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Abstract

Oceanic motions at spatial scales of O(100) km and above, are quasi-two dimensional
(2D) while dynamics at scales of O(1) km - also called submesoscale, are known to
be quasi-three dimensional (3D). Stirring processes at the submesoscale therefore
require a 3D treatment, which is considered in this thesis. A comparison of 3D and
2D Lagrangian flow diagnostics - the Finite Time Lyapunov Exponents (FTLEs)
is made. 3D FTLEs are computed from numerical simulations of a freely evolving
oceanic mixed layer (ML) front in a zonal channel undergoing baroclinic instability.
The 3D FTLEs show a complex structure, with features that are less defined than
the 2D FTLEs, suggesting that stirring is not confined to the edges of vortices and
along filaments, thus posing significant consequences on mixing. The magnitude of
3D FTLEs is found to be strongly determined by the vertical shear. Maximising
curves of FTLEs, also called Lagrangian Coherent Structures (LCSs), are found
to successfully detect submesoscale filaments and vortices in locations where the
Eulerian diagnostics are featureless.

A scaling law relating the local FTLEs and the nonlocal density contrast used to
initialize the ML front is derived assuming thermal wind balance. The derived scal-
ing law converges to the values found from the simulations within the pycnocline,
while it diverges from it in the ML where the instabilities show a large ageostrophic
component. Also, probability distribution functions (PDFs) of 2D and 3D FTLEs
are found to be non Gaussian at all depths of the channel. The non-Gaussianity
of these PDFs suggests that parameterization schemes in existing numerical models
should be improved.

Finally, the same analysis as for the idealised simulations, is repeated with a realistic
ocean simulation dataset in two case study regions of the Atlantic Ocean in order
to understand the influence of the various ocean forcing sources on the FTLEs, and
to also investigate the seasonal cycle of 2D and 3D FTLEs. It is found that FTLEs
show a clear seasonal cycle with large values in winter and low values in summer.
The seasonal cycle of 2D FTLEs is found to be modulated by the eddy kinetic energy
(EKE) both at the surface and ocean interior. At the ocean surface, 3D FTLEs are
modulated by the vertical shear of horizontal velocities, which shows minimal change
between winter and summer, while in the ocean interior, 3D FTLEs yield the same
seasonal behaviour as 2D FTLEs. However, the primary determinant of the seasonal
cycle of FTLEs is found to be the deepening of the mixed layer in winter, which leads
to the increase of available potential energy on which baroclinic instabilities draw.
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Zusammenfassung

Strömungen im Ozean mit Gröflenordnungen von über O(100) km sind quasi zweidi-
mensional (2D) während Strömungen auf Skalen von O(1) km, auch Submesoskalen
genannt, als dreidimensional (3D) anzusehen sind. Submesoskalige Durchmischungs-
prozesse werden daher in dieser Arbeit als 3D Prozesse betrachtet. Es wird der Ver-
gleich von 3D und 2D lagrangeschen Flüssen - den endlichen zeitlichen Lyapunov
Exponenten (FTLEs) durchgeführt. Die 3D FTLEs werden aus numerischen Simu-
lationen einer sich frei entwickelnden Front einer Mischschicht (ML) in einem zonalen
Kanals mit barokliner Instabilität berechnet. Die 3D FTLEs haben eine komplexe
Struktur, mit weniger definierten Eigenschaften als bei den 2D FTLEs, was darauf
hindeutet, dass Vermischungsprozesse nicht auf die Ränder von Wirbeln und entlang
von Filamenten beschränkt sind. Dies wiederum hat einen entscheidenden Einfluß
auf die Vermischung. Die Größe der 3D FTLEs wird dabei stark von der vertikalen
Scherung bestimmt. Mit Hilfe der Maximierungskurven der FTLEs, die auch la-
grangesche kohärente Strukturen (LCSs) genannt werden, können submesoskalige
Filamente und Wirbel auch in den Regionen gefunden werden in denen eulersche
Diagnosen ergebnislos bleiben.

Unter der Annahme der thermalen Windbalance wird ein Skalierungsgesetz abgeleitet,
das die lokalen FTLEs und die nichtlokalen Dichtekontraste in Beziehung setzt um
die ML-Front zu initialisieren. Das abgeleitete Skalierungsgesetz konvergiert zu den
Werten aus Simulationen in der Pyknokline, während es sich in der ML davon ent-
fernt, in welcher die Instabilitäten eine große ageostrophische Komponente haben.
Zudem zeigt sich, dass die Wahrscheinlichkeitsverteilungsfunktionen (PDFs) von 2D
und 3D FTLEs in keiner Tiefe gaussverteilt sind. Die Nicht-Gaussverteilung der
PDFs legt nahe die Parametrisierungsschemata für passive tracer, wie sie in ex-
istierenden numerischen Modellen verwendet werden, zu verbessern.

Schließlich werden die gleichen Analysen wie für die idealisierten Simulationen für
Datensätze von realistischen Ozean-Simulationen zweier Beispielregionen im Atlantik
wiederholt, um den Einfluß verschiedener Antriebe auf die FTLEs zu verstehen,
und um im weiteren den Jahresgang der 2D und 3D FTLEs zu untersuchen. Die
FTLEs zeigen einen klaren Jahresgang mit großen Werten im Winter die zum Som-
mer hin abnehmen. Faktoren wie Schichtung (z.B. indirekt durch Auftrieb) und
wirbelkinetische Energie tragen zur Modulation des Jahresganges der FTLEs sowohl
an der Oberfläche als auch in tieferen Schichten des Ozeans bei. Die Hauptursache
für den Jahresgang der FTLEs ist jedoch die Vertiefung der ML im Winter, die zu
einem Anstieg der verfügbaren potentiellen Energie führt, von der barokline Insta-
bilitäten zähren.
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Chapter 1

Introduction

Observations (e.g. Shcherbina et al., 2015, and references therein) and high resolu-
tion numerical modeling studies (e.g. Thomas et al. (2008) and references therein)
reveal the presence of a wide variety of ocean dynamical processes at scales smaller
than the deformation radius, which have been referred to as submesoscale dynamics.
Dynamics in this regime are characterized by Rossby (Ro) and bulk Richardson (Ri)
numbers of O(1) (Thomas et al., 2008), differing thus from dynamics at mesoscale
and large scales, where Ro << 1 and Ri >> 1.

One of the sources of submesoscale variability is given by mixed layer instabilities
(MLIs) (Boccaletti et al., 2007; Fox-Kemper et al., 2008). Mixed layer (ML) fronts
can be created, for example, by the passage of storms which leave areas of the ocean
locally mixed (Price, 1981; Ferrari and Rudnick, 2000), by tidal mixing in the coastal
regions (Badin et al., 2009) and in upwelling regions where deeper, colder waters are
brought to the surface (Calil and Richards, 2010; Bettencourt et al., 2012). ML
fronts are dynamically unstable: after an initial geostrophic adjustment (Tandon
and Garrett, 1994, 1995; Young, 1994), they undergo baroclinic instability, yielding
ageostrophic MLIs with growth rates of the order of days (Haine and Marshall, 1998;
Molemaker and McWilliams, 2005) and leading to ML restratification (Boccaletti
et al., 2007; Fox-Kemper and Ferrari, 2008). The restratification of the surface ocean
may be further affected by other forms of instabilities such as symmetric instabilities
(Haine and Marshall, 1998; Taylor and Ferrari, 2009), while other dynamical factors
like down-front wind stress have been found to slow down the restratification-mixing
cycle of the upper ocean (Mahadevan et al., 2010). MLIs lead to the emergence
of filamentary features. These filaments can create a form of nonlocal turbulence,
in which the small scale motions are controlled by the large scale dynamics (e.g.,
Badin, 2014; Gula et al., 2014). Otherwise, the filaments can be formed by local
frontogenesis, which takes the shape of elongated features (e.g., Mensa et al., 2013;
Ragone and Badin, 2016). The filaments are characterized by intensified relative
vorticity, vertical velocity and strain rate (Mahadevan, 2006; Thomas et al., 2008).
The filaments further undergo secondary instabilities (e.g. Thomas et al. (2008);
Gula et al. (2014)). The intensification of vertical velocities at submesocale has
important effects on the budgets of buoyancy, mass and other tracers, for example
facilitating the supply of nutrients and gases to the euphotic layers of the ocean
thereby enhancing primary production in the ocean interior (Lévy et al., 2001).
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Frontal dynamics can be important also for the transformation of water masses
(Thomas and Joyce, 2010; Badin et al., 2010, 2013; Thomas et al., 2013a). Further,
MLIs might be able to penetrate in the underlying pycnocline where they might be
important for the lateral mixing of tracers (Badin et al., 2011).

The traditional techniques used in the definition and identification of coherent struc-
tures make use of Eulerian fields, defining them as localized, persisting regions with
values of relative vorticity or strain rate larger than their surroundings (e.g., Calil
and Richards, 2010). An alternative definition makes use of the Okubo-Weiss (OW)
parameter, defined as the difference between the square of relative vorticity and
horizontal strain (Okubo, 1970; Weiss, 1991). While the OW parameter sometimes
correctly identifies coherent vortices (Boffetta et al., 2001; Harrison and Glatzmaier,
2012), and a strong correlation has been found to exist between zero level contours
of the OW parameter and Lagrangian Coherent Structures (LCSs) (d’Ovidio et al.,
2009), this technique is also observed to yield boundaries of vortices that are an
underestimation of the actual sizes of the vortices (Haller and Yuan, 2000; Harrison
and Glatzmaier, 2012). Further, and perhaps more seriously, the OW parameter is
not an objective method to assess the flow coherence as it depends on the frame of
reference in which the observations are made, and leads thus to an observer depen-
dent assessment of flow coherency (Beron-Vera et al., 2013; Haller, 2015). In the
current study, the OW parameter presents a further problem that is characteristic of
ageostrophic instabilities: as stated previously, filamentary MLIs are characterized
by intensified relative vorticity and strain rate in the same location, making the OW
parameter are ill defined quantity.

Given these issues in studying chaotic stirring and in identifying the structures re-
sponsible for this stirring, in the current study, we concentrate on the Lagrangian
approach to study the chaotic advection emerging from the MLIs using Finite Time
Lyapunov exponents.

Lyapunov exponents are defined in the asymptotic limit of infinite time intervals
which renders them inapplicable to geophysical situations where velocity fields are
only known for finite time intervals. As an alternative, Lyapunov exponents can be
calculated for finite intervals of time, leading to the concept of Finite Time Lya-
punov Exponents (FTLEs) (Haller and Yuan, 2000; Haller, 2001; Shadden et al.,
2005). Differently from Lyapunov exponents defined on a strange attractor, FTLEs
are not a global dynamical property of the flow and thus depend on the initial condi-
tions of the calculated trajectories, i.e. on the initial position and on the initial time
of release of the particles. This apparent limitation results however in the property
of FTLEs being able to capture local features of the flow, such as hyperbolic regions
and stirring/adiabatic mixing barriers (Lapeyre, 2002; Wiggins, 2005). Because the
Lyapunov exponents define lines of exponential separation of particles (e.g. passive
tracers), they become an important measure for the stirring and dispersive properties
of the flow. The tendency of the flow to fill the chaotic region results in a nonlocal
form of turbulence, suggesting that these features might provide the correct repre-
sentation for submesoscale turbulence. The theory assumes that the velocity field
prescribed by the flow is already known in form of analytic functions (e.g., Haller,
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2001, 2002; Shadden et al., 2005; Lekien et al., 2007; Sulman et al., 2013), numerical
simulations (e.g., Rypina et al., 2007; Rypina and Pratt, 2010; Bettencourt et al.,
2012) or observation data taken by satellites (Beron-Vera et al., 2008; Waugh and
Abraham, 2008; Waugh et al., 2012; Harrison and Glatzmaier, 2012).

A closely related diagnostic of stirring is the Finite Size Lyapunov Exponent (FSLE).
In the FSLE technique, the time τ it takes a pair of particles initially separated
by a distance δi, to increase their separation to a distance δf is calculated (e.g.,
Artale et al., 1997; Aurell et al., 1997). If the final particle separation after time
τ does not reach a predefined threshold γ, also called the amplification factor (e.g.,
d’Ovidio et al., 2004, 2009), the FSLE is assigned a value of zero in that location.
The possibility of fine tuning the amplification factor γ, allows the application of
FSLEs in the study of phenomenon over a broad range of spatial scales, ranging from
mesoscales (e.g., Bettencourt et al., 2012, 2013) to large scale oceanic (Hernández-
Carrasco et al., 2011; Hernández-Carrasco et al., 2012) and planetary (Joseph and
Legras, 2002) motions. Further, Farnetani and Samuel (2003) have used FSLEs to
study the deformation induced by the mantle flow at a subduction zone in the Earth’s
interior.

In a comparison between FTLEs and FSLEs, Boffetta et al. (2001) report that no one
particular diagnostic is superior to the other but each is superior in representing flows
under specific conditions. FSLEs are reported to reveal large scale structures better
than FTLEs. The FTLEs are instead more suited for revealing small scale properties
of chaotic advection in the atmosphere. They also report that Eulerian techniques
like Okubo-Weiss parameter and its improvement, the Hua - Klein criterion, are
insensitive to small scale transport barriers. In another study, Farnetani and Samuel
(2003) report that FTLEs are superior to FSLEs in detecting deformations around a
subduction zone induced by the mantle flow in the Earth’s interior. More recently, in
a study involving analytic and ocean velocity fields, Peikert et al. (2014) report that
when the amplification factor is suitably selected, FSLEs and FTLEs are equivalent
and thus yield similar results.

In addition to being used as diagnostics for quantifying stirring effected by a given
flow, FTLEs and FSLEs have also been used to locate structures akin to stable
and unstable manifolds of a classic dynamic system. These structures have been
referrred to as Lagrangian Coherent Structures by Haller and Yuan (2000). Initally,
LCSs were calculated as local maxima of FTLE fields (e.g., Haller, 2001; Shadden
et al., 2005) yielding curves in 2D and/or surfaces in 3D flows (e.g., Lekien et al.,
2007) with zero flux across them, thus representing barriers to mixing. Olascoaga
et al. (2006) report a persistent transport barrier on the shelf of West Florida which
is coincident with the FTLE ridge computed for the same flow. However, a close
inspection of ridges of FTLEs showed that they sometimes yield LCSs where they do
not exist (false positives) and fail to yield LCSs in locations where they are known to
exist (e.g., Haller, 2011). The calculation of LCSs has thus since digressed from the
consideration of FTLE ridges to the variational theory, in which LCSs are defined
as explicitly parameterized material curves advected by the flow (e.g., Haller, 2011;
Haller and Beron-Vera, 2012; Beron-Vera et al., 2013; Farazmand et al., 2014) and
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(Haller, 2015, for a review). The variational theory has the advantage of unveiling
both elliptic (e.g., vortices) and hyperbolic (e.g., filaments) LCSs, unlike the ridge
based definition that emphasized only hyperbolic LCSs.

The material nature of LCSs means that they constrain the flow thereby effectively
controlling the fluid motion, and hence their identification is of immense impor-
tance in understanding the transport and evolution of tracers in geophysical flows.
Knowledge of location of LCSs, is thus important in understanding the dispersion
patterns of tracers like pollutants as they form the template for tracer dispersion
(e.g., Olascoaga and Haller, 2012; Beron-Vera, 2015). The intensity of FTLEs and
FSLEs can be used to quantify the amount of stirring effected by a given flow field
and time series of Eulerian diagnostics like eddy kinetic energy (EKE) and vorticity
from which the strength of a flow can be inferred, have been found to show seasonal
cycles similar to those of FTLEs and FSLEs (e.g., d’Ovidio et al., 2004; Waugh and
Abraham, 2008; Hernández-Carrasco et al., 2012). Sasaki et al. (2014) have found
that submesoscale dynamics in the North Atlantic show a clear seasonal cycle which
is largely determined by frontal instabilities. These frontal instabilities are mainly
of two types: 1) baroclinic MLIs which are dominant in winter when the ML is deep
and are characterized by the enhancement of the conversion of available potential
energy (APE) to kinetic energy (e.g., Boccaletti et al., 2007). 2) Symmetric instabil-
ities which emerge when the Ertel potential vorticity becomes negative (e.g., Hoskins
et al., 1978; Thomas et al., 2013b). In a more recent realistic ocean modelling study,
Mensa et al. (2013) report that the seasonal cycle of submesoscale turbulence in the
Gulf Stream is dominated entirely by MLIs, showing a higher intensity in winter and
a weakening in summer. In this thesis, we take keen interest in investigating the
seasonality of submesoscale turbulence using Lagrangian diagnostics, specifically the
FTLEs. A comparison between time series of 3D and 2D FTLEs will be made and
the factors that modulate their seasonal cycles will be explored.

1.1 Research questions

Few studies have considered three dimensional FTLEs for geophysical flows due to
the fact that such flows are predominantly two dimensional. Among the exceptions
is the study by Sulman et al. (2013), who considered the FTLEs and the resulting
LCSs emerging from analytic 3D velocity fields. Their results show that appropriate
approximations of 3D FTLEs should account for the vertical shear of horizontal
velocities. In this thesis, we consider a more geophysically relevant flow obtained
from the instability of a ML front, in which the dynamics are dominated by the
presence of stratification and rotation. The resulting instabilities are characterized
by enhanced vertical velocities and vertical shear. We will thus focus on the following
questions:

• What is the chaotic stirring resulting from MLIs?

• What is the role of vertical velocities and vertical shear in determining the
structure and magnitude of FTLEs?

• What are the differences between 3D and 2D FTLEs for MLIs?
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• How does the skeleton of MLIs turbulence, responsible for the chaotic stirring,
look like?

• How do our findings from the idealised setting of a ML front relate to a more
realistic setting in which noise induced by surface winds and/or internal waves
are likely to change the flow dynamics?

• Is it possible to characterize the seasonality of submesoscale turbulence of a
realistically forced simulation using FTLEs?

• And finally, what are the differences between the seasonal cycles of 2D and 3D
FTLEs?

1.2 Research objectives

The objective of this thesis is to use a Lagrangian approach to study the chaotic
advection effected by baroclinic ML instabilities, arising from an adjusting ML front
in an idealised setting. This is done by calculating FTLEs whose statistics are used
to characterize the stirring influence of these instabilities.

The thesis also aims at extending the calculation of FTLEs in an oceanographic
context, from considering 2D surfaces yielding a quasi-3D structure (e.g., Bettencourt
et al. 2012, 2013 using FSLEs and, Garaboa-Paz et al. 2015 using FTLEs in the
atmosphere) to a fully 3D structure and make a comparison with the 2D FTLEs
which have been previously considered (e.g., Beron-Vera et al., 2008; Beron-Vera
and Olascoaga, 2009; Prants, 2014). A comparison 3D and 2D FTLEs will also be
made.

Further, an understanding of the vertical structure of the chaotic advection is sought
in order to establish if ML turbulence eventually has an impact on the underlying
pycnocline and hence the lateral stirring of tracers there. Badin et al. (2011) have
previously found that MLIs may propagate into the ocean interior and influence the
dispersion of tracers in the pycnocline.

The study also seeks to establish if MLIs can be detected as Lagrangian coherent
structures thus overcoming the shortcomings of Eulerian diagnostics which are unable
to correctly characterize submesoscale filaments.

Finally, we seek to understand the extent to which the findings of the idealised study
are translated to a realistic ocean setting, datasets of two case study regions in the
Atlantic Ocean are considered and the same analysis done in the idealised simula-
tions is repeated. The datasets obtained are from a realistically forced simulation
of the Atlantic Ocean and thus allow to study the seasonality of the submesoscale
turbulence and the factors which characterize it.
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1.3 Thesis Outline

From hereon, the thesis will be arranged as follows:

In Chapter 2, the theoretical background of chaotic advection is described. In par-
ticular, Sections 2.2 and 2.3 respectively outline how FTLEs and FSLEs can be
numerically calculated given a Eulerian velocity field u(x, t). Section 2.4 discusses
the process of obtaining LCSs using the theory of geodesics which enables a system-
atic rendering of coherent structures by yielding elliptic (e.g., closed vortices) and
hyperbolic (e.g., filaments) LCSs as explicitly parametrized curves.

In Chapter 3, a description of the numerical model used in the idealised study is given,
with Subsection 3.1.1 outlining the boundary conditions and geometrical layout of
the channel used. The initial conditions for the ML front are specified in Subsection
3.1.2. An outline of the model parameters used in the idealised simulations is also
given. Section 3.2, describes the methodology of integrating particle trajectories and
calculating FTLEs and FSLEs. In particular, Section 3.2.1 describes the numerical
algorithm used to integrate particle trajectories and the numerical computation of
FTLEs using the particle trajectories is given in Section 3.2.2. A detailed description
of the various numerical simulations carried out and the different FTLE realizations
cconsidered is given in Section 3.2.3. Section 3.3 presents results from the idealised
simulations. Finally, a summary and discussion of results from the idealised simula-
tions is given in Section 3.4. To mention, this chapter has been published under the
title “Three dimensional chaotic advection by mixed layer baroclinic instabilities”
(see Mukiibi et al., 2016b).

In Chapter 4, the analysis made in the idealised study is applied to velocity fields of
two case study regions of the Atlantic Ocean. Section 4.1.1 describes the model con-
figuration of the simulation from which the velocity fields of the case study regions
were extracted. The remainder of this chapter presents the results of the realistically
forced datasets and is concluded with the study of the seasonality of submesoscale
turbulence in the case study regions. A large component of the findings in this
chapter are a subject of another publication in preparation under the title “The sea-
sonality of submesoscale turbulence deduced from finite time Lyapunov exponents”
(see Mukiibi et al., 2016a).

Chapter 5 presents a general summary of the thesis and an outlook for future research
in line with the findings of this thesis. In particular, Section 5.1 gives a general
summary and conclusions drawn from the findings of the thesis. Section 5.2 gives an
outlook for future possible research, stating how the findings of this thesis may be
extended in future studies.

Appendix A gives an account of a mechanism for the development of large scale fronts
studied using a reduced two-layer Quasi-geostrophic model. In specific, Section A.2
describes the reduced model used and also covers a linear stability analysis of the
emerging equations of motion. It turns out from the linear stability analysis that
the instability development mechanism is governed by the degree of dissipation in
the system. For a dissipative system, the development of fronts is governed by the
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velocity shear and is studied in Section A.3.1. Section A.3.2 considers the almost
inviscid case in which the frontal development is determined by the Froude number.
The appendix A has been published in the 2014 Geophysical Fluid Dynamics (GFD)
summer school proceedings held at Woods Hole Oceanographic Institution (WHOI)
(Mukiibi, 2014).
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Chapter 2

Theoretical Background

In this Chapter, the theoretical background of chaotic advection involving the pro-
cess of obtaining particle trajectories and the consequent use of these trajectories
to compute Finite Time Lyapunov Exponents (FTLEs) and Finite Size Lyapunov
Exponents (FSLEs) is given. In Section 2.4, the relationship between FTLEs and
Lagrangian coherent structures (LCSs) is described, first, mentioning the shortcom-
ings of considering ridges of FTLEs as LCSs and second, calculating LCSs using the
theory of geodesics.

2.1 Equations of motion

Consider the motion of particles with velocity Uparticles and which are relatively light,
such that they are subjected to changing their velocity following the background flow
Ufluid = (u, v, w), in which they are contained. In changing their velocities to that of
the fluid, the instantaneous particle velocities are then equal to the Eulerian velocity
of the ambient fluid flow, that is,

Uparticles(t) = Ufluid(x(t), y(t), z(t)) . (2.1)

However, the velocities of individual particles at a location x(t) = (x, y, z) are also
given by the rate of change of their position vectors, thus yielding the deterministic
dynamical system

d

dt
x(t) = u(x, y, z, t) , (2.2)

d

dt
y(t) = v(x, y, z, t) , (2.3)

d

dt
z(t) = w(x, y, z, t) , (2.4)

where the lefthand and righthand sides of the system (2.2 - 2.4), respectively repre-
sent the Lagrangian and Eulerian velocities, with t being the time variable.
It is further assumed that the particles are light and inert such that they cannot
do anything but to instantaneously adjust their velocities to that of the ambient
flow. Consequently, this phenomenon has been alternatively, but intuitively termed
as passive advection (Aref, 2002). For a steady two dimensional (2D) system (i.e in
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which the component (2.4) is absent), the resulting dynamical system is integrable.
However, if time variability is introduced, a 2D system may be rendered non inte-
grable (e.g., Wiggins, 2005), eventually yielding chaotic particle trajectories. For a
3D system, non integrability is possible even for steady motions (e.g., Dombre et al.,
1986; Haller, 2001) and in this case, the term suitable to describe the ensuing mo-
tion is chaotic advection (Aref, 1984, 2002). Several studies have also adopted a
broader definition of chaotic advection, essentially referring to the process of expo-
nential stretching and folding of fluid elements leading to the increment of gradients
in tracer properties and eventually to irreversible mixing (e.g., Pratt et al., 2014).

2.2 Calculation of FTLEs

Consider the velocity field of a flow described by the first order system of ordinary
differential equations (2.2 - 2.4) written in vectorial as

d
dtx = u(x, t) , (2.5)

where x = (x, y, z) are the three dimensional particle trajectories. The perturbation
to a particle trajectory x(t) in the time interval [t1, t2] is computed as δ(t2) =
x(t2)− x(t1). The velocity field u(x, t) can thus be considered as a map of the flow
F which takes the initial position of the particle x(t1) and returns its final position
x(t1 + t2) at a later time t1 + t2 (Ottino, 1990a),

F t2
t1 |x(t1)〉 = |x(t1 + t2)〉 , (2.6)

where a bra-ket notation has been adopted (e.g., Shadden et al., 2005; Lekien et al.,
2007). For uniqueness of solutions of the flow map, the unity operator of F is defined
such that

F t1
t1 |x(t1)〉 = |x(t1)〉 . (2.7)

Using a Taylor expansion about |x(t1)〉, a perturbation δ(t1) to a particle trajectory
x(t1) is evolved linearly by the flow map as

F t2
t1 |x(t1) + δ(t1)〉 = F t2

t1 |x(t1)〉+ δ(t1) d
dxF

t2
t1 |x(t1)〉+O(δ2) . (2.8)

Assuming that the flow map defined by (2.8) is at leading order linear, the equation
for the evolution of the perturbation of a particle trajectory is

F t2
t1 |δ(t1)〉 = |δ(t1 + t2)〉 = δ(t1) d

dxF
t2
t1 |x(t1)〉 , (2.9)

and its square norm is

‖δ(t1 + t2)‖2 = 〈δ(t1 + t2)|δ(t1 + t2)〉 ,

=
〈
δ(t1) d

dxF
t2
t1 x(t1)|δ(t1) d

dxF
t2
t1 x(t1)

〉
,

(2.10)
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where || · || is the three dimensional Euclidean norm. Thus, the square of the norm
of the resulting perturbation in a particle trajectory after a time (t1 + t2) is given by
the expression

‖δ(t1 + t2)‖2 =
〈
δ(t1)|

[
d

dxF
t2
t1 x(t1)

]> [ d
dxF

t2
t1 x(t1)

]
|δ(t1)

〉
, (2.11)

where, [·]> is obtained by taking the complex conjugates of the entries of the matrix
[·] and then taking its transpose. The matrix given by

Dt2t1 (x1) =
[

d
dxF

t2
t1 x(t1)

]> [ d
dxF

t2
t1 x(t1)

]
,

=
[
∇F t2

t1 (x1)]>[∇F t2
t1 (x1)

]
,

(2.12)

is the finite-time right Cauchy-Green deformation tensor. The left Cauchy-Green
strain tensor is similarly defined as

[
∇F t2

t1 (x1)][∇F t2
t1 (x1)

]>
(e.g., Arnold, 1973; Ot-

tino, 1989; Truesdell and Noll, 2004). From its construction, the Cauchy-Green strain
tensor Dt2t1 (x1) is a real positive definite tensor, with real eigenvalues and orthogonal
eigenvectors. Equation (2.11) can therefore be written as

‖δ(t1 + t2)‖2 =
〈
δ(t1)|Dt2t1 (x1) |δ(t1)

〉
,

= Ci〈δ(t1)|δ(t1)〉 = Ci‖δ(t1)‖2 , i = 1, . . . , 3
(2.13)

where Ci are the eigenvalues of the operator Dt2t1 (x1) and is defined such that it
satisfies the relation

Dt2t1 (x1) |δ(t1)〉 = Ci|δ(t1)〉 . (2.14)

In a chaotic advection flow regime, initially infinitesimal perturbations in particle
paths grow exponentially i.e

||δ(t1 + t2)|| = ||δ(t1)|| exp [λ∗(t2 − t1)] , (2.15)

from which the scalar λt2∗t1 (x1), the Lyapunov exponent (e.g., Arnold, 1973; Truesdell
and Noll, 2004) is computed in the limits of infinite time and infinitesimal initial
separation, that is,

λt2∗t1 (x1) = lim
δ(t1)→0

lim
t2→∞

1
|t2 − t1|

log
[
||δ(t1 + t2)||
||δ(t1)||

]
. (2.16)

Since velocity fields u(t) defined in (2.5) are only available for finite periods of time
and are also computed in numerical models at finite resolutions, the asymptotic
limits in (2.16) are loosened and the resulting scalar λt2t1(x1) has been referred to
as the Finite Time Lyapunov Exponent (FTLE) (e.g., Haller, 2000; Wiggins, 2005;
Shadden et al., 2005). Combining (2.13) and (2.16) with the loosened asymptotics,
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the FTLEs λt2t1(x1) can thus be calculated from the expression

λt2t1(x1) = 1
|t2 − t1|

log
[
||δ(t1 + t2)||
||δ(t1)||

]
= 1
|t2 − t1|

log [Cmax]1/2 , (2.17)

where Cmax is the largest of the eigenvalues Ci of the operator Dt2t1 (x1) defined in
(2.12). From (2.17), it becomes apparent that the scalar field λt2t1(x1) is a measure
of the rate of particle separation in the time interval [t1, t2] whose magnitude is de-
pendent upon the length of the time interval τ = t2− t1 and the particle separartion
δ(t1 + t2). The magnitude sign is emphasised in the denominator of (2.17) since
calculation of λt2t1(x1) can be considered for both t2 > t1 (yielding forward in time
FTLEs) and t2 < t1 (yielding backward in time FTLEs) (see Fig. 2.1). One of the
several strengths of the Lagrangian measure λt2t1(x1) is apparent from this compu-
tation scheme, in that it reconstructs the history, and predicts the futures of the
synthetic particles over the entire time interval t1 < t < t2, rather than giving a
simplistic Eulerian snapshot of the flow.

It is also important to note that there are two possible schemes of computing forward
and backward in time FTLEs. In the first scheme, the forward and backward integra-
tions sample the same time window (hence dynamics) [t1, t2] but consider different
initial conditions (Fig. 2.1a). In the second, both integrations have common initial
conditions at t0 ∈ [t1, t2] but sample different windows hence dynamics of the finite
time dynamical system (Fig. 2.1b). In this thesis, the first scheme is considered since
we are interested in understanding the statistics of the flow in the entire integration
time window [t1, t2]. It has also been shown that both forward and backward in
time FTLEs can be obtained in a uni-direction simulation (e.g., Haller and Sapsis,
2011; Farazmand and Haller, 2013) which reduces the computation cost and time
required to obtain FTLEs. Further, several studies have reported various efforts to-
ward the development of efficient and cost effective algorithms used in the numerical
computation of FTLEs (e.g., Lekien and Marsden, 2005; Sadlo and Peikert, 2007;
Brunton and Rowley, 2010; Leung, 2011) which has led to the FTLEs being a quick
and widely accepted tool in the diagnosis of unsteady flows (see; Haller, 2015, for
related literature).

	  

(a)

Forward Integration

Backward Integration

t1 t2

	  

(b)

Backward Integration

Forward Integration

t1 t2t0

Figure 2.1: Diagramatic illustration of the integration windows that could be selected
when integrating particle trajectories. (a) Both forward and backward
integrations consider the same dynamics but different initial conditions. (b)
Forward and backward integrations have the same initial conditions at time
t0 but sample different dynamics of the flow.
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2.3 Calculation of FSLEs 13

The eigenvector associated to Cmax corresponds to the direction along which max-
imum separation of initially, infinitesimally close particles occurs. Equation (2.17)
shows that the scalar field λ is a measure of the rate of particle separation in the
time interval [t1, t2]. Equation (2.17) also shows that the length of the time interval
of integration [t1, t2] determines the magnitude of the FTLEs following an inverse
relation. Longer integration times yield finer and more detailed FTLE fields (e.g.,
Lapeyre, 2002; Shadden et al., 2005; Mathur et al., 2007; Harrison and Glatzmaier,
2012). However, from a geophysical point of view, it is also important to select the
length of the time interval of integration based on the flow dynamics. A meaningful
time interval should be long enough to cover the life span of the longest dynamics
in the flow domain, ensuring that all the stirring influences of vortices and filaments
are fully captured in the calculation of the FTLEs.

2.3 Calculation of FSLEs

Considering the first equality of (2.17) in a slightly different form as

λs = 1
|t2 − t1|

log
[
||δ(t1 + t2)||
||δ(t1)||

]
= 1
τ(x1, δ(t1), γ) log[γ] , (2.18)

with τ = t2 − t1 and γ = ||δ(t1 + t2)||
||δ(t1)|| = C0 ≡ constant.

The scalar λs is the finite size Lyapunov exponent (FSLE), and the ratio γ of particle
separation at a later time (t1 + t2) to their initial separation δ(t1) at time t1 has
been referred to as the amplification factor (e.g., Artale et al., 1997; Aurell et al.,
1997; Boffetta et al., 2001; d’Ovidio et al., 2004; Cencini and Vulpiani, 2013). The
numerical computation of λs involves tracking of particle pairs and obtaining the time
τ = t2− t1 after which the final separation of a given particle pair is a preset factor γ
larger than their initial separation at time t1. It is also noted that in addition to the
initial separation of particle pairs and the length of the time interval, FSLEs are also
dependent on the amplification factor γ i.e λs = λs(x(t1); δ(t1), γ) . The dependence
of FSLEs on the amplification factor γ makes FSLEs a suitable diagnostic tool in
the study of flow phenomenon over a broad range of spatial scales, facilitated by the
possibility of fine tuning γ to emphasize flow features of interest (e.g., Boffetta et al.,
2001; Joseph and Legras, 2002; d’Ovidio et al., 2004; Karrasch and Haller, 2013).

In the application of FSLEs to detect coherent structures, a heuristic analogy of
ridges of FTLE fields to those of FSLEs fields is made due to the visual similarity
of the two fields (e.g., d’Ovidio et al., 2004; Bettencourt et al., 2012, 2013). While
detection of coherent structures has since digressed from consideration of ridges of
FTLE fields (see; Haller, 2015, for a review), in itself, the analogy between ridges of
FTLE and FSLE fields was mathematically shown to hold but under strict constraints
due to irregularities in the FSLE field which include (Karrasch and Haller, 2013):

• Ill-posedness of FSLE fields
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While FTLEs are always defined for any initial conditions and integration time
t ∈ [t1, t2], FSLEs remain undefined in locations where final particle separa-
tions δ(t1 + t2) < γδ(t1) (as follows from (2.18)). This effect spreads to more
locations in the domain as γ is made larger since fewer particle pairs would
attain separations ≥ γδ(t1).

• Insensitivity of FSLEs to later changes in the flow
It is noted that once the particle pair separation reaches γδ(t1) and the time
τ(x1, δ(t1), γ) is captured, the FSLE field ignores any further changes in the
particle trajectories. This is in contrast to the FTLE field which captures the
dynamics of the flow for the entire time interval [t1, t2].

• Sensitivity of FSLEs to temporal resolution
The jump-discontinuities in the preceding point above indirectly imply that
FSLE fields are dependent on the temporal resolution of the velocity field. Since
time is discretised in outputs of numerical models, this effect therefore imposes
a constraint to the use of FSLEs requiring that velocity fields are computed at
high temporal resolution.

• Spurious ridges
Like it has been shown that the flux across ridges of FTLEs can be large (see
the following section) (e.g., Haller, 2001), ridges of FSLEs are no exception to
this flaw and thus cannot be considered to be material surfaces.

The reader is directed to Karrasch and Haller (2013) for a detailed discussion and
examples of the above shortcomings of FSLEs. In case the above issues of FSLEs
are carefully handled, the analogy of ridges of FSLEs and FTLEs is meaningful and
has been used with success to studies of stirring for both analytic (e.g., Bettencourt
et al., 2013; Karrasch and Haller, 2013) and geophysical flows (e.g., Joseph and
Legras, 2002; d’Ovidio et al., 2004, 2009; Bettencourt et al., 2012; Garaboa-Paz
et al., 2015). In this thesis, LCSs will be extracted as explicitly parametrized curves
infered from invariants of the Cauchy-Green strain tensor defined in (2.12) following
findings of recent studies. A discussion of the most recent techniques in computing
LCSs is given in the following section.
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2.4 Extraction of LCSs 15

2.4 Extraction of LCSs

Lagrangian Coherent Structures (LCSs) due to a given flow field u(x, t), are the
most repelling, attracting and/or shearing material surfaces which form the skeleton
of observed flow patterns due to the deforming fluid elements under the action of the
flow (e.g., Haller and Yuan, 2000; Haller, 2015). This definition outlines that LCSs
be material in nature i.e made of the same elements as the fluid itself and thus can
only be advected and deformed by the flow map but do not admit any flux of fluid
across them. Previously, several studies sought LCSs as hypersurfaces along which
stretching and/or compression of fluid patches is maximal over the time interval of
interest (e.g., Haller and Yuan, 2000; Haller, 2001). Shadden et al. (2005) and Lekien
et al. (2007) derive a mathematical framework in which LCSs are extracted as second
derivative ridges (or trenches, see, e.g., Beron-Vera et al. (2010)) of FTLE fields.

In this framework, a ridge of a scalar field � is defined as a curve (in two dimen-
sions) and/or surface (in three dimensions) along which there’s minimal variation
in the values of � but maximum variation in the directions transverse to it (e.g.,
Schultz et al., 2010; Fuchs et al., 2012; Schindler et al., 2012). This implies that an
object straddling along this curve or surface is always at the highest local altitude
to the neighbouring regions and stepping away from it in a transverse direction, the
object would be stepping to a relatively low altitude. Surfaces and curves delin-
eated by FTLE ridges were thus computed and assumed to be akin to stable and
unstable manifolds (Ottino, 1989, 1990a; Wiggins, 2005) of a classic dynamical sys-
tem; essentially dividing the flow domain into dynamically distinct regions with no
flux between each other (e.g., Haller, 2001; Lekien et al., 2007). Assuming a heuris-
tic analogy between FSLE and FTLE ridges, several studies have considered ridges
of FSLE fields as LCSs in both atmospheric (e.g., Boffetta et al., 2001; Joseph and
Legras, 2002; Garaboa-Paz et al., 2015) and oceanic flows (e.g., d’Ovidio et al., 2004,
2009; Bettencourt et al., 2012, 2013). The reader is directed to a review by Cencini
and Vulpiani (2013) for a detailed listing of literature on the application of FSLEs
to coherent structure identification.

However, recently it has been shown that second derivative ridges of FTLE fields
predict existence of LCSs in locations where they actually do not exist and fail to
yield LCSs in locations where they are known to exist (e.g., Haller, 2011; Farazmand
and Haller, 2012). Further studies have claimed that the argument of using second
derivative ridges as LCSs is too simplistic and cannot be used for coherent structure
detection in generic flows (see e.g., Norgard and Bremer 2012 and Peikert et al. 2013
for a counter argument). Rutherford et al. (2010) also report that ridges of FTLE
fields are not suited for LCS detection in rapidly rotating flows. The forementioned
shortcomings of extraction of LCSs as ridges of FTLE fields have however been ad-
dressed in recent studies by defining LCSs as explicitly parameterized curves derived
from invariants of the deformation field (e.g., Haller, 2011; Olascoaga and Haller,
2012; Farazmand et al., 2014; Beron-Vera et al., 2013; Blazevski and Haller, 2014).
The variational theory of LCS extraction (Haller, 2011) specifically targets LCSs as
material curves advected by the flow map F t2

t1 and also offers the option of obtain-
ing both hyperbolic (i.e normally attracting and repelling) and elliptic (e.g vortex
boundaries) type LCSs as opposed to the FTLE ridge definition, which emphasizes
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LCSs of hyperbolic type (Farazmand and Haller, 2012) and (see Haller, 2015, for a
review).

2.4.1 Geodesic theory of LCSs
Elliptic LCSs

The term Lagrangian in the accronym LCS, requires that LCSs are material curves
and/or surfaces M(t1) present in the fluid starting at the initial time t1, and whose
later positions are defined by the flow map as

F t2
t1M(t1) =M(t2) . (2.19)

However, to ensure that the resulting surfacesM(t2) have zero flux, it is constrained
further that the normal repulsion of neighbouring fluid elements, must remain atleast
an order of magnitude larger than pertubations of the neighbouring fluid elements.
Further, variations of the surface M(t2) are advected by the linearised flow map
according to (2.9), and thus, a unit normal n0 onM(t1) is not necessarily normal to
M(t2) (Haller, 2011). Also, sinceM(t2) is not necessarily flat, the metric to quantify
distances in such arbitrary surfaces is not constant, changing its form according to
the shape ofM(t2). The length of a line segment in surfaces of arbitrary shape can be
given in terms of geodesics. A geodesic on a surface is a curve connecting two given
points, such that any nearby curve with the same end points is longer (Pokorny,
2012). As an example, the geodesics on a sphere would be circles connecting 2
given points and are thus primarily functionals of the arclength over the surface of
the sphere. The variational theory of LCSs provides the necessary and sufficient
conditions for the existence of LCSs in terms of the invariants of the Cauchy-Green
deformation tensor, and in an objective (i.e frame independent) way (e.g., Haller,
2011; Farazmand and Haller, 2012). The eigenvalues λi and eigenvectors ξi of the
Cauchy-Green strain tensor Dt2t1 (x1) defined in (2.12) satisfy the relations,

Dξi = λiξi , ξ2 = �ξ1 , (2.20)

with 0 < λ1 < λ2 , i = 1, 2, and � =
[
0 −1
1 0

]
.

Elliptic LCSs are sought as positions of closed material lines that prevail as La-
grangian coherent vortices over a time interval [t−, t+] ∈ [t1, t2] . These material
line positions have been shown to be closed stationary curves of the averaged strain
functional (Haller and Beron-Vera, 2012, 2013)

Q(σ) = 1
σ

∫
σ

0

√
〈r′(s),Dt+t−(r(s))r′(s)〉√

〈r′(s), r′(s)〉
ds , (2.21)

obtained by averaging the tangential strain along parameterized curves r(s) over the
time interval [t−, t+] with s ∈ [0, σ]. Further, the stationary curves of Q(σ) in (2.21)
were shown to be closed orbits of the vector field

ηλ± =
√
λ2 − λ2

λ2 − λ1
ξ1(x1)±

√
λ2 − λ1

λ2 − λ1
ξ2(x1) , (2.22)
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with the vector field family (2.22) satisfying the differential equation

r′(s) = ηλ± , (2.23)

where λ serves as a parameter. Equation (2.23) coincides with the null geodesics of
the Lorentzian metric (e.g., Beron-Vera et al., 2013; Blazevski and Haller, 2014)

gλ(u, υ) = 〈u,Eλυ〉 , λ > 0, where (2.24)

Eλ(x1) = 1
2
(
Dt+t−(x1)− λ2I

)
, (2.25)

is the generalised Green-Lagrange strain tensor, that measures the deviation of an
infinitesimal deformation from a uniform spherical expansion by a factor λ. The
null geodesics resulting from (2.23) are tangent to the set of vectors in (2.22). For a
range of values of λ, solutions to (2.23) are a family of closed orbits with each orbit
increasing its arclength by the respective factor of λ and hence such solutions have
been called “λ-lines” (e.g., Onu et al., 2015).

2.4.2 Hyperbolic LCSs

Hyperbolic LCSs are defined as stationary curves of the averaged shear functional
over the interval [t−, t+] ∈ [t1, t2]

Q(σ) = 1
σ

∫
σ

0

〈r′(s),Dt+t−(r(s))r′(s)〉√
〈r′(s),Dt+t−(r(s))r′(s)〉〈r′(s), r′(s)〉

ds , (2.26)

which also coincides with the null geodesics of the Lorentzian metric (Farazmand
et al., 2014)

g(u, υ) = 〈u,Gυ〉 , (2.27)
with

G
t+
t−(x1) = 1

2
(
Dt+t−(x1)�−�Dt+t−(x1)

)
, (2.28)

and � defined in (2.20). The geodesic problem in (2.27) yields a set of differential
equations

r′1 = ξ1(r) , r′2 = ξ2(r) , (2.29)

from which Repelling and Attracting LCSs are respectively computed as explicitly
parameterized curves, with the parameter r being the arc length along the LCS.
For a detailed discussion of the geodesic extraction of LCSs, the reader is directed
to (Haller, 2015, and references therein) and to (Onu et al., 2015) for a numerical
implementation of the derivations discussed above. The latter study is also acknowl-
edged for developing LCS-Tool, a computational engine for computing LCSs from
two dimensional unsteady flows, which was used in the current study.
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Chapter 3

Idealised Simulations

In this chapter, the numerical model configuration, initial and boundary conditions
are described. A description of the various simulations carried out and a list of
parameters used in all numerical simulations is also given. Section 3.2 outlines the
methodology of obtaining particle trajectories and the procedure of calculating the
deformation tensor. The different numerical experiments conducted are described
in subsection 3.2.3. Results of the idealised simulations are presented in Section
3.3 and finally, a summary and discussion of the results is provided in Section 3.4.
Noteworthy, the contents of this chapter have been published (see Mukiibi et al.,
2016b).

3.1 Model set-up

An ML front in a channel configuration is considered, using a numerical primitive
equation model, the Massachusetts Institute of Technology general circulation model
(MITgcm) (Marshall et al., 1997a,b). In this thesis, we use the MITgcm in hydrostatic
mode since Mahadevan (2006) reports that non-hydrostatic effects are not relevant
at submesoscales as is the case in our simulations. A similar model configuration as
in Boccaletti et al. (2007) is adopted. The domain spans 192 km both in the zonal
and meridional directions and is 300 m deep. The zonal and meridional resolutions
are both set at 500 m while the vertical resolution is uniformly set as 5 m.

3.1.1 Boundary conditions

The channel is re-entrant with periodic boundary conditions along the zonal direc-
tion, so that fluid that exits at x = 192 km is re-admitted back into the channel at
x = 0 km while fluid that exits at x = 0 km is also re-admitted into the channel at
x = 192 km i.e u(x = 0) = u(x = 192 km). The meridional walls of the channel
are rigid and impermeable with free slip boundary conditions. The bottom of the
channel is set with no topography and with free slip boundary conditions. The top
of the channel satisfies free surface boundary conditions. Model parameters used in
the numerical simulations are presented in Table 3.1.
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20 3. Idealised Simulations

Table 3.1: Table of model parameters used in all simulations.

Parameter Symbol Value

Coriolis parameter f 1.0284× 10−4 s−1

Beta ( df
dy ) β ×10−11 s−1 m−1

Gravitational acceleration g 9.81 m s−2

Horizontal length of the channel Lx 192 km
Meridional length of the channel Ly 192 km
Depth of the channel Htot 300 m
Mixed layer depth HML 100 m
Spatial resolution (dx, dy, dz) (500, 500, 5) m
Lateral biharmonic viscosity νH 2× 105 m4 s−1

Vertical eddy viscosity νv 1× 10−4 m2 s−1

Lateral biharmonic diffusivity of heat KT 1× 102 m4 s−1

Lateral biharmonic diffusivity of salt KS 1× 102 m4 s−1

Vertical diffusivity of temperature KT z 1× 10−5 m2 s−1

Vertical diffusivity of salt KSz 1× 10−5 m2 s−1

3.1.2 Initial conditions

The channel is initialized with a ML front, in which a density gradient is aligned in
the zonal (East - West) direction and is 100 m deep (see Fig. 3.1). The ML front is

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

	   	  

COLD

WARM

100 m

200 m

Mixed
layer

Pycnocline

192 km

192 km

z

y

x

Figure 3.1: Diagramatic illustration of the channel geometry represented by the numerical
model. The domain measures 192km × 192km × 300m. The configuration has a
mixed layer front in the middle of the domain.

positioned at y = Ly/2 i.e 96 km north of the southern boundary of the channel. The
southern part of the channel contains lighter, warm and more saline waters at the
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Figure 3.2: Vertical profiles of (a, b) Potential temperature , (b, e) potential density and (c, f)
buoyancy frequency at the start of the numerical simulation (i.e t = 0) in the
southern and northern end of the channel.

surface, while the northern part of the channel is initialized with heavier, cold waters
at the surface (Figs. 3.2a,b,d,e). The ML lies upon an initially quiescent pycnocline
with flat isopycnals. The temperature and salinity profiles used in the reference
numerical simulation, set an initial uniform buoyancy frequency in the ML which,
following an hyperbolic tangent function, decreases with depth in the pycnocline
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(Fig. 3.2f). On the southern end of the ML, the initial stratification profile is such
that it decreases exponentially with depth (Fig. 3.2c).
The front is implemented by analytic expressions of temperature T and salinity S of
the form

T = 20.0− 10.0× tanh
(
z − zo

200

)
and (3.1)

S = 36.5− 10.0× tanh
(
z − zo

200

)
, (3.2)

respectively. T is given in units of [◦C] while S is defined in units of [psu]. The
variable z (in units of [m]) is the vertical height from the channel surface defined
such that

z =
{

0 ; at the channel surface,
300 ; at the channel bottom. (3.3)

The dynamically unstable ML front is allowed to adjust without any restoration
under geostrophic adjustment(e.g., Tandon and Garrett, 1994, 1995), that is, with
no external source of energy to the system. The initially, nearly vertical isopycnals
in the ML provide the energy (in the form of available potential energy (APE))
upon which the developing baroclinic instability draws (e.g., Stone, 1966; Molemaker
and McWilliams, 2005); eventually slumping the initially vertical isopycnals to the
horizontal thus yielding a stably stratified fluid (e.g., Boccaletti et al., 2007; Fox-
Kemper et al., 2008). In reality, various sources of energy come into play as the
front adjusts, acting either to reinforce and/or oppose the adjustment process, thus
making the stratification - restratification cycle a bit more complex than we consider
in the current idealised study. A noteworthy source of forcing that influences the
adjustment cycle of fronts is the wind stress and in particular its orientation. Lee
et al. (2006) report that upfront wind enhances restratification and accelerates the
adjustment of any existing fronts. Down-front winds instead carry denser waters
above lighter water, arresting the adjustment process of fronts and further enhancing
the APE reservoir from which baroclinic instabilities that restratify the ML draw
(e.g., Thomas and Lee, 2005; Mahadevan et al., 2010). Other sources of energy
that come into play include but are not limited to: frontogenesis arising from the
interaction of mesoscale eddies leading to secondary instabilities which accelerate the
restratification of the upper ocean (Spall, 1995; Lapeyre et al., 2006) and bouyancy
forcing on the ocean surface emerging from heat loss (or gain) and precipitation (or
evaporation).

It should be noted that, as the model is based on primitive equations, the vertical
velocity is only diagnosed from the divergence of the horizontal velocities. However,
for the set-up and scales analyzed in this study, the most important part of the ver-
tical velocity is captured by the divergence of the horizontal flow. Mahadevan (2006)
and Mahadevan and Tandon (2006) report that with sufficient spatial resolution, the
vertical velocities can be accurately calculated.
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3.2 Methodology

3.2.1 Computation of particle trajectories

A time interval τ = t2−t1 during which the particle motion is investigated is selected.
The lower limit t1 is selected at an instant after the initial spin-up of the model,
when the flow is well developed to reveal the stirring influence of the instability.
On the channel surface, the front starts to show meanders after ∼ 10 days which
roll into eddies in the next ∼ 10 days and eventually becoming completely unstable
(Fig. 3.3 a,b,c). By day 25, vortices of various sizes are observed to break away
from the main frontal region and the instabilities cover larger areas of the channel
(Fig. 3.3 d,e,f). The value of t2 is made as large as possible depending on the
computational resources available, but less than the time at which the instabilities
reach the meridional boundaries of the channel. The velocity field in the time window
τ is then written out every 15 minutes. A regular grid of particles is set at each grid
point in the domain, for a total of 8,609,516 particles.

The particle trajectories are integrated using a Runge-Kutta fourth order scheme.
For spatial interpolations of the velocity field, a tricubic scheme is adopted while a
linear scheme is used for temporal interpolations. Computation of trajectories is not
considered for particles on the boundaries of the channel. FTLEs are calculated using
both forward and backward integration in time, where the backward integration is
performed in the interval [t2, t1]. A note of caution is here obligatory: the forward
and backward integration allows to use the same flow, however it relies on different
initial conditions. This choice has been made in order to compare the statistics of
the FTLEs, however no comparison of snapshots of the field should be attempted.

3.2.2 Numerical computation of FTLEs

In the current study, we consider the operator,
(

d
dxF

t2
t1 x(t1) = d

dxx(t1 + t2)
)

to be
the 3× 3 matrix D whose entries are numerically obtained as finite differences (e.g.,
Haller, 2001, 2015). For a particle located away from the channel boundaries, there
are six nearest neighbors, laying along the three cardinal directions i.e North (N) -
South (S), East (E) - West (W ) and Top (T ) - Bottom (B) (Fig. 3.4). Components
of the deformation tensor are computed as

D =



(
xE2 − xW2
xE1 − xW1

) (
xN2 − xS2
yN1 − yS1

) (
xT2 − xB2
zT1 − zB1

)
(
yE2 − yW2
xE1 − xW1

) (
yN2 − yS2
yN1 − yS1

) (
yT2 − yB2
zT1 − zB1

)
(
zE2 − zW2
xE1 − xW1

) (
zN2 − zS2
yN1 − yS1

) (
zT2 − zB2
zT1 − zB1

)


, (3.4)

where x1 = x(t1) and x2 = x(t2) are the particle positions at times t1 and t2 respec-
tively. The FTLEs λ are then obtained from (2.17), where Cmax is the maximum of
the eigenvalues of Dt2

t1 (x1) =
(
D>D

)
.
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Figure 3.3: Snapshots of the potential density anomaly (σt = ρ− 1000) at the depth of 10 m
taken at times (a) 10, (b) 15, (c) 20, (d) 25, (e) 30 and (f) 35 days. Colorbars are
in units of kg m−3.

3.2.3 Numerical experiments

A set of five numerical experiments have been conducted with different values of
the initial surface density contrast ∆ρ (Table 3.2). For a ML of depth HML, the
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Figure 3.4: Particle positions on the model grid. Each particle has six nearest neighbors
aligned along each of the cardinal directions.

deformation radius Rd can be estimated from the relation

Rd = M2

f 2 HML , (3.5)

where, for a ML front aligned along the zonal direction, M2 = ∂b/∂y is the buoyancy
gradient across the front, with the buoyancy

b = −g∆ρ
ρs

, (3.6)

where g is the gravitational acceleration, ρ is the fluid density and ρs is the reference
density. In the pycnocline, the deformation radius is calculated as

Rd = Nmax

f
Htot , (3.7)

where Nmax is the maximum value of the buoyancy frequency and Htot is the channel
depth. Since the resulting instabilities in each of the experiments have different
growth rates and deformation radii, the time window used to calculate the FTLEs
(Table 3.2) differs accordingly to the time required for the instabilities to reach the
meridional boundaries of the channel. The experiment with ∆ρ = 0.4 kg m−3 is
taken as the reference experiment. To investigate the contribution of the various
components of the deformation tensor D to the rate of particle separation , four
realizations of D are considered. To investigate the role of vertical velocities, the
vertical displacement terms ∂z2

∂x1
and ∂z2

∂y1
are set to zero, leading to

D1(x1, t1, t2) =


∂x2

∂x1

∂x2

∂y1

∂x2

∂z1
∂y2

∂x1

∂y2

∂y1

∂y2

∂z1
0 0 1

 . (3.8)
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Table 3.2: Numerical experiments conducted and the time windows during which particle
trajectories are computed. The experiment with ∆ρ = 0.4 kgm−3 is considered as
the reference experiment.

∆ρ Time window (days) Deformation radii [km]
[t1, t2] ML Pycnocline

0.1 285 - 330 1.00 21.75
0.2 165 - 210 1.45 21.70

0.4 60 - 80 2.06 21.55

0.6 45 - 60 2.16 21.35
0.8 45 - 60 3.91 21.05
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Figure 3.5: Time evolution of the area averages of (a) 3D FTLEs and (b) approx2 FTLEs
at 10 m (continuous line), 100 m (dashed line) and 200 m (dot dashed line) in
the reference simulation.

To deduce the contribution of vertical shear to the overall rate of particle separation,
the terms ∂x2

∂z1
and ∂y2

∂z1
are set to zero yielding

D2(x1, t1, t2) =



∂x2

∂x1

∂x2

∂y1
0

∂y2

∂x1

∂y2

∂y1
0

∂z2

∂x1

∂z2

∂y1
1

 . (3.9)

Setting the joint contribution of vertical displacements and vertical shear to zero,
yields a reduction to a two dimensional system in which particle separation is effected
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only by the horizontal strain

D3(x1, t1, t2) =


∂x2

∂x1

∂x2

∂y1
0

∂y2

∂x1

∂y2

∂y1
0

0 0 1

 . (3.10)

Finally, setting the horizontal strain and vertical displacement terms to zero, yields

D4(x1, t1, t2) =


1 0 ∂x2

∂z1

0 1 ∂y2

∂z1
0 0 1

 , (3.11)

from which the contribution of vertical shear to particle separation is determined.
The resulting FTLE approximations from the above approximations of the Cauchy-

Green deformation tensor will be denoted as follows

3D FTLEs = 1
2|τ | logC , (3.12)

approx1 FTLEs = 1
2|τ | logC1 , (3.13)

approx2 FTLEs = 1
2|τ | logC2 , (3.14)

approx3 FTLEs = 1
2|τ | logC3 , (3.15)

approx4 FTLEs = 1
2|τ | logC4 , (3.16)

where C, C1, C2, C3 and C4 are respectively the maximum of the eigenvalues of
the operators DTD, DT

1 D1, DT
2 D2, DT

3 D3 and DT
4 D4. The absolute value (| · |) of

τ in (3.12 - 3.16) is emphasized since the sign of τ changes from being positive for
forward FTLEs to negative for backward FTLEs. Fig. 3.8b,c show the variation
of area averages of FTLEs with the integration time τ for the 3D and approx2
FTLEs respectively. The integrated values of the FTLEs are observed to converge
at all depths in about 470 hours, corresponding to ∼ 19.6 days. Badin et al. (2011)
reported that in this time, the separation of passive tracer was still exponential and
thus in a chaotic advection regime. As we are interested in the statistical properties
of stirring, using a shorter interval would yield a large change in the shape of the
PDFs and the spectra for small changes in the interval length, while with this choice,
the statistics appear to be quasi-stationary, in the limits of the time evolving flow
associated with the freely decaying front.
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3.3 Results

3.3.1 Eulerian fields

At the surface, MLIs are visible in the form of filaments along which the vertical
component of relative vorticity and strain rate, respectively defined as

ξ = ∂v

∂x
− ∂u

∂y
and (3.17)

S =
(

Sn2 + Ss2
)1/2

, (3.18)

where
Sn =

(
∂v

∂x
+ ∂u

∂y

)
and Ss =

(
∂u

∂x
− ∂v

∂y

)
, (3.19)

are respectively the normal and shear components of the strain rate, are intensified.
Isolated vortices that break away from the main frontal regions are observed as
regions with cores of high relative vorticity surrounded by high values of strain rate
(Fig. 3.6 a, b). For example, a dipolar structure is observed in the lower left
corner of the domain. While the structure appears to be an isolated vortex, closer
inspection, changing for example the range of the color bar, allows to recognize its
dipolar nature. In the channel interior, the filamentary structures disappear leaving
regions with diffused values of vorticity and strain rate (Fig. 3.6 d,e). The existence
of these non-zero regions of vorticity and strain rates underlying regions with intense
action of MLIs confirms findings of previous studies that MLIs can penetrate into
the pycnocline where they may be important for the lateral mixing of tracer (e.g.,
Badin et al., 2011). Another Eulerian diagnostic quantity, the Okubo-Weiss (OW)
parameter ω (Okubo, 1970; Weiss, 1991), which is essentially a measure of the relative
strength between the strain rate S and the relative vorticity ξ defined as

ω = S2 − ξ2 ,

= §2 + 4
(
∂u

∂y

∂v

∂x
− ∂u

∂x

∂v

∂y

)
= §2 − 4det(∇hu) ,

(3.20)

where
§ = ∇hu = ∂u

∂x
+ ∂v

∂y
, and det(∇hu)

are the horizontal flow divergence and determinant of the velocity gradient tensor
respectively. The expression of the OW parameter in the form of (3.20) reveals that
it contains information about the horizontal divergence of the flow (e.g., Provenzale,
1999; Petersen et al., 2006; Mensa et al., 2013) making it thus an ideal diagnostic for
out-of-balance motions (Molemaker and McWilliams, 2005) such as the those arising
due to MLIs.

The OW parameter identifies vortical structures as vorticity dominated cores (with
ξ > S) surrounded by regions of high strain rate (with ξ < S). Filamentary structures
are however difficult to characterize from the OW parameter field, since both their
vorticity and strain rate are intensified, yielding regions with alternating positive
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Figure 3.6: Left column: Normalised (a) relative vorticity (b) strain rate and (c) OW
parameter at 10 m depth computed at day 60. Right column: normalised (d)
relative vorticity, (e) strain rate and (f) OW parameter at 200 m depth computed
at day 60.

and negative values of the OW parameter (Fig. 3.6c). One example is given by the
surface ageostrophic filament extending at x ∼ 40 km and y ∼ 40−90 km, which has
a strong signature in both the vorticity and strain rate fields, but that disappears in
the OW field (Fig. 3.6a,b,c).

Another important aspect in the evaluation of the performance of diagnostic quanti-
ties of flow coherence is objectivity. A flow diagnostic is considered objective if it is
independent of the frame of the observer thus yielding similar results under time de-
pendent rotations and translations (e.g., Truesdell and Noll, 2004). Objectivity is a
test that many coherent structure detection algorithms fail and has thus been a sub-
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ject of recent and ongoing research (see Peacock et al., 2015, and references therein).
The OW parameter, like the relative vorticity and strain rate are all not objective
(e.g., Haller, 2005; Ouellette, 2012) and thus yield inconsistent coherent structures
under coordinate transformations. While heuristic non objective measures of flow
coherence are often easy to compute, they may yield both false positive and false neg-
atives in the frame under consideration (e.g., Haller, 2011), thereby mis-representing
the dynamical coherence of the flow. The issue of false flow coherence becomes more
difficult in diagnosing flows for which the correct coherent structures are not a priori
known (see Haller, 2015, for further discussion). The non objectivity and failure to
detect filaments by the Eulerian fields is further motivation for the choice to adopt
a Lagrangian approach in studying the stirring properties of MLIs.

3.3.2 Finite Time Lyapunov Exponents

Comparison of Fig. 3.7 and Fig. 3.6 shows that the forward 3D FTLE fields have a
much more complex structure than the Eulerian fields at all depths. Isolated vortices
are characterized by high values of FTLEs on both their interior and boundaries. The
reason for the presence of regions with high values of FTLEs within the vortices is due
to the unbalanced nature of the vortices, which have a spiraling structure associated
to the divergence of the flow, resulting in a fine FTLEs structure also in their interior.

Filaments in the main frontal region are instead characterized by regions with high
values of FTLEs alternating with regions of low values of FTLEs in a very fine
structure. This shows that in the frontal region, characterized by an interplay of
MLIs and their filamentary structures, secondary instabilities act to fold, stretch
and entangle the Lagrangian structure of turbulence. Eventually, for times longer
than the integration time used, the FTLEs would merge to create a chaotic region.
Noticeable, stirring is much more complex than revealed by Eulerian measures. 3D
FTLEs are finer at the ML base than at the surface (Fig. 3.7b), with filaments
and vortex boundaries with a more distinct appearance. In the channel interior,
filamentary structures are detected by the FTLE field in locations where the Eulerian
fields are rather featureless (Fig. 3.7c). The different appearance of the FTLEs at
the sea surface from the FTLEs at base of the ML and in the interior is related to
the fact that at depth the flow is weaker and thus acts to tangle less the FTLEs,
with the entanglement decreasing at depth with the strength of the flow.

The horizontally averaged 3D FTLEs (Fig. 3.8a, black line) show that the 3D FTLEs
have larger values in the ML, with a local maximum in the middle of the ML,
in agreement with the observation from numerical simulations that MLIs produce
stronger fluxes in the middle of the ML (Fox-Kemper et al., 2008), and have a fast
decrease below the ML base, showing however non zero values at all depths. Analysis
of the vertical structure of horizontally averaged forward FTLEs from the different
approximations (Fig. 3.8a) shows that 3D (black line), approx1 (black dotted line)
and approx4 (gray dot dashed line) FTLEs are indistinguishable at all depths. The
same result holds for approx2 (gray line) and approx3 (gray dotted line) FTLEs,
which are coincident at all depths, indicating that the vertical velocity does not play
a significant role in determining the size of FTLEs, but that the magnitude of the
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Figure 3.7: Forward 3D FTLEs (left column) and forward 2D FTLEs (right column) at
depths of 10 m (a,d), 100 m (b, e) and 200 m (c, f) in the reference simulation at
day 60. The black horizontal lines demarcate the region for which further analysis
of FTLEs is considered.

FTLEs is dominated by the vertical shear. The analysis of the vertical structure
of horizontally averaged FTLEs from the different approximations for the backward
integration (Fig. 3.8b) yields the same results as the forward integration.

Due to the coincidence of the 3D, approx1 and approx4, as well as of approx2 and
approx3 FTLEs, in the remaining only the results from 3D and approx2 FTLEs will
be presented, with the approx2 FTLEs henceforth referred to as 2D FTLEs.
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2D FTLEs show ridges, which in first approximation are defined as local maxima
(and minima of the negative) of the FTLE field, in the same location of the ridges
of the 3D FTLEs field (Fig. 3.7 d,e,f). The ridges found for the 3D and 2D cases
are in the same location as they are associated to the local intensification of vertical
shear and horizontal strain, which are in turn associated to the localized ageostrophic
instabilities. Note that the ridges of the FTLEs do not denote LCSs, as it is now
recognised that ridges have non zero flux across them (Haller, 2015). The values
of the 2D FTLEs are however about half of the values of the 3D FTLEs. Further,
the 2D FTLEs seem to show a smaller degree of entanglement of the FTLE field
in the frontal region. The large difference in the size of FTLEs along locations of
maximal and weak stretching of fluid patches yields well defined FTLE fields at all
depths. Vortex boundaries, narrow regions separating dipoles of vortices and frontal
structures are characterized by large values of FTLEs (Fig. 3.7f).
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Figure 3.8: Vertical profiles of the averaged (a) forward FTLEs and (b) backward FTLEs
for the different approximations of FTLEs in the reference simulation at day
60. Thin dashed gray line represents the mixed layer base at 100 m depth.

The vertical profiles of 2D FTLEs reveal that in addition to only being approximately
half the values of 3D FTLEs, 2D FTLEs are surface intensified while their values
quickly decrease below the ML (Fig. 3.8a). This surface intensification of 2D FTLEs
is also revealed by the observation that, for all τ , the difference between the area
averaged 2D FTLEs at different depths are larger than the difference between the
area averaged 3D FTLEs at different depths (Fig. 3.5a,b). At 200 m depth, the
values of 2D and 3D FTLEs have reduced by ∼ 80% and ∼ 40% of their respective
values at the ML base (Fig. 3.8a). The slow decrease of 3D FTLE values from the
base of the ML to the channel interior, shows that the vertical shear is able to sustain
high rates of particle separation at depth.

3D FTLEs are thus able to “penetrate” in the channel interior, filling the volume
of the channel (Fig. 3.9) where they show curtain-like structures that form the
template for stirring in the channel. These curtain-like structures have also been
found in previous studies that have considered 3D (Lekien et al., 2007) and quasi 3D
velocity fields (Bettencourt et al., 2012). Further, area averages of forward in time
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Figure 3.9: Left column: Forward in time (a) 3D and (c) 2D FTLEs. Right column:
Backward in time (b) 3D and (d) 2D FTLEs. All quantities have units of
10−6s−1. Only the region shown between black lines in Fig. 3.7 is presented.

FTLEs are found to exhibit values comparable to their corresponding backward in
time FTLE approximations at all depths (not shown). It should be noted however
that the forward and backward FTLEs have been calculated using different initial
conditions, so no comparison between the backward FTLEs, which are calculated in
the time interval [t2, t1], and the Eulerian fields, which are defined at time t1, should
be attempted.

The relationship between the local value of the FTLEs and the vertical shear suggests
the existence of a scaling relationship between the two quantities, which will be
studied next.
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3.3.3 Scaling relationship between the FTLEs and the vertical shear

Consider a system in geostrophic and hydrostatic balance, so that the thermal wind
relation

∂Ug

∂z
= g

fρs
k̂ ×∇ρ , (3.21)

holds, where Ug is the geostrophic current and g is the graviational acceleration.
Approximating the derivatives using finite differences, (3.21) yields

Λi = ∆ Ug

∆z ∆t = g∆t
fρs∆xi

(∆ρ) , (3.22)

where ∆t is the time step of integration for the particle trajectories. Further, con-
sidering the flow gradient tensor in general terms as

∇F t2
t1 ≈

Γ1 Γ2 Λ1
Γ3 Γ4 Λ2
ω1 ω2 1

 , (3.23)

where Γi and ωi are the components of the horizontal shear of the horizontal and
vertical currents multiplied by ∆t, respectively. The corresponding Cauchy-Green
strain tensor (2.12) takes the form

∆ ≈

A D E
D B F
E F C

 , (3.24)

where,
A = Γ2

1 + Γ2
3 + ω2

1 ; D = Γ1Γ2 + Γ3Γ4 + ω1ω2 ;
B = Γ2

2 + Γ2
4 + ω2

2 ; E = Γ1Λ1 + Γ3Λ2 + ω1;
C = Λ2

1 + Λ2
2 + 1 ; F = Γ2Λ1 + Γ4Λ2 + ω2 ;

(3.25)

The characteristic equation of the tensor ∆ in (3.24) is

(A − σ)
[
(B − σ)(C − σ)− G2

]
− D [D(C − σ)− FE ] + E [DF − E(B − σ)] = 0 ,

(3.26)
where σi are the sought eigenvalues. In what follows, different approximations of the
parameters in (3.25) are made that lead to the FTLE realizations made earlier in
(3.13 - 3.16). For all approximations, except for approx4, we assume Γi = Γ, Λi =
Λ, ωi = ω.
• If ω = 0 and the other terms in (3.23) are retained, we recover approx1. The

solutions of the characteristic equation (3.26) are [0, 4Γ2, 2Λ2 + 1].
• Assuming that ω 6= 0 ,Λ = 0, yields approx2. The solutions of the characteristic

equation are thus [0, 1, 4Γ2 + 2ω].
• Assuming ω = 0, Λ = 0, yields approx3. The solutions of the characteristic

equation are [0, 1, 4Γ2].
• Finally, assuming Γ1 = Γ4 = 1 ,Γ3 = Γ2 = ω = 0 , yields approx4. The

solutions of the characteristic equation are [1, 1, 2Λ2 + 1].
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In geophysical flows, Λ >> Γ, so that the maximum eingenvalue of approx1 and
approx4 is the same and corresponds to 2Λ2 + 1. Since 2ω2 � 4Γ2, approx2 and
approx3 also yield he same maximum eigenvalue, that is 4Γ2.

This explains why the numerically computed values of FTLEs are similar for approx1
and approx4 (hereafter called λ3d) and for approx2 and approx 3 (hereafter called
λ2d), as visible from Fig. 3.8d. In summary,

λ3d ∼
1
2τ log

(
2Λ2 + 1

)
, (3.27)

λ2d ∼
1
2τ log

(
4Γ2

)
. (3.28)

A comparison of the magnitudes of the λ3d and λ2d yields

λ3d

λ2d
∼ log4Γ2

(
2Λ2 + 1

)
, (3.29)

so that λ3d ≥ λ2d if 2Λ2 +1 ≥ 4Γ2. The vertical profiles of the horizontally averaged
2Λ2 + 1 and 4Γ2 are shown in Fig. 3.10, which shows that indeed 2Λ2 + 1 ≥ 4Γ2 at
all depths, from which λ3d ≥ λ2d holds.

Substituting (3.22) in (3.27) leads to,

λ3d ∼
1
2τ log

2
(

g∆t
fρs∆xi

)2

(∆ρ)2 + 1
 . (3.30)

Equation (3.30) gives a scaling law between the local FTLEs and the nonlocal density
contrast used to initialize the ML front.

2 4 6 8 10

50

100

150

200

250

Λ × 10−4 [s−1]

D
ep

th
 [m

]

(a) Vertical shear

ML base

1 2 3 4

50

100

150

200

250

α × 10−6 [s−1]

D
ep

th
 [m

]

(b) Horizontal shear

ML base

Figure 3.10: Vertical profiles of the (a) vertical and (b) horizontal shears at day 60 in the
reference simulation. The thick gray line indicates the mixed layer base at 100 m
depth.
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Figure 3.11: Area average of FTLEs versus ∆ρ for 3D (continuous black line) and approx2
(dashed black lines) FTLEs at the depth of (a) 10 m and (b) 200 m. In gray, the
same quantity is shown as derived from the scaling law (3.30).

It should be noted that the scaling relation here proposed can be reinterpreted as
a relationship between the slope of tracer filaments and the density contrast ∆ρ.
Considering a tracer filament with concentration ϕ, the aspect ratio between the
horizontal and vertical scales of a tracer filament under the action of horizontal
strain and vertical shear, for long time scales yields (Haynes and Anglade, 1997;
Haynes, 2001)

∂ϕ/∂z

∇hϕ
∼ Λ

Γ , (3.31)

where ∇h = i∂/∂x+ j∂/∂y . The same result was found by Smith and Ferrari (2009)
only assuming a forward potential enstrophy cascade. In this case,

∂ϕ/∂z

∇hϕ
∼ N

f
, (3.32)

holds (Charney, 1971), as observed in high resolution quasi geostrophic simulations
and confirmed from observations of passive tracer dispersion in the North Atlantic
(Smith and Ferrari, 2009). In the current case,

∂ϕ/∂z

∇hϕ
∼ ∆xi

∆z ∼
α

f
∆ρ , (3.33)

that can be reduced to (3.32) assuming, without loss of generality, a filament aligned
in the zonal direction and using the relationship, valid for the ML (Tandon and
Garrett, 1994, 1995; Young, 1994)(

1
f

∂b

∂y

)2

∼ ∂b

∂z
= N2 . (3.34)

The domain integrated values of the FTLEs λ as a function of ∆ρ shows that, in the
ML, the scaling law lies between the 3D and approx2 FTLEs (Fig. 3.11a), while it
converges to the values of the 3D FTLEs in the pycnocline (Fig. 3.11b). The large
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discrepancy between the prediction of the scaling law and the numerical 3D FTLEs
in the surface layers is explained by the fact that in the ML, the particle trajectories
are dominated by ageostrophic velocities, which are not captured by the thermal
wind balance approximation considered in (3.21). The discrepancy is larger for large
values of ∆ρ, corresponding to MLIs with higher values of Rossby numbers and
enhanced vertical transport. In the pycnocline instead, the ageostrophic component
of the flow is weak yielding a convergence of the scaling law to the 3D FTLEs.
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3.3.4 FTLEs Statistics

Ridges emerging from backward FTLEs represent regions to which fluid parcels con-
verge and which are advected by the flow (e.g., Shadden et al., 2005; Mathur et al.,
2007; Lekien et al., 2007). It is then possible to consider the backward FTLEs as
proxies for a conservative passive tracer, with the FTLE values corresponding to the
tracer concentration. Under this assumption it is interesting to look at the back-
ward FTLEs statistics, namely the probability distribution functions (PDFs) and
the wavenumber spectra, in order to characterize the behavior of the FTLEs. In
particular, current parameterizations of passive tracer dispersion by mixed layer in-
stabilities assume the validity of downgradient diffusive schemes (Fox-Kemper et al.,
2008), which in turn would imply a Gaussian distribution for the passive tracer,
with a Eulerian power spectra following a power law k−1, where k is the horizontal
wavenumber. While a Gaussian distribution is not expected to hold for the backward
FTLEs, it is interesting to calculate their statistics and to compare them between
the 3D and 2D case, in order to establish the role of 3D stirring in the distribution of
passive tracers. All the quantities are calculated for the region of the domain where
the instabilities are well developed, shown as the region enclosed by black lines in
Fig. 3.7.

Probability Distribution Functions

The PDFs of the backward FTLEs calculated for different values of τ show conver-
gence in time, in agreement with the convergence in time of the horizontally averaged
FTLEs (Fig. 3.12). The PDFs of the backward 3D FTLEs at 10 m depth, show large
deviations from the Gaussian distribution calculated with the same mean and stan-
dard deviation, exhibiting positive values of skewness and long tails toward lower
FTLE values (Fig. 3.12a). In comparison, the Gaussian distribution would yield a
zero value of skewness. The PDFs are also characterized by low values of kurtosis. In
comparison, the Gaussian distribution would yield a value of kurtosis of 3. The PDFs
of the backward 3D FTLEs (Fig. 3.12b) show a ”shouldering” structure (Beron-Vera
et al., 2008), which is indicative of a mixed phase space structure of the flow with
different attractors and in which different regions experience non uniform stirring
rates from the instabilities. While the different shoulders are insufficient to qualify
the PDFs of 3D FTLEs as multimodal (e.g., Szezech et al., 2005; Harle and Feudel,
2007), they point to the fact that the stirring in the domain is nonhomogeneous.
The deviation from the Gaussian distribution at 10 m depth is visible also in the
PDFs of the 2D FTLEs (Fig. 3.12b), which show non zero values of skewness and
relatively flat peaks corresponding to values of kurtosis larger than 3 (Fig. 3.12d).

The analysis of the vertical profiles of the skewness and kurtosis of the PDFs of the
backward FTLEs, reveals that the distributions of FTLEs are non Gaussian at all
depths (Fig. 3.13). In particular, the skewness of the 3D FTLEs (black lines) shows
local maxima at the sea surface and in the pycnocline, and a local minimum within
the ML. The skewness of the backward in time 2D FTLEs (gray line) shows instead
negative values in the ML, increasing to positive values in the interior, with the zero
crossing line corresponding to depths just beneath the base of the ML.
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Figure 3.12: PDFs of (a) 3D and (b) 2D FTLEs calculated with backward in time integration
at 10 m depth. The FTLEs are calculated using particle integration times of 440
hours (dashed lines), 460 hours (full gray lines) and 470 hours (full black lines).
Dotted lines represent the Gaussian distributions with the same mean and
standard deviation of the PDFs calculated with the particle integration time of
470 hours.

Negative skewed PDFs, as observed in Fig. 3.12 at 10 m depth, reveal that most
locations in the flow domain experience rates of particle separation greater than the
observed average value, with the latter case reflecting a relatively more vigorous
stirring influence of the flow. The skewness profiles in Fig. 3.13a show thus that the
full 3D stirring leads to higher stirring at all depth than inferred from the 2D and
other approximations. The relatively distinct ridges of the 2D FTLE approximations,
particularly in the ML, are reflective of this distribution in which most of the particles
experience low stirring rates while a few of them (that lie along ridges) experience
higher rates of stirring hence larger values of FTLEs.

The kurtosis of the 3D FTLEs (Fig. 3.13b, black line) shows values that are lower
than 3 at all depth, corresponding to PDFs that are more peaked than the Gaussian
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Figure 3.13: (a) Vertical profiles of the third order moment (skewness) of the PDFs of
backward in time 3D FTLEs (black line) and 2D FTLEs (gray line) at day 60 in
the reference simulation. The skewness of the Gaussian distribution, equal to
zero is shown as a thin black line. (b) Vertical profiles of the fourth order
moment (kurtosis) of the PDFs of the backward in time 3D FTLEs (black line)
and 2D FTLEs (gray line). The kurtosis of the Gaussian distribution is 3 (thin
black line).

distribution. A local minimum is observed at the center of the ML and local maxima
are observed at the sea surface and within the pycnocline. The kurtosis of the
backward in time 2D FTLEs (gray line) shows instead a very different distribution,
taking values larger than 3 within the ML, but lower values at the sea surface and in
the pycnocline. The low values of kurtosis of PDFs imply that the distributions are
relatively flat near the mean value, and thus there is no single dominant phase but
an interwining of multiple phases that contribute to the overall particle separation.
In contrast, PDFs with higher values of kurtosis would imply the existence of a
dominant phase in a pool of other relatively weaker ones.

Non symmetric PDFs, skewed toward low FTLE values have been observed also
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in previous studies of 2D FTLEs (e.g., Abraham and Bowen, 2002; Voth et al.,
2002; Beron-Vera and Olascoaga, 2009; Waugh et al., 2012; Harrison and Glatzmaier,
2012).

FTLEs Spectra

Considering the backward FTLEs as a passive tracer, it is interesting to look at
the slopes of the tracer variance, in order to characterize if they show a local or
nonlocal behavior. In particular, considering a Eulerian wave number spectra of
kinetic energy,

E(k) ∼ k−α , (3.35)
and the corresponding tracer spectra T (k), local dynamics are characterized by 1 ≤
α < 3, for which the tracer spectra shows a

T (k) ∼ k
α−3

2 −1 , (3.36)

dependence (e.g., Bennett, 1984). In this regime, the dispersion of particles is dom-
inated by the action of instabilities with size comparable to the separation of the
particles. The particular case T (k) ∼ k−2 is characteristic of frontal dynamics. For
nonlocal dynamics, α ≥ 3 and T (k) ∼ k−1.

The wavenumber spectra are calculated in the zonal direction, i.e. along lines of
constant latitude, and then averaged. As for the PDFs, the calculation is performed
only in the region occupied by the MLIs, shown between black lines in Fig. 3.7.
In the ML, the kinetic energy (KE) spectra shows slopes of α = 3 at scales smaller
than the first baroclinic deformation radius, and much steeper slopes at subme-
soscale, which are thus dominated by dissipation (Fig. 3.14a). Both the 3D and 2D
backward FTLEs spectra show a −1 slope at all scales (Fig. 3.14b,c), which is in
agreement with the slope of the KE spectra and which is a signature of local disper-
sion created by the mesoscale instabilities. Slopes at smaller scales should instead
be interpreted carefully, as at these scales the finite resolution of the model and the
numerical dissipation prevent the possible formation of an inertial range. Notice
that the 3D and 2D FTLEs spectra display the same pattern of peaks, as a direct
consequence of the fact that 3D and 2D FTLEs have ridges in the same locations.

In the pycnocline, the kinetic energy spectrum at scales below the first baroclinic
deformation radius shows an inertial range with slope of α = 3, or steeper (Fig.
3.14d). Analysis of the spectra for the backward in time 3D FTLE field reveals
however slopes of ∼ -2 at 200 m depth (Fig. 3.14e). The 2D FTLE field at 200 m
depth reveals also a ∼ -2 slope at scales smaller than the first baroclinic deformation
radius, until ∼ 10 km, and steeper slopes at smaller scales (Fig. 3.14f). The spectra
slopes of -2 correspond to frontal structures and are in agreement with results from
observations from different basins of the World Ocean which show similar slope (e.g.,
Ferrari and Rudnick, 2000; Cole et al., 2010; Cole and Rudnick, 2012; Callies and
Ferrari, 2013; Kunze et al., 2015) or even less steep (Klymak et al., 2015) both
at the surface and in the ocean interior. Spectra slopes of -2 were found also from
high resolution numerical simulations of the California Current System (Capet et al.,
2008).
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(b) 3D FTLE spectrum at 10m depth
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(e) 3D FTLE spectrum at 200m depth
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Figure 3.14: Spectra of (a,d) Kinetic energy, (b,e) backward in time 3D FTLEs and (c,f)
backward in time 2D FTLEs at 10 m and 200 m depth respectively. The value of
the first baroclinic deformation radius (Rd) in the reference simulation is ∼2.06
km (broken gray lines) in the ML and ∼21 km (continuous gray lines) in the
pycnocline.

The spectra suggest that the passive tracer, here characterized from backward in
time FTLEs, retains a -2 slope, characteristic of frontal structures (Boyd, 1992),
also at depth, in agreement with the observation that MLIs are able to penetrate
in the underlying pycnocline, where they are responsible for horizontal mixing, as
observed in numerical simulations by Badin et al. (2011) and in the analytical and

Chaotic advection by submesoscale processes



3.3 Results 43

semi-analytical solution of Badin (2013) and Ragone and Badin (2016). It should
be noted that this interpretation is challenged by the observations of kinetic energy
spectra by Callies et al. (2015), which suggest instead the predominance of balanced
dynamics. Callies et al. (2015) do not, however, examine tracer spectra. Satisfactory
scientific explanations on what gives rise to the -2 slope for tracer spectra in the
interior are still missing.

The−1 slope in the wavenumber spectra at 10 m depth is comparable with the results
by Beron-Vera and Olascoaga (2009), which found the same slope, representative of
local diffusion, at the sea surface. The transition between −1 slope close to the
sea surface to −2 slope at depth can be explained considering that close to the sea
surface the flow is more energetic and is responsible for a stronger entanglement of
the FTLEs, which results in a larger variance of FTLEs at smaller scales. At depth,
FTLEs are less entangled and the spectra displays a smaller variance at small scales.

It should be noted that the comparison between the results of this study and the
results found from observations or from numerical simulations with realistic geometry
and forcing is however only of qualitative nature, due to the lack of forcing in the
setting here considered.

3.3.5 Scale dependence of stirring

To further characterize the adiabatic mixing in the ocean interior created by MLIs
we have calculated the Finite Size Lyapunov Exponents (FSLEs) (Aurell et al., 1997;
Artale et al., 1997), which are calculated using the expression in (2.18). Equation
(2.18) should be compared with (2.17). In (2.18), γ is a fixed separation between
particles with initial separation δ, and τ(δ) is the time required to attain this sepa-
ration. The analysis of FSLEs has been successfully applied to the study of stirring
and turbulence in the atmosphere (e.g., Joseph and Legras (2002)) and in the ocean
(d’Ovidio et al., 2004, 2009; Garcia-Olivares et al., 2007; Schroeder et al., 2011, 2012;
Özgökmen et al., 2012; Griffa et al., 2013; Mensa et al., 2013).

FSLEs are closely related to metrics from information theory and they do not only
measure the predictability time of the dynamics at different spatial scales, but also
measure the degree of randomness and information content (Gaspard and Wang,
1993; Costa et al., 2005). Further, they can give an information for the evolution
of the fluctuations for non-infinitesimal perturbations (Aurell et al., 1997). For a
review on FSLEs, see Cencini and Vulpiani (2013).

As FSLEs show a dependence on the largest Lyapunov exponent for small initial
separation and a decay of the FSLEs with a power law corresponding to a diffusive
behavior of the particles for larger initial scales of separation (Artale et al., 1997;
Boffetta et al., 2000), they can be used to characterize dynamics that possess a multi-
scale nature. This is reflected in the resulting dispersion regimes, with the chaotic
advection regime (or ”Lyapunov regime”), which is obtained for particle separation
which is smaller than the separation of the flow features responsible for the dispersion,
characterized by constant λs; the Richardson regime (Richardson, 1926), which is
obtained for particle separation which is comparable to the separation of the flow
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features responsible for the dispersion, characterized by λs ∼ δ−2/3; and the diffusive
regime, which is obtained for particle separation which is larger than the separation
of the flow features responsible for the dispersion, characterized by λs ∼ δ−1 (Artale
et al., 1997; Boffetta et al., 2000).
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Figure 3.15: FSLEs as a function of the initial separation δ of the particles at (a) 10 m and
(b) 200 m depth. Black full and dashed line indicate threshold separations of
γ = 2 and γ =

√
2 respectively. Lines with slope −2/3 and −2, corresponding to

the Richardson and diffusive regime respectively, are reported in gray for
comparison. Vertical gray lines indicate the deformation radius.

An alternative regime for scales smaller than the typical size of oceanic eddies was
proposed by Özgökmen et al. (2012), which suggested that if submesoscale eddies
are responsible for local transport, at these scales λs is not constant but shows an
increasing trend as the scale decreases, which is also named “Hypothesis II” (in
contraposition to “Hypothesis I”, corresponding to the Lyapunov regime). While
FSLEs seem to be unable to capture LCSs (Karrasch and Haller, 2013), in this
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Section they will be used to study the scale dependence of chaotic advection.

The domain averaged value of λs as a function of the initial separation of the particles
δ at the depth of 10 m is shown in Fig. 3.15a. The value of λs was calculated from
the 2D FSLEs using the two standard values of γ =

√
2 (dashed line) and γ = 2 (full

line), which corresponds to separation doubling between the particles. As suggested
by Boffetta et al. (2000), different values of γ can be used to detect different regimes.

The dependence of λs on δ at 10 m depth shows a decay of the values of λs for scales
larger than the deformation radius (Fig. 3.15a). The threshold value of γ =

√
2

yields a signature of a Richardson regime between ∼ 10 km and ∼ 30 km, followed
by a diffusive regime at larger scales, detected by the threshold γ = 2. For scales
larger than ∼ 30 km, the dependence of λs on δ shows a saturation, with values of
λs rapidly decreasing as δ increases. For scales smaller than the deformation radius,
both values of γ suggest the presence of a Lyapunov regime. It should be noted that
due to the small size of the deformation radius, we are left with not enough points
to make a correct assessment of the lack of a “Hypothesis II” regime in the ML.

At 200 m depth, the dependence of λs on δ shows signature of a Richardson regime
between the deformation radius and ∼ 30 km, and a diffusive regime between ∼ 30
km and ∼ 60 km. At larger scales, the trend shows a saturated regime. This result
is in agreement with the results found by Badin et al. (2011) using passive tracers,
which observed a Richardson regime until ∼ 40 km within the pycnocline. For scales
smaller than the deformation radius, instead, no “Hypothesis II” regime is visible,
suggesting that, despite the fact that MLIs are able to excite mixing in the interior,
they do not give a local signature in the dispersion regime.
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3.3.6 Lagrangian Coherent Structures

The chaotic stirring acting on the passive tracer and described in the previous sec-
tions is determined by the skeleton of the turbulence underlying the flow. In order
to characterize this skeleton of the turbulence, we proceed in calculating the LCSs
of the flow under consideration. In the current study, we compute hyperbolic and
elliptic LCSs along two dimensional horizontal surfaces implemented with the LCS
Tool - a geodesic LCS detection software for two dimensional unsteady flows (Onu
et al., 2015). The integration of stretch and strain line LCSs in (2.29) is terminated
when the arclength parameter r ≥ 50 km in order to ensure a good resolution of the
emerging structures. Due to limitations in the computational resources, the LCSs are
calculated using the velocity field with 3 hours output, i.e. with a much coarser time
resolution than the previous computation, which instead made use of a 15 minutes
output.

The results for the extraction of the LCSs at 10 m are shown in Fig. 3.16a and, in
doubled resolution for the region demarcated between the black lines in Fig. 3.16a, in
Fig. 3.16b. Red, blue and green lines indicate respectively Repelling, Attracting and
Elliptic LCSs. The FTLEs field is indicated with gray shades. Notice that, due to
the different time resolution of the velocity field, the FTLEs field appears smoother
than in Fig. 3.7. Frontal structures are observed to be delineated by a complex
combination of Repelling and Attracting LCSs, from which a dense network of LCSs
spreads over the surrounding regions. The frontal region is also characterized by
a web of heteroclinic connections, which form the skeleton of the chaotic flow. As
noted from previous studies, the relation between ridges of the FTLE field and the
LCSs computed from the variational theory is not one-to-one, although ridges of
FTLEs may indicate a nearby LCS (Haller, 2011; Beron-Vera et al., 2013). While
ridges of the FTLE field capture most of the important flow features (especially
when computed at high resolution (Fig. 3.16b)), it is important to note that the
parameterized LCSs offer a more complex structure that cannot be deduced from
the ridges of the FTLE field. It should also be noted that the hyperbolic LCSs are
dependent on the spatial resolution, with a more convoluted and intricate network
of hyperbolic LCSs emerging at higher resolution, with a higher correlation between
the FTLE ridges and the hyperbolic LCSs emerging.

Elliptic LCSs that delineate vortex boundaries, obtained for λ = 1, are represented
as closed green curves. Repelling and Attracting LCSs have been truncated so as
to start from the boundaries of the elliptic LCSs. The analysis of the Elliptic LCSs
confirms the presence of the dipolar structure detaching from the ML front in the
lower left corner of the domain, and of another elliptic structure detached from the
frontal region in the lower right side of the domain.

Also in the pycnocline, a complex web of Repelling and Attracting LCSs emerges
from the flow. Several regions are observed to be ”spreading centres” of Repelling
and Attracting LCSs. Future work will have to determine if these centres evolve into
isolated vortices as the flow evolves. The tendency of the geodesically extracted LCSs
to predict and reveal flow features and dynamics that are not observed from FTLE
fields, allows for a deeper understanding of the Lagrangian skeleton of turbulence
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Figure 3.16: (a) Repelling (red), Attracting (blue) and Elliptic (green) LCSs computed from
day 60 to day 80 for the reference run. 2D FTLEs computed for the same period
are shown in the background as gray shades. (b) 2D FTLEs and geodesic LCSs
in the region demarcated in a black square in panel (a) are computed at double
resolution. (c) 2D FTLEs and geodesic LCSs at 200 m depth.

(Mathur et al., 2007; Peacock and Haller, 2013; Beron-Vera, 2015). This Lagrangian
skeleton leads to the formation of ordered patterns in the flow, and its understanding
requires more than the identification of curves of maximal fluid trajectory separation.
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3.4 Summary and Discussion

In this Chapter, the 3D FTLEs of ML instabilities have been characterized. Results
show that the structure and size of the 3D FTLEs are determined predominantly
by the vertical shear of horizontal velocities. 3D FTLE fields exhibit a complex
distribution in which high rates of particle separation are not just confined to regions
along filaments and vortex boundaries, but are also found in the regions surrounding
these high activity features. Regions that are rather quiescent, as observed from
Eulerian fields, reveal a complex structure of FTLEs, confirming findings of previous
studies which show that a regular flow pattern can yield chaotic particle trajectories
(e.g., Aref, 1984; Ottino, 1990b; Aref, 2002; Wiggins, 2005). The complexity of
the 3D FTLEs field resembles the multifractal distribution of FTLEs found from
observations of chaotic stirring by Abraham and Bowen (2002). Further, the vertical
shear is found to sustain high rates of particle separation in the domain interior.
As a consequence, 3D FTLEs decrease slower with depth than 2D FTLEs, which
are instead found to be surface intensified and to decrease quickly in magnitude in
the pycnocline. It should be noted that 3D and 2D FTLEs display the same spatial
distribution of ridges.

The dominating role of vertical shear in the magnitude of the FTLEs is a direct
consequence of the nature of MLIs, which is characterized by a stratified and rotat-
ing flow in a quasi-balanced state and in which vertical velocities, although larger
than their corresponding mesoscale instabilities, is still approximately three orders
of magnitude smaller than the horizontal velocities. Analysis of other oceanic flows
in which vertical velocities might play an important role, such as coastal upwelling
regions, in which vertical velocities are one order of magnitude smaller than the
horizontal velocities, reveals a still dominating effect of vertical shear (Bettencourt
et al., 2012). It would be interesting to extend the analysis here proposed to other
kind of flows, such as idealized flows (e.g., Pratt et al., 2013; Rypina et al., 2015)
Langmuir turbulence (e.g., Van Roekel et al., 2012), in which vertical velocities are
comparable to the horizontal velocities and the emerging turbulence is no longer
quasi two dimensional.

The observation that 3D FTLEs are dominated by vertical shear allows to determine
a scaling relation between the amplitude of the FTLEs and the initial density contrast
of the ML front. While this relationship well agrees with the values of the 3D FTLEs
in the interior of the domain, in the ML it shows a deviation from the simulations,
which can be attributed to the presence of ageostrophic ML instabilities.

Backward in time FTLEs can be considered as proxies to a conservative passive
tracer, with the FTLE values corresponding to the tracer concentration. Under this
assumption it is possible to compare the FTLEs statistics with the statistics expected
from passive tracers. PDFs of both 3D and 2D FTLEs are found to be non Gaussian
at all depths exhibiting non zero values of skewness and relatively low values of
kurtosis. 3D FTLES are skewed toward higher FTLE values with long tails toward
low values of FTLEs, while PDFs of 2D FTLEs are instead skewed toward low values
of FTLEs with long tails toward higher values of FTLEs. Wavenumber spectra show
a slope of -2 in the pycnocline, corresponding to frontal structures and in agreement
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with results from observations made in various basins of the world ocean, reporting
similar spectra slopes for tracers both in the ML and inside the pycnocline(e.g.,
Ferrari and Rudnick, 2000; Cole et al., 2010; Cole and Rudnick, 2012; Callies and
Ferrari, 2013; Kunze et al., 2015; Klymak et al., 2015). The lack of Gaussianity and
the slopes of the spectra confirms the observation that the FTLEs possess elongated
frontal shapes. Using the backward in time FTLEs as proxies for passive tracers,
the lack of Gaussianity poses a constraint for the use of diffusive parametrizations,
which constrain the stirring effect of MLIs within the ML (Fox-Kemper et al., 2008).

By computing FSLEs at different spatial resolutions, the scale dependence of the
stirring effected by MLIs has been studied. With the amplification factor γ =

√
2

at the surface, a Richardson regime is observed for distances between 10 and 30
km, while a diffusive regime is observed at large scales with the amplification factor
γ = 2. For scales larger than 30 km, λ rapidly decreases for increasing values of δ
and eventually saturates. At scales smaller than the deformation radius, a Lyapunov
regime is observed for both γ =

√
2 and γ = 2. In the channel interior, λ shows

signature of a Richardson regime between the deformation radius and ∼ 30 km, and
a diffusive regime between ∼ 30 km and ∼ 60 km. At larger scales, the trend shows
a saturated regime. At scales smaller than the deformation radius, λ is found to be
saturated thus yielding no ”Hypothesis II” regime (Özgökmen et al., 2012). Absence
of a ”Hypothesis II” regime implies that although MLIs propagate into the channel
interior, they are unable to yield a local signature in the particle dispersion regimes.

Finally, LCSs are calculated using the variational theory which allows for a distinc-
tion between elliptic (e.g vortices) and hyperbolic (e.g filaments) LCSs. Isolated
vortices are identified as elliptic LCSs from which a complex web of ALCSs and
RLCSs emerge. The entanglement of ALCSs and RLCSs is more complex in the ML
due to the large stretching and folding of fluid elements from the MLIs. At high
resolution, more hyperbolic LCSs are observed. In the pycnocline, several regions
are observed as spreading centres of ALCSs and RLCSs. It is also observed that the
relation between LCSs and FTLE ridges is not a one-to-one, which is in agreement
with previous studies (e.g., Haller, 2011) which have reported that FTLE ridges may
show LCSs in locations where they don’t exist and conceal them in locations where
they exist. The observed complex structures of LCSs associated to MLIs can be
important for the characterization of mixing and the transfer of nutrients and other
passive tracers in the ocean surface, as well as provide the landscape for the growth
of different phytoplankton species (d’Ovidio et al., 2010).
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Chapter 4

Realistic Ocean Simulation

In this chapter, an analysis of the ocean dataset (hereafter called the parent dataset)
obtained from a realistic numerical simulation of the Atlantic Ocean is presented.
Two case study areas are chosen: one in the North Eastern region of the Atlantic
ocean, capturing part of the North Atlantic drift current (e.g., Fofonoff, 1981) and
another in the relatively low activity central Atlantic Ocean. We perform the same
analysis as for the idealised simulations using velocity fields of the two case study
regions and compute FTLEs following the methodology in Chapter 3.2. By analysing
the time series of both Eulerian and Lagrangian diagnostics of the flow for four years
(i.e 2006, 2007, 2010 and 2011), we study the seasonality of submesoscale turbulence
in the two contrasting case study regions.

4.1 Model set-up

A simulation of the Atlantic Ocean north of 33◦ S, including the Mediterranean Sea,
Nordic seas and the Arctic Ocean was conducted using the Massachusetts Institute of
Technology general circulation model (MITgcm) in hydrostatic mode (Marshall et al.,
1997a,b). The MITgcm was run with a horizontal spatial resolution of ∆x = ∆y ∼ 4
km corresponding to a resolution of 1/24◦ at the equator. The vertical resolution
is ∆z = 5 m in the topmost 40 levels and increase linearly with depth for a total
of 100 levels. The model bottom topography, which is realistic in this simulation,
is extracted from the 2-Minute Gridded Global Relief Data [ETOPO2] (Smith and
Sandwell, 1997). At the ocean surface, the model is forced with momentum and
buoyancy fluxes obtained by using bulk formula and the atmospheric state of the
ECMWF/ERA-Interim reanalysis (Dee et al., 2011). Parameterization of vertical
mixing is implemented with a K- profile parameterization (KPP) formulation (Large
et al., 1994), with background coefficients of vertical viscosity and diffusivity respec-
tively set at 10−4 m2s−1 and 10−5 m2s−1. For horizontal viscosity, the biharmonic
coefficient was set at 3×109 m4s−1. Since biased spurious trends are known to emerge
in long temporal integrations, the ocean surface salinity is relaxed to the monthly
climatological values of the World Ocean Atlas 2005 (see Boyer et al., 2005).

To allow for a quick spin up of the model, the initial conditions in the parent simu-
lation are selected as the output of the final state of a similar simulation initialised
by the World Ocean Atlas (Boyer et al., 2005) and integrated at 8 km resolution for
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Figure 4.1: Total kinetic energy in the Atlantic ocean at the 7.5 m depth in logarithmic scale,
averaged for the period between 2003 and 2011 . The dashed boxes enclose the
case study regions.

the period 1948 to 2003. The parent simulation is then integrated for a period of
10 years starting 2002 to 2011, with fields being written at a daily frequency. For a
more detailed description of the parent simulation, see Section 2.2 of Sena-Martins
et al. (2015).

4.1.1 Case study regions

In this thesis, we use temperature, salinity and velocity fields from the above parent
simulation in two case study areas, namely;

• A region in the North Eastern Atlantic Ocean bounded between latitudes 44◦ N
and 61◦ N and between longitudes 35◦ W and 09◦ W (Fig. 4.1), which also en-
closes part of the Northern branch of the Gulf Stream, the North Atlantic drift,
which crosses to Western and Northern Europe (e.g., Luyten, 1977; Stommel,
1958a,b). The energetic surface circulation in this region maintains a signifi-
cantly strong flow in the ocean interior, characterised by meanders and a net
flow towards the northeastern part of the domain (Fig. 4.2 a,b).
The region also has rough topography at the bottom with depths varying be-
tween 300 m in the northeastern part to ∼ 5 km in the southwestern part of
the domain (Fig. 4.3a).

• A relatively low eddy activity region in the Central Atlantic Ocean bounded
by latitudes 10◦ N and 29◦ N and between longitudes 42◦ W and 25◦ W (see
Fig. 4.1). This region encloses part of the southern branch of the Subtropical
gyre, namely, the North Equatorial current that recirculates off the west coast
of Africa (e.g., Fofonoff, 1981). The net flow on the ocean surface in this region
is toward the West and it becomes stronger with increasing distance from the
west coast of Africa. However, the net flow in the ocean interior is weak, and
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(a) Mean temperature at 7.5 m depth (b) Mean temperature at 661.5 m depth

Figure 4.2: Ten year average temperature field for the region in the North East Atlantic
ocean. Vectors show the horizontal velocity field, which is characterised by several
meanders and a net flow towards the North East.

does not show a dominant direction (Fig. 4.4 a,b). The topography of the
region is largely flat with depths varying between ∼ 4 km and 5.5 km (Fig.
4.3b).

Velocity fields for the above two study regions shown in Fig. 4.1 for the years
2006, 2007, 2010 and 2011 were extracted from the parent dataset. Since the current
study aims at understanding the stirring influence of MLIs and their associated
chaotic advection, the study concentrates only on the topmost 60 levels, equivalent
to a total depth of ∼ 1 km from the ocean surface. With the extracted velocity fields,
particle trajectories are obtained following the same procedure described in Chapter
3.2 and the different FTLE approximations calculated as for the idealised simulations,
with integration time τ = 15 days. In what follows, results of the simulation for the

(a) Region in North East Atlantic (b) Region in the Central Atlantic

Figure 4.3: Topography of the case study regions. (a) region in the North East Atlantic ocean
(b) region in the Central Atlantic ocean. Colorbars are in units of km.
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(a) Mean temperature at 7.5 m depth (b) Mean temperature at 661.5 m depth

Figure 4.4: Ten year average temperature for the region in the Central Atlantic ocean.
Vectors show the horizontal velocity field orientation, which is towards the North
West at the ocean surface.

0 500 1000 1500
0

50

100

150

200

250

300

350

400

Days

M
LD

 [m
]

 

 

N−E Atlantic

Central Atlantic

Mixed layer depth

Figure 4.5: Time series of the mixed layer depth for the region in the North East Atlantic
Ocean (dotted black line) and the region in the Central Atlantic ocean (dotted
gray line). Red lines separate the different years and the thick vertical black line
emphasizes the jump between the year 2007 and 2010.

year 2011 will be presented for the two case study regions discussed above whose
primary distinguishing feature is the mixed layer depth (MLD). We here define the

North East Atlantic Central Atlantic
Winter Summer Winter Summer

RdML [km] 12 5 14 8.8
Rdtot [km] 16 21 74 76

Table 4.1: Mixed layer and pycnocline Rossby radii of deformation for the case study regions,
calculated for both winter and summer seasons.

MLD as the depth at which the ocean water temperature deviates from its surface
value by 0.5◦C (e.g., Sasaki et al., 2014; Thompson et al., 2016). Other criteria of
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determining the MLD such as, the depth at which the water density deviates from its
surface value by 0.03 kg m−3 (e.g., Mensa et al., 2013), yield approximately similar
results. For the region in the North East Atlantic ocean, the MLD ranges between 20
m in summer and 400 m in winter, while for the region in the Central Atlantic ocean,
the MLD varies between 20 m in summer and 80 m in winter (Fig. 4.5). Further,
variations in MLD during winter and summer seasons lead to different deformation
radii for the two seasons, which are computed here using (3.7). The deformation
radii for winter and summer seasons in the two case study regions are shown in
Table 4.1. The spatial resolution of the numerical model (which is ∼ 4 km), does not
allow the visualization of submesoscale features for which the deformation radius is
of the same size or slightly higher, for the region in the northeast Atlantic ocean.
In the central Atlantic ocean, the ML deformation radii for winter and summer are
also low (≤ 14 km) and thus no submesoscale MLIs can be resolved. The pycnocline
deformation radius is however large enough to enable the resolution of pycnocline
submesoscale features.
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4.2 Results: North Eastern Atlantic Ocean

Figure 4.6 presents snapshots of normalised Eulerian fields: the relative vorticity,
strain rate and Okubo-Weiss parameter at 7.5 m (left column) and 660 m (right
column) depth calculated during winter, specifically for day 90 [i.e end of March] of
the year 2011. Vortices are noticed to be characterised by regions with cores of

(a) Vorticity/f at 7.5 m depth

y
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(d) Vorticity/f at 660 m depth

(b) Strain rate/f at 7.5 m depth
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(e) Strain rate/f at 660 m depth

(c) OW/f2 at 7.5 m depth
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(f) OW/f2 at 660 m depth
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Figure 4.6: Normalised Eulerian fields evaluated at day 90 [end of March] of the year 2011 in

the North Eastern Atlantic Ocean. Left column: (a) relative vorticity (b) strain
rate and (c) OW parameter at 7.5 m depth . Right column: (d) relative vorticity,
(e) strain rate and (f) OW parameter at ∼ 660 m depth.

intensified relative vorticity surrounded by large values of strain rate. Filaments are
instead shown by regions along which vorticity and strain rate are simultaneously
intensified (Fig. 4.6 a, b). It is also noticed that the flow in this region exhibits
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features over a broad range of scales, with vortices whose radii range between 30 to
hundreds of kilometres and filaments which are a few kilometres thick. Regions of
strain arising mostly from the interaction of mesoscale vortices manifest themselves
as filaments with differing length scales and strength. An outstanding region with
a rich submesoscale field is the region in the North Eastern part of the domain
which encompasses part of the North Atlantic Drift, showing a large number of
submesoscale vortices [i.e with radius of O(10) km] and high intensity filaments.
In the domain interior, a decrease in the number of small scale features with radii
of O(20) km is noticed, leaving only mesoscale vortices (Fig. 4.6 d,e). This is in
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Figure 4.7: Normalised Eulerian fields evaluated at day 270 [end of September] of the year

2011 in the North Eastern Atlantic Ocean. Left column: (a) relative vorticity (b)
strain rate and (c) OW parameter at 7.5 m depth . Right column: (d) relative
vorticity, (e) strain rate and (f) OW parameter at ∼ 660 m depth.
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agreement with previous studies (e.g., Thomas et al., 2008) which have reported
that submesoscale dynamics thrive in the presence of weak stratification which is
characteristic of the ML, and that these dynamics reduce by several folds in the
pycnocline. One particular property of the ML that governs the dominance and
visibility of small scale features, is the mixed layer depth (MLD) whose deepening
in winter leads to their increased intensity, and to its weakening when the MLD
becomes shallow in summer (e.g., Sasaki et al., 2014; Thompson et al., 2016). As
expected, Eulerian diagnostics in the interior attain values lower than those obtained
at the ocean surface due to the weakening of the flow in the ocean interior (see Figs.
4.6 d,e,f and Figs. 4.7 d,e,f).

In summer, when the ML is shallow (attaining average values ∼ 25 m, see fig. 4.5),
the number of vortices with radii below 50 km is noticed to have reduced, both
at the ocean surface and interior (see Fig. 4.7), with mesoscale vortices of radii of
O(100 km) covering most regions of the domain. The values attained by the Eulerian
diagnostics are also noticed to be generally lower than those calculated for the winter
period, which signifies the stirring importance of MLIs enhanced during winter and
weakened in summer. Several studies have previously reported the emergence of a
richness of scales in winter, its weakening in summer and its associated seasonality
using Eulerian diagnostics (e.g., Mensa et al., 2013; Sasaki et al., 2014) and statistical
techniques (e.g., Callies et al., 2015). In this thesis, we consider an alternative
diagnostic, the FTLE, to understand the seasonality of the turbulence arising due to
these small scale features and the factors upon which it depends.

4.2.1 FTLEs

FTLEs are calculated following the same methodology used in the idealised simu-
lations in Section 3.2. We here consider only the backward FTLEs since they can
be used as proxies for passive tracer (e.g., Beron-Vera and Olascoaga, 2009), thus
allowing a calculation of passive tracer spectra from which we understand whether
local or nonlocal dynamics dominate the flow. Also, it was found in Chapter 3 that
forward and backward FTLEs yield comparable magnitudes of FTLEs and similar
statistics (see Fig. 3.8 a,b), although the finite-time dynamical systems involved are
different since they involve use of different initial conditions (Haller, 2015).

Analysis of snapshots of the backward FTLEs calculated in windows of 15 days
for the four years considered, shows that 3D FTLEs are surface intensified both in
winter and summer, while their vertical variation reduces in the sub-surface and deep
interior of the ocean. It should therefore be noted that a different scale has been used
for 3D FTLEs at the surface, to allow for a clear visualization of flow features, which
would otherwise have been impossible to see. The 2D FTLEs instead show only a
minimal change between the surface and sub-surface values, initially increasing and
reaching a maximum near the base of the ML, and then decreasing with depth to the
deepest level of the ocean considered (Figs. 4.8 and 4.9). As observed in Chapter
3 for the idealised simulation, the 3D FTLEs at the surface are more complex (Fig.
4.8a and Fig. 4.9a), showing large values of FTLEs both at the edges and interior of
vortices, and along filaments. However, they yield a more distinct appearance at the
base of the ML (Fig. 4.8b and Fig. 4.9b). The 2D FTLEs instead yield a distinct
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appearance with large FTLE values at the edges of vortices and along filaments at
all depths. It should however be noted that both 3D and 2D FTLEs show ridges in
similar locations.

Maps of 2D FTLEs for the surface and interior of the ocean, differ only slightly in
magnitude (Fig. 4.8 d-f and Fig. 4.9 d-f) compared to those of 3D FTLEs, which are
seen to be strongly intensified at the surface while changing slightly in the pycnocline
(Fig. 4.8 a-c and Fig. 4.9 a-c). The distinct appearance of 2D FTLEs also reveals a
dominance of frontal structures both at the surface and interior of the ocean. The
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Figure 4.8: Backward in time 3D (left column) and 2D (right column) FTLEs calculated at
day 90 [end of March] of year 2011 in the North Eastern Atlantic Ocean at (a, d)
7.5 m, (b, e) ∼ 200 m and (c, f) 660 m depths.
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large difference in magnitude between surface and sub-surface values of 3D FTLEs is
further noticed in the vertical profiles calculated from the seasonal averages over the
four years considered. Below the ML, which is on average ∼ 30 m in summer and
∼ 200 m in winter, 3D FTLEs are found to reduce by ∼ 50% of their surface values.
In the topmost levels of the ocean, the difference in magnitude between winter and
summer 3D FTLEs is minimal with both quantities showing minimal changes with
depth. The winter 3D FTLEs show a vertical structure, which is smoothly decreasing
at a rate faster than linear within the ML. In the ocean interior, 3D FTLEs are
observed to vary only slightly with depth, with the winter season exhibiting values
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Figure 4.9: Backward in time 3D (left column) and 2D (right column) FTLEs calculated at
day 290 [end of October] of the year 2011 in the North Eastern Atlantic Ocean at
(a, d) 7.5 m, (b, e) ∼ 200 m and (c, f) 660 m depths.
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larger than those in the summer as expected due to the strong winter stirring activity
(Fig. 4.10).
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Figure 4.10: Average vertical profiles of area averages for (a) 3D FTLEs and (b) 2D
FTLEs calculated for the winter [between 21st December to 21st March] and
summer [between 21st June to 21st September] for the region in North
Eastern Atlantic Ocean. The full and dashed gray lines correspond to the
average summer and winter mixed layer depths respectively. Note that
different scales are used for 3D and 2D FTLEs due to the large difference in
magnitude between them.

Vertical profiles instead show that 2D FTLEs increase with depth reaching local
maxima at ∼ 70 m and ∼ 110 m in the summer and winter seasons respectively,
and then decrease with depth to the lowest levels of the ocean considered. The
winter and summer 2D FTLEs are also observed to yield only slight differences in
magnitude in the topmost levels of the ocean, while they separate in the interior,
yielding larger values for winter than summer. The deep MLs in winter lead to the
emergence of more energetic small scale features, thus yielding large FTLE values in
the ocean interior. In summer instead, the ML is relatively shallow, shrinking the
APE reservoir from which ML baroclinic instabilities (Molemaker and McWilliams,
2005) draw and thus yielding low FTLE values in the pycnocline (Fig. 4.5).
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4.2.2 Seasonality of FTLEs

To study the seasonal cycle of FTLEs and the factors that modulate them, in the
two case study regions of the Atlantic ocean, we consider time series calculated at a
frequency of every 15 days during the four years: 2006, 2007, 2010 and 2011. Due
to the limited span of our time series of FTLEs, the analysis offered in this thesis
is generally qualitative. Figure 4.11 presents the time series of 3D and 2D FTLEs
superimposed on top of each other, to allow for a comparison between them. It
should be noted that the scale used for 3D FTLEs (on the left) is different from that
of 2D FTLEs (on the right) which are found to be ∼ 6 and ∼ 3 times smaller at the
surface and pycnocline, respectively. The variability of 3D and 2D FTLEs is noticed
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Figure 4.11: Timeseries of 3D FTLEs (black lines, left vertical scale) and 2D FTLEs

(gray lines, right vertical scale) at (a) 7.5 m depth and (b) 661.5 m depth
over the years 2006, 2007, 2010 and 2011 for the region in the North East
Atlantic Ocean. Red lines separate the different years and the thick vertical
black line emphasizes the jump between the year 2007 and 2010.

to be stronger at the surface than in the ocean interior, as it would be expected due
to the variability of the surface wind forcing (see Fig. 4.11a,b), but further studies
are required to study this correlation.
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At the ocean surface, 3D FTLEs show a seasonal cycle, reaching a maximum in
spring and a minimum, late in summer. Similarly, 2D FTLEs show a clear seasonal
behaviour, attaining maximum values in late winter and reaching a minimum in late
autumn (Fig. 4.11a). Noticeable also is that 3D FTLEs show more variability than
that yielded by 2D FTLEs, which could mean that the two diagnostics depend on
different factors at the ocean surface. Also in the interior, both 3D and 2D FTLEs
show a clear seasonal cycle, representing more stirring in winter and less in summer.
Further, apart from a small discrepancy that 3D FTLEs reach a maximum earlier
than 2D FTLEs, the variability of the two diagnostics is comparable (Fig. 4.11b).
In what follows, we attempt to study the factors that determine the seasonal cycle
of the FTLEs, with particular emphasis on factors and dynamics set by properties
of the mixed layer.
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Figure 4.12: Timeseries of 2D FTLEs (black lines in left panels), 3D FTLEs (black lines
in right panels) and Eddy Kinetic Energy (gray lines) at (a, b) 7.5 m depth
and (c, d) 661.5 m depth over the years 2006, 2007, 2010 and 2011 for the
region in the North Eastern Atlantic Ocean. Red lines separate the different
years and the thick vertical black line emphasizes the jump between the
year 2007 and 2010.

First, we seek to understand the relationship between FTLEs and the eddy kinetic
energy (EKE), defined in units of m2s−2 as

EKE = 1
2(u′2 + v′2) , (4.1)
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where the primed variables represent deviations from a respective 10 year average
of the parent simulation described in Section 4.1. The EKE shows a seasonal cycle,
attaining maximum values late in winter and minimum values late in summer. At
the ocean surface, the EKE shows a phase difference from the 2D FTLEs, reaching
its maximum values before the 2D FTLEs. The seasonality of 2D FTLEs can thus

Vertical shear and FTLEs
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Figure 4.13: Timeseries of 2D FTLEs (black lines in left panels), 3D FTLEs (black lines
in right panels) and root mean square value of the vertical shear of
horizontal velocities (gray lines) at (a, b) 7.5 m depth and (c, d) 661.5 m
depth over the years 2006, 2007, 2010 and 2011 for the region in the North
East Atlantic Ocean. Red lines separate the different years and the thick
vertical black line emphasizes the jump between the year 2007 and 2010.

be said to be modulated by the EKE, with the contribution of the other sources
of forcing manifesting in the lag between the peaking times of the two diagnostics.
In the pycnocline, the EKE and 3D FTLEs reach their respective maxima at the
same instant of time, with both diagnostics reaching their maxima in the spring,
and reducing to their respective minima in late summer (Fig. 4.12 d). In three of
the four years considered, EKE reaches a maximum before the 3D FTLEs, which
reach their maximum in late spring. This shows that EKE alone is not sufficient
to explain increased values of 3D FTLEs at the ocean surface in winter, and their
decrease late in the summer (Fig. 4.12 b).

In the idealised study in Chapter 3, it was found that the magnitude and structure
of 3D FTLEs, are determined by the vertical shear of horizontal velocities while 2D
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FTLEs are determined by the horizontal shear. We therefore proceed to confirm or
not that finding in a more realistic setting by comparing the time series of FTLEs and
vertical shear of horizontal velocities. The vertical shear of horizontal velocities yields
a clear seasonal cycle, both at the surface and in the ocean interior (see gray curves
in Fig. 4.13). At the surface, the vertical shear increases during winter reaching
a maximum in late spring, and then decreases reaching a minimum in autumn. In
the ocean interior instead, the vertical shear attains maximum values in winter and
reaches its lowest values in late summer. The existence of a correlation between the
time series of 3D FTLEs and vertical shear of horizontal velocities both at the ocean
surface and interior (see Figs. 4.13b,d), is in agreement with the findings in the
idealised simulations in Chapter 3, that 3D FTLEs are modulated by the vertical
shear of horizontal velocities. More interestingly, it will be shown a little later that
the modulation of 3D FTLEs by the vertical shear of horizontal velocities, also holds
in the Central Atlantic ocean, where the flow is surface intensified and relatively
much weaker than in the North East Atlantic ocean.
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Figure 4.14: Timeseries of 2D FTLEs (blacklines in left panels), 3D FTLEs (blacklines in
right panels) and mixed layer depth (gray lines) at (a, b) 7.5 m depth and
(c, d) 661.5 m depth over the years 2006, 2007, 2010 and 2011 for the region
in the North East Atlantic Ocean. Red lines separate the different years and
the thick vertical black line emphasizes the jump between the year 2007 and
2010.

In various basins of the World Ocean, studies about the seasonality of the oceanic
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ML turbulence from numerical modelling (e.g., Mensa et al., 2013; Sasaki et al.,
2014; Gula et al., 2016) and observations (e.g., Callies et al., 2015; Thompson et al.,
2016) have reported a strong relationship between the MLD and the emergence of
energetic small scale features, with more (in number) and energetic vortices and
filaments emerging in winter when the ML is deep and a reduction in intensity or
disappearance of such features in summer when the ML is shallow. In this Chapter,
we consider two contrasting regions (in terms of MLDs displayed, see fig. 4.5), not
covered by previous studies on seasonality of the oceanic ML turbulence and move
to establish the relationship between FTLEs and the seasonal cycle of the MLD.
Consideration of a less active region in the Central Atlantic ocean serves to test the
robustness of the findings of previous studies, which have concentrated on regions
of the world ocean with strong currents like the Kuroshio (e.g., Sasaki et al., 2014)
and Gulf Stream (e.g., Mensa et al., 2013; Gula et al., 2014). The exception is
the study by Thompson et al. (2016), who studied the seasonality of the oceanic
ML turbulence in the open ocean using a year long glider measurements of salinity,
temperature and pressure fields, and found that a strong seasonal behaviour exists
in key ocean properties such as stratification.

APE and FTLEs
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Figure 4.15: Timeseries of 2D FTLEs (blacklines lefthand panels), 3D FTLEs (blacklines
righthand panels) and the available potential energy (gray lines) for the
region in the North East Atlantic ocean at (a,b) 7.5 m depth, (c,d) 197.5 m
depth and (e,f) 661.5 m depth for the years 2006, 2007, 2010 and 2011. Red
lines separate the different years and the thick vertical black line emphasizes
the jump between the year 2007 and 2010.
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The MLD shows a seasonal cycle, reaching maximum values (∼ 400 m) in late winter,
and decreasing quickly in spring reaching minimum values (∼ 25 m) in summer (Fig.
4.14). Previous studies (e.g., Boccaletti et al., 2007; Fox-Kemper et al., 2008) have
reported that deep MLs act as large reservoirs of available potential energy (APE)
from which baroclinic instabilities draw. The APE is defined as (e.g., Badin et al.,
2009)

APE = ρ0

6
f 2

H

∫
V

1
N

∂U

∂z
dxdydz , (4.2)

where V is the volume of the domain considered, ρ0 is the reference density and
∂U/∂z is the root mean square value of the vertical shear of horizontal velocities.
As such, the MLD should be viewed as a cause and the APE as the consequence
which is in turn converted to EKE as the instabilities develop. On the contrary, the
APE is expected to be lower in summer when the MLs are predominantly shallow,
yielding low EKE and thus less energetic instabilities and stirring. It should however
be noted that other sources of energy like surface wind could contribute to the EKE
budget in addition to the APE contribution from baroclinic instabilities.

With the exception of the FTLEs showing longer tails and slower descent from their
maxima in winter to their minima in late summer, the seasonal cycles of FTLEs and
MLD display maximum values at the same time and thus, it can be concluded that
the seasonal cycle of 2D FTLEs in the ocean interior is determined by the MLD. At
the surface, the MLD reaches its maxima before the 2D FTLEs reach their respective
maxima (Fig. 4.14a) and it can thus be suggested that baroclinic MLIs drawing their
energy from the APE are responsible for modulating the 2D FTLEs, with the lag
between the two quantities attributed to the time required for the instabilities to
reach maximum amplitude, which is of the order of days (e.g., Boccaletti et al.,
2007). The variability of 3D FTLEs at the ocean surface cannot be directly linked to
MLD (hence MLIs) since 3D FTLEs reach their maxima much later and show a lot
of variability which is not observed in the time series of the MLD (see Fig. 4.14b).
The seasonal cycle of 3D FTLEs at the ocean surface is however noticed to closely
follow that of the vertical shear of horizontal velocities (see Fig. 4.13b).

As expected, time series of the APE display a seasonal cycle close to that shown by
the MLD, attaining maximum values in winter and reaching its minimum in summer
when the MLD is also at its lowest (Fig. 4.15). At the surface, the seasonal cycle
of 2D FTLEs is noticed to be well marked by that of the APE, except for a delay
of the order of 15 - 30 days which may be attributed to the growth time scale of
instabilities, whose resulting stirring influence is assumed here to be wholly captured
by the FTLEs. No clear relationship can be drawn between 3D FTLEs at the surface
and APE. In the ocean interior, the time series of FTLEs and APE, closely follow
each other and the observed phase difference is larger than that displayed between
FTLEs and MLD (see Fig. 4.14).
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4.2.3 Spectra

In what follows, we calculate wave number spectra in each year, averaged for winter
[21st December to 21st March] and summer [21st June - 21st September] and further
consider the average over the fours years. The ML deformation radii Rd calculated
using (3.7) in the two case study areas show differences for both winter and summer
seasons, attaining large values for the region in the North East Atlantic ocean where
the ML is deep and low values in the Central Atlantic where the ML is shallower.
Similarly, values of the first baroclinic Rossby deformation radius in the pycnocline
vary widely due to the large differences in MLD in the two case study regions and also
during the winter and summer seasons over which the stratification varies (see Table
4.5). The values of the ML and pycnocline deformation radii are superimposed on
the spectra (in gray lines) for comparison. Also, wave number spectra are calculated
along the zonal direction for the region enclosed by black lines in Figs. 4.6, 4.7, 4.8
and 4.9.

In winter, the kinetic energy (KE) spectrum E(k) ∼ k−α displays no inertial range
for wave numbers above kd ∼ 1/Rd due to the small ML Rossby radius of deformation
(Rd) (∼ 12 km, shown by gray line on the right). At scales above the first baroclinic
deformation radius but below ∼ 27 km, the E(k) spectrum displays slopes of α ≥ 3
corresponding to nonlocal dynamics, thus implying that the flow on such scales is
controlled by flow features whose scale is larger than 27 km. At scales above 27 km,
the E(k) spectrum shoals acquiring a slope close to -2. The relatively gentle -2 slopes
of the KE spectrum are indicative of a spectrally local regime, in which dynamics
at these scales are controlled by velocity flow features of a comparable scale (Fig.
4.16a). Passive tracer spectra T (k) in the ML deduced from the four year winter
averaged, backward FTLEs are presented in Figs. 4.16b and 4.16c for 3D and 2D
FTLEs, respectively. Both 3D and 2D FTLEs show spectra slopes close to -2 at
scales below 90 km, which correspond to frontal features (Boyd, 1992). For scales
between the first baroclinic deformation radius and ∼ 100 km, passive tracer spectra
converge more to slopes of −2, and eventually attain slopes of -1, for scales above
100 km. The passive tracer spectra with −2 slopes are consistent with the E(k)
spectra which predicts local dynamics at scales near the deformation radius. The
local stirring at scales between 27 km and 100 km can be attributed to the mesoscale
vortices which are seen to dominate the flow in winter (see Fig. 4.6).

In the pycnocline, E(k) spectra show -3 or steeper slopes at all scales above the first
baroclinic deformation radius, which correspond to nonlocal dynamics (Fig. 4.16d).
The corresponding 3D and 2D FTLE spectra show slopes s, −2 < s < −1 at scales
≤ 100 km representative of frontal features. At scales above 100 km, FTLE spectra
show a gradual flattening, attaining slopes of -1 which are reflective of local dynamics.
The -2 slopes shown by the FTLE spectra for scales below 100 km are indicative of
frontal dynamics and have also been found in the idealised simulations studied in
Chapter 3. This result is consistent with findings of previous studies in various basins
of the world Ocean, which report passive tracer spectra of similar slopes (e.g., Cole
and Rudnick, 2012; Kunze et al., 2015).

The KE spectra at the ocean surface and interior show discrepancies in slopes, es-
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Figure 4.16: Winter Spectra of kinetic energy calculated at (a) 7.5 m depth and (d) 661.5
m depth. 3D FTLE spectra averaged for the winter season at (b) 7.5m
depth and (e) 661.5 m depth. 2D FTLE spectra calculated at (c) 7.5 m
depth and (f) 661.5 m depth, all for the region in the North East Atlantic
ocean. On each panel, gray lines show the location of the ML (left) and first
baroclinic (right) deformation radii.

pecially at scales near ∼ 30 km, while the FTLE spectra maintain the same slopes
at the surface and in the interior (see Fig. 4.16b,c,e,f). Passive tracer spectra with
-2 slopes at the ocean surface and interior have also been found in high resolution
numerical simulations of the California Current System (Capet et al., 2008), and are
seemingly robust since they are independent of the spatial resolution and are also
obtained for both idealised and realistic ocean simulations. In addition, the predic-
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tion of frontal dynamics in the ocean interior is in agreement with earlier findings
(e.g., Badin et al., 2011; Ragone and Badin, 2016) which have reported that MLIs
penetrate into the pycnocline where they may affect the lateral stirring of tracers.
The presence of energetic fine filaments in FTLE fields inside the ocean interior (Figs.
4.8f and 4.9f), is evidence of the impact of instabilities originating from the ML, in
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Figure 4.17: Summer Spectra of kinetic energy calculated at (a) 7.5 m depth and (d)
661.5 m depth. 3D FTLE spectra averaged for the summer season at (b)
7.5m depth and (e) 661.5 m depth. 2D FTLE spectra calculated at (c) 7.5
m depth and (f) 661.5 m depth, all for the region in North Eastern Atlantic.
On each panel, the gray line shows the location of the first baroclinic
deformation radius.
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the pycnocline.

In summer, KE spectra show slopes of -3 or steeper at all depths, which is reflective
of nonlocal dynamics, while backward in time FTLE (passive tracer) spectra show -2
slopes corresponding to frontal dynamics, for scales below 100 km. At scales above
100 km, the tracer spectra gradually become gentle converging to slopes of -1 above
the deformation radius (Fig. 4.17). The disappearance in summer of gentle slopes
in the E(k) spectrum, seen in the winter, at scales near ∼ 30 km, is due to the
low intensity of small scale vortices and filaments, which dominate the flow during
winter when the ML is deep. Noteworthy here is that the -2 slopes of passive tracer
that persist at all depths of the ocean are observed to exist even in summer. The
transition of tracer spectra from -2 slopes at scales below ∼ 100 km, to -1 at scales
above 100 km is due to the fact that in this region, the flow is dominated by mesoscale
vortices of comparable size that act to tangle FTLEs energetically and thus causing
a larger variance of FTLEs at such scales.

4.3 Results: Central Atlantic Ocean

For the relatively less energetic region in the Central Atlantic ocean, features over
a broad range of scales are also noticed to dominate the surface ocean, ranging
from submesoscale to mesoscale vortices and filaments. Features of O(10 km) are
attributed to the deep ML (for winter) in which baroclinic MLIs energised by the
available potential energy in the quasi-vertical isopycnals of the ML thrive (Fig.
4.18). Also, the stirring resulting from the flow is observed to be surface intensified
and significantly weakening in the ocean interior (Fig. 4.18). In addition to the
weakening of the flow in the ocean interior, a disappearance of features at scales
below 30 km in the interior is noticed and frontal structures are observed to dominate
the flow (Fig. 4.18 d,e,f).

In summer, the energetic filaments and submesoscale vortices disappear both at the
surface and ocean interior retaining only the frontal structures and mesoscale vortices
(Fig. 4.19). The disappearance of the submesoscale structures may be explained by
the shallow MLs in summer, which are as low as 20 m (see Fig. 4.5), thus providing
minimal APE for the developing instabilities.
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Figure 4.18: Normalised Eulerian fields evaluated at day 90 [end of March] of the year 2011 in
the Central Atlantic Ocean. left column: (a) relative vorticity (b) strain rate and
(c) OW parameter at 7.5 m depth . right column: (d) relative vorticity, (e)
strain rate and (f) OW parameter (×10−3) at ∼ 660 m depth.
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Figure 4.19: Normalised Eulerian fields evaluated at day 290 [end of September] of the year
2011 in the Central Atlantic Ocean. Left column: (a) relative vorticity (b) strain
rate and (c) OW parameter at 7.5 m depth . Right column: (d) relative
vorticity, (e) strain rate and (f) OW parameter (×10−3) at ∼ 660 m depth.
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4.3.1 FTLEs

As in the idealised simulations discussed in Chapter 3, 3D FTLEs display large
values of FTLEs on vortex boundaries, vortex cores and along filaments (Fig. 4.20
a,b). Further, while 3D FTLEs were found to be approximately twice as large as
2D FTLEs in the idealised simulations, we here notice that 3D FTLEs are more
than twice larger than 2D FTLEs both at the surface and ocean interior for both
winter and summer seasons (see also Fig. 4.21). The energetic stirring in winter at
the ocean surface and its weakening in the interior is also displayed by the FTLEs,
which show large values at the surface and low values in the interior (Fig. 4.20 and
4.21).
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Figure 4.20: Backward in time 3D (left column) and 2D (right column) FTLEs calculated at

day 90 [end of March] of year 2011 in the Central Atlantic Ocean at (a, c) 7.5 m
and (b, d) 660 m depths. Different colorbars are used to enable a clear
visualization of features at the surface and ocean interior.

The 2D FTLEs reveal a predominance of frontal structures in summer while vortices
disappear (Fig. 4.21). The disappearance of smaller vortices and the reduced inten-
sity of submesoscale filaments, may be attributed to the extremely shallow ML in
summer attaining values as low as 20 m (see Fig. 4.5). As also observed in the ide-
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alised simulations and the region in the North East Atlantic ocean, non zero FTLE
values are observed in the ocean interior, confirming the likely role of ML dynamics,
particularly MLIs, on lateral stirring in the pycnocline (e.g., Badin et al., 2011).
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Figure 4.21: Backward in time 3D (left column) and 2D (right column) FTLEs calculated at

day 290 [end of October] of the year 2011 in the Central Atlantic Ocean at (a, c)
7.5 m and (b, d) 660 m depths. Different colorbars are used to enable a clear
visualization of features at the surface and ocean interior.

The analysis of average vertical profiles shows that winter and summer 3D FTLEs
display minimal differences in magnitude, in the topmost levels of the ocean in this
region. In summer, 3D FTLEs are intensified at the ocean surface and display a
tendency for constant values at depths just beneath the shallow ML, below which
they quickly decrease with depth. In winter instead, a steady decrease of 3D FTLEs
is noticed, but here, the same decrease with depth is maintained in the nearest ∼70
m above and below the ML after which, the winter and summer FTLEs coincide with
each other (Fig. 4.22a). The larger 3D FTLEs seen in summer than in winter in the
topmost levels may probably indicate that the net stirring imparted by mesoscale
vortices, which dominate the ocean surface in summer, is more energetic than that
which results from the small scale features, that dominate in winter.
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Figure 4.22: Average vertical profiles of (a) 3D FTLEs and (b) 2D FTLEs calculated for
the region in the Central Atlantic Ocean. Also indicated are the lines
marking the average ML depth in summer (gray continous) and winter
(gray broken) lines, respectively. Note that different scales are used for 3D
and 2D FTLEs due to the large difference in magnitude between them.

The small scale features observed at the ocean surface in winter, do not generate
larger 3D FTLEs to surpass those effected by mesoscale vortices and frontal struc-
tures observed in summer (see Fig. 4.19). It is also observed that 3D FTLEs are
intensified only at the surface, weakening only a few metres below the ML. Further,
the influence of instabilities persists into the interior yielding values higher than those
of the summer 3D FTLEs. At ∼ 200 m, the two curves converge to each other, what
probably means that other dynamics, for example, intra-thermocline vortices, which
are independent of seasons start to control the flow at deeper levels of the ocean
(Fig. 4.22 a). The 2D FTLEs instead reveal a more complex vertical structure, with
larger values in winter than summer for the first ∼ 70 km. At depths of ∼ 200 m
and more, 2D FTLEs calculated for winter are larger than those obtained in summer
(Fig. 4.22 b).
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4.3.2 Seasonality of FTLEs

We now investigate the seasonality of FTLEs for the region in the Central Atlantic
ocean, where the dynamics lead to shallow mixed layers than those observed for
the case study region in the North East Atlantic ocean. The relationship between
stirring at scales below 100 km and MLD reported by previous studies (e.g., Sasaki
et al., 2014) and also realised for the region in the North East Atlantic ocean in this
thesis lead us to investigate the dependence of the seasonal cycle of FTLEs on the
MLD and its vertical structure.
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Figure 4.23: Time series of 3D FTLEs (black line) and 2D FTLEs (gray line) at (a) 7.5

m depth and (b) 661.5 m depth for the years 2006, 2007, 2010 and 2011.
Red lines separate the different years and the thick vertical black line
emphasizes the jump between the year 2007 and 2010.

At the ocean surface, FTLEs display a clear seasonal cycle with 3D FTLEs reaching
maximum values in spring and minimum values in late summer. The 2D FTLEs
instead reach maximum values in winter and decrease quicker than 3D FTLEs, dis-
playing long tails and reaching their lowest values in summer (Fig. 4.23a). In the
ocean interior, no pronounced seasonal cycle is displayed by FTLEs and also no clear
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relationship can be drawn between the time series of 3D and 2D FTLEs in the ocean
interior (Fig. 4.23b).

At the ocean surface, the EKE (4.1) displays more variability than FTLEs showing
dominant maxima in summer and reaching minimum values in winter. In general,
there is only a weak correlation between EKE and FTLEs at the ocean surface
(Fig. 4.24 a,b). The phase difference between the time when FTLEs and EKE
reach their respective maxima and minima, suggest that FTLEs on the surface are
not fully controlled by EKE in isolation but are modulated by a combination of
multiple factors, for example, the mean flow. In the ocean interior instead, the EKE
is noticed to correlate with the time series of FTLEs, reaching maxima and minima
at approximately the same time (Fig. 4.24 c,d) .

In the idealised simulations in Chapter 3, it was found that the vertical shear of
horizontal velocities plays an important role in setting the values of 3D FTLEs at all
depths. To establish whether this finding is robust and persistent in a more realistic
setting as is considered in this Chapter, we compare the time series of FTLEs and the
vertical shear of horizontal velocities. In the ML, the seasonal cycle of the vertical
shear of horizontal velocities correlates well with that of 3D FTLEs (Fig. 4.25 b),
displaying maximum values in spring and minimum values in winter. As already
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Figure 4.24: Timeseries of 2D FTLEs (black lines in left panels), 3D FTLEs (black lines
in right panels) and Eddy Kinetic Energy (gray lines) at (a, b) 7.5 m depth
and (c, d) 661.5 m depth over the years 2006, 2007, 2010 and 2011 for the
region in the Central Atlantic Ocean.
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reported in figure 4.23, the 2D FTLEs display long tails, decreasing much quicker
than the vertical shear of horizontal velocities (Fig. 4.25 a).

Vertical shear and FTLEs
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Figure 4.25: Timeseries of 2D FTLEs (black lines in left panels), 3D FTLEs (black lines
in right panels) and root mean square value of the vertical shear of
horizontal velocities (gray lines) at (a,b) 7.5 m depth and (c, d) 661.5 m
depth over the years 2006, 2007, 2010 and 2011 for the region in the Central
Atlantic Ocean.

In the pycnocline, except for a delay of ∼ 15 days, the dominant maxima of FTLEs
and vertical shear of horizontal velocities coincide. It can thus be concluded that
the seasonal cycle of FTLEs in the ocean interior is controlled by the vertical shear
of horizontal velocities (Fig. 4.25 c,d).

To establish the role of ML baroclinic instabilities in modulating the seasonal cycle
of FTLEs, as already noted for the region in the North East Atlantic ocean, the
MLD and APE are used as indicators of the dominance or non dominance of these
instabilities (e.g., Sasaki et al., 2014). The MLD displays a consistent seasonal cycle,
reaching maximum values in late winter (end of March) and minimum values in late
summer (Fig. 4.26). Correspondingly, the APE attains maximum values in winter
when the MLs are deep and its minimum values in summer when the ML is shallow
(see Fig. 4.27). The APE is however noticed to decay from its maxima slower than
the MLD since the baroclinic instabilities, which draw the APE require time to reach
finite amplitude of the order of days (e.g., Boccaletti et al., 2007).
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MLD and FTLEs
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Figure 4.26: Timeseries of 2D FTLEs (black lines in left panels), 3D FTLEs (black lines
in right panels) and mixed layer depth (gray lines) at (a, b) 7.5 m depth and
(c, d) 661.5 m depth during the years 2006, 2007, 2010 and 2011 for the
region in the Central Atlantic Ocean. Red lines separate the different years
and the thick vertical black line emphasizes the jump between the year 2007
and 2010.

The APE reaches its maximum earlier than the MLD, as the depth of the ML
increases with time, since the ocean water takes much longer to release the latent
heat. Further, the discrepancies between the APE and FTLEs in the ocean interior
can be explained by the fact that the efficiency of the conversion of APE into EKE is
dependent upon other factors, like the presence of lateral buoyancy gradients (e.g.,
Capet et al., 2008). In support of this, the idealised simulations in Chapter 3 which
differed from each other in terms of the lateral density gradient used to initialize
the ML front, show that more energetic instabilities (hence large EKE values) are
produced with increasing values of the lateral buoyancy gradients used.

4.3.3 Spectra

In the ML during winter, wave number energy spectra E(k) display slopes of -3 or
steeper at scales smaller than 50 km corresponding to nonlocal dynamics, for which
motions at a given scale are controlled by velocity field features of a larger scale.
The small Rossby radius of deformation in the ML (Table 4.1) make it impossible
to display the inertial range for scales smaller that the ML deformation radius (Fig.
4.28a). Also, caution should be taken in explaining the steepest part of the spectra
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Available potential energy and FTLEs
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Figure 4.27: Timeseries of 2D FTLEs (black lines in left panels), 3D FTLEs (black lines in
right panels) and the available potential energy (gray lines) at (a,b) 7.5 m depth
and (c, d) 661.5 m depth during the years 2006, 2007, 2010 and 2011 for the
region in the central Atlantic ocean. Red lines separate the different years and
the thick vertical black line emphasizes the jump between the year 2007 and
2010.

since such scales are dominated by the model grid noise. At scales larger than 50
km, the E(k) spectrum shows more gentle slopes (with α < 3) corresponding to lo-
cal dynamics, where motions at a given scale are controlled by velocity field features
of comparable scales. The gentle slope part of the spectra is due to the mesoscale
vortices, which dominate the ocean surface in winter (see Fig. 4.18 a,b,c). FTLE
spectra, here considered as proxies for passive tracer, display -2 slopes corresponding
to frontal dynamics for scales starting at ∼ 120 km and below. At scales above 120
km, passive tracer spectra become more gentle, transitioning from -2 to -1 slopes,
corresponding to local diffusion. Interestingly, both 3D and 2D FTLEs show domi-
nant maxima at similar positions, due to the fact both fields show ridges in similar
locations (Fig. 4.28 b,c).

In the pycnocline, energy spectra show slopes steeper than -3 at all scales below the
first baroclinic deformation radius, which corresponds to nonlocal dynamics (Fig.
4.28d). This is also observed from the Eulerian diagnostics which reveal a disap-
pearance of small scale structures and a predominance of large scales, particularly,
frontal structures (Fig. 4.18 d,e,f). The respective passive tracer spectra instead
show two regimes: one with a -2 slope corresponding to frontal dynamics, for scales
below ∼ 100 km and another with -1 slope corresponding to nonlocal diffusion, for
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Figure 4.28: Winter Spectra of kinetic energy calculated at (a) 7.5 m depth and (d) 661.5
m depth. 3D FTLE spectra averaged for the winter season at (b) 7.5m
depth and (e) 661.5 m depth. 2D FTLE spectra calculated at (c) 7.5 m
depth and (f) 661.5 m depth, all for the region in the Central Atlantic
Ocean. On each panel, gray lines show the location of the ML (left) and
first baroclinic (right) deformation radii.

scales above 100 km.

In summer, energy spectra display -3 slopes or steeper for scales smaller than ∼ 100
km, indicative of nonlocal dynamics. At scales above 100 km, the spectra displays
a more gentle slope close to -2 (Fig. 4.29a), which may be attributed to mesoscale
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Figure 4.29: Summer Spectra of kinetic energy calculated at (a) 7.5 m depth and (d)
661.5 m depth. 3D FTLE spectra averaged for the summer season at (b)
7.5m depth and (e) 661.5 m depth. 2D FTLE spectra calculated at (c) 7.5
m depth and (f) 661.5 m depth, all for the region in the Central Atlantic
Ocean. On each panel, the gray line shows the location of the first
baroclinic deformation radius.

vortices and frontal structures that are noticed to dominate the ocean surface in
summer (see Fig. 4.19 a,b,c). The more gentle slopes of the energy spectra ob-
served at the ocean surface in winter (compare to Fig. 4.28a) are not displayed at
scales above ∼ 100 km in summer, as already shown by the Eulerian diagnostics
that the mesoscale vortices and submesoscale filaments reduce in intensity during
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the summer as the ML becomes more shallow limiting the growth of the baroclinic
instabilites (e.g., Boccaletti et al., 2007). The respective FTLE spectra display -2
slopes characteristic of frontal structures for all scales below ∼ 140 km, and -1 slopes
for scales above 140 km, which correspond to nonlocal dynamics as predicted by the
energy spectra (Fig. 4.29 b,c). In the pycnocline, energy wave number spectra show
slopes steeper than -3 for all scales below 140 km, thus predicting nonlocal dynamics
(Fig.4.29 d). The respective passive tracer spectra calculated from FTLEs display
two regimes: a -1 slope regime for scales above ∼ 100 km consistent with the nonlo-
cal dynamics predicted by the energy spectra and a -2 slope regime characteristic of
frontal structures (Fig. 4.29 e,f).
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4.4 Summary and Discussion

In this Chapter, we have explored the seasonality of ML turbulence and how it in turn
modulates the seasonal cycle of FTLEs. Two contrasting (in terms of the MLDs) case
study regions of the Atlantic ocean, one in the North East and another in the Central
Atlantic ocean are considered. In the two regions, the MLD displays a clear seasonal
cycle, attaining large values in winter and becoming shallower in summer. Deepening
of the ML in winter leads to a dominance of submesoscale filaments and vortices, by
energizing baroclinic instabilities via the APE stored in the quasi-vertical isopycnals
(Boccaletti et al., 2007). In summer when the ML is relatively shallower, the height
of the isopycnals is reduced, which essentially translates into a shrinking of the APE
reservoir from which MLIs draw, hence their weakening (Fox-Kemper and Ferrari,
2008). Indeed, wave number spectra calculated at the ocean surface become less steep
in winter, implying local dynamics due to the energetic small scales and steepen in
summer, when the small scale features disappear and the domain is dominated by
a mesoscale field. We have calculated time series of 3D and 2D FTLEs with a total
span of 4 years and we have compared them to time series of EKE (capturing the
stirring influence of instabilities ignoring the mean flow), MLD, APE and vertical
shear of horizontal velocities.

At the ocean surface and in the two case study regions, 2D FTLEs reach their maxima
earlier than the 3D FTLEs, while time series of both 2D and 3D FTLEs correlate
well in the pycnocline, displaying maxima and minima at approximately the same
instant. In agreement with the findings of the idealised simulations in Chapter 3,
the vertical shear of horizontal velocities is noticed to determine the magnitude of
3D FTLEs in the two case study regions, with the two diagnostics displaying time
series which correlate well. It has also been noticed that 3D FTLEs show minimal
differences at the surface during summer and winter, while differences emerge in the
subsurface levels, yielding large FTLE values in winter when the MLIs are stronger
due to deep MLs. Significant differences are realised between winter and summer 2D
FTLEs at the surface and interior ocean levels, showing a strengthening of stirring
in winter and a weakening in summer.

Except at the surface, where 3D FTLEs display a relatively non clear behavior, with
maxima in early summer and minima in late summer, time series of FTLEs in the two
case study regions correlate well with EKE, highlighting a seasonality in the stirring
intensity of the flow, that is, a maximum in winter and a minimum in summer.
Time series of the MLD and APE also closely follow those of EKE suggesting the
importance of baroclinic instabilities in enhancing the eddy (residual) field of the
flow. The enhancement of small scale turbulence in winter and its decay in summer
has been reported in previous studies (e.g., Qiu and Kelly, 1993; Sasaki et al., 2014)
as an indirect consequence of large scale atmospheric forcing, which through ML
deepening, leads to a build-up of APE in the body of the ML. Baroclinic instabilities
in the ML are energized by the release of this APE, leading to restratification of the
upper ocean at the end of the cycle.

In this Chapter, it has thus been found that time series of FTLEs, which are a
diagnostic that quantifies stirring effected by a flow, display a clear seasonal cycle
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similar to that of MLIs or their proxies like MLD and APE. The seasonal cycle of
2D FTLEs is modulated entirely by EKE at all depths. At the surface, 3D FTLEs
show a seasonal cycle reaching maximum FTLE values in late summer and reaching
values in mid winter; thus displaying a cycle which does not correlate with the EKE
(hence 2D FTLEs). In the subsurface and interior ocean levels, 3D FTLEs display
a seasonal cycle close to that of 2D FTLEs (and hence EKE).

Chaotic advection by submesoscale processes



Chapter 5

Summary and Outlook

In this Chapter, a general summary of the thesis, outlining the main results and
how the different research questions in Section 1.1 have been addressed, is provided.
Finally, an outlook for future research in connection to the findings in this thesis is
provided.

5.1 Summary

In this thesis, our main goal was to explore the chaotic stirring that is imparted by
submesoscale processes arising in the oceanic ML. To address this, we have consid-
ered a current in an idealised zonal channel undergoing baroclinic instability, with
a ML front whose adjustment is known to produce MLIs. Due to the inability
of Eulerian diagnostics to detect MLIs in the form of filaments, we have instead
used Lagrangian diagnostics - the FTLEs, to detect these MLIs and quantify the
chaotic stirring they impart to the flow. It has been found that while Eulerian
quantities, such as the Okubo-Weiss parameter, yield relatively less features, FTLEs
display more complexity, confirming previous studies that regular velocity fields can
produce chaotic particle trajectories. 3D and 2D FTLEs display ridges and hence
spectra peaks in the same locations. PDFs of backward FTLEs, which are proxies
to passive tracer are found to be non Gaussian, thus suggesting the need for non
diffusive parameterization schemes for processes due to MLIs.

By setting individual terms of the flow deformation tensor to zero, we have found
that vertical velocities are less important in determining the structure and magnitude
of FTLEs, confirming previous studies that the enhancement of vertical velocities to
within 4 orders of magnitude lower than horizontal velocities does not make their
contribution to stirring stronger. Instead, the vertical shear of horizontal velocities
determines the structure and magnitude of 3D FTLEs, with the vertical shear also
enhancing stirring in the ocean interior. The 2D FTLEs instead which are surface
intensified and quickly decay below the ML base. We have also found that 3D
FTLEs are approximately twice as large as 2D FTLEs. However, it was shown for
the realistic ocean dataset, that 3D FTLEs can be much larger than twice the 2D
FTLEs. It is thus concluded that the vertical shear of horizontal velocities enhances
stirring, which is in agreement with earlier theoretical findings (Haynes, 2001) that
the vertical shear provides a more efficient mechanism of stirring. Assuming thermal
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wind balance, domination of 3D FTLEs by the vertical shear of horizontal velocities
allowed a derivation of a scaling law between FTLEs and the density gradient used to
initialize the ML front. The scaling law converges to the numerical values of FTLEs
in the pycnocline while it diverges from it at the surface, where ageostrophic MLIs
are predominant.

To investigate how the skeleton of ML turbulence responsible for chaotic stirring
looks like, Lagrangian Coherent Structures (LCSs), which constitute the skeleton
that constrains the flow into dynamically distinct regions, were calculated from the
geodesic theory, allowing to obtain elliptic (e.g., vortices) and hyperbolic (e.g., fil-
aments) LCSs. We have confirmed previous findings that the relationship between
LCSs and ridges of FTLEs is not one-to-one, with attracting LCSs (ALCSs) and
repelling LCSs (RLCSs) revealing a complex web of LCSs. Vortices are displayed as
elliptic LCSs from which a variety of ALCSs and RLCSs spreads. The complexity
of LCSs is higher at the surface due to the entanglement caused by the relatively
stronger flow, which repeatedily stretches and folds fluid patches at the channel sur-
face. The observed complex structures of LCSs associated to MLIs can be important
for the characterization of mixing and the transfer of nutrients and other passive
tracers at the ocean surface (e.g., Lévy et al., 2001), as well as provide the landscape
for the growth of different phytoplankton species (d’Ovidio et al., 2010). Also, the
possibility of obtaining LCSs as explicitly parameterized curves and/or surfaces, may
be useful in predicting flow paths of substances, such as oil spills (e.g., Olascoaga
and Haller, 2012) imparted by energetic MLIs.

In order to understand how our findings from the idealised setting of a ML front
relate to a more realistic setting, in which noise induced by surface winds and/or
internal waves are likely to change the flow dynamics, we have considered a dataset
from a realistic ocean simulation of the Atlantic ocean in two case study regions.
The two considered regions included a region in the North East Atlantic ocean and
another in the low activity Central Atlantic ocean. Unlike in the idealised study,
where 3D FTLEs were found to be approximately twice as large as 2D FTLEs, 3D
FTLEs in the realistic setting are found to be approximately 4 times larger than 2D
FTLEs. 3D FTLEs are also found to be intensified at the ocean surface, decreasing
quickly in summer and gradually in winter before remaining generally constant in the
pycnocline. Further, to characterize the seasonality of ML turbulence, we considered
time series (over a period of 4 years) of key diagnostics such as the eddy kinetic energy
and vertical shear of horizontal velocities, comparing them to the time series of the
mixed layer depth (MLD), since ML deepening or shallowing has been reported as
the primary response of the ocean to atmospheric forcing at the ocean surface (e.g.,
Sasaki et al., 2014). In this thesis, due to the correlation of time series of 2D FTLEs
and EKE at the surafce and ocean interior, we conclude that the seasonal cycle of
2D FTLEs is modulated by the EKE.

Finally, we have found that 2D FTLEs display a clear seasonal cycle both at the
surface and ocean interior, reaching maximum values in winter and minimum values
in summer. At the ocean surface, time series of 3D FTLEs show a seasonal behaviour,
reaching maxima in late summer and minima in late autumn and correlate well with
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time series of the vertical shear of horizontal velocities. In the ocean interior, 3D
FTLEs display a similar seasonal cycle of the 2D FTLEs, thus correlating well with
the time series of EKE. The most outstanding difference between time series of
2D and 3D FTLEs is at the ocean surface, where the seasonality of 3D FTLEs is
modulated by the vertical shear of horizontal velocities, different from the 2D FTLEs
seasonal cycle which is modulated by the EKE.

5.2 Outlook for future research

Bettencourt et al. (2012) reported a dominating role of the vertical shear of horizontal
velocities in determining the vertical structure of FTLEs in the Benguela upwelling
region, where the vertical velocities are 3 orders of magnitude lower than horizontal
velocities. It would be interesting to extend the analysis here proposed to other
kind of flows, such as idealized flows (e.g., Pratt et al., 2013; Rypina et al., 2015)
and Langmuir turbulence (e.g., Van Roekel et al., 2012), in which vertical velocities
are comparable to the horizontal velocities and the emerging turbulence is no longer
quasi two dimensional. Further, the geodesic LCSs presented in this thesis were
calculated along 2D surfaces, and an extension to a fully 3D calculation of LCSs is
appealing. A number of theoretical studies have considered analytic velocity fields
and calculated 3D LCSs but a realization of such a flow in a geophysical context would
be interesting to investigate in order to understand the properties of the emerging
LCSs and their impact on fluid stirring. A systematic identification of elliptic LCSs
would also enable a good estimate of the integrated transport properties of vortices.
Specifically, this would enable a more quantitative estimate of the total transport of
active and passive tracers away from the main frontal regions. Also, integrating the
flow longer in a future study, would lead to further understanding of the evolution of
LCSs as MLIs develop. As an example, it would help reveal whether the spreading
centres of ALCSs and RLCSs observed in the pycnocline develop into vortices.

For future work on the realistic ocean simulation, a consideration of longer time
series of FTLEs will enable a more quantitative analysis of the seasonal cycle of
FTLEs. Also with longer FTLE time series, the importance of the mean flow in
modulating the seasonality of FTLEs, particularly the 3D FTLEs, which we have
found in this thesis to be decorrelated from the time series of EKE and displaying a
non clear behaviour could be addressed. The time series of 3D FTLEs at the ocean
surface may be dependent on non seasonal factors, such as background flow changes
dominated by mesoscale eddies.

Finally and more ambitiously, a consideration of more regions of the World Ocean at
higher spatial and temporal resolutions would allow for a more accurate visualization
of MLIs, which emerge at scales of O(1) km, where secondary instabilities and 3D
dynamics are expected to emerge.
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Appendix A

A mechanism for the development
of large-scale fronts

The contents of this Appendix have been published in the 2014 Geophysical Fluid
Dynamics (GFD) summer school proceedings held at Woods Hole Oceanographic
Institution (WHOI) (see Mukiibi, 2014).

A.1 Introduction

In this appendix, the downstream development of a baroclinic instability is studied in
a 2-layer non-linear Quasi-Geostrophic (QG) model with a semi-infinite downstream
extent and rigid meridional walls. The setup here considered describes a possible
mechanism for the development of large-scale fronts. Starting with a baroclinic cur-
rent in a channel, a perturbation is invoked at the entrance of the channel upstream
and it’s spatial and temporal downstream development is studied. For simplicity,
this study considers only 2 modes in the y direction. This restriction offers two ad-
vantages: first, it is simple enough to easily follow the 2 modes, and second, it gives
insight into the more complicated scenario of having more than one mode leading
to interaction of the different modes and hence modifying the dynamics of the flow.
The boundary conditions at the channel entrance upstream are a temporal oscillating
perturbation at x = 0. Downstream, it imposed that the potential vorticity is zero
at x = ∞. In the y−direction, the derivatives of the stream function (i.e velocity)
at the meridional walls are set to zero. It has been found by Pedlosky (2011) that
in a simple finite amplitude model of a spatially developing baroclinic instability,
there is a regime during which the spatial and temporal evolution of the instability
amplitude along x, t characteristics exhibits chaotic behaviour. In this appendix, we
study numerically the factors that determine the persistence of the chaotic behaviour
in a more realistic ocean model. We find that dynamics are primarily controlled by
the degree of dissipation in the model. When the dissipation is high, the growth rate
of instabilities is governed by the velocity shear between the layers. When instead
the dissipation is low, the rate of growth of instabilities is determined by the Froude
number.
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A.2 The Model

Consider the QG equations for a two-layer model (Pedlosky, 1970, 2011). The for-
mulation is given in terms of the potential vorticity q and the equations of motion
in the two layers are(

∂

∂t
+ U1

∂

∂x

)
q(1) +Qy1

∂ψ(1)

∂x
+ J(ψ(1), q(1)) = −r∇2ψ(1) , (A.1)(

∂

∂t
+ U2

∂

∂x

)
q(2) +Qy2

∂ψ(2)

∂x
+ J(ψ(2), q(2)) = −r∇2ψ(2). (A.2)

where the jacobian, J , is defined as J(a, b) = ∂a

∂x

∂b

∂y
− ∂b

∂x

∂a

∂y
, ψ is the stream

function, Ui is the fluid velocity in the ith layer and r is the dissipation coefficient.

From hereon, superscripts will denote the model layer and subscripts will denote the
mode under consideration. For a channel with no bottom topography,

Q1 = ∇2ψ(1) − F1(ψ(1) − ψ(2)) + βy ,

Q2 = ∇2ψ(2) + F2(ψ(1) − ψ(2)) + βy ,

where β = ∂f/∂y, with f being the Coriolis parameter. We from hereon propose
truncated Fourier series solutions to (A.1) and (A.2) of the form(

q(1)

ψ(1)

)
=
(

q
(1)
1 (x, t) sin πy + q

(1)
2 (x, t) sin 2πy + · · ·

ψ
(1)
1 (x, t) sin πy + ψ

(1)
2 (x, t) sin 2πy + · · ·

)
, (A.3)

(
q(2)

ψ(2)

)
=
(

q
(2)
1 (x, t) sin πy + q

(2)
2 (x, t) sin 2πy + · · ·

ψ
(2)
1 (x, t) sin πy + ψ

(2)
2 (x, t) sin 2πy + · · ·

)
. (A.4)

and impose the boundary conditions(
q(x = 0,∞)
ψ(x = 0,∞)

)
=
(
qo sinωt

0

)
, (A.5)

(
q(y = 0, 1

2 , 1)
ψ(y = 0, 1

2 , 1)

)
=
(

0
0

)
, (A.6)

where qo is a constant. Substituting (A.3) into (A.1) and projecting onto sinπy and
sin2πy yields (A.7) and (A.8) respectively(

∂

∂t
+ U1

∂

∂x

)
q

(1)
1 +Qy1

∂ψ
(1)
1

∂x
− π2

2 q
(1)
2
∂ψ

(1)
1

∂x
+ π2

4 q
(1)
1
∂ψ

(1)
2

∂x
−

π2

4 ψ
(1)
1
∂q

(1)
2
∂x

+ π2

2 ψ
(1)
2
∂q

(1)
1
∂x

= −rq(1)
1 , (A.7)
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(
∂

∂t
+ U1

∂

∂x

)
q

(1)
2 +Qy1

∂ψ
(1)
2

∂x
+ π2

4 q
(1)
1
∂ψ

(1)
1

∂x
− π2

4 ψ
(1)
1
∂q

(1)
1
∂x

= −rq(1)
2 . (A.8)

In the reduced model, (A.7) and (A.8) are the equations of motion in layer 1. Follow-
ing the same steps above but with the variables q(2)

i and ψ2
i for i = 1, 2, the equations

of motion in layer 2 are:(
∂

∂t
+ U2

∂

∂x

)
q

(2)
1 +Qy2

∂ψ
(2)
1

∂x
− π2

2 q
(2)
2
∂ψ

(2)
1

∂x
+ π2

4 q
(2)
1
∂ψ

(2)
2

∂x
−

π2

4 ψ
(2)
1
∂q

(2)
2
∂x

+ π2

2 ψ
(2)
2
∂q

(2)
1
∂x

= −rq(2)
1 , (A.9)

(
∂

∂t
+ U2

∂

∂x

)
q

(2)
2 +Qy2

∂ψ
(2)
2

∂x
+ π2

4 q
(2)
1
∂ψ

(2)
1

∂x
− π2

4 ψ
(2)
1
∂q

(2)
1
∂x

= −rq(2)
2 . (A.10)

Linearising (A.7), (A.8), (A.9) and (A.10) yields a set of equations from which the
linear stability of the equations can be investigated. We further suppose normal
mode ansatz for the potential vorticity and stream function of the form:

q
(`)
j = q̂

(`)
j eik(x−ct) and ψ

(`)
j = ψ̂

(`)
j eik(x−ct) for ` = 1, 2; j = 1, 2 , (A.11)

where x is the downstream coordinate and k is the x-direction wave number. After
substituting (A.11) into the system of equations (A.7 - A.10), the linearised combi-
nation of equations (A.7) and (A.9) can be written in matrix form as
r + ik(U1 − c)−

ikQy1(K2
1 + F2)

K2
1(K2

1 + F1 + F2)
−ikQy1F1

K2
1(K2

1 + F1 + F2)
−ikQy2F2

K2
1(K2

1 + F1 + F2)
r + ik(U2 − c)−

ikQy2(K2
1 + F1)

K2
1(K2

1 + F1 + F2)


(
q̂

(1)
1
q̂

(2)
1

)
= 0

(A.12)
where K2

1 = k2 + π2 and k is the zonal wave number.
The linearised forms of (A.8) and (A.10) take a similar form and can be written as a
matrix in the same form as (A.12) but with K2 = k2 +2π2. For non-trivial solutions,
the determinant of the matrix in (A.12) must vanish, thus,(
r + ik(U1 − c)−

ikQy1(K2
1 + F2)

K2
1(K2

1 + F1 + F2)

)(
r + ik(U2 − c)−

ikQy2(K2
1 + F1)

K2
1(K2

1 + F1 + F2)

)
−(

−ikQy1F1

K2
1(K2

1 + F1 + F2)

)(
−ikQy2F2

K2
1(K2

1 + F1 + F2)

)
= 0.(A.13)

Because we are interested in dynamics at scales comparable to the deformation radius
in the ocean, we ignore the β-effect from our consideration and also define the velocity
shear Us = U1 − U2 as the difference of fluid velocities in the two layers. Assuming
also that F1 = F2 = F, yields a simple form of the derivatives of Q:

Qy1 = FUs, Qy2 = −FUs , (A.14)
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and thus
Qy1 +Qy2 = 0, Qy1 ·Qy2 = −F2U2

s . (A.15)
Equation (A.13) yields a quadratic equation in c whose solution is obtained as

c =
(
−i r
k

+ 1
2(U1 + U2)

)
± Us

2

(
1− 4F

(
F3

y2 −
Fx2

y2 + x

y

))1/2

(A.16)

where, x = K2
1 + F, y = K2

1(K2
1 + 2F) and thus

c− UB = −i r
k
± Us

2

(
K2

1 − 2F
K2

1 + 2F

)1/2

. (A.17)

Thus c is generally complex and can be written as

c = cr + ici , (A.18)

where cr and ci are the real and imaginary parts of c respectively. In case the term
in the last parentheses vanishes, then the dispersion relation reduces to

c =
(
−i r
k

+ UB

)
, (A.19)

where, UB = 1
2(U1 + U2) is the barotropic velocity.

From (A.19), it is possible to see that the decay of the perturbation is proportional
to the dissipation in the system and is higher for lower wave numbers. In this case,
the shear does drop out of the dispersion relation rendering the dissipation, r, and
the magnitude of the barotropic flow as the only effective parameters governing the
growth rate of instabilities in the channel under consideration. However if K1 <

(2F)1/2, then the terms in (A.17) also contribute to the complex part of c and in
turn the shear, Us and the Froude number, F become effective parameters of the
system too.

In what follows, two sets of simulations are carried out; the first being the case when
the dissipation r = O(1) and the second being the case when the dissipation in the
system is almost zero i.e r = O(∆) for very small ∆.

(i) r = O(1)
When the dissipation in the model is high, growing modes of instabilities are
only obtained when 2F > K2

1 and the product of the now imaginary term in the
parentheses of (A.17) and UB/2 must be large enough to outweigh the decay
term −i r

k
. This yields the relation for the marginal condition on Us in order

to have a growing instability.

Us = 2r
k

(
2F + K2

1

2F−K2
1

)1/2

(A.20)
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Figure A.1: Critical dependence of the velocity shear Us as a function of the zonal
wavenumber k.

For the selected values, r = 4.6,F = 40, l = π and 0 < k < 5 (Pedlosky,
2011), Us = Us(k) is noticed to exhibit a hyperbolic dependence as a function
of the zonal wave number k (see Fig. A.1).

(ii) r = O(∆)
When the model dissipation r is low, the marginal curve is given in terms of
the parameter F, the Froude number, and takes the form

F = K2
1

2 = k2 + l2

2 , (A.21)

thus yielding a parabolic dependence of F as a function of the zonal wave number,
with a minimum at k = 0 and takes the shape in Fig. A.2:

A.3 Numerical Simulations and Results

In what follows, results emerging from nonlinear numerical simulations of the the
reduced set of equations ((A.7 - A.10)) are presented. Results are discussed first,
for the case in which the model dissipation is high and second, for almost inviscid
dynamics but with the dissipation not effectively zero (r 6= 0).
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Figure A.2: Critical dependence of the Froude number F as a function of the zonal
wavenumber k.

A.3.1 The case r = O(1)

The model set up is such that the system is slightly above its neutral criticality. The
barotropic velocity in the channel is set at UB = 13.125 and the most unstable mode
with this barotropic velocity is found to be k = 4.34 . The parameter values of the
model when neutrally critical and those used in the nonlinear numerical simulations
are given in table A.1.

Table A.1: Model parameters used for the case r = O(1)
Parameter Symbol Critical values Simulation value
Shear Us 3.00 3.25
Froude number F 40.0 40.0
Dissipation r 4.60 4.60

Discussion

At first order, the solution has both sin πy barotropic and baroclinic modes as the
leading terms of the solution to the nonlinear set of equations (A.7, A.8, A.9 and
A.10). The leading terms of the solution exhibit the oscillations of the initial pertur-
bation imposed at the entrance of the channel (see figures A.3 and A.5) up to down-
stream. The amplitude of the perturbation grows initially with increasing distance
downstream until it reaches a finite amplitude and thereafter momentarily stabilises
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Figure A.3: Snapshots of the sin πy mode of the barotropic potential vorticity with
Us = Uso + 0.25 and r = ro.

before eventually decaying to zero. The stabilisation in growth of the perturbation
at finite amplitude is longer downstream.

In all cases and for all the modes considered, it is observed that the part of the grow-
ing perturbation behind the front reaches finite amplitude before saturation such
that, in the regions ahead of the front, the amplitude of the perturbation remains
constant in the vicinity of the front and decays quite quickly away from the front
downstream. The slightly unique cases amongst the modes considered in this study
are the sin 2πy baroclinic and barotropic modes which exhibit fewer oscillations com-
pared to the leading order terms (see Fig. A.4 and Fig. A.6). With the exception
of a few oscillations whose amplitudes are still small near the channel entrance, any
information about the oscillatory nature of the perturbation is lost downstream and
the resulting correction to the leading order terms, is at large non-oscillating.

Behind the front, oscillations are observed in the spatial and temporal structure of
the perturbation before finally reaching finite amplitude in the vicinity of the front
(Fig. A.6). Ahead of the front, the perturbation has already reached finite amplitude
and therefore remains constant (for longer time scales) or immediately decays (for
shorter time scales) ahead of the front. This is in agreement with the results found
by Pedlosky (2011) who highlighted that the correction to the mean flow carries the
oscillatory information of the perturbation only behind the front during which time
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Figure A.4: Snapshots of the baroclinic potential vorticity on the sin(2πy) mode with
Us = Uso + 0.25 and r = ro

the perturbation also attains finite amplitude. In that study, it was also noticed
that ahead of the front, the structure of the correction term is smooth, with the
perturbation having reached finite amplitude.

We also notice that the baroclinic mode is the largest of the sin 2πy modes which
is consistent with the results obtained by Pedlosky (2011), who showed analytically
that the first order correction to the mean flow is fully baroclinic. However, the non-
linear simulations conducted in this study reveal that there is a small contribution to
the mean flow correction by the sin 2πy barotropic mode (Fig. A.4). This component
is the smallest of all the modes but it is worth noting that although the asymptotic
approach adopted using the finite amplitude model in Pedlosky (2011) fails to capture
this contribution, it is not necessarily zero as observed in figure A.4.

A probable explanation why the asymptotic approach shows that the sin(2πy) barotropic
mode does not contribute to the mean flow correction could be that as observed from
figure (A.4), the spatial average of this mode is zero. So, the reason for the failure
to capture this mode in the theory is not because it is small in magnitude but it is
because it vanishes on the average. More interestingly, apart from the initial tran-
sients, the sin 2πy barotropic mode manifests as a periodic oscillation with vanishing
spatial average.
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Figure A.5: Snapshots of the sin πy baroclinic potential vorticity mode with
Us = Uso + 0.25 and r = ro
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Figure A.6: Snapshots of the baroclinic potential vorticity on the sin(2πy) mode with
Us = Uso + 0.25 and r = ro
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Table A.2: Model parameters used for the case r = O(∆)
Parameter Symbol Critical values Simulation value
Shear Us 1.30 1.30
Froude number F 4.9348 4.9348 + 0.02
Dissipation r 0.001 0.001

A.3.2 The case r = O(∆)

The barotropic flow in this case is reduced to UB = 1.65 and the most unstable
mode corresponds to the wave number k = 0.15. Several simulations are performed
at various degrees of super criticality (i.e for increasing values of ∆). Results are
presented in figures A.7, A.8 and A.9. For most values of ∆, the flow does not seem to
change significantly but it happens that as ∆ increases, more features emerge ahead
of the front for longer integration times. At leading order, the baroclinic mode is
largest while the corresponding barotropic mode is small but nonzero (Fig. A.7) and
all the modes are noticed to exhibit oscillations downstream. Also as theory predicts,
the largest component of the correction to the leading order solution is baroclinic
(the sin2πy baroclinic mode). However, the fully non-linear solution shows that a
barotropic contribution is also present. The latter is initially small (≈ 0) but develops
with time until it is one order of magnitude lower than the sin 2πy baroclinic mode.

Discussion

At the leading order, the dominant part of the flow is the sinπy baroclinic mode.
The sin 2πy baroclinic mode is lower than the former but it is significantly large.
This is in agreement with the findings of Pedlosky (2011) which showed that in this
regime, the leading order solution is the sinπy baroclinic mode and that its barotropic
correspondent although an order of magnitude lower, is the second most important
component. Although not as much as an order of magnitude, the fully nonlinear
solutions strongly yield similar results.

At the next order, the major correction component to the mean flow is found to
be largely baroclinic (i.e the sin 2πy baroclinic mode). The sin2πy barotropic mode
is at large zero for short timescales during the simulation. The amplitudes of this
barotropic mode are noticed to grow with increasing distance from the channel en-
trace but with oscillations of low frequency compared to all the other components.
This is also in agreement with the findings from the multi-scale asymptotics which
yielded that the correction to the mean flow is baroclinic for all time scales (Pedlosky,
2011). However, our findings here show that there is a small barotropic contribution
to the mean flow as the downstream distance increases.

Increasing the degree of super criticality leads to a complete break down of the
predictions of the linear and weakly non-linear theory. In this case, at leading order,
the dominant term is the sinπy baroclinic mode as opposed to the sinπy barotropic
mode predicted by theory. Also, at the next order, the barotropic correction to
the mean flow becomes appreciable which is of course another difference from the
case considered when the dynamics are slightly super critical. The other remarkable
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Figure A.7: Snapshots of the barotropic and baroclinic potential vorticities for ∆ = 0.02.

feature that emerges with increasing levels of supercriticalities is that the features
formed ahead of the front become more apparent and highly variable downstream as
one would expect when the non-linearities in the system are at full operation.

In conclusion, the findings from this study qualitatively show that the degree of
dissipation in the system is a major determinant of the dynamics of the flow. When
the system is substantively dissipative, the marginal curve is given in terms of the
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Figure A.8: Snapshots of the barotropic and baroclinic potential vorticities for ∆ = 0.1.

shear and the dominant correction component to the mean flow is largely baroclinic.
In the case when the dissipation is so small, the marginal curve is expressed in terms
of the parameter, F - the Froude number. Here, the lowest order component is found
to be barotropic and the correction is fully baroclinic.

For further study, it would be meaningful to consider using a periodic channel so
that the flow statistics can be obtained with a good degree of accuracy to enable
giving a quantitative account of the dynamics of the flow and how the different
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Figure A.9: Snapshots of the barotropic and baroclinic potential vorticities for ∆ = 0.7.

components exchange the energy in both spatial and temporal considerations. Of
course, inclusion of the β− effect would also serve the purpose of getting the results
obtained into comparison of what happens when scales larger than the deformation
radius are considered.
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Invariant-tori-like Lagrangian coherent structures in geophysical flows. Chaos, 20,
017 514.

Beron-Vera, F. J., M. J. Olascoaga, and G. J. Goni, 2008: Oceanic mesoscale eddies
as revealed by Lagrangian coherent structures. Geophys. Res. Lett., 35, L12 603.

Beron-Vera, F. J., Y. Wang, M. J. Olascoaga, J. G. Goni, and G. Haller, 2013:
Objective detection of oceanic eddies and the Agulhas leakage. J. Phys. Oceanogr.,
43, 1426 – 1438.

Bettencourt, J. H., C. Lopez, and E. Hernandez-Garcia, 2012: Oceanic three-
dimensional Lagrangian coherent structures: A study of a mesoscale eddy in the
Benguela upwelling region. Ocean Modell., 51, 73 – 83.
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Lévy, M., P. Klein, and A. Treguier, 2001: Impacts of Submesoscale Physics on
Production and Subduction of Phytoplankton in an Oligotrophic Regime. J. Mar.
Res., 59, 535 – 565.

Luyten, J., 1977: Scales of motion in the deep Gulf Stream and across the continental
rise. J. Mar. Res., 35, 49 – 74.

Mahadevan, A., 2006: Modelling vertical motion at ocean fronts: Are nonhydrostatic
effects relevant at submesoscales? Ocean Modell., 14, 222 –240.

Mahadevan, A., and A. Tandon, 2006: An analysis of mechanisms for submesoscale
vertical motion at ocean fronts. Ocean Modell., 14, 241 – 256.

Mahadevan, A., A. Tandon, and R. Ferrari, 2010: Rapid changes in mixed layer
stratification driven by submesoscale instabilities and winds. J. Geophys. Res.,
115, C03 017.

Marshall, J., L. P. A. Adcroft, C. Hill, and C. Heisey, 1997a: A finite-volume, in-
compressible Navier Stokes model for studies of the ocean on parallel computers.
J. Geophys. Res., 102, 5753 – 5766.

Marshall, J., C. N. Hill, L. Perelman, and A. Adcroft, 1997b: Hydrostatic, quasi -
hydrostatic and non - hydrostatic ocean modelling. J. Geophys. Res., 102, 5753 –
5752.

Mathur, M., G. Haller, T. Peacock, J. E. Rupert-Felsot, and H. L. Swinney, 2007:
Uncovering the Lagrangian Skeleton of Turbulence. Phys. Rev. Lett., 98, 144 502.

Chaotic advection by submesoscale processes



BIBLIOGRAPHY xvii

Mensa, J., A. Griffa, Z. Garraffo, T. M. Özgökmen, A. C. Haza, and M. Veneziani,
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