
Higher-Derivative Supergravity
and String Cosmology

Dissertation

zur Erlangung des Doktorgrades

an der Fakultät für Mathematik,

Informatik und Naturwissenschaften

Fachbereich Physik
der Universität Hamburg

vorgelegt von

David Ciupke

aus Datteln

Hamburg

2016



Tag der Disputation: 12.07.2016
Folgende Gutachter empfehlen die Annahme der Dissertation:
Prof. Dr. Jan Louis
Dr. Alexander Westphal



Abstract

In this thesis we study theories with N = 1, D = 4 supersymmetry including
higher-derivative operators for chiral multiplets. In particular, we initiate a sys-
tematic analysis of these higher-derivative operators and corrections to the scalar
potential required by supersymmetry. For theories formulated in �at superspace the
full scalar potential can be derived from a generalized Kähler potential where the
additional corrections arise from higher powers of the chiral auxiliary �eld. Con-
sequently, the equations of motion for the auxiliary �eld admit several solutions.
However, we demonstrate that in the context of e�ective �eld theories there exists
only a single solution which is compatible with the principles of e�ective �eld the-
ory. For supergravity we develop new tools that allow us to compute the component
actions, but also simplify the determination of the linearized on-shell theory. We
then classify the leading order and next-to-leading order superspace derivative op-
erators and determine the component forms of a subclass thereof. Equipped with
the higher-derivative actions in �at and curved superspace we proceed to investigate
the vacuum structure of the theory. In particular, we study the properties of super-
symmetric Minkowksi and AdS4 vacua and also comment on non-supersymmetric
vacua. In the second part of this thesis we turn to Calabi-Yau orientifold compacti-
�cations of type IIB string theory with background �uxes. We derive four-derivative
terms for the volume modulus from ten-dimensional (α′)3R4-corrections and match
these to a particular higher-derivative operator which we computed in the �rst part.
Thereby, we can indirectly infer new F 4-type corrections to the scalar potential.
Lastly, we study the relevance of this new correction for moduli stabilization and in-
�ation. In particular, we demonstrate the possibility of stabilizing all Kähler moduli
model-independently just by (α′)3-corrections. Finally, we comment on realizations
of plateau-type in�ationary models via the new F 4-correction in the context of the
Large Volume Scenario with K3-�bered compacti�cation geometries.



Zusammenfassung

In dieser Dissertation werden Theorien mit N = 1 Supersymmetrie in vier
Raumzeitdimensionen untersucht unter Berücksichtigung höherer Ableitungsopera-
toren für chirale Multiplets. Insbesondere initiieren wir eine systematische Ana-
lyse von diesen höheren Ableitungsoperatoren und Korrekturen zum skalaren Po-
tential, welche durch Supersymmetrie verlangt werden. Für Theorien, welche im
�achen Superrauum formuliert sind, zeigen wir, dass das vollständige skalare Po-
tential aus einem verallgemeinerten Kählerpotential abgeleitet werden kann und die
zusätzlichen Korrekturen zum skalaren Potential entstehen durch höhere Potenzen
des chiralen Hilfsfeldes. Daher erlauben die Bewegungsgleichungen dieses Hilfs-
feldes in solchen Theorien eine Vielzahl an Lösungen. Wir zeigen, dass im Kon-
text von e�ektiven Feldtheorien nur eine eindeutige Lösung existiert, welche die
Prinzipien bzw. Axiome von e�ektiven Feldtheorien erfüllt. Im Kontext von Su-
pergravitation entwickeln wir verschiedene neue Methoden und Werkzeuge, um die
entsprechenden Komponentenwirkungen zu berechnen, aber auch um die Berech-
nung der linearisierten, auf der Massenschale gelegenen Theorie zu erleichtern. Wei-
terhin klassi�zieren wir die Superraum-Ableitungsoperatoren führender und sub-
dominanter Ordnung und bestimmen die Komponentenwirkungen einer Unterklasse
davon. Basierend auf diesen Resultaten untersuchen wir die Vakuumstruktur der
Theorien mit höheren Ableitungsoperatoren. Insbesondere bestimmen wir Eigen-
schaften der supersymmetrischen Minkowski und Anti-de Sitter Vakua sowie der
nicht-supersymmetrischen Vakua. Im zweiten Teil dieser Dissertation widmen wir
uns dem Studium von Calabi-Yau Orientifold Kompakti�zierungen mit Flüssen von
Typ IIB Stringtheorie. Wir leiten Vierableitungsoperatoren für den Volumenmodu-
lus aus zehndimensionalen (α′)3R4-Korrekturen her und gleichen diese ab mit einem
der supersymmetrischen Ableitungsoperatoren aus dem ersten Teil dieser Disserta-
tion. In dieser Weise können wir indirekt neue F 4-artige Korrekturen zum skalaren
Potential bestimmen. Weiterhin untersuchen wir die Relevanz dieser neuen Korrek-
turen für Modulistabilisierung und kosmologische In�ation. Insbesondere beweisen
wir die Existenz eines Vakuums, in welchem alle Kähler-Moduli modellunabhängig
stabilisiert sind und zwar nur durch die (α′)3-Korrekturen in führender Ordnung.
Zuletzt untersuchen wir Realisierungen von Plateau-artigen Modellen für In�ation
mittels der neuen F 4-Korrektur im Kontext des sogenannten Large Volume Sce-
nario bezüglich Kompakti�zierungsgeometrien, welche durch Faserbündel über der
K3-Mannigfaltigkeit gegeben sind.
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Chapter 1

Introduction

Higher-derivative operators have a long history in theoretical physics dating back
to early works by Ostrogradski [1]. While in several cases they exhibit ghost-like
behavior which, in turn, has given them the reputation of being ill-de�ned, in some
situations they lead to interesting dynamics, in particular, in the context of gravity.
More speci�cally, they have attracted the attention of cosmologists who have ap-
plied them to models of early-universe in�ation [2, 3] and dynamical dark energy [4].
Generally we have to sharply distinguish between ultraviolet-complete (UV) theories
with higher-derivatives and e�ective �eld theories (EFT) with higher-derivatives. In
the former case, the higher-derivative operators must not lead to ghost-like instabil-
ities and this requirement induces severe constraints on the possible operators which
might be present.1 In e�ective �eld theories all operators consistent with the sym-
metries must be included in the theory and, hence, higher-derivative operators are
generically present, even if they (naively) lead to ghosts in the spectrum. In situa-
tions where we explicitly compute EFTs from UV physics higher-derivative operators
arise e.g. from integrating out heavy �elds. As long as the higher-derivatives are not
treated as dynamical degrees of freedom but instead as small perturbations of the
leading order Lagrangian, then the principles of e�ective �eld theory are respected
and the higher-derivatives do not lead to ghost-like instabilities [6, 7]. Instead the
apparent ghost-like nature of higher-derivative terms is attributed to the truncation
of a non-local in�nite-derivative UV theory to a local e�ective theory.

One may now proceed to study those e�ective theories where higher-derivative
operators have a signi�cant impact on the properties and features of the theory.
The special situation that we are going to be interested in here are theories with su-
persymmetry. Supersymmetric theories are not only of interest for phenomenology,
but also because supersymmetry places constraints on the form of the Lagrangian
and the respective quantum corrections and thereby leads to restricted dynamics. In
particular, supersymmetry enforces so-called non-renormalization theorems [8]. Fur-
thermore, supersymmetric theories arise from compacti�cations of string theory and
are, therefore, a starting point for string phenomenology and string cosmology, and
we will return to the context of string theory in a moment. The interface between

1For instance, an example is presented in [5].
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higher-derivative operators and supersymmetric theories, more precisely global and
local N = 1 supersymmetry in D = 4 spacetime dimensions, is the topic of this the-
sis. Among the possible representations of the supersymmetry algebra here we focus
on chiral multiplets which contain a complex scalar, a Weyl spinor and an auxiliary
complex scalar. While the higher-derivative sector for the gravity multiplet has been
studied in several works [9�12], only a few investigations about higher-derivative op-
erators for the chiral multiplets exist [13�24]. An important observation, which was
already made in [13, 14], is that supersymmetric higher-derivative operators for the
chiral multiplets induce corrections to the scalar potential given by higher mono-
mials of the chiral auxiliary �eld. Therefore, the complete scalar potential and,
hence, the vacuum structure can only be fully understood in a higher-derivative
theory. However, due to the lack of an action for the general higher-derivative the-
ory the scalar potential and its supersymmetric and non-supersymmetric vacua are
unknown. The additional corrections to the scalar potential are not only crucial
for determining the vacuum structure. Moreover, they generically are as important
as non-renormalizable operators in the Kähler potential or the Planck-suppressed
corrections to the scalar potential that are manifestly present in supergravity. In
sum this renders them relevant in the context of supersymmetry breaking, moduli
stabilization and in�ation.

Ultimately, we are interested in the on-shell (higher-derivative) theories obtained
after solving the equations of motion for the auxiliary �elds and reinserting the
solution in the Lagrangian. However, due to the appearance of the higher-derivative
corrections the equations of motion are now higher polynomial equations which
admit several solutions and, in turn, induce several theories describing mutually
inequivalent dynamics [21]. While in several works the bene�cial aspects of the
di�erent theories emerging from a particular higher-derivative operator were studied,
the fact that the appearance of multiple theories is in con�ict with basic principles
of classical physics has not been addressed so far. In particular, in having a family
of theories to choose from the classical dynamics of the �elds are not unique once
initial conditions are speci�ed.

Following the above outline, the central problems that we want to address in this
thesis regarding N = 1 higher-derivative theories read:

I. Gain a systematic understanding of higher-derivative operators and their cor-
rections to the scalar potential. Classify these operators and compute their
component forms.

II. Understand and resolve the problem of the emergence of multiple on-shell the-
ories.

III. Characterize the structure of the supersymmetric and the non-supersymmetric
vacua and their corresponding moduli spaces in the general higher-derivative
theory.

Before we turn to the results that this thesis o�ers, let us proceed by motivating
and introducing the second topic of this thesis. As we already mentioned N = 1
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supergravity prominently arises as the low energy EFT of certain string compacti-
�cations. For instance, Calabi-Yau orientifold compacti�cations of type IIB string
theory belong to this class [25]. A generic property of e�ective supergravities for
string compacti�cations is the existence of a plethora of massless �elds. The sta-
bilization of these massless �elds is crucial and a necessary prerequisite to study
in�ation or particle phenomenology. At the level of the supergravity the appearance
of massless �elds is enforced by the no-scale condition which, in a particular ver-
sion, is equivalent to the absence of a scalar potential. In turn, interactions which
may make the �elds massive are generated only after inclusion of perturbative α′-
and gs-corrections.

2 Unfortunately, these perturbative corrections are, at least for
the orientifold compacti�cations, only poorly understood. For the particular case
of Calabi-Yau orientifold compacti�cations of type IIB string theory after inclusion
of background �uxes [26] the remaining massless modes include the Kähler mod-
uli. Ten-dimensional eight-derivative (α′)3-corrections which appeared for instance
in [27] lead to a modi�cation of the e�ective 4D supergravity after compacti�ca-
tion and induce a non-trivial scalar potential for the Kähler moduli [28]. While
this correction breaks the no-scale property it does not su�ce for a stabilization.
The prominent stabilization proposals instead rely on non-perturbative corrections
[29, 30] which have the disadvantage of being highly dependent on the particu-
lar compacti�cation geometry considered. To test the properties of string vacua
more universally we are motivated to �nd a model-independent stabilization mech-
anism. Since perturbative α′- and gs-corrections to the 4D e�ective supergravity
such as the aforementioned corrections computed in [28] are, in principle, model-
independent a more complete understanding of these terms may possibly lead to a
model-independent stabilization mechanism. Due to the no-scale condition present
at leading order, the higher-derivative operators are generically of interest here and
their role in the e�ective 4D supergravity obtained from string compacti�cations
has not been investigated yet. This leads us to the fourth question that we would
like to answer in the context of this thesis:

IV. Can we compute 4D higher-derivative operators from perturbative α′- or gs-
corrections to 10D type IIB supergravity? What e�ect do they have on moduli
stabilization and in�ation? To what extent do we need to answer I. and II. to
successfully answer this question?

Let us now proceed to outline the results of this thesis in the attempt to answer and
address the main problems which we formulated above. We �rst turn to the general
discussion of higher-derivative theories with N supersymmetry, i.e. problems I. to
III., following the references [31, 32].

For the situation of global supersymmetry we demonstrate that the complete
scalar potential can be derived from a superspace-Lagrangian given in terms of
a (pseudo-) Kähler potential K together with the ordinary superpotential of the
two-derivative theory and additional constraints. K depends on additional chiral
multiplets which are determined by the additional constraints. In particular, their

2Further interaction terms might also be generated at the non-perturbative level.
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scalar components are given by the auxiliary �elds. Note that the higher-derivative
part of K already appeared in [15, 16] under the name of e�ective auxiliary �eld
potential. In the aforementioned theory the auxiliary �elds can either remain alge-
braic or obtain kinetic terms. We discuss the equations of motion for the auxiliary
�elds in detail. On the one hand, we argue that even if they obtain kinetic terms,
the auxiliary �elds must still be treated as algebraic degrees of freedom, since they
generically obtain masses at the cut-o� scale Λ of the EFT. On the other hand, we
clarify the appearance of multiple solutions to the respective equations of motion.
We demonstrate in generality that among the multiple on-shell theories there ex-
ists a unique physical theory compatible with the principles of e�ective �eld theory.
The remaining solutions violate the decoupling principle which states that irrelevant
operators must decouple from the infrared (IR) dynamics, for a review on EFT see
[33]. Therefore, we regard them as unphysical artifacts of a truncation of an in�nite-
derivative UV-theory to a local EFT with �nitely many operators. Thus, the nature
of the additional solutions is analogous to the appearance of ghost-like modes in
local EFTs with higher-derivatives [6, 7]. We also validate our interpretation by ex-
plicitly studying the truncation for the example of the one-loop Wess-Zumino model
computed in [18].

Next we turn to the general study of higher-derivative operators for chiral mul-
tiplets in supergravity. Here we adapt the conventions of old minimal supergravity
following [34]. Our analysis is split into two parts: Firstly, we study conceptual and
computational aspects of the higher-derivative operators. We collect these state-
ments in an algorithm that simpli�es the computation of the linearized on-shell
action of a particular operator.3 Notably, this algorithm synthesizes the following
observations. On the one hand, it is crucial that auxiliary �elds are integrated out
in the Einstein-frame and, on the other hand, the linearized on-shell action does not
require solving the equations of motion of the auxiliary �elds. In the second part of
the analysis we classify all leading and next-to-leading order higher-derivative oper-
ators for the chiral multiplets and determine the component versions of the subclass
of operators which induce four-derivative terms for the chiral scalars in the linearized
on-shell action. This result is model-independent and widely applicable to any case
study in which the leading order corrections from higher-derivative operators for a
speci�c (ungauged) matter-coupled supergravity might be relevant.

Moreover, we address the vacuum structure of the general higher-derivative the-
ory. Firstly, we turn to the supersymmetric Minkowski and AdS4-vacua. In particu-
lar, we pay special attention to the curvature constraints enforced by the necessary
existence of Killing spinors on the spacetime background [35] and their compatibility
with the full scalar potential of higher-derivative supergravity. While the supersym-
metric Minkowski vacua are una�ected by the presence of the higher-derivatives,
as also noted in [13], the supersymmetric AdS4-vacua and the non-supersymmetric
vacua are altered. In particular, we argue that typically these vacua should not
admit any moduli space. Therefore, the higher-derivative operators are generically

3In general the on-shell action is a non-local action containing in�nitely many operators. In
particular, the linearized action refers to the on-shell action truncated at linear order in the coupling
of the operator.



5

important in the context of moduli stabilization. Finally, we discuss the form of
the higher-derivative operators for the special case where the leading order (two-
derivative) theory is given by a shift-symmetric no-scale model. These models ap-
pear in the context of the low-energy e�ective descriptions of certain string com-
pacti�cations. In particular, we demonstrate that the no-scale condition leads to
the vanishing of many leading-order contributions to the scalar potential. In this
context we also brie�y review the results of [36] where the shift-symmetric no-scale
models were classi�ed.

Finally, we turn to the discussion of the role of 4D higher-derivative operators
and perturbative (α′)3-corrections in the context of orientifold compacti�cations in
IIB string theory following [31], thereby providing a possible answer to the fourth
question. A subsector of the (α′)3-corrections to IIB supergravity is given by a con-
traction of four Riemann tensors, schematically denoted asR4 [27]. This fully known
term was used to infer new corrections to the Kähler potential of the Kähler moduli
in [28]. By performing a Kaluza-Klein (KK) decomposition we determine four-
derivative terms for a volume deformation from the R4-invariant. We then match
these four-derivative terms to a particular (supersymmetric) higher-derivative oper-
ator. Thereby, we can infer new F 4-type corrections to the scalar potential. These
descend from only partially known ten-dimensional (α′)3-corrections involving the
3-form gauge potentials of IIB supergravity. We then proceed to study the minima
of the scalar potential at order (α′)3 that is including also the correction determined
in [28]. We demonstrate the presence of a model-independent non-supersymmetric
minimum where all Kähler moduli are �xed. However, the existence of the mini-
mum requires that the Calabi-Yau threefold has a positive Euler number and that an
overall undetermined numerical prefactor of the F 4-term is negative. Computation
of this prefactor would require a full matching of the (α′)3-corrections to a combina-
tion of all higher-derivative operators for supergravity which we classi�ed in the �rst
part. This step will be performed in future work. In sum, these results suggest the
existence of a large class of new non-supersymmetric vacua in the landscape where
stabilization occurs purely from perturbative α′-corrections. Computationally these
vacua are more easily accessible since they only depend on topological numbers of
the threefold. Should the sign of the F 4-term turn out to be negative, they would
constitute a framework in which general aspects of string vacua could be studied.

Lastly, we investigate the possibility that the F 4-term yields a viable potential
for in�ation driven by a Kähler modulus following [37].4 For simplicity we consider
a setup where Kähler moduli stabilization occurs in the setup of the Large Vol-
ume Scenario (LVS) [30]. Here we also include the special KK- and winding-mode
string-loop corrections to the potential discussed in [41�43]. Furthermore, we em-
ploy the particular K3-�bered geometry considered in [39], since in this case the
�ber modulus is a �at direction and receives a potential only after including the
F 4-term or the aforementioned string-loop corrections. In turn, this �eld can be
made parametrically light and, thus, may play the role of the in�aton. Here we pro-
pose a stabilization of the �ber modulus via an interplay between the F 4-term and

4For earlier works on Kähler moduli in�ation see [38�40].
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the string-loop corrections. In this case the F 4-term leads to viable plateau-type
potentials similar to the proposed in�ationary scenario of [44].

This thesis is organized as follows. In chapter 2 we discuss higher-derivative
theories in �at and curved superspace and determine the vacuum structure of these
theories. In chapter 3 we study Calabi-Yau orientifold �ux-compacti�cations of
IIB string theory and the emergence of 4D higher-derivative operators from (α′)3-
corrections. In chapter 4 we investigate the implications of the novel F 4-type cor-
rection for moduli stabilization and in�ation. Thereafter, in chapter 5 we conclude
this thesis. In appendix A we present additional demonstrations regarding gen-
eral theories with higher-derivatives as well as a catalog of component identities for
supergravity and, lastly, the classi�cation of higher-derivative operators for super-
gravity. Finally, in appendix B we provide additional technical proofs involving the
F 4-term descending from (α′)3-corrections.



Chapter 2

N = 1, D = 4 Supersymmetry,

Supergravity and Higher-Derivative

Operators

In this chapter we follow mostly the reference [32]. More precisely, sec. 2.3, sec. 2.4,
sec. 2.5 and sec. 2.6 are taken from this reference. The exceptions in these sections
are sec. 2.3.4, sec. 2.5.7 and sec. 2.6.3 which review content of [31]. Lastly, sec. 2.7
reviews the reference [36], but also contains a discussion from [32].

2.1 A Primer on Higher-Derivative Operators

We begin this section by giving a brief overview of how higher-derivatives arise in
the context of e�ective �eld theory, which problems theories with higher-derivatives
have to face and how these problems can be resolved by appealing to EFT principles.
Since these subjects are independent of whether the theory is supersymmetric or not,
we explicitly prepone this discussion.

As an example let us consider an ordinary two-derivative theory of two real scalar
�elds l, h subject to the Lagrangian

Lh+l = −1

2
∂ah∂

ah− 1

2
∂al∂

al − 1

2
m2
l l

2 − 1

2
m2
hh

2 −mhllh , (2.1)

where we use a = 0, . . . , 3 as a label for Minkowski-space. Suppose that ml � mh

that is l is much lighter than h. If we are interested in physics at scales much smaller
than mh, then it su�ces to discuss an EFT obtained by integrating out h. At the
classical level we integrate out h by solving its respective equation of motion, which
yields

h = −mhl

m2
h

(
1− �

m2
h

)−1

l = −mhl

m2
h

∞∑
i=0

(−1)i
(
�
m2
h

)i
l (2.2)
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and reinsert this result back into eq. (2.1).5 This way we obtain a non-local theory
which includes an in�nite tower of higher-derivatives acting on l. Since we cannot
include all possible quantum corrections, we would violate the principles of e�ective
�eld theory by taking into account the complete in�nite sum of higher-derivatives.
Therefore, and for computational reasons we need to obtain a local theory and,
hence, we must truncate the in�nite tower to a �nite number of terms. This pro-
cedure indirectly introduces new degrees of freedom into the theory. Naively, these
emerge from the fact that now the �eld equations for l are not second order anymore
but include higher-derivatives acting on l. In the respective Cauchy problem, these
higher-derivatives require speci�cation of additional initial data and, therefore, cor-
respond to new degrees of freedom. For instance if we keep terms up to O(1/m8

h)
then a new �eld given by

φ� ≡ �l (2.3)

enters the theory as a dynamical degree of freedom. In [1] it was noticed that
such types of degrees of freedom can be reformulated in a two-derivative language,
but the higher the order of derivatives acting on l can be found in the Lagrangian
the more degrees of freedom are required for the reformulation. In addition, the
new degrees of freedom generically have the wrong sign of the kinetic term and,
therefore, constitute ghosts, that cause harmful instabilities in both the classical as
well as quantum version of the theory. Thus, local theories with higher-derivatives
are usually ruled out as candidates for UV-complete theories, see for instance [45, 46]
for a discussion in the context of gravity. However, generic EFTs must include
higher-derivatives, unless there is a symmetry which forbids them all, and they also
have to be local theories. Moreover, in particular examples in which we can see
how EFTs descend from ultraviolet physics as in our example above, we know that
the UV theory is fully well-behaved and that there are no ghosts in its spectrum.
Therefore, the higher-derivative degrees of freedom must be unphysical. One may
ask which principle or computational tool allows us to make the above observations
manifest? Fortunately, the answer was already given in [6, 7]. The authors of these
references proposed to restore the principles of EFT by imposing that the solutions
to the equations of motion are perturbative in control parameters of the EFT, such as
the inverse cut-o� scale Λ−1. In [6] it was shown that thereby the harmful ghostlike
degrees of freedom are e�ectively removed from the spectrum and that the theory
is well-behaved. In particular, the higher-derivatives then correct the dynamics of
the ordinary two-derivative theory only by Λ-suppressed corrections just as it is
expected for an EFT.

To illustrate further why the interpretation of [6, 7] is necessary, we turn again
to our example in eq. (2.1) to make another observation about the higher-derivative
degrees of freedom. Let us canonically normalize the �eld φ� as de�ned in eq. (2.3).
Up to some numerical factor, the canonical normalization amounts to introducing

φc ∼
mlh

m4
h

�l . (2.4)

5The geometric series converges, since we are assuming that we are interested at energies much
smaller than m2

h and, therefore, (�/m2
h)l� 1.
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From eq. (2.1) we see that the mass of φc is given by mh up to some O(1) constant
or a possible sign factor. Now, if we consider φc to be part of the physical spectrum
then we have a direct contradiction to the fact that we started by integrating out h
to obtain a low-energy EFT for the light degree of freedom l. In other words once
we identify φc as a degree of freedom we should immediately eliminate it from the
spectrum by integrating it out. However, integrating out this �eld is nothing else,
but solving the equations of motion for l perturbatively in powers of 1/m2

h and,
hence, equivalent to the proposal of [6, 7].

We now turn to theories with supersymmetry. After establishing the usual no-
tations and conventions we proceed to discuss supersymmetric theories with higher-
derivatives. There we will encounter new problems which we analyze and discuss in
the spirit of this primer.

2.2 Basic Notions of N = 1, D = 4 Supersymmetry

In this section we review the basics of N = 1, D = 4 supersymmetry, the superspace
formalism and the construction of supersymmetric actions. The supersymmetry
algebra is a generalization of the Poincaré algebra that contains, for the case of
N = 1, D = 4, two additional generators which are given by a pair of left- and
right-handed Weyl spinors Qα and Q̄α̇. The crucial part of the supersymmetry
algebra is then given by

{Qα, Q̄α̇} = 2Pαα̇ , {Qα, Qβ} = {Q̄β̇, Q̄α̇} = 0 , (2.5)

where Pαα̇ is the generator of spacetime translations. It is convenient to discuss
supersymmetric theories in superspace, which is an eight-dimensional super-manifold
that simultaneously describes spacetime as well as Grassmann-space. For theories
with global N = 1 supersymmetry the respective superspace is a generalization of
Minkowski space and has a �at geometry. We begin by recapitulating the basics on
�at superspace and theories with global supersymmetry, adopting the notations and
conventions of [34]. We choose �at superspace to be parametrized by the variables

zA = (xa, θα, θ̄α̇) , a = 0, . . . , 3 , α, α̇ = 1, 2 . (2.6)

In the following, let us denote a, b, c, . . . as Minkowski space indices and α, β, α̇, β̇, . . .
as �at Grassmann space indices. Moreover, we introduce integration measures over
�at superspace as follows

d8z = d4x d4θ = d4x d2θ d2θ̄ , d6z = d4x d2θ , d6z̄ = d4x d2θ̄ . (2.7)

Supersymmetric �eld theories are built by considering �elds that map to superspace,
the so-called super�elds. Via the Grassmann-algebra these objects have a �nite θ,
θ̄ expansion which for a generic super�eld f reads

f(x, θ, θ̄) = f0(x) + θf1(x) + θ̄f2(x) + θθf3(x) + θ̄θ̄f4(x) + θσaθ̄f
a
5 (x)

+ θθθ̄f6(x) + θθ̄θ̄f7(x) + θθθ̄θ̄f8(x) ,
(2.8)
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where σa denote the Pauli σ-matrices, see appendix A.1 for the conventions we use
here. Super�elds already transform as representations of the supersymmetry algebra
and are therefore ideal candidates to construct supersymmetric theories. However,
a general super�eld forms a reducible representation. To �nd more interesting rep-
resentations we have to consider constrained super�elds. The constraints have to
be implemented in such a way, that the constrained super�elds still form represen-
tations of the supersymmetry algebra. This is achieved by considering the so-called
superspace-derivatives, which are given by

DA = (∂a, Dα, D̄
α̇) , (2.9)

where ∂a denotes the usual spacetime-derivative and the spinorial components of
DA read

Dα =
∂

∂θα
+ iσaαα̇θ̄

α̇ ∂

∂xa
and D̄α̇ = − ∂

∂θ̄α̇
− iθασaαα̇

∂

∂xa
. (2.10)

These derivatives form the following algebra

{Dα, D̄β̇} = −2iσa
αβ̇
∂a ,

{Dα, Dβ} = {D̄α̇, D̄β̇} = [Dα, ∂a] = [D̄α̇, ∂a] = 0 .
(2.11)

The spinorial components Dα and D̄α̇ have the property that they anticommute
with Qα and Q̄α̇. Therefore, when we impose constraints by acting with spinorial
superspace derivatives on super�elds it is guaranteed that the constrained super�elds
form representations of the supersymmetry algebra. For instance by imposing the
constraints

D̄α̇Φ = DαΦ̄ = 0 , (2.12)

we obtain super�elds which are denoted as chiral and anti-chiral respectively. A
super�eld V which obeys V = V † is denotes as real super�eld. Of interest are also
real super�elds L which additionally satisfy the constraint

D2L = D̄2L = 0 , (2.13)

where we introduced the conventions

D2 = DαDα , D̄2 = D̄α̇D̄
α̇ . (2.14)

Super�elds with the property in eq. (2.13) are denoted as real linear super�elds. In
the following we are mostly interested in chiral super�elds. Eq. (2.12) introduces
relations among the components of the generic θ-expansion for Φ as in eq. (2.8) and
can be simpli�ed to

Φ = A+
√

2θχ+ θ2F + iθσaθ̄∂aA− i√
2
θθ∂aχσ

aθ̄ +
1

4
θ2θ̄2�A , (2.15)

where A is a complex scalar, χ a Weyl spinor and F a complex scalar, which is called
auxiliary �eld. We abbreviate the component-expansion for chiral super�elds as
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Φ = (A,χ, F ). Similarly, eq. (2.13) leads to an expansion for L which is determined
by a real scalar L together with a two-form B2 and a Majorana-spinor η. In tab. 2.1
we collect some of the important supersymmetry multiplets and their component
�elds. We have also included the gravity and a higher-derivative multiplet in this
list. The former will be explained in more detail when we discuss supergravity and
the latter we will investigate now.

Multiplet Super�eld Content

Gravity (old minimal) R,Ga,Wαβγ (gmn, ψm,M, bm)

Real Linear L (L, η,B2)

Chiral Φ (A,χ, F )

Chiral (higher-derivative) Ψ (F̄ ,−iσa∂aχ̄,�Ā)

Table 2.1: Various o�-shell representations of the N = 1 supersymmetry algebra
in D = 4 spacetime dimensions. The respective super�elds and components are also
displayed.

Let us introduce the special super�elds

Ψ̄ ≡ −1
4
D2Φ , Ψ ≡ −1

4
D̄2Φ̄ , (2.16)

which will be of interest later on during the discussion of higher-derivatives. From
the commutation relations in eq. (2.11) we �nd that the superspace derivatives obey
the identities

DαDβDγ = D̄α̇D̄β̇D̄γ̇ = 0 , (2.17)

DαDβ = 1
2
εαβD

2 , D̄α̇D̄β̇ = −1
2
εα̇β̇D̄

2 . (2.18)

Eq. (2.17), in turn, implies that Ψ is a chiral and Ψ̄ an anti-chiral super�eld. More
precisely, the component expansion of Ψ̄ reads

Ψ̄ = F −
√

2i∂aχσ
aθ̄ + θ̄2�A− iθσaθ̄∂aF + 1√

2
θ̄2θ�χ+ 1

4
θ4�F . (2.19)

Therefore, we can abbreviate the component form as Ψ̄ = (F, iσa∂aχ,�A) and,
similarly, Ψ = (F̄ ,−iσa∂aχ̄,�Ā).

We are now in a position to start discussing supersymmetric Lagrangians. Gener-
ally, supersymmetric Lagrangians are constructed from θ2θ̄2-components of arbitrary
super�elds. Equivalently, we can �rst project an arbitrary super�eld f onto its chi-
ral component by acting with D̄2 and then take the θ2-component of this truncated
chiral super�eld to obtain a supersymmetric Lagrangian. However, if we want to
keep only terms with at most two derivatives then it is convenient to distinguish
these two terms and write them down independently. For instance, we may write
an action for a chiral super�eld Φ in the following way

L0[Φ, Φ̄] =

∫
d4θK(Φ, Φ̄) +

∫
d2θW (Φ) + h.c. , (2.20)
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whereK is a real function and can be understood as a Kähler potential of a respective
Kähler manifold which the chiral scalars locally parametrize. The object W is a
chiral super�eld and denoted as superpotential. L0 describes the general theory of
an ungauged chiral multiplet with at most two derivatives.

2.3 Higher-Derivative Actions in Flat N = 1, D = 4

Superspace

So far we have considered the Lagrangian to include at most two derivatives. Under
this assumption the general theory for ungauged chiral multiplets is of the form
in eq. (2.20). However, following our overview in sec. 2.1 in a generic EFT also
higher-derivative operators have to be present. In the superspace formalism higher-
derivatives are realized by acting with superspace-derivatives on super�elds. In fact,
it can be demonstrated that DA are the only objects that fully (anti-) commute with
the supersymmetry generators [16] and, therefore, the only way to obtain higher-
derivatives in superspace. In conclusion, the general superspace e�ective action for
a theory describing an ungauged chiral multiplet is of the form

Sgen =

∫
d8zK(Φ, Φ̄, DAΦ, DBΦ̄, DADBΦ, . . . )

+

∫
d6zW(Φ, ∂aΦ, D̄

2Φ̄, ∂a∂bΦ, . . . ) + h.c. ,

(2.21)

where the dots indicate a dependence on higher superspace-derivatives acting on Φ
or Φ̄. To guarantee that the above action is supersymmetric W must only depend
on chiral super�elds.6 Furthermore, we have introduced new symbols K for the d4θ-
integrand and W for the d2θ-integrand to distinguish these objects from the Kähler
potential K and superpotential W in eq. (2.20).

The general action in eq. (2.21) is a rather complicated quantity which depends
on in�nitely many higher-derivative super�elds. However, many higher-derivative
operators in Sgen contribute only kinetic terms for the component �elds. In this
section we focus purely on the special subclass of higher-derivative operators which
manifestly contribute to the scalar potential. We will show that, if we allow the
action to depend only on this subclass of operators, then the structure of the action
simpli�es considerably.

Let us demonstrate, how we can obtain the general form of the o�-shell super-
space e�ective action under the condition that all terms in this action manifestly
contribute to the scalar potential. From now on let us refer to this action as Se�.
This action �rst appeared in [15, 16] where it was determined in the context of
Wilsonian e�ective actions and computed for a notable example, namely the one-
loop Wess-Zumino model in [15, 17, 18]. To determine Se� we evaluate Sgen at the
condition

∂aΦ = ∂aΦ̄ = 0 . (2.22)

6Indeed, ∂aΦ and ∂a∂bΦ are chiral super�elds due to eq. (2.11).
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Since the spinorial super-derivatives commute with ∂a, all operators which we set to
zero via the above condition contribute only to the kinetic part of the Lagrangian
and are, therefore, irrelevant in our analysis. Moreover, note that the constraint in
eq. (2.22) respects supersymmetry. When evaluating the general action in eq. (2.21)
at the condition in eq. (2.22) the resulting action Se� greatly simpli�es [15, 16].
Taking an EFT perspective we give an alternative derivation of Se� in appendix A.2.
There we also demand that Se� does not exhibit any redundancy in the operators
that it includes. Brie�y summarized appendix A.2 consists of two parts. Firstly, we
show that a dependence of the action on the superspace derivatives acting on Φ and
Φ̄ is restricted by the (anti-)commutation relations in eq. (2.11). Secondly, using
integration by parts identities we reduce the e�ective action even further, such that
�nally one is left with

Seff =

∫
d8zK(Φ, Φ̄,Ψ, Ψ̄) +

∫
d6z W (Φ) + h.c. . (2.23)

Up to some minor di�erences regarding possible redundancies of operators, this
coincides with the action that was already obtained in [15, 16].

Let us pause a moment to clarify the physical meaning of the additional de-
gree of freedom associated with Ψ. As displayed in eq. (2.19) the fermionic- and
θ2-components of Ψ are given by higher-derivatives of the chiral scalar and chiral
fermion σa∂aχ̄ and �Ā. In the sense of the Ostrogradski-procedure these higher-
derivatives constitute additional degrees of freedom [1]. However, since we are dis-
cussing theories with o�-shell supersymmetry the number of bosonic and fermionic
degrees of freedom must match and, furthermore, allow a description in terms of
an appropriate multiplet. This matching is achieved when taking into account the
auxiliary �eld F̄ , such that the collection of component �elds �ts nicely into the
chiral multiplet Ψ.

2.3.1 General Scalar Potential in Higher-Derivative Theory

It is now straightforward to generalize the result in eq. (2.23) to the case of a collec-
tion of nc chiral super�elds Φi, i = 1, . . . , nc. We denote the respective components
as Φi = (Ai, χi, F i) and

Ψi = −1
4
D̄2Φ̄i = (F̄ i,−iσa∂aχ̄i,�Āi) ,

Ψ̄̄ = −1
4
D2Φ̄ = (F ̄, iσa∂aχ

̄,�A̄) .
(2.24)

The appropriate multi-�eld generalization of eq. (2.23) is now readily obtained and
reads

Le� =

∫
d4θK(Φi, Φ̄̄,Ψk, Ψ̄l̄) +

∫
d2θW (Φi) + h.c. , (2.25)

which should be completed by adding a Lagrange multiplier whose equation of mo-
tion is equivalent to eq. (2.24).

Next, let us determine the component version of Le�. We understand the La-
grangian in eq. (2.25) as an ordinary theory with Kähler potential K and superpoten-
tial W , such that the respective Kähler manifold is 2nc-dimensional, together with
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the additional constraints in eq. (2.24). Therefore, the θ-integration in eq. (2.25)
can be performed straightforwardly. We can simply use the component Lagrangian
of the two-derivative theory displayed in [34] and insert the constraints in eq. (2.24)
for the components of Ψ, Ψ̄. This procedure yields

Le� =−K,AiĀ̄ ∂aA
i∂aĀ̄ −K,AiF j∂aA

i∂aF j −K,Āı̄F̄ ̄ ∂aĀ
ı̄∂aF̄ ̄

−K,F iF̄ ̄ ∂aF
i∂aF̄ ̄ +K,AiF jF i�Aj +K,Āı̄F̄ ̄ F̄ ı̄�Ā̄

+K,F iF̄ ̄ �Ai�Ā̄ +K,AiĀ̄ F iF̄ ̄ + F iW,Ai + F̄ ı̄W̄,Ā̄ ,

(2.26)

where the super�elds K and derivatives thereof are understood as being evaluated at
their respective scalar component. As before, we display only the bosonic terms here.
Inspecting eq. (2.26) we observe that F i are now propagating degrees of freedom.
The second derivatives of K control the kinetic terms for the scalars and, hence,
determine whether the auxiliary �elds are propagating and, in particular, ghostlike
or not. We return to the discussion of the propagating auxiliary �elds in sec. 2.3.5.
For now we do not make any further assumptions about the kinetic terms.

We are intrigued to �nd a geometric understanding of eq. (2.26) and eq. (2.25). A
�rst guess would be that our theory is described by a 2nc-dimensional (pseudo-) Käh-
ler geometryMp.

7 However, the constraints in eq. (2.24) break the respective target
space reparametrization-invariance of the 2nc-dimensional geometry, and indeed it
is easily seen that eq. (2.26) does not support a reparametrization-invariance with
respect to a 2nc-dimensional (pseudo-) Kähler geometry. Nevertheless, the ordinary
reparametrization-invariance with respect to the chirals scalars Ai, Ā̄ parametriz-
ing an nc-dimensional complex manifoldM0 must be maintained. Suppose that we
are in a situation where we integrate out the auxiliary �elds. We will justify this
assumption later on in sec. 2.3.5. Via the interactions in eq. (2.26) the solutions to
the equations of motion for the auxiliary �elds formally read

F i = F i[Ai, Ā̄, ∂aA
i, ∂aĀ

̄, . . . ] , (2.27)

where the dots indicate a dependence on higher spacetime-derivatives of the chiral
scalars. Reparametrization-invariance with respect toM0 must, in particular, indi-
vidually hold for the scalar potential in eq. (2.26). To determine the scalar potential
we have to truncate F i given in eq. (2.27) so that only a dependence on Ai, Ā̄

remains.8 Then target space reparametrization-invariance necessarily requires that

ωF = F i(A, Ā)dAi + F̄ ı̄(A, Ā)dĀı̄ (2.28)

constitutes a one-form on M0. For clarity, note that F i and F̄ ı̄ in the above are
the truncated versions of eq. (2.27) for which we continue to use the same symbol.
From eq. (2.28) we learn that it is natural to discuss the scalar potential in eq. (2.26)

7A pseudo-Kähler manifold obeys the same conditions as a Kähler manifold, but instead of
being equipped with a positive de�nite metric it is endowed with an inde�nite bilinear form. This
situation occurs when the auxiliary �elds are ghostlike or remain algebraic degrees of freedom.

8This truncation is achieved by evaluating eq. (2.27) at the conditions ∂aA
i = ∂aĀ

̄ = · · · = 0
where the dots indicate all possible higher spacetime-derivatives of the chiral scalars.
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in the context of the cotangent-bundle T ∗M0. Target space invariance requires,
furthermore, that K transforms as a scalar on the cotangent-bundle or in other
words that it constitutes a zero-form on T ∗M0. Note that this requirement is by no
means automatically guaranteed but restricts the possible choices of K.

Checking the invariance of the kinetic terms in eq. (2.26) under reparametriza-
tions of Ai, Ā̄ is considerably more involved. In particular, the transformation
behavior of the auxiliary �elds must necessarily di�er from eq. (2.28) when includ-
ing the dependence of F i on spacetime-derivatives of the chiral scalars which was
indicated in eq. (2.27). The general discussion of these transformation properties is
rather involved and we omit their discussion here.9

One may wonder whether the manifoldM0 is still endowed with a Kähler struc-
ture. In eq. (2.26) the kinetic terms for the chiral scalars are multiplied by a com-
plicated metric which in general is not even hermitian. In the usual sense of a
non-linear sigma model we, therefore, do not have a Kähler structure here. How-
ever, since we are interested in the general scalar potential and not in the general
two- or higher-derivative component action, it is interesting to identify a geometric
meaning of the scalar potential alone. Indeed, the scalar potential induced by K is
given as the pseudo-norm of the one-form ωF with respect to the bilinear form K,AiĀ̄ .
This object indeed de�nes a pseudo-Kähler structure onM0 and in the limit where
all higher-derivative operators vanish this structure reproduces the Kähler structure
of the ordinary two-derivative theory.

Finally, let us make a comment regarding Kähler-invariance. Since eq. (2.25) is
a theory of chiral multiplets only, we observe that Le� enjoys a respective extended
Kähler invariance. The corresponding Kähler-transformations are of the form

K(Φi, Φ̄̄,Ψk, Ψ̄l̄) −→ K(Φi, Φ̄̄,Ψk, Ψ̄l̄) +G(Φi,Ψj) + Ḡ(Φ̄̄, Ψ̄l̄) , (2.29)

where G is an arbitrary holomorphic function and Ḡ the respective anti-holomorphic
function.

2.3.2 Alternative Higher-Derivative Lagrangian

Let us mention a second higher-derivative Lagrangian, which is of interest. This
Lagrangian also describes the general e�ective scalar potential but it does not in-
duce kinetic terms for the auxiliary �elds. Moreover, the requirement of target
space-invariance is, at least in parts, more easily realized here. We construct this
Lagrangian from eq. (2.25) via the following instruction. Inside each operator in
K, which includes at least one factor of ΨiΨ̄̄, we replace this factor by a term
DαΦiDαΦjD̄α̇Φ̄k̄D̄α̇Φ̄l̄ via the last identity in eq. (A.13). If this factor appears more
than once we perform this procedure only for one of them. The resulting Lagrangian

9However, the proper transformation behavior will place constraints on the allowed operators.
In particular, for a generic K it is not guaranteed that one can always choose the transformation
behavior of the auxiliary �elds appropriately. There might exist situations where it is necessary to
add further superspace higher-derivative operators which we excluded by means of eq. (2.22).
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can then be cast into the form10

L′e� =

∫
d4θ [K(Φ, Φ̄) + F(Φ, Φ̄,Ψ) + F̄(Φ, Φ̄, Ψ̄)] +

∫
d2θW (Φ) +

∫
d2θ̄ W̄ (Φ̄)

+
1

16

∫
d4θ Tijk̄l̄(Φ, Φ̄,Ψ, Ψ̄)DαΦiDαΦjD̄α̇Φ̄k̄D̄α̇Φ̄l̄ .

(2.30)
The object Tijk̄l̄ is a super�eld and in order to support reparametrization-invariance
it transforms as a tensor ofM0 [21]. From eq. (2.30) we observe that

Tijk̄l̄ = Tjik̄l̄ = Tjil̄k̄ . (2.31)

Furthermore this object has to be a hermitian tensor to ensure reality of the La-
grangian. Let us emphasize that L′e� and Le� are in general distinct and only the
respective scalar potentials coincide. More precisely, L′e� and Le� di�er by purely
kinetic superspace-operators.

For completeness we also determine the component form of L′e�. To this end
it is necessary to compute the last integral in eq. (2.30). Using eq. (2.10) and
the θ-expansion for the (anti-) chiral super�eld in eq. (2.15) one �nds by direct
computation

DαΦiDαΦjD̄α̇Φ̄k̄D̄α̇Φ̄l̄|bos =

16
[
(∂aA

i∂aAj)(∂bĀ
k̄∂bĀl̄)− 2F iF̄ k̄(∂aA

j∂aĀl̄) + F iF jF̄ k̄F̄ l̄
]
θ2θ̄2 ,

(2.32)

which, in turn, implies that the component version of L′e� reads

L′e� = −(K,AiĀ̄ + F,AiĀ̄ + F̄,AiĀ̄)∂aA
i∂aĀ̄ − F̄,AiF j∂aA

i∂aF j

−F,Āı̄F̄ ̄∂aĀ
ı̄∂aF̄ ̄ + F̄,AiF jF i�Aj + F,Āı̄F̄ ̄F̄ ı̄�Ā̄

+ (K,AiĀ̄ + F,AiĀ̄ + F̄,AiĀ̄)F iF̄ ̄ + F iW,i + F̄ ı̄W̄,̄ı

+ Tijk̄l̄

[
(∂aA

i∂aAj)(∂bĀ
k̄∂bĀl̄)− 2F iF̄ k̄(∂aA

j∂aĀl̄) + F iF jF̄ k̄F̄ l̄
]
.

(2.33)

Even though the above Lagrangian depends on ∂aF , inside the equations of motion
for the auxiliary �elds this dependence cancels out and the resulting equations are
purely algebraic. More precisely the equations of motion for the auxiliary �elds read

F,Āı̄Ā̄F̄ n̄

(
∂aĀ

ı̄∂aĀ̄ + F̄ ı̄�Ā̄
)

+ (K,AiĀn̄ + F,AiĀn̄ + F̄,AiĀn̄)F i

+ 2F,Āı̄F̄ n̄�Āı̄ + W̄,n̄ + F,AiĀ̄F̄ n̄F iF̄ ̄ + 2Tijk̄l̄F
i
(
F jF̄ l̄ − ∂aAj∂aĀl̄

)
+ Tijk̄l̄,F̄ n̄

[
(∂aA

i∂aAj)(∂bĀ
k̄∂bĀl̄)− 2F iF̄ k̄(∂aA

j∂aĀl̄) + F iF jF̄ k̄F̄ l̄
]

= 0 .

(2.34)

In the next section we will analyze the equations of motion for the F i and the scalar
potential more closely.

10The factor of 1/16 is introduced purely for convenience here.
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2.3.3 On-Shell Action and E�ective Field Theory

So far we have discussed superspace actions for the general scalar potential which
are o�-shell by construction. Ultimately, one is interested in the on-shell action and,
hence, in the solution to the equations of motion for the auxiliary �elds. In this
section we study the equations of motion for the auxiliary �elds in the context of
e�ective �eld theory and, in particular, clarify the apparent presence of multiple
on-shell theories.

In the following, for the sake of simplicity and brevity we set nc = 1 and perform
the discussion using the Lagrangian in eq. (2.26). The fact that this Lagrangian
may include kinetic terms for F is of no relevance here. We conduct a brief separate
discussion of these kinetic terms in sec. 2.3.5. To emphasize the di�erence between
terms which are already present in the two-derivative theory and those that originate
from the higher-derivatives we split K up as follows

K(Φ, Φ̄,Ψ, Ψ̄) = K(Φ, Φ̄) + F(Φ, Φ̄,Ψ, Ψ̄) , (2.35)

such that F is at least linear in Ψ and/or Ψ̄.11 The respective o�-shell scalar potential
in eq. (2.26) reads

V = −K,AĀ|F |2 − FW,A − F̄ W̄,Ā−|F |2F,AĀ(A, Ā, F̄ , F ) . (2.36)

We immediately observe that the corrections to the scalar potential of the two-
derivative theory are at least cubic in the auxiliary �eld. The on-shell scalar po-
tential is obtained by determining the solution to the equation of motion for F ,
evaluating the solution at ∂aA = ∂aĀ = 0 and �nally inserting the result into the
expression above. As we already mentioned we still have to integrate out F, F̄ even
if a kinetic term for these �elds is present. Thereby, terms proportional to ∂aF, ∂aF̄
only induce additional kinetic operators for A, Ā after solving the equations of mo-
tion for F, F̄ and, hence, do not have to be taken into account for the discussion of
the scalar potential. Therefore, we can simply ignore all kinetic contributions inside
the equations of motion for F and F̄ . In particular, the equations of motion for F̄
then read

K,AĀF + W̄,Ā + FF,AĀ(A, Ā, F̄ , F )+|F |2F,AĀF̄ (A, Ā, F̄ , F ) = 0 . (2.37)

Contrary to the situation of the ordinary two-derivative theory where the equation
of motion for F is just a linear algebraic equation, in the general higher-derivative
theory we have to deal with a general algebraic equation, which does not even have
to be polynomial. This is due to the fact that in general F can be given by an in�nite
power series in Ψ and Ψ̄. However, in a local theory this sum has to be �nite and
therefore an upper bound on the number of derivatives must exist, let us denote it
as 2N , such that

F =
∑

1≤n+m≤N

Tnm(Φ, Φ̄)ΨnΨ̄m , (2.38)

11The object F was already introduced in [15, 16] and denoted as the e�ective auxiliary �eld
potential (EAFP).
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where we assume that also the coe�cient functions Tij are truncated appropriately.
When inserting eq. (2.38) into eq. (2.37), we observe that the equations of motion
for F allow for up to N + 1 solutions and, hence, we obtain up to N + 1 distinct
on-shell Lagrangians. In general these Lagrangians describe inequivalent dynamics
for the scalar �eld (and chiral fermion) and, thus, we loose predictability of the
classical dynamics.

In the following, we analyze the behavior of the di�erent on-shell Lagrangians
taking a bottom-up perspective. Let us assume our theory is an e�ective �eld
theory valid up to some cut-o� scale Λ and that all operators consistent with the
symmetries are present. The relevant mass-dimensions of the �elds and quantities
in the Lagrangian are given by

[A] = [Ā] = Λ , [F ] = [F̄ ] = Λ2 ,

[K] = [F] = Λ2 , [W ] = [W̄ ] = Λ3 .
(2.39)

It is convenient to expand K and W in inverse powers of this cut-o� scale. The
lowest order terms of this expansion read

K(A, Ā) = |A|2 +O(Λ−1) ,

F(A, Ā, F̄ , F ) =
|A|2

Λ2
(TF + T̄ F̄ ) + · · ·+O(Λ−3) ,

W (A) = Λ3

[
w0
A

Λ
+ w1

A2

Λ2
+O(Λ−3)

]
,

(2.40)

where for brevity we displayed only those leading order terms which contribute to
the scalar potential. For instance, we did not explicitly display all operators of order
O(Λ−1) and O(Λ−2) in F, since some operators do not contribute in eq. (2.37) but
only modify the kinetic terms of the on-shell Lagrangian. We observe that when
performing the limit Λ → ∞ in the above o�-shell Lagrangian, we recover the IR
renormalizable two-derivative theory described by a canonical Kähler potential and
a superpotential with at most cubic terms, just as demanded by the decoupling
principle. Let us now analyze the behavior of the respective on-shell theories.

After inserting eq. (2.40) into eq. (2.37) we expand the equation of motion in
powers of Λ. It is easy to see that this expansion starts at order Λ2. Therefore, the
formal solution of eq. (2.37) can be written as

F = Λ2
∑
n=0

F(n)

Λn
, (2.41)

where F(n) has mass dimension n. After inserting the above form of F into eq. (2.37)
we �nd that at leading order in Λ we have to solve the following equation

F(0) + w0 + F(0)F,AĀ(0, 0, F̄(0), F(0)) + |F(0)|2 F,AĀF̄ (0, 0, F̄(0), F(0)) = 0 . (2.42)

This equation already su�ces to conceptually understand the behavior of the plethora
of solutions to eq. (2.37). Let us clarify that a solution for F is uniquely determined
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once the solution for F(0) is �xed via eq. (2.42). This is due to the fact that we
solve the equations of motion perturbatively in Λ. In particular, when expanding
eq. (2.37) the next-to-leading order in Λ yields an equation which is linear in F(1)

and, hence, uniquely �xes F(1). This linear structure persists at higher orders such
that the solution is uniquely �xed. For the discussion of the solutions to eq. (2.42)
we distinguish theories with and without tadpole-like terms in the superpotential.

Superpotential with Tadpole Terms

Suppose that w0 6= 0 in eq. (2.40), such that the ordinary two-derivative theory
includes constant and tadpole-like terms in the on-shell Lagrangian. Then all
(N + 1) solutions to eq. (2.42) are non-zero and the higher-derivative operators
induce Tnm(0, 0)-dependent corrections to the constant and tadpole term in the on-
shell Lagrangian. In fact, every o�-shell higher-derivative, regardless of the number
of superspace-derivatives, contributes to these terms. Thus, we have a sensitivity to
an in�nite number of operators.

Absence of Tadpole Terms

Let us now look at the theories with w0 = 0. In this case eq. (2.42) admits one
solution F(0) = 0 as well as up to N additional solutions with F(0) 6= 0. For F(0) = 0
we �nd a scalar potential which agrees with the scalar potential of the two-derivative
theory up to operators of mass dimension three. More precisely, it reproduces the
quadratic term of the two-derivative theory, but induces Tnm-dependent corrections
starting at cubic order in A and Ā and, thus, can be regarded as contributing to the
on-shell Lagrangian at subleading order. The remaining N solutions with F(0) 6= 0,
however, contribute constant and linear terms to the scalar potential, which in the
infrared-regime are dominant over the quadratic terms of the two-derivative the-
ory. In this sense they cannot be regarded as correcting the Lagrangian of the
ordinary two-derivative theory at subleading order and contradict the fact that the
leading order infrared dynamics are captured by K and W and, therefore, violate
the decoupling principle. To emphasize this further let us consider a superpotential
W (A) ∼ Λ3(A/Λ)n for some n > 3. Then the scalar potential of the two-derivative
theory consists purely of irrelevant mass dimension (2n−2)-operators, but the solu-
tions with F(0) 6= 0 still induce all possible relevant operators. In particular, in this
situation the IR-dynamics are entirely governed by the higher-derivative contribu-
tion and not by the ordinary two-derivative part of the Lagrangian.

In summary, the above analysis shows that there always exists a unique theory
given by F(0) = 0 which is in agreement with the principles of EFT, unless the
theory has spurious tadpole-like terms. The remaining theories are unphysical and
we regard them as artifacts of a truncation of an in�nite sum of higher-derivatives.
We will substantiate this interpretation in the next section. Note that the above
discussion is reminiscent of our arguments in sec. 2.1. Similarly, we saw that ghost-
like degrees of freedom arise by truncating an in�nite series of higher-derivative
terms to a �nite sum and their appearance violates the principles of EFT as well.
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2.3.4 One-Loop Wess-Zumino Model

Following up on the general discussion of the previous section we now present an
explicit example which allows us to study the truncation of an in�nite sum of higher
superspace-derivative operators to a �nite sum and the structure of the equations
of motion for the F . The only example known so far for which an in�nite-derivative
action of the form in eq. (2.30) has been determined is the given by the one-loop
Wess-Zumino model. Indeed, following up on the earlier works [15, 17] in [18] an
action of the form as in eq. (2.30) was computed. Let us begin by brie�y summarizing
the result of this reference. The Wess-Zumino model describes a renormalizable
theory of a single chiral super�eld with a Kähler potential and superpotential of the
form

K(Φ, Φ̄) = ΦΦ̄ , W (Φ) =
1

2
mΦ2 +

1

6
λΦ3 . (2.43)

The authors of [18] derived one-loop corrections of the form in eq. (2.30) with

F = 0 , T (Φ, Φ̄,Ψ, Ψ̄) =
1

(WΦΦW̄Φ̄Φ̄)2
G
(

ΨΨ̄

(WΦΦW̄Φ̄Φ̄)2

)
, (2.44)

where T ≡ TΦΦΦ̄Φ̄ and G is a real-valued analytic function such that the coe�cients
in its respective series expansion are non-vanishing at all orders, see [18] for the
explicit form of G. Since the Lagrangian includes an in�nite sum of higher-derivative
operators, the theory is non-local.

From eq. (2.44) we �nd that additional powers of ΨΨ̄ go hand in hand with
powers of

ε ≡ (WΦΦW̄Φ̄Φ̄)−2 . (2.45)

Therefore, ε controls the couplings of the expansion of T . In this sense, it plays a
role analogous to the inverse cut-o� scale Λ−1 of a generic EFT, as we discussed it in
the previous section. Therefore, even though we are not discussing an e�ective �eld
theory here, the important structure can be analyzed nevertheless. Turning now to
the component Lagrangian, the in�nite series in powers of |F |2 that emerges from
eq. (2.44) is correspondingly controlled by

ε = |m+ λA|−4 . (2.46)

Using the explicit form of the function G we performed a numerical analysis of the
non-polynomial equations of motion for F . As a result we �nd that there exists a
unique solution which is analytic in ε.12

We regard the non-local theory in eq. (2.44) as a UV-completion of a local theory
which is de�ned by truncating the in�nite tower in ΨΨ̄ to a �nite number of terms. In
addition, since ε is non-polynomial, it is mandatory to truncate this quantity as well
in order to obtain a fully local theory. Therefore, it would be necessary to expand
ε in some small parameter and truncate this expansion at an appropriate order.
While this step can be performed in a straightforward way we omit this detail here,

12The numerical analysis was performed with the help of Mathematica 10.
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as it does not provide additional insight into the structure of the series in higher-
derivatives. Therefore, we simply continue to use the symbol ε as controlling the
couplings of the |F |2-expansion.

Let us now proceed to study the equations of motion for F in the truncated
theory. In the following, let Gn denote the truncation of the series expansion of G
at order n. Ignoring the kinetic terms, eq. (2.34) reads

F + W̄ ′ + 2εF |F |2Gn(ε|F |2) + ε2F |F |4G′n(ε|F |2) = 0 . (2.47)

Firstly, we observe that Gn induces monomial terms in |F |2 up to degree n and,
hence, eq. (2.47) allows for up to (2n+ 3) independent solutions. To solve eq. (2.47)
we employ the following rede�nition of the auxiliary �eld

F = W̄ ′f . (2.48)

By inserting this rede�nition into eq. (2.47) we �nd that f has to be real-valued
and, hence, eq. (2.47) reduces to

f + 1 + 2εf 3|W ′|2Gn(εf 2|W ′|2) + ε2f 5|W ′|4G′n(εf 2|W ′|2) = 0 . (2.49)

To solve this equation we make an ansatz of the form

f =
∞∑

i=−1

εi/2fi , (2.50)

such that eq. (2.49) at lowest order in ε reads

f−1 + f 3
−1|W ′|2Gn(f 2

−1|W ′|2) + f 5
−1|W ′|4G′n(f 2

−1|W ′|2) = 0 . (2.51)

Since Gn is a polynomial of degree n with non-vanishing coe�cients we see that only
the branch given by f−1 = 0 is analytic. All other solutions, which are de�ned at
lowest order by the remaining 2n + 2 solutions of eq. (2.51) and necessarily ful�ll
f−1 6= 0, are non-analytic in ε for any n. These arguments are in perfect agreement
with the discussion of eq. (2.42) even though, as we already mentioned we are not
dealing with an EFT here.

Now we generally expect to be able to compute observables with higher precision
by including additional higher-order operators. Indeed, since the unique solution of
the non-local theory was analytic, the analytic solution of the truncated theory is
able to reproduce the Lagrangian of the non-local theory at order εn+1 and, thus,
mimics the non-local theory with better precision for larger n. However, regardless of
the order of the truncation the non-analytic theories fail to reproduce the non-local
theory to that speci�c order. We explicitly checked this for the �rst components in
the expansion in eq. (2.50).

2.3.5 Propagating Auxiliary Fields

Finally, let us return to the possibility that the auxiliary �elds obtain a kinetic term.
More precisely, when inspecting the Lagrangians in eq. (2.25) and eq. (2.26) we ob-
serve that depending on the signature of K,F iF̄ ̄ the auxiliary �elds may constitute
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propagating degrees of freedom. The degrees of freedom associated with F i are
related via supersymmetry to higher-derivative degrees of freedom given by σa∂aχ

i

and �Ai. As discussed in sec. 2.1 these degrees of freedom are usually unphysical
ghosts. We may consider this already as strong evidence that the propagating auxil-
iary �elds are of a similar nature. Additionally, in the spirit of the last paragraph in
sec. 2.1 we argue that these degrees of freedom are generically unphysical, indepen-
dent of the signature of the kinetic terms. This argument was already presented in
[20] for a particular operator of kinetic type, but applies equally in our discussion.
For simplicity we consider theories with nc = 1, a generalization to arbitrary nc
follows immediately. Keeping track of the mass dimensions, a generic expansion of
K reads

K(Φ,Φ†,Ψ,Ψ†) = K(Φ,Φ†) +
(
T10(Φ,Φ†)Ψ +

1

Λ2
T20(Φ,Φ†)Ψ2 + h.c.

)
+

1

Λ2
T11(Φ,Φ†)|Ψ|2+ . . . ,

(2.52)

where the dots indicate higher-order terms in Ψ,Ψ† and the super�elds T10, T11

and T20 are dimensionless. The last term in the above expression yields the �rst
contribution to the kinetic term for F . In the component version given in eq. (2.26)
it reads

Le� ⊃ −
1

Λ2
T11(Φ,Φ†)∂aF∂

aF̄ + . . . . (2.53)

Independently of the details of T11 the canonically normalized scalar �eld, let us
denote it by F̃ , therefore picks up a factor of 1/Λ. At leading order in the expansion
of K in Ψ and Ψ† this reads ΛF̃ ∼ F . Thus, when recasting the scalar potential
as given in eq. (2.36) in terms of F̃ we pick up an additional factor of Λ2 in the
terms that are at least quadratic in F and F̄ respectively. Generically, we therefore
expect F̃ to have a mass of order Λ. This is in contradiction with the assumption
that we are dealing with a low-energy e�ective �eld theory describing physics below
the cut-o� Λ and indicates that F̃ is not a physical degree of freedom and should
be integrated out. Hence, we must continue to treat the auxiliary �elds as algebraic
degrees of freedom. In this case the kinetic terms in eq. (2.53) yield kinetic and
higher-derivative terms for A, Ā after eliminating F, F̄ via their respective equations
of motion.

We now end the discussion of the e�ective scalar potential in global supersym-
metry and turn to the case of local supersymmetry.

2.4 Superspace Formulation of N = 1, D = 4 Super-

gravity

So far we have considered theories with global N = 1 supersymmetry which are
formulated in �at superspace. We now turn to N = 1 supergravity which is the
correct framework to study e�ective actions obtained from string compacti�cations.
Before we can discuss higher-derivative theories of supergravity we �rst have to
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establish the basics conventions and notation, which will be the subject of this
section. In the next section we then review the construction of the two-derivative
action for supergravity coupled to chiral multiplets. Afterwards, we turn to the
investigation of higher-derivatives.

Over the years several formalisms to construct supergravity actions have been en-
gineered including superspace-techniques as well as superconformal methods. Even
though more elegant versions of curved superspace, such as U(1)-superspace [47] or
conformal superspace [48], exist, we continue to use the ordinary Wess and Bagger
superspace-formalism and, hence, adopt the conventions and notations of [34]. This
has the advantage that we can directly compare our results to the existing literature
on higher-derivative supergravity, in particular to [20], but also to the results of the
rigid theory in the preceding sections. The superspace-formulation of supergravity
is highly reminiscent of the construction of ordinary gravity and involves studying
the di�erential geometry of curved superspace. In this section we begin by reviewing
the formalism and basic notions of the di�erential geometry of curved superspace
along the lines of [34].

We choose curved superspace to be locally parametrized by the variables

zM = (xm, θµ, θ̄µ̇) , m = 0, . . . , 3 , µ, µ̇ = 1, 2 . (2.54)

In the following m,n, . . . denote curved spacetime indices and µ, ν, . . . (µ̇, ν̇, . . . )
curved Grassmannian indices. The convention of summing over superspace indices
reads

dzMωM = dxmωm + dθµωµ + dθ̄µ̇ω
µ̇ . (2.55)

The geometry of curved superspace is described by a super-vielbein EA
M together

with a connection ΩMA
B. The vielbein converts curved superspace indices to local

�at superspace indices. Moreover, the connection allows us to introduce a super-
covariant derivative, which for instance acts on a vector �eld V A as

DMV A = ∂MV
A + (−1)mbV BΩMB

A , (2.56)

where m, b take values 0(1) if M,B are vector (spinor) indices. This covariant
derivative is the curved superspace analogue of the �at superspace derivative in
eqs. (2.9), (2.10). Naturally, we can de�ne a torsion

TMN
A = DNEA

M − (−1)nmDMEA
N , (2.57)

and, similarly, the super-curvature tensor

RNMA
B = ∂NΩMA

B − (−1)nm∂MΩNA
B + (−1)n(m+a+c)ΩMA

CΩNC
B

− (−1)m(a+c)ΩNA
CΩMC

B .
(2.58)

The torsion and curvature are the relevant objects required to express any geometric
quantity of curved superspace. In particular they determine the curved superspace
analogue of the (anti-) commutation relations in eq. (2.11). More precisely, we have

(DCDB − (−1)bcDBDC)V A = (−1)d(c+b)V DRCBD
A − TCBDDDV A . (2.59)
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The algebra of super-covariant derivatives plays an important role later in the dis-
cussion of higher-derivatives and we will make extensive use of it.

In analogy to ordinary gravity, the vielbein and the connection and, hence, the
torsion and curvature describe the gravitational degrees of freedom. These objects
contain a large number of component super�elds, which can be reduced to a minimal
set of super�elds by imposing constraints on the torsion. These constraints have to
be chosen, such that they reproduce the �at SUSY algebra in the rigid limit and
such that they allow to consistently de�ne covariantly chiral super�elds. Here we
follow the conventions of old minimal supergravity, see [34] for the constraints on
the torsion. The next step involves solving the respective Bianchi identities for the
curvature and torsion. Certain components of the torsion and curvature remain non-
vanishing, some of which are displayed in appendix A.3, and they can be expressed
entirely in terms of the vielbein as well as the following super�elds

R , R̄ , Ga , Wαβγ , W̄α̇β̇γ̇ . (2.60)

The super�elds R and Wαβγ are covariantly chiral, that is they satisfy

D̄α̇R = D̄α̇Wαβγ = 0 , (2.61)

while R̄, W̄α̇β̇γ̇ denote their conjugate super�elds, which are covariantly anti-chiral.

Moreover, Ga is a real super�eld Ḡa = Ga. Note also that Wαβγ and W̄α̇β̇γ̇ are
completely symmetric tensors.

As explained in [34] one may utilize the gauge symmetry to partially gauge-�x
the super�elds in eq. (2.60) as well as the super-vielbein. For instance, we may �x
the higher components of EA

M , but leave the θ = θ̄ = 0 component un�xed. This
procedure yields

EA
M |θ=θ̄=0 =

eam 1
2
ψαm

1
2
ψ̄mα̇

0 δαµ 0

0 0 δµ̇α̇

 , (2.62)

where eam denotes the graviton and ψαm the gravitino. Similarly, gauge-�xing the
super�elds R and Ga leaves only their θ = θ̄ = 0 components as degrees of freedom,
which are denoted as

R| = −1
6
M , Ga| = −1

3
ba , (2.63)

where from now on we use the convention R| ≡ R|θ=θ̄=0 for any super�eld.13 In
eq. (2.63) we �nd a complex auxiliary scalar M as well as a real auxiliary vector
ba. These auxiliary �elds are necessary in order to match the o�-shell counting of
bosonic and fermionic degrees of freedom. Altogether the gravitational multiplet
encompasses the component �elds (eam, ψ

α
m,M, ba).

In the following we are interested in the coupling of covariantly chiral multiplets
to supergravity. In analogy to �at superspace, covariantly chiral multiplets are
de�ned by the condition D̄α̇Φi = 0 and have the following components

Ai = Φi| , χiα = 1√
2
DαΦi| , F i = −1

4
D2Φi| , (2.64)

13Correspondingly, the lowest component of Wαβγ is given as a symmetrized combination of the
gravitino [34].



25

where D2 = DαDα. Similarly, we use the notation D̄2 = D̄α̇D̄α̇. It is convenient to
introduce a new Grassmann variable Θα, such that

Φi = Ai +
√

2Θαχiα + ΘαΘαF
i . (2.65)

Correspondingly we can introduce a di�erentiation and integration with respect to
Θα. In particular we have that ∫

d2Θ f ≡ −1
4
D2f | (2.66)

for any super�eld f . Via the Bianchi identities one can determine the Θ-expansion
of the super�eld R. Displaying only the bosonic terms it reads

R = −1
6

[
M + Θ2

(
−1

2
R+ 2

3
|M |2 + 1

3
bab

a − iema Dmba
)]

, (2.67)

where R denotes the scalar (spacetime) curvature. The formalism of this section
provides the tools to compute the component form for actions of matter-coupled su-
pergravity. In particular it will be necessary to determine components of super�elds
with several covariant derivatives. The general rule here is to iteratively apply the
(anti-) commutation relations in eq. (2.59) until the number of covariant derivatives
has reduced enough such that the respective component can be related to already
known objects such as the components in eqs. (2.64), (2.67). In appendix A.3 we
apply this algorithm to several super�elds, whose components are important in the
following sections.

2.4.1 Ordinary Matter-Coupled Supergravity

An action for supergravity coupled to chiral matter can be constructed following the
methods of �at superspace. We begin by reviewing the two-derivative Lagrangian in
order to familiarize ourselves with the derivation of the respective component action.
Furthermore, we revert back to some key formulas later on during the discussion of
higher-derivative operators.

Given some scalar super�eld U , we can construct a super-di�eomorphism invari-
ant action via the integral

SU =
1

κ2

∫
d8zEU , (2.68)

where E denotes the super-determinant of the super-vielbein, d8z the measure on
curved superspace and κ = M−1

p the inverse Planck mass, which in the following we
set to one.14 To ensure that SU is real, we have to consider a real scalar super�eld
U . Matter-coupled supergravity is constructed from the following super�eld

U(0) = −3e−K(Φ,Φ̄)/3 +
W (Φ)

2R
+
W̄ (Φ̄)

2R̄
, (2.69)

14If one is interested in the precise mass-scales appearing, it is straightforward to reintroduce κ
at any point.



26

where K is the Kähler potential and W the superpotential. For the purpose of
computing the component form of the action it is convenient to rewrite the action by
expressing it via a chiral integral. In �at superspace we can replace the d2θ̄ measure
by the object D̄2, which projects an arbitrary super�eld onto a chiral super�eld.
Due to the more complicated algebra of derivatives in eq. (2.59) the object D̄2 does
not project onto chiral super�elds. Instead the proper curved space generalization
is given by (D̄2 − 8R), which indeed has the property

D̄α̇(D̄2 − 8R)S = 0 (2.70)

for any scalar super�eld S.15 Owing to this property the object (D̄2−8R) is denoted
as chiral projector. Hence, to construct an action for supergravity we have to replace
the d2θ̄ integration by the chiral projector. Altogether, the action can be rewritten
as

S(0) =

∫
d4x

∫
d2Θ E

[
3
8
(D̄2 − 8R)e−

1
3
K(Φ,Φ̄) +W (Φ)

]
+ h.c. , (2.71)

where the object E , denoted as chiral density, is a chiral super�eld and enjoys the
expansion

E = e(1−Θ2M̄) , (2.72)

where e denotes the determinant of the vielbein eam and we displayed only the bosonic
components.

We now review the derivation of the component version of eq. (2.71). In the
following, we ignore the fermionic terms to shorten notation. Using eq. (2.66),
eq. (2.72) as well as the components in eq. (2.64) and eq. (2.67) one �nds

L(0)/e = − 3
32
D2D̄2e−K/3| − 3

32
D̄2D2e−K/3| − 1

2
M̄D̄2e−K/3| − 1

2
MD2e−K/3|

+W,iF
i + W̄,̄F̄

̄ −WM̄ − W̄M + e−K/3|
(
−1

2
R− 1

3
|M |2 + 1

3
bab

a
)
.

(2.73)
To proceed, we have to compute the respective θ = θ̄ = 0-components of the super-
�elds which appear in the above Lagrangian. Furthermore, we observe that L(0) is
not expressed in the Einstein frame. To obtain an Einstein frame action we perform
a Weyl-rescaling of the metric as follows

gmn −→ g̃mn = gmn e−K/3| . (2.74)

After replacing the super�elds with their component versions the resulting Weyl-
transformed Lagrangian reads

L(0)/e =− 1
2
R− 3

4
e2K/3∂m(e−K/3)∂m(e−K/3) + 1

3
bab

a + total derivative

+ e2K/3(−M̄W −MW̄ +WiF
i + W̄̄F̄

̄) +Ki̄ e
K/3F iF̄ ̄

− 1
3
eK/3(M +K̄F̄

̄)(M̄ +KiF
i)− (Ki̄ − 1

3
KiK̄)∂mA

i∂mĀ̄

− i
3
baema (Ki∂mA

i −K̄∂mĀ
̄) .

(2.75)

15Eq. (2.70) still holds for tensor super�elds of the type Sα1...αn .
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Next we successively integrate out the auxiliary �elds. The equations of motion for
the auxiliary vector yield

ba(0) = i
2
ηabemb (Ki∂mA

i −K̄∂mĀ
̄) . (2.76)

Inserting this into the component Lagrangian we �nd

L(0)/e =− 1
2
R−Ki̄ ∂mA

i∂mĀ̄ − 1
3
eK/3(M +K̄F̄

̄)(M̄ +KiF
i)

+Ki̄ e
K/3F iF̄ ̄ + e2K/3(−M̄W −MW̄ +WiF

i + W̄̄F̄
̄) .

(2.77)

The equations of motion for M are solved by

M̄(0) = −(KiF
i + 3W̄eK/3) , (2.78)

which, when inserted back into L(0), yields

L(0)/e =− 1
2
R−Ki̄ ∂mA

i∂mĀ̄ +Ki̄ e
K/3F iF̄ ̄ + 3|W |2eK

+ e2K/3(DiWF i +D̄W̄ F̄ ̄) .
(2.79)

Lastly the equations of motion for the chiral auxiliary �elds read

F̄ ̄
(0) = −eK/3Ki̄DiW , (2.80)

which results in the familiar scalar potential

V(0) = eK(Ki̄DiWD̄W̄ − 3|W |2) , (2.81)

where DiW = Wi +KiW denotes the Kähler-covariant derivative.

2.5 Higher-Derivatives in Curved N = 1, D = 4 Su-

perspace

2.5.1 Higher-Derivative Supergravity: Preliminaries

We now proceed to discuss higher-derivative operators in curved superspace. To
shorten notation we consider only a single chiral �eld Φ from now on. The multi-�eld
generalization is straightforward and can always be performed in the �nal compo-
nent Lagrangian. Later on in sec. (2.5.7) we present an explicit multi-�eld example.
A generic supergravity Lagrangian including higher-derivative operators can be con-
structed from a superspace-integral of the form in eq. (2.68). More precisely, the
general higher-derivative theory reads

Lhd =

∫
d4θE

[
−3U(Φ, Φ̄, R, R̄, Ga,Wαβγ, W̄α̇β̇γ̇,DAR,DAΦ,DAΦ̄, . . . )

+
1

2R
W (Φ, R, . . . ) +

1

2R†
W̄ (Φ̄, R̄, . . . )

]
,

(2.82)
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where the superpotential W is allowed to depend on those higher-derivative su-
per�elds which are chiral and the dots indicate further super-covariant derivatives
acting on the relevant super�elds. Firstly, let us emphasize the importance of the
dependence of U and W on the gravitational super�elds R, R̄,Ga,Wαβγ, W̄α̇β̇γ̇ and
derivatives thereof. Even if we only care about higher-derivatives for the chiral
multiplets, these super�elds must be included in the Lagrangian as they are re-
lated to higher-derivative operators for the multiplets Φ, Φ̄ via the algebra of super-
covariant derivatives. A simple illustrative example is given by the operator D4Φ,
which by means of eq. (2.70) and, hence, implicitly eq. (2.11), we can rewrite as
D4Φ = 8R̄D2Φ.

As before in the global case, we are interested in higher-derivative operators that
contribute to the e�ective scalar potential for chiral multiplets. The result of �at
superspace, that the general scalar potential can be derived from the superspace-
Lagrangian in eq. (2.25), does not hold in curved superspace. The reason is the
existence of the additional complex auxiliary �eldM , which can give rise to new cor-
rections to the scalar potential.16 The complex auxiliary �eldM is also (and together
with the Weyl-rescaling) responsible for the di�erence between V(0) in eq. (2.81) and
its rigid limit. An attempt to classify these new corrections to the scalar poten-
tial would eventually have to overcome the complications that are induced by the
algebra of super-covariant derivatives. More precisely, for all operators which we dis-
cuss in the next sections, the algebra of super-covariant derivatives induces relations
between these higher-derivative operators and corrections to the scalar potential.17

As a particular example, consider the (�at superspace) operator DaΦD
aΦ̄. From

eq. (2.22) we know that this operator does not correct the scalar potential. However,
the appropriate curved superspace generalization DaΦDaΦ̄ does contribute to the
scalar potential as shown in [20].

In conclusion, we will not attempt to derive the general form of the scalar poten-
tial in curved superspace. Nevertheless, let us conjecture a possible Lagrangian that
should yield the complete scalar potential. Naively, all we have to do is to allow for
a generic dependence on F , F̄ but also on M and M̄ . Therefore, we consider the
Lagrangian in eq. (2.82) with

U = e−
1
3
K(Φ,Φ̄,Ψ,Ψ̄,R,R̄) , Ψ = (D̄2 − 8R)Φ̄ , Ψ̄ = (D2 − 8R̄)Φ . (2.83)

Note that we could also chooseK to be a function of D2Φ, D̄2Φ̄ instead of Ψ, Ψ̄. This
way the dependence of F and F̄ is more clean, but the price to pay is that D2Φ, D̄2Φ̄
are not covariantly (anti-) chiral which in turn complicates the computation of the
component action. We leave the veri�cation/falsi�cation of the above Lagrangian to
future research. Instead we now turn our attention to particular higher-derivative
operators. More precisely, the goal of the following sections is to classify the lead-
ing order and next-to-leading order higher-derivative operators and determine their
component forms.

16Due to the index structure of ba, the auxiliary vector purely couples to kinetic terms and,
hence, does not a�ect the scalar potential.

17There exist operators which do not contribute to V and are obtained by taking linear combi-
nations of the operators which we discuss later on.
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Let us �rst demonstrate that we do not have to include higher-derivatives in the
superpotential. To see this we rewrite eq. (2.82) as a chiral integral in the spirit of
eq. (2.71), which yields

Lhd =

∫
d2Θ E

[
3
8
(D̄2 − 8R)U +W

]
+ h.c. . (2.84)

Higher-derivative super�elds appearing in the superpotential must necessarily be
covariantly chiral. However, an arbitrary chiral super�eld C can always be written
as C = (D̄2 − 8R)S for an appropriate scalar super�eld S and, hence, be absorbed
into a term inside U . Thus, unless explicitly stated otherwise we discuss higher-
derivative operators as contributing to U .18

From now on we consider a generic e�ective supergravity with a cut-o� scale
Λ ≤Mp. There are two di�erent situations of interest

(1) : Λ = Mp , (2) : Λ < Mp . (2.85)

In the �rst case the e�ective operators are generated by Planckian physics. For
instance they may be induced directly from string theory. The second case could,
for instance, correspond to an e�ective supergravity where heavy �elds are inte-
grated out whose mass is not much smaller than the Planck mass. In this situation
the terms in the higher-derivative Lagrangian are suppressed by Λ and/or Mp. In
the following we are more interested in scenario (1) and, hence, we do not distin-
guish between Λ and Mp any further, but just collectively assume that operators
are Λ-suppressed. Should one be interested in case (2), then the proper mass scales
can always be reintroduced at a later stage. In particular, operators involving the
gravitational super�elds should always be Mp-suppressed. In conclusion, we expand
the super�eld U in eq. (2.82) in inverse powers of Λ and truncate this series at an
appropriate order. In e�ective supergravities descending from string compacti�ca-
tions the Kähler potential is typically given by a non-local function. This, in turn,
suggests that the couplings of the higher-derivative operators may also be given
by non-local functions. Therefore, in the following we distinguish higher-derivative
operators only by their dependence on

(DA, R, R̄, Ga, Wαβγ, W̄α̇β̇γ̇) , (2.86)

but we explicitly do not distinguish operators that di�er by a dependence on Φ and Φ̄
alone. To make this statement more clear, let us de�ne a higher-derivative operator
of order N as an operator where the collective mass-dimension of the objects in
eq. (2.86) appearing in this operators is given by ΛN/2. The mass-dimensions of the
individual objects read

[Dα] = [D̄α̇] = Λ1/2 , [Da] = [R] = [R̄] = [Ga] = Λ ,

[Wαβγ] = [W̄α̇β̇γ̇] = Λ3/2 .
(2.87)

18However, it is sometimes convenient to analyze certain operators via corrections to W , we will
later on turn to explicit examples of this.
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Class # Operators Section Form

N = 2 2 sec. 2.5.5 eq. (2.101)

N = 4, HC 3∗ sec. 2.5.2 eq. (2.89)

N = 4, EH 9 sec. 2.5.6 tab. 2.3

Table 2.2: Overview of di�erent classes of operators. Here HC stands for higher
curvature operators, EH for operators which induce purely Einstein-Hilbert ordinary
gravity. Visible are also the sections in which these classes are discussed and the
equations respectively the table in which the form of these operators is displayed.
The number of independent higher curvature operators depends on whether matter-
coupling is taken into account or not. If not then the super Gauss-Bonnet theorem
shown in eq. (2.90) reduces the number of operators further.

For the convenience of the reader we now give an outline of the results of the
remaining sections. In the following we simplify our discussion by explicitly distin-
guishing between those operators which induce higher-curvature terms and, hence,
higher-derivatives for the gravitational sector and those that do not. Let us from
now on refer to the former class of operators as higher-curvature operators. The
higher-curvature operators will be the subject of the next section. Afterwards, we
turn to the analysis of higher-derivative operators which are not higher-curvature
operators. We classify the N = 2 and N = 4 operators of this type and determine
their component actions in sec. 2.5.5 and sec. 2.5.6. For the sake of clarity we pro-
vide a brief outline in tab. 2.2 which includes references to the respective sections,
the number of independent operators which result from our analysis as well as key
formulas.

2.5.2 Higher-Curvature Superspace Operators

We begin our analysis by discussing �rst those higher-derivative operators that in-
clude higher-curvature terms in their component forms. Note that these have been
studied in the past [9�12, 49] and we brie�y summarize the essential information
on them here.19 In the later sections, the only exception being appendix A.5, we
do not include them in the analysis anymore. In ordinary gravity the leading order
four-derivative corrections to the Einstein-Hilbert term are of the form [45, 46]

SR2 =

∫
d4x e

(
λ1R2 + λ2RmnRmn + λ3RmnpqRmnpq + λ4�R

)
, (2.88)

where Rmn and Rmnpq denote the (spacetime-) Ricci and Riemann tensors. The last
term is a total derivative and, hence, can be ignored here. Using the Gauss-Bonnet
theorem, which relates a particular linear combination of the above operators to a
topological invariant, one can in fact simplify the four-derivative action to include

19Note that higher-curvature operators have also been studied in new minimal supergravity [50]
and in U(1)-superspace [51, 52].
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merely the R2 and RmnRmn operators. A generalization of SR2 to supergravity is
given by the action [11]

S ′R2 =

∫
d8zE

(
c1RR̄ + c2G

aGa +
c3

R
WαβγW

αβγ + h.c.
)
. (2.89)

The component version of the �rst operator includes R2-terms, while that of the
second includes R2- and RmnRmn-terms and that of the third is given by the square
of the Weyl-tensor.20 In particular, one can demonstrate the superspace-version of
the Gauss-Bonnet theorem [9�11]∫

d8zE

(
16RR̄ + 8GaGa +

2

R
WαβγW

αβγ + h.c.

)
= 32π2χ , (2.90)

where χ denotes the Euler number.

Furthermore, one may also consider operators with derivatives of the gravita-
tional super�elds, such as D2R and DaGa.21 However, these operators do not in-
clude higher-curvature terms in their respective component expressions. We return
to the discussion of these operators in the context of higher-derivative operators for
the chiral multiplets, in particular in appendix A.4.

2.5.3 Non-Minimal Coupling and Integrating out Fields

Next we investigate an important conceptual question which naturally arises in
the context of e�ective �eld theories with non-minimal couplings to gravity and
higher-curvature terms. More precisely, we discuss the di�erence between those
higher-curvature terms which are present in the o�-shell theory and those that
arise by integrating out �elds (both propagating as well as auxiliary �elds). So
far the higher-curvature superspace operators, in particular those in eq. (2.89), in-
duce higher-curvature terms purely o�-shell. These have to be contrasted to those
operators which induce higher-curvature terms after integrating out auxiliary �elds.
To illustrate what this means, consider as a �rst example a (not necessarily su-
persymmetric) theory of a collection of scalar �elds φ1, . . . , φn coupled to gravity
subject to the Lagrangian

L/e = −1
2
R+ L̃(φ1, . . . , φn) . (2.91)

Now, suppose one of the scalars, say φ1, has a mass M much larger than the masses
of the remaining scalars, that is M � m2, . . . ,mn, and we want to integrate it out
to obtain an e�ective theory for physics at scales much smaller than M . We can
integrate φ1 out in any frame of our choice, such as the Einstein frame or any other
frame, in which φ1 couples non-minimally to R. However, while integrating out in
the Einstein frame results in a Lagrangian of the form

LEFT/e = −1
2
R+ Le�ective(φ2, . . . , φn) , (2.92)

20A matter-coupled version of eq. (2.89) was investigated in [12].
21In fact these two operators are related via the identity D2R− D̄2R̄ = 4iDaGa.
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in another frame with non-minimal coupling between φ1 and R we �nd

L′EFT/e = f(R) + L′e�ective(R, φ2, . . . , φn) , (2.93)

for some particular function f(R). It is well-known that such a theory of gravity
can be recast into the form of an Einstein-Hilbert term minimally coupled to a real
scalar by performing a Weyl-transformation. One might wonder, how this additional
degree of freedom emerged, since all we did was to choose a di�erent frame prior to
integrating out φ1. In fact, this additional degree of freedom is nothing but φ1, which
is reintroduced into the spectrum and by performing the Weyl-transformation we
retain the original theory in eq. (2.91). This example shows that degrees of freedom
should always be integrated out in the Einstein frame, as otherwise one might obtain
f(R) theories, which are merely dual descriptions of the to-be-integrated-out degrees
of freedom.

Let us now analyze a second example, where the previous issue arises in the
context of integrating out auxiliary �elds, and which is relevant in the discussion of
higher-derivative supergravity. Consider the following action

Sg =

∫
d8zE(g(R) + ḡ(R̄)) . (2.94)

At the superspace level one can demonstrate that this action is equivalent to an
ordinary Einstein-Hilbert superspace action coupled to a covariantly chiral super�eld
Σ [53, 54], thus, displaying a superspace generalization of the duality between f(R)
theories of gravity and Einstein-Hilbert gravity coupled to a real scalar �eld. This
equivalence can also be understood at the component level. The o�-shell component
form of Sg does not contain any higher-curvature terms, but includes a coupling of
the auxiliary �eld M to the scalar curvature.

On the one hand, we may rewrite the action in the Einstein frame by performing
a Weyl-transformation. Thereby the auxiliary �eld M , since it enters in the Weyl-
factor, picks up a kinetic term and, hence, constitutes the complex scalar of the
new chiral super�eld Σ. On the other hand, we could choose to integrate out M
before performing a Weyl-transformation. This way we obtain a particular f(R)-
theory. Both procedures agree with each other after using the duality between f(R)
theories and ordinary general relativity coupled to a real scalar. In this sense we
have a situation similar to the previous example in eq. (2.91), i.e. higher-curvature
terms emerge when auxiliary �elds are integrated out in a frame in which they
are non-minimally coupled to R. Again we interpret these f(R)-theories as dual
descriptions, which encode the dynamics of the auxiliary �elds. At this point we
could stop our analysis if these propagating auxiliary �elds would be part of the
physical spectrum. However, quite similar to the discussion in sec. 2.3.5, these
propagating auxiliary �elds are, despite having the correct sign of the kinetic terms,
unphysical in the context of e�ective �eld theory as they generically have a mass at
the cuto�-scale of the EFT.22 This is explicitly demonstrated in [32].

22Note also that the fermionic component of Σ is given by a higher-derivative of the gravitino [54],
which constitutes an additional degrees of freedom via the standard Ostrogradski procedure. This
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Altogether, we conclude that we should avoid the description of (unphysical)
propagating auxiliary degrees of freedom via higher-curvature terms. This can most
conveniently be done by choosing to perform a Weyl-transformation to the Einstein
frame before any auxiliary �eld is integrated out.

2.5.4 Component Form of Operators and On-Shell Results

After discussion of the former conceptual points we now turn to the analysis of
those higher-derivative operators which do not induce higher-curvature terms. To
begin with it is necessary to introduce some computational tools and formulas,
which comprise the topic of this section. In particular, we present an algorithm that
allows to determine the �nal on-shell component version of a given operator. In the
upcoming sections we then apply these formulas to determine the component forms
of the N = 2 and N = 4 higher-derivative operators.

In the following we consider a particular higher-derivative operator O coupled
to the general two-derivative theory given in eq. (2.71). To this end we regard the
following Lagrangian

LO = L(0) + L̂O , where L̂O =
3

4

∫
d2Θ E(D̄2 − 8R)O + h.c. . (2.95)

To reduce the computational e�ort for determining the component Lagrangian of a
speci�c operator, it is convenient to note that [55]∫

d2Θ E(D̄2−8R)O+h.c. =

∫
d2Θ E(D̄2−8R)O†+h.c.+total derivative . (2.96)

In turn, this implies that it is not necessary to consider O as a real operator in
eq. (2.95), but that instead it is su�cient to consider a complex operator O. There-
fore, in the following we always simply use complex operators O without adding O†.
With this in mind, we rewrite the higher-derivative contribution in eq. (2.95) as

L̂O/e = − 3
16
D2D̄2O| − 3

4
M̄D̄2O| − 1

4
MD2O|

+O|
(
−1

2
R− 1

3
|M |2 + 1

3
bab

a − iDmbm
)

+ h.c. .
(2.97)

Next let us provide an algorithm to determine the respective component Lagrangian,
which respects the principles of EFT.

I. We begin by computing the respective components version of the objects ap-
pearing in eq. (2.97).

II. Perform the Weyl-rescaling of the spacetime-metric. Depending on the opera-
tor O, the Weyl-rescaling can be a�ected by the terms in eq. (2.97) and, thus,
di�er from the two-derivative version in eq. (2.74).

should alert us, that care has to be taken with the proper interpretation of our theory. As we have
mentioned, in the EFT-context degrees of freedom that are associated with (usually ghost-like)
higher-derivatives are unphysical since they emerge from truncating a more fundamental non-local
theory that contains an in�nite series of higher-derivatives.
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III. Then we integrate out the auxiliary �elds following the methods explained
in sec. 2.3.3, 2.3.5. More precisely one has to expand the solution in inverse
powers of Λ and solve the equations of motion order by order in Λ−1. If some
auxiliary �eld receives a kinetic term, we continue to treat it as an algebraic
degree of freedom, inspired by the results in sec. 2.3.5 and sec. 2.5.3, and again
determine the solution to the equations of motion by applying perturbation
theory in Λ−1.

IV. It is convenient to truncate the solutions for the auxiliary �elds at the highest
order in Λ−1 which appears in eq. (2.97). After insertion of the truncated
solution back into the Lagrangian, terms which exceeds the maximal mass
dimension should be neglected.

Let us make some remarks regarding this algorithm. Firstly, we should emphasize
once more the importance of performing the Weyl-rescaling before integrating out
the auxiliary �elds. This point was already stressed and exempli�ed in the previous
section. Furthermore, in principle we would have to apply this algorithm also to the
two-derivative part of the Lagrangian. In particular, this would include an appropri-
ate truncation of the expressions for K and W . However, in the context of e�ective
supergravities describing the low-energy 4D dynamics of string compacti�cations, it
is useful to keep K and W arbitrary and, furthermore, to allow higher-derivative
operators to be multiplied by arbitrary functions of the chiral �elds.

In the next sections we discuss the N = 2 and N = 4 operators. The opera-
tors we consider are multiplied by an arbitrary coupling function T which carries
a dependence on Φ, Φ̄ and on the cut-o� scale Λ. More precisely, the coupling car-
ries mass dimension T ∼ Λ−N with N = 2, 4. According to the above algorithm
it su�ces to consider the component Lagrangian for a particular operator only up
to order T (i.e. Λ−N), since terms of order O(T 2) would receive corrections from
operators of higher order. Therefore, in the following we restrict ourselves to de-
termine the on-shell form of these operators only at linear order in T . In this case
the computation of the on-shell component Lagrangian simpli�es considerably, the
reason being a special property of the theory in eq. (2.95) which we explain now.
Generically the presence of L̂O in eq. (2.95) a�ects the solutions of the equations of
motion of the auxiliary �elds. We expand the auxiliary �elds in powers of T such
that

ba = ba(0) + ba(1) +O(Λ−2N) ,

M = M(0) +M(1) +O(Λ−2N) ,

F = F(0) + F(1) +O(Λ−2N) ,

(2.98)

where ba(0),M(0) and F(0) are given in eqs. (2.76), (2.78), (2.80) and ba(1),M(1), F(1) are

linear in T and depend on the details of L̂O. The aforementioned special property
of the theory can now by stated as follows: The linearized on-shell Lagrangian is
obtained by inserting ba(0),M(0) and F(0) in eq. (2.95). In other words the terms
involving ba(1),M(1) or F(1) precisely cancel out. Furthermore, the linearized terms

arise only from L̂O or via the Weyl-rescaling in L(0).
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This observation can be understood from the structure of the ordinary two-
derivative Lagrangian. Let us now explicitly demonstrate this for the terms involv-
ing the auxiliary vector, the argument follows immediately also for the remaining
auxiliary �elds. Generically the presence of L̂O corrects the Weyl-factor Ω as follows

Ω = e−K/3 + Λ−N δΩ(M, M̄, ba, F, F̄ ,Φ, Φ̄) , (2.99)

where δΩ depends on the details of the higher-derivative operator O. Now the terms
in L(0) displayed in eq. (2.75) that involve the auxiliary vector can, after performing
the Weyl-transformation with respect to Ω given in eq. (2.99), be rewritten as

L(0) ⊃
1

3Ω
e−K/3(bab

a − 2bab
a
(0)) +O(δΩ) , (2.100)

where the O(δΩ) terms indicate the contributions to the Lagrangian that carry
a dependence on the Weyl-factor. These terms appear only when δΩ explicitly
depends on ba. Inserting the expansion in eq. (2.98) into eq. (2.100) we �nd that
the terms involving ba(1) precisely cancel and, hence, the only corrections linear in T
are obtained via Ω. Again let us emphasize that this argument can be made for M
and F in precisely the same way. Ultimately, the reason for this cancellation is the
quadratic form of L(0). The above observation greatly simpli�es the computation of
the on-shell action, since we do not have to determine the solution to the equations of
motion for the auxiliary �elds, but merely insert ba(0),M(0) and F(0) in L̂O and in the
corrections induced by δΩ in L(0). In fact, since it is straightforward to obtain the
on-shell theories, in the following we display most of the component forms o�-shell.

2.5.5 Component Forms of N = 2 Operators

Following the general discussion of the previous section, we now turn to a systematic
study of higher-derivative operators. In the previous sections we introduced the
concept of a higher-derivative operator of order N . The lowest possible order is
N = 2. There exist three distinct operators we can construct at this order and they
read

O(1) = TDαΦDαΦ , O(2) = TD2Φ , O(3) = TR , (2.101)

where the coupling function T = T (Φ/Λ, Φ̄/Λ) is an arbitrary function of the chiral
and anti-chiral super�elds and is chosen to have the appriopriate mass-dimension.
It turns out that, similar to their rigid counterparts, the operators O(1) and O(2)

are equivalent to each other. This equivalence can be demonstrated via integration
by parts identities which we display in appendix A.4. We now illustrate the general
algorithm of the previous section at the example of O(1). Later on we also turn to
the third operator O(3).

Let us now follow the general prescription of the previous section to compute the
component form of O(1) together with the ordinary two-derivative Lagrangian L(0)

given in eq. (2.71). Here we explicitly include the kinetic terms into the analysis.
Following the algorithm presented in the previous section, as a �rst step we need to
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compute the relevant quantities in eq. (2.97). The θ = θ̄ = 0-component of O(1) is
purely fermionic. Furthermore, we need the following quantities

D2O(1)| = 16TF 2 , D̄2O(1)| = −16T (∂A)2 , (2.102)

where we made use of eq. (A.24). Furthermore, it is necessary to determine the
D2D̄2-component of O(1). Direct computation ignoring fermionic terms yields

D2D̄2O(1)| =
(
TΦ̄D̄2Φ̄(D2Φ)2 + 4TΦ̄D2ΦDαD̄α̇Φ̄D̄α̇DαΦ− 2TD2ΦDαD̄2DαΦ

+ 2TΦD2ΦD̄α̇DαΦD̄α̇DαΦ + 4TD2D̄α̇DαΦD̄α̇DαΦ
)∣∣∣ .

(2.103)
Inserting the component expressions in eqs. (A.24), (A.26) and (A.29) in the above
formula we �nd

1
16
D2D̄2O(1)| = −4TĀ|F |2F − 8

3
TMF 2 + 8T∂mF∂

mA+ 4
3
TM̄∂mA∂

mA

+ 16
3
iTFbae

m
a ∂mA+ 8TĀF∂mA∂

mĀ+ 4TAF∂mA∂
mA .

(2.104)

We are now equipped with the necessary quantities and can proceed to determine
the overall component form of O(1). It is convenient to decompose the result as
follows

L̂O(1)
/e = −VO(1)

+ L(2-der)
O(1)

, (2.105)

where the individual parts of the Lagrangian are given by

VO(1)
= −4TMF 2 − 12|F |2TĀF + h.c. ,

L(2-der)
O(1)

= 8TM̄(∂A)2 − 24T∂F∂A− 24TĀF |∂A|2−12TAF (∂A)2

− 16ibmTF∂
mA+ h.c. .

(2.106)

Following the general prescription of sec. 2.4.1 let us now determine the linearized
on-shell Lagrangian. To begin with we rewrite the Lagrangian in the Einstein frame.
Since L̂O does not contain couplings to the scalar curvature, the Weyl transformation
continues to be given by eq. (2.74). The next step consists of integrating out the
auxiliary �elds. As demonstrated in the previous section, we obtain the linearized
on-shell action by simply replacing the auxiliary �elds in L̂O(1)

by the solutions of the
ordinary two-derivative theory given in eqs. (2.76), (2.78) and (2.80). Altogether,
the �nal linearized on-shell Lagrangian reads

LO(1)
= e(L(0) − V(1) − Lder) ,

V(1) = 12e5K/3(KAĀ)2(DAW )2
[
KAĀDĀW̄ (T̄A − 1

3
T̄KA) + T̄ W̄

]
+ h.c.

Lder = 24e2K/3KAĀ(∂A)2
[
DĀW̄ (1

3
TKA + 1

2
TA) +KAĀTW̄

]
+ 24T e2K/3KAĀDĀW̄�A+ h.c. .

(2.107)

Here we introduced the abbreviation � = DmDm and DAW = WA + KAW and
DĀW̄ denote the Kähler-covariant derivatives. The index A, Ā stands for derivatives
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with respect to the scalar �elds A, Ā and are not to be confused with the superspace
indices. In the above L(0) is given by the kinetic terms inside eq. (2.79) together with
the scalar potential in eq. (2.81). Let us make a few remarks regarding the above
result. The linearized Lagrangian contains only two-derivative terms. However,
when using the full solution to the equations of motion for F one �nds a non-
local theory, which in particular includes an in�nite sum of higher-derivatives. Due
to the mixing between M and F in eq. (2.105) the linear correction to the scalar
potential looks rather involved. Besides the corrections of the type |F(0)|2F(0), which
survive the rigid limit and can also be inferred from the lowest order contribution to
eq. (2.26), we, furthermore, �nd terms of the type F 2

(0)W̄ . Roughly speaking, these
can be read as describing a mixing between the gravitational piece and the F-term
piece of the ordinary (two-derivative) scalar potential.

It remains to discuss the operator O(3) in eq. (2.101). It is conceptually straight-
forward to perform the computation and, therefore, we display only the �nal result
here. Altogether, we �nd the following o�-shell component expression

L̂O(3)
/e = −1

2
RΩO(3)

− VO(3)
+ L(2-der)

O(3)
, (2.108)

where we introduced the abbreviations

ΩO(3)
= −1

3
TM + 1

2
TĀF̄ + h.c. ,

VO(3)
= −1

6
|M |2(TĀF̄ − 1

3
TM)− 1

2
TAĀM |F |2 + 1

6
TAM

2F + h.c. ,

L(2-der)
O(3)

= (1
3
bab

a − iema Dmba)(−1
3
TM + 1

2
TĀF̄ ) + 1

2
MTĀĀ(∂Ā)2 ,

+ 1
2
MTĀ(�Ā+ 2

3
ibaema ∂mĀ)) + h.c. .

(2.109)

Note that setting T constant reproduces the result obtained in [54]. In particular,
we observe that the Einstein-Hilbert term is modi�ed by the presence of O(3). This,
in turn, implies that the Weyl-rescaling is a�ected. The on-shell Lagrangian can now
be obtained readily, but note that now one has to take into account the modi�ed
Weyl-factor. The resulting on-shell form is rather lengthy and, hence, we do not
display it here.

2.5.6 Component Forms of N = 4 Operators

At order N = 4 the number of allowed operators increases signi�cantly. We perform
the explicit classi�cation of these operators in appendix A.4. Let us brie�y sum-
marize the content of this appendix here. We begin by writing down the list of all
allowed operators in tab. A.1. However, many operators in this list are redundant
and can be recast into combinations of other operators. The main tools to identify
equivalences between operators are, on the one hand, the algebra of covariant deriva-
tives in eq. (2.11) and, on the other hand, integration by parts identities in curved
superspace. These are introduced and explained in detail in appendix A.4. We then
use these identities to determine a minimal set of mutually inequivalent operators.
More precisely, this set contains 9 operators. This minimal set of operators can be



38

Label Operator Real ∂4-Terms

O(4|2) DαΦDαΦD̄α̇Φ̄D̄α̇Φ̄ X X

O(3|1) D2ΦDαΦDαΦ

O(3|3) D̄α̇DαΦDαΦD̄α̇Φ̄ X

O(2|1) D2ΦD̄2Φ̄ X X

O(2|2) (D2Φ)2

O(2|3) DaΦDaΦ̄ X X

O(R|1) RDαΦDαΦ X

O(R|2) RD2Φ X

O(R|3) R2

Table 2.3: Particular minimal choice of four-superspace-derivative operators which
are mutually distinct and cannot be related to each other. The individual operators
are understood as being multiplied by a super�eld T (Φ, Φ̄) and T̄ (Φ, Φ̄) for their
conjugate parts. In the last two rows we indicated whether the operator is real- or
complex-valued and whether it contributes four-derivatives terms for the chiral scalar
in the linearized on-shell Lagrangian.

chosen in several di�erent but equivalent ways, only the total number of operators
is �xed. Here we make a particular choice of these operators which is displayed in
tab. 2.3. In this list we also indicate whether the operators are real-valued, that is
O = Ō, and whether they induce four-derivative terms for the chiral scalar in the
linearized on-shell Lagrangian.

Operators which induce ∂4-terms o�-shell or at the linearized on-shell level are
of particular interest to us and, therefore, from now on we constrain our discussion
to this subclass only. These operators will play a special role in chapter 3 where we
apply them in the context of Kaluza-Klein reduction of IIB supergravity. In tab. 2.3
we �nd six operators which induce four-derivative terms of the aforementioned type.
In the following we determine the component form of all operators of this class, the
results are displayed below. Let us make a few comments regarding this procedure.
Firstly, for the sake of brevity we omit the details of intermediate results, such as
the D2D̄2-components of the various operators. However, in appendix A.3 we collect
all component identities which are required to compute these D2D̄2-components. In
our survey below we indicate which component-identities are necessary for deter-
mining the individual D2D̄2O|-components. Secondly, for those operators which are
real-valued we take the coupling function T to be real-valued as well. For operators
which are not real we assume that T is complex-valued. Finally, since the resulting
component expressions are rather lengthy, we decompose the Lagrangians into dif-
ferent blocks. More precisely, we split them into a sum of the Einstein-Hilbert term,
the scalar potential as well as four- and two-derivative terms. The only operator for
which we do not apply this decomposition is the �rst in the list, since its component
expression is particularly simple.
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Operator O(4|2):

This operator was already studied in several papers [13, 21, 22]. The respective
component version is particularly simple and reads

1
48
L̂O(4|2)

/e = T |F |4 + T (∂A)2(∂Ā)2 − 2T |F |2|∂A|2 . (2.110)

We return to the discussion of this operator in sec. 2.5.7 where we generalize it to
multi-�eld case and compute the respective on-shell version.

Operator O(3|3):

Computation of this operator requires using the component identities in eq. (A.26)
and eq. (A.29). Altogether, we �nd

L̂O(3|3)
/e = −VO(3|3)

+ L(4-der)
O(3|3)

+ L(2-der)
O(3|3)

,

VO(3|3)
= −16|F |2(TMF + T̄ M̄F̄ ) ,

L(4-der)
O(3|3)

= −24TĀ(∂A)2(∂Ā)2 − 24T (∂A)2(�Ā+ 2
3
ibm∂mĀ) + h.c.

L(2-der)
O(3|3)

= −16TMF |∂A|2−48T F̄ (∂mA∂
mF + 2i

3
Fbm∂mA)

− 24TA|F |2(∂A)2 + h.c. .

(2.111)

Operator O(2|1):

This operator additionally requires new components displayed in eq. (A.27). The
�nal result reads

L̂O(2|1)
/e = −1

2
RΩO(2|1)

− VO(2|1)
+ L(4-der)

O(2|1)
+ L(2-der)

O(2|1)
,

1
16

ΩO(2|1)
= −2T |F |2 ,

1
16
VO(2|1)

= 6TAĀ|F |4+4|F |2(TAMF + TĀM̄F̄ ) + 8T |M |2|F |2 ,

1
16
L(4-der)
O(2|1)

= −6T (�A− 2
3
ibm∂mA)(�Ā+ 2

3
ibm∂mĀ) ,

1
16
L(2-der)
O(2|1)

= −3TAA|F |2(∂A)2 − 9TĀ|F |2(�Ā+ 2i
3
bm∂mĀ)

− 4TĀ(MF (∂Ā)2 + 3
2
F̄ ∂mF∂

mĀ)− 1
3
T |F |2baba

+ 2
3
T |M |2|∂A|2 − 4TMF (�Ā+ 2i

3
bm∂mĀ)

− 4TM∂mF∂
mĀ− 2iT F̄ bm∂mF − 3T F̄�F + h.c. .

(2.112)

Note that here we applied partial integration to terms of the form ∂mM̄∂mA.
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Operator O(2|3):

For this operator we �nd the following component form

L̂O(2|3)
/e = −1

2
RΩO(2|3)

− VO(2|3)
+ L(4-der)

O(2|3)
+ L(2-der)

O(2|3)
,

ΩO(2|3)
= 4T |∂A|2

VO(2|3)
= −4

3
T |F |2|M |2

L(4-der)
O(2|3)

= −3TĀ
[
|∂A|2(�Ā+ 2

3
ibm∂mĀ) + 2∂mĀ ∂nADmDnĀ

]
− 3TĀĀ|∂A|2(∂Ā)2 + 3T∂mA∂nĀ

[
Rmn + 2

9
bmbn + 2

3
iDnbm

]
− 3T∂mADm(�Ā+ 2

3
ibn∂nĀ) + h.c.

L(2-der)
O(2|3)

= TĀ
[
MF (∂Ā)2 + M̄F̄ |∂A|2 − 6F̄ ∂mF∂

mĀ− 4i|F |2bm∂mĀ
]

− 3TAĀ|F |2|∂A|2 − T
(

1
3
|∂A|2|M |2 + 4

3
|F |2baba + 3|∂F |2

)
+ T (FM�Ā+M∂mF∂

mĀ− F∂mM∂mĀ)

+ 4
3
Tibm(FM∂mĀ+ 3F̄ ∂mF ) + h.c. .

(2.113)

Note that O(2|3) was already studied in [20] for the special case with T being a
constant. Here we displayed the component form for the generalized operator where
T is an arbitrary function of Φ and Φ̄. The computation of the above result requires
knowledge of several additional super�eld component identities. These are displayed
in eq. (A.29) and eq. (A.30). While these identities were already computed in [20]
we recalculated them as a cross-check.23

Let us compare the above result with [20]. Overall we �nd a remarkable agree-
ment, the only di�erence with the latter reference being a minus sign in the scalar
potential that can be traced back to a minus-sign di�erence in eq. (A.29).

Operator O(R|1):

L̂O(R|1)
/e = −1

2
RΩO(R|1)

− VO(R|1)
+ L(4-der)

O(R|1)
+ L(2-der)

O(R|1)
,

ΩO(R|1)
= 2T (∂A)2 + 2T̄ (∂Ā)2

VO(R|1)
= 2

3
TM2F 2 + 2TĀM |F |2F + h.c.

L(4-der)
O(R|1)

= 2T (∂A)2(1
3
bab

a − iDmbm) + h.c.

L(2-der)
O(R|1)

= 4TĀMF |∂A|2+2TAMF (∂A)2 + 4TM∂mF∂
mA

+ 8i
3
TMFbm∂mA+ h.c. .

(2.114)

23In particular, we found a minus-sign di�erence and a typo in that reference.
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Operator O(R|2):

L̂O(R|2)
/e = −1

2
RΩO(R|2)

− VO(R|2)
+ L(4-der)

O(R|2)
+ L(2-der)

O(R|2)
,

ΩO(R|2)
= −2TĀ|F |2 − 2T (�A− 2i

3
bm∂mA+ 1

3
MF ) + h.c.

VO(R|2)
= 2MF

(
TAĀ|F |2 + 1

3
TAMF + 2

3
TĀM̄F̄ + 2

9
T |M |2

)
+ h.c.

L(4-der)
O(R|2)

= −2T (�A− 2i
3
bm∂mA)(1

3
bab

a − iDmbm) + h.c.

L(2-der)
O(R|2)

= −2MF
[
TA(�A− 2i

3
bm∂mA) + TĀ(Ā+ 2i

3
bm∂mĀ)

]
− 2TĀ

[
|F |2(1

3
bab

a − iDmbm)− 2
3
|M |2|∂A|2 + 2M∂mF∂

mĀ
]

− 2MF
[
TĀĀ(∂Ā)2 + 1

3
T (1

3
bab

a − iDmbm)
]
− 2TM�F

+ 4
3
T
[
M∂mM̄∂mA− iMbm∂mF + 2

3
i|M |2bm∂mA

]
+ h.c. .

(2.115)

Comments and Remarks

Let us make a few remarks regarding the above list of component forms for the
operators as well as the result of the classi�cation in tab. 2.3. Firstly, out of the six
operators (that induce four-derivative component terms in the linearized on-shell
action) there are two which do not have a rigid counterpart. More precisely, these
are given by O(R|1) and O(R|2) which indeed identically vanish in the rigid limit
Mp → 0.24 The rigid limit of the remaining four operators is given by

O(4|2) −→ DαΦDαΦD̄α̇Φ̄D̄α̇Φ̄

O(3|3) −→ D̄α̇DαΦDαΦD̄α̇Φ̄

O(2|1) −→ D2ΦD̄2Φ̄

O(2|3) −→ DaΦD
aΦ̄ .

(2.116)

The component version of each of these operators contains four-derivative terms, for
O(4|2) and O(2|1) this is also clear from eq. (2.33) and eq. (2.26). As a consistency
check we can compare this result with [19]. The latter reference includes a classi�ca-
tion of those dimension-eight operators for global N = 1 supersymmetry that induce
four-derivative component terms, the result being a minimal list of four operators
of this class. Since we also �nd four operators of this type from our classi�cation
above, our results are fully consistent with [19].

Secondly, one may perform a consistency check of the component operators with
the expectations from linearized supergravity. In that case the Lagrangian is de-
scribed via a coupling to a Ferrara-Zumino multiplet, see e.g. [56�59]. The authors
of [20] already showed that the linearized version (in an expansion in M and ba) of
O(2|3) (for T constant) agrees with the expectations from linearized gravity. From

24For this purpose we consider the situation where Λ � Mp. While O(R|1) and O(R|2) are
suppressed by at least a factor of M2

p , the remaining four operators are purely Λ-suppressed.
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the results in [20] we can also perform this check for the linearized version of O(2|1)

after setting T to be constant. Indeed we �nd that eq. (2.112) matches with a certain
Ferrara-Zumino multiplet. Note that for the remaining operators we cannot apply
the formulas in [20] and, therefore, it would be necessary to recalculate the general
form of the Ferrara-Zumino multiplet.

Furthermore, let us make some comments regarding reparametrization- and
Kähler-invariance of the operators we discussed so far. Firstly, analogous to the
discussion in sec. 2.3.1 ensuring reparametrization-invariance for the operators in
eq. (2.101) and tab. 2.3 is non-trivial. While reparametrization-invariance for the
contributions to the scalar potential can be made manifest more easily, the kinetic
terms are harder to understand. We omit the details of this discussion here for
the following reason. Ultimately, we are interested in situations where we com-
pute higher-derivative operators directly from UV-physics and, hence, the operators
must be reparametrization-invariant by construction. For instance, we may inte-
grate out heavy �elds or compute quantum corrections. More speci�cally, we will
be interested in KK-compacti�cations of ten-dimensional IIB supergravity where
10D higher-derivative corrections source 4D higher-derivative operators. In that
case, the 10D action is not manifestly supersymmetric and the 4D supersymmetric
completion is far from obvious. Here our results are of particular importance, since
now a full matching to parts of the component Lagrangian can be performed and
thereby, at least in principle, a full set of manifestly supersymmetric operators in-
ferred. Naturally, reparametrization-invariance is always guaranteed in that case.
However, the discussion of target space reparametrization-invariance is necessary in
situations where we take a purely bottom-up EFT approach and attempt to write
down all possible operators consistent with the symmetries.

Secondly, we now brie�y discuss Kähler-invariance for the higher-derivative op-
erators. Recall that an important feature of the two-derivative theory given in
eq. (2.68) and eq. (2.69) is an invariance under a combination of a super-Weyl and
a Kähler transformation [9, 47]. For instance, the component form in eq. (2.107)
does not exhibit this ordinary Kähler-invariance. Generically theories of supergrav-
ity with higher-derivative operators allow for a larger set of transformations which
leave the action invariant, one might refer to these as generalized Kähler transfor-
mations. In some form this was already visible in the context of �at superspace
in eq. (2.29). A concrete example in supergravity was discussed in [20], where an
explicit improvement term given by O(G|2) in tab. A.1 was added to the particular
higher-derivative Lagrangian given by O(2|3). In general we do not expect that a
particular higher-derivative operator happens to be invariant under the restricted,
two-derivative Kähler-transformations by itself. In fact this applies only to those
operators, which are either super-Weyl invariant or have an explicit dependence on
K and W in the coupling function T , that allows for a cancellation against their re-
spective super-Weyl weight. For instance, the operatorO(4|2) is super-Weyl-invariant
[22] and, hence, supports the ordinary Kähler-invariance. However, note that since
the two-derivative Kähler invariance allows to cast the component Lagrangian in
a rather simple form, it is interesting to �nd higher-derivative operators with this
property. We leave this to future research.
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2.5.7 N = 4 On-Shell Example

We now focus on the operator O(4|2) to present an on-shell example, which will also
be of importance in chapter 3. In this section we follow the reference [31]. We have
already seen that it is particularly easy to compute the respective component form,
the result being considerably more tractable compared to the remaining operators
listed in tab. 2.3. In particular, the form of this operators implies that the bosonic
terms depend only on T and no derivatives of T appear. Furthermore, let us highlight
that this operator is easily made invariant under reparametrizations of the target
space of the chiral scalars. In addition, it is even super-Weyl invariant [22] such that
it is supports an invariance with respect to ordinary Kähler-transformations.

We now derive the on-shell form of O(4|2) and perform this computation for the
multi-�eld case. The appropriate multi-�eld version of O(4|2) reads

O(4|2) =
1

48
Tijk̄l̄DαΦiDαΦjD̄α̇Φ̄k̄D̄α̇Φ̄l̄ . (2.117)

To support target space invariance with respect to the nc-dimensional complex man-
ifold parametrized by Ai and Ā̄ the super�eld Tijk̄l̄ must transform as a tensor of
this complex manifold and must obey the identities displayed in eq. (2.31) [21]. The
respective component version of this operators reads

L̂O(4|2)
/e = Tijk̄l̄(∂mA

i∂mAj)(∂nĀ
k̄∂nĀl̄)− 2Tijk̄l̄F

iF̄ k̄(∂mA
j∂mĀl̄)

+ Tijk̄l̄F
iF jF̄ k̄F̄ l̄ .

(2.118)

Let us now investigate the situation in which only O(4|2) corrects the two-derivative
theory in eq. (2.75) and, hence, we consider

LO(4|2)
= L(0) + L̂O(4|2)

. (2.119)

From our results in sec. 2.5.4 we know that in order to determine the linearized
on-shell Lagrangian all we have to do is perform the Weyl rescaling and replace F i

by F i
(0) displayed in eq. (2.80). In this case the presence of O(4|2) does not a�ect the

Weyl factor and, hence, the Weyl transformation continues to be given by eq. (2.74).
Therefore, the linearized on-shell Lagrangian reads

Ls/e =− 1
2
R−

(
Kik̄ + 2eKT l̄i

j
k̄DjW Dl̄W̄

)
∂mA

i∂mĀk̄

+ Tijk̄l̄(∂mA
i∂mAj)(∂nĀ

k̄∂nĀl̄)− V (A, Ā) ,

(2.120)

where the scalar potential is of the form

V = V(0) + V(1) . (2.121)

Here V(0) is given by eq. (2.81), while

V(1) = −e2KT ı̄̄klDı̄W̄D̄W̄DkWDlW . (2.122)
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We observe that the metric multiplying the two-derivative term receives a correction
here. From eq. (2.120) we read o� its form

δGik̄ = 2eKT l̄i
j
k̄DjW Dl̄W̄ . (2.123)

In general, this correction renders the metric non-Kähler. Indeed, in [13] the follow-
ing special case was investigated

Tijk̄l̄ =
T

2

(
Kik̄Kjl̄ +Kil̄Kjk̄

)
, (2.124)

where T was chosen as a constant. In this case the hermitian connection has non-
vanishing torsion and, thus, the metric multiplying the two-derivative term cannot
be Kähler.

To summarize, in this section we classi�ed the leading and next-to leading order
higher-derivative operators for chiral multiplets and determined the component form
of those operators which induce four-derivative terms for the component �elds at
the linear level. We now proceed to discuss possible applications of these results.

2.6 Structure of Vacua of Higher-Derivative Theo-

ries

The form of the scalar potential determines the structure of the vacua of the the-
ory. Equipped with Se� in eq. (2.25) for the case of rigid N = 1 and the results
of sec. 2.5 for the case of supergravity, it is interesting to study the e�ect that the
higher-derivatives have on the vacua of the theory. We initiate this discussion by
turning �rst to supersymmetric vacua. Supersymmetry preservation requires addi-
tional conditions on the structure of the backgrounds that can be used to derive
properties thereof.

2.6.1 Supersymmetric Vacua in Rigid N = 1

Let us start by discussing supersymmetric vacua of rigid N = 1. The o�-shell
supersymmetry transformation of the chiral fermions read [34]

δζχ
i = i
√

2σaζ̄∂aA
i +
√

2ζF i , (2.125)

where ζ is the parameter of the supersymmetry transformation.25 Supersymmetric
vacua, therefore, are de�ned by

〈∂aAi〉 = 0 , 〈F i〉 = 0 . (2.126)

25Naturally, the o�-shell supersymmetry transformations of the chiral multiplet are una�ected
by the presence of higher-derivatives. These transformations are de�ned entirely by the supersym-
metry transformation of a general super�eld together with the chirality constraint in eq. (2.12).
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The equations of motion for the chiral auxiliary �elds derived from eq. (2.26) after
evaluating at 〈∂aAi〉 = 〈∂aF i〉 = 0 read

−KAiĀ̄F̄ ̄ −KAkĀ̄F iF kF̄ ̄ −WAi = 0 . (2.127)

Evaluating the above equation at the supersymmetric condition 〈F i〉 = 0 and assum-
ing that the derivatives of K in the above equation are regular at the supersymmetric
point, we �nd that

〈WAi〉 = 0 , 〈V 〉 = 0 . (2.128)

In other words the supersymmetric vacua of the general higher-derivative theory are
identical to the vacua of the two-derivative theory. Note that this was also shown
based on a conjectured form of the higher-derivative scalar potential in [13]. Here,
we demonstrated this by means of the explicit form of the scalar potential. Note fur-
thermore, that the associated moduli spaces of the supersymmetric backgrounds for
the general higher-derivative and for the ordinary two-derivative theories precisely
coincide.

2.6.2 Supersymmetric Vacua in N = 1 Supergravity

We now turn to supersymmetric vacua of N = 1 supergravity. The supersymmetry
variation of the chiral fermion now reads [34]

δζχ
i = iσmζ̄(

√
2∂mA

i − ψmχ) +
√

2ζF i . (2.129)

Therefore, for supersymmetric backgrounds we �nd the condition 〈F i〉 = 0. In
addition, the supersymmetry variation of the gravitino [34]

δζψ
α
m = −2Dmζα + iecm

[
1

3
M(εσcζ̄)α + bcζ

α +
1

3
bd(ζσdσ̄c)

α

]
(2.130)

has to vanish in a supersymmetric background. This requires that the spacetime
background admits four independent Killing spinors. In particular, maximally sym-
metric spacetimes allow for the existence of four Killing spinors [35]. More precisely,
these supersymmetric backgrounds are either M4, in which case M = 0, or AdS4, in
which caseM 6= 0 [35]. dS4 on the other hand does not allow for Killing spinors and,
hence, supersymmetry is always broken. Since we are discussing o�-shell theories,
this result holds regardless of the structure of the Lagrangian and, hence, applies
both to the ordinary two-derivative as well as to the generic higher-derivative the-
ory. The Killing spinors also determine the curvature of the background. This can
be seen easily by analyzing the supersymmetry variations of the super�eld R. In
particular, since R is covariantly chiral, preservation of supersymmetry requires that
the component R|Θ2 in eq. (2.67) vanishes. This is precisely the case if

〈R〉 = 4
3
〈|M |2〉 . (2.131)
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The above equation can also be derived from the integrability condition for the
Killing spinors.26 Moreover, eq. (2.131) establishes a relation between the cosmo-
logical constant and the auxiliary scalar M in the vacuum. For the ordinary two-
derivative theory, the on-shell scalar potential, which in turn sets the value of the
cosmological constant, precisely agrees with eq. (2.131) at the level of the Einstein
equations.

Minkowski Vacua

Let turn �rst to the analysis of the Minkowski vacua. These are characterized by
the conditions

〈F i〉 = 0 , 〈M〉 = 0 . (2.132)

A generic higher-derivative theory schematically obtains a scalar potential of the
form

V = V
(0)
o� + Vhd(M, M̄, F i, F̄ ̄, Ai, Ā̄) ,

V
(0)
o� = e2K/3(M̄W +MW̄ −WiF

i − W̄̄F̄
̄)−Ki̄ e

K/3F iF̄ ̄

+ 1
3
eK/3(M +K̄F̄

̄)(M̄ +KiF
i) ,

(2.133)

which, in turn, yields the following equations of motion for F̄ ̄

Ki̄ e
K/3F i + e2K/3W̄̄ −

1

3
eK/3K̄(M̄ +KiF

i) +
∂

∂F̄ ̄
Vhd = 0 . (2.134)

Now, from our results in sec. 2.5 we know that Vhd is at least cubic in a com-
bined expansion in powers of M, M̄, F i and F̄ ̄. Therefore, eq. (2.132) implies that
〈 ∂
∂F̄ ̄Vhd〉 = 0 and, hence, eq. (2.134) at the supersymmetric vacuum reads

〈W̄̄〉 = 0 . (2.135)

Similarly, the equations of motion for M lead us to the condition that 〈W 〉 = 0.
Note that, automatically we also �nd that 〈 ∂

∂AiV 〉 = 〈 ∂
∂Ā̄V 〉 = 0. In total, the

supersymmetric Minkowski vacua in eq. (2.132) are equivalently de�ned by the con-
ditions

〈W̄̄〉 = 〈W 〉 = 0 . (2.136)

Therefore, the supersymmetric M4 vacua as well as their corresponding moduli
spaces of the general higher-derivative and of the ordinary two-derivative theories are
identical. Again these results are in agreement with [13]. Note that from eq. (2.136)
it follows that the moduli space is de�ned by a set of holomorphic equations. Hence,
the moduli space is given by a complex submanifold of the Kähler manifold and, in
turn, Kähler itself.

26Note that the existence of a single Killing spinor already demands that the background is an
Einstein-manifold.
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Anti-de Sitter Vacua

Let us now turn to the AdS4 vacua. Compared to the Minkowski case the AdS4 vacua
require more e�ort to understand. We characterize these vacua by the conditions

〈F i〉 = 0 , 〈M〉 6= 0 , 〈R〉 = 4
3
〈|M |2〉 , 〈Vi〉 = 〈V̄〉 = 0 . (2.137)

In the ordinary two-derivative theory these properties are equivalent to 〈DiW 〉 = 0
and 〈W 〉 6= 0.

In the higher-derivative theory it is not a priori clear whether the conditions in
eq. (2.137) can still simultaneously be satis�ed. Let us begin by investigating the cur-
vature constraint in eq. (2.131). In appendix A.5 we demonstrate that eq. (2.131)
is a possible consequence of the equations of motion of M in a general higher-
derivative supergravity after solving the higher-curvature Einstein equations. The
explicit analysis is performed for a Lagrangian supporting the complete scalar po-
tential and an R+R2 gravity. More precisely, the presence of the R2-term implies
that at least two solutions to the equations of motion for M exist, one which sat-
is�es eq. (2.131) and another which violates this equation and, hence, corresponds
to a non-supersymmetric vacuum.27 Here we are not interested any further in this
possible second solution and whether it is physically viable and in agreement with
the principles of EFT. We simply conclude that eq. (2.131) can automatically be
satis�ed and does not have to be included in the list of conditions in eq. (2.137).

Let us now analyze how the remaining conditions in eq. (2.137) are a�ected by
the equations of motion of the auxiliary �elds. Firstly, the equation of motion for
M̄ after evaluating at eq. (2.137) reads〈

e2K/3W +
1

3
eK/3M +

∂

∂M̄
Vhd

〉
= 0 . (2.138)

Furthermore, the equations of motion for the chiral auxiliary �elds as given in
eq. (2.134) can be simpli�ed by using eq. (2.138) and are of the form〈

D̄W̄ − e−2K/3

(
K̄

∂

∂M
− ∂

∂F̄ ̄

)
Vhd

〉
= 0 . (2.139)

The equations of motion in eq. (2.138) and in eq. (2.139) have several consequences.
Firstly, the value of the cosmological constant is determined by 〈M〉 via eq. (2.131)
and, hence, might di�er from the two-derivative result. Secondly, eq. (2.139) is
in general satis�ed for 〈DiW 〉 6= 0. Therefore, the position of the supersymmetric
vacuum is shifted. Moreover, in general we expect 〈Vi〉 = 〈V̄〉 = 0 to be independent
conditions and no longer satis�ed just by means of eqs. (2.138),(2.139). However,
certainly one should test this expectation for explicit examples which we leave to
future investigations.

In turn, generically the AdS4-vacua of the higher-derivative theory should not
admit any �at directions. In particular, in situations where Vhd constitutes a small

27Note that further higher-curvature terms may lead to additional non-supersymmetric solutions,
but the supersymmetric solution where eq. (2.131) is satis�ed should still be allowed.
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correction to the ordinary scalar potential and, hence, the supersymmetric vacuum is
shifted to a nearby position, we expect that the higher-derivative corrections lift any
�at direction which may have existed in the two-derivative theory. This observation
is also in agreement with the existing literature on (N = 1, D = 3) superconformal
�eld theories (SCFT) which are expected to be dual to AdS4-supergravities via the
AdS/CFT correspondence [60]. The moduli space of the AdS4 vacua corresponds
to the space of deformations of exactly marginal operators in the respective SCFT.
In particular, as stated in [61] generically one expects that there are no such defor-
mations in the (N = 1, D = 3) SCFTs and, therefore, no moduli spaces in the dual
AdS4 vacua.

Of course the above arguments merely describe the general expectation and do
not represent strict bounds on the moduli space. It would be interesting to check
whether rigorous statements about the moduli spaces can be made. In particular,
one may try to derive a bound on the dimension, similar to the discussion in the
ordinary two-derivative theory where the moduli space has dimension ≤ nc [62]. To
perform such a discussion it would be necessary to make an explicit analysis for
the general higher-derivative theory (including also the dependence on the chiral
auxiliary �elds) which is outside the scope of this thesis. We leave these issues to
future research.

In summary, the supersymmetric AdS4 vacua are de�ned by eq. (2.139) and
eq. (2.138) together with the conditions 〈Vi〉 = 〈V̄〉 = 0 and 〈M〉 6= 0. As in the
ordinary theory the curvature constraint in eq. (2.131) is automatically satis�ed
on-shell.

2.6.3 Structure of Non-Supersymmetric Vacua

In general not much about the structure of the non-supersymmetric vacua can be
said. However, let us o�er at least a few observations here. As before we conduct
this discussion separately for higher-derivative theories with global and local N = 1
supersymmetry.

Non-Supersymmetric Vacua in Rigid Theory

Let us �rst turn to the situation in globally supersymmetric theories. If supersym-
metry is broken, then necessarily

〈F i〉 6= 0 , (2.140)

at least for one value of i. As in the respective two-derivative theory, also in the
higher-derivative theory the on-shell scalar potential is necessarily positive as re-
quired by the supersymmetry algebra.

Let us consider the situation of an EFT in which all possible higher-derivative cor-
rections allowed by the symmetries are present. If the higher order corrections to V
in powers of the auxiliary �elds are small perturbations of the ordinary two-derivative
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scalar potential, then we expect that the vacuum will be shifted to a nearby �eld
value. Suppose that the non-supersymmetric vacuum of the two-derivative theory
has a �at direction, then the contributions from higher powers in F i generically con-
stitute the leading order term in this direction and may lift its �atness. However, the
�atness will be preserved if it is enforced by a symmetry, such as a perturbatively
unbroken shift-symmetry. A second class of models where the �at directions may
not be lifted are those in which supersymmetry breaking occurs via a spontaneously
broken R-symmetry [63]. These models always have a �at direction, the R-axion,
associated with the Goldstone boson of the broken R-symmetry.

Given that the higher-derivative corrections to the scalar potential lift certain
�at directions, these may either be stabilized or left as tachyonic directions. The
structure of the general scalar potential does not allow to make model-independent
statements and, therefore, one has to perform a case-by-case study.

Non-Supersymmetric Vacua in Supergravity

Let us now turn to the study of non-supersymmetric vacua in higher-derivative su-
pergravity. Firstly, eq. (2.140) is no longer a necessary condition for supersymmetry
breaking, since higher-curvature terms alone can induce supersymmetry breaking.
For instance for theories of f(R)-gravity the vacuum structure can be understood
more easily via the dual description in terms of a real scalar which may feature
a non-supersymmetric minimum. In appendix A.5 we present an explicit example
where after setting 〈F i〉 = 0 for all i there exists a non-supersymmetric vacuum
generated by the presence of an R2-term. In that case the R2-term modi�es the
equations of motion for M which now admits a solution where the Killing spinor
equation is not satis�ed. Another example of this e�ect was discussed in [54]. How-
ever, let us emphasize again that supersymmetry breaking of this type is a feature
of higher-curvature gravity, and is not related to the higher-derivative terms for the
chiral scalar.

As in the global case the presence of new corrections to the scalar potential may
lift additional �at directions, but in general it is hard to make model-independent
statements.

2.7 Example: Shift-Symmetric No-Scale Models

So far we presented a catalog of higher-derivative operators and investigated their
e�ects on the vacuum structure. It is interesting to study the form of the higher-
derivative operators for an explicit example. In this section we discuss the special
case of so-called no-scale models which originally appeared in [64]. For simplicity,
here we de�ne no-scale models as supergravities with the property V(0) ≡ 0.28 As

28Note that the notion of no-scale model can be generalized to models with a semi-positive or
negative scalar potential. Furthermore, there is also a weaker de�nition of the no-scale property
where one only requires that the Kähler potential obeys eq. (2.142) while the superpotential is
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long as the no-scale property is not induced by a symmetry, and we will comment
on this possibility in a moment, then higher-derivative operators generally violate
it. In this case the scalar potential is completely composed of higher-derivative
contributions.

In string compacti�cations one often deals with no-scale supergravities which
additionally enjoy a Peccei-Quinn shift-symmetry and we turn more closely to their
discussion in the next chapter. The shift-symmetry implies that the Lagrangian is
invariant under the transformation

Φi − Φ̄ı̄ −→ Φi − Φ̄ı̄ + iCi , i = 1, . . . , nc , (2.141)

where Ci are real constants. By performing a Kähler transformation it is always
possible to locally choose a constant superpotential. In this case an invariance under
the shifts in eq. (2.141) must satis�ed by K individually and, in turn, K must be a
function of the real parts of Ai only. In turn, the de�ning condition for a no-scale
model reads29

Ki̄KiK̄ = 3 . (2.142)

No-scale supergravities with an underlying shift-symmetry have been classi�ed in
[36] both for chiral multiplets as well as for real linear multiplets. Let us brie�y
summarize the main results of this paper here. Recall that we de�ned real linear
multiplets in the context of global supersymmetry and the content of these multiplets
is displayed in tab. 2.1. In particular, shift-symmetric models of chiral multiplets
are dual to general theories of real linear multiplets.

The task of classifying all shift-symmetric no-scale models formulated in terms
of chiral multiplets amounts to �nding all allowed Kähler potentials which satisfy
eq. (2.142). It is convenient to rephrase this problem by reducing eq. (2.142) to a
simpler equation. To this end we rewrite the Kähler potential as follows

K = −3 ln(Y ) . (2.143)

As shown in [36, 65] eq. (2.142) is satis�ed, if and only if Y is a solution to the
homogeneous Monge-Ampere equation which reads

det(Yij) = 0 . (2.144)

The general solution to this equation can at most be given in a semi-explicit form,
and this solution is displayed in [36]. Let us contrast this result to the classi�cation of
no-scale models for real linear multiplets for which the general solution takes a fully
explicit and rather simple form. Among the chiral no-scale models characterized by
eq. (2.144) there exists a special subclass of solutions where the isometry group of the
Kähler manifold includes an additional Killing vector associated with dilatations. In
this case Y is given by a homogeneous function of degree one. Remarkably, these are
the only type of no-scale models which arise from geometric string compacti�cations

arbitrary.
29A generalized notion of no-scale model is obtained by choosing a di�erent constant on the

r.h.s. of the below equation.
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and we display explicit examples in the next chapter. Let us emphasize again that
among all solutions to eq. (2.144) the homogeneous functions of degree one are
extremely special. This implies that the vast majority of no-scale models do not
arise from string compacti�cations, at least not from geometric compacti�cations in
a perturbative regime in α′ and gs. This concludes the brief overview of the results
of [36].

Before turning to the higher-derivative operators for no-scale models, let us make
a remark which follows readily from the results in [36], but has not been explicitly
stated in that reference. One may ask whether the no-scale property is equivalent to
a symmetry of the theory which, therefore, must imply the existence of a hypothet-
ical no-scale Killing vector. We now argue that the results of [36] suggest otherwise.
Firstly, in [66] it was proposed that the no-scale property may be related to an
underlying scaling (i.e. dilatation) symmetry. However, this cannot be a candidate
for a no-scale symmetry as it only applies to the special subclass of no-scale models
where Y is a homogeneous function. Furthermore, even in this subclass there are
counter-examples in the context of type II orientifold �ux-compacti�cations as dis-
cussed in [36]. One may argue for the existence of another Killing vector associated
with the no-scale property that we did not take into account yet. To explore this
possibility it is instructive to regard the single �eld case where there is a unique no-
scale theory determined by K = −3 ln(A+ Ā) [64]. The respective Kähler manifold
is given by the coset SU(1, 1)/U(1) whose isometry group coincides with the mod-
ular group SL(2,R). Therefore, besides the Killing vectors associated to rescalings
and shifts we �nd a third Killing vector corresponding to inversions. Since the other
two Killing vectors are not related to the no-scale property, this third Killing vector
is the only remaining option for a generator of a hypothetical no-scale symmetry.30

However, the inversion is not necessarily a symmetry for models with more than a
single �eld as can be checked for explicit examples. In total, this suggests that the
no-scale property in eq. (2.142) is not equivalent to a symmetry of the theory.

We now turn our attention to higher-derivative supergravity and the form of
the operators in tab. 2.3 for shift-symmetric no-scale models. To understand the
structure of the higher-derivative corrections it is important to note that the no-scale
condition in eq. (2.142) leads to the following simpli�cation of eq. (2.78)

M(0) = 0 . (2.145)

Eq. (2.145), in turn, implies that the linearized on-shell Lagrangians for the operators
in tab. 2.3 simplify considerably and, in particular, that at leading order several
operators do not contribute to the scalar potential. More speci�cally, among the
operators which contribute four-derivative terms at the linearized level we �nd that
onlyO(4|2) andO(2|1) induce new terms in the scalar potential. In fact, both operators
lead to the same correction which is of the form |F |4. More generally, the only
corrections at the linearized level which can arise are given by higher powers of the
F -terms. Altogether, these F -term corrections generally induce a scalar potential
and, thereby, lift the no-scale property V = 0.

30The shift-symmetry is not a necessary feature of no-scale models, since a large number of
counter-examples exist such as the coset SU(n, 1)/U(n).





Chapter 3

Type IIB Orientifold

Flux-Compacti�cations and

α′-Corrections

In the last chapter we investigated higher-derivative theories of chiral multiplets in
N = 1, D = 4 �at and curves superspace. Furthermore, we analyzed the vacuum
structure of these higher-derivative theories. In particular, the presence of addi-
tional corrections to the scalar potential induced the higher-derivative operators is
capable of lifting �at directions. Therefore, these corrections are of particular rele-
vance in the discussion of vacua of string compacti�cations which typically exhibit
a large number of �at directions. In this chapter we perform an explicit reduction
of higher-derivative operators from ten-dimensional (α′)3-corrections in the context
of Calabi-Yau orientifold compacti�cations of IIB string theory reviewing the work
[31], but also extending parts of this reference by including additional information.
We begin by reviewing the essential formalism of IIB supergravity, orientifold com-
pacti�cations and the resulting low-energy e�ective N = 1, D = 4 supergravity.

The low-energy e�ective action of IIB superstring-theory is captured by D = 10
IIB supergravity. IIB supergravity has the maximal amount of supercharges possible
in D = 10 spacetime-dimensions corresponding to N = 2 Majorana-Weyl spinors.
Therefore, the supersymmetry algebra allows only for a gravity multiplet, which
encompasses the following component �elds [67]

NS-NS : (g(10) , B2 , φ) , R-R : (C0 , C2 , C4) , (3.1)

where g(10) denotes the 10D spacetime metric, φ is a real scalar denoted as the
dilaton, B2 is a two-form and Cp are p-form gauge potentials. Here we only displayed
the bosonic components. We associate the following �eld strengths to the gauge
potentials

H3 = dB2 , F1 = dC0 , F3 = dC2 , F5 = dC4 . (3.2)
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It is convenient to introduce the following quantities

S = C0 + ie−φ , G3 = F3 − SH3 ,

F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3 .

(3.3)

The leading-order two-derivative action for IIB supergravity in the string frame
reads [67]

SIIB =
1

2κ2
10

∫
d10x
√
−ge−2φ

(
R(10) + 4(∂φ)2

)
− i

8κ2
10

∫
eφC4 ∧G3 ∧ Ḡ3

− 1

2κ2
10

∫
d10x
√
−g
[

1

2
|F1|2 +

1

12
|G3|2 +

1

480
|F̃5|2

]
,

(3.4)

whereR(10) denotes the ten-dimensional scalar curvature and κ10 sets the 10D Planck
scale. This action is incomplete in the sense that it does not automatically lead to
the self-duality condition F̃5 = ∗F̃5, which has to be additionally enforced at the
level of the equations of motion.

3.1 IIB Compacti�cations, O-Planes, D-Branes and

Background Fluxes

To obtain theories in D = 4 spacetime dimensions we have to study compacti�ca-
tions of IIB supergravity. In the simplest case, this means that we look for solutions
of the D = 10 supergravity where the ten-dimensional metric describes a product

M(10) =M(4) ×X6 , (3.5)

such that M(4) is an arbitrary four-dimensional spacetime and X6 some compact
manifold. Naturally, this has to happen in such a way, that the theory lifts to a
solution of IIB string theory. A generic X6 will almost always break all of the su-
persymmetry and, therefore, the respective D = 4 theory has no supersymmetric
structure. To preserve at least some of the supercharges X6 has to allow for the exis-
tence of globally de�ned non-vanishing spinors. A particular example are manifolds
with SU(3) holonomy group, which admit one covariantly constant spinor. These
manifolds are referred to as Calabi-Yau manifolds and can equivalently be charac-
terized by the property that the Ricci tensor vanishes identically. However, since
IIB supergravity has a supersymmetry algebra with N = 2 D = 10 supercharges,
Calabi-Yau-compacti�cations preserve two D = 4 spinors which, in turn, leads a 4D
theory withN = 2 supersymmetry. Note that preservation of supersymmetry in four
dimensions does not require that X6 is Calabi-Yau. In fact, there is a much broader
class of compacti�cations that yield (N = 2, D = 4) where X6 is only required to
have an SU(3)-structure group [68�72]. In this case the (N = 2, D = 4) theory,
contrary to the Calabi-Yau compacti�cations, is in general gauged. However, the
Calabi-Yau compacti�cations have the advantage of being computationally more
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tractable and, therefore, we constrain ourselves to this class of compacti�cations
here.

To obtain theories with N = 1 in D = 4 it is necessary to modify our ansatz in
eq. (3.5). The required additional ingredients of our theory are D-branes and orien-
tifold O-planes. D-branes are dynamical extended objects inM(10) and constitute
BPS-states of IIB supergravity. They naturally arise in string theory as hypersur-
faces in M(10) on which open strings end. Furthermore, they carry charge under
p-form gauge potentials in the R-R sector. To consistently de�ne the R-R charges
of D-branes on a compact space it is necessary to introduce additional localized
objects, the orientifold O-planes. The O-planes are extended objects in M(10) as
well, but arise after performing an orientifold projection of type II string theory.
The orientifold projection is a discrete transformation which includes world-sheet
parity as well as a target space symmetry σ, which has to be an involution on the
compact space.31 Moreover, it reduces the amount of supersymmetry that is pre-
served in the four-dimensional theory such that we obtain N = 1 supergravity in
D = 4. For IIB with X6 being a Calabi-Yau threefold the orientifold projection
can be chosen such that the theory either includes O3/O7- or O5/O9-planes [25].
Henceforth, we discuss only the O3/O7-plane case. Given these orientifold planes,
we are in a position to also include D3/D7-branes in our theory. Positive tension
induced by R-R charge from the D-brane sector can now be canceled with negative
tension of the O-planes leading to well-de�ned solutions of IIB supergravity [26]. In
general, in the presence of the aforementioned localized sources the ten-dimensional
solution is described by a warped metric, which reproduces eq. (3.5) in the limit of
weak warping. Thus, the compact dimensions are described by a manifold that is
conformally Calabi-Yau.

One is now in a position to work out the e�ective N = 1 supergravity which de-
scribes such orientifold O3/O7-compacti�cations. However, as it turns out, one gen-
erally obtains large numbers of massless chiral (and/or real linear) multiplets whose
constituents are geometric moduli of the compact manifold and axions descending
from the various p-form gauge potentials in ten dimensions. To �nd phenomenolog-
ically more desirable theories, it is necessary to include additional building blocks,
that allow to generate interactions and, in turn, make the chiral multiplets mas-
sive. To this end we consider background �uxes for the three-form �eld strengths
F3 and H3, which constitute the �nal ingredient of the compacti�cation data. In
[26] a warped solution of type IIB supergravity was found which includes O3-planes
as well as D3- and D7-branes and which admits quantized �uxes for an imaginary
self-dual three-form

∗G3 = iG3 . (3.6)

The �ux conditions are of the form

1

2πα′

∫
A

F3 = 2πN1 ,
1

2πα′

∫
B

H3 = −2πN2 , (3.7)

where A,B denote special 3-cycles and N1, N2 are integers displaying the units of
�ux. The presence of the �uxes also modi�es the cancellation condition between the

31Target space symmetry here means that σ describes a map betweenM(10) andM(10).
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tension of O-planes and D-branes. Some of the geometric moduli of the Calabi-Yau
background, and we turn more closely to their discussion in a moment, are described
by 3-forms, which acquire a scalar potential via eq. (3.7) and, hence, become massive.

3.1.1 N = 1 Spectrum of O3-Compacti�cations

More generally, the spectrum obtained from Calabi-Yau-compacti�cations of IIB
with O3/O7 orientifold-planes was worked out in [25]. To understand the N = 1
spectrum one has to study the Dolbeault-cohomology of X6. On one hand, the co-
homology tells us how the ten-dimensional p-form gauge potentials decompose into
4D and 6D constituents, but it also determines the harmonic forms on X6 [73]. The
harmonic forms, or equivalently the zero modes of the internal Laplacian, are in
a one-to-one correspondence with the geometric moduli of X6. Thus, it is evident
that geometric moduli and the axionic components of the p-form gauge potentials
combine into N = 2-multiplets in the case of pure Calabi-Yau compacti�cations
and into N = 1-multiplets for the orientifold compacti�cations. Additionally, un-
der the orientifold projection the cohomology decomposes into even and odd parts.
The Dolbeault-cohomology for Calabi-Yau threefolds is relatively simple and can be
described by the Hodge-diamond, which reads

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0

1

. (3.8)

The unit entries are related to the unique (3, 0)-form Ω on the threefold, while
the only non-trivial entries h1,1, h2,1 describe the dimension of H1,1(X6,Z) and
H2,1(X6,Z). Under the involution σ the cohomology decomposes as

H1,1(X6,Z) = H1,1
+ (X6,Z) ⊕ H1,1

− (X6,Z) , h1,1 = h1,1
+ + h1,1

−

H2,1(X6,Z) = H2,1
+ (X6,Z) ⊕ H2,1

− (X6,Z) , h2,1 = h2,1
+ + h2,1

− .
(3.9)

In the remainder of this thesis, we assume that the orientifold projection acts such
that

h2,1
+ = 0 , h1,1

− = 0 , (3.10)

in which case the spectrum simpli�es further. This choice corresponds to the situ-
ation studied in [26, 28]. The N = 1 spectrum then contains the following chiral
multiplets [25]

(Ti , UI , S) , where i = 1, . . . , h1,1
+ , I = 1, . . . , h2,1

− . (3.11)

We refer to Ti as Kähler moduli and UI as complex-structure moduli while S is
denoted as axio-dilaton. The scalar components of these chiral multiplets read

Ti = τi + iρi , UI = zI , S = C0 + ie−φ , (3.12)
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where ρi are axions descending from C4 in 10D. To de�ne the components of the
complex-structure moduli [73] we have to introduce a canonical basis (AA, BB),
where A,B = 0, . . . , h2,1 for the homology spaces H3(X6,Z) with a dual basis
(αA, β

B) of the respective cohomological space, such that∫
AB
αA = δBA ,

∫
BA

βB = −δBA . (3.13)

The periods of the unique (3, 0)-form Ω with respect to the above basis read

ZA =

∫
AA

Ω , GA =

∫
BA

Ω . (3.14)

Now ZA describe projective coordinates for the space of deformations of the complex-
structure of X6. The scalars zI can then be described by a�ne coordinates, for
instance, via

zI =
ZI

Z0
, I = 1, . . . , h2,1 . (3.15)

It remains to de�ne the real parts of the Kähler moduli. These are given by the
Einstein frame volumes of four-cycles in H1,1(X6,Z). In particular, let us choose

a basis of the respective dual cohomological space H1,1(X6,Z) as D̂i such that the
Kähler 2-form enjoys the expansion

J =
h1,1∑
i=1

t̂iD̂i , (3.16)

where t̂i are the string frame two-cycle volumes. Then we can de�ne the triple
intersection numbers as

kijk =
1

6

∫
X6

D̂i ∧ D̂j ∧ D̂k . (3.17)

The total string frame volume of the Calabi-Yau is, hence, given by

V̂ =

∫
X6

J ∧ J ∧ J =
1

6
kijk t̂

it̂j t̂k . (3.18)

The string frame volumes of the four-cycles are of the form

τ̂i =
∂V
∂t̂i

=
1

2
kijk t̂

j t̂k . (3.19)

The Einstein frame volumes can now be obtained via a Weyl-rescaling of the 4D
metric. The relation between Einstein- and string frame metric in the D = 10
theory is given by

g
(E)
MN = e−φ/2g

(S)
MN , (3.20)

where we useM,N = 0, . . . , 9 as ten-dimensional spacetime-indices. In particular,
the Einstein frame volumes, which we simply denote by unhatted objects, read

V = V̂e−3φ/2 , ti = e−φ/2t̂i , τi = e−φτ̂i . (3.21)
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The fact that we explicitly distinguish between Einstein- and string frame variables
may seem awkward at the moment, but will be of importance later on during the
discussion of α′-corrections to the e�ective action of IIB supergravity. Before pro-
ceeding let us also display the following identity

V =
1

3
τit

i , (3.22)

of which we will occasionally make use later on.

3.1.2 E�ective Action of O3-Compacti�cations with Fluxes

Being equipped with the structure of the chiral multiplets in the resulting N = 1,
D = 4 theory, let us now display the form of the e�ective action. In the following,
we assume that background �uxes for an imaginary self-dual G3 of the form as in
[26] are present. The two-derivative e�ective action for this case was determined in
[25, 26]. The Kähler potential and superpotential are of the form

K(Ti, UI , S) = −ln(−i(S − S̄))− 2ln (V)− ln

(
−i
∫
X6

Ω ∧ Ω̄

)
,

W (UI , S) =

∫
X6

Ω ∧G3 .

(3.23)

Notably, the above Kähler potential obeys the no-scale properties

KTiT̄̄KTiKT̄̄ = 3 , KXı̂X̄¯̂KXı̂
KX̄¯̂

= 4 , (3.24)

where we abbreviate Xı̂ = (Ti, S). The �rst no-scale property, in turn, implies
that the scalar potential is non-negative. In particular, the scalar potential exhibits
a (non-trivial) dependence on the complex-structure moduli and the axio-dilaton,
which is induced by the three-form �ux, and, moreover, features a generic super-
symmetric vacuum, in which UI and S become massive. However, in this vacuum
the Kähler moduli remain �at directions.

3.2 Perturbative Corrections to Type IIB Super-

gravity

Several di�erent proposals for the stabilization of the Kähler moduli have been
made over the years [29, 30, 74, 75]. In essence, all of these approaches involve non-
perturbative corrections to W coming either from Euclidean D3-brane instantons
or from gaugino condensation, see [76] for an exception. However, the Euclidean
D3-brane instantons only occur when wrapping so-called rigid divisors and, hence,
generically allow to stabilize only a small subset of Kähler moduli. An explicit
example where not all Kähler moduli can be stabilized in this way was presented in
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[77]. Additionally, the computation of these instanton corrections is a tedious task
and, hence, models with several Kähler moduli are sparse.

A generic class of corrections are perturbative α′- and gs-corrections as well
as non-perturbative world-sheet instanton-corrections. It is only after inclusion of
these corrections that the respective low-energy e�ective D = 10 supergravity en-
codes artifacts of stringy behaviour and is distinct from the ordinary IIB supergrav-
ity displayed in eq. (3.4). Moreover, regardless of the structure of X6 we expect
perturbative corrections to descend from the D = 10 theory and, furthermore, at
least in principle to be fully calculable and model-independent. Still, it remains an
open problem to prove or disprove that perturbative corrections alone can gener-
ate supersymmetric or non-supersymmetric minima for the N = 1 Kähler moduli.
At least some of the perturbative corrections have been computed, for instance in
[28, 78, 79]. In this section we display the ten-dimensional form of perturbative α′-
and gs-corrections focusing on the closed string sector. Perturbative corrections for
the localized sources are also of relevance and, for instance, need to be taken into
account in the analysis of [26], but we omit their details in the context of this thesis.
Note that recently additional apparent α2-corrections to the Kähler potential for
the Kähler moduli were inferred from F-theory [80]. These corrections are related
to a redundancy in the underlying M-theory description [81] and can be absorbed
via �eld-rede�nitions [80].

The leading order perturbative corrections to SIIB given in eq. (3.4) appear at
the eight-derivative level and, in particular, encompass tree-level corrections of order
(α′)3. Modularity of these eight-derivative terms enforces that these corrections are
multiplied by appropriate modular forms which, therefore, capture the behavior
of gs- and world-sheet instanton-corrections as well. However, the precise form of
the eight-derivative corrections is only partially known. In an expansion of the
component �elds of the NS-NS sector of IIB supergravity, the tree level-corrections
are known at the level of quartic terms [27], while the one-loop terms are known
up to quintic order [82]. In particular, the tensor structure of the quartic terms is
identical for the tree-level and one-loop corrections in IIB string theory.32

More precisely, the quartic tree-level eight-derivative corrections to the e�ective
action in eq. (3.4) read [27, 82�86]

S
(α′)3

tree =
1

2κ2
10

∫
d10x
√
−ge−2φ ζ(3)

3 · 211
(α′)3J0(R̄) ,

J0(R̄) = t8t8R̄4 +
1

8
ε10ε10R̄4 .

(3.25)

Here R̄ collectively denotes a tensor with four 10D spacetime indices given by

R̄MNPQ = RMNPQ +D[MHN ]PQ , (3.26)

where HNPQ denote components of H3 and DM the 10D spacetime-covariant deriva-
tive. The tensors R̄ in eq. (3.25) are contracted with certain tensors t8 and ε10, see

32This is to be contrasted with the situation in type IIA, where the one-loop term has a di�erent
tensor structure.
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[27] for their explicit form. Let us also mention the one-loop results of [82], since
they shed light onto the expected form of corrections involving H3. In particular,
at one-loop these authors demonstrated that the replacement

RMNPQ → R(Ω+)MN
PQ = RMNPQ +D[MHN ]

PQ +
1

2
H[M

PSHN ]S
Q , (3.27)

in the regular one-loop terms almost completely captures the dependence on H3 up
to quintic order, with additional terms arising in the odd-odd spin structure sector.
In particular, due to supersymmetry we expect that the same replacement should
also be valid for the tree-level terms, which would lead us to consider J0(R(Ω+)).
Regardless of the speci�c tensor structure, these arguments strongly support the
presence of the following schematic terms

H2
3R3 , H4

3R2 , H6
3R , H8

3 . (3.28)

However, in compacti�cations with H-�ux as in eq. (3.7) it is evident that these
terms contribute to the scalar potential of the e�ective N = 1, D = 4 supergravity.
Since we neither know the exact form of these terms nor their R-R complements,
we cannot compute these corrections to the 4D theory directly. Nevertheless, in [28]
an indirect argument to infer at least some of the 4D terms was presented. We now
turn our attention to this argument and see whether it can be extended to infer
additional α′-corrections to the scalar potential.

3.2.1 α′-Corrections to 4D Supergravity

The pure R4-term in eq. (3.25) which we obtain when performing the limit H3 → 0
will in the following be denoted by J0(R). Historically, these corrections �rst ap-
peared from graviton four-point scattering amplitudes [87] and the computation of
the β-function of the sigma-model [88�92]. We are interested in the possible im-
plications of these eight-derivative corrections for the four-dimensional compacti�ed
theory. In particular, in pure Calabi-Yau threefold compacti�cations J0(R) yields
a correction to the prepotential describing the special Kähler geometry of the com-
plexi�ed Kähler deformations which constitute a subsector of the hypermultiplets in
the respective N = 2, D = 4 theory [93]. Since it is already a manifest correction to
the N = 2 theory, it persists after introducing O3/O7-planes and, therefore, corrects
the Kähler potential for the Kähler moduli in the N = 1 theory. However, since
the orientifold projection drastically changes the spectrum, this correction has to be
adapted to the proper N = 1 variables. This step was performed in [28], where also
the resulting scalar potential after inclusion of 3-form �uxes was displayed. In par-
ticular, the directions Ti now receive a non-trivial scalar potential, which as argued
in [28] is partially induced by conjectured 10D terms of the form

H2
3R3 , DH3DH3R2 . (3.29)

In sum, the contributions to V were indirectly determined by corrections to the
Kähler potential which correspond to corrections to the two-derivative kinetic terms
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induced by the 10D R4-terms.33 The corrections to V descending from the terms in
eq. (3.29) correspond schematically to regular |F |2-terms in the o�-shell Lagrangian
of the respectiveN = 1, D = 4 supergravity, where the symbol F collectively denotes
the chiral auxiliary �elds and is not to be confused with the p-form �eld strengths
of IIB supergravity. For brevity we suppress the details of the index structure of the
|F |2-term here. Furthermore, also terms of the form H4

3R2 are included in the eight-
derivative corrections to IIB supergravity and we expect that these terms correspond
to |F |4-terms in the o�-shell 4D theory.34 Therefore, a possible o�-shell completion of
these corrections is provided by 4D higher-derivative operators.35 These corrections
will be the topic of the remainder of this chapter. Let us begin by laying out our
strategy on how to compute them.

Firstly, we know that eq. (3.23) describes a theory, such that the Kähler moduli
are subject to a shift-symmetric no-scale model. Hence, our results in sec. 2.7 imply
that the allowed (α′)3-corrections to V are of the form36

|F |4 , F 2|F |2 , at O(D4) . (3.30)

From the list of operators in tab. 2.3 and the respective component forms which
are displayed in sec. 2.5.6 the operators O(4|2) and O(2|1) generate |F |4-terms. These
operators also induce four-derivative terms for the chiral scalars at the level of the
linearized on-shell action. Since these four-derivative terms do not depend on F i or
F̄ ̄, they must descend from 10D terms which purely depend on the Riemann tensor,
and, hence, from J0(R) in eq. (3.25). In turn, it is possible to compute these four-
derivatives terms exactly. Therefore, our strategy is to compute the four-derivative
terms for Ti originating from J0(R) and, afterwards, perform a matching to the
supersymmetric higher-derivative operators in tab. 2.3. For simplicity, we perform
the matching only for a single operator. Due to its particularly simple form the
operator O(4|2) which we already studied in greater detail in sec. 2.5.7 is predestined
for this task. By supersymmetry we can then extract the |F |4-term via eq. (2.122).
Since we only match O(4|2) and not O(2|1) or any other operator in tab. 2.3 we can
do this identi�cation only up to some numerical constant.

Before we turn to the explicit computation in the next section let us make further
remarks. Firstly, let us clarify that additional higher-derivative operators besides
O(4|2) are expected to be present. We discuss these further in sec. 3.2.4. Secondly,

33One should mention that the analysis in [28] neglects the e�ects of the O7-planes as well as
the warping induced by the presence of the background �ux. To properly include these e�ects it is
convenient to start from F-theory, where recently these (α′)3-corrections were computed and are
indeed corrected by the presence of the O7-planes [79].

34Note that in the situation with localized sources and background �uxes turned on we expect
these contributions to be present. On the other hand, in the context of N = 2 compacti�cations
these corrections will be absent as no scalar potential for the moduli is generated. Indeed the
corrections to the potential that will be computed in this section vanish when turning o� �uxes.

35Note that also higher-derivative couplings in compacti�cations to (N = 2, D = 4)-supergravity
have been investigated, for instance in [94].

36Let us emphasize that this would equally hold if other leading order corrections to the scalar
potential coming from higher-derivative corrections of di�erent origin, such as gs-corrections, were
determined.
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one may wonder whether the correction to V in the 4D theory induced by the H4
3R2-

term can also be captured via a new term in the Kähler potential. In appendix B.2
we investigate and comment on this possibility further. However, absent knowledge
of the precise form of the H3-dependent terms in eq. (3.25) this question cannot be
fully answered.

3.2.2 KK-Reduction of Type IIB (α′)3R4-Corrections

We now perform the explicit reduction of the four-derivative terms for Kähler-class
deformations from the (α′)3R4 corrections in eq. (3.25). The following derivation is
in many ways analogous to the computation in [28]. Before turning to the explicit
analysis let us stress again that we focus on deriving the overall functional form of
the tensor Tijk̄l̄ in eq. (2.120) and omit the details of numerical factors. While it
would, in principle, be possible to perform a full discussion of the four-derivative
terms and conduct an exact operator-matching using the result of sec. 2.5.6, our
approach here is more modest.

Our starting point is the eight-derivative correction J0(R) given in eq. (3.25)
which we displayed in the string frame.37 There exists a basis of 26 independent
contractions of four Riemann tensors [95] and we use this basis to expand J0(R).
Since we are not interested in keeping track of numerical factors, the coe�cients of
the expansion of J0(R) are irrelevant here. From now on we simply argue within
this basis of 26 terms to obtain the functional form of the possible four-derivative
terms.

Next let us discuss the form of the ten-dimensional metric, which constitutes the
starting point of the KK-reduction. We make the following simpli�cations. Firstly,
we will not compute the coupling of gravity to the higher-derivatives of the Kähler
moduli and, therefore, set the four-dimensional part of the metric to a Minkowski-
form. Secondly, we will set the warping-factor to unity. Note that, in general this
warping-factor is a non-trivial function after inclusion of background �uxes, but is
expected to correct our results only at a subleading order. Lastly, for simplicity we
conduct the analysis with a single Kähler-type deformation present, that is

h1,1
+ = h1,1 = 1 . (3.31)

Using these assumptions the ten-dimensional metric reads

ds2
(10) = gMNdxMdxN = ηmndxmdxn + gm̂n̂dym̂dyn̂ , (3.32)

where as before M,N = 0, . . . , 9 and ym̂, m̂ = 1, . . . , 6 denote real coordinates on
the compact manifold X6. It is convenient to decompose the 6D metric as follows

gm̂n̂ = e2u(x)hm̂n̂(y) . (3.33)

37Note that in a proper discussion of the (α′)3-corrections to the low-energy e�ective 4D super-
gravity of the scalars we would also have to incorporate higher-derivative corrections for the dilaton
as given in [84]. In particular, these higher-derivative corrections were included in the analysis of
[28]. However, for our purposes it su�ces to consider the dilaton at the two-derivative level and
simply use the results of [28] for the correction to the two-derivative terms for the volume modulus.
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Here the volume measured by the background metric hm̂n̂ is normalized to unity,
which is achieved by setting (2πα′) = 1. This way the Planck constants in ten and
four dimensions coincide κ−2

10 = κ−2
4 . The single volume modulus in the string frame

is normalized as e6u = V̂ .
The R4-term in eq. (3.25) modi�es the ten-dimensional Einstein equations. In

particular, the Einstein equations along the six-dimensional directions are of the
form [96]

Rαβ̄ ∼ (α′)3∂α∂β̄Q , (3.34)

where we introduced local complex coordinates (zα, z̄β̄) with α, β̄ = 1, 2, 3 on the
internal manifold. The indices here are not to be confused with the 4D Weyl-
spinor indices. Furthermore, Q denotes the six-dimensional Euler integrand, that is∫
d6y
√
gQ = χ(X6), where χ(X6) = 2(h1,1−h2,1) denotes the Euler characteristic of

X6. In general, a Ricci-�at metric does not solve eq. (3.34). Instead we can formally
solve eq. (3.34) by

hm̂n̂ = h
(0)
m̂n̂ + (α′)3h

(1)
m̂n̂ , (3.35)

where h(0) is a Ricci-�at metric solving the zeroth-order Einstein equations and
h(1) solves eq. (3.34) at order (α′)3. In turn, we expect that also the deformations
receive (α′)3-corrections. Now, h(1) only needs to be considered for the reduction
of the leading order (α′)0 terms in eq. (3.4). However, none of these terms induce
4D four-derivative corrections. Therefore, it is not necessary to take into account
the correction h(1), since it corrects the four-derivative terms only at order (α′)6.
Thus, without loss of generality we can safely ignore the correction h(1) and treat h
as Ricci-�at.

To determine the curvature invariants in J0(R) we �rst need to compute the
components of the Riemann tensor. In the following we use the conventions

RMNPQ = ∂PΓMQN − ∂QΓMPN + ΓRQNΓMPR − ΓRPNΓMQR ,

ΓMPN =
1

2
gMQ (∂PgNQ + ∂N gPQ − ∂QgPN ) .

(3.36)

Up to symmetries there are only two non-vanishing independent pieces of the Rie-
mann tensor computed with respect to the metric in eq. (3.32). They are given
by

Rm̂mn̂n = −gm̂n̂(∂mu∂nu+ ∂m∂nu) ,

Rk̂m̂n̂p̂ = e2uR(h)

k̂m̂n̂p̂
+ (∂u)2(gk̂p̂gm̂n̂ − gk̂n̂gp̂m̂) .

(3.37)

Here R(h)

k̂m̂n̂p̂
denotes the Riemann tensor components of the background metric h.

Furthermore, the Riemann tensor allows to compute the Ricci-tensor as well as the
scalar curvature

Rmn = −6(∂mu∂nu+ ∂m∂nu) , Rm̂n̂ = −gm̂n̂(6(∂u)2 +�u) ,

R = −42(∂u)2 − 12�u .
(3.38)
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It is evident that in the KK-reduction of J0(R) we obtain terms with up to eight
derivatives acting on u. For our purposes it su�ces to determine the terms with four-
derivatives. After computation of all 26 basis elements in [95] we �nd the following
four-derivative terms

J0(R) ⊃ e−4u
[
α1(∂u)4 + α2�u(∂u)2 + α3(�u)2 + α4(∂m∂nu)(∂m∂nu)

+ α5(∂m∂nu)(∂mu)(∂nu)
]
R(h)

k̂m̂n̂p̂
Rk̂m̂n̂p̂

(h) ,

(3.39)

for some constants αi. Since for a Calabi-Yau R(h)
m̂n̂ = 0, the only non-vanishing

contraction of two Riemann tensors is given by R(h)

k̂m̂n̂p̂
Rk̂m̂n̂p̂

(h) . We see that �ve

di�erent four-derivative terms appear here. However, in the four-dimensional action
these terms are not mutually independent but certain terms are related by partial
integration.38 In a full reduction it would be necessary to jointly discuss all �ve
operators in eq. (3.39). However, here we are interested only in the �rst term in
eq. (3.39), which is the only ∂4-term that needs to be matched to the Lagrangian in
eq. (2.120). It is convenient to express the Riemann-tensor square with respect to
gm̂n̂ again. Up to derivatives we have

Rk̂m̂n̂p̂R
k̂m̂n̂p̂ = e−4uR(h)

k̂m̂n̂p̂
Rk̂m̂n̂p̂

(h) + . . . (3.40)

In the action the integration now splits into four- and six-dimensional parts, such
that

S(∂u)4 = − 1

2κ2
4

∫
d4x
√
−g e−2φ0 α1 (∂u)4

∫
X6

d6y
√
gRk̂m̂n̂p̂R

k̂m̂n̂p̂ . (3.41)

It is convenient to rewrite the integral over the compact dimensions as follows∫
X6

d6y
√
gRk̂m̂n̂p̂R

k̂m̂n̂p̂ ∼
∫
X6

c2 ∧ J , (3.42)

where c2 is the second Chern class of the Calabi-Yau threefold and J its Kähler
form. This can be checked directly using local complex coordinates.39 With respect
to these coordinates we have

c2 =
1

2

(
TrR2 − (TrR)2

)
, J = igαβ̄dzα ∧ dz̄β̄ , (3.43)

where R is the curvature two-form. The traces of the curvature two-form are given
by

TrR = Rα
αβγ̄ dzβ ∧ dz̄γ̄ ,

TrR2 = Rα
βγδ̄Rβ

αεζ̄ dzγ ∧ dz̄δ̄ ∧ dzε ∧ dz̄ζ̄ .
(3.44)

38For example via partial integration (∂m∂nu)(∂mu)(∂nu) can be recast as a combination of
(∂u)4 and �u(∂u)2.

39To prove eq. (3.42) it is also helpful to note the relation
√

det(hm̂n̂) = det(gαβ̄), which links
the volume forms of the two di�erent coordinate systems to each other.
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On a Calabi-Yau we have TrR = 0 and, hence, we �nd that eq. (3.42) holds.
Furthermore, from eq. (3.42) it is evident that∫

X6

c2 ∧ J ≥ 0 . (3.45)

Here equality holds, if and only if X6 has constant holomorphic sectional curvature
[97]. For Kähler manifolds with constant holomorphic sectional curvature c the
Riemann tensor must necessarily take the form [98]

Rαβ̄γδ̄ = − c
2

(
gαβ̄gγδ̄ + gαδ̄gγβ̄

)
(3.46)

and, thus, for Calabi-Yau manifolds c = 0 = Rαβ̄γδ̄. This is only possible if X6 is a
torus T 6.

The term in eq. (3.41) is expressed in the string frame. In order to transform to
the Einstein frame we need to determine the proper Weyl factor, which can be read
o� from the results of [28]. The two-derivative part of the bosonic action is given
by40

S = − 1

2κ2
4

∫
d4x
√
−g e−2φ0

(
e6u +

ξ

2

)
R(4) + . . . (3.47)

where R(4) denotes the scalar curvature in four dimensions and ξ parametrizes the
leading α′-corrections and reads [28]

ξ = −(α′)3ζ(3)χ(X6)

2(2π)3
. (3.48)

In turn, the 4D Weyl-transformation is of the form

g(E)
mn = e−φ0/2

(
V +

ξ̂

2

)
gmn , (3.49)

where the combinatorial number ξ was rescaled by a dilaton-dependent factor as
follows

ξ̂ = ξg−3/2
s . (3.50)

The Weyl rescaling implies that also couplings of the 4D Riemann tensor to the
Kähler deformation contribute to the four-derivative term for u. Again these terms
are functionally indistinguishable from eq. (3.41) since they necessarily need to be
multiplied by the same curvature-invariant on X6 given in eq. (3.42).41 After per-
forming the Weyl transformation we also have to rediagonalize the kinetic terms for
the scalar �elds. This is achieved by recasting all the string frame volumes in terms
of Einstein frame volumes as in eq. (3.21), such that we are left with the proper
N = 1 coordinates displayed in eq. (3.12).

40We promote ηmn to an arbitrary Lorentzian metric gmn here.
41A coupling of the N = 2 vector multiplets to four-dimensional curvature invariants is forbidden

by supersymmetry [27] and, hence, we expect these couplings also to be absent in the N = 1 sector.
However, a coupling of the four dimensional Riemann-tensor to derivatives of the Kähler moduli
might be present.
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Furthermore, we can expand J = t̂D̂, where D̂ is the single (1, 1)-form in
H1,1(X6,Z). Hence, the integral on the r.h.s. of eq. (3.42) reads∫

X6

c2 ∧ J = t̂

∫
X6

c2 ∧ D̂ ≡ Π t̂ , (3.51)

where Π is an integer number encoding the topological information of the second
Chern class. We are now in a position to read o� the �nal form of the four-derivative
term. Up to terms involving derivatives of the dilaton we can recast eq. (3.41) in
terms of the proper N = 1 coordinates in eq. (3.12)

S(∂u)4 ∼ − 1

2κ2
4

∫
d4x
√
−g(E)g−3/2

s Π t (∂τ)4

(
∂

∂τ
K(0)

)4

, (3.52)

where K(0) = −2 ln(V̂) denotes the leading order no-scale Kähler potential. Finally,
we can match this result to the Lagrangian in eq. (2.120) and read o� the coupling

T = λ(α′)3(Π t)

[
1

2i
(S − S̄)

]3/2(
∂

∂τ
K(0)

)4

, (3.53)

where λ denotes the overall unknown numerical factor. Matching to eq. (2.122) �nd
the following correction to the scalar potential

V(1) = −e2K(0)λ(Π t)g−3/2
s

(
∂

∂τ
K(0)

)4

|DTW |4 . (3.54)

Note that this result holds for any superpotential, even if it includes non-perturbative
corrections. Moreover, we truncated V(1) at the linearized level and, therefore, did
not include the (α′)3-corrections to the Kähler potential descending from eq. (3.47)
into the above formula, since they enter only at order (α′)6. We conclude this section
by remarking that the result in eq. (3.54) is in agreement with [99], where a naive
estimate for the volume dependence of the potential induced by the R2G4

3 terms
was found to be V−11/3.

3.2.3 Multiple Kähler Deformations and Form of Full Poten-

tial

In the previous section we conducted the KK-reduction with a single Kähler class
deformation turned on. However, we expect the inferred form of the correction to the
scalar potential V(1) in eq. (3.54) to hold also in the case of arbitrarily many Kähler
moduli, and in this section we explain in detail what this statement precisely means.
This holds only as long as the superpotential is well-approximated by the leading
constant �ux-superpotential along the Ti directions. Our argument heavily relies on
some technical observations, which are proven in appendix B.1. When arbitrarily
many Kähler-class deformations are present, we no longer know the precise structure
of the coupling tensor in eq. (3.53). One may conjecture that it is proportional to

Tijkl ∼ K(0),iK(0),jK(0),kK(0),l , (3.55)
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but it might also be that the Kähler metric K(0),i̄ or an even more complicated
tensor appears. However, even though the coupling tensor computed for arbitrary
h1,1 might be di�erent from eq. (3.55), there is evidence that the induced correction
to the scalar potential can be inferred from the computation with h1,1 = 1 without
loss of generality. To see this we use of the results of appendix B.1, which we
now brie�y summarize. In the large volume limit, and under the assumption that
the superpotential is constant, the correction to the scalar potential in eq. (2.122)
behaves as

V(1) = −|W |
4

V4
T(0)

ı̄̄klK(0),̄ıK(0),̄K(0),kK(0),l + . . . , (3.56)

where T(0) is the coupling tensor truncated to the leading order term in the large
volume limit. From the above index structure it is clear that T(0) must be a tensor of
the Kähler manifold de�ned by the Kähler potential K(0). We assume that its tensor
structure is derived from K(0), which means that any indexed quantity appearing
in T(0) is related to derivatives of K(0) and possibly contractions with the inverse
Kähler metric, see appendix B.1 for more details. This already exhausts all plausible
tensors which one may write down for this Kähler geometry. In appendix B.1 we
study eq. (3.56) in detail and provide evidence for the following statement: If T(0)

does not involve any scalar function and, hence, only consists of objects with at least
one index, then V(1) ∼ V−4 up to some constant. Thus, an additional dependence
of V(1) on V or τi can only be generated by scalar functions appearing in T(0).

When reducing J0 with an arbitrary number of Kähler-type deformations turned
on, the four-derivative terms are again obtained from those contractions where two
out of the four Riemann tensors have indices along the internal directions and, thus,
contribute a factor

∫
c2 ∧ J . The remaining indices yield contracted metrics or

derivatives. We infer that the general coupling tensor should be of the form

Tkl̄ı̄ ∼
(∫

X6

c2 ∧ J
)
Tkl̄ı̄ (3.57)

where T is a tensor, that consists purely of indexed quantities. As we consider terms
at order (α′)3 this tensor is a tensor in the geometry de�ned by K(0). Thus, we can
apply the results of the appendix B.1 and conclude that the functional behavior of
eq. (3.56) is captured by

∫
c2 ∧ J , which was already present in the computation

with h1,1 = 1.

With these results at hand, we can now proceed to display the �nal form of the

correction to the scalar potential. Again we expand J =
∑h1,1

i=1 t̂
iD̂i, where D̂i form

a basis of the Dolbeault-cohomology H1,1(X6,Z) such that∫
X6

c2 ∧ J =
h1,1∑
i=1

t̂i
∫
X6

c2 ∧ D̂i ≡
h1,1∑
i=1

Πi t̂
i , (3.58)

where as before Πi are some integer topological numbers. Finally, putting all the
information together we conclude

V(1) = −λ̂g2
s

|W |4

V4

h1,1∑
i=1

Πi t
i , (3.59)
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where λ̂ = g
−3/2
s λ̂0 and λ̂0 denotes the undetermined overall numerical factor and is

simply a real number.

To conclude this section let us also mention the additional two-derivative terms
in the Lagrangian in eq. (2.120) which accompany the four-derivative terms and
eq. (3.59). Absent knowledge of the precise form of the coupling tensor of the
higher-derivative operator under investigation, we cannot display the explicit form
of this two-derivative correction. We can, however, comment on its ten-dimensional
origin. Necessarily this term will involve

∫
c2 ∧ J and feature two-derivative terms

for Ti. Therefore, it must be induced by corrections of the NS-NS sector of the type

R3H2
3 , (3.60)

which as we already mentioned are also in part responsible for the correction to the
scalar potential of [28].

3.2.4 Survey of Corrections and Higher-Derivative Operators

So far we have matched the operator O(4|2) to the four-derivative terms descending
from the ten-dimensional (α′)3-correction J0(R). We may ask ourselves which other
corrections arise from J0(R(Ω+)) with R(Ω+) given in eq. (3.27) or from possible
additional corrections in the NS-NS or R-R sector.42

Let us begin by giving a survey of all terms which arise just from J0(R) and
which additional corrections to the scalar potential are required for their supersym-
metrization. In principle, we obtain from J0(R) terms without derivatives as well
as two-derivative, four-derivative, six-derivative and eight-derivative terms for the
volume moduli. The coe�cient functions of these terms are built from topologi-
cal integrals over the compact dimensions. For instance, the two-derivative terms
require that three out of the four Riemann tensors in J0(R) form a topological in-
tegrand over X6, the result being the Euler integrand Q or equivalently the third
Chern class c3(X6). As we have seen in the previous sections, the four-derivative
terms are multiplied by an integral over c2(X6) ∧ J . Similarly, the coe�cient of the
six-derivative terms is given by an integral over a single Riemann tensor with in-
dices in the compact directions. Therefore, the corresponding topological integrand
must involve the �rst Chern class c1(X6). Since c1(X6) vanishes at this order of the
calculation, we expect these terms to be absent. Finally, the eight-derivative terms
require exhausting all four Riemann tensors in J0(R) and, hence, their coe�cient is
given by the volume of the compact dimensions.

In tab. 3.1 we collect the possible terms that may arise from J0(R), the respective
coe�cient function induced by the remaining Riemann-tensors with indices along the
directions of X6, the possible o�-shell corrections to the scalar potential which may
thereby be induced and the corresponding ten-dimensional terms which generate

42Note that also SIIB in eq. (3.4) yields α′-corrections after transforming to the Einstein frame
in the four-dimensional action. In particular, the H2

3 term in eq. (3.4) then contributes to the
(α′)3|F |2-corrections of [28].
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Type Coe�cient δV via SUSY δV induced by

1 0 0 R4

∂2 c3 |F |2 H2
3R3 , . . .

∂4 c2 ∧ J |F |4 H4
3R2 , . . .

∂6 0 0 −
∂8 J ∧ J ∧ J 0 −

Table 3.1: Survey of di�erent terms descending from J0(R). The type of correction
refers to how many derivatives of the Kähler moduli the individual contractions yield,
and the coe�cient which invariant on X6 the remaining Riemann-tensors form. We
also displayed which type of corrections to the 4D scalar potential δV are related to
these derivative terms by supersymmetry and which class of ten-dimensional (α′)3

terms may induce δV .

these corrections to V . Let us give a few clari�cations regarding tab. 3.1. Firstly, in
the absence of warping e�ects J0(R) does not induce terms in the scalar potential.
Suppose such a correction to the scalar potential would exist, then this correction
would already be present in the pure Calabi-Yau compacti�cations. However, in
the respective N = 2, D = 4 theory, no potential for the moduli can be generated
and all α′-corrections merely renormalize the de�nition of the tree-level moduli.
Secondly, note that the reason why the additional six- and eight-derivative terms
cannot induce corrections to the scalar potential can be understood from eq. (2.26).

In the NS-NS sector it remains to discuss additional terms in the ten-dimensional
action with varying powers of H3. Instead of giving a survey of possible terms
descending from these various 10D terms, we investigate the possible 4D higher-
derivative operators, since, ultimately, additional corrections have to be matched to
4D higher-derivative operators. Let us make a small survey of possible operators
now. To begin with, operators at the level of two-superspace derivatives include O(1)

and O(3). Both operators are forbidden by world-sheet parity, as they would imply
�ux-induced corrections to the scalar potential descending from 10D terms with
an odd number of H3. Therefore, the leading order higher-derivative operators are
induced at the order O(D4). We have already discussed O(4|2) and O(2|1) which are
the only operators at that order that receive four-derivative terms from (α′)3-terms
and induce corrections to the scalar potential. In both cases the induced correction
is of the form |F |4 and, thus, coincides. Further operators at this order may induce
terms of the type F 2|F |2, but we expect these to be functionally indistinguishable
from the |F |4 terms. Operators involving the equivalent of more than four spinorial
super-covariant derivatives are also allowed, but by means of eq. (2.145) they will
induce pure F -term corrections. Again via world-sheet parity the only possible
corrections of this type are of the form

|F |6 , |F |8 , (3.61)

where also rearrangements thereof which arise by replacing F by F̄ and vice versa
are allowed. The total number of possible F -terms is, of course, bounded by the fact
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that these terms must descend from eight-derivative corrections in ten dimensions.
Supersymmetry relates the quantities in eq. (3.61) to four-derivative terms for the
Kähler moduli. For dimensional reasons these four-derivative terms must necessarily
depend on F i and, therefore, cannot be induced by J0(R). Instead they descend
from contractions of the form R3H2

3 and R2H4
3 respectively. For instance, we �nd

that

R3H2
3 |F |2c1(X6)(∂u)4

RH6
3 |F |6c1(X6)

10D SUSY

M4 ×X6

M4 ×X6

4D SUSY

and, since at leading order c1(X6) = 0 we expect the |F |6-term to be absent. In
turn, the single remaining type of correction (induced by pure H8

3 -terms) reads(∫
X6

J ∧ J ∧ J
)
|F |8 ∼ |W |

8

V7
, (3.62)

and only depends on the overall volume.

Let us now make a few remarks regarding further terms which we did not capture
so far. To begin with there exist corrections with additional derivatives of the
dilaton. These terms do not contribute to the scalar potential, but are important
for the consistency of the equations of motion. More precisely the presence of the
R4 terms demands the addition of terms of the type R3(∇τ)2 [28]. Additional
terms are expected to arise in the R-R sector. In particular, this encompasses terms
involving the self-dual �ve-form F̃5. In compacti�cations with imaginary self-dual
3-form �ux also F̃5 receives a background �ux but only indirectly via warping e�ects
[26]. Therefore, in a weak-warping approximation these terms are expected to be
subleading.43

43However, in principle warping-induced corrections to the scalar potential are relevant, since
naive dimensional arguments suggest that these contribute at O(V−11/3) [99]. A proper accounting
of such e�ects is outside the scope of this thesis and will be left to future investigations.



Chapter 4

Application to String Cosmology

Having determined the novel (α′)3 corrections to the four-dimensional scalar poten-
tial in eq. (3.59) we would like to study their relevance for moduli stabilization and
in�ation. Here we begin by investigating the possibility of stabilizing Kähler moduli
via the new correction following ref. [31]. In sec. 4.2 we instead review content from
[37].

To begin with it is necessary to display the full scalar potential. We assume
that the complex structure moduli UI and the dilaton S are stabilized and sit in
the supersymmetric minimum generated by the G3-�ux. The theory describing the
dynamics of the Kähler moduli is obtained by replacing UI and S by their vacuum
expectation values in eq. (3.23). We also now include the (α′)3-corrections to the
Kähler potential of [28]. Furthermore, the Kähler potential can receive additional
string-loop corrections induced by the exchange of strings between localized sources,
in particular of strings winding cycles in the intersection locus of stacks of D7-
branes or carrying KK-momentum. These have been explicitly computed for toroidal
orientifolds, such as T 6/(Z2×Z2) in [41] and for arbitrary Calabi-Yau threefolds their
functional form has been inferred in [42]. Altogether the Kähler and superpotential
then read

K = ln(gs)− 2 ln(V + 1
2
ξ̂) + δKKK

(gs) + δKW
(gs) + . . . ,

W = W0 =
〈∫

X6

G3 ∧ Ω
〉
,

(4.1)

where ξ̂ was given in eq. (3.50) and eq. (3.48), and the dots denote the Kähler
potential of the UI . Furthermore, V was given in eqs. (3.18), (3.21). The corrections
δKKK

(gs) and δKW
(gs) in eq. (4.1) denote the leading order string-loop corrections. Their

general form for arbitrary Calabi-Yau threefolds has been argued to be [42]

δKKK
(gs) ∼ gs

h1,1∑
i=1

Ci(aijt
j)

V
, δKW

(gs) ∼
h1,1∑
i=1

Di(aijt
j)−1

V
. (4.2)

The �rst term is interpreted as coming from exchange KK-modes between D3/D7-
branes and O3/O7-planes, while the latter is induced by the exchange of strings
winding one-cycles in the intersection locus of stacks of D7-branes. The coe�cients
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Ci and Di are expected to be functions of the complex structure moduli and the
dilaton. However, since we assume the latter have already been stabilized, we treat
Ci, Di as constants. The matrix aij consists of combinatorial constants.

The scalar potential derived from eq. (4.1) including the |F |4-term in (3.59) can
be split up as follows

V = V(α′) + V(gs) + V(1) . (4.3)

The �rst term describes the scalar potential obtained from the Kähler potential in
eq. (4.1) without string-loop corrections. The pure (α′)3-piece reads

V(α′) = gs
3ξ̂|W |2

4V3
. (4.4)

When expanding the string-loop contribution to the potential, one obtains the fol-
lowing terms at leading order [43]

V(gs) =
h1,1∑
i=1

|W |2

V2

[
g3
sC

2
iK(0),ii − 2gsδK

W
(gs),τi

]
. (4.5)

We observe that the dominant term in inverse volume is given by V(α′), followed by
V(gs) and �nally V(1) which, roughly speaking, is suppressed by a factor of V1/3 with

respect to V(gs). Furthermore, the gs-corrections have a relative factor of g
1/2
s and

g
5/2
s with respect to V(1).

Let us make a �nal remark regarding the Kähler potential in eq. (4.1) noted in
[36]. The Kähler potential including the tree-level (α′)3-corrections parametrized
by ξ̂ is still of a no-scale form, since it is given by the logarithm of a homogeneous
function when including the dilaton. The respective no-scale property reads

KXı̂X̄¯̂KXı̂
KX̄¯̂

= 4 , (4.6)

where as before Xı̂ = (Ti, S). However, this no-scale property no longer holds when
including the above gs-corrections, or the 1-loop corrections or world-sheet instanton
corrections to J0(R).

4.1 Perturbative Moduli Stabilization

As we have already mentioned it is interesting to study whether a fully perturbative
stabilization of the Kähler moduli is possible. In the following we will entertain the
possibility that all Kähler moduli are stabilized purely by (α′)3-corrections instead
of the non-perturbative corrections to the superpotential. Here we take only the
(α′)3-corrections in eq. (4.3) into account and will neglect eq. (3.62) as well as the
string-loop corrections, which can be su�ciently suppressed by choosing moderately
small values of gs. Altogether, the scalar potential then reads

V =
3ξ̂|W |2

4V3
− λ̂|W |4 Πit

i

V4
. (4.7)
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To shorten notation we absorbed the additional factor of gs coming from the eK

prefactor into |W |2 here.

For λ̂ < 0 we will now show that V has a non-supersymmetric AdS minimum for
any orientifolded Calabi-Yau threefold with ξ < 0 where all four-cycles are �xed as

〈τi〉 = C Πi , with C =
44λ̂|W |2

9ξ̂
. (4.8)

The volume in this minimum is given by

〈V〉 = 1
3
C Πk〈tk〉 =

44

27

〈∫
c2 ∧ J

〉
λ̂|W |2

ξ̂
∼ Πk〈tk0〉

(
λ̂|W |2

ξ̂

)3/2

, (4.9)

where 〈ti0〉 do not depend on C, but are implicit functions of the Πi. Moreover,
positivity of the four-cycles requires that Πi > 0 for all i = 1, . . . , h1,1. When we
choose our variables in the Kähler cone, then all ti ≥ 0 independently from each
other. Therefore, eq. (3.45) implies that Πi ≥ 0, so we only have to require that
Πi 6= 0.

In order to prove the existence of this minimum it is su�cient to show that the
potential in eq. (4.7) is minimal as a function of the two-cycle volumes ti as it is then
also minimal in terms of the four-cycle volumes τi. The �rst derivatives of eq. (4.7)
read

∂V

∂ti
=
|W |2

V5

[
−3

4
ξ̂τi
(
tiτi
)
− 1

3
λ̂|W |2Πi

(
tjτj
)

+ 4λ̂|W |2τi
(
Πjt

j
)]

, (4.10)

where we used eq. (3.22). Inserting the values of the four-cycle volumes given in
eq. (4.8) one �nds that indeed 〈∂V/∂ti〉 = 0. From eq. (3.22) we also obtain the
�rst equality in eq. (4.9). To determine the overall dependence of 〈V〉 on C, note
that the two-cycles are implicitly de�ned via eq. (3.19), which at the extremal point
is given by

kijk〈tj〉〈tk〉 = 2CΠi . (4.11)

This implies 〈ti〉 =
√
C〈ti0〉, where ti0 do not depend on C. With this we obtain the

scaling of the volume with respect to |W |, ξ̂ and λ̂ in eq. (4.9).

It remains to analyze the matrix of second derivatives. In general it reads

∂2V

∂ti∂tj
=
|W |2

V6

[
9ξ̂Vτiτj + 4λ̂|W |2V (τiΠj + Πiτj)− 20λ̂|W |2(Πkt

k)τiτj

+
∂τj
∂ti

(
4λ̂|W |2V(Πkt

k)− 9

4
ξ̂V2

)]
.

(4.12)

Making use of eq. (3.22) we �nd that at the extremal point this simpli�es to〈
∂2V

∂ti∂tj

〉
= aΠiΠj + bkijk〈tk〉 , a = −8λ̂|W |4C

〈V〉5
, b =

9

44

ξ̂|W |2

〈V〉4
. (4.13)
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For λ < 0 and χ(M3) > 0 we see that a > 0 and b < 0. For any vector with compo-
nents xi we have (xiΠi)(xjΠj) ≥ 0 and so aΠiΠj is a positive-semide�nite matrix.
The matrix kijkt

k was studied in [73] and shown to have signature (1, h1,1 − 1). In
other words there exists an orthogonal decomposition of the h1,1-dimensional vector
space into a one-dimensional subspace, on which kijkt

k is positive de�nite and an
(h1,1 − 1)-dimensional complement on which it is negative de�nite. Here orthogo-
nality is de�ned with respect to the inner product determined by kijkt

k. The one-
dimensional subspace is spanned by the vector with components ti, as the volume
has to be positive. Since we have b < 0 the signature of bkijk〈tk〉 reads (h1,1 − 1, 1).
On the (h1,1 − 1)-dimensional subspace the sum aΠiΠj + bkijk〈tk〉 must hence be
positive-de�nite. On the one-dimensional subspace we �nd

〈ti〉
〈
∂2V

∂ti∂tj

〉
〈tj〉 = −22λ̂|W |4C

3〈V〉5
(
Πk〈tk〉

)2
> 0 , (4.14)

which shows that the matrix of second derivatives is also positive de�nite there.

It remains to be shown, that the matrix (4.13) is positive de�nite on the whole
space. A generic non-zero vector with components xi can be decomposed as xi =
µ〈ti〉+ xi⊥, where µ ∈ R and xi⊥ is the component of xi in the subspace orthogonal
to the one-dimensional space spanned by 〈ti〉. Since

ΠiΠj〈tj〉 ∼ Πi ∼ kijk〈tj〉〈tk〉 (4.15)

we have the following orthogonality relations

xi⊥kijk〈tj〉〈tk〉 = xi⊥ΠiΠj〈tj〉 = 0 . (4.16)

With this we �nd

xi
〈
∂2V

∂ti∂tj

〉
xj

= xi⊥
(
aΠiΠj + bkijk〈tk〉

)
xj⊥ + µ2〈ti〉

(
aΠiΠj + bkijk〈tk〉

)
〈tj〉 > 0 ,

(4.17)

since the matrix is positive on the respective subspaces. We conclude that the matrix
in eq. (4.13) is positive de�nite.

In addition we have to establish that the locus speci�ed in eq. (4.8) is a minimum
of the potential, which includes also the dilaton as well as the complex structure
moduli. The answer can be easily obtained in the spirit of [74]. Indeed the potential
including the dilaton and complex-structure moduli reads [28]

V = eK(GIJ̄DIWDJ̄W̄ +GSS̄DSWDS̄W̄ )

+ eK
ξ

2V
(WDS̄W̄ + W̄DSW ) + V(α′) + V(1) ,

(4.18)

with W given in eq. (3.23). The �rst term in the above potential is positive de�nite
and has a V−2 behavior at large volume. At the extremal condition DIW = DSW =
0, it vanishes identically and is positive around this value. Since it dominates over
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the subleading O(V−3) and O(V−11/3) terms coming from V(α′) + V(1), eq. (4.8)
represents a minimum of the full potential. Of course also the dilaton and complex
structure moduli will receive higher-derivative corrections. However, these terms
have a subleading volume-dependence compared to the �rst terms in eq. (4.18) and,
thus, do not spoil the argument.

Furthermore, supersymmetry is broken in the minimum given in eq. (4.9) which
can be seen as follows. Since O(4|2) corrects the scalar potential only via F -term
contributions, the conditions for supersymmetry breaking of the higher-derivative
theory de�ned in eq. (2.119) are identical to the supersymmetry breaking conditions
in the ordinary two-derivative theory. Suppose supersymmetry was unbroken, then
one would be able to determine the position of the minimum from eq. (2.137).
However, necessarily any solution to eq. (2.137) would be λ̂-independent, which is
not satis�ed for our minimum. Thus, supersymmetry is indeed broken in the vacuum
in eq. (4.9). Up to numerical factors the value of the potential in the minimum reads

〈V 〉 ∼ ξ̂

|W |7

(
ξ̂

λ̂

)9/2

. (4.19)

We can estimate the gravitino mass from the ordinary two-derivative theory. At
leading order it reads

m3/2 ∼ eK/2|W | ∼ |W |
V
∼ ξ̂3/2

λ̂3/2|W |2Πi〈ti0〉
. (4.20)

Let us compare the gravitino mass with the string scale and Kaluza-Klein scale [99]

ms ∼
1√
V
, mKK ∼

1

V2/3
. (4.21)

Direct computation reveals that

m3/2

ms

∼ ξ̂3/4

λ̂3/4
√
|W |Πi〈ti0〉

. (4.22)

Furthermore, from eq. (4.11) we �nd that roughly 〈ti0〉 ∼
√

Πi. Let Π̃ denote a
typical value for the topological numbers Πi, then we can estimate

Πi〈ti0〉 ∼ h1,1Π̃3/2 . (4.23)

The size of the topological numbers Πi is roughly of the same order as χ(X6). Toric
examples from the Kreuzer-Skarke list [100] typically yield values for Π̃ ranging
between O(1) numbers up to numbers of a few hundred [101]. Furthermore, we can
estimate the size of λ̂ by the combinatorial part of ξ̂. In other words we roughly
expect that |λ̂|∼ |ξ̂/χ(X6)|. Altogether, the scale-quotients read

m3/2

ms

∼ e−〈Kcs〉/4g−1/4
s

χ(X6)3/4√
|W0|h1,1 Π̃

. O(10−1) ,

m3/2

mKK

∼ χ(X6)1/2

(h1,1)1/3
√

Π̃
< 1 .

(4.24)
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To obtain more accurate expressions form3/2/ms andm3/2/mKK , it will be necessary

to compute λ̂ and study the minimum for explicit examples. Note furthermore,
that we need m3/2/mKK � 1 in order to ensure that higher superspace-derivative
corrections and, hence, higher-corrections to the scalar potential of the type |F |n
with n > 4 are under control [102]. This can be achieved best by choosing a geometry
with χ(X6) ∼ O(1) and h1,1 � 1. The fact that a smallness of m3/2/mKK is not
universally satis�ed for an arbitrary compacti�cation geometry is induced by our
stabilization mechanism. More precisely, we balance two terms at order (α′)3 that
roughly speaking are di�erent terms in an expansion in |F |n. However, we know
from sec. 3.2.4 that there is only a single additional term in this expansion given by
(α′)3|F |8 which is displayed in eq. (3.62). While this correction only depends on the
overall volume and, therefore, looks rather harmless, its e�ect on the stabilization
should be checked. Nevertheless, this is evidence that even if m3/2/mKK ∼ O(1)
the series (α′)3|F |n may be under control.

Let us �nish this section with some remarks. Firstly let us stress again that
the stabilization of the four-cycle volumes proposed here does not require any non-
perturbative e�ects, but occurs purely from considering the leading order (α′)3-
corrections in the potential. Note, furthermore, that for very special cases it might
happen that some Πi = 0 for particular values of i. In that case the overall volume
is still stabilized at a positive value and string-loop or other α′-corrections may shift
the minimum to a point at which all four-cycles are positive and the overall volume
is roughly the same. Lastly, the requirement that ξ < 0 amounts, in the absence of
O7-planes, to the condition χ(X6) > 0. In [79] it was proposed that when taking
into account the O7-planes ξ is shifted via the following replacement

χ(X6) −→ χ(X6) + 2

∫
X6

D3
O7 , (4.25)

where DO7 is the Poincare-dual to the divisor which the O7-plane wraps. The above
shift a�ects our proposed stabilization scenario in a bene�cial manner. If we demand
that χ(X6) is positive then, since the contribution from the O7-planes enters as a
positive number, the sign of ξ remains negative. Note that this is opposite to the
situation in LVS where the O7-plane contribution can, in principle, �ip the sign of
ξ and is, therefore, potentially harmful. Furthermore, if the O7-plane contribution
is large enough, it might even be possible that ξ < 0 even though χ(X6) < 0. In
turn, this may provide access to models with a small number of Kähler moduli but
large number of complex-structure moduli with respect to our proposed stabilization
scenario.

Moreover, from the analysis of [79] we expect that the |F |4-term is also shifted
in the presence of O7-planes.44 We conjecture that from an F-theory derivation
including the O7-planes the structure of the prefactor in eq. (3.59) will be shifted

44It might also be that additional D7-brane contributions exist. In particular, it is possible
that an approach in the spirit of [79], where the α′-corrections are inferred by compactifying an
auxiliary twelve-dimensional supergravity and not from the M-theory description of F-theory, is
not capable of capturing such terms.
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as follows ∫
X6

c2 ∧ J −→
∫
X6

c2 ∧ J +O7-plane contributions . (4.26)

We leave the derivation of the precise form of these corrections to future research.

4.2 In�ation from (α′)3-Corrections

While the perturbative stabilization scenario of sec. 4.1 is capable of lifting the
�atness of all Kähler moduli model-independently, a necessary requirement of this
setup is that χ(X6) > 0 (given that we ignore the additional contributions from
the O7-planes of [79]). For the sake of simplicity, it would be desirable to discuss
explicit examples with a small number of Kähler moduli. However, for χ(X6) > 0
we have h1,1 > h2,1. Only a few explicit threefolds with small h1,1 and h2,1 are
known [103�105] and these Calabi-Yau manifolds are not included in the list of [100]
but instead arise after taking a quiotent with respect to a discrete automorphism
group. In turn, these examples are computationally less tractable. Moreover, having
a small number of complex-structure moduli restricts our freedom to choose the
�ux-superpotential and, hence, our ability to tune the value of the cosmological
constant after uplifting. Thus, to study the potential relevance of the |F |4-term
for in�ationary model building, we �nd it instructive to look at other stabilization
scenarios, where the number of Kähler moduli can be small without either giving
up the tools of toric geometry or our ability to tune the value of the cosmological
constant. One option is certainly given by the Large Volume Scenario [39, 74,
75]. Here we follow and summarize the results of [37]. See also [106] for a similar
application of the |F |4-term to in�ationary model building in the context of LVS. To
make sure that we �nd a parametrically light �eld in our spectrum it is convenient
to use the geometry proposed in [39] which corresponds to a threefold which is a K3-
�bration together with a blow-up divisor. Explicit realizations for such a geometry
with two blow-up divisors were constructed in [107]. Note that we do not revisit
the basics of in�ation here, see [108�110] for some complete reviews on the subject
(with particular emphasis on in�ation in string theory).

Large Volume Scenario for K3-�bered Threefold

We begin by reviewing the essentials of the stabilization in the spirit of [39, 74,
75] required for our discussion. In addition to the scalar potential in eq. (4.3) we
assume that the superpotential receives non-perturbative corrections from gaugino
condensation or Euclidean D-brane instantons, which read

W = W0 +
h1,1∑
i=1

Aie
−aiTi . (4.27)
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The scalar potential now reads

V = V(α′) + V(gs) + V(1) + Vnp ,

Vnp = eKKi̄
0

(
aiajAiĀ̄ e−(aiTi+aj T̄̄) − aiAi e−aiTiW̄0K0,̄

− ajĀ̄ e−aj T̄̄W0K0,i

)
.

(4.28)

Here we use K0 = −2 lnV . As we have mentioned not every Kähler modulus may
receive a non-perturbative correction of this type, but moduli corresponding to rigid
divisors certainly can receive non-vanishing non-perturbative correction of the above
type.

We now assume that the volume in terms of the four-cycles volumes is of the
form [39, 75]

V = α
(√

τ1τ2 − γτ 3/2
3

)
, (4.29)

where τ1 is associated with the volume of theK3-�ber, τ2 controls the overall volume
and τ3 denotes the blow-up and corresponds to a rigid divisor. We can write down
undetermined intersection numbers, which formally yield a volume of the above type
by choosing

V = λ1t
1(t2)2 + λ3(t3)3 . (4.30)

The relations between four- and two-cycles, therefore, read

τ1 = λ1(t2)2 , τ2 = 2λ1t
1t2 , τ3 = 3λ3(t3)2 . (4.31)

Let us assume that we have chosen a basis such that t3 ≤ 0 and, therefore, that we
are not in the Kähler cone. Consequently, we must have that t1 ≥ 0 and t2 ≥ 0.
Inverting eq. (4.31) yields

t1 =
τ2

2
√
λ1τ1

, t2 =

√
τ1

λ1

, t3 = −
√

τ3

3λ3

. (4.32)

From these identities we indeed obtain eq. (4.29) where α = 1
2
λ
−1/2
1 and γ =√

4
27

√
λ1λ

−3/2
3 . Next, let us brie�y explain how the overall volume modulus V is

stabilized now. Firstly, the limit of large volume requires that

τ1, τ2 � τ3 , (4.33)

and, therefore, the relevant part of the superpotential reads

W ' W0 + A3e−a3T3 . (4.34)

Now, to obtain Vnp it is necessary to compute the Kähler metric and minimize the
axionic component of T3. Afterwards, one is left with the following potential [39]

VLV S(V , τ3) = gs

[
8a2

3A
2
3

3αγ

√
τ3

V
e−2a3τ3 − 4W0a3A3

τ3

V2
e−a3τ3 +

3ξ̂|W0|2

4V3

]
, (4.35)
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where we did not include V(gs) and V(1) just yet. It is evident that τ1 is left as a �at
direction in VLV S. The LVS-minimum sits at exponentially large volume where

〈τ3〉 =

(
ξ̂

2αγ

)2/3

, 〈V〉 =
3αγ

4a3A3

W0

√
〈τ3〉ea3〈τ3〉 . (4.36)

This minimum is expected to be stable under perturbative corrections as long as all
higher-order corrections enter with at most O(1) coe�cients [99]. From now on, we
assume that τ3 and V are sitting at their minimum in eq. (4.36) and focus on the
�at direction τ1, for which additional perturbative corrections, both δV(gs) and V(1),
are important. Moreover, as the size of these corrections is subleading compared
to VLV S we naively expect τ1 to be the lightest modulus and, hence, τ1 possibly
constitutes a candidate to successfully drive in�ation.

Analysis of F 4 and gs-Corrections

Since we are interested in using τ1 as an in�aton candidate, it is convenient to �rst
perform the canonical normalization, which was already displayed in [39]. After
replacing τ2 = τ2(τ1,V , τ3) via (4.29) in the Lagrangian, the relevant kinetic terms
are given by

L ⊃ − 3

8τ 2
1

∂µτ1∂
µτ1 +

1

2τ1V
∂µτ1∂

µV − 1

2V2
∂µV∂µV + . . . . (4.37)

Therefore, the canonically normalized in�aton ϕ (at leading order in α′ and gs) is
related to τ1 as follows

τ1 = e2ϕ/
√

3 . (4.38)

The scalar potential for the geometry de�ned in eq. (4.29) and eq. (4.32) then reads

V (ϕ) = VLV S +
g3
s |W0|2

V2

(
(CKK

1 )2e−4ϕ/
√

3 + 2(αCKK
2 )2 e

2ϕ/
√

3

V2

)

− g2
s λ̂
|W0|4

V4

(
Π1e

−2ϕ/
√

3V + Π2λ
−1/2
1 eϕ/

√
3
)
,

(4.39)

where the string-loop terms were already given in [39]. Here we assume con�gura-
tions where the stacks of D7-branes only wrap those four-cycles associated with τ2

or τ3. In this case the winding-mode contributions to V(gs) identically vanish. Recall
that this contribution is generated via the exchange of strings winding one-cycles in
the intersection of four-cycles which the stacks of D7-branes wrap. However, since
the four-cycle associated with τ3 only intersects with itself, we only need to take into
account a possible intersection of the four-cycles associated to τ1 and τ2. Since we
assumed that the D7-branes do not wrap τ1 there are no such one-cycles present.
Furthermore, we infer from the positivity of the two-cycle volumes that

Π1 ≥ 0 , Π2 ≥ 0 . (4.40)
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In the situation with λ̂ < 0 the F 4-term stabilizes τ1. More generally, for λ̂ < 0 the
F 4-term is capable of stabilizing all �at directions in LVS, since after minimizing
with respect to the blow-up cycle the LVS scalar potential is given by an e�ective
1/V3-potential with a negative prefactor and, hence, the stabilization mechanism
from sec. 4.1 can be directly applied. However, while the K3-�ber volume modulus
is stabilized, it does not constitute a viable candidate for the in�aton, since the
F 4-potential is given by a growing exponential. A scalar potential of this type is
too steep in order to ful�ll the current observational bounds on in�ation and, hence,
this scenario is observationally ruled out [111, 112]. Therefore, in the following we
assume that λ̂ > 0 in which case we can generate minima by means of an interplay
between the F 4-term and gs-corrections and the F 4-potential is given by a decaying
exponential term.

In�ationary Dynamics

Depending on whether the �ber-volume is shrinking or growing, both terms in the
F 4-piece give rise to viable plateau-like potentials. We can distinguish two di�erent
regimes

(I) : τ1 . 1 , (II) : τ1 � 1 . (4.41)

In both cases either the decaying or growing exponentials in eq. (4.39) are negligible.
After inclusion of a Minkowski-uplift and a rescaling of τ1 which corresponds to
shifting the minimum to ϕ = 0, the scalar potential is of the form

Vinf ' V0(1− eκϕ)2 , (4.42)

and, therefore, formally of the plateau-type as in [44]. In tab. 4.1 we collect the values
of κ as well as the approximate values for the spectral index ns and the tensor-to-
scalar ratio r for regime (I) and (II). In scenario (I) the plateau lies to the right of the

Scenario (I) Scenario (II)

Exponent κ = − 2√
3

κ = 1√
3

ns ∼ 0.97 ∼ 0.97

r O(10−3) O(10−3) to O(10−2)

Table 4.1: Exponential slope of scalar potential in eq. (4.42) for in�ationary sce-
narios in eq. (4.41) and their predictions for N = 50 to N = 60 e-folds.

minimum, while in scenario (II) it lies to the left. In [37] explicit numerical examples
were computed which ful�ll all necessary constraints. One �nds that a moderate
tuning of the string-loop coe�cients and a small hierarchy between Π1 and Π2 of
O(100) is necessary to satisfy all required conditions. With explicit realizations of
the K3-�bered geometry as in [107] one may now check whether hierarchies in the
values of Π1,Π2 can be achieved. We leave this to future investigations.



Chapter 5

Conclusions

Brie�y summarized, this thesis consists of three parts. In the �rst part of this thesis
we initiated a systematic study of supersymmetric theories in four-dimensional �at
and curved N = 1-superspace including higher-derivative operators for chiral multi-
plets with particular emphasis on possible corrections to the scalar potential. In the
second part we employed the results for the component form of the higher-derivative
operator in eq. (2.120) to indirectly infer new purely N = 1 (α′)3-corrections to
the low-energy e�ective action of IIB Calabi-Yau orientifold compacti�cations with
imaginary self-dual background �uxes. These corrections were determined by per-
forming a Kaluza-Klein reduction of the leading order (α′)3R4-corrections to ten-
dimensional IIB supergravity descending from IIB string theory. Finally, in the third
part we studied the implications of the new (α′)3-corrections for Kähler moduli sta-
bilization and in�ation.

Following this short outline let us now describe the results of this thesis in detail.
The �rst part of the thesis was dedicated to the systematic analysis of new terms
in the scalar potential induced by higher-derivative operators. For the situation of
rigid supersymmetry we derived a superspace action for the general scalar poten-
tial given in eq. (2.25). This action can be understood as an ordinary theory given
by a 2nc-dimensional (pseudo-) Kähler potential and superpotential together with
the supplementary constraints in eq. (2.24). The additional chiral multiplets are
higher-derivative multiplets whose scalar components are given by the chiral auxil-
iary �elds. However, note that the constraints in eq. (2.24) are incompatible with a
2nc-dimensional target space reparametrization-invariance. Instead, at least for the
discussion of the scalar potential, the action is geometrically understood in the con-
text of the cotangent-bundle over the complex manifold parametrized by the chiral
scalars. In general the metric on this manifold is not even hermitian. In eq. (2.30)
and eq. (2.33) we also displayed an alternative higher-derivative Lagrangian which,
contrary to the aforementioned theory, does not induce kinetic terms for the auxil-
iary �elds.

While the aforementioned o�-shell theories can be written down fully explicitly,
obtaining the on-shell theory is a daunting task, since the equations of motion for
the auxiliary �elds are now arbitrary algebraic equations. The algebraic nature of
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the auxiliary �elds holds even if they obtain kinetic terms, since as we demonstrated
in sec. 2.3.5 their masses sit at the cut-o� scale of the EFT. For local theories the
equations of motion for F i are polynomial and, hence, induce a multiplet of on-shell
theories. In the context of e�ective �eld theory we demonstrated that there exists
only a single solution that yields a physically viable Lagrangian. We interpret the
remaining solutions as artifacts of a truncation of an in�nite sum of higher-derivative
operators. This interpretation was also supported by the explicit example of the one-
loop Wess-Zumino model. The fact that the discussion of the additional solutions
is in analogy to the situation of ghostlike higher-derivative degrees of freedom in
EFT can also be understood from supersymmetry, since the auxiliary �elds sit in
the same multiplet as the (ghost-like) higher-derivative degrees of freedom.

For N = 1 old-minimal supergravity we conjectured a possible extension of
eq. (2.25) given in eq. (2.83). However, due to the complicated form of the algebra
of super-covariant derivatives we did not attempt to prove this conjecture. Instead,
we classi�ed the leading (N = 2) and next-to-leading order (N = 4) higher-derivative
operators for the chiral multiplets including a short survey on higher-curvature op-
erators as well. The classi�cation of the N = 4 operators was substantially more
involved, the results being displayed in tab. 2.3. To compute the component ac-
tions of higher-derivative operators we developed several tools. Firstly, we provided
a catalog of component identities for higher-derivative super�eld in appendix A.3
extending the results of [20]. Secondly, we developed an algorithm to compute the
on-shell component action. In particular, we showed that for the computation of
the linearized (in the coupling of the higher-derivative operator) on-shell action it
su�ces to simply insert the leading order solutions for the auxiliary �elds in the
Lagrangian and, therefore, it is not necessary to solve the corrected equations of
motion for the auxiliary �elds. Thus, from there on we simply displayed the com-
ponent results o�-shell, as the respective linearized on-shell theories are obtained
readily, the only exception being an illustrative example in sec. 2.5.5. The compo-
nent forms of the N = 2 operators and a subclass of N = 4 are displayed in sec. 2.5.5
and sec. 2.5.6. These results are model-independent and universally applicable for
computing leading-order higher-derivative corrections to a generic supergravity with
chiral multiplets.

Furthermore, we discussed two particular applications of the aforementioned re-
sults. Firstly, we investigated the vacuum structure of the (general) higher-derivative
theories. On the one hand, we found that for the supersymmetric Minkowski vacua
nothing changes compared to the two-derivative case. For the supersymmetric AdS4-
vacua, on the other hand, the presence of higher-derivative operators has an e�ect.
While we found that the Killing spinor equation is still automatically satis�ed, we
generically expect that the conditions 〈F i〉 = 0 do not ensure anymore that the
scalar potential is extremal. Therefore, generically the supersymmetric AdS4-vacua
should not admit any moduli space. This is also in agreement with corresponding
observations for the dual three-dimensional SCFTs [61]. For non-supersymmetric
minima there are two consequences worth mentioning. On the one hand, the pres-
ence of the higher-derivative operators may lift �at directions and, on the other
hand, supersymmetry-breaking can be induced by higher-curvature operators and
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no longer requires the non-vanishing of the F -terms. This was demonstrated explic-
itly for an R + R2-gravity in appendix A.5. More precisely, here supersymmetry
was broken since the scalar curvature was no longer compatible with the Killing
spinors. Secondly, we investigated the form of the higher-derivative corrections for
shift-symmetric no-scale models. We found that the no-scale condition leads to the
vanishing of several contributions and, in particular, the scalar potential is only
corrected by monomials in the chiral auxiliary �elds.

In the second part of this thesis we discussed the low-energy e�ective super-
gravity obtained from compacti�cations of IIB string theory on Calabi-Yau three-
folds with O3-planes and background �uxes. String-theory induces higher-derivative
α′-corrections to ten-dimensional IIB supergravity. The leading-order terms com-
ing from four-graviton scattering arise at the eight-derivative level, i.e. (α′)3 order.
These terms modify the 4D supergravity after compacti�cation in several ways, in
particular, via corrections to the Kähler potential of the Kähler moduli [28]. Here
we demonstrated the existence of a new class of corrections descending from the
(α′)3-corrections given by 4D higher-derivative operators for the Kähler moduli. In
particular, by performing the KK-reduction of the explicitly known 10D pure R4-
subsector of the total (α′)3-corrections we computed four-derivative terms for the
Kähler moduli. Via matching to O(4|2) we inferred new corrections to the scalar
potential, which partially descend from so far unknown quartic terms in the �eld
strength H3 of the NS-NS two-form. While the KK-reduction was performed for
a single volume modulus, we argued that the form of the scalar potential can be
inferred in general, making use of the no-scale structure present at leading order.
The result is displayed in eq. (3.59) and depends on the second Chern class of the
threefold. The topological information of the second Chern class did so far not enter
in the N = 1 action and contains information which is independent on the intersec-
tion numbers, the Hodge numbers or the Euler number.45 Since the new correction
exhibits an explicit dependence on all Kähler moduli, it is of interest for Kähler
moduli stabilization and in�ation. In this regard it is similar to the string-loop cor-
rections of [42]. However, for phenomenological purposes it has several advantages.
Firstly, contrary to the gs-corrections, which have been conjectured in [42] but so
far were not computed for any explicit threefold, the F 4-term is fully calculable
and the topological numbers Πi can be readily determined via the tools of toric
geometry. Moreover, eq. (3.59) has a much simpler structure and dependence on
the Kähler moduli compared to the string-loop corrections. Here we have already
made use of these bene�ts. In particular, we proved that the F 4-term taken together
with the known (α′)3-corrections leading corrections to the scalar potential of [28]
lead to a model-independent non-supersymmetric AdS4 minimum, where all Kähler
moduli are �xed and proportional to the topological numbers Πi. The existence of
this minimum requires that χ(X6) > 0 and λ̂ < 0, where λ̂ is proportional to an
undetermined numerical constant multiplying the F 4-term.

To assess the importance for building models of Kähler-modulus in�ation we
investigated a particular example in sec. 4.2 corresponding to a special K3-�bered

45However, note that the second Chern class and the topological numbers Πi have appeared in
the context of mirror symmetry [113�115].
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geometry proposed in [39, 75] where the volume stabilization is of the LVS-type
[74, 75]. While the F 4-term is capable of stabilizing the in�aton-candidate, it does
not lead to the correct pattern of in�ationary observables. Therefore, we focused on
the situation of λ̂ > 0, in which case the F 4-term can give rise to viable plateau-type
potentials and minima can be generated by an interplay between the F 4-term and
KK-mode contributions of the gs-corrections conjectured in [42]. Explicit numerical
examples require a hierarchy between the topological numbers Πi. In future studies
one may look for explicit K3-�bered threefolds which realize such a hierarchy.

Let us outline possible future directions and open questions which result from
this thesis. In particular, the results in chapter 2 may be generalized to gauged
theories with vector multiplets. Furthermore, it would be interesting to understand
how the target space invariance, in particular for the theory in eq. (2.25), is restored
at the level of the full Lagrangian. Regarding higher-derivative theories with N = 1
supergravity one may investigate the conjecture that the Lagrangian in eq. (2.83)
already captures the general scalar potential. Furthermore, one may test the expec-
tations of the e�ect of higher-derivatives on supersymmetric AdS4-vacua and their
moduli spaces for explicit examples.

Regarding chapter 3 in the future one may perform a full KK-reduction of the
10D R4-terms which would involve determining the precise numerical coe�cients
in eq. (3.39) and the (kinetic) couplings between the 4D curvature tensor and the
volume deformation. Afterwards, one must match the result to the general linear
combination of the operators displayed in tab. 2.3 using the component forms com-
puted in sec. 2.5.6 to make the result manifestly supersymmetric. Thereby, one
would be able to explicitly determine the numerical value of λ̂ which, in turn, would
allow to test the validity of the model-independent (α′)3-induced Kähler moduli sta-
bilization. Moreover, this way one would compute additional two-derivative terms
for the Kähler moduli as well as couplings between the Kähler moduli and the 4D
curvature tensor. The latter corrections are also interesting in the context of Kähler
moduli in�ation and explicit in�ationary realizations could be tested against these
terms. In addition, being equipped with the result of an explicit reduction one may
conduct a comparison with the respective results for pure Calabi-Yau compacti�ca-
tions and the respective N = 2 higher-derivative couplings [94]. Finally, recall that
we neglected the warping of the background in our KK-reduction. Warping-induced
contributions to the low-energy e�ective action have recently received attention for
instance in [116]. Thus, it would be interesting to test our approximation in the
future. Lastly, it might also be of interest to compute higher-derivative operators
for other multiplets or in other corners of string theory.



Appendix A

Superspace Identities and

Classi�cation of Operators

The following appendices are taken from or review content of the reference [32]. In
particular, they include many of the computational tools but also supplementary
proofs and demonstrations for chapter 2.

A.1 Spinor Conventions and Identities

In this thesis we use the spinor notations and conventions of [34], which we brie�y
review in this appendix. In addition we provide some important formulas which
prove useful for several computations. We use the following convention for raising
and lowering the Weyl-spinor indices

ψα = εαβψβ , ψα = εαβψ
β , εαβεβα = 2 . (A.1)

Furthermore, as in [34] we use a di�erent symbol for Pauli-matrices with raised
indices

σ̄α̇αa = εα̇β̇εαβσaββ̇ . (A.2)

The Pauli-matrices convert tensor super�elds Vαα̇ and vector super�elds Va into each
other as follows

Va = −1
2
σ̄α̇αa Vαα̇ , Vαα̇ = σaαα̇Va . (A.3)

The following identities are necessary to perform some of our computations

Tr(σaσ̄b) = −2ηab (A.4)

σaαα̇σ̄
β̇β
a = −2δβαδ

β̇
α̇ (A.5)

σaσ̄bσc − σcσ̄bσa = 2iεabcdσ
d (A.6)

Tr(σaσ̄bσcσ̄d) = 2(ηabηcd − ηacηbd + ηadηbc − iεabcd) . (A.7)
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A.2 Derivation of Superspace Action for General

Scalar Potential

We begin in this appendix by deriving the superspace e�ective scalar potential which
we presented in sec. 2.3. More precisely our goal is to simplify eq. (2.21) assuming
that we only consider operators in the action that manifestly contribute to the
scalar potential. To this end we evaluate the general action at the supersymmetric
condition in eq. (2.22). Therefore, we can ignore all operators in Sgen which involve
the spacetime-derivatives ∂a. Moreover, the condition in eq. (2.22) also restricts
the dependence on the spinorial component of the superspace-derivatives. To begin
with, all mixed-type combinations of spinorial superspace-derivatives acting on Φ
or Φ̄ vanish when evaluated at eq. (2.22). With mixed-type we mean that the
combination involves at least one power of Dα as well as D̄β̇. This can be seen
iteratively. For two superspace-derivatives the possible combinations are given by
DαD̄β̇Φ̄ and D̄β̇DαΦ. Making use of eq. (2.11) one indeed �nds that these terms
vanish at the condition in eq. (2.22). The possible terms with three superspace-
derivatives are given by

DαD̄β̇D̄γ̇Φ̄ , DαDβD̄γ̇Φ̄ , D̄α̇DβD̄γ̇Φ̄ , D̄α̇D̄β̇DγΦ ,

DαD̄β̇DγΦ , D̄α̇DβDγΦ .
(A.8)

Again via eq. (2.11) one �nds that these terms vanish after inserting eq. (2.22).
From eq. (2.17) we learn that terms with more than three superspace-derivatives
are simply further superspace derivatives acting on the terms in eq. (A.8) and, thus,
the claim holds in general. Furthermore, eq. (2.17) implies that we have to consider
only terms with at most two superspace-derivatives acting on Φ or Φ̄. Finally,
eq. (2.18) shows that it su�ces to consider a dependence of Seff on DαΦ, D̄α̇Φ̄ as
well as D2Φ and D̄2Φ̄.

After the above considerations we can express the e�ective superspace action
evaluated at eq. (2.22) as follows

Seff =

∫
d8zK(Φ, Φ̄, D2Φ, DαΦDαΦ, D̄2Φ̄, D̄α̇Φ̄D̄α̇Φ̄)

+

∫
d6z W (Φ, D̄2Φ̄) +

∫
d6z̄ W̄ (Φ̄, D2Φ) .

(A.9)

Let us turn more closely to W . We consider the superpotential to be a power series
in Φ and D̄2Φ̄. An arbitrary term in this series is of the form

Φk(D̄2Φ̄)l = D̄2(Φk(D̄2Φ̄)l−1Φ̄) , k, l ∈ N0 , (A.10)

where equality holds due to eq. (2.12) and eq. (2.17). Using the following identity∫
d6zD̄2f(x, θ, θ̄) = −4

∫
d8zf(x, θ, θ̄) , (A.11)
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where f is an arbitrary super�eld, we observe that the dependence of W on D̄2Φ̄
can be entirely absorbed into K. Therefore, we con�ne the discussion of Seff to K.
Moreover, we focus on the bosonic part of Seff from now on. In this case we can
simplify K even further. To see this, as a �rst step we compute

(DαΦDαΦ)2
∣∣∣
bos

= 0 . (A.12)

The above identity can either be computed directly or alternatively be derived from
integration by parts identities in superspace such as eq. (A.13). Consequently in K
we only have to consider terms with up to a single factor of DαΦDαΦ and D̄α̇Φ̄D̄α̇Φ̄.
Up to boundary terms as well as mixed type superspace-derivative terms, which
yield purely kinetic contributions, the following integration by parts identities hold
for arbitrary functions T 46∫

d8zD2ΦT (Φ, Φ̄, D2Φ, D̄2Φ̄)

=

∫
d8z (DαΦDαΦ) ∂ΦT (Φ, Φ̄, D2Φ, D̄2Φ̄) ,∫

d8z D̄2Φ̄T (Φ, Φ̄, D2Φ, D̄2Φ̄)

= −
∫

d8z (D̄α̇Φ̄D̄α̇Φ̄) ∂Φ̄T (Φ, Φ̄, D2Φ, D̄2Φ̄) ,∫
d8z D2ΦD̄2Φ̄T (Φ, Φ̄, D2Φ, D̄2Φ̄)

= −
∫

d8z (DαΦDαΦ)(D̄α̇Φ̄D̄α̇Φ̄) ∂Φ∂Φ̄T (Φ, Φ̄, D2Φ, D̄2Φ̄) .

(A.13)

Thus, we infer that the factors DαΦDαΦ and D̄α̇Φ̄D̄α̇Φ̄ in K can always be recast
into additional factors of D2Φ and D̄2Φ̄ respectively. The equivalence between the
super�elds DαΦDαΦ and D̄α̇Φ̄D̄α̇Φ̄ as well as D2Φ and D̄2Φ̄ can also be understood
from the fact that while D2Φ (D̄2Φ̄) are anti-chiral (chiral) super�elds, DαΦDαΦ
and D̄α̇Φ̄D̄α̇Φ̄ are complex linear super�elds, that is they satisfy

D2(DαΦDαΦ) = D̄2(D̄α̇Φ̄D̄α̇Φ̄) = 0 . (A.14)

In total we �nd that, without loss of generality, the general superspace action for
the e�ective scalar potential is of the form

Seff =

∫
d8zK(Φ, Φ̄, D2Φ, D̄2Φ̄) +

∫
d6z W (Φ) +

∫
d6z̄ W̄ (Φ̄) . (A.15)

In sec. 2.3.1 we proceed to generalize this action to the multi-�eld case and to discuss
its respective component version.

46These integration by parts identities can also be understood as arising in the rigid limit of the
curved superspace identities in appendix A.4.
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A.3 Component Identities for Super�elds in Curved

Superspace

In this appendix we provide the necessary formulas to compute the component ac-
tions for matter coupled supergravity in sec. 2.4.1, in particular for the four covariant
derivative operators in sec. 2.5.6. We start by giving a catalog of component identi-
ties for higher super-covariant derivatives acting on the super�elds (Φ, Φ̄, R, R̄, Gαα̇).
A useful list of component identities that goes beyond the formulas presented in [34]
was already given in [20]. Our results below partially overlap with that reference, but
we also compute new identities which are required for the discussion in sec. (2.5.6).
Here we derive all components starting from the solution to the Bianchi identities
and the algebra of super-covariant derivatives. As a cross-check we also rederive
component identities which appeared in [20]. We �nd some minor disagreements
with the results in that reference on some component identities which we indicate
explicitly later on.

The tool for the computation of component identities are the (anti-) commu-
tation relations in eq. (2.59), which relate the covariant derivatives to the torsion
de�ned in eq. (2.57) and the super-curvature tensor in eq. (2.58). After imposing
the constraints of old minimal supergravity on the torsion and solving the Bianchi
identities, the only non-zero components of the torsion are given by [34]

Tαα̇
a = Tα̇α

a = 2iσaαα̇

Tα̇a
α = −Taα̇α = −iRεα̇β̇σ̄

β̇α
a

Tαa
α̇ = −Taαα̇ = −iR̄εαβσ̄α̇βa

Tβa
α = −Taβα = i

8
σ̄γ̇γa (δαγGβγ̇ − 3δαβGγγ̇ + 3εβγG

α
γ̇ )

Tβ̇a
α̇ = −Taβ̇

α̇ = i
8
σ̄γ̇γa (δα̇γ̇Gγβ̇ − 3δα̇

β̇
Gγγ̇ + 3εβ̇γ̇G

α̇
γ ) ,

(A.16)

as well as the components Tαab and T
α̇
ab which we do not display here as they are not

required. Additionally, we need certain components of the curvature tensor. The
following list contains some of the frequently used components

Rδγβα = 4(εδβεγα + εγβεδα)R̄

Rδ̇γ̇β̇α̇ = 4(εδ̇β̇εγ̇α̇ + εγ̇β̇εδ̇α̇)R

Rδγ̇βα = Rγ̇δβα = −εδβGαγ̇ − εδαGβγ̇

Rδγ̇β̇α̇ = Rγ̇δβ̇α̇ = −εγ̇β̇Gδα̇ − εγ̇α̇Gδβ̇

Rδ̇cβ̇α̇ = −Rcδ̇β̇α̇ = −1
2
σ̄γ̇γc

[
i(εδ̇β̇εγ̇α̇ + εδ̇α̇εγ̇β̇)D̄ε̇Gε̇

γ + i
2
(εδ̇γ̇D̄β̇ + εδ̇β̇D̄γ̇)Gγα̇

+ i
2
(εδ̇γ̇D̄α̇ + εδ̇α̇D̄γ̇)Gγβ̇

]
.

(A.17)

Additionally, the following component will be required

Rαα̇ab = 2iεabcd σ
d
αα̇G

c , (A.18)
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which is not it displayed explicitly in [34] but can be computed directly from the
Bianchi identities given in that reference. It is also useful to note the following
relations

DαGαα̇ = D̄α̇R̄ , D̄α̇Gαα̇ = DαR . (A.19)

From the components of the torsion and curvature we also derive the useful identities

Tα̇a
α̇ = Tαa

α = 2iGa , Rα̇βα
β = 3Gαα̇ . (A.20)

Furthermore, by using the Bianchi identities in [34] we deduce the following equa-
tions

DαGββ̇ −DβGαβ̇ = εαβD̄β̇R̄ , (A.21)

D̄α̇Gββ̇ − D̄β̇Gβα̇ = εα̇β̇DβR . (A.22)

We now proceed to present a catalog of those component identities for the chiral
super�elds which are required for the computation of the component forms of the
higher-derivative operators in eq. (2.101) and tab. 2.3. The lowest-order terms DαΦ|
and D2Φ| were already given in eq. (2.64). Since we are interested only in the bosonic
components, let us identify the fermionic terms. In general, components with an
odd number of spinorial covariant derivatives acting on Φ or Φ̄ are fermionic. A
simple example is given by

1√
2
DαD2Φ| = −4

3
χαM̄ , (A.23)

which can be checked by means of eq. (2.70).

The bosonic terms are those with an even number of spinorial covariant deriva-
tives. In the remainder of this appendix we display only the bosonic terms of the
components. In particular, at the level of two-superspace derivatives we �nd

D̄α̇DαΦ| = {D̄α̇,Dα}Φ| = −Tαα̇ADAΦ| = −2iσaαα̇DaΦ| = −2iσaαα̇e
m
a ∂mA , (A.24)

where we used eq. (A.16) and we displayed only the bosonic terms. It is also useful
to note the following identities

DαDβΦ = 1
2
εαβD2Φ , D̄α̇D̄β̇Φ̄ = −1

2
εα̇β̇D̄

2Φ̄ . (A.25)

Components of O(D4) Acting on Φ, Φ̄

Furthermore, there are several components involving four spinorial super-covariant
derivatives which are of relevance for the computation of the component action of
the operators in sec. 2.5.6. Using eq. (2.70) and the components of torsion and
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curvature in eq. (A.16) we �nd the following identities

D2D2Φ| = 16
3
FM̄

D̄2D̄2Φ̄| = 16
3
F̄M

DαD̄2DαΦ| = −16
3
MF

D2D̄2Φ̄| = 16�Ā+ 32
3
ibm∂mĀ+ 32

3
M̄F̄

DαD̄α̇D̄2Φ̄| = 8
3
iMσaαα̇e

m
a ∂mĀ

DαD̄α̇D2Φ| = 8iσaαα̇e
m
a (∂mF − 1

3
M̄∂mA) .

(A.26)

Components of O(D6) Acting on Φ, Φ̄

We also need certain components with six spinorial super-covariant derivatives,
which read

1
64
D2D̄2D̄2Φ̄| = 1

3
F̄
(

1
2
R− 4

3
|M |2 − 1

3
bab

a + iDmbm
)
− 1

3
M�Ā

− 2i
9
Mbm∂mĀ

1
64
D̄2D2D̄2Φ̄| = 1

3
F̄
(

1
2
R− 2|M |2 − 1

3
bab

a + iDmbm
)
−�F̄ − 1

3
M�Ā

+ 2
3
∂mM∂mĀ+ 2i

3
bm(∂mF̄ −M∂mĀ) .

(A.27)

Components of R

For the convenience of the reader we display some of the relevant components of the
super�eld R here.

R| = −1
6
M

DaR| = −1
6
ema ∂mM

D2R| = 2
3

(
−1

2
R+ 2

3
|M |2 + 1

3
bab

a − iDmbm
)

D̄2D2R| = −8
3
�M + 16

9
ibm∂mM + 16

9
M
(

1
2
R− 2

3
|M |2 − 1

3
bab

a + iDmbm
)
.

(A.28)

Components with Da Acting on Φ, Φ̄

In addition, several components involving super-covariant derivatives of DaΦ̄ and
DaΦ are relevant, in particular for the computation of O(2|3) in tab. 2.3. The im-



91

portant identities involving two spinorial covariant derivatives are given by

D2DaΦ̄| = 2
3
M̄ema ∂mĀ

D̄2DaΦ| = 2
3
Mema ∂mA

DαD̄α̇DaΦ| = i
3
MFσ̄aα̇α

D2DaΦ| = −8i
3
Fba − 2

3
M̄ema ∂mA− 4ema ∂mF

DαD̄α̇DaΦ̄| = −2iσ̄α̇αb (1
3
εcd

abbcedm∂
mĀ+ ebme

a
nDm∂nĀ)− i

3
σ̄aα̇αM̄F̄ .

(A.29)

The above components were also determined in [20]. Note that we �nd agreement
with the results in that reference, apart from the last component identity which
di�ers by a minus sign in the �rst and last term.

Finally, there are also components with four spinorial covariant derivatives acting
on DaΦ̄ and DaΦ and they read

1
16
D2D̄2DaΦ| = −1

6
(−1

2
R+ 5

6
|M |2 + 1

3
bcb

c − iDmbm)∂aA

− i
9
MFba − 1

6
M∂aF

1
16
D2D̄2DaΦ̄| = ema

[
Dm(�Ā+ 2

3
ibn∂nĀ)− i

3
F̄ M̄bm + 1

3
F̄ ∂mM̄

− (Rmn + 2
9
bmbn + 2

3
iDnbm − 1

3
εpmqnDqbp)∂nĀ

+ 5
6
M̄∂mF̄ + ( 1

12
R+ 1

12
|M |2 + 1

6
bcb

c − i
6
Dnbn)∂mĀ

]
.

(A.30)

Note that the �rst identity di�ers from the result in [20] by a factor multiplying the
�rst term.

Components of Ga

For the computation of higher-components of the super�eld DaΦ and its conjugate
we need certain components of Ga. The relevant identities read

D2Ga| = 2
3
(M̄ba − iema ∂mM̄) , (A.31)

σ̄β̇βb D̄β̇DβGd| = Rbd − ηbd(1
6
R+ 1

9
|M |2 + 1

9
bab

a) + 2
9
bbbd

− 2i
3
emb Dmbd + 1

3
εabcd e

c
mDmba .

(A.32)

These results perfectly agree with [20].

A.3.1 Derivation of Component Identities

Let us now give some of the derivations of the component identities which listed
in the previous section. Here we constrain ourselves to the discussion of the more
involved computations. In particular, the identities in eq. (A.26) are easily obtained
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by means of eq. (2.70) together with the (anti-)commutation relations and the com-
ponents of the torsion and curvature and, hence, do not discuss them any further
here. Instead let us demonstrate the identities in eq. (A.27). We rewrite the �rst
component expression using eq. (2.70) as follows

D2D̄2D̄2Φ̄| = 8D2R| D̄2Φ̄| + 8R| D2D̄2Φ̄| . (A.33)

Inserting the required components we directly arrive at the result in eq. (A.27). The
second identity in eq. (A.27) reads

D̄2D2D̄2Φ̄| = D̄2D2(D̄2 − 8R)Φ̄|+ 8Φ̄| D̄2D2R|+ 8D̄2Φ̄| D2R| . (A.34)

Here, only the �rst term on the r.h.s. needs further attention, the remaining terms
can be read o� from eq. (A.28). Since (D̄2 − 8R)Φ̄ is a covariantly chiral super-
�eld, we need to determine the Θ-expansion of this chiral super�eld and then use
eq. (A.26). Fortunately, this expansion was already given in [34] and we simply insert
the respective components here. Altogether, we then �nd the result in eq. (A.27).

Next, we turn to eq. (A.30) together with the necessary auxiliary results in
eqs. (A.31), (A.32). Let us mention again that these have already been derived in
[20], but as a cross-check we rederive them here. In particular, since we �nd dis-
agreement regarding the �rst identity in eq. (A.30), it important to explain why we
obtain a di�erent result. This identity can be computed rather straightforwardly
by using the algebra of super-covariant derivatives together with the torsion com-
ponents. More precisely, we �nd

D2D̄2DaΦ| = −4(D2R| DaΦ|+R| D2DaΦ|) . (A.35)

After insertion of the required component identities we arrive at the displayed result
in eq. (A.30).

Next, we turn to the auxiliary results in eqs. (A.31), (A.32). Firstly, by acting
with a super-covariant derivative Dα on eq. (A.21) we �nd eq. (A.31). Alternatively,
we can act with D̄α̇ on eq. (A.21) which yields

D̄α̇DαGββ̇ − D̄α̇DβGαβ̇ = −1
2
εαβεα̇β̇D̄

2R̄ . (A.36)

Analogously, from eq. (A.22) we derive the following identity

DαD̄α̇Gββ̇ −DαD̄β̇Gβα̇ = 1
2
εαβεα̇β̇D

2R . (A.37)

We can decompose σ̄β̇βb D̄β̇DβGd into symmetric and anti-symmetric components as

σ̄β̇βb D̄β̇DβGd = 1
2
(σ̄β̇βb D̄β̇DβGd+σ̄

δ̇δ
d D̄δ̇DδGb)+

1
2
(σ̄β̇βb D̄β̇DβGd−σ̄δ̇δd D̄δ̇DδGb) . (A.38)

The anti-symmetric part can be easily computed by using eqs. (A.36), (A.37) and
the commutation relations.47 We �nd

σ̄β̇βb σ̄δ̇δd (D̄β̇DβGδδ̇ − D̄δ̇DδGββ̇) = 4i(DdGb −DbGd)− 4εadcbDcGa . (A.39)

47It is also necessary to use the σ-matrix trace identity Tr(σaσ̄bσcσ̄d) = 2(ηabηcd − ηacηbd +
ηadηbc − iεabcd).



93

The symmetric component of σ̄β̇βb D̄β̇DβGd can be derived by computing

ηacRabcd = 1
16
ηacσ̄α̇αa σ̄β̇βb σ̄γ̇γc σ̄

δ̇δ
d Rαα̇ββ̇γγ̇δδ̇ (A.40)

from the formula displayed in [34] which is determined by the solution to the Bianchi
identities. To simplify the resulting expression we use trace identities for the σ-
matrices and eq. (A.36) such that

1

2

(
σ̄β̇βb D̄β̇DβGd + σ̄δ̇δd D̄δ̇DδGb

)
= Rbd − ηbd

[
12RR̄ + 2GaG

a − 1
4

(
D2R + D̄2R̄

)]
+ 2GbGd + i(DbGd +DdGb) .

(A.41)
Altogether, this demonstrates eq. (A.32). We are now in a position to derive the
missing identity in eq. (A.30). Making iterative use of the (anti-)commutation rela-
tions we �nd

D2D̄2DaΦ̄ = −D2D̄α̇(Tα̇a
β̇D̄β̇Φ̄)−D2(Rα̇aδ̇

α̇D̄δ̇Φ̄)−D2(Tα̇a
γDγD̄α̇Φ̄)

+D2(Tα̇a
γ̇D̄γ̇D̄α̇Φ̄) +Dα(−TαaγDγD̄2Φ̄ + Tαa

γ̇D̄γ̇D̄2Φ̄)

+Rαaδ
αDδD̄2Φ̄ + Tαa

γDγDαD̄2Φ̄− Tαaγ̇D̄γ̇DαD̄2Φ̄ +DaD2D̄2Φ̄ .
(A.42)

This precisely coincides with the respective result in [20]. To determine the �nal
component form one has to compute the individual terms. The �rst and second
term in eq. (A.42) require most e�ort. The remaining terms in eq. (A.42) are easier
to compute and we omit their details here. After some work, using the algebra of
super-covariant derivatives and eqs. (A.16), (A.17), (A.22) we �nd

−D2D̄α̇(Tα̇a
β̇D̄β̇Φ̄)| − D2(Rα̇aδ̇

α̇D̄δ̇Φ̄)|

= iD2Ga| D̄2Φ̄|+ iGa| D2D̄2Φ̄|+ 64iDbGa| DbΦ̄| − 16DbΦ̄| σ̄β̇βb D̄β̇DβGa| .
(A.43)

To obtain the �nal component expression, it remains to insert the required compo-
nent formulas which, in particular, encompass eqs. (A.31), (A.32). Finally, we arrive
at the displayed component form in eq. (A.30) which agrees with the result in [20].

A.4 Classi�cation of N = 4 Operators

In this appendix we classify the possible four superspace-derivative operators and re-
duce them to a minimal set of relevant operators by using the commutation relations
in eq. (2.11) as well as integration by parts identities. As mentioned in sec. 2.5.1
we have to include also the gravitational super�elds R,Ga and Wαβγ into the anal-
ysis. R and Ga count as the equivalent of two and Wαβγ as the equivalent of three
spinorial covariant derivatives. Operators which are directly related via the identity
{Dα, D̄α̇}Φ ∼ DaΦ, via eq. (A.25) or via the chirality condition in eq. (2.70) are
easy to identify and, therefore, for the sake of brevity we do not need to distinguish
them explicitly here.
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We conduct the classi�cation stepwise by listing those operators �rst which de-
pend only on super-covariant derivatives acting on Φ, Φ̄ (and, hence, do not involve
the gravitational super�eld). Any operator of this type can be labeled by the number
of chiral or anti-chiral super�elds on which covariant derivatives act. This number
ranges between four and one. All remaining operators that we did not capture
yet carry an explicit dependence on the super�elds R, R̄ and Ga. The results are
displayed in table A.1. Note that we did not include higher-curvature operators
in table A.1. These were already displayed in eq. (2.89) and brie�y discussed in
sec. 2.5.2.48

The list of operators in table A.1 is highly degenerate and displays several re-
dundant operators. One of the tools that allow us to identify redundant operators
is the algebra of super-covariant derivatives given in eq. (2.11). Making repetitive
use of eq. (2.11) and occasionally also of eq. (A.19) we deduce the following list of
relations among the operators in table A.1

O(1|1) = −5
2
O(R|D) − 10iO(G|1) − 1

2
O(1|5)

O(1|5) = 8O(1|2) + 8O(R|2) − 8O(R|D)

O(1|4) = −8O(R|2) + 8O(R|D)

O(1|3) = 16O(1|2) + 16O(R|2) + 32iO(G|1) − 8O(R|D)

O(2|5) = −8O(G|2) − 2O(2|7)

O(2|6) = −8O(R|1)

O(R|D2) − h.c. = 4iO(G|D) .

(A.44)

In total this reduces the list in table A.1 by seven operators. In the following we
make the particular choice to delete the operators {O(1|5), O(1|4), O(1|3), O(1|1), O(2|7),
O(2|6), O(G|D)} from the list of relevant operators. To indicate this we marked these
operators in blue color in table A.1.

To further reduce the number of independent operators, we now apply a second
tool, namely integration by parts identities in curved superspace. To this end, it is
necessary to use the fact that the following integrals are entirely given by superspace-
surface terms [47]∫

d8zEDαV α ,

∫
d8zED̄α̇Vα̇ ,

∫
d8zEDaV a , (A.45)

where V A is an arbitrary covariant super�eld. As a �rst example we now consider

V α = S(Φ, Φ̄)DαΦ , (A.46)

where S is an arbitrary scalar super�eld, which depends on the super�elds Φ, Φ̄. For
the above V α we �nd that up to boundary terms

0 =

∫
d8zEDα(S(Φ, Φ̄)DαΦ) =

∫
d8zE(−S(Φ, Φ̄)D2Φ +

∂S

∂Φ
DαΦDαΦ) , (A.47)

48One may wonder why the super�eld Wαβγ does not appear in table A.1. The reason for this is
that, since Wαβγ has mass dimension three, we have to contract two of its indices to build a scalar
operator. However, as Wαβγ is completely symmetric, such operators vanish identically.
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Label Form of Operator Real

O(4|1) (DαΦDαΦ)2

O(4|2) DαΦDαΦD̄α̇Φ̄D̄α̇Φ̄ X

O(3|1) D2ΦDαΦDαΦ

O(3|2) D̄2Φ̄DαΦDαΦ

O(3|3) D̄α̇DαΦDαΦD̄α̇Φ̄

O(2|1) D2ΦD̄2Φ̄ X

O(2|2) (D2Φ)2

O(2|3) DaΦDaΦ̄ X

O(2|4) DaΦDaΦ
O(2|5) D̄α̇D2ΦD̄α̇Φ̄

O(2|6) D2D̄α̇Φ̄D̄α̇Φ̄

O(2|7) DαD̄α̇DαΦD̄α̇Φ̄

O(1|1) iσ̄aα̇αD̄α̇DaDαΦ

O(1|2) DaDaΦ
O(1|3) D̄2D2Φ

O(1|4) DαD̄2DαΦ

O(1|5) D̄α̇DαD̄α̇DαΦ

O(R|1) RDαΦDαΦ

O(R|2) RD2Φ

O(R|3) R2

O(R̄|1) R̄DαΦDαΦ

O(R̄|2) R̄D2Φ

O(G|1) GaDaΦ
O(G|2) Gαα̇DαΦD̄α̇Φ̄ X

O(R|D2) D2R

O(R|D) DαRDαΦ

O(G|D) DaGa X

Table A.1: List of operators at four superspace-derivative level. Operators whose
θ = θ̄ = 0-component is not real-valued have to be completed by their conjugate
expressions at the level of the action as in eq. (2.82). The individual operators
are understood as being multiplied by a super�eld T (Φ, Φ̄) (and T̄ (Φ, Φ̄) for their
conjugate parts, in case that the operator is not real). Operators, which are displayed
in blue color can be recast in terms of other (black) operators by means of the algebra
of covariant derivatives eq. (2.11). Note that we omitted several operators here, for
which it can be seen quite easily that they are redundant and, therefore, be recast in
terms of other operators.
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which together with the analogous result for Vα̇ = S̄(Φ, Φ̄)D̄α̇Φ̄ shows that the
operators O(1) and O(2) in eq. (2.101) are equivalent.

Next we turn to integration by parts identities at the four-superspace derivative
level. Di�erent identities arise from choosing distinct super�elds V a, V α, Vα̇. How-
ever, we only need to classify super�elds with an undotted spinor index V α, since
for any super�eld Vα̇ there exists a conjugate super�eld V α, whose integration by
parts identity expresses the conjugate of the integration by parts identity for Vα̇.
Super�elds with spacetime index V a ful�ll the relation

DaV a = − i
4
{Dα, D̄α̇}V αα̇ = − i

4
(DαṼ α − D̄α̇Ṽα̇) , (A.48)

where Ṽ α = D̄α̇V αα̇ and Ṽα̇ = −DαVαα̇ and, hence, yield integration by parts
identities that can be rewritten in terms of the spinorial super�elds Ṽ α, Ṽα̇. Our
task is, therefore, to classify all possible higher-derivative spinorial super�elds V α,
such that the collective mass-dimension of the objects (DA, R, R̄, Ga,Wαβγ, W̄α̇β̇γ̇)

appearing in V α is given by Λ3/2. Again care must be taken, since some of these
super�elds are related via the algebra of covariant derivatives in eq. (2.11). To give
some examples, consider V α = D̄α̇Gα

α̇ which is equivalent to DαR via eq. (A.19).
Further examples are given by

V α = D̄2DαΦ = 8RDαΦ , V α = DαD̄2Φ̄ = −8Gα
α̇D̄α̇Φ̄ + 2D̄α̇DαD̄α̇Φ̄ . (A.49)

We collect the remaining, independent integration by parts identities in table A.2.

V α Equivalence of operators

T (Φ, Φ̄)DβΦDβΦDαΦ O(4|1) ' 0

T (Φ, Φ̄)D̄α̇Φ̄D̄α̇Φ̄DαΦ O(3|2) ' O(4|2) +O(3|3)

T (Φ, Φ̄)D̄2Φ̄DαΦ O(2|5) ' O(2|1) +O(3|2)

T (Φ, Φ̄)D̄α̇Φ̄D̄α̇DαΦ O(2|7) ' O(3|3) +O(2|3)

T (Φ, Φ̄)D̄α̇Φ̄DαD̄α̇Φ̄ O(3|3) ' O(2|4) +O(2|6)

T (Φ, Φ̄)D2ΦDαΦ O(R̄|1) ' O(3|1) +O(2|2)

T (Φ, Φ̄)D̄α̇DαD̄α̇Φ̄ O(1|5) ' O(2|7)

T (Φ, Φ̄)RDαΦ O(R|D) ' O(R|2) +O(R|1)

T (Φ, Φ̄)R̄DαΦ O(R̄|1) ' O(R̄|2)

T (Φ, Φ̄)DαR O(R|D2) ' O(R|D)

T (Φ, Φ̄)Gα
α̇D̄α̇Φ̄ O(G|1) ' O(G|2) +O(R|D)

Table A.2: Table of independent integration by parts identities. Here the symbol '
is understood as indicating that the particular operator can be recast as a combination
of other operators, up to some numerical coe�cients. Here we display only those
identities which give rise to a set of linearly independent constraints.

It can be explicitly checked that the resulting system of constraints is non-degenerate
by computing the rank of the corresponding matrix, and, hence, that each identity is



97

independent from the others. In total we �nd 11 constraints, which together with the
redundancy coming from the use of the commutation relations reduces the number
of relevant operators down to a set of 9. According to the identities in table A.2,
there still is some freedom left in choosing this set of operators.49 Here we make the
following choice of a basis of independent operators

{O(4|2),O(3|1),O(3|3),O(2|1),O(2|2),O(2|3),O(R|1),O(R|2),O(R|3)} . (A.50)

Note that six of these operators induce four-derivative terms for the chiral scalar o�-
shell. These are precisely the operators, which involve an equal number of spinorial
and anti-spinorial covariant derivatives and they read

{O(4|2),O(3|3),O(2|1),O(2|3),O(R|1),O(R|2)} . (A.51)

The minimal list of operators in eq. (A.50) is the result of the classi�cation of the
N = 4 operators. One may now proceed to compute the component versions of
these operators. In sec. 2.5.6 we display the component forms of the operators in
eq. (A.51).

A.5 Curvature Constraint from Killing Spinor in

Higher-Derivative Supergravity

In this appendix we investigate the properties of supersymmetric vacua in higher-
derivative N = 1 supergravity more closely and pay special attention to the con-
straint on the scalar curvature of the background required by the existence of Killing
spinors. More precisely, as we already stated in sec. 2.6.2 the preservation of super-
symmetry in vacua of N = 1 supergravity demands

〈R〉 = 4
3
〈|M |2〉 , (A.52)

which also follows from the integrability condition for the Killing spinors and is
associated with the vanishing of the gravitino variation in the vacuum. For the
ordinary two-derivative supergravity eq. (A.52) is indeed satis�ed on-shell, that is
after solving the Einstein equations, integrating out the auxiliary �eld M and eval-
uating the action at the supersymmetric condition 〈F i〉 = 0. In this appendix we
investigate eq. (A.52) for the general higher-derivative supergravity. To this end, it
would, in principle, be necessary to determine the component form of the complete
higher-derivative action displayed in eq. (2.82). However, we will now demonstrate
that it su�ces to analyze a simpler Lagrangian. Since we are interested in the La-
grangian at the supersymmetric points, we want to evaluate the action at 〈F i〉 = 0.
Higher-derivative operators for the chiral super�elds, such as operators involving
DAΦi and DAΦ̄̄, neither contribute to the scalar potential nor to the gravitational

49For instance, we �nd that the following operators are equivalent to each other O(3|2) ←→ O(3|3)

and O(2|3) ←→ O(G|1) ←→ O(G|2). In fact the last equivalence was identi�ed as a generalized
Kähler transformation in [20] and used to simplify the component Lagrangian.
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part of the action after evaluating at 〈F i〉 = 0. Therefore, without loss of generality
it is su�cient to ignore these operators here. What remains are higher-order opera-
tors involving only the gravitational super�elds.50 We are interested on examining
whether the general form of the scalar potential, which is now corrected by higher-
powers of M and M̄ , still allows the condition in eq. (A.52) to be satis�ed. To this
end it is convenient to discuss the following Lagrangian

L =

∫
d4θE

(
−3U(Φ, Φ̄, R, R̄) +

W (Φ)

2R
+
W̄ (Φ̄)

2R̄

)
. (A.53)

Note that there is an in�nite tower of purely gravitational higher-order operators
which we excluded here. The excluded operators involve super-covariant derivatives
acting onR, R̄ and the super�eldsGa orWαβγ. In particular, these operators can also
contribute higher monomials inM and M̄ to the scalar potential. However, any con-
tribution of that type can equivalently be generated via operators of the form RnR̄m

and, therefore, be rewritten via operators involving only R, R̄. These considerations
are also in agreement with the conjectured action in eq. (2.83). Therefore, by choos-
ing the Lagrangian in eq. (A.53) we only constrain the allowed higher-curvature
terms, but not the form of the scalar potential. More speci�cally, eq. (A.53) implies
o�-shell only aR+R2 gravity. Naturally, the form of the higher-curvature terms has
an e�ect on the vacuum-structure of the theory [117]. For instance, this can be seen
when we rewrite the f(R)-degree of freedom in terms of a scalar �eld, which may
induce supersymmetry breaking [53, 54]. We will show now that while additional
non-supersymmetric vacua may exist due to the presence of the R2-term, there still
exists a supersymmetric vacua where eq. (A.52) holds. We return to the discussion
of the higher-curvature terms at the end of this appendix.

The component version of eq. (A.53) can easily be computed following the steps
in sec. 2.4.1. Evaluating the result at the vacuum conditions

〈F i〉 = 〈∂aAi〉 = 〈∂aĀ̄〉 = 〈∂aM〉 = 〈ba〉 = · · · = 0 , (A.54)

we arrive at the component Lagrangian

L/e = −1
2
ΩR− 3

4
UMM̄R2 − VJ ,

Ω = U +MUM + M̄UM̄ − 4|M |2UMM̄ ,

VJ = WM̄ + W̄M + 1
3
|M |2Ξ ,

Ξ = U − 2MUM − 2M̄UM̄ + 4|M |2UMM̄ .

(A.55)

For clarity we set the kinetic terms forM to zero, since in an EFT we expect that we
must integrateM out and, hence, contributions to L involving ∂aM generate kinetic
terms for the chiral scalars.51 Furthermore, we do not explicitly indicate anymore
that all quantities are understood as being evaluated in the supersymmetric vacuum.

50The couplings of these operators are allowed to depend on the chiral multiplets.
51It is also possible that higher-derivatives terms for the spacetime-metric are introduced this

way. However, for the maximally symmetric solutions to the Einstein equations these terms are
irrelevant as well.
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After performing the Weyl transformation to the Einstein frame we arrive at the
following action

L/e = −1
2
RE − 3

4
UMM̄R2

E − VE , VE =
VJ
Ω2

, (A.56)

where RE denotes the Einstein frame scalar curvature. Let us �rst have a look at
the respective Einstein equations for eq. (A.56). In the vacuum 〈VE〉 sets the value
of the cosmological constant via

Λ = −VE . (A.57)

Since we have evaluated the Lagrangian at eq. (A.54) the coupling UMM̄ does not
carry any dependence on the space-time metric and, hence, the Einstein equations
read

9UMM̄�RE +RE = −4Λ , (A.58)

where we used the general Einstein equations for R2-gravity as displayed in [45, 46].
Since we are looking for maximally symmetric backgrounds we set �RE = 0 and,
hence, we obtain

RE = −4Λ = 4VE , (A.59)

which coincides with the solution of the ordinary Einstein-equations. At the level
of eq. (A.59) the curvature constraint in eq. (A.52) can thereby be recast as

VJ = −1

3
Ω|M |2 . (A.60)

It remains to check whether this condition is indeed ful�lled after replacing M in
VJ via the solution to its respective equations of motion. The equations of motion
for M̄ read

W +
1

3
MΞ +

1

3
|M |2 ∂Ξ

∂M̄
− 2

VJ
Ω

∂Ω

∂M̄
+

3

4
Ω2UMM̄M̄R2

E = 0 . (A.61)

Let us instead analyze a real-valued version of this equation. For instance, we may
investigate

M̄
∂L
∂M̄

+M
∂L
∂M

= 0 . (A.62)

Eliminating the terms involving the superpotential via eq. (A.55) and replacing RE

via eq. (A.59) we �nd that the above expression reduces to

1

3
|M |2

(
Ξ + M̄

∂Ξ

∂M̄
+M

∂Ξ

∂M

)
+
VJ
Ω

(
Ω− 2M̄

∂Ω

∂M̄
− 2M

∂Ω

∂M

)

+ 12

(
VJ
Ω

)2 (
MUMMM̄ + M̄UMM̄M̄

)
= 0 .

(A.63)

We read this equation as a quadratic equation determining VJ/Ω. Inserting the
expressions for Ξ,Ω displayed in eq. (A.55) into eq. (A.63) yields

E
(

1

3
|M |2 +

VJ
Ω

)
+ (MUMMM̄ + h.c.)

(
4

3
|M |4 + 8|M |2VJ

Ω
+ 12

V 2
J

Ω2

)
= 0 , (A.64)
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where E is an expression in M, M̄, U and derivatives thereof. It is now easily seen
that one of the two solutions of eq. (A.64) is precisely given by eq. (A.60). This
concludes the demonstration that the curvature constraint as displayed in eq. (A.52)
can still be satis�ed for eq. (A.53).

There exists a second solution of eq. (A.64) which leads to a violation of eq. (A.60)
and, hence, corresponds to a non-supersymmetric vacuum. As we mentioned in
the beginning of this appendix the presence of higher-curvature terms changes the
vacuum structure of the theory. Here we see that the presence of the R2-term leads
to the existence of this second vacuum. The reformulation ofR+R2 gravity in terms
of an additional scalar degree of freedom features a scalar potential with a plateau
region. In the asymptotic regime of the plateau the value of the scalar potential is
positive and, hence, in the respective vacuum supersymmetry is broken. If we had
allowed for additional higher-curvature terms in L then further vacua might have
appeared. However, we expect that the supersymmetric vacuum where eq. (A.60)
is satis�ed is still allowed.



Appendix B

Derivation of Structure of F 4-Term

B.1 Kähler Moduli Space and Coupling Tensor

In this as well as the next appendix we follow the reference [31]. Here we study
the correction to the scalar potential induced by the higher-derivative operator in
eq. (3.56) for the geometry of the Kähler moduli at leading order in the large volume
limit.52 This geometry is de�ned by

K(0) = −2 ln(V) , W = W0 , (B.1)

where V is displayed in eq. (3.18) and eq. (3.21). In this appendix we set K(0) = K
and T(0) = T for the sake of brevity. Up to factors the relevant object that we want
to investigate reads

Z ≡ Tijk̄l̄K
iKjK k̄K l̄ , (B.2)

where Ki = Ki̄K̄ and Ki̄ denotes the inverse Kähler metric. Due to the shift-
symmetry of K we may replace anti-holomorphic by holomorphic indices. Z is the
quantity describing the |F |4-correction in eq. (3.56) and we want to investigate the
possible functional forms that it may take.

We will now provide evidence, but not a rigorous proof, for the following claim.
If Tijkl consists purely of quantities carrying at least one index, in other words that
no scalar functions appear in Tijkl, then Z is a constant. However, if non-constant
scalar functions, such as K or the scalar curvature of the Kähler manifold RijK

ij,
appear, then this statement is no longer true. Here Rij denotes the Ricci tensor on
the Kähler manifold.

Let us begin by investigating the possible structure of Tijkl. Since the superpo-
tential is a constant, we can assume that the coupling tensor is built entirely out of
derivatives of K. The following list contains the simplest conceivable objects that

52Some of the below results can also be found in [118].
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can be constructed this way:

Tijkl = KikKjl +KilKjk (B.3)

Tijkl = KiKjKkKl (B.4)

Tijkl = KiKkKjl + symmetrized (B.5)

Tijkl = Rijkl = Kijkl −KijmK
mnKnkl (B.6)

Tijkl = RikRjl +RilRjk (B.7)

Tijkl = RikKjl + symmetrized (B.8)

Tijkl = RikKjKl + symmetrized (B.9)

Tijkl = Kj∇lRik + symmetrized (B.10)

Tijkl = ∇j∇lRik + symmetrized . (B.11)

The symmetrization is chosen such that Tijkl obeys the identities in eq. (2.31).
Moreover, in the above Rijkl denotes the Riemann tensor and ∇k the covariant
derivative. We will show that for any four-tensor in the upper list of choices Z is
a constant. For the tensors in eq. (B.3) to eq. (B.5) this simply follows from the
no-scale condition KiKi = 3.53

The following identity is essential in order to prove our claim

Ki1...inj1...jmK
i1 . . . Kin ∝ Kj1...jm . (B.12)

This relation can be shown stepwise. To begin with note that V is a homogeneous
function of degree (3/2) in the four-cycle volumes τi. According to Euler's theorem
for homogeneous functions it, thus, has to satisfy

3

2
V =

∑
i

τiVi . (B.13)

Taking iterative derivatives of this equation we obtain∑
i

τiVij1...jn =
3− 2n

2
Vj1...jn . (B.14)

With this we can prove the following auxiliary result54

Ki1...inK
i1 . . . Kin = const . (B.15)

First note that we have

Ki = KijKj = −τi . (B.16)

53Note that, if we choose Tijkl according to eq. (B.6), then Z describes the holomorphic sectional
curvature along Ki.

54For n = 2 this simply corresponds to the no-scale condition.
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In general the derivative is of the form

Ki1...in =− 2

V
Vi1...in +

2

V2
(Vi1...in−1Vin + symmetrized) + . . .

+ 2
(−1)n(n− 1)!

Vn
Vi1 . . .Vin .

(B.17)

For each term a successive insertion of eq. (B.14) yields precisely the correct power
of V , since there are always as many products of derivatives of V in the numerator
as there are powers of V in the denominator. Thus, one is left with a combinatorial
constant for each term. We conclude that eq. (B.15) is satis�ed.

Now we are in a position to show the following

Ki1...injK
i1 . . . Kin ∝ Kj . (B.18)

This can be seen via induction in n. For n = 1 the above can simply be checked using
eq. (B.14). Suppose the statement is true for (n − 1). Then, taking the derivative
of eq. (B.15) with respect to τj, we obtain

Ki1...injK
i1 . . . Kin = −Kji2...inK

i2 . . . Kin −Ki1ji3...inK
i1Ki3 . . . Kin − . . . . (B.19)

Thus, since the statement is true for (n− 1), one infers that eq. (B.18) holds. Now
we are in a position to generalize this statement for eq. (B.12). Again the proof uses
induction: For n = 1 this can be directly deduced by taking derivatives of eq. (B.18).
For arbitrary n successive di�erentiation of eq. (B.18) yields eq. (B.12), if eq. (B.12)
holds for (n− 1).

Now let us consider for example Z with Tijkl given by eq. (B.6), then iterative
use of eq. (B.12) yields

Z ∝ KiK
ijKj + const. , (B.20)

which again gives a constant due to the no-scale property. Similarly one can show
that Z is a constant for the choices in eq. (B.7), (B.8), (B.9). The cases of eq. (B.10)
and eq. (B.11) require a little more e�ort, but can be derived making use of prop-
erties, such as (∂kK

ij)Kij = −KijKijk.

B.2 F 4-Term from Kähler-Correction?

In this appendix we investigate whether V(1) as given by eq. (3.54) could also be
captured or induced by a correction to the two-derivative theory that is to K or W .
While this question is of no further relevance to the results of this thesis, it would
be important for an exact matching of the result of the KK-reduction of the various
10D (α)3-corrections to a manifestly supersymmetric 4D theory.

If V(1) could be described as a correction to the two-derivative theory, then pos-
sibly only via a new contribution to the Kähler potential since W has to be holo-
morphic. In addition we have to guarantee Kähler-invariance. Hence, the correction
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to the Kähler potential has to be a function of G ≡ K+lnW +ln W̄ . The corrected
Kähler potential Kc is then of the form

Kc = K0 + (α′)3δK(Q, T + T̄ ) , (B.21)

where K0 = −2 ln(V) is the tree-level Kähler potential. For convenience we choose
Q ≡ eG, and T collectively denotes the Kähler moduli. Note that in eq. (B.21) we do
not need to include the ξ̂-correction since it already is of order (α′)3. For simplicity
in the following we set α′ = 1. Let us assume that δK is an analytic function. In
order to reproduce the scalar potential for the theory at O(|W |2) the lowest order
coe�cient of the series expansion of δK in Q has to vanish, such that

δK(Q, T + T̄ ) = QK(1)(T + T̄ ) +O(Q2) . (B.22)

Including only the Kähler moduli and ignoring again the ξ̂-correction the scalar
potential has the form55

V = eKc|W |2(Kij
c Kc,iKc,j − 3) . (B.23)

We now want to compute the terms in V which are quartic in |W |. In other words
these are all terms of order O(Q2). To this end we compute the following expansion

eKc|W |2= Q+Q2K(1) +O(Q3) . (B.24)

Furthermore, the Kähler metric reads

Kc,ij = K0,ij +Q(K0,ijK(1) +K0,iK0,jK(1) +K0,iK(1),j)

+Q(K0,jK(1),i +K(1),ij) +O(Q2) .
(B.25)

We �nd that the inverse Kähler metric is given by

Kij
c = Kij

0 −Q(Kij
0 K(1) +Ki

0K
j
0K(1) +Ki

0K
jk
0 K(1),k)

−Q(Kj
0K

ik
0 K(1),k +Kik

0 K
jl
0 K(1),ij) +O(Q2) .

(B.26)

Now we are in a position to determine the scalar potential at order Q2. We �nd
that

VQ2 = −Q2(6K(1) + 4Ki
0K(1),i +Ki

0K
j
0K(1),ij) , (B.27)

where we made extensive use of the no-scale property of K0. Now, VQ2 has to match
V(1) as given by eq. (3.59). This yields

6K(1) + 4Ki
0K(1),i +Ki

0K
j
0K(1),ij = λ̂

∫
c2 ∧ J . (B.28)

We read this equation as an inhomogeneous linear partial di�erential equation for
K(1). The solution can always be decomposed into an arbitrary solution to the re-
spective homogeneous di�erential equation as well as a particular solution to the

55As in the previous appendix we do not need to distinguish between holomorphic and antiholo-
morphic indices.
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inhomogeneous one. A particular solution to the inhomogeneous di�erential equa-
tion is given by

K(1) = 4
31
λ̂Πkt

k . (B.29)

To check that eq. (B.29) indeed solves eq. (B.28) we have to make use of the identity

2τ i
∂tj

∂τ i
= tj , (B.30)

which can be checked by using

K0,ij =
1

2

titj

V2
− 1

V
∂tj

∂τ i
, (B.31)

as well as
Ki

0 = −τ i , (B.32)

and �nally it is also necessary to note that

K0,i = − t
i

V
. (B.33)

So far we have found that the correction in eq. (B.29) indeed reproduces V(1) in
eq. (3.54). However, it demands also a new correction to the two-derivative kinetic
term via the formula of the Kähler metric in eq. (B.25). In particular, this includes
a term in the Lagrangian

e−1L ⊃ 4
31
λ̂Q
(
∂µT

i∂µT̄ ̄
)
∂T i∂T̄ ̄

[∫
c2 ∧ J

]
. (B.34)

To fully con�rm that the correction to the Kähler potential is allowed, it would be
necessary to determine whether the above two-derivative terms can indeed emerge
from the KK-reduction of the 10D (α′)3-corrections. Since they descend from only
partially known terms involving the �eld-strength H3, we cannot provide a full an-
swer to this question here. Nevertheless, let us make a small remark. We expect
that the above correction can only emerge from a ten-dimensional term that involves
covariant-derivatives acting on Riemann-tensors. If the replacement for R(Ω+) for
the Riemann-tensor displayed in eq. (3.27) would already fully capture the depen-
dence on H3, then we naively expect the required terms with covariant derivatives
acting on the Riemann-tensor to be absent. However, let us emphasize again that a
full analysis is mandatory to completely understand the required terms.
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