4.28) yields the desired
closed-form solution for a geometric Asian call option within the averaging period.
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A.2.2 Schwartz (1997) one-factor model

For the Schwartz (1997) one-factor model, we consider the stochastic process X =
ξt with n = d = 1, w = 1, and starting value X(0) = x = ξ0 = ln (S0). The
corresponding diffusion parameters are

b =
(
κξ · a∗

)
, (A.31)

β =
(
−κξ

)
, (A.32)

Σ =
(
σξ
)
, (A.33)

a =
(

1
2σ

2
ξ

)
. (A.34)

First, we consider the case at inception of the averaging period (i.e., t = T0 = 0) and
assume that the end of the averaging period coincides with the settlement date (i.e,
T1 = T ). Now, we apply Theorem 1 and determine the distribution parameters of
G(T ; 0, T ), µG and σ2

G. This gives us

µG = 1
T

T∫
0

eβ·t dt · x+ 1
T

T∫
0

t∫
0

eβ·s ds dt · b

= 1
T

T∫
0

e−κξ·t dt · ξ0 + 1
T

T∫
0

t∫
0

e−κξ·s ds dt · κξ · a∗

= ξ0

κξ · T
(
1− e−κξ·T

)
+ 1
T

T∫
0

1
κξ

(
1− e−κξ·t

)
dt · κξ · a∗

= ξ0

κξ · T
(
1− e−κξ·T

)
+ a∗

T

T∫
0

(
1− e−κξ·t

)
dt

= ξ0

κξ · T
(
1− e−κξ·T

)
+ a∗

κξ · T
[
κξ · t+ e−κξ·t

]T
0

= ξ0

κξ · T
(
1− e−κξ·T

)
+ a∗ − a∗

κξ · T
(
1− e−κξ·T

)
,

(A.35)
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σ2
G = 1

T 2

T∫
0

∥∥∥∥∥∥Σᵀ

t∫
0

eβᵀ·s ds

∥∥∥∥∥∥
2

2

dt =
σ2
ξ

T 2

T∫
0

∥∥∥∥∥ 1
κξ

(
1− e−κξ·t

)∥∥∥∥∥
2

2
dt

=
σ2
ξ

κ2
ξ · T 2

T∫
0

(
1− e−κξ·t

)2
dt

=
σ2
ξ

2 · κ3
ξ · T 2

[
2 · κξ · t+ 4 · e−κξ·t − e−2·κξ·t

]T
0

=
σ2
ξ

2 · κ3
ξ · T 2

(
2 · κξ · T + 4 · e−κξ·T − e−2·κξ·T − 3

)
.

(A.36)

Accordingly, the log geometric average, G(T ; 0, T ), is normally distributed with the
following mean and variance

G ∼ N
(

ξ0

κξ · T
(
1− e−κξ·T

)
+ a∗ − a∗

κξ · T
(
1− e−κξ·T

)
,

σ2
ξ

2 · κ3
ξ · T 2

(
2 · κξ · T + 4 · e−κξ·T − e−2·κξ·T − 3

))
.

(A.37)

Inserting the two distribution parameters into equation (4.36) yields the desired
closed-form solution for a geometric Asian call option.

Secondly, we consider the case within the averaging period (i.e., t ∈ [T0, T1)) and
assume again that the end of the averaging period coincides with the settlement
date (i.e, T1 = T ). Now, we apply Corollary 1 and determine the distribution
parameters of G(T ;T0, T ), µG and σ2

G, conditioned on X(t) = x = ξt = ln (St) and
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G(t;T0, T ) = g. This gives us

µG = g + 1
T − T0

T−t∫
0

eβ·u du · x+ 1
T − T0

T−t∫
0

u∫
0

eβ·s ds du · b

= g + 1
T − T0

T−t∫
0

e−κξ·t dt · ξt + 1
T − T0

T−t∫
0

t∫
0

e−κξ·s ds dt · κξ · a∗

= g + ξt
κξ · (T − T0)

(
1− e−κξ·(T−t)

)

+ 1
T − T0

T−t∫
0

1
κξ

(
1− e−κξ·t

)
dt · κξ · a∗

= g + ξt
κξ · (T − T0)

(
1− e−κξ·(T−t)

)
+ a∗

κξ · (T − T0)
[
κξ · u+ e−κξ·u

]T−t
0

= g + ξt
κξ · (T − T0)

(
1− e−κξ·(T−t)

)
+ a∗

κξ · (T − T0)
(
κξ · (T − t) + e−κξ·(T−t) − 1

)
,

(A.38)

σ2
G = 1

(T − T0)2

T−t∫
0

∥∥∥∥∥∥Σᵀ

u∫
0

eβᵀ·s ds

∥∥∥∥∥∥
2

2

du

=
σ2
ξ

(T − T0)2

T−t∫
0

∥∥∥∥∥ 1
κξ

(
1− e−κξ·u

)∥∥∥∥∥
2

2
du

=
σ2
ξ

κ2
ξ · (T − T0)2

T−t∫
0

(
1− e−κξ·u

)2
du

=
σ2
ξ

2 · κ3
ξ · (T − T0)2

[
2 · κξ · u+ 4 · e−κξ·u − e−2·κξ·u

]T−t
0

=
σ2
ξ

2 · κ3
ξ · (T − T0)2

(
2 · κξ · (T − t) + 4 · e−κξ·(T−t) − e−2·κξ·(T−t) − 3

)
.

(A.39)

Accordingly, the log geometric average, G(T ;T0, T ), is normally distributed with the
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following mean and variance

G ∼ N
(
g + ξt

κξ · (T − T0)
(
1− e−κξ·(T−t)

)
+ a∗

κξ · (T − T0)
(
κξ · (T − t)

+e−κξ·(T−t) − 1
)
,

σ2
ξ

2 · κ3
ξ · (T − T0)2

(
2 · κξ · (T − t)

+4 · e−κξ·(T−t) − e−2·κξ·(T−t) − 3
))

.

(A.40)

Inserting the two distribution parameters into equation (4.28) yields the desired
closed-form solution for a geometric Asian call option within the averaging period.
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A.2.3 Schwartz and Smith (2000) two-factor model

For the Schwartz and Smith (2000) two-factor model, we consider the stochastic pro-
cessX = (ξ, χ)ᵀ with n = d = 2, w = (1, 1)ᵀ, and starting valueX(0) = x = (ξ0, χ0)ᵀ

with 〈w,X(0)〉 = ln (S0). The corresponding diffusion parameters are

b =
 a∗

−λχ

 , (A.41)

β =
0 0

0 −κχ

 , (A.42)

Σ =
 σξ 0
ρξ,χσχ

√
1− ρ2

ξ,χσχ

 , (A.43)

a =
 1

2σ
2
ξ

1
2ρξ,χσξσχ

1
2ρξ,χσξσχ

1
2σ

2
χ

 . (A.44)

First, we consider the case at inception of the averaging period (i.e., t = T0 = 0) and
assume that the end of the averaging period coincides with the settlement date (i.e,
T1 = T ). Now, we apply Theorem 1 and determine the distribution parameters of

210



A Appendix A – Geometric Asian options

G(T ; 0, T ), µG and σ2
G. This gives us

µG = 1
T

〈
w,

T∫
0

eβ·t dt · x
〉

+ 1
T

〈
w,

T∫
0

t∫
0

eβ·s ds dt · b
〉

= 1
T

〈1
1

 ,

T∫
0

e0·t dt 0

0
T∫
0

e−κχ·t dt

 ·
ξ0

χ0

〉

+ 1
T

〈1
1

 , T∫
0


t∫

0
e0·s ds 0

0
t∫

0
e−κχ·s ds

 dt ·
 a∗

−λχ

〉

= 1
T

〈1
1

 ,
T 0

0 1
κχ

(
1− e−κχ·T

) ·
ξ0

χ0

〉

+ 1
T

〈1
1

 , T∫
0

t 0
0 1

κχ
(1− e−κχ·t)

 dt ·
 a∗

−λχ

〉

= 1
T

〈1
1

 ,
 ξ0 · T
χ0
κχ

(
1− e−κχ·T

)〉

+ 1
T

〈1
1

 ,

T∫
0
t dt 0

0
T∫
0

1
κχ

(1− e−κχ·t) dt

 ·
 a∗

−λχ

〉

= ξ0 + χ0

κχ · T
(
1− e−κχ·T

)
+ 1

2a
∗ · T + λχ

κ2
χ · T

(
1− κχ · T − e−κχ·T

)
,

(A.45)
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σ2
G = 1

T 2

T∫
0

∥∥∥∥∥∥Σᵀ

t∫
0

eβᵀ·s ds ·w

∥∥∥∥∥∥
2

2

dt

= 1
T 2

T∫
0

∥∥∥∥∥∥
σξ ρξ,χσχ

0
√

1− ρ2
ξ,χσχ

 ·
t 0

0 1
κχ

(1− e−κχ·t)

 ·
1

1

∥∥∥∥∥∥
2

2

dt

= 1
T 2

T∫
0

∥∥∥∥∥∥
σξ ρξ,χσχ

0
√

1− ρ2
ξ,χσχ

 ·
 t

1
κχ

(1− e−κχ·t)

∥∥∥∥∥∥
2

2

dt

= 1
T 2

T∫
0

∥∥∥∥∥∥∥
σξ · t+ ρξ,χσχ

κχ
(1− e−κχ·t)√

1−ρ2
ξ,χ
σχ

κχ
(1− e−κχ·t)


∥∥∥∥∥∥∥

2

2

dt

= 1
T 2

T∫
0

(
σξ · t+ ρξ,χσχ

κχ

(
1− e−κχ·t

))2

+

(
1− ρ2

ξ,χ

)
σ2
χ

κ2
χ

(
1− e−κχ·t

)2
dt

= 1
T 2

T∫
0

σ2
ξ · t2 + 2 · ρξ,χσξσχ · t

κχ

(
1− e−κχ·t

)
+
ρ2
ξ,χσ

2
χ

κ2
χ

(
1− e−κχ·t

)2

+

(
1− ρ2

ξ,χ

)
σ2
χ

κ2
χ

(
1− e−κχ·t

)2
dt

= 1
T 2

T∫
0

σ2
ξ · t2 + 2 · ρξ,χσξσχ · t

κχ

(
1− e−κχ·t

)
+
σ2
χ

κ2
χ

(
1− e−κχ·t

)2
dt

= 1
3σ

2
ξ · T + ρξ,χσξσχ

κ3
χ · T 2

(
κ2
χ · T 2 + 2 · κχ · T · e−κχ·T + 2 · e−κχ·T − 2

)

+
σ2
χ

2 · κ3
χ · T 2

(
2 · κχ · T + 4 · e−κχ·T − e−2·κχ·T − 3

)
.

(A.46)

Accordingly, the log geometric average, G(T ; 0, T ), is normally distributed with the
following mean and variance

G ∼ N
(
ξ0 + χ0

κχ · T
(
1− e−κχ·T

)
+ 1

2a
∗ · T + λχ

κ2
χ · T

(
1− κχ · T − e−κχ·T

)
,

1
3σ

2
ξ · T + ρξ,χσξσχ

κ3
χ · T 2

(
κ2
χ · T 2 + 2 · κχ · T · e−κχ·T + 2 · e−κχ·T − 2

)

+
σ2
χ

2 · κ3
χ · T 2

(
2 · κχ · T + 4 · e−κχ·T − e−2·κχ·T − 3

))
.

(A.47)

Inserting the two distribution parameters into equation (4.37) yields the desired
closed-form solution for a geometric Asian call option.
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Secondly, we consider the case within the averaging period (i.e., t ∈ [T0, T1)) and as-
sume again that the end of the averaging period coincides with the settlement date (i.e,
T1 = T ). Now, we apply Corollary 1 and determine the distribution parameters
of G(T ;T0, T ), µG and σ2

G, conditioned on X(t) = x = (ξt, χt)ᵀ, 〈w,X(t)〉 = ln (St),
and G(t;T0, T ) = g. This gives us

µG = g + 1
T − T0

〈
w,

T−t∫
0

eβ·u du · x
〉

+ 1
T − T0

〈
w,

T−t∫
0

u∫
0

eβ·s ds du · b
〉

= g + 1
T − T0

〈1
1

 ,

T−t∫
0

e0·u du 0

0
T−t∫
0

e−κχ·u du

 ·
ξt
χt

〉

+ 1
T − T0

〈1
1

 , T−t∫
0


u∫
0

e0·s ds 0

0
u∫
0

e−κχ·s ds

 du ·
 a∗

−λχ

〉

= g + 1
T − T0

〈1
1

 ,
T − t 0

0 1
κχ

(
1− e−κχ·(T−t)

) ·
ξt
χt

〉

+ 1
T − T0

〈1
1

 , T−t∫
0

u 0
0 1

κχ
(1− e−κχ·u)

 du ·
 a∗

−λχ

〉

= g + 1
T − T0

〈1
1

 ,
 ξt · (T − t)
χt
κχ

(
1− e−κχ·(T−t)

)〉

+ 1
T − T0

〈1
1

 ,

T−t∫
0
u du 0

0
T−t∫
0

1
κχ

(1− e−κχ·u) du

 ·
 a∗

−λχ

〉

= g + ξt · (T − t)
T − T0

+ χt
κχ · (T − T0)

(
1− e−κχ·(T−t)

)
+ a∗ · (T − t)

T − T0
+ λχ
κ2
χ · (T − T0)

(
1− κχ · (T − t)− e−κχ·(T−t)

)
,

(A.48)
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σ2
G = 1

(T − T0)2

T−t∫
0

∥∥∥∥∥∥Σᵀ

u∫
0

eβᵀ·s ds ·w

∥∥∥∥∥∥
2

2

du

= 1
(T − T0)2

T−t∫
0

∥∥∥∥∥∥
σξ ρξ,χσχ

0
√

1− ρ2
ξ,χσχ

 ·
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0 1
κχ

(1− e−κχ·u)

 ·
1

1

∥∥∥∥∥∥
2

2
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T−t∫
0

∥∥∥∥∥∥
σξ ρξ,χσχ

0
√

1− ρ2
ξ,χσχ

 ·
 u

1
κχ

(1− e−κχ·u)

∥∥∥∥∥∥
2

2

du

= 1
(T − T0)2

T−t∫
0

∥∥∥∥∥∥∥
σξ · u+ ρξ,χσχ

κχ
(1− e−κχ·u)√

1−ρ2
ξ,χ
σχ

κχ
(1− e−κχ·u)


∥∥∥∥∥∥∥

2

2

du

= 1
(T − T0)2

T−t∫
0

(
σξ · u+ ρξ,χσχ

κχ

(
1− e−κχ·u

))2

+

(
1− ρ2

ξ,χ

)
σ2
χ

κ2
χ

(
1− e−κχ·u

)2
du

= 1
(T − T0)2

T−t∫
0

σ2
ξ · u2 + 2 · ρξ,χσξσχ · u

κχ

(
1− e−κχ·u

)

+
ρ2
ξ,χσ

2
χ

κ2
χ

(
1− e−κχ·u

)2
+

(
1− ρ2

ξ,χ

)
σ2
χ

κ2
χ

(
1− e−κχ·u

)2
du

= 1
(T − T0)2

T−t∫
0

σ2
ξ · u2 + 2 · ρξ,χσξσχ · u

κχ

(
1− e−κχ·u

)

+
σ2
χ

κ2
χ

(
1− e−κχ·u

)2
du

=
σ2
ξ · (T − t)3

3 · (T − T0)2 + ρξ,χσξσχ
κ3
χ · (T − T0)2

(
κ2
χ · (T − t)2

+2 · κχ · (T − t) · e−κχ·(T−t) + 2 · e−κχ·(T−t) − 2
)

+
σ2
χ

2 · κ3
χ · (T − T0)2

(
2 · κχ · (T − t) + 4 · e−κχ·(T−t) − e−2·κχ·(T−t) − 3

)
.

(A.49)

Accordingly, the log geometric average, G(T ;T0, T ), is normally distributed with the
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following mean and variance

G ∼ N
(
g + ξt · (T − t)

T − T0
+ χt
κχ · (T − T0)

(
1− e−κχ·(T−t)

)
+a
∗ · (T − t)
T − T0

+ λχ
κ2
χ · (T − T0)

(
1− κχ · (T − t)− e−κχ·(T−t)

)
,

σ2
ξ · (T − t)3

3 · (T − T0)2 + ρξ,χσξσχ
κ3
χ · (T − T0)2

(
κ2
χ · (T − t)2

+2 · κχ · (T − t) · e−κχ·(T−t) + 2 · e−κχ·(T−t) − 2
)

+
σ2
χ

2 · κ3
χ · (T − T0)2

(
2 · κχ · (T − t) + 4 · e−κχ·(T−t)

−e−2·κχ·(T−t) − 3
))

.

(A.50)

Inserting the two distribution parameters into equation (4.28) yields the desired
closed-form solution for a geometric Asian call option within the averaging period.
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A.2.4 Korn (2005) two-factor model

For the Korn (2005) two-factor model, we consider the stochastic process X = (ξ, χ)ᵀ

with n = d = 2, w = (1, 1)ᵀ, and starting value X(0) = x = (ξ0, χ0)ᵀ with
〈w,X(0)〉 = ln (S0). The corresponding diffusion parameters are

b =
κξ · a∗
−λχ

 , (A.51)

β =
−κξ 0

0 −κχ

 , (A.52)

Σ =
 σξ 0
ρξ,χσχ

√
1− ρ2

ξ,χσχ

 , (A.53)

a =
 1

2σ
2
ξ

1
2ρξ,χσξσχ

1
2ρξ,χσξσχ

1
2σ

2
χ

 . (A.54)

First, we consider the case at inception of the averaging period (i.e., t = T0 = 0) and
assume that the end of the averaging period coincides with the settlement date (i.e,
T1 = T ). Now, we apply Theorem 1 and determine the distribution parameters of
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G(T ; 0, T ), µG and σ2
G. This gives us

µG = 1
T

〈
w,

T∫
0

eβ·t dt · x
〉

+ 1
T

〈
w,

T∫
0

t∫
0

eβ·s ds dt · b
〉

= 1
T

〈1
1

 ,

T∫
0

e−κξ·t dt 0

0
T∫
0

e−κχ·t dt

 ·
ξ0

χ0

〉

+ 1
T

〈1
1

 , T∫
0


t∫

0
e−κξ·s ds 0

0
t∫

0
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 dt ·
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−λχ

〉

= 1
T

〈1
1
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 1
κξ

(
1− e−κξ·T

)
0

0 1
κχ

(
1− e−κχ·T

)
 ·

ξ0

χ0

〉

+ 1
T

〈1
1

 , T∫
0

 1
κξ

(1− e−κξ·t) 0
0 1

κχ
(1− e−κχ·t)

 dt ·
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〉
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T

〈1
1
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 ξ0
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1− e−κξ·T
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〉
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〉

= ξ0

κχ · T
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)
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1− e−κχ·T

)
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)
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κ2
χ · T

(
1− e−κχ·T − κχ · T

)
,

(A.55)
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σ2
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T 2
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∥∥∥∥∥∥
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∥∥∥∥∥∥
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1− e−κξ·t

)2
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(A.56)
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Accordingly, the log geometric average, G(T ; 0, T ), is normally distributed with mean
and variance as specified below:

G ∼ N
(

ξ0

κξ · T
(
1− e−κξ·T

)
+ χ0

κχ · T
(
1− e−κχ·T

)
+ a∗

κξ · T
(
e−κξ·T + κξ · T − 1

)
+ λχ
κ2
χ · T

(
1− e−κχ·T − κχ · T

)
,

σ2
ξ

2 · κ3
ξ · T 2

(
2 · κξ · T + 4 · e−κξ·T − e−2·κξ·T − 3

)
+ 2 · ρξ,χσξσχ
κ2
ξ · κ2

χ (κξ + κχ)T 2

(
κξ (κξ + κχ) e−κχ·T + κξ · κχ · T (κξ + κχ)

+κχ (κξ + κχ) e−κξ·T − κξ · κχ · e−(κξ+κχ)·T − (κξ + κχ)2 + κξ · κχ
)

+
σ2
χ

2 · κ3
χ · T 2

(
2 · κχ · T + 4 · e−κχ·T − e−2·κχ·T − 3

))
.

(A.57)

Inserting the two distribution parameters into equation (4.38) yields the desired
closed-form solution for a geometric Asian call option.

Secondly, we consider the case within the averaging period (i.e., t ∈ [T0, T1)) and as-
sume again that the end of the averaging period coincides with the settlement date (i.e,
T1 = T ). Now, we apply Corollary 1 and determine the distribution parameters
of G(T ;T0, T ), µG and σ2

G, conditioned on X(t) = x = (ξt, χt)ᵀ, 〈w,X(t)〉 = ln (St),
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and G(t;T0, T ) = g. This gives us

µG = g + 1
T − T0

〈
w,

T−t∫
0

eβ·u du · x
〉

+ 1
T − T0

〈
w,

T−t∫
0

u∫
0

eβ·s ds du · b
〉
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〈1
1

 ,
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0
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 ·
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〈1
1

 , T−t∫
0


u∫
0

e−κξ·s ds 0

0
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 1
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(A.58)
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σ2
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(A.59)

Accordingly, the log geometric average, G(T ;T0, T ), is normally distributed with the
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following mean and variance

G ∼ N
(
g + ξt
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(A.60)

Inserting the two distribution parameters into equation (4.28) yields the desired
closed-form solution for a geometric Asian call option within the averaging period.
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A.2.5 Alternative derivation for the Schwartz (1997) one-factor model

For the Schwartz (1997) one-factor model, the mean of the log geometric average
distribution can also be determined manually or directly according to equation (A.61)
as shown below:

µG = E

 1
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lnS(t) dt
 = 1

T
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(
1− e−κξ·T

)

(A.61)

with a∗ = a− λξ

and E

σξ t∫
0

e−κξ·(t−s)dWs

 = 0

because
T∫

0

(
e−κξ·(t−s)

)2
ds <∞ with κξ > 0.
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The variance of the mean of the log geometric average distribution can be determined
according to equation (A.62) as shown below:

σ2
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lnS(t) dt
 = 1

T 2Var
 T∫

0

lnS(t) dt
 = 1

T 2Var
 T∫

0

ξt dt


= 1
T 2Var

 T∫
0

e−κξ·t · ξ0 + a∗
(
1− e−κξ·t

)
+ σξ

t∫
0

e−κξ·(t−s) dWs

 dt


= 1
T 2Var

 T∫
0

(
e−κξ·t · ξ0 + a∗

(
1− e−κξ·t

))
dt+ σξ

T∫
0

t∫
0

e−κξ·(t−s) dWs dt


= 1
T 2Var

a∗ + e−κξ·T · (a∗ − ξ0)− a∗ + ξ0

κξ · T
+ σξ

T∫
0

t∫
0

e−κξ·(t−s) dWs dt


=
σ2
ξ

T 2Var
 T∫

0

t∫
0

e−κξ·(t−s) dWs dt
 =

σ2
ξ

T 2Var
 T∫

0

T∫
s

e−κξ·(t−s) dt dWs


=
σ2
ξ

T 2Var
 T∫

0

1
κξ

(
1− e−κξ·(T−s)

)
dWs



=
σ2
ξ

T 2

E

 T∫

0

1
κξ

(
1− e−κξ·(T−s)

)
dWs

2
−

E
 T∫

0

1
κξ

(
1− e−κξ·(T−s)

)
dWs

2
=
σ2
ξ

T 2

E
 T∫

0

(
1
κξ

(
1− e−κξ·(T−s)

))2

ds
− 0


=
σ2
ξ

T 2

E
 1
κ2
ξ

T∫
0

(
1− 2 · e−κξ·(T−s) + e−2·κξ·(T−s)

)
ds


=
σ2
ξ

T 2

 1
κ2
ξ

[
2 · κξ · s− 4 · e−κξ·(T−s) + e−2·κξ·(T−s)

2 · κξ
+ c

]T
0


=

σ2
ξ

2 · κ3
ξ · T 2

(
2 · κξ · T + 4 · e−κξ·T − e−2·κξ·T − 3

)

(A.62)

with Var
[
a∗ + e−κξ·T · (a∗ − ξ0)− a∗ + ξ0

κξ · T

]
= 0

and E

 1
κξ

T∫
0

(
1− e−κξ·(T−s)

)
dWs

 = 0
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because
T∫

0

(
1
κξ

(
1− e−κξ·(T−s)

))2

ds <∞ with κξ > 0.

Note that the manually derived µG and σ2
G shown above are the exactly equal to the

results derived via the characteristic function shown in equations (A.35) and (A.36).

We refrain from providing alternative, manual or direct derivations for mean and
variance of the two-factor models as this would get disproportionately cumbersome
for these kind of models. The derivation via the characteristic function provides a
considerably more efficient way for these models.
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B Appendix B – Numerical example

B.1 Numerical results for T = 1
12 and n = 210

Table 4.6: Numerical results of Capesize route C4 with T = 1
12 years

and n = 210

Black (1976) one-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

16.8 4.0244 (0.0056) 4.0224 0.0483 4.0616 (0.0056) 4.0597 (0.0001) 99.9610
18.9 2.0353 (0.0051) 2.0337 0.0789 2.0649 (0.0051) 2.0633 (0.0001) 99.9713
21.0 0.6263 (0.0032) 0.6289 -0.4111 0.6440 (0.0033) 0.6466 (0.0001) 99.9413
23.1 0.1006 (0.0013) 0.1019 -1.3065 0.1083 (0.0014) 0.1097 (0.0001) 99.6485
25.2 0.0085 (0.0004) 0.0086 -1.1251 0.0103 (0.0004) 0.0104 (0.0001) 98.2326

Schwartz (1997) one-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

16.8 4.0200 (0.0059) 4.0179 0.0513 4.0622 (0.0059) 4.0602 (0.0001) 99.9564
18.9 2.0535 (0.0053) 2.0520 0.0744 2.0867 (0.0054) 2.0852 (0.0001) 99.9672
21.0 0.6697 (0.0035) 0.6725 -0.4122 0.6901 (0.0036) 0.6929 (0.0001) 99.9342
23.1 0.1242 (0.0015) 0.1258 -1.3074 0.1337 (0.0016) 0.1354 (0.0001) 99.6521
25.2 0.0133 (0.0005) 0.0135 -1.2505 0.0158 (0.0005) 0.0160 (0.0001) 98.3917

Schwartz and Smith (2000) two-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

16.8 3.5193 (0.0069) 3.5133 0.1723 3.5808 (0.0069) 3.5747 (0.0002) 99.9328
18.9 1.7305 (0.0058) 1.7277 0.1626 1.7726 (0.0059) 1.7698 (0.0001) 99.9495
21.0 0.6036 (0.0037) 0.6013 0.3754 0.6273 (0.0038) 0.6250 (0.0001) 99.9087
23.1 0.1451 (0.0018) 0.1439 0.8454 0.1568 (0.0019) 0.1555 (0.0001) 99.6493
25.2 0.0249 (0.0007) 0.0243 2.4290 0.0291 (0.0008) 0.0285 (0.0001) 98.7202

Korn (2005) two-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

16.8 4.5417 (0.0071) 4.5354 0.1390 4.6028 (0.0071) 4.5964 (0.0002) 99.9429
18.9 2.5715 (0.0065) 2.5659 0.2184 2.6241 (0.0066) 2.6184 (0.0002) 99.9483
21.0 1.0738 (0.0048) 1.0695 0.4013 1.1130 (0.0049) 1.1087 (0.0001) 99.9079
23.1 0.3077 (0.0026) 0.3061 0.5254 0.3319 (0.0028) 0.3303 (0.0002) 99.6582
25.2 0.0607 (0.0011) 0.0601 0.9851 0.0709 (0.0013) 0.0703 (0.0001) 98.7083

The table shows the numerical results for the Capesize route C4 for all four models – with S0 = 21, r = 5 %,
and k = 100,000. MC refers to the Monte Carlo price, SE to the standard error, CFS to the closed-form
solution, ∆ % to the relative bias between MC price and closed-form solution, MC CV to the Monte Carlo
control variate price, and VR % to the variance reduction due to the control variate.
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Table 4.7: Numerical results of Capesize route C7 with T = 1
12 years

and n = 210

Black (1976) one-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

16.8 4.0014 (0.0051) 3.9996 0.0452 4.0329 (0.0051) 4.0311 (0.0001) 99.9661
18.9 1.9885 (0.0047) 1.9869 0.0813 2.0139 (0.0047) 2.0123 (0.0001) 99.9759
21.0 0.5572 (0.0029) 0.5596 -0.4215 0.5716 (0.0030) 0.5740 (0.0001) 99.9497
23.1 0.0709 (0.0010) 0.0718 -1.2653 0.0764 (0.0011) 0.0773 (0.0001) 99.6412
25.2 0.0041 (0.0002) 0.0041 0.0258 0.0050 (0.0003) 0.0050 (0.0000) 98.0065

Schwartz (1997) one-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

16.8 3.9954 (0.0055) 3.9935 0.0483 4.0317 (0.0055) 4.0297 (0.0001) 99.9617
18.9 2.0041 (0.0050) 2.0025 0.0800 2.0328 (0.0050) 2.0312 (0.0001) 99.9722
21.0 0.6008 (0.0031) 0.6033 -0.4214 0.6175 (0.0032) 0.6201 (0.0001) 99.9430
23.1 0.0915 (0.0012) 0.0927 -1.3084 0.0985 (0.0013) 0.0997 (0.0001) 99.6466
25.2 0.0072 (0.0003) 0.0072 -0.9428 0.0086 (0.0004) 0.0087 (0.0000) 98.2068

Schwartz and Smith (2000) two-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

16.8 3.4538 (0.0063) 3.4481 0.1656 3.5067 (0.0063) 3.5009 (0.0002) 99.9388
18.9 1.6288 (0.0053) 1.6261 0.1654 1.6641 (0.0054) 1.6614 (0.0001) 99.9575
21.0 0.5066 (0.0032) 0.5044 0.4395 0.5247 (0.0033) 0.5224 (0.0001) 99.9228
23.1 0.0988 (0.0014) 0.0979 0.9550 0.1066 (0.0015) 0.1057 (0.0001) 99.6542
25.2 0.0128 (0.0005) 0.0123 4.2046 0.0150 (0.0005) 0.0145 (0.0001) 98.6018

Korn (2005) two-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

16.8 5.1425 (0.0067) 5.1368 0.1112 5.2035 (0.0068) 5.1977 (0.0002) 99.9398
18.9 3.1018 (0.0064) 3.0958 0.1957 3.1591 (0.0066) 3.1530 (0.0002) 99.9427
21.0 1.3937 (0.0051) 1.3892 0.3236 1.4416 (0.0053) 1.4370 (0.0002) 99.9088
23.1 0.4164 (0.0030) 0.4145 0.4638 0.4485 (0.0031) 0.4466 (0.0002) 99.6692
25.2 0.0801 (0.0013) 0.0795 0.6525 0.0940 (0.0014) 0.0934 (0.0002) 98.6418

The table shows the numerical results for the Capesize route C7 for all four models – with S0 = 21, r = 5 %,
and k = 100,000. MC refers to the Monte Carlo price, SE to the standard error, CFS to the closed-form
solution, ∆ % to the relative bias between MC price and closed-form solution, MC CV to the Monte Carlo
control variate price, and VR % to the variance reduction due to the control variate.
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Table 4.8: Numerical results of Panamax route P2A with T = 1
12 years

and n = 210

Black (1976) one-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

36,000 8,580.46 (14.23) 8,575.47 0.06 8,692.78 (14.31) 8,687.74 (0.33) 99.95
40,500 4,478.38 (12.59) 4,475.73 0.06 4,564.92 (12.77) 4,562.24 (0.26) 99.96
45,000 1,621.34 (8.48) 1,628.17 -0.42 1,677.03 (8.73) 1,683.95 (0.25) 99.92
49,500 382.11 (4.14) 386.87 -1.23 411.87 (4.39) 416.70 (0.26) 99.65
54,000 59.69 (1.57) 60.81 -1.84 70.20 (1.76) 71.33 (0.21) 98.58

Schwartz (1997) one-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

36,000 8,509.90 (14.56) 8,504.75 0.06 8,627.82 (14.64) 8,622.61 (0.35) 99.94
40,500 4,444.47 (12.80) 4,441.94 0.06 4,534.52 (12.99) 4,531.97 (0.27) 99.96
45,000 1,632.85 (8.64) 1,639.90 -0.43 1,690.79 (8.90) 1,697.93 (0.26) 99.92
49,500 399.86 (4.30) 404.80 -1.22 431.17 (4.56) 436.18 (0.27) 99.65
54,000 66.56 (1.69) 67.80 -1.83 78.06 (1.89) 79.32 (0.22) 98.61

Schwartz and Smith (2000) two-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

36,000 8,650.71 (15.56) 8,636.85 0.16 8,786.64 (15.68) 8,772.59 (0.39) 99.94
40,500 4,628.21 (13.68) 4,619.76 0.18 4,733.76 (13.92) 4,725.18 (0.32) 99.95
45,000 1,826.04 (9.51) 1,821.25 0.26 1,896.17 (9.82) 1,891.30 (0.30) 99.91
49,500 512.14 (5.09) 508.28 0.76 552.69 (5.40) 548.77 (0.32) 99.66
54,000 103.44 (2.22) 101.91 1.50 120.36 (2.47) 118.81 (0.27) 98.77

Korn (2005) two-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

36,000 7,375.57 (14.64) 7,361.36 0.19 7,502.98 (14.68) 7,488.60 (0.38) 99.93
40,500 3,573.96 (12.16) 3,564.74 0.26 3,658.14 (12.34) 3,648.80 (0.27) 99.95
45,000 1,217.35 (7.65) 1,210.97 0.53 1,263.57 (7.88) 1,257.10 (0.23) 99.91
49,500 282.98 (3.66) 280.68 0.82 305.39 (3.88) 303.05 (0.23) 99.66
54,000 47.28 (1.45) 45.70 3.45 55.20 (1.61) 53.60 (0.18) 98.72

The table shows the numerical results for the Panamax route P2A for all four models – with S0 = 45,000,
r = 5 %, and k = 100,000. MC refers to the Monte Carlo price, SE to the standard error, CFS to the
closed-form solution, ∆ % to the relative bias between MC price and closed-form solution, MC CV to the
Monte Carlo control variate price, and VR % to the variance reduction due to the control variate.
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Table 4.9: Numerical results of Panamax route P3A with T = 1
12 years

and n = 210

Black (1976) one-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

36,000 8,601.38 (15.35) 8,595.99 0.06 8,731.07 (15.46) 8,725.62 (0.38) 99.94
40,500 4,577.89 (13.46) 4,575.50 0.05 4,677.66 (13.70) 4,675.22 (0.31) 99.95
45,000 1,776.06 (9.29) 1,783.55 -0.42 1,842.57 (9.59) 1,850.16 (0.29) 99.91
49,500 482.69 (4.89) 488.17 -1.12 520.80 (5.20) 526.37 (0.31) 99.65
54,000 93.56 (2.08) 95.24 -1.76 109.33 (2.33) 111.03 (0.27) 98.68

Schwartz (1997) one-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

36,000 8,475.22 (16.13) 8,469.57 0.07 8,618.65 (16.26) 8,612.91 (0.42) 99.93
40,500 4,537.18 (13.99) 4,535.25 0.04 4,646.14 (14.26) 4,644.18 (0.34) 99.94
45,000 1,822.63 (9.73) 1,830.64 -0.44 1,895.63 (10.07) 1,903.77 (0.32) 99.90
49,500 535.64 (5.33) 541.61 -1.10 578.65 (5.67) 584.71 (0.34) 99.65
54,000 117.50 (2.43) 119.49 -1.66 136.79 (2.71) 138.81 (0.30) 98.75

Schwartz and Smith (2000) two-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

36,000 8,251.97 (19.82) 8,236.99 0.18 8,477.31 (20.14) 8,462.00 (0.65) 99.90
40,500 4,666.84 (16.86) 4,659.59 0.16 4,838.06 (17.34) 4,830.63 (0.55) 99.90
45,000 2,213.62 (12.4) 2,208.78 0.22 2,334.54 (12.96) 2,329.58 (0.52) 99.84
49,500 884.32 (7.96) 878.42 0.67 964.29 (8.52) 958.24 (0.53) 99.61
54,000 300.29 (4.60) 298.12 0.73 346.16 (5.11) 343.93 (0.52) 98.97

Korn (2005) two-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

36,000 10,746.83 (23.35) 10,726.03 0.19 11,062.36 (24.01) 11,040.95 (0.89) 99.86
40,500 6,862.21 (21.10) 6,847.98 0.21 7,138.53 (21.91) 7,123.84 (0.82) 99.86
45,000 3,854.96 (17.17) 3,843.95 0.29 4,084.05 (18.10) 4,072.65 (0.81) 99.80
49,500 1,900.22 (12.53) 1,889.94 0.54 2,078.04 (13.51) 2,067.39 (0.86) 99.59
54,000 827.07 (8.34) 820.87 0.75 951.25 (9.29) 944.82 (0.91) 99.05

The table shows the numerical results for the Panamax route P3A for all four models – with S0 = 45,000, r = 5 %,
and k = 100,000. MC refers to the Monte Carlo price, SE to the standard error, CFS to the closed-form solution,
∆ % to the relative bias between MC price and closed-form solution, MC CV to the Monte Carlo control variate
price, and VR % to the variance reduction due to the control variate.
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B.2 Numerical results for T = 1 and n = 252

Table 4.10: Numerical results of Capesize route C4 with T = 1 year and
n = 252

Black (1976) one-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

16.8 3.3014 (0.0139) 3.2930 0.2552 3.5449 (0.0148) 3.5360 (0.0009) 99.6259
18.9 2.2312 (0.0120) 2.2253 0.2615 2.4268 (0.0129) 2.4205 (0.0008) 99.6021
21.0 1.4572 (0.0100) 1.4535 0.2483 1.6155 (0.0109) 1.6116 (0.0008) 99.4976
23.1 0.9234 (0.0081) 0.9237 -0.0280 1.0516 (0.0091) 1.0519 (0.0008) 99.2750
25.2 0.5718 (0.0064) 0.5744 -0.4461 0.6748 (0.0074) 0.6776 (0.0008) 98.8716

Schwartz (1997) one-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

16.8 3.2414 (0.0135) 3.2331 0.2573 3.4998 (0.0143) 3.4909 (0.0009) 99.6022
18.9 2.1635 (0.0116) 2.1577 0.2672 2.3690 (0.0124) 2.3629 (0.0008) 99.5745
21.0 1.3901 (0.0096) 1.3871 0.2141 1.5533 (0.0105) 1.5501 (0.0008) 99.4569
23.1 0.8642 (0.0077) 0.8650 -0.0943 0.9923 (0.0086) 0.9931 (0.0008) 99.2174
25.2 0.5236 (0.0060) 0.5266 -0.5520 0.6230 (0.0069) 0.6261 (0.0008) 98.7917

Schwartz and Smith (2000) two-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

16.8 1.4414 (0.0088) 1.4418 -0.0270 1.6391 (0.0095) 1.6395 (0.0008) 99.2069
18.9 0.8292 (0.0069) 0.8326 -0.4052 0.9615 (0.0076) 0.9652 (0.0007) 99.1162
21.0 0.4586 (0.0052) 0.4635 -1.0560 0.5464 (0.0058) 0.5518 (0.0006) 98.8629
23.1 0.2460 (0.0038) 0.2512 -2.0705 0.3039 (0.0044) 0.3096 (0.0006) 98.3581
25.2 0.1296 (0.0028) 0.1335 -2.9226 0.1675 (0.0033) 0.1718 (0.0005) 97.5647

Korn (2005) two-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

16.8 8.7951 (0.0214) 8.8002 -0.0582 9.6920 (0.0239) 9.6976 (0.0025) 98.8655
18.9 7.0305 (0.0205) 7.0362 -0.0800 7.8973 (0.0231) 7.9036 (0.0025) 98.8285
21.0 5.4577 (0.0192) 5.4647 -0.1267 6.2823 (0.0219) 6.2900 (0.0025) 98.7241
23.1 4.1189 (0.0175) 4.1276 -0.2125 4.8873 (0.0204) 4.8971 (0.0025) 98.5066
25.2 3.0281 (0.0156) 3.0391 -0.3604 3.7279 (0.0185) 3.7402 (0.0025) 98.1131

The table shows the numerical results for the Capesize route C4 for all four models – with S0 = 21, r = 5 %,
and k = 100,000. MC refers to the Monte Carlo price, SE to the standard error, CFS to the closed-form
solution, ∆ % to the relative bias between MC price and closed-form solution, MC CV to the Monte Carlo
control variate price, and VR % to the variance reduction due to the control variate.
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Table 4.11: Numerical results of Capesize route C7 with T = 1 year and
n = 252

Black (1976) one-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

16.8 2.9894 (0.0124) 2.9816 0.2607 3.1872 (0.0131) 3.1790 (0.0007) 99.6941
18.9 1.9284 (0.0105) 1.9232 0.2700 2.0799 (0.0112) 2.0744 (0.0006) 99.6815
21.0 1.1888 (0.0085) 1.1861 0.2293 1.3063 (0.0092) 1.3034 (0.0006) 99.5831
23.1 0.7046 (0.0066) 0.7051 -0.0826 0.7955 (0.0073) 0.7961 (0.0006) 99.3573
25.2 0.4040 (0.0051) 0.4071 -0.7671 0.4738 (0.0058) 0.4771 (0.0006) 98.9224

Schwartz (1997) one-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

16.8 2.9668 (0.0122) 2.9590 0.2628 3.1813 (0.0129) 3.1731 (0.0007) 99.6627
18.9 1.8996 (0.0103) 1.8945 0.2729 2.0637 (0.0110) 2.0582 (0.0007) 99.6447
21.0 1.1592 (0.0083) 1.1569 0.1980 1.2844 (0.0090) 1.2819 (0.0006) 99.5347
23.1 0.6786 (0.0064) 0.6796 -0.1425 0.7728 (0.0071) 0.7739 (0.0006) 99.2930
25.2 0.3837 (0.0049) 0.3870 -0.8606 0.4538 (0.0055) 0.4574 (0.0006) 98.8356

Schwartz and Smith (2000) two-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

16.8 1.1225 (0.0074) 1.1237 -0.1061 1.2699 (0.0079) 1.2712 (0.0007) 99.2411
18.9 0.5929 (0.0055) 0.5964 -0.6022 0.6825 (0.0060) 0.6864 (0.0005) 99.1778
21.0 0.2975 (0.0039) 0.3023 -1.5811 0.3516 (0.0044) 0.3568 (0.0005) 98.9394
23.1 0.1442 (0.0027) 0.1480 -2.6100 0.1767 (0.0031) 0.1809 (0.0004) 98.4360
25.2 0.0685 (0.0019) 0.0707 -3.2035 0.0879 (0.0022) 0.0903 (0.0003) 97.6117

Korn (2005) two-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

16.8 15.2674 (0.0259) 15.2798 -0.0810 16.9823 (0.0304) 16.9963 (0.0041) 98.1821
18.9 13.2977 (0.0258) 13.3095 -0.0886 15.0077 (0.0302) 15.0211 (0.0040) 98.2158
21.0 11.3746 (0.0254) 11.3862 -0.1024 13.0732 (0.0299) 13.0866 (0.0040) 98.2251
23.1 9.5378 (0.0247) 9.5494 -0.1217 11.2137 (0.0294) 11.2271 (0.0040) 98.1918
25.2 7.8314 (0.0237) 7.8434 -0.1531 9.4688 (0.0285) 9.4827 (0.0039) 98.0791

The table shows the numerical results for the Capesize route C7 for all four models – with S0 = 21, r = 5 %, and
k = 100,000. MC refers to the Monte Carlo price, SE to the standard error, CFS to the closed-form solution, ∆ %
to the relative bias between MC price and closed-form solution, MC CV to the Monte Carlo control variate price,
and VR % to the variance reduction due to the control variate.
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Table 4.12: Numerical results of Panamax route P2A with T = 1 year
and n = 252

Black (1976) one-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

36,000 7,407.23 (35.05) 7,389.36 0.24 8,128.14 (38.03) 8,108.74 (2.90) 99.42
40,500 5,318.99 (30.88) 5,306.16 0.24 5,921.62 (34.04) 5,907.62 (2.70) 99.37
45,000 3,751.38 (26.67) 3,743.61 0.21 4,259.92 (29.93) 4,251.40 (2.59) 99.25
49,500 2,605.36 (22.68) 2,606.10 -0.03 3,035.97 (25.99) 3,036.78 (2.56) 99.03
54,000 1,791.00 (19.08) 1,796.51 -0.31 2,154.19 (22.39) 2,160.29 (2.58) 98.67

Schwartz (1997) one-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

36,000 6,766.94 (32.51) 6,750.40 0.25 7,452.36 (35.10) 7,434.44 (2.65) 99.43
40,500 4,747.42 (28.30) 4,736.05 0.24 5,306.48 (31.05) 5,294.11 (2.43) 99.39
45,000 3,261.59 (24.09) 3,256.41 0.16 3,720.00 (26.92) 3,714.34 (2.32) 99.26
49,500 2,202.23 (20.18) 2,204.93 -0.12 2,577.25 (23.02) 2,580.21 (2.28) 99.02
54,000 1,468.90 (16.70) 1,476.19 -0.49 1,775.46 (19.51) 1,783.48 (2.27) 98.64

Schwartz and Smith (2000) two-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

36,000 6,179.23 (30.70) 6,179.11 0.00 6,921.01 (33.31) 6,920.87 (2.84) 99.28
40,500 4,258.02 (26.46) 4,265.05 -0.16 4,848.41 (29.22) 4,856.11 (2.57) 99.23
45,000 2,870.61 (22.30) 2,883.06 -0.43 3,338.77 (25.12) 3,352.46 (2.41) 99.08
49,500 1,902.60 (18.49) 1,918.41 -0.82 2,274.20 (21.28) 2,291.65 (2.33) 98.80
54,000 1,243.72 (15.15) 1,261.94 -1.44 1,538.91 (17.88) 1,559.10 (2.30) 98.35

Korn (2005) two-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

36,000 2,380.26 (18.06) 2,394.77 -0.61 2,745.83 (19.72) 2,761.72 (1.96) 99.01
40,500 1,416.56 (14.26) 1,433.10 -1.15 1,660.00 (15.87) 1,678.20 (1.62) 98.96
45,000 827.82 (11.07) 842.17 -1.70 993.09 (12.58) 1,008.94 (1.41) 98.74
49,500 479.26 (8.52) 489.17 -2.03 592.11 (9.91) 603.10 (1.26) 98.39
54,000 277.14 (6.52) 282.23 -1.80 355.81 (7.80) 361.46 (1.16) 97.78

The table shows the numerical results for the Panamax route P2A for all four models – with S0 = 45,000,
r = 5 %, and k = 100,000. MC refers to the Monte Carlo price, SE to the standard error, CFS to the
closed-form solution, ∆ % to the relative bias between MC price and closed-form solution, MC CV to the
Monte Carlo control variate price, and VR % to the variance reduction due to the control variate.
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Table 4.13: Numerical results of Panamax route P3A with T = 1 year
and n = 252

Black (1976) one-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

36,000 7,829.36 (38.35) 7,811.18 0.23 8,686.47 (42.17) 8,666.48 (3.59) 99.28
40,500 5,784.34 (34.21) 5,771.06 0.23 6,516.21 (38.23) 6,501.53 (3.37) 99.22
45,000 4,218.54 (30.03) 4,210.16 0.20 4,848.61 (34.17) 4,839.30 (3.25) 99.09
49,500 3,042.95 (26.06) 3,043.16 -0.01 3,588.00 (30.26) 3,588.24 (3.21) 98.87
54,000 2,180.31 (22.41) 2,185.47 -0.24 2,649.39 (26.63) 2,655.19 (3.23) 98.53

Schwartz (1997) one-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

36,000 6,822.53 (35.22) 6,806.49 0.24 7,641.46 (38.63) 7,623.83 (3.31) 99.26
40,500 4,935.60 (31.03) 4,924.65 0.22 5,616.03 (34.60) 5,603.93 (3.09) 99.20
45,000 3,521.10 (26.90) 3,516.96 0.12 4,089.90 (30.55) 4,085.31 (2.96) 99.06
49,500 2,484.59 (23.05) 2,488.30 -0.15 2,959.44 (26.71) 2,963.58 (2.90) 98.82
54,000 1,741.16 (19.58) 1,749.34 -0.47 2,138.38 (23.22) 2,147.53 (2.88) 98.46

Schwartz and Smith (2000) two-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

36,000 5,418.59 (31.39) 5,415.95 0.05 6,403.61 (35.34) 6,400.62 (3.90) 98.78
40,500 3,821.47 (27.22) 3,827.04 -0.15 4,616.17 (31.28) 4,622.50 (3.63) 98.65
45,000 2,662.04 (23.26) 2,674.23 -0.46 3,300.90 (27.32) 3,314.83 (3.45) 98.41
49,500 1,839.22 (19.69) 1,854.79 -0.84 2,352.09 (23.67) 2,369.95 (3.33) 98.02
54,000 1,263.11 (16.56) 1,280.58 -1.36 1,674.21 (20.42) 1,694.32 (3.27) 97.43

Korn (2005) two-factor model

Geometric Asian option Arithmetic Asian option

K MC SE CFS ∆ % MC SE MC CV SE VR %

36,000 15,874.48 (57.24) 15,894.19 -0.12 18,533.53 (65.69) 18,556.19 (8.14) 98.46
40,500 12,872.11 (53.97) 12,893.42 -0.17 15,343.16 (62.84) 15,367.77 (7.95) 98.40
45,000 10,314.13 (50.16) 10,335.57 -0.21 12,585.06 (59.38) 12,609.92 (7.83) 98.26
49,500 8,180.63 (46.07) 8,204.74 -0.29 10,249.24 (55.54) 10,277.28 (7.80) 98.03
54,000 6,432.34 (41.89) 6,462.55 -0.47 8,298.22 (51.53) 8,333.45 (7.84) 97.68

The table shows the numerical results for the Panamax route P3A for all four models – with S0 = 45,000, r = 5 %,
and k = 100,000. MC refers to the Monte Carlo price, SE to the standard error, CFS to the closed-form solution,
∆ % to the relative bias between MC price and closed-form solution, MC CV to the Monte Carlo control variate
price, and VR % to the variance reduction due to the control variate.
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B.3 Discretization error plots

Figure 4.3: Impact of n on the discretization error for Capesize route
C7
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The graph shows the bias as well as the 90 % CI of an at-the-money geometric Asian call
option for different log numbers of discretization time steps (i.e., n = 21, 42, 84, 126, 210) for
the Capesize route C7 for all four models – with S0 = 21, r = 5 %, T = 1

12 years, and
k = 100,000.

Figure 4.4: Impact of n on the discretization error for Panamax route
P2A
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The graph shows the bias as well as the 90 % CI of an at-the-money geometric Asian call
option for different log numbers of discretization time steps (i.e., n = 21, 42, 84, 126, 210) for
the Panamax route P2A for all four models – with S0 = 45,000, r = 5 %, T = 1

12 years, and
k = 100,000.
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Figure 4.5: Impact of n on the discretization error for Panamax route
P3A
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The graph shows the bias as well as the 90 % CI of an at-the-money geometric Asian call
option for different log numbers of discretization time steps (i.e., n = 21, 42, 84, 126, 210) for
the Panamax route P3A for all four models – with S0 = 45,000, r = 5 %, T = 1

12 years, and
k = 100,000.

B.4 Simulation error plots

Figure 4.6: Impact of k on the simulation error for Capesize route C7
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The graph shows the log standard error (SE) for the MC price as well as MC control variate
price of an at-the-money arithmetic Asian call option for different log numbers of generated
MC paths (i.e., k = 100, 1,000, 5,000, 20,000, 100,000) for the Capesize route C7 for all four
models – with S0 = 21, r = 5 %, T = 1

12 years, and n = 21.
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Figure 4.7: Impact of k on the simulation error for Panamax route P2A
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The graph shows the log standard error (SE) for the MC price as well as MC control variate
price of an at-the-money arithmetic Asian call option for different log numbers of generated
MC paths (i.e., k = 100, 1,000, 5,000, 20,000, 100,000) for the Panamax route P2A for all four
models – with S0 = 45,000, r = 5 %, T = 1

12 years, and n = 21.

Figure 4.8: Impact of k on the simulation error for Panamax route P3A
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The graph shows the log standard error (SE) for the MC price as well as MC control variate
price of an at-the-money arithmetic Asian call option for different log numbers of generated
MC paths (i.e., k = 100, 1,000, 5,000, 20,000, 100,000) for the Panamax route P3A for all four
models – with S0 = 45,000, r = 5 %, T = 1

12 years, and n = 21.
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C Appendix C – MATLAB R2015a code

This section of the appendix contains the most important Matlab R2015a .m-files
and functions that have been programmed for the numerical example.

C.1 Main .m-file

1 %% Description of file: rp3_mainfile

2

3 % date created: 11/09/2015

4 % date last edited: 01/25/2016

5 % author: Michael Herbener

6 % research project 3 of dissertation

7 % current folder and file locations refer to:

8 % Z:\-drive on UHH workstation or

9 % C:\drive on McK notebook

10

11 %% Clear the existing workspace

12 clear

13

14 %% Define paths

15 path = 'Z:\Dissertation\data\analyses\MATLAB';

16 % path = 'C:\Users\Michael Herbener\Documents\Private\Dissertation\data\analyses\MATLAB';

17 exportfile_path = 'Z:\Dissertation\data\analyses\Excel\rp3_results.xlsx';

18 % exportfile_path = 'C:\Users\Michael ...

Herbener\Documents\Private\Dissertation\data\analyses\Excel\rp3_results.xlsx';

19

20 %% Set the MATLAB current folder

21 cd(path)

22

23 %% Set format to long

24 format long

25

26 %% Start parallel computing session

27 if strcmp(version('-release'),'2013a')

28 if matlabpool('size') == 0 %#ok<DPOOL>

29 matlabpool %#ok<DPOOL>

30 end

31 elseif strcmp(version('-release'),'2013b')

32 if matlabpool('size') == 0 %#ok<DPOOL>

33 matlabpool %#ok<DPOOL>

34 end

35 elseif strcmp(version('-release'),'2014a')

36 pool = gcp('nocreate');

37 if isempty(pool)

38 poolsize = 0;

39 else

40 poolsize = pool.NumWorkers;

41 end
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42 if poolsize == 0

43 parpool;

44 end

45 elseif strcmp(version('-release'),'2014b')

46 pool = gcp('nocreate');

47 if isempty(pool)

48 poolsize = 0;

49 else

50 poolsize = pool.NumWorkers;

51 end

52 if poolsize == 0

53 parpool;

54 end

55 elseif strcmp(version('-release'),'2015a')

56 pool = gcp('nocreate');

57 if isempty(pool)

58 poolsize = 0;

59 else

60 poolsize = pool.NumWorkers;

61 end

62 if poolsize == 0

63 parpool;

64 end

65 elseif strcmp(version('-release'),'2015b')

66 pool = gcp('nocreate');

67 if isempty(pool)

68 poolsize = 0;

69 else

70 poolsize = pool.NumWorkers;

71 end

72 if poolsize == 0

73 parpool;

74 end

75 end

76 clearvars pool poolsize

77

78 %% Start stopwatch

79 tstart = tic;

80

81 %% Prokopczuk (2010) model parameters

82

83 fprintf('Define model parameters, intial values, and strike prices...')

84

85 % Route C4

86 % Black (1976)

87 % PARAMETERS.C4.Black1976.xi_0 = 3.0459;

88 PARAMETERS.C4.Black1976.a = -0.2062;

89 PARAMETERS.C4.Black1976.a_star = -0.2748;

90 PARAMETERS.C4.Black1976.lambda_xi = PARAMETERS.C4.Black1976.a - ...

PARAMETERS.C4.Black1976.a_star;

91 PARAMETERS.C4.Black1976.sigma_xi = 0.5109;

92

93 % Schwartz (1997) one-factor model

94 % PARAMETERS.C4.Schw1997.xi_0 = 3.0432;
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95 PARAMETERS.C4.Schw1997.kappa_xi = 0.2830;

96 PARAMETERS.C4.Schw1997.a = 2.2596;

97 PARAMETERS.C4.Schw1997.a_star = 1.9958;

98 PARAMETERS.C4.Schw1997.lambda_xi = PARAMETERS.C4.Schw1997.a - ...

PARAMETERS.C4.Schw1997.a_star;

99 PARAMETERS.C4.Schw1997.sigma_xi = 0.5497;

100

101 % Schwartz and Smith (2000) two-factor model

102 % PARAMETERS.C4.SchwSm2000.xi_0 = 2.8243;

103 PARAMETERS.C4.SchwSm2000.a = -0.1015;

104 PARAMETERS.C4.SchwSm2000.a_star = -0.2777;

105 PARAMETERS.C4.SchwSm2000.lambda_xi = PARAMETERS.C4.SchwSm2000.a - ...

PARAMETERS.C4.SchwSm2000.a_star;

106 PARAMETERS.C4.SchwSm2000.sigma_xi = 0.4446;

107 % PARAMETERS.C4.SchwSm2000.chi_0 = 0.3531;

108 PARAMETERS.C4.SchwSm2000.kappa_chi = 3.0194;

109 PARAMETERS.C4.SchwSm2000.lambda_chi = -0.2661;

110 PARAMETERS.C4.SchwSm2000.sigma_chi = 0.5637;

111 PARAMETERS.C4.SchwSm2000.rho = -0.0367;

112

113 % Korn (2005) two-factor model

114 % PARAMETERS.C4.Korn2005.xi_0 = 2.9810;

115 PARAMETERS.C4.Korn2005.kappa_xi = 0.8017;

116 PARAMETERS.C4.Korn2005.a = 3.0518;

117 PARAMETERS.C4.Korn2005.a_star = 4.0011;

118 PARAMETERS.C4.Korn2005.lambda_xi = PARAMETERS.C4.Korn2005.a - ...

PARAMETERS.C4.Korn2005.a_star;

119 PARAMETERS.C4.Korn2005.sigma_xi = 1.2091;

120 % PARAMETERS.C4.Korn2005.chi_0 = 0.6098;

121 PARAMETERS.C4.Korn2005.kappa_chi = 1.6660;

122 PARAMETERS.C4.Korn2005.lambda_chi = 0.0768;

123 PARAMETERS.C4.Korn2005.sigma_chi = 1.2247;

124 PARAMETERS.C4.Korn2005.rho = -0.8543;

125

126 % Route C7

127 % Black (1976)

128 % PARAMETERS.C7.Black1976.xi_0 = 3.0220;

129 PARAMETERS.C7.Black1976.a = -0.2010;

130 PARAMETERS.C7.Black1976.a_star = -0.2854;

131 PARAMETERS.C7.Black1976.lambda_xi = PARAMETERS.C7.Black1976.a - ...

PARAMETERS.C7.Black1976.a_star;

132 PARAMETERS.C7.Black1976.sigma_xi = 0.4679;

133

134 % Schwartz (1997) one-factor model

135 % PARAMETERS.C7.Schw1997.xi_0 = 3.0205;

136 PARAMETERS.C7.Schw1997.kappa_xi = 0.2638;

137 PARAMETERS.C7.Schw1997.a = 2.2328;

138 PARAMETERS.C7.Schw1997.a_star = 1.8796;

139 PARAMETERS.C7.Schw1997.lambda_xi = PARAMETERS.C7.Schw1997.a - ...

PARAMETERS.C7.Schw1997.a_star;

140 PARAMETERS.C7.Schw1997.sigma_xi = 0.5064;

141

142 % Schwartz and Smith (2000) two-factor model

143 % PARAMETERS.C7.SchwSm2000.xi_0 = 2.7744;
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144 PARAMETERS.C7.SchwSm2000.a = -0.0803;

145 PARAMETERS.C7.SchwSm2000.a_star = -0.2976;

146 PARAMETERS.C7.SchwSm2000.lambda_xi = PARAMETERS.C7.SchwSm2000.a - ...

PARAMETERS.C7.SchwSm2000.a_star;

147 PARAMETERS.C7.SchwSm2000.sigma_xi = 0.4179;

148 % PARAMETERS.C7.SchwSm2000.chi_0 = 0.3972;

149 PARAMETERS.C7.SchwSm2000.kappa_chi = 2.7654;

150 PARAMETERS.C7.SchwSm2000.lambda_chi = -0.2866;

151 PARAMETERS.C7.SchwSm2000.sigma_chi = 0.5187;

152 PARAMETERS.C7.SchwSm2000.rho = -0.0821;

153

154 % Korn (2005) two-factor model

155 % PARAMETERS.C7.Korn2005.xi_0 = 3.1708;

156 PARAMETERS.C7.Korn2005.kappa_xi = 0.7470;

157 PARAMETERS.C7.Korn2005.a = 3.5702;

158 PARAMETERS.C7.Korn2005.a_star = 4.2374;

159 PARAMETERS.C7.Korn2005.lambda_xi = PARAMETERS.C7.Korn2005.a - ...

PARAMETERS.C7.Korn2005.a_star;

160 PARAMETERS.C7.Korn2005.sigma_xi = 1.1736;

161 % PARAMETERS.C7.Korn2005.chi_0 = 0.8612;

162 PARAMETERS.C7.Korn2005.kappa_chi = 1.5203;

163 PARAMETERS.C7.Korn2005.lambda_chi = -0.5794;

164 PARAMETERS.C7.Korn2005.sigma_chi = 1.2032;

165 PARAMETERS.C7.Korn2005.rho = -0.8714;

166

167 % Route P2A

168 % Black (1976)

169 % PARAMETERS.P2A.Black1976.xi_0 = 10.7056;

170 PARAMETERS.P2A.Black1976.a = -0.3331;

171 PARAMETERS.P2A.Black1976.a_star = -0.3501; % Prokoczuk (2010): +

172 PARAMETERS.P2A.Black1976.lambda_xi = PARAMETERS.P2A.Black1976.a - ...

PARAMETERS.P2A.Black1976.a_star;

173 PARAMETERS.P2A.Black1976.sigma_xi = 0.6167;

174

175 % Schwartz (1997) one-factor model

176 % PARAMETERS.P2A.Schw1997.xi_0 = 10.7048;

177 PARAMETERS.P2A.Schw1997.kappa_xi = 0.1882;

178 PARAMETERS.P2A.Schw1997.a = 8.9127;

179 PARAMETERS.P2A.Schw1997.a_star = 8.5831;

180 PARAMETERS.P2A.Schw1997.lambda_xi = PARAMETERS.P2A.Schw1997.a - ...

PARAMETERS.P2A.Schw1997.a_star;

181 PARAMETERS.P2A.Schw1997.sigma_xi = 0.6371;

182

183 % Schwartz and Smith (2000) two-factor model

184 % PARAMETERS.P2A.SchwSm2000.xi_0 = 10.5035;

185 PARAMETERS.P2A.SchwSm2000.a = -0.1302;

186 PARAMETERS.P2A.SchwSm2000.a_star = -0.5056;

187 PARAMETERS.P2A.SchwSm2000.lambda_xi = PARAMETERS.P2A.SchwSm2000.a - ...

PARAMETERS.P2A.SchwSm2000.a_star;

188 PARAMETERS.P2A.SchwSm2000.sigma_xi = 0.6159;

189 % PARAMETERS.P2A.SchwSm2000.chi_0 = 0.2115;

190 PARAMETERS.P2A.SchwSm2000.kappa_chi = 2.1339;

191 PARAMETERS.P2A.SchwSm2000.lambda_chi = -0.6127;

192 PARAMETERS.P2A.SchwSm2000.sigma_chi = 0.5997;
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193 PARAMETERS.P2A.SchwSm2000.rho = -0.3450;

194

195 % Korn (2005) two-factor model

196 % PARAMETERS.P2A.Korn2005.xi_0 = 10.9141;

197 PARAMETERS.P2A.Korn2005.kappa_xi = 0.4641;

198 PARAMETERS.P2A.Korn2005.a = 9.9977;

199 PARAMETERS.P2A.Korn2005.a_star = 9.7090;

200 PARAMETERS.P2A.Korn2005.lambda_xi = PARAMETERS.P2A.Korn2005.a - ...

PARAMETERS.P2A.Korn2005.a_star;

201 PARAMETERS.P2A.Korn2005.sigma_xi = 1.3443;

202 % PARAMETERS.P2A.Korn2005.chi_0 = 0.0403;

203 PARAMETERS.P2A.Korn2005.kappa_chi = 1.2128;

204 PARAMETERS.P2A.Korn2005.lambda_chi = 0.5982;

205 PARAMETERS.P2A.Korn2005.sigma_chi = 1.3028;

206 PARAMETERS.P2A.Korn2005.rho = -0.8691;

207

208 % Route P3A

209 % Black (1976)

210 % PARAMETERS.P3A.Black1976.xi_0 = 10.5389;

211 PARAMETERS.P3A.Black1976.a = -0.3921;

212 PARAMETERS.P3A.Black1976.a_star = -0.3717;

213 PARAMETERS.P3A.Black1976.lambda_xi = PARAMETERS.P3A.Black1976.a - ...

PARAMETERS.P3A.Black1976.a_star;

214 PARAMETERS.P3A.Black1976.sigma_xi = 0.6691;

215

216 % Schwartz (1997) one-factor model

217 % PARAMETERS.P3A.Schw1997.xi_0 = 10.5500;

218 PARAMETERS.P3A.Schw1997.kappa_xi = 0.2140;

219 PARAMETERS.P3A.Schw1997.a = 8.4040;

220 PARAMETERS.P3A.Schw1997.a_star = 8.4965;

221 PARAMETERS.P3A.Schw1997.lambda_xi = PARAMETERS.P3A.Schw1997.a - ...

PARAMETERS.P3A.Schw1997.a_star;

222 PARAMETERS.P3A.Schw1997.sigma_xi = 0.7146;

223

224 % Schwartz and Smith (2000) two-factor model

225 % PARAMETERS.P3A.SchwSm2000.xi_0 = 10.3743;

226 PARAMETERS.P3A.SchwSm2000.a = -0.2876;

227 PARAMETERS.P3A.SchwSm2000.a_star = -0.4192;

228 PARAMETERS.P3A.SchwSm2000.lambda_xi = PARAMETERS.P3A.SchwSm2000.a - ...

PARAMETERS.P3A.SchwSm2000.a_star;

229 PARAMETERS.P3A.SchwSm2000.sigma_xi = 0.6204;

230 % PARAMETERS.P3A.SchwSm2000.chi_0 = 0.2231;

231 PARAMETERS.P3A.SchwSm2000.kappa_chi = 3.9719;

232 PARAMETERS.P3A.SchwSm2000.lambda_chi = -0.4656;

233 PARAMETERS.P3A.SchwSm2000.sigma_chi = 0.7458;

234 PARAMETERS.P3A.SchwSm2000.rho = 0.0011;

235

236 % Korn (2005) two-factor model

237 % PARAMETERS.P3A.Korn2005.xi_0 = 10.8388;

238 PARAMETERS.P3A.Korn2005.kappa_xi = 0.1018;

239 PARAMETERS.P3A.Korn2005.a = 6.1302;

240 PARAMETERS.P3A.Korn2005.a_star = 8.1302;

241 PARAMETERS.P3A.Korn2005.lambda_xi = PARAMETERS.P3A.Korn2005.a - ...

PARAMETERS.P3A.Korn2005.a_star;
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242 PARAMETERS.P3A.Korn2005.sigma_xi = 0.6733;

243 % PARAMETERS.P3A.Korn2005.chi_0 = -0.8681;

244 PARAMETERS.P3A.Korn2005.kappa_chi = 2.9352;

245 PARAMETERS.P3A.Korn2005.lambda_chi = 1.7878;

246 PARAMETERS.P3A.Korn2005.sigma_chi = 0.9781;

247 PARAMETERS.P3A.Korn2005.rho = -0.2375;

248

249 %% Set initial values

250

251 % Route C4

252 % define S_0

253 S_0 = 21;

254

255 % determine two-factor model split

256 PARAMETERS.C4.SchwSm2000.xi_0_share = 2.8243 / (2.8243 + 0.3531);

257 PARAMETERS.C4.SchwSm2000.chi_0_share = 0.3531 / (2.8243 + 0.3531);

258 PARAMETERS.C4.Korn2005.xi_0_share = 2.9810 / (2.9810 + 0.6098);

259 PARAMETERS.C4.Korn2005.chi_0_share = 0.6098 / (2.9810 + 0.6098);

260

261 % define model initial values

262 PARAMETERS.C4.Black1976.xi_0 = log(S_0);

263 PARAMETERS.C4.Schw1997.xi_0 = log(S_0);

264 PARAMETERS.C4.SchwSm2000.xi_0 = log(S_0) * PARAMETERS.C4.SchwSm2000.xi_0_share;

265 PARAMETERS.C4.SchwSm2000.chi_0 = log(S_0) * PARAMETERS.C4.SchwSm2000.chi_0_share;

266 PARAMETERS.C4.Korn2005.xi_0 = log(S_0) * PARAMETERS.C4.Korn2005.xi_0_share;

267 PARAMETERS.C4.Korn2005.chi_0 = log(S_0) * PARAMETERS.C4.Korn2005.chi_0_share;

268

269 % Route C7

270 % define S_0

271 S_0 = 21;

272

273 % determine two-factor model split

274 PARAMETERS.C7.SchwSm2000.xi_0_share = 2.7744 / (2.7744 + 0.3972);

275 PARAMETERS.C7.SchwSm2000.chi_0_share = 0.3972 / (2.7744 + 0.3972);

276 PARAMETERS.C7.Korn2005.xi_0_share = 3.1708 / (3.1708 + 0.8612);

277 PARAMETERS.C7.Korn2005.chi_0_share = 0.8612 / (3.1708 + 0.8612);

278

279 % define model initial values

280 PARAMETERS.C7.Black1976.xi_0 = log(S_0);

281 PARAMETERS.C7.Schw1997.xi_0 = log(S_0);

282 PARAMETERS.C7.SchwSm2000.xi_0 = log(S_0) * PARAMETERS.C7.SchwSm2000.xi_0_share;

283 PARAMETERS.C7.SchwSm2000.chi_0 = log(S_0) * PARAMETERS.C7.SchwSm2000.chi_0_share;

284 PARAMETERS.C7.Korn2005.xi_0 = log(S_0) * PARAMETERS.C7.Korn2005.xi_0_share;

285 PARAMETERS.C7.Korn2005.chi_0 = log(S_0) * PARAMETERS.C7.Korn2005.chi_0_share;

286

287 % Route P2A

288 % define S_0

289 S_0 = 45000;

290

291 % determine two-factor model split

292 PARAMETERS.P2A.SchwSm2000.xi_0_share = 10.5035 / (10.5035 + 0.2115);

293 PARAMETERS.P2A.SchwSm2000.chi_0_share = 0.2115 / (10.5035 + 0.2115);

294 PARAMETERS.P2A.Korn2005.xi_0_share = 10.9141 / (10.9141 + 0.0403);

295 PARAMETERS.P2A.Korn2005.chi_0_share = 0.0403 / (10.9141 + 0.0403);

242



C Appendix C – MATLAB R2015a code

296

297 % define model initial values

298 PARAMETERS.P2A.Black1976.xi_0 = log(S_0);

299 PARAMETERS.P2A.Schw1997.xi_0 = log(S_0);

300 PARAMETERS.P2A.SchwSm2000.xi_0 = log(S_0) * PARAMETERS.P2A.SchwSm2000.xi_0_share;

301 PARAMETERS.P2A.SchwSm2000.chi_0 = log(S_0) * PARAMETERS.P2A.SchwSm2000.chi_0_share;

302 PARAMETERS.P2A.Korn2005.xi_0 = log(S_0) * PARAMETERS.P2A.Korn2005.xi_0_share;

303 PARAMETERS.P2A.Korn2005.chi_0 = log(S_0) * PARAMETERS.P2A.Korn2005.chi_0_share;

304

305 % Route P3A

306 % define S_0

307 S_0 = 45000;

308

309 % determine two-factor model split

310 PARAMETERS.P3A.SchwSm2000.xi_0_share = 10.3743 / (10.3743 + 0.2231);

311 PARAMETERS.P3A.SchwSm2000.chi_0_share = 0.2231 / (10.3743 + 0.2231);

312 PARAMETERS.P3A.Korn2005.xi_0_share = 10.8388 / (10.8388 - 0.8681); % Prokoczuk (2010): -

313 PARAMETERS.P3A.Korn2005.chi_0_share = -0.8681 / (10.8388 - 0.8681); % Prokoczuk ...

(2010): -

314

315 % define model initial values

316 PARAMETERS.P3A.Black1976.xi_0 = log(S_0);

317 PARAMETERS.P3A.Schw1997.xi_0 = log(S_0);

318 PARAMETERS.P3A.SchwSm2000.xi_0 = log(S_0) * PARAMETERS.P3A.SchwSm2000.xi_0_share;

319 PARAMETERS.P3A.SchwSm2000.chi_0 = log(S_0) * PARAMETERS.P3A.SchwSm2000.chi_0_share;

320 PARAMETERS.P3A.Korn2005.xi_0 = log(S_0) * PARAMETERS.P3A.Korn2005.xi_0_share;

321 PARAMETERS.P3A.Korn2005.chi_0 = log(S_0) * PARAMETERS.P3A.Korn2005.chi_0_share;

322

323 % clear helper variables

324 clearvars S_0

325

326 %% Define strike price

327

328 % define strike adjustment factors

329 adj_factor_1 = 0.1;

330 adj_factor_2 = 0.2;

331

332 % route C4

333 % Black (1976)

334 PARAMETERS.C4.Black1976.K(3,1) = exp(PARAMETERS.C4.Black1976.xi_0);

335 PARAMETERS.C4.Black1976.K(1,1) = PARAMETERS.C4.Black1976.K(3,1) * (1 - adj_factor_2);

336 PARAMETERS.C4.Black1976.K(2,1) = PARAMETERS.C4.Black1976.K(3,1) * (1 - adj_factor_1);

337 PARAMETERS.C4.Black1976.K(4,1) = PARAMETERS.C4.Black1976.K(3,1) * (1 + adj_factor_1);

338 PARAMETERS.C4.Black1976.K(5,1) = PARAMETERS.C4.Black1976.K(3,1) * (1 + adj_factor_2);

339

340 % Schwartz (1997)

341 PARAMETERS.C4.Schw1997.K(3,1) = exp(PARAMETERS.C4.Schw1997.xi_0);

342 PARAMETERS.C4.Schw1997.K(1,1) = PARAMETERS.C4.Schw1997.K(3,1) * (1 - adj_factor_2);

343 PARAMETERS.C4.Schw1997.K(2,1) = PARAMETERS.C4.Schw1997.K(3,1) * (1 - adj_factor_1);

344 PARAMETERS.C4.Schw1997.K(4,1) = PARAMETERS.C4.Schw1997.K(3,1) * (1 + adj_factor_1);

345 PARAMETERS.C4.Schw1997.K(5,1) = PARAMETERS.C4.Schw1997.K(3,1) * (1 + adj_factor_2);

346

347 % Schwartz and Smith (2000)
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348 PARAMETERS.C4.SchwSm2000.K(3,1) = exp(PARAMETERS.C4.SchwSm2000.xi_0 + ...

PARAMETERS.C4.SchwSm2000.chi_0);

349 PARAMETERS.C4.SchwSm2000.K(1,1) = PARAMETERS.C4.SchwSm2000.K(3,1) * (1 - adj_factor_2);

350 PARAMETERS.C4.SchwSm2000.K(2,1) = PARAMETERS.C4.SchwSm2000.K(3,1) * (1 - adj_factor_1);

351 PARAMETERS.C4.SchwSm2000.K(4,1) = PARAMETERS.C4.SchwSm2000.K(3,1) * (1 + adj_factor_1);

352 PARAMETERS.C4.SchwSm2000.K(5,1) = PARAMETERS.C4.SchwSm2000.K(3,1) * (1 + adj_factor_2);

353

354 % Korn (2005)

355 PARAMETERS.C4.Korn2005.K(3,1) = exp(PARAMETERS.C4.Korn2005.xi_0 + ...

PARAMETERS.C4.Korn2005.chi_0);

356 PARAMETERS.C4.Korn2005.K(1,1) = PARAMETERS.C4.Korn2005.K(3,1) * (1 - adj_factor_2);

357 PARAMETERS.C4.Korn2005.K(2,1) = PARAMETERS.C4.Korn2005.K(3,1) * (1 - adj_factor_1);

358 PARAMETERS.C4.Korn2005.K(4,1) = PARAMETERS.C4.Korn2005.K(3,1) * (1 + adj_factor_1);

359 PARAMETERS.C4.Korn2005.K(5,1) = PARAMETERS.C4.Korn2005.K(3,1) * (1 + adj_factor_2);

360

361 % route C7

362 % Black (1976)

363 PARAMETERS.C7.Black1976.K(3,1) = exp(PARAMETERS.C7.Black1976.xi_0);

364 PARAMETERS.C7.Black1976.K(1,1) = PARAMETERS.C7.Black1976.K(3,1) * (1 - adj_factor_2);

365 PARAMETERS.C7.Black1976.K(2,1) = PARAMETERS.C7.Black1976.K(3,1) * (1 - adj_factor_1);

366 PARAMETERS.C7.Black1976.K(4,1) = PARAMETERS.C7.Black1976.K(3,1) * (1 + adj_factor_1);

367 PARAMETERS.C7.Black1976.K(5,1) = PARAMETERS.C7.Black1976.K(3,1) * (1 + adj_factor_2);

368

369 % Schwartz (1997)

370 PARAMETERS.C7.Schw1997.K(3,1) = exp(PARAMETERS.C7.Schw1997.xi_0);

371 PARAMETERS.C7.Schw1997.K(1,1) = PARAMETERS.C7.Schw1997.K(3,1) * (1 - adj_factor_2);

372 PARAMETERS.C7.Schw1997.K(2,1) = PARAMETERS.C7.Schw1997.K(3,1) * (1 - adj_factor_1);

373 PARAMETERS.C7.Schw1997.K(4,1) = PARAMETERS.C7.Schw1997.K(3,1) * (1 + adj_factor_1);

374 PARAMETERS.C7.Schw1997.K(5,1) = PARAMETERS.C7.Schw1997.K(3,1) * (1 + adj_factor_2);

375

376 % Schwartz and Smith (2000)

377 PARAMETERS.C7.SchwSm2000.K(3,1) = exp(PARAMETERS.C7.SchwSm2000.xi_0 + ...

PARAMETERS.C7.SchwSm2000.chi_0);

378 PARAMETERS.C7.SchwSm2000.K(1,1) = PARAMETERS.C7.SchwSm2000.K(3,1) * (1 - adj_factor_2);

379 PARAMETERS.C7.SchwSm2000.K(2,1) = PARAMETERS.C7.SchwSm2000.K(3,1) * (1 - adj_factor_1);

380 PARAMETERS.C7.SchwSm2000.K(4,1) = PARAMETERS.C7.SchwSm2000.K(3,1) * (1 + adj_factor_1);

381 PARAMETERS.C7.SchwSm2000.K(5,1) = PARAMETERS.C7.SchwSm2000.K(3,1) * (1 + adj_factor_2);

382

383 % Korn (2005)

384 PARAMETERS.C7.Korn2005.K(3,1) = exp(PARAMETERS.C7.Korn2005.xi_0 + ...

PARAMETERS.C7.Korn2005.chi_0);

385 PARAMETERS.C7.Korn2005.K(1,1) = PARAMETERS.C7.Korn2005.K(3,1) * (1 - adj_factor_2);

386 PARAMETERS.C7.Korn2005.K(2,1) = PARAMETERS.C7.Korn2005.K(3,1) * (1 - adj_factor_1);

387 PARAMETERS.C7.Korn2005.K(4,1) = PARAMETERS.C7.Korn2005.K(3,1) * (1 + adj_factor_1);

388 PARAMETERS.C7.Korn2005.K(5,1) = PARAMETERS.C7.Korn2005.K(3,1) * (1 + adj_factor_2);

389

390 % route P2A

391 % Black (1976)

392 PARAMETERS.P2A.Black1976.K(3,1) = exp(PARAMETERS.P2A.Black1976.xi_0);

393 PARAMETERS.P2A.Black1976.K(1,1) = PARAMETERS.P2A.Black1976.K(3,1) * (1 - adj_factor_2);

394 PARAMETERS.P2A.Black1976.K(2,1) = PARAMETERS.P2A.Black1976.K(3,1) * (1 - adj_factor_1);

395 PARAMETERS.P2A.Black1976.K(4,1) = PARAMETERS.P2A.Black1976.K(3,1) * (1 + adj_factor_1);

396 PARAMETERS.P2A.Black1976.K(5,1) = PARAMETERS.P2A.Black1976.K(3,1) * (1 + adj_factor_2);

397
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398 % Schwartz (1997)

399 PARAMETERS.P2A.Schw1997.K(3,1) = exp(PARAMETERS.P2A.Schw1997.xi_0);

400 PARAMETERS.P2A.Schw1997.K(1,1) = PARAMETERS.P2A.Schw1997.K(3,1) * (1 - adj_factor_2);

401 PARAMETERS.P2A.Schw1997.K(2,1) = PARAMETERS.P2A.Schw1997.K(3,1) * (1 - adj_factor_1);

402 PARAMETERS.P2A.Schw1997.K(4,1) = PARAMETERS.P2A.Schw1997.K(3,1) * (1 + adj_factor_1);

403 PARAMETERS.P2A.Schw1997.K(5,1) = PARAMETERS.P2A.Schw1997.K(3,1) * (1 + adj_factor_2);

404

405 % Schwartz and Smith (2000)

406 PARAMETERS.P2A.SchwSm2000.K(3,1) = exp(PARAMETERS.P2A.SchwSm2000.xi_0 + ...

PARAMETERS.P2A.SchwSm2000.chi_0);

407 PARAMETERS.P2A.SchwSm2000.K(1,1) = PARAMETERS.P2A.SchwSm2000.K(3,1) * (1 - adj_factor_2);

408 PARAMETERS.P2A.SchwSm2000.K(2,1) = PARAMETERS.P2A.SchwSm2000.K(3,1) * (1 - adj_factor_1);

409 PARAMETERS.P2A.SchwSm2000.K(4,1) = PARAMETERS.P2A.SchwSm2000.K(3,1) * (1 + adj_factor_1);

410 PARAMETERS.P2A.SchwSm2000.K(5,1) = PARAMETERS.P2A.SchwSm2000.K(3,1) * (1 + adj_factor_2);

411

412 % Korn (2005)

413 PARAMETERS.P2A.Korn2005.K(3,1) = exp(PARAMETERS.P2A.Korn2005.xi_0 + ...

PARAMETERS.P2A.Korn2005.chi_0);

414 PARAMETERS.P2A.Korn2005.K(1,1) = PARAMETERS.P2A.Korn2005.K(3,1) * (1 - adj_factor_2);

415 PARAMETERS.P2A.Korn2005.K(2,1) = PARAMETERS.P2A.Korn2005.K(3,1) * (1 - adj_factor_1);

416 PARAMETERS.P2A.Korn2005.K(4,1) = PARAMETERS.P2A.Korn2005.K(3,1) * (1 + adj_factor_1);

417 PARAMETERS.P2A.Korn2005.K(5,1) = PARAMETERS.P2A.Korn2005.K(3,1) * (1 + adj_factor_2);

418

419 % route P3A

420 % Black (1976)

421 PARAMETERS.P3A.Black1976.K(3,1) = exp(PARAMETERS.P3A.Black1976.xi_0);

422 PARAMETERS.P3A.Black1976.K(1,1) = PARAMETERS.P3A.Black1976.K(3,1) * (1 - adj_factor_2);

423 PARAMETERS.P3A.Black1976.K(2,1) = PARAMETERS.P3A.Black1976.K(3,1) * (1 - adj_factor_1);

424 PARAMETERS.P3A.Black1976.K(4,1) = PARAMETERS.P3A.Black1976.K(3,1) * (1 + adj_factor_1);

425 PARAMETERS.P3A.Black1976.K(5,1) = PARAMETERS.P3A.Black1976.K(3,1) * (1 + adj_factor_2);

426

427 % Schwartz (1997)

428 PARAMETERS.P3A.Schw1997.K(3,1) = exp(PARAMETERS.P3A.Schw1997.xi_0);

429 PARAMETERS.P3A.Schw1997.K(1,1) = PARAMETERS.P3A.Schw1997.K(3,1) * (1 - adj_factor_2);

430 PARAMETERS.P3A.Schw1997.K(2,1) = PARAMETERS.P3A.Schw1997.K(3,1) * (1 - adj_factor_1);

431 PARAMETERS.P3A.Schw1997.K(4,1) = PARAMETERS.P3A.Schw1997.K(3,1) * (1 + adj_factor_1);

432 PARAMETERS.P3A.Schw1997.K(5,1) = PARAMETERS.P3A.Schw1997.K(3,1) * (1 + adj_factor_2);

433

434 % Schwartz and Smith (2000)

435 PARAMETERS.P3A.SchwSm2000.K(3,1) = exp(PARAMETERS.P3A.SchwSm2000.xi_0 + ...

PARAMETERS.P3A.SchwSm2000.chi_0);

436 PARAMETERS.P3A.SchwSm2000.K(1,1) = PARAMETERS.P3A.SchwSm2000.K(3,1) * (1 - adj_factor_2);

437 PARAMETERS.P3A.SchwSm2000.K(2,1) = PARAMETERS.P3A.SchwSm2000.K(3,1) * (1 - adj_factor_1);

438 PARAMETERS.P3A.SchwSm2000.K(4,1) = PARAMETERS.P3A.SchwSm2000.K(3,1) * (1 + adj_factor_1);

439 PARAMETERS.P3A.SchwSm2000.K(5,1) = PARAMETERS.P3A.SchwSm2000.K(3,1) * (1 + adj_factor_2);

440

441 % Korn (2005)

442 PARAMETERS.P3A.Korn2005.K(3,1) = exp(PARAMETERS.P3A.Korn2005.xi_0 + ...

PARAMETERS.P3A.Korn2005.chi_0);

443 PARAMETERS.P3A.Korn2005.K(1,1) = PARAMETERS.P3A.Korn2005.K(3,1) * (1 - adj_factor_2);

444 PARAMETERS.P3A.Korn2005.K(2,1) = PARAMETERS.P3A.Korn2005.K(3,1) * (1 - adj_factor_1);

445 PARAMETERS.P3A.Korn2005.K(4,1) = PARAMETERS.P3A.Korn2005.K(3,1) * (1 + adj_factor_1);

446 PARAMETERS.P3A.Korn2005.K(5,1) = PARAMETERS.P3A.Korn2005.K(3,1) * (1 + adj_factor_2);

447
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448 % clear helper variables

449 clearvars adj_factor_1 adj_factor_2

450

451 fprintf('done.\n')

452

453 %% Define MC simulation parameters

454

455 fprintf('Define MC simulation parameters...')

456

457 % define length of time interval considered in years

458 t = 1/12;

459 % t = 1;

460

461 % define number of discretization steps

462 n = zeros(5,1);

463 n(1) = 21;

464 n(2) = 42;

465 n(3) = 84;

466 n(4) = 126;

467 n(5) = 210;

468 % n(5) = 252;

469

470 % determine length of time step

471 dt = t./n;

472

473 % define number of MC runs

474 k = zeros(5,1);

475 k(1) = 100000;

476 k(2) = 20000;

477 k(3) = 5000;

478 k(4) = 1000;

479 k(5) = 100;

480

481 % define interest rate

482 r = 0.05;

483

484 % specify time vector

485 time.N1 = (0:dt(1):n*dt(1))';

486 time.N2 = (0:dt(2):n*dt(2))';

487 time.N3 = (0:dt(3):n*dt(3))';

488 time.N4 = (0:dt(4):n*dt(4))';

489 time.N5 = (0:dt(5):n*dt(5))';

490

491 fprintf('done.\n')

492

493 %% Random number generation

494

495 fprintf('Generate random numbers...')

496

497 % loop across discretization steps

498 for c = 1:length(n)

499

500 % differentiate discretization labels

501 if c == 1
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502 d = 'N1';

503 elseif c == 2

504 d = 'N2';

505 elseif c == 3

506 d = 'N3';

507 elseif c == 4

508 d = 'N4';

509 elseif c == 5

510 d = 'N5';

511 end

512

513 % loop across MC runs

514 for a = 1:length(k)

515

516 % differentiate run labels

517 if a == 1

518 b = 'K1';

519 elseif a == 2

520 b = 'K2';

521 elseif a == 3

522 b = 'K3';

523 elseif a == 4

524 b = 'K4';

525 elseif a == 5

526 b = 'K5';

527 end

528

529 % define seed

530 seed = 1;

531

532 % define random number stream

533 stream = RandStream('mt19937ar','Seed',seed);

534 RandStream.setGlobalStream(stream);

535

536 % draw independent random numbers

537 z1 = randn(n(c),k(a));

538 z2 = randn(n(c),k(a));

539

540 % define correlated random number vectors

541 % first matrix remains unchanged

542 Z.(b).(d).Z1 = z1;

543

544 % adjust second matrix for correlation structure for two-factor models for

545 % each route

546 for i = 1:4

547

548 % differentiate routes

549 if i == 1

550 j = 'C4';

551 elseif i == 2

552 j = 'C7';

553 elseif i == 3

554 j = 'P2A';

555 elseif i == 4
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556 j = 'P3A';

557 end

558

559 % determine time-dependent rho_dt for each model

560 PARAMETERS.(j).SchwSm2000.rho_dt.(b) = PARAMETERS.(j).SchwSm2000.rho * ...

sqrt((1 - exp(-PARAMETERS.(j).SchwSm2000.kappa_chi * dt(c)))^2 * 2 / ...

((1 - exp(-2 * PARAMETERS.(j).SchwSm2000.kappa_chi * dt(c))) * ...

561 PARAMETERS.(j).SchwSm2000.kappa_chi * dt(c)));

562 PARAMETERS.(j).Korn2005.rho_dt.(b) = PARAMETERS.(j).Korn2005.rho * sqrt(4 ...

* PARAMETERS.(j).Korn2005.kappa_xi * PARAMETERS.(j).Korn2005.kappa_chi ...

* ...

563 (1 - exp(-(PARAMETERS.(j).Korn2005.kappa_xi + ...

PARAMETERS.(j).Korn2005.kappa_chi) * dt(c)))^2 / ...

((PARAMETERS.(j).Korn2005.kappa_xi + ...

PARAMETERS.(j).Korn2005.kappa_chi)^2 * ...

564 (1 - exp(-2 * PARAMETERS.(j).Korn2005.kappa_xi * dt(c))) * (1 - exp(-2 ...

* PARAMETERS.(j).Korn2005.kappa_chi * dt(c)))));

565

566 % determine second, correlated random number matrix for each model and

567 % route

568 Z.(b).(d).(j).SchwSm2000.Z2 = PARAMETERS.(j).SchwSm2000.rho_dt.(b) * z1 + ...

sqrt(1 - PARAMETERS.(j).SchwSm2000.rho_dt.(b)^2) * z2;

569 Z.(b).(d).(j).Korn2005.Z2 = PARAMETERS.(j).Korn2005.rho_dt.(b) * z1 + ...

sqrt(1 - PARAMETERS.(j).Korn2005.rho_dt.(b)^2) * z2;

570 end

571 clearvars i j

572

573 % clear helper variables

574 clearvars stream seed z1 z2

575 end

576 clearvars a b

577 end

578 clearvars c d

579

580 fprintf('done.\n')

581

582 %% Run MC simulation

583

584 fprintf('Run MC simulation...\n')

585

586 % loop across discretization steps

587 for c = 1:length(n)

588

589 % differentiate discretization labels

590 if c == 1

591 d = 'N1';

592 elseif c == 2

593 d = 'N2';

594 elseif c == 3

595 d = 'N3';

596 elseif c == 4

597 d = 'N4';

598 elseif c == 5

599 d = 'N5';
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600 end

601

602 fprintf('\tDiscretization: #%s...\n',d)

603

604 % loop across MC runs

605 for a = 1:length(k)

606

607 % differentiate run labels

608 if a == 1

609 b = 'K1';

610 elseif a == 2

611 b = 'K2';

612 elseif a == 3

613 b = 'K3';

614 elseif a == 4

615 b = 'K4';

616 elseif a == 5

617 b = 'K5';

618 end

619

620 fprintf('\t\tRun: #%s...\n',b)

621

622 % loop across routes

623 for i = 1:4

624

625 % differentiate routes

626 if i == 1

627 j = 'C4';

628 elseif i == 2

629 j = 'C7';

630 elseif i == 3

631 j = 'P2A';

632 elseif i == 4

633 j = 'P3A';

634 end

635

636 fprintf('\t\t\tRoute: #%s...\n',j)

637

638 % initialize dataset

639 RESULTS.(b).(d).(j).Black1976 = table;

640 RESULTS.(b).(d).(j).Schw1997 = table;

641 RESULTS.(b).(d).(j).SchwSm2000 = table;

642 RESULTS.(b).(d).(j).Korn2005 = table;

643

644 % fill S_0, K, r

645 RESULTS.(b).(d).(j).Black1976.S_0 = zeros(5,1);

646 RESULTS.(b).(d).(j).Black1976.K = zeros(5,1);

647 RESULTS.(b).(d).(j).Black1976.r = zeros(5,1);

648 RESULTS.(b).(d).(j).Schw1997.S_0 = zeros(5,1);

649 RESULTS.(b).(d).(j).Schw1997.K = zeros(5,1);

650 RESULTS.(b).(d).(j).Schw1997.r = zeros(5,1);

651 RESULTS.(b).(d).(j).SchwSm2000.S_0 = zeros(5,1);

652 RESULTS.(b).(d).(j).SchwSm2000.K = zeros(5,1);

653 RESULTS.(b).(d).(j).SchwSm2000.r = zeros(5,1);
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654 RESULTS.(b).(d).(j).Korn2005.S_0 = zeros(5,1);

655 RESULTS.(b).(d).(j).Korn2005.K = zeros(5,1);

656 RESULTS.(b).(d).(j).Korn2005.r = zeros(5,1);

657

658 for p = 1:5

659 RESULTS.(b).(d).(j).Black1976.S_0(p,1) = ...

exp(PARAMETERS.(j).Black1976.xi_0);

660 RESULTS.(b).(d).(j).Black1976.K(p,1) = PARAMETERS.(j).Black1976.K(p);

661 RESULTS.(b).(d).(j).Black1976.r(p,1) = r;

662 RESULTS.(b).(d).(j).Schw1997.S_0(p,1) = exp(PARAMETERS.(j).Schw1997.xi_0);

663 RESULTS.(b).(d).(j).Schw1997.K(p,1) = PARAMETERS.(j).Schw1997.K(p);

664 RESULTS.(b).(d).(j).Schw1997.r(p,1) = r;

665 RESULTS.(b).(d).(j).SchwSm2000.S_0(p,1) = ...

exp(PARAMETERS.(j).SchwSm2000.xi_0 + PARAMETERS.(j).SchwSm2000.chi_0);

666 RESULTS.(b).(d).(j).SchwSm2000.K(p,1) = PARAMETERS.(j).SchwSm2000.K(p);

667 RESULTS.(b).(d).(j).SchwSm2000.r(p,1) = r;

668 RESULTS.(b).(d).(j).Korn2005.S_0(p,1) = ...

exp(PARAMETERS.(j).Korn2005.xi_0 + PARAMETERS.(j).Korn2005.chi_0);

669 RESULTS.(b).(d).(j).Korn2005.K(p,1) = PARAMETERS.(j).Korn2005.K(p);

670 RESULTS.(b).(d).(j).Korn2005.r(p,1) = r;

671 end

672 clearvars p

673

674 % run MC simulation

675 [RESULTS.(b).(d).(j).Black1976.MC_GA, ...

676 RESULTS.(b).(d).(j).Black1976.MC_GA_SE, ...

677 RESULTS.(b).(d).(j).Black1976.CFS, ...

678 RESULTS.(b).(d).(j).Black1976.MC_AA, ...

679 RESULTS.(b).(d).(j).Black1976.MC_AA_SE, ...

680 RESULTS.(b).(d).(j).Black1976.MC_AA_CV, ...

681 RESULTS.(b).(d).(j).Black1976.MC_AA_CV_SE, ...

682 RESULTS.(b).(d).(j).Black1976.VR] ...

683 = Black1976_MC(PARAMETERS.(j).Black1976.xi_0, ...

684 PARAMETERS.(j).Black1976.a_star,PARAMETERS.(j).Black1976.sigma_xi, ...

685 dt(c),Z.(b).(d).Z1,PARAMETERS.(j).Black1976.K,r,t);

686 [RESULTS.(b).(d).(j).Schw1997.MC_GA, ...

687 RESULTS.(b).(d).(j).Schw1997.MC_GA_SE, ...

688 RESULTS.(b).(d).(j).Schw1997.CFS, ...

689 RESULTS.(b).(d).(j).Schw1997.MC_AA, ...

690 RESULTS.(b).(d).(j).Schw1997.MC_AA_SE, ...

691 RESULTS.(b).(d).(j).Schw1997.MC_AA_CV, ...

692 RESULTS.(b).(d).(j).Schw1997.MC_AA_CV_SE, ...

693 RESULTS.(b).(d).(j).Schw1997.VR] = ...

694 Schw1997_MC(PARAMETERS.(j).Schw1997.xi_0, ...

695 PARAMETERS.(j).Schw1997.kappa_xi,PARAMETERS.(j).Schw1997.a_star, ...

696 PARAMETERS.(j).Schw1997.sigma_xi,dt(c),Z.(b).(d).Z1, ...

697 PARAMETERS.(j).Schw1997.K,r,t);

698 [RESULTS.(b).(d).(j).SchwSm2000.MC_GA, ...

699 RESULTS.(b).(d).(j).SchwSm2000.MC_GA_SE, ...

700 RESULTS.(b).(d).(j).SchwSm2000.CFS, ...

701 RESULTS.(b).(d).(j).SchwSm2000.MC_AA, ...

702 RESULTS.(b).(d).(j).SchwSm2000.MC_AA_SE, ...

703 RESULTS.(b).(d).(j).SchwSm2000.MC_AA_CV, ...

704 RESULTS.(b).(d).(j).SchwSm2000.MC_AA_CV_SE, ...
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705 RESULTS.(b).(d).(j).SchwSm2000.VR] = ...

706 SchwSm2000_MC(PARAMETERS.(j).SchwSm2000.xi_0, ...

707 PARAMETERS.(j).SchwSm2000.a_star,PARAMETERS.(j).SchwSm2000.sigma_xi, ...

708 PARAMETERS.(j).SchwSm2000.chi_0,PARAMETERS.(j).SchwSm2000.kappa_chi, ...

709 PARAMETERS.(j).SchwSm2000.lambda_chi, ...

710 PARAMETERS.(j).SchwSm2000.sigma_chi,PARAMETERS.(j).SchwSm2000.rho, ...

711 dt(c),Z.(b).(d).Z1,Z.(b).(d).(j).SchwSm2000.Z2, ...

712 PARAMETERS.(j).SchwSm2000.K,r,t);

713 [RESULTS.(b).(d).(j).Korn2005.MC_GA, ...

714 RESULTS.(b).(d).(j).Korn2005.MC_GA_SE, ...

715 RESULTS.(b).(d).(j).Korn2005.CFS, ...

716 RESULTS.(b).(d).(j).Korn2005.MC_AA, ...

717 RESULTS.(b).(d).(j).Korn2005.MC_AA_SE, ...

718 RESULTS.(b).(d).(j).Korn2005.MC_AA_CV, ...

719 RESULTS.(b).(d).(j).Korn2005.MC_AA_CV_SE, ...

720 RESULTS.(b).(d).(j).Korn2005.VR] = ...

721 Korn2005_MC(PARAMETERS.(j).Korn2005.xi_0, ...

722 PARAMETERS.(j).Korn2005.kappa_xi, ...

723 PARAMETERS.(j).Korn2005.a_star,PARAMETERS.(j).Korn2005.sigma_xi, ...

724 PARAMETERS.(j).Korn2005.chi_0,PARAMETERS.(j).Korn2005.kappa_chi, ...

725 PARAMETERS.(j).Korn2005.lambda_chi,PARAMETERS.(j).Korn2005.sigma_chi, ...

726 PARAMETERS.(j).Korn2005.rho,dt(c),Z.(b).(d).Z1, ...

727 Z.(b).(d).(j).Korn2005.Z2,PARAMETERS.(j).Korn2005.K,r,t);

728

729 fprintf('\t\t\tRoute: #%s...done.\n',j)

730 end

731 clearvars i j

732

733 fprintf('\t\tRun: #%s...done.\n',b)

734 end

735 clearvars a b

736

737 fprintf('\tDiscretization: #%s...done.\n',d)

738 end

739 clearvars c d

740

741 fprintf('Run MC simulation...done.\n')

742

743 %% Determine pricing error

744

745 fprintf('Determine pricing error...')

746

747 % loop across discretization steps

748 for c = 1:length(n)

749

750 % differentiate discretization labels

751 if c == 1

752 d = 'N1';

753 elseif c == 2

754 d = 'N2';

755 elseif c == 3

756 d = 'N3';

757 elseif c == 4

758 d = 'N4';
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759 elseif c == 5

760 d = 'N5';

761 end

762

763 % loop across MC runs

764 for a = 1:length(k)

765

766 % differentiate run labels

767 if a == 1

768 b = 'K1';

769 elseif a == 2

770 b = 'K2';

771 elseif a == 3

772 b = 'K3';

773 elseif a == 4

774 b = 'K4';

775 elseif a == 5

776 b = 'K5';

777 end

778

779 % loop across routes

780 for i = 1:4

781

782 % differentiate routes

783 if i == 1

784 j = 'C4';

785 elseif i == 2

786 j = 'C7';

787 elseif i == 3

788 j = 'P2A';

789 elseif i == 4

790 j = 'P3A';

791 end

792

793 % determine bias

794 RESULTS.(b).(d).(j).Black1976.BIAS = RESULTS.(b).(d).(j).Black1976.MC_GA - ...

RESULTS.(b).(d).(j).Black1976.CFS;

795 RESULTS.(b).(d).(j).Schw1997.BIAS = RESULTS.(b).(d).(j).Schw1997.MC_GA - ...

RESULTS.(b).(d).(j).Schw1997.CFS;

796 RESULTS.(b).(d).(j).SchwSm2000.BIAS = RESULTS.(b).(d).(j).SchwSm2000.MC_GA ...

- RESULTS.(b).(d).(j).SchwSm2000.CFS;

797 RESULTS.(b).(d).(j).Korn2005.BIAS = RESULTS.(b).(d).(j).Korn2005.MC_GA - ...

RESULTS.(b).(d).(j).Korn2005.CFS;

798

799 % determine absolute error

800 RESULTS.(b).(d).(j).Black1976.ERROR_ABS = ...

abs(RESULTS.(b).(d).(j).Black1976.MC_GA - ...

RESULTS.(b).(d).(j).Black1976.CFS);

801 RESULTS.(b).(d).(j).Schw1997.ERROR_ABS = ...

abs(RESULTS.(b).(d).(j).Schw1997.MC_GA - ...

RESULTS.(b).(d).(j).Schw1997.CFS);

802 RESULTS.(b).(d).(j).SchwSm2000.ERROR_ABS = ...

abs(RESULTS.(b).(d).(j).SchwSm2000.MC_GA - ...

RESULTS.(b).(d).(j).SchwSm2000.CFS);
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803 RESULTS.(b).(d).(j).Korn2005.ERROR_ABS = ...

abs(RESULTS.(b).(d).(j).Korn2005.MC_GA - ...

RESULTS.(b).(d).(j).Korn2005.CFS);

804

805 % determine relative error

806 RESULTS.(b).(d).(j).Black1976.ERROR_REL = ...

RESULTS.(b).(d).(j).Black1976.BIAS ./ ...

RESULTS.(b).(d).(j).Black1976.CFS * 100;

807 RESULTS.(b).(d).(j).Schw1997.ERROR_REL = RESULTS.(b).(d).(j).Schw1997.BIAS ...

./ RESULTS.(b).(d).(j).Schw1997.CFS * 100;

808 RESULTS.(b).(d).(j).SchwSm2000.ERROR_REL = ...

RESULTS.(b).(d).(j).SchwSm2000.BIAS ./ ...

RESULTS.(b).(d).(j).SchwSm2000.CFS * 100;

809 RESULTS.(b).(d).(j).Korn2005.ERROR_REL = RESULTS.(b).(d).(j).Korn2005.BIAS ...

./ RESULTS.(b).(d).(j).Korn2005.CFS * 100;

810

811 % rearrange order of table columns

812 RESULTS.(b).(d).(j).Black1976 = RESULTS.(b).(d).(j).Black1976(:,[1:6 12:14 ...

7:11]);

813 RESULTS.(b).(d).(j).Schw1997 = RESULTS.(b).(d).(j).Schw1997(:,[1:6 12:14 ...

7:11]);

814 RESULTS.(b).(d).(j).SchwSm2000 = RESULTS.(b).(d).(j).SchwSm2000(:,[1:6 ...

12:14 7:11]);

815 RESULTS.(b).(d).(j).Korn2005 = RESULTS.(b).(d).(j).Korn2005(:,[1:6 12:14 ...

7:11]);

816 end

817 clearvars i j

818 end

819 clearvars a b

820 end

821 clearvars c d

822

823 fprintf('done.\n')

824

825 %% Determine run-increase factor

826

827 fprintf('Determine run-increase factor...')

828

829 % loop across discretization steps

830 for c = 1:length(n)

831

832 % differentiate discretization labels

833 if c == 1

834 d = 'N1';

835 elseif c == 2

836 d = 'N2';

837 elseif c == 3

838 d = 'N3';

839 elseif c == 4

840 d = 'N4';

841 elseif c == 5

842 d = 'N5';

843 end

844
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845 % loop across MC runs

846 for a = 1:length(k)

847

848 % differentiate run labels

849 if a == 1

850 b = 'K1';

851 elseif a == 2

852 b = 'K2';

853 elseif a == 3

854 b = 'K3';

855 elseif a == 4

856 b = 'K4';

857 elseif a == 5

858 b = 'K5';

859 end

860

861 % initialize variable

862 RUN_IN.(b).(d) = zeros(80,1);

863

864 % loop across routes

865 for i = 1:4

866

867 % differentiate routes

868 if i == 1

869 j = 'C4';

870 elseif i == 2

871 j = 'C7';

872 elseif i == 3

873 j = 'P2A';

874 elseif i == 4

875 j = 'P3A';

876 end

877

878 % determine individual run-increase factor

879 RESULTS.(b).(d).(j).Black1976.RUN_IN = ...

(RESULTS.(b).(d).(j).Black1976.MC_AA_SE ./ ...

RESULTS.(b).(d).(j).Black1976.MC_AA_CV_SE).^2;

880 RESULTS.(b).(d).(j).Schw1997.RUN_IN = ...

(RESULTS.(b).(d).(j).Schw1997.MC_AA_SE ./ ...

RESULTS.(b).(d).(j).Schw1997.MC_AA_CV_SE).^2;

881 RESULTS.(b).(d).(j).SchwSm2000.RUN_IN = ...

(RESULTS.(b).(d).(j).SchwSm2000.MC_AA_SE ./ ...

RESULTS.(b).(d).(j).SchwSm2000.MC_AA_CV_SE).^2;

882 RESULTS.(b).(d).(j).Korn2005.RUN_IN = ...

(RESULTS.(b).(d).(j).Korn2005.MC_AA_SE ./ ...

RESULTS.(b).(d).(j).Korn2005.MC_AA_CV_SE).^2;

883

884 % get all individual run-increase factors

885 RUN_IN.(b).(d)(i*20-(4*5-1):i*20-(3*5),1) = ...

RESULTS.(b).(d).(j).Black1976.RUN_IN;

886 RUN_IN.(b).(d)(i*20-(3*5-1):i*20-(2*5),1) = ...

RESULTS.(b).(d).(j).Schw1997.RUN_IN;

887 RUN_IN.(b).(d)(i*20-(2*5-1):i*20-(1*5),1) = ...

RESULTS.(b).(d).(j).SchwSm2000.RUN_IN;
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888 RUN_IN.(b).(d)(i*20-(1*5-1):i*20,1) = RESULTS.(b).(d).(j).Korn2005.RUN_IN;

889 end

890 clearvars i j

891

892 % determine min, max, and mean run-increase factor

893 RUN_IN_MIN.(b).(d) = min(RUN_IN.(b).(d));

894 RUN_IN_MAX.(b).(d) = max(RUN_IN.(b).(d));

895 RUN_IN_MEAN.(b).(d) = mean(RUN_IN.(b).(d));

896 end

897 clearvars a b

898 end

899 clearvars c d

900

901 fprintf('done.\n')

902

903 %% Export results to Excel file

904

905 fprintf('Export results to Excel file...')

906

907 % loop across discretization steps

908 for c = 1:length(n)

909

910 % differentiate discretization labels

911 if c == 1

912 d = 'N1';

913 elseif c == 2

914 d = 'N2';

915 elseif c == 3

916 d = 'N3';

917 elseif c == 4

918 d = 'N4';

919 elseif c == 5

920 d = 'N5';

921 end

922

923 % loop across MC runs

924 for a = 1:length(k)

925

926 % differentiate run labels

927 if a == 1

928 b = 'K1';

929 elseif a == 2

930 b = 'K2';

931 elseif a == 3

932 b = 'K3';

933 elseif a == 4

934 b = 'K4';

935 elseif a == 5

936 b = 'K5';

937 end

938

939 % loop across routes

940 for i = 1:4

941
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942 % differentiate routes

943 if i == 1

944 j = 'C4';

945 elseif i == 2

946 j = 'C7';

947 elseif i == 3

948 j = 'P2A';

949 elseif i == 4

950 j = 'P3A';

951 end

952

953 % define sheet names

954 sheet.Black1976 = strcat(d,' - ',b,' - ',j,' - ','Black1976');

955 sheet.Schw1997 = strcat(d,' - ',b,' - ',j,' - ','Schw1997');

956 sheet.SchwSm2000 = strcat(d,' - ',b,' - ',j,' - ','SchwSm2000');

957 sheet.Korn2005 = strcat(d,' - ',b,' - ',j,' - ','Korn2005');

958

959 % turn off new worksheet warning

960 warning('OFF','MATLAB:xlswrite:AddSheet');

961

962 % export to specified sheet in Excel file

963 writetable(RESULTS.(b).(d).(j).Black1976,exportfile_path,'Sheet', ...

964 sheet.Black1976,'Range','A1');

965 writetable(RESULTS.(b).(d).(j).Schw1997,exportfile_path,'Sheet', ...

966 sheet.Schw1997,'Range','A1');

967 writetable(RESULTS.(b).(d).(j).SchwSm2000,exportfile_path,'Sheet', ...

968 sheet.SchwSm2000,'Range','A1');

969 writetable(RESULTS.(b).(d).(j).Korn2005,exportfile_path,'Sheet', ...

970 sheet.Korn2005,'Range','A1');

971 end

972 clearvars i j sheet

973 end

974 clearvars a b

975 end

976 clearvars c d

977

978 fprintf('done.\n')

979

980 %% Plots

981

982 SE_FACTOR = norminv(0.95,0,1);

983

984 % plot 1: discretization error

985 for i = 1:4

986

987 % differentiate routes

988 if i == 1

989 j = 'C4';

990 elseif i == 2

991 j = 'C7';

992 elseif i == 3

993 j = 'P2A';

994 elseif i == 4

995 j = 'P3A';
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996 end

997

998 % create figure

999 figure

1000

1001 % Black (1976)

1002 spl1_1 = subplot(2,2,1);

1003 splot1_1 = errorbar(log([n(1),n(2),n(3),n(4),n(5)]), ...

1004 [RESULTS.K1.N1.(j).Black1976.BIAS(3), ...

1005 RESULTS.K1.N2.(j).Black1976.BIAS(3),RESULTS.K1.N3.(j).Black1976.BIAS(3), ...

1006 RESULTS.K1.N4.(j).Black1976.BIAS(3),RESULTS.K1.N5.(j).Black1976.BIAS(3)], ...

1007 SE_FACTOR .* [RESULTS.K1.N1.(j).Black1976.MC_GA_SE(3), ...

1008 RESULTS.K1.N2.(j).Black1976.MC_GA_SE(3), ...

1009 RESULTS.K1.N3.(j).Black1976.MC_GA_SE(3), ...

1010 RESULTS.K1.N4.(j).Black1976.MC_GA_SE(3), ...

1011 RESULTS.K1.N5.(j).Black1976.MC_GA_SE(3)]);

1012 xlim([2,6]);

1013 if i <= 2

1014 ylim([-0.025,0.02]);

1015 elseif i > 2

1016 ylim([-100,75]);

1017 end

1018 set(splot1_1,'LineStyle','none');

1019 set(splot1_1,'Marker','o');

1020 title('Black (1976)','FontSize',11,'FontWeight','normal')

1021 xlabel('ln(n)','FontSize',11);

1022 ylabel('Bias with 90% CI','FontSize',11);

1023 hline1 = refline([0 0]);

1024 set(hline1,'LineStyle',':');

1025 set(hline1,'LineWidth',0.5);

1026 set(hline1,'Color','k');

1027

1028 % Schwartz (1997)

1029 spl1_2 = subplot(2,2,2);

1030 splot1_2 = errorbar(log([n(1),n(2),n(3),n(4),n(5)]), ...

1031 [RESULTS.K1.N1.(j).Schw1997.BIAS(3), ...

1032 RESULTS.K1.N2.(j).Schw1997.BIAS(3),RESULTS.K1.N3.(j).Schw1997.BIAS(3), ...

1033 RESULTS.K1.N4.(j).Schw1997.BIAS(3),RESULTS.K1.N5.(j).Schw1997.BIAS(3)], ...

1034 SE_FACTOR .* [RESULTS.K1.N1.(j).Schw1997.MC_GA_SE(3), ...

1035 RESULTS.K1.N2.(j).Schw1997.MC_GA_SE(3), ...

1036 RESULTS.K1.N3.(j).Schw1997.MC_GA_SE(3), ...

1037 RESULTS.K1.N4.(j).Schw1997.MC_GA_SE(3), ...

1038 RESULTS.K1.N5.(j).Schw1997.MC_GA_SE(3)]);

1039 xlim([2,6]);

1040 if i <= 2

1041 ylim([-0.025,0.02]);

1042 elseif i > 2

1043 ylim([-100,75]);

1044 end

1045 set(splot1_2,'LineStyle','none');

1046 set(splot1_2,'Marker','o');

1047 title('Schwartz (1997)','FontSize',11,'FontWeight','normal')

1048 xlabel('ln(n)','FontSize',11);

1049 ylabel('Bias with 90% CI','FontSize',11);
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1050 hline2 = refline([0 0]);

1051 set(hline2,'LineStyle',':');

1052 set(hline2,'LineWidth',0.5);

1053 set(hline2,'Color','k');

1054

1055 % Schwartz and Smith (2000)

1056 spl1_3 = subplot(2,2,3);

1057 splot1_3 = errorbar(log([n(1),n(2),n(3),n(4),n(5)]), ...

1058 [RESULTS.K1.N1.(j).SchwSm2000.BIAS(3), ...

1059 RESULTS.K1.N2.(j).SchwSm2000.BIAS(3),RESULTS.K1.N3.(j).SchwSm2000.BIAS(3), ...

1060 RESULTS.K1.N4.(j).SchwSm2000.BIAS(3),RESULTS.K1.N5.(j).SchwSm2000.BIAS(3)], ...

1061 SE_FACTOR .* [RESULTS.K1.N1.(j).SchwSm2000.MC_GA_SE(3), ...

1062 RESULTS.K1.N2.(j).SchwSm2000.MC_GA_SE(3), ...

1063 RESULTS.K1.N3.(j).SchwSm2000.MC_GA_SE(3), ...

1064 RESULTS.K1.N4.(j).SchwSm2000.MC_GA_SE(3), ...

1065 RESULTS.K1.N5.(j).SchwSm2000.MC_GA_SE(3)]);

1066 xlim([2,6]);

1067 if i <= 2

1068 ylim([-0.025,0.02]);

1069 elseif i > 2

1070 ylim([-100,75]);

1071 end

1072 set(splot1_3,'LineStyle','none');

1073 set(splot1_3,'Marker','o');

1074 title('Schwartz and Smith (2000)','FontSize',11,'FontWeight','normal')

1075 xlabel('ln(n)','FontSize',11);

1076 ylabel('Bias with 90% CI','FontSize',11);

1077 hline3 = refline([0 0]);

1078 set(hline3,'LineStyle',':');

1079 set(hline3,'LineWidth',0.5);

1080 set(hline3,'Color','k');

1081

1082 % Korn (2005)

1083 spl1_4 = subplot(2,2,4);

1084 splot1_4 = errorbar(log([n(1),n(2),n(3),n(4),n(5)]), ...

1085 [RESULTS.K1.N1.(j).Korn2005.BIAS(3), ...

1086 RESULTS.K1.N2.(j).Korn2005.BIAS(3),RESULTS.K1.N3.(j).Korn2005.BIAS(3), ...

1087 RESULTS.K1.N4.(j).Korn2005.BIAS(3),RESULTS.K1.N5.(j).Korn2005.BIAS(3)], ...

1088 SE_FACTOR .* [RESULTS.K1.N1.(j).Korn2005.MC_GA_SE(3), ...

1089 RESULTS.K1.N2.(j).Korn2005.MC_GA_SE(3), ...

1090 RESULTS.K1.N3.(j).Korn2005.MC_GA_SE(3), ...

1091 RESULTS.K1.N4.(j).Korn2005.MC_GA_SE(3), ...

1092 RESULTS.K1.N5.(j).Korn2005.MC_GA_SE(3)]);

1093 xlim([2,6]);

1094 if i <= 2

1095 ylim([-0.025,0.02]);

1096 elseif i > 2

1097 ylim([-100,75]);

1098 end

1099 set(splot1_4,'LineStyle','none');

1100 set(splot1_4,'Marker','o');

1101 title('Korn (2005)','FontSize',11,'FontWeight','normal');

1102 xlabel('ln(n)','FontSize',11);

1103 ylabel('Bias with 90% CI','FontSize',11);
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1104 hline4 = refline([0 0]);

1105 set(hline4,'LineStyle',':');

1106 set(hline4,'LineWidth',0.5);

1107 set(hline4,'Color','k');

1108

1109 % clear helper variables

1110 clearvars spl1_1 splot1_1 splot1_l1 spl1_2 splot1_2 splot1_l2 spl1_3 splot1_3 ...

splot1_l3 spl1_4 splot1_4 splot1_l4 hline1 hline2 hline3 hline4

1111 end

1112 clearvars i j

1113

1114 % plot 2: variance reduction

1115 for i = 1:4

1116

1117 % differentiate routes

1118 if i == 1

1119 j = 'C4';

1120 elseif i == 2

1121 j = 'C7';

1122 elseif i == 3

1123 j = 'P2A';

1124 elseif i == 4

1125 j = 'P3A';

1126 end

1127

1128 % create figure

1129 figure

1130

1131 % Black (1976)

1132 spl2_1 = subplot(2,2,1);

1133 splot2_1a = plot(log([k(1),k(2),k(3),k(4),k(5)]), ...

1134 log([RESULTS.K1.N1.(j).Black1976.MC_AA_SE(3), ...

1135 RESULTS.K2.N1.(j).Black1976.MC_AA_SE(3), ...

1136 RESULTS.K3.N1.(j).Black1976.MC_AA_SE(3), ...

1137 RESULTS.K4.N1.(j).Black1976.MC_AA_SE(3), ...

1138 RESULTS.K5.N1.(j).Black1976.MC_AA_SE(3)]),'o:');

1139 xlim([4,12]);

1140 if i <= 2

1141 ylim([-10,0]);

1142 elseif i > 2

1143 ylim([-2,8]);

1144 end

1145 title('Black (1976)','FontSize',11,'FontWeight','normal');

1146 xlabel('ln(k)','FontSize',11);

1147 ylabel('ln(SE)','FontSize',11);

1148 hold on

1149 splot2_1b = plot(log([k(1),k(2),k(3),k(4),k(5)]), ...

1150 log([RESULTS.K1.N1.(j).Black1976.MC_AA_CV_SE(3), ...

1151 RESULTS.K2.N1.(j).Black1976.MC_AA_CV_SE(3), ...

1152 RESULTS.K3.N1.(j).Black1976.MC_AA_CV_SE(3), ...

1153 RESULTS.K4.N1.(j).Black1976.MC_AA_CV_SE(3), ...

1154 RESULTS.K5.N1.(j).Black1976.MC_AA_CV_SE(3)]),'o:');

1155 legend('MC','MC CV','Location','northeast');

1156 hold off
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1157

1158 % Schwartz (1997)

1159 spl2_2 = subplot(2,2,2);

1160 splot2_2a = plot(log([k(1),k(2),k(3),k(4),k(5)]), ...

1161 log([RESULTS.K1.N1.(j).Schw1997.MC_AA_SE(3), ...

1162 RESULTS.K2.N1.(j).Schw1997.MC_AA_SE(3), ...

1163 RESULTS.K3.N1.(j).Schw1997.MC_AA_SE(3), ...

1164 RESULTS.K4.N1.(j).Schw1997.MC_AA_SE(3), ...

1165 RESULTS.K5.N1.(j).Schw1997.MC_AA_SE(3)]),'o:');

1166 xlim([4,12]);

1167 if i <= 2

1168 ylim([-10,0]);

1169 elseif i > 2

1170 ylim([-2,8]);

1171 end

1172 title('Schwartz (1997)','FontSize',11,'FontWeight','normal');

1173 xlabel('ln(k)','FontSize',11);

1174 ylabel('ln(SE)','FontSize',11);

1175 hold on

1176 splot2_2b = plot(log([k(1),k(2),k(3),k(4),k(5)]), ...

1177 log([RESULTS.K1.N1.(j).Schw1997.MC_AA_CV_SE(3), ...

1178 RESULTS.K2.N1.(j).Schw1997.MC_AA_CV_SE(3), ...

1179 RESULTS.K3.N1.(j).Schw1997.MC_AA_CV_SE(3), ...

1180 RESULTS.K4.N1.(j).Schw1997.MC_AA_CV_SE(3), ...

1181 RESULTS.K5.N1.(j).Schw1997.MC_AA_CV_SE(3)]),'o:');

1182 legend('MC','MC CV','Location','northeast');

1183 hold off

1184

1185 % Schwartz and Smith (2000)

1186 spl2_3 = subplot(2,2,3);

1187 splot2_3a = plot(log([k(1),k(2),k(3),k(4),k(5)]), ...

1188 log([RESULTS.K1.N1.(j).SchwSm2000.MC_AA_SE(3), ...

1189 RESULTS.K2.N1.(j).SchwSm2000.MC_AA_SE(3), ...

1190 RESULTS.K3.N1.(j).SchwSm2000.MC_AA_SE(3), ...

1191 RESULTS.K4.N1.(j).SchwSm2000.MC_AA_SE(3), ...

1192 RESULTS.K5.N1.(j).SchwSm2000.MC_AA_SE(3)]),'o:');

1193 xlim([4,12]);

1194 if i <= 2

1195 ylim([-10,0]);

1196 elseif i > 2

1197 ylim([-2,8]);

1198 end

1199 set(gca,'XTick',(2:2:12));

1200 title('Schwartz and Smith (2000)','FontSize',11,'FontWeight','normal');

1201 xlabel('ln(k)','FontSize',11);

1202 ylabel('ln(SE)','FontSize',11);

1203 hold on

1204 splot2_3b = plot(log([k(1),k(2),k(3),k(4),k(5)]), ...

1205 log([RESULTS.K1.N1.(j).SchwSm2000.MC_AA_CV_SE(3), ...

1206 RESULTS.K2.N1.(j).SchwSm2000.MC_AA_CV_SE(3), ...

1207 RESULTS.K3.N1.(j).SchwSm2000.MC_AA_CV_SE(3), ...

1208 RESULTS.K4.N1.(j).SchwSm2000.MC_AA_CV_SE(3), ...

1209 RESULTS.K5.N1.(j).SchwSm2000.MC_AA_CV_SE(3)]),'o:');

1210 legend('MC','MC CV','Location','northeast');
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1211 hold off

1212

1213 % Korn (2005)

1214 spl2_4 = subplot(2,2,4);

1215 splot2_4a = plot(log([k(1),k(2),k(3),k(4),k(5)]), ...

1216 log([RESULTS.K1.N1.(j).Korn2005.MC_AA_SE(3), ...

1217 RESULTS.K2.N1.(j).Korn2005.MC_AA_SE(3), ...

1218 RESULTS.K3.N1.(j).Korn2005.MC_AA_SE(3), ...

1219 RESULTS.K4.N1.(j).Korn2005.MC_AA_SE(3), ...

1220 RESULTS.K5.N1.(j).Korn2005.MC_AA_SE(3)]),'o:');

1221 xlim([4,12]);

1222 if i <= 2

1223 ylim([-10,0]);

1224 elseif i > 2

1225 ylim([-2,8]);

1226 end

1227 set(gca,'XTick',(2:2:12));

1228 title('Korn (2005)','FontSize',11,'FontWeight','normal');

1229 xlabel('ln(k)','FontSize',11);

1230 ylabel('ln(SE)','FontSize',11);

1231

1232 hold on

1233 splot2_4b = plot(log([k(1),k(2),k(3),k(4),k(5)]), ...

1234 log([RESULTS.K1.N1.(j).Korn2005.MC_AA_CV_SE(3), ...

1235 RESULTS.K2.N1.(j).Korn2005.MC_AA_CV_SE(3), ...

1236 RESULTS.K3.N1.(j).Korn2005.MC_AA_CV_SE(3), ...

1237 RESULTS.K4.N1.(j).Korn2005.MC_AA_CV_SE(3), ...

1238 RESULTS.K5.N1.(j).Korn2005.MC_AA_CV_SE(3)]),'o:');

1239 legend('MC','MC CV','Location','northeast');

1240 hold off

1241

1242 % clear helper variables

1243 clearvars spl2_1 splot2_1a splot2_1b splot2_l1a splot2_l1b spl2_2 splot2_2a ...

splot2_2b splot2_l2a splot2_l2b spl2_3 splot2_3a splot2_3b splot2_l3a ...

splot2_l3b spl2_4 splot2_4a splot2_4b splot2_l4a splot2_l4b

1244 end

1245 clearvars i j

1246

1247 % clear path variables

1248 clearvars path exportfile_path

1249

1250 %% End stopwatch

1251 tend = toc(tstart);

1252 tendrem = tend - floor(tend/3600)*3600;

1253 fprintf('Elapsed time is %d hours, %d minutes, and %f ...

seconds.\n',floor(tend/3600),floor(tendrem/60),rem(tendrem,60));

1254 clearvars tstart tend tendrem
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C.2 MC functions

C.2.1 Black (1976) one-factor model

1 function [MC_GA,MC_GA_SE,CFS,MC_AA,MC_AA_SE,MC_AA_CV,MC_AA_CV_SE,VR] = ...

2 Black1976_MC(xi_0,a_star,sigma_xi,dt,Z,K,r,t)

3

4 % Description of function Black1976_MC

5 % The function Black1976_MC runs a MC simulation for the Black (1976)

6 % one-factor model and determines MC prices for a geometric Asian option,

7 % an arithmetic Asian option, the closed-form solution for a geometric

8 % Asian option as well as the MC control variate price of an arithmetic

9 % Asian option. Furthermore, MC standard deviations are determined.

10

11 fprintf('\t\tBlack (1976)...')

12

13 % determine size of input matrix Z

14 [n,k] = size(Z); %#ok<ASGLU>

15

16 % determine size of input vector K

17 l = length(K);

18

19 % simulate price paths

20 [time,S] = Black1976_simulate(xi_0,a_star,sigma_xi,dt,Z); %#ok<ASGLU>

21

22 % initialize variables

23 MC_geo_payoff = zeros(l,k);

24 MC_GA = zeros(l,1);

25 MC_GA_SE = zeros(l,1);

26 CFS = zeros(l,1);

27 MC_arm_payoff = zeros (l,k);

28 MC_AA = zeros(l,1);

29 MC_AA_SE = zeros(l,1);

30 X = zeros(l,k);

31 Y = zeros(l,k);

32 MC_AA_CV = zeros(l,1);

33 MC_AA_CV_SE = zeros(l,1);

34 VR = zeros(l,1);

35

36 %% Geometric Asian option

37 % geometric Asian option: determine geometric mean at time t

38 G_T = geomean(S,1);

39

40 % loop over strike prices

41 for i = 1:l

42

43 % geometric Asian option: determine payoff at time t

44 MC_geo_payoff(i,:) = max(G_T - K(i),0);

45

46 % geometric Asian option: determine MC price

47 MC_GA(i) = exp(-r * t) * mean(MC_geo_payoff(i,:));

48
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49 % geometric Asian option: determine MC standard error

50 MC_GA_SE(i) = exp(-r * t) * std(MC_geo_payoff(i,:)) / sqrt(k);

51

52 % geometric Asian option: determine closed-form solution

53 CFS(i) = Black1976_GAoption(K(i),xi_0,a_star,sigma_xi,r,t);

54 end

55 clearvars i

56

57 %% Arithmetic Asian option

58 % arithmetic Asian option: determine arithmetic mean at time t

59 A_T = mean(S,1);

60

61 % loop over strike prices

62 for i = 1:l

63

64 % arithmetic Asian option: determine payoff at time t

65 MC_arm_payoff(i,:) = max(A_T - K(i),0);

66

67 % arithmetic Asian option: determine MC price

68 MC_AA(i) = exp(-r * t) * mean(MC_arm_payoff(i,:));

69

70 % arithmetic Asian option: determine MC standard error

71 MC_AA_SE(i) = exp(-r * t) * std(MC_arm_payoff(i,:)) / sqrt(k);

72 end

73 clearvars i

74

75 %% Arithmetic Asian option: control variate

76 % loop over strike prices

77 for i = 1:l

78

79 % arithmetic Asian option (CV): determine individual prices for each path

80 X(i,:) = exp(-r * t) .* max(G_T(1,:) - K(i),0);

81 Y(i,:) = exp(-r * t) .* max(A_T(1,:) - K(i),0);

82

83 % arithmetic Asian option (CV): determine covariance between X and Y

84 covCV = cov(Y,X);

85 betaCV = covCV(1,2) ./ covCV(2,2);

86

87 % arithmetic Asian option (CV): dertermine MC price

88 MC_AA_CV(i) = mean(Y(i,:)) - betaCV .* (mean(X(i,:)) - CFS(i));

89

90 % arithmetic Asian option (CV): determine MC standard error

91 MC_AA_CV_SE(i) = std(Y(i,:) - betaCV * X(i,:)) ./ sqrt(k);

92

93 % arithmetic Asian option (CV): determine variance reduction

94 % VR(i) = (covCV(1,2) ./ (sqrt(covCV(1,1)) .* sqrt(covCV(2,2)))).^2 * 100;

95 VR(i) = (MC_AA_SE(i)^2 - MC_AA_CV_SE(i)^2) / MC_AA_SE(i)^2 * 100;

96 end

97

98 fprintf('done.\n')

99

100 end
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C.2.2 Schwartz (1997) one-factor model

1 function [MC_GA,MC_GA_SE,CFS,MC_AA,MC_AA_SE,MC_AA_CV,MC_AA_CV_SE,VR] = ...

2 Schw1997_MC(xi_0,kappa_xi,a_star,sigma_xi,dt,Z,K,r,t)

3

4 % Description of function Schw1997_MC

5 % The function Schw1997_MC runs a MC simulation for the Schwartz (1997)

6 % one-factor model and determines MC prices for a geometric Asian option,

7 % an arithmetic Asian option, the closed-form solution for a geometric

8 % Asian option as well as the MC control variate price of an arithmetic

9 % Asian option. Furthermore, MC standard deviations are determined.

10

11 fprintf('\t\tSchwartz (1997)...')

12

13 % determine size of input matrix Z

14 [n,k] = size(Z); %#ok<ASGLU>

15

16 % determine size of input vector K

17 l = length(K);

18

19 % simulate price paths

20 [time,S] = Schw1997_simulate(xi_0,kappa_xi,a_star,sigma_xi,dt,Z); %#ok<ASGLU>

21

22 % initialize variables

23 MC_geo_payoff = zeros(l,k);

24 MC_GA = zeros(l,1);

25 MC_GA_SE = zeros(l,1);

26 CFS = zeros(l,1);

27 MC_arm_payoff = zeros (l,k);

28 MC_AA = zeros(l,1);

29 MC_AA_SE = zeros(l,1);

30 X = zeros(l,k);

31 Y = zeros(l,k);

32 MC_AA_CV = zeros(l,1);

33 MC_AA_CV_SE = zeros(l,1);

34 VR = zeros(l,1);

35

36 %% Geometric Asian option

37 % geometric Asian option: determine geometric mean at time t

38 G_T = geomean(S,1);

39

40 % loop over strike prices

41 for i = 1:l

42

43 % geometric Asian option: determine payoff at time t

44 MC_geo_payoff(i,:) = max(G_T - K(i),0);

45

46 % geometric Asian option: determine MC price

47 MC_GA(i) = exp(-r * t) * mean(MC_geo_payoff(i,:));

48

49 % geometric Asian option: determine MC standard error

50 MC_GA_SE(i) = exp(-r * t) * std(MC_geo_payoff(i,:)) / sqrt(k);

51
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52 % geometric Asian option: determine closed-form solution

53 CFS(i) = Schw1997_GAoption(K(i),xi_0,kappa_xi,a_star,sigma_xi,r,t);

54 end

55 clearvars i

56

57 %% Arithmetic Asian option

58 % arithmetic Asian option: determine arithmetic mean at time t

59 A_T = mean(S,1);

60

61 % loop over strike prices

62 for i = 1:l

63

64 % arithmetic Asian option: determine payoff at time t

65 MC_arm_payoff(i,:) = max(A_T - K(i),0);

66

67 % arithmetic Asian option: determine MC price

68 MC_AA(i) = exp(-r * t) * mean(MC_arm_payoff(i,:));

69

70 % arithmetic Asian option: determine MC standard error

71 MC_AA_SE(i) = exp(-r * t) * std(MC_arm_payoff(i,:)) / sqrt(k);

72 end

73 clearvars i

74

75 %% Arithmetic Asian option: control variate

76 % loop over strike prices

77 for i = 1:l

78

79 % arithmetic Asian option (CV): determine individual prices for each path

80 X(i,:) = exp(-r * t) .* max(G_T(1,:) - K(i),0);

81 Y(i,:) = exp(-r * t) .* max(A_T(1,:) - K(i),0);

82

83 % arithmetic Asian option (CV): determine covariance between X and Y

84 covCV = cov(Y,X);

85 betaCV = covCV(1,2) ./ covCV(2,2);

86

87 % arithmetic Asian option (CV): dertermine MC price

88 MC_AA_CV(i) = mean(Y(i,:)) - betaCV .* (mean(X(i,:)) - CFS(i));

89

90 % arithmetic Asian option (CV): determine MC standard error

91 MC_AA_CV_SE(i) = std(Y(i,:) - betaCV * X(i,:)) ./ sqrt(k);

92

93 % arithmetic Asian option (CV): determine variance reduction

94 % VR(i) = (covCV(1,2) ./ (sqrt(covCV(1,1)) .* sqrt(covCV(2,2)))).^2 * 100;

95 VR(i) = (MC_AA_SE(i)^2 - MC_AA_CV_SE(i)^2) / MC_AA_SE(i)^2 * 100;

96 end

97

98 fprintf('done.\n')

99

100 end
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C.2.3 Schwartz and Smith (2000) two-factor model

1 function [MC_GA,MC_GA_SE,CFS,MC_AA,MC_AA_SE,MC_AA_CV,MC_AA_CV_SE,VR] = ...

2 SchwSm2000_MC(xi_0,a_star,sigma_xi,chi_0,kappa_chi,lambda_chi,sigma_chi, ...

3 rho,dt,Z1,Z2,K,r,t)

4

5 % Description of function SchwSm2000_MC

6 % The function SchwSm2000_MC runs a MC simulation for the Schwartz and

7 % Smith (2000) two-factor model and determines MC prices for a geometric

8 % Asian option, an arithmetic Asian option, the closed-form solution for

9 % a geometric Asian option as well as the MC control variate price of an

10 % arithmetic Asian option. Furthermore, MC standard deviations are

11 % determined.

12

13 fprintf('\t\tSchwartz and Smith (2000)...')

14

15 % determine size of input matrix Z1

16 [n,k] = size(Z1); %#ok<ASGLU>

17

18 % determine size of input vector K

19 l = length(K);

20

21 % simulate price paths

22 [time,S] = SchwSm2000_simulate(xi_0,a_star,sigma_xi,chi_0,kappa_chi, ...

23 lambda_chi,sigma_chi,dt,Z1,Z2); %#ok<ASGLU>

24

25 % initialize variables

26 MC_geo_payoff = zeros(l,k);

27 MC_GA = zeros(l,1);

28 MC_GA_SE = zeros(l,1);

29 CFS = zeros(l,1);

30 MC_arm_payoff = zeros (l,k);

31 MC_AA = zeros(l,1);

32 MC_AA_SE = zeros(l,1);

33 X = zeros(l,k);

34 Y = zeros(l,k);

35 MC_AA_CV = zeros(l,1);

36 MC_AA_CV_SE = zeros(l,1);

37 VR = zeros(l,1);

38

39 %% Geometric Asian option

40 % geometric Asian option: determine geometric mean at time t

41 G_T = geomean(S,1);

42

43 % loop over strike prices

44 for i = 1:l

45

46 % geometric Asian option: determine payoff at time t

47 MC_geo_payoff(i,:) = max(G_T - K(i),0);

48

49 % geometric Asian option: determine MC price

50 MC_GA(i) = exp(-r * t) * mean(MC_geo_payoff(i,:));

51
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52 % geometric Asian option: determine MC standard error

53 MC_GA_SE(i) = exp(-r * t) * std(MC_geo_payoff(i,:)) / sqrt(k);

54

55 % geometric Asian option: determine closed-form solution

56 CFS(i) = SchwSm2000_GAoption(K(i),xi_0,a_star,sigma_xi,chi_0,kappa_chi, ...

57 lambda_chi,sigma_chi,rho,r,t);

58 end

59 clearvars i

60

61 %% Arithmetic Asian option

62 % arithmetic Asian option: determine arithmetic mean at time t

63 A_T = mean(S,1);

64

65 % loop over strike prices

66 for i = 1:l

67

68 % arithmetic Asian option: determine payoff at time t

69 MC_arm_payoff(i,:) = max(A_T - K(i),0);

70

71 % arithmetic Asian option: determine MC price

72 MC_AA(i) = exp(-r * t) * mean(MC_arm_payoff(i,:));

73

74 % arithmetic Asian option: determine MC standard error

75 MC_AA_SE(i) = exp(-r * t) * std(MC_arm_payoff(i,:)) / sqrt(k);

76 end

77 clearvars i

78

79 %% Arithmetic Asian option: control variate

80 % loop over strike prices

81 for i = 1:l

82

83 % arithmetic Asian option (CV): determine individual prices for each path

84 X(i,:) = exp(-r * t) .* max(G_T(1,:) - K(i),0);

85 Y(i,:) = exp(-r * t) .* max(A_T(1,:) - K(i),0);

86

87 % arithmetic Asian option (CV): determine covariance between X and Y

88 covCV = cov(Y,X);

89 betaCV = covCV(1,2) ./ covCV(2,2);

90

91 % arithmetic Asian option (CV): dertermine MC price

92 MC_AA_CV(i) = mean(Y(i,:)) - betaCV .* (mean(X(i,:)) - CFS(i));

93

94 % arithmetic Asian option (CV): determine MC standard error

95 MC_AA_CV_SE(i) = std(Y(i,:) - betaCV * X(i,:)) ./ sqrt(k);

96

97 % arithmetic Asian option (CV): determine variance reduction

98 % VR(i) = (covCV(1,2) ./ (sqrt(covCV(1,1)) .* sqrt(covCV(2,2)))).^2 * 100;

99 VR(i) = (MC_AA_SE(i)^2 - MC_AA_CV_SE(i)^2) / MC_AA_SE(i)^2 * 100;

100 end

101

102 fprintf('done.\n')

103

104 end
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C.2.4 Korn (2005) two-factor model

1 function [MC_GA,MC_GA_SE,CFS,MC_AA,MC_AA_SE,MC_AA_CV,MC_AA_CV_SE,VR] = ...

2 Korn2005_MC(xi_0,kappa_xi,a_star,sigma_xi,chi_0,kappa_chi,lambda_chi, ...

3 sigma_chi,rho,dt,Z1,Z2,K,r,t)

4

5 % Description of function Korn2005_MC

6 % The function Korn2005_MC runs a MC simulation for the Korn (2005)

7 % two-factor model and determines MC prices for a geometric Asian option,

8 % an arithmetic Asian option, the closed-form solution for a geometric

9 % Asian option as well as the MC control variate price of an arithmetic

10 % Asian option. Furthermore, MC standard deviations are determined.

11

12 fprintf('\t\tKorn (2005)...')

13

14 % determine size of input matrix Z1

15 [n,k] = size(Z1); %#ok<ASGLU>

16

17 % determine size of input vector K

18 l = length(K);

19

20 % simulate price paths

21 [time,S] = Korn2005_simulate(xi_0,kappa_xi,a_star,sigma_xi,chi_0,kappa_chi, ...

22 lambda_chi,sigma_chi,dt,Z1,Z2); %#ok<ASGLU>

23

24 % initialize variables

25 MC_geo_payoff = zeros(l,k);

26 MC_GA = zeros(l,1);

27 MC_GA_SE = zeros(l,1);

28 CFS = zeros(l,1);

29 MC_arm_payoff = zeros (l,k);

30 MC_AA = zeros(l,1);

31 MC_AA_SE = zeros(l,1);

32 X = zeros(l,k);

33 Y = zeros(l,k);

34 MC_AA_CV = zeros(l,1);

35 MC_AA_CV_SE = zeros(l,1);

36 VR = zeros(l,1);

37

38 %% Geometric Asian option

39 % geometric Asian option: determine geometric mean at time t

40 G_T = geomean(S,1);

41

42 % loop over strike prices

43 for i = 1:l

44

45 % geometric Asian option: determine payoff at time t

46 MC_geo_payoff(i,:) = max(G_T - K(i),0);

47

48 % geometric Asian option: determine MC price

49 MC_GA(i) = exp(-r * t) * mean(MC_geo_payoff(i,:));

50

51 % geometric Asian option: determine MC standard error
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52 MC_GA_SE(i) = exp(-r * t) * std(MC_geo_payoff(i,:)) / sqrt(k);

53

54 % geometric Asian option: determine closed-form solution

55 CFS(i) = Korn2005_GAoption(K(i),xi_0,kappa_xi,a_star,sigma_xi,chi_0, ...

56 kappa_chi,lambda_chi,sigma_chi,rho,r,t);

57 end

58 clearvars i

59

60 %% Arithmetic Asian option

61 % arithmetic Asian option: determine arithmetic mean at time t

62 A_T = mean(S,1);

63

64 % loop over strike prices

65 for i = 1:l

66

67 % arithmetic Asian option: determine payoff at time t

68 MC_arm_payoff(i,:) = max(A_T - K(i),0);

69

70 % arithmetic Asian option: determine MC price

71 MC_AA(i) = exp(-r * t) * mean(MC_arm_payoff(i,:));

72

73 % arithmetic Asian option: determine MC standard error

74 MC_AA_SE(i) = exp(-r * t) * std(MC_arm_payoff(i,:)) / sqrt(k);

75 end

76 clearvars i

77

78 %% Arithmetic Asian option: control variate

79 % loop over strike prices

80 for i = 1:l

81

82 % arithmetic Asian option (CV): determine individual prices for each path

83 X(i,:) = exp(-r * t) .* max(G_T(1,:) - K(i),0);

84 Y(i,:) = exp(-r * t) .* max(A_T(1,:) - K(i),0);

85

86 % arithmetic Asian option (CV): determine covariance between X and Y

87 covCV = cov(Y,X);

88 betaCV = covCV(1,2) ./ covCV(2,2);

89

90 % arithmetic Asian option (CV): dertermine MC price

91 MC_AA_CV(i) = mean(Y(i,:)) - betaCV .* (mean(X(i,:)) - CFS(i));

92

93 % arithmetic Asian option (CV): determine MC standard error

94 MC_AA_CV_SE(i) = std(Y(i,:) - betaCV * X(i,:)) ./ sqrt(k);

95

96 % arithmetic Asian option (CV): determine variance reduction

97 % VR(i) = (covCV(1,2) ./ (sqrt(covCV(1,1)) .* sqrt(covCV(2,2)))).^2 * 100;

98 VR(i) = (MC_AA_SE(i)^2 - MC_AA_CV_SE(i)^2) / MC_AA_SE(i)^2 * 100;

99 end

100

101 fprintf('done.\n')

102

103

104 end
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C.3 Simulation functions

C.3.1 Black (1976) one-factor model

1 function [time,S] = Black1976_simulate(xi_0,a_star,sigma_xi,dt,Z)

2

3 % Description of the function Black1976_simulate

4 % The function Black1976_simulate simulates the path of the Black (1976)

5 % model. The model assumes that the log spot price follows an arithmetic

6 % Brownian motion (ABM). This function provides an exact simulation of

7 % the ABM path in vectorized version.

8

9 % Black (1976) one-factor model: xi = ln(S)

10

11 % variable definitions

12 % n = number of time steps

13 % Z = matrix of given normally distributed random numbers

14

15 % determine size of input matrix Z

16 [n,k] = size(Z);

17

18 % intialize vectors

19 time = (0:dt:n*dt)';

20 S = zeros(n+1,k);

21 S_int = zeros(n,k);

22

23 % define first observation of S

24 S(1,:) = exp(xi_0);

25

26 % adjust Z-values by specified mean and variance

27 Z_xi = Z .* sigma_xi * sqrt(dt) + a_star * dt;

28

29 % simulate path

30 parfor i = 1:k

31 S_int(:,i) = S(1,i) .* exp(cumsum(Z_xi(:,i)));

32 end

33 clearvars i

34

35 % merge S_int and S

36 S(2:end,:) = S_int;

37

38 end
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C.3.2 Schwartz (1997) one-factor model

1 function [time,S] = Schw1997_simulate(xi_0,kappa_xi,a_star,sigma_xi,dt,Z)

2

3 % Description of the function Schw1997_simulate

4 % The function Schw1997_simulate simulates the path according to the

5 % Schwartz (1997) one-factor model. This is an exact simulation of the

6 % path in vectorized version.

7

8 % Schwartz (1997) one-factor model: xi = ln(S)

9

10 % variable definitions

11 % n = number of time steps

12 % Z = matrix of given normally distributed random numbers

13

14 % determine size of input matrix Z

15 [n,k] = size(Z);

16

17 % intialize vectors

18 time = (0:dt:n*dt)';

19 xi = zeros(n+1,k);

20 Z1 = zeros(n,k);

21 xi_int = zeros(n,k);

22

23 % get part of time vector

24 time_int = time(2:end);

25

26 % define first observation of X

27 xi(1,:) = xi_0;

28

29 % adjust random standard normal variable with zero mean and time changing

30 % volatility (scaled, time-changed Wiener process)

31 parfor i = 1:k

32 Z1(:,i) = sqrt(diff(exp(2 .* kappa_xi .* time) - 1) ./ (2 .* kappa_xi)) .* Z(:,i);

33 end

34 clearvars i

35

36 % simulate path of the OU process

37 parfor i = 1:k

38 xi_int(:,i) = xi(1,i) .* exp(-kappa_xi .* time_int) + a_star .* (1 - exp(-kappa_xi ...

.* time_int)) + sigma_xi .* exp(-kappa_xi .* time_int) .* cumsum(Z1(:,i));

39 end

40 clearvars i

41

42 % merge xi_int and xi

43 xi(2:end,:) = xi_int;

44

45 % transform to S

46 S = exp(xi);

47

48 end
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C.3.3 Schwartz and Smith (2000) two-factor model

1 function [time,S] = SchwSm2000_simulate(xi_0,a_star,sigma_xi,...

2 chi_0,kappa_chi,lambda_chi,sigma_chi,dt,Z1,Z2)

3

4 % Description of the function SchwSm2000_simulate

5 % The function SchwSm2000_simulate simulates a path according to the

6 % Schwartz and Smith (2000) two-factor model. This is an exact simulation

7 % of the path in vectorized version.

8

9 % Schwartz and Smith (2000) two-factor model: X = ln(S) = xi + chi

10

11 % variable definitions

12 % n = number of time steps

13 % Z1 = matrix of given normally distributed random numbers

14 % Z2 = matrix of given normally distributed random numbers with correlation

15 % of rho_dt with Z1

16

17 % determine size of input matrix Z1

18 [n,k] = size(Z1);

19

20 % intialize vectors

21 time = (0:dt:n*dt)';

22 xi = zeros(n+1,k);

23 xi_int = zeros(n,k);

24 chi = zeros(n+1,k);

25 chi_int = zeros(n,k);

26 Z_chi = zeros(n,k);

27

28 % get part of time vector

29 time_int = time(2:end);

30

31 % simulate long-term equlibrium xi (follows an ABM)

32 % define first observation of xi

33 xi(1,:) = xi_0;

34

35 % adjust random standard normal numbers with specified mean and standard

36 % deviation

37 Z_xi = Z1 .* sigma_xi .* sqrt(dt) + a_star .* dt;

38

39 % simulate path of xi

40 parfor i = 1:k

41 % xi(2:n+1,i) = xi(1,i) + cumsum(Z_xi(:,i));

42 xi_int(:,i) = xi(1,i) + cumsum(Z_xi(:,i));

43 end

44 clearvars i

45

46 % merge xi_int and xi

47 xi(2:end,:) = xi_int;

48

49 % simulate short-term variations chi (follows an OU process)

50 % define first observation of chi

51 chi(1,:) = chi_0;
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52

53 % adjust random standard normal variable with zero mean and time changing

54 % volatility (scaled, time-changed Wiener process)

55 parfor i = 1:k

56 Z_chi(:,i) = sqrt(diff(exp(2 .* kappa_chi .* time) - 1) ./ (2 .* kappa_chi)) .* ...

Z2(:,i);

57 end

58 clearvars i

59

60 % simulate path of the OU process

61 parfor i = 1:k

62 % chi(2:n+1,i) = chi(1,i) .* exp(-kappa_chi .* time(2:n+1)) - lambda_chi / ...

kappa_chi .* (1 - exp(-kappa_chi .* time(2:n+1))) + sigma_chi .* exp(-kappa_chi .* ...

time(2:n+1)) .* cumsum(Z_chi(:,i));

63 chi_int(:,i) = chi(1,i) .* exp(-kappa_chi .* time_int) - lambda_chi / kappa_chi .* ...

(1 - exp(-kappa_chi .* time_int)) + sigma_chi .* exp(-kappa_chi .* time_int) ...

.* cumsum(Z_chi(:,i));

64 end

65 clearvars i

66

67 % merge chi_int and chi

68 chi(2:end,:) = chi_int;

69

70 % get simulated path for X

71 X = xi + chi;

72

73 % transform to S

74 S = exp(X);

75

76 end
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C.3.4 Korn (2005) two-factor model

1 function [time,S] = Korn2005_simulate(xi_0,kappa_xi,a_star,sigma_xi,...

2 chi_0,kappa_chi,lambda_chi,sigma_chi,dt,Z1,Z2)

3

4 % Description of the function Korn2005_simulate

5 % The function Korn2005_simulate simulates a path according to the

6 % Korn (2005) two-factor model. This is an exact simulation of the

7 % path in vectorized version.

8

9 % Korn (2005) two-factor model: X = ln(S) = xi + chi

10

11 % variable definitions

12 % n = number of time steps

13 % Z1 = matrix of given normally distributed random numbers

14 % Z2 = matrix of given normally distributed random numbers with correlation

15 % of rho_dt with Z1

16

17 % determine size of input matrix Z1

18 [n,k] = size(Z1);

19

20 % intialize vectors

21 time = (0:dt:n*dt)';

22 xi = zeros(n+1,k);

23 xi_int = zeros(n,k);

24 Z_xi = zeros(n,k);

25 chi = zeros(n+1,k);

26 chi_int = zeros(n,k);

27 Z_chi = zeros(n,k);

28

29 % get part of time vector

30 time_int = time(2:end);

31

32 % simulate long-term equlibrium xi (follows an OU process)

33 % define first observation of xi

34 xi(1,:) = xi_0;

35

36 % adjust random standard normal variable with zero mean and time changing

37 % volatility (scaled, time-changed Wiener process)

38 parfor i = 1:k

39 Z_xi(:,i) = sqrt(diff(exp(2 .* kappa_xi .* time) - 1) ./ (2 .* kappa_xi)) .* Z1(:,i);

40 end

41 clearvars i

42

43 % simulate path of xi

44 parfor i = 1:k

45 % xi(2:n+1,i) = xi(1,i) .* exp(-kappa_xi .* time(2:n+1)) + a_star .* (1 - ...

exp(-kappa_xi .* time(2:n+1))) + sigma_xi .* exp(-kappa_xi .* time(2:n+1)) .* ...

cumsum(Z_xi(:,i));

46 xi_int(:,i) = xi(1,i) .* exp(-kappa_xi .* time_int) + a_star .* (1 - exp(-kappa_xi ...

.* time_int)) + sigma_xi .* exp(-kappa_xi .* time_int) .* cumsum(Z_xi(:,i));

47 end

48 clearvars i
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49

50 % merge xi_int and xi

51 xi(2:end,:) = xi_int;

52

53 % simulate short-term variations chi (follows an OU process)

54 % define first observation of chi

55 chi(1,:) = chi_0;

56

57 % adjust random standard normal variable with zero mean and time changing

58 % volatility (scaled, time-changed Wiener process)

59 parfor i = 1:k

60 Z_chi(:,i) = sqrt(diff(exp(2 .* kappa_chi .* time) - 1) ./ (2 .* kappa_chi)) .* ...

Z2(:,i);

61 end

62 clearvars i

63

64 % simulate path of the OU process

65 for i = 1:k

66 % chi(2:n+1,i) = chi(1,i) .* exp(-kappa_chi .* time(2:n+1)) - lambda_chi / ...

kappa_chi .* (1 - exp(-kappa_chi .* time(2:n+1))) + sigma_chi .* exp(-kappa_chi .* ...

time(2:n+1)) .* cumsum(Z_chi(:,i));

67 chi_int(:,i) = chi(1,i) .* exp(-kappa_chi .* time_int) - lambda_chi / kappa_chi .* ...

(1 - exp(-kappa_chi .* time_int)) + sigma_chi .* exp(-kappa_chi .* time_int) ...

.* cumsum(Z_chi(:,i));

68 end

69 clearvars i

70

71 % merge chi_int and chi

72 chi(2:end,:) = chi_int;

73

74 % get simulated path for X

75 X = xi + chi;

76

77 % transform to S

78 S = exp(X);

79

80 end
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C.4 Closed-form solution functions

C.4.1 Black (1976) one-factor model

1 function [call_price] = Black1976_GAoption(K,xi_0,a_star,sigma_xi,r,t)

2

3 % Description of the function Black1976_GAoption

4 % The function Black1976_GAoption determines the price of a geometric

5 % average call option for the Black (1976) one-factor model.

6

7 % determine the mean of G(T;0,T)

8 mu_geo = xi_0 + 1/2 * a_star * t;

9

10 % determine standard deviation of G(T;0,T)

11 sigma_geo = sqrt(1/3 * sigma_xi^2 * t);

12

13 % determine d1

14 d1 = (mu_geo - log(K) + sigma_geo^2) / sigma_geo;

15

16 % determine d2

17 d2 = d1 - sigma_geo;

18

19 % determine call price

20 call_price = exp(mu_geo + 1/2 * sigma_geo^2 - r * t) * normcdf(d1) - exp(-r * t) * K * ...

normcdf(d2);

21

22 end
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C.4.2 Schwartz (1997) one-factor model

1 function [call_price] = Schw1997_GAoption(K,xi_0,kappa_xi,a_star,sigma_xi,r,T)

2

3 % Description of the function Schw1997_GAoption

4 % The function Schw1997_GAoption determines the price of a

5 % geometric average call option for the Schwartz (1997) one-factor model.

6

7 % determine the mean of G(T;0,T)

8 mu_geo = xi_0 / (kappa_xi * T) * (1 - exp(-kappa_xi * T)) + a_star - a_star / ...

(kappa_xi * T) * (1 - exp(-kappa_xi * T));

9

10 % determine standard deviation of G(T;0,T)

11 sigma_geo = sqrt(sigma_xi^2 / (2 * kappa_xi^3 * T^2) * (2 * kappa_xi * T + 4 * ...

exp(-kappa_xi * T) - exp(-2 * kappa_xi * T) - 3));

12

13 % determine d1

14 d1 = (mu_geo - log(K) + sigma_geo^2) / sigma_geo;

15

16 % determine d2

17 d2 = d1 - sigma_geo;

18

19 % determine call price

20 call_price = exp(mu_geo + 1/2 * sigma_geo^2 - r * T) * normcdf(d1) - exp(-r * T) * K * ...

normcdf(d2);

21

22 end
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C.4.3 Schwartz and Smith (2000) two-factor model

1 function [call_price] = SchwSm2000_GAoption(K,xi_0,a_star,sigma_xi, ...

2 chi_0,kappa_chi,lambda_chi,sigma_chi,rho,r,T)

3

4 % Description of the function SchwSm2000_GAoption

5 % The function SchwSm2000_GAoption determines the price of a

6 % geometric average call option for the Schwartz and Smith (2000) two-

7 % factor model.

8

9 % determine the mean of G(T;0,T)

10 mu_geo = xi_0 + chi_0 / (kappa_chi * T) * (1 - exp(-kappa_chi * T)) + 1/2 * a_star * T ...

+ lambda_chi / (kappa_chi^2 * T) * (1 - kappa_chi * T - exp(-kappa_chi * T));

11

12 % determine standard deviation of G(T;0,T)

13 sigma_geo = sqrt(1/3 * sigma_xi^2 * T + (rho * sigma_xi * sigma_chi) / (kappa_chi^3 * ...

T^2) * (kappa_chi^2 * T^2 + 2 * kappa_chi * T * exp(-kappa_chi * T) + 2 * ...

exp(-kappa_chi * T) - 2) ...

14 + sigma_chi^2 / (2 * kappa_chi^3 * T^2) * (2 * kappa_chi * T + 4 * exp(-kappa_chi ...

* T) - exp(-2 * kappa_chi * T) - 3));

15

16 % determine d1

17 d1 = (mu_geo - log(K) + sigma_geo^2) / sigma_geo;

18

19 % determine d2

20 d2 = d1 - sigma_geo;

21

22 % determine call price

23 call_price = exp(mu_geo + 1/2 * sigma_geo^2 - r * T) * normcdf(d1) - exp(-r * T) * K * ...

normcdf(d2);

24

25 end

278



C Appendix C – MATLAB R2015a code

C.4.4 Korn (2005) two-factor model

1 function [call_price] = Korn2005_GAoption(K,xi_0,kappa_xi,a_star,sigma_xi, ...

2 chi_0,kappa_chi,lambda_chi,sigma_chi,rho,r,t)

3

4 % Description of the function Korn2005_GAoption

5 % The function Korn2005_GAoption determines the price of a

6 % geometric average call option for the Korn (2005) two-factor model.

7

8 % determine the mean of G(T;0,T)

9 mu_geo = xi_0 / (kappa_xi * t) * (1 - exp(-kappa_xi * t)) + chi_0 / (kappa_chi * t) * ...

(1 - exp(-kappa_chi * t)) + a_star / (kappa_xi * t) * (exp(-kappa_xi * t) + ...

kappa_xi * t - 1) ...

10 + lambda_chi / (kappa_chi^2 * t) * (1 - kappa_chi * t - exp(-kappa_chi * t));

11

12 % determine standard deviation of G(T;0,T)

13 sigma_geo = sqrt(sigma_xi^2 / (2 * kappa_xi^3 * t^2) * (2 * kappa_xi * t + 4 * ...

exp(-kappa_xi * t) - exp(-2 * kappa_xi * t) - 3) ...

14 + (2 * rho * sigma_xi * sigma_chi) / (kappa_xi^2 * kappa_chi^2 * (kappa_xi + ...

kappa_chi) * t^2) * (kappa_xi * (kappa_xi + kappa_chi) * exp(-kappa_chi * t) ...

15 + kappa_xi * kappa_chi * t * (kappa_xi + kappa_chi) + kappa_chi * (kappa_xi + ...

kappa_chi) * exp(-kappa_xi * t) ...

16 - kappa_xi * kappa_chi * exp(-(kappa_xi + kappa_chi) * t) - (kappa_xi + ...

kappa_chi)^2 + kappa_xi * kappa_chi) ...

17 + sigma_chi^2 / (2 * kappa_chi^3 * t^2) * (2 * kappa_chi * t + 4 * exp(-kappa_chi ...

* t) - exp(-2 * kappa_chi * t) - 3));

18

19 % determine d1

20 d1 = (mu_geo - log(K) + sigma_geo^2) / sigma_geo;

21

22 % determine d2

23 d2 = d1 - sigma_geo;

24

25 % determine call price

26 call_price = exp(mu_geo + 1/2 * sigma_geo^2 - r * t) * normcdf(d1) - exp(-r * t) * K * ...

normcdf(d2);

27

28 end
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Appendix A

Summaries
according to article 6(5) of the PromO

A.1 Abstract

This cumulative dissertation consists of three individual essays that are generally
concerned with the following two, broader topics: financial risk management and
derivative pricing.

Concerning financial risk management, the first two essays study the cross-hedging of
dry bulk Capesize ship price risks using freight derivatives. The first essay focuses on
Forward Freight Agreements (FFAs) as hedge instruments and empirically compares
the hedge effectiveness of a structural pricing model (SPM)-based hedging approach
and a classical minimum-variance cross-hedging approach to derive the desired hedge
exposure. The results show that the SPM-based hedging approach consistently out-
performs the classical minimum-variance cross-hedging approach in terms of variance
reduction. The second essay focuses on freight options as hedge instruments and em-
pirically assesses the hedge effectiveness of different freight option-based cross-hedging
strategies using several risk-, downside-risk-, as well as return-based measures. The
results suggest that freight options generally qualify quite well as cross-hedge instru-
ment for dry bulk Capesize ship price risks and that one-sided, option-based hedging
strategies prove to be beneficial compared to the classical two-sided hedging strategies
in case the market development does not require any downside-risk protection.

Concerning derivative pricing, the third essay focuses on pricing of Asian options for
affine Gaussian diffusions. A general pricing framework to derive closed-form solu-
tions for continuously monitored geometric Asian options for affine n-factor Gaussian
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diffusions is developed and specifically applied to three mean-reversion commodity
pricing models. In a numerical example, the derived closed-form solutions turn out to
be accurate. Additionally, the geometric Asian option is used as control variate in a
Monte Carlo (MC) simulation in order to price an arithmetic Asian option. This yields
considerable variance reduction which can be translated into substantial computation-
time savings. Finally, an extension to forward-start Asian options is outlined as this
type of option are quite common in commodity markets.

A.2 Zusammenfassung

Diese kumulative Dissertation besteht aus drei Aufsätzen, die sich generell mit den
folgenden zwei Themen befassen: finanzielles Risikomanagement sowie Derivateber-
wertung.

Die ersten beiden Aufsätze befassen sich im Bereich des finanziellen Risikomanage-
ments mit der Absicherung von bilanziellen Preisrisiken von Capesize Schüttgutfrach-
tern mit Hilfe von Frachtderivaten. Der erste Aufsatz konzentriert sich dabei auf For-
ward Freight Agreements (FFAs) als Hedgeinstrumente und vergleicht empirisch die
Hedgeeffizienz zweier Ansätze zur Bestimmung des gewünschten Absicherungsgrades.
Der erste Ansatz basiert auf einem strukturellen Preismodell, das aus historischen
Schiffstransaktionen geschätzt wird. Der zweite Ansatz basiert auf der klassischen
Minimum-Varianz-Optimierung. Die Ergebnisse der Studie zeigen, dass der Ansatz
basierend auf dem strukturellen Preismodell kontinuierlich besser hinsichtlich der er-
zielten Varianzreduktion abschneidet als der klassische Minimum-Varianz-Ansatz. Der
zweite Aufsatz konzentriert sich auf Frachtoptionen als Hedgeinstrumente und unter-
sucht empirisch die Hedgeeffektivität verschiedener Hedgestrategien, die auf Fracht-
optionen basieren. Die Hedgeeffektivität wird dabei nicht nur in Form von Varianzre-
duktion gemessen sondern auch mit Hilfe von verschiedenen Downside-Risikomaßen
sowie renditebasierten Maßen. Die Ergebnisse der Studie zeigen, dass sich Frachtoptio-
nen generell als Hedgeinstrument zur Absicherung von bilanziellen Schiffspreisrisiken
für Capesize Schüttgutfrachter eignen. Insbesondere sind optionsbasierte, einseitige
Hedgestrategien gegenüber klassischen, zweiseitigen Hedgestrategien im Vorteil, wenn
die Marktentwicklung eigentlich keine Downside-Absicherung erfordert.

Hinsichtlich der Derivatebewertung befasst sich der dritte Aufsatz mit der Bewertung
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A.2 Zusammenfassung

asiatischer Optionen für affine Gauß-Diffusionen. Es wird ein generellerer Bewertungs-
ansatz entwickelt, der es erlaubt geschlossene Lösungsformeln für stetig geometrisch-
gemittelte asiatische Optionen für affine n-Faktor Gauß-Diffusionen herzuleiten. Der
generelle Bewertungsansatz wird dann konkret auf drei ‘mean-reversion’-Modelle an-
gewendet. In einem numerischen Beispiel werden die hergeleiteten, geschlossenen Lö-
sungsformeln via Monte Carlo (MC)-Simulation für akkurat befunden. Darüber hinaus
wird die geometrisch asiatische Option als ‘control variate’ in einer MC-Simulation
angewendet, um eine arithmetisch asiatische Option zu bewerten. Dies führt zu ei-
ner erheblichen Varianzreduktion, die in substanzielle Rechenzeitersparnisse übersetzt
werden kann. Zum Abschluss wird noch eine Erweiterung auf asiatische ‘forward-start’
Optionen skizziert, da diese in Rohstoff- und Verbrauchsgütermärkten recht verbreitet
sind.
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Appendix B

List of publications
according to article 6(5) of the PromO

As of the submission date, no publications have emerged from this dissertation yet.
However, it is planned to submit shortened versions of selected essays to academic
journals.
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