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1. SYNOPSIS 

1.1. INTRODUCTION 

1.1.1. Cancer and carcinogenesis 

Cancer is a group of diseases caused by deregulation of cell cycle machinery, 

whereby normal cells undergo uncontrolled cell division. Normally cell cycle regulation 

is maintained by dynamic balance between proliferation and programmed cell death 

stimuli. These stimuli are produced by systems of proto-oncogenes (genes that 

stimulate cell proliferation) and tumor suppressor genes (genes that promote cell cycle 

arrest and programmed cell death), respectively. Activation of proto-oncogenes and 

inactivation of tumor suppressor genes lead to deregulation of the cell cycle and 

uncontrolled cell division [1].  

Genetic and epigenetic aberrations cause activation of proto-oncogenes and 

inactivation of tumor suppressor genes. Genetic aberrations include mutations, copy 

number aberrations (CNAs), leading to gene dosage changes, and copy number 

neutral chromosomal aberrations, such as translocations. Epigenetic changes include 

aberrant methylation. Genetic and epigenetic changes ultimately reprogram a cell, 

promoting carcinogenesis. Uncontrolled cell division in combination with further 

evolution of cancer cells by natural selection in the body leads to cancer development. 

Cancer hallmarks include sustaining proliferative signaling, evading growth 

suppressors, resisting cell death, inducing angiogenesis, enabling replicative 

immortality, activating invasion and metastasis, avoiding immune destruction, tumor-

promoting inflammation, genome instability and mutation, deregulation cellular 

energetics [2]. 

 Cancer may derive from almost any cell type of the human body. However, 

each cancer is different according to its biology and pathophysiology. The most 

common cancers are lung, breast, colorectal, and prostate cancer, accounting each 

more than 1 million cases in 2012 worldwide [3]. 

 

1.1.2. Breast cancer 

Breast cancer is the most common malignancy in women with more than 1.6 

million cases diagnosed in 2012 worldwide, accounting for approximately 25% of all 

cancer cases in women [3]. 

About 5-10% of all breast cancer cases are hereditary, caused by germ-line 

mutations in e.g. the BRCA1 and BRCA2 genes, the remaining 90-95% are sporadic. 
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Risk factors for developing sporadic breast cancer are classified as variable and 

invariable. Variable risk factors for breast cancer development include obesity, giving 

first birth late, dietary factors, hormone replacement therapy, intake of oral 

contraceptives, alcohol consumption, radiation, and exposure to mutagens; invariable 

factors include early menarche, late menopause, ageing, and having a family history 

of breast cancer [4]. 

Breast cancer is a heterogeneous disease in regard to epidemiology, 

morphology, histology, molecular organization, clinical behavior, therapy response, 

and dissemination patterns to distant sites. The most common histopathological types 

of breast cancer are invasive ductal carcinoma (IDC), ductal carcinoma in situ (DCIS), 

and invasive lobular carcinoma (ILC), with a prevalence of 55, 13, and 5%,  

respectively [5].  

Therapy opportunities for breast cancer include surgery, irradiation, and 

systemic therapy in neoadjuvant and/or adjuvant setting. The therapeutic approach for 

a particular patient depends on the stage of the disease, presence or absence of 

metastases, expression of certain markers, and present comorbidities [6-8]. More 

specifically, type of surgery and irradiation regiment mostly depend on stage of the 

disease, its spread and present comorbidities, whereas prescription of systemic 

therapy, including chemotherapy, endocrine therapy, and targeted therapy, is mostly 

dependent on the subtype of the tumor [6, 7]. 

 

1.1.3. Molecular subtypes of breast cancer 

Subtypes of breast cancer have originally been identified on molecular level 

based on different gene expression profiles of a large set of breast tumors [9, 10]. 

The most common molecular subtype of breast tumors is luminal A, presenting 

50-60% of all sporadic breast cancer cases [11, 12]. This subtype is characterized by 

the expression of genes activated downstream of the estrogen receptor (ER) pathway 

as in normal luminal epithelium of the mammary ducts. Because of low expression of 

genes related to cell proliferation, luminal A tumors are characterized by a relative good 

prognosis. On protein level, luminal A tumors demonstrate expression of ER, 

progesterone receptor (PR), keratin (K) 8/18, low expression of Ki67, and lack of 

expression of human epidermal growth factor receptor 2 (ERBB2) [9, 10, 13, 14]. 

The luminal B subtype represents 10-20% of all breast tumors and is 

characterized by a mixed expression of ER, PR, and uncommonly ERBB2. In contrast 
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to luminal A, the luminal B subtype is characterized by higher proliferation rates 

measured by the expression of Ki67, MKI67, and cyclin B1. Consequently, patients 

with luminal B tumors have a worse prognosis than patients with luminal A tumors [14]. 

The ERBB2-enriched subtype, often called HER2-positive, entails up to 20% of 

all breast cancer cases. It is characterized by amplification-related overexpression of 

the ERBB2 gene, as well as high expression of ERBB2-pathway associated genes, 

and lack of ER/PR expression. Histopathological ERBB2-positive breast cancer is 

characterized by a highly proliferative phenotype and worse prognosis [14]. 

Basal-like breast cancers represent another molecular subgroup and are usually 

characterized by absence of ER, PR, and ERBB2 expression. In most cases these 

tumors demonstrate positivity for EGFR or K5/6. Additionally, basal-like tumors often 

demonstrate mutations in TP53 gene, explaining their high aggressiveness [10].  

Patients with basal-like tumors have a worse prognosis than patients with luminal 

tumors [14].  

Normal-like breast tumors account up to 10% of all breast cancer cases. They 

are poorly characterized and have a prognosis and clinical outcome between that of 

luminal and basal-like tumors. Normal-like tumors are negative for ER, PR, ERBB2, 

but in contrast to basal-like tumors, normal-like carcinomas are also EGFR, and K5/6 

negative [14, 15]. 

The latest identified molecular subtype is the claudin-low subtype (12-14% of all 

cases). Despite this subtype shares some characteristics with basal-like tumors, such 

as low expression of ER, PR, and ERBB2, claudin-low tumors overexpress a set of 

genes related to immune response, mesenchymal phenotype, and epithelial-

mesenchymal transition (EMT). These features condition a poor prognosis [16-18]. 

Sophisticated molecular characterization of breast tumors has been adapted for 

simplified pathological examination to be used in the routine clinical practice. 

Pathological identification of breast cancer subtype is based on evaluation of ER and 

PR expression by immunohistochemistry (IHC), as well as fluorescence in situ 

hybridization (FISH) analysis of ERBB2 overexpression. These markers are important 

for therapy indication. ERBB2 overexpressing tumors are mostly treated with anti-

ERBB2 therapy, whereas ER-positivity of a tumor is considered being a surrogate 

marker for endocrine therapy indication. 
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1.1.4. The role of estrogen receptor in breast cancer 

ER-signalling plays a key role in the development of both normal and neoplastic 

breast tissue. Physiological activation of ER through binding with its ligands, estrogens, 

promotes and controls the development of the female secondary sex characteristics, 

regulation of menstrual cycle, and genesis of breast tissue and its further development 

after puberty and during pregnancy [19]. Moreover, ER-mediated signalling is involved 

into growth of ER-positive breast tumors [20]. Therefore, pharmacological inhibition of 

ER action through selective ER modulators (SERM), selective ER down-regulators 

(SERD), or aromatase inhibitors (AI) leads to interruption of the ER signalling pathway 

in cancer cells [21]. 

Endocrine therapy is widely used as adjuvant therapy in women with ER-

positive breast cancer [22, 23]. Nevertheless, failure of endocrine therapy is observed 

in 30-40% of these women [24, 25]. Resistance to endocrine therapy can be caused 

by different mechanisms, leading to either lack of functional ER protein expression or 

dysfunction of the ER pathway [26]. As a consequence, endocrine therapy failure in 

ER-positive breast cancer patients leads to metastatic progress, which is the cause of 

90% of the cancer-related deaths [27]. 

 

1.1.5. Circulating tumor cells as source of distant metastases 

A putative source of distant metastases are circulating tumor cells (CTCs) – 

cells that have detached from the primary tumor or metastases and have spread into 

the circulation [28]. The ability to invade surrounding tissue and intravasate appear to 

be associated with epithelial-mesenchymal transition (EMT). EMT is a reversible 

process leading to dedifferentiation and promoted motility of tumor cells. EMT is 

associated with loose of cell-cell contacts, apical-basal polarization, altered adhesion, 

rearrangement of molecular markers and cytoskeleton organization. By undergoing the 

EMT, tumor cells switch partially or fully their epithelial phenotype into a mesenchymal 

one (rev. in [29]. By undergoing mesenchymal–epithelial transition (MET), the reverse 

process to EMT, CTCs obtain the ability to settle down in distant organs and give rise 

to metastases.  

Despite half-life time of CTCs in circulation is <2.4h [30], investigation of CTCs 

present in blood of a patient at any certain time moment provides a snapshot of the 

actual disease status.  
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Quantification and characterization of CTCs in blood of cancer patients was 

introduced as a concept of “liquid biopsy” despite short half-life of CTCs in circulation. 

Regular enumeration of CTCs as a validated clinical biomarker can be utilized for 

disease prognosis, diagnosis of minimal residual disease, and monitoring of therapy 

effectiveness for breast, prostate, and colon cancer [31-34].  

It has been shown that the presence of CTCs after completion of adjuvant 

therapy is a predictor of metastatic relapse and poor survival [32, 35]. Moreover, 

information provided by CTCs might be extended over the CTCs’ enumeration. 

Namely, CTCs might be investigated on proteomic, transcriptomic, and genomic levels. 

Despite transcriptome analysis on single cells is challenging, investigations of protein 

expression and genome-wide studies on single cells are becoming the state of the art 

in cancer research [36]. Characterization of CTCs provides insights into heterogeneity 

of the cancer and metastases. 

 

1.1.6. Intra-patient heterogeneity in breast cancer 

Heterogeneity of cancer is not limited to disease differences between patients, 

but also occurs within one patient. This intra-tumor, or intra-patient, heterogeneity can 

be observed on all levels of molecular organization: genomic, epigenomic, 

transcriptomic, metabolomic, and proteomic [36]. 

The current view on tumor heterogeneity is based on principles of Darwinian 

evolution. Natural selection leads to elimination of subclones with unfavorable for 

tumor progression genomic and epigenomic aberrations, while tumor promoting 

aberrations are maintained among subclones and confer survival advantage on the 

cells. Sequential waves of clonal expansion and changes in tumor microenvironment 

further drive genetic divergence of the subclones (rev. in [37]). 

Investigation of protein expression in CTCs can provide a valuable information 

about intra-patient heterogeneity on proteomic level. ER expression in single CTCs 

can be used as marker of endocrine therapy efficacy and is therefore of particular 

interest. ER positivity of breast tumors determined by IHC is based on a cut-off of 1% 

of tumor cell positivity for the ER nuclear reactivity [38]. Therefore, CTCs arising from 

primary ER-positive breast tumors are not necessarily expected to be ER-positive. 

Heterogeneous ER expression in CTCs might be one of the reasons for endocrine 

therapy failure and the development of metastases in patients with ER-positive tumors 

treated with hormone therapy. It has been shown that divergence of ER status between 
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primary tumor and CTCs is not a rare event. Initially, these studies were based on PCR 

measurement of mRNA expression levels in an enriched for CTCs cell fraction [39-41]. 

However, this approach does not allow for investigation of intra-patient heterogeneity 

between individual CTCs. Investigation of ER expression on single cell level might 

shed light on the cause of endocrine therapy resistance in individuals and could 

ultimately lead to treatment optimization. 

Intra-tumor heterogeneity on functional level, such as transcriptome, 

metabolome, and proteome, might be caused by niche adaptation mechanisms and 

varies through cell cycle dynamics, and thus does not necessarily reflect clonality of 

the cancer. Genomic heterogeneity, reflecting clonal origin of a cell lineage, is 

supposedly more stable and thereby providing accessible information about clonal 

evolution of cancer.  

Molecular characterization of CTCs provides a powerful tool for investigation of 

intra-patient heterogeneity, obtaining information about the clonal origin of CTCs and 

clonal selection under therapy. Identification of therapy sensitive and resistant clones 

may provide new insights and potential targets for cancer treatment. Herewith, 

investigation of single cell genomics may provide the next step towards individualized 

therapy. 

 

1.1.7. Cancer progression models 

Genetic intra-tumor heterogeneity caused by clonal evolution of cancer is a well-

known phenomenon in human cancers. Nevertheless, it has been long discussed 

whether metastatic dissemination is an early or late event in cancer evolution, resulting 

in development of two progression models.  

The first model, the linear progression model, postulates that metastasis-

initiating cells originate from most progressed clone(s) of the primary tumor, which 

were developed during evolution of the primary tumor with selection for clones with 

high metastatic proclivity [42, 43]. On the other hand, data showing the metastatic 

potential of primary tumors at early stages, led to the coinage of the parallel 

progression model [44, 45]. This model proposes the presence of metastatic potential 

already in the early disease progression, leading to early dissemination of CTCs into 

circulatory system with subsequent parallel and independent evolution of the primary 

tumor and metastases [46, 47]. An alternative scenario of cancer metastasis, proposed 

in our institute, suggests continuous dissemination of tumor cells from a primary tumor 
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developing higher metastatic potential over the time during further evolution of the 

primary tumor [48]. 

Understanding tumor progression and the metastatic cascade in breast cancer 

is of tremendous value because distant metastases development is the most 

challenging issue in clinical management of cancer. Investigation of progression 

mechanisms and clonal evolution in cancer could identify molecular signatures, 

involved in progression and metastatic process. Parallel genetic evolution of the 

primary tumor and distant metastases might explain failure of systemic endocrine 

therapy, which prescription is based on ER-positivity of the primary tumor. ER-positive 

primary breast cancers, treated with endocrine therapy, often demonstrate presence 

of ER-negative metastases, insensitive to anti-estrogen therapy [49, 50]. 

 

1.1.8. Radiotherapy resistance as function of cancer heterogeneity 

Clonality of breast cancer might not only play a role in endocrine therapy 

resistance, but also in sensitivity and resistance to radiotherapy. Radiotherapy is 

almost never given alone as its accompanying application is beneficial in women with 

early and metastatic breast cancer [51-54]. The combination of radiotherapy and 

endocrine therapy is widely used in treatment of ER-positive breast cancer to improve 

patient survival [55], it is mostly provided as sequential to endocrine therapy (rev. in 

[56]). However, radiotherapy increases risk of ischemic heart disease [57] and thus 

should not be given without a clear marker-based indication. Moreover, correlation of 

radiotherapy resistance with resistance to endocrine therapy has been shown [58, 59]. 

Therefore discovery of markers able to predict cross-resistance to endocrine and 

radiotherapy is of particular interest. 

On molecular level, overexpression of CD44 – a receptor for hyaluronan (HA), 

is associated with acquired endocrine therapy resistance in breast cancer cells [60]. 

The mechanism of CD44-associated endocrine therapy resistance relies on the ability 

of CD44 to promote proliferative signaling through its interaction with ERBB2 and 

EGFR [60, 61]. The hyperactivation of the ERBB2 and EGFR signaling pathways is 

known to limit response to endocrine therapy in ER-positive breast cancer [62, 63].  

CD44 in conjunction with CD24 is a well-known marker for cancer stem cells 

(CSC) [64]. Moreover, it has been shown that CSC-like phenotype CD44+/CD24-/low is 

associated with radiotherapy resistance in cancer cells and may be induced by 

radiation even in differentiated breast cancer cells [65, 66]. The CD44+/CD24-/low tumor 
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cells are known to be more often present in basal-like breast tumors [67]. However, 

total expression of CD44 as measured by qRT-PCR was significantly higher in the 

luminal A subgroup compared to basal-like, luminal B, and ERBB2-enriched tumors 

[68]. This discrepancy might be explained by strong heterogeneity of luminal-type 

breast cancer with demonstrated presence of basal-like cells in luminal tumors [69-71]. 

Taken together, these data demonstrate the need of reliable markers responsible for 

sensitivity and resistance to radiotherapy. Recent studies suggest that aberrant 

apoptosis, driven by the p53 protein, may contribute to radiotherapy resistance [72, 

73]. Receptor for hyaluronan-mediated motility (RHAMM), characterized as potential 

target protein of p53, is involved in radiation-induced apoptosis [74] and is highly 

expressed in luminal breast cancer cell lines [75]. It has been observed that luminal 

breast cancers are radiotherapy sensitive (rev. in [76]), however, very little is known 

about role of the 4 RHAMM isoforms in breast cancer development, progress, and 

therapy response.  

One of the presented studies addresses the functional role of RHAMM-proteins 

in breast cancer as well as the relevance of its interaction with p53 with regard to 

therapeutic interventions supporting radiotherapy-based treatment decisions. In 

particular, the hypothesis was tested if RHAMM and its binding partner HA are eligible 

as therapeutic targets to sensitize breast cancer cells to ionizing radiation.  

 

1.1.9. Detection, isolation, and characterization of circulating tumor cells 

Minimal-invasiveness, easy accessibility, and the possibility of sequential blood 

collection make CTC analysis to a promising new blood-based biomarker [31, 77]. 

However, the need for dedicated technologies and expertise hamper CTC analysis. 

Investigation of protein expression patterns as well as genomic aberrations in 

individual CTCs requires the detection and isolation of these cells. Low concentration 

of CTCs in the circulation makes the isolation challenging. Several existing enrichment 

techniques are based on the physical or immunological properties of CTCs (reviewed 

in [78, 79]). Whereas physical properties of the CTCs, such as size, might be not 

necessarily CTC-specific, immunological characteristics of the tumor cells are more 

likely to be CTC-specific. CTCs that originate from epithelial tumors (carcinomas) 

normally express epithelial markers such as EpCAM and keratins and lack expression 

of molecules typical for leukocytes, such as CD45 molecules. Therefore, 

immunocytochemistry (ICC) with the use of differently labeled antibodies against these 
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specific markers allow the discrimination between CTCs and leukocytes with 

simultaneous investigation of target protein expression, such as ER. 

Identification, analysis, and isolation of individual CTCs can be expanded by 

genome-wide characterization. Characterization of genomic aberrations on single cell 

level is a powerful tool, allowing for the investigation of intra-tumor clonal heterogeneity 

and the metastatic cascade. Genome-wide characterization of single cells became first 

possible with recent advances in isolation of single cells, establishment of whole 

genome amplification (WGA), and development of next generation sequencing (NGS). 

 

1.1.10. Whole genome amplification of single (tumor) cells 

WGA prior to downstream genetic analysis of individual CTCs is required since 

a single cell does not contain enough DNA for biomolecular investigation. WGA was 

established in 1992 and used primarily for sperm typing [80, 81]. Very soon, WGA 

became applied in the preimplantation genetic diagnostic of human embryos [82, 83] 

and investigation of single tumor cells [84, 85]. 

The current existing WGA techniques can be grouped into three classes. The 

first class includes polymerase chain reaction (PCR) based methods. Production of 

short fragments is often seen being a disadvantage as DNA fragments less than 1 kb 

cannot be used in many downstream applications [86] especially in preimplantation 

genetic diagnostic [87]. 

The second class of WGA techniques is the multiple-displacement amplification 

(MDA), which is a non-PCR-based amplification method. MDA utilize the highly 

processive Phi29 DNA polymerase and random hexamer exonuclease-resistant 

primers. The following strand-displacement synthesis is an isothermal process. 

Products generated by MDA can be more than 10 kb in length [88, 89]. 

The third WGA class includes techniques that combine a brief MDA pre-

amplification and a PCR amplification phase. Unlike the first two WGA methods, 

combined MDA-PCR provides quasi-linear amplification [88, 89]. 

Different concordance rates between non-amplified genomic DNA and DNA 

amplified with different WGA strategies have been reported in single nucleotide 

polymorphism (SNP) genotyping studies and CNA analysis [88, 90-96]. Moreover, 

these studies demonstrate that WGA might cause imbalanced amplification of alleles, 

leading to inaccurate results of CNA analysis. It has been shown, that unequal 

amplification of different sites is random and is not reproducible in different experiments 
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with the same DNA [97]. Therefore the amplification approach has to be chosen 

carefully depending on its specific characteristics, advantages, disadvantages, and the 

subsequent analysis [95, 98]. 

An important factor influencing WGA is material preservation. CTCs in blood 

may be preserved in special CellSave tubes in order to overcome clotting and for 

longer periods of storage. However, fixatives may inhibit DNA amplification and 

thereby hamper downstream analysis [99, 100]. Most tissue samples are conserved 

by formalin-fixation, and paraffin-embedding (FFPE), which is difficult to handle in 

biomolecular analysis due to formalin-induced cross-links [101]. Therefore, it is 

essential to have WGA methods compatible with these types of materials. 

 

1.1.11. Next generation sequencing of single (tumor) cells 

Downstream analysis of (amplified) DNA can be performed by massive parallel 

sequencing using NGS in order to identify SNPs, indels (insertions-deletions), loss of 

heterozygosity, structural variations, and copy number aberrations (CNA). 

Although genomic aberrations can be investigated by array-comparative 

genomic hybridization (aCGH), the analysis on single cell level is challenging. The 

combination of pre-selected targets on the array on one hand and the random and 

incomplete genome amplification during WGA [96, 97, 102] on the other hand, can 

result in a high signal-to-noise ratio [103]. Furthermore, the resolution for whole 

genome analysis by aCGH is limited [104], in contrast, NGS provides the possibility to 

examine each nucleotide of the entire amplified product with single base resolution.  

Existing NGS platforms differ by library preparation and signal detection 

approaches. Illumina’s NGS technology is based on sequencing-by-synthesis 

approach. Currently, Illumina’s HiSeq machines offer the highest throughput per run, 

nevertheless, a sequencing run can last several days [105, 106]. Thermofisher’s 

IonProton sequencers utilize semiconductor sequencing technology, based on 

detection of dNTPs incorporation by pH change. Despite this approach allows to 

complete a sequencing run within 4 hours, homopolymer stretches might be called 

incorrectly [105]. 

Taken together, methods for single cell analysis of CTCs, allowing for 

simultaneous characterization of the cells on both protein expression and genomic 

levels are of particular interest as they can provide valuable information about cancer 

biology as well as for identifying potential new targets and biomarkers for cancer 
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treatment. Genomic characterization of CTCs provides insights into genetic 

heterogeneity of the cancer and metastases and might aid clinical management of 

cancer patients due to identification of therapy sensitive and resistant clones. Herewith, 

investigation of single cell genomics may provide the next step towards individualized 

medicine. 

In the studies presented here we 1) established and validated a highly sensitive 

approach to detect CTCs and simultaneously investigate their ER expression in blood 

samples of metastatic breast cancer patients; 2) investigated methodological basis for 

single cell genome-wide analysis; 3) investigated clonal evolution of human breast 

cancer on primary tissue and CTCs from two metastatic breast cancer patients; 4) 

investigated the functional role of RHAMM-proteins in BC as well as the relevance of 

its interaction with p53 with regard to therapeutic interventions supporting 

radiotherapy-based treatment decisions.  
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1.2. THE PROJECTS (MATERIAL AND METHODS) 

The total study consisted of four major projects, each performed on the basis of 

previous project(s). Every project has been individually published or submitted for 

publication as follows: 

1. Heterogeneity of estrogen receptor expression in circulating tumor cells 

from metastatic breast cancer [107]. 

2. Comparative study of whole genome amplification and next generation 

sequencing performance of single cancer cells [submitted]. 

3. Clonal evolution of metastatic breast cancer: two cases – two progression 

models [manuscript in preparation].  

4. RHAMM splice variants confer radiosensitivity in human breast cancer 

cell lines [108].  

 

1.2.1. Heterogeneity of estrogen receptor expression in circulating tumor 

cells from metastatic breast cancer patients 

In the first project, we established a triple staining protocol for the detection and 

characterization of CTCs in blood of breast cancer patients. In order to simulate CTCs 

in blood, blood from healthy donors was spiked with human breast cancer cell line 

cells: ER-positive BT-474 and MCF-7 cells lines, and ER-negative BT-20, and MDA-

MB-231. Prepared cytospins of mononuclear cell fraction were used for the protocol 

establishment.  

The established triple staining protocol allowed for the visualization of ER, 

CD45, and keratin (K) with the use of the dyes AlexaFluor488 (fluorescent green), 

NBT/BCIP (chromogenic dark blue), and Cy3 or AlexaFluor555 (fluorescent red), 

respectively. Additionally, nuclei were visualized by DAPI staining.  

Subsequently, the protocol was applied to blood samples obtained from 

metastatic breast cancer patients. Keratin and DAPI positive, but CD45 negative cells 

were considered as CTCs. As proof of principal, 8 CTCs from 4 patients were 

individually picked by micromanipulation [109]. The quality of the WGA products was 

assessed by a multiplex PCR of the 100, 200, 300, and 400bp non-overlapping 

fragments of GAPDH gene as described elsewhere [110]. Subsequently mutation 

analysis of exon 4, 6, and 8 of the ESR1 gene was performed.  

Statistical analysis included comparison of CTC-positive and negative groups 

depending on clinical disease status (Fisher’s exact test), survival analysis in 

Published 19.07.2016 in Oncotarget
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dependence on CTC status (Kaplan-Meier test), the groups of patients who received 

endocrine therapy vs. chemotherapy at the time of blood collection was calculated by 

Mann-Whitney-U-test.  

 

1.2.2. Comparative study of whole genome amplification and next 

generation sequencing performance of single cancer cells  

In this project, we comprehensively investigated the performance and 

effectiveness of commercially available WGA techniques for whole exome sequencing 

by NGS on single and pooled tumor cells, and the independence of blood preservative. 

The performance of 3 WGA kits, representing 3 WGA methods, was analyzed in 4 

groups of source material, different by origin and preservation method: A) individual 

SK-BR-3 cells obtained from EDTA-preserved blood; B) individual SK-BR-3 cells 

obtained from CellSave-preserved blood; C) single SK-BR-3 cells picked from a FFPE 

SK-BR-3 cell pellet; and D) individual CTCs obtained from EDTA-preserved blood from 

a breast cancer patient. Single tumor cells were obtained by spiking of healthy donors’ 

blood, obtained in either EDTA or CellSave tubes, with SK-BR-3 cell line cells. The 

same cell line was previously formalin-fixed, paraffin-embedded, and stored for >3 

years. Additionally, CTCs from metastatic breast cancer patients’ blood, collected in 

EDTA tubes, were available. Single tumor cells from the fraction of mononuclear cells 

were enriched, stained, and picked according to the previously established protocol. 

After DNA yield and quality per WGA kit were estimated, DNA of a single cell 

from each WGA group was used for whole exome NGS on 2 different platforms. Briefly, 

three SK-BR-3 cells, obtained from EDTA-preserved blood and amplified with Ampli1, 

PicoPlex, and REPLI-g kit, were analyzed with both HiSeq2000 and IonProton 

platforms. 

Based on the obtained results, 1 NGS platform and 1 WGA kit were excluded 

for further experiments as they yielded results of insufficient quality. The next round of 

experiments included WGA of single and pooled cells in duplicate and NGS of obtained 

DNA in order to investigate the performance and the limit of detection with increasing 

amounts of material. Duplicates of 1, 3, 5, and 10 pooled SK-BR-3 cells obtained from 

CellSave-preserved blood and amplified with Ampli1 and PicoPlex kits were 

sequenced on HiSeq2000. Subsequently, a proof of principle experiment was 

performed on 2 individual CTCs obtained from EDTA-collected blood of a breast 
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cancer patient. The cells were individually amplified with PicoPlex WGA kit and 

sequenced on HiSeq2000.  

 

1.2.3. Clonal evolution of metastatic breast cancer: two cases – two 

progression models 

In the presented project, we used methods and data analysis workflows, 

established in the described above projects for the investigation of clonal evolution of 

human breast cancer on primary tissue and CTCs from two metastatic breast cancer 

patients. 

CTCs from blood of two metastatic breast cancer patients were enriched, 

stained for ER and K and picked according to the established protocol. From the two 

enrolled subjects, formalin-fixed, paraffin-embedded archival material of the primary 

tumors was cut in 5 µm thick sections, processed as described before [111], stained 

for ER, and used for laser microdissection of ER-positive and ER-negative tumor 

fragments.  

CTCs and tissue samples underwent WGA with the PicoPlex WGA kit and 

whole genome sequencing with Illumina’s HiSeq2000 NGS platform. Raw NGS data 

was processed with the previously established pipeline for CNA analysis with the use 

of Control-FREEC tool with a window size of 500kb for segment calling [112, 113]. The 

analyses of samples were done for each patient separately and included unsupervised 

phylogenetic cluster analysis and support vector machine (SVM) analysis. Based on 

the obtained results, we were able to the reconstruct clonal organization of the two 

investigated tumors and evolutionary pathways of the patients’ diseases. 

 

1.2.4. RHAMM splice variants confer radiosensitivity in human breast 

cancer cell lines 

To characterize the relevance of RHAMM expression in BC progression, mRNA 

expression data (Affymetrix) from 196 breast cancer tissue samples was analyzed in 

respect to clinicopathological factors. Two different BC cell line cells (MCF-7 and MDA-

MB-231) were used to test whether RHAMM influences cell proliferation, apoptosis, or 

migration. To investigate the role of RHAMM in tumor progression in response to 

radiation, proliferation rate and cell death rate were characterized after 2Gy ionizing 

radiation. To investigate the role of RHAMM in response to radiation, both cell lines 
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were irradiated with 2Gy and RHAMM expression was evaluated by western blotting, 

ICC, and quantitative real-time PCR (qRT-PCR). 

To establish the radiosensitizing ability of RHAMM - observed in terms of 

apoptosis - and to investigate the involvement of the different RHAMM splice variants, 

cells were treated with siRNA against the respective mRNAs and subsequently 

irradiated. Sub-G1 cell cycle (apoptosis) analysis was performed by fluorescence-

activated cell sorting (FACS). Determination of live/dead cell was done with the use of 

TrypanBlue, proliferation rate of the cells was determined as shown previously [114].  

Functional analyses of transfected and irradiated cells were performed with the 

use of migration assay, investigated via time-lapse microscopy starting 24h after 

ionizing radiation with 2Gy, and intracellular signaling array with the use of PathScan® 

Stress and Apoptosis Signaling Antibody Array Kit (Cell Signaling Technology, 

Danvers).  

Knockdown of p53 was performed to clarify p53 involvment into RHAMM 

regulation. The effect of farmacological inhibition of RHAMM with the HA-synthase 

inhibitor 4-methylumbelliferone (4-MU) was investigated by culturing with 4-MU.  
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1.3. RESULTS 

1.3.1. Heterogeneity of estrogen receptor expression in circulating tumor 

cells from metastatic breast cancer patients  

We established a triple staining protocol for the simultaneous investigation of 

ER, CD45, and K expression, suitable for further single cell downstream analysis. 

The protocol was developed on a CTC model system with the usage of blood of 

healthy volunteers spiked with 500, 100, and 40 human breast cancer cell line cells. 

We demonstrated a recovery rate of 79%±4% using the density gradient Ficoll 

centrifugation as the method for mononuclear cell enrichment. 

The triple staining protocol was used for detection and investigation of CTCs in 

blood of 35 metastatic breast cancer patients, initially diagnosed with ER-positive 

primary tumor. Metastatic disease was diagnosed in these patients on average 7.2 

years (0.5-17.0 years) after primary tumor removal. 

CTCs were detected in 16 out of 35 samples (45.7%). Survival analysis starting 

from the time point of blood analysis until the end of the study (median follow up: 13.1 

months, range 1-30 month), demonstrated significant correlation of CTC presence in 

the blood with shorter disease-free survival (p=0.038). Moreover, detection of CTCs 

was significantly associated with clinical progression of the disease (p<0.001, two-

sided Fisher’s exact test). 

Among all 16 CTC positive cases, 8 samples (50.0%) demonstrated 

homogeneous ER status: 3 samples (18.7%) had ER-negative CTCs only and 5 cases 

(31.3%) had ER-positive CTCs only. Eight out of 16 samples (50.0%) displayed both 

ER-negative and ER-positive CTCs. The average fraction of ER-negative and ER-

positive CTCs in samples with mixed population was 36.8% and 63.2%, respectively. 

Among all 16 CTC positive cases, 14 women received endocrine therapy 

(87.5%), whereas two (12.5%) did not. In the blood samples of women with ER-positive 

primary tumors that received endocrine therapy, ER-negative CTCs were found in 3/14 

cases (21.47%), ER-positive CTCs in 4/14 cases (28.6%), and both ER-positive and 

ER-negative CTCs were detected in 7/14 patients (50.0%). Thus, the presence of ER-

positive CTCs in patients whom received endocrine therapy was detected in 11/14 

cases in total (78.6%) and ER-negative CTCs could be found in 10/14 cases (71.4%). 

Among the three patients in which only ER-negative CTCs were detected, two had 

progression of disease and therefore received chemotherapy by the time of blood 

sampling. One patient who developed distant metastases during endocrine therapy 
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was switched to chemotherapy after which remission of the disease was documented. 

Sequence analysis of exons 4, 6, and 8 of the ESR1 gene of 8 individual CTCs did not 

reveal any mutations. 

 

1.3.2. Comparative study of whole genome amplification and next 

generation sequencing performance of single cancer cells 

Three different WGA kits were used to amplify single cell samples of: individual 

SK-BR-3 cells picked from EDTA- and CellSave-preserved blood spiked with SK-BR-

3 cells, single SK-BR-3 cells picked from FFPE material, and individual CTCs        

picked from EDTA-collected blood of breast cancer patients. In total, 192 cells 

underwent WGA.  

Among all tested WGA kits REPLI-g demonstrated the highest DNA yield along 

all sample groups (on average 34.0 µg), however with the lowest success rate (50% 

on average). Ampli1 and PicoPlex kits demonstrated comparable success rates (on 

average 93 and 95%, respectively), however DNA yield was higher in Ampli1-amplified 

samples (on average 6.1 and 3.7µg in Ampli1- and PicoPlex-amplified samples, 

respectively). 

Comparison of sequencing platforms revealed the HiSeq2000 performing better 

than the IonProton platform in respect to produced reads, depth and breadth of target 

base coverage, and mapping rate.  

The number of total, known, and novel SNPs identified with HiSeq2000 platform 

in single cells was higher than for the same cells sequenced with IonProton NGS 

regardless of the WGA method. Sensitivity of the SNP analysis was also higher in 

samples sequenced with HiSeq2000 with maximum 41.3 and 27.1% for Ampli1 and 

PicoPlex WGA experiments, respectively.  

Correlation between CNA profiles of single cells and genomic DNA, compared 

by Spearman correlation, did not depend on WGA kit, but on NGS platform. Cells 

amplified with Ampli1, PicoPlex, and REPLI-g kits demonstrated a good (r<0.7), strong 

(r>0.8), and weak (r<0.3) correlation with genomic DNA, respectively. 

To investigate the detection limit with increasing amounts of starting material for 

WGA, as well as the influence of CellSave preservative on WGA and NGS 

performance, we analyzed duplicates of 1, 3, 5, and 10 pooled SK-BR-3 cells amplified 

with Ampli1 and PicoPlex WGA kits and on Illumina’s Hiseq2000. Fewer total and 

known SNPs and indels and more novel SNPs and indels were identified in cells from 
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CellSave-preserved blood than in cells from EDTA collected blood, resulting in lower 

sensitivity of SNP and indel calling for CellSave-preserved cells. Moreover, known 

SNPs identified in single cells from EDTA- and CellSave-preserved blood were 

overlapping only partly. Comparison by WGA kit demonstrates superiority of Ampli1 

WGA over PicoPlex for SNP and indel analysis in single cells. Analyses of pooled cells 

demonstrated that PicoPlex performance significantly improved with the number of 

pooled cells (increasing amount of input DNA), whereas PicoPlex performance of CNA 

analysis was not affected by input amount. Ampli1 performance did not significantly 

improve with increase of input material in any case.  

As proof of principle, 2 CTCs from a metastatic breast cancer patient were 

analyzed. CNA analysis demonstrated two different profiles, suggesting cancer genetic 

heterogeneity of this patient’s disease. Both CTCs carry chromosome 1q gain, 

suggested being a universal genomic change in breast cancer [115]. Additionally, 

CTC-1 demonstrated chromosome 16p gain and 16q loss (typical aberrations for 

luminal breast cancer) in contrast to CTC-2, which was strongly characterized by 

chromosome 9p loss. SNP calling analysis revealed 1135 SNPs and 15 indels common 

in both cells. Mutation analysis revealed 5 missense mutations annotated in COSMIC 

database [116]. Mutations in genes CHEK2, PRAME, and KIT were present in both 

CTCs, mutation in gene FGFR2 was detected in CTC-1 only and a mutation in gene 

TP53 was found in CTC-2 only. 

 

1.3.3. Clonal evolution of metastatic breast cancer: two cases – two 

progression models 

CTCs and FFPE primary tissue samples from two enrolled metastatic breast 

cancer patients were used for the investigation of the clonal organization of the breast 

cancer. 

Patient UKE243 

Patient UKE243 (1945-2012) was diagnosed with primary breast cancer of the 

right breast in 1992 and with collateral ER-positive and ERBB2-negative breast cancer 

of the left breast in 1999, and received endocrine treatment (aromatase inhibitor) in 

2000-2005. The first metastasis (ER-positive, ERBB2-negative) was detected in 2009, 

at which the endocrine treatment with aromatase inhibitor (aromasin) was started. Due 

to further metastatic progress (2010, ER-positive) the treatment was switched to 

endocrine therapy with selective ER-modulator (fulvestrant), and in 2011 switched to 
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chemotherapy (docetaxel) due to further metastatic progress. Blood for CTC analysis 

was collected during the course of chemotherapy in November 2011. 

The blood sample analysis revealed the presence of 270 CTCs in 1 ml of blood 

with heterogeneous ER expression (64% ER-positive and 36% ER-negative CTCs). In 

total, 42 CTCs were picked by micromanipulation for downstream analysis. The FFPE 

material of the second primary tumor, diagnosed in 1999, was used for obtaining 50 

tissue sections containing each 10-20 cells using laser microdissection: 40% ER-

positive, 40% ER-negative, and 20% with unknown ER status.  

Unsupervised phylogenetic cluster analysis was performed on the CNA data 

from the primary tumor tissue; as a result, 5 clearly distinguishable clusters were 

formed. Next, CNA data of the CTCs were added to the CNA data of tissue samples 

and clustering was repeated. The resulting phylogenetic tree contained mixed CTC-

tissue clusters. Subsequently support vector machine (SVM) analysis was performed 

to finally allocate the CTCs to the identified tissue clusters. Most of the CTCs were 

tackled by SVM analysis to the same tissue cluster as by phylogenetic cluster analysis 

on combined data. Among 42 analyzed CTCs, 12 CTCs resided to the first cluster, 11 

to the second, 18 to the third, and 1 to the forth, no CTCs were allocated to the fifth 

cluster. ER expression was heterogeneous among tissue samples and CTCs within 

each cluster. Chromosome 1q and 16p gain and chromosome 9p loss were present in 

all identified tissue clusters and respective CTCs. Based on distances between the 

clusters of the phylogenetic tree, we combined the clusters into 2 groups: the first group 

included clusters 1-3 and the second group contained clusters 4-5. Fisher’s exact test 

of the 2 groups revealed significantly different CNAs: chromosome 4q and 8p loses 

were significantly more frequent in clusters 1-3, whilst chromosome 8p gains were 

more frequent in clusters 4-5. Because all CTCs except one resided to the tissue 

clusters 1-3, we compared the aberration frequencies between the two groups: tissue 

clusters 1-3 vs. CTCs. Significant differences were chromosomes 8q gain (tissue) and 

1q and 7 gains and 16q and 22 losses (CTCs). Losses of chromosome 22 and 16q 

were found exclusively in CTCs. 

Taken together, the evolutionary pathway of the disease could be schematically 

present as follows: initial or very early chromosomal aberrations included chromosome 

1q and 16p gains, and 9p loss. These events probably caused chromosomal instability, 

required for further clonal evolution and progress of cancer. Chromosomal instability 

could lead to the development of at least 2 cell lineages. One lineage evolved towards 
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luminal subtype and gave rise to clones 1-3, depicted by clusters 1-3. These clones 

experienced further evolutionary progress encompassing gain of 8q after a number of 

cells had spread into the systemic circulation. These cells might have given rise to 

metastases after a certain dormancy period. CTCs, released from these metastatic 

lesions, reflect inherent CNAs from primary tumor clones, as well as CNAs of further 

evolution within metastatic lesion, like losses of chromosomes 16q and 22. Another 

lineage experienced further chromosomal aberrations, resulted in development of 

clones identified as clusters 4 and 5, characterized by high chromosomal instability.  

Our results indicate that the metastases of the patient UKE243 arise from cells, 

disseminated from almost all subclones of the primary tumor, from the most earliest to 

very progressed ones. These findings are in line with parallel progression model of 

carcinogenesis and metastasis, suggesting that tumor cells acquire metastatic 

potential in the early stages of tumor progression.   

Patient UKE008 

Patient UKE008 (born 1978) was diagnosed with primary metastatic breast 

cancer in 2013 with multiple metastases in the spine and pelvis. Palliative therapy 

included irradiation of the primary tumor and systemic chemotherapy (paclitaxel, April 

– August 2013) in combination with anti-ERBB2 therapy (Trastuzumab and 

Pertuzumab, April 2013 – December 2015). The blood samples were collected before 

any systemic treatment was applied (1st sample) and 3 months after completion of the 

chemotherapy (2nd sample).  

We detected 2 ER-negative CTCs in 7.5 ml blood of the 1st blood sample, 

collected before therapy (0.27 CTCs/ml) and 20 ER-negative CTCs per 1 ml in the 2nd 

blood sample. In total, 1 CTC from the 1st and 11 CTCs from the 2nd blood sample were 

collected for downstream analysis. 

The primary tumor as well as one of the metastases in the L4 spine segment 

were biopsied and formalin-fixed and paraffin-embedded. The tumor as well as 

metastasis were ER- and ERBB2-positive. Microdissected fragments of the primary 

tumor (n=6) and spine metastasis (n=5) were ER-positive in 50% and 40% of cases, 

respectively. 

Unsupervised phylogenetic cluster analysis of the tissue data only was 

performed. Because the patient was diagnosed with primary metastatic breast cancer, 

cluster analysis was performed on the combined data obtained from the primary tumor 

and metastasis. The obtained phylogenetic tree demonstrated the presence of 3 
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clearly distinguishable clusters. Phylogenetic cluster analysis of the combined CTC 

and tissue data demonstrated 1 distinct CTC cluster in addition to the 3 previously 

identified tissue clusters. Subsequent SVM analysis tackled all CTCs (n=12) to the 

third tissue cluster. This discrepancy is explainable by the difference between the 

phylogenetic cluster analysis and the SVM. The cluster analysis identifies as many 

clusters as necessary according to the differences between the samples, whereas 

SVM analysis is not able to define new clusters. Taking this explanation into 

consideration, phylogenetic tree built on combined CTC and tissue data was 

considered as reflecting clonal organization the best: 3 distinct tissue clusters and 1 

CTC cluster were identified. CTCs demonstrated highest similarity with the most 

progressed clone identified in the primary tumor and metastasis, but low probability of 

arising directly from that clone. 

The tumor subclone represented in the first cluster contained data obtained from 

2 fragments of the primary tumor. The second cluster (represented by data of the 

metastasis only) might be considered an intermediate evolutionary step towards 

cluster 3. The third cluster, representing the most progressed evolutionary step, was 

made up of data from both primary tumor’s and metastasis’ tissue fragments. These 

results indicate that metastatic outgrowth could be initiated by collective dissemination 

of tumor cells from the 2 cooperating clones within a CTC cluster. However, it cannot 

be excluded that cells from primary tumor clones disseminated not in a CTC-cluster, 

but as individual CTCs, arrived at the same distant location and cooperated there. 

Investigation of further metastatic lesions is needed to clarify mechanisms of 

metastasis-initiating dissemination in the patient.  

Evolutionary history of the UKE008 patient’s cancer might have been as follows: 

chromosome 17p loss and chromosome 17q and 19q gain might be initial or very early 

events in the carcinogenesis because these CNAs we identified in frequency plots of 

all the identified clusters. Later during carcinogenesis this early cancerous cell 

population branched in its evolution. One subclone experienced chromosome 4q loss 

and chromosome 6 gain and developed the clone, depicted by cluster 1. Possibly 

lineage, represented by clusters 2-3, originated from another branch. Further evolution 

of the lineage led via chromosome 1q, 8q and 11p gain and chromosome 11q loss 

towards the second clone (cluster 2), and additional gain of chromosome 7q resulted 

in cell clone, depicted by cluster 3. Cells from these cooperating clones disseminated 
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either as CTC-cluster or as individual cells and built up distant metastasis we 

investigated, which is therefore reflecting the clonal structure of the primary tumor.  

This scenario does not answer the question where the CTCs came from: the 

primary tumor or the metastasis. However, based on the phylogenetic tree, CTCs did 

not reside to any of tissue clusters, but formed separate clusters. The fact that the 

patient demonstrated multiple metastases suggests that CTCs of the patient UKE008 

arise from the metastasis we did not investigate. In this case, the uninvestigated 

metastases embody further steps in evolutionary progression of the cancer in line with 

the linear progression model. 

 

1.3.4. RHAMM splice variants confer radiosensitivity in human breast 

cancer cell lines 

The relevance of RHAMM expression in breast cancer progression was 

investigated using mRNA expression data (Affymetrix) from 196 breast cancer tissues. 

Increased RHAMM expression was significantly correlated with a decrease in overall 

and recurrence-free survival, and high tumor grade. 

Two different breast cancer cell line cells (MCF-7 and MDA-MB-231) were used 

to investigate RHAMM influence on cell proliferation, apoptosis, and migration. No 

effect on cellular proliferation was observed 48h after transient inhibition of all RHAMM 

splice variants. However, sub-G1 analysis revealed that siRHAMM treatment 

significantly increased the rate of cell death in MCF-7, but not in MDA-MB-231 cells.  

The proliferative capacity was not altered by 2Gy of ionizing radiation of both 

cell lines. MCF-7 cells demonstrated a significant increase in the apoptotic rate as 

measured by sub-G1 analysis, in contrast to MDA-MB-231 cells, which were found to 

be radio-resistant. RHAMM mRNA levels in response to 2Gy radiation, measured by 

qRT-PCR, were significantly reduced in MCF-7 cells. Downregulation of RHAMM was 

confirmed by ICC staining in MCF-7 cells and can be explained by significant increase 

of p53 and p38 in MCF-7 cells 48h after initial radiation. In MDA-MB-231 cells no 

change in expression of p53 and p38 was detected. MDA-MB-231 cells are 

characterized by mutation in TP53 gene and endogenously increased level of p53 in 

the nucleus.  

Expression of all 4 RHAMM spice variants before irradiation was significantly 

lower in MDA-MB-231 cells than in MCF-7 cells. Expression of RHAMM splice variants 

v1 and v2 decreased in MCF-7 cells as a consequence of radiation treatment in 
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contrast to MDA-MB-231 cells demonstrated no further decrease of RHAMM v1/v2 

expression after irradiation. 

In MCF-7 cells siRHAMMpan as well as siRHAMM v1/v2 increased the rate of 

apoptosis, whilst knockdown of RHAMM v3 and v4 did not induce apoptosis. In MDA-

MB-231 cells, treatment with neither siRHAMMpan nor siRHAMMv1/v2 induced a 

significant increase of cell death. However, knockdown of p53 and subsequent 

upregulation of RHAMM v1/v2 increased the rate of cellular death in MDA-MB-231 

cancer cells.  

Treatment of cells with pharmacological inhibitor of HA, the main binding partner 

of RHAMM, increased the radiosensitivity of the MCF-7 cells with respect to apoptosis 

fourfold. Whereas MDA-MB-231 cells did not respond to the treatment alone, the 

susceptibility of the cells was increased after additional radiation. 

In conclusion, our data suggests that RHAMM is involved in the radio-resistant 

phenotype of breast cancer cells. Detection of RHAMM isoform expression in 

correlation with the TP53 mutation status might allow for prediction of the 

responsiveness to radiation. Importantly, pharmacological inhibition of HA, the main 

binding partner of RHAMM, could help to increase the radiosensitivity of both TP53 

wild type and mutated cancer type.  
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1.4. DISCUSSION 

1.4.1. Analysis of circulating tumor cells as “liquid biopsy” 

Individual CTCs may be used as “liquid biopsy” to study tumor heterogeneity 

and find therapy associated markers on proteomic, transcriptomic, and                  

genomic levels [31, 117]. 

One of the best established protein markers for endocrine therapy prescription 

and monitoring is the estrogen receptor (ER). ER expression might be defined on both 

proteomic and transcriptomic levels [118, 119]. The concordance of ER status between 

primary tumor and CTCs in metastatic breast cancer patients has been shown in 23% 

[39], and in 55% [41] of cases using qRT-PCR. Despite qRT-PCR is often used for 

determining ER status of CTCs [39-41, 120], this approach does not allow for the 

investigation of intra-patient CTC heterogeneity due to measurement of an average 

ER expression in an enriched cell population instead of single cell analysis. However, 

single cell mRNA analysis is challenging and cannot be combined with further DNA 

analysis. Taking these arguments into consideration, we have investigated the 

expression of ER in CTCs in blood of breast cancer patients using 

immunocytochemistry (ICC). With this approach, we were able to simultaneously 

detect and characterize CTCs with the additional possibility for downstream genetic 

analyses using whole genome amplification (WGA). 

We detected CTCs in 16 out of 35 patient samples (45.7%), which is within the 

range of published reports [121]. Because EpCAM might be downregulated in tumor 

cells that underwent EMT [117], we have used an EpCAM-free detection method in 

order to overcome this limitation and investigated ER expression in the individual 

keratin-positive CTCs. 

To our knowledge, until now only three studies have been performed in which 

the authors have stained ER on single CTCs using ICC [122-124]. The limited number 

of studies, based on ICC for the investigation of CTCs, might be explained by the 

technical challenges. The following challenges have to be taken into consideration: the 

complications of nuclei permeabilization for antibody delivery, low level of ER, 

difficulties in unequivocal identification of CTCs in case of CD45+/K+ cells. A study by 

Bock and colleagues showed lower percentage of ER-positive CTCs (30%), however, 

the sample size of CTC positive metastatic breast cancer patients was relatively low 

(n=5) [123]. In the study of Nadal et al., in contrast to our study, only non-metastatic 

breast cancer patients before any systemic treatment were enrolled and a volume of 
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30 ml blood per patient was analyzed. ER-negative CTCs were detected in 38.5% of 

women with ER-positive primary tumors, positive for CTCs [122]. In the recently 

published study the authors revealed concordance of the ER status between CTCs 

and primary tumor in 68% of cases [124]. In our study, concordance of ER expression 

in CTCs with the primary tumor was demonstrated in 81.3% of the cases. 

Because of the small number of patients investigated, our follow up analysis is 

only of exploratory nature. Nevertheless, we were able to demonstrate that the 

detection of ≥1 CTCs in blood of metastatic breast cancer patients was significantly 

associated with clinical progression of the disease (p<0.001). Although the cut-off of at 

least 5 CTCs per 7.5 ml of blood is considered to be the threshold of high risk for early 

progression in metastatic breast cancer patients using the CellSearch system [33], 

meta-analysis of Zhang et al., demonstrates prognostic value of the presence of single 

CTCs. Moreover, the authors demonstrated that the prognostic significance of CTCs 

in blood does not depend on the time point of blood collection [121], which is consistent 

with our results where blood samples were taken during therapy. However, a larger 

cohort with uniform treatment and longer follow-up will be required to prove the 

significance and clinical relevance of our findings. Moreover, the presence of CTCs in 

blood does not necessarily reflect the ability of the CTCs to survive in the blood stream 

and to spread to distant organs. The survival and metastatic potential of CTCs need to 

be investigated, eventually also by identification of genetic signatures associated with 

the spread of CTCs and their development into metastasis. 

 

1.4.2. Estrogen receptor heterogeneity in circulating tumor cells   

We observed the presence of ER-negative CTCs in blood of women with ER-

positive primary tumors during or after endocrine therapy in 71% of cases: 21% had 

ER-negative CTCs only and 50% had both ER-positive and ER-negative CTCs.  

The presence of ER-negative CTCs in patients with ER-positive breast cancer 

might be explained either by the heterogeneous expression of ER in the primary tumor, 

leading to release of both ER-positive and ER-negative cells into circulation or by the 

silencing of ER expression by genomic and/or epigenomic mechanisms. It has been 

hypothesized, that switching from an ER-positive to ER-negative status might be one 

of mechanisms to evade endocrine therapy (reviewed in [125, 126]). Our findings 

indicate that the development of distant metastases in women with an ER-positive 

primary tumors during or after endocrine therapy might be related to the presence of 
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ER-negative CTCs, because these cells are most likely not to be affected by endocrine 

therapy. However, this hypothesis does not explain presence of ER-positive CTCs in 

blood of 78.6% patients after completion of endocrine therapy. Therefore we 

hypothesize that ER-positive CTCs, which can be detected in blood of patients after 

completion of endocrine therapy, originate from (micro)metastases, which consist of 

tumor cells with a dysfunctional ER pathway and, consequently, are resistant to the 

hormonal blockade downstream of the ER. Several mechanisms of ER-positive cells 

to escape anti-ER therapy are known and result in alteration of either ER expression 

or ER function (reviewed in [126, 127]). Loss of normal ER function, independent of 

cause, is the reason for inefficacy of anti-ER agents.  

Several mutations are thought to lead to the inactivation of ER and/or its ligand-

independent functioning [26, 127]. Mutations in ESR1 occur in approximately 1% of 

the primary breast tumors [128] and in 10% of the breast cancer metastases but not in 

the autologous primary tumors [129]. We have performed a pilot study in which we 

analyzed mutations of the ESR1 gene in both ER-negative and ER-positive CTCs. 

These  mutations may hamper the protein’s function, but not its expression [26]. We 

were unable to detect any mutations in the 8 single cells from 4 patients investigated.  

 

1.4.3. Intra-tumor heterogeneity as source of metastases 

Although the origin of intra-tumor heterogeneity is not fully understood yet, it 

seems to play a major role in a complex process of carcinogenesis and development 

of metastatic disease [130-132]. Intra-tumor heterogeneity and clonal diversity per se 

might promote cancer evolution by serving more diverse input material for Darwinian 

selection [133]. The newly revised “seed-and-soil” hypothesis postulates that 

heterogeneity of cell characteristics, survival in the circulation, and effective homing in 

new environment are the crucial conditions for successful metastasizing [43]. Because 

only very few tumor cells meet these requirements, metastasis is a biologically 

inefficient process (rev. in [134]). However, high amount of CTCs with heterogeneous 

characteristics provide extensive source for potential metastases [48]. CTCs embody 

an intermediate step between primary tumor and metastases. CTCs reflect the biology 

of the primary tumor or metastases from which they originate [28]. Furthermore, CTCs 

carry characteristics potentially enabling metastases’ establishment. Therefore the 

genetic makeup of CTCs may provide a unique insight into cancer evolution. 
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Genome-wide studies of cancer clonality on single cells require well established, 

reproducible approaches for WGA and NGS analysis. The challenge of single cell 

genome-wide studies lies between the need of DNA amplification and the introduction 

of PCR artefacts during WGA and NGS and identification of objective cell-specific 

genomic aberrations.  

 

1.4.4. Whole genome amplification and next generation sequencing in 

single cell genomics 

In order to establish a reliable WGA-NGS pipeline for single cell analysis several 

methodological aspects of WGA and NGS techniques were investigated.  More 

specifically, the performance of 3 single cell WGA methods in combination with 

subsequent whole exome sequencing on 2 different NGS platforms was evaluated. 

Illumina’s HiSeq platforms are widely used in human genome research due to 

their accuracy. Sequencing with ThermoFisher’s IonProton can be faster and more 

cost-effective per run, however, sequencing with IonProton may result in substantial 

decrease of effective coverage depth due to the high abundancy of PCR and optical 

duplicates, thereby, hampering accurate SNP and indel calling. Emulsion PCR, utilized 

for library preparation in IonProton technology, is thought to be the main source of PCR 

duplicates [135]. Moreover, the introduction of indels is a well-documented 

disadvantage of the semiconductor sequencing, utilized in IonProton [105]. 

Nevertheless, our study shows that CNA analysis was not affected by the described 

disadvantages of semiconductor sequencing and demonstrated comparable results for 

samples sequenced on both NGS platforms. 

Important applications of NGS, such as SNP/mutation, indel, and CNA calling, 

seem to be especially hampered in single cell analysis due to incomplete genome 

coverage as a result of WGA [89, 96, 102]. Our data suggest that Ampli1 outperforms 

PicoPlex and REPLI-g WGA kits for SNP/mutations and indel calling. However, 

adaptor-ligation PCR, utilized in some PCR-based WGA kits (e.g., Ampli1), has certain 

limitations. Site-specific digestion of template DNA prior to PCR by the MseI enzyme 

[136] results in a wide distribution of fragment lengths. In silico analysis demonstrated 

that only 38% of 19x106 fragments produced by MseI restriction of the human genome 

have length 100-500bp that are adequate for exome-capturing and size-selection for 

library preparation.  
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Commercially available exome enrichment kits have not been optimized for 

WGA products. The usage of whole genome amplified DNA as template might 

drastically reduce capturing efficacy due to fragmented nature of the WGA product. In 

order to optimize single cell sequencing, current exome capturing regions should be 

adapted for use with short DNA fragments.  

Although samples amplified with REPLI-g WGA kit (MDA-based technique) 

demonstrated the highest DNA yield from a single cell, the quality of the obtained DNA 

was remarkably low and insufficient for appropriate SNP/mutation, indel, and CNA 

analyses. Based on our experience and observations of De Bourcy et al. [95] and 

Bergen et al. [137], we conclude that input of at least 10ng of genomic DNA and 

tailoring of the MDA reaction to obtain just enough DNA for further analysis is a key to 

optimal MDA performance. Further biases in MDA-based WGA can distort CNA 

analysis and have been described elsewhere, these include uneven representation 

and non-specific amplification of the genome, a large variability in amplification bias 

among the products, chimera formation, and dislocated sequences [95, 138-140]. 

CellSave blood preservation could be of great value in e.g., multicenter studies. 

Nevertheless, our results suggest that single cells from EDTA-collected blood 

demonstrate higher sensitivity for SNP/mutation and indel analyses, than single cells 

from CellSave-preserved blood.  

The results of the SNP/mutation and indel analyses significantly improved in 

samples amplified with PicoPlex kit with an increasing number of pooled cells 

(increasing amount of input DNA), whereas PicoPlex performance of CNA analysis 

was not significantly affected by the amount of input. In contrast, the results of 

SNP/mutation, indel, and CNA analysis in Ampli1-amplified samples did not 

significantly improve with increased input material. However, Ampli1-amplified 

samples demonstrated sensitivity rates of the SNP and indel analyses, similar to that 

of PicoPlex-amplified samples. Moreover, already 3 pooled cells from CellSave-

preserved blood resembled CNA pattern of unamplified DNA with strong correlation, 

whereas Ampli1-amplified samples reached the same correlation level with 5 or more 

pooled cells.  

Together with blood preservatives, fixatives and DNA staining agents provide 

another technical challenge in SNP/mutation analysis of single cells as they may 

introduce mutations that are amplified during WGA. However, a recent study from our 

lab has demonstrated genetic heterogeneity within a cancer cell line upon sequencing 
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single cells [141]. Therefore, it cannot be ruled out that the low concordance of 

SNP/mutation calling between single cells might also be the effect of heterogeneity in 

addition to WGA-introduced artifacts. 

It has been noted that WGA strongly affects CNA analysis due to imbalanced 

amplification of alleles [88, 96]. Moreover, non-linear amplification is random and is not 

reproducible for the same DNA template [97]. Although CNA analysis does not require 

exome capturing and is possible on whole genome shallow sequenced data, we 

performed CNA analysis on whole exome sequencing data and demonstrated that the 

quality of the obtained DNA by both Ampli1 and PicoPlex kits was adequate for 

qualitative assessment of CNA patterns.  

Based on the obtained results, we conclude that CNA analysis of single cells is 

less hampered by WGA and NGS in comparison to SNP/mutation analysis. The best 

results for CNA analysis could be obtained with the use of PicoPlex WGA kit and NGS 

on Illumina’s HiSeq2000 platform. 

Intra-tumor heterogeneity and clonality of breast cancer can be investigated on 

genomic level with the use of SNP/mutation and CNA data. However, breast cancer is 

characterized by overall prevalence of CNAs over mutations [122]. This fact and our 

own results, implicating that CNA analysis of single cells is more robust than 

SNP/mutation analysis, suggest investigation of breast cancer clonality with the use of 

CNA analysis.  

 

1.4.5. The role of circulating tumor cells in investigation of breast cancer 

clonality  

Clonality and evolution of the cancer can be investigated on single cell level with 

the use of primary tumors, metastases, and/or CTCs. Primary tumors are removed or 

biopsied in the majority of cases, delivering material for investigation. Administration of 

systemic therapy is usually based on characteristics of the primary tumor. However, 

the metastases may not resemble the primary tumor anymore due to genetic 

progression or selection of treatment-resistant clones. The differences between 

primary tumor and metastases might be the reason for treatment failure.            

Therefore CTCs as “liquid biopsy” provide a unique, easy accessible source of tumor 

material [31].  

CTCs that can be detected in the blood circulation many years after removal of 

the primary tumor are most likely coming from the metastases, because the half-life 
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time of CTCs in circulation is <2.4 hours [30]. It has been shown that dormant tumor 

cells in bone marrow may sometimes divide into micrometastases, which release 

CTCs, and thus cause the presence of CTCs in blood of metastases-free breast cancer 

patients many years after mastectomy, but in small concentrations (≤1CTC/ml) [30], 

which is in contrast with 270 and 20 CTC/ml found by us in blood of the UKE243 and 

UKE008 patients, respectively. These finding suggest that CTCs detected in blood of 

the enrolled in our study patients arise from metastases present in the body at the time 

point of blood sampling. 

Technical obstacles can also hamper clonal analysis. Since comprehensive 

investigation of every single cell of the complete tumor is hardly possible, 

underrepresentation of certain clones as well as overrepresentation of other clones in 

a study cohort may lead to false reconstruction of tumor’s clonal structure. Additionally, 

metastases are a difficult subject for clonal investigation. Distant metastases can be 

detected first when they reach a certain size, and are infrequently biopsied. 

Nevertheless, our results demonstrate the feasibility of archival material accompanied 

with CTCs for investigation of clonal evolution of human breast cancer. Further 

research is needed to obtain information about the genetic heterogeneity of the 

metastases and possible identification of therapy sensitive and resistant clones. 

 

1.4.6. Clonality-driven evolution of breast cancer 

Intra-tumor heterogeneity of breast cancer is a results of clonal expansion. In 

order to reconstruct cancer evolution and clonal organization on single cell level [142] 

one should assume that the tumor at any moment of the evolution contains all previous 

clones, or at least the most crucial ones. However, this assumption contradicts the 

Darwinian theory applied to carcinogenesis [143, 144]. According to the theory inter-

clonal competition should lead to outcompeting of particular, not necessarily less 

aggressive clones [145], resulting in secondary mono- or oligoclonal structure of the 

primarily polyclonal tumor. As consequence the reconstructed clonal structure of the 

primary tumor does not necessarily reproduce cancer evolution.   

Alternative look from an ecological perspective suggests that subclones within 

a tumor can be seen as individual units interacting with each other and their 

environment. This theory implies that not only competition, but other types of 

interaction, e.g. cooperation, are possible (rev. in [133]) and finds confirmation in 

cancer model systems [145-148]. Consequently, different cancer clones are not 
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necessarily overgrown by one dominant clone, and poly- or oligoclonal structure of 

cancer can be revealed. 

The results obtained in our study of the breast cancer clonality demonstrated 

oligoclonal structure of the investigated breast tumors, indicating that both 

mechanisms, competition and cooperation of tumor clones, are likely being involved in 

cancer evolution. Additionally, the results indicate that breast cancer might utilize both 

linear and parallel progression ways. 

 

1.4.7. Parallel progression of breast cancer 

The results obtained from patient UKE243 suggests a parallel progression of 

the breast tumor. CTCs were detected in the blood of patient UKE243 12 years after 

the primary tumor was removed. Based on bioinformatics analysis all CTC resided to 

4 out of 5 phylogenetic clusters identified in data of the primary tumor. These results 

suggest that metastases might have been founded by tumor cells that disseminated 

from multiple subclones of the primary tumor. In consideration of the time gap between 

primary tumor removal and detection of the first metastasis (10 years), it is likely that 

disseminated tumor cells underwent dormancy for a certain period before giving rise 

to distant metastases.  

One question which may arise is whether metastases and CTCs of the patient 

UKE243 originate from the first primary tumor, diagnosed in 1992, or from the second 

contralateral primary tumor, diagnosed in 1999. The later tumor only was available for 

our analysis. According to the histology of both primaries, the metastases 

corresponded to the second primary tumor, which can be confirmed by our cluster 

analysis. Nevertheless, we cannot exclude the possibility that metastases and 

subsequent CTCs originate from the first primary tumor.  

Additionally, primary tumor as well as CTCs of patient UKE243 demonstrated 

heterogeneous ER expression. Outgrowth of further ER-positive metastases and 

presence of ER-positive CTCs after the completion of endocrine therapy suggests 

endocrine therapy failure in this patient. Since we did not find mutations in ER-coding 

gene (ESR1) in the CTCs of the patient, endocrine therapy failure might have been 

caused by other mechanisms, e.g. epigenetic mechanisms or a dysfunctional                       

ER-pathway.  

Based on the observed CNA frequencies in identified clusters and CTCs, we 

conclude the existence of at least two lineages of tumor cells in the primary tumor of 
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the patient UKE243. One of the lineages, presented by clones 1-3 (cluster 1-3), is 

characterized by chromosome 1q and 16p gain and 16q loss. CNA profile 

1q+/16p+/16q- is associated with ER-positivity, luminal A gene expression pattern, 

moderate to high differentiated tumors, and better outcome [149]. The second lineage, 

depicted by clusters 4 and 5, exhibited CNA patterns typical for basal-like breast cancer 

[149]. Basal-like subtype, typically ER-negative, is characterized by higher 

chromosomal instability than luminal subtypes [150]. Moreover, our results suggest 

that the clonal split happened at a very early stage of carcinogenesis. One of the 

lineages experienced further luminal-like differentiation, whereas the second lineage 

retained basal-like characteristics. 

Presence of both basal- and luminal-like cell lineages in breast tumors has been 

demonstrated by others [69, 70, 151]. One of the possible explanations of the 

coexistence of basal- and luminal-like cells within a tumor can be given through the 

hypothesis that ER-positive cells, e.g. cells of luminal B subtype, and basal-like cells 

may arise from the same bipotent progenitor cell [115, 132]. Moreover, recently Cleary 

et al. demonstrated cooperation between basal- and luminal-like subclones playing a 

role in tumor maintenance [152]. 

Li et al. demonstrated in a mouse model that activation of Wnt signaling pathway 

transforms mammary progenitor cells, promoting heterogeneity of outgrowing cell 

lineages. The authors conclude that basal- and luminal-like lineages within the same 

tumor supposedly derive from a bipotent malignant progenitor cell [151]. Mammary 

progenitor cells are typically ER-negative, but originating lineages might undergo 

luminal-like differentiation and become ER-positive [115, 132, 153]. 

 

1.4.8. Linear progression of breast cancer 

In contrast to patient UKE243, our data obtained from the cancer from patient 

UKE008, suggest linear progression to metastases. According to the linear 

progression model, distant metastases originated from cells, disseminated from the 

primary tumor at late evolutionary stage(s). 

Loss of chromosome 17p and gain of 17q were observed in frequency plots of 

all clusters identified on data of the patient UKE243, including the CTC cluster. Gain of 

chromosome 17q is typical for ERBB2-positive luminal B breast cancers (rev. in [149]), 

which is in agreement with the pathology report (ER-positive, ERBB2-positive tumor). 
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Loss of chromosome 17p is a common aberration in many cancers, including breast 

cancer [154], due to the location of tumor suppressor gene TP53.  

We demonstrated that at least one distant metastasis carries the genomic 

signatures observed in the two clones of the primary tumor. This observation might 

have two explanations. First possible scenario suggests collective dissemination of 

tumor cells from these two clones within a mixed CTC-cluster. Another explanation 

implies individual dissemination of the tumor cells from the two clones and subsequent 

cooperation at distant site. Whichever dissemination way took place, our results 

indicate interaction of the two tumor clones. The two genetically similar clones of the 

primary tumor might have interacted to obtain a selective growth advantage and/or 

metastatic propensity.  

Evidence for cooperating clones can be found in mouse and fruitfly models. It 

has been shown that two cell populations can interact to promote tumorigenesis and 

obtain the ability to metastasize [146-148]. Moreover, interclonal cooperation 

contributes to tumor growth and progression [145]. Tumor cells from cooperating 

clones might disseminate collectively by formation of CTC-clusters. CTC clusters 

demonstrate an increased metastatic capacity in comparison to single CTCs [155].  

A 74-fold increase of the amount of CTCs in 1 ml blood of patient UKE008 was 

found in comparison to baseline before therapy, 3 months after completion of 

chemotherapy but still under anti-ERBB2 therapy. All CTCs were found to be ER-

negative, whereas the primary tumor and the metastasis were ER-positive. It has been 

shown that ER activity provides a way for ER-positive ERBB2-positive cells to escape 

ERBB2-targeted therapy [156]. Co-expression of ERBB2 and ER has been found in 

breast cancer patients [157-159]. The data suggests that ER-negative ERBB2-

negative cells could escape therapy.  

Although all CTCs identified in blood samples of the patient UKE008 were ER-

negative, it cannot be excluded that ER-positive CTCs were still present in the body, 

but could not be detected. The cells might have been escaped to bone marrow and 

underwent dormancy. Alternatively, EMT-associated downregulation of epithelial 

markers on the cell surface might have hampered detection of these cells. 

 

1.4.9. Breast cancer heterogeneity and radiotherapy resistance 

Indirectly, it has been shown that clonality-driven heterogeneity of a tumor might 

play a role in development in radiotherapy resistance [160]. On molecular level 
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radiotherapy resistance has been correlated to CD44+/CD24-/low phenotype [161]. 

Radiotherapy resistance In luminal breast cancer is often observed in endocrine 

therapy resistant tumors [58, 59]. Unfortunately, very few data exists on the effects of 

radiation on endocrine therapy resistant cells. However, it has been shown that the 

CD44 gene expression was elevated in tamoxifen resistance cell models [162].  

CD44 is a widely expressed cell surface membrane receptor for hyaluronan 

(HA). HA is a glycosaminoglycan and an important component of the extracellular 

matrix. Elevated stromal levels of HA are associated with breast cancer progression 

and shorter overall survival of the patients [163]. In vitro HA induces breast cancer cell 

motility and survival [163, 164]. Notably, overexpression of CD44 was found to 

augment sensitivity of cancer cells to microenvironmental ligands, in particular HA [60]. 

Besides participation in cell-cell and cell-matrix interactions CD44 facilitates 

mitogenic/invasive and proliferative cellular phenotypes [165]. In particular, CD44 

proteins are known to interact and modulate the activity of a diverse range of receptor 

tyrosine kinases including c-Met [166, 167], VEGFR-2 [168], ERBB2 [61] and EGFR 

[169]. The later two have been previously shown to limit endocrine response in ER-

positive disease [62, 63]. A signaling loop including ERBB2, EGFR, CD44, and ER 

might be proposed. Interaction of ER and ERBB2 signaling pathways provides tumor 

cell a possibility to overcome ER or ERBB2 blockage [62, 156]. Additionally, ERBB2 

signaling can be promoted by CD44-HA interaction [170]. In its turn, CD44 

overexpression increases sensitivity of cells to HA [60]. This positive-feedback loop 

caused by cross-signaling between ER, ERBB2, and CD44 might cause cross-

resistance to endocrine and radiotherapy. 

Little is known about RHAMM and its role in cancer. However similarity of 

RHAMM and CD44 characteristics and functions allows to propose involvement of 

RHAMM in carcinogenesis. RHAMM and CD44 have at least three distinct 

characteristics in common: i) they share the same binding partner, HA, and mediate its 

signaling, ii) participate in growth factor-regulated signaling, and iii) both have been 

shown to be transcriptionally repressed by p53 [171]. Nevertheless, CD44 and 

RHAMM are not homologous proteins, are compartmentalized differently in the cell, 

and differ in the HA-binding mechanisms. Therefore they are likely to act by different 

mechanisms (rev. in [172]). 

RHAMM participates in the ERBB2-pathway though its action with CD44. In one 

of the presented studies we demonstrated the presence of RHAMM being a marker for 
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radiotherapy sensitivity [108]. We also tested whether ER is involved in the 

radiosusceptibility. However, treatment of MCF-7 cells with the unspecific ER-

antagonist ICI182780 did not abrogate the pro-apoptotic effect of ionizing radiation in 

this cell type. Possibly because of CD44-RHAMM co-operation. Conflicting functions 

of CD44 have been observed in experimental models of carcinogenesis and tumor 

progression in comparison to in vivo data, supposedly due to the presence or absence 

of RHAMM [173]. CD44 is known to co-operate with RHAMM and has been reported 

to compensate for loss of RHAMM.  

Heterogeneity of RHAMM and CD44 expression and ligand-binding ability in 

cancer is not fully investigated yet, but is considered to play an important role in cancer 

progression [174, 175]. Recently it has been shown that RHAMM and CD44 expression 

do not correlate with HA-binding and demonstrate heterogeneity [75]. The authors 

could demonstrate heterogeneity of HA binding in phenotypically homogeneous cell 

lines. Moreover, 3D culture experiments revealed that different by HA-binding 

subpopulations of cancer cell lines demonstrate different characteristics. Low-binding 

cells (HA−/low) were poorly invasive/metastatic and fast-growing, whereas high-binding 

cells (HAhigh) were characterized by highly invasive/metastatic but slow-growing 

phenotype [75]. These observations suggest that HA-binding heterogeneity of primary 

tumor might play a role in clinically relevant traits and should be further investigated as 

providing clinically relevant models for assessing treatment efficacy. Future studies will 

have to address the role of CD44 and RHAMM for radiotherapy resistance of cancer 

cells, possibly also including cross-resistance to endocrine and radiotherapy. 

Additionally, our data raise the possibility that the response to radiotherapy in selected 

tumors may be improved by targeting RHAMM and its ligand HA. 

Although heterogeneity of breast cancer itself can be utilized as prognostic 

marker [149, 176, 177], further research is needed to reveal a source and mechanisms 

of tumor heterogeneity, its role in the metastatic cascade and resistance to therapy. 

Further investigations might results in identification of reliable markers for therapy 

response.  
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1.5. CONCLUSION 

Breast cancer heterogeneity is a well-known but hardly understood 

phenomenon, which might be responsible for metastases’ development, recurrence of 

the disease, and resistance to therapies like endocrine, chemo- and radiotherapy.  

We could demonstrate that primary tumor heterogeneity might play role in cross-

resistance of luminal cancer to both endocrine and radiotherapy. The mechanism 

implies activation of the ERBB2 signaling pathway as a result of cells’ response 

augmentation to microenvironmental stimuli due to overexpression of CD44 and 

RHAMM. Pharmacological inhibition of RHAMM resensitizes tumor cells to 

radiotherapy. 

In order to investigate clonal heterogeneity of breast cancer on both protein 

expression and genomic levels, we established a multiplex immunostaining protocol, 

compatible with investigation by NGS of single cell DNA. This approach allows, for the 

first time, a simultaneous phenotype-genotype characterization of single cells for the 

investigation of intra-patient CTC heterogeneity and clonal evolution of cancer. This 

approach enables reconstruction of an approximate evolutionary pathway of the 

cancer disease in an individual patient.  

The investigated breast cancer cases represent parallel and linear metastases 

progression model. Our results demonstrate that therapy resistant breast cancer 

metastases detected years after primary tumor removal may originate from early and 

more progressed clones developed in the primary tumor during carcinogenesis in one 

case. Analysis of the second case demonstrates that metastasis in primary metastatic 

breast cancer originates according to the linear progression model from the most 

progressed interacting clones of the primary tumor, and CTCs most probably resemble 

further metastases, not resembling the primary tumor anymore.  

CTCs as “liquid biopsy” provide a unique, easy accessible source of tumor 

material. Our results demonstrate feasibility of genomic and protein expression 

analyses on single CTCs and underline the importance of “liquid biopsy” for companion 

diagnostics in metastatic breast cancer. 
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2. LIST OF ABBREVIATIONS 

aCGH   - array-comparative genomic hybridization 

AI   - aromatase inhibitor 

CNA   - copy number aberration 

CSC   - cancer stem cell 

CTC   - circulating tumor cell 

DCIS   - ductal carcinoma in situ 

EMT   - epithelial-mesenchymal transition 

ER   - estrogen receptor 

ERBB2  - human epidermal growth factor receptor 2 

FACS   - fluorescence-activated cell sorting 

FFPE   - formalin-fixation, paraffin-embedding 

FISH   - fluorescence in situ hybridization 

HA   - hyaluronan 

ICC   - immunocytochemistry 

IDC   - invasive ductal carcinoma 

IHC   - immunohistochemistry  

ILC   - invasive lobular carcinoma 

Indel   - insertion-deletion 

K   - keratin 

MDA   - multiple-displacement amplification 

MET   - mesenchymal–epithelial transition 

NGS   - next generation sequencing 

PCR   - polymerase chain reaction 

PR   - progesterone receptror 

qRT-PCR  - quantitative real-time PCR 

RHAMM  - receptor for hyaluronan-mediated motility 

SERD   - selective estrogen receptor down-regulator 

SERM   - selective estrogen receptor modulator  

SNP   - single nucleotide polymorphism 

SVM   - support vector machine 

WGA   - whole genome amplification 

4-MU   - 4-methylumbelliferone 
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Abstract 

BACKGROUND: Single cell genotyping may provide the next step towards 

individualized medicine in the management of cancer patients. However, whole 

genome amplification (WGA) is required in order to study the genome of a single cell. 

Different technologies for WGA are currently available but their effectiveness in 

combination with next generation sequencing (NGS) and material preservation is 

currently unknown. 

METHODS: We analyzed the performance of WGA kits Ampli1, PicoPlex, and 

REPLI-g on single and pooled tumor cells obtained from EDTA- and CellSave-

preserved blood and from formalin-fixed, paraffin-embedded material. Amplified DNA 

was investigated with exome-Seq with the Illumina HiSeq2000 and ThermoFisher 

IonProton platforms.  

RESULTS: In respect to the accuracy of SNP/mutation, indel, and copy number 

aberrations (CNA) calling, the HiSeq2000 platform outperformed IonProton in all 

aspects. Furthermore, more accurate SNP/mutation and indel calling was 

demonstrated using single tumor cells obtained from EDTA-collected blood in respect 

to CellSave-preserved blood, whereas CNA analysis in our study was not detectably 

affected by fixation. Although REPLI-g WGA kit yielded the highest DNA amount, DNA 

quality was not adequate for downstream analysis. Ampli1 WGA kit demonstrates 

superiority over PicoPlex for SNP and indel analysis in single cells. However, PicoPlex 

SNP calling performance improves with increasing amount of input DNA whereas CNA 

analysis does not. Ampli1 performance did not significantly improve with increase of 

input material.CNA profiles of single cells, amplified with PicoPlex kit and sequenced 

on both HiSeq2000 and IonProton platforms, resembled unamplified DNA the most.  

CONCLUSION: Single cell genomic analysis can provide valuable information. 

Our study shows the feasibility of genomic analysis of single cells isolated from 

differently preserved material, nevertheless, WGA and NGS approaches have to be 

chosen carefully depending on the study aims.  
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INTRODUCTION 

Introduction of single cell analysis led to paradigm shifts in almost all fields of 

biology and medical sciences as it allows for an accurate representation of the cell-to-

cell heterogeneity instead an average measure of an entire cell population [1]. In 

cancer research, single cell analysis empowers characterization of tumor 

heterogeneity, and most notably has potential for clinical impact through 

characterization of circulating tumor cells (CTCs).  

CTCs are tumor cells that have separated from primary tumor or current 

metastases and have infiltrated the systemic blood circulation [2]. Quantification and 

characterization of CTCs in blood of cancer patients was introduced as a concept of 

“liquid biopsy”. Enumeration of CTCs as a validated clinical biomarker has been utilized 

for disease prognosis, diagnosis of minimal residual disease, and monitoring of therapy 

effectiveness for breast, prostate, and colon cancer [3, 4]. Genomic characterization of 

CTCs provides insights into genetic heterogeneity of the cancer and metastases and 

might aid clinical management of cancer patients due to identification of therapy 

sensitive and resistant clones. Herewith, investigation of single cell genomics may 

provide the next step towards individualized medicine. 

Individual CTCs can be investigated using a combination of whole genome 

amplification (WGA) and next generation sequencing (NGS) to determine copy number 

aberrations (CNAs) and gene mutations. However, single cell genomics is associated 

with certain technical challenges, such as introduction of WGA- and NGS-associated 

errors. Different technologies for WGA and NGS are currently available but their 

effectiveness in combination is currently unknown, as well as influence of material 

preservation on downstream analysis. Suitability of a certain WGA-NGS combination 

for a particular downstream analysis should be extensively investigated in order to 

establish a powerful and reliable tool for single cell genomics. 

WGA is required for molecular profiling of CTCs since a single cell does not 

contain enough DNA for direct biomolecular investigation. WGA can be performed by 

different techniques, such as PCR-based, multiple-displacement amplification (MDA)-

based, and a combination of MDA pre-amplification and PCR-amplification. Unlike 

exponential gain in the first two WGA methods, combined MDA-PCR provides quasi-

linear amplification [5-7]. The amplification approach has to be chosen carefully 

depending on its specific characteristics and the subsequent analysis [8]. 
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An important factor influencing WGA is material preservation, in particular blood 

preservation. EDTA-preserved blood requires processing as soon as possible [9]. 

Circulating tumor cells in blood may be preserved in special preservation tubes 

(CellSave) in order to overcome this requirement. These tubes contain a cell 

preservative, that stabilizes the sample and maintain cell morphology and cell-surface 

antigens for up to 96 hours at room temperature, allowing for shipment of the samples. 

However, fixatives may inhibit DNA amplification, hampering downstream analysis [9, 

10]. Most tissue samples are conserved by formalin-fixation, and paraffin-embedding 

(FFPE), which is difficult to handle in biomolecular analysis due to formalin-induced 

cross-links [11]. Therefore, it is essential to have WGA methods compatible with these 

types of preservation. 

Downstream analysis of amplified DNA can be performed by massive parallel 

sequencing using NGS in order to identify SNPs (single nucleotide polymorphisms), 

indels (insertions-deletions), loss of heterozygosity, structural variations, and CNAs. 

Single cell analysis of genomic aberrations by array-CGH is hampered. The 

necessity of the pre-selected targets’ analysis on template, obtained by random and 

incomplete genome amplification during WGA [12-14] results in high noise and 

misinterpretation of the results [15]. Moreover, array-CGH provides limited resolution. 

The highest resolution for whole genome analysis by array-CGH is 56 kb [16]. In 

contrast, NGS provides the possibility to examine each nucleotide of the entire 

amplified product with single base resolution. 

Existing NGS platforms differ by library preparation and signal detection 

methods. Illumina’s HiSeq machines exploit sequencing-by-synthesis approach [17, 

18]. Currently, HiSeq platforms offer the highest throughput per run, although a 

sequencing run lasts multiple days [18]. Thermofisher’s IonProton sequencers utilize 

semiconductor sequencing technology, allowing to complete a sequencing run within 

4 hours, but homopolymer stretches might be called incorrectly [17]. 

In this study, we evaluated different protocols, including different methods of 

preservation, WGA and sequencing to identify an optimal process for single cell 

sequencing. We compared our findings against unamplified DNA from bulk cell pellets 

to quantitatively define the impact of different protocols on single cell sequencing. In 

order to determine the impact of WGA method, we evaluated three different 

commercially available WGA kits and measured DNA quality and yield. In order to 

investigate the performance and compatibility of NGS platforms with whole exome 
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sequencing of WGA single cell DNA, we compared the detection of genomic variants 

(SNPs, indels and CNAs) from single SK-BR-3 cells spiked and re-captured from 

EDTA-preserved blood.   In order to investigate the influence of material fixatives, we 

evaluated detection of genomic variants from single SK-BR-3 cells spiked and re-

captured from EDTA-preserved vs. CellSave preserved blood. Next, we evaluated the 

limit of detection and consistency of genomic variant detection with increasing amounts 

of starting material (i.e. increasing numbers of pooled cells). Finally, we demonstrate 

proof of principle by evaluating genomic variants detected from CTCs collected from 

breast cancer patients.   Our findings indicate the technical and biological variability in 

genomic variant detection from single cell sequencing and suggest optimized protocols 

dependent on starting material and objective (i.e. SNP calling vs. CNA calling).  

 

MATERIALS AND METHODS 

Experimental design  

First, we investigated performance of 3 WGA kits, representing 3 WGA 

methods, in 4 groups of source material, differing by origin and preservation method. 

The 4 sources of material included: A) individual SK-BR-3 cells obtained from EDTA-

preserved blood; B) individual SK-BR-3 cells obtained from CellSave-preserved blood; 

C) single SK-BR-3 cells picked from FFPE SK-BR-3 cells; and D) individual CTCs 

obtained from EDTA-preserved blood from a breast cancer patient.  

After DNA yield and quality per WGA kit were estimated, DNA of single cells 

from each WGA group was used for whole exome NGS on 2 platforms. Briefly, 3 SK-

BR-3 cells, obtained from EDTA-preserved blood and amplified with Ampli1, PicoPlex, 

and REPLI-g kit, were analyzed with both HiSeq200 and IonProton platforms. 

Based on results obtained from initial pilot experiments, the IonProton platform 

and Repli-G WGA kit were excluded from further experiments. The second round of 

experiments included WGA of single and pooled cells in duplicates and NGS of 

obtained DNA in order to investigate the performance and the limit of detection with 

increasing amounts of material. Duplicates of 1, 3, 5, and 10 pooled SK-BR-3 cells 

obtained from CellSave-preserved blood and amplified with Ampli1 and PicoPlex kits 

were sequenced on HiSeq2000.  

Subsequently, a proof of principle experiment was performed on 2 individual 

CTCs obtained from EDTA-collected blood of a breast cancer patient. The cells were 

individually amplified with PicoPlex WGA kit and sequenced on HiSeq2000 
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(Supplementary Figure 1). In total, 120 single cells and 72 pooled cells were 

processed. 

 

Cell culture 

The breast cancer cell line SK-BR-3 was acquired from ATCC and cultivated 

under prescribed conditions. The cells were harvested using trypsin/EDTA (R001100; 

Gibco), washed and resuspended in PBS (14190-094; Gibco) for further experiments. 

Genomic DNA was extracted using the Blood&Cell Culture DNA Mini Kit (13323, 

Qiagen). The same cell line was previously formalin-fixed, paraffin-embedded, and 

stored for over 3 years to simulate archival material. 

 

Blood sampling 

Blood from healthy individuals and metastatic breast cancer patients was 

obtained from the Department of Transfusion Medicine and Department of Gynecology 

at the University Medical Center Hamburg-Eppendorf, respectively. All study 

participants gave written informed consent. The examination of blood from breast 

cancer patients was approved by the local ethics review board Aerztekammer 

Hamburg (OB/V/03). Breast cancer patients’ blood was sampled in EDTA collection 

tubes (01.1605.001, Sarstedt). Blood from healthy donors was collected either in EDTA 

or CellSave tubes (7900005, Janssen Diagnostics) and spiked with SK-BR-3 cells to 

simulate CTCs. 

 

Sample preparation 

Blood samples collected in EDTA tubes were processed within 2 hours. Blood 

samples collected in CellSave tubes were stored for 24-30 hours at room temperature 

before being processed. Mononuclear cells from both cancer patients’ and healthy 

donors’ blood spiked with SK-BR-3 cells were enriched by Ficoll density gradient 

centrifugation as previously described [19], fixed with 0.5% paraformaldehyde for 

10min, and stained for keratins as described elsewhere [20]. 

Single cells were picked by micromanipulation (micro injector CellTramVario 

and micromanipulator TransferManNKII, Eppendorf Instruments, Hamburg, Germany). 

Each individual cell was transferred in 1µl of PBS into the cap of a 200µl PCR tube and 

stored at -80oC overnight. 
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FFPE SK-BR-3 material was cut in 5µm thin sections and preprocessed as 

described before [21, 22]. Cross-links were removed by incubation of the slides in 1M 

NaSCN at 56°C overnight. Subsequently, the slides were washed 3x3min with TBS, 

stained with hematoxylin for 30s, rinsed with water, single cells were picked by 

micromanipulation. 

 

Whole genome amplification 

WGA was performed according to the manufacturers’ recommendations using 

3 different kits: PCR-based Ampli1 (WG-001-050-R02, Silicon Biosystems), combined 

MDA-PCR PicoPlex (E2620L, New England Biolabs,), and MDA-based REPLI-g 

(150343, Qiagen) WGA kits. The WGA products after Ampli1 and PicoPlex underwent 

cleanup with NucleoSpin Gel and PCR Clean-up kit (740609, Macherey-Nagel). 

REPLI-g WGA products were cleaned according to the QIAGEN recommendations 

with ethanol for the FFPE samples and spin columns (51304, Qiagen) for the blood 

samples.  

DNA concentration was measured with a Nanodrop1000 (Peqlab, Erlangen, 

Germany). The quality control of the WGA products was assessed by a multiplex PCR 

of the GAPDH gene as described elsewhere [21] with minor adaptations 

(Supplementary Material 1). Samples were considered of sufficient quality for further 

analyses if at least one of 200-400bp bands was detectable. 

 

Next generation sequencing  

Amplified DNA was investigated with whole exome sequencing on HiSeq2000 

and IonProton platforms, unamplified DNA of the SK-BR-3 cells was sequenced with 

HiSeq2000. Sequence data are available at 

http://www.ebi.ac.uk/ena/data/view/PRJEB11307. 

 

Data analysis 

Raw data from the Ampli1- and PicoPlex-amplified samples underwent adapter 

clipping. PCR adapters of the Ampli1 kit are ligated to DNA sticky ends after MseI 

restriction of T^TAA sites [23], therefore adapters can be identified as oligonucleotide 

sequences framing TAA…(N)…T fragments. For PicoPlex-amplified samples we 

trimmed the first/last 14 bases as suggested by the manufacturer. Random hexamer 
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primers of REPLI-g are complementary to the DNA and therefore did not need to be 

trimmed. 

Further data analysis was done according to the GATK Best Practices 

recommendations [24, 25], detailed available as Supplementary Material 2. 

SNP/mutation and indel discovery was limited to protein coding exons only 

(downloaded from the CCDS Project database [26]). 

Sensitivity, specificity, positive and negative predictive values of the variant 

calling analysis were evaluated based on the schema presented on Supplementary 

Figure 2. Calls from single cells (analyzed samples) were compared to calls made from 

unamplified DNA from bulk cell pellets (reference).  Analyses were limited to SNP 

positions and alleles as defined in the dbSNP (Version 138.hg19) to minimize 

discrepancies from random error between samples. Truepositives (TP) are defined as 

known SNPs found in both the reference and analyzed samples. Falsepositives (FP) 

are known SNPs identified in analyzed samples but not present in 

reference.Conversely, known SNPs identified in the reference sample but not in the 

analyzed sample are falsenegatives (FN). Based on this definition, sensitivity (S), 

specificity (Sp),positive predictive value (PPV) and negative predictive value (NPV) 

were calculated as follows: S = TP/(TP+FN), Sp = TN/(TN+FP), PPV = TP/(TP+FP), 

NPV = TN/(TN+FN). Indel calling statistics were calculated similarly.  

Venn diagrams were created with the used of BioVenn web application [27]. 

Allelic dropout (ADO) rate was calculated as follows: heterozygous SNPs in 

sample, present in reference, divided by their sum with homozygous SNPs in sample, 

present in reference as heterozygous SNPs. 

CNAs were evaluated using Control-FREEC [28] with a window size of 30kb, 

visualized and further analyzed using custom scripts (MATLAB R2015a, The 

MathWorks Inc.). Correlation among CNA profiles was calculated using Spearman 

correlation test. 

  

RESULTS 

Whole genome amplification of single cells 

Three WGA kits (i.e. Ampli1, PicoPlex, REPLI-g) were used to amplify single 

cell samples of 4 groups: A) 10 individual SK-BR-3 cells spiked and picked from EDTA-

preserved blood; B) 10 individual SK-BR-3 cells spiked and picked from CellSave-

preserved blood; C) 10 single SK-BR-3 cells picked from FFPE SK-BR-3 cells; and D) 
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10 individual CTCs picked from EDTA-collected blood of breast cancer patients. In 

total, 120 single cells were individually processed by WGA. DNA yield and success 

rate, as measured by multi-plex PCR of GAPDH, of the tested WGA kits are presented 

in Table 1 and on Supplementary Figure 3.  

WGA with the Ampli1 kit demonstrated an average DNA yield of 7.07 µg, 5.86 

µg, 6.74 µg and 4.69 µg for the 4 different 10-sample sets respectively with the average 

DNA yield 6.09 µg (Table 1a). The GAPDH multiplex-PCR demonstrated a 100% 

success rate for the experiment with EDTA tubes, CellSave tubes, and FFPE 

experiments, whereas the amplification of the patients’ CTCs demonstrated a success 

of 70% for CTCs (Table 1b). The average DNA yield for PicoPlex kit was 2.86 µg, 3.39 

µg, 4.71 µg and 4.01 µg for the 4 different 10-sample sets respectively and 3.74 µg on 

average for all 40 samples. Quality control PCR demonstrated 100% success rate in 

all groups except single SK-BR-3 cells picked from EDTA blood (80% success rate). 

The REPLI-g kit demonstrated the highest DNA yield: 15.39 µg, 11.37 µg, 77.97 µg 

and 31.41 µg in the same 4 experimental groups respectively. The average DNA output 

was 34.04 µg for all 40 samples. Quality control PCR demonstrated 70% success rate 

in cases of single SK-BR-3 picked from EDTA and CellSave tubes and 30% in cases 

of FFPE SK-BR-3 cells as well as patient CTCs.Among all tested WGA kits REPLI-g 

demonstrated the highest DNA yield along all sample group, however with the lowest 

success rate (50% average). Ampli1 and PicoPlex kits demonstrated comparable 

success rates (on average 93 and 95%, respectively) with DNA yield prevalence of 

Ampli1 over PicoPlex-processed samples in all compared groups (on average 6.09 

and 3.74µg, respectively). 

 

SNP/mutation, indel, and CNA analyses of SK-BR-3 cells, obtained from 

EDTA-preserved blood 

Genomic variants detected from single cells recovered from EDTA-preserved 

blood were analyzed to compare sequencing platforms and WGA methods. Variants 

detected in single cell analyses were compared to variants detected in bulk cell pellets 

without WGA as a gold standard. We report sequencing quality statistics (e.g. read 

depth), the total number of SNPs and indels detected, including both previously 

reported SNPs and indels and novel variants, the allelic dropout rate and the sensitivity 

and positive predictive value of detection compared against unamplified DNA as 

metrics to compare different protocols. Sequencing with HiSeq2000 platform produced 
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more reads and provided higher depth and breadth of target base coverage, higher 

mapping rates, and lower duplicate rates compared to IonProton. Comparing the 

applied WGA procedures, the highest numbers of clean reads, mapping and duplicate 

rates were observed for REPLI-g WGA kit. The complete characteristics of NGS data 

are presented in Supplementary Table 1. The number of total and known SNPs 

identified with HiSeq2000 platform was higher than for IonProton regardless of the 

WGA method used (Figure 1A). Sequencing with the HiSeq2000 platform resulted in 

7125, 4680, 173 known SNPs detected with Ampli1, PicoPlex, and REPLI-g kits, 

respectively, and concordant with known SNPs detected in bulk unamplified NA.  

Sequencing with the IonProton platform resulted in the detection of  1525, 1073, and 

30 concordant known SNPs with respective WGA kits. Sensitivity, the probability of 

detecting a known SNP found in the reference sample in the single cell samples, was 

also higher in samples sequenced with HiSeq2000 with 41.3, 27.1% and 1.0% for 

Ampli1, PicoPlex, and REPLI-g WGA experiments, respectively (Table 2). Novel single 

nucleotide variants (SNVs) were identified in single cells, as well as in genomic DNA, 

which might be sequencing or amplification errors. Higher numbers of novel SNVs 

were observed for HiSeq2000 over IonProton sequenced samples (265 vs 50, 4711 vs 

538, and 203 vs 33 for Ampli1, PicoPlex, and REPLI-g WGA kits and HiSeq2000 vs 

IonProton NGS, respectively). The highest number of novel SNPs was observed for 

the PicoPlex-amplified and HiSeq2000-sequenced cell (4711 SNPs). Among the 

samples sequenced with the same NGS platform, more known indels were identified 

in Ampli1-amplified samples (176 vs 23, 82 vs 14, and 3 vs 1 for Ampli1, PicoPlex, and 

REPLI-g WGA kits compared for HiSeq2000 vs IonProton, respectively). The fraction 

of known indels was the highest for Ampli1-HiSeq2000 analysis (15.3%) (Table 2).  

CNA profiles from single cells were compared with the CNA profile of genomic SK-BR-

3 DNA using Spearman correlation (Figure 2A-G). Correlation between whole genome 

amplified single cells and genomic DNA did not depend on NGS platform, but was 

dependent on WGA kit. Ampli1, PicoPlex, and REPLI-g amplified cells demonstrated 

median (r<0.7), strong (r>0.8) and weak (r<0.3) correlation with genomic DNA, 

respectively (Table 2). 

ADO rates demonstrated dependence on both WGA and sequencing platform 

(Table 2). ADO rates were lower in HiSeq2000-sequenced samples in comparison to 

IonProton with outperformance of the Ampli1 kit within the same NGS platform (9, 24, 

and 100% for cells, amplified with Ampli1,PicoPlex and REPLI-g WGA kits and 
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sequenced on Hiseq200 vs 20, 42, and 100% in IonProton group, respectively). Based 

on the obtained results of the first NGS experiments, we excluded REPLI-g WGA kit 

(MDA-based technique) and IonProton platform from further analyses.  

 

SNP/mutation, indel, and CNA analyses of single and pooled SK-BR-3 

cells, obtained from CellSave-preserved blood 

To investigate the detection limit with increasing amount of starting material for 

WGA, as well as the influence of CellSave preservative on WGA and NGS 

performance we analyzed duplicates of 1, 3, 5, and 10 pooled SK-BR-3 cells amplified 

with Ampli1 and PicoPlex WGA kits and sequenced on Illumina’s Hiseq2000. The 

whole obtained data is presented in Supplementary Table 1. 

Comparison between single cells obtained from EDTA- and CellSave-collected 

blood revealed lower numbers of the total and known identified SNPs and indels, and 

higher number of novel SNPs and indels in cells from CellSave-preserved blood. 

Sensitivity of SNP and indel calling was lower for single cells from CellSave tubes in 

comparison to single cells obtained from EDTA-preserved blood (Table 3). The overlap 

in known SNPs detected from single cells in EDTA and CellSave preserved blood was 

similar to the overlap detected from technical replicates of single cells in CellSave 

preserved blood (Figure 1B), indicating that technical bias from other sources is greater 

than variation from the preservation method.  As described above, comparison of 

findings obtained by different WGA kits demonstrates superiority of Ampli1 WGA over 

PicoPlex for SNP and indel analysis in single cells, as indicated by the higher sensitivity 

of Ampli1 WGA (Table 3).  

Analyses of pooled cells demonstrated that the numbers of the identified total 

and known SNPs/mutations increased with increasing number of pooled cells, however 

statistically significant between different groups of pooled cells for PicoPlex only. 

Moreover, the rate of change of detection of total and known SNPs with increasing 

number of cells was found to be different with Ampli1 and PicoPlex kits. Ampli1 kits 

appear to have more variability in performance as indicated by the variance in the 

number of total SNPs detected (Figure 3A). Variance is smaller in the percentage of 

known SNPs detected (Figure 3A). In addition, the increase in the percentage of known 

SNPs detected with increasing numbers of pooled cells is greater for the               

PicoPlex kit (Figure 3A, 3B). 
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Sensitivity of SNP and indel analyses increased with increasing number of 

pooled cells. The effect was statistically significant for PicoPlex, but not Ampli1 kit as 

indicated by significant correlation. However, the differences in kits’ performance were 

not significantly different by these metrics (Figure 3C, 3D). 

Samples analyzed with either kit showed similar ADO rates (3-79 and 2-74%, 

respectively) (Supplementary Table 1). With each kit, ADO rates decreased with 

increasing numbers of pooled cells, indicating that the high ADO rate with single cells 

is largely attributed to WGA. This effect was significantly different for                      

PicoPlex kit only (Figure 3E). 

Correlation between CNA profiles of genomic DNA and analyzed samples 

increased along with the number of pooled cells for both WGA kits, however, this effect 

was not statistically significant. There was no significant difference in the rate of change 

of performance between the two kits (Figure 3F).  

The obtained results suggest that the Ampli1 WGA kit is superior to the  

PicoPlex kit for SNP and indel analysis in single cells (Table 3). Notably, detection of 

SNPs by PicoPlex significantly improves with the number of pooled cells (i.e. 

increasing amount of input DNA. Ampli1 performance did not significantly improve with 

increase of input material in any case. This suggests a greater effect of WGA for MDA-

PCR amplification in comparison to PCR-based amplification. 

 

Genomic characterization of patient tumor cells 

As proof of principle, two CTCs from a metastatic breast cancer patient were 

isolated from 10ml of blood obtained in an EDTA tube. The PicoPlex WGA kit was used 

to amplify the genomes of the individual cells, followed by exome sequencing using 

HiSeq2000. CNA analysis demonstrated two genetically different profiles (Figure 2H, 

2I), suggesting cancer genetic heterogeneity of this patient’s disease. Both CTCs carry 

gain of chromosome 1q, which has been identified previously as an universal genomic 

feature of breast cancer [29]. Additionally, CTC-1 demonstrates copy number variation 

typical for luminal breast cancer including chromosome 16p gain and chromosome 16q 

loss. In contrast, CTC-2 is strongly characterized by chromosome 9p loss. SNP calling 

analysis revealed 1135 SNPs and 15 indels common in both cells (Figure 1C). Mutation 

analysis revealed 5 missense mutations annotated in COSMIC database [30]. 

Mutations in genes CHEK2, PRAME, and KIT were present in both CTCs, mutation in 

gene FGFR2 was detected in CTC-1 only and in gene TP53 – in CTC-2 only (Table 4). 
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DISCUSSION 

In the study presented here, the performance of single cell WGA and 

subsequent whole exome sequencing were investigated on 2 different NGS platforms. 

Illumina’s HiSeq platforms are widely used in human genome research due to their 

accuracy. Sequencing with ThermoFisher’s IonProton can be faster and more cost-

effective per run, however, sequencing with IonProton may result in substantial 

decrease of effective coverage depth due to the high abundancy of PCR and optical 

duplicates. Emulsion PCR, utilized for library preparation in IonProton technology, is 

thought to be the main source of PCR duplicates [31]. Moreover, the introduction of 

indels is a well-documented disadvantage of the semiconductor sequencing utilized in 

IonProton [17]. Nevertheless, our study shows that CNA analysis was not affected by 

the described disadvantages of semiconductor sequencing and demonstrated 

comparable results for samples sequenced on both NGS platforms. 

Important applications of NGS such as SNP/mutation, indel, and CNA calling 

seem to be especially hampered in single cell analysis due to relatively high variance 

in amplification efficiency across the genome as a result of WGA [6, 12, 13]. Allelic 

dropout (ADO), defined as the complete absence of one allele of heterozygous loci, is 

one of the major concerns associated with WGA, leading to false interpretation of 

SNP/mutation and indel calling results. In our study, Ampli1 WGA kit demonstrated 

lower ADO rates on the single cell level and consequently more accurate SNP/mutation 

and indel calling independent of sequencing platform, blood preservative, and number 

of pooled cells. These data suggest that Ampli1 (PCR-based WGA) outperforms 

PicoPlex (MDA-PCR combining WGA technique) and REPLI-g (MDA-based) WGA kits 

for SNP/mutations and indel calling. However, adaptor-ligation PCR, utilized in some 

PCR-based WGA kits (e.g., Ampli1), has certain limitations. Site-specific digestion of 

template DNA prior to PCR by the MseI enzyme [32] results in a wide distribution of 

fragment lengths. In silico analysis (data not shown) demonstrates that only 38% of 

19x106 fragments produced by MseI restriction of the human genome have length 100-

500bp and therefore sufficient for exome-capturing and size-selection for library 

preparation. In order to optimize single cell sequencing, revision of the current exome 

capturing regions is required. 

Commercially available exome enrichment kits have not been optimized for 

WGA products. The usage of fragmented WGA DNA as template might drastically 

reduce capturing efficacy. Moreover, a significant fraction of template DNA can be 
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nonspecifically enriched outside target regions, varying from kit to kit [33-35], causing 

identification of thousands of high quality SNPs outside the target regions [33]. A 

limitation of this study is that only one exome capturing kit has been tested and thus, 

it cannot be ruled out that other capturing kits may have different results. Exome 

capturing in which smaller regions are targeted might outperform capturing of larger 

genomic regions. Another limitation of this study is that we used SK-BR-3 bulk DNA, 

sequenced on HiSeq2000 as reference for SNP/mutation, indel and CNA analysis for 

SK-BR-3 cells, sequenced on both HiSeq2000 and IonProton platforms. IonProton 

sequenced bulk SK-BR-3 DNA used as reference might improve results of IonProton-

sequenced samples.   

Although REPLI-g amplified samples (MDA-based technique) demonstrated the 

highest DNA yield from a single cell, the quality of the obtained DNA was remarkably 

low and insufficient for appropriate SNP/mutation, indel, and CNA analyses. Based on 

our experience and observations of de Bourcy et al. [8] and Bergen et al. [36], we 

conclude that input of at least 10ng of genomic DNA and tailoring of the MDA reaction 

to obtain just enough DNA for further analysis is a key to optimal MDA performance. 

Further biases in MDA-based WGA can distort CNA analysis and have been described 

elsewhere, these include uneven representation and non-specific amplification of the 

genome, a large variability in amplification bias among the products, chimera 

formation, and dislocated sequences [8, 37-39]. 

Single cells from EDTA-collected blood demonstrated higher sensitivity for 

SNP/mutation and indel analyses, than single cells from CellSave-preserved blood. 

Since EDTA-collected blood requires timely processing after collection [9], CellSave 

blood preservation could be of great value in e.g., multicenter studies. In this study, we 

examined the consistency of SNP/mutation and indel calling performance in 1, 3, 5, 

and 10 pooled cells in comparison to unamplified genomic DNA and the influence of 

WGA technique on the results. SNP/mutation and indel analyses of single and pooled 

cells revealed high variability in results for Ampli1 and PicoPlex WGA kits on single cell 

level, decreasing with the number of pooled cells. 

The concordance of the identified SNPs/mutations in 1, 3, 5, and 10 cells from 

CellSave-preserved blood with the reference was invariant to the WGA technique used 

and improved with increasing number of pooled cells. For PicoPlex amplified DNA, the 

sensitivity (
𝑡𝑟𝑢𝑒−𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒−𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒−𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
) of the SNP/mutation analysis increases with 

increasing number of pooled cells, in association with a decrease in ADO rates. A 
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similar trend was detected with the Ampli1 kit amplified DNA, although the effects were 

not significant. The effects may have been obscured by the relatively high variance 

observed with Ampli1 amplification. Similarly, CNAs detected from single or pooled 

cells demonstrates a trend for increasing correlation with calls made from unamplified 

DNA. These effects are not significant which may be due to the relatively high variance 

in correlation with low number of starting cells (Figure 3). Nevertheless, CNA profiles 

of even a single cell from EDTA-collected blood, amplified with PicoPlex WGA kit and 

sequenced on both HiSeq2000 and IonProton, demonstrated strong correlation (r≥0.8) 

with unamplified DNA in contrast to a moderate correlation observed for Ampli1 kit for 

the same experiment (r<0.7) (Table 2). Moreover, as few as 3 pooled cells from 

CellSave-preserved blood resembled CNA pattern of unamplified DNA with strong 

correlation, whereas Ampli1-amplified samples reached the same correlation level with 

5 pooled cells.  

A recent study from our lab has demonstrated genetic heterogeneity within a 

cancer cell line upon sequencing single cells [40]. Therefore, it cannot be ruled out that 

the low concordance of SNP/mutation calling between single cells might also be the 

effect of heterogeneity in addition to WGA artifacts. However, the strong correlations 

of CNA of the SK-BR-3 cell-line between different lineages published in the past [11] 

suggests that its overall genome is relatively stable. Further research entailing deep 

sequencing of unamplified genomic DNA will reveal the genetic heterogeneity of this 

cell line. It has been noted that WGA strongly affects CNA analysis due to imbalanced 

amplification of alleles [5, 13]. Moreover, non-linear amplification is random and is not 

reproducible for the same DNA template [14]. Although CNA analysis does not require 

exome capturing and is possible on whole genome shallow sequenced data, we 

performed CNA analysis on whole exome sequencing data and demonstrated that the 

quality of the obtained DNA by both Ampli1 and PicoPlex kits was adequate for 

qualitative assessment of CNA patterns. Deeper exome sequencing may compensate 

imbalanced allele amplification, crucial for CNA analysis of shallow sequenced whole 

genome data. 

Sequencing CTCs from cancer patients has been suggested as a “liquid biopsy” 

that could be used to study tumor heterogeneity and find therapy associated markers 

[41]. In our study, we identified 3 cancer-associated mutations, 1135 SNPs, and 15 

indels common in two CTCs from a single breast cancer patient, however their CNA 

profiles were not similar, reflecting intra-patient heterogeneity. Given the findings 



 

 83 

presented from our benchmarking analyses, it is difficult to separate true biological 

variants from variation introduced by WGA or sequencing artifacts. 

However,identification of non-overlapping mutations in FGFR2 and TP53 genes might 

indicate clonal evolution of the tumor. Further single cell genomic research and 

improved WGA methods may enable us to investigate cancer evolution during tumor 

development and under therapy pressure leading to treatment resistance using CTC 

sequencing. 

 

CONCLUSION 

We comprehensively tested the effectiveness of WGA of single cells for exome 

sequencing by NGS. As an aspect of testing, we evaluated 3 WGA techniques, 2 NGS 

platforms, and the influence of material fixation for long term preservation. Although 

REPLI-g WGA kit yielded the highest DNA amount, DNA quality was not adequate for 

SNP/mutation, indel, and CNA analysis.  

Ampli1 WGA kit combined with Illumina’s HiSeq2000 platform demonstrated the 

best concordance with unamplified DNA for SNP/mutation and indel calling, both for 

EDTA- and CellSave-preserved cells with ADO rates 9-79%, mostly dependent on the 

amount of starting material. However, PicoPlex performance significantly improves 

with the number of pooled cells (increasing amount of input DNA), whereas Ampli1 

performance did not significantly improve with increase of input material in any case.  

The CNA profiles produced with PicoPlex kit on both HiSeq2000 and IonProton, 

independent of blood preservative, resembled unamplified DNA the most. PicoPlex 

performance of CNA analysis is not affected by input amount.  

Our study shows the feasibility of genomic analysis of single cells isolated from 

differently preserved material, enabling advanced diagnostics such as on CTCs during 

cancer treatment for companion diagnostics. 
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Table 1. Mean DNA yield (Table 1a) and PCR quality control success rate 

(Table 1b) for single SK-BR-3 cells and CTCs extracted from EDTA and CellSave 

preservation tubes, and FFPE material, after amplification with Ampli1, PicoPlex, and 

REPLI-g WGA kits. 

CTC – circulating tumor cell; st.dev – standard deviation. 

  

WGA kit 
WGA output, mean ± st. dev., µg 

SKBR3 
EDTA 

SKBR3 
CellSave 

SKBR3 
FFPE 

CTC 
EDTA 

Average 

Ampli1 7.07 ± 1.08 5.86 ± 2.23 6.74 ± 1.61 4.69 ± 3.19 6.09 ± 2.29 

PicoPlex 2.86 ± 1.14 3.39 ± 2.32 4.71 ± 0.41 4.01 ± 1.24 3.74 ± 1.56 

REPLI-g 15.39 ± 1.35 11.37 ± 1.25 
77.97 ± 
30.82 

31.41 ± 12.84 34.04 ± 31.23 

Table 1a. DNA output, µg. 
 

WGA kit 
PCR quality control success rate, % 

SKBR3 
EDTA 

SKBR3 
CellSave 

SKBR3 
FFPE 

CTC EDTA Average 

Ampli1 100 100 100 70 93 

PicoPlex 80 100 100 100 95 

REPLI-g 70 70 30 30 50 

Table 1b. PCR quality control success rate, %. 
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WGA kit Ampli1 PicoPlex REPLI-g 

SK-BR-
3 

genomi
c DNA 

NGS platform 

H
iS

e
q

2
0

0
0
 

Io
n
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ro
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H
iS

e
q

2
0

0
0
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n

P
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n
 

H
iS

e
q

2
0

0
0
 

Io
n

P
ro

to
n
 

H
iS

e
q

2
0

0
0
 

S
N

P
 s

ta
ti

s
ti

c
s
 

Total SNPs 9944 1986 9948 1695 403 64 17659 

Known SNPs 9679 1936 5237 1157 200 31 17251 

Known SNPs, 
% 

97.3 97.5 52.6 68.3 49.6 48.4 97.7 

Novel SNPs 265 50 4711 538 203 33 408 

ADO, % 9.0 19.8 24.0 42.4 100.0 100.0 na 

Common SNPs 
with known 
SNPs in 
reference 

7125 1525 4680 1073 173 30 17251 

Sensitivity, % 41.3 8.8 27.1 6.2 1.0 0.2 100.0 

PPV, % 73.6 78.8 89.4 92.7 86.5 96.8 na 

In
d

e
l 
s

ta
ti

s
ti

c
s
 

Total indels 1148 2688 2469 1688 140 52 502 

Known indels 176 23 82 14 3 1 310 

Known indels, 
% 

15.3 0.9 3.3 0.8 2.1 1.9 61.8 

Novel indels 972 2665 2387 1674 137 51 192 

Common indels 
with known 
indels in 
reference 

116 16 71 11 2 1 310 

Sensitivity, % 37.4 5.2 22.9 3.6 0.7 0.3 100.0 

PPV, % 65.9 69.6 86.6 78.6 66.7 100.0 na 

C
N

A
 a

n
a

ly
s

is
 

Spearman 
correlation 
coefficient (r) 

0.66 0.63 0.81 0.80 0.25 0.25 na 

P-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 na 

Table 2. The counts and statistics of SNP and indel calling in SK-BR-3 individual 

cells, obtained from EDTA-collected blood, amplified with Ampli1, PicoPlex, and 

REPLI-g WGA kits and sequenced with Illumina HiSeq2000 and ThermoFisher 

IonProton NGS platforms. 

Total SNPs/indels – number of all identified SNPs/indels. Known SNP – fraction 

of SNPs/indels, present in SNP database. Novel SNPs/indels – number of 

SNPs/indels, not present in SNP database. ADO – allelic dropout. PPV – positive 

predictive value.  



 

 89 

G
ro

u
p

s
 o

f 
e
x

p
e

ri
m

e
n

ts
 

WGA kit Ampli1 PicoPlex 
SK-BR-3 
genomic 

DNA 

NGS HiSeq2000 HiSeq2000 HiSeq2000 

Material 
preservation E

D
T

A
 

C
e
llS

a
v
e

 

C
e
llS

a
v
e

 

E
D

T
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C
e
llS

a
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C
e
llS

a
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e

 

Not 
applied 

Number of 
cells 

1 1 1 1 1 1 ̴8x106 

S
N

P
 s

ta
ti

s
ti

c
s
 

Total SNPs 9944 7826 4088 9948 9738 9821 17659 

Known 
SNPs 

9676 6189 2857 5237 2522 4457 17251 

Known 
SNPs, % 

97.3 79.1 69.9 52.6 25.9 45.4 97.7 

Novel SNPs 265 1637 1231 4711 7216 5364 408 

ADO rate, % 9.0 36.4 78.5 54.0 74.3 66.4 na 

Common 
SNPs with 

known SNPs 
in reference 

7125 5680 2381 4680 2088 2885 17251 

Sensitivity, 
% 

41.3 32.9 13.8 27.1 12.1 16.7 na 

PPV, % 73.6 91.8 83.3 89.4 82.8 64.7 na 

In
d

e
l 
s

ta
ti

s
ti

c
s
 

Total indels 1148 723 165 2469 790 914 502 

Known 
indels 

176 89 36 82 24 63 310 

Known 
indels, % 

15.3 12.3 21.8 3.3 3.0 6.9 61.8 

Novel indels 972 634 129 2387 766 851 192 

Common 
indels with 

known indels 
in reference 

116 76 32 71 19 42 310 

Sensitivity, 
% 

37.4 24.5 10.3 22.9 6.1 13.6 na 

PPV, % 65.9 85.4 88.9 86.6 79.2 66.7 na 

C
N

A
 a

n
a

ly
s

is
 

Spearman 
correlation 

coefficient (r) 
0.64 0.84 0.25 0.81 0.69 0.09 na 

P-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 na 
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Table 3. The counts and statistics of SNP and indel calling in single SK-BR-3 

cells, analyzed in duplicates, obtained from CellSave-preserved blood, in comparison 

to single SK-BR-3 cells, obtained from EDTA-collected blood. 

Total SNPs/indels – number of all identified SNPs/indels. Known SNP – fraction 

of SNPs/indels, present in SNP database. Novel SNPs/indels – number of 

SNPs/indels, not present in SNP database. ADO – allelic dropout. PPV – positive 

predictive value. 
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Table 4. The counts and statistics of SNP and indel calls in CTCs. 

Total SNPs/indels – number of all identified SNPs/indels. Known SNP – fraction 

of SNPs/indels, present in SNP database. Novel SNPs – number of SNPs, not present 

in SNP database. ADO – allelic dropout. r – Spearman correlation coefficient. wt – wild 

type. 
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Total SNPs 34994 14658 

Known SNPs 4304 6030 

Known SNPs, % 12.3 41.1 

Novel SNPs 30690 8628 

Known SNPs common in both 
datasets 

1135 

Fraction of common known from 
known identified in dataset, % 

26.4 18.8 
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Total indels 4383 4103 

Known indels 42 81 

Known indels, % 1.0 2.0 

Novel indels 4341 4022 

Known indels common in both 
datasets 

15 

Fraction of common known from 
known identified in dataset, % 

37.7 18.5 
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TP53 
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Figure 1. Distribution of identified known SNPs between datasets. 

A. Known SNPs identified in single cells, amplified with Ampli1, PicoPlex, and 

REPLI-g WGA kits and obtained from EDTA-preserved blood in comparison to 

unamplified DNA. 

B. Known SNPs identified in single cells, amplified with Ampli1 or PicoPlex and 

obtained from EDTA- and CellSave-preserved blood in comparison to unamplified 

DNA from unfixed cells.  

C. Known SNPs identified in single CTCs, amplified with PicoPlex in comparison 

to each other.  
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Figure 2. Plots of CNA profiles along the whole genome (x axis).  

A – CNA profile of unamplified DNA from unfixed cells. B-G – plots of CNAs in 

single SK-BR-3 cells, obtained from EDTA-preserved blood. H, I – CNA profiles of 

individual CTCs, obtained from EDTA-preserved blood of the same breast cancer 

patient. WGA kits: B, E – Ampli1; C, F, H, I – PicoPlex; D, G – REPLI-g.  
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Figure 3. Characteristics of single and pooled 3, 5, and 10 SK-BR-3 cells, 

obtained from CellSave-preserved blood, amplified with Ampli1 and PicoPlex WGA 

kits, and sequenced with HiSeq2000 NGS platform. 

A. Total identified SNPs. 

B. Fraction of known identified SNPs. 

C. Sensitivity of SNP calling analysis. 

D. Sensitivity of indel calling analysis.  

E. Allelic dropout. 

F. Correlation of CNA profiles of the analyzed samples with CNA profile of 

unamplified DNA.  
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Supplementary Figure 1. Experimental design.  

SK-BR-3 breast cancer cell line cells were spiked into blood donors’ blood, 

collected into EDTA- and CellSave tubes. Previously the same cell line cells were used 

to prepare formalin-fixed, paraffin-embedded material (FFPE). Blood from breast 

cancer patients was drawn into EDTA-tubes. Blood and FFPE samples were 

processed and used for picking of individual tumor cells: A) 10 individual SK-BR-3 cells 

spiked and picked from EDTA-preserved blood; B) 10 individual SK-BR-3 cells spiked 

and picked from CellSave-preserved blood; C) 10 single SK-BR-3 cells picked from 

FFPE SK-BR-3 cells; and D) 10 individual CTCs from breast cancer patients, from 

each group of samples. Collected cells were used for WGA with Ampli1, PicoPlex, and 

REPLI-g WGA kits. For the EDTA-preserved SK-BR-3 cells, 3 representative whole 

genome amplified cells, one per WGA kit, underwent NGS on both HiSeq200 and 

IonProton platforms. Taking the results of SNP, indel, and CNA analyses into 

consideration, next NGS round on HiSeq2000 included duplicates of 1, 3, 5, and 10 

CellSave-preserved SK-BR-3 cells, amplified with Ampli1 and PicoPlex, and 2 patient 

CTCs, amplified with PicoPlex. Unamplified SK-BR-3 DNA from unfixed cells was 

sequenced on HiSeq2000. 
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Supplementary Figure 2. 

Definition of SNP calls, identified 

in analyzed dataset in comparison 

to reference as true-positive, 

false-positive, true-negative, and 

false-negative SNPs. 

TP – true-positive calls; FP 

– false-positive calls; TN – true-

negative calls; FN – false-

negative calls.  

 

 

 

Supplementary Figure 3. 

DNA yield in respect to WGA kit in 

groups of single SK-BR-3 cells, 

picked from EDTA- and CellSave 

preserved blood, FFPE material, 

and CTCs, picked from EDTA-

preserved blood of breast cancer 

patients.  
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Supplementary Material 1. 

The quality of the WGA products was assessed by a multiplex PCR of the 

GAPDH gene producing fragments of 100, 200, 300, and 400 bp fragments from non-

overlapping target sites as described elsewhere [1]. Since the original 200 bp fragment 

is not amplified by the Ampli1 WGA kit, we used the following primers to produce a 200 

bp fragment: fw: 5′-AAGATCATCAGGTGAGGAAGGC-3’ rev: 5′-

CCCCAGCTCTCATACCATGAGTC-3’. 

PCR conditions were optimized for a reaction of 15 µl total volume with input of 

100 ng DNA as follows: 0.75 U AmpliTaq Gold DNA Polymerase (Applied Biosystems, 

4486226), 0.2 mM of each ATP, GTP, CTP, TTP; 0.136 μM of each primer, and 2 mM 

MgCl2 (Applied Biosystems, R01911). Human leukocyte DNA was used as positive 

control for the multiplex PCR. The PCR program was as follows: 95oC for 5 min; 35 

cycles of 94oC for 30 sec, 64oC for 30 sec, 72oC for 45 sec; final elongation at 72oC for 

7 min. PCR products were analyzed in a 2% agarose TAE ethidium bromide-stained 

gel. Samples were considered to be of sufficient quality for further analyses if at least 

one of the 200, 300, and 400 bp bands was detected. 

 

 

1. van Beers EH, Joosse SA, Ligtenberg MJ, Fles R, Hogervorst FB, 

Verhoef S and Nederlof PM. A multiplex PCR predictor for aCGH success of FFPE 

samples. British journal of cancer. 2006; 94(2):333-337. 
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Supplementary Material 2. 

Data analysis was performed according to the GATK Best Practices 

recommendations [1, 2]. Exome capturing was performed with “BGI Exome 

Enrichment Kit (59M) and Capture” for sequencing on HiSeq2000 and “Ion AmpliSeq 

exome RDY kit” for sequencing on IonProton. The corresponding exome regions were 

used respectively for calculation of descriptive statistics over target regions and during 

post-alignment data processing. To ensure the location of made calls within the exome 

and to unify results of SNP and indel calling between the datasets, SNP/mutation and 

indel discovery was limited to protein coding exons only (downloaded from the CCDS 

Project database [3, 4]). 

 

Reference datasets used for the analysis 

Human genome UCSC hg19      [5] 

dbsnp_138.hg19.vcf        [6] 

Mills_and_1000G_gold_standard.indels.hg19.sites.vcf   [7] 

UCSC_CCDS_per_exon.bed       [4] 

HG19 snpEff database        [8] 

Control file for FREEC was generated out of alignment of  

185 reference European female genomes, obtained from  

1000 Genome database     [9] 

GEM_mapp_hg19/out100m1_hg19.gem              [10] 

COSMIC database        [11, 12] 

 

Programs 

bwa mem         [13] 

gatk             [14] 

picard             [15] 

samtools         [16] 

trimmomatic          [17] 

snpEff          [18] 

snpSift         [19] 

Control-FREEC         [20, 21] 
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 Program and 
command 

Specifications or differing 
from default parameters 

References 

1A. PREPROCESSING AND ALIGNMENT FOR PAIRED-END HISEQ2000 
READS 

Clip WGA 
adapters 
if present 

 For Ampli1 and PicoPlex 
amplified samples 

 

Trim trimmomatic PE ILLUMINACLIP:2:30:10 
LEADING:3 TRAILING:3 
SLIDINGWINDOW:4:10 
MINLEN:25 TOPHRED33 

 

Align to the 
genome 

bwa mem -t 30 -v 0 -M -R UCSC hg19 

1B. PREPROCESSING AND ALIGNMENT FOR SINGLE-END IONPROTON 
READS 

Sort and 
convert bam 
file to fastq 

samtools sort 
samtools 
bam2fq 

-n 
-n -O -s 

 

Clip WGA 
adapters if 
present 

 For Ampli1 and PicoPlex 
amplified samples 

 

Trim trimmomatic SE LEADING:3 TRAILING:3 
SLIDINGWINDOW:4:10 
MINLEN:25 TOPHRED33 

 

Align to the 
genome 

bwa mem -t 30 -v 0 -M -R UCSC hg19 

2. POSTALIGNMENT PROCESSING 

Sort sam file 
and convert 
to bam 

picard 
SortSam 

SORT_ORDER=coordinate 
VERBOSITY=ERROR 
COMPRESSION_LEVEL=0 

 

Mark 
duplicates 

picard 
MarkDuplicate
s 

VERBOSITY=ERROR 
COMPRESSION_LEVEL=0 

 

Index bam 
file 

samtools index   

Realign 
indels 

gatk Realigner 
Target Creator 

-nt 24 UCSC hg19 
Mills_and_1000G_
gold_standard.inde
ls.hg19.sites.vcf 

 gatk 
IndelRealigner 

-compress 0 -model 
USE_READS -LOD 0.4 

UCSC hg19 
Mills_and_1000G_
gold_standard.inde
ls.hg19.sites.vcf 

Recalibrate 
bases 

gatk Base 
Recalibrator 

-nct 24 UCSC hg19 
dbsnp_138.hg19.v
cf 
Mills_and_1000G_
gold_standard.inde
ls.hg19.sites.vcf 

 gatk 
PrintReads 

-BQSR -compress 0 UCSC hg19 
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3. DISCOVER SNPS AND INDELS 

SNP and 
indel calling 

gatk 
HaplotypeCall
er 

-stand_call_conf 30 -
stand_emit_conf 30 -gt_mode 
DISCOVERY -out_mode 
EMIT_ALL_CONFIDENT_SIT
ES -ploidy 3 
--annotation FisherStrand --
annotation QualByDepth --
annotation HaplotypeScore --
annotation HomopolymerRun 
--annotation 
RMSMappingQuality --
annotation 
ReadPosRankSumTest 

UCSC hg19 
dbsnp_138.hg19.v
cf 
UCSC_CCDS_per
_exon.bed 

Select for 
SNPs 

gatk 
SelectVariants 

-selectType SNP UCSC hg19 

Annotate 
HRun 

gatk 
VariantAnnotat
or 

--annotation 
HomopolymerRun 

UCSC hg19 
dbsnp_138.hg19.v
cf 

Filter for 
quality and 
GQ 

snpSift filter ( QD >= 5 ) & ( MQ > 25 ) & ( 
QUAL > 30 ) & ( FS < 60 ) & ( 
SOR < 4 ) & ( HRun < 5 ) & ( 
GEN[*].GQ >= 20 ) 

 

Annotate 
with snpEff 

snpEff  HG19 snpEff 
database 

Select for 
INDELs 

gatk 
SelectVariants 

-selectType INDEL UCSC hg19 

Filter for 
quality and 
GQ 

snpSift filter ( QD >= 2 ) & ( MQ > 25 ) & ( 
QUAL > 20 ) & ( FS < 200 ) & 
( SOR < 10 ) & ( GEN[*].GQ 
>= 20 ) 

 

Annotate 
with snpEff 

snpEff  HG19 snpEff 
database 

investigate 
mutations 
(for patient’s 
data only) 

gatk Variant 
Annotator 

#Annotate with COSMIC data 
-comp:COSMIC #{Cosmic} -
resource #{Cosmic}  

hg19_cosmic_v54
_120711 
(#{Cosmic}) 

4. COPY NUMBER ANALYSIS 

Create 
mpileup file 

samtools 
mpileup 

-E  

Run 
Control-
FREEC 

freec breakPointType = 4, 
forceGCcontentNormalization 
= 2, noisyData = TRUE, 
ploidy = 3 (for SK-BR-3, and 
ploidy = 2 for CTCs), printNA 
= FALSE, 
readCountThreshold = 50, 
sex = XX, window = 30000, 
uniqueMatch = TRUE 

UCSC hg19 
GEM_mapp_hg19/
out100m1_hg19.g
em 
control file for 
FREEC for SK-BR-
3 analysis, no 
control for CTCs 
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Abstract 

BACKGROUND. Early dissemination of circulating tumor cells (CTCs) into the 

blood circulation of cancer patients allows for parallel genetic evolution of the primary 

tumor and metastases. Anti-cancer treatment failure is caused by the genetic and 

phenotypic heterogeneous properties of the disease. This study investigated the 

genomic make-up of CTCs originating from metastasis as a so called “liquid biopsy” 

and compared these with the different clones of the archived autologous primary tumor 

on single cell level. 

METHODS. From two breast cancer patients, individual CTCs were isolated 

from blood using Ficoll density gradient followed by micromanipulation of keratin 

positive cells. Single cells from archived primary breast tumors from the same patients 

were captured by laser microdissection. DNA was isolated and amplified by whole 

genome amplification and copy number alterations (CNA) were obtained by shallow, 

whole genome next generations sequencing (NGS). 

RESULTS. From the first breast cancer patient, the genomes from 50 single 

cells from the primary tumor were sequenced. An unsupervised phylogenetic cluster 

analysis based on CNA revealed five distinct clusters with increasing chromosomal 

instability. Using support vector machine (SVM) learning, the CNA profiles of 42 CTCs 

were residing mostly to the first three clusters, whereas only one CTC resided to the 

fourth cluster and none to the fifth. The tumor from a second breast cancer patient 

displayed the presence of three genetically distinct clones with increasing 

chromosomal instability after sequencing 11 single cells. CTCs (n=12) from this patient 

at metastatic disease were classified to the last branch using SVM, however with low 

probability. Repeating unsupervised clustering on the genomes of the primary tumor 

tissue and CTCs, a fourth branch was formed with CTCs only. 

CONCLUSION. Our results suggest that therapy resistant metastases in breast 

cancer patients can originate from tumor clones from early stages of tumor evolution 

and may genetically still be similar (patient 1). On the other hand, further genetic 

progression may also take place (patient 2) where after the genetic landscape of the 

metastasis does not resemble the primary tumor anymore. These results underline the 

importance of “liquid biopsy” in the diagnosis of metastatic cancer.  
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INTRODUCTION 

Intra-tumor heterogeneity is a well-known phenomenon in human cancers and 

may be caused by clonal evolution of the tumor. Current screening technologies allow 

for the investigation of cancer heterogeneity on all levels of molecular organization: 

genomic, epigenomic, transcriptomic, metabolomic, and proteomic [1]. Intra-tumor 

heterogeneity on functional level, such as transcriptome, metabolome, and proteome, 

might be caused by niche adaptation mechanisms and varies through cell cycle 

dynamics, and thus does not necessarily reflect clonality of the cancer. Genetic intra-

tumor heterogeneity caused by clonal evolution of cancer and reflecting clonal origin 

of a cell lineage, is supposedly more stable and thereby providing accessible 

information about clonal evolution of cancer. Genomic intra-tumor heterogeneity might 

be investigated on single cell level by using for instance next generation                  

sequencing (NGS). 

It has been long discussed whether metastatic dissemination is an early or late 

event in cancer evolution, resulting in development of two progression models.  

The first model, the linear progression model, postulates that metastasis-

initiating cells originate from most progressed clone(s) of the primary tumor, which 

were developed during evolution of the primary tumor with selection for clones with 

high metastatic proclivity [2, 3].  

On the other hand, data showing the metastatic potential of primary tumors at 

early stages, led to the coinage of the parallel progression model [4, 5]. This model 

proposes the presence of metastatic potential already in the early disease progression, 

leading to early dissemination of circulating tumor cells (CTCs) into circulatory system 

with subsequent parallel and independent evolution of the primary tumor and 

metastases [6, 7]. The fact that CTCs can be found in blood of both late and early stage 

cancer patients suggests the parallel progression model is more likely than the linear 

progression model [8].  

An alternative scenario of cancer metastasis, proposed in our institute, suggests 

continuous dissemination of tumor cells from a primary tumor developing higher 

metastatic potential over the time during further evolution of the primary tumor [9].  

Understanding tumor progression and the metastatic cascade in breast cancer 

is of tremendous value because distant metastases development is the most 

challenging issue in clinical management of cancer. Investigation of progression 

mechanisms and clonal evolution in cancer could identify molecular signatures, 
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involved in progression and metastatic process. Parallel genetic evolution of the 

primary tumor and distant metastases might explain failure of systemic endocrine 

therapy, which prescription is based on ER-positivity of the primary tumor. ER-positive 

primary breast cancers, treated with endocrine therapy, often demonstrate presence 

of ER-negative metastases, insensitive to anti-estrogen therapy [10, 11]. 

Although the origin of intra-tumor heterogeneity is not fully understood yet, it 

seems to play a major role in a complex process of carcinogenesis and development 

of metastatic disease [12-14]. Intra-tumor heterogeneity and clonal diversity per se 

might promote cancer evolution by serving more diverse input material for Darwinian 

selection [15]. The newly revised “seed-and-soil” hypothesis postulates that 

heterogeneity of cell characteristics, survival in the circulation, and effective homing in 

new environment are the crucial conditions for successful metastasizing [3]. Because 

only very few tumor cells meet these requirements, metastasis is a biologically 

inefficient process (rev. in [16]). However, high amount of CTCs with heterogeneous 

characteristics provide extensive source for potential metastases [9]. CTCs embody 

an intermediate step between primary tumor and metastases. CTCs reflect the biology 

of the primary tumor or metastases from which they originate [17]. Furthermore, CTCs 

carry characteristics potentially enabling metastases’ establishment. Therefore the 

genetic makeup of CTCs may provide a unique insight into cancer evolution. 

All current models of carcinogenesis emphasize genetic changes as one of the 

initiating conditions for cancer development [18-20]. Such genetic changes include 

point mutations, copy number aberrations (CNA), and copy number-neutral 

rearrangements of genetic material. NGS in combination with WGA provides a 

powerful tool for the investigation of single cell genetics. Despite mutation analysis of 

single cells is possible, breast cancer is characterized by overall prevalence of CNAs 

over mutations [21]. Genome-wide studies of cancer clonality on single cells require 

well established, reproducible approaches for WGA and NGS analysis. The challenge 

of single cell genome-wide studies lies between the need of DNA amplification and the 

introduction of PCR artefacts during WGA and NGS and identification of objective cell-

specific genomic aberrations. Technical aspects of CNA analysis on tissue and CTC 

material have been covered in our previous paper [Babayan et al., 2016]. In the study 

present here, we investigated clonal evolution of human breast cancer on primary 

tissue and CTCs from two metastatic breast cancer patients.  
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MATERIALS AND METHODS 

Blood samples 

Two metastatic breast cancer patients were enrolled into this study during their 

treatment at the University Medical Center Hamburg-Eppendorf after giving informed 

consent (ethics review board Aerztenkammer Hamburg approval number OB/V/03). 

Ten ml blood of each patient was drawn into EDTA tubes (01.1605.001, Sarstedt) and 

processed within 2 hours as previously described [Babayan et al., 2016, [22]. 

Mononuclear cell fraction was stained for protein expression of keratins, CD45, and 

ER. Keratin and DAPI positive, but CD45 negative cells were considered as CTCs. 

Individual CTCs were picked by micromanipulation (micro injector CellTramVario and 

micromanipulator TransferManNKII, Eppendorf Instruments, Hamburg, Germany). 

Each individual cell was transferred in 1µl of PBS into the cap of a 200µl PCR tube and 

stored at -80oC for further processing.   

 

Archival tumor tissue 

From the two enrolled subjects, formalin-fixed, paraffin-embedded tissue of the 

primary tumors was obtained. Five µm thick sections were cut and transferred onto 

membrane slides NF 1.0 PEN (415190-9081-000, Zeiss). The tissue sections were 

dried for 1 hour at 75°C, deparaffinized in xylene for 2x 10min, rehydrated in ethanol 

(2x 100%, 2x 96%, 2x 80%, 2x 70%) 30s each, and finally rinsed with water for 3min 

as described before [23]. DNA cross-links were removed by incubating the slides in 1 

M NaSCN overnight at 37°C. Subsequently, the slides underwent heat-induced antigen 

retrieval by boiling with citrate buffer pH6 (S1699, Dako) in a pressure cooker at 125°C 

for 5min. After antigen retrieval the slides were washed 3x 3min with TBST (50mM 

Tris, 150mM NaCl, 0.05% Tween 20, pH 7.6) and incubated with primary anti-human 

ER antibody (ab16660, Abcam, diluted 1:50 with antibody diluent, S3022, Dako) at 4°C 

overnight. Next, the slides were washed with TBST 3x 3min and the staining was 

completed with Peroxidase/DAB+ based Dako REAL™ detection system (K5001, 

Dako) according to the manufacturer’s recommendations. Briefly, the slides were 

incubated first with Dako REAL™ biotinylated secondary antibodies for 10 min 

(solution A, K5001), washed 3x 3min in TBST, incubated for 5 min with Dako REAL™ 

peroxidase-blocking solution (Dako, S2023), washed 3x 3min in TBST, incubated with 

Dako REAL™ streptavidin peroxidase (HRP) for 10 min (solution B, K5001), washed 

3x 3min in TBST, and exposed to DAB+ substrate for 10 min (Dako REAL™ DAB+ 
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Chromogen, solution C, diluted 1:50 with Dako REAL™ HRP Substrate Buffer, solution 

D, both from K5001). Subsequently slides were washed 3x 3min with water, stained 

with haematoxylin for 30 s, rinsed with water and completely air-dried (>2 hours). 

Isolation of ER-positive and ER-negative cells from the tissue sections was 

performed by laser microdissection using a PALM MicroBeam system (Carl Zeiss 

Group, Goettingen, Germany). Cells were collected into adhesive cap 500 µl PCR 

tubes (415190-9211-000, Zeiss) with 5µL of freshly prepared lysis buffer (20 mM 

ThisHCl pH8.0, 0.1 mM EDTA, 0.5% Nonidet P40 (M3165.0250, Genaxxon), 1% 

proteinase K (19131, Qiagen)). The tubes were pulse-vortexed for 15 s in upside-down 

position. The tubes were centrifuged at 15000 rcf for 10min and incubated in 

thermocycler with preheated lid (110°C) at 56°C for 16h with final heating step at 90°C 

for 10min to inactivate proteinase K. 

 

Whole genome amplification (WGA) and quality control 

WGA was performed according to the manufacturers’ recommendations using 

the PicoPlex WGA Kit for single cells (New England Biolabs, E2620L). The WGA 

products were cleaned up with NucleoSpin Gel and PCR Clean-up kit (Macherey-

Nagel, 740609).  DNA concentration of WGA products was measured with a 

Nanodrop1000 (Peqlab, Erlangen, Germany). The quality of the WGA products was 

assessed by a multiplex PCR of the GAPDH gene as described elsewhere [Babayan 

et al., 2016]. Samples were considered of sufficient quality for further analyses if at 

least one of 200-400 bp bands was detectable. 

 

Next generation sequencing (NGS) 

Amplified DNA of each single cell was sequenced by using shallow whole 

genome sequencing with Illumina’s HiSeq2000 NGS platform.  

 

Data analysis 

Raw data obtained in fastq format underwent adapter clipping for removal of 

WGA adapters: the first/last 14 bases were trimmed as suggested by the manufacturer. 

Further data analysis included alignment of reads on human reference genome (hg 

19) with BWA-MEM [24]. The resulting SAM file was filtered for ambiguously-mapped 

and low-quality reads (SAMtools [25]), sorted in coordinate order, indexed, filtered for 

duplicates (Picard [26]), realigned around indels, and base quality recalibrated (GATK 
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[27]). Copy number alterations (CNAs) were evaluated using Control-FREEC with a 

window size of 500kb [28, 29] and visualized and further analyzed using custom scripts 

(MATLAB R2015a, The MathWorks Inc.). Exact details on the complete preprocessing 

pipeline and a list of the employed reference datasets can be downloaded online 

(Supplementary Data).  

 

Statistical analysis 

We used unsupervised phylogenetic cluster analysis to investigate the clonal 

organization of the tumors. This analysis allows for the organization of the samples into 

clusters according to their similarity with each other and the reference (a genome 

without CNAs). Increasing distance between a cluster and the reference line implies 

higher differences between them. Biologically, larger differences can be interpret as 

further evolutional progression.  

Unsupervised phylogenetic cluster analysis was performed on the CNA data 

with 500kb bins along the whole genome. The analysis of samples was done for each 

patient separately. First, tissue samples only were clustered in order to determine the 

presence of tumor subclones.  

Support vector machine (SVM) analysis was performed to allocate CTCs within 

the cluster structure, obtained for the tumor tissue. However, SVM analysis is not able 

to define new clusters, but calculates possibility of a sample belonging to predefined 

classes. As consequence, analyzing samples can be classified within the fixed 

structure only, in contrast to phylogenetic cluster analysis, which creates as many 

clusters as necessary to reflect the differences between the samples. In order to reveal 

possible clusters formed by CTCs beyond the tissue clusters we checked whether 

CTCs and tissue samples form mixed or individual clusters. CNA data of the CTCs was 

added to the CNA data of tissue samples and unsupervised phylogenetic clustering 

was repeated.  

SVM analysis was performed on a multiclass model on the k-nearest neighbor 

classifier template, created based on euclidean distances between the neighbors. The 

model was trained on the tissue data with the use of phylogenetic analysis defined 

clusters, subsequently, the CTCs were classified.  

SVM analysis was performed on an introduced variability score (VS). VS was 

calculated as the sum of the fragment lengths (FL) multiplied by the square of the copy 

number (CN) value’s difference from 2 according to the formula [𝑉𝑆 = ∑ (FLi ∗𝑛
𝑖=1
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|CNi –  2|2)], of each CTC along the whole genome. VS quantifies frequency and 

amplitude of the CNAs, which we used to reflect evolutionary progress.  

 

RESULTS 

CTCs and FFPE primary and metastatic tissue samples from two enrolled 

metastatic breast cancer patients underwent WGA and NGS. The data were used for 

the investigation of the clonal organization of the breast cancer, progression and 

metastatic pathways. The complete data is present in Table 1. 

 

Patient UKE243 

Patient UKE243 (1945-2012) was diagnosed with primary breast cancer of the 

right breast in 1992 and with collateral ER-positive and ERBB2-negative breast cancer 

of the left breast in 1999, and received endocrine treatment (aromatase inhibitor) in 

2000-2005. The first metastasis (ER-positive, ERBB2-negative) was detected in 2009, 

at which the endocrine treatment with aromatase inhibitor (aromasin) was started. Due 

to further metastatic progress (2010, ER-positive) the treatment was switched to 

endocrine therapy with selective ER-modulator (fulvestrant), and in 2011 switched to 

chemotherapy (docetaxel) due to further metastatic progress. Blood for CTC analysis 

was collected during the course of chemotherapy in November 2011 (Figure 1A). 

The blood sample analysis revealed the presence of 270 CTCs in 1 ml of blood 

with heterogeneous ER expression (64% ER-positive and 36% ER-negative CTCs). In 

total, 42 CTCs were picked by micromanipulation for downstream analysis. The FFPE 

material of the second primary tumor, diagnosed in 1999, was used for obtaining 50 

tissue sections containing each 10-20 cells using laser microdissection: 40% ER-

positive, 40% ER-negative, and 20% with unknown ER status (Table 1).  

Unsupervised phylogenetic cluster analysis was performed on the CNA data from 

the primary tumor tissue; as a result, 5 clearly distinguishable clusters were formed 

(Figure 1B). Next, support vector machine (SVM) analysis was performed to allocate 

the CTCs to the identified tissue clusters. Subsequently, results obtained by the SVM 

analysis were proved by phylogenetic clustering of CNA data of the CTCs and tissue 

fragments together. The resulting phylogenetic tree contained mixed CTC-tissue 

clusters. Most of the CTCs were tackled by phylogenetic cluster analysis on combined 

data to the same tissue clusters as by SVM analysis.  
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Among 42 analyzed CTCs, 12 CTCs resided to the first cluster, 11 to the second, 

18 to the third, and 1 to the forth, no CTCs were allocated to the fifth cluster. ER 

expression was heterogeneous among tissue samples and CTCs within each cluster 

(Figure 1C). No association was found between ER expression and the phylogenetic 

tree structure. 

Chromosome 1q and 16p gain and chromosome 9p loss were present in all 

identified tissue clusters and respective CTCs. This observation suggests these CNA 

changes being the very early genomic rearrangements in the patient’s carcinogenesis. 

Based on distances between the clusters of the phylogenetic tree, we combined 

the clusters into 2 groups: the first group included clusters 1-3 and the second group 

contained clusters 4-5. Fisher’s exact test of the 2 groups revealed significantly 

different CNAs: chromosome 4q and 8p loses were significantly more frequent in 

clusters 1-3, whilst chromosome 8p gains were more frequent in clusters 4-5 (Figure 

2). Because all CTCs except one resided to the tissue clusters 1-3, we compared the 

aberration frequencies between the two groups: tissue clusters 1-3 vs. CTCs (Figure 

3). Significant differences were chromosomes 8q gain (tissue) and 1q and 7 gains and 

16q and 22 losses (CTCs). Losses of chromosome 22 and 16q were found exclusively 

in CTCs. 

Introduction of the VS as a measurement of the CNAs’ intensity was used to 

demonstrate that evolution of the identified clones was associated with increase of the 

CNAs’ frequency and amplitude, reflecting incensement of the cancer genome 

instability with further progression (Figure 4A).  

Noteworthy, the earliest detected clone, represented by the first cluster, is an 

agglomeration of close situated measurement points, united into one cluster on the 

basis of small distance from each other (Figure 1B). We identified a subgroup different 

from the other members of the cluster 1 by plotting of VS against copy number level. 

VS and copy number level increased along the evolution vector from cluster 1 to cluster 

5 (Figure 4B). However it can be seen that the subgroup members, representing 3 

tissue sections and 3 CTCs, demonstrated copy number level <2. Loss of genetic 

material was dominant mechanism of CNAs in these samples in contrast to the rest of 

the samples. We explain this observation with following proposal. The earliest cancer 

cell population evolved stepwise as described before in agreement with parallel 

progression model towards lineages of cluster 1-3 and 4-5. This process included 

accumulation of both losses and gains of genomic material, despite gains and 
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amplifications were dominant, while a small subgroup experienced leap progression 

as per loss of genetic material.  

Taken together, the evolutionary pathway of the disease could be schematically 

present as on Figure 1D: initial or very early chromosomal aberrations included 

chromosome 1q and 16p gains, and 9p loss. These events probably caused 

chromosomal instability, required for further clonal evolution and progress of cancer. 

Chromosomal instability could lead to the development of at least 2 cell lineages. One 

lineage evolved towards luminal subtype and gave rise to clones 1-3, depicted by 

clusters 1-3. These clones experienced further evolutionary progress encompassing 

gain of 8q after a number of cells had spread into the systemic circulation. These cells 

might have given rise to metastases after a certain dormancy period. CTCs, released 

from these metastatic lesions, reflect inherent CNAs from primary tumor clones, as 

well as CNAs of further evolution within metastatic lesion, like losses of chromosomes 

16q and 22. Another lineage experienced further chromosomal aberrations, resulted 

in development of clones identified as clusters 4 and 5, characterized by high 

chromosomal instability.  

Our results indicate that the metastases of the patient UKE243 arise from cells, 

disseminated from almost all subclones of the primary tumor, from the most earliest to 

very progressed ones. These findings are in line with parallel progression model of 

carcinogenesis and metastasis, suggesting that tumor cells acquire metastatic 

potential in the early stages of tumor progression.   

 

Patient UKE008 

Patient UKE008 (born 1978) was diagnosed with primary metastatic breast 

cancer in 2013 with multiple metastases in the spine and pelvis. Palliative therapy 

included irradiation of the primary tumor and systemic chemotherapy (paclitaxel, April 

– August 2013) in combination with anti-ERBB2 therapy (Trastuzumab and 

Pertuzumab, April 2013 – December 2015). The blood samples were collected before 

any systemic treatment was applied (1st sample) and 3 months after completion of the 

chemotherapy (2nd sample) (Figure 5A).  

We detected 2 ER-negative CTCs in 7.5 ml blood of the first blood sample, 

collected before therapy (0.27 CTCs/ml) and 20 ER-negative CTCs per 1 ml in the 

second blood sample. In total, 1 CTC from the 1st and 11 CTCs from the 2nd blood 

sample were collected for downstream analysis (Table 1).  
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The primary tumor as well as one of the metastases in the L4 spine segment 

were biopsied and formalin-fixed and paraffin-embedded. The tumor as well as 

metastasis were ER- and ERBB2-positive. Microdissected fragments of the primary 

tumor (n=6) and spine metastasis (n=5) were ER-positive in 50% and 40% of cases, 

respectively. 

Unsupervised phylogenetic cluster analysis of the tissue data only was 

performed. Because the patient was diagnosed with primary metastatic breast cancer, 

cluster analysis was performed on the combined data obtained from the primary tumor 

and metastasis. The obtained phylogenetic tree demonstrated the presence of 3 

clearly distinguishable clusters. Subsequent SVM analysis tackled all CTCs (n=12) to 

the third tissue cluster, whereas phylogenetic cluster analysis of the combined CTC 

and tissue data demonstrated 1 distinct CTC cluster in addition to the 3 previously 

identified tissue clusters (Figure 5B). This discrepancy is explainable by the difference 

between the phylogenetic cluster analysis and the SVM. The cluster analysis identifies 

as many clusters as necessary according to the differences between the samples, 

whereas SVM analysis is not able to define new clusters. Taking this explanation into 

consideration, phylogenetic tree built on combined CTC and tissue data was 

considered as reflecting clonal organization the best: 3 distinct tissue clusters and 1 

CTC cluster were identified. CTCs demonstrated highest similarity with the most 

progressed clone identified in the primary tumor and metastasis, but presumably did 

not arise directly from descendants of the clone. 

The tumor subclone represented in the first cluster contained data obtained from 

2 fragments of the primary tumor. The second cluster (represented by data of the 

metastasis only) might be considered an intermediate evolutionary step towards 

cluster 3. The third cluster, representing the most progressed evolutionary step, was 

made up of data from both primary tumor’s and metastasis’ tissue fragments. These 

results indicate that metastatic outgrowth could be initiated by collective dissemination 

of tumor cells from the 2 cooperating clones within a CTC cluster (Figure 5C). However, 

it cannot be excluded that cells from primary tumor clones disseminated not in a CTC-

cluster, but as individual CTCs, arrived at the same distant location and cooperated 

there. Investigation of further metastatic lesions is needed to clarify mechanisms of 

metastasis-initiating dissemination in the patient.  

Evolutionary history of the UKE008 patient’s cancer might have been as follows 

(Figure 5D): chromosome 17p loss and chromosome 17q and 19q gain might be initial 
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or very early events in the carcinogenesis because these CNAs we identified in 

frequency plots of all the identified clusters (Figure 6). Later during carcinogenesis this 

early cancerous cell population branched in its evolution. One subclone experienced 

chromosome 4q loss and chromosome 6 gain and developed the clone, depicted by 

cluster 1. Possibly lineage, represented by clusters 2-3, originated from another 

branch. Further evolution of the lineage led via chromosome 1q, 8q and 11p gain and 

chromosome 11q loss towards the second clone (cluster 2), and additional gain of 

chromosome 7q resulted in cell clone, depicted by cluster 3. Cells from these 

cooperating clones disseminated either as CTC-cluster or as individual cells and built 

up distant metastasis we investigated, which is therefore reflecting the clonal structure 

of the primary tumor.  

This scenario does not answer the question where the CTCs came from: the 

primary tumor or the metastasis. However, based on the phylogenetic tree, CTCs did 

not reside to any of tissue clusters, but formed separate clusters, not presented in the 

structure of the primary tumor and metastatic tissue (Figure 4B). Moreover, scatter 

plots of variability scores versus the number of genome-wide break points and copy 

number level (Figure 7A, 7B) demonstrated increase of genomic aberrations with the 

evolution from cluster 1 to cluster 4 with the maximum score among CTCs. The fact 

that the patient demonstrated multiple metastases suggests that CTCs of the patient 

UKE008 arise from the metastasis we did not investigate. In this case, the 

uninvestigated metastases embody further steps in evolutionary progression of the 

cancer in line with the linear progression model. 

 

DISCUSSION 

In the study presented here we shed light on clonal evolution of the human 

breast cancer. The two investigated patients demonstrated different ways of clonal 

evolution of cancer towards tumor cell dissemination.  

Clonality and evolution of the cancer can be investigated on single cell level with 

the use of primary tumors, metastases, and/or CTCs. Primary tumors are removed or 

biopsied in the majority of cases, delivering material for investigation. Administration of 

systemic therapy is usually based on characteristics of the primary tumor. However, 

the metastases may not resemble the primary tumor anymore due to genetic 

progression or selection of treatment-resistant clones. The differences between 

primary tumor and metastases might be the reason for treatment failure. Therefore 
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CTCs as “liquid biopsy” provide a unique, easy accessible source of tumor              

material [30].  

CTCs that can be detected in the blood circulation many years after removal of 

the primary tumor are most likely coming from the metastases, because the half-life 

time of CTCs in circulation is <2.4 hours [31], despite dormancy cannot be ruled out 

completely. It has been shown that dormant tumor cells in bone marrow may 

sometimes divide into micrometastases, which release CTCs, and thus cause the 

presence of CTCs in blood of metastases-free breast cancer patients many years after 

mastectomy, but in small concentrations (≤1CTC/ml) [31], which is in contrast with 270 

and 20 CTC/ml found by us in blood of the UKE243 and UKE008 patients, respectively. 

These finding suggest that CTCs detected in blood of the enrolled in our study patients 

arise from metastases present in the body at the time point of blood sampling. 

The results obtained from patient UKE243 suggests a parallel progression of 

the breast tumor. CTCs were detected in the blood of patient UKE243 12 years after 

the primary tumor was removed. Based on bioinformatics analysis all CTC resided to 

4 out of 5 phylogenetic clusters identified in data of the primary tumor (Figure 1C). 

These results suggest that metastases might have been founded by tumor cells that 

disseminated from multiple subclones of the primary tumor. In consideration of the time 

gap between primary tumor removal and detection of the first metastasis (10 years), it 

is likely that disseminated tumor cells underwent dormancy for a certain period before 

giving rise to distant metastases.  

One question which may arise is whether metastases and CTCs of the patient 

UKE243 originate from the first primary tumor, diagnosed in 1992, or from the second 

contralateral primary tumor, diagnosed in 1999. The later tumor only was available for 

our analysis. According to the histology of both primaries, the metastases 

corresponded to the second primary tumor, which can be confirmed by our cluster 

analysis. Nevertheless, we cannot exclude the possibility that metastases and 

subsequent CTCs originate from the first primary tumor. However, in this case both 

primary tumors had similar clonal structure. 

Additionally, primary tumor as well as CTCs of patient UKE243 demonstrated 

heterogeneous ER expression (Figure 1C). Outgrowth of further ER-positive 

metastases and presence of ER-positive CTCs after the completion of endocrine 

therapy suggests endocrine therapy failure in this patient. Since we did not find 

mutations in ER-coding gene (ESR1) in the CTCs of the patient [22], endocrine therapy 
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failure might have been caused by other mechanisms, e.g. epigenetic mechanisms or 

a dysfunctional ER-pathway.  

Based on the observed CNA frequencies in identified clusters and CTCs, we 

conclude the existence of at least two lineages of tumor cells in the primary tumor of 

the patient UKE243. One of the lineages, presented by clones 1-3 (cluster 1-3), is 

characterized by chromosome 1q and 16p gain. A genomic signature 1q+/16p+/16q- 

was revealed in CTCs of the patient. CNA profile 1q+/16p+/16q- is associated with ER-

positivity, luminal gene expression pattern, moderate to high differentiated tumors, and 

better outcome [32]. However, chromosome 16q loss was not observed in clones of 

primary tumor (Figure 3, 4) and therefore appeared at later stages of the metastatic 

process. Loss of chromosome 16q, if not appeared as early genomic effect as in 

luminal A tumors, might be produced due to genomic instability. This mechanism of 

16q loss has been observed in luminal B tumors [33]. Another evidence for genomic 

instability of the patient’s disease is increasing frequency if CNAs along the evolution 

vector (Figure 4). 

The second lineage, depicted by clusters 4 and 5, exhibited CNA patterns 

typical for basal-like breast cancer (high frequency of narrow low-amplitude gains in 

losses) [32]. Basal-like subtype, typically ER-negative, is characterized by higher 

chromosomal instability than luminal subtypes [34]. Moreover, our results suggest that 

the clonal split happened at a very early stage of carcinogenesis. One of the lineages 

experienced further luminal-like differentiation, whereas the second lineage retained 

basal-like characteristics. 

Presence of both basal- and luminal-like cell lineages in breast tumors has been 

demonstrated by others [35-37]. One of the possible explanations of the coexistence 

of basal- and luminal-like cells within a tumor can be given through the hypothesis that 

ER-positive cells, e.g. cells of luminal B subtype, and basal-like cells may arise from 

the same bipotent progenitor cell [14, 33]. Moreover, recently Cleary et al. 

demonstrated cooperation between basal- and luminal-like subclones playing a role in 

tumor maintenance [38]. 

Li et al. demonstrated in a mouse model that activation of Wnt signaling pathway 

transforms mammary progenitor cells, promoting heterogeneity of outgrowing cell 

lineages. The authors conclude that basal- and luminal-like lineages within the same 

tumor supposedly derive from a bipotent malignant progenitor cell [37]. Mammary 



 

 117 

progenitor cells are typically ER-negative, but originating lineages might undergo 

luminal-like differentiation and become ER-positive [14, 33, 39]. 

In contrast to patient UKE243, our data obtained from the cancer from patient 

UKE008, suggest linear progression to metastases. According to the linear 

progression model, distant metastases originated from cells, disseminated from the 

primary tumor at late evolutionary stage(s). 

Loss of chromosome 17p and gain of 17q were observed in frequency plots of 

all clusters identified on data of the patient UKE243, including the CTC cluster (Figure 

6). Gain of chromosome 17q is typical for ERBB2-positive luminal B breast cancers 

(rev. in [32]), which is in agreement with the pathology report (ER-positive, ERBB2-

positive tumor). Loss of chromosome 17p is a common aberration in many cancers, 

including breast cancer [40], due to the location of tumor suppressor gene TP53.  

We demonstrated that at least one distant metastasis carries the genomic 

signatures observed in the two clones of the primary tumor (Figure 5C). This 

observation might have two explanations. First possible scenario suggests collective 

dissemination of tumor cells from these two clones within a mixed CTC-cluster. Another 

explanation implies individual dissemination of the tumor cells from the two clones and 

subsequent cooperation at distant site. Whichever dissemination way took place, our 

results indicate interaction of the two tumor clones. The two genetically similar clones 

of the primary tumor might have interacted to obtain a selective growth advantage 

and/or metastatic propensity.  

Evidence for cooperating clones can be found in mouse and fruit fly models. It 

has been shown that two cell populations can interact to promote tumorigenesis and 

obtain the ability to metastasize [41-43]. Moreover, interclonal cooperation contributes 

to tumor growth and progression [44]. Tumor cells from cooperating clones might 

disseminate collectively by formation of CTC-clusters. CTC clusters demonstrate an 

increased metastatic capacity in comparison to single CTCs [45].  

A 74-fold increase of the amount of CTCs in 1 ml blood of patient UKE008 was 

found in comparison to baseline before therapy, 3 months after completion of 

chemotherapy but still under anti-ERBB2 therapy. All CTCs were found to be ER-

negative, whereas the primary tumor and the metastasis were ER-positive. It has been 

shown that ER activity provides a way for ER-positive ERBB2-positive cells to escape 

ERBB2-targeted therapy [46]. Co-expression of ERBB2 and ER has been found in 
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breast cancer patients patients [47-49]. The data suggests that ER-negative ERBB2-

negative cells could escape therapy.  

Although all CTCs identified in blood samples of patient UKE008 were ER-

negative, it cannot be excluded that ER-positive CTCs were still present in the body, 

but could not be detected. The cells might have been escaped to bone marrow and 

underwent dormancy. Alternatively, EMT-associated downregulation of epithelial 

markers on the cell surface might have hampered detection of these cells. 

Intra-tumor heterogeneity of breast cancer is a results of clonal expansion. In 

order to reconstruct cancer evolution and clonal organization on single cell level [50] 

one should assume that the tumor at any moment of the evolution contains all previous 

clones, or at least the most crucial ones. However, this assumption contradicts the 

Darwinian theory applied to carcinogenesis [51, 52]. According to the theory inter-

clonal competition should lead to outcompeting of particular, not necessarily less 

aggressive clones [44], resulting in secondary mono- or oligoclonal structure of the 

primarily polyclonal tumor. As consequence the reconstructed clonal structure of the 

primary tumor does not necessarily reproduce cancer evolution.   

Alternative look from an ecological perspective suggests that subclones within 

a tumor can be seen as individual units interacting with each other and their 

environment. This theory implies that not only competition, but other types of 

interaction, e.g. cooperation, are possible (rev. in [15]) and finds confirmation in cancer 

model systems [41-44]. Consequently, different cancer clones are not necessarily 

overgrown by one dominant clone, and poly- or oligoclonal structure of cancer can be 

revealed. 

The results obtained in our study of the breast cancer clonality demonstrated 

oligoclonal structure of the investigated breast tumors, indicating that both 

mechanisms, competition and cooperation of tumor clones, are likely being involved in 

cancer evolution. Additionally, the results indicate that breast cancer might utilize both 

linear and parallel progression ways. 

Technical obstacles can also hamper clonal analysis. Since comprehensive 

investigation of every single cell of the complete tumor is hardly possible, 

underrepresentation of certain clones as well as overrepresentation of other clones in 

a study cohort may lead to false reconstruction of tumor’s clonal structure. Additionally, 

metastases are a difficult subject for clonal investigation. Distant metastases can be 

detected first when they reach a certain size, and are infrequently biopsied. 
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Nevertheless, our results demonstrate the feasibility of archival material accompanied 

with CTCs for investigation of clonal evolution of human breast cancer. Further 

research is needed to obtain information about the genetic heterogeneity of the 

metastases and possible identification of therapy sensitive and resistant clones. 

 

CONCLUSION 

The investigated breast cancer cases represent parallel and linear metastases 

progression model (the UKE243 and UKE008 patient, respectively). Our results 

demonstrate that therapy resistant breast cancer metastases detected years after 

primary tumor removal may originate from tumor clones present at early and late 

stages of primary tumor carcinogenesis (the patient UKE243). Alternatively, metastasis 

in primary metastatic breast cancer originates according to the linear progression 

model from late interacting clones of the primary tumor, and CTCs most probably 

resemble further metastases, not resembling the primary tumor anymore (the patient 

UKE008). These results underline the importance of “liquid biopsy” for companion 

diagnostics in metastatic breast cancer. 
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Time point of blood 

examination 

During 

chemotherapy 

Before any 

therapy 

During anti-

Erbb2 therapy 

Number of CTCs  

per 1 ml of blood 

270 0.27 20 

ER-positive CTCs 64% 0 0 

ER-negative CTCs 36% 100% 100% 

Number of CTCs 

available for the analysis 

42 1 11 

ER-positive CTCs 16 0 0 

ER-negative CTCs 19 1 11 

ER status unknown 7 0 0 
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Tissue available for the 

analysis  

Primary tumor  Primary tumor Metastasis 

 2 FFPE blocks Biopsy FFPE 

material 

Biopsy FFPE 

material 

ER status positive positive positive 

Erbb2 status negative positive  

Number of tissue 

fragments dissected 

50 6 5 

ER-positive fragments 20 3 2 

ER-negative fragments 20 3 3 

ER status unknown 10 0 0 

Table 1. Characteristics of patient material and data available. 

FFPE – formalin-fixed, paraffin-embedded.  
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Figure 1. Evolutional history of the cancer disease of patient UKE243. 

A. Timeline of breast cancer disease and cancer therapy in patient UKE243 

B. Phylogenetic tree resulted from unsupervised phylogenetic cluster analysis of 

the tissue samples obtained from the primary tumor of the patient UKE243. 

C. Reconstruction of the primary tumor’s structure and CTCs’ origin.  

D. Schematic carcinogenesis of the primary tumor and metastases of UKE243 

patient. Description in text.  
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Figure 2. Frequency plots of tissue fragments from combined clusters 1-3 and 

4-5 of patient UKE243. 

Green regions demonstrate gain of genetic material, red – losses, along the 

chromosome from 1 to X (x axis). 

A. Tissue clusters 1-3. 

B. Tissue clusters 4-5. 

C. Plot of statistically significant differences between the compared groups by 

Fisher’s exact test. Dark blue regions demonstrate significant differences with the 

threshold p<0.05. 
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Figure 3. Frequency plots of tissue fragments and CTCs from clusters 1-3 of 

patient UKE243.  

Green regions demonstrate gain of genetic material, red – losses, along the 

chromosome from 1 to X (x axis) in groups of samples. 

A. Tissue clusters 1-3. 

B. CTCs representing tissue clusters 1-3. 

C. Plot of statistically significant differences between the compared groups by 

Fisher’s exact test. Dark blue regions demonstrate significant differences with the 

threshold p<0.05.  
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Figure 4. 

A. Plot of the variability score against number of break points in the CTCs and tissue 

samples of the patient UKE243.  

B. Numbers represent sample ID and are presented for the subgroup of the cluster 1.  

C. Plot of the variability score against average CNA value in the CTCs and tissue 

samples of the patient UKE243. 

D. Numbers represent sample ID and are presented for the subgroup of the cluster 1 
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Figure 5. Evolutional history of the cancer disease of patient UKE008. 

A. Timeline of breast cancer disease and cancer therapy in patient UKE008. 

B. Phylogenetic tree resulted from unsupervised phylogenetic cluster analysis of 

the CTCs and tissue samples obtained from the primary and metastatic tumor of 

patient UKE008. 

C. Reconstruction of the primary and metastatic tumor’s structure and CTCs’ 

origin.   

D. Schematic carcinogenesis of the primary tumor and metastases of UKE008 

patient. Description in text. 
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Figure 6. CNA profiles of clusters 1-4, combining tissue samples and CTCs of 

the patient UKE008. 

Green regions demonstrate gain of genetic material, red – losses, along the 

chromosome from 1 to X (x axis) in groups of samples. 

A. Tissue cluster 1. 

B. Tissue cluster 2. 

C. Tissue cluster 3. 

D. CTC cluster.  
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Figure 7. 

A. Plot of the VS against number of break points in the CTCs and tissue samples 

of the patient UKE008.  

B. Plot of the VS against average CNA value in the CTCs and tissue samples of 

the patient UKE008.  
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8. SUMMARY (IN ENGLISH) / ZUSAMMENFASSUNG (AUF DEUTSCH) 

Cancer metastasis is the main cause of cancer related death. Administration of 

systemic therapy against cancer metastasis is usually based on characteristics of the 

primary tumor, however, metastases may not resemble the primary tumor anymore 

due to genetic progression or selection of treatment-resistant clones. The discordance 

in characteristics of primary tumor and metastases, and the fact that metastases are 

infrequently biopsied for clinical diagnostics, might lead to treatment failure. Circulating 

tumor cells (CTCs) extracted from peripheral blood could aid diagnostics and clinical 

management of cancer patients. Individual CTCs can be investigated on proteomic 

and genomic levels. Immunocytochemical (ICC) staining allows for CTC detection and 

characterization. Downstream genetic analysis is possible with a combination of whole 

genome amplification (WGA) and next generation sequencing (NGS). Such 

comprehensive analysis provides us with information about the origin and genetic 

heterogeneity of the metastases and might aid in possible identification of therapy 

sensitive and resistant clones. 

In the studies presented here, a triple immunostaining protocol and a workflow 

for genetic analysis of single CTCs were established. Subsequently, these procedures 

were applied for the investigation of clonal evolution towards breast cancer metastasis, 

its intra-patient heterogeneity, and the role of heterogeneity in acquired resistance to 

hormone treatment and radiotherapy in breast cancer patients. 

The obtained results suggest that genetic heterogeneity of breast cancer plays 

a key role in the resistance of therapy. Cross activation of proliferative signaling 

pathways results in resistance to endocrine and radiotherapy. We demonstrate that 

breast cancer might utilize both linear and parallel progression ways of metastasis. 

Accordingly, therapy resistant metastases in breast cancer patients might originate 

from tumor clones present at early stages of carcinogenesis, as well as from more 

progressed ones. The clonality of the investigated breast tumors indicates that both 

competition and cooperation of tumor clones are likely being involved in cancer 

evolution.  

In conclusion, our results demonstrate the feasibility of genomic and protein 

expression analyses on single CTCs and underline the importance of “liquid biopsy” 

for companion diagnostics in metastatic breast cancer. 
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Metastasen sind die Hauptursache krebsbedingter Todesfälle. Die 

Verabreichung systemischer Therapien gegen Krebsmetastasen basiert in der Regel 

auf Eigenschaften des Primärtumors. Stetige Tumorprogression sowie Selektion 

behandlungsresistenter Klone führen jedoch dazu, dass Metastasen dem Primärtumor 

nicht mehr gleichen. Diese Diskordanz zwischen dem Primärtumor und den 

Metastasen, sowie die Tatsache, dass Metastasen selten einer Biopsie unterzogen 

werden, können zum Therapieversagen führen. In diesem Zusammenhang bieten 

zirkulierende Tumorzellen (sogenannte Circulating Tumor Cells, oder CTCs), die sich 

von dem Primärtumor oder den Metastasen abspalten und im Blut befinden, eine 

verhältnismäßig leicht zugängliche und dennoch kostbare Quelle für Tumor-, bzw. 

Metastasen-Material. 

Die Charakterisierung der, aus dem peripheren Blut von Krebspatienten 

extrahierten, CTCs kann sowohl die Diagnostik als auch die klinischen Behandlung der 

Patienten unterstützen. Einzelne CTCs können auf proteomischer  und genomischer 

Ebene untersucht werden. Immunzytochemische Färbungen ermöglichen die CTC-

Detektion und -Charakterisierung. Darauf folgende genetische Einzelzellanalysen sind 

nur auf Grund einer Kombination von Amplifikation des gesamten Genoms (Whole 

Genome Amplification, WGA) und Next Generation Sequencing (NGS) möglich. Solch 

umfassende Analysen liefern Informationen über die Herkunft und die genetische 

Heterogenität der Metastasen und können der Identifizierung von therapiesensiblen 

und resistenten Klonen dienen.  

In den hier vorgestellten Studien wurden ein immunozytochemisches 

Dreifachfärbeprotokoll und ein Verfahren für die genetische Analyse einzelner CTCs 

etabliert. Anschließend wurden diese Verfahren zur Untersuchung der Klonalität und 

Heterogenität des Mammakarzinoms und der Metastasierungswege angewendet. 

Hierbei untersuchten wir die Rolle der genetischen Heterogenität bei der erworbenen 

Resistenz gegen Hormonbehandlung und Strahlentherapie bei Brustkrebs-

Patientinnen. Die erhaltenen Ergebnisse deuten darauf hin, dass genetische 

Heterogenität in Brustkrebs eine wichtige Rolle bei der Therapieresistenz spielt. Die 

Kreuzaktivierung von proliferativen Signalwegen führt zu einer Kreuzresistenz 

gegenüber Endokrin- und Strahlentherapie. Anschließend zeigten wir, dass 

Brustkrebsmetastasierung sowohl über lineare als auch parallele Tumorprogression 

erfolgt. Dementsprechend können therapieresistente Metastasen bei 

Mammakarzinom-Patientinnen von Tumorklonen stammen, die bereits in frühen 
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Stadien der Karzinogenese entstanden sind, sowie von weiter fortgeschrittenen. Die 

Klonalität der untersuchten Brusttumore legt die Vermutung nah, dass beide 

Mechanismen: Wettbewerb und Zusammenarbeit von Tumorklonen, in der 

Krebsentwicklung beteiligt sind. 

Schließlich unterstreichen unsere Ergebnisse die Umsetzbarkeit und 

Bedeutung der Genom- und Proteinexpressionsanalyse auf einzelnen CTCs im 

Rahmen einer "liquid biopsy" für therapiebegleitende Diagnostik in Mammakarzinom-

Patientinnen. 
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