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Summary

We investigate how the quantum Teichmüller theory is encoded in the free field quantization
of Liouville theory. We show that the 4-point conformal blocks of Liouville theory contain
the eigenstates of length operators of quantum Teichmüller theory in a certain representa-
tion. After giving a heuristic explanation for this observation, we formulate a conjectural
generalization for n punctures and define a representation of the algebra of quantized shear
coordinates for the n-punctured sphere on the Liouville Hilbert space. We present calculations
in the attempt to prove the conjecture for n = 5. Finally, we show that, on the classical level,
each Teichmüller space may be identified with a quotient of the Liouville phase space and
investigate how an analogous reduction may be realized on the quantum level.

Zusammenfassung

Wir untersuchen wie die Quanten-Teichmüllertheorie in der Freifeldquantisierung der Liou-
villetheorie dekodiert ist. Wir zeigen, dass die 4-Punkt konformen Blöcke der Liouvilletheorie
die Eigenzustände von Längenoperatoren der Quanten-Teichmüllertheorie in einer bestimm-
ten Darstellung enthalten. Nachdem wir eine heuristische Erklärung für diese Beobachtung
geliefert haben, formulieren wir eine Vermutung für die Verallgemeinerung dieser Beobach-
tung auf n Punktierungen und definieren eine Darstellung der Algebra der quantisierten
Scherkoordinaten für die n-punktierte Sphäre auf dem Hilbertraum der Liouvilletheorie. Wir
präsentieren Rechnungen in dem Versuch, die Vermutung für n = 5 zu beweisen. Schließlich
zeigen wir auf der klassischen Ebene, dass jeder Teichmüllerraum mit einem Quotienten des
Phasenraums der Liouvilletheorie identifiziert werden kann und untersuchen wie eine analoge
Reduktion auf der Quantenebene realisiert werden kann.
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1 Introduction

Conformal field theory (CFT) in two dimensions is known to be an integral part of string
theory. Since Polyakov recognized Liouville theory to be the effective theory of the non-
critical (D 6= 26) bosonic string [28], a lot of effort has been put towards the development
and solution of this CFT (early works are [7, 8, 14]). An exact formula for the three point
function of the exponentiated Liouville field was proposed in [9, 44] and derived in [35, 37].
Due to the conformal symmetry this allows in principle to compute all correlation functions
of the theory, which amounts to a solution of the theory.

Besides the relation with bosonic string theory via two-dimensional quantum gravity (the
Liouville field ϕ is the conformal factor of the metric gab = eϕηab), quantum Liouville the-
ory has revealed many connections to different physical and mathematical subjects. Most
prominent on the physical side are the connections to N = 2 supersymmetric gauge theories
conjectured in [3] and proven in [40], where the conformal blocks of Liouville theory are re-
lated to the so-called instanton partition functions of the gauge theory. On the mathematical
side, one may name relations to the representation theory of quantum groups [29, 41] and the
quantum Teichmüller theory [36, 38, 40], which may be outlined as the quantum theory of
Riemann surfaces. Concerning the latter, it has been found that conformal blocks, defined in
genus zero as the n-point function of the exponentiated Liouville field, coincide with eigen-
states of the so called length operators in a certain representation as holomorphic functions
on Teichmüller space. This statement has been proven by showing that the monodromies and
asymptotic behavior of both objects (which have been computed independently) coincide, and
using the fact that a function with these properties is unique. Therefore, the proof has not
brought much insight into the origin of that relation, which is the subject of the present work.

Starting on the classical level, there seem to be two slightly different approaches to un-
derstand the connection between Liouville theory and Teichmüller spaces. The first one starts
from the observation that the conformal factor of the hyperbolic metric on a given Riemann
surface satisfies the euclidean Liouville equation with certain boundary conditions. This may
be used to embed the Teichmüller space into the phase space of euclidean Liouville theory,
defined on an annulus, by embedding this annulus into each Riemann surface. This approach
appears to be promising by the results of Takhtajan and Zograf [33] who related the Weil-
Petersson symplectic form on Teichmüller space to the euclidean Liouville action. On the
quantum level, this approach is affirmed by the observation that the conformal Ward identity
relates the quantized stress-energy tensor of Liouville theory to the corresponding operator
on Teichmüller space [10].

The second approach is to understand each Teichmüller space Tg,n as a quotient of the (chi-
ral) phase space of Minkowskian Liouville theory. The latter may be identified with the chiral
part of the conformal symmetry group, Pchir. = Diff+(S1)/Rot(S1), where Diff+(S1) denotes
the group of orientation preserving diffeomorphisms of the unit circle S1 and Rot(S1) ' S1

the subgroup of rigid rotations. Let Σ be a Riemann surface of genus g with n punctures.
One may act with an element α of Diff+(S1) on Σ by cutting out a punctured disc from
Σ, changing its boundary parametrization with α (where rigid rotations leave the conformal
equivalence class of the punctured disc invariant), and then regluing the surface according to
the new boundary parametrization. Let Hol(Σ) denote the subgroup of diffeomorphisms that
leave the conformal equivalence class of Σ invariant (which are identified with holomorphic
self-mappings of Σ). The quotient of the infinite dimensional space Diff+(S1)/S1 by Hol(Σ)
is then naturally identified with a subset of the finite dimensional moduli spaceMg,n of type
(g, n) Riemann surfaces (respectively a subset of Tg,n, when Σ is equipped with a marking).

Since we are chiefly interested in Minkowskian Liouville theory, we will primarily follow
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the second approach. (Nevertheless, we will also employ the first approach on a heuristic level
by associating analytic continuations of Liouville observables with observables on Teichmüller
space as inspired by the conformal Ward identity.) The aim of the present work is to investigate
in what way the identification of Teichmüller space as a quotient of the Liouville phase space
carries over to the quantum theory in the framework of the free field quantization of Liouville
theory. In other words, we want to identify quantum Teichmüller theory as a “subtheory”
of quantum Liouville theory, in the sense that the Teichmüller Hilbert space HT becomes a
subspace of the chiral Liouville Hilbert space Hchir.

L and the algebra of Teichmüller operators
AT is identified with a subalgebra of the algebra of chiral Liouville operators Achir.

L . The
resulting picture could then be outlined by the phrase “reduction commutes with quantization”,
and diagrammatically represented as follows:

Diff+(S1)/S1 (Hchir.
L ,Achir.

L )

Hol(Σ)\Diff+(S1)/S1 ⊂ Tg,n (HT ,AT )

reduction

quant.

reduction

quant.

The most obvious way to perform the reduction on the quantum level is in a “coherent state
representation” of Liouville theory, a quantization scheme where the Hilbert space consists of
holomorphic functions on the phase space. In such a representation HT would be naturally
identified as the functions on Pchir. which are invariant under the action of Hol(Σ), and can
thus be identified as holomorphic functions on (a subset of) Tg,n. This would correspond to
a coherent state representation of quantum Teichmüller theory. Such a representation has
been defined in [40] and is the one in which eigenstates of length operators are related to
conformal blocks of Liouville theory, defined (amongst others) in the framework of the free field
quantization. One of the tasks that are left is therefore to define a coherent state representation
of Liouville theory from the free field representation, i.e., to associate with each state in
Hchir.
L a holomorphic function on Diff+(S1)/S1. This is naturally done with the help of the

representation of the Virasoro algebra obtained in free field quantization of Liouville theory,
which yields a projective representation of Diff+(S1).

Much of this picture is already known, in particular the classical theories and their quan-
tization in different schemes. As this material is not always available in the form we need it,
and for the convenience of the reader, we will review it in the first sections. The reduction
process has been indicated in the literature [40, 39] but not yet performed explicitly. Here we
will make a number of new contributions, both on the classical and on the quantum level.

This work is structured as follows. In Section 2 we will expose the classical Liouville theory
and its solution in terms of the free field, which will be the starting point for quantization
in Section 5. In Section 3 we will introduce the classical Teichmüller spaces and suitable
coordinate sets on them such as the shear coordinates, which will be the basis for the different
quantization schemes introduced in the next section.

Having defined conformal blocks of Liouville theory in Section 6, we will observe in Sec-
tion 6.3 that in a certain reordering of operators in 4-point conformal blocks there appear the
eigenfunctions of length operators of quantum Teichmüller theory. This leads one to identify
a certain operator of Liouville theory with a quantized shear coordinate on Teichmüller space.
A first heuristic explanation for this identification, based on the conformal Ward identity, will
be given in Section 7.1. In order to formulate a conjectural generalization of this observation
for the n-point conformal block, we will define in Section 7.2 a representation of the algebra
An of quantized shear coordinates for the n-punctured sphere on the space of Liouville opera-
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tors. This will lead to the definition of a representation of An on the dual H∗L of the Liouville
Hilbert space HL (where H∗L ' HL). The next task will be to investigate whether HT can
be identified with a subset of H∗L which is invariant under this representation, such that the
action of the quantized shear coordinates on this subspace corresponds to their action on HT .
A natural candidate for this is the space CB(Σ) of elements 〈Ψ| of H∗L with the invariance
property

∀η ∈ Vect(Σ) : 〈Ψ|Tη = 0, (1.1)

where Vect(Σ) denotes, modulo technical details, the space of holomorphic vector fields on Σ
(which is the tangent space to Hol(Σ)) and Tη is the operator that represents η in quantum
Liouville theory. We will then find that at least a subset of the quantized shear coordinates
leaves CB(Σ) invariant. The observation of Section 6.3 will help us to argue that at least in
one case the action of a shear coordinate on CB(Σ) ' HT coincides with its action on HT
in the coherent state representation. (By the conjectural generalization for the n-punctured
sphere the same would be true for a large class of shear coordinates on T0,n.) This may be
seen as a first evidence for the compatibility at the quantum level of the two approaches to
the relation between Liouville and Teichmüller theory described above.

2 Classical Liouville theory

In this section we introduce the classical Liouville theory and its solution in terms of the
free field, as well as the characterization of its phase space in terms of coadjoint orbits of
the Virasoro-Bott group. Although this is all known material, the given representation of the
Liouville phase space has, to the authors knowledge, not appeared in the literature so far.

2.1 Solution of the Liouville equation

Classical Liouville theory is a two dimensional field theory defined by the action

SL =
1

π

∞∫
−∞

dt

2π∫
0

dσ

(
1

16

(
(∂tϕ)2 − (∂σϕ)2

)
− eϕ

)
, (2.1)

where the Liouville field ϕ is a real smooth function on the cylinder R×S1 and one identifies
S1 with R/2πZ. Hence we require the periodic boundary conditions ϕ(t, σ + 2π) = ϕ(t, σ).
The Euler-Lagrange equation for this action is the (Minkowskian) Liouville equation

∂+∂−ϕ = −2eϕ, (2.2)

where x± := t± σ, ∂± = ∂
∂x± . The first step to its solution is the observation that

∂−T+ = ∂+T− = 0, (2.3)

where
T± := 1

4(∂±ϕ)2 − 1
2∂

2
±ϕ, (2.4)

if ϕ satisfies the Liouville equation. Thus exp(−1
2ϕ(x+, x−)) for fixed x− respectively for fixed

x+ are solutions to the Hill’s equations

∂2
±f
±(x±) = T±(x±)f±(x±). (2.5)

Let f+
i , respectively f

−
i (i = 1, 2), be two linearly independent solutions to these equations.

Then the functions
d± := f±1 ∂±f

±
2 − f

±
2 ∂±f

±
1 (2.6)
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are constants, d± ∈ R. Since

0 6= ∂±
f±2
f±1

=
d±

(f±1 )2
(2.7)

one has d± 6= 0. Therefore f±i can be normalized such that

f±1 ∂±f
±
2 − f

±
2 ∂±f

±
1 = 1. (2.8)

Then there exists a matrix C = (Cij)i,j=1,2 such that

e−
1
2
ϕ(x+,x−) =

2∑
i,j=1

f+
i (x+)Cijf

−
j (x−) = f+(x+) · C · f−(x−), (2.9)

where f+ := (f+
1 , f

+
2 ) and f− := (f−1 , f

−
2 )t. By the linear transformation f+ → f+ · C−1 it

can be achieved that C = 1 (it follows from (2.2) that detC = 1). Conversely, given any two
pairs of smooth functions f± satisfying (2.8), then

ϕ(x+, x−) = −2 log
(
f+

1 (x+)f−1 (x−) + f+
2 (x+)f−2 (x−)

)
(2.10)

is a solution to the Liouville equation. However, we also have to consider the boundary con-
ditions.

As ϕ is periodic, ϕ(x+ + 2π, x− − 2π) = ϕ(x+, x−), so are T+(x+) and T−(x−). It follows
that f±i (x±±2π), i = 1, 2, are also two linearly independent solutions to (2.5) satisfying (2.8),
and therefore related to f±i (x±) by an SL(2,R) transformation M±:

f±(x± ± 2π) = M± · f±(x±), M± ∈ SL(2,R). (2.11)

Furthermore, it follows from (2.10) and the periodicity of ϕ that (M+)t ·M− = 1. Also, there
is some freedom in the choice of the f±i : If we change

f± → Q±f±, Q± ∈ SL(2,R), (2.12)

with (Q+)t · Q− = 1, then ϕ remains invariant. The monodromy matrices M± transform as
M± → Q±M±(Q±)−1. Therefore only the conjugacy class of M± is fixed. It has been shown
[26, 4] that for ϕ to be non-singular,M+ andM− have to be hyperbolic elements of SL(2,R),
which means that |trM±| > 2. By using the freedom (2.12), one may then bring M± to the
form

M± = s±

(
e∓πp 0

0 e±πp

)
, p > 0, s± ∈ {1,−1}. (2.13)

We will now explicitly describe the phase space P of Liouville theory, defined as the set
of non-singular solutions to the Liouville equation on the cylinder. To this end, let us define

A±(x±) :=
f±2 (x±)

f±1 (x±)
. (2.14)

It can be shown [4] that f±1 has no zeros if ϕ is non-singular and the monodromy matrix is of
the form (2.13). Thus the functions A± are also non-singular. By (2.7) they are monotonically
increasing, ∂±A± = (f±1 )−2 > 0, and we can define

ϕ±F := log(∂±A
±). (2.15)

Having brought the monodromy matrices to the form (2.13), we have

A±(x± ± 2π) = e±2πpA±(x±). (2.16)
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This implies ϕ±F (x± ± 2π) = ϕ±F (x±)± 2πp and therefore

ϕF (x+, x−) := ϕ+
F (x+) + ϕ−F (x−) (2.17)

is a periodic solution to the free wave equation ∂+∂−ϕF = 0 (called a free field). Going
backwards, we can reconstruct A± from ϕ±F by the formula

A±(x±) =
1

e2πp − 1

∫ 2π

0
dy eϕ

±
F (y+x±), (2.18)

and f±i from A± by
f±1 = (∂±A

±)−
1
2 , f±2 = A± (∂±A

±)−
1
2 . (2.19)

Thus we have shown that every periodic non-singular solution of the Liouville equation is of
the form

ϕ(x+, x−) = log
∂+A

+∂−A
−

(1 +A+A−)2
, (2.20)

with A± given by (2.18). Note that with the help of (2.20) and ∂2
+A

+ = (∂+ϕF )∂+A
+ one

can express T± in terms of the free field as

T± = 1
4(∂±ϕF )2 − 1

2∂
2
±ϕF . (2.21)

Conversely, given a periodic free field ϕF with left and right moving parts ϕ±F (x±) then (2.20)
(together with (2.18)) defines a solution of the Liouville equation on the cylinder.1 Thus we
have constructed a surjective map R : PF → P from the phase space of free field theory to
that of Liouville theory.2 However, this map is not one-to-one but two-to-one as ϕ is invariant
under the transformation f±1 → f±2 , f

±
2 → −f

±
1 , which corresponds to A± → −(A±)−1 and

p→ −p. This transformation defines a map S : PF → PF satisfying S2 = Id. One could now
define an equivalence relation on PF by ϕF ∼ ϕ′F :⇔ ϕ′F = S(ϕF ). Then one would obtain
a bijection R̃ : PF /∼ → P. Another option is to restrict R to the space P+

F of free fields
with positive zero mode p. Then it has an inverse W : P → P+

F (which has been explicitly
described above).

The Liouville phase space P carries a canonical Poisson bracket coming from the action
(2.1). Defining the conjugate momenta at t = 0

Π(σ) :=
δSL

δ(∂tϕ(σ))
=

1

8π
∂tϕ(σ), (2.22)

it is given by
{Π(σ), ϕ(σ′)} = δ(σ − σ′). (2.23)

With regard to quantization of Liouville theory, we want to use functions on PF , composed
with the map W , as functions on P. A convenient set of functions on PF is obtained by the
Fourier expansion

ϕF (x+, x−) = q + p(x+ + x−) + i
∑
n6=0

1

n

(
ane
−inx+

+ bne
−inx−

)
. (2.24)

It has been shown that [26]

{ϕF (σ) ◦W,∂tϕF (σ′) ◦W} = 8πδ(σ − σ′), (2.25)
1Periodicity of ϕF implies that there exists p ∈ R such that ϕ±F (x± ± 2π) = ϕ±F (x±)± 2πp.
2The Liouville field really depends only on ϕF , since adding a constant to ϕ+

F and its negative to ϕ−F leaves
it invariant.
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that is, the Poisson brackets of the free field, viewed as functions on P, coincide with the
canonical Poisson brackets on PF . In terms of the Fourier modes q, p, an, bn appearing in
(2.24), viewed as functions on P, equation (2.25) becomes

{p, q} = −2, {an, am} = −2inδn+m,0, {bn, bm} = −2inδn+m,0, (2.26)

while all other brackets vanish. This will be the starting point for quantization in Section 5.

2.2 The Diff+(S1)×Diff+(S1) symmetry

Let ϕ be a solution to the Liouville equation with corresponding functions A±. One can then
act with elements α+, α− of Diff+(S1), the group of orientation preserving diffeomorphisms
of the circle, on A± according to

A± → A±
α± := A± ◦ α±. (2.27)

Here we represent elements of Diff+(S1) by monotonically increasing smooth functions α :
R → R that are compatible with the projection R → R/2πZ ' S1. These are the α that
satisfy α(x + 2π) = α(x) + 2π. (Although the shifts αn(x) = x + 2πn, n ∈ Z, all represent
the identity on S1, they act non-trivial on A±. Nevertheless, their action on ϕ will be trivial.)
The corresponding action on ϕ is given by

ϕ(x+, x−)→ ϕα+,α−(x+, x−) = ϕ(α+(x+), α−(x−)) + log(∂+α
+) + log(∂−α

−), (2.28)

yielding a new solution to the Liouville equation. Thus Diff+(S1)×Diff+(S1) acts as a symmetry
group on the phase space of Liouville theory. This symmetry is known as the conformal
symmetry, a term that becomes clear in the Wick rotated theory, i.e., when fields like A+(x+)
are analytically continued to imaginary time (see Sect. 5).

Let us calculate how the functions T± defined in (2.4) transform. To this end, it is useful
to observe that T± is the Schwarzian derivative3 of A±:

T± = S(A±), S(f) := −1

2

f ′′′

f ′
+

3

4

(
f ′′

f ′

)2

. (2.29)

A little bit more computation then yields

T± → Tα
±
± = S(A± ◦ α±) = (∂±α

±)2T± ◦ α± + S(α±). (2.30)

Let Vect(S1) denote the space of smooth vector fields on S1, which is the tangent space or
Lie algebra of Diff+(S1). Let ε > 0, [−ε, ε] 3 t 7→ αt a smooth curve in Diff+(S1) with α0 = Id.
Then ξ = ξ(x)∂x ∈ Vect(S1) with ξ(x) := ∂

∂tαt(x)
∣∣
t=0

is the tangent vector at t = 0 to that
curve. From (2.30), one can compute the action of ξ on T (which stands for T+ or T−):

δξT (x) :=
∂

∂t
Tαt
∣∣∣∣
t=0

= ξ(x)T ′(x) + 2ξ′(x)T (x)− 1

2
ξ′′′(x). (2.31)

This transformation behavior is known as the coadjoint action of the universal central exten-
sion of Vect(S1). The next section is devoted to this concept.

3The Schwarzian derivative is often defined in a way that differs by a factor of −2 from (2.29).
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2.3 Coadjoint orbits

2.3.1 Definition of the coadjoint representation

Let G be a Lie group with Lie algebra g. Then the adjoint action of g on itself is given by

adv(w) = [v, w], v, w ∈ g. (2.32)

By the Jacobi identity this defines a representation of g on itself (corresponding to the action
of G on itself by conjugation). The coadjoint action of g on its dual g∗ is defined by

ad∗v(b)(w) = −b([v, w]), v, w ∈ g, b ∈ g∗. (2.33)

This definition was made in such a way that the pairing between g and g∗ is invariant under
the g action, meaning that

(ad∗v(b))(w) + b(adv(w)) = 0. (2.34)

It follows that (2.33) also defines a representation of g. The orbits of the corresponding action
Ad∗ of G on g∗ (the ‘exponentiation’ of (2.33)) are called coadjoint orbits of the group G.
They are usually characterized by the following method. To every b ∈ g∗ belongs an orbit
Wb = {Ad∗g(b) | g ∈ G} (and every orbit is of this form). Find g0 ∈ G such that b0 = Ad∗g0

(b)
has a particularly simple form and determine the subgroup G0 of G that leaves b0 invariant.
Then the map G → Wb, g 7→ Ad∗g(b0), provides the identification of Wb with the quotient
G/G0.

2.3.2 Symplectic structure

The coadjoint orbits carry a unique symplectic structure that is invariant under the G-action
[42]. It is defined as follows: Let W ⊂ g∗ be a coadjoint orbit and a, a′ ∈ g∗ two tangent
vectors to W at a point b ∈ W . Then there exist v, v′ ∈ g such that ad∗v(b) = a, ad∗v′(b) = a′

and we define the 2-form ω at b by

ωb(a, a
′) := b([v, v′]). (2.35)

This is well defined since the right hand side is invariant under shifts v → v+u and v′ → v′+u′

with ad∗u(b) = ad∗u′(b) = 0. It is not difficult to show that ω is non-degenerate and closed and
thus defines a symplectic structure on W . Let us take a moment to verify the G-invariance of
ω. Since the action of G on g∗ is by linear maps, the vectors a and a′ also transform in the
coadjoint representation of G. Infinitesimally, the action of some w ∈ g on a is δwa = ad∗w(a)
and similar for a′. This has to correspond to a transformation δwv of v. Since a(u) = −b([v, u])
for all u ∈ g, the relation that determines δwv is

∀u ∈ g : ad∗w(a)(u) = −ad∗w(b)([v, u])− b([δwv, u]). (2.36)

By the definition (2.33) and with the help of the Jacobi identity, one finds that δwv = [w, v]
(up to some u ∈ g with ad∗u(b) = 0). Employing the Jacobi identity once again, we find that

δw(ωb(a, a
′)) = ad∗w(b)([v, v′]) + b([δwv, v

′]) + b([v, δwv
′]) = 0, (2.37)

which shows the (infinitesimal) G-invariance of ω.
The symplectic form ω corresponds to a Poisson bracket {·, ·}O on W that resembles the

Lie bracket on g in the following way. Each v ∈ g corresponds to a linear function Φv on g∗

defined by Φv(b) = b(v). These functions can be restricted to W and their Poisson brackets
are given by [42]

{Φu,Φv}O = Φ[u,v] (u, v ∈ g). (2.38)
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To prove (2.38), let us find the hamiltonian vector field Xu on W that is generated by Φu,
i.e., {Φu, f}O = Xu(f) for any function f on W . By the definition of the Poisson bracket this
is the vector field with the property

dΦu(Y ) = ω(Y,Xu) (2.39)

for all vector fields Y . Equation (2.39) can be checked point-wise at each b ∈ W . As before,
a tangent vector a at b can be represented by some w ∈ g with ad∗w(b) = a. Then we have

dΦu|b(a) = Da(Φu) = Φu(a) = −b([w, u]) = ωb(a,−ad∗u(b)), (2.40)

where Da denotes the derivative in the direction of a at b and the second equation holds since
Φu is linear. Thus we have found Xu(b) = −ad∗u(b), i.e., Φu is the generating function for the
negative coadjoint action of u on W . Then immediately follows

{Φu,Φv}O(b) = D−ad∗u(b)(Φv) = −Φv(ad∗u(b)) = b([u, v]) = Φ[u,v](b). (2.41)

Given a basis {vi} of g, the Lie bracket may be written in the form [vi, vj ] =
∑

k f
k
ijvk with

structure constants fkij . As Φu is linear in u, it follows that

{Φi,Φj}O =
∑
k

fkijΦk, Φi := Φvi . (2.42)

From this it is clear that quantization4 of the coadjoint orbits (which is possible only for
some orbits) should give rise to representations of G on a Hilbert space. In fact, it is known
[20, 19] that these are unitary irreducible representations and that the coadjoint orbits can
be used to classify all such representations of G. This method is known as Kirillov-Kostant
representation theory.

2.3.3 Coadjoint orbits of the Virasoro-Bott group

Let us now consider the case where G is the Virasoro-Bott group. The latter is the Lie group
with Lie algebra V̂ect(S1) := Vect(S1) ⊕ iRc, the universal central extension of Vect(S1),
where Vect(S1) is the space of smooth vector fields on S1 and c is the central element (usually
identified with a real number). The Lie bracket between two vector fields ξ = ξ(σ) ∂

∂σ , ζ =

ζ(σ) ∂
∂σ is given by

[ξ, ζ] = (ξ(σ)ζ ′(σ)− ζ(σ)ξ′(σ))
∂

∂σ
+

ic

24π

∫ 2π

0
dσξ(σ)ζ ′′′(σ). (2.43)

One often considers the complexification V̂ect
C

(S1) = V̂ect(S1) ⊗ C, known as the Virasoro
algebra.5 It has generators Ln := ieinσ ∂

∂σ + c
24δn,0 (n ∈ Z) (and c), in terms of which (2.43)

becomes
[Lm, Ln] = (m− n)Lm+n +

c

12
(m3 −m)δm+n,0. (2.44)

The (real) dual space V̂ect(S1)∗ can be identified with the direct sum of the space of quadratic
differentials on S1 and the one-dimensional space spanned by an element ĉ dual to c, i.e.

4see Section 4.1 for a definition of this word
5Strictly speaking, the Virasoro algebra V = Span{Ln}n∈Z consists of only finite sums.
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ĉ(c) = 1, ĉ(ξ) = 0 for all ξ ∈ Vect(S1). An element (t, b) := t(σ)(dσ)2 − ibĉ (b ∈ R) of this
space acts on an element (ξ, a) := ξ(σ) ∂

∂σ + iac of V̂ect(S1) as

(t, b)((ξ, a)) =

2π∫
0

t(σ)ξ(σ)dσ + ba. (2.45)

The invariance of this pairing implies the following coadjoint action of (ζ, e) ∈ V̂ect(S1) on
(t, b) ∈ V̂ect(S1)∗:

ad∗(ζ,e)(t, b) = (ζ · t′ + 2ζ ′ · t+ b
24π ζ

′′′, 0). (2.46)

So b is constant on a coadjoint orbit. For b = −6, the variation of t coincides with that of
t := 1

2πT under the action of Vect(S1) as given in (2.31) (b is fixed by the requirement that
the Poisson bracket on the orbit coincides with the physical Poisson bracket on P). As this
transformation of T corresponds to a simple change of variables of the quotient A := f1/f2

of two solutions f1, f2 to the Hill’s equation f ′′(x) = T (x)f(x), it is customary to identify
V̂ect(S1)∗ for fixed b with the space of Hill’s operatorsHt = ∂2

σ−t(σ) (also known as projective
connections).

We will now investigate what kind of coadjoint orbit T can lie on. The coadjoint orbits of
the Virasoro group have been extensively studied and classified in the literature [21, 42, 4].
A first classification is made by the trace of the monodromy matrix M assigned to the Hill’s
equation. As explained earlier, we are interested only in the hyperbolic case where |trM | > 2.
Since A′ > 0 and A(x + 2π) = e2πpA(x) with p > 0, we also have lim

x→∞
A(x) = ∞ and

lim
x→−∞

A(x) = 0, and as a consequence A > 0. It follows that the function

α(x) :=
1

p
log(A(x)) (2.47)

defines an element of Diff+(S1). Acting with its inverse α−1 on A we get

Aα−1(x) = epx, (2.48)

and thus

Tα−1 = S(Aα−1) =
p2

4
. (2.49)

So T+ and T− always lie on an orbit Wp that contains the constant function Tp := p2/4.
This orbit can be characterized by the subgroup of Diff+(S1) that leaves Tp invariant. The
(infinitesimal) invariance condition

0 = δξTp =
p2

2
ξ′ − 1

2
ξ′′′, (2.50)

together with periodicity of ξ, implies that ξ is constant. As the constant vector fields on
S1 generate the subgroup of rigid rotations of S1 (which can be identified with S1), the
coadjoint orbit of T is isomorphic to Diff+(S1)/S1 via the map T 7→ [α−1] (we adopt the
convention that S1 acts on Diff+(S1) from the left). The space of pairs of functions (T+, T−)
assigned to solutions of the Liouville equation can thus be identified with (Diff+(S1)/S1) ×
(Diff+(S1)/S1) × R>0, where the last factor contains p. On the other hand, a pair (T+, T−)
carries all the information about the Liouville field ϕ except for the constant q in (2.24). (This
is seen by considering the subset of SL(2,R) transformations (2.12) that leave the monodromy
matrices of the form (2.13) invariant; it consists of the matrices diag(a−1, a) with a ∈ R,
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which transform A as A→ a2A.) Therefore we may describe the phase space of Minkowskian
Liouville theory as

P ' (Diff+(S1)/S1)× (Diff+(S1)/S1)× R>0 × R. (2.51)

Let us take a look at the Poisson structure on the coadjoint orbit Diff+(S1)/S1. The
Virasoro generators Ln correspond to linear functions ln := −iΦLn on V̂ect(S1)∗. When
restricted to a coadjoint orbit with b = −6, they are, according to (2.45), defined by

ln(t) =

∫
dσ einσt(σ) +

1

4
δn,0. (2.52)

According to (2.42) and (2.44), their Poisson algebra is

{lm, ln}O = −i(m− n)lm+n −
i

2
(m3 −m)δm+n,0, (2.53)

where we have used Φc = −ib = 6i. By the relation t = 1
2πT+, the ln are the Fourier modes

of T+ (up to the shift in l0). By (2.21) and (2.24), they are given by

ln =
1

4

∑
k∈Z

akan−k +
1

2
inan +

1

4
δn,0. (2.54)

Their (physical) Poisson algebra as derived from (2.26) takes the form

{lm, ln} = −i(m− n)lm+n −
i

2
(m3 −m)δm+n,0. (2.55)

Since the Poisson brackets {lm, ln}O and {lm, ln} coincide, and the an can be in principle
expressed in terms of the ln via the solution of the Hill’s equation, it follows that the Poisson
bracket on Diff+(S1)/S1 that is obtained from the coadjoint orbit method coincides with the
physical Poisson bracket obtained from the Liouville action. Quantization of Liouville theory
can therefore be described as quantization of coadjoint orbits of the Virasoro-Bott group.

3 Teichmüller spaces

In this section we define the classical Teichmüller spaces for punctured Riemann surfaces and
Riemann surfaces with holes. We introduce the shear coordinates, hyperbolic length functions,
and a set of complex coordinates for genus zero. This is known material, only the definition
of the monodromy matrices Mc has been slightly refined.

3.1 Definition of Teichmüller spaces

Let us recall that a Riemann surface is a topological space equipped with a complex structure,
i.e., the equivalence class of an atlas of C-valued charts with holomorphic transition functions.
Two Riemann surfaces Σ and Σ′ are said to be conformally equivalent or isomorphic (Σ ' Σ′)
if there exists a biholomorphic map Φ : Σ → Σ′. A Riemann surface of genus g with n
punctures (sometimes called marked points) or shortly of type (g, n) is one that is conformally
equivalent to a compact Riemann surface with g handles from which n points are removed. We
will sometimes also consider bordered Riemann surfaces or Riemann surface with holes, but
we postpone the precise definition until Section 9. Then we can define the moduli spaceMg,n

as the set of equivalence classes of Riemann surfaces of type (g, n). Alternatively, one can fix
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Figure 1: Dehn twist

a Riemann surface or simply a 2-dimensional real manifold Σ of type (g, n) and consider the
space C(Σ) of complex structures on it. Then we have

Mg,n =M(Σ) = C(Σ)/Diff(Σ), (3.1)

where Diff(Σ) is the group of diffeomorphisms of Σ that naturally acts on C(Σ). These two
models forMg,n are equivalent by the fact that all 2-dimensional real manifolds of type (g, n)
are diffeomorphic.

Closely related is the Teichmüller space

Tg,n = T (Σ) = C(Σ)/Diff0(Σ). (3.2)

where Diff0(Σ) is the group of diffeomorphisms of Σ that are isotopic to the identity. The last
requirement makes T (Σ), as opposed toM(Σ), simply connected.

Another definition uses the concept of a marking, which is a set {aj , bj , ck}k=1,...,n−1
j=1,...,g of

canonical generators6 of the fundamental group of Σ. A conformal equivalence between two
marked Riemann surfaces is a biholomorphic map that transforms the markings into each
other. Then Tg,n is the set of equivalence classes of marked Riemann surfaces of type (g, n).

The relation betweenM(Σ) and T (Σ) is

M(Σ) = T (Σ)/MCG(Σ) (3.3)

where MCG(Σ) = Diff(Σ)/Diff0(Σ) is called the mapping class group of Σ. Since T (Σ) is
simply connected, this implies that Tg,n is (isomorphic to) the universal covering space of
Mg,n, a term that will be defined in the next section. Intuitively, the Teichmüller space keeps
track of the so called Dehn twists which generate MCG(Σ) and have the effect of twisting a
handle (Fig. 1).

3.2 Universal covering spaces and uniformization

Let X be a topological space and p ∈ X a fixed point.7 A path in X is a continuous map
γ : [0, 1]→ X. Two paths γ1, γ2 with γ1(0) = γ2(0), γ1(1) = γ2(1) inX are called homotopic if
there exists a continuous map H : [0, 1]× [0, 1]→ X such that H(t, 0) = γ1(t), H(t, 1) = γ2(t)
for all t ∈ [0, 1] and H(0, s) = γ1(0), H(1, s) = γ1(1) for all s ∈ [0, 1]. (Intuitively, H is a
continuous deformation of γ1 into γ2 that leaves the end points fixed.) We define the universal
covering space X̃ of X by8

X̃ := {[γ] | γ path in X with γ(0) = p}. (3.4)
6Here ‘canonical’ means that each pair (aj , bj) consists of two loops associated with one handle while the

ck are the loops that encircle one puncture only.
7A detailed exposition of the content of this section, including proofs, can be found in [17, Ch. 2].
8The usual, more abstract definition uses the concept of covering spaces. Then X̃ would be a (universal)

covering space of X with projection π : X̃ → X, [γ] 7→ γ(1).
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The crucial property of X̃ is that it is simply connected (i.e., every closed path in X̃ is
homotopic to a constant path). If X is a Riemann surface, then X̃ is also a Riemann surface
with the complex structure that is induced by the projection π : X̃ → X, [γ] 7→ γ(1).
The fundamental group π1(X, p) of X at p is defined by

π1(X, p) = {[C] |C path in X with C(0) = C(1) = p}. (3.5)

The universal covering transformation group Γ̃ consists of the maps

[C]∗ : X̃ → X̃, [C]∗([γ]) := [C · γ], [C] ∈ π1(X, p), (3.6)

where C · γ denotes the concatenation of C and γ. Obviously Γ̃ is isomorphic to π1(X, p).
One has also the isomorphism X ' X̃/Γ̃. If X = Σ is a Riemann surface, then Σ̃/Γ̃ is also a
Riemann surface and this becomes a conformal equivalence

Σ ' Σ̃/Γ̃. (3.7)

The last statement is particularly useful in combination with the following classical theorem
by Klein, Poincaré and Koebe.

Uniformization theorem. Every simply connected Riemann surface is conformally equiva-
lent to either the complex plane C, the Riemann sphere C̄ := C∪{∞} or the upper half plane
H := {τ ∈ C | =(τ) > 0}.

Recall that C̄ comes by definition with the complex structure that is defined by the atlas
consisting of the two charts Id : C → C and J : C̄\{0} → C, z 7→ z−1,∞ 7→ 0. Furthermore
C, C̄ and H are mutually nonequivalent, but H is conformally equivalent to the unit disk
D := {z ∈ C | |z| < 1}.

Let Σ be a Riemann surface. Applying the uniformization theorem to the universal covering
surface Σ̃, we obtain a biholomorphic map A : Σ̃ →̃ ∆, where ∆ ∈ {C, C̄,H}, called the
uniformization map, and by (3.7) an isomorphism

Σ ' ∆/Γ, (3.8)

where Γ := AΓ̃A−1 is a subgroup of the automorphism group Aut(∆) and also isomorphic to
π1(Σ, p). The elements of Γ are called the monodromies of A.

The Riemann surfaces we are interested in are those with N := 2g−2 +n > 0, referred to
as the hyperbolic type. In this case we always have ∆ = H and Γ is a Fuchsian group, i.e., a
discrete subgroup of Aut(H). The latter is the group of real Möbius transformations which is
isomorphic to PSL(2,R) = SL(2,R)/{±1}. (the automorphism groups of standard Riemann
surfaces are described in Appendix D). Given two Fuchsian groups Γ and Γ′, the Riemann
surfaces H/Γ and H/Γ′ are conformally equivalent if and only if there exists g ∈ Aut(H) such
that Γ′ = gΓg−1. This corresponds to the freedom A → g ◦ A we have in the choice of A.
Therefore, the conformal equivalence class of Σ is characterized by the conjugacy class of Γ
within Aut(H).

Uniformization of Σ also endows it with a unique hyperbolic metric (i.e., a metric of
constant curvature −1). Namely, H carries the hyperbolic Poincaré metric

ds2
P :=

dzdz̄

(=z)2
, (3.9)

which is invariant under Aut(H), in particular invariant under Γ. Therefore it induces a
hyperbolic metric ds2 on Σ ' H/Γ. This metric can be used to introduce coordinates on
T (Σ), such as the hyperbolic lengths of closed geodesics on Σ.
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3.3 The euclidean Liouville equation

In terms of a coordinate z on Σ, the hyperbolic metric is

ds2 =
∂A∂̄Ā

(=A)2
dzdz̄, ∂ ≡ ∂

∂z
, ∂̄ ≡ ∂

∂z̄
. (3.10)

Writing this in the form ds2 = eϕedzdz̄, one finds that the real valued function

ϕe = log
∂A∂̄Ā

(=A)2
(3.11)

which we will call the scaling factor (of the hyperbolic metric), is a solution to the euclidean
Liouville equation

∂∂̄ϕe = 1
2e
ϕe . (3.12)

The analysis of this equation is in some way analogous to the solution of the Minkowskian
Liouville equation (2.2). For instance, one can define the function (cf. (2.4), the different
normalization is conventional)

T (z) := ∂2ϕe − 1
2(∂ϕe)

2, (3.13)

which is holomorphic (∂̄T = 0) if ϕe satisfies (3.12). In order to recover ϕe from T , one has
to find two linearly independent holomorphic solutions fi (i = 1, 2) to the Hill’s equation
(cf. (2.5))

(∂2 + 1
2T (z))f(z) = 0. (3.14)

In general the fi will have monodromies, i.e., they are analytic functions defined on the
universal cover of Σ. The same is true for the function9 (cf. (2.14))

A(z) =
f2(z)

f1(z)
. (3.15)

For generic T , the monodromies of (f1, f2) are in SL(2,C). But if T is chosen such that the
monodromies of (f1, f2) are in SL(2,R), then ϕe as defined in (3.11) is a solution to (3.12) on
Σ. In order for ϕe to be the scaling factor of the hyperbolic metric and A the uniformization
map, ϕe also has to satisfy certain boundary conditions at the punctures [33]. Namely, if there
is a puncture at z = z0, then

ϕe(z) = −2 log |z − z0| − 2 log | log |z − z0||+O(1) as z → z0. (3.16)

This asymptotic behavior is called a parabolic singularity (because the monodromy M0 of A
around z0 is a parabolic element of SL(2,R), characterized by |trM0| = 2) and corresponds to

T (z) = 1
2(z − z0)−2 +O((z − z0)−1) as z → z0. (3.17)

The relation between the euclidean and the Minkowskian Liouville equation is slightly non-
trivial. One may observe the following: Let ϕ(x+, x−) be a solution to (2.2). Now suppose
that ϕ can be analytically continued to complex values of x+, x−. This would correspond to
an analytic continuation of the functions A+, A− in (2.20), so the extended ϕ would still be
a solution to (2.2), with the only difference that ∂± is now interpreted as the holomorphic
derivative by x±. Then define for complex w = τ + iσ (τ, σ ∈ R)

ϕ̂e(w, w̄) := ϕ(−iw,−iw̄) + log(4). (3.18)
9The relation between A(z) and T (z) is T = −2S(A), cf. (2.29).
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Figure 2: Ideal triangulations of the one-punctured torus and the 3-punctured sphere

e

x1 x2 x3 x4
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Σ
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H

Figure 3: Uniformization of the one-punctured torus

This is known as the Wick rotation τ = it. The function ϕ̂e would already satisfy (3.12), but
it is conventional to change the variable to z = ew (which nicely incorporates the periodic
boundary conditions). Then

ϕe(z, z̄) := ϕ̂e(log(z), log(z̄))− log(zz̄) (3.19)

is a solution to (3.12) on C∗ := C\{0}. However, ϕe would not necessarily be a real valued
function. Since ∂τ ϕ̂e|τ=0 = −i∂tϕ|t=0, ϕe is real only if ∂tϕ|t=0 = 0.

Despite of this obstacle, there seems to be a connection between the quantum analog of
the function A+ and the uniformization map A in (quantum) Teichmüller theory as we will
see in Section 5.

3.4 Triangulations and fat graphs

In this section we consider only hyperbolic Riemann surfaces Σ with at least one puncture.
An ideal triangulation of Σ is the isotopy class of a set τ of disjoint curves (edges) in Σ
starting and ending at the punctures that decompose Σ into triangles. Two examples are
depicted in Figure 2. An ideal triangulation always consists of 3N = 6g − 6 + 3n edges (this
is shown inductively by adding punctures or handles to the surface). These can be chosen as
geodesics with respect to the hyperbolic metric on Σ. Then the preimages of an edge e under
the canonical projection π : Σ̃→ Σ will be mapped to geodesics in H (w.r.t. the metric (3.9))
by the uniformization map A, which we will simply call the images of e and which are mapped
into each other by elements of the Fuchsian group Γ. Geodesics in H are half circles with ends
lying on R or vertical lines going from the real axis to infinity (or segments of these lines).

Let us figure out what happens to the punctures under A. Strictly speaking, a puncture p0

is not part of Σ, but one could choose a path γ in Σ that approaches p0 (e.g. an edge in τ). This
path has infinitely many lifts (i.e., preimages under the canonical projection) γ̃k, k = 1, 2, . . . ,
in Σ̃. After choosing one γ̃k, the limit of A(p), as p goes along γ̃k is well defined and has to
be a point of the real axis, the boundary of H. We consider this point to be an image of p0

under A. As a result of these considerations one can obtain a model of Σ by gluing hyperbolic
triangles in H, i.e., triangles whose edges are geodesics with vertices on the real axis (or at
infinity). An example is depicted in Figure 3.
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Figure 4: Two triangles of an ideal triangulation (dashed) and the dual fat graph

a b

cd

a' b'
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e'e

Figure 5: Flip along the edge e

Each ideal triangulation τ has a dual graph f called a fat graph. Associated to each
triangle is a vertex of the fat graph, which is connected to three edges that cross the three
edges of that triangle as illustrated in Figure 4. Thus the dual fat graph has also 3N edges,
each of them associated to an edge in τ .

An ideal triangulation respectively a fat graph can be changed by elementary moves called
flips. A flip ωe along an edge e of τ (resp. along the dual edge of f) consists of a change of
the diagonal in the quadrangle formed by the two triangles to which e belongs as depicted
in Fig. 5 (this is not possible in the special case where these triangles coincide). It can be
shown that any two ideal triangulations of the same surface can be converted into another by
a sequence of flips [25]. The set of all ideal triangulations for a given surface together with all
possible flips and sequences of flips form a groupoid, called the Ptolemy groupoid.

Let v be a vertex of f . Then for each element c in the fundamental group π1(Σ, v) there
exists a unique closed path hc on f of minimal length (i.e., there are no 180 degree turns
except at the starting point v) that represents c. Also there exists a unique path gc on f of
minimal length which is in the free homotopy class corresponding to c.

The previous definitions can be adjusted to the case of bordered Riemann surfaces. An
ideal triangulation is then the isotopy class of a set of disjoint curves connecting the boundary
components (or holes) of Σ that decompose Σ into hexagons (these become triangles when the
holes shrink to punctures). As before, a fat graph is the dual graph to an ideal triangulation.

3.5 Shear coordinates

With the help of the tools introduced in the previous section, we are now able to define a
set of coordinates on Teichmüller space that are of particular interest to us. Here we work
with the model (3.2) of Tg,n, i.e., we have fixed a surface Σ with an ideal triangulation τ
and consider different (equivalence classes of) complex structures on it. These correspond to
different uniformization maps A : Σ̃→ H.

To each edge e of τ we assign the shear coordinate we, first introduced in [13], as follows:
Choose an image of e in H as in Fig. 3. This half circle delimits two hyperbolic triangles in H
forming a hyperbolic quadrangle. The positions x1, . . . , x4 ∈ R ∪ {∞} of the vertices of this
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Figure 6: Constructing Mc

quadrangle determine the value of we as

we := log

∣∣∣∣(x4 − x3)(x2 − x1)

(x4 − x1)(x3 − x2)

∣∣∣∣ . (3.20)

In fact, we does not depend on the choice of an image of e as the double cross-ratio in (3.20)
is invariant under Möbius transformations, in particular under the monodromies of A. If ě is
the edge in the dual fat graph which crosses e, then we also write wě for we.

From the set of 3N shear coordinates {we}e∈τ associated to τ , it is possible to reconstruct
the conjugacy class of the Fuchsian group Γ and thus the conformal equivalence class of Σ.
To this end, assign to each c ∈ π1(Σ, v), an element Mc ∈ SL(2,R) as follows. First choose
one of the three edges that emanate from v and denote it by e0, which has to be the same
for all c ∈ π1(Σ, v). The closed path hc on the fat graph that represents c consists of a series
{ei}i=1,...,r of consecutive edges, where e1 starts at v. Define s0 to be 1 resp. −1 if e1 is the
edge that is next to e0 at v in the counter-clockwise resp. clockwise direction, and 0 if e1 = e0.
For i = 1, . . . , r, define si to be 1 if hc turns left at the vertex that connects ei with ei+1, −1
if it turns right, and 0 if it makes a 180 degree turn (for i = r), where er+1 := e1. Then define
the matrix

Mc := V s0V srE(wer) . . . V
s1E(we1)V −s0 , (3.21)

where E(w) and V are given by

E(w) :=

(
0 e

w
2

−e−
w
2 0

)
, V :=

(
1 1
−1 0

)
. (3.22)

The Fuchsian group Γ̂ := {Mc}c∈π1(Σ,v) is then conjugacy equivalent to Γ and Σ is isomorphic
to H/Γ̂. This construction was first given (in a slightly reduced form) in [12]. It can be
explained as follows [34]. The ideal triangulation τ of Σ corresponds to a tessellation of the
upper half plane by hyperbolic triangles (the preimage of τ under the canonical projection
π : H → H/Γ ' Σ). Given two hyperbolic triangles t, t′ with numbered edges, the exists a
unique element of PSL(2,R) that maps t onto t′. Let t0 be a preimage in H of the triangle
that contains v. Then each path hc with c ∈ π1(Σ, v) is represented by a path h̃c in H (which
is called a lift of hc) that starts at the preimage of v that lies in t0, which we will also
denote by v, and ends on some v′ = gc(v) in the triangle t′0 = gc(t0), where gc ∈ Γ. Then
we have Γ = {gc}c∈π1(Σ,v). By changing Γ → gΓg−1 with g ∈ PSL(2,R) (mapping the whole
tessellation with g), it can be achieved that t0 is the hyperbolic triangle with corners at 0,−1
and ∞, such that the edge e0 ∈ f is the one that crosses the edge between 0 and ∞, as
illustrated in Figure 6. Suppose that e1 = e0. Then the triangle one reaches by going from t0
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Figure 7: Definition of the shear coordinates for bordered Riemann surfaces

along e1 is the triangle t1 with corners at 0,∞ and ew1 , where w1 := we1 . The matrix E(w1)
represents the Möbius transformation τ 7→ −ew1τ−1 that maps t1 onto t0. In order for e2 to be
mapped (topologically) onto e0, one then has to rotate the corners of t0. This is done by the
map gV : τ 7→ −τ−1 − 1 or its inverse, that is represented by the matrix V s1 . By going along
h̃c and repeating these steps for each edge ej , one constructs the matrix Mc that represents
the map (gc)

−1. If e1 6= e0, one has to first rotate e1 onto e0 with g−s0V which amounts to
conjugating Mc with V s0 .

From these considerations we conclude that the mapM(Σ)→ R3N , [Ξ] 7→ {we}e∈τ , where
[Ξ] is the equivalence class of a complex structure Ξ, is injective. In other words, the shear
coordinates form a complete set of coordinates onMg,n. In fact they provide a complete set
of coordinates on T (Σ), as a Dehn twist would effectively change the triangulation on Σ and
therefore would be ‘registered’ by the we. However, there are constraints on the we associated
to the punctures which originate from the fact that the elements Mk, k = 1, . . . , n, of Γ that
correspond to curves that encircle one puncture only are parabolic elements of SL(2,R). If we
denote by τk ⊂ τ the subset of edges that emanate from the k-th puncture, then we have∑

e∈τk

we = 0 (k = 1, . . . , n). (3.23)

Therefore, of the 3N shear coordinates only 3N − n = 6g − 6 + 2n are independent, which
gives the dimension d of Tg,n as a real manifold.

In the case of bordered Riemann surfaces, the definition of the shear coordinates has to
be modified [12]. In that case, each connected component ∂kΣ (k = 1, . . . , n) of the boundary
has to be endowed with an orientation. For each hole, there exists one closed geodesic gk
which is homotopic to ∂kΣ, and the orientation of ∂kΣ induces an orientation of gk. An edge
e of an ideal triangulation is then part of two hexagons which together form an octagon in
the upper half plane (Fig. 7). Four sides of this octagon are images of segments of boundary
components and therefore segments of the real axis (they have replaced the points x1, . . . , x4

in Fig. 3). To each of these sides corresponds an image of the closed geodesic gk associated
with the same boundary component. These are oriented geodesics in H that can be extended
to geodesics that start and end on the real axis (the dashed half circles in Fig. 7). We define
x1, . . . , x4 to be their respective end points. Then we is defined just as in (3.20). When the
holes shrink to punctures, the dashed half circles in Fig. 7 shrink to points on the real axis
and the definition of we passes over into the definition for punctured surfaces. In the case of
holes, the constraints (3.23) are replaced by∑

e∈τk

we = ±lk (k = 1, . . . , s), (3.24)

where lk is the hyperbolic length of the closed geodesic that goes around the k-th hole. Note
that as lk → 0, the hole becomes a puncture and (3.24) becomes again (3.23). It is clear that
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the shear coordinates do not capture all the information about the conformal equivalence
class of the bordered Riemann surface C (as the moduli spaces of bordered Riemann surfaces
are infinite dimensional). Rather they allow to reconstruct the equivalence class of the surface
obtained by cutting off annuli from C along the geodesics gk (k = 1, . . . , n) [12]. Therefore
they serve as a complete set of coordinates on the Teichmüller space of bordered Riemann
surfaces with geodesic boundaries.

It is important to know the transformation behavior of the shear coordinates under a flip.
Obviously, the flip ωe as depicted in Fig. 5 affects only the shear coordinates associated to
edges a, b, c, d of the fat graph that have a common vertex with e as well as we itself. From
the definition (3.20) it follows that these transform as

e+wa′ = e+wa(1 + e+we)
e−wd′ = e−wd(1 + e−we)

we′ = −we
e−wb′ = e−wb(1 + e−we)
e+wc′ = e+wc(1 + e+we)

. (3.25)

These formulas also hold in the case of holes.
On the Teichmüller space Tg,n there exists a hermitian 2-form hWP called the Weil-

Petersson metric [17]. Associated with it is a symplectic form ωWP and Poisson bracket
{·, ·}WP. It turns out that the Poisson bracket of two shear coordinates is relatively sim-
ple [12]: Given two edges e, e′ of a fat graph, number their ends arbitrarily by 1, 2. Then one
has

{we, we′}WP =
∑
i,j=1,2

σij , (3.26)

where σij is −1 (+1) if the end j of e′ is at the same vertex as the end i of e and in the
(counter-) clockwise direction of the latter, and zero if the two ends do not meet (see Fig. 8).
Thus {we, we′}WP is an integer between 2 and −2. Note that (3.26) is consistent with (3.23)
resp. (3.24) as

∑
e∈τk we Poisson commutes with all we.

3.6 Hyperbolic length functions

Given a simple (i.e., not self-intersecting) loop γ on our Riemann surface Σ, there is a unique
closed geodesic γ̂ that is in the same free homotopy class as γ. (The only exception is a
loop going around one puncture only.) We will denote the hyperbolic length of this geodesic
by lγ , which is a function on Teichmüller space Tg,n. Given the Fuchsian group Γ and an
isomorphism Ψ : π1(Σ, p)→ Γ, how to compute lγ? The loop γ may start and end at a point
p′ different from our base point p. However, once we have fixed (the homotopy class of) a
path µ going from p to p′, γ corresponds to an element cγ := [µ · γ · µ−1] of π1(Σ, p) and
thus to an element Mγ = Ψ(cγ) of Γ. The freedom we have in the choice of µ corresponds to
the conjugation of Mγ by another element of Γ. So lγ has to depend only on the conjugacy
class of Mγ (recall also the freedom Γ → gΓg−1 with g ∈ SL(2,R)). Since the elements of
the universal covering transformation group Γ̃ have no fixed points [17], the fixed points of
Mγ have to lie on R ∪ {∞}. It follows that Mγ is a parabolic (|trMγ | = 2) or hyperbolic
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(|trMγ | > 2) element of SL(2,R). The parabolic case can be excluded by Theorem 2.22 in
[17] applied to the compact Riemann surface Σ̄ obtained by filling the punctures of Σ (Mγ is
an element of a Fuchsian group for Σ̄). So there exists g ∈ SL(2,R) such that M̃γ := gMγg

−1

is of the form

M̃γ = ±

(
a

1
2 0

0 a−
1
2

)
, a > 0, (3.27)

which corresponds to z 7→ az in Aut(H). Now, it is easy to see that the shortest paths
with respect to the Poincaré metric (3.9) between two equivalent points z and az in H (with
variable z) are segments of the imaginary axis, e.g. the segment between i and ai. This path is
a preimage of the geodesic γ̂ in Σ ' H/Γ′, where Γ′ := gΓg−1, under the canonical projection
H→ H/Γ′. So it has the same hyperbolic length as γ̂, which is by (3.9) (use y = =(z))

lγ =

a∫
1

1

y
dy = log(a). (3.28)

Thus we obtain a relation

Lγ := 2 cosh(1
2 lγ) = a

1
2 + a−

1
2 = |trM̃γ | = |trMγ | (3.29)

between lγ and the trace of the matrix Mγ .
In order to express Lγ in terms of the shear coordinates introduced in the previous section,

we have to find an element in the conjugacy class of Mγ . To this end, let gγ be a closed path
on the fat graph f consisting of a set of consecutive edges e1, . . . , er ∈ f that is in the free
homotopy class of γ (e.g. the one of minimal length, i.e., with no 180 degree turns). Then one
can use the same prescription as in the previous section to define a matrix M̂γ just as Mc in
(3.21), that is conjugate to Mγ . Thus Lγ will be of the form

Lγ = |tr M̂γ | =
∑

τ∈( 1
2
Z)r

C(τ) exp

(
r∑
i=1

τiwei

)
, (3.30)

where C(τ) are positive integers which are non-zero only for a finite number of τ ∈ (1
2Z)r.

3.7 Complex coordinates on Teichmüller space

There exists a way to define complex valued coordinates on Tg,n which is based on the gluing
of Riemann surfaces by three-holed spheres [40]. Here we do not need the general scheme
but only a simple variant which is applicable to the case of the n-punctured sphere. Since
every sphere (i.e., a simply connected compact Riemann surface) is isomorphic to C̄, every n-
punctured sphere is isomorphic to some Σ = C̄\{z1, . . . , zn}. The freedom of a complex Möbius
transformation can be eliminated by putting zn−2, zn−1, zn to 0, 1 and ∞. The positions
z1, . . . , zn−3 of the remaining punctures then serve as complex coordinates on the moduli
space M0,n. Since there exists a natural projection from T0,n to M0,n, (z1, . . . , zn−3) is also
a set of coordinates on T0,n but not injective - moving zi around zj and back to its original
position one reaches a different point in T0,n. This follows from the fact that T0,n is the
universal covering space of

M0,n ' Zn := {(z1, . . . , zn−3) ∈ Cn−3|zi 6∈ {0, 1} and zi 6= zj for i 6= j}. (3.31)
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Another set of complex coordinates on T0,n can be defined using the following classical result
by Poincaré [27]: On the n-punctured sphere Σ = C̄\{z1, . . . , zn}, with zj 6=∞ (j = 1, . . . , n),
the function T (z) defined in (3.13) is of the form10

T (z) =
n∑
j=1

(
δj

(z − zj)2
+

cj
z − zj

)
, (3.32)

where the cj ∈ C, called accessory parameters, depend on z1, . . . , zn and δj = 1
2 (j = 1, . . . , n).

Furthermore, T has to be regular at infinity. Since a coordinate at z =∞ is given by z̃ = z−1,
and T transforms a under change of coordinates z → w(z) as (cf. (2.30))

T (z)→ T (w) = T (z(w))

(
∂z

∂w

)2

− 1
2S(z)(w), (3.33)

this implies three constraints on the accessory parameters:

n∑
j=1

cj = 0,

n∑
j=1

(δj + cjzj) = 0,

n∑
j=1

(2δjzj + cjz
2
j ) = 0. (3.34)

The reason for introducing the ‘weights’ δj is that the Hill’s equation (3.14) may also be solved
for T (z) with more general δj , e.g. δj = 1

2(1 + λ2
j ) with λj > 0 (called hyperbolic weights).

In the latter case, let us make the following ansatz for the asymptotic behavior of a pair of
solutions11 (f1, f2) around zj

fk(z) = (z − zj)µk
(
1 +O(z − zj)

)
(k = 1, 2). (3.35)

Then (3.14) yields

µk(µk − 1) = −1

2
δj = −1

4
(1 + λ2

j ), (3.36)

which has the solutions µ1 = 1
2(1 + iλj), µ2 = 1

2(1 − iλj). Then the monodromy Mj of
(f1(z), f2(z)) as z is going around zj in the counter-clockwise direction is given by

Mj = −
(
e−πλj 0

0 eπλj

)
, (3.37)

which is hyperbolic with |trMj | = 2 cosh(πλj). Then ϕe will not be defined on the whole of Σ,
but will have infinitely many singular lines on which =A(z) = 0 around each puncture [16].
However, there will be one connected component of Σ\{singular lines} which has the same
topology as Σ, i.e., it is an n-holed sphere. Let us denote this component by Σ(Z; δ), where
Z ≡ (z1, . . . , zn), δ ≡ (δ1, . . . , δn). It seems reasonable to think that A is the uniformization
map of Σ(Z; δ). Then the geodesic on Σ(Z; δ) going around zj (which then exists) will have
hyperbolic length lj = 2πλj .

The accessory parameters provide another set of complex coordinates on T0,n. Takhtajan
and Zograf [33] where able to show that

∂cj
∂z̄k

=
1

2π
hWP

(
∂

∂zj
,
∂

∂z̄k

)
(j, k = 1, . . . , n− 3), (3.38)

10Originally, one puncture is at z =∞ which results in a slightly different form of T (z) and the constraints
(3.34) (cf. [33]).

11We assume that the accessory parameters have been adjusted so that the monodromies of solutions to
(3.14) are again in SL(2,R).
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where hWP is the Weil-Petersson metric.12 From equation (3.38) follows that theWeil-Petersson
symplectic form ωWP may be written as

ωWP ≡ i

n−3∑
j,k=1

hWP(∂j , ∂̄k) dzj ∧ dz̄k = 2πi

n−3∑
j=1

dzj ∧ dcj . (3.39)

It follows that the Poisson bracket of the zj and ck is given by

{zj , zk}WP = 0 = {cj , ck}WP, {zj , ck}WP =
1

2πi
δj,k (j, k = 1, . . . , n− 3). (3.40)

This result leads to a profound insight into the connection between conformal blocks in quan-
tum Liouville theory and quantized Teichmüller theory, as we will see in Section 6.

4 Quantized Teichmüller spaces

Here we discuss the quantization of Teichmüller spaces, based on the Poisson algebra of the
shear coordinates. We define quantized hyperbolic length functions and compute their eigen-
functions for the 4-holed sphere. Although the result is essentially known [38], a systematic
computation of this kind has not been published before.

4.1 The operator algebra

Quantization of a symplectic manifold P (the phase space of the theory) can be roughly
defined as constructing a linear map Q from a complete set of functions on P that is closed
under the Poisson bracket to a set of (possibly unbound) operators on a Hilbert space H
such that [Q(f), Q(g)] = i~Q({f, g}). This is possible only if M satisfies certain conditions
which we will not discuss here. But the simple form of the Weil-Petersson Poisson bracket
(3.26) suggests that it should be possible for P = Tg,n and the set of shear coordinates {we}
assigned to an ideal triangulation of Σ. The quantized shear coordinates we = Q(we) should
be self-adjoint operators satisfying the commutation relations

[we,we′ ] = 2πib2{we, we′}WP, (4.1)

where we use b, defined by b2 = ~, as a quantization parameter.13 The constraints (3.24)
should also be realized in the quantum theory as∑

e∈τk

we = ±lk (k = 1, . . . , n). (4.2)

(The operator on the l.h.s. commutes with all we and therefore should be represented as
a multiplication operator in an irreducible representation.) Now, one can always find [34]
h := d/2 = 3g − 3 + n pairs (pj ,xj) of (linearly independent) linear combinations of the we

such that
[pj ,xk] =

1

2πi
δj,k. (4.3)

One may represent these operators on L2(Rh) by14

pjψ(p) = pjψ(p), xjψ(p) =
i

2π

∂

∂pj
ψ(p) (j = 1, . . . , h). (4.4)

12Takhtajan and Zograf refer to the inner product on the holomorphic tangent space of T0,n as the Weil-
Petersson metric.

13The normalization is conventional. It means that we quantize the rescaled Poisson bracket 2π{·, ·}WP.
14Strictly speaking, they are defined only on subsets of L2(Rh) as they destroy normalizability of some wave

functions.
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Figure 9: Simplest form of a fat graph (gray) in the vicinity of loop γ

The choice of the (pj ,xj) depends on the triangulation and includes some extra amount
of freedom (i.e., that of a symplectic transformation), so that no general formula can be
given. Therefore it is for some purposes more convenient to work with the so called Kashaev
coordinates ([18], see also [34]), which are defined on a space that contains Tg,n as a linear
subspace. But for our purposes the operators pj ,xj associated with the shear coordinates are
sufficient.

Quantization of Tg,n should not depend on the choice of the triangulation. In other words,
the quantized shear coordinates for different triangulations should be related in a way that
is consistent with the algebras (4.1). These relations should also merge into the classical ones
(3.25) in the limit b → 0. The transformation of quantized shear coordinates under a flip ωe
as in Fig. 5 that satisfies these requirements is given by

e+wa′ = e+ 1
2
wa(1 + e+we)e+ 1

2
wa

e−wd′ = e−
1
2
wd(1 + e−we)e−

1
2
wd

we′ = −we
e−wb′ = e−

1
2
wb(1 + e−we)e−

1
2
wb

e+wc′ = e+ 1
2
wc(1 + e+we)e+ 1

2
wc

. (4.5)

The relations (4.5) have been first stated in [12] in the form

wa′ = wa + φb(+we)
wd′ = wd − φb(−we)

we′ = −we
wb′ = wb − φb(−we)
wc′ = wc + φb(+we)

, (4.6)

involving the special function φb (defined in Appendix A). Equivalence with (4.5) can be
proven via the formulas

wa′ =
(
eb

( we

2πb

))−1
wa eb

( we

2πb

)
, wb′ = eb

(
− we

2πb

)
wb

(
eb

(
− we

2πb

))−1
, (4.7)

and similar for wc′ and wd′ , where the special function eb is the ‘quantum dilogarithm’ defined
in Appendix A. Note that equations (4.5), (4.6) and (4.7) only make sense in a representation
as they involve functional calculus. Nevertheless, they turn a representation of an algebra
(4.1) associated to a fat graph into a representation of all algebras associated to all possible
fat graphs on Σ. Therefore we will simply speak of a representation in the following.

4.2 Length operators

In this section we will discuss quantum analogs Lγ of the hyperbolic length functions Lγ =
2 cosh(lγ/2). These length operators where first introduced and studied in [6], while a detailed
and complete discussion can be found in [34]. They are required to have a number of properties,
for example, Lγ should be self-adjoint with spectrum [2,∞[ (the possible values of Lγ). The
first step towards the definition of Lγ for all γ is to consider the simplest case where the fat
graph in the vicinity of γ takes the ‘standard form’ depicted in Figure 9. In that case, one
defines

Lγ := 2 cosh (2πbp) + e−2πbx, where
p := 1

4πb(wb + wa)

x := 1
4πb(wb −wa)

. (4.8)
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Note that this becomes Lγ when one replaces wa → wa, wb → wb (in the classical limit b→ 0)
and the ordering of the operators is fixed by the requirement that L†γ = Lγ . If the fat graph
f can be brought to the standard form in the vicinity of γ by a sequence of flips, then (4.8)
together with the transformation rules (4.5) resp. (4.7) define Lγ also for a representation
associated with f . If this is not possible, one has to define Lγ in a recursive way as done in
[34]. However, in this work we will only need the first definition.

It can be shown that two length operators Lγ1 and Lγ2 commute if the corresponding
geodesics γ̂1, γ̂2 do not intersect. On Σ, a maximal set of mutually non-intersecting simple loops
consists of h = 3g − 3 + n elements (again, this is shown inductively by adding punctures or
handles). The corresponding length operators L1, . . . ,Lh can be simultaneously diagonalized
and the set of their common eigenfunctions provides a basis for L2(Rh).

Let πL be a representation of shear coordinates on L2(Rh) as introduced in the previous
section, where L ≡ (l1, . . . , ln) denotes the collection of constants in the constraints (4.2)
associated with the punctures (holes). Let ψL,r(p) be a family of common eigenfunctions
of L1, . . . ,Lh in this representation, where r ≡ (r1, . . . , rh) parametrize the eigenvalues via
LjψL,r = 2 cosh(2πbrj)ψL,r. Then one can construct from πL a representation ρL on L2(Rh),
called a length representation, by the integral transformation

(RLψ)(r) := 〈ψL,r|ψ〉 =

∫
Rh
dp ψL,r(p)ψ(p). (4.9)

Any quantized shear coordinate we is then represented in ρL as ρL(we) := RLπL(we)R
−1
L . The

representation ρL does not depend on the choice of πL. The length representations can also
be defined independently of the quantized shear coordinates as representations of the length
operators based on the quantized Fenchel-Nielsen coordinates [40]. The latter are associated
to so-called Moore-Seiberg graphs on Σ. The set of all Moore-Seiberg graphs on Σ and the
moves that transform them into another form a groupoid, the Moore-Seiberg groupoid. By
quantizing the Fenchel-Nielsen coordinates one naturally obtains a projective representation
of the Moore-Seiberg groupoid associated with the length representations. Since each element
of the mapping class group MCG(Σ) maps a given Moore-Seiberg graph onto another one,
this induces a projective representation %L of MCG(Σ) on L2(Rh).

For later use, let us already compute the eigenfunctions of Lγ as given in (4.8) in the
representation where p is diagonal. We note that Lγ is only defined on wave functions ψ(p)
that have an analytic continuation to the strip {p ∈ C | − ib ≤ =(p) ≤ 0} (these form a dense
subset of L2(R)). Then the eigenvalue equation LγΨr(p) = 2 cosh(2πbr)Ψr(p) is equivalent to

Ψr(p− ib) = 4 cosh(πb(p+ r + i
2b)) cosh(πb(p− r + i

2b))Ψr(p). (4.10)

It follows that

Ψr(p) = c(r)sb(p+ r + cb)sb(p− r + cb), cb :=
i

2
(b+ b−1) (4.11)

where the special function sb is a close relative of eb (see App. A) and c(r) is a normalization
factor.

4.3 The 4-holed sphere

Let us now apply the definitions of the previous sections to the 4-holed sphere, i.e., the Rie-
mann sphere with four simply connected domains removed. A convenient fat graph f0 is
displayed in Figure 10, together with two different loops, the so called s and t-cycles (corre-
sponding to the s and t-channel of scattering amplitudes). There are four constraints on the
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Figure 10: The fat graph f0 for the 4-holed sphere
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Figure 11: Transforming fs into f0

quantized shear coordinates w1, . . . ,w6:

l0 = w1 + w2 l1 = w1 + w3 + w4 + w6

l3 = w5 + w6 l2 = w2 + w3 + w4 + w5
. (4.12)

Thus one is left with two linearly independent generators (which have to be non-commuting).
Here we define

p := 1
2πbw2, x := 1

4πb(w3 −w4). (4.13)

With the help of (4.12) x may also be written as x = −(2πb)−1(w4 + 1
4(l0 − l1 − l2 + l3)).

Let π be the representation on L2(R) in which p,x act on L2(R) as in (4.4). Our goal is
to compute the eigenfunctions of the length operators Ls and Lt corresponding to the s and
t-cycle. The eigenfunctions of Ls and Lt are known in representations different from π, which
correspond to fat graphs that have the standard form in the vicinity of the cycle. For the
s-cycle, the appropriate fat graph fs and its transformation into f0 by two flips is shown in
Figure 11. (For this purpose we have chosen a different naming of the edges. The name of
an edge printed in bold will denote the corresponding shear coordinate in the following.) The
representation π′ in which we know the eigenfunctions Ψs′

r of Ls is the one where

x′ := 1
4πb(b1 − a1), p′ := 1

4πb(b1 + a1), (4.14)

are represented in the standard way. Now suppose that there exists a (unitary) operator U
such that x = U ·x′ ·U−1 and p = U ·p′ ·U−1. Then π′(U) defines an intertwiner between the
representations π and π′ and Ψs

r := π′(U−1)Ψs′
r is an eigenfunction of Ls in the representation

π. The operator U can be systematically constructed from the sequence of flips that transforms
fs into f0 with the help of (4.7). In this process three types of operators corresponding to
three types of transformations will contribute to U:

1. flips realized by operators of the form eb(q + c), where q ∈ Rx′ ∪ Rp′, c ∈ R
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2. symplectic transformations realized by operators of the form eπiq
2

3. shifts realized by operators of the form e2πiq

The best way to understand this is to work out an example like the given one. First we write
down the constraints for fs,

l0 = a0 l1 = a1 + b1 + 2c1 + a0

l3 = a2 l2 = a1 + b1 + 2c2 + a2
. (4.15)

It follows that c1 = 2πb(−p′+ r1− r0), c2 = 2πb(−p′+ r2− r3), where rk = lk/4πb. Now we
want to relate x′,p′ to a new pair of conjugate operators x′′,p′′ which are linear combinations
of the shear coordinates assigned to the intermediate fat graph. Since the first change of
fat graph is the flip along c2, ether eb( c2

2πb) or eb(− c2
2πb) has to be employed. As a1 and b1

transform differently under the flip, we first have to make x′ a multiple of, say, a1 by the
symplectic transformation

x′ → x′ − p′ = − 1

2πb
a1, p′ → p′. (4.16)

This transformation is realized by conjugation with S := e−πip
′2 . Then define

U1 := eb

(
− c2

2πb

)
= eb(p

′ − r2 + r3) (4.17)

and
(x′′,p′′) := (U1S)(x′,p′)(U1S)−1 = (− 1

2πba
′
1,− 1

2πbc1 + r1 − r0). (4.18)

Here we have written p′′ = p′ in terms of shear coordinates assigned to the intermediate fat
graph. The next step is the flip along c1 which is realized by U2 := eb(− c1

2πb) = eb(p
′−r1 +r0).

This yields another pair of conjugate operators15

(x(3),p(3)) := U2(x′′,p′′)U−1
2 = (− 1

2πba
′′
1,

1
2πbc

′
1 − r0 + r1). (4.19)

Finally there are shifts p(3) → p = p(3) + r0 − r1 and x(3) → x = x(3) − 1
2r with r :=

r0 − r1 − r2 + r3 realized simultaneously by T := e2πi(r1−r0)x(3)
e−πirp

(3) . Altogether we have

(x,p) = U(x′,p′)U−1, (4.20)

where
U := TU2U1S = U2U1Se

2πi(r1−r0)x′e−πirp
′
. (4.21)

In the last step we have expressed T in terms of x′,p′ as

T = (U2U1S)e2πi(r1−r0)x′e−πirp
′
(U2U1S)−1. (4.22)

Then we find as the eigenfunction of Ls with eigenvalue 2 cosh(2πbrs)

Ψs
rs(p) = π′(U−1)Ψs′

rs(p
′)|p′=p

= eπirpeπi(p+r1−r0)2
(eb(p+ r1 − r0 − r2 + r3))−1(eb(p))

−1Ψs′
rs(p+ r1 − r0)

= λc(rs) ·
sb(−p+ r0 − r1 + r2 − r3)sb(−p)

sb(−p− rs + r0 − r1 − cb)sb(−p+ rs + r0 − r1 − cb)
,

(4.23)

15Although the definitions of p′′ and p(3) might seem redundant, they help to bring some systematics into
the computation. This will prove very useful for more complicated computations like the one in Section 8.
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where λ is an irrelevant phase factor and we have used (sb(x))−1 = sb(−x). Similarly, the
eigenfunction of Lt with eigenvalue 2 cosh(2πbrt) can be computed to be

Ψt
rt(p) = c(rt) ·

sb(p− r0 + r1 − r2 − r3)sb(p− 2r0)

sb(p− rt − r0 − r2 − cb)sb(p+ rt − r0 − r2 − cb)
. (4.24)

This result can also be derived from Ψs
rs by a symmetry consideration: Rotating the fat graph

f0 by 180 degree around the hole 0, amounts to exchanging s and t-cycle or

l1 ↔ l2, w1 ↔ w2, w3 ↔ w4, w5 ↔ w6. (4.25)

Since w1 + w2 = l0 this induces p→ 2r0−p and x→ −x. Therefore one obtains Ψt
r(p) from

Ψs
r(p) by replacing l1 → l2, l2 → l1, p→ 2r0 − p.

4.4 Coherent state representation

We have defined above a quantization of Teichmüller space Tg,n based on the Poisson algebra
of the real-valued shear coordinates. It has been pointed out in [36] that one might also
define a quantization of T0,n which is based on the Poisson algebra (3.40) of the complex
coordinates16 zj and cj (j = 1, . . . , n− 3). The idea can be illustrated by the simple example
of the Poisson algebra {x, p} = 1 on R2. The corresponding Heisenberg algebra [x,p] = i~ can
be represented on L2(R) in the usual way. But one may also introduce complex coordinates
a = x + ip and ā = x − ip. Their Poisson algebra {a, ā} = −2i becomes [a, ā] = 2~ which
can be represented on a Hilbert space Hhol. of holomorphic functions f by af(a) = af(a) and
āf(a) = −2~f ′(a), known as the coherent state representation of quantum mechanics. Given
that a = x + ip, ā = x− ip, one may ask for an intertwiner between these representations of
the same algebra, i.e., a unitary map of the form

U : L2(R)→ Hhol., U(ψ)(a) =

∫
R
dx U(a, p)ψ(p), (4.26)

that satisfies U(x+ ip)U−1 = a and U(x− ip)U−1 = ā. fp(a) := U(a, p) is then an eigenstate
of p in the coherent state representation, and ψa(p) := U(a, p) is an eigenstate of a in the
“real” representation.

Similarly, the Poisson algebra (3.40) corresponds to the following algebra17 of the quantized
zj , cj

[zj , zk] = 0 = [cj , ck], [zj , ck] = b2δj,k (j, k = 1, . . . , n− 3). (4.27)

This algebra may be represented on a space Hol(T0,n) of holomorphic functions on T0,n,
represented as multivalued functions of Z ≡ (z1, . . . , zh), h = n− 3, by

zjΨ(Z) := zjΨ(Z), cjΨ(Z) = −b2 ∂

∂zj
Ψ(Z) (j = 1, . . . , h). (4.28)

Let ρL, L ≡ (l1, . . . , ln), be a length representation of the algebra of quantized shear
coordinates as introduced in Section 4.2. In contrast to the simple example given above, the
complex coordinates zj and cj are highly complicated functions of the shear coordinates - an
explicit formula is not even available. The reason is that the latter are defined with the help
of the uniformization map - a function that has not yet been explicitly described (except for
g = 0, n = 3). Thus there seems to be no way to construct quantum analogs of zj and cj inside

16Analogous complex coordinates exist for higher genus g > 0.
17Again, we quantize the rescaled Poisson bracket 2π{·, ·}WP.
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the representation ρL on L2(Rh) that form a representation of the algebra (4.27). Therefore
it makes a priori no sense to ask for an intertwiner between the coherent state representation
(4.28) and the length representation (as they represent different algebras). Nevertheless, there
is a natural representation of the mapping class group MCG(Σ), where Σ = C̄\{z1, . . . , zn},
on Hol(T0,n) given by [40]

(MµΨ)(Z) := Ψ(µ.Z) (µ ∈ MCG(Σ)), (4.29)

where µ.Z denotes the action of µ on T0,n as represented in the coordinates18 Z. On the
other hand, one has the representation %L of MCG(Σ) on L2(Rh) associated with the length
representations. For µ ∈ MCG(Σ), %L(µ) is an integral transformation whose kernel we denote
by ML,µ(r, r′), i.e.,

%L(µ)ψ(r) =

∫
Rh
dr′ ML,µ(r, r′)ψ(r′). (4.30)

One may then ask for the existence of an (invertible) intertwiner between these representations
of the form

FL : L2(Rh)→ Hol(T0,n), FL(ψ)(Z) =

∫
Rh
dr FL(Z, r)ψ(r), (4.31)

where FL(Z, r) has to be holomorphic in Z. If such a map exists, it can be used to represent
quantized shear coordinates and length operators on Hol(T0,n) by

ρhol.L (we) := FL ρL(we) F−1
L , ρhol.L (Lγ) := FL ρL(Lγ) F−1

L . (4.32)

Obviously ΨL,r(Z) := FL(Z, r) would define a simultaneous eigenfunction of ρhol.L (Lk), k =
1, . . . , h. In a similar way, one may use FL to represent zj and cj on L2(Rh). Furthermore, FL
would induce a scalar product on Hol(T0,n) that turns it into a Hilbert space (where Hol(T0,n)
is simply defined as the image of FL).

The intertwining property MµFL = FL%L(µ) may be written in terms of the integral
kernels as

FL(µ.Z, r) =

∫
dr′ FL(Z, r′)ML,µ(r′, r). (4.33)

Such an equation, which specifies the monodromies of a multi-valued holomorphic function,
is known as a Riemann-Hilbert type problem. Its solution is unique when one fixes the
asymptotic behavior at the boundary of T0,n which is characterized by zi → zj for some
i, j ∈ {1, . . . , n− 3}. In [40], a natural requirement for the asymptotics of FL(Z, r) has been
proposed. Now, the remarkable observation is that a solution to (4.33) with the required
asymptotics exists and is given by the conformal blocks of Liouville theory which will be
defined in Section 6.

5 Free field quantization of Liouville theory

One of the approaches to quantize Liouville theory is via the parametrization of the classical
phase space P in terms of the free field as done in Section 2.1. In this approach one constructs
the quantized Liouville field from the quantized free field in a way that resembles the classical
relation between them. On the way, one defines important operators called chiral vertex
operators. The latter allow to construct the conformal blocks, which are central objects of

18Of course, this is formal notation since the coordinates Z are invariant under the action of the mapping
class group. Rather, Ψ(µ.Z) has to be understood as the analytic continuation of Ψ(Z) along a closed path in
Zn (defined in (3.31)) which represents µ.
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quantum Liouville theory (and any CFT). They have turned out to be related to eigenfunctions
of length operators in quantum Teichmüller theory as defined in Section 4.2.

It is conventional to first rescale the free field as ϕF = 2bφF and then expand the quantized
φF as

φF (x+, x−) = q + p(x+ + x−) + i
∑
n6=0

1

n

(
ane
−inx+

+ bne
−inx−

)
. (5.1)

The quantized Fourier modes will then satisfy the commutation relations (we display only
non-vanishing commutators)

[q,p] =
i

2
, [an,am] =

n

2
δn+m, [bn,bm] =

n

2
δn+m. (5.2)

Since φF is the quantum counterpart of a real field, we require also that q† = q, p† = p and
a†n = a−n, b†n = b−n, which will determine the scalar product on the Hilbert space. In the
following we will concentrate on the chiral (left moving) part as the anti-chiral (right moving)
part is completely analogous. The standard representation of the operators an is on the Fock
space

F := Span{anranr−1 . . .an1 |0〉 | r ∈ N0, nr ≤ nr−1 · · · ≤ n1 < 0}, (5.3)

where |0〉 is the ground state satisfying an|0〉 = 0 for all n > 0. Therefore the natural
representation of the algebra generated by {an},p,q is on the Hilbert space

Hchir := L2(R)⊗F . (5.4)

If one defines
Fp := Span{anr . . .an1 |p〉 | r ∈ N0, nr ≤ · · · ≤ n1 < 0}, (5.5)

where p|p〉 = p|p〉, an|p〉 = 0 for all n > 0, then one has the isomorphism

Hchir →̃
∞∫
−∞

dp Fp, ψ ⊗ (a|0〉) 7→
∞∫
−∞

dp ψ(p)a|p〉, a ≡ anr . . .an1 . (5.6)

The previous discussion suggests that the natural candidate for the Hilbert space of quantum
Liouville theory is

H := L2(R)⊗F ⊗ F̄ '
∞∫
−∞

dp Fp ⊗ F̄p, (5.7)

where F̄ and F̄p are defined as F and Fp, but replacing an → bn. However, we have not
yet taken into account the fact that the Liouville phase space is not isomorphic to the phase
space PF of the free field, but to P+

F defined by p > 0. But it is not clear how to realize
this constraint in the quantum theory as operators of the form eiαq with α ∈ R can always
shift the p eigenvalue to the negative domain. The solution to this problem is to construct a
quantum analog S : H → H of the ‘reflection map’ S that sends p to −p as done in [35]. The
proper Liouville Hilbert space HL is then the subspace of S-invariant vectors and the operator
algebra consists of operators in the algebra generated by {an}, {bn},p,q that commute with
S.

The conformal symmetry group G = Diff+(S1)×Diff+(S1) appears in the quantum theory
as a unitary projective representation of G on the Hilbert space. That is equivalent to having
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a representation of two copies (chiral and anti-chiral) of V̂ect(S1). The Virasoro generators
Ln of the chiral part are represented on Hchir by

L0 := p2 +
Q2

4
+ 2

∞∑
k=1

a−kak,

Ln := (2p + inQ)an +
∑
k 6=0,n

akan−k (n 6= 0),
(5.8)

where Q = b + b−1. Equation (5.8) is known as the free field representation of the Virasoro
algebra (2.44) with central charge c = 1 + 6Q2. This representation decomposes into a one-
parameter family of representations on

∫
dp Fp according to (5.6). The representation on Fp

is a highest weight representation with weight ∆p = p2 + Q2

4 and is known to be isomorphic
to the Verma module Vα with α = Q

2 + ip defined in Appendix B. It can be considered as the
quantization of the coadjoint orbit Wp that has been introduced in Section 2.3.

It is also useful to combine the Virasoro generators to a chiral field

T+(x+) :=
∑
n∈Z

L̂n e
−inx+

, L̂n := Ln −
c

24
δn,0. (5.9)

A vector field ξ = ξ(x+)∂+ ∈ Vect(S1) with Fourier expansion ξ(x+) =
∑

n∈Z ξne
inx+ is then

represented in the quantum theory by19

T+[ξ] :=
i

2π

2π∫
0

dx+ ξ(x+)T+(x+) = i
∑
n∈Z

ξnL̂n. (5.10)

Since L†n = L−n and ξ̄n = ξ−n, T+[ξ] is anti-hermitian. Notice also that

T+ = −Q∂2
+φF + : (∂+φF )2 : − 1

24 , (5.11)

where : : denotes normal ordering, so that b2T+ → −1
2∂

2
+ϕF + 1

4(∂+ϕF )2 = T+ for b → 0.
Therefore b2T+ can be considered as the quantum analog of T+.

The representation of Diff+(S1) is constructed as follows. Let ft : S1 → S1, t ∈ [0, 1] be
the integrated flow of ξ, i.e., the unique solution of

∂

∂t
ft(σ) = ξ(ft(σ)), f0(σ) = σ (σ ∈ S1). (5.12)

Then each ft is an element of Diff+(S1), in particular f [ξ] := f1. It will be represented by the
unitary operator

Uf [ξ] := eT+[ξ]. (5.13)

5.1 Chiral vertex operators

In the mathematical sense, chiral vertex operators are maps hα2
α3,α1

(z) for z ∈ C∗ (where
z = eix

+ , cf. Section 5.2) from the Verma module Vα1 to Vα3 with the properties

(i) [Ln,h
α2
α3,α1

(z)] = zn(z∂z + (n+ 1)∆α2)hα2
α3,α1

(z),

(ii) hα2
α3,α1

(z)eα1 = z∆α3−∆α2−∆α1 (N(α3, α2, α1)eα3 +O(z)) for z → 0,
(5.14)

19Recall that Ln = ieinx
+

∂+ + c
24
δn,0, so L̂n is the quantum version of ieinx

+

∂+.
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where eα is the highest weight vector in Vα and N is an arbitrary function of three variables.
We will define two kinds of operators from which we will construct the chiral vertex

operators: normal ordered exponentials and screening charges. First we split off the left moving
component of φF ,

φ+
F (x+) := q + px+ + φ+

<(x+) + φ+
>(x+), (5.15)

where
φ+
<(x+) := i

∑
n<0

1

n
ane
−inx+

, φ+
>(x+) := i

∑
n>0

1

n
ane
−inx+

. (5.16)

Then we can define the normal ordered exponentials

Eα(x) := e2αφ+
<(x)e2α(q+xp)e2αφ+

>(x) (α ∈ C). (5.17)

This may also be denoted as Eα(x) = : e2αφ+
F (x) :. The screening charges are

Q(x) :=

2π∫
0

dσ Eb(σ + x). (5.18)

One has to be a little careful with the definition (5.17), as states in the image of Eα(x)
would have infinite norm, i.e., they are ill defined. However, as argued in [37], the analytical
continuation of Eα(x) to =(x) > 0 (i.e., negative Euclidean time τ = it) is an unbounded
operator defined on a dense subset of H. Concerning the screening charges, they are densely
defined unbounded operators even for x ∈ R as long as 2b2 < 1. Furthermore, they are positive
operators since

Eb(x) = Eb
<(x)

(
Eb
<(x)

)†
, Eα

<(x) := e2αφ+
<(x)eα(q+xp) (5.19)

so that

〈ψ|Q(x)ψ〉 =

∫ 2π

0
dx′ ||

(
Eb
<(x+ x′)

)†
ψ||2 > 0 (5.20)

for any ψ in the domain of definition of Q(x). Therefore one may take arbitrary (complex)
powers of these operators.

The crucial property of the normal ordered exponentials and screening charges is their
transformation behavior under diffeomorphisms, which is infinitesimally described by

[Ln,E
α(x)] = einx(−i∂x + n∆α)Eα(x), [Ln,Q(x)] = −ieinx∂xQ(x), (5.21)

where ∆α = α(Q− α) is the conformal weight. This may be equivalently written as

[T+[ξ],Eα(x)] =
(
ξ(x)∂x + ∆αξ

′(x)
)
Eα(x), [T+[ξ],Q(x)] = ξ(x)∂xQ(x). (5.22)

Now we can define the chiral vertex operators20

hαs (x) := Eα(x)(Q(x))s, s ∈ C. (5.23)

Their most important properties are their transformation behavior under the Virasoro algebra,

[Ln,h
α
s (x)] = einx(−i∂x + n∆α)hαs (x), (5.24)

and their commutation relation with p,

p hαs (x) = hαs (x) (p− i(α+ bs)). (5.25)

So if −i(α+ bs) ∈ R, then the restriction of hαs (x) to Fp is a map

hαs (x)p : Fp → Fp−i(α+bs). (5.26)
20Strictly speaking, the hαs (x) are predecessors of the chiral vertex operators that will be introduced in the

next section by analytic continuation of these.
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5.2 Analytic continuation

An interesting aspect of the quantization of Liouville theory as described above is that it
provides a representation, defined by (5.8), not only of V̂ect(S1) but of the algebra of formal
sums

V̄ :=
{∑
n∈Z

anLn

∣∣∣ an ∈ C
}
, Ln = ieinσ∂σ, (5.27)

of which both the Virasoro algebra V := Span{Ln | n ∈ Z} and V̂ect(S1) are subspaces.
Another important subspace is the complexification

VectC(S1) := {ξ(σ)∂σ | ξ ∈ C∞(S1,C)}, (5.28)

where C∞(S1,C) is the space of smooth complex-valued functions on S1. Although there
exists no Lie group with Lie algebra VectC(S1) as proven by Lempert [22], this algebra is
naturally associated with conformal (i.e., holomorphic) transformations of the complex plane
or domains of the complex plane. To see this, note that an element

η = −
∑
m∈Z

ηmLm = −
∑
m∈Z

iηme
imσ∂σ ∈ VectC(S1) (5.29)

acts on C∞(S1,C). From now on, we will identify S1 with the unit circle {z ∈ C | |z| = 1}. So
given a function f ∈ C∞(S1,C) that can be analytically continued to a neighborhood of S1,
the corresponding action of η on f(z), where z = eiσ, is by the complex vector field

η(z)∂z =
∑
m∈Z

ηmz
m+1∂z, (5.30)

which might be well-defined on a neighborhood of S1 as well. In view of these considerations
it is natural to analytically continue the chiral fields introduced in the previous section to
complex w = ix+ = τ + iσ, where τ = it takes real values. Of particular interest are the chiral
vertex operators hαs (w); their explicit definition can be found in [37]. The second step is to
exchange the coordinate w that lives on the complex cylinder C/2πiZ for z = ew that lives
on C∗ := C\{0}. Under this change of coordinates, the hαs (w) naturally transform as

hαs (z) = z−∆αhαs (w). (5.31)

Let us define the Virasoro field

T(z) :=
∑
m∈Z

Lmz
−m−2. (5.32)

The operator that represents the infinitesimal conformal transformation by η is then given by

Tη :=
1

2πi

∮
C
dz η(z)T(z) =

∑
m∈Z

ηmLm, (5.33)

where C is some curve in C∗ that is homotopic to S1, and which lies in the domain of definition
of η (this allows to define Tη also for vector fields η which are defined on a domain that does
not contain S1). Note that if η ∈ Vect(S1), i.e., if η is tangential to S1, then Tη = T+[η],
where T+[η] was defined in (5.10). Tη acts on a field V(z) by

δηV(z) = [Tη,V(z)] = TηV(z)−V(z)Tη. (5.34)
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Figure 12: Integration contours for Tη

By choosing in (5.33) two different contours C1 and C2 which are contained in the domain
|w| > |z| and |w| < |z| respectively as depicted in Fig. 12, this may be rewritten as

δηV(z) =
1

2πi

∮
C(z)

dw η(w)R{T(w)V(z)} (5.35)

where R denotes radial ordering and C(z) is a contour that encircles z in the counter-clockwise
direction.21 The simplest possible transformation behavior of a field V(z) under the Virasoro
algebra is given by [Ln,V(z)] = zn+1∂zV(z), or equivalently

[Tη,V(z)] = η(z)∂zV(z). (5.36)

Such a field, which is called a primary chiral field of vanishing conformal weight, is given by
Q(z), the analytic continuation of Q(x). The fields hαs (z) are primary chiral fields of conformal
weight ∆α, which means

[Ln,h
α
s (z)] = zn(z∂z + (n+ 1)∆α)hαs (z), (5.37)

or equivalently
[Tη,h

α
s (z)] = η(z)∂zh

α
s (z) + ∆α∂zη(z)hαs (z). (5.38)

Yet another way of characterizing this transformation behavior is by the operator product
expansion (OPE)

R{T(w)hαs (z)} =
∆α

(w − z)2
hαs (z) +

1

w − z
∂zh

α
s (z) +O(1) as w → z, (5.39)

The right hand sides of (5.36) and (5.38) only make sense for vector fields η that are regular
at z. Also the definition of Tη becomes ambiguous for a vector field η that has a pole at z,
as it then depends on the choice of the integration contour C. Nevertheless, for such η it is
natural to use (5.35) as a definition of δηV(z). This leads to the definition of the so called
descendants. These are fields hαs (v|z) for every v ∈ Vα which are linear in v. First one sets
hαs (eα|z) := hαs (z) for the highest weight state eα. Then one recursively defines for m < 0

hαs (Lmv|z) := δ(w−z)m+1∂whαs (v|z)

=
1

2πi

∮
C(z)

dw (w − z)m+1 R{T(w)hαs (v|z)}.
(5.40)

This obviously defines hαs (v|z) for every v ∈ Vα.
21We use here without proof the fact that R(T(w)V(z)) is analytic in w.
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Let us now investigate how this projective representation of VectC(S1) exponentiates.22

Let η ∈ VectC(S1) be such that there exists the integrated flow

ft : S1 → C,
∂

∂t
ft(z) = η(ft(z)), f0(z) = z, t ∈ [0, 1]. (5.41)

If η 6∈ Vect(S1), this means that η possesses an analytic continuation to some neighborhood
of S1. First we derive the transformation of the field Q(z) under the exponentiated action of
Tη, i.e., we compute23

Qt(z) := etTηQ(z)e−tTη . (5.42)

Qt(z) satisfies the differential equation

∂

∂t
Qt(z) = [Tη,Qt(z)] (5.43)

with boundary condition Q0(z) = Q(z). On the other hand, using (5.41) and (5.36) one finds

∂

∂t
Q(ft(z)) = η(ft(z))(∂zQ)(ft(z)) = [Tη,Q(ft(z))], (5.44)

and Q(f0(z)) = Q(z). Thus Qt(z) and Q(ft(z)) satisfy the same differential equation with
the same boundary condition, consequently Qt(z) = Q(ft(z)).

Similarly, let us define
Tt(z) := etTηT(z)e−tTη (5.45)

and
T(t, z) := (f ′t(z))

2T(ft(z))−
c

6
S(ft)(z), (5.46)

where prime denotes the holomorphic z derivative24 and S is the Schwarzian derivative (cf.
(2.29))

S(ft) = −1

2

f ′′′t
f ′t

+
3

4

(
f ′′t
f ′t

)2

. (5.47)

Obviously Tt(z) satisfies the differential equation

∂

∂t
Tt(z) = [Tη,Tt(z)] (5.48)

with boundary condition T0(z) = T(z). The field T(z) transforms under the Virasoro algebra
as

[Ln,T(z)] = zn+1∂zT(z) + 2(n+ 1)znT(z) +
c

12
(n3 − n)zn−2. (5.49)

It follows that
[Tη,T(z)] = η(z)T′(z) + 2η′(z)T(z) +

c

12
η′′′(z), (5.50)

and
[Tη,T(t, z)] = (f ′t(z))

2
(
η ·T′ + 2η′ ·T +

c

12
η′′′
)
◦ ft(z). (5.51)

On the other hand one has

∂

∂t
T(t, z) = (f ′t(z))

2η(ft(z))T
′(ft(z)) + 2f ′t(z)(η ◦ ft)′(z)T(ft(z))−

c

6

∂

∂t
S(ft)(z). (5.52)

22Although the material of this section is essentially known, the author is not aware of a presentation of the
following computations in the literature.

23If η 6∈ Vect(S1), then exp(Tη) is not unitary, but in general an unbound operator.
24Even if ft admits no holomorphic continuation to a neighborhood of S1, one may define f ′t using the angle

coordinate σ on S1, z = eiσ, by f ′t(z) := −ie−iσ∂σ f̂t(σ).
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From (5.47) we compute

∂

∂t
S(ft) = −1

2

(
(η ◦ ft)′′′

f ′t
− f ′′′t (η ◦ ft)′

(f ′t)
2

)
+

3

2

f ′′t
f ′t

(
(η ◦ ft)′′

f ′t
− f ′′t (η ◦ ft)′

(f ′t)
2

)
= −1

2

((η′ ◦ ft)f ′t)′′ − (η′ ◦ ft)f ′′′t
f ′t

+
3

2

f ′′t
f ′t

((η′ ◦ ft)f ′t)′ − (η′ ◦ ft)f ′′t
f ′t

= −1

2
(f ′t)

2(η′′′ ◦ ft).

(5.53)

Thus T(t, z) also satisfies the differential equation

∂

∂t
T(t, z) = [Tη,T(t, z)] (5.54)

and the boundary condition T(0, z) = T(z). This proves Tt(z) = T(t, z), or

etTηT(z)e−tTη = (f ′t(z))
2T(ft(z))−

c

6
S(ft)(z). (5.55)

In the same way one may show that the chiral vertex operators transform as

etTηhαs (z)e−tTη = (f ′t(z))
∆αhαs (ft(z)). (5.56)

Equation (5.55) can also be interpreted as the natural transformation behavior of the Virasoro
field under a change of variables. For example, using x+ = −i log z and S(x+)(z) = −1

4z
−2,

one finds that

T(z) = −T+(x+)

(
∂x+

∂z

)2

− c

6
S(x+)(z), (5.57)

so that −T+(x+), when analytically continued to complex x+, may be considered as the
Virasoro field in the variable x+. The latter equation also allows us to determine the classical
analogon of b2T(z):

b2T(z) −→
b→0

−

((
∂x+

∂z

)2

T+(x+) + S(x+)(z)

)
= −TL(z), (5.58)

where TL(z) (the L, which stands for “Liouville”, is to distinguish it from T (z) defined in (3.13))
is the natural form of the function T+ in the variable z, cf. (2.30). E.g., let AL(z) denote the
analytic continuation of AL(eix

+
) = A+(x+) to a neighborhood of S1 = {z ∈ C | |z| = 1}.

Then we have TL(z) = S(AL)(z).

6 Conformal blocks

In this section we will introduce the physical notion of a conformal block; the mathematical one
will be defined in Section 9. New results are the generalization of the conformal Ward identity
(6.16), and the identification of eigenfunctions of length operators in a certain reordering of
operators inside 4-point conformal blocks.

6.1 Physical definition of conformal blocks

A conformal block may be defined as the vacuum expectation value of n chiral vertex operators

Gαs (zn, . . . , z1) := 〈hαnsn (zn) . . .hα1
s1 (z1)〉, s ≡ (sn, . . . , s1)

α ≡ (αn, . . . , α1)
. (6.1)
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zn

zn−1 zn−2 z3 z2

z1

γn−3 γ1

Figure 13: The n-holed sphere with a cut system

Here the vacuum expectation value of an operator O is defined by 〈O〉 := 〈Ω|O|Ω〉, where
|Ω〉 is the vacuum state. This state satisfies by definition25 Ln|Ω〉 = 0 for all n ≥ −1, so it is
the highest weight state in a Virasoro representation W0 called the vacuum representation.
Gαs (zn, . . . , z1) is a priori only well defined for |zn| > |zn−1| > · · · > |z1| (since the vertex

operators have to be radially ordered). Nevertheless, by analytic continuation it becomes a
multivalued holomorphic function on the configuration space of n points on the complex plane.
From (5.56) and Tη|Ω〉 = 0 = 〈Ω|Tη for all vector fields η on C̄ (cf. Section 9) follows the
global PSL(2,C) invariance

Gαs (zn, . . . , z1) =
n∏
j=1

(
f ′(zj)

)∆j Gαs (f(zn), . . . , f(z1)), (6.2)

where ∆j := ∆αj , for all complex Möbius transformations f . By (6.2), one may send zn−2, zn−1, zn
to 0, 1 and ∞ (more precisely, take the limit zn → ∞ of z2∆n

n Gαs ). Then Gαs becomes a mul-
tivalued holomorphic function on the moduli space of the n-punctured sphere M0,n ' Zn
defined in equation (3.31), i.e. a holomorphic function on the universal cover ofM0,n, which
is the Teichmüller space T0,n. Therefore the Gαs are also referred to as genus zero conformal
blocks. Conformal blocks for higher genus can be obtained via the gluing construction defined
in [40], which is an application of the sewing construction that will be described in Section 9.

We have anticipated in Section 4.4 that conformal blocks of Liouville theory can be
identified with the integral kernel FL(Z, r) of the intertwiner between length and coherent
state representation in quantum Teichmüller theory (respectively the length eigenfunctions
ΨL,r(Z) = FL(Z, r) in the coherent state representation). This can be precisely formulated as
follows. Let γj for j = 1, . . . , n− 3 be the loop on the n-punctured sphere Σ = C̄\{z1, . . . , zn}
that encircles z1, . . . , zj+1 (see Figure 13; the punctures are drawn as holes because they
are effectively treated as such in the quantum theory). This is a maximal set of mutually
non-intersecting simple loops on Σ. Let L = (l1, . . . , lh) denote the fixed hyperbolic lengths
assigned to the holes and ρL the corresponding length representation as introduced in Sec-
tion 4.2. A natural set of parameters for the conformal blocks Gαs (zn, . . . , z1) coming from the
gluing construction is given by

βj =

j∑
k=1

(αk + bsk) (j = 1, . . . , n− 3). (6.3)

After requiring s1 = sn = 0 and αn = βn−3 + αn−1 + bsn−2 (otherwise Gαs (zn, . . . , z1) = 0),
one may then trade the parameters s for β ≡ (βh, . . . β1), h = n−3, and write Gαβ (zn, . . . , z1).

25The definition of |Ω〉 requires some care since L0|Ω〉 = 0 implies p|Ω〉 = ±iQ
2
|Ω〉 which shows that it is

not contained in the Liouville Hilbert space HL. Rather one can interpret its hermitian conjugate 〈Ω| as an
element of T ∗, where T ⊂ H is the subspace of states |ψ〉 with the property that 〈p|ψ〉 admits an analytic
continuation to p = −iQ

2
and T ∗ is its dual [35].
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Then
F(l1,...,ln)(z1, . . . , zh; r1, . . . , rh) := lim

zn→∞
z2∆n
n Gαβ (zn, . . . , z1), (6.4)

where (zn−1, zn−2) = (1, 0) and

αj =
Q

2
+ i

lj
4πb

(j = 1, . . . , n), βk =
Q

2
+ irk (k = 1, . . . , h), (6.5)

is the unique solution to the Riemann-Hilbert problem (4.33) with the required asymptotics.
Therefore it is the intertwiner between the length representation ρL and the coherent state
representation.

6.2 Conformal Ward identity

By definition of the vacuum state, T(z)|Ω〉 is regular at z = 0 (even of order z4 as z → 0)
and 〈Ω|T(z) is regular at z =∞ (even of order z−4 as z →∞). Therefore it follows from the
OPE (5.39) that

〈T(z)hαnsn (zn) . . .hα1
s1 (z1)〉 −

n∑
j=1

(
∆j

(z − zj)2
+

1

z − zj
∂

∂zj

)
〈hαnsn (zn) . . .hα1

s1 (z1)〉, (6.6)

where radial ordering is understood, is a bounded holomorphic function of z ∈ C, which by
Liouville’s theorem is a constant. By taking the limit z →∞ one shows that this constant is
zero. Thus one obtains the conformal Ward identity

〈T(z)hαnsn (zn) . . .hα1
s1 (z1)〉 =

n∑
j=1

(
∆j

(z − zj)2
+

1

z − zj
∂

∂zj

)
〈hαnsn (zn) . . .hα1

s1 (z1)〉. (6.7)

Let us denote the differential operator appearing on the right hand side of (6.7) by ∇α(z).
Now, let us put αj = Q

2 + i
lj

4πb and δj = 1
2(1 + λ2

j ) where λj = lj/2π (cf. Section 3.7). Then
we have

∆j =
Q2

4
+

(
lj

4πb

)2

, (6.8)

so that for b→ 0

2b2∇α(z) −→
n∑
j=1

(
δj

(z − zj)2
+

2b2

z − zj
∂

∂zj

)
. (6.9)

Upon identifying

2b2
∂

∂zj
≡ cj (6.10)

the right hand side of (6.9) becomes the function T (z) associated with the hyperbolic metric
on the n-holed sphere as given in (3.32). As already pointed out in [10], this means that
TT (z) := 2b2∇α(z) can be considered as a quantization of T (z), as a function on Teichmüller
space T0,n, in the coherent state representation26

zjΨ(Z) = zjΨ(Z), cjΨ(Z) = 2b2
∂

∂zj
Ψ(Z) (j = 1, . . . , n− 3). (6.11)

26To be precise, one has to first use the global PSL(2,C) invariance (6.2) to express the partial derivatives
by zn−2, zn−1 and zn in (6.7) in terms of the partial derivatives by z1, . . . , zn−3. Considering the PSL(2,C)
invariance of T (z), this should yield a differential operator ∇̃α(z) with the property that 2b2∇̃α(z) → T (z)
for b→ 0.
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The difference with (4.28) is marginal and presumably due to inconsistent conventions. This
observation may be slightly generalized as follows. Split the Virasoro field as

T<(z) :=
∑
n≤−2

Lnz
−n−2, T>(z) :=

∑
n≥−1

Lnz
−n−2 (6.12)

and define a normal ordering for products of Virasoro fields inductively by

N{T(zm) . . .T(z1)} := T<(zm)N{T(zm−1) . . .T(z1)}+N{T(zm−1) . . .T(z1)}T>(zm),

N{T(z1)} := T(z1).
(6.13)

Let us compute

[hαs (z),T<(u)] =

(
∆α

(u− z)2
+

1

u− z
∂

∂z

)
hαs (z) for |u| < |z| (6.14)

and
[T>(u),hαs (z)] =

(
∆α

(u− z)2
+

1

u− z
∂

∂z

)
hαs (z) for |u| > |z|. (6.15)

Together with T>(u)|Ω〉 = 0 = 〈Ω|T<(u) this yields〈
N
{
~P (T(um), . . . ,T(u1))

}
hαnsn (zn) . . .hα1

s1 (z1)
〉

= ~P (∇α(um), . . . ,∇α(u1))
〈
hαnsn (zn) . . .hα1

s1 (z1)
〉
,

(6.16)

where ~P is an ordered polynomial in m non-commuting variables. This observation will help
us to explain at least heuristically the connections between conformal blocks and quantized
Liouville theory that are described in the following.

6.3 Conformal blocks for the 4-punctured sphere - reordering of operators

In this section we will discuss a reordering of the operators appearing in the 4-point conformal
blocks of Liouville theory, which reveals another aspect of the connection between these objects
and the eigenstates of length operators in quantum Teichmüller space. This reordering has
been performed in [35] and [37] in order to prove a formula for the braiding of chiral vertex
operators. In fact, this braiding formula, which determines the monodromy of the conformal
block, has been a crucial element in the proof of the fact that Liouville conformal blocks are
the unique solution to the Riemann-Hilbert problem (4.33) with the required asymptotics.

The expressions we want to rewrite are hα2
s2 (σ2)hα1

s1 (σ1) and hα1
t1

(σ1)hα2
t2

(σ2). Matrix ele-
ments of these operators between highest weight states are associated with conformal blocks
for the 4-punctured sphere, as is seen via the operator-state correspondence27

|p〉 = lim
z→0

hα0 (z)|Ω〉, 〈p| = lim
z→∞

z2∆α〈Ω|hᾱ0 (z), α = Q
2 + ip. (6.17)

By(6.17) we have

〈p3|hα2
s2 (σ2)hα1

s1 (σ1)|p0〉 = z∆2
2 z∆1

1 lim
z0→0

lim
z3→∞

z2∆3
3

〈
hᾱ3

0 (z3)hα2
s2 (z2)hα1

s1 (z1)hα0
0 (z0)

〉
, (6.18)

where zj := eiσj (j = 1, 2), αk := Q
2 + ipk (k = 0, 3).

27We assume an|Ω〉 = 0 for n > 0. For the second equation in (6.17), note that (Eα(z))† = z̄−2∆αEᾱ(z̄−1).
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Let us consider the case σ2 > σ1. The central equation for reordering (which we do not
prove here) is

Eα(σ)Eα′(σ′) = e−2πiαα′ε(σ−σ′)Eα′(σ′)Eα(σ), (6.19)

where ε(σ) := 1 + 2k if 2πk < σ < 2π(k + 1). The idea is to split the operators Q(σj) by
defining

Q1 :=

σ2∫
σ1

dσ Eb(σ), Q2 :=

σ1+2π∫
σ2

dσ Eb(σ), Q3 :=

σ2+2π∫
σ1+2π

dσ Eb(σ). (6.20)

This allows us to write

hα2
s2 (σ2)hα1

s1 (σ1) = Eα2(σ2)Eα1(σ1)(e−2πibα1Q2 + e−6πibα1Q3)s2(Q1 + Q2)s1 (6.21)

and

hα1
t1

(σ1)hα2
t2

(σ2) = Eα1(σ1)Eα2(σ2)(e2πibα2Q1 + e−2πibα2Q2)t1(Q2 + Q3)t2 . (6.22)

Like Q(σ), the Qj (j = 1, 2, 3) are positive self-adjoint operators. They have the following
Weyl-type commutation relations

Q1Q2 = q2Q2Q1

Q2Q3 = q2Q3Q2

Q1Q3 = q4Q3Q1, q := eπib
2
, (6.23)

where we used (6.19) and for the last relation Q3 = e2πbpQ1e
2πbp and Qjp = (p + ib)Qj .

It is shown in Appendix C how to deal with complex powers of sums of such operators as
appearing in (6.21) and (6.22). Here we define

x :=
1

4πb
(log Q1 + log Q2), t :=

1

2πb
(log Q2 − log Q1), (6.24)

which satisfy [x, t] = i
2π = [x,p] and [t,p] = 0. We then apply equation (C.4) to each of the

four terms of the form28 (U + V)s with UV = q2VU. This yields

(Q1 + Q2)s1 = e2πbs1(x− 1
2
t) eb(t− ibs1)

eb(t)
, (6.25)

(Q2 + Q3)t2 = e2πbt2(x+ 1
2
t) eb(2p− t− ibt2)

eb(2p− t)
(6.26)

(e2πibα2Q1 + e−2πibα2Q2)t1 = e2πit1α2e2πbt1(x− 1
2
t) eb(t− 2iα2 − ibt1)

eb(t− 2iα2)
, (6.27)

(e−2πibα1Q2 + e−6πibα1Q3)s2 = e−2πibs2α1e2πbs2(x+ 1
2
t) eb(2p− t− 2iα1 − ibs2)

eb(2p− t− 2iα1)
. (6.28)

Omitting some irrelevant prefactors, we then find

hα2
s2 (σ2)hα1

s1 (σ1) ∼ Eα2(σ2)Eα1(σ1) e2πb(s1+s2)x Υs(t,p), (6.29)

hα1
t1

(σ1)hα2
t2

(σ2) ∼ Eα2(σ2)Eα1(σ1) e2πb(t1+t2)x Υt(t,p) (6.30)

28Although the operators that include the prefactors are not necessarily self-adjoint, one can perform the
steps of (C.4) in a completely analogous way. Alternatively, one may first take αj ∈ iR (j = 1, 2) and then
analytically continue to generic αj .
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with

Υs(t, p) = eπb(s2−s1)t eb(2p− t− 2iα1 − ib(s1 + s2))eb(t− ibs1)

eb(2p− t− 2iα1 − ibs1)eb(t)
, (6.31)

Υt(t, p) = eπb(t2−t1)t eb(t− 2iα2 − ib(t1 + t2))eb(2p− t− ibt2)

eb(t− 2iα2 − ibt2)eb(2p− t)
. (6.32)

Finally, let us substitute eb for sb via eb(x) = e
πi
2
x2−πi

24
(2−Q2)sb(x) and introduce the new

variables p0, p1, p2, p3, ps, pt via

p0 := p, p3 := p0 − i(α1 + α2 + b(s1 + s2)), α1 =
Q

2
+ ip1,

ps := p0 − i(α1 + bs1), pt := p0 − i(α2 + bt2), α2 =
Q

2
+ ip2

. (6.33)

Note that these are the p eigenvalues at the different insertion points in the conformal blocks
〈p3|hα2

s2 (σ2)hα1
s1 (σ1)|p0〉 and 〈p3|hα1

t1
(σ1)hα2

t2
(σ2)|p0〉. Assuming t1+t2 = s1+s2, we then obtain

(again omitting all t-independent prefactors)

Υs(t, p0) ∼ sb(−t+ p0 + p1 − p2 + p3)sb(−t)
sb(−t+ ps + p0 + p1 − cb)sb(−t− ps + p0 + p1 − cb)

, (6.34)

Υt(t, p0) ∼ sb(t− p0 − p1 + p2 + p3)sb(t− 2p0)

sb(t+ pt − p0 + p2 − cb)sb(t− pt − p0 + p2 − cb)
. (6.35)

Remarkably, the expressions on the r.h.s. of (6.34) and (6.35) coincide, up to constant factors,
with the length eigenfunctions Ψs

rs and Ψt
rt in quantum Teichmüller theory of the 4-holed

sphere as given in (4.23) and (4.24) upon using the identification of parameters

t = p,
p0 = r0, p1 = −r1, ps = rs,
p3 = −r3, p2 = −r2, pt = rt

. (6.36)

(Note that this identification corresponds to (6.5) with respect to the conformal blocks defined
above.) This observation suggests that there exists a connection between the operator t defined
in (6.24) and the operator p defined in (4.13). We will see in the following section that this is
indeed the case.

7 A representation of the algebra of quantized shear coordi-
nates

In this section we present a correspondence between Liouville operators appearing inside a
conformal block and operators on quantum Teichmüller space, as inspired by the conformal
Ward identity. This will allow us to explain heuristically the connection between the operator
t and the quantized shear coordinate p discovered above. Then we construct two represen-
tations of the algebra of quantized shear coordinates by Liouville operators which affirm this
correspondence. Finally we formulate a conjecture that generalizes the observation of the
previous section to n punctures. All material of this section is original.

7.1 The correspondence

We have seen in Section 6.2 that the operator 2b2T(z), when inserted into a conformal block,
can be associated with a quantized version TT (z) = 2b2∇α(z) of the function T (z) for fixed
z, as given in (3.32), on T0,n via the dependence on the moduli z1, . . . , zn−3. Considering also
the classical limits, this may be schematically represented as follows:
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b2T(z) 1
2TT (z)

−TL(z) 1
2T (z)

b→ 0 b→ 0

On a heuristic level, one may then argue that given a functional F and a Liouville operator
FL whose classical analogue is F [TL], then FL, when appearing inside a conformal block,
should be related to the quantum analog FT of F [−1

2T ] in Teichmüller theory.
In the previous section we saw that the operators inside a conformal block with four

punctures can be reordered as〈
hᾱ3

0 (z3)hα2
s2 (z2)hα1

s1 (z1)hα0
0 (z0)

〉
∼
〈
hᾱ3

0 (z3)Eα2(z2)Eα1(z1)e2πb(s1+s2)xΥs(t, p0)hα0
0 (z0)

〉
,

(7.1)
where the operator t was defined as

t =
1

2πb

(
log

σ1+2π∫
σ2

dσ Eb(σ)− log

σ2∫
σ1

dσ Eb(σ)
)
. (7.2)

Note that Eb(x) = : exp(2bφ+
F (x)) : is the quantized version of ∂+A

+(x) = exp(ϕ+
F (x)). So

we find that t corresponds to the classical observable

t =
1

2πb
log

A+(σ1+2π)−A+(σ2)

A+(σ2) − A+(σ1)
. (7.3)

So let us consider A+(σ) for each σ as a functional of T+, defined as the ratio f+
2 /f

+
1 of

two solutions to the Hill’s equation f ′′(x) = T+(x)f(x), with diagonal monodromy fixed by
(2.13). (Strictly speaking, A+(σ) as such is not a functional of T+ because it is fixed only up
to rescalings A+ → λA+ with λ > 0. Nevertheless, t is invariant under such rescalings.) In
order to define A+(σ) as a functional of TL, A+(σ) = A+(σ)[TL], recall that A+(σ) = AL(eiσ)
and by the relation TL = S(AL), it follows that AL is the quotient f1/f2 of two solutions to
the complex Hill’s equation

∂2
zf(z) = TL(z)f(z) (7.4)

with diagonal monodromy around z = 0. Let us assume for the moment that α1 = α2 = Q
2 ,

αj = Q
2 + ipj (j = 0, 3), which corresponds to parabolic weights δ1 = δ2 = 1

2 and hyperbolic
weights δj = 1

2(1 + (2bpj)
2) (j = 0, 3) in

T (z) =

3∑
j=0

(
δj

(z − zj)2
+

cj
z − zj

)
. (7.5)

According to the discussion in sections 3.3 and 3.7, A+(σ)[−1
2T ] = A(eiσ), where A is (pre-

sumably) a uniformization map of Σ(Z, δ), the Riemann sphere with two punctures at z1, z2

and two holes around z0 and z3, where Z ≡ (z0, . . . , z3), δ ≡ (δ0, . . . , δ3). Since the mon-
odromy of AL around z = 0 is diagonal, A should also have a diagonal monodromy; but as
T has more than one singularity, it is not yet clear which one. But since t appears in the
conformal block on the r.h.s. of (7.1) left to the first chiral vertex operator hα0

0 (z0), it seems
plausible that it is the monodromy around z0, which is then given by M0 : A 7→ e4πbp0A (this
will become more clear by the discussion at the end of this section).
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Figure 14: Expressing w2 in terms of A

Let us now express the shear coordinate w2 in terms of A, where 2 stands for an edge of the
fat graph for the 4-holed sphere depicted in Fig. 10 and the relevant part of the triangulation is
displayed in Fig. 14. As already stated in Section 3.6, the shortest geodesics in H connecting
two points that are equivalent under M0 (these are the ones that are projected to closed
geodesics on H/M0), are segments of the imaginary axis. So an image of the closed geodesic
c around z0 under A is such a segment that will be extended as a geodesic to the positive
imaginary axis (see Fig. 14). Therefore, if we endow c with a counter-clockwise orientation,
the points x1, . . . , x4 that determine w2 according to (3.20) are

x1 =∞, x2 = A(z1), x3 = A(z2), x4 = A(e2πiz1), (7.6)

where e2πiz1 denotes the boundary point of the universal cover of Σ(Z, δ) which is reached
by going from z1 (which, by abuse of notation, denotes some point over z1) around z0 in the
counter-clockwise direction29. This yields

w2 = log

∣∣∣∣A(e2πiz1)−A(z2)

A(z2)−A(z1)

∣∣∣∣ , (7.7)

and we find that the functional of t[−1
2T ] ∼ w2/2πb, which is the classical limit of the operator

p defined (4.13). So we have indeed established, on a heuristic level, a connection between
the operators t and p, based on the conformal Ward identity, which supplements the more
empirical connection found in the previous section.

It is also instructive to make such considerations for the zero mode p, or rather P :=
2 cosh(2πbp). The classical analogue of this operator is (recall that 2bφF ' ϕF ).

P := 2 cosh(πp) = |trM+|, (7.8)

where M+ is the monodromy of (f+
1 , f

+
2 )t. This observable can be explicitly expressed in

terms of T+ respectively TL by the following consideration. The matrix function

H =

(
f1 f2

f ′1 f ′2

)
, (7.9)

where fj = f+
j , satisfies the differential equation

∂xH(x) = Λ(x)H(x), Λ(x) :=

(
0 1

T+(x) 0

)
. (7.10)

This equation is solved by

H(x) = P exp

(∫ x

0
Λ(x′)dx′

)
H(0), (7.11)

29The notion of images of punctures under uniformization maps was discussed in Section 3.4.
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where P exp denotes the path ordered exponential defined by

P exp

(∫ x

0
Λ(x′)dx′

)
= 1 +

∞∑
n=1

∫ x

0
dx1

∫ x1

0
dx2 . . .

∫ xn−1

0
dxn Λ(x1) . . .Λ(xn). (7.12)

Thus we find that H(2π) = M̃+H(0) where

M̃+ = P exp

(∫ 2π

0
Λ(x)dx

)
. (7.13)

Combining this with H(2π) = H(0)(M+)t one concludes that M̃+ = H(0)(M+)t(H(0))−1

(H(x) is invertible by (2.8)). It follows that

P = |trM̃+|. (7.14)

Changing to coordinate z, this may be easily expressed in terms of TL, yielding P = P [TL].
Then P [−1

2T ] can be identified with

|trMγ | = 2 cosh(lγ/2), (7.15)

where Mγ is the monodromy of the uniformization map A along a path γ, and lγ is the
associated length function. Again, the choice of γ is ambiguous from the outset. But one can
argue that it depends on the insertion point of P into the conformal block. Namely, if P
sits between h

αj+2
sj+2 (zj+2) and h

αj+1
sj+1 (zj+1) in (6.1), then suppose that it could be expressed

in terms of T(z) in a way that quantizes the relation P = P [TL]. Then the arguments
of all T(z) appearing in this expression had to be confined inside the conformal block to
|zj | > |z| > |zj−1|. This implies that the path ordered exponential appearing in this expression
had to be defined on a path that runs in this region. This could only be the path γj that
encircles z1, . . . , zj+1. The quantized version of 2 cosh(lγj/2) is the length operator Lj . So
what we have in mind is something similar to the relation (which follows from (6.16))

〈. . .hαj+2
sj+2 (zj+2)P̂jh

αj+1
sj+1 (zj+1) . . . 〉 = L̂j〈hαnsn (zn) . . .hα1

s1 (z1)〉, (7.16)

where

P̂j := N

{
tr P exp

(∮
γj

dz

(
0 1

−b2T(z) 0

))}
,

L̂j := tr P exp

(∮
γj

dz

(
0 1

−1
2TT (z) 0

))
.

(7.17)

If P̂j was the same as P, then (7.16) would imply that the conformal block is an eigenfunction
of L̂j (with eigenvalue 2 cosh(2πbpj), pj = =βj), which looks like the length operator Lj in
a coherent state representation. Unfortunately, we have P̂j 6= P since P, in contrast to P̂j ,
commutes with T(z). In fact, one cannot hope to express P directly in terms of T since the
center of the Virasoro algebra is spanned by c. Nevertheless, a direct proof of the relation
between conformal blocks and eigenstates of length operators could be possible via the so-
called loop operators [10, 2]. These involve the degenerate fields

f1(z) := E−
b
2 (z), f2 := E−

b
2 (z)Q(z), (7.18)

which are quantum analogs of f1 and f2 satisfying the quantum Hill’s equation

∂2fj(z) = −b2N{T(z)fj(z)} (7.19)

with “diagonal” monodromy

f1(z)→ −e
πi
2
b2e−πbpf1(z)e−πbp, f2(z)→ −e

πi
2
b2eπbpf2(z)eπbp (7.20)

around z = 0. The author felt unable to concrete this idea.
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7.2 The representations

We would like to formulate the observation of Section 6.3, the appearance of length eigen-
functions of quantum Teichmüller theory in 4-point conformal blocks, in a way that permits a
(conjectural) generalization to the n-punctured sphere. Since the function Υs as appearing in
(7.1) is evaluated on the operator t, this object would be an eigenstate of the length operator
Ls in a representation ρ of the algebra of shear coordinates which acts on a space of operators.
In the case of four punctures, this space would simply be the space F(t) of functions f of
t where we require f to be in the Schwartz space S(R). Elements of F(t) possess a Fourier
expansion

f(t) =

∫ ∞
−∞

dx e−2πixtf̂(x), (7.21)

where f̂ is the inverse Fourier transform of f . Obviously we want to define

ρ(p)f(t) := tf(t), (7.22)

where p was defined in (4.13) (not to be confused with the zero mode of quantum Liouville
theory). Now, if v is an operator that satisfies [v, t] = −ib, then we can represent x (defined
in (4.13)) by

ρ(x)f(t) := − 1

2πb
[v, f(t)], (7.23)

where [v, f(t)] = −ibf ′(t) is again an element of F(t). Since the algebra Af0 of shear co-
ordinates for the 4-punctured sphere associated with the fat graph f0 is generated by p,x
and 1, this would define (together with ρ(1) = 1) a representation of Af0 on F(t). There are
different possible choices for v, e.g. one could define v = − log Q2. However, since Υs and Υt

also depend on p, we want v to commute with p. Therefore we define

Q∞j :=

∫
γj

dz Eb(z), γj : [1,∞)→ C, t 7→ t · zj (j = 1, 2), (7.24)

and30

v :=
1

2
(log Q∞1 − log Q∞2 + 2πbp). (7.25)

These are rather formal definitions which still have to be given a precise meaning; in particular
the existence of the implicit limit in (7.24) and the meaning of the logarithm in (7.25) - Q∞j
is neither positive nor self adjoint - is not yet established. Nevertheless, if a precise meaning
exists, then it follows from the generalization31 of (6.19),

Eα2(z2)Eα1(z1) = e−2πiα2α1ε(σ2−σ1)Eα1(z1)Eα2(z2), σj := arg(zj), (7.26)

that v indeed satisfies [v, t] = −ib and [p,v] = 0.
Note that the exponentiated operators are represented as

ρ(e2πbp)f(t) = e2πbtf(t), ρ(e2πbx)f(t) = e−vf(t)ev = f(t + ib). (7.27)
30The contribution with the zero mode p is only included in order to make the analogy with (quantized)

shear coordinates more clear, as explained below. Moreover, it makes v commute with x defined in (6.24).
31Equation (7.26) also has to be interpreted with care: the left hand side (right hand side) is a priori only

well-defined for |z2| > |z1| (|z1| > |z2|). However, for |z2| > |z1| the r.h.s. can be understood as the analytic
continuation of the same expression with |z1| > |z2|.
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Figure 15: A fat graph for the n-punctured sphere

As usual, these operators are only defined on dense subspaces of F(t). The corresponding
representation π̂ on the Fourier transforms is given by

π̂(p)f̂(x) =
1

2πi
f̂ ′(x), π̂(x)f̂(x) = xf̂(x). (7.28)

This is the standard representation on S(R) where x is diagonalized.
Let {|vν〉}ν∈Ip be an orthonormal basis for the p eigenspace Fp, so that

Pp :=
∑
ν∈Ip

|vν〉〈vν | (7.29)

is a projection onto Fp. We can then reformulate the observation of Section 6.3 in the following
way:

ρ(L[)
(
Υ[(t,p)

)
Pp0 = 2 cosh(2πbr[)Υ

[(t,p)Pp0 ([ = s, t) (7.30)

where we have implicitly used the identification of parameters (6.36). The expression on the
l.h.s. of (7.30) is well defined as we know how to express L[ in terms of x and p (and the
dependence of Υ[ on p does not interfere with the definition of ρ). However, we can make the
connection with conformal blocks resp. chiral vertex operators more explicit by defining

Θα1,α2
s1,s2 (Q1,Q2,Q3) := (Eα2(σ2)Eα1(σ1))−1 hα2

s2 (σ2)hα1
s1 (σ1)

∼ e2πb(s1+s2)xΥs(t,p).
(7.31)

Since v commutes with x, we have (using again (6.36))

ρ(Ls)
(
Θα1,α2
s1,s2 (Q1,Q2,Q3)

)
Pp0 = 2 cosh(2πbrs)Θ

α1,α2
s1,s2 (Q1,Q2,Q3)Pp0 , (7.32)

i.e., Θα1,α2
s1,s2 (Q1,Q2,Q3) is also a kind of generalized eigenstate of ρ(Ls). An analogous state-

ment holds for the t-channel.
In order to generalize (7.30) to n punctures (resp. holes), we will first define a representa-

tion ρ of the algebra An of shear coordinates associated with the fat graph that is depicted
in Figure 15. First, we split the circle into m := n − 2 segments at σm > · · · > σ1 ∈ [0, 2π)
(we will associate zj = eiσj ) and define

Qj :=

σj+1∫
σj

dσ Eb(σ) (j = 0, 1, . . . ,m), (7.33)
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where σ0 := σm − 2π, σm+1 := σ1 + 2π. The operators

tj :=
1

2πb
(log Qj − log Qj−1) (j = 1, . . . ,m) (7.34)

satisfy the commutation relations

[tj , tk] =
i

2π

(
δ

(m)
j+1,k − δ

(m)
j−1,k

)
(7.35)

where δ(m)
j,k is the m-periodic Kronecker delta. The representation ρ will be defined on the

space F(t2, . . . , tm) of functions of t2, . . . tm of the form

f(t2, . . . , tm) =

∫
dx2 . . . dxm f̂(x2, . . . , xm) e−2πi

∑m
j=2 xjtj , (7.36)

where the generalized inverse Fourier transform f̂ is in the Schwartz space S(Rm−1). On
F(t2, . . . , tm), we represent wj := wej by

ρ(wj)f(t2, . . . , tm) := 2πbf(t2, . . . , tm)tj . (7.37)

By (7.35) and (4.1), [ρ(wj), ρ(wk)] = −(2πb)2[tj , tk] = [wj ,wk], so (7.37) (together with
ρ(1) = 1) indeed defines a representation of the subalgebra of An generated by w2, . . .wm

and 1. In order to represent also ŵj := wêj (j = 1, . . . ,m), we define

Q∞j :=

∫
γj

dz Eb(z), γj : [1,∞)→ C, t 7→ t · zj (j = 1, . . . ,m), (7.38)

and
vj :=

1

2
(log Q∞j − log Q∞j+1) (j = 1, . . . ,m), (7.39)

where Q∞m+1 := e2πbpQ∞1 e
2πbp, which corresponds to the analytic continuation of Eb(z)

around 0. Then we have (at least formally)

[tj ,vk] = ib
(
δ

(m)
j,k+1 − δ

(m)
j,k

)
, (7.40)

So we define

ρ(ŵj)f(t2, . . . , tm) := −[vj , f(t2, . . . , tm)] (j = 1, . . . ,m). (7.41)

The ŵj are actually not linear independent: one has
∑m

j=1 ŵj =
∑m

j=1 lj− l0− ln−1. This con-
straint is not properly realized in the representation (7.41) (rather

∑
j ρ(ŵj) = 0). Therefore

we introduce

qj :=
1

2πb
wj , xj :=

1

4πb

( j−1∑
k=1

ŵk −
m∑
k=j

ŵk

)
(j = 2, . . . ,m), (7.42)

so that {qj ,xj}j=2,...,m ∪ {1} is a basis of An (as a Lie algebra) with commutation relations

[qj ,qk] =
i

2π
(δj,k+1 − δj,k−1), [qj ,xk] =

1

2πi
δj,k, [xj ,xk] = 0. (7.43)

Then we define

ρ(qj) :=
1

2πb
ρ(wj), ρ(xj) :=

1

4πb

( j−1∑
k=1

ρ(ŵk)−
m∑
k=j

ρ(ŵk)
)
. (7.44)
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This clearly defines a representation of An. Putting

yj :=
1

2

( j−1∑
k=1

vk −
m∑
k=j

vk

)
=

1

2
(log Q∞1 − log Q∞j ) + πbp, (7.45)

it may be written as

ρ(qj)(O) = Otj , ρ(xj)(O) := − 1

2πb
[yj ,O] (7.46)

for O ∈ F(t2, . . . , tm) (or any other Liouville operator).
Notice also that

ρ̄(qj) := tj , ρ̄(xj) :=
1

2πb
yj (j = 2, . . . ,m) (7.47)

defines an anti-representation of the Lie algebra An. Considering the adjoint O† of an operator
O as an operator on the dual H∗L of the Hilbert space (which is isomorphic to HL),

O† : H∗L → H∗L, φ→ φ ◦O, (7.48)

it is immediately seen that ρ∗(a) := (ρ̄(a))† for all a ∈ An defines a representation of An.
Furthermore, in the classical limit we have

2πbtj −→
class.

log
A+(σj+1)−A+(σj)

A+(σj) − A+(σj−1)
, (7.49)

so that 2πbtj can be considered as the Liouville analog of wj in the line of thought pursued
in Section 7.1. Similarly,

vj −→
class.

1

2
log

AL(∞)−AL(zj)

AL(∞)−AL(zj+1)
, (7.50)

where AL denotes the analytic continuation of AL(eiσ) := A+(σ). (In the case of vm, the
monodromy of A+

z around 0 is taken into account.) Thus one can consider 2vj as the Liouville
analog of ŵj provided that zn−1 is send to infinity (the factor 2 is somewhat puzzling).

Let π̂ denote the representation on the space of the f̂(x), x ≡ (x2, . . . , xm), (i.e., on
S(Rm−1)) that corresponds to ρ. One easily finds

π̂(xj)f̂(x) = xj f̂(x). (7.51)

In order to compute π̂(wj), one may use the Baker-Campbell-Hausdorff formula to find

e−2πi
∑m
l=2 xltl = e−2πi

∑
l6=j xltle−2πi(tj+

1
2

(xj+1−xj−1))xj , (7.52)

where it is understood that x1, xm+1 ≡ 0. This implies

π̂(qj)f̂(x) =

(
1

2πi

∂

∂xj
+

1

2
(xj−1 − xj+1)

)
f̂(x). (7.53)

Thus the operators pj := qj + 1
2(xj+1 − xj−1) (j = 2, . . . ,m) are represented by (2πi)−1 ∂

∂xj
.
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7.3 The conjecture

We are now ready to formulate a conjectural generalization of the observation of Section 6.3
to n punctures respectively m = n − 2 chiral vertex operators. Let σm > · · · > σ1 ∈ [0, 2π)
and define

Qj :=

σj+1∫
σj

dσ Eb(σ), (j = 1, . . . , 2m− 1), (7.54)

where σj+m := σj+2π (j = 1, . . . ,m). Let π ∈ Sm be a permutation. Then one may obviously
reorder the product of m chiral vertex operators as

1∏
j=m

h
απ(j)
sπ(j)

(σπ(j)) =
( 1∏
j=m

Eαπ(j)(σπ(j))
)

Θπ
α,s(Q1, . . . ,Q2m−1), (7.55)

where α := (α1, . . . , αm), s := (s1, . . . , sm), by using the Weyl-type commutation relations of
Eαj (σj) with Qk.

On the Teichmüller side, the conformal block〈
h
αn−1

0 (zn−1)h
απ(m)
sπ(m)

(zπ(m)) · · ·h
απ(1)
sπ(1)

(zπ(1))h
α0
0 (z0)

〉
, (7.56)

where zj = eiσj (j = 1, . . . ,m), is associated with the n-punctured sphere C̄\{z0, . . . , zn−1}
equipped with a set of mutually non-intersecting simple loops {γk}k=1,...,n−3, where γk is
a loop that encircles z0, zπ(1), . . . , zπ(k) (cf. Section 6). The corresponding length operators
Lk := Lγk are part of the (exponentiated) algebra An of shear coordinates. Let β1, . . . , βn−3

denote the intermediate momenta of the conformal block (7.56), as defined in Section 6, and
α0 = Q

2 + ip0.

Conjecture 1. The operators Θπ
α,s(Q1, . . . ,Q2m−1) are generalized simultaneous eigenstates

of the length operators L1, . . . ,Ln−3 in the representation ρ defined above, in the sense that

ρ(Lk)
(
Θπ
α,s(Q1, . . . ,Q2m−1)

)
Pp0 = 2 cosh(2πbrk)Θ

π
α,s(Q1, . . . ,Q2m−1)Pp0 , (7.57)

with the identification of variables given by (6.5).

Employing the relation Qj+m = e2πbpQje
2πbp (j = 1, . . . ,m − 1), one may express

Θπ
α,s(Q1, . . . ,Q2m−1) first in terms of Q1, . . . ,Qm and p and then in terms of32

x :=
1

4πb
(log Q1 + log Qm), tk :=

1

2πb
(log Qk − log Qk−1) (k = 2, . . . ,m). (7.58)

and p. Finally one may use the techniques of Appendix C to extract the overall x dependence
and obtain

Θπ
α,s(Q1, . . . ,Q2m−1) = e2πb

(∑m
j=1 sj

)
xΥπ

α,s(t2, . . . , tm,p), (7.59)

which implicitly defines Υπ
α,s(t2, . . . , tm,p). Since x commutes with yj (j = 2, . . . ,m), by

(7.46) the conjecture (7.57) is equivalent to

ρ(Lk)
(
Υπ
α,s(t2, . . . , tm, p0)

)
= 2 cosh(2πbrk)Υ

π
α,s(t2, . . . , tm, p0). (7.60)

Note that the operators Υπ
α,s(t2, . . . , tm, p0) ∈ F(t2, . . . , tm) are well defined since p commutes

with t2, . . . , tm.
32The inverse transformation is given by

logQk = πb
( k∑
j=2

tj −
m∑

j=k+1

tj + 2x
)

(k = 1, . . . ,m).
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8 The 5-punctured sphere

In this Section we present calculations in the attempt to prove Conjecture 1 for the case of
the 5-punctured sphere and π = Id. On the Liouville side, we will compute Υπ

α,s(t2, t3, p0)
as defined by (7.59) (with π = Id) in the form (7.36), i.e., we will compute the generalized
inverse Fourier transform of Υπ

α,s(t2, t3, p0). On the Teichmüller side, we will compute the
eigenfunctions of the length operators L1,L2 corresponding to π = Id in the representation
π̂ defined by (7.51) and (7.53). Conjecture 1 is true for this special case if and only if these
coincide up to constant factors. All content of this section is original.

8.1 Operator reordering

Our aim is compute Υα
s (t2, t3,p) in the form

Υα
s (t2, t3,p) =

∫
dx2dx3 e

2πi(x2t2+x3t3) Υ̂α
s (x2, x3,p). (8.1)

We start with
1∏
j=3

h
αj
sj (σj) = Eα3(σ3)(Q3 + Q4 + Q5)s3Eα2(σ2)(Q2 + Q3 + Q4)s2Eα1(σ1)(Q1 + Q2 + Q3)s1

=
( 1∏
j=3

Eαj(σj)
)(

e−2πib(α2+α1)Q3 + e−2πib(α2+3α1)Q4 + e−6πib(α2+α1)Q5

)s3
×
(
e−2πibα1(Q2 + Q3) + e−6πibα1Q4

)s2
(Q1 + Q2 + Q3)s1 .

(8.2)
Let us begin with the simplest term (Q1 + Q2 + Q3)s1 . If we define Q23 := Q2 + Q3, then
Q1 and Q23 are positive self-adjoint operators that satisfy Q1Q23 = q2Q23Q1. Therefore, by
(C.6) and the Baker-Campbell-Hausdorff formula, we have

(Q1 + Q2 + Q3)s1 =

∫
dv Q

s
2
− iv

2b
1 Q

iv
b

23Q
s
2
− iv

2b
1 D̃ ib

2
s1

(v). (8.3)

Then one can apply (C.6) to Q
iv
b

23 = (Q2 + Q3)
iv
b to obtain

(Q1 + Q2 + Q3)s1 =

∫
dv dv′ Q(−ibs1−v, v−v′, v′, 0) D̃ ib

2
s1

(v)D̃− v
2
(v′), (8.4)

where
Q(u1, u2, u3, x) := e

i
b

∑3
j=1 ujqj+2πixp, qj = log Qj . (8.5)

The same technique can be applied to compute33(
e−2πibα1(Q2 + Q3) + e−6πibα1Q4

)s2
= e−2πibα1s2

∫
du du′Q(u′,−ibs2−u, u−u′, 2u′) e4πα1u′D̃ ib

2
s2

(u)D̃−u
2
(u′)

(8.6)

and(
e−2πib(α2+α1)Q3 + e−2πib(α2+3α1)Q4 + e−6πib(α2+α1)Q5

)s3
= e−2πib(α2+α1)s3

∫
dt dt′Q(t−t′, t′,−ibs3−t, 2t) e4π(α1t+α2t′)D̃ ib

2
s3

(t)D̃− t
2
(t′).

(8.7)
33Although Q3 + e−4πibα1Q4 is self-adjoint only for α1 ∈ iR, the formula for generic α1 can be obtained by

analytic continuation from this special case.
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With the help of the formula

Q(u1, u2, u3, u4)Q(v1, v2, v3, v4) = eπi
∑
j 6=k sgn(j−k)ujvkQ(u1+v1, u2+v2, u3+v3, u4+v4) (8.8)

one may then write
1∏
j=3

h
αj
sj (σj) ∼

( 1∏
j=3

Eαj(σj)
)∫

d6(t, t′, u, u′, v, v′)

Q(t− t′ + u′ − v − ibs1, t
′ − u+ v − v′ − ibs2,−t+ u− u′ + v′ − ibs3, 2t+ 2u′)

× e4π(α1t+α2t′+α1u′)+πi((t′−t)(v+u′−ibs2)+t′(−u−v−v′−ibs1)−(t+ibs3)(−u−u′−v′−ibs1−ibs2))

× e2πbt(s1+s2)+πi(uv−u′(v−v′+ibs1)+ibs2(v+v′))

× D̃ ib
2
s3

(t)D̃− t
2
(t′)D̃ ib

2
s2

(u)D̃−u
2
(u′)D̃ ib

2
s1

(v)D̃− v
2
(v′).

(8.9)
Following (7.58), we define

x :=
1

4πb
(q1 + q3) t2 :=

1

2πb
(q2 − q1), t3 :=

1

2πb
(q3 − q2). (8.10)

In order to write (8.9) in terms of x, t2, t3 and p, we compute

Q(u1, u2, u3, x) = eπi((−u1+u2+u3)t2+(−u1−u2+u3)t3+2(u1+u2+u3)x)+2πixp

= e2πiuxe−πi((u1−u2−u3)(t2+u
4

)+(u1+u2−u3)(t3−u4 ))e2πix(p+u
2

),
(8.11)

where u = u1 + u2 + u3. This yields

Q(t− t′ + u′ − v − ibs1, t
′ − u+ v − v′ − ibs2,−t+ u− u′ + v′ − ibs3, 2t+ 2u′)

= e2πbsxe−2πi(t−t′+u′−v− ib
2

(s1−s2−s3))(t2− ib4 s)

× e−2πi(t−u+u′−v′− ib
2

(s1+s2−s3))(t3+ ib
4
s)e4πi(t+u′)(p− ib

2
s),

(8.12)

where s = s1 + s2 + s3. Therefore, in order to compute Υα
s (t2, t3,p) in the form (8.1), we

substitute t′ and v′ for34

x2 := t− t′ + u′ − v − ib
2 (s1 − s2 − s3), x3 := t− u+ u′ − v′ − ib

2 (s1 + s2 − s3). (8.13)

Note that for the case of interest to us, where αj , βk ∈ Q
2 + iR according to (6.5), we have

x2 ∈ R− iQ4 , x3 ∈ R + iQ4 . However, if

Υα
s (t2, t3, p0) =

∫
R−iQ

4

dx2

∫
R+iQ

4

dx3 e
2πi(x2t2+x3t3) Υ̂α

s (x2, x3, p0), (8.14)

then Υ̂α
s (x2, x3, p0) still lives in the representation35 π̂. Then we find

Υ̂α
s (x2, x3, p0) ∼ e−πb

s
2

(x2−x3)

∫
d4(t, u, u′, v) e4πi(p0− ib2 s)(t+u

′)+4πα1(t+u′)+4πα2(t+u′−v−x2)

× eπi(u
′−v−x2− ib2 (s1−s2−s3))(−t−u′−v+x3+

ib
2 (−s1+s2−s3))+πi(t+ibs3)(t+2u′−x3+ ib

2
(s1+s2+s3))

× eπit(−2ib(s1+s2))+πi(uv−u′(−t+u−u′+v+x3+ ib
2

(3s1+s2−s3)))+πi(t−u+u′+v−x3)ibs2

× D̃ ib
2
s3

(t)D̃− t
2
(t+ u′ − v − x2 − ib

2 (s1 − s2 − s3))D̃ ib
2
s2

(u)D̃−u
2
(u′)

× D̃ ib
2
s1

(v)D̃− v
2
(t− u+ u′ − x3 − ib

2 (s1 + s2 − s3)).

(8.15)
34The determinant of this invertible variable transformation is just a constant and thus insignificant to us.
35Alternatively, one may shift the integration contours in the end.
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By (A.4), one has

D̃α(x) =
wb(2α+ cb)wb(x− cb)

wb(x+ 2α+ cb)
, (8.16)

where wb(x) = (sb(x))−1. This allows to write (8.15) as

Υ̂α
s (x2, x3, p0) ∼ e−(4πα2+πbs)x2+πbsx3−πix2x3

×
∫
d4(t, u, u′, v) eπit(u

′+x2+4p0−4i(α1+α2)+ib(− 7
2
s1− 5

2
s2− 3

2
s3))+πiu(v−u′−ibs2)

× eπiu′(u′+4p0−4i(α1+α2)+ib(−4s1−s3))+πiv(4iα2−x3+ ib
2
s)

× wb(t+u
′−v−x2− ib2 (s1−s2−s3)−cb)

wb(t+ibs3+cb)
· wb(t−u+u′−x3− ib2 (s1+s2−s3)−cb)

wb((t−u+u′−v−x3− ib2 (s1+s2−s3)+cb)

× wb(u−u′−cb)
wb(u+ibs2+cb)

· wb(v−u
′+x2+

ib
2 (s1−s2−s3)−cb)

wb(v+ibs1+cb)
· wb(u′ − cb).

(8.17)

Let us pick out the integration over u. It may be rewritten as∫
du eπiu(v−u′−ibs2) wb(t− u+ u′ − x3 − ib

2 (s1 + s2 − s3)− cb)
wb(t− u+ u′ − v − x3 − ib

2 (s1 + s2 − s3) + cb)

wb(u− u′ − cb)
wb(u+ ibs2 + cb)

=

∫
dx e−πi(v−u

′−ibs2)x D v
2
−cb(x+ t+ u′ − v

2 − x3 − ib
2 (s1 + s2 − s3))

×D− 1
2

(u′+ibs2)−cb(x+ 1
2u
′ − ib

2 s2),

(8.18)

where we used Dα(x) = Dα(−x). By the identity (A.5), the integral can be performed to give

eπi(−v(− 1
2
u′+ ib

2
s2)+(u′+ibs2)(−t−u′+ 1

2
v+x3+

ib
2 (s1+s2−s3)))

× wb(v − cb)wb(−u′ − ibs2 − cb)wb(u′ − v + ibs2 + cb)

×
wb(−t− u′ + v + x3 + ib

2 (s1 − s2 − s3)− cb)
wb(−t+ x3 + ib

2 (s1 + s2 − s3) + cb)
.

(8.19)

Thus we obtain

Υ̂α
s (x2, x3, p0) ∼ e−(4πα2+πbs)x2+πb(s1+s3)x3−πix2x3

×
∫
dt du′dv eπit(x2+4p0−4i(α1+α2)+ib(− 7

2
s1− 7

2
s2− 3

2
s3))

× eπiu′(v+x3+4p0−4i(α1+α2)+ib( 7
2
s1− 1

2
s2− 3

2
s3))+πiv(4iα2−x3+ ib

2
s)

×
wb(t+ u′ − v − x2 − ib

2 (s1 − s2 − s3)− cb) wb(t− x3 − ib
2 (s1 + s2 − s3)− cb)

wb(t+ ibs3 + cb) wb(t+ u′ − v − x3 − ib
2 (s1 − s2 − s3) + cb)

×
wb(v − cb) wb(u′ − cb) wb(v − u′ + x2 + ib

2 (s1 − s2 − s3)− cb)
wb(v − u′ − ibs2 − cb) wb(u′ + ibs2 + cb) wb(v + ibs1 + cb)

.

(8.20)

8.2 Length eigenfunctions

Our next task is to compute the common eigenfunctions of the length operators Lk = Lγk (k =
1, 2), where γ1, γ2 are loops that encircle z0 and z1 respectively z0, z1 and z2, in the represen-
tation π̂ defined by (7.51) and (7.53). These are already known in a representation π′ that is

53



0

3

a0

a1 b1
c1

c2 a2

'

ωc3

2

1

b2

c3

a3

0

3

a0

a1 b1
c1

c2

a2

2

1

b2

c3'

a3'

' '

0

3

a0

c1

2

1

c3'

a3'

b2'' a2''

ωc2

0 a0

c1

2

1

ωa2''

3

a2
(3)

b2''

a1' b1'

a3''

c2'

c2''

c3''

ωc1

0

1

2

'

3

a2
(3)

c3''
a3''

b2'' a1' b1''

b1
(3)

a1''
ωa1''

0

1

2

2

3 a0'
a0''

c1'

c1''

a2
(3)

b1
(3)

a1
(3)

b2
(3)

a3''

c3''

c2''

c2
(3 )

1. 2.

3.

4.

2.

5.

 f'

f 0

4 4 4

4 4 4

Figure 16: Transforming f ′ into f0 by a sequence of flips

associated with the fat graph f ′ drawn in the upper left corner of Figure 16, namely the one
where36

x′2 :=
1

4πb
(b1 − a1), p′2 :=

1

4πb
(b1 + a1),

x′3 :=
1

4πb
(b2 − a2), p′3 :=

1

4πb
(b2 + a2),

(8.21)

are represented on L2(R) as in (4.4) (where pj is diagonal). The representation π̂ is associated
with the fat graph f0 drawn in the lower left corner of Figure 16 and corresponds to the pairs
of conjugate operators

x2 :=
1

4πb

(
b

(3)
1 − b

(3)
2 − c

(3)
2

)
, x3 :=

1

4πb

(
b

(3)
1 + b

(3)
2 − c

(3)
2

)
,

p2 :=
1

2πb
c′′1 +

1

2
x3, p3 :=

1

2πb
a

(3)
1 −

1

2
x2,

(8.22)

where x2,x3 act diagonally while π̂(pj) = (2πi)−1 ∂
∂xj

. The operators x′j ,p
′
j can be successively

transformed into operators x
(k)
j ,p

(k)
j (k = 2, . . . , 6) associated with the intermediate fat graphs

depicted in Figure 16 by conjugation with the following operators (where Uj generates the
j-th flip and Sj a symplectic transformation; we omit the shift operators):

1. a) S1 := e−πi(p
′
3)2

x′3 → x′3 − p′3 = − a2

2πb

b) U1 := eb
(
− c3

2πb

)
= eb(p

′
3 − r3 + r4)

36We start counting from 2 in order to be in harmony with previous naming conventions.
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x′′2 = x′2, p′′2 = p′2, x′′3 = − a′2
2πb

, p′′3 =
c′3

2πb
= p′3 − r3 + r4

2. a) S2 := e−πi(p
′′
2 )2

x′′2 → x′′2 − p′′2 = − a1

2πb

b) U2 := eb
(
− c2

2πb

)
= eb(p

′
2 + p′3 − r2)

x
(3)
2 = − a′1

2πb
, p

(3)
2 = − c1

2πb
= p′2 − r0, x

(3)
3 = − a′′2

2πb
, p

(3)
3 = p′′3

3. U3 := eb
(
− a′′2

2πb

)
= eb(x

(3)
3 )

x
(4)
2 = x

(3)
2 , p

(4)
2 = p

(3)
2 , x

(4)
3 =

a
(3)
2

2πb
= x

(3)
3 , p

(4)
3 =

c′′3
2πb

4. U4 := eb
(
− c1

2πb

)
= eb(p

′
2 − r0)

x
(5)
2 = − a′′1

2πb
, p

(5)
2 =

c′1
2πb

= p
(4)
2 , x

(5)
3 = x

(4)
3 , p

(5)
3 = p

(4)
3

5. U5 := eb
(
− a′′1

2πb

)
= eb(x

(5)
2 )

x
(6)
2 =

a
(3)
1

2πb
= x

(5)
2 , p

(6)
2 =

c′′1
2πb

, x
(6)
3 = x

(5)
3 =

a
(3)
2

2πb
, p

(6)
3 = p

(5)
3 =

c′′3
2πb

Altogether we have

(x
(6)
2 ,p

(6)
2 ,x

(6)
3 ,p

(6)
3 ) = U(x′2,p

′
2 − r0,x

′
3,p
′
3 − r3 + r4)U−1, (8.23)

where U := U5U4U3U2S2U1S1. Therefore, if

Ψ′r1,r2(p′2, p
′
3) =

∏
j=1,2

c(rj)
(
wb(p

′
j+1 + rj + cb) wb(p

′
j+1 − rj + cb)

)−1 (8.24)

denotes the eigenfunction of π′(L1) and π′(L2) (with eigenvalues 2 cosh(2πbrj), cf. (4.11)),
then

Ψ(6)
r1,r2(p

(6)
2 , p

(6)
3 ) := π′(U−1)Ψ′r1,r2(p′2, p

′
3)|

p′2=p
(6)
2 +r0, p′3=p

(6)
3 +r3−r4

(8.25)

is eigenfunction of π(6)(Lj) (j = 1, 2), where π(6) is the standard representation (4.4) associ-
ated with (x

(6)
j ,p

(6)
j )j=2,3.

Finally, we need to figure out the symplectic transformation that transforms (x
(6)
j ,p

(6)
j )

into (xj ,pj). To this end, we write down the constraints

l1 = a′′0 + c
(3)
2 + b

(3)
1 + a

(3)
2 ,

l2 = c′′1 + b
(3)
1 + b

(3)
2 + c′′3,

l3 = a
(3)
1 + b

(3)
2 + c

(3)
2 + a′′3,

l0 = a′′0 + c′′1 + a
(3)
1 ,

l4 = a
(3)
2 + c′′3 + a′′3.

(8.26)

Since
b

(3)
1 + b

(3)
2 + c

(3)
2 =

1

2
(l1 + l2 + l3 − l0 − l4), (8.27)
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one may define rk := lk/4πb, r := r1 + r2 + r3 − r0 − r4 and rewrite x2,x3 as

x2 =
1

2πb
b

(3)
1 −

1

2
r, x3 = − 1

2πb
c

(3)
2 +

1

2
r. (8.28)

Then one easily finds

b
(3)
1 = a

(3)
1 − a

(3)
2 − c′′3 + 2πb(r1 + r2 − r3 − r0 + r4),

c
(3)
2 = c′′1 + c′′3 + 2πb(r1 − r2 + r3 − r0 − r4),

(8.29)

so that
x2 = x

(6)
2 − x

(6)
3 − p

(6)
3 + c2, p2 = 1

2(p
(6)
2 − p

(6)
3 ) + 1

2c3,

x3 = −p
(6)
2 − p

(6)
3 + c3, p3 = 1

2(x
(6)
2 + x

(6)
3 + p

(6)
3 )− 1

2c2,
(8.30)

where

c2 = 1
2(−r0 + r1 + r2 − 3r3 + 3r4), c3 = 1

2(r0 − r1 + 3r2 − r3 + r4). (8.31)

We would like to realize this transformation (which is a symplectic transformation plus a
shift) by means of an integral transformation

S : L2(R2)→ L2(R2), (Sψ)(p2, p3) =

∫
dp

(6)
2 dp

(6)
3 S(p2, p3; p

(6)
2 , p

(6)
3 )ψ(p

(6)
2 , p

(6)
3 ). (8.32)

More precisely, we want to find S(p2, p3; p
(6)
2 , p

(6)
3 ) such that S is an intertwiner between the

representations π(6) and π, where π is the standard representation (4.4) of (xj ,pj)j=2,3. The
intertwining property π(q)S = Sπ(6)(q) for q ∈ {xj ,pj}j=2,3 then yields the following system
of algebraic and differential equations

0 =
(

1
2(p̃2 − p̃3) + 1

2c3 − p2

)
S(p2, p3; p̃2, p̃3),

0 =

(
− i

4π

(
∂

∂p̃2
+

∂

∂p̃3

)
+

1

2
p̃3 − p3 −

1

2
c2

)
S(p2, p3; p̃2, p̃3),

0 =

(
− i

2π

(
∂

∂p̃2
− ∂

∂p̃3
+

∂

∂p2

)
− p̃3 + c2

)
S(p2, p3; p̃2, p̃3),

0 =

(
−p̃2 − p̃3 + c3 −

i

2π

∂

∂p3

)
S(p2, p3; p̃2, p̃3).

(8.33)

Introducing p̃± := 1
2(p̃2 ± p̃3), one finds the solution

S(p2, p3; p̃2, p̃3) := δ(p̃2 − p̃3 − 2p2 + c3) e2πi(− 1
2

(p̃2
++p̃2

−)+p̃+p̃−+(2p̃+−c3)p3+c2(p̃+−p̃−))

= δ(p̃2 − p̃3 − 2p2 + c3) e2πi(2(p̃3+p2−c3)p3+c2p̃3− 1
2
p̃2

3)
(8.34)

Let us now compute Ψ
(6)
r1,r2(p

(6)
2 , p

(6)
3 ) as defined in (8.25). Using

U5 = (U4U3U2S2U1S1)eb(x
′
2)(U4U3U2S2U1S1)−1,

U3 = (U2S2U1S1)eb(x
′
3)(U2S2U1S1)−1,

(8.35)

one finds

U−1 =
(
eb(x

′
2)eb(x

′
3)
)−1 eπi((p

′
2)2+(p′3)2)

eb(p
′
2 − r0)eb(p

′
2 + p′3 − r2)eb(p

′
3 − r3 + r4)

. (8.36)

56



Generally speaking, a function f(x′) of x′ ≡ (x′2,x
′
3) is defined by f(x′)ψx′ = f(x′)ψx′ for

eigenstates ψx′ of x′ with eigenvalues x′ = (x2, x3) and the expansion of each wave function in
terms of ψx′ . In the representation π′, one has ψx′(p′) = e−2πix′·p′ , so this expansion is given
by the Fourier transformation

ψ(p′2, p
′
3) =

∫
dx′2 dx

′
3 e
−2πix′·p′ψ̂(x′2, x

′
3). (8.37)

Then one finds

π′(f(x′2,x
′
3))ψ(p′2, p

′
3) =

∫
dp2 dp3 f̂(p2 − p′2, p3 − p′3)ψ(p2, p3), (8.38)

where
f̂(p) :=

∫
dx e2πip·xf(x). (8.39)

In our case we have

Ψ(6)
r1,r2(p

(6)
2 , p

(6)
3 ) =

∫
dp′2 dp

′
3 fb(p

′
2 − p

(6)
2 − r0)fb(p

′
3 − p

(6)
3 − r3 + r4)

× eπi((p
′
2)2+(p′3)2)

eb(p
′
2 − r0)eb(p

′
2 + p′3 − r2)eb(p

′
3 − r3 + r4)

Ψ′r1,r2(p′2, p
′
3),

(8.40)

where
fb(x) :=

∫
dy e2πixy 1

eb(y)
= e

πi
2

((x−cb)2−c2b)(wb(x+ cb))
−1. (8.41)

The last equation follows from∫
dy e2πixy eb(y − 2α)

eb(y)
= e−2πiαxwb(2α+ cb)

wb(x− 2α− cb)
wb(x+ cb)

, (8.42)

which is another form of (A.4), in the limit α → ∞. Applying the transformation (8.32) to
Ψ

(6)
r , r ≡ (r1, r2), yields

Ψr(p2, p3) =

∫
dp

(6)
3 e2πi(2(p

(6)
3 +p2−c3)p3+c2p

(6)
3 −

1
2

(p
(6)
3 )2)Ψ(6)

r (p
(6)
3 + 2p2 − c3, p

(6)
3 )

= c(r1)c(r2)

∫
dp e2πi(2(p+p2−c3)p3+c2p− 1

2
p2)

×
∫
dp′2 dp

′
3 fb(p

′
2 − p− 2p2 + c3 − r0)fb(p

′
3 − p− r3 + r4) eπi((p

′
2)2+(p′3)2)

× (eb(p
′
2 − r0)eb(p

′
2 + p′3 − r2)eb(p

′
3 − r3 + r4))−1

wb(p
′
2 + r1 + cb)wb(p

′
2 − r1 + cb)wb(p

′
3 + r2 + cb)wb(p

′
3 − r2 + cb)

.

(8.43)
This is the eigenfunction of π(Lj) (j = 1, 2). The transition to the representation π̂ is done
by a Fourier transformation

Ψ̂r(x2, x3) =

∫
dp2

∫
dp3 e

2πi(x2p2+x3p3) Ψr(p2, p3). (8.44)

By trading the integration variable p for x := −2(p − p2 − c3), Ψr(p2, p3) may be written in
the form

Ψr(p2, p3) =

∫
dx e−2πixp3 Ψ̃r(p2, x), (8.45)
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so that
Ψ̂r(x2, x3) =

∫
dp2 e

2πix2p2 Ψ̃r(p2, x3). (8.46)

Using (8.41) and eb(x) ∼ e
πi
2
x2

(wb(x))−1 one finds

Ψ̂r(x2, x3) ∼
∫
dp2 e

2πi(x2p2− 1
2

(− 1
2
x3−p2+c3−c2)2)

×
∫
dp′2 dp

′
3 e

πi
2 ((p′2+ 1

2
x3−p2−r0−cb)2+(p′3+ 1

2
x3+p2−c3−r3+r4−cb)2)

×
wb(−p′2 − 1

2x3 + p2 + r0 − cb)
wb(p

′
3 + 1

2x3 + p2 − c3 − r3 + r4 + cb)
eπi((r0+r2)p′2+(r2+r3−r4)p′3−p′2p′3)

× wb(p
′
2 − r0) wb(p

′
2 + p′3 − r2) wb(p

′
3 − r3 + r4)

wb(p
′
2 + r1 + cb) wb(p

′
2 − r1 + cb) wb(p

′
3 + r2 + cb) wb(p

′
3 − r2 + cb)

.

(8.47)

Collecting the p2-dependent factors, one finds that the integration over p2 may be performed
with the help of (A.4),∫

dp2 e
πi(2x2−x3−p′2+p′3+c3−2c2+r0−r3+r4)p2

wb(p2 − p′2 − 1
2x3 + r0 − cb)

wb(p2 + p′3 + 1
2x3 − c3 − r3 + r4 + cb)

= eπi(−x2+ 1
2

(x3+p′2−p′3)+ 1
4

(5r0−3r1+r2+3r3−3r4))(p′3−p′2+ 1
2

(r0+r1−3r2−r3+r4))

× wb
(
−p′2 − p′3 − x3 + 1

2(3r0 − r1 + 3r2 + r3 − r4)− cb
)

×
wb(x2 + p′3 + 1

2(r0 − r1 − r2 + r3 − r4))

wb(x2 − x3 − p′2 + 2r0 − r1 + r2 + r3 − r4)
.

(8.48)

So we arrive at (dropping again all constant factors)

Ψ̂r(x2, x3) ∼ eπi(−r0−r1+3r2+r3−r4)x2+πi( 1
2

(r0−r1+r2+r3−r4)−cb)x3

×
∫
dp′2 dp

′
3 e

πi(x2−r0+r1−r3+r4−cb)p′2+πi(x3−x2+ 1
2

(r0−r1+r2+3r3−3r4)−cb)p′3

× wb(p
′
2 − r0) wb(p

′
2 − x2 + x3 − 2r0 + r1 − r2 − r3 + r4)

wb(p
′
2 + r1 + cb) wb(p

′
2 − r1 + cb)

×
wb(p

′
2 + p′3 − r2) wb(p

′
3 − r3 + r4) wb(p

′
3 + x2 + 1

2(r0 − r1 − r2 + r3 − r4))

wb(p
′
2 + p′3 + x3 + 1

2(−3r0+r1−3r2−r3+r4)+cb)wb(p
′
3+r2+cb)wb(p

′
3−r2+cb)

.

(8.49)

The author felt unable to match this with (8.20).

9 Systematic reduction

In this section we will investigate the systematic reduction of Liouville theory to Teichmüller
theory as outlined in the introduction. To this end, we need to define rigged Riemann surfaces
and the sewing of these. This will allow us to describe the reduction on the classical level.

In order to describe the reduction of the quantized theory, we will first introduce the
mathematical notion of a conformal block. Then we will show how a conformal block nat-
urally defines a holomorphic function on a certain subset of (enlarged) Teichmüller space.
Thus we will obtain an identification of conformal blocks with states in a coherent state rep-
resentation of quantum Teichmüller theory. This will allow us to identify certain operators
of quantum Liouville theory, that act on the space of conformal blocks, with operators on
quantum Teichmüller space. In this way, we will pick up some ideas which have been formu-
lated in [40, ch. 12], see also [39]. Original material is also given by the quotient construction
developed in Sections 9.3 and 9.4, and by Preposition 3.
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C1 C2

B1 B2 C1B1#B2C2

Figure 17: Sewing of two rigged Riemann surfaces

9.1 Rigged Riemann surfaces

A bordered Riemann surface C is by definition a connected Hausdorff space [1] equipped with
a collection {ϕi}i∈I (called an atlas) of homeomorphisms ϕi (called charts or coordinates)
from open sets Ui ⊂ C into relatively open subsets of the closed upper half plane H̄ := {z ∈
C | =(z) ≥ 0}, where

⋃
i∈I Ui = C, such that ϕi ◦ ϕ−1

j is a biholomorphic map for every
i, j ∈ I with Ui ∩ Uj 6= ∅. More precisely, as in the case of ordinary Riemann surfaces, two
atlases are called equivalent if their union is again an atlas, and one considers an equivalence
class of atlases on C, called a complex structure. The boundary ∂C is defined as ∂C :=⋃
i∈I ϕ

−1
i (R ∩ ϕi(Ui)) (we always assume ∂C 6= ∅) and does not depend on the choice of an

atlas. We call C a bordered Riemann surface with n holes, or shortly an n-holed Riemann
surface, if ∂C has n connected components ∂kC (k = 1, . . . , n) which are all homeomorphic
to S1.

We will now consider n-holed Riemann surfaces that are equipped with an additional
structure called a rigging. This is a set of smooth boundary parametrizations φk : S1 →
∂kC (k = 1, . . . , n). The boundary component ∂kC is called incoming or outgoing if φk is
orientation reversing or orientation preserving respectively37 (intuitively, if φk goes around the
hole in the counter-clockwise or clockwise direction respectively). A holed Riemann surface
with a rigging is called a rigged Riemann surface.

Let C1 and C2 be rigged Riemann surfaces with n1 and n2 holes respectively, an incoming
boundary component B1 ⊂ ∂C1 and an outgoing boundary component B2 ⊂ ∂C2. Let φj :
S1 → Bj (j = 1, 2) be the boundary parametrizations. Then we denote by

C1B1#B2C2 := (C1 t C2)/ ∼ (9.1)

the disjoint union of C1 and C2, modulo the identification of points B1 3 p1 ∼ p2 ∈ B2 if
and only if φ−1

1 (p1) = φ−1
2 (p2) (we will omit the indices B1, B2 if there is no ambiguity).

On C1B1#B2C2, there exists a unique complex structure that is compatible with the complex
structures on C1 and C2 [1, 30]. Equipped with this complex structure, C1B1#B2C2 is again
a rigged Riemann surface with n1 + n2 − 2 holes. We say it is the Riemann surface obtained
by sewing C1 and C2 along B1 and B2 as depicted in Fig. 17. This procedure is also possible
if C1 = C2, i.e., one may sew an incoming and an outgoing boundary component of the same
surface.

Given a rigged Riemann surface C with n holes, one may sew to it n copies of D̄0 := D̄\{0},
equipped with the rigging Id : S1 → S1, along each of its boundary components, after making
them incoming by precomposing φj with J : S1 → S1, z 7→ z−1 if necessary. In this way, one
obtains an n-punctured Riemann surface which comes with a local coordinate at each puncture
(i.e., a chart that vanishes at the puncture), namely the standard coordinate z = Id of D̄0.
Conversely, given an n-punctured Riemann surface Σ with local coordinate zk (k = 1, . . . ,m)
at each puncture, such thatD0 is contained in the image of each zk, and z−1

k (D0)∩z−1
l (D0) = ∅

37with respect to the orientation that is induced by the complex structure
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for all k 6= l (in the following, we will always assume that local coordinates satisfy these
conditions), we may define the rigged Riemann surface C := Σ\

⋃
k z
−1
k (D0), with rigging

given by the z−1
k |S1 . Thus the concepts of rigged Riemann surface and punctured Riemann

surface with local coordinates are widely exchangeable.
Two rigged Riemann surfaces C1 and C2 are called equivalent, C1 ' C2 if there exists a

biholomorphic map Φ : C1 → C2 that respect the riggings, i.e., if φ(i)
k (k = 1, . . . , n) are the

boundary parametrizations of Ci, then38 φ
(2)
k = Φ|∂kC1 ◦φ

(1)
k (k = 1, . . . , n). The moduli space

Mrigged
g,n is the set of equivalence classes of rigged Riemann surfaces of genus g with n holes.

9.2 The moduli spaces of (punctured) discs and annuli

LetM(D) andM(D0) denote the moduli spaces of rigged discs and rigged punctured discs
respectively, with outgoing boundaries. Let us define D∗ := C̄\D̄ and

Hol(D∗) :=

{
g : D∗ → C̄ univalent

∣∣∣∣ g(∞) =∞, g′(∞) = 1, g′′(∞) = 0,
g has a smooth extension to ∂D∗ = S1

}
. (9.2)

(Here g(i)(∞) := g̃(i)(0) with g̃(z) := g(z−1).) With an element g ∈ Hol(D∗) we associate the
disk ∆g := C̄\g(D∗) with the rigging φ := g|S1 . This provides a map

Ψ : Hol(D∗)→M(D), g 7→ [∆g], (9.3)

The following consideration shows that Ψ is a bijection. Let [∆] ∈ M(D). The outer disk
D∗ := C̄\D is a rigged Riemann surface endowed with the standard rigging IdS1 which makes
the boundary incoming. The surface D∗#∆ obtained by sewing D∗ to ∆ is a simply connected
compact Riemann surface (called a sphere). By the uniformization theorem (stated in Sec-
tion 3.2) it is isomorphic to the Riemann sphere C̄. Let Φ : D∗#∆→ C̄ be an isomorphism.
If Φ̃ is another one, then f := Φ◦ Φ̃−1 is an element of Aut(C̄), which is the group of complex
Möbius transformations Möb(C) (cf. Appendix D). A simple calculation shows that there ex-
ists exactly one isomorphism Φ : D∗#∆→ C̄ such that g := Φ|D∗ is an element of Hol(D∗),
i.e., such that g satisfies the three normalization conditions (this may be achieved by adjusting
the three complex parameters that characterize f). Then ∆ ' Φ(∆) = C̄\Φ(D∗) = ∆g, i.e.,
Ψ(g) = [∆].

In order to describeM(D0), we basically only have to drop one normalization condition.
So we define

Hol0(D∗) :=

{
g : D∗ → C̄ univalent

∣∣∣∣ g(∞) =∞, g′(∞) = 1, 0 /∈ g(D∗),
g has a smooth extension to S1

}
. (9.4)

To each g ∈ Hol0(D∗), we associate the punctured disc ∆x
g := C̄\(g(D∗)∪{0}). Using exactly

the same techniques as before,39 one may then show that the map

Ψ0 : Hol0(D∗)→M(D0), g 7→ [∆x
g ], (9.5)

is a bijection.
There exists yet another way to describeM(D) andM(D0). This is due to the

Riemann mapping theorem. Let U be a simply connected open non-empty subset of C
which is not all of C. Then there exists a biholomorphic map f : U → D.

38We implicitly assume the existence of a numbering of boundary components which is preserved by Φ.
39Given a punctured disc ∆x, then D∗#∆x ' C. The automorphisms of C are the maps z 7→ az + b with

a ∈ C∗, b ∈ C.
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This enables one to establish the following isomorphisms

M(D) ' Diff+(S1)/PSU(1, 1), M(D0) ' Diff+(S1)/S1, (9.6)

where the quotients are understood as quotients under the left action of the respective sub-
groups. The proof goes as follows. Let [∆] ∈M(D). We already know that [∆] is represented
by exactly one ∆g ' ∆ with g ∈ Hol(D∗). By the Riemann mapping theorem there exists
a biholomorphic map f : ∆g\∂∆g → D. If we take a different f̃ , then f ◦ f̃−1 is an au-
tomorphism of D. Therefore α := f ◦ g|S1 is an element of Diff+(S1) which is fixed by [∆]
up to post-composition with an element of Aut(D), which is conventionally identified with
PSU(1, 1) (cf. App. D). In other words, the mapM(D)→ Diff+(S1)/PSU(1, 1), [∆] 7→ [α] is
well defined. On the other hand, given [α] ∈ Diff+(S1)/PSU(1, 1), then the disk Dα which is
D̄ but equipped with the boundary parametrization α defines an element ofM(D0) which is
mapped to [α]. Intuitively, every rigged disc (with outgoing boundary) is isomorphic to the
unit disc with some boundary parametrization (i.e., an element of Diff+(S1)), which is fixed
up to the action of PSU(1, 1).

ForM(D0) one can argue analogously, but the requirement that the puncture is mapped
to 0 fixes two of the three real parameters of PSU(1, 1) and one is left with Aut(D0) ' S1.

To prove (9.6), we could have used the uniformization theorem directly (we have used it
indirectly in the form of the identificationM(D) ' Hol(D∗)). However, in this way we have
encountered the so-called conformal welding, which is the map

W : Hol(D∗)→ Diff+(S1)/PSU(1, 1), g 7→ [α], (9.7)

where α := f ◦ g|S1 and f : ∆g\∂∆g → D is the Riemann mapping.
Let us investigate how Hol(D∗) can be obtained by integrating the flow of vector fields in

Vect3(D∗) := {χ ∈ Vect(D∗) | χ̃(0) = 0, χ̃′(0) = 0, χ̃′′(0) = 0}, (9.8)

where χ̃(z̃) := −χ(z̃−1)z̃2. Obviously Vect3(D∗) is the tangent space at the identity to
Hol(D∗).

For χ ∈ VectC(S1) that possess an integrated flow ft : S1 → C (0 ≤ t ≤ 1), denote by
Dχ ⊂ C the disk that is bounded by f1(S1). LetM(D)′ ⊂ M(D) be the set of (equivalence
classes of) discs of the form Dχ with χ ∈ Vect3(D∗). We conjecture thatM(D)′ =M(D). A
proof could go as follows. It has been shown [23] that the derivative of the conformal welding
W at the identity is given by

dWId : Vect3(D∗)→ Vect(S1)/psu1,1,

χ =
∑
n≤−2

χnz
n+1∂z 7→ i

(∑
n≥2

χ̄ne
inσ −

∑
n≤−2

χne
inσ
)
∂σ,

(9.9)

where

psu1,1 =

{
ξ ∈ Vect(S1) | ξ =

1∑
n=−1

ξne
inσ∂σ

}
(9.10)

is the Lie algebra of PSU(1, 1). Let g ∈ Hol(D∗). Then there exists ξ ∈ Vect(S1) such that
W (g) = [fξ], where fξ ∈ Diff+(S1) denotes the integrated flow of ξ. This ξ is fixed up to
elements of psu1,1, so the element [ξ] ∈ Vect(S1)/psu1,1 is well-defined. Then we conjecture
that g is the integrated flow of χ := dW−1

Id ([ξ]), so that ∆g = Dχ.
Similarly, let us define

Vect2(D∗) := {χ ∈ Vect(D∗) | χ̃(0) = 0, χ̃′(0) = 0}. (9.11)

61



This is obviously the tangent space to Hol0(D∗) at the identity. So if χ ∈ Vect2(D∗) possesses
an integrated flow f , then f ∈ Hol0(D∗) and we may define the punctured disc Dx

χ := ∆x
f =

C̄\(f(D∗) ∪ {0}). Let M(D0)′ denote the set of all punctured discs of the form Dx
χ with

χ ∈ Vect2(D∗). We conjecture thatM(D0)′ =M(D0).
Interestingly, the spaces Diff+(S1)/PSU(1, 1) and Diff+(S1)/S1 are both coadjoint orbits of

the Virasoro-Bott group (as introduced in Section 2.3). Furthermore, Diff+(S1)/S1 appears in
the phase space of Liouville theory (2.51). In quantum Liouville theory, both spaces appear in a
quantized version; the Virasoro representations Fp (p ∈ R) are quantizations of Diff+(S1)/S1,
and the vacuum representation W0 is the quantization of Diff+(S1)/PSU(1, 1).

The moduli space of rigged annuli A :=Mrigged
0,2 , were one boundary component is incom-

ing and one is outgoing, is a semigroup that was introduced independently by Segal [32] and
Neretin [24] (see also [31]). The semigroup structure is defined by sewing of annuli; namely, if
A1, A2 ∈ A, then A1 ·A2 := A1#A2, the annulus obtained by sewing the outgoing boundary
component of A2 to the incoming boundary component of A1. A can be characterized [31] in
a similar way asM(D) andM(D0) . Define

Hol(D) := {f : D → C̄ univalent | f(0) = 0, f |S1 is smooth}. (9.12)

Let f ∈ Hol(D) and g ∈ Hol0(D∗) such that

f(D) ∩ g(D∗) = ∅. (9.13)

Then one may associate with the pair (f, g) the annulus A(f,g) := C̄\(f(D) ∪ g(D∗)) with
rigging induced by f and g. If Λ denotes the set of pairs (f, g) ∈ Hol(D)×Hol0(D∗) satisfying
the additional condition (9.13), then the map

Λ→ A, (f, g) 7→ [A(f,g)] (9.14)

is a bijection. This can be shown by sewing D̄0 to each annulus A along the incoming boundary
component. In this way, one obtains a punctured disc A#D̄0. Then there exists a unique
g ∈ Hol0(D∗) such that A#D̄0 ' ∆x

g . The isomorphism Φ : A#D̄0 → ∆x
g is also unique and

so is f := Φ|D0 ∈ Hol(D). Obviously we have A ' A(f,g).
The ability to represent each (punctured) disc and each annulus by a subset of the complex

plane allows to explicitly describe the tangent spaces toM(D), M(D0) and A. Namely, given
an element [∆] of M(D), then a complex vector field χ on ∂∆ describes an infinitesimal
deformation of ∆ which is trivial inM(D) if χ can be analytically continued to ∆. Thus we
have

T[∆]M(D) ' VectC(∂∆)/Vect(∆). (9.15)

Similarly, the tangent space to A at A ⊂ C can be identified with the quotient [32] of
VectC(∂A) by the subspace of vector fields that can be analytically continued into A,

T[A] ' VectC(∂A)/Vect(A). (9.16)

Note that a vector field on ∂A can be also described as a pair of vector fields on the incoming
and outgoing boundary component of A respectively.

9.3 Quotient constructions

The sewing of rigged Riemann surfaces described above provides a natural way to define
quotients of moduli (or Teichmüller) spaces of rigged Riemann surfaces. Although a more
general setup exists, we will restrict our attention to quotients of the moduli spaces M(D),
M(D0) and A.
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C A D

Figure 18: Sewing a punctured Riemann surface from three components

On A, one may introduce right and left equivalence relations in the following way. Let
CR and CL be (punctured) rigged Riemann surfaces with only one outgoing respectively one
incoming boundary component. Let A1, A2 ∈ A. Then we define

A1 ∼CR A2 :⇔ A1#CR ' A2#CR, A1 CL∼ A2 :⇔ CL#A1 ' CL#A2. (9.17)

and
A1 CL∼CRA2 :⇔ CL#A1#CR ' CL#A2#CR. (9.18)

These are obviously equivalence relations. In the following, we will focus on the simplest cases
UR = D̄ and UR = D̄0. Let us then consider the quotients A/∼D̄ and A/∼D̄0

, i.e., the sets
of equivalence classes of ∼D̄ and ∼D̄0

. Let M(D) and M(D0) denote the moduli spaces of
rigged discs and punctured discs respectively, where the boundary is outgoing. Then there is
a natural map

Θ : A/∼D̄ →M(D), [A]∼D̄ 7→ [A#D̄], (9.19)

and analogously Θ0 : A/∼D̄0
→ M(D0). It follows immediately from the definition of ∼D̄

that Θ is well defined and injective. It is also surjective by the following argument: Let
[∆] ∈ M(D). Since the internal ∆◦ := ∆\∂∆ of ∆ is open, there exists a univalent (i.e.,
holomorphic and injective) map40 ϕ : D → ∆◦ such that ϕ(D) 6= ∆◦. Then define the rigged
annulus A := ∆\ϕ(D) with rigging inherited from ∆ and D (ϕ admits a smooth extension
to ∂D = S1). Since D̄ ' ϕ(D̄) we have A#D̄ ' ∆, so Θ([A]∼D̄) = [∆]. One can argue
analogously for Θ0 to obtain the isomorphisms (as sets)

A/∼D̄ 'M(D), A/∼D̄0
'M(D0). (9.20)

This is quite intuitive, as the sewing of a (punctured) disc to an annulus yields again a
(punctured) disc. Now, let C (C−1) be a rigged Riemann surface of genus g with n (n − 1)
punctures and one boundary component which is incoming. Then we may define the double
quotients (pictorially represented in Fig. 18)

C∼\A/∼D̄, C−1∼\A/∼D̄0
(9.21)

in different ways which are all equivalent (i.e., the resulting sets are canonically isomorphic).
For example, one may use the left-right equivalence C∼D̄ and define C∼\A/∼D̄ := A/C∼D̄.
Or one may define the left equivalence C∼ on A/∼D̄ by

∀A1, A2 ∈ A : [A1]∼D̄ C∼ [A2]∼D̄ :⇔ C#A1#D̄ ' C#A2#D̄. (9.22)

In the latter case the double quotients are naturally identified with the left quotients

C∼\M(D), C−1∼\M(D0), (9.23)
40More precisely, one may pick out an arbitrary chart ψ : U → H of ∆, then find a map ρ : D → ψ(U)\R,

of the form z 7→ az + b with a ∈ C∗, b ∈ C and define ϕ := ψ−1 ◦ ρ.
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where the definition of C∼ respectively C−1∼ onM(D) andM(D0) should be obvious. By the
conformal welding isomorphisms (9.6), these may be understood as quotients of the coadjoint
orbits Diff+(S1)/PSU(1, 1) and Diff+(S1)/S1 respectively. (Intuitively, these quotients are de-
fined by sewing the unit disc with rigging given by an element of Diff+(S1) to C resp. C−1.)
In particular, the quotient C−1∼\Diff+(S1)/S1 defines the reduction of the (chiral) Liouville
phase space toMg,n. Namely, the maps

Ξ : C∼\M(D)→Mg,n, C∼[∆] 7→ [C#∆] (9.24)

and Ξ0 : C−1∼\M(D0)→Mg,n are well-defined and injective, and thus provide an identifica-
tion of the left quotients (9.23) with subsets41 ofMg,n. When C is equipped with a marking,
this induces a marking on the sewed surfaces and one obtains an identification with subsets
of Tg,n.

9.4 Infinitesimal quotient construction

Let us now investigate how the quotient construction looks like at the infinitesimal level. In
the previous section we have explicitly described the tangent spaces toM(D) and A. Now we
would like to know which tangent vectors represent deformations within an equivalence class
of C∼ and C∼D̄, i.e., trivial deformations in the quotients C∼\M(D) and C∼\A/∼D̄. Let us
first consider C∼\M(D).

We will use the following notation. For a (bordered) Riemann surface Σ with punctures,
let Vect0(Σ) denote the space of holomorphic vector fields on Σ that vanish at the punctures.
IfM and N are manifolds (e.g. Riemann surfaces), f : M→ N is a smooth injective map,
ξ a vector field on N , denote by f∗(ξ) the pullback of ξ by f , which is a vector field on M
(more general, on the domain of f). Let φC be the boundary parametrization of C.

Preposition 1. Let ∆ ⊂ C be a disc with boundary parametrization φ : S1 → ∂∆. Let ε > 0,
{∆t}t∈[−ε,ε] a family of discs ∆t ⊂ C with boundary parametrizations φt that are smooth in t,
such that ∆0 = ∆ and C#∆t ' C#∆ for all t ∈ [−ε, ε]. This defines a smooth curve t 7→ [∆t]
in M(D) that runs within an equivalence class of C∼. Let η := ∂

∂tφt|t=0 ◦ φ−1 ∈ VectC(∂∆)
represent the tangent vector to that curve. Then there exist η∆ ∈ Vect(∆), ηC ∈ Vect0(C)
such that φ∗(η) = φ∗C(ηC)− φ∗(η∆).

Sketch of proof. Since C#∆t ' C#∆ for all t ∈ [−ε, ε], and φt is smooth in t, we may assume
that there exists a smooth family of conformal equivalences Φt : C#∆t → C#∆ with Φ0 = Id.
Smooth means in particular that there exist the derivatives42

η∆(z) :=
∂

∂t
Φt(z)

∣∣∣∣
t=0

(z ∈ ∆\∂∆), ηC(z) :=
∂

∂t
Φt(z)

∣∣∣∣
t=0

(z ∈ C\∂C). (9.25)

Note that ηC(z) is not a complex number, but rather an element of the tangent space to C at z.
Then η∆ and ηC are holomorphic vector fields on ∆̊ := ∆\∂∆ and C̊ := C\∂C respectively,
that can be continuously extended to the boundaries. Since Φt leaves the punctures of C

41Ξ and Ξ0 are not surjective as the following argument shows. Suppose Ξ was surjective. Then for all
[Σ] ∈Mg,n there would exist [∆] ∈M(D) such that Σ ' C#∆, in other words, there would exist a univalent
map Φ : C → Σ. For g = 0, C is always isomorphic to some D\{y1, . . . , yn} (where the rigging on ∂C = S1

is generally not the standard one) and Σ ' C̄\{z1, . . . , zn}. So if Ξ was surjective, then there would exist a
univalent function Φ : D → C̄ for arbitrary prescribed values zk = Φ(yk). But this is not true as there are
many inequalities for the values of a univalent function, see e.g. [15, Ch. 4].

42For each z ∈ ∆◦, η∆(z) is well defined since there exists δ > 0 such that ∀t ∈ [−δ, δ] : Φt(z) ∈ ∆◦, which
follows from openness of ∆◦ and continuity of φt and Φt.
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Figure 19: Illustrating the definition of φ̃t

invariant for every t, it follows that ηC vanishes at the punctures of C. The continuous
extension η1

C of ηC to ∂∆ as a vector field on C#∆ is formally given by

∀z ∈ ∂∆ : η1
C(z) = lim

w→φC(φ−1(z))
ηC(w). (9.26)

Let z ∈ S1. As φt(z) and φC(z) are identified on C#∆t and Φt is in particular continuous at
φt(z), we have

∀t ∈ [−ε, ε] : lim
C̊3w→φC(z)

Φt(w) = lim
∆̊t3w→φt(z)

Φt(w). (9.27)

We want to differentiate this equation by t and then set t = 0. (This involves mathematical
subtleties that we ignore here.) For the l.h.s. this yields

∂

∂t
lim

C̊3w→φC(z)
Φt(w)

∣∣∣∣∣
t=0

= lim
C̊3w→φC(z)

∂

∂t
Φt(w)

∣∣∣∣
t=0

= η1
C(φ(z)). (9.28)

To differentiate the r.h.s. of (9.27), let Ωz ⊂ D̄ be a neighborhood of z in D̄ and φ̃t : Ωz → ∆t

for every t ∈ [−ε, ε] be a continuous function such that φ̃t = φt on S1 ∩ Ωz, φt(Ωz\S1) ⊂ ∆̊t

and φ̃t(w) is smooth in t for every w ∈ Ωz (as illustrated in Fig. 19). Then we obtain

∂

∂t
lim

∆t3w→φt(z)
Φt(w) =

∂

∂t
lim
w→z

Φt(φ̃t(w))

= lim
w→z

(
( ∂∂tΦt)(φ̃t(w)) + (∂Φt)(φ̃t(w)) ∂∂t φ̃t(w)

)
,

(9.29)

where (∂Φt)(φ̃t(w)) denotes the derivative of Φt at φ̃t(w) ∈ ∆t (which for t small enough is a
complex number). For t = 0 this becomes

∂

∂t
lim

∆t3w→φt(z)
Φt(w)

∣∣∣∣
t=0

= lim
w→z

(
ηD(φ̃0(w)) + ∂

∂t φ̃t(w)|t=0

)
= η∆(φ(z)) + η(φ(z)).

(9.30)

Putting everything together, we find that η(φ(z)) = η1
C(φ(z))−η∆(φ(z)) for all z ∈ S1, which

implies
η = η1

C − η∆|∂∆ . (9.31)

Since the boundaries of C and ∆ are identified on C#∆ via the map φC ◦ φ−1 : ∂∆ → ∂C,
we may write η1

C = (φC ◦ φ−1)∗(ηC) = (φ−1)∗(φ∗C(ηC)). Therefore, by applying φ∗ to (9.31),
one obtains φ∗(η) = φ∗C(ηC)− φ∗(η∆).

The generalization to the double quotient C∼\A/∼D̄ is straightforward.
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Preposition 2. Let A ⊂ C be an annulus with boundary parametrizations φj : S1 → ∂jA (j =
1, 2), where ∂1A and ∂2A are the incoming and outgoing boundary components respectively.
Let {At}t∈[−ε,ε] be a smooth family of annuli At ⊂ C with riggings (φ1,t, φ2,t) such that A0 = A

and ∀t ∈ [−ε, ε] : C#At#D̄ ' C#A#D̄. Let ηj := ∂
∂tφj,t

∣∣
t=0
◦φ−1

j (j = 1, 2) denote the vector
fields on ∂1A and ∂2A that represent the tangent vector at t = 0 to the curve t 7→ [At] in A.
Then there exist ηC ∈ Vect0(C), ηA ∈ Vect(A), ηD ∈ Vect(D) such that

φ∗2(η2) = φ∗C(ηC)− φ∗2(ηA), φ∗1(η1) = φ∗1(ηA)− ηD|S1 . (9.32)

We omit the proof.

9.5 Mathematical definition of conformal blocks

In the mathematical sense, conformal blocks are maps between tensor products of Virasoro
representations that are associated with rigged Riemann surfaces. But before we give the
general definition, let us consider some examples from conformal field theory. The simplest
examples are the vacuum state |Ω〉 ∈ W0 and its hermitian conjugate 〈Ω|. Since Ln|Ω〉 = 0
for all n ≥ −1, we have

∀η ∈ Vect(D) : Tη|Ω〉 = 0, (9.33)

where D is again the unit disk. Similarly, since 〈Ω|Ln = 0 for all n ≤ 1, and a vector field η
transforms under the change of coordinate z → z̃ = z−1 as η(z) → η̃(z̃) = −η(z̃−1)z̃2, one
has

∀η ∈ Vect(D∗) : 〈Ω|Tη = 0. (9.34)

We therefore consider |Ω〉, or rather the map ΦΩ : C → W0, z 7→ z|Ω〉, as a conformal block
associated with the rigged Riemann surface D̄ (the rigging is given by Id : S1 → S1), and 〈Ω|
as a conformal block associated with D∗ = D∗ ∪ S1.

The next example is the map

Φz : Vα → Vα+bs, Φz(v) := hαs (v|z)|Ω〉, z ∈ D. (9.35)

Let Dz := D̄\{z} and η ∈ Vect(Dz) (i.e., η may have a pole at z). Define

Tη(z) :=

∮
C(0)

dw η(w + z)T(w), (9.36)

where C(0) encircles the pole at w = 0. If η(w) =
∑

n∈Z ηn(z)(w − z)n+1 is the Laurant
expansion of η around z, then Tη(z) =

∑
n∈Z ηn(z)Ln. So it follows that

Tη ◦ Φz(v) =

∮
S1

dw

2πi
η(w)T(w)hαs (v|z)|Ω〉

=

∮
C(z)+C(0)

dw

2πi
η(w)R(T(w)hαs (v|z))|Ω〉

= hαs (Tη(z)v|z)|Ω〉 = Φz ◦Tη(z)(v),

(9.37)

where in the second step we deformed the integration contour (where the integral over C(0)
vanishes) and in the third step we used (5.40). If one introduces the local coordinate u(w) =
w − z at the puncture w = z, then one may write Tη(z) as T(u−1)∗(η), where g∗(χ)(z) =
χ(g(z))(g′(z))−1 is the pullback of a vector field χ by a holomorphic function g. In this way,
the definition of Tη(z) depends on the choice of a local coordinate at z. Therefore we consider
Φz as a conformal block associated with the punctured rigged Riemann surface Dz with local
coordinate u.
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The last example will be the maps

FαΣ,s : Vαn ⊗ · · · ⊗ Vα1 → C, vn ⊗ · · · ⊗ v1 7→ 〈hαnsn (vn|zn) . . .hα1
s1 (v1|z1)〉, (9.38)

which are conformal blocks associated to the n-punctured sphere Σ := C̄\{z1, . . . , zn} with
local coordinates uk(z) := z − zk (k = 1, . . . , n). The defining invariance property may here
be written as

∀η ∈ Vect(Σ) :

n∑
k=1

FαΣ,s ◦T
(k)

(u−1
k )∗(η)

= 0, (9.39)

where the upper index (k) denotes the action on the k-th tensor factor in
⊗n

k=1 Vαk . The FαΣ,s
are related to the conformal blocks (in the physical sense) Gαs defined in Section 6 by

Gαs (zn, . . . , z1) = FαΣ,s(eαn ⊗ · · · ⊗ eα1). (9.40)

We are now ready to give a preliminary definition of a conformal block in the mathematical
sense. Let C be a rigged Riemann surface with n incoming boundary components ∂ink C (k =
1, . . . , n) and m outgoing boundary components ∂outj C (j = 1, . . . ,m). Let φk : S1 → ∂ink C

and ψj : S1 → ∂outj C be the boundary parametrizations. Furthermore, we assign to each
boundary component a Verma module, characterized by αk for ∂ink C and βj for ∂outj C. Then
a conformal block associated with C is a linear map

ΦC :
n⊗
k=1

Vαk →
m⊗
j=1

Vβj , (9.41)

where for n = 0 (m = 0) it is understood that one replaces the tensor product on the left
(right) hand side with C, with the property

∀η ∈ Vect(C) :
m∑
k=1

T
(k)
ψ∗k(η) ◦ ΦC =

n∑
k=1

ΦC ◦T
(k)
φ∗k(η). (9.42)

Note that the parameters αk and βj play a minor role in this definition, as all Verma modules
are isomorphic.

Considering the connection between holes and punctures with local coordinate discussed
above, it is straightforward to generalize the definition of conformal blocks to punctured
(rigged) Riemann surfaces with local coordinates. Namely, one would treat each puncture on
C with local coordinate ϕj as an incoming hole and use (ϕ−1

j )∗ instead of φ∗j in (9.42). If one
also allows for “outgoing” punctures, i.e., punctures obtained from gluing D0 to an outgoing
boundary component ∂outj C, one has to take into account that a local coordinate ϕj induces
the reversed boundary parametrization ψj ◦ J on ∂outj C. Therefore one would replace ψ∗j in
(9.42) by (ϕ−1

j ◦ J)∗.
The sewing procedure defined above is nicely incorporated in the definition of conformal

blocks. For example, let Cj (j = 1, 2) be rigged Riemann surfaces with nj incoming and mj

outgoing boundary components, such that n1 = m2. Let Φj be conformal blocks associated
with Cj . Then Φ1 ◦ Φ2 is a conformal block associated with the surface C1#C2, which is
obtained by sewing all incoming boundary components of C1 to all outgoing boundary com-
ponents of C2. This can be easily generalized to arbitrary n1 > 0, m2 > 0 and also to sewing
of a rigged Riemann surface with itself.43 This construction is naturally referred to as sewing
of conformal blocks.

43If one would introduce an indexed basis for Vα and represent conformal blocks by multi-indexed objects,
then the sewing of an incoming with an outgoing boundary component would correspond to contraction of
the corresponding indices.
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Figure 20: The definition of Aχ

The above definition applies to the examples given above, i.e., they are conformal blocks
associated with the given surfaces in this sense. However, the following example shows that it
is too naive (that is to say, it does not fully capture the structure of conformal field theory).
Let χ ∈ VectC(S1) be a vector field that possesses an integrated flow ft (t ∈ [0, 1]) such that
|f1(z)| > 1 for all z ∈ S1. Define

Uχ : Vα → Vα, v 7→ e−Tχv. (9.43)

Then we associate with Uχ the rigged annulus Aχ that is bounded by ∂1Aχ := S1 (incoming)
and ∂2Aχ := f1(S1) (outgoing) with boundary parametrizations IdS1 and f := f1 (Figure 20).
Let η ∈ Vect(Aχ). Note that for z ∈ S1

f∗(η)(z) =
η(f(z))

f ′(z)
(9.44)

and recall from Section 5.2 that

eTχT(z)e−Tχ = (f ′(z))2T(f(z))− c

6
S(f)(z). (9.45)

So we compute

eTχTf∗(η)e
−Tχ =

∮
S1

dz

2πi

η(f(z))

f ′(z)

(
(f ′(z))2T(f(z))− c

6
S(f)(z)

)
=

∮
f(S1)

dw

2πi
η(w)T(w) + C[f, η],

= Tη + C[f, η],

(9.46)

where
C[f, η] = − c

6

∮
S1

dz

2πi

η(f(z))

f ′(z)
S(f)(z) (9.47)

is a complex number. This number, which originates in the central extension of the Virasoro
algebra, prevents Uχ from being a conformal block associated with Aχ in the sense of the above
definition. A way to overcome this obstacle is to introduce projective structures [43, Appendix].
(A projective structure on is an atlas {ai}i∈I of charts such that ai ◦ a−1

j ∈ Möb(C) on all
non-empty overlaps). However, this solution is not suited for our purpose because it restricts
the sewing of conformal blocks to rigged Riemann surfaces whose projective structures are
compatible (i.e., there exists projective structure on the sewed surface that, when restricted,
coincides with the projective structures on the original surfaces). Instead, we will find ways
to avoid the appearance of the central extension by restricting ourselves to certain types of
rigged Riemann surfaces.
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9.6 Reduction on the quantum level

In this section we explicitly describe the reduction of Liouville theory to quantum Teichmüller
theory (for genus zero) that was indicated in the introduction.

As before, let C be a rigged Riemann surface of genus g without punctures with only one
boundary component which is incoming and is parametrized by φC : S1 → ∂C. Let 〈C| be a
conformal block associated with C, which means that

∀η ∈ Vect(C) : 〈C|Tφ∗C(η) = 0. (9.48)

Let A′ ⊂ A denote the subset of annuli which are of the form Aχ which χ ∈ VectC(S1). (There
are reasons to assume that A′ is a dense subset of A). Now consider the function

ΘC : A′ → C, Aχ 7→ 〈C|e−Tχ |Ω〉 (9.49)

What we would like to have is that ΘC was constant on equivalence classes of the left-right
equivalence C∼D̄. Then it would descend to a function on the double quotient C∼ \A′/∼D̄,
which is naturally identified with a subset of the moduli space Mg,0 (as discussed in Sec-
tion 9.3). Provided that the coefficients χn from the Laurant expansion of χ define holomor-
phic coordinates on Mg,0, ΘC could be identified with a holomorphic function on a subset
of Mg,0, which may possess a (possibly multi-valued) analytic continuation to all of Mg,0,
which in turn defines a holomorphic function on Tg,0. In Section 4.4 we have already encoun-
tered a quantization of Tg,n (there for g = 0, but which can be generalized to arbitrary g), in
which the Hilbert space consists of holomorphic functions on Teichmüller space. Therefore,
if the previous assumptions are true, then ΘC could be identified with a state in a coherent
state quantization of Tg,0. Unfortunately, the existence of the central extension of the Virasoro
algebra spoils this construction.

Preposition 3. Let s 7→ As = Aχs , s ∈ [−ε, ε] a smooth curve in A′ through χ := χ0. Let
fs,t : S1 → C, t ∈ [0, 1], the integrated flow of χs and ft := f0,t. The pair of vector fields

η0(z) := 0, η1(z) :=
∂

∂s
fs,1(f−1

1 (z))

∣∣∣∣
s=0

, (9.50)

defined on ∂1Aχ = S1 and ∂2Aχ = f1(S1) respectively, represents the tangent vector to the
curve s 7→ As. Then there exist constants κ1, κ2 such that

∂

∂s
e−Tχs

∣∣∣∣
s=0

=
(
Tf∗1 (η1) + κ1

)
e−Tχ = e−Tχ (Tη1 + κ2) . (9.51)

Note that in case η1 admits an analytic continuation to Aχ, then (−η1|S1 , 0) also represents
the tangent vector to the curve s 7→ As. For the proof we will need

Lemma 4. Let s 7→ O(s) be a differentiable curve in some operator space. Then

∂

∂s
eO(s) =

 1∫
0

dt etO(s) O′(s) e−tO(s)

 eO(s). (9.52)

Proof. The operator valued function

Q1(s, t) :=
∂

∂s
etO(s) (9.53)
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satisfies the differential equation

∂

∂t
Q1(s, t) = Q1(s, t)O(s) + etO(s)O′(s) (9.54)

with boundary condition Q1(s, 0) = 0. On the other hand,

Q2(s, t) :=

 t∫
0

dt′ et
′O(s) O′(s) e−t

′O(s)

 etO(s) (9.55)

satisfies the same differential equation and the same boundary condition. So Q1(s, t) =
Q2(s, t) for every s, t, which for t = 1 is the claim.

Proof of Preposition 3. By Lemma 4 we have

∂

∂s
e−Tχs

∣∣∣∣
s=0

=

 1∫
0

dt e−tTχ
(
T ∂

∂s
χs

)
s=0

etTχ

 e−Tχ . (9.56)

By a computation that is very similar to (9.46) one finds

e−tTχ T∂sχs e
tTχ = Tf∗t (∂sχs) − C[ft, ∂sχs]. (9.57)

Let us define the vector fields

ηt :=
∂

∂s
fs,t ◦ f−1

t

∣∣∣∣
s=0

, t ∈ [0, 1], (9.58)

where ηt lives on ft(S
1). Let us compute (where prime again denotes the holomorphic z-

derivative)
∂

∂t
(f∗t (ηt)) =

∂

∂t

∂sfs,t
f ′t

∣∣∣∣
s=0

=
∂s(χs ◦ fs,t)

f ′t
− (∂sfs,t)(χ ◦ ft)′

(f ′t)
2

∣∣∣∣
s=0

=
∂sχs ◦ fs,t

f ′t

∣∣∣∣
s=0

= f∗t (∂sχs)|s=0.

(9.59)

It follows immediately that
∂

∂t
Tf∗t (ηt) = Tf∗t (∂sχs)

∣∣∣
s=0

, (9.60)

and thus, since η0 = 0,
1∫

0

dt Tf∗t (∂sχs)

∣∣∣
s=0

= Tf∗1 (η1). (9.61)

Putting everything together, we have proved the first equation in (9.51) with

κ1 = −
∫ 1

0
dt C[ft, ∂sχs]|s=0. (9.62)

The second equation follows from (9.46). But in order to compute κ2, it is more convenient
to use a variant of equation (9.56),

∂

∂s
e−Tχs

∣∣∣∣
s=0

= e−Tχ
1∫

0

dt etTχ
(
T ∂

∂s
χs

)
s=0

e−tTχ , (9.63)
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which yields κ2 = −κ1.
Now, let s 7→ As = Aχs be a smooth curve in A′ through A := Aχ = A0 such that

AsC∼D̄ A, i.e., C#As#D̄ ' C#A#D̄, for all s. Let η2 be the vector field on ∂2A that
represents (together with η1 = 0) the tangent vector at t = 0 to that curve. By Preposition 2
there exist ηC ∈ Vect(C), ηA ∈ Vect(A), ηD ∈ Vect(D) such that

f∗(η2) = φ∗C(ηC)− f∗(ηA), 0 = ηA|S1 − ηD|S1 . (9.64)

This implies that Tf∗(η2) = Tφ∗C(ηC) − Tf∗(ηA) and TηA = TηD . Using Preposition 3 and
(9.46) we can then compute the directional derivative

∂

∂s
ΘC(As)

∣∣∣∣
s=0

= 〈C| ∂∂se
−Tχs |Ω〉

∣∣
s=0

= 〈C|
(
Tf∗(η2) + κ1

)
e−Tχ |Ω〉

= 〈C|
(
Tφ∗C(ηC) −Tf∗(ηA) + κ1

)
e−Tχ |Ω〉

= 〈C|e−Tχ
(
−TηA + κ1 + C[f, ηA]

)
|Ω〉

=
(
κ1 + C[f, ηA]

)
〈C|e−Tχ |Ω〉.

(9.65)

So we find that only the constants κ1 and C[f, ηA], which are both proportional to the central
charge c, prevent ΘC from being constant on equivalence classes of C∼D̄. In order to overcome
this obstacle, we observe that the central extension of the Virasoro algebra vanishes when one
considers the subalgebra generated by Ln with n ≤ −2. Note that elements of Vect3(D∗),
defined in (9.8), are of the form

χ =
∑
n≤−2

χnz
n+1∂z. (9.66)

Let s 7→ χs be a smooth curve in Vect3(D∗) with χ = χ0. Since Tχs contains only Ln with
n ≤ −2, it is almost obvious that κ1 and κ2 in (9.51) vanish in that case. The way to prove
this rigorously is to show that the integrand in

C[ft, ∂sχs]|s=0 = − c
6

∮
S1

dz

2πi

∂sχs(ft(z))

f ′t(z)
S(ft)(z)

∣∣∣∣
s=0

(9.67)

possesses an analytic continuation to D∗. This is true since ft possesses an analytic continua-
tion to D∗ (the integrated flow of χ) and f ′t(z) 6= 0 for all z ∈ D∗ since flow maps are always
injective. Consequently, C[ft, ∂sχs]|s=0 = 0, so κ1 = −κ2 = 0.

We want to represent each Dχ ∈ M(D)′ by the state eTχ |Ω〉, even though this is not a
conformal block associated with Dχ (again due to the central extension). Nevertheless, this
“representation” has the following good property. Let s 7→ Ds = Dχs be a smooth curve in
M(D)′ and fs be the boundary parametrization of Ds with f = f0. Then η1 := ∂

∂sfs ◦f
−1|s=0

represents the tangent vector at s = 0 to that curve and we have (according to the previous
discussion)

∂

∂s
e−Tχs |Ω〉

∣∣∣∣
s=0

= Tf∗(η1) e
−Tχ0 |Ω〉. (9.68)

In order to get rid of the constant C[f, ηA] in (9.65), consider the case where C is of
the form D∗\{z1, . . . , zn} with z1, . . . , zn ∈ D∗, rigging φC = IdS1 and local coordinates
ϕj(z) = z − zj (j = 1, . . . , n). We already know that a conformal block associated with C is
a linear map

ΦC :
1⊗

j=n

Vαj ⊗ Vα → C, (9.69)
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where Vαj is assigned to zj and Vα to the boundary ∂C = S1. The example from Liouville
theory we have in mind are the maps

1⊗
j=n

vj ⊗ v 7→ 〈Ω|hαnsn (vn|zn) . . .hα1
s1 (v1|z1)|v〉, (9.70)

where |v〉 ∈ Fp for α = Q
2 +ip is the state of quantum Liouville theory associated with v ∈ Vα.

What we would like to have is a linear map Φ̂C ∈ V∗α with the property

∀η ∈ Vect0(C) : Φ̂C ◦Tη = 0. (9.71)

Let us define
Φ̂C : Vα → C, v 7→ ΦC(en ⊗ · · · ⊗ e1 ⊗ v), (9.72)

where ej := eαj denotes the highest weight state in Vαj . In our example this would be

〈C| = 〈Ω|hαnsn (zn) . . .hα1
s1 (z1). (9.73)

However, (9.71) is not fulfilled by Φ̂C . Namely, let ηC ∈ Vect0(C). Then ηC has a Taylor
expansion ηC(z) =

∑∞
k=0 η

(k+1)
C (zj)(z − zj)k+1 around zj so that

Tϕ∗j (η) =

∞∑
k=0

η
(k+1)
C (zj)Lk. (9.74)

Then it follows that

Φ̂C ◦TηC (v) = ΦC(en ⊗ · · · ⊗ e1 ⊗TηCv)

= −
n∑
j=1

ΨC(en ⊗ · · · ⊗Tϕ∗j (ηC)ej ⊗ · · · ⊗ e1 ⊗ v)

= −
n∑
j=1

∆αjη
′
C(zj)Φ̂C(v),

(9.75)

which means that Φ̂C ◦ TηC (v) = 0 for all ηC ∈ Vect1(C), if Vect1(C) denotes the space of
holomorphic vector fields on C that have a second order zero at each puncture.

The Riemann surface C has the nice property that every ηC ∈ Vect0(C) is in particular a
holomorphic vector field on D∗. Let us denote by CB(C) the space of all elements 〈C| ∈ H∗L
with the property 〈C|Tη = 0 for all η ∈ Vect1(C). Now assign to each 〈C| ∈ CB(C) the
function

Ψ〈C| : M(D)′ → C, Dχ 7→ 〈C|e−Tχ |Ω〉. (9.76)

Suppose that s 7→ Ds = Dχs runs within an equivalence class of C∼. By Preposition 1 this
implies that there exist ηC ∈ Vect0(C) and η∆ ∈ Vect(Dχ) such that

f∗(η1) = ηC |S1 − f∗(η∆). (9.77)

Note that since each fs admits an analytic continuation to D∗, the same is true for f∗(η1) =
∂sfs|s=0/∂zf . Therefore, by (9.77) (and ηC ∈ Vect(D∗)), it must be also true for f∗(η∆). Then
it follows that

C[f, η∆] = − c
6

∮
S1

dz

2πi
f∗(η∆)(z)S(f)(z) = 0 (9.78)
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(since the integrand admits an analytic continuation to D∗) so that

Tf∗(η∆)e
−Tχ |Ω〉 = e−Tχ

(
Tη∆ + C[f, η∆]

)
|Ω〉 = 0. (9.79)

Therefore, by (9.68) and (9.77) we find that

∂

∂s
Ψ〈C|(Ds)

∣∣∣∣
s=0

= 〈C|TηCe
−Tχ |Ω〉 (9.80)

vanishes at least for ηC ∈ Vect1(C). This may be interpreted as follows.
Let P be a puncture of a Riemann surface Σ. Let OkP denote the space of (germs of)

holomorphic functions in a neighborhood of P that have a k-th order zero at P . Then a k-jet
at P is an element of O1

P /O
k+1
P [11]. In a local coordinate z, a k-jet may be represented by∑k

j=1 ajz
j , so it is determined by k complex numbers aj . Then a vector field ηC ∈ Vect(C)

leaves a k-jet at zj invariant if it has a k-th order zero at zj . Let ~C be the same rigged Riemann
surface as C, but equipped with a 1-jet at each puncture. Then one may interpret the result

∂

∂s
Ψ〈C|(Ds)

∣∣∣∣
s=0

= 0 if ηC ∈ Vect1(C) (9.81)

in the way that Ψ〈C| is constant on equivalence classes of a left equivalence ~C∼, which is
defined by ∆1 ~C∼ ∆2 :⇔ ~C#∆1 ' ~C#∆2 and ~C#∆1, ~C#∆2 are considered isomorphic
if there exists a conformal equivalence that maps the 1-jets into each other. In this way,
Ψ〈C| descends to a function on the quotient ~C∼ \M(D)′, which in turn is identified with a
subset of the moduli space ~M0,n of type (0, n) punctured Riemann surfaces with 1-jets at
each puncture.44 When 〈C| is of the form (9.73), this may be easily seen by using (5.56) to
write

Ψ〈C|(Dχ) =

〈
1∏

j=n

(
f ′(zj)

)∆j h
αj
sj (f(zj))

〉
. (9.82)

Also note that C#Dχ ' C̄\f({z1, . . . , zn}), where a conformal equivalence is given by (recall
that Dχ = C̄\f(D∗))

f̂ : C#Dχ → C̄\f({z1, . . . , zn}), z 7→

{
f(z) for z ∈ C
z for z ∈ Dχ

. (9.83)

Therefore, given χj ∈ Vect3(D∗) with integrated flow fj (j = 1, 2), C#Dχ1 ' C#Dχ2 if
and only if f1(zj) = f2(zj) for j = 1, . . . , n, and ~C#Dχ1 ' ~C#Dχ2 if and only if f1(zj) =
f2(zj), f

′
1(zj) = f ′2(zj) (the PSL(2,C) freedom is already fixed in the definition (9.8)). In the

latter case it follows from (9.82) that Ψ〈C|(Dχ1) = Ψ〈C|(Dχ2).
In order to avoid the appearance of 1-jets, one could define CBα(C) ⊂ CB(C) by (cf.

(9.75))

∀η ∈ Vect0(C) : 〈C|Tη = −
n∑
j=1

∆jη
′(zj)〈C|, (9.84)

where ∆j = ∆αj , and assign to 〈C| ∈ CBα(C) the function

Ψ̃〈C|(Dχ) :=
n∏
j=1

(
f ′χ(zj)

)−∆j 〈C|e−Tχ |Ω〉, (9.85)

44 ~Mg,n is naturally seen as a vector bundle over Mg,n, where the projection map π : ~Mg,n → Mg,n is
defined by forgetting the 1-jets.
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where fχ denotes the integrated flow of χ. Ψ̃〈C| could be indeed identified as a holomorphic
function on a subset of M0,n. Nevertheless, the prefactors in (9.85) seem to be somewhat
artificial. Considering the connections with quantum Teichmüller theory, there could be in-
deed a natural way to include 1-jets in the latter. Namely, eigenstates of length operators in
quantum Teichmüller space, written as ψL,r(p) in a “real” representation or ΨL,r(Z) in the
coherent state representation, depend parametrically on the constants L = (l1, . . . , ln) that
appear in the constraints (4.2) and have been identified with the hyperbolic lengths of the
geodesics that encircle the holes. Instead, one could promote the lj to “dynamical” variables
and write ψr(p, L) respectively Ψr(Z,L). This would correspond to an enlargement of the
Teichmüller space by two real dimensions per puncture, where one supplements each lj by a
conjugate observable kj . (In the quantum theory, the kj would become operators that shift the
values of the lj .) These variables could then be combined to define a 1-jet at each puncture.

In this way the enlarged Teichmüller space is identified with the Teichmüller space ~Tg,n
of type (g, n) Riemann surfaces with 1-jets at each puncture, which is naturally seen as a
vector bundle over Tg,n. The complex numbers aj (j = 1, . . . , n) that represent the 1-jets for
given local coordinates, would be (by definition) holomorphic functions on ~Tg,n that define
the complex structure on ~Tg,n that is compatible with that on Tg,n. It would then be natural
to define a coherent state representation in which the Hilbert space Hol(~Tg,n) consists of
holomorphic functions on ~Tg,n, written as Ψ(Z, a) with a = (a1, . . . , an). This would allow one
to identify with each 〈C| ∈ CB(C) a state in Hol(~Tg,n), as defined by Ψ〈C|. In this way, one
would be able to identify the enlarged quantum Teichmüller space with the subspace CB(C)
of H∗L.

This point of view has another advantage: it allows to replace the disc D, represented by
the vacuum |Ω〉, with the punctured disk D0 with 1-jet, represented by the states |p〉. More
precisely, let

|a〉 =

∫
dp ψa(p) |p〉 (a ∈ C) (9.86)

be eigenstates of the operator a = q + ip with eigenvalue a (cf. Section 4.4). Then we may
associate with each 〈φ| ∈ H∗L a holomorphic “wave function”

Ψ0,〈φ| : M(D0)′ × C→ C, (Dx
χ, a) 7→ 〈φ|e−Tχ |a〉. (9.87)

Provided that our conjecture M(D0)′ = M(D0) is true, then by M(D0) ' Diff+(S1)/S1,
Ψ0,〈φ| can be identified with a holomorphic function on the chiral part45 of the Liouville phase
space (cf. (2.51))

Pchir. = (Diff+(S1)/S1)× R× R>0, (9.88)

where a = x + ip is a holomorphic coordinate on R × R>0. In this way, one may define a
coherent state representation of Liouville theory, where states are holomorphic functions on
the Liouville phase space.

Let ~C−1 = D∗\{z1, . . . , zn−1} be an n− 1 punctured rigged Riemann surface with 1-jets
at each puncture. Note that Tη|a〉 = 0 for every η ∈ Vect1(D0). Therefore to each element
〈C−1| of CB(C−1) is associated a function Ψ0,〈C−1| that descends to the quotient

~C−1
∼ \M(D0)′ × C, (9.89)

which is naturally identified with a subset of ~M0,n, where a defines the 1-jet at z = 0. In
this way, CB(C−1) can be identified with a space of (locally defined) holomorphic functions

45One could easily include the anti-chiral part by incorporating in (9.87) an operator exp(T̄η), where η is
the vector field that generates the element of the anti-chiral copy of Diff+(S1)/S1 and T̄η =

∑
m∈Z ηmL̄m is

the counterpart of Tη in the anti-chiral representation of the Virasoro algebra.
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on ~T0,n, which could be interpreted as the Hilbert space in a coherent state representation of
enlarged quantum Teichmüller theory.

A question of interest to us is what states in quantum Teichmüller theory the standard
conformal blocks

〈Cr| := 〈Ω|hαn−1

0 (zn−1)hαn−2
sn−2

(zn−2) . . .hα1
s1 (z1), (9.90)

parametrized by r = (r1, . . . , rn−3), where βk ≡ Q
2 + irk = αn−1 −

∑n−2
j=k+1(αj + bsj), are

identified with. The most natural guess is of course that they are identified with eigenstates
of length operators. This is supported by the computation

Ψ0,〈C−1|(D
x
χ, a) = 〈Ω|hαn−1

sn−1
(zn−1) . . .hα1

s1 (z1)e−Tχ |a〉

= ψa(p0)

n−1∏
j=1

(f ′(zj))
∆j lim

z0→0
〈hαn−1

sn−1
(f(zn−1)) . . .hα1

s1 (f(z1))hα0
0 (z0)〉,

(9.91)
where f denotes again the integrated flow of χ, and α0 ≡ Q

2 + ip0 = αn−1 −
∑n−2

j=1 (αj +

bsj), sn−1 = 0. Since C#Dχ ' C̄\f({z1, . . . , zn}), the values f(zj), j = 1, . . . , n − 3, can
be considered as holomorphic coordinates on T0,n that correspond to the coordinates Z =
(z1, . . . , zn−3) introduced before, while the values f ′(zj) serve as coordinates on the fibers of
the vector bundle ~T0,n over T0,n. Since the dependence of Ψ0,〈C−1| on the f(zj) is essentially
the same as the dependence of FL(Z, r), defined in (6.4), on Z, it seems plausible that Ψ0,〈C−1|
is an eigenstate of the length operators L1, . . . ,Ln−3 in a coherent state representation of the
enlarged quantum Teichmüller space.

Suppose that O is an operator of quantum Liouville theory with the property

∀η ∈ Vect1(C) : [Tη,O] = 0. (9.92)

Then O would induce a map CB(C)→ CB(C), 〈C| 7→ 〈C|O. By the discussion above, such a
map could be identified with an operator on (enlarged) quantum Teichmüller space. We have
in principle already encountered Liouville operators with the property (9.92) in Section 7.2;
the only difference is that we had zj = eiσj ∈ S1. This can be easily corrected by generalizing
(7.33) as

Qj :=

zj+1∫
zj

dzEb(z), (9.93)

where the integral is performed along a path that crosses only the edge êj in Fig. 15. This
operator satisfies

[Tη,Qj ] = η(zj+1)∂Eb(zj+1)− η(zj)∂Eb(zj), (9.94)

so that [Tη,Qj ] = 0 for η ∈ Vect0(C) (in particular for η ∈ Vect1(C)). Therefore also
the operators tj , defined as in (7.34), satisfy (9.92), and thus possess an interpretation as
Teichmüller operators. This observation strengthens the connection between these operators
and the quantized shear coordinates found above.

The question that naturally arises then is whether the Teichmüller operator that tj is
identified with coincides with the (rescaled) quantized shear coordinate qj that is represented
by t†j in the representation ρ∗ defined in Section 7.2. This may be written as

Ψ0,〈C|tj
?
= ρhol.(qj)Ψ0,〈C|, (9.95)

where ρhol. is the coherent state representation of enlarged Teichmüller space. For n = 4, this
conjecture is supported by the following argument. By the observation of Section 6.3 we may
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write the states
〈Cr| = 〈Ω|hα3

0 (z3)hα2
s2 (z2)hα1

s1 (z1), (9.96)

where β ≡ Q
2 + ir = α3 − α2 − bs2, as

〈Cr| = 〈Ω|hα3
0 (z3)Eα2(z2)Eα1(z1) e2πb(s1+s2)x Υ̃s

r(t, p0), (9.97)

where p 7→ Υ̃s
r(p, p0) is an eigenfunction of Ls with eigenvalue 2 cosh(2πbr) in the represen-

tation πL based on shear coordinates with L = (l0, . . . , l3), lj := 4πb=αj (j = 0, . . . , 3). The
action of the Teichmüller operator p, related to t by ρ∗(p) = t†, on the properly normalized
eigenfunctions Ψs

r may be written in the form of an integral transformation

pΨs
r(p) = pΨs

r(p) =

∫
dr′ p(r, r′)Ψs

r′(p). (9.98)

So if Υ̃s
r and Ψs

r are related by Υ̃s
r(p, p0) = λL(r)Ψs

r(p), then we find that

pΥ̃s
r(p, p0) =

∫
dr′ p̃(r, r′)Υ̃s

r′(p, p0), (9.99)

where
p̃(r, r′) =

λL(r)

λL(r′)
p(r, r′). (9.100)

Combined with (9.97), since b(s1 + s2) = α3−α2−α1−α0 does not depend on r, this implies
that

〈Cr|t =

∫
dr′ p̃(r, r′)〈Cr′ |. (9.101)

Let F : L2(R × R4
>0) → Hol(~T0,4) be the intertwiner between the representation π in which

Ψs
r(p, L) are the eigenfunctions of Ls and ρhol.. By the discussion above, we expect Ψ0,〈Cr|

and F(Ψs
r) to be linearly dependent,

Ψ0,〈Cr| = µL(r)F(Ψs
r). (9.102)

Then it follows by ρhol.(p) = F pF−1 that

ρhol.(p)Ψ0,〈Cr| =

∫
dr′

µL(r)

µL(r′)
p(r, r′)Ψ0,〈Cr′ |. (9.103)

Therefore, given that λL(r) = µL(r), then we would conclude

Ψ0,〈Cr|t = ρhol.(p)Ψ0,〈Cr|. (9.104)

Provided that Conjecture 1 is true, one could argue analogously for the operators tj . This
would serve as a first evidence for the consistency of the representation ρ∗ of quantized shear
coordinates on H∗L and the reduction picture developed in this section.
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10 Conclusion and outlook

In this work we have systematically investigated the relation between the Liouville and Teich-
müller quantum theories. We started this investigation from the observation that the eigen-
functions of length operators in quantum Teichmüller theory are decoded in the intrinsic
structure of 4-point conformal blocks. Inspired by this observation we constructed a repre-
sentation of the algebra of quantized shear coordinates on the dual of the Liouville Hilbert
space and formulated a conjectural generalization of this observation to n punctures. (Here
the precise definition of the operators vj that are associated with the “spokes” of the fat
graph requires some more attention.) All these definitions where inspired by a heuristic corre-
spondence between Liouville and Teichmüller operators that is based on the conformal Ward
identity.

In the last section we approached the problem from a slightly different angle by identifying
(subsets of) the classical Teichmüller spaces with quotients of the Liouville phase space. Then
we investigated how an analogous reduction may be performed on the quantum level, to
obtain a statement of the type “quantization commutes with reduction”. Indeed we were
able to show that, modulo some technical difficulties, the (enlarged) quantum Teichmüller
spaces may be identified with certain subspaces of the dual of the Liouville Hilbert space, and
Teichmüller operators with Liouville operators that leave these subspaces invariant. Finally
we could establish a first link between this picture and the representation of quantized shear
coordinates defined before. In this part, there remain some open questions, e.g. whether the vj
can be also interpreted as Teichmüller operators in the reduction picture, and whether these
operators coincide with the quantized shear coordinate they represent. If these questions can
be answered affirmatively, then the reduction picture would be complete in the sense that the
embedding of the space of Teichmüller operators into the space of Liouville operators would
define a faithful representation of the former. Also the definition of the enlarged Teichmüller
spaces requires some more work, as well as the generalization to higher genus.

Another subject for future projects could be the explicit description of the coherent state
representation of quantum Teichmüller theory. In particular, it would be of interest to de-
termine the quantum analogs of the functions T (z) and compare them with the differential
operator that appears in the conformal Ward identity.

A completely different approach to the relation between the Liouville and Teichmüller
theories could employ the path integral formalism. Namely, the partition function

Z =

∫
Dϕ e−b

−2Se[ϕ] (10.1)

is expressed in terms of the euclidean Liouville action Se. The connection between euclidean
Liouville theory and Teichmüller theory seems to be even more concrete. Besides the fact
that the conformal factor of the hyperbolic metric satisfies the euclidean Liouville equation,
Takhtajan and Zograf [33] have related the Weil-Petersson symplectic form to the values of
Se evaluated on the conformal factor.

Summarizing, one finds that even though the connections between Liouville and Teichmül-
ler theory are relatively simple to grasp on the classical level, it is quite challenging to precisely
formulate them on the quantum level in an elementary way. This work should constitute a
significant progress in this direction.
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Appendices

A Special functions

The function eb, which is defined by

eb(x) := exp

(∫
R+i0

dw

4w

e−2ixw

sinh(bw) sinh(b−1w)

)
(A.1)

for |=(x)| < Q/2, Q = b+ b−1, and by analytic continuation otherwise, is known as Fadeev’s
quantum dilogarithm. It has the following properties:

(i) Zeros and poles: (eb(x))±1 = 0 ⇔ x ∈ ∓{cb + inb+ imb−1 |n,m ∈ Z≥0}

(ii) Functional equations: eb(x− ib±1

2 ) =
(
1 + e2πb±1x

)
eb(x+ ib±1

2 )

(iii) Self-duality: eb(x) = eb−1(x)

(iv) Inversion relation: (eb(x))−1 = e
πi
12

(2−Q2)−πix2
eb(−x)

(v) Asymptotic behavior (x ∈ R):

eb(x) ∼

{
1 for x → +∞
e
πi
12

(Q2−2)eπix
2 for x → −∞

.

Closely related are the functions sb(x) := e−
πi
2
x2
e
πi
24

(2−Q2)eb(x) and wb(x) := (sb(x))−1. These
are more symmetric than eb as seen in the inversion relation (sb(x))−1 = sb(−x) and the
functional equation

sb
(
x− ib

2

)
= 2 cosh(πbx) sb

(
x+ ib

2

)
. (A.2)

One may also define

Dα(x) :=
wb(x+ α)

wb(x− α)
. (A.3)

Dα satisfies the following integral identities [5]:∫
R
dx e2πixy Dα(x) = wb(2α+ cb)D−α−cb(y) (A.4)

and ∫
R
dx e2πi(α∗+β∗)xDα(x− u)Dβ(x− v)

= e2πi(vα∗+uβ∗)wb(2α+ cb)wb(2β + cb)wb(α
∗ + β∗)Dα+β+cb(u− v),

(A.5)

where α∗ = −α− cb.
In [12], Fock introduced the special function

φb(x) = −πb
2

2

∫
R+i0

dw
e−iwx

sinh(πw) sinh(πb2w)
. (A.6)

The relation with eb is
∂

∂z
log eb(z) =

i

b
φb(2πbz). (A.7)
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B Highest weight representations of the Virasoro algebra

Highest weight representations of the Virasoro algebra V := Span{Ln|n ∈ Z},

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0, (B.1)

are representations in which the L0 eigenvalue is bounded from below. Since L0 + L̄0 is the
Hamiltonian in conformal field theories, all representations that appear in CFT’s are of this
type. As Ln with n > 0 lowers the L0 eigenvalue, the highest weight vector e (i.e., the vector
with lowest L0 eigenvalue) has to satisfy Lne = 0 for all n > 0. One can then classify by the
L0 eigenvalue of e.

There exist a standard family of highest weight representations on infinite dimensional
vector spaces Vα for α ∈ C, called Verma modules. Vα is by definition the vector space with
basis Bα = {vαν |ν ∈ Λ}, where

Λ = {ν = (νk)k∈N ∈ (Z≥0)N | ∃N ∈ N ∀k > N : νk = 0} (B.2)

is the space of finite sequences of non-negative integers. Thus all Verma modules are isomorphic
and α serves only as a parameter to distinguish the different representations of V. If eα = vα0 ,
where 0 denotes the sequence that is identically zero, then the representation on Vα is defined
by

(i) ∀n > 0 : Lneα = 0,

(ii) L0eα = ∆αeα where ∆α = α(Q− α),

(iii) vαν = (L−N )νN . . . (L−1)ν1eα where νk = 0 for all k > N .

So one may also write

Vα = Span{Lnr . . . Ln1eα | r ∈ N0, nr ≤ · · · ≤ n1 < 0}. (B.3)

Since ∆Q−α = ∆α, the representation on VQ−α is isomorphic to the one on Vα. If α is of the
form α = Q

2 + ip with p ∈ R, it is sometimes replaced by the parameter p. Then one has
∆p = Q2

4 + p2 and Vp ' V−p as a representation.
A representation of V on a Hilbert space is called unitary if L†n = L−n. An sesquilinear

form (·, ·)α on Vα is uniquely defined by the requirements

(i) (Lnv, w)α = (v, L−nw)α for all v, w ∈ Vα, n ∈ Z,

(ii) (eα, eα)α = 1.

(·, ·)α is non-degenerate if and only if α 6∈ {αr,s = −1
2rb −

1
2sb
−1 | r, s ∈ N0}. If (·, ·)α is non-

degenerate and positive definite, then one obtains a unitary highest weight representation of
V on Vα.

C Weyl-type operators

Let U,V be positive self-adjoint operators that satisfy UV = q2VU with q = eiπb
2 . Our aim

is to rewrite (U + V)s for arbitrary s ∈ C in an elegant way. First we define u := log U and
v := log V. In order to compute [u, v], consider the following equation:

eisueitv = e−2πib2steitveisu. (C.1)
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Note that eisu and eitv for s, t ∈ R are well defined unitary operators. Taking the derivative
of (C.1) by s and t and then setting s = t = 0, one finds that [u,v] = 2πib2. We may now
introduce a pair of conjugate operators

x :=
1

2πb
u, p :=

1

2πb
(v − u) (C.2)

that satisfy [p,x] = (2πi)−1. With the help of the Baker-Campbell-Hausdorff formula, we can
express U and V in terms of x and p as

U = e2πbx, V = eπbxe2πbpeπbx. (C.3)

This allows us to rewrite (U + V)s in the following way

(U + V)s =
(
eπbx

(
1 + e2πbp

)
eπbx

)s
=

(
eπbx

eb(p− ib
2 )

eb(p + ib
2 )
eπbx

)s
=
(
eb(p)e2πbx(eb(p))−1

)s
= eb(p)e2πbsx(eb(p))−1 = eπbsx

eb(p− ib
2 s)

eb(p + ib
2 s)

eπbsx

= e2πbsx eb(p− ibs)
eb(p)

.

(C.4)

It will be also useful to us to introduce the Fourier transform

D̃α(x) :=

∫ ∞
−∞

dy e−2πixy eb(y − α)

eb(y + α)
(C.5)

and write
(U + V)s =

∫
dx esu+ i

b
x(v−u) D̃ ib

2
s(x). (C.6)

D Automorphism groups

In this appendix we collect some basic knowledge about the automorphism groups of the
standard Riemann surfaces C, C̄,H, D and D0, which can be found (including proofs) e.g.
in [17]. We have

(i) For the complex plane C

Aut(C) = {z 7→ az + b | a ∈ C∗, b ∈ C}. (D.1)

(ii) For the Riemann sphere C̄

Aut(C̄) = Möb(C) :=
{
z 7→ az + b

cz + d

∣∣∣ a, b, c, d ∈ C, ad− bc = 1
}
. (D.2)

Aut(C̄) is therefore isomorphic to PSL(2,C) := SL(2,C)/{±1}, where

SL(2,C) =

{(
a b
c d

) ∣∣∣ a, b, c, d ∈ C, ad− bc = 1

}
. (D.3)

(iii) For the upper half plane H

Aut(H) = Möb(R) :=
{
z 7→ az + b

cz + d

∣∣∣ a, b, c, d ∈ R, ad− bc = 1
}
. (D.4)
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Thus Aut(H) is isomorphic to PSL(2,R).

(iv) For the unit disc D

Aut(D) =
{
z 7→ az + b

b̄z + ā

∣∣∣ a, b ∈ C, |a|2 − |b|2 = 1
}
. (D.5)

So Aut(D) is isomorphic to PSU(1, 1).

(v) For the punctured unit disc D0

Aut(D0) = {z 7→ λz |λ ∈ C, |λ| = 1}. (D.6)

Thus Aut(D0) is isomorphic to S1.
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