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Abstract

The self-energy functional theory (SFT) is extended to the nonequilibrium case and ap-
plied to the real-time dynamics of strongly correlated lattice-fermions. Exploiting the
basic structure of the well established equilibrium theory the entire formalism is reformu-
lated in the language of Keldysh-Matsubara Green’s functions. To this end, a functional
of general nonequilibrium self-energies is constructed which is stationary at the physical
point where it moreover yields the physical grand potential of the initial thermal state.
Nonperturbative approximations to the full self-energy can be constructed by reducing
the original lattice problem to smaller reference systems and varying the functional on
the space of the respective trial self-energies, which are parametrized by the reference sys-
tem’s one-particle parameters. Approximations constructed in this way can be shown
to respect the macroscopic conservation laws related to the underlying symmetries of
the original lattice model. Assuming thermal equilibrium, the original SFT is recovered
from the extended formalism. However, in the general case, the nonequilibrium varia-
tional principle comprises functional derivatives off the physical parameter space. These
can be carried out analytically to derive inherently causal conditional equations for the
optimal physical parameters of the reference system and a computationally realizable
propagation scheme is set up. As a benchmark for the numerical implementation the
variational cluster approach is applied to the dynamics of a dimerized Hubbard model
after fast ramps of its hopping parameters. Finally, the time-evolution of a homogeneous
Hubbard model after sudden quenches and ramps of the interaction parameter is studied
by means of a dynamical impurity approximation with a single bath site. Sharply sepa-
rated by a critical interaction at which fast relaxation to a thermal final state is observed,
two differing response regimes can be distinguished, where the system gets trapped in
prethermal intermediate states. Despite the simplicity of the reference system, good
qualitative agreement with previous results of dynamical mean-field theory is found.
Reminiscent of the Mott transition at zero temperature the bath site decouples from the
correlated impurity site right at the critical point and this “dynamical” Mott transition
can be linked to its equilibrium counterpart by studying the crossover from the case of
sudden quenches to the adiabatic quasi-static dynamics. This is further investigated by
considering the periodic Anderson model, where in equilibrium the presence of a Mott-
type transition can be tuned via the geometrical details of the hybridization between
the free conduction band and the nondispersive impurity orbitals. This characteristic
also persists in the nonequilibrium case and thus strongly supports a true interrelation
between both types of Mott transitions.
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Kurzfassung

Die Selbstenergiefunktionaltheorie (SFT) wird für die Behandlung von Nichtgleichge-
wichtsproblemen verallgemeinert und auf die Realzeitentwicklung stark korrelierter Git-
terfermionen angewandt. Unter Ausnutzung der grundlegenden Struktur der etablier-
ten Gleichgewichtstheorie wird der gesamte Formalismus in der Sprache der Keldysh-
Matsubara Green’schen Funktionen reformuliert. Zu diesem Zwecke wird ein Funktional
der Nichtgleichgewichtsselbstenergie konstruiert, welches am physikalischen Punkt sta-
tionär ist und eben dort dem großkanonischen Potential im thermischen Anfangszustand
entspricht. So können nichtperturbative Näherungen der vollen Selbstenergie konstruiert
werden, indem das ursprüngliche Gitterproblem auf kleinere Bezugssysteme reduziert
wird und Variationen der entsprechenden Testselbstenergien, parametrisiert durch die
Einteilchenparameter des Referenzsystems, durchgeführt werden. Es zeigt sich, dass so
erhaltene Näherungen die makroskopischen Erhaltungssätze respektieren, welche den
zugrundeliegenden Symmetrien des ursprünglichen Gittermodels entspringen. Im Fal-
le des thermischen Gleichgewichts reduziert sich der verallgemeinerte Formalismus auf
die gewöhnliche SFT. Im allgemeinen Fall müssen allerdings Variationen berücksichtigt
werden, die aus dem physikalischen Parameterraum hinausführen. Die entsprechenden
Funktionalableitungen können jedoch analytisch berechnet werden, so dass kausale Be-
stimmungsgleichungen für die optimalen physikalischen Parameter erhalten werden und
ein realisierbares, rechnergestütztes Propagationsschema aufgestellt werden kann. Als ei-
ne erste Überprüfung der numerischen Umsetzung wird der variationelle Cluster-Ansatz
auf die Dynamik eines dimerisierten Hubbard-Modells angewandt, welche durch schnelle
Veränderungen seiner Tunnelparameter ausgelöst wird. Schließlich wird die Zeitentwick-
lung eines homogenen Hubbard-Modells nach plötzlichen und endlich andauernden Ein-
schaltvorgängen des Wechselwirkungsparameters mittels der dynamischen Störstellen-
näherung untersucht. Es finden sich zwei Bereiche unterschiedlichen Antwortverhaltens
in denen das System je in einem präthermalen Zustand verharrt und welche durch eine
kritische Wechselwirkung scharf voneinander getrennt sind. Trotz der Einfachheit des
gewählten Referenzsystems stimmen die gefundenen Resultate mit jenen der dynami-
schen Molekularfeldtheorie qualitativ gut überein. In Analogie zum Mottübergang bei
verschwindender Temperatur entkoppelt der Badplatz vollständig vom korrelierten Stör-
stellenplatz am kritischen Punkt. Dieser “dynamische” Mottübergang kann mit seinem
Gleichgewichtspendant in Verbindung gebracht werden, indem das dynamische kritische
Verhalten vom Fall plötzlicher Parameteränderungen bis hin zum adiabatischen quasi-
statischen Fall verfolgt wird. Anhand des periodischen Anderson-Modells wird diesem
Zusammenhang weiter nachgespürt. Im Gleichgewicht kann die Existenz eines Mott-
artigen Übergangs mittels der geometrischen Details der Hybridisierung zwischen dem
freien Leitungsband und den dispersionslosen Störstellenorbitalen des Modells eingestellt
werden. Dieses Charakteristikum erweist sich auch im Nichtgleichgewicht als beständig
und untermauert damit zusätzlich die Vermutung einer echten Beziehung zwischen bei-
den Arten von Mottübergängen.
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1 Introduction

A flâneur, contemplating the falling snow on a cold winter day, will most probably not
observe two identically shaped snowflakes. Moreover, s/he will not be able to replicate
any of the sophisticated structures s/he has discovered by freezing a tiny portion of water
in his/r home’s refrigerator. In fact, due to the permanently changing conditions, that
falling droplets experience on their long way from high cloud layers down to earth’s sur-
face, almost endlessly many structures emerge from a quintillion of such simple molecules
like that of water.
Apart from this everyday paradigm, emergent phenomena have become relevant in

almost every discipline of science and examples range from genetics, where viable syn-
thetic bacteria with a minimal genome are designed [1], via artificial intelligence, for
which algorithmic realizations of neural nets are used to “teach” computers mastering
challenging tasks [2], to many-body physics, where complex solids are dynamically stim-
ulated with light-pulses to conduct electricity without any loss [3]. All of these endeavors
on the one hand aim at a more fundamental understanding of basic laws of nature and
emergence, but on the other hand establish the basis for future technological advances.
Of particular interest in condensed matter physics are strongly correlated materials,

a prime example of which can be found among oxides of transition metals. Consider
those, for which the number of electrons per unit cell is odd. According to standard
band theory, but opposed to early experimental findings by Boer and Verwey [4] in
1937, such materials should be metals. To resolve this discrepancy, Mott and Peierls [5]
in response suggested to include interaction effects between electrons, an idea that has
been refined a decade later by Mott [6] in his work on an electron theory of metals. It took
almost another fifteen years until in 1963 Hubbard [7], Gutzwiller [8] and Kanamori [9]
independently proposed a many-particle model, which allowed for a systematic treatment
of these nowadays called Mott insulators [10–12].
The Hubbard model contains the essential ingredients to describe both metallic as

well as insulating behavior as two sides of the same coin. Electrons on a lattice may
tunnel (“hop”) between different atoms, but additionally repel each other due to their
mutual Coulomb interaction, which, by virtue of screening, is presumed to essentially act
only locally, an assumption which is generally assumed to hold e.g. for transition metal
oxides. In materials with a nondegenerate half-filled valence band, for weak interactions
the overall behavior is metallic and governed by almost freely moving electrons, whereas
for strong interactions, two electrons residing on the same site would lead to an substan-
tial increase in potential energy heavily reducing the electrons’ mobility, and hence the
material eventually becomes an insulator. Though a strong Coulomb repulsion inhibits
metallic transport, electrons may still hop “virtually” and exchange information on their
spin, which can lead to long-ranged antiferromagnetism [13]. By introducing impurities
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into the lattice, i.e., by doping the material, one may decrease the electron density and
turn an antiferromagnetic Mott insulator into a high-temperature superconductor [14].
Above all these examples, a vast variety of phenomena unfolds from the conceptually
simple mechanisms captured by the Hubbard model [15], which however in many cases
still elude a full understanding.
Over the recent past, laser technology has been brought to a level which allows to

observe electron motion in condensed matter systems and molecules on time-scales of
femto- down to a few atto-seconds [16–20]. These advances not only paved the way to
excite and detect correlated many-body dynamics [21], but also to control nonequilibrium
states or access new phases of the respective systems. Strong laser pulses can be utilized
to excite charge carriers in a Mott insulator and temporarily drive the system into
a metallic state [22–26]. Metastable states, which cannot be reached via equilibrium
processes, may be dynamically stimulated. Examples are given by the uncovering of a
“hidden” insulating state in a manganite not known from its equilibrium phase diagram
[27] or enhanced superconductivity at room temperature in stripe ordered cuprates [28].
Starting out to the new grounds of nonequilibrium many-body dynamics raises entirely

new, yet fundamental questions related to the foundations of quantum statistics [29, 30].
At first sight, unitary quantum mechanical time-evolution seems to rule out the loss
of memory on the initial state, i.e., ultimately hinders the thermalization of an excited
system, which clearly conflicts with both our everyday intuition but also with the basic
concept of ergodicity in classical statistical mechanics. This contradiction has been
realized already in the dawn of quantum mechanics and a solution has been proposed by
von Neumann [31, 32]. In recent debates on thermalization it was resurrected [33] and
linked to the so called eigenstate thermalization hypothesis (ETH) [34]. The ETH [35–38]
states that under certain circumstances the eigenstate expectation value of a physical
observable cannot be distinguished from the respective microcanonical prediction at
the same energy. Although for an arbitrarily prepared state such thermal behavior is
initially hidden, it will be unveiled in the course of time by dephasing. Nevertheless,
thermalization may be prohibited by different causes. The dynamics of an integrable
system [39] is constrained due to many conserved quantities though its relaxed state can
still be described by a generalized Gibbs ensemble (GGE) [40]. A small perturbation
to integrability is believed to clear the way for relaxation toward thermal equilibrium
in the long-time limit, but on an emergent intermediate time-scale the system will be
trapped in a so called prethermal state [41–45], which complies a statistical description
by some appropriate GGE [46]. Furthermore, disorder may have a major impact on the
systems ability to thermalize, since, intuitively, (many-particle) states get localized and
inhibit the system from acting as its own heat bath [47–50]. Universal concepts from the
equilibrium theory of phase transitions can be taken over to the nonadiabatic transient
dynamics of systems driven across a phase boundary and e.g. describe the formation of
defects or domains in such diverse systems as the early universe or condensed matter
[51–54]. Recently, dynamical phase transitions have been in the focus of many works and
some progress toward a more detailed definition of its notion has been achieved [55–58].
This sets the stage for the enormous challenge to theoretically describe and predict the
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1 Introduction

nonequilibrium behavior of strongly correlated systems and in fact considerable progress
has been made at a fast pace. A rather unconventional approach to “solve” the many-
body problem (out of equilibrium) is provided by experiments with trapped atoms,
cooled to extremely low temperatures. In their seminal work Jaksch et al. [59] proposed
a realization of the bosonic Hubbard model [60] by confining ultracold atoms in an array
of counterpropagating laser beams, and as a result launched the entirely new field of
quantum simulation [61–64], once dreamed of by Feynman [65, 66]. Quantum mechan-
ical problems, which generally resist a full treatment on a classical computer, shall be
mimicked by fully manipulable synthetic systems being obedient to the same description
as the original problem. Ultracold fermionic atoms in an optical lattice essentially share
the same energetic degrees of freedom as correlated electrons in a lattice of a solid state
system as described by Hubbard like models: due to their dipole moment, atoms gather
at regions of high laser intensity, where they interact via short-ranged collisions, which
can be tuned arbitrarily by means of Feshbach resonances. Tunneling between different
“sites” is controlled via the depth of the lattice potential, and it is thereby possible to
create lattices without any defects of diverse geometries and different dimensionalities
[67, 68]. Opposed to real solid state systems, the respective bandwidths correspond to
intrinsic time-scales in the order of milliseconds, which, owing to an isolation from envi-
ronment maintained in the range of seconds, allow for an extremely well controlled study
of the nonequilibrium dynamics on long time scales and without the need for ultrafast
probe techniques [69, 70]. A first implementation of the bosonic Hubbard model was
achieved in 2002, for which the quantum phase transition from a superfluid to the Mott
insulating phase has been observed [71]. A realization of the fermionic Hubbard model
succeeded in 2005 [72] and studies on its Mott physics have been conducted thereafter
[73, 74].

Over the past decade, numerous insightful experiments have been carried out in strong
collaboration with theory. For bosons, controlling the superexchange coupling has been
exploited to engineer ferromagnetic and antiferromagnetic spin-spin interactions [75],
light-cone dynamics have been predicted and probed in one-dimensional chains [76] and
periodically alternating fields have been demonstrated to allow for dynamical control of
model parameters [77], which has been used to induce the superfluid to Mott insulator
transition in the Bose-Hubbard model [78, 79]. Moreover, by periodically driving or
“shaking” the lattice, frustrated classical magnetism has been realized [80] and artifi-
cial tunable gauge potentials have been generated which can be used to simulate lattice
systems exposed to strong electromagnetic fields [81]. Microscopical techniques have
been advanced to image individual atoms in real space [82–84], which will have diverse
applications in observing and manipulating e.g. spin states [85] and make new cooling
techniques conceivable. Lastly, though optical lattices provide pure lattice environments,
controlled disorder can be implemented [86–88] allowing to tackle questions related e.g.
to localization and thermalization phenomena. Concerning fermions, the decay dynam-
ics of doubly occupied sites created within the Mott regime has been described and
traced [89–91], the formation and dynamics of short ranged magnetic correlations have
been addressed for different lattice geometries [92–94], which might ultimately facilitate
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the revelation of mechanisms fundamental to unconventional superconductivity in the
Hubbard model [95, 96] and site-resolved in-situ imaging techniques for fermionic atoms
[97–99] have been used to detect Mott insulating states in real space [100]. Recently,
nonergodic dynamics for strongly interacting fermions in a quasi-random lattice have
been observed [101].
Apart from the ever-growing field of quantum simulation of many-body models stem-

ming from different fields of physics, experiments with ultracold atoms (ions) have es-
tablished independent applications and topics. Nonstandard Hubbard-like models e.g.
with extended interactions, higher bands, density dependent tunneling and for mixtures
of fermions and bosons have been proposed and realized [102]. But furthermore, they
have attracted a lot interest in the field of quantum computation [103–105], with e.g.
direct consequences for current encryption techniques: Shor’s algorithm [106] for prime
factorization on a quantum computer has very recently been implemented in a scalable
fashion [107]. Finally, it is worth mentioning that many-body models cannot only be
simulated in optical lattice experiments but have also been mimicked e.g. with coupled
optical cavities [108, 109] or arrays of quantum dots [110].
Despite the great opportunities for quantum simulation provided by these versatile

experimental techniques, all of them need theoretical guidance on the one hand, and
constitute a valuable test ground for new theoretical ideas and methods on the other
hand. A conceptually appealing approach to the (correlated) many-body problem is
formulated by mean-field theories: a small unit of a larger lattice is embedded in an
auxiliary field representing the remaining greater part of the whole. Certainly, nonlo-
cal quantum fluctuations exceeding these “imaginary” building blocks of the full lattice,
cannot be captured in such an approach. However, the so-called dynamical mean-field
theory (DMFT) [111–114] accounts for all local fluctuations and self-consistently deter-
mines the mean-field by including the full feedback between “the part and the whole”.
To this end, the correlated (fermionic) lattice problem is mapped onto a single site
embedded into an uncorrelated environment. More technically speaking, the DMFT as-
sumes a completely local (i.e., momentum independent) self-energy while keeping its full
frequency dependence. This approximation becomes exact in the limit of infinite coordi-
nation number and is sufficiently accurate for many three-dimensional cases or whenever
the full self-energy is essentially local. The DMFT is formulated in the thermodynamic
limit from the very beginning and treats local interactions nonperturbatively. It is thus
well suited to capture the correlation driven metal to Mott insulator transition [115–
117]. Moreover, the DMFT respects all macroscopic conservation laws for one-particle
observables and the total energy in the sense of Baym and Kadanoff [118, 119], since the
local impurity self-energy can be obtained from a truncated Luttinger-Ward functional.
In combination with ab-initio calculations, DMFT provides precious insights into prop-

erties of real materials [120]. With regard to optical lattice experiments, the DMFT has
been extended to deal with bosonic lattice models [121–124]. Notable efforts have been
made to also include nonlocal fluctuations, probably most straightforwardly by embed-
ding a small cluster instead of a single site into an uncorrelated environment, comprising
the cellular dynamical mean-field theory (C-DMFT) [125, 126], which however breaks the
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1 Introduction

translational symmetry of the original problem. An alternative approach, formulated in
reciprocal space, is given by the dynamical cluster approximation (DCA) [127]. Further-
more, the dynamical vertex approximation (DΓA) [128] systematically includes nonlocal
contributions to the self-energy by assuming locality of the two-particle vertex function
(in this spirit, the DMFT would be a one-particle vertex approximation) and the dual
fermion approach uses the DMFT as the starting point for an advanced perturbation
theory [129, 130]. Crucially, over the last decade, generalizations to the nonequilibrium
case have been formulated for the DMFT [131–133] and for most of its mentioned exten-
sions [134–136], which have already been successfully applied to a number of problems
[137–143]. Particularly interesting is the finding of a “dynamical Mott transition” [144]:
upon suddenly switching on the Hubbard interaction from an uncorrelated initial state,
two distinct response regimes, characterized by different prethermal behavior, can be
found. Only at some sharply defined final interaction, rapid thermalization occurs and
dynamical critical behavior is observed, i.e., a drastic change of the system’s dynamical
response as a function of the final state interaction. Subsequently, this has been affirmed
as a rather robust phenomenon by means of various different approaches [145–147].
On the practical level, the self-consistent impurity problem, i.e., determining the time-

inhomogeneous impurity self-energy, is a demanding task on its own, which gets even
more complicated in nonequilibrium. In the equilibrium case, quantum Monte-Carlo
(QMC) techniques are commonly used to efficiently and accurately solve the many-body
impurity problem but due to a severe sign (or phase) problem can be applied only
to short time propagations in nonequilibrium [148, 149]. Alternatively, perturbative
approaches have been used, which however give reliable results only for strong [138]
or weak [150, 151] coupling strengths and are clearly disadvantageous when it comes to
describing e.g. the Mott transition, which takes place at intermediate interactions. Other
favorable “solvers” rely on a Hamiltonian representation of the effective mean-field via
a single impurity Anderson model (SIAM) of finite size and have been implemented in
equilibrium by means of exact diagonalization (ED) methods [152, 153]. Accordingly,
a systematic mapping has been suggested and realized for short times [154] and in
the following has been tackled additionally by the multi-configuration time-dependent
Hartree method [155] or density-matrix renormalization techniques based on matrix-
product states [156]. Despite setting no limitations on the treatable parameter ranges,
during the course of time successively further bath degrees of freedom have to be coupled
to the impurity site in order to guarantee an appropriate mapping. More severely, already
in equilibrium the finite bath representation of the continuous mean-field introduces some
additional ad-hoc character to the DMFT self-consistency problem, which can cause a
violation of thermodynamic consistency and conservation laws.
Before putting forward a “solution” to this shortcoming, it is worth mentioning quan-

tum cluster theories [157] which share the same idea as in DMFT to replace the full self-
energy with the one obtained from a solvable reference problem. A conceptually simple
quantum cluster approach, both in and out of equilibrium, is the cluster-perturbation
theory (CPT) [158–161]. Within the CPT, the infinite lattice is tiled into small clusters,
which can be solved exactly by numerical means. This solution is then extended to the
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full lattice by infinite-order perturbation theory with respect to the inter-cluster hopping
but neglecting vertex corrections [160]. Unfortunately, the CPT in principle violates all
conservation laws. Another major drawback of the CPT consists in the fact that, even
for a given geometrical tiling of the lattice, the partitioning of the hopping part and
hence the choice of the reference system, i.e., the starting point of the perturbative ex-
pansion is not unique. However, the nonuniqueness of the CPT construction can be
turned into an advantage, if one can establish a variational prescription for finding the
optimal starting point for the cluster-perturbation theory.
In fact, both a thermodynamical consistent replacement of the DMFT self-consistency

for a finite bath as well as variationally optimized CPT are provided within the unifying
framework of self-energy functional theory (SFT) [162]. The latter relies on the fact,
that the physical self-energy of the full lattice problem can be obtained from a vari-
ational principle for the respective (equilibrium) grand potential when expressed as a
functional of the self-energy. Moreover, there is an exact relation to lattice problems
which differ only by their one-particle parameters. Decisively for the SFT, this allows to
approximately evaluate the stationarity principle on a restricted subset of self-energies,
stemming from small systems, which are obtained by tiling the full lattice into clus-
ters and possibly adding uncorrelated bath degrees of freedom. These reference systems
should be accessible to exact numerical evaluation. Depending on their precise choice,
the SFT comprises such diverse and systematic approximations as the variational cluster
approach (VCA) [163–165] or dynamical impurity approximations (DIA) [166] as well
as combinations of both. Furthermore, in the limit of continuous baths, the DMFT
and its cluster extensions are formally recovered. Just like these, any approximation
constructed within the SFT is thermodynamically consistent and nonperturbative. The
VCA allowed to properly describe antiferromagnetism (AF) in the original system by
applying fictitious staggered magnetic fields to the reference cluster [164], has been em-
ployed to study the Mott transition in 1D system [167], and has given further insights
into the Mott transition’s nature in the presence of AF correlations [168]. Recent at-
tempts toward a nonequilibrium formulation have been achieved in the steady state
regime [169, 170]. Within the DIA, very precise studies of the metal to Mott insula-
tor transition have been carried out for both single- and two-orbital Hubbard models
[166, 171–174]. Furthermore, the SFT has been extended into several directions, e.g.,
to systems with nonlocal interactions [175], to disordered systems [176], and to bosonic
systems [177–179]. However, a proper generalization to the nonequilibrium case has been
lacking up to now.
With the present thesis, a nonequilibrium self-energy functional theory (NE-SFT) is

constructed and applied in the same spirit as for the well established equilibrium vari-
ant. However, there are several peculiarities that have to be considered with special care.
A functional of the double-time nonequilibrium self-energy has to be constructed and
shown to be stationary at the physical self-energy of the system, where the value of the
functional itself should ideally have a physical meaning. In the spirit of the equilibrium
theory, a restricted evaluation of the functional via small reference systems, manageable
by means of exact-diagonalization techniques, should be possible. This comprises to find
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conditional equations, which at best allow for a causal, successive determination of the
reference system’s parameters. As a systematic check, the nonequilibrium DMFT should
be recovered if a SIAM was chosen as a reference system. Furthermore, when evaluated
for an explicitly time-independent problem, the new formalism should reduce to the fa-
miliar equilibrium SFT. Most importantly, it is essential to ask, whether approximations
constructed within the NE-SFT will respect macroscopic conservation laws or rather the
respective continuity equations underlying the full model. Though the construction of
the self-energy functional formally makes use of the Luttinger-Ward functional, unlike
DMFT the SFT is not conserving in the sense of Baym and Kadanoff [118, 119], since
it cannot be understood as a re-summation of certain diagram classes. Nevertheless,
by adapting the essential ideas of their seminal work, it will be possible to prove the
conserving nature of the new approach.

Outline

This work is structured as follows: In Chapter 2 we review basic notions and concepts
of the nonequilibrium many-particle theory as needed for the set up of the self-energy
functional theory. To this end, we first introduce the correlated lattice models of interest
in Sec. 2.1 and briefly present the basic mathematical framework for dealing with the
many-body problem out of equilibrium in Secs. 2.2 and 2.3. Special attention is payed
to the details of conservation laws expressed within the Green’s functions formalism in
Sec. 2.4. The following Chapter 3 is entirely devoted to the generalization of the self-
energy functional theory to the nonequilibrium case. Due to the formal equivalence with
the equilibrium variant of the theory, its fundamental construction can be done in close
analogy to the original case as is explained in Secs. 3.1 to 3.4. However, in nonequi-
librium conceptually new aspects need special consideration: in Sec. 3.5 we explain the
necessity of “unphysical” variations and carry out the involved functional derivatives in
Sec. 3.6. The recovery of the equilibrium SFT for explicitly time-independent problems
is derived in Sec. 3.7 and the thermodynamical consistency of the theory is proven in
the following Sec. 3.8. Most importantly, the issue of conserving approximations within
the SFT is carefully addressed in Sec. 3.9. In Chapter 4 we turn our attention to more
practical affairs and discuss an implementable propagation scheme in Sec. 4.1 as well as
possible numerical easements due to certain symmetry relations in Secs. 4.2 and 4.3. To
benchmark the numerical implementation the dynamics of dimerized Hubbard models
following fast ramps of the hopping parameters is studied by means of the variational
cluster approach (VCA) in Chapter 5. Finally, we focus on different aspects of the
Mott transition in and out of equilibrium in Chapter 6, first for the Hubbard model in
Secs. 6.2 and 6.3 and thereafter in two variants of periodic Anderson models in Sec. 6.4.
To this end, we employ the dynamical impurity approximation (DIA), which is con-
trasted to Hamiltonian-based DMFT solvers in Sec. 6.5. The work is summarized in
Sec. 7 where we also speculate about future improvements, applications and prospects
of the nonequilibrium self-energy functional theory.
The results of this thesis have also been presented elsewhere [180–183]. For a detailed

“list of publications and preprints” see page 125.
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2 Nonequilibrium many-particle theory

A proper description of many-particle systems out of equilibrium is challenging in terms
of several aspects. For example, though perturbative approaches might give important
qualitative and even quantitative insights, they are clearly problematic for intermediate,
competing parameter ranges, at which e.g. the Mott metal-insulator transition, as de-
scribed by the Hubbard model, takes place. Concerning dynamics, this becomes even
more crucial when parameters get modulated and all energy and time scales can be-
come important. A more “realistic” approach should thus treat all parameters on equal
footing. Green’s functions are at the heart of a general, unbiased formulation of quan-
tum many-body problems in and out of equilibrium and provide various diagrammatic
techniques. Many different re-summation or truncation schemes have emerged, but also
powerful functional approaches rely on Green’s functions-based techniques and related
diagrammatic viewpoints and have successfully been extended to describe real-time phe-
nomena over the past decade [131–133, 136, 143, 169, 184–186]. The field of nonequi-
librium Green’s functions has matured over the last 50 years since the first foundations
were made and subsequently advanced by merited theoreticians like Kubo [187], Mat-
subara [188], Schwinger [189], Keldysh [190] and Danielewicz [191]. Applications span
over a wide range of diverse disciplines in theoretical physics and vivid interdisciplinary
exchange has been stimulated e.g. by a recurring series of conferences [192–197]. For
recent reviews, we also refer to some out of the many comprehensive books and articles
[198–202].
In this chapter, we will briefly introduce the main technical aspects and notations used

throughout this thesis and for the setup of the self-energy functional theory (SFT). In
Sec. 2.1 we introduce the model Hamiltonians defining the actual many-body problem
in nonequilibrium, which will then be addressed within the Keldysh-Matsubara formal-
ism for Green’s functions, as briefly reviewed in Secs. 2.2 and 2.3. A discussion on
conservation laws, especially regarding related questions within the SFT, will follow in
Sec. 2.4.

2.1 Models

Though the Hubbard model will be in the main focus of this thesis, neither the Green’s
functions formalism nor the SFT, as going to be introduced in chapter 3, are limited to
this “simple” and paradigmatic lattice model. If not necessary or stated otherwise, we

Parts of this chapter have been published as F. Hofmann, M. Eckstein, E. Arrigoni, and M. Potthoff:
Nonequilibrium self-energy functional theory, Phys. Rev. B 88 (16) 165124 (2013). Copyright (2013) by
the American Physical Society. Reproduced with permission.
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2.1 Models

will use the following general fermionic lattice model

Hλ,U (t) =
∑
αβ

λαβ(t)c†αcβ + 1
2
∑
αβγδ

Uαβδγ(t)c†αc
†
βcγcδ , (2.1)

where c(†)
α annihilates (creates) a fermion in a one-particle basis state, labeled by Greek

indices, which typically refer to a lattice site, an orbital index and a spin-projection
quantum number. For the sets of hopping and interaction parameters we write λ and U
for short, and, whenever necessary or convenient, we indicate the dependence on those
parameters by respective subscripts, e.g., Hλ,U . Nontrivial real-time dynamics can be
initiated by explicit time dependencies of the model parameters. Note that here and in
the following we use bold symbols for matrix or vector valued quantities, e.g., λ(t) has
elements λαβ(t).
For practical calculations, we will mainly use the Hubbard model and though it de-

serves and has attracted a lot of interest on its own, we will pay some attention to the
periodic Anderson model (PAM) only in comparison. Therefore, and for the sake of clar-
ity, we will refine our notation and, as far as possible, will use the following conventions:
hopping between orbitals of the same type as e.g. uncorrelated sites or correlated sites is
described by parameters T , whereas V denotes the hybridization between different types
of orbitals, like correlated and bath sites. On-site energies are labeled by ε, but might
not be given explicitly, though rather implicitly contained in the site-diagonal parts of
the respective hopping parameters.
To be specific, using standard notations, the Fermi-Hubbard Hamiltonian is given by

H(t) =
∑
〈ij〉,σ

Tij(t)c†iσcjσ + U(t)
∑
i

n̂ci↑n̂
c
i↓ , (2.2)

where a fermion at site i and with spin projection σ =↑, ↓ is annihilated (created) by c(†)
iσ ,

and where n̂ciσ = c†iσciσ is the density operator. Tunneling between neighboring sites 〈ij〉
is described by the hopping amplitude Tij(t). On the same site, fermions are subjected
to the repulsive Hubbard interaction U(t). In chapter 5 we will study a variant of the
model with site dependent alternating (dimerized) hopping. The main attention will
however be paid to its homogeneous configuration in chapter 6.
The periodic Anderson model comprises two types of orbitals per site, one of which is

uncorrelated and fermions are allowed to hop between neighboring sites and a second one
which is nondispersive but correlated, typically termed as “impurity”. Both get coupled
described by a hybridization term V . In Sec. 6.4 we will discuss two different prominent
cases for a hybridization on the same site or between nearest-neighbors. Using the same
notation as before, the PAM’s Hamiltonian reads

H(t) =
∑
〈ij〉,σ

Tijc
†
iσcjσ +

∑
ijσ

Vij(c†iσfjσ + h.c.) + U(t)
∑
i

n̂fi↑n̂
f
i↓ , (2.3)

where the orbital index was absorbed into the symbols for the creation and annihila-
tion operators and we distinguish c-type (uncorrelated, dispersive) and f -type (corre-
lated, nondispersive) orbitals. Here, n̂fiσ = f †iσfiσ is the density operator for the f -type
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2 Nonequilibrium many-particle theory

fermions. For a hybridization between nearest-neighbors we have Vij = −V for neigh-
boring sites i and j and zero otherwise or Vij = −V δij for an on-site hybridization.

2.2 Keldysh-Matsubara formalism

The nonequilibrium many-body problem is generally twofold. First, we shall assume
that the system under consideration has initially (at time t = t0) been prepared in a
thermal state with inverse temperature β and chemical potential µ and suffice a statistical
description via a density operator

ρ = exp(−βH(t0))
tr exp(−βH(t0)) , (2.4)

with H(t0) = H(t0) − µN̂ , where H(t0) is the initial Hamiltonian and N̂ the total
particle-number operator. The trace is denoted by tr. Second, for times t > t0 the
system’s time evolution shall be governed by the possibly time-dependent Hamiltonian
H(t). In the Heisenberg picture with respect to H(t) = H(t)−µN̂ , an arbitrary, possibly
time-dependent observable A(t) obeys the Heisenberg equation of motion

i
∂

∂t
AH(t) = [AH(t),HH(t)] + i

(
∂

∂t
A(t)

)
H
, (2.5)

the solution of which is given by

AH(t) = U(t0, t)A(t)U(t, t0) , (2.6)

with the unitary time-evolution operator for real times t and t′ [see standard textbook,
e.g. 203]

U(t, t′) = T exp
(
−i
∫ t

t′
dt′′H(t′′)

)
for t > t′ ,

U(t, t′) = T̃ exp
(
−i
∫ t

t′
dt′′H(t′′)

)
for t < t′ .

(2.7)

Here, T (T̃ ) denotes the chronological (anti-chronological) time-ordering operator. It is
important to note that we have set ~ ≡ 1.
We may formally insert “complex” times in the above equations (2.7) and recognize

that exp (−βH(t0)) = U(t0 − iβ, t0) where t0 − iβ is assumed to be a “later” time than
t0. With this, the time-dependent expectation value of the observable A(t), namely
〈A〉(t) = tr(ρAH(t)), can be written as:

〈A〉(t) = tr (U(t0 − iβ, t0)U(t0, t)A(t)U(t, t0))
tr (U(t0 − iβ, t0)U(t0, t)U(t, t0)) (2.8)

= tr (TC exp (−i
∫
C dz̄H(z̄))A(t))

tr (TC exp (−i
∫
C dz̄H(z̄))) . (2.9)
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Imz

Rez
t0 tmax

t0 − iβ

CK+

CK−CM

Figure 2.1: The three-branched Keldysh-Matsubara contour C in the complex time plane,
extending up to time tmax; CK± denotes the upper/lower branch and CM the Matsubara
branch. See text for further discussion.

Here, the time integration is carried out along the three-branched Keldysh-Matsubara
contour C in the complex time plane, see Fig. 2.1, which extends from z′ = t0 to z′ =∞
along the real axis (upper Keldysh branch, CK+) and back to z′ = t0 (lower Keldysh
branch, CK−) and finally from z′ = t0 to z′ = t0−iβ along the imaginary axis (Matsubara
branch, CM ). We also refer to the upper and the lower branch as the Keldysh contour
CK . For a concise notation, we define H(z) for contour times z as H(z) = H(t) if
z = t > t0 and as H(z) = H(t0) if z = t0 − iτ with 0 ≤ τ ≤ β. In the same way, we
define λαβ(z) and Uαβδγ(z). TC denotes the ordering operator along the contour and,
after expanding the exponential, places an operator H(z1) to the left of H(z2) if z1 is
“later” than z2, where t0− iβ is the “latest” time. Obviously, TC replaces T on the upper
and T̃ on the lower branch. This “unified” ordering will be essential for the application
of Wick’s theorem and hence a nonequilibrium perturbation theory (see Sec. 2.3.3 in the
following).
When the contour ordering operator TC acts on A(t) in the numerator of Eq. (2.9), it

places A(t) at the position z = t on C where the expectation value is evaluated. Because
the integrations along the upper and the lower branches cancel each other in the interval
t < z′ <∞, the integration along the Keldysh branch is limited to z′ < t (see Fig. 2.1),
and it does not matter whether A(t) is placed at z = t on the upper or the lower branch
of the contour. For the denominator, only the Matsubara branch contributes and results
in tr exp(−βH(t0)). Additionally note that the ordering operator TC also involves an
implicit sign stemming from the fundamental fermionic anti-commutation relations (see
Appendix A.1). Let therefore d1(z1) and d2(z2) be two arbitrary fermionic annihilation
or creation operators, then

TC(d1(z1)d2(z2)) = ΘC(z1, z2)d1(z1)d2(z2)−ΘC(z2, z1)d2(z2)d1(z1) , (2.10)

where ΘC(z, z′) is the Heaviside function defined on the contour, i.e., ΘC(z, z′) = 1 if
z >
C
z′ (z is later on C than z′) or zero otherwise. At equal times TC usually places

two operators in their normal order, i.e., construction operators are placed to the left or
annihilation operators. More generally, for an arbitrary set of operatorsAi(zi) composed
of fermionic construction operators at arbitrary points zi on the contour (Fig. 2.1) and

12



2 Nonequilibrium many-particle theory

with the help of the permutation p, this can be expressed as

TC(A1(z1)A2(z2) . . .An(zn)) =
(−1)PAp(1)(zp(1))Ap(2)(zp(2)) . . .Ap(n)(zp(n)) , (2.11)

such that zp(1) >C
zp(2) >C

. . . >
C
zp(n). Here P denotes the number of minimal pairwise

permutations necessary, to reobtain the original (fermionic) order.

2.3 Nonequilibrium Green’s functions

To describe the dynamics of a quantum many-body system as introduced in the preceding
Sec. 2.1 and specified by the parameters λ and U , we define the elements of the contour-
ordered Green’s function Gλ,U as

iGλ,U (1, 2) = 〈TCc(1)c†(2)〉λ,U . (2.12)

The annihilation and creation operators, c(1) and c†(2), are given in their Heisenberg
picture with respect to Hλ,U (t). We use the short-hand notation i ≡ (αi, zi), i.e., c(†)(i)
has elements c(†)

αi (zi). Note that the Green’s function also depends on β and µ via the
initial thermal state. These dependencies are implicit in the notations.
In the following we will briefly discuss some selected properties of Green’s functions or

more generally of arbitrary physical contour functions (Sec. 2.3.1), introduce its equation
of motion in different variants (Sec. 2.3.2) and review the basic notions of perturbation
theory (Sec. 2.3.3). Finally, we will relate the Green’s function to all relevant one-particle
observables and the total energy (Sec. 2.4).

2.3.1 Selected properties

The following properties will be used in subsequent chapters. Due to their generality, we
will skip their subscripts, refering to the parameters of a special type of Hamiltonian.

Parametrizations and Symmetries Whenever it comes to calculating physical real-
time properties, it proves handy to eventually get rid of the compact complex-time
notation. To this end we serially number the contour, namely by 1 (upper branch), 2
(lower branch) and 3 (Matsubara branch); cf. Fig. 2.1. In this representation the Green’s
function is decomposed into nine parts, labeled according to its time-arguments’ position
on the contour [198, 200], i.e.:

G(1, 1′) =


G11(1, 1′) G12(1, 1′) G13(1, 1′)
G21(1, 1′) G22(1, 1′) G23(1, 1′)
G31(1, 1′) G32(1, 1′) G33(1, 1′)

 . (2.13)
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An immediate consequence of the definition of the contour-ordering is that any (two-
time) contour function is unchanged by a shift of the largest time-argument on the
Keldysh contour from the upper to the lower branch, i.e.,

G(t0 − iτ, t∨) = G(t0 − iτ, t∧),
G(t′, t∨) = G(t′, t∧) for t > t′,

(2.14)

and similarly for the first time-argument (t∨∧ denotes a time argument on the up-
per/lower branch at t). This symmetry relation immediately follows from the fact that
the forward and backward time-evolution cancel each other after the right-most operator
on the Keldysh contour (see also the discussion of Fig. 2.1).
Therefore the nine components in Eq. (2.13) are not all independent. In the following

we will list basic relations between the components and at the same time introduce
another common notation, which will mainly be used throughout this thesis:

(i) lesser / greater components

G<αα′(t, t
′) = G12

αα′(t, t′) = +i〈c†α′,H(t′)cα,H(t)〉 , (2.15)

G>αα′(t, t
′) = G21

αα′(t, t′) = −i〈cα,H(t)c†α′,H(t′)〉 , (2.16)

(ii) retarded / advanced components

GRαα′(t, t′) = Θ(t− t′)
(
G>αα′(t, t

′)−G<αα′(t, t
′)
)
, (2.17)

GAαα′(t, t′) = Θ(t′ − t)
(
G<αα′(t, t

′)−G>αα′(t, t
′)
)
, (2.18)

(iii) hook or mixed components

G�
αα′(τ, t′) = G32

αα′(t0 − iτ, t′) = G31
αα′(t0 − iτ, t′) , (2.19)

G¬αα′(t, τ ′) = G13
αα′(t, t0 − iτ ′) = G23

αα′(t, t0 − iτ ′) , (2.20)

(iv) Matsubara components

GMαα′(τ, τ ′) = G33
αα′(t0 − iτ, t0 − iτ ′) = Θ(τ − τ ′)G>αα′(t0 − iτ, t0 − iτ

′)
+ Θ(τ ′ − τ)G<αα′(t0 − iτ, t0 − iτ

′) , (2.21)

which, due to the τ -independence of the initial Hamiltonian H(t0), is homogeneous
in imaginary time, i.e., GMαα′(τ, τ ′) = GMαα′(τ − τ ′).

Due to the conjugate symmetry of the scalar product and the cyclic property of the
trace, we additionally find the relations

G≷αα′(t, t
′) = −

(
G≷α′α(t′, t)

)∗
, (2.22)
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and

G¬αα′(t, τ) = G�
α′α(β − τ, t)∗ . (2.23)

Note that the parametrizations and respective relations given above [Eqs. (2.14) –
(2.23)] are quite general properties of any physical two-point functions defined on the
contour, namely:

X(z, z′) ≡Xδ(z)δC(z, z′) + ΘC(z, z′)X>(z, z′) + ΘC(z′, z)X<(z, z′) , (2.24)

whereXδ denotes the singular part ofX and δC(z, z′) = ∂zΘC(z, z′) is the delta-function
on the contour, i.e.,

∫
C dz

′ δC(z, z′)f(z′) = f(z), for some single-time function f(z). By
definition the Green’s function (2.12) does not have a singular part.
The same properties hold for the “contour-product” X1 ◦ X2 of any two contour

functions X1 and X2 if it holds for X1 and X2 individually, and thus for any analytical
function f of X, i.e.:

f(X) =
∑
n

f (n)(0)
n! X◦n . (2.25)

Note that f(X) is matrix valued since X is matrix valued. We use the notation
X◦n = X ◦ · · · ◦X︸ ︷︷ ︸

n times
and X◦0 = 1 and the circle ◦ stands for the matrix product with an

additional implicit integration along the contour C, i.e., for example (X1 ◦X2)(z, z′) ≡∫
C dz̄X1(z, z̄)X2(z̄, z′). Since by setting ~ to one, time is measured in units of inverse
energy, i.e., by [E]−1, and hence the contour integration also carries the unit [E]−1.
Therefore, for a meaningful definition of f via Eq. (2.25), its argument X must have
units of energy. This ensures that each ◦-power of X has the same unit. Accordingly
the function f(X) itself carries the unit of energy [E]. For a list of (nonequilibrium)
quantities and their respective units see Table A.1 in the appendix.

Cancellation of Keldysh integrations For arbitrary analytical functions fi of arbi-
trary physical two-point contour functions Xi, the following integral along the Keldysh
branch over the equal time component of products of f i(Xi) vanishes, namely∫

CK
dz [f1(X1) ◦ f2(X2) ◦ · · · ◦ fN (XN )] (z, z+) = 0 , (2.26)

where z+ is infinitesimally later than z on C.
For a proof, we consider two arbitrary physical two-point contour functions X and Y .

By decomposing the contour integrations into their components along the branches and
using the identities Eq. (2.15) and (2.16) for X and Y , we find

∫
CK
dz

∫
C
dz′X(z, z′)Y (z′, z) =

∫ ∞
t0

dt

∫ t

t0
dt′X>(t, t′)Y <(t′, t)
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+
∫ ∞
t0

dt

∫ ∞
t

dt′X<(t, t′)Y >(t′, t)

+
∫ ∞
t0

dt

∫ t0

∞
dt′X<(t, t′)Y >(t′, t)

+
∫ t0

∞
dt

∫ ∞
t0

dt′X>(t, t′)Y <(t′, t)

+
∫ t0

∞
dt

∫ t

∞
dt′X>(t, t′)Y <(t′, t)

+
∫ t0

∞
dt

∫ t0

t
dt′X<(t, t′)Y >(t′, t)

+
∫ ∞
t0

dt

∫ β

0
dτ ′X<(t, t0 − iτ ′)Y >(t0 − iτ ′, t)

+
∫ t0

∞
dt

∫ β

0
dτ ′X<(t, t0 − iτ ′)Y >(t0 − iτ ′, t) .

Now, collecting all terms with identical integrands, we easily obtain∫
CK
dz

∫
C
dz′X(z, z′)Y (z′, z) = 0 . (2.27)

Since any product of contour functions and also any analytical function of contour func-
tions is again a contour function, this directly proves Eq. (2.26). This property will be
of importance for functionals of contour functions in later chapters.

2.3.2 Equations of motion

The equation of motion for the one-particle Green’s function (2.12) is deduced from the
Heisenberg equations (2.5) for the construction operators, which read as:

i∂zcα,H(z) =
∑
β

hαβ(z)cβ,H(z) +
[
cα,H(z), H0,U ;H(z)

]
,

i∂zc
†
α,H(z) = −

∑
β

c†β,H(z)hβα(z)−
[
H0,U ;H(z), c†α,H(z)

]
,

(2.28)

where for brevity we defined hαβ(z) ≡ λαβ(z)−µδαβ. The first summand originates from
the respective commutator with Hλ,0−µN̂ and gives rise to another one-particle Green’s
function when applying the time derivative to Eq. (2.12) whereas the second term leads
to a higher Green’s function. The latter again obeys an equation of motion involving
even higher Green’s functions and one is finally left with a hierarchy of equations of
motion for Green’s functions of arbitrary order [204, 205]. However, the equations of
motion for Gλ,U can be cast into a closed form by defining the self-energy via

(Σλ,U ◦Gλ,U )αα′ (z, z
′) ≡ (−i)〈TC

([
cα,H(z), H0,U ;H(z)

]
c†α′,H(z′)

)
〉 ,

(Gλ,U ◦Σλ,U )αα′ (z, z
′) ≡ (−i)〈TC

(
cα,H(z)

[
H0,U ;H(z′), c†α′,H(z′)

])
〉 ,

(2.29)
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and thus read as(
i
→
∂ z −h(z)

)
Gλ,U (z, z′) = δαα′δC(z, z′) + (Σλ,U ◦Gλ,U ) (z, z′) ,

Gλ,U (z, z′)
(
−i
←
∂ z′ −h(z)

)
= δαα′δC(z, z′) + (Gλ,U ◦Σλ,U ) (z, z′) ,

(2.30)

where the time derivative formally acts either from right or from the left as indicated
by the superscript arrows. By setting U = 0 in Eqs. (2.29) and (2.30) the inverse of the
“free” Green’s function is obtained as

G−1
λ,0;αα′(z, z

′) = δC(z, z′)
(
δαα′(±i)

�
∂ z′ −hαα′(z′)

)
. (2.31)

Note that the matrix inverse refers to both one-particle basis indices and time variables
(see also the definition of the inverse of a two-point contour function in Eq. A.6).

Dyson equation

With the free Green’s function (2.31) at hand the equations of motion (2.30) are easily
recast in the following form[

(G−1
λ,0 −Σλ,U ) ◦Gλ,U

]
αα′

(z, z′) = δαα′δC(z, z′)

=
[
Gλ,U ◦ (G−1

λ,0 −Σλ,U )
]
αα′

(z, z′) . (2.32)

By multiplying with Gλ,0 from either the left or the right, we therewith obtain two
equivalent Dyson equations:

Gλ,U (z, z′) = Gλ,0(z, z′) + [Gλ,0 ◦Σλ,U ◦Gλ,U ] (z, z′) ,
Gλ,U (z, z′) = Gλ,0(z, z′) + [Gλ,U ◦Σλ,U ◦Gλ,0] (z, z′) ,

(2.33)

the formal solution of which can be written as

Gλ,U (z, z′) =
(
G−1
λ,0 −Σλ,U

)−1
(z, z′) . (2.34)

However, the self-energy is generally not known exactly and approximations are needed.
Perturbation theory can either provide truncated expansions for the self-energy or mo-
tivate functional relations, as we will briefly review in the following section.

2.3.3 Perturbation theory

By switching to the interaction picture, the Green’s function [Eq. 2.12] can be cast into
the following form [see also Eq. 2.9]

iGλ,U ;αα′(z, z′) =
〈TCe−i

∫
C dz

′′H0,U (z′′)cα(z)c†α′(z′)〉λ,0
〈TCe−i

∫
C dz

′′H0,U (z′′)〉λ,0
, (2.35)
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2.3 Nonequilibrium Green’s functions

where the time dependencies of all operators are due to Hλ,0 only. Likewise, the ex-
pectation value 〈· · ·〉λ,0 = tr(ρλ,0 · · · ) is defined via the free density operator ρλ,0 =
exp (−βHλ,0) / tr exp (−βHλ,0). Hence, Wick’s theorem applies and therewith the stan-
dard techniques of perturbation theory [198, 206] can be exploited. It is important to
note that besides free expectation values also a single ordering principle for all operators
involved in correlation functions is a prerequisite for Wick’s theorem to hold. Thus,
the Keldysh-Matsubara bookkeeping of contour quantities is not only handy but also
necessary for the setup of a nonequilibrium diagrammatic perturbation theory. As in the
equilibrium case, by expanding the exponentials in Eq. (2.35), the interacting Green’s
function Gλ,U can be expressed as an infinite series of free Green’s functions Gλ,0 and
all diagrammatic rules know from Matsubara Green’s functions can be easily general-
ized to nonequilibrium Green’s functions. Furthermore, this expansion motivates the
definition of a functional ĜU [G0] of some two-time contour function G0, which yields
the full physical Green’s function when evaluated a the free physical Green’s function,
i.e., Gλ,U = ĜU [Gλ,0]. Note that here and in the following functionals are indicated
by a hat. Since ĜU only depends on the interaction U and the free Green’s function
explicitly, but not on the one-particle parameters of the system, it is called universal.
However, considering strong correlations, a “direct” perturbative expansion around the
noninteracting limit seems at least questionable. Besides complications concerning con-
vergence, most importantly, expansions in terms of “bare” propagators G0 might result
in approximations that do not respect the conservation laws of the underlying full prob-
lem. An alternative to this is prescribed by “self-consistent renormalization”, namely by
partially summing certain (infinite) subclasses of diagrams. To this end, two observa-
tions are essential. First, when expanding the full Green’s function into an infinite set
of diagrams made up of “free propagators” and “interaction vertices”, the full Green’s
function can be identified as again implicitly contained in the expansion, i.e., can be
factored out, which symbolically reads as

= + . (2.36)

Here, a double line represents the full Green’s function G and a single line stands for
the free Green’s function. The remaining part, indicated by a shaded semicircle, can
be identified with the respective self-energy Σ. Hence note that this is nothing but the
Dyson equation (2.33), namely G = G0 +G0 ◦Σ ◦G. A second observation concerns
the self-energy itself. All contributing diagrams can essentially be classified into two
different types: (i) those, which can be thought of some simpler diagram, where another
self-energy diagram has been “inserted” or which can be “cut” into simpler self-energy
diagrams and (ii) those, where this is not possible. The latter ones are called “skeleton
diagrams”. Intriguingly, the second class is sufficient to describe the entire self-energy,
by simply replacing all bare propagators G0 by their full counterparts G, pictorially
termed as “dressing” the diagram. Thus, the self-energy Σ can be expressed as the sum
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2 Nonequilibrium many-particle theory

of all dressed self-energy skeleton diagrams, i.e.,

Σ = = + + + . . .
(2.37)

where dashed lines represent the interaction U . Via the expansion (2.37) the self-energy
can be defined as an universal functional of the full (interacting) Green’s function, namely
Σ̂U [G], which parametrically depends on the system’s interaction parameter only. In-
dependently of its first definition (2.29) and (2.33), the system’s self-energy can be
reobtained when evaluating the functional Σ̂U at the respective Green’s function, and
thus:

Σλ,U = Σ̂U [Gλ,U ] . (2.38)

This provides a self-consistent perturbation theory, since Σλ,U can be calculated in an
approximate fashion by truncating the series (2.37), but still depends on the full Green’s
function which at the same time has to fulfill the respective Dyson equation (2.33).

2.4 Observables and conservation laws

Finally, we relate nonequilibrium Green’s functions to prevalent one- and two-particle
observables and comment on their respective conservation laws in a Hubbard-like model.
Later, this will be used for the important discussion on conservation laws within the
framework of the SFT (cf. Sec. 3.9).

2.4.1 One-particle observables

Any one-particle observable can generally be expressed as

A(t) =
∑
αβ

aαβ(t)c†αcβ , (2.39)

which immediately allows us to relate the respective expectation value to the one-particle
Green’s function [Eq. 2.12] via

〈A〉λ,U (t) = −i tr
(
a(t)Gλ,U (t, t+)

)
. (2.40)

Its equation of motion is readily obtained from the equation of motion for the Green’s
function (i.e., from Eqs. (2.30); see also Ref. [200]). We easily find:

∂t〈A〉λ,U (t) = tr
(
a(t) [Gλ,U ,λ] (t, t+)

)
+ tr

(
a(t) [Gλ,U

◦, Σλ,U ] (t, t+)
)
, (2.41)

where [·, ·] is the commutator and [· ◦, ·] indicates that besides the commutator a contour
integration along the inner time-arguments is implied.
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2.4 Observables and conservation laws

It’s worth mentioning different special cases for the coefficient matrix a, namely for
which the observable A equals the . . .

. . . kinetic energy ⇔ aiσ,jσ′ = δσσ′λij,σ or just aαβ = λαβ (2.42)

. . . particle number

. . . spin in η direction
⇔ aiσ,jσ′ = δijaσσ′ with

aσ,σ′ = δσσ′

aσ,σ′ = 1
2σ

(η)
σσ′

. (2.43)

Here, as before, i refers to the sites of the lattice model, σ, σ′ =↑, ↓ to the spin degrees
of freedom, and σ(η) stands for the three Pauli matrices, with η ∈ {x, y, z}.
For the occupation number and the spin, it is interesting to express the integral quan-

tities A in terms of sums over their local constituents Ai, i.e., as A =
∑
iAi. For these,

the equation of motion [Eq. 2.41] becomes

∂t〈Ai〉λ,U (t) =
∑
σσ′

aσσ′ [Gλ,U ,λ]ii,σ′σ (t, t+)

+
∑
σσ′

aσσ′ [Gλ,U
◦, Σλ,U ]ii,σ′σ (t, t+) . (2.44)

For a Hubbard-type model with local interaction, the second commutator vanishes
identically. Equation (2.44) thus attains the form of a continuity equation where the
first commutator represents the divergence of the charge current or spin current. It
vanishes if summed over all sites i due the cyclic property of the trace, and we are left
with ∂t〈A〉λ,U (t) = 0, i.e., conservation of the total particle number or spin.
One should note, that whenever observables are calculated from approximated Green’s

functions via Eq. (2.40), the fact whether the second term in Eq. (2.44) does or does
not vanish within the respective approximation serves as a condition if the particular
conservation laws are preserved, i.e., generally

〈Ai〉λ,U (t) conserved ⇔
∑
σσ′

aσσ′ [Gλ,U
◦, Σλ,U ]ii,σ′σ (t, t+) = 0 . (2.45)

2.4.2 Energy

Two important examples for two-particle observables that can actually be obtained from
the single-particle Green’s function and the self-energy are the interaction energy Eint
as well as the closely related (local) double occupancy di = 〈n̂ci↑n̂ci↓〉, the first of which
is defined as [cf. Eq. 2.1]

Eint(t) = 〈H0,U (t)〉 = 1
2
∑
αβγδ

Uαβδγ(t)〈c†α(t)c†β(t)cγ(t)cδ(t)〉 . (2.46)

For a local Hubbard-type interaction parameter in a model with spatial- and spin-degrees
of freedom, i.e., Uαβγδ = Uiσ,jσ′,lλ,kλ′ = Uiδijδjlδlkδλσδλ′σ′ , this becomes

Eint(t) = 1
2
∑
iσσ′

Ui(t)〈c†iσ(t)c†iσ′(t)ciσ′(t)ciσ(t)〉 = 1
2
∑
iσ

Ui(t)〈c†iσ(t)c†iσ̄(t)ciσ̄(t)ciσ(t)〉

=
∑
i

Ui(t)〈n̂ci↑n̂ci↓〉 =
∑
i

Ui(t)di(t) , (2.47)
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2 Nonequilibrium many-particle theory

i.e., the interaction energy is basically given by the double occupancy multiplied by the
interaction parameter. From the definition of the self-energy [Eq. 2.29] and with the
commutator

[
cα, H0,U

]
and its complex conjugate [cf. Eqs. A.4] we obtain

(Σλ,U ◦Gλ,U )αα′ (t, t
+) = − i2

∑
βγδ

U[α,β]δγ(t)〈c†α′(t)c
†
β(t)cδ(t)cγ(t)〉 , (2.48)

(Gλ,U ◦Σλ,U )αα′ (t, t
+) = − i2

∑
βγδ

Uδγ[α′,β](t)〈c
†
δ(t)c

†
γ(t)cα(t)cβ(t)〉 , (2.49)

where we used the short-hand notation U[α,β]δγ = Uαβδγ−Uβαδγ as well as the symmetry
Uαβδγ = Uβαγδ. After a short calculation, this eventually yields

Eint(t) = − i2 tr
(
(Σλ,U ◦Gλ,U )(t, t+)

)
= − i2 tr

(
(Gλ,U ◦Σλ,U )(t, t+)

)
= − i4 tr

(
(Σλ,U ◦Gλ,U +Gλ,U ◦Σλ,U )(t, t+)

)
.

(2.50)

If the self-energy is not directly accessible, the interaction energy can also be calculated
via the time derivative of the Green’s function, as can be seen from the equation of
motion [Eq. 2.30]:

Eint(t) = 1
4 tr

(
∂tGλ,U (t, t′)− ∂t′Gλ,U (t, t′)

)
t′=t+

− 1
2Ekin(t) + 1

2µN̂(t) , (2.51)

where N̂(t) =
∑
i n̂

c
i (t) is the total particle number.

Let us again discuss the conservation laws for the case of the total energy. Therefore,
recall that the kinetic part of the energy Ekin(t) = 〈Hλ,0(t)〉, according to Eq. (2.42),
can be written as

Ekin(t) = −i tr
(
λ(t)Gλ,U (t, t+)

)
. (2.52)

In the following, we will skip the indices λ and U and write G and Σ for brevity.
The total energy of the system is Etot(t) ≡ 〈H(t)〉 = Ekin(t) + Eint(t). In the follow-

ing, we assume that the interaction parameters U are time-independent (see also the
discussion on the next page, following after Eq. 2.56). Using ∂tEtot(t) = 〈∂tH(t)〉, this
immediately implies the energy-balance relation:

∂Etot(t)
∂t

=
∑
αβ

∂λαβ(t)
∂t

〈c†α(t)cβ(t)〉 . (2.53)

Next, we express both the left-hand side and the right-hand side of Eq. (2.53) in terms
of Σ and G. Using the equation of motion again, the time derivatives of Ekin(t) and
Eint(t) can be computed. From Eq. (2.52) we get:

∂Ekin(t)
∂t

= tr
(
λ(t) [G,λ] (t, t+)

)
+ tr

(
λ(t) [G ◦, Σ] (t, t+)

)
− i tr

(
∂λ(t)
∂t

G(t, t+)
)

= tr
(
λ(t) [G ◦, Σ] (t, t+)

)
− i tr

(
∂λ(t)
∂t

G(t, t+)
)
. (2.54)
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2.4 Observables and conservation laws

Here the first term in the first line vanishes due the cyclic property of the trace. Ex-
ploiting once more the equation of motion as well as its complex conjugate, we find:

∂Ekin(t1)
∂t1

= i
∑
α1

∫
d2
((

∂

∂t1
G(1, 2)

)
Σ(2, 1+) + Σ(1, 2) ∂

∂t1
G(2, 1+)

)

− i tr
(
∂λ(t1)
∂t1

G(t1, t+1 )
)
. (2.55)

Note that the last summand just equals the right-hand side of Eq. (2.53). This equation
can easily be combined with the time derivative of the interaction energy [Eq. 2.50].
After applying the product rule, the energy-balance relation [Eq. 2.53] is expressed as
[119]:

− 3
4
∑
α1

∫
d2 ∂

∂t1

(
Σ(1, 2)G(2, 1+) +G(1, 2)Σ(2, 1+)

)
+
∑
α1

∫
d2
(
∂Σ(1, 2)
∂t1

G(2, 1+) +G(1, 2)∂Σ(2, 1+)
∂t1

)
= 0 . (2.56)

Again, it turns out that this equation is trivially obeyed e.g. for the Hubbard model
[Eq. 2.2] due to its symmetries. However, if approximations for the self-energy and the
Green’s function are used for the calculation of the total energy, this is far from obvious,
and hence Eq. (2.56) serves as a conditional equation to check whether an approximative
treatment of the full lattice problem follows the respective energy conservation law or if
it doesn’t.

Discussion

For the preceding derivation, we assumed the interaction parameters as time-independent,
i.e., U = const. In case of a time-dependent interaction U(t) (and assuming the one-
particle parameters as constant for a moment), the energy-balance relation will involve
a two-particle correlation function,

∂Etot(t)
∂t

= 1
2
∑
αβγδ

∂Uαβδγ(t)
∂t

〈c†α(t)c†β(t)cγ(t)cδ(t)〉 , (2.57)

which cannot (easily) be expressed in terms of Σ and G. Therefore, without further
approximations, it is impossible to set up (and prove) a general energy balance equation
in the same spirit.
An exception worth mentioning is a time dependence of the simple form Uαβδγ(t) =

κ(t)Uαβδγ where we furthermore assume the existence of some function ϕ(t), such that
κ(t) = (ϕ̇(ϕ−1(t)))−1 with ϕ̇(t) ≡ ∂tϕ(t) 6= 0. In this case, the time dependence can be
shifted to the one-particle parameters by a transformation of the time scale:∗ H(t) 7→
∗ for the following we use: ϕ̇(t)κ(ϕ(t)) = ϕ̇(t)(ϕ̇(ϕ−1(ϕ(t))))−1 = ϕ̇(t)(ϕ̇(t))−1 = 1, i.e., the prefactor

of the Hamiltonian’s interaction part becomes time independent
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2 Nonequilibrium many-particle theory

H̃(t) = ϕ̇(t)H(ϕ(t)) and |ψ̃(t)〉 = |ψ(ϕ(t))〉 which leaves the Schrödinger equation form
invariant:

(i∂t − H̃(t))|ψ̃(t)〉 = ϕ̇(t)(i∂ϕ −H(ϕ))|ψ(ϕ)〉 = 0 . (2.58)

We furthermore note, that in fact in most cases, after some initial modulation of the
parameters to stimulate nontrivial real-time dynamics, these will be held constant and
instead of a more general balance of energies, we will be interested in a strict con-
servation of the total energy only, i.e., ∂tEtot = 0 should hold as soon as the model
parameters are not explicitly time-dependent any more. Nevertheless, when the self-
energy and the Green’s function are given via some approximative scheme, the condi-
tional equation (2.56) has to be fulfilled in the same manner, in order for the respective
approximation to be energy-conserving.

23





3 Nonequilibrium self-energy functional
theory

The general task for describing the dynamics of an interacting many-body problem is
to solve the Green’s function’s equation of motion, or equivalently the corresponding
Dyson’s equation (as discussed in chapter 2). In general, already for rather simple
systems its full solution cannot be found since the respective self-energy is not known
exactly. However, solving Dyson’s equation self-consistently can be equivalently recast
into a variational problem for the model’s grand potential expressed as a functional of
the self-energy. Though this seems to be of little use at first sight, since the problem re-
mains utterly complex, this self-energy functional in fact has several beneficial properties
which allow to relate the full lattice problem to a numerically solvable, small reference
problem. This idea is at the very heart of the self-energy functional theory (SFT), first
formulated in equilibrium by Potthoff [162]. The following chapter is entirely devoted
to its generalization to the nonequilibrium case.

The first sections are rather preparatory and, due to the formal equivalence of the
Green’s function formalism in and out of equilibrium, can be presented in close analogy
to the equilibrium SFT. To this end we first introduce the Luttinger-Ward functional
and review its essential properties in Sec. 3.1, which will then be used to construct the
dynamical variational principle of the nonequilibrium SFT in Sec. 3.2. A prescription
for constructing approximations follows in Sec. 3.3 and as a special case we will show
the relation to nonequilibrium DMFT in Sec. 3.4. Apart from that, there are several
peculiarities which exclusively arise for the nonequilibrium variant of the SFT. It turns
out that opposed to the equilibrium case the space of variational parameters has to be
“enlarged” in the sense that variations off the physical manifold have to be incorporated,
as we discuss in Sec. 3.5. For an evaluation of the variational principle on the space of
physical parameters an analytical evaluation of the respective functional derivatives will
be beneficial and carried out in Sec. 3.6. The relation to the underlying equilibrium the-
ory is worked out in Sec. 3.7 and thermodynamical consistency is surveyed subsequently
in Sec. 3.8. Finally, and most importantly, we will carefully discuss the conserving nature
and possible drawbacks in Sec. 3.9.

Major parts of this chapter have been published as F. Hofmann, M. Eckstein, E. Arrigoni, and M. Pot-
thoff: Nonequilibrium self-energy functional theory, Phys. Rev. B 88 (16) 165124 (2013). Copyright
(2013) by the American Physical Society. Reproduced with permission.
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3.1 Luttinger-Ward functional

3.1 Luttinger-Ward functional

The nonequilibrium Luttinger-Ward functional Φ̂U [G] can be defined by means of all-
order perturbation theory in close analogy to the equilibrium case [207]. It is obtained
as the limit of the infinite series of closed renormalized skeleton diagrams (see also
Sec. 2.3.3), and is thus given as a functional of the contour-ordered Green’s function:

−βΦ̂U [G] = + + + . . . (3.1)

Usually the skeleton-diagram expansion cannot be summed up to get a closed form for
Φ̂U [G], and the explicit functional dependence is unknown even for the most simple types
of interactions like the Hubbard interaction. As an alternative to the diagrammatic
definition of the Luttinger-Ward functional, a nonequilibrium path-integral formalism
may be used for an entirely nonperturbative construction. Again, this can be done
analogously to the equilibrium case [208]. Both variants allow to derive the following
four properties that will be used extensively for constructing the nonequilibrium SFT:

(i) The Luttinger-Ward functional vanishes in the noninteracting limit:

Φ̂U [G] ≡ 0 for U = 0 , (3.2)

since there is no zeroth-order diagram.

(ii) The functional derivative of the Luttinger-Ward functional with respect to its ar-
gument is:

δΦ̂U [G]
δG(1, 2) = 1

β
Σ̂U [G](2, 1) . (3.3)

Diagrammatically, the functional derivative corresponds to the removal of a prop-
agator from each of the Φ diagrams. Taking care of topological factors [207], one
ends up with the skeleton-diagram expansion of the self-energy (2.37) which gives
the self-energy as a functional of the Green’s function Σ̂U [G], and when evaluated
at the exact (“physical”) Green’s function Gλ,U yields the physical self-energy
Σλ,U = Σ̂U [Gλ,U ] (cf. Eq. 2.38). In Sec. 2.3.3, this relation was refered to as
the starting point for self-consistent perturbative expansions of Σ̂U [G]. In fact,
this truncation of the series is typically done on the level of the Luttinger-Ward
functional and the actual self-energy approximation is provided by Eq. (3.3) and
consequently termed as “Φ-derivable”. Intriguingly, such approximations are con-
serving in the sense of Baym and Kadanoff [118, 119]. We will come back to this
fact in greater detail in Sec. 3.9.
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3 Nonequilibrium self-energy functional theory

(iii) Since any diagram in the series depends on U and on G only, the Luttinger-
Ward functional is “universal”, i.e., it is independent of λ. Two systems with the
same interaction U but different one-particle parameters λ and λ′ are described
by the same Luttinger-Ward functional. This implies that the functional Σ̂U [G] is
universal, too, as we already noted in Sec. 2.3.3.

(iv) If evaluated at the physical Green’s function Gλ,U of the system with Hamiltonian
Hλ,U , the Luttinger-Ward functional provides a quantity

Φλ,U = Φ̂U [Gλ,U ] , (3.4)

which depends on the initial equilibrium state of the system only, as contributions
from the Keldysh branch cancel each other (for details, see Eq. 2.26). Φλ,U is
related to the grand potential of the system via the expression

Ωλ,U = Φλ,U + 1
β

Tr ln
(
G−1
ε0,0 ◦Gλ,U

)
− 1
β

Tr(Σλ,U ◦Gλ,U ) . (3.5)

Here, the trace also involves an integration along the entire contour and is defined
as

TrA =
∑
α

∫
C
dz Aαα(z, z+) . (3.6)

With the trivial inverse Green’s function (cf. Eq. 2.31)

G−1
ε0,0;αα′(z, z

′) = δαα′δC(z, z′) (i∂z′ + µ− ε0) , (3.7)

the termG−1
ε0,0◦Gλ,U carries energy units, and the principal branch of the logarithm

ln
(
G−1
ε0,0 ◦Gλ,U

)
is well defined for any ε0 (cf. Eq. 2.25 and the related discussion).

For ε0 →∞, it represents a regularization of the ill-defined expression lnGλ,U . In
particular, we find that this is related to the grand potential,

Ωλ,0 = 1
β

Tr ln
(
G−1
ε0,0 ◦Gλ,0

) ∣∣∣
ε0→∞

, (3.8)

in the noninteracting case (see also Eq. 3.5). It will be omitted in the following as it
does not affect the following results of interest. Equation (3.5) can be derived using
a coupling-constant integration [207] or by integrating over the chemical potential
µ [208]. The proof is completely analogous to the equilibrium case.

3.2 Dynamical variational principle

We assume the functional Σ̂U [G] is invertible locally to construct the Legendre transform
of the Luttinger-Ward functional:

F̂U [Σ] = Φ̂U [ĜU [Σ]]− 1
β

Tr(Σ ◦ ĜU [Σ]) . (3.9)
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3.3 Constructing approximations

Here, ĜU [Σ̂U [G]] = G. With Eq. (3.3) one has:

δF̂U [Σ]
δΣ(1, 2) = − 1

β
ĜU [Σ](2, 1) . (3.10)

We now define the self-energy functional as:

Ω̂λ,U [Σ] = 1
β

Tr ln
(
G−1
λ,0 −Σ

)−1
+ F̂U [Σ] , (3.11)

For any analytical function of contour functions (2.25) we immediately have

δTr(f(X))
δX(1, 2) = f ′(X)(2, 1+) , (3.12)

and thus the functional derivative of (3.11) is:

δΩ̂λ,U [Σ]
δΣ = 1

β

(
G−1
λ,0 −Σ

)−1
− 1
β
ĜU [Σ] . (3.13)

The equation

ĜU [Σ] =
(
G−1
λ,0 −Σ

)−1
(3.14)

is a (highly nonlinear) conditional equation for the self-energy of the system Hλ,U .
Equations (2.33) and (2.38) show that it is satisfied by the physical self-energy Σ = Σλ,U .
Note that the left-hand side of Eq. (3.14) is independent of λ but depends on U (due to
the universality of ĜU [Σ]), while the right-hand side is independent of U but depends
on λ via G−1

λ,0.
The obvious problem of finding a solution of Eq. (3.14) is that there is no closed form

for the functional ĜU [Σ]. Solving Eq. (3.14) is equivalent, however, to a search for the
stationary point of the grand potential as a functional of the self-energy:

δΩ̂λ,U [Σ]
δΣ = 0 . (3.15)

This equation is the starting point for nonequilibrium self-energy functional theory.
Note that, while there are various symmetry relations between the elements Σαα′(z, z′)

of the self-energy at different times z and z′, the elements of Σ have to be treated as
independent of each other for the functional differentiation to ensure the equivalence of
the variational principle Eq. (3.15) with the fundamental Dyson equation Eq. (3.14). As
will become clear below, the stationarity with respect to some of the variational directions
just ensures the correct symmetry relations between the elements of Σαα′(z, z′), while
the other variational directions fix the actual value of Σαα′(z, z′).
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λ′

λ–space

Σλ′,U

Σ–space

Ω̂λ,U [Σλ′,U ]

δΩ̂λ,U [Σλ′,U ] = 0

Ω–space

Figure 3.1: Variation of the self-energy functional Ω̂λ,U on the restricted space of trial
self-energies Σλ′,U , spanned by a certain reference system characterized by its one par-
ticle parameters λ′. For a detailed discussion, see text.

3.3 Constructing approximations

Even though the Luttinger-Ward functional and its Legendre transform F̂U [Σ] are gen-
erally unknown, it is possible to evaluate the self-energy functional Eq. (3.11) exactly
on a certain subspace of self-energies: To this end we compare the self-energy functional
of the original system with the self-energy functional of a reference system, given by a
Hamiltonian H ′ ≡ Hλ′,U , which differs from the original Hamiltonian Hλ,U only in its
one-particle parameters λ′, but shares its interaction part. Here and in the following,
primed quantities refer to the reference system. The respective self-energy functional is

Ω̂λ′,U [Σ] = 1
β

Tr ln
(
G−1
λ′,0 −Σ

)−1
+ F̂U [Σ] . (3.16)

Since F̂U [Σ] is universal, we can eliminate F̂U [Σ] and write

Ω̂λ,U [Σ] = Ω̂λ′,U [Σ] + 1
β

Tr ln
(
G−1
λ,0 −Σ

)−1
− 1
β

Tr ln
(
G−1
λ′,0 −Σ

)−1
. (3.17)

The previous expression is still exact, but the self-energy functional for the reference
system is not available in a closed form, even for very simple cases, as e.g. the atomic
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3.3 Constructing approximations

limit of the Hubbard model. However, we can nevertheless make use of Eq. (3.17), if
both the exact self-energy Σλ′,U and the self-energy functional of the reference system,
evaluated at the exact self-energy, i.e., Ω̂λ′,U [Σλ′,U ] = Ωλ′,U , are accessible. Using
Dyson’s equation (2.33) for the reference system, we find for the self-energy functional
of the original system if evaluated at a trial self-energy taken from the reference system
and parametrized by the set of variational parameters λ′:

Ω̂λ,U [Σλ′,U ] = Ωλ′,U + 1
β

Tr ln
(
G−1
λ,0 −Σλ′,U

)−1
− 1
β

Tr ln
(
Gλ′,U

)
. (3.18)

This shows that an exact evaluation of the general nonequilibrium self-energy functional
is possible on the restricted space of trial self-energies spanned by any reference sys-
tem with the same interaction part, provided that the contour-ordered self-energy and
Green’s function as well as the initial-state grand potential of the reference system can
be computed exactly.
The time-dependent optimal variational parameters λ′opt(z) have to be determined via

the Euler equation (for a schematic illustration see Fig. 3.1):

δΩ̂λ,U [Σλ′,U ]
δλ′(z)

∣∣∣∣∣
λ′(z)=λ′opt(z)

= 0 . (3.19)

We thus have (approximate) access to the initial-state grand potential Ω̂λ,U [Σλ′opt,U
] as

well as to the final-state dynamics via the one-particle Green’s function

GSFT ≡ (G−1
λ,0 −Σλ′opt,U

)−1 (3.20)

on the Keldysh branch. The choice of the reference system specifies the type of approx-
imation. Approximations generated in this way are nonperturbative by construction.
The Hamiltonian Hλ′,U of the reference system must have the same interaction part

as the one of the original system and, for any practical application, must allow for
an exact calculation of the trial self-energy Σλ′,U and of the Green’s function Gλ′,U

by analytical or numerical means. Typically, this is achieved by cutting the original
lattice into disconnected clusters with a small number of sites Lc (Fig. 3.2). To enlarge
the number of variational degrees of freedom locally without changing the interaction
part, a number Lb of uncorrelated “bath sites” may be coupled to each of the reference
system’s correlated sites via a finite hybridization. To formally assure equal Hilbert
space dimensions in the original and in the reference system, bath sites are included in
the original system as well but without a coupling to the physical sites (Fig. 3.2). In
the case of a local (Hubbard-type) interaction and for sufficiently small Lc and Lb, the
reference system can be treated by exact-diagonalization techniques. This comprises
rather different approximations like the variational cluster approach (VCA) with a finite
number of correlated sites but without any additional bath sites (0 < Lc <∞, Lb = 0)
or the dynamical impurity approximation (DIA), for which a finite number of bath sites
is coupled to a single correlated site (Lc = 1, 0 < Lb < ∞). We will apply both
approximations in chapter 5 or 6 respectively.
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3 Nonequilibrium self-energy functional theory

(a) original system (b) reference system

Figure 3.2: Schematic representation of (a) the original system and of (b) a generic
reference system. Large red circles: correlated sites with Hubbard-like local interaction
U . Small blue circles: uncorrelated “bath” sites, i.e., U = 0. Bold black lines: intra-
cluster hopping. Thin blue lines: hybridization, i.e., hopping between correlated and
bath sites in the reference system. Note that in the original system (a) bath sites are
decoupled from the correlated ones. Their presence is helpful for formal reasons to ensure
equal Hilbert space dimensions in (a) and (b).

3.4 Relation to dynamical mean-field theory

Nonequilibrium dynamical mean-field theory is recovered within the SFT framework
when we choose the reference system as a set of completely decoupled correlated sites
(Lc = 1) with an infinite number of bath sites (Lb =∞), i.e., as a set of decoupled single-
impurity Anderson models. For Lc = 1 the trial self-energies are local, i.e., diagonal with
respect to the spatial indices, and the Euler equation (3.19) thus explicitly reads as:

0 =
δΩ̂λ,U [Σλ′,U ]

δλ′(z)

= 1
β

∑
i,σ1σ2

∫
C
dz1dz2

((
G−1
λ,0 −Σλ′,U

)−1
−Gλ′,U

)
ii,σ1σ2

(z1, z2)×

×
δΣλ′,U ;ii,σ2σ1(z2, z

+
1 )

δλ′(z)
. (3.21)

Equation (3.21) would be trivially satisfied if the bracket in the integrand vanished,
which would be nothing but the standard self-consistency equation of DMFT [113, 131,
132]. Thus any solution of the (nonequilibrium) DMFT represents a stationary point of
the SFT – provided that the DMFT self-energy can be represented as the self-energy
Σλ′,U of a single-impurity Anderson Hamiltonian with single-particle (bath) parameters
λ′. The representability of the DMFT action by an actual impurity Hamiltonian with
Lb = ∞ is not straightforward to see for nonequilibrium Green’s functions but can be
shown under rather general conditions [154].
When one considers finite single-impurity models with a small number of bath orbitals,

the bracket in Eq. (3.21) will in general not vanish because the discrete pole structure of
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cluster sizebat
h s

ites

1

2

Lc

∞

1

2

Lb

∞

Hubbard− I

VCADIA

DMFT

CDMFT

CDIA

full solution

Figure 3.3: Summary of various approximations accessible within the SFT by choice of
the reference system. The most simplest one represented by the Hubbard-I approxi-
mation is attained by a single correlated site Lc = 1. By considering larger clusters
Lc > 1 this is extended to variational cluster approaches (VCA). Coupling a finite set
of uncorrelated bath sites Lb > 0 to the single correlated site yields dynamical impurity
approximations (DIA) and in the limit of a continuous bath Lb →∞ the DMFT is recov-
ered. A combination of both leads to the cellular variants of the DIA or the DMFT. For
reference clusters as large as the original system, the full solution is formally contained
in the space of variational parameters, as indicated by the most right line at Lc → ∞.
For the small pictograms representing the reference system the same convention as in
Fig. 3.2 is used and the blue shaded circles stand for continuous baths.

the impurity Green’s function cannot be reconciled with the branch cuts of the Green’s
function for the original model. Due to the presence of the projector δΣλ′/δλ′, however,
stationarity of the self-energy functional is nevertheless possible. This allows to generate
nonperturbative and consistent approximations to DMFT by solving reference systems
with a few degrees of freedom only. In the equilibrium case, this has been shown to be a
highly efficient strategy (see, e.g., Refs. [171, 174]). Furthermore, we shall note that by
choosing a cluster of correlated sites coupled to a continuous bath, the above arguments
extend to the cellular DMFT (C-DMFT) in complete analogy.

3.5 Physical and transverse variations

The variational problem, Eq. (3.19), is posed on the whole contour C, i.e., the self-
energy functional must be stationary with respect to variations of the parameters λ′(z)
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3 Nonequilibrium self-energy functional theory

separately on the Matsubara branch and on both branches of the Keldysh contour.
This generates one imaginary-time and two independent real-time Euler equations which
are obtained by writing Ω̂λ,U [Σλ′,U ] ≡ Ω̂λ,U [Σλ′∨,λ

′
∧,λ
′
M,U

] as a functional of the single
particle parameters λ∨∧(t) on the upper/lower branch of the contour (for real t), as well
as of the parameters λ′M(t0−iτ) on the Matsubara branch. Using a simple transformation
of variables,

λ′phys(t) = 1
2(λ′∨(t) + λ′∧(t)) ,

λ′trans(t) = 1
2(λ′∨(t)− λ′∧(t)) ,

(3.22)

the real-time equations become equivalent to

δΩ̂λ,U [Σλ′phys,λ
′
trans,λ

′
M,U

]
δλ′phys/trans(t)

= 0 . (3.23)

The separation into variations with respect to λ′phys (“physical variations”) and λ′trans
(“transverse variations”) has a simple motivation: In the end, we are only interested in
solutions of the Euler equation by a physical parameter set λ′(z), i.e., one that corre-
sponds to an actual Hamiltonian. These parameters must thus satisfy λ′∨(t) = λ′∧(t),
i.e., λ′trans(t) = 0. In addition, λ′M (t0 − iτ) must not depend on imaginary time (this
is discussed in Sec. 3.7). Transverse variations δλ′trans(t) 6= 0 shift the parameters away
from the physical manifold, while physical variations remain therein.
Let us first consider variations of λ′phys(t). Interestingly, one can show that the self-

energy functional is always stationary with respect to physical variations when evaluated
at a physical parameter set, which satisfies λ′trans(t) = 0, i.e.,

δΩ̂λ,U [Σλ′phys,λ
′
trans,λ

′
M,U

]
δλ′phys(t)

∣∣∣∣∣∣
λ′trans(t)=0

= 0 . (3.24)

To prove Eq. (3.24), we first recall that any function of contour functions (2.25) is
unchanged when the largest time-argument on the Keldysh contour is shifted from the
upper to the lower branch, see Eq. (2.14). Furthermore, with Eq. (2.26) it is easy to see
that in the expression (3.5) for the trace all integrations over the Keldysh branch cancel
for any function with the symmetry (2.14) [see also Eq. 2.25]. Thus the self-energy
functional (3.11), when evaluated at physical parameters, depends on the Matsubara
part of Σλ′,U only. This immediately implies the stationarity condition (3.24).
Stationarity with respect to physical variations locally restricts the solution to the

physical manifold. Thus, a second equation is needed to fix the solution within the
physical manifold. This “second” equation is given by the condition that the self-energy
functional be stationary with respect to the transverse variations, if evaluated at a
physical parameter set:

δΩ̂λ,U [Σλ′phys,λ
′
trans,λ

′
M,U

]
δλ′trans(t)

∣∣∣∣∣∣
λ′trans(t)=0

= 0 . (3.25)
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Equation (3.25) is the central equation of the nonequilibrium SFT.
Let us stress once more that the functional derivative with respect to λ′trans(t) is

a derivative into a “nonphysical” direction in parameter space. This has important
conceptual consequences for the numerical evaluation of the theory. In the vast majority
of previous equilibrium SFT studies, the grand potential Ω̂λ,U [Σλ′,U ] has been computed
for different (static) parameter sets λ′, and algorithms to find a stationary point of a
multi-dimensional scalar function λ′ 7→ Ω̂λ,U [Σλ′,U ] have been employed (see Ref. [209],
for example). In the nonequilibrium case, a similar strategy would require to work
explicitly with Green’s functions that are defined with a different Hamiltonian for the
forward and backward time-evolution. A more convenient strategy, which is worked
out in the following, is to carry out the functional derivative analytically and to solve
the resulting Euler equation by numerical means. The analytical expressions for the
functional derivatives are then given by higher order correlation functions evaluated at
the physical parameters.

3.6 Evaluation of the Euler equation

We focus on Eq. (3.18) again and perform the functional derivative in Eq. (3.19) ana-
lytically. This is most conveniently done by considering the variational parameters as
functions of the contour variable, i.e., λ′(z) with z ∈ C, instead of treating λ∨∧(t) and
λM(t0 − iτ) separately.
Using the chain rule, we find:

δΩ̂λ,U [Σλ′,U ]
δλ′α1α2(z) = Tr

(
δΩ̂λ,U [Σλ′,U ]

δΣλ′,U
◦

δΣλ′,U

δλ′α1α2(z)

)
. (3.26)

The first factor is given by Eq. (3.13) but can be rewritten in a more convenient way.
We define the difference between the one-particle parameters of the original and of the
reference system as

Λ(z) = λ(z)− λ′(z) , (3.27)

which immediately leads to the following relation of the respective free Green’s functions
[see Eq. 2.31]

G−1
λ′,0(1, 2) = G−1

λ,0(1, 2) + δC(z1, z2)Λα1α2(z2) . (3.28)

With this and with Dyson’s equation for the reference system we get

G−1
λ,0(1, 2)− Σλ′,U (1, 2) = G−1

λ′,0(1, 2)− δC(z1, z2)Λα1α2(z2)− Σλ′,U (1, 2)

= G−1
λ′,U

(1, 2)− δC(z1, z2)Λα1α2(z2) . (3.29)

Plugged into the definition of the SFT Green’s function, Eq. (3.20), we get the following
Dyson-like equation [cf. Eqs. 2.33 and 2.34]

GSFT = Gλ′,U +Gλ′,UΛ ◦GSFT , (3.30)
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3 Nonequilibrium self-energy functional theory

which constitutes the nonequilibrium cluster-perturbation theory [160]. One may for-
mally resort the perturbative expansion of the preceding Eq. (3.30), i.e.,

GSFT = Gλ′,U +Gλ′,UΛ ◦Gλ′,U +Gλ′,UΛ ◦Gλ′,UΛ ◦Gλ′,U + . . . (?)

= Gλ′,U +Gλ′,U

[
Λ + Λ ◦Gλ′,UΛ + . . .

]
◦Gλ′,U

= Gλ′,U +Gλ′,U

[
Λ + Λ ◦

(
Gλ′,U +Gλ′,UΛ ◦Gλ′,U + . . .

)
Λ
]
◦Gλ′,U

(?)= Gλ′,U +Gλ′,U

[
Λ + Λ ◦GSFTΛ

]
◦Gλ′,U , (3.31)

and define the T -matrix as

Y λ′,λ,U (z1, z2) = Λ(z1)δC(z1, z2) + Λ(z1)GSFT(z1, z2)Λ(z2) , (3.32)

to arrive at the related Lippmann-Schwinger equation

GSFT = Gλ′,U +Gλ′,U ◦ Y λ′,λ,U ◦Gλ′,U . (3.33)

This eventually yields

δΩ̂λ,U [Σλ′,U ]
δΣλ′,U

= 1
β
Gλ′,U ◦ Y λ′,λ,U ◦Gλ′,U (3.34)

for the first factor in Eq. (3.26).
To evaluate the second factor, the Dyson equation for the reference system is used

once more to get Σλ′,U = G−1
λ′,0 −G

−1
λ′,U

. The λ′-dependence of the inverse free Green’s
function is simple and given by G−1

λ′,0(1, 2) = δC(z1, z2)δα1,α2i∂z2 − δC(z1, z2)(λ′α1α2(z2)−
δα1α2µ) [see Eq. 2.31]. We thus get:

δΣλ′,U (3, 4)
δλ′α1α2(z1) = −δC(z3, z4)δα3α1δC(z4, z1)δα4α2

+
∫∫

d5d6G−1
λ′,U

(3, 5)
δGλ′,U (5, 6)
δλ′α1α2(z1) G

−1
λ′,U

(6, 4) . (3.35)

The functional derivative of the Green’s function is straightforwardly obtained by making
use of the properties of the time ordering operator and the exponential function and reads

δGλ′,U (5, 6)
δλα1α2(z3) = Gλ′,U (5, 6) Gλ′,U (2, 1+)

∣∣∣
z2=z1

− G
(2)
λ′,U

(5, 2, 1+, 6)
∣∣∣
z2=z1

, (3.36)

where G(2)
λ′,U

is the two-particle Green’s function of the reference system.
Combining this with Eq. (3.34), we finally get the derivative of the self-energy func-

tional with respect to λ′(z1) in the form:

δΩ̂λ,U [Σλ′,U ]
δλ′α1α2(z1) = − 1

β

∫∫
d3d4Yλ′,λ,U (4, 3) Lλ′,U (3, 2, 1+, 4)

∣∣∣
z2=z1

, (3.37)
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where

Lλ′,U (1, 2, 3, 4) = Gλ′,U (2, 4)Gλ′,U (1, 3)

− Gλ′,U (1, 4)Gλ′,U (2, 3) + G
(2)
λ′,U

(1, 2, 3, 4) (3.38)

is the two-particle (four-point) vertex function with external legs.
Therewith, we have the Euler equation of the nonequilibrium SFT

K(0)[λ′]α2α1(t1) :=
∫∫

d3d4Yλ′opt,λ,U
(4, 3) Lλ′opt,U

(3, 2, 1+, 4)
∣∣∣
z2=z1=t1

= 0 , (3.39)

which after the functional derivative with respect to λ′ has been carried out, can be eval-
uated on the physical parameter-space, made explicit by the dependence on the physical
time t1 in the above equation. This result will be needed both for the numerical determi-
nation of the stationary point and for working out the relation between nonequilibrium
and conventional equilibrium SFT. Note that for brevity we defined a new functional
K(0)[λ′] = −βδΩ̂λ,U [Σλ′,U ]/δλ′.

3.7 Thermal equilibrium and initial state

Nonequilibrium SFT reduces to the conventional equilibrium formalism for a system
where λ(z) and U(z) are constant on the entire contour C, i.e., for the case H(t) =
const. = H(t0). To prove this fact explicitly, we have to show that a stationary point of
the equilibrium SFT functional, which determines time-independent optimal parameters
λ′opt, is also a stationary point of the more general nonequilibrium Euler equation (3.19),
i.e., of Eq. (3.39), when λ(z) and U(z) are constant.
Equilibrium SFT is obtained from the more general nonequilibrium formalism by re-

stricting the functional (3.18) to the Matsubara branch of the contour, and furthermore,
by considering time-independent and physical variations only, i.e., the trial self-energy
Σλ′,U is obtained as the Matsubara self-energy of a Hamiltonian with constant parame-
ters λ′, and the parameters are varied to make Ω̂λ,U [Σλ′,U ] stationary. In the language
of the more general nonequilibrium SFT formalism, those variations correspond to a
variation δλ(z) which is constant along the whole contour, i.e.,

∂Ω̂λ,U [Σλ′,U ]
∂λ′

=
∫
C
dz

δΩ̂λ,U [Σλ′,U ]
δλ′(z) . (3.40)

Note that the integrations over the upper and lower branch of the Keldysh contour cancel,
as discussed in connection with Eq. (3.24) and shown for Eq. (2.26). We now suppose
that the original Hamiltonian is time-independent, and that λ′opt is a solution of the
equilibrium SFT formalism, i.e., the single variational equation ∂Ω̂λ,U [Σλ′,U ]/∂λ′|λ′opt

=
0 is satisfied.
To see that the parameters λ′opt also represent a solution of the nonequilibrium SFT,

we must show that all other variations, including physical, transverse, and Matsubara
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ones, vanish as well. For this it is sufficient to show that the general variational equation
becomes time-translationally invariant, i.e., that the expression

δΩ̂λ,U [Σλ′,U ]
δλ′(z)

∣∣∣∣∣
λ′(z)=λ′opt

(3.41)

does not depend on z.
Consider a time z on the Matsubara branch first. Invariance under translations of

imaginary time is most easily seen from the explicit expression (3.37) for the variational
derivative: For z1 = t0− iτ1, the integrals in Eq. (3.37) reduce to the Matsubara branch.
Furthermore, the two functions L and Y in the integrand are translationally invariant in
imaginary time as they are evaluated at τ -independent parameters λ′. More precisely,
we can write L(τ3, τ1, τ

+
1 , τ4) ≡ L̃(τ3 − τ1, τ4 − τ1) and Y (τ3, τ4) ≡ Ỹ (τ3 − τ4) with

functions L̃ and Ỹ that are anti-periodic under τ → τ + β. After a shift of variables it
is easily seen that the integral in Eq. (3.37) does not depend on z1.
For z1 on the Keldysh branch, on the other hand, time-translational invariance of

Eq. (3.41) can be seen from a Lehmann representation (or spectral representation) of
the functions L and Y . The explicit calculation is more tedious and presented in the
following. To this end, we start with Eq. (3.37) and make all contour integrations
explicit:

−β
δΩ̂λ,U [Σλ′,U ]
δλ′α1α2(t1) =

=
∫
d3
∫
d4 Yλ′,λ,U (4, 3)Lλ′,U (3, 2, 1+, 4)

∣∣∣
z2=z1=t1

=
∑
α3α4

∫
dz3 Y

δ
43(z3)L3214(z3, t1, t

+
1 , z

+
3 ) (3.42)

+
∑
α3α4

∫ t1

t0
dt3

∫ t3

t0
dt4 Y

<
43(t4, t3)L3>

3214(t3, t1, t+1 , t4) (3.43)

+
∑
α3α4

∫ t1

t0
dt3

∫ t1

t3
dt4 Y

>
43(t4, t3)L3<

3214(t3, t1, t+1 , t4) (3.44)

−
∑
α3α4

∫ t1

t0
dt3

∫ t1

t0
dt4 Y

<
43(t4, t3)L2>

3214(t3, t1, t+1 , t4) (3.45)

−
∑
α3α4

∫ t1

t0
dt3

∫ t1

t0
dt4 Y

>
43(t4, t3)L2<

3214(t3, t1, t+1 , t4) (3.46)

+
∑
α3α4

∫ t1

t0
dt3

∫ t1

t3
dt4 Y

<
43(t4, t3)L1>

3214(t3, t1, t+1 , t4) (3.47)

+
∑
α3α4

∫ t1

t0
dt3

∫ t3

t0
dt4 Y

>
43(t4, t3)L1<

3214(t3, t1, t+1 , t4) (3.48)

− i
∑
α3α4

∫ t1

t0
dt3

∫ β

0
dτ4 Y

>
43(t0 − iτ4, t3)L2<

3214(t3, t1, t+1 , t0 − iτ4) (3.49)
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+ i
∑
α3α4

∫ t1

t0
dt3

∫ β

0
dτ4 Y

>
43(t0 − iτ4, t3)L1<

3214(t3, t1, t+1 , t0 − iτ4) (3.50)

− i
∑
α3α4

∫ β

0
dτ3

∫ t1

t0
dt4 Y

<
43(t4, t0 − iτ3)L2>

3214(t0 − iτ3, t1, t
+
1 , t4) (3.51)

+ i
∑
α3α4

∫ β

0
dτ3

∫ t1

t0
dt4 Y

<
43(t4, t0 − iτ3)L1>

3214(t0 − iτ3, t1, t
+
1 , t4) (3.52)

−
∑
α3α4

∫ β

0
dτ3

∫ τ3

0
dτ4 Y

<
43(t0 − iτ4, t0 − iτ3)L1>

3214(t0 − iτ3, t1, t
+
1 , t0 − iτ4) (3.53)

−
∑
α3α4

∫ β

0
dτ3

∫ β

τ3
dτ4 Y

>
43(t0 − iτ4, t0 − iτ3)L1<

3214(t0 − iτ3, t1, t
+
1 , t0 − iτ4) . (3.54)

Here we have split up the T -matrix Y into a singular, lesser and greater part (see
Eq. 2.24):

Y λ′,λ,U (z1, z2) = Λ(z1)δC(z1, z2) + Λ(z1)GSFT(z1, z2)Λ(z2) (3.55)
=: Y δ

λ′,λ,U (z1)δC(z1, z2) + ΘC(z1, z2)Y >
λ′,λ,U (z1, z2)

+ ΘC(z2, z1)Y <
λ′,λ,U (z1, z2) . (3.56)

For the two-particle vertex function Lλ′,U [Eq. 3.38], the notation Li≷(z3, z1, z
+
1 , z4)

indicates that z1 is the i-th time on the contour and that z3 is a later/earlier contour-
time than z4. Note that we write Li≷3214 which is short for Li≷α3α2α1α4 and that the indexing
with the parameters λ′ and U has been suppressed for brevity.
To evaluate the above integrations in equilibrium, we express the T -matrix via its

spectral representation [206] with the respective spectral function AY , i.e.,

Y ≷(z1, z2) = i

∫
dω e−iω(z1−z2)f≷(ω)AY (ω) , (3.57)

with f<(ω) = f(ω) and f>(ω) = f(ω) − 1 and where f(ω) is the Fermi function. This
also implies

f>(ω) = −eωβf<(ω) . (3.58)

For the two-particle vertex function we choose the Lehmann representation by insert-
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3 Nonequilibrium self-energy functional theory

ing the completeness relation 1 =
∑
m |m〉 〈m| between all operators. We find

L3>(3, 2, 1+, 4)z2=z1 =∑
mnkl

[
− Pmnkl3214 e

−βEme−βEkei(Em+Ek−En−El)z1ei(En−Em)z3ei(El−Ek)z4

+ P̃mnkl3214 e
−βEme−βEkei(Em−En)z3ei(En−Em)z4

−Qmnkl3214 e
−βEmei(Em−Ek)z1ei(Ek−El)z3ei(El−Em)z4

]
, (3.59)

L3<(3, 2, 1+, 4)z2=z1 =∑
mnkl

[
− Pmnkl3214 e

−βEme−βEkei(Em+Ek−En−El)z1ei(En−Em)z3ei(El−Ek)z4

− P̃mnkl3214 e
−βEne−βEkei(Em−En)z3ei(En−Em)z4

+ Q̃mnkl3214 e
−βEmei(Em−Ek)z1ei(El−Em)z3ei(Ek−El)z4

]
, (3.60)

and similar expressions for L1≷ and L2≷. For the amplitudes we used the short-hand
notations:

Pmnkl3214 = (−i)2

Z2 〈m|c
†
1|n〉〈n|c3|m〉〈k|c2|l〉〈l|c

†
4|k〉 , (3.61)

P̃mnkl3214 = (−i)2

Z2 〈m|c3|n〉〈n|c
†
4|m〉〈k|c

†
1|l〉〈l|c2|k〉 , (3.62)

Qmnkl3214 = (−i)2

Z2 〈m|c
†
1|n〉〈n|c2|k〉〈k|c3|l〉〈l|c

†
4|m〉 , (3.63)

Q̃mnkl3214 = (−i)2

Z2 〈m|c
†
1|n〉〈n|c2|k〉〈k|c

†
4|l〉〈l|c3|m〉 , (3.64)

where Z = tr(exp(−βH′(t0))) is the partition function.
Let us first focus on those terms involving only greater and lesser parts of Y λ′,λ,U

[Eqs. 3.43 – 3.54] and evaluate them for each amplitude [Eqs. 3.61 – 3.64] separately.
For this purpose we write all summands (3.43) – (3.54) in the compact form

i
∑
α3α4

∑
mnkl

∑
X

∫
dω f(ω)AY43(ω)Xmnkl

3214 RXmnkl(ω, t1) . (3.65)

To this end, we have made use of Eq. (3.58) and factored out all common terms for each
combination of amplitudes Xmnkl

3214 , where X stands for P, P̃ ,Q, or Q̃. The remaining
exponential factors, resulting from the time-evolution operator and the density matrix
when introducing the Lehmann representation, and the two time integrations along the
different branches are collected in the term RXmnkl(ω, t1) for each X. As an example, we
give an expression for RQmnkl(ω, t1) in the following and tag each summand according to
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3.7 Thermal equilibrium and initial state

its origin in the above expression for −βδΩ̂λ,U [Σλ′,U ]/δλ′α1α2(t1):

RQmnkl(ω, t1) =

− e−βEm
(
−IQc′ + IQa′ + IQb1

− IQa
)

(from 3.43)

+ e−β(El−ω)
(
−IQc + IQb1

+ IQb2
− IQa

)
(from 3.46)

− e−βEk
(
−IQc + IQb2

+ IQc′ − I
Q
a′

)
(from 3.47)

+
(
e−βEm − e−β(El−ω)

) (
IQb1
− IQa

)
(from 3.49)

+
(
e−βEk − e−β(El−ω)

) (
IQb2
− IQa

)
(from 3.52)

+
[(
e−βEm − e−βEk

)
IQa′ +

(
e−βEk + e−β(El−ω)

)
IQa
]
. (from 3.53)

Here, the results of the different integrals are given by:

IQa := IQa,mnkl(ω, t1) = 1
El − Em − ω

1
Ek − El + ω

ei(Em−Ek)(t1−t0) , (3.66)

IQa′ := IQa′,mnkl(ω, t1) = 1
El − Em − ω

1
Ek − Em

ei(Em−Ek)(t1−t0) , (3.67)

IQb1
:= IQb1,mnkl

(ω, t1) = 1
El − Em − ω

1
Ek − El + ω

ei(Em−El+ω)(t1−t0) , (3.68)

IQb2
:= IQb2,mnkl

(ω, t1) = 1
El − Em − ω

1
Ek − El + ω

ei(El−Ek−ω)(t1−t0) , (3.69)

IQc := IQc,mnkl(ω) = 1
El − Em − ω

1
Ek − El + ω

, (3.70)

IQc′ := IQc′,mnkl(ω) = 1
El − Em − ω

1
Ek − Em

. (3.71)

By collecting prefactors, we find that all explicitly t1-dependent parts drop out and that
only those containing IQc and IQc′ contribute. Analogous calculations lead to the same
result for P , P̃ and Q̃, and we thus conclude:

RXmnkl(ω, t1) = RXmnkl(ω) ∀X . (3.72)

The singular part
∑
α3α4

∫
dz3 Y

δ
43(z3)L3214(z3, t1, t

+
1 , z

+
3 ) [Eq. 3.42] is evaluated straight-

forwardly and also turns out to be independent of the time t1. This completes the proof.
For a general nonequilibrium situation with H(t) 6= const. the above argument can

be used to show that the causality principle is satisfied by the nonequilibrium SFT:
Satisfying the general variational equation (3.19) for all variations of λ′(t0 − iτ) on the
Matsubara branch requires that the optimal parameters on the Matsubara branch are
τ -independent and must be given by a solution of the equilibrium SFT. This shows that
the description of the initial state is independent from the final-state dynamics.
We also note that, as in the equilibrium case, the self-energy functional evaluated at

the stationary point, Ω̂λ,U [Σλ′opt,U
], has a clear physical meaning: It represents the (ap-

proximate) grand potential of the initial thermal state. Provided that there are several
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3 Nonequilibrium self-energy functional theory

stationary points for a given set of (time-dependent) parameters of the original system,
the one with the lowest grand potential in the initial state describes the thermodynam-
ically stable initial state and the emerging final-state dynamics. Furthermore, provided
that the same type of reference system is considered, the (approximate) description of
the initial state is on equal footing with the one for the final state. Concluding, the
nonequilibrium SFT is a true extension of the equilibrium SFT.

3.8 Internal consistency

The SFT provides access to time-dependent expectation values of arbitrary one-particle
observables as well as to the grand potential of the initial thermal state. An exact
relation between both quantities can be derived by formally extending the grand canon-
ical density operator to the whole Keldysh-Matsubara contour, such that the partition
function reads as Zλ,U = tr(TCe−i

∫
C dzHλ,U (z)) (see also discussion in Sec. 2.3). The

grand potential Ωλ,U = −β−1 lnZλ,U then becomes a functional of the (contour)-time
dependent single-particle parameters of the model. We now consider an arbitrary one-
particle observable of the form A(z) =

∑
αβ aαβ(z)c†αcβ (cf. Eq. 2.39) which couples

linearly to the Hamiltonian Hλ,U (z) = H
(0)
λ̃,U

(z) + λA(z)A(z) via a time-dependent pa-
rameter λA(z). The set of one-particle parameters λ(z) comprises λA(z) as well as the
remaining parameters λ̃(z). Then, the expectation value of A(z) can be obtained via
the linear-response relation

〈A(z)〉λ,U = −iβ δΩλ,U
δλA(z)

∣∣∣∣
λA(z)=0

, (3.73)

where only the variational derivative in the “transverse” but not in the “physical” con-
tributes, as discussed in Sec. 3.5.
On the other hand the expectation value may be computed from the one-particle

Green’s function as:

〈A(z)〉λ,U = −i tr
(
a(z)Gλ,U (z, z+)

)
. (3.74)

The SFT provides approximate expressions for the grand potential as well as for the
expectation value. However, one can show that these approximations are consistent, i.e.:

δΩ̂λ,U [Σλ′opt,U
]

δλA(z)

∣∣∣∣∣
λA(z)=0

= 1
β

tr
(
a(t)GSFT(z, z+)

)
, (3.75)

where GSFT is the SFT Green’s function [see Eq. 3.20]. Here Ω̂λ,U [Σλ′opt,U
] is the grand

potential at the optimal parameters of the reference system which still can be considered
as a functional of the time-dependent parameters of the original system and of λA(z) in
particular. Eq. (3.75) represents a generalization of the “thermodynamical consistency”
that has been shown in the context of the equilibrium formalism already [210].
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3.9 Conservation laws

To prove Eq. (3.75), we note that its left-hand side has a twofold dependence on λA(z):
(i) via the free Green’s function of the original model, G−1

λ,0, which enters the second term
in Eq. (3.18), and (ii) via the optimized parameters λ′opt(z) which depend on the time-
dependent parameters in the final state of the original system. Consequently, there are
two terms resulting from the derivative:

δΩ̂λ,U [Σλ′opt,U
]

δλA(z) = tr

δΩ̂λ,U [Σλ′opt,U
]

δλ′opt
◦
δλ′opt
δλA(z)


+ tr

δΩ̂λ,U [Σλ′opt,U
]

δλ
◦ δλ

δλA(z)

 . (3.76)

Internal consistency is achieved because of the stationarity of the self-energy functional
at λ′opt(z), which implies that the first term must vanish. Using Eqs. (3.11) and (3.12),
the functional derivative with respect to λ(z) in the second term is found to be:

δΩ̂λ,U [Σλ′opt,U
]

δλ(z) = 1
β
GSFT(z, z+) . (3.77)

The second factor δλ/δλA yields a(t), which proves Eq. (3.75).

3.9 Conservation laws

Approximations cannot be expected a priori to respect fundamental conservation laws
that result from the invariance of the Hamiltonian under certain continuous groups of
unitary transformations. In fact, conservation of the total particle number, the total
spin or the total energy are certainly violated within simple non-self-consistent or non-
variational schemes such as the nonequilibrium cluster-perturbation theory – apart from
certain highly symmetric situations such as given by the Hubbard model on a bipar-
tite lattice at half-filling [160, 211, 212]. A general theory for real-time dynamics must
therefore address the question under which conditions an approximation is conserving.
With respect to self-consistent perturbative approximations, this question has been

answered by Baym and Kadanoff [118, 119]: A diagrammatic approximation is defined
by a certain truncation of the skeleton-diagram expansion of the self-energy, which yields
the self-energy as a functional of the Green’s function; see Eq. (3.3) and the discussion
thereafter. Combined with Dyson’s equation, which provides an independent relation
between self-energy and Green’s function, the problem can be solved using an iterative
and self-consistent approach. A perturbative approximation is found to be conserving
if the (truncated) skeleton-diagram expansion of the self-energy is obtained as the func-
tional derivative of an approximate Luttinger-Ward functional that itself is constructed
by truncations and re-summations within diagrammatic weak-coupling perturbation the-
ory, i.e., the self-energy must be “Φ-derivable”. Approximations constructed in this way
are conserving.
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3 Nonequilibrium self-energy functional theory

Contrary, approximations generated within the framework of the SFT are nonper-
turbative and do not rely on diagrammatic re-summations. While the Luttinger-Ward
functional is essential for the construction of the SFT, and while the SFT self-energy is
obtained as its functional derivative, approximations are generated in a very different way
as compared to perturbation theory. Namely, instead of truncating the Luttinger-Ward
functional diagrammatically, it is restricted to a sub-manifold of self-energies generated
by some (simpler) reference system.
Note that the DMFT, as the most prominent approximation in this context, represents

an exception. DMFT can be understood as an approximation generated within the SFT
framework (see Sec. 3.4). At the same time, DMFT is a Φ-derivable approximation
in the spirit of Baym and Kadanoff as it can be constructed diagrammatically from a
truncated Luttinger-Ward functional involving local propagators only.
In the following we will modify and adapt the essential ideas of Baym and Kadanoff to

analyze under which circumstances an arbitrary approximation constructed within the
SFT framework is conserving. The important point observed by Baym and Kadanoff
is that the fundamental conservation laws, reformulated in terms of the self-energy and
the Green’s function, result from invariances of the Luttinger-Ward functional under
appropriate gauge transformations of the Green’s function:

0 = δΦ̂U [Gλ,U ]

= 1
β

Tr (Σλ,U ◦ δGλ,U ) . (3.78)

Within SFT, the self-energy functional is in fact constructed with the help of the
Luttinger-Ward functional, see Eqs. (3.9) and (3.11). However, it does not inherit its
gauge invariance. Nevertheless, the Euler equation provides the analog of Eq. (3.78) at
the stationary point:

0 = δΩ̂λ′,U [Σλ′,U ]
∣∣∣
λ′=λ′opt

= 1
β

Tr
((
GSFT −Gλ′,U

)
◦ δΣλ′,U

)∣∣∣
λ′=λ′opt

, (3.79)

i.e., by construction the variation of the grand potential Ω̂λ,U [Σλ′,U ] with respect to an
arbitrary set of one-particle parameters of the reference system λ′ vanishes, if evaluated
at the optimal parameters. Thus, the goal is to identify a certain class of parameter
variations which generates, via Eq. (3.79), the necessary conditions on the SFT Green’s
function and the self-energy from which the conservation laws derive, namely Eqs. (2.45)
and (2.56).

3.9.1 Particle number and spin conservation

Within SFT the real-time dynamics of one-particle observables (cf. Sec. 2.4.1) is deter-
mined by the approximate Green’s function GSFT, as given by Eq. (3.20), i.e.,

〈A〉(t) = −i tr
(
a(t)GSFT(t, t+)

)
. (3.80)
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The SFT self-energy is the self-energy of a reference system with one-particle parameters
λ′. Both are taken at optimal parameter values λ′opt satisfying the SFT Euler equation,
Eq. (3.19). Thus, in accordance with Eq. (2.45), our goal is to show that∑

σσ′

aσσ′
[
GSFT ◦, Σλ′opt,U

]
ii,σ′σ

(t, t+) = 0 . (3.81)

This would be sufficient to ensure that an approximation constructed within the SFT
framework respects the conservation of particle number and spin even locally.
To this end we consider the following gauge transformations of the one-particle pa-

rameters of the reference system λ′ 7→ λ̄
′,

ε′(z) 7→ ε̄′(z) = ε′(z)− ∂zχ(z) ,

T ′(z) 7→ T̄
′(z) = eiχ(z)T ′(z)e−iχ(z) ,

(3.82)

where ε′ denotes the (spatially) diagonal part of λ′ and T ′ its off-diagonal part. The
gauge transformation is generated by a spatially diagonal contour function χ of the form

χij,σσ′(z) = δijχi(z)aσσ′ . (3.83)

To ensure a Hermitian reference system, χ must be real but can be chosen arbitrary
in other respects. Note that χ commutes with ε′, which will become important later.
This is trivially satisfied in the case Ai = ni [cf. Eq. 2.43], and also holds in the case
Ai = S

(η)
i [cf. Eq. 2.43], provided that ε′ is independent of spin indices. The latter is a

necessary condition to ensure total spin conservation in the reference system.
The next step is to show that the above gauge transformation of the one-particle

parameters λ′ implies that the exact Green’s function G′ ≡ Gλ′,U and the exact self-
energy Σ′ ≡ Σλ′,U of the reference system transform as:

G′(z1, z2) 7→ Ḡ
′(z1, z2) = eiχ(z1)G′(z1, z2)e−iχ(z2) , (3.84)

and

Σ′(z1, z2) 7→ Σ̄′(z1, z2) = eiχ(z1)Σ′(z1, z2)e−iχ(z2) . (3.85)

We first note that Eq. (3.84) implies Eq. (3.85), which is verified by referring to the
(exact) skeleton-diagram expansion Σ̄′ = Σ̂U [Ḡ′] [cf. Eq. 2.37 and 2.38]: Inserting the
transformed Ḡ′, the phase factors of the incoming and the outgoing propagators cancel
at each internal vertex. Only at the two links for the external legs the phase factors do
not find a counterpart. This leaves us with the two phase factors at the transformed
self-energy in Eq. (3.85). In order to verify Eq. (3.84), it is sufficient to show that the
transformed Green’s function and the transformed self-energy satisfy the equation of
motion for the transformed parameters:

i∂z1Ḡ
′(z1, z2) = δC(z1, z2) + λ̄′(z1)Ḡ′(z1, z2) + (Σ̄′ ◦ Ḡ′)(z1, z2) . (3.86)
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To verify this, we first compute the left-hand side of Eq. (3.86):

i∂z1Ḡ
′(z1, z2) = eiχ(z1)i∂z1G

′(z1, z2)e−iχ(z2)

− (∂z1χ(z1))eiχ(z1)G′(z1, z2)e−iχ(z2) . (3.87)

To treat the second term on the right-hand side of Eq. (3.86), we distinguish between
(spatially) diagonal and off-diagonal parts of the one-particle parameters and apply the
respective transformation laws, Eq. (3.82). This yields:

λ̄
′(z1)Ḡ′(z1, z2)

= ε̄′(z1)Ḡ′(z1, z2) + T̄ ′(z1)Ḡ′(z1, z2)
= ε′(z1)eiχ(z1)G′(z1, z2)e−iχ(z2) + eiχ(z1)T ′(z1)e−iχ(z1)eiχ(z1)G′(z1, z2)e−iχ(z2)

− (∂z1χ(z1))eiχ(z1)G′(z1, z2)e−iχ(z2)

= eiχ(z1)λ′(z1)G′(z1, z2)e−iχ(z2) − (∂z1χ(z1))eiχ(z1)G′(z1, z2)e−iχ(z2) . (3.88)

In the last step we made use of the commutativity of ε′ and χ. The second terms in
Eq. (3.87) and in Eq. (3.88) cancel each other. Finally, we have (Σ̄′ ◦ Ḡ′)(z1, z2) =
eiχ(z1)(Σ′ ◦G′)(z1, z2)e−iχ(z2) and δC(z1, z2) = eiχ(z1)δC(z1, z2)e−iχ(z2). Thus, collecting
all terms, plugging these into Eq. (3.86) and canceling the phase factors eiχ(z1) and
e−iχ(z2), we conclude that the transformed equation of motion is solved by the trans-
formed Green’s function and self-energy if the original one was solved by the original
quantities.
A first-order variation of the one-particle parameters of the reference system, given by

δχ(z) leads to the following first-order variation of the self-energy (cf. Eq. (3.85)):

δΣ′(z1, z2) = iδχ(z1)Σ′(z1, z2)− iΣ′(z1, z2)δχ(z2) . (3.89)

This leads to a first-order variation δΩ̂λ,U [Σλ′,U ] which vanishes for optimal values of
the variational parameters λ′, provided that the variation δT ′ = iδχT ′ − iT ′δχ and
δε′ = −∂zδχ of the reference parameters induced by Eq. (3.82) are chosen to be part
of our variational space. We insert Eq. (3.89) into the SFT Euler equation, as given by
Eq. (3.79), and use Eq. (3.83) to get

0 = βδΩ̂λ,U [Σλ′,U ]
∣∣∣
λ′=λ′opt

= −i
∑
i,σσ′

∫
C
dz aσσ′

( [
GSFT ◦, Σλ′opt,U

]
+
[
Gλ′opt,U

◦, Σλ′opt,U

] )
ii,σ′σ

(z, z+)δχi(z) . (3.90)

Since this holds for arbitrary first-order variations δχi(z), the term
∑
σσ′ aσσ′(· · · ) must

vanish. Consider the second term in the bracket: The condition
∑
σσ′ aσσ′ [Gλ′opt,U

◦,

Σλ′opt,U
]ii,σ′σ(z, z+) = 0 is just equivalent with local particle-number and spin conserva-

tion in the reference system [see Eq. 2.45]. Therefore, if this is satisfied, the first term
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in the bracket must vanish as well, i.e., Eq. (3.81) is inferred. It is quite intuitive that
particle-number and spin conservation is respected by an approximation within the SFT
only if it is exactly satisfied for the reference system that has been chosen to specify the
approximation. We conclude that within the SFT particle-number and spin conserva-
tion is proliferated from the reference system, where it must hold exactly, to the original
system, where it holds when formulated with the approximate SFT Green’s function and
self-energy.
The conservation laws are ensured by stationarity of the SFT grand potential with

respect to the parameter variations defined by Eq. (3.82). Note that ε′ and T ′ are not
varied independently, i.e., particle-number and spin conservation requires stationarity
with respect to variations along certain directions in the parameter space. In particular,
complex hopping-parameter variations must be taken into account. Stationarity with
respect to other directions can, of course, be imposed additionally.
The calculations above also show that conservation of the total particle-number and

the total spin are respected with site-independent variations, i.e., with a site-independent
χi(z) = χ(z) only. For the case of the particle number, this is equivalent with an
arbitrarily time-dependent but spatially homogeneous variation of the on-site energies
only as the phase factors in the transformation law for the off-diagonal parameters cancel
each other. Analogously, the total spin is conserved within SFT if an arbitrarily time-
dependent but spatially homogeneous magnetic field coupling to the total spin of the
reference system is treated as a variational parameter.

3.9.2 Energy conservation

The case of energy conservation is more elaborate. This is related to the fact that the SFT
is a variational approach which focuses on one-particle quantities, i.e., on the variational
optimization of the one-particle self-energy and thus of the one-particle Green’s function,
while the interaction part of the total energy is a two-particle quantity. Fortunately, it
can be expressed in terms of the one-particle Green’s function and self-energy using the
equation of motion, as we discussed in Sec. 2.4.2. We can therefore proceed analogously
to particle-number and spin conservation and again try to make use of the ideas of Baym
and Kadanoff [118, 119]. Complications are nevertheless to be expected and found in
fact.
Adopting Eqs. (2.50) and (2.52), the kinetic (and potential) energy Ekin(t) and the

interaction energy Eint(t) when evaluated within the SFT read

Ekin(t) = −i tr
(
λ′opt(t)GSFT(t, t+)

)
, (3.91)

Eint(t) = − i4 tr
(
(Σλ′opt,U

◦GSFT +GSFT ◦Σλ′opt,U
)(t, t+)

)
. (3.92)

An approximation constructed within the SFT will respect energy balance if Eq. (2.56)
holds but with Σ replaced by Σλ′opt,U

and with G replaced by GSFT. Thus, the goal
is to find a class of transformations of the one-particle parameters such that their cor-
responding first-order variations around the stationary point generate the mentioned
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equation (2.56) as the SFT Euler equation. In principle, this can be achieved with

λ′(z) 7→ λ̄
′(z) = i(1− θ̇−1/2)∂z + i

4 θ̇
−3/2θ̈ + θ̇1/2λ′(θ) , (3.93)

where θ(z) is an arbitrary real function on the contour with ∂zθ(z) 6= 0 which describes
a transformation of the time scale. Note that due to the term ∝ ∂z the action of λ̄′(z)
is nonlocal in time. This is a severe complication if λ̄′(z) should represent parameters
of an actual impurity Hamiltonian, as discussed in Sec. 3.9.3 below. It is nevertheless
illustrative to see how energy conservation can be derived if the self-energy functional is
stationary under the variations defined by Eq. (3.93).
The time-dependent transformation of the one-particle parameters induces a corre-

sponding transformation of the exact Green’s function G′ ≡ Gλ′,U and of the exact
self-energy Σ′ ≡ Σλ′,U of the reference system. For G′ we have:

G′(z1, z2) 7→ Ḡ
′(z1, z2) = θ̇

1/4
1 G′(θ1, θ2)θ̇1/4

2 , (3.94)

where the short hand notation θ1 = θ(z1) and θ̇1 = ∂z1θ(z1) etc. is used. Via the skeleton-
diagram expansion Σ′ = Σ̂U [G′] [cf. Eq. 2.37], this induces the following transformation
of the self-energy:

Σ′(z1, z2) 7→ Σ̄′(z1, z2) = θ̇
3/4
1 Σ′(θ1, θ2)θ̇3/4

2 . (3.95)

Namely, any internal vertex at time zi connects to four propagators and thereby collects
a factor θ̇i by which the implicit zi integration can be transformed into a θi integration.
The factors θ̇3/4

1 and θ̇3/4
2 in Eq. (3.95) result from the three incoming and outgoing prop-

agators at the two “external” vertices. Now, Eq. (3.94) is verified by showing that the
asserted expression for the transformed Green’s function Ḡ′(z1, z2) together Eq. (3.95)
satisfies the equation of motion for transformed one-particle parameters, Eq. (3.93).
Again, a proof for this is given in the following. To verify the transformed equation of
motion,

i∂z1Ḡ
′(z1, z2) = δC(z1, z2) + λ̄′(z1)Ḡ′(z1, z2) + (Σ̄′ ◦ Ḡ′)(z1, z2) , (3.96)

we first compute the left-hand side:

i∂z1Ḡ
′(z1, z2) = i∂z1

(
θ̇

1/4
1 G′(θ1, θ2)θ̇1/4

2

)
= i

4 θ̇
−3/4
1 θ̈1G

′(θ1, θ2)θ̇1/4
2 + iθ̇

5/4
1 ∂θ1G

′(θ1, θ2)θ̇1/4
2

= θ̇
3/4
1

(
i

4 θ̇
−3/2
1 θ̈1G

′(θ1, θ2) + iθ̇
1/2
1 ∂θ1G

′(θ1, θ2)
)
θ̇

1/4
2 . (3.97)

For the second summand on the right hand side of Eq. (3.96) and using Eq. (3.93) we
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find:

λ̄
′(z1)Ḡ′(z1, z2)

=
(
i(1− θ̇−1/2

1 )∂z + i

4 θ̇
−3/2
1 θ̈1 + θ̇

1/2
1 λ′(θ1)

)
θ̇

1/4
1 G′(θ1, θ2)θ̇1/4

2

=
(
i

4(1− θ̇−1/2
1 )θ̇−3/4

1 θ̈1 + i

4 θ̇
−5/4
1 θ̈1 + θ̇

3/4
1 λ′(θ1) + i(1− θ̇−1/2

1 )θ̇5/4
1 ∂θ1

)
×

×G′(θ1, θ2)θ̇1/4
2

= θ̇
3/4
1

(
i

4 θ̇
−3/2
1 θ̈1G

′(θ1, θ2) + iθ̇
1/2
1 ∂θ1G

′(θ1, θ2)
)
θ̇

1/4
2

− θ̇3/4
1

(
i∂θ1G

′(θ1, θ2)− λ′(θ1)G′(θ1, θ2)
)
θ̇

1/4
2 . (3.98)

Combining both equations leaves us with the following expression:

i∂z1Ḡ
′(z1, z2)− λ̄′(z1)Ḡ′(z1, z2) =

θ̇
3/4
1

(
i∂θ1G

′(θ1, θ2) − λ′(θ1)G′(θ1, θ2)
)
θ̇

1/4
2 . (3.99)

Furthermore, using the substitution rule, we find both, (Σ̄′ ◦ Ḡ′)(z1, z2) = θ̇
3/4
1 (Σ′ ◦

G′)(θ1, θ2)θ̇1/4
2 and δ(z1, z2) = θ̇1δ(θ1, θ2) = θ̇

3/4
1 δ(θ1, θ2)θ̇1/4

2 . Thus, assembling all parts
and cancel-ling the factors θ̇3/4

1 and θ̇1/4
2 completes the proof.

With this, we can now consider the first-order variations of Σ′ [Eq. 3.95] induced by
the transformation (3.93), namely δΣ′ = δΣ′(θ1, θ2)/δθ|θ=z ◦ δθ, are given by:

δΣ′(2, 1) =
∫
C
dz

[3
4Σ′(2, 1)

(
∂

∂z2
δC(z2 − z)

)
+ 3

4Σ′(2, 1)
(
∂

∂z1
δC(z1 − z)

)
+
(
∂

∂z2
Σ′(2, 1)

)
δC(z2 − z) +

(
∂

∂z1
Σ′(2, 1)

)
δC(z1 − z)

]
δθ(z) . (3.100)

Inserting this into the Euler equation in its variational form, i.e., Eq. (3.79), integrating

48



3 Nonequilibrium self-energy functional theory

by parts and exploiting the δ-functions, we are left with:

0 = βδΩ̂λ,U [Σλ′,U ]
∣∣∣
λ′=λ′opt

=
{∫
C
dz1

[
−3

4
∑
α1

∫
d2 ∂

∂z1

(
Σλ′,U (1, 2)GSFT(2, 1+) +GSFT(1, 2)Σλ′,U (2, 1+)

)

+
∑
α1

∫
d2
((

∂

∂z1
Σλ′,U (1, 2)

)
GSFT(2, 1+) +GSFT(1, 2) ∂

∂z1
Σλ′,U (2, 1+)

)

+ 3
4
∑
α1

∫
d2 ∂

∂z1

(
Σλ′,U (1, 2)Gλ′,U (2, 1+) +Gλ′,U (1, 2)Σλ′,U (2, 1+)

)

−
∑
α1

∫
d2
((

∂

∂z1
Σλ′,U (1, 2)

)
Gλ′,U (2, 1+) +Gλ′,U (1, 2) ∂

∂z1
Σλ′,U (2, 1+)

)]
×

× δθ(z1)
}
λ′=λ′opt

. (3.101)

At the stationary point, this holds for all variations δθ(z1). Hence, the term in the
square brackets must vanish. We assume that the energy-balance relation is satisfied in
the reference system as expressed by Eq. (2.56), with Σ ≡ Σλ,U replaced by Σλ′,U and
with G ≡ Gλ,U replaced by Gλ′,U . This implies that the last two terms in Eq. (3.101)
vanish and therewith the first two terms in the square bracket must vanish which is
just equivalent with total-energy balance within the SFT. We conclude that within the
SFT the energy-conservation law is proliferated from the reference system to the origi-
nal system, if stationarity of the self-energy functional under the variations defined by
Eq. (3.93) can be enforced.

3.9.3 Energy conservation — revised

However, there are two important points that need further discussion. First, we recall
that the interaction parameters have been assumed as constant when we derived the
energy balance relation in Sec. 2.4.2. In a subsequent discussion, we argued that for
many relevant cases, we will be interested in a conservation of energy after the system has
been excited by a (short) time-dependent modulation of the parameters, i.e., a possible
violation of the energy balance will be relevant only over a short initial period of time.
However, it is worth mentioning that taking into account an explicit time-dependence
of the one-particle parameters, as has been done in Sec. 2.4.2, now actually proves
essential since for the reference system we have to expect a nontrivial time-dependency
for the optimal parameter also after the stimulation of the system has elapsed. Moreover,
since the conservation laws are proliferated from the reference system, an energy balance
relation also in presence of some time-dependent one-particle parameters has to be valid.
The second point to be discussed is that according to the presence of the contour

derivative ∂z in the transformation law Eq. (3.93), time-nonlocal one-particle parameters
of the reference system are generated by a generic transformation of the time scale θ(z).
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3.9 Conservation laws

Within the present (Hamiltonian) formalism, time-nonlocal parameters λ′(z1, z2) must
be generated effectively by considering additional bath degrees of freedom in the reference
system, i.e., λ′(z1, z2) must be understood as a corresponding hybridization function

λ′(z1, z2) = V ′(z1)G′0(z1, z2)V ′(z2) , (3.102)

where G′0 is the noninteracting bath Green’s function and V ′ the hybridization matrix
element. However, a time-nonlocal term of the form ∂z can presumably not be repre-
sented with the help of a finite number of bath degrees of freedom (see also Ref. [154] for
a discussion). On the other hand, with the consideration of a continuum of bath sites
one is essentially restricted to DMFT or to cellular DMFT as approximations that can
be constructed within the SFT framework. This conflicts with the original intention to
construct variational and consistent approximations using reference systems with a few
degrees of freedom only which are accessible to an exact-diagonalization technique.
However, the argument can also be turned by stating that the degree to which energy

conservation is violated within an SFT-based approximation can be controlled systemat-
ically by increasing the number of variational degrees of freedom in the reference system.
Adding bath degrees of freedom, for example, is expected to substantially improve the
degree to which energy conservation is respected.
Another option is to enforce energy conservation. As the SFT is a variational approach,

energy conservation can easily be imposed as an additional constraint that is used to
fix the time-dependence of one of the variational parameters. This represents an ad
hoc but physically motivated modification of the original theory by which the search for
optimal values of the remaining variational parameters is confined to a subspace where
Etot = const. Here, Etot = Etot[λ′](z) is given by Eqs. (3.91) and (3.92). The SFT
variational principle, Eq. (3.19), is replaced by

δ

δλ′(z)

(
Ω̂λ,U [Σλ′,U ]−

∫
CK
dz′ξ(z′)Etot[λ′](z′)

)
= 0 , (3.103)

with the constraint

Etot[λ′](z)− const. = 0 , (3.104)

where ξ(z) is a Lagrange multiplier on the Keldysh branch CK . Alternatively, for driven
systems with an explicitly time-dependent Hamiltonian, one may impose Eq. (2.56),
again formulated in terms of GSFT and Σλ′,U , as a constraint. Again, variations in
the transverse direction must be considered (i.e., λ+(t) = −λ−(t)), followed by an
evaluation on the physical manifold (i.e., λ+(t) = λ−(t), ξ+ = ξ−), as discussed in Sec.
3.5. Furthermore, Eqs. (3.104) and (3.103) have an inherent causal structure analogous
to the full SFT equations and may thus be solved by a similar propagation algorithm as
going to be discussed in Sec. 4.1.
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4 Numerical implementation

In the following, we will put forward a numerical implementation of the nonequilibrium
self-energy functional theory, which is by far more complex than its equilibrium variant.
In Sec. 4.1 we will derive a stable and reliable propagation scheme for the optimal time-
dependent parameters of the reference system and give minimal benchmark results for
both the VCA as well as the DIA with reference systems consisting of two sites only in
both cases (i.e., Lc = 2, Lb = 0 for the VCA and Lc = 1, Lb = 1 for the DIA). In the
following sections we will briefly mention technical aspects which will allow for a more
efficient implementation, namely symmetry relations between elements of higher Green’s
functions and hence of the self-energy functional’s derivatives in Sec. 4.2 and furthermore
on restrictions of the actual set of required variational parameters in Sec. 4.3.

4.1 Propagation scheme

With the time-dependent Euler equation (3.39) we are facing a profound root-finding
problem of formally infinite dimensions. However, the SFT variational principle is in-
herently causal which allows us to determine the optimal parameters at a given time
on a discrete time grid, without affecting the results at previous grid times, and then
proceed to the next time. This causality is most easily seen when discussing Eq. (3.37):
The integrals over z3 and z4 extend over the entire contour C but can be confined to
times which are (physically) earlier than tmax = t1 (cf. Fig. 2.1). If one or both times
are located beyond t1, the later time can be shifted from the upper to the lower branch
(or vice versa) without altering the contour ordering (see Sec. 2.3.1), and the respective
contributions to the integral cancel. Thus, at time t1, all quantities in the Euler equa-
tion (3.39) and therewith the parameter λ′opt(t1) itself depend on parameters at earlier
times only.
Unfortunately, a straightforward numerical solution of the Euler equation (3.39) turns

out to be impossible. The optimal parameters, determined by standard root-finding
techniques, quickly accumulate a large error after a few time steps only such that a
reasonable solution cannot be found in this way. Generally, for a functional depending
parametrically on time, which is evaluated on a finite time grid and the parameters of
which are varied only at the very last instant of time, we expect the explicit dependence
of the variation of the functional on the time step ∆t to scale as (∆t)n with n ≥ 1,

Major parts of this chapter have been published as F. Hofmann, M. Eckstein and M. Potthoff: Nonequilib-
rium variational-cluster approach to real-time dynamics in the Fermi-Hubbard model, Journal of Physics:
Conference Series 696 (1) 012002 (2016). Used under CC BY 3.0
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Figure 4.1: Test of the numerical implementation for the time-propagation with the
VCA. The system is a one-dimensional chain of 100 sites at β = 6 and held at equilib-
rium with U = 4. As a reference system a two-site cluster is used. Left: ∆t dependence
of the Jacobian of K(0)[λ′](t) (red, left ordinate axis) and of ∂tK(0)[λ′](t) (blue, right
ordinate axis). Note that the ordinate axes’ scales differ by one orders of magnitude.
Results are independent of the time t and the Jacobians are evaluated at the initial
time step. Right: Time dependence of the optimal parameters, obtained as the roots
of ∂tK(0)[λ′](t) = 0 [Eq. (4.2)] for different ∆t; those for K(0)[λ′](t) = 0 could not be
stabilized and diverged after only a few time steps. The ordinate axis refers to the result
for ∆t = 0.01; results for larger ∆t are constantly shifted by multiples of 0.05.

since for an infinitesimally fine grid variations at a single instant of time would reduce
to variations on a null set, and thus the variation of the functional must vanish.

If one aims to solve Eq. (3.39) at a given time t, keeping the solution λ′opt fixed at
earlier times, the variation δλ′(t)K(0)[λ′opt](t) of the parameters at the last time-step will
scale as (∆t)2, if the whole implementation is based on an equidistant time-grid ∆t.
This is verified numerically in Figs. 4.1 and 4.2 (both left) for two special cases within
both the VCA as well as the DIA (as described in the figure caption). This scaling is
independent of the quadrature rules used in solving the time integrals (if the accuracy
of those scales as (∆t)2 or better). Hence the observed (∆t)2 scaling is in fact due to
the Jacobian δλ′(t)K(0)[λ′opt](t) itself and turned out to be detrimental for the stability
of the algorithm for practically reasonable choices of ∆t.

Fortunately, this problem can be overcome by requiring the time derivative ofK(0)[λ′](t)
[see Eq. (3.39)] to vanish for all times t > t0 and by fixing the initial conditions at t0 by
Eq. (3.39). Hence, instead of solving the Euler equation (3.39) for all times, we rather
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Figure 4.2: Test of the numerical implementation for the time-propagation with the DIA.
The system is a one-dimensional chain of 40 sites at β = 6 and the interaction is ramped
from Uini = 1 to Ufin = 4 within ∆tramp = 0.4. Left: ∆t dependence of the Jacobians
(same as for VCA, see Fig. 4.1) evaluated at the time t∗ = 2.5. Right: Time depen-
dence of the optimal parameters within DIA. Results are obtained as the roots of both
K(0)[λ′](t) = 0 and ∂tK(0)[λ′](t) = 0 [see Eqs. (4.2) and (4.3)] for different ∆t. The or-
dinate axis refers to the result for ∆t = 0.01; results for larger ∆t are constantly shifted
by multiples of 0.1. The inset centered at t∗ = 2.5 shows how the (unshifted) results
converge with smaller time steps.

consider

K(0)[λ′](t)
∣∣∣
λ′=λ′opt

= 0 , for t = t0 , (4.1a)

∂tK
(0)[λ′](t)

∣∣∣
λ′=λ′opt

= 0 , for t > t0 . (4.1b)

As can be seen in Figs. 4.1 and 4.2 (both left), the dependence on ∆t is only linear in this
case. This greatly improves the accuracy of the parameter optimization and allows us
to trace the optimal variational parameters as a function of time. As a simple numerical
check, one may consider the equilibrium problem. The expected time independence of
the optimal variational parameters is indeed found for sufficiently small ∆t, see Fig. 4.1
(right). In Fig. 4.2 we additionally show and compare some nontrivial dynamics of the
optimal parameter of the DIA induced by a ramp of the interaction and as obtained
from the roots of bothK(0)[λ′](t) and ∂tK(0)[λ′](t) (see the figure’s caption for details).
According to Eq. (3.39), the time derivative ∂tK(0)[λ′](t) can be obtained from the

corresponding equations of motion for the four-point vertex function Lλ′,U . There are
two qualitatively different dependencies on t: The first one results from the boundary
terms due to the time-ordering operator comprised by all Green’s functions. Contribu-
tions from this one cancel out when taking the time derivative. The second one is the
explicit dependence of the annihilator and the creator on the external time t1. This is
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Figure 4.3: Sketch of the propagation algorithm for the optimal parameters. Note that
X ′i is short for L′ = X ′0 and M ′ = X ′1. See text for discussion.

governed by the Heisenberg equation of motion [cf. Eq. 2.28]. Commuting the operators
with the one-particle part of the Hamiltonian simply results in matrix products with λ′
while commuting with the interacting part gives rise to higher-order products of anni-
hilators and creators which we denote by ψ or ψ†, respectively:

[
c(1), H ′1(1)

]
≡ ψ(1)

and
[
H ′1(1), c†(1)

]
≡ ψ†(1) [see also Eqs. 2.28 and (A.4)]. Thus, the time derivative of

K(0)[λ′](t) acquires the form:

∂tK
(0)[λ′](t) =

[
K(0)[λ′](t),λ′(t)

]
+K(1)[λ′](t) , (4.2)

where we have used Eq. (3.39), i.e.,

K(0)[λ′]α2α1(t1) =
∫∫

d3d4Yλ′,λ,U (4, 3) Lλ′,U (3, 2, 1+, 4)
∣∣∣
z2=z1=t1

, (4.3)

and where

K(1)[λ′]α2α1(t1) =
∫∫

d3d4 Yλ′,T ,U (4, 3)Mλ′,U (3, 2, 1+, 4)
∣∣∣
z2=z1=t1

, (4.4)

with

Mλ′,U (3, 2, 1+, 4) = Lλ′,U (3, 2, 1+
ψ , 4)− Lλ′,U (3, 2ψ, 1+, 4) . (4.5)

The subscript ψ indicates that c and c† are replaced by ψ and ψ† in the respective
correlation function. For example, iGλ′,U (1ψ, 2) = 〈TCψ(1)c†(2)〉λ′,U .
The algorithm for the numerical implementation of the SFT in the general nonequi-

librium case [Eq. (4.1)] is sketched in Fig. 4.3. The following steps are performed at each
time step:
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4 Numerical implementation

(i) At a given time t and for certain guessed parameters λ′g(t), we propagate c†α(t)
and cα(t) for all relevant orbitals α by a time step ∆t and store their respective
representations in the occupation-number basis. For small cluster sizes, this is
straightforward. Therewith, arbitrary correlation functions can be calculated for
arbitrary times on the contour up to the time t. While the single particle Green’s
functionG′ can be updated from time step to time step and kept in the storage, the
higher correlation functions L′ and M ′ have to be recalculated on-the-fly for any
time step and after any update of λ′g(t), because of the external time t. Symmetries
can be exploited to reduce the actual number of elements that have to be calculated
and are listed separately in Sec. 4.2.

(ii) The SFT Green’s function GSFT is obtained from the CPT equation (3.30), which
can be cast in the form of a Volterra equation of second kind: (1−Gλ′,UΛ)◦GSFT =
Gλ′,U . The latter is solved up to time t by standard techniques (cf. Refs. [213–
216]). Here, we exploit the translational symmetries of Λ and of GSFT by Fourier
transformation with respect to the super-lattice.

(iii) The correlation functions L′, M ′ and GSFT, are then used to calculate both
K(0)[λ′](t) and K(1)[λ′](t) via Eqs. (4.3) and (4.4). For the initial time t0, only
those integrations contribute where both times are on the Matsubara branch. For
any later time, the mixed and Keldysh integrations have to be carried out, too.
Results for the integrals from earlier time steps cannot be recycled, due to the
external time t appearing in the correlation functions L′ and M ′. For both, the
integrations involved in the Euler equation (4.1) as well as in the Volterra equation,
we use high-order integration schemes, like the Newton-Cotes rules or the Gregory
rules [215, 217], to allow for large ∆τ and large ∆t steps. This in principle neces-
sitates to consider the same high-order integration schemes for the time-evolution
operator.∗

(iv) Generally, the initial guess λ′g(t) will not be a root of Eqs. (4.1), and must there-
fore be updated. The standard way of doing this, is to apply Newton’s method.

∗ For a real-time propagation also the time-evolution operator can be implemented in a high-order
scheme, e.g., by making use of techniques suggested by Alvermann and Fehske [218]. This either makes
it necessary to know the respective Hamilton operator explicitly at unequally spaced times within the
propagation time interval, as needed for Gaussian quadrature, or to extrapolate beyond the time
interval to past times for the application of “extended” open Newton-Cotes formulas [217]. The first
case is not feasible here, since our algorithm works on an equidistant time grid. The second, however,
turned out to be highly unstable for any integration scheme of higher order than the trapezoidal rule.
This might be due to Runge’s phenomenon [219, 220]. Another explanation could be the following:
changing the value of the considered parameter at the last time affects the shape of the fitted function
for all nodes, and hence implicitly induces some acausal propagation which spoils a stable propagation.
This could be bypassed by simultaneously optimizing parameters at all nodes involved in the actual
fit which would causally fix only the parameters at the “earliest” of these nodes. This however
would increase the numerical effort for each optimization and had its own problems when we tried it.
However, leaving these difficulties as a side-remark their solution was beyond the scope of the present
work and we could obtain satisfying results already with our implementation.
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4.2 Symmetries of contour Green’s functions

This, however, requires the knowledge of the (inverse of the) functional’s Jacobian
δλ′(t0)K

(0)[λ′](t0) or δλ′(t)∂tK(0)[λ′](t) respectively. Both, the implementation of
an analytical expression for the Jacobian or a direct numerical evaluation via finite
difference methods are rather costly options and thus not feasible. We thus em-
ploy Broyden’s method [221, 222], which provides increasingly improved updates
for the (inverse of the) Jacobian during the course of the Newton iteration, starting
from an initial guess for both, the root as well as the Jacobian itself. However,
at the initial time we evaluate the Jacobian numerically by finite differences at
some guessed parameter. This improves the success and the speed of the method
significantly. At later times, we extrapolate both the optimal parameter as well
as the inverse Jacobian of ∂tK(0)[λ′](t) to again start the Broyden iteration from
an accurate initial guess - with this, we reliably find the roots of the respective
functional after only one to three iterations per time step. Concerning the equilib-
rium case, it is worth mentioning that to the best of our knowledge, all previous
SFT studies evaluated the grand potential Ω̂T ,U [ΣV ′,U ] [cf. Eq. 3.18] (and possi-
bly its derivatives [171]) directly to search for stationary points. Throughout this
thesis we instead determine the equilibrium solution by evaluating its derivative
analytically and look for the roots of K(0)[λ′](t0) by solving Eq. (4.1a).

Finally, we would like to add an important remark regarding the solution of Eq. (4.1b).
As Eq. (4.2) contains λ′(t) explicitly, a first naive approach would be to guess an “opti-
mal” value λ′g(t), calculate K(0)[λ′g](t) and K(1)[λ′g](t), plug these into Eq. (4.2), solve
the resulting equation 0 =

[
K(0)[λ′g](t),λ′(t)

]
+ K(1)[λ′g](t) for a new λ′(t), update

both functionals and iterate this procedure until convergence. However, there are two
complications. First, close to the optimal point, K(0)[λ′](t), and hence also K(1)[λ′](t)
must vanish and therefore solving Eq. (4.2) for λ′(t) will get more and more unstable.
Second, for a guessed parameter it is unlikely that the corresponding functionals will be
compatible with Eq. (4.2), i.e., that a solution is existing at all. For this to be the case,
e.g., K(1)[λ′g](t) has to be trace-less, since it otherwise could not equal a commutator
of two other matrices. Indeed, in our numerics this requirement is not met in general.
More generally, Eqs. (4.2) and (4.1) can be understood as a special case of Sylvester’s
equation, namely AX −XB = C, which has a unique solution for any matrix C, if
and only if the matrices A and B have distinct spectra (see Refs. [223–225]). In our
case, this is clearly not the case, which is why we cannot expect a unique solution (or
any solution at all), for some K(1)[λ′g](t) as obtained for an arbitrarily guessed optimal
parameter. A way out would be to not solve Eq. (4.1) directly, but minimize the norm
of the left-hand side, which then, in any case, again suffers from the first complication.

4.2 Symmetries of contour Green’s functions

In the following, we list some useful symmetries of all relevant (higher) contour Green’s
functions that arise in the context of the SFT Euler equations (4.1), namely L′λ′,U in
the expression for K(0)[λ′](t) (4.3) and Mλ′,U in the expression for K(1)[λ′](t) (4.4).
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4 Numerical implementation

Note that we use the same notation as was introduced for Eqs. (3.42) to (3.54). In the
following we will skip any labeling with regard to the reference system, since the listed
properties are of general validity.

Keldysh components
G≷(3, 4) = −G≷(4, 3)∗ (4.6)
L3≷(3, 2, 1+, 4) = −L1≷(4, 1, 2+, 3)∗ (4.7)
L2≷(3, 2, 1+, 4) = −L2≷(4, 1, 2+, 3)∗ (4.8)
M3≷(3, 2, 1+, 4) = M1≷(4, 1, 2+, 3)∗ (4.9)
M2≷(3, 2, 1+, 4) = M2≷(4, 1, 2+, 3)∗ (4.10)

Mixed components
G¬(3, 4) = G�(β − 4, 3)∗ (4.11)
L2¬(3, 2, 1+, 4) = L1�(β − 4, 1, 2+, 3)∗ (4.12)
L2�(3, 2, 1+, 4) = L1¬(4, 1, 2+, β − 3)∗ (4.13)
M2¬(3, 2, 1+, 4) = −M1�(β − 4, 1, 2+, 3)∗ (4.14)
M2�(3, 2, 1+, 4) = −M1¬(4, 1, 2+, β − 3)∗ (4.15)

Matsubara components
G1≷(4, 3) = −G1≷(β − 3, β − 4)∗ (4.16)
L1≷(3, 2, 1+, 4) = −L1≷(β − 4, 1, 2+, β − 3)∗ (4.17)
M1≷(3, 2, 1+, 4) = M1≷(β − 4, 1, 2+, β − 3)∗ (4.18)

where in all cases z1 and z2 are on the Keldysh branch. Note that we used com-
pact notations like e.g. G(2),2¬(3, 2, 1+, 4) = G

(2),2<
α3α2α1α4(t3, t2, t+1 , τ4), and G(β − 2, 1) =

Gα2α1(β − τ2, t1).
Also note that the above symmetries have direct implications for K(i)[λ′](t) with

i ∈ {0, 1}, namely

K(i)[λ′](t)† = −(−1)iK(i)[λ′](t) , (4.19)

i.e., K(0)[λ′](t) is skew-hermitian and K(1)[λ′](t) is hermitian, at any time t. These can
be directly deduced from Eqs. (4.3) and (4.4) and their explicit forms given by Eqs. (3.42)
to (3.54).

4.3 Modifying variational degrees of freedom

Generally, one should considering variations of all one-particle parameters of the ref-
erence system. However, one might be confident with only varying a certain subset of
parameters, while keeping others fixed, though this would clearly spoil the strict respec-
tation of one-particle conservation laws (cf. Sec. 3.9.1). On the other hand, due to the
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symmetry transformations which lead to the inherently conserving nature of the SFT,
not all parameters have to be considered for variation, but their time-dependencies can
be absorbed in other parameters’ time-dependencies. In the following, we will com-
ment on both cases, which might be useful for the implementation or when running the
computer code for a given set of variational parameters.

4.3.1 Varying a subset of parameters

Let {ξ′i}i be a subset of parameters of the reference system’s Hamiltonian parameters
(e.g., on-site energies, certain hopping parameters, or a parametrization of elements),
i.e., for certain elements α, β we have λ′αβ = λ′[ξ′]αβ. By means of the chain rule, we
directly obtain

−β
δΩ̂T ,U [Σλ′[ξ′],U ]

δξ′i(z)
=
∑
αβ

(−β)
δΩ̂T ,U [Σλ′,U ]
δλ′αβ(z)

∂λ′αβ(z)
∂ξ′i(z)

=
∑
αβ

K
(0)
λ′;βα(z)

∂λ′αβ(z)
∂ξ′i(z)

= tr
(
K

(0)
λ′

(z)∂λ
′(z)

∂ξ′i(z)

)
=: K̄(0)[ξ′]i(z) , (4.20)

i.e., a new functional K̄(0) which is just derived from the original functional K(0) by
“projection” onto the subspace of the ξ′-parameters. In principle the same holds true
also for the time-derivative of K(0), though a little care should be taken concerning the
last Eq. (4.20) since the projection matrix δλ′/δξ′ may be explicitly time-dependent.
However, it turns out that this is only the case if variations of the phase or the absolute
value of a complex parameter are considered, which nevertheless might be disadvanta-
geous due to possible discontinuities of the phase of a parameter (due to sign changes)
and we hence only consider real and imaginary parts of elements of λ′ as variational
parameters.

4.3.2 Symmetry relations at stationarity

More importantly, not all parameters have to be varied, but some sets of variational
parameters are equivalent via the gauge transformations [Eq. 3.82] introduced in Sec. 3.9
in the context of one-particle conservation laws within the SFT and which read as

ε′iσ(z) 7→ ε̄′iσ(z) = ε′iσ(z)− ∂zχiσ(z) ,
T ′ijσ(z) 7→ T̄ ′ijσ(z) = eiχiσ(z)T ′ijσ(z)e−iχjσ(z) ,

(4.21)

where T ′ denotes the off-diagonal part of λ′ while ε′ stands for the respective (spatially)
diagonal elements.
In Sec. 3.9 we already realized that the self-energy functional itself is not generally

invariant under these transformations and we have to introduce a new functional de-
pendence on the transformed set of parameters, namely ̂̄ΩT ,U [λ̄′] = Ω̂T ,U [λ′[λ̄′]], where
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4 Numerical implementation

Ω̂T ,U [λ′] ≡ Ω̂T ,U [Σλ′,U ] for brevity. Let’s again reexamine the gauge transformation’s
consequences for the Euler equation. Applying the chain rule, we immediately get

δΩ̂T ,U [λ′]
δT ′ijσ(z) = δ ̂̄ΩT ,U [λ̄′]

δT̄ ′ijσ(z)
ei(χiσ(z)−χjσ(z)) , (4.22)

and

δΩ̂T ,U [λ′]
δε′iσ(z) = δ ̂̄ΩT ,U [λ̄′]

δε̄′iσ(z) δC(z, 0) , (4.23)

which thus implies

δΩ̂λ,U [Σλ′,U ]
δλ′(z)

∣∣∣∣∣
λ′(z)=λ′opt(z)

= 0 ⇔
δΩ̂λ,U [Σλ′,U ]

δλ′(z)

∣∣∣∣∣
λ′(z)=λ̄′opt(z)

= 0 , (4.24)

i.e., there is an equivalence relation between different optimal points λ′opt(z) and λ̄
′
opt(z)

via the gauge transformation of Eq. (4.21).
To further illustrate the consequences for a practical implementation, let’s make a

special choice, namely

χiσ(z) =
∫ z

0
dz̄ (ε′iσ(z̄)− ε′iσ(0)) , (4.25)

which, when plugged into Eq. (4.21) leads to

ε′iσ(z) 7→ ε̄′iσ(z) = ε′iσ(0)

T ′ijσ(z) 7→ T̄ ′ijσ(z) = ei
∫ z

0 dz̄ (ε′iσ(z̄)−ε′iσ(0))T ′ijσ(z)e−i
∫ z

0 dz̄ (ε′jσ(z̄)−ε′jσ(0)) .
(4.26)

Thus, all time dependencies of on-site energies of the reference system can be absorbed
in a complex phase of the nonlocal hopping (or hybridization) parameters, i.e., all on-
site energies can be determined at the initial time t0 and subsequently can be kept fixed
while only variations of complex hopping amplitudes have to be considered.
Though the explicit results for the time-dependent optimal parameters would clearly

differ after such a gauge transformation, the SFT Green’s function and the optimal
reference system’s self-energy would only acquire a phase factor (see Sec. 3.9) which
however does not affect the actual values of the time-dependent expectation values of
physical observables (cf. definitions in Sec. 2.4).
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As a first benchmark of the numerical implementation developed in the previous chapter,
we focus on two concrete examples for the application of the nonequilibrium variational
cluster approach (VCA). To this end, we consider the one-dimensional dimerized Hub-
bard model at half-filling and at different interaction strengths and study (fast) ramps
of the hopping parameters.
Figure 5.1 provides an illustration of the initial and of the final states as well as of

the reference systems: In both cases, the system is initially in the thermal state of
a dimerized Hubbard model specified by some inverse temperature β. In case (a), this
state is generated by an initial Hamiltonian which consists of decoupled two-site clusters.
Hence, the initial state is a simple valence-bond state with nearest-neighbor correlations
and reduced translational symmetries. The intra-cluster hopping Tintra = 1 fixes energy
and time units. In case (b), the clusters with Tintra = 1 are weakly coupled by an
inter-cluster hopping Tinter = 0.2.
In case (a), the final-state dynamics after the ramp is governed by the full Hubbard

Hamiltonian where the initially disconnected clusters are linked by a final inter-cluster
hopping Tinter = 1. This is a highly nontrivial example where the system should build up
longer-ranged nonlocal correlations and entanglement in the course of time. In case (b)
the final-state Hamiltonian is basically the same as the Hamiltonian specifying the initial
state but with the important difference that the nearest-neighbor hopping Tinter = 1 now
connects clusters that are shifted by one lattice constant. This example is also highly
nontrivial as it corresponds to a sudden switch between Hamiltonians describing states
with well-developed but incompatible valence bonds where the entanglement and the
spin correlations must reorganize between two different local situations.
Both examples have been in the focus of recent experiments where the redistribution

of antiferromagnetic correlations between different bonds and for different ramp times
[94] as well as the topological properties of Bloch bands in optical lattices [226] for the
uncorrelated variant of the model [227, 228] were studied.
The VCA, as a cluster mean-field approximation, can only partly cover the expected

final-state dynamics. Here, our main intention is to discuss some numerical issues and
to demonstrate that the VCA can be implemented successfully and yields reasonable
results (which can in principle be improved systematically by going to larger cluster
sizes).

Major parts of this chapter have been published as F. Hofmann, M. Eckstein and M. Potthoff: Nonequilib-
rium variational-cluster approach to real-time dynamics in the Fermi-Hubbard model, Journal of Physics:
Conference Series 696 (1) 012002 (2016). Used under CC BY 3.0
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5.1 Variational cluster approach — numerical setup

initial

final

(a) dimerized lattice → homogeneous
lattice

initial

final

(b) dimerization change

Figure 5.1: Illustration of initial and final states for both (a) the ramp from a dimerized
configuration to a homogeneous lattice as well as (b) change of the dimerization. Black
solid lines indicate a nearest-neighbor intra- or inter-cluster hopping, Tintra = 1 or Tinter =
1. Black dashed lines: Tinter = 0.2. Correlated sites are represented by red filled dots.
The reference system used for the VCA calculations is indicated by a representative
two-site reference cluster highlighted as the blue dashed ellipse.

5.1 Variational cluster approach — numerical setup

As a reference system we have chosen as set of simple, disconnected clusters consisting
of two sites each, indicated by the blue dashed lines in Fig. 5.1. No additional bath
degrees of freedom have been added. Thus, the only possible variational parameters are
the intra-cluster hopping T ′ and the on-site energies ε′i in the reference system, though
the latter are already fixed by the model’s symmetries at half-filling.

We have tested the computer code in several trivial limits. Furthermore, for the
equilibrium case our data for different U and β and for a homogeneous lattice are fully
consistent with those obtained previously for β → ∞ in Ref. [167] using a completely
different algorithm.

Calculations for the systems sketched in Fig. 5.1 have been performed at inverse tem-
perature β = 10 which, on the level of the approximation employed, is already rep-
resentative of the zero-temperature limit as has been checked by varying β. Using
fifth-order integration schemes on the Matsubara branch, converged results are obtained
with ∆τ = 0.1. On the Keldysh branch we are limited to the trapezoidal rule only since
the implementation of higher-order schemes for the evaluation of the time-propagation
operator gives rise to numerical instabilities (see Sec. 4.1, footnote on page 55). Con-
verged results are obtained for a time step of ∆t = 0.02, and a maximum propagation
time of tmax = 10 is easily achieved with a desktop computer. To get converged results
with respect to the spatial extension of the one-dimensional lattice, it is sufficient to
consider systems with L = 100 sites (using periodic boundary conditions). We stimulate
the system’s dynamics by short ramps lasting for ∆tramp = 0.5 and for a ramp profile
r(t) = (1 − cos(πt/∆tramp))/2 with continuous first-order derivatives at the joints at
t = 0 and t = ∆tramp. This has been recognized to stabilize the algorithm significantly
as opposed to using sudden quenches of the hopping parameters.
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Figure 5.2: Time dependencies of the optimal hopping T ′opt of the two-site reference
cluster, the double occupancy and the total energy Etot(t) = 〈H(t)〉 for different U and
for the two different ramps of the hopping parameters of the original system (see Fig. 5.1,
(a) and (b)). See text for discussion.

5.2 Results

Results are shown in Fig. 5.2. We first discuss case (a). For t = 0, the optimal value of
the variational parameter is found as T ′opt = Tintra = 1 (dotted line). In fact, this had to
be expected since, for the given problem, the self-energy of the reference system equals
the full self-energy [cf. Eq. 3.20] and thus the VCA is exact in the initial state. This
represents another nontrivial check of our algorithm.
For t > 0 we find that T ′opt becomes time-dependent, i.e., the reference system adjusts

itself to the parameter ramp in a time-dependent way to optimally describe the dynamics
of the original system. In the limit of infinitely large clusters where VCA formally
becomes exact, one would expect T ′opt(t) to become constant after a certain relaxation
time. As seen in the figure, this relaxation of the optimal variational parameter, and also
of the double occupancy, takes place on a short time scale given by one or two inverse
hoppings. With a reference cluster of two sites only, however, some finite-size effects
must be tolerated. These show up indeed as oscillations of T ′opt(t) around an average
value after the relaxation process. For weak U , where the physics is governed by the
hopping part of the Hamiltonian, this average is by about 30% higher than the initial
value Tintra = 1. With increasing U , the final average value of T ′opt(t) is seen to decrease
and approaches unity for U →∞. This is plausible since for weak U the fermion system
is more itinerant and thus an increased hopping parameter in the reference system is
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necessary to (at least partially) compensate for the missing inter-cluster hopping in the
reference system while for strong U this is less important as the physics is more local.
Similar arguments can be used to explain the time dependence of the double occu-

pancy. For t = 0, there is a strong U dependence of 〈n↑n↓〉, which is exactly reproduced
by the VCA. For t > 0, the double occupancy quickly relaxes to a higher value (apart
from significant finite-size oscillations) as the system becomes more itinerant due to the
additional physical inter-cluster hopping. The effect is strongest for weak U .
For case (b), finite-size effects are generally somewhat stronger, see Fig. 5.2(b). Still

the main trends are clear and plausible: As the inter-cluster hopping is weak, the initial
values of T ′opt and of 〈n↑n↓〉 are close to those of case (a). For t > 0, the relaxation
process takes place on essentially the same time scale of one or two inverse hoppings.
However, one now expects that the optimal intra-cluster hopping adjusts to a value
close to Tinter = 0.2, i.e., close to the physical hopping parameter (see final state in
Fig. 5.1(b)). This is in fact seen (dotted line in Fig. 5.2(b)). The decrease of the final
average value of the double occupancy with increasing U is understood in the same way
as in case (a).
Note that the geometrical structure of the reference system is the same for the initial

and the final state, see Fig. 5.1. Given this, we expect that the description of the initial
state is better than that of the final state in the case of the dimerization change. We
have also performed calculations using a reference system that is shifted by one lattice
constant for both, the initial and the final state. In this case, one expects that the VCA
description of the final-state dynamics is more accurate than for the initial state. The
calculations (not shown) yield unphysical results in this case with a diverging optimal
intra-cluster hopping after one to two inverse hoppings, depending somewhat on U .
This demonstrates the crucial importance of an accurate description of the initial state
for the subsequent real-time dynamics. A sudden switch of the geometrical structure
of the reference system at t = 0, which follows the dimerization change of the original
system, would be a legitimate choice and would result in a superior approximation. This,
however, requires a substantially higher numerical effort as more than a single two-site
cluster must be considered as a building block in the calculation which is beyond the
scope of the present work.
In both cases, (a) and (b), there is a fairly good conservation of the total energy right

after the ramp (recall that ∆tramp = 0.5) with some remaining finite-size oscillations
but no long-time drift. Note that, a priori, this could not have been expected as a
matter of course, since strict energy conservation within SFT can only be ensured by
variations nonlocal in time, which would correspond to the optimization of infinitely
many bath-degrees of freedom (see Sec. 3.9.3 for a detailed discussion).
In case (a) and for all interaction strengths, we find that the total energy decreases

after the ramp (see Fig. 5.2(a)). This implies that the increase of the total energy due
to the heating of the system during the ramp is overcompensated by the energy decrease
that is induced by the coupling of the different isolated clusters via HTinter,0 and the
corresponding lowering of the kinetic energy. In case (b) the total energy increases for
all U after the ramp (see Fig. 5.2(b)). Since the initial and the final Hamiltonians are
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5 Dynamics in dimerized Hubbard models

identical apart from a translation by one lattice constant, they have the same ground-
state energies. The observed increase of the total energy must therefore be exclusively
due to the heating of the system during the ramp.
Despite the simple two-site reference system used here, the resulting real-time dy-

namics is in fact completely different from a mere superposition of oscillations with
frequencies that are characteristic for the finite reference system. Namely, the varia-
tional embedding of the cluster rather allows to describe the relaxation of the system to
a new stationary final state. Depending on the system, on the type of process studied
and on the model parameters, however, the final state does show some unphysical os-
cillations which are caused by the small size of the reference system and which must be
tolerated at the given approximation level.
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6 Static and dynamical Mott transitions

As preliminary discussed, lattice systems of strongly correlated fermions as described
by (generalized) Hubbard-like models (cf. Sec. 2.1) exhibit diverse emergent phenom-
ena such as insulating behavior caused by strong local Coulomb repulsion. For weak
interactions fermions essentially move freely through the lattice and the system behaves
metallic. Tunneling processes may lead to doubly occupied sites, which at strong interac-
tions are energetically unfavorable. At zero temperature and at half filling, where there
is one particle per site on average, this leads to a suppression of the fermions’ motion
above some critical value of the interaction Uc where the system becomes a (paramag-
netic) insulator. A remainder of this quantum phase transition can be observed as a
first-order phase transition (from a bad metal to a bad insulator) also for finite tempera-
tures up to some critical value Tc. In equilibrium detailed studies on the phase diagram
of this Mott transition has been conducted e.g. with DMFT [113]. Recently, there has
been renewed theoretical interest in such a Mott transition in the context of real-time
dynamics following a quantum quench [144–147].
Suddenly changing (quenching) the interaction parameter of the Hubbard model has

been realized to initiate intriguing nontrivial dynamics. Starting from a noninteracting
initial state, at weak final interactions, thermalization is delayed and the system gets
trapped in a so called prethermal metastable state [42]. On the other hand, for strong
final interactions, relaxation to a thermal state is again impeded by (damped) collapse-
and-revival oscillations which are characteristic for the atomic limit. Both regimes are
well separated by a sharp transition at a distinct final interaction Udyn

c , at which a fast
decay toward thermal equilibrium takes place, as was first found within nonequilibrium
DMFT [144]. This “dynamical Mott transition” has subsequently been studied e.g. for
ramps instead of quenches and for different dimensions by using various methods [145–
147, 229].
However, a relation between both the “dynamical transition” at Udyn

c and the conven-
tional equilibrium Mott transition at U = Uc(T ) and temperature T is far from obvious.
Firstly, Udyn

c is found at about half the size of Uc(0) in all studies [145–147, 229]. Sec-
ondly, within the dynamical mean-field approach, after the quench to Udyn

c , the system is

Major parts of this chapter (see especially Secs. 6.1 to 6.3 and 6.5) have been published as F. Hofmann,
M. Eckstein, and M. Potthoff: Nonequilibrium self-energy functional approach to the dynamical Mott
transition, Phys. Rev. B 93 (23) 235104 (2016). Copyright (2016) by the American Physical Society.
Reproduced with permission.
Additionally, parts of this chapter (see especially Secs. 6.1 and 6.4) have been submitted to and accepted
for publication in a modified version in EPJB as F. Hofmann and M. Potthoff: Time-dependent Mott
transition in the periodic Anderson model with nonlocal hybridization. Copyright EDP Sciences, Società
Italiana di Fisica, Springer-Verlag 2016. With kind permission of The European Physical Journal (EPJ).
preprint: arXiv:1606.01089 [cond-mat.str-el].
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found in a thermal state at temperature T? which turns out to be more than an order of
magnitude higher than the critical temperature Tc for the equilibrium Mott transition,
above which the metallic and the insulating states are smoothly connected and a proper
distinction is barely possible [144, 214]. Thus, due to the large parametric distance of
(Udyn

c , T?) and (Uc(Tc), Tc) in the equilibrium phase diagram, an obvious relation of both
phenomena does not obtrude itself.
On the other hand, quenching the interaction represents a rather harsh excitation and

a substantial heating of the system in the final state has to be somewhat expected. Using
the time-dependent Gutzwiller variational method, Sandri et al. [229] studied U -ramps
instead of sudden quenches and found a well-defined Udyn

c for any duration ∆tramp of
the ramp. Interestingly, in the limit ∆tramp →∞, where the ramp can be considered as
a quasi-stationary thermodynamical process, the “critical” interaction Udyn

c approaches
Uc ≡ Uc(T = 0), which in fact suggests some link between the “dynamical” and the
“static” Mott transition.
Another possible interrelation has been observed by Schiró and Fabrizio [145]: in

equilibrium the metal to Mott insulator transition is known to turn into a crossover for
any finite doping leading away from half-filling. In the mean-field approach employed
by the authors, right at the critical interaction Udyn

c the quasi-particle weight vanishes
nonanalytically in its long-time limit after the undoped system has been excited by a
sudden quench. Interestingly, away from half-filling, this nonanalyticity is washed out
and only a crossover from the weak- to the strong-interaction regime can be found.
This in fact can be regarded as a key feature of the (doping-driven) Mott transition (in
equilibrium) and its persistence also in the nonequilibrium case suggests another link
between both critical phenomena.
An entirely new aspect will be brought into play by extending the same question to

models with more than just a single orbital, for which the Mott transition is expected
to depend on additional parameters. Only a few nonequilibrium DMFT studies have
been carried out beyond the single-orbital case [133, 139, 230] but did not concern the
Mott phenomenology. However, recent studies by means of the time-dependent slave-
boson mean-field approach revealed a much more complicated scenario for the dynamical
Mott transition in the two-band Hubbard model though an exhausting analysis on its
parameter dependencies is still lacking.
Here, we will focus on two variants of the periodic Anderson model (PAM) (see also

Sec. 2.1), which entails uncorrelated sites connected by some finite hopping and hy-
bridized with correlated but nondispersive orbitals. In case this hybridization acts only
locally, the model exhibits a smooth crossover from a hybridization band insulator at
U = 0 to a strongly correlated Kondo insulator for strong U . On the contrary, as
suggested by Huscroft et al. [231] and affirmed by different methods [232–234], for a
hybridization V of nearest neighbors, there is a quantum-critical point Uc at T = 0: the
conduction-electron system stays metallic while the localized-electron system undergoes
a Mott transition at Uc. Close to the critical point, Held and Bulla [233] could show the
equivalence of the PAM and the Hubbard model by means of linearized DMFT [235].
In particular, they found a vanishing quasi-particle weight upon approaching the crit-
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ical interaction from the “metallic” side and could identify a characteristic V 2-scaling
of Uc. Contrary, in case of an on-site hybridization they argued that Uc = ∞. Van
Dongen et al. [234] related the presence of this Mott-type transition in the model with
nearest-neighbor hybridization to the absence of the Kondo effect in the limit of strong
coupling (weak hybridization). In momentum space, the hybridization vanishes at the
Fermi surface of the half-filled noninteracting model, whereas the local hybridization is
constant in reciprocal space and hence promotes the formation of Kondo singlets in the
strong coupling limit. Moreover, it turns out that any small deviation from the strict
nearest-neighbor configuration turns the transition into a sharp crossover. So far, this
has not been studied in the nonequilibrium domain. It will be thus interesting to see,
whether this “tunability” of the Mott scenario for the PAM will persist also in the dy-
namics initiated by changes of the interaction strength and in strong analogy with the
Hubbard model. This would in fact support the conjecture of some link between the
dynamic and the static transition.
In the following chapter we will present studies related to the previously discussed

cases and give further insights on the “dynamical Mott transition” by means of the
nonequilibrium extension of the two-site dynamical impurity approximation (DIA). The
latter proves sufficient to cover the basic aspects of the nontrivial dynamics following
a quench or ramps of the interaction in the half-filled paramagnetic Hubbard model
[144, 145]. Right at the critical point, the DIA favors a final state which is reminiscent
of the Mott insulator in equilibrium at zero temperature, which we first examine for
quenches starting from a free initial state in Sec. 6.3.1. By means of ramps of different
duration, we trace this behavior till close to the adiabatic response regime in Sec. 6.3.2
and find a dependence of the critical interaction on the ramp duration which is in line
with previous studies [229]. We repeat the same analysis for both variants of the PAM
in its paramagnetic state at half-filling in Sec. 6.4. Though unrelated with regard to
the precise physical content, the obtained results also serve as a basis for comparison
of the DIA to Hamiltonian-based solvers DMFT [154–156] in Sec. 6.5. All of this is
however preceded by a short technical section (Sec. 6.1) on implementational details of
the two-site DIA as applied to the present problems and succeeded by a discussion on
the well explored equilibrium Mott transition in the Hubbard model in Sec. 6.2.

6.1 Dynamical impurity approximation — numerical setup

For the Hubbard model as well as for both variants of the PAM, we have computed their
equilibrium properties as well as their time evolutions initiated by quenches and ramps
of the interaction U(t) by means of the dynamical impurity approximation (DIA). In
particular, we have considered the simplest compatible reference system, which consists
of a single correlated site (Lc = 1) with only one bath site (Lb = 1) coupled to it via the
time dependent hybridization parameter V ′(t). At half-filling its Hamiltonian reads

HV ′,U (t) = V ′(t)
∑
iσ

(c†iσfiσ + h.c.) + U(t)
∑
i

n̂fi↑n̂
f
i↓ , (6.1)
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(a) Hubbard
model

(b) PAM with
nearest-neighbor
hybridization

(c) PAM with
on-site

hybridization

(d) set of
DIA

reference
systems

Figure 6.1: Illustration of (a) the Hubbard model, the PAM with (b) nearest-neighbor
or with (c) on-site hybridization, and a set of (d) reference systems within the two-
site DIA. Black lines represent hoppings between the same type of orbitals, i.e., either
between correlated sites (red filled dots) or between uncorrelated sites (blue filled dots).
Blue lines stand for the hybridizations which couple correlated and uncorrelated sites.
The fundamental building blocks of the reference system are highlighted by dotted blue
ellipses in all cases.

where we used the same standard notation as in Sec. 2.1 and time-evolutions as well as
expectation values are calculated with respect to HV ′,U (t) = HV ′,U (t) − µ(t)N̂f with
µ(t) = U(t)/2 (cf. Sec. 2.2). Note that the labeling of the orbitals follows the one used for
the PAM, i.e., c-type orbitals are uncorrelated whereas correlated impurities are denoted
as f -type orbitals. Contrary, in the single-band Hubbard model c-type operators refer
to correlated sites. However, this should not cause any major confusion and we will use
the f -/c-labeling explicitly only in Sec. 6.4. For an illustration of all models and the
reference system, see Fig. 6.1.
Interestingly, for the two-site reference model [Eq. 6.1] the self-energy is known ana-

lytically at zero temperature in equilibrium [236], and reads:

ΣV ′,U (ω) = U2

8

( 1
ω − 3V ′ + 1

ω + 3V ′
)
, (6.2)

where ω is a complex frequency. The quasi-particle weight, generally defined as Z =(
1− ∂ω Re Σ(ω + i0+)

∣∣
ω=0

)−1, is thus directly obtained as

Z = 36V ′2

36V ′2 + U2 . (6.3)

and we easily calculate the two limits of weak and strong interactions, i.e.,

Z
∣∣
U�V ′ ∝ 1 and (6.4)

Z
∣∣
U�V ′ ∝ 36V

′2

U2 , (6.5)

which will be of use for the following discussion.
For our calculations, in all cases, we considered a one-dimensional lattice of 40 sites

with periodic boundary conditions, which is sufficient to ensure numerically converged
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results. Choosing a one-dimensional system is convenient for numerical reasons. It is
important to note, however, that the lattice dimension and geometry enters the DIA
only via the free density of states (DOS). Moreover, we expect that results essentially
depend on the variance of the DOS only [166]. For the Hubbard model on an one-
dimensional lattice this is ∆1D =

√
2T . Energy (and time) units are fixed by setting

T = 1. Calculations have been performed for different inverse temperatures β, which
set the length of the Matsubara branch in Eq. (4.1). All integrations over imaginary
time τ have been carried out using accurate fifth-order numerical integration schemes
with step sizes varying from ∆τ = 0.05 for larger β to ∆τ = 0.1 for smaller β. For the
real-time propagation and all integrations along both Keldysh branches, however, we
are again limited to the trapezoidal rule (see Sec. 4.1, footnote on page 55). Sufficiently
converged time propagations are obtained for time steps ∆t ≤ 0.05 for maximum times
up to tmax ≤ 26.

6.2 Equilibrium Mott transition

Before the real-time dynamics of the Hubbard model can be analyzed within the two-
site DIA, a proper initial state has to prepared, that is, the equilibrium variational
problem [Eq. (3.19) at t = t0, i.e., Eq. (4.1a)] has to be solved. As a benchmark for our
numerical method in the initial state (cf. Sec. 4.1) and as a starting point for the real-
time dynamics, in this section we reproduce and discuss the known equilibrium results
for a two-site reference system, as depicted in Fig. 6.1(d).
Results for the optimal hybridization parameter V ′opt are shown in Fig. 6.2(a). The on-

site energies of the correlated and of the bath site could be used as additional variational
parameters, but here they are fixed due to particle-hole symmetry at half-filling, as we
already anticipated in Eq. (6.1). Starting from small β and weak interaction U , one can
easily perform a global search to obtain a solution of Eq. (4.1a). The full T–U phase
diagram is then explored using a local search based on Broyden’s method [221, 222],
starting from the solution at a nearby point in the phase diagram. By increasing β, i.e.,
lowering the temperature, we find three solutions for certain values of U , indicating the
coexistence of a metallic solution with large V ′opt, which connects to the weak-U limit,
an insulating one with small V ′opt, connected to the strong-U limit, and a third solution
with intermediate V ′opt, which is thermodynamically unstable (see below).
In Fig. 6.2(b) we additionally present the double occupancies for the respective optimal

solutions. In the coexistence region the double occupancy, like the optimal hybridization,
has three branches. The branch for which 〈n̂c↑n̂c↓〉 increases with increasing U corresponds
to the thermodynamical unstable solution since here ∂〈n̂c↑n̂c↓〉/∂U = ∂2Ω(β, U)/∂U2 > 0,
violating a thermodynamical stability condition. This violation stems from the mean
field character of the DIA and resembles the familiar example of the van der Waals equa-
tion, which predicts negative compressibilities for real gases in a certain critical region.
In fact, the system undergoes a first-order phase transition at a critical interaction, the
value of which can be inferred from a Maxwell construction [237], as shown in the inset
of Fig. 6.2(b): a jump of the double occupancy is inserted at the critical interaction Uc,
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Figure 6.2: (a) Optimal variational parameter V ′opt as a function of the interaction for
different inverse temperatures increasing from β = 10 (red curve) to β = 200 (blue
curve), and (b) the respective double occupancies. The inset in (b) shows the Maxwell
construction for β = 100: The mid arrow indicates the value for Uc, the outer arrows
point at the spinodal points, which define the region where metallic and insulating
solutions coexist.

determined by requiring that the shaded areas on both sides of the jump be equal. In
addition, the lower and upper boundaries of the coexistence region, Uc1 and Uc2, can be
read off at the spinodal points of the curve [see outmost arrows in Fig. 6.2(b)].
Results for different temperatures are collected in the phase diagram shown in Fig. 6.2.

Metallic and insulating solutions coexist in a triangular-shaped region, bounded by the
curves Uc1(T ) and Uc2(T ). Within the coexistence region, there is a line Uc(T ) of first-
order transitions terminating in a second-order critical end point at the temperature
Tc. For temperatures above Tc the Mott metal-insulator transition is no longer sharply
defined but a smooth crossover only. Extrapolating our data to T = 0, we find Uc1(0) ≈
7.28 ≈ 5.15∆1D and Uc(0) = Uc2(0) ≈ 8.59 ≈ 6.07∆1D, both of which fall within a range
of results obtained earlier for other lattices (where the variance of the density of states
has been used as energy unit) [166]. The value of Uc2(0) obtained within the DIA for the
Bethe lattice is in remarkably good agreement with DMFT+NRG [238] (Uc(0) = 5.88).
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Figure 6.3: Phase diagram of the Mott transition in the half-filled Hubbard model on
a one-dimensional lattice as obtained from the DIA with a two-site reference system.
Below the critical temperature Tc metallic solutions exist up to interactions U ≤ Uc2,
insulating solutions exist down to U ≥ Uc1, and in between both coexist. Red line:
first-order phase boundary Uc(T ).

The value obtained for the critical temperature, Tc ≈ 0.077 ≈ 0.054∆1D, is more
sensitive to the lattice geometry as is obvious when comparing with the result Tc ≈ 0.03
that is obtained by the two-site DIA for a semi-elliptical DOS of unit variance [166]. Tc
also increases by more than 50% when adding more bath sites but already for three bath
sites there is quantitative agreement with full DMFT results [171].
We conclude that the present implementation of the two-site DIA reproduces the

known results for the Mott transition obtained earlier where the phase diagram has
been constructed from the explicit calculation of the grand potential. As compared to
the full DMFT solution, the two-site approximation captures the correct physics qualita-
tively, i.e., the equilibrium phase diagram has exactly the same topology. Quantitatively,
Uc2 is predicted quite accurately while Uc1 is over- and Tc is underestimated. For the
present study, we will nevertheless restrict ourselves to the two-site approximation since
the computational effort is considerably higher for the nonequilibrium case. More im-
portantly, nonequilibrium calculations with more than a single bath site are not easily
stabilized numerically with the present implementation.

6.3 Dynamical Mott transition

In the following we will discuss the real-time dynamics of the Hubbard model induced
by sudden quenches or ramps of the interaction starting from a “free” initial state to
arbitrary final interactions Ufin > 0. Within the SFT the optimal parameters of the
reference system are undefined for a free system due to the vanishing self-energy. For
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practical reasons we therefore consider initial states with Uini = 0.01.
We furthermore choose β = 10. Essentially, this corresponds to a zero-temperature

initial state: As concerns the reference system, there is hardly any change in the op-
timal hybridization parameter with temperature in the limit U → 0, as can be seen
from Fig. 6.2(a). The remaining temperature dependence via the noninteracting Green’s
function of the original system [see Eq. 3.18] is very weak for lower temperatures. Conse-
quently, there is hardly any temperature dependence seen in the nonequilibrium results.
This has been verified numerically (up to β ≤ 40).
The interaction is switched from Uini to Ufin via U(t) = Uini +(Ufin−Uini)r(t) by either

quenching,

r(t) = Θ(t) , (6.6)

or conducting cosine-shaped ramps of different duration ∆tramp, i.e.,

r(t) = (1− cos(πt/∆tramp))/2 . (6.7)

Both cases will be discussed successively in the next two subsections.

6.3.1 Interaction quenches

Following the time evolution after a quench, we find two qualitatively different response
patterns for weak and strong final interactions, which are well separated by a sharp
transition point at a critical interaction Udyn

c ≈ 4.61. Results are presented in Fig. 6.4,
where we show the time dependence of the optimal hybridization parameter, the double
occupancy, and the total energy. Moreover, in Fig. 6.5 we show for any time-dependent
quantity Q(t) the time average

Q = lim
t→∞

1
t

∫ t

0
dt′Q(t′) , (6.8)

and the fluctuations

∆Q = (Q−Q)2
1
2 . (6.9)

Let us first focus on weak quenches, i.e., Ufin < Udyn
c . For the optimal hybridiza-

tion parameter V ′opt(t) we observe a quick drop to smaller values within approximately
one inverse hopping, followed by moderate oscillations around some constant value, see
Fig. 6.4 (top left). For final interactions Ufin . 4, the long-time average of the optimal
hybridization slightly decreases with increasing Ufin (Fig. 6.5, top).
On the same short time scale, the double occupancy decays from its noninteracting

initial value, i.e., the Coulomb repulsion quickly suppresses doubly occupied sites. For
final interactions Ufin & 3 we find a strong initial drop and pronounced periodic recur-
rences. However, these shift to later and later times upon increasing Ufin. In addition,
small regular oscillations around some value close to zero become apparent, see Fig. 6.4
(middle left).
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Figure 6.4: Time dependencies of the optimal hybridization V ′opt, the double occupancy
〈n↑n↓〉 and the total energy Etot for interaction quenches starting from Uini = 0.01
to different Ufin (see color labels). Left: weak-coupling regime, Ufin < Udyn

c . Right:
strong-coupling regime, Ufin > Udyn

c .

The exact value of the total energy right after the quench (at t = t+0 ) is given by
the expectation value of the Hamiltonian in the noninteracting initial state, Etot(t+0 ) =
Ekin(t0) + Ufin/4, which increases linearly with the final interaction. For weak quenches
we find that this value is relatively well conserved, apart from a small drop of the
time-averaged value, and some moderate oscillatory behavior for increased quench size
(Fig. 6.5, bottom). By comparison with a thermal ensemble for the same interaction Ufin,
i.e., by comparing with equilibrium two-site DIA calculations, we can thus ascribe an
effective temperature Teff to the long-time averages, namely by demanding that Etot =
Eeq

tot(Teff). The effective temperature increases from Teff ≈ 0.12 for Ufin = 1 to Teff ≈ 0.28
for Ufin = 4 (see Fig. 6.6). The corresponding thermal value for the double occupancy
roughly agrees with the respective time-averaged value (see Fig. 6.5, middle). This is in
agreement with the prethermalization scenario [42, 144] observed in DMFT calculations.
We now turn to strong quenches, i.e., Ufin > Udyn

c . Here the time-dependent behavior
of the system drastically differs from that in the regime of weak quenches. For Ufin & 6
we find a quite regular oscillatory behavior for all relevant quantities. A Fourier analysis
of the oscillations in the double occupancy reveals that oscillations occur with frequencies
approximately given by Ufin, as shown in Fig. 6.7, i.e., the characteristic frequency for
collapse-and-revival oscillations in the atomic limit. On top of this, there are slow
beatings, which probably should be ascribed to finite-size effects and which appear to
be independent of the interaction. In the long-time limit, the double occupancy slowly
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Figure 6.5: Long-time averages (points) and fluctuations (shaded areas) of the optimal
hybridization V ′2opt, the double occupancy 〈n↑n↓〉 and the total energy Etot. Red lines:
critical interaction Udyn

c separating weak- and strong-coupling regime. Blue line: equi-
librium values of the double occupancy at zero temperature. Green lines: thermal values
of the double occupancy, which in the weak-coupling regime almost coincide with the
long-time average, but in the strong-coupling regime match the minima of the double-
occupancy oscillations (squares). Orange line: total energy right after the quench.

increases with Ufin. However, it does not reach its free value (i.e., 〈n̂c↑n̂c↓〉0 = 0.25) again,
as perturbative arguments would suggest [144], i.e., the two-site approximation seems
to underestimate the actual double occupancy in the strong-coupling limit (see Fig. 6.5,
middle).
The optimal hybridization parameter strongly oscillates around zero, see Fig. 6.4 (top

right). Recall that in equilibrium and for strong interactions the quasi-particle weight
(for a two-site system) is given by 36V ′2/U2 [see Eq. 6.5] so that strong collapses and
revivals of the square of the optimal parameter would correspond to an oscillatory behav-
ior of the Fermi-surface discontinuity, as has been observed in DMFT calculations [144].
In Fig. 6.5 (top) we therefore show the long-time behavior of V ′2opt(t). With increasing
interactions Ufin we find that both the average and the fluctuations quickly saturate.
For strong final interactions, conservation of total energy becomes rather poor and,

compared to the weak-coupling case, the time-averaged value differs more significantly
from the exact value. Nevertheless, we may again compare the long-time average to
an appropriate thermal value to extract the effective temperature Teff . As compared to
the weak-coupling regime, the effective temperatures are roughly an order of magnitude
higher and, apart from an offset, scale linearly with Ufin (see Fig. 6.6). Interestingly,
from this we find thermal values of the double occupancy which in fact coincide with the
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overall minima of its time-dependent oscillations, see Fig. 6.5 (middle). This is again in
line with the DMFT results [144].
We now focus on the dynamics close to the critical point Udyn

c ≈ 4.61, see Fig. 6.8. In
this regime the behavior of V ′opt(t) for Ufin . Udyn

c and Ufin & Udyn
c becomes very similar:

Within two inverse hoppings, the optimal hybridization strength decays to almost zero,
but then revives to positive values for Ufin . Udyn

c and shows slow oscillations with
relatively large amplitude. The same dynamics, but with opposite sign of the optimal
parameter at long times, is observed for Ufin & Udyn

c . This is accompanied by a decay
of the double occupancy down to almost zero (〈n̂c↑n̂c↓〉 ≈ 0.016), followed by strong
revivals which are in phase with V ′opt(t). As discussed for the weak-quench regime,
these oscillations shift to later and later times for quenches closer and closer to the
critical value. Finally, right at the critical point, no revivals are observed, i.e., the bath
dynamically decouples, and V ′opt(t) remains zero up to the longest simulated times. For
Ufin = Udyn

c the double occupancy merely shows weak oscillates around its long-time
average.
We conclude that, within the two-site DIA, the dynamical Mott transition is de-

scribed as a sharp transition characterized by critical behavior in the Ufin-dependence
of the quantities shown in Fig. 6.5. One may speculate that in calculations with more
bath degrees of freedom in the DIA, some of them would decouple (at low energies)
whereas others would remain connected to the correlated impurity (at high energies).
Nevertheless, even on the level of the two-site approximation, there is a surprisingly good
agreement of the critical interaction with results from the DMFT [144] (Udyn

c,DMFT ≈ 3.2)
and the Gutzwiller ansatz [239] (Udyn

c,Gutzw ≈ 3.3) when comparing with the value rescaled
by the variance of the one-dimensional DOS, i.e, with Udyn

c ≈ 4.61 ≈ 3.26∆1D.
Within the DMFT [144] a rapid thermalization is found at Ufin = Udyn

c , and the ther-
malized state is characterized as a bad metal. Opposed to this, within the two-site DIA, a
complete decoupling of the bath site right at the critical point implies that the final state
is described on the level of the Hubbard-I approximation [7]. Note that therewith the

0 2 4 6 8 10 12 14 16

Ufin
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ff

Figure 6.6: Effective temperatures of the thermal state obtained from equating the total
energy in the long time average with values obtained from an equilibrium calculation
(see text above). Note that the straight lines are only a guide to the eye and especially
for weak interactions the trend might not be exactly linear.
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Figure 6.7: Left: Fourier transform (F) of the double occupancy. Plots have been shifted
for better visibility. Right: linear dependence of the dominant frequency on the fi-
nal interaction Ufin in the strong coupling regime Ufin > Udyn

c . Note the interaction-
independent small beating frequencies (left).

dynamical Mott transition is very similar to the equilibrium Mott transition at zero tem-
perature which is also characterized by a vanishing hybridization to the bath site. In both
cases, the Hubbard-I approximation must be seen as a comparatively crude description of
the bad metal or Mott insulator, and one cannot expect a fully consistent picture on this
level. In the nonequilibrium case, for example, the determination of the effective tem-
perature by comparison with equilibrium two-site DIA calculations via Etot = Eeq

tot(Teff)
yields Teff ≈ 0.3. The resulting thermal double occupancy of 〈n̂c↑n̂c↓〉 ≈ 0.1, however,
turns out too large as compared with the time average 〈n̂c↑n̂c↓〉 ≈ 0.016. A better agree-
ment is found when estimating Teff by comparing with the Hubbard-I solution, where the
bath site is decoupled. This yields Teff ≈ 0.6 and 〈n̂c↑n̂c↓〉 ≈ 0.02. However, at finite tem-
peratures, the Hubbard-I solution is only metastable. One may summarize that for the
final state at Ufin = Udyn

c , our findings more resemble the predictions of the Gutzwiller
approach [239] rather than those of the DMFT.

6.3.2 Ramps of the interaction

The dynamical Mott transition is reminiscent of the conventional equilibrium Mott tran-
sition but occurs at about half the respective critical interaction and at a high effective
temperature. Therefore, an interesting question is whether the two phenomena are
related at all. One route to study this question is to consider a ramp with a finite dura-
tion rather than an instantaneous quench of the interaction as has been done using the
Gutzwiller approach in Ref. [229]. Ramping the interaction in a short time from Uini
to Ufin will make contact to the results found for a sudden quench. On the other hand,
for ramps with infinite duration, i.e., if the interaction is changed adiabatically rather
than suddenly, the system evolves along paths within the equilibrium phase diagram
and will cross the line of equilibrium transitions (see Fig. 6.3). In fact, assuming that
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Figure 6.8: Dynamical decoupling of the bath site at the critical point (Ufin = Udyn
c )

(top) and the corresponding dynamics of the double occupancy (bottom). Additional
curves: dynamics for final interactions differing by less than 0.3% from Udyn

c . Note the
strong impact upon tiny changes of Ufin indicating a sharp transition between the two
regimes.

there is a critical interaction for any ramp time ∆tramp at all, one should expect that,
with increasing ∆tramp, the critical interaction crosses over from Udyn

c ≈ 4.61 (sudden
quench) to Uc2 ≈ 8.59 (T = 0), since starting from a zero-temperature initial state, an
adiabatic process will result in a zero-temperature final state.
To test our expectation we therefore consider a sequence of (cosine-shaped) ramps

with different duration ∆tramp, see Eq. (6.7). Here we are limited to finite propagation
times, tmax ≤ 25, for practical reasons. Nevertheless, this allows us to study the relevant
critical behavior for ramp times up to ∆tramp ≤ 20.
We begin the discussion for ramps of different speed but to the same final interaction

Ufin = 12, starting from the same initial state that has also been considered for the
quenches discussed in section 6.3.1. As a measure of adiabaticity of the process we
compare the total energy as a function of the interaction during the ramp with the
corresponding equilibrium result. This is shown in Fig. 6.9 where the time-dependent
value of the total energy Etot(t) during the ramp is plotted against the instantaneous
value U(t) of the interaction. The resulting function Etot(U) can be compared with the
equilibrium total energy (dashed line) as well as with the total energy after a sudden
quench (straight line).
We find that for short ramps the total energy increases linearly during the ramp up

to intermediate interaction strengths but then changes to sublinear behavior. For longer
ramps, this linear regime shrinks. With increasing ramp duration the curves Etot(U)
finally converge to the equilibrium result, i.e., to the U -dependence of the ground-state
energy. For ramp times ∆tramp & 15, the process is almost perfectly adiabatic.
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Figure 6.9: Check of adiabaticity for ramps of the interaction from Uini = 0.01 to Ufin =
12 with different ramp times (∆tramp ∈ {0.5, 1, 2, 4, 6, 8, 10, 12, 15}, colored from purple
to cyan). The total energy during the ramp is plotted as a function of the instantaneous
interaction (top left), i.e., Etot(U) ≡ Etot(t(U)), as obtained from the inverse of (cosine)
ramp profile U(t), Eq. (6.7), (bottom) and from the time-dependent total energy Etot(t)
(right). The results are contrasted with the total energy after a quench (straight red
line) and the equilibrium energy at the same final interaction (dashed red line).

Independent of the ramp duration, we find essentially the same distinction between
a weak- and a strong-coupling regime that has been discussed for the case of a sud-
den quench. The two regimes are sharply separated by a critical interaction Udyn

c =
Udyn

c (∆tramp) which depends on the ramp duration (see discussion below).
With increasing ramp time the dynamics becomes more well-behaved in the sense that

energy conservation becomes almost perfect for weak final interactions and is strongly
improved in the strong-coupling case. As an example, in Fig. 6.10, we show the time
dependencies of the optimal hybridization, of the double occupancy and of the total
energy for different Ufin which are located below, right at, and above the dynamical
critical interaction Udyn

c ≈ 8.02 for a ramp with ∆tramp = 7. Note that the process
is clearly nonadiabatic. For Ufin ≤ Udyn

c we find that there are almost no oscillations
of the optimal hybridization parameter after the ramp is completed. The same holds
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Figure 6.10: Time dependencies of the optimal hybridization V ′opt, the double occupancy
〈n↑n↓〉 and the total energy Etot (from top to bottom) for ramps of the interaction with
∆tramp = 7, starting from Uini = 0.01 to different Ufin (as indicated in the top panel)
in the weak- and the strong-coupling regime as well as right at the dynamical critical
point.

true for the double occupancy. Its (time-averaged) value after the ramp only slightly
increases with increasing final interaction after having reached a minimum (close to
zero) right at the critical point. This already indicates proximity to an adiabatic process
where the double occupancy would just follow its equilibrium value, i.e., where it would
monotonically decrease with increasing final interactions [see Fig. 6.2(b)].
We also obtain reasonable results for the time-dependent momentum distribution

n(k, t) and, contrary to the study of quench dynamics, can therefore more compre-
hensively focus on the question of thermalization. In Fig. 6.11, we show three different
examples for the final-state dynamics of n(k, t), exemplary for the weak- (Fig. 6.11(a))
and for the strong-coupling case (Fig. 6.11(b)) as well as for Ufin = Udyn

c (Fig. 6.11(c)).
We again consider ramps with ∆tramp = 7. The initial state is characterized by a
sharp Fermi-surface discontinuity, which is slightly washed out by the finite temperature
(β = 10) that has been assumed for practical reasons. As mentioned above, however,
this does not affect the final-state dynamics significantly. The final state that is reached
in the long-time limit either shows a sharp jump of n(k, t) at the Fermi surface (in case of
Ufin < Udyn

c ) or collapse-and-revival oscillations (Ufin > Udyn
c ). This is very similar to the

DMFT results in the quench case [144]. Right at the critical point (Ufin = Udyn
c ) we also

find fast thermalization immediately after the ramp is completed toward a hot thermal
distribution. Comparing with Hubbard-I equilibrium calculations, we find an effective
temperature of Teff ≈ 0.5, see Figs. 6.11(c) and 6.11(d). Note that this is somewhat
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Figure 6.11: Time dependent momentum distribution for a ramp with ∆tramp = 7 ending
at different interactions (a) below, (b) above and (c) right at the critical point. Pre-
cise numbers are given in the top left corner of each plot. For the latter the long-time
average of the momentum distribution is fitted with an equilibrium distribution within
the Hubbard-I approximation (red line). Relative errors of fits for the momentum dis-
tribution, the double occupancy and the total energy (from top to bottom) at different
temperatures are shown in (d), an error estimate for the effective temperature Teff ≈ 0.5
is indicated by a red shaded area.

lower than the effective temperature that had been obtained for the quench (Teff ≈ 0.6).
Let us finally come back to the original motivation to study ramps of the interaction.

We consider ramps with various durations bridging the limit of an instantaneous quench
∆tramp = 0 and the adiabatic limit ∆tramp →∞. For each ramp time, we have performed
a series of calculations with different Ufin to extract the respective value of the dynamical
critical interaction Udyn

c . The latter is indeed well defined in the whole ∆tramp-regime.
Its dependence on the ramp time for ∆tramp ≤ 20 is shown in Fig. 6.12.
Udyn

c monotonically increases with ∆tramp and seems to approach the value of the
critical interaction Uc2 ≈ 8.59 for the zero-temperature Mott transition, as obtained
by the two-site DIA (cf. Sec. 6.2). However, the convergence turns out to be very
slow. We also cannot fully exclude that the low but nonzero initial-state temperature
has some effect on the result expected for ∆tramp → ∞ and that, even for a perfectly
adiabatic process, the final-state effective temperature becomes nonzero which would
imply that Udyn

c converges to a somewhat lower value. Nevertheless, the results indeed
clearly indicate that the dynamical Mott transition and the equilibrium Mott transition
are related phenomena which are smoothly connected – at least within the two-site
DIA. The same conclusion can be drawn from the results of the Gutzwiller calculations
[229] which, however, suffer from additional oscillations of the critical interaction when
increasing the ramp duration. This effect is absent in the two-site DIA and presumably
an artifact of the Gutzwiller method.
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Figure 6.12: Dynamical critical interaction Udyn
c as a function of the ramp time ∆tramp

determined for cosine-shaped ramps starting from Uini = 0.01. The equilibrium value
Uc2(0) ≈ 8.59 for the critical interaction at zero temperature is indicated by a gray
dashed line.

6.4 Tunable Mott transitions in periodic Anderson models

In the following we will discuss both cases of the periodic Anderson model (see Eq. 2.3),
where we first consider a hybridization between nearest-neighbors for which Vij = −V for
neighboring sites i and j and zero otherwise [see Fig. 6.1(b)] and thereafter turn over to
a site-local hybridization, i.e., Vij = −V δij [see Fig. 6.1(c)]. For the following discussion
we will essentially adapt the structure of the preceding section for the Hubbard model
and will refer back wherever convenient.

6.4.1 Equilibrium case

As before (see Sec. 6.2), for small β and small U the optimal parameter V ′opt is easily
found by a global search and can then be traced throughout the entire β–U parameter
space. Exemplary results for the optimal reference system’s hybridization parameter
V ′opt for V = 0.866 in the original system (i.e., V 2 ≈ 0.75) and a representative range of
interactions are shown in Fig. 6.13(a). Upon lowering the temperature, i.e., increasing
β, three coexisting solution for V ′opt are found for certain values of U , indicating a phase
transition of first order.
Though its strong resemblance with the Mott transition in the Hubbard model (see

Sec. 6.2), to better understand the details of the transition in the two-orbital model, we
extrapolate the results for V ′opt to zero temperature: for small U the optimal parameters
become independent of temperature and converge to a constant value, whereas for large
U , carrying out the T → 0 limit we find V ′opt → 0. Thus, at some intermediate value
Uc(T = 0) the bath site decouples, i.e., V ′opt vanishes.
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Figure 6.13: Equilibrium results for a PAM with nearest-neighbor hybridization with
V = 0.866 (i.e., V 2 ≈ 0.75): (a) optimal parameters for different inverse temperatures
β (for numbers see boxes) and (b) corresponding double occupancies (in the f -orbitals).
The inset in (b) shows the Maxwell construction for β = 200: the mid arrow indicates
the value for Uc, the outer arrows point at the spinodal points, which bound the region
where metallic and insulating solutions coexist.

The orbital selective character of the transition is straightforwardly discussed with the
help of the (frequency dependent) spectral function as given by

A(ω) = − 1
π

lim
η↘0

ImG(ω + iη) . (6.10)

Here, G(ω) = L−1∑
kG(k, ω), denotes a general Green’s function and the sum runs over

all lattice momenta. This expression can be evaluated directly within the DIA at G =
GDIA = (G−1

T ,V ,0−ΣV ′opt,U
)−1 [cf. Eq. 3.20], since the self-energy of the reference system

is known analytically from Eq. (6.2) and can be evaluated at the optimal parameter
V ′opt. To this end, we also exploit the lattice’s translational symmetry to obtain the
k-dependent dispersion

ε(k) =
(
T (k) V (k)
V (k) 0

)
, (6.11)

with T (k) = −2T cos(ka) and V (k) = 2V cos(ka) for the nearest-neighbor hybridization
(see Fig. 6.1(b)), or V (k) = V for the on-site hybridization respectively (see Fig. 6.1(c)),
which eventually leads to

GDIA(k, ω) =
(
ω − T (k) −V (k)
−V (k) ω − Σ′opt(ω)

)−1

. (6.12)
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Figure 6.14: Density plots of spectral densities for both (a) the correlated (impurity)
f -type orbitals and (b) the uncorrelated (conducting) c-type orbitals, for different fre-
quencies ω and different interactions U at zero temperature T = 0. Cuts along lines
with constant interactions U = 0 and U = 10 are shown in (c), indicated by the shading
of the lines. The nearest-neighbor hybridization has magnitude V = 0.866. See text for
discussion.

For practical calculations we have used a finite but small η = 0.01, which causes an
artificial broadening of the delta poles in the spectral density [Eq. 6.10]. Results for
V = 0.866 are shown in Fig. 6.14.
In the noninteracting case we find two superimposed tight-binding like bands of

different width for both the f - and c-type spectral densities Af (ω) ≡ Aff (ω) and
Ac(ω) ≡ Acc(ω) with the same compact support, as can be seen from the shaded plots
in Fig. 6.14(c) (note that in Fig. 6.14(a) the smallest values of Af (ω) are not well re-
solved with the present color gradient). For finite U the two poles of the self-energy at
ω = ±3V ′opt [Eq. 6.2] translate into a a three-peak structure of Af (ω) with two Hubbard-
like peaks located at ω ≈ ±U/2 and the central quasi-particle resonance at ω = 0. Upon
increasing U , i.e., for reduced V ′opt [cf. Fig. 6.13(a)], spectral weight gets transferred
from the central peak into the outer Hubbard peaks, until finally at Uc ≈ 9.46, where
V ′opt → 0, the poles of the self-energy merge at ω = 0 and a finite Mott gap is established
in the f -electron’s spectral density Af . This resembles the Mott metal-insulator transi-
tion in the half-filled single-band Hubbard model as e.g. discussed in Sec. 6.2. However,
simultaneously the weight of the induced Hubbard peaks in the c-type spectral density
gradually gets suppressed and for interactions U > Uc the c-type spectrum is domi-
nated by a tight-binding-like dispersion of width W ≈ 4T leading to an overall metallic
behavior of the system even for strong U (see Fig. 6.14(c), blue plot for U = 10).
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Figure 6.15: Triangular shaped phase diagrams of the Mott-like transition of the f -
electron system in the half-filled PAM with different nearest-neighbor hybridizations V .
Below some critical temperature metallic solutions persist up to interactions U ≤ Uc2,
insulating solutions arise for U ≥ Uc1 (black lines), and in between both coexist. Red
line: the first-order phase boundary Uc(T ). Extrapolations of all results down to zero
temperature are indicated by dashed lines.

With this, we now turn back to finite temperatures and additionally consider the dou-
ble occupancy for the respective optimal solutions, as depicted in Fig. 6.13(b), which as
well shows three different branches in the coexistence region. Again, those solutions vio-
lating the thermodynamical stability condition ∂〈n̂f↑ n̂

f
↓〉/∂U = ∂2Ω/∂U2 < 0 have to be

excluded via a Maxwell construction: the middle branch of the double occupancy is elim-
inated in favor of a jump at an appropriate interaction Uc(β) [see inset of Fig. 6.13(b)].
The spinodal points of the curve set the lower and upper boundaries of the coexistence
region, Uc1 and Uc2.
Results for different temperatures and several values of V are shown in the phase

diagrams depicted in Fig. 6.15. For all values of the hybridization V we find a triangular-
shaped region, bounded by the curves Uc1(T ) and Uc2(T ), in between of which lies the
first-order transition line Uc(T ) and which intersect at the critical temperature Tc, where
the transition is of second order. Below Tc, metallic solutions for the f -electron system
exist up to U ≤ Uc2 whereas insulating solutions arise for U ≥ Uc1, as has been discussed
for the Hubbard model in the preceding section 6.2. This equivalence has been observed
in DMFT calculations [232] and derived within the linearized DMFT [233]. In particular,
Held and Bulla [233] found an approximate V 2-scaling of the critical interaction for the
nearest-neighbor PAM at zero temperature which is recovered within our calculations,
as shown in Fig. 6.16. However, they also suggested the same scaling law for the critical
temperature, whereas our data rather yield a linear scaling Tc ∝ V [see Fig. 6.16(a)]. In
fact the linearized DMFT is formulated at zero temperature and one thus might at least
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temperature Teff is not used for the linear fit and hence only plotted for completeness
(plotted in pale color). Note that the results for the effective or critical temperature are
rescaled by one or two orders of magnitude.

doubt that the derived scaling law trivially translates to finite temperatures.
In contrary, for the PAM with on-site hybridization, we performed calculations for

temperatures down to T ≥ 2.5×10−3 (i.e., β ≤ 400), but could not identify any coexist-
ing solutions, as shown in Fig. 6.17(a) for the optimal parameters V ′opt and for V = 0.866
in the original system. Starting from its noninteracting value, V ′opt decreases monoton-
ically with increasing interaction, showing a steep slope around the inflection point of
the curve. It is tempting to anticipate this as a precursor for some hysteresis at even
smaller temperatures T , but we rather find a 1/T -divergence of the inflection points’
interaction. This is in line with a critical interaction Uc →∞ as has been suggested by
linearized DMFT [233]. Moreover, the half-filled PAM with an on-site hybridization has
an insulating ground state and crosses over from a hybridization band insulator at weak
U to a Kondo insulator for strong interactions. As an illustration, Fig. 6.17(b) shows the
gapped spectral densities for the noninteracting case. In fact, as has been pointed out by
van Dongen et al. [234], any small on-site “perturbation” to the pure nearest-neighbor
hybridization causes the transition at finite U to turn into a sharp crossover.

6.4.2 Nonequilibrium case

With the finding of an orbital selective Mott transition in the f -electron system of the
PAM with nearest-neighbor hybridization, which is absent in the model with on-site
hybridization, it will be interesting to analyze if and how this difference is reflected
out of equilibrium. To this end, we conduct both sudden quenches and ramps of the
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Figure 6.17: Equilibrium results for the PAM with on-site hybridization V = 0.866: (a)
optimal parameter V ′opt, the point of steepest slope diverges as a function of inverse
temperature, indicating a fully decoupled bath only at T = 0 and U →∞; (b) spectral
densities for c- and f -type orbitals at U = 0 and T = 0, revealing the band-insulating
character of the on-site PAM. See text for further discussion.

interaction parameter U(t), starting from a “noninteracting” initial state. We have
chosen a small but finite initial interaction, here Uini = 0.1, and prepared initial thermal
states at inverse temperature β = 10, which as before essentially corresponds to a zero
temperature state (see discussion in Sec. 6.3). As in equilibrium, we have performed
calculations for different values of V , but in the following show results only for V = 0.866,
i.e., V 2 ≈ 0.75, if not stated otherwise.
Again, starting with the case of a nearest-neighbor hybridization, we find a dynami-

cal transition for quenches ending at a critical interaction Udyn
c ≈ 4.43, which sharply

separates two distinct response regimes. Exemplary results for the time dependencies
of the optimal parameter V ′opt are shown in Fig. 6.18 (top). For quenches to weak final
interactions, i.e., Ufin < Udyn

c , we find a quick relaxation to some smaller but positive
values within about two inverse hoppings, which is followed by moderate oscillations [see
Fig. 6.18 (top left)]. Contrary, as shown Fig. 6.18 (top right), for strong interactions
Ufin > Udyn

c the optimal parameter drops to negative values and on top of the small
and fast oscillations exhibits some pronounced, slow beating oscillations, the frequency
of which increases with Ufin. Finally, at the critical point Udyn

c the single bath site dy-
namically decouples, i.e., the optimal parameter vanishes on average for longer times,
but some small regular oscillations around zero persist, as shown in Fig. 6.18 (top left).
This very much resembles the situation in the Hubbard model as discussed in Sec. 6.3.1,
though for the latter we found an exact decoupling of the bath site in the reference
system.
Concerning the double occupancy and the energy, at least for the weak coupling case,
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Figure 6.18: Time dependencies of the optimal parameters V ′opt(t), the double occupan-
cies and the total energies for a PAM with nearest-neighbor hybridization V = 0.866
for quenches from Uini = 0.1 to different final interactions Ufin (see color labels). Left:
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c ≈ 4.43. Right: Ufin > Udyn
c .

the overall behavior does not deviate much from that observed earlier in the Hubbard
model (see Fig. 6.4). With increasing interactions, the double occupancies drop to
smaller values on the same time scales as the hybridization parameter relaxes and after-
ward slightly oscillates (see Fig. 6.18 (left middle)), though close to the critical point, we
do not find pronounced recurrences as in the case for the Hubbard model, but cannot
exclude that these would appear on longer timescales for the nearest-neighbor PAM.
At the same time, for all weak interactions the total energy is almost perfectly con-
served and only rather small regular oscillations have to be tolerated (see Fig. 6.18 (left
bottom)). For strong final interactions the dynamics of both models seemingly feature
rather different dynamics: whereas in the Hubbard model on top of interaction depen-
dent oscillations pronounced beatings and recurrences could be identified, in the present
case the double occupancy rather seems to relax to almost constant values which essen-
tially do not depend on Ufin. However, for the case Ufin = 6 close to t = 16 the double
occupancy, in phase with the optimal parameter’s behavior, rises again and as argued
before, longer times would be needed to better study this effect (see Fig. 6.18 (right
middle)). Interestingly, and in contrary to the Hubbard model, the total energy also in
the strong coupling regime is quite well conserved and strong oscillations are absent. In
view of this, one might also speculate, whether the mentioned beatings of the double
occupancy in the Hubbard model are a pure artifact of the worse energy conservation
within the two-site DIA.
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Figure 6.19: Long-time averages for the PAM with (a) a nearest-neighbor hybridization
and (b) with an on-site hybridization, and both for V = 0.866. Red lines: (a) critical
interaction Udyn

c or rather (b) “crossover” interaction Udyn
co . Green lines: thermal values

for the double occupancy obtained from an equilibrium calculation for a two-site refer-
ence system. Blue diamond or line: same but obtained from a Hubbard-I calculation.
For (a) we find Re 〈f †c〉 ≈ 0 and hence only the imaginary part Im 〈f †c〉 is plotted and
vice versa for (b). Note that the values of the 〈f †c〉-correlation functions have been
rescaled by one or three orders of magnitude.

The optimal parameter’s long-time behavior is shown in Fig. 6.19(a) (top). Note that
here and in the following long time averages and respective fluctuations are again calcu-
lated according to Eqs. (6.8) and (6.9). For weak Ufin < Udyn

c , V ′opt slowly decreases for
increasing interactions but then rapidly drops close to the critical point where the bath
site eventually decouples (on average) and relative oscillations are small. For strong final
interactions, there is a sign change for the long-time average and considerably increased
oscillations occur, which is due to the slow beating of large amplitude. Certainly, these
values would improve for larger tmax but their overall trend seems well captured. For
quenches ending at large Ufin > Udyn

c the absolute value of V ′opt slowly decreases but
seems to saturate for Ufin & 8. Note that the decoupling of the bath at the critical point
is also reflected in the hybridization function 〈f †c〉, which reveals fully screened impu-
rities (i.e., 〈f †c〉 = 0) right at Udyn

c but a finite hybridization of the f - and c-electron
system off criticality [see Fig. 6.19(a) (bottom)].
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The double occupancy’s long-time average [see Fig. 6.19(a)] linearly decreases from
its noninteracting value 〈n↓n↑〉0 = 0.25, since the finite Coulomb repulsion energetically
suppresses doubly occupied sites. Interestingly, for strong interactions 5 ≤ Ufin ≤ 10
the double occupancy remains almost constant at around 0.05, whereas perturbative
arguments, like in the Hubbard model, would suggest an increase toward larger values.
Again, the two-site DIA seems to dynamically underestimate the final double occupancy
for strong final interactions. This effect is even more pronounced than in the Hubbard
model (therefore cf. Fig. 6.5). However, right at the critical point Udyn

c , we find a similar
rapid drop to almost vanishing values with only small remaining fluctuations.
Concerning the total energy, we find the same linear dependence Etot(t+0 ) = Ekin(t0)+

Ufin/4 as discussed in Sec. 6.3 and shown in Fig. 6.19(a) (second from bottom). However,
as compared to the Hubbard model, for larger times the total energy is surprisingly well
conserved and only decays to long-time averages slightly smaller than Etot(t+0 ) accom-
panied by some moderate oscillations. Again, via the total energy we can ascribe an
effective temperature Teff to the final state, which qualitatively shows the same behavior
as we plotted for the Hubbard model in Fig. 6.6 and is hence not shown again.
Finally, we have access to the thermal values for the double occupancies at Teff by

comparing the long-time averages of the total energies with their respective equilibrium
values obtained from two-site DIA calculations at different temperatures (cf. Sec. 6.3.1).
For sufficiently weak and strong interactions off Udyn

c these approximately coincide with
their respective long-time averages (see Fig. 6.19(a)). However, right at the critical
point the long-time average deviates and rather matches the thermal value derived from
a Hubbard-I approximation at Teff ≈ 0.43, i.e., from a reference system consisting of a
single correlated site with no bath attached to it. Though, in total one might regard
the system as thermalized in the described cases, one should consider further “mean-
ingful” observables such as the time dependent momentum distribution. Unfortunately,
the latter is dominated by severe oscillatory effects which should probably be ascribed
to the small reference system, and thus proves insufficient for deciding whether the sys-
tem relaxes to a thermal state or not. In conclusion, as for the equilibrium case, also
the nonequilibrium dynamical transition resembles the corresponding behavior of the
Hubbard model after quenches of the interaction [144] (see Sec. 6.3).
The same behavior as for the preceding exemplary case of V = 0.866 is essentially

also found for all other values of V we considered. Interestingly, as shown in Fig. 6.16(b)
we can extract a V 2-scaling of Udyn

c , indicating that the nonequilibrium transition is in
fact related to the equilibrium Mott behavior. The respective scaling law in equilibrium
has been derived exploiting the system’s properties right at criticality [233] and should
hence be accounted as characteristic for the Mott transition. Moreover, the dynamical
critical interactions differ by roughly a factor of two from their equilibrium counterparts,
consistent with all previous results for the Hubbard model obtained by means of different
methods [145–147, 229] as well as with our results presented in Sec. 6.3. Finally, as for
Tc in equilibrium, we find a linear scaling of Teff right at Udyn

c [see Fig. 6.16(a)].
Noteworthy, besides this aforementioned accordance regarding the scaling behavior

with respect to the hybridization parameter V , we again conducted ramps to trace the
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Figure 6.20: Critical dynamical interaction Udyn
c as a function of the ramp time ∆tramp

at βini = 10 for a PAM with nearest-neighbor hybridization V = 0.866. Gray dashed
line: equilibrium critical interaction Uc2(0) ≈ 9.46 at zero temperature. For comparison
also consider ramps within the Hubbard model as were shown in Fig. 6.12.

crossover from the sudden quench dynamics to the adiabatic regime. We studied ramps
of variable finite duration ∆tramp ≤ 15 to different final interactions and for any ramp
time we could identify a well defined Udyn

c (∆tramp), separating weak- and strong-coupling
response regimes. For ramps with ∆tramp & 3 the small regular oscillations observed
for all quantities in the post-quench dynamics (cf. Fig. 6.18) fade out and thus e.g. the
optimal parameter relaxes to constant positive values within times of the order of ∆tramp
for weak interactions and for strong interactions it performs slow collapse-and-revival
oscillations around some (slightly) negative value (not plotted, but similar dynamics
have been observed in the Hubbard model, as shown in Fig. 6.10). In Fig. 6.20 we show
the critical interaction’s dependency on ∆tramp, which just as observed for ramps in
the Hubbard model, monotonically increases toward the equilibrium value Uc(0) at zero
temperature.
To further support this apparent relation between the transition in and out of equilib-

rium, we finally question whether similar critical behavior as for the PAM with nearest-
neighbor hybridization can be found in its variant where the hybridization is purely
local [cf. Fig. 6.1(c)] and for which an orbital selective Mott transition is absent in
equilibrium.
For weak interactions, we essentially find the same features as described for the PAM

with nearest-neighbor hybridization, as may be infered from a comparison of the long-
time averages [Eq. 6.8] of all observables and parameters as depicted in Figs. 6.19(b)
and 6.19(a). Nevertheless, upon increasing the final interaction we could not identify
a sharp transition. For brevity, we do not show the respective time-dependent results,
but only focus on their long-time averages. Concerning the optimal hybridization, V ′opt
monotonically decreases and quickly approaches zero for Ufin & 5, but opposed to the
preceding case there is no sign change. At the same time, pronounced regular oscillations
persist for all Ufin & 4, as shown in Fig. 6.19(b). For the double occupancy, after an
initial drop, we find almost constant values for all interactions, as can be seen from
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6 Static and dynamical Mott transitions

the small fluctuations [cf. Eq. 6.9] in Fig. 6.19(b). After having reached a minimum at
the intermediate interaction Ufin ≈ 4, 〈n↓n↑〉 again increases for increasing Ufin, which
in principle should be expected due to perturbative arguments, as has been mentioned
earlier. However, as before, 〈n↓n↑〉 does not fully rise to its noninteracting value and
also for the present case seems to be underestimated by the two-site approach.
Remarkably, not only for weak, but also for strong interactions, the energy conserva-

tion is barely violated, which might be related to the strong resemblance of the “geo-
metrical” structure of both the original and the respective reference system. Here, the
on-site hybridization is present in both systems, whereas for the Hubbard model the
bath site represents an additional “auxiliary” degree of freedom which is only present
in the reference system and in case of the PAM with nearest-neighbor hybridization it
provides an “additional link” between the f - and the c-electron system.
As before, we can deduce some effective temperature Teff from Etot, which however

shows an unchanged U2
fin-dependency for all final interactions (not shown), instead of

two different regimes for weak and strong couplings, as observed in the case for a nearest-
neighbor hybridization as well as for the Hubbard model (cf. Fig. 6.6). We again contrast
the corresponding thermal values of the double occupancy with the respective long-time
averages. For weak interactions, we find thermal double occupancies when compared to
an appropriate grand potential calculated within the two-site DIA. For larger interactions
(Ufin & 3) these start to deviate, but can again be regarded as thermal around Ufin ≈ 4
when compared to equilibrium results obtained with the help of a Hubbard-I reference
system. This is quite remarkable, since at the same time neither the bath of the reference
system decouples on average nor does the f -electron system get fully screened, as it was
the case for the PAM with nearest-neighbor hybridization. For larger interactions, the
double occupancy exceeds the thermal values obtained from either reference system, the
latter of which converge against each other as has to be expected, since also for the
two-site system the hybridization gradually vanishes close to the atomic limit.
To conclude, though both regimes are not sharply distinguished, we ascribe some

dynamical “crossover” interaction Udyn
co ≈ 4 to the minimum of 〈n↓n↑〉, in the proximity

of which both V ′opt as well as 〈f †c〉 show an inflection point. Intriguingly, similar results
are again obtained also for different values of V and as for the on-site PAM we find a
V 2-scaling of Udyn

co , which moreover almost coincides with Udyn
c , as shown in Fig. 6.16(b).

In view of Uc =∞ in the equilibrium case, this is quite surprising.

6.5 Comparison of the DIA to Hamiltonian-based DMFT
solvers

To conclude this chapter, let us contrast our approach with Hamiltonian-based methods
which strive to exactly solve the nonequilibrium DMFT equations on short time scales by
mapping the lattice model onto a single-impurity Anderson model with a finite number
of bath sites [154]. It turns out that two different types of baths have to be carefully
distinguished in such approaches, one describing correlations of the initial state which
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6.5 Comparison of the DIA to Hamiltonian-based DMFT solvers

possibly decay in the course of time and a second one which simultaneously captures the
dynamically emerging correlations. For the latter, a causal scheme has been suggested
for which a gradually increasing number of bath sites gets coupled to the impurity as time
proceeds [154]. In practice one is limited to small systems, which sets a short maximum
propagation time up to which converged results can be obtained. Recently, different
implementations have been put forward, using exact-diagonalization techniques [154],
the multi-configuration time-dependent Hartree method [155] as well as an approach
based on the matrix-product state representation [156]. In all these studies the time
evolution is started from the atomic limit, where there is no need for an initial bath.
The number of bath sites needed for the final-state dynamics and the related maximum
propagation time varies: With exact-diagonalization methods [154] propagation up to
tmax ≈ 3 inverse hoppings has been possible by providing Lb = 8 bath sites at weak
interactions, whereas using matrix-product states [156], tmax ≈ 7 (tmax ≈ 5.5) could be
reached with Lb = 24 (Lb = 18) sites at strong (weak) interactions. It is noteworthy
that the performance of both approaches depends on the interaction strength and that
for later times conservation of energy is lost and additional bath sites would be needed.
Opposed to those Hamiltonian-based DMFT methods, the self-energy functional ap-

proach maps the original lattice-fermion problem onto an auxiliary model with a fixed,
small number of bath sites and, in the case of the dynamical impurity approximation,
a single correlated site. Rather than aiming at an exact solution of the nonequilibrium
DMFT equations, the SFT provides an independent variational scheme to determine
the time-dependent one-particle parameters of the reference system which only in the
limit of an infinite number of bath sites recovers the DMFT. Formally, much longer
propagation times with a very small number of bath sites (a single bath site only in
the case considered here) are possible in this way. The present study has in fact shown
that even with the most simple reference system one can make close contact with full
DMFT results. The agreement between the two-site DIA and full DMFT is qualitatively
satisfying and close to the critical point for the (dynamical) Mott transition even quan-
titative. This demonstrates that much of the essential physics can be captured with a
single time-dependent variational parameter.
The general framework of the SFT ensures that variational approximations are con-

serving with respect to the particle number and spin. The possible violation of energy
conservation, however, must be seen as a major drawback of the present implementation
of the DIA. Ways to overcome this problem have been discussed in Sec. 3.9.3. Here,
we could show that energy conservation is in fact violated but that, on the other hand,
this violation is moderate in the weak-coupling limit after a quantum quench and even
for strong interactions does not generally invalidate the results which still agree qualita-
tively with DMFT. Furthermore, if the dynamics is initiated by ramping the interaction,
energy conservation is respected to a much higher degree.
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7 Conclusions and Perspectives

Mastering the problem of strongly correlated fermions on a lattice has challenged the-
oreticians for more than five decades and has stimulated the development of a large
number of different methods. Among these many cluster and impurity approximations
could be unified and extended in the single framework of self-energy functional theory
(SFT) [162]. This comprises “two-site” approximations [240] and the linearized DMFT
[235], dynamical impurity approximations (DIA) [162, 171, 174], but also formally re-
covers the dynamical mean-field theory (DMFT) and its cluster extensions, i.e., the
cellular DMFT (C-DMFT) [125, 126, 163] as well as the dynamical cluster approxima-
tion (DCA) [127, 176], and finally the cluster-perturbation theory (CPT) [158, 159] and
its variational extension, the variational cluster approach (VCA) [164]. The SFT has
been extended into several directions, e.g., to systems with nonlocal interactions [175],
to disordered [176] and to bosonic systems [177–179].
Starting out to the unexplored grounds of physics far from equilibrium has stimu-

lated the development of staggeringly fast and precise experimental techniques which
nowadays allow experimentalists to e.g. stimulate and trace electron dynamics in real
materials or to trap atoms in artificial optical lattices to unveil the properties of under-
lying, idealized theoretical models. On the theoretical side, considerable progress has
been made to extend known methods and develop new concepts to describe real-time
phenomena of many-body systems.

Nonequilibrium methodology

In this thesis, we have generalized the self-energy functional theory to the nonequilibrium
case. Approximations provided within this nonequilibrium SFT address the transient
dynamics of single-particle observables of lattice-fermion systems, initially prepared in
a thermal state and driven out of equilibrium by sudden quenches or arbitrary time-
dependent perturbations.
Though the equilibrium variant of the present approach is recovered in case of an

equilibrium setup and both share the same formal structure, several important aspects
without any counterpart in the equilibrium formalism emerge. For a meaningful exten-
sion of the variational principle inherent to the SFT, the space of physical parameters
has to be enlarged to also incorporate unphysical or transverse variations which fix the
nontrivial time-dependent solutions within the physical manifold. However, evaluated at
a physical stationary point, the self-energy functional yields the grand potential of the
initial thermal state and thus also in nonequilibrium retains a precise physical meaning.
Another important concern exclusive only to the nonequilibrium case is the question
whether microscopic conservation laws resulting from the symmetries of the original
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Hamiltonian are respected within the generalized approach. Remarkably, we could show
that even the simplest approximations accessible via the NE-SFT “conserve” any one-
particle observables if this had to be the case for the original system. Importantly, though
we adapted basic concepts and ideas of a proof on “conserving approximations” by Baym
and Kadanoff, apart from DMFT, approximations constructed within the NE-SFT are
not “Φ-derivable” but rather nonperturbative.
Regarding energy conservation, the optimization of parameters which are nonlocal in

time would be required, which, however, corresponds to providing a continuous bath
in the reference system. In fact, this recovers the DMFT or its cluster variants, which
indeed conserve the total energy. Nevertheless, the quality of the approximations can be
systematically improved by enlarging the reference system and moreover, in principle,
the formal structure of the SFT allows to enforce energy conservation by means of
constrained variations.
Finally, the nonequilibrium SFT has an inherently causal structure, i.e., respects the

physical causality principle. Apart from being relevant on a fundamental level, this also
proves important for the numerical implementation of the variational problem.

Numerical implementation

Numerically evaluating the SFT Euler equation on the real-time contour turned out to
be elaborate in several aspects. Due to the necessity for transverse variations of the
self-energy functional, its direct evaluation, which would entail unphysical Hamiltoni-
ans, seems to be less favorable than in the equilibrium variant of the SFT. Fortunately
the involved functional derivatives could be carried out explicitly, turning the varia-
tional problem of the respective functional on an unphysical manifold into a root finding
problem for its derivative on the space of physical parameters. Due to causality, a time-
propagation algorithm has been proposed which allows to search for stationary points
at some instant of time without altering the results at earlier stages. Disadvantageously,
in practice this suffers from severe numerical instabilities which could be traced back
to an inherent quadratic dependence of the Jacobian on the time step ∆t. Replacing
the Euler equation by its time-derivative, the corresponding Jacobian of which shows
a numerically much more favorable linear-in-∆t scaling, this difficulty could eventually
be evaded. By using high-order integration schemes wherever possible and with the
help of Broyden’s method we have finally put forward and have implemented a stable
propagation algorithm for the optimal parameters of the reference system.
As a benchmark, we have applied the variational cluster approach (VCA) in its sim-

plest, conceivable form, namely for a reference cluster consisting of two sites, to study
the dynamics of a one-dimensional dimerized Hubbard model. To this end, we consid-
ered exactly solvable or slightly perturbed initial states and altered the model’s hopping
parameter by two different fast ramps at various but fixed interaction strengths. Tracing
the time-evolution of the optimal parameters, the double occupancy, and the energy and
guided by well-founded expectations on the final state dynamics, we could demonstrate
that plausible and consistent results are in fact accessible.
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Dynamical Mott transition

The true strengths of variational approaches encompassed by the SFT manifest them-
selves in situations involving e.g. broken symmetry phases or (dynamical) phase transi-
tions. As a prime example, we studied the dynamical Mott metal-insulator transition
which emerges in the real-time dynamics of the Hubbard model subsequent to quenches
and ramps of its interaction parameter. As for its (possible) equilibrium counterpart,
the (two-site) dynamical impurity approximation (DIA), which provides a local trial
self-energy, turned out to sufficiently capture the transition’s essential features.
Starting from a noninteracting initial state, we have studied the time evolutions of the

double occupancy, the total energy, the momentum distribution, and the optimal hy-
bridization parameter of the reference system for different final values of the interaction.
Sharply separated by a critical interaction Udyn

c at which fast thermalization occurs, we
have found two distinct response regimes and clear signs of prethermal, intermediate
states for both weak and strong final interactions. However, this dynamical transition
occurs at a highly increased effective temperature and at about half the value of the
critical interaction for the equilibrium Mott transition at zero temperature. Despite the
simplicity of the two-site approach, this is in surprisingly good accordance with previous
nonequilibrium DMFT results [144].
Interestingly, within the DIA, right at the critical point and after a rapid relaxation,

the optimal hybridization parameter vanishes for all later times. This strongly resembles
the characteristic behavior in the equilibrium case, where the Mott transition is indicated
by a decoupling of the bath site in the two-site approximation, emphasizing a possible
link between both transitions. To further trace this presumption, we conducted ramps
of different duration and found the same well-pronounced critical behavior in the entire
range from the sudden quench to the limit of an adiabatically slow quasi-static process.
Upon slowing down the ramp speed we could identify a monotonic increase of Udyn

c
finally approaching the zero-temperature critical interaction in the adiabatic limit, which
is qualitatively in line with earlier findings within the Gutzwiller approach [229, 239].
By means of the latter also the impact of doping was studied, and, as in the equilibrium
case, the transition was found to turn into a crossover away from half-filling.
In a similar spirit, we considered the half-filled periodic Anderson model (PAM) and in

particular focused on two variants with different hybridizations of the uncorrelated dis-
persive band and the correlated impurity degrees of freedom. This is especially interest-
ing, since this setup allows us to “tune” between different configurations either favoring or
impeding the Mott transition in equilibrium: for a spatially local hybridization the model
exhibits band or Kondo insulating behavior for weak or strong interactions, whereas for
a nearest-neighbor hybridization a Mott-type metal-insulator transition takes place in
the correlated orbitals. By means of linearized DMFT this could be related to the Mott
transition in the Hubbard model [233] and furthermore a characteristic quadratic scaling
of the precise value of the critical interaction with the hybridization strength was pre-
dicted. Here, we have again studied quenches and ramps of the interaction parameter
questioning whether the presence or absence of a Mott-like transition depending on the
geometrical details of the model is also reflected in the respective nonequilibrium dynam-
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ics. In fact, for the model with a nearest-neighbor hybridization V we found two distinct
response regimes, separated by a sharp transition, sharing basically the same features as
the dynamical transition in the Hubbard model. Moreover, the critical interaction obeys
the same characteristic V 2-scaling as the respective value in equilibrium. On the other
hand, for a local hybridization this transition turns into a dynamical crossover. These
findings strongly support the existence of a possible link between both the transition in
and out of equilibrium and hence justify the notion of a dynamical Mott transition.

Perspectives

Over a little more than the last decade the SFT has become a well established, widely
used and valuable framework for various different approximation schemes to the strongly
correlated many-body problem and with this thesis we hope to provide the basis for a
similar recognition and success in the emerging field of nonequilibrium dynamics.
Concerning the Mott insulator, an obvious extension of the present DIA studies would

comprise more bath sites, and one may speculate that some of these, representing low
energy degrees of freedom, would decouple at the transition, whereas other would remain
connected to the correlated impurity. Equally well interesting would be to induce the
dynamical Mott transition from the “opposite” side, i.e., study the time-dependent clo-
sure of the Mott-Hubbard gap when conducting quenches or ramps into metallic states,
starting from the atomic limit, for example. To the best of our knowledge only a few
works have been leading in this direction so far [241, 242].
In fact, our first efforts concerning this matter revealed diverging optimal parameters

at a certain time t∗ and we could almost certainly exclude numerical reasons for this
[priv. comm. w/ C. Gramsch]. However, so far, we did not find a fully convincing physical
explanation for this phenomena but expect clarifying results in some future work. Until
then, room is left for speculations. Most promisingly, the observed divergences might be
linked to a recently proposed notion of a dynamical phase transition, which relies on the
observation of nonanalytical behavior of e.g. the return probability at certain instants
of time [55]. For variational approaches as constructed within the SFT, such real-time
nonanalytical behavior of the thermodynamically large original system might translate
into diverging optimal parameters of the small reference system.
Providing additional bath sites would furthermore allow for the study of more complex

models, like two-band variants of the Hubbard model. There, an orbital selective Mott
transition gives rise to a more complex phase diagram and non-Fermi liquid behavior may
arise in a phase where localized and itinerant fermions coexist [243, 244]. Understanding
these phenomena from a real-time perspective would clearly be an exciting task and first
attempts along these lines have been made recently [245].
Moreover, incorporating nonlocal trial self-energies via cluster approximations and

exploring the same questions will probably reveal further intriguing insights of the Mott
transition, as is apparent from equilibrium considerations in two dimensions, where
short-ranged antiferromagnetic correlations turn out to modify the topology of the phase
diagram [168].
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The variational cluster approximation seems particularly suited for models with hop-
ping amplitudes alternating from site to site, i.e., which on their own suggest a “natural”
tiling of the full lattice into smaller clusters by cutting along the “weaker” links (cf.
Sec. 5). For Hubbard models on a checkerboard lattice, i.e., for weakly coupled square
plaquettes, an extremely rich phase diagram has been found [246] and a new class of
so called “fragile” Mott insulators was predicted to exist [247]. Furthermore, studies on
topological transport in one-dimensional “dimerized”, but effectively uncorrelated mod-
els have been performed in recent experiments with ultracold fermions [248] and bosons
[249] but also theoretically for doublons in the strong coupling limit of a dimerized
Hubbard model [250]. Clearly, the interplay of correlations and topological phenomena
raises new questions and has become a field of active research [251]. Interaction driven
topological phase transitions in the Haldane-Hubbard model on honeycomb lattices have
very recently been studied in equilibrium with the help of the VCA [252, 253]. Lastly,
the formation and redistribution of spin-correlations after changing the lattice geometry
by ramping the hopping between certain sublattice sites of a Hubbard model has been
in the focus of experiments with ultracold fermions [92, 94]. Studying the expectable
complex real-time phenomenology of these systems, induced by temporal changes of the
geometrical details or the interaction, might serve as a fruitful field of application for
the nonequilibrium VCA.
However, since the SFT builds on one-particle quantities, directly measuring spin-spin

correlations is impossible and informations on spin-order can only be gained via local
spin-densities and fictitious magnetic fields in the reference system. Thus a formalism
in the spirit of the SFT but with access to preferably two-particle correlation functions
would be desirable. A work by van Leeuwen et al. [254] may serve as a basis for a
imaginable “vertex-functional theory”: analogous to Φ-derivable approximations based
on the Luttinger-Ward functional, the authors derive a more general functional Ξ, from
which conserving but perturbative approximations for both the self-energy as well as the
four-point vertex can be derived. Exploiting universality properties of this or related
functionals will allow for the same idea as in the SFT: without changing the functional
dependencies a nonperturbative evaluation on a space of trial self-energies and four-point
vertices obtained from a small reference system is accessible. Such a vertex-functional
theory might not suffer from the same difficulties concerning energy conservation as does
the SFT and will give direct access to two-particle observables.
Another technical endeavor of the SFT could target long-time evolutions. In the

present formulation calculations become computationally demanding for long-times due
to the evaluation of the four-point correlation functions (for three independent times)
involved in the Euler equation: at any time-step a memory kernel quadratic in time has
to be recalculated or updated and eventually the entire propagation algorithm scales
cubically in maximum propagation time. This obstacle might be bypassed with the help
of an appealing idea [161, 185]: a small correlated reference system may be replaced by
a completely uncorrelated effective medium providing a Markovian propagation scheme
instead of the solution of the respective Dyson equation with a memory kernel. To this
end, a Lehmann representation of the nonequilibrium self-energy has been constructed,
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based on which a beneficial reformulation of the SFT seems conceivable.
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A Technicalities

A.1 Prevalent commutation relations

Fermionic operators obey the following anticommuation relations{
cα, c

†
β

}
= δαβ , (A.1){

cα, cβ

}
=
{
c†α, c

†
β

}
= 0 . (A.2)

Using basic properties of (anti)commutators, we derive the following commutation rela-
tions of fermionic construction operators with one- and two-particle parts of a general
Hamiltonian [see Eq. 2.1].
For Hλ,0 =

∑
αβ λαβc

†
αcβ:[

cα, Hλ,0
]

=
∑
β

λαβcβ ,[
Hλ,0, c

†
α

]
=
∑
β

c†βλβα .
(A.3)

For H0,U = 1
2
∑
αβγδ Uαβδγc

†
αc
†
βcγcδ, with Uαβδγ = Uβαγδ:[

cα, H0,U
]

= 1
2
∑
βγδ

U[α,β]δγc
†
βcγcδ ,[

H0,U , c
†
α

]
= 1

2
∑
βγδ

Uδγ[α,β]c
†
δc
†
γcβ ,

(A.4)

where we used the short-hand notation U[α,β]δγ = Uαβδγ−Uβαδγ . For Coulomb-like inter-
actions with orbital and spin indices, i.e., α = (i, σ) and so forth, and with Uiσ,jσ′,lλ,kλ′ =
Uijlkδλσδλ′σ′ , Eqs. (A.4) attain the form:[

ciσ, H0,U
]

=
∑
jkl

∑
σ′

Uijklc
†
jσ′clσ′ckσ ,[

H0,U , c
†
iσ

]
=
∑
jkl

∑
σ′

Uklijc
†
kσc
†
lσ′cjσ′ .

(A.5)
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A.2 Units of contour quantities

A.2 Units of contour quantities

Since ~ is set to one, all quantities are measured in units of the energy E, i.e., in powers
of [E]. For the following, note that the inverse of a two-point function X(1, 2) on the
contour is defined by∫

d1̄X−1(1, 1̄)X(1̄, 1′) = [X−1 ◦X](1, 1′) = δ(z, z′) . (A.6)

The following table lists the units of typical quantities that occur in the present context
as well as units of derived quantities, such as derivatives or inverses.

quantity unit example
z (time) [E]−1

β−1 (temperature) [E]∫
C dz ,

∫
di , ◦ ,Tr [E]−1

δC(z, z′) , δ(1, 1′) [E]
∂z [E]
λ(z) [E]
G ,G(0) 1
Σ [E]2

two-point contour functions X(1, 2)
X−1 [E]2[X]−1

[
G(0)−1] = [E]2

δ

δX
[E]2[X]−1

[
δ

δΣ

]
= 1

F̂ [X] different possibilities [Ω̂] = [E]
δF̂ [X]
δX

[E]2[X]−1[F̂ ]

f(X) (cf. Eq. 2.25) [E]
one-point contour functions Y (1)

Y −1 [E][Y ]−1 [λ(z)−1] = 1
δ

δY
[E][Y ]−1

[
δ

δλ(z)

]
= 1

Table A.1: List of units of different contour quantities as well as derived entities such as
inverses and derivatives, measured in units of energy [E].
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contributed by Martin Eckstein. Karsten Balzer provided a routine to efficiently set up
a many-body basis.
Post-processing and plotting of the obtained data has been done with python and the

plotting library matplotlib.
All numerical calculations have been performed on the PHYSnet computing cluster

at the University of Hamburg.
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